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Abstract:

Electromagnetic scattering with the GDT-matrix method: an application to
irregular ice particles in cirrus

The study describes a new method to calculate electromagnetic scattering from small,
arbitrary shaped particles. It is called the Green’s dyadic technique for the transition
operator (briefly the GDT-matrix). First, the method is introduced from the general
theory of scattering (transition operator and Dyson equation) and then it is compared
with existing electromagnetic scattering models. Second, the model is used to character-
ize small ice particles and to interpret single-particle scattering measurements made with
the Small Ice Detector instrument (SID). In particular, the study is focused on small
irregular particles with fractal shapes. We apply the Gaussian random sphere model in
order to give an estimation of the particle roughness. The direct comparison of the for-
ward scattered intensity as measured by SID and simulated by the GDT-matrix model
leads to a retrieval of the size and shape of the scatterers. Third, the single particle re-
sults are statistically averaged to calculate many-particle optical properties in order to
evaluate radiances through the radiative transfer Monte Carlo model McArtim. Further,
the simulated radiances in near-infrared (NIR) are compared with measurements made
during the NASA-ATTREX project on board the research unmanned aircraft Global
Hawk. These comparisons lead to a remote retrieval of the thermodynamic phase of
the constituent cloud particles and provide insights on the surface of the scatterers, i.e.
rough or smooth.

Simulation elektromagnetischer Streuung mit Hilfe der GDT-Matrix-Methode:
Eine Anwendung auf unregelmäßig geformte Eispartikel in Zirren

Die Arbeit beschreibt eine neue Methode, um die Streuung elektromagnetischer Strahlung
an kleinen, unregelmäßig geformten Partikeln zu berechnen. Die Methode lässt sich am
besten als ”Green’s dyadic” Technik nach dem Operator des Zustandsübergangs (die sog.
GDT-Matrix) bezeichnen. Zuerst wird die Methode aus der allgemeinen Streutheorie
hergeleitet (Operator des Zustandsübergangs und Dyson-Gleichung) und dann werden
die Ergebnisse mit existierenden Modellen verglichen. Anschließend wird die Methode
genutzt, um die Lichtstreuung kleiner Eispartikel zu charakterisieren und um Messungen
des ”Small Ice Detector”-Instruments (SID) zu interpretieren. Im Speziellen konzentriert
sich die Arbeit auf die Lichtstreuung an kleinen, unregelmäßigen Partikeln mit fraktalen
Formen. Um die Oberflächenrauhigkeit zu simulieren, wird ein Gaussian-random-sphere
Modell verwendet. Der Vergleich der Vorwärtsstreuung aus den SID-Messungen mit Sim-
ulationen aus dem GDT-Matrix-Modell erlaubt Rückschlüsse auf die Größe und Form
der Streuer. Im nächsten Schritt werden die Ergebnisse für einzelne Partikel statis-
tisch gemittelt, um die optischen Eigenschaften eines Teilchenensembles zu berechnen.
Diese werden dazu genutzt, Radianzen im nahen infraroten Spektralbereich mit dem
Strahlungstransportmodell McArtim zu berechnen. Vergleiche mit während des NASA-
ATTREX-Projekts an Bord einer ”Global Hawk”-Drohne durchgeführten Messungen
eröffnen die Möglichkeit, die thermodynamische Phase der Wolkenteilchen sowie deren
Rauhigkeit mit Fernerkundungsinstrumenten zu bestimmen.
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Chapter 1

Introduction

1.1 Motivation

The radiative forcing of clouds composed of ice crystals, cirrus, is among the least

understood process in the Earth atmosphere. In particular, it is not clear whether cirrus

clouds warm up or cool down the Earth surface [1]. Cirrus clouds can cool the atmosphere

close to the surface by reflecting incoming solar radiation back to space (albedo effect),

or can have a warming effect by absorbing outgoing infrared radiation emitted by the

Earth (greenhouse effect). The net radiative effect is defined as the difference between

the electromagnetic energy flux (both short and long wave) in presence of the cirrus

and the corresponding one in absence of the cloud so, for clear sky. The net radiative

forcing depends on the size distribution and optical properties of the cloud particles

[2]. It is generally accepted that optically thick (optical thickness greater than 1) cirrus

clouds in the upper troposphere generally produce a negative forcing due to reflection of

incoming radiation, while optically thin (optical thickness lower than 0.3) cirrus clouds

located at the same height bring a positive forcing since they absorb outgoing terrestrial

radiation in the mid-infrared. The cirrus have also another effect of dehydration of the

stratosphere due to fast ice particle nucleation at high altitude. The International Panel

for Climate Change (IPCC) produced in 2007 the table that we adapt in Figure 1.1

in which it is stressed that the level of scientific understanding (LOSU) is very low for

clouds in general [3].

The radiative effect of clouds is usually parametrized through microphysical properties

as the effective radius of the size distribution. This can be linked directly to the optical

thickness τ and the ice water content (IWC in g/cm3). For instance following Baran

[1], for big ice crystals it is possible to write the effective radius as De = 3IWP/ρτ

where the density of solid ice is ρ = 0.92 gcm−3. The column integrated IWC is called

1
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Figure 1.1: IPCC radiative forcing components. Adapted from [3].

the ice water path (IWP in g/cm2) and the column integrated volume extinction is

called the optical thickness. This highlights the importance of the particle dimension.

Indeed, having two clouds with the same IWP, the one with the smaller effective radius

has a greater optical thickness resulting in more reflected radiation. It is important

to note here that the microphysical properties (as the radius) are inferred from optical

measurements of the radiance (electromagnetic radiation intensity per solid angle) that

are used as input for a retrieval algorithm. The corresponding modeled radiance is

calculated based on optical properties of the particles averaged over the size distribution

and is adjusted in the retrieval scheme in order to fit the measured radiance. Thus, once

the optical properties are known, the radius can be retrieved finding the best effective

radius of the size distribution that leads to the best fit of the measured radiance [1]. It

is then evident that an inaccurate calculation of the optical properties (most notably

the asymmetry parameter) can result in very different retrieved effective radius and

consequently to a wrong estimation of the IWC that is then used in global circulation

models to quantify the radiative forcing of the cloud. Thus, a detailed study of cirrus

particle optical properties is required in order to retrieve the microphysical properties

that in the end drive the radiative forcing of the whole cloud [4].
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1.2 Outline

Different levels of investigation are necessary in order to quantify the effect of cirrus

corresponding to the spatial scale of the observations. The smaller scale focus on the

single-particle optical properties (taking into account irregularities and roughness), the

intermediate considers the importance of statistical distributions of particles and, the

large scale considers the effect of the cloud as a whole through its radiative forcing.

The thesis is dedicated to the theoretical study of the optical properties of small, irreg-

ular and rough particles through a new model here developed and called the Green’s

Dyadic technique for the Transition matrix (GDT-matrix). The non-spherical ice par-

ticle characterization is obtained through comparisons of the GDT-matrix results with

the single-particle SID measurements (Small Ice Detector).

In chapter 2 the problems connected to the description of ice particles in cirrus clouds are

introduced. Then, in chapter 3 the theory of single and multiple scattering is described.

Chapter 4 is dedicated to the description of the models used. In particular, a new model

for single particle scattering is developed and called the GDT-matrix which is capable of

describing small scale surface irregularities (first section of chapter 4). The Mie model

is used for spherical scatterers and also to do the statistical average over size of the

optical properties. Considering multiple scattering, the radiative transfer equation is

numerically solved with the code called McArtim (Monte Carlo Atmospheric Radiative

Transfer Inversion Model). In chapter 5 the SID instrument is described and its forward

scattering measurements for irregular ice particles are presented. Then, the mini-DOAS

(differential optical absorption spectroscopy) instrument is characterized and examples

of the radiance measurements from the research aircraft Global Hawk (GH) within the

NASA-ATTREX project are shown. In chapter 6 the GDT-matrix predictions for small

irregular particles are compared to the SID measurements explaining the interference

speckle patterns in term of the Gaussian random sphere parameterization (first section of

chapter 6). At the end, the effect of cirrus on the near-infrared spectrum is also simulated

with McArtim and compared with mini-DOAS passive radiance measurements (second

section of chapter 6). Hence, it is shown how this measurement is sensitive to single-

particle properties and thus to surface irregularities. Then, chapter 7 concludes the

study.



Chapter 2

Background

2.1 The solar radiation and the atmosphere

2.1.1 Thermal structure of the atmosphere

The physical system in which we are interested is the Earth atmosphere and especially

its interaction with the solar radiation. To define the regions associated with absorption

and scattering of sunlight it is convenient to introduce the vertical temperature profile for

the standard atmosphere see figure 2.1. Traditionally, the vertical profile is divided into

four separate layers i.e. the troposphere, stratosphere, mesosphere, and thermosphere.

Every layer ends with a transition region as for example the tropopause.

Figure 2.1: Temperature profile of the standard Earth atmosphere with respect to
altitude. Adapted from [5].

In the troposphere the temperature decreases with respect to height from 288 K close to

the surface to about 220 K at a rate of 6.5 K/km. The temperature structure there is a

4
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consequence of the radiative balance and the convective transport of energy [5]. This is

the part of the atmosphere that hosts clouds and thus water vapour. The stratosphere

starts with an isothermal layer from the tropopause until about 20 km, above which the

temperature gradient changes sign with a rise up to 270 K around the stratopause. The

state of the stratosphere is mainly determined by the absorption of solar fluxes by ozone

and emission of infrared fluxes by carbon dioxide i.e. by a delicate radiative balance.

In the mesosphere the temperature decreases again as in the troposphere. Above 85 km

until several hundred kilometers, the temperature varies from 500 K to 2000 K depending

on the level of solar activity, consequently this atmospheric layer is called thermosphere.

In addition, the outermost region of the atmosphere is called the exosphere while the

lowest part below 1 km is called the planetary boundary layer.

2.1.2 Chemical composition and absorption

Mainly two groups of gases form the Earth atmosphere: one with nearly permanent

concentrations and another with variable concentrations [5]. Figure 2.2 shows the chem-

ical formulas and volume ratios for the concentrations. Nitrogen, oxygen and argon fill

99.96% of the atmosphere volume. Notably, the permanent gases have constant volume

ratios up to an altitude of 60 km. It must be noted that carbon dioxide concentration

has been increasing by about 0.4% per year due to fossil fuel combustion. An analogue

behaviour is found for methane with an increase of 1−2% per year due to larger biogenic

emissions linked to a rising human population.

Figure 2.2: Standard atmosphere components. Adapted from [5].

Variable gases are less present but their effect on radiation budget is relevant. Water

vapour is the principal dynamic element that is strongly interacting with the solar ra-

diation. Its concentration in the troposphere is determined by the local hydrological

cycle through evaporation, condensation, precipitation and large-scale transport. In
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addition, specific humidity decreases almost exponentially with pressure. Hence, the

stratospheric water vapour is small being also influenced by dehydration due to cirrus

formation as outflow from cumulus. The ozone concentration also varies very much

with space and time but it is mainly present between 15-30 km that is called the ozone

layer. Most importantly, ozone is continually created and destroyed by photochemical

processes caused by ultraviolet solar radiation [5] (a process that is also fundamental for

life). Considering the other variable species, NOx are among the most important being

emitted by combustion processes at the surface and by high-flying aircraft in the upper

troposphere. Chlorofluorocarbons produced by industries are also important concerning

the destruction of the ozone layer due to chlorine and bromine. Then, sulfuric dioxide

which is reaching the stratosphere via volcanic eruptions, is believed to be the primary

precursor of stratospheric aerosols. It is also important regarding the formation of acid

rain when it is emitted near to the surface. Figure 2.3a displays vertical profiles of the

gases mentioned above.

(a) (b)

Figure 2.3: Gases profiles and their absorption. (A) gases profiles as mixing ratio,
(B) absorption of the solar irradiance due to molecular gases as ozone, oxygen, water

vapour and carbon dioxide. Adapted from [5].

The understanding of the atmospheric absorption form the various molecules requires

a detailed understanding of the molecular structure. Here we just consider the main

process behind absorption of light by atmospheric molecular gases. This requires the

first quantization and the quantization of the Maxwell’s equations defining photons.

The absorption of photons is mainly linked to a transition of the molecule to a higher

energy electronic state. If we consider a diatomic molecule, the electronic energy is

related to the vibrational energy because both are related to the elastic valence bonds

that bind the atoms together thus forming the molecule [5]. The force between the

atoms depends on the nuclei distance and the electronic configuration of the atoms.

The potential regulating the force between two atoms is the Lennard-Jones potential (see
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Figure 2.4). At large distances the two atoms experience no significant force. Decreasing

their distance they start to exert an attractive force that at the end is responsible of the

ground state of the molecule in the minimum of the potential well. At smaller distance

the atoms start to repel each other.

Figure 2.4: Lennard-Jones potential for two electronic states of a diatomic molecule.
The horizontal lines in the potential wells represent vibrational energy levels.

Adapted from [5].

When a high-energy photon is absorbed, the electron configuration changes to an excited

state with a different potential energy as depicted in the upper part of Figure 2.4. The

energy of the transition is given by the difference of the two minima of the potential wells.

If the excited state is unstable, the molecule may decompose into its constituent atoms.

At atmospheric temperatures, most of the molecules are in the ground vibrational state

[5]. Two possible transitions are represented in Figure 2.4. Transition 1 brings the

molecule from the ground state to a state that is not quantized thus causing dissociation

linked with a continuum of wavelengths near the dissociation energy. The corresponding

spectrum is made by a smooth continuum at short wavelengths above the dissociation

limit. The quantized transition 2 requires absorption of a specific photon that leads the

molecule to a particular vibrational level of the excited state. The associated spectrum

is made of discrete wavelengths. Many transitions linked to diatomic molecules are a

combination of electronic and vibrational transitions. The manifestation of absorption

is shown in Figure 2.3b where a comparison is done between a spectrum recorded at the

top of the atmosphere (no absorption from gases) and the same as recorded from the

ground with a 60◦ elevation angle from the surface. In particular, in the Results chapter

we show radiance simulations characterized by the absorption bands of oxygen, carbon

dioxide and water vapour in the near-infrared part of the spectrum. To conclude, we

mention that absorption is represented by the absorption cross section σabs in units of
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cm2 and for many particle, it is represented by the absorption coefficient βabs = σ ·N0

in units of cm−1 with N0 the number density. In addition, the absorption cross sections

of the gases are temperature and pressure dependent so an accurate measurement of T

and P is required.

2.1.3 Particles and scattering

In addition to gases, the atmosphere contains aerosol particles with dimension 10−3 −
20µm of natural and human activity origin. Natural aerosols are for example volcanic

dust, smoke from forest fires, particles from sea spray, dust transported by wind, and

small particles produced by the chemical reactions of natural gases like sulfuric acid [5].

Aerosols produced by human activities are mainly related to combustion. The aerosol

largest concentration usually occurs in urban and desert areas leaving a visibility of

20-50 km. Importantly, aerosols concentration decrease exponentially with height in the

troposphere. Aerosols are also involved in the complex process of ice nuclei formation.

The remaining atmospheric component are clouds which are globally spread and they

cover more than 50% of the sky. There are many different types of clouds with different

microphysical composition. Typically cumulus generate precipitations. In the following

we will concentrate on cirrus especially in the tropics where they are regularly present

and strongly influence the radiative balance.

All the particles in the atmosphere absorb light as a continuum because they can be

described by macroscopic bulk optical properties as the refractive index (thus differing

substantially from molecules). However, their influence on the atmosphere is relevant

since they can also scatter light unisotropically.

The scattering nature of the atmospheric particles interacting with solar radiation de-

pends mainly on their shape and dimension. For spherical scatterers the problem can

be treated analytically with Mie theory (see chapter 4). For molecules with effective ra-

dius around 10−4µm the differential scattering cross section is the well-known Rayleigh

cross section. Then, aerosols have a radius of around 1µm and can be treated with

the statistical Mie theory considering an average over size of the differential scattering

cross section. Increasing further the size, the last atmospheric spherical particles that

can be treated accurately with the Mie theory are water droplets with a typical radius

of around 10µm. The differential scattering cross section of these three scatterers are

compared in Figure 2.5.

Inside clouds, and in particular in high cirrus, the principal components are ice crystals.

When they are large, they usually exhibit hexagonal symmetry like plates or columns
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Figure 2.5: Comparison of the differential scattering cross section in NIR (λ = 1.3µm)
averaged over a log normal size distribution for spherical scatterers with median radius

equal to 10−4µm (molecule), 1µm (aerosol) and 10µm (cloud water droplet).

causing halos. However, the majority of ice particles tend to have a very irregular shape

and so their geometry should be treated carefully and especially their surface. In the

next chapters we will consider in details how to treat highly non-spherical scatterers like

small ice crystals [6].

2.1.4 The Tropical Tropopause Layer

The Tropical Tropopause Layer, shortly TTL (13-18 km altitude [7]), is the least un-

derstood part of the atmosphere despite its relevance being the entry point for the

stratosphere [8]. In particular, in the tropics the altitude of the tropopause is lifted

up to around 15 km thus opening a gate to the stratosphere for chemical substances

through strong convective transport. The two major sources of uncertainties are the

water vapour amount (connected to the presence of cirrus) and the chemical composi-

tion of the TTL. The temperature distribution is also unknown due to the high vertical

variability connected to convective events and gravity waves. Very strong convective

events can bring ozone depleting substances (as bromine) to the stratosphere through

the TTL. The same happens for water vapour that is taken very fast from regions near

to the surface to the TTL. This can lead to large cold and supersaturated zones respect

to the water vapour, thus making possible the very fast nucleation of ice particles which

remain small in contrast to slow cooling that produces big crystals. The nucleation of

ice particles is responsible for dehydration of the TTL and is called freeze drying. The

importance of convection is represented in Figure 2.6. In addition, all these physical

processes are strongly coupled. Indeed, convection affects transport of water vapour
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and chemical substances and affects also the tropical pressure waves. These waves in-

teract with cirrus formation and also help large scale ascent. The cirrus, with their

constant presence in the tropics in time and space, influence directly the energy budget

of the Earth through interaction with solar radiation (radiative forcing, thin cirrus net

warming is larger than the one caused by greenhouse gas increase). In addition, cirrus

contribute significantly to the dehydration of the TTL by freeze drying that also affect

the whole stratosphere through the Brewer-Dobson circulation. In the end, the TTL

also controls the rate of stratospheric ozone depletion because it is the entrance to the

stratosphere. Due to the lack of knowledge of the TTL more observations are required

to fill the gap between mesoscale measurements performed with aircrafts (scale of the

order of few hundreds kilometers) and macroscale observations available from satellites

(several thousands kilometers). In addition, satellite measurements do not possess the

capacity to resolve very variable structures as the ones encountered in the TTL.

Figure 2.6: Processes occuring in the TTL. Adapted from [8].

