
Dissertation
submitted to the

Combined Faculties of the Natural Sciences and Mathematics
of the Ruprecht-Karls-Universität Heidelberg, Germany

for the degree of
Doctor of Natural Sciences

presented by
Dipl.-Phys. Eric Christian Müller

born in Heidelberg, Germany

Date of oral examination: 2014-12-17

Novel Operation Modes of Accelerated
Neuromorphic Hardware

Eric Christian Müller

2014

Referees: Prof. Dr. Karlheinz Meier
Prof. Dr. Ulrich Brüning

Novel Operation Modes of Accelerated Neuromorphic Hardware

The hybrid operation mode relies on a combination of conventional computing
resources and a neuromorphic, beyond von Neumann system to perform a joint
real-time experiment. The interactive operation mode provides prompt feedback to
the user and benefits from high experiment throughput. The performance of a cus-
tom transport-layer protocol is evaluated connecting the accelerated neuromorphic
system and the computer cluster. Wire-speed performance is achieved between
host and eight FPGAs ((846.7± 1.2)MiB/s, 94% wire speed), and between two
hosts using 10-Gigabit Ethernet (> 99%) as well as 40GbE (> 99%) to explore
scaling behavior. The software architecture to process neuronal network experi-
ments at high rates is presented including measurements which address the key
performance indicators. During hybrid operation, the tight coupling between both
resources requires low-latency communication. Using a custom-developed software
framework, an average one-way latency between two host computers connected via
10GbE is found to be (2.4± 0.2) µs and (8.5± 0.4) µs to the neuromorphic system.
A hybrid experiment is designed to demonstrate the hardware infrastructure and
software framework. Starting from a conventional neuronal network simulation, the
experiment is gradually migrated into a time-continuous experiment which inter-
acts between a host computer and the neuromorphic system in real time. Results
of the intermediate steps and the final, hybrid operation are evaluated.

Neurartige Betriebsarten beschleunigter neuromorpher Hardware

Der hybride Betriebsmodus beruht auf der Kombination aus konventionellen Rech-
nern und eines neuromorphen Systems, das nicht auf der von Neumann Architektur
beruht, um ein Experiment gemeinsam in Echtzeit durchzuführen. Die interaktive
Betriebsart ermöglicht eine schnelle Ergebnisrückmeldung an den Benutzer und
profitiert von einem hohen Experimentdurchsatz. Die Leistung eines speziell ent-
wickelten Transportprotokolls, welches das beschleunigte neuromorphe System und
den Rechnercluster verbindet, wird evaluiert. Die nominelle Übertragungsgeschwin-
digkeit wird zwischen Hostrechner und acht FPGAs ((846.7± 1.2)MiB/s, 94% der
Maximalgeschwindigkeit), sowie zwischen zwei Rechnern über 10GbE (> 99%) so-
wie 40GbE (> 99%) erreicht. Die Softwarearchitektur, die nötig ist um hohe Ex-
perimentraten zu erreichen, wird vorgestellt und anhand von Messungen werden
die Schlüsselgrößen untersucht. Die enge Kopplung der Resourcen, die der hybride
Betrieb benötigt, stellt Anforderungen an die Kommunikationslatenz. Diese wird
mittels eines speziellen, selbstentwickelten Softwarepakets gemessen. Für die Inter-
hostlatenz werden (2.4± 0.2) µs und für die Anbindung des neuromorphen Systems
(8.5± 0.4) µs ermittelt. Ein hybrides Experiment wird entworfen, das als Demons-
tration der Hard- und Softwareinfrastruktur dient. Beginnend mit einer konventio-
nellen neuronalen Netzwerksimulation wird das Experiment schrittweise in Rich-
tung einer zeitkontinuierlichen Echtzeitinteraktion zwischen Kontrollrechner und
neuromorphem System entwickelt. Zwischenschritte sowie das Endresultat werden
präsentiert und ausgewertet.

Contents

Introduction 13

1 System Architecture 17
1.1 The Wafer Module . 18

1.1.1 Internal Connectivity . 18
1.1.2 External Connectivity . 20
1.1.3 The FPGA Communication PCB 21
1.1.4 Analog Readout . 23
1.1.5 Model and Parameter Domains 23
1.1.6 Wafer Module Prototype System 24

1.2 Cluster Architecture . 24
1.2.1 Compute Nodes . 27
1.2.2 Storage . 30
1.2.3 Frontend Nodes . 32
1.2.4 Software Environment . 33
1.2.5 Management and Monitoring 33

1.3 Network Architecture . 33
1.4 Summary . 36

2 Fast Operation 37
2.1 Communication Protocols . 37

2.1.1 HostARQ . 41
2.1.1.1 HostARQ Payload 48
2.1.1.2 Software Implementation 49
2.1.1.3 FPGA Implementation 52

2.1.2 Performance Measurements 52
2.1.2.1 Virtex-5 1GbE/UDP Core 56
2.1.2.2 Between Host and FCP FPGA 57
2.1.2.3 Between Host and Multiple FCP FPGAs 62
2.1.2.4 Between Host and HICANN 66
2.1.2.5 Transport-layer Latency 69
2.1.2.6 Inter-host Performance 69

2.2 Operation Software . 73
2.2.1 HALbe . 78

7

2.2.1.1 Wafer-global Operations 81
2.2.1.2 Scheriff . 83
2.2.1.3 ESS . 83
2.2.1.4 SimDenMem . 83
2.2.1.5 Real-time Access . 84

2.2.2 StHAL . 84
2.2.3 Marocco . 85
2.2.4 PyNN . 85
2.2.5 Connecting Software Pipe-line Components 89
2.2.6 Calibration . 92
2.2.7 Automatic Testing . 92
2.2.8 BSS Live System . 93

2.3 Resource Management . 94
2.3.1 Measurements using SLURM 98
2.3.2 HBP Unified Platform . 99

2.4 Summary . 104

3 Hybrid Operation 105
3.1 Closed-loop Experiments . 106
3.2 Real-time Closed-loop Operation . 106

3.2.1 Data Exchange . 107
3.3 Hardware Platform . 110

3.3.1 Latency Requirements . 110
3.3.2 Communication Interface . 111
3.3.3 Latency Measurement . 113
3.3.4 HMF . 114
3.3.5 NM-PM1 . 115
3.3.6 HMF vs. HICANN Latency 115

3.4 Software Infrastructure . 118
3.4.1 Comparison to a Standard socket()-based Implementation . 120

3.5 Experiment . 123
3.5.1 Virtual Environment . 123
3.5.2 Virtual Environment Implementation 125
3.5.3 Software-based Setup . 127
3.5.4 Setup based on HICANN Loopback 127
3.5.5 Real-time Software-based Setup 130
3.5.6 Real-time Setup based on HICANN Loopback 134
3.5.7 Setup using the HMF . 136

3.6 Summary . 141

Discussion 147

Bibliography 153

8

Glossary 167

A Appendix 181
A.1 Repositories and Links . 181
A.2 Cluster & Network Architecture . 181
A.3 References . 182
A.4 Code Listings . 184
A.5 Miscellaneous Measurements . 191

Acknowledgments 197

9

List of Figures

1.1 Illustration of the HBP NM-PM1 system 17
1.2 Schematic of wafer module components 19
1.3 Image of production-type FPGA communication PCB 22
1.4 Image of HMF cluster and wafer prototype setup 25
1.5 Image of prototype FPGA communication PCB 26
1.6 Measurements of single-node LINPACK benchmark 28
1.7 Measurements of single-node Graph 500 benchmark 29
1.8 Schematic overview of the data network architecture 35

2.1 Schematic of the NM-PM1 network topology 38
2.2 Schematic of communication protocol layers 40
2.3 Frame format of IPv4 . 41
2.4 Frame format of UDP . 41
2.5 Schematic of stop-and-wait-type ARQ transmission 43
2.6 Measurements of communication latency using GbE 44
2.7 Frame format of Ethernet . 44
2.8 Schematic of selective-repeat-type ARQ transmission 46
2.9 Schematic of sliding window mechanism using window size 4 47
2.10 Frame format of HostARQ . 48
2.11 Frame format of HostARQ payload 49
2.12 Measurement of IPC throughput with varying methods 50
2.13 Schematic of HostARQ software . 51
2.14 Screenshot showing custom Wireshark plugin 53
2.15 Schematic of HostARQ test setup . 55
2.16 Measurement of host to FPGA throughput sweeping window size . . 59
2.17 Measurement of host to FPGA throughput sweeping packet size . . . 61
2.18 Measurement of host to FPGA throughput stability (full-duplex) . . 63
2.19 Measurement of host to multiple FPGAs throughput (full-duplex) . 65
2.20 Measurement of host to multiple HICANNs throughput (half-duplex) 68
2.21 Measurement of inter-host throughput (10GbE, full-duplex) 70
2.22 Measurement of inter-host throughput (40GbE, full-duplex) 71
2.23 Schematic of HMF/NM-PM1 software stack (data-flow-centric) . . . 77
2.24 Schematic of HMF/NM-PM1 software stack (execution-flow-centric) 79
2.25 Schematic illustrating orchestration of wafer-global operations 82
2.26 Schematic illustrating PyNN-supported back ends 86

10

2.27 Measurement of RCF throughput (boost serialization) 90
2.28 Measurement of PyHMF to mapping input stage throughput 91
2.29 Overview of SLURM software . 97
2.30 Measurement of SLURM execution overhead 100
2.31 Measurement of SLURM job throughput (parallel executors) 101
2.32 Measurement of SLURM job throughput 102
2.33 Schematic of HBP unified portal . 103

3.1 Schematic of closed-loop experiments 106
3.2 Schematic of conventional closed-loop experiments 108
3.3 Schematic of time-continuous closed-loop experiments 109
3.4 Frame format of SpiNNaker spike data 112
3.5 Measurement of the round-trip time 113
3.6 Measurement of HMF-CP round-trip time 116
3.7 Measurements of communication inter-node round-trip times 117
3.8 Measurements of communication round-trip time to HICANN chip . 119
3.9 Overview of VerCL software . 121
3.10 Measurements of communication latencies comparing VerCL and

socket-based implementations . 122
3.11 Simulation of virtual environment . 124
3.12 Schematic of complete closed-loop experiment 126
3.13 Schematic showing software-based closed-loop execution model . . . 128
3.14 Simulation of closed-loop experiment using NEST 129
3.15 Simulation of custom cLIF implementation 132
3.16 Measurement of real-time closed-loop experiment using custom cLIF 133
3.17 Measurement of run times for spike reception and transmission . . . 135
3.18 Measurement of real-time closed-loop experiment using HICANN

loop-back mode . 137
3.19 Schematic of hardware configuration for the closed-loop experiment . 139
3.20 Schematic showing input spike train for response/gain evaluation . . 140
3.21 Measurement of neuron response robustness 142
3.22 Measurement of neuron response in relation to varying threshold

voltage . 143
3.23 Measurement of real-time closed-loop experiment using hardware

neurons on a HICANN chip . 144

A.1 Measurement showing disk performance for the storage node 188
A.2 Measurement showing disk performance for a front-end node 189
A.3 Schematic showing physical connection between BSS and HBP systems190
A.4 Measurement of FPGA throughput sweeping packet size (half-duplex)191
A.5 Measurement of RCF throughput (internal serialization) 192
A.6 Measurement and Gaussian fit of communication latency 193
A.7 Measurement of real-time closed-loop experiment using custom cLIF

on HMF-CP (zoomed out) . 194

11

List of Tables

1.1 Components of a NM-PM1 compute node 30
1.2 Components of the NM-PM1 storage node 31
1.3 Components of a NM-PM1 front-end node 32
1.4 Components of the NM-PM1 data network 35

3.1 Measurements of experiment code path components 134

A.1 List of repositories and project links. 181
A.2 Components of a HMF compute node 181
A.3 Reference data for measurement of mapping input stage 182
A.4 Reference data for real-time closed-loop experiment using custom cLIF183
A.5 Reference data for closed-loop experiment using chip-based loopback 184
A.6 Reference data for closed-loop experiment using hardware neurons . 184

12

Introduction

Understanding the brain is the goal of neuroscience. A commonly used approach in
computational neuroscience are software simulations of spiking neuronal networks.
Recently, a large-scale simulation1 – covering one percent of the size of the human
brain – was performed on the K computer, a supercomputer2 which is ranked fourth
in the current TOP 500 [2014]. This simulation already reaches three types of
technical limitations. Simulating O(1012) synapses exhausts the available memory.
The power consumption of such supercomputers is tremendious; the K computer
consumes 12.6MW. Finally, the slow simulation speed – the previously mentioned
simulation required 40min runtime to simulate 1 s, a speed-down of 2400 – limits
the number of simulations which can be performed within the assigned maximum
computing time.
Yet, there is an alternative to simulation: emulation – neuromorphic hardware

systems implementing neurons and synapses emulate the behavior of the biological
counterparts. Using mixed-signal VLSI, many neurons and synapses can be assem-
bled on single chips to build neuronal networks. Within the Human Brain Project
(HBP), this endeavor is pursued to build multiple interconnected wafer-scale sys-
tems, the so-called NM-PM1. The NM-PM1 features almost 2 · 105 neurons and
4.4 · 107 synapses per silicon wafer. It implements a leaky integrate-and-fire neu-
ron model enhanced by an exponential term as well as an adaptation term. The
synapses are plastic, a long-term learning mechanism is implemented on chip.
However, this approach also faces three limitations. Noise influences analog cir-

cuits which induces non-deterministic behavior. Compared to freely programmable
software simulations, the configurability of the hardware implementation is lim-
ited to a specific model and to certain parameter ranges. Finally, the maximum
neuronal network size is limited by the size of the system. The NM-PM1 system
consists of twenty wafers, i.e. 4 ·106 neurons and 109 synapses which is three orders
of magnitude smaller than the simulation mentioned before.
On the other hand, there are clear advantages. The power consumption of neu-

romorphic systems bridges the gap to biology for the first time. For example, the
K supercomputer simulation supported approximately 340 synapses per Watt3. In
constrast, the NM-PM1 wafer module provides 440 · 106 synapses per Watt4. In
these terms, the NM-PM1 is six orders of magnitude more efficient than the K

1NEST simulation of 1.73 · 109 neurons with 1Hz firing rate on average, 10.4 · 1012 synapses,
40min for 1 s simulated time [Eppler, 2014; RIKEN, 2013].

2LINPACK Rmax = 11PFlop/s at 12.6MW power consumption.
3Power consumption of 12.6MW, 40min to simulate 1012 synapses for 1 s simulated time.
4Power consumption of 1 kW, 1 s to simulate 4.4 · 107 synapses for 10 000 s emulated time.

13

Introduction

supercomputer.
Secondly, neuromorphic hardware stands for a new computer architecture. In

contrast to the conventional von Neumann machines, it inherits properties from
biology like fault tolerance and unsupervised learning. This potentially allows for
robust and adaptive systems without preprogrammed patterns of behavior.
Finally, the main advantage for the user is the speed of accelerated neuromorphic

systems. Compared to the biological time domain, typical large-scale simulations
run slower than real-time; the K supercomputer simulation exhibited a speed-down
of 2400. In contrast to software simulations, the presented neuromorphic system
exhibits a speedup5 of typically 104 relative to biology. Due to this highly acceler-
ated operation, a large range of experiment time scales can be explored. On the one
hand, large time scales are required for experiments which explore the temporal dy-
namics of learning (days), development (years) and evolution. On the other hand,
parameter sweeps require a large set of short-running experiments; the accelerated
operation reduces the overall run time.
However, this hardware feature needs to be conveyed to the user meaning that the

support infrastructure needs to be capable of coping with the high emulation speed.
Intermediate hardware layers as well as the software stack need to be optimized
for this task. The exact requirements depend on the application which can be
categorized into three modes of operation.
Neuronal network experiments can be self-contained; that means the individ-

ual experiment stimulus is pre-defined and not depending on network output. Such
experiments run in larger batches or interactively. Both modes benefit from high ex-
periment rates; however, the interactive mode additionally requires a low configure-
to-result latency to allow for interactive updating of the result. For intuition-guided
exploration of parameter spaces update rates in the order of 1Hz, or faster, are re-
quired.
Finally, experiments that are not self-contained require some interaction between

the neuronal network and the entity which creates the stimulus. This so-called
closed-loop operation is particularly difficult to achieve on accelerated neuromorphic
systems as the speedup increases the visible external reaction delay in the emulation
time domain.
The self-contained experiments depend on a fast data flow between the user and

the system. The NM-PM1 system provides 1GiB/s per wafer module. To saturate
this bandwidth, multiple requirements have to be met: a fast communication pro-
tocol, pipelined software operation, and a software architecture providing efficient
data structures. Regarding the closed-loop operation, timing constraints have to
be met: a low-latency communication channel that uses low-level operating system
methods to provide latencies in the µs range. Lastly, the neuroscientific modeling
community can only benefit from this system if user-friendly operation is a matter
of course.
Software development does not happen in isolation but in an area of diametral

5The time constants can be configured to yield speedups in the range around 104.

14

interests. One challenge is the continuous influx of new components enhancing the
system. New hardware components always require new software or modifications
to existing implementations. Related to the progress of neurocomputational re-
search, the user demands are changing: for example, the user interfaces necessitate
continuous development to keep up with the current de-facto standards in compu-
tational neuroscience. Other challenges include support for increasingly sophisti-
cated experiments and the integration of external software packages6. The Human
Brain Project (HBP) aims for a holistic integration of data resources, neuroscien-
tific modeling, data analysis and simulation. A toolkit to bring data providers and
users together, with special focus on the aspect of large-scale simulations. In this
perspective, the integration of the NM-PM1 system into this toolkit, the so-called
unified portal, is of primary concern.

Structure of the Thesis

The thesis at hand is split into three chapters. In the first chapter (chapter 1) the
neuromorphic systems are described. Starting with the wafer module, the relevant
system components are introduced. Subsequent sections focus on the architecture
of the conventional part. Both, the cluster architecture and the data network
architecture have been designed by the author. An evaluation of the main properties
is provided.
The second chapter (chapter 2) covers efforts to support the typical usage mode

of accelerated neuromorphic systems: isolated experiments in quick succession. The
figure of merit is the throughput which has two meanings: data throughput (in B/s)
and the number of experiments per unit of time.
Finally, the third chapter (chapter 3) concentrates on hybrid operation of the

Hybrid Multiscale Facility (HMF). This means the real-time interaction between
a conventional software simulation and the neuromorphic hardware. In particular,
this mode has requirements regarding communication latencies. The figure of merit
has two facets: data communication latency and reaction delay.
Every chapter provides a small summary at the end to collect the essential parts.

A final discussion is provided at the end.

Naming Conventions

This thesis focuses on the neuromorphic hardware systems that have been devel-
oped during the BrainScaleS and Human Brain Project projects. The core of the
system are the neurons and synapses which are implemented as physical models. In
constrast to software simulations, the model equations are not numerically solved,
but rather emulated.

6For example, transistor-level simulators to support a common work flow accessing hardware or
simulation.

15

An unique feature of the system is the accelerated operation. That means, the
time constants of the model’s hardware implementation are smaller when compared
to real time. This is called speedup.
The ambiguous term network is always used in conjunction with data to separate

its meaning from the neuronal network.

Hardware Components and Abbreviations The neuromorphic hardware system
presented in this thesis is complex. For example, a single Wafer Module comprises
over 100 printed circuit boards. This is why only the parts relevant for this thesis
have been described; a complete hardware specification is available [HBP SP9 Spec-
ification, 2014]. This specification describes the hardware state planned for month
30 of the Human Brain Project (HBP) project. However, the specification will be
updated to include later modifications. At the end of this document, a glossary
collects all abbreviations used in the text.

International System of Units The author adheres to the international system
of units. However, in computer science the base-2 notation for units of digital
information is popular. To resolve this issue, a set of binary prefixes has been
defined by the International Electrotechnical Commission (IEC). The standard SI
prefixes are modified by appending i to indicate base-2 notation. For example, the
author uses 210 B = 1024B = 1KiB – the i in kB denotes the non-SI prefix (called
kibi, i.e. kilo-binary, instead of kilo). The same is true for MiB, GiB, and TiB. All
data sizes stated without i indicate SI-sizes, e.g., 1MB = 106 B.

Supervised Work
The author coordinated and supervised the work of Moritz Schilling, Vitali Ka-
rasenko, Kai Husmann and David Hinrichs. During his diploma thesis, Moritz
Schilling worked on the HostARQ protocol (HostARQ) software implementation
presented in section 2.1.1.2. Vitali Karasenko worked on the FPGA implementation
of the HICANN-ARQ protocol and HostARQ protocol presented in section 2.1.1.3
and section 2.1.1.3. He performed preparatory work in his bachelor thesis, and im-
plemented both components in his master thesis. Two more bachelors worked on the
software stack: Kai Husmann evaluated a key component of the pipelined software
architecture presented in section 2.2.5. David Hinrichs worked on the integration
of a transistor-level simulation into the software flow presented in section 2.2.1.4.

16

1. System Architecture

This chapter describes hardware components of the Hybrid Multiscale Facility
(HMF) and NM-PM1 systems which are relevant for this thesis. In the first section
the neuromorphic part is described. The conventional part – which has been de-
signed by the author – is described in the remaining sections. A complete hardware
specification can be found in HBP SP9 Specification [2014].
Figure 1.1 presents an illustration of the Human Brain Project (HBP) NM-PM1

system. At the time of writing, the compute cluster and some parts of the data
network have already been installed.

Figure 1.1.: Illustration of the HBP NM-PM1 system. The neuromorphic part is
distributed over five racks containing four wafer modules each. A 20-
node compute cluster including one storage server as well as two front-
end nodes is located in the fourth rack (from the left); in the rendering,
the compute nodes are located in the fifth cabinet. Communication be-
tween the individual wafer modules and compute nodes relies on multi-
ple Gigabit Ethernet links that are aggregated to 10-Gigabit Ethernet.
A backbone switch located on top of the compute cluster interconnects
the compute nodes, the wafer switches and provides an uplink to the
institute. Image by Dan Husmann.

17

1. System Architecture

1.1. The Wafer Module

The core of the HMF and NM-PM1 system is the neuromorphic part; its design
started during the FACETS project. This neuromorphic unit, the so-called Wafer
Module, contains a 20 cm wafer produced in a standard 180 nm CMOS process
technology. On a single wafer are 48 groups, the so-called reticles, of eight HICANN
(high-input count analog neuronal network) chips each – 384 HICANN chips in
total. In contrast to typical fabrication, the wafer is not cut into many dice but
stays complete; an interconnection step during post-processing provides on-wafer
connectivity between the reticles. This explains why the system carries the attribute
wafer-scale. One HICANN chip provides up to 512 neurons and 224 synapses. This
results in approximately 2·105 neurons and 4.4·107 synapses per wafer. Neurons are
emulated by an analog circuit that implements the adaptive exponential integrate-
and-fire neuron model [Brette and Gerstner, 2005]. Up to 64 neuron circuits can be
combined to form a single neuron supporting more than 224 synapses. By combining
64 neuron circuits a total number of 14336 synapses can be used. Figure 1.2 presents
a schematic, exploded view of a single wafer module. A single wafer module consists
of multiple parts. These are support electronics for power monitoring and control
as well as the FPGA-based1 communication printed circuit boards (PCBs)2, the
so-called FPGA communication PCBs (FCPs). The latter provides inter-wafer
and host connectivity. Associated with a single wafer module are two more types
of components: power control is performed by power management units (PMUs),
and the analog readout modules (AnaRMs) offer analog recording capabilities. All
AnaRMs modules of four wafer modules, i.e. a rack, get aggregated by one analog
readout module aggregator node (AnaRMAN).

1.1.1. Internal Connectivity

A wafer comprises many identical HICANN chips. During fabrication, the step-
and-repeat method cycles through all possible positions and replicates the same
physical structures, i.e. groups of eight HICANN chips or reticles, onto the wafer.
A later post-processing step adds connections between the otherwise unconnected
reticles. These connections are used for a bus network, the so-called Layer 1 (L1)
network, providing on-wafer spike-event transport. All HICANN chips of one row
or column share 256 vertical and 64 horizontal buses. Two buses can be intercon-
nected at specific connection points using so-called crossbar switches. However, not
every switch position is physically available because the presence of the switch itself
increases the parasitic capacity of the bus lane up to a point where successful data
transmission is no longer possible. For a detailed description of the bus system see
HBP SP9 Specification [2014]. The specified bus event3 rate at maximum clock

1field-programmable gate array (FPGA)
2printed circuit board (PCB)
3The raw symbol rate is R = 2Gbit/s, events are encoded using 6 bits plus start and stop bit.
After every frame a pause of the same length is inserted.

18

1.1. The Wafer Module

48 FCPs

Wafer

AuxPwr

AnaB

Wafer I/O

MainPCB

Figure 1.2.: A single wafer module consists of many components. Core of the wafer
module is the wafer which carries neurons, synapses and the on-wafer
communication bus. It is located at the center of the hardware stack.
Multiple printed circuit boards (PCBs) provide connectivity and power
to the wafer; one module comprises approximately 100 PCBs. Links for
external communication are provided by the PCBs at the bottom, the
I/O boards (wafer I/O PCB). Associated with one wafer module are
three analog readout modules for analog recordings, one power man-
agement unit and one compute node to control the system. Figure 1.3
presents the FCPs in detail. Hardware details regarding Analog Break-
out PCB (AnaB) and Auxiliary Power Supply PCB (AuxPwr) and all
other components can be found in HBP SP9 Specification [2014]. Image
by Dan Husmann.

19

1. System Architecture

frequency (250MHz) is 125MEvent/s [Schemmel et al., 2010]. Hence, the bisection
bandwidth4 of a HICANN chip can be calculated as follows:

(Nhorizontal +Nvertical) ·Rev = (256 + 64) · 125MEvent/s = 40GEvent/s (1.1)

However, a single HICANN chip can only inject events on eight horizontal buses.
The sending bandwidth is given by:

Nsending ·Rev = 8 · 125MEvent/s = 1GEvent/s (1.2)

At the time of writing, the chip is operated at a reduced clock frequency of
100MHz5; the L1 event rates are reduce by the same factor (2/5).

1.1.2. External Connectivity

To inject and extract spike stimuluses into the on-wafer neuronal network the HI-
CANN chip provides another communication layer, the so-called Layer 2 (L2) proto-
col. In contrast to the time-continuous L1 bus network, the L2 link uses additional
time stamps to encode spike times. Optimally packed events can be encoded using
32 + 4 bit6. A full-duplex connection between every HICANN chip and the associ-
ated FCP field-programmable gate array (FPGA) operates at Rsymbol = 2Gbit/s
[Schemmel et al., 2010].
Thus, the external event rate of a HICANN chip is:

Revent = Rsymbol/ sizeof(Event) = 2Gbit/s
36bit = 55.6MEvent/s (1.3)

The total (half-duplex) off-wafer bandwidth:

NHICANN ·Rsymbol = 384 · 2Gbit/s = 96GB/s (1.4)

The corresponding event rate is:

NHICANN ·Revent = 384 · 55.6MEvent/s = 21.3GEvent/s (1.5)

The links are capable of operating full duplex. Hence, the full-duplex bandwidth
and rates are twice as large.

4When the chip is split into two equally-sized parts, this is the bandwidth between the two parts.
5The reduced clock frequency provides more robust on-wafer, i.e L1, communication; higher clock
speeds require further tuning of L1 parameters.

6A double-spike packet requires 48 bit; header and cyclic redundancy check (CRC) consume
additional 16bit. After every packet, a 8 bit pause is required. That means two spikes can be
transmitted every 72 bit cycles.

20

1.1. The Wafer Module

The L2 protocol does not only support spike-event communication but also con-
figuration data. A chip-internal communication bus-structure (not to be confused
with the on-wafer spike network) exposes addressable memory to the FCP FPGAs.
Due to the non-reliable L2 (i.e. the link does not feature a transport protocol), a
dedicated transport layer protocol, the so-called HICANN-ARQ protocol, provides
reliability in case of data corruption or packet loss. Configuration data is encoded
using 64 bit each; hence, the packet rates are reduced by a factor of approximately
two.
In the FCP FPGA, upstream data can be routed to other FCPs via the inter-

wafer connections. Alternatively, it can be routed to the host. The latter introduces
a bottleneck in terms of bandwidth as the host link is based on Gigabit Ethernet
(1GbE). This means that eight HICANN chips share a 1Gbit/s host connection.
The Gigabit Ethernet (1GbE) links are capable of full-duplex communication, i.e.
the same is true for the reverse communication path. Section 1.1.3 provides details
regarding the FPGA communication PCB.
The host link uses a 32 bit encoding for a single spike. A optimally packed

spike data frame contains 182 double spikes (i.e. 364 spikes per packet). Using
equations (2.3) and (2.4), we can calculate the maximum spike throughput using
the host link.

Rspike = Throughputpayload/sizeof(Spike) = 947.9Mbit/s
32bit

= 29.6MEvent/s
(1.6)

As stated in the previous section, the chip is currently operated at a reduced
clock frequency; the calculated L2 speeds are reduced by the same factor. Notably,
the FCP FPGA itself is not affected and the inter-FPGA or host links maintain
their speeds.

1.1.3. The FPGA Communication PCB

From the users’ point of view, the FPGA communication PCB (FCP) are respon-
sible for almost all tasks related to experiments: 1. processes configuration data
describing neuronal network topology and neuron model parameters; 2. recording
of spike data and stimulation with spike data; 3. real-time spike data transport;
4. and runtime control. Figure 1.3 shows a FPGA communication PCB which will
be used in the production-type HMF and NM-PM1 wafer modules.
The FCP carries 1.25GiB DRAM. 256MiB of the total memory are available

for buffering Ethernet-based host communication. The remaining 1GiB is used
for buffering experiment input and output data. To a large part, this memory is
occupied by input and output spike data as a single wafer configuration only requires
approximately 50MiB. Due to constraints regarding data alignment, the memory
consumption in DRAM is larger, approximately 100MiB distributed over all FCPs.

21

1. System Architecture

Figure 1.3.: FPGA communication PCB (FCP) used in the production-type HMF
and NM-PM1 systems. The bottom connector is plugged into the Main-
PCB. Host connectivity is provided by four wafer I/O PCBs (two hor-
izontal and two vertical versions) that combine 12 FCPs each. Every
FCP carries 1GiB DRAM for spike data and 256MB for communica-
tion buffers. For details see HBP SP9 Specification [2014].

Hence, the memory consumption per FCP is only 2MiB and the remaining memory
can be used for spike data or buffering/pipelining of experiments.
In general, experiments can be categorized as being non-interactive/batch-style

or real-time. The former describes experiments where external stimulus has been
pre-calculated – i.e. the input does not depend on the neuronal network response –
and the stimulus is played back to the system. This operation mode benefits from
the real-time capabilities of FPGAs; the FPGA can provide fixed timings that
allow for cycle-precise real-time playback and recording of data. Experiments that
interact with a software in real-time are covered in chapter 3. The conventional use
case, i.e. batch-style usage, is covered in chapter 2.
A complete wafer module comprises 384 HICANN chips that are grouped into

48 reticles; every reticle is governed by one dedicated FCP. These 48 FCPs are
located between MainPCB and four wafer I/O PCBs (WIOs) that carry external
connectors. Twelve 1GbE links and 48 inter-wafer links are located on every WIO.
Every FCP can be used individually. Networks involving multiple reticles re-

quire synchronized interaction between multiple FCP FPGAs. In particular, syn-
chronized clocks are essential to avoid any drift which would yield desynchronized
playback and recording of spike data. The NM-PM1 system implements this syn-
chronization using a common clock source.

Gigabit Ethernet During the FACETS project, the importance of a reasonably
fast and conveniently usable host interface was identified. At that time, 1GbE was
state of the art and fulfilled the requirements: it supports 1Gbit/s = 125MB/s =
119.2MiB/s wire speed, it is supported by standard FPGA chips, the physical

22

1.1. The Wafer Module

connection technology (using twisted pair cat. 5 or 6 cables) is cheap and eas-
ily deployable, networking hardware for all use cases and scales is commercially
available, and good software support is available. Based on the experiences of the
FACETS Stage 1 system [Gutmann, 2007; Schilling, 2010], the HMF and NM-PM1
use Gigabit Ethernet as default data network technology. To ensure fast and reliable
communication between FCP and host computer, a transport layer implementation
has been developed by the author (see section 2.1).

1.1.4. Analog Readout
Eight HICANN chips, i.e. one reticle, share two analog output channels. This yields
96 channels per wafer module. These channels are fed to analog readout modules
that can be used for recording of analog neuron membrane traces. One 19-inch
rack contains four wafer modules and twelve AnaRMs connected to one analog
readout module aggregator node. Each AnaRM provides a 12 bit analog-to-digital
converter (ADC) sampling at 125MHz. Recording and readout are controlled by an
on-board Xilinx Spartan-6 FPGA that is connected via USB 2.0 to a host computer.
The traces are buffered in local 512MiB-DRAM memory. At full sampling rate,
this provides a maximal recording time of 2.7 s real time7. Conversion to 1GbE is
performed by one AnaRMAN per rack; i.e. twelve AnaRMs share a single 1GbE
uplink. This protocol conversion is performed for a number of reasons: 1. to allow
for a non-static assignment between AnaRMs and compute nodes. 2. to circumvent
the maximum physical cable length of USB 2.0; 3. reduce load on control nodes – on
the current compute nodes USB 2.0 transfers are computationally more expensive
than 1GbE-based communication.
The author suggests to switch from the USB 2.0-based to a 1GbE-based interface

as it would not only increase the throughput but also allow to omit the AnaRMAN
which, in turn, reduces complexity and increases robustness.

1.1.5. Model and Parameter Domains
The neuron circuits of the HICANN chip implement the adaptive exponential
integrate-and-fire (AdEx) neuron model [Millner, 2012]. Model dynamics are pre-
sented in Naud et al. [2008], an evaluation of the present hardware implementation
can be found in Millner [2012]; Schwartz [2013]. Compared to the leaky integrate-
and-fire model, the AdEx model adds two more variables that allow for many
known electrophysiological spike patterns; the LIF model supports only a single
firing mode, i.e. regular spiking.

Speed-Up The analog neuron circuit is a physical implementation of the corre-
sponding adaptive exponential integrate-and-fire (AdEx) model. In contrast to
a step-wise simulation, neuron model dynamics are emulated in continuous time.
Neuron (and synapse) model parameters are translated into the hardware domain.

7Assuming a speed-up factor of 104, this corresponds to 7.6 h.

23

1. System Architecture

In particular, the hardware time constants of the NM-PM1 and HMF are typically
104 to 105 times faster compared to biological real time; i.e. biological time is com-
pressed by this speed-up factor. The precise speed-up factor depends on the neuron
and synapse parameter set. Typically, the membrane time constant is used as a
reference.

Parameter Space The total parameter space is dominated by synapse data: 512 ·
224 synapses per HICANN chip store 4 bit weight and 4 bit address data, 112KiB
in total. Neuron-model-specific data8 accounts for approximately 12% of the total
memory [Brüderle et al., 2011]. Thus, the total wafer parameter space is approxi-
mately 50MiB.

1.1.6. Wafer Module Prototype System

At the time of writing, the production-type9 wafer module systems were not yet
available. All measurements that interacted with any part of the neuromorphic
system relied on the prototype setup shown in figure 1.4.
There are some differences between the prototype wafer module and the final

HMF or NM-PM1 wafer modules. The main difference is the new MainPCB which
increases the number of FCPs from twelve to 48. I.e. the prototype system uses
twelve Xilinx Virtex-5 FPGA-based boards (below blue fans in figure 1.4, details
in figure 1.5) each controlling four reticles; the production-type systems will use
48 Xilinx Kintex-7 FPGA-based PCBs each controlling a single reticle. Hence, the
maximum host bandwidth will be increased by a factor of four. Figure 1.5 shows a
picture of the FCP used in the prototype system.
Changes that do not directly affect the usage of the system are: 1. the power

management unit will be based on Raspberry Pi replacing an embedded ARM
evaluation board; 2. the lab power supplies will be replaced by custom-built supplies
based on 48V DC power supply units (PSUs); 3. the power monitoring and control
is improved.

1.2. Cluster Architecture

The properties of the previously described neuromorphic system are unique. In par-
ticular, its emulation speed (cf. section 1.1.5) allows for new types of experiments
and use cases. Long-term learning experiments can easily cover multiple days in
simulated time which translates to only several seconds of real time. Hence, long-
running experiments directly benefit from speedup factor. In contrast, parameter
sweeps are typically short but require many runs; this requires an efficient reconfig-
uration mechanism. Given the large emulation speedup of 104, the perceived or real

824 analog parameter entries per neuron account for 12288 entries; the specified precision is 10 bit,
i.e. 15KiB per HICANN chip.

9Production-type system refers to the system as specified in HBP SP9 Specification [2014].

24

1.2. Cluster Architecture

Figure 1.4.: Photograph of the first wafer prototype setup (right) together with the
HMF compute cluster (left). All measurements using any part of the
wafer module have been performed on this prototype. For a description
of the differences between production-type and prototype wafer module
see section 1.1.6. Details on the non-neuromorphic (or conventional)
part, i.e. compute cluster and data network, can be found in sections 1.2
and 1.3.

25

1. System Architecture

Figure 1.5.: FPGA communication PCB used in the prototype system. To pro-
vide adequate cooling, the FPGA is covered by an heat sink and two
fans. Host connectivity is provided by the two centrally located 8P8C
jacks (often called RJ45) using 1GbE. On the left side there are four
Infiniband-type/CX4 connectors designated for inter-FPGA connectiv-
ity. The wafer connectors can be vaguely seen (marked by arrows) on
the bottom of the PCB just below the right CX4 and the left 8P8C
jack. In the lower-right a small PCB acts as a power supply.

26

1.2. Cluster Architecture

speedup is typically not dominated by the emulation time but rather by overhead.
Optimizing the over-all speedup is one main topic of this thesis.
The overhead can be examined in the different experiment execution stages:

1. processing of experiment descriptions to compute valid hardware configurations,
2. experiment preparation, 3. hardware configuration, 4. and experiment readout.
All overhead categories can be optimized by improving software or hardware. The
former – creating a high-performance software stack – is covered in chapters 2
and 3; the latter will be addressed for the conventional hardware parts in the fol-
lowing sections. In particular, the compute node and data network architectures,
the conventional part, of both, the HMF and the NM-PM1 systems, was designed
by the author.

1.2.1. Compute Nodes

During all experiment phases – configuration, execution, and read-out phase –, a
single compute node handles a single wafer, i.e. up to 48×1GbE data streams10.
To achieve acceptable performance within the financial budget, central processing
units (CPUs) designed for server operation are avoided. At the time of writing,
the Intel® Core™ i7-4771 CPU offers state-of-the-art single-thread performance at
reasonable cost. Per CPU a LINPACK benchmark11 performance of approximately
180GFlops can be reached (see figure 1.6).
Certainly, floating point performance is not a key performance indicator for most

layers in the software hierarchy of the HMF or NM-PM1: most software layers
involve data intensive tasks. In particular, the computationally most expensive
task is the mapping step which translates a neuronal network description to a
hardware configuration. This task is more similar to the Graph 50012 benchmark.
For large-scale mapping jobs it is planned to make use of high-performance com-

puting (HPC) sites that are available within the Human Brain Project. Main task
of the compute nodes is experiment control – a programmatically linear task. As-
suming a fixed budget, high-clocked desktop CPUs are adequate for this job.
Another major requirement is high throughput: the wafer module provides 48

parallel 1GbE links for host communication. At the time of writing, networking
interfaces providing 10-Gigabit Ethernet (10GbE) links are state of the art. Con-
cerning the host interface, 40-Gigabit Ethernet (40GbE) is budget-wise in reach,
but the remaining network equipment, especially switches, is disproportionately
more expensive. See section 1.3 for details on the data network.
For a certain neuronal network experiment class low-latency links are essential.

This experiment category relies on a real-time interaction between neuromorphic
hardware and host computers. Due to the combination of the conventional com-
puter architecture and the non-von Neumann, neuromorphic architecture, this is
10That is one full-duplex data stream per FCP.
11A benchmark that measures floating point performance [Dongarra, 1988].
12Supercomputer list based on a benchmark which focuses on data-intensive loads [Murphy et al.,

2010].

27

1. System Architecture

102 103 104

LINPACK Problem Size N [#]

0

50

100

150

200

Pe
rfo

rm
an

ce
[G

Fl
op

/s
]

HBPHosts
HBPFrontends
BSSHosts

Figure 1.6.: Measurements of single-node LINPACK benchmark runs. The LIN-
PACK problem size N is varied up to machine memory limits (i.e.
16GiB for the HMF, 32GiB for the NM-PM1 cluster). Floating point
performance is plotted on the ordinate. The NM-PM1 cluster nodes
are labeled HBPHosts and HMF nodes as BSSHosts. In addition, two
NM-PM1 front-end nodes are tested; The quad-core NM-PM1 com-
pute nodes achieve over 180GFlop/s. In contrast to the hexa-core
front-end nodes, the compute node support the AVX2 instruction set
which allows for a doubled floating point peak performance per core.
The HMF compute nodes are multiple CPU generations older and do
not support advanced vector instructions at all. This reduces the per-
core performance significantly. The errorbars denote the RMSE out of
four runs. All hosts use dynamic clock rate adaptation depending on
CPU’s current thermal budget and power consumption. That means,
large errors typically indicate temperature fluctuations. In particular,
the runtime of the LINPACK benchmark is one characteristic marker
to verify node installation quality. The constant offset of some compute
nodes is mostly caused by differences in RAM modules; however, there
could be some contributions to dynamic frequency adaption proper-
ties caused by differences between individual CPUs originating from
manufacturing [Semeraro et al., 2002].

28

1.2. Cluster Architecture

14 16 18 20 22 24
Graph500 Problem Size N [#]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pe
rfo

rm
an

ce
[G

T
EP

S]

HBPFrontend (hugetlb)
HBPFrontend
HBPHosts
BSSHost
HBPFrontend (hugetlb, 1 CPU)

Figure 1.7.: Results of single-node Graph 500 benchmark runs [Murphy et al., 2010].
The problem size N is varied up to machine memory limits (i.e. 16GiB
for the HMF, 32GiB for the NM-PM1 cluster). The ordinate shows
the performance in terms of TEPS (traversed edges per second). Only
basic optimizations were performed. On the front-end nodes the page
handling of the Linux kernel was optimized for large memory alloca-
tions (hugetlb active in blue, disabled in green). There is a slight
performance increase between HMF compute nodes and the NM-PM1
compute nodes. The larger gap between NM-PM1 compute nodes and
front-end nodes is caused by the increased CPU core count. The mea-
surement was performed in collaboration with Paul Müller.

29

1. System Architecture

Component
CPU 1 Intel i7-4771

Haswell, 22 nm
RAM 32GiB DDR3-1600
Main Board 1 Intel Q87 chipset-based

Remote management via intel AMT
1 PCIe ×16 Gen3 (16 lanes) slot
4 Memory slots, DDR3-1600

NIC 1 Chelsio T520-LP-CR
2 10GbE ports

Low-latency
MPI with RDMA-support

Case/PSU 1U including 2×-redundant PSU

Table 1.1.: Components of a NM-PM1 compute node. The quad-core desktop CPU
runs at a base clock speed of 3.5GHz (turbo speed 3.9GHz). The
dual-port 10GbE NIC supports low-latency operation (evaluation in sec-
tion 3.3.3). The component list of the predecessor, the HMF compute
node, can be found in table A.2. For details about the frontend nodes
see table 1.3.

called hybrid operation. Details are covered in chapter 3.
The outcome of this budget optimization is presented in table 1.1. It presents a

short component list of the NM-PM1 cluster nodes.

