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Abstract

Background: Qualitative reasoning frameworks, such as the Sign Consistency Model (SCM), enable modelling
regulatory networks to check whether observed behaviour can be explained or if unobserved behaviour can be
predicted. The BioASP software collection offers ideal tools for such analyses. Additionally, the Cytoscape platform can
offer extensive functionality and visualisation capabilities. However, specialist programming knowledge is required to
use BioASP and no methods exist to integrate both of these software platforms effectively.

Results: We report the implementation of CytoASP, an app that allows the use of BioASP for influence graph
consistency checking, prediction and repair operations through Cytoscape. While offering inherent benefits over
traditional approaches using BioASP, it provides additional advantages such as customised visualisation of predictions
and repairs, as well as the ability to analyse multiple networks in parallel, exploiting multi-core architecture. We
demonstrate its usage in a case study of a yeast genetic network, and highlight its capabilities in reasoning over
regulatory networks.

Conclusion: We have presented a user-friendly Cytoscape app for the analysis of regulatory networks using BioASP. It
allows easy integration of qualitative modelling, combining the functionality of BioASP with the visualisation and
processing capability in Cytoscape, and thereby greatly simplifying qualitative network modelling, promoting its use
in relevant projects.
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Background
Biological networks can be modelled at different lev-
els of abstraction. Whereas quantitative models rely on
the availability of kinetic parameters, qualitative models
are primarily based on the network structure, render-
ing them generally applicable to large-scale analyses [1].
Among qualitative reasoning platforms, the Sign Con-
sistency Model (SCM) [2] is a framework for modelling
influence graphs by confronting a network of labelled
interactions with quantitative data, imposing a collection
of constraints. In the context of regulatory networks, SCM
can be used to check whether an observed behaviour can
be explained or if unobserved behaviour can be predicted.
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Given genes, proteins, or metabolites and a graph of
labelled interactions among these entities, cases are iden-
tified where experimental observations are inconsistent
with known regulation patterns to indicate either unre-
liable data or missing regulations. It is assumed that
data originates from steady-state shift experiments where,
given a perturbation, the difference between two steady
states corresponds to protein or metabolite changes in
concentration. Logical modelling may then be employed
to determine viable states of molecular interactions when
the network is confronted with experimental data by using
the SCM framework. Further specific experiments can
also be suggested to validate the system behaviour through
reconciling with the regulatory conditions needed to
achieve it [3].
The BioASP software collection 1 implements methods

for modelling metabolic and gene regulatory networks [3],
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using logical rules with Answer Set Programming (ASP)
[4]. ASP is a form of declarative programming that can
address difficult, NP-hard search problems. The building
blocks for ASP programs are atoms, literals, and rules.
Atoms are elementary propositions (factual statements)
that may be true or false, literals are atoms and their
negations, rules are expressions composed of atoms and
programs are finite collections of rules [5]. The con-
sistency problem is thus encoded by a collection of
rules, such that its intended models, called answer sets,
represent solutions to the problem.
A publicly available Python script, ingranalyze2, facil-

itates influence graph modelling without knowledge of
ASP. However, it provides no graphical user interface
and specialist user input is required (i.e. file formatting,
syntactic restrictions, pre/post-processing through
command line etc.). A web service3 also exists, which
provides a point-and-click interface but no visualisation
of the results.
Cytoscape [6] offers an ideal platform for network

analysis encompassing visualisation, layout and pro-
cessing capabilities [6]. A Cytoscape 3.x app, named
CytoASP, is implemented and reported here, that uses
ingranalyze as a back-end for influence graph consis-
tency checking, prediction and repair operations through
Cytoscape. User input is provided through a graphi-
cal interface, while integration with Cytoscape provides
additional functionality features for visualisation and
further analysis.

Implementation
The interaction between Cytoscape and CytoASP was
implemented in Java. This part of the program starts by
displaying the graphical interface where the user selects
the desired options. Once the calculation is requested
by the user, it executes parallel threads, one for each
of the different networks. Each of these threads writes
two text files, one describing the network, and another
one containing the corresponding observations. It then
runs a Python script that will make use of those two
text files and interact with the BioASP ingranalyze
package.
The Python script plays the intermediary role between

information in the text files and the ingranalyze Python
package. It processes raw data from the text files and
passes them on (along with the options chosen by
the user) to ingranalyze, which executes the binaries
for the clasp and gringo ASP solvers. Once the pre-
dictions are made, it obtains the results and writes
them to files in the chosen directory. The Java threads
finally read the result files when the Python process-
ing is over and update the visualisation in Cytoscape
accordingly.