2.2 Cirrus

Cirrus are clouds occurring at altitudes greater than 6 km (see Figure 2.7) and typically

at temperatures lower than 230 K, thus the constituent particles are in an ice phase

[1]. Normally, it is not easy to distinguish at naked eye a cirrus from the background

blue sky because the number density of particles tend to be very small (0.01 particles

per cubic centimeter) and so the number of scattering events of natural solar light. In

Figure 2.8 this property is directly shown through two pictures of the same cirrus taken

with two different angular orientations, one pointing to the zenith (the cloud is nearly

invisible in part b and d) and one with a greater zenith angle in a way to increase the

light-path inside the cirrus and so the scattering events (a and c).
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Figure 2.7: Cloud Physics Lidar (CPL) backscattered intensity at 532 nm showing
the location of the cloud as a function of the altitude, vertical axis, and time, horizontal

axis. Adapted from [9].

Nevertheless, the radiative effect of this kind of clouds is important both for the radiation

budget and for the hydrological cycle. This is even more relevant considering that from

satellite measurements appears that cirrus covers about 30% of the mid-latitudes and

in the tropical zones the abundance is even higher between 60% and 80% at any time

[1]. With this large spatial and temporal distributions cirrus have a significant impact

on the atmosphere but their role is not well understood. As a consequence of this lack

of knowledge, the results of satellite measurements present many differences (especially

in the tropics) when compared to the calculated reflected short-wave flux at the top-

of-atmosphere TOA in the context of climate general circulation models [1] (see Figure

2.9).

Figure 2.8: Photographs showing the view to the northwest from the NOAA David
Skaggs Research Center (DSRC) located on the western edge of Boulder, Colorado. The
cirrus formed from aircraft contrails is clearly seen at low elevation angles, (a) and (c),
but is largely invisible in all-sky photographs (b) and (d). The arrow in (d) indicates a

tenuous contrail passing through the zenith. Adapted from [2].
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Figure 2.9: A ten-year mean difference plot, between a climate model and space-based
measurements, of the TOA reflected short-wave flux, for the winter period (December,

January, and February). In units of Wm−2. Adapted from [1].

Indeed, the radiative effect of cirrus is complex due to its dependence on many param-

eters such as the altitude of the cloud, its optical thickness, its size and shape, the ice

crystal shapes and distribution in size, and the total amount of ice mass (the ice water

content, IWC). Generally speaking, the short-wave radiative effect tend to be negative

(cooling effect), while the long-wave is positive (warming effect). However, cirrus in the

tropics eventually exert an opposite radiative effect, as they tend to be optical thinner

than at mid, or high latitudes. Thus, it is necessary to try to understand the behaviour

of optically thin cirrus and their small and rough constituent ice particles in low and mid

latitudes (at high latitude due to low sun the cirrus exert a positive forcing). To achieve

this Ulanowski et al. [10] measured the scattered 2D pattern of artificial ice analogues

with the Small Ice Detector (SID). They empirically proved that ice crystals with rough

surface could reflect almost twice as much solar radiation back to space respect to the

corresponding smooth particles (optically corresponds to a lower asymmetry parameter

due to larger backscattered radiation). In particular, they proposed an explanation for

the rarity of halos (as depicted in Figure 2.10). The halo features can be understood in

the scattered radiation as the forward 22◦ and 46◦ peaks in the phase function (angular

distribution of the radiation on the scattering plane) when the light is interacting with

hexagonal plates and columns. The presence of irregularities on the surface, as rimed

droplets, can destroy the halo peaks leading to a featureless phase function. This kind

of smooth phase functions also agree well with satellite measurements (see next section).

The corresponding 2D scattering pattern in the forward direction looks very complex

with a speckle appearance (see chapter 5 for details).
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(a) (b)

Figure 2.10: A simulated halo pattern with HaloSim (A) and a real one as appeared
over Heidelberg on March the 13th, 2015 (B).

During field campaigns the direct probing of the constituent particles is possible through

the use of research aircraft. A typical result is shown in Figure 2.12 where pictures of

ice particles from the SPEC Cloud Particle Imaging (CPI) probe are presented [6]. It

is immediately evident that nearly no regular shape is present and that the majority of

the particles have a rough surface.

The CPI also reveals that smaller single ice crystals tend to remain at the cloud-top

while bigger aggregates are taken down to the cloud-base by gravity [11]. The spatial

distribution of shape and dimension of ice crystals is also related to the temperature

and the relative humidity of the surrounding atmosphere as depicted in Figure 2.11.

Figure 2.11: Size and shape distribution of ice crystals respect to altitude, tempera-
ture and relative humidity. Adapted from [5].

However, the CPI measurements turned out to be unable to provide information about

very small particles due to its spatial resolution that imposes a lower limit of 35 µm

for particles to be detectable. Thus, to better characterize the size and shape of small

irregular ice crystals the SID instrument was built by Hirst et al. [12] (see chapter
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5 for details). This device is not based on direct imaging of the particle instead it

measures the forward scattered radiation of a visible light laser source at 532 nm. In

that way particles between 1 µm and several hundreds microns can be studied and also

the surface roughness can be measured. Recent field campaign measurements revealed

that the majority of particles have rough and irregular surface thus producing speckle

interference patterns in the forward scattered intensity [4].

Figure 2.12: Images of ice particles as recorded by the Cloud Particle Imager (CPI).
Adapted from [6].
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2.3 Rough particle modeling

Lower cirrus are typically composed of big ice particles with hexagonal shapes as columns

or plates with the main dimension of some hundreds micrometers. These regular shapes

are expected to give rise in the forward scattering directions to the 22◦ halo peak (Figure

2.10). However, the occurrence of halos is low. The rarity of halos was empirically

explained by Kaye et al. [13] using the SID instrument. Irregularities on the surface

of big hexagonal columnar particles can smooth the phase function erasing the halo

peak. This behaviour is confirmed by theory. In particular Yang et al. [14] performed

simulations with the geometric optics approximation method. They found that a rough

particle surface can erase the halo peak from the phase function as in Figure 2.13.

Figure 2.13: Phase functions of a hexagonal column averaged over orientation at
λ = 0.66µm for different values of the surface roughness expressed by the parameter σ.

Adapted from [14].

A reduction of the asymmetry parameter g was also predicted. Further, they applied

the calculation to the polarized reflectance measurements performed by the PARASOL

instrument hosted on the MODIS satellite [15]. Importantly, they found that the exper-

imental data can be reproduced only with large surface roughness for a habit of particles

composed of different shapes (Figure 2.14).

All these simulations indicate the importance of the quality of the surface governing

the distribution of the scattered light. However, the situation is different when smaller

particles are considered. Muinonen et al. introduced the Gaussian random sphere model

[16] and they applied it to study the optical properties of small particles [17]. They

found that in general the behaviour is complex and that the reduction of the asymmetry

parameter is dependent also on the bulk shape. The phase function is influenced but

mostly in the backscattering part. The depolarization factor is the parameter that is

mainly influenced by irregularities. Kahnert et al. also used different light scattering
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Figure 2.14: Normalized polarized reflectivity obtained by the PARASOL instrument
(colors) and the corresponding calculation (black dots). The color contours represent
the frequency of occurrence of polarized radiances for ice clouds. Adapted from [15].

methods in order to understand the effect of surface irregularities or roughness on the

optical properties of small particles [18]. They conclude that the response of scattered

light by small rough particles is complex and no general trend can be found as in the case

of big ice crystals. Hence, more studies are necessary in order to understand the effect

of roughness on small ice crystals. This need is well satisfied by the SID instrument

that provide a unique tool to characterize small particles. Up to now no model was

applied to simulate the scattering speckle patterns measured by the SID instrument and

caused by small ice particles. The only attempts were done by Hesse et al. [19] but

always in the large particle range using geometric optics applied to big facetted objects

in order to simulate roughness. However, this method is limited to big particles where

the geometric optics and diffraction theory are applicable.

To conclude, we note that in oder to reproduce in the simulation the speckle interference

patterns as recorded by the SID instrument, it is necessary to make use of a model that

is maintaining the wave nature of the electromagnetic field. For this reason we apply the



Chapter 2. Background 17

GDT-matrix model which turned out to be able to reproduce the interference patterns

caused by small irregularities on the surface of the regular bulk of the particles (see

chapter 6).



Chapter 3

Theory

3.1 Theoretical description of light

3.1.1 Maxwell’s equations

The analytical description of light at mesoscale is based on classical electromagnetism

(for light interacting with particles larger than 5 nm). This theory is formulated through

the famous Maxwell’s equations defining the electromagnetic field (that is also the first

field to be relativistically invariant) as

∇ ·D = ρ (3.1)

∇×E = −∂B

∂t
(3.2)

∇ ·B = 0 (3.3)

∇×H = J +
∂D

∂t
(3.4)

where t is time, E and H the electric and magnetic fields, B the magnetic induction, D

the electric displacement, ρ and J the macroscopic free charge and current densities (all

the quantities are space and time dependent [20]). In particular, Eqs. 3.1 and 3.4 can

be combined into the continuity equation

∂ρ

∂t
+∇ · J = 0. (3.5)

The vector fields in the Maxwell’s equations are related by the electric polarization P

and the magnetization M (average electric/magnetic dipole moment per unit volume)

18
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through

D = ε0E + P (3.6)

H =
1

µ0
B−M = 0 (3.7)

with ε0 and µ0 the vacuum electric and magnetic permeability. A unique determination

of the electric and magnetic fields (given charge and current distributions) is only possible

considering the constitutive relations

J = σE (3.8)

B = µH (3.9)

P = ε0χE (3.10)

where σ is the conductivity, µ the permeability and χ the electric susceptibility and

are scalars for linear and isotropic media [20]. The Maxwell’s equation are valid only

in a volume where σ, µ and χ vary continuously (with discontinuities it is necessary to

impose the continuity conditions for the fields at the boundary as done in Mie theory).

It is assumed that all fields and sources are time-harmonic and can be represented as

the real parts of the corresponding complex fields, for example

E(r, t) = Re(E(r)e−iωt) (3.11)

with r the position vector, ω the angular frequency and i the complex unit. Then, the

Maxwell’s equations can be rewritten as

∇ ·D(r) = ρ(r) (3.12)

∇×E(r) = iωµH(r) (3.13)

∇ · [µH(r)] = 0 (3.14)

∇×H(r) = J(r)− iωD(r) = −iωεE(r) (3.15)

with the complex permittivity ε = ε0(1 + χ) + iσ/ω resulting in a non-zero imaginary

part of the refractive index i.e. causing the absorption of electromagnetic energy by

converting it in heat. From the choice of the harmonic time dependence e−iωt follows

also the fact that the imaginary part of the refractive index is positive defined i.e.

m = Re(m) + iIm(m).
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3.1.2 Electromagnetic wave and polarization

The Maxwell’s equations allow as a solution a plane electromagnetic wave propagating in

a homogeneous medium without sources (representing the transport of electromagnetic

energy of a perfect monochromatic parallel beam of light) i.e.

E(r, t) = E0e
ik·r−iωt (3.16)

being E0 a constant complex vector describing polarization in Jones representation. The

complete representation of polarization for an electromagnetic wave, in the sense that can

describe also unpolarized light, is given by the Stokes vector. It is also important since

it is the physical observable quantity since many instruments can not detect directly the

electric (or magnetic) field, instead they measure a time average of the real part of linear

combinations of products of fields with a dimension of an intensity. The electromagnetic

wave in a non-absorbing medium is a transversal wave. Hence, the electric field can be

expanded on a local vector base given by two directions 1̂ and 2̂ perpendicular to the

propagation direction

E = E1̂ + E2̂. (3.17)

Then, considering an electromagnetic plane wave, the associated Stokes vector can be

defined as 
I

Q

U

V

 =
1

2

√
ε

µ


E01̂E

∗
01̂

+ E02̂E
∗
02̂

E01̂E
∗
01̂
− E02̂E

∗
02̂

−E01̂E
∗
02̂
− E02̂E

∗
01̂

i(E02̂E
∗
01̂
− E01̂E

∗
02̂

)

 . (3.18)

The first Stokes vector component, I, is the intensity while the others describe the

polarization of the wave, and for a monochromatic wave are related by

I2 = Q2 + U2 + V 2 (3.19)

called the quadratic identity. The Stokes vector has also an ellipsometric interpretation

given in Figure 3.1

3.2 Single scattering

3.2.1 The volume integral equation

An electromagnetic wave propagates in vacuum with constant intensity and polarization.

However, if a particle is encountered, this can convert some of the electromagnetic
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Figure 3.1: Different polarization realizations described by the tip of the oscillat-
ing real electric vector when the electromagnetic wave propagates towards the reader.

Adapted from [20]

energy into heat, i.e. absorbing. Another portion of energy can be extracted from the

incident beam by scattering. Hence, the energy of the incident wave is reduced by both

absorption and scattering, the sum of which is called extinction. We consider only elastic

scattering so that the frequency of the incoming wave is not changed by the scattering

event in contrast to the polarization that is changed. In addition, we consider only

monochromatic radiation i.e. the amplitude of the incident field fluctuates in time much

more slowly than the time factor exp(−iωt). This time factor is also not considered in a

way that only stationary scattering is treated. It is assumed that the scattering system

is formed by a dielectric, linear, isotropic and nonmagnetic particle, characterized by

the dielectric constant ε, embedded into an infinite homogeneous background medium

of dielectric constant εB (with ε = ε/ε0). The bulk optical property ε, can be associated

with the scatterer as soon as it is greater than 5 nm in order to exclude quantum

mechanical effects. The scattering is described by the Maxwell’s curl equations and for

the external surrounding medium they are

∇×E(r) = iωµBH(r) (3.20)

∇×H(r) = −iωεBE(r)
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while for the particle internal volume the corresponding equations are valid

∇×E(r) = iωµH(r) (3.21)

∇×H(r) = −iωεE(r)

where the subscript B indicates the exterior medium. Since the surrounding medium is

nonmagnetic, we define µ = µB = µ0 with µ0 the permeability of vacuum. Then, taking

the curl of the curl of the first equations and solving for the electric field we get for the

external volume

∇×∇×E(r)− k2BE(r) = 0 (3.22)

and the equivalent for the internal volume

∇×∇×E(r)− k2E(r) = 0 (3.23)

with k0 = ω
√
ε0µ0, k

2
B = k20εB and k2 = k20ε. The two homogeneous equations can be

rewritten in a single inhomogeneous equation, the vector wave equation

∇×∇×E(r)− k2BE(r) = k2B[
ε(r)

εB
− 1]E(r) = k20[ε(r)− εB]E(r) (3.24)

with the right-hand side vanishing outside the particle internal volume because 4ε(r) =

[ε(r)− εB] = 0. As for any inhomogeneous linear differential equation, the solution can

be found as the sum of the solution of the corresponding homogeneous equation plus a

particular solution of the inhomogeneous equation. The homogeneous equation solution

is the incident field and for the particular case considered here is a plane wave. Then,

the physical appropriate particular solution is the scattered field [20]. Thus, the solution

of the scattering problem is the total field that can be expressed through the volume

integral equation (VIE) applying the Green’s function technique

E(r) = E0(r) +

∫
V
dr′GB(r, r′) · k204ε(r′)E(r′) (3.25)

denoting with E0 the incoming field and considering as source term for the electric field

the term k20[ε(r) − εB]E(r). Then, the Green’s function for the background medium

satisfies the same equation as Eq. (3.24), i.e. the vector wave equation but with a

delta-like source term on the right side and is defined as

GB(r, r′) = (1 + 1
k2B
∇⊗∇)gB(r, r′)

= (1 + ikBR−1
k2BR

2 1 +
3−3ikBR−k2BR

2

k2BR
4 RR) e

ikBR

4πR

(3.26)
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with R = |r− r′| and the 3D scalar Green’s function, ensuring that the solution goes to

zero at infinity, is given by

gB(r, r′) =
eikB |r−r

′|

4π |r− r′|
. (3.27)

The Lippmann-Schwinger equation Eq. (3.25) is mathematically a Fredholm integral

equation with a kernel GB that is singular for r = r′. In order to overcome the singularity

in the volume integral equation, we have to consider the principal value of Eq. (3.25) as

it is explained in the next chapter. Expanding the total field in terms of the incoming

field [20–22] and applying formally the Born approximation to Eq. (3.25), one can

rewrite it in a symbolic way, excluding for a moment the space-coordinates and defining

the potential v = k204ε(r)

∣∣E〉= ∣∣E0

〉
+GBv

∣∣E0

〉
+GBvGBv

∣∣E0

〉
+GBvGBvGBv

∣∣E0

〉
+... (3.28)

Applying v on both sides of the above equation,

v
∣∣E〉= v

∣∣E0

〉
+vGBv

∣∣E0

〉
+vGBvGBv

∣∣E0

〉
+... = T

∣∣E0

〉
(3.29)

and defining the transition matrix T with

T = v + vGBv + vGBvGBv + ... = T0 + vGBT (3.30)

thus the transition matrix can be interpreted as a generalized potential,

∣∣E〉= ∣∣E0

〉
+GBT

∣∣E0

〉
(3.31)

remembering that
∣∣E〉−∣∣E0

〉
=
∣∣Esca

〉
. Finally, projecting on the position eigenstates,

the transition matrix can be introduced into the volume integral equation as

E(r) = E0(r) +

∫
V
dr′GB(r, r′) ·

∫
V
dr′′T(r′, r′′) ·E0(r′′). (3.32)

The superscript 0 stays for the incoming field traveling in the background and not yet

perturbed by the presence of the scatterer (i.e. the zero order in the perturbation series)

while k0 is the wave number of the electric wave in vacuum. Here the transition matrix

again satisfies a Lippmann-Schwinger equation analogue to Eq. (3.25) i.e.

T(r, r′) = T0(r, r′) +

∫
V
dr′′GB(r, r′′) · k204ε(r′′) ·T(r′′, r′) (3.33)

with T0(r, r
′) = k204ε(r)δ(r− r′)1 in a unit volume, so that in 3D the transition matrix

has the dimension of a length. Then, applying the Green’s function technique as in the



Chapter 3. Theory 24

quantum theory of scattering [21], a third integral equation for the Green’s function

dyadic (called Dyson equation) is obtained

G(r, r′) = GB(r, r′) +

∫
V
dr′′GB(r, r′′) · k204ε(r′′) ·G(r′′, r′). (3.34)

The dyadic G(r, r′) represents the Green’s tensor for the complete system with all the

geometrical information of the medium in which the light propagates. We will show in

the next chapter how to use Eqs. (3.33) and (3.34) in order to calculate the transition

operator. Then, using Eq. (3.32) the electric field can be obtained both in near and far

field.

