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Zusammenfassung

In den letzten Jahren gab es eine rasante Entwicklung von Fahrerassistenzsys-
temen (Englisch: Advanced Driver Assistance Systems oder kurz ADAS). Diese
Systeme unterstiitzen nicht nur den Fahrer, sondern erhdhen durch das automa-
tische Einleiten von Sicherheitreaktionen des Fahrzeuges selber auch die Sicher-
heit aller anderen Verkehrsteilnehmer. Zukiinftige aktive FuBgangerschutzsystem
in Intelligentem Fahrzeugen miissen nun noch einen Schritt weiter gehen und
lernen, ein genaues Bild ihrer Umgebung und der darin wahrend der Fahrt zu
erwartenden Anderungen zu entwickeln.

Diese Arbeit widmet sich der Verbesserung bildgestiitzter FuBgangerschutzsys-
teme. Es werden darin neue Methoden der Bildhypothesengenerierung (englisch:
region of interest (ROI) generation), FuBgangerklassifikation, Pfadvorhersage und
Absichstserkennung entwickelt. Die Leistung der FuBgangererkennung in realen,
dynamischen Umgebungen mittels einer bewegten Kamera wird durch die Ver-
wendung von dichtem Stereo in den unterschiedlichen Modulen verbessert.

In einer Experimentalstudie wurde die Effizienz eines Systems zur monoku-
laren FuBgangererkennung mit einem System verglichen, dass erweitert wurde
um dichtes Stereo fiir die Hypothesengenerierung und der FuBgéngerverfolgung
(englisch: tracking) zu nutzen. Das neue System erwies sich hierin als deutlich
effizienter als das monokulare System. Diese Leistungssteigerung gab Anlass fiir
eine erweiterte Nutzung von dichtem Stereo bei der FuBgangererkennung. Die
Hypothesengenerierung wurde durch die dynamische Schatzung der Kameraori-
entierung und des StraBenprofils weiter verbessert. Insbesondere bei hiigeligen
StraBen steigerte sich die Erkennungsleistung durch die Optimierung des Such-
bereichs. Zusatzlich konnte die Klassifikationsleistung durch die Fusion von un-
terschiedlichen Merkmalen aus Bild und Tiefeninformation verbessert werden.

Aufbauend auf den Erfolgen bei der FuBgangererkennung wird in der Arbeit
ein System fiir den Aktiven FuBgangerschutz vorgestellt, welches die Funktio-
nen FuBgangererkennung, Situationsanalyse und Fahrzeugsteuerung kombiniert.
Fiir die FuBgangerkennung wurden Ergebnisse eines Verfahrens zur bewegungs-
basierten Objekterkennung mit Ergebnissen eines FuBgangerklassifikators fusion-
iert. Das System wurde in einen Versuchstrager eingebaut und half dabei, Unfalle
durch einen aktiven Lenkeingriff oder ein Notbremsemandver zu vermeiden.

Der letzte Teil der Arbeit befasst sich mit dem Problem der Pfadvorhersage und
dem Erkennen der FuBgangerabsicht in Situationen, in denen sich der FuBganger
nicht mit einer konstanten Geschwindigkeit bewegt. Zwei neue, lernbasierte



Ansatze werden vorgestellt und mit aktuellen Verfahren verglichen. Durch die
Verwendung von Merkmalen, die aus dichtem optischem Fluss generiert wer-
den, ist es moglich den Pfad und die Absicht einer FuBgangers vorherzusagen.
Das erste Verfahren lernt eine niedrigdimensionale Mannigfaltigkeit der Merk-
male, die eine Vorhersage von Merkmale, Pfad und Absicht erlaubt. Das zweite
Verfahren verwendet einen Suchbaum in dem Trajektorien abgelegt sind die
mit Bewegungsmerkmalen erweitert wurden. Ein probabilistischer Suchalgo-
rithmus erméglicht die Vorhersage des FuBgéangerpfads und Absicht. Die Leis-
tungsfahigkeit der Systeme wurde zusatzlich mit der Leistung von menschlichen
Probanden verglichen.

In dieser Arbeit wurde groBer Wert auf die ausfiihrliche Analyse der vorgestell-
ten Verfahren und die Verwendung von realistischen Testdatensatzen gelegt. Die
Experimente zeigen das die Leistungsfahigkeit eines Systems zur FuBgangererken-
nung durch die Verwendung von dichtem Stereo verbessert werden kann. Die
Vorgestellten Verfahren zur Pfadvorhersage und Absichtserkennung erméglichen
ein frithzeitiges erkenne der FuBgangerabsicht. Die Zuverldssigkeit zukinftiger
System fiir den Aktiven FuBgéngerschutz, die durch Aktiven Lenkeingriff oder
Notbremsemandver Unfélle vermeiden, kann mit den vorgestellten Verfahren
verbessert werden. Dadurch kénnen Unfille vollstandig verhindert oder die Schwere
einer Kollision reduziert werden.



Abstract

Over the last years there has been a rapid evolution of advanced driver assistance
systems (ADAS). Such systems not only support drivers in safely steering their
vehicle, but also increase the safety of all traffic participants by adding systems
able to trigger autonomous safety reactions of the vehicle itself. Future active
pedestrian protection systems for intelligent vehicles will now have to go a step
further and learn how to acquire a thorough understanding of a car’s environment
and how this environment will change in the course of driving.

This thesis focuses on improving the performance of vision based pedestrian
protection systems. In this course new methods for region of interest generation,
classification, pedestrian path prediction and action classification are introduced.
All methods address the problem of pedestrian detection from a moving camera
in a real-world cluttered environment by additionally using dense stereo data for
region of interest generation, classification, tracking and path prediction.

In an experimental study a state-of-the-art monocular based pedestrian recog-
nition system is compared with a system using dense stereo data for the region
of interest (ROI) generation and for tracking the pedestrian position. Perfor-
mance gains of the stereo-based system motivate the further use of dense stereo
for different modules of a pedestrian recognition system. Dense stereo data is
further exploited by dynamically estimating camera parameters and road profile
information for a refined ROI generation in a complex environment. Constraining
on possible pedestrian locations is especially beneficial in scenes with undulat-
ing, hilly roads. Additionally, the different characteristics of depth and intensity
features are fused to improve the performance of a pedestrian classifier.

An integrated active pedestrian safety system is presented as a combination of
sensing, situation analysis, decision making and vehicle control. For the task of
pedestrian detection this system fuses generic motion-based object segmentation
and pedestrian recognition. The system has been implemented in a demonstrator
vehicle and can reliably prevent collisions by automatically initiating braking or
evasive steering maneuvers.

Finally, the problem of pedestrian path prediction and action classification in
challenging situations where a constant velocity assumption fails is addressed.
Two novel learning-based approaches are introduced and compared to state-of-
the-art methods. Using features extracted from optical flow, the newly proposed
methods allow the prediction of a pedestrian‘s path and its intended action at
short, sub-second time intervals. The first approach learns a low dimensional



representation of motion features that allow feature, path and action prediction.
The second approach uses a probabilistic search tree containing trajectories ex-
tended with motion features to predict the trajectory and action of a pedestrian.
A further comparison puts the action classification performance of the newly
proposed systems up against human performance.

For all problems addressed in this work, emphasis has been placed on the use
of realistic, real-world datasets and an in-depth performance evaluation of the
proposed methods. The experiments show that the use of dense stereo for ROI
generation and classification significantly improves the performance of a pedes-
trian detection system. The proposed path prediction and action classification
methods further allow an early detection of pedestrian actions. Integrating the
developed methods in the next-generation of active pedestrian safety systems will
lead to a faster, improved system decision whether or not to initiate emergency
vehicle maneuvers (braking, steering) in critical situations. This increases their
potential of preventing accidents with pedestrians or reducing the severity of a
collisions.
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Chapter 1

Introduction

With the triumphal procession of the car in the 19th century an interesting
question arose: “What goes on when a man drives an automobile” [77]. Whilst
driving a car the driver constantly selects and transforms mainly visual information
in his environment. In order to make correct driving decisions not only has the
current situation to be comprehended, but also possible future changes of the
situation have to be anticipated.

This is illustrated in the situation awareness model [45] which is subdivided into
three levels (see Figure 1.1): The first level handles the perception of elements
in a constantly changing environment, such as the course of the road, its surface
conditions, pedestrians, traffic, etc.. Once the elements have been identified,
the second level assigns a meaning to these elements. For example, seeing a
pedestrian at a crosswalk will not result in the desired behavior of stopping, if
the driver has no knowledge of this rule. With an understanding of the current
situation, foreseeing the near future is modeled in the third level. By using the
information obtained in the previous levels and the experience of the dynamics and
possible behavior of identified objects around us, changes in the environment can
be predicted. For example, given our current driving speed and direction we can

Situation Awareness
Perception Comprehension Projection
State of elements of current of future
of the > in current situation status ] Peﬁormance
Enviroment situation of Actions
Level 1 Level 2 Level 3

Figure 1.1: Model of situation awareness in dynamic decision making, adapted
from [45].



Chapter 1 Introduction

predict a possible hazardous situation that requires braking, when a pedestrian
walks onto the road. From this prediction, a decision is made that results in the
next action that modifies the state of the environment. At this point the cycle
of perception, comprehension and projection of the environment starts again.

But a driver's information processing capabilities are limited. Depending on
the situation and the drivers constitution, only a limited amount of sensory in-
formation can be processed and erroneous actions might be taken. Studies show
that more than 90% of traffic accidents are due to human error [55]. With more
than 90% due to visual information acquisition problems [86, 133, 154]. The
most common explanation for car accidents is, “I looked, but | didn‘t see” [27].
Advanced driver assistance systems (ADAS) support the driver in complicated
situations and can help to prevent accidents where humans are inattentive. This
requires perceiving the environment using sensors. Besides artificial sensors that
are similar to the human sensory system, e.g. cameras, additional sensors that go
beyond the human senses, e.g., radar, can be used to perceive the environment.
But even with a complex sensory setup, current systems are outperformed by
humans when it comes to the complex tasks of understanding and forecasting
the current situation. It will be the paramount objective of this thesis to develop
and improve the methods for pedestrian protection.

10.000 25%

8.000 20%

wn
8 2
g =
h= [
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E =
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o
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=& Pedestrian fatalities as a proportion of all fatalities

- 0%
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Figure 1.2: Number of pedestrian fatalities and proportion of total fatalities in
Europe [24].



Motivation and Challenges

Pedestrians are without doubt the most vulnerable traffic participants. In Eu-
rope (EU-24, 2009), 20% of all the fatalities in road traffic accidents have been
pedestrians [24]. In the last 10 years the number of deadly accidents involving
pedestrians have been reduced by 34% from 9476 deaths in 2000 to 6233 in 2009
(Figure 1.2). Nations with emerging economies have an even higher pedestrian
fatality incidence [93]. This reduction can partially be explained by the increasing
awareness of the plight of vulnerable road users at the EU level. In 2003, the
EU passed Phase 1 of Directive 2003/102/EC on pedestrian protection, focusing
on passive safety, i.e. meaning to reduce injury levels upon impact, by speci-
fying various maximum impact criteria (e.g. head, leg). Data collected during
the time of the first stage, showed that the more restricted criteria set for the
second stage was not feasible. Different and newer technologies can contribute
to the reduction of pedestrian and other vulnerable road user casualties. Studies
showed that pedestrian protection can be significantly improved by Brake Assist
Systems (BAS) [110]. These systems are designed to detect a emergency brake
situation and help the driver to archive the maximum deceleration to prevent
an accident. In 2009 the EU Parliament approved Regulation 2009/78/EC on
pedestrian protection which requires car manufactures to integrate active safety
systems into cars. Pedestrian protection is meanwhile also a major theme for
consumer rating groups like Euro NCAP.

(@

Figure 1.3: (a) Active bonnet to reduce pedestrian injuries on an impact by
enlarge the deformation zone. (b) Collision prevention by automated
evasive steering maneuver.
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Figure 1.4: Typical dangerous situation: pedestrian stepping unexpectedly onto
the street.

Systems for pedestrian protection can be grouped into active and passive safety
systems. Passive pedestrian safety measures involve vehicle structures (e.g. bon-
net, bumper) that expand during collision in order to minimize the impact of the
pedestrian leg or head hitting the vehicle. For example, Mercedes-Benz intro-
duced the active bonnet (Figure 1.3a) as standard for the new E-Class 2009. The
system includes three impact sensors in the front section as well as special bonnet
hinges pre-tensioned by powerful springs. Upon impact with a pedestrian, the
rear section of the bonnet is pushed upwards by 50mm in a fraction of a second,
thus enlarging the deformation zone. The system is reversible and can be reset
manually by the driver.

Although important, passive pedestrian safety measures are constrained by
the laws of physics in terms of ability to reduce collision energy and thus injury
level. Moreover, passive measures cannot account for injuries sustained in the
secondary impact of the pedestrian hitting the road. Much effort is therefore
spent towards the development of active safety systems, which detect dangerous
situations involving pedestrians ahead of time, allowing the possibility to warn
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Figure 1.5: Pedestrian protection system introduced in the Mercedes-Benz E-
Class and S-Class in 2013. Dangerous situations can be detected
by a combination of a stereo camera system and radar sensors. An
autonomous emergency braking maneuver is initiated if a collision is
imminent.

the driver or to automatically control the vehicle. A system that can prevent ac-
cidents by automatic braking or evasion (Figure 1.3b) is presented in Chapter 6.
Such systems are particularly valuable when the driver is distracted or visibility
is poor (Figure 1.4). The first night vision systems that detect and highlight
pedestrians have reached the market (e.g. Mercedes-Benz E-Class 2009, BMW
7 series 2008 and Audi A8 2010). In 2010 Volvo introduced a collision mitigation
braking system (CMS) for pedestrians with the S60 limousine, which is based on
monocular vision and radar. A new safety system that can help to prevent col-
lisions with pedestrians and vehicles has been introduced in the Mercedes-Benz
E-Class and S-Class in 2013. For the task of pedestrian protection (Figure 1.5),
the system uses a Stereo Multi-Purpose Camera (SMPC) mounted behind the
windshield and two short-range radar sensor. Visual pedestrian detection is real-
ized with a pedestrian recognition system using dense stereo. Possible collision
with a pedestrian in the driving corridor can be detected and the driver is warned
using visual and acoustic signals. The necessary braking power is automatically
adjusted to prevent the collision, if the driver tips the brake pedal. If the driver
does not react an autonomous emergency braking maneuver is initiated. The sys-
tem operates at speeds up to 72 km/h and can autonomously prevent accidents
up to 50 km/h.

Robustness of these systems is very important, they have to be able to detect
a variety of possible dangerous situations in order to prevent an accident. At
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the same time, false system actions have to be at a minimum to fulfill necessary
automotive safety integrity levels (ASIL). Additional constraints apply for vision
based systems. Operation should be possible at day, night, different weather
conditions and in an always changing, complex environment. So computer vision
algorithms, developed for pedestrian protection, need to be robust with respect
to the input image data while still having a reliable detection performance at a
low false positive rate. At the same time algorithms have to operate in real-time,
handling large amounts of image data.



Chapter 2
Related Work

An extensive amount of literature has been written on the subject of pedestrian
safety. See [69] for a broad survey on passive and active pedestrian protection
methods, discussing multiple sensor types (e.g. cameras in visible/NIR/FIR spec-
trum, radars, laser range finders) and methods for collision risk assessment. In
this thesis, we focus on vision-based pedestrian detection which is a key problem
in the domain of intelligent vehicles (IV). Large variations in human pose and

Hypothesis Selection

Pedestrian Classification

Image Data

Tracking
Path Prediction

Pedestrian Candidats

a

Pedestrian Position
and Path

Figure 2.1: Different modules of a pedestrian recognitions system.
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(a) (b)

Figure 2.2: (a) Regions-of-Interest (ROI) generated in a sliding window fashion
at various scales. (b) ROIs with sufficient support from dense stereo
data.

clothing, as well as varying backgrounds and environmental conditions make this
problem particularly challenging. Many interesting approaches for vision-based
pedestrian detection have been proposed. Most approaches follow a module-
based strategy (Figure 2.1) comprising generation of possible pedestrian loca-
tion hypotheses (regions-of-interest, ROI) using some computationally efficient
method, followed by a more expensive pattern classification step utilizing fea-
tures from intensity images (gray-scale or color) ([23, 72, 130]). Most bench-
mark studies on pedestrian detection have dealt with monocular based systems,
see [41, 49, 69, 74, 91, 126] for relevant surveys and benchmark studies. Detected
pedestrian candidates are then tracked over time to allow predicting the pedes-
trians path, which is important for possible actions of an integrated pedestrian
safety system.

2.1 Hypotheses Selection

Various modalities (e.g. intensity, motion, depth) are used in ROI generation to
extend the sliding window technique, where detector windows at various scales
and locations are shifted over the image to obtain object hypotheses for classifi-
cation (Figure 2.2). This pre-processing step is applied to reduce the number of
hypotheses which are processed by a more powerful but computationally expen-



2.1 Hypotheses Selection

Figure 2.3: Regions-of-Interest (ROI) generated from dense stereo combined
with shape based pedestrian detection.

sive classifier. In [72], the locations where the number of depth features from
sparse stereo exceeds a percentage of the search window area are added to the
ROI list for the subsequent shape detection module (Figure 2.3). This approach
has been extended in [103] using dense stereo in ROl the preprocessing step.
In [185], a foreground region is obtained by clustering in disparity space. [23, 79]
propose to select ROIs by considering the x- and y-projections of the disparity
space following the v-disparity representation [108]. In [2], object hypotheses are
obtained by using a subtractive clustering in the 3D space in world coordinates.
The “stixel world” [7, 15, 141] describes obstacles in the three dimensional world
using a set of thin, vertically oriented rectangles. This representation is used in
in [14] for candidate region selection. Motion information is utilized in [52] as a
pre-processing step for ROl generation.

Most approaches for ROl generation involve the assumption of a planar road,
as well as constant camera height and pitch. Violations of these constraints are
typically handled by relaxing the scene constraints, e.g. allowing a certain amount
of deviation from the ground-plane assumption. Recently, some approaches for
estimating road shape and camera parameters have been presented. To esti-
mate camera height and pitch, linear fitting in the v-disparity space [131], in
world coordinates [57, 76] and in the so-called virtual-disparity image [157] has
been proposed. In [108], the road surface is modeled by fitting piecewise linear
functions in the v-disparity space. Other approaches involve fits of quadratic
polynomials [134] or clothoid functions [131] in the v-disparity space.
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2.2 Pedestrian Classification

Given a set of initial object hypotheses the task of the pedestrian classifier is the
decision whether the given image region contains a pedestrian (pedestrian class)
or not (non-pedestrian class). Pedestrian classifiers can be roughly characterized
as either generative or discriminative models [164].

2.2.1 Generative Models

Generative approaches model pedestrian appearance in terms of its class-conditional
density function. In combination with the class priors, the posterior probability
for the pedestrian class can be inferred using a Bayesian approach. Most gener-
ative approaches use a 2D pedestrian shape model that is learned from example
shapes. Using shape data for pedestrian detection has the advantage of robust-
ness to illumination changes and different clothing. The shape space can be
described using discrete or continues models.

Discrete shape models represent the space using a set of example shapes [70,
72]. Instance-based learning approaches have the advantage that new example
shapes can easily be added to the model but they require a large amount of
samples to cover the possible shape space. In [70, 72] several thousand shapes
have been collected to represent possible pedestrian appearances. To allow real-
time operation an efficient shape hierarchy is used in combination with matching
technique based on distance-transforms to compute shape similarities. In [84] a
Field Programmable Gate Array (FPGA) implementation is presented to allow
real-time vehicle on-board operation.

Continues shape models learn a parametric representation from the set of ex-
ample shapes [32, 33]. Suitable landmark points, e.g. feet of a pedestrian, are
extracted either manually [33] or automatically [13, 128] to allow aligning the
training set. Reducing the dimensionality of the landmarks space and deriving
the main modes of variation can be realized using linear methods , e.g. Prin-
cipal Component Analysis (PCA) [33] or non-linear methods, e.g. Local linear
embedding (LLE) [44]. Integrating shapes that represent different pedestrian
poses (e.g. feet apart or feet closed) into a common subspace can result in de-
generated models that lead to implausible shapes. This can be prevented by
separating dissimilar shapes into different clusters and generating cluster specific
subspaces [47, 128]. The advantage of continues shape models is the possibility
to generate synthetic shape examples that can e.g. be used for tracking [44, 78].

10
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However, matching a test sample to the model requires finding optimal model
parameters. lterative parameter estimation [33] can be rohibitively expensive for
real-time operation. Using Monte Carlo techniques [78] can be used to speed up
computation.

Besides shape information texture is an important cue for pedestrian recogni-
tion. Different generative models have been proposed that combine shape and
texture information [48, 31, 54].

2.2.2 Discriminative Models

Regarding pedestrian classification, most approaches use discriminative models
comprising a combination of intensity-based feature extraction and classification.
Such features can be categorized into texture-based and gradient-based.

Local binary pattern (LBP) descriptors [125] and derivatives [20, 26, 25, 26, 83]
have successfully been used for pedestrian classification. The basic idea is to
encode the neighborhood of each pixel as a binary number by thresholding. A ROI
is divided in to several cells. The LBP feature vector is formed by concatenating
normalized histograms over cells. Popularity of LBP can be explained due to
their robustness to illumination changes and fast feature computation.

