
INAUGURAL-DISSERTATION

zur Erlangung der Doktorwürde der
Naturwissenschaftlich-Mathematischen

Gesamtfakultät der
Ruprechts-Karls-Universität Heidelberg

vorgelegt von

Dipl.-Math. Achim Hildenbrandt

aus Ilmenau

Tag der mündlichen Prüfung: . . . . . . . . .
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Abstract

The thesis considers the target visitation problem, a combinatorial optimization
problem, which merges the classical traveling salesman problem with the linear
ordering problem. In more detail, we are looking for a tour which visits a set of
targets and which is optimal with respect to two different aspects: On the one
hand, we have given a travel cost from each target to every other. On the other
hand, we have preference values which tell us how much we would like to visit one
target before another one. The objective is now to maximize the difference of the
sum of the met preferences and the total travel costs.

We test several different integer programming formulations and examine the as-
sociated polytopes concerning their facets and combinatorial structure. We come
to the result that a model based on the combination of integer programming for-
mulations for the traveling salesman problem and the linear ordering problem is
most suitable for being used in practical computations. For this model we then
develop an extended formulation.

Besides the theoretical studies, this thesis also contains a practical part, where
we apply the various methods of combinatorial optimization to the target visitation
problem. We examine their performance and the amount of memory they need on
a set of self-defined benchmark instances. We also realize that the target visitation
problem is, from a practical point of view, a really tough problem. Therefore, we
cannot only implement the basic methods, but we have to apply special techniques
to obtain exact solutions for instances with thirty or more targets. The best re-
sults are achieved by a branch-and-cut approach which uses the facet classes we
discovered in the theoretical part of the thesis. Besides the exact approaches, we
also examine different heuristics which are inspired by approximation approaches
for the traveling salesman problem.
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Zusammenfassung

Das Thema dieser Arbeit ist das Target Visitation Problem. Dabei handelt es sich
um ein kombinatorisches Optimierungsproblem, dass eine Verbindung des Pro-
blems des Handlungsreisenden und des linearen Ordnungsproblems darstellt. Ge-
nauer gesagt gilt es bei diesem Problem eine Tour zu finden, die eine vorgegebene
Menge von Zielen besucht und welche hinsichtlich zweier Gesichtspunkte optimal
sein soll. Einerseits haben wir Reisekosten, anderseits gibt es für je zwei Ziele einen
Prioritätswert der besagt, wie sehr wir das eine vor dem anderen Ziel besuchen
möchten. Die Aufgabe ist es dann eine Tour zu finden, bei der die Differenz aus
der Summe der erfüllten Präferenzen und den gesamten Reisekosten maximal ist.

Wir betrachten mehrere Formulierungen ganzzahliger Programme und unter-
suchen die zugehörigen Polyeder ausführlich hinsichtlich ihrer Facetten und ihres
kombinatorischen Aufbaus. Wir kommen zu dem Ergebnis das ein Modell basierend
auf der Kombination von ganzzahligen Programmen für das Problem des Hand-
lungsreisenden und des linearen Ordnungsproblems am geeignetsten erscheint, vor
allem auch im Hinblick auf den Einsatz für praktische Berechnungen. Für dieses
Modell geben wird dann zusätzlich eine erweiterte Formulierung an.

Die Arbeit enthält auch einen großen praktischen Teil bei dem wir verschiede-
ne Lösungsverfahren der kombinatorischen Optimierung auf das Target Visitation
Problem anwenden. Wir vergleichen die unterschiedlichen Ansätze hinsichtlich ihrer
Laufzeit und ihres Speicherbedarfs, die sie zur Lösung eines von uns selbst definier-
ten Menge von Benchmark-Instanzen benötigen. Wir werden dabei feststellen, dass
das Target Visitation Problem auch in der Praxis ein wirklich schweres Optimie-
rungsproblem darstellt, bei dem die bloße Implementierung von Standardverfahren
ohne spezielle Techniken es nicht ermöglicht Instanzen mit dreißig oder mehr Zie-
len exakt zu lösen. Die besten Ergebnisse zeigt ein

”
branch-and-cut“-Ansatz der

Facettenklassen benutzt, welche wir bei unseren theoretischen Untersuchungen ge-
funden haben. Neben den exakten Lösungsansätzen haben wir auch verschiedene
Heuristiken untersucht, welche auf approximativen Ansätzen für das Problem des
Handlungsreisenden basieren.
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Preface

The traveling salesman problem is one of the oldest and best-known combinatorial
optimization problems. It has been studied for decades and the results achieved in
all these years are quite satisfying. It also has a wide field of applications like route
planning, chip design and genome sequencing. Of course not all practical routing
problems can be modeled by this problem. Imagine for example the following
situation: After some huge natural catastrophe one wants to distribute food and
medicine in the disaster area. For this task it is necessary to plan a route through
the wasted area, which on the one hand should be as short as possible in order to
quickly provide assistance in the entire area. But on the other hand, it should be
taken into account that in some spots the situation is much worse than in other
ones, which means that these places should be visited as fast as possible.

These kinds of problems can be modeled as a combination of the traveling sales-
man problem and the linear ordering problem, another well-known combinatorial
optimization problem. In this thesis, we want to study this combination of both
problems which is called target visitation problem. It is a relatively new problem
which occurred during the planing of missions of unmanned aerial vehicles.

More formally, we face the objective of finding a tour which visits a set of spots
and takes two different criteria into account: The first one are the travel costs
which should be as small as possible. The second one are the preference values
which tell us for each two spots how much we would like to visit one before the
other. Then the sum of all met preferences should be maximal. In combination this
means that the difference of the met preferences and the distance costs should be
as big as possible. So this problem is an example of a problem with a multicriterial
objective function.

This thesis is divided into two general parts. In the first part we study the
theoretical background of the problem. There we focus mainly on finding a good
integer programming formulation including an analysis of the polyhedral structure
of their associated polytopes. In the second part of the thesis, we implement
practical approaches which solve the target visitation problem to optimality. For
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xiv PREFACE

this purpose we use the theoretical results obtained before. In more detail, the
thesis is structured as follows.

We begin in Chapter 1 with a brief introduction to the necessary definitions and
notations. In Chapter 2 we introduce the target visitation problem and present a
reformulation as a path problem.

Then in Chapter 3 we try to find a suitable integer programming formulation.
We examine several approaches like combining the integer programming formula-
tion of the traveling salesman and linear ordering problem, a model with variables
which state the relation between an edge and a node, as well as a model based on
distance variables. We also introduce an extended formulation.

In Chapter 4 we examine the polytopes associated with these models. We take
special regards to their usability in a practical branch-and-cut approach. The two
most promising polytopes are examined further. We prove their dimension as well
as a general zero-lifting result. Some general facet classes are also presented. Addi-
tionally we study the connection between the polytope of the extended formulation
and its basic formulation without the additional variables.

In the next chapter, we present approaches which solve the target visitation
problem to optimality. Namely we present a branch-and-bound and a dynamic
programming approach as well as a combination of both. Lagrange decomposition
is also considered.

Chapter 6 is then dedicated to approximation approaches. We present several
heuristics which are adopted from the research on the traveling salesman problem
and the linear ordering problem. We examine constructive heuristics which create a
feasible tour from scratch as well as methods which improve a given solution. Both
types will be combined to obtain satisfying results. So even for many instances
with forty or more nodes, some combination of heuristics find the optimal value in
nearly every run.

Chapter 7 finally compares these different approaches by doing practical com-
putations. The instances we solved with the various algorithms are hereby defined
by ourselves since there are no benchmark problems available so far. It shows that
none of the standard approaches are able to solve target visitation problem in-
stances with thirty or more nodes. Only the branch-and-cut approach, which uses
facets we have described in the sections before, solves instances up to forty-five
nodes exactly, which is way more than the commercial integer programming solver
CPLEX is able to do.

In Chapter 8 we make some remarks on how we can transfer results of Chap-
ter 4 to the original tour formulation as well as giving a brief examination of the
symmetric version of the target visitation problem.

The final Chapter 9 sums up the results and gives some ideas for further re-
search.



Chapter 1

Preliminaries

1.1 Basic Definitions

1.1.1 Linear Algebra

In this subsection we want to state a few definitions from linear algebra which
are used in this thesis. For more details consult one of the standard textbooks
like [FQ12]. A matrix M with m rows and n columns is called an (m,n)-matrix.
We call a matrix a row vector if m = 1 and a column vector if n = 1. A matrix
is said to be a binary matrix if all entries are either 0 or 1. By aij we will denote
the entry in the j-th column and the i-th row. In this thesis we will use the term
vector when we mean a column vector if not stated otherwise. By 0 (1) we denote
the column vector with all entries equal to zero (one).

AT denotes the transposed matrix of A, and A−1 denotes the inverse matrix.
Let I ⊂ {1, . . . ,m} and J ⊂ {1, . . . , n} be ordered sets. Then AI,J which contains
all entries aij of A where i ∈ I and j ∈ J is called a submatrix of A. The sum∑n

i=2

∑i−1
j=1 aji will be called the upper diagonal sum. The lower diagonal sum

is defined analogously.

A linear combination of a set of vectors {x1, . . . , xk} ∈ R is defined by∑k
i=1 aixi where a1, a2, . . . , ak ∈ R, are called coefficients. It is called an affine

combination if
∑k

i=1 ai = 1, a conic combination if ai ≥ 0 for i = 1, 2, . . . , k

and a convex combination if
∑k

i=1 ai = 1 and ai ≥ 0 for i = 1, 2, . . . , k.

The convex hull of a vector set S is defined as the set of all convex combi-
nations of finitely many vectors from S. The conic, linear and affine hull are
then defined analogously. In the following we denote the convex hull by Conv and
the conic hull by Cone. A vector x is called linearly (affinely) independent
from a set of vectors S if x is not contained in the linear (affine) hull of S.

The cardinality of the smallest set X ⊆ S so that S is a subset of the affine
hull of X is called the affine rank of S, denoted by arank(S). The dimension of

1



2 CHAPTER 1. PRELIMINARIES

S is then defined by arank(S)− 1.

1.1.2 Graphs

We define an (undirected) graph G = (V,E) as a pair of two finite sets where
every element of E is a 2-subset of V . The elements of V are called the vertices
or nodes and the elements of E are called the edges. If all 2-subsets of V are
contained in E then the graph is said to be complete. An edge e is defined as a
weighted edge if some weight we is assigned to e. If all edges are weighted edges,
then the graph is called a weighted graph G = (V,E,w) where w is the weight
function w : E → R. In a graph more than one weight could be assigned to one
edge. In this case we have w : E → Rk where k denotes the number of weights
which are assigned to each edge.

A graph D = (V,A) is called directed if all edges a = (i, j) are ordered pairs,
where i is called the start node and j is called the end node of a. In the directed
case we call the edges arcs.

In an undirected graph a node v is incident to an edge e if v is contained in e.
A node which is incident to an edge e is also called an end of e. Two nodes are
called adjacent to each other or neighbors if they are both ends of the same
edge e. Two edges are called adjacent if they have an end node in common. In
a directed graph we denote by δ−(v) the set of outgoing edges (edges which
have v as start node) and analogously by δ+(v) the set of incoming edges (edges
which have v as end node) of a node v ∈ V . When a graph is undirected, we
denote by δ(v) the set of edges which have v ∈ V as an end. Additionally, |δ(v)| is
referred to as the degree of v.

A graph G′ = (V ′, E ′) with V ′ ⊆ V and E ′ ⊆ E is called a subgraph
of G. A path in a directed or undirected graph G = (V,E) is a set of edges
P = {(v0, v1), (v1, v2), . . . , (vk−1, vk)}, where k is called the length of the path. If
all the nodes contained in the path P are pairwise different and P has length
|V |− 1, the path is called a Hamiltonian path. If v0 = vk then a path is called a
cycle. If the length of a cycle is |V | and all nodes (except start and end node) are
pairwise different, then the cycle is called a Hamiltonian cycle. An undirected
graph G = (V,E) is called a tree if it does not contain any cycles and for each two
nodes i, j ∈ V there exist exactly one path between i and j.

The adjacency matrix of a graph G = (V,E) is a (|V |, |V |)-matrix so that
the entry (i, j) is equal to one if (i, j) ∈ E and equal to zero otherwise. In this
thesis we often need to represent the adjacency matrix as a vector, where the rows
of the matrix are concatenated. We call this vector the characteristic vector of
the graph.

An undirected graph is called finite if and only if V and E are both finite. In
this thesis we are only dealing with finite graphs.
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1.1.3 Complexity Theory

In combinatorial optimization it is important to know how complex a problem will
be. Again this is just a short introduction to this topic. For further informa-
tion [GJ79] gives a good survey.

Firstly we have to distinguish between optimization problems and decision
problems. A decision problem can be answered with “yes” or “no” while an
optimization problem is defined as:

max
x∈X

f(x)

where X is the set of feasible solutions of the problem, and f is a function which
assigns a real number to each such solution.

The complexity of an algorithm is a measure of the number of elementary
operations it takes to execute it. In order to describe the running time of a given
algorithm, we introduce a time function ta : N → N, which provides for each
instance of size n the maximal running time.

We say that an algorithm has a computation time of O(f(n)) if there exist
constants c and n0 so that ta(n) ≤ c · f(n), ∀n > n0. One could also state that a
computation time of O(f(n)) means that the execution of the algorithm needs a
magnitude of c · f(n) elementary operations. The O is called a Landau symbol.

In complexity theory, optimization problems are mainly classified in two classes
(which are not disjoint). If f(n) is a polynomial function, then we say that an
algorithm which has a computation time of O(f(n)) is a polynomial time algo-
rithm. All problems for which a polynomial time algorithm is known belong to the
class P. The class NP on the other hand is defined as the set of problems for
which a “yes” instance of the assigned decision problem can be verified in polyno-
mial time. Therefore it is clear that P ⊆ NP . Still it is one of the most important
questions in complexity theory whether NP is also a subset of P and therefore:

NP = P.

We call a decision problem D polynomially reducible to a decision problem D′

if there exists a polynomial time algorithm which transforms each instance d of D
to an instance d′ of D′ in a way that d has a positive answer if and only if d′

has a positive answer. Informally, we could say that this definition characterizes a
problem D′ at least as hard as problem D.

We call a decision problem D NP-complete if each problem in NP is polyno-
mially reducible to D. Lastly we are defining an optimization problem Opt to be
NP-hard if each problem in NP is polynomially reducible to Opt. This means that
the complexity class NP-hard is the set of all problems that are at least as hard as
the problems in the complexity class NP-complete. In particular, it contains the
optimization versions of the NP-complete decision problems.
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1.2 Combinatorial Optimization

Contrary to other parts of mathematical optimization, a combinatorial opti-
mization problem (COP) consists of finding an optimal solution in a finite set
of feasible solutions. More formally we can define:

Definition 1.1. Let E be a finite set and F ⊆ 2E, where 2E denotes the power
set of E. Further a function c : F → R is given. A combinatorial optimization
problem (E,F , c) is then defined as

max
F∈F

c(F ).

The function c is called the objective function and the elements F ∈ F are called
the feasible solutions. If the objective function can be written as c(F ) =

∑
e∈F

c′(e),

where c′ : E → R, we call such a problem a linear optimization problem. Of
course this definition could also be used for minimization problems by multiplying
the objective function with minus one.

To obtain the optimal solution of a linear combinatorial optimization problem,
there exist several different concepts. The most obvious method is called complete
enumeration, which consists of simply calculating the objective value for every
element of F . Unfortunately for most COPs the set F has an exponential number
of elements in E so this approach is infeasible.

A more sophisticated idea is the so-called branch-and-bound method (see
Section 1.3.1), which systematically examines the elements of F and excludes sub-
sets from investigation when they are proven not to contain an optimal solution.

Another approach are heuristics which are algorithms that examine just a
subset of the elements of F , which most promisingly contains the optimal solution.
That means that the result of a heuristic is often not an optimal solution and even
if it is, there is no proof for that.

But in most cases COPs are solved with more complicated methods which are
based on the concept of integer programming. The basic theory of this idea will
be introduced in the next section.

1.2.1 Linear and Integer Programming

Linear programming is one of the most important methods in combinatorial op-
timization. Its main concept are linear programs (LP), which describe linear
optimization problems by putting them in some normal form, stated as follows:

max cx (1.1)

Ax ≤ b,

x ∈ Rn
+
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where A is an (m,n)−matrix with entries in R, b is a vector in Rm and c is a row
vector in Rn. The entries of the vector x = (x1, . . . , xn) are called the variables,
and the m conditions Ax ≤ b are referred to as constraints.

The set of all feasible solutions S := {x ∈ Rn
+ | Ax ≤ b} is called the feasible

set of the LP. If S 6= ∅, the LP is called feasible. The linear function cx : Rn
+ → R

is called the objective function. A feasible solution x∗ is called the optimal
solution if and only if cx∗ ≥ cx ∀x ∈ S. Then cx∗ is called the optimal value of
the LP. There can exist more than one x ∈ X with cx = cx∗.

We would like to point out that (1.1) is a standard form of an LP to which all
linear programs can be transformed by the following modifications. For minimiza-
tion problems the objective function could be multiplied by minus one. Equality
constraints like ex = e0 can be split up in two inequalities ex ≤ e0 and ex ≥ e0.
And of course ≥-inequalities can be transformed to ≤-inequalities by multiplying
them with minus one.

One big advantage of linear programs is that there exist fast solving methods.
The most common ones are interior point methods and the simplex method.
Additionally, there exists the ellipsoid method, but this approach is in general not
used for practical computations. For details on this methods please see [KV12].
In this thesis we use only the simplex algorithm for the computation of linear
programs.

Unfortunately not all combinatorial optimization problems can be formulated
as an LP in a practical way, that means with a suitable number of constraints.
Often it is more sensible to formulate them as integer programs (IP). A (linear)
integer program is the same as a linear program except that its solution must
be integral:

max cx (1.2)

Ax ≤ b,

x ∈ Zn.

Unfortunately for solving integer programs in general there exists so far no al-
gorithm with a polynomial computation time. Nevertheless, there exist different
techniques for dealing with integer programs like branch-and-bound (see Sec-
tion 1.3.1), the cutting plane approach (see Section 1.3.2) and branch-and-cut
(see Section 1.3.3).

A special case of an integer program is the case when x ∈ {0, 1}n. The program
is then called a 0/1 linear program. For practical purposes 0/1 linear programs
are in most cases easier to handle with the common techniques than integer pro-
grams. In some solution methods it is necessary to use the LP relaxation of an
IP, which is defined as the IP where the integrality constraint has been left out.
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1.2.2 Polyhedral Combinatorics

The set {x ∈ Rn | ax = a0} is called a hyperplane and the set {x ∈ Rn | ax ≤ a0}
a halfspace. A polyhedron P is then defined as an intersection of finitely many
halfspaces. That means we can describe each polyhedron as:

P = {x ∈ Rn | Ax ≤ b},
which is also called the outer description or H-representation. It is an im-
portant result of combinatorial optimization (see for example [Zie95]) that every
polyhedron has also an inner description defined by P = Conv(X) + Cone(Y )
for some finite sets X and Y . This is also called the V-representation. We
call the polyhedron a polytope if it can be described by a convex hull only, i. e.
P = Conv(X). The dimension (denoted by dim) of a polytope or polyhedron is
the maximum number of affinely independent points minus one. A polytope P is
full-dimensional if P ⊆ Rn and dim P = n.

An inequality ax ≤ a0 is called valid for a polytope P if the inequality is satis-
fied by all points of P . For a valid inequality ax ≤ a0, the set f = P ∩ {ax = a0}
is called face of the polytope. When dim f = dim P − 1 then f is called a facet.
If dim f = 0 then f is called a vertex. The set of all vertices is denoted by
vert. The associated inequality with f is called face-defining or facet-defining,
respectively. Two inequalities are said to be equivalent if they define the same
face. An outer description of a polytope is minimal when every facet is defined
through exactly one inequality, and there exists no valid linearly dependent equa-
tion. An inner description of a polytope is minimal when no x ∈ X is contained
in Conv(X \ {x}).

When we have an integer program like (1.2), we denote the set {x ∈ Z | Ax ≤ b}
as associated polytope.

We say that two faces f1 and f2 of a polytope P ⊆ Rn are equivalent with
respect to some bijection s : x→Mx+ r where M ∈ Rn×Rn and a vector r ∈ Rn

if s(vert(f1)) = vert(f2). If S is a group of bijections, then f1 and f2 are equivalent
with respect to S if they are equivalent with respect to some s ∈ S. A bijection s
is said to be a symmetry for P if it maps every vertex of P to another vertex
of P . If two facets are equivalent with respect to a set of symmetries, we say that
these facets belong to the same class. A facet class regarding to a given group of
symmetries contains all facets which are equivalent with respect to this group. A
class of inequalities is defined analogously.

1.2.3 Traveling Salesman Problem

In the following we want to introduce two well-known combinatorial optimization
problems which are very important for this thesis since they are both contained as
subproblems in the target visitation problem.
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The first one is the traveling salesman problem (TSP), which is probably
the most studied problem in combinatorial optimization.

Definition 1.2. Let D = (V,A) be a complete directed graph with n nodes. Fur-
thermore a weight function d : A 7→ R, which assigns a distance (cost) to every
arc (i, j), 1 ≤ i, j ≤ n, i 6= j is given. The traveling salesman problem then
consists of finding a tour with minimal weight which visits all nodes exactly once.

The TSP can also be defined on an undirected graph. It is then called symmetric
traveling salesman problem (STSP). Defined on a directed graph it is also often
called asymmetric traveling salesman problem (ATSP).

Next we want to present one standard IP formulation which models the ATSP.
In the model we use the variables xij, 1 ≤ i, j ≤ n, i 6= j with the interpretation
(π(i) = j when j is visited as the i-th node in the tour):

xij :=


1 if i = π(k) and j = π(k + 1) for some k ∈ {1, . . . , n− 1},
1 if i = π(n) and j = π(1),

0 otherwise.

An IP model for the TSP can be then formulated as follows.

min
n∑
i=1

n∑
j=1
j 6=i

dijxij (1.3)

s.t.
n∑
i=1
i 6=j

xij = 1, j ∈ V, (1.4)

n∑
j=1
j 6=i

xij = 1, i ∈ V, (1.5)

∑
i∈S

∑
j∈S
i 6=j

xij ≤ |S| − 1, S ⊂ V, 2 ≤ |S| < n, (1.6)

xij ∈ {0, 1}, i, j ∈ V, i 6= j. (1.7)
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The constraints (1.4) and (1.5) describe the fact that each node is visited exactly
once, while (1.6) assures that there exist no sub-cycles in the tour.

This model is just one possible formulation for the TSP. There are other models
like for example the Millin-Tucker-Zemplin formulation[MTZ60] which is based on
position variables.

There exists a tremendous amount of research on the TSP (see for exam-
ple [LLKS85] or [ABCC06]). With the help of this research, it is now possible
to solve instances with metric distances up to 85900 nodes. This is remarkable
since the TSP is an NP-hard problem.

A problem related to the TSP is the so-called Hamiltonian path problem
(HP). The HP consist of finding a Hamiltonian path (instead of a tour) in a
weighted, complete graph with minimum costs. The HP can be formulated as an
IP which is very similar to (1.3)–(1.7):

min
n∑
i=1

n∑
j=1
j 6=i

dijxij (1.8)

s.t.
n∑
i=1

n∑
j=1
j 6=i

xij = n− 1, (1.9)

n∑
i=1
i 6=j

xij ≤ 1, j ∈ V, (1.10)

n∑
j=1
j 6=i

xij ≤ 1, i ∈ V, (1.11)

∑
i∈S

∑
j∈S
i 6=j

xij ≤ |S| − 1, S ⊂ V, 2 ≤ |S| < n, (1.12)

xij ∈ {0, 1}, i, j ∈ V, i 6= j. (1.13)

In this formulation the number of equations has been reduced to one. This
single equation describes the fact that a Hamilitonian path on n nodes must contain
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exactly n− 1 edges. So the equation families (1.4) and (1.5) have now turned into
inequalities since there no longer necessarily exists an ingoing/outgoing edge for
every node.

1.2.4 Linear Ordering Problem

The linear ordering problem (LOP) is another well-known combinatorial op-
timization problem.

Definition 1.3. Let D = (V,A) be a complete directed graph with n nodes. Fur-
thermore a weight function p : A→ R is given. The objective is to find a cycle-free
subgraph where the sum of weights is maximal and which contains exactly one of
the edges (i, j) or (j, i) for each two distinct nodes i and j.

Besides this graph definition, the LOP can also be seen as an ordering problem
on a matrix. The objective is in this case to permute rows and columns simulta-
neously so that the upper diagonal sum becomes maximal.

For more details on this problem, see for example [RR11] or [Rei85].

Definition 1.4. If there exist a solution for a given linear ordering instance where
all preferences > 0 have been met, we say that the instance contains a complete
ordering.

The LOP can be expressed by a very simple IP model for which we define the
binary variables wij, 1 ≤ i, j ≤ n, i 6= j with the definition (π(i) = j when j is the
i-th node in the ordering):

wij :=

{
1 if i = π(k) and j = π(l) for some 1 ≤ k < l ≤ n,

0 otherwise.

We can then formulate the following IP model:

max
n∑
i=1

n∑
j=1
j 6=i

pijwij (1.14)

s.t.

wij + wjk + wki ≤ 2, i, j, k ∈ V, i < j, i < k, j 6= k, (1.15)

wij + wji = 1, i, j ∈ V, i 6= j (1.16)

wij ∈ {0, 1}, i, j ∈ V (1.17)
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As one can see the model only contains one type of constraint. This constraint
models the fact that it is not possible to order a before b before c before a. The
LOP is way harder to solve than the TSP: While it is possible to solve metric
instances with thousands of nodes with modern TSP codes, it is still a challenge
to solve LOP instances with 200 nodes, even if they contain a nearly complete
ordering.

1.3 Solving Methods for Integer Programs

Next we give a short introduction to the most common approaches for solving
integer programs to optimality. We will present all these algorithmic approaches
for the case of maximization problems, but of course it is possible to use them for
minimization problems as well. It should be clear that these approaches cannot
have a polynomial computation time in general. But still they work much more
efficient on NP-hard problems than complete enumeration.

1.3.1 Branch-and-Bound

The key idea of branch-and-bound is to split up a problem into smaller subprob-
lems, which can then either be solved, fathomed or split up again. This leads to the
construction of a search tree with the original problem as root node. In addition
we keep a global lower bound, which allows us to fathom branches of the search
tree if we can prove that the value of the best optimal solution in this branch is
less than the global lower bound. So if we are able to obtain strong global bounds
quickly, then the search tree becomes in most cases much smaller than the one
which occurs when we are doing complete enumeration.

This method has the advantage that the basic principle is simple, and it can
be adopted, without much effort, to every combinatorial optimization problem.

We can also use branch-and-bound for solving IPs in the following way. First we
solve the LP relaxation of an IP problem. If the LP solution is not fully integral, we
select some variable x which has some non-integer value z in the LP solution. We
then create two new problems: In the first problem we add the constraint x ≤ bzc.
In the second problem we add the constraint x ≥ dze. Then we execute the
procedure on the new subproblems. The process stops when there exists no open
subproblem. If a subproblem has an integer solution we keep this solution, if it is
better than the currently best solution, otherwise we can fathom the subproblem.
Also if a subproblem has a non-integral solution, which is less than the currently
best integral solution, the subproblem can be fathomed and does not need to be
examined any further. The details of this method can be seen in Algorithm 1.
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Algorithm 1: Branch-and-Bound

1 Initialize Active Subproblem List with the global problem;
2 Initialize Best Solution with −∞;
3 if Active Subproblem List =∅ then
4 Return: Best Solution

5 else
6 Choose a problem P of Active Subproblem List and solve the associated

LP relaxation, denote solution by x∗;
7 if P is infeasible or x∗ ≤ Best Solution then
8 Fathom P;
9 Goto 3;

10 if x∗ ∈ Z and x∗ > Best Solution then
11 Best Solution= x∗;
12 Fathom P;
13 Goto 3;

14 else
15 Split the Subproblem into two new subproblems and add them to

Active Subproblem List;
16 Fathom P;
17 Goto 3;

The critical issue of branch-and-bound is to obtain good global lower bounds
in short time. We could do this in two ways: The first is running a heuristic
before we execute the algorithm. The other one is to select at the beginning such
subproblems that lead to a solution which is close to the optimal solution. If we
choose the second option, then thinking about a good selection criteria in Step 6
of the algorithm is absolutely necessary.

1.3.2 The Cutting Plane Approach

Another technique for solving integer programs is the so-called cutting plane meth-
od. Consider an integer program and the associated set of feasible points

Q = {x ∈ Zn | Ax ≤ b}. (1.18)

We then solve the LP relaxation of the integer program and obtain a solution x∗.
As long as x∗ /∈ Q we add an inequality ax ≤ a0 to the integer program which is
valid for all points x ∈ Q but is not satisfied by x∗. We continue this process until
the LP solution is fully integral. More formally the process is shown in Algorithm 2.
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Algorithm 2: Cutting Plane

1 Initialize P = {x ∈ Rn | Ax ≤ b};
2 Solve LP associated with P, obtain x∗;
3 if x∗ ∈ Zn then
4 Return x∗;

5 else
6 Obtain an inequality ax ≤ a0 with ax∗ > a0 but ax ≤ a0 ∀x ∈ Zn ∩ P ;
7 Update P = P ∩ {ax ≤ a0};
8 Goto 2;

The difficulty of this method is to find inequalities which cut off a big area of
the actual polytope (described by the current set of inequalities). Good classes
of inequalities for such a purpose are those which define facets of the polytope
associated with the IP. Please note that it is not useful to add all inequalities of
an inequality class (even if they are facets) at once to the LP because depending
on the class there can exist a great number of inequalities of this type. So adding
them all at once will slow down the process of solving the LP. Thus it is much
better just to add inequalities which violate the current solution of the LP. The
process of finding such a violated inequality is called separation.

Separation is the crucial part of the algorithm and must be done in a sensible
way to obtain good results. In general, we have to pay attention to the following
two aspects. On the one hand, it is important that we obtain violated inequalities
quickly, on the other hand, the inequality should cut off a big area of the polytope.