3.2.2 The observables: The Müller matrix

All the information of an electromagnetic scattering event is encoded in the Müller

matrix, which gives a complete description of light scattering for arbitrary polarized

and also unpolarized light. Once the incident electric field is expressed by the Stokes

vector [23], a multiplication with the Müller matrix representing the scattering process,

results in the Stokes vector of the scattered outgoing field. All the optical properties of

the particle can then be extracted from this matrix. According to [20] the Müller matrix

can be calculated through the scattering amplitude f . Assuming an incoming plane wave

E0(r) = E0 exp(ik0n̂
0 · r) = E0

∣∣K0
〉

the scattering amplitude is defined through

Esca(rn̂sca) =
eik0r

r
f(n̂sca, n̂0) ·E0 (3.35)

where n̂sca and n̂0 are the unit vectors along the scattered and incident field direction.

To obtained the analytical expression for the scattering amplitude it is first necessary

to calculate the Green’s function in far-field. The expression for the far-field Green’s

function can be derived considering r′ ∈ V and r = rn̂sca with k0r � 1 and also imposing

that r is much greater than any dimension of the scattering object, i.e. r � r′. Then,

we can exploit the expansion

∣∣r− r′
∣∣ = r

√
1− 2

n̂sca · r′
r

+
r′2

r2
≈ r − n̂sca · r′ + r′2

2r2
(3.36)

and neglecting the last term of the expansion we get the approximation for the scalar

Green’s function for the background that for the particular case here considered is vac-

uum so gB = g0

g0far(r, r
′) =

eik0r

4πr
e−ik0n̂

sca·r′ . (3.37)
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It follows that

G0
far(r, r

′) = (1− n̂sca ⊗ n̂sca)
eik0r

4πr
e−ik0n̂

sca·r′ . (3.38)

Substituting the far-field expansion of the Green’s function in Eq. (3.32) and comparing

with Eq. (3.35), the expression for the scattering amplitude is obtained

f(n̂sca, n̂0) = 1
4π (1− n̂sca ⊗ n̂sca) ·

∫
V dr

′ exp(−ik0n̂sca · r′)·
·
∫
V dr

′′T(r′, r′′) exp(ik0n̂
0 · r′′)

(3.39)

which contains the angular distribution of the scattered field. This can be also rewritten

in a compact form [24] by choosing the scalar plane wave along the direction of the

scattered field |Ksca〉 = exp(ik0n̂
sca · r′), coming from the far-field expansion of the

background Green’s function

f(n̂sca, n̂0) =
1

4π
(1− n̂sca ⊗ n̂sca)

〈
Ksca

∣∣T ∣∣K0
〉

(3.40)

where f has the dimension of a length and is independent from the incoming polarization

[25]. Once f is known, the differential scattering cross-section for polarized light with

polarization E0 is obtained from

dσ

dΩ
=
∣∣f ·E0

∣∣2. (3.41)

For unpolarized light, the equivalent of the differential cross section is calculated through

the scattering matrix S. Since the incident electric field is always a transversal wave,

the following condition needs to be fulfilled

f(n̂sca, n̂0) · n̂0 = 0 (3.42)

while the complementary condition for the scattered field is automatically accounted

for since the far-field expansion of the wave guarantees a subtraction of any logitudinal

component along the scattering direction [20]. Expanding the transversal field on the

orthogonal 2D vector base already introduced, 1̂ and 2̂ in the plane perpendicular to

the direction of propagation, it is possible to define the scattering matrix S through[
Esca1 (rn̂sca)

Esca2 (rn̂sca)

]
=
eik0r

r
S(n̂sca, n̂0)

[
E0

1

E0
2

]
(3.43)
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with the elements of S given by the projections of f on the polarization vectors of the

incoming and scattered waves

S11 = 1̂sca · f · 1̂0

S12 = 1̂sca · f · 2̂0

S21 = 2̂sca · f · 1̂0

S22 = 2̂sca · f · 2̂0

. (3.44)

Once the scattering matrix is obtained, the Müller matrix is calculated through linear

combinations of the elements of S [20]. In the following, only the first element of the

Müller matrix is used, i.e. the unpolarized light differential scattering cross-section

Z11 =
1

2
(|S11|2 + |S12|2 + |S21|2 + |S22|2). (3.45)

The other elements of the Müller matrix are given in [20].

Thus, from the definition of the scattering amplitude we see that once the transition

matrix is calculated the scattering problem is solved because all the optical quantities

descend from f .

3.2.3 The optical properties

The optical properties are very useful when studying the scattering from multiple ob-

jects as in radiative transfer. In particular for radiative transfer applications the rel-

evant optical properties are the extinction coefficient, the single scattering albedo and

the asymmetry parameter (or all the phase function). Thus, we introduce here the defi-

nitions, while they are employed when doing radiative transfer simulations for a cloudy

atmosphere in chapter 6. The determination of the electromagnetic field in the far-field

zone allows to calculate the total scattering, absorption and extinction cross sections.

The extinction cross section is given by [20]

Cext =
4π

kB |E0|2
Im[Esca(n̂0) ·E0∗] (3.46)

where the expression is written on the polarization vectors. Then, the scattering total

cross section is

Csca =
1

|E0|2

∫
4π
dn̂sca |Esca(n̂sca)|2 . (3.47)

From the energy conservation we have

Cabs = Cext − Csca ≥ 0. (3.48)
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The extinction coefficient is defined for an ensemble of particles physically corresponding

to the average of the extinction cross section for a distribution of particles in a physical

volume. In order to obtain the extinction coefficient, it is necessary to average the single

particle total extinction cross section first over all the different orientations and then,

over the size distribution, giving the extinction coefficient for the bulk in units of an

inverse length (this will be done in detail in chapter 4). The other relevant quantity for

radiative transfer is the single scattering albedo,

ω0 =
Csca
Cext

≤ 1. (3.49)

This is interpreted as the probability that a photon interacting with the particle will

be scattered rather than absorbed [20]. Hence, ω0 = 1 corresponds to non-absorbing

particles. The last very important quantity that we consider is the so called phase

function. This describes the angular distribution of the scattered radiation and is defined

as

p(n̂sca, n̂0) =
4π

Csca

dCsca
dΩ

. (3.50)

The phase function is then normalized to unity

1

4π

∫
4π
dn̂scap(n̂sca, n̂0) = 1. (3.51)

The phase function is used as an angular distribution to calculate the average of the

cosine of the scattering angle, called the asymmetry parameter

g = 〈cos(θ)〉 =
1

4π

∫
4π
dn̂scap(n̂sca, n̂0)n̂sca · n̂0. (3.52)

Thus, the asymmetry parameter is positive when the particle scatters more light toward

the forward direction, negative if the scattering is predominant in the backward direction

and it vanishes if the scattering is symmetric (e.g. Rayleigh scattering).

3.3 Multiple scattering

3.3.1 Assumptions

The problem of single scattering can be solved directly from Maxwell’s equations. How-

ever, often in real situations the light interacts with a system formed by a very large

number of particles. Clouds of water or ice particles are the physical object in which we

are interested in. Inside a cloud the particles are moving, spinning and also changing

their shapes or sizes due to evaporation, condensation, sublimation and melting. Due to

the fact that a measurement of light requires a finite amount of time to be performed,
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the recorded signal results in a statistical average over the ensemble of states of the

particles forming the total scattering object. This is related to the ergodic theorem

which claims that only statistically averaged theoretical results can be compared with

measured data. In particular, the light scattered in the far-field zone by a collection of

moving particles produces random interference patterns that fluctuate in time and space.

Although explicit measurements of the fluctuations of the speckle patterns are possible

(diffusing wave spectroscopy in the contest of dynamic light scattering) we will just

consider the static component of the scattering resulting from a calculation of averages

[20]. Further, we consider scattering by macroscopic particles that can be characterized

by a refractive index (bulk optical property independent from the electromagnetic field

so nonlinearity is excluded), in a way that the multiple scattering concerns classical

electromagnetic waves [26]. We concentrate on the coherent aspects of light and not on

the photons properties because no quantization of energy is applied to the Maxwell’s

equation. Then, the scattering object can be seen as a spatial configuration of a number

N of discrete finite particles (the particles are sufficiently large to ignore their atomic

structure and only bulk optical properties are necessary). An electromagnetic plane

wave illuminates the entire scattering object and interacts with the object as a whole

with a spatial distribution of the refractive index. In addition the scattering is assumed

to be elastic so that no frequency redistribution is considered as for Raman scattering

or for small Doppler shift due to the movement of the particles. Moreover, all changes

in the scattering object happens over a time period much longer than the period of time

harmonic oscillations of the electromagnetic field. Conclusively, thermal emission is not

taken into account because it can be safely neglected at temperature below or around

room temperature for short wave infrared or shorter wavelengths (UV/visible light).

3.3.2 Foldy-Lax equations

The total scattered field can be calculated as a vector superposition of partial fields

scattered by the individual particles forming the object [26]. Thus, the total field is

E(r) = E0(r) +

N∑
n=1

Esca
i (r) (3.53)

with N the total number of particles and Esca
i the ith partial scattered electric field.

The partial scattered fields satisfy the vector Foldy-Lax equations that follow directly

from the VIE and are exact. For the ith component

Esca
i (r) =

∫
Vi

dr′GB(r, r′) ·
∫
Vi

dr′′Ti(r
′, r′′) ·Ei(r

′′) (3.54)
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where Vi is the ith particle volume and most importantly Ei(r
′′) is the electric field

exciting particle i. Then, the Ti satisfies the Lippmann-Schwinger equation introduced

in the previous section. Interestingly, it represents the transition operator for particle i

in the absence of all the other particles. Hence, the transition operators are independent

from each other while the exciting fields are interdependent and satisfy the system of N

linear integral equations

Ei(r) = E0(r) +
N∑

j(6=i)=1

∫
Vj

dr′GB(r, r′) ·
∫
Vj

dr′′Tj(r
′, r′′) ·Ej(r

′′) (3.55)

for r ∈ Vi and i = 1, ..., N . This connects directly to the concept of multiple scattering.

3.3.3 Diagrammatic representation of multiple scattering

It is possible to express the multiple scattering through an order-of-scattering expansion

just rewriting Eq. (3.55) in a formal operator way (where two integrals over the internal

volume of the particle considered, as in Eq. (3.55), are implied every time a Green’s

function and a transition operator are introduced). Iterating the same equation gives

Ei = E0 +
N∑

j( 6=i)=1

ĜT̂jE
0 +

N∑
j(6=i)=1
l(6=j)=1

ĜT̂jĜT̂lE
0 +

N∑
j(6=i)=1
l(6=j)=1
m(6=l)=1

ĜT̂jĜT̂lĜT̂mE
0 + ... (3.56)

Recalling that

E = E0 +
N∑
i=1

ĜT̂iEi (3.57)

the scattered total field can be written as

Esca =
N∑
i=1

ĜT̂iE
0 +

N∑
i=1

j(6=i)=1

ĜT̂iĜT̂jE
0 +

N∑
i=1

j(6=i)=1
l(6=j)=1

ĜT̂iĜT̂jĜT̂lE
0 + ... (3.58)

that represents the order-of-scattering expansion [26]. The term ĜT̂iE
0 is the partial

scattered field at the observation point generated by particle i in response to the inci-

dent field. Hence, the first term on the right-hand side of Eq. (3.58) is the sum of all

single-scattering contributions, then the second term is the sum of all double-scattering

contributions and so on. The order-of-scattering interpretation of Eq. (3.58) can be

visualized as in Figure 3.2. Being the concept of multiple scattering an intuitive rep-

resentation of the physical problem however, it can not be identified with a physical
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Figure 3.2: Left: (a) unscattered (incident) field, (b) single scattering, (c) double
scattering, and (d and e) triple scattering. Right: Diagrammatic representation of Eqs.

(3.57) and (3.58). Adapted from [26]

process per se (in the contest of frequency domain). Indeed, all the inter-particle in-

teractions occur simultaneously and can not be temporally ordered. This results in the

pure mathematical character of the multiple-scattering. To conclude, we introduce the

diagrammatic representation of the order-of-scattering where the arrows represent the

incident field, the line with the dot stays for a ”multiplication” of a field by the ĜT̂

dyadic and the dashed curve indicates two scattering events involving the same particle

[26].

3.3.4 The radiative transfer equation

In this subsection we go through all the logical steps involved in the analytical derivation

of the radiative transfer equation (RTE) from Maxwell’s equations, skipping the many

mathematical theoretical details.

The main assumption under the RTE is that all the particles are in the far-field zone

one respect to the other and also that the observation point is in the far-field respect

to every particles. Thus, the RTE is not valid for densely packed objects composed

of particles. The other fundamental assumption is called the Twersky approximation

claiming that all paths going through a particle more than once can be neglected (thus

the diagrams with dashed curves in Figure 3.2 are not taken into account). Besides

these two major assumptions remains the ergodicity implying averaging over particle

positions and states which also should be statistically independent. In addition, the
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spatial distribution of the particles in the background medium should be random and

statistically uniform. Considering that many instruments do not measure directly the

electric field but the intensity, the relevant quantity to characterize multiple scattered

radiation is the coherency dyadic

C(r) = 〈E(r, t)⊗E∗(r, t)〉t ≈ 〈E(r, t)⊗E∗(r, t)〉R,ξ (3.59)

with R and ξ indicating the averaging over particle coordinates and states. After the

averaging, the coherency dyadic becomes a continuous function over space (as the mea-

sured intensity). The Twersky expansion of the coherency dyadic can be depicted di-

agrammatically as in Figure 3.3. It is necessary to distinguish two types of diagrams

Figure 3.3: Left: the Twersky expansion of the coherency dyadic. Right: diagram-
matic representation of the terms in the Twersky expansion. (a), (b), (c) and (f) are
diagrams with no crossing connectors. (d) and (e) are diagrams with crossing connec-

tors. Adapted from [26]

having common particles represented by the dashed lines. In particular, if the number

of common particles is more than one, they can enter the upper and lower paths in the

same order (Figure 3.3c) or in reversed order (Figure 3.3d). Then, due to the Twersky

approximation, no particle can be the origin of more than one connector. The next

assumption is key in order to arrive at the formulation of the RTE: all diagrams with

crossing connectors can be neglected. This approximation is only valid when the obser-

vation point is located in the near-field of the whole object. Thus, the use of the RTE is

justified only when simulating measurements in which the detector samples only a part

of the object and do not perceive the object as a whole. This is exactly the situation en-

countered in real measurements of light scattered by a cloud and received by a detector

mounted on-board a research aircraft or on satellites (RTE simulations in the presence

of clouds are shown in chapter 6). The approximation can be intuitively understood as

every interaction of the field with a particle is represented with Green’s dyadic multiplied

by the transition operator giving a fast oscillating exponential factor originating from

the Green’s dyadic. Upon position averaging over the positions of particles j and k in
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Figure 3.3e the rapidly oscillating function vanishes. Further, considering the contribu-

tion of unconnected particles as particle j in Figure 3.3f, the only effect is to attenuate

the field generated by particle k and exciting particle i. After these considerations the

coherency dyadic can be represented through the ladder diagrams (Figure 3.4) where

the double-lines denote the field attenuated by the unconnected particles, the Σ stays

for summation over all appropriate particles and averaging over positions and states. It

Figure 3.4: Ladder approximation for the coherency dyadic. Adapted from [26]

is possible to expand the ladder coherency dyadic over the angular function called the

ladder specific coherency dyadic ΣL(r, q̂) i.e.

CL(r) =

∫
4π
dq̂ΣL(r, q̂) (3.60)

where the integration is performed over all propagation directions q̂. It can be proved

that the ladder specific coherency dyadic satisfies the RTE [26]. The dyadic ΣL(r, q̂)

can also be used to define the specific intensity column vector

Ĩ(r, q̂) =


Ĩ(r, q̂)

Q̃(r, q̂)

Ũ(r, q̂)

Ṽ (r, q̂)

 =
1

2

√
ε

µ


1̂ ·ΣL(r, q̂) · 1̂ + 2̂ ·ΣL(r, q̂) · 2̂
1̂ ·ΣL(r, q̂) · 1̂− 2̂ ·ΣL(r, q̂) · 2̂
−1̂ ·ΣL(r, q̂) · 2̂− 2̂ ·ΣL(r, q̂) · 1̂
i
[
2̂ ·ΣL(r, q̂) · 1̂ + 1̂ ·ΣL(r, q̂) · 2̂

]

 , (3.61)

which satisfies the RTE being just projections of the ladder specific coherency dyadic.

The specific intensity satisfies the RTE in the integro-differential form

q̂ · ∇Ĩ(r, q̂) = −n0 〈K(q̂)〉ξ Ĩ(r, q̂) + n0

∫
4π
dq̂′
〈
Z(q̂, q̂′)

〉
ξ
Ĩ(r, q̂′) (3.62)

where 〈K(q̂)〉ξ and 〈Z(q̂, q̂′)〉ξ are the extinction and the Müller matrix, averaged over

particle states and n0 = N/V , the particle number density. Firstly, it must be noted that

the RTE satisfies the energy conservation law. Then it is interesting to note that the

specific intensity differs from the Stokes vector because the first has the dimension of a

radiance (Wm−2sr−1) while the second has the dimension of energy flux (Wm−2). This
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is a consequence of the coherency dyadic definition, its angular decomposition and the

definition of the specific intensity. In addition, each particle with its individual extinction

matrix and Müller matrix is effectively replaced with an average particle having the

optical properties of the average of all particle states. It is also very interesting that

the RTE has the mathematical structure of a Boltzmann’s kinetic equation describing

particle transport but it follows directly from the electromagnetic wave theory with no

need to introduce photons [26]. If we then consider only the second order expansion on

the position vector r, the equation reduces to the time-independent diffusion equation.

Conclusively, we recall the RTE for a plane-parallel, macroscopically isotropic and

mirror-symmetric scattering medium that constitutes a good approximation for light

propagating in the Earth atmosphere:

u
dĨ(τ, q̂)

dτ
= −Ĩ(τ, q̂) +

1

〈Cext〉ξ

∫
4π
dq̂′
〈
Z(q̂, q̂′)

〉
ξ
Ĩ(τ, q̂′) (3.63)

where τ = n0 〈Cext〉ξ is the differential element of the optical thickness and u = −cos(θ)
is the direction cosine.

3.3.5 Coherent backscattering

In deriving the RTE we noticed that it is possible to neglect the contribution of the

crossed diagrams in near-field. This is no more valid if the observation point lies in the

far-field zone of the object and within the ”back shadow”. The crossed diagrams cause

what is known as weak localization that manifests itself in an increased backscattered

intensity (coherent backscattering). Then, the total coherency dyadic can be rewritten

as

C = CL + CC (3.64)

where the second term on right side is the cyclical coherency dyadic which can be calcu-

lated from the crossed diagrams. However, for very low density objects like the droplets

concentration within clouds, the effect of the coherent backscattering is extremely small

and can not be detected with passive instruments because the transport mean free path

is order of magnitudes greater than the wavelength (in case of densely packed objects

this is no more valid). Nevertheless, for active instruments like lidars or radars the

coherent backscattering affects importantly the cloud measurements.
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Models

4.1 Single scattering

In this section we present first the model we developed to simulate small and very

irregular particles, i.e. the Green’s Dyadic technique for the Transition operator (the

GDT-matrix model). The validation of the GDT-matrix against experimental single

scattering measurements is presented in chapter 6. Secondly, we introduce the Mie

theory for a single spherical scatterer that is used for numerical validation of the GDT-

matrix. Then, we describe the Mie theory for a statistical size distribution of spherical

particles the results of which are used in chapter 6 in order to perform radiative transfer

simulations of a cloudy atmosphere.

