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precise intrarenal localization and TLR4 induction after ex-
perimental kidney transplantation. It supports the hypoth-
esis that local TLR4 activation by endogenous ligands may 
be one pathological link from unspecific primary allograft 
damage to subsequent chemokine release, infiltration and 
activation of immune cells leading to deterioration of renal 
function and induction of renal fibrosis. 

 Copyright © 2012 S. Karger AG, Basel 

 Introduction 

 Despite the availability of HLA matching, routine 
cross-matching and potent immunosuppression, acute 
renal allograft rejection after kidney transplantation is 
still characterized by the recruitment of monocytes/mac-
rophages, T and B lymphocytes and rapid deterioration 
of renal function  [1, 2] . Subpopulations of inflammatory 
cells are guided towards specific renal microenviron-
ments in a complex cascade of interactions between adhe-
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 Abstract 

 The role of toll-like receptors (TLRs) has been described in 
the pathogenesis of renal ischemia/reperfusion injury, but 
data on the expression and function of TLR4 during renal al-
lograft damage are still scarce. We analyzed the expression 
of TLR4 in an experimental rat model 6 and 28 days after al-
logeneic kidney transplantation in comparison to control 
rats and rats after syngeneic transplantation. On day 6, a sig-
nificant induction in TLR4 expression – restricted to the glo-
merular compartment – was found in acute rejecting al-
lografts only. TLR4 expression strongly correlated with renal 
function, and TLR4 induction was accompanied by a signifi-
cant increase in CC chemokine expression within the graft as 
well as in urinary CC chemokine excretion. TLR4 induction 
may be caused by an influx of macrophages as well as TLR4-
expressing intrinsic renal cells. Fibrinogen deposition in re-
nal allografts correlated with renal TLR4 expression and may 
act as a potent stimulator of chemokine release via TLR4 ac-
tivation. This study provides, for the first time, data about the 
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sion molecules, chemokines and chemokine receptors 
 [3–5] . Furthermore, cell type-specific toll-like receptors 
(TLRs) were found to be important for the activation of 
chemokines and chemoattraction or priming of T cells 
 [6–9] .

  TLRs are innate immune system receptors, which rec-
ognize specific molecular patterns present on invading 
microorganisms and thus are important in various kid-
ney diseases  [10, 11] . TLRs can also be activated by endog-
enous molecules  [12, 13] , such as heat shock protein 60 or 
70  [14–16] , fibronectin  [17, 18] , soluble hyaluronan  [19–
21]  and fibrinogen  [22] . In a model of hepatic ischemia-
reperfusion injury (IRI), definitive evidence was found 
that endogenous TLR4 ligands are critical in the patho-
genesis of liver IRI  [23] . In a model of chronic allograft 
dysfunction, the functional relevance of TLR2/4 and 
their two major signaling pathways (MyD88 and TRIF) 
was demonstrated after endogenous incubation  [24] . In a 
model of kidney IRI, a significant increase in TLR4 ex-
pression by tubular epithelial cells and infiltrating leuko-
cytes was demonstrated  [25]  and it was shown that TLR4 
acts as a sentinel for acute IRI-mediated renal damage 
 [26] . Using a model of unilateral ureteral obstruction, it 
has recently been shown that TLR4-deficient mice dis-
played reduced fibrosis and that TLR4 blockade might be 
a therapeutic target for preventing renal fibrosis  [27] . 

  In renal transplantation, most of the data focus on the 
role of TLR4 polymorphisms. In one study, renal trans-
plant recipients with TLR4 polymorphism presented a 
lower risk of posttransplantation atherosclerotic events 
and acute allograft rejection if they received donor grafts 
heterozygous for the Asp299Gly or Thr399Ile TLR4 allele 
 [28] . An additional study established the relevance of 
TLR4 polymorphisms in acute rejection of kidney trans-
plants  [29] .

