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Abstract

Translation and cross-lingual access to information are key technologies in a global economy.
Even though the quality of machine translation (MT) output is still far from the level of human
translations, many real-world applications have emerged, for which MT can be employed. Ma-
chine translation supports human translators in computer-assisted translation (CAT), providing
the opportunity to improve translation systems based on human interaction and feedback. Be-
sides, many tasks that involve natural language processing operate in a cross-lingual setting,
where there is no need for perfectly fluent translations and the transfer of meaning can be
modeled by employing MT technology. This thesis describes cumulative work in the field of
cross-lingual natural language processing in a user-oriented setting. A common denominator
of the presented approaches is their anchoring in an alignment between texts in two different
languages to quantify the similarity of their content.
In particular, this thesis proposes an approach to detect cross-lingual textual entailment –
a first step towards cross-lingual content synchronization. We model cross-lingual similarity
both based on alignment scores and full translations and combine the models in a statisti-
cal learning framework. We then study another application of the system: reduction of noise
created by automatic sentence-alignment of parallel text. We present an analysis of the kind
of noise present in our data, a method to filter the noise and experiments on its influence on
MT quality. A further application for cross-lingual similarity measures is translation retrieval.
Translation memory systems support human translators by retrieving similar text that has been
translated previously, so-called fuzzy matches. These can be used as a foundation for new
translations. We propose a novel approach to retrieve fuzzy matches: instead of comparing
source input and the source side of a bilingual sentence pair, we measure similarity between
source and a target match candidate directly, enabling the use of monolingual resources as
translation memories. We evaluate our method by integrating the fuzzy matches into a statisti-
cal MT system and show that cross-lingual retrieval can improve translation quality. Finally, we
suggest an online learning approach for document-level translation, which exploits the inter-
active CAT process. We refine a phrase-based statistical MT system on human feedback by
aligning source input and human post-edit and integrating the information into the MT engine
immediately. We show that an adaptive system outperforms a non-adaptive baseline.





Zusammenfassung

Sprachübergreifender Zugang zu Informationen ist eine Schlüsseltechnologie in einem glo-
balen Wirtschaftssystem. Auch wenn die Qualität automatisch generierter Übersetzungen
nicht das Niveau menschlicher Übersetzer erreicht, existieren Anwendungen, bei denen ma-
schinelle Übersetzung (MT) erfolgreich zum Einsatz kommt. Im Bereich computergestützte
Übersetzung (CAT) werden Übersetzer durch ein MT-System unterstützt, das Übersetzungs-
vorschläge generiert. Durch das Feedback der Nutzer kann die MT-Komponente stetig an-
gepasst und verbessert werden. Neben der eigentlichen Übersetzung existieren Aufgaben-
bereiche, bei denen Texte sprachübergreifend verarbeitet werden. Anstatt hierbei komplette
Übersetzungen als Zwischenrepräsentationen zu verwenden kann die inhaltliche Beziehung
zwischen Text in verschiedenen Sprachen auch direkt modelliert werden. Die vorliegende
Dissertation beschreibt kumulative Arbeit in verschiedenen Bereichen der anwendungsorien-
tierten, cross-lingualen Sprachverarbeitung. Alle vorgestellten Modelle und Ansätze eint die
Idee von sprachübergreifender Semantik: Auf der Basis eines Alignments von Quell- und Ziel-
sprachentext können inhaltliche Ähnlichkeiten quantifiziert werden.
Im Einzelnen werden beschrieben: Ein Ansatz zur Erkennung von sprachübergreifendem Tex-
tual Entailment, mit dem Ziel, Inhalte, die in verschiedenen Sprachen vorliegen, zu synchroni-
sieren. Dazu werden Ähnlichkeitsmaße basierend auf Wort-Alignment mit maschinellem Ler-
nen kombiniert. Das Modell wird darüber hinaus eingesetzt, ein satzaligniertes, paralleles
Korpus aufzubereiten, das bedingt durch die Automatisierung des Alignments fehlerhafte Zu-
ordnungen enthält. Art und Quelle der Fehler werden analysiert und eine Methode vorgestellt,
fehlerhafte Alignments aus den Daten herauszufiltern. Eine weitere Anwendung für cross-
linguale semantischer Ähnlichkeitsmaße stellt Translation Retrieval dar. Translation-Memory -
Systeme sind ein Werkzeug zur Unterstützung von Übersetzern. Diese gleichen zu überset-
zende Sätze mit bereits übersetzten Segmenten ab; wenn ähnliche Sätze gefunden werden
(sog. Fuzzy Matches), gibt das System deren Übersetzung aus, die dann zur Grundlage der
neuen Übersetzung werden. Die vorliegende Arbeit stellt eine neuartige Methode vor, um Fuz-
zy Matches zu erhalten: Der Quellsatz wird mithilfe sprachübergreifender Ähnlichkeitsmaße
direkt mit Sätzen in der Zielsprache verglichen. Dadurch können monolinguale Datensätze an-
stelle von bilingualen als Translation Memory eingesetzt werden. Wir führen eine Evaluierung
dieser Methode durch, indem die Fuzzy Matches in ein MT-System integriert werden, und zei-
gen, dass diese die Übersetzungsqualität steigern. Zuletzt wird ein Ansatz vorgestellt, um ein
MT-System online, d.h. satzweise während der Übersetzung eines Dokuments, anzupassen.
Dabei wird der interaktive CAT-Übersetzungsprozess ausgenutzt und das von Übersetzern ge-
gebene Feedback unmittelbar in die MT-Komponente integriert. Wir zeigen, dass ein solches
selbstadaptierendes System einem statischen System überlegen ist.
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CHAPTER 1

Introduction

The task of translating text from one language into another can be viewed as the search for
a semantic equivalent of the source message in the target language (Newmark, 1988). Ma-
chine translation (MT) aims at performing this transfer task with minimal human intervention
using computational resources. Early approaches to MT worked with manually crafted trans-
lation rules (Bar-Hillel, 1951), but the rapid increase in computational power during the 1990s
and 2000s enabled the development of the purely empirical, data-driven statistical machine
translation (SMT) paradigm (Brown et al., 1990, 1993). SMT became widespread after open-
source implementations of decoders became available (Chiang et al., 2005; Koehn et al.,
2007; Li et al., 2009; Dyer et al., 2010), which allowed researchers to quickly set up their own
SMT system and experiments. Today, SMT is a large research area with numerous confer-
ences, workshops and evaluation campaigns1 dedicated to the topic and a rapidly evolving
field. Still, the quality of machine translations is not such that the output is directly usable in
real-world applications – apart from few domains with controlled language such as weather
reports, for example – and the question remains, how MT can be advantageously employed
(Kay, 1980, 1997b,a). A promising research direction is therefore the convergence of SMT
and human translation. In today’s global economy, localization is a large and growing indus-
try and the demand for fast and high-quality translations, especially for technical documents,
is on the rise (Sykes, 2009). Professional translators have been somewhat hesitant to adopt
SMT into their workflow due to the high demands on translation quality. In recent years the

1For example WMT, EAMT, MT Summit, IWSLT, AMTA with IAMT and WPTP, NIST OpenMT, Translating
and the Computer, MT Marathon and SSST as well as numerous workshops on special topics in MT at NLP
conferences such as ACL, NAACL and Coling.

1

http://www.statmt.org/wmt14/
http://www.eamt.org/
http://www.mtsummit2013.info/
http://workshop2014.iwslt.org/
http://amta2014.amtaweb.org/
http://www.statmt.org/iamt/
https://sites.google.com/site/wptp2014/
http://www.itl.nist.gov/iad/mig/tests/mt/
http://www.translatingandthecomputer.org/
http://www.translatingandthecomputer.org/
http://www.statmt.org/mtm12/
http://www.cs.ust.hk/~dekai/ssst/


Chapter 1. Introduction

research community has shown a growing interest in advancing the integration of SMT and
human translation. From EU projects to build open-source translation workbenches that in-
clude SMT engines (e.g. MateCat2 and Casmacat3), real-time adaptive translation extensions
for popular open-source decoders such as cdec4 (Denkowski et al., 2014) and Moses5 to
start-ups successfully combining SMT, crowd sourcing and post-editing, such as Unbabel6

(Chokkattu, 2014) or Lilt7 (Abate, 2014; Green et al., 2014a,b), MT has started to focus on
practical challenges. The majority of the mentioned systems have become publicly available
only during the last two years.

A further research direction towards the real-world application of SMT technology is its de-
ployment for other cross-lingual natural language processing (NLP) tasks, such as cross-
language information retrieval (CLIR) (Nie, 2010), content synchronization (Negri et al., 2012)
or detection of parallel documents, sentences or phrases (Resnik and Smith, 2003; Braune
and Fraser, 2010; Munteanu and Marcu, 2006). In practice, many applications do not require
perfectly fluent translations: Multilingual content synchronization can for example be applied to
identify matching and mismatching content in a user-created multilingual encyclopedia (Monz
et al., 2011). Different language versions of articles on the same topic in the encyclope-
dia evolve separately, since they are being edited by speakers of different languages. Even
though divergences in content can partly be attributed to cultural shifts and a complete syn-
chronization might not be sensible, identifying information that is missing in one language,
could help extend the coverage of the encyclopedia in underrepresented languages. For the
MediaWiki software that powers Wikipedia, for example, a translation workbench was recently
introduced to encourage and support editors in translating articles into languages with sparse
content (Laxström et al., 2015). An application for cross-lingual retrieval can be found in cross-
language patent prior art search: In order to protect an invention in more than one country or
region of the world, a separate patent has to be filed with several patent agencies in different
languages. Before a patent application is drafted, applicants search for instances of so-called
prior art, which consists of patents or documents that disclose intellectual property similar to
the subject at hand. If central points of the invention have been laid out before, the patent
application is likely to fail. Since drafting and applying for a patent is a costly process, making
sure that all relevant prior art has been found is a crucial step for applicants. If a company
applies for the protection of an invention, for which a patent has been granted in language L1,
in another country with language L2, CLIR can be used to query the body of patents in lan-
guage L2 to search for prior art specific to this region using the original document in language
L1 as a query. The actual translation of the results, if relevant documents are found, can then

2http://www.matecat.com/
3http://www.casmacat.eu/
4http://www.cs.cmu.edu/~mdenkows/cdec-realtime.html
5http://statmt.org/moses/?n=Advanced.Incremental and http://statmt.org/moses/?n=Advanced.CacheBased
6https://unbabel.com/
7http://lilt.com/

2

http://www.matecat.com/
http://www.casmacat.eu/
http://www.cs.cmu.edu/~mdenkows/cdec-realtime.html
http://statmt.org/moses/?n=Advanced.Incremental
http://statmt.org/moses/?n=Advanced.CacheBased
https://unbabel.com/
http://lilt.com/


Chapter 1. Introduction

be assigned to a human translator. Further applications are for example cross-lingual image
search based on textual descriptions of the images (Etzioni et al., 2007) or cross-language
plagiarism detection (Potthast et al., 2011). Usually, approaches to cross-lingual NLP tasks
propose to model the transfer of meaning between different languages without employing the
full translation pipeline (Resnik and Smith, 2003; Munteanu and Marcu, 2005; De Souza et al.,
2013). Many approaches rely heavily on word alignments and lexical translation probabilities
estimated on parallel data to quantify the pairwise similarity of text in two languages.

This thesis assembles contributions towards different tasks from the field of cross-lingual nat-
ural language processing and towards the integration of human translation and SMT. We de-
scribe approaches and experiments using different ways of quantifying and modeling cross-
lingual similarity based on word alignments estimated on parallel data. We start by consider-
ing the notion of cross-lingual semantic relatedness and design a solution for the cross-lingual
textual entailment (CLTE) task, suggested by Mehdad et al. (2010), as a first step towards
tackling the problem of content synchronization across different languages. Our approach
combines alignment and translation features and makes use of various steps of the SMT
pipeline, ranging from word alignment to MT evaluation metrics. We describe our feature
set in detail and present extensive experiments, where we identify the most useful features
for different language pairs. Furthermore, we explore the problem from a machine learning
perspective and compare different ways of formulating the problem for a learner.

We then apply the cross-lingual similarity features designed for detecting cross-lingual tex-
tual entailment to a related task from the area of SMT: detecting and removing noise from
an automatically aligned noisy parallel corpus. Excluding non-parallel or only semi-parallel
phrases from training can improve SMT quality (Cui et al., 2013). This task can be formulated
as discarding pairs of text that are not semantically equivalent, which is a subtask of recog-
nizing cross-lingual textual entailment. In the course of this work, we extend and improve the
work described in Wäschle (2011) and extract a parallel corpus from patent documents for the
language pairs French-English and German-French. We annotate a sample of 500 sentence
pairs from the corpus with equivalence judgments that quantify how parallel a pair is, after
conducting preliminary experiments to obtain a notion of parallelism. We report experiments
with different levels of filtering and on learning a similarity threshold.

In the next step, we investigate cross-lingual NLP for a user-oriented task: translation mem-
ories (TM) are a widely used tool in the localization industry. TMs store previously translated
segments of text and can be queried with the sentence currently under translation. If a similar
sentence – similarity is based on a comparison of the source sides – has been processed
before, its corresponding target is passed to the human translator for post-editing. These
so-called fuzzy matches are in general not a perfect translation of the given sentence, but
can help to reduce translation time and effort. Furthermore, they are fluent output so the
post-editor is not forced to correct errors made by an SMT system. Usually, string similarity

3



Chapter 1. Introduction

is used to find good fuzzy matches. We strive to go beyond the surface and enable the use
of monolingual resources for retrieving fuzzy matches at the same time. While previous work
only searches for matches in the source language by comparing the input sentence to the
source side of a bilingual sentence pair, we use a cross-language comparison to find fuzzy
matches that are only available in the target language. We employ methods from the field of
cross-language information retrieval to determine good target matches using SMT to produce
target language representations of the query. In order to efficiently query large monolingual
corpora in the order of tens of millions of sentences we propose employing locality sensitive
hashing (LSH) as a pre-retrieval step to narrow down match candidates. We evaluate our
retrieval by integrating the fuzzy matches into an SMT system. Our model re-ranks an n-best
list of SMT hypotheses with regard to their similarity to a fuzzy match. We report results for
cross-language translation memory retrieval that are comparable to source-side retrieval and
show its application in a domain adaptation scenario, where additional monolingual data is
available.

From the notion of cross-lingual similarity we turn to the question, whether and how machine
translation can benefit from taking a larger context into account. Due to technical limitations,
SMT systems usually translate segments of text in isolation without looking beyond sentence
boundaries. This way, valuable global context information is lost and consistency is impossible
to guarantee. Even if an SMT system is highly consistent in its translation choices (Carpuat
and Simard, 2012), this consequently leads to them being also highly consistent in repeating
errors when translating a text. This led us to consider a solution for MT consistency in an
environment, where feedback on previous translations of sentences from the same text are
available. This is the case in computer-aided or computer-assisted translation (CAT), where
human translators post-edit hypotheses output by an MT system. We develop an online learn-
ing protocol using cache-based document-specific language and translation models, to show
that SMT system and human user can mutually benefit from feedback. The user corrects
errors made by the SMT system which in turn can help the user maintain translation consis-
tency by suggesting recent translations of the same phrases. To extract information from user
post-edits, a constrained search technique is used. We implement the protocol for the Moses
SMT toolkit and report experiments on data, for which real-world user post-edits are available.

1.1 Scientific Contributions

This thesis cumulatively contributes the following approaches and data sets. All results, except
for the noise filtering experiments, have been published in peer-reviewed research papers and
the data sets have been made publicly available under a Creative Commons8 license. In the

8http://creativecommons.org/licenses/by-nc-sa/3.0/

4
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Chapter 1. Introduction

case of papers published with co-authors other than the author’s supervisor, only the author’s
contributions towards the joint work is described in this thesis, except when explicitly noted.

Approaches

• A stand-alone system for recognizing cross-lingual textual entailment that took first place
at the CLTE challenge at SemEval 20129 (Negri et al., 2012). An in-depth evaluation
of the features and machine learning methods used by the final system (Wäschle and
Fendrich, 2012).

• A study of noise in an automatically aligned corpus and experiments of the influence of
the noise on SMT quality.

• A cross-lingual translation retrieval approach evaluated in a combined SMT and TM
system, that can handle a large TM database with millions of sentences and yields
significant improvements over the baseline using fuzzy matches to bias the SMT com-
ponent. An application of the cross-lingual target fuzzy match retrieval technique to the
task of domain adaptation with monolingual resources. An evaluation of different CLIR
techniques for choosing good fuzzy matches given a query in the source language and
a corpus in the target language (Wäschle and Riezler, 2015).

• An easy-to-implement technique for integrating feedback into the phrase-based Moses
SMT decoder at run-time by adapting models online in a CAT environment that achieves
improvements of up to 3 BLEU points over a static baseline on repetitive documents
(Wäschle et al., 2013; Bertoldi et al., 2014).

Data

• A large amount of parallel data from the intellectual property (IP) domain for two lan-
guage pairs, French-German (5.1 million sentence pairs) and English-French (18.8 mil-
lion sentence pairs), accompanied by metadata (Wäschle and Riezler, 2012). The data
has been integrated into the PatTR data set10 and has to date been used for example
in the Ninth Workshop on Statistical Machine Translation (WMT 2014)11 (Bojar et al.,
2014), for online adaptation in the MateCat EU project (Bertoldi et al., 2014), and for
multilingual information retrieval in the medical domain in the Khreshmoi12 EU project
(Pecina et al., 2014).

9See http://www.cs.york.ac.uk/semeval-2012/task8/.
10Available from http://dx.doi.org/10.11588/data/10002.
11See http://www.statmt.org/wmt14/medical-task/.
12http://www.khresmoi.eu/

5
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• A hand-annotated data set, created by two non-expert annotators and one expert ju-
ror, of 500 French-English sentence pairs from the data set described above, with two
annotation levels quantifying cross-lingual semantic similarity/level of parallelism.

The thesis is structured as follows. First, we provide some background on statistical machine
translation (Chapter 2), since all introduced models make use of (parts of) the SMT pipeline,
and related topics from computer-assisted translation. Chapter 3 describes a system for rec-
ognizing cross-lingual textual entailment entered at SemEval 12, followed by the application
of the features designed for this task to filtering a parallel corpus for SMT training (Chapter 4).
Chapter 5 introduces cross-lingual fuzzy match search and describes an efficient implementa-
tion as well as an evaluation of the impact of integrating TM matches into SMT. We investigate
taking SMT beyond the sentence level in Chapter 6 and present an online learning approach
for translation consistency in a computer-assisted translation framework. Related work is dis-
cussed preceding each individual chapter; experiments and results are presented separately
for each approach. Chapter 7 sums up findings and contributions.
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CHAPTER 2

Background: Statistical Machine Translation and Computer-assisted
Translation

In this chapter we aim to offer a short introduction to statistical machine translation and give
an overview of the state-of-the-art techniques and tools, which are used in this thesis. Fur-
thermore, we provide a brief overview over the field of computer-assisted translation and MT
post-editing, which promises practical use for SMT systems beyond narrow domains. We
establish basic terminology for both fields in the beginning.

2.1 Terminology

The foundation of parameter estimation for statistical translation models is parallel text or
bitext and refers to pair-wise aligned sentences that are mutual translations of each other.
Parallel corpora might contain a fraction of sentence pairs that are not actually translations
of each other; depending on the amount of non-parallel data, corpora are characterized as
noisy parallel or comparable. The language we translate into is called the target language,
the language we translate from the source language. For historical reasons, a sentence in the
target language is denoted by e and a sentence in the source language by f1. We refer to the
translation generated by an MT system as the hypothesis or system output and to the human
translation used to evaluate as the reference (translation). Finding the optimal parameters for
the log-linear model (see Section 2.2.6) with discriminative training is referred to as tuning.

1The first SMT systems were built for translation from French into English.
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Chapter 2. Background: Statistical Machine Translation and Computer-assisted Translation

In the terminology of computer-assisted translation, a translation unit is called a segment. A
segment might correspond to a sentence or a headline, but also sub-sentential fragments2

or whole paragraphs are possible, depending on the application. Editing a translation output
by an MT system or a translation memory is referred to as post-editing. Post-editing can be
performed both by a human (translator) and by automated systems (Simard et al., 2007).

2.2 Statistical Machine Translation

The task of statistical machine translation has been defined as the search for the best deriva-
tion ê in a hypothesis space3 H given a source string f, according to the conditional probability
distribution p(e|f) (Brown et al., 1993).

ê = argmax
e∈H

p(e|f)

By applying Bayes’ rule this probability can be decomposed.

ê = argmax
e∈H

p(f|e)× p(e)

An interpretation of this model is as an instance of a noisy channel, where the intuition is that
the original message e has been corrupted during a transmission, resulting in the observed
message f. The task is to find the most likely original message given the observation. The
term p(e) can be seen as a target language model while the conditional term p(f|e) corre-
sponds to a translation model. The parameters of the language model can be estimated on
monolingual data, while the parameters of the translation model are learned from bitext. The
search for the best ê given these parameters is called decoding. In practice, decoders use
heuristics to limit the hypothesis space and make the search feasible.

2.2.1 Sentence Alignment

Texts translated by humans are the training examples, from which statistical machine trans-
lation systems can learn. Documents are usually translated as a whole, resulting in parallel
data at the document, paragraph or section level. To make the data processable statistical
machine translation systems, it is necessary to break it down into smaller units and align text
at the sentence level, which is an unsupervised task. The first models for sentence alignment

2This can be the case when translating long sentences with several subordinate clauses as appear, for example,
in patent claims, which can feature a high two figure number of embedded clauses.

3In theory, this is the space of all possible sentences in the target language.
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were based on sentence length ratio (Brown et al., 1991; Gale and Church, 1993); later ap-
proaches added lexical models estimated on a first length-based pass over the data (Moore,
2002). Correspondences between sentences are not necessarily one-to-one, so state-of-the-
art models allow one-to-many and many-to-one alignments (Braune and Fraser, 2010).

2.2.2 Word Alignment

Translation model parameters are estimated on the word level. Deriving word alignments
(for an example see Figure 2.1) between parallel sentences is an unsupervised task. The
most widely used models for word alignment are generative models that seek to maximize
the likelihood of the data, most notably the IBM models (Brown et al., 1990), named after the
company where they were developed. The baseline model is IBM Model 1, which introduces
the idea of alignment variables a : j → i to model the conditional probability4 of a sentence e

(a sequence of tokens ej , j ∈ 1, ..., |e|) given sentence f (a sequence of tokens fi , i ∈ 1, ..., |f|).

p(e, a|f) =
|e|
j=1

t(ej |fa(j))

The parameters of the model are the word translation probabilities t(e|f ), i.e. the probability
that token e is the translation of token f . To estimate these parameters we need the word
alignments a : j → i ; however, the alignments are what we want to derive in the first place.
To solve this problem, the expectation-maximization (EM) algorithm (Dempster et al., 1977)
can be applied in the following way. Assume an initial (uniform) distribution of word translation
probabilities, (1) estimate probabilities for all alignments based on this distribution, (2) collect
new counts for the word translation probabilities from the data and repeat steps (1) and (2) in
an alternating fashion. After a few iterations, the probabilities will converge due to the latent
co-occurrence information, i.e. which words in the source language co-occur frequently with
which words in the target language.

the white house

la maison blanche

Figure 2.1: Word alignment.

IBM Model 2 adds a reordering parameter corresponding to a locality bias, model 3 adds fer-

4Formally, a normalization constant has to be added in order to assure that p(e, a|f) is a probability distribution,
which we left out for reasons of comprehensibility.
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. th
e
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hi
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la

maison

blanche

Figure 2.2: Word alignment matrix.

tility, i.e. a model for how many words in the target a source word can generate and model
4 relative reordering. Subsequent models are initialized with the probabilities of the previous,
simpler models. The estimation procedure results in a lexicon of word translation probabilities
and a set of word alignments that link a source word to one (or more) target tokens. It is
possible for words to remain unaligned. Word alignments can be visualized as points in an
alignment matrix (Figure 2.2). Alignments and probabilities depend on the translation direc-
tion. In practice, to derive a stable word alignment for a sentence pair, EM is therefore run in
both translation directions and the resulting alignments are symmetrized. Different strategies
are possible for this process,e. g. the intersection or the union of the sets of alignment links,
or heuristically expanding the alignment (Koehn et al., 2003). A variety of tools exist for word
alignment that implement the IBM models. Some of the most widely used are GIZA++ (Och
and Ney, 2003), the BerkelyAligner (Liang et al., 2006b) and fast_align (Dyer et al., 2013).

2.2.3 Translation Models and Decoding

Several strategies have been proposed for decoding. Although the estimation of translation
models is word-based, phrase-based translation (Koehn et al., 2003) emerged as a way to
include a larger context in the translation process and to account for the fact that correspon-
dences between words are often not one-to-one. Parallel phrases can be extracted from word
alignments. Phrase pairs containing at least one alignment point and within which no word
is aligned to a word outside of the phrase, are called consistent phrase pairs. The phrase
pairs that are consistent with the word alignment shown in Figure 2.2 are listed in Figure 2.3.

m = 1 la / the
maison / house
blanche / white

m = 2 maison blanche / white house
m = 3 la maison blanche / the white house

Figure 2.3: Phrase pairs of length m that are consistent with the word alignment in Figure 2.2.
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X→ la maison X | the X house X→ white | blanche

Figure 2.4: Two hierarchical phrases extracted from the word alignment matrix in Figure 2.2.
In addition to the initial phrase pairs pictured in Figure 2.3, which correspond to lexical rules
such as X→ white | blanche, rules with gaps can be generated by replacing sub-phrases with
the non-terminal symbol X. In practice, the number of resulting rules has to be reduced by
applying heuristics – e.g. limiting to the number of non-terminal symbols per rule – to reduce
the complexity of the model (Chiang, 2007).

