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Abstract

Changes in protein metabolism are key to disease onset and progression in many neurodegenerative diseases. As a
prime example, in Parkinson’s disease, folding, post-translational modification and recycling of the synaptic protein
α-synuclein are clearly altered, leading to a progressive accumulation of pathogenic protein species and the
formation of intracellular inclusion bodies. Altered protein folding is one of the first steps of an increasingly
understood cascade in which α-synuclein forms complex oligomers and finally distinct protein aggregates, termed
Lewy bodies and Lewy neurites. In neurons, an elaborated network of chaperone and co-chaperone proteins is
instrumental in mediating protein folding and re-folding. In addition to their direct influence on client proteins,
chaperones interact with protein degradation pathways such as the ubiquitin-proteasome-system or autophagy in
order to ensure the effective removal of irreversibly misfolded and potentially pathogenic proteins. Because of the
vital role of proper protein folding for protein homeostasis, a growing number of studies have evaluated the
contribution of chaperone proteins to neurodegeneration. We herein review our current understanding of the
involvement of chaperones, co-chaperones and chaperone-mediated autophagy in synucleinopathies with a focus
on the Hsp90 and Hsp70 chaperone system. We discuss genetic and pathological studies in Parkinson’s disease as
well as experimental studies in models of synucleinopathies that explore molecular chaperones and protein
degradation pathways as a novel therapeutic target. To this end, we examine the capacity of chaperones to prevent
or modulate neurodegeneration and summarize the current progress in models of Parkinson’s disease and related
neurodegenerative disorders.
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Introduction
Parkinson’s disease (PD) is a common incurable neuro-
degenerative disease that affects around 1% of the world-
wide population at age 60 years [1]. It is progressive in
nature and causes a movement disorder characterized by
bradykinesia, resting tremor, rigidity and postural instability
along with non-motor symptoms that mainly include auto-
nomic dysfunction and cognitive impairment [2]. No treat-
ment with established efficacy in preventing or slowing the
progression of neurodegeneration in PD is currently avail-
able and development of such treatment is of utmost

importance. Progressive degeneration of neurons in defined
regions of the brain and the presence of proteinaceous
intracellular inclusion bodies characterize PD pathology [3].
These inclusion bodies are termed Lewy bodies and Lewy
neurites and contain large amounts of ubiquitinated and
phosphorylated proteins, most importantly the presynaptic
protein α-synuclein [3-5]. Increased levels of α-synuclein or
α-synuclein containing protein aggregates are not only a
hallmark of PD but are characteristic for a whole group of
neurodegenerative diseases including dementia with Lewy
bodies (DLB), multiple system atrophy (MSA), Alzheimer’s
disease, different forms of neurodegeneration with brain
iron accumulation and others [3,6-8]. This group of dis-
eases can therefore be referred to as “synucleinopathies”,
although overlapping pathologies (such as tau-containing
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neurofibrillary tangles or amyloid-β plaques) exist in many
cases and may act synergistically. Strong evidence for an in-
volvement of α-synuclein in PD is also provided by genetic
studies in familial and sporadic forms of the disease. Mis-
sense mutations in the α-synuclein gene (SCNA) (A53T,
A30P and E46K) [9-11] as well as gene multiplications
[12-14] cause familial forms of PD, while recent genome
wide association studies have revealed polymorphisms in
the α-synuclein gene as risk factors for developing sporadic
PD [15].
An emerging theme in many neurodegenerative dis-

eases, including the synucleinopathies, are deficits in
protein metabolism, most importantly protein folding
and degradation [16-23]. Alpha-synuclein is a neuronal
protein that is enriched at presynaptic terminals, where
it is thought to be involved in the assembly of the
SNARE (soluble NSF attachment protein receptor) ma-
chinery and vesicle release [24,25]. Alpha-synuclein
pathology in PD is believed to follow a multi-step
process that starts with the misfolding of α-synuclein
and progresses to the formation of increasingly complex
oligomers, soluble intermediates and finally insoluble
fibrils and mature aggregates [17-19]. Although α-
synuclein has been classically described to have an un-
folded tertiary structure and to be present as monomers
that acquire an α-helical secondary structure upon bind-
ing to lipid membranes [26,27], recent reports suggest
that α-synuclein natively forms α-helically folded tetra-
mers when isolated under non-denaturing conditions
[28-30]. These results have a significant impact on future
research because they add a new step to the sequence of
pathological events in synucleinopathies: Events that
destabilize the native α-helical tetramer conformation
might precede α-synuclein misfolding and aggregation
and thus compounds that preserve the native tetramers
may have great therapeutic potential. It should be cau-
tioned however that experiments from two independent
laboratories have failed to confirm the presence of na-
tively unfolded α-synuclein tetramers in PD [31,32]. Fu-
ture studies will have to decipher the exact mechanisms
behind these findings and will have to explain conflicting
results.
Moving downstream of simple α-synuclein misfolding,

emerging evidence implicates soluble oligomeric forms
of α-synuclein as the main culprit in the pathogenesis of
neurodegenerative diseases associated with α-synuclein
accumulation [19]. Disease causing missense mutations
and multiplications of the α-synuclein gene [33] as well
as oxidative stress [34], post-translational modifications
such as phosphorylation [35,36] or truncation [37,38]
and the presence of fatty acids [39-41] are known to
modulate α-synuclein’s propensity to aggregate. Further-
more, levels of α-synuclein oligomers are increased in
cortical tissue of patients with idiopathic PD [40] and