  However, in contrast to IRI, only few data exist about 
TLR4 expression, localization and activation of after al-
logeneic versus syngeneic kidney transplantation. We 
therefore used an experimental rat transplantation mod-
el of acute rejection to investigate the time course of TLR4 
induction after kidney transplantation under standard-
ized conditions. Our study was aimed at answering the 
following questions: (1) is TLR4 induction due to alloge-
neicity or to transplantation per se? (2) What are the time 
course and intrarenal localization of TLR4 expression? 
(3) Are endogenous ligands, such as fibrinogen, which are 
released during transplantation, potent activators of 
TLR4 and subsequent CC chemokine release, which is 
crucial for recruitment and enhancement of immune re-
sponse by attraction of inflammatory cells?

  Materials and Methods 

 Animals and Renal Transplantation 
 Animal experiments were performed following the NIH prin-

ciples for laboratory animal care and the German laws on animal 
protection. Study approval was given by the inspecting authority 
(Regierung der Oberpfalz). Male Brown Norway rats served as do-
nors and Lewis rats as recipients (Charles River Laboratories, Sul-
zfeld, Germany). The rats (200–250 g) were kept under conven-
tional housing and diet conditions. Abbreviations, numbers, treat-
ment regimens, histopathological diagnoses adapted to the Banff 
’97 classification for renal allograft damage and the corresponding 
renal function of the different groups are summarized in  table 1 . 
Detailed protocols for renal transplantation have been previously 
published by our group  [30, 31] . Briefly, allograft-dependent dam-
age (Brown Norway rats as donors, Lewis rats as recipients) was 
compared with potential alterations after syngeneic transplanta-
tion (Lewis rats as donors and recipients) on postoperative days 
(PODs) 3, 6, 28. Cyclosporine (CsA, 5 mg/kg, Neoral; Novartis, 
Basel, Switzerland, administered once daily by gavage) was used 
as immunosuppression; naïve rats without CsA treatment served 
as controls. Additional alterations after unilateral nephrectomy 
with or without CsA treatment and IRI were performed (data not 
shown). During transplantation, the left kidneys were explanted, 
flushed with cold saline and transplanted orthotopically by end-
to-end anastomosis of the vessels and the ureter. Cold- and warm-
ischemia times were approximately 35 and 30 min. Nephrectomy 
of both native kidneys was performed at the time of transplanta-
tion also in the syngeneic group. The transplanted groups were 
treated with CsA (KTx + CsA) or left without immunosuppression 
(KTx – CsA). The latter group only underwent the 6-day protocol. 
After euthanasia, the kidneys were divided into quarters and fixed 
in paraffin or snap-frozen in N 2  and stored at –80   °   C.

  In the 6-day protocol, the rats were monitored in metabolic 
cages on PODs 0, 3 and 6 and in the 28-day experimental protocol, 
on PODs 0, 7, 14, 21 and 28. Histopathological diagnoses adapted 
to the Banff ’97 classification  [1]  of the kidney specimens were 
made by renal pathologists.

  RNA Isolation, Reverse Transcription and Real-Time PCR 
 Total RNA was extracted from frozen tissue sections in peq-

GOLD TriFast (Peqlab, Erlangen, Germany) and reverse tran-
scribed into cDNA as described before  [30] . Primer sequences are 
listed in  table 2 .

  Immunohistochemistry  
 Immunohistochemistry was performed as previously de-

scribed  [32] . Sections were analyzed for TLR4 protein expression 
(monoclonal TLR4 antibody, Acris Antibodies GmbH, Hidden-
hausen, Germany), CCL20 (polyclonal goat CCL20 antibody,
Santa Cruz Biotechnology, Heidelberg, Germany), fibrinogen 
(polyclonal sheep fibrinogen antibody, AbDSeroTec, Düsseldorf, 
Germany), CD68 (monoclonal mouse antibody, AbDSeroTec, 
Düsseldorf, Germany), CD3 (polyclonal rabbit antibody, Abcam 
Cambridge, UK) and CD20 (polyclonal goat antibody, Santa Cruz 
Biotechnology). To further define the TLR4-positive cell popula-
tion, paraffin-embedded allograft sections of transplanted rats 
were used for immunofluorescence as previously described  [32] . 
Primary antibodies were detected by Alexa Fluor �  antibodies
(Invitrogen, Karlsruhe, Germany). Slides were then coverslipped 
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with Vectashield �  Mounting Medium with DAPI (Linaris, Wert-
heim-Bettingen, Germany).