During decoding, target hypotheses are constructed from left to right using phrase pairs ex-
tracted from the training data. Since the hypothesis space becomes unfeasibly large, pruning
techniques such as beam search (Tillmann and Ney, 2003) are applied to reduce the search
space. A popular implementation of the phrase-based approach to statistical translation is the
Moses decoder (Koehn et al., 2007).

A hierarchical extension of the phrase-based paradigm (Chiang, 2007) allows discontinuous
phrases that contain gaps by modeling correspondences as translation rules in the form of a
context-free grammar (CFG). The resulting grammar is synchronous (SCFG), meaning that
rules contain both source and target side in the form X → house|maison (see also Figure
2.4). Only one generic non-terminal symbol X is used, so grammar rules do not necessarily
conform to syntactical components of a sentence. Decoding with an SCFG corresponds to
parsing the source side, which automatically generates a target side parse forest. The best
derivation is selected according to features that operate on the grammar rules. To reduce the
decoding complexity, especially after adding language model scores, cube pruning is applied
(Chiang, 2007). In this thesis we employ the cdec decoder (Dyer et al., 2010) for experiments
involving hierarchical phrase-based translation models.

2.2.4 Additional Generative Models: Language and Reordering Model

One view on the language model that is used in statistical machine translation is the noisy-
channel intuition described above. Other important factors for including a language model are
context and disambiguation. While phrase-based translation models take a larger context into
account than basic word-based models, the context is still fairly limited for reasons of gener-
alization and translations are assembled using a number of separate phrases. Adding a high
n-gram language model promotes fluency of the output and considers a larger context that
spans several phrases. A language model approximates the joint probability of a sequence of
target tokens e = (e1, ..., em).

p(e1, ..., em) =
m
i=1

p(ei |p(e1), ..., p(ei−1))

11
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To make the model generalize, the context history, that is the number of previous words the
model takes into account when choosing the next word, is restricted to n tokens.

p(e1, ..., em) ≈
m
i=1

p(ei |p(ei−(n−1)), ..., p(ei−1))

The parameters of the model are estimated on a (preferably large) monolingual corpus in the
target language with maximum likelihood estimation.

Reordering models add information about the different word order in source and target lan-
guage. The basic model is distance-based with a cost linear to the distance of the reordering.
More refined models are lexicalized (Tillmann, 2004). Hierarchical phrase-based models en-
code reordering information inherently in the grammar.

2.2.5 Evaluation Metrics

Automated evaluation of machine translation output is a research direction of its own, since
deciding, if a translation is good or bad, is a task nearly as challenging as MT itself. Human
evaluation is costly and therefore seldom done. The following evaluation metrics are used to
measure the quality of a translation hypothesis given a reference translation.

BLEU (Papineni et al., 2002)

BLEU (Bilingual Evaluation Understudy ) is the most widely used measure in MT due to its
good correlation with human judgments and its inexpensive calculation. The score combines
modified n-gram precision and a brevity penalty, since precision alone favors shorter transla-
tions.

score = BP ×
4

i=1

Pn

The modified n-gram precision Pn clips every n-gram count to the maximum number of times
the n-gram appears in the reference. The n-gram counts are calculated over the entire corpus,
matches are counted in each sentence. The brevity penalty BP is defined as

BP =

exp(1− |reference|
|h| ) if |h| ≤ |reference|

1 otherwise

and is also computed over the whole corpus.
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Meteor (Denkowski and Lavie, 2011)

Meteor (Metric for Evaluation of Translation with Explicit ORdering) is based on a word align-
ment between system output and reference translation. Words are matched at four different
similarity levels, exact match, stem match, synonym and paraphrase. The harmonic mean of
weighted alignment precision P and recall R is combined with a fragmentation penalty pnfrag

into a weighted score.

score = (1− γ × pnfrag
β)× P × R

α× P + (1− α)× R

The fragmentation penalty is defined as the number of contiguous sequences of matched
words (chunks) divided by the total number of matches.

pnfrag =
|chunks|
|matches|

Meteor comes with pre-trained weights α, β and γ and linguistic resources such as synonym
and paraphrase tables for several languages. Meteor is more sensitive to the transfer in
meaning than BLEU, but also more costly to compute. Besides, not all resources are available
in every language. Unlike BLEU, the metric is sentence based.

TER (Snover et al., 2006)

Translation Edit Rate5 (TER) was designed with post-editing effort in mind. It measures the
minimum number of edits needed to generate the reference from the SMT output, normalized
by the number of reference words.

score =
|edits(h, reference)|
|reference|

All edit operations have equal cost: insertion, deletion and substitution of single tokens and
shifts of sequences of tokens. Due to its foundations in edit distance, TER tends to favor
shorter translations. TER is sentence based and is predominantly used in the field of post-
editing and interactive translation.

2.2.6 Log-linear Model and Discriminative Parameter Training

In practice, the generative SMT models – translation, language and reordering model(s) –
are combined into a global log-linear model (Och and Ney, 2002) as feature functions hk with

5Sometimes referred to as Translation Error Rate, though this is misleading, since it is not an error rate.
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corresponding weights λk . The best derivation ê under this model is the one that maximizes
the combined model score.

ê = argmax
e∈H

exp(

k

λkhk(e, f))

With k = 2, h1 = log(p(e)), h2 = log(p(f|e)) and uniform weights we get the noisy-channel
model described above. The advantage of this extended model is that its parameters can
be trained in a discriminative fashion, balancing the contribution of the individual models.
This tuning step is carried out on a small amount of development data, usually 1,000-2,000
sentence pairs and optimized with regard to one (or more) MT evaluation metrics. The model
can be enriched with additional feature functions that model different aspects of the translation
process. In the following, we discuss some popular methods for discriminative training.

Minimum Error-Rate Training (MERT) (Och, 2003)

MERT was the first approach that aimed to optimize the non-convex error metrics used in
SMT directly. MERT operates on n-best lists, i.e. a ranking of the top n derivations output by
the decoder. The weights of the log-linear model are optimized using line search: the model
score of a translation hypothesis corresponds to a line, when only one weight is regarded at
a time. Several iterations of the optimization are performed and the training set is repeatedly
re-translated using the adjusted weights. Since the search is heuristic with no guaranteed
optimum, several instances of the algorithm are started with different initial values and the
resulting weights averaged to obtain the final weight vector. Kumar et al. (2009) extended
MERT to work on the full search space generated by hierarchical MT systems.

Margin Infused Relaxed Algorithm (MIRA) (Watanabe et al., 2007)

Since MERT is able to optimize only a small number parameters (in double figures) reliably,
alternatives have been proposed to handle a larger number of features. Enriching the trans-
lation model with sparse features has been done for example by Chiang et al. (2009). The
Margin Infused Relaxed Algorithm (MIRA) learns in an online fashion, meaning that it updates
parameters iteratively after each training example. MIRA is therefore able to operate on a
large tuning set and optimize a huge number of features. Since sentence-wise metrics are
required to do online updates, approximations of BLEU are used.

Pairwise Ranking Optimization (PRO) (Hopkins and May, 2011)

PRO approaches the SMT tuning problem as pairwise ranking by sampling pairs of candidate
translation from an n-best list: a pair is labeled as a positive training example, if model score
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and gold standard score agree in their ranking and negative, if not. This reduces optimization
to a binary classification problem. As with the other methods, several iterations are performed
and the n-best lists are regenerated after each iteration using the modified parameters.

2.3 Computer-assisted Translation

The growing demand for translation in a global economy has resulted in a need for speedy
and efficient translation processes (Sykes, 2009). One way to increase productivity and make
translation faster and cheaper is to automatize tasks, that can be reliably performed by a ma-
chine, have to be carried out repeatedly and might be tedious to human translators. Computer-
aided or computer-assisted translation (CAT) is an instance of human-machine interaction that
transforms translation into an interactive process, with the goal to reduce translation time and
effort. The original idea is attributed to Kay (1980) (Hutchins, 1998). CAT tools offer a wide
range of assistance to a human translator: Electronic dictionaries, spell and grammar check-
ing, terminology management, translation memory databases, visualization of alignments and
project management functionalities. Some tools also offer MT components, but in general, the
localization industry has been hesitant to adopt machine translation due to the high demands
on the quality of the output. For professional translators, time spent reading and discarding
bad MT output is money lost, although studies suggests that this is never actually the case
(Krings, 2001) – the field of MT quality estimation researches possible automated solutions
for this problem (Ueffing et al., 2003; Blatz et al., 2004; Specia et al., 2009). The core compo-
nent of the CAT user interface is an editor, in which the human translator composes his or her
translation, assisted by one or more by the above-mentioned tools. Several aspects of CAT
that are intertwined with machine translation are introduced in the following sections.

2.3.1 Translation Memory

A translation memory (TM) is a computational tool used by professional translators to speed
up translation of repetitive texts (Christensen and Schjoldager, 2010). At its core is a database,
in which source and target of previously translated segments of text are stored. Translation
memories are capable of retrieving not only exact, but also partial matches, where only a
certain percentage of source words overlap with the query, called fuzzy matches. The good-
ness of a match is generally measured with an edit-distance based fuzzy match score (Sikes,
2007). A CAT tool presents possible matches found in the database to a user, if the match
is considered similar enough to the current source sentence according to some adjustable
threshold. Even if the presented target sentence is not a perfect translation, a fuzzy match
can be a helpful starting point for the translation of the current sentence and considerably re-
duce translation time and effort. Furthermore, a translation memory can help with translation
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consistency and terminology control. In contrast to SMT, TM tools are widely used in the trans-
lation industry, since the results presented to the translator are fluent and a similarity threshold
can be easily set to avoid spending time on reading translation suggestions that might not be
usable. Translation memories are especially helpful for the translation of texts from repetitive
domains, such as technical documentation or software localization, where vocabulary and
expression are limited. Note, that the functionality of a translation memory combined with a
human translator are similar to example-based machine translation (EBMT) (Nagao, 1984).

2.3.2 MT Post-Editing

With the availability of open-source CAT workbenches such as MateCat and the option to
distribute translation tasks via crowd-sourcing (Jehl et al., 2012), the integration of human
feedback into existing translation models has become a promising research direction in ma-
chine translation. In contrast to CAT, the goal is to improve MT performance with human-aided
machine translation. This is made possible by keeping track of post-edits6 of machine transla-
tions performed by human translators: Source sentences are presented to the user together
with a translation hypothesis produced by an MT system. Users are asked to edit the MT
output until it constitutes a fluent and correct translation of the input sentence. Performing
post-editing instead of translating from scratch has been shown to reduce translation time and
effort (Green et al., 2013). A further advantage is the fact that MT post-edits are very valu-
able for improving MT systems, since they are naturally closer to the MT system output than
independently produced human references. Error metrics have been proposed based on of
the number of edits a human translator performs on MT output (Snover et al., 2006); however,
in practice, evaluation of MT using trained human translators is still costly and seldom done.
Still, even learning from weak feedback, e.g. incomplete post-edits or post-edits done by non-
native speakers might yet prove to be beneficial for MT. Post-edits can be recorded in varying
detail, from only saving the final translation to recording a user’s every keystroke.

2.3.3 Interactive Translation

Although MT post-editing with a subsequent integration of the feedback into an SMT system is
an interactive translation process, the term interactive machine translation (IMT) refers in par-
ticular to systems that suggest partial translations to the user while the user is typing, based
on the input so far (Nepveu et al., 2004; Ortiz-Martínez et al., 2010; López-Salcedo et al.,
2012). The prediction is updated at every step the user takes while inputting the translation of
a segment, with the models operating at word or even character level. This process has been
shown to be beneficial in terms of translation effort (Barrachina et al., 2009).

6The prefix post references the fact that the editing takes place after automatic translation.
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CHAPTER 3

Detecting Cross-lingual Textual Entailment

Cross-lingual textual entailment (CLTE) (Mehdad et al., 2010) has been proposed as an exten-
sion of textual entailment (TE) (Dagan and Glickman, 2004; Dagan et al., 2013). Recognizing
entailment is defined as deciding whether the truth of a hypothesis H can be derived from a
text T with semantic inference. CLTE adds a cross-lingual dimension to the problem by con-
sidering sentence pairs, where T and H are encoded in different languages, i.e. an English
text E and a foreign hypothesis F or vice versa. A system that recognizes entailment across
different languages might be applied to the task of content synchronization, for example the
automatic synchronization of articles in a multilingual encyclopedia (most notably Wikipedia1).
Articles on the same subject are written by several authors in different languages. As a result,
information in one version of the article might not be present in other languages and can be
used to extend them using MT or CAT. A first step towards achieving this goal is to identify
overlapping parts of information on the sentence level as well as to classify the type of relation
between non-matching parts. To this end, the Cross-lingual Textual Entailment for Content
Synchronization task was introduced at SemEval-20122 (Negri et al., 2012). The models and
systems described in this chapter were developed on the training data provided by the task
organizers and our final system configuration was entered in the competition. The system
ranked first, yielding the best overall score for three out of four language pairs.

We frame the task of recognizing CLTE as a statistical learning problem on a space of dense
features modeling cross-lingual similarity. Statistical machine translation methods and tools

1http://www.wikipedia.org/
2http://www.cs.york.ac.uk/semeval-2012/task8/
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are employed to derive features. The final system combines both cross-lingual and monolin-
gual features: Cross-lingual similarity is based on word alignments. Monolingual similarity is
assessed on a pivot translation of one text into the language of the other using established
features used to detect monolingual textual entailment, such as distance and bag-of-words
overlap. We rely on the learner to combine and identify the important features for solving this
task. We pursued several goals during development.

• Address the task without deep linguistic processing or resources to make it easily
portable across languages using only parallel data.

• Identify important features to draw conclusions about the role of SMT and evaluate how
methods from SMT can be exploited to solve a cross-lingual semantic task.

• Develop methods to quantify cross-lingual similarity directly and compare them to a
pivot-based approach, where the task is reduced to a monolingual scenario using the
full SMT pipeline.

We argue that a system for recognizing cross-lingual entailment can benefit from integrating
SMT methods, such as measures based on word alignments between E and F , as opposed
to only employing SMT as a black box to gain a pivot translation, which is then passed to a
monolingual system for recognizing entailment. The large amounts of bilingual parallel data
used to train an SMT system naturally model synonymy and paraphrasing across languages
– similar resources for monolingual TE are magnitudes smaller and hard to come by – and
suggest a considerable advantage by adding cross-lingual information. We also found that the
problem of cross-lingual textual entailment is closely related to the problem of finding parallel
sentences for extending SMT resources, for which many techniques exist. The success of our
system in the competition shows, that SMT is a good fit for solving a task from the field of
cross-lingual semantics, supporting the notion of SMT as a semantic task. A detailed analy-
sis shows, that we achieve good results using both cross-lingual or pivot-based monolingual
features exclusively, but the best system is a combination of both. A further key aspect of our
approach is the assessment of different learning strategies.

3.1 CLTE Task

The CLTE task emerged from the monolingual Recognizing Textual Entailment (RTE) task
(Dagan et al., 2006a); however, the view on entailment is actually quite different. In classic
RTE, the text T is typically longer than the hypothesis H (for an example see Figure 3.1). The
entailment problem is binary: TRUE (H is entailed by T ) and FALSE. To establish, whether the
truth of H follows from T , inference and therefore a deep semantic analysis of both text and
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hypothesis is necessary. In Figure 3.2, the hypothesis is completely contained in the text as
a substring, so a superficial analysis, such as edit distance or n-gram overlap, would likely
produce the result that H is entailed by T . In order to recognize that this does not correspond
to the actual structure and subsequently meaning of the sentence, a deeper analysis is in-
evitable. Subsequent instantiations of the RTE challenge went on to add CONTRADICTION as
entailment option, furthering the need to use methods for semantic inference to solve the task.

text CBS newsman Harry Reasoner is returning to his Iowa home-
town to get married Saturday.

hypothesis CBS newsman Harry Reasoner was born in Iowa.

entailment TRUE

Figure 3.1: An example for textual entailment from the first Pascal RTE challenge (Dagan
et al., 2006b). To identify the entailment, a system needs to derive that Harry Reasoner was
born in Iowa is entailed by his Iowa hometown.

text The National Institute for Psychobiology in Israel was estab-
lished in May 1971 as the Israel Center for Psychobiology by
Prof. Joel.

hypothesis Israel was established in May 1971.

entailment FALSE

Figure 3.2: An example for no entailment from the the first Pascal RTE challenge (Dagan
et al., 2006b). Although the text contains the complete hypothesis as a string, the hypothesis
is not entailed by the text.

In contrast, CLTE considers sentence pairs E and F in different languages, which are of
approximately the same length. The entailment is predicted in both directions, i.e whether E
entails F and F entails E . Entailment is understood in terms of information that has been
added or is missing from one or both sentences. The data set features no sentences that do
not share at least part of their content, nor does it contain contradicting statements. Mehdad
et al. (2010) define four entailment relations.

BIDIRECTIONAL entailment both sentences have similar content, i.e. E and F are semanti-
cally equivalent

FORWARD entailment the source language sentence E contains additional information that
is not expressed in the target language sentence F , i.e. E entails F

BACKWARD entailment the target language sentence F contains additional information that
is not expressed in the source language sentence E , i.e. F entails E
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NO ENTAILMENT both source language sentence E and target language sentence F contain
information that is not expressed in the respective other language

The SemEval-2012 CLTE task featured a training set of entailment instances in four language
pairs3. Negri et al. (2011) describe the process of constructing the training and test corpus
in great detail. Starting from a parallel corpus of English, Spanish, French, German and
Italian text, monolingual entailment pairs were created by paraphrasing an English sentence
E and deleting or adding information to construct a modified sentence E ′. The modified
sentence was then paired with the translation of the original sentence in different languages4

thus creating a bilingual entailment pair. Two examples are given in Figures 3.3 and 3.4. Due
to their origin, we concluded that out model should be able to capture the following key aspects
between sentences E and F .

• Paraphrases and synonymy to identify semantic equivalence.

• Phrases that have no corresponding phrase in the other sentence, indicating missing
(respectively, additional) information.

We hypothesize that – differing from the monolingual RTE challenges – the CLTE task does not
require deep semantic processing, i.e. inference to be solved, but can instead be viewed as
an alignment problem. As a solution we propose mostly alignment-based features that identify
matching and mis-matching parts in the foreign language, leaving parts, where information is
missing or has been added, unaligned. For this reason our methods draw from the related
problem of identifying parallel data for SMT training, as laid out in Sections 3.2 and 3.3, by
quantifying cross-lingual similarity.

F Ban Ki-Moon ist der achte und derzeitige Generalsekretär der
Vereinigten Nationen, seitdem er im Jahr 2007 das Amt von
Kofi Annan übernahm.

E Ban Ki-moon became the 8th and current Secretary General
of the United Nations.

entailment FORWARD

Figure 3.3: Examples for FORWARD entailment from the SemEval-2012 CLTE data set. The
main clauses of both sentences are parallel, while text 1 contains additional information stated
in a subordinate clause.

3Spanish-English (es-en), Italian-English (it-en), French-English (fr-en) and German-English (de-en).
4We generally refer to the non-English language sentence as F .
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F Die Deepwater-Horizon-Ölpest war eine Ölpest im Golf von
Mexiko, die im Jahr 2010 drei Monate lang anhielt.

E In Deepwater Horizon accident, the oil poured for almost three
months of the year 2010, followed by an explosion.

entailment NO ENTAILMENT

Figure 3.4: Example for NO ENTAILMENT relation from the SemEval-2012 CLTE data set: both
texts contain additional information that cannot be found in the other text, i.e. a location (im
Golf von Mexiko) in text 1 and details on the spill (followed by an explosion) in text 2.

3.2 Related Work

The majority of research on entailment has been conducted on monolingual TE in the context
of the yearly Recognizing Textual Entailment (RTE) challenge (Dagan et al., 2006a; Bar Haim
et al., 2006; Giampiccolo et al., 2007, 2008; Bentivogli et al., 2009, 2011). We include estab-
lished monolingual features in our approach, such as alignment scores (MacCartney et al.,
2008), edit distance and bag-of-words lexical overlap measures (Kouylekov and Negri, 2010)
from this body of work. Mehdad et al. (2010) first transferred the task to the cross-lingual set-
ting, however reducing the task to monolingual entailment again by using machine translation
to create pivot representations; Mehdad et al. (2011) present the first actually cross-lingual
approach by exploiting parallel corpora to generate phrase alignment features, which are then
passed to a classifier that decides, if entailment is present. Our approach combines ideas
from both, mostly resembling Mehdad et al. (2011). There are, however, several significant
differences: We use word translation probabilities instead of phrase tables for generating align-
ment features and model monolingual and cross-lingual alignment separately. Furthermore,
we do not use linguistic processing for generating cross-lingual features. Regarding the view
on entailment, MacCartney and Manning (2007) proposed the decomposition of top-level en-
tailment, such as EQUIVALENCE (which corresponds to the CLTE BIDIRECTIONAL class), into
atomic forward and backward entailment predictions, which is mirrored in our multi-label ap-
proach with two binary classifiers.

In addition to the TE task itself, there are several fields in which similar problems are consid-
ered. The field of MT evaluation aims to find measures which quantify monolingual semantic
similarity of two sentences,. Our approach derives features from the MT evaluation metric
Meteor (Denkowski and Lavie, 2011), similar to its use in Volokh and Neumann (2011) for the
monolingual TE task5 or Finch et al. (2005). Inversely, Padó et al. (2009) showed that tex-
tual entailment features can be used to measure MT quality, indicating a strong relatedness

5We employ Meteor a differently, though: we compute separate alignment features instead of using only the
final Meteor score and add our own features computed on the Meteor alignment, such as null alignments and
longest unaligned sequence.
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of the two problems. In fact, the CLTE task is also closely related to the problem of identify-
ing parallel sentence pairs in a non-parallel corpus, e.g. the web (Resnik and Smith, 2003).
Cross-lingual similarity is usually quantified based on an alignment between source and target
features. For example, Smith (2002) proposed the tsim metric, which is based on the number
of links between source and target, and is a cross-lingual variant of Jaccard similarity or re-
semblance (Broder, 1997), which is used to calculate the similarity of documents in the same
language. Similar to Munteanu and Marcu (2005) we combine several cross-lingual measures
by modeling them as features and use machine learning to train a classifier, which judges if
two sentences are sufficiently parallel. Since we identified the need to detect aligned parts
of the sentence, we employ features similar to those used to detect parallel sub-sentential
fragments in non-parallel corpora (Munteanu and Marcu, 2006).

3.2.1 The 2012 and 2013 SemEval CLTE for Content Synchronization Task

The first CLTE for Content Synchronization Task was held at SemEval-12 (Negri et al., 2012);
10 teams participated. Apart from our combined approach, systems were either based on
purely cross-lingual features or on monolingual features using pivot translations. Since a
comparison of our system and the other submissions is provided in Section 3.5.5, we will not
discuss approaches in detail at this point. The CLTE task was organized again the follow-
ing year at SemEval-13 with a new test collection (Negri et al., 2013). Six teams competed,
among them a team formed by the organizers (Turchi and Negri, 2013). Three teams (Vilar-
ino et al., 2013; Kouylekov, 2013; Jimenez et al., 2013) returned. Again, approaches were
both either cross-lingual (Turchi and Negri, 2013; Kouylekov, 2013; Graham et al., 2013) or
based on translation (Vilarino et al., 2013; Zhao et al., 2013; Jimenez et al., 2013). Only one
team combined both types of features, similar to our approach, but used less features in total
(Graham et al., 2013). In particular, Vilarino et al. (2013) explored n-gram based features at
word an part-of-speech level and experimented with different classification setups. Kouylekov
(2013) employ standard RTE distance metrics in a cross-lingual setup using a dictionary and
multilingual term weights from Wikipedia. Zhao et al. (2013) combined different features ex-
tracted from monolingual sentence pairs obtained by automatic translation, including syntactic
information. Jimenez et al. (2013) based features on (monolingual) representations of the in-
put sentences as sets of tokens or scores and computed intersection and unions based on
the cardinality of theses sets.

3.3 Modeling CLTE with SMT Features

We define a number of dense features on pairs (E , F ); most features can be characterized as
similarity scores. The different measures are combined in a linear model of the form
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Yi = w · Xi

where a label Yi is predicted based on observations Xi , encoded as a feature vector. The
parameter vector w can be estimated with statistical learning on a set of training examples
with gold-standard labels. Since such a framework can handle a large amount of features, we
combine both cross- and monolingual similarity scores to generate feature representations.
The approach can therefore be considered hybrid in the context of the task. Two monolingual
variants of the input sentence pairs are obtained by translating the English sentence E into the
language of F , yielding the pair (Tr(E ),F ) and vice versa F into English, yielding (E ,Tr(F )).
Google Translate6 is employed as a translation engine in order to have a robust translation
baseline that is able to provide similar translation quality for all language pairs, independent of
domain – properties that would be hard to achieve if we chose to train our own system. Since
our approach combines diverse features, we rely on the learner to identify useful features
by assigning them weights. In Section 3.5 we perform a feature analysis to determine the
contribution of individual features.