1.2.2. Storage

Experiments running on the NM-PM1 system can be data-intensive; configuration
and result data of single experiments can easily reach into the GiB range. Depend-
ing on the exact data network configuration13, the inbound and outbound data
rates of a single wafer system are between 1GiB/s and 4GiB/s (see section 1.1.2).
To support recording of experiments at full wire speed, the storage system has been
split into different parts: a longer-term storage, and a fast short-term storage sys-
tem. The former is a single conventional node, called sto, equipped with Hard disk
drives (HDDs) and providing NFSv4-based network mounts (see table 1.2). Details
regarding storage configuration can be found in appendix A.2.

13The backbone switch does not support 40Gbit-links for all wafer modules. See section 1.3 for
details.

30

1.2. Cluster Architecture

Component
CPU 1 Intel i7-4770

Haswell, 22nm
RAM 16GB DDR3-1600
Main Board 1 Intel Q87 chipset-based

Remote management via intel AMT
1 PCIe 3.0 ×16 slot
1 PCIe 2.0 ×4 slot
4 Memory Slots, DDR3-1600

NIC 1 Chelsio T580-LP-CR
2 40GbE ports

SAS 1 LSI SAS Controller 9211-4i
4 SATA 6G ports

Case/PSU 1 3U including 2×-redundant PSU
16 hot-swap 3.5" SAS/SATA drive trays

Table 1.2.: Components of the NM-PM1 storage node. At the current stage, se-
quential reads or writes reach up to 1GiB/s; increasing the number of
HDDs could yield higher throughput. To eliminate this potential bot-
tleneck, the node’s uplink supports 40GbE. A file system benchmark is
shown in figure A.1.

31

1. System Architecture

Component
CPU 1 Intel E5-2643v2

Ivy Bridge EP, 22 nm
RAM 64GiB DDR3-1600
Main Board 1 Intel C602 chipset-based

Remote management via integrated IPMI 2.0/KVM
2+2 PCIe ×16 Gen3 (16 lanes) slot
24 Memory slots, DDR3-1866 non-ECC

UDIMM (≤ 128GiB)
RDIMM ECC (≤ 768GiB)
LRDIMM ECC (≤ 1.5TiB)

NIC 1 Chelsio T580-LP-CR
2 40GbE ports

SAS 1 LSI SAS Controller 9211-4i
4 SATA 6G ports

Case/PSU 1 3U including 2×-redundant PSU
16 hot-swap 3.5" SAS/SATA drive trays

Table 1.3.: Components of a NM-PM1 front-end node. The hexa-core server CPU
runs at a base clock speed of 3.5GHz (turbo speed 3.8GHz). The large
number of wide PCIe slots can be used for future upgrades: possibly
Xeon Phi for boosting floating-point performance and/or fast PCIe-
based solid state disks.

1.2.3. Frontend Nodes
Fast storage is available on the (currently) two server nodes. See table 1.3 for a
list of components. The server uplinks use one 40GbE port (dual-port NIC). Each
node carries 2TiB distributed over two Solid-state disks (SSDs). Sequential read
and write performance numbers are:14

Sequential Read (515± 3)MiB
Sequential Write (458± 5)MiB

Using a striped RAID array yields:

Sequential Read (1394± 8)MiB
Sequential Write (1391± 8)MiB

A file system benchmark is shown in figure A.2. It is planned to adopt the Ceph
distributed file system [Weil et al., 2006].
14The benchmark numbers were acquired using dd if=/dev/sdX of=/dev/null bs=1M for reads,

and dd if=/dev/zero of=/dev/sdX bs=1M conv=fdatasync for writes. Linux employs ag-
gressive caching techniques; to reduce inter-run dependencies, before starting a run echo 3
> /proc/sys/vm/drop_caches was executed; after writes a final sync was performed.

32

1.3. Network Architecture

1.2.4. Software Environment
The disk-less compute nodes boot via preboot execution environment (PXE) from a
NFSv4 mount. This file system is provided by the storage node. The operating sys-
tem is based on Debian Wheezy [Hertzog and Mas, 2014]. Some modifications have
been performed: 1. on each node, a memory-based overlay file system is mounted to
allow for non-persistent modifications of the local system (kiosk mode); 2. the Linux
kernel version has been upgraded to 3.14 (due to hardware compatibility issues, and
better support for cgroups15); 3. an updated OpenFabrics Alliance (OFED) soft-
ware stack has been installed; 4. message passing interface (MPI)-related software
packages have been recompiled due to this new stack. Software packages that are
either not included in Debian Wheezy or too old, are provided using the modules
environment [Modules, 2014].
Users work in their home directories which are located on another writable NFSv4

mount. All user access is mediated by the SLURM resource manager [LLNL et al.,
2014]. An introduction to this resource management tool can be found in sec-
tion 2.3.

1.2.5. Management and Monitoring
The cluster nodes are managed using Intel AMT. This technology allows for remote
low-level hardware control. Functionality ranges from basic power control features
to graphical remote access.
All nodes as well as the servers are monitored using Ganglia [Massie et al., 2012]

and Nagios [Barth, 2008]. Custom plugins provide temperature sensor data and
SLURM-related data.

1.3. Network Architecture
The development of scalable neuromorphic systems makes demands on the inter-
connection between wafer module (cf. section 1.1) and compute cluster (cf. sec-
tion 1.2). Previous systems, e.g. Spikey, have been using a dedicated connection
between neuromorphic chip and host computer. Another Spikey-based system pro-
vided chip interconnections by using a large PCB. In its final version, this system
used 1GbE for host communication.
The analog readout system of the NM-PM1 system, AnaRM, and the latest

version of the Spikey system are, except for the Spikey neuromorphic network chip,
identical. Both use USB 2.0 for the host connection. See section 1.1.4 for hardware
details.
When increasing the number of configurable system parts within a neuromorphic

system, a scalable network topology and as well as a robust protocol stack becomes
more and more important. A standard solution for data networks are Ethernet-
based hardware components. The data network equipment is described in the
15Linux kernel-based isolation mechanism [CGroups, 2014]

33

1. System Architecture

following. To support all operation modes of the HMF and NM-PM1 systems, the
data network architecture has to provide high throughput for the typical operation
as well as low-latency operation for hybrid experiments.

Experiment Cycle In general, the experiment cycle of the NM-PM1 system in-
volves different stages: configuration or setup phase, run phase and analysis phase.
The configuration phase is dedicated to experiment preparation – the uploading of
configuration data for the HICANN Wafer and input data for the FCPs. Depending
on the experiment type, the host link is silent during run phase (batch-style exper-
iments) or centered around low-latency data transfer (closed-loop experiments, see
chapter 3). By experiment pipelining, the rate of batch-style experiments can be
increased, i.e. the FPGA acts as a buffer for experiments – input data and output
data has to be stored in FPGA memory. This operation modes is a generalization of
the normal batch-style operation. It is planned to implement this mode. However,
extensive modifications in the FPGA firmware are required.

Overview Every NM-PM1 or HMF wafer module provides 48 × 1GbE links, each
dedicated to one FCP controlling a specific wafer part. A wafer data network switch
aggregates these links into one 10GbE link connected to the backbone switch16. The
compute nodes are connected via one single 10GbE to the backbone switch. Fig-
ure 1.8 presents an schematic illustration of the network topology. The BSS HMF
and HBP NM-PM1 backbone switches are located at the center of the two large
circles; compute nodes are represented as shaded rectangles, the shaded squares
indicate wafer aggregation switches. Individual 1GbE links of every wafer module
(yellow circles) are not shown; only the uplink to the aggregation switches is repre-
sented. Both, the HMF and the NM-PM1 systems are connected via 10GbE. The
two irregularly-placed wafer (and wafer switches) represent the two lab prototype
setups.
Figure 2.1 illustrates the connections within the NM-PM1 system. The central

backbone switch provides 10GbE links to every compute node and to every wafer
module; 40GbE links are provided to the servers (currently one storage node and
two general-purpose servers). The connection to the BSS HMF system is not shown
here.
Table 1.4 lists the data switches of the NM-PM1 system.
For all connections between compute node, backbone and wafer module switches

Enhanced small form-factor pluggable supporting up to 10Gbit/s (SFP+) or Quad
SFP+ (QSFP) direct-attach copper cables are used. External connectivity for
the NM-PM1 system is provided by one single-mode fiber (10GBASE-SR) link to
the Kirchhoff-Institute for Physics (KIP); additional fibers are available for future
upgrades.

16The number of 10GbE switch ports at the backbone switch is limited to 64; i.e. a few wafer
modules can be connected using 4 × 10GbE.

34

1.3. Network Architecture

HBPBSS

Figure 1.8.: Schematic overview of the data network architecture. Compute Nodes
are plotted as rectangles, wafer module aggregation switches as squares
and wafer module as yellow circles. The thick links between wafer mod-
ule and wafer switches represent the 48×1GbE links between the FCPs
and one wafer switch. All other lines represent 10GbE links: copper-
based 10GSFP+Cu wiring within the BSS as well as HBP system, and
fibre-based connections (red) between the three different locations. The
centers of the two circles represent the backbone switches. The asym-
metric configuration of the BSS network is due to a spatial split of the
HMF: two wafer modules are located in the lab room (top) while the
larger part of the BSS system is located in the server room. The NM-
PM1 system is located in the ENI/HBP container building next to the
KIP building (for details see figure A.3).

Component
Wafer Switch 20 48-port 1GbE, ≤ 4-port 10GbE [Hewlett-Packard, 2014a]
Backbone switch 1 48-port 10GbE, 4-port 40GbE [Hewlett-Packard, 2014b]
Control switch 1 32-port 1GbE

Table 1.4.: Components of the NM-PM1 data network. Four experiment switches
are located next to four wafer modules within one 19-inch rack. The
control switch is used for remote management (e.g., power up or down,
reset, remote KVM) of the compute cluster.

35

1. System Architecture

1.4. Summary
This chapter presented the HMF and NM-PM1 neuromorphic systems. The first
section described the composition of a wafer module which has been designed by
various hardware developers in Heidelberg and Dresden. Relevant hardware com-
ponents, like the FCP, as well as basic hardware properties were introduced.
The second section presented the cluster architecture which was designed by the

author. In particular, compute nodes, front-end and storage nodes of the NM-PM1
system were specified. Measurements of key performance indicators were presented.
The final section introduced the data network architecture which links wafer

modules, compute nodes and all other network-accessible units.
The conventional part of the HMF and NM-PM1 systems has been assembled

and is ready for use. In particular, the two prototype wafer modules are integrated
into the dedicated data network and can be accessed from the cluster. The in-
terconnection between the HMF and NM-PM1 installation sites is in service and
the compute resources are used for prototype operation and conventional neuronal
network simulations.
Regarding the AnaRMs, the author suggests to switch from the USB 2.0-based

to a 1GbE-based interface. This allows to omit the AnaRMANs which, in turn,
reduces complexity and increases robustness.

36

2. Fast Operation

Operating an accelerated neuromorphic hardware system opens up opportunities
that conventional hardware cannot offer. Conveying the hardware’s speed-up factor
(cf. section 1.1.5) to the user is the key challenge that validates the main advan-
tages of an accelerated neuromorphic system: power efficiency, fast parameter space
exploration and long-running experiments. This chapter presents the components
that are needed to accomplish this task.
The first part (section 2.1) describes the communication aspect. After an in-

troduction, the implementation used in the Hybrid Multiscale Facility (HMF) and
NM-PM1 systems is described in detail. Finally, performance measurements of the
communication layers are presented.
The second part (section 2.2) presents the software environment. In the last part

(section 2.3) management of system resources is investigated.
Aspects of hybrid operation, i.e. the real-time interaction between neuromorphic

and conventional compute systems, are covered in chapter 3. This chapter only
covers topics that are relevant to the class of self-contained experiments. That
means experiments whose input data is completely pre-calculated and the job is
not interacting with software running on the host computer. In high-performance
computing (HPC) terms, this kind of setup is called batch-style.

Figure 2.1 presents an overview of the NM-PM1 network architecture. Once com-
pleted, the 20-wafer system will contain over 1000 network-accessible components
(i.e. components carrying internet protocol (IP) addresses).

2.1. Communication Protocols
Links between user software and neuromorphic systems use varying technologies:
smaller systems, like the Spikey1 system [Pfeil et al., 2013], use USB 2.0 by now2. In
the address-event representation (AER) community, dedicated USB 2.0 converter
boards can be used for host connectivity [Berner et al., 2007]. In the pre-USB
2.0 era, due to lack of alternatives, older systems used proprietary host interfaces
that caused additional development efforts [Schürmann et al., 2002]. Physically
larger systems render direct links impossible as USB 2.0 limits the cable length
to maximally 5m [USB 2.0, 2000]. In general, the USB 2.0 connection technology
does not support switched networks. This is especially of interest when connecting

1Spikey is a chip-based neuromorphic system developed during FACETS that implements 384
LIF neurons and approximately 100k synapses

2An evaluation of USB 2.0 from the neuromorphic point of view can be found in Merolla et al.
[2005].

37

2. Fast Operation

Figure 2.1.: The network topology of the NM-PM1 system: 20 compute nodes (left
stack) and some servers (top right) are connected to the backbone
switch (at the top; [Hewlett-Packard, 2014b]). The server links use
40GbE, the other links are based on 10GbE. Every wafer switch aggre-
gates 48 1GbE links of a single wafer module. I.e. 20 wafer switches
handle 20 wafer modules (right stack). Two more accessible units
are associated with every wafer module: the power management unit
(PMU) and the analog readout module aggregator node (AnaRMAN).
The former is used for power control and system monitoring, the lat-
ter aggregates twelve analog readout module (AnaRM) used for analog
recordings (e.g. neuron membrane traces).

38

2.1. Communication Protocols

links of different speeds to aggregate bandwidth. The latter is a key element when
building installations consisting of multiple systems.
Hence, large systems typically resort to standard networking technologies like

Ethernet (e.g., [Furber et al., 2012]). The HMF and NM-PM1 systems both use
1GbE as connection technology. The prevalence of 1GbE technology offers low costs
paired with a long-range upgrade path (in terms of performance); this is the key
argument for using it as host interface. Before introducing the protocol stack, the
next paragraph introduces into the concepts of network protocol suites.

Protocol Suite Figure 2.2 (left) presents the famous OSI model. It is a conceptual
model which groups protocol functionality into a hierarchy of layers. Interfaces are
only provided to adjacent layers, a property that has been subject to discussions
[RFC3439, 3].
Compared to the OSI model, the TCP/IP v4 protocol (see figure 2.2 center) or

Internet protocol suite is not as structured. Information from lower layers is often
used in higher layers: for example, packet fragmentation happening on the IP layer
requires interaction with the TCP layer. Notably, the TCP/IP model does not
specify any physical layer [RFC675; RFC791].
However, both models can be compared – some layers provide similar functional-

ity. The OSI layers five and six are not directly represented in the TCP/IP model
and their functionality is mostly covered by the TCP/IP application and transport
layers.
In the following, the transport layer is the core interest. We use the following def-

inition: the transport layer is responsible for end-to-end communication channels
that provide an ordered data stream, provides means against data loss and cor-
ruption, and also provides flow control. The latter is needed when a slow receiver
cannot cope with the inbound data rate.

IPv4 Layers At the time of writing, the internet protocol version 4 (IPv4) is
still the dominant internet protocol. Due to address range limitations3, the global
network community is in a slow transition towards IPv6 which also provides other
improvements4. Nevertheless, the current FCP FPGA5 implementation stays with
IPv4 for the meantime.
Figure 2.3 shows the basic data layout within the IPv4 frame header. In the

following, only the destination and source address fields are of interest and the
other fields will not be described (for further details see RFC791). The address
fields are used for the communication endpoints, i.e. compute nodes and FPGA
communication PCB (FCP) FPGAs. Other network-accessible units are Raspberry
Pis (Raspberry Pis) used for wafer power management (cf. section 1.1), and the

3Internet protocol version 4 (IPv4) provides 32 bit addresses, i.e. approximately 4·109 addressable
network units.

4For example, other improvements are: builtin-support for virtual private networks (VPNs) or,
more precisely, network-layer encryption, privacy and simplified extensibility.

5FPGA communication PCB (FCP), field-programmable gate array (FPGA)

39

2. Fast Operation

Layer 7

Layer 6

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

Application

Presentation

Session

Transport

Network

Data Link

Physical

OSI Model

Physical

Data Link

Internet

Transport

Application

TCP/IP Model

FCP Data
(HostARQ Payload)

HostARQ

UDP

IPv4

1Gbit/s to
10Gbit/s Ethernet

HMF/NM-PM1

Figure 2.2.: The schematic shows communication protocol models and the imple-
mented layers on the HMF/NM-PM1. Left: OSI model according to
[ISO/IEC 7498-1:1994, 1994]. Center: TCP/IP 5-layer model accord-
ing to [Tanenbaum and Wetherall, 2010]. Right: the protocol stack of
the HMF and NM-PM1 systems. In the following sections, a custom
transport layer protocol is presented – the HostARQ protocol. In the
HMF and NM-PM1 systems, the layers above this layer (called appli-
cation layer in the TCP/IP model) also rely on custom formats (see
section 2.1.1.1). The custom HostARQ and the standard UDP protocol
together form a transport layer.

40

2.1. Communication Protocols

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version IHL DSCP ECN Total Length

Identification Flags Fragment Offset

Time To Live Protocol Header Checksum
Source IP Address

Destination IP Address

Figure 2.3.: Standard IPv4 header [RFC791] (most significant bit is marked as 0
(protocol notation)). The most important fields are length encoding
the length, protocol encoding the type of the following payload, header
checksum to verify correctness of the header, and source and destina-
tion IP addresses. All communication protocols between hosts and the
neuromorphic BSS and HBP systems use this header.

0 15 16 31

Source Port Destination Port
Length Checksum

Figure 2.4.: Standard UDP header [RFC768] (most significant bit is marked as 0
(protocol notation)). As Ethernet checksumming renders the UDP
checksum redundant, no checksum is used for the communication be-
tween neuromorphic systems and hosts. The port encodes the commu-
nication channel; in particular, the type of communication is encoded
in the FPGA-side port (for example reliable, unreliable, or debug com-
munication). Packet length is also provided by this header.

analog readout module aggregator nodes (AnaRMANs). The 20-wafer NM-PM1
setup will contain about 1000 addressable units within this network – mostly FCP
FPGAs.
In general, all communication between FCP FPGAs and compute nodes em-

ploys IPv4 and UDP headers. The UDP header, shown in figure 2.4, is used for
distinguishing between different sub-channels of one communication channel using
different port numbers. For example, when communicating with the FCP FPGA
different communication methods can be used: the JTAG protocol for debug pur-
poses, one reliable communication channel that will be presented in the following
sections, and an unbuffered interface for real-time interaction between the compute
node and the neuromorphic system. The latter will be presented in chapter 3.

2.1.1. HostARQ

Starting from the requirements of a reliable and fast communication channel be-
tween host computer (or compute node) and HICANN chip it is obvious that for all
unreliable communication channels some kind of transport-layer protocol is needed.

41

2. Fast Operation

In particular, reliable configuration of the neuromorphic system is essential to facil-
itate the calibration of the inherently non-digital parts: analog neuron circuits, the
so-called dendrite membrane circuits (DenMems), which always react in slightly dif-
ferent ways to the same input. To make this trial-to-trial variability only depend on
the actual variable parts (like the analog circuits and the analog parameter storage),
the communication channels have to be reliable. In the Internet ecosystem, the IPv4
protocol suite is used to cover similar requirements. For example, the transmission
control protocol (TCP) provides connection-oriented, reliable communication chan-
nels; it also provides support flow control among other features. Unfortunately, the
feature list comes along with a rather complex specification [RFC1122; RFC1323;
RFC1379; RFC1948; RFC2018; RFC4614; RFC5681; RFC6298; RFC675; RFC6824;
RFC793]. Hence, the FPGA developers [Partzsch et al., 2008–2014] decided to use a
simpler transport protocol. General speaking, the main objective – reliable commu-
nication – is provided by the class of automatic repeat request protocols [Peterson
and Davie, 2003; RFC3366].
The first FCP FPGA implementation utilized a simple stop-and-wait mecha-

nism. This means, the host sends a data packet to the FPGA and waits for an
response that acknowledges the successful data transmission. Figure 2.5 illustrates
the protocol. For the back-channel the same mechanism could be used.
In reality, the FPGA firmware did not use any error correction mechanisms for

back-channel data as it was assumed that the host buffers are large enough and
data corruption is improbable on standard 1GbE hardware – at least for a first
implementation. However, performance-wise this protocol implementation is un-
satisfactory.
To estimate the maximum performance of this protocol we need an estimate for

the round-trip time for data exchange between two compute nodes. Figure 2.6
presents 105 binned latency measurements plotted in a histogram. Details about
the measurement can be found in section 3.3.3. The mean round-trip time (RTT)
is 198.0 µs (root-mean-square error (RMSE) is 6.4 µs).

Given a typical RTT of ∼ 200 µs between two communication partners using
1GbE and a socket-based implementation, the maximum throughput can be cal-
culated: maximum raw packet size of 1GbE is SRAW = 1538B per default (i.e.
without support for jumbo frames6). Figure 2.7 illustrates an Ethernet packet. As
we use IPv4 (20B) and UDP (8B) headers for all communication with the FCP
FPGA, the effective payload (SUDP) reduces from SMTU = 1500B to 1472B. Now
we can calculate the maximum payload throughput PT as follows:

SUDP = 1472B (maximum UDP payload size)
TRTT = 200 µs (mean round-trip time)

PT = SUDP ·
1

TRTT
= 1472B · 1

200 µs = 7.0MiB/s.

(2.1)

6Some 1GbE implementations also supports larger MTU sizes, i.e. SMTU > 1500B.

42

2.1. Communication Protocols

No Errors

Sender Receiver

0 d0

0

1 d1

1

0 d2

0

With Errors

Sender Receiver

0 d0a

b

0 d0c

d
0
e

0 d0f

g
0

h

R
esend

T
im

eout
R
esend

T
im

eout

Figure 2.5.: Stop-and-wait transmission schematic. Left: Communication example
without drops. The sender sends three packets with payloads d0, d1, d2.
Every packet is acknowledged by the receiver. The packets are marked
for the receiver to differentiate between new and resent packets. Right:
Communication with drops: a) the sender transmits a data packet with
payload d0 marked with 0 (1-bit marker); b) this data packet is lost;
c) after the resend timeout, the sender re-transmits the packet; d) the
receiver receives the packet and sends an acknowledgment carrying the
packet marker 0; e) the acknowledgment packet is lost; f) after the
resend timeout, the sender re-transmits the packet; g) the receiver ac-
knowledges again; h) upon reception of the acknowledgment carrying
the current marker the sender is allowed to send the next packet marked
with xn+1 = (xn+1) mod 2. If the resend timeout would be too short,
for example smaller than the typical time until the ACK is received,
multiple sends would occur even in cases without packet loss. If the
resend timeout is too large, the resend is triggerd too late and the drop
recovery time increases – the throughput is suboptimal. This schematic
can be easily adapted for duplex communication: if the remote partner
wants to send data, it can add its own marker and data. The data
packet header has to be adapted to carry remote marker, own marker
and data; acknowledgment frames remain the same.

43

2. Fast Operation

180000 185000 190000 195000 200000 205000 210000 215000

10−2

10−4

10−6

D
ire

ct
G
bE

Round-trip Time [ns]

Pr
ob

ab
ili
ty

Figure 2.6.: Histogram of UDP-based ping latencies measured between two NM-
PM1 compute nodes using directly-linked 1GbE. The ordinate has been
normalized to show bin probability. The vertical red lines represent
from left to right: average, 95%-percentile, 99%-percentile and 99.9%-
percentile out of all measured RTTs (105 entries). For measurement
details see section 3.3.3. Bin size was set to 1 ns – which is also the
timer resolution.

Frame
Check

Sequence
. . . MAC

Preamble

Start
Frame

Delimiter

Destination MAC
Address

Source MAC
Address

MAC
Type
Length

Payload
Frame
Check

Sequence

Inter-Frame Gap
12 Bytes

7 Bytes 1 Bytes 6 Bytes 6 Bytes 2 Bytes 4 Bytes
MTU

46–1500 Bytes
Physical Frame
84–1538 Bytes

Figure 2.7.: Schematic view of an Ethernet packet. It consists a of MAC pream-
ble (7B), start frame preamble (1B), source and destination MAC ad-
dresses (6B each), MAC type or length (2B) field, the payload (1500B,
also called MTU size), CRC checksum (4B) and a 12B inter-frame gap.
There is another, optional field for Ethernet-level VLANs located be-
tween MAC source address and MAC type field.

44

2.1. Communication Protocols

1GbE has a specified bitrate of 1Gbit/s = 125GB/s. It translates to an payload
throughput of:

PTmax = BitrateGbE ·
SUDP
SRAW

= 125MB/s · 1472B
1538B = 119.6MB/s = 114.1MiB/s

This means we can utilize only up to around 6% of the maximum 1GbE payload
bandwidth PTmax. We can solve this problem by introducing a packet counter that
can be used to individually identify packets and to send multiple, up to N – the
window size – packets. The previous stop-and-wait automatic repeat request (ARQ)
protocol is a special case using a window size of 1. On the receiving side we track
the last packet that has no gaps in front, i.e. when a packet is dropped we track the
last frame before the drop. The receiving side now acknowledges this tracked packet
to the sender but it continues to fill its receive buffer with later packets within the
window. Eventually, the sender will timeout because the acknowledgments stall
and trigger a resend of the packet just behind the last acknowledged packet. The
receiver will accept the previously dropped packet and acknowledge a much later
packet in the window – the transmission can now continue. This ARQ-type is
called selective-repeat-ARQ protocol [RFC3366]. Figure 2.8 presents the protocol
behavior.
For illustration, we can look at the sending and receiving buffer filling levels. In

this case, we represent the packet identifiers as ring buffer entries7. Because we
want unique identifiers at all times, we use a identifier that is 1 bit longer than the
number of bits we need to represent the maximum packet size. This eliminates all
aliasing problems, as we cannot send more than half of the identifiers at once. Thus,
in case of a window size of 4 we need 8 identifiers which are represented in 8 buffer
entries. Figure 2.9 displays the filling levels of the sending and receiving side. At
the beginning, both buffers are empty, i.e. we can send up to window-size packets.
After one packet has been pushed into the sending window, the remaining buffer
size is reduced by one (represented as white area in the schematic). On the other
side, the receiver pushed the received packet into the receiving buffer. Eventually,
it acknowledges the packet and a buffer entry is unlocked – the receiving window is
empty again. The original sender receives the acknowledgment and also clears his
sending window.
To allow for a more efficient back-channel, we allow data being sent piggy-back

to the acknowledgment packets, thereby combining both communication directions
into a single frame format. Figure 2.10 depicts the HostARQ protocol (HostARQ)
frame format. An overview of the implemented protocol suite is shown in figure 2.2
(right column).
For faster software handling, all data fields are aligned to 32 bit words. The

acknowledgment field is at the start of the frame to allow faster ACK-field updates
– a negligible effect given a packet size of approximately 1500B; the field order
originates from the HICANN-ARQ protocol where the small packets (48bit) and

7A real-world implementation would limit the number of buffer entries to the window size.

45

2. Fast Operation

No Errors

Sender Receiver

0 d0

1 d1

2 d2

3 d3

2

4 d4

5 d5

4 6 d6

7 d7

A
ck

T
im

eout
A
ck

T
im

eout
A
ck

T
im

eout

With Errors

Sender Receiver

0 d0R
esend

T
im

eout

1 d1
A
ck

T
im

eout

2 d2

3 d3

-1 0 d0

R
esend

T
im

eout

1 d1

3 2 d2

A
ck

T
im

eout

4 d4

R
esend

T
im

eout

3 5 d5

Figure 2.8.: Selective-repeat ARQ transmission schematic using window size 4. The
packet marker uses 3 bit to unambiguously encode the sequence and ac-
knowledgment numbers (Nseq,ack > Nwindow size · 2 − 1, cf. figure 2.9).
Left: the sender fills the 4-packet window with packets 0–3, then it
waits for an acknowledgment. After the ACK timeout triggers, the re-
ceiver acknowledges up to the last contiguously received packet which
is packet 2. The sender waits for the ACK and, after reception, it can
now send three more packets 4–6 because three packets (0–2) have been
acknowledged. A stable state has now been reached. The sender can
now send new packets at minimum inter-packet time span. Hence, it
achieves optimum sending performance, i.e. wire speed. Right: the
first data packet gets lost; the sender resends the window after the re-
send timeout expires. Due to the delayed ACK, the sender retransmits
packets 1 and 2. After reception of the next ACK for 3, the sender can
shift its window and continue with new data (4 and 5). The illustration
ends just before the receiver would trigger an ACK for data packet 5.
Full duplex operation can be added in the same way as it can be done
in figure 2.5. As described in figure 2.5, too small resend timeouts
increase the number of redundant transfers whereas too high resend
timeouts slow down the recovery in case of packet loss. To optimize
support for back-channel/return data (i.e. data flow from receiver to
sender), the ACK timeouts are introduced. If no return data is avail-
able on the receiving side, an ACK timeout waits for potential return
data. Otherwise, an ACK-only frame is sent.

46

2.1. Communication Protocols

TX Buffers

Initial

Frame sent

Ack received

Sender

RX Buffers

Initial

Frame received

Ack sent

Receiver

Figure 2.9.: Sliding window schematic for window size 4 and maximum sequence
number 8. For simplification purposes, the total number of buffer en-
tries equals the sequence size. A real-world protocol implementation
needs only as many buffer entries as packets can be legally in flight,
i.e. the window size. The circles represent the status of circular buffers
containing data of a given sequence number (i.e. 0–7). Empty slots are
plotted in white, illegal areas in gray; active data is plotted in light
gray: on the transmitting side, this represents data that has not been
acknowledged yet; on the receiving side, this represents data that has
been received but not yet acknowledged. 1. in the initial state the
transmission and receive windows are empty; 2. one packet is pushed
by the sender which decrements the number of available TX slots; 3. the
receiver accepts the packet, thus reducing the number of available RX
slots – the receiver now handles/consumes the data; 4. the receiver ac-
knowledges this packet, rendering the RX window empty again; 5. the
sender receives the acknowledgment and restores the maximum number
of transmission slots. In a typical use case, the sender pushes multiple
frames until the corresponding acknowledgments are received.

47

2. Fast Operation

0 32 48 63

Acknowledge Number Sequence Number

Marker Bits Payload Type Length

Figure 2.10.: HostARQ header (most significant bit is marked as 0 (protocol no-
tation)). Acknowledgment and sequence number are used for the
selective-repeat-type ARQ implementation (called HostARQ); The
marker field is currently only used to flag packets that carry valid
data (i.e. non-ACK-only packets). Another application would be to
explicitly inform about traffic congestion, which is currently implic-
itly implemented (by detecting drops) in the software HostARQ im-
plementation. Type and Length encodes payload data type and the
number of 64-bit sized payload entries. The payload types are de-
scribed in section 2.1.1.1.

short window sizes (16) urge for a maximally optimized field order. In the current
FPGA implementation the packet identifiers are encoded using 16 bit; the larger
field sizes have been chosen to optimize memory alignment and for even larger
window sizes that are currently limited by the FPGA implementation. The valid
bit-field currently encodes only the valid bit to mark a valid piggy-back payload;
additional packet markers are under development, e.g., to mark traffic congestion.
To differentiate between different payload types and payload lengths the next two
16 bit fields are used.

2.1.1.1. HostARQ Payload

All HostARQ payload is aligned to 64 bit. In the later sections the unit cmd refers
to a single 64 bit payload entry. The types are encoded in the HostARQ header
(figure 2.10) as well as the length given in number of entries (i.e. number of 64 bit
entries). Hence, the payload type does not change within one data frame. If the
data type switches, the current packet has to be closed and a new packet has to be
opened.

Types At the time of writing there are four different packet types:

0x0C5A spike data for on-FPGA playback memory;

0x0CA5 spike data from FPGA recording memory;

0x0C1B FPGA configuration data;

0x2A1B HICANN configuration data.

Details can be found in HBP SP9 Specification [2014]8.
8The specification uses an unusual bit-numbering scheme – high numbers (on the left) denote the
most significant bit (MSB). The RFCs use the starts-left-with-0-and-means-MSB style.

48

2.1. Communication Protocols

0 63

Payload entry #0 (64 bits)
Payload entry #1

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

(Length− 2)th entry
(Length− 1)th entry

Figure 2.11.: HostARQ payload is aligned to 64bit. The payload type and length
(number of 64 bit entries) is encoded in the HostARQ header, see
figure 2.10.

2.1.1.2. Software Implementation

The software implementation of the HostARQ protocol is based on the SlowCon-
trol transport protocol that was developed for the FACETS Stage 1 system by
Moritz Schilling under the supervision of the author (cf. [Schilling, 2010]). It is
a selective-repeat-type ARQ protocol providing some more advanced features (cf.
section 2.1.1.2).
The general goal was to implement a rigorously fast transport protocol imple-

mentation even though the main target was only 1GbE [Drexler, 2009; Gutmann,
2007]. To achieve maximum performance the key components of the transport layer
implementation were evaluated in detail. The implementation of a sufficiently fast
application programming interface (API) required a general analysis of different
inter-process communication (IPC) mechanisms. Figure 2.12 provides machine-
local throughput measurements of common UNIX IPC mechanisms performed with
varying block sizes. Given typical packet sizes of 1500B, the shared-memory-based
method achieves more than 1GiB/s. Based on that evaluation, the implementation
relies only on shared-memory as an IPC mechanism. However, the HostARQ soft-
ware implementation makes additional efforts to further increase the throughput
limit. For example, the packet handling uses a cache-line-aligned buffering scheme
that allows for process-local buffering of multiple packets. This increases the trans-
fer block size and, by looking at figure 2.12, therefore the throughput. the current
implementation uses 8-packet caches which correspond to 12 kB.
The tasks to receive data and send data are relatively independent. Hence, the

design uses three threads for sending frames, receiving frames and retransmitting
of the non-acknowledged packets. However, some overlap exists in the common
need for the sequence and acknowledge counters. Measures to guard against data
corruption have to be taken: a fast method to provide mutual exclusion between
concurrently running jobs is to use fast userspace mutexes (futexes). Franke et al.

49

2. Fast Operation

20 22 24 26 28 210 212 214 216 218 220 222

S: Size per Entry [B]

106

107

108

109

1010

T
:T

hr
ou

gh
pu

t
[B
/s
]

Pipe
Message Queue
Shared Memory

Figure 2.12.: Throughput measurement for multiple IPC methods and varying
block sizes. Typical UNIX IPC mechanisms are tested: the pipe mech-
anism which uses unidirectional data channels, the message/packet-
based communication mechanism and the shared-memory-based
method. For all tested entry sizes the shared-memory-based commu-
nication mechanism outperforms all other methods. The T ≥ 1GiB/s
barrier is reached for entry sizes larger than S ≥ 210 KiB = 1KiB.
Throughput saturation occurs well below entry sizes of S = 1MiB.
The measurement has been performed by Moritz Schilling under the
supervision of the author (see Schilling [2010] for details); it was
performed on Debian Wheezy, Intel i7-920 CPU, 12GiB DDR3-1066
RAM.

50

2.1. Communication Protocols

User Process

Network API
(e.g., sockets)

mm
ap

()

mmap()
TX

in
se

rt
()

extract()

RX

extract()

in
se

rt
()

RESEND

timeout()

ACK update

Figure 2.13.: Overview of the HostARQ software implementation. The user’s pro-
cess maps transmission and receive buffers into its own virtual address
space (i.e. using shared memory). To transmit data the user inserts
data into one or multiple TX buffers and marks them as ready-to-send.
The receiving side can either use a non-blocking interface to check for
new data or a blocking interface to wait for new data. The TX pro-
cess handles the sending of frames after the user pushed them into
the window; on the receiving side, the user can pop data from the RX
window. A third thread handles retransmissions in case of data loss
(see figure 2.8 for a schematic describing the protocol).

[2002] provides performance measurements on different mutex implementations and
indicates supreme performance for the latter. Other optimizations that were con-
sidered are memory-layout optimization to eliminate false sharing of cache lines
[Bolosky and Scott, 1993], and zero-copy support down to the network interface. A
simplified structure of the implementation is shown in figure 2.13.

Advanced Features The software implementation provides several advanced fea-
tures. First of all, there is support for adapting the RTT during protocol operation.
That means, when network load increases and the communication latencies jump
up, the HostARQ software adapts its resend timeout value to match the new la-
tency. This is implemented to reduce unnecessary retransmissions when latency
increases. Then again, it also decreases the timeout when the RTT decreases after
a load spike. We use the RTT estimation mechanism by Ljung and Soderstrom
[1983]; RFC793.
For systems having asymmetric network bandwidths like the HMF or NM-PM1,

51

2. Fast Operation

another crucial feature is to handle packet loss due to non-matching bandwidths
separately. A single FCP FPGA supports only 1GbE, on the other hand the com-
pute node supports 10GbE. This discrepancy in bandwidth can potentially lead to
massive packet loss towards the FPGA if no control mechanism reduces the sending
rate of the compute node. Packet loss of that kind is not trivial to handle because
of the relatively long time scale it can last due to the large buffer sizes of contem-
porary network equipment. The sender needs some kind of smooth rate adaptation
mechanism. In Internet terms this is called congestion control and we implemented
it as given by Jacobson and Karels [1988]; RFC896.
From profiling using Valgrind-based Profiling Tool (Callgrind)9 it became clear

that the traditional UNIX socket-based access to the kernel networking layer is one
bottleneck. Thus, a version was implemented that uses Linux kernel’s extension to
linux NIC driver framework for improving performance of high-speed networking
[Kelly and Gasparakis, 2010], more precisely the RING_TX and RING_RX ring buffers
that can be mapped into userspace. The HostARQ software now operates on a
memory area that is partitioned into max-packet-sized elements. This fits very well
into the concept of HostARQ software because of the same internal representation
of data. Hence, we can replace the internal buffers by mmap()ed RING_TX/RING_RX
buffers, i.e. remove the syscall to send or receive, and thereby eliminate additional
context switches and most of the overhead which occurs at that point. For imple-
mentation details see Schilling [2010].
During implementation it also became evident that a graphical tool for debugging

the data flow is beneficial. The author implemented a Wireshark packet analyzer-
based packet dissector that supports the HostARQ protocol and most of the payload
types. Figure 2.14 shows Wireshark dissecting a HostARQ packet that carries
FPGAPLAYBACK/0x0C5A payload.

2.1.1.3. FPGA Implementation

The FPGA implementations were carried out by Vitali Karasenko under the su-
pervision of the author. Figure 2.15 presents a simplified overview of the FCP
FPGA modules. The network module (MAC/UDP), data processing and inter-
FPGA modules were implemented by Partzsch et al. [2008–2014]. The figure omits
the handling of the connection to the eight HICANN chips; this link uses a ARQ
implementation, the so-called HICANN-ARQ, which is similar to the HostARQ
link. See Karasenko [2014] for details.

2.1.2. Performance Measurements

This part of the document presents measurements that evaluate the HostARQ
software and FPGA layers. The corresponding layers are described in section 2.1,
esp. in sections 2.1.1 and 2.1.1.3. The effective speed of the NM-PM1 system is
not solely defined by the acceleration factor (section 1.1.5) of the neuromorphic

9See [Weidendorfer, 2008] for a nice introduction.

52

2.1. Communication Protocols

Figure 2.14.: Screenshot showing Wireshark, an open-source network packet ana-
lyzer. The upper part shows a scrollable list of packets that can be
filtered and sorted. In the lower half, the currently selected packet is
shown in detail. In this case, the custom HostARQ dissector plugin
shows a packet that carries FPGAPLAYBACK data.

53

2. Fast Operation

circuits. It rather depends on everything that contributes to the total execution
time of an experiment: preparation of the hardware configuration which involves
multiple software layers, configuration of the neuromorphic hardware, the mostly
negligible execution time on the hardware, and finally the retrieval of result data.
As a first step, the connection between wafer modules and compute nodes will be
evaluated. Later sections cover the other mentioned topics.
Figure 2.15 presents an overview of the components that are involved in this

measurement.

Wire Speed The maximum theoretical throughput of each FCP FPGA is limited
by the protocol implementation. IPv4 addresses, UDP ports, checksums and the
HostARQ header (data fields for type and length of the payload data) contribute
to the overhead.
Using standard MTU (1500B) and the protocol headers sizes (sizeof(IPv4) =

20B, sizeof(UDP) = 8B, sizeof(HostARQ) = 16B) the maximum payload size per
frame is:

sizeof(Framepayload,max) = sizeof(MTU)− sizeof(headers)
= sizeof(MTU)− sizeof(IPv4 + UDP + HostARQ)
= 1456B
= 182Cmd.

(2.2)

The number of commands (Cmd) refers to number of HostARQ payload entries
(see section 2.1.1.1); all payload types are 64 bit large.
Given 1GbE symbol rate (1Gbit/s), standard Maximum Transfer Unit (1500B)

and the corresponding maximum physical frame size10 = 1538B, the maximum
throughput can be calculated:

Throughputpayload = Bitrate1GbE ·
sizeof(Framepayload,max)
sizeof(Framephysical,max)

= 947.9Mbit/s
= 112.9MiB/s.

(2.3)

HICANN configuration commands (cmd) consume 64 bit each. Hence, the max-
imal HICANN cmd-rate is:

Throughputpayload = 14.8MCmd/s. (2.4)

These numbers represent the theoretical, maximal throughput. Later sections
refer to these numbers when calculating efficiency.
10This includes MAC preamble, start frame delimiter, source and destination MAC addresses,

type field, CRC and inter-frame gap; cf. IEEE 802.3ab [1999].

54

2.1. Communication Protocols

Program
Cluster Node

Host

1GbE

HICANN

MAC

UDP

FCP
FPGA

HostARQBuffers

Data Processing

Operating System

Other IFs

FCP
FPGA

Inter-
FPGA

Wafer

Data Network

10GbE

Other IFsHostARQ

host_arq_top

application_layer

(e.g., SpiNNaker, JTAG)

(e.g., JTAG, VerCL)

Figure 2.15.: The schematic provides an overview of the HostARQ tests. A test
program communicates with varying remote endpoints: 1. in sec-
tion 2.1.2.2 the connection between a test program and the HostARQ
module in the FCP FPGA is tested; 2. in section 2.1.2.3 links from
one compute node to multiple FCP FPGAs are used; 3. section 2.1.2.4
presents throughput measurements of data flowing down to one or
more HICANN chips; 4. section 2.1.2.6 presents measurements be-
tween multiple hosts. On the compute node the test program interacts
with the HostARQ software implementation which, in turn, uses the
operating system for communication; within the FCP FPGA, modules
for link-layer, HostARQ protocol, and buffer handling provide similar
functionality. The data network is described in figure 1.8.

55

2. Fast Operation

The Bandwidth-Delay Product The bandwidth-delay product can be used to
calculate the link capacity between two protocol processing endpoints.

