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Abstract.
Motivated by the increased demand for comput-

erized analysis of documents within the Digital Hu-
manities we are developing algorithms for cuneiform
tablets, which contain the oldest handwritten script
used for more than three millennia. These tablets are
typically found in the Middle East and contain a to-
tal amount of written words comparable to all docu-
ments in Latin or ancient Greek. In previous work we
have shown how to extract vector drawings from 3D-
models similar to those manually drawn over digi-
tal photographs. Both types of drawings share the
Scalable Vector Graphic (SVG) format representing
the cuneiform characters as splines. These splines
are transformed into a graph representation and ex-
tend these by triangulation. Based on graph kernel
methods we show a similarity metric for cuneiform
characters, which have higher degrees of freedom
than handwriting with ink on paper. An evaluation
of the precision and recall of our proposed approach
is shown and compared to well-known methods for
processing handwriting. Finally a summary and an
outlook are given.

1. Introduction

Cuneiform tablets are one of oldest textual arti-
facts comparable in extent to texts written in Latin
or ancient Greek. Since those tablets were used
in all of the ancient Near East for over three thou-
sand years [22], many interesting research questions
can be answered regarding the development of reli-
gion, politics, science, trade, and climate change [9].
These tablets were formed from clay and written

(a) (b)

Figure 1. Cuneiform tablet No. TCH92, G127 [8]: (a)
Photograph and (b) its drawing. Six instances of the same
two character tuple have been highlighted in yellow. A
method for cuneiform character recognition would ideally
classify those wedge configurations as highly similar.

on by impressing a rectangular stylus [2]. The re-
sult is a wedge shaped impression in the clay tablet.
The word cuneiform derives from the Latin word
“cuneus” wedge and “forma” shaped.

There is an increasing demand in the Digital Hu-
manities domain for handwriting recognition focus-
ing on historic documents [20]. Even the recognition
of ancient characters sharing shapes with their mod-
ern counterparts e.g. ancient Chinese Sutra [14] is a
challenging task. For digitally processing cuneiform
script there exist only a few recent related approaches
like proposed in [6] using geometric features of
cuneiform tablets acquired with a 3D-scanner [16].

However, with the aim of building a search tool for
cuneiform tablets we have to consider the complexity
of cuneiform characters in their de facto standardized
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(a)
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Figure 2. The cuneiform character for the syllable “zum”
and its drawing.

2D-representation. Figure 1 shows a photograph of
a cuneiform tablet and its drawing. Properties like
the lack of fixed word length together with a wide
variety of infixes, suffixes and prefixes prevents the
application of existing machine learning methods on
pictographs.

The extraction of the wedge shaped impressions of
a cuneiform character is currently being approached
by manually tracing a photograph of a cuneiform
tablet using tools like Inkscape or by automatically
extracting the boundary of a wedge configuration on
basis of a 3D-model of the cuneiform tablet [15].
In either case, the result of an extraction is a docu-
ment in the Scalable Vector Graphic (SVG) format.
Figure 2 shows the cuneiform character for syllable
“zum” and its drawing. The extraction of the wedges,
looking like Ys, is challenging because these wedges
are described with splines to retain all the damage
and complexity of being written by hand. A clean ex-
traction of the wedges is not sufficient to easily com-
pare cuneiform characters. The configuration (posi-
tion, orientation, grouping and overlap) and the shape
of the wedges varies among different instances of the
same character to a degree that requires a sophisti-
cated character model to properly classify such char-
acters.

2. Character recognition in raster images

Virtually all related research uses raster data as in-
put. Word spotting is performed either on segmented
lines [4, 24, 10] or on whole documents [18, 17].
The usage of Hidden Markov Models (HMMs) in
these approaches circumvents the problem of learn-
ing fixed-length features for words or characters by
decomposing the document or its lines into smaller

features. The observations of the HMM are thin
slices of a word, less than a character in width but
with the same height as a line. A word is the repre-
sented as a succession of hidden states, each emitting
a set of word slices. The advantage of this represen-
tation is that each slice is a fixed-length feature.

Wshah and colleagues [24] use direction gradients
and a set of four intensities as features for a sliding
window approach over already segmented lines. The
query word is modeled to match a complete line by
beginning and ending with filler characters modeling
non-keywords to reduce the false positive rate.