So the best inequality classes are facet-defining inequalities of the associated
polytope of the IP for which fast separation algorithms exist. In most cases we
need knowledge about the optimization problem and its associated polytope to
obtain such classes of inequalities.

1.3.3 Branch-and-Cut

Branch-and-cut is a technique which combines the branch-and-bound strategy with
the cutting plane method. It is one of the frequently used methods for computing
the exact solution of NP-hard combinatorial optimization problems.

The basic idea of this technique can be stated therefore as follows: First we
compute the solution of the LP relaxation of the integer program. Then we suc-
cessively add violated inequalities to strengthen the LP relaxation (cutting phase).
The phase ends when no violated inequalities can be found anymore. Then we
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begin with the branching phase that works like we describe in Section 1.3.1 and
obtain two new subproblems. Now we go on and apply the algorithm to both
subproblems. The complete method is shown in Algorithm 3.

Algorithm 3: Branch-and-Cut

1 Initialize P = {x ∈ Rn | Ax ≤ b};
2 Initialize Active Subproblem List with P;
3 Initialize Global Lower Bound with −∞;
4 if Active Subproblem List = ∅ then Return: Global Lower Bound;
5 Take a subproblem S from Active Subproblem List and solve the associated

LP, obtain x∗;
6 if x∗ ∈ Zn and x∗ ≥ Global Lower Bound then
7 Global Lower Bound = x∗;
8 Fathom S;
9 Goto 4;

10 if x∗ ≤ Global Lower Bound then
11 Fathom S;
12 Goto 4;

13 else
14 while an inequality ax ≤ a0 with ax∗ > a0 but ax ≤ a0 ∀x ∈ Zn ∩ S can

be found do
15 Update S = S ∩ ax ≤ a0;
16 Update LP and obtain new x∗;
17 if x∗ ≤ Global Lower Bound then
18 Fathom subproblem;
19 Goto 4;

20 Choose a variable xi and its actual LP solution x∗i . Then split the
problem so that S1 = S ∩ {xi ≥ dx∗i e} and S2 = S ∩ {xi ≤ bx∗i c};

21 Add these two problems to Active Subproblem List;
22 Goto 4;
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Chapter 2

The Target Visitation Problem

Given a base position and a set of targets, the objective of the target visitation
problem (TVP) consists of finding a tour which starts at the base, visits all targets
exactly once in some order and returns to the starting point. So we are essentially
looking for a Hamiltonian tour, but for the TVP the profit of a tour is depending
on two weights, i. e., the value of a tour is the sum of pairwise preferences between
the targets corresponding to their visiting sequence minus the sum of distances
traveled. So the TVP combines the two combinatorial optimization problems,
TSP and LOP. An illustration of the objective can be found in Figure 2.1.

Example: Given a base node, four targets and distances plus preference values,
which are stated in the following two matrices (D gives the distances and P the
preferences, B denotes the base node).

D B 1 2 3 4
B 2 5 1 2
1 1 5 2 4
2 1 2 4 2
3 2 2 4 2
4 1 2 5 3

P 1 2 3 4
1 3 2 1
2 2 1 2
3 5 4 2
4 3 5 1

We now want to calculate the profit of the tour B → 3 → 4 → 2 → 1 → B.
Firstly we calculate the distance cost:

dB3 + d34 + d42 + d21 + d1B = 1 + 2 + 5 + 2 + 1 = 11.

Then we calculate the sum of the met preferences:

p31 + p32 + p34 + p41 + p42 + p21 = 5 + 4 + 2 + 3 + 5 + 2 = 21.

15
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Figure 2.1: Objective of the TVP

In the end we subtract the distance cost from the sum of the met preferences
and obtain the objective value of the tour:

21− 11 = 10.

Next we state a formal definition of the target visitation problem.

Definition 2.1. Let D = (V,A) be the complete directed graph with n nodes where
we set V = {0, 1, . . . , n − 1}. Furthermore there are two types of arc weights:
weights dij (distances) for every arc (i, j), 0 ≤ i, j ≤ n−1, i 6= j, and weights pij
(preferences) associated with every arc (i, j), 1 ≤ i, j ≤ n− 1, i 6= j. The profit
of a tour which starts at node 0, then visits all remaining nodes (called targets)
exactly once in some order and returns to node 0 is defined as the difference of
the sum of all met preferences and the sum of all distances traveled. The target
visitation problem then consists of finding a most profitable tour.

It is clear that every feasible TVP tour can be represented by a permutation π
of {1, 2, . . . , n − 1} where π(i) = j if target j is visited as the i-th target. For
convenience we also define π(0) = 0 and π(n) = 0. With this information we can
formally express the cost of a TVP tour by:

n−2∑
i=1

n−1∑
j=i+1

pπ(i)π(j) −
n−1∑
i=0

dπ(i)π(i+1).

Additionally to Definition 2.1, the TVP can be also defined on an undirected
graph, which means that distances satisfy dij = dji for all pairs of nodes. In
this case the underlying TSP could then be treated in its symmetric version. To
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distinguish between these two variants we will call the symmetric case STVP and
the asymmetric one just TVP since we deal with this case in most parts of the
thesis.

Obviously, the TVP is NP-hard because it contains the traveling salesman
problem (pij = 0 ∀i, j ∈ V ) and the linear ordering problem (dij = 0 ∀i, j ∈ V ) as
special cases.

The TVP is a relatively new problem. Therefore the literature on this topic
is very limited and consists only of a few papers. The problem was introduced
in 2004 by Jeffcoat and Grundel in [GJ04]. Besides this there exists some work
by Pardalos et al., which consist of two papers. Both papers examine a heuristic
approach using genetic algorithms. The first one focuses on a hybrid genetic algo-
rithm [ACP08] while the second one deals with a random key genetic algorithm.
Also Blázsik et al. tried some other heuristics, which can be found in [BBI+06].
Lastly [Hun14] considers a semidefinite programming approach on the target visi-
tation problem, but its success is very limited. To the best of our knowledge there
is no research besides these mentioned papers, especially so far there exists no
approach for solving the problem to optimality.

The original application, which was the motivation resulting in the formulation
of the TVP is the planning of optimal routes for unmanned aerial vehicles in
military missions (see [GJ04] for a detailed description).

Besides this, there is a wide range of applications. The most important one
is probably the scheduling of rescue missions in disaster areas. The problem in
this case is to distribute food, medicine and other sorts of relief supplies. Hereby
one has to take into account that on the one hand the distribution should be fast
while on the other hand the goods are needed more eagerly in some places than in
others.

Also any other routing problem where additional preferences (e. g., town clean-
ing, snow-plowing service, etc.) have to be taken into account can be a possible
application of the TVP.

The base node plays a special role in the formulation. To make it easier for
computations we want to get rid of this node. For this purpose we adapt an idea
which has been used in TSP studies before (e. g., see in [QW93]). The key idea
is to exploit the fact that each tour has to start at the base and return to it and
that no preferences have to be taken into account for the base. So we can reduce
the target visitation problem to just finding a path which visits all targets exactly
once and forget the base node completely. This leads to the final definition of the
TVP, which we want to use from now on in this thesis:
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Definition 2.2. Let D = (V,A) be a complete directed graph with n nodes, where
we set V = {1, . . . , n}. Furthermore there are two types of arc weights: weights
dij (distances) and weights pij (preferences) associated with every arc (i, j),
1 ≤ i, j ≤ n, i 6= j. The profit of a path which visits all targets exactly once
is defined as the difference of the sum of all met preferences and the sum of all
distances traveled. The reformulated target visitation problem then consists
of finding a most profitable path.

An instance of the original TVP (on n nodes) can be transformed to an instance
of the reformulated problem (on n− 1 nodes) as follows. First we have to modify
the distance matrix by setting: d′ij = dij − di0 − d0j, for 1 ≤ i, j ≤ n− 1. Secondly

we subtract the two constants
∑n−1

i=1 di0 and
∑n−1

i=1 d0i from the profit of a TVP
path.

We will work with the path formulation in the rest of this thesis. An exception
is Section 8.1, where we will give a short examination of the original formulation.



Chapter 3

Integer Programming Models for
the TVP

As mentioned in the preliminaries, it is in most cases necessary to find a good IP
formulation to be able to solve an NP-hard combinatorial optimization problem.
In this chapter we therefore want to present different approaches for modeling the
target visitation problem as an IP.

There exist different possibilities and we will start with modeling the TVP by
combining the IP models of the two subproblems. Based on this first approach, we
develop an extended formulation by adding a new type of variables. In the second
part of this chapter we present two other models, one based on distance variables
while the other uses the idea of variables which state the relation between an edge
and a node.

3.1 An IP Model Based on the Combination of

LOP and HP Models

First we combine the IP models of the two subproblems LOP and HP. For this we
introduce two types of binary variables.

We define the variables xij, 1 ≤ i, j ≤ n, i 6= j with the interpretation:

xij :=

{
1 if i = π(k) and j = π(k + 1) for some k ∈ {1, . . . , n− 1}
0 otherwise.

The fact that some target i is visited before some target j is modeled with
binary variables wij, 1 ≤ i, j ≤ n, i 6= j with the definition:

19
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wij :=

{
1 if i = π(k) and j = π(l) for some 1 ≤ k < l ≤ n,

0 otherwise.

We denote the x-variables as HP-variables and the w-variables as LOP-varia-
bles.

By combining the IP formulations of the two subproblems (as stated in Sec-
tions 1.2.3 and 1.2.4.) we obtain a first IP model for the TVP:

max

(
n∑
i=1

n∑
j=1
j 6=i

pijwij −
n∑
i=1

n∑
j=1
j 6=i

dijxij

)
(3.1)

s.t.
n∑
i=1

n∑
j=1
j 6=i

xij = n− 1, (3.2)

∑
i∈S

∑
j∈S
j 6=i

xij ≤ |S| − 1, S ⊆ {1, . . . , n}, 2 ≤ |S| ≤ n− 1, (3.3)

n∑
i=1
i 6=j

xij ≤ 1, j ∈ V, (3.4)

n∑
j=1
j 6=i

xij ≤ 1, i ∈ V, (3.5)

wij + wjk + wki ≤ 2, i, j, k ∈ V, i < j, i < k, j 6= k, (3.6)

wji + wij = 1, i, j ∈ V, i 6= j, (3.7)

xij − wij ≤ 0, i, j ∈ V, i 6= j, (3.8)

xij ∈ {0, 1}, i, j ∈ V, i 6= j, (3.9)

wij ∈ {0, 1}, i, j ∈ V, i 6= j. (3.10)

The correctness of the model is shown in the following lemma.

Lemma 3.1. The model presented in (3.1)–(3.10) is a correct IP model for the
TVP.

Proof. Firstly, we have to prove that every (w, x) vector which describes a feasible
TVP path fulfills the model. Since (3.2)–(3.5), (3.9) is an IP model for the HP and
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(3.6)–(3.7), (3.10) is a model for the LOP it is clear that if the x- and w-variables
describe the same TVP path (3.8) must also be fulfilled.

Secondly we have to show that every feasible solution of (3.1)–(3.10) is a correct
TVP path. It is clear that every feasible integer solution must induce a feasible
linear ordering and a feasible Hamiltonian path. So it is sufficient to show that
the values of xij and the values of wij match or, in other words, that both types
of variables describe the same Hamiltonian path. To assure this, it is sufficient to
prove the following two facts:

a) xij = 1⇒ wij = 1,

b) wij = 1⇒ i is visited before j in the path described by the x-variables.

Because (3.8) must be fulfilled, a) is obvious. To prove b), we assume that
wij = 1 and j is visited before i in the path described by the x-variables. This
means that there exist indices k1, . . . , kl so that (j, k1, . . . , kl, i) is part of the
path. So it follows that xjk1 = xk1k2 = · · · = xkli = 1. With a) we get that
wjk1 = wk1k2 = · · · = wkli = 1. Because of (3.6) and (3.7) we can then iteratively
conclude that wjk2 = 1, wjk3 = 1, . . . , wji = 1. But with (3.7) this is a contradic-
tion to our assumption.

As an interesting fact we note that the subtour elimination constraints (3.3)
are actually not needed.

Lemma 3.2. If a vector (w, x) satisfies (3.2) and (3.4)–(3.10), then it satisfies
also the subtour elimination constraints (3.3).

Proof. Let S ⊆ V and |S| = 2. If xij + xji > 1, then xij = xji = 1 and therefore
wij + wji = 2 which is a contradiction to (3.7). Now let |S| ≥ 3. If (w, x)
satisfies (3.2), (3.4)–(3.10), then the only way inequality (3.3) can be violated is
the existence of a subtour, i. e., there exists a subset of k nodes k < |S| (where
w.l.o.g. we can assume that the set is {1, 2, . . . , k}) such that

x12 = x23 = · · · = xk−1k = xk1 = 1.

Because of that it follows that

w12 = w23 = · · · = wk−1k = wk1 = 1.

For some nodes i, j, k ∈ V it must be true that if we have wij = wjk = 1 then
because of (3.6) it follows wki = 0. Together with (3.7) it follows that wik = 1.
With this argument we can iteratively conclude that because of

w34 = ... = wk−1k = wk1 = 1

it must be true that w31 = 1. But together with w12 = w23 = 1 this would violate
w13 + w23 + w31 ≤ 2.
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x 1 2 3 4 5

1 × 1
2

1
2

0 0

2 1
2
× 0 1

2
0

3 1
2

0 × 1
2

0

4 0 1
2

1
2
× 0

5 0 0 0 0 ×

w 1 2 3 4 5

1 × 1
2

1
2

1
2

1
2

2 1
2
× 1

2
1
2

1
2

3 1
2

1
2
× 1

2
1
2

4 1
2

1
2

1
2
× 1

2

5 1
2

1
2

1
2

1
2
×

Table 3.1: Example of an LP solution which is only violated by the subtour elimi-
nation constraint

As a consequence we can eliminate Constraint (3.3) from the model. An in-
teresting fact is that with this we also have an IP formulation for the TSP with a
polynomial number of constraints. We would like to point out that there exist non-
integral solutions which satisfy all constraints but (3.3). An example illustrating
this fact is shown next:

Example: Let V = {1, . . . , 5} and consider the LP solution in Table 3.1.
Then (3.2), (3.4)–(3.10) are satisfied. But for the subtour elimination constraint

on {1, 2, 3, 4} we obtain

x12 + x13 + x14 + x21 + x23 + x24 + x31 + x32 + x34 + x41 + x42 + x43 = 4

i. e., it is violated.

The binary Constraints (3.9) are also not needed because if all wij are integral,
they force the xij to be integral as well. This fact is shown in the next lemma.

Lemma 3.3. If a vector (w, x) satisfies (3.2), (3.4)–(3.8), (3.10) and xij > 0, ∀i, j
it also satisfies (3.9).

Proof. Let the wij-variables be integral and describe correctly w.l.o.g. the path
1→ 2→ · · · → n.

Because of (3.8), all xij with i > j must be zero. This means that the n
inequalities

n∑
i=1
i 6=j

xij ≤ 1, j ∈ V

turn to the n− 1 inequalities

j−1∑
i=1

xij ≤ 1, j ∈ V.
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x12 + x13 + x14 + . . . + x1n−1 + x1n = 1
+ + + +
x23 + x24 + . . . + x2n−1 + x2n = 1

+ + +
x34 + . . . + x3n−1 + x3n = 1

+ +
...

...
+ +

xn−2n−1 + xn−2n = 1
+

xn−1n = 1
= = = = =
1 1 1 1 1

Table 3.2: Sketch for the proof of Lemma 3.3

This applies also for the n inequalities
n∑
j=1
j 6=i

xij ≤ 1, i ∈ V .

It must also be true that all these inequalities must be satisfied with equality
or (3.2) would be violated. But this means x12 = 1. Because of

∑n
j=2 x1j = 1, we

can conclude that x1j = 0 for 3 ≤ j ≤ n. Together with x13 + x23 = 1 this means
x23 = 1.

Then because of
∑n

j=3 x2j = 1, it is clear that x2j = 0 for 4 ≤ j ≤ n, which
together with x14 + x24 + x34 = 1 leads to x34 = 1. We can continue this process
until the integrality of all xij is proven. The main idea of the proof is sketched in
Table 3.2.

Remark 3.4. Note that obviously the equations wij + wji = 1 (called tournament
equations) have to hold for all 1 ≤ i < j ≤ n because either i is visited before j
or j is visited before i. By replacing all {wij | j < i} by 1 − wji we can reduce
the LOP-variables to the set {wij | i < j}. Then the 3-cycle inequalities turn into
0 ≤ wij + wjk − wik ≤ 1 for all 1 ≤ i < j < k ≤ n and the part of the objective
function for the LOP-variables reads:

n−1∑
i=1

n∑
j=i+1

[(pij − pji)wij + pji].

As a result of Lemma 3.2 and Remark 3.4 we get an improved version of the
model stated in (3.1)–(3.10):
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max

(
n−1∑
i=1

n∑
j=i+1

[(pij − pji)wij + pji]−
n∑
i=1

n∑
j=1
j 6=i

dijxij

)
(3.11)

s.t.
n∑
i=1

n∑
j=1
j 6=i

xij = n− 1, (3.12)

n∑
i=1
i 6=j

xij ≤ 1, j ∈ V, (3.13)

n∑
j=1
j 6=i

xij ≤ 1, i ∈ V, (3.14)

0 ≤ wij + wjk − wik ≤ 1, 1 ≤ i < j < k ≤ n, (3.15)

xij − wij ≤ 0, i, j ∈ V, i < j, (3.16)

xij ∈ {0, 1}, i, j ∈ V, i 6= j, (3.17)

wij ∈ {0, 1}, i, j ∈ V, i < j. (3.18)

We denote this model by TVPHP and the convex hull of the feasible 0/1 solu-
tions of this model by P n

TV .

Finally we like to point out that it is possible to calculate the position of node i
in the path with the help of the LOP-variables as:

n−
n∑
j=1
i 6=j

wij.

3.1.1 Extended Formulation of the TVPHP Model

The use of extended formulations is a common technique, which is used to streng-
then the LP relaxation of a combinatorial optimization problem. The key idea of
this approach is to add new variables and constraints to a given IP formulation so
that the gap between the solution of the LP relaxation and the optimal integral
solution becomes smaller. We will see in the following that it can be useful to
formulate such an extended formulation for the TVPHP model.
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We construct an extended formulation for the TVP by adding three-indexed
variables, which are a generalization of the linear ordering variables from the
TVPHP model. These new variables wijk are defined as follows:

wijk :=


1 if i = π(a), j = π(b) and k = π(c) for

some 1 ≤ a < b < c ≤ n,

0 otherwise.

(3.19)

So this new type of variables is an extension of the wij-variables. In the objective
function we assign zero coefficients to the new variables. In order to extend our
standard model, we also need to introduce two new classes of constraints to make
sure that the solution of the new variables and the old xij- and wij-variables are
consistent. The extended formulation looks as follows:

max

(
n−1∑
i=1

n∑
j=i+1

[(pij − pji)wij + pji]−
n∑
i=1

n∑
j=1
j 6=i

dijxij

)
(3.20)

s.t.
n∑
i=1

n∑
j=1
j 6=i

xij = n− 1, (3.21)

n∑
i=1
i 6=j

xij ≤ 1, j ∈ V, (3.22)

n∑
j=1
j 6=i

xij ≤ 1, i ∈ V, (3.23)

0 ≤ wij + wjk − wik ≤ 1, 1 ≤ i < j < k ≤ n, (3.24)

wij + wjik + wjki + wkji = 1, i, j, k ∈ V, i < j, i 6= k, j 6= k, (3.25)

xij − wijk − wkij ≤ 0 i, j, k ∈ V, i 6= j, j 6= k, i 6= k, (3.26)

xij − wij ≤ 0, i, j ∈ V, i < j, (3.27)

xij ∈ {0, 1}, i, j ∈ V, i 6= j, (3.28)

wij ∈ {0, 1}, i, j ∈ V, i < j, (3.29)

wijk ∈ {0, 1}, i, j, k ∈ V, i 6= j, j 6= k, i 6= k.
(3.30)



26 CHAPTER 3. IP MODELS FOR THE TVP

In the following we will denote this model by TVPE and the associated polytope
by P n

ETV . As one can see (3.25) matches the new variables and the wij-variables
and (3.26) matches the new variables and the xij-variables. We would like to point
out that the model would still be correct without (3.25). But experiments have
shown that the gap between the LP relaxation and the optimal integer solution
would be far worse without it.

Lemma 3.5. The formulation (3.20)–(3.30) is a correct model for the TVP.

Proof. Without (3.25), (3.26) and (3.30) this model is correct since it is equivalent
to the TVPHP model. Thus, it remains to show that (3.25) and (3.26) are correct
and sufficient to describe the wijk-variables as defined in (3.19).

The correctness of (3.25) is quite obvious: If i is not visited before j, then j
must be visited before i and a third node k must be visited before, in between
or after these two nodes. Constraint (3.26) just encodes the fact that when i is
visited directly after j, a third node k must be visited either before or after these
two nodes.

It remains to show that (3.25) is sufficient to describe the wijk-variables as
defined in (3.19). If wij, wjk and wik are equal to one, then wji = 0 and because
of (3.25) the variables wikj and wkij must be equal to zero. Which means that we
get from wji +wijk +wikj +wkij = 1 that wijk = 1. On the other hand: if wijk = 1
it follows from (3.25) that wji, wkj and wki are zero and therefore wij, wjk and wik
are equal to 1.

3.2 The Edge-Node Formulation

The key idea of the next model is to combine the w and x-variables of the TVPHP

model to new three-indexed variables which state the relation between a node k
and a fixed edge (i, j). More precisely we define for i, j, k ∈ V i 6= j, k 6= i the
variables

wijk :=


1 if i = π(a), j = π(a+ 1) and k = π(b) for

some 1 ≤ a < b ≤ n,

0 otherwise.

(3.31)

A valid IP model based one these variables can then be formulated as follows.
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max

(
n∑
i=1

n∑
j=1
i 6=j

pij(
n∑

m=1
m6=i

wimj )+
n∑
i=1

n∑
j=1
i 6=j

dijw
ij
j

)
(3.32)

s.t.
n∑
i=1

n∑
j=1
j 6=i

(wijj ) =n− 1, (3.33)

n∑
i=1
i 6=j

wijj ≤1, j ∈ V, (3.34)

n∑
j=1
j 6=i

wijj ≤1, i ∈ V, (3.35)

n∑
l=1
l 6=i

wilj +
n∑
l=1
l 6=j

wjlk +
n∑
l=1
l 6=k

wkli + wikk ≤2 i, j, k ∈ V, i 6= j, j 6= k, i 6= k, (3.36)

wijk − wijj ≤0, i, j, k ∈ V, i 6= j, j 6= k, i 6= k, (3.37)

wijj + wjkl − wijl ≤1, i, j, k, l ∈ V, i 6= j 6= k, i 6= l 6= j, i 6= k,

(3.38)

wijk ∈{0, 1}, i, j, k ∈ V, i 6= j, i 6= k. (3.39)

In the following we will denote this model by TVPEN and its associated polytope
with P n

ENTV .

Lemma 3.6. The model presented in (3.32)–(3.39) is a correct IP model for the
TVP.

Proof. The variables of type wijj together with the Constraints (3.33)–(3.35) are
equal to the model of the Hamiltonian path problem presented in Section 1.2.3.
We can therefore assume that the variables wijj must be correct for all i, j ∈ V .
Therefore it remains to show that:

a) The Constraints (3.36)–(3.38) are correct.

b) If and only if wijk = 1, then k must be visited after i and j and edge (i, j)
must be contained in the path (i. e., the Constraints (3.33)–(3.39) describe
the wijk -variables correctly according to (3.31).
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c) The objective function (3.32) is correct.

Proof of a):

• Constraint (3.37): It is obvious that if k is visited after edge (i, j), edge (i, j)
must be contained in the path.

• Constraint (3.38): It is also obvious that if l is visited after edge (j, k) and
edge (i, j) is contained in the path, then l must be visited after edge (i, j).

• Constraint (3.36): This type of inequality is similar to the three-cycle con-
straint (3.6) in the TVPHP model. It states that of the four constraints j is
visited after i, k is visited after j, i is visited after k and k is visited directly
after i only two could be fulfilled at the same time.

Proof of b): We can conclude from (3.37) that all wijk must be zero if edge (i, j)
is not contained in the path implied by the wijj -variables. So it remains to show

that wijk = 1 if k is visited after (i, j) and wijk = 0 if k is not visited after (i, j) in
the path.

We start by showing the first statement. Assume that k is visited after (i, j)
and consider the part of the path (. . . , i, j, l,m, . . . ). With wijj = 1 and wjll it

follows because of (3.38) that wijl = 1. With the same argument we can show that
wjlm = 1. Again, with (3.38), it follows then that wijm = 1. We can continue this
process until we obtain the result that wijk = 1.

Now assume that wijk = 1 and k is not visited after (i, j).
Case 1: k is not the direct predecessor of i: Then denote the successor of k by l. It
is obvious that there must exist an m so that wlmi = 1. But together with wkll = 1
we get a contradiction because of (3.36).
Case 2: k is the direct predecessor of i: Because wkii = 1 and wijj = 1 a contradiction
also follows with (3.36).

Proof of c): Since the wijj -variables are equal to the xij-variables of the Hamil-
tonian path problem it is obvious the the distance cost are computed correctly.
Because exactly one of n − 1 the variables wimj , m = 1, . . . , i − 1, i + 1, . . . , n is
equal to 1 if and only if j is visited after i, the met preferences are also calculated
correctly.

The model would be also correct without (3.37). But experiments have shown
that the gap between the LP relaxation and the optimal integer solution would be
far worse without this constraint.
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An advantage of this model is that we only have one type of variables. Unfor-
tunately the price we have to pay for this is a cubic number of variables.

It is also possible to formulate an analogous IP model with variables (defined
for i, j, k ∈ V and 1 ≤ i, j, k ≤ n, i 6= j, k 6= j) of the following type:

wkij :=

{
1 if k = π(a), i = π(b) and j = π(b+ 1) for some 1 ≤ a ≤ b ≤ n− 1 ,

0 otherwise.

3.3 A Model Based on Distance Variables

Another idea for constructing an IP model for the TVP is due to E. Fernandez from
the UPC Barcelona. The key idea of this approach is the use of distance variables.
In detail we define variables ztij which describe whether there are exactly t arcs
between i and j in the path or not. More formally we define for i, j ∈ V and
1 ≤ i, j,≤ n, i 6= j, t ∈ {1, 2, . . . , n− 1} the variables:

ztij =

{
1 if the solution contains a path with t arcs from i to j,

0 otherwise.

Since we do not longer distinguish between distance and ordering variables, it
is necessary to adjust the coefficients in the following way:

htij =

{
pij − dij if t = 1,

pij otherwise.

With this modification we are now able to formulate a TVP model with distance
variables:
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max
n∑
i=1

n∑
j=1
j 6=i

n−1∑
t=1

htijz
t
ij (3.40)

s.t.
n∑
i=1
i 6=j

z1ij ≤ 1, j ∈ V, (3.41)

n∑
j=1
j 6=i

z1ij ≤ 1, i ∈ V, (3.42)

n∑
i=1

n∑
j=1
j 6=i

zkij = n− k, k ∈ N, k ≤ n− 1, (3.43)

zt1ij + zt2jk ≤ zt1+t2ik + 1, i, j, k ∈ V, t1, t2 ∈ N, i 6= j, j 6= k, (3.44)

i 6= k, t1 + t2 ≤ n− 1,
n−1∑
t=1

ztij + ztji = 1, i, j ∈ V, i 6= j, (3.45)

ztij ∈ {0, 1} i, j ∈ V, i 6= j, t ∈ N, t ≤ n− 1. (3.46)

We will denote this model by TVPD and the associated polytope by P n
DTV .

Again we have the advantage that this model contains just one type of variables.
Nevertheless the z1ij-variables still play a special role, for example in the objective
function.

Lemma 3.7. The model presented in (3.40)–(3.46) is a correct IP model for the
TVP.

Proof. The Constraints (3.41), (3.42) together with (3.43) for k = 1 describe an
IP model for the Hamiltonian path problem shown in Section (1.2.3). That means
that the z1ij-variables have to describe a Hamiltonian path. Because of (3.44) it is
clear that if z1ij and z1jk are equal to one, then z2ik must be also equal to one. So we
get n− 2 variables of the type z2ij which must be equal to one. Because of (3.43) it
is clear that all the other variables of this type must then be zero. Iteratively we
can conclude that the zkij-variables with k > 2 are also correct.

It remains to show that (3.45) is correct. But this is obvious, since there is
exactly one path from i to j or from j to i.



Chapter 4

Polyhedral results

In this chapter we want to examine the associated polytopes of the IP models which
have been presented in the last section. One of the main aims of this examination is
to obtain results which can be used for successfully implementing a branch-and-cut
approach for solving the TVP to optimality.

So first we evaluate which of the proposed models may be useful for such an
approach. An interesting fact in this context is the strength of the LP relaxation
(e. g., the average size of the gap between the solution of the LP relaxation and
the optimal integer solution). We make several computations with CPLEX 12.1 to
investigate this gap for the different TVP models. An excerpt of these test runs
is shown in Table 4.1. The results of all tests can be found in Appendix C. For a
description of the test instances listed in Table 4.1 see Section 7.1.

When considering Table 4.1, one can observe the following facts: The smallest
gap between the optimal integral solution and the LP solution can be found in case
of the TVPE model. This is not so surprising since this model was constructed
with the aim to have tight bounds. Another observation is that in case of the
TVPD model the gap is very large. Also because of the big number of constraints,
it was not even possible to solve the LP relaxation of the instances with 26 nodes.
So we have to state that for practical purposes this model seems not to fit as long
as we are not able to strengthen it with some additional constraint classes and get
rid of the five-indexed Constraint (3.44).

The remaining two models have similar gaps which are far worse than the ones
of the extended formulation. But the computation of the LP relaxation for the
TVPEN model takes much more time than for the TVPHP formulation.

Because of these facts we will focus in the polyhedral examination mainly on
the polytopes P n

TV and P n
ETV .

