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Abstract

In this work we examine different numerical methods for the simulation of Maxwell’s
equations in 3D with the application to ground-penetrating radar. In particular we
consider an edge-based finite element and a discontinuous Galerkin method, both in the
time domain. We implement these methods using the finite element framework Dune and
the discretization module dune-pdelab and test the implementations using two example
problems. Finally, we apply them to a ground-penetrating radar problem derived from
the ASSESS-GPR test site and compare the results to actual measurements made on
the site.



Zusammenfassung

In dieser Arbeit untersuchen wir verschiedene numerische Methoden zur Simulation der
Maxwellgleichungen in 3D mit Anwendung auf Bodenradar. Insbesondere betrachten wir
eine kantenbasierte Finite-Elemente-Methode und eine Discontinuous-Galerkin-Methode
im Zeitbereich. Diese beiden Methoden implementieren wir mit Hilfe von Dune und dem
Diskretisierungsmodul dune-pdelab und testen diese Implementierungen anhand von
zwei Beispielproblemen. Zuletzt wenden wir sie auf ein Bodenradarproblem an, dass sich
vom ASSESS-GPR-Versuchsaufbau herleitet, und vergleichen die Ergebnisse mit einer
Messung, die an diesem Versuchsaufbau gemacht wurde.
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1. Introduction

In this work we are concerned with the numerical simulation of ground-penetrating
radar. The main aim is to develop efficient and accurate numerical methods for 3D
simulations. These are needed ultimately to do inversion of GPR data on soils that do
not have translational symmetry in one direction.

1.1. GPR and related methods

Ground-penetrating radar (GPR) has many application. It is used in archaeology for
surveys of historical sites, to quickly find interesting features warranting a closer inspec-
tion. It is also used to study materials of historical artifacts and to identify different
materials for the purpose of restoration. In engineering it is used to examine roads,
bridges, tunnels, buildings and other man-made structures for the purpose of quality
control and to discover faults due to wear and tear. Military applications include the
detection of tunnels and buried objects such as mines.

The focus of this work is on the use of GPR in soil physics and hydrology. In these
fields GPR is used to map the ground structure and the soil water content. Here its
main advantage is that it operates non-destructively and can cover larger areas relatively
quickly. Closely related are application in planetology and the examination of glaciers.

The basic principle of GPR is as follows. A sending antenna emits an electromagnetic
pulse, ideally directed towards the ground and a receiving antenna records the returned
signal. This results in a trace, consisting of a number of samples for different points
in time. Then the position of the sending and/or receiving antenna is changed and
the process is repeated. This results in a line, a collection of many traces for different
antenna positions.

The most common measurement technique is common offset (CO): the distance be-
tween sending and receiving antenna is kept constant, e.g. by building them side-by-side
into the same case. This makes it very suited to obtain data on a larger site: usually
one operator drags the antenna-assembly over the ground while another walks along-
side recording the data on a laptop. A small wheel attached to the antenna measures
the distance and triggers the measurement of one sample every few centimeters. This is
very similar to what is done by engineers to examine roads: there, multiple transmitting-
receiving antenna assemblies are mounted on a vehicle, which also contains the recording
electronics, and the operator simply has to drive on the road.

An alternative technique is wide angle reflection and refraction (WARR). One antenna
is stationary and the other is pulled away, again triggering a trace every few centimeters.
Very similar is the common midpoint (CMP) technique. Here, receiving and sending
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antenna are both moved away from a common midpoint. Both techniques can be used
to directly measure the refractive index of the topmost soil layer by comparing the travel
time of the air wave to that of the ground wave. Especially CMP is also well suited to
determine both the depth of a particular reflector and the refractive index of the ground
above that reflector, since it gathers information from different angles.

Finally, multi-channel GPR integrates ideas from CMP and WARR into CO measure-
ments: at least two transmitting-receiving antenna assemblies (T1,R1) and (T2,R2) are
chained together, separated by a little distance. These are dragged across the ground
with a constant distance and triggered in regular intervals, just as for CO. This provides
now four channels for measurements: the two internal channels T1–R1 and T2–R2, but
also the short cross-box channel T2–R1 and the long cross-box channel T1–R2. Just
like CMP and WARR this means the same region in the ground is examined from dif-
ferent angles, and both reflector depth and refractive index can be determined. Most
multi-channel GPR systems use actually more than just two antenna assemblies.

Lines are commonly displayed in the form of a radargram, an image with the position
of the trace on the horizontal axis, the time of each sample on the vertical axis (with later
times at the bottom), and the sample value determining the gray level. This can already
look deceptively like a cross section of the ground. However, this is usually misleading
and several post-processing steps and assumptions (or multi-channel measurements) are
required to get an actual approximate representation of the ground.

GPR works in the frequency range 10MHz–5GHz. Its penetration depth is usually in
the order of a few meters, but can be tens of meters in arid regions due to the lower water
content. In the extreme the penetration depth in ice can be in the order of kilometers[14].
On the other hand, when the ground has high contents of iron, clay, salt or water, GPR
can be completely inapplicable. The penetration depth is of course better for lower
frequencies, on the other hand higher frequencies provide better resolution.

Due to the limited penetration depth GPR can normally not be used to explore nat-
ural resources. There is however a related technique by the name magnetotellurics. It
operates with frequencies in the range of 0.1mHz–10kHz and reaches penetration depths
in the order of 15km. When modeling magnetotellurics, the wave nature of the electro-
magnetic field is often neglected resulting in a purely diffusive approximation.

An older technique for exploring natural resources is seismic imaging. Despite being
based on different physical principles, seismic imaging and GPR can both be modeled by
wave equations. Thus from a numerical point of view, they share a much closer relation
than GPR and magnetotellurics do.