App functionality
The main functionality of CytoASP is the analysis of
sign influence graphs, which are directed graphs where
vertices are the input and state variables of a system
and edges express their effects on each other. An edge
i → j means that the variation of i through time influ-
ences the level of j. The edges are labeled with positive
and negative signs indicating activations and inhibitions
respectively.
On this basis, CytoASP provides the following func-

tionality through Cytoscape: i) checking the network for
consistency, ii) identifying minimal inconsistent cores
(MICs), iii) computing repair sets, and iv) predicting
node variation under consistency and repair. Assum-
ing a steady state and some form of perturbation, the
difference between initial and final states is used as
input. The algorithm proceeds to determine consis-
tency and predict unknown regulation effects and repair
sets. By overlaying experimental data on the network,
some of the system variables are fixed, allowing checks
on whether observed data agree with underlying graph
interactions.

Consistency and repair
The SCM defines the general rule to determine network
consistency: “The variation of each node (which is not
considered as input) must be explained by an influence
received from at least one of its predecessors” [2]. A
network is considered consistent if there exists a total
labelling of its edges and nodes which overrides the cur-
rent labelling and which is consistent with regard to the
SCM rule. This can be formulated as a boolean satisfia-
bility problem which is known to be NP-hard and may be
efficiently tackled by the ASP approach [7]. A particular
instance of network, with overlaid data, is consistent if its
(potentially partial) labelling is consistent.
BioASP defines different rules that allow checking the

consistency of a network. These rules are then handled
by a grounder and then by a solver. If the network is con-
sistent, there will be at least one answer set. In this case,
predictions may be calculated, which are the set of values
for the unobserved nodes in the intersection of all possible
solutions (i.e. answer sets of predicted node variations).
If the network is inconsistent, various repair options

may be possible. A repair set is a set of modifications
of your data or graph which makes it consistent. One is
usually interested in “minimal repairs”, i.e. ones that result
in the smallest number of changes in the dataset. By using
BioASP, it is possible to identify all possible repair sets for
the analysed network, which may be repaired using either
of these options:

1. Flipping observations, i.e. changing the signs for the
variation of each node.
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2. Defining certain nodes as input, namely nodes which
are not influenced by their predecessors.

3. Flipping influences, i.e. changing the signs of the
network edges.

4. Adding new influences in the network.

Each repair set is output as a different file. As it
is possible to have many repair sets, these cannot be
visualised simultaneously. However, it maybe the case that
some repairs are common in all repair sets, and these are
visualised on the network as nodes with alternating fill and
border colour (see e.g. Fig 2), or edges with alternating
shape and colour. Predictions can also be made under dif-
ferent repair modes, which are the deductions for the vari-
ation of unobserved nodes that hold true under all repair
sets.
When calculating repairs, it is often useful to provide

concise explanations when an experimental profile is
inconsistent with an influence graph, by isolating parts of
the network responsible for the inconsistency. These are
minimal sub-graphs of an influence graph with a given
partial labelling, such that the vertices and edges cannot
be labelled consistently. These sub-graphs are called
Minimal Inconsistent Cores (MICS)s [7], and CytoASP
can calculate them, by checking the appropriate setting in
its options.

Usage
In a typical work session, the user loads a session in
Cytoscape (Fig. 1), namely a set of networks and associ-
ated tables, classifying interactions between: i) positive,
ii) negative and iii) unknown. The experimental pro-
file is then specified, by either defining node observa-
tions as attributes or loading them from a file. For the
first option, we can create column observations in the
node table, and fill it either with relative variations or
with −/+.
After nodes and edges are assigned, the user defines

repair options: flip variations, flip influences, turn nodes
into inputs (i.e. not having their variation defined by
any predecessors) or add edges. In the next step, the
colours for visualising the results from computations
are chosen. Once all options are set, the app calls
ingranalyze to perform the computations and suggest
predictions.
CytoASP is packaged as standalone software includ-

ing solver binaries, Python libraries and Python itself.
Therefore, it runs with no dependencies on any system
where the BioASP solvers can be compiled. It is currently
offered for Linux 64-bit systems as standalone software,
due to its dependency on Python and availability of the
BioASP solvers. We are considering a future implementa-
tion (CytoASP 2.0) providing execution via a web service
to offer platform independence.