Another concern for a successful implementation of a branch-and-cut approach
is knowledge of the facial structure of the associated polytope. A first measure for

31
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Name Opt. TVPHP TVPE TVPEN TVPD

ER CFO 15 1 −6435 94.0 −6406.1 2370.0 7920.5
LD CFO 15 1 107620 115361.5 111246.2 112091.8 124233.8

ER MCO 15 2 −5738 −3099.8 −4668.6 1632.5 3256.3
LB MCO 15 1 3798 10007.6 3861.1 7314.1 14929.6
LB CFO 20 2 9494 13743.5 9496.8 11848.8 21376.0
ER CFO 20 1 −7417 2699.5 103.0 2985.8 11652.4
LB MCO 20 1 14272 22189.7 17660.7 20036.2 34352.1
ER MCO 20 1 905 8018.3 1208.5 7226.6 13713.7
ER BCO 20 2 −9682 −3751.5 −6640.3 −4844.8 8190.0
ER CFO 23 1 −18453 −4124.8 −15426.9 −3465.5 3798.3
ER CFO 23 3 −8966 1560.1 −6751.9 1998.7 15666.5
LD BCO 23 1 131109 154173.0 138900.8 144670.8 180248.8

Table 4.1: Solution of the LP relaxation of the different TVP models for instances
with 15–23 nodes

the complexity of the polyhedral structure is the complexity of the description of
the polytopes for small n. To examine small TVP polytopes we use two algorithms.
Namely this is PORTA [CL09] for calculating all facets and HUHFA for classifying
these facets due to symmetries. Details on the HUHFA algorithm are presented in
the following.

We have developed an algorithm which is able to classify facets of a given
polytope due to symmetries. Since we used this algorithm to classify small TVP
polytopes we will in following give a short overview of this topic. For further
information on this subject consult [HHS+13].

As we have seen in Section 1.3.2, it is necessary to obtain good cutting planes
which can be used in the algorithm. This is equivalent to trying to obtain facet
classes of a given polytope. One way facet classes can be obtained, is to study the
complete linear description of small polytopes in order to generalize the equations
and inequalities. But “small polytopes” might actually not look so small at first
sight: There is often a huge number of facet-defining inequalities already for very
small problem sizes.

However, there are also often many symmetries implied by the combinatorial
structure of the problem which can be used to classify the facets. These symmetries
act on the feasible solutions and naturally form a group. In their representation
as maps on the variable values they can be extended to symmetries acting on
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the polytope, and one can easily prove that they map vertices of the polytope
to vertices of the polytope. We say that those facet-defining inequalities which
are similar in the sense that they can be transformed onto each other by some
symmetry belong to one class.

Understanding all the facet-defining inequalities of a combinatorial optimization
problem polytope then reduces to understanding one facet from each class.

To do this classification, one applies the symmetries to the facet-defining in-
equalities and then checks whether any two facets can be transformed into each
other and hence belong to the same class. Often, this check is not so easy as two
linear expressions describing the same facet might differ by the sum of multiples
of several equalities from the problem description.

The check can be accomplished by defining a so-called normal form for the repre-
sentation of inequalities which have the same normal form describe the same facet.
To this end, problem-specific normal forms were developed for some extensively
studied combinatorial optimization problems. For the TSP, every facet-defining
inequality can be efficiently transformed to the so-called tight triangular normal
form [NR93]. For an example of a normal form for the LOP, see [Rei85]. In general,
the representation of facet-defining inequalities in the orthogonal complement of
the linear subspace spanned by the equations can be of course used as a normal
form for the facets of a polytope. However, this needs techniques from linear al-
gebra and can therefore raise numerical issues. Unfortunately, normal forms that
can be described combinatorially are often not known. Hence, having a method
that can be applied to every combinatorial optimization problem and relies solely
on the combinatorial structure of the polytope is desirable.

For this problem, we have developed a novel technique for classifying facets
without using normal forms. The main idea there is to identify every facet defin-
ing inequality with the vertices of the polytope which satisfy it with equality.
With this method, complete descriptions of polytopes computed by a software like
PORTA [CL09] (or a similar package) can be analyzed to divide the facets into
equivalence classes according to groups generated by given symmetry mappings.

We also developed an algorithm for the classification called HUHFA which was
implemented in C++ and which has been used in this thesis.

In case of the TVP polytopes we are able to calculate P 4
TV , P 4

ENTV and P 4
ETV

with the help of PORTA [CL09]. We then sort the inequalities which describe
these polytopes with the HUHFA algorithm by symmetry classes. We take into
account permutation symmetries (i. e., interchanges of the nodes) and switching
symmetries (i. e., change of the orientation of all edges). A summary of the results
of these investigations is shown in Table 4.2. The full description of all polytopes
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can be found in Appendix A. In case of TVPHP and TVPE we will for the sake
of a clearer representation present all facet classes in a form which includes also
wij-variables with i > j. We will also do this from now on every time we talk
about some fixed facet class. However, general results for facets will be proved for
the reduced model which contains the wij-variables only for i < j.

For TVP polytopes with n > 4 the computation becomes more difficult be-
cause the number of inequalities is tremendous. We therefore cannot use PORTA
anymore but we have to think about different approaches. Details on this topic
can be found in Section 4.1.2.

Polytope # Facets # Facet-Classes

P 4
TV 1280 48

P 4
ENTV 512 24
P 4
ETV 144 7

Table 4.2: Key facts of different TVP polytopes

4.1 Polyhedral Results of the TVPHP Model

In this section we first discuss the dimension of the P n
TV polytope. Then we present

some facet classes and prove a zero-lifting result. Also some general facet classes
will be introduced in the end of this section.

4.1.1 Dimension of the P n
TV Polytope

Let (wS, xS, ) be the characteristic vector of a TVP path S on the node set
{1, . . . , n}. Then xS is the characteristic vector of a directed Hamiltonian path
and wS is the characteristic vector of a linear ordering.

The dimension of the corresponding Hamiltonian path polytope P n
HP is n2−n−1

as shown in [QW93], and the dimension of the linear ordering polytope P n−1
LOP

is (n−1)n
2

as shown in [GJR85]. (The valid equations for both polytopes are given
in the TVPHP model) Therefore

dimP n
TV ≤ dimP n

HP + dimP n
LOP =

3n2 − 3n− 2

2
. (4.1)

In the following we will show that in fact equality holds in this statement for
n ≥ 4. For n = 3 explicit calculations yield dimP 3

TV = 1.

Let MTVn denote the matrix of all characteristic tour vectors for the TVPHP

model with n nodes (written row-wise). Of course, this matrix is not unique as
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the order of the rows can be changed. The column associated with variable xij
is denoted by Tij and the column associated with variable wij is denoted by Lij.

Together there are exactly n(n− 1) + n(n−1)
2

= 3n2−3n
2

columns.

Theorem 4.1. Every column Lij of MTVn is linearly independent of all other
columns for n ≥ 4.

Proof. By using a computer algebra system one gets that all solutions of

3∑
i=1

4∑
j=i+1

Lijαij +
4∑
i=1

4∑
j=1
j 6=i

Tijβij = 0

satisfy αij = 0 for all 1 ≤ i < j ≤ 4. Therefore the statement holds for n = 4.
We proceed by induction and assume that the statement is true for some n ≥ 4,

i. e., for all solutions of

n−1∑
i=1

n∑
j=i+1

Lijαij +
n∑
i=1

n∑
j=1
j 6=i

Tijβij = 0 (4.2)

we have αij = 0 ∀i, j ∈ V .
Consider the equation

n∑
i=1

n+1∑
j=i+1

Lijαij +
n+1∑
i=1

n+1∑
j=1
j 6=i

Tijβij = 0 (4.3)

and assume that it is solved by a vector (α, β) of variables such that αpq 6= 0 for
some p and q. We will now show that in this case also System (4.2) has a solution
with a nonzero value in the linear ordering columns.

For any n and i ≤ n let MTV i
n be the block of rows of MTVn corresponding to

the TVP paths where target i is visited first. Choose i so that the block MTV i
n+1

where the coefficients column corresponding to αpq is neither equal to 1 nor to 0.
It is easy to see that such a block must exist. The subsystem of (4.3) defined
by the rows of MTV i

n+1 is also satisfied by (α, β). We can make the following
observations:

– The n columns Tji, j ∈ {1, . . . , i− 1, i+ 1, . . . , n+ 1} are zero vectors in the
subsystem since i has no predecessor.

– The i − 1 columns Lji, j ∈ {1, . . . , i − 1} are zero vectors in the subsystem
since i is the first node which will be visited in the tour.
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– The n − i columns Lij, j ∈ {i + 1, . . . , n} are equal to 1. Since i is the
start node of the path, we know that

∑n+1
k=1,k 6=j Tkj = 1, for all j 6= i. With

this we can modify (α, β) so that it is still a valid solution of the subsytem:

αijLij = αij1 = αij
n∑
k=1
k 6=j

Tkj. So we can define the vector (α′, β′) by setting

β′kj =

{
βkj + αij k ∈ {1, . . . , n}, j ∈ {i+ 1, . . . , n},
βkj otherwise

and

α′kj =

{
0 k = i, j ∈ {i+ 1, . . . , n},
αkj otherwise.

– With
n+1∑
j=1,
j 6=k

Tjk = 1 for all k 6= i we can also substitute all Tik by 1−
n+1∑
j=1,

j 6=i, j 6=k

Tjk

and adjust the coefficients as above.

Now we relabel all nodes j > i with j = j − 1. We also relabel all variables and
coefficient columns in the same way and denote them with L′′kj, T

′′
kj, w

′′
kj, x

′′
kj. Now

the system will be equal to (4.2). By construction the vector (α′′, β′′) satisfies this
system and we still have α′′pq 6= 0. This is a contradiction and therefore the theorem
has been proved.

Corollary 4.2. For n ≥ 4 we have dimP n
TV = 3n2−3n−2

2
.

Proof. Because of Theorem 4.1 and the fact that the dimension of the Hamiltonian
path polytope is equal to n2 − n− 1 the statement is true.

4.1.2 Facets of the P n
TV Polytope

In this section we want to state some results about the facial structure of the P n
TV

polytope. Firstly we will present some facet classes and in the second part of this
section we will present some lifting results with which we are able to prove that
some facet classes of P 4

TV are facets in general.

Firstly we want to compute the complete description of P n
TV for small n. We

used the software package PORTA [CL09] which uses the Fourier-Motzkin elimi-
nation method for this purpose. Unfortunately we were only able to compute P 3

TV

(which is trival and could not be used for general results) and P 4
TV .

The P 4
TV polytope can be described by 1280 inequalities. If we sort them by

symmetries with the help of the HUHFA algorithm we get 48 facet classes. We
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used permutation symmetries which are permuting the nodes and the switching
symmetries which change the orientation of all edges for the classification. The 48
classes can be found in Appendix A.1. If we only sort the facets using permutation
symmetries we get 72 classes of inequalities.

For P 5
TV the computation time of PORTA is too long to obtain results. There-

fore we have implemented a heuristic approach for computing facets of P 5
TV which

uses the following technique. We only want to give a short overview of this topic,
since a more detailed description can been found in [Lör14].

1. Compute a start facet f (or take a trivial facet −xij ≤ 0).

2. Compute the set S of all integral points in P 5
TV which satisfy f with equality.

3. Calculate subset T ⊆ S with dim(S) = dim(T ) and T is minimal.

4. Select an integral point p ∈ T and an integral point q ∈ P 5
TV , q 6∈ S

5. Let T ′ = {T \ p} ∪ {q}. Check for the set Conv(T ′) whether this is a facet
or not with the help of Gaussian elimination.

6. In case it is go to Step 2 and apply procedure to new facet. Otherwise go
to Step 4.

With the help of this heuristic it is possible to find 35 829 461 097 facets which
can be sorted to 298 603 288 classes.

Of course all facet classes found in the case of n = 4 or n = 5 are not auto-
matically facets for all n. So it is very important to find ways to generalize these
inequality classes. This generalization process is called lifting and is defined as
follows:

Definition 4.1. An algorithm which takes a facet f of a polytope P and converts f
to a facet of a polytope Q is called a lifting.

By trivial lifting or zero-lifting we denote a special lifting of a facet f where the
coefficients of the old variables are kept and the coefficients of all new variables are
set to zero. In other words if a facet of P k

TV is zero-liftable it is valid for all n ≥ k.
Since such facets are very preferable for the use in branch-and-cut algorithms, we
prove a general zero-lifting result in the next section.

Additionally we also present some other general facet classes, which can be
found in Section 4.1.4.
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4.1.3 Zero-Lifting for the P n
TV Polytope

Before we present a zero-lifting theorem we need to introduce some additional
notation:

Definition 4.2. Let f be a facet of P n
TV defined by aww + axx ≤ a0. We will

denote the zero-lifting of f for P k
TV , k > n by f (k) or in expanded form with

a
(k)
w w(k) + a

(k)
x x(k) ≤ a

(k)
0 .

To prove that a zero-lifting f (k) is a facet for all k ≥ n we have to assure two
conditions: First f (k) must be feasible for all k ≥ n and second that it is a facet,
which means that the dimension of f (k) is equal to dimP k

TV − 1.

Lemma 4.3. Let f be a facet of P n
TV defined by aww + axx ≤ a0 where all co-

efficients are non-negative. Then the zero-lifting of f is feasible for all P k
TV with

k ≥ n.

Proof. We will prove the statement by induction. For k = n the statement is true
by assumption. Now assume the statement is true for k ≥ n and it is not true
for k + 1. Then consider a feasible integral point p ∈ P k+1

TV which violates f (k+1).
It is clear that p can be constructed from a feasible point p′ of P k

TV by inserting
node k + 1 somewhere in the path. Obviously this operation does not change the
values of wij, i, j ≤ k. It can change the value of one xij, i, j ≤ k from 1 to 0 if
node k + 1 is inserted between i and j. But since all coefficients are non-negative,
it follows then that a

(k)
w w(k) + a

(k)
x x(k) ≥ a

(k+1)
w w(k+1) + a

(k+1)
x x(k+1). That means p′

has to violate f (k), which is a contradiction.

We now want to develop a general lifting theorem. With this result we will be
able to show for many facet classes that zero-lifting is possible.

Definition 4.3. Let f be a valid inequality for P n
TV . We call a node v a free node

of f if for all j 6= v the coefficients of the variables wvj, wjv, xjv, xvj in f are
zero.

Theorem 4.4. Let f be a facet of P n
TV defined by aww+axx ≤ a0 and let i be a free

node of f (n+1) in P n+1
TV . Then there exists a bijection I between the rows of MTVn

and MTV i
n+1 (i.e. between Sn and Sn+1) such that if and only if a characteristic

vector (wr, xr) of P n
TV satisfies f with equality, then I(wr, xr) satisfies the zero-

lifting f (n+1) with equality.

Proof. We will prove this theorem in two steps. First let i = n + 1. Then we can
define the following bijection between MTVn and MTV n+1

n+1 via (Sn denotes the
symmetric group on n nodes):
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I : Sn → Sn+1, π′(k) :=

{
n+ 1 if k = 1,

π(k − 1) otherwise.

We want to point out that n+ 1 is a free node of the zero-lifting of f and that
this bijection does not affect the values of wij, xij with i, j 6= n + 1. So it is clear
that if a row (wr, xr) of MTVn satisfies f with equality then the row I(wr, xr) of
MTV n+1

n+1 must satisfy f (n+1) with equality.
Now let i < n+1 and consider an arbitrary row (wr, xr) of MTV i

n+1 . We relabel
node i with n+ 1 and vice versa. Since node i and node n+ 1 are free nodes of f
it is still true that awwr + axxr ≤ a0. It is easy to see that after we have done this
modification for all rows MTV i

n+1 is equal to MTV n+1
n+1 (maybe some rows have

to be interchanged). So we can define the following bijection between MTVn and
MTV i

n+1 (pi denotes the old position of i in the path):

I : Sn → Sn+1, π′(k) :=


i if k = 1,

n+ 1 if k = pi + 1,

π(k − 1) otherwise.

With the facts we mentioned in the first step, it should be clear that this
bijection fulfills the desired criteria.

Definition 4.4. Let f be a valid inequality for P n
TV . Then MTVEqn(f ) denotes

the matrix of all rows of MTVn which fulfill f with equality. Analogously we define
MTVEq i

n(f ).

For the following theorem we want to recall a definition from above: The column
of MTVn which is associated with variable wij is denoted by Lij and analogously
the column associated with xij is denoted by Tij. We extend this definition also to
MTVEqn(f ) and MTVEq i

n(f ).

Definition 4.5. Let f be a facet defined by aww + axx ≤ a0. With f= we denote
the equation aww + axx = a0.

We will in the following also use the term f= for the column equality implied
by f in MTVEqn(f ).
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We known that

n∑
i=1

n∑
j=1
j 6=i

Tij = (n− 1) · 1 (4.4)

is a valid column equation for MTVEqn(f ). If f is a facet only one other linear
dependence of columns in MTVEqn(f ) exists. This is of course f=. So showing that
f is a facet is equal to showing that no valid column equation besides f=, (4.4) and
linear combinations of both exist. For a better understanding we will denote the
set of f=, (4.4) and all linear combinations of these two equations (for a given n)
with G(n).

Theorem 4.5. Let f be a facet of P n
TV with free node i. Let the zero-lifting of f

also be feasible for P n+1
TV . Then f (n+1) is also a facet of P n+1

TV .

Proof. Assume the statement is not true. This is equivalent with the fact that there
exists a column equation C which is valid in MTVEqn+1 (f (n+1 )) but C /∈ G(n+1).
Let C have w.l.o.g. the following form:

α12L12 + · · ·+ α1n+1L1n+1+

...

+αnn+1Lnn+1+

β12T12 + · · ·+ β1n+1T1n+1+

...

βn+11Tn+11 + · · ·+ βn+1nTn+1n = c0.

We will prove the statement in 9 steps.

Step 1: For a column equation valid in MTVEqn+1 (f (n+1 )) we define the fol-
lowing minimal form: Subtract or add a multiple of f= so that

∑n+1
k=1

∑n+1
j=k+1 |αkj|

is minimal. Of course this minimal form does not have to be unique. From now
on we let w.l.o.g. C be in such a minimal form.

Step 2: We will introduce a transformation converting our column equation C
of MTVEqn+1 (f (n+1 )) to a column equation of MTVEqn(f (n)).

Consider MTVEqn+1
n+1 (f (n+1 )). Since n + 1 is the start node of the path it is

clear that in this block all Ljn+1 are equal to zero and therefore are not important
for the column equation C. The same applies to all Tjn+1 which are also equal
to zero. Furthermore it follows that in MTVEqn+1

n+1 (f (n+1 )) the following degree
column equations are valid:
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n+1∑
j=1
j 6=k

Tjk = 1 ∀k ∈ {1, . . . , n}.

So we can replace Tn+1k in C by 1 −∑n
j=1,j 6=k Tjk. So the new β-coefficients

look as follows:

β′jk = βjk − βn+1k, k, j ∈ {1, . . . , n}, j 6= k.

Now we have an equation (denoted by C ′) which does not contain Tjn+1, Tn+1j,
Ljn+1. With Theorem 4.4 (applied to C) we know that C ′ must be valid in
MTVEqn(f ).

Step 3 By assumption f is a facet of P n
TV , which means that C ′ has to

be in G(n). If we consider the transformation in Step 2, we observe that all
αkj, 1 ≤ k < j ≤ n remain the same in C ′. But since C is per definition in a mini-
mal form defined in Step 1, we can conclude that in C all αkj = 0 for all k, j ≤ n
or C ′ is not in G(n).

Step 4 We will introduce a second transformation converting the column equa-
tion C of MTVEqn+1 (f (n+1 )) to a column equation of MTVEqn(f (n)). It is similar
to the first one but this time we consider MTVEq i

n+1 (f (n+1 )). From Step 3 we
know that all αkj with 1 ≤ k < j ≤ n are zero. It is clear that Lin+1 is equal
to 1. Therefore this column is not important for the equation. The same applies
to all Tji for j ∈ {1, . . . , n + 1}, j 6= i which are also equal to zero. Since i is the
start node of the path it is clear that in MTVEq i

n+1 (f (n+1 )) the following degree
column equations are valid:

n+1∑
j=1
j 6=k

Tjk = 1 ∀k ∈ {1, . . . i− 1, i+ 1, . . . , n+ 1}.

So we can replace Tik in C by 1 −∑n+1
j=1,j 6=k,i6=j Tjk. So the new β-coefficients

look as follows:

β′′jk = βjk − βik, j, k ∈ {1, . . . , n+ 1}, j 6= i, j 6= k, i 6= k.

Now we have an equation (denoted by C ′′) which does not contain the variables
Tji, Tij, Lji and Lij. If we relabel n+1 with i, we know with Theorem 4.4 (applied
to C) that C ′′ must be valid in MTVEqn(f ).

Step 5 With a similar argument as in Step 3 we can conclude that also all αjn+1

with 1 ≤ j ≤ n must be equal to zero.
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Step 6 From Steps 3 and 5 we can conclude that all αjk must be zero. There-
fore C ′ and C ′′ must be each a multiple of the degree equation (4.4). But that
means (because of the transformation in Step 2) that for 1 ≤ j 6= k ≤ n the
differences βjk − βn+1k must be all equal to a fixed value B′. But then it follows
that βjk = β◦k for all 1 ≤ j, k ≤ n and j 6= k. Analogously we can conclude
from the transformation presented in Step 4 that the differences βjk − βik for
k, j ∈ {1, . . . , i− 1, i+ 1, . . . , n+ 1} must be all equal to a fixed value B′′.

Step 7 Let NTVEqk
n+1 (f (n+1 )) denote that block of rows of MTVEqn+1 (f (n+1 ))

which correspond to paths which end with node k. We will introduce a third
transformation. This time we consider NTVEqn+1

n+1 (f (n+1 )). From Steps 3 and 5 we
know that all αkj are zero. The same applies to all Tn+1k for k ∈ {1, . . . , n} which
are also equal to zero. Since n + 1 is the end node of the path, it is clear that in
NTVEqn+1

n+1 (f (n+1 )) the following degree column equations are valid:

n+1∑
j=1
j 6=k

Tkj = 1 ∀k ∈ {1, . . . , n}.

So we can replace Tkn+1 in the equation through 1−∑n
j=1,j 6=k Tkj. So the new

β-coefficients look as follows:

β′′′kj = βkj − βkn+1, k, j ∈ {1, . . . , n}, j 6= k.

Now we have an equation (denoted by C ′′′) which does not contain Tjn+1, Tn+1j

and Ljn+1. With an argument analogous to Theorem 4.4 we can conclude that C ′′′

must also be valid in MTVEqn(f ).

Step 8 With a similar argumentation as in Step 6 we can conclude together
with Step 7 that βkj = βk◦ for all 1 ≤ j, k ≤ n. Together with Step 6 we can
conclude that βkj = β, ∀j, k ∈ {1, . . . , n}.

Step 9 We know from Step 6 that B′′ = βn+1k − βik = βjk − βik for some
j ∈ {1, . . . , n} But since βjk = β for j, k ∈ {1, . . . , n} this means βn+1k = β
for k ∈ {1, . . . , n}. We can define a fourth transformation analogous to the one
in Step 7 but between NTVEq i

n+1 (f (n+1 )) and MTVEqn(f (n)). With the help of
this transformation we can conclude with the same argumentation as above that
βkn+1 = β for k ∈ {1, . . . , n}. But that means that all βjk are equal to β and C
is equal to the degree equation. This is a contradiction to the assumption. So we
can conclude that no such column equation can exist.

Theorem 4.6. Let f be a facet of the P n
TV with at least one free node i and the

facet defining inequality is valid for P k
TV with k ≥ n. Then f (k) is a facet of P k

TV

with k ≥ n.
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Name Facet

C2 wil + wkl + wlj + xji + xjk + xjl + xli + xlk ≤ 3

wji + wjk + wlj + xij + xil + xjl + xkj + xkl ≤ 3

C7 wij + 2wjk + 2wkl + wli + wlj + xil + xji + xjl + xkj + xlk ≤ 5

C11 −xki ≤ 0

C13 wil + wji + wjk + wkl + wlj + xij + xkj + xli + xlj + xlk ≤ 4

C14 wij + 2wjk + wki + wkl + wlj + xji + xjl + xkj ≤ 4

wil + wji + wjk + wkl + 2wlj + xij + xjl + xkj ≤ 4

C20 wij + wil + 2wjk + wki + wlj + xji + xjl + xki + 2xkj + xkl + xli ≤ 5

wil + 2wjk + wki + wkl + wlj + xij + xik + 2xkj + xli + xlj + xlk ≤ 5

C25 wil + wjk + wki + wlj + xjl + xkj + xkl ≤ 3

C29 wjk + wkl + wlj + xkj ≤ 2

C30 2wjk + 2wkl + 2wlj + xjl + xkj + xlk ≤ 4

C39 wij + 2wjk + wkl + xji + xki + 2xkj + xli + xlj + xlk ≤ 4

C41 wjk + wkl + xkj + xlj + xlk ≤ 2

C46 wjk + xkj ≤ 1

C47 wil + wkj + wlk + xji + xjk + xjl + xkl + xli ≤ 3

wij + wjk + wli + xil + xji + xjl + xkj + xkl ≤ 3

Table 4.3: Facet-defining inequality classes of P 4
TV for which zero-lifting is possible

(i, j, k, l ∈ {1, 2, 3, 4} and pairwise different)

Proof. We will show this theorem by induction. For k = n the statement is true
by assumption. Now let the statement be true for k ≥ n. Since node i is still a
free node of f (k) we can apply Theorem 4.5 and therefore the statement must be
also true for f (k+1).

Corollary 4.7. The inequality classes listed in Table 4.3 are facet-defining for P n
TV

for all n greater than 3.

Proof. It is obvious that the inequalities of class 11 are feasible for all n in P n
TV .

All other inequalities are feasible for all n due to Lemma 4.3 since all coefficients
are non-negative. For n ∈ {4, 5} the statement can be checked by hand or with
a computer algebra system. Since every inequality has at least one free node
(5 for example) in P 5

TV we can then apply Theorem 4.6 to prove the statement
for n ≥ 6.
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4.1.4 General Lifting procedures

Some classes of P 4
TV can be generalized to facet classes valid for P n

TV , n > 4. In
more detail, we are able to present lifting procedures for classes 37 and 45 (from
the table in Appendix A.1). We first present the proof for class 45. The concept
for the proof of the following theorem is to refine the main idea of the Zero-Lifting
Theorem 4.5.

Theorem 4.8. The inequalities
n∑
i=1,
i 6=k

xik ≤ 1 and
n∑
i=1,
i 6=k

xki ≤ 1 are facet-defining for

P n
TV for all n ≥ 4 and for all k ∈ V .

Proof. Consider the inequality

n∑
i=1,
i 6=k

xik ≤ 1

for some k ∈ V . In the following we will denote that inequality in dimension n
with f<n>. This inequality is fulfilled with equality by all TVP paths where k is
not at the first position.

Now let the statement be true for n. We will show that it is then also true
for n+ 1.

First consider the case k ∈ {1, . . . , n}. Let p be a path through the targets
{1, . . . , n} which fulfills f<n> with equality. It is clear that a path p′ which visits
n + 1 and then follows p fulfills f<n+1> with equality. This remains also true if
we interchange some node i 6= k and n + 1. Also when we move n + 1 at the end
of p′ this remains true. With this it is for i 6= k possible to extend every vector of
MTVEqn(f <n>) to MTVEq i

n+1 (f <n+1>) (or NTVEq i
n+1 (f <n+1>) respectively). So

we can define the same bijection between MTVEqn(f <n>) and MTVEq i
n+1 (f <n+1>)

(and NTVEq i
n+1 (f <n+1>)) as in Theorem 4.4. But this time we do not need a free

node for this purpose, but we can rely on the properties of the vectors which
fulfill f<n> with equality.

With the help of these bijections it is then possible to prove that f<n+1> is a
facet in the same way as we proved Theorem 4.5. The requirement of a free node
in Theorem 4.5 is only needed for the definition of the bijections.

Since the statement is true for P 4
TV the theorem can be proven by induction.

That the statement is also true for k = n + 1 follows because of the symmetry of

the polytope. For the inequality
n∑
i=1
i 6=k

xki ≤ 1 the proof is analogous.
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Remark 4.9. In general a lifting f<n+1> of a facet f of P n
TV is a facet when every

vector of MTVEqn(f <n>) can be extended to a vector of MTVEq i
n+1 (f <n+1>) and

to a vector of NTVEq i
n+1 (f <n+1>) for at least two different nodes i. Then we

can define the same bijection between MTVEqn(f <n>) and MTVEq i
n+1 (f <n+1>) as

in Theorem 4.4 and the idea of the proof of Theorem 4.5 can be applied to prove
that f<n+1> is a facet as well.

Next we present a lifting for class 37 where we need to extend the idea of
Corollary 4.9.

Theorem 4.10. The inequality classes wkl−
n∑

j=1,
j 6=k

xkj ≤ 0 and wlk−
n∑

j=1,
j 6=k

xjk ≤ 0 are

facet-defining for P n
TV for all n ≥ 4 and for all k, l ∈ V with k 6= l.

Proof. Consider w. l. o. g. the following inequality of this class:

wn−1n −
n∑

j=1,
j 6=n−1

xn−1j ≤ 0. (4.5)

We again denote this inequality in dimension n by f<n>. It is easy to see
that f<k> is feasible for P k

TV for all k > n.
Let the statement true for n: Assume there exists some column equation C in

MTVEqn+1 (f <n+1>) which is not linearly dependent on (4.4) and f<n+1>=. Let C
have w.l.o.g. the following form:

α12L12 + · · ·+ α1n+1L1n+1+

...

+αnn+1Lnn+1+

β12T12 + · · ·+ β1n+1T1n+1+

...

βn+11Tn+11 + · · ·+ βn+1nTn+1n = c0.