1.2. Modeling of GPR

The interpretation of the data from GPR is a non-trivial task. While irregularities are
easy to spot, which make this tool suitable for archaeology and military applications,
doing a quantitative analysis is a much more difficult task.

To get a better handle on the problem, various people have approached it with the
help of analytical and computational models. In [14] Gerhards examined the problem
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using ray-based, plane-wave and Green’s function-based approaches, resulting in the
development of multi-channel GPR techniques. Lambot et al. model the ground as
a series of purely horizontal layers[24]. This allows for very efficient modeling, even
taking the 3D nature of the electromagnetic wavefront into account. It does however
neglect horizontal variability of the ground structure. Leidenberger in [25] implemented
a FETD simulator (hades3d) to investigate the influence of dispersion, but was limited
to around 300 000 degrees of freedom. Buchner in [7] conducted inversion of the ground
structure and water content of a site with known ground structure based on GPR data.
He achieved good agreement, but was limited to using 2D simulations.

1.3. Computational Challenges

Doing a full simulation of Maxwell’s equations is quite challenging. Assuming a frequency
of 200MHz and maximum relative permittivity of 5 the minimum wavelength will be
30cm. At the same time, the size of the domain is some meters – for the sample problem
we will use later it is approximately 6m× 4m× 2m. With a structured mesh this would
lead to a mesh of about 10 000 tetrahedra. Due to the complex internal layering meshes
generated by a mesh generator have much more tetrahedra and the minimum element
size will be much smaller than the maximum. For the sample problem, a mesh generated
by Gmsh had ≈ 150 000 tetrahedra, with the smallest element size around 3cm, see table
7.1. To observe the sampling limit, the maximum element size must be half the minimum
wavelength, which already means a factor of eight in the number of elements and thus
memory requirement. For the computational effort the increase is a factor of 16, since
the number of time steps has to double as well due to the CFL condition. To get good
accuracy we need to increase the mesh resolution further, leading to further increase in
the fourth order of the mesh resolution.

To solve problems of such sizes, we need to employ parallel computers. This brings
its own challenges. The components of sequential PDE solvers must be adapted or even
replaced by different schemes to work in a parallel setting. The work must be distributed
evenly among the available processors, or part of the available computing time would be
wasted. It must be organized in a way to minimize communication between processors,
since communication is expensive.

There are several approaches and numerical schemes to choose from: frequency domain
schemes solve an elliptic problem for many frequencies and then transform the result into
the time domain. They have the disadvantage that they lead to a difficult to solve matrix.
In addition a final Fourier transform must be applied to obtain the result in the time
domain. In contrast, for time domain discretizations people often use explicit schemes.
In the case of discontinuous Galerkin time-domain (DGTD) and finite-element time-
domain (FETD), this means that a mass matrix needs to be solved. For FETD, this
matrix is very benign and can be solved with a simple iterative solver in a few iterations.
Since each step of a linear solver requires a communication, a this is advantageous in
a parallel setting. For DGTD the mass matrix can be solved even more easily: it is
(block) diagonal, and it is sufficient to invert each block individually. With (block)
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diagonal matrices the advantage in the parallel case is even greater, since the number of
communications required to solve the matrix is reduced to one. In fact, even storing the
matrix can be avoided by applying the matrix on the fly in an assembly run.

Finite difference time-domain (FDTD) schemes such as the one by Yee [40] are well-
known, and solvers implementing them, both commercial and open source (e.g. MEEP
[32]), are highly optimized. They are however limited to second order accuracy. They
employ a regular grid that cannot easily be adapted to irregular geometries of materials
inside the domain.

Finite-element time-domain schemes work on unstructured meshes which can readily
be fitted to irregular geometries. In addition, higher order basis functions can be used
that lead to higher order schemes. However, even when used with an explicit time
scheme, they lead to a non-diagonal mass matrix, making an iterative solver necessary.

Discontinuous Galerkin time domain schemes combine the advantages of finite differ-
ence and finite element schemes. They operate on unstructured meshes and allow higher
order basis functions, but still avoid the use of an iterative solver: when used with an
explicit time scheme, the mass matrix is block-diagonal with one block for each mesh
element. These blocks can easily be inverted using a direct solver. With the appropriate
basis, even the blocks can be diagonal. Discontinuous Galerkin schemes are easy to
extend to higher order, which enables them to efficiently use modern processors even in
a sequential setting.

1.4. Outline

Chapter 2 lays the theoretical groundwork. The underlying Maxwell’s equations are
described as well as some of the consequences. We present to forms of Maxwell’s
equations: a first order system, useful to the DGTD scheme, and a second order
wave equation, useful for the FETD scheme. On the topic of soil physics we
introduce the REV and use it do derive the CRIM formula, which may be used
to describe the dielectric permittivity of mixed materials. Finally we describe
aspects of computer science such as measures to assess algorithms, both sequential
and parallel.

Chapter 3 describes the algorithms used to discretize the domain spatially: a novel
discontinuous Galerkin time-domain scheme and as a reference a finite element
time domain scheme.

Chapter 4 describes the schemes used for the discretization in time.

Chapter 5 describes the linear algebra solvers used for the equation systems resulting
from the temporal discretization.

Chapter 6 describes two test problems that were used to test the implementation. The
first test case is a superposition of plane waves traveling through the computa-
tional domain. The second is a dipole antenna in the center of a spherical domain
transmitting a pulse. Both test problems have analytic solutions, and the first
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is used to compare the accuracy of the DG scheme at various orders to the DG
scheme.

Chapter 7 describes application of these methods to a GPR measurement on an man-
made test side with known geometry.
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2. Theory

Solving large PDEs, as required by the GPR, requires the of sufficiently potent comput-
ers. Since the clock frequency of individual processors cannot be raised much further,
such computers have a parallel architecture, and more computing power is gained by
adding processors. This makes it necessary to adapt programs to such an architecture –
the program consists of many threads of execution, each running on its own processor.
These threads of execution must coordinate, which entails communication overhead. In
section 2.1 we describe how to assess parallel programs, and we look at the architecture
of parallel computers. setting of parallel computing.