Results and discussion
Case study
We demonstrate the application of CytoASP on the yeast
transcription regulatory network provided in [8], a genetic
network comprising sets of genes that interact through
directed transcriptional regulation. The yeast regulatory
network contains 935 genetic or biochemical regulations,
all of which have been established experimentally, among
447 genes. On this network, gene expression data from
whole-genome microarray analysis of SNF2 knock-out
mutants from [9] is overlaid. It is noted that SNF2 is a
catalytic subunit of the SWI/SNF chromatin remodelling
complex, that controls transcription by perturbing the
structure of nucleosomes.
Genes that exert a regulatory role encode dedicated

transcription factors can bind to specific DNA control
regions of regulated genes to activate or inhibit their
transcription. Regulated genes may themselves act in a
regulatory manner, in which case they participate in a
causal pathway. This transcriptional regulatory network
is represented as a graph where vertices are genes and
directed edges denote activating or repressing effects on
transcription.
Comparing the yeast regulatory network with the

genetic profile of SNF2, we found the data to be inconsis-
tent with the network. Multiple repair modes, as outlined
above, can be employed in order to re-establish consis-
tency. In our case, repairs are suggested through CytoASP
by flipping observations (Fig. 2). The network can be
repaired with a minimal set of 11 operations, has 48 min-
imal repair sets and 71 predictions that hold under all
repair sets. These results can be evaluated experimentally
or through expert knowledge. CytoASP presents these
repair suggestions through an output window screen, in
addition to saving the corresponding files for predictions
and repairs. Predictions are presented as border-coloured
nodes (Fig. 2) and observations as solid coloured nodes,
where cyan and yellow represent up and down regulation
respectively. These colours can be customised by the user.
Such visualisation capability facilitates spotting repairs

that hold under all repair sets, since these are visualised
as coloured nodes with alternating border colour. As an
example, consider node (1) HSC82 (YMR186W) (Fig. 2).
This gene was observed as up-regulated in the microar-
ray dataset however, as consistency checks have indicated
that it is down-regulated in all repair sets, it is highly likely
that gene expression measurement may be inaccurate and
further scrutiny can be planned for verification. It is noted
that similar visualisation is possible if flipping influences
(edges) or defining nodes as input are selected as a repair
options.
This approach also provides predictions for unknown

expression, based on the transcriptomics data and
underlying network. Consider e.g. nodes YCL050C,
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Fig. 1 User interface of CytoASP. A typical workflow in CytoASP consists of four distinct steps: i. interaction assignment, ii. specifying observations iii.
repair options and iv. visualisation options. After these options have been assigned the app proceeds to analyse the selected network and output
the results

Fig. 2 Network modelling in CytoASP. Overview of analysis done in network from [8], using transcriptional data from [9]. Detailed view of central
part of the network, where one can spot regulations in observed and predicted nodes, as well as repairs common in all minimal repair sets.
Predictions are presented as border-coloured nodes and observations as solid coloured, where cyan and yellow represent up and down regulation
respectively. In the close-up view nodes are highlighted after post-processing the network exported from Cytoscape using the vector editing
software Inkscape (https://inkscape.org/)

https://inkscape.org/
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YPL075W, YDR050C (2) in Fig. 2. Expression of APA1
gene (YCL050C) is regulated by the carbon source and
requires the protein GCR1 (YPL075W) [10]. GCR1 muta-
tions substantially decrease the expression of glycolytic
genes, such as TPI1 (YDR050C), compared to those in the
wild-type strain [11]. The observed down-regulation of
TPI1 allows to predict the subsequent downregulation of
GCR1 and APA1 which is inline with observations from
the literature.
Another example are MET4 (YNL103W) and MET16

(YPR167C) which are linked with a positive influence (3).
Transcription of MET16 and other genes required for
sulfate assimilation is activated in the absence of methion-
ine. The up-regulation of MET16 allows us to predict the
up-regulation of MET4. Mutation in the MET4 gene abol-
ishes transcription of MET16, thus MET4 is essential for
MET16 expression [12]. Therefore the model provides a
plausible explanation for the up-regulation of MET16 via
the MET4 transcription factor.

Comparison with existing software
The COMA Cytoscape plugin [13] implements a method
to facilitate consistency checks for gene expression studies
given a gene regulatory network. This approach is tailored
to transcriptional gene regulatory interactions and can
identify local inconsistencies for genes that are controlled
by a set of transcription factors. However, it is limited
in determining specific consistent patterns of genes reg-
ulated by a number of transcription factors, it does not
provide global predictions and it is not able to suggest
repairs in the case of inconsistency.
Integer linear programming (ILP) has also been recently

employed on interaction graphs to encode constraints
on the qualitative behaviour of the nodes [14]. This
approach determines topology-consistent explanation for
responses of signalling nodes measured in a stimulus-
response experiment and identifies the optimal subgraph
of the given network topology which can best reflect
measurements from a set of experimental scenarios. In
contrast, our backend (ingranalyze) that uses BioASP does

not focus on generating subgraphs, rather it suggests
edge/node repairs on the given network structure.
Qualitative influence graph modelling is currently avail-

able in Cytoscape 2.x via the BioQuali Cytoscape app [15].
This approach uses ternary decision diagrams (TDDs) to
answer the consistency problem. TDDs provide an effi-
cient representation of all the possible solutions of a qual-
itative system of constraints, however computation time
increases significantly for large networks. On the other
hand, BioASP only calculates predictions under repair
that hold true under all repair sets (i.e. not all possible),
however it is capable of dealing problems of much larger
size, rendering it ideal for modelling large scale regulatory
networks.
A significant advantage of the ASP paradigm is its flex-