DLB [42] compared to age-matched controls. The mech-
anism by which smaller soluble aggregates induce neur-
onal dysfunction and neurodegeneration is increasingly,
albeit still incompletely, understood [19]. Using a
protein-fragment complementation assay in transfected
cells and viral-vector mediated rodent models of α-
synuclein aggregation, oligomer formation was shown to
contribute to α-synuclein’s toxic effect on neurons
[43-48]. Importantly, α-synuclein oligomers are involved
in key steps of the potentially prion-like propagation of
neurodegeneration in PD such as exocytosis, endocytosis
and seeding [19,49-51]. Given the implications of α-
synuclein oligomerization in the early stages of neurode-
generation, preventing this step is a promising approach
to treat or even prevent the degenerative process associ-
ated with α-synuclein misfolding and accumulation.

Review
Molecular chaperones, co-chaperones and chaperone-
mediated autophagy
A network of highly conserved molecules, termed chap-
erones and co-chaperones, mediates the folding and re-
folding of proteins and thus is critical for preserving the
functional state and structure of client proteins [52-55].
Molecular chaperones are defined as a class of proteins
that interact with, stabilize and help proteins to acquire
their native conformation [52]. They are highly ubiqui-
tous and assist the folding of newly synthesized proteins
as well as the refolding of partially folded proteins into
their three-dimensional structures [52,53,56]. In order to
preserve intracellular protein homeostasis, chaperones
interact with pathways of protein degradation that regu-
late constitutive protein turnover and the removal of
misfolded proteins. Major protein degradation pathways
for α-synuclein are the ubiquitin-proteasome system and
the autophagy-lysosomal pathway [18,57]. According to
their molecular weight, chaperones can be classified into
different groups such as Hsp60, Hsp70, Hsp90, Hsp100
and the small Hsps. Important co-chaperones, which
interact with and assist chaperones in the folding of their
client proteins, include for example the BAG-domain
containing family (Bag1-6), the TPR-domain containing
family (CHIP, Hip, Hop) and the DnaJ-domain contain-
ing co-chaperone Hsp40 [17,22]. Cells constitutively
express many chaperones (then referred to as heat shock
cognates (Hsc)) and co-chaperones. However, their ex-
pression is markedly increased under environmental
stress conditions, for example following hyperthermia,
hypoxia, oxidative stress or exposure to toxins
[52-54,56,58]. This stress response is triggered by the
accumulation of unfolded proteins and effectively elicits
chaperone expression by a signaling pathway that en-
gages the transcription factor heat shock factor 1 (HSF-1)
[54,59,60]. This regulatory element is part of a molecular
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switch that adjusts levels of chaperones to the cell’s
condition. Hsp90 associates with HSF-1 in the cytosol
and thus preserves its inactive monomeric state [61].
Cell stress and protein misfolding promote the dissoci-
ation of HSF-1 from Hsp90 and hence its translocation
to the nucleus. At the nucleus, HSF-1 initiates the co-
ordinated expression of Hsp70 and other heat shock
proteins via heat shock response elements in the pro-
moter regions of the respective genes [62]. Once ad-
equate levels of chaperones have reached the cytosol,
Hsp90 again associates with and inactivates HSF-1
therefore creating a dynamic Hsp90-dependent feed-
back loop that allows the cell to adjust to endogenous
or exogenous stress [63,64]. This feedback loop also
opens opportunities to pharmacologically modulate cha-
perone levels, or levels of Hsp70 in particular, by apply-
ing inhibitors of Hsp90, a concept that is being
increasingly investigated [17,22].
In addition to directly folding or re-folding substrate

proteins, chaperones assist many other cellular pathways
for example by selecting and targeting irreversibly dam-
aged or altered proteins for degradation. Chaperone-
mediated autophagy refers to a highly-selective subtype
of autophagy that utilizes chaperone proteins and lyso-
somal receptors to directly translocate target proteins
into the lysosomal lumen, where rapid degradation takes
place [65]. Target proteins carry a pentapeptide motif
(KFERQ) and are thus selectively identified by the cyto-
solic chaperone Hsc70, a constitutively expressed mem-
ber of the Hsp70 family, that facilitates delivery to the
lysosomal surface [66-68]. The action of Hsc70 and its
co-chaperones is crucial as the interaction with the
KFERQ targeting motif confers selectivity. At the lyso-
somal membrane, binding of the substrate-chaperone
complex to the lysosomal receptor protein LAMP-2A is
followed by unfolding, multimerization of LAMP-2A,
and finally translocation of the target protein [68,69].
Lysosome-associated Hsc70, that resides within the lyso-
somal lumen, assists the disassembly of the LAMP-2A
multimer complex after translocation and thus regener-
ates monomeric forms of LAMP-2A, that are again
capable of substrate binding [70,71]. The presence of
lysosomal Hsc70 is a critical rate-limiting step, as, al-
though all types of lysosomes carry the LAMP-2A recep-
tor, only lysosomes that contain lysosomal Hsc70 show
effective substrate uptake [72]. Interestingly, another
chaperone, Hsp90 localizes to both the cytosolic and lu-
minal side of the lysosomal membrane and is thought to
stabilize LAMP-2A as it transitions from its monomeric
form capable of substrate binding to the multimeric
form that allows substrate translocation across the mem-
brane [71]. The wide spectrum of cellular functions in
which CMA is critically involved, ranging from selective
protein quality control to cell-type specific functions

depending on the substrate protein, emphasizes the im-
portance of this pathway for maintaining protein homeo-
stasis and cellular integrity, particularly in response to
stress. CMA activity declines with age in many tissues
[73,74] and failure of CMA has been linked to the patho-
genesis of several major neurodegenerative diseases, in-
cluding the synucleinopathies (as discussed below).