To reduce the amount of required training on
words lexicon-free handwritten word spotting ap-
proach using character HMMs [4] is applied. Then,
the training of the HMM classifier only requires a
small number of character classes. Just like in the
work of Wshah and colleagues [24] filler models are
employed, now consisting of a space character and
all other character classes, to improve the retrieval
precision.

Instead of directly using features extracted from
the bitmap data, Rothaker and colleagues [17] use
a Bag-of-Features representation with densely sam-
pled Scale Invariant Feature Transform (SIFT) de-
scriptors. These descriptors are then clustered into a
dictionary with a limited set of words and quantized
onto a regular grid overlapping the top of the docu-
ment. No preprocessing of the document is necessary
because the SIFT descriptors work directly on gray-
scale data. A HMM classifier determines the most
probable positions for the query word for all possible
positions on the aforementioned grid. A segmenta-
tion of the document is therefore not necessary.

The work presented by Fischer and colleagues
in [5] uses graphs as features to describe charac-
ters and measure similarity. Their approach requires
an document already segmented into words. Im-
ages are first transformed into a color-binary repre-
sentation and then thinned to one pixel medial axis
curves. Graph vertices are created at endpoints, inter-
sections and corner points of the medial axis curves.
A HMM classifier is trained on thin slices of these
word graphs.

The nature of writing cuneiform script poses a
problem for HMM based classifiers. Cuneiform
character traces have significantly more foreground-
background transitions in the vertical axis than a
word written in Latin. Classification with a HMM
based approach would necessitate a larger feature



space of thin slices and therefore more training data
for robust classification. Training data in the form of
traced clay tablets is not readily available.

Furthermore, these approaches assume that word
slices are always rigidly in the same order. Wedge
shaped impressions, on the other hand, can locally
interchange position, both in the vertical direction as
well as in the horizontal direction, and yet still de-
scribe the same word. Graph based methods are more
robust against such changes in topology.

A method for segmentation free word spotting is
presented by Almazan and colleagues in [1] that uses
exemplary SVMs to train one positive sample ver-
sus many negative samples. The document and the
query are represented by grid of Histogram of ori-
ented Gradient (HoG) descriptor cells. Training the
SVM is done by using slightly translated windows of
the query as positive examples. Negative examples
are randomly selected windows of the document.

Although this approach does neither require any
labeled samples nor a segmented document, the re-
sulting SVMs only work very well on typeset or
script written without much variation. Cuneiform
text is highly variable in the expression of the wedges
due to various factors such as the age of the clay
tablet or the nature of the tool being used to im-
press wedges. An approach is necessary that offers
more flexibility with respect to the deformation of
the query word.

Howe presents a one-shot word spotting approach
in [7] that does not require any training data. Words
are binarized and represented as a tree of points con-
nected by spring-like potentials. The document itself
is then transformed using the structure of the tree of
the query word. Locations where the transformation
leads to a local energy maximum are those where the
query word can be found.

Leydier and colleagues [12] use basic visual fea-
tures found in written text to spot words in a docu-
ment. The first order oriented image gradient is com-
pared in specific image patches of the query word
and document, so called zones of interest, to asses
the similarity of words. The zones of interest them-
selves allow for an initial rough matching. The query
word zones of interest are aligned to those locations
of the document that share the same shape.

Both approaches do not assume a specific writ-
ing direction nor do they require segmented docu-
ments, but they do not allow for enough variation
in character shape. The approach presented by Ley-
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Figure 3. A cuneiform character in spline representation.
(a) Closed spline paths forming strokes (gray) are pair-
wise intersected (black). (b) The vertices (marked X) of a
stroke are first ordered from bottom right to top left. (c)
Edges of the final graph are created by connecting the ver-
tices. The sequence is indicated by the numbers.

dier and colleagues in [12] allows changes in posi-
tioning of the structuring elements using elastic co-
hesive matching, but does not allow for sufficient
variability in the structuring elements themselves.
Cuneiform wedges can be slightly rotated or elon-
gated for aesthetic purposes and deform the zones of
interest enough to preclude a successful match. Con-
versely, Howe [7] allows local variability but does
not account for swapped characters.