  Digital Imaging 
 For analysis of TLR4 expression, 10 high-power fields per 

specimen were examined by two different investigators (original 
magnification  ! 400, covering an area of 296  � m  !  222  � m). 
Within these fields, the percentage of positive glomeruli among 
all detected glomeruli and positive tubuli among all detected tu-
buli were calculated for each specimen. We additionally noted, for 
each high-power field, whether positive staining was apparent in 
interstitia or in vessels. Mean and median values were calculated 
for each group. 

  Quantification of CCL20 Protein in Urine 
 Quantification of CCL20 protein in urine by Western blot 

analysis was performed as described before  [31] . CCL20 was used 
as primary antibody (R&D Systems, Minneapolis, Minn., USA, 
MN55413 mouse IgG1 anti-rat CCL20, 2  � g/ml) and binding of 
the primary antibody was visualized with a peroxidase-conjugat-
ed goat anti-mouse IgG-HRP secondary antibody (1:   5,000, Santa 
Cruz Biotechnology).

  Statistical Analysis 
 Values are provided as means  8  SEs. Statistical analysis was 

performed by the nonparametric Mann-Whitney U test and by 
univariate ANOVA. p  !  0.05 was considered to be statistically 
significant.

  Results 

 Clinical and Histopathological Characterization of 
the Different Experimental Groups 
 KTx + CsA rats displayed serum creatinine levels al-

most twice as high as those of controls (Banff 1 = normal) 
and moderate histopathological changes with typical signs 
of rejection on POD day 6 (Banff 4 IA = interstitial infil-
tration  1  25% of parenchyma affected and foci of moderate 
tubulitis) ( table  1 ). On POD 6, syngeneic transplantated 
(synKTx) rats displayed slightly elevated creatinine levels 
without histopathological changes (Banff 1) compared to 
control rats. In contrast, KTx – CsA showed severely ele-
vated serum creatinine levels on POD 6 and signs of severe 

Table 1.  Experimental renal transplantation model in rats in a 6-day and a 28-day protocol: numbers of rats, histopathological clas-
sification and serum creatinine concentrations of the different groups

Control synKTx KTx – CsA KTx + CsA

Rats, n 
6-day protocol 7 6 10 10
28-day protocol 7 4 – 12

Histopathological classification
6-day protocol
28-day protocol

Banff 1 
Banff 1

Banff 1 
Banff 1

Banff 4 III 
–

Banff 4 IA 
Banff 1 (n = 10); Banff 4 IA (n = 2)

Serum creatinine, mg/dl
6-day protocol
28-day protocol

0.3480.07
0.280.01

0.4880.21
0.2780.03

3.2280.22
–

0.6280.21
0.3780.04

Table 2.  Primer sequences (r = rat)