Chaperones protect neurons against α-synuclein-induced
toxicity
Research investigating the role of molecular chaperones
in synucleinopathies followed groundbreaking work in
other neurodegenerative diseases, most importantly the
trinucleotide repeat expansions disorders [75-78]. First
evidence for an involvement of chaperones in PD was
provided by studies that identified Hsp90, Hsp70,
Hsp60, Hsp40 and Hsp27 as part of Lewy bodies
[79-82]. In a seminal study, Auluck et al. were able to
demonstrate that Hsp70 co-expression could prevent
dopaminergic cell death in a Drosophila melanogaster
model of α-synuclein toxicity [81]. Furthermore interfer-
ence with the endogenous chaperone system by introdu-
cing a mutation to Hsp70 could exacerbate the
pathological phenotype, confirming the notion that
Hsp70 is critical for maintaining α-synuclein’s folding
state [81]. Based on these initial findings two pivotal hy-
potheses have been formulated and investigated in sub-
sequent studies (reviewed in [17]). Firstly, Hsp70 is a
critical part of the cellular mechanism that mitigates α-
synuclein toxicity and secondly the sequestration of
chaperones into protein aggregates results in their cellu-
lar depletion and thus subsequent loss of chaperone
function may promote neurodegeneration (Figure 1).
Consistent with the idea that chaperones are a critical

part of the response to environmental stress and protein
overload, cells [83] and mice [84] treated with the mito-
chondrial toxins rotenone or MPTP (1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine) or the proteasome inhibitor
lactacystin, which are often used to model dopaminergic
cell degeneration, show a marked increase in chaperone
levels, most importantly Hsp70. Likewise viral-vector
mediated targeted overexpression of α-synuclein in the
substantia nigra of mice resulted in increased mRNA
levels of Hsp70, Hsp40 and Hsp27 [85]. An interesting
recent study by Donmez et al. reported that SIRT1, a
member of the sirtuin protein deacetylase family, deace-
tylates HSF-1 in the brain of A53T mutant α-synuclein
mice, thus promoting the expression of Hsp70 [86]. This
suggests that SIRT1 deacetylates HSF-1 and activates
chaperones under stress conditions induced by the pres-
ence of mutant α-synuclein. Subsequently this mechan-
ism leads to a suppression of α-synuclein aggregation,
reduced α-synuclein-induced toxicity and extended sur-
vival in the mouse model examined [86].
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Critical to novel therapeutic strategies, exogenous
overexpression of Hsp70 and other chaperones has
proven neuroprotective in different PD models. In cell
culture models of α-synuclein aggregation and toxicity,
co-expression of TorsinA (a protein with homology to
Hsp104) [79], Hsp40 [79,87], Hsp27 [88,89], or Hsp70
[90,91] led to reduced aggregate formation, decreased
α-synuclein levels and reduced toxicity (Figure 1).
Despite these promising findings, studies evaluating

different chaperones as a target of therapy in mouse
models of PD provided differing results. While Klucken
et al. showed that crossing of Hsp70 transgenic mice
with α-synuclein transgenic mice reduced α-synuclein
aggregation in vivo [91], Shimshek et al. could not
confirm this finding after crossing human A53T mutant
α-synuclein transgenic mice with mice overexpressing
Hsp70 [92]. This argues that frank overexpression of
Hsp70 alone might not have a significant impact on α-
synuclein-induced toxicity in vivo. Similarly, while Tor-
sinA was found to be a potent suppressor of α-synuclein
aggregation and toxicity in cellular models [79] and in a
Caenorhabditis elegans model [93], an elegant recent
study using both an MPTP-induced mouse model of PD
and α-synuclein transgenic mice could not detect a neu-
roprotective effect for overexpression of TorsinA [94].

Deciphering the molecular interaction between Hsp70
and α-synuclein, Hsp70 was found to bind α-synuclein
fibrils with great affinity, through a transient and revers-
ible interaction of Hsp70’s substrate-binding domain and
the core hydrophobic region of soluble α-synuclein in-
termediates [95,96]. A recent study was further able to
map the exact Hsc70-α-synuclein interface, which might
allow the development of an Hsc70-derived polypeptide
that mimics the effects of this chaperone on α-synuclein
assembly and toxicity [97]. Hsp70 was shown to pro-
mote an open conformational state that discourages
interaction with other α-synuclein molecules and thus
the formation of oligomers [43,98]. Furthermore, oligo-
mer formation of secreted extracellular α-synuclein was
significantly reduced when Hsp70 was co-expressed and
potentially simultaneously secreted [46], a finding that
might have great implications for the propagation of
α-synuclein pathology and neurodegeneration (Figure 1).
A systematic investigation of the interaction of various
small Hsps (αB-crystallin, Hsp27, Hsp20, HspB8, and
HspB2B3) with both wild-type and mutant α-synuclein
showed that all small Hsps transiently bind to the vari-
ous forms of α-synuclein and inhibit mature α-synuclein
fibril formation [99]. Further in vitro characterization
showed that the small Hsp HspB5 can potentiate