Non-adaptive Haar wavelet features have been popularized by [140] and adapted
by many others [123, 170]. Feature evaluation involves computing the sum of
pixels within rectangular image areas. Fast feature evaluation can be realized us-
ing integral images [170]. In [123, 140] significant wavelet feature located on the
exterior boundary of the pedestrian body have manually been selected. Adaptive
Boosting (AdaBoost) [65] in combination with integral image feature evaluation
is used in [170], to overcome the manual feature selection from an over-complete
set of Haar wavelets. Automatically combining a set of non-adaptive features
using boosting allows a certain adaptation to the training data.

Motivated by the function of the visual cortex, local receptive fields (LRF) [178]
or convolutional neural network (CNN) [113] can be used to learn adaptive fea-
tures. These methods learn the underlying spacial structure of the data and show
superior results [127, 158] compared to non-adaptive Haar wavelet features.

Gradient-based features, e.g. Histograms of oriented gradients (HOG) [34,
46, 132, 179, 184, 186] have found wide use for pedestrian classification. The
idea is that pedestrian appearance and shape can be described by the distribu-
tion of edge gradients. A ROI is divided into several overlapping blocks and
each block contains a grid of cells. Gradients of each cell are accumulated in
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a orientation-based histogram. The feature vector is formed by concatenating
locally normalized blocks. The HOG feature is robust to illumination changes
and outperforms non-adaptive Haar wavelet features for the task of pedestrian
recognition [34, 49]. Computational costs of HOG features can be reduced by
using integral images [186] to allow fast feature evaluation. Field Programmable
Gate Array (FPGA) [11], Graphics Processing Unit (GPU) [143, 156] and Dig-
ital Signal Processor (DSP) [28] implementations allow real-time HOG feature
extraction for on-board vehicle use.

Discriminative models approximate the Bayesian maximum-a-posteriori deci-
sion by learning the parameters of a discriminant function (decision boundary)
between the pedestrian and non-pedestrian classes from training examples.

Support vector machines (SVM) are widely used in both linear [35, 46, 179,
184, 186] and non-linear variants [123, 140]. Other popular classifiers include neu-
ral networks [72, 178] and AdaBoost cascades [121, 163, 170, 179, 181, 184, 186].
Some approaches additionally apply a component-based representation of pedes-
trians as an ensemble of body parts [46, 56, 121, 123, 136, 181]. Context informa-
tion from neighboring regions can additionally be used [40, 148] for classification.

Cascaded architectures for pedestrian detection, involving modules using differ-
ent cues to narrow down the image search space, are prevalent (e.g. [72, 76, 128,
130]). A recent trend involves the integration of multiple features (Haar wavelets,
HOG, LRF, LBP, etc.) and/or modalities (intensity, depth, motion, etc.) into
a single pattern classification module [46, 132, 147, 152, 171, 175, 179, 182].
One fusion approach involves integration of all cues into a single joint feature
space [152, 175, 179]. Here, the enlarged dimensionality of the joint space can
cause over-fitting problems or is practically intractable, cf. [152]. Boosting ap-
proaches have also been proposed to automatically select the “best” features from
a pool of different features and modalities [179, 182]. In contrast, [46, 132, 147]
utilize fusion on classifier-level by training a specialized classifier for each fea-
ture or modality. Classifier fusion is done using fuzzy integration [132], simple
classifier combination rules [147] or a mixture-of-experts framework [46].

2.3 Tracking / Path Prediction

Tracking describes the problem of estimating the trajectory of a pedestrian and
deriving properties that are not directly observable, e.g. velocity of a pedestrian.
For that purpose a tracker has to assign consistent labels to pedestrians de-
tected in each image frame. Recursive Bayesian estimation is commonly used

12
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to estimate the probability density function describing the pedestrian state over
time. Integrated in a pedestrian recognition system, the tracker declares whether
the estimated pedestrian state is valid. This is a challenging task, especially in
situations involving multiple pedestrians and complicated occlusion situations.

Most approaches follow a Track-by-Detection approach, considering this as
frame-by-frame association of detections based on geometry and dynamics with-
out particular pedestrian appearance models [2, 71, 72, 120]. Other approaches
utilize pedestrian appearance models coupled with geometry and dynamics [21,
53]. Detection-by-Tracking approaches (e.g. [4, 128]) furthermore integrate de-
tection and tracking in a Bayesian framework, combining appearance models
with an observation density, dynamics, and probabilistic inference of the poste-
rior state density. In [128] a multi-cue approach using a generative shape model,
a discriminative texture classifier and a temporal transition model is combined
in a particle filter framework. System detection rate and tracking performance
could be improved significantly by allowing the tracker to decide about the object
class and state.

Active pedestrian safety system require not only an accurate estimate of the
pedestrian position but additionally the possibility to predict the pedestrian path [36,
98]. One way to perform path prediction relies on closed-form solutions for
Bayesian filtering. In the Kalman Filter (KF) [10], the current state of a dynamic
system can be propagated to the future by means of the underlying dynamical
model, without the incorporation of new measurements. The same idea can be
applied to KF filter extensions to either multiple linear dynamical models, e.g.
the Interacting Multiple Model (IMM) KF [10], or to non-linear models, e.g. the
Extended KF or the Unscented KF (see [120, 159] for applications to pedestrian
tracking). Model based prediction accuracy mainly depends on the correctness of
the latest state estimate in combination with a valid dynamical model, see [151]
for a comparison and combination of different dynamical model. An alternative
approach for path prediction involves non-parametric stochastic models. Possi-
ble trajectories are generated by Monte Carlo simulations, taking into account
the respective dynamical models. In [1] a constant motion model is combined
with particle filtering to perform impact prediction. Nicolao et al. [39] distin-
guish lateral and longitudinal pedestrian velocity and model these independently
by a random walk. Wakim et al. [172] model pedestrian motion by means of
four states of a Markov chain, corresponding to standing still, walking, jogging
and running. Each state is associated with probability distributions of magnitude
and direction of pedestrian velocity; the state changes are controlled by vari-
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ous transition probabilities. Recently, more complex pedestrian motion models
also account for group behavior and spatial lay-out (e.g. entry/exit points), e.g.
see [5] for a discussion of methods for surveillance applications. These latter
approaches, although interesting, are less relevant to the traffic safety domain
considered in this work.

The limited amount of available training data precludes the use of modeling
approaches which compute joint probability distributions over time intervals ex-
plicitly. Indeed, most pedestrian motion models consist of states that correspond
to single time steps and are first-order Markovian. This potentially limits their
expressiveness and precision. In contrast, Black and Jepson [17] describe an
extension of particle filtering to incrementally match trajectory models to input
data. It is used for motion classification of 2D gestures and expression. Siden-
bladh et al. [153] add an efficient tree search in the context of articulated 3D
human pose recovery. Kéfer et al. [97] apply this technique to vehicle motion
prediction, utilizing the quaternion-based rotationally invariant longest common
subsequence (QRLCS) metric for trajectory matching. In our work [102] we
combine positional and optical flow features in the QRLCS matching to perform
pedestrian path prediction and action classification (continue-walking vs. stop-
ping at the curbside) from a vehicle. Following up on the analysis of pedestrian
intention at the curbside, Kohler et al. [106] address the continue-standing vs.
starting-to-walk classification task, from a stationary, monocular camera. They
combine a motion contour image based HOG-like descriptor with a linear SVM.
Chen et al. [29] propose a multi-level prediction model, in which the higher levels
are long-term predictions based on trajectory clustering matching, whereas the
low level uses an Auto-Regressive model to predict the next time step.

A common assumption when dealing with human motion is that measurements
in a high dimensional space can be represented in a low dimensional, non-linear
manifold. Non-linear dimensionality reduction methods allow learning the inter-
nal model of the data (see [168] for an overview of techniques). It often depends
on the data and the task at hand (e.g. visualization, classification) to determine
which of the techniques is best suited. Because measurements from human mo-
tions are time-dependent it is desirable to consider the dependency of the data
over time. The Gaussian process latent variable model (GPLVM) [111], which is a
generalization of the Probabilistic Principal Component Analysis (PPCA) [161],
can be extended to model the dynamics of the data. This Gaussian Process
Dynamical Model (GPDM) [174] allows for a non-linear mapping from the la-
tent space to the observation space as well as a smooth prediction of latent
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points. Especially the mapping (or prediction) of data-points on the latent space
makes this technique interesting for tracking application. Urtasun et al. [167]
use GPDM to track a small number of 3D body points that have been derived
using an image-based tracker. The system is trained using one gait cycle from
six subjects and is able to handle several frames of occlusions. A Detection-by-
Tracking approach using a dynamic part based limb detector in combination with
a GPDM is presented in [4]. Especially in scenarios with many persons and long
term occlusions the system has a robust detection and tracking performance.
Raskin et al. [145] use a GPDM with an articulated model of the human body
in combination with an Annealed Particle Filter (APF) for tracking and action
classification. Action classification is realized by comparing observed sequences
with template sequences in latent space.

2.4 Integrated Systems

A number of pedestrian systems were installed on-board vehicles [9, 22, 68, 72,
115, 116, 119, 130]. Some of these not only implement a perception com-
ponent but also collision risk estimation in combination with acoustical driver
warning and/or automatic vehicle braking, see systems by Daimler [116], Ibeo
[68], VW [116, 119], and the Universities of Alcala [115] and Parma [22]. While
these systems sole rely on on-board sensors for pedestrian protection, Car-2-X
communication systems have been proposed [3, 124] which use wireless com-
munication modules to allow an interaction between a pedestrian, vehicles and
infrastructure. Especially in situations where pedestrian can not be detected by
sensors, e.g. due to complete occlusion by a parked car, drivers can be warned
and/or safety measures can be prepared (e.g. pressure buildup for an emergency
braking). Other work dealt with pedestrian perception, collision risk estimation
and vehicle actuation by means of simulation [95].

Systems for collision avoidance and mitigation by braking are already in the
market for passenger cars and commercial vehicles. Suitable methods for crit-
icality assessment have already been proposed (e.g. [85]). However, collision
avoidance by steering has not been covered in depth in the literature. Most
work on trajectory generation for collision avoidance has been done in the field
of robotics. Powerful methods to solve non-holonomic motion planning problems
with dynamic obstacles have been proposed (e.g. [58, 109]), yet the computa-
tional complexity of many of the proposed algorithms prohibits the application
on current automotive hardware. To overcome this limitation, efficient plan-
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ning algorithms to evaluate possible collision avoidance maneuvers by human
drivers in highly structured scenarios have been introduced [149]. Optimal vehi-
cle trajectory control for obstacle avoidance within shortest distance is presented
in [82]. The Proreta Project [94] evaluated driver assistance systems that initiate
automatic braking when an object vehicle cuts into the ego vehicle's lane, and
automatic steering when an object vehicle is standing in front of the ego vehicle
and the driver does not react.

In comparison to collision avoidance systems, autonomous vehicles have dif-
ferent requirements for sensors and algorithms. An autonomous vehicle has to
be able to generate an understanding of the environment(e.g. drivable corridor,
intention of traffic participants) in order to be able to derive the necessary next
actions. The majority of autonomous vehicles demonstrated at the Defense Ad-
vanced Research Projects Agency (DARPA) Urban Challenge [37] and the Google
self-driving car [81] used high-end laser scanners coupled with radars for long
range sensing. Using high-end laser scanners (e.g. Velodyne) allows generating
a detailed 3D map of the surrounding. Mode of operation and costs prohibit the
use of these sensors for mass market products.

Although computer vision played a minor role in most of the vehicles participat-
ing in the DARPA Challenge [165], early approaches to autonomous driving [60]
evaluate the requirements and importance of a vision-based system. Especial
in an inner-city environment pedestrian recognition is of great importance. In
August 2013, a Mercedes-Benz S-Class vehicle with close-to-production sensors
drove completely autonomously for about 100km from Mannheim to Pforzheim,
Germany, following the well-known historic Bertha Benz Memorial Route [63].
The autonomous vehicle relied solely on vision and radar sensors in combination
with accurate digital maps to obtain a comprehensive understanding of complex
traffic situations. For the task of pedestrian detection the systems used a dense
stereo-base ROl generation [100] and a multi-cue pedestrian classifier [51] using
disparity and intensity image data. Detecting and understanding the behavior of
pedestrians has shown to be crucial to enable reliable autonomous driving in an
inner-city environment.
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Outline and Contributions

The main focus of this thesis is to develop methods for vision based active
pedestrian safety systems. Overall system performance is improved by focusing
on the use of dense stereo in all modules of the pedestrian safety system. For
all methods developed in this thesis, the practical application for an online safety
system is analyzed and assessed in detail. Performance evaluation is done using
real world data recorded from a moving vehicle or system-in-the-loop tests using
a demonstrator vehicle on a dedicated test track. Assets and drawbacks of the
proposed methods are shown by comparing the performance to state-of-the-art
systems.

3.1 An Experimental Study on Stereo-based Pedestrian
Detection (Chapter 4)

The area of pedestrian detection has rapidly evolved in the intelligent vehicles
domain. Different modalities for hypothesis generation have been proposed, see
Chapter 2. Stereo vision is an attractive sensor for this purpose. In Chapter 4 we
focus on the use of stereo vision for candidate selection and pedestrian localization
in comparison to a purely monocular based system. But unlike for monocular
vision [41, 49, 69, 74, 91, 126], there are no realistic, large scale benchmarks
available for stereo-based pedestrian detection, to provide a common point of
reference for evaluation. We present a thorough evaluation methodology for
the evaluation of integrated multi-module pedestrian recognition systems and
make our dataset publicly available for benchmarking purposes. Furthermore
the benefits of stereo vision for ROl generation and localization are quantified.
The monocular system and the stereo bases system use a ROl generation with a
flat world assumption. The stereo-based systems additionally uses dense stereo
data for hypothesis selection and 3D position estimation of the pedestrian. False
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positives are reduced by a factor of 4 — 5 with stereo over mono, using the same
classification component.

3.2 The Benefit of Dense Stereo (Chapter 5)

Starting with Chapter 4, we focus on the use of dense stereo for ROl genera-
tion to detect candidate locations. In Chapter 5 the benefits of dense stereo
are further exploited. Dense stereo allows to dynamically estimate camera pa-
rameters and road profile which in turn provides strong scene constraints on
possible pedestrian locations. For classification we extract spatial features (gra-
dient orientation histograms) directly from dense depth and intensity images.
Both modalities are represented in terms of individual feature spaces, in which
discriminative classifiers are learned. Our experiments involve challenging im-
age data captured in complex urban environments (i.e. undulating roads, speed
bumps, etc.). Our results show a performance improvement by up to a factor
of 7.5 at classification-level and up to a factor of 5 at tracking-level (reduc-
tion in false alarms at constant detection rates) over a system with static scene
constraints and intensity-only classification.

3.3 Fusion of Generic Obstacle Detection and Pedestrian
Recognition (Chapter 6)

Chapter 6 presents a novel active pedestrian safety system, which combines sens-
ing, situation analysis, decision making and vehicle control. Active safety systems
which use sensors to survey surroundings hold great potential to reduce the ac-
cident frequency and severity, by warning the driver and/or exerting automatic
vehicle control ahead of crashes. The sensing component is based on stereo vi-
sion; it fuses two complementary approaches for added robustness: motion-based
object detection and pedestrian recognition. Based on the techniques developed
in Chapter 4 and Chapter 5, the pedestrian recognition module uses dense stereo
for candidate selection and pedestrian localization. The highlight of the system
is the ability to decide within a split second whether to perform automatic brak-
ing or evasive steering, and to execute this maneuver reliably, at relatively high
vehicle speeds (up to 50 km/h). Extensive pre-crash experiments with the sys-
tem on the test track have been performed (22 scenarios with real pedestrians
and a dummy). We obtained a significant benefit in detection performance and
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improved lateral speed estimation by the fusion of motion-based object detec-
tion and pedestrian recognition. On a reproducible scenario subset, involving the
dummy entering laterally into the vehicle path from behind an occlusion, the
system executed in over 40 trials the intended vehicle action: automatic braking
(if a full stop is still possible) or else, automatic evasive steering.

3.4 Path Prediction and Action Classification (Chapter 7)

Chapter 7 presents a study on pedestrian path prediction and action classification
at short, sub-second time intervals. Future vehicle systems for active pedestrian
safety will not only require a high recognition performance, but also an accurate
analysis of the developing traffic situation. State-of-the-art collision avoidance
systems, such as described in Chapter 6, rely on an accurate velocity estimation
for predicting the pedestrian path. One major challenge for pedestrian path
prediction is the highly dynamic behavior of pedestrians, which can change their
walking direction in an instance, or start/stop walking abruptly. To address this
challenge, we introduce two novel learning based approaches using augmented
features derived from dense optical flow. The first approach uses a probabilistic
search tree containing trajectories extended with motion features to predict the
path and action of a pedestrian. The second approach learns low dimensional
representations, using Gaussian Process Dynamical Models (GPDM), describing
the temporal dynamics of the pedestrians optical flow field. Path prediction
and action classification performance of the proposed methods is compared to
two baseline systems that use positional information only (Kalman Filter and its
extension to Interacting Multiple Models). In experiments using stereo vision data
obtained from a vehicle, the accuracy of path prediction at various time horizons
is investigated, as well as the effect of various errors (image localization, vehicle
ego-motion estimation). During stopping events the newly proposed methods
using non-linear and/or higher-order models achieved a more accurate position
prediction compared to the baseline systems. To put the action classification
performance of the different methods in context, we additionally evaluated the
performance humans archive.
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3.5 Publications

This thesis has led to a number of publications that are listed in Appendix A. Cor-
responding publications have partially been included in the discussion of related
work in Chapter 2.
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Chapter 4

An Experimental Study on Stereo-based
Pedestrian Detection

4.1 Overview

The main contribution of this chapter is to carefully quantify the benefit of stereo-
vision over an otherwise identical monocular system for pedestrian detection, see

Figure 4.1. We do not present entirely new systems, but evaluate a variant of
the well-known HOG-based pedestrian detector, e.g. [34], in both monocular and
stereo vision set-ups. We assume our results to generalize to other established
pedestrian detectors, e.g. [41, 52, 69, 74, 91, 126].

Figure 4.1: Pedestrian detection using the stereo-based system.

A second contribution involves a new large real-world stereo dataset for pedes-
trian detection which is used in our experiments. We make this dataset publicly
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available for non-commercial purposes to encourage research and benchmarking?.
The data is based on the established monocular Daimler Pedestrian Detection
Benchmark [52], which is extended in several ways. First, the new benchmark
includes the corresponding (left and right) stereo image pairs for the same 27-
minute urban test sequence as used in [52], where previously only the left image
was published. We further present a new stereo-vision sequence not containing
pedestrians for bootstrapping. Instead of generating 3D ground-truth by back-
projecting manually acquired pedestrian labels from the image into the world
using the ground-plane constraint, we now derive more exact 3D ground-truth
using shape information and stereo-vision. Finally, we enrich our test sequence
by releasing vehicle data (velocity, yaw rate) estimated by on-board sensors to
develop and evaluate more robust tracking algorithms.

Evaluation, comparison and ranking of pedestrian detection systems requires
publicly available datasets which can be used as a common reference ground to
benchmark many different systems. As a result of various systems having differ-
ent requirements in terms of data used (e.g. gray-level appearance, optical flow,
stereo, color or vehicle data), a multitude of datasets are available. Data acquisi-
tion further varies with the actual application area of the system, e.g. surveillance,
IV or action recognition. Roughly, pedestrian datasets can be categorized into
classification and detection datasets.

Classification datasets, e.g. [34, 46, 51, 75, 126, 135, 137], are mainly used
to evaluate a combination of a feature set and a pattern classifier using a given
set of pedestrian (positive) and non-pedestrian (negative) cut-out samples. For
pedestrians, such samples are typically extracted from manually labeled image
data resulting in accurately aligned pedestrian cut-outs. Non-pedestrian cut-
outs can be extracted randomly or by some pre-processing method from images
not containing pedestrians. In this context, pre-processing is used to focus on
application-relevant “difficult” samples. A fixed set of positive and negative
training and test samples is supplied for benchmarking. To allow for classifier
bootstrapping, additional negative images are often provided.

Detection datasets, e.g. [4, 41, 52, 53, 73, 179, 180], containing cut-outs for
training and full images for test data are used to benchmark integrated pedes-
trian detection systems. Although the pedestrian classifier is the most important
module of most systems, differences in relative performance can also arise from
varying hypotheses generation or tracking modules. Further, the extended scan-
ning of an image skews the relation of pedestrian and non-pedestrian windows

!See http://www.gavrila.net/Datasets/datasets.html or contact the author.
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Chapter 4 An Experimental Study on Stereo-based Pedestrian Detection

used for testing - typically, the test images only contain a few pedestrians, whereas
many thousands of regions not corresponding to pedestrians may be scanned per
image.

Although a classification dataset allows the isolated performance analysis of
a classification module, results do not necessarily generalize to the performance
of a fully integrated pedestrian detection system, as noted above. On the other
hand, evaluating the classification module of an integrated system in an isolated
brute-force (monocular) sliding window detection setting, e.g. [41], does not
necessarily correspond to the actual application context either. Both evaluation
methodologies have their justification and the choice strongly depends on the
application and evaluation context.