3. From splines to graphs

Before any graph matching methods can be ap-
plied, the cuneiform characters first need to be trans-
formed into well-formed graphs. Further, we seg-
ment cuneiform characters manually since cuneiform
script has no visual word boundaries that would al-
low for automatic segmentation. The recognition of
a word in the Assyrian language requires the knowl-
edge of its grammatical case and context in which it
is used. The clusters of wedges that have been man-
ually segmented do not necessarily represent distinct
characters in the original text. Nevertheless, they will
be referred to as character in the following. A char-
acter consists of a set of strokes. Each stroke is a ge-
ometric shape bounded by a closed path of splines.
These strokes are drawn in an vector graphic editor
by assyriologitsts tracing a cuneiform tablet.

All strokes are pairwise intersected to create a set
of key points. Most strokes are drawn in a way that
there is only one closed unambiguous area of inter-
section. A vertex is placed at the center of such an
area. Since more than two strokes can intersect in
the same vicinity, the set of key points is pruned so
that no two points are closer than some threshold ε.
Figure 3 and Figure 4 illustrate this process. We set



Figure 4. This figure shows the steps from Figure 3 ap-
plied to a complex set of strokes representing a character.
In the majority of cases a small intersection of the arms is
not semantically relevant.

ε = 1. The threshold ε is expressed in tenths of a mil-
limeter. The typical line height of cuneiform script is
5 millimeters. The choice of ε did not matter in our
experiments as long as it was two orders of magni-
tude smaller than a character. We add the two end-
points of each stroke to the set of key points. End-
points are calculated by finding the two most distant
points on the spline enclosing a stroke.

The extracted points are not yet connected by
edges. There is no inherent order of key points on a
stroke between its endpoints. All points belonging to
a stroke, that is its endpoints and points created with
intersections with other strokes, are order geometri-
cally and connected in sequence. In rare cases this
may create incorrectly connected points if the stroke
is slightly curved and the geometric ordering does
not correctly represent the curvature of the stroke.
Only few instances have been observed where this
is the case.

4. Graph Similarity

After transforming the cuneiform characters from
a collection of strokes into a graph representation,
the characters can now be compared in similarity us-
ing common graph matching methods. Since small
differences in position and orientation in wedge im-
pressions do not change the meaning of a character,
we assume that the graph topology is sufficiently de-
scriptive to measure the similarity of cuneiform char-
acters. We present three graph matching methods
and extend each to work on the Delaunay triangu-
lation of the cuneiform character graph. The Delau-
nay triangulation is used to catch big structural differ-
ences, significant translation or rotation of wedges,
or wedge impressions in distinct graph components
that do not modify the topology of the cuneiform
character graph.

4.1. Weisfeiler-Lehman graph kernel

The graph kernel presented by the authors in [19]
is an extension of the graph isomorphism test intro-
duced by Weisfeiler and Lehman [23]. The kernel
works by by counting how many subtrees the two
graphs being compared share.

Each vertex of a cuneiform character graph is as-
signed a unique label. (Using the same label for each
vertex results in significantly worse results.) On ev-
ery iteration of the algorithm each vertex label is ex-
panded with the labels of adjacent vertices. To in-
crease computational performance all vertex labels
can be converted into a shorter representation using
hashing. Adjacent vertex labels have been, in turn,
extended in an earlier iteration by their adjacent ver-
tex labels. The label of each vertex is therefore an
enumeration of a subtree rooted at this specific ver-
tex.

The label, and therefore the subtree, contains mul-
tiple repetitions of itself since the root vertex is adja-
cent to each of its adjacent vertices. This behavior is
called tottering [19] and degrades the quality of the
labels and the quality of the similarity metric.

The similarity of two graphsGA andGB and their
label sets Nk

A and Nk
B is the count of matching labels

at iteration k. We denote the labels of Nk
A and Nk

B

with e and f .The graphs are considered to be highly
similar if most of the subtrees extracted from either
graph are present in both graphs. δ(e, f) is the Kro-
necker delta, that is, δ(e, f) = 1 if e = f , and 0 oth-
erwise. We perform four relabeling iterations n = 4.
More relabeling iterations (n = 10) did not result in
better classification performance.

K =
n∑
k

∑
e∈Nk

A

∑
f∈Nk

B

δ(e, f) (1)

4.2. Spectral decomposition

The spectral decomposition [3] of a graph has a
variety of applications in the field of graph match-
ing [13]. A graph is decomposed by computing the
eigenvectors and eigenvalues of its adjacency ma-
trix that has been at first converted into a normalized
Laplacian matrix.