Figure 1 The role of chaperones and co-chaperones in α-synuclein metabolism and pathology. As a general concept, chaperones mediate
several cellular strategies that maintain protein homeostasis. In synucleinopathies, misfolded α-synuclein can be refolded, degraded, secreted or
sequestered into mature aggregates such as Lewy bodies. Direct stabilization and refolding, degradation via different protein degradation
pathways and sequestration into aggregates are mechanisms that are assisted or modulated by chaperones and co-chaperones. Failure of these
mechanisms abolishes protein homeostasis and thus promotes α-synuclein accumulation, oligomer formation, toxicity and potentially cell-to-cell
propagation of α-synuclein pathology.
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α-synuclein fiber depolymerization by several chaperones
including Hsp70 and its co-chaperones [100]. Interest-
ingly, Hsp90 has been shown to be a critical modulator
of α-synuclein aggregation [101] and can bind A53T
mutant α-synuclein oligomers in an ATP-independent
manner to form a stable complex, thus rendering them
non-toxic to cells [102].

Sequestration and depletion of chaperones into
intracellular protein aggregates exacerbates
neurodegeneration
Central to the idea that sequestration of chaperones into
protein aggregates could result in a significant depletion
is the finding that chaperone activity as well as the cell’s
resistance to proteotoxic insults declines with age
[18,20] (Figure 1). This goes hand in hand with an in-
crease in proteotoxic stress load over the lifetime of a
cell, which is particularly important for post-mitotic cells
like neurons [103]. As for chaperone sequestration in
the PD brain, post-mortem pathological studies demon-
strate, for example, the presence of αB-crystallin and
Hsp27 positive neurons in PD patients but not in
matched controls [104,105]. The distribution of αB-
crystallin positive neurons followed a distinct pattern
and greatly overlapped with Lewy body pathology, al-
though αB-crystallin accumulation was not exclusive to
Lewy body bearing neurons [105]. Interestingly, by using
a series of in vitro techniques, Waudby et al. were able
to show that αB-crystallin binds along the length of α-
synuclein fibrils thereby inhibiting further growth and
shifting the monomer-fibril equilibrium in favor of dis-
sociation [106]. This might explain the presence of chap-
erones in α-synuclein containing protein inclusions and
could represent a way by which this and other chaper-
ones limit the onset and progression of protein misfold-
ing diseases [106]. As discussed above, a number of
studies have revealed an association of several chaper-
ones with α-synuclein pathology, thus promoting the
idea that chaperones are key players in PD [79-82].
Following these reports, a number of studies have mea-
sured levels of chaperones in different brain regions in
synucleinopathies. Overall, these studies revealed a cor-
relation between levels of chaperones and detergent-
soluble α-synuclein [80,88,107-110], consistent with data
that show that chaperones mainly interact with this
fraction of α-synuclein. Recent findings also suggest that
Hsc70 and other proteins involved in CMA or lysosomal
targeting and degradation, are significantly altered in
different brain regions in PD and DLB [109,111-115]
(reviewed in [18]), supporting the concept of chaperone
dysfunction in synucleinopathies (Figure 1). On a mo-
lecular level, α-synuclein oligomers were found to be
capable of inhibiting the Hsp70/Hsp40 system by inter-
acting with J-domain co-chaperones [116].