4.1.1 The GDT-matrix model

Small ice particles have often low symmetry as anticipated by the studies mentioned

in the introduction and as it is further exposed in chapter 5. This prevents the well

known extended boundary condition method (EBCM) to be applicable for T-matrix

calculations [20] in order to calculate optical properties of non-spherical particles. The

lack of symmetry is naturally taken into account in techniques like the discrete (or

coupled) dipole approximation (DDA or CDA), where the scatterer volume is discretized

[27]. Thus the explicit consideration of boundary conditions for non-symmetric particles

is not necessary. Due to the necessity of describing small scale surface irregularities,

we adopt a DDA-like discretization of the general volume integral equation (VIE) for

the electromagnetic field. There are three possibilities to write the volume integral

equation. The first consists in writing it directly on the total field inside the integral, as

34
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it is traditionally done in DDA models [28].

E(r) = E0(r) +

∫
V
dr′GB(r, r′) · k204ε(r′)E(r′). (4.1)

Following this approach one evaluates the inverse of the interaction matrix and from

this, the total field inside the particle is obtained. The second approach, called the

Green’s dyadic tensor method (GDT), consists in writing the volume integral equation

on the incoming field and the total propagator G

E(r) = E0(r) +

∫
V
dr′G(r, r′) · k204ε(r′)E0(r′). (4.2)

and to solve for the propagator using Eq. (3.34) [29], i.e. solving the Dyson equation.

In the last case, the volume integral equation looks as

E(r) = E0(r) +

∫
V
dr′GB(r, r′) ·

∫
V
dr′′T(r′, r′′) ·E0(r′′) (4.3)

i.e. rewritten on the incoming field and the transition matrix. The latter can be

solved calculating the transition matrix with the corresponding integral equation i.e.

Eq. (3.33). The last method is the one we implement here, named the Green’s dyadic

technique for transition matrix or the GDT-matrix. The transition operator as defined

by its volume-integral should not be confused with the standard (in light-scattering

community) T-matrix term connected to EBCM that exploits the ansatz of expanding

the incident and scattered field in vector spherical harmonics. The transition operator

connects the incoming field to the total internal field while the EBCM T-matrix con-

nects the incoming field to the scattered field (theoretically the EBCM T-matrix is a

particular representation of the transition operator based on spherical symmetry).

The GDT-matrix method relies on the Green’s function technique, so the Dyson equation

Eq. (3.34) is used to obtain the Green’s propagator G inside the particle. This is

calculated following a procedure first introduced by O. Martin et al. [30]. Then, this

approach is expanded in an iterative way to the corresponding Lippmann-Schwinger

equation for the transition matrix Eq. (3.33). This procedure constitutes a different

direct method as compared to those reviewed by Yurkin and Hoekstra [28] regarding

DDA models. In particular, the transition matrix can be identified as the inverse of

the interaction matrix when reminding the definition of the scattering amplitude as

introduced in DDA methods. The core of the GDT-matrix algorithm lies instead in the

use of perturbation theory, so that the scatterer is seen as a local perturbation embedded

into the surrounding optical medium [24]. Hence, the scatterer is discretized into voxels

physically behaving as dipoles. Every single dipole (voxel) and its resulting perturbation

to the incoming electric field is considered at each step in the perturbation series. So
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dipole by dipole, every piece of the perturbation is added up, and at every iteration

step the two Lippmann-Schwinger equations (one for G and one for T ) are reduced

to algebraic equations to a form that only 3 by 3 matrices need to be multiplied and

inverted (making the code easily computable in parallel). In addition, all the GDT-

matrix scheme is set up in real space with no expansion of the field on vector spherical

harmonics, giving a direct calculation of the transition matrix from its definition with

no need to assume symmetries, except those inherent to the Maxwell’s equations. The

resulting algorithm is extremely simple, short, intuitive and thus easily changeable.

4.1.1.1 Green’s function singularity and discretization

The main problem is that both Eqs. (3.33) and (3.34) have a singular kernel so before

showing the details of the numerical technique we consider a practical strategy to cir-

cumvent the singularity of the Green’s dyadic with same extremes. From the analytical

expression of GB(r, r′), it is clear that its singularity at r′ = r causes a divergence of

the volume integral equation and consequently of all the related Lippmann-Schwinger

equations. This problem can be overcome considering the principal value of the integral

in Eq. (3.33) (the same for Eq. (3.34)), introducing the depolarization dyadic L

T(r, r′) = T0(r, r′) + lim
δV→0

∫
V−δV

dr′′GB(r, r′′) · k204ε(r′′) ·T(r′′, r′)−L · 4ε(r)

εB
T(r, r′)

(4.4)

and excluding the singularity around r, with r, r′ ∈ V . The depolarization dyadic L

depends on the shape of the exclusion volume δV . For a cubic mesh as the one here

used it was given by Yaghjian [31]. Accordingly L is defined by L = 1
31 which acts as an

extra source for the scattering potential, that takes into account the residual polarization

of the mesh. We note here that T has no singularity in contrast to T(r, r) = k204ε(r) ·1.

Now we deal with the singularity as considered in a finite discretization scheme, and

specifically for a cubic mesh (all the three dimensions behave the same, giving a diagonal

matrix). The iterative method applied to Eqs. (3.33) and (3.34) is not based on the

Born approximation, instead it considers at each step the variation of the field due to

one single perturbation (4ε(r)). Thus a discretization of the scatterer is required. A

convenient feature of a DDA model is that only the scatterer must be discretized. For

that purpose, a 3D grid is defined with each mesh consisting of the elementary volume Vi

at position ri with i = [1, N ] where N is the total number of discretization volumes. For

the discretization of the particle in cubic voxels, the Matlab tool ”3D voxelizer” [32] is

convenient since one only needs to provide a wavefront .obj file. Further, a sparse-octree

algorithm is applied to refine the mesh at the surface. This proved to be important to

accurately calculate the differential cross-section in the back-scattering part. Hence, the
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Green’s tensor in Eq. (3.34) is discretized on the mesh [29], as well as the transition

matrix in Eq. (3.33) and the incoming field E0
i . In this way the discrete equivalent of

Eq. (4.4) becomes a system of linear equations with i, j = 1, ..., N

Ti,j = T0
i,j +

N∑
n=1,n6=i

GB
i,nk

2
04εnVnTn,j + Mik

2
04εiTi,j − L · 4εi

εB
Ti,j . (4.5)

The related discretized Dyson equation reads as

Gi,j = GB
i,j +

N∑
n=1,n6=i

GB
i,nk

2
04εnVnGn,j + Mik

2
04εiGi,j − L · 4εi

εB
Gi,j (4.6)

where the self-term Mi arises from the fact that the local source term is no more point-

like but extended over the volume of the single voxel. Choosing cubic voxels, Mi is

calculated as the principal value of GB(ri, r
′) over the single cell

Mi = lim
δV→0

∫
Vi−δV

dr′GB(ri, r
′). (4.7)

Properly choosing M is really important to increase the accuracy of the solution. In the

computational scheme, this term acts as a correction due to the finite size of the mesh.

It can be analytically obtained just approximating the shape of the cubic mesh with an

equivalent spherical mesh of effective radius [33]

Reffi = (
3

4π
Vi)

1/3 (4.8)

and spherical volume δV . Following [33, 34], in 3D problems M reads as

Mi =
2

3k2B

[
(1− ikBReffi ) exp(ikBR

eff
i )− 1

]
1. (4.9)

On the other hand, the transition matrix requires no renormalization and, in the discrete

scheme at zero order it reads as T0
i,i = k204εiVi, with the dimension of a length (as

required by the scattering amplitude definition).

4.1.1.2 The algorithm

In order to demonstrate how the algorithm works we focus on solving the equation for

the transition matrix at the iteration step n

Tn
i,j = Tn−1

i,j + Gn−1
i,n k204εnVnTn

n,j (4.10)
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and the corresponding equation for the Green’s function

Gn
i,j = Gn−1

i,j + Gn−1
i,n k204εnVnGn

n,j . (4.11)

Again, we recall that the singularity of the Green’s tensor must be treated through M

and L. The upper index refers to the perturbation order n, i.e. the number of 4ε
considered in the iteration. For a starting point assume i = n, Eq. (4.10) becomes

algebraic and it can be easily solved for Tn,j . Once the solution for Tn,j is obtained,

its value is propagated by Gn−1
i,n to the other points inside the particle with i = 1, ..., N

through Eq. (4.11). For a more detailed description of the Green’s dyadic technique see

the papers by O. Martin et al. [29, 30]. For i = j = n a modification of the algorithm

is required to calculate the transition matrix, notably

Tn
n,n = k204εnVn · 1 · (1−Gn−1

n,n k
2
04εnVn)

−1
. (4.12)

Once TN
i,j is calculated, it represents the scattering contribution from the entire scatterer.

The internal field can be calculated from

Ei =
1

k204εi

N∑
n=1

TN
i,n ·E0

n (4.13)

with r ∈ V . Then, the field outside the particle is evaluated through Eq. (4.3). In order

to get the far-field solution it is only necessary to make use of the corresponding far-field

approximation of the background medium Green’s tensor. To summarize, at step n the

transition matrix is computed for the n perturbations and, in the next step n+ 1, Tn
i,j

is then reused in an iterative way; likewise for the Green’s tensor. In particular, the

transition matrix is processed at each step n, with the Green’s tensor calculated at the

previous step n−1. Then, the system of equations (e.g. Eq. (4.10)) is decomposed in nine

sub-equations, one for each component of the transition matrix. For every component of

the field, the scalar Helmoltz wave equation is solved. The same problem can be written

as a linear system of 3N equations on the field components with complex coefficients

and can be solved by the standard direct methods.

4.1.1.3 Validation

Further, the new scheme is first validated against known results in lower dimensions,

such as a 1D dielectric barrier, or a 2D pad, and further against 3D results from Mie

theory for a sphere and results from ADDA for scattering by a cube.

The first test is run for a scalar field hitting a dielectric 1D barrier, which can be regarded

as a surrogate for a semi-transparent mirror. In the simulations, three different values for
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the height of the barrier (the dielectric constant) are chosen in order to make the results

comparable to the calculations of O. Martin et al. [30], i.e. ε = 4, ε = 4+ i, ε = 4+4i. A

plane wave with λ = 0.8µm propagating in vacuum along the x axis hits the barrier from

the left. Figure 4.1 shows the amplitude of the total field normalized to the amplitude

of the incoming wave. The calculation is performed for a mesh size of d = 0.01µm as in

Figure 4.1: Dielectric barrier in 1D, a comparison between the GDT-matrix model
and the results from O. Martin et al. [30]. A plane wave propagates from the left in
vacuum ( λ = 0.8µm) onto a dielectric barrier (in the right part of the plot) with the
dielectric constants given in the legend. The amplitude of the normalized total field is

shown. Adapted from [24].

O. Martin et al. [30] and a similar behaviour is observed regarding the accuracy of the

model for a decreasing d and for a changing ε. We note that the boundary conditions

are automatically satisfied at the interface between the two media. As the medium

becomes more and more absorbent, the presence of an evanescent wave penetrating into

the barrier is observed (the analogue of a tunneling behaviour of an electron in quantum

mechanics).

Another example Figure 4.2 addresses the scattering of a 2D pad (ε = 2) by electromag-

netic radiation discretized with a mesh size d = 0.05µm. A plane wave with λ = 1µm,

linearly polarized perpendicularly to the pad plane is considered (scalar field solution).

The field is penetrating through the pad (no absorption), and the normal modes de-

velop in the same manner as in the study of O. Martin et al. [30]. Very good agreement

is found again between the two studies. Here we note the ability of the GDT-matrix

model to reproduce the high intensity forward peak, known in nano-optics as photonic

jet. Simulations of a metallic pad are also performed (not shown) but convergence is

only found for d < 0.05µm. This result indicates that our scheme may also be suitable

to simulate problems in plasmonics.

Next, the scattering of a dielectric sphere with ε = 1.1535 + i0.392 and x = 3.15 is

studied.
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Figure 4.2: Dielectric barrier in 2D. A linear polarized plane wave is incident from
the left on a square dielectric pad with ε = 2 and a side of 20µm. The amplitude of
the normalized total field is shown (color coded) inside the pad. Adapted from [24].

The simulations are performed in a manner to make the results comparable to the

study [35]. Hence the differential scattering cross section for parallel and perpendicular

polarization and for unpolarized light are compared with analytical exact results from

Mie theory (we used our own code based on [36], see next subsection for details). We note

that very good agreement is found for small size parameters x < 7 (Figure 4.3a). Then,

increasing the size, a good agreement is found with Mie theory in parallel polarization for

x = 10 and N = 7326 voxels (Figure 4.3b). When increasing the dielectric constant to

ε = 2.25, the model starts to show some discrepancies for x > 3 with a maximum relative

error of 35% in the back-scattering part of the diagram (Figure 4.3c). This is expected

due to the sparse-octree discretization employed with N = 7326 voxels that has a bulk

size of d = 0.1µm which is not enough to model the oscillations of the field inside a single

cell for that dielectric constant. However, this is the best result we can get with the

available RAM in a reasonable computing time because a finer discretization of the bulk

would require N > 104 voxels and thus, a much longer calculation time (see below for

an extended discussion on the computation time). Finally, the scattering of a ice sphere

with ε = 1.72 and N = 7326 voxels is discussed. The convergence for that discretization

is poor in the back-scattering part but it is good in the forward-scattering half where the

measurements are performed (Figure 4.3d). In Figure 4.4 a last comparison is done with

the publicly-available DDA code ADDA [37] for a cube with ε = 1.77 and equivalent

volume size-parameter x = 3.22 for a plane wave with a perpendicular incidence direction

respect to the cube face. In order to use the results from ADDA as a reference, we run it

for a cube with 128 dipoles per side (N = 1, 601, 613 dipoles). Instead, the discretization

of the cubic particle for the GDT-matrix has N = 1331 (in unit of dipole size d). Then,

we impose in the GDT-matrix code the rule of thumb that mandates d = λ/10|m|
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(a) (b)

(c) (d)

Figure 4.3: Differential scattering cross section as a function of the scattering angle
(normalized to the maximum) simulated with the GDT-matrix and compared to the Mie
theory for a dielectric sphere with (a) ε = 1.1535+i0.392, x = 3.15 and N = 2940 voxels
for unpolarized and parallel and perpendicular polarized light (b) ε = 1.1535 + i0.392,
x = 10 and N = 7326 voxels for parallel polarized light (c) ε = 2.25, x = 3.15 and
N = 7326 voxels for unpolarized and parallel and perpendicular polarized light (d)
ε = 1.72, x = 10 and N = 7326 voxels for perpendicular polarized light. Adapted from

[24].

for the size of the single dipole (fixing λ = 2π as default in ADDA and with m the

refractive index). With this change in the GDT-matrix code, we emphasize that the

general behaviour of the differential scattering cross section is well reproduced in our

calculation. However, some discrepancies arise in the backscattering directions and tend

to grow when the dielectric constant and the size parameter are increased. In particular,

when the size-parameter is increased (at fixed ε < 2.25), it is possible to reduce the error

in the backscattering part taking a greater number of dipoles. In contrast, increasing

the number of dipoles does not help when ε > 2.25 also for small size-parameters.

4.1.1.4 Performance

By exploiting the physical interpretation of the Green’s tensor for the electromagnetic

wave equation, it is possible to estimate the accuracy of the discretization process as

exposed in [27]. Indeed, each column of GB(r, r′) represents the three components of
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Figure 4.4: Differential scattering cross section as a function of the scattering angle
(normalized to the maximum) for perpendicular and parallel polarizations of a cube with
ε = 1.77 (refractive index m = 1.33) and x = 3.22. The plot displays the comparison
between the ADDA code and the GDT-matrix code. The input for ADDA is a cube
with number of dipoles N = 1601613 while for the GDT-matrix the cube has N = 1331.

Adapted from [24].

the electric field radiated at location r by a unit dipole located at r′. In order to improve

the accuracy of the simulation, the distance d between the discretization volumes should

be small as compared to any structural lengths of the scatterer and also compared to the

wavelength inside the medium (a common feature of all DDA methods). Evidently the

first requirement is best full-filled by employing enough voxels for a good approximation

of the surface of the particle. In our study this task is reached through a sparse-octree

discretizer. Sensitivity studies for curved surface particles indicate that the refinements

near the edge of the scatterer lead to a better description of the cross section for back-

scattering. The sparse-octree voxelization is justified since every potential interaction,

i.e. 4ε, is weighted in the perturbation series with the volume of the corresponding cell.

The use of sparse-octrees permits also to decrease the number of dipoles and accordingly

the necessary calculation time. Then, the second requirement mandates that

∣∣√ε∣∣ k0d < 1 (4.14)

a condition that should always be checked for voxels in the bulk of the particle when the

sparse-octrees are employed. Considering the size parameter x = 2πReff

λ (where Reff is

the same as in Eq. (4.8) but taking the entire volume of the particle) and substituting

the wavelength in vacuum λ in Eq. (4.14), the maximum achievable size parameter can

be estimated as a function of the mesh size d, the dielectric constant ε and the effective

radius Reff

x ≤
Reff
d |
√
ε|
. (4.15)
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Further by defining the effective wavelength inside the particle as λeff = λ/ |
√
ε|, which

mandates λeff/d > 2π, at least six voxels per effective wavelength are required. With

this restriction and the limitation on the number of dipoles N given by the computing

time and the available RAM, our analysis is presently restricted to ε ≤ 2.25, for which

the maximum size parameter is xmax = 10 (considering Reff ∼= 1µm and d > 0.065µm).

Introducing a higher order calculation of the M matrix, as it was proposed in [34],

does not affect the result primarily because only one singularity per iteration step is

considered. Moreover, the GDT-matrix scheme is stable with respect to the reduction

of the voxel size. This is rooted in the use of the VIE. It is related to boundedness

of the spectrum of the transition operator, that could be identified with the inverse of

the interaction matrix (this is known from DDA models see [28]). In addition, better

accuracy is achieved by increasing the number of dipoles N , a process that is yet limited

by the available RAM and the computational time. Thus, the computational complexity

remains of the order of O(n3c) (with nc = 3N). We tested the code on a 3.4 GHz quad-

core machine with 32 GB of RAM for which in practice the calculations are restricted

to N < 104 voxels. Figure 4.5 shows the performance plot as time versus the number of

employed dipoles.