Bandwidth×One-way Delay = Link Capacity (2.5)

or:

One-way Delay = Link Capacity
Bandwidth (2.6)

This means that given the raw bandwidth and one-way delay of a connection the
link can only be used at optimal throughput if the protocol can efficiently fill up
the link capacity.
In the case of HostARQ, the design goals are 1GbE bandwidth using delays in

the order of 5ms. Higher maximum latencies would further relax the software
timing requirements, i.e. the protocol handlers could sleep longer. Performance-
wise this would increase throughput stability in case of heavy-loaded systems. The
mentioned number was selected as a trade-off between FPGA memory consumption
and software timing constraints.
The current FPGA implementation uses sizeof(window) = 512Frames. Using

equation (2.6), this yields:

One-way Delay = 512 · sizeof(Framephysical,max)
125MB/s ≈ 6.3ms. (2.7)

Given the current FPGA implementation, wire-speed can only be reached if the
ACK timing is faster than 6.3ms.

2.1.2.1. Virtex-5 1GbE/UDP Core

At the time of writing all available wafer modules are based on the prototype
FCPs that has been developed for the FACETS and BSS projects. Each prototype
FCPs is equipped with a Xilinx Virtex-5 FPGA [Xilinx, Inc., 2009]. Core FPGA
development was performed by a partner group located in Dresden [Partzsch et al.,
2008–2014]; basically, all the non-HostARQ FPGA modules have been developed
there.
During HostARQ integration testing it became evident that some modules are

not capable of running at full 1GbE speed. Notably, almost all bugs that were
found during HostARQ integration are related to problems that only occur when
processing data at high speeds (issue #1286 collects all current problems). Some of
which occurred after long test times; those bugs were hard to find when simulating
the FPGA code base as it the simulation speed is very slow11. That is why it was
decided for the upcoming Xilinx Kintex-7 FPGA-based design to shift development
style to a more test-driven approach (see Beck [2002] for an introduction to test-

11The current simulation setup requires approximately 1 h real-time for 20ms simulation time.

56

2.1. Communication Protocols

driven development). The author created multiple tests that verify long-term12

stability and correctness of the FPGA firmware in cooperation with the HostARQ
software. The tests13 – basically acting as regression tests – can be used for both,
FPGA simulation-based, and real-world testing.
Due to time constraints and the parallel development efforts for the new FCP,

it was decided that for the old Xilinx Virtex-5 FPGA design non-critical issues
are not addressed anymore [Grübl et al., 2014; Partzsch et al., 2008–2014]. This
does not apply to the HostARQ and other non-FPGA-specific code as the code
does not depend on any hardware specifics. The hardware-specific code parts are
basically in maintenance mode as the development effort has been shifted to the
upcoming Kintex-7 design of the new FCPs modules. In particular, one remaining
issue that will not be fixed in the Virtex-5-design is the limited outbound band-
width of the 1GbE FPGA module. Using the NCSim simulator, the back-to-back
FPGA transmit performance was acquired by measuring the duty cycle14: data was
constantly applied to the so-called UDP core and the outbound network port was
monitored. On average, the network module implementation can transmit one byte
every 12.15 ns, compared to wire speed15 this only yields 66% of the theoretical
throughput.
At the time of writing, tests that verify wire-speed performance (and correctness)

in the Kintex-7 design have not yet been performed as the FPGA code base has
not yet been completed [Partzsch et al., 2008–2014].

2.1.2.2. Between Host and FCP FPGA

This section analyzes the HostARQ protocol performance between one compute
node and one FCP FPGA. We concentrate on the evaluation of the protocol itself;
therefore, we do not use HICANN chips as communication partners but only the
HostARQ transport layer within the FCP FPGA. All FPGA-based measurements
were performed using FCP FPGA firmware SVN revision 1056 on wafer module #0.
One dedicated HMF compute node served as the host computer. The data network
uses one of the BSS wafer switches [Hewlett-Packard, 2013] where all wafer modules
#0 FCP are connected via 1GbE. Host connectivity is provided by one 10GbE
link. Section 2.1.2.4 presents measurements that cover the complete communication
chain. That means that we communicate between compute node and HICANN chip
by writing to and reading from the on-chip static random access memory (SRAM).

Half-Duplex As a first step, the downwards connection starting from the compute
node and connecting to a single FCP FPGA is tested. In the FPGA, the data is
12The HostARQ FPGA and software implementations were verified using a week-long stability

test running at maximum speed.
13HostARQ-based tests are tmecm_hicannreads, tmecm_hostarqloopback,

tmecm_pbmemtraceloop and tmecm_switchramviahostarq.
14The time the network port was active in relation to the total time.
151GbE supports 1Gbit/s, i.e. one byte every 8.0 ns.

57

2. Fast Operation

discarded as soon as it has been successfully received. On the upstream connection
only ACK packets are transported. Figure 2.15 shows an overview of the setup. The
flow control feature of the data network switch is activated to prevent packet loss due
to bandwidth mismatch or network congestion. Thus, the resend timers can be set
to very relaxed values as we do not expect packet loss to occur. Section 2.1.2 states
the important tuning parameters: minimum delay and maximum link capacity.
The former can be minimized by reacting as fast as possible, i.e. by acknowledging
incoming data frames as fast as possible – this is called the ACK timeout. The
latter is essentially the number of bytes that are allowed to be in flight. In terms
of ARQ-type protocols this is called the window size (cf. figure 2.8).
When minimizing the ACK timeout the proportion of packets that only acknowl-

edge received data increases. In addition, the total response time is given by the
RTT (approximately a hardware constant) plus the ACK timeout and a delay due
to the finite software reaction latency. The second tuning parameter, the window
size, has a relative hard limit due to the properties of the FPGA implementation16

– the maximum window size we achieved to fit into the FPGA was about 2048
packets, see [Karasenko, 2014] for details.
A sweep of tuning parameters is shown in figure 2.16. Each plot shows payload

throughput versus ACK timeout – the latter is plotted logarithmically to cover three
orders of magnitude. The half-duplex throughput is given by the test data size and
the protocol handling time. The start is trivially defined as the point in time when
the first data entry is pushed into the HostARQ software API. The end is given by
the point in time when the last sent packet is acknowledged by the communication
partner and this ACK frame is received by the HostARQ software running on the
host computer. To accomplish a clean end timing, the API was enhanced to check
for protocol idle state which is equal to empty transmission buffers. The test data
size is approximately 1.4GB. Theoretical throughput (cf. equation (2.3)) is plotted
as a dashed horizontal line; the maximum delay that yields theoretically optimal
throughput (cf. equation (2.6)) is plotted as vertical line.
For small window sizes (≤ 4 packets) the theoretical peak performance is not

reached. The HostARQ software reacts too slow and the delay is above the optimum
value. For window size = 8 packets, we see wire-speed for the first time. The
maximum delay given this link capacity is ≈ 1ms to still achieve wire-speed. Larger
window sizes yield more relaxed maximum delays. The self-defined goal of ≥ 5ms
(for the blue measurement points, not for the theoretical delay) is reached for
window size 512 packets.
A rewrite of the FPGA HostARQ module is currently performed by Vitali Ka-

rasenko to allow for larger window sizes. After this modification, window sizes up
to the total size of FCP FPGA dynamic random access memory (DRAM) will be
possible. On both FCPs, the Virtex-5-based and the Kintex-7-based designs, up
to 512MiB DRAM can be allocated to the host interfaces [HBP SP9 Specification,
2014]. This allows for a window size of approximately 1.8 · 105 packets – which

16A bit vector as large as the window size is needed; the routing failed above 2048 packets.

58

2.1. Communication Protocols

ACK Delay [µs]

T:
Th

ro
ug

hp
ut

[M
iB

/s
]

0

40

80

120
window = 1 window = 2

D = C/T

Tprotocol
Twirespeed
T

window = 4 window = 8

0

40

80

120
window = 16 window = 32 window = 64 window = 128

1011021031040

40

80

120
window = 256

101102103104

window = 512

101102103104

window = 1024

101102103104

window = 2048

Figure 2.16.: Host to FPGA throughput (T) measurement utilizing only the down
connection (half-duplex). The window size is varied between 1 (top
left) and 2048 (bottom right). For each window size, the ACK delay
timing is swept from 10 µs to 10ms. The dashed horizontal line il-
lustrates optimal throughput T (cf. equation (2.3)), the vertical line
marks the bandwidth-delay product (cf. equation (2.6)). In contrast
to the following measurement, figure 2.17, the packet size was con-
stant in this measurement, i.e. the total protocol capacity increased
with growing window size. The measurement was performed in col-
laboration with Vitali Karasenko [Karasenko, 2014].

59

2. Fast Operation

corresponds to more than 4 s for maximum ACK timeout. As the ACK timeout
determines the call frequency of the sending threads, large maximum delays relax
software timing constraints and allow for a more efficient data handling, i.e. more
packets are handled in one call.

Importance of Large Packet Size Figure 2.17 presents protocol throughput as a
function of packet size. The total protocol capacity is kept constant, i.e. doubling
the packet size reduces the window size by the same factor:

sizeof(packet payload) · sizeof(window size) = const

This measurement has been performed to evaluate the importance of larger packet
sizes in comparison to larger window sizes.
The solid lines in figure 2.17 display theoretical behavior which can be calculated

using 1GbE symbol rate and the packet size (cf. equation (2.3) and substituting the
maximal payload size by the current one). Due to packet overhead (headers and
protocol overhead like inter-frame gap or the checksum), the maximum throughput
can only be reached for standard-sized packets. Packets that are larger than stan-
dard MTU can cross the dashed line as it was calculated for the standard MTU.
In particular, it asymptotically approaches the topmost dotted line as this corre-
sponds to the physical symbol rate of the link – 125MB/s and the relative overhead
decreases for larger packets. The data network architecture supports frame sizes of
up to 9 kB. Kintex-7 supports up to 16 kB [Xilinx, Inc., 2012]. Regarding the old
Virtex-5-based FCP, no change is expected because development of FPGA-specific
code is in maintenance mode (cf. section 2.1.2.1).
For each data point the optimum latency was measured by sweeping the ACK

timeout and finding the maximum delay where optimum performance is still reached
(for details see figure A.4). The measured throughput matches the theoretical
throughput for packet sizes above 50 entries, i.e. 400B. In the range below that
point, the host computer is too loaded17 to interact fast enough. For both net-
work interface controllers (NICs) (BSS and NM-PM1 clusters) interrupt behavior
is largely configurable. For example, a timeout can be used to accumulate multiple
packets into a single interrupt. Additionally, a count-based rule can be config-
ured. In this measurement, the auto setting was used. Using this setting the NIC
tries to maximize throughput automatically. In comparison with disabled interrupt
coalescence maximum interrupt rates of about 150k could be monitored. Hence,
the HostARQ software is too busy with reacting to incoming ACK frames and
the sending window is not updated fast enough, the communication stalls and the
throughput drops.

Full-Duplex Based on the test setup used for the half-duplex tests an independent
back-channel was added. As soon as the FPGA’s HostARQ module successfully re-
17The load originates from interrupts that are caused by the high packet rate

60

2.1. Communication Protocols

5
2016

42
240

90
112

126
80

168
60

Packet Size [64-bit commands]
Window Size [# Packets]

0

20

40

60

80

100

120
T:

Th
ro

ug
hp

ut
[M

iB
/s

]

50k

100k

150k

250k

300k

350k

400k

R:
ra

te
[1

/s
]

Twirespeed
Tprotocol
Tpacketsize
T
Rwirespeed
Rpacket
Rinterrupt(nic)

Figure 2.17.: Host to FPGA throughput (T) measurement utilizing only the
down connection (half-duplex). The packet size is varied keeping
sizeof(packet size) · sizeof(window) = const, i.e. the window size is
decreased by the same factor as the packet size is increased. Hence,
the total protocol buffer capacity is constant. Throughput T is plot-
ted on the left axis, packet and host interrupt rate R on the right
axis. For packet sizes larger than ≈ 50Cmd the measured points are
in good agreement with the theoretical calculation (solid lines, see
equation (2.3)). For lower packet sizes, the interrupt rate saturates
because of software overhead; this limits the throughput. See large
packet size paragraph on page 60 for details. The measurement was
performed in collaboration with Vitali Karasenko [Karasenko, 2014].

61

2. Fast Operation

ceives a data packet, a loop-back mechanism takes the data out of the receive buffer
and pushes the same data into the transmit buffer. On the upstream connection
both, data and – depending on the timeout values – ACK-only packets are trans-
ported. Figure 2.15 shows an overview of the setup. In a loop-back setup a stall
in the backward direction will eventually stall the downward chain because of the
limited buffer space in the endpoint that implements the loop-back. In contrast
to a loop-back setup protocol the case of independent communication channels can
stall independently in both directions.
After tuning the ACK timings (in software and FPGA) to be in the range of

100 µs to 500 µs and the resend timers to be larger than the RTT of the connection,
we can now test protocol stability in terms of throughput over time. This is shown
in figure 2.18.
The throughput was measured on the host computer and recalculated every

100ms. Based on the individual measurements the average and RMSE of the
throughput can be calculated:

Tinbound = (74.80± 0.02)MiB/s ≈ 66.2% · TTUD UDP core

Toutbound = (112.36± 2.99)MiB/s ≈ 99.5% · Tprotocol.

To summarize, the host-to-FPGA troughput reaches nearly wire-speed, the re-
verse channel is limited by the current FPGA implementation. As explained in
section 2.1.2.1, it is expected that this bug is only related to the current FPGA
firmware of the prototype system; however, as the new systems rely on new FPGA
hardware and – at least regarding this bug – new firmware source code, this bug
will not be fixed by the responsible developer [Hartmann, 2014].
The next sections focus on the typical use case; multiple FCP FPGAs of a single

wafer module are accessed by a single host.

2.1.2.3. Between Host and Multiple FCP FPGAs

This section covers the typical operation mode of one wafer module. One control
host interacts with multiple FPGAs on a single wafer module. In figure 2.15 only
a single FCP FPGA is shown in detail. However, another connection to a second
FPGA is indicated on the right. For the prototype setups it was planned that each
wafer has 12 FCP FPGAs. Due to design changes18 this changed to 48 FCPs per
wafer for the BSS and NM-PM1 production systems. At the time of writing only 8
FPGAs were installed on the prototype wafer module #0. Hence, only tests up to
8 FPGA communication partners were performed.
As in the previous section, the host’s communication endpoint was the HostARQ

implementation within the FCP FPGA. This means that most of the data flow path
within the FPGA was not used. The latter is covered in section section 2.1.2.4.
18A larger number of smaller FCP FPGAs allows for lower total costs.

62

2.1. Communication Protocols

0 50 100 150 200
Time [s]

70

75

80

85

90

95

100

105

110

115

T:
Th

ro
ug

hp
ut

[M
iB

/s
]

Tprotocol
Twirespeed
TTUD UDP core
TX
RX

Figure 2.18.: Host to FPGA throughput stability measurement utilizing up and
down connection (full-duplex). Outbound traffic is plotted in blue
(TX), inbound traffic is plotted in green (RX). Raw wire speed
(Twirespeed) is plotted as red dotted line, the maximum payload
throughput (Tprotocol) is plotted as red dashed line. Due to a sub-
optimal 1GbE/UDP core implementation, the FPGA is not capable
of sending at full speed (cf. section 2.1.2.1), plotted as red dash-dotted
line TTUD UDP core. The next FPGA implementation for the upcom-
ing FCP is expected to correct this misbehavior. Both, outbound and
inbound traffic is stable over the complete test period of 200 s. The
measurement was performed in collaboration with Vitali Karasenko
[Karasenko, 2014].

63

2. Fast Operation

Loop-back Measurement Figure 2.19 presents a scaling test of the HostARQ
software in the loop-back case. The communication partners, the FCP FPGAs, are
connected via 1GbE to the wafer switch which aggregates to a 10GbE link. This
link is connected to the host computer. From the raw numbers (10:1), the host
could handle up to 10 FPGAs in parallel at full speed.
On the host side, for each of the FPGAs individual random data streams are

generated. Afterwards, the received data from each endpoint is compared against
the sent data to rule out erroneous data handling. A total of 1342.77MiB19 is trans-
ferred in every test. This means that the transfer size per FPGA is reduced when
multiple FPGAs are used. Figure 2.19 plots throughput against the number of par-
allel connections. The maximum throughput per FPGA is limited to approximately
66%, see section 2.1.2.1 for details. In the top part of the figure individual numbers
for throughput are given for every FPGA. Given the resolution of the plot the bars
match each other – i.e. all streams have balanced throughput even in the case of 8
FPGAs where the test only takes about 2 s. In the lower panel the aggregated value
is plotted; the RMSE is calculated by averaging 10 runs. The measured throughput
is in perfect agreement with the calculated maximum. Further measurements that
extend the number of FPGAs are planned as soon as the new FCPs are available –
the setup of the old wafer, i.e. being equipped with 8 FPGAs, will presumably stay
the same.

Non-loop-back Measurement Due to the functional test overlap – i.e. throughput
vs. number of communication partners, the non-loop-back measurements are only
shown for HICANN-based tests in section 2.1.2.4. The performance in the FPGA-
based case will be at least as high as for the HICANN-based case because the
communication channel between host and FPGA stays the same and the minor
change in buffer depth20 will not change the performance.

Multiple FPGAs At the time of writing, the FCP firmware had at least two known
problems when using multiple FPGAs in parallel (single-user or multi-user).
Firstly, during performance testing, the author experienced sudden drops in

throughput when increasing the number of FPGAs in parallel. After recording
experiment network traffic, a quick look into Wireshark revealed that the FPGAs
resort to sending broadcast frames. This happens because of address resolution
protocol (ARP) table overflows and it is normal behavior. However, due to imple-
mentation insufficiencies, the current firmware is limited to a small number of ARP
table entries. The precise number is configurable, but for reasonable counts21 the
firmware build process fails due to excessive resource consumption.
Secondly, when receiving frames addressed to the Ethernet broadcast address

the current FPGA UDP implementation has a certain probability that it starts to
19That corresponds to one million full packets, each carrying 176 entries that are 8B words long.
20The effective protocol window size is not defined by the buffer size of the HostARQ implemen-

tation in the FPGA but rather by the total buffer size measured up to the HICANN interface.
2148 FCPs and multiple nodes per wafer thus, 64 entries seems reasonable.

64

2.1. Communication Protocols

0

20

40

60

80

100

120
T
hr
ou

gh
pu

t
[M

iB
/s
]

Throughput per FPGA

Tprotocol

TTUD

T

1 2 3 4 5 6 7 8
Active FPGAs [#]

0

200

400

600

800

1000

T
hr
ou

gh
pu

t
[M

iB
/s
]

Total Throughput

Tprotocol

TTUD

T

Figure 2.19.: Throughput measurement using the HostARQ loopback-mode in the
FPGA. The FCP FPGAs are connected via 1GbE to the wafer switch.
One 10GbE link is used to connect the switch with the host computer.
The host sends individual random data streams to every FCP FPGA.
A HostARQ loopback module within the FPGA returns the data to
the host. Correct data handling is verified on the host by comparing
sent and received data. On the x-axis, the number of parallel connec-
tions, i.e. FPGAs, is varied up to the maximum number of available
FCPs on the first wafer prototype system. In the upper panel, in-
dividual connections/FPGAs are plotted as bars (i.e. a maximum of
eight bars for 8 FPGAs). The height of the bars denote throughput,
the error (RMSE) is too small to be visible. The lower panel provides
aggregate values for the throughput; the error (RMSE) is too small to
be visible. The dashed lines shows the maximum payload throughput
(Twirespeed). Due to a suboptimal 1GbE/UDP core implementation,
the FPGA is not capable of sending at full speed (cf. section 2.1.2.1);
the reduced rate is plotted as dash-dotted line (TTUD UDP core). Given
the current FPGA firmware bandwidth limitations, the plot shows
perfectly linear scaling.

65

2. Fast Operation

ignore other filtering mechanisms (e.g. IPv4 address or port number). At the time
of writing, this bug is not reliably reproducible and further debugging efforts are
needed.
For both problems one feasible workaround is to use VLANs [IEEE 802.1Q, 2003].

Every FCP is assigned to a unique VLAN. The FPGA switch port is operated in
untagged mode, which filters out all unselected VLANs. On the host-side switch
port, all VLANs are activated in tagged mode – this adds an additional VLAN
header to all Ethernet frames. The host itself does not join any VLAN until an
experiment job starts. This is why the maximum number of ARP table entries is
now limited to 2 (if the data network switches are operated in transparent mode,
otherwise the number increases by the number of hops between FPGA and Host).
The experiment job specifies the set of utilized FPGAs – using this list, the resource
management software now enables the matching VLAN network interface. As a
consequence, Host-FPGA connections are now essentially point-to-point links.
Both bugs (collected in issue #1325) have been filed in the project management

software and the FPGA developers are working on a solution. Nevertheless, the
present workaround scales up to 85 wafer modules22.

2.1.2.4. Between Host and HICANN

This section evaluates HostARQ performance between one compute node and mul-
tiple HICANN chips located on multiple FCP FPGAs. Figure 2.15 shows the eight
HICANN chips that are linked to a single FCP FPGA23. The same wafer module
setup is used as in section 2.1.2.2 with eight FCPs and at least one active reticle
per FPGA. That means that up to 8 · 8 = 64 HICANNs can be accessed in this
setup. Hence, the 64 HICANNs can receive at most 8Gbit from the eight 1GbE
links. The reverse connection is slower due to a bug in the FPGA firmware (de-
scribed in section 2.1.2.1) – at most 66% wirespeed can be achieved. In contrast
to the previous measurements, the effective buffer sizes are slightly larger due to
the pipelined structure of the data flow within the FPGA. The exact buffer depth
can be easily measured by sending illegal read commands to a HICANN chip that
cannot respond; the protocol stalls after all buffer space has been filled up. At
the time of writing, the total buffer size corresponds to approximately 650 packets.
This means that the window size – currently 512 packets – dominates the total
buffer space.

Half-Duplex This test measures the performance of the HostARQ protocol in the
HICANN write case. The test software generates write commands to a fast memory
location24 on the HICANN chip. If multiple HICANNs are used, each chip is ad-

2212-bit VLAN colors ⇒ 4096 VLANs, each carrying one FCP make up for 85 wafer modules.
23In the prototype system 32 HICANN chips are linked to a single FPGA.
24The top-left synapse switch crossbar is used. It connects vertical Layer 1 (L1) buses to synapse

drivers which feed the signal into the synapse rows.

66

2.1. Communication Protocols

dressed in a round-robin fashion25 The maximum payload size of a single HostARQ
frame is 1456B, which translates to 182 × 64-bit commands (for details see sec-
tion 2.1.2). For optimal DDR SDRAM26 burst alignment, the current FPGA imple-
mentation uses only 176 commands by default (see [Karasenko, 2014] for details).
Therefore, a single HostARQ frame is filled with 176 commands and repeatedly
sent to the FPGAs. After 1342.77MiB27 have been written to the system the mea-
surement stops. In contrast to the loop-back-based measurements before, the exact
point in time when the last write has been executed is difficult to determine. How-
ever, the total buffer capacity of the system, as mentioned above, is dominated by
the HostARQ window size which is 512Frames (512 ·1456B = 728KiB). Compared
to the total size of the test data set this contribution can be ignored.
Figure 2.20 shows the throughput measurements for 4 and 8 FPGAs/reticles. As

shown in Karasenko [2014], single HICANN links cannot saturate 1GbE. Hence, the
number of target HICANNs per FPGA is also varied; this is plotted on the x-axis.
Due to hardware stability issues on the wafer module28, measurements using

more than 48 HICANNs in parallel were skipped. For sufficiently large numbers of
target HICANNs (i.e. three or more) figure 2.20 shows >= 94% of the maximum
protocol throughput.

Full-Duplex Reading from the HICANN chip SRAM requires a single read com-
mand for every date to return – both are packed into 8 bit entries. This means
that the full-duplex operation corresponds to reading from the HICANN chip; in-
put data size equals output data size. However, the same issue as in the previous
loop-back measurements affects the maximum throughput: the limited outbound
bandwidth of the FPGA implementation; see section 2.1.2.1 for details. The out-
bound throughput is limited to 66% of 1GbE performance which is 112.9MiB/s
(see equation (2.3)). Thus, using the complete first prototype setup, we can expect
the maximum throughput to be

8× 0.66 · 112.9MiB/s = 596.1MiB/s

Unfortunately, at the time of writing, a bug in the core of the data handling code
path within the FPGA is triggered early; this has been reproduced in simulation by
the FCP FPGA firmware developers [Partzsch, 2014]. Hence, the stability of the
current FPGA firmware does not permit to produce enough data to acquire robust
results. However, due to the promising results that are shown in figure 2.19 and
figure 2.20 the author expects rather good results. The FPGA developers that are
responsible for this code part ([Partzsch et al., 2008–2014]) are actively working to
resolve this issue.
25That means the target HICANN rotates.
26Double data rate synchronous dynamic random-access memory.
27See footnote 19 for details.
28The high-speed connection between FPGA and HICANN gets disrupted and a reinitialization

is needed.

67

2. Fast Operation

0

20

40

60

80

100

120

T
h

ro
u

gh
p

u
t

[M
iB

/s
]

Throughput per Reticle/FPGA

Tprotocol

4 reticles

8 reticles

1 2 3 4 5 6 7 8

Active HICANNs per Reticle/FPGA [#]

0

200

400

600

800

1000

T
h

ro
u

gh
p

u
t

[M
iB

/s
]

Total Throughput

4 · Tprotocol

8 · Tprotocol

4 reticles

8 reticles

Figure 2.20.: The plot shows host to HICANN write performance. The test pro-
duces write commands directed to one or more HICANN chips. All
data packets contain 176 write commands. Each write command is
directed to a fast chip memory location (top-left synapse switch cross-
bar) on the HICANN chip. As writing to a single HICANN chip
cannot saturate the 1GbE connection between the host and the FCP
FPGA, the number of addressed HICANNs per FCP is increased from
1 to 8 (x-axis) which is the maximum number of HICANNs per ret-
icle (and for the new FCP). A total of 1342.77MiB are written per
FPGA (see footnote 19 for details). Due to hardware stability issues
the measurements involving more than 48 (i.e. using more than eight
FCPs and six HICANN chips per FPGA in parallel) were skipped.
The eight 1GbE connections from the FCPs are aggregated by the
wafer switch into a single 10GbE connection to the host computer.
The dashed lines in the lower panel show the maximum bandwidth
available in total (four or eight times 1GbE, see equation (2.3)). In
the setup using four FCPs and more than two HICANN chips per
FCP, the total bandwidth is in perfect agreement with the calculated
optimum. The eight FCPs case shows a minor reduction in perfor-
mance compared to the calculated optimum. No further optimization
was performed as the overall performance is over 94%.

68

2.1. Communication Protocols

2.1.2.5. Transport-layer Latency

The worst case latency when communicating between host computer and neuro-
morphic system is largely given by the total buffer capacity of the system and can
be calculated using equation (2.5). Depending on the amount of other data trans-
fers the RTT varies due to differences in buffer usage. Therefore, for applications
with constraints regarding communication latency, the transport is suboptimal. An
alternative communication method is presented in section 3.2.1 and latency mea-
surements are presented in section 3.3.3.

2.1.2.6. Inter-host Performance

To complete the throughput measurements, the production-type setup has to be
tested. Due to the lack of sufficient numbers of FCP FPGA installed on wafer
modules, the measurements have been performed between two compute nodes. The
48 links between a single compute node and the wafer module are implemented as
independent HostARQ communication channels; just as it is the case for the wafer
module setup.
Figure 2.21 presents the measurement between two NM-PM1 compute nodes

connected via 10GbE. Compared to the FPGA-based measurements, the settings
used in this setup are unchanged. Assuming correct FPGA behavior, the results
acquired using this setup should give a good estimate for later hardware-based mea-
surements. However, to achieve 10GbE at least 10 1GbE links (FCP FPGAs) are
required. In this measurement, a single communication channel is already capable
of sustaining over 700MiB/s. Using four channels, the maximum performance was
found to be:

(1.070± 0.009)GiB/s.

This corresponds to over 99% wire-speed throughput (see equation (2.3)).
To explore the capabilities of the current HostARQ software implementation, the

test has been repeated on the NM-PM1 frontend nodes which are equipped with
40GbE NICs. Figure 2.22 presents the measurement. When using the standard
MTU of 1500B the throughout is still limited to less than 2×10GbE. This is caused
by high interrupt rates that increase software overhead. Figure 2.17 presents a
measurement to evaluate the importance of larger packet sizes. To estimate the
effect of increased packet sizes, four more measurements have been performed using
3000B, 4500B and 9000B. The latter has been chosen as the current network
infrastructure is limited to approximately this packet size. Using this MTU, the
throughput can be increased up to the theoretical maximum (using eight parallel
channels). Using eight channels and a MTU of 9 kB, the maximum performance
was found to be:

(4.534± 0.062)GiB/s.

This corresponds to over 99% wire-speed throughput (see equation (2.3)).
In summary, both the HostARQ software implementation and the compute nodes

69

2. Fast Operation

0 10 20 30 40 50 60 70
Number of Communication Channels [#]

0.6

0.7

0.8

0.9

1.0

1.1

1.2
T
hr
ou

gh
pu

t
[G

iB
/s
]

Twirespeed

Tprotocol

T

Figure 2.21.: Inter-host throughput measurement utilizing up and down connection
(full-duplex). The hosts (two NM-PM1 compute nodes) are connected
via 10GbE. On the x-axis, the number of parallel HostARQ commu-
nication channels is plotted; the ordinate denotes payload throughput
(T). The errors show the RMSE of all communication channels. That
means the errors are a measure for inhomogeneity between the com-
munication channels. Raw wire speed (Twirespeed) is plotted as red
dotted line, the maximum payload throughput (Tprotocol) is plotted
as red dashed line. For more than one communication partner, the
throughput reaches more than 90% of the theoretical maximum. This
rise is caused by an increased effective window size as all communica-
tion channels use independent buffers, i.e. the timing constraints are
more relaxed. 48 communication channels are used in the production-
type wafer systems. With increasing communication channels there
is a slight decrease in efficiency. This is caused by protocol handling
overhead.

70

2.1. Communication Protocols

0 10 20 30 40 50 60
Number of Communication Channels [#]

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

T
hr
ou

gh
pu

t
[G

iB
/s
]

Twirespeed

Tprotocol

T (MTU = 9000B)
T (MTU = 6000B)
T (MTU = 4500B)
T (MTU = 3000B)
T (MTU = 1500B)

Figure 2.22.: Inter-host throughput measurement utilizing up and down connection
(full-duplex). The hosts (two NM-PM1 frontend nodes) are connected
via 40GbE. This setup is a reference measurement to explore the ca-
pabilities of the current HostARQ software implementation. On the
x-axis, the number of parallel HostARQ communication channels is
plotted; the ordinate denotes payload throughput (T). Results for
the maximum MTU supported by the data network, approximately
9000B, are plotted in blue (circles). A selection of other MTUs is
plotted. The errors show the RMSE of all communication channels
(cf. figure 2.21). Raw wire speed (Twirespeed) is plotted as red dotted
line, the maximum payload throughput (Tprotocol) is plotted as red
dashed line. For four or more communication partners, the through-
put reaches more than 90% of the theoretical maximum for MTUs be-
tween 6 kB to 9 kB. No further tuning has been performed, except for
the increased MTU, all settings match the FCP FPGA setup. Packet
sizes of 4.5 kB and below achieve suboptimal performance. This is
caused by software overhead and high interrupt rates; the situation is
similar to the setup shown in figure 2.17 (see large packet size para-
graph on page 60). For the production-type FCP FPGA firmware it is
planned to support larger, jumbo frames; the FPGA supports frame
sizes larger than the switches, i.e. the data network constrains the
maximum size.

71

2. Fast Operation

perform adequately, the specified wire speed is reached. Looking further ahead,
with a slight modification29 of the FCP FPGA firmware the software will scale
up to 40GbE. The NM-PM1 frontend nodes can be used for special cases where
maximum throughput is required; individual wafer modules have to be linked via
four 10GbE links to the backbone switch. However, the port count is too low to
allow for a fully 40GbE-connected NM-PM130.

29The FCP FPGA supports arbitrary packet sizes. However, the data network is limited to the
maximum sizes allowed by the switches, i.e. approximately 9 kB.

30As stated in section 1.2.1, a homogeneous 40GbE topology was too expensive for the NM-PM1.

72

2.2. Operation Software

2.2. Operation Software
Compared to neuronal network simulators, the operation of a neuromorphic hard-
ware system is difficult; the hardware realization of neurons, parameter storage,
topology; every component adds additional constraints to the system. Some con-
straints can be hidden from the user in a sensible way, others are difficult to handle.
Nevertheless, a software interface has to take every effort to simplify system usage,
to make the system available for as many users as possible. One welcome side effect
is that non-hardware-exports from outside can use the system and provide feedback
to the hardware developers. Future hardware revisions can then be improved based
on data that was acquired while using the system – in addition to other scientific
data sources.
However, one lesson learned from the operation of the single-chip-based system,

Spikey, is to make it also possible to expose hardware details. The experimenter
should have the ability to choose the level of hardware abstraction he wants to
adopt. For this purpose, all software layers now have an API that can be used to
access layer-specific data structures and to manipulate behavior.
From the users’ point of view, the main advantage of accelerated neuromorphic

hardware has to be conveyed: the speed of the system. Operating the system
at an speedup factor (cf. section 1.1.5) of 104 while providing inadequate software
performance at the same time invalidates the eligibility of the whole system. A high-
performance system can be used for classes of neuronal network experiments that
are hard to simulate conventionally: in particular, long-term learning experiments,
long-lasting in general and experiments that are repeated very often – e.g., to
acquire statistics – are good points. Another argument has been already stated
for the Spikey system: interactive exploration of parameters [Brüderle and Müller
et al., 2009]. The latter implies the use of the acceleration factor by re-configuring
the system and re-running the experiment as soon as the experimenter adjusts a
parameter; due to the speedup factor the result is available to the user after a short
timespan. For this reason, this is called interactive operation of the system.

A last application relies on real-time interaction between software running con-
ventional hardware and a neuronal network running on neuromorphic hardware.
This operation modes has differing demands and it is therefore not treated in this
chapter. However, chapter 3 concentrates on this application.

Software Requirements User-friendly operation of such a complex system is cru-
cial. The interface should be convenient and as familiar to experimentalists as
possible. That is why the software system implements the PyNN API – a cross-
simulator API for the description of neuronal network experiments. Section 2.2.4
introduces the API and mentions implementation details that differ from the usual
implementations, e.g., pyNN.nest or pyNN.neuron. The second facet is the non-
expert usability. To a large fraction, this means hiding of non-essential hardware-
specifics like topological constraints, variations of the neuron circuits and defects of
any component. This is covered by a translation method that processes hardware

73

2. Fast Operation

properties, calibration along with defect data and determines a valid representa-
tion of the user’s network description. We call this step the mapping of a neuronal
network. The mapping’s output is a hardware configuration that is as isomorphous
to the input network description as possible31 This mapping step is described in
section 2.2.3. Acquiring calibration and defect data as well as storage of the data
is covered in section 2.2.6.
Another requirement is resource management. Both, the HMF and the NM-PM1

system will consist of multiple wafer modules and compute nodes. Traditionally,
experiments on neuromorphic systems have been using a single-user-single-system
approach. When scaling up to multiple users this approach does not scale – at
least if larger networks are needed and experiments want support for fair resource
sharing and support for multi-wafer experiments. In general, this problem is similar
to the situation on typical HPC systems. While the inter-user fairness aspect and
the specification of job size (i.e. the amount of hardware resources) are equivalent to
that of traditional HPC systems, the aspect of non-identical hardware resources32

and short runtimes are not. This aspect is covered in section 2.3.
An important point is testing. When operating large systems that are essentially

always being optimized and modified, it is important to be able to automatically
test and verify functionality. This aspect is covered in section 2.2.7.
Finally, the integration of the systems into larger frameworks, like the unified

portal is handled in section 2.3.2.

Previous Efforts The author contributed to the development of the PyHAL soft-
ware stack that was developed for the FACETS project [Brüderle, 2009; Müller,
2008]. Python-based hardware abstraction layer (PyHAL) provides a high-level
user interface; it is an implementation of the PyNN API. Most of the requirements
that were stated in the previous paragraph are implemented in this layer: the map-
ping, most of the calibration and the resource management. Compared to the HMF
and NM-PM1 systems, each task is much simpler. For example, the PyHAL map-
ping has no notion of a bus structure, because the spike transport on the Spikey
chip uses direct connections between neurons. The PyHAL software stack employs a
call-return-based execution scheme33 using a two-layered framework. However, the
Python-based hardware abstraction layer (PyHAL) does not provide any support
for binary serialization. That means, after invoking a PyNN script, the execution
will continue until an error occurs or the experiment finishes.
The lower-level API provides access to the hardware units, e.g., the synapse

31Neuronal networks running on a wafer module have certain connectivity constraints; to put
it simply, small network can be mapped without topological distortions, but larger networks
exhibit synapse loss and spike loss.

32Every wafer has different analog and defect characteristics. Therefore, the map of defect com-
ponents is different. Depending on the experiment this can be an issue. Support for explicit
wafer requirements is crucial.

33That means that components provide a set of services that are invoked by other components
[Clements, 2011].

74

2.2. Operation Software

weight matrix or neuron parameters. Internally it creates an in-memory represen-
tation of the control FPGA’s experiment program, the so-called playback memory
program. This is a precomputed FPGA-cycle-accurate sequence of instructions and
events to send to the Spikey chip [Grübl, 2007]. The coding style is object-oriented
with hardware units represented as C++ classes.

For a new software framework, some aspects of the old software stack proved
worthwhile: 1. the user interface, PyNN, has been adopted by other neuromorphic
systems [Galluppi et al., 2010], one graphics processing unit (GPU)-based system
[Nageswaran et al., 2009] and is actively34 used for conventional software simulations
[Kaplan et al., 2013; Schmuker et al., 2014]; 2. the integration of analog readout
capabilities into the software stack makes it easy to record neuron membrane traces;
3. the integrated usage of calibration data to mitigate the effect of fixed-pattern
variation between neuromorphic circuits; 4. moving of data-intense computations
from the Python to the C++ layer.
However, some aspects required improvement. The rather limited number of

abstraction layers and their inaccessibility by the users resulted in parameter tun-
neling, i.e. the top-level interface took parameters for all lower-level functionality.
Hence, it seemed beneficial to provide APIs for all the software layers. Together
with the PyNN interface, this automatically requires Python-based wrappings for
all the software components. For the existing PyHAL, the Python wrapping was
done using the boost::python library and handwritten code. The author tested
the automated wrapper code generator Py++ for this purpose and it proved to be
adequate [Müller, 2011a].
Another item is the suboptimal API definition of the old internal interfaces.

This generated a situation where, for example, the calibration of some parameter is
PyNN-based and uses the PyHAL layer, and another parameter that is calibrated
using the low-level layer. Generally speaking, a specification of components, APIs
and architectural guidelines were missing.
The old execution model is strictly call-return-based, which makes resource uti-

lization difficult as the part of runtime that really requires hardware access is
only a fraction of the typical runtime. A more suitable execution scheme for non-
interactive/batch-style experiments is to use a pipeline data flow model [Clements,
2011]. Using this model, we can introduce binary representations at the border
between each layer and thereby suspend execution at this point. Later steps can
re-load the binary representation and continue processing the data.
Although the old software stack already provided some methods for automatic

testing [Brüderle, 2009, 3.2.5], the missing automation caused extra effort which
hindered the early detection of problems.
Over the lifetime of the PyHAL stack – it is still in use for the USB 2.0 Spikey

systems – software performance improved steadily. When PyHAL was introduced
the Spikey system bandwidth was limited by an old proprietary host interface that

34Adapting PyNN to support large-scale HPC hardware has been the topic of an dedicated BSS
workshop mid 2013, e.g., [Kaplan, 2013; Müller, 2013].

75

2. Fast Operation

dominated experiment execution times. With the introduction of the USB 2.0-based
interfaces the situation changed. Now the software part dominated the execution
times because the host interface is more than a magnitude faster than before [USB
2.0, 2000; Schilling, 2010]. Moving computationally expensive code from Python
to C++ improved the situation to a point where experiment update rates � 10Hz
are possible [Pfeil et al., 2014].

Architecture of the New Software Stack When comparing Spikey and the new
wafer-scale architecture, some properties increase the complexity of configuring and
operating the systems [Schemmel et al., 2006, 2008]: 1. a bus structure was intro-
duced to support on-wafer spike communication; 2. the analog parameter storage
now uses floating gates; 3. neurons feature a more complex neuron model and are in-
terconnectable; 4. off-chip links are configurable in terms of direction, spike sorting
properties and time-stamping. The main issue arises from the wafer-scale property
as many chips have to be configured and controlled in parallel. To programmati-
cally support the developers and users as much as possible strong type-safety was
added to the list of requirements.
To help users of the HICANN-based systems, support for simulating the system

as a whole at a coarse level or support for detailed single-circuit simulations are
required.
Based on experiences acquired while using and developing the PyHAL software

stack35 of the Spikey single-chip system during the FACETS project, the author
envisioned an improved software architecture [Müller, 2011b] for the then upcoming
wafer system. The architectural main difference compared to the PyHAL data flow
model is the transformation from being call-return-based into pipe-line-based. The
essential software components of this model are shown in figure 2.23.
Due to the fact that most experiments run in non-interactive mode, i.e. batch-

style, this is a valid transformation. Additional refinements are: 1. keep PyNN as
user API but move all data handling into C++ layer; 2. introduce API definitions
for every functional component (i.e. split PyHAL into user API, mapping and cal-
ibration layers) – also called structured programming; 3. use automated Python
wrapping of every (C++) layer; 4. deeply-integrated support for testing.
The stronger dependency on abstraction layers made other changes possible. For

example, the new hardware abstraction layer (HALbe) supports multiple targets.
The ESS back end can be used as a preparatory step when transforming neuronal
network models from software simulation to neuromorphic hardware emulation.
Another important back end is the link to neuron circuit simulations that run on
dedicated hardware developer servers.

Text Structure In the following sections different levels of abstraction in the soft-
ware stack will be described. In general, the text follows a bottom-up approach.

35See [Brüderle and Müller et al., 2009] for details on the implementation.

76

2.2. Operation Software

Neuronal Network
Experiment

Component

Task

PyNN

Description
of neuronal networks

Container

Marocco

Translation/mapping
of neuronal network
into valid hardware

configuration

Container
Representation PyHMF StHAL

HALbe

Hardware configuration
and execution control

Result

Figure 2.23.: Data-flow-centric view of the user software stack of the BSS and NM-
PM1 systems. A neuronal network experiment is described using
the PyNN API. Its binary representation, the PyHMF container, is
transfered to Marocco which computes a hardware representation of
the input network description and generates binary representation,
the StHAL container. Finally, the hardware configuration is used
by HALbe to configure the system (or to simulate hardware parts).
The schematic indicates that representation layers are used to store
intermediate results; this process is often called serialization or mar-
shalling. That means, that the three columns can run in a pipelined
fashion; for example, the mapping can prepare many hardware config-
urations which can be executed at a later point in time. This includes
spatial separation – the last execution stage requires hardware access
which enforces execution on the HMF-CP or NM-PM1 compute nodes.
Notably, the mapping stage can be dispatched to a large-scale cluster
system to provide a high rate of experiment configurations which can
than be scheduled to run on the hardware system.