Gene Forward primer Reverse primer

rCCL2 (= MCP1) 5�-tagcatccacgtgctgtctc-3� 5�-tgctgctggtgattctcttg-3�
rCCL20 (= MIP-3�) 5�-caactttgactgctgcctca-3� 5�-cggatcttttcgacttcagg-3�
rCD3 5�-ggctggtgtcatcatcactg-3� 5�-tcaacagccccagaaagtct-3�
rCD20 5�-ctgatgatccccacaggagt-3� 5�-cctggaggttttctctgctg-3�
rCD68 5�-aatgtgtccttcccacaagc-3� 5�-tgcttgtatttccgcaacag-3�
rFibrinogen-� 5�-cctacgacagggacaacgat-3� 5�-tgtaaaggccaccccagtag-3�
rFibrinogen-� 5�-gtgcgaatccatgacacaac-3� 5�-tttccagatccgtcgatttc-3�
rGAPDH 5�-gtcgtggatctgacgtgcc-3� 5�-gatgcctgcttcaccacctt-3�
rTLR4 5�-ggcagcaggtcgaattgtat-3� 5�-tcaaggcttttccatccaac-3�
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rejection (Banff 4 III = transmural arteritis and/or arterial 
fibrinoid change and necrosis); all animals died within 10 
days. On POD 28, there was less difference in serum cre-
atinine and histopathological diagnoses between the re-
maining groups: similarly to controls and synKTx rats, 10 
out of 12 KTx + CsA rats showed normal histopathological 
characteristics (Banff 1); the other 2 rats showed only mod-
erate signs of rejection (Banff 4 IA;  table 1 ).

  TLR4 mRNA Induction in an Experimental Kidney 
Transplantation Model 
 Compared to controls, significantly upregulated TLR4 

mRNA expression was only seen in KTx + CsA (p = 0.02) 
and KTx – CsA (p = 0.008) rats on POD 6 ( fig. 1 ). TLR4 
mRNA expression in KTx – CsA rats was significantly 
higher than in KTx + CsA rats (p = 0.004). In contrast, 
syngeneic transplantation did not alter TLR4 expression 
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  Fig. 1.  TLR4 mRNA expression (means  8  
SEMs) on PODs 6 and 28 in the different 
groups.  a  p  !  0.05 versus control,  b  p  !  0.05 
versus KTx + CsA. 

  Fig. 2.  Immunohistochemistry. In control 
and synKTx rats, the most prominent 
TLR4 staining was observed in the proxi-
mal tubuli. There was no positive staining 
in glomeruli. In KTx + CsA rats, upregula-
tion of TLR4 expression was also seen in 
the glomerular compartment (red arrows, 
black in the printed version) (mesangial 
cells, podocytes) and in the interstitium 
(green arrows, white in the printed ver-
sion), which was more pronounced in 
KTx – CsA rats. Original magnification  !  
400. 

C
o

lo
r v

er
si

o
n 

av
ai

la
b

le
 o

n
lin

e



 TLR4 after Allogeneic Transplantation Nephron Exp Nephrol 2012;121:e59–e70 e63

either on POD 6 or on POD 28. On POD 28, TLR4 mRNA 
expression in KTx + CsA rats was still upregulated (1.4-
fold; p = 0.05) in comparison with control rats, but the 
expression was significantly lower than on POD 6 (p = 
0.03) ( fig. 1 ). On POD 3, a 2.5-fold TLR4 induction was 
seen in KTx + CsA rats (p = 0.04), which was quite similar 
to that in synKTx rats (2.2-fold TLR4 induction; p = 0.04) 
and IRI-treated rats (2.85-fold TLR4 induction; p = 0.03; 
data not shown). However, no other alteration (i.e. unilat-
eral nephrectomy with or without CsA or IRI) signifi-
cantly influenced TLR4 expression on POD 6 or 28 (data 
not shown).

  Localization and Quantification of TLR4 Induction by 
Immunohistochemistry 
 On POD 6 and 28, there was a prominent TLR4 stain-