In the context of advanced driver assistance systems (ADAS) in the intelligent
vehicles domain, video sequences acquired in a realistic urban traffic environment
are crucial for an adequate evaluation of state-of-the-art systems. Depending on
the design of the systems under consideration, different image cues may be re-
quired. Systems utilizing optical flow require a sufficiently large frame rate while
stereo based systems need additional image data to derive depth information.
Table 4.1 shows an overview of available pedestrian detection datasets recorded
from a moving platform, as well as their main properties. Manually annotating
video data is a time-consuming and tedious work. In [41], an interactive pro-
cedure where the system generated intermediate labels by interpolation between
manually assigned labels is proposed. Especially for sequences recorded with a
large frame rate this approach can reduce the costs for labeling at the expense
of accuracy [73].

In the remainder of this chapter, we introduce the systems used for benchmark-
ing and present our new stereo-based benchmark dataset and our experimental
evaluation.

4.2 Selected Pedestrian Detection Systems

In our experiments, we compare the performance of two state-of-the-art baseline
systems. The first system solely depends on a monocular camera setup for detec-
tion and tracking, see [52]. In contrast, the second system utilizes stereo data for
hypotheses generation and refined pedestrian localization, i.e. an adapted version
of [72]. Stereo data is computed using the “Semi-Global Matching” (SGM) algo-
rithm [89] algorithm which provides dense disparity maps. Figure 4.2 illustrates
the processing steps of the selected systems.
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Tracked
Pedestrian
Detections
(a) Mono System
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Tracked
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Detections

(b) Stereo System

Figure 4.2: Comparison of the processing steps for the (a) mono and (b) stereo
system.
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Frobability mass function

Pedestrian
Distance

Dense Disparity Image

Figure 4.3: Pedestrian distance estimation using weighted disparity values.

Both systems utilize an initial set of ROls generated for various detector scales
and image locations using a flat-world assumption and ground-plane constraints.
For the stereo-based system, ROIls at a certain distance are only generated if
the number of depth features for the distance exceeds a percentage of the ROI
area. ROls are then passed to the classification module which uses histograms
of oriented gradients (HOG) features [34] on gray-scale image data. Extracted
features are classified by a linear support vector machine (linSVM). To speed-up
the feature computation, we implemented the integral histograms of oriented
gradients approach e.g. [186], which does not allow for the inclusion of tri-linear
interpolation steps, as described in [34]. The resulting computational speed-up
comes at the cost of a lower detection performance [186].

Multiple detector responses at near-identical locations and scales are addressed
by applying confidence-based non-maximum suppression to the detected bound-
ing boxes using pairwise box coverage. Two system detections a; and a; are
subject to non-maximum suppression if their coverage

A(ai n aj)

I(ai, a;) = m,

the ratio of intersection area and union area, is above 6,. For the following
experiments 6,, = 0.5 has been selected.

To allow possible collision mitigation maneuvers, the pedestrian position with
respect to the vehicle is required. From the available stereo data, the pedestrian
position is estimated by averaging the weighted disparity values in the detected
box in the image and back-projecting the foot-point into 3D world coordinates
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4.2 Selected Pedestrian Detection Systems

onto the ground-plane using known camera geometry, see [72]. With manually
labeled pedestrian shapes, a mask has been derived for importance weighting
of disparity values depending on their location, as shown in Figure 4.3. Pedes-
trian positions for the monocular system are computed with the assumption that
pedestrians are standing on the (flat) ground-plane (ground-plane constraint).

Lateral (z) and longitudinal (z) pedestrian positions are tracked using a Kalman
filter [10] with measurement vector z = (m,z)T and the state vector xx =
(x,z,vz,vz)T, with v, and v, denoting the pedestrian velocity. We assume
no abrupt velocity changes of the pedestrian and consequently use a constant
velocity (CV) model. With vehicle velocity v° and yaw-rate t)°, estimated from
on-board sensors, the vehicle ego-motion is compensated. As a possible ex-
tension, visual measurements could additionally be incorporated at this point.
Figure 4.4 illustrates the simplified motion of the vehicle using the one-track
vehicle model [139].

Zt4+At

“A

Ax

T+ At

Az

> AY

Tt

Figure 4.4: Single-Track model used for ego-motion compensation.
Ego-motion compensation is integrated into the prediction step of the Kalman
filter. Between time-step ¢ and ¢t + At the vehicle travels the distance (Am, Az)

with orientation change A°. Moving on the curve radius r = v° - ¢° following
translation and rotation parameters apply:
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Intensity Image Disparity Image

3D Position

Pedestrian Footpoint

Figure 4.5: Pedestrian 3D world position derived from manual labeled pedestrian
shaped and dense stereo data

A = At
Az = v°()°) 1 - cos(Av)]
Az = 0°(4°) 'sin(Ay)

So the predicted pedestrian state #;_1 in the vehicle coordinate system for
t + At is computed using

Az
Az
o |
0

ﬁk|k71 = F[ﬁk—l - Xcog] + [Xcog -

with Xcoe describing the translation to the vehicle center-of-gravity and F' de-
scribing the state transition matrix respecting the vehicle ego-orientation change.

cos(AY)  sin(AY)  cos(AY)At  sin(Ay)At
—sin(AY)  cos(AY)  —sin(AP)At  cos(AY)At
0 0 cos(Ay) sin(Av)
0 0 —sin(Av) cos(AvY)

F =

Measurement to track associations in the track management are handled using
the global nearest neighbor algorithm [10] with prior rectangular gating on the
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Training
7 unique pedestrians 3915
7+ pedestrian samples 15660
# neg. frames (stereo pairs) | 7129
Testing
# frames (stereo pairs) 21790
# labels 56484
7+ pedestrian traj. 259

Table 4.2: Daimler Stereo-Vision Pedestrian Benchmark dataset statistics.

predicted pedestrian position. New tracks result from measurements that can
not be assigned to an existing track. Starting in the state hidden, new tracks
enter the state confirmed after n measurement to track associations. After m
missed associations confirmed tracks are terminated. Here we use n = 2 and
m = 2 for the track management. Only confirmed tracks are regarded as valid
system outputs.

4.3 Dataset Overview

We extend the benchmarking dataset of [52] to contain stereo image pairs to
allow the computation of distance data using different stereo algorithms. Stereo
video data not containing pedestrians is additionally supplied to allow training
and bootstrapping of different classification algorithms.

Test data has been recorded with 15 frames per second (fps) enabling the
computation of optical flow data. Vehicle velocity and yaw-rate measurements
from on-board sensors are provided for each frame to enable integration into a
tracking and decision making system. All sequences are recorded in an urban
environment representing a realistic challenge for today's pedestrian detection
systems. Example images from training and testing data are given in Figure 4.6.

A summary of the dataset statistics is given in Table 4.2. By shifting and mir-
roring, 15660 pedestrian training samples are created from 3915 unique pedes-
trian samples. A training sample resolution of 48 x 96 pixels with a border of 12
pixels around the pedestrians is used. Negative training samples (&~ 15600) are
randomly cropped from the bootstrapping image sequence using ground-plane
constraints.

In [52], 3D ground truth from camera geometry in addition to bounding box
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labels has been provided. The 3D ground truth data has been revised. We
use 3D ground truth from stereo data because of its robustness to vehicle pitch
variations and violations of the flat-world assumption. Figure 4.5 illustrates the
ground truth generation. To increase precision of estimated 3D positions, unoc-
cluded pedestrians in the required detection area (see Section 4.4) have manually
been shape labeled. Pedestrian distance is derived from the median of disparity
values located on the pedestrian body. In combination with the pedestrian foot-
point determined from the shape center-of-gravity (COG) and known camera
parameters the 3D position is computed.

4.4 Experiments

In the following the performance for the classifier modules and complete system
configurations of the two selected baseline systems is compared. System setup
and evaluation parameters are described in detail to allow reproducibility of the
results.

4.4.1 System Configuration

Parameters for the ROI generation have been chosen to correspond to pedestrians
at a longitudinal distance of 10 m to 25 m in front of the vehicle and £4 m
in lateral direction. Pedestrians with a height of 1.6 m up to 2.0 m standing
on the ground are searched in the detection area. To cover the detection area,
ROIs ranging from hpin = 72 px to hpmaes = 206 px are required. ROIs with an
aspect ratio of 2:1 are generated in a multi-scale sliding window fashion on the
ground-plane using a flat world assumption with a pitch tolerance of +1°. Given
the pitch tolerance, ROls are located at most 11 px above or below the ground
plane. With a scale step factor A; = 1.1 a total of 12 scales are generated. ROI
locations are shifted at fractions A, = 0.1 of their height and Ay = 0.25 of their
width resulting in a total of 5920 generated ROls, see [52].

The HOG/IinSVM classifiers are trained and iteratively bootstrapped, as in
[52, 126]. Gradients for the HOG features are computed with (—1,0, 1) masks.
Orientation histograms with 8 bins are generated from cells with a size of 8 x
8 pixels. Overlapping descriptor blocks (2 X 2) are normalized using the Lo-
norm. An initial classifier (iterQ) has been trained with the positive and negative
training samples described in Section 4.3. For both systems, this initial classifier
is iteratively applied to the set of non-pedestrian images to collect additional
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false positives for the next round of classifier training. This process is repeated
until (test) performance saturates.

4.4.2 Evaluation

For evaluation, we follow the well-established methodology of [52, 72]. To com-
pare system output with ground-truth, we need to specify the localization toler-
ance, i.e. the maximum positional deviation that still allows to count the system
detection as a match. This localization tolerance is the sum of an application-
specific component (how precise does the object localization have to be for the
application?) and a component related to measurement error (how exact can
we determine true object location?). Object localization tolerance is defined
(see [62, 72]) as percentage of distance, for longitudinal and lateral direction (Z
and X), with respect to the vehicle. For our evaluation of the video sensing com-
ponent, we use Z = 30% and X = 10%, which means that, for example at 10 m
distance, we tolerate a localization error (including ground truth measurement
error) of £3 m and £1 m in the position of the pedestrian, longitudinal and
lateral to the vehicle driving direction, respectively. Partial visible pedestrians
are matched in 2D with a box coverage of 6, = 0.25. Pedestrians outside the
detection area or partial visible are regarded as optional and are neither cred-
ited nor penalized. For this application we allow many-to-many correspondences,
i.e. a ground truth object is considered matched if there is at least one system
detection matching it.

Classification Performance

Figure 4.7 and 4.8 illustrates the performance of the two systems after each
bootstrapping iteration. Both classifiers improve with additional bootstrapping
iterations. For the monocular system (Figure 4.7) performance saturates after
three iterations. By augmenting the set of negative training samples with “diffi-
cult” examples performance is pushed by a factor of 14 at similar detection rates
(60%). Because the stereo system generates ROIls only at highly structured lo-
cations the benefit of bootstrapping is less evident. After the first bootstrapping
iteration performance does no longer improve.

A direct comparison of the monocular system with the stereo system (Fig-
ure 4.9) shows the benefit of the stereo-based ROl generation and improved
localization. For a detection rate of 60% the number of false positives is reduced
by a factor of 4. We attribute this to the reduced number of generated ROls
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Figure 4.7: Classification performance of the mono system for different boot-
strapping iterations.
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Figure 4.8: Classification performance of the stereo system for different boot-
strapping iterations.
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Mono/Stereo System Classification Performance
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Figure 4.9: Performance comparison of the mono and the stereo system.

containing random structures. Figure 4.10b and 4.10c illustrate some typical
false positive examples of the detectors.

System Performance

Overall detection performance of the systems including the tracking module is
given in Table 4.3. Classifier thresholds are selected from Figure 4.9 using a com-
mon reference point of 60% detection rate. For additional insight, we consider
detection rate and precision (percentage of system detections that are correct)
on both the frame- and trajectory-level. For the latter, we distinguish two types
of trajectories: “class-A” and ‘“class-B” which have 50% and 1 frame entries
matched. Thus, all “class-A" trajectories are also “class-B” trajectories; the
different classes of trajectories represent different quality levels that might be rel-
evant for particular applications. At comparable detection rate levels, the stereo
system has a significant higher precision (approximately 20%). False alarms are
reduced by a factor of 4 — 5 over the mono system, similar to the previous
evaluation of the classification modules (see Figure 4.9).
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F A B
Detection Rate (all) | 66.58% 70.21% 78.72%
Mono System | Precision (all) 39.45% 32.50% 39.19%
FA min 0.11 13.12 11.82
Detection Rate (all) | 58.75% 53.19% 72.34%
Stereo System | Precision (all) 62.14% 50.0% 56.10%
FA min 0.02 3.05 2.68

Table 4.3: System performance of the mono system vs. the stereo system after

tracking.

4.5 Conclusion

This chapter presented an experimental study comparing monocular and stereo-
base pedestrian detection. Furthermore the benefit of stereo vision for ROl gen-
At equal detection rates, false

eration and localization has been quantified.

positives are reduced by a factor of 4-5 with stereo over mono, using the same
HOG/linSVM classification component. To allow reproducibility of the results,
system configurations and evaluation parameters were described in detail.
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(c) Examples of false detections of the mono system.
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Chapter 5

The Benefits of Dense Stereo

5.1 Overview

In this chapter, we propose the use of dense stereo information in two modules of
our pedestrian detection system: First, we estimate the varying road profile and
camera orientation from dense stereo, to refine regions-of-interest with respect
to possible pedestrian locations, see Section 5.3. Second, we enrich an intensity-
based feature space with features operating on dense depth images to improve
pedestrian classification performance, see Section 5.4.

Previous IV applications have typically used sparse, feature-based stereo ap-
proaches (e.g. [2, 72, 128]) because of lower processing cost. However, with re-
cent hardware advances, real-time dense stereo has become feasible [169] (here a
hardware implementation of the semi-global matching (SGM) algorithm [61, 89])
is used.

Both sparse and dense stereo approaches have proved suitable to dynamically
estimate camera height and pitch angle, in order to deal with road imperfections,
speed bumps, car accelerations, etc. But dense stereo also holds the potential
to reliably estimate the vertical road profile. The more accurate estimation of
ground location of pedestrians can be expected to improve system performance,
especially when considering undulating, hilly roads.

Dense stereo can furthermore provide additional cues for pedestrian recog-
nition. Up to now, the use of stereo information has been mainly limited to
recovering 3D scene structure [53, 114], partial occlusion [46] and providing a
focus-of-attention mechanism (e.g. [72, 76, 128, 185]).

The main contribution in this chapter is the use of dense stereo information in
two modules of our pedestrian detection system: ROI generation and pedestrian
classification. For ROI generation, we recover scene geometry in terms of camera
height, camera pitch and road profile from dense stereo information on a frame-
by-frame basis. Constraints on possible pedestrian locations are dynamically
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Figure 5.1: Overview of the dense stereo-based ROI generation and high-level
fusion of intensity and depth classifiers. For depth images, warmer
colors represent closer distances to the camera. Dense stereo is
used for pitch estimation, B-Spline road profile modeling, obstacle
detection and depth-based classification.

derived from the recovered models of camera and road geometry. With regard
to pedestrian classification, we extract spatial features from dense depth images
at medium resolution (pedestrian heights up to 80 pixels) and fuse them with an
intensity-based feature set on classifier-level.

See Figure 5.1 for a system overview: First, the camera pitch angle is esti-
mated by determining the slope with highest probability in the v-disparity map,
for a reduced distance range. Second, a corridor of predefined width is computed
using the vehicle velocity and the yaw rate. Only points that belong to that
corridor will be used for subsequent road surface modeling. The ground surface
is represented as a parametric B-Spline surface and tracked using a Kalman fil-
ter [176]. Reliability on the road profile estimation is an important issue which
has to be considered for real implementations. Regions-of-interest (ROIls) are
finally obtained by analyzing the multiplexed depth maps as in [72]. The re-
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maining ROls are classified using linear support vector machine (SVM) classifiers
operating on histograms of oriented gradient (HOG) features, extracted from
both intensity and dense depth data. We follow a classifier-level fusion strategy
which bases the final decision on a combined vote of the individual classifiers. As
opposed to fusion approaches using a joint feature space, e.g. [152, 175, 179],
this strategy does not suffer from the increased dimensionality of the joint space,
see [147, 152]. We assume our approach to generalize to other state-of-the-art
features and classifiers, which are complex enough to capture the appearance of
the pedestrian class, see [52]. Finally the detected pedestrians are tracked over
time.

5.2 Dense Stereo

With two (or more) cameras, 3D information of the environment can be derived
by finding the corresponding points across multiple cameras. A known stereo
camera configuration constraints the location of corresponding image points to
be on a single epipolar line. To simplify the matching process camera images are
often rectified, resulting in epipolar lines that are parallel to image lines. For a
point I(u,v) in the left image and the corresponding point r(u,v) in the right
image, the disparity d(u,v) can be computed using:

d(u,v) = l(u,v) — r(u,v) (5.1)

Feature-based stereo vision systems typically provide depth measurements at
points with sufficient image structure, whereas dense stereo algorithms estimate
disparities at every pixel, including untextured regions. Only for regions which
are visible in only one image no disparity values can be computed causing a
“stereo shadow”. Here we use a hardware implementation of the “Semi-Global
Matching” (SGM) [89] algorithm which provides dense disparity maps in real-
time, see Figure 5.7b.

Given the camera geometry with focal length f and the distance between
the two cameras B, dense depth maps containing distance information can be
computed using:

/B
d(u,v)

These dense disparity/depth maps are used for the following ROI generation,
road-profile estimation, obstacle detection and pedestrian classification.

Z(u,v) =

at pixel(u, v). (5.2)
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5.3 Dense Stereo-Based ROI Generation

5.3.1 Modeling of Non-Planar Road Surface

Before computing the road profile, the camera pitch angle « is estimated using
the v-disparity space. We assume that the camera is installed in a way that the
roll angle is insignificant. A planar road surface in the camera coordinate system
can be described using

Y(Z) = e - Z-H, (5.3)

with e = tan(a) and camera height H. In v-disparity space this road is described
using

v(d) = ad+c (54)

where v is the image row and a, ¢ are the slope and the offset which depend on
camera height and tilt angle respectively. With the assumption of a fixed camera
height H only the offset ¢ of the line needs to be estimated in v-disparity space.
Integrating the camera projection formula allows the computation of the slope
Vg — U H
e(u,v) = + —d(u,v) (5.5)
f Bf
with the camera principal point vg. Results are accumulated into a slopes his-
togram and the slope with the highest probability is selected to obtaining a first
estimation of the camera pitch angle. Outliers are suppressed by computing a

maximum disparity deviation for each image row depending on the tolerance of
the camera height and tilt angle.

The next step consists in computing the predicted driving corridor in front of
the vehicle. This is particularly important when the vehicle is taking a curve, since
most of the points in front of the vehicle do not correspond to the road. Using a
single track model with yaw-rate measurements ¢ and velocity v from on-board
sensors the vehicle path can be predicted. Moving on the curve radius r = v -
the lateral (X) and longitudinal (Z) positions in the future ¢ are calculated as

X(t) = v-¢ (1 - cos(d)]
Z@t) = wv-i tsin(dt) .

The region of interest for selecting disparity values is computed by projecting
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the corridor into image space using the estimated camera pitch. Here we use a
corridor of width +1.5 m and distance range 3 — 40 m in the camera coordinate
system.

The road profile is represented as a parametric B-Spline surface as in [176].
B-Splines are a basis for the vector space of piecewise polynomials with degree
d. The basis-functions are defined on a knot vector ¢ using equidistant knots
within the observed distance interval. A simple B-Spline least square fit tries to
approximate the 3D measurements optimally. However, a more robust estimation
over time is achieved by integrating the B-Spline parameter vector ¢, the camera
pitch angle a and the camera height H into a Kalman filter. Finally, the filter
state vector is converted into a grid of distances Z; and their corresponding road
height values h; as depicted in Figure 5.2. The number of bins of the grid will
be as accurate as the B-Spline sampling.

‘hisa : hi2 143 hiva
Zin1 Zi+2 Zi+a Ziva

Figure 5.2: Road surface modeling. Distances grid and their corresponding
height values along with camera height and tilt angle.

5.3.2 Outlier Removal

In general, the method of [176] works well if the measurements provided to the
Kalman filter correspond to actual road points. The computation of the corridor
removes a considerable amount of object points. However, there are a few cases
in which the B-Spline road modeling still leads to bad results. These cases are
mainly caused by vertical objects (cars, motorbikes, pedestrians, cyclists, etc.)
in the vicinity of the vehicle. Reflections in the windshield can cause additional
correlation errors in the stereo image. If we include these points, the B-spline
fitting achieves a solution which climbs or wraps over the vertical objects.

In order to avoid this problem, the variance of the road profile for each bin
o2 is computed. Thus, if the measurements for a specific bin are out of the
bounds defined by the predicted height and the cumulative variance, they are not
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added to the filter. Although this alternative can deal with spurious errors, if the
situation remains for a consecutive number of iterations (e.g., when there is a
vehicle stopped in front of the host vehicle), the variance increases due to the
in-availability of measurements, and the points pertaining to the vertical object
are eventually passed to the filter as measurements. This situation is depicted in
Figure 5.3.

raad.profile estimation

o, GUMUlative variance

road.profile estimation

wone, GYMUlative variance

Figure 5.3: Wrong road profile estimation when a vertical object appears in the
corridor for a consecutive number of frames. The cumulative vari-
ance for the bin in which the vertical object is located increases and
the object points are eventually passed to the Kalman filter.