77

2. Fast Operation

Communication layers aside36, we start with the bit-formatting layer that exposes
configuration and readout methods for hardware units. This layer is internally
referred to as HALbe. Section 2.2.1.4 presents the SimDenMem component – an
interface to a transistor-level hardware neuron simulator – as an example for a
HALbe back end. Subsequently, the container layer (StHAL) will be described.
This layer aggregates individual hardware unit data structures into chip or wafer
data collections. The third layer covers the translation – or mapping – between
high-level neuronal network descriptions and hardware-specific realizations. Exten-
sive documentation of the mapping module, called Marocco, can be found in Jeltsch
[2014]. Adjoint to this mapping are data sources that provide calibration (Calibtic)
and defect data (ReDMan); the sources of calibration and defect data are described
in an additional section, 2.2.6, because of their multi-layer dependencies. On top
of these layers sits the main user interface – PyNN; to be precise, a PyNN API
implementation37. Following these descriptions a quick performance evaluation is
performed to assess eligibility of the software stack for the HMF and NM-PM1
systems. Finally, the resource management and test infrastructure complete this
chapter.

Figure 2.24 presents an overview of the software modules and the typical flow of
execution.

Collaborative Work The implementation of this software architecture was a col-
laborate effort. In the following table the main contributors are mentioned:

HALbe Alexander Kononov, Christoph Koke,
Eric Müller, Sebastian Jeltsch

StHAL Christoph Koke, Eric Müller
Marocco Sebastian Jeltsch
RPC Layers Eric Müller, Sebastian Jeltsch
PyHMF Eric Müller, Sebastian Billaudelle,

Sebastian Jeltsch
SimDenMem Eric Müller, David Hinrichs
ESS Bernhard Vogginger, Constantin Pape,

Paul Müller
Calibtic, ReDMan Johann Klähn, Sebastian Jeltsch
Resource Management Eric Müller, Paul Müller
Test Infrastructure Eric Müller, Christoph Koke, Kai Husmann

2.2.1. HALbe

The common interface for all the user configurable hardware components is called
HALbe. This layer not only provides an API, but also a coordinate system and
data containers. During hardware development, components are often mirrored or
36They are covered in section 2.1.
37The current implementation covers the majority of PyNN version 0.7.

78

2.2. Operation Software

PyNN

Marocco

Compute Nodes

Resource
Management

(SLURM)

User Low-level User
or Calibration

Calibration
&

Defect Data

PyHMF
Container

StHAL
Container

Neuronal
Network

Description

AnaRMs
AnaRMANs

HALbe

FCP FPGAs
Wafer

Figure 2.24.: Execution flow of the HMF and NM-PM1 systems’ software stack.
The non-expert user starts a translation job to translate his PyNN-
based neuronal network description into a binary representation
(PyHMF container). This container is used as input for the map-
ping (Marocco) step – which can run as another batch job. Its output
is again a binary representation, the StHAL container. Eventually,
the StHAL container is transferred to hardware and the experiment
can then be executed. Afterwards, the result data is stored in binary
format (also called StHAL container). The last step, called HALbe,
accesses the hardware and needs to be scheduled by the resource man-
agement system; SLURM guarantees that no hardware unit is used
in parallel at the same time. The managed hardware resources are
the analog readout modules (AnaRMs) which are connected to the
analog readout module aggregator nodes (AnaRMANs) and the FCP
FPGAs. In addition to this flow, the expert, low-level user or cali-
brator can use the lower software layers directly to generate a certain
hardware configuration more easily. For example, this is necessary
to test all bus structures on the wafer as the mapping will usually
deterministically choose a certain connection between two neurons.

79

2. Fast Operation

packed into larger groups; therefore, hardware-specific coordinates often look irreg-
ular from the high-level point of view. That is why user-side coordinates and data
structures are used. In general, the addressing scheme adheres the C programming
language array layout (left-to-right, top-to-bottom). A detailed description of the
coordinate system can be found in [Jeltsch, 2014, 4.2.3]. Generally speaking, HALbe
handles the conversion of configuration data from software-specific formatting into
hardware-specific formatting.
The interface is based on free, stateless38 functions taking a handle that identifies

the communication channel to the corresponding hardware unit, and coordinates
to identify a unit within the hardware entity. Functions writing to the hardware
additionally take a third argument that contains the data to write; functions reading
from the hardware return unit-specific data containers.
In the following code listing examples for write access (i.e. a setter) and read

access (getter) are shown. The first example configures a row of crossbar switches
that connect horizontal and vertical buses on the wafer.

// namespace HICANN
void set_crossbar_switch_row(

Handle::HICANN& h, // communication channel
Coordinate::HLineOnHICANN const& y, // coordinate 1st part
Coordinate::Side const& s, // coordinate 2nd part
CrossbarRow const& switches // data container

);

The second example reads out the recording memory of an analog readout mod-
ule (AnaRM). Due to the integration of the analog readout module aggregator node
into the NM-PM1 system39, all analog-to-digital converter (ADC) functionality is
currently modified to support remote procedure call (RPC)-based operation when
accessing a remote AnaRM. The underlying RPC mechanism is presented and eval-
uated in section 2.2.5.

// namespace ADC
raw_data_type get_trace(

Handle::ADC & h
);

The implementation of the API supports several back ends: accessing the real
Neuromorphic physical model system (NM-PM), the ESS (ESS) (cf. section 2.2.1.3)
and multiple debugging modes (e.g., to visualize low-level configuration data, or
to assess neuron behavior, cf. section 2.2.1.4). In case of the NM-PM back end,
the main objective is the translation between user-friendly coordinates and data
38The first parameter, the handle, is modified during the call, but its state is hidden from the user.
39The additional host was added to support larger distances between compute nodes and wafer

modules.

80

2.2. Operation Software

containers on the one hand and low-level hardware commands accessing hardware
entities on the other hand.
Some functionality of HALbe triggers remote operations. This involves control

and monitoring of external voltages and accessing the AnaRM modules for analog
recording. The remote operations are handled by RCF, a RPC framework that is
evaluated in section 2.2.5

Power Control The power management units are Raspberry Pi-based hosts that
are assigned to one single wafer module each. The Raspberry Pis access dedicated
monitoring and control hardware using micro-controllers for deterministic and fast
response behavior. At the time of writing, HALbe provides remote functions for
powering reticles, reading external voltages as well as setting some external voltages.
For example, the latter is used to evaluate and tune Layer 1 bus reliability by
measuring error rates in relation to the voltages set.

Analog Readout The analog readout module aggregator nodes are hosts that
aggregate twelve analog readout modules for four wafer modules each (i.e. a single
rack). Due to the limited wiring length of the USB 2.0 protocol that is used for the
host link of the AnaRMs, a direct connection between compute node and AnaRM
is not possible. Furthermore, the static assignment of wafer modules to compute
nodes is suboptimal, as it adds constraints on resource management and introduces
additional points of failure40. For details see section 1.1.4.

2.2.1.1. Wafer-global Operations

When sharing a prototype41 wafer module between multiple users some global op-
erations like the design reset have to be guarded. This reset is needed to ensure a
clean starting state of the HICANN chips on the wafer. To provide maximal robust
operation, the current software stack triggers this reset at the beginning of every
configuration cycle.
Figure 2.25 sketches the orchestration of the global reset between multiple pro-

cesses. The implementation of this scheme uses traditional UNIX lockfiles that
have to be exclusively locked for the reset operation. The exclusive lock is granted
when no other process holds any lock on the lockfile. During hardware access, all
processes have to hold the lock in shared mode to prevent the exclusive lock from
being granted. After finishing hardware access, every process relinquishes its lock
and enters a loop that tries to acquire an exclusive lock on the lockfile. As soon as
all processes stopped accessing the hardware, i.e. releasing their shared lock, one of
the waiting processes is selected42 and acquires the exclusive lock. After the reset
40If a compute node breaks, the assigned wafer would have to be reassigned to another compute

node – a process that would involve rewiring.
41The production setup provides FCP FPGA-wise reset capability. No reset orchestration will be

needed anymore.
42The flock() manpage does not specify any grant order.

81

2. Fast Operation

P1

P2

...

PN

t
1 2 3 4 5 6 7 8 9 10 11

Figure 2.25.: Wafer-global operations have to be orchestrated. This operation
scheme is used for multiple processes (and users) accessing the proto-
type wafer modules for the chip reset which is required after power-up
and when the chip does not respond anymore. The current software
state triggers this reset for each configuration/execution cycle to en-
sure robust operation. In this example, process P1 starts at time 1 and
is the single process that accesses the wafer; the reset can be pulled
without interference of others. Process P2 starts at time 2 and has to
wait for P1 to come to the next configuration cycle. Now, at t = 3 the
reset is performed and both processes can access (non-overlapping)
hardware resources on the same wafer in parallel. At t = 4 process
PN starts and has to wait for all other processes to end their current
execution cycle. At t = 7, all processes want to start the next config-
uration cycle and the reset can be performed. At t = 10, only process
PN is running as the other processes terminated. Now the reset can
be triggered without the need to wait for the other processes.

operation has been performed, the lock is relinquished and a new shared lock is
acquired. The last lock conversion introduces a race that could result in multiple
resets being performed by multiple processes – which is a legal operation because
the shared lock that marks the hardware access phase has not yet been acquired.
However, these redundancy takes time and therefore this problem has been solved
by monitoring the modification timestamp of the lockfile. The exclusive lock oper-
ation is mapped to a write access in the Linux operating system. That means that
every time the write timestamp changes, the reset has been performed. This check
is done before and after acquiring the exclusive lock to exclude the race that is
also possible here. This locking scheme is deadlock-free as no lock is held when the
exclusive lock is acquired. When a process terminates its locks are automatically re-
linquished by the operating system; in particular, this robustness against abnormal
program termination was the main reason for the lockfile-based implementation.

82

2.2. Operation Software

2.2.1.2. Scheriff

The HALbe interface and the hardware itself do not impose a specific configuration
order. However, not every access pattern is legal. For example, after a HICANN
chip reset (often called wafer reset) it is necessary to re-initialize the high-speed
links between FCP FPGA. To tackle this problem, all API functions are annotated
with configuration states. The order of state transitions is then checked by a finite
state machine, called State Checking and Error Identification Framework (Scheriff),
to identify illegal transitions. The list of legal transitions has been defined by the
corresponding hardware developers [Grübl, 2013; Schemmel, 2014]. The author
constructed a transition table and integrated the FSM into the HALbe framework.

2.2.1.3. ESS

The ESS is a simulation of the wafer module. Not all parts of the system are cov-
ered. For instance, the FCP FPGA and analog readout is only partly integrated.
That means that not all effects arising from these components are correctly simu-
lated. In general, the ESS is a rather coarse simulator. This simulation was initially
developed as a simulation environment during HICANN-chip development. Later,
missing parts were filled to reach a state where neuronal networks could be sim-
ulated on the ESS [Vogginger, 2010]. Subsequently, the ESS has been integrated
into the HALbe framework [Pape, 2013]. Now the user can select the neuronal
network execution back end to switch between hardware emulation and ESS sim-
ulation. Details concerning the ESS can be found in Vogginger [2010], the HALbe
integration is described in Pape [2013]. Another operation mode is dump mode
which generates file output that can be used for visualization of the configuration
and the SimDenMem transistor-level simulation. The latter is described in the next
section.

2.2.1.4. SimDenMem

One example of an application that is interfaced using HALbe is the transistor-level
circuit simulation. Due to software licensing issues analog simulations are typically
only available for chip developers. Furthermore, the simulation interfaces supplied
by the analog circuit simulators are very generic and not optimized for neuronal
network modelers.
Hence, an user-friendly interface to such an analog simulation is important. This

is addressed by the SimDenMem. It provides a link to the analog simulation that
covers essential parts of the neuron and synapse circuits. The list includes synapse
driver, synapse and neuron membrane circuit.
The HALbe back end for simulation of analog circuits (SimDenMem) is a HALbe

(see section 2.2.1) API implementation targeting an IPC-based simulation back
end. Coordinates and data containers are appropriately converted. For example,
boolean values enabling or disabling transistors have to be converted into analog
voltage levels (e.g., 1.8 V digital power supply voltage for the Wafer (1.8 V) (VDD)

83

2. Fast Operation

or 0V) and a relevant subset (e.g., the neuron circuit parameters) of all analog
parameters has to be extracted. A client-server-based software using IPC transfers
the simulation job onto a simulation server. The simulation server uses a proprietary
analog circuit simulator to obtain results and returns the data to the IPC client.
In the last step, result data is returned to the user and can now be visualized.
As long as users utilize only one DenMem the experiments can be executed on
both, the NM-PM system or the HALbe back end for simulation of analog circuits
(SimDenMem) back end.
The author implemented the HALbe-specific software parts and remote call

framework (RCF)-based communication client-server application that provides in-
put data to the analog simulation. The link between this data and the analog
simulator was implemented by Andreas Hartel. Improvements regarding the synap-
tic input and synapse configuration were performed by David Hinrichs under the
supervision of the author [Hinrichs, 2014].

2.2.1.5. Real-time Access

Performing experiments on the HMF (or NM-PM1) that make use of real-time
interaction between neuromorphic systems and compute nodes is another use case.
To support this operation mode a thin software layer, called virtual environment
for closed-loop experiments (VerCL), has been implemented by the author. This
API provides methods to communicate spikes between FCP and compute node at
low latency.
From the user’s perspective, the software part of an experiment running in real-

time requires additional precautions to eliminate unpredictable latency sources like
page faults or call overhead. This makes it difficult to use convenience functions
that are available for batch-style experiments; typically, the user code has to op-
erate directly in the hardware value and time domain. During runtime, extended
permissions are also needed to control real-time behavior of the operating system
environment, and the custom network hardware (cf. section 1.2.1). Details are pre-
sented in section 3.4. To be precise, chapter 3 as a whole focuses on the real-time
aspect of the HMF.

2.2.2. StHAL

At the time of writing, the stateful hardware abstraction layer (StHAL) consists of
two parts: a collection of HALbe-based data containers that represent the configu-
ration of one or multiple HICANN chips, and a configuration routine that calls the
HALbe functions in a canonical sequence. The latter and HALbe’s Scheriff have
been introduced because different users applied different configuration sequences
that produced unstable results. Hence, it was decided to provide one single con-
figuration routine for all users. This decision was a trade between configuration
speed, when only the absolute necessary parts are configured, and robustness. At
the time of writing, the latter is still preferred. However, re-configurations which,

84

2.2. Operation Software

for example, only switch between analog output channels have been implemented
to speed up measurement routines that sweep over multiple neurons. The latter
is used in the calibration framework. Later optimizations may implement robust
support for partial (re-)configurations and thereby increase speed.

2.2.3. Marocco

Given the user’s neuronal network description43, a valid hardware configuration
has to be determined. This process, called mapping, is not trivial as the existing
neuromorphic system offers many tunable yet limited parameters. In particular,
there are topological constraints that add dependencies on connections between
neuron circuits (see Jeltsch [2014, 1.5] for a detailed introduction to the on-wafer
event network). Other constraints come from limited parameter precision, limited
bandwidths, crosstalk/noise, and variation between circuits44.
Some transformations can be performed in a straight forward way: for exam-

ple, the translation of neuron parameters can be performed individually and for
a subset of those parameters it can be reduced to a linear mapping. However,
most transformations are much more complex. The quality of a mapping is largely
model-dependent as, for example, some neuronal network models are more sensi-
tive to distortions of the topology than others. The main goal is to convey model
functionality and dynamics from the biological description to the hardware emula-
tion. In general, there can be multiple mappings that resemble a given biological
network equally well. However, when increasing the network size, i.e. increasing
the level of hardware utilization, it may get impossible to find good representations
of a neuronal network description. Given a neuronal network description, Petrovici
et al. [2014] present methods to cope with such distortions.
On the other hand, it may be possible for smaller networks to rely on manual

hardware configuration. However, due to hardware complexity this process is slow
and error-prone. Therefore, automated mapping is crucial to enable the user to map
larger networks on the neuromorphic systems. For the automated mapping process
a set of heuristic algorithms perform the transformation of the individual network
properties. During the FACETS project, a first mapping method, MappingTool, has
been implemented [Ehrlich et al., 2010]. In contrast to the MappingTool, the current
implementation, called Marocco, aims for better scaling behavior and modularity.
Details on Marocco can be found in Jeltsch [2014].

2.2.4. PyNN

PyNN is a simulator-independent API for specifying neuronal network models.
Neurons and connections can be grouped into higher-level constructs, statistical
measures can be used to describe parameters. It emerged from the computational
43The PyNN API which is used to describe such networks is presented in the next section.
44Software simulations exhibit deterministic distortions which are, for example, caused by limited

floating point precision or quantization of spike event times.

85

2. Fast Operation

neuroscience community because every simulation tool provides its own, proprietary
input and output language. To overcome this issue, common input formats were
developed which provide a single user interface to neuronal network simulators.
There are alternative input formats; the most interesting alternatives are presented
in a later paragraph.
Compared to a hardware-specific programming interface, most neuronal network

modelers prefer the ease of use a common input format. Therefore, the HMF/NM-
PM1 software stack implements the PyNN API45 Figure 2.26 sketches a selection
of PyNN’s supported simulation or, in case of neuromorphic hardware, emulation
back ends.

PyNN
pyNN.genesis2

sli

GENESIS 2

C
ode gen

eration
D

irect evalu
ation

pyNN.brian

Brian

...pyNN.neuron

nrnpy

NEURON

HOC

pyNN.nest

NEST

SLI

PyNEST

pyNN.neuroml

NeuroML

pyNN.hardware.
{brainscales,nmpm1}

Config
Data

Experiment Configuration
and Runtime Control

Reverse
Mapping

pyNN.hardware.
spikey

PyHAL

C++ HAL

Mapping

Figure 2.26.: The PyNN modeling API supports multiple simulation and emulation
back ends: the neuromorphic hardware systems developed in Heidel-
berg are shaded darkly. On the left is the wafer-scale-specific back end
which is presented in the text. NEST and NEURON are the standard
PyNN simulator back ends. The declarative neuronal network de-
scription language NeuroML is covered in a later paragraph; PyNN
supports NeuroML as an output format. For information regarding
the other back ends see PyNN [2014].

In order to demonstrate the simplicity of the PyNN user interface, the following
code snippet describes a simple network with a Poisson spike source projecting to a
pair of IF_curr_alpha (leaky integrate-and-fire model with current-based synapses
producing alpha-shaped postsynaptic potentials (PSPs)) neurons46:

1 import pyNN.SIMULATOR as sim
2 import numpy
3

4 sim.setup(timestep=0.1, min_delay=0.2, max_delay=1.0)
5

6 cell_params = {
45For modeling, the PyNN interface is the preferred input format. However, lower-level access is

possible using the Marocco mapping tool or the hardware access layers.
46A complete API documentation can be found on the PyNN homepage, cf. [PyNN, 2014].

86

2.2. Operation Software

7 ’tau_refrac’: 2.0,
8 ’v_thresh’: [-50.0, -48.0],
9 ’tau_syn_E’: 2.0,

10 ’tau_syn_I’: 2.0
11 }
12

13 output_pop= sim.Population(2, IF_curr_alpha(**cell_params))
14

15 tstop = 1000.0
16 rate = 100.0
17 number = int(2*tstop*rate/1000.0)
18 spike_times = numpy.add.accumulate(
19 numpy.random.exponential(1000.0/rate, size=number))
20

21 input_pop = sim.Population(1,
22 SpikeSourceArray(spike_times=spike_times))
23

24 projection = sim.Projection(input_pop,
25 output_pop,
26 sim.AllToAllConnector(),
27 sim.StaticSynapse(weight=1.0)
28)
29

30 input_pop.record(’spikes’)
31 output_pop.record((’spikes’, ’v’))
32

33 sim.run(tstop)
34 sim.end()

The simulation back end is initialized in line 4 Two populations are created in
line 13 and 21: the output population contains two neurons with identical model
parameters which are defined from row 7 to 10. Lines 15 to 19 create a spike train
out of exponentially distributed inter-spike intervals, i.e. a Poisson spike source –
this is used as the input population. A connection between the two populations
is created in line 24 to 28. Line 31 and 32 activate recording of spikes on both
populations as well as neuron membrane voltage recording for the output popula-
tion47. Finally, the simulations runs for a defined time interval. To execute this
script on different simulators or hardware platforms, only the first line has to be
modified. However, precisely matching results are not guaranteed as, for example,
the NM-PM1 is an analog system exhibiting variations of different kinds (for details
see section 2.2.3).

47The spike source has no membrane to record from.

87

2. Fast Operation

The HMF/NM-PM148 PyNN back end uses the client-server approach to split
the software stack into the PyNN interface implementation and the back-end spe-
cific part. On the user side, the client implements the PyNN API and uses an
IPC mechanism to trigger experiment execution and retrival of experiment data.
Additionally to the PyNN functionality, the IPC layer provides user authorization
and authentication.

Data Format A suitable storage format for the PyNN user interface is currently
developed by the NeuralEnsemble community [Neural Ensemble, 2008]: Neo. Its
data model is hierarchical. Data series of varying sampling rate, start and end time
can be grouped together. These groups represent trials or runs that share certain
properties, e.g. the same set of parameters. With respect to the neuromorphic
systems, the AnalogSignal and SpikeTrain types are most important ones. In Neo,
these groups are called segments. The segments itself can be grouped into blocks
which represent the file contents but contain extra meta data to uniquely identify
the contents. To put it more simply, Neo is a collection of annotated NumPy arrays
and convenience functionality. Details can be found in Neo [2014].
For experiments running on the HMF or NM-PM1 the existing Neo implemen-

tation can already be used as it supports the input and output data formats that
are defined in the PyNN API49.

Alternatives A different approach to describe neuronal network models is to re-
place the procedural description by a declarative description. One widely used
example for this approach is the markup language NeuroML [Gleeson et al., 2010].
It defines model properties of varying levels of detail. The top-most layer, called
NetworkML, is similar to connect() and class Projection in conjunction with
the class Connector functionality of PyNN. The underlying layers, called Chan-
nelIML and MorphML, describe cell properties that both are handled by create()
and class Population in PyNN. The first language revision focuses on compart-
mental neuron models using Hodgkin-Huxley-type synapses.

An initial implementation of the PyNN-to-NeuroML converter is included in the
upstream PyNN sources. The inverse is more difficult, as the current PyNN API
does not support a specification of arbitrary cell layouts but is fixed to a set of
standard cell topologies. Users may add new cell and synapse types, but the link
to a simulation back end has to be created as well50.
Conversely, the NineML language focuses on the description of spiking point neu-

rons with activity-dependent plasticity. The PyNN community plans to integrate
import and export of NineML-formatted models in later revisions.
48At the current stage, the BSS and HBP systems’ hardware is equal. Thus, and

PyNN.hardware.nmpm link to the same PyNN implementation.
49The PyNN.hardware.nmpm back end adheres to the PyNN API version 0.7.
50For some PyNN back ends, e.g. Brian spiking neural network simulator (Brian) and NEURON,

there has been some effort to support the runtime creation of new cell types.

88

2.2. Operation Software

Higher-level Abstractions In the computational neuro-scientific community, higher-
level abstractions of neuronal network descriptions as well as high-level experiment
handling are contemporary research topics. Regarding the network topology, tools
like the connection set algebra (CSA) provide means to use a general formalism for
describing connectivity in neuronal networks [Djurfeldt, 2012]. Other tools address
the problem of high-level management of sophisticated neuronal network models
[Antolík and Davison, 2013; Stevens et al., 2013].

2.2.5. Connecting Software Pipe-line Components

The software architecture described up to this point bases on a data flow model
that follows the pipe-line scheme. Using this scheme, the individual components
communicate via defined set of data structures. These serialized51 data structures
are produced by the preceding pipe-line step and read by the subsequent component.
This means that the pipe-line architecture allows for introducing communication
layers between the components.
One main goal of the software architecture is to enable multi-site operation. For

example, based on the flow shown in figure 2.23 the PyNN API user generates
the serialized biological network description on his local machine. Afterwards, this
data is transfered to a compute cluster that allows for fast and parallel mapping
from neuronal network descriptions to hardware configuration data. In the third
step, the configuration data is transfered to the compute cluster associated with
the neuromorphic hardware devices. The resource management (see section 2.3)
mechanism schedules the experiment for execution and thereafter provides result
data back to the user.
Given these requirements, the author evaluated existing remote procedure call

(RPC) technologies; the chosen method, called RCF, will be presented in the follow-
ing sections. Remote call framework (RCF) is a C++ library that provides standard
C++ interfaces for remote procedure calls. The evaluation of this method has been
performed by Kai Husmann under the supervision of the author [Husmann, 2012].
Figure 2.27 presents a measurement which evaluates RCF. Throughput is mea-

sured using varying call policies, for example asynchronous or synchronous, and
data types. To summarize, using large vectors of identical elements yields optimal
performance; RCF is able to sustain a throughput of approximately 1GiB/s. This
and other measurements performed by Kai Husmann (supervised and coordinated
by the author, see Husmann [2012]) laid foundations for the application of RCF in
the pipelined software architecture (see figure 2.23).
Figure 2.28 presents throughput measurements between the PyNN-based network

description and the mapping input layer. In figure 2.23 this point is indicated by the
second arrow going from PyHMF Container to Marocco. The throughput saturates
approximately at 2GB/s for networks larger than 500 neurons. In summary, the

51Serializing or marshalling means translating memory data structures into a binary format that
can be stored or transmitted and can later be used to reconstruct the original data structure.

89

2. Fast Operation

Ba
tc
h1

K
iB
_
C
al
l

Ba
tc
h1

M
iB
_
C
al
l

Ba
tc
h3

2K
iB
_
C
al
l

O
ne

wa
y_

C
al
l

Tw
ow

ay
_
C
al
l

Tw
ow

ay
_
4B

O
ne

wa
y_

4B
Ba

tc
h1

M
iB
_
4B

Ba
tc
h3

2K
iB
_
4B

Ba
tc
h1

K
iB
_
4B

Tw
ow

ay
_
Ve

ct
or
_
1K

iB
Ba

tc
h1

28
M
iB
_
Ve

ct
or
_
1K

iB
Ba

tc
h6

4M
iB
_
Ve

ct
or
_
1K

iB
Ba

tc
h1

6M
iB
_
Ve

ct
or
_
1K

iB
O
ne

wa
y_

Ve
ct
or
_
1K

iB
Tw

ow
ay
_
Ve

ct
or
_
1M

iB
Tw

ow
ay
_
Ve

ct
or
_
32

M
iB

Ba
tc
h1

28
M
iB
_
Ve

ct
or
_
32

M
iB

Ba
tc
h1

28
M
iB
_
Ve

ct
or
_
12

8M
i

Tw
ow

ay
_
Ve

ct
or
_
25

6M
iB

Tw
ow

ay
_
Ve

ct
or
_
12

8M
iB

Ba
tc
h6

4M
iB
_
Ve

ct
or
_
32

M
iB

O
ne

wa
y_

Ve
ct
or
_
32

M
iB

O
ne

wa
y_

Ve
ct
or
_
25

6M
iB

O
ne

wa
y_

Ve
ct
or
_
12

8M
iB

Ba
tc
h6

4M
iB
_
Ve

ct
or
_
1M

iB
Ba

tc
h1

28
M
iB
_
Ve

ct
or
_
1M

iB
Ba

tc
h1

6M
iB
_
Ve

ct
or
_
1M

iB
O
ne

wa
y_

Ve
ct
or
_
1M

iB

100
101
102
103
104
105
106
107
108
109

1010

Throughput [B/s]
Transfer Frequency [1/s]
Throughput per Transfer [B]

Figure 2.27.: Throughput measurement for the remote procedure call framework
RCF using boost serialization and different call semantics as well as
transfer objects types. The measurement was performed locally on
a HMF compute node (i.e. it uses the kernel network stack on the
loopback device).For every parameter setting on the x-axis, the large,
blue bars indicate throughput measured in B/s. Red bars indicate
individual transfer size that was tested. The narrow bars indicate
the frequency of transfers measured in Hz. For tests that contain
the Vector identifier, 2GiB were transferred; the other tests used only
2MiB to reduce the measurement time. On the left, the measurements
named *_Call represent empty calls (i.e. zero transfer size) to acquire
the maximum call frequency possible using this setup. In RCF terms,
oneway calls denote asynchronous transfers and twoway calls represent
synchronous transfers (i.e. the next transfer can only start after the
previous has been completed). Batch transfers use oneway calls and
an RCF-internal grouping strategy to reduce the number of transfers;
the maximum batch size is given after the Batch identifier. Transfers
of arrays of identical elements are marked with Vector; the individual
element size is given at the end of the identifier. In a nutshell, using
large vectorized transfers, i.e. > 1MiB, allows for throughputs above
1GiB/s. Figure A.5 shows the same measurement using the RCF-
internal SF mechanism. The plot is based on measurements performed
by Kai Husmann under the supervision of the author; for details see
Husmann [2012].

90

2.2. Operation Software

0 10 20 30 40 50
Parallel Experiments [#]

100

101

102

103

T
hr
ou

gh
pu

t
[M

iB
/s
]

5000 (191.4MiB)
2000 (30.8MiB)
1000 (7.76MiB)
500 (1.98MiB)
100 (0.096MiB)
10 (0.009MiB)

Figure 2.28.: Throughput measurement of user-defined neuronal network descrip-
tions. Each color encodes a specific network size; for example, red en-
codes experiments containing 500 neurons. To evaluate the influence
of parallelism, the number of parallel experiments, or jobs, is varied.
Same-colored data points with equal x represent varying number of
experiment receivers, i.e. the parallelism of the mapping software in-
put stage. Every combination of these three variables represents a
data point that has been repeatedly measured (10000 measurements
for the two smallest networks, 800 for the largest); however, each
data point resembles only the total runtime over all repetitions of
this setup. Solid lines depict averages over varied receiver counts;
the error bars show their RMSE. The neuronal network contains one
neuron population and random (5%) connections of fixed weight be-
tween the neurons. In memory, the connections are represented as a
dense/full matrix. After creating the experiment, it is converted to a
PyHMF container and transfered to the input stage of the Marocco
mapping component (see figure 2.23 for an illustration of the software
components). This step employs the serialization technique of the re-
mote procedure framework RCF presented in figure 2.27. The plot
is based on measurements performed by Sebastian Jeltsch (for details
see [Jeltsch, 2014]). See table A.3 for measurement details.

91

2. Fast Operation

performance is adequate as it does not pose a limitation for a fast operation of the
neuromorphic system.

2.2.6. Calibration

Neuromorphic systems that use analog circuits to model cell dynamics exhibit vari-
ations between individual units of the same circuits. This statistical effect arises
during hardware production [Lovett et al., 1998; Pelgrom et al., 1998]. These fixed
pattern fluctuations are characteristic for every hardware entity. Thinking of the
neurons or synapses, these effects modify the individual parameters of the model
equations. Consequently, instances of the same circuit behave different for the
same input stimulus. Inhomogeneity which is due to fixed-pattern variations can
be reduced by applying a calibration data set that adapts per-circuit parameters to
achieve a matching behavior between instances of the same circuit. The possibility
to calibrate neuron or synapse-wise is one key feature of the neuromorphic systems
developed in the author’s group [Fieres et al., 2008; Schemmel et al., 2006, 2007,
2008].
In addition, effects which are related to activity in neighboring circuits contribute

to time-dependent variability as noise. Any analog implementation can potentially
be influenced by noise. However, the amount of acceptable noise is model-specific.
For new hardware generations the amount of shielding or effort to avoid noise is a
tunable variable during development.

2.2.7. Automatic Testing

Hardware and software development efforts often focus on solving individual prob-
lems while neglecting functionality as a whole. In practice, this often leads to
regression-type bugs – i.e. bugs that break previously working features – causing
extra debugging effort and integration problems. In software engineering, the con-
tinuous integration method addresses this problem by automatically applying a test
suite verifying as much functionality as possible at the earliest possible time. Test
results provide feedback to the developers, side effects can be identified.

The author introduced continuous-integration-based development for the soft-
ware developers in the Electronic Vision(s) group (Visions) [Müller, 2012]. Previ-
ously existing tests (standalone binaries) have been integrated into the common CI
framework Jenkins [Jenkins, 2014]. By now, the development has been changed
to a more test-driven approach where new code is directly tested by the CI test
framework. On the programming side, the Google C++ testing framework (GTest)
suite is used; its integration was a collaboration between Kai Husmann, Christoph
Koke, Sebastian Jeltsch and the author.

The Jenkins server triggers pure software tests at every new software revision
that is pushed to the group’s central repository server; however, in order to keep
all neuromorphic setups available for interactive use, tests that require access to
neuromorphic systems are scheduled to run only during the night. In particular,

92

2.2. Operation Software

hardware tests are executed in a specific order to minimize the number of redun-
dant fails: low-level tests that verify basic functionality are executed before the
high-level tests. Presently, high-level tests involving the PyNN API verify single
neuron circuits by stimulating with on-wafer current stimulus, on-wafer random
spike sources or external spike input and subsequently evaluating the experiment
output. A synfire-chain-based test is currently under development by the calibra-
tion team and will be executed on a regular basis as soon as the success rate is high
enough to be able to draw any conclusion from the result.

2.2.8. BSS Live System
Providing potential users of the neuromorphic system with the ESS is a preparatory
step towards hardware. To relieve users from building the software stack, the author
started to modify an Ubuntu Live CD to include the complete software stack to run
PyNN-based experiments on the ESS. This work has been started for the FACETS
project. Under supervision of the author, Kai Husmann migrated the build flow to
a continuously integrated, Jenkins-based system. I.e. when any of the dependent
components is changed, the Jenkins build server triggers an updated build of the
live system.
Based on the Live CD-based distribution, a Docker-container-based distribution

was created in collaboration with Kai Husmann. The Docker framework is an in-
creasingly popular method to deploy complex applications due to the ability to
include all software dependencies in the container. Deployment is as simple as
downloading the container and executing the application. Another key feature of
the Docker framework is support for container versioning and updating of contain-
ers. For documentation see [Docker, 2014].

93

2. Fast Operation

2.3. Resource Management

The operation of the HMF and NM-PM systems involves many resource manage-
ment tasks. From the user’s point of view the situation is comparable to computing
resources on a conventional HPC system. On the front-end side, the user issues ex-
periment jobs, on the back-end side many hardware entities have to be orchestrated.
In particular, this includes user authentication as well as authorization, assigning
fractions of the system to jobs, job preparation, keeping track of hardware usage
and failures, post-job clean-up, and maintaining fairness between users.

Prototype Operation The typical prototyping conditions for the BSS system are
as follows: One wafer module is partially equipped with FCPs. The FCPs and a
couple of AnaRMs are connected to a dedicated lab host computer by 1GbE and
USB 2.0, respectively. The users login onto the lab computer and start programs
that access the FCP units on a first-come-first-served basis. Overlapping hard-
ware accesses of multiple programs or users terminates the program with an error
message. Access control is not enforced. Running jobs are not preempted while
different jobs can interfere with each other. One typical example which causes in-
terference between users are global operations like resetting the digital part of the
complete wafer or error conditions like exceeding the power limit of one or more
power supply units (PSUs). Manual interactions happen frequently; power errors
have to be acknowledged, power limits adjusted, firmware updated or reset buttons
pressed. In general, the global system state is unknown to the single experiment
jobs. This explains why a full reset is performed when starting an experiment. Ba-
sic system health monitoring is available in-place: a LabVIEW-based GUI reports
analog power status; power limits can be set and verified by manual interaction
with the PSUs. Test software can verify hardware behavior on the higher-level ba-
sis, for example, testing the communication link to the HICANN chip or verifying
neuron behavior.

Scaling Up Looking at the specified sizes of the BSS and HBP systems it becomes
clear that the previously described prototype operation mode will not scale to larger
hardware installations. To get an impression of the installation size, we focus on
the components52 of the 20-wafer NM-PM1 system which is in the process of being
set up:

960 FCP FPGAs
20 Power management units
20 Compute Nodes
20 Analog readout module aggregator nodes

This yields approximately 1000 IP addresses in total.
52See chapter 1 for hardware details.

94

2.3. Resource Management

However, this is only one part of increased operation complexity. Another part
is the prospected user base; for the lab setups the operation relied on manual
assignments of hardware components to users. This operation mode does neither
scale to larger experiments nor to large user counts. In particular, some shared parts
of the system – for example the analog readout modules are shared across several
reticles and FCP FPGAs, respectively – require arbitration between experiment.

Requirements Starting from these prospects a set of requirements can be formu-
lated. The first set of requirements addresses hardware features: for example, all
hardware operation has to be sufficiently robust to allow for remote operation; user
interaction with the wafer module should not require the manual interaction with
the system. At the time of writing, this mostly applies to lab power supplies used in
the prototype setup that currently cannot be remotely controlled. In addition, the
status of this hardware support infrastructure has to be monitored automatically
and this data should be accessible by the user. Similarly, the user should be able to
acquire all operating parameters and get feedback when any monitored component
failed during the experiment.
As stated in the previous paragraph, the need for arbitration of shared hardware

units is another requirement. This arbitration implies the need for a queuing system
to allow for batch-style execution. The latter directly leads to fairness between users
as another requirement.
The next set of requirements deals with automatic handling of user’s experiments

and controlling hardware usage in general. At this point, operating the NM-PM1
system can be well compared to operating an HPC cluster: user management, job
management and fairness are the main objectives here. However, there are some
differences between the two target architectures. HPC clusters consist of sets of
identical hardware entities (e.g., compute nodes that contain identical CPUs or
GPUs) — analog neuromorphic hardware is imperfect and calibration as well as
defect data is specific to individual hardware entities [Müller, 2008]. That means
that neuronal network models are often tuned to a specific neuromorphic system,
e.g., to a specific set of HICANN chips. Switching to other HICANN chips is
possible, but will require additional adaptations. For reproducibility it is crucial
for the resource management to support the assignment of experiments to a specific
set of hardware.
Finally, the prospected sweet spot for accelerated neuromorphic hardware adds

constants regarding scheduling speed and possibly scalability towards much larger
installations.
In general, one can distinguish between the following types of resources:

• System-global resources (FCP FPGAs)

• Node-local resources (analog readout modules linked to analog readout mod-
ule aggregator nodes)

• Exchangeable resources (Compute Nodes)

95

2. Fast Operation

Requirements regarding experiment execution and scheduling:

• Reservation of system components for specific time span

• Robust resource assignment (i.e. prevention of illegal access)

• Robust clean-up

• Fairness between users and jobs

• User-friendly interface

Further requirements that are essential to convey the advantages of accelerated
neuromorphic systems to the users:

• Experiment or job throughput � 10Hz ⇒ fast parameter sweeps and inter-
active usage

• Scalability towards larger installations (i.e. containing more wafer modules
and compute nodes)

Based on the list above, one can realize a largely overlapping set of require-
ments between conventional HPC systems and the NM-PM1 system. This is why
the author decided to test traditional cluster resource management software pack-
ages. One of the most common tools is SLURM53, a job scheduler for Linux-based
systems. At the time of writing, SLURM was one of the most popular cluster man-
agement systems of the TOP500 supercomputer list [TOP 500, 2014]; in particular,
five out of the top 10 supercomputers use SLURM54. Many Blue Gene/P-based or
Blue Gene/Q-based systems rely on the default batch submission system, the IBM
LoadLeveler.

SLURM The SLURM software architecture relies on multiple services. One ser-
vice, called slurmd, handles job execution and runs on every compute node. The
scheduler, called slurmctld, runs on one or more dedicated servers. Optionally,
job and user accounting is performed by slurmdbd; this database service relies on
an underlying SQL service55. Fault-tolerance is achieved by supporting fail-over
to a backup system which provides secondary control and database services [LLNL
et al., 2014, cf. Failure Management Support]. Figure 2.29 presents an overview of
this software architecture.
There is only sparse benchmark data on SLURM installations [Georgiou and

Hautreux, 2013]; however, installations on the largest supercomputer systems indi-
cate that scalability towards high queue lengths and higher user counts will not be
an issue [TOP 500, 2014].
53Simple Linux utility for resource management.
542014, June: Tianhe-2, Sequoia, Piz Daint, Stampede, Vulcan
55Storage is also possible using text files; however, the scaling properties of plain text files in terms

of searching and updating entries are too limiting.

96

2.3. Resource Management

slurmctld slurmdbd

mysqld

slurmctld slurmdbd

mysqld

slurmd slurmd slurmd slurmd slurmd slurmd slurmd slurmd slurmd

Figure 2.29.: SLURM is a cluster resource management tool. A central scheduler,
slurmctld, controls the individual compute node and interacts with
an job and user accounting database (slurmdbd). The slurmds run on
every compute node and handle job execution. The central services
can be duplicated to provide a fault-tolerant environment.

Based on the requirements stated in the last paragraph, we can now evaluate
SLURM’s adequacy for scheduling on neuromorphic systems. Some properties of
the neuromorphic systems cannot be directly mapped to cluster resources. In par-
ticular, the global but unique wafer modules as well as the analog readout modules
connected to specific wafer modules are not typical resources on HPC systems.
When looking at the SLURM feature list, there are two striking items: consum-

able licenses and local resources. The former is typically used for restricting the
number of parallel software licenses in use – this matches the requirement of global
resources. The latter is used for the integration of GPU-type and many integrated
core (MIC)-type resources into the resource management system – this matches the
requirement of node-local resources. A first test of the features proved adequate
functionality. However, for production operation an improved user interface will be
required56.
Other requirements that were stated in the previous section concern job exe-

cution. The user-friendly interface (including interactive operation), support for
reservations, and fairness come for free. Notably, the latter is tunable and extensi-
ble via a software plugin interface. However, robust clean-up after job termination
– especially after aborts and crashes – is compute node-specific. After thorough
testing of the existing software stack, the author decided to wrap jobs into Linux
control groups (cgroups)57 which is also supported by SLURM. This is one step
away from operating-system-level virtualization but already provides a strong iso-
lation of processes. The main advantages are reliable memory and CPU restriction
as well as forceful process termination [CGroups, 2014]. Considering FCP FPGA
and software bugs in a production environment, it could become important to in-
clude restrictions on connectivity by setting up firewall-based rules for the cgroups.
However, the latter has not been tested.
Finally, the next section covers neuromorphic-hardware-specific issues regarding

fast job throughput.
56The built-in interface requires explicit resource specification on the command line. This dupli-

cates the specification of the experiment resources.
57Essentially, LXC combines cgroups and namespacing to provide an userspace virtualization.