Consider a TVP path p that fulfills (4.5) with equality. Then n is visited
after n − 1 (and node n − 1 is not the last node in the path) or n − 1 is the
last node in the path. It is clear that the path p′ which starts in n + 1 and then
follows p fulfill f<n+1> with equality. Again this remains true if we exchange n+ 1
with any other node besides n and n− 1 (Unfortunately it is not possible to move
n + 1 at the end of the path. So we could not just apply Remark 4.9). So every
vector of MTVEqn(f <n>) can be extended to a vector of MTVEq i

n+1 (f <n+1>) for
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all i 6= n− 1, n. That means we can apply the same argumentation as in the proof
of Theorem 4.5 until Step 6. From this we can conclude that all αi,j are equal to
zero and that:

βjq = β◦q

for all j ∈ 1, . . . , n+ 1 and q ∈ 1, . . . , n. To show that βjn+1 = β◦n+1 we need
to define a third transformation from MTVEqk

n+1 (f <n+1>) to MTVEqn(f <n>) for
some node k ∈ V \ {i, n− 1, n, n+ 1}. After this C simplifies to

β◦1

n+1∑
j=2

Tj1 + β◦2

n+1∑
j=1
j 6=2

Tj2 + · · ·+ β◦n+1

n∑
j=1

Tjn+1 = c0.

It is obvious that
∑n+1

j=1, j 6=q Tjq = 0 if q is at first position and equal to 1 if not.

For every q ∈ {1, . . . , n + 1} we find some row r of MTV q
n+1 that fulfills f<n+1>

with equality. Since each such r must fulfill C with equality the following equation
system must be valid:

β◦2 + β◦3 + · · ·+ β◦n+1 = c0,

β◦1 + β◦3 + · · ·+ β◦n+1 = c0,

...

β◦1 + β◦2 + · · ·+ β◦n = c0.

This equation system has an unique solution. And that is β◦q = c0
n

for all q ∈
{1, . . . , n+1} . So C is equal to the degree equation (4.4), which is a contradiction.

We can show in the same way that:

wlk −
n∑

j=1,
j 6=k

xjk ≤ 0 (4.6)

is facet-defining for P n
TV for all n ≥ 4 and for all k, l ∈ V with k 6= l.

The lifting of class 37 is shown in Figure 4.1. Hereby (and also in Figure 4.2
and 4.3) a blue arrow from i to j denotes +wij and a red arrow denotes +xij. A
dash arrow denotes a coefficient of -1 while the thick dashed arrows in Figure 4.2
denote the coefficient −(n− 2).
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We also strongly suspect that the inequalities of class 38 (shown in Figure 4.2)
can be lifted to general facet classes of the form:

•
n∑
i=1
i 6=k

wki − (n− 2)
n∑
i=1
i 6=k

xki +
n∑
i=1
i 6=k

xik ≤ 1

•
n∑
i=1
i 6=k

wik − (n− 2)
n∑
i=1
i 6=k

xik +
n∑
i=1
i 6=k

xki ≤ 1.

For every fixed order of all nodes also class 47 can be generalized (shown in
Figure 4.3). Here we used the order 1, 2 . . . , n:

•
n−1∑
i=1

wi+1i +
n−1∑
i=1

xin +
n−2∑
i=1

xii+1 ≤ n− 1

•
n−1∑
i=1

wii+1 +
n−1∑
i=1

xni +
n−2∑
i=1

xi+1i ≤ n− 1.

Unfortunately in case of these two inequality classes we are not able to find two
different nodes so that we can apply Remark 4.9. We have checked the statement
by hand for P n

TV with n ≤ 8. But if these inequalities are facet-defining in general
remains an open question.

n− 1

n

n− 2

1

2

n− 1

n

n− 2

1

2

Figure 4.1: Generalized lifting of facet class 37 of P 4
TV
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n

n− 1

1

2

n

n− 1

1

2

Figure 4.2: Generalized lifting of facet class 38 of P 4
TV
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nn− 1321

nn− 1321

Figure 4.3: Generalized lifting of facet class 47 of P 4
TV

4.2 Polyhedral Results for the TVPE Model

As we have seen at the beginning of this chapter in case of the TVPE model the
gap between the solution of the LP relaxation and the optimal solution is in the
average very small. Because of that we want to present in the following a closer
examination of the structure of P n

ETV and the connection between P n
TV and P n

ETV .

4.2.1 Dimension

We start with an examination of the dimension of P n
ETV . Because of the additional

variables there exist way more equations than in the TVPHP model. To determine
the dimension of the polytope we have to find a minimal equation system.

We can describe the set of valid equations by the following three basic types.
The first class of equations is already contained in the IP model:

wij + wjik + wjki + wkji = 1, 1 ≤ i, j, k ≤ n, i < j, i 6= k, j 6= k. (4.7)
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Also the equation which sums up all x-variables is already contained in the
model:

n∑
i=1

n∑
j=1
j 6=i

xij = n− 1. (4.8)

Additionally to these two classes there exists a family of equations which is
the generalization of the tournament equations. In other words we have equations
which describe the fact that three nodes i, j and k must have some fixed order:

wijk + wikj + wjki + wjik + wkij + wkji = 1, 1 ≤ i < j < k ≤ n. (4.9)

With this result we are able to prove the dimension of the polytope. We will
do this in two steps: First we will show that the set of equations (4.7)–(4.9) is
minimal. Second we show that apart from this set no other linearly independent
equation is valid for the polytope.

Lemma 4.11. The equations (4.7)–(4.9) form a system of linearly independent
equations.

Proof. It is clear that the equations of family (4.9) are linearly independent of each
other since each wijk is only part of one equation. Since all of these equations do
contain a wijk with k > j > i they also cannot be linearly dependent on a subset
of equations of (4.7). Since (4.8) is the only equation which contains x-variables
it is clear that it is not linearly dependent on a set of other equations. It remains
to show that all inequalities of (4.7) are linearly independent of each other. For
i < j < k there exist exactly three equations of (4.7) which contain three indexed
w-variables with the indices i, j, k:

wij + wjik + wjki + wkji = 1, (4.10)

wjk + wkji + wkij + wikj = 1, (4.11)

wik + wkij + wkji + wjki = 1. (4.12)

The variable wjik (wikj) is only contained in the first (second) equation. So
these two equations cannot be linearly depend on a subset of equations of (4.7).
For (4.12) we can state that this equation contains wjki which is contained only
in one other equation of (4.7). But this is (4.10) which contains wjik. So with the
same argument as in the first two cases there cannot exist a linear dependency.

Theorem 4.12. The dimension of P n
ETV is equal to n(n−1)(2n+5)

6
− 1 for n ≥ 4.

Proof. The IP model contains n(n−1)
2

LOP-variables, n(n − 1) HP-variables and
n(n− 1)(n− 2) wijk-variables.
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Due to Lemma 4.11 we are able to compute a bound for the number of valid
linearly independent equations. In more detail we have n(n−1)(n−2)

2
equations of

type (4.7), one equation of type (4.8) and n(n−1)(n−2)
6

equations of type (4.9).

Therefore it follows for dimP n
ETV :

dimP n
ETV ≤

n(n− 1)

2
+ n(n− 1) + n(n− 1)(n− 2)

− n(n− 1)(n− 2)

2
− 1− n(n− 1)(n− 2)

6

=
2n3 − 3n2 + n

2
− 4n3 − 12n2 + 8n

6
− 1

=
2n3 + 3n2 − 5n

6
− 1

=
n(n− 1)(2n+ 5)

6
− 1.

The next step is to prove that no equation exists which is valid for the polytope
and which is linearly independent of the equations listed in Lemma 4.11. We will
prove this statement with similar methods as we have proved Theorem 4.1.

Given i < j < k ∈ V , three-indexed w-variables which have all three of these
nodes as index are only contained in (4.10)–(4.12) and in

wijk + wikj + wjki + wjik + wkij + wkji = 1, 1 ≤ i < j < k ≤ n.

It is obvious that we can use these four equations to eliminate the variables
wikj, wjki, wjik, wkij from the IP model. The conjecture is now that in this
reduced IP model no other equation besides (4.8) is valid.

With the help of a computer algebra system we can check that the statement
is true for the case of n = 4. Now let the statement be true for P n

ETV with n ≥ 4.
We apply the idea of the proof of Theorem 4.1. Define Lij, Tij, MTVn and MTV i

n

similar as in Section 4.1.1. Additionally we denote by Eijk the column in MTVn

associated to wijk.
Now consider MTVn+1 . It follows from Theorem 4.1 that there cannot exist

an additional column equation in MTVn+1 which only contains Lij and Tij. Next
assume there exists a column equation which contains at least one column Ek1k2k3 .
Denote this equation by C.

Now we consider a block MTV i
n+1 where Ek1k2k3 6= 0 or Ek1k2k3 6= 1. We can

observe that:
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• The column vectors Ejli and Ejil, j, l ∈ {1, . . . , i− 1, i+ 1, . . . , n+ 1}, j 6= l
are zero vectors since i is the first node of the tour.

• For the column vectors Eijl, j, l ∈ {1, . . . , i − 1, i + 1, . . . , n + 1}, j 6= l it is
true that Eijl = Ljl. So we can unite these columns.

We can then apply the arguments of the proof of Theorem 4.1. Also the relabel-
ing can be done in the same way. In consequence we get a contradiction since the
new system is equal to MTVn and does contain an equation which is not linearly
dependent on the equations listed in Lemma 4.11.

Next we want to have a closer look on the facial-structure of the TVPE . Calcu-
lations with PORTA yield that the description of P 4

ETV contains less inequalities
than the description of P 4

TV . In detail the polytope can be described by only 144
facets and 20 equations. Using HUHFA we can sort the inequalities in 9 classes
which are listed in Appendix A.2.

4.2.2 Projection of the P n
ETV Polytope to the P n

TV Polytope

Since the LP bounds of the TVPE model are so tight we want to have a closer look
at the facets of the P n

TV polytope which are implied by the extended formulation.
For this purpose we try to project P n

ETV onto P n
TV . This can be done by eliminating

all wijk-variables from the extended model. We use the so-called Fourier-Motzkin
elimination method (see [Zie95] for details) for this purpose.

Fortunately, in this case it is possible to eliminate the wijk, wikj, wjik, wjki,
wkij, wkji separately for each i, j, k ∈ V . So we have to eliminate a system of three
equations (3.25), six inequalities (3.26) and six inequalities (3.30) from the model.
This leads to the result that the following four classes of equations are implied by
the extended formulation:

2wjk + 2wkl + 2wlj + xjl + xkj + xlk ≤ 4, (4.13)

wjk + wkl + xkj + xlj + xlk ≤ 2, (4.14)

wjk + wkl + wlj + xkj ≤ 2, (4.15)

xij − wij ≤ 0. (4.16)

We observe that these classes are all facet-defining for P k
TV with k ≥ 4. More-

over they are the only inequalities on three or less nodes describing P 4
TV and P 5

TV .
It remains as an open question whether this is also true for n > 5. Another re-
lated open question which arises in this context is: Does a generalized model which
contains the variables wi1i2...ik imply all facets on k or less nodes?



4.2. POLYHEDRAL RESULTS FOR THE TVPE MODEL 53

At last we would like to make a comment on the practical aspect of this result.
Since (4.15) and (4.16) are already contained in the model we can only use (4.13)
and (4.14) as cutting planes in a branch-and-cut approach. We will see in Chapter 7
that both classes do work quite good for this purpose.
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Chapter 5

Approaches for Solving the TVP

In this chapter we want to briefly introduce three approaches for solving the tar-
get visitation problem. We will give a short overview of the different topics and
encourage the reader to consult the given references for more detailed information.

This chapter will also contain only the theoretical background of the methods.
Results of practical computations can be found in Chapter 7.

5.1 Lagrangean Decomposition

In order to explain the method of Lagrangean decomposition we have to intro-
duce the Lagrangean relaxation of an integer program. Hereby we are follow
mainly [KV12].

This is a relaxation tailored for cases where we have an integer program which
becomes substantially easier to solve when some constraints are removed from the
program. So the Lagrangean relaxation is a method to get rid of troublesome
constraints. In more detail instead of explicitly enforcing some constraints we
modify the objective function in the way that we penalize infeasible solutions.
Formally, instead of optimizing the program:

max cx (5.1)

s.t.

Ax ≤ b,

A′x ≤ b′,

x ∈ Zn

we are considering the following program for some vector λ ≥ 0:

55
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max cx+ λ(b′ − A′x) (5.2)

s.t.

Ax ≤ b,

x ∈ Zn.

It is clear that for each λ ≥ 0 the solution of (5.2) is an upper bound for the
solution of (5.1). So in order, to make sense the system (5.2) should be easier
to solve than (5.1). We denote (5.2) as a Lagrangean relaxation of (5.1) and the
components of λ are called the Lagrange multipliers.

Since we are interested in a good upper bound we have to determine the best λ.
We define LR(λ) as the optimal solution of (5.2) which is a convex function. The
problem is now to minimize LR(λ) which is also called the Lagrangian dual of (5.1).
One method for minimizing LR is the so-called sub-gradient method which is
described by Algorithm 4.

Algorithm 4: Sub-gradient method

1 Start with random λ(0) ≥ 0;
2 i = 0;
3 while i < Max do
4 x(i) = max

x∈Zn
{cx+ λ(i)(b′ − A′x) | Ax ≤ b};

5 λ(i+1) = max{0, λ(i) − ti(b′ − A′x(i))} for some ti > 0;

We would like to make a few comments on this approach. First it has been
shown that if

lim
i→∞

ti = 0 and
∞∑
i=0

ti =∞,

then

lim
i→∞

LR(λ(i)) = min{LR(λ) | λ ≥ 0}.

Secondly it can be shown that the minimum is always attained unless

{x ∈ Zn | Ax ≤ b, A′x ≤ b′} = ∅.
Concerning the question of the quality of the solution we would like to state

the following theorem:
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Theorem 5.1. Let c ∈ Rn, A′ ∈ Rm×n and b′ ∈ Rm. Let Q ⊆ Rn such that
Conv(Q) is a polyhedron. Suppose that max{cx | A′x ≤ b′, x ∈ conv(Q)} has
an optimal solution. Let LR(λ) := max{cx + λ(b′ − A′x) | x ∈ Q}. Then
inf{LR(λ) | λ ≥ 0} (the optimal value of the Lagrangean dual) is attained by some λ
and the minimum is equal to max{cx | A′x ≤ b′, x ∈ conv(Q)}.

The proof of this theorem can be found for example in [KV12]. Also the fol-
lowing remark can be found there:

If we have an integer program max{cx | A′x ≤ b′, Ax ≤ b, x is integral} where
{x | Ax ≤ b} is integral, then the Lagrangean dual (when relaxing A′x ≤ b′ as
above) yields the same upper bound as the standard LP relaxation

max{cx | A′x ≤ b′, Ax ≤ b, x ∈ Rn}. (5.3)

If {x | Ax ≤ b} is not integral, the upper bound can be stronger (but can be
difficult to compute).

Lagrangean decomposition is a technique based on Lagrangean relaxation. In
detail, we relax a set of constraints so that the integer program is decomposed in
two or more independent subprograms, which are then solved separately from each
other.

As one can see, the TVPHP model is very suitable to be used with this method
since it is naturally constructed by merging two independent subproblems with only
one connecting constraint. So the idea is to relax Constraint (3.8) and decompose
the problem. Afterwards we can use the existing solvers for the LOP and TSP
part. In more detail, the decomposition works as follows: (X denotes the set of
characteristic vectors of feasible TSP tours and W the set of characteristic vectors
of feasible orderings on a graph G = (V,E), λ ≥ 0)

LRTVP(λ) = max
w∈W
x∈X

(Pw − λ(x− w)−Dx)

= max
w∈W
x∈X

(Pw + λw − λx−Dx)

= max
w∈W
x∈X

((P + λ)w − (D + λ)x)

= max
w∈W

(Pw + λw)−min
x∈X

(Dx+ λx)

=LOP (P + λ)−HP (D + λ).

We use this decomposition for several practical computations. For solving the
Lagrangean relaxation we implement the sub-gradient method as well as a prox-
imal bundle method and a conic bundle method. More details on the practical
implementation can be found in Chapter 7.

For more detailed information on this topic consult [Fie12].
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5.2 Dynamic Programming

Dynamic programming is a method for solving complex problems by breaking them
down into simpler subproblems. The key idea is to use already computed partial
solutions for the computation of unexplored solutions. So if we deal with NP-hard
problems, this means in most cases that the method needs an exponentially growing
amount of space since all partial solution must be stored. On the other hand the
method does not need additional branching-methods or other special knowledge of
the problem structure.

In case of the TVP the method works recursively in the following way. For each
node in the search tree we store the set of already visited nodes, the node which has
been visited last and the value of the best path which visits the remaining nodes if
already computed. We explicitly do not store the order in which the targets have
been visited so far. We can do this because we just need to know the end node of
a partial TVP path to compute an optimal path through the remaining targets.
So in consequence we are able to melt nodes of the search tree if the list of visited
targets as well as the last node visited are the same.

The practical implementation basically consists of the recursive procedure which
is shown in Algorithm 5. To start the computation we use Dynamic-Program-
ming(∅, 0) where 0 is a dummy node which has distance zero to all other nodes.

Algorithm 5: Dynamic-Programming

Data:
Visited Nodes: All targets which have been visited so far in the TVP path
(denoted by Vn)
Last Node: The node which has been visited last in the partial TVP path

1 if optimal solution for Dynamic-Programing(Visited Nodes, Last Node) has
not been computed yet then

2 Optimum = −∞;
3 for all s ∈ {V \ Vn} do
4 sum =

∑
i∈V \Vn, i 6=s

ps,i − dLast Node,s;

5 sum = sum + Dynamic-Programming(Vn ∪ s, s);
6 if sum>Optimum then Optimum=sum;

7 Store Optimum;
8 Return: Optimum;

9 else
10 Return: Stored Optimum;
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5.3 Branch-and-Bound

In this subsection we present a branch-and-bound approach for the TVP which
does not use linear programming. The basic idea is to successively construct a
feasible TVP path from the first target visited till the last one. This procedure
uses the advantage that we can compute a lot of met preferences for a given partial
solution (even for a short one). For example, in a partial solution where half of
the targets have been visited, more than 75 percent of the preferences are already
known.

Since we do not want to use linear programming, we have to find other methods
to compute upper bounds of a given partial solution. For this purpose we use ideas
which have been used to estimate partial LOP or TVP solutions. So we will
compute a separate bound for each subproblem. In detail, we use the following
four ways of estimation (NV denotes the set of targets which have not been visited
so far, l the node which has been visited as last node in the partial solution):

1.) Since every partial solution contains the beginning of the TVP path, every
target which has not been visited so far must have an incoming edge. So
we can sum up the minimum distance costs for entering each node and get
a lower bound for the necessary cost of connecting the remaining targets.
Formally this idea can be expressed by:

BoundTSP =
∑
i∈NV

min
j∈NV ∪ l
j 6=i

dji.

2.) It is clear that for all targets i, j ∈ NV it must be true that i is visited before j
or j before i. So we can sum up:

BoundLOP =
∑
i,j∈NV
i 6=j

max{wij, wji}.

3.) We use the so-called Helmstädter condition [Hel64]. Let W ⊂ V be a subset
with k elements and P = (v1, v2, . . . , vk) be a path which visits all targets
of W . Then the Helmstädter condition is fulfilled if for every path P ′ on W
which begins in v1 and ends in vk it is true that the objective value of P ′

is less or equal than the value objective of P . In other words if we move a
node in the path, then its objective value will not increase. It is trivial that a
partial solution which does not fufill the Helmstädter condition cannot lead
to an optimal solution and should therefore be discarded.
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4.) Minimal aborescence: We can sharpen the bound for the TSP found in 1.)
by summing up not only the cheapest incoming edge but by constructing a
minimal aborescence (i. e. a set of directed trees in which, for some vertex u
called the root and any other vertex v, there is exactly one directed path
from u to v) on the remaining nodes. Since a path is also an aborescence
it is clear that this is a lower bound for the TSP cost. There exist a lot of
algorithms (e. g., Edmonds algorithm) which can be used for computing a
minimal aborescence. But even despite the fact that these algorithms are
polynomial, test runs have shown that this method does not work so well
since the computation of the minimal aborescence takes way longer than the
time saved by cutting off some branches of the search tree.

When we try to implement these conditions in practice, it shows that in the
upper levels (e. g., where the partial solutions are short) it is nearly impossible to
discard solutions and the search tree is mostly complete.

In consequence we come to the idea to combine the branch-and-bound method
with dynamic programming. In more detail, we perform in the upper levels dy-
namic programming and from a defined depth we shift to branch-and-bound. The
determination of the optimal depth where to switch between the two methods is
not trivial, so computational tests are needed.

We will present some computational results in Chapter 7. For more detailed
information on this topic consult [Sil12].



Chapter 6

Heuristic Approaches

In this chapter we present heuristics for the TVP. As we have described in Sec-
tion 1.2, heuristics are approximation algorithms which examine just a subset of
all feasible solutions of a combinatorial optimization problem and therefore do not
find the optimal solution in every case. Nevertheless heuristics can be very useful
in some cases. An example are applications where it is obligatory to find a good
(but not necessary an optimal) solution fast. Heuristics are also used in support
of other solution methods like branch-and-cut algorithms in order to obtain good
bounds.

The quality of the results of a heuristic depends of course on the strategy which
decides which feasible solutions are examined. To obtain good selection strategies
for the TVP we examine already existing heuristics for the TSP and the LOP (see
for example [RR11]) and extend their principles to the TVP. In this chapter we
will present six such heuristics and explain the ideas behind them. Computational
results can then be found in Chapter 7.

The set of implemented heuristics can be divided in two basic types. The first
type constructs a feasible TVP path from scratch. The second type tries to improve
an already existing feasible solution. From now on we will call the approaches of
type one constructive heuristics and the ones of type two improvement heuristics.
In detail, the constructive heuristics are a nearest-neighbor approach, the best-
insertion method and a modified Becker heuristic. As improvement heuristics we
implemented two different versions of the Kernighan-Lin heuristic as well as a
simple 2-opt and 3-opt exchange.

In the following subsections we will describe each of the heuristics in detail.
We denote by [k1, . . . , kn] a partial TVP path, by [ ] an empty path, by obj(O)
the objective value of a (partial) TVP path and by O[k] the node which is on k-th
position in O. By definition we set obj([ ])=−∞.

61
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6.1 The Nearest-Neighbor Method

The nearest-neighbor method is a classical TSP heuristic. It is basically a greedy
algorithm which starts at some node and then travels in each step to the unvisited
node where the travel cost is minimal. The extension of this method to the TVP
works similarly: We start with an empty path and construct the TVP path from
the first target visited to the last one. In each step we check all remaining targets
for which the following condition holds: If visited next, the target will lead to the
largest increase (the increase can also be negative in some cases) of the objective
function. In other words we compute for each remaining target the sum of the met
preferences if it is visited next and subtract the distance cost of getting there. As
one can see, this method is completely deterministic and produces the same result
in each run. The formal description of this method can be found in Algorithm 6.

Algorithm 6: Nearest-Neighbor Method

1 S := {1 . . . n}, O := [ ], m := 1 ;
2 while S 6= ∅ do
3 for each s ∈ S do
4 prefs =

∑
k∈S
k 6=s

psk;

5 if m 6= 1 then dists = dO[m−1],s;
6 else dists = 0;
7 ts = prefs − dists;

8 Compute k so that tk = max
i∈S

ti;

9 Set O[m] = k;
10 m = m+ 1, S = {S \ k} ;

11 Return: O;

6.2 Best-Insertion Method

The best-insertion method is another classical heuristic which can been used on
both of the subproblems. The extension to the TVP works as follows: We start
with an empty path. Then, in each step we pick a random target which is not
already contained in the path and insert it in the position where the resulting
partial path has the maximal objective value. We repeat this insertion procedure
until all targets are contained in the path. From that point we can either stop or
repeat for a defined iteration number the following procedure: remove a random
target from the path and reinsert it at the best position.

It is obvious that this heuristic is not deterministic. But nevertheless if the
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number of insertion operations is big enough, the calculated objective values of
different runs are very similar. So a problem when using this method is to find
a suitable number of inserting operations which is neither too small so that the
result is too far away from the optimum nor too great so that the algorithms makes
unnecessarily time consuming computations. A detailed description of this method
is given in Algorithm 7.

Algorithm 7: Best-Insertion Heuristic

Data: NUM: Number of times the heuristic is executed, must be equal to or
greater than n

1 Best Path=[ ];
2 S = {1 . . . n}; O = [ ];
3 for a = 1 to NUM do
4 if a ≤ n then Choose per random s ∈ S;
5 else Remove a random target s from the path O;
6 for l = 1 to min(a, n) do

7 tl =
l−1∑
k=1

pO[k],s +
min(a,n−1)∑

k=l

ps,O[k];

8 if l 6= 1 and l 6= min(a, n− 1) then
9 tl = tl − dO[l−1],s − ds,O[l] + dO[l−1],O[l] + obj(O)

10 if l = 1 then tl = tl − ds,O[1] + obj(O);
11 if l = min(a, n) then tl = tl − dO[l],s + obj(O);

12 Compute k so that tk = max
1≤i≤min(a,n)

ti;

13 Insert s at position k;
14 if a ≤ n then S = S\s;
15 Return: O;

6.3 Becker Heuristic

The Becker heuristic is another possible way to construct a TVP path without
a start solution. It consists of two different phases which are repeated until the
maximum iteration number is reached.

The first phase consists of generating a random TVP tour. Then the tour is
transformed into a path by removing one edge. This is done for each of the n
edges and for each of the resulting paths the objective value is computed. The
best among these paths is then compared to the best know path so far and kept
if better and fathomed if not. Then we start again with a new random path. In
detail the procedure is described in Algorithm 8.
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Algorithm 8: Becker Heuristic

Data: NUM: Number of times the heuristic is executed
1 Best Path=[ ];
2 for a = 1 to NUM do
3 Choose random TVP path [O[1], . . . , O[n]];
4 for m = 1 to n do
5 Set Om = [O[m], . . . , O[n], O[1], . . . , O[m− 1]];
6 Compute vm= obj(Om);
7 if vm >obj(Best Path) then Best Path=Om;

8 Return: Best Path;

6.4 The k-Opt Method

The k-opt method is a very simple improvement heuristic, which can be applied
to many combinatorial optimization problems. The basic principle is to select k
objects and locally re-optimize them. For the TVP this approach consists of select-
ing k targets from an existing TVP path and interchange their positions so that
the objective value of the path is the greatest of all such possible interchanges.
Because the number of possible interchanges grows exponentially if k is increas-
ing, for practical purposes only k = 2 or k = 3 should be considered. A detailed
description of k-opt is presented in Algorithm 9 (2-opt) and Algorithm 10 (3-opt).

Algorithm 9: 2-opt Heuristic

Data: NUM: Number of times the heuristic should be executed
O: A feasible TVP path

1 for l = 1 to NUM do
2 Select 1 ≤ i, j ≤ n at random;
3 Interchange O[i] and O[j] if objective value of the path is increasing;

4 Return: O;

Algorithm 10: 3-opt Heuristic

Data: NUM: Number of times the heuristic should be executed
O: A feasible TVP path

1 for l = 1 to NUM do
2 Select 1 ≤ i, j, k ≤ n at random;
3 Re-optimize the positions of O[i], and O[j] and O[k] so that the

objective value of the resulting TVP path is maximal;

4 Return: O;
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6.5 Kernighan-Lin Heuristic

The Kernighan-Lin heuristic is one of the best-known methods for the computation
of strong approximate solutions for the TSP. Its basic idea is to efficiently execute
a series of simple operations to improve a given solution. In the case of the TVP
we have implemented two variants of this approach. The first one is based on
2-opt exchanges, while the second approach uses insertion operations instead. The
algorithm stops in both cases when every element has been moved at least once
in the path. Then the exchange/insert operations are executed to the point where
the overall objective is maximal. In more detail, one can see the two variants of
Kernighan-Lin heuristics in Algorithm 11 and Algorithm 12.

Algorithm 11: Kernighan-Lin-1 Heuristic

Data: O: A feasible TVP path
1 m = 1;
2 Sm = {1, 2, . . . , n};
3 Find s, t ∈ Sm, s 6= t so that the interchange of these two nodes in the path

leads to the largest increase gm among all such interchanges;
4 Interchange s and t;
5 sm = s and tm = t;
6 if m < n/2 then
7 Sm+1 = Sm\{s, t};
8 m = m+ 1;
9 Goto 3;

10 Find k < m that maximizes G =
∑k

l=1 gl;
11 if G > 0 then
12 Starting from the original TVP path interchange successively si and ti

for i = 1, . . . , k;
13 Denote this new path by O′;

14 Return: O′;
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Algorithm 12: Kernighan-Lin-2 Heuristic

Data: O: A feasible TVP path
1 m = 1;
2 Sm = {1, 2, . . . , n};
3 Find the object s ∈ Sm and the position p so that s moved to p results in

the largest increase gm of the objective value of all such moves;
4 Insert s at position p;
5 sm = s; posm = p;
6 if m < n then
7 Sm+1 = Sm\s;
8 m = m+ 1;
9 Goto 3;

10 Find k ≤ n that maximizes G =
∑k

l=1 gl;
11 if G > 0 then
12 Starting from the original path insert si at position posi for

i = {1, . . . , k};
13 Denote this new path by O′;

14 Return: O′;



Chapter 7

Computational Experiments

In this chapter we compare the different approaches for solving the TVP. The bases
of these methods have been presented in Chapters 4, 5 and 6. To our knowledge
there does not exist a set of benchmark instances for the TVP. Also no instance
describing practical problems is available at the moment. So in order to compare
the different solving methods we first have to define a set of test instances. Details
on this topic will be presented in Section 7.1.

To compare the different methods directly against each other all computations
were done on the same machine, namely an Intel R© Pentium R© Dual CPU E2200
with 2.20GHz and 8 GB RAM, running Open Suse 10.4.

7.1 Test-Instances

To give a detailed analysis of the implemented algorithms we need a sensible set
of test instances. Since such a set does not exist, we have to define it by ourselves.

There are different possibilities how to create such test data sets. We decide to
generate data which is closely related to real world applications. As a basis for this
task we use a list which contains the coordinates and the numbers of inhabitants
of all 15112 villages and cities of Germany.