Accordingly, a mechanism is needed in order to ensure that points correspond-

ing to vertical objects are never passed to the filter. We compute the variance of
all measurements for a specific bin and compare it with the expected variance in
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Figure 5.4: Rejected measurements for bin ¢ at distance Z; since measurements

variance o? is greater than the expected variance o2; in that bin.

bin variance 0241

Figure 5.5: Accepted measurements for bins ¢ and ¢ + 1 at distances Z; and
Zi4+1 since measurements variances o2 and Ufﬂ are lower than the

expected variances o2; and agiH in these bins.

the given distance. The latter can be computed by using the associated standard
deviations o, via error propagation from stereo triangulation [134, 176]. If the
computed variance o2 is greater than the expected one o2, we do not rely on
the measurements but on the prediction for that bin. This is useful for cases in
which there is a vertical object like the one depicted in Figure 5.4.

However, in cases in which the rear part of the vertical object produces 3D
information for two consecutive bins, this approach may fail depending on the
distance to the vertical object. For example, in Figure 5.5 the rear part of
the vehicle yields 3D measurements in two consecutive bins Z; and Z;4+1 whose
variance is lower than the expected one for those bins. In this case, measurements
will be added to the filter which will yield unpredictable results.
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maxH (Z) 0.0075Z% + 0.0085Z + 0.06

minH(Z) = =-0.0075%Z2 - 0.0085Z - 0.06

Figure 5.6: Second order polynomial function used to accept/reject measure-
ments at all distances.

We therefore define a fixed region of interest, in which we restrict measure-
ments to lie. To that effect, we quantify the maximum road height changes
at different distances and fit a second order polynomial, see Figure 5.6. The
fixed region can be seen as a compromise between filter stability and response to
sharp road profile changes (undulating roads). Apart from this region of interest,
we maintain the before-mentioned test on the variance, to see if measurements
corresponding to a particular grid are added or not to the filter.

5.3.3 System Integration

Initial ROIs R, are generated using a sliding window technique where detector
windows at various scales and locations are shifted over the depth map. In
previous work [72], the flat-world assumption along with known camera geometry
restricted the search space. Pitch variations were handled by relaxing the scene
constraints [72], e.g. camera pitch and camera height tolerances. In our approach,
the use of dense stereo allows a reliable estimation of the vertical road profile,
camera pitch and tilt angle.

In order to adapt the subsequent detection modules, we compute new camera
heights H; and pitch angles o] for all bins of the road profile grid. After that,
standard equations for projecting 3D points into the image plane are used.

First of all, dense depth maps are filtered as follows: points P, = (X, Y;, Z;)
under the actual road profile, i.e., Z; < Z, < Z;+1 and Y, < h; and over the
actual road profile plus the maximum pedestrian size, i.e. Z; < Z, < Zit1
and Y, > h; + Hmmaz, are removed since they do not correspond to obstacles

44



5.3 Dense Stereo-Based ROl Generation

(b)

(c) (d)

Figure 5.7: System example with estimated road profile and pedestrian detec-
tion. (a) Final output with detected pedestrian marked red. The
magenta area illustrates the system detection area. (b) Dense stereo
image. (c) Corridor used for spline computation after outlier re-
moval. (d) Spline (blue) fitted to the measurements (red) in system
profile view.

(possible pedestrians). The resulting filtered depth map is multiplexed into N
discrete depth ranges, which are subsequently scanned with windows related to
minimum and maximum extent of pedestrians. Possible window locations (ROls)
are defined according to the road profile grid (we assume the pedestrian stands on
the ground). Each pedestrian candidate region R; is represented in terms of the
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number of depth features DF;. A threshold 8r governs the amount of ROIs which
are committed to the subsequent module. Only ROIs with DF; > 6r trigger the
evaluation of the next cascade module. Others are rejected immediately.

5.4 Multi-Modality Classification

5.4.1 Spatial Depth and Intensity Features

(b) Non-Pedestrian

Figure 5.8: Intensity and depth images for pedestrian (a) and non-pedestrian
samples (b). From left to right: intensity image, gradient magnitude
of intensity, depth image, gradient magnitude of depth.

Dense stereo provides disparity and depth information for most image areas,
apart from regions which are visible only by one camera (stereo shadow). See
the dark red areas to the left of the pedestrian torso in Figure 5.8(a). Spatial
features can be based on either depth Z (in meters) or disparity d (in pixels). As
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shown in Section 5.2, both are inverse proportional given the camera geometry
with focal length f and the distance between the two cameras B.

Objects in the scene have similar foreground/background gradients in depth
space, irrespective of their location relative to the camera. In disparity space
however, such gradients are larger, the closer the object is to the camera. To
remove this variability, we base our spatial features on depth instead of disparity.

A visual inspection of the depth images vs. the intensity images in Figure 5.8
reveals distinct properties which are unique to each modality. In intensity im-
ages, lower body features (shape and appearance of legs) are the most significant
features of a pedestrian (see results of part-based approaches, e.g. [123]). The
texture of the pedestrian exhibits lots of gradients and characteristic structure
resulting from clothing. In contrast, the upper body area has dominant fore-
ground/background gradients and is particularly characteristic for a pedestrian
in the depth image. There are no significant depth gradients on areas corre-
sponding to the pedestrian body (we assume pedestrians in an upright position).
Additionally, the stereo shadow is clearly visible in the upper-body area (to the
left of the pedestrian torso) and represents a significant local depth disconti-
nuity. This might not be a disadvantage but rather a distinctive feature. The
various salient regions in depth and intensity images motivate our use of fusion
approaches between both modalities to benefit from the individual strengths, see
Section 5.4.2.

To instantiate feature spaces involving depth and intensity, we utilize well-
known state-of-the-art features, which focus on local discontinuities: Histogram
of oriented gradient features with a linear support vector machine classifier
(HOG/IinSVM), see [35]. We assume our approach to generalize to other state-
of-the-art features and classifiers, see [52]. To get an insight into the resulting
HOG features, Figure 5.9 depicts the average gradient magnitude of all pedes-
trian training samples for both intensity and depth. We observe that gradient
magnitude is particularly high around the upper body contour for the depth im-
age, while being more evenly distributed for the intensity image. Further, almost
no depth gradients are present on areas corresponding to the pedestrian body.
Figure 5.9 further shows the weights of the linear SVM classifier after training
on the corresponding feature sets. In this visualization, each "pixel” results from
averaging the SVM weights over the underlying block of HOG features. In the
intensity domain, HOG blocks corresponding to head/shoulder and leg regions
have the highest weight. In case of the depth features, the upper body (coarse
depth contrast between foreground and background) and torso areas (uniform
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texture) are most indicative of a pedestrian.

(a) Intensity features (b) Depth features

Figure 5.9: Average gradient magnitude and SVM weights averaged over HOG
blocks for intensity (a) and depth images (b) in the training set.

5.4.2 Classifier-Level Fusion Approach

A popular strategy to improve classification is to split-up a classification prob-
lem into more manageable sub-parts on data-level, e.g. using mixture-of-experts
or component-based approaches [51]. A similar strategy can be pursued on
classifier-level. Here, multiple classifiers are learned on the full dataset and their
outputs combined to a single decision. Particularly, when the classifiers involve
uncorrelated features, benefits can be expected. We follow a Parallel Combina-
tion strategy [43], where multiple feature sets (i.e. based on depth and intensity,
see Section 5.4.1) are extracted from the same underlying data. Each feature set
is then used as input to a single classifier and their outputs are combined. As op-
posed to creating a joint feature-space, classifier-level fusion does not suffer from
effects related to the increased dimensionality of the joint space, see [147, 152].

For classifier fusion, we utilize a set of fusion rules which are explained below.
An important prerequisite is that the individual classifier outputs are normalized,
so that they can be combined homogeneously. The outputs of many state-of-
the-art classifiers can be converted to an estimate of posterior probabilities [142].
We use this in our experiments.

Let xx,k = 1,...,n, denote a (vectorized) sample. The posterior for the k-th
sample with respect to the j-th object class (e.g. pedestrian, non-pedestrian),
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estimated by the i-th classifier, ¢ = 1,...,m, is given by: p;;(xx). Posterior
probabilities are normalized across object classes for each sample, so that:

> i (k) =1 (5.8)
J
Classifier-level fusion involves the derivation of a new set of class-specific con-
fidence values for each data point, g;(xx), out of the posteriors of the individual
classifiers, p;;(xx). The final classification decision w(xy) results from selecting
the object class with the highest confidence:

(o) = argmax (g; (xe)) (5.9)

We consider the following fusion rules to determine the confidence g; (xx) of
the k-th sample with respect to the j-th object class:

Product Rule Individual posterior probabilities are multiplied to derive the com-
bined confidence:

a5 (1) = [ [ wis (xi)) (5.10)

7

Linear SVM Rule A linear support vector machine is trained as a fusion classi-
fier to discriminate between object classes in the space of posterior probabilities
of the individual classifiers:

Let pjx = (p1j (X&), - -, pmj (xx))T denote the m-dimensional vector of in-
dividual posteriors for sample x; with respect to the j-th object class. The
corresponding hyperplane is defined by:

fi (Pjk) = Wj  Pjk +b; (5.11)

Here, w; denotes the linear SVM weight vector, b; a bias term and - the dot
product. This linear SVM fusion rule equals a weighted sum of the individual
classifier outputs, with weights and an additional bias term learned from the
training set. The SVM decision value f; (p;jx) (distance to the hyperplane) is
used as confidence value:

qj (xx) = fi (Pjr) (5.12)
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5.5 Experiments

We tested our integrated pedestrian detection system on a 6:40 min (5919 im-
ages) sequence recorded from a vehicle driving through the canal area of the city
of Amsterdam during daytime. Because of the many bridges and speed bumps,
the sequence is quite challenging for the road profiling module. Additionally, due
to the complexity of the scenery this sequence is very demanding for a pedestrian
classifier.

Our training samples comprise non-occluded pedestrian (in an upright posi-
tion) and non-pedestrian cut-outs from both intensity and corresponding depth
images, captured from a moving vehicle in an urban environment. See Table 5.1
and Figure 5.10 for an overview. All samples are scaled to 48 x 96 pixels with
an eight-pixel border to retain contour information. For each manually labelled
pedestrian cut-out, we randomly created 18 samples by horizontal mirroring and
geometric jittering. Non-pedestrian samples were the result of a pedestrian shape
detection pre-processing step with a relaxed threshold setting, i.e. containing bias
towards more difficult patterns. We further applied an incremental bootstrapping
technique, e.g. [52], by collecting additional false positives of the corresponding
classifiers on an independent sequence and re-training the classifiers on the in-
creased data set.

HOG features are extracted from those samples using 8 x 8 pixel cells, accu-
mulated to 16 x 16 pixel blocks with 8 gradient orientation bins. Identical feature
/ classifier parameters were used for intensity and depth modalities.

In our test sequence, pedestrian bounding boxes were manually labelled. Their
3D position is obtained by triangulation in the two camera views. Only pedes-
trians with a distance of 12-27 in longitudinal and +4m in lateral direction were
considered required. Pedestrians beyond this detection area were regarded as
optional, i.e. the systems are not rewarded / penalized for correct / missing de-
tections. This results in 1684 required pedestrian single-frame instances in 66
distinct trajectories which are required to be detected by our pedestrian detection
system.

The match of a ground truth bounding box g; to a system alarm a; we use the
bounding box coverage I'(g;,a;) as described in Chapter 4.2. In the following
experiments we chose 0, = 0.25 .

We evaluate the benefit of dense stereo on ROI generation and pedestrian
classification both in isolation (Section 5.5.1 and 5.5.2) and in an integrated
system variant (Section 5.5.3). Our baseline system involves static scene ge-
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‘Pedestrians Pedestrians | Non-Pedestrians

(labelled) (jittered) (bootstrapped)
Training Set (intensity) 16497 296946 183501
Training Set (depth) 16497 296946 188301

Table 5.1: Training set statistics. The number of pedestrian samples is identical
for depth and intensity images. Non-Pedestrians samples for intensity
and depth slightly vary due to the bootstrapping process.

ometry (flat-world assumption with fixed camera height and pitch) combined
with intensity-only HOG/linSVM classification (we use the original code provided
by [34]).

5.5.1 ROI Generation

The performance of the ROI generation module is evaluated in combination with
the HOG/linSVM pedestrian classifier on intensity features only. Figure 5.11
compares the performance of the baseline system (flat-world assumption, fixed
camera height and pitch) to the proposed ROI generation technique using a)
pitch estimation with a flat-world assumption and b) pitch estimation with road
profiling. It is observed, that pitch estimation (magenta x) already improves the
performance over the baseline (blue 4), by distributing ROls on a more adequate
ground. An additional improvement is obtained by disregarding the flat-world
assumption and estimating the actual road profile in front of the vehicle (green

). For a detection rate of, say, 60%, the number of false positives is reduced
by a factor of 2.3 using integrated pitch estimation and road-profiling compared
to the baseline.

5.5.2 Multi-Modality Classification

Figure 5.12 compares the performance of classifiers in different modalities (depth
and intensity), as well as fusion strategies. All classifiers are used with the base
assumption of flat world and fixed camera height and pitch, i.e. the proposed
dense stereo based dynamic scene constraints are not (yet) in place. Our results
show, that a HOG/linSVM classifier on intensity features (blue +) outperforms
the corresponding classifier on depth features (red x).

The application of any proposed multi-modality fusion strategies, see Sec-
tion 5.4.2 results in a significant performance boost (magenta ¢ and green []).
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(a) Pedestrian samples

(b) Non-Pedestrian samples

Figure 5.10: Overview of (a) pedestrian and (b) non-pedestrian samples (inten-
sity and corresponding depth images).

The performance difference between both fusion strategies is only minor. At a
detection rate of 60% for example, the combined intensity-depth classifier re-
duces false positives by a factor of 3.3 over the intensity-only classifier. This
clearly shows, that the different characteristics of depth and intensity can indeed
be exploited, see Section 5.4.1.

5.5.3 Combined System Performance

In our next experiment, we combine the two best performing variants for ROI
generation and pedestrian classification from our previous experiments: ROl gen-
eration using dense stereo based dynamic scene geometry and intensity-depth
classification. Results are given in Figure 5.13. The integrated system (green [])
significantly boosts performance over the baseline system (blue +). At a detec-
tion rate of 60% for example, the number of false positives is reduced by a factor
of 7.5, which almost equals the product (a factor of 7.6) of the individual benefits
shown (factors of 2.3 for ROl generation and 3.3 for classification, respectively).
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Figure 5.11: ROC performance of different variants of stereo-based ROI gen-
eration combined with an intensity-only HOG/IinSVM pedestrian
classifier.

This shows that the obtained performance boosts in the two different system
modules are highly orthogonal to each other.

In our final experiment, we add a (rather simple) tracker to the system, to
obtain results on trajectory-level. As described in Chapter 4.4, we distinguish
between two types of trajectories:"class-A” and “class-B" trajectories. We com-
pare the performance of the integrated system (dynamic scene geometry and
intensity-depth classification) versus the baseline system (static scene geometry
and intensity-only classification). Input to the tracker are pedestrian detections
which were obtained from both systems by setting the classifier thresholds to
correspond to a detection rate of 50% at frame-level.

Non-maximum suppression using the classifier outputs is applied to overlap-
ping detections with a bounding box coverage of 50%. Remaining detections are
tracked using a 2.5D o — f3 tracker, see [72]. New tracks are started after 3 con-
tinuous detections and closed after 2 successional missed detections. Table 5.2
summarizes the performance of the two systems. Frame-level sensitivity of the
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Classification Performance
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Figure 5.12: ROC performance of stereo-based ROI generation combined with
intensity-depth HOG/linSVM pedestrian classification.

system using stereo information is slightly increased compared to the baseline
system. But the main benefit lies in the reduction of false positives by a factor
of approximately 5. The use of dense stereo information for both road profiling
and classification reduces the number of false positives per frame from 0.336 to
0.066. A comparison of the observed benefit (factor of 5) to the system per-
formance without tracking (benefit of factor 7.5) shows, that tracking reduces
the absolute performance differences of the systems. Similar effects have been
observed in [52]. Figure 5.14 illustrates system performance, including a typical
false positives in a cluttered image region, and a missed pedestrian in not fully
upright pose.

5.5.4 Processing Time

The hardware implementation of our SGM stereo requires 17 ms per frame.
Other system components run in (unoptimized) C/C++ code on a single core
2.66 GHz Intel CPU. Camera pitch estimation requires 3.5 ms per frame on
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Figure 5.13: ROC performance comparing the baseline system using
HOG/IinSVM classifier on intensity images with the proposed
system using road-profiling, pitch estimation and HOG/linSVM
classifiers on depth and intensity images with SVM fusion.

average with the additional road profiling taking 26 ms. With a static pitch and
flat world assumption the ROI grid is generated only once and reused in every
frame. Incorporating pitch or road profile information requires an adjustment
of the grid which takes 4 ms per frame. Depending on the configuration of
earlier modules, the number of ROls passed to the classifier vary. For the system
using static pitch and flat world, about 700 ROlIs per frame need to be classified,
on average. Using pitch and road profile estimation this number is reduced to
about 600 ROIs per frame. HOG features need to be extracted and classified
from the depth and intensity data which doubles the costs for classification.
On a multiprocessor architecture, feature extraction and classification for each
modality could be processed in parallel. Processing time for any of the described
rules to fuse the classifier decision values are minor and hence neglected. In
our setup, feature extraction, classification, fusion and tracking requires approx.
500 ms per frame, on average. Note that processing costs do scale sub-linearly
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F A B
Sensitivity 55.58% 60.53% 77.63%
Base System | Precision 64.07% 52.36% 56.74%
FA frame, min 0.336 40.80 37.05
Sensitivity 57.54% 63.16% 78.95%
Prop. System | Precision 90.38% 81.71% 84.09%
FA frame, min 0.066 9.30 8.10

Table 5.2: System performance of the integrated system vs. the baseline system
after tracking.

Figure 5.14: Examples of system detections (red), false positives ( ) and
missed pedestrians (blue).

with the number of ROls, since feature computation can be shared among several
overlapping ROlIs (in the same modality), e.g. using integral histograms [186].
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5.6 Discussion

Our performance evaluation focused on demonstrating the relative improvements
arising from the use of dense stereo, i.e. the reduction of false positives at con-
stant sensitivity levels by a factor of 7.5 after the classification module and by
a factor of 5 after the tracker, respectively. On absolute terms, the (class-B)
trajectory-level system performance of approximately 80% sensitivity and 8 false
detections per minute (cf. Table 5.2) seems far from performance levels neces-
sary in a realistic application. However, this perceived performance gap for the
most part stems from the exceeding difficulty of our test sequence (undulating
roads, bridges, speed bumps, very complex urban scenery), which was specifically
chosen as a challenging test bed for the proposed road profiling module, see Sec-
tion 5.5. Other studies have demonstrated differences of orders of magnitude in
the performance of otherwise identical systems resulting from the use of different
datasets, e.g. [41, 170].

In this work, we did not heavily optimize the feature sets with regard to the
different modalities. Instead, we transferred general knowledge and experience
from the behavior of features and classifiers from the intensity domain to the
depth domain. At this point, it is not clear, if (and how) additional modification
and adaptation of the feature sets could further improve performance.

We did not particularly focus on processing time constraints in this chapter.
However, we do expect that software optimization and hardware implementation
(e.g. DSP, FPGA) can result in real-time applicability of the proposed algorithms,
cf. [12, 87, 122].

5.7 Conclusion

We investigated the benefits of dense stereo for a pedestrian detection system
on challenging real-world data (i.e. undulated roads, bridges and speed bumps).
The improved ROI generation utilizes dense stereo data for pitch estimation,
road profiling and obstacle detection. Compared to our base system with flat
world assumption and fixed pitch a reduction of false positives by a factor of 2.3
at similar detection rates was demonstrated. By fusing classifier responses from
different modalities (intensity and depth), we additionally obtained a reduction
of false positives by a factor of 3.3. Combining the proposed ROI generation and
high-level fusion resulted in a reduction of false positives by a factor of 7.5 at
classification-level and by a factor of 5 at tracking-level, respectively.
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Chapter 6

Fusion of Generic Obstacle Detection and
Pedestrian Recognition

6.1 Introduction

The contributions in this chapter are as follows. The main contribution is the
description of an integrated active pedestrian safety system, which combines
sensing, situation analysis, decision making and vehicle control. The secondary
contribution concerns the sensing component; it is based on stereo vision and
fuses two complementary approaches for added robustness: motion-based object
segmentation and pedestrian recognition. The highlight of the system is the
ability to decide within a split second whether to perform automatic braking or
evasive steering, and to execute this maneuver reliably, at relatively high vehicle
speed (up to 50 km/h).

6.2 Video-based Pedestrian Sensing

6.2.1 Single-Frame Pedestrian Recognition (PedRec)

Initial regions of interest (ROIs) are generated using the sliding window technique
described in [72]. The depth image, obtained by stereo vision, is scanned with
windows related to the maximum extents of pedestrians, assuming the latter are
standing on the ground plane, while taking into account appropriate positional
tolerances (e.g. vehicle pitch, slightly curved roads vertically). The locations
where the number of (depth) features exceeds a percentage of the window area
are added to the ROI list for the subsequent pedestrian classification. Candidates
are classified following the HOG/linSVM approach of Dalal and Triggs [34]. Mul-
tiple detector responses at near identical locations and scales are addressed by
applying confidence-based non-maximum suppression to the detected bounding
boxes using pairwise box coverage: two system detections a; and a; are subject
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A(aiﬂaj)

A(a0a,)’ the ratio of

to non-maximum suppression if their coverage I'(a;, a;) =

intersection area and union area, is above 6,,.