97

2. Fast Operation

2.3.1. Measurements using SLURM

To evaluate SLURM’s performance potential the author tested some aspects that
are of importance to the HMF and NM-PM1 systems. Compared to conventional
HPC machines accelerated neuromorphic systems have partially different use cases.
Some applications and use cases are overlapping with conventional machines. This
includes long-running batch jobs producing moderate amounts of data58. Sharing
of wafer resources is certainly possible and needed for current prototype setups but
for the later production systems it will be more robust to disable wafer sharing and
resort to a purely time-sharing system. Both usage patterns can be found in HPC
systems and are completely supported.
Other use cases or job properties are not completely congruent with typical HPC

usage. The HMF and NM-PM1 systems allow for high job execution rates as the ac-
celerated emulation reduces total runtime. Typical neuronal network experiments
only require some minutes of simulation time which translates to some millisec-
onds of wall-clock time. One application are parameter sweeps including interac-
tively scanning and optimizing properties of the network and thereby triggering
re-execution of whole experiments59. Other candidates are long-term learning ex-
periments and gathering of data for statistical purposes.
Hence, given these requirements the performance of SLURM was evaluated us-

ing multiple micro-benchmarks: the first benchmark uses the existing prototype
wafer to execute test transmissions to HICANN chips (i.e. the whole communica-
tion chain) on four FCPs:
for spike train size in 1MiB – 512MiB (approximately 128MEvent; random
data) do

submit 1000 jobs, store wall-clock time;
trigger execution;
while jobs in queue do

for resources (i.e. Wafer/FPGA licenses) do
acquire resources

end
prepare experiment of given size;
execute experiment;
release resources;

end
calculate difference between now and earlier wall-clock time;

end
Algorithm 1: Micro-benchmark to test SLURM performance using the HMF
prototype system. The corresponding measurements are shown in figure 2.30.
Other benchmarks that are performed test scaling properties, i.e. job throughput,

58The wafer module system is able to produce 1GB to 4GB per second of output data. That is
not typical to single nodes within small-scale/20-node HPC clusters.

59This was already stated in [Brüderle and Müller et al., 2009] as one sweet spot of accelerated
neuromorphic systems.

98

2.3. Resource Management

in relation to increasing number of execution targets. Results for the benchmarks
are shown in figures 2.30 to 2.32. All tests were performed on the BSS cluster (i.e.
HMF-CP).
Figure 2.30 measures the scheduling overhead of SLURM. The number of com-

munication endpoints, i.e. FCPs, was chosen arbitrarily. At the time of writing,
up to eight endpoints are available on the first wafer prototype system. The mini-
mum execution time was found to be 300 s for 1000 queued experiments, i.e. 300ms
per job on average which corresponds to an maximum experiment rate of 3Hz per
wafer module. In summary, a single wafer module managed by SLURM supports
experiment rate of up to approximately 3Hz; this is good enough if SLURM scales
well to multiple wafer modules.
Hence, the scaling of execution time was evaluated depending on the number of

compute nodes. Figure 2.31 presents super-linear scaling which is better than the
expected linear scaling behavior.
Due to the speedup factor, experiments performed on accelerated neuromorphic

system are typically short-lived. Figure 2.32 measures the minimum time which
is required per job to terminate depending on the number of queued jobs. The
plot shows a low plateau from approximately 16 to 104 queued jobs. The average
execution and submission time is approximately 20ms which corresponds to 50Hz
job rate.

2.3.2. HBP Unified Platform

The HBP project makes a massive effort to comprehensively integrate information
resources and enable collaboration between all neuroscientific fields. This effort
converges on the unified platform which will provide the technological means for
scientists to collaborate on large-scale projects. Figure 2.33 sketches its structure
from a control-flow point of view. The unified platform will make it possible for
researchers to design experiments based on biological data, simulate or emulate the
experiment on neuromorphic systems, and evaluate the result using analysis tools
potentially running on HPC systems.
To succeed, the integration of all HBP subprojects is essential. With respect to

the HBP neuromorphic subproject, the integration requirements are similar to those
of conventional HPC sites. In particular, the integration of local resources into a
global system is challenging. This concerns locally managed hardware resources,
users and jobs as well as a method for global data access. The other tasks are
addressed by grid computing technologies [Foster and Kesselman, 1998]. At the
time of writing, the topics of user authentication, resource management, and data
access are currently discussed. For example, solutions could be based on OpenID
(OpenID), integrated rule-oriented data system (iRODS) and uniform interface to
computing resources (UNICORE), respectively.

99

2. Fast Operation

32 64 128 256 5120

1000

2000

3000

4000

5000

6000

7000

Ex
ec
ut
io
n
T
im

e
[s]

000 1 2 4 8 16 32
Data Size [MiB]

0

100

200

300

400

500

600

700

Ex
ec
ut
io
n
T
im

e
[s]

4 FPGAs (Fit)
4 FPGAs
Schedule Overhead
Submit Overhead

Figure 2.30.: Evaluation of SLURM execution overhead. The data points were ac-
quired according to algorithm 1. The execution run times are given
for a set of 1000 experiment jobs (errors are RMSE out of 3 averaging
runs). Experiments of varying spike train sizes (x-axis) are transmit-
ted in parallel to one third of the HMF prototype setup FCPs. A linear
fit to the data is plotted as dashed gray line. The behavior is almost
perfectly linear down to small experiments of a few MB. In the lower
plot a zoom-in of the region 0MiB to 32MiB is plotted. The constant
overhead is approximately 300 s for 1000 jobs, i.e. 300ms per job on
average. The dotted lines indicate from top-to-bottom the expected
scaling for 1, 2 or 8 FPGA communication partners. An evaluation of
the scaling properties for multiple parallel execution units is presented
in figure 2.31.

100

2.3. Resource Management

1 2 4 8 16
Node Count [#]

10−2

10−1

100

W
al
lT

im
e
pe

r
Jo

b
[s]

Execution Times of Parallel Empty Jobs (1024 queued)

0.39/x1.30 + 0.00
Execution Wall Time

Figure 2.31.: Throughput of the SLURM setup on the HMF-CP in relation to node
count. Scaling is super-linear (see fitted dashed line in double-log
plot) which is better than the expected linear scaling, i.e. the setup
is adequate for HMF and NM-PM1 operation. A quick evaluation of
the log files indicated a relation to the execution preparation steps. In
particular, the standard UNIX login process was performed faster for
larger node counts. Further tests that evaluate this effect are needed.

101

2. Fast Operation

100 101 102 103 104

Total Number of Jobs [#]

0.00

0.05

0.10

0.15

0.20

0.25

0.30
W
al
lT

im
e
pe

r
Jo

b
[s]

Submit and Execution Times of Empty Jobs

Queuing
Execution

Figure 2.32.: Throughput of the SLURM setup on the HMF-CP in relation to the
number of queued jobs. Notably, this does not relate to already ex-
ecuted jobs; i.e. there was no measurable effect on the number of
already processed jobs. This measurement was performed on 14 com-
pute nodes of the HMF. The jobs are empty and terminate immedi-
ately after being started. On the ordinate the average per-job runtime
is plotted. Inserting a job into the queue is a constant time operation,
the dashed line, i.e. queuing time, stays almost constant. Regarding
the execution time, a plateau is reached between 16 and approximately
104 queued jobs. Smaller queue lengths suffer from non-pipelined job
execution, i.e. the pre- and post-execution job phases cannot be hid-
den from the total runtime. Above 16 entries, the following jobs can
be prepared for execution and this overhead is hidden from the total
runtime. Large queue lengths (> 104 jobs) suffer from SLURM man-
agement overhead. Certainly, queue lengths up to 104 are already
sufficient for the current system. However, further tuning is required
when scaling to larger installations (e.g., 1000-wafer modules).

102

2.3. Resource Management

Figure 2.33.: Within the HBP project, a unified interface is currently under devel-
opment. HBP envisions this unified portal as a common interface for
accessing data resources, visualizing and analyzing data, and simula-
tion building as well as simulation on conventional HPC hardware or
neuromorphic hardware. For this purpose, a tight integration of the
neuromorphic emulation platforms, i.e. the NM-PM1 and NM-MC1 is
needed. The neuromorphic platform introduced a middleware, called
NMPI, that provides an REST-based interface for the UP as well
as a job queuing system for the NM-PM1 and NM-MC1 sites [Davi-
son et al., 2014]. A link between the NMPI and the SLURM-based
resource management system for the HMF/NM-PM1 is already oper-
ational. However, global data access and accounting/authentication
using the HBP user database has still to be integrated.

103

2. Fast Operation

2.4. Summary
This chapter presented the implementation of software and FPGA firmware which
allows for a fast operation of the HMF and NM-PM1 systems. The first section
worked out the details of the communication chain between host computer and
the neuromorphic system. Theoretical peak performance has been reached and
adequate scalability properties have been shown. However, the author identified
insufficiencies in the current FCP FPGA firmware implementation; the responsible
FPGA developers are currently working on fixes to resolve these problems.
The second section covered the higher software layers. A new software architec-

ture based on the pipeline data flow model (cf. Clements [2011]) has been presented.
The inter-operation performance between the pipeline stages has been measured
and the results show sufficient performance. However, the optimization of neuronal
network experiment throughput has just begun. At the time of writing, the con-
figuration of analog neuron parameters60 dominates the total configuration time.
Hence, optimization efforts have to concentrate on this hardware-specific property
first. Later optimizations, like pipelining of experiments, will become worthwhile
as soon as the duration of the configuration stage surpasses the experiment trans-
mission time.
The third section covered efforts to enable a larger user base to work on a multi-

wafer neuromorphic installation. The SLURM resource manager has been evalu-
ated; it provides adequate performance for the HMF and NM-PM1 systems; even
larger installations are already possible. However, when reaching 1000 wafer mod-
ules another evaluation61 will become necessary. Within the HBP project, the
integration of the NM-PM1 system into the UP is a current topic; the current state
was discussed.

60The analog parameters are stored in floating gate blocks which are accessed by an on-chip con-
troller. Up to the present, optimization was focused on parameter precision.

61The resource bookkeeping increases with the number of resources. Thus, dedicated databases
will be needed to provide adequate performance.

104

3. Hybrid Operation

One of BrainScaleS (BSS)’s main foci is bridging scales – temporal and spatial
ones. Building experiments of varying network size, detail level and run times chal-
lenges conventional simulators. Without thorough optimization, general purpose
high-performance computing (HPC) machines are not very efficient when it comes
to neuronal network simulations. Spike data communication methodology is an on-
going research topic [Helias et al., 2012; Hines et al., 2011; Thibeault et al., 2013].
Memory consumption is another limitation on the maximum network size that can
be simulated [Kunkel et al., 2012]. On a more fundamental level, advances based on
the von Neumann architecture suffer from increasing difficulties in the feature size
reduction [Thompson and Parthasarathy, 2006], power consumption [Esmaeilzadeh
et al., 2011; Shafique et al., 2014] and communication [Perrin, 2011]. Large scale
simulations running on HPC hardware already carry a price tag due to the energy
consumption. Usually, power consumption is one area where neuromorphic systems
are considerably better than conventional simulations. Another crucial feature of
accelerated neuromorphic systems is the speed-up factor (cf. section 1.1.5) that al-
lows for fast parameter space exploration and long-running experiments. Studies of
learning and development are typical applications for large-time-scale experiments.
Especially the interaction of such experiments with a simulated environment is a
promising field of application for neuromorphic systems.
The BSS project envisions the combination of an accelerated neuromorphic sys-

tem and a conventional HPC system, two fundamentally different computational
concepts combined into a hybrid system. For non-accelerated, or real-time, neuro-
morphic systems, robotics are a typical application. However, in case of accelerated
systems, the real world is too slow for most applications that depend on interaction.
Simulated environments provide the possibility to benefit from the speedup and to
perform closed-loop experiments.
The basic idea is to combine flexible software simulations running on conventional

compute hardware and neuronal networks being emulated on the neuromorphic
part. One vision is to simulate virtual environments exchanging sensory data and
motor commands with the neuromorphic hardware. It is important to note, that the
inherent speedup factor, see section 1.1.5, of the accelerated neuromorphic hardware
gives a constraint on minimum simulation speed. Sparse coding schemes and fast
computability are key aspects of the software implementation. When running such
experiments on a hybrid system, a broad range of temporal scales can be explored.
In BSS terms, this system is called the Hybrid Multiscale Facility (HMF). Build-

ing this system is a major goal of the BSS project. The HMF comprises the ac-
celerated neuromorphic hardware and a small HPC cluster. A description of the

105

3. Hybrid Operation

Simulated
Environment

Neuronal
Network

sensory data

motor data

Figure 3.1.: Closed-loop (as defined in section 3.1) schematic. A simulation envi-
ronment provides sensory data for the neuronal network to compute
an answer, for example, the motor data. In the chapter at hand, it is
assumed that the timing of sensory and motor data has a rather fixed
relation with defined maximum connection latencies – this operation
mode is called hybrid or real-time closed-loop mode.

neuromorphic part can be found in section 1.1, for details (hardware implementa-
tion) see Millner [2012]; Millner et al. [2010]. The cluster architecture was developed
by the author and the design is presented in section 1.2.

3.1. Closed-loop Experiments

Tagging a specific setup to be a closed-loop experiment is ambiguous. However, in
the field of neuroscience there is basic consensus for some properties of the term
(cf. [Potter et al., 2014]): 1. there is some kind of interaction between one or more
components; 2. the interaction consists of two elements, one forward data flow and
an associated feedback connection closing the loop.
In the following, we focus on the interaction between a spiking neuronal network

and another component that interacts with the neuronal network by means of pro-
cessing sensory information and providing feedback to the network. This component
is called simulated environment. Figure 3.1 shows a sketch of this setup.

3.2. Real-time Closed-loop Operation

Operating the HMF in closed-loop mode is challenging. The speed-up factor (cf.
section 1.1.5 – typically 104 for the current hardware revision) and communication
latencies impose an upper bound for communication properties (i.e. throughput and
latency) as well as simulation detail. Specifically, for synchronized operation of a
software simulation and the time-continuous neuromorphic substrate it is essential
to provide predictable and minimal communication latencies.
For software simulations it is also demanding to process incoming sensory data

quickly enough to provide motor output before the maximal latencies are reached.

106

3.2. Real-time Closed-loop Operation

Missing the deadline1 by a large margin typically disables correct network behavior
– however, this depends on the properties of the neuronal network model. To a
certain extent it might be possible to tune models to cope with increased com-
munication latencies. The current neuromorphic hardware implementation uses
typical speedup factors in the order of 104 – providing a similar speed using soft-
ware simulators is difficult, see section 3.5.5. For later hardware revisions it is
planned [Electronic Vision(s), 2014] to support lower speed-up factors and lower-
latency data network technologies. The latter would reduce the real communication
latency, and the former would reduce the latency in the biological, or simulation,
time domain of the neuronal network. Basic communication schemes between HMF
neuromorphic part and HMF conventional part are presented in the next section.
In the following paragraph typical properties of current data network technologies

are stated. State-of-the-art commercial off-the-shelf (COTS) technologies like 10-
Gigabit Ethernet (10GbE) or 40-Gigabit Ethernet (40GbE) support hop latencies of
down to 270 ns (10GbE) and 220 ns (40GbE) [Mellanox, 2013a] and approximately
1 µs message passing interface (MPI) one-way ping latency [HP and Mellanox, 2012;
Mellanox, 2013b] while providing up to 40 · 106 messages per second [Tolly, 2012];
power consumption is around 2W to 4W per port. Mellanox [2014] reports down
to 100 ns hop latency for some InfiniBand description switches. The EXTOLL
High Performance Interconnection Technology supports even higher throughput
and reduced latencies at lower power consumption: For the Tourmalet network
interface controller (NIC) EXTOLL [2014] reports 400 ns to 600 ns MPI one-way
ping latency, 60 ns port-to-port latency while providing up to 100 ·106 messages per
second. Typical power consumption is 1W per optical port.

3.2.1. Data Exchange

Conventional closed-loop setups combine software simulators running in simulated
time. This communication scheme is shown in figure 3.2. The simulations can be
paused and resumed by the operating system and in principle2 it is possible to pro-
vide means of data injection and extraction during the simulation. Communication
time steps (i.e. the time interval between data injection and extraction points –
possibly but not necessarily equivalent to a calculation step) provide synchroniza-
tion points for data exchange. The simulations are paused until all communication
partners complete their time step and provide data for the data exchange.
Classical distributed neuronal network simulators, like the NEURON Simulator

[Hines and Carnevale, 2006], use a very similar communication scheme for normal
operation. Some simulators, e.g. NEURON Simulator [Hines and Carnevale, 2006],
support a partially interleaved communication and simulation execution scheme:
Hines et al. [2011] reports on an evaluation of this scheme using the proprietary
communication technology of a IBM Blue Gene/P supercomputer; for large clusters

1A term often used in real-time systems: deadline scheduler try to guarantee a specific start time
for a request. See, for example, Stankovic [1998].

2Modifications of software source code are needed.

107

3. Hybrid Operation

t

t

sim

sim′

t0

t′0

t1

t′1

t2

t′2

tcomm tcomm tcomm

tstep

Figure 3.2.: Schematic showing the interaction between two software simulations
running with the same simulation time step but varying execution
speeds, i.e. conventional closed-loop experiments. On the horizon-
tal axes the wall clock times are plotted. Differing simulation run
times per simulation time step are represented by varying run times
t0..n. Exchanging data between the simulators consumes the time
tcomm. This overhead time adds up to the effective time step tstep =
max(tn, t′n) + tcomm, that is the effective simulation speed of the com-
bined simulation.

(i.e. more communication partners in the cluster than the typical neuron fan-in
count) and large network sizes this provides improved scaling properties. Eppler
et al. [2007], for instance, report improved performance on a small cluster using
MPI_Allgather() compared to the Complete Pairwise Exchange [Tam and Wang,
2000] algorithm that then was the default for NEural Simulation Tool [Gewaltig
and Diesmann, 2007] (NEST); in the current version [NEST Initiative, 2014] it
is based on shared-memory for pure thread-based simulations and for MPI-based
simulations it is configurable to be a CPEX or MPI_Allgather() (default).

MUSIC Combining different, already existing large-scale simulations into a larger-
scale simulation is a common task. One interesting approach to simplify this task
is the Multi-Simulation Coordinator (MUSIC) application programming interface
(API) [Ekeberg and Djurfeldt, 2009]. It provides an interface for software simulators
for inter-simulator data exchange. A thin (i.e. typically one extra function call) MPI
wrapper binary splits the computational resources into configurable chunks that
are subsequently used by the individual simulators. The communication channels

108

3.2. Real-time Closed-loop Operation

t

t

sim

NM-PM1

t0 t1 t′1 t2 t′2

tstep

tcomm tcomm

Figure 3.3.: Schematic showing the interaction between software simulator and neu-
romorphic hardware. This setup is used for hybrid//time-continuous
closed-loop experiments. In contrast to the conventional setup (see fig-
ure 3.2), the lower communication partner operates in continuous time.
The minimal effective time step for the environment simulator update
has an lower bound of tstep = max(t0..n) + tcomm. If the time step is
decreased further, the simulated environment will at least once fail to
send response data in time.

between the simulators are managed by MUSIC which employs a look-up table for
translating between simulator-local identifiers and the global, MUSIC identifiers3.
Within the simulation environments dedicated proxy units – neuronal connection
endpoints, similar to neurons – encapsulate the non-local communication channels
[Djurfeldt et al., 2010].

HMF The previous, simple communication scheme relies on the fact that every
communication partner can block until a certain datum is available. This blocking
behavior does not affect the simulated time domain but only the wall-clock4 time.
In the light of time-continuous simulation partners this is not possible as pausing
is not an option. Hence, for communication with the HMF neuromorphic part –
where neuronal network state evolution cannot be paused –, the communication
scheme has to be adapted. Figure 3.3 presents this communication mechanism.
After powering up and configuring the HMF neuromorphic part (HMF-NP) the

3In the MUSIC documentation they are called global indices.
4The wall-clock time is the (real) time that passed between starting and finishing a task

109

3. Hybrid Operation

neuronal network can be already active5, e.g. by setting up a network that allows for
self-sustained activity. The simulated environment generates input for the on-wafer
network, while the on-wafer network sends information back to the environment.
We can certainly define experiments that do not rely on any time relation between
the communication partners – but in the context of this chapter we assume that
the setup has real-time timing constraints. This means that if any communication
partner reacts too fast or too slow, the experiment will fail.

3.3. Hardware Platform

Based on the experiences acquired during the FACETS project (details about the
communication protocols in section 2.1) the BrainScaleS and Human Brain Project
NM-PM1 use Gigabit Ethernet (1GbE) as the FCP FPGAs6 host interface. In
particular, the evaluation of the transport layer for the Spikey-based7 neuromorphic
systems looked promising and it was decided to use standard 1GbE technology for
the host interface. For details of the host interface see section 2.1.1.
The wafer-scale system comprises multiple FPGA communication PCBs (FCPs).

Hence, using link aggregation and 10GbE was a simple solution for horizontal scal-
ing. The NM-PM1 utilizes 48 individual FPGAs per wafer.
For the BSS project, the aspect of real-time interaction between software sim-

ulations and neuromorphic hardware emerged. The next sections cover neuronal
model requirements, the method to measure latency and results from the HMF and
the upcoming NM-PM1 systems.

3.3.1. Latency Requirements

The latency requirements for closed-loop operation mode yields additional design
constraints for the control hosts. If we assume a speed-up factor of S = 104, in the
biological domain all latencies are increased by the same number – i.e. the wall-
clock time interval is scaled by the same factor. This means that the interconnection
between state-of-the-art 10GbE NICs [Mellanox, 2013b] (approx. 1 µs MPI one-way
latency) yields:

tlatencywall = 1 µs
tlatencybiological = S · tlatencywall = 10ms

(3.1)

We also have to take into account that the current wafer module, more precisely
the vertical wafer I/O PCBs, do not directly support 10GbE but rather 1GbE
which increases the minimum latency because of the lower bit rate and because of

5That means that one can measure spike activity on the wafer.
6FPGA communication PCB field-programmable gate array
7Spikey is a chip-based neuromorphic system developed during FACETS that implements 384
LIF neurons and approximately 100k synapses

110

3.3. Hardware Platform

the media conversion that is performed by a switch. For the BSS setup the switch
specification states below 2.9 µs for 1GbE and 1.3 µs for 10GbE [Hewlett-Packard,
2013]. Section 3.3.3 provides results for measurements on the HMF system.
For the current speed-up and hardware setup it seems difficult to replace arbitrary

neuronal network parts by some software part as the typical delays within the
network are significantly below that range. However, constructing experiments that
replace whole sensory input pathways representing biological latencies of around
100ms could be possible if the computational complexity can be kept low.

3.3.2. Communication Interface
The FCP FPGA uses a dedicated, logical interface for real-time spike communi-
cation based on a collaboration between the Spiking Neural Network Architecture
(SpiNNaker) project and the developers of the FCP firmware at Technische Univer-
sität Dresden (TUD) (cf. Rast et al. [2013]). The current implementation is limited
to the essential requirements of real-time communication: it avoids any buffering
and is a code path that only uses a small look-up table (supporting 1024 entries) to
translate addresses and forward spikes between HICANN chip and host computer8.
Figure 3.4 depicts the SpiNNaker frame format. Internet protocol version 4 (IPv4)
and user datagram protocol (UDP) headers are still used but are not shown here.
An overview of the standard protocol layers can be found in section 2.1. The split
into communication channels (for example, real-time spike data and non-real-time
configuration data) is based on the UDP port number.
To configure the FPGA SpiNNaker interface UDP port 1850 is used. At the

time of writing, the packet specifications are not yet available in the system HBP
SP9 Specification [2014] but only in source code (lowest-level API for hicann access
(hicann-system):units/stage2_hal/source/spinn_controller.cpp).
During Capo Caccia Cognitive Neuromorphic Engineering Workshop 2013, the

spike data specification was developed further. Quoting the wiki page9, the format-
ting is now:

The payload will consist of two 32 bit containers. The first 32 bit
contain in the lower bits 24 bit pulse source ID, the upper 8 bit are
reserved (i.e. for additional, application-specific payload). The second
32 are similarly split, with the lower 24 bit encoding source timestamp,
with the upper 8 bit again reserved for custom payloads. These custom
payloads could be e.g., amplitude values in an interface to MEAs [multi-
electrode arrays].

At the time of writing, there is no comment on longer frames (i.e. multi-spike
packets). However, the current implementation supports multiple spikes per frame
according to figure 3.4. Further details on the source timestamp:

8Currently, the FPGA implementation only support a single remote communication partner per
FCP.

9https://capocaccia.ethz.ch/capo/wiki/2013/immns13#UDPStandard

111

https://capocaccia.ethz.ch/capo/wiki/2013/immns13#UDPStandard

3. Hybrid Operation

0 21 22 31

padding Label 0
padding Label 1

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

padding Label N − 1
padding Label N

Figure 3.4.: SpiNNaker input frame format. Entries are aligned to 32-bit words.
The lower 10 bit within each word encode an event identifier (the label)
that is used by the FCP FPGA as a look-up index to translate between
SpiNNaker-specific and HICANN-chip-specific L1 addresses. IPv4 and
UDP headers are still used to specify the communication channel be-
tween compute node and FCP FPGA, see section 2.1 for details. For
example, SpiNNaker spike data is expected to use UDP port 1851.

The default equivalent of the least significant bit (LSB) timestamp
would be 50 µs. This value was chosen since we cannot go much lower
due to latency of Ethernet switches (even for a local network). On the
other hand, much larger values could lead to timing precision problems
with respect to MEA interfaces. With a 24 bit timestamp, we can thus
have a 14 min experiment before the timestamp wraps. If track is kept of
the wraparounds, this should be sufficient for unambiguously identifying
every pulse for any reasonable experiment (i.e. where the max distance
between two consecutive pulses from the same source is lower than 14
min).

The specification seems to be rather focused on real-time systems, as the definition
of timestamps is too coarse for accelerated models and the comment on Ethernet
latency does not apply to newer Ethernet specifications like 1GbE or 10GbE.

Based on these specified protocol properties, it is not adequate for the HMF
and NM-PM1 systems to implement this specification. Nevertheless, the current
firmware adheres at least the spike payload format which makes it possible to
connect HMF and SpiNNaker systems and possibly other neuromorphic devices –
at least technically; however, the speed-up mismatch makes closed-loop experiments
difficult or even impossible.
A technical demonstration10 of spike exchange between chip-based HICANN

setup and SpiNNaker is presented in Rast et al. [2013]. However, this setup uses
10It demonstrates a closed-loop interaction using a speed-up conversion that scales spike rates up

and down between the systems.

112

3.3. Hardware Platform

Trtt

t

tcomm

Host
TL,0

Host
TL,1

Host
TL,2

Loopback Loopback

{T
L
,0 } {T

L
,0
} {T

L
,1 } {T

L
,1
} {T

L
,2 }

Figure 3.5.: Measurement of the round-trip time. The host sends local timestamps
TL to a communication partner that loops the incoming data back to
the host.

a spike rate translation module to adapt the spike rate to the individual system.
This solution works for exactly the presented experiment but is not universally
applicable.

3.3.3. Latency Measurement

Figure 3.5 shows the measurement procedure for communication latency measure-
ments – basically the same method that the UNIX utility ping uses. One commu-
nication partner sends machine-local timestamps TLi to a remote node which loops
back the timestamps. Thus, the communication round-trip time is given by:

Trtt := TLi+1 − TLi (3.2)

Assuming symmetrical communication partners, the one-way latency is:

Tlatency = 1
2 · Trtt (3.3)

If we include remote timestamps to the returned data (i.e. replacing {TL,n} by
{TL,n, TR,n}), the two communication partners can now synchronize their clocks to
each other by applying equations (3.2) and (3.3). To estimate the remote time TR

113

3. Hybrid Operation

at time i+ 1:

TRi+1 = TRi + 1
2 · Trtt (3.4)

Because of timing jitter, the implementation uses window-based averaging to
ensure smooth evolution of time estimates:

Trtt = 1
N
·

i−1∑
j=i−N

TLj+1 − TLj (3.5)

with N ≈ 100.

Measurement Software The latencies measurements in the following sections use
a custom ping implementation that uses the virtual environment for closed-loop
experiments (VerCL) software package developed by the author (for details see sec-
tion 3.4). For the compute node-based measurements, both communication part-
ners start the measurement tool. The slave only replies to incoming packets with
copies of the inbound data, the master sends local timestamps and evaluates the
time difference for responses. That means, the communication partners execute
the ping-pong scheme presented in figure 3.5 105 times. The individual round-trip
times (RTTs) acquired are binned into 1 ns bins – that is the resolution for time
measurements using the UNIX API (i.e. clock_gettime()).

3.3.4. HMF

If not stated otherwise, all measurements in this chapter have been performed using
the first BSS prototype wafer system. A detailed description of the system, as well
as the differences from later NM-PM1-based systems can be found in section 1.1.6.
Differences in the wafer module exist due to the reorganization of the FCPs.

The early prototype systems use 12 FCPs (based on Xilinx Virtex-5 FPGA) per
wafer module, the later BSS and NM-PM1 systems use 48 FCPs (based on Xilinx
Kintex-7 FPGA) per wafer module.
Figure 3.6 shows individual latency measurements and the time synchronization

mechanism using the methods described in equations (3.3) and (3.4). The progress
of the clock synchronization mechanism is shown in the upper plot. After the initial
synchronization phase, ranging up to approximately 2000 iterations (i.e. 2000·Trtt ≈
50ms), the time difference stabilizes. Using HMF compute nodes that are directly
connected, we obtain for one-way latency (figure 3.6):

Tlatencyhmf = 12.1 µs± 0.2 µs.

The error distribution is slightly skewed towards higher latencies as the lowest
possible latency is a hard barrier but higher values can occur due to suboptimal
software timing. Details can be found, for example, in Brown and Martin [2010].

114

3.3. Hardware Platform

Error ranges are given as root-mean-square error (RMSE) values. For the new
NM-PM1 compute node architecture, histograms are plotted in figure 3.7.

3.3.5. NM-PM1

Section 1.1.6 explains the differences between the production-type HMF/NM-PM1
systems and the existing prototypes. From this chapter’s perspective, the main
difference is the compute node setup as the NM-PM1 system uses a newer CPU
generation and updated NICs.
The decrease in latency is important for closed-loop operation. Compared to the

latency measured for the BSS cluster, the latency improves 5-fold:

Tlatencymix = 2.4 µs± 0.2 µs. (3.6)

As the software environment and network topology stayed the same, this im-
provement is caused by the improved node hardware specification (cf. section 1.2.1
and [Chelsio, 2013a]). The updated NIC supports a proprietary communication
API [Chelsio, 2011] that could further reduce the latency – that option has not yet
been evaluated. For Chelsio’s top-of-the-range NIC T520-LL-CR11 one-way UDP
latencies down to 1.687 µs are given by Chelsio [2013b].

A histogram of the distribution of individual measurements is shown in figure 3.7.
From this data we can derive estimates for the hop latencies of different network
components. Because of the two-fold crossing of every component when using the
ping-pong protocol (figure 3.5) to measure the round-trip time Trtt we estimate the
hop latency tlatencyi of component i to be:

Tlatencyi = 1
2 · Trtti = 1

2 · (Trtt −
∑
j 6=i

Trttj)

For the NM-PM1 backbone switch [Hewlett-Packard, 2014b] we obtain approx-
imately 0.6 µs and for an aggregation or wafer switch [Hewlett-Packard, 2014a]
we obtain 1.0 µs. Both values are well below the specified worst case latencies
[Hewlett-Packard, 2014a,b] – which is what we expect due to low load, i.e. the
network infrastructure was only used by this connection test.

3.3.6. HMF vs. HICANN Latency

Figure 3.8 presents a latency measurement between HICANN chip and compute
node according to section 3.3.3. The HICANN chip configuration is basically the
same as for the real-time closed-loop experiment setup presented in section 3.5.6
which utilizes the chip-based loop-back mode. At first sight, the author decided to
test switch behavior when converting from 10GbE to 1GbE and used an artificial
setup that contained two aggregation switches connected via 1GbE and the compute
11That is the ultra-low-latency version of the NM-PM1 compute node NIC.

115

3. Hybrid Operation

0 2000 4000 6000 8000 10000
Iteration [#]

−1500

−1000

−500

0

500

1000

1500

T
im

e
D
iff
er
en

ce
[n
s]

TL − (TR + ∆̃t−t0)

0 2000 4000 6000 8000 1000023000

24000

25000

26000

27000

28000

29000
R
ou

nd
-t
rip

T
im

e
[n
s]

∆t−t0 (individual measurement)
∆̃t−t0, w = 10%

Figure 3.6.: The upper panel depicts a RTT (i.e. two times the end-to-end la-
tency) measurement between two HMF compute nodes. The solid
black line shows the windowed average of the gray data points which
represent the RTT of individual measurements. The RTT converges
to 24.2 µs ± 0.4 µs. In the lower panel, the time synchronization be-
tween two compute nodes is shown. After the initial synchronization
phase (2000 · Trtt ≈ 50ms), the calculated time difference converges to
0.0 ± 0.3 µs. This plot uses the methods described in equations (3.3)
and (3.4).

116

3.3. Hardware Platform

5000 6000 7000 8000 9000 10000

10−2

10−4

10−6

D
ire

ct

5000 6000 7000 8000 9000 10000

10−2

10−4

10−6

Ba
ck
bo

ne
Sw

itc
h

5000 6000 7000 8000 9000 10000

10−2

10−4

10−6

A
gg

re
ga

tio
n
Sw

itc
h

5000 6000 7000 8000 9000 10000

10−2

10−4

10−6

Bb
&

A
gg

Sw
itc

he
s

Round-trip Time [ns]

Pr
ob

ab
ili
ty

Figure 3.7.: Round-trip time (i.e. two times the end-to-end latency) measured
between multiple NM-PM1 compute nodes: 1. directly connected
(4.8 µs± 0.3 µs); 2. connected via the backbone switch (5.9 µs± 0.3 µs);
3. connected via one aggregation/wafer (agg) switch (6.8 µs ± 0.3 µs);
4. connected via backbone (bb) and one aggregation (agg) switch
(8.1 µs ± 0.4 µs). The vertical red lines represent from left to right:
average, 95%-percentile, 99%-percentile and 99.9%-percentile out of all
measured RTTs (i.e. 105 pings). Bin size was set to 1 ns – which is also
the timer resolution.

117

3. Hybrid Operation

nodes connected to each switch via 10GbE. This setup should give a rough estimate
of the expected latency between FCP FPGA and compute node as for the HMF –
as well as for the NM-PM1 – network topology we use one wafer switch and one
backbone switch to connect the components (cf. section 1.3).
Due to the separated locations of prototype setups and cluster hardware12, it

was not easily possible to use this setup for latency measurement but the author
resorted to a single-aggregation switch setup which yields latencies that are slightly
below the expected values – see section 3.3.5 for different measurements using one
or two switches.
For the HICANN-chip-based test, the measurement software was adapted: we

reset the FCP FPGA before the measurement and send the spikes to the SpiNNaker
network interface (cf. section 3.3.2). The packet length stays constant as we used
the same packet layout for the previous measurements. Results are shown in the
lower panel of figure 3.8. Both, the increased latency13, and the massive timing
jitter compared to the purely software-based measurements – in figure 3.7 and in
the upper panel – are not expected. Partially, the timing jitter can be explained by
an unoptimized FCP FPGA SpiNNaker interface implementation as some lookups
are sequentially scanning the list of possible targets [Partzsch, 2014]. It is planned
to investigate this effect in more detail.

3.4. Software Infrastructure
Based on the experiences of developing the HostARQ protocol (HostARQ) soft-
ware, the author implemented a thin software layer, VerCL, that uses non-blocking
access from and to the operating system to communicate data over the network. A
small wrapper for the spike data format described in section 3.3.2 is included as well
as small tests to measure latency and ensure functionality. These tests act as re-
gression tests to report performance degradation. In section 3.4.1, the performance
of a VerCL-based ping implementation is compared to a conventional socket-based
implementation.
The interaction between the simulated environment and the NIC is depicted in

figure 3.9. The VerCL layer handles the shared-memory communication with the
kernel-space NIC driver. For transmission (TX) and reception (RX) independent
memory regions are memory-mapped (using mmap()) into the user process space.
Packets transmission works as follows:

1. hand over data to VerCL layer using one of the send routines;

2. VerCL waits for empty buffer entries in the circular TX buffer by checking a
ready/empty flag;

12At the time of writing the prototype wafer setups were located in the lab, the BSS cluster in the
server room, and Human Brain Project (HBP) cluster was located in the container building.

13Two intermediate hops between two compute nodes are faster than one intermediate hop for the
HICANN-chip-based measurement.

118

3.4. Software Infrastructure

13000 14000 15000 16000 17000 18000 19000 20000

10−2

10−4

10−6

A
gg
-1
G
bE

-A
gg

13000 14000 15000 16000 17000 18000 19000 20000

10−2

10−4

10−6

H
IC

A
N
N

Round-trip Time [ns]

Pr
ob

ab
ili
t y

Figure 3.8.: Round-trip time (i.e. two times the end-to-end latency) measured be-
tween NM-PM1 compute node and HICANN chip. In the upper panel
a setup was constructed to emulate the presence of 1GbE media be-
tween two compute nodes – this includes two aggregation/wafer (agg)
switches and a 1GbE link in between: (13.5± 0.4) µs. The lower panel
depicts the measurement between a compute node and one HICANN
chip which is connected via 1GbE of the FCP: (17.0± 0.8) µs. The
vertical red lines represent from left to right: average, 95%-percentile,
99%-percentile and 99.9%-percentile out of all measured RTTs (i.e. 105

pings); the 99.9%-percentile of the HICANN-chip-based measurement
is out of plot range (P99.9% = 30.8 µs). Bin size was set to 1 ns – which
is also the timer resolution. The ordinate is plotted in log scale to
emphasize the tail towards higher latencies which would not be easily
visible in linear scale.

119

3. Hybrid Operation

3. VerCL writes the data into the buffer and marks it as ready;

4. the NIC driver uses the NAPI, a polling-based interface, [Kelly and Gas-
parakis, 2010] to wait for new entries (by checking the ready flag);

5. after handing over the data to the NIC the driver marks the buffer entry as
empty.

This lock-free14 (and syscall-free) mechanism is typically used by packet capture
(e.g., tcpdump) and injection tools. These properties minimize the amount of con-
text switches needed for communication. Zero-copy versions of the write routines
exist; the VerCL layer only checks for the empty flag and returns a pointer to
the memory location. The client program can now access the memory and, after
completion, the VerCL layer marks the location as ready.
Receiving side data flow is inverted: the NIC driver marks buffer entries as ready,

the user space checks for new entries by checking the ready flag.
The source code is a single header that uses compiler macros to enforce inlining

of crucial functions for sending and receiving packets. During the setup phase some
optimizations are employed to reduce the timing jitter during runtime. This in-
cludes pre-allocating and pre-faulting of all used memory regions, forcing memory to
physical memory (mlock()), setting real-time priority (sched_setscheduler()) of
the processes, setting CPU affinity masks (sched_setaffinity()) to force sending
and receiving threads to the corresponding kernelspace worker threads/interrupt
handlers of the NIC driver. For typical sources of timing jitter on conventional
Linux/x86 hardware see Brown and Martin [2010]; Duval [2009]; McKenney [2009].

3.4.1. Comparison to a Standard socket()-based Implementation

To motivate the custom implementation presented in the previous section, we com-
pare it with a standard UNIX socket implementation. The same hardware platform
(NM-PM1 compute node and direct 10GbE wiring), the same software environment
(i.e. operating system, compiler, etc.) and compiler options were used. Source code
for the socket-based implementation is listed in appendix A.4. It essentially opens
the socket, and uses sendto() and recvfrom() to exchange 8-byte timestamps (in
ns) between two compute nodes.
Figure 3.10 depicts the latency distribution of both, the VerCL-based and the

standard socket-based, implementations. The timing jitter as well as the average
latency of the VerCL-based version is significantly lower: the average latency is
approximately a factor of 36.4 lower, the timing jitter is reduced by a factor of 8.0.

14The Intel x86 CPU architecture (x86) memory model, i.e. the rules for reordering loads to
and stores from memory, allows for a barrier-free empty/ready flag update after writing the
associated packet data. For a basic introduction see Hennessy and Patterson [2007, section
4.6]; the x86 memory model is described in IntelArch [2014, section 3.3.1].

120

3.4. Software Infrastructure

Simulated Environment

VerCL

NIC Driver

queue()

mmap()

userspace
kernelspace

TX

insert()
extract()

Simulated Environment

VerCL

NIC driver

receive()

mmap()

userspace
kernelspace

RX

extract()
insert()

Figure 3.9.: VerCL software overview. The environment simulator runs in userspace
and uses the VerCL layer to send data to and receive data from the net-
work. Ring buffers in kernelspace are memory-mapped to the process-
space (i.e., into the virtual memory of the simulated environment)
and can now be used for syscall()-free communication; no context
switches are needed for packet reception or transmission.

121

3. Hybrid Operation

0 10000 20000 30000 40000 50000

10−2

10−4

10−6

Ve
rC

L-
ba

se
d

0 10000 20000 30000 40000 50000

10−2

10−4

10−6

So
ck
et
-b
as
ed

Round-trip Time [ns]

Pr
ob

ab
ili
ty

Figure 3.10.: This figure demonstrates the importance of a carefully optimized low-
latency software communication framework. The panels show his-
tograms of the relative occurrence probabilities of measured RTTs
(on x-axis). Results using the author’s software implementation, the
VerCL framework, are shown in the upper panel. In the lower panel,
results using a traditional socket()-based implementation are shown.
Both measurements use the same hardware (HMF compute node) and
software environment, the nodes are directly connected. The upper
plot displays the same data set as already shown in figure 3.7 (upper-
most plot). Compared to the latter, the x-axis was zoomed out to
make both plots fit into the same range. RTTs are 4.8 µs± 0.3 µs for
VerCL and 174.9 µs±2.4 µs for the socket-based implementation. The
vertical red lines represent from left to right: average, 95%-percentile,
99%-percentile and 99.9%-percentile out of all measured RTTs (i.e. 105

pings). Bin size was set to 1 ns – which is also the timer resolution.

122

3.5. Experiment

3.5. Experiment

To demonstrate the capabilities of the HMF conventional part (HMF-CP) and the
software framework developed by the author, a demonstration experiment is devel-
oped and tested in the following sections. There have been significant contributions
by Paul Müller and Nils Fischer. In particular, the initial software-simulated im-
plementation of the experiment has been developed by Paul Müller. Nils worked
on the blacklisting and calibration of the neuron circuits.
Before demonstrating the final setup which demonstrates the interaction between

a conventional compute node and the neuromorphic system, intermediate steps
are presented: 1. a non-real-time interaction with a NEST-based neuronal network
simulation; 2. a non-real-time interaction with the HICANN chip operating in loop-
back mode; 3. a real-time interaction with custom-implemented current-based leaky
integrate-and-fire model neurons; 4. a real-time interaction with the HICANN chip
operating in loop-back mode; 5. and finally, the real-time interaction with neurons
the HICANN chip.

3.5.1. Virtual Environment

The virtual environment models a 1-dimensional space containing a movable object.
A force15 k acts on the object and pulls it to xcenter = 0.5.

k · x x

y

In this model, the object’s position is externally updated, i.e. the detected object
position is shifted by a time interval τ . This yields for the equation of motion a
delay differential equation [Richard, 2003]:

ẋ(t) = −k · x(t− τ) (3.7)

One solution of this partial differential equation can be found using the ansatz:

x(t) = eat (3.8)

15This is the first time derivative not the second as in f = mẍ.

123

3. Hybrid Operation

0.2
0.4
0.6
0.8

τ
=

2

0.2
0.4
0.6
0.8

τ
=

3

0.2
0.4
0.6
0.8

τ
=

4

0 20 40 60 80
k = 0.20

0.2
0.4
0.6
0.8

τ
=

5

0 20 40 60 80
k = 0.25

0 20 40 60 80
k = 0.30

0 20 40 60 80
k = 0.35

init
sim
calc

Time [A.U.]

