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Introduction

 Since the seminal paper by Sasieni  [1] , the trend test 
named after Cochran and Armitage (CA) has become a 
standard procedure for the confirmatory statistical 
analysis of genetic association studies following the 
case-control design. In the most common setting of a 
binary phenotype and a single nucleotide polymor-
phism (SNP), the trend test is a two-sample test for dif-
ferences between cases and controls with respect to the 
average number of risk alleles occurring in the genotype 
of an individual. Here, we show that this difference is 
not of primary in terest in genetic association studies. 
For more elaborate analyses involving estimation of a 
parameter of interest and subsequent computation of 
confidence limits, we argue that the difference should 
be replaced with the disease odds ratio, which can be as-
sessed under both cohort and case-control sampling. 
We will point out that the natural basis of drawing sta-
tistical inferences about this latter parameter is logistic 
regression analysis by means of likelihood-based prin-
ciples and techniques.
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 Abstract 

  Objective:  The Cochran-Armitage trend test based on the 
linear regression model has become a standard procedure 
for association testing in case-control studies. In contrast, 
the logistic regression model is generally used for estimating 
effect sizes. The aim of this paper is to propose an approach 
that allows for association testing and parameter estimation 
by means of the same statistic.  Methods/Results:  The trend 
test is recommendable as a test of no association between 
genotype and risk of disease. It is a two-sample test for dif-
ferences between cases and controls with respect to the av-
erage number of risk alleles occurring in the genotype of an 
individual. We argue that this difference is not of primary in-
terest in genetic association studies. It should be replaced 
with the disease odds ratio, which can be assessed under 
both cohort sampling and case-control sampling.  Conclu-

sion:  The Cochran-Armitage trend test should be replaced 
by the Wald statistic from a logistic regression model for 
hypothesis testing and estimation in genetic association 
studies.  Copyright © 2011 S. Karger AG, Basel 
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 Methods

 Using the entries of the 2  !  3 contingency table of  table 1 , the 
CA trend test statistic is given by:
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  Starting from equation 1, the CA statistic can be rewritten in 
a number of ways. Out of these equivalent representations, the 
following two are particularly illuminating for the present con-
siderations. The algebraic identity of the respective expressions to 
the right-hand side of equation 1 is shown in the Appendix. 

 (I) Let  X  k  and  Y  l  denote the number of A alleles contained in 
the genotype of the  k -th member of the group of cases ( k  = 1, ...,  r ) 
and the  l -th control ( l  = 1, ...,  s ), respectively. Then, the CA statis-
tic  T  CA  can be written as:
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  In equation 2, the estimator of the variance of the observed 
difference between the mean allele counts has to be computed 
treating the entries in both rows of  table 1  as observations from 
two trinomial distributions whose parameters  �  1  j  =  p  1  j   / p  1.  and
 �  2  j  =  p  2  j  / p  2.  satisfy the null hypothesis  H  0 :  �  1  j  =  �  2  j  for all  j . Accord-
ingly, the CA test coincides with the usual (asymptotic) test for 
equality of the means of two distributions with common variance 
from which independent random samples have been taken, as ap-
plied to the special case where the range of all individual random 
variables representing the sample values is restricted to {0, 1, 2}. 

 (II) Let  �  ̂    1  j  and  �  ̂    2  j  denote the relative frequencies of genotypes 
obtained in the sample of cases and controls, respectively, so that 
 �  ̂    1  j  =  r  j / r  and  �  ̂    2  j  =  s  j / s . Equation 1 can then be rewritten as:
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 In the denominator of equation 3,  p̂  .  j  stands for the pooled es-
timate of the frequency of the  j -th genotype given by   p̂  .  j  =  n  j / n  for 
 j  = 0, 1, 2. Furthermore,  �  ̂    11 /2 +  �  ̂   12  and    �  ̂    21 /2 +  �  ̂    22  are well known 
[see, e.g.  2 , § 2.4] to be the standard estimates of the frequency of 

allele A among cases and controls, respectively. Thus, equation 3 
shows that the CA procedure tests for differences of the two pop-
ulations sampled in a case-control study with respect to the fre-
quency of the allele of interest. 