The theoretical groundwork needed for the treatment of ground-penetrating radar
includes foremost Maxwell’s equations. These are the fundamental physical description
of electromagnetic waves and other electromagnetic phenomena. They will be the subject
of section 2.2.

But the ultimate goal of GPR is to detect water contents, in particular the sharp
discontinuities in water content which are related to ground structure. Therefore a
relation between the dielectric permittivity, which is the relevant property as far as
electromagnetics is concerned, and water content is needed. This is given by the CRIM
formula, which is described in section 2.4, along with the concept of the REV which is
fundamental in soil physics.

2.1. Parallel computing

Today’s computers employ a high level of parallelism. One example is instruction level
parallelism, where either the processor dynamically or the compiler statically resolves
data dependencies between instructions and schedules them in such a way that as few
units as possible of the processor remain unused at any given time. This is however
mostly transparent to the programmer and the user of the program, so I will not consider
this further here.

2.1.1. Flynn’s Taxonomy

Let me introduce the classification of parallel programming models by Flynn [13]. Flynn
classifies machines based on how many data and instruction streams they are able to
process simultaneously. The four classes are:

Single instruction-stream single data-stream (SISD) This describes a traditional se-
quential architecture.
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Single instruction-stream multiple data-stream (SIMD) Here a single instruction con-
trols several processing units operating on different data. Modern processors im-
plement this concept in their vector units, and graphic cards are heavily based on
it.

Multiple instruction-stream single data-stream (MISD) This is a very unusual archi-
tecture, although it is not totally unheard of. Flynn himself gives an example in
his paper.

Multiple instruction-stream multiple data-stream (MIMD) This is essentially a col-
lection of more or less independent machines of one of the other types. Each
instruction stream operates on one or more data streams. An example would be a
modern multiprocessor, or a cluster.

With the exception of MISD modern computers incorporate elements of any of the
classes: vector units are ubiquitous are members of the SIMD class. Even uniprocessor
machines usually have a graphics card or some other auxiliary processor which makes
them MIMD, strictly speaking.

2.1.2. Shared vs. Distributed Memory

Another useful classification for a parallel machine is according to whether all processors
share a common address space or not. When a common address space exists the computer
is called a shared memory machine, otherwise it is called distributed memory. A single
computer with multiple cores is usually a shared memory machine. A cluster is an
example of a distributed memory machine: multiple compute nodes, each a more-or-less
standalone computer, joined by a fast network.

Shared memory offers the advantage that all processes of a running program can ac-
cess the same data structures, which avoids the need to store data needed by multiple
processes more than once. Programs written for such a machine commonly use mul-
tithreading as a programming model, and are supported by libraries such as pthreads
or the C++11 standard library, or language extensions such as OpenMP. Shared mem-
ory has the disadvantage that machine of this type become difficult to build when the
number of processors becomes large. Uniform memory access (UMA) systems, where
all processors have equal access to all memory, become impractical at around 8 to 16
processors. The next step are non-uniform memory access (NUMA) systems. These are
essentially a collection of UMA systems (called nodes in the NUMA context) which are
joint at the lowest caches by a fast interconnect, see figure 2.1. Access of a processor to
memory on the same node works as usual. However, if some processor accesses mem-
ory on a different node, the cache on the requesting node has to communicate with the
cache on the node containing the memory through the interconnect. This makes access
to some memory slower, and it is often beneficial to keep memory data structures and
processors used by one process on the same node.

NUMA has its own limits, of course, and to build even larger systems the concept of a
shared address space is usually given up, resulting is distributed memory machines. In
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L3 Cache L3 Cache L3 Cache

Memory Memory Memory

Cache CPU1 Cache CPU1 . . . Cache CPU1

...
...

...

Cache CPUn Cache CPUn Cache CPUn

NUMA node 1 NUMA node 2 NUMA node m

Interconnect

Figure 2.1.: Typical structure of a NUMA machine.

practice this i usually a cluster of UMA or NUMA machines joined by a fast network.
Since different processors can no longer transparently access each other memory, the
processes of a program have to handle communication explicitly, giving rise to the mes-
sage passing programming model. This is supported by the message passing interface
(MPI), a standard implemented by many competing libraries, providing the fundamental
building blocks such as sending and receiving messages.

For NUMA systems it is often advantageous to program them using message passing
instead of multithreading. Then the processes of the program do not share memory,
which makes it possible to keep each process running on the NUMA node where it’s
memory is located.

2.1.3. Scalability

Given a problem, an algorithm to solve it and a parallel computer, ideally I would
expect that the time to complete the algorithm is halved when I use twice as many
processors. This is however nearly never the case. One reason is that many algorithms
have portions that cannot be executed in parallel, and thus do not benefit from the
additional processors. Another reason is that the intermediate results of one process of
the parallel program is often needed by another process. This means that this data need
to be communicated, which takes time in itself.

Let T (N,P ) be the runtime of an algorithm A on input data of size N on P processors,
and let T best(P ) be the runtime of the best sequential algorithm B available for the same
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problem. Then define the speedup of A as

S(N,P ) =
T best(P )

T (N,P )
(2.1)

and the efficiency as

E(N,P ) =
T best(P )

PT (N,P )
. (2.2)

These measures can be used in different ways. A strong scalability study plots the
speedup S(N,P ) (or the efficiency E(N,P )) over P for constant N . For an algorithm
that scales ideally the speedup graph should be a diagonal line of slope 1, and the
efficiency should be a constant 1. Based on this, Amdahl gave a rather pessimistic
outlook on parallel computing in 1967[1]. His argument was that that every algorithm
can be split into a port that can be parallelized and a part that is inherently sequential.
The sequential part is always present and non-vanishing (i.e. program setup time). In a
strong scaling study the speedup is limited by this sequential component, at some point
it does not make sense to add more processors since it does not reduce the computation
time any further. This has become known as Amdahl’s law.