The distance of a detected pedestrian in the image is estimated using the
computed dense stereo image. Because the exact contour of the pedestrian is
unknown all possible pedestrian shapes are considered in the depth estimation
process using a probability mass function, as described in Chapter 4.2. Figure 4.3
illustrates the depth estimation procedure. Distance values in the depth image
for a given bounding box are weighted and averaged using the probability mass
function. The 3D position of the pedestrian is given by projecting the vertical
line going through the bounding box center and the computed box distance.
Detected 3D pedestrian locations are passed untracked to the fusion module.

6.2.2 Detection of Moving Objects (6D-Vision)

Using a stereo camera set-up, the 3D structure of the observed scene can be
immediately obtained by a stereo algorithm (e.g. [62, 88]). Usually, to identify
individual objects, this information is accumulated in an evidence-grid-like struc-
ture, followed by a connected-component analysis [117]. To obtain the motion
of the identified objects, the objects are then tracked over time and their velocity
is estimated by means of filtering. The disadvantage of this standard approach
is that the performance of the detection depends highly on the correctness of
the segmentation. Especially moving objects close to stationary ones — e.g. the
moving pedestrian behind the standing vehicle are often merged and therefore
not detected.

To overcome this problem, we proposed in [64, 144] to base the detection not
only on the stereo information, but also on the 3D motion field. The reconstruc-
tion of the 3D motion field is performed by the so called 6D-Vision algorithm.
The basic idea is to track points with depth known from stereo vision over two
and more consecutive frames and to fuse the spatial and temporal information
using Kalman filters. The result is an improved accuracy of the 3D-position
and an estimation of the 3D-motion of the considered point at the same time.
This fusion implies the knowledge of the motion of the observer, also called the
ego-motion. It is estimated from the image points found to be stationary, using
a Kalman filter based approach. However, other methods, like for example [6]
or [105] can be easily integrated.

In the current setup, the image points are tracked by a KLT tracker [162],
which provides sub-pixel accuracy and tracks the image points robustly for a
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10m

om 10m 20m X

Figure 6.1: Estimation result of the 6D-Vision algorithm. The arrows point to
the estimated 3D position in 0.5 s, projected back onto the image.
The color encodes the absolute velocity: Static points are encoded
green, points moving at a speed of 4.0 m/s or above are encoded
red.

long sequence of images. It was optimized with respect to speed, allowing the
complete motion-based object detection module to analyze up to 5000 points in
real-time (25 fps). The stereo computation is performed by a hardware imple-
mentation of the semi-global matching algorithm [88]. However, any comparable
optical flow and stereo algorithm can be used.

The estimation result of the 6D-Vision algorithm is shown in Figure 6.1. Here,
the arrows point from the current 3D-position to the predicted 3D-position in
0.5 s. Looking at the bird’'s-eye view in the right image, the moving pedestrian
is now easily distinguished from the standing vehicle.

Objects are identified as groups of contiguous coherent motion vectors. Since
the 6D-Vision algorithm provides not only the state estimates, but also their
uncertainty, the Mahalanobis distance is used as a similarity measure in the
cluster analysis.

6.2.3 Fusion of Motion-based Object Detection (6D-Vision) and
Pedestrian Recognition (PedRec)

For an accurate prediction of pedestrian movement, both positional and velocity
information is important. Input from 6D-Vision and PedRec modules are fused
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using a Kalman filter. The state S of the filter is modeled as
S=[zyuvs v, ]"

with z/y being the longitudinal/lateral position of the pedestrian to the vehicle
and vz /vy being its absolute longitudinal/lateral velocity in the world. The
measurement vectors associated with the 6D-Vision and PedRec modules are

]T

T
Za=[TYva vy ], Zpea=[TY],

where z/y and v /v, are various measurements of the state variables defined
above (the mapping from state to measurements is thus trivial). Current mea-
surements from both modules are integrated into the filter using successive up-
date steps.

We assume a constant velocity pedestrian motion model (acceleration is mod-
eled in the process noise covariance). The transition matrix F is given by

-
(6.1)

o O O
S O = O
= =)

0
1
0

with T' being the cycle time of the camera (40 ms).

Ego-motion of the vehicle is compensated in the prediction step of the Kalman
Filter. Object translation with respect to the vehicle can be computed assuming
a “bicycle” model [104] for the vehicle motion with constant steering angle and
velocity between two measurement points. The required velocity and yaw rate
data for the ego-motion-compensation is given by on-board sensor data and is
accessible in the camera cycle time.

Measurement to track association is done using a global nearest neighbor
(GNN) approach with prior rectangular gating on object positions. The Maha-
lanobis distance between predicted state and measurement is used for the data
association. For pedestrian detections this means the position is used for mea-
surement to track association, while for 6D-Vision detections the velocity is used
additionally.

Track initialization and termination is handled depending on the number of
associations to a track. New tracks are initialized using measurements that could
not be assigned to an existing track. In order to suppress spurious detections,
tracks start in the state hidden. A track enters the state confirmed after a certain

62



6.3 Situation Analysis, Decision, Intervention, and Vehicle Control

number n of measurements have been assigned to the track. Here we use n = 2,
which means a detection from both modules at the same time directly results in
a confirmed pedestrian track. Only tracks where a pedestrian detection has been
assigned to are marked as valid pedestrian track. For all tracks a history of their
state over time, including measurement to track associations is kept. Tracks are
terminated after a user defined number of missed associations m.

Both modules operate independently at different cycle times. The 6D-Vision
module operates in the fixed camera cycle time (25 fps). Processing time of the
PedRec module varies depending on the scene complexity with a lower limit of
15 fps. Measurements have a common time-stamp defined by the frame-stamp
of the image they have been generated on. In situations where measurements
arrive out of sequence and can not be integrated in the common filter state,
the track history is used to check measurements to track associations in the
past. Possible assignments lead to an update of the association information.
Although the filter state is not updated using the out of sequence measurements
the updated association information effects the track management, allowing a
track to enter the state confirmed. Additionally PedRec associations lead to a
validated pedestrian track.

The initial state of the Kalman filter is derived from the first measurement. If
a track is initialized by a pedestrian detection the velocities of the system state
are set to zero. A track started by a 6D-Vision detection uses the measured
velocities as initial value.

Finally, position, velocity and extent of the tracked pedestrians are passed to
the situation analysis module.

6.3 Situation Analysis, Decision, Intervention, and Vehicle
Control

Situation analysis and vehicle control are the components of a driver assistance
system which generate a machine level understanding of the current situation
(based on the previously described sensor information) and take appropriate ac-
tions. Figure 6.2 depicts the relationships between trajectory generation, situation
analysis, decision & intervention, and vehicle control.

Situation analysis predicts how the current driving situation will evolve and
automatically evaluates its criticality using measures as e.g. time-to-collision,
time-to-steer, and time-to-brake. This criticality assessment serves as the basis
for a decision module which triggers appropriate maneuvers for collision avoid-
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ance and collision mitigation. Such maneuvers are realized by specialized vehicle
controllers. Naturally, vehicle control and situation analysis are closely coupled,
since both rely on accurate, realistic models of evasive maneuvers. These models
are provided by a trajectory generation module. The following sections will briefly
describe the aforementioned modules (see [98] for a detailed description).

Situation Analysis
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Figure 6.2: System structure of situation analysis and vehicle control.

6.3.1 Trajectory Generation

The objective of trajectory generation is twofold. First, trajectory generation
has to provide accurate models of evasive steering maneuvers that fulfill several
requirements: The generated trajectory for evasion should be as comfortable as
possible, feasible (i.e. drivable by the ego vehicle), and should also lead to a safe
transition with minimal side-slipping of the vehicle during the automatic evasive
maneuver. Snatch of steering wheel can be dangerous and must therefore be
avoided.
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Second, trajectory generation should also provide the reference input variables
for lateral control such as yaw angle, yaw rate, etc. Different trajectory types
have been investigated and a sigmoidal blending function based on a polynomial
approach as proposed in [66] is used to model the evasive maneuver path.

A polynomial model of seventh degree for the evasive path

yerj = f(@) =) bi-a’, (6.2)

1=0

where y¢r; is the desired lateral and x the longitudinal offset from the start-
ing point of the evasion maneuver, allows to fulfill the requirements regarding
comfort and feasibility. To meet these specifications, the determination of the
polynomial coefficients b; is based on several constraint equations which limit the
maximum lateral acceleration ay,maz, the derivatives of the lateral offset and of
the curvature, respectively. For the derivation of the polynomial coefficients b;
in Eq. (6.2) we refer to [98].

Based on the polynomial function and on the measured vehicle velocity v, the
important input variables for lateral control (lateral offset y:,;, curvature cirj,
heading angle x:r;) are determined at every sample time step.

6.3.2 Situation Analysis

A commonly employed approach for collision risk assessment involves criticality
measures such as Time-To-Brake (TTB), Time-To-Steer (TTS), etc.. TTB, for
example, denotes the remaining time span in which the driver can still avoid a
collision by braking with maximum deceleration. Detailed descriptions of Time-
To-X criticality measures and their application in driver assistance systems for
collision avoidance and mitigation can be found in [85].

In this chapter, TTB and TTS are used to trigger automatic collision avoidance
by either braking or steering maneuvers. The algorithm not only needs to find
the latest steering maneuver which avoids a collision with the pedestrian in our
driving path, but also has to ensure that the emergency maneuver does not result
in a collision with any other detected object in the scene (e.g. cars, pedestrians;
the integration of such free-space sensing component is left for future work, see
Section 6.5). To fulfill these requirements we employ a numerical simulation
method, which allows efficient, real time computation of Time-To-X criticality
measures even for complex maneuvers. In addition, this numerical method can
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verify if an evasive steering maneuver can be performed without collision.

As depicted in Figure 6.2, the numerical simulation methods consist of three
main components: prediction, collision detection, and Time-To-X search. In the
prediction step, a sequence of potential future ego and other object states

{tk7Z€gO,k7Z(17bj,k7"'7zggj,k} ; k= 1...K, (63)

is computed, where t is the k-th time stamp of the prediction, K the prediction
horizon, Z.4o,1 a vector describing the ego vehicle’s pose and motion at time ¢y,
and zibj,k, ey z%j,k the pose and motion of all M objects provided by the sensor
data fusion (Section 6.2.3). To obtain these predictions, we rely on appropriate
motion models for all objects and the ego vehicle, thus making assumptions on
their future behaviors.

Given the predicted states, we can identify potential collisions between the
system vehicle and all objects in the scene by intersecting corresponding positions
resulting from z. 4., and zibjyk, RN z%jyk, respectively. If a collision is detected,
we start the search for the latest possible collision avoidance maneuver.

To accomplish this task, we have defined two emergency maneuvers represent-
ing braking with maximum deceleration of —10m/s2 and steering as modeled in
Section 6.3.1, respectively. Each pairing (tx,Zcgo,x) of Eq. (6.3) constitutes a
potential starting point for an automatic emergency maneuver. Using a binary
search algorithm, we can efficiently find the latest time steps at which braking or
steering maneuvers have to be triggered that do not lead to a collision with any
object in the scene. These time steps are discrete estimates of TTB and TTS.

6.3.3 Decision & Intervention

The “decision & intervention” module is the core of the assistance system, since
it associates the function with the driver's behavior. Due to the high injury risk
of a pedestrian in an accident, collision avoidance is the primary objective of the
function. In order to identify the best way to support the driver, it is necessary
to know the driver’s current driving intention. The driver monitoring algorithm is
using signals from the vehicle, e.g. accelerator and brake pedal position, speed,
lateral and longitudinal acceleration, steering angle and steering rate to deter-
mine the current driving maneuver of the driver. If the driver is not reacting
appropriately to the dangerous situation, an optical and acoustic warning will be
given, so he can avoid the collision himself. In the case a function intervention
is necessary to avoid the collision, full braking takes priority over the evasive
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maneuver. The full braking will be triggered when TT'B = 0 and the driver is
neither doing an accelerating nor an evasive maneuver. If the collision cannot be
prevented with full braking any more (T'T'B < 0), the evasive steering maneuver
will be activated at T1'S = 0, provided the situation analysis has computed that
this can be executed without collision; the evasive maneuver using the vehicle
control to compute the necessary steering torque. The function ramps down the
steering torque, when the evasive maneuver has finished. Afterwards the function
is available immediately, when needed. Automatic evasion results in a fixed lat-
eral offset of the vehicle in the range of 80—-100 cm. In case collision free evasive
steering would not be possible because of, say, detected oncoming traffic, the
decision would be to brake (collision mitigation).

The design of the prototype function allows the driver to overrule the steering
intervention at any time. If the driver holds the steering wheel, he will weaken
or suppress the steering of the system. A distinct activity of the accelerator or
brake pedal cancels the evasive maneuver immediately. Similar exit conditions
exist for the full braking intervention.

In order to minimize dynamic misalignment of the passengers during the system
intervention additional protective measures are triggered. The function controls
the electromotive reversible seat-belt pretensioners and the side-gated air cush-
ions of the seating and backrests will be inflated. When the system has finished
the intervention, the tension of the reversible seat belt pretensioners is released
automatically and the air cushions of the seats are vented to the previous position.

6.3.4 Vehicle Control

Vehicle control consists of two parts: longitudinal control for automatic braking
and lateral control for evasion. Automatic braking is triggered when TTB=0s
(i.e. at the latest point in time when the ego vehicle can avoid the collision
by full emergency braking), thus the longitudinal vehicle controller will set a
maximum deceleration of —10 m/s?. Steering maneuvers (or lateral control) for
automatic collision avoidance entail highly dynamic lateral movements of the ego
vehicle (here, lateral motion refers to motion perpendicular to our driving lane).
The dynamics of such maneuvers with high lateral acceleration are nonlinear. In
general, the lateral offset yiarger as defined in Section 6.3.1 may vary from only
a few centimeters to a full lane change depending on the size of the obstacle, its
velocity, and the free space available for the evasive maneuver. Here, however,
for pedestrian evasion a fixed lateral offset is used.
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Figure 6.3: (top) Test track set-up with the pedestrian dummy sliding along
a traverse in front of the vehicle (bottom) Close-up of pedestrian
dummy.

Collision avoidance by steering requires precise lateral control of the ego vehicle.
The controller permanently compares the reference position along the evasive
maneuver trajectory as specified in Eq. (6.2) to the actual vehicle position and
thus requires accurate and reliable knowledge of the ego vehicle’s pose. The
position of the vehicle is reconstructed from odometers and inertial sensors readily
available in today's vehicles. To account for the nonlinear lateral dynamics of
the evasive maneuver, a control strategy combining feed forward and feed back
control is used, see [67, 98] for a detailed description.

6.4 Experiments

6.4.1 Set-up

Our vehicle prototype is a Mercedes-Benz S-Class, with a stereo camera mounted
behind the windshield. Figure 6.4 depicts the main components of the prototype.
The stereo base line is 30cm and each camera has a resolution of 640 x 480
pixels and a focal length of 12mm. Two computers are mounted in the trunk;
a 4GHz Quad Core Pentium with the image processing and fusion algorithms
and a 2.2GHz dual core Pentium with the function specific algorithms. They
are connected to the CAN network of the vehicle, which provides the required
vehicle signals, such as speed and steering angle.

The vehicle prototype works with a conventional power steering, as it is used
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Figure 6.4: Main components of the prototype system.

in the production vehicles. In addition, the steering possesses an electric steering
torque actuator. It allows inducing an additional steering torque up to 5Nm at
the steering wheel to realize the automatic evasive maneuver. Braking and driver
warning (display instrument panel, loudspeakers) were implemented using the
Mercedes-Benz series control units. In addition, seat air cushions were inflated
and seat belts were pre-tensioned in the event of a near-crash.

In order to test the prototype functionality, a traverse construction was installed
on a proving ground, under which a pedestrian dummy, hung by a set of wires,
can be moved across the road. See Figure 6.3. An electronic device allowed
reproducible movement of the pedestrian dummy. The synchronisation of the
pedestrian dummy and the vehicle was achieved by a light barrier.

6.4.2 Test of Video Sensing Component

We first discuss the evaluation of the video sensing component only. A total of
22 scenarios were staged, covering real world situations of varying complexity, see
Figure 6.11. The scenarios involve different numbers of pedestrians, geometrical
lay-outs, walking speeds and visibility conditions. For safety reasons, lateral
pedestrian movement resulting in near-collisions was solely performed with the
dummy. Furthermore, vehicle speed was reduced to 30 km/h in those scenarios
(S11, S13, S17, S21, S22) where a real pedestrian was nearing the vehicle side
up to 1.5 m.
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3D ground truth positions of pedestrians with respect to the vehicle were
obtained by manual labeling the corresponding bounding boxes in the camera
images and by triangulation. Partially occluded pedestrians were labeled by a
bounding box containing the visible body parts. We defined a sensor coverage
range of 7 — 27m in front and up to 6m to each side of the vehicle medial axis,
which was covered by both the 6D-Vision and PedRec modules. In this area
all pedestrians were ‘required’, i.e. were needed to be detected by the system
(even if only partially visible). Outside this area, pedestrians were ‘optional’,
we did not credit or penalize for system detections. In all, this resulted in 48
required pedestrian trajectories and 1700 pedestrian single-frame instances. We
now consider four performance metrics in turn: detection performance, position-
and speed-accuracy and time-to-detect.

Detection performance is related to the number of matches between ground
truth and system-detected object locations. There are two aspects: sensitivity
and precision. Sensitivity relates to the percentage of true solutions that were
found by the system (i.e. detection percentage), whereas precision relates to the
percentage of system solutions that were correct. A sensitivity and precision of
100% is ideal: the system finds all real solutions and produces no false posi-
tives. Performance is evaluated using the frame- and trajectory-level criteria as
described in Chapter 4.4. We distinguish three types of trajectories: “class-A+",
“class-A", “class-B", which have 75%, 50% and 1 frame entries matched.

In comparing system output with ground truth, we need to specify the local-
ization tolerance, i.e. the maximum positional deviation that still allows us to
count the system detection as a match. This localization tolerance is the sum
of an application-specific component (how precise does the object localization
have to be for the application) and a component related to measurement error
(how exact can we determine true object location). We define object localization
tolerance as percentage of distance, for longitudinal and lateral direction (X and
Y’), with respect to the vehicle. For our evaluation of the video sensing compo-
nent, we took X = 15% and Y = 4%, which means that, for example at 10m
distance, we tolerate a localization error (including ground truth measurement
error) of £1.5 and £0.4 m in the position of the pedestrian, longitudinal and
lateral to the vehicle driving direction, respectively.

For this application we allow many-to-many correspondences. A ground truth
location is considered matched if there is at least one system detection matching
it. In practice, this means that in the case a group of pedestrians walking suf-
ficiently close together in front of the vehicle, the system would not necessarily
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have to detect all of them in isolation, it suffices if each true pedestrian is within
the localization tolerance of a detected pedestrian.

Table 6.1 summarizes the pedestrian detection performance. First two columns
relate to 6D-Vision and (single-frame) PedRec output, which form the compo-
nents of the fused system, shown in the last column. The third column represents
the baseline case (termed ‘PedRecTrack'): PedRec in combination with the pre-
viously described Kalman filter, without integrating the 6D-Vision detections.
Two consecutive detections are required for a track to be initialized. After three
missed detections tracks are closed.

From Table 6.1 one observes an improved performance of the fusion system
(fourth column) vs. the baseline PedRec tracking system (third column). This
is mainly due by the successful detections of 6D-Vision of the partially occluded
pedestrians (i.e. upper body visible above parked car), which are not captured
by the current PedRec, see Figure 6.7. By relying on motion, 6D-Vision cannot
always be of help, however. Pedestrian standing or walking slowly (especially in
longitudinal direction) are not well detected, which accounts for the somewhat
lower detection rate (first column). As 6D-Vision is a generic moving object
detection system, false pedestrian positives do not apply (see N/A entries).

Table 6.2 summarizes the obtained positional accuracy for the required pedes-
trians which were detected (i.e. within before-mentioned localization tolerance).
Lateral localization is quite accurate for all the 6D-Vision and PedRec compo-
nents and fusion. Not surprisingly, longitudinal accuracy is lower for all variants.
Here, PedRec has an edge, partly because its measurements are restricted to fully
visible pedestrians.

For a reliable automatic vehicle maneuver, speed accuracy is important in
addition to position accuracy. Figure 6.5 illustrates the estimated speed of the
various configurations on scenario S01, from the time the pedestrian is partially
visible coming behind the parked car. The speed of the pedestrian dummy (2
m/s) is exactly known from the test setup.