 (III) From the facts stated under (I) and (II), it does not become 
obvious why the CA test is an appropriate inferential procedure 
for assessing the association between the SNP under consider-
ation and the risk of having or developing a disease. In fact, the 
goal of a genetic association study is to make inferences about the 
penetrance

   �  j  =  P ( D  = 1  �   J  =  j )                                                                        (4)

  associated with the  j -th genotype, i.e. the conditional probability 
that a randomly selected individual is diseased given the number 
 j  of risk alleles. The standard approach to modeling this function 
uses the log odds scale and is based on the assumption that the 
increase in disease risk is independent of the baseline value of  j . 
This condition is satisfied if, and only if, there are constants  �  and 
 � , say, such that: 

   logit( �  j ) =  �  +  �   !   j .                                                                      (5)

  This logistic regression model arises under cohort rather than 
case-control sampling. However, likelihood inferences can also 
be made about all parameters except for the intercept in the case-
control design and are the same under both sampling schemes  [3, 
4] . 

 One of the standard likelihood-based tests of the null hypoth-
esis  H  0 :  �  = 0 for any logistic regression model is the score test [ 5 , 
§ 6.3.2], and it is fairly easy to show  [6]  that in the case under con-
sideration (equation 5), the score statistic is algebraically identical 
to the CA statistic in equation 2.

Results and Discussion

  The key conclusions to be drawn from properties (I) 
to (III) are as follows: first, the CA test is recommendable 
as a test of the null hypothesis  H  0  of no association be-
tween genotype and risk of disease. Actually, when used 
for that purpose, the CA statistic is asymptotically equiv-
alent both to Wald’s maximum likelihood statistic and 
the likelihood-ratio statistic [see, e.g.  7 , § 6e.3]. Second, 
the CA statistic cannot be used for constructing confi-
dence intervals for the odds ratio
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  These facts are reflected in the common practice of 
reporting the results of genetic association studies even 
in our own work  [8] : the presentation of p values obtained 
by means of the CA statistic is supplemented by giving 
estimates (point and interval) taken from standard logis-
tic regression. This practice is, however, not sound be-

Table 1. O bserved genotype frequencies and theoretical probabil-
ities (in parentheses) for cases and controls at a diallelic marker 
with alleles a and A

Phenotype G enotype

aa aA AA �

Case r0 (p10) r1 (p11) r2 (p12) r (p1.)
Control s0 (p20) s1 (p21) s2 (p22) s (p2.)

� n0 (p.0) n1 (p.1) n2 (p.2) n (1.0)
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cause in the analysis of any study, the point estimate and 
the confidence interval should be based on the same sta-
tistic as the significance test. Actually, most studies on 
the use of confidence intervals or p value functions in ad-
dition to significance tests [see  9–16 ] were written with 
the understanding that both parts of the analysis of a giv-
en data set rely on the same statistic.

  The aim of the final part of this article is to illustrate 
that this kind of consistency can easily be attained by 
replacing the CA statistic with Wald’s maximum likeli-
hood statistic for testing arbitrary hypotheses about the 
log odds ratio parameter  � , specifying that  �  =  �  0  for 
any fixed real number  �  0 , including  �  0  = 0 as a special 
case. We note that Wald’s testing procedure consumes 
slightly more computer processor time than the CA 
trend test because the maximum likelihood estimator 
has to be determined numerically by an iterative algo-
rithm. However, despite the fact that not a few practitio-
ners in genetic epidemiology feel to the contrary, it is by 
no means true that performing Wald’s test in the analy-
sis of a data set of the complexity encountered in a con-
temporary genome-wide association study is computa-
tionally infeasible. Using an implementation for logistic 
regression analysis restricted to the case of a single cat-
egorical covariate, computing all quantities involved in 
a complete analysis based on Wald’s statistic for 
1,000,000 SNPs takes about 70 min of execution time on 
a standard Intel PC of the present generation. We mea-
sured this value with a SAS IML function which we will 
be happy to provide to any interested reader. Translating 
the code in any other sufficiently rich programming 
language like  R  is a straightforward exercise so that 
from a computational perspective, there is no compel-
ling reason to prefer CA-based over Wald-type logistic 
analysis.

Illustration
  In order to illustrate the differences in the inferential 

scope of both approaches, we re-analyze data from an as-
sociation study of APOE promoter polymorphisms with 
Alzheimer’s disease ( table 2 )  [17] .

  Analysis Based on the Score Statistic 
 Determining the mean difference of the number of T 

alleles counted in cases as compared with controls yields 
 X̄  –  Ȳ  = 0.2370, the score statistic is computed to be  T  CA  = 
2.8920, and the corresponding two-sided asymptotic p 
value is 0.0038. The confidence interval derived from the 
two-sided test refers to the parameter E(   X̄  –  Ȳ ) = 2( p   A

(1)    – 
 p   A

(2)   ), with  p A  
(1)    and  p   A

(2)    denoting the frequency of allele A 

in the population of cases and controls, respectively, and 
has limits (0.0763, 0.3977).