The problem with Amdahl’s law is that it answers the question “what is the shortest
time needed to solve a given problem?” However, for many practical problems the more
interesting question is “given a limited time, how big can I make N while still being
able to run my algorithm on a given computer?” This was pointed out by Gustafson
in [17]. To answer this question a weak scalability study is useful: instead of keeping N
constant, N is scaled with P . The inherently sequential part is mostly independent of
the problem size, so that good scalability can be achieved even for very large P .

2.1.4. Scalability in the Context of PDEs

In this section I will consider aspects of parallelization of particular interest when solving
partial differential equations with mesh-based methods. Consider a regular mesh with
9 × 9 elements covering the computational domain. This can be partitioned onto nine
processes using a 3 × 3 pattern, see figure 2.2. What is interesting here is that com-
munication happens at the boundary between processes. This can be either via overlap
mesh elements as shown in the figure, or via nodes shared by several processes. The im-
portant point here is that the amount of data exchanged scales with the boundary, i.e.
Θ(
√
N/P ) in the example, while the computational effort scales with the volume (at the

least), i.e. Ω(N/P ). Thus for weak scaling N ∝ P the proportion of the communication
in the overall runtime will stay constant.

2.2. Electromagnetic Theory

In 1865 Maxwell presented his “Dynamical Theory of the Electromagnetic Field”[29] to
the Royal Society. This treatment included a set of equations, from which Heaviside later
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Figure 2.2.: Example of a 9× 9 mesh partitioned onto nine processes. The numbers are
the indices of the grid elements, overlap elements on a given process are in
gray.

selected the four vector equations known today as Maxwell’s equations. Individually
these equations predate Maxwell’s treatment, which is reflected in their names. In
today’s notation, the equations are:

∂tB +∇×E = 0 (2.3a)

∇ ·D = ρ (2.3b)

∂tD−∇×H = −J (2.3c)

∇ ·B = 0 (2.3d)

(2.3b) is known as Gauss’s law. It relates the electrical displacement to charges. (2.3d)
does the same for the magnetic field, with the twist that there are no magnetic charges.
It is thus known as Gauss’s law for magnetism. (2.3c) is Ampère’s circuital law. In its
original form it just relates the magnetizing field to the current density. The correction
by Maxwell, which is included here, extends this to displacement currents. Finally, (2.3a)
is the Maxwell-Faraday equation, a generalization of Faraday’s law of induction.

Maxwell’s equations are connected by a set of constitutive relations:

D = εE (2.3e)

B = µH (2.3f)

J = σE + Js (2.3g)
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Symbol Unit (SI) Description

E V/m = N/C Electric field
B T = N s/C m Magnetic field
D C/m2 Electric displacement field
H A/m Magnetizing field

J A/m2 Total current density
Js A/m2 External current density
ρ C/m3 Charge density

ε F/m Dielectric permittivity
µ V s/A m Permeability
σ S/m = 1/Ω m Electric conductivity

Table 2.1.: Quantities appearing in Maxwell’s equations.

Although not usually considered part of Maxwell’s equations, the continuity of charges
is closely related:

∂tρ+∇ ·J = 0 (2.3h)

The quantities used in Maxwell’s equations are listed in table 2.1.
Notice that if (2.3d) is fulfilled at any point in time, it follows from (2.3a) by taking

the divergences that (2.3d) will be fulfilled for all points in time. For (2.3b) and (2.3c)
the situation is a little bit more complicated: given the divergence of (2.3c) either (2.3b)
or the continuity equation (2.3h) follows from the other.

2.2.1. Field Continuity at Boundaries

To examine the behavior of the fields at material boundaries, it is useful to consider
Maxwell’s equations in integral form:∮

∂Σ
drE · t̂ = −

∫
Σ
dr ∂tB · n̂ (2.4)∮

∂Ω
drD · n̂ =

∫
Ω
dr ρ (2.5)∮

∂Σ
drH · t̂ =

∫
Σ
dr (J + ∂tD) · n̂ (2.6)∮

∂Ω
drB · n̂ = 0 (2.7)

Here, Ω ∈ R3 is some arbitrary connected domain and ∂Ω is its boundary, with n̂ the
outer unit normal to ∂Ω. Σ is some arbitrary area and n̂ is a unit normal to Σ; ∂Σ is
the boundary of Σ with t̂ being a unit vector tangential to ∂Σ. n̂ and t̂ are smooth on
their respective domains and related by the right hand rule: t̂ × n̂ is a unit vector on
and outward to ∂Σ.

16



h

(ε, µ)|1

(ε, µ)|2

a = ∆x∆y
n̂|2

Figure 2.3.: Integration volume Ω for the divergence equations.

There are general relations regarding the continuity of the electromagnetic field at
material discontinuities. To investigate this, let the space be filled with two different
materials:

ε(r) =

{
ε1 r · n̂|2 < 0

ε2 r · n̂|2 > 0
(2.8)

µ(r) =

{
µ1 r · n̂|2 < 0

µ2 r · n̂|2 > 0
(2.9)

Here, n̂|2 is a unit vector normal to the interface between the two materials, pointing
into material 1. Consider a volume Ω with flat sides of area a parallel to the material
interface and on either side of it, and side walls perpendicular to the interface and of
height h. I’ll allow a surface charge ρ(r) = δ(r · n̂|2)ρf (r) on the interface, all other fields
are assumed to be constant in each region. Then I can compute the integrals in (2.5)∮

∂Ω
drD · n̂ = a(D|1 −D|2) · n̂|2 +O(h) (2.10)∫

Ω
dr ρ = aρf (2.11)

Taking the limes h→ 0 yields

(D|1 −D|2) · n̂|2 = ρf . (2.12)

For (2.7) the argument is the same, except that there are no magnetic charges and thus
the right hand side is immediately 0.