Figure 4.5: Log-log plot of the computation time versus the number of dipoles for a
transition matrix calculation with the GDT-matrix model. Adapted from [24].

Since the GDT-matrix scheme belongs to the class of direct methods, it can be compared

to other direct models. Conceptually all the three direct models [38–40] are equivalent

to the GDT-matrix formulation taking into account all the multiple interactions between

the dipoles. However, the GDT-matrix is computationally different in the sense that it

iteratively solves two Lippmann-Schwinger equations, one for the propagator and one

for the transition operator (or matrix through its representation on some basis). This

leaves the same computational complexity of O(n3c) as the models cited above and the

same upper limit for the volume equivalent size-parameter i.e. x ≤ 10.
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Compared to iterative DDA methods [28], the GDT-matrix as a direct scheme is slower

and more memory consuming. Indeed, the iterative methods have a computational

complexity of O(nc). In particular, in the previous section we compared the GDT-

matrix with the Amsterdam DDA model, ADDA [37]. We see that the two models

agree well except in the backscattering part of the scattering cross section. The result

was obtained in around one second using ADDA while it took around six minutes with

the GDT-matrix on the same machine. This is due to the fact that ADDA is highly

optimized (exploiting the symmetries of the interaction matrix and also implementing

a FFT procedure). On the other hand, the GDT-matrix code is not optimized at all

(up to now) and serves here as a proof-of-concept (no FFT and no exploitation of the

symmetry of the transition operator). The GDT-matrix performance as a direct model

can be also compared with the iterative DDA method implemented by Loke et al. [41].

We see that considering only a single calculation of the transition matrix (the inverse of

the interaction matrix in [41]) the GDT-matrix is more than one hundred times slower

than the iterative method. This is expected considering the difference between direct

and iterative methods. Once the GDT-matrix code will be optimized, a more valuable

comparison can be done.

However, the GDT-matrix retains a peculiarity in the sense that the calculation can

be interrupted at any time resulting in a truncation of the perturbation series. If we

combine this feature with a sparse-octree voxelization of the scatterer, the transition

matrix for the bulk of the particle can be precalculated. Then, the contribution of the

surface can be added to the solution using a refined discretization. This is possible

because the index n, in the perturbation series can be truncated, while the other two

indices i and j describe the dipole over which the perturbation is propagated. This

allows to do a single calculation for the dipoles in the bulk and to study the effect of

surface roughness or deformations repeating the run only for the dipoles on the surface.

This approach results in a great saving of computing time and better accuracy due to

the improved geometrical description of the surface.

4.1.2 Irregular shape generator: The Gaussian random sphere

In order to geometrically describe and parametrize the shape of irregular spherical par-

ticles we use the Gaussian random sphere model proposed by Muinonen et al. [16]. The

model is based on random Gaussian deformations of the radial coordinate of a spherical

particle described with spherical harmonics. Thus, assuming that N random variables

s = (s1, ..., sN ) given in spherical coordinates Ω = (θ1, ϕ1; ...; θN , ϕN ) obey multivariate
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normal statistics nN with zero means and covariance matrix Σs:

nN (s,Σs) =
1

(
√

2π)N
√
detΣs

exp (−1

2
sTΣ−1s s). (4.16)

The elements of the covariance matrix Σs are

Σs,ij = β2Cs(γij), i, j = 1, ..., N (4.17)

with β2 the variance, Cs the autocorrelation function and γij the angular distance be-

tween the directions i and j. It is required for Σs to be positive definite, Cs(0) =

1, C ′s(0) = 0 and also the boundary condition Cs(γ) = Cs(γ + 2π). Then, it is possible

to introduce the random radius r = r(θ, ϕ) using the random variable called logradius

s = s(θ, ϕ) as

r(θ, ϕ) =
a√

1 + σ2
exp [s(θ, ϕ)]er (4.18)

where a is the mean radius, σ the relative standard deviation of the radius vector, and

er a unit vector pointing outward in the radial direction . From this definition follows

that the random variables r = (r1, ..., rN ) obey the multivariate lognormal statistics lN

with equal means a, variance a2σ2 and covariance matrix Σr. i.e.

lN (r, a,Σr) =
1

(
√

2π)Nr1...rN
√
detΣs

exp (−1

2
sTΣ−1s s). (4.19)

The covariance matrices, the corresponding autocorrelation functions and the variance

are related by

Σr,ij = a2[exp (Σs,ij)− 1], i, j = 1, ..., N

σ2Cr = exp (β2Cs)− 1,

σ2 = exp (β2)− 1,

(4.20)

which describe completely the statistics of the random shape [16]. Hence, the Gaussian

random shapes can be generated exploiting a spherical harmonics expansion for the

logradius and a Legendre expansion for the elements of the covariance matrices

s(θ, ϕ) =

∞∑
l=0

l∑
m=−l

slmYlm(θ, ϕ)

Σr(γ) = exp [ln(σ2 + 1)

∞∑
l=0

clPl(cos(γ))]− 1,

(4.21)

being the Pl’s the Legendre polynomials with weights cl [17]. In practice, Gaussian

random spheres are generated randomizing the harmonics weight coefficients slm which
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have zero means and equal variances given by

β2lm = (2− δm0)
(l −m)!

(l +m)!
clβ

2. (4.22)

The last choice to be made regards the Legendre polynomials weights cl. Following

Nousiainen et al. [17] a good choice to generate realistic atmospheric particle shapes

can be made with a power law relation

cl ∝ l−ν . (4.23)

In addition, the l index should be truncated with proper extremes. We fix lmin = 2

and lmax = 10 as the first two orders give negligible contributions (increasing lmin gives

particles with spikes [17]). In chapter 6 we show results obtained with a fixed power law

with ν = 3 as a function of different amplitudes of the distortion, parametrized with σ.

4.1.3 The Mie model for spheres

4.1.3.1 Mie theory for a single spherical particle: Introduction

A spherical scatterer can be treated analytically through the benchmark Mie theory

[42]. The main idea consists in exploiting the spherical symmetry of the problem in a

way that the electric internal, scattered and incident fields can be expanded on vector

spherical harmonics [23]. Then, imposing the boundary conditions at the interface

(E0 + Esca −Eint)× êr = (H0 + Hsca −Hint)× êr = 0 (4.24)

where E0 is the incident field, Esca the scattered field and Eint the internal field, the

continuity of the field is ensured. From this continuity equation follow the expressions

for the scattered field expansion coefficients which form the basis of the computational

approach:

an =
ψn(x)ψ′n(mx)−mψ′n(x)ψn(mx)

ζ
(1)
n (x)ψ′n(mx)−mζ(1)′n (x)ψn(mx)

, (4.25)

bn =
ψ′n(x)ψn(mx)−mψn(x)ψ′n(mx)

ζ
(1)′
n (x)ψn(mx)−mζ(1)n (x)ψ′n(mx)

, (4.26)

with m the refractive index, x the size parameter, an the nth electric partial wave am-

plitude and bn for the magnetic partial wave amplitude (the prime indicates a derivative

with respect to the argument of the function [36]). The functions ψn(z) and ζ
(1)
n (z) are

the Riccati-Bessel functions defined in terms of the spherical Bessel function of the first
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kind, jn(z), and the spherical Hankel functions of the first kind, h
(1)
n (z):

ψn(z) ≡ zjn(z), (4.27)

ζ(1)n (z) ≡ zh(1)n (z). (4.28)

The spherical Hankel functions of the first kind are used to describe the outgoing spher-

ical waves in the scattered field amplitude. As already described in chapter 3, in the far

field the electric field is a transversal wave thus having only two non-zero components.

Hence, the scattered field can be described by the scattering matrix that reduces to a

diagonal matrix with non-vanishing elements

S11(x,m, θ) =

∞∑
n=1

2n+ 1

n(n+ 1)
[anπn(cos θ) + bnτn(cos θ)], (4.29)

S22(x,m, θ) =

∞∑
n=1

2n+ 1

n(n+ 1)
[anτn(cos θ) + bnπn(cos θ)], (4.30)

with θ being the angle between the incident and scattered directions. The angular

functions are written in terms of the Legendre polynomials as

πn(cos θ) =
1

sin θ
P 1
n(cos θ)], (4.31)

τn(cos θ) =
d

dθ
P 1
n(cos θ)]. (4.32)

The sums are convergent for large n because the amplitude of the partial waves decreases

with increasing order. In practice the sums are truncated according to Wiscombe [43]

to the x dependent value

nmax = x+ 4x1/3 + 2. (4.33)

The scattering matrix elements are proportional to the scattering amplitude thus tak-

ing the square modulus of S11 and S22 gives the differential scattering cross section

for perpendicular and parallel polarization respectively (with respect to the scattering

plane). The unpolarized light differential scattering cross section i.e., the first element

of the Müller matrix can be calculated taking the sum of the square modulus of the two

scattering matrix elements

Z11 = 2 · [(|S11(x,m, θ)|2 + |S22(x,m, θ)|2)/x2] ·
1

4πQsca
(4.34)

with Qsca the scattering efficiency that is dimensionless being defined as the ratio of the

corresponding cross section and the geometric cross section πr2 (r is the radius of the
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spherical particle). The efficiencies are given by

Qext =
2

x2

∞∑
n=1

(2n+ 1)Re(an + bn), (4.35)

Qsca =
2

x2

∞∑
n=1

(2n+ 1)(|an|2 + |bn|2). (4.36)

The asymmetry parameter looks

〈cos θ〉 =
π

k20Csca

∫ 1

−1
(|S11(x,m, θ)|2 + |S22(x,m, θ)|2) cos θd(cos θ), (4.37)

Then, the single scattering albedo is just the ratio of scattering and extinction efficiencies.

4.1.3.2 Mie theory: Numerical implementation

We developed our own code based on the numerical prescriptions described in [36].

Accordingly the scattered wave amplitude coefficients can be rewritten as

an =
[An(y)

m + n
x ]ψn(x)− ψn−1(x)

[An(y)
m + n

x ]ζ
(1)
n (x)− ζ(x)n−1(x)

, (4.38)

bn =
ψn−1(x)− [mAn(y) + n

x ]ψn(x)

ζ
(1)
n−1(x)− [mAn(y) + n

x ]ζ
(1)
n (x)

, (4.39)

with y = mx and the logarithmic derivative An(y) = ψ′n(y)/ψn(y). The Riccati-Bessel

functions are generated in a stable way through the upward recurrence relation

ψn(x) =
2n− 1

x
ψn−1(x)− ψn−2(x), (4.40)

and similarly for ζ
(1)
n (x) with starting conditions ψ−1(x) = cosx, ψ0(x) = sinx and

ζ
(1)
−1 (x) = cosx + i sinx, ζ

(1)
0 (x) = sinx − i cosx. Moreover, the recurrence relation for

the derivative

ψ′n(x) = ψn−1(x)− n

x
ψn(x), (4.41)

and the one concerning the logarithmic derivative

An(y) =
n+ 1

y
− 1

An+1(y) + n+1
y

. (4.42)
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4.1.3.3 Single spherical particle: Water droplet

The use of Mie theory is justified for particles that do not deviate too much from a

spherical shape. A typical example is a water droplet, small enough that the action of

gravity is not sufficient to perturb significantly the spherical geometry. In Figure 4.6 we

Figure 4.6: Single water droplet differential scattering cross section for unpolarized
light. Left: linear plot. Right: polar plot.

show the differential scattering cross section for x = 36. The important characteristic

is that the angular distribution of the differential scattering cross section shows some

structures due to interference of the incident and scattered fields. The position of the

maxima and minima can be used to retrieve the size of the spherical particle. The polar

plot shows the shape of the angular distribution where the interference structures have

very small amplitudes and thus are not visible.

Further, in Figure 4.7 we present the efficiency as a function of the size parameter for

a water droplet m = 1.33 and a carbon soot particle m = 1.78 + i0.92. Increasing

the imaginary part of the refractive index leads to an increased absorption as expected.

The surprising fact is that the absorption efficiency can easily exceed unity in the res-

onance region of the size parameters [20]. This means that a particles can absorb sig-

nificantly more power than the value of the incident intensity multiplied by the area of

the particle geometrical cross section. Hence, the perturbation of the spherical particle

on the electromagnetic field is far beyond its physical boundaries indicating the main

limit of the geometrical optics approximation. The efficiencies are also characterized

by low-frequency maxima and minima with superimposed high-frequency ripples. The

interference structures are due to the interference of the diffracted and transmitted light

through the particle (the phase shift is proportional to the real part of the refractive

index). While the ripples are cause by resonances of the Mie coefficients an and bn.

Larger n, narrower become the ripples that can be identified with individual resonances

of the corresponding partial waves. Also for ripples there is a physical interpretation.
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When rays propagate around the inside surface of a spherical particle it is confined by

an almost total internal reflection. Then, after total reflection the rays return to their

entrance points exactly in phase and then follow the same path again and again without

being attenuated by destructive interference. In this way very large energy density can

be accumulated inside the particle near the surface. Since this accumulated energy is

removed from the incident beam, the result of resonance is a larger extinction efficiency.

The longer the path of the rays, the narrower the resonance. It should also be noted

that an increased absorption erase the interference structures and also the ripples. Con-

clusively, we mention that the resonances are physical and can be measured providing a

very accurate tool to characterize particles [20].

Figure 4.7: Efficiencies and asymmetry parameter g as a function of the size param-
eter. Upper plot: water droplet. Lower plot: carbon soot.
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4.1.3.4 Statistical Mie theory for a distribution of particles: Bulk optical

properties

Many instruments collect the intensity of light after multiple scattering by an ensemble

of particles. In order to simulate the measurement process with the radiative transfer

equation, an average over the particle states needs to be applied to the optical properties.

Here we consider an ensemble of spherical water droplets with fixed spherical shape and

refractive index. Thus, the statistical state on which it is required to perform the average

is just the size of the particles. The size distribution can be defined as

N0 =

∫ ∞
0

n(r)dr, (4.43)

with N0 the total number of particles per cubic centimeter and n(r) the number density

of the particles in the infinitesimal radius interval [r, r + dr]. Hence, the bulk optical

properties (or averaged optical properties) can be calculated integrating the single parti-

cle properties over this distribution [36]. Consequently, the volume extinction coefficient

can be calculated as

βext =

∫ ∞
0

σext(r)n(r)dr, (4.44)

having the dimension of an inverse length. A useful distribution to describe light scat-

tering by atmospheric particles is the log normal distribution

n(r) =
N0√
2π

1

lnS

1

r
exp

[
−(ln r − ln rm)2

2 ln2 S

]
, (4.45)

where rm is the median radius and lnS is the standard deviation of ln r.

We can now calculate the extinction coefficient for a log normal distribution remembering

that σext = πr2Qext and substituting in Eq. (4.44) reads

βext =
N0

lnS

√
π

2

∫ ∞
0

rQext exp

[
−(ln r − ln rm)2

2 ln2 S

]
dr. (4.46)

All the optical properties can be averaged in this way and also the differential scattering

cross section. In particular we are interested in the asymmetry parameter, the single

scattering albedo and the extinction coefficient.

4.1.3.5 Statistical Mie theory for a distribution of particles: Water droplets

We present here the results for a log-normal size distribution of spherical water droplets

with median radius rm = 7.5µm, N0 = 100/cm3 and standard deviation lnS with S = 2

see Figure 4.8. First, we show in Figure 4.9 the differential scattering cross section aver-
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Figure 4.8: Log-normal size distribution as a function of the size parameter.

aged over that size distribution which can be compared with the one for a single particle

of Figure 4.6. It is important to notice that the interference structures are smoothed

out by the averaging procedure. Thus, making this distribution reproducible with good

accuracy using the geometrical optics approximation where the ray approximation is

applied in combination with diffraction, refraction and reflection (the Snell’s law).

Figure 4.9: Bulk differential scattering cross section for water droplets with the log
normal size distribution depicted in Figure 4.8.

To conclude, we show in Figure 4.10 the bulk optical properties as a function of the

wavelength. It is important to remember also that the radiative transfer equation needs

averages in order to be valid. Then, the bulk optical properties form the input for the
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radiative transfer solver in order to simulate the radiance in a realistic atmosphere in

the presence of cirrus, see chapter 6.

Figure 4.10: Bulk water droplet optical properties calculated with the size distribution
of Figure 4.8 as a function of wavelength. Top left: the extinction coefficient. Top right:
the scattering coefficient. Bottom left: the asymmetry parameter g. Bottom right: the

single scattering albedo.
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4.2 Multiple scattering

4.2.1 The radiative transfer model McArtim

4.2.1.1 The RTE formal solution

In the attempt to simulate and interpret spectral radiances measured by passive remote

sensing instruments (as the mini-DOAS instrument, see chapter 5) we make use of

the radiative transfer model called McArtim [44]. Here we provide a description of

its principles while its outcomes are presented in chapter 6. We consider the scalar

approximation of the RTE i.e. considering only the first component of the specific

intensity vector that is the radiance. Then, we recall that only elastic scattering is

considered. Both these approximations are accurate enough to describe the propagation

of radiation from the Sun through the Earth atmosphere also in the presence of clouds.

The radiative transfer equation then writes

q̂∇Ĩ(r, q̂) = −βext(r)Ĩ(r, q̂) +
βsca(r)

4π

∫
4π
Ĩ(r, q̂′)Z11(r, q̂ · q̂′)dq̂′ + S(r) (4.47)

which is the scalar RTE deduced from Eq. (3.62) introduced in chapter 3. The first term

on the right hand side is the attenuation due to extinction, the second term represents

scattering and the last is the source term. Disregarding the thermal emission of the

atmospheric particles or molecules and the Earth thermal emission, the source density

reduces to

S(r) = P0(λ)ΘSun(r)
1

VSun
(4.48)

where P0 is the spectral power of the Sun, VSun the volume of the Sun and ΘSun is

the Heaviside step function describing the Sun location. It is convenient to rewrite

the integro-differential equation (4.47) as an integral equation only making use of the

Green’s function technique. Rewriting Eq. (4.47) as[
1 +

1

β(r)
q̂∇
]
Ĩ(r, q̂) =

ω0(r)

4π

∫
4π
Ĩ(r, q̂′)Z11(r, q̂ · q̂′)dq̂′ +

1

β(r)
S(r) (4.49)

with ω0 the single scattering albedo, it is possible to recognize on the left side into the

square brackets a differential operator. The corresponding Green’s function is

Gq̂(r, r′) =
β(r′) exp [−τ(r, r′)]

|r− r′|2
δ

(
q̂− r− r′

|r− r′|

)
(4.50)



Chapter 4. Models 55

where the δ distribution selects only points r on the line r′+ tq̂ with t > 0. The optical

thickness can be defined as

τ(r, r′) =

∫ |r−r′|
0

βext(r
′ + tq̂)dt. (4.51)

The last step consists in defining the collision density as f = Ĩβext. Then, the integral

RTE can be written as

f(r, q̂) =

∫
M

∫
4π
δ

(
q̂− r− r′

|r− r′|

)
kp[(r

′, q̂′)→ (r, q̂)]

|r− r′|2
f(r′, q̂′)dq̂′dr′ + Ψ(r, q̂). (4.52)

Here the transition density is given by

kp[(r
′, q̂′)→ (r, q̂)] = ω0(r

′)
Z11(r, q̂ · q̂′)

4π
βext exp

[
−τ(r, r′)

]
(4.53)

and the initial collision density is

Ψ(r, q̂) = βext

∫
M
δ

(
q̂− r− r′

|r− r′|

)
S(r′)

exp [−τ(r, r′)]

|r− r′|2
dr′ (4.54)

where the spatial integrations are carried out over the spatial domain M including the

Earth and the Sun.