3.3.1 Length-based Features

The length ratio of a sentence pair, i.e. the fraction of the number of tokens, is a purely
structural indicator for added or missing information. We define three length-based measures,
one on the cross-lingual pair and two on its monolingual variants using full translations as
pivot, to capture this information.

• English-to-Foreign length ratio, lrE2F = |E |
|F |

• English-to-English-Translation length ratio, lrE2Tr(F) =
|E |

|Tr(F )|

• Foreign-to-Foreign-Translation length ratio, lrTr(E)2F = |Tr(E)|
|F |

Using several similar, overlapping measures adds robustness to our approach. Obviously,
purely length-based features are completely uninformed about the content of the text and will
only work in the narrow setting of the task, where each sentence is by default semantically
related to its counterpart. This feature group therefore serves mainly as a baseline to assess
the contribution of other, more informed features.

6http://translate.google.com/

23



Chapter 3. Detecting Cross-lingual Textual Entailment

3.3.2 Cross-lingual Alignment Features

We define a number of cross-lingual, content-sensitive similarity features based on word align-
ments between tokens ei ∈ E and fj ∈ F . We obtain a lexical translation table by estimating
word translation probabilities (Brown et al., 1993) with GIZA++ (Och and Ney, 2003) on a
data set concatenated from Europarl-v67 (Koehn, 2005) and a bilingual dictionary obtained
from dict.cc89 added to extend coverage. We chose these resources, because approximately
the same amount of data is available for all four language pairs. Instead of working with the
bidirectional alignment produced by GIZA++, we define out own alignment model: since we
can reasonably assume that both sentences are well-formed in their respective language, we
treat them as bags-of-words and discount positional information. In fact, we observed that the
paraphrasing operations used to construct the training and test data resulted in translations
that are semantically equivalent but phrased very differently than the original sentence. In or-
der to capture these correspondences, we found that a basic greedy one-to-many alignment
model without any positional bias worked best as the foundation for cross-lingual features. We
define alignment functions aE2F : i → j and aF2E : j → i that align each token ei in E with the
token fj in F with the highest associated translation probability t(ei |fj) based on the respective
lexical translation table and vice versa.

aE2F (i) = argmax
j=1,...,|F |

tE2F (ei |fj) and aF2E (j) = argmax
i=1,...,|E |

tF2E (fj |ei )

Alignment links are generated independently and there is no word order correlation bias.
Words for which no possible translation is found in the lexical translation table are considered
unaligned, that is aligned to the NULL token e0 or f0. No further restrictions, e.g. a one-to-
one assumption, apply, so we can simply generate alignment links sequentially without having
to resort to approximations such as competitive linking (Melamed, 2000). Resnik and Smith
(2003) point out that when using lexical translation probabilities under such a model, frequent
words10 tend to collect a large amount of probability mass. Resnik and Smith (2003) therefore
resort to an equiprobable translation lexicon in their model. In contrast, we did not find this
phenomenon to be detrimental to our approach. We discuss this point in Section 3.6.1.

Since we are especially interested in the direction of the entailment, we found that using both
alignment directions separately, i.e. both aE2F and aF2E , to compute features was superior to
using a symmetrized set alignment gained with a heuristic such as union, intersection or grow-
diag-final. Figure 3.5 visualizes a sample set of alignment links given by an alignment function

7http://www.statmt.org/europarl/
8http://www.dict.cc/
9The dictionary contains linguistic annotations, such as voice and numbers or tags indicating colloquial speech.

We cleaned the dictionary by applying regular expressions, which removed all annotations.
10These usually correspond to non-content or stop words.
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Figure 3.5: Alignment between German and English example sentence. The shade of the box
indicates t(ei |fj) – the darker the box the higher the word translation probability.

generated by our model. All content words are aligned correctly with a strong associative
weight (black or dark grey boxes). Some non-content words are incorrectly aligned, however,
with a weaker association (light grey boxes). Our alignment strategy yields two separate
alignment functions aE2F and aF2E , that correspond to sets of alignment links with associated
lexical translation probabilities tE2F and tF2E . From these, we derive the following features.

Alignment Precision. Two features that take the value of the number of aligned tokens in E

and F , respectively, normalized by the total number of tokens.

prE2F =
1

|E |

|E |
i=1

min(aE2F (i), 1) and prF2E =
1

|F |

|F |
j=1

min(aF2E (j), 1)

A higher number of linked tokens corresponds to a higher alignment precision. Additional
information in sentence F would for examples result in high E2F alignment precision and low
F2E alignment precision.

Alignment Score. The alignment score corresponds to the alignment precision, but with
each alignment weighted by its word translation probability according to the model.
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scE2F =
1

|E |

|E |
i=1

t(ei |faE2F (i)) and scF2E =
1

|F |

|F |
j=1

t(fj |eaF2E (j))

This extension to the alignment precision is meant to capture the strength of the association
between two tokens. Non-content words tend to align with content words frequently, as shown
in Figure 3.5, but with lower probability. The alignment score accounts for this phenomenon.

Normalized number of unaligned words. These features take the value of the absolute
number of unaligned words in E and F , respectively, normalized by the length of the sentence.

naE2F =
1

|E |

|E |
i=1

1{0}(aE2F (i)) and naF2E =
1

|F |

|F |
i=1

1{0}(aF2E (j))

where 1{0} is an indicator functions that returns 1, when an alignment is 0.

Longest unaligned sequence. Two features usE2F and usF2E that take the absolute value
of the length of the longest contiguous sequence of unaligned words in E and F , respec-
tively. While single unaligned words may be due to the word alignment model being out-of-
vocabulary, a contiguous sequence of unaligned words is an indicator for added information
in one language.

3.3.3 Monolingual Similarity Metrics

Lexical overlap metrics computed on bag-of-words representations of text are frequently used
similarity measures in monolingual TE. The most popular SMT evaluation metric BLEU uses
n-gram precision to quantify the similarity of a translation hypothesis and a reference Papineni
et al. (2002). By using the two pivot variants (E ,Tr(F )) and (F ,Tr(E )) we can compute
similar features on the CLTE pairs.

N-gram Overlap. The overlap coefficient of two sets A and B is defined as the cardinality
of their intersection divided by the cardinality of their union. It is related to Jaccard similarity,
where the cardinality of the intersection of two sets is divided by the size of the larger set.

OC(A,B) =
|A ∩ B|

min(|A|, |B|)

The lexical overlap is computed for unigram, bigram and trigram representations of the two
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sentences for both translation pairs, yielding 2×3 = 6 features11. Similar to BLEU, the n-gram
precision is measured at different levels of n. We do not compute a brevity penalty, since this
information is already captured by the length-based features.

Edit Distance Alignment. In addition to the overlap features, we include edit distance via
a purely string-based monolingual alignment, similar to the cross-lingual alignment described
above. Instead of their joint translation probability, we use string edit distance ED as a simi-
larity measure. Each token ei ∈ E is sequentially aligned to its most similar token e ′j ∈ Tr(F ),
i.e. the one it has the smallest edit distance to,

aE2Tr(F )(i) = argmin
j=1,...,|Tr(F )|

ED(ei , e
′
j ) and aTr(E)2F (j) = argmin

i=1,...,|Tr(E)|
ED(fj , f

′
i )

for each token fj ∈ F and the translation f ′i ∈ Tr(E ). With this procedure, exact matches will
always align to each other. Furthermore, morphological variations and spelling variants are
more likely to be aligned while providing an estimate of how close the two forms are. On both
alignments we can then compute an alignment score by summing up over all distances in the
alignment. We include the log function for scaling.

edE = log

ei∈E

min
e′j∈Tr(F )

ED(ei , e
′
j ) and edF = log


fj∈F

min
f ′i ∈Tr(E)

ED(fj , f
′
i )

3.3.4 Meteor Features

The Meteor evaluation tool (Denkowski and Lavie, 2011) relies on linguistic information to
generate an alignment between two sentences in the same language. The semantic similarity
of the two sentences can then be compared based on this alignment. Meteor is usually used
for scoring the output of statistical machine translation systems given a reference. In partic-
ular, the tool employs stemming, paraphrase tables and synonym collections to align words
between the two sentences (for an examples, see Figure 3.6). Meteor scores the result-
ing alignment by combining alignment precision prM, recall rcM and a fragmentation penalty,
where chunks is the number of contiguous sequences of matched words,

pnfrag =
|chunks|
|matches|

into a weighted score with adjustable weight parameters α, β and γ.

11Denoted as ocE1gr , ocE2gr , ocE3gr and ocF1gr , ocF2gr , ocF3gr .
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Figure 3.6: Meteor alignment matrix between two English sentences. Black boxes indicate
exact matches, grey boxes matches at stem or synonym level, e.g. (somali, somalia) and
(captivity, imprisonment).

scM = (1− γ × pnfrag
β)

prM× rcM
α× prM+(1− α)× rcM

We use both the overall score12 and separate precision, recall and fragmentation scores as
features in our model. Meteor provides linguistic resources for several languages, but the
synonymy module is only available for English. We therefore compute scores on (E ,Tr(F )).

3.3.5 Additional Meteor Alignment Features

We can use the alignments output by the Meteor scorer for (E ,Tr(F )) to calculate – in addition
to the separate Meteor scores mentioned above – the following features, analogous to the
features computed on the cross-lingual alignments13.

• normalized number of unaligned words, naM

12The score was computed with the pre-tuned weights shipped with Meteor-1.3.
13Alignment precision is already included in the model via the separate Meteor scores.
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Figure 3.7: Features grouped by type.

• length of the longest unaligned subsequence, usM

In total, we define 25 dense features: 9 cross-lingual features, i.e. computed directly on E and
F , and 16 monolingual features, i.e. based on translations of E or F paired with the original
other sentence. Figure 3.7 shows a taxonomy of the features.

3.4 Classification

We treat the entailment task as a classification problem and encode all previously described
metrics as features in a statistical learning framework. As dense features like the similarity
scores and key figures described above take values in different data ranges, we normalize all
feature value distributions to the normal distributionN (0, 13), so that 99% of the feature values
lie in the interval [-1, 1]. We employed two toolkits to learn a model for predicting entailment.
Both toolkits implement support vector machines (SVM) (Vapnik and Vapnik, 1998).

SVMlight14 is a widely used, light-weight toolkit for learning SVMs. It implements binary clas-
sification, structured prediction and ranking SVM using varying optimization strategies.
Multi-class learning is framed as an instance of structured prediction (Joachims, 1999).

Sol15 was developed at ICL Heidelberg and was employed for this task in order to evaluate its
performance compared to SVMlight . It uses stochastic gradient descent and implements
binary, multi-class and multi-label classification as well as regression and structured
prediction (Fendrich, 2012).

An SVM is a supervised model, which learns a hyperplane that separates the projections of
the training examples in the feature space according to the output classes. It is an instance of
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Figure 3.8: Example space for two features.

a large margin classifier, i.e. it aims to find the best separating hyperplane which maximizes
the distance to the training data points by minimizing the squared norm. Our goal is there-
fore to identify features that make the training data separable. Figure 3.8 depicts an example
feature space with the values of the two cross-lingual alignment ratio features. With the two
features shown in Figure 3.8, the examples are not separable, but a tendency for the entail-
ment classes to reside in different areas of the feature space16 is visible. There are different
learning strategies in order to predict the output for the CLTE task.

Binary Classification. A binary classifier has the ability to output exactly two labels y ∈
−1, 1, corresponding to yes and no. In our task, such a classifier can predict the presence
(+1) or absence (−1) of directional entailment.

Multi-class Classification. Multi-class learning aims to discriminate between Y = 1, ..., k

target classes, four in our cases. The final class is directly output by the classifier. Possible
strategies for multi-class classification are structured prediction, where the classifier output
is a vector of probabilities where each entry corresponds to a target class, or the one-vs-all
scenario, where a binary classifier is learned that discriminates class j from all other classes
̸= j for each class j ∈ 1, ..., k . Both Sol and SVMlight implement the structured prediction
strategy for multi-class learning.

16Depicted in two separate figures for better readability.
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Multi-label Classification. Instead of one single output label, multi-label classification as-
signs every instance a subset of non-exclusive labels, Y ⊆ 1, ..., k . Multi-label classification
can be implemented by learning a binary classifier for each label – either independently or
using a single objective function. (Fendrich, 2012).

Since the CLTE task defines four target entailment classes, multi-class classification seems
like the obvious choice to address the problem. However, the four entailment relations can be
further broken down into two atomic relations, namely directional entailment from E to F and
from F to E (see Table 3.1). This makes is possible to learn a separate binary classifier for
each atomic entailment relation and combine the output to obtain the final entailment class
following Table 3.1. This approach is actually an instance of multi-label learning, with the
presence or absence of an atomic entailment relation as the values of two labels: E → F and
F → E . Sol (but not SVMlight ) features an implementation of multi-label learning with a single
objective function. We can compare this to two separately learned binary classifiers.

E → F F → E entailment

1 1 bidirectional
1 0 forward
0 1 backward
0 0 no entailment

Table 3.1: Combination of atomic entailment relations.

3.5 Experimental Results

To train supervised systems, the CLTE task organizers provided 500 sentence pairs for de-
velopment annotated with the four entailment relations defined in Section 3.1, as well as 500
pairs (without annotation) for testing. The classes are equally distributed over both data sets
and the test data mirrors the training data distribution. All reported results on development
data are calculated with 2-fold cross-validation, i.e. by splitting the development set into two
parts of 250 sentence pairs each, learning the model on one part and evaluating on the other
and vice versa. We report the mean classifier accuracy17 over both runs. We employed
random permutation (Noreen, 1989) to assess significance between two system runs: class
labels of both runs are randomly shuffled and the evaluation metric – accuracy in our case
– recomputed. We then count, how frequently the difference in score on the shuffled data
exceeds the original difference in score. The more frequently the shuffled data produces a
similar or larger difference, the more likely it is that the difference we observed between the

17Accuracy is defined as the number of correctly classified examples, both positive and negative, divided by the
total number of examples.
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two runs is random. In practice, we shuffled the labels a 1,000 times and considered results at
a level of p < 0.05 significant, meaning that only in less than 5% of the random assignments
the observed difference in accuracy turned out larger than the original difference.

3.5.1 Baselines

es-en it-en fr-en de-en

random 25.0% 25.0% 25.0% 25.0%
length 40.8% 39.8% 41.2% 39.4%

Table 3.2: Baselines on development set.

We calculated two baselines to assess the quality of our model (Table 3.2). As a random base-
line, we assigned the same entailment relation to all examples, which results in an accuracy
of 25.0%, since the four classes are equally distributed across the data set. The length-based
baseline consisted of a system using only the first feature described in Section 3.3, the token
ratio measuring the fraction of the numbers of tokens in text E and F . This baseline is actually
quite competitive, but this is, as pointed our before, a direct result of the limited scope of the
task. In a real-world application, sentences with no content overlap will be assessed, so a
purely length-based criterion would fail.

3.5.2 Choosing a Classifier Setup

es-en it-en fr-en de-en

multi-class 47.0% 45.6% 46.6% 45.8%
multi-label 58.6% 52.6% 56.8% 52.2%
2 × binary 64.6% 61.4% 62.8% 58.8%

Table 3.3: Accuracy employing two different classifiers to estimate the parameters of the
linear model (2-fold cross-validation on development set).

Table 3.3 shows results obtained with the full feature set using three different classification
strategies. Using two binary classifiers to detect the two entailment directions separately sig-
nificantly outperforms both other options on all language pairs. Although multi-label learning
makes use of the same information by learning the separate entailment directions as labels,
it consistently performs 4-9 percentage points worse. The multi-class classification with the
one-vs-the-rest strategy for the four entailment classes places a distant third. The results sug-
gest that the view of the problem as detecting entailment only in one direction at a time makes
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Figure 3.9: Performance of individual features.

it easier to model for a statistical learner and that joint modeling of the two atomic entailment
relations is actually disadvantageous.

3.5.3 Individual Feature Results on Development Data

To assess the contribution of single features, we performed three studies of their individual
behavior. Due to the number of features, it was not feasible to test all possible combinations
of features and determine the best. In the first study, we evaluated each feature by learning a
classifier only on the single feature and measured the performance of the resulting classifier on
the development data. Figure 3.9 shows results for individual features, ranked by performance.
When only one feature is available to the classifier, the purely length-based features (lrE2F,
lrE2Tr(F) and lrTr(E)2F) perform significantly better than other features, while overlap features,
especially with higher order n-grams (ocE2gr , ocE3gr , ocF2gr , ocF3gr ), perform worse. The Meteor
scores, scM, prM and rcM, are good individual predictors for all languages pairs except de-en.
This can be explained by the fact that automatic translation from and into German is more
challenging than into the other languages due to the richer morphology.

The power of the features lies in their combination, as can be observed in Figure 3.10. For this
study, we incrementally added one feature at a time, starting from a baseline classifier with
only one length-based feature and ending with a classifier trained on the full set of features.
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Figure 3.10: Incremental feature activation.

Performance climbs steeply with the first two added features, lrE2Tr(F) and lrTr(E)2F alignment
ratios, and continues to climb steadily. This shows that later features do not add much more
information, but still contribute to and stabilize the overall result. Observing the individual
lines, adding some features results in small drops in score on es-en; the score later recovers
and finally receives a significant boost from the Meteor alignment features. On the de-en
task, the largest boost comes from the features capturing the length of the longest unaligned
subsequence. This observation is confirmed by the third study, where, starting from a full
system, we evaluate the change in accuracy from switching off, i.e. removing a single feature
from the full set. The longest unaligned sequence features play a crucial role on all subtasks.
The performance of the system for the es-en subtask drops significantly, when the Meteor
precision feature is switched off, but apart from that, the study confirms the robustness of the
feature set, since the removal of a single feature has no significant influence on the score.

To get more conclusive results, we performed ablation tests for groups of features. Sets of
similar features were switched off, i.e. not used to train the classifier, and the impact on
accuracy measured (Table 3.4). A significant impact is indicated in bold font. A single feature
group significantly impacts the score only in two cases, namely the Meteor score features for
es-en and the cross-lingual alignment features for de-en. However, no feature group hurts
the score either, since negative variations in score are not significant. To ensure that the
different feature groups actually express diverse information, we also evaluated our system
using only one group of features at a time (see Table 3.5). The results confirm the most
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Figure 3.11: Ablation test, i.e. switching off one feature and evaluating the performance drop,
on development set.

significant feature type for each language pair, but even the best-scoring feature group for
each pair always yields scores 3-6 percentage points lower than the system with all feature
groups combined. We conclude that the combination of diverse features is one key aspect of
our system.

3.5.4 Results on SemEval12 CLTE Test Set

We submitted two runs to SemEval12, using the full feature set and a combination of two
binary classifiers as a setup. The runs differed only in the choice of learner. Accuracy scores
are given in Table 3.6. Sol outperforms SVMlight on three of the four language pairs, although
the differences are not significant. Table 3.7 shows detailed results for the best run for each
entailment class separately. Precision is highest for the BACKWARD entailment class for three
out of four language pairs; for the fr-en subtask, the classifier achieves the highest precision
on the NO ENTAILMENT class, but at the cost of very low recall. Recall is equally good on
the BACKWARD class, making this the entailment relation that is most reliably identified by our
classifier for all language pairs, followed by the FORWARD relation. BIDIRECTIONAL and NO

ENTAILMENT are less well delimited, with NO ENTAILMENT getting least reliably identified.
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feature group (#) es-en it-en fr-en de-en

Meteor scores(4) 61.6% 60.0% 61.8% 59.0%
monolingual (8) 64.4% 60.8% 62.0% 59.6%

token ratio (3) 65.2% 60.6% 62.0% 58.8%
cross-lingual align (8) 63.8% 59.2% 62.0% 52.6%
monolingual align (2) 64.8% 62.4% 59.0% 59.6%

all (25) 64.6% 61.4% 62.8% 58.8%

Table 3.4: Ablation tests on development set. Significant impact on accuracy by removing the
specified feature group is denoted in bold font.

feature group (#) es-en it-en fr-en de-en

Meteor scores(4) 61.6% 55.2% 56.8% 52.2%
monolingual (8) 54.4% 51.6% 55.8% 50.2%

token ratio (3) 45.0% 42.2% 44.6% 41.2%
cross-lingual align (8) 50.2% 50.8% 51.6% 55.8%
monolingual align (2) 58.0% 55.4% 55.0% 47.8%

all 64.6% 61.4% 62.8% 58.8%

Table 3.5: Classifier accuracy of individual feature groups on development set.

3.5.5 System Comparison

Our system performed best out of ten systems for the language pairs es-en and de-en and
tied in first place for fr-en. For it-en, our system came in second. Table 3.8 shows an overview
of the systems designed for SemEval12. The majority use machine learning (ML) to assign
entailment classes to the given sentence pairs. When it comes to features, all system except
ours restrict themselves to exclusively using either cross-lingual (cl) or translation based (tb)
features, relying on the automatic translation of one of the two sentences. The official results
on the test set suggest that the richer feature space is an advantage for our model. In general,
approaches that used heuristics performed worse than systems using ML.

es-en it-en fr-en de-en

SVMlight 63.0% 55.% 56.4% 55.8%
Sol 63.2% 56.2% 57.0% 55.2%

Table 3.6: Results on test set.
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FORWARD BACKWARD

P R F1 P R F1

de-en 56.7% 54.4% 55.5% 59.6% 67.2% 63.2%
fr-en 56.4% 67.2% 61.3% 58.2% 73.6% 65.0%
it-en 56.4% 60.0% 58.1% 62.8% 64.8% 63.8%
es-en 60.7% 65.6% 63.1% 67.7% 70.4% 69.0%

NO ENTAILMENT BIDIRECTIONAL

P R F1 P R F1

de-en 53.6% 48.0% 50.6% 50.4% 51.2% 50.8%
fr-en 67.6% 38.4% 49.0% 50.0% 48.8% 49.4%
it-en 55.1% 52.0% 53.5% 50.0% 48.0% 49.0%
es-en 60.2% 59.2% 59.7% 64.3% 57.6% 60.8%

Table 3.7: Precision, recall and F-measure for all entailment classes.

3.6 Discussion

We have shown that features obtained by using methods from statistical machine translation
can be successfully applied to a cross-lingual variation of a semantic task. We found that
combining similarity scores computed on both cross-lingual and monolingual alignment fea-
tures resulted in the highest accuracy. Comparing cross- and monolingual features yielded
mixed results depending on the language pair. Apart from using scores obtained with the Me-
teor tool, which employs paraphrase and synonym tables, no linguistic processing was used,
which makes the approach easily portable, as long as parallel data is available. Key to our
approach is furthermore the view of the four-class entailment problem as a bidirectional binary
problem. We conclude that our results can be improved most by building on better alignments,
i.e. using more data for estimating cross-lingual alignments and larger paraphrase tables. Ex-
periments with more informed features, as briefly discussed in Section 3.6.1, did not yield
better classification results.

3.6.1 Discarded Features

While developing the model, several extensions and additional features were designed and
tried out on the development data. For the sake of completeness and as a hopefully helpful
guide for future work in the field of CLTE, we sum up some of the findings below.

Enlarging the training data. We created additional training pairs by reversing E and F and
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system tb cl assignment

Wäschle and Fendrich (2012) ◦ ◦ classifier

Esplà-Gomis et al. (2012) ◦ ML
Jimenez et al. (2012) ◦ classifier
Mehdad et al. (2012) ◦ classifier
Meng et al. (2012) ◦ classifier
Vilariño et al. (2012) ◦ heuristic
Castillo and Cardenas (2012) ◦ classifier
Perini (2012) ◦ heuristic
Kouylekov et al. (2012) ◦ classifier
Neogi et al. (2012) ◦ heuristic

Table 3.8: Classifying the systems submitted for the SemEval 12 CLTE task along the di-
mension of features (translation-based or cross-lingual) and method for assigning examples
an entailment class based on those features.

adjusting the label accordingly: FORWARD and BACKWARD label where switched to re-
flect the reverse relation, while BIDIRECTIONAL and NO ENTAILMENT relations remained
fixed. However, adding the additional data had no influence on the overall result, sug-
gesting that the size of the given data set was sufficient to learn the model.

Stop word filtering. When estimating word alignments, non-content words such as articles
or prepositions tend to receive translation probability mass with many different content
words. In a greedy alignment procedure, as used in our model, this makes them align to
content words that actually have no counterpart in the other language. Due to this, im-
portant indicators for added information might be lost. To prevent greedy alignments of
content and non-content words, we added a customized stop word filtering step for each
language before calculating alignments. Contrary to our intuition, this did not improve
system performance significantly.

IDF weights. Instead of radically discarding non-content words by filtering with a stop word
list, we tried weighting tokens by their inverse document frequency (IDF) when comput-
ing alignment precision. IDF of a term t is defined as log(1+N/nt), where N is the total
numbers of documents in the corpus and nt the number of documents that contain t.
Alignment scores that included IDF weights performed comparably to their unweighted
version.