The instances are then created in the following way. Firstly a certain number
of cities is randomly selected from the list. Then we compute the distances of two
cities a and b by using the Euclidean distance, namely (xa denotes the x-coordinate
and ya the y-coordinate of a city a):

dab :=
√

(xa − xb)2 + (ya − yb)2.
To reduce unnecessary high cost values in the problem we do the following for

each city: First, we subtract the smallest cost for entering a city from all other costs
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for entering this city. Afterwards we do the same for the costs of leaving the city.
We then delete randomly one city and proceed to calculate the preference values.
This is done by using the number of inhabitants of two cities in the following way
(ia denotes the number of inhabitants of a city a):

pab :=

⌊
ia
ib

⌋
· f

The factor f denotes a weight factor which is used to control the ratio of the
optimal LOP solution and the optimal TSP solution. This computation strategy
has the advantage that for the resulting preference matrix it must be true that in
nearly every case min{pab, pba} = 0. In the unlikely event that both cities have the
same number of inhabitants we set pab = f and pba = 0.

Based on these ideas we construct the following different types of instances.
Firstly we compute instances using just the methods described above. That means
that the resulting instances have the properties that all distances fulfill the trian-
gular equation and that they contain a complete ordering.

Next we create instances with the methods described above but afterwards we
randomly interchange some of the preferences values. We do this exchange with
two different stages of intensity: 1

2
N2 and 1

4
N2 (N denotes from now on the number

of targets of a certain instance).
To distinguish between the different types of instances we introduce a name

scheme where each instance is labeled as follows:

XX OOO N ID

Hereby the letters have the following meaning:

XX: The ratio of the optimal LOP solution and the optimal TSP solution. We
divide in three different classes:

ER: if 0.5 ≤ Sol. LOP
Sol. TSP

≤ 1.5

LB: if 1.5 < Sol. LOP
Sol. TSP

≤ 3

LD: if 3 < Sol. LOP
Sol. TSP

OOO: The term encodes the situation of the preference matrix:

CFO: No changes have been made

MCO: 1
4
N2 interchanges have been made

BCO: 1
2
N2 interchanges have been made

N : The number of nodes
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ID: Number of the instance of that specific type (starting by 1).

An overview over all instances can be found in Appendix B.

7.2 Heuristics

In this section we examine the performance of the heuristics presented in Chapter
6. In order to obtain satisfying results we want to use an improvement heuristic
together with a constructive heuristic.

But first we have to determine a suitable number of random tour generating
(insertion) operations for the Becker (best-insertion) heuristic. For this purpose
we make some experiments on the instances with 15–26 nodes with four different
magnitudes (each depending on the number of nodes) for the number of such
operations. In detail, we use the values: 5 · N , 10 · N , 50 · N and 100 · N . Since
both heuristics are not deterministic, we make for each instance and magnitude 500
different computations and calculate the mean value of all these experiments. The
results can be observed in Appendix D in Tables D.3 and D.4 for the Becker
heuristic and in Tables D.5 and D.6 for the best-insertion method.

We can make the following observation: In general a higher number of executed
operations brings a result closer to the optimum. However, the improvement per
additional operation decreases with the number of executions. In the case of the
best-insertion heuristic it is often not necessary to execute 100 ·N insertion opera-
tions since the optimum is in most cases already achieved with a fewer number of
such operations.

We also make some experiments on the performance of the nearest-neighbor
heuristic. These results are presented in Tables D.1 and D.2.

If we compare the constructive heuristics we can state a clear order of the
quality of their results. The far best results can be achieved with the best-insertion
heuristic. The results of the other two methods are in most cases far away from
the optimal solution. Nevertheless the nearest-neighbor heuristic performs still way
better than the Becker heuristic (even if the number of randomly generated tours
is very high). The computation times are in general short (at most 2 seconds for
best-insertion with 100 ·N operations on 26 nodes), but the best-insertion method
needs more time than the other two heuristics (computation time less than a second
in all cases).

In the second part of this section we want to examine the performance of
combinations of a constructive heuristic and an improvement heuristic: So we
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compute a solution with the Becker heuristic, the best-insertion method (both
with 100 ·N operations) and the nearest-neighbor heuristic and try to improve that
solution with one of the different improvement heuristics. For the k-opt methods we
use the following values for the maximal number of changes/local re-optimizations:
100 · N and 1000 · N for the 2-opt method and 100 · N , 500 · N and 1000 · N for
the 3-opt method. Again 500 different computations per instance are made. The
results of this experiments can be observed in Appendix D in Tables D.7, D.8
and D.9 (Becker with 100 · N operations as start heuristic), in Table D.10 (best-
insertion with 100 ·N operations as start heuristic) and in Tables D.11, D.12 and
D.13 (nearest-neighbor as start heuristic).

In general we can observe that the Kernighan-Lin-2 heuristic achieves the
best results and finds in almost every case the optimal solution if we use Becker
with 100 ·N operations or best-insertion with 100 ·N operations as start heuristic.
Only with the nearest-neighbor heuristic the results are not so close to the opti-
mal solution. The Kernighan-Lin-1 heuristic does not perform so well. Only with
Becker as start heuristic the results are close to the optimum. In the other cases
the method achieves in the average worse results than the k-opt methods.

For the k-opt methods we can observe that the number of executions does not
have that much effect on the results. It seems that in both cases 100 ·N is already
a suitable number of interchanges to find the local maximum. Of course the results
of the 3-opt method are slightly better in the average than of the 2-opt approach,
but the difference is small. We also observe that the standard derivation is very
high, so the k-opt method is highly unpredictable.

In summary of these facts we can conclude that the Kernighan-Lin-2 heuristic
in connection with Becker with 100 · N operations or best-insertion with 100 · N
operations produces the best results. So finally we computed the mean values for
these two combinations on instances with 30–50 nodes. The results can be observed
in Tables D.14 and D.15.

It can be concluded that Kernighan-Lin-2 with best-insertion as start heuristic
performs better. The running times for an instance with 50 nodes are 10 seconds
(Becker) and 12 seconds (best-insertion).

So as a conclusion we can say that the combination of best-insertion and
Kernighan-Lin-2 heuristic is a very useful tool for the calculation of solutions which
are very close to the optimum.
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7.3 Branch-and-Cut for the TVPHP

In this section we present a branch-and-cut algorithm which solves the TVP. For
this purpose we will use the TVPHP model as a basis as well as the facets we
obtained in Chapter 4 which will be used as cutting planes. We have implemented
the algorithm in C++ and use ABACUS [JT00] as the branch-and-cut framework.
The LP computations where done by CPLEX 12.1.

Since the TVPHP model is a 0/1 linear program the branching step simplifies
to adding the constraints xij=0 (wij=0) or xij=1 (wij=1) to the new subproblems.
This means we only have to make one branching step per variable. So the depth
of the search tree is bounded by the number of variables. We also use logical
implications which arise by fixing an xij or wij to 0 or 1. So we are able to shrink
the search tree even more. Nevertheless these implications do not have that much
effect on the running time of the algorithm.

Additionally we employ a heuristic to quickly find a lower bound for the best
integral solution in order to discard subproblems with bad LP solutions. Because
of the results shown in the last section we decide to use the Kernighan-Lin-2
heuristic. To obtain a feasible start solution we take the non integral solution of
the LP relaxation and discretize it in the following way. We compute “positions”
by Wi = n −∑n

j=1wij and sort them in nondecreasing order. Then we construct
a Hamiltonian path by setting the node i on the first position which has the
smallest Wi, the node with the second smallest Wi on the second position and so
on.

As parameter settings for CPLEX and ABACUS we mainly use the default set-
tings with a few exceptions: We enable the ABACUS function “tailing-of-control“,
which allows us to quit the cutting phase when the LP solution has not achieved a
certain improvement in the last X iterations. The constraint elimination strategy
is set to non-binding. Last the maximal number of violated inequalities which are
added in each cutting step is fixed to 50.

In the cutting phase we try to use the facet classes we have listed in Table 4.3
(with the exception of classes 11 and 46, which are already contained in the IP
model). So in our first experiment we want to check for each of these facet classes
whether it makes sense to use them as cutting planes or not. For this task we
combine the TVPHP model with one additional facet class and test the performance
on the instances with 15–23 nodes. In case of class 29 (extended 3-cycle) we leave
out the normal 3-cycles since they are redundant then.

The results of these tests are shown in Appendix F in Tables F.1. F.2 and F.3.
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As one can see, the results for the various facet classes are of course very
different. But in nearly all cases the use of additional facets makes the algorithm
faster. Nevertheless the magnitude of speedup is very different per facet class and
also per instance. Overall we can observe that by far the best results are achieved
by classes 25, 29 and 41. Also class 30 and class 39 show good results for most
instances.

In the next series of experiments we check whether the combined use of two or
more facet classes will speed up the algorithm even more. In detail we first try
every possible combination of the classes 25, 29 and 41 and then add classes 30
and 39 to those two combinations which show the best results. As instances for
these tests we use the ones with 20 and 23 nodes. The results of these experiments
are shown in Table F.4 and F.5. As one can observe, the best results are achieved
by the following combinations of facet classes:

• class 29 and class 41,

• class 29, class 39 and class 41,

• class 29, class 30, class 39 and class 41,

• class 25, class 29 and class 41,

• class 25, class 29, class 30 and class 41,

• class 25, class 29, class 39 and class 41,

• class 25, class 29, class 30, class 39 and class 41.

We can observe that the results of combination 29/39/41 and combination
29/30/39/41 are very similar. In other words, adding class 30 does in that case
speed up the computation. So we do not consider the combination 29/30/39/41
anymore. The same applies for the combinations 25/29/39/41 and 25/29/30/39/41
where we leave out 25/29/39/41. We apply the remaining five combinations to the
instances with 26 and more nodes. The results of the runs can be seen in Table F.6
and Table F.7.

We can make the observation that there is no general rule which combination
works best. On most instances the combination 25/29/41 produces better results
than the combination 29/41. The addition of classes 30 and 39 then improves these
results even more in a lot of cases. But in some cases it also slows down the solving
time. The instances with 45 nodes and also some instances with 40 nodes can only
be solved with the combination of all five facet classes. So overall this seems to be
the most promising approach.
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But with any of these combinations the algorithm produces good results and is
way more efficient than if we just work with the basic model where we are in most
cases already unable to solve instances with 23 nodes.

Last we compare the root bounds of the test runs with the different facet
combinations. Tables of these bounds and some other miscellaneous statistics on
the test runs can be found in Appendix F.3.

Not surprisingly the combination 29/41 does produce the worst root bounds.
Interestingly the combination 29/39/41 produces root bounds which lie much closer
to the optimum than the bounds of 25/29/41 and 25/29/30/41. It seems that in
most cases class 39 cuts off a big part of the polytope (at least considering our type
of instances). If we compare 25/29/41 and 25/29/30/41 it seems that class 30 only
reduces the depth of the search tree but does not cut off a big area of the polytope.

7.4 Branch-and-Bound with active/inactive vari-

ables for the TVPE

We have seen in Chapter 4 and in the tables in Appendix C that the gap between
the optimal integer solution and the LP relaxation of the TVPE model is on average
about 50 % better than in case of the TVPHP model. On the other hand we face the
disadvantage that the extended formulation contains a cubic number of variables.
This means that it is not so suitable to use the common branch-and-bound or
branch-and-cut technique since it takes a long time to solve the LP relaxation.

An approach for coping with this problem is to use the concept of active and
inactive variables which we introduce in the following.

The idea of active and inactive variables is a possible extension of branch-
and-bound or branch-and-cut algorithms. This technique has been developed for
polytopes which contain a lot of variables. Such polytopes, for example, occur
when we extend IP models by adding variables and constraints (so-called extended
formulations).

The key idea is then to reduce the amount of time which is needed for solving
the linear program in each branching step. This is done by solving the LP with
the simplex method which contains just a subset of the variables, while all other
variables which are currently not used are fixed to zero. After each solution of the
linear program, the reduced costs of all variables which are currently not part of
the basis are calculated. Then we decide which of these variables should become a
base variable in the next iteration of the simplex algorithm.
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This process is done until no variable with negative reduced cost exists. Then we
continue with the branching step like in the branch-and-bound method. Formally
the additional step is stated in Algorithm 13.

Algorithm 13: Reduced costs

1 Solve LP, obtain x∗;
2 if variables with negative reduced cost exist then
3 Add variable with biggest negative reduced cost to the basis;
4 Goto 1;

5 else
6 Return x∗

In case of the TVPE model it seems natural to select the wijk-variables as
active/inactive variables.

The algorithm was written in C++ and uses the framework SCIP [Ach09].
The computation times (with the default settings of SCIP) of this method can
be observed in Appendix G. When we compare the results of this method to the
performance of the branch-and-cut approach we have to admit that in all cases the
computation time is much worse. Also a modification of the parameters of SCIP
does not change this fact in general.

Because of these results we decide not to pursue this approach any further.
Maybe an extension of this method to a branch-and-cut algorithm with active/in-
active variables would speed up the computation. But for this idea more facts
about P n

ETV must be obtained.

7.5 Dynamic Programming

In this section we present the results of the implementation (written in C++) of
the dynamic programming approach which we described in Section 5.2.

The performance of a dynamic programming algorithm for an NP-hard problem
is normally bounded by the available disk space. In the case of the TVP, the amount
of needed disk space (roughly O(n · 2n) ) doubles with each additional node but
it is independent from the given instance. The same applies for the computation
time. So the only remaining parameter is the number of nodes. Table 7.1 shows
the computation times of an instance with N nodes.
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N 15 20 23 26 30

Time < 1 00:00:10 00:02:15 00:47:40 Mem.

Table 7.1: Computation times of the dynamic programming approach

As one can see, the largest instances we are able to solve have 26 nodes. But
the computation times for 23 and 26 nodes are much worse than the ones of the
branch-and-cut algorithm or even the CPLEX computation times. So the dynamic
programming approach is, as expected, not a good alternative for big instances.
Only for instances up to 20 nodes it may be in some cases a fast and suitable
alternative method.

7.6 Branch-and-Bound with Dynamic Program-

ming

As stated in Section 5.3 the branch-and-bound approach, which does not use IP
modeling, does not perform good enough to be used for the TVP. So we decide
to combine the branch-and-bound approach with dynamic programming. More
precisely we use dynamic programming in the upper levels where there is not much
chance to branch and shift at one point to branch-and-bound which is then used to
computed an optimal partial path through the remaining nodes. We also examined
the idea of using dynamic programming in the last levels.

For practical computations we use the algorithm presented in [Sil12] which was
written in C++ and contains the following three parameters:

• Depth where to switch from dynamic programming to branch-and-bound.

• The frequency how often the Helmstädter condition should be checked.

• The information whether dynamic programming should be used at the last
level. And if so at which level it should start.

The outcomes of [Sil12] suggest that the Helmstädter condition should be
checked at every level and that it is not useful to use dynamic programming at
the end. Test runs on our instances support this result. So we focus on the
determination on the right depth to switch between dynamic programming and
branch-and-bound.

For this purpose we make experiments on the instances with 15–26 nodes. We
test different switch depths between 1 (i. e. no dynamic programming) and 12. We
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do not test greater switching depths because we wanted to focus on branch-and-
bound in this context. The results are shown in Appendix E in Table E.1 (instances
with 15 nodes), Table E.2 (instances with 20 nodes), Table E.3 (instances with 23
nodes) and Table E.4 (instances with 26 nodes).

We come to the conclusion that for a given number of nodes the optimal switch-
depth cannot be determined in general since it strongly depends on the specific
instance. We also observe that a wrong switching depth produces in some cases
a much longer running time compared to pure dynamic programming. So for
small instances it seems more sensible to use dynamic programming alone since
the additional effort of determining the right switch depth is too big compared to
the time which can be saved.

For the big instances, on the other hand the computation time even in best
case is far worse compared to the result of the branch-and-cut approach. Together
this makes this method not capable of being used in practice.

7.7 Lagrange Decomposition

In this section we present the results of an algorithm which uses Lagrangrean relax-
ation. For this purpose we want to use the Lagrangean decomposition approach we
described in Section 5.1. We implemented three different methods for solving the
Lagrangean function. In detail we tried the subgradient method, a conic bundle
and a proximal bundle approach. The subgradient method has been described in
Section 5.1. For a description of the two bundle methods consult [Fie12].

The algorithms were written in C++. We used the LOPSUM library [Rei08]
for solving the partial LOP problem and the Concord [ABCC03] code for solving
the TSP subproblem. For solving the linear programs we again used CPLEX 12.1.

We test the three algorithms on the instances with 15 and 20 nodes. The results
of these experiments are shown in Appendix 7. As one can observe the results are
very poor. Also the computation times are quite long. So for practical purposes
this methods seems really not suitable.

7.8 Comparison

If we compare the different solving methods we come to the conclusion that in
nearly every case the branch-and-cut approach is the best (and for instances with
more than 30 nodes often the only way) to obtain an optimal solution.

The use of dynamic programming does, as expected, only make sense for small
instances where it can sometimes be the fastest of all examined methods. The
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hybrid branch-and-bound/dynamic programming algorithm is also only suitable
for small instances, but for these cases the use of pure dynamic programming is
preferable since a wrong switching depth produces longer running times.

The branch-and-bound approach with active variables based on the extended
formulation is able to solve instances up to thirty nodes. But the computation
times are much worse compared to the branch-and-cut approach. In most cases
even CPLEX is faster.

Perhaps it is possible to make the algorithm faster by adding an additional
cutting phase. But at the moment it seems that this approach can even then not
compete with the branch-and-cut approach.

The results of the branch-and-cut approach depend very heavily on the used
cutting planes. So with the wrong choice of facet classes the algorithm already fails
to compute instances with 23 nodes. With the right choice instead it is possible
to achieve results that are magnitudes better than the results of CPLEX or any
other approach. The border of calculability so far lies at fifty nodes in cases of our
types of instances.

For practical purposes the combination of best-insertion and Kerninghan-Lin-2
heuristics may be a good approximate alternative since it obtains very good so-
lutions in fast time. So in the case that we do not need a guaranteed optimal
solution but only a solution which is near the optimum this combination of heuris-
tics is probably the best approach. The other combinations of heuristics work not
that much successful and are therefore not useful for practical combinations.

The Lagrangean approach is also not useful for practical computations because
of its poor results and long computation times.

So in summa this shows that the target visitation problem is way harder to solve
than the linear ordering problem (here instances which contain a nearly complete
ordering can be solved up to 200 nodes) or the TSP (metric instances up to 85900
nodes can be solved).

It also shows that the TVP is a really hard problem in practice and that it is
not possible to solve it with standard methods. Instead we have to invest a lot of
time in specialized algorithms to obtain satisfying results.
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Chapter 8

Variants of the TVP

In this chapter we will provide some information of two variants of the TVP. First
this is the original tour formulation for which we will make a few comments how
results from Chapters 3 and 4 can be transferred. Secondly we like to give a short
overview of the properties of the symmetric variant of the TVP.

8.1 The original TVP formulation

It is possible to model the tour variant of the TVP with an IP formulation which
is (analogous to the TVPHP model) constructed out of the IP models of the two
subproblems, the LOP and the TSP. The variables we need to introduce are very
similar to the ones used in the TVPHP model but differ slightly in some points.
In the following the base node is denoted by node 0 while the targets are denoted
by 1, . . . , n− 1.

So the TSP-variables xij, 0 ≤ i, j ≤ n−1, i 6= j are this time defined as follows:

xij :=


1 if i = π(k) and j = π(k + 1) for some k ∈ {0, . . . , n− 2},
1 if i = π(n− 1) and j = 0,

0 otherwise.

The LOP-variables wij, 1 ≤ i, j ≤ n − 1, i 6= j are defined exactly in the same
way as in the path model. However the preference are only defined between two
targets and not between the base and a target. With this we are able to set up the
following IP model:

79
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max

(
n−1∑
i=1

n−1∑
j=1
j 6=i

pijwij −
n−1∑
i=0

n−1∑
j=0
j 6=i

dijxij

)
(8.1)

s.t.
n−1∑
i=0
i 6=j

xij = 1, 0 ≤ j ≤ n− 1, (8.2)

n−1∑
j=0
j 6=i

xij = 1, 0 ≤ i ≤ n− 1, (8.3)

∑
i∈S

∑
j∈S
j 6=i

xij ≤ |S| − 1, for all S ⊂ V, 2 ≤ |S| < n, (8.4)

wij + wjk + wki ≤ 2, 1 ≤ i, j, k ≤ n− 1, i < j, i < k, j 6= k, (8.5)

xij − wij ≤ 0, 1 ≤ i, j ≤ n− 1, i 6= j, (8.6)

wji + wij = 1, 1 ≤ i < j ≤ n− 1, (8.7)

xij ∈ {0, 1}, 0 ≤ i, j ≤ n− 1, i 6= j, (8.8)

wij ∈ {0, 1}, 1 ≤ i, j ≤ n− 1, i 6= j. (8.9)

We will denote the model in the following by TVPO and its associated polytope
by P n

OTV . Since this model is similar to the TVPHP model, we do not want to ex-
plain it in detail but make some comments on the differences. As one can see the
degree constraints (8.2) and (8.3) are now equations instead of inequalities. There-
fore the P n

OTV polytope with reduced wij-variables is not nearly full-dimensional
as the P n

TV .

Due to the results of [QW93], it is clear that P n−1
TV and P n

OTV are isomorphic.
This has the consequence that the dimension of the polytope P n+1

OTV is also equal

to 3n2−3n−2
2

(that means the dimension of P n
OTV is equal to 3n2−9n+4

2
). But when we

try to explicitly prove this fact by transferring the ideas of the proof of Theorem 4.1
we suffer some difficulties because of loss of the full-dimensionality.

Another consequence of this isomorphism is that, there is an one-to-one corre-
spondence between the facets of the polytopes. So the description of P 5

OTV must
then correspond with the description of P 4

TV and consist again of 1280 facet-defining
inequalities which can be sorted in 48 classes.
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This also implies that for the facets f of P n−1
OTV and g of P n

OTV where g is the
zero-lifting of f there must exist corresponding facets f ′ of P n−2

TV and g′ of P n−1
TV .

But to us it is not clear that g′ is also the zero-lifting of f ′.

For the sake of completeness we therefore show an adaption of the Theo-
rems 4.4–4.6. Since the proofs are very similar to each other we only present a
short version and focus mainly on the differences between tour and path case. Un-
fortunately in the tour we are case only able to prove a zero-lifting theorem (similar
to Theorem 4.5) for facets which have zero as free node.

In the following let MTVn be defined analogously as in Chapter 4 and with
MTV i

n+1 we denote in the tour case the matrix of all paths where i is visited as
first target after the base node.

Theorem 8.1. Let f be a facet of P n
OTV defined by aww+axx ≤ a0 which contains 0

and some other node l as free nodes. Let f (n) be feasible for P k
OTV with k > n.

Then f (n) is a facet of P k
OTV with k ≥ n.

Proof. We prove this theorem in a similar way as we proved Theorem 4.5. The
main difference is the definition of the bijections which will be presented in the
following.

Let i 6= 0 be any free node of f (n+1). Then there exists a bijection I between
the rows of MTVn and MTV i

n+1 (i.e. between Sn−1 and a subset of Sn) such that
if and only if a characteristic vector (wr, xr) of P n

OTV satisfies f with equality, then
I(wr, xr) satisfies the zero-lifting f (n+1) with equality.

First we consider the case i = n (it is obvious that n must be a free node
of f (n+1) ). We insert n after the base node 0 and get the following bijection:

I : Sn−1 → Sn, π′(k) :=


n if k = 1,

0 if k = 0,

π(k − 1) otherwise.

Now consider the case i < n: At first we use the same bijection as above. Then
we exchange node n and node i, which leads to the following bijection (pi denotes
the old position of i in the path):

I : Sn−1 → Sn, π′(k) :=


i if k = 1,

0 if k = 0,

n if k = pi + 1,

π(k − 1) otherwise.
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Because 0, i and n are free nodes it is still true that awwr + axxr = a0.

Because f contains l and 0 as free nodes it is possible to define the transforma-
tions as in the proof of Theorem 4.5 with the help of these bijection by inserting
node l and n one time between the base node and the first target visited and
second between the last target visited and the base node. Then we can conclude
(analogous to the proof of Theorem 4.5) that no additional valid column equation
does exist.

8.2 The Symmetric Target Visitation Problem

Analogous to the traveling salesman / Hamiltonian path problem it is also possible
to study a variant of the TVP where all distances are symmetric. So we now
consider the case that

dij = dji ∀i, j.

The symmetric target visitation problem (STVP) has been studied extensively
in [Ron14]. That is why we want to present in the following only main aspects
and key results on this topic. Further information can then be found in the above
mentioned source.

Again we first present an IP model for the STVP which is based on its two
subproblems. While for this purpose the w-variables can be defined as in the
asymmetric case the x-variables are now symmetric and therefore their definition
has to be changed. In detail we define xij, 1 ≤ i < j ≤ n as follows:

xij :=


1 if i = π(k) and j = π(k + 1) for some k ∈ {1, . . . , n− 1},
1 if j = π(k) and i = π(k + 1) for some k ∈ {1, . . . , n− 1},
0 otherwise.

Because of the symmetry it now becomes more difficult to combine both IP
formulations. So instead of one simple constraint which makes sure that x-variables
and w-variables match with each other we now need six different types of connection
inequalities. So the model now looks like this:
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max

(
n∑
i=1

n∑
j=1
j 6=i

pijwij −
n∑
i=1

n∑
j=i+1

dijxij

)
(8.10)

s. t.
n∑
i=1

n∑
j=i+1

xij = n− 1, (8.11)

j−1∑
i=0

xij +
n∑

i=j+1

xji ≤ 2, j ∈ V, (8.12)∑
i∈S

∑
j∈S
i≤j

xij ≤ |S| − 1, ∀S ⊂ V, 2 ≤ |S| < n, (8.13)

wij + wjk + wki ≤ 2, i, j, k ∈ V, i < j, i < k, j 6= k, (8.14)

wij + wji = 1, i, j ∈ V, i 6= j, (8.15)

xij + xjk − wij − wjk − 2wki ≤ 0, i, j, k ∈ V, i < j < k, (8.16)

xij + xjk − wji − wkj − 2wik ≤ 0, i, j, k ∈ V, i < j < k, (8.17)

xij + xik − wij − wki − 2wjk ≤ 0, i, j, k ∈ V, i < j, i < k, (8.18)

xij + xik − wji − wik − 2wkj ≤ 0, i, j, k ∈ V, i < j, i < k, (8.19)

xik + xjk − wik − wkj − 2wji ≤ 0, i, j, k ∈ V, j < k, i < k, (8.20)

xik + xjk − wki − wjk − 2wij ≤ 0, i, j, k ∈ V, j < k, i < k, (8.21)

wij ∈ {0, 1}, i, j ∈ V, i 6= j, (8.22)

xij ∈ {0, 1}, i, j ∈ V, i < j. (8.23)

Of course it is (like in the asymmetric case) possible to eliminate one half of the
w-variables. Also the subtour elimination constraints (8.13) are not needed here,
since they are still implied by the three cycles (8.14). We will denote this model
as TVPS and the associated polytope as P n

STV .
Next we like to make some comments about the polyhedra structure of P n

STV .

Theorem 8.2. The dimension of P n
STV is n2 − n− 1.

The proof of this theorem can be found in [Ron14].

We are able to compute P 4
STV which consists of 1010 facets which can be sorted

by HUHFA to 38 classes. An interesting fact is that in contrary to the asymmetric
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variant of the TVP the three cycles (8.14) are facet-defining here. This means
there exist non-trivial facets which are containing only LOP-variables (such facets
do not exist in the asymmetric case). The whole description of the polytope can
be found in Appendix A.4.

Finally we want to present a general zero-lifting result. The proof for this
theorem can also be found in [Ron14].

Theorem 8.3. Let f be a facet of P n
STV which fulfills the following constraints:

• There exist two nodes k, l and two arbitrarily paths µ and ν through the nodes
{1, . . . , n} \ {k, l}, so that the characteristic vectors of the paths l → µ → k
and k → ν → l do fulfill f with equality.

• The facet contains a free node u ∈ {1, ..., n}.

• There exists an arbitrarily node h, so that for every other node g 6= h and
an arbitrarily path ξ through the nodes {1, . . . , n} \ {g, h} at least one of the
path g → ξ → h or h→ ξ → g does fulfill f with equality.

Then f is a facet of Pm
STV with m ≥ n, if and only if f is a valid inequality for

Pm
STV . Also the constraints mentioned above will then be fulfilled in dimension m.

With the help of this theorem it is possible to lift 15 facets of P 4
STV (see [Ron14]).



Chapter 9

Conclusion and Further Research

In this thesis, we have presented an extensive survey on the target visitation prob-
lem, a combination of the traveling salesman and the linear ordering problem.

We studied different integer programming formulations for the problem and
came to the conclusion that the idea of combining the IP models of the two sub-
problems HP and LOP leads to the best model for practical purposes. The ap-
proaches using edge-node variables or distance variables unfortunately have both
very tremendous gaps between the solution of the LP relaxation and the IP so-
lution. Perhaps a detailed investigation of the associated polytopes could in the
future lead to a more compact description based on the same type of variables.

After having a closer look at the associated polytope P n
TV of the TVPHP model,

we found that we need way more inequalities to describe it than for the linear
ordering or traveling salesman polytope. We were able to prove that the dimension
of P n

TV is equal to the sum of the dimension of the corresponding linear ordering
polytope plus the dimension of the corresponding Hamiltonian path polytope. We
also developed a zero-lifting theorem which we used to show that some facets of P 4

TV

are general facet classes. Additionally some other general facet classes have been
presented.

Because the LP/IP gap of the TVPHP model is quite big, we have developed an
extended formulation by extending the linear ordering variables to a three index
version. This formulation then has a much smaller LP/IP gap. Unfortunately, the
cubic numbers of variables makes it difficult to use this model for a branch-and-
cut approach because it takes much more time to solve the linear programming
relaxation with the additional variables and constraints. So we tried to work
around this problem by using column generation. We also examined the connection
between the P n

TV and P n
ETV by having a closer look at which facets are implied by

the projection of P n
ETV onto P n

TV .
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In the practical part of the thesis, we have considered several methods for solv-
ing the target visitation problem. We have shown that the standard approaches
branch-and-bound as well as dynamic programming are only useful for small in-
stances, which is not surprising since this is the case for most NP-hard problems.
Also, the Lagrangean decomposition approach does not perform satisfactorily.