The numerical solution can be found through the formal solution of the IRTE that can

be rewritten shortly as

f = Kf + Ψ. (4.55)

Applying the Born approximation, i.e. taking as the initial guess for the collision density

inside the integral the initial collision density and iterating gives the solution as

f̃ =
∞∑
n=0

KnΨ (4.56)

known as Neumann series that converges if ||K|| < 1. Thus, once the solution is found,

from the collision density one can easily get the radiance dividing by the extinction co-

efficient at the observation point. In order to get the measured signal also an integration

of the radiance over the field of view of the instrument is required. To optimize this

procedure the light rays are traced back i.e. starting from the detector and reaching the

Sun (see Figure 4.11).
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Figure 4.11: A ray of light trajectory (random walk) as simulated by McArtim when
the ray is started at the detector and propagated backward. Adapted from [44].

4.2.1.2 The numerical solution through Monte Carlo sampling

As the Neumann series is a high dimensional integration problem it can be handled with

a Monte Carlo method. Random numbers are used to draw samples from the probability

density function associated to the respective integration kernel.

First of all McArtim initializes a grid (also with spherical symmetry) and on the grid

points all the atmospheric properties are stored as temperature and pressure then the

air density is calculated according to the ideal gas law. In addition, for the wavelength

considered a second data structure is initialized on the same grid but containing the

optical properties of the scatterers i.e. the extinction coefficient, the single scattering

albedo and the asymmetry parameter that characterize Z11. The optical properties

for gases are taken from the HITRAN database [45] that provides the absorption cross

section as a function of temperature and pressure.

Then, the most important part of the program is a ray tracing algorithm. The ray

tracing procedure gives an estimation of the integral RTE by drawing samples from

the integrals in the Neumann series using random numbers. The scheme results in a

Markov chain where only the solution at the previous step is necessary to estimated the

following step. Hence, the estimation can be separated in three steps: the sampling of

the single scattering albedo, the sampling of the scattering angle and the sampling of

the free path length. First, a random number α1 is generated and if it is greater than

the single scattering albedo, the ray of light is absorbed. Otherwise scattering occurs.

If this is the case then the scattering angle needs to be estimated. This is done with

the so called Henyey-Greenstein phase function (the element Z11) that is the probability

distribution for the cosine of the scattering angle µ = cos(θ):

ZHG11 (µ) =
1

2

1− g2

[1− g(2µ− g)]
3
2

. (4.57)



Chapter 4. Models 57

where g is the asymmetry parameter. Then, the cumulative distribution function (CDF)

is

CDF (µ) =
1− g2

2

∫ µ

−1
(1− 2gµ′ + g2)−

3
2dµ′

=
1− g2

2g

[
(1− 2gµ′ + g2)−

1
2

]µ
−1

. (4.58)

The scattering angle can be sampled generating a second random number α2 and using

the inverse CDF

µ = CDF−1(α) =
1

2g

[
1 + g2 −

(
1− g2

1 + 2α2g − g

)2
]
. (4.59)

The Henyey-Greenstein phase function is a good approximation for spherical particles

thus for Rayleigh scatterers, aerosols and water droplets while for highly non-spherical

ice particles an expansion of the phase function on the Legendre polynomials is required

in order to describe the many interference structures. In the following we consider only

non-spherical particles with a spherical bulk and with deformations on the surface so

that the Henyey-Greenstein approximation is valid. The sampling of the free path length

of the ray of light is performed in a similar way calculating the probability distribution

function as

PDF (j) = βext exp (−βextl) (4.60)

and the associated CDF

CDF (l1 < l < l2) =

∫ l2

l1

βext exp (−βextl) = [− exp (−βextl)]l2l1 . (4.61)

Hence, the free path length can be sampled from a third random number α3

l(α3) = − 1

βext
ln(α3). (4.62)

All the sampling procedure is summarized in Figure 4.12.
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In chapter 6, McArtim is used in combination with the Mie code in order to simulate

the effect of cirrus on the near-infrared spectrum.

Figure 4.12: Sampling procedure through random numbers. Adapted from [44].
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Measurements

In this chapter we describe first the SID instrument and its output measurements i.e.,

forward scattering intensity patterns. Then, the mini-DOAS instrument is characterized

as well as its output measurements in which we are interested i.e., the radiance in NIR.

Later in chapter 6, the GDT-matrix simulations are compared with the SID measure-

ments while, the radiance simulated with McArtim is compared with the radiance as

collected by the mini-DOAS instrument.

5.1 Single scattering: SID 2D forward scattering patterns

5.1.1 Limitations of the CPI instrument

The evidence of the abundance of small ice crystals in cirrus calls for an instrument

capable of resolving particles smaller than 20 µm [13]. The traditional in situ instru-

ment called the Cloud Particle Imager (CPI) [46] can produce, under a pulsed laser

illumination, real images of cloud particles on a CCD camera [13]. This instrument is

really important in providing information about scatterers larger than approximately 25

µm, although below that limit diffraction and optical aberrations render it impossible

to resolve the details of the particle shape (see Figure 5.1). To achieve a lower size

limit, the Small Ice Detector (SID) was built, making possible to resolve particles with

main dimension down to 1 µm just collecting the laser light scattered forward with an

azimuthal distribution [12].

59
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Figure 5.1: Images of two crystals obtained by conventional microscopy (left) and the
CPI (right). Adapted from [13]

5.1.2 The SID instrument

The SID instrument allows to study the shape, the size, the composition and also the

orientation of the particle with respect to the illumination direction. In particular, it

is possible to detect the contribution of the particle surface to the scattering pattern

[13] making this instrument unique in the attempt to classify the degree of roughness.

The SID instrument is designed to detect particles in the range 1-100 µm and it can be

mounted on research aircrafts in order to sample real cloud particles. It can measure

at a rate of several thousands particles per second making possible to get information

about the particle size distribution and also the concentration [12]. The optical technical

configuration of the SID is represented in Figure 5.2.

The SID is formed by a 30 mm diameter sampling tube co-axial with the probe centre-

line that allows an airflow to enter the instrument. Perpendicular to the tube a circularly

polarized 10 mW laser beam is shined at 532 nm wavelength interacting with the particles

entering the tube thus scattering the light in all directions [12]. Around the tube there

is an assembly of eight optical detectors which receive light scattered from the particles

which cross the beam in the vicinity of the tube axis. Each optical detector assembly

is composed by lenses, a 532 nm interference filter (to minimize the contribution from

ambient daylight), an iris and a miniature photomultiplier detector. Six of the detector

assemblies (labeled 1-6) are arranged radially about the axis of the beam and are used in

the assessment of particle shape (through interpretation of the scattering pattern). The

seventh detector is centered on the beam axis and is used in the evaluation of particle

size. The eighth detector is used as a trigger and is really essential because it ensures

that only one particle is present in the scattering volume at one time. The scattering
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Figure 5.2: Upper panel: scheme of the technical arrangement of the optical compo-
nents in SID. The circular pads 1-7 are detectors used in characterization of the particle
size and shape. Detectors 8 and 2 are used in the particle detection and data acquisition
triggering processes. Lower panel: a picture of the SID instrument. Adapted from [12]

volume is thus crucial and is defined by the properties of the laser beam and the field-

of-view of the detectors. The laser beam at the center of the airflow tube has a width of

approximately 4 mm, a depth of 200 µm and a Gaussian intensity profile both parallel

and perpendicular to the particle trajectory. Then, detector 8 for triggering, has been

optically designed such that its field-of-view form a small elliptical area of 0.35 mm × 0.7

mm that covers the central part of the beam at the axis of the inlet airflow tube. On the

other hand, the six azimuthal detector assemblies are designed so that their field-of-view

are centered on the same area but are larger, approximately 0.8 mm × 1.6 mm (these

detectors are tilted 30◦ with respect to the beam axis so that the field-of-view in the

beam plane are conic sections overlapping completely with that of detector 8). Hence,

a particle entering the tube is considered ”valid” if it passes through the field-of-view of
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the trigger channel (detector 8). Once the trigger is on, the laser is turned on and the

scattered light is recorded by the azimuthal detectors. Consequently, a particle passing

only through the field-of-view of the azimuthal detectors but outside that of detector 8,

will not be recognized as valid. In this way, the probe scattering volume corresponds

to an elliptical section of the beam 0.35 mm × 0.7 mm in size and approximately 200

µm depth. Considering an airspeed of 100 ms−1, the air volume flow rate through the

scattering volume is approximately 19 mls−1. At a particle concentration of 500 ml−1

the particle entering rate is approximately 9500 s−1 and the probability of having more

than one particle in the scattering volume is 0.47 %. Thus, the probability of wrong data

recording is sufficiently small. In Figure 5.3 it is shown how the data are collected on

the detectors allowing a mapping of the 2D scattering patterns with particles of different

shapes.

Figure 5.3: Diagram illustrating how the scattered intensity from different shaped
particles can be measured on the azimuthal detectors giving as output the 2D forward
scattering pattern with a zenith angle respect to the incidence direction between 5◦-26◦.

Adapted from [12]

The 2D forward scattering patterns show the intensity of the scattered radiation with

a zenith angle with respect to the incident direction in the range of 5◦-26◦. This is

enough to detect the bright halo peak at 22◦. We note that for spherical particles

such as small droplets, the intensity is equally distributed among the six azimuthal

detectors and produces rings. From the number of rings it is possible to retrieve the

size of the particle just applying Mie theory. Also for non-spherical particles the angular

distribution reflects the main symmetry of the particle as in the columnar case but

a direct retrieval of the particle size is not possible. For more complex shapes the

interpretation requires detailed calculation in order to retrieve the size and shape of the

scatterer (see next chapter).
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Figure 5.4: First column: experimental scattering pattern. Second column: theo-
retical predictions with RTDF. Last column: the particles used for the simulations.

Adapted from [13]

5.1.3 Ice particle SID measurements from the AIDA chamber

Here some results are presented which were recorded with the laboratory version of

the SID instrument (PPD-2K), operated by Dr. M. Schnaiter at the Institute for Me-

teorology and Climate Research, Atmospheric Aerosol Research division (IMK-AAF),

of the Karlsruhe Institute of Technology (KIT). The measurements were carried out

at the AIDA cloud chamber facility under well-defined laboratory conditions regarding

temperature and relative humidity [47]. During a typical cloud chamber experiment

around 10000 scattering patterns are recorded by the instrument in the angular range

[7.4◦; 25.6◦]. In Figure 5.5 four different particles are shown. First in 5.5a a big hexag-

onal plate with very smooth faces on the surface is shown where the 6-fold symmetry

of the particle is clearly seen. Then, in Figure 5.5c a smaller hexagonal plate but with

some rough structures on the surface is presented. In Figure 5.5b an ice column pattern

is recognizable with some irregularities on the surface causing some speckle spots in the

scattering pattern. As a last example, a droplet is shown where the scattering rings are

visible even if they are slightly distorted due to some small deformations of the particle

resulting in a departure from a perfect spherical shape.

Patterns of this kind, i.e. with evident regular structures characterizing the symmetry

of the bulk of the particle, can be interpreted through theoretical models as the ray

tracing and diffraction on facets theory (RTDF [48]). An example is reproduced in

Figure 5.4 where the 2D patterns of a columnar particle and of a hexagonal plate are
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5: SID measurements of 2D forward scattering intensity patterns for: (A) a
big hexagonal plate (B) a columnar particle (C) a small hexagonal plate (D) a droplet

(E) a very irregular ice hexagonal plate (F) an irregular small ice particle.

shown. The same experiment but for a perfect spherical particle results in a 2D pattern

with regular rings. However, the RTDF theory can be applied only for very big particles

(size parameter of the order of a hundred) where the diffraction theory is justified. In

addition, in the context of ray-tracing models, it is impossible to model small scale

surface roughness due to the necessity of considering the wave nature of light. This

shortcoming really limits the interpretation of measured 2D scattering patterns since

the majority of the particles detected during field campaigns are small, rough and very

irregular (as reported recently by Ulanowski et al. [4] which consider the absence of
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the halo intense spot in the 2D patterns for hexagonal columns, that indicates rough

surface). Typical patterns for these small and irregular particles are presented in Figure

5.5e and 5.5f.

5.1.4 Ice particle analogues for roughness studies

In the absence of a good model to study big and irregularly shaped particles, Ulanowski

et al. [10] developed a very interesting strategy in order to interpret the 2D scattering

patterns. They produced in the lab ice particle analogues for which they can characterize

precisely the state of the particle surface through optical microscopy or SEM. Then, they

recorded the scattering patterns and they demonstrated empirically that very irregular

speckle patterns are due to small scale roughness on the particle surface. They also

measured the phase function and observed the suppression of the 22◦ halo peak for

hexagonal particles and a reduction of the asymmetry parameter in the presence of

surface irregularities. These measurements are summarized in Figure 5.6 from [4].

Figure 5.6: Upper rows: images of ice particle analogues from optical microscopy and
SEM. Lower rows: SID 2D scattering intensity patterns of the particles in the upper

rows. Adapted from [4]
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It is evident from Figure 5.6 that the surface of the particle plays so important role

that can lead to a complete randomization of the scattering pattern erasing also the

information about the main symmetry of the scatterer bulk.

In the next chapter we will show how it is possible to use the GDT-matrix method

to model small and rough particles. A characterization of particle irregularities is also

given in term of a Gaussian random sphere parametrization of the deformations.
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5.2 Multiple scattering: Radiance measurements during

the NASA-ATTREX mission

5.2.1 The Global Hawk

To fill the gap between mesoscale measurements performed with aircrafts (scale of the

order of few hundreds kilometers) and macroscale observations available from satellites

(several thousands kilometers) the Global Hawk (GH) unmanned aircraft is used in the

frame of the NASA-ATTREX project (Airborne Tropical TRopopause EXperiment [8]).

This is a unique aircraft that can fly at high altitudes as 20 km for a maximum of

24 hours making very fast descent and ascent in oder to sample directly in situ the

cirrus just flying through them. The aircraft has an operative base at the Dryden Flight

Research Center in California. The GH has payload compartments where the research

instruments can be located (see Figure 5.8).

Figure 5.7: The Global Hawk during landing in Dryden. Adapted from [9].

The ensemble of all these instruments provide a unique complete source of information

in order to initialize the atmospheric models with the right physical parameters. In the

next chapter wel use data from these instruments in order to model and characterize

the effect of cirrus on the NIR spectra. In particular, the Cloud Physics Lidar (CPL)

and the Hawkeye provide very useful informations required for cirrus simulations. The

CPL measures the backscatter signal of three lasers at 355, 532 and 1064 nm. Thus,

it can locate the altitude of the cloud and its optical thickness. In addition, it can

provide the depolarization at 1064 nm, a measure proportional to the asphericity of the

scatterers. The Hawkeye measures the size distribution of the particles within the clouds

and combining three existing SPEC optical cloud particle probes can span a size range
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between 1µm and several centimeters. These measurements provide the complete set

of information required to simulated the effect of cirrus on NIR radiance. The other

instruments provide all the information about the gases, temperature and pressure thus

giving a full description of the atmosphere. In the next chapter we show simulations of

the radiance in the NIR as measured by the mini-DOAS instrument.

Figure 5.8: Upper part: the Global Hawk payload compartments. Lower part: the
instruments onboard the Global Hawk during ATTREX. Adapted from [8].



Chapter 5. Measurements 69

5.2.2 The mini-DOAS instrument

The mini-DOAS instrument deployed onboard the GH collects the scattered skylight

through three movable telescopes oriented 2◦ off the GH heading. It has been operated

by our research group in a collaboration with UCLA (group Prof. Dr. J. Stutz) during

the NASA-ATTREX missions from 2011 until 2014. A stable scanning is achieved by

automated angle control of the telescopes which compensates for any pitch/roll move-

ment of the GH aircraft. A rectangularly shaped field of view (FOV) of the telescopes

(0.19◦ in the UV and NIR, 0.24◦ in the visible wavelength range) ensures a good height

resolution of the scattering events (see Figure 5.9).

Figure 5.9: Simulations of the different types of scattering events contributing to the
DOAS-limb measurement in a Rayleigh atmosphere with a 30 optical thickness cloud at
an altitude between 2-3 km if the aircraft is flying at 18 km altitude and the telescope

is pointing at +1◦ elevation angle. Adapted from [49].

From the telescopes, the light is collected into three fiber bundles each connected to the

corresponding UV/vis/NIR spectrometer. The spectrometers are fixed in an evacuated

and water-ice thermo-stated vessel (see Figure 5.10), necessary to obtain a stable optical

imaging. This is done to guarantee a low detection sensitivity for the targeted scatterers.

A single board computer commands the instrument, handles and stores the data and

provides the communication from the ground to the GH.

Figure 5.10: The mini-DOAS instrument technical scheme.
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Thus, it is possible to measure optical spectra (intensity versus wavelength) of the scat-

tered skylight in UV (300-380 nm, FWHM=0.8 nm), visible (410-530 nm, FWHM=0.9

nm) and NIR (900-1700 nm, FWHM=20 nm) wavelengths at different telescope elevation

angles [1◦,−15◦]. Differentiating these measurements respect to the clear sky reference,

it is possible to retrieve vertical profiles of gaseous species after some radiative transfer

modeling within a least-square inversion algorithm [50] (in the limit of weakly absorbing

gases). In NIR the atmosphere becomes optically thick (especially in the presence of

clouds) and the problem becomes non-linear. Thus, the DOAS approach can not be

applied directly because the scattering is dominating over absorption and also due to

the broad-band feature of the water (liquid or solid) absorption that is macroscopically

described by the imaginary part of the refractive index. More research is required to un-

derstand the modifications to be applied to the traditional DOAS scheme. Nevertheless,

the measured radiance can be used to qualitatively determine the nature of the particles

forming the cloud (see next chapter).

Figure 5.11: The mini-DOAS instrument mounted on the GH.