Stemming. Since the step most prone to errors, on which many features rely, is the align-
ment between E and F , we analyzed the most common alignment mistakes. Even
with the recall-oriented alignment, incorrectly NULL-aligned tokens were a big problem,
i.e. the system was frequently out-of-vocabulary. We tried stemming tokens using the

38



Chapter 3. Detecting Cross-lingual Textual Entailment

Porter stemmer (Porter, 1980) before computing the cross-lingual alignment and be-
fore computing n-gram overlap in the monolingual setting, but did not gain consistent
improvements from this measure.

Compound splitting. When translating German text into English, compound splitting on the
German side can be beneficial to correctly translate German compound words, which
can be arbitrarily long and are not likely to be found in a dictionary or training corpus
(Wäschle and Riezler, 2012). We hypothesized that compound splitting on the German
sentences could help with the alignment of German and English compound words (for
an example see Figure 3.6.118), and trained a compound splitter on the German portion
of the training corpus for the word alignments, but we found no improvements on the de-
en subtask. This might simply be due to the fact, that only a small fraction of compound
words was contained in the given examples, which did not influence performance much.
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Figure 3.12: Word alignment between German and English text, without (left) and with com-
pound splitting (right) on the German side.

Our developmental results suggest, that additional processing of the tokens might not be the
direction in which to extend our system. The presented model relies crucially on parallel data
to compute alignments and yield good automatic translations, suggesting that the precision of
these steps might have the most influence on overall performance. However, De Souza et al.
(2013) improved performance of a CLTE system by using shallow linguistic processing. While

18The shown phrases are an excerpt of example 443 of the SemEval12 CLTE training set, which was simplified
for demonstration.
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adding an IDF feature that computed a variant of alignment precision, where each token was
represented by its associated IDF score, gave only small improvements, features taking into
account part-of-speech information when computing alignment scores resulted in a significant
boost in performance over purely quantitative features as used by our model.
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CHAPTER 4

Quantifying Cross-lingual Similarity in a Noisy-Parallel Corpus

In the section on related work in Chapter 3 we discussed the link between cross-lingual textual
entailment and the task of finding parallel phrases in a comparable corpus. Filtering out non-
parallel sentences from a largely parallel corpus is a further complementary task. Usually,
sentence-parallel corpora are automatically constructed from parallel documents, i.e. doc-
uments for which one or more translated versions are available. Since human translations
are rarely literal, texts often exhibit discrepancies – to which extent depends on the transla-
tion process. To obtain parallel text from documents in the intellectual property (IP) domain,
translations of patent text sections can be acquired through various channels (Wäschle and
Riezler, 2012). Translations of full documents including the largest part, the description, are
produced, when an invention is filed in different countries. However, several years can pass
between the filing and different standards apply for document formatting in different countries.
This can lead to discrepancies between different language versions of a document. Since
pre-processing and sentence alignment are fully automated to deal with the large amounts
of parallel data1, non-parallel pairs can find their way into the parallel data. To follow up on
open questions left by previous work (Wäschle and Riezler, 2012), we investigate the quality
of sentence-parallel data automatically extracted from patents more thoroughly. We conduct
a survey with human raters to estimate the amount of non-parallel or noisy parallel sentence
pairs in the final data and to detect their origin. We propose to introduce an additional filtering
step in the sentence alignment pipeline for data extracted from comparable documents and
evaluate the influence of such a filter on SMT quality. The filtering system is based on the

1In the order of tens of millions of sentences.
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classifier we employed to detect cross-lingual entailment described in the previous chapter.
We find that the SMT pipeline is robust enough to deal with a significant amount of non-parallel
data in the corpus. However, filtering reduces the amount of data necessary to train the SMT
system without impacting translation quality, thus saving training time.

Discovering parallel sentences in parallel or comparable documents is a well researched prob-
lem. Gale and Church (1993) were the first to propose a sentence alignment algorithm based
on sentence length ratio using dynamic programming (DP). Moore (2002) and Braune and
Fraser (2010) extended the approach with a second pass using IBM Model 1 lexical proba-
bilities obtained during the first, length-based pass, enabling them to produce high-precision
alignments even for noisy parallel corpora. Since the amount of naturally occurring parallel
data is limited and employing human translators to create new translations from scratch gen-
erally too expensive, the problem of finding parallel sentences in comparable data, e.g. from
the web (Resnik and Smith, 2003), has become a field of research. Munteanu and Marcu
(2005) proposed a two-step approach, using cross-language information retrieval (CLIR) to
find topically related documents in different languages and a maximum entropy classifier to
detect parallel sentences. This approach has since been extended, e.g. by making the search
more efficient (Tillmann, 2009), mining parallel sentences from off-topic documents using a
bootstrapping strategy (Fung and Cheung, 2004) or reducing the search space with a trainable
translation similarity measure (Ştefănescu et al., 2012). The problem has also been expanded
to the detection of sub-sentential parallel fragments (Munteanu and Marcu, 2006; Quirk et al.,
2007). Our task looks at the problem from the opposite direction: instead of identifying parallel
sentences in a large amount of non-parallel data, we try to detect a small rate of noisy parallel
and non-parallel data in large amounts of bitext. A first step towards this goal is therefore to
quantify the levels of parallelism in the data.

Filtering on top of a DP sentence aligner has been done in several ways. Mújdricza-Maydt
et al. (2013) use bootstrapping with a conditional random field sequence classifier to improve
the precision of a sentence aligner. Utiyama and Isahara (2003) propose an additional filtering
step after CLIR and DP alignment and define measures for alignment quality, which correlate
with human judgments. The measures are used to rank sentences aligned with a DP method
and a cutoff value is determined based on a manual inspection of a sample of data at several
points in the ranking. Lu et al. (2009) automatically align Chinese-English patent text and find
that the resulting corpus is noisy parallel. They annotate a sample of 1000 aligned sentences
manually and score all sentence pairs according to three different similarity measures. The
respective rankings are evaluated against the annotated data; furthermore, the influence on an
SMT system is measured. However, it is also worth considering, if filtering noise is necessary
at all. Simard (2014) question the best practice of cleaning data before SMT training. They
investigate the case of MT contamination by injecting automatically translated bitext into the
training data for an SMT system and measuring its impact on translation quality.
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Our approach is most similar to the work by Utiyama and Isahara (2003) and Lu et al. (2009).
We employ the Gargantua aligner (Braune and Fraser, 2010), an instance of DP alignment
based on length and a second filtering step based on lexical translation probabilities estimated
in the first step. Like Utiyama and Isahara (2003), we work on data from the intellectual
property domain and use human annotations to produce a gold standard rating of a sample
of data. But instead of ranking the sentence pairs according to a similarity score, we use a
discriminative approach to detect non-parallel sentences by applying a variant of our system
designed to detect textual entailment (see Chapter 3) adapted to the filtering task. Meta-
parameters of the learning approach, such as the cutoff value, are set on development data.
Although the field is already well-researched, we think the study at hand is beneficial. Our
concrete research goals are:

• How does the noisy parallel data influence translation quality on this particular corpus?
Since the corpus is publicly available, this information can be helpful for researcher that
consider using the corpus in their work. As a new data set, not many empirical studies
are available so far to characterize the behavior of the data.

• What does the manual annotation of a sample from the data reveal about the problems
of the parallel document extraction and automatic alignment? This information can be
used to refine the alignment process for extracting patent bitext from comparable family
patents for other language pairs.

We provide both intrinsic (on a hand-annotated set) and extrinsic (SMT task) evaluation to
document our findings. The annotation serves two purposes:

Analysis. Determine the actual distribution of the levels of parallelism in the corpus.

Training Data. Provide the ability to learn on actual semi-parallel examples instead of artifi-
cially constructed semi- or non-parallel data.

We find that sentence pairs from patent abstract and claims sections contain very clean,
parallel data, but that data extracted from descriptions contains about 15%-20% of noise.
Even though the aligner uses a lexical filtering step, we believe that our filtering procedure
will be able to identify these additional non-parallel sentence pairs, since information for the
features, such as word translation probabilities, are estimated on established, clean parallel
data extracted from patent titles, abstract and claims. We describe the fully automated data
extraction and sentence alignment process in Section 4.1. The annotation procedure and an
analysis of the results is described in Section 4.2. Section 4.3 details our adapted filtering
model and experimental results are reported and discussed in Section 4.4.
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4.1 Corpus Construction

Building on previous work on constructing a German-English parallel corpus of patent text
(Wäschle, 2011; Wäschle and Riezler, 2012), we extracted bitext for two more language
pairs, English-French and German-French2 from the MAREC3 patent document collection.
MAREC contains more than 19 million patent applications and patents in a unified XML for-
mat. The patents have been collected from four major national and international patent agen-
cies, EPO4, WIPO5, USPTO6, and JPO7, containing text in many European languages, most
notably French and German, as well as English and Japanese. Some of the documents are
multilingual and contain text sections in up to three languages. Following Wäschle (2011),
we first extracted parallel sections8 of text from multilingual patent documents using an XML
parser. Since there are no parallel description sections in the same document, we aligned
English patents from the monolingual USPTO corpus to patents with French content from the
EPO and WIPO corpora. Since MAREC does not contain monolingual corpora of French
nor German patents, this technique could not be exploited to derive description data for this
language pair. The number of unique parallel sections in MAREC for both language pairs is
shown in Table 4.1. We dealt with different kinds9 of a patent document as detailed in Wäschle
(2011), giving priority to document versions with a higher number of multilingual sections and
newer publication date and disregarding other versions.

title abstract claims description

en-fr 2,504,772 1,172,121 617,736 57,236
fr-de 1,953,815 50,653 271,778 –

Table 4.1: Number of parallel sections.

Following the extraction step, we split and tokenized the raw text sections to prepare them for
sentence alignment. We used the Gargantua aligner10 (Braune and Fraser, 2010), a state-
of-the-art sentence aligner (Abdul-Rauf et al., 2010) with reported precision values of more
than 95% for different data sets. We employed Gargantua on batches of 10,000 parallel text

2The complete parallel corpus was released as PatTR under a Creative Commons license (by-nc-sa) and can
be downloaded from http://www.cl.uni-heidelberg.de/statnlpgroup/pattr.

3http://www.ir-facility.org/prototypes/marec
4European Patent Office, https://www.epo.org/
5World Intellectual Property Organization, http://www.wipo.int/
6United States Patent and Trademark Office, http://www.uspto.gov/
7Japan Patent Office, http://www.jpo.go.jp/
8A patent document contains the text sections of title, abstract, claims and description.
9The kind, i.e. type of a patent document is encoded in a suffix to the document identifier, such as A0 or B1,

and is used to distinguish between different versions of a document. These can be for example patent application
and final granted patent or search reports and other augmentations.

10http://gargantua.sourceforge.net/
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sections. The resulting alignment statistics for both language pairs can be found in Tables 4.2
and 4.3. For both languages, the claims turn out to be highly parallel with input-output-ratios
of 95% and higher for both input languages. English and French abstracts turned out to be
highly parallel as well, while French abstracts seemed to be considerably longer than their Ger-
man counterparts. It is not surprising that French and English descriptions, which stem from
different documents, exhibit a significantly lower input-output-ratio for both input languages.
All statistics are in accordance with the numbers previously observed for English-German
(Wäschle, 2011).

en fr

output input % input %

abstract 3,697,670 3,918,623 94.36% 4,034,051 91.66%
claims 6,966,851 6,966,851 98.10% 7,030,849 99.09%
description 5,594,745 5,594,745 79.15% 6,158,901 90.84%

Table 4.2: Alignment statistics for en-fr.

fr de

output input % input %

abstract 122,440 161,609 75.76% 125,686 97.42%
claims 3,034,007 3,176,191 95.52% 3,151,520 96.27%

Table 4.3: Alignment statistics for fr-de.

en fr

tokens types tokens types

title 20,361,301 297,148 25,971,983 273,355
abstract 153,499,158 631,104 176,341,220 480,851
claims 509,447,509 1,043,258 578,720,048 918,638
description 229,420,848 865,687 241,304,626 941,973

total 912,728,816 2,072,167 1,022,337,877 1,904,081

Table 4.4: Types and tokens in final en-fr corpus.

We report the numbers of types and tokens in the final corpus in Tables 4.4 and 4.5. German
text typically features a large number of types due to the compounding process that can result
in arbitrarily long words. Especially patent titles, which mostly consist of descriptive nouns,
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fr de

tokens types tokens types

title 20,207,789 239,180 12,965,785 1,068,837
abstract 7,416,101 62,504 5,852,959 282,274
claims 255,947,775 553,298 207,106,263 2,538,687

total 283,838,214 704,355 226,187,490 3,329,068

Table 4.5: Types and tokens in final fr-de corpus

have a high fraction of types (Wäschle, 2011). Comparing the average number of tokens
per sentence also reveals that claims feature especially long sentences. Figures 4.1 and 4.2
show some metadata statistics for the extracted sentence data. To help researchers split the
corpus in a sensible way, we extracted selected meta information from the XML documents
and annotated each sentence with the patent identifier of the original document, its family
patent identifier – which groups together related documents filed in different countries –, date
of publication and classification according to the International Patent Classification11 (IPC).
The majority of the data was published in the decade between 2000 and 2010 – proof of
the growing importance of the IP domain and the need for technologies such as SMT and
information retrieval to process the large amounts of data with high quality of the output. Due
to the different nature of the four genres induced by the patent text sections, we keep the
partition by section for for further processing, as detailed in the following section.

4.2 Annotation Procedure

Many approaches for detecting noise in corpora use pseudo-noisy parallel data, i.e. they take
a corpus that is known to be parallel and add negative (non-parallel) instances by combining
each source with each non-corresponding target sentence (possibly sampling from this set
to create a more balanced data set with a larger percentage of positive (parallel) examples),
to develop systems that distinguish between parallel and non-parallel data (Munteanu and
Marcu, 2005). Others inject noise into a parallel corpus by incrementally adding automatically
translated data to a corpus of human translations (Simard, 2014). Instead of artificially pro-
ducing a noisy data set, our goal is to analyze the types of noise occurring in the corpus we
produced using a fully automated pipeline. To this end, we chose the more time-consuming
route of producing manual annotations for a sample of the sentence-aligned data. We pro-
ceeded in a two-step approach, starting with a preliminary annotation of a small amount of text
from all automatically aligned text sections, to gain a first insight, and, after careful analysis, a

11http://www.wipo.int/classifications/ipc/en/
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Figure 4.1: Number of en-fr sentence pairs by publication date.

second annotation of a larger sample of text to produce a data set for learning and evaluating
a filtering system.

4.2.1 Preliminary Experiment

We performed a preliminary investigation on the automatically aligned data to get an impres-
sion of the amount and type of noise in the data. We were especially interested in non-parallel
phenomena that appeared regularly, indicating structural differences between the documents
in different languages. To this end, we sampled 85 sentences from three text sections, ab-
stract (15), claims (15) and description (45), for each language pair, and had annotators mark
anything notable, i.e. sentence pairs that they considered less than perfect translations. We
conducted this procedure on German-English and French-English12 data. Analyzing the anno-
tations, we found no mentionable noise in abstracts and claims, which confirms our hypothesis
that parallel sections extracted from the same document are near-perfect translations of each
other. The description data, however, that was collected from separate documents, contained
a significant amount of noise. We sum up our observations dividing them into two categories.

Structural noise

• We found multiple instances of sentence numbering, which was present on one side

12We did not study the third language pair in PatTR, German-French, because of the lack of sentence-aligned
description data.
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of the sentence pair but not the other. This was not restricted to one language; Ger-
man, English and French sentences contained numbering of the format [XXXX], where
X ∈ 0, ..., 9, with a respective counterpart missing in the aligned sentence. In some in-
stances, numbering was present on both sides of a sentence pair, but the numbers did
not correspond to each other.

• English description sentences were frequently preceded by headlines in upper case
font, such as EXAMPLE, DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS or
SUMMARY OF THE PRESENT INVENTION, which was not mirrored by the German and
French translation. The remainder of the sentence would usually be parallel.

We decided to address both sources of noise by removing all numbering in the format stated
above and a fixed set of headlines in upper case letters using regular expressions.

Faulty alignments A different form of noise regards larger non-parallel units of text and can
be attributed to the error rate of the tools used for processing the corpus.

• Some sentence pairs were parallel to a degree of only 20% of overlapping content due
to faulty sentence splitting on one side of the data. Even though we used a sentence
splitter equipped with a list of patent-specific abbreviations, occurrences of unknown
abbreviations, e.g. names like J. Clin., caused mid-sentence splits.

• We found that in the French-English data, introductory statements would often not be
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en fr
A biosensor for detecting introduc-
tion [...]

L’invention porte sur un biodé-
tecteur détectant l’introduction [...]

Disclosed are clear, soap-gelled
cosmetic [...]

L’invention concerne des composi-
tions [...]

The degree of substitution (DS)
[...]

Der Substitutionsgrad (DS = de-
gree of substitution) [...]

Figure 4.3: Two instances of deviating introductory statements in French and English patent
descriptions and an instance of an explanation of an English term in the German sentence.

en It is, however, necessary to make sure that the gap 16 for the
exit of the sugar is maintained.

de Eine derartige Verbindungsstelle 19 ist in der Figur schema-
tisch dargestellt.

Figure 4.4: An instance of aligned sentences with different content.

literal translations, even though a closer translation would have existed. Two examples
are given in Figure 4.3.

• In addition to these sub-sentential phenomena, we also found sentence pairs that were
of roughly the same length but had almost no content overlap. For an example, see
Figure 4.4. These are due to errors made by the sentence aligner.

Table 4.5 shows, how often the phenomena described above appear in the data. Note, that
the sample size for our study was very small, so numbers on the whole corpus will differ to
some extent. However, the study leaves us with some pointers for how to proceed to improve
the quality of the parallel data. In summary, we can state that there are multiple sources
of noise in the sentence-parallel data derived from automatically aligning descriptions from
two patent documents. We can easily remove structural noise, such as sentence numbering
and headlines appearing only on one side of the data, and retain loose translations, that can
still be informative. For highly non-parallel sentence pairs resulting from aligner error, we
propose an additional filtering step based on a word alignment between source and target.
We established that parallel data extracted from abstract, claims and title sections is highly
parallel, which makes it a valuable resource. We can estimate lexical translation probabilities
on this data and use these to align candidate sentences for filtering. On the alignment, we can
compute similarity scores that are combined in a linear model, similar to the model used for
recognizing cross-lingual entailment discussed in the previous chapter. To train and develop
the model, we need a set of gold standard sentence pairs, which we produce in the next step.
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headlines numbering other

en-fr 6.67% 15.56% 15.56%
de-en 13.34% 28.89% 20%

Figure 4.5: Rates of noisy parallel sentence pairs by cause.

4.2.2 Main Annotation

To derive an annotated data set sufficiently large to train and develop a classifier on, 500
French-English13 sentence pairs were sampled from the corpus. Regular expression filter-
ing as described above was applied to the data before sampling. For testing purposes, the
sampling was restricted to description sections from documents published in April 2008. The
resulting data set underwent a manual annotation by two expert annotators. Since the sen-
tence aligner produces many-to-one alignments, the data can be considered text rather than
to sentences pairs. Annotators were asked to rate the pairs with regard to parallelism and
semantic equivalence. They were given the following task description14.

1. Assign an equivalence score to every pair, ranging from 0% to 100%. Com-
pletely differing texts correspond to a score of 0%, texts with identical content
in both languages to 100%. We recommend using 20% steps in between or
at most 10% steps, if the data indicates this. Small variations, such as Figure
vs. FIG., comma vs. semi-colon and loose translations are considered as
equivalent. Focus on content discrepancy, e.g. an additional or incomplete
sentence on one side – depending on the example, this would correspond
an agreement with a score of of 40% or 60%.

2. In a second pass, rate the relation between the content of the two texts with
one of the following four classes:

EQUIV (can be derived from an equivalence score of 100%, no explicit an-
notation necessary)

ADDen The French text is completely contained in the English text, but the
English text features additional content.

ADDfr The English text is completely contained in the French text, but the
French text features additional content.

13Since we had to ration resources for annotation, we opted for annotating a large amount of data with two
annotators, but only on one sentence pair, as opposed to covering both sentence pairs, but with fewer and less
reliable resulting resources. For the CLTE task, De Souza et al. (2013) showed that parameters learned on one
language pair transfer to other language pairs with only small impact on accuracy, especially when the languages
are similar.

14Translated from German by the author.
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EQUIV 445 89.20%
ADDen 19 3.80%
ADDfr 16 3.20%
NONE 19 3.80%

total 500

Table 4.6: Distribution of classes in final annotation.
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Figure 4.6: Distribution of scores given by the annotation.

NONE (can be derived implicitly from the other three classes, no annotation
necessary)

Annotators agreed in 479 cases and disagreed in 21 with an inter-annotator agreement of
κ = 0.797 for the class annotation. The disagreement cases were decided by a third juror15 to
obtain the final annotation. The majority of sentence pairs received a perfect score of 100%
and an EQUIV rating (see Table 4.2.2 and Figure 4.6).

15The author.
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4.3 Adapting a System for Recognizing CLTE for Filtering

To build a system for automatically detecting non-parallel sentences in our data, we employ
the pipeline described in Chapter 3. However, we select a subset of the previously used
features and make some changes to the individual components. In 3.5 we found that many
of the features are redundant. To speed up the feature computation16 we restrict the feature
set to the cross-lingual features (see Figure 3.7), thus saving time, because we do not need
to produce translations for all sentences in the training set. To make up for this change, we
added some of the features that were included in the monolingual alignment group: features
that transfer to the cross-lingual case but did not have a cross-lingual pendant in the CLTE
system, such as the Meteor fragmentation score (as chunk ratio). We tuned and developed
the system on the 500 hand-annotated sentence pairs. We performed 2-fold cross validation
to determine the best system setting in an intrinsic evaluation and applied this system to the
filtering task for extrinsic evaluation.

4.3.1 Binarizing the Annotation

Since our annotation with equivalence scores ranging from 0% to 100% turned out to be
extremely sparse, we opted not to learn a regression model, but instead decided to transform
the problem into a binary classification task, where a classifier learns to distinguish between
parallel and non-parallel sentences. It is a non-trivial problem to determining, which sentence
pairs should still be considered as parallel, and depends strongly on the data and task at hand.
Tillmann (2009) consider sentence pairs as parallel, where at least 75% of source and target
words have a corresponding translation in the other sentence. Ştefănescu et al. (2012) mine
for sentence pairs that improve the output of an SMT system and find that these can range
from parallel and quasi-parallel to strongly comparable. Fung and Cheung (2004) define a
lexical score computed on word pairs to quantify, how parallel or comparable a corpus is.
They give examples for parallel, noisy parallel, comparable and non-parallel corpora. Utiyama
and Isahara (2003) use four categories, A, B, C, and D that correspond to overlap ranges of
> 50 − 60%, > 20 − 30%, > 0% and none, to manually assess their automatically obtained
alignments. Utiyama and Isahara (2007) employ the same scheme but with slightly different
ranges. Lu et al. (2009) asked annotators to classify sentences into three categories, correct
(literal translation to 80% content overlap without phrasal reordering), partially correct (more
than 50% content overlap) and incorrect (less than 50% content overlap).

We derive a definition for a parallel sentence pair by considering different cutoff values for
transforming the equivalence score annotation into a binary annotation. A cutoff value of 0.7
corresponds to an annotation, where sentence pairs with an equivalence score of 70% and

16Our final data set consists of millions of instances, as opposed to hundreds in the CLTE task.
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more are considered to be parallel. Examples with an equivalence score of less than 70% are
subsequently positive examples, all others negative. Figure 4.7 plots the classifier accuracy17

and F1 score18 for the positive class (i.e. non-parallel sentence pairs) for all cutoff values
between 0 and 119 in steps of 0.1. For both measures, the best cutoff value is 0.7, determined
with grid search. The result can be read as the threshold, where it makes the most sense to
distinguish between pairs above and below in terms of the features.
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Figure 4.7: F-measure and gain in accuracy for different score cutoff values.

4.3.2 Feature Engineering

In total, we extract 14 features from a sentence pair (e, f), which can be divided into features
operating on the level of tokens only,

• length ratio, |e|
|f| and |f|

|e|

• length difference, |e| − |f| and |f| − |e|

• absolute length of e
17The number of correctly classified examples, positive and negative, divided by the total number of examples.
18We compute the F-measure as the harmonic mean of precision and recall, F1 = 2 · P·R

P+R
, where precision P is

the number of true positives divided by the total number of elements labeled as belonging to the positive class and
recall R is the number of true positives divided by the total number of elements that actually belong to the positive
class.

19We perform 2-fold cross validation on the annotated training set to determine the best cutoff value.
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• absolute length of f

computed on both sides of the sentence pair, and features operating on a cross-lingual align-
ment between source and target, adding lexical information. Alignment features are

• alignment ratio,

• percentage of null alignments,

• chunk ratio,

• and longest contiguous aligned span.