We achieved by far the best results with a branch-and-cut approach which uses
the facet classes we discovered before as cutting planes. But, as we have seen,
it is not a trivial question which facet classes should be selected in the cutting
phase. Nevertheless, with an optimal choice, we were able to solve instances up to
forty-five nodes, which is so far impossible with any other approach.

Unfortunately, the results of the branch-and-bound algorithm with active/non-
active variables could also not compete with the branch-and-cut approach. It
remains an open question whether the extension of the algorithm to a branch-and-
cut algorithm would make the computation faster.

Our studies of the heuristics support the exact approaches. The combination of
the best-insertion and the Kenigham-Lin heuristic is capable of quickly obtaining
good bounds (in the most cases even the optimal solution). For some practical
purposes this may be already sufficient.

So in the end, we conclude that the TVP is an interesting combinatorial opti-
mization problem which possesses a nice structure and is worth further investiga-
tion. Of course this thesis can only be considered as a base work on this subject.
But we think it is a good starting point for further investigation in both theoretical
as well as practical directions.
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Appendix A

Description of Small
TVP-Polytopes

In the following let i, j, k, l ∈ {1, 2, 3, 4} and pairwise different.

A.1 Complete Description of P 4
TV

Cl. Facet defining inequality

1 wij + wjk + wkl + wlj − xij − xik + xji + xjl − xlj ≤ 2
wjk + wkl + wli + wlj + xil + xjl − xki − xli − xlj ≤ 2

2 wil + wkl + wlj + xji + xjk + xjl + xli + xlk ≤ 3
wji + wjk + wlj + xij + xil + xjl + xkj + xkl ≤ 3

3 wlj + xil + xji + xjk + 2xjl + xkl − xlj ≤ 2
4 2wij + wjk − xij − xik + 2xji + xjl + xki + xkj + xkl + xli ≤ 3

wil + 2wlk − xik + xji + xjl + xki + xkj + 2xkl + xli − xlk ≤ 3
5 wij + wil − xij − xik − xil + xji + xli ≤ 1

wjk + wlk − xik − xjk + xkj + xkl − xlk ≤ 1
6 wij + wlk − xij − xik + xji + xjl + xkl − xlj − xlk ≤ 1
7 wij + 2wjk + 2wkl + wli + wlj + xil + xji + xjl + xkj + xlk ≤ 5
8 wjk + 2wkl + wlj − xki − xkl + xlk ≤ 2

2wjk + wkl + wlj − xik − xjk + xkj ≤ 2
9 wji + wkl + wlj + xij + xik + xil + xjk + xjl − xki + xlk ≤ 3
10 2wij + 2wjk + wkl + wli − xij − xik + xji − xjk + xkj ≤ 3
11 −xki ≤ 0
12 wij + wil + wjk + wlk − xij − 2xik − xil + xji − xjk

+xki + xkj + xkl + xli − xlk ≤ 2
13 wil + wji + wjk + wkl + wlj + xij + xkj + xli + xlj + xlk ≤ 4
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14 wij + 2wjk + wki + wkl + wlj + xji + xjl + xkj ≤ 4
wil + wji + wjk + wkl + 2wlj + xij + xjl + xkj ≤ 4

15 wil + wjk + wki + wkl + wlj − xil − xki − xkl ≤ 2
16 2wjk + wkl + 2wlj − xik − xjk + xjl + xkj − xli − xlj − xlk ≤ 2
17 wij + wil + wjk + wki − xil + xji + xkj + xli + xlj ≤ 3

wik + wjk + wkl + wlj − xik + xji + xjl + xki + xkj ≤ 3
18 wij + 2wjk + wlj − xik + xji − xjk + xjl + xki + 2xkj + xkl − xlk ≤ 3

2wij + wjk + wjl − xij − xik − xil + 2xji + xki + xkj + xli + xlj ≤ 3
19 wil + wjk + wlj − xik − xil − xjk + xkj − xlk ≤ 1

wij + wjk + wkl − xij − xik − xil + xji − xkl ≤ 1
20 wij + wil + 2wjk + wki + wlj + xji + xjl + xki + 2xkj + xkl + xli ≤ 5

wil + 2wjk + wki + wkl + wlj + xij + xik + 2xkj + xli + xlj + xlk ≤ 5
21 2wil + wjk + wki + wlj − xil + xkj + xli ≤ 3
22 wij + wjk + wlj − xij − xik + xji + xjl + xki + xkj + xkl − xlj − xlk ≤ 2

wjk + wki + wkl + xij + xik − xji − xjl − xki + xkj − xkl + xlj + xlk ≤ 2
23 wil + wlj − xij − xik − xil − xlj − xlk ≤ 0

wil + wji − xil − xji − xjl − xki − xkl ≤ 0
24 wil + wjk + wkl + 2wlj − xij − xik − xil + xjl − xlj ≤ 2

2wjk + wki + wkl + wlj − xji − xjk − xki + xkj − xli ≤ 2
25 wil + wjk + wki + wlj + xjl + xkj + xkl ≤ 3
26 wij + wil + wjk + wlj − xij − xik − xil + xji + xjl + xki + xkj + xkl + xli ≤ 3

wji + wjk + wki + wlj + xij + xik + xil − xji + xjl − xki + xkj + xkl − xli ≤ 3
27 wij + wil + wjk + wki + wlk − xij − xik − xil − xjk + xkj + xkl − xlk ≤ 2

wil + wji + wki + wlj + wlk − xji + xjl − xki + xkl − xli − xlj − xlk ≤ 2
28 wij + 3wjk + wki + wkl + wlj − xjk + 2xkj ≤ 4
29 wjk + wkl + wlj + xkj ≤ 2
30 2wjk + 2wkl + 2wlj + xjl + xkj + xlk ≤ 4
31 wij + 2wjk + wki − xjk + 2xkj + xkl + xlj ≤ 3
32 wil + wkl − xil + xji + xjk − xkl + xli + xlj + xlk ≤ 2

wik + wil − xik − xil + xji + xki + xkj + xli + xlj ≤ 2
33 wij + wil + wjl − xij − xik − 2xil + xji − xjl − xkl + xli + xlj ≤ 1
34 wij + wil + wjk − xij − xik − xil + xji + xki + xkj + xli ≤ 2

wil + wjk + wkl − xil − xjl + xkj − xkl + xli + xlj + xlk ≤ 2
35 2wil − xij − xik − 2xil − xjl − xkl + xli ≤ 0
36 wij + wik − 2xij − 2xik − xil + xji + xki − xlj − xlk ≤ 0

wjl + wkl − xil − xji − 2xjl − xki − 2xkl + xlj + xlk ≤ 0
37 wil − xij − xik − xil ≤ 0

wji − xji − xki − xli ≤ 0
38 wij + wik + wil − 2xij − 2xik − 2xil + xji + xki + xli ≤ 1

wji + wki + wli + xij + xik + xil − 2xji − 2xki − 2xli ≤ 1
39 wij + 2wjk + wkl + xji + xki + 2xkj + xli + xlj + xlk ≤ 4
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40 wij + wik + wjk + wkl + wli − xij − xik + xji + xki + xkj ≤ 3
wil + wji + wjk + wki + wlj + xij + xik − xji − xki + xkj ≤ 3

41 wjk + wkl + xkj + xlj + xlk ≤ 2
42 wij + wjk + wjl − xij − xik − xil − xjk − xjl + xkj + xlj ≤ 1

wjk + wki + wlk − xji − xjk − xki + xkj + xkl − xli − xlk ≤ 1
43 wil + wki + wlk − xil − xki − xlk ≤ 1
44 2wil + wji + wki + wlj + wlk − xil − xji − xki − xlj − xlk ≤ 2
45 xji + xjk + xjl ≤ 1

xij + xkj + xlj ≤ 1
46 wjk + xkj ≤ 1
47 wil + wkj + wlk + xji + xjk + xjl + xkl + xli ≤ 3

wij + wjk + wli + xil + xji + xjl + xkj + xkl ≤ 3
48 wik + wkl − xij − xik − xil − xjl − xkl ≤ 0

A.2 Complete Description of P 4
ETV

Cl. Facet defining inequality

1 xij − wijk − wkij ≤ 0
2 −xik + wijk − wilj + wkij ≤ 0

3
∑l=4

l=1,l 6=i−xil − wjki − wkji ≤ −1∑l=4
l=1,l 6=i−xli − wijk − wikj ≤ −1

4 xik + xij + xjk + wkji + wilk − wijk ≤ 1
5 −xji − xjl + xlk + wkjl + wlik + wlji − wljk − wlkj ≤ 0
6 −xji − xjl − xki − xkj − xkl + wkjl + wlji − wljk ≤ −1
7 xji + xki + xkj + xkl + xli − wjil + wjlk − wkli − wlik + wljk − wlki ≤ 1

A.3 Complete Description of P 4
ENTV

Cl. Facet defining inequality

1 −wjkl ≤ 0
2 −wkii + wkij ≤ 0

3 −wjkl + wkli − wklj ≤ 0

4 −wjli + wlki − wlkj ≤ 0

5 −wjli + wjlk + wlki − wlkk ≤ 0
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6 −wjli − wkli + wlii − wlij ≤ 0

7 −wjkl − wjli + wlii − wlij ≤ 0

8 −wjli − wlij + wlik + wlki − wlkj ≤ 0

9 −wjli + wklj − wkll + wlii − wlij ≤ 0

10 −wjli − wkli + wlii − wlij + wlji − wljk ≤ 0

11 −wjkl − wjli + wlii − wlij + wlki − wlkj ≤ 0

12 wjlk + wkli − wklj − wlii + wlij + wlkj − wlkk ≤ 0

13 −wjli − wjlk + wjll − wkij − wkji − wkjl − wklj − wlij + wlik + wljj − wljk + wlki ≤ 0

14 −wjli − wjlk + wjll − wkij − wkji − wkjl − wklj + wlij − wlik + wljj − wljk + wlki ≤ 0

15 −wjli + wjlk − wjll − wkij − wkji + wkjl − wklj − wlij + wlik + wljj − wljk + wlki ≤ 0

16 −wjli − wjlk + wjll − wkij + wkji − wkjl + wklj − wlij + wlik − wljj + wljk − wlki ≤ 0

17 −wjli − wjlk + wjll − wkij + wkji − wkjl − wklj − wlij + wlik + wljj − wljk − wlki ≤ 0

18 −wjli − wjlk + wjll − wkij + wkji − 2wkjj + wkjl − wklj − wlij
+wlik + wljj − wljk + wlki ≤ 0

19 −wjli + wjlk − wjll − wkij − wkji + wkjl − wklj + wlij − wlik + wljj − wljk + wlki ≤ 0

20 −wjli − wjlk + wjll − wkij + wkji − wkjl
−wklj + wlij − wlik + wljj − wljk + wlki 2jwlkj ≤ 0

21 −wjli + wjlk − wjll + wkij − wkji + wkjl + wklj − wlij + wlik − wljj + wljk − wlki ≤ 0

22 −wjli − wjlk + wjll − wkij + wkji − 2wkjj + wkjl
+wklj − wlij + wlik − wljj + wljk − wlki + 2wlkj ≤ 0

23 wjli − 3wjlk + wjll − wkij − wkji − wkjl + wklj − wlij + wlik − wljj + wljk + wlki ≤ 0

24 wjli − 3wjlk + wjll − wkij − wkji − wkjl − wklj − wlij + wlik + wljj − wljk + wlki ≤ 0

A.4 Complete Description of P 4
STV

Cl. Facet defining inequality

1 −xik + xil − 2xjk + 2xjl + wji + wki − 2wkj − wli − wlj − 2wlk ≤ 0
2 −2xik + 2xil − xjk + xjl + wji − 2wki − wkj − wli + wlj − 4wlk ≤ −1
3 −xik + xil − 2xjk + 2xjl + wji + wki − 4wkj − wli + wlj − 2wlk ≤ 0
4 −2xik − xil + xjk + 2xjl − xkl + 3wji − wki − 3wkj − wli − wlj − wlk ≤ 0
5 −xik + xil + xjk − xjl − 4wji + 2wki + wkj + wli − 4wlj + 2wlk ≤ 1
6 −2xik + 2xil − xjk + xjl + wji − 4wki − wkj + wli + wlj − 4wlk ≤ −1
7 −xik − 3xil − xjl − wji − 3wki + wkj + 7wli − 3wlj − wlk ≤ 0
8 xil − xjk − 2xjl + xkl − 3wji − wki + 3wkj + 3wli − 7wlj + wlk ≤ 0
9 −xik ≤ 0
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10 −wji ≤ 0
11 −wji + wli − wlj ≤ 0
12 −xik − xil − xkl ≤ −1
13 −xik − xil − xkl − wji + wkj + wlj ≤ 0
14 −xik − xil − 2xkl + wkj + wlj ≤ 0
15 −2xik + xjl − wji + wkj − wli − wlk ≤ 0
16 −xik − xjl − wji + wkj + wli − 2wlj + wlk ≤ 0
17 −xik + wji − 3wki + wkj + wli − wlk ≤ 0
18 −xik − xil − 2xkl + wkj − wlj + 2wlk ≤ 0
19 −xik + xil + wji − 2wki + wlj − 2wlk ≤ 0
20 −2xik − xil − 2xkl − wji + 2wkj + wlj ≤ 0
21 −2xik − xjk − xkl + 2wki − wkj + wlk ≤ 0
22 −xik − xil + xjk − xkl − wji + wki + wlj − wlk ≤ 0
23 −xik + 2xjl + wji − wkj − 2wli − 2wlk ≤ 0
24 −xik − xil + xjk + xjl − 2wji + wki + wli ≤ 1
25 −2xik + xjl + wji − 4wki + wkj + wli − wlk ≤ 0
26 −xjk + xjl + xkl − wji − wki + 2wli − 2wlj − 2wlk ≤ 0
27 −xik − 2xil + xjk − xkl − 2wji + wki + 2wlj − wlk ≤ 0
28 xik − xil + xjk − xjl − xkl − wki − wkj − wli − wlj + 2wlk ≤ 0
29 −2xik − xil − 2xkl + wji − 2wki + 2wkj − wlj + 2wlk ≤ 0
30 −xik − xil + xjk + xjl − xkl + 2wji − wki − wkj − wli − wlj ≤ 0
31 −xik + xil − xkl + 2wji − 4wki + wkj + wlj − 2wlk ≤ 0
32 −xjk + xjl + xkl − wji + wki − 4wkj + 2wlj − 2wlk ≤ 0
33 xik − xjk + xkl − 2wji + wki − 4wkj + 2wlj − wlk ≤ 0
34 −2xik − xil − wji + 4wki − 2wkj − 2wli + wlj ≤ 0
35 xik − xil + xjk − xjl − xkl − wki − wkj + 2wli + 2wlj − 4wlk ≤ 0
36 xjl − wkj − wlk ≤ 0
37 xjl − wji − wkj + wli − wlk ≤ 0
38 −xik − xjk − xkl + wkj + wlk ≤ 0
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Appendix B

Overview of the TVP Instances

Name N Changes Sol. LOP Sol. TSP Sol. LOP
|Sol. TSP| Sol. TVP

ER CFO 15 1 15 - 20950 −22356 0.94 −6435
LB CFO 15 1 15 - 26150 −10093 2.59 9478

LD CFO 15 1 15 - 131350 −15745 8.34 107620

LD CFO 15 2 15 - 99765 −19826 5.03 71699

ER MCO 15 1 15 0.25N2 7650 −6601 1.16 −2236
ER MCO 15 2 15 0.25N2 7065 −9974 0.71 −5738
LB MCO 15 1 15 0.25N2 19260 −7452 2.58 3798

LD MCO 15 1 15 0.25N2 41850 −12441 3.36 16930

LD BCO 15 1 15 0.5N2 486045 −13029 37.30 447756

ER BCO 15 1 15 0.5N2 12735 −14706 0.87 −4986
LB BCO 15 1 15 0.5N2 25740 −11764 2.19 4206

LB CFO 20 1 20 - 54480 −22667 2.40 16439

LB CFO 20 2 20 - 29430 −15736 1.87 9494

LD CFO 20 1 20 - 99505 −14584 6.82 66995

ER CFO 20 1 20 - 15900 −15358 1.04 −7417
LB MCO 20 1 20 0.25N2 37650 −14109 2.67 14272

ER MCO 20 1 20 0.25N2 25740 −17605 1.46 905

ER BCO 20 1 20 0.5N2 27870 −26602 1.05 −7233
ER BCO 20 2 20 0.5N2 13530 −16612 0.81 −9682

Table B.1: Data for the TVP instances with 15 and 20 nodes
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Name N Changes Sol. LOP Sol. TSP Sol. LOP
|Sol. TSP| Sol. TVP

ER CFO 23 1 23 - 13920 −25960 0.54 −18453
ER CFO 23 2 23 - 20685 −15862 1.30 −3432
LD CFO 23 1 23 - 73745 −17357 4.25 50973

ER CFO 23 3 23 - 23080 −23907 0.97 −8966
LD MCO 23 1 23 0.25N2 132615 −12760 10.39 95317

ER MCO 23 1 23 0.25N2 24395 −23571 1.03 −6701
ER BCO 23 1 23 0.5N2 15365 −20166 0.76 −11241
LD BCO 23 1 23 0.5N2 178500 −20495 8.71 131109

LB CFO 26 1 26 - 55800 −22239 2.51 24774

LD CFO 26 1 26 - 78900 −18807 4.20 43677

LB CFO 26 2 26 - 38250 −17764 2.15 8358

LB CFO 26 3 26 - 30600 −16642 1.84 5078

LB MCO 26 1 26 0.25N2 33180 −21419 1.55 1826

ER MCO 26 1 26 0.25N2 15090 −17553 0.86 −7639
ER BCO 26 1 26 0.5N2 20430 −19184 1.06 −5600
ER BCO 26 2 26 0.5N2 26160 −19638 1.33 −221

ER CFO 30 1 30 - 23825 −22373 1.06 −7300
ER CFO 30 2 30 - 16325 −20281 0.80 −11803
LB CFO 30 1 30 - 57350 −25785 2.22 23715

LB CFO 30 2 30 - 34150 −16988 2.01 4312

LB MCO 30 1 30 0.25N2 34300 −20399 1.68 695

ER MCO 30 1 30 0.25N2 21525 −18821 1.14 −4532
ER MCO 30 2 30 0.25N2 30625 −25365 1.21 −2314
ER MCO 30 3 30 0.25N2 19850 −22868 0.87 −8787
ER MCO 30 4 30 0.25N2 37950 −29132 1.30 −4024
LD MCO 30 1 30 0.25N2 288600 −20335 14.19 246422

LB BCO 30 1 30 0.5N2 32675 −17925 1.82 2402

Table B.2: Data for the TVP instances with 23, 26 and 30 nodes
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Name N Changes Sol. LOP Sol. TSP LOP
|TSP| Sol. TVP

ER CFO 35 1 35 - 39040 −27201 1.44 −3198
LB CFO 35 1 35 - 30520 −19001 1.61 985

LB CFO 35 2 35 - 31820 −20928 1.52 1932

LD CFO 35 1 35 - 202860 −24483 8.29 163453

LB MCO 35 1 35 0.25N2 47820 −16276 2.94 16527

ER MCO 35 1 35 0.25N2 28980 −29769 0.97 −8356
LB MCO 35 2 35 0.25N2 45840 −19999 2.29 11561

LB BCO 35 1 35 0.5N2 43920 −27805 1.58 4213

ER BCO 35 1 35 0.5N2 15960 −27560 0.58 −16328
ER BCO 35 2 35 0.5N2 25080 −23565 1.06 −6224

ER CFO 40 1 40 - 24640 −19780 1.25 −3000
ER CFO 40 2 40 - 20370 −28990 0.70 −19420
ER CFO 40 3 40 - 19610 −22690 0.86 −10693
ER CFO 40 4 40 - 20940 −24753 0.85 −14908 . . .−13544
ER CFO 40 5 40 - 23060 −28657 0.80 −11827
LB CFO 40 1 40 - 53400 −21842 2.44 21829

LD MCO 40 1 40 0.25N2 804800 −24581 32.74 743577

ER MCO 40 1 40 0.25N2 14250 −27338 0.52 −17246

LD CFO 45 1 45 - 101880 −26172 3.89 60925

LB CFO 45 1 45 - 70640 −28627 2.47 19877 . . . 22929

LB CFO 45 2 45 - 45720 −28403 1.61 −1338 . . . 3071

LD CFO 45 2 45 - 179780 −23890 7.53 133647. . . 136410

LB MCO 45 1 45 0.25N2 72040 −27243 2.64 23301 . . . 24430

LB MCO 45 2 45 0.25N2 42640 −22365 1.91 8728

LB MCO 45 3 45 0.25N2 78560 −26879 2.92 35339

LD BCO 45 1 45 0.5N2 1140500 −28684 39.76 1070779

LB BCO 45 1 45 0.5N2 44300 −22365 1.98 3381

ER BCO 45 1 45 0.5N2 23720 −28058 0.85 9418

LB CFO 50 1 50 - 67630 −32378 2.09 19559 . . . 23220

LB CFO 50 2 50 - 81100 −31171 2.60 34783 . . . 38036

ER CFO 50 1 50 - 39260 −27962 1.40 −1276 . . . 457.9

Table B.3: Data for the TVP instances with 35–50 nodes
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Appendix C

Bounds of the LP Relaxation of
the Different TVP Models

Name Opt. TVPHP TVPE TVPEN TVPD

ER CFO 15 1 −6435 94.0 −6406.1 2370.0 7920.5
LB CFO 15 1 9478 19219.0 13388.4 18035.3 20481.3
LD CFO 15 1 107620 115361.5 111246.2 112091.8 124233.8
LD CFO 15 2 71699 79834.9 77979.0 79092.3 89138.3
ER MCO 15 1 −2236 1242.0 −1600.5 1005.5 4714.7
ER MCO 15 2 −5738 −3099.8 −4668.6 1632.5 3256.3
LB MCO 15 1 3798 10007.6 3861.1 7314.1 14929.6
LD MCO 15 1 16930 28378.0 23240.3 26060.5 35965.2
LD BCO 15 1 447756 459466.5 448043.5 450031.5 479910.8
ER BCO 15 1 −4986 4570.0 −705.9 2984.04 10051.4
LB BCO 15 1 4206 15699.0 8193.0 12561.8 21535.6

LB CFO 20 1 16439 28408.1 24709.0 26836.2 42453.5
LB CFO 20 2 9494 13743.5 9496.8 11848.8 21376.0
LD CFO 20 1 66995 82176.7 73678.0 78910.3 87228.0
ER CFO 20 1 −7417 2699.5 103.0 2985.8 11652.4
LB MCO 20 1 14272 22189.7 17660.7 20036.2 34352.1
ER MCO 20 1 905 8018.3 1208.5 7226.6 13713.7
ER BCO 20 1 −7233 5600.3 −3452.0 5983.4 17866.9
ER BCO 20 2 −9682 −3751.5 −6640.3 −4844.8 8190.0

Table C.1: Solution of the LP relaxation for the different TVP models for instances
with 15 and 20 nodes
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Name Opt. TVPHP TVPE TVPEN TVPD

ER CFO 23 1 -18453 -4124.8 -15426.9 -3465.5 3798.3
ER CFO 23 2 -3432 2748.8 -804.2 947.3 16201.7
LD CFO 23 1 50973 56883.8 52145.0 53444.1 66679.7
ER CFO 23 3 -8966 1560.1 -6751.9 1998.7 15666.5
LD MCO 23 1 95317 113424.4 101934.2 107364.7 132645.6
ER MCO 23 1 -6701 8917.1 -1323.7 6203.3 21310.5
ER BCO 23 1 -11241 -4840.9 -7972.3 -3440.2 8238.5
LD BCO 23 1 131109 154173.0 138900.8 144670.8 180248.8

LB CFO 26 1 24774 34948.2 27488.8 32144.9 Mem.
LD CFO 26 1 43677 58741.3 51832.4 58201.9 Mem.
LB CFO 26 2 8358 18201.3 12758.9 17323.6 Mem.
LB CFO 26 3 5078 14713.5 9308.2 13041.3 Mem.
LB MCO 26 1 1826 14497.2 9157.0 11400.4 Mem.
ER MCO 26 1 -7639 1331.9 -3325.3 1122.7 Mem.
ER BCO 26 1 -5600 4381.2 -4187.9 1875.8 Mem.
ER BCO 26 2 -221 11930.3 1851.6 9840.9 Mem.

Table C.2: Solution of the LP relaxation for the different TVP models for instances
with 23 and 26 nodes



Appendix D

Results of the Heuristic
Approaches

D.1 Results of the Constructive Heuristics

In the following Becker X means that the number of randomly generated start
tours is equal to N ·X and BestInst X that the number of inserting operation is
equal to N ·X.

Name Opt. Heu.

ER CFO 15 1 −6435 −18018
LB CFO 15 1 9478 3058

LD CFO 15 1 107620 83077

LD CFO 15 2 71699 39003

ER MCO 15 1 −2236 −15660
ER MCO 15 2 −5738 −20105
LB MCO 15 1 3798 −14523
LD MCO 15 1 16930 −7811
LD BCO 15 1 447756 178897

ER BCO 15 1 −4986 −11065
LB BCO 15 1 4206 -4972

Name Opt. Heu.

LB CFO 20 1 16439 −4248
LB CFO 20 2 9494 −7772
LD CFO 20 1 66995 49519

ER CFO 20 1 −7417 −22562
LB MCO 20 1 14272 3824

ER MCO 20 1 905 −15623
ER BCO 20 1 −7233 −24542
ER BCO 20 2 -9682 −32470

Table D.1: Results of the nearest-neighbor heuristic for instances with 15 and 20
nodes
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Name Opt. Heu.

ER CFO 23 1 −18453 −37488
ER CFO 23 2 −3432 −23480
LD CFO 23 1 50973 12899

ER CFO 23 3 −8966 −24253
LD MCO 23 1 95317 22429

ER MCO 23 1 −6701 −23296
ER BCO 23 1 −11241 −42656
LD BCO 23 1 131109 25885

Name Opt. Heu.