Typical outcomes are summarized in Figure 5.12 where the influence of clouds on the

DOAS-measurements is highlighted when the GH is flying above a cirrus cloud (see the

CPL map in the same Figure 5.12). In particular, the main outputs of the DOAS-

measurement (except from the radiance) are the Slant Column Density (SCD), i.e. the

concentration integrated over the line of sight for various gases. The differential SCD

or dSCD are the difference between the SCD at some elevation angle and the reference

SCD pointing to the sun; this is done in order to remove solar spectral features. We

stress here that the presence of clouds shortens the line of sight thus giving an apparent

lower concentration for trace gases located below the cloud (as depicted in Figure 5.12

considering the decrease of the O4 dSCD at the time where the cloud comes in). Thus,
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it is important to consider the effect of clouds on the DOAS retrieval procedure. To

conclude, we note that the effect of clouds is also evident on the radiance i.e. a peak is

present when the telescope points down indicating reflection from the cloud top.

Figure 5.12: Upper part: the CPL backscattered intensity at wavelength 1064 nm.
Adapted from [51]. Lower part: the solar zenith angle (SZA), the flight altitude,
the radiance (at 450 nm) and the DOAS dSCDs for O4, NO2, O3 and water vapour
plotted against universal time (UT) measured from the GH in the visible part of the
spectrum during science flight 3 (SF3) on 14/02/2013. Adapted from [52]. The color

code corresponds to different elevation angless.
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5.2.3 NIR mini-DOAS radiance measurements

Figure 5.13: Flight tracks of the six flights conducted during 2013 leaving from the
Dryden Flight Research Center located north from Los Angeles (the thickness of the

lines is proportional to the altitude). Adapted from [49].

In this section we consider the NIR radiance measurements conducted with the mini-

DOAS instrument onboard the GH during science flight 2 and 3 (SF2 and SF3) based

in Dryden at the beginning of 2013. I was participating in the last two flights of the

campaign i.e. SF5 between 26-27 of February and the last SF6 between 1-2 of March .

Figure 5.13 shows a summary of all the flight tracks that were done in 2013.

A typical spectra in the NIR is shown in Figure 5.14 (upper panel) where a cloudless

atmosphere is probed (this can be stated by checking the CPL map at the corresponding

time). It is clear from Figure 5.13 that all the flight was above the pacific ocean so

great absorption from water vapour is expected. The plot shows the reflectance i.e.,

the measured radiance normalized to the incoming solar radiation (that was measured

directly with a diffuser mounted on each telescope). Part of the spectra has radiances

greater than unity just because the measurement is not normalized to the total irradiance

penetrating the part of the atmosphere considered, so contribution from scattering e.g.

from the ocean surface can lead to values greater than one. Then starting from left, the

first two absorption bands and the fourth are due to water vapour, the third is due to O2

while the last two smaller bands are due to CO2. We observe that for elevation angles

pointing down the contribution of all the absorbers is strong while for the elevations

0◦ and −1◦ the depth of the absorption profile decrease significantly due to the smaller

number of interactions with the absorbing molecules along the light path.
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Figure 5.14: Measured NIR normalized radiance (intensity) of a cloudless part of SF2
for different elevation angles (upper panel) and of a part of SF3 (lower panel) with a
cirrus located between 7-9 km (the physical situation corresponds to Figure 5.12 at the

time 20:50:01).

However, this cloud-free situation is very rare in the TTL while most of the flight time

is characterized by the presence of different layers of ice clouds (cirrus) and low level

marine stratocumulus clouds as shown in the CPL map of Figure 5.12. Basically for all

the flights and for all the time there is a cumulus cloud at around 1 km altitude. Then,

at higher altitudes between 7-9 km, a first layer of cirrus is encountered. Often, also

a second cirrus layer is found at an altitude of approximately 12 km. When a single

layer of cirrus is present, the spectra in Figure 5.14 (lower panel) is recorded. Notably,

a peak of reflected radiation is found inside the water vapour absorption band between

1300-1500 nm. The high cirrus situation was mostly found during all the 2013 flights.

A discussion of these data is presented in chapter 6 where comparisons with modeled

radiances are shown and an interpretation of the measurements is proposed.
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The complexity of the atmospheric condition is reproduced in Figure 5.15 where a picture

of a cirrus as taken by a high definition webcam mounted under the GH is presented.

Figure 5.15: A webcam picture of a cirrus around 8 km altitude taken from the GH
during SF2 at a flight altitude of 17 km.
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Results and discussion

6.1 Single scattering: Simulation of the SID measurements

with the GDT-matrix model

We present here some results obtained with the GDT-matrix technique described in

chapter 4 in order to give a micro-physical interpretation of the SID 2D forward scatter-

ing intensity measurements (more details in Tricoli et al. [24]). Here the GDT-matrix is

used to calculate the intensity of the scattered radiation in the forward direction for all

the azimuthal directions and for zenith angles in the range [5◦, 26◦] (from the forward

direction i.e. the center of the 2D scattering plot). A plane wave is considered as the

incident field which is well justified since the scatterer in the SID instrument is located

far enough from the laser source. Therefore, in the scattering volume the incoming field

can be well described by a plane wave. The direction of incidence is by default the

x-axis direction, the wavelength is 532 nm and the incoming plane wave has a circular

polarization (in order to minimize the effects connected to the features of the incident

field). All particles are assumed to be made of ice [53] for which the dielectric constant

at the considered wavelength is ε = 1.72 + i2.62 ∗ 10−9 (only the spherical droplet is

assumed to be made of water with ε = 1.79 + i4.71 ∗ 10−9). When we need to calculate

the optical properties (e.g. the asymmetry parameter) we set the size limit for simulated

particles to x=10 because, for bigger particles the model error exceeds 50%. Instead,

when only a qualitative comparison with the SID measurements is necessary we can

reach up to a size parameter x=25 (at the price that much more dipoles are needed

in order to describe the particle correctly also only in the forward directions). This is

possible because in the forward directions the convergence of the GDT-matrix model is

good while, in the backward directions it is not good enough. Thus, no calculations of

the optical properties is meaningful for size parameters greater than x=10.

75
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6.1.1 GDT-matrix validation with the SID measurements

Some simple, smooth and regular shapes can be used to validate the GDT-matrix model

experimentally. We select standard smooth geometries i.e. a cube, a prolate, a sphere

and also a slightly irregular sphere to stress the ability of the model to take track of

small shape changes [24].

(a) (b)

(c) (d)

(e) (f)

Figure 6.1: First row: particle voxelizations. Second row: GDT-matrix simulations
of the 2D forward scattering intensity patterns (logarithmic scale normalized to the
maximum). The axes indicate Cartesian coordinates on the z-y plane assuming a plane
wave traveling along the x-axis. Third row: SID measurements of 2D forward scattering

intensity patterns. Adapted from [24].
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(a) (b)

(c) (d)

(e) (f)

Figure 6.2: First row: particle voxelizations. Second row: GDT-matrix simulations
of the 2D forward scattering intensity patterns (logarithmic scale normalized to the
maximum). The axes indicate Cartesian coordinates on the z-y plane assuming a plane
wave traveling along the x-axis. Third row: SID measurements of 2D forward scattering

intensity patterns. Adapted from [24].

We note from Figure 6.1 and 6.2 that the GDT-matrix model reproduces well the experi-

mental intensity patterns but with a difference concerning the sizes of the simulated and

measured particles. The simulated particles have a size parameter x=10 corresponding

to an effective radius (the radius of the equivalent volume sphere) of approximately 1.7

µm. On the other hand the measured effective radius (retrieved by the SID instrument

from the intensity of the radiation scattered in the forward direction) is around 4 µm.
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Thus, the agreement is only qualitative. However, a larger particle is just producing

more intensity maxima as compared to a smaller scatterer. Nevertheless, the over-

all symmetry of the pattern remains unchanged still allowing a retrieval of the particle

shape. In line with this comment, the cubic particle is well simulated by the GDT-matrix

model reproducing a clear 4-fold symmetric intensity pattern (the incidence direction

is perpendicular to the cube face). Also the scattering pattern of a prolate particle is

well calculated with the simulation showing clear elliptical structures around the cen-

ter. The scattering intensity pattern of a spherical liquid particle is well reproduced in

accordance also with Mie theory. Indeed, clearly defined scattering rings appear in the

pattern. In addition, for a slightly deformed sphere the model and the measurement in-

dicate broken-up rings due to changes respect to the spherical boundaries. These shape

irregularities may occur when a liquid droplet freezes to become solid.
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6.1.2 Hexagonal particles

In this subsection we examine the 2D forward scattering intensity patterns of regular

hexagonal particles. Figure 6.3 displays a small hexagonal star plate with x=13 which

can be distinguished from the most common hexagonal plate of Figure 6.4b. The 6-fold

symmetry of the star-like plate is recognizable and can be distinguished from the other

6-fold symmetry of the hexagonal plate.

For a columnar hexagonal particle a bright intensity straight line is present in the forward

pattern and tends to be more continuous and thinner as the size parameter is increased

(the result shown is for x=16). Some resonance peaks are also present parallel to the

main bright line and are not detected in the measured pattern due to low intensity. Then,

for the hexagonal plate we show an example for x=25 while the measurement corresponds

to a much bigger particle. We observe that the hexagonal plate shape is evident in the

central part of the pattern while resonances are present along the hexagonal directions.

(a) (b)

Figure 6.3: Hexagonal star plate particle voxelization (A) and the GDT-matrix simu-
lation (B) of the 2D forward scattering intensity patterns (logarithmic scale normalized
to the maximum). The axes indicate Cartesian coordinates on the z-y plane assuming

a plane wave traveling along the x-axis perpendicularly to the star plate face.

The direction of the incident field is perpendicular to the hexagonal faces of the plates

and perpendicular to the main axis of the column. We note here that these regular

hexagonal particles, responsible for halos, are not frequently encountered with so regular

shapes thus potentially explaining the rarity of halos themselves. In the next subsection

we model the effect induced by the presence of smaller particles attached to the surface

of the main hexagonal bulk thus inducing perturbations to the regular shapes.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.4: First row: particle voxelizations. Second row: GDT-matrix simulations
of the 2D forward scattering intensity patterns (logarithmic scale normalized to the
maximum). The axes indicate Cartesian coordinates on the z-y plane assuming a plane
wave traveling along the x-axis. Third row: SID measurements of 2D forward scattering

intensity patterns.

6.1.3 Deformed particles: Fractals and rimed particles on the surface

Small ice particles can attach themselves to the surface of regularly shaped bigger parti-

cles. This can happen when small water droplets turn into rime and stick to the surface

of hexagonal columns or plates. An example of this kind of particles is presented in

Figure 6.5.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.5: First row: particle renderings. Second row: GDT-matrix simulations
of the 2D forward scattering intensity patterns (logarithmic scale normalized to the
maximum). The axes indicate Cartesian coordinates on the z-y plane assuming a plane
wave traveling along the x-axis. Third row: SID measurements of 2D forward scattering

intensity patterns.

Figures 6.5c and 6.5e show the forward scattering patterns of an irregular hexagonal

column (Figure 6.5a) with x=12 in the simulation (bigger one in the measured data).

The presence of smaller particles attached to the surface of the hexagonal column can

tilt the main bright straight line expected for columnar particles. This effect grows as

the particles on the surface tend to accumulate in some particular points destroying the

bulk symmetry of the underlying particle. A similar effect is predicted by the model
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for a hexagonal plate, Figures 6.5b, 6.5d and 6.5f. In this case the smaller particles

on the surface can distort or sometimes erase the resonance peaks along the hexagonal

directions. It is also interesting that the central part of the pattern shows an irregular

hexagon. These cases are really common in real clouds and they can be detected as

in 6.5e and 6.5f typically showing no halo features destroyed by impurities. However,

in Figure 6.5e the halo peak at 22◦ survives the impurities which are just generating a

speckle that overlaps with the regular structures connected to the regular bulk shape.

Further, we examine the patterns connected to some very irregular fractal particles

created with a Julia-fractal generator (iterating self-consistently complex numbers sum).

(a) (b)

Figure 6.6: Julia-fractal particle rendering (A) and the GDT-matrix simulation (B)
of the 2D forward scattering intensity patterns (logarithmic scale normalized to the
maximum). The axes indicate Cartesian coordinates on the z-y plane assuming a plane

wave traveling along the x-axis perpendicularly to the particle longer dimension.

In Figure 6.6b the pattern has an intensity distribution that reminds the one for a

columnar particle since the fractal particle has an elongated shape. However, due to

the many irregularities, the pattern shows some speckle interference structures. These

speckle spots are manifested when the size parameter approach x=10. This behaviour

is demonstrated in Figure 6.7 where we explore the influence of the size of the particle

on the related pattern for another fractal particle. Starting with a size x=6 no speckle

behaviour appears and a prolate-like pattern is simulated. Then, for x=11 we note the

appearance of speckle spots with the center of the pattern still producing a prolate-like

structure. When the size parameter is increased further to reach x=25, a predominant

speckle pattern is visible. In addition, the size of the speckle spots tend to decrease with

an increasing size parameter of the particle, reproducing well observations during field

campaigns [4].

Up to this point only qualitative results are presented in order to retrieve the shape of

the particles in the presence of irregularities on the surface. A more quantitative study

is presented in the next subsections.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.7: Study on the influence of the size parameter on the appearance of speckle
interference patterns. First column: (A) Julia-fractal particle voxelization, (C) and (E)
SID measurements of 2D forward scattering intensity patterns with speckles. Second
column: GDT-matrix simulations of the 2D forward scattering intensity patterns (log-
arithmic scale normalized to the maximum) for a size parameter: (B) x=6 (D) x=11
(F) x=25. The axes indicate Cartesian coordinates on the z-y plane assuming a plane

wave traveling along the x-axis.

6.1.4 Deformed spheres: Gaussian random spheres

The Gaussian random sphere model developed by Muinonen et al. [16] (see chapter 4

for details) is applied in order to characterize the degree of the deformation applicable
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to a spherical particle. The Gaussian random sphere model allows the parametrization

of the deformations with a single variable.

(a) (b)

(c) (d)

(e) (f)

Figure 6.8: Study on the influence of the deformation parameter σ on the appearance
of speckle interference patterns. First column: Gaussian random spheres rendering for
σ = 0.0001, 0.02, 0.05. Second column: GDT-matrix simulations of the 2D forward
scattering intensity patterns (logarithmic scale normalized to the maximum) for a size
parameter x=15. The axes indicate Cartesian coordinates on the z-y plane assuming a

plane wave traveling along the x-axis.

If we fix the correlation coefficient (among the points on the unit sphere) for the power

law correlation to 3 (see chapter 4), the only free parameter left is the standard deviation

of the radial distance σ (of a Gaussian distribution). The σ parameter describes the

amplitude of the deformations applied to the surface of the unit sphere.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.9: Study on the influence of the deformation parameter σ on the appearance
of speckle interference patterns. First column: Gaussian random spheres rendering for
σ = 0.1, 0.3, 0.5. Second column: GDT-matrix simulations of the 2D forward scattering
intensity patterns (logarithmic scale normalized to the maximum) for a size parameter
x=15. The axes indicate Cartesian coordinates on the z-y plane assuming a plane wave

traveling along the x-axis.

Hence, small σ values correspond to very small deformations while, big values correspond

to very irregular shapes (0 < σ < 1). The effects of small deformations are presented in

Figure 6.8. We note that the model is really sensitive to small changes on the boundary

of the scatterer. Thus, with very small deformations σ = 0.0001, the pattern is basi-

cally the one for a sphere except some small intensity variations on the second bright

ring. Increasing σ, the intensity ring breaks, thus indicating a non-spherical particle.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.10: Study on the influence of the size parameter on the appearance of speckle
interference patterns for a Gaussian random sphere with σ = 0.3. The panels show
(A) the particle rendering and GDT-matrix simulations of the 2D forward scattering
intensity patterns (logarithmic scale normalized to the maximum) for a size parameter:
(C) x=1 (E) x=8 (B) x=11 (D) x=15 (F) x=20. The axes indicate Cartesian coordinates

on the z-y plane assuming a plane wave traveling along the x-axis.

Figure 6.9 shows the result when σ is further increased. We see that for σ = 0.1 the

pattern starts to show some speckle behaviour while for larger σ the speckle pattern is

clearly established. Thus, we can conclude that when the dimension of the deformations

starts to be comparable to the wavelength, the various structures on the surface start

to interfere between each other generating a speckle pattern. This is also confirmed

by the size parameter dependence of the speckle patterns. In Figure 6.10 we show the
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development of the speckle pattern when the size parameter is varied and σ = 0.3 is

kept constant. In particular, an increase in the size parameter induces a reduction of

the dimension of the speckle spot. This is true also in the case of a varying σ at a fixed

size parameter, as already demonstrated. Hence, it is in principle possible to retrieve

the standard deviation of the deformations of a Gaussian random sphere, once the size

parameter is fixed, varying the σ up to the point where the mean size of the speckle spots

in the model fits the one measured. The information about the size parameter can be

obtained with the SID instrument by measuring the intensity scattered in the forward

direction (after a proper calibration of the SID instrument, see [12]). In particular, the

Gaussian random sphere model seems appropriate to describe the objects of Figure 5.6

(last two rows) where no clear sign of the bulk symmetry of the particle (no straight

bright line or hexagonal shape) is visible in the scattering intensity patterns, suggesting

a deformed spherical scatterer as it is also confirmed by the complete knowledge of the

particle brought by the use of particle analogues [10].

6.1.5 Rough particles

In order to consider the effects of small scale surface roughness, we perturb the smooth

surface of a hexagonal plate by eliminating a certain percentage of the dipoles lying on

the surface. This is done in a sparse-octree discretization scheme by selecting the last

two levels of the voxel hierarchy. Then, the dipoles to be eliminated are selected with

a random number generator. In Figure 6.11 two cases are studied and compared to the

smooth case for a size parameter x=15. In the first case, 33% of the surface dipoles are

removed. It is possible to see that the main hexagonal shape in the scattering intensity

pattern becomes discontinuous and eventually is broken for the second case with surface

roughness of 50%. Notably no speckle structure appears, indicating that the size of the

perturbations is much smaller than the wavelength. Thus, overall the symmetry of the

bulk is preserved and the geometry of the scattering intensity pattern is just distorted,

rendering still possible a retrieval of the shape.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.11: Study on the influence of the surface roughness on 2D forward scatter-
ing intensity patterns. First column: (A) smooth hexagonal plate (C) rough hexagonal
plate (33% surface dipoles removed) (E) rough hexagonal plate (50% surface dipoles
removed). Second column: GDT-matrix simulations of the 2D forward scattering in-
tensity patterns (logarithmic scale normalized to the maximum) for a size parameter
x=15. The axes indicate Cartesian coordinates on the z-y plane assuming a plane wave

traveling along the x-axis.