Each alignment feature is calculated twice, once for e and once for f. For a detailed descrip-
tion of the features see Chapter 3. We standardize feature vectors by subtracting the mean
and dividing by the standard deviation for each feature value. Figure 4.8 reports scores for
the two feature groups (different alignments and token-based) separately and in combina-
tion. Furthermore, we experimented with different heuristics for symmetrizing the underlying
directional alignment. Since we are not interested in high recall but in high alignment preci-
sion, instead of using the asymmetrical, recall-driven alignment described in 3.3, we opted
to base the cross-lingual alignment features on IBM Model 2 alignments and symmetrize the
alignments. We compute the alignments using fast_align on a corpus of 6,202,442 sentence
pairs from title and abstract sections, which we assume to be highly parallel on the basis
of the preliminary annotation experiment described in Section 4.2.1. The titles could even
be considered a domain-specific dictionary, since they contain mostly short nominal phrases.
We therefore expect our alignments to be of high quality. We experiment with different sym-
metrization heuristics.

The intersection contains only alignment links common to both the e-to-f and f-to-e align-
ment.

The union considers the set of all alignment links in e-to-f and f-to-e alignment.

Grow-diag-final-and (gdfa) is a heuristic, which starts from the alignment intersection and
grows this set by adding neighboring20 alignment points from the alignment union. In
the final step, alignment points between two unaligned tokens are added, even if they
are not neighboring an established alignment point. (Koehn et al., 2005)

20Think of the alignment matrix as introduced in Chapter 2. Neighboring is defined as left, right, top, bottom or
diagonal.
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The different alignment strategies are indicated as Ax in Figure 4.8; forward+backward means
that all alignment features are calculated on both e-to-f and f-to-e alignment separately, en-
larging the feature space to 22. Aall denotes a system that includes alignment features for all
different alignment strategies, resulting in 46 total features. The best alignment strategy turns
out to be the intersection symmetrization heuristic. Combination with the token-based fea-
tures results in an additive gain, indicating that they contain complementing information. Note
that in this task, the intersection heuristic, which results in a high-precision alignment with
few alignment links is preferable over more recall-oriented methods resulting in a larger set of
alignment links, such as the union. We observed that the opposite was true for the CLTE task.
This shows that choosing a fitting alignment strategy is a crucial step that depends on the
targeted task. In the next section, we subject the system with the best parameters according
to the presented experiments to an extrinsic evaluation on an SMT task.
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Figure 4.8: F1 score and gain in accuracy for different feature sets, sorted by worst to best
performance.

4.4 Experimental Results

We employ the optimized, adapted system to remove the noise from the parallel data extracted
from patent descriptions. We then evaluate the influence on SMT quality training translation
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models on the filtered data. As test and development set, we chose data from patent abstracts
in order to have reliable references for evaluation, while the development set for training the
classifier, as noted previously, is comprised of description data. Word translation probabilities
are trained on a separate corpus of data from abstracts21 and titles, which feature no noise.
For comparison, we train several baselines as detailed below.

4.4.1 SMT System and Data

The data is split by years of publication. Patent data from the years between 1978 and 2007
is reserved for SMT training, data from 2008 for meta-parameter tuning, testing and training of
the filtering system. We build hierarchical phrase-based SMT models for the cdec22 decoder
(Dyer et al., 2010). We obtain word alignments with the fast_align23 implementation of IBM
Model 2 (Dyer et al., 2013). A 5-gram language model is learned with SRILM24 (Stolcke, 2002)
and the weights of the log-linear model are tuned with MERT (Och, 2003).

patent section date sentences fr tokens en tokens

MT-train description 1978-2007 5,145,292 184,920,614 176,187,963

MERT-dev abstract 05/2008 2,000 96,384 82,220
MT-devtest abstract 06/2008 2,000 98,335 84,355
MT-test abstract 01/2008 2,000 100,323 87,323

filter-dev description 04/2008 500 22,993 20,036

WTP-train title, abstract 1978-2007 6,202,442 202,313,203 173,860,459

Table 4.7: Experimental data.

The full SMT training set contains more than 5 million French-English sentence pairs from
description sections of patents issued between 1978 and 2007. The filtering methods operate
on this data set and produce filtered variants of it, on which the translation model of the MT
system is retrained25. The language model was trained on the English side of the parallel
corpus and remains the same for all systems. Weights of the SMT baseline were tuned on
a development set of 2,000 sentence pairs, sampled from abstracts of patents issued in May
2008. These weights are taken as fixed and used by all systems. An additional set of 2,000
sentences from abstracts was used to tune the parameter of the baseline filtering system. We
test SMT systems on a set of 2,000 sentence pairs, sampled from abstracts of patents issued

21Of course excluding the test and development set
22http://http://cdec-decoder.org
23http://github.com/clab/fast_align
24http://www.speech.sri.com/projects/srilm/
25Retraining involves the full pipeline, i.e. word alignment and grammar extraction.
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in January 2008, using BLEU to measure translation quality. An overview of the data is given
in Table 4.7.

4.4.2 Baselines
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Figure 4.9: Training data size and resulting system BLEU score on development set for
increasing length filtering threshold t.

We set up a baseline filter system trained on data, from which asymmetrical (with regard to
the sentence length) sentence pairs were removed. The sentence length ratio of a sentence
pair (e, f) is defined as follows:

length_ratio(e, f) =


|e|
|f|

when |e| ≤ |f|

|f|
|e|

when |e| > |f|

We perform grid search with steps of 0.1 to determine the best threshold value t, which speci-
fies the minimum sentence length ratio for a pair to be kept in the training set. Table 4.9 shows
data set size and BLEU score on devtest set for different values of t. While the data set is
reduced to approximately 60% of its original size, only minor variations in BLEU score can be
observed that are not significant in all cases but one. We chose the threshold value t = 0.4

as optimal setting for the length filter system.
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In addition, we created a system, where a significant amount of data that was chosen randomly
was removed from the training corpus. We trained two random filter systems; one on 4.5
million and one on 5 million sentences pairs from the original training set.

4.4.3 Results and Discussion

devtest test

training data size BLEU TER BLEU TER

unfiltered 5,145,292 41.31% 42.56 41.72% 42.75

random filter 4,500,000 41.35% 42.54 41.62% 42.85
random filter 5,000,000 41.39% 42.47 41.68% 42.80

length filter (t = 0.4) 5,090,663 42.14% 41.57 41.67% 42.72
length filter (t = 0.7) 4,821,560 41.50% 42.43 41.69% 42.79

trained filter 4,676,030 41.45% 42.43 41.67% 42.81

Table 4.8: System results on test set.

Table 4.8 shows results on development and test set. Differences between systems are small
and not significant and cannot be distinguished from the effects of a random filter. Reduction
in size using a trained filter is comparable to using a length-filtering baseline with a threshold
of t = 0.75, which corresponds to a reduction of the training set size and accordingly a noise
rate of about 10%. Our results confirm the findings of Goutte et al. (2012) that SMT systems
can tolerate up to 30% of noisy data. In the case of our data this is not surprising, since (1) the
amount of text is very large and (2) data from the IP domain can be comparatively repetitive
– the latter property will be explored more thoroughly in Chapters 5 and 6. In conclusion, we
can state that the originally aligned data, even though collected from comparable, not parallel
documents, is of satisfactory quality for SMT training.
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CHAPTER 5

Cross-lingual Fuzzy Match Retrieval for SMT

In Chapter 1 we phrased translation as the search for a semantic equivalent of a source sen-
tence in the target language. In this light, the problem of machine translation can be framed
as translation retrieval : instead of generating a translation from scratch, the given source is
input into a retrieval system, which produces target translation candidates, ranked by rele-
vance. Methods to find target language text using source queries are explored in the field of
cross-language information retrieval (CLIR) (Nie, 2010). Viewing translation as retrieval is re-
lated to the concept of translation memories (TM), a computational tool used by professional
translators to speed up the translation of repetitive texts. We introduced the architecture of
translation memories in Chapter 2. Using the input source sentence as query, the TM delivers
similar source sentences, which have been previously translated, and returns the correspond-
ing translation. Most commonly, TM systems apply approximate string matching for retrieval,
which makes them capable of retrieving not only exact matches, but also partial or fuzzy
matches. These might not be perfect translations of the input, but a good starting point that
saves translators time and effort. We propose to combine translation memory, cross-lingual in-
formation retrieval and statistical machine translation by using CLIR to retrieve fuzzy matches
directly in the target language given the source query. SMT is employed to represent the
query in the target language and to evaluate the retrieved matches. The idea of combining
the strengths of TM and SMT tools has been successfully explored in recent years (Smith
and Clark, 2009; Koehn and Senellart, 2010a; Zhechev and van Genabith, 2010; Ma et al.,
2011). Instead of generating the whole translation for an input sentence from scratch, the
SMT system is asked to translate only the non-matching parts, or translate the sentence with
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the translation memory match as bias. In this chapter, we propose a light-weight hybrid TM-
SMT system to integrate fuzzy matches found in monolingual corpora instead of bitext. While
we use SMT to process the fuzzy matches found with cross-lingual retrieval, an even more
promising practical use for cross-lingual fuzzy matching is the area of CAT and post-editing.
Human translators have been using translation memories in their workflow for decades; cross-
lingual fuzzy match retrieval opens up monolingual corpora as new resources with the oppor-
tunity to support translators by providing more and better matches.

In particular, we propose the following novel ideas: We directly perform source-target com-
parison instead of source-source comparison for fuzzy match retrieval. To make the search
feasible on large monolingual corpora in the order of tens of millions of sentences, we use
locality-sensitive hashing (LSH) as an efficient coarse retrieval technique to avoid a large
number of pairwise comparisons. After generating a set of candidate translations, search
is performed at a finer-grained level using cross-lingual similarity measures. Given a fuzzy
match in the target language, our model re-ranks a list of the n-best translation hypotheses
output by an SMT decoder using features that model the closeness of the hypothesis and the
match. We are able to use target-language only matches, since our approach to integration
does not rely on an alignment between source and target side of the match. We are able to
show consistent and significant improvements on several technical domains (IT, legal, patents)
for different language pairs (including Chinese, Japanese, English, French, and German). Re-
sults for source-target comparison are comparable to or better than using a target-language
reference of source-side matches. Furthermore, we show that our approach can improve an
SMT system in a setting, where additional monolingual data is available for domain adaptation.

5.1 A Model for Biasing an SMT System with TM Fuzzy Matches

Our integrated model for TM and SMT uses a pipeline approach (Figure 5.1) to combine sev-
eral components: a TM retrieval module yields the best fuzzy match in the target language
for a given sentence, and a re-ranker uses this information to re-score an n-best list of hy-
potheses output by an SMT decoder. For biasing the SMT system, we choose a light-weight
re-ranking approach – as opposed to an integration of matches during decoding – for several
reason: The pipeline model ensures portability across decoders. Furthermore, it makes inte-
gration of external features particularly easy. Thirdly, it does not rely on an alignment between
TM source and target, e.g. to extract phrase pairs, which allows us to integrate a novel way
to retrieve fuzzy matches. Using CLIR, we can retrieve fuzzy matches not only on bitext, but
from monolingual data in the target language, which is usually available in considerably larger
amounts than parallel data for a given domain. The hybrid TM-SMT model functions as an ex-
trinsic evaluation of the retrieval approach. In order to be able to include corpora of language
model training scale, we opt for two-step retrieval for performance reasons.
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n-best
h1
h2
h3
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Figure 5.1: Integrated system pipeline. Note, that this overview disregards all connections
between SMT and TM, e.g. shared data, translations produced by SMT for TM in the cross-
lingual case, etc. The source q is input both into an SMT system and a TM retrieval component
– the TM could rely on IR, CLIR or even both –, which returns a fuzzy match in the target
language. The SMT system generates an n-best list of translations for the query, which are
then re-ranked according to our model, which balances SMT model score and similarity of TM
match tbest and a given translation option, possibly resulting in a new 1-best translation.

1. A first, coarse look-up step, which is fast, but largely insensitive to global word-order
and uses hashing to avoid a pairwise comparison of all match candidates.

2. A refined ranking1 step, which is slower, but considers word-order of the sentence and
is performed only on candidates retrieved by step (1).

Integrating matches into SMT is one practical application for cross-lingual fuzzy match re-
trieval, but in particular for CAT applications, where translations and matches for new sen-
tences need to be available in less than a second in order to be considered helpful, fast
retrieval is key.

In the context of fuzzy match or translation retrieval, we refer to the input sentence as the
query, denoted with q. The query is available only in the source language. The set of targeted
documents is the translation memory. In the default scenario this is a collection of source
sentences s with an associated target translation t (parallel data or bitext). We can apply
source-side comparison or IR to assess the similarity of q and different s and return a target
fuzzy match t̂ that corresponds to the ŝ with the highest similarity to q. We extend the TM
component to enable target-side or CLIR retrieval, where the resource for finding possibly
similar translations consists only of a collection of target sentences t, by finding the best

1Not to be confused with the final re-ranking of the SMT n-best list shown in Figure 5.1.
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match t̂ by direct comparison with q. We evaluate a number of CLIR techniques for the
refined retrieval step; in general, we use SMT to produce a target language representations
of the query and compute a cross-lingual similarity score. As a byproduct, we investigate a
technique for integrating the matches during decoding with a hierarchical phrase-based SMT
system, skipping the final re-ranking step.

5.1.1 Related Work

Work on integrating translation memory (TM) and machine translation (MT) can be divided
into approaches at the sentence level, that decide whether to pass MT or TM output to the
user (He et al., 2010a,b; Dara et al., 2013), and approaches that merge both techniques at
a sub-sentential level (Smith and Clark, 2009; Koehn and Senellart, 2010a; Zhechev and van
Genabith, 2010; Ma et al., 2011). Results are either measured in terms of retrieval precision
or post-editing effort (CAT perspective), or using standard MT metrics (end-user perspective).
The first class of approaches can be summarized as translation recommender systems, and
are closely related to the task of MT quality estimation (Ueffing et al., 2003; Blatz et al., 2004;
Specia et al., 2009), where post-editing effort is predicted. The overall goal is to improve a
CAT pipeline, so the success of the approaches is judged from the translator’s perspective.
He et al. (2010a) propose a system that decides for a given source sentence, whether to pass
a TM fuzzy match or the output of an SMT system to a post-editor. The problem is framed
as binary classification; TER is used to approximate human judgments of recommendation
quality. Features include SMT score, language model scores and fuzzy match score. In
this approach, the SMT system is treated as a black box and translation alternatives are not
considered. He et al. (2010b) extend their previous work by moving from binary prediction
to ranking. The best matches from a TM according to fuzzy match score are merged with
the n-best list output by an SMT model. To this end, features have to be independent from
the respective systems, so the feature set is reduced to language model and IBM Model 1
scores. As for the previous model, the gold standard ranking is created using TER in absence
of human judgments to approximate post-editing effort. Experimental results are presented in
terms of IR measures, e.g. precision and recall.

A variety of models exist for combining TM and MT on a sub-sentential level. Most approaches
focus on improving the SMT system using TM resources and methods, so success is mea-
sured in terms of MT quality using standard automatic metrics, such as BLEU or TER. In
one line of research, the global SMT models remains static, while the model for the current
sentence is biased locally with the help of fuzzy matches. Biçici and Dymetman (2008) devel-
oped Dynamic Translation Memory (DTM). They identify matching sub-sequences between
the current sentence and a TM fuzzy match and use the combination of source and target
with corresponding alignment to construct a non-contiguous biphrase, which is added to the
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grammar for the current sentence with a strong weight. The decoder is then run as usual
using the augmented grammar. Koehn and Senellart (2010a) employ a similar technique to
extract translations for a whole sentence that contain gaps, where mismatches occur. Trans-
lations for matching parts are passed to the decoder (a) using XML-like mark-up of phrases
in a phrase-based system and (b) by constructing large grammar rules for a hierarchical SMT
system. Zhechev and van Genabith (2010) also use the Moses XML mark-up option to pass
translations for matching phrases to decoder, but use sub-tree alignment between source sen-
tence, TM source and TM target to extract translations for the matched parts. Ma et al. (2011)
extend the work by Koehn and Senellart (2010a) and use discriminative learning to decide if
a particular fuzzy match should be used to restrict the target translation. All approaches have
in common that the SMT system is forced to translate only the non-matching segments, either
by restricting translation via XML mark-up or by adding high feature weights to force the appli-
cation of the rules or biphrases extracted from the TM match. Our approach is similar to these
approaches in that the global MT system remains static; however, all presented approaches
make use of the alignment between source and target of the fuzzy match, while our approach
uses only the target side to bias translation, making it possible to use matches, for which only
the target is available – think of a language model. Furthermore, by interpolating between
model score and features measuring the similarity of a hypothesis and a match, the model
controls the influence of the TM instead of forcing the application of the match.

A more adjustable integration of TM and SMT system is possible by adding one or more
tunable features to the translation model in order to control the influence of TM matches during
decoding. Such features can encode the quality of a match, e.g. by making use of the fuzzy
match score. Simard and Isabelle (2009) extract phrase pairs from the fuzzy match and insert
them into the phrase table, then add a similarity feature, which is used during re-scoring,
to promote translation hypotheses that are close to the match. Since the calculation of the
features on all hypotheses in the search space is not feasible, they resort to re-ranking the
n-best list. Our re-ranking approach is similar, with the novelty of using not only matches
found by querying the source side of the corpus but also the target. Wang et al. (2013) add
several features to the translation model, which encode source and target matching status,
handling multiple target translation options for a single source and reordering information. In
an extension of this work, Wang et al. (2014) consider a real-life scenario, where TM and SMT
training data diverge, for which the method proposed by Wang et al. (2013) is unsuited, since
phrases found in the TM database might not be present in the SMT phrase table. To make
up for this, they add segments to the phrase table in a fashion similar to Biçici and Dymetman
(2008). Li et al. (2014) build on the work by Wang et al. (2013) and transform their features into
feature functions. Furthermore, they extend the approach to handle multiple fuzzy matches
by finding specific matches for each phrase in the sentence.

While fuzzy matching based on edit distance is the industry standard (Sikes, 2007), differ-
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ent techniques for retrieving fuzzy matches from a translation memory have been proposed
(Koehn and Senellart, 2010b; Simard and Fujita, 2012; Bloodgood and Strauss, 2014). Koehn
and Senellart (2010b) use suffix arrays and A* search to speed up the look-up process for
fuzzy matches. Bloodgood and Strauss (2014) compare edit distance and weighted n-gram
precision for fuzzy matching and evaluate their usefulness by collecting relevance judgments
from human translators via Amazon Mechanical Turk. Simard and Fujita (2012) experiment
with different MT evaluation metrics as similarity functions. Moving away from surface string
matching, Vanallemeersch and Vandeghinste (2014) enrich the query with syntactic knowl-
edge. Gupta and Constantin (2014) present an approach for incorporating paraphrases during
the look-up. Similarly, our approach can be considered as a contribution towards a semantic
translation memory. Cross-lingual match retrieval can make use of the whole search space
that is constructed when an SMT system translates the source query and thus integrate mul-
tiple translation alternatives, i.e. paraphrases and synonyms in the target language. Methods
for finding fuzzy matches in the target language can be derived from cross-language informa-
tion retrieval (CLIR), in order to find text in the target language using a query in the source
language (Nie, 2010). Locality-sensitive hashing for computing cross-lingual pairwise similar-
ity was investigated by Ture et al. (2011), who find an effectiveness-efficiency trade-off, which
has to be taken into account when using this technique in practical applications. A two-step
approach with fine-grained cross-lingual matching based on translation lattices has been used
by Liu et al. (2012) and Dong et al. (2014) for translation retrieval. Liu et al. (2012) propose
to search a monolingual target-language corpus for translations of a given sentence, framing
translation retrieval as a special instance of CLIR. They combine a phrase-based translation
and a vector space retrieval model. Each k-best2 list hypothesis output by the translation
model is used to query the retrieval model; the resulting translation candidates are ranked ac-
cording to the mixture (product) of translation score and retrieval score. The mixture weights
are not tuned but manually set. They report precision for translation retrieval, but no SMT
evaluation. Following up on this work, Dong et al. (2014) retrieve target side translation can-
didates using a lattice representation of possible translations of a source sentence instead of
k-best list hypotheses. Similar to Liu et al. (2012) they perform a coarse retrieval step using all
distinct words in the lattice as a query, followed by a fine-grained ranking of the retrieved can-
didates based on a score calculated on the lattice representation, using SMT and IR features
derived from BLEU. They find that translation lattices significantly outperform retrieval based
on k-best lists in terms of retrieval precision. The system is successfully applied to the task
of identifying parallel sentences. Finally, the hypergraph-based models for CLIR used for fine-
grained matching in this chapter are similar to the bag-of-words forced decoding approach by
Hieber and Riezler (2015), but were developed independently.

2Values for k are 1 and 10.
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5.2 Monolingual and Cross-lingual Fuzzy Match Retrieval

In the following, we will describe how we retrieve fuzzy matches from the translation memory
resources using a combined technique of coarse and fine-grained retrieval. The overall proto-
col is the same for source and cross-lingual retrieval. In CAT practice, how well two sentences
match is calculated using a so-called fuzzy match score (Sikes, 2007) on sequences u and v ,

FMS(u, v) = 1− ED(u, v)

max
|u|,|v |

where ED is the edit or Levenshtein distance (Levenshtein, 1966). Levenshtein distance
is defined as the minimum number of operations3 needed to transform the sequence u =

u1, ..., ui , ...um into the sequence v = v1, ..., vj , ...vn. The minimum edit distance can be
computed with dynamic programming using the Wagner-Fischer algorithm, which uses the
following matrix recursion.

Mi ,j =


max(i , j), if i = 0 or j = 0

min


Mi−1,j + 1 del.

Mi ,j−1 + 1 ins.

Mi−1,j−1 + cost(ui , vj) sub.

, otherwise
(5.1)

where

cost(ui , vj) =

1, if ui = vj

0, otherwise
(5.2)

The matrix M stores the distance between all possible prefixes of u and all possible prefixes
of v and is filled from left to right and top to bottom. M then contains the minimum number of
edit operations for the complete sequences in the last cell.

ED(u, v) = M|u|,|v | (5.3)

The complexity of computing the minimum edit distance with this procedure is O(|u||v |). Note,
that calculation of FMS is based on the sequence of tokens that forms a sentence rather than
the sequence of characters. Although FMS is the industry standard, different methods have
been proposed to select fuzzy matches. Bloodgood and Strauss (2014) compared percentage

3Allowed operations are deletion, insertion or substitution of characters.
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match, edit distance and n-gram precision for translation memory retrieval. They found that
a weighted n-gram precision measure actually correlates best with human judgments and
most often retrieves the best rated match. We use FMS in the baseline, source-side retrieval
scenario, but experiment with different similarity measures in the cross-lingual setting.

Computing edit distance or n-gram overlap against a corpus of tens of millions of sentences is
too slow for real-time use in an interactive translation environment, even when using efficient
data structures and lower bounds4 to discard poor candidates early – especially considering
long sentences with more than 100 tokens that appear for example in patent text. Methods
for efficient approximate string matching have been proposed for extracting hierarchical trans-
lation rules from a large corpus on-the-fly, for example suffix arrays (Lopez, 2007) and most
recently, GPU computing (He et al., 2015). In practice, TM or related retrieval systems often
make use of two-step approaches with a coarse pre-retrieval that selects candidates for good
fuzzy matches (Smith and Clark, 2009; Liu et al., 2012). The exact fuzzy match score or a re-
lated similarity measure can then be computed for a smaller candidate set in reasonable time.
We adopt this approach and choose a fast method for approximating the pairwise similarity
of items: locality-sensitive hashing (LSH). With LSH, similar items hash to the same bucket
and a large number of comparisons, i.e. between query and every sentence in the translation
memory, is reduced to repeated computation of hashes on the query and a lookup in a hash
table. It is most commonly employed for tasks such as near-duplicate detection of websites,
but fits our task very well. Ture et al. (2011), for example, used LSH for CLIR mate-finding.
However, using LSH comes at the cost of getting an approximation with a certain error in-
stead of exact results, but we believe, that in our application, finding a good fuzzy match might
be just as helpful as finding the global best fuzzy match. We use MinHash, an instance of
LSH, to obtain a set of fuzzy match candidates. The best match from this set is selected by
maximizing a fine-grained similarity measure (CL)IR – named so because we define both a
monolingual (IR) and cross-lingual (CLIR) variants – that quantifies the similarity of the query
qi and a match candidate.

5.2.1 Locality Sensitive Hashing for Coarse Translation Retrieval

MinHash (Broder, 1997) is an instance of LSH that estimates the similarity of two documents
by reducing the dimensionality of the document signature using sampling. MinHash approxi-
mates the Jaccard similarity JC of two sets A and B ,

JC(A,B) =
|A ∩ B|
|A ∪ B|

by generating fixed-length signatures of each set, from which the Jaccard similarity can be

4E.g. ED(u, v) ≥ |u − v |.
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Figure 5.2: Correlation of fuzzy match score and Jaccard similarity on four data sets. The
plot shows the fuzzy match score between each sentence in the test set and its best match
(according to FMS) in the training set and their Jaccard similarity.

estimated. The signature is obtained by repeatedly hashing each member of the set and
storing only the minimal resulting hash. By representing each sentence as a set of n-grams
we can use this technique to efficiently approximate the n-gram overlap of two sentences,
which is a good predictor of fuzzy match quality (Bloodgood and Strauss, 2014). Jaccard
similarity and Levenshtein distance are related: ED = 0 ⇒ FMS = 1 ⇒ JC = 1, but the
opposite direction is not true and for matches lower than 100%, only a broad correlation can
be assumed (see plots in Figure 5.2). This means that we need to lower the threshold of the
coarse retrieval to avoid low recall.