(B|1 −B|2) · n̂|2 = 0 (2.13)

For the other two equation I consider a rectangular area Σ with two sides of length l
parallel to the interface, one inside either material, and two sides of length h across the
interface and perpendicular to it. I’ll allow a surface current J(r) = δ(r · n̂|2)Jf (r) on
the interface with Jf · n̂|2 = 0, all other fields are assumed to be constant in each region.
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Figure 2.4.: Integration area Σ for the curl equations.

Then I can compute the integrals in (2.6)∮
∂Σ
drH · t̂ = l(H|2 −H|1) · t̂|2 +O(h), (2.14)∫

Σ
dr (J + ∂tD) · n̂|Σ = lJf · n̂Σ +O(h). (2.15)

t̂|2 is the tangential vector along the side of Σ that lies inside material 2, and n̂|Σ is the
normal on Σ. They are related with the material interface normal by t̂|2 = n̂|2 × n̂|Σ
and all three are mutually perpendicular. Using this, shifting the terms in the resulting
box product, and letting again h→ 0 results in

((H|2 −H|1)× n̂|2) · n̂|Σ = Jf · n̂Σ (2.16)

I did not specify a particular orientation of n̂|Σ, except that it must be perpendicular
to n̂|2, so this must hold for all orientations of n̂|Σ that are in the plane of the material
interface, and I can identify the terms on the left side of the scalar product

(H|2 −H|1)× n̂|2 = Jf . (2.17)

For (2.4) the argument is the same, except that there is no surface current, and I obtain

(E|2 −E|1)× n̂|2 = 0. (2.18)

In the absence of surface charges this implies continuity of the normal component of
D and B across arbitrary interfaces, and similar continuity of the tangential components
of E and H in the absence of surface currents.

This can be used to derive often used boundary conditions: consider the boundary
of a perfect electric conductor with arbitrarily large conductivity limσ = ∞. Any field
electric field E 6= 0 in this material would lead to arbitrarily large currents limJ =
Js + E limσ = ∞, thus the electric fields can only be E = 0. Using (2.18) I can show
that the limes of the tangential electric field towards a perfectly conducting wall must
go to zero

E× n̂ = 0 on ΓPEC. (2.19)
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The corresponding boundary condition for the H field is called in analogy a perfect mag-
netic conductor boundary condition (PMC) although there are, of course, no magnetic
monopoles.

H× n̂ = 0 on ΓPMC (2.20)

The boundary conditions lead to perfect reflection of waves incident on the boundary.
For the E field PEC corresponds to constrained mechanical boundary, while for H it
corresponds to an open one. For PMC it is the other way around: for H it corresponds
to a constrained and for E to an open mechanical boundary.

2.2.2. Time Harmonic Maxwell’s equations

When all fields are periodic in time with a periodicity ω/(2π), the fields can be written
as

Et = <Eωe−iωt Ht = <Hωe−iωt (2.21)

Dt = <Dωe−iωt Bt = <Bωe−iωt (2.22)

Jt = <Jωe−iωt ρt = <ρωe−iωt (2.23)

I’ve made it explicit here whether a quantity is considered to be in the time domain or
the frequency domain by using superscripts t and ω, respectively. Normally, when such
a superscript is missing, the quantity is in the time domain.

Inserting this into Maxwell’s equations makes it possible to conduct the temporal
derivatives

−iωBω +∇×Eω = 0 (2.24)

∇ ·Dω = ρ (2.25)

−iωDω −∇×Hω = −Jω (2.26)

∇ ·Bω = 0. (2.27)

Similarly, the equation of continuity becomes

−iωρω +∇Jω = 0 (2.28)

It is implicitly understood that only the real part of the fields corresponds to any physical
quantity. For a given ω the complex argument of these fields has the meaning of a phase
angle. In addition the time-dependent term e−iωt is identical for all fields and normally
dropped.

The time-harmonic and the time-dependent Maxwell’s equations are related by a
Fourier transform. Some problems are easier solved in the frequency domain, and a
solution in the time domain can be obtained by a backtransformation.
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2.2.3. Plane Waves

A general plane wave is any electromagnetic field of the form

Et = E0f(k · r− ωt), (2.29)

Ht = H0g(k · r− ωt). (2.30)

More commonly however, plane wave denotes a fundamental solution of Maxwell’s equa-
tions in homogeneous isotropic charge-free space. Plane waves are useful since any
solution to Maxwell’s equations can be decomposed as a superposition of plane waves.

In the frequency domain, plane waves have the form (for the electric field)

Eω = E0eik · r. (2.31)

E0 is the amplitude of the electric field. It can include a complex part which corresponds
to a phase shift. As I shall show, E0 cannot be chosen completely arbitrarily, it must be
perpendicular to the wave vector k.

Inserting (2.31) into (2.24) and using B = µH yields

Hω =
1

ωµ
k×E0eik · r =: H0eik · r, (2.32)

the magnetic field of the plane wave. Note that the amplitude H0 of the magnetic field
must be perpendicular both to the amplitude of the electric E0 field and the wave vector
k.

Inserting (2.32) into (2.26) and using D = εE yields:

Eω = − 1

ωε
k×H0eik · r = E0eik · r (2.33)

The identity to the right is the ansatz (2.31). This shows that for any solution of
Maxwell’s equations of the form (2.31) the amplitude of the electric field E0 must be
perpendicular to the wave vector k, and I find that k, E0 and H0 are mutually perpen-
dicular and it follows that plane electromagnetic waves are transverse.