Although the dummy is detected early by PedRecTrack system, the initial esti-
mated position is not exact enough to allow a correct two-point filter initialization.
This is because of small errors in depth estimation, caused by including disparity
values belonging to the parked car that is occluding the dummy. Therefore, Pe-
dRecTrack is initialized with a speed of zero (same applies for the fused system).
As Figure 6.5 shows, it takes about one second for the PedRecTrack system to
converge to the correct speed of 2 m/s. The 6D-Vision module, however, tracks
the correct feature points on the moving target, and is able to converge fast to
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6D-Vision PedRec (single-frame) | PedRecTrack | Fusion
Sensitivity (frame level) 66.2% (70.4%) 75% 76.2% 88.9%
Precision (frame level) N/A N/A 100% 100%
# False detected objects (frame level) N/A N/A 0 0
Sensitivity (class-A+ trajectory) 56.3% (62.8%) 54.2% 60.4% 89.6%
Sensitivity (class-A trajectory) 75.0% (83.7%) 81.25% 81.3% 95.8%
Sensitivity (class-B trajectory) 91.7% (100%) 100% 100% 100%
# False Trajectories N/A N/A 0 0
Precision (class-A+ trajectory) N/A N/A 100% 100%
Precision (class-A trajectory) N/A N/A 100% 100%
Precision (class-B trajectory) N/A N/A 100% 100%

Table 6.1: Pedestrian detection performance of baseline system (PedRecTrack, third column) and of proposed fusion
approach (Fusion, last column) on full dataset, 22 scenarios. Between brackets, results on data subset
containing moving pedestrians only.
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6D-Vision | PedRec (not tracked) Fusion
lateral 0.06 (0.06) 0.05 (0.05) 0.06 (0.05)
longitudinal | 0.40 (0.16) 0.17 (0.17) 0.32 (0.31)

Table 6.2: Localization accuracy over defined sensor coverage area (longitudinal
7-27 m, lateral up to 6 m): root mean squared error and (between
brackets) standard deviation in meters
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Figure 6.5: Estimated pedestrian speed using the baseline PedRecTrack, 6D-

Vision and the proposed fusion system. The ground truth speed is
2 m/s.
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the correct speed. For the fused system, integrating the speed information from
the 6D-Vision module helps the filter to converge faster to the correct speed than
the baseline PedRecTrack system.

Finally, we analyze the performance regarding time-to-detect, here defined as
the number of frames it requires to detect a ground-truth trajectory, from first
instance of full pedestrian visibility (a system trajectory that is started beyond
the required sensor coverage range will result in a “time-to-detect” of one frame).
Trajectories that can not be detected by all configurations are excluded. A total
of 42 trajectories remain, the results are shown in Figure 6.6. In analyzing the
results of the individual sequences, we observe that lateral moving pedestrians (2
m/s), for which the lower body part is occluded by the parked cars, are detected
early by the 6D-Vision module, see Figure 6.7. Table 6.3 summarizes the results
for this scenario subset. On the other hand, longitudinal moving pedestrians close
to parked cars are more difficult to segment but pose no problem for the PedRec
module. By fusing detections of both modules, the time to detect a pedestrian
is reduced on average.

6.4.3 Test of Integrated System

We tested the integrated system (sensing, situation analysis, decision making
and vehicle control) on two scenarios S01 and S02. In both scenarios, the vehicle
drives close to 50 km/h and the pedestrian dummy moves from the right side onto
the vehicle's lane with a lateral speed of 2 m/s. In scenario SO1 the pedestrian
dummy is only partially occluded by a parking passenger vehicle. In scenario S02,
the dummy appears behind a parking van and thus can only be detected by our
system significantly later than in scenario S01. The desired vehicle action is to
brake if still possible, otherwise to evade. See Figure 6.12 and 6.13 for snapshots
of the integrated system choosing the correct vehicle action in scenarios S01 and
S02.

PedRecTrack (baseline) | 6D-Vision Fusion
2.4 (2.8) 14 (13) | 1.5 (1.6)

Table 6.3: Number of frames until the pedestrian dummy is detected, from mo-
ment of full visibility: mean and standard deviation (in brackets).
Data computed over 10 trajectories, with initial partial occlusion.
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Figure 6.6: Distribution of the number of frames until a pedestrian is detected,
from the first frame of full visibility, for PedRecTrack, 6D-Vision and
Fusion, respectively. Distribution over occluded and non-occluded
trajectories that were detected (42 in total).
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We experimentally determined the last possible brake time for the vehicle to
come to a complete stop to correspond to a pedestrian distance of 20 m (taking
into account various device latencies). In scenario SO1, the setup is such that
the pedestrian is first fully visible at about 24 m distance (3.8 m lateral) to the
vehicle. This means that the system has only about seven frames (corresponding
to 4.1 m driven) to determine pedestrian position and speed, perform situation
analysis and make the correct decision to initiate braking.

In scenario S02, the pedestrian dummy was initially occluded by a parking van
aside of the road. Thus, the pedestrian dummy was only detected at a distance
of less than 20 m and collision avoidance by braking was no longer possible.
In the following example, the ego vehicle was driving with a constant speed of
45 km/h and the pedestrian was first detected at a distance of 15.9 m and a
lateral offset of —3.4 m. Figure 6.8 depicts the time-to-collision (TTC), time-to-
brake (TTB), and time-to-steer (TTS) values provided by the situation analysis
module of Section 6.3. As the pedestrian dummy becomes visible very late in
this scenario, automatic braking can no longer avoid a collision and TTB=—
throughout this measurement. As soon as TTS falls below a predefined total
reaction time of the system (200 ms in our prototype system), an automatic
steering maneuver is triggered and the TTX computation is stopped.

Figure 6.9 shows the commanded trajectory y:-; and the reconstructed lateral
position y of the vehicle after the lateral controller has been started. The actual
lateral position y was reconstructed using speed measurements and lateral ac-
celeration measurements from odometry and inertial senors in our experimental
vehicle. In this experiment, a fixed target lateral offset of 1 m has been chosen.
As can be seen from the measurement data, the time lag between actual and
commanded trajectory position is approx. 200 ms. This time lag corresponds to
the total reaction time of our system and is induced by our vehicle’s dynamics,
data processing time and the phase lag of the steering actuator.

Figure 6.10 show the measured lateral acceleration and vehicle speed during the
automatic evasive maneuver. The maximum measured lateral acceleration is less
than 10% higher than predefined limit of ay max = 5 m/s>. This performance
is acceptable in our application. The absolute speed of the vehicle is reduced
by 3 km/h during the maneuver. We tested the integrated system by means of
20 runs on both scenarios S01 and S02. In all 40 runs, the prototype vehicle
selected the correct action in time, not hitting the pedestrian dummy once. In
the braking scenarios, the vehicle stopped approximately 30 — 150 ¢m ahead of
the dummy.
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Figure 6.9: Commanded trajectory and measurement results after evasion has
been triggered. Top: Lateral position of the vehicle. Bottom: Steer-
ing wheel angle. The upper plot shows a total reaction time of the
vehicle of approx. 200 ms; this includes a steering actuator phase lag
of about 70 ms as depicted in the lower diagram.
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Figure 6.10: Measured lateral acceleration and vehicle speed.

6.5 Discussion

The previous section demonstrated a remarkably reliable vehicle system on the
test track, that can detect pedestrians and make the right decision to brake or
to evade, in a split of a second. There are a number of technical challenges
associated with extending the flawless performance of the system on the test
track to the real urban traffic environment,

Regarding the sensing component, note that for our experimental setting on
the test track, it was easy to discard 6D-Vision detections on moving vehicles,
based on speed considerations. Therefore, the remaining 6D-Vision detections,
associated with realistic pedestrian speeds, were treated similarly to the PedRec
detections in the fusion approach of Section 6.2.3. The decision whether to
output a track was solely based on the number of detections, irrespective of their
source. In a real traffic environment, there will be many other moving objects,
which could be pedestrian-like. Future work will develop a probabilistic approach,
which maps 6D-Vision and PedRec detections onto posteriors for pedestrians,
taking into account bounding box sizes, locations, speeds and classifier decision
values. The decision whether to initiate a track would be made by analyzing the
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cumulative probability of observing a pedestrian.

It is paramount to avoid false system activations (i.e. unnecessary braking or
evasion maneuver). For that, all system modules and in particular the sensing
component (6D-Vision, PedRec) will need to be enhanced (e.g. better position
and velocity estimation, recognition performance, recognizing pedestrians under
partial occlusion [46]). Sensor fusion (e.g. with radar, laser scanners) can provide
an additional level of robustness.

The sensing component might be extended to other traffic participants, such
as bicyclists and cars, to match the capabilities of the current situation analysis
component. The current evasion maneuver results in a lateral offset of 80-100
cm of the vehicle. Larger offsets are conceivable. This places demands that
the sensing component also performs a free space analysis [8], to verify that
the automatic evasion maneuver can indeed be safely performed. Being able to
detect elements of the traffic infrastructure (e.g. lane markings, traffic lights) will
furthermore enable more sophisticated situation analysis.

As a final note, we emphasize that the presented system is meant for emer-
gency situations, in which the driver will likely not be in a position to still act
properly. Vehicle control (and responsibility) rests, however, fully with the driver;
at each time instant the driver can overrule the system, by either accelerating or
maintaining a grip on the steering wheel.

6.6 Conclusion

This chapter presented a novel active pedestrian safety system, which combines
sensing, situation analysis, decision making and vehicle control. The vision sens-
ing component fuses two complementary approaches: generic motion-based ob-
ject detection (6D-Vision) and pedestrian recognition (PedRec). Situation anal-
ysis was based on numerical simulation, which allowed to incorporate more com-
plex, non-circular vehicle paths based on a polynomial model. Decision making
involved the continuous monitoring of time-to-collision, time-to-brake and time-
to-steer measures, and initiating a specialized control loop in case of an evasion
maneuver.

Extensive pre-crash experiments with the system on the test track have been
performed. We demonstrated that the benefit of adding 6D-Vision to a baseline
PedRec(Track) system is that lateral moving pedestrians (2 m/s) can be de-
tected earlier when partially occluded by a parked car, and furthermore, velocity
estimation is more accurate. On two scenarios, requiring a split-second decision
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between no action, automatic braking and automatic evasion, the system made
in all runs (over 40) the correct decision [80, 92, 96, 183]. Despite the strong
performance on the test track, additional challenges remain before this system
can reliably be deployed in real urban traffic.
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Figure 6.11: lllustration of the 22 different scenarios, performed with real pedes-

trians (green) and a pedestrian dummy (red).

Scenario pairs

associated with a single diagram were performed with different
dummy/pedestrian speeds, i.e. either 1 m/s or 2 m/s.
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Figure 6.12: Braking scenario S01
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Figure 6.13: Evasion scenario S02
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Chapter 7

Path Prediction and Action Classification

7.1 Introduction

Predicting the path of a pedestrian is important in several application contexts,
such as robot control in human-inhabited environments and driver assistance
systems for improved traffic safety. In this chapter, we consider the intelligent
vehicles context, where strong gains have been in improving vision-based pedes-
trian recognition performance, see the previous chapters. However, the initiation
of an emergency vehicle maneuver requires a precise estimation of the current
and future position of the pedestrian with respect to the moving vehicle (see
Chapter 6.3.1). A deviation of, say, 25 c¢m in the estimated lateral position of
the pedestrian can make all the difference between a “correct” and an “incorrect”
maneuver initiation.

One major challenge is the highly dynamic behavior of pedestrians, which can
change their walking direction in an instance, or start/stop walking abruptly.
As a consequence, prediction horizons for active pedestrian systems are typical
short; even so, small performance improvements can produce tangible benefits.
For example, accident analysis [118] shows that being able to initiate emergency
braking 0.16 s (4 frames @ 25 Hz) earlier, at a Time-to-Collision of 0.66 s,
reduces the chance of incurring injury requiring hospital stay from 50% to 35%,
given an initial vehicle speed of 50 km/h.

This chapter focuses on the task of predicting the position of pedestrians walk-
ing towards the road curbside, when viewed from an approaching vehicle. A sec-
ondary question is whether the pedestrian will cross or stop. See Figure 7.1. This
setting is inspired by an earlier human factors study by Schmidt and Farber [150],
which had several test participants watch videos of pedestrians walking towards
the curbside and decide whether the pedestrians would stop or cross, at various
time instants. Their study varied the amount of visual information provided to
the test participants and examined its effect on their classification performance.
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Figure 7.1: Pedestrian path prediction and action classification: Where exactly
will the pedestrian be in the immediate future? Will the pedestrian
cross?

In the baseline case, the pedestrian was fully visible, whereas in other cases, parts
of the pedestrian body were masked out. Masking the complete pedestrian, and
leaving only positional information (bounding box), turned out to decrease hu-
man accuracy markedly, showing the importance of augmented visual features
for this prediction task.

We address the following questions in this chapter:

e at the short prediction horizons typical of the traffic safety context: can
non-linear models outperform linear models, or alternatively, can higher-
order Markov models outperform their first-order counterparts?

e do augmented visual features (optical flow) improve path prediction and
action classification over the use of positional information only?

e how does measurement error (e.g. pedestrian localization error, vehicle ego-
motion estimation error) affect the results? Can the more complex models
still maintain an edge over the simpler ones?

In order to provide answers for the above questions, we consider a representa-
tive set of four approaches in this study. In the category of non-linear, first-order
models with augmented visual features, we propose a novel pedestrian path pre-
diction approach, based on Gaussian Process Dynamical Models (GPDM) [174]
and dense optical flow features, see Section 7.2.1. An appealing aspect of this
approach is that a low-dimensional, latent representation is learned from the
data, which takes into account the process dynamics. In the category of non-
linear, higher-order models with augmented visual features, we propose a novel
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Probabilistic Hierarchical Trajectory Matching (PHTM) approach, based on a
low-dimensional motion representation, see Section 7.2.2. Finally, in the cate-
gory of first-order Markov models using positional information only, and mostly
as a baseline, we consider the popular Kalman Filter (KF, linear model) and its
extension Interacting Multiple Model Kalman Filter (IMM-KF, mixture of linear
models) [10], see Section 7.2.3.

Experimental results on real traffic data are given in Section 7.3, with pedes-
trian image location obtained either from ground truth (optionally corrupted
with noise) or obtained by a state-of-the-art pedestrian detection system, see
Chapter 5. Several experimental cases are distinguished (pedestrian stopping vs.
walking, ego-vehicle standing vs. moving). A discussion of the results, in terms
of prediction performance and computational cost is given in Section 7.4. The
chapter concludes in Section 7.5.

7.2 General Framework

Dense - Gaussian

Optical Flow atera Process Path
—_— -

Scene Flow |—3» Dy call —>»

Features System

. Position
Vehicle Data Estimate World Probabilistic

, (Ground Plane) > Motion > Hierarchical Path

Prediction

" Features Trajectory Prediction
Egomotion Matching
Dense Stereo Compensation
| MM

_ KF —3» Path
2D Pedestrian - T Prediction
Detections T

Figure 7.2: Overview of considered approaches for pedestrian path prediction.

We compare four different approaches for pedestrian path prediction, involving
Gaussian Process Dynamical Models, Probabilistic Hierarchical Trajectory Match-
ing, Kalman Filters and IMM Kalman Filters. See Figure 7.2 for an overview.

To allow meaningful comparisons among the systems, several pre-processing
components are set equal. Bounding boxes containing pedestrians are supplied
from the same detector module. Dense disparity is computed using the Semi-
Global Matching stereo algorithm [89]. Pedestrian positions on the ground plane
are obtained by considering the midpoint of the bounding box and the disparity
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computed over the part of the bounding box that corresponds to the upper body
(assuming typical human proportions). The latter involves clustering disparity
values using mean-shift [30] and selecting the cluster with the largest weight;
the median of the corresponding disparity values provides the desired pedestrian
distance.

Vehicle ego motion is compensated by rotation and translation of pedestrian
positions to a global reference point using a single track vehicle model [146]
and velocity and yaw-rate measurements from on-board sensor data. The two
approaches that use augmented visual features (GPDM, PHTM) compute dense
optical flow [177] over the bounding boxes provided by the pedestrian detector;
this flow is subsequently ego-motion compensated.

7.2.1 Gaussian Process Dynamical Model System

The first approach uses scene flow features describing the lateral movement of
the pedestrian derived from the dense optical flow field and measured pedestrian
distance in the world. Feature dimensionality is reduced by means of GPDM [174]
with a dynamic model in the latent space. To overcome the absence of a direct
mapping from feature space to latent space, the dynamic model is combined
with a particle filter. GPDM models that capture the walking and stopping
movement of a pedestrian are trained separately. The learned dynamical models
provide optical flow fields at future time instants; future lateral positions can
be derived by integration. Longitudinal position is estimated independently by
means of a separate Kalman Filter for each action class (walking vs. stopping).
Weighting lateral and longitudinal predictions using the probability of each action
model results in future pedestrian positions.

Feature Extraction

Given the lateral component from dense optical flow and a pedestrian distance
derived from dense stereo the lateral velocity of a pedestrian in the world is
computed.

With the pedestrian distance (as disparity disp), the horizontal component of
the optical flow field (V3,), the camera base width (b) and camera cycle time At
the lateral speed vx (m/s) of each pixel is computed using:

Vu-b

vx = disp - At

(7.1)
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To obtain only flow values located on the pedestrian body a mask image is
generated from the thresholded disparity image and velocity values corresponding
to background are set to zero. Applying this distance mask also adds rough
pedestrian contour information to the feature. Figure 7.3 describes the feature
extraction steps.

Disparity Distance

Image Mask
Distance
Threshold

.- 5

Background
Removal

Optical Scene
Flow (U) Flow (lat.)

Distance
Normalization

Figure 7.3: Feature extraction using dense optical flow and roughly estimated
pedestrian contour from dense stereo.

Pedestrian
Velocity (m/s)

, Scene Flow
Feature

For further use as a feature this scene flow image is rescaled to 32 x 16 pixel and
concatenated to a feature vector yt € RP with D = 512. From the scene flow
image (SFlowX) the lateral velocity of the pedestrian can directly be extracted
using the median of velocity values located in the area of the pedestrian upper
body (Figure 7.3 red box).
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Dynamical Model

We are interested in a low dimensional representation x; € R? of features y; €
RP from a pedestrian sequence with d < D. This dimensionality reduction
is realized using the Gaussian Process Dynamical Model (GPDM) [167, 173,
174] which allows modeling the dynamics of the features over time ¢ in the low
dimensional space. For data in latent space x: the relation to the input y¢ can
be described using:

ye = g(x¢;B) +mny, (7.2)

with zero-mean Gaussian noise ny ¢ and mapping function g with parameters
B = [b1, b2,...]. Assuming a first-order Markov model the dynamics of the data
in the latent space x1,...,X¢,...,XnN can be described using:

x¢ = f(xe-15A) + Doy (7.3)

with zero-mean Gaussian noise n,: and mapping function f with parameters
A =[a1,az...].

In a Gaussian process framework the parameters and basis functions of f and
g are marginalized out and the positions of the latent coordinates are optimized.

Latent Mapping In the GPDM framework the conditional density for the data
Y = [y1,...,yn]7 given latent positions X = [x1,...,xn]7 is described using:

(WY

Y | X, 3, W)=
N e

exp (—%tr(K;lYWQYT)) (7.4)

with kernel matrix Ky and kernel hyper parameters 8 = {31, B2, ...} and W.
To equally weight all the feature dimensions the scale parameter is set to W =1
and is omitted in the following equations. Entries in the kernel matrix are defined
using a kernel function (Ky);,; = ky (x:,%;). For our data, we use a radial basis
function (RBF) kernel with an additional noise term i.e.,

6xi,x]'

Bs (7.5)

b 30) = Brexp (=2 =7 +
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Dynamic Mapping The dynamics of the time-series data is incorporated using:

— p(x1) 1 HKZE T
p(X | @) = (2W)(N_1)d‘KX‘dexp( Str(Kx XQ:NXQ:N)) (7.6)

with Xo.n = [X2,..., xN]T, the kernel matrix K x constructed from Xi.ny_1 =
[x1,...,xn—1]T with dimensionality (N — 1) x (N — 1) and entries (Kx);; =
kx(xi,x;). A combination of a RBF and linear kernel with an additional noise
is used for the dynamics

o _
kx (xi,%j) = a1 exp (—?QHxl - xj||2) + asx; Xj + a4 l(ixi,xj (7.7)

with kernel hyper parameters @ = {1, az,...}.

Learning the GPDMs Combining the latent and dynamics mapping defines the
model:

p(X, Y, @, B) = p(Y | X, B)p(X | @)p(a)p(B) (7.8)

Learning a GPDM requires finding the latent positions X and kernel hyperpa-
rameters H = {@, B} with respect to the features Y by minimizing the negative
log-posterior —Inp(X,H | Y ). Minimization can be done using a scaled con-
jugated gradient (SCG) method [173]. This requires the inverse of the kernel
matrix with a complexity of O(N?®) in each optimization iteration. We select
d = 3 as the latent space dimensionality.

It is difficult to learn a generic GPDM that captures large variations in the
data and different motions. Combining trajectory data where the pedestrian is
walking and data where the pedestrian is stopping results in degenerated models.
Urtasun et al. [166] introduce additional constraints to prevent the degenera-
tion of models. Selecting the correct constraints for a model that captures the
walking and stopping motion of a pedestrian for the used features is difficult,
especially with noisy data. Additionally, the complexity when training the model
is increased. To avoid these problems, we train two separate models. The first
model is trained using trajectory data segments where pedestrians are walking.
Stopping situations are selected to train the second model. Because the begin-
ning of a stopping action is difficult to define, data from 20 frames (0.91s) before
the stopping of the pedestrians is used. Examples of the two models are plotted
in Figure 7.4.
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third latent dim.

third latent dim.