LB CFO 26 1 24774 −11417
LD CFO 26 1 43677 19199

LB CFO 26 2 8358 −15172
LB CFO 26 3 5078 −9415
LB MCO 26 1 1826 −8410
ER MCO 26 1 −7639 −16626
ER BCO 26 1 −5600 −29368
ER BCO 26 2 −221 −12427

Table D.2: Results of the nearest-neighbor heuristic for instances with 23 and 26
nodes

Name Opt. Becker 5 Becker 10 Becker 50 Becker 100

ER CFO 15 1 −6435 −56016.4 −51525.3 −43891.2 −41057.9
LB CFO 15 1 9478 −24108.4 −21690.3 −15462.1 −13299.5
LD CFO 15 1 107620 62813.7 66293.1 73350 76317.2

LD CFO 15 2 71699 22264.6 26373.3 34261 37230.8

ER MCO 15 1 −2236 −38065 −35732 −29948.4 −27854.9
ER MCO 15 2 −5738 −42167.5 −39176.4 −33443.7 −31376.9
LB MCO 15 1 3798 −40911.8 −36847.6 −29951.4 −27658.9
LD MCO 15 1 16930 −12842.8 −10353.3 −5406.5 −3596.8
LD BCO 15 1 447756 354360 368370 391292 399016

ER BCO 15 1 −4986 −54431.1 −50511.3 −41717.3 −37948.1
LB BCO 15 1 4206 −36683.8 −33525.5 −27003.2 −24385.1

Table D.3: Average values of 500 runs of the Becker Heuristic for the instances
with 15 nodes
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Name Opt. Becker 5 Becker 10 Becker 50 Becker 100

LB CFO 20 1 16439 −55183.5 −51936.2 −43132 −40735.8
LB CFO 20 2 9494 −47959.3 −45174.1 −38689.6 −36676.4
LD CFO 20 1 66995 −18787.4 −14196.2 −4719.9 −1700
ER CFO 20 1 −7417 −67165.6 −63845.7 −55929.1 −53213.8
LB MCO 20 1 14272 −57472.5 −53874.3 −46023.3 −42689.4
ER MCO 20 1 905 −80211.2 −75980.6 −67835.9 −64474
ER BCO 20 1 −7233 −77409.3 −72889 −64568.7 −61308.3
ER BCO 20 2 -9682 −84002.1 −79334.6 −70000.3 −66006.4

ER CFO 23 1 −18453 −113246 −108282 −98466.8 −95444.7
ER CFO 23 2 −3432 −95460.6 −91093 −82111.6 −78665
LD CFO 23 1 50973 −41275.2 −36750.8 −28312 −25108.7
ER CFO 23 3 −8966 −84309.9 −80254 −73107.5 −70508.3
LD MCO 23 1 95317 −11553.2 −7107.8 3454.5 7721

ER MCO 23 1 −6701 −100073 −94890.4 −86052.5 −81807.9
ER BCO 23 1 −11241 −96514.3 −91063.5 −82706.4 −79401.1
LD BCO 23 1 131109 23831.1 28485.4 38362.4 42603.1

LB CFO 26 1 24774 −88994.7 −84232.3 −74337.4 −71564.6
LD CFO 26 1 43677 −53281 −48907.6 −40947.9 −37574.8
LB CFO 26 2 8358 −94448.2 89214.4 −79327.5 −75422.2
LB CFO 26 3 5078 −90712.6 −86015.9 −77108.2 −73229.8
LB MCO 26 1 1826 −103233 −98459.8 −89568.5 −85993.3
ER MCO 26 1 −7639 −102803 −98618 −90946.2 −87268.9
ER BCO 26 1 −5600 −105033 100146 −92067.9 −88417.5
ER BCO 26 2 −221 −88230 −84926.8 −77440.4 −74528.2

Table D.4: Average values of 500 runs of the Becker Heuristic for the instances
with 20, 23 and 26 nodes
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Name Opt. BestIns 5 BestIns 10 BestIns 50 BestIns 100

ER CFO 15 1 −6435 −6455.7 −6435 −6435 −6435
LB CFO 15 1 9478 9478 9478 9478 9478

LD CFO 15 1 107620 105370 106329 107595 107620

LD CFO 15 2 71699 71432.4 71659.5 71699 71699

ER MCO 15 1 −2236 −2240.2 −2236 −2236 −2236
ER MCO 15 2 −5738 −5738 −5738 −5738 −5738
LB MCO 15 1 3798 3798 3798 3798 3798

LD MCO 15 1 16930 16836.3 16922.6 16930 16930

LD BCO 15 1 447756 447656 447738 447756 447756

ER BCO 15 1 −4986 −4986 −4986 −4986 −4986
LB BCO 15 1 4206 3914.4 4086.4 4206 4206

LB CFO 20 1 16439 16060.3 16277.4 16439 16439

LB CFO 20 2 9494 9487.6 9493.36 9494 9494

LD CFO 20 1 66995 66178.2 66896 66938.7 66994.6

ER CFO 20 1 −7417 −7608.4 −7545.8 −7488.8 −7417.7
LB MCO 20 1 14272 12286.3 12656.9 13960.8 14206.4

ER MCO 20 1 905 902.7 905 905 905

ER BCO 20 1 −7233 −7588 −7391.1 −7250.18 −7233
ER BCO 20 2 −9682 −9682.8 −9682.8 −9682 −9682

ER CFO 23 1 −18453 −18580.7 −18508.1 −18453.7 −18453
ER CFO 23 2 −3432 −4101 −3922 −3553 −3445.5
LD CFO 23 1 50973 50973 50973 50973 50973

ER CFO 23 3 −8966 −9188.4 −9051.3 −8966.3 −8966
LD MCO 23 1 95317 95276.3 95312.2 95317 95317

ER MCO 23 1 −6701 −6730.4 −6704 −6701 −6701
ER BCO 23 1 −11241 −11377.2 −11276.8 −11241 −11241
LD BCO 23 1 131109 126210 131109 131109 131109

Table D.5: Average values of 500 runs of the best-insertion heuristic for instances
with 15, 20 and 23 nodes
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Name Opt. BestIns 5 BestIns 10 BestIns 50 BestIns 100

LB CFO 26 1 24774 24161.8 24505 24718.9 24756.9

LD CFO 26 1 43677 42133 42985.3 43671.1 43677

LB CFO 26 2 8358 7703.7 7910.9 8077.6 8167.1

LB CFO 26 3 5078 3876.5 4536.4 5039.5 5066.2

LB MCO 26 1 1826 203.6 849.8 1605 1762

ER MCO 26 1 −7639 −9039.3 −8876.7 −8104.5 −8133
ER BCO 26 1 −5600 −5876.8 −5673.8 −5600 −5600
ER BCO 26 2 −221 −560.1 −341.5 −223.5 −221

Table D.6: Average values of 500 runs of the best-insertion heuristic for instances
with 26 nodes
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D.2 Results of the Improvement Heuristics

ER CFO 15 1 LB CFO 15 1 LD CFO 15 1 LD CFO 15 2

Opt −6435 9478 107620 71699

KernLin 1 −6435 9478 107620 71699

KernLin 2 −6435 9478 107620 71699

2-Opt 100 −6435 9478 107620 71699

2-Opt 1000 −6435 9478 107620 71699

3-Opt 100 −6435 9478 107620 71699

3-Opt 500 −6435 9478 107620 71699

3-Opt 1000 −6439.2 9478 107620 71699

ER MCO 15 1 ER MCO 15 2 LB MCO 15 1 LD MCO 15 1

Opt −2236 -5738 3798 16930

KernLin 1 −2240.1 5738 3798 16930

KernLin 2 −2236 5738 3798 16930

2-Opt 100 −3990.3 5738 3798 16930

2-Opt 1000 −4014.2 5738 3798 16930

3-Opt 100 −3976.3 5738 3798 16930

3-Opt 500 −3993.4 5738 3798 16930

3-Opt 1000 −4000.3 5738 3798 16930

LD BCO 15 1 ER BCO 15 1 LB BCO 15 1

Opt 447756 −4986 4206

KernLin 1 447756 −4986 4206

KernLin 2 447756 −4986 4206

2-Opt 100 447018 −4987 4090.9

2-Opt 1000 446905 −4986 4113.2

3-Opt 100 447756 −4986 4072.4

3-Opt 500 447756 −4987 4065

3-Opt 1000 447756 −4986 4090.9

Table D.7: Average values of 500 runs of the improvement heuristics with Becker
100 as start heuristic for instances with 15 nodes
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LB CFO 20 1 LB CFO 20 2 LD CFO 20 1 ER CFO 20 1

Opt 16439 9494 66995 −7417

KernLin 1 16409.7 9494 66995 - −7441.9
KernLin 2 16439 9494 66995 −7417
2-Opt 100 15973.1 9494 66901.2 −7417
2-Opt 1000 16036.3 9494 66917.4 −7417
3-Opt 100 16428 9494 66994.6 −7417
3-Opt 500 16427.7 9494 66994.2 −7417
3-Opt 1000 16427.4 9494 66994.6 −7417

LB MCO 20 1 ER MCO 20 1 ER BCO 20 1 ER BCO 20 2

Opt 14272 905 −7233 −9682

KernLin 1 14263.1 905 −7261.8 −9682
KernLin 2 14272 905 −7233 −9682
2-Opt 100 13786.8 905 −7238.4 −9685.9
2-Opt 1000 13742.9 905 −7238.6 −9686.4
3-Opt 100 13801.4 905 −7233 −9685.7
3-Opt 500 13813.2 905 −7233 −9684.8
3-Opt 1000 13819.1 905 −7233 −9685.2

ER CFO 23 1 ER CFO 23 2 LD CFO 23 1 ER CFO 23 3

Opt −18453 −3432 50973 −8966

KernLin 1 −18978.5 −3794.5 50973 −9549.1
KernLin 2 −18453 −3432 50973 −8966
2-Opt 100 −18749.8 −3729.1 50973 −8966
2-Opt 1000 −18749.5 −3736.8 50973 −8966
3-Opt 100 −18735.8 3473.3 50973 −8966
3-Opt 500 −18737.4 −3455.5 50973 −8966
3-Opt 1000 −18733.1 −3480.6 50973 −8966

Table D.8: Average values of 500 runs of the improvement heuristics with Becker
100 as start heuristic for instances with 20 and 23 nodes
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LD MCO 23 1 ER MCO 23 1 ER BCO 23 1 LD BCO 23 1

Opt 95317 −6701 −11241 131109

KernLin 1 95228 −6870.2 −11669.7 129805

KernLin 2 95317 −6701 −11241 131109

2-Opt 100 94910.8 −6701 −11241 128250

2-Opt 1000 94907.6 −6701 −11241 128457

3-Opt 100 95300.8 −6701 −11241 131047

3-Opt 500 95308.5 −6701 −11241 131028

3-Opt 1000 95285.5 −6701 −11241 131044

LB CFO 26 1 LD CFO 26 1 LB CFO 26 2 LB CFO 26 3

Opt 24774 43677 8358 5078

KernLin 1 23856.5 43221.6 7599.1 4709.4

KernLin 2 24774 43677 8358 5078

2-Opt 100 24774 42750.8 7976.3 4801.7

2-Opt 1000 24774 42789.5 7989.7 4785.9

3-Opt 100 24774 43648.4 8302 4870.4

3-Opt 500 24774 43651.4 8312 4870.7

3-Opt 1000 24774 43656.1 8310.3 4878.6

LB MCO 26 1 ER MCO 26 1 ER BCO 26 1 ER BCO 26 2

Opt 1826 −7639 −5600 −221

KernLin 1 1126.1 −8416.8 −7572.8 - −1085.3
KernLin 2 1826 −7639 −5600 −225.2
2-Opt 100 1238 −8336.5 −5709.8 −339.2
2-Opt 1000 1289.7 −8337 −5791.4 −326.2
3-Opt 100 1768 −8351.4 −5602.3 −291.6
3-Opt 500 1767 −8344.1 −5600 −297.2
3-Opt 1000 1768.6 −8359 −5600 −289.5

Table D.9: Average values of 500 runs of the improvement heuristics with Becker
100 as start heuristic for instances with 23 and 26 nodes
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LD CFO 20 1 ER CFO 20 1 LB MCO 20 1 ER CFO 23 2

Opt 66995 −7417 14272 −3432

KernLin 1 66995 −7417 14233.5 −3449.7
KernLin 2 66995 −7417 14272 −3432
2-Opt 100 66995 −7417 14248.3 −3435.3
2-Opt 1000 66995 −7417 14233.5 −3432
3-Opt 100 66995 −7417 14272 −3432
3-Opt 500 66995 −7417 14272 −3432
3-Opt 1000 66995 −7417 14272 −3432

LB CFO 26 1 LB CFO 26 2 LB CFO 26 3

Opt 24774 8358 5078

KernLin 1 24774 8318.8 5077.7

KernLin 2 24774 8358 5078

2-Opt 100 24774 8291.1 5076.2

2-Opt 1000 24774 8269.9 5076.3

3-Opt 100 24774 8358 5076.3

3-Opt 500 24774 8358 5076.6

3-Opt 1000 24774 8358 5076.2

LB MCO 26 1 ER MCO 26 1

Opt 1826 −7639

KernLin 1 1810 −7945.9
KernLin 2 1826 −7729.7
2-Opt 100 1823.6 −7747.4
2-Opt 1000 1817.4 −7747.0
3-Opt 100 1826 −7741.3
3-Opt 500 1826 −7735.36
3-Opt 1000 1826 −7741.25

Table D.10: Average values of 500 runs of the improvement heuristics with best-
insertion 100 as start heuristic (We left out instances where already the average
value of the best-insertion heuristic is equal the optimal solution)
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ER CFO 15 1 LB CFO 15 1 LD CFO 15 1 LD CFO 15 2

Opt −6435 9478 107620 71699

KernLin 1 −16342 7069 100258 39003

KernLin 2 −16342 9478 101910 71699

2-Opt 100 −16230 5891 99749 39003

2-Opt 1000 −16230 5891 99749 39003

3-Opt 100 −16230 5891 100840 50999

3-Opt 500 −16230 5891 100840 50999

3-Opt 1000 −16230 5891 100840 50999

ER MCO 15 1 ER MCO 15 2 LB MCO 15 1 LD MCO 15 1

Opt −2236 −5738 3798 16930

KernLin 1 −5938 −13890 −12286 4821

KernLin 2 −5655 −15378 3798 15583

2-Opt 100 −5938 −18189 −11035 −4522
2-Opt 1000 −5938 −18189 −11035 −4522
3-Opt 100 −5891 −18189 −11035 −3919
3-Opt 500 −5891 −18189 −11035 −3919
3-Opt 1000 −5891 −18189 −11035 −3919

LD BCO 15 1 ER BCO 15 1 LB BCO 15 1

Opt 447756 −4986 4206

KernLin 1 304661 −6462 2461

KernLin 2 444637 −4986 2461

2-Opt 100 183418 −7743 −3272
2-Opt 1000 183418 −7743 −3272
3-Opt 100 183529 −7743 −3272
3-Opt 500 183529 −7743 −3272
3-Opt 1000 183529 −7743 −3272

Table D.11: Average values of 500 runs of the improvement heuristics with nearest-
neighbor as start heuristic for instances with 15 nodes
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LB CFO 20 1 LB CFO 20 2 LD CFO 20 1 ER CFO 20 1

Opt 16439 9494 66995 −7417

KernLin 1 5452 −4039 53922 −12681
KernLin 2 12411 −2509 66995 −11695
2-Opt 100 2604 −5461 53779 −9516
2-Opt 1000 2604 −5461 53779 −9516
3-Opt 100 6922 −2865 53779 −9516
3-Opt 500 6922 −2865 53779 −9516
3-Opt 1000 6922 −2865 53779 −9516

LB MCO 20 1 ER MCO 20 1 ER BCO 20 1 ER BCO 20 2

Opt 14272 905 −7233 −9682

KernLin 1 3824 −6405 −13342 −31259
KernLin 2 10643 −6405 −11043 −16600
2-Opt 100 3824 −9299 −19738 −17944
2-Opt 1000 3824 −9299 −15057 −17944
3-Opt 100 3824 −9299 −15057 −17944
3-Opt 500 3824 −9299 −15057 −17944
3-Opt 1000 3824 −9299 −15057 −17944

ER CFO 23 1 ER CFO 23 2 LD CFO 23 1 ER CFO 23 3

Opt −18453 −3432 50973 −8966

KernLin 1 −31431 −19311 27938 −22371
KernLin 2 −21957 −9031 35165 −19186
2-Opt 100 −28689 −16013 40567 −22958
2-Opt 1000 −28689 −16013 40567 −22958
3-Opt 100 −27106 −7842 39666 −18957
3-Opt 500 −27106 −7842 39666 −18957
3-Opt 1000 −27106 −7842 39666 −18957

Table D.12: Average values of 500 runs of the improvement heuristics with nearest-
neighbor as start heuristic for instances with 20 and 23 nodes
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LD MCO 23 1 ER MCO 23 1 ER BCO 23 1 LD BCO 23 1

Opt 95317 −6701 −11241 131109

KernLin 1 58389 −16390 −27325 87234

KernLin 2 85150 −10586 −11241 122086

2-Opt 100 28222 −15234 −23376 42461

2-Opt 1000 28222 −15234 −23376 42461

3-Opt 100 32866 −14639 −22176 42978

3-Opt 500 32866 −14639 −22176 42978

3-Opt 1000 32866 −14639 −22176 42978

LB CFO 26 1 LD CFO 26 1 LB CFO 26 2 LB CFO 26 3

Opt 24774 43677 8358 5078

KernLin 1 2594 24540 −9457 −6415
KernLin 2 24455 41815 59 −683
2-Opt 100 4973 25695 −7342 −5711
2-Opt 1000 4973 25695 −7342 −5711
3-Opt 100 11549 31616 2128 718

3-Opt 500 11549 31616 2128 718

3-Opt 1000 11549 31616 2128 718

LB MCO 26 1 ER MCO 26 1 ER BCO 26 1 ER BCO 26 2

Opt 1826 −7639 −5600 −221

KernLin 1 −5739 −12456 −23235 −8355
KernLin 2 −3673 −12456 −14090 −3888
2-Opt 100 −3946 −12456 −17695 −9200
2-Opt 1000 −3946 −12456 −17695 −9200
3-Opt 100 −3946 −12456 −22390 −8901
3-Opt 500 −3946 −12456 −22390 −8901
3-Opt 1000 −3946 −12456 −22390 −8901

Table D.13: Average values of 500 runs of the improvement heuristics with nearest-
neighbor as start heuristic for instances with 23 and 26 nodes
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Name Opt. Becker 100 +Kl 2 BestIns 100 +KL 2

ER CFO 30 1 −7300 −7300 −7300
ER CFO 30 2 −11803 −11901.4 −11803
LB CFO 30 1 23715 23715 23715

LB CFO 30 2 4312 4312 4312

LB MCO 30 1 695 695 695

ER MCO 30 1 −4532 −4532 −4532
ER MCO 30 2 −2314 −2321.5 −2327.1
ER MCO 30 3 −8787 −8800.9 −8787
ER MCO 30 4 −4024 −4024 −4024
LD MCO 30 1 246422 246422 246422

LB BCO 30 1 2402 2399.3 2402

ER CFO 35 1 −3198 −3198 −3235.0
LB CFO 35 1 985 985 985

LB CFO 35 2 1932 1920.3 1932

LD CFO 35 1 163453 163453 163453

LB MCO 35 1 16527 16527 16526.8

ER MCO 35 1 −8356 −8607.2 −8356.1
LB MCO 35 2 11561 11558 115610

LB BCO 35 1 4213 4062.62 42130

ER BCO 35 1 −16328 −16568.7 −16329
ER BCO 35 2 −6224 −6288.1 −6224

ER CFO 40 1 −3000 −3000 −3000
ER CFO 40 2 −19420 −19442.7 −19455.8
ER CFO 40 3 −10693 −11171.7 −10809.2
ER CFO 40 4 −14908 . . . 10662 −14954.5 −14908.3
ER CFO 40 5 −11827 −12676.9 −11827.5
LB CFO 40 1 21829 21816.3 21803.1

LD MCO 40 1 743577 743577 743577

ER MCO 40 1 −17246 −18146.1 −17246

Table D.14: Average values of 500 runs of the Kernighan-Lin 2 heuristic with best-
insertion 100 and Becker 100 as start heuristic for the instances with 30, 35 and
40 nodes
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Name Opt. Becker 100 +Kl 2 BestIns 100 +KL 2

LD CFO 45 1 60925 60191.4 60925

LB CFO 45 1 19877 . . . 22929 19826.8 19877

LB CFO 45 2 1082 . . . 3071 92 1082

LD CFO 45 2 133647. . . 136410 133320 133507

LB MCO 45 1 23301 . . . 24430 22987.4 23270.6

LB MCO 45 2 8728 8084.3 8728

LB MCO 45 3 35339 35287.6 35335.9

LD BCO 45 1 1070779 1070670 1070779

LB BCO 45 1 3381 2756.8 3381

ER BCO 45 1 −9418 −9500.7 −9418

LB CFO 50 1 19559 . . . 23220 17657.4 19415.4

LB CFO 50 2 34783 . . . 38036 34779.9 34780.3

ER CFO 50 1 −1276 . . .−457 −2517.3 −1284.1

Table D.15: Average values of 500 runs of the Kernighan-Lin-2 heuristic with best-
insertion 100 and Becker 100 as start heuristics for the instances with 45 and 50
nodes



Appendix E

Results of the Branch-and-Bound
Approach

In the following tables we state the results of the hybrid dynamic programming/
branch-and-bound algorithm. Here BBS X means that the branch-and-bound
starts at partial paths where X − 1 targets have been visited already.

Name BBS 1 BBS 2 BBS 3 BBS 4 BBS 5 BBS 6 BBS 7

ER CFO 15 1 0.500 0.358 0.476 0.448 0.413 0.544 0.817

LB CFO 15 1 0.276 0.279 0.296 0.312 0.354 0.501 0.783

LD CFO 15 1 0.228 0.226 0.181 0.238 0.242 0.456 0.755

LD CFO 15 2 0.185 0.178 0.173 0.200 0.260 0.429 0.743

ER MCO 15 1 0.069 0.064 0.065 0.102 0.159 0.354 0.704

ER MCO 15 2 0.302 0.245 0.263 0.292 0.300 0.471 0.789

LB MCO 15 1 0.135 0.180 0.185 0.177 0.209 0.395 0.715

LD MCO 15 1 1.367 1.343 1.286 1.372 1.280 1.166 1.208

LD BCO 15 1 0.030 0.028 0.032 0.056 0.137 0.341 0.696

ER BCO 15 1 0.211 0.047 0.036 0.064 0.172 0.360 0.704

LB BCO 15 1 0.412 0.412 0.395 0.465 0.481 0.610 0.871

Table E.1: Computation times (in seconds) of the hybrid DP/branch-and-bound
algorithm for the instances with 15 nodes
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LB CFO 20 1 LB CFO 20 2 LD CFO 20 1 ER CFO 20 1

BBS 1 00:02:25 00:00:02 00:00:33 00:00:33

BBS 2 00:02:04 00:00:02 00:00:23 00:00:33

BBS 3 00:02:15 00:00:01 00:00:19 00:00:34

BBS 4 00:02:02 00:00:03 00:00:19 00:00:33

BBS 5 00:02:07 00:00:02 00:00:18 00:00:31

BBS 6 00:01:40 00:00:05 00:00:19 00:00:30

BBS 7 00:01:22 00:00:10 00:00:21 00:00:30

BBS 8 00:01:11 00:00:22 00:00:30 00:00:37

BBS 9 00:01:11 00:00:40 00:00:47 00:00:51

BBS 10 00:01:22 00:01:06 00:01:09 00:01:11

BBS 11 00:01:37 00:01:30 00:01:31 00:01:32

BBS 12 00:01:51 00:01:49 00:01:48 00:01:50

LB MCO 20 1 ER MCO 20 1 ER BCO 20 1 ER BCO 20 2

BBS 1 00:00:07 00:00:51 00:03:07 00:00:04

BBS 2 00:00:07 00:00:43 00:02:27 00:00:04

BBS 3 00:00:07 00:00:28 00:03:17 00:00:04

BBS 4 00:00:08 00:00:43 00:01:59 00:00:03

BBS 5 00:00:09 00:00:06 00:01:37 00:00:04

BBS 6 00:00:09 00:00:08 00:01:17 00:00:05

BBS 7 00:00:14 00:00:12 00:01:04 00:00:11

BBS 8 00:00:24 00:00:23 00:00:59 00:00:22

BBS 9 00:00:42 00:00:41 00:01:03 00:00:41

BBS 10 00:01:06 00:01:06 00:01:18 00:01:05

BBS 11 00:01:29 00:01:29 00:01:35 00:01:29

BBS 12 00:01:48 00:01:47 00:01:51 00:01:47

Table E.2: Computation times of the hybrid DP/branch-and-bound algorithm for
the instances with 20 nodes
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ER CFO 23 1 ER CFO 23 2 LD CFO 23 1 ER CFO 23 3

BBS 1 00:05:05 00:01:30 00:01:41 00:05:46

BBS 2 00:04:31 00:01:36 00:00:52 00:05:52

BBS 3 00:04:03 00:01:38 00:00:13 00:06:04

BBS 4 00:04:40 00:01.41 00:00:11 00:08:30

BBS 5 00:03:59 00:01:30 00:00:46 00:06:13

BBS 6 00:03:18 00:01:25 00:00:28 00:06:28

BBS 7 00:03:19 00:01:34 00:00:39 00:05:21

BBS 8 00:03:51 00:02:17 00:01:30 00:05:24

BBS 9 00:05:20 00:03:56 00:03:17 00:06:10

BBS 10 00:07:53 00:06:49 00:06:25 00:08:33

BBS 11 00:13:16 00:11:26 00:10:37 00:11:58

BBS 12 00:17:09 00:15:33 00:15:31 00:16:08

LD MCO 23 1 ER MCO 23 1 ER BCO 23 1 LD BCO 23 1

BBS 1 00:06:23 00:13:57 00:01:54 00:35:35

BBS 2 00:07:44 00:14:55 00:01:56 00:30:54

BBS 3 00:06:28 00:11:41 00:02:00 00:34:25

BBS 4 00:06:40 00:10:34 00:02:28 00:37:10

BBS 5 00:05:56 00:09:40 00:02:16 00:29:19

BBS 6 00:04:41 00:08:23 00:02:03 00:21:21

BBS 7 00:03:45 00:07:38 00:02:22 00:15:50

BBS 8 00:03:37 00:06:53 00:02:57 00:12:33

BBS 9 00:04:37 00:07:32 00:04:30 00:10:48

BBS 10 00:07:06 00:09:18 00:07:19 00:10:30

BBS 11 00:10:50 00:12:32 00:11:13 00:12:38

BBS 12 00:15:09 00:16:22 00:15:43 00:16:18

Table E.3: Computation times of the hybrid DP/branch-and-bound algorithm for
the instances with 23 nodes
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LB CFO 26 1 LD CFO 26 1 LB CFO 26 2 LB CFO 26 3

BBS 1 00:16:13 08:49:11 05:20:11 00:32:39

BBS 2 00:21:22 07:38:28 04:21:25 00:34:11

BBS 3 00:10:20 07:02:02 04:21:39 00:31:55

BBS 4 00:11:19 07:02:27 04:29:26 00:36:02

BBS 5 00:11:04 06:24:51 04:12:27 00:32:00

BBS 6 00:13:07 05:37:12 03:37:34 00:27:35

BBS 7 00:10:49 04:47:50 03:09:25 00:24:11

BBS 8 00:12:57 03:53:56 02:45:38 00:25:14

BBS 9 00:19:47 03:09:50 02:24:41 00:34:17

BBS 10 00:36:46 02:40:29 02:19:49 01:00:41

LB MCO 26 1 ER MCO 26 1 ER BCO 26 1 ER BCO 26 2

BBS 1 02:46:00 01:50:07 00:51:30 03:32:29

BBS 2 02:20:26 01:46:54 00:43:13 03:39:11

BBS 3 01:55:44 01:49:21 00:37:06 03:04:47

BBS 4 01:27:09 00:40:55 00:43:23 03:22:06

BBS 5 01:56:00 00:39:15 00:42:02 02:52:25

BBS 6 01:26:39 00:41:58 00:34:43 02:36:24

BBS 7 01:06:33 00:32:24 00:31:41 01:48:07

BBS 8 00:55:15 00:29:48 00:30:19 01:24:35

BBS 9 00:50:16 00:35:42 00:36:00 01:20:07

BBS 10 01:11:20 00:50:08 00:52:33 01:22:38

Table E.4: Computation times of the hybrid DP/branch-and-bound algorithm for
the instances with 26 nodes
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Results of the Branch-and-Cut
Approach

F.1 Test of different cutting planes

In the following tables we state the results of the tests for using different facet
classes as cutting planes. Here w.c. means TVPHP model without cuts, TX =
TVPHP model with facet class X as cutting plane. In bold we mark the three
fastest times. Note that in case of class 29 the facet replace the normal three
cycles.

ER CFO 15 1 LB CFO 15 1 LD CFO 15 1 LD CFO 15 2

w.c. 00.00.03 00:04:53 00:00:08 00:00:10
T2 00:00:03 00:00:09 00:00:04 00:00:06
T7 00:00:03 00:01:16 00:00:03 00:00:20
T13 00:00:02 00:00:27 00:00:07 00:00:04
T14 00:00:03 00:01:18 00:00:04 00:00:16
T20 00:00:10 00:01:31 00:00:11 00:00:11
T25 < 1 00:00:15 00:00:01 00:00:03
T29 00:00:01 00:00:19 00:00:01 00:00:05
T30 < 1 00:00:37 00:00:02 00:00:05
T39 00:00:01 00:00:17 00:00:02 00:00:03
T41 < 1 00:00:08 00:00:01 00:00:03

Table F.1: Computation times with different cutting planes for the instances with
15 nodes
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LB CFO 20 1 LB CFO 20 2 LD CFO 20 1 ER CFO 20 1

w.c. Mem. 00:00:07 Mem. Mem.
T2 00:16:06 00:00:02 00:05:18 Mem.
T7 00:34:42 00:00:03 00:05:36 Mem.
T13 00:35:36 00:00:04 00:09:25 Mem.
T14 00:05:18 00:00:05 00:06:17 Mem.
T20 00:40:32 00:00:19 00:16:27 Mem.
T25 00:01:30 < 1 00:00:38 05:12:14
T29 00:02:40 00:00:01 00:00:36 Mem.
T30 01:16:03 00:00:01 00:12:20 Mem.
T39 00:06:35 00:00:02 00:02:07 06:18:59
T41 00:11:34 00:00:01 00:03:35 Mem.

LB MCO 20 1 ER MCO 20 1 ER BCO 20 1 ER BCO 20 2

w.c. 00:06:45 00:02:10 Mem. 00:21:01
T2 00:01:05 00:00:10 00:16:00 00:02:17.
T7 00:00:55 00:00:33 00:47:49 00:01:40
T13 00:01:20 00:00:30 00:45:13 00:01:40
T14 00:00:39 00:00:26 00:23:54 00:01:33
T20 00:04:57 00:00:46 01:03:03 00:05:29.
T25 00:00:12 < 1 00:00:56 00:00:32
T29 00:00:05 00:00:02 00:03:36 00:00:19
T30 00:01:16 00:00:05 00:06:07 00:02:58
T39 00:00:54 00:00:17 00:10:07 00:00:49
T41 00:00:51 00:00:06 00:02:51 00:00:37

Table F.2: Computation times with different cutting planes for the instances with
20 nodes
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ER CFO 23 1 ER CFO 23 2 LD CFO 23 1 ER CFO 23 3

w.c. Mem. 00:05:50 00:00:16 Mem.
T2 Mem. 00:02:10 00:00:22 00:22:51
T7 Mem. 00:02:28 00:00:15 00:29:15
T13 Mem. 00:03:31 00:00:14 00:10:47
T14 Mem. 00:02:05 00:00:15 00:08:38
T20 Mem. 00:09:34 00:00:02 00:43:01
T25 00:01:33 00:01:02 00:00:03 00:01:01
T29 Mem. 00:00:17 00:00:02 00:01:27
T30 Mem. 00:01:15 00:00:03 00:06:00
T39 07:16:32 00:01:45 00:00:05 00:04:50
T41 00:01:51 00:01:11 00:00:01 00:01:11

LD MCO 23 1 ER MCO 23 1 ER BCO 23 1 LD BCO 23 1

w.c. Mem. Mem. 01:10:42 Mem.
T2 Mem. Mem. 00:06:37 Mem.
T7 00:44:13 17:11:59 00:09:13 Mem.
T13 Mem. Mem. 00:07:58 Mem.
T14 00:18:36 09:53:52 00:07:36 Mem.
T20 08:12:15 41:30:00 00:20:30 Mem.
T25 00:03:49 00:02:35 00:02:12 00:03:07
T29 00:02:04 00:39:10 00:00:44 Mem.
T30 03:10:49 00:04:13 00:06:34 Mem.
T39 05:40:54 02:10:25 00:07:17 Mem.
T41 Mem. 00:48:11 00:02:46 Mem.

Table F.3: Computation times with different cutting planes for the instances with
23 nodes
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F.2 Test of combinations of different cutting

planes

In the following tables we state the results of the test for using different combina-
tions of facet classes as cutting planes. Hereby means:

• TA = TVPHP model + facet classes 25 and 29

• TB = TVPHP model + facet classes 25 and 41

• TC = TVPHP model + facet classes 29 and 41

• TD = TVPHP model + facet classes 25, 29 and 41

• TX = TVPHP model with facet class X.

In bold we mark the three fastest times.