Chaperone-mediated autophagy – a link between
protein-folding and degradation with implications for
synucleinopathies
As discussed above, CMA is a subtype of autophagy and
as such participates in the selective turnover of target
proteins that contain KFERQ or KFERQ-like motifs in-
cluding α-synuclein [18,65]. Although soluble wild-type
α-synuclein is a substrate of CMA [117,118], pathogenic
species of α-synuclein, such as A53T and A30P mutant
α-synuclein, were found to fail translocation through the
lysosomal membrane and furthermore impair degrad-
ation of other CMA substrates by binding LAMP-2A
[117,119]. Important to sporadic PD, dopamine modified
wild-type α-synuclein inhibited CMA in a similar way
[120]. Intriguingly, the turnover of the neuronal tran-
scription factor MEF2D was found to depend on CMA,
which was significantly disrupted by the presence of
wild-type and mutant α-synuclein, leading to impaired
MEF2D signaling and neurodegeneration [121]. Rat and
mouse α-synuclein, containing the A53T substitution
seen in familial forms of PD [122], are degraded by
CMA [117,118,123], although this seems incongruent
with findings for human A53T mutant α-synuclein
[117]. Serine129 phosphorylated α-synuclein and α-
synuclein oligomers are not degraded by CMA [120]. In
vivo, α-synuclein transgenic mice were found to upregu-
late LAMP-2A, providing evidence that CMA is part of
the stress response in synucleinopathies [123]. In post-
mortem pathological studies, levels of CMA adapter
proteins were found to be altered in both PD [109] and
DLB [114,115]. In addition, decreased levels of CMA
proteins LAMP-2A and Hsc70 in PD brain samples were
found to be secondary to deregulation of several micro-
RNAs that regulate LAMP-2A and Hsc70 expression
[124]. Providing further insights into the role of CMA in
synucleinopathies, Malkus and Ischiropoulos recently
showed that regional deficits in CMA might underlie α-
synuclein aggregation and neurodegeneration in the hu-
man A53T α-synuclein transgenic mouse model [125].
CMA activity was significantly decreased in aggregation-
prone regions compared to other brain regions less af-
fected by α-synuclein pathology. Upregulation of LAMP-2A
occurred in regions with developing α-synuclein in-
clusion bodies although this dynamic transient response
was not proportional to substrate uptake or degradation
[125]. Exploring the therapeutic potential of CMA in
synucleinopathies, Xilouri et al. recently showed that
overexpression of LAMP-2A in cell models leads to in-
creased CMA and protection from α-synuclein-induced
degeneration [126]. Interestingly, this protective effect
was present even when steady-state levels of α-synuclein
were unchanged, suggesting that mitigating α-synuclein
induced CMA dysfunction mainly accounts for the pro-
tective properties [126]. In vivo, viral vector-mediated
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co-overexpression of LAMP-2A in the substantia nigra
of the AAV-mediated α-synuclein overexpression mouse
model of PD completely preserved nigral tyrosine hydroxy-
lase positive neurons and restored striatal levels of dopa-
mine [126]. Collectively, these findings highlight the
important role of CMA in synucleinopathies and the poten-
tial of modulating CMA as a novel therapeutic approach.

Chaperones, endoplasmic reticulum stress and apoptosis –
implications for neuroprotection in synucleinopathies
Chaperones might protect neurons by mechanisms un-
related to their chaperone function, for example by regu-
lating key steps in programmed cell death pathways.
Programmed cell death is an umbrella term that includes
apoptosis (or type I cell death) and autophagic cell death
(or type II cell death), both of which are implicated
in progressive neurodegenerative diseases such as PD
[127]. The intrinsic or mitochondrial pathway of apop-
tosis is of particular importance to neurodegeneration.
In this pathway three distinct phases can be delineated
[128]. In the pre-mitochondrial initiation phase, cells
recognize danger signals and respond by activating
death-inducing pathways but also pro-survival signals in
an attempt to fight cellular stressors. This is followed by
the integration or mitochondrial phase, in which pro-
and anti-apoptotic cascades converge on mitochondria.
When pro-apoptotic signals dominate, mitochondrial
membrane permeabilization follows, leading to cell
death if a critical number of mitochondria are affected.
In the execution or post-mitochondrial phase, mitochon-
drial membrane permeabilization results in the break-
down of the mitochondrial transmembrane potential,
respiratory chain uncoupling, ATP depletion, generation
of reactive oxygen species, the release of pro-apoptotic
proteins into the cytosol and finally cell death.
Along with the mitochondrial pathway of apoptosis,

chaperones, such as Hsp27, Hsp70 and Hsp90, are in-
duced in response to various cellular stressors for ex-
ample DNA damage, growth factor withdrawal, hypoxia
or cytotoxic drugs [128,129]. Several chaperones have
been shown to prevent apoptosis by interfering with key
regulatory proteins at different stages of the mitochon-
drial pathway of apoptosis (see [129-131] for a detailed
review). This occurs for example by inhibiting the trans-
location of the pro-apoptotic protein Bax to the mito-
chondrial membrane and subsequent prevention of
membrane permeabilization and cytochrome c release,
the central phenomenon in the mitochondrial apoptosis
pathway [132,133]. Other mechanisms include direct as-
sociation with Apaf-1 (apoptotic peptidase activating fac-
tor 1) by Hsp70 [134-137], blockage of AIF (apoptosis
inducing factor) mitochondrial release and nuclear im-
port [136,138-140], interaction with cytochrome c [141]
or inhibition of cathepsin release from lysosomes [142].

With regard to neurotoxin-induced models of neuro-
degeneration, toxic effects of rotenone and MPTP were
significantly ameliorated following a transient heat-shock
induced overexpression of chaperones [143-145], overex-
pression of Hsp70 [146] or cell-penetrating peptide
(TAT-Hsp70) mediated delivery of Hsp70 in cells and
mice [147]. Similarly, overexpression of Hsp27 reduced
6-hydroxydopamine induced cytochrome c release and
apoptosis in dopaminergic cells [148].
In addition to their influence on mitochondrial apop-