ing in arterial vessel walls in all groups whereas no TLR4 
staining could be detected in veins. In kidneys of control 
rats and synKTx rats, TLR4 staining was restricted to the 
proximal tubuli within the cortex and the outer medul-
lary stripe. With the exception of the visceral/parietal 
aspects of Bowman’s capsule, TLR4 expression was ab-
sent in glomeruli or the inner medulla ( fig. 2 ). In con-
trast, KTx + CsA rats displayed a milder TLR4 staining 
in glomeruli and in the interstitium ( fig. 2 ). KTx – CsA 
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  Fig. 3.  Quantification of glomerular ( a ) 
and tubular ( b ) TLR4 staining (means  8  
SEs) on PODs 6 and 28.  a  p  !  0.05 versus 
control,  b   p  !  0.05 versus KTx + CsA. 
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rats showed strong TLR4 staining in glomerular cells, 
infiltrating interstitial cells ( fig. 2 ), and in vessel walls 
(not shown). Immunohistochemical quantification of 
TLR4 staining demonstrated that glomerular TLR4 ex-
pression in KTx  8  CsA rats (POD 6) was significantly 
upregulated in comparison to controls and synKTx rats 
(p  !  0.01) ( fig. 3 a).

  On POD 28, KTx + CsA rats still showed significantly 
elevated glomerular TLR4 expression in comparison to 
control rats ( fig. 3 a). In contrast, all examined groups dis-
played a similar tubular TLR4 staining pattern without 
significant differences either on POD 6 or 28 ( fig. 3 b).

  Quantification of Infiltrating Cell Populations to the 
Graft 
 CD3, CD20 and CD68 mRNA expression was exam-

ined in total kidney homogenates of all groups on POD 6 

and 28. In total kidney homogenates, CD3, CD20 and 
CD68 mRNA expression was significantly elevated in 
KTx + CsA (p  !  0.01) and KTx – CsA rats (p  !  0.001) on 
POD 6, compared to control and in contrast to synKTx 
rats ( fig. 4 a). On POD 28, significantly elevated CD20 and 
CD68 expression was still found in KTx + CsA rats (p  !  
0.01). Additional analysis of relative CD68-positive stain-
ing in the different groups by Meta View �  software con-
firmed these data: control on POD 6: 2.00%; synKTx 
10.78%; KTx  8  CsA on POD 6: 74.41%, KTx  8  CsA on 
POD 28: 23.59% (data not shown). 

  To further specify the TLR4-positive cell population, 
we stained serial slides for TLR4 and CD3, CD20 and 
CD68 and performed double immunofluorescence: TLR4 
was mainly expressed on CD68-positive monocytes/
macrophages ( fig. 4 b).
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  Fig. 4.  Graft infiltration and TLR4 costaining.  a  mRNA expression (means    8  SEs) of 
CD3, CD20 and CD68 cells in total kidney homogenates on PODs 6 and 28 in the differ-
ent groups.  a  p  !  0.05 versus control.  b  Double immunofluorescence for TLR4/CD68: 
renal allograft specimen of a KTx – CsA rat stained for TLR4 and CD68. Some CD68-
positive macrophages were also TLR4 positive (merge). Original magnification  !  400.     b
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  Chemokine Expression in the Allograft  
 We detected a significant increase in CCL2 and CCL20 

mRNA expression in KTx + CsA (p  !  0.001) and KTx – 
CsA rats (p  !  0.01) on POD 6 ( fig. 5 a) compared to con-
trols. CCL2 expression in KTx – CsA was significantly 
higher than in KTx + CsA (p = 0.01). On POD 28, both 
CC chemokines reached baseline levels without any sig-

nificant differences. On POD 6, CCL2 and CCL20 mRNA 
were moderately upregulated in synKTx rats (p = 0.04). 
Besides CCL20, its receptor CCR6 was also significantly 
upregulated in KTx + CsA (p = 0.005) and KTx – CsA rats 
(p = 0.0007) on POD 6 (data not shown), with signifi-
cantly higher CCR6 expression in KTx – CsA rats (p = 
0.02). CCR6 expression in KTx + CsA rats was still sig-
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nificantly elevated on POD 28 (p = 0.003; data not shown). 
Using immunohistochemistry, we found that in control, 
but also in synKTx animals, positive CCL20 staining on 
POD 6 as well as on POD 28 was restricted to Bowman’s 
capsule and some vascular endothelial cells. In contrast, 
prominent accumulation of CCL20-positive cells was de-
tected mainly in interstitial infiltrates and in the glomer-
ular compartment of KTx + CsA and KTx – CsA rats 
( fig. 5 a). Serial slides confirmed that CCL20 expression 
colocalized with TLR4-positive cells. 