LB CFO 20 1 LD CFO 20 1 ER CFO 20 1 ER BCO 20 1

T25 00:01:30 00:00:38 05:12:14 00:00:56

T29 00:02:40 00:00:36 Mem. 00:03:36

T41 00:11:34 00:03:35 Mem. 00:02:51

TA 00:00:31 00:00:18 02:11:42 00:00:30

TB 00:01:13 00:00:15 01:53:55 00:00:25

TC 00:00:23 00:00:16 01:18:58 00:00:23

TC/T30 00:00:23 00:00:16 01:12:44 < 1

TC/T39 00:00:35 00:00:09 00:44:10 < 1

TC/T30/T39 00:00:37 00:00:09 00:44:34 < 1

TD 00:00:26 00:00:12 00:58:30 00:00:12

TD/T30 00:00:24 00:00:13 01:00:00 < 1

TD/T39 00:00:53 00:00:07 00:51:07 < 1

TD/T30/T39 00:00:54 00:00:07 00:53:44 < 1

Table F.4: Test of the combinations of facet classes 25, 29, 30, 39 and 41 as cutting
planes for instances with 20 nodes
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ER CFO 23 1 ER CFO 23 2 LD CFO 23 1 ER CFO 23 3

T25 00:01:33 00:01:02 00:00:03 00:01:01

T29 Mem. 00:00:17 00:00:02 00:01:27

T41 00:01:51 00:01:11 00:00:01 00:01:11

TA 00:00:26 00:00:16 00:00:01 00:00:23

TB 00:00:46 00:00:31 00:00:01 00:00:20

TC 00:00:20 00:00:15 < 1 00:00:11

TC/T30 00:00:19 00:00:12 < 1 00:00:11

TC/T39 00:00:12 00:00:17 < 1 00:00:07

TC/T30/T39 00:00:12 00:00:17 < 1 00:00:07

TD 00:00:15 00:00:13 < 1 00:00:10

TD/T30 00:00:15 00:00:13 < 1 00:00:09.

TD/T39 00:00:13 00:00:22 < 1 00:00:08

TD/T30/T39 00:00:13 00:00:21 < 1 00:00:09

LD MCO 23 1 ER MCO 23 1 ER BCO 23 1 LD BCO 23 1

T25 00:03:49 00:02:35 00:02:12 00:03:07

T29 00:02:04 00:39:10 00:00:44 Mem.

T41 Mem. 00:48:11 00:02:46 Mem.

TA 00:01:06 00:00:55 00:00:29 00:01:15

TB 00:01:08 00:01:37 00:00:59 00:01:51

TC 00:00:34 00:00:59 00:00:25 00:00:53

TC/T30 00:00:49 00:01:02 00:00:28 00:00:54

TC/T39 00:00:19 00:00:18 00:00:26 00:00:39

TC/T30T39 00:00:19 00:00:19 00:00:29 00:00:40

TD 00:00:34 00:00:45 00:00:21 00:00:39

TD/T30 00:00:34 00:00:40 00:00:27 00:00:41

TD/T39 00:00:21 00:00:07 00:00:21 00:00:40

TD/T30T39 00:00:21 00:00:07 00:00:21 00:00:39

Table F.5: Test of the combinations of facet classes 25, 29, 30, 39 and 41 as cutting
planes for instances with 23 nodes
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Name TC TC/T39 TD TD/T30 TD/T30/T39

LB CFO 26 1 00:00:19 00:00:07 00:00:24 00:00:25 00:00:06

LD CFO 26 1 00:13:55 00:03:52 00:04:27 00:04:33 00:03:13

LB CFO 26 2 00:13:45 00:12:45 00:07:10 00:07:01 00:08:28

LB CFO 26 3 00:04:11 00:03:50 00:02:54 00:02:55 00:02:00

LB MCO 26 1 00:02:40 00:01:15 00:02:16 00:02:16 00:01:18

ER MCO 26 1 00:03:21 00:03:14 00:03:54 00:03:55 00:04:39

ER BCO 26 1 00:00:09 00:00:10 00:00:08 00:00:07 00:00:07

ER BCO 26 2 00:00:24 00:00:14 00:00:19 00:00:21 00:00:14

ER CFO 30 1 00:00:55 00:01:08 00:01:25 00:01:25 00:01:22

ER CFO 30 2 00:32:34 00:28:59 00:46:26 00:52:48 00:23:49

LB CFO 30 1 00:04:53 00:01:26 00:00:56 00:00:55 00:00:46

LB CFO 30 2 00:05:41 00:07:57 00:04:05 00:04:16 00:05:42

LB MCO 30 1 00:05:27 00:05:43 00:01:35 00:01:18 00:03:08

ER MCO 30 1 00:32:59 00:24:08 00:16:47 00:18:07 00:16:00

ER MCO 30 2 01:00:08 00:34:11 00:27:45 00:28:24 00:26:08

ER MCO 30 3 00:00:36 00:00:28 00:00:38 00:00:35 00:00:33

ER MCO 30 4 00:24:18 00:21:23 00:08:23 00:08:25 00:07:20

LD MCO 30 1 00:00:11 00:00:11 00:00:15 00:00:14 00:00:19

LB BCO 30 1 00:03:42 00:02:00 00:02:15 00:02:50 00:01:13

ER CFO 35 1 01:28:56 00:24:45 00:36:06 00:36:35 00:11:53

LB CFO 35 1 00:43:21 00:30:57 00:28:21 00:30:23 00:17:37

LB CFO 35 2 00:03:32 00:02:34 00:02:26 00:02:31 00:01:37

LD CFO 35 1 04:09:06 01:37:44 01:21:46 01:30:40 00:24:19

LB MCO 35 1 01:44:57 01:51:06 01:18:52 01:31:37 01:39:43

ER MCO 35 1 00:55:58 00:31:08 00:22:39 00:25:44 00:25:51

LB MCO 35 2 00:03:53 00:04:02 00:01:30 00:01:39 00:01:26

LB BCO 35 1 00:49:07 00:39:45 00:33:34 00:30:36 00:42:08

ER BCO 35 1 00:16:46 00:14:32 00:12:45 00:12:34 00:15:20

ER BCO 35 2 00:17:50 00:10:49 00:18:48 00:19:06 00:14:10

Table F.6: Results of the combinations of facet classes 25, 29, 30, 39 and 41 as
cutting planes for instances with 26–35 nodes
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Name TC TC/T39 TD TD/T30 TD/T30/T39

ER CFO 40 1 00:05:20 00:06:00 00:06:32 00:06:00 00:06:21

ER CFO 40 2 Mem. Mem. 03:48:17 03:44:44 04:48:41

ER CFO 40 3 00:17:59 00:11:54 00:09:42 00:10:08 00:10:09

ER CFO 40 4 Mem. Mem. Mem. Mem. Mem.

ER CFO 40 5 00:06:20 00:03:28 00:03:16. 00:03:10 00:02:13

LB CFO 40 1 01:05:43 00:56:39 00:53:27 00:53:03 00:55:46

LD MCO 40 1 Mem. 04:42:02 03:31:26 04:02:05 03:24:02

ER MCO 40 1 00:02:03 00:01:12 00:02:16 00:02:29 00:01:39

LD CFO 45 1 Mem. Mem. Mem. Mem. 06:59:24

LB CFO 45 1 Mem. Mem. Mem. Mem. Mem.

LB CFO 45 2 Mem. Mem. Mem. Mem. Mem.

LD CFO 45 2 Mem. Mem. Mem. Mem. Mem.

LB MCO 45 1 Mem. Mem. Mem. Mem. Mem.

LB MCO 45 2 Mem. Mem. Mem. Mem. 123:28:09

LB MCO 45 3 Mem. Mem. Mem. Mem. 30:56:43

LD BCO 45 1 Mem. Mem. Mem. Mem. 06:48:56

LB BCO 45 1 Mem. 23:11:35 08:42:35 09:46:53 02:39:49

ER BCO 45 1 Mem. Mem. Mem. Mem. 60:01:40

LB CFO 50 1 Mem. Mem. Mem. Mem. Mem.

LB CFO 50 2 Mem. Mem. Mem. Mem. Mem.

ER CFO 50 1 Mem. Mem. Mem. Mem. Mem.

Table F.7: Results of the combinations of facet classes 25, 29, 30, 39 and 41 as
cutting planes for instances with 40 or more nodes
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F.3 Detailed Information for the Runs with dif-

ferent facet combinations

Name Root-B. # sub # LPs Level

LB CFO 26 1 27488.7 245 4694 14

LD CFO 26 1 51832.3 6733 147068 28

LB CFO 26 2 12758.9 6301 162813 30

LB CFO 26 3 9319.1 2803 49582 23

LB MCO 26 1 9157.0 1379 33558 24

ER MCO 26 1 −3320.2 1409 40809 29

ER BCO 26 1 −4186.7 49 2041 9

ER BCO 26 2 1855.9 205 5367 13

ER CFO 30 1 −4686.7 337 14231 15

ER CFO 30 2 −4678.2 7335 283966 32

LB CFO 30 1 28518.9 2209 49569 23

LB CFO 30 2 8654.1 1619 51669 21

LB MCO 30 1 4468.2 653 50729 17

ER MCO 30 1 −749.2 6861 285838 27

ER MCO 30 2 3656.8 13325 443931 27

ER MCO 30 3 −6639.0 151 6039 13

ER MCO 30 4 1185.7 4193 204334 25

LD MCO 30 1 248297.2 37 1838 7

LB BCO 30 1 5460.0 719 34341 17

ER CFO 35 1 3422.0 7535 453056 30

LB CFO 35 1 4811.0 4607 253980 26

LB CFO 35 2 4592.8 469 30823 15

LD CFO 35 1 169349.0 12313 1185571 32

LB MCO 35 1 21618.3 10897 595203 31

ER MCO 35 1 −4616.9 4601 388274 23

LB MCO 35 2 14749.5 367 27052 17

LB BCO 35 1 9463.8 4961 296800 24

ER BCO 35 1 −12726.5 1213 117225 20

ER BCO 35 2 −1279.1 1751 116587 23

Table F.8: Detailed information for the runs with facet classes 29 and 41 as cutting
planes for instances with 26, 30 and 35 nodes
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Name Root-B. # sub # LPs Level

ER CFO 40 1 −373.7 509 32852 18

ER CFO 40 3 −8059.9 1935 89192 20

ER CFO 40 5 −8842.0 767 38973 19

LB CFO 40 1 25560.5 7091 314076 26

ER MCO 40 1 −15583.1 129 12311 9

Table F.9: Detailed information for the runs with facet classes 29 and 41 as cutting
planes for instances with 40 nodes

Name Root-B. # sub # LPs Level

LB CFO 26 1 26823.8 45 1578 10

LD CFO 26 1 49805.6 1337 41416 21

LB CFO 26 2 12712.8 3687 143359 26

LB CFO 26 3 9046.7 1737 43418 18

LB MCO 26 1 5544.9 361 14377 13

ER MCO 26 1 −3352.2 765 37277 20

ER BCO 26 1 −4282.8 31 2018 6

ER BCO 26 2 1241.8 69 2905 9

ER CFO 30 1 −5099.1 211 10847 12

ER CFO 30 2 −6173.8 4099 237201 25

LB CFO 30 1 26552.4 351 13361 15

LB CFO 30 2 8368.1 1107 69037 18

LB MCO 30 1 4360.0 363 49408 16

ER MCO 30 1 −855.7 2931 205345 20

ER MCO 30 2 2481.9 5433 269346 22

ER MCO 30 3 −6848.2 81 4127 10

ER MCO 30 4 549.6 2223 177710 21

LD MCO 30 1 247996.5 21 1511 6

LB BCO 30 1 4979.5 269 17300 13

Table F.10: Detailed information for the runs with facet classes 29, 39 and 41 as
cutting planes for instances with 26 and 30 nodes
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Name Root-B. # sub # LPs Level

ER CFO 35 1 1254.2 1597 114996 20

LB CFO 35 1 4430.8 1897 158162 18

LB CFO 35 2 4374.3 205 18307 12

LD CFO 35 1 168334.7 4381 463448 29

LB MCO 35 1 21276.8 6563 641487 30

ER MCO 35 1 −5115.8 2329 189164 19

LB MCO 35 2 14412.6 205 26810 15

LB BCO 35 1 8598.9 2885 230791 21

ER BCO 35 1 −13490.6 779 96040 22

ER BCO 35 2 −2236.7 575 68366 19

ER CFO 40 1 −811.9 231 32637 11

ER CFO 40 3 −8406.1 869 60210 16

ER CFO 40 5 −9680.0 161 19226 13

LB CFO 40 1 25256.9 3513 255798 28

LD MCO 40 1 751596.9 13137 1051956 30

ER MCO 40 1 −16290 67 6503 8

LB BCO 45 1 7441.0 7589 3998484 24

Table F.11: Detailed information for the runs with the facets 29, 39 and 41 as
cutting planes for instances with 35, 40 and 45 nodes

Name Root-B. # sub # LPs Level

LB CFO 26 1 26831.3 197 4986 16

LD CFO 26 1 50240.8 1193 46602 24

LB CFO 26 2 11887.0 2235 80195 22

LB CFO 26 3 8353.8 1275 32938 19

LB MCO 26 1 8687.6 729 26112 24

ER MCO 26 1 −3381.2 1177 43303 27

ER BCO 26 1 −4529.6 19 1664 5

ER BCO 26 2 1546.1 137 3669 12

Table F.12: Detailed information for the runs with facet classes 25, 29 and 41 as
cutting planes for instances with 26 nodes
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Name Root-B. # sub # LPs Level

ER CFO 30 1 −4784.4 263 14260 14

ER CFO 30 2 −4902.1 6451 385644 37

LB CFO 30 1 28198 179 9398 18

LB CFO 30 2 8089.9 509 36681 18

LB MCO 30 1 3149.3 139 13832 13

ER MCO 30 1 −1296.1 2711 136548 25

ER MCO 30 2 3030.7 4873 219888 25

ER MCO 30 3 −7019.4 107 5954 10

ER MCO 30 4 128.5 999 67155 21

LD MCO 30 1 248235.9 33 2216 7

LB BCO 30 1 4533.4 331 19901 15

ER CFO 35 1 3192.9 2163 162274 25

LB CFO 35 1 4383.3 1973 136063 23

LB CFO 35 2 4389.4 275 17050 15

LD CFO 35 1 168641.4 3463 373888 26

LB MCO 35 1 20762.2 5367 443410 30

ER MCO 35 1 −5252.9 1393 141260 21

LB MCO 35 2 13514.6 59 10012 12

LB BCO 35 1 8787.5 1897 202256 22

ER BCO 35 1 −12848.7 757 82912 18

ER BCO 35 2 −1811.3 1035 115999 21

ER CFO 40 1 −703.1 381 35554 20

ER CFO 40 2 −15212.4 11719 936485 28

ER CFO 40 3 −8738.5 539 51493 15

ER CFO 40 5 −9310.4 195 17784 15

LB CFO 40 1 25358.4 3157 249978 28

LD MCO 40 1 751813.6 10599 716117 34

ER MCO 40 1 −15801.3 53 12857 12

LB BCO 45 1 6846.7 4171 1451019 24

Table F.13: Detailed information for the runs with facet classes 25, 29 and 41 as
cutting planes for instances with 30–45 nodes
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Name Root-B. # sub # LPs Level

LB CFO 26 1 26831.3 189 5105 15

LD CFO 26 1 50240.8 1201 47658 23

LB CFO 26 2 11887.0 2233 79120 22

LB CFO 26 3 8353.8 1229 33305 19

LB MCO 26 1 8687.6 737 26302 22

ER MCO 26 1 −3381.2 1159 44171 27

ER BCO 26 1 −4529.6 19 1460 5

ER BCO 26 2 1546.1 139 4230 12

ER CFO 30 1 −4784.4 265 14068 14

ER CFO 30 2 −4902.1 6469 444057 38

LB CFO 30 1 28198 175 9318 18

LB CFO 30 2 8089.9 511 38304 18

LB MCO 30 1 3149.3 139 10936 13

ER MCO 30 1 −1296.1 2811 150279 25

ER MCO 30 2 3030.6 4955 225824 25

ER MCO 30 3 −7019.4 107 5310 11

ER MCO 30 4 128.5 995 67370 21

LD MCO 30 1 248235.9 33 2129 7

LB BCO 30 1 4533.4 295 25013 15

ER CFO 35 1 3192.9 2195 166302 25

LB CFO 35 1 4383.3 2067 146406 20

LB CFO 35 2 4389.4 275 17446 15

LD CFO 35 1 168641.4 3779 409978 26

LB MCO 35 1 20762.2 2195 166302 25

ER MCO 35 1 −5252.9 1423 167865 21

LB MCO 35 2 13514.6 59 11184 12

LB BCO 35 1 8787.5 1869 184074 22

ER BCO 35 1 −12848.7 781 82151 18

ER BCO 35 2 −1811.3 1073 119233 21

Table F.14: Detailed information for the runs with facet classes 25, 29, 30 and 41
as cutting planes for instances with 26,30 and 35 nodes
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Name Root-B. # sub # LPs Level

ER CFO 40 1 −707.8 345 32442 20

ER CFO 40 2 −15212.4 11731 947315 28

ER CFO 40 3 −8738.5 575 54232 16

ER CFO 40 5 −9310.4 183 17694 15

LB CFO 40 1 25358.4 3103 250121 25

LD MCO 40 1 751813.6 12183 782004 34

ER MCO 40 1 −15801.3 63 14275 15

LB BCO 45 1 6846.7 4159 1659277 24

Table F.15: Detailed information for the runs with facet classes 25, 29, 30 and 41
as cutting planes for instances with 40 and 45 nodes

Name Root-B. # sub # LPs Level

LB CFO 26 1 26285.2 13 117 6

LD CFO 26 1 48892.7 13 1171 6

LB CFO 26 2 11853.5 1453 86405 21

LB CFO 26 3 8095.3 529 20167 16

LB MCO 26 1 4818.8 161 13255 13

ER MCO 26 1 −3406.0 751 49288 24

ER BCO 26 1 −4561.8 13 1378 4

ER BCO 26 2 1037.4 47 2640 10

ER CFO 30 1 −5136.9 163 11508 12

ER CFO 30 2 −6706.0 1469 175085 21

LB CFO 30 1 25857.0 65 6241 9

LB CFO 30 2 7846.3 439 43586 19

LB MCO 30 1 3090.7 97 24766 11

ER MCO 30 1 −1417.5 1227 123020 18

ER MCO 30 2 1873.4 2089 187553 21

ER MCO 30 3 −7209.4 61 4578 9

ER MCO 30 4 −809.3 433 53313 16

LD MCO 30 1 247943.8 11 2550 5

LB BCO 30 1 4074.2 79 9530 10

Table F.16: Detailed information for the runs with facet classes 25, 29, 30, 39 and
41 as cutting planes for instances with 26 and 30 nodes
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Name Root-B. # sub # LPs Level

ER CFO 35 1 651.6 487 47386 15

LB CFO 35 1 3982.1 709 72819 16

LB CFO 35 2 4054.1 95 9479 10

LD CFO 35 1 167350.2 893 94978 21

LB MCO 35 1 20523.8 3049 537980 29

ER MCO 35 1 −5847.8 721 144844 16

LB MCO 35 2 13091.5 35 8415 11

LB BCO 35 1 8063.4 1173 233690 21

ER BCO 35 1 −13674.3 573 90650 18

ER BCO 35 2 −2893.5 369 80107 17

ER CFO 40 1 −1233.6 129 30102 12

ER CFO 40 2 −15568.6 7309 1218332 26

ER CFO 40 3 −8985.7 317 44900 14

ER CFO 40 5 −10340.5 55 10254 12

LB CFO 40 1 25065.6 1523 215904 22

LD MCO 40 1 750172.0 6385 677171 29

ER MCO 40 1 −16590.7 17 8677 6

LD CFO 45 1 65440.9 3543 974978 23

LB MCO 45 2 12551.4 10907 12819858 28

LB MCO 45 3 41045.5 7083 5591037 23

LD BCO 45 1 1075516.8 4769 1044165 25

LB BCO 45 1 6123.1 1241 432959 18

ER BCO 45 1 −4236.9 10145 11059998 32

Table F.17: Detailed information for the runs with facet classes 25, 29, 30, 39 and
41 as cutting planes for instances with 35, 40 and 45 nodes
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Results of the Branch-and-Bound
with Active/Nonactive variables

Name Time. BaB Time BaC

ER CFO 15 1 00:00:22 < 1

LB CFO 15 1 00:00:32 00:00:01

LD CFO 15 1 00:00:29 < 1

LD CFO 15 2 00:00:36 00:00:02

ER MCO 15 1 00:00:22 < 1

ER MCO 15 2 00:00:26 < 1

LB MCO 15 1 00:00:04 < 1

LD MCO 15 1 00:01:57 00:00:29

LD BCO 15 1 00:00:01 < 1

ER BCO 15 1 00:00:18 00:00:01

LB BCO 15 1 00:00:32 00:00:01

LB CFO 20 1 00:04:01 00:00:54

LB CFO 20 2 00:00:12 < 1

LD CFO 20 1 00:05:10 00:00:07

ER CFO 20 1 00:38:51 00:53:44

LB MCO 20 1 00:01:50 00:00:01

Table G.1: Results of the branch-and-bound algorithm using active/nonactive vari-
ables compared with the best results of the branch-and-cut approach for the in-
stances with 15 and 20 nodes

135



136 APPENDIX G. RESULTS BRANCH-AND-BOUND

Name Time. BaB Time BaC

ER MCO 20 1 00:00:08 < 1

ER BCO 20 1 00:02:48 < 1

ER BCO 20 2 00:03:14 00:00:06

ER CFO 23 1 00:11:46 00:00:13

ER CFO 23 2 00:12:32 00:00:21

LD CFO 23 1 00:01:43 < 1

ER CFO 23 3 00:05:24 00:00:09

LD MCO 23 1 00:11:47 00:00:21

ER MCO 23 1 00:04:41 00:00:07

ER BCO 23 1 00:22:31 00:00:21

LD BCO 23 1 00:18:06 00:00:39

LB CFO 26 1 00:06:17 00:00:06

LD CFO 26 1 06:30:34. 00:03:13

LB CFO 26 2 08:34:56 00:08:28

LB CFO 26 3 07:12:15 00:02:00

LB MCO 26 1 02:03:11 00:01:18

ER MCO 26 1 03:36:03 00:04:39

ER BCO 26 1 01:21:02 00:00:07

ER BCO 26 2 01:30:07 00:00:14

ER CFO 30 1 16:31:06 00:01:22

ER CFO 30 2 166:57:11 00:23:49

LB CFO 30 1 00:50:30 00:00:46

LB CFO 30 2 10:10:31 00:05:42

LB MCO 30 1 02:57:30 00:03:08

ER MCO 30 1 64:28:11 00:16:00

ER MCO 30 2 11:37:49 00:26:08

ER MCO 30 3 02:01:05 00:00:33

ER MCO 30 4 12:08:42 00:07:20

LD MCO 30 1 02:03:54 00:00:19

LB BCO 30 1 01:45:55 00:01:13

Table G.2: Results of the branch-and-bound algorithm using active/nonactive vari-
ables compared with the best results of the branch-and-cut approach for the in-
stances with 20, 23, 26 and 30 nodes
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CPLEX Computation Times

In the following (*) means that CPLEX was only able to compute a value which
is about 1% close to the optimum due to numerical problems.

Name Time TVPHP Time TVPE

ER CFO 15 1 00:00:02 00:00:02

LB CFO 15 1 00:00:05 00:00:22

LD CFO 15 1 00:00:04 00:00:20

LD CFO 15 2 00:00:02 00:00:28

ER MCO 15 1 00:00:01 00:00:05

ER MCO 15 2 00:00:02 00:00:05

LB MCO 15 1 00:00:02 00:00:03

LD MCO 15 1 00:00:12 00:03:22

LD BCO 15 1 00:00:01 00:00:01

ER BCO 15 1 00:00:04 00:00:24

LB BCO 15 1 00:00:05 00:00:35

LB CFO 20 1 00:00:51 00:04:48

LB CFO 20 2 00:00:04 00:00:07

LD CFO 20 1 00:00:50 00:05:08

ER CFO 20 1 00:01:55 01:11:56

LB MCO 20 1 00:00:16 00:03:17

ER MCO 20 1 00:00:07 00:00:16

ER BCO 20 1 00:01:00 00:05:33

ER BCO 20 2 00:00:25 00:05:40

Table H.1: Computation times with CPLEX for the instances with 15 and 20 nodes
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Name Time TVPHP Time TVPE

ER CFO 23 1 00:00:43 00:13:20

ER CFO 23 2 00:00:25 00:08:49

LD CFO 23 1 00:00:07 00:00:33

ER CFO 23 3 00:00:34 00:05:59

LD MCO 23 1 00:02:35 (*) 00:07:45

ER MCO 23 1 00:02:44 00:12:09

ER BCO 23 1 00:00:51 00:13:27

LD BCO 23 1 00:04:21 (*) 00:29:13

Table H.2: Computation times with CPLEX for the instances with 23 nodes

Name Time TVPHP

LB CFO 26 1 00:01:05 (*)

LD CFO 26 1 00:26:28 (*)

LB CFO 26 2 00:07:47

LB CFO 26 3 00:09:41

LB MCO 26 1 Mem.

ER MCO 26 1 00:07:52

ER BCO 26 1 00:02:10

ER BCO 26 2 00:01:37

ER CFO 30 1 00:23:24

ER CFO 30 2 05:03:13

LB CFO 30 1 02:26:37 (*)

LB CFO 30 2 02:16:38

LB MCO 30 1 Mem.

ER MCO 30 1 Mem.

ER MCO 30 2 Mem.

ER MCO 30 3 01:31:52

ER MCO 30 4 Mem.

LD MCO 30 1 01:25:00 (*)

LB BCO 30 1 05:30:28

Name Time TVPHP

ER CFO 35 1 Mem.

LB CFO 35 1 06:43:18

LB CFO 35 2 Mem.

LD CFO 35 1 Mem.

LB MCO 35 1 Mem.

ER MCO 35 1 Mem.

LB MCO 35 2 Mem.

LB BCO 35 1 Mem.

ER BCO 35 1 11:37:10

ER BCO 35 2 08:23:39

ER CFO 40 1 Mem.

ER CFO 40 2 Mem.

ER CFO 40 3 Mem.

ER CFO 40 4 Mem.

ER CFO 40 5 05:28:17

LB CFO 40 1 Mem.

LD MCO 40 1 Mem.

ER MCO 40 1 16:02:05(*)

Table H.3: Computation times with CPLEX for the instances with 26–40 nodes
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Name Time TVPHP

LD CFO 45 1 Mem.

LB CFO 45 1 Mem.

LB CFO 45 2 Mem.

LD CFO 45 2 Mem.

LB MCO 45 1 Mem.

LB MCO 45 2 Mem.

LB MCO 45 3 Mem.

LD BCO 45 1 Mem.

LB BCO 45 1 Mem.

ER BCO 45 1 Mem.

Name Time TVPHP

LB CFO 50 1 Mem.

LB CFO 50 2 Mem.

ER CFO 50 1 Mem.

Table H.4: Computation times with CPLEX for the instances with 45 and 50 nodes
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Appendix I

Results of the Lagrangean
Decomposition

Name Opt. Sub-Gradient Time

ER CFO 15 1 -6435 −2584.34 00:00:44

LB CFO 15 1 9478 14899.37 00:01:30

LD CFO 15 1 107620 113958.56 00:05:09

LD CFO 15 2 71699 79106.11 00:10:11

ER MCO 15 1 -2236 −147.95 00:00:50

ER MCO 15 2 -5738 −3579.11 00:00:51

LB MCO 15 1 3798 9989.59 00:00:36

LD MCO 15 1 16930 28150.93 00:05:09

LD BCO 15 1 447756 470651.01 00:00:41

ER BCO 15 1 -4986 −2939.17 00:00:38

LB BCO 15 1 4206 12224.60 00:02:29

LB CFO 20 1 16439 29591.80 00:01:07

LB CFO 20 2 9494 12302.46 00:10:02

LD CFO 20 1 66995 82380.33 00:01:03

ER CFO 20 1 -7417 −1050.85 00:12:01

LB MCO 20 1 14272 21558.75 00:02:57

ER MCO 20 1 905 5835.71 00:01:05

ER BCO 20 1 -7233 −368.29 00:07:54

ER BCO 20 2 -9682 −4923.61 00:02:03

Table I.1: Results of the sub-gradient method
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Name Opt. Prox. Bundle Time

ER CFO 15 1 -6435 −3761.45 00:00:50

LB CFO 15 1 9478 13681.63 00:00:23

LD CFO 15 1 107620 109768.92 00:01:39

LD CFO 15 2 71699 77676.90 00:02:06

ER MCO 15 1 -2236 −599.81 00:00:37

ER MCO 15 2 -5738 −3939.28 00:00:43

LB MCO 15 1 -3798 8019.76 00:00:53

LD MCO 15 1 16930 25737.66 00:01:09

LD BCO 15 1 447756 456329.55 00:05:35

ER BCO 15 1 -4986 −3635.63 00:00:47

LB BCO 15 1 4206 10041.04 00:00:30

LB CFO 20 1 16439 26766.83 00:01:51

LB CFO 20 2 9494 11354.76 00:01:16

LD CFO 20 1 66995 77731.36 00:00:57

ER CFO 20 1 -7417 −1932.72 00:00:52

LB MCO 20 1 14272 19733.93 00:01:05

ER MCO 20 1 905 4796.29 00:04:31

ER BCO 20 1 -7233 −856.92 00:42:32

ER BCO 20 2 -9682 −5869.82 00:01:12

Table I.2: Results of the proximal bundle method
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Name Opt. Conic Bundle Time

ER CFO 15 1 -6435 −3761.42 00:00:17

LB CFO 15 1 9478 13662.88 00:02:43

LD CFO 15 1 107620 109769.74 00:02:21

LD CFO 15 2 71699 77677.31 00:03:57

ER MCO 15 1 -2236 −599.79 00:00:13

ER MCO 15 2 -5738 −3940.00 00:00:16

LB MCO 15 1 -3798 8019.78 00:01:40

LD MCO 15 1 16930 25737.54 00:01:32

LD BCO 15 1 447756 473013.00 00:00:01

ER BCO 15 1 -4986 −3635.60 00:00:23

LB BCO 15 1 4206 10041.06 00:00:37

LB CFO 20 1 16439 26766.82 00:02:03

LB CFO 20 2 9494 11354.82 00:02:51

LD CFO 20 1 66995 77731.73 00:02:03

ER CFO 20 1 -7417 −1932.63 00:03:28

LB MCO 20 1 14272 19733.90 00:04:49

ER MCO 20 1 905 4796.35 00:01:27

ER BCO 20 1 -7233 −856.83 00:07:26

ER BCO 20 2 -9682 −5869.69 00:03:04

Table I.3: Results of the conic bundle method
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