tosis signaling, chaperones play a pivotal role in the
endoplasmic reticulum (ER)-associated stress response.
Disturbance of ER function caused by dysfunction of the
ubiquitin-proteasome system and/or the accumulation
of misfolded proteins leads to an evolutionary conserved
stress response, termed unfolded protein response (UPR)
(see [149-151] for a review). This involves a global sup-
pression of protein synthesis and the expression of spe-
cific proteins, including ER associated chaperones such
as the glucose-regulated protein 78 (Grp78/Bip), in an
attempt to promote cell survival. However, if protein ac-
cumulation and ER dysfunction are severe, apoptosis will
be eventually triggered [152]. Important to synucleino-
pathies, activation of the UPR seems to be an early event
in the pathogenesis of PD [153,154] and MSA [155], a
finding that can be recapitulated in diseases models
in vitro and in vivo [156-161]. Hoozemans et al. found
increased immunoreactivity for UPR markers, phosphor-
ylated pancreatic-like ER kinase (PERK) and eukaryotic
translation initiation factor 2α (eIF2α), in neuromelanin
containing dopaminergic neurons in the substantia nigra
pars compacta of post-mortem PD brain samples [153].
In addition, phosphorylated PERK co-localized with in-
creased α-synuclein immunoreactivity in dopaminergic
neurons [153]. This is in agreement with increased
UPR activation in models of increased A53T mutant
[156,160] or wild-type [157,159] and phosphorylated α-
synuclein [158] expression. The ER-associated chaperone
and member of the heat shock protein 70 family, Grp78/
BIP is at the forefront of regulating the UPR pathways.
When misfolded proteins accumulate within the ER,
Grp78/Bip dissociates from the three major ER stress re-
ceptors (PERK, activating transcription factor 6 (ATF6)
and inositol-requiring enzyme 1 (IRE1)) capable of initi-
ating the UPR. In agreement with the finding that
Grp78/Bip binds accumulating misfolded proteins in the
ER, several studies found that Grp78/Bip forms a com-
plex with α-synuclein in cell and animal models showing
α-synuclein accumulation [159-161]. This underscores
the important role of this ER chaperone in the response
to increased α-synuclein misfolding and aggregation.
Using A53T α-synuclein transgenic mice, Colla et al.
were further able to show that α-synuclein accumulates
in the ER, induces ER chaperones and sensitizes
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neuronal cell to ER stress induced cell death [160]. In a
second elegant study, Colla et al. found that toxic α-
synuclein oligomers form within the ER lumen and thus
might compromise the integrity of ER membranes,
hence leading to chronic ER stress [162]. Exploring the
therapeutic implications of attenuating ER stress, treat-
ment of A53T α-synuclein mice and a viral-vector
mediated rat of α-synucleinopathy with Salubrinal, a
pharmacological inhibitor of ER stress induced toxicity,
dramatically delayed the onset of motoric symptoms and
decreased accumulation of α-synuclein oligomers
in vivo. Further exploring the ER-associated chaperone
Grp78/Bip as a therapeutic target, Gorbatyuk et al. re-
cently showed that overexpression of this chaperone in
the substantia nigra of a viral-vector mediated rat model
of synucleinopathy attenuated α-synuclein-induced neuro-
toxicity by reducing ER stress mediators [161].

Modulation of molecular chaperones as a novel
therapeutic target in synucleinopathies
Development of neuroprotective therapies for PD and
other synucleinopathies is challenging because of the
slow progressive nature of these diseases, the lack of reli-
able biomarkers for early disease detection or disease
progression and limitations of available animal models.
While the available symptomatic treatment for PD pa-
tients can substantially improve motor symptoms and
quality of life, there is currently no therapeutic approach
that can halt or reverse neuronal degeneration in PD
and other synucleinopathies. Promising novel treatment
strategies that were successfully identified and evaluated
in pre-clinical models include cell-based therapies
(reviewed in [163]) and compounds that target different
cellular pathways including mitochondrial dysfunction
(reviewed in [164]), mechanisms of oxidative stress, glu-
tamate excitotoxicity and trophic factors (reviewed in
[165]) as well as altered protein metabolism (reviewed in
[18]). These targets are important to many neurodegen-
erative diseases and research efforts will therefore not only
serve patients with PD but also patients who suffer from
other major diseases such as DLB, Alzheimer’s disease or
Huntington’s disease. Targets in protein metabolism in-
clude misfolding and aggregation, post-translational modi-
fication and protein degradation pathways such as the
ubiquitin-proteasome system and autophagy [16-18,21,22].
Molecular chaperones are crucially involved in protein
folding and refolding and thus are promising targets that
have the potential to alter early pathological changes in
synucleinopathies, potentially even before significant neu-
rodegeneration has occurred. The Hsp70 system, in par-
ticular, has emerged as a promising new target to prevent
or even reverse protein misfolding and associated toxicity.
A growing number of preclinical studies have employed

pharmacological compounds to upregulate chaperone

expression and/or function [see 17,22 for a detailed re-
view]. Testing of chaperone-based therapies is not limited
to PD but has been greatly influenced by research in re-
lated diseases, most importantly the trinucleotide-repeat
expansion diseases [166]. Based on similarities between
disease models and mechanisms, many of the compounds
tested in other diseases might be promising candidates for
synucleinopathies [17]. Pharmacological agents targeting
molecular chaperones have mainly focused on the Hsp70
system and are categorized into three groups according to
their mechanism of action: A) Hsp90 inhibitors, B) modu-
lators of HSF-1 and C) chemical chaperones (Table 1).
Hsp90 inhibitors have received considerable attention