Po
sit

io
n
of

Si
m
ul
at
ed

O
bj
ec
t

Figure 3.11.: Simulated environment results for varying delays d and forces k. The
dotted start of the curves are past time values for t < 0 obtained from
the analytical solution. The black curves show simulated behavior
using a step-wise update with ∆t = 0.01, the red lines depict the
analytical solution. Due to the small ∆t, the curves for simulated and
calculated results overlay completely.

After applying equation (3.8) to equation (3.7):

aeat = −k · eate−aτ

aeaτ = −k
aτeaτ = −kτ

aτ = W (−kτ)

a = W (−kτ)
τ

with the Lambert W function. Hence,

x(t) = eW (−kτ)/τ ·t. (3.9)

We can now plot the solution in figure 3.11 using a range of values for k, τ .

124

3.5. Experiment

3.5.2. Virtual Environment Implementation

The software implementation of the environment is a real-time-triggered loop that
updates the simulation in time steps tstep. Input of the update loop is the object’s
position provided by the detector, output is the updated object position xi+1. Based
on equation (3.7):

xi+1 = xi − k · (xi+1−d − xcenter) (3.10)

with d being the delay of the detector response, i.e. the number of discretized time
steps to look into the past. The minimum delay is d = 1, which corresponds to the
previous time step.
Every source and target of a spike encodes a discrete location pi in space. A

histogram of a Gaussian distribution is used to translate between scalar value x = µ
and a spike-based position encoding. σ is a tunable simulation parameter which is
kept constant.

x

σ

µ

For outgoing spike rates ν targeting neuron i (out of N), this yields:

νi(t) = νmaxe
− (xi−µ)2

2σ2 (3.11)

νmax is normalized to an average spike-count s per update cycle tcycle:

νmax = s

tcycle ·N · σ ·
√

2 · π
Input spikes are accumulated for tcycle and extracted at the start of every update

cycle. The detected object position is calculated as follows:

xi =
∑
j

νj · pj − xcenter (3.12)

Using equation (3.10) the updated position is calculated, and the output is trans-
mitted as described above. The experiment continues for a fixed number of cycle
iterations.
The complete interaction cycle between the virtual environment simulation (sec-

tion 3.5.2) and some detector is shown in figure 3.12. In the following sections
different detector implementations will be presented: section 3.5.5 describes cLIF
software implementation, section 3.5.6 uses the HICANN chip in loopback mode
which is normally used for communication tests, and finally using calibrated neu-
rons and synapses of the HICANN chip.

125

3. Hybrid Operation

x

Simulated Environment Output ẋ(t)

σ

Object Detector

Simulated Environment Input

Position Update

ẋ

Figure 3.12.: This schematic depicts the time-course of the closed-loop experiment
setup. Starting on top, the object is located at x on a 1-dim axis.
Its position is updated using the distance to xcenter = 0.5 and a force
k (see equation (3.7) for details). The new position is encoded us-
ing spikes that encode different locations on the x-axis – a Gaus-
sian profile is used with µ = x and σ being a constant projection
width. After the spikes leave the environment simulation, they are
transported to a communication partner that is either another simula-
tion (section 3.5.5) or the neuromorphic HICANN chip (sections 3.5.6
and 3.5.7). This partner acts as a simple detector for the object po-
sition and generates output spikes that encode the detected position.
Finally, the detector’s output spikes are transmitted to the environ-
ment simulation.

126

3.5. Experiment

3.5.3. Software-based Setup

As a first step, the presented closed-loop experiment has been realized as a pure
software implementation. This has been done in collaboration with Nils Fischer
and Paul Müller.
Detector neurons are simulated in a software simulator, NEST. The environment

simulation is implemented in Python and uses the PyNN API to interface with
NEST. After injecting spikes into NEST, the simulation is executed for a simula-
tion time interval tstep. Upon completion, the environment simulation extracts the
output spikes and updates its state based on the steps presented in section 3.5.2.
The conversion between scalar and spike-encoded object location happens at the
start (equation (3.12)) and end of the environment update (equation (3.11)).
Resetting (i.e. removing all spikes while keeping neuron states) a simulation in

NEST is possible, but in the implementation at hand another execution scheme is
used: a sketch of this scheme is depicted in figure 3.13. Based on the reproducibil-
ity of the input to output relation of the detector neurons we can implement an
execution scheme that increases the total simulation time in a step-like manner.
After the n-th simulation time interval tstep, the environment simulation produces
a set of output spikes that are appended to the neuron simulator’s input spike train.
When restarting the neuronal simulation and using this ever extending spike train
as input, we can simulate now for n + 1 time intervals tstep and reproducing the
spike output of the n earlier time intervals. The only new part is the output of
the last tstep which is the detector response to the input of the last time interval.
The main advantage of this scheme is the re-usability for a later neuromorphic
hardware-based setup (cf. section 3.5.4). The simulation time t is plotted on the
horizontal axis, the simulation iteration i is plotted on the vertical axis. New output
is generated in the black boxes that represent the last time step in every iteration.
Obviously the total runtime scales quadratically with the number of iterations –
the only purpose of this execution scheme is to facilitate debugging.
Figure 3.14 displays simulations using this setup. The force k and the delay

d of the virtual environment are varied (for the update rule see equation (3.10)).
Quantitatively, the behavior of the analytical solution (cf. figure 3.11) matches the
one at hand. For increasing k and d, the system starts to oscillate.

3.5.4. Setup based on HICANN Loopback

Based on the pure software implementation it is now possible to use debug func-
tionality of the HICANN chip to implement the detector neurons on neuromorphic
hardware. To be precise, we do not use any neuronal functionality but rather for-
ward the input spikes back to the sender. This intermediate step was done to solve
software, firmware and hardware problems independently.
This so-called loopback mode is typically used for testing communication per-

formance and reliability. The HICANN chip supports eight links with configurable
directions for off-wafer spike input and output (see HBP SP9 Specification [2014]

127

3. Hybrid Operation

It
er
at
io
n

i

t
tstep

Figure 3.13.: Non-real-time closed-loop simulation setup using a step-like execution
scheme. Simulation time is plotted on the horizontal axis. Every sim-
ulation iteration runs for the time interval tstep, i.e. the i-th iteration
(counted from 1) runs until tend = i · tstep. After every time interval
tstep the spike output of this last time interval is processed by the
environment simulation to update its state and thereby new input for
the neuronal simulation is generated. This spike data is provided to
the neuronal simulation for the next time interval tstep. The environ-
ment simulator runs only at the dotted times, i.e. not taking up any
simulation time t. For the next simulation time interval i + 1, the
neuronal simulation is restarted, losing the complete simulation state.
Due to the reproducibility of the neuronal simulation, we can prepend
the input spikes of the i previous runs and re-acquire a matching sim-
ulation state at the end of the i-th time interval. The simulation can
now progress until (i + 1) · tstep and, in the last time interval tstep,
produce new spike output for the environment simulation. The time
intervals that generate new data are marked as black boxes.

128

3.5. Experiment

0.2
0.4
0.6
0.8

d
=

1

0.2
0.4
0.6
0.8

d
=

2

0.2
0.4
0.6
0.8

d
=

3

250 500 750
k = 0.20

0.2
0.4
0.6
0.8

d
=

4

250 500 750
k = 0.30

250 500 750
k = 0.40

250 500 750
k = 0.50

Detector
Position

Time [A.U.]

Po
sit

io
n
of

Si
m
ul
at
ed

O
bj
ec
t

Figure 3.14.: Closed-loop experiment using NEST and a non-real-time setup ac-
cording to figure 3.13. The object location between [0, 1) is evenly
distributed to 32 neurons using σ = 0.1 (νmax is normalized to 1 spike
per update cycle). The neuron model is IF_cond_exp using default
parameters (cf. listing 2). Spike input weights are set to 0.1 µS –
roughly tuned to release one spike per pre-synaptic spike if the inter-
spike distance is large compared to the synaptic and membrane time
constants (τsynE = 5ms and τm = 20ms, respectively). The time
step of the simulation is tstep = 10ms. A total of 100 iterations are
executed, i.e. 1 s total simulation time.

129

3. Hybrid Operation

for hardware details). We configure links 0, 2, 4, 6 for spike input and 1, 3, 5, 7 for
spike output. For the loopback mode we now connect link 0 to 1, 2 to 3 and so on.
Compared to the NEST-based setup (cf. section 3.5.3) the experiment sequence

stays the same. The call to the NEST simulator is replaced by a call to the API
that executes single experiments on the wafer system (cf. sections 2.2.1 and 2.2.2).
This means that there is no real-time interaction between the neuromorphic hard-
ware and the simulated environment. We take advantage of the execution scheme
presented in figure 3.13.
A plot of this operation mode is not shown here because of the similarity of results

to the NEST-based setup shown in the previous section (section 3.5.3). As stated
above, this operation mode was primarily used to debug the real-time closed-loop
experiment presented in section 3.5.6. However, parts of this setup are still useful
for the real implementation; in particular, the FCP configuration for this setup can
remain the same for the closed-loop and later hardware-neuron-based versions.

3.5.5. Real-time Software-based Setup

As a next step, the neuronal simulator is converted to a simulator running in real
time. In the previous software-based setup, we used NEST for simulation of the
neuronal network. However, the NEST simulator is not capable of operating in real
time. On the other hand, at least one other common neuronal network simulator –
NEURON – has real-time capabilities [Destexhe and Bal, 2009]. Nevertheless, quick
tests indicated simulation speeds that are not high enough to be a valid replacement
for accelerated neuromorphic hardware.
Hence, we re-implemented neuron simulator that models leaky integrate-and-fire

model neurons and current-based synapses – the design goal was simulation speed.
This work has been accomplished in collaboration with Paul Müller. The LIF model
is given by:

Cm
dV (t)
dt

= −gL(V (t)− El) + I(t) (3.13)

with synaptic input current I(t), the leakage potential El, the conductance to-
wards the leakage potential gL, and membrane capacity Cm [Burkitt, 2006]. In case
of the leaky integrate-and-fire model with current-based synapses, the synaptic cur-
rent I(t) adheres:

I(t) =

0 t < t1

I(ti−1) + w t = ti

I(ti) · e−τsyn(t−ti) ti < t < ti+1

(3.14)

with the first input spike at t = t1, other input spikes at ti, the weight w, and the
synaptic time constant τsyn. This describes an exponentially shaped current input
decaying with τsyn and increasing by the synaptic weight w when a pre-synaptic
spike arrives.

130

3.5. Experiment

Now, to minimize the number of floating point operations per time step (cf.
Izhikevich [2004]) we substitute:

W = V − El

J = ∆t
τgl

I

wj = ∆t
τgl

w

(3.15)

For the update step i→ i+1 progressing time by ∆t, a forward Euler integration
scheme is used. This scheme provides a fast integration and sufficient precision (see
figure 3.15). The time update is implemented as follows:

Wi+1 = (1− ∆t
τ

)Wi + Ji

Ji+1 = (1− ∆t
τsyn

)Ji +
Nspikes∑
k=0

δk,btk/∆tcwj

(3.16)

with the Kronecker symbol δ and pre-synaptic spike times tk with synaptic
weights w. As in the case of the conventional cLIF model, the membrane voltage
is clamped to a reset voltage for the refractory period after reaching the threshold
voltage. All these variables are rescaled according to equation (3.15).
The implementation at hand requires two comparisons, two multiplications and

one addition per neuron and time step; if the neuron is in the refractory period,
one multiplications, one addition and one comparison are skipped and one integer
subtraction, the refractory period update, is performed. An assembler dump is
provided in listing 2.
To verify implementation correctness, figure 3.15 compares the behavior for vary-

ing time-step resolutions and the NEST reference implementation.
Based on this neuron implementation we can implement a real-time closed-loop

experiment that interacts between the simulated environment running on one com-
pute node and the custom cLIF implementation running on another compute node.
Figure 3.16 presents a sweep of varying time steps tstep and delays d. In the left col-
umn the sweep over multiple delays d is shown (the number of steps the simulated
environment looks into the past, cf. equation (3.10)). For growing delays the object
position starts to oscillate. The right column displays varying update time steps
tstep, i.e. the update frequency of the simulated environment and of the neuron
simulator. When reducing tstep the relative impact of the constant communication
latency tcomm (cf. figure 3.3) increases. Effectively, this introduces (non-integer) de-
lays that can be compared to the delay d mentioned before. Quantitativly matching
behavior is plotted side by side.

131

3. Hybrid Operation

0 10 20 30 40
Time [ms]

−65

−60

−55

−50

−45

M
em

br
an

e
Po

te
nt
ia
l[
m
V
]

W = 0

NEST, dt=0.01 ms
custom cLIF, dt=0.1 ms
custom cLIF, dt=1.0 ms

Figure 3.15.: Time course of simulated neuron membrane traces. The cLIF im-
plementation is shown for time steps dt = 0.1ms and 1.0ms, the
reference is based on the NEST cLIF implementation using a very
small of timestep (0.01ms). Neuron parameters are set to PyNN de-
fault parameters (cf. listing 2), synaptic weights are 6 nA, which is
strong. For the PyNN default time step of 0.1ms the custom cLIF
implementation matches very closely to the reference. However, due
to performance considerations the experiment uses the coarse time
step.

132

3.5. Experiment

0.2
0.4
0.6
0.8

t s
te

p
=

20
.0

d
=

1

0.2
0.4
0.6
0.8

t s
te

p
=

10
.0

d
=

3

0.2
0.4
0.6
0.8

t s
te

p
=

4.
0

d
=

7

0 600 1200 1800 2400
d = 1

0.2
0.4
0.6
0.8

t s
te

p
=

3.
0

0 20000 40000 60000 80000
tstep = 100.0 µs

d
=

8Detector
Position

Time [µs]

Po
sit

io
n
of

Si
m
ul
at
ed

O
bj
ec
t

Figure 3.16.: Software-based closed-loop experiment. The detector neurons are im-
plemented in software and run on a second cluster node. To be able
to simulate a high speed-up factor, the implementation was optimized
and uses simple cLIF dynamics (cf. section 3.5.5). The time-axis was
zoomed in to provide similar range of simulated time compared to
figure 3.14 – the complete data set can be found in figure A.7. In
contrast to the previous plots, the parameters d and tstep are varied in
the left and right columns. On the left, the software delay parameter
d is fixed and the update (or execution) time step tstep is increased
to enlarge the relative impact of communication latency – the detec-
tor response is delayed. The behavior is similar to the right column,
where tstep is large and constant, i.e. the relative communication la-
tency is negligible, and the software delay parameter d (the number
of steps the update loop looks into the past) is increased. The plots
were selected to show typical behavior – i.e. the effective delays do
not necessarily match between left and right plots. In particular, the
force parameter was lowered to allow for sensible behavior in a large
d-range. A complete list of parameters can be found in table A.4.

133

3. Hybrid Operation

Update of Simulated Environment 1150.0± 10.0 ns
without communication 667.0± 5.0 ns
Update of CLIF 370.0± 10.0 ns
without communication 57.7± 1.6 ns

rand() 12.3±<0.1 ns
xorshf96() 3.6±<0.1 ns
25× sqrt() 207.5±<0.1 ns
25× exp() 732.5±<0.1 ns
25× gaussian() 865.0±<0.1 ns
25× lorentz() 91.0±<0.1 ns

Table 3.1.: Run times for the different code paths. The total runtimes in the up-
per half are averages of individual measurements during operation. In
the lower half micro benchmark results are listed. This means that
the mentioned functions are repeatedly called and only the total run-
time of the benchmark is recorded – this might alienate the real impact
compared to a function call that is embedded within other code. The
cLIF runtimes are only applicable to the purely software-based real-time
setup presented in section 3.5.5. All numbers have been acquired on a
HMF compute node using 25 neurons. Compiler options are stated in
appendix A.3.

Critical Timings The evaluation of the code path in Valgrind-based Profiling Tool
(Callgrind) shows last-level cache misses, i.e. forced access to physical memory, in
the receive() and the queue() functions to be the major issue. However, the
runtime overhead for the synchronous send() can be hidden by using a dedicated
sender thread. Additionally, some micro benchmarks were performed to estimate
the influence of different code parts. In particular, the cost of spike transmission
and reception is of general interest as it will roughly stay the same when using the
presented software framework. Figure 3.17 shows the cost of spike transmission and
reception for the HMF system. Details about the micro benchmarks can be found
in appendix A.3.

3.5.6. Real-time Setup based on HICANN Loopback

Starting from the setup described in section 3.5.4 we adapt the setup for real-time
operation. The only required modification is using another interface to the FCP
that forwards all data directly to the HICANN chip(s) instead of repeatedly loading
a growing part of the experiment and afterwards reading back the result data. This
means that spike playback and recording facilities of the FCP chip are not used
anymore and the execution scheme changes from the step-like scheme shown in

134

3.5. Experiment

100 101 102

Spike Packets per Check [#]

0

100

200

300

400

500

600

700

T
im

e
pe

r
Sp

ik
e
Pa

ck
et

[n
s]

receive()
queue()
queue() + send()

Figure 3.17.: Measured processing time per spike packet for varying batch sizes.
The measurement was performed on two HMF compute nodes, one
sender and one receiver. The Callgrind-based evaluation showed high
probability for last-level cache misses in the single packet case. For
queuing it seems reasonable that we experience a first-access overhead
because that memory region was not used before (and it takes a long
time to reach the same buffer entry the second time; even in that
case, the cache entry would be invalid, because of DMA accesses by
the NIC). On the receiving side, the DMA operation transferring data
from the NIC to the kernel data structures also invalidates the cache.
Obviously, handling multiple packets at once improves throughput
because the cache (and prefetching on receiving side) can be used for
entries following after the first one.

135

3. Hybrid Operation

figure 3.13 to a time-continuous experiment.
The real-time interface of the FCP is described in section 3.3.2. Additionally,

using this operation mode of the HICANN chip yields the lowest latency possible
for communication between the host computer and the wafer system. In particular,
there are no contributions by the synaptic and neuron model time constants.
Figure 3.18 presents the measurement performed on the HMF using the HICANN

chip-based loop-back mode as detector. For this particular setup a single HICANN
chip (#276) on wafer 0, i.e. the first wafer setup, was used. Starting from a re-
laxed time step of 100 µs the update cycle time is reduced down to 5 µs. Real time
is plotted on the x-axis. This, together with the slow update time step, yields a
large spike distance for the first row experiment using 100 µs. The spike density
increases towards the bottom because of the decreasing update time step – the
simulated environment is called more frequently and thus produces more spikes.
At approximately 10 µs the simulated object starts to overshoot because of the
increasing communication delay. More precisely, the relative portion of communi-
cation latency out of the update cycle time tstep increases. Fully oscillating behavior
is shown in the last row at 5 µs update time step.

3.5.7. Setup using the HMF

Finally, the actual analog neuron circuits are directly used as detectors. This final
step, i.e. migrating from the HICANN chip-based loop-back mode to using the neu-
ron circuits, requires the configuration of the complete HICANN chip: L1 buses,
synapse drivers, synapses and neurons have to be configured. From the hard-
ware perspective the configuration is split into multiple stages (cf. sections 2.2.1
and 2.2.1.2). The configuration order represents dependencies between hardware
entities. For example, after setting the clock frequency, the digital parts of the
HICANN chip have to be resetted to start from a defined state.
Jeltsch [2014] presents algorithms to automatically transform a neuronal network

description into a hardware configuration – for non-real-time experiments this map-
ping flow is already in place. The neuronal network can be described using the
PyNN API, the mapping processes this data and create a corresponding hardware
configuration (see section 2.2.3 for details).
However, at the time of writing it is not yet possible to describe real-time exper-

iments using the PyNN-based flow. In particular, the description of interactions
between neuronal networks described in PyNN and virtual environments is not yet
possible. The next PyNN API version (0.8) will provide basic support for MUSIC
which will at least allow for inter-neuronal-network communication. The author
collaborates with the PyNN and MUSIC developers to enable a comprehensive
solution. Regarding the mapping flow, it is not yet possible to acquire reverse
mapping information, i.e. the assignment of hardware neurons and synapses to the
corresponding objects in the PyNN layer. Hence, a manual configuration is used
and the key elements are described in the following.
Compared to the previous loop-back mode experiments described in section 3.5.6,

136

3.5. Experiment

0 500 1000 1500 2000 2500

0.2
0.4
0.6
0.8

t s
te

p
=

10
0µ

s

0 10000 20000 30000 40000 50000

0 500 1000 1500 2000 2500

0.2
0.4
0.6
0.8

t s
te

p
=

20
µs

0 10000 20000 30000 40000 50000

Detector
Position

0 500 1000 1500 2000 2500

0.2
0.4
0.6
0.8

t s
te

p
=

11
µs

0 10000 20000 30000 40000 50000

0 500 1000 1500 2000 2500

0.2
0.4
0.6
0.8

t s
te

p
=

10
µs

0 10000 20000 30000 40000 50000

0 500 1000 1500 2000 2500

0.2
0.4
0.6
0.8

t s
te

p
=

8µ
s

0 10000 20000 30000 40000 50000

0 500 1000 1500 2000 2500

0.2
0.4
0.6
0.8

t s
te

p
=

7µ
s

0 10000 20000 30000 40000 50000

0 500 1000 1500 2000 2500
zoomed in

0.2
0.4
0.6
0.8

t s
te

p
=

5µ
s

0 10000 20000 30000 40000 50000
zoomed out

Time [µs]

Po
sit

io
n
of

Si
m
ul
at
ed

O
bj
ec
t

Figure 3.18.: Hybrid closed-loop experiment runs using HICANN loop-back mode.
The update time step tstep is varied from top to bottom. Simulated
object position on the y-axis, wall-clock time on the x-axis. For de-
creasing tstep the impact of the fixed communication latency increases,
i.e. the detector response is delayed. Compared to the latency ob-
tained in section 3.3.4 ((12.1± 0.2) µs), the third row (tstep = 11 µs)
approximately corresponds to d = 1. The last row is similar to the
d = 2 case. A complete list of parameters can be found in table A.5.

137

3. Hybrid Operation

the FPGA setup stays the same. Deviating from the previous HICANN configura-
tion, we disable the loop-back mode and configure the neuromorphic parts of the
chip. Four digital network chip (DNC) channels are configured as input and the
other 4 channels are used as output – as in the loop-back setup. The loop-back
mode is disabled and the input spikes are routed to four synapse rows instead. The
other four DNC channels are used to extract spikes from 4 output buffers16 where
4 · 32 neuron circuits, the so-called DenMems, are connected to. This means that
only the top-half of one HICANN chips is used for this experiment. The synapses
are configured to listen to unique L1 address LSBs17. Additionally, addresses 0
and 15 are not used for input traffic. The former is used for background spikes18,
the latter is used to disable synapses in this setup. Because of these limitations,
only 14 out of 16 addresses can be received per synapse in this setup. The four
synapse rows are independent and we can finally address up to 4 ·14 = 56 individual
synapses. Thus, by using one synapse per neuron we can address the same number
of neurons, i.e. 56, using this setup. Figure 3.19 sketches the hardware units that
are involved in this configuration.
To obtain homogeneous neuron and synapse behavior, individual calibration data

has been provided by the calibration team [Kleider et al., 2014]. In addition to the
calibration, a blacklisting of misbehaving neurons is performed. The quality crite-
ria is the gain function – the neuron spike response to pre-synaptic spikes. In the
present calibration data set, the synapses are already tuned towards maximum effi-
cacy which allows for a similar setup as in the previous section. Under biologically
more realistic constraints, the synaptic weights are weaker and multiple concurrent
input spikes are needed to trigger a post-synaptic spike. To minimize the number
of blacklisted neurons, a single parameter is tuned: the neuron membrane voltage
threshold vthresh. The parameter is optimized to maximize the number of neurons
that fire with the input firing rate multiplied by a certain factor (see below). This
tuning is performed on the calibration input parameters; we take advantage of the
existing calibration data to achieve a homogeneous neuron behavior.
The spike train for gain testing is constructed as follows:
Figure 3.20 plots the corresponding spike train. To evaluate robustness of neuron

response, this spike train is repeated 10 times and multiple chip re-configurations
are performed. The latter is needed because of trial-to-trial variation in analog pa-
rameters [Kleider et al., 2014; Kononov, 2011; Millner, 2012] that can, for example,
change the voltage difference between resting and threshold potential.
We define the gain as:

G :=
∑
i

Nouti
Nini

(3.17)

16Neuron circuits, so-called dendrite membrane circuits (DenMems), are grouped into output
buffers which handle the output of 64 neurons, 32 of the top half and 32 of the bottom half.

17The upper two bits are handled by the synapse driver; i.e. the synapse listening address comprises
four bits.

18The L1 buses need a minimum of activity to operate (for details see Hock [2009, 2.1.2 and 2.4.1]).
This activity is generated on-chip, uses address 0 and is typically applied to all buses.

138

3.5. Experiment

6Right54Right32Right10 Right7

Left 1

Left 0

Right6Right5Right4Right3Right2Right0 Right7

Right2 Left 3Right0 Right1

Right1

Right0

DNC
Channel

5
DNC

Channel

3
DNC

Channel

1
DNC

Channel

7

Output
Buffer 1

Output
Buffer 3

Output
Buffer 5

Output
Buffer 7

LeftLeftLeftLeft

BEG

6
BEG

4
BEG

0
BEG

2

LeftLeftLeftLeft

DNC
Channel

6
DNC

Channel

4
DNC

Channel

2
DNC

Channel

0

N
e
u
ro

n
s

N
e
u
ro

n
s

N
e
u
ro

n
s

N
e
u
ro

n
s

S
y
n
a
p

se
s

S
y
n
a
p

se
s

S
y
n
a
p

se
s

S
y
n
a
p

se
s

S
y
n
a
p

se
s

S
y
n
a
p

se
s

S
y
n
a
p

se
s

S
y
n
a
p

se
s

Right

Right

Left RightLeft Left

Left

LeftLeftLeft Left

BEG

1
BEG

7
BEG

5
BEG

3

DNC
Channel

6
DNC

Channel

4
DNC

Channel

2
DNC

Channel

0

LeftLeft LeftLeft

DNC
Channel

1
DNC

Channel

5
DNC

Channel

3
DNC

Channel

7

Output
Buffer 0

N
e
u
ro

n
s

Output
Buffer 2

N
e
u
ro

n
s

Output
Buffer 4

N
e
u
ro

n
s

Output
Buffer 6

N
e
u
ro

n
s

RightRightRightRight

Figure 3.19.: Schematic showing the hardware configuration for the closed-loop ex-
periment setup. The external input is injected at the upper row of
DNC channels (pentagon-shaped, purple), whereas the output is ex-
tracted from the bottom row. Four L1 (horizontal and vertical black
lines) buses are used to transport spike data to four synapse drivers
(triangles) in the upper half of the chip (the lower half is not used
in this setup). The same buses are also fed by the BEGs to ensure
proper locking of the asynchronous bus connections (for details see
Hock [2009, 2.1.2 and 2.4.1]). To simplify the schematic, the remain-
ing L1 configuration is not shown. The synapse drivers forward the
signal to the synapse rows where every neuron uses one synapse per
row to listen for matching events. Section 3.5.7 explains the neuron
and synapse configuration details. For details of the hardware topol-
ogy see section 1.1.1. The drawing is based on Alexander Kononov’s
full_hicann.svg drawing.

139

3. Hybrid Operation

Data: intervals = 1000 µs, 500 µs, 100 µs, 50 µs, 10 µs
Data: counts = 2, 5, 20, 50, 100
Data: lasttime = 100 µs
Data: waittime = 3ms
Data: spike_train
for count, interval in zip(counts, intervals) do

for i in range(count) do
spike_train.append(lasttime + i * interval)

end
lasttime += waittime

end

0.000 0.003 0.006 0.009 0.012
Time [s]

Figure 3.20.: Visualization of the input spike train used for gain evaluation (cf.
equation (3.17)). The spikes are spaced regularly, the hardware inter-
spike interval is reduced from 1ms down to 10 µs in multiple steps.

140

3.6. Summary

with i being the waittime interval as defined in the algorithm above and Nin,out
being the number of input/output spikes in this time interval. Finally, we blacklist
all neurons that do not adhere:

MIN = 0.5 < G < MAX = 4.0 (3.18)

This blacklisting takes place at the end of all re-configuration trials – the inter-
section of all stable neurons is computed. The remaining set of neurons is sorted
by 1/abs(1.0−G) and minimum variance.

One test trial is shown in figure 3.21.
Using this configuration, 128 neuron circuits out of 512 can be stimulated and

read out. For the set of calibration data, a maximum of approximately 30 neurons
meet the stated criteria. Results from sweeping vthresh and applying the filtering
from above can be seen in Figure 3.22.
The robustness of the setup is unsatisfactory, as after a small number of tests

(approximately 10) every neuron fails to satisfy equation (3.18) eventually. Due to
the robust behavior of the previous experiment setup (section 3.5.6), this robustness
issue seems to be related to the neuromorphic parts that are now being used. One
known source of re-configuration variability is the limited precision of the analog
parameter storage, the floating gate cells [Kononov, 2011; Millner, 2012]. Increasing
robustness of calibration and analog behavior in general is a current goal of the
calibration team [Kleider et al., 2014]. The same holds for the communication
chain and software behavior; the author reported on efforts to achieve adequate
reliability in these areas in section 2.1.
Figure 3.23 presents the measurement on the HMF using hardware neurons as

detector. The same chip was used as in the previous setup. In comparison to
the previous loop-back-based measurement, the resolution of object positions is re-
duced. The current calibration data and the particular chip configuration limits
the number of usable neurons to approximately 16 (see figure 3.22 for details) when
applying the criteria stated in equation (3.18). However, in this particular mea-
surement the number is reduced even further to obtain even more robust response
behavior. The result plots are very similar to the loop-back case, especially the
phase transition to the overshooting behavior when moving from 11 µs to 10 µs.
The complete oscillation for the 5 µs-case was not stable. From trial to trial the
object marker either left the mapped interval [0, 1] or leveled out as shown in the
present plot.

3.6. Summary
This chapter focused on the real-time closed-loop operation of the HMF system.
After defining the task at hand in sections 3.1 and 3.2, the hardware environment
was introduced. Sections 3.3.4 and 3.3.5 presented latency measurements of the
BSS and of the upcoming HBP system. An evaluation of the communication la-
tency between compute node and HICANN chip was shown in section 3.3.6. The

141

3. Hybrid Operation

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Time [s]

0

100

200

300

400

500

N
eu
ro
n
Id

Figure 3.21.: Raster plot that shows neuron response to external stimulus (see fig-
ure 3.20). Most neurons respond to a single input spike (plotted in red
at the bottom) with one or multiple output spikes. Some neurons do
not respond, e.g. the large gap from neuron 234 to neuron 238. After
chip reconfiguration the set of responding neurons changes, i.e. the
set of robustly working neurons is smaller (see figure 3.22). The gray
region marks unused chip parts. The LIF calibration data set (details
in table A.6) is used and vthresh is tuned to maximize the number of
working neurons in this setup.

142

3.6. Summary

40 41 42 43 44 45 46
−vthresh[mV]

0

16

32

48

W
or
ki
ng

N
eu
ro
ns

[#
]

Working Neurons over all Trials Tij
max({T11 ∩ · · · ∩ T15}, . . .)

0.0

12.5

25.0

37.5

W
or
ki
ng

N
eu
ro
ns

[%
]

Figure 3.22.: Sweep over neuron threshold voltage (vthresh). The y-axis represents
the number of working neurons according to the criteria stated in
equation (3.18). The black bars show the average number per trial and
the error denotes the min/max number within five runs i consisting
of five re-configuration trials j each – i.e. the average and min/max
over 25 re-configuration trials Tij . At the end of each run the set of
neurons that worked in all re-configuration trials is calculated, i.e. the
set of neurons which fulfilled the criteria in all five re-configuration
trials. The red bars mark the largest set of working neurons in one of
these five runs (j).

143

3. Hybrid Operation

0 500 1000 1500 2000 2500

0.2
0.4
0.6
0.8

t s
te

p
=

10
0µ

s

0 10000 20000 30000 40000 50000

0 500 1000 1500 2000 2500

0.2
0.4
0.6
0.8

t s
te

p
=

20
µs

0 10000 20000 30000 40000 50000

Detector
Position

0 500 1000 1500 2000 2500

0.2
0.4
0.6
0.8

t s
te

p
=

11
µs

0 10000 20000 30000 40000 50000

0 500 1000 1500 2000 2500

0.2
0.4
0.6
0.8

t s
te

p
=

10
µs

0 10000 20000 30000 40000 50000

0 500 1000 1500 2000 2500

0.2
0.4
0.6
0.8

t s
te

p
=

8µ
s

0 10000 20000 30000 40000 50000

0 500 1000 1500 2000 2500

0.2
0.4
0.6
0.8

t s
te

p
=

7µ
s

0 10000 20000 30000 40000 50000

0 500 1000 1500 2000 2500
zoomed in

0.2
0.4
0.6
0.8

t s
te

p
=

5µ
s

0 10000 20000 30000 40000 50000
zoomed out

Time [µs]

Po
sit

io
n
of

Si
m
ul
at
ed

O
bj
ec
t

Figure 3.23.: Hybrid closed-loop experiment using a conventional compute node
to simulate the virtual environment and nine hardware neurons on
a HICANN chip located on the first prototype wafer. The update
time step tstep is varied from top to bottom. The simulated object
position is plotted on the y-axis, the wall-clock time on the x-axis.
The parameters match the setup shown in figure 3.18 except for the
number of detectors. To obtain robust behavior only the 9 most robust
neurons acquired in figure 3.22 were used. For decreasing tstep the
impact of the fixed communication latency increases, i.e. the detector
response is delayed. A complete list of parameters can be found in
table A.6.144

3.6. Summary

communication software stack was presented in section 3.4.
Subsequently, an experiment was formulated concentrating on a demonstration

of real-time interaction between conventional compute hardware and the neuro-
morphic system. It was deliberately designed to react to varying communication
latencies: a simulated environment interacts with a detector over a communication
network in real time (cf. sections 3.5.1 and 3.5.2). The influence of communica-
tion latency on experiment behavior was explored in a conventional simulation (cf.
section 3.5.3). Sections 3.5.4 to 3.5.6 presented intermediate steps towards the im-
plementation on hardware: 1. a pure round-based software implementation that
shows basic experiment characteristics and allows for parameter tuning in a fully
deterministic environment; 2. a version based on an execution scheme that allows
for round-based execution on the HMF; 3. a real-time version of the pure software
implementation was implemented when the FCP firmware was not yet real-time
capable; 4. a real-time version interacting with the HMF in loopback mode.
Finally, section 3.5.7 shows the complete experiment. The simulated environ-

ment runs on a compute node and communicates over the data network with the
neuronal network which is implemented on the wafer module. However, there’s still
a lot to be done: on the one hand, the robustness of the neuronal network setup
has to be improved to allow for larger neuron counts. Furthermore, the combina-
tion of limited analog neuron parameter precision and the current calibration data
which is optimized towards maximal synaptic weight leads to a high trial-to-trial
variation. On the other hand, both the compute cluster as well as the real-time soft-
ware interface can compete with state-of-the-art communication mechanisms using
vendor-optimized MPI software stacks. Regarding the FPGA real-time interface,
further improvement is needed to decrease the latency jitter caused by subopti-
mal FPGA firmware behavior. Nevertheless, this is the first real-time closed-loop
experiment ever that has been performed on accelerated neuromorphic hardware.
On the software side, future efforts will focus on a user-friendly integration of

the MUSIC framework as a higher-level spike interface. Similar to PyNN, this
will simplify switching between purely software-based closed-loop experiments and
hybrid operation on the neuromorphic systems.

145

Discussion

This thesis concentrates on the exploitation of the unique speed provided by the
HMF and NM-PM1 systems, i.e. the speedup factor. It can thereby open up the
possibility for novel applications in computational neuroscience. In conventional
neuronal network software simulations, the batch mode is prevalent. All external
experiment stimulus is predetermined prior to the start of the simulation. Execut-
ing such experiments on an accelerated neuromorphic system provides much higher
experiment throughput. Consequently, the analysis of result data can be performed
earlier which speeds up the test-refine cycle. When thinking out the idea of this
iterative workflow, a fast non-pipelined operation mode would allow for interac-
tive experimenting with the system. At high update rates, the user can perform
intuition-guided exploration of parameter spaces; a technique which often leads
more quickly to success than sweeping over a large set of parameters. In contrast
to these standalone-type experiments, another setup involves the modification of
the external stimulus which is applied to the neuronal network. Due to the in-
volvement of both, conventional and neuromorphic hardware systems, this mode
is called hybrid operation. Closed-loop experiments that imply a motor-feedback
control loop, are a typical example for hybrid experiments. In general, such experi-
ments make demands on the maximum reaction delay of the conventional compute
hardware. This delay can be split into two parts, communicational and computa-
tional latencies. The former is a model-independent property of the communication
infrastructure.
To achieve these goals, all parts of the hierarchy of software and conventional

hardware were evaluated and optimized. The compute cluster nodes as well as
the network architecture were designed to achieve high data throughput while pro-
viding the option to operate at low latencies; both features are key requirements
of the prospected operation modes. In particular, the stimulus and output data
rates of the NM-PM1 are typically three to four orders of magnitude higher than
typical large-scale software simulations. For example, the NEST-based simulation
mentioned in the introduction produced 1MEvent/s (in real or wall-clock time)
of (neuron) output spikes on average. Assuming a relaxed 64 bit spike encod-
ing, the bandwidth of the NM-PM1 host interface supports from 125MEvent/s
to 500MEvent/s per wafer. Indeed, this data network is only used for host commu-
nication and another network provides connectivity between the FCP FPGAs. This
is achieved by one dedicated data network switch per wafer module which aggre-
gates the 48 individual 1GbE-based links into up to four 10GbE links. A backbone
switch provides inter-connectivity between all the individual wafer switches and
the compute cluster. The current setup provides a backbone consisting of logically

147

Discussion

64×10GbE links. For the NM-PM1 40 links are assigned to the 20 wafer modules
and 20 compute nodes, i.e. a single 10GbE link each; the remaining links are used
for servers and as uplink to the institute; approximately 10 links can be used to
boost links to some wafer modules or to increase the uplink bandwidth. Assuming
the minimum of 20×10GbE links to the wafer modules19, a total spike rate of up
to 2.5GEvent/s can be produced or consumed.

Consequently, to exploit the fast communication infrastructure a reliable high-
performance transport-layer protocol was implemented for the communication be-
tween FCP FPGAs and compute nodes. The protocol correctness and performance
were tested to verify adequate behavior. A throughput benchmark using all cur-
rently installed FCP FPGAs achieved 94% wire speed, i.e. (846.7± 1.2)MiB/s
payload throughput between one compute node and eight 1GbE communication
endpoints. To extrapolate to the full system which will contain enough communi-
cation endpoints to fill all four upstream 10GbE links, the throughput was bench-
marked between two compute nodes using 10GbE as well as 40GbE. For both
setups it was possible to achieve over 99% wire speed ((1.070± 0.009)GiB/s and
(4.534± 0.062)GiB/s, respectively). In case of the 10GbE link test, the software
was unmodified with respect to the version used for communication with FCP FP-
GAs. However, the 40GbE-based setup required an enlarged packet size to reduce
the packet rate, and thereby interrupt rate, at the host computer. The same mod-
ification is under development for the FPGA protocol implementation.
To convey the speed of the NM-PM1 to the user of the system, a high-performance

software stack is just as important as the communication structures mentioned be-
fore. Accordingly, a pipelined software architecture was designed and the individ-
ual components were collaboratively implemented. The individual pipeline stages
provide serialization layers to suspend and resume execution. This allows for dis-
patching of computationally expensive tasks to dedicated HPC machines whereas
the experiment execution stage resumes operation on the NM-PM1 compute clus-
ter. Adequate performance reaching beyond 10GbE for the experiment input stage
as well as the remote procedure call (RPC) mechanism in general was shown.
For large-scale neuromorphic systems like the HMF and NM-PM1 systems, re-

source management is essential. The NM-PM1 will contain approximately 1000
remotely accessible components, mostly FCP FPGAs and devices for analog read-
out, which have to be scheduled to individual experiment jobs. Fairness between
users is another requirement which comes into play when the user count increases.
A common tool for resource management in HPC systems, simple Linux utility for
resource management (SLURM), was examined in terms of performance and char-
acteristic features. For the HMF/NM-PM1 system the performance is sufficient
and it has been integrated into the work flow for the first two prototype systems
which are currently available.
Regarding the hybrid operation, a communication software framework was de-

veloped to support low-latency communication. For directly linked compute nodes,

19This assumes a single 10GbE link per wafer module.

148

the one-way latency was measured to be (2.4± 0.2) µs. Compared to the standard
UNIX API, i.e. the socket() interface, a 36-fold decrease in latency was achieved.
Measurements including the backbone switch, aggregation/wafer switch or both
switches were performed and yielded (3.0± 0.2) µs, (3.4± 0.2) µs and (4.1± 0.2) µs,
respectively. The latency down to the HICANN chip was found to be (8.5± 0.4) µs.
A comparison to measurements performed between FCP FPGA and compute node
discovered deficiencies in the current FPGA firmware implementation. In partic-
ular, the timing jitter, or spread of the individually measured latencies, and the
increased average latency were not expected as the FPGA is a inherently real-time
capable device. The issue is under investigation by the FPGA developers as well
as by the author.
The software framework developed for real-time communication has been pro-

vided by the author to MUSIC API developers. The MUSIC API provides a
common interface for describing inter-simulator communication in the same way
as the PyNN API provides a common interface for neuronal network descriptions.
A first draft version of a real-time-capable MUSIC was created as presented at a
HBP meeting mid-2014. By adding support for real-time communication into MU-
SIC, the original target audience, i.e. software simulators, can be extended towards
robotics and other systems requiring real-time communication. Converging to a
single API at this point provides portability of closed-loop experiments between
different execution platforms which would otherwise require a rewrite of the inter-
faces handling external communication. This applies in particular to the transition
from round-based software simulations to real-time setups.
To demonstrate the capabilities of the NM-PM1 system, a hybrid, closed-loop

experiment was designed and successfully evaluated. The experiment is based on
the interaction of a simulated environment and a layer of neurons acting as simple
sensors. An object or marker can move on an one-dimensional axis within a force
field which pulls towards the center. The object position is translated into a spike
train which is transmitted to the neurons located on the wafer module. The neu-
rons act as a forwarding stage relaying a similar spike train back to the simulated
environment. In turn, this spike train is translated into an apparent object position
and a position update of the real position is performed based on the force exhibited
at the apparent location, i.e. the sensory-motor loop is closed. This simple model
is already capable of interesting behavior depending on the communication and
computation latencies. The path from a purely software-based experiment to an
implementation using real neurons on the wafer module was successfully followed
and key components were analyzed. This hybrid, closed-loop setup is the first ex-
periment ever which was performed on an accelerated neuromorphic system. It will
act as a template for future hybrid experiments.