6.1.6 Influence of the deformations on the optical properties

The effect of deformations or surface roughness is visible also on the optical properties

(see the chapter 4 for definitions). We observe no significant change in the extinction

coefficient with respect to the corresponding smooth particle. Some changes are observed
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for the single scattering albedo although the behaviour is complex and does not relate

in a simple way to the shape, size parameter or the amplitude of the deformations of

the particle. On the contrary, the asymmetry parameter g, shows a clear decreasing

trend when the amplitude of the deformation is increased. This is demonstrated for

small particles x=3 and x=5 in Table 6.1. Within the GDT-matrix scheme, the value

of g for irregular particles is reduced with respect to the smooth particles. The increase

of g for σ = 0.3 and σ = 0.5 with respect to g for σ = 0.1, is due to the fact that the

particle with larger values of σ departs heavily from a sphere thus giving a less isotropic

scattered radiation i.e. a larger value for g. Hence, a small deformation of the spherical

particle can lead to a consistent decrease of the asymmetry parameter. This is caused by

the fact that the backscattering part of the phase function is enlarged when the particle

has an irregular shape as shown in Figure 6.12. This behaviour is relevant for radiance

simulations studied in the next section.

Table 6.1: Asymmetry parameter (g) dependence on σ

particle type x σ g g-reduction %

smooth 3 0 0.785 0
deformed 3 0.02 0.694 11.6
deformed 3 0.1 0.716 8.9
deformed 3 0.3 0.759 3.3
deformed 3 0.5 0.76 3.2

smooth 5 0 0.852 0
deformed 5 0.02 0.817 4.2
deformed 5 0.1 0.812 4.7
deformed 5 0.3 0.837 1.8
deformed 5 0.5 0.836 1.9

Then, repeating the same study for the rough particles considered in the previous sub-

section but for x=6 we obtain the results exposed in Table 6.2. Thus, the small scale

surface roughness has little influence on small particles respect to surface deformation.

Table 6.2: Asymmetry parameter (g) dependence on surface roughness

particle type x roughness % g g-reduction %

smooth 6 0 0.915 0
rough 6 33 0.914 0.05
rough 6 50 0.913 0.24

In conclusion, the study on the influence of deformations and roughness on the optical

properties is limited to small particles. Indeed, the GDT-matrix error for the calcu-

lated scattered field increases rapidly with the size parameter thus, only supporting

simulations of particles up to x=10.
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Figure 6.12: Phase functions for ice particles with x=3 and spherical shape (green),
deformed spherical shape with σ = 0.02 (red), deformed spherical shape with σ = 0.1

(blue).

6.1.7 Inhomogeneous particles: Inclusion of air bubbles

Air bubbles are common inside the bulk of ice particles and their presence depends on

the type and speed of the ice core nucleation [54].

(a) (b)

(c) (d)

Figure 6.13: First column: rendering of a sphere with: (A) 3 spherical sub-volume
inhomogeneities (C) 6 spherical sub-volume inhomogeneities. Second column: the 2D
forward scattering intensity patterns (logarithmic scale normalized to the maximum).
The axes indicate Cartesian coordinates on the z-y plane assuming a plane wave trav-

eling along the x-axis.
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Hence, we study the 2D forward scattering patterns for inhomogeneous particles. We

consider only a spherical ice particle of size x=10 with some randomly located smaller

spherical bubbles with x=1.5 inside, Figures 6.13a and 6.13c. We note that the patterns

show a spherical central intense part justified by the spherical boundaries, while the outer

intensity rings are modulated in intensity but preserving a circular shape. Notably, the

first scattering intensity ring is not distorted as in the case of deformed spheres and no

speckle is manifested.
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6.2 Multiple scattering: NIR radiance simulation in the

presence of clouds

In this section results from radiance simulations with the radiative transfer model McAr-

tim are shown. In order to evaluate the influence of cirrus on the NIR spectra, com-

parisons with radiance measurements (already introduced in the last section of chapter

5) are presented. In particular, we use results of the previous section to evaluate the

effect on the spectra caused by small deformed spherical ice particles. Small deformed

spherical ice particles are characterized by a lower value of the asymmetry parameter, as

indicated by the GDT-matrix model. On the contrary, the other optical properties are

little influenced by the shape departure from a perfect sphere and can thus be calculated

with the Mie code for spherical scatterers.

6.2.1 Gaseous atmosphere

In the simulations, only a gaseous atmosphere is first considered. McArtim necessitates

as input the temperature and pressure profiles (read from the MTP instrument onboard

the GH). Then, the absorption cross sections for the different gases are obtained from the

publicly available database called HITRAN [45] already contained in McArtim (while the

scattering is of Rayleigh type). To complete the description of the gases, their vertical

distribution (profile) is needed and can be obtained from global models just giving

the geo-location. For oxygen and carbon dioxide the distribution is well known while,

for water vapour, an accurate profile can be extrapolated from NOAA measurements

onboard the GH. The remaining ingredient is the incoming solar irradiance I0 for which

we use the Thuillier [55] measurement at the top of the atmosphere (that corresponds

to a Planck distribution at 5800 K with some absorption structures due to the solar

photosphere). Test results for an assumed flight altitude of 10 km with the telescope

pointing nadir, are shown in Figure 6.14. The absorption contributions of the single

gases relevant in NIR are first plotted to facilitate their identification in the cumulative

plot, the last. Note that a CO2 absorption line is present inside the large water vapour

absorption band between 1350 nm and 1500nm. In order to simulate the spectra recorded

by the DOAS instrument onboard the GH, the altitude and geo-location of the plane

are needed and taken by the GH flight-track database.

6.2.2 Clouds and cirrus influence on the NIR spectrum

First, we calculate the NIR spectra in the presence of a cloud and discuss some of the

implications for the measurements.
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(a) (b)

(c) (d)

Figure 6.14: Normalized radiance simulation for an atmosphere containing: (A) only
water vapour (B) only carbon dioxide (C) only oxygen (D) all the three gases.

The relevant parameter for cloud particles is the refractive index i.e. the optical prop-

erty that controls the scattering (real part) and the absorption (imaginary part) of the

incoming radiation. This is also important to distinguish the contribution from liquid

and solid water particles. In particular, only the imaginary part of the refractive index

of liquid water and ice differs in the NIR, showing a shift of 50 nm in the absorption of

ice (1500 nm) with respect to liquid water (1450 nm), see Figure 6.15. However, both

liquid and icy particles decrease the intensity of the spectra after 1500 nm due to the

tales of the imaginary part of the refractive index. The gases absorption cross sections

are also plotted in Figure 6.15 for those species contributing more in the NIR i.e. water

vapour, oxygen and carbon dioxide (already considered in Figure 6.14).

In addition, the altitude and geometrical thickness of the cloud are required in the simu-

lation. A multiplication of the geometrical thickness of the cloud with its bulk extinction

coefficient gives the optical thickness of the cloud τ (see chapter 4). These informations

are read from the CPL data (see Figure 6.18) and allow to define the vertical structure

of the cloud optical properties as a profile. After a grid is defined, a table is generated

with the lines corresponding to the altitude level and the columns to the bulk extinction

coefficient, the asymmetry parameter and the single scattering albedo respectively. Due
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Figure 6.15: Imaginary part of the refractive index of ice and liquid water and ab-
sorption cross sections of water vapour, oxygen, carbon dioxide molecular gases as a
function of wavelength. The data for gases are taken from the HITRAN database [45]

while for water from [56] and for ice from [53].

to the lack of particle measurements characterizing the optical properties over the entire

NIR wavelength range, it is necessary to calculate with a model the optical properties

of a distribution of particles as a function of the wavelength. The Mie code introduced

in chapter 4 is used with the refractive index as a function of the wavelength as input

(Figure 6.15). This choice is dictated by the necessity of fast computation because then

the calculation needs to be repeated for around a thousand wavelengths. In addition,

Figure 6.16: Optical properties (as a function of wavelength) of ice particles calcu-
lated with Mie theory averaged over a log-normal size distribution with median value
Rm =57 µm, logarithmic of the standard deviation equal to 2 and number density
N0 = 0.02 cm−3; (a) the bulk extinction coefficient (b) the asymmetry parameter g (c)

the scattering coefficient (d) the single scattering albedo.
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in the Mie code there is no need for particle orientation averaging and the integration

over the size-distribution can be done very efficiently. The same is not true for the

GDT-matrix code. For ice particles we select a log-normal size distribution with a me-

dian radius of 57µm as recorded by the Hawkeye instrument (for liquid water optical

properties see chapter 4). Then, we calculate the optical properties averaged over the

size distribution i.e. the bulk extinction coefficient, the single-scattering albedo and the

asymmetry parameter (Figure 6.16). The optical properties are then read by the radia-

tive transfer solver McArtim as a function of the wavelength. The main approximation

is thus that we consider ice particles as spheres. This is a brute approximation when

the crystals tend to be very large (median radius of the order of hundreds of micron)

and so the relative humidity. However, for all the flights the Hawkeye in-situ instrument

recorded the shape of the particles showing that the majority of the particles are nearly

spherical in the bulk even if with some deformations and irregularities on the surface

(see Figure 6.17). We show at the end of this section how it is possible to treat ”effec-

tively” the real irregular particles using results from the previous section obtained with

the GDT-matrix.

Figure 6.17: Images of ice particles as recorded by the Cloud Particle Imager (CPI)
on board the GH. Adapted from [9].

All simulations consider the aircraft at 17 km altitude (with the telescope pointing down

with an elevation angle of −4◦) and a water vapour concentration of 60% (except one

case where it is explicitly mentioned). The first simulation, Figure 6.19a, considers only

the effect of a liquid water cloud at 7-9 km altitude (with different values of the optical

thickness) and of water vapour. The optical thickness is increased (also to extreme

values as τ = 1200) in order to see the effect of the liquid cloud on the NIR spectrum.
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Figure 6.18: Cloud Physics Lidar (CPL) output data showing the location of the
cloud as a function of the altitude, vertical axis, and time, horizontal axis. First panel:
the depolarization (colours). Middle panel: the extinction coeffient (colours). Last
panel: the optical thickness at 532 nm (green) and at 1064 nm (red). Adapted from

[51].

It is possible to observe that at the right side of the water vapour band the slope of the

normalized intensity line is modified by the presence of the cloud. It is also important

that no reflectance peak is present inside the water vapour band for wavelengths greater

than 1400 nm. In addition, increasing the optical thickness (increasing the number

density), the longer wavelength part of the spectrum is reduced (as expected from the

distribution over the wavelengths of the imaginary part of the refractive index of liquid

water). The spectrum of Figure 6.19a should be compared directly with the one of Figure

6.19b that is calculated for a ice cloud at different altitudes with τ = 50. The main effect

of the ice cloud is that the absorption is concentrated at λ = 1500 nm and notably the
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(a) (b)

(c) (d)

Figure 6.19: Normalized radiance (reflectance) simulation for an atmosphere com-
posed of (A) only water vapour and liquid water cloud at 7-9 km with different τ (B)
a ice cloud at different altitude with τ = 50 (C) a liquid water cloud at 7-9 km with
τ = 50 and different water vapour concentrations (D) a ice cloud at 7-9 km with τ = 50

with the measurements performed at two telescope elevation angles.

reflection peaks between 1400-1450 nm are really evident. These two reflection peaks

are separated by the strong absorption band of CO2 at around 1440 nm. It is worth

noting that when the cloud is closer to the aircraft, less carbon dioxide is detected with

the cloud having a screening effect. Then, in Figure 6.19c the influence of water vapour

concentration is analyzed. It is seen that smaller water vapour mixing ratios lead to a

less deep water vapour absorption band with no change in its shape as expected. The

last plot shows the influence of the telescope elevation angle. For small angles, the light

can travel longer in the atmosphere before hitting the cloud, thus more absorption from

water vapour molecules is possible and consequently the reflection from the cloud top is

weaker.

We consider very thick clouds (τ = 50) in order to separate the contributions from liquid

water and ice particles. Thus, the results should only be considered as qualitative. In real

situations the clouds have lower optical thickness hence, making harder the distinction
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of the phase of the particles forming the cloud. Nevertheless, this approach gives a good

insight into the contribution of a cloud in the NIR spectrum and can be used to retrieve

the thermodynamic phase of the constituent particles. In addition, the study should be

considered as a sensitivity test to isolate the contribution of a cloud in the NIR spectra.

Figure 6.20: Measured NIR normalized intensity during SF3 at universal time
20:32:42 for different elevation angles when a first cirrus is located between 7-9 km

and a second one between 11-13 km.

Further, we consider the influence of cirrus (ice clouds) on the NIR spectrum. As a case

study we consider a small part of science flight 3 operated on the 14th of February 2013

from the Dryden Flight Research Center. For this flight at around universal time UT

20:30 a cirrus was present and the CPL recorded the depolarization map depicted in

Figure 6.18. It is interesting that the depolarization is quite low (less than 0.4) after UT

20:30:00, indicating that the particles there are moderately non-spherical thus justifying

again the use of the Mie code as a good approximation for slightly irregular spheres.

Hence, it is possible to simulate the presence of a double layered cirrus with an optical

thickness (or depth) between 1 and 3 as the one depicted in Figure 6.18. In order to

compare directly to the measured spectrum of Figure 6.20, a simulation of a double

layered cloud is shown in Figure 6.21. The agreement is good for a cloud with optical

thickness τ = 1 between 11 and 13 km and a lower cloud with τ = 3 between 7 and 9 km

as indicated by the CPL observation (Figure 6.18). The agreement is only qualitative

due to differences in the longer wavelength part of the spectrum. However, from the

comparison of Figure 6.20 and Figure 6.21 it is possible to conclude that the sampled

double layered cirrus is completely made of ice particles (even the lower layer).

Further, in Figure 6.22 we analyze the effect on the NIR spectrum caused by a mixed

phase cloud in the sense that the constituent particles are half made of ice and half made
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Figure 6.21: Normalized radiance (reflectance) simulation for an atmosphere with
two different cirrus at two altitudes. The cirrus at 11-13 km has τ = 1 and the cirrus

at 7-9 km has τ = 3. The smulation is done for an elevation angle of −3◦.

of liquid water. The important part of the spectrum is, as before, the one between 1400-

1500 nm. In the mixed phase cloud case, we see that the ice reflection peak splits in two

halves due to carbon dioxide which is still detectable but, its absorption is reduced due

to the absorption of light performed by the liquid particles at 1450 nm. In addition, the

thermodynamic phase of the constituent cloud particles can be retrieved by examining

the spectral structures in the 1400-1500 nm wavelength range and the slope of the

normalized intensity at wavelengths larger than 1500 nm. This is summarized in Figure

6.22 where the three kinds of clouds are simulated with the same optical thickness i.e.

τ = 50. It is possible to appreciate that, depending on the type of the particles forming

the clouds, different slopes of the spectra are present at wavelengths larger than 1500

nm. Then, in the case of an ice cloud also an intense reflectance peak comes in between

1400-1500 nm due to reflection from the cloud top.

Figure 6.22: Normalized radiance (reflectance) simulation for an atmosphere with
three different clouds with τ = 50 at 7-9 km: an ice cloud, a mixed phase cloud and a

liquid water cloud.
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Figure 6.23: Normalized radiance (reflectance) simulation for an atmosphere with
an ice cloud (at 7-9 km) composed of particles with different levels of roughness

parametrized through a reduction of the asymmetry parameter g.

To conclude, in Figure 6.23 we propose the simulation of a cirrus composed of irregular

spherical ice particles considering the results of the previous section. As investigated

in the previous section, the effect on the optical properties of surface deformations and

roughness is mainly visible on the asymmetry parameter g. The effect consists in a

reduction of the value of g when irregularities are added to the surface of the scatterer.

This behaviour is evident for small particles (x < 10) and very big ones (x > 50 [14])

while it is complex in the intermediate cases even if in most of these cases the value of

g is unaltered by the presence of surface deformations. In particular, it is possible to

distinguish small scale roughness (small reduction of g) from large scale deformations

(larger reduction of g). In order to introduce that in the radiative transfer model we

reduce the asymmetry parameter by some percentage with respect to the one given as

output by the Mie code for smooth spheres. This g reduction is applied only for the

relevant range of the size parameter mentioned above (when calculating the average of

the asymmetry parameter over size). Thus, the effect of particle surface irregularities

can be seen as a general increase of the reflected radiation over all the spectrum and it is

more pronounced around 1500 nm where the ice absorption is located. The g reduction

leads to more isotropic scattering events resulting in an attenuation of ice absorption.

The effect is clearly recognizable even if the statistical error of the Monte Carlo sampling

is larger for an atmosphere that scatters more light. For some wavelengths the radiance

calculation fails causing large irregularities in the simulated spectrum. This problem can

be solved increasing the number of photons at the price of a much longer computation

time.
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Conclusions

We introduce a novel numerical model for electromagnetic scattering of single arbitrary

shaped particles. The model is named the GDT-matrix (the Green’s Dyadic technique

for the Transition matrix) and evaluates the transition operator for the particle consid-

ered. This model is validated against the analytical Mie code for spheres, and against

numerical exact technique as the DDA (through its implementation, i.e. the ADDA

code) for non-spherical scatterers. First, the GDT-matrix model is contextualized as a

DDA model solving the volume integral equation rewritten on the transition operator.

Then, the strengths and weaknesses of the approach are described. Once assessed the

limits concerning the calculation of the optical properties, we use the model to char-

acterize ice particles as measured by the SID instrument for forward scattering. The

GDT-matrix can predict the SID measurements for regular particles as well as for very

irregularly shaped particles. In particular, generating the shapes of the scatterer with

the Gaussian random sphere model and using these as input for the GDT-matrix code,

it is possible to give an interpretation of the measured speckle patterns. The interference

speckle are generated by deformed spheres and the degree of the deformations can be

parametrized through the standard deviation of the deformations following a Gaussian

distribution. In addition, the effect of the deformations is propagated to the optical

properties, especially to the asymmetry parameter that is lowered. A clear decrease

of the asymmetry parameter is observed in the simulations (for deformed ice particles

with respect to the smooth ones) for small particles x < 6, while for bigger particles the

accuracy of the GDT-matrix is not enough to evaluate the asymmetry parameter with

a reasonably small error.

Further, we use these results in the context of multiple scattering i.e. considering the

radiative effect of cirrus clouds on the NIR spectrum. In the last chapter, simulations of

a high cirrus are displayed, demonstrating that the presence of the cloud can shield the

101
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water vapour absorption leading to an increased reflected radiation (when the measure-

ment is performed from an aircraft flying above the cloud with the telescope pointing

down towards the cloud). Then, it is shown how the thermodynamic phase of the parti-

cles forming the cloud can be retrieved considering the entity of the reflected radiation.

To conclude, deformed spherical scatterers are introduced in the main radiative transfer

solver (effectively by reducing the asymmetry parameter), thus demonstrating the sen-

sitivity of radiance measurements with respect to the quality of the surface of the single

scatterer.

Future work is needed to increase the efficiency of the GDT-matrix code in order to reach

a larger size parameter. This can be achieved for example, implementing an iterative

solver to invert the many Green’s function dyads. A Fast Fourier Transform can also

be applied in order to speed up the many matrix multiplications. A final optimization

can also be considered i.e. an implementation of the scheme on the GPU (graphics

processing unit), thus parallelizing the algorithm.
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