for the treatment of advanced cancers [180]. Following
drug development in oncology, an increasing number of
small molecule inhibitors of Hsp90 have been investi-
gated in neurodegenerative diseases including models of
PD (Table 1A & Table 2). Besides many other effects on
client proteins and associated pathways, Hsp90 inhibi-
tors induce the activity of the transcription factor HSF-1
and thus lead to increased expression of stress-induced
proteins such as Hsp70. The first compound that was in-
vestigated in PD models was Geldanamycin, a naturally
occurring antibiotic of the Ansamycin family. McLean
et al. found that treatment with Geldanamycin in cell
culture models effectively reduced α-synuclein aggrega-
tion through increasing its clearance, leading to reduced
toxicity [168]. Auluck et al. confirmed neuroprotective
effects of Geldanamycin in a Drosophila melanogaster
model of α-synuclein toxicity [81,167,169] and Shen
et al. found a protective effect in the MPTP mouse
model of PD [181]. Interestingly, Hsp90 also seems to be
involved in the exocytosis of α-synuclein [171]. Extracel-
lular α-synuclein, once secreted, is subject to endocytosis
by adjacent cells and at least a part of the internalized
α-synuclein is re-secreted, which could represent a key
step in the cascade that allows cell-to-cell propagation of
α-synuclein aggregates [49-51]. Liu et al. further re-
ported that Hsp90 inhibition with Geldanamycin pro-
tects cells against extracellular α-synuclein-induced
neurotoxicity by preventing re-secretion of α-synuclein
[171]. Although these findings have been encouraging,
the use of Geldanamycin has been limited for pharmaco-
kinetic reasons, most importantly its poor solubility and
blood–brain-barrier penetration. Other members of the
Ansamycin family, like 17-AAG (Tanespimycin) and 17-
DMAG (Alvespimycin), have better pharmacokinetic
profiles, but other limitations [182]. Similar to Geldana-
mycin, 17-AAG attenuates α-synuclein toxicity, prevents
oligomerization and facilitates α-synuclein clearance in
cultured cells [45,46]. Moreover, 17-AAG can effectively
enhance α-synuclein clearance via macroautophagy, a
potential key pathway downstream of protein misfolding
[173]. Current phase I/II trials for various forms of
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Table 1 Pharmacological targeting of molecular chaperones in models of synucleinopathies

A) HSP90 inhibitors

Compound Disease model Readout Reference

Geldanamycin Drosophila melanogaster • Hsp70 levels Auluck et al. 2002 [167]

• Toxicity

Cell model • α-synuclein aggregation McLean et al. 2004
[168]

• α-synuclein and chaperone levels

• Toxicity

Drosophila melanogaster • α-synuclein aggregation Auluck 2005 et al. [169]

• Hsp70 levels

• Toxicity

Saccharomyces cerevisiae • Oxidative stress Flower et al. 2005 [170]

• Cytochrome c release

Cell model • Intracellular and extracellular
α-synuclein levels

Liu et al. 2009 [171]

• Neurite length

• Toxicity

Cell model • α-synuclein aggregation Emmanouilidou et al.
2010 [172]

• Proteasome activity

• Levels of poly-ubiquitinated proteins

17-AAG Cell model • Extracellular α-synuclein oligomers Danzer et al. 2011 [46]

• Extracellular α-synuclein and Hsp70
levels

Cell model • α-synuclein oligomers Putcha et al. 2010 [45]

• α-synuclein and Hsp70 levels

• Toxicity

Cell model • α-synuclein aggregation Riedel et al. 2010 [173]

• Chaperone levels

• Macroautophagy markers

• Toxicity

SNX compounds Cell model • α-synuclein oligomers Putcha et al. 2010 [45]

• α-synuclein and Hsp70 levels

• Toxicity

B) Enhancers of HSF-1

Compound Disease model Readout Reference

Carbenoxolone Cell model • α-synuclein aggregation Kilpatrick et al. 2013
[174]

• α-synuclein and chaperone levels

• HSF-1 localization

C) Chemical chaperones

Compound Disease model Readout Reference

Trehalose Cell model • α-synuclein levels Sarkar et al. 2007 [175]

• Macroautophagy markers

In vitro assays • α-synuclein aggregation Yu et al. 2012 [176]

Mannitol In vitro assays,Drosophila melanogaster,α-synuclein transgenic
mice

• α-synuclein aggregation Shaltiel-Karyo et al.
2013 [177]

• α-synuclein and Hsp70 levels

• Behavioral deficits

• Toxicity
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cancer have demonstrated safety, but the use of 17-AAG
in neurodegenerative diseases remains limited because
of poor blood–brain-barrier permeability [180]. 17-
DMAG displays better solubility but further clinical
development of this compound in oncology has not been
pursued due to toxicity [180,183]. In view of these
limitations, the clinical utility of all three compounds
Geldanamycin, 17-AAG and 17-DMAG is questionable,
despite encouraging results in disease models (Table 1A).
Novel synthetic small-molecule inhibitors of Hsp90 such
as SNX-2112 and derived compounds have been identi-
fied through compound library screens for scaffolds that
selectively bind the ATP-binding pocket of Hsp90 and
display good pharmacokinetic characteristics including
blood–brain-barrier penetration. Treatment with SNX
compounds in cell culture models of PD resulted in a
decrease of both high-molecular weight and monomeric
α-synuclein as well as a significant reduction of α-
synuclein oligomerization [45] (Table 1A). Despite these

promising findings, further in vivo evaluation is clearly
necessary to evaluate the general prospect of Hsp90 in-
hibitors for the treatment of synucleinopathies.
Modulators of HSF-1 have mainly been evaluated in

models of neurodegenerative diseases other than synu-
cleinopathies. For example, Arimoclomol, a compound
that prolongs the binding of HSF-1 to heat-shock-
response elements and thus increases the expression of
Hsp70 and other chaperones under conditions of protein
overload, has shown very encouraging results in models
of spinal and bulbar muscular atrophy [187] and has
even reached clinical testing in amyotrophic lateral scler-
osis [188,189]. Celastrol, a compound that promotes
phosphorylation of HSF-1, was found to significantly
ameliorate MPTP-induced neurodegeneration in the
MPTP mouse model [184] and the DJ-1A Drosophila
melanogaster model of PD [190] (Table 2). Carbenoxo-
lone (CBX), a glycyrrhizic acid derivative, was found to
activate HSF-1 and to promote Hsp70 expression which