ibility and extensibility. Defining a new variation value
for a node, (e.g. such as the null-variation), can be done
by adding new rules into the program, while in the TDD
approach, this requires modification of a significant part
of its implementation. BioASP also offers significant capa-
bility for repairs not found in BioQuali, such as calculation
of all minimal repair sets either as nodes or edges, and
identification of minimal inconsistent cores.
While CytoASP has the advantages of ASP due to its

usage of BioASP as back-end, it also offers additional ben-
efits. It has extended options for visualising repair options
under any repair mode, and customising the visualisation
of repairs. The app runs locally, but has no dependen-
cies so the only requirement is an existing Cytoscape
installation. Furthermore, it runs each network analysis
in a separate process, allowing parallel processing of all
selected networks, thus taking advantage of any multi-
processing capabilities. A detailed comparison is available
in Table 1.
In terms of memory requirements, CytoASP uses 64-bit

versions of Cytoscape and ASP solvers and therefore it is
practically limited by the theoretical limit of a 64-bit sys-
tem architecture (16 exabytes). However, it is noted that
memory requirement for a graph with n number of nodes
increases by O(n2), therefore large graphs (e.g. > 106

Table 1 Feature comparison of CytoASP and BioQuali [15]

CytoASP BioQuali

ExecutionModel Local Remote (Web Service)

Reasoning Engine ASP solvers (through ingranalyze & BioASP) Decision Diagrams

Parallel Processing Yes, multiple networks may be analysed simultaneously using all available CPU cores No

Visualisation Options Custom, user can select colors for visualisation Fixed, colors are pre-selected

Repair Options i) Flip observations, ii) Flip influences, iii) Define nodes as input, iv) Add influences Neutralise influences

Repair Visualisation Common repairs are visualised for all four repair modes Neutralised influences

Repair Sets Yes, all minimal repair sets for nodes / edges are calculated No

Minimal Inconsistent Cores Yes No
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nodes) may occupy a large amount of system memory.
Since Cytoscape uses adjacency list as its internal rep-
resentation format, sparse graphs will occupy less space
in memory.
The performance of CytoASP depends on BioASP, since

the latter is used as back-end to perform calculations and
provide the consistency analysis, predictions and repairs.
Modern ASP solvers are based on advanced Boolean
constraint solving technology and thus provide highly
efficient inference engines [7]. The computation of the
network in this case study completes within seconds.
The average runtime may vary, depending on feasibil-
ity of repair modes on consistent as well as inconsistent
observations. A detailed analysis on repair and prediction
times with respect to the corresponding repair opera-
tion is provided elsewhere [16]. The most demanding
process in terms of computation time is the identifica-
tion of MICs, which increases quadratically with respect
to grounding times of gringo ASP solver, in line with
ground instantiations for MIC encoding growing quadrat-
ically with the size of influence graphs. A detailed analysis
in the run-times when calculating MICs is provided
in [7].

Conclusions
We have presented CytoASP, proposing a Cytoscape app
for determining consistency and making predictions and
repairs in influence graphs. The software takes advan-
tage of the extensive BioASP functionality inmanipulating
influence graphs, allowing for the modelling of large scale
regulatory networks and dealing with inconsistency with
extensive repair capabilities.
CytoASP provides customised visualisation in predic-

tions and repair options. Common repairs can be visu-
alised in node and edge repair mode, in addition to
determining all repair sets through BioASP. In addi-
tion, multiple networks may be selected and analysed
simultaneously, taking advantage of parallel processing
capabilities. This functionality may be easily incorpo-
rated into a network analysis pipeline, through Cytoscape,
allowing further analysis and visualisation.
CytoASP implements seamless and user-friendly inte-

gration of modelling graphs through BioASP with visu-
alisation and processing options in Cytoscape. There-
fore, it greatly simplifies qualitative network modelling by
enabling non-programming experts to apply logical rea-
soning in gene regulations networks, facilitating its use in
relevant Systems Biology projects.

Availability and requirements
• Project name: CytoASP
• Project home page: https://bitbucket.org/akittas/

cytoasp
• Operating system(s): Linux 64-bit

• Execution model:Multi-threading implementation,
allowing the analysis of multiple networks in parallel
using all available CPU cores.

• Programming language: Java, Python
• Other requirements: Cytoscape 3.x
• License:MIT license

Endnotes
1http://bioasp.github.io.
2https://github.com/bioasp/ingranalyze/.
3http://mobyle.genouest.org/cgi-bin/Mobyle/portal.py.
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