We implement the MinHash scheme following the description by Rajaraman and Ullman
(2012, Chapter 3), but change it, where necessary, to fit the application and make the best use
of the available computational resources. As a the first step, tokenized sentences are trans-
formed into sets of n-grams5. The members of each set are repeatedly hashed using different
parameters and the minimal resulting hash is stored for each hash function. This results in a
signature vector of fixed length, which corresponds to the number of hash functions used.

5Rajaraman and Ullman (2012) call them shingles.
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Hash functions We use hash functions of the form

hash(x) = (a× x + b) mod v

where a and b are randomly chosen positive integers and v corresponds to the vocabulary
size, the number of distinct n-grams. In order to avoid collisions, b and v have to be coprime,
meaning their greatest common divisor is 1. The number of different hash functions used to
compute a minimal hash is equivalent to the sample size. A larger sample size corresponds
to a smaller error bar, but increases computational cost in both speed and memory: we have
to compute more hashes and increase the size of the signature vectors and the resulting
hash tables. The expected error for k hash functions is O(1/

√
k). In out experiments, we set

k = 200 resulting in an expected error ≈ 0.07.

Signature computation We modified the algorithm given in Rajaraman and Ullman (2012,
Chapter 3) to fit our needs. Since we want to be able to compute MinHash signatures continu-
ously for a stream of incoming new sentences, we store the sampled hash function parameters
and transform the signature matrix computation into an incremental procedure. Pseudocode
for the signature computation for a single sentence is given in Algorithm 1. The sentence-wise
computation makes parallelization straightforward. To handle the size of the signature matrix,
we use memory-mapped files, which can be accessed by all workers in parallel. The signa-
tures for a large set of documents can be computed in advance and signature computation for
a query is performed in milliseconds.

Storing and Comparing Signatures To efficiently estimate the Jaccard similarity from the
signatures without pairwise comparison, we apply the banding technique described in Rajara-
man and Ullman (2012, Chapter 3). The basic idea is that similar items hash to the same
bucket with higher probability than dissimilar items. This technique will result in some false
positives, but greatly reduces the candidate space that has to be checked for similarity. The
signatures are divided into smaller contiguous portions, called bands, which are then hashed
to a large number of buckets. When two signatures hash to the same bucket, they are consid-
ered candidates for meeting the similarity criterion. This criterion is set in advance by adjusting
a similarity threshold t through the number of bands and the number of items each band con-
tains. Let SA and SB be two MinHash signatures of length k . Divide the signatures into p

bands of r entries each so that p × r = k . The probability that the two signatures agree in a
single entry is their Jaccard similarity JC(SA, SB), so the probability that they agree in at least
one band can be derived as follows.
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Algorithm 1
procedure MINHASH(sentence ⟨s⟩, list of hash parameters ⟨h⟩, vocabulary size v )
⟨signature⟩ ← ⟨⟩
split ⟨s⟩ into n-grams
i ← 0
for all n-grams ng in ⟨s⟩ do

minHash←∞
for all hash function parameters (a, b) in ⟨h⟩ do

hash← HASH(ng , a, b, v )
if hash < minHash then

minHash← hash
end if

end for
⟨signature⟩[i ]← minHash
i ← i + 1

end for
return ⟨signature⟩

end procedure
procedure HASH(ng , a, b, v )

return (a× ng + b) mod v
end procedure

P(SA and SB agree in every entry of band i) = JC(SA, SB)
r ⇒

P(SA and SB disagree in at least one entry in band i) = 1− JC(SA,SB)
r ⇒

P(SA and SB disagree in all bands) = (1− JC(SA, SB)
r )p ⇒

P(SA and SB agree in at least one band) = 1− (1− JC(SA, SB)
r )p

The function 1 − (1 − JC(SA,SB)
r )p plots an S-curve. The placement of the steepest rise

functions as a threshold that determines which pairs are likely to become candidates and
which pairs are not, and depends on the parameters p and r . Figure 5.3 plots the function for
several values of p and r . To position the rise near a chosen threshold t for JC(SA, SB) we
use the approximation t = (1/p)1/r (Rajaraman and Ullman, 2012, Chapter 3). To obtain the
number of bands p we can transform the equation as follows.

t =
1

p

1
r

⇔
1
r
√
t =

1

p
⇔ tr =

1

p
⇔ 1

tr
= p ⇔ t−r = p

The algorithmic procedure to set parameters r and p to partition signatures of length k so
that candidates with a Jaccard similarity JC(SA,SB) ≥ t are retrieved with high probability
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Figure 5.3: S-curves for different parameter settings.

is detailed in Algorithm 2. In setting t we are faced with an effectiveness-efficiency trade-off
(Ture et al., 2011), where we find false positives, which slow down the second retrieval step,
and also false negatives, which will cost overall performance. We set the threshold t for the
Jaccard similarity for each data set on a held-out development set by choosing a setting in
which a candidate match is returned for at least 90% of the sentences.

We use a data structure server to store the hashes for the translation memory, which can
be efficiently queried when receiving new sentences to translate. We opted for the open-
source software Redis6, since it comes with a well-documented Python API. Signatures for all
sentences in the translation memory are precomputed and the hashes for each band stored
in separate databases. We compute signatures for queries on the fly and query the hash of
each band against the respective database. If a sentence identifier is found in the database
for this hash, the sentence is added to the candidate set of matches for the query. We then
compute the actual Jaccard similarity for the set of match candidates returned for a similarity
threshold setting t and rank them accordingly. We take the 100 best matches for each query
and choose the best match in the fine-grained step described in the following.

6http://redis.io/
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Algorithm 2
procedure FINDNUMBEROFBANDS(similarity threshold t, signature length k)

r ← 0
repeat

r ← r + 1
until t−r > k/r or r = k
if r > 1 and |k/(r − 1)− t−(r−1)| > |k/(r)− t−r | then

r ← r − 1
end if
return ⌈k/r⌉

end procedure

5.2.2 Fine-grained Selection of the Best Match

The coarse LSH-based retrieval provides us with a set of up to 100 candidates ranked by their
Jaccard similarity to the query. Even when using higher order n-grams, this step is largely
ignorant of word order and especially global ordering. For choosing the actual best match
from this subset we therefore employ methods more sensitive to word order, such as fuzzy
match score. We experiment both with a baseline TM setup, where we look for matches
in a sentence-aligned corpus computing similarity between the source input (query) and the
source side of the sentence pairs in the TM, and our novel cross-lingual setup, where we
compute similarity between the query in the source language and target candidates directly.

IR: Source-Source Matching

In the baseline or IR case, choosing the best TM match amounts to selecting the sentence
pair (s, t)i ,best from the coarse candidate set LSH(qi ) that achieves the highest fuzzy match
score FMS of the (source) query qi against the source side si ,j of the TM pair, and returning
its target side ti ,j .

(s, t)i ,best = argmax
(s,t)i ,j∈LSH(qi )

FMS(qi , si ,j).

Since computing edit distance is expensive, even when using dynamic programming to speed
up the computation, we make use of a lower bound of edit distance: it is at least the differ-
ence of the length of the two sequences. While iterating over all candidates returned by the
retrieval, we keep track of the current best candidate and score. If this number yields a smaller
fuzzy match score for the current candidate than the current best candidate, we can skip the
computation for the current candidate altogether. Also, if the current number of minimum edits
exceeds the maximum number of edits needed to yield a larger fuzzy match score than the
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current best candidate, the computation is stopped and the candidate discarded.

CLIR: Source-Target Matching

For the cross-lingual setup, however, this step is less straightforward. We would like to select a
target sentence from a set of target-only candidates given a query in the source language. To
generate a target candidate set with coarse retrieval we use the 1-best translation Tr(qi ) by an
SMT decoder trained on bilingual data to represent the query7. In the fine-grained matching
step, we then compute a cross-lingual similarity score CLIR between the original source query
qi and all target candidates ti ,j returned by LSH, and choose the candidate which maximizes
this score as the best TM match.

ti ,best = argmax
ti ,j∈LSH(Tr(qi ))

CLIR(qi , ti ,j).

We investigate several instances for CLIR, applying methods from cross-language informa-
tion retrieval. We operate on different representations of the query qi ; in particular a direct
translation, a lattice representation of the whole search space and a projection using word
translation probabilities. Figure 5.4 aims to provide an overview over all dependencies of the
model components in the cross-lingual setting.

1-best Fuzzy Match Score Similar to the source-side case, this model uses as a selection
criterion the fuzzy match score of the candidate ti ,j given the most likely translation hypothesis
produced for the query qi by an SMT model, Tr(qi ).

CLIR(qi , ti ,j) = FMS(Tr(qi ), ti ,j)

This corresponds to a direct translation baseline in cross-language information retrieval.

Cross-lingual Fuzzy Match Score Instead of using SMT to translate the query, it is possible
to directly compute an edit-distance-based similarity between query and match,

CLIR(qi , ti ,j) = FMScl(qi , ti ,j)

7Alternative ways to construct queries are possible. We experimented with query expansion by adding trans-
lations found in the n-best, but found that using the 1-best translation prediction of the baseline system yielded
superior results. The reason is likely that query and result tend to be of similar length, so when terms are added
to the query the technique favors longer sentences. We can also conclude that the SMT baseline is quite strong,
so a bias towards the best translation under this model is helpful.
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Figure 5.4: Schematics of full pipeline with target-side retrieval. Note, that it is also possible
(but not pictured) to include additional data for the match retrieval that deviate from the SMT
training data. CLIR summarizes several techniques that use different resources to represent
the query, i.e. either hypergraph or 1-best translation.
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Figure 5.5: Hypergraph encoding two different derivations of the translation le protocole de
new york as well as the derivation *la protocole de new york. Note that the hypergraph edges
actually correspond to synchronous rules, but only the target side of the rules is pictured.

We define a cross-lingual extension of the fuzzy match score, FMScl , based on IBM Model 1
lexical translation probabilities (Brown et al., 1993). We use a weighted variant of Levenshtein
distance as defined in Equation 5.1, to incorporate the model: instead of using the indicator
function given in Equation 5.2, which returns cost 0 for a match and cost 1 for a mismatch
when considering a replacement operation, we adapt the cost function to reflect the strength
of association between token usi in the source and token v tj in the target language, by including
the word translation probability P(v tj |usi ) as a weight.

cost(usi , v
t
j ) = 1− P(v tj |usi )

The word translation probabilities can be estimated from a parallel corpus.

Hypergraph Score In addition to distance-based models featuring a static representation
of the query, we explore two methods that operate on the full search space for the translated
query (Dong et al., 2014). Different SMT derivations can be efficiently encoded in a translation
lattice. We can enrich the translation lattice of the current input sentence, which corresponds
to the query, with n-gram features that indicate the overlap status between the current deriva-
tion and a given TM match – in addition to the default SMT features. Dong et al. (2014) used
this technique for translation retrieval using two different lattice representations produced by
the Moses decoder. We adopt their approach for the cdec hypergraph. A hypergraph is a
generalized graph in which a single edge may connect any number of nodes. A subset of
hypergraphs8 is isomorphic to a (synchronous) context free grammar, so the set of derivations

8Directed, acyclic and every edge has exactly one head, but might have zero or more tail nodes – a tree.
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Hqi for a given input qi in hierarchical phrase-based SMT can be encoded by a hypergraph
Hg(qi ). Nodes correspond to terminal and non-terminal symbols and hyperedges to rules
and associated feature values (for an example see Figure 5.5). A hyperedge e is scored by
computing the dot product of the feature values ϕ(re) associated with its corresponding rule
re and the global model weights w .

score(e) = w · ϕ(re)

All translation hypergraphs feature a goal node ngoal , which corresponds to the root of the
parse tree. A translation hypothesis then corresponds to a path, which is a sequence of
hyperedges, through the graph ending at the goal node. The path with the highest probability
under the model, the Viterbi path, can be found with dynamic programming and semiring
parsing (Goodman, 1999). A semiring is a tuple ⟨A,


,


, 0, 1⟩ consisting of an additive and a
multiplicative operator,


and


, and their respective neutral elements, 0 and 1. Instantiating

these with ⟨R1
0,max ,×, 0, 1⟩ and computing the inside score

α(ngoal) =


h∈Hg(qi )


e∈h

score(e),

of the goal node with dynamic programming on the hypergraph yields the Viterbi score of the
best derivation ĥ. Different instantiations of the semiring result in the Viterbi derivation or the
inside probability of the whole hypergraph. We can add features to this model by extending
the scoring function of a rule r given a match m. In addition to the default SMT features ϕsmt

and weights we add features ϕmatch which indicate the match status at each rule.

score(e,m) = wsmt · ϕsmt(re) + wmatch · ϕmatch(re ,m)

We can use the Viterbi score as a cross-lingual similarity measure between the query hyper-
graph Hg(qi ) and each match candidate ti ,j , i.e.

CLIR(qi , ti ,j) = max
p∈Hg(qi )


e∈p

wSMT · ϕSMT(re) + wmatch · ϕmatch(re , ti ,j))

where p is a path through the hypergraph – corresponding to a derivation – and e the set
of hyperedges on the path. We explore two different ways to incorporate match features
ϕmatch(ri , ti ,j) in addition to the SMT feature set ϕSMT(ri ), using n-gram based measures.
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Unigram Precision Features We based our match status feature on the MT evaluation met-
ric BLEU, which combines n-gram precision and a brevity penalty. Since n-gram features are
non-local, meaning they do not decompose over the hyperedges, the size of the hypergraph
grows considerably when adding features for orders higher than n = 1 (Chiang, 2007). We
therefore restrict our model to a unigram precision feature and a brevity penalty. The latter is
only active on the goal node, i.e. on full derivations. The unigram precision feature indicates
at every hyperedge how many nonterminals in the current rule are also present in the match,
normalized by the length of the current derivation. With this model, we can assign a score to
each match by decoding the input sentence with the extended model and each given match.
The best match is then the one that results in the highest Viterbi score under the augmented
model. The model was implemented using the cdec python interface (Chahuneau et al., 2012).
To set the weights, we opted not to re-tune the SMT feature weights but to keep them fixed
to the baseline configuration determined on a held-out set, while adjusting the additional two
weights, as suggested by Hieber and Riezler (2015). We use pairwise ranking to optimize the
additional feature weights, where pairs of competing matches are sampled from the ranking.
The idea behind pairwise ranking is detailed in Section 5.3, so we omit further details at this
point. The gold standard ranking of the TM candidates is defined by FMS(ti ,j , t̂i ) with respect
to the reference t̂i for qi . The learning goal is thus to adjust the weights of the n-gram features
so as to rank the TM match highest that has the smallest distance to the reference.

Additional Language Model Features To work around the problem of non-decomposable
higher order n-gram features spanning several hyperedges we tried adding match candidates
as an additional language model when translating qi . Again, the TM match candidate that pro-
duces the highest Viterbi score under this model is selected as the best match. This approach
makes use of the fact that cdec handles the extension of the hypergraph to accommodate for
the non-local higher order n-grams. Cube pruning (Chiang, 2007) makes the search feasi-
ble. Again, we keep the previously tuned SMT weights fixed and interpolate between baseline
model score and the additional language model features, optimizing with pairwise ranking.

Both n-gram based approaches produce as a byproduct the Viterbi derivation for each match.
The Viterbi derivation for the best match could be directly used as a translation. However, as
we optimize FMS(ti ,j , t̂i ) instead of TER(derivation(qi , ti ,j), t̂i ), where

derivation(qi , ti ,j) = argmax
p∈Hg(qi )


e∈p

wSMT · ϕSMT(re) + wmatch · ϕmatch(re , ti ,j),

the translation quality of the derivation is not taken into account. In practice, we find that this
frequently results in non-fluent Viterbi derivations. It is possible though to use these deriva-
tions directly as an alternative to re-ranking, by optimizing translation quality with regard to
a gold standard ranking induced by TER(derivation(qi , ti ,j), t̂i ) instead. We report additional
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results on this variant, where we skip the re-ranking step that is detailed in the following.

5.3 N-best Re-ranking with TM Matches

To incorporate the retrieved fuzzy match into the SMT pipeline we use a simple re-ranking
model on the n-best list output by the baseline SMT system and select the best derivation ĥ

under this model. We balance information from the SMT model and the match by computing a
linear interpolation of SMT model score SMT and fuzzy match score FMS between hypothesis
h and best TM target match ti ,best . We also add a weighted version of the FMS score using
the retrieval score (CL)IR between TM match and original query qi as confidence measure.

ĥ = argmax
h∈H(qi )

w1 × SMT(h) +w2 × FMS(h, ti ,best) +w3 × ((CL)IR(qi , ti ,best)× FMS(h, ti ,best))

(5.4)

We learn weights for the different components of the score with pairwise ranking optimization
(PRO) (Hopkins and May, 2011). The gold standard ranking is induced on the n-best list of
SMT outputs, ranked by TER against the reference t̂9. From the n-best list, pairs of translation
alternatives h and h′ are sampled. The sampling only includes pairs, that have a difference in
score larger than a given threshold value α. We set this parameter as well as other sampling
parameters as detailed by Hopkins and May (2011). The goal is for the model score to mirror
the evaluation score. This constraint can be transformed as follows.

TER(h, t̂) < TER(h′, t̂)⇔ fw (ϕ(h)) < fw (ϕ(h
′))

⇔ fw (ϕ(h))− fw (ϕ(h
′)) < 0

⇔ w · ϕ(h)− w · ϕ(h′) < 0

⇔ w · (ϕ(h)− ϕ(h′)) < 0

where ϕ(h) is the feature representation of a hypothesis h and fw a scoring function of the
form fw (h) = w ·ϕ(h). For each pair of translation alternatives sampled from the n-best list we
can subtract their feature values and their evaluation score. Translations that are ranked cor-
rectly result in positive examples, incorrectly ranked translations in negative examples. These
examples form a training set, on which a supervised binary classifier can be trained, resulting
in a weight vector w which we can use directly to compute the n-best list re-ranking model
scores. It is easy to expand this model with more features, for example SMT evaluation met-

9It is customary in SMT to optimize BLEU score, but since we are working towards CAT applications, we use
TER to approximate post-editing effort. (Denkowski and Lavie, 2012)

77



Chapter 5. Cross-lingual Fuzzy Match Retrieval for SMT

rics such as BLEU or TER or separate components thereof. We experimented with different
feature configurations but found that in general, adding more features did not help. Often the
model would over-fit and greatly reduce TER score, but at the cost of a negative impact on
BLEU score. We therefore restricted the model to the three components in Equation 5.4.

5.4 Experimental Results

We experiment on a number of corpora of varying sizes, featuring different language pairs
and domains. For each corpus, we divide the data into a training set for the SMT system,
which doubles as translation memory. We leave three held-out sets: development set for
SMT parameter estimation, devtest set for setting all parameters of the translation memory
approach and a separate test set, on which the different systems are compared. Note, that in
general SMT training data and TM resource are the same data, so the adapted system has
no additional information. To compare source and different target retrieval methods in a fair
setting, we used the bilingual data from training the SMT model as translation memory, which
was restricted to the target side for target retrieval. To evaluate our target retrieval approach in
more a realistic setting, we furthermore set up an experiment, where SMT translation model
training data and TM resources deviate, because additional monolingual data is available.

5.4.1 Data Sets

Since translation memories are most effective on text that has a certain amount of repetition,
we evaluate our approach on typical localization data from technical domains such as infor-
mation technology (IT), legal and intellectual property (IP)10. All corpora are freely available
for research purposes. Among the freely available corpora, only the JRC-Acquis corpus has
been used previously in combinations of TM and SMT (Koehn and Senellart, 2010a; Li et al.,
2014). Most work in this area reports results on TM data from industrial partners that are
not publicly available. Usually, these data sets feature a large proportion of fuzzy matches in
high ranges, e.g. between 80% and 100%, which makes it possible for the combined systems
to achieve a large boost in score. Our reported results are in a smaller range, but achieved
on data with a lower rate of high-percentage matches. We manage to gain improvements in
performance from matches with an associated fuzzy match score between 10% and 80%, a
range, in which many previously reported systems perform lower than the baseline (Koehn
and Senellart, 2010a; Zhechev and van Genabith, 2010).

10Europarl has been used as a data set by Koehn and Senellart (2010a), but performance of the enriched
SMT system actually dropped below the baseline, showing that less repetitive corpora are badly suited for the TM
adaptation methods.
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Information Technology From the IT domain, we prepared an English-Chinese corpus of
manuals from the OPUS11 corpus (Tiedemann, 2012), the OpenOffice 3 (oo3) data. We
only kept sentence pairs that contained at least one Chinese character12, resulting in roughly
50,000 sentence pairs. We tokenized the English side of the data with the tokenizer.perl script
from the Moses toolkit and segmented the Chinese side using the Stanford Word Segmenter
(Tseng et al., 2005) with the Chinese Penn Treebank standard. Dev, devtest and test sets
were created by randomly sampling 1,000 sentence pairs each. The remaining sentence
pairs were used for training and as TM.

Legislative For the legal domain, we downloaded and aligned English-French data from the
JRC-Acquis corpus13 (jrc), a collection of legislative text from the European Union (Stein-
berger et al., 2006). We sampled 1,000 sentences each for dev, devtest and test set from
documents published in the year 2000 and kept documents published in other years to gen-
erate a training set of one million sentence pairs, after filtering out unbalanced sentences and
sentences longer than 100 tokens.

Intellectual Property We used data from two patent corpora; English-German descriptions
from the PatTR14 corpus (Wäschle and Riezler, 2012) and Japanese-English data from the
10th NTCIR15 challenge (Utiyama and Isahara, 2007). We used the official NTCIR-10 dev
and test set16 and produced test and held-out data for PatTR from documents from the year
2006 and collapsed the remaining data from documents published in 2005 and earlier into
a training set. From the patent documents, we only took data from description sections, the
largest free text section. To test our approach in a setting, where TM and SMT training data
deviate, we set up an additional data configuration: we assume that we have parallel data
from patent claims and the task is to translate text from a different genre, patent descriptions,
for which only data in the target language available. In addition, a small amount of description
bitext is available to tune parameters on – a typical domain adaptation scenario. The available
monolingual data is used to extend both the language model as well as the target-language
TM (Table 5.1).

Detailed statistics for experimental data sets are given in Table 5.2. To characterize the data
sets, Figure 5.6 reports the distribution of fuzzy match intervals on the various corpora, in-
cluding data for an actual translation memory from the industry (the numbers have been taken
from Wang et al. (2013)). Data from jrc and oo3 feature a large amount of 100% matches,

11http://datahub.io/de/dataset/opus
12We tested for Chinese characters by checking if they were in the Unicode range [0x4E00, 0x9FFF].
13https://ec.europa.eu/jrc/en/language-technologies/jrc-acquis
14http://www.cl.uni-heidelberg.de/statnlpgroup/pattr/
15http://research.nii.ac.jp/ntcir/ntcir-10/
16We merged, shuffled and again split up the data into three sets, to generate a devtest set.
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languages genre sentence pairs

SMT train en-de claims 6,089,006
dev/devtest/test en-de descriptions each 1,000
LM train de claims+descriptions 16,201,061
TM de claims+descriptions 16,201,061

Table 5.1: Domain adaptation scenario: deviating SMT training and (monolingual) TM data.

while the rest of the matches is roughly uniformly distributed over the intervals from 20% to
90%. The industry TM has less perfect matches, but most matches rank high between 40%
and 100%. The patent data however, has matches mostly in the 20% to 60% range. When
we combine this information with the average sentence length for each corpus (Table 5.2)17,
it becomes clear that with longer sentences, high percentage or perfect matches become less
frequent. For additional insight, we report repetition rate (Cettolo et al., 2014) for all data sets
in Table 5.318 to characterize the data sets in term of their repetitiveness. Repetition rate is
defined as the geometric mean of the rate of non-singleton n-grams for n = 1, ..., 4, computed
over a sliding window of 1,000 sentences.

RR =

 4
n=1


s
| {gn ∈ s| freqs(gn) > 1} |

s
| {gn ∈ s} |


1
4

where s is a subsample and gn is an n-gram of length n. Repetition rate is very high on jrc
and ntcir data, but low on pattr, even if it is from the same domain as ntcir. This is due to the
fact that ntcir contains claims, which are highly repetitive, while the pattr subset that we used
only contained descriptions. Given all the data, we can predict that the jrc data set might be
suited best for our approach, since it contains a lot of matches in higher ranges and features
very repetitive language.