  Western Blot Analysis of Urinary CCL20 Excretion 
 In comparison with control rats, we detected a marked 

increase in CCL20 protein in the urine of KTx + CsA and 
KTx – CsA rats already on POD 3 ( fig. 5 b). Urinary CCL20 
protein of KTx – CsA rats was markedly higher than in 
KTx + CsA rats and these differences were even more pro-
nounced on POD 6. On POD 28, we compared control  8  
CsA with KTx + CsA rats and detected only a slight in-
crease in urinary CCL20 protein level in KTx + CsA rats.

  Fibrinogen Deposition after Allogeneic Kidney 
Transplantation 
 A significant increase in fibrinogen- �  and - �  mRNA 

expression in KTx  8  CsA rats was found on POD 6 com-
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pared to controls ( fig. 6 ). The expression level of fibrinogen-
 �  was significantly higher in KTx + CsA rats. In synKTx 
rats, there was only a trend towards increased fibrinogen- �  
and - �  expression. On POD 28 after allogeneic transplanta-
tion, fibrinogen- �  and - �  deposition was still significantly 
upregulated; however, in comparison with POD 6, a sig-
nificant decrease was found (p = 0.002). The immunohis-
tochemical findings were in accordance with the detected 
mRNA expression levels. In allografts of the transplanted 
rats, a marked increase in fibrinogen-positive staining in 
the peritubular arteries within glomeruli and interstitial 
infiltrates could be demonstrated mainly in the KTx – CsA 
group. In serial slides, fibrinogen deposition matched with 
TLR4 staining, especially in the glomerular, periglomeru-
lar and peritubular parts (data not shown). In synKTx rats, 
only mild fibrinogen staining was found (data not shown).

  Discussion 

 In the present study, we examined the time course and 
localization of TLR4 after experimental kidney trans-
plantation, correlated these data with renal function and 
further focused on functional consequences of TLR4 ac-
tivation. 

  Fig. 6.  Fibrinogen expression and fibrinogen deposition. mRNA expression (means      8  SEs) of fibrinogen- � 
and - �  in total kidney homogenates on PODs 6 and 28 in the different groups.  a  p  !  0.05 versus control. Immu-
nohistochemistry: in KTx – CsA rats, fibrinogen deposition was found intraglomerularly and interstitially.         
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Significantly induced TLR4 mRNA expression was 
found only after allogeneic transplantation. TLR4 mRNA 
expression was elevated on POD 6 and decreased towards 
POD 28 in KTx  8  CsA.

 Immunohistochemistry displayed high but unmodi-
fied TLR4 protein expression in renal tubular cells and 
highly inducible TLR4 staining within glomeruli in KTx 
 8  CsA rats. These rats also displayed tubulointerstitial 
infiltrates with TLR4-positive cells and immunofluores-
cence characterized these cells mainly as CD68-positive 
macrophages. Whereas TLR4 expression on tubular cells 
was previously reported to be important during ascend-
ing urinary infections  [33] , our finding of upregulated 
TLR4 within glomeruli in renal allogeneic, but not syn-
geneic transplants is new. Both intrinsic renal cells (e.g. 
mesangial cells, podocytes and vascular endothelial cells) 
and infiltrating macrophages seem to contribute to TLR4 
expression in allograft rejection. The expression profile 
of infiltrating cells within the allografts with an ongoing 
CD20/68 pattern typically for B-cells and macrophages 
on POD 28 in KTx + CsA rats as well as the CD68-TLR4 
double staining proving the presence of TLR4-positive 
macrophages favors the importance of infiltrating cells 
for TLR4 expression. However, immunohistochemical 
data on TLR4 induction not only in the interstitial but 
also within the glomerular compartment stress the im-
portance of renal intrinsic cells after acute rejection for 
ongoing TLR4 induction. The relevance of infiltrating 
and intrinsic renal cells to TLR4 induction after acute re-
jection still lacks clarity.