I can combine (2.33) and (2.32) and use εµc2 = 1

E0 = − 1

ω2c2
k× k×E0 =

1

ω2c2
(k ·k)E0 (2.34)

This results in a relation between k and ω:

c2ω2 = k2 (2.35)

For a given wave number k E0 has still two degrees of freedom. Without loss of
generality, assume k = kêx pointing in direction of the x-axis. Then there are two
possible linear polarizations: E0,h = E0,hêy and E0,v = E0,vêz, commonly denoted
horizontal and vertical. (This naming convention obviously does not make sense for all
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possible orientation of k.) These two linear polarizations can be combined to obtain two
circular polarizations:

E0,r = E0,h − iE0,v (2.36)

E0,l = E0,h + iE0,v (2.37)

At any given time on any line parallel to k the Er field vector traces a the threads of a
right handed screw through space while the El field vector traces the threads of a left
handed screw.

Returning to the time domain is as simple as reintroducing the time-dependent term
and taking the real part:

Et = E0eik · r−iωt (2.38)

Ht = H0eik · r−iωt (2.39)

2.3. Numerical formulation

Maxwell’s equations can be solved in many ways numerically. There are frequency do-
main and time domain solvers. There a solvers that work with the fields directly and
solvers that work with the scalar and vector potentials. There are solvers that use
Maxwell’s equation as a first order system and solvers that transform it into a second
order wave equation first. For scattering analysis it is often useful to split the field into
incident and scattered field, in contrast to the total field that is usually used otherwise.
Primary variables can be the fields E and H or the fluxes D and B. In this section
I shall describe some of the aspects of these formulations, sufficient for the numerical
schemes introduced in a later chapter.

2.3.1. System Formulation

The system formulation is almost identical to the two Maxwell equations (2.3a) and
(2.3c). The only difference is the insertion of the constitutive relations such that only
primary variables are present:

∂tεE−∇×H + σE = −Js (2.40)

∂tµH +∇×E = 0 (2.41)

This is the formulation used by the famous finite difference scheme of Yee[40].
I shall use the system formulation for the discontinuous Galerkin scheme as well.

However, I shall use D and B as primary variables:

∂tD−∇× µ−1B+
σ

ε
D = −Js

∂tB +∇× ε−1D = 0
(2.42)

This will make it slightly simpler to show hyperbolicity.
In both cases, the divergence equations ∇ ·D = ρ and ∇ ·B = 0 were not used. They

are a compatibility requirement on the initial conditions; if they are fulfilled once the
other two of Maxwell’s equation (2.3a) and (2.3c) ensure that they are always fulfilled.
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2.3.2. Wave Formulation

The finite element method will use a wave formulation as described in [23]. This can be
obtained by combining the two equation in the system form (2.40) and keeping E as the
primary variable:

∂2
t εE +∇× (µ−1∇×E) + ∂tσE = −∂tJs (2.43)

Here, the compatibility requirement on the initial conditions is slightly modified. ∇ ·B =
0 becomes irrelevant, since the magnetic field is only present implicitly as the curl of E
insuring that it is automatically fulfilled. Applying the divergence operation to (2.43)
an using the equation of continuity results in

∂2
t∇ ·D = ∂2

t ρ (2.44)

i.e. there are now two integration constants to fix to ensure that ∇ ·D = ρ is automat-
ically fulfilled. This can be done either by requiring that ∇ ·D = ρ be fulfilled for two
distinct points in time

∇ ·D = ρ at t1 and t2 with t1 6= t2 (2.45)

or by requiring that

∇ ·D = ρ at t1 and (2.46)

∂t∇ ·D = ∂tρ at t2 (2.47)

with t1 and t2 possibly, but not necessarily equal.

2.4. Theory of GPR

Soil usually consists of several closely intermixed components. The most obvious is the
soil matrix, the solid part. What is left over is a network of pores, the pore space. The
pore space is often (partially) filled with water. Finally, the rest of the pore space is filled
with air, which must not be neglected. In situations such as contaminated soil there may
be additional components such as oil that don’t mix with the other components, but I
will not consider these here.

The exact geometry of the individual pores, the microstructure, is of little interest
scientifically. Knowing the geometry on the micro scale would enable us to solve the
relevant molecular-scale equations, but that would be prohibitively expensive and would
provide no abstraction: the exact pore geometry of every soil sample is different, and we
would be unable to apply conclusion obtained from one soil sample to another similar
soil sample.

What we are interested in then are averaged parameters on a larger scale, the macro
scale or continuum scale. I’ll show the averaging process using the volume fraction θ as
an example. I’ll mark quantities on the micro scale by a superscript · µ. Quantities on
the macro scale will be left unmarked.
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The volume fraction can be computed by

θi(r) = 〈χµ,i〉(r) =

∫
R3

dr′ χµ,i(r + r′)κ(r′) (2.48)

χµ,i : R3 → {0, 1} is the indicator function for phase i:

χi(r) :=

{
1 r ∈ phase i,

0 r 6∈ phase i.
(2.49)

It is of course a microscopic quantity. κ : R3 → R
+ is the weight function. It must fulfill

two properties: the weights should be positive κ(r) ≥ 0∀r and the total of all weights
should be one

∫
R3 drκ(r) = 1 so as not to distort the derived macroscopic quantities.

To obtain a traditional averaging volume, use κ that is zero outside a certain radius σ
and constant inside. Another choice would be a suitably scaled Gaussian with standard
deviation σ, which has the advantage that the derived macroscopic quantities are smooth
(but the disadvantage of an infinite support). κ is called the representative elementary
volume (REV). The name is used even though κ is not always actually a “volume”, i.e.
in the case of the Gaussian.