5.4.2 Baseline SMT

We trained a hierarchical phrase-based baseline SMT model for the cdec decoder (Dyer et al.,
2010) on each data set. A 6-gram language model was trained with SRILM (Stolcke, 2002) on
the target side of the training data. The weights of the log-linear model were optimized with
MIRA (Watanabe et al., 2007) on a held-out development set reserved for this purpose. We
employed the baseline model to produce query translations and hypergraphs for the cross-

17This data was not available for the industry TM.
18On the two larger data sets, PatTR and ntcir, repetition rate was computed on a continuous subsample of

200,000 sentences.
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corpus data set #pairs vocabulary size

en fr

ac
qu

is

train 1,093,784 121,237 139,590
dev 1,000 2253 2760
devtest 1,000 2455 3035
test 1,000 2234 2793

en zh

oo
3

train 49,863 5,957 7,671
dev 1,000 1,368 1,469
devtest 1,000 1,320 1,372
test 1,000 1,330 1,437

jp en

nt
ci

r

train 1,673,300 96,207 184,643
dev 928 2,056 2,980
devtest 944 2,457 3,380
test 935 2,363 3,309

en de

pa
tt

r

train 8,369,562 728,205 678,877
dev 1,000 5,590 6,166
devtest 1,000 5,518 6,056
test 1,000 5,754 6,308

Table 5.2: Statistics for experimental data.

lingual retrieval of target matches as well as to produce 500-best lists, which we re-ranked
according to our model given the best match found after fine-grained retrieval. Retrieval and
re-ranking parameters were optimized on an additional held-out devtest set. All presented
results were obtained on a third test data set, where we measure BLEU (Papineni et al.,
2002) and TER (Snover et al., 2006). Scikit-learn (Pedregosa et al., 2011) was employed to
learn the parameters of the re-ranking models on the devtest set.

5.4.3 Retrieval Parameters

We used 3-grams to represent sentences in corpora with high average sentence length (legal,
patent) and 1-grams for data sets featuring short sentences (IT) to compute MinHash signa-
tures. For re-ranking, we settled on using 500-best lists after experimenting with lists of 100,
1000 and 5000 entries. We found that 500 distinct entries represented a large enough portion
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Figure 5.6: Distribution of fuzzy match scores for different corpora.

acquis oo3 ntcir pattr
en fr en zh jp en en de

repetition rate 16.85 16.75 5.98 5.68 16.43 16.90 5.85 3.24

sentence length 24.15 25.19 6.55 7.69 35.32 33.17 35.77 29.73

Table 5.3: Repetition rates and average sentence length in tokens for all target test sets.
Numbers on source are comparable.

of the search space for the re-ranking to work at an acceptable time – recall, that edit distance
has to be computed between all entries in the n-best list and the TM match and has a direct
influence on overall time. We chose parameters for the banding approach so that at least one
match candidate was returned for > 90% of the sentences in the devtest set.

5.4.4 Results

Since our experiments are subject to randomness introduced by hashing and parameter tun-
ing, statistical significance was assessed following the method described by Clark et al. (2011)
using the source code provided by the authors19. Experiments were repeated five times. We
report results of the first run and note non-significant20 differences to the baseline in italics.

19https://github.com/jhclark/multeval
20p ≥ 0.05
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acquis oo3
BLEU ∆ TER ∆ BLEU ∆ TER ∆

baseline 61.43 28.16 36.04 50.83

+src-fms 62.62 +1.49 26.63 -1.57 36.88 +0.84 48.94 -1.89

+tgt-1-best-fms 62.92 +1.48 26.79 -1.37 36.26 +0.22 50.13 -0.70

+tgt-cl-fms 61.82 +0.38 27.83 -0.33 35.97 -0.07 50.44 -0.39

+tgt-unigram 62.23 +0.80 27.56 -0.60 36.16 +0.12 50.17 -0.66

+tgt-lm 62.29 +0.85 27.45 -0.71 36.09 +0.05 50.15 -0.67

ntcir pattr
BLEU ∆ TER ∆ BLEU ∆ TER ∆

baseline 24.52 66.52 26.89 57.51

+src-fms 25.51 +0.99 62.75 -3.77 27.11 +0.22 57.04 -0.47

+tgt-1-best-fms 25.23 +0.71 63.59 -2.93 27.31 +0.42 56.78 -0.73

+tgt-cl-fms 25.51% +0.99 62.81 -3.71 27.04 +0.14 57.26 -0.25

+tgt-unigram 25.42 +0.91 62.63 -3.89 27.03 +0.13 57.25 -0.26

+tgt-lm 25.38 +0.86 63.1 -3.42 26.98 +0.09 57.29 -0.21

Table 5.4: BLEU and TER difference to baseline for TM integration on by source-side match-
ing and re-ranking (+src-rr) and variants of target-side matching and re-ranking (+tgt-*-rr).
All improvements, except those in italic font, are significant with respect to the baseline at
p < 0.01. Best results in bold face.

Source vs. Target Matches

Table 5.4 lists results on the test set with shared SMT and TM training data for all four data
sets and different retrieval methods. The results show that adding the TM information always
improves over the baseline, up to 1.57 BLEU and -3.89 TER, and our approach is successful
across domains and language pairs. Improvements in TER – the metric that was optimized –
are always significant at p < 0.01. Re-ranking using target-side only matches beats source-
side retrieval in terms of TER on two data sets, pattr and ntcir. Except for ntcir, the n-gram
based models for choosing the best target match always perform worse than the fuzzy-match-
score based models. For all data sets except ntcir, monolingual fuzzy matching based on the
1-best translation outperforms the cross-lingual fuzzy match scoring approach and constitutes
the best target retrieval strategy. Figure 5.7 shows detailed results on the different fuzzy match
intervals, in particular the difference between +tgt-1-best-fms re-ranking model and the base-
line. It is interesting to note that the highest gains are achieved in the 70-80% range, while
previous research reports highest gains in the 95-100% range. This is apparently dependent
on the data set, but it also suggests, that the baseline SMT system is already very good in
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Figure 5.7: ∆ BLEU and ∆ TER between baseline and system output on different fuzzy match
intervals

the high match range, at least for short sentences. For ntcir we achieve extremely high num-
bers in the 90-100% range and for pattr in the 60-70% range, but these scores are achieved
on very few examples (7 and 14, respectively) and therefore cannot be expected to be stable.
The difference between the data sets is probably due to the average sentence length – shorter
sentences with a perfect match in the TM are easier to reproduce for the SMT system than
longer ones, due to the smaller number of translation options. It is also remarkable, that for
ntcir and pattr data sets even extremely low-range matches are beneficial. While there are
some drops in terms of BLEU, TER always goes down, even on 0-10% matches.

Domain Adaptation with Additional Monolingual Training Data

To show the benefit of employing the CLIR method for retrieving target matches from monolin-
gual corpora, we evaluated our approach on the domain adaptation task which we described
in Section 5.4.1. We applied the best target retrieval method as determined on the pattr data,
+tgt-1-best-fms. Results for the setup are given in Table 5.5. While using the monolingual
in-domain data to train an enlarged language model already yields a huge improvement in
performance over an unadapted baseline, using the monolingual data to retrieve TM matches
and re-ranking with those on top of the adapted baseline is able to add another significant
boost – without adding any bilingual data.
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BLEU ∆ TER ∆

baseline 15.72 68.40
+in-domain lm 21.58 +5.86 62.54 -5.86

+tgt-1-best-fms 21.81 +0.23 62.18 -0.36

Table 5.5: Results for domain adaptation scenario.

acquis oo3 ntcir pattr
BLEU TER BLEU TER BLEU TER BLEU TER

baseline 61.43 28.16 36.04 50.83 24.52 66.52 26.89 57.51

+src-fms (+lsh) 62.62 26.63 36.88 48.94 25.51 62.75 27.11 57.04
+src-fms (-lsh) 62.78 26.96 37.76 50.07 25.99 61.65 27.04 56.87

Table 5.6: Re-ranking results for exact best fuzzy match, computed on the whole training
corpus without coarse candidate filtering with LSH.

Influence of the LSH Approximation

The coarse first retrieval step makes use of two approximations: we try to predict match candi-
dates with small edit distance using Jaccard similarity and we approximate Jaccard similarity
by comparing fixed-length, smaller hash signatures instead of full document vectors. To eval-
uate the influence of these approximations, we performed re-ranking on actual best matches
under the FMS measure, by computing FMS against the whole TM corpus instead of a set
of candidates. We evaluated this in the source retrieval setting, since it does not depend on
the choice of a query representation. The results can be considered an upper bound for our
retrieval step, assuming, edit distance is the best measure to determine good fuzzy matches.
Results for the comparison can be found in Table 5.6. For most language pairs, using the
match with the global best fuzzy match score – without filtering with LSH – has no significant
impact on score; where it does, on oo3 data, the impact is twofold: BLEU goes up by one
point, while TER worsens by also going up. TER is known to favor shorter translations – a
property, which BLEU score counters with the brevity penalty –, so this result suggests, that
using no filtering on a data set with short sentences results in longer matches being cho-
sen as best match. Indeed, exact matches on oo3 have an average length of 10.63 tokens,
while matches retrieved after LSH filtering have an average length of 9.59. The impact on the
baseline score is positive in both configurations. In summary, using the LSH approximation
does not impact translation results negatively, which confirms that it is not important to find the
global best match to improve SMT with fuzzy matches. Using an n-gram based overlap score,
such as the Jaccard similarity in LSH, instead of the default fuzzy match score has an impact
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Figure 5.8: Influence of similarity threshold t during LSH retrieval on translation quality for
bilingual (IR) and cross-lingual (CLIR) retrieval.

on the length of the retrieved matches, which influences translation outcome under different
evaluation metrics.

In a further experiment, we investigated the influence of the similarity threshold value t, which
determines, how similar two items have to be in terms of Jaccard similarity in order to be
retrieved as match candidates during LSH with a high probability. We compared re-ranking
with best matches found according to FMS both in the IR and the CLIR setting on the acquis
data set. Evaluation results in BLEU and TER are plotted in Figure 5.8. Our findings agree
with Ture et al. (2011): in a cross-lingual setting, LSH thresholds have to be set lower in order
to gain the same effect as in a monolingual setting. In the IR case, a threshold value of 0.8
is enough to deliver good matches, upon which lowering the threshold cannot improve; in the
CLIR setting, lowering the threshold constantly improves results, but at the cost of performing
fine-grained matching on a growing candidate set.

Skipping the Re-ranking Step: Biased Decoding on the Whole Search Space

The CLIR scores that operate on the hypergraph, +tgt-unigram and +tgt-lm, correspond to
the score of the Viterbi derivation on a hypergraph enriched with our match features. In the
same pass, the Viterbi translation can be built as well. This can be understood as biased
decoding with features capturing the closeness of the current derivation to the match. We
can therefore use the translations resulting from this biased decoding as final output and skip
the re-ranking step altogether, if we alter the objective function slightly to measure translation
quality instead of retrieval quality, as discussed in Section 5.2.2. Results for such an evaluation
for both hypergraph methods can be found in Table 5.7. Results are mixed; in general, biased
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acquis oo3 ntcir pattr
BLEU TER BLEU TER BLEU TER BLEU TER

baseline 61.43 28.16 36.04 50.83 24.52 66.52 26.89 57.51

+tgt-lm rrank 62.29 27.45 36.09 50.15 25.38 63.10 26.98 57.29
+tgt-lm decode 62.65 27.44 36.40 50.73 24.47 66.67 27.04 57.45

+tgt-1-best-fms 62.92 26.79 36.26 50.13 25.23 63.59 27.31 56.78

Table 5.7: Re-ranking vs. biased decoding with fuzzy matches with target lm features.

decoding performs similar to re-ranking with best matches determined using the respective
features, but in all cases but one is still outperformed by the best CLIR method combined with
re-ranking, +tgt-1-best-fms. On the ntcir data, decoding performs significantly worse than
re-ranking, while on oo3 its is better in terms of BLEU, but worse in TER. Again, the length of
the generated translations seems to play a role, which in turn depends on the features used in
our model, some of them similar to BLEU (n-gram scores), which penalizes short translations,
some similar to TER (edits distance in FMS), which favors them.

5.5 Analysis and Discussion

We have shown that biasing SMT towards matches found in a translation memory using both
the same and deviating resources as the SMT training data yields significant improvements
over the non-biased baseline. Tables 5.9 and 5.10 compare translation output between base-
line and the +tgt-1-best-fms model. The examples show, that the system is able to correct
syntactical errors and reordering problems, but also, that sometimes a change only means
swapping translations for a phrase or a term, when both options would be correct choices.
In this case, the translation both gains and loses from this phenomenon with regard to the
reference. We assume that this holds for the whole test set: in some cases the system will
randomly pick the right (meaning: used by the reference) translation; sometimes adding a
match will change a correct translation. Since overall our system improves significantly over
the baseline, this means meaningful changes are made frequently.

We conclude the following points from the experiments presented above.

• Matches retrieved by CLIR target translation retrieval models can be as helpful as
matches retrieved on the source side. The target retrieval works better, if longer sen-
tences are involved and the vocabulary is repetitive, even if the matches are in the lower
fuzzy match ranges (as seen on acquis and ntcir data). We hypothesize that the target
retrieval requires a certain amount of anchoring words in order for the retrieval to work.
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source in one particular embodiment , the aliphatic hydroxy carboxylic acids
bear the hydroxyl group and the carboxyl group on the same carbon
atom .

baseline in einer besonderen ausführungsform die aliphatischen hydroxycar-
bonsäuren , die die hydroxylgruppe und die carboxylgruppe an ein
und demselben kohlenstoffatom tragen .

tm match in einer besonderen ausführungsform des erfindungsgemäßen ver-
fahrens tragen die aliphatischen hydroxycarbonsäuren die hydroxy -
und carbonsäuregruppe am selben c - atom .

+rrank in einer besonderen ausführungsform tragen die aliphatischen hy-
droxycarbonsäuren die hydroxygruppe und die carbonsäuregruppe
am gleichen c - atom .

reference in einer besonderen ausführungsform tragen die aliphatischen hy-
droxycarbonsäuren die hydroxy - und carboxyl gruppe am gleichen
c - atom .

Figure 5.9: Example system output on pattr test set: With the TM match (retrieved with a fuzzy
match score of 68.18%), the syntax of the output has been corrected: the subordinate clause
has been removed and the verb tragen placed correctly in the main clause. Furthermore, an
article doubling has been removed (die die). Some vocabulary changes occurred, not all of
them beneficial: kohlenstoffatom has been turned into am gleichen c - atom, which is both
correct, but the latter is the term used in the reference; on the other hand, carboxylgruppe
was correctly output by the baseline, but changed to carbonsäuregruppe – correct, but not the
word used in the reference.

source the present invention is based on the object of improving a power
trowel in such a way that corner areas can be better smoothed .

baseline der erfindung liegt die aufgabe zugrunde , eine leistung traufel in
einer solchen weise , daß eckbereichen besser geglättet werden
kann .

tm match der erfindung liegt die aufgabe zugrunde , das gattungsgemäße
verfahren so zu verbessern , daß die halbleiterbauelemente billiger
hergestellt werden können .

+rrank der erfindung liegt die aufgabe zugrunde , einen spachtel leistung
derart zu verbessern , daß eckbereichen besser geglättet werden
können .

reference der erfindung liegt die aufgabe zugrunde , einen flügelglätter
dahingehend zu verbessern , dass eckenbereiche besser geglättet
werden können .

Figure 5.10: Again, re-ranking with regard to a TM match (with a match score of 59.1%)
improved the translation by adding a missing verb to the subordinate clause, verbessern, and
correcting the form auf the auxiliary verb können.
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• LSH is an efficient way to retrieve candidates for good fuzzy matches. Using an ap-
proximation as a filtering step instead of exact retrieval does not come at the cost of
translation quality.

• On long sentences in a less repetitive domain, gains are rather small (pattr). Similarly,
on a domain with short sentences and a high number of perfect matches (oo3), re-
ranking gains are barely significant, presumably because the SMT baseline is already
very strong.

• In a domain adaptation scenario, additional monolingual in-domain data used as a TM
can give small, but significant improvements over a very competitive language model
baseline, proving the relevance of the CLIR methods.

• Advanced methods for choosing the best target TM match do not perform better than
basic fuzzy-match-score-based ranking against the 1-best translation. This suggests
that a strong SMT model bias – relying on the best translation as suggested by the SMT
decoder – is beneficial; at least, when the SMT baseline system is good. Defining more
informed match features on the hypergraph might be able to change this outcome.

In summary, we can conclude that cross-lingual retrieval is a promising way to exploit mono-
lingual resources for translation. While our light-weight re-ranking approach functions similar
to a language model and we can assume that the improvements we saw will become smaller,
when using higher-order language models, the main contribution lies in the extension of the
retrieval. Even though we used it for the main evaluation, the targeted application of our
approach is not SMT, but computer-assisted translation: Human translators are hesitant to
integrate SMT into their workflow, since the generated translations lack fluency and might
contain errors. The cross-lingual retrieval can be used to mask the SMT by providing (fluent)
fuzzy matches in the target language that are similar to the SMT hypothesis. These matches
are not accessible with standard, source-source TM retrieval. Our method has the poten-
tial to massively enlarge the search space for fuzzy match search in order to provide human
translators with more and better matches. In this light, one main goal of future work is an eval-
uation in a post-editing setting aimed at finding a reduction in post-editing effort. We expect
to see gains in correspondence with those seen in our SMT experiments, when adding fuzzy
matches retrieved with cross-lingual search.
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CHAPTER 6

Online SMT Adaptation with User Feedback

State-of-the-art SMT systems translate text sentence by sentence. Each sentence is pro-
cessed in isolation and context beyond the sentence level is not considered when choosing
translation options. This simplification makes it difficult for a system to resolve ambiguities and
choose the correct translation in the global context. Furthermore, it gives rise to the problem of
translation consistency, since the system has no memory of previously produced translations
on the same document. This is especially impairing when considering a real-world translation
scenario, such as computer-assisted translation (CAT), where a user and an MT system inter-
act to create translations. The MT component, a translation memory or a combination of both
suggest translations, which are then revised and refined by a human translator. In this con-
text, a static MT system will reproduce mistakes that have been previously corrected by the
user. This leads to an unnecessarily inefficient translation process and a possibly frustrating
experience for the user, since the system is unable to learn from its mistakes – for an exam-
ple see Figure 6.1. Since translation in a CAT scenario is an interactive and time-sensitive
task, a complete retraining of the translation models, as performed for batch adaptation, is
not feasible. We therefore propose an online learning approach that extracts information from
user feedback and immediately integrates the information into the MT engine to reduce time
and effort spent on correcting MT hypotheses. Context-specific translations are learned from
already edited segments of a text by aligning source sentences and user-approved transla-
tions after they have become available. We augment the system with new phrases learned
from these alignments and bias it towards already seen translations that have been selected
by the user, encouraging translation consistency with regard to the human translation. To
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S

E
N

T.
7 source Annex to the Technical Offer

MT output Annex all’Tecnica Offri
user translation Allegato all’Offerta Tecnica

S
E

N
T.

8 source Sistemi Informativi SpA

MT output Sistemi Informativi SpA
user translation Sistemi Informativi S.p.A.

S
E

N
T.

21 source This document is Sistemi Informativi SpA’s Technical Offer

MT output Questo documento è Sistemi Informativi SpA di Tecnica Offri
user translation Il presente documento rappresenta l’Offerta Tecnica di Sistemi Informativi

S.p.A.

Figure 6.1: Information extracted from user feedback on the translations of an MT system
should be used to update the system as soon as it becomes available. The phrase Technical
Offer first appears in sentence 7; when it appears again in sentence 21, the MT system should
be able to reproduce the correct translation supplied by the user earlier, Offerta Tecnica. In
the same way, the spelling variant S.p.A. could be learned.

achieve this, we construct local language and translation models based on the growing cache
of available human translations and combine them with the static global model. We evaluate
our approach on two domains and language pairs. Since an authentic CAT scenario is difficult
and expensive to create, we measure translation quality on the reference translations of the
test set. Although the evaluation is not interactive, part of the test sets were created by CAT
users in a field test. In this way, we gain multiple references for each sentence and a test set,
which is similar to the target scenario. Our adapted models achieve improvements of up to 3
BLEU point over the static baseline.

The work described in this chapter was mainly carried out during an internship with the Hu-
man Language Technology unit at Fondazione Bruno Kessler, Trento, Italy1 for the MateCat
project2, under the supervision of Marcello Federico and Nicola Bertoldi. Results have been
published in Wäschle et al. (2013) and Bertoldi et al. (2014) with a comparison to a dis-
criminative adaptation approach developed by Patrick Simianer and additional experimental
work conducted by Nicola Bertoldi and Mauro Cettolo. The chapter is organized as follows:
Section 6.1 discusses related work on online adaptation and interactive SMT. Section 6.2 de-
scribes the adaptation of language and translation model in detail. Experiments and results
are presented in Section 6.3.

1http://hlt.fbk.eu/
2Machine Translation Enhanced Computer Assisted Translation, http://www.matecat.com/
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6.1 Related Work

The problem of updating a system incrementally emerges in many areas of research on ma-
chine translation. Online learning methods have been applied to the task of tuning system
parameters, e.g. in the context of stochastic methods for discriminative training (Liang et al.,
2006a; Chiang et al., 2008) or streaming (Levenberg et al., 2010, 2011). In these scenarios,
the model is updated after translating each example of the training set. After training is com-
pleted, however, the model remains static when translating test sets. Liang and Klein (2009)
employ online versions of the EM algorithm to the problem of generating word alignments.
Incremental adaptations of the whole system have been presented for larger batches of data
(Bertoldi et al., 2012; Cettolo et al., 2013b). In terms of granularity, our scenario is most simi-
lar to the work by Hardt and Elming (2010), where the Moses training procedure is employed
to update the phrase table immediately after a reference becomes available. Our work, how-
ever, focuses on adapting both language and translation model with techniques that leave
the global models unchanged. This is important in a CAT environment, where several users
might use the same global model but individual local models. The CAT scenario is also re-
lated to interactive machine translation (IMT) (Nepveu et al., 2004; Ortiz-Martínez et al., 2010;
López-Salcedo et al., 2012), where the human translator receives suggestions for translation
options on the word or phrase level while inputting his or her translation, and to cache-based
SMT (Tiedemann, 2010). In contrast to this work, our approach operates strictly on the level
of full sentence translations that are revealed after a prediction for an input is made. In the
field of domain adaptation, combining a local model learned specifically for the test domain
and a global model learned on general data, is common approach. Possible combination
approaches are for example a log-linear framework (Koehn and Schroeder, 2007), mixture
models (linear or log-linear) (Foster and Kuhn, 2007) or fill-up methods (Bisazza et al., 2011).

Other work specifically on sentence-level online adaptation for SMT in a CAT scenario has
been presented. Martínez-Gómez et al. (2012) use different well-known online algorithms,
such as perceptron, online passive-aggressive, and discriminative ridge regression, to adapt
model parameters; in particular the weights of the log-linear model and the phrase table
weights. Their adaptation of the translation model parameters is similar to our approach.
However, we also adapt language model parameters and are able to augment the translation
model with new phrases in addition to re-weighting phrases already present in the model.
Denkowski et al. (2014) adapt three components of a hierarchical phrase-based SMT system
to user post-edits: translation grammar, language model and model parameters using the suf-
fix array technique, hierarchical Pitman-Yor process language models (HPYPLM) and MIRA.
Simard and Foster (2013) adopt a different approach: instead of adapting the model com-
ponents, they incrementally learn an automatic post-editing (APE) system that translates MT
output into user-corrected output and employ it on top of the SMT pipeline, applying automatic
post-edits before the output is passed to the user.
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A number of related papers have been published on adaptation experiments for the Mate-
Cat tool. Blain et al. (2012) align source and user translation using the MT hypothesis as a
pivot followed by full re-training of the phrase table, which is the interpolated using the Moses
backoff mode. They compare the results of their alignment procedure to incremental GIZA++
alignments. Bertoldi et al. (2013) was published as a companion paper to Wäschle et al.
(2013), experimenting with a repetitiveness measure as a criterion to predict the impact of the
adaptation method and presenting additional results using a context-reward strategy. Mathur
et al. (2013) perform sentence-wise adaptation by introducing an additional feature which rep-
resents a goodness score of each phrase pair in the test set as well as learning weights for
the log-linear combination with the MIRA algorithm.

A related area is the analysis of translation consistency (Carpuat, 2009; Ma et al., 2011; Ture
et al., 2012). Carpuat and Simard (2012) show that increased consistency of an SMT system
does not correlate with better translation quality – however, translation errors are indicated by
inconsistencies. Our work can be viewed as an approach to improve translation quality by
enforcing local consistency with regard to human translations via online learning.

6.2 Online Adaptation for CAT

Online learning strategies are a good fit for tasks, which can be learned incrementally, or
where the training data is too large to be processed in one batch. A model improves over time
with incremental updates applied after receiving an example from the training set. This view
on learning fits well in a CAT workflow, where an SMT system produces translation suggestion
and a human translator post-edits or rewrites the hypotheses. New training examples become
steadily available, while working on a document. A hypothetical CAT workflow involving a
translator and an MT system provides the opportunity to integrate two online learning steps
(in italic font).

For each sentence in the document:

1. MT system produces a translation (hypothesis)

2. user corrects MT output

3. collect feedback from user correction

4. update MT engine with collected feedback

In particular, our online adaptation approach for the SMT component of a CAT system is fitted
to the MateCat workbench. Figure 6.3 shows the architecture of the tool: a translation server
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processes requests by several users at once and handles the translation resources, TM3 and
the SMT system, distributing their output to the users. We can assume that the translators
work on the same project and these resources are adapted to their common domain at hand,
but each translator processes a different document. Our model steps in at the level of doc-
ument adaptation. The main idea is to build a cache of document-specific translations for
each user separately. After processing a document, the newly available parallel data might
be added to the existing models, which we refer to as the global model, with a batch update
(Bertoldi et al., 2012; Cettolo et al., 2013b). During translation, a local cached model is built
specifically for each user and each document – when the user starts a new document, the
cache that was collected on the previous document is emptied. Figure 6.2 formalizes this
online learning protocol with a local cache.

train global model mg

for all documents d of |d | sentences do
reset local model md = ∅
for all sentences s = 1, ... , |d | do

combine mg and md into mg+d

receive input sentence xt
output translation ŷt from mg+d

receive user translation yt
refine Md on pair (xt , yt)

end for
end for

Figure 6.2: Online learning protocol.