Figure 7.4: Traversal of a training trajectory (o) through the learned latent space
(*) and mean predictions (o) of a point (») for 17 frames (0.77s).
Figures depict (a) the walking case and (b) the stopping case. All
available training samples are shown.
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Mean Prediction With the learned dynamic model a point x in the latent space
is predicted and the most likely successor is derived using

pix (x) = X5, v Kx kx (x) (7.9)

with the vector kx (x) containing at the i-th entry the results of kx (x,x;) using
training sample x;.

Figure 7.4 illustrates this mean prediction of a point for several frames on the
low dimensional space.

Latent Reconstruction A point x in the latent space is reconstructed using:
py (x) = YK by (x) (7.10)

An example of the reconstructed scene flow feature is show in Figure 7.5.

1 ,

t

Figure 7.5: Observed (¢ = 0, bottom row) and optical flow features correspond-
ing reconstructed features (¢t = 0, top row). (Top row) Reconstruc-
tion of the latent space prediction of the initial feature (¢ = 0, top
row) for different prediction time-steps. (Bottom row) Flow that will
be measured at the corresponding time-steps.
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Figure 7.6: Predicted speed (o) derived from predicted optical flow and cor-
responding measured optical flow speed () for different prediction
horizons.

Multiple Model Particle Filter

The state of a pedestrian at time ¢ is described using ¢ = [x¢, X:] where x¢ € R
is a point in the low dimensional space and &} the lateral pedestrian position in
the world. Given an observed motion feature y¢ and observed lateral position
V4, the probability of a pedestrian state ¢+ is computed by

p(pe | ye, V) =
np(ye, Ve | Pt) /P(¢t | pe—1)p(¢e—1 | ye—1, Vi—1)dos—1 (7.11)

with normalization constant 7. The probability p(¢+ | ¢+—1) of observing a future
state is computed from the GPDM latent space mean prediction.

This distribution is represented by a set of particles {¢') : s € {1,...,5}}
with corresponding weight wis) that is propagated using a particle filter. Particles
are predicted using the learned GPDM model with the predicted state qgis) =
%) 2] with &) = ux (x{™)) + ne, and ) = X + 523, At). The
predicted lateral position X; is estimated using sx(yf), At) which computes the
traveled distance from the mean velocity derived from the reconstructed scene
flow image y,ES) = uy(x}(s)) and camera cycle time At. For each particle the
noise term n, is randomly sampled from N (0, I X O'Zm), with an experimentally
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derived ¢, = 0.1.

Scene flow feature similarity is computed using the Euclidean distance
di(y,9) = lly =3/ (7.12)
For the lateral position in the world the distance d,,(), X') is computed with:
dp(Y, X) = ¥ - X|* (7.13)

Using the distances between the observed and predicted data the observation
likelihood p(ye, Vi | ¢'*) oc w!™ is approximated using

~(s)\2 p(s))2
W = exp <_df(yt7yt ). Ay X T) ) (7.14)

20? 203

with an empirically estimated oy = 7 for the feature similarity and o, = 0.06 for
the deviation of the lateral position. The updated ¢{*) is obtained from ¢{*) by
reweighting the particle set.

For efficiency, an estimated state ¢ representing the pedestrian state in the
future T = t + AT is derived from the weighted mean x* of the particle set
{qﬁis)} and iteratively predicted using ux (x*). From the reconstructed predicted
scene flow data (Figure 7.5) the pedestrian velocity in the future is computed
(Figure 7.6). Integrating over the velocity predictions results in the predicted
pedestrian position.

As mentioned in Section 7.2.1 we trained two models for the different pedes-
trian motions. Models are combined using an interacting multiple model particle
filter (MM-PF) similar to [19]. For each model a fixed number of particles
(S = 200) is used to represent the state. From the set of particles M; in model
7 the model probability is derived using:

> W

¢, €M,

Yi(t) = - - (7.15)
2 enny W 2g enr, 0

Model probabilities are updated similar to the IMM-KF scheme, described in
Section 7.2.3. The conditional probability v;; of a transition from model i to j
is computed using
Wij - 7i(t)

() = —————
0 > ket Prs - Yk(t)

(7.16)
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with the state transition matrix W.

We assume the lateral and longitudinal pedestrian dynamics to be weakly de-
pendent. Longitudinal state estimation is decoupled and to each of the lateral
models (GPDM) a Kalman Filter with corresponding constant velocity (CV) or
constant position (CP) model is assigned to track the position. Longitudinal
position s (At) are linearly predicted with the estimated velocity of each filter.
Mixing the lateral model predictions s% (At) and the longitudinal KF predic-
tion s% (At) with the state transition probabilities at ¢ results in the pedestrian

position:
sx,z(At) = ;%‘ : <§2E§g> (7.17)

In the following the approach using the Gaussian Process Dynamical Models
in combination with scene flow features is abbreviated with SFlowX/GPDM.

7.2.2 Probabilistic Hierarchical Trajectory Matching System

The second approach uses motion features involving a low-dimensional histogram
representation of optical flow. Measured pedestrian positions and motion features
are subsequently used in a trajectory matching and filtering framework. From the
filter state a future pedestrian position is derived by looking ahead on matched
trajectories of the training set.

Motion Features

The low dimensional feature captures flow variations on the pedestrian legs and
upper body. In order to operate from a moving vehicle additional invariance to
pedestrian distance and vehicle motion is important. Features are designed to
allow bounding box localization errors from a pedestrian detection system. Fig-
ure 7.7 illustrates the feature extraction steps. Flow vectors are normalized with
the camera cycle time to account for asynchronous capture and frame drops.
Flow vectors are further normalized with measurements from dense stereo for in-
variance to different pedestrian distances. The resulting normalized motion field
is used to extract features given a bounding box detection and distance estimation
Zped from a pedestrian detection system. To ensure that the pedestrian is located
in the box for all possible limb extensions and slight localization errors a bounding
box aspect ratio of 4:3 is used. Motion vectors not belonging to the pedestrian
body are suppressed by using only values at a depth similar to the estimated
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Figure 7.7: Motion feature extraction in the PHTM-based system

pedestrian distance. Remaining values in the motion field are used to compute
the median object motion and extract orientation histograms. To capture mo-
tion differences between torso and legs the bounding box is split into an upper
and lower sub-box. For each sub-box the median motion is removed to com-
pensate the pedestrian ego motion. Resulting orientation vectors v = [vg, vy]”
are assigned to bins b € [0,7] using their 360° orientation 6 = atan2(vy,v.)

and bin index b = Bin contributions are weighted by their magnitude

7
and resulting histograms are normalized with the number of contributions. A
feature vector is formed by concatenating the histogram values and the median
flow for the lower and upper box. Dimensionality reduction of the feature vector
is achieved by applying PCA. The first three PCA dimensions with the largest

eigenvalue are used as final histograms of orientation motion (HoM) features.

Trajectory Matching

A pedestrian trajectory €2 is represented using the ordered tuples

Q = ((wi,t1),...,(wn,tn)). For every timestamp ¢; the pedestrian state w;
consists of the lateral and longitudinal position of the pedestrian and additional
features extracted from optical flow (Figure 7.8a). For path prediction, it is
possible to compare an observed test trajectory with a history of H pedes-
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trian states to each trajectory in a training database using a similarity measure.
With the Quaternion-based Rotationally Invariant Longest Common Subsequence
(QRLCS) metric [97] the optimal translation and rotation parameters to super-
impose two trajectories are derived. The distance distqrrcs (€2, Q;) € [0,1]
between two trajectories is given by the number of possible assignments deter-
mined by an ¢ area around each pedestrian state, normalized by the number of
pedestrian states. Figure 7.8a illustrates this comparison process.

We replace this exhaustive search by a probabilistic search framework [97, 153].
A set of overlapping sub-trajectories (snippets, e.g. [90]) with fixed history of
pedestrian states is created from a training database. Information of the snippet
position in the origin trajectory and successor snippets are kept for later use. By
piling the features for each state in a snippet into a description vector and applying
the PCA method to these vectors, their principal dimensions can be ordered
according to the largest eigenvalue. The resulting transformed description vector
c is used to build a binary search tree. For each level [ the snippet is assigned to
the left or right sub-tree depending on the sign of ¢;. Given N training snippets,
the depth of the search tree, n, is O(log(N)). Figure 7.8b illustrates this search
tree.

Given a trajectory €21.; the probability of the state ¢, is computed by
p(Pe|Q:e) =

np(QlitM)t)/p(¢t|¢t71)p(¢t71|91:t71) dot—1 (7.18)

with a normalization constant 7. The distribution p(¢:|Q1:¢) is represented
by a set of samples or particles {¢§S)}, which are propagated in time using a
particle filter [17]. Each particle q&ES) represents a snippet describing a pedestrian
state with a history and an assigned likelihood. Our transition model p(¢¢|dr—1)
is determined by a probabilistic search in the binary tree. Particle prediction is
performed by a probabilistic search in the constructed binary tree and a lookup
for the successor snippet in the training database. The distribution p(Q1.¢|¢¢)
represents the likelihood that the measurement trajectory §2;.; can be observed
given the current state. In the context of particle filters, this value corresponds
to the weight of a particle and is approximated using w® =1-— distqrcrs for
each particle ¢

An estimated state qzﬁgps) representing the pedestrian state in the future T =
t + AT can be derived by looking ahead on the associated origin trajectory for
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Figure 7.8: a) Test trajectory with history of length H containing position

and feature information for every entry is matched to the train-
ing database. Resulting matching position and similarity distance
to trajectories in the training database describe a possible trajec-
tory course and class label. b) Tree representation of the trajectory
training database. Leaf nodes represent trajectory snippets of fixed
length. Similar trajectories are searched by traversing the tree using
the trajectory descriptors for every level.
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the current state ¢§S). This results in many hypotheses which are compensated
using a weighted mean-shift algorithm [30] with a Gaussian kernel and weights
w® ~ p(qﬁgf)ml:t). As the final predicted state ¢} the cluster center with the
highest accumulated weight is selected.

The trajectory database contains two classes of trajectory snippets, the class
Cs in which the pedestrian is stopping and the class C,, where the pedestrian
continues walking. For the predicted object state ¢7. derived using cluster mem-
bers L = {qbﬁ”} and the corresponding weight w*) the stopping probability can
be approximated using:

)

w

Zd{”ecs .
Zgbi”ecs w® + Zd)il)ecw w(®)

In the following the probabilistic hierarchical trajectory matching approach
using histograms of orientation motion features is abbreviated with HoM/Traj.

p(Cs|L) =

(7.19)

7.2.3 Kalman Filter Based Systems
Kalman Filter

As a third approach a linear Kalman Filter (KF) [10] is used. The state X of
the filter is modeled as
X = [z zv; Vg }T

with z/z being the longitudinal/lateral position of the pedestrian to the vehicle
and v, /vy being its absolute longitudinal/lateral velocity in the world. Pedestrian
positions are pseudo-measurements provided by the stereo pedestrian detection
component, as described at the beginning of this Section. A constant velocity
model (CV) is assumed as pedestrian motion model. Using this model means
that all deviations from a constant pedestrian motion have to be captured as
process noise. With the assumption that a pedestrian moving at 1.8 can stop
in one second we select a process noise parameter ¢ = 1.8 for the filter.

Interacting Multiple Model Kalman Filter

The fourth approach extends the previous KF with an additional constant posi-
tion model (CP); this way, the Interacting Multiple Model Kalman Filter (IMM-
KF) [10] is realized. The basic idea is to maintain a Kalman Filter for each
possible motion model with state %;(¢) and model probability ~;(¢). This means
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a steady walking pace is represented using a filter with the constant velocity
(CV) model with process noise parameter gcv. For non-moving pedestrians the
constant position (CP) model with gcp applies. Each iteration consists of three
steps: interaction, filtering and mixing. The interaction step computes the mix-
ing probability 7;; from the current model probability v; and the state transition
probability ¥;; (see Equation 7.16). From the mixing probability the mixed state
mean Ro;(t) and covariance matrix P;(t) is computed as initial input for each
filter in the filtering step using

Roi(t) = Y Kilt)yis (1), (7.20)

See [10] for the computation of P;(t). In the filtering step a KF predict/update
step is done using the mixed state mean Ro;(t) and covariance matrix Po;(t)
derived in the interaction step. Given the likelihood function A;(t+1) = N (r; (t+
1), Sj(t+1)) with residuum r;(¢41) and residual covariance S;(¢+1) the updated
probabilities «y; (¢t + 1) are computed using:

1) = TA (1) S Wym(o) (7.21)

with normalization factor c. An approximation of the resulting mixture model is
then computed in the mixing step using

2

R(t+1) = Rilt+ Dyt +1). (7.22)

i=1

For the following evaluation gcv = 0.21 and gcp = 0.41 has been derived
from the set of training trajectories, with respect to the positions minimum root-
mean-square error (RMSE). The matrix ¥ describing the transition probabilities
between the CV and CP model has experimentally been derived from the available
training data ¥ = [0.999,0.001;0.001,0.999]. Choosing larger values for the
model transitions result in more frequent, undesired switches, especially with
noisy measurements. The IMM-KF is said to be non-sensitive to improperly
selected transition probabilities [18].
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Sequences vehicle vehicle vehicle
standing | moving || standing+moving

ped. stopping 11 5 16

ped. walking 9 4 13

Table 7.1: The number of sequences with different pedestrian and vehicle actions
in our dataset.

7.3 Experiments

Video data of two scenarios (Figure 7.1) was recorded using a stereo camera
system (baseline 30 ¢m, 22 fps) mounted behind the windshield of a vehicle.
The first scenario features the stopping of a pedestrian at the curbstone. In
the second scenario, the pedestrian crosses the street. In both scenarios, the
pedestrian was not occluded. In some test runs the vehicle is stationary while in
others the vehicle is moving at speeds of 20—30 km/h. The dataset involved four
different pedestrians in three different locations at a distance range of 5—34 m to
the vehicle. Table 7.1 provides some further statistics on the dataset. Figure 7.9
illustrates some test images.

The ground truth (GT) locations of the pedestrians in the world were obtained
by manual labeling the pedestrian shapes in the images. The median disparity
value on the pedestrian upper body and the center foot-point of the shape is used
to obtain the longitudinal and lateral positions on the ground plane. In terms
of alignment along the time axis, for each trajectory where the pedestrian is
stopping the moment of the last placement of the foot is labeled as the stopping
moment. The time-to-stop (TTS) value counts the number of frames until this
event; frames earlier to the stopping event have positive TTS values, frames after
the stopping event have negative TTS values. In sequences where the pedestrian
continues walking, the closest point to the curbstone (with closed legs) is labeled.
Analogous to the TTS definition, the latter is called time-to-curb value (TTC).

Performance evaluation is done using input data with different noise charac-
teristics regarding the image bounding box positions. 2D bounding boxes derived
from manually labeled pedestrian shapes (termed /label box) are used as the most
accurate input data for feature extraction and localization; it reflects the case of
an “ideal” pedestrian detector. We further consider the case where these ideal 2D
bounding boxes are perturbed by uniform noise; we add up to 10% of the original
height of the bounding boxes to their height and center (the resulting bounding
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Figure 7.9: Example images from the dataset showing showing the pedestrian
action. Images show the labeled stopping (left) or walking (right)
moment. 105
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veh. standing+moving
lat. long.
GT 0.03 0.10
label box 0.05 0.22
jittered box 0.13 0.68
sys. detections | 0.06 0.64

Table 7.2: Mean deviation (m) of the pedestrian position on the ground plane
(lateral and longitudinal) compared to the smoothed ground truth
data

boxes are termed jittered). Finally, we consider 2D bounding boxes provided by
a state-of-the-art HOG/linSVM pedestrian detector [34] (termed system detec-
tions). Hereby, detection “gaps” are filled in by means of a standard correlation
tracker. Considering data with artificial noise allows to abstract away from the
noise bias of a particular pedestrian detector. As we will see shortly, the overall
noise level added artificially is realistic, in the sense that it is similar to that of a
state-of-the-art detector.

The lateral and longitudinal position errors on the ground plane for different
input data are summarized in Table 7.2. In these experiments, we compared
to a smoothed version of the GT ground plane positions. GT positions from
walking trajectories, where we are certain that the pedestrian is moving with
an approximately constant velocity ( —40 < TTC < 40), were fitted with a
curvilinear model, minimizing pedestrian velocity- and yaw-changes by non-linear
least-squares. For the stopping trajectories, smoothing was only applied to the
cases where the pedestrian is standing (T'T'S < 0), by simple averaging. Note
that smoothed GT was only used for the purpose of Table 7.2. In the path
prediction experiments, comparisons involved the non-smoothed GT. Following
observations can be made from Table 7.2. As expected, the longitudinal er-
ror is larger than the lateral error, due to stereo vision characteristics. Adding
afore-mentioned uniform noise on 2D bounding boxes results in a degradation
of positional accuracy of about 10 ¢m and 50 cm in lateral and longitudinal
direction, respectively. Positional errors are similar for the artificial noise and real
detector case.
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7.3.1 Parameter Settings and Evaluation Set-Up

We compare the four approaches using equal parameter settings, whenever pos-
sible. Lateral and longitudinal noise parameters for the KF and IMM-KF and
longitudinal noise parameters for tracking the distance of the SFlowX/GPDM are
selected from Table 7.2. Process noise parameters and state transition matrix
were derived heuristically (see Section 7.2.3). The same state transition matrix
is used for the MM-PF of the SFlowX/GPDM system and the IMM-KF.

The analysis of walking trajectories showed an average gait cycle of 10 —
14 frames for different pedestrians. The trajectory database for the HoM/Traj
contains sub-trajectories, generated in a sliding window fashion, with a fixed
length of 10 frames. For test trajectories a history of 14 frames is used to
capture gait cycle variations. Approximating the current probability density is
done with S = 400 particles and a tree search deviation parameter of 5 = 0.05.
The mean shift position procedure operates with a kernel width value h = 0.1.

Training and testing data has been processed using leave-one-out cross val-
idation. This means that one sequence is used for testing and the remaining
training sequences are used to learn the GPDM models SFlowX/GPDM, or for
search tree generation (HoM/Traj).

7.3.2 Pedestrian Path Prediction

We are interested in the ability of each system to predict future pedestrian posi-
tions accurately. Tables 7.4 and 7.5 list ground plane localization accuracy (i.e.
longitudinal and lateral dimensions combined) at different prediction horizons, for
each system. Localization accuracy is measured in terms of mean and standard
deviation of the per-sequence RMSE. Per-sequence RMSE is determined by com-
paring system predictions at various time horizons with the Ground Truth (GT),
when the pedestrian is inside the frame range [20, —10], where frame 0 denotes
the manually labeled TTS/TTC moment. This corresponds to an evaluation time
range of [0.91, —0.45] seconds around the TTS/TTC event. Pedestrian positions
are predicted up to 17 frames (0.77 s) into the future. Tables 7.4 and 7.5 list
the results for walking and stopping trajectories, respectively. Results are further
differentiated based on whether the own vehicle is standing or moving, or whether
all data is used (cf. Table 7.1).

On walking scenarios (Table 7.4) all approaches show a similar prediction per-
formance when pedestrian bounding boxes are set precise (label box). In the
more realistic case of inaccurate image localization (jittered box) and moving ve-
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Figure 7.10: Distribution of the lateral prediction error difference (IMM-KF -
HoM /Traj). Results for the jittered data, prediction horizon of 17
frames and stopping trajectories.

hicle, we see that HoM/Traj, unlike the other approaches, shows no performance
degradation, and thus gains a slight edge. We attribute this to the robustness
of trajectory matching to outliers in the longitudinal dimension. On stopping
scenarios (Table 7.5), where the constant velocity assumption is violated, incor-
poration of motion features leads to a path prediction performance advantage of
up to a factor of two for HoM/Traj and SFlowX/GPDM compared to the KF
based variants (e.g. jittered data, vehicle standing and moving case). As before,
the trajectory matching of HoM/Traj shows added robustness to noise caused
by bounding box position errors and vehicle ego motion.

In the intelligent vehicle pedestrian safety context, the lateral component of
the localization error is especially relevant; it determines whether the pedestrian
enters the vehicle driving corridor and a collision potentially occurs. Figure 7.11
lists the mean lateral localization error at various time offsets to the labeled
TTS/TTC moment (jittered data, vehicle standing and moving case). Separate
plots are shown depending on the prediction horizon (0 or 17 frames) and whether
the pedestrian is walking or stopping. We observe no significant performance
difference between for walking trajectories (Figure 7.11a, 7.11c). For stopping
scenarios (Figure 7.11b, 7.11d), the advantage of the additional motion model
of the IMM-KF vs. the KF becomes visible (in Table 7.5 this advantage was
averaged away over frame range [20, -10], due to the inclusion of time instants still
involving walking). Stopping of the pedestrian leads to a switch to the CP model
and lower localization error compared to the KF with CV model. Figure 7.11 also
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system detections

walking stopping

0 17 0 17
KF Mean 0.2 0.55 0.27 1.08
+ Std || 0.05 | 0.28 || 0.08 | 0.29
Mean 0.21 | 055 || 0.29 | 1.04
IMM-KF +Std || 0.06 | 0.3 || 0.14 | 0.25
. Mean 014 | 039 || 0.14 | 0.63
HoM/Traj +Std || 0.03 | 0.12 || 0.04 | 0.22
Mean 0.15 | 043 || 0.21 | 0.52
SFlowX/GPDM | "o, 1| 006 | 0.27 || 0.06 | 0.19

Table 7.3: Mean combined longitudinal and lateral RMSE (m) for stopping and
walking trajectories using system detections with different prediction
horizons (frames).

shows that HoM/Traj and SFlowX/GPDM are more quickly able to adjust to
the change in the pedestrian motion, resulting in a lower lateral localization error
than the KF-based approaches. Figure 7.10 illustrates the distribution of the
lateral prediction error difference between IMM-KF and HoM/Traj for stopping
trajectories. Performance differences are clearly visible close to the stopping event
TTS =0.