One very useful quantity that can be derived from the volume fractions is the porosity.
It is the volume fraction of the pore space, or equivalently φ(r) = 1− θm(r), where “m”
denotes the matrix. Other useful quantities are the volumetric water content θw(r) (with
“w” denoting water), and the saturation Θw = θw/φ

While the choice of the shape of κ is mostly one of convenience, the extend σ of κ
is more restricted. This is the question what length scales are characteristic for the
micro- and the macroscale, respectively. Lets consider the typical size of the pores, for
instance. If we chose σ to be roughly of this size, θm,i will vary wildly with position and
will provide no abstraction compared to χµ,i. If we make σ larger the variations will
become smaller. This is illustrated in figure 2.5. Some soils may contain macroscopic
heterogeneities. When σ reaches the size of these heterogeneities, the variation of the
porosity may actually increase again.

2.4.1. Water Content and Dielectric Permittivity

I am interested to relate the dielectric permittivity to the water content in the soil. The
velocity of light in some material i can be written as

ci =
c0

ni
(2.50)

with c0 the velocity of light in vacuum and ni the refractive index of material i. The
velocity of light in material is lower than in vacuum; from the point of view of a photon
it appears as if the traveled distance is longer in material. This leads to the notion of
the optical path length, which is given by

li := lni (2.51)
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48 3 Fluids in Porous Media

Figure 3.16.
Estimated porosity of soil sample
from Figure 3.6 as a function
of averaging cube’s length. The
cyan curve represents a particular
location. The other curves represent
the ensemble of all cubes: average
(magenta), minimum and maximum,
and the two quartiles. Half of all
values are within the gray band. The
linear extent of a reasonable REV
would be some 17 mm.
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flow or heat transport in both representations, we may hope that the respec-
tive descriptions approach each other at a sufficiently large scale, ideally that
of the REV. However, large deviations between the two are to be expected
at smaller scales. Hence, despite the fact that we will eventually formulate
differential equations for the dynamics of transport processes in porous media,
evaluating the ensuing solutions at scales smaller than the REV will generally
not reflect the physical processes correctly. This becomes particularly virulent
near boundaries. This issue is of course not limited to the transition from
the pore-scale to the continuum, but applies to all transitions between scales
that involve some kind of averaging and also to measuring processes, where
the measuring volume takes the role of the REV.

3.3.2
Texture

In soil science, “texture” refers to the grain size distribution of a soil while
“structure” refers to the soil’s aggregation into crumbs and blocks. Here, we
employ a more general semantic with “texture” encompassing the small-scale
shapes of a porous medium for which a statistical representation suffices.
“Structure” on the other hand refers to features that must be represented
explicitly. Consider for instance a soil at a scale of 1 m. Soil layers or earth-
worm channels here would belong to the structure while the system of meso-
and micropores would constitute the texture. This extended notion is useful
at any scale and in particular for hierarchically heterogeneous media.

After the transition from the pore scale to the continuum scale, the texture
of the pore space is reduced to a few statistical quantities like volume and
surface densities, correlation functions and lengths, and possibly some con-
nectivity functions. Here, we only consider the lowest order description, the
volume density of the pore space which is usually referred to as the porosity φ.

Figure 2.5.: Estimated porosity of a soil sample with known microscale geometry and
uniform macrostructure as a function of the averaging cube’s length. The
cyan curve represents a particular location. The other curves represent the
ensemble of all cubes: average (magenta), minimum and maximum and the
two quartiles. Half of all values are within the gray band. The linear extend
of a reasonable REV would be some 17mm. Figure taken from Soil Physics
[35] and used with permission.

in material i, i.e. it is just the optical path length in vacuum scaled by the index of
refraction. Using the procedure above we can compute a macroscopic refractive index
for the composite material:

n(r) =

∫
R3

dr′
∑
i

niχµ,i(r + r′)κ(r′) (2.52)

=
∑
i

ni
∫
R3

dr′ χµ,i(r + r′)κ(r′) (2.53)

=
∑
i

niθi(r) (2.54)

The magnetic permeability is equal to the vacuum permeability µi = µ0 for water, air
and many matrix materials, and I can use ni = c0

√
µiεi to obtain for the permittivities√

ε(r) =
∑
i

θi(r)
√
εi (2.55)

This is known as the complex refractive index model or CRIM formula for short. It was
first derived in [4] for the case of a complex permittivity ε = ε′ + iε′′ by considering the
effect on the actual electric field. It is actually just one of a class of more general models
of the form

ε(r)α =
∑
i

θi(r)(εi)α (2.56)
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which were examined by Brown [5]. He found, among other situations, for layered
material α = 1 if the electric field is parallel to the layers and α = −1 if the electric field
is perpendicular to the layers. Roth et al. examined the situation in soils more closely
in [36], and found α = 0.46. This is not too far of from the CRIM, so that is the one
usually used.

25





3. Spatial Discretization

Solving Maxwell’s equations in the time domain using numerical simulations reaches back
as far as 1966 when Yee published a finite difference scheme using a pair of staggered
grids for electric and magnetic fields[40]. Nearly fifty years later, this scheme is still
heavily used in many applications, and is often sufficient. It is however no longer the
only standard scheme.

Finite element schemes offer the advantage of working on unstructured grids and
promise higher order convergence. Initially they suffered from so called spurious solu-
tions, leading to results that did not make sense physically. The reason was the use
of nodal elements, and with the use of edge-based elements these problems have been
overcome. Today, finite element schemes can be considered standard too for solving
electromagnetic problems. They do however have the drawback of a non-diagonal mass
matrix, making it necessary to solve a matrix in each time step.

Discontinuous Galerkin schemes have a successful history in the area of hyperbolic
conservation laws, e. g. [9]. They were first introduced for neutron transport by Reed and
Hill in 1973[33] and subsequently analyzed by Lesaint and Raviart in 1974[26]. Shortly
afterwards they were extended to parabolic and elliptic problems, see e. g. [11, 3, 38].
These methods were developed mostly independent from the hyperbolic methods and
became known as interior penalty methods.