Scope The input and output data rates of a single NM-PM1 wafer module are
already several orders of magnitude faster than in any other system in the neuro-
morphic community. Neuromorphic systems based on photonics could consume and

149

Discussion

produce even higher data rates due to the larger speedup factor of 108 [Kravtsov
et al., 2011]. However, in science typical data-intense tasks are performed in high-
energy physics. In particular, the lowest software-based trigger processes and filters
the highest inbound data rates. In the case of the LHCb experiment20, the typical
inbound data rate from the detector, or last hardware-based trigger stage, to the
first software-based trigger stage is in the order of Tibit/s [Alessio et al., 2014].
Subsequently, the data is dispatched to a set of 1500 compute nodes which process
the data to partially reconstruct the individual events and filter the data thereby
reducing the output rate to 250MiB/s. In the perspective of computational neu-
roscience, the analysis step is very model-dependent and no universal comparison
can be performed. However, assuming a similar level of complexity it is clear that
the compute cluster cannot conduct an online, or non-stop, data analysis when
the HMF/NM-PM1 operates uninterruptedly. In terms of high-energy physics, the
data acquisition can only run during beam time and the read-out as well as trigger
stages are optimized towards maximum recorded luminosity. On the other hand,
the beam time of the NM-PM1 corresponds to the simulation or emulation time of
neuronal network experiments. Hence, the main purpose of the compute cluster is
handling the experiment flow, be it pipelined or real-time operation; computation-
ally expensive tasks have to be performed on dedicated HPC hardware to maximize
the usage of the neuromorphic system.

The standard transport protocol of the IPv4 suite, the transmission control pro-
tocol (TCP), is the default solution for reliable connections in the Internet as well
as local-area networks. However, it is a complex protocol that covers areas which
are not important for locally accessing FPGA-based systems. In particular, ba-
sic features such as segmentation of packets, selective acknowledgments, window
scaling, timestamps and side-band data are unnecessary and would complicate an
FPGA implementation. Additionally, existing implementations for FPGAs mostly
rely on a software-based protocol handling running on a soft-core central process-
ing unit (CPU) which is implemented on the FPGA. Hence, this thesis provides a
custom alternative to TCP, the HostARQ protocol. This solution scales well up
to state-of-the-art network technologies like 40GbE. In particular, techniques like
ring-buffer-based communication between kernelspace and the userspace HostARQ
protocol implementation provides a similarly low overhead as a pure kernel imple-
mentation. One drawback of a userspace implementation, the increase in commu-
nication latency, is not relevant for a reliable transport protocol which utilizes large
buffer areas in all communication endpoints.
The process of building an FPGA configuration can be compared to the task

the software stack handles during experiment preparation. Indeed, the input stage
translates a higher-level description into a lower-level data format; the mapping and
routing step produces a configuration of the hardware substrate which can in turn be
loaded onto the FPGA device. This sequence is very similar to the workflow of the
NM-PM1 software stack. In particular, the individual stages produce intermediate

20One of the four large experiments at the Large Hadron Collider at CERN, Geneva.

150

data structures, which can subsequently be processes by the next stage.
On the other hand, the neuronal network emulation phase resembles tasks of

data-intense or low-latency applications. One example mentioned before are high-
level/software-based triggers in high-energy physics which also include soft21 real-
time constraints. However, the individual events are dispatched to a server farm
which increases the time budget for computations; for example, at LHCb the typical
processing time is in the order of 10ms per 60KiB-sized event.

In terms of using the NM-PM1 system, the task is similar to resource manage-
ment on general-purpose HPC machines on first sight. When going down to the
details, there are some differences: in contrast to typical HPC jobs, the run times
of individual experiments are very short due to the speedup factor. Another differ-
ence are inhomogeneities between neuromorphic hardware resources which require
users to specify a list of individual hardware components needed for an experiment.
Nevertheless, the common SLURM tool is capable of performing these tasks.

Outlook Within the HBP project, a massive effort is pursued towards an integra-
tion platform, called the unified portal (UP). It will act as a common interface for
data access, data visualization, data analysis, simulation building and simulation
execution. Both, the HPC as well as neuromorphic platforms, including the NM-
PM1, will be integrated. For users this will allow for maximally simplified access
to the NM-PM1 system as well as a toolchain for input and output data process-
ing. Regarding the technical challenges, the most important aspect is global data
access. The NM-PM1 system is capable of running many experiments in short time
spans while consuming and generating data at very high rates. A deep integration
of data access into the UP will provide the possibility to perform experiments on
the NM-PM1 while the analysis can run on HPC hardware. Similarities to the field
of high-energy physics are present. In particular, the distributed concept of grid
computing requires global access to common large-scale data resources, a common
accounting and authentication system as well as job scheduling. Other areas ad-
dressed by the UP cover exchange data formats, building and abstract description
of neuronal network experiments.
After completion, the NM-PM1 system will provide up to 4 million neurons and

almost 900 million synapses. Compared to large-scale software simulations, this is
four orders of magnitude less. The next version, called the, called the NM-PM2, will
provide enhanced synaptic precision and a plasticity processor for flexible learning
rules.
For data-intense applications the implementation of higher-level functions into

the FCP FPGAs would reduce the load on the compute nodes. Examples for
functions operating down to the wafer module are spike train replay, rate-modulated
spike train generators and merging of multiple spike train sources. For the upstream
connection, spike rate counters, spike source filters and sophisticated recording rules
21The experiment does not fail if a small fraction of data is lost; however, the amount of data loss

has to be as small as possible to maximize the recorded luminosity.

151

Discussion

can reduce the data volume transfered to the host computer.
A continuation plan exists for the NM-PM1 system which envisions up to 5 · 109

neurons and 1.3 ·1012 synapses distributed on 5000 wafers. In terms of the compute
cluster and network architecture, the current approach is capable to scale up into
thousands of wafer modules or compute nodes. State-of-the-art data networking
equipment supports up to 576×10GbE per switch which helps to keep the commu-
nication latency low; hardware configuration, experiment runtime control as well
as handling of data streams are tasks that can be intrinsically parallelized. How-
ever, the mapping stage within the software flow is not trivially scalable; efforts to
parallelize this task and dispatch the computation to large-scale HPC hardware are
needed.
Later hardware revisions, i.e. after the NM-PM1, will reduce the amount of exter-

nal components supporting the wafer module. In particular, the FPGAs are main
contributors to the total power consumption; the integration of all communication
infrastructures onto the wafer will provide a more scalable system by minimizing
the power consumption as well as the assembly work. Technologies like EXTOLL
can provide connectivity for both, inter-wafer communication and host connectiv-
ity. It supports low-overhead messaging at high packet rates which facilitates spike
data communication. The remote memory access allows for direct access from the
host to RAM located on the wafer module.
Compared to software simulations, large-scale neuromorphic systems in general

provide high simulation speed as well as power efficiency. The slow simulation speed
of large-scale neuronal network simulations is often prohibitive in terms of energy
and time consumption. Especially, the emulation speed provided by accelerated
neuromorphic systems can enable new experiments requiring long simulation dura-
tions to capture learning effects which slowly evolve over large time scales [Zenke
and Gerstner, 2014]. In the end, the route to large-time-scale experiments as well
as high-throughput and interactive modeling leads to neuromorphic systems.

152

Bibliography

F. Alessio, L. Brarda, E. Bonaccorsi, D. H. Campora Perez, M. Chebbi, M. Frank,
C. Gaspar, L. Granado Cardoso, C. Haen, E. Van Herwijnen, R. Jacobsson,
B. Jost, N. Neufeld, R. Schwemmer, V. K. Subbiah, and A. Zvyagin. The LHCb
data acquisition during LHC run 1. Journal of Physics: Conference Series, 513
(1), 2014. doi: 10.1088/1742-6596/513/1/012033.

J. Antolík and A. P. Davison. Integrated workflows for spiking neuronal network
simulations. Frontiers in Neuroinformatics, 7(34), 2013. doi: 10.3389/fninf.2013.
00034.

W. Barth. Nagios: System and Network Monitoring. No Starch Press Series. No
Starch Press, 2008.

K. Beck. Test Driven Development: By Example. Kent Beck signature book.
Addison-Wesley, 2002.

R. Berner, T. Delbrück, A. C. Balcells, and A. Linares-Barranco. A 5 Meps $100
USB2.0 address-event monitor-sequencer interface. In ISCAS, pages 2451–2454.
IEEE, 2007. doi: 10.1109/ISCAS.2007.378616.

W. J. Bolosky and M. L. Scott. False sharing and its effect on shared memory
performance. In 4th USENIX Symposium on Experiences with Distributed and
Multiprocessor Systems, San Diego, California, Sept. 1993. USENIX Association.

R. Brette and W. Gerstner. Adaptive exponential integrate-and-fire model as an
effective description of neuronal activity. J. Neurophysiol., 94(5):3637 – 3642,
2005. doi: 10.1152/jn.00686.2005.

J. Brown and B. Martin. How fast is fast enough? choosing between Xenomai and
Linux for real-time applications. In Twelfth Real-Time Linux Workshop, Nairobi,
Kenya, Oct. 2010.

D. Brüderle. Neuroscientific Modeling with a Mixed-Signal VLSI Hardware System.
PhD thesis, Ruprecht-Karls-Universität Heidelberg, 2009.

D. Brüderle, E. Müller, A. Davison, E. Muller, J. Schemmel, and K. Meier. Estab-
lishing a novel modeling tool: A python-based interface for a neuromorphic hard-
ware system. Front. Neuroinform., 3(17), 2009. doi: 10.3389/neuro.11.017.2009.

153

Bibliography

D. Brüderle, M. Petrovici, B. Vogginger, M. Ehrlich, T. Pfeil, S. Millner, A. Grübl,
K. Wendt, E. Müller, M.-O. Schwartz, D. Husmann de Oliveira, S. Jeltsch,
J. Fieres, M. Schilling, P. Müller, O. Breitwieser, V. Petkov, L. Muller, A. Davi-
son, P. Krishnamurthy, J. Kremkow, M. Lundqvist, E. Muller, J. Partzsch,
S. Scholze, L. Zühl, C. Mayr, A. Destexhe, M. Diesmann, T. Potjans, A. Lansner,
R. Schüffny, J. Schemmel, and K. Meier. A comprehensive workflow for general-
purpose neural modeling with highly configurable neuromorphic hardware sys-
tems. Biological Cybernetics, 104:263–296, 2011. doi: 10.1007/s00422-011-0435-9.

A. N. Burkitt. A review of the integrate-and-fire neuron model: II. inhomogeneous
synaptic input and network properties. Biological cybernetics, 95(2):97–112, 2006.
doi: 10.1007/s00422-006-0082-8.

Chelsio. Wiredirect, 2011. URL http://www.chelsio.com/nic/wire-direct/.

Chelsio. T520-lp-cr – product brief, 2013a. URL http://www.chelsio.com/
wp-content/uploads/2013/10/T520-CR-PB.pdf.

Chelsio. Preliminary ultra low latency report, 2013b. URL http://www.chelsio.
com/wp-content/uploads/2011/05/Ultra-Low-Latency-Report-040813.
pdf.

P. Clements. Documenting Software Architectures: Views and Beyond. SEI series
in software engineering. Addison-Wesley, 2 edition, 2011.

USB 2.0. Universal Serial Bus Revision 2.0 specification. Compaq, Hewlett-
Packard, Intel, Lucent, Microsoft, NEC, and Philips, 2.0 edition, Apr. 2000.
URL http://www.usb.org/developers/docs/.

A. P. Davison, D. Guarino, and J. Chavas. HBP neuromorphic platform interface
(NMPI), 2014.

A. Destexhe and T. Bal. Dynamic-Clamp: From Principles to Applications.
Springer Series in Computational Neuroscience. Springer, 2009.

M. Djurfeldt. The connection-set algebra—a novel formalism for the representation
of connectivity structure in neuronal network models. Neuroinformatics, 10(3):
287–304, 2012. doi: 10.1186/1471-2202-12-S1-P80.

M. Djurfeldt, J. Hjorth, J. M. Eppler, N. Dudani, M. Helias, T. C. Potjans, U. S.
Bhalla, M. Diesmann, J. H. Kotaleski, and Ö. Ekeberg. Run-time interoper-
ability between neuronal network simulators based on the MUSIC framework.
Neuroinformatics, 8(1):43–60, 2010. doi: 10.1007/s12021-010-9064-z.

Docker. An open platform for distributed applications for developers and sysadmins.
Docker, Inc., 2014. URL http://www.docker.com.

154

http://www.chelsio.com/nic/wire-direct/
http://www.chelsio.com/wp-content/uploads/2013/10/T520-CR-PB.pdf
http://www.chelsio.com/wp-content/uploads/2013/10/T520-CR-PB.pdf
http://www.chelsio.com/wp-content/uploads/2011/05/Ultra-Low-Latency-Report-040813.pdf
http://www.chelsio.com/wp-content/uploads/2011/05/Ultra-Low-Latency-Report-040813.pdf
http://www.chelsio.com/wp-content/uploads/2011/05/Ultra-Low-Latency-Report-040813.pdf
http://www.usb.org/developers/docs/
http://www.docker.com

Bibliography

J. J. Dongarra. The LINPACK benchmark: An explanation. In Proceedings of the
1st International Conference on Supercomputing, pages 456–474. Springer Berlin
/ Heidelberg, 1988. doi: 10.1007/3-540-18991-2_27.

U. Drepper. What every programmer should know about memory, Nov. 2007. Red
Hat, Inc.

J. Drexler. Entwurf und Implementierung einer parallelen Netzwerkschnittstelle
zum Betrieb Künstlicher Neuronaler Netze. Diploma thesis (german), Ruprecht-
Karls-Universität Heidelberg, 2009. HD-KIP-09-05.

D. Duval. From fast to predictably fast. In Proceedings of the Ottawa Linux
Symposium, OLS ’09, pages 79–86, 2009. Red Hat, Inc.

M. Ehrlich, K. Wendt, L. Zühl, R. Schüffny, D. Brüderle, E. Müller, and B. Vog-
ginger. A software framework for mapping neural networks to a wafer-scale neu-
romorphic hardware system. In Proceedings of the Artificial Neural Networks
and Intelligent Information Processing Conference (ANNIIP) 2010, pages 43–52,
2010.

Ö. Ekeberg and M. Djurfeldt. MUSIC – Multi-Simulation Coordinator Users Man-
ual, 2009.

Electronic Vision(s). Specification of the HICANN-DLS ASIC, 2014. URL https:
//gitviz.kip.uni-heidelberg.de/projects/hicann-dls.

Modules. The Environment Modules package provides for the dynamic modification
of a user’s environment via modulefiles. Environment Modules Project, 2014.
URL http://modules.sourceforge.net.

J. Eppler. Personal communication, 2014.

J. M. Eppler, H. E. Plesser, A. Morrison, M. Diesmann, and M.-O. Gewaltig. Mul-
tithreaded and distributed simulation of large biological neuronal networks. In
F. Cappello, T. Herault, and J. Dongarra, editors, Recent Advances in Parallel
Virtual Machine and Message Passing Interface, volume 4757 of Lecture Notes
in Computer Science, pages 391–392. Springer Berlin Heidelberg, 2007. doi:
10.1007/978-3-540-75416-9_55.

H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger. Dark
silicon and the end of multicore scaling. In Proceedings of the 38th Annual Inter-
national Symposium on Computer Architecture, ISCA ’11, pages 365–376, New
York, NY, USA, 2011. ACM. doi: 10.1145/2024723.2000108.

EXTOLL. Introducing EXTOLL Tourmalet, 2014. URL http://www.extoll.de/
images/pdf/EXTOLL_Tourmalet_2014_05.pdf.

155

https://gitviz.kip.uni-heidelberg.de/projects/hicann-dls
https://gitviz.kip.uni-heidelberg.de/projects/hicann-dls
http://modules.sourceforge.net
http://www.extoll.de/images/pdf/EXTOLL_Tourmalet_2014_05.pdf
http://www.extoll.de/images/pdf/EXTOLL_Tourmalet_2014_05.pdf

Bibliography

J. Fieres, J. Schemmel, and K. Meier. Realizing biological spiking network
models in a configurable wafer-scale hardware system. In Proceedings of the
2008 International Joint Conference on Neural Networks (IJCNN), 2008. doi:
10.1109/IJCNN.2008.4633916.

A. Fog. Instruction Tables – List of Instruction Latencies, Throughputs and Micro-
operation Breakdowns for Intel, AMD and VIA CPUs, 2014a. URL http://www.
agner.org/optimize/instruction_tables.pdf.

A. Fog. The Microarchitecture of Intel, AMD and VIA CPUs – An Optimization
Guide for Assembly Programmers and Compiler Makers, 2014b. URL http:
//www.agner.org/optimize/microarchitecture.pdf.

I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann, 1st edition, 1998.

H. Franke, R. Russell, and M. Kirkwood. Fuss, futexes and furwocks: Fast userlevel
locking in linux. In Proceedings of the Ottawa Linux Symposium, OLS ’02, pages
479–595, 2002.

S. B. Furber, D. R. Lester, L. A. Plana, J. D. Garside, E. Painkras, S. Temple, and
A. D. Brown. Overview of the SpiNNaker system architecture. IEEE Transactions
on Computers, 99(PrePrints), 2012. doi: 10.1109/TC.2012.142.

F. Galluppi, A. Rast, S. Davies, and S. Furber. A general-purpose model translation
system for a universal neural chip. In K. Wong, B. Mendis, and A. Bouzerdoum,
editors, Neural Information Processing. Theory and Algorithms, volume 6443 of
Lecture Notes in Computer Science, pages 58–65. Springer Berlin / Heidelberg,
2010. doi: 10.1007/978-3-642-17537-4_8.

Y. Georgiou and M. Hautreux. Evaluating scalability and efficiency of the resource
and job management system on large HPC clusters. In W. Cirne, N. Desai,
E. Frachtenberg, and U. Schwiegelshohn, editors, Job Scheduling Strategies for
Parallel Processing, volume 7698 of Lecture Notes in Computer Science, pages
134–156. Springer Berlin / Heidelberg, 2013. doi: 10.1007/978-3-642-35867-8_8.

M.-O. Gewaltig and M. Diesmann. Nest (neural simulation tool). Scholarpedia, 2
(4):1430, 2007. URL http://www.scholarpedia.org/article/NEST_(NEural_
Simulation_Tool).

P. Gleeson, S. Crook, R. C. Cannon, M. L. Hines, G. O. Billings, M. Farinella,
T. M. Morse, A. P. Davison, S. Ray, U. S. Bhalla, S. R. Barnes, Y. D. Dimitrova,
and R. A. Silver. NeuroML: A language for describing data driven models of
neurons and networks with a high degree of biological detail. PLoS Comput Biol,
6(6):e1000815, June 2010. doi: 10.1371/journal.pcbi.1000815.

A. Grübl. VLSI Implementation of a Spiking Neural Network. PhD thesis,
Ruprecht-Karls-Universität, Heidelberg, 2007. HD-KIP 07-10.

156

http://www.agner.org/optimize/instruction_tables.pdf
http://www.agner.org/optimize/instruction_tables.pdf
http://www.agner.org/optimize/microarchitecture.pdf
http://www.agner.org/optimize/microarchitecture.pdf
http://www.scholarpedia.org/article/NEST_(NEural_Simulation_Tool)
http://www.scholarpedia.org/article/NEST_(NEural_Simulation_Tool)

Bibliography

A. Grübl. Personal communication, 2013.

A. Grübl, V. Karasenko, and E. Müller. Electronic vision(s) FPGA and low-level
performance team – personal communication, 2014.

C. Gutmann. Implementation einer Gigabit-Ethernet-Schnittstelle zum Betrieb
eines Künstlichen Neuronalen Netzwerkes. Diploma thesis (german), Ruprecht-
Karls-Universität Heidelberg, 2007. HD-KIP-07-08.

S. Hartmann. Personal communication, 2014.

M. Helias, S. Kunkel, G. Masumoto, J. Igarashi, J. M. Eppler, S. Ishii, T. Fukai,
A. Morrison, and M. Diesmann. Supercomputers ready for use as discovery
machines for neuroscience. Frontiers in Neuroinformatics, 6(26), 2012. doi: 10.
3389/fninf.2012.00026.

J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann, Amsterdam, 4th edition, 2007.

R. Hertzog and R. Mas. The Debian Administrator’s Handbook, Debian Wheezy
from Discovery to Mastery. Galerie Perrotin, 2014.

Hewlett-Packard. HP 2910 al switch series – quickspecs, Dec. 2013.

Hewlett-Packard. HP 5120-48G EI switch with 2 interface slots (JE069A) –
datasheet, Feb. 2014a.

Hewlett-Packard. HP 5900AF-48XG-4QSFP+ switch (JC772A) – datasheet, Feb.
2014b.

M. Hines, S. Kumar, and F. Schürmann. Comparison of neuronal spike exchange
methods on a Blue Gene/P supercomputer. Frontiers in Computational Neuro-
science, 5(49), 2011. doi: 10.3389/fncom.2011.00049.

M. L. Hines and N. T. Carnevale. The NEURON Book. Cambridge University
Press, Cambridge, UK, 2006.

D. Hinrichs. Software development in the context of dendrite membrane simulation.
Bachelor thesis, Ruprecht-Karls-Universität Heidelberg, 2014.

M. Hock. Test of components for a wafer-scale neuromorphic hardware system.
Diploma thesis, Ruprecht-Karls-Universität Heidelberg, 2009. HD-KIP-09-37.

HP and Mellanox. HP Mellanox low latency benchmark report, 2012.
URL http://www.mellanox.com/related-docs/whitepapers/HP_Mellanox_
Low%20Latency_Benchmark%20Report%202012.pdf.

HBP SP9 Specification. Neuromorphic Platform Specification. Human
Brain Project, Mar. 2014. URL https://gitviz.kip.uni-heidelberg.de/
projects/hbp-sp9-specification--d9-7-1.

157

http://www.mellanox.com/related-docs/whitepapers/HP_Mellanox_Low%20Latency_Benchmark%20Report%202012.pdf
http://www.mellanox.com/related-docs/whitepapers/HP_Mellanox_Low%20Latency_Benchmark%20Report%202012.pdf
https://gitviz.kip.uni-heidelberg.de/projects/hbp-sp9-specification--d9-7-1
https://gitviz.kip.uni-heidelberg.de/projects/hbp-sp9-specification--d9-7-1

Bibliography

K.-H. Husmann. Handling spike data in an accelerated neuromorphic system. Bach-
elor thesis, Ruprecht-Karls-Universität Heidelberg, 2012.

IEEE 802.1Q. Virtual bridged local area networks. IEEE Standard 802.1Q-2003,
IEEE 802.1 Working Group, 2003.

IEEE 802.3. Ethernet. IEEE Standard 802.3-2012, IEEE 802.3 Ethernet Working
Group, 1999.

IEEE 802.3ab. 1000Base-T. IEEE Standard 802.3ab-1999, IEEE 802.3 Ethernet
Working Group, 1999.

IEEE 802.3ak. 10GBASE-CX4. IEEE Standard 802.3ak-2004, IEEE 802.3 Ethernet
Working Group, 2004.

IEEE 802.3ba. 40GBASE-CR4. IEEE Sbandard 802.3ba-2010, IEEE 802.3 Ethernet
Working Group, 2010.

IntelArch. Intel 64 and IA-32 Architectures Software Developer’s Manual. Intel,
June 2014.

IOzone3. IOzone Filesystem Benchmark, 2014. URL http://www.iozone.org.

ISO/IEC 7498-1:1994. Information technology — open systems interconnection —
basic reference model: The basic model. ISO/IEC Standard 7498-1:1994, ISO,
Geneva, Switzerland, Nov. 1994.

E. M. Izhikevich. Which model to use for cortical spiking neurons? IEEE Transac-
tions on Neural Networks, 15(5):1063–1070, Sept. 2004. doi: 10.1109/TNN.2004.
832719.

V. Jacobson and M. J. Karels. Congestion avoidance and control. In Sympo-
sium Proceedings on Communications Architectures and Protocols, SIGCOMM
’88, pages 314–329, Nov. 1988.

S. Jeltsch. A Scalable Workflow for a Configurable Neuromorphic Platform. PhD
thesis, Ruprecht-Karls-Universität Heidelberg, 2014. HD-KIP 14-51.

Jenkins. Jenkins CI Server, 2014. URL http://jenkins-ci.org.

B. Kaplan. Presentation from KTH. BrainScaleS WP4 workshop: PyNN for su-
percomputers and neuromorphic hardware, 2013.

B. A. Kaplan, A. Lansner, G. S. Masson, and L. U. Perrinet. Anisotropic connec-
tivity implements motion-based prediction in a spiking neural network. Frontiers
in Computational Neuroscience, 7(112), 2013. doi: 10.3389/fncom.2013.00112.

V. Karasenko. A communication infrastructure for a neuromorphic system. Master’s
thesis, Ruprecht-Karls-Universität Heidelberg, 2014.

158

http://www.iozone.org
http://jenkins-ci.org

Bibliography

R. Kelly and J. Gasparakis. Common functionality in the 2.6 linux network stack.
Whitepaper, Intel, Apr. 2010.

M. Kleider, C. Koke, D. Schmidt, and S. Schmitt. Electronic vision(s) calibration
team – personal communication, 2014.

A. Kononov. Testing of an analog neuromorphic network chip. Diploma thesis,
Ruprecht-Karls-Universität Heidelberg, 2011. HD-KIP-11-83.

K. S. Kravtsov, M. P. Fok, P. R. Prucnal, and D. Rosenbluth. Ultrafast all-optical
implementation of a leaky integrate-and-fire neuron. Optics express, 19(3):2133–
2147, 2011. doi: 10.1364/OE.19.002133.

S. Kunkel, T. C. Potjans, J. M. Eppler, H. E. Plesser, A. Morrison, and M. Dies-
mann. Meeting the memory challenges of brain-scale network simulation. Fron-
tiers in Neuroinformatics, 5(35), 2012. doi: 10.3389/fninf.2011.00035.

O. Lawlor, H. Govind, I. Dooley, M. Breitenfeld, and L. Kale. Performance degrada-
tion in the presence of subnormal floating-point values. InWorkshop on Operating
System Interference in High Performance Applications, St. Louis, Missouri, Sept.
2005.

CGroups. Control Groups – Kernel Documentation. Linux, 2014. URL https:
//www.kernel.org/doc/Documentation/cgroups/.

L. Ljung and T. Soderstrom. Theory and Practice of Recursive Identification (Signal
Processing, Optimization, and Control). The MIT Press, October 1983.

LLNL, SchedMD, et al. Simple Linux Utility for Resource Management, 2014. URL
http://slurm.schedmd.com.

S. J. Lovett, M. Welten, A. Mathewson, and B. Mason. Optimizing MOS transistor
mismatch. IEEE Journal of Solid-State Circuits, 33(1):147–150, Jan. 1998. doi:
10.1109/4.654947.

M. Massie, B. Li, B. Nicholes, and V. Vuksan. Monitoring with Ganglia. O’Reilly
and Associate Series. O’Reilly Media, Incorporated, 2012.

P. E. McKenney. ‘real time’ vs. ‘real fast’: How to choose? In Eleventh Real-Time
Linux Workshop, Dresden, Germany, Sept. 2009. OSADL.

Mellanox. SX1036 – product brief, 2013a. URL http://www.mellanox.com/
related-docs/prod_eth_switches/SX1036_Product_Brief.pdf.

Mellanox. ConnectX-3 Pro – product brief, 2013b. URL http://www.mellanox.
com/related-docs/prod_adapter_cards/PB_ConnectX-3_Pro_Card_EN.pdf.

Mellanox. IS5024 – product brief, 2014. URL http://www.mellanox.com/
related-docs/prod_ib_switch_systems/IS5024.pdf.

159

https://www.kernel.org/doc/Documentation/cgroups/
https://www.kernel.org/doc/Documentation/cgroups/
http://slurm.schedmd.com
http://www.mellanox.com/related-docs/prod_eth_switches/SX1036_Product_Brief.pdf
http://www.mellanox.com/related-docs/prod_eth_switches/SX1036_Product_Brief.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-3_Pro_Card_EN.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-3_Pro_Card_EN.pdf
http://www.mellanox.com/related-docs/prod_ib_switch_systems/IS5024.pdf
http://www.mellanox.com/related-docs/prod_ib_switch_systems/IS5024.pdf

Bibliography

P. Merolla, J. Arthur, and J. Wittig, Jr. The USB revolution. The Neuromorphic
Engineer, 2(2):10–11, 2005.

S. Millner. Development of a Multi-Compartment Neuron Model Emulation. PhD
thesis, Ruprecht-Karls-Universitä Heidelberg, November 2012. HD-KIP 12-83.

S. Millner, A. Grübl, K. Meier, J. Schemmel, and M.-O. Schwartz. A VLSI im-
plementation of the adaptive exponential integrate-and-fire neuron model. In
J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, edi-
tors, Advances in Neural Information Processing Systems 23, pages 1642–1650,
2010.

E. Müller. Operation of an imperfect neuromorphic hardware device. Diploma
thesis, Ruprecht-Karls-Universität Heidelberg, 2008. HD-KIP-08-43.

E. Müller. Code-generator-assisted wrapping: from C++ to Python. Electronic
Vision’s Group Meeting – Presentation, Apr. 2011a.

E. Müller. HMF OS – overview, command and data flow. Electronic Vision’s Group
Meeting – Presentation, July 2011b.

E. Müller. BSS – HW/SW release 1: Automatic and continuous testing. Electronic
Vision’s Group Meeting – Presentation, June 2012.

E. Müller. Presentation from UHEI. BrainScaleS WP4 workshop: PyNN for su-
percomputers and neuromorphic hardware, 2013.

R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang. Introducing the graph
500. Technical report, Sandia National Laboratories, 2010.

J. M. Nageswaran, N. Dutt, J. L. Krichmar, A. Nicolau, and A. V. Veidenbaum.
A configurable simulation environment for the efficient simulation of large-scale
spiking neural networks on graphics processors. Neural Networks, 22(5–6):791–
800, 2009. doi: 10.1016/j.neunet.2009.06.028.

R. Naud, N. Marcille, C. Clopath, and W. Gerstner. Firing patterns in the adaptive
exponential integrate-and-fire model. Biological Cybernetics, 99(4):335–347, Nov.
2008. doi: 10.1007/s00422-008-0264-7.

NEST Initiative. NEST 2.4.2, 2014. URL http://www.nest-simulator.org/
download/gplreleases/nest-2.4.2.tar.gz.

Neural Ensemble. Website. http://www.neuralensemble.org, 2008.

Neo. A base library for handling electrophysiology data in Python. The Neu-
ralEnsemble Initiative, 2014. URL http://www.neuralensemble.org/neo.

PyNN. A Python package for simulator-independent specification of neuronal
network models. The NeuralEnsemble Initiative, 2014. URL http://www.
neuralensemble.org/PyNN.

160

http://www.nest-simulator.org/download/gplreleases/nest-2.4.2.tar.gz
http://www.nest-simulator.org/download/gplreleases/nest-2.4.2.tar.gz
http://www.neuralensemble.org
http://www.neuralensemble.org/neo
http://www.neuralensemble.org/PyNN
http://www.neuralensemble.org/PyNN

Bibliography

C. Pape. Vergleich der ESS mit neuromorpher Hardware über eine gemeinsame
Bedienungsschnittstelle. Bachelor thesis (german), Ruprecht-Karls-Universität
Heidelberg, 2013. HD-KIP 13-93.

J. Partzsch. Personal communication, 2014.

J. Partzsch, V. Thanasoulis, S. Hartmann, and S. Scholze. TU Dresden collabora-
tion partners, FPGA team – personal communication, 2008–2014.

M. J. M. Pelgrom, H. P. Tuinhout, and M. Vertregt. Transistor matching in analog
CMOS applications. In IEEE International Electron Devices Meeting, pages 915–
918, Dec. 1998. doi: 10.1109/IEDM.1998.746503.

D. Perrin. Complexity and high-end computing in biology and medicine. In H. R.
Arabnia and Q.-N. Tran, editors, Software Tools and Algorithms for Biological
Systems, volume 696 of Advances in Experimental Medicine and Biology, pages
377–384. Springer New York, 2011. doi: 10.1007/978-1-4419-7046-6_38.

L. L. Peterson and B. S. Davie. Computer Networks: A Systems Approach, 3rd
Edition. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

M. A. Petrovici, B. Vogginger, P. Müller, O. Breitwieser, M. Lundqvist, L. Muller,
M. Ehrlich, A. Destexhe, A. Lansner, R. Schüffny, J. Schemmel, and K. Meier.
Characterization and compensation of network-level anomalies in mixed-signal
neuromorphic modeling platforms. PLoS ONE, 2014. URL http://arxiv.org/
abs/1404.7514. pending publication.

T. Pfeil, A. Grübl, S. Jeltsch, E. Müller, P. Müller, M. A. Petrovici, M. Schmuker,
D. Brüderle, J. Schemmel, and K. Meier. Six networks on a universal neu-
romorphic computing substrate. Frontiers in Neuroscience, 7:11, 2013. doi:
10.3389/fnins.2013.00011.

T. Pfeil, J. Jordan, T. Tetzlaff, A. Grübl, J. Schemmel, and K. Meier. The ef-
fect of heterogeneity on decorrelation mechanisms in spiking neural networks: a
neuromorphic-hardware study. publication in preparation, 2014.

S. M. Potter, A. El Hady, and E. E. Fetz. Closed-loop neuroscience and neuro-
engineering. Frontiers in Neural Circuits, 8(115), 2014. doi: 10.3389/fncir.2014.
00115.

R. Prahov, A. Graupner, and E. Müller. Configuration management from the
perspective of integrated circuit design. In Electrical Electronics Engineers in
Israel (IEEEI), 2012 IEEE 27th Convention of, pages 1–5, Nov. 2012. doi: 10.
1109/EEEI.2012.6376940.

A. D. Rast, J. Partzsch, C. Mayr, J. Schemmel, S. Hartmann, L. A. Plana, S. Tem-
ple, D. R. Lester, R. Schüffny, and S. Furber. A location-independent direct
link neuromorphic interface. In IJCNN. IEEE, 2013. doi: 10.1109/IJCNN.2013.
6706887.

161

http://arxiv.org/abs/1404.7514
http://arxiv.org/abs/1404.7514

Bibliography

RFC1122, R. T. Braden. Requirements for Internet Hosts — Communication Lay-
ers, Oct. 1989. URL http://tools.ietf.org/html/rfc1122.

RFC1323, V. Jacobson, R. Braden, and D. Borman. TCP Extensions for High
Performance, May 1992. URL http://tools.ietf.org/html/rfc1323.

RFC1379, R. Braden. Extending TCP for Transactions – Concepts, Nov. 1992.
URL http://tools.ietf.org/html/rfc1379.

RFC1948, S. Bellovin. Defending Against Sequence Number Attacks, May 1996.
URL http://tools.ietf.org/html/rfc1948.

RFC2018, J. Mahdavi, S. Floyd, and A. Romanow. TCP Selective Acknowledgment
Options, Oct. 1996. URL http://tools.ietf.org/html/rfc2018.

RFC3366, G. Fairhurst. Advice to link designers on link Automatic Repeat reQuest
(ARQ), Aug. 2002. URL http://tools.ietf.org/html/rfc3366.

RFC3439, R. Bush and D. Meyer. Some Internet Architectural Guidelines and
Philosophy, Dec. 2002. URL http://tools.ietf.org/html/rfc3439.

RFC4614, M. Duke, R. Braden, W. Eddy, and E. Blanton. A Roadmap for Trans-
mission Control Protocol (TCP) Specification Documents, Sept. 2006. URL
http://tools.ietf.org/html/RFC4614.

RFC5681, M. Allman, V. Paxson, and E. Blanton. TCP Congestion Control, Sept.
2009. URL http://tools.ietf.org/html/RFC5681.

RFC6298, V. Paxson, M. Allman, J. Chu, and M. Sargent. Computing TCP’s Re-
transmission Timer, June 2011. URL http://tools.ietf.org/html/RFC6298.

RFC675, V. Cerf, Y. Dalal, and C. Sunshine. User Datagram Protocol, Dec. 1974.
URL http://tools.ietf.org/html/rfc675.

RFC6824, A. Ford, C. Raiciu, M. Handley, and O. Bonaventure. TCP Ex-
tensions for Multipath Operation with Multiple Addresses, Mar. 2011. URL
http://tools.ietf.org/html/RFC6824.

RFC768, J. Postel. User Datagram Protocol, Aug. 1980. URL http://tools.ietf.
org/html/rfc768.

RFC791. Internet Protocol. Information Sciences Institute, University of Southern
California, Sept. 1981. URL http://tools.ietf.org/html/rfc791.

RFC793. Transmission Transport Protocol. Information Sciences Institute, Univer-
sity of Southern California, Sept. 1981. URL http://tools.ietf.org/html/
rfc793.

RFC826, D. C. Plummer. An Ethernet Address Resolution Protocol, Nov. 1982.
URL http://tools.ietf.org/html/rfc826.

162

http://tools.ietf.org/html/rfc1122
http://tools.ietf.org/html/rfc1323
http://tools.ietf.org/html/rfc1379
http://tools.ietf.org/html/rfc1948
http://tools.ietf.org/html/rfc2018
http://tools.ietf.org/html/rfc3366
http://tools.ietf.org/html/rfc3439
http://tools.ietf.org/html/RFC4614
http://tools.ietf.org/html/RFC5681
http://tools.ietf.org/html/RFC6298
http://tools.ietf.org/html/rfc675
http://tools.ietf.org/html/RFC6824
http://tools.ietf.org/html/rfc768
http://tools.ietf.org/html/rfc768
http://tools.ietf.org/html/rfc791
http://tools.ietf.org/html/rfc793
http://tools.ietf.org/html/rfc793
http://tools.ietf.org/html/rfc826

Bibliography

RFC896, J. Nagle. Congestion Control in IP/TCP Internetworks, Jan. 1984. URL
http://tools.ietf.org/html/rfc896.

J.-P. Richard. Time-delay systems: an overview of some recent advances and open
problems. Automatica, 39(10):1667–1694, 2003. doi: 10.1016/S0005-1098(03)
00167-5.

RIKEN. Largest neuronal network simulation achieved using k computer. Press Re-
lease, Aug. 2013. URL http://www.riken.jp/en/pr/press/2013/20130802_1.

J. Schemmel. Personal communication, 2014.

J. Schemmel, A. Grübl, K. Meier, and E. Muller. Implementing synaptic plasticity
in a VLSI spiking neural network model. In Proceedings of the 2006 International
Joint Conference on Neural Networks (IJCNN). IEEE Press, 2006. doi: 10.1109/
IJCNN.2006.246651.

J. Schemmel, D. Brüderle, K. Meier, and B. Ostendorf. Modeling synaptic plasticity
within networks of highly accelerated I&F neurons. In Proceedings of the 2007
IEEE International Symposium on Circuits and Systems (ISCAS), pages 3367–
3370. IEEE Press, 2007. doi: 10.1109/ISCAS.2007.378289.

J. Schemmel, J. Fieres, and K. Meier. Wafer-scale integration of analog neural
networks. In Proceedings of the 2008 International Joint Conference on Neural
Networks (IJCNN), 2008. doi: 10.1109/IJCNN.2008.4633828.

J. Schemmel, D. Brüderle, A. Grübl, M. Hock, K. Meier, and S. Millner. A wafer-
scale neuromorphic hardware system for large-scale neural modeling. In Pro-
ceedings of the 2010 IEEE International Symposium on Circuits and Systems
(ISCAS), pages 1947–1950, 2010. doi: 10.1109/ISCAS.2010.5536970.

M. Schilling. A highly efficient transport layer for the connection of neuromorphic
hardware systems. Diploma thesis, Ruprecht-Karls-Universität Heidelberg, 2010.
HD-KIP-10-09.

M. Schmuker, T. Pfeil, and M. P. Nawrot. A neuromorphic network for generic
multivariate data classification. Proceedings of the National Academy of Sciences,
111(6):2081–2086, 2014. doi: 10.1073/pnas.1303053111.

F. Schürmann, S. Hohmann, J. Schemmel, and K. Meier. Towards an artificial
neural network framework. In A. Stoica, J. Lohn, R. Katz, D. Keymeulen,
and R. Zebulum, editors, Proceedings of the 2002 NASA/DoD Conference
on Evolvable Hardware, pages 266–273. IEEE Computer Society, 2002. doi:
10.1109/EH.2002.1029893.

M.-O. Schwartz. Reproducing Biologically Realistic Regimes on a Highly-Accelerated
Neuromorphic Hardware System. PhD thesis, Ruprecht-Karls-Universität Heidel-
berg, 2013.

163

http://tools.ietf.org/html/rfc896
http://www.riken.jp/en/pr/press/2013/20130802_1

Bibliography

G. Semeraro, G. Magklis, R. Balasubramonian, D. H. Albonesi, S. Dwarkadas, and
M. L. Scott. Energy-efficient processor design using multiple clock domains with
dynamic voltage and frequency scaling. In Proceedings of the Eighth International
Symposium on High-Performance Computer Architecture, pages 29–40, Feb. 2002.
doi: 10.1109/HPCA.2002.995696.

M. Shafique, S. Garg, J. Henkel, and D. Marculescu. The eda challenges in the dark
silicon era: Temperature, reliability, and variability perspectives. In Proceedings
of the The 51st Annual Design Automation Conference on Design Automation
Conference, DAC ’14, pages 1–6, New York, NY, USA, 2014. ACM. doi: 10.
1145/2593069.2593229.

J. A. Stankovic. Deadline Scheduling for Real-Time Systems: Edf and Related
Algorithms. Real-time systems series. Springer, 1998.

J.-L. R. Stevens, M. Elver, and J. A. Bednar. An automated and reproducible
workflow for running and analyzing neural simulations using lancet and ipython
notebook. Frontiers in Neuroinformatics, 7(44), 2013. doi: 10.3389/fninf.2013.
00044.

A. T. C. Tam and C.-L. Wang. Efficient scheduling of complete exchange on clusters.
In 13th International Conference on Parallel and Distributed Computing Systems
(PDCS 2000), Las Vegas, Aug. 2000.

A. S. Tanenbaum and D. J. Wetherall. Computer Networks. Prentice Hall, 5th
edition, 2010.

C. M. Thibeault, K. Minkovich, M. J. O’Brien, F. C. Harris, and N. Srinivasa. Effi-
ciently passing messages in distributed spiking neural network simulation. Fron-
tiers in computational neuroscience, 7, 2013. doi: 10.3389/fncom.2013.00077.

S. Thompson and S. Parthasarathy. Moore’s law: the future of si microelectronics.
Materials Today, 9(6):20–25, June 2006. doi: 10.1016/s1369-7021(06)71539-5.

Tolly. Mellanox SX1016 & SX1036 10/40GbE switches performance and power
consumption evaluation, 2012. URL http://tolly.com/DocDetail.aspx?
DocNumber=212113.

TOP 500. TOP500 supercomputer sites, 2014. URL http://www.top500.org.

B. Vogginger. Testing the operation workflow of a neuromorphic hardware system
with a functionally accurate model. Diploma thesis, Ruprecht-Karls-Universität
Heidelberg, 2010. HD-KIP-10-12.

XML 1.0. Extensible Markup Language (XML) 1.0. W3C, 5.0 edition, Nov. 2008.
URL http://www.w3.org/TR/REC-xml.

164

http://tolly.com/DocDetail.aspx?DocNumber=212113
http://tolly.com/DocDetail.aspx?DocNumber=212113
http://www.top500.org
http://www.w3.org/TR/REC-xml

Bibliography

J. Weidendorfer. Sequential performance analysis with callgrind and kcachegrind.
In M. Resch, R. Keller, V. Himmler, B. Krammer, and A. Schulz, editors, Tools
for High Performance Computing, pages 93–113. Springer Berlin / Heidelberg,
2008.