The resulting multi-set of eigenvalues and eigen-
vectors have many interesting properties [3] and
are often used for clustering where the multi-set of
eigenvectors can be used to find a nearly minimal cut.
Additionally, the spectral decomposition of a graph



is used as an approximation for the random walk ker-
nel on a graph [21]. We make use of the property of
the spectral decomposition that two identical graphs
have the same multi-set of eigenvalues. Such graphs
are called to be isospectral. Small changes to those
graphs result in only small changes to the multi-set
of eigenvalues.

We compute the normalized Laplacian matrix L
with components luv from the adjacency matrix A
of a graph G with vertices u, v and vertex degrees
du, dv. L has the eigenvectors φi and the multi-set of
eigenvalues λi.

L =[luv]

luv =


1, if u = v and du 6= 0

− 1√
dudv

, if u 6= v and auv = 1

0, otherwise

(2)

φTi Lφi =λi

λ1 ≤ · · · ≤ λi ≤ · · · ≤ λn
(3)

The multi-set of eigenvalues is usually used as
an embedding into a feature space where graphs are
compared using Euclidean distance. We have found
that using the cosine similarity to measure the angle
between the eigenvalues of both decomposed graphs
yields better classification performance.

The similarity of two graphs GA and GB can
therefore be computed by measuring the angle be-
tween the features vectors λA and λB (the multi-sets
of eigenvalues of the respective graphs A and B).

K =
〈λA, λB〉
|λA||λB|

(4)

4.3. Random walk graph kernel

The random walk kernel is based on the idea that
two similar graphs share many identical walks [21]
and their similarity can be measured by counting the
number of identical walks.

A naive and computationally very expensive ap-
proach would be to generate walks for two graphs
randomly, and to compare all pairs of walks. A faster
approach makes use of the properties of the product
graph of the two graphs being compared. The prod-
uct graph is constructed by computing the Kronecker
product of the two graph adjacency matrices. The
product graph has an edge only if the corresponding
nodes in both of the original graphs are adjacent.

Exponentiating an adjacency matrix of graph is
used to count the number of walks in a matrix. Ex-
ponentiating the adjacency matrix of a product graph
therefore leads to the number of shared walks in both
original graphs. The computation of such a random
walk kernel is a deterministic process that converges
towards the stochastic solution with each iteration of
the exponentiation. The count of iterations is also
the maximal walk length to be found and is denoted
by n. We set n = 10. We found that higher values
(n = 20) did not improve classification performance.
AA and AB are the adjacency matrix of the graphs
GA and GB being compared. The operator ⊗ is the
Kronecker product of two matrices. K is the result-
ing kernel computing the similarity of two graphs.

R = AA ⊗AB

K =

n∑
k

Rk (5)

4.4. Delaunay triangulation

Transforming cuneiform characters in spline rep-
resentation to a representation as graphs can result
in a graph with multiple disconnected components.
Topology based graph kernels as described in the pre-
vious sections do not pick up differences in graphs if
one of these components is geometrically translated
or rotated.

We extend all three presented methods by tri-
angulating the extracted points using the Delaunay
triangulation and additionally measuring the simi-
larity between the Delaunay triangulated characters
graphs.

The Delaunay triangulation should also consider
geometrical translations and rotations where the spa-
tial relationship (a wedge is below/above/right of/left
of another wedge) significantly changes between the
wedges. Small changes in position or shape do not
matter for the classification of a character.

The graph kernel methods are extended by com-
puting a new adjacency matrix (therefore new edges)
from the key point set without considering the strokes
the key points originate from. Edges are created in-
stead by the Delaunay algorithm. Let DA be a ad-
jacency matrix of a Delaunay triangulated character
graph GA and AA be the original adjacency of char-
acter graph GA and K a graph kernel from one of
the presented methods. K ′ is then a graph kernel
that computes the similarity between two character
graphs GA and GB .



Figure 5. The top 9 results for the task to retrieve the
Query Character (the prototype) are displayed. The Input
Character is represented as a set of strokes. This set is then
transformed into the graph representation of the Query
Character. The kernel used for similarity is the spectrum
kernel extended with Delaunay triangulation. The results
are ordered from best (top left) to worst (bottom right).
Characters with a green background have been correctly
classified, characters with a red background have been in-
correctly classified.