The learning process starts from training a global model Mg on parallel data in the range of
millions of sentence pairs. Then for each document d , consisting of a few hundred up to a
thousand sentences, a local model Md is created. For each example, first the static global
model Mg and the current local model Md are combined into a model Mg+d . Then the input
xt is translated into ŷt using the model Mg+d . Finally the local model Md is refined on feed-
back yt that is received immediately after producing ŷt . In the evaluation of our experiments,
the refinement step is simulated by updating on the reference, but the local prediction ŷt for
the sentence in question is not changed. This information is only available to the model for
translating the following sentences, so the evaluation by computing scores over the whole set
after online learning on the set is still fair.

We implement the adaptation of a local caching model for the phrase-based SMT system
Moses. The main components of the SMT model are language (LM) and translation model
(TM). Both components are adapted using similar techniques. While the adaptation of the
language model only requires the information presented by the final translation, we need an

3Note, that in the remainder of this chapter, the abbreviation TM stands for translation model.
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Figure 6.3: Architecture of the MateCat tool (Fondazione Bruno Kessler, 2012).

alignment to extract bilingual information to update the translation model. A strategy to obtain
such an alignment is detailed in the next section.

6.2.1 Constrained Search Alignment for Feedback Exploitation

In order to extract information to refine translation models on user feedback, source and user
translation need to be aligned. For our purposes, we choose a direct alignment at the phrase-
level – as opposed to aligning at the word level and extracting phrases as done in the full SMT
training pipeline. To this end, we employ a constrained search technique described in Cettolo
et al. (2010). Given the set of all possible translation options4 for all phrase segmentations of
the source sentence, the constrained search seeks to optimize the coverage of both source
and target sentences while minimizing distortion of the source. The search is implemented
with dynamic programming and the alignment is built incrementally from left to right by growing
the covered target span: at each target position i ′ that features a distinct set of alignment links
to source spans, the contiguous alignment with the highest score considering the covered
source and target span, s[j ...j ′] and t[i ...i ′], respectively, is recorded.

4The translation options can be output during decoding. Since every source sentence for which user feedback
is available has already been run through the decoder, no additional decoding step is needed.
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score(s[j ...j ′], t[i ...i ′]) = (j ′ − j) + (i ′ − i) + distortion(s[j ...j ′])

From all alignments that fully cover the target text, the one that maximizes this score is se-
lected, resulting in exactly one optimal phrase segmentation and alignment. In contrast to
forced decoding, where translations that are not fully reachable with the given models cannot
be produced, the constrained search allows gaps such that some source and target words
or phrases may be uncovered by the alignment. This is achieved by adding dummy phrase
pairs, which associate target words with an empty source span, for every target word. Note,
that the phrase translation probabilities are not taken into account – the alignment only opti-
mizes coverage while simultaneously trying to keep distortion small. Since the user post-edit
is highly reliable, these gaps can be aligned to extract new phrase pairs that are not present in
the global model. Since we have no information about the content of the gaps5, this strategy
can only be applied for unambiguous gaps, where exactly one OOV phrase is missing on the
source and one on the target side. We assume that in this case we have a match and align
them. From the resulting phrase alignment we collect three different types of phrase pairs.

New phrase pairs by aligning unambiguous gaps.

Known phrase pairs that are already present in the given model but should receive a high
translation probability under the local model.

Full pairs consist of the complete source sentence and its user translation and are designed
to emulate a translation memory.

Due to the highly ambiguous nature of non-content words and their behavior as garbage
collectors during word alignment, only phrases that contain at least one content word are
considered and entered into the cache. For the source and the user translation given in
sentence 7 in Figure 6.1, the constrained search yields the alignment shown in Figure 6.4.
We can extract the new phrase pair Technical Offer → Offerta Tecnica, the known phrase
pairs Annex→ Allegato and to the→ all’ and the full phrase Annex to the Technical Offer→
Allegato all’ Offerta Tecnica from the alignment.

6.2.2 Translation Model Adaptation: A Local Phrase Table

The growing collection of phrase pairs extracted from source sentences and correspond-
ing user-approved translations enables the construction of a local phrase-based translation
model. The goal of this local model is to reward MT translations that are consistent with pre-
vious user translations as well as to integrate new translations learned from user corrections,

5A more refined feedback model, which was not available in our case, could collect such information from the
user.
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Annex to the Technical Offer

Allegato all’ Offerta Tecnica

Figure 6.4: Phrase segmentation and alignment.

Annex to the <p translation = "Offerta Tecnica || Proposta
Tecnica" prob = "0.75 || 0.25"> Technical Offer </p>

Figure 6.5: Moses XML markup.

in order to better translate the remaining sentences. The local model can be seen as a bias
that is backed up by the global translation model, since especially at the beginning of the doc-
ument the local phrase table tends to be sparse. From each sentence pair, all phrase pairs
extracted with the constrained search technique described in Section 6.2.1 are inserted into
a cache. Phrase translation probabilities are estimated based on the relative frequency of the
target phrase given the source phrase within the cache. Cache and model are updated on a
per-sentence basis as soon as a user translation for a source sentence becomes available.

Decoder Integration Moses offers a convenient and fast way to integrate the constantly
changing local model in the decoder at run-time without changing the global model in mem-
ory. With the Moses XML input option (Koehn and Haddow, 2009), phrases in the source
sentence can be annotated with translation options and translation probabilities via XML-like
markup, when they are sent to the decoder. The markup encodes a (miniature) translation
model that is passed to the decoder. This model is used it for decoding the current sentence
but immediately discarded afterwards. Multiple phrase translations and corresponding prob-
abilities for a source phrase can be suggested (see Figure 6.5). Moses offers two options
to interact with this local phrase table. In inclusive mode, the additional phrase translations
compete with existing phrase table entries. The decoder is forced to choose only from the
given translations in exclusive mode. During development, we found that the exclusive option
is too strict given the phrases extracted with constrained search. Though most phrase pairs
are correct and useful additions, for example spelling variants such as S.p.A→SpA or domain
vocabulary such as lease payment→canone, some are restricted to a specific context, e.g.
translation from singular to plural such as service→servizi, and some are actually incorrect.
In the inclusive mode, the global translation and language model can reject unlikely transla-
tions and offers soft interpolation. From a technical point of view, the probability mass passed
through the mark-up is split over the four phrase-table scores used in the log-linear model,
p(e|f ), p(f |e) and their lexical counterparts.
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<dlt cblm= "Offerta Tecnica || Offerta || Tecnica"/>Annex to
the Technical Offer

Figure 6.6: Cache-based language model markup.

We implemented the online learning as follows: The local cache is collected and controlled by
a separate wrapper script around the decoder call. Before sending a sentence to the decoder,
the source is checked for phrases present in the cache and, if phrase translations are found,
annotated with the information. Following the construction of a translation by the decoder,
the annotation operates in a greedy way from start to end of a sentence. First, the complete
sentence is looked up in the cache to find for possible perfect matches. Then, starting from
5-grams6 down to unigrams, the cache is checked for matches. In this way, translations for
larger spans, which we assume to be more reliable, are preferred over word translations.

6.2.3 Language Model Adaptation: N-gram Cache Feature

Complementary to the local translation model, we employ a target language model based on a
cache to reward target n-grams seen in previous user translations. Since the language model
has considerable impact on the final output choice, the global LM might often discard new
phrase translations produced by the local translation model, even if their associated phrase
translation probability is high. We therefore add a local language model to support the trans-
lation options suggested by the local translation model in order to increase the effect of the
adaptation and improve performance. We use an implementation of a cache-based language
model, which adds an additional feature to the log-linear model (Bertoldi, 2014). The feature
computes an additional score for each translation option based on a target n-gram cache. All
n-grams gn extracted from the user post-edit are associated with an age and a score, which
is strictly positive and decays exponentially as the age increases.

scoreng (gn) = exp(
1

age(gn)
)

New or reappearing n-grams are added to the cache with an age of 1. At each iteration of the
online learning, i.e. after the processing of a single sentence, the age of the existing entries in
the cache is increased by 1. The score of a translation option, i.e. a phrase e1, ..., em of length
m, is computed by summing up over the cache scores of all n-grams contained in the option;
n-grams that are not present in the cache receive a score of 0.

6We limited phrase size to 5 tokens.
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scoreph(e1, ..., em) =
m
i=1

max(n,m−i)
j=i

score(ei , ..., ej)

Using this technique, n-grams crossing over non-contiguous translation options are not taken
into account. The feature is therefore strictly speaking not a language model, but can be
seen as booster feature for specific n-grams. Since the model is implemented as a feature in
Moses, its influence is controlled by an additional weight in the log-linear model. To optimize
this weight, first all other weights are tuned with MERT and then taken as fixed, while the
additional weight is optimized using grid search. The cache is filled dynamically using XML-
like input similar to the XML input option for phrase translations (see Figure 6.6). For our
purpose we update the cache with all user translation target n-grams that contain at least
one content word after the translation becomes available, i.e. on the translation of the next
sentence. We also experiment with the option of adding only the target side of phrase pairs
included in the translation model cache to the language model cache.

6.3 Experimental Results

We use the open-source toolkit Moses (Koehn et al., 2007) to build the static global baseline
model. Word translation probabilities were estimated with GIZA++ (Och and Ney, 2003). We
learned a 5-gram language model using improved Kneser-Ney smoothing with the IRSTLM
toolkit (Federico et al., 2008) on the target side of the training data. The weights of the log-
linear interpolation were optimized with MERT (Och, 2003).

6.3.1 Data

As discussed in Chapter 5, CAT is especially relevant for technical domains. We develop and
test our system on English-Italian data from the information technology (IT) domain. In addi-
tion, we show that the results transfer well to other domains and language pairs by evaluating
a system trained on German-English patent text. Both domains are fairly technical in their
topics and especially suited for the presented adaptation approach, since we expect many
domain-specific terms to appear repeatedly throughout the document.

IT Data The training data for the global IT models is compiled from a translation memory
and several OPUS7 corpora (Tiedemann, 2012), totaling 1.2 million sentences and 19 million
English running words. For development, six documents that each correspond to an IT project

7http://opus.lingfil.uu.se
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are used, where the reference simulates a user-approved translation. We split the documents
into two groups, dev1 and dev2. Weight optimization was performed on dev1 and the best
overall system configuration was determined according to the scores computed on dev2. For
testing, FBK provided a document from the IT domain, for which actual user corrections from
three different translators (A-C) were available for each sentence, which were collected during
a MateCat field test (Cettolo et al., 2013a). We report separate scores for all three trans-
lators, regarding each translator as a document. This choice has strong motivations in the
online adaptation scenario. Each translator processed the sentences in his or her preferred
order and provided different feedback. Consequently, the original baseline system evolves
differently, and possibly achieves different performance. We aim to show that the proposed
techniques give consistent improvement on different sets of user feedback, regardless of the
overall performance of the baseline system.

Patent Data As evidence that the results transfer to different languages and domains, we
train a system on German-English patent text sampled from title, abstract and description
sections from the PatTRcorpus (Wäschle and Riezler, 2012). To depict a realistic scenario,
data in the training corpus is sampled from documents from all top-level IPCsections, which
can be viewed as technical subdomains, while domain-specific development and test docu-
ments are sampled from the same section, E (Fixed Constructions). We tune the weight for
the cache-based language model feature on a domain-specific set dev1, consisting of three
patents containing title, abstract and description sections, but take the best overall system
configuration determined on the IT dev2 set. We report evaluation results on four more patent
documents. Statistics for all data are reported in Table 6.1.

Extracting Whole Documents from PatTR

Since a huge number of small files is hard to handle for operating systems, PatTR has been
stored in large files sorted by language pairs and patent text section, from which the paral-
lel sentences were extracted. To reconstruct the original patent document, we can use two
properties of the data. (1) Each sentence pair is annotated with a patent document identifier
indicating the document it was extracted from and the IPC classes the document was as-
signed to. (2) Sentences appear in these files in the order in which they appear in the original
documents – this is especially important for our task. We pick a document identifier in the tar-
geted IPC class and extract all sentences that match this identifier from the title, abstract and
description sub-corpora, in the order of their appearance. The sentences are concatenated in
the following order: title first, followed by abstract and description.
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IT patent

doc sentences doc sentences

train 1,167 K train 4,199 K

de
v1

prj1 420 pat1 318
prj2 931 pat2 304
prj3 375 pat3 222

de
v2

prj4 289 pat6 300
prj5 1,183 pat5 227
prj6 864 pat6 239

te
st

prj7A 176 pat7 232
prj7B 176 pat8 230
prj7C 176 pat9 225

pat10 231

Table 6.1: Statistics for training, dev and test data.

6.3.2 Evaluation

Since field tests with actual translators require considerable resources, we evaluate our ap-
proach automatically usingto BLEU (Papineni et al., 2002) on the given reference translations.
While we adapt our system online on the test set, evaluation is carried out in batch using
the whole translated test set and references, because the BLEU metric is not designed to be
used on individual sentences. Usually, online adaptation approaches are evaluated in a sec-
ond pass over the training set. However, we do not re-translate the test set and evaluate the
first pass – this evaluation is still fair though, because only references of previously translated
sentences are used in our adaptation of the system. Since we have collection of develop-
ment and test documents, we report mean BLEU scores on all domains. The best results are
highlighted in bold and the standard deviation is given in small font size.

6.3.3 Translation Model Adaptation

Table 6.2 shows mean BLEU scores and differences from the baseline on IT dev1 and IT dev2
sets for TM adaptation as described in Section 6.2.2. We see that each condition of TM
adaptation, +new, +known and +full, yields individual improvements. Furthermore, im-
provements of individual conditions add up to an overall improvement of 2.90 (IT dev1) and
2.42 (IT dev2) BLEU points over the baseline for the combination of all conditions, namely
+new+known+full. Standard deviation of the difference is quite high, but always the same
or lower than the improvement in score. The full translations yield the highest individual im-
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IT dev1 IT dev2
BLEU ∆ [σ] BLEU ∆ [σ]

baseline 22.59 21.49

+new 23.11 +0.52 [0.57] 21.64 +0.15 [0.06]

+known 23.73 +1.14 [0.70] 22.24 +0.75 [0.15]

+full 24.22 +1.63 [1.73] 23.07 +1.58 [0.91]

+new+known 24.33 +1.75 [0.80] 22.42 +0.93 [0.19]

+new+known+full 25.49 +2.90 [2.18] 23.91 +2.42 [0.83]

Table 6.2: Translation model adaptation using new, known or full phrases (see Section 6.2.2)
and combinations of the three on IT dev1 and IT dev2 on top of the baseline. Figures reported
are mean BLEU scores and mean difference from the baseline (in small font size). Standard
deviation of the difference is indicated in square brackets. Best results are highlighted in bold.

tm +1-gram lm +4-gram lm +phrase lm

IT dev1 25.49 27.32 27.64 26.36
+1.83 [0.45] +2.15 [0.76] +0.87 [0.74]

IT dev2 23.91 24.62 25.25 24.87
+0.70 [1.17] +1.34 [1.26] +0.95 [1.01]

Table 6.3: Different language model (lm) adaptation modes (see Section 6.2.3) on top of the
best translation model (tm) adaptation. Figures reported are mean BLEU scores and mean
differences and standard deviation from baseline (in small font size).

provement, indicating that the data is very repetitive, and the new translations the lowest.
Closer examination revealed, that only a small number of new translations are added for each
document.

6.3.4 Language Model Adaptation

Table 6.3 compares the effect of adding different language model adaptation conditions on top
of the best translation model adaptation result, which corresponds to using all phrase types
(see Table 6.2). All language model conditions improve over the translation model baseline.
Using n-grams up to order 4 (+4-gram lm) yields the largest gains – 2.15 (IT dev1) and 1.34
(IT dev2) BLEU points – compared to an LM booster only for unigrams (+1-gram lm) or only
the target side of the phrases used in the TM adaptation (+phrase lm). This highlights the
importance of the language model bias feature for promoting the local translation model and
the impact of document-specific adaptation.
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6.3.5 Results on Test Sets

Results on the IT test set with three different post-edits are shown in Table 6.4. We find
large improvements in BLEU point for the combination of TM and LM adaptation over a static
baseline model for two translators, A and C. This corresponds to the findings on the IT dev
sets. However, for translator B only a non-significant improvement is measured. A reason
could be that the order in which the sentences were processed was not beneficial for the
adaptation, or that the post-edits made by the translator were not consistent.Table 6.5 lists
results on the four patent test sets8. The combined system achieves significant improvements
over the baseline on all data sets.

baseline tm+4-gram lm

prj7A 41.10 42.97 +1.87

prj7B 39.68 39.72 +0.04

prj7C 30.68 33.76 +3.08

Table 6.4: Results for TM and LM adaptation on IT test set featuring user corrections by three
translators each (A-C). Figures reported are BLEU scores with differences from baseline (in
small font size).

baseline tm+4-gram lm

pat7 26.22 27.28 +1.06

pat8 33.25 33.50 +0.25

pat9 36.57 38.52 +1.95

pat10 31.72 35.35 +3.63

Table 6.5: Results for TM and LM adaptation on patent test sets. Figures reported are BLEU
scores with differences from baseline (in small font size).

6.4 Discussion

While our method can achieve large gains, on some of the data sets gains are barely no-
ticeably and not significant. This indicates that the success of the method depends crucially
on the data provided. The more repetitive and the more consistent the translation, the larger
the improvement that can be gained by document-specific adaptation (Cettolo et al., 2014).
With these prerequisites, our method is a good fit for predominantly technical domains. Even

8The results on patent data for the author’s implementation of the system described above were kindly provided
by Nicola Bertoldi, who coordinated the SMT experiments for the joint work in Bertoldi et al. (2014).
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source A copy type is automatically assigned to a consistency
group when the first relationship is added to the con-
sistency group.

baseline Una copia tipo viene automaticamente assegnato a un
gruppo di coerenza quando la prima relazione viene
aggiunto al gruppo di coerenza.

adapt tm Una copia tipo viene automaticamente assegnato a
un gruppo di congruenza quando la prima relazione
viene aggiunto al gruppo di congruenza.

adapt tm+lm Un tipo di copia viene automaticamente assegnato a
un gruppo di congruenza quando la prima relazione
viene aggiunto al gruppo di congruenza.

reference Un tipo di copia viene assegnato automaticamente a
un gruppo di congruenza quando la prima relazione
viene aggiunta al gruppo di congruenza.

Figure 6.7: Comparison of baseline and adapted system output on IT test. With an adapted
translation model, the system is able to correct the translation of consistency, a phrase that
frequently appears in the document. By adding language model adaptation, the system also
produces a correct Italian compound word translation of copy type.

though the proposed method is simple, gains are substantial, which leads us to predict that
a more refined feedback process could produce much larger gains. Our system has no in-
formation beyond the final post-edit, so the alignment of new phrase translation is limited to
unambiguous cases. In an advanced system integrated in an editing workbench, we could ask
the user to provide alignment for translation parts that the global background model cannot
produce. Though our implementation is tailored to the Moses decoder, comparable document
model caching strategies can be applied to other decoders as well. Denkowski et al. (2014),
for example, proposed models for online adaptation for the cdec decoder.

6.4.1 Example Output

Figure 6.7 details example output for the different adaptation methods and compares it to
the baseline. Both language and translation model adaptation improve over the baseline in
comparison to the user feedback reference by biasing the translation towards using the right
terms in the context. The combined system is able to produce an output that is almost – except
for one instance of different (but still correct) word order – a perfect match to the reference
using the information of both local models.
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Figure 6.8: Effect of recency of the feedback entered in the cache on adaptation performance.

6.4.2 Delayed Feedback

In a real-world application our adaptation method, although lightweight, could prove to be too
slow for practical use. For users to accept SMT output as helpful, it has to be available in
short time, usually less than a second. If the adaptation procedure takes longer, feedback will
arrive in the system not at the translation of the next sentences, but with a delay. We therefore
studied the effect of the feedback recency on adaptation performance. Figure 6.8 plots the
drop in score against the number of iterations (i.e. processed sentences) that the feedback
exploitation is delayed on an IT development set. There is a significant drop in score that is
more pronounced for the language model, but there is still a significant improvement. The
n-gram cache seems to be especially sensitive to very recent data, while the language model
is not that dependent on the locality of the data.
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CHAPTER 7

Summary of Contributions and Concluding Remarks

In this thesis we presented models for quantifying cross-lingual similarity between text in
source and target language. We applied these models to a number of natural language
processing tasks: recognizing cross-lingual textual entailment as a first step towards con-
tent synchronization, detecting and deleting noise in a parallel corpus and its influence on
translation quality, cross-lingual fuzzy match retrieval for a TM-SMT hybrid and online learn-
ing from user post-edits for improved SMT performance. All models are mainly data-driven
and are in line with the current state-of-the art in statistical machine translation and machine
learning. We anchored our notion of cross-lingual semantic similarity in the alignment links
between words and phrases in the source and target language and adapted word and phrase
alignment models to the needs of the introduced applications.

We framed the task of recognizing cross-lingual textual entailment for content synchronization
as detecting additional, deleted or paraphrased content in a cross-lingual setting. In a sta-
tistical learning framework, we combined a collection of features that quantified cross-lingual
similarity based on purely structural attributes, cross-lingual and monolingual word alignments
and content overlap using the full SMT pipeline. We investigated different machine learning
strategies, breaking down entailment relations into directional entailment with binary classifi-
cation, multi-label and multi-class classification. The two-binary-classifier approach emerged
as the winner. We demonstrated the ability of our features and investigated their individual
contributions by performing ablation tests. An independent evaluation of our system was con-
ducted by participating in SemEval 2012 with encouraging results; the approach placed first
for three out of four language pairs and second for the fourth (Negri et al., 2012).
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On a corpus of sentence-parallel data derived from patent documents we performed a study
of cross-lingual similarity by investigating noise in automatically aligned parallel data. We
quantified and categorized the amount of noise and removed purely structural noise, such
as incongruous sentence numbering and headlines. We designed an annotation scheme to
derive a hand-annotated data set for training a content-sensitive filter based on word align-
ments and adapted the system designed for detecting cross-lingual textual entailment for this
task. We found filter settings that resulted in a gain in accuracy and F-measure on the hand-
annotated gold standard and experimented with different alignment symmetrization heuristics.
However, gains in the intrinsic measure did not transfer to an extrinsic task and did not result
in an improvement of SMT quality, when comparing a system trained on the filtered data to
an unfiltered baseline; however, the amount of training data could be reduced compared to
the baseline, while maintaining translation performance. The resulting corpus of 18 million
English-French and more than 5 million German-French sentence pairs was released for re-
search purposes and has been adopted as training data in the WMT shared task (Bojar et al.,
2014) and other applications (Bertoldi et al., 2014; Pecina et al., 2014).

Motivated by the preference for translation memories over SMT in professional translation
environments, we proposed a model for integrating translation-memory-like features into an
SMT system. We integrated fuzzy matches by biasing translation towards a match using a
statistical model for re-ranking. In contrast to previous approaches, the discriminative model
is light-weight and does not rely on phrase-segmentation or alignment between TM source
and target, which allows us to integrate partial matches found in the target language only.
We investigated a variety of methods for computing cross-lingual similarity to obtain such
target matches, inspired by cross-language information retrieval, and found that results with
target-language matches are comparable to using a target reference of source-side matches.
Furthermore, our hybrid system yielded significant gains in a domain adaptation scenario,
where additional monolingual resources in the target language are available. We reported
consistent improvements on different technical domains, which are relevant for the localization
industry, such as IT, legal and patent data for several different language pairs. By using
the matches to re-rank the n-best list, the decoder is treated as a black box, which makes
the approach easily portable. Future work in this area might extend the approach to handle
multiple fuzzy matches for one source sentence that cover different spans of the input, as
proposed in Li et al. (2014). Furthermore, experiments with professional translators could
evaluate, whether target fuzzy matches obtained with cross-lingual retrieval are also beneficial
for post-editing.

Finally, we modeled and implemented an online learning protocol for a phrase-based SMT
system that seamlessly fits in the post-editing workflow managed by the MateCat system,
advancing a tighter integration of human and machine translation. We build a document-
specific cache from user post-edits, on which a local language and translation model can be
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estimated and used at run time to bias the global model. Novel features are the recency
of the feedback – user corrections are immediately inserted into the system after becoming
available – and making the MT output consistent with regard to the user. Although we did
not have the opportunity to test our approach in an interactive setting, we were able to gain
large improvements in BLEU over a static baseline system using real-world feedback from
human translators on two different technical domains, indicating a considerable reduction in
post-editing effort for users. With more refined feedback, such as alignments produced by the
human translators, we believe there is a large potential in online adaptation of SMT models.
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