Results using tracked detections from a state-of-the-art HOG/linSVM pedes-
trian detector [34] are listed in Table 7.3. For this experiment, we used a subset
of 7 walking and 13 stopping trajectories (5 trajectories with a moving vehicle)
where the pedestrian detector had a decent performance in the first place (de-
tection “gaps” no longer than 10 frames consecutively). We observe that using
actual system detections, rather than simulated detections, does not change the
performance ranking of the approaches considered (compare Table 7.3 with the
entries of Tables 7.4 and 7.5 where the vehicle is standing and moving). In
fact, performance with actual system detections is similar to that obtained with
noise-perturbed, GT jittered data; this is not surprising given similar per-frame
localization measurement error (cf. Table 7.2).
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Figure 7.11: Mean lateral localization error at each time-step for jittered data
and vehicle standing and moving (walking vs. stopping trajectories,
prediction horizon 0 vs. 17 frames)

110



‘(ssweuy) suoziioy
uoipipaid juasayyip pue sanoidafes; Surddois oy (wr) JSINY (8491 pue |eulpniSuo| pPauIqWIod Ued G djqel

980 gro c8°0 S0°0 630 920 £3°0 g0°0 @30 80°0 L0°0 90°0 L0°0 L0°0 7 pIS F NQdD/XMol4S
68°0 170 99°0 120 79°0 €2°0 €90 910 290 62°0 160 g€0 L2°0 €T0 uesiy
61°0 £0°0 £8°0 g0 0 8I°0 g0 0 1g°0 c0°0 oro c0°0 LI°0 Iro 70 0 c0°0 7 pPIs F feay /IOH
9.0 G1°0 V.0 G110 290 c1'0 €9°0 €10 950 1o 850 7€ 0 61°0 210 uesiy .
gro LI0 LI°0 o G0 910 61°0 80°0 rg o &1°0 aro L0°0 o 0 £0°0 7 PIs F WL
921 L0 61T 2€0 80T 2€0 86°0 cc 0 LL°0 L2°0 L8°0 gg'0 1€°0 810 uesiy
g0 S0 £6°0 o LEO gr-o 9¢°0 80°0 £6°0 1o Sro 0 90°0 100 7 PIS F a3
6€°T ¥¥°0 gc'1 c€0 VI T €€°0 70T 720 18°0 L2°0 €6°0 19°0 9€°0 020 uesiy
JA S 0 JA S 0 JA S 0 L1 0 L1 0 JA S 1T S 0
xoq _pasaiul x0q [2qe] xoq _pasoinl x0q [2qe] x0q _pasoinl x0q [9qe]
Suinow "yan Suinow + Suipuels "yan Suipuels "yan
‘(sswed}) suoziioy
CO_HU__uw\_Q juaJaj4lp pue mw.EOHUm.\.mx.N L%Evtm\s 10} AEV JSINY |edsie| pue _m:_—u:u_MCO_ paulqwod ues|y :p*) 9|qe]
Nw”e msua wwwc .obuc Nh”c mbua vwwc m,eua Nm.c .cha %m”a m.ﬁ.b %Q.Q vc”c 7 pPIs F NQdD/XMol4S
69°0 G20 290 12°0 280 61°0 170 L1°0 g0 LT°0 ve0 92°0 20 gT'0 uesiy
cro g0 0 LI°0 g0 0 Iro £0°0 E1°0 £0°0 L0°0 £0°0 L0°0 §0°0 £0°0 £0°0 7 pIS F feal /INOH
¥¥°0 S1°0 €¥°0 G1°0 gg'0 810 €€°0 ¥1°0 0€'0 ¥1°0 62°0 €20 L1°0 €10 uesiy .
LG 0 60°0 98°0 60°0 re 0 61°0 &0 o [ 10 aro o 80°0 L0°0 7 PIs F WL
980 €€°0 LL°0 62°0 g0 92°0 170 61°0 €0 €20 Ggc'o 20 L1°0 v10 uesiy
6G°0 90°0 62°0 S0°0 860 LI°0 $g°0 L0°0 @0 a0 aro 60°0 L0°0 L0°0 7 PIS F a5
69°0 ¥2°0 290 120 g% 0 720 8€°0 L1°0 ggo0 ¥2'0 820 g0 61°0 g1'0 uesiy
JAS 0 JAS 0 JA 0 L1 0 JA 0 L1 1T S 0
xoq _pasaul x0q |aqe| x0q pasaul xoq [2qe| x0q pasa3ul x0q [2qe|
Suinow "yan Suinow + Suipuels ‘yan Suipuels "yan




Chapter 7 Path Prediction and Action Classification

7.3.3 Pedestrian Action Classification

We also tested the ability of various systems to classify pedestrian actions, i.e.
whether the pedestrian will cross or not. Figure 7.12 illustrates the performance
of each system on stopping and walking test trajectories; depicted is the estimated
probability of stopping, as a function of TTS or TTC. For the SFlowX/GPDM
and HoM/Traj systems, this was achieved by means of Equations 7.15 and 7.19,
respectively. For the IMM-KF filter, stopping was estimated by means of the
probability of the CP model, following Equation 7.21.

To put the performance of the systems in context, we also evaluated human
performance. Video data was presented to several test subjects using a graphical
user interfaces, where playback was automatically stopped at five different TTC
or TTS moments (20, 11, 8, 5, 3). For each run, the test subjects had to decide
whether the pedestrian will stop at the curbstone or cross the street and provide
a probability (i.e. confidence) using a slider ranging from 0 to 1. Sequence and
playback stopping point were randomly selected before being presented to the
test subjects to avoid the effect of re-identification.

See Figure 7.12. On walking trajectories, all systems show a low and relatively
constant stopping probability. On stopping trajectories, all systems initially start
with a low stopping probability, since stopping is preceded by walking. But within
a dozen frames before the stopping event, the stopping probability increases more
markedly.

Class membership is determined at each time instant of an input trajectory
assigned by thresholding the estimated stopping probability (cf. Figure 7.12).
Based on the training set, we selected for each system and for the human group a
threshold that minimizes its classification error (i.e. stopping classified as walking
and vice versa) over all sequences and time instants. Figure 7.13 illustrates
the resulting classification accuracy over time using these “optimal” thresholds.
As can be seen, the humans outperform the various automatic systems at this
action classification task. The humans reach an accuracy of 0.8 in classifying the
correct pedestrian’s action about 570 ms before the event. This accuracy is only
reached about 230 ms before the event by the newly developed SFlowX/GPDM
and HoM/Traj systems, which use augmented visual features. The baseline IMM-
KF system does worst, reaching the corresponding accuracy only about 90 ms
before the event.
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Figure 7.12: Estimated probability of stopping over time for (a) walking and (b)
stopping test trajectory (averaged over all respective sequences).
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Figure 7.13: Classification accuracy of the different systems over time. Results
for the jittered data.

7.4 Discussion

Table 7.3 indicates that the proposed, more advanced methods for pedestrian
path prediction (SFlowX/GPDM or HoM/Traj) can achieve more accurate path
prediction than basic approaches (linear KF or IMM extension thereof). The
associated benefit, in terms of reduction of the combined lateral and longitudinal
position error, is 10 — 50 ¢m at a time horizon of 0 — 17 frames (up to 0.77 s)
around the stopping event. Figure 7.11(d) indicates that a 50 ¢cm improvement in
lateral position estimation is reached at several time instants. Tables 7.4 and 7.5
also suggest that the vehicle ego-motion compensation is done reasonably but not
perfectly. Further benefits can be obtained when localizing the pedestrian more
accurately and improving upon the vehicle ego-motion compensation. Compar-
ing the columns “vehicle standing, label box, 17" (ideal situation) and “vehicle
moving, jittered box, 17" (currently achievable situation) shows that position
prediction can be improved by approximately 15 — 81 c¢m for the various systems.

These findings are encouraging in terms of the expected benefits that can be
achieved, when integrating more sophisticated path planning in pedestrian safety
systems that perform emergency vehicle maneuvers (braking, steering).

We now turn to computational cost issues. Popularity of the simple linear KF
can be explained due to its relative effectiveness and its low computational re-
quirements. Although the computational cost doubles for the two process model
IMM-KF it remains moderate compared to the HoM/Traj and SFlowX/GPDM
approaches. For the latter, the cost of motion feature extraction needs first to
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be accounted for. Furthermore, for the HoM/Traj approach, a prediction step
requires traversing the search tree for each particle and looking up the successor
snippet. Computational costs to predict a snippet is linear in the depth of the
search tree. To incorporate new measurements the QRCLS distance to each parti-
cle has to be computed to update the particle weights. Looking ahead pedestrian
position requires applying the mean shift procedure to the predicted particle po-
sitions to find the main mode. Main computational costs of the SFlowX/GPDM
can be subdivided into the costs of predicting a GPDM latent space position and
reconstructing the feature to apply the particle weight update. To predict a single
particle the mean prediction on the latent space has to be applied (Equation 7.9).
Because the first part of the formula (X2, yKx ') can be precomputed, the on-
line costs for a latent space prediction result from evaluating the kernel function
kx (x) between the particle latent position x and all inducing variables. Similarly,
reconstructing the feature requires evaluation of Equation 7.10 with a precom-
puted YT Ky ~* and evaluation of the kernel function kv (2). Costs for an update
and predict of a particle are limited by the number of inducing variables.

Using an unoptimized MATLAB implementation on a 2.53 GHz CPU the path
prediction 17 frames into the future requires on average 0.003 s for the KF
and 0.017 s for the IMM-KF. The MATLAB version of the HoM/Traj approach
with an optimized version of the trajectory matching and mean shift procedure
in C requires 0.6 s. Without code optimization the SFlowX/GPDM approach
requires on average 5.4 s for the prediction. Processing times for both HoM/Traj
and SFlowX/GPDM can much be improved by special hardware (i.e. GPU, DSP,
FPGA) by parallelizing the particle computation.

In terms of scalability, learning a GPDM quickly becomes unfeasible for larger
datasets (say, > 1000 samples) without an approximation method. The fully
independent training conditional (FITC) [112] method reduces the complexity
from O(N®) for the SCG method [173] (cf. Section 7.2.1c) to O(k*N), where
k is the number of data points that remain in the computation of the covari-
ance matrix. Our full dataset contains approximately 1700 training samples and
we set k& = 100. When using the FITC approximation with a fixed number of
inducing variables k, the online computational costs do not increase when ex-
tending the size of the training set. Without an approximation method, kernel
evaluations between all samples in the training set have to be applied. Regarding
scalability with the number of pedestrian motion patterns considered, training
a single model containing different motion patterns lead to degenerated models
on our dataset. Degenerated models showed an insufficient latent space predic-

115



Chapter 7 Path Prediction and Action Classification

tion performance. Although methods exist to prevent model degeneration [166]
when using sequences with a large variety of motion patterns the computational
complexity during training increases. Extending the SFlowX/GPDM system with
additional motion patterns requires training separate GPDMs for each motion
pattern. In the online case, the computational costs increase linearly in the
number of models.

Since the HoM/Traj systems is an instance based learning approach using a
probabilistic search tree, different motion patterns can be added to the training
set without complication. Adding additional snippets to the training set leads
to an increase of the depth of the binary search tree. Online costs to predict
the state of the particle filter are thus sub-linear (logarithmic) in the number of
training samples.

7.5 Conclusions

We considered four approaches (SFlowX/GPDM, HoM/Traj, KF, IMM-KF) for
stereo vision-based pedestrian path prediction from a vehicle. Two scenarios were
considered: in one, the pedestrian walking towards the curbside, lateral to the
vehicle driving direction, would stop, while in the other, the pedestrian would
continue walking.

Experiments indicated similar path prediction performance of the four ap-
proaches on walking motion, with near-linear dynamics. During stopping, how-
ever, the newly proposed approaches ( SFlowX/GPDM or HoM/Traj), with non-
linear and/or higher-order models and augmented motion features, achieved a
more accurate (longitudinal and lateral) position prediction of 10 — 50 cm at
a time horizon of 0 — 0.77 s around the stopping event. During stopping, a
50 c¢m improvement in lateral position prediction was reached at several time
instants. Further benefits are possible when localizing the pedestrian more ac-
curately and improving upon the vehicle ego-motion compensation: we obtained
improvements in lateral position prediction of 15—81 cm for the various systems.

These are encouraging results, indicating that more advanced pedestrian path
prediction approaches can make a real difference, when integrated in the next-
generation active pedestrian safety systems that perform emergency vehicle ma-
noeuvres (braking, steering). But more work is necessary on improving pedestrian
localization, enlarging the set of pedestrian motion patterns considered and in-
creasing the size of the dataset, before these benefits can materialize.
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Chapter 8

Conclusion and Outlook

The primary goal of this thesis was the development of vision-based methods
that can be integrated in an active pedestrian protection system. These systems
can prevent accidents in situations where the driver of a car is inattentive or
does not (or can not) react fast enough (see Chapter 5). A strong focus has
been placed on the use of dense stereo data in different modules of a pedestrian
detection system, i.e. region of interest generation, classification, tracking and
path prediction

A basic requirement for an on-board active pedestrian protection system is the
capability to detect pedestrians in a complex, always changing environment with
as few false detections as possible. In Chapter 4 we evaluate the performance
gains with respect to a reduction in false positives when using dense stereo in
the ROI generation and refining the pedestrian location. Two state-of-the-art
baseline systems, both using a flat-world assumption for the ROl generation and
a classifier (HOG/linSVM) operating on intensity image data, have been assessed.
The first system solely depends on a monocular camera setup for detection and
tracking. In contrast, the ROI generation of the second system is extended so
that ROls at a certain distance are only generated if there is enough depth support
from stereo data. To improve the tracking performance the 3D world position of
the pedestrian is derived from stereo measurements. At a detection rate of 60%
the number of false positives was reduced by a factor of 4 compared to the purely
monocular based system. The dataset was made publicly available to facilitate
benchmarking.

In Chapter 5 the ROI generation has been further improved and stereo data
has been used as additional input for the classification module. The ROI gener-
ation has been extended to recover scene geometry in terms of camera height,
camera pitch and road profile from dense stereo data on a frame-by-frame ba-
sis. Compared to the baseline system with flat world assumption and fixed pitch
a reduction of false positives by a factor of 2.3 at similar detection rates was
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demonstrated. By fusing classifier responses from different modalities (intensity
and depth), an additional reduction of false positives by a factor of 3.3 has been
reached. The different characteristics of depth and intensity features help to
improve the fused classification performance. Combining the proposed ROI gen-
eration and high-level fusion resulted in a reduction of false positives by a factor
of 7.5 at classification-level. Hence, the overall performance of a pedestrian pro-
tection system should be enhanced by using dense stereo in the ROI generation
and classification module.

Methods presented in Chapter 4 and Chapter 5 have been combined with a
generic motion-based object detection (6D-Vision) and implemented in a demon-
strator vehicle. The vehicle automatically triggered emergency measures to pre-
vent an accident with a pedestrian. In situations where a collision can not be
prevented by braking, an evasive steering maneuver was triggered. By fusing
results from the pedestrian recognition and the generic motion-based object de-
tection, partially occluded pedestrians can be detected early and a more accurate
pedestrian velocity is estimated. On two scenarios, requiring a split-second de-
cision between no action, automatic braking and automatic evasion, the system
made the correct decision in all runs (over 40). Even though vehicles with emer-
gency braking systems have been introduced by different car manufactures, fur-
ther research is needed before systems that automatically initiate evasive steering
maneuver will be available. In order to initiate an automatic evasive maneuver
it is not only important to detect obstacles and other traffic participants (e.g.
vehicles, pedestrians,...) but also understand their behavior and predict possi-
ble actions. Because an evasive maneuver can be a rigorous intervention, it is
important to avert an unnecessary or false automatic evasive maneuver.

State-of-the-art situation analysis methods rely on the prediction of the cur-
rent state into the future using appropriate motion models and accurate pedes-
trian velocity estimation. But due to the highly dynamic behavior, pedestrians
can start/stop walking abruptly, simple motion models can fail to predict future
states. Deciding if an automated emergency maneuver has to be initiated, or
not can be difficult when model assumptions fail. One of the main contributions
of this thesis is the introduction of two new approaches (SFlowX/GPDM and
HoM /Traj) for pedestrian path prediction and action classification in Chapter 7.

Motivated by a human factors study [150] that analyzes the importance of
visual cues to predict pedestrian behavior, the newly introduced approaches use
motion features derived from dense optical flow to address the path and action
prediction problem. Using dense optical flow and stereo as an input modality for
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the feature derivation is inspired by the fact [38] that humans can recognize a
person’s action from the motion itself and do not need to reconstruct a three
dimensional model of the person performing the action. Two scenarios have
been considered. In both scenarios a pedestrian is walking towards the curbside
lateral to the vehicle driving direction. In one scenario the pedestrian stops at
the curbside, in the other scenario he continues walking on to the road. Experi-
ments showed that during the pedestrian’s stopping motion the newly proposed
approaches with augmented motion features achieve a more accurate prediction
by 10 — 50 ¢m at a time horizon of 0 — 17 frames (up to 0.77 s) compared
to the baseline method. Additionally, the proposed system can predict the in-
tended pedestrian action from the system state. To put the performance of the
proposed systems in context, we evaluated human performance to classify pedes-
trian actions. Test participants were able to identify the pedestrian action with
a certainty of 80% approximately 570 ms in advance. The new systems with
augmented visual features reached this accuracy only 230 ms before the event.
Initiating an emergency braking 230 ms early to a collision with a pedestrian, at
a velocity of 50 km/h, reduces the risk of sever injure from 50% to 25% and the
risk of death from 25% to 10% [160].

Performance and robustness of the proposed method can be extended in the
future using cameras with a higher image resolution and frame-rate. This will
allow extracting pose-related features for path predicting that are lost in noisy
and low resolution image data, e.g. a more accurate optical flow describing the
pedestrian motion. An accurate pedestrian segmentation in images [59] is not
only important to extract features located on pedestrian body parts but also for
a refined estimation of the 3D position of the pedestrian. Besides features that
capture pedestrian motion patterns, high level behavior information can be used
to predict possible actions (e.g. head orientation, age). Up to now little research
has been conducted in identifying if a pedestrian is distracted [155] and does not
notice oncoming traffic, e.g. by cell phone use. Estimating the head pose [129]
and body orientation [50] can help to identify these situation. Another factor that
influences the road crossing behavior of a person is age [16, 138]. Classifying the
age of a pedestrian from high resolution image data [107] can be an important
cue to predict their behavior.

Besides analyzing the behavior of a pedestrian in isolation, the interaction
of the different traffic participants and information about the infrastructure (e.g.
crosswalks, traffic lights,. .. ) is important to interpret the current situation. Gen-
erating a more complete model of the environment can be realized by extending
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the existing on-board sensor infrastructure of a vehicle (e.g. extended camera
setup, radar, lidar, ...) and/or using cooperative sensor technology (Car-2-X
communication [3, 124]). In situations where a pedestrian can not be detected
by on-board sensors (e.g. due to complete occlusion by a parked car) additional
wireless transmitted information from a pedestrian or other vehicles that de-
tected the pedestrian will allow an interpretation of the environment. Generating
a model that describes the environment, the interaction of its different partic-
ipants and their possible behaviors is important for the vision of accident-free
driving and is crucial for autonomous driving [63].
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Appendix A

This thesis has led to the following publications:

Journal Publications

e C. G. Keller, M. Enzweiler, C. Schnérr, M. Rohrbach, D. F. Llorca, and D.
M. Gavrila. The benefits of dense stereo for pedestrian detection. [EEE
Trans. on Intelligent Transportation Systems, 12(4):1096-1106, 2011

e C. G. Keller, T. Dang, A. Joos, C. Rabe, H. Fritz, and D. M. Gauvrila.
Active pedestrian safety by automatic braking and evasive steering. IEEE
Trans. on Intelligent Transportation Systems, 12(4):1292-1304, 2011

e C. G. Keller and D. M. Gavrila. Will the pedestrian cross? A study on pedes-
trian path prediction. IEEE Trans. on Intelligent Transportation Systems,
PP(99):1-13, 2013

Conference Publications

e C. G. Keller, D. F. Llorca, and D. M. Gavrila. Dense stereo-based ROI
generation for pedestrian detection. In Pattern Recognition, Lecture Notes
in Computer Science, pages 81-90. Springer Berlin Heidelberg, 2009

o C. G. Keller, M. Enzweiler, and D. M. Gavrila. A new benchmark for
stereo-based pedestrian detection. In Proc. of the IEEE Intelligent Vehicles
Symposium (IV), pages 691-696, 2011

e C. G. Keller, C. Hermes, and D. M. Gavrila. Will the pedestrian cross?
Probabilistic path prediction based on learned motion features. In Pattern
Recognition, Lecture Notes in Computer Science, pages 386—-395. Springer
Berlin Heidelberg, 2011
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