  Continuative experiments in an IRI mouse model 
with chimeric mice suggested that TLR4 signaling in in-
trinsic more than infiltrating cells plays a crucial role in 
renal damage after kidney ischemia for 22 min  [25] . Ad-
ditional work by Leemans et al.  [34]  with chimeric mice 
also postulated that TLR2 expressed on the renal paren-
chyma plays a crucial role in the induction of inflamma-
tion and injury after IRI. TLR4 is considered as a key mol-
ecule of innate immunity involved in cell survival as well 
as IRI, where it has been intensively examined  [25, 26, 35, 
36] . As the ischemia times were short in our model (35 
min of cold and 30 min of warm ischemia time), a sig-
nificant contribution of IRI to TLR4 expression beyond 
POD 5 should be limited because renal TLR4 expression 
after allogeneic transplantation displayed a different time 
course: whereas TLR4 expression due to IRI is seen at ear-
lier time points (POD 3) and disappears or is much low-
er on POD 5  [25, 26] , we observed a peak of TLR4 expres-
sion on POD 6 with decreasing TLR4 expression on POD 
28.

  Thus, the impact of IRI on TLR4 expression levels in 
our renal transplantation model might be lower than the 
contribution of intrinsic renal- and graft-infiltrating 
CD68-positive macrophages. This is stressed by the 
similar TLR4 induction in KTx + CsA, KTx – CsA, syn-
KTx and IRI-treated rats on POD 3 and the striking dif-
ferences at later time points, where allogeneic transplan-
tation seems to be a sustained trigger. TLR4 induction 
correlated with both renal function and local chemo-
kine synthesis: TLR4 activation was accompanied by 
marked induction of CCL2 and CCL20. Both chemo-
kines were significantly upregulated in renal allografts, 
especially in allograft rejection. These data are in line 
with the finding that TLR4 is linked to the expression of 
proinflammatory cytokines and chemokines  [25] . Che-
mokines like CCL2 are known to recruit and activate 
leukocytes  [37]  and thus can mediate allograft rejection 
 [38–40] . The relevance of CCL2 was already underlined 
by data showing that high levels of donor-derived CCL2 
are associated with poor outcome in murine islet trans-
plantation  [41]  and by findings on the differences in 
CCL2 expression between allografts and isografts 7 
days after islet transplantation. The parallel induction 
of TLR4 and CCL2/CCL20 after allogeneic transplanta-
tion in a model of acute rejection stresses the relevance 
of these data because markedly increased CCL2 expres-
sion was also seen in human renal allografts with acute 
rejection  [42] . CCL20 was not only induced within the 
kidney but was also excreted into the urine of trans-
planted rats in amounts that correlate with the severity 
of allograft rejection. Therefore, transplanted rats with 
almost normal renal function and without significant 
allograft rejection on POD 28 only showed a slight in-
crease in CCL20 urinary protein concentration. These 
data support previous findings suggesting that CCL20 
is as a sensitive urinary marker of allograft rejection  [43, 
44] . Because of the induction of CCL2 and CCL20 che-
mokines after TLR4 induction and their known role for 
recruitment and enhancement of immune response by 
attraction of inflammatory cells monitoring, TLR4 ex-
pression may be a useful tool for monitoring renal func-
tion and a novel marker of acute rejection. However, one 
study analyzing human allograft biopsies for TLR4 
staining could not correlate TLR4 expression and renal 
function  [45] . One explanation for this discrepancy 
might be the time course of TLR4 expression after kid-
ney transplantation. In our model, TLR4 expression 
peaked on POD 6 and the other study analyzed protocol 
biopsies from human allografts at least 6 weeks after 
transplantation. 
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