Table 1 Pharmacological targeting of molecular chaperones in models of synucleinopathies (Continued)

Mannosylglycerate Saccharomyces cerevisiae • α-synuclein aggregation Faria et al. 2013 [178]

• α-synuclein and chaperone levels

• Toxicity

4-phenylbutyrate α-synuclein transgenic mice • Phosphorylated α-synuclein Ono et al. 2009 [179]

• Dopamine levels

• Behavioral deficits

• Toxicity

Table 2 Pharmacological targeting of molecular chaperones in neurotoxin-induced models of Parkinson’s disease

Compound Disease model Readout Reference

Geldanamycin MPTP mouse model • Chaperone and HSF-1 levels Shen et al. 2005 [181]

• Dopamine levels

• Toxicity

Celastrol MPTP mouse model • Hsp70 levels Cleren et al. 2005 [184]

• Dopamine levels

• Toxicity

Trehalose Epoxomicin cell model • α-synuclein aggregation Casarejos et al. 2011 [185]

• α-synuclein and chaperone levels

• Macroautophagy markers

• Proteasome activity

• Oxidative stress

• Toxicity

4-phenylbutyrate Rotenone mouse model • α-synuclein aggregation Inden et al. 2007 [186]

• α-synuclein levels

• Dopamine levels

• Behavioral deficits

• Oxidative stress

• Toxicity
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can ameliorate α-synuclein aggregation in cells [174]
(Table 1B).
Given the importance of HSF-1 as the master regulator

of chaperone gene transcription and the limitations of glo-
bal Hsp90 inhibition, small molecules that directly modu-
late this transcription factor are clearly advantageous.
Recently, a yeast-based high-throughput screen for small
molecule activators of HSF-1 identified the compound
HSF1A. This compound was shown to promote HSF-1 in
an Hsp90 independent manner and without the presence
of proteotoxicity [191]. HSF1A-mediated Hsp70 induction
reduced the de novo formation of protein aggregates and
ameliorated polyglutamine-induced cytotoxicity in both a
cell and Drosophila melanogaster model of Huntington’s
disease [191]. Another recent sophisticated small molecule
screen identified small molecule proteostasis regulators
that induce HSF-1-dependent chaperone expression and
importantly reduce aggregate formation and toxicity in
cells and a Caenorhabditis elegans model for expression of
expanded polyglutamines [192].
Compounds with direct chaperone activity, or chem-

ical chaperones, are also being evaluated as potential
therapies (Table 1C & Table 2). For example, trehalose, a
disaccharide, is able to act as a chemical chaperone
through direct interaction with client proteins but can
also enhance protein clearance via the autophagy path-
way, with beneficial effects in different models of major
neurodegenerative diseases [175,176,185,193-197]. The
chemical chaperones 4-phenylbutyrate [179,186], man-
nosylglycerate [178] and most recently mannitol [177]
can significantly ameliorate α-synuclein aggregation and
toxicity in a variety of PD models including yeast, Dros-
ophila melanogaster and mouse models (Table 1C &
Table 2). Given the low toxicity of most chemical chap-
erones tested, these compounds might be good candi-
dates for future drug development.

Conclusions
Impaired protein metabolism is a unifying theme in neu-
rodegenerative diseases. To prevent the formation of po-
tentially toxic α-synuclein oligomers and aggregates, a
number of exciting chaperone-based therapies are under
development for use in PD. Encouraging approaches
include small molecule inhibitors of Hsp90 and other
strategies that target Hsp70 expression or chemical
chaperones (Tables 1 & 2). Enhancing chaperone func-
tion might be able to prevent early pathological changes
such as the formation of α-synuclein oligomers. With
the limitations discussed above, a number of studies in
disease models clearly implicate a pivotal role for chap-
erones and protein misfolding in the pathogenesis of PD
and other synucleinopathies (Figure 1). It should be cau-
tioned however, that despite promising results in cellular
models, in vivo data are still limited. The same

limitations that apply to all neuroprotective therapies on
trial will also challenge testing of chaperone-based thera-
peutics [17]. It remains a conceptual question, whether a
single agent targeted at increasing the expression of
chaperone proteins will have an enduring neuroprotec-
tive effect given the presence of numerous other estab-
lished disease pathways and mechanisms [17]. Approaches
that employ multiple targets such as the chaperone and
proteasome system or chaperones and the CMA pathway
seem reasonable. With these and the specific limitations
discussed above, it is now on future studies to identify
novel approaches capable of preventing α-synuclein mis-
folding and toxicity in PD and related synucleinopathies.
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