  Analysis Based on the Wald-Type Statistic 
 The unconstrained ML estimator is computed to be

 �  ̂   = 0.5175, and the corresponding Wald statistic is
2.8595, yielding a two-sided asymptotic p value of 0.0041. 
This p value is slightly larger than its counterpart based 
on the score statistic. However, what really matters is the 
change in the interpretation of the confidence interval 
obtained using the observed value of the Wald test statis-
tic  T  W  as a pivot. It holds for the common value  e   �   of the 
disease odds ratios associated with increasing the num-
ber of risk alleles by 1. At the nominal confidence level 
95%, its limits turn out to be 1.1770 and 2.392 for the pres-
ent data set.

Conclusion

  All in all, we feel that there is a real need for revising 
the current practice of analyzing standard genetic asso-
ciation studies by means of two different statistics, of 
which the first one is used for computing a p value and 
the other one for doing interval estimations. A unified 
procedure based on Wald’s maximum likelihood statistic 
seems to be the better choice – the more as computation-
al feasibility of the latter approach is warranted even in 
the context of very large studies.

  Appendix: Proof of the Equivalence of Equations 1, 

2 and 3 

 Comparison of equations 1 and 2: by definition,  X  k  and  Y  l  
count the number of A alleles observed in the  k -th case and the 
 l -th control, respectively. In view of the basic notation introduced 
in  table 1 , this implies:

   X̄  –  Ȳ  = ( r  1  + 2 r  2 )/ r  – ( s  1  + 2 s  2 )/ s .                                                (A1)

Table 2. O bserved genotype frequencies for the SNP –219 G>T 
(rs405509) in a case-control study of genetic risk factors for Alz-
heimer’s disease [17]

Affection 
status

N umber of T alleles

0 1 2 �

Case 31 (0.2844) 49 (0.4495) 29 (0.2661) 109 (1.0)
Control 67 (0.3564) 102 (0.5426) 19 (0.1011) 188 (1.0)

� 98 151 48 297
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  Furthermore, ( r  0 ,  r  1 ,  r  2 ) and ( s  0 ,  s  1 ,  s  2 ) are independent trinomi-
ally distributed vectors with totals  r  and  s  and both parameter 
vectors being equal to ( p  .0 ,  p  .1 ,  p  .2 ) under  H  0 . From the basic prop-
erties of the multinomial family of distributions, it thus follows 
that we can write:

   Var  0 ( X̄  –  Ȳ ) = (1/ r  + 1/ s )( p  .1 (1 –  p  .1 )   + 4 p  .2 (1 –  p  .2 ) – 4 p  .1  p  .2 )
                          = (1/ r  + 1/ s )( p  .1  + 4 p  .2  – ( p  .1  + 2 p  .2 ) 2 ).                    (A2)

  Replacing  p  .1  and  p  .2  with the homologous sample proportions 
yields:

                                                                                                        
(A3)

2

0 1 2 1 21/ 1/ 4 / 2 / .Var X Y r s n n n n n n

  From equations A1 and A3, equality of equations 2 to 1 follows 
by elementary algebra, making use of the identities  r  +  s  =  n ,  r  j  + 
 s  j  =  n  j  ( j  = 1, 2).

  Comparison of equations 1 and 3: that the denominator of 
equation 3 equals that of equation 1 (except for a multiplicative 
constant) is immediately obvious from the identities  p̂   .1  =  n  1 / n , 
 p̂   .2  =  n  2 / n , both of which hold true by definition. By the definition 
of  �  1  j  and  �  2  j , we have:

  (   �  ̂    11 /2 +  �  ̂    12 ) – ( �  ̂    21 /2 +  �  ̂    22 ) = ( r  1 /2 +  r  2 )/ r  – ( s  1 /2 +  s  2 )/ s    
= (1/ rs )( s ( r  1 /2 +  r  2 ) –  r ( s  1 /2 +  s  2 )).                                                                                                          (A4)

  In view of  r  +  s  =  n ,  r  j  +  s  j  =  n  j  ( j  = 1, 2), the last parenthesized 
expression in equation A4 is the same as ( n ( r  1 /2 +  r  2 ) –  r ( n  1 /2 + 
 n  2 )). The rest follows through cancelling some common factors 
from the numerator and denominator of the fraction of equation 
3 as rewritten by means of these identities.
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