S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn. Ceph:
A scalable, high-performance distributed file system. In Proceedings of the 7th
Symposium on Operating Systems Design and Implementation, OSDI ’06, pages
307–320. USENIX Association, 2006.

Xilinx, Inc. Virtex-5 family overview, Feb. 2009. URL http://www.xilinx.com/
support/documentation/data_sheets/ds100.pdf.

Xilinx, Inc. 7 series FPGAs overview, Oct. 2011. URL http://www.xilinx.com/
support/documentation/data_sheets/ds160.pdf.

Xilinx, Inc. Kintex-7 FPGA Connectivity Targeted Reference Design: User Guide,
Nov. 2012. URL http://www.xilinx.com/support/documentation/boards_
and_kits/ug927-K7-Connectivity-TRD.pdf.

Xilinx, Inc. 7 series FPGAs overview, Feb. 2014. URL http://www.xilinx.com/
support/documentation/data_sheets/ds180.pdf.

F. Zenke and W. Gerstner. Limits to high-speed simulations of spiking neural
networks using general-purpose computers. Frontiers in Neuroinformatics, 8(76),
2014. doi: 10.3389/fninf.2014.00076.

165

http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug927-K7-Connectivity-TRD.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug927-K7-Connectivity-TRD.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds180.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds180.pdf

Glossary
10GbE

10-Gigabit Ethernet [IEEE 802.3ak, 2004]. 5, 17, 27, 30, 34, 35, 38, 52, 57,
64, 65, 68–70, 72, 107, 110–112, 115, 118, 120, 147, 148, 152, 180, 181, 183,
184
10GBASE-SR. 34
SFP+ 10G Twinax Direct-Attach Copper. 35

1GbE
Gigabit Ethernet [IEEE 802.3ab, 1999]. 17, 21–23, 26, 27, 33–36, 38, 39, 42,
44, 45, 49, 52, 54, 56, 57, 60, 63–69, 94, 110–112, 115, 119, 147, 148, 180

40GbE
40-Gigabit Ethernet [IEEE 802.3ba, 2010]. 5, 27, 31, 32, 34, 35, 38, 69, 71,
72, 107, 148, 150

8P8C
8 position 8 contact connector. Modular connectors have been originally used
in telephone wiring. 26

ACK
Acknowledge successful data reception. 43, 45, 46, 48, 56, 58–60, 62, 191

ADC
Analog-to-digital converters transform continuous signals, e.g. voltages, into
digital numbers. 23, 80

AdEx
Adaptive exponential integrate-and-fire model [Brette and Gerstner, 2005].
18, 23

AER
Address-event representation describes a neuronal event, i.e. spike, using only
an identifier. The spike time is implicitly encoded in the events presence. It
often connotes a handshake protocol for data exchange. 37

AnaB
Analog Breakout PCB. 17, 19

AnaRM
Analog readout module. 18, 19, 23, 33, 36, 38, 79–81, 94, 95, 97

167

Glossary

AnaRMAN
Analog readout module aggregator node. 18, 23, 36, 38, 41, 79–81, 94, 95

API
An application programming interface provides a specified interface to a soft-
ware component. Functions, parameters and return values are covered. 49,
58, 73–78, 80, 83–86, 88, 89, 93, 108, 111, 114, 115, 127, 130, 136, 149, 172,
176

ARP
Address resolution protocol [RFC826]. 64, 66

ARQ
Automatic repeat request protocols provide reliable data transfer. 42, 45, 46,
48, 49, 52, 58

AuxPwr
Auxiliary Power Supply PCB. 17, 19

Backbone switch
The backbone switch interconnects compute nodes and wafer module. 17, 34,
35, 117, 118, 149

BEG
Background event generator. 139

Blue Gene/P
IBM Blue Gene/P supercomputer. 96, 107

Blue Gene/Q
IBM Blue Gene/Q supercomputer. 96

Boost
Boost C++ libraries. 90

boost::serialization
A C++ library providing capabilities. Binary and text-based output formats
are supported. 90

Brian
Brian spiking neural network simulator. 88

BSS
BrainScaleS project. 15, 34, 35, 41, 56, 57, 60, 62, 75, 77, 88, 94, 99, 105,
110, 111, 114, 115, 118, 141, 172, 182

C
The C programming language. 80, 186

168

Glossary

C++
The C++ programming language. 75, 76, 89, 92, 168, 171

Calibtic
Database for calibration data. 78

Callgrind
Valgrind-based Profiling Tool. 52, 134, 135

CephFS
The Ceph file system is based on the open-source Ceph distributed object
storage system [Weil et al., 2006]. 32

cgroups
Linux kernel-based isolation mechanism [CGroups, 2014]. 33, 97, 174

CI
Technique in software development which emphasizes early integration of
changes and testing. 92, 181

cLIF
Leaky integrate-and-fire neuron model with current-based synapses. 123, 125,
130–134, 187

clock_gettime
syscall to retrieve the time of the specified clock. 114, 183, 185

CMOS
Complementary metal-oxide-semiconductor. 18, 172

Compute cluster
A collection of computers interconnected by a dedicated network. 17, 25, 33,
35, 89, 145, 147, 148, 150, 152

Compute node
A single compute node as part of a Cluster. 17, 19, 23, 27–30, 33, 34, 36, 38,
39, 41, 42, 44, 52, 54, 55, 57, 66, 69, 70, 74, 77, 80, 81, 84, 90, 94–97, 99, 102,
112, 114–120, 122, 123, 131, 134, 135, 141, 144, 145, 148–152, 168, 183, 186,
193

COTS
Commercially available products. 107

CPEX
Complete Pairwise Exchange [Tam and Wang, 2000]. 108

CPU
Central processing unit. 27–30, 32, 50, 95, 97, 115, 120, 150, 172, 180–182

169

Glossary

CRC
Cyclic redundancy check. 20, 44

DDR
double data rate. 67

Debian Wheezy
Debian Wheezy. 33, 186

DenMem
The dendrite membrane circuit is the basic building block of the analog neu-
rons on the HICANN. Multiple units can be connected to increase the maxi-
mum number of inbound or pre-synaptic connections. 42, 84, 138

DMA
direct memory access. 135

DNC
digital network chip. 138, 139

Docker
Tool for automated deployment of applications inside software containers (us-
ing LXC, Linux containers). 93

ENI
Container building located next to the KIP building. 35, 190

ESS
Executable System Specification. 76, 78, 80, 83, 93

Ethernet
Ethernet is a family of data networking technologies. The original version
provided 10Mbit/s [IEEE 802.3, 1999]. 21, 33, 39, 41, 42, 44, 64, 66, 112

EXTOLL
High-performance interconnection technology which provides ultra-low laten-
cies and high message rates [EXTOLL, 2014]. 107, 152

FACETS
The FACETS project (fast analog computing with emergent transient states).
18, 22, 37, 56, 74, 76, 85, 93, 110, 178

FACETS Stage 1
Accelerated neuromorphic system based on Spikey chips. 23, 49

170

Glossary

FCP
FPGA communication PCB. 17–24, 26, 27, 34–36, 39, 41, 42, 52, 54–58, 60,
62–69, 71, 72, 79, 81, 83, 84, 94, 95, 97–100, 104, 110–112, 114, 118, 119, 130,
134, 136, 145, 147–149, 151, 180, 182, 184

flock
syscall to acquire locks on an open file. 81

Flow control
Flow control provides means to throttle the sending rate within a communi-
cation channel to not overwhelm the receiving side. 42

FPGA
Field-programmable gate array. 5, 10, 16, 18, 20–24, 26, 34, 39, 41, 42, 48,
52, 54–69, 71, 72, 75, 79, 81, 83, 94, 95, 97, 100, 104, 110–112, 114, 118, 138,
145, 147–152, 171, 173, 178–180, 182, 184, 191

FSM
finite state machine. 83, 178

futex
fast userspace mutex. 49

GCC
GNU Compiler Collection. 183, 186

GPU
graphics processing unit. 75, 95, 97

Graph 500
Supercomputer list based on a benchmark which focuses on data-intensive
loads [Murphy et al., 2010]. 27, 29

GTest
Google C++ testing framework. 92

GUI
Graphical User Interface. 94

HALbe
hardware abstraction layer back end. 76–81, 83, 84, 181, 184

HBP
Human Brain Project. 13, 15–17, 27, 34, 35, 41, 88, 94, 99, 103, 104, 110,
118, 141, 149, 151, 179, 182

HDD
Hard disk drive. 30, 31, 182

171

Glossary

HICANN
The high-input count analog neuronal network chip (version 2) is the current
design of the NM-PM1 and BSS systems. It is a mixed-signal implementation
of a highly configurable neuronal network produced in 180 nm CMOS tech-
nolgy. 18, 20–24, 41, 48, 52, 54, 55, 57, 64, 66–68, 76, 81, 83, 84, 94, 95, 98,
111, 112, 115, 118, 119, 123, 125–127, 134, 136–138, 141, 144, 149, 170, 184

HICANN Wafer
A 20 cm silicon wafer with 384 HICANN ASICs interconnected by wafer-scale
postprocessing. 34

HICANN-ARQ
HICANN-ARQ protocol. 16, 21, 45, 52

hicann-system
lowest-level API for hicann access. 111, 184

HMF
Hybrid Multiscale Facility. 12, 15, 17, 18, 21–25, 27–30, 34–37, 39, 40, 51,
57, 74, 78, 79, 84, 86, 88, 90, 94, 98, 100–106, 110–112, 114–116, 118, 122,
134–136, 141, 145, 147, 148, 150, 176, 177, 181, 183, 186
HMF conventional part. 77, 99, 101, 102, 107, 123, 182
HMF neuromorphic part. 107, 109

HostARQ
HostARQ protocol. 16, 40, 45, 48, 49, 51–58, 60, 62, 64–67, 69–71, 118, 150,
181

HPC
high-performance computing. 27, 37, 74, 75, 94–99, 103, 105, 148, 150–152

InfiniBand
InfiniBand. 107

Intel Core
Brand name used by Intel for high-end consumer central processing units
(CPUs). 27

IOzone3
IOzone is a filesystem and disk benchmarking tool. 188, 189

IP
internet protocol. 37, 39, 41, 94

IPC
inter-process communication. 49, 50, 83, 84, 88

172

Glossary

IPv4
internet protocol version 4. 39, 41, 42, 54, 66, 111, 112, 150

IPv6
internet protocol version 6. 39

iRODS
integrated rule-oriented data system. 99

Jenkins
Open-source continuous integration tool. 92, 93

JTAG
Joint Test Action Group (JTAG) is colloquial name for IEEE 1149.1 which is
a standard for a test access port and boundary-scan architecture. 41

Kintex-7
Xilinx Kintex-7 FPGA [Xilinx, Inc., 2014]. 24, 56–58, 60, 114

KIP
Kirchhoff-Institute for Physics. 35, 170, 190

KIP
Kirchhoff-Institute for Physics. 34

KVM
keyboard video mouse. 35

L1
Layer 1. 18, 20, 66, 81, 112, 136, 138, 139

L2
Layer 2. 20, 21

LabVIEW
National Instruments LabVIEW. 94

LIF
leaky integrate-and-fire model. 23, 37, 86, 110, 130, 142, 178, 186

LINPACK
A benchmark that measures floating point performance [Dongarra, 1988]. 13,
27, 28

Linux
Linux Operating System. 29, 32, 33, 52, 82, 96, 120

173

Glossary

LSB
least significant bit. 112, 138

LXC
Linux kernel-based containment system (cgroups plus namespacing). 97, 170

MAC
media access controller. 44, 52

MainPCB
wafer module main PCB. 17, 22, 24

MappingTool
Software package to transform a biological network description into a hard-
ware configuration. Superseded by Marocco. 85

Marocco
Marocco. 77–79, 85, 86, 89, 91, 174, 181

MIC
many integrated core. 97

mlock
syscall to force memory of calling process’ virtual address space into RAM,
prevent paging out. 120

mmap
syscall to map files or devices into the virtual address space of the calling
process memory. 51, 52, 118, 121

MPI
message passing interface. 33, 107, 108, 110, 145

MSB
most significant bit. 41, 48

MTU
Maximum Transfer Unit. 42, 44, 54, 60, 69, 71, 191

MUSIC
Multi-Simulation Coordinator. 108, 109, 136, 145, 149

mutex
mutual exclusion. 49, 51

NAPI
extension to linux NIC driver framework for improving performance of high-
speed networking [Kelly and Gasparakis, 2010]. 52, 120

174

Glossary

NCSim
Cadance NCSim. 57

Neo
Python package for representing electrophysiology data. 88

NEST
NEural Simulation Tool [Gewaltig and Diesmann, 2007]. 13, 86, 108, 123,
127, 129–132, 147

NeuroML
Declarative, XML-based specification language for neuronal network models
Gleeson et al. [2010]; XML 1.0 [2008]. It support 3 levels of detail: anatomical,
biophysical and topological description. 86, 88

NEURON
NEURON Simulator [Hines and Carnevale, 2006]. 86, 88, 107, 130

NFSv4
NFSv4. 30, 33

NIC
network interface controller. 30–32, 52, 60, 69, 107, 110, 115, 118, 120, 135,
174, 181

NineML
Declarative, XML-based specification language for neuronal network models.
88

NM-MC
Neuromorphic many-core system.

neuromorphic multi-core architecture version 1. 103

NM-PM
Neuromorphic physical model system. 80, 84, 94

Neuromorphic physical model version 1 including all system components and
the control cluster. 12–15, 17, 18, 21–24, 27–41, 44, 51, 52, 60, 62, 69–72,
74, 77–80, 84, 86–88, 94–96, 98, 101, 103, 104, 110, 112, 114, 115, 117–120,
147–152, 172, 177, 183, 189, 193

Neuromorphic physical model version 2 including all system components and
the control cluster. 151

NMPI
HBP neuromorphic platform interface. 103

175

Glossary

NumPy
Python package for scientific computing. Its core is the N-dimensional array
data structure. The array provides strided views on memory that is kept in
the underlying C implementation. 88

OFED
OpenFabrics Alliance. 33

OpenID
OpenID, or OID, is an open standard and decentralized protocol for user
authentication. 99

OSI
Open Systems Interconnection. 40

PCB
printed circuit board. 10, 16, 18, 19, 21, 22, 24, 26, 33, 39, 110, 167, 168, 171,
174, 180, 182

PCIe
Peripheral Component Interconnect Express. 30, 32, 181

PMU
power management unit. 18, 19, 24, 38, 81, 94

PSP
postsynaptic potential. 86

PSU
power supply unit. 24, 30–32, 94, 181

PXE
preboot execution environment. 33

Py++
Python package that generates code for automated wrapping to Python. 75

PyHAL
Python-based hardware abstraction layer. 74–76

PyHMF
PyNN for the HMF. 77–79, 89, 91, 181

PyNN
API for procedural specification of neuronal network models. 73–79, 85, 86,
88, 89, 93, 127, 132, 136, 145, 149, 176, 177, 186

176

Glossary

PyNN.hardware.nmpm
PyNN back end for NM-PM1. 88
Currently, the HMF and NM-PM1 use the same interface. 88

Python
Python Programming Language. 74–76, 176

QSFP
Quad SFP+. 34

RAM
random access memory. 28, 152, 174
dynamic random access memory. 21–23, 58
synchronous dynamic random-access memory. 67
static random access memory. 57, 67

Raspberry Pi
Raspberry Pi. 24, 39, 81

RCF
remote call framework. 81, 84, 89–91, 192

recvfrom
syscall to send a message from a destination on a socket. 120

ReDMan
Database for resource defect management. 78

REST
representational state transfer. 103

RMSE
root-mean-square error. 28, 42, 62, 64, 65, 70, 71, 91, 100, 115

RPC
remote procedure call. 78, 80, 81, 89, 148

RTT
round-trip time. 42, 44, 51, 58, 62, 69, 113, 114, 116, 117, 119, 122, 185, 193

SAS
Serial attached SCSI. 31, 32

SATA 6G
SATA revision 3.0. 31, 32

177

Glossary

sched_setaffinity
syscall to set process’ CPU affinity mask. 120

sched_setscheduler
syscall to set scheduling policy and parameters. 120

Scheriff
FSM to check correct order of configuration. 83, 84

SCtrlTP
SlowControl transport protocol. 49

sendto
syscall to send a message on a socket to a destination. 120

serialization
Serializing or marshalling means translating memory data structures into a
binary format that can be stored or transmitted and can later be used to
reconstruct the original data structure. 74, 89, 91, 148, 168, 192

SFP+
Enhanced small form-factor pluggable supporting up to 10Gbit/s. 34, 177

SimDenMem
HALbe simulation back end for analog circuits. 78, 83, 84

SLURM
simple Linux utility for resource management. 33, 79, 96–104, 148, 151

Spartan-6
Xilinx Spartan-6 FPGA [Xilinx, Inc., 2011]. 23

Spikey
Spikey is a chip-based neuromorphic system developed during FACETS that
implements 384 LIF neurons and approximately 100k synapses. 33, 37, 73–76,
110, 170

SpiNNaker
Spiking Neural Network Architecture. 111, 112, 118

SQL
Structured query language. 96

SSD
Solid-state disk. 32

StHAL
stateful hardware abstraction layer. 77–79, 84, 181, 184

178

Glossary

SVN
Subversion. 57

syscall
Program request to operation system kernel. 52

TCP
transmission control protocol. 42, 150

TCP/IP
TCP/IP v4. 39, 40

TEPS
traversed edges per second. 29

TUD
Technische Universität Dresden. 111

UDP
user datagram protocol. 40–42, 44, 52, 54, 57, 63–65, 111, 112, 115

UNICORE
uniform interface to computing resources. 99

UNIX
UNIX. 49, 50, 52, 81, 101, 113, 114, 120, 149

UP
HBP unified portal: a general interface providing visualization, simulation
and analysis capabilities. 74, 103, 104, 151

USB 2.0
Universal Serial Bus version 2.0 [USB 2.0, 2000]. 23, 33, 36, 37, 75, 76, 81, 94

Valgrind
Versatile Debugging and Profiling Tool. 52, 134, 169

VDD
1.8 V digital power supply voltage for the Wafer (1.8 V). 83

VerCL
virtual environment for closed-loop experiments. 84, 114, 118, 120–122

Virtex-5
Xilinx Virtex-5 FPGA [Xilinx, Inc., 2009]. 24, 56–58, 60, 114

Visions
Electronic Vision(s) group. 92

179

Glossary

VLAN
Virtual LAN. 44, 66

VLSI
Combines integrated circuits onto a single chip. 13

VPN
virtual private network. 39

Wafer
Silicon wafer used as the basis of micro-chip production. 17, 24, 152

Wafer module
Assembly of an HICANN wafer, a Main PCB, 48 FCPs and power supply
PCBs. 13–19, 21–25, 27, 30, 33–36, 38, 54, 56, 57, 62, 66, 67, 69, 72, 74,
80–83, 94–99, 102, 104, 110, 114, 145, 148, 149, 151, 152, 168

Wafer switch
The wafer switch aggregates the individual 1GbE links of the FPGA commu-
nication PCBs (FCPs) to 10GbE. 17, 35, 38, 65, 68, 115

wafer-scale
Wafer-scale integration describes very-large integrated circuit systems that
use complete wafers. 18

Wall-clock time
The wall-clock time is the (real) time that passed between starting and fin-
ishing a task. 109, 110

WIO
wafer I/O PCB. 19, 22

WIOH
horizontal wafer I/O PCB. 17

WIOV
vertical wafer I/O PCB. 17, 110

Wireshark
Wireshark packet analyzer. 52, 53, 64

x86
Intel x86 CPU architecture. 120

180

A. Appendix

A.1. Repositories and Links

Project Server https://gitviz.kip.uni-heidelberg.de/
Issues https://gitviz.kip.uni-heidelberg.de/issues/%u
CI Server https://gitviz.kip.uni-heidelberg.de:8443/

HostARQ https://gitviz.kip.uni-heidelberg.de/projects/sctrltp
HALbe https://gitviz.kip.uni-heidelberg.de/projects/halbe
StHAL https://gitviz.kip.uni-heidelberg.de/projects/sthal
Marocco https://gitviz.kip.uni-heidelberg.de/projects/marocco
PyHMF https://gitviz.kip.uni-heidelberg.de/projects/pyhmf
cl-tests https://gitviz.kip.uni-heidelberg.de/projects/cl-tests

Table A.1.: List of repositories and project links.

A.2. Cluster & Network Architecture
Lists of Components

Component
CPU 1 Intel i7-2600

Sandy Bridge, 32nm
RAM 32GiB DDR3-1333
Main Board 1 Intel Q67 chipset-based

Remote management via intel AMT
1 PCIe ×16 Gen3 (16 lanes) slot
4 Memory slots, DDR3-1333

NIC 1 Intel E10G81G2P
1 10GbE port

MPI with RDMA-support
Case/PSU Desktop case, 300W

Table A.2.: Components of a HMF compute node. The quad-core desktop CPU
runs at a base clock speed of 3.4GHz (turbo speed 3.8GHz).

181

https://gitviz.kip.uni-heidelberg.de/
https://gitviz.kip.uni-heidelberg.de/issues/%u
https://gitviz.kip.uni-heidelberg.de:8443/
https://gitviz.kip.uni-heidelberg.de/projects/sctrltp
https://gitviz.kip.uni-heidelberg.de/projects/halbe
https://gitviz.kip.uni-heidelberg.de/projects/sthal
https://gitviz.kip.uni-heidelberg.de/projects/marocco
https://gitviz.kip.uni-heidelberg.de/projects/pyhmf
https://gitviz.kip.uni-heidelberg.de/projects/cl-tests

A. Appendix

Storage Node
• 16×4TB Hard disk drives (HDDs) as mid-term storage

• based on RAID6 using Linux Software-RAID default settings:
– chunk size 512KiB, left-symmetric

• Filesystem: Ext4, using default settings:
– block size 4KiB
– Stride is the number of file-system blocks fitting into the RAID chunk

size, the so-called stripe. It is the atomic data unit of the RAID. The
metadata layout is optimized to not overlap.

– stride = chunk/block = 512KiB/4KiB = 128
– The formatting is aligned to RAID stripe size in order to prevent a read-

modify-write cycle of the parity when data is written.
– Due to the large disk caches, we use write barriers and an ordered journal

on the file system to minimize potentiall data loss after a power cut.

• Some further optimization was performed:

• /sys/block/mdx/md/stripe_cache_size

A.3. References
To ensure reproduction of results it is essential to specify software revisions and
configuration options. Compared to a purely software-based environment, the
BrainScaleS (BSS) and Human Brain Project (HBP) systems have more degrees
of freedom. For instance, the FPGA communication PCB (FCP) firmware revi-
sions get updates, the external voltages for analog circuits are adjusted and other
changes occur that are not easily traceable by software.

Throughput Measurement of Mapping Input Stage
Host AMTHost22
Memory 32GiB
CPU Intel i7-2600 (3.4GHz base)
Environment same as HMF-CP cluster
Source euter:test/euter-client.cpp (0xe8aefe)

Table A.3.: References for the throughput measurement of the mapping input stage
(see figure 2.28).

182

A.3. References

Critical Timings
All micro benchmarks were performed on Hybrid Multiscale Facility (HMF)
compute nodes using Debian wheezy GNU Compiler Collection (GCC) (version
4.7.1-7) and the following parameter set: -std=gnu++11 -g -O3 -ffast-math.
Additional tests using other parameters (e.g., -funroll-loops) performed
worse and were not used. The length of the measure loop() was tuned to
yield a total runtime of approx. 1 s. Time measurements were performed using
clock_gettime(CLOCK_MONOTONIC, &t). The first tests showed strong depen-
dency on test input data which was related to handling of subnormal floating
point numbers [Lawlor et al., 2005]. A deeper investigation [Fog, 2014a,b] shows
deficiencies for the HMF compute nodes when handling subnormal floating point
numbers. This is why all tests results are given with flush-to-zero and denormals-
are-zero bits active. Further investigation is needed for the new NM-PM1 compute
nodes.

Closed-Loop Experiments

N 25
wproj 0.04
r 1
F -0.35
Hosts AMTHost1, AMTHost2
Repository cl-tests

0xfcecae
Executable tests/VisualFeedbackTest
Network configuration direct connection via 10GbE

(cf. table A.2)

Table A.4.: Reference data for closed-loop experiment using custom cLIF neuron
implementation.

183

A. Appendix

N 32
wproj 0.05
r 1.0
F -0.35
HICANN 276
FPGA firmware revision r1085, 2014-01-27
Wafer #0
Host AMTHost22
Host Configuration Revision 0x3fdd80
StHAL 0x54a2c8
HALbe 0x1f8175
hicann-system 0xc98d08
Repository HALbe
Executable tools/RealtimeVisualFeedbackTest
powered reticles 10, 18, 21, 25, 31, 33, 44, 45
analog voltages not used
Network configuration 10GbE via HP 2910al to FCP

Table A.5.: Reference data for closed-loop experiment using chip-based loopback.

N 9
wafer_0/hicann-Wafer(0)-Enum(276).xml 0xc0597c1b
wafer_0/w0-h276.xml 0x3075d9b3

Table A.6.: Reference data for closed-loop experiment using hardware neurons.
Only the modified parameters of table A.5 are specified, all other pa-
rameters are unmodified. The calibration data files can be identified by
their SHA-1 checksums.

A.4. Code Listings
Ping – a socket()-based Implementation
The custom ping implementation uses a server to reply to incoming requests and a
client which sends the request and performs the time measurement. In particular,
the server creates a socket and listens to incoming packet on a port. Within the
while-loop packets are received and sent back to the original sender. Code for error
handling, include statements and helper functions have been removed for brevity.

int main(int argc, char * argv[]) {
int sockfd, n;

184

A.4. Code Listings

struct sockaddr_in saddr, caddr;
socklen_t len;
char mesg[MTU];

sockfd=socket(AF_INET, SOCK_DGRAM, 0);

bzero(&saddr,sizeof(saddr));
saddr.sin_family = AF_INET;
saddr.sin_addr.s_addr = htonl(INADDR_ANY);
saddr.sin_port = htons(PORT);
bind(sockfd,(struct sockaddr *)&saddr, sizeof(saddr));

while(1) {
len = sizeof(caddr);
n = recvfrom(sockfd, mesg, 1000, 0, (struct sockaddr *)&caddr, &len);
sendto(sockfd, mesg, n, 0, (struct sockaddr *)&caddr, sizeof(caddr));

}
}

Listing 1: Source code of UDP socket-based ping server

The client sends the current time (measured by clock_gettime() and converted
to ns and stored in a 64-bit variable) to the server and waits for an answer. The
answer is used (according to section 3.3.3) to calculate the round-trip time (RTT).
Individual RTTs are stored into an array.

int main(int argc, char * argv[]) {
int sockfd, n, i;
struct sockaddr_in saddr;
uint64_t localtime = 0, remotetime = 0, *rtt, *rtt_copy;
double avg = 0.0, rms = 0.0;

if (argc != 2) {
printf("usage: %s <IP address>\n", argv[0]);
exit(EXIT_FAILURE);

}

sockfd = socket(AF_INET, SOCK_DGRAM, 0);

bzero(&saddr, sizeof(saddr));
saddr.sin_family = AF_INET;
saddr.sin_addr.s_addr = inet_addr(argv[1]);
saddr.sin_port = htons(PORT);

185

A. Appendix

rtt = malloc(sizeof(uint64_t) * ITER);

for (i = 0; i < ITER; i++) {
localtime = gettime();
sendto(sockfd, &localtime, sizeof(localtime), 0,

(struct sockaddr *)&saddr, sizeof(saddr));
recvfrom(sockfd, &remotetime, sizeof(remotetime), 0, NULL, NULL);
rtt[i] = gettime() - remotetime;

}

Listing 2: Source code of UDP socket-based ping server

PyNN Default Parameters of the IF_cond_exp and IF_curr_exp Models
The default PyNN parameters for the conductance-based and current-
based synapses in the leaky integrate-and-fire model neuron models can be
found in the PyNN documentation: http://neuralensemble.org/docs/PyNN/
standardmodels.html

Custom cLIF Implementation
Compiled using GCC 4.7.2 on Debian Wheezy on a HMF compute node. The
compiler flags -ffast-math and -O2 were active. In the following code listing, the
C code is interleaved with the corresponding assembler code; the AT&T syntax is
used, i.e. source before destination.

void update() {
if (refrac > 0)
400680: 8b 05 f6 14 00 00 mov 0x14f6(%rip),%eax # 401b7c <refrac>
400686: 85 c0 test %eax,%eax
400688: 75 66 jne 4006f0 <_Z6updatev+0x70>

--refrac;
else {

W = w_decay_constant * W + J;
40068a: f2 0f 10 05 f6 14 00 movsd 0x14f6(%rip),%xmm0 # 401b88 <W>
400691: 00
400692: f2 0f 59 05 d6 14 00 mulsd 0x14d6(%rip),%xmm0 # 401b70 <w_decay_constant>
400699: 00
40069a: f2 0f 58 05 de 14 00 addsd 0x14de(%rip),%xmm0 # 401b80 <J>
4006a1: 00

if (W > w_thresh) {
4006a2: 66 0f 2f 05 b6 14 00 comisd 0x14b6(%rip),%xmm0 # 401b60 <w_thresh>
4006a9: 00

W = w_decay_constant * W + J;
4006aa: f2 0f 11 05 d6 14 00 movsd %xmm0,0x14d6(%rip) # 401b88 <W>
4006b1: 00

if (W > w_thresh) {
4006b2: 76 1c jbe 4006d0 <_Z6updatev+0x50>

refrac = refrac_periods;
4006b4: 8b 05 be 14 00 00 mov 0x14be(%rip),%eax # 401b78 <refrac_periods>

W = w_reset;

186

http://neuralensemble.org/docs/PyNN/standardmodels.html
http://neuralensemble.org/docs/PyNN/standardmodels.html

A.5. Miscellaneous Measurements

4006ba: f2 0f 10 05 96 14 00 movsd 0x1496(%rip),%xmm0 # 401b58 <w_reset>
4006c1: 00
4006c2: f2 0f 11 05 be 14 00 movsd %xmm0,0x14be(%rip) # 401b88 <W>
4006c9: 00

refrac = refrac_periods;
4006ca: 89 05 ac 14 00 00 mov %eax,0x14ac(%rip) # 401b7c <refrac>

W = w_reset;
}

}
J = j_decay_constant * J;
4006d0: f2 0f 10 05 a8 14 00 movsd 0x14a8(%rip),%xmm0 # 401b80 <J>
4006d7: 00
4006d8: f2 0f 59 05 88 14 00 mulsd 0x1488(%rip),%xmm0 # 401b68 <j_decay_constant>
4006df: 00
4006e0: f2 0f 11 05 98 14 00 movsd %xmm0,0x1498(%rip) # 401b80 <J>
4006e7: 00
4006e8: c3 retq
4006e9: 0f 1f 80 00 00 00 00 nopl 0x0(%rax)
4006f0: 83 e8 01 sub $0x1,%eax
4006f3: 89 05 83 14 00 00 mov %eax,0x1483(%rip) # 401b7c <refrac>
4006f9: eb d5 jmp 4006d0 <_Z6updatev+0x50>
4006fb: 0f 1f 44 00 00 nopl 0x0(%rax,%rax,1)

}

Listing 3: Assembler dump of the custom cLIF implementation. Only the
update() procedure is plotted; incoming spikes are handled by another
function.

The dump shows the update() of the custom current-based leaky integrate-and-fire
model implementation. As described in section 3.5.5, the implementation uses two
floating point multiplications, one floating point addition and two conditional jumps
for a typical update (when the neuron is not in the refractory phase). Received
spikes are updated in another function (not shown) that modifies J by adding a
constant (i.e. the weight).

187

A. Appendix

4KiB

64KiB

1MiB

16MiB

R
ec

or
d

si
ze

write rewrite read

4KiB

64KiB

1MiB

16MiB

R
ec

or
d

si
ze

reread rread rwrite

4KiB

64KiB

1MiB

16MiB

R
ec

or
d

si
ze

bkwdread recrewrite sread

4KiB

64KiB

1MiB

16MiB

R
ec

or
d

si
ze

fwrite frewrite fread

64KiB 1MiB 16MiB 256MiB 4GiB
File size

4KiB

64KiB

1MiB

16MiB

R
ec

or
d

si
ze

freread

10MiB/s 100MiB/s 1GiB/s 8GiB/s

Figure A.1.: IOzone3 results for the storage node, sto. The plots show different
file access patterns: rread and rwrite Transaction, or record, size is
plotted over file size. For large record sizes the performance numbers
show the sequential read/write performance. Different read and write
strategies evaluate effects of disk caching, disk seek latencies, filesystem
overhead, and kernel buffering. See IOzone3 [2014] for details. The
test used the options -u to automatically remount between tests, -e
to include sync times, -c to include close() times, and -g 64g -az
to sweep up to 64GiB.

188

A.5. Miscellaneous Measurements

4KiB

64KiB

1MiB

16MiB

R
ec

or
d

si
ze

write rewrite read

4KiB

64KiB

1MiB

16MiB

R
ec

or
d

si
ze

reread rread rwrite

4KiB

64KiB

1MiB

16MiB

R
ec

or
d

si
ze

bkwdread recrewrite sread

4KiB

64KiB

1MiB

16MiB

R
ec

or
d

si
ze

fwrite frewrite fread

64KiB 1MiB 16MiB256MiB 4GiB 64GiB
File size

4KiB

64KiB

1MiB

16MiB

R
ec

or
d

si
ze

freread

10MiB/s 100MiB/s 1GiB/s 8GiB/s

Figure A.2.: IOzone3 results for one NM-PM1 frontend node, hel. The same set of
options as in figure A.1 was used.

189

A. Appendix

from DV 99.3 R99.923 SM#3

to HBP Container SM #3

to DV 0.1 R00.921 SM #2

to DV 3.2 R03.207 SM #2, #3

from DV 99.3 R99.923 SM #2

from DV 99.3 R99.923 SM #2, #3

Patch field
F9

V 0.1 F9
01.218

03.209

03.207

00.921

99.923

HBP Container

2x 2m SC-SC SM

1x 1m LC-SC SM

HP 6600-24XG

2x 20m LC-SC SM

Netgear
XS708E

Netgear
XS708E

HP 5900AF-48XG
-4QSFP+

Room

HMF

NM-PM1

Prototype

1x 15m LC-SC SM

1x 2m Cat. 6A

1x 15m Cat. 6A

Figure A.3.: Schematic showing the KIP and ENI buildings with the interconnec-
tion details.

190

A.5. Miscellaneous Measurements

A.5. Miscellaneous Measurements

ACK Delay [µs]

T:
Th

ro
ug

hp
ut

[M
iB

/s
]

0
40
80

120
2016 1680 1440 1260 1120 1008 840

104

105

106

0
40
80

120
720 672 630 560 504 480 420

104

105

106

0
40
80

120
360 336 315 288 280 252 240

104

105

106

0
40
80

120
224 210 180 168 160 144 140

104

105

106

0
40
80

120
126 120 112 105 96 90 84

104

105

106

101 102 1030
40
80

120
80

101 102 103

72

101 102 103

70

101 102 103

63

101 102 103

60

0.0

0.2

0.4

0.6

0.8

1.0

R:
Ra

te
[1

/s
]

Figure A.4.: Host to FPGA throughput measurement utilizing only the down
connection (half-duplex). The payload size is varied while
sizeof(packet payload) × sizeof(window) = const using the standard
MTU = 1500B. Throughput is plotted against ACK timings. The
marked points are used for figure 2.17.

191

A. Appendix

Ba
tc
h1

K
iB
_
C
al
l

Ba
tc
h1

M
iB
_
C
al
l

Ba
tc
h3

2K
iB
_
C
al
l

O
ne

wa
y_

C
al
l

Tw
ow

ay
_
C
al
l

Tw
ow

ay
_
4b

Ba
tc
h1

M
iB
_
4b

O
ne

wa
y_

4b
Ba

tc
h1

K
iB
_
4b

Ba
tc
h3

2K
iB
_
4b

Tw
ow

ay
_
Ve

ct
or
_
1K

iB
Ba

tc
h6

4M
iB
_
Ve

ct
or
_
1K

iB
Ba

tc
h1

28
M
iB
_
Ve

ct
or
_
1K

iB
Ba

tc
h1

6M
iB
_
Ve

ct
or
_
1K

iB
O
ne

wa
y_

Ve
ct
or
_
1K

iB
Tw

ow
ay
_
Ve

ct
or
_
1M

iB
Tw

ow
ay
_
Ve

ct
or
_
32

M
iB

Ba
tc
h1

28
M
iB
_
Ve

ct
or
_
32

M
iB

Ba
tc
h1

28
M
iB
_
Ve

ct
or
_
12

8M
i

Tw
ow

ay
_
Ve

ct
or
_
25

6M
iB

Tw
ow

ay
_
Ve

ct
or
_
12

8M
iB

Ba
tc
h6

4M
iB
_
Ve

ct
or
_
32

M
iB

O
ne

wa
y_

Ve
ct
or
_
25

6M
iB

O
ne

wa
y_

Ve
ct
or
_
32

M
iB

O
ne

wa
y_

Ve
ct
or
_
12

8M
iB

Ba
tc
h6

4M
iB
_
Ve

ct
or
_
1M

iB
Ba

tc
h1

28
M
iB
_
Ve

ct
or
_
1M

iB
Ba

tc
h1

6M
iB
_
Ve

ct
or
_
1M

iB
O
ne

wa
y_

Ve
ct
or
_
1M

iB

100
101
102
103
104
105
106
107
108
109

1010

Throughput [B/s]
Transfer Frequency [1/s]
Throughput per Transfer [B]

Figure A.5.: See figure 2.27 for a description of the plot; in contrast to the men-
tioned plot, this plot uses the RCF-internal serialization framework
(SF). The plot is based on measurements performed by Kai Husmann
under the supervision of the author; for details see Husmann [2012].

192

A.5. Miscellaneous Measurements

4700 4750 4800 4850 4900 4950 50000.000

0.005

0.010

0.015

0.020

D
ire

ct
,V

er
C
L

Round-trip Time [ns]

Pr
ob

ab
ili
ty

Figure A.6.: RTT measured between two directly connected NM-PM1 compute
nodes. In contrast to the plots shown in figure 3.7, the ordinate is
linear. An attempt to fit a Gaussian or normal function is shown as
red dashed line (fit constrained to 4750 ns to 4885 ns). Compared to
the other plots which used a logarithmic scale, the skewness is more
difficult to recognize.

193

A. Appendix

0.2
0.4
0.6
0.8

t s
te

p
=

20
.0

d
=

1

0.2
0.4
0.6
0.8

t s
te

p
=

10
.0

d
=

3

0.2
0.4
0.6
0.8

t s
te

p
=

4.
0

d
=

7
0 6000 12000 18000 24000

d = 1

0.2
0.4
0.6
0.8

t s
te

p
=

3.
0

0 200000 400000 600000 800000
tstep = 100.0 µs

d
=

8Detector
Position

Time [µs]

Po
sit

io
n
of

Si
m
ul
at
ed

O
bj
ec
t

Figure A.7.: Software-based closed-loop experiment. Same data as figure 3.16 but
time-axis zoomed out.

194

Acknowledgments

Ich danke:

Prof. Ulrich Brüning für die Übernahme der Zweitkorrektur.

Prof. Karlheinz Meier und Johannes Schemmel für die Herausforderungen, die ich
bei den Visionären angehen durfte.

Allen Softies und allen anderen Kollaborateuren für die schöne und erfolgreiche
Zusammenarbeit. Das waren und sind insbesondere Bernhard Kaplan, Daniel Brü-
derle, Olivier Jolly, Andreas Grübl, Dan Husmann, Johannes Bill, Mihai Petrovici,
Matthias Hock, Moritz Schilling, Andreas Hartel, Sebastian Jeltsch, Maurice Gütt-
ler, Paul Müller, Thomas Pfeil, Vitali Karasenko, Oliver Breitwieser, Kai Husmann,
Sven Schrader, Johannes Partzsch und Christoph Koke.

Meiner Familie,

allen Freunden und

Katharina.

It works! gggqGZZ

Statement of Originality (Erklärung):

I certify that this thesis, and the research to which it refers, are the product of
my own work. Any ideas or quotations from the work of other people, published
or otherwise, are fully acknowledged in accordance with the standard referencing
practices of the discipline.

Ich versichere, dass ich diese Arbeit selbständig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, October 5, 2014

.......................................
(signature)

	Introduction
	1 System Architecture
	1.1 The Wafer Module
	1.1.1 Internal Connectivity
	1.1.2 External Connectivity
	1.1.3 The FPGA Communication PCB
	1.1.4 Analog Readout
	1.1.5 Model and Parameter Domains
	1.1.6 Wafer Module Prototype System

	1.2 Cluster Architecture
	1.2.1 Compute Nodes
	1.2.2 Storage
	1.2.3 Frontend Nodes
	1.2.4 Software Environment
	1.2.5 Management and Monitoring

	1.3 Network Architecture
	1.4 Summary

	2 Fast Operation
	2.1 Communication Protocols
	2.1.1 HostARQ
	2.1.1.1 HostARQ Payload
	2.1.1.2 Software Implementation
	2.1.1.3 FPGA Implementation

	2.1.2 Performance Measurements
	2.1.2.1 Virtex-5 1GbE/UDP Core
	2.1.2.2 Between Host and FCP FPGA
	2.1.2.3 Between Host and Multiple FCP FPGAs
	2.1.2.4 Between Host and HICANN
	2.1.2.5 Transport-layer Latency
	2.1.2.6 Inter-host Performance

	2.2 Operation Software
	2.2.1 HALbe
	2.2.1.1 Wafer-global Operations
	2.2.1.2 Scheriff
	2.2.1.3 ESS
	2.2.1.4 SimDenMem
	2.2.1.5 Real-time Access

	2.2.2 StHAL
	2.2.3 Marocco
	2.2.4 PyNN
	2.2.5 Connecting Software Pipe-line Components
	2.2.6 Calibration
	2.2.7 Automatic Testing
	2.2.8 BSS Live System

	2.3 Resource Management
	2.3.1 Measurements using SLURM
	2.3.2 HBP Unified Platform

	2.4 Summary

	3 Hybrid Operation
	3.1 Closed-loop Experiments
	3.2 Real-time Closed-loop Operation
	3.2.1 Data Exchange

	3.3 Hardware Platform
	3.3.1 Latency Requirements
	3.3.2 Communication Interface
	3.3.3 Latency Measurement
	3.3.4 HMF
	3.3.5 NM-PM1
	3.3.6 HMF vs. HICANN Latency

	3.4 Software Infrastructure
	3.4.1 Comparison to a Standard socket()-based Implementation

	3.5 Experiment
	3.5.1 Virtual Environment
	3.5.2 Virtual Environment Implementation
	3.5.3 Software-based Setup
	3.5.4 Setup based on HICANN Loopback
	3.5.5 Real-time Software-based Setup
	3.5.6 Real-time Setup based on HICANN Loopback
	3.5.7 Setup using the HMF

	3.6 Summary

	Discussion
	Bibliography
	Glossary
	A Appendix
	A.1 Repositories and Links
	A.2 Cluster & Network Architecture
	A.3 References
	A.4 Code Listings
	A.5 Miscellaneous Measurements

	Acknowledgments