K ′ = max{K(AA, BA),K(DA, DB)} (6)

We also tried the min operator but the classifica-
tion performance was worse for all kernels except for
the random walk kernel where the improvement in
performance was negligible.

5. Experimental Evaluation

The data set used are a subset of several hundred
3D-scanned cuneiform tablets and tablets provided
and manually transcribed into a vectorized file for-
mat by assyriologists. Only a subset of the words
has been segmented manually since the tablets were
partly damaged. There are 23 distinct word classes
and 73 word instances used in the data set.

The task to test the classification performance
of the presented methods was performed by hiding
a prototype instance of the segmented words and
comparing the remaining word instances against the
prototype instance. The retrieved candidates were
ranked by similarity from most similar to least simi-
lar.

The classification performance of the presented

Figure 6. The precision recall graph for all the presented
methods. A high precision implies that most of the re-
trieved character have the correct label, the false positive
rate is low. If we increase the recall (the count of true pos-
itives and false positives, therefore ask for more results)
the false positive rate climbs and the precision falls.

methods was then compared using a precision recall
graph.

5.1. Precision and Recall

Figure 6 shows the classification performance of
the various methods. The three basic methods are:
the Weisfeiler-Lehman Graph Kernel (WFLM), the
spectral decomposition (Spectral) and the random
walk graph kernel (RndWalk). Then, the meth-
ods extended with the delaunay triangulation are
WFLM DGM, SP DGM (for the spectral decompo-
sition) and RW DGM (for the random walk kernel),
respectively.

The Delaunay transformation reduces precision
greatly for the Weisfeiler-Lehman graph kernel. This
kernel counts the number identical subtrees in both
graphs. Since many vertices in a Delaunay triangu-
lated graph have the same degree, two geometrically
dissimilar triangulated graphs will share a high num-
ber of subtrees rendering them indistinguishable for
the Weisfeiler-Lehman graph kernel.

The decrease in performance for the random walk
kernel can be attributed to the same problem. Dis-
similar triangulated graphs share a lot of random
walks since most vertices are reachable by a high
number of different walks.

The spectral decomposition, on the other hand,
has better precision when extended with delaunay
transformed graphs. The spectral decomposition can
be seen as a series of minimal cuts [3] of a graph
where the edge density is lowest. Translation and ro-



tation of wedges are therefore detectable by changes
in connectivity of the graph partition leading to a
better classification performance than just using the
graph topology.

The random walk method and the Weisfeiler-
Lehman graph kernel achieve better classification
performance when the untransformed cuneiform
graphs are used. Much more variating node degree
and unique walks in the untransformed graphs enable
those methods to differentiate cuneiform characters
graphs better.

6. Conclusions and Outlook

Common handwriting recognition methods are not
applicable to cuneiform characters. The Assyrian
language has no means of separating words, thus
making word segmentation very difficult. Cuneiform
characters are very variable with respect to the posi-
tioning and rotation of their wedges and also exhibit
a lot of complexity in the vertical direction without
having a fixed shape that can be used by fixed-length
feature vector classification methods.

We transform cuneiform characters into graphs
and find that such a representation does not lose any
structural elements of cuneiform and is very suitable
for further analysis of the characters.

We applied graph kernels to classify cuneiform
characters with the result that the random walk ker-
nel performs best. The spectral decomposition, on
the other hand, performs best when extended with
the Delaunay triangulation and achieves the highest
classification precision of all the presented methods.

We are currently working on using the wedge
shaped impressions as a basic structural feature of
cuneiform characters. A template shaped like an
ideal wedge is used to match and extract wedges
in a cuneiform character. The characters, decom-
posed into wedge shaped templates, are compared
based on the similarity of their wedge shapes and
the quality of the matching of the wedge configura-
tion (position, orientation, overlap). To support our
claim that conventional OCR methods are not suit-
able for cuneiform script we are currently investigat-
ing the classification performance of standard HMM
and DTW methods on rasterized cuneiform script.

Additionally, we are investigating a method that
represents the cuneiform characters as point clouds.
Query word and candidate alignment and subse-
quent matching is performed with Iterated Closest
Points [11].
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