Hesthaven and Warburton in 2002 [18] and 2004 [19, 20] introduced a discontinuous
Galerkin method for Maxwell’s equations, based on the formulation as a conservation
law. At the same time, Cockburn, Li, and Shu examined a DG scheme using locally a
locally divergence-free basis[8]. In 2006 Lou and Jin proposed[28] a dual-field element-
level decomposition method based on the second order wave equation. In [16] Grote,
Schneebeli and Schötzau proposed an interior penalty scheme which solves the second
order wave equation.

We shall describe the standard finite element method for electromagnetics as well
as a discontinuous Galerkin method. We use the method of lines: we first do a semi-
discretization in space, and solve the resulting system of ordinary differential equations
(ODEs) with an appropriate time stepper. We describe the spatial discretization in the
current chapter and the temporal discretization in the next chapter. Finally, in chapter
5 we describe the solvers used to solve the linear equation systems resulting from the
temporal discretization.

3.1. Finite Elements

Electromagnetic problems are often posed in an infinite domain, with the exception of
cavity problems. However, computation power is finite, when discretizing the problem
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the computational domain employed is usually finite, too, and special boundary con-
ditions are needed to approximate the infinite domain of the original problem. These
boundary conditions must ensure that any wave leaving the computational domain must
be able to do so with minimum disturbance. In addition, for scattering problems, the
boundary condition should make it possible to prescribe incoming waves.

3.1.1. Boundary Conditions

One way to implement the truncation is to use boundary integrals, leading to a hybrid
finite element-boundary integral method. This has the advantage that there are no
approximations involved in the boundary condition. However, the assembly of the linear
system is computationally expensive, scaling with the square of the size of the boundary.

We will use an approximate boundary condition derived from the Sommerfeld ra-
diation condition. Boundary conditions of this type are known as radiating boundary
conditions (RBC) or absorbing boundary conditions (ABC). Although there can be no-
table reflections at the boundary, boundary conditions of this type are relatively simple
to implement, have little computational overhead and are often sufficient.

A third possibility are perfectly matched layers (PML). Here the computational domain
is surrounded by a layer with special non-physical material parameters that dampen any
waves traveling through it but still avoid reflections back into the domain of interest. This
perfectly matched layer can be backed on its outer boundary by a reflecting boundary
condition, or, for added accuracy, by an ABC.

Let Ω be the domain of interest with ∂Ω its boundary. All sources and sinks must be
contained in Ω. Then the time-harmonic field in the region outside of Ω must fulfill the
vector wave equation

∇×∇×E(r, t)− k2E(r, t) = 0 in R3 \ Ω (3.1)

and the Sommerfeld radiation condition

lim
r→∞

r[∇×E(r, ω) + jkr̂×E(r, ω)] = 0. (3.2)

Such a field can be described by an infinite series, and a matching series of operators
can be constructed on the domain boundary, each annihilating terms of the field up to a
certain order. Each operator yields an ABC accurate to a certain order. However, we’ll
just note that the operator of the lowest order happens to be the Sommerfeld radiation
condition applied at ∂Ω instead of infinity with r̂× applied:

r̂×∇×E(x, ω) + jkr̂× r̂×E(x, ω) = 0 (3.3)

Using k = ω/c = ω
√
εµ, the intrinsic admittance Y =

√
ε/µ and the Fourier transform

of derivatives of some function f(t)

F [∂nt f(t)] = (jω)nF [f(t)] (3.4)

we obtain the first order ABC in the time domain:

r̂× [µ−1∇×E(r, t)] + Y ∂t [̂r× r̂×E(r, t)] = 0 (3.5)
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There are some more hidden approximations here: First, in this derivation, the domain
Ω containing all sources is usually assumed to be spherical such that ‖r‖ is constant
along ∂Ω. When doing numerical computations, especially for GPR, a spherical domain
is usually not feasible. So we replace the direction of the position vector r̂ by the outer
normal n̂ of ∂Ω. This will lead to errors in the corners of the domain.

Second, the derivation assumes a uniform outer medium; in particular homogeneous
ε in R3 \ Ω. This is not true for GPR: here we have different layers in the ground and
a layer of air on top, extending at least to the domain boundary. Assuming that these
stop at the domain boundary (i. e. ε = ε0 on ∂Ω) would lead to reflections. The other
possibility, the one we have chosen, is to extend ε from Ω to ∂Ω. This on the other hand
violates the precondition that ε is uniform outside Ω, and will lead to reflections at the
domain boundary where ε changes.

3.1.2. Weak Formulation

We will use the wave formulation (2.43) as a starting point:

∇× (µ−1∇×E(r, t)) + ε∂2
tE(r, t) + σ∂tE(r, t) = −∂tJi(r, t) in Ω (3.6)

On the boundary I impose a mixed boundary condition sufficient to implement an ab-
sorbing boundary condition

n̂× (µ−1∇×E(r, t)) + Y ∂t(n̂× n̂×E(r, t)) = U(r, t) on ∂Ω (3.7)

This closely follows [23].
We call the space of electric fields U such that E ∈ U . To derive the weak formulation

we demand that (3.6) is fulfilled in a weak sense: we take the L2 scalar product with
some test function F ∈ U and the result must hold for all F.∫

Ω
dr
{
∇× (µ−1∇×E(r, t))

}
·F(r) + ∂2

t

∫
Ω
drεE(r, t) ·F(r)

+ ∂t

∫
Ω
drσE(r, t) ·F(r) = −

∫
Ω
dr∂tJi(r, t) ·F(r) ∀F ∈ U (3.8)

In this approach both the ansatz functions E and the test functions F are from the
same space U . This is called the Galerkin approach, it is used by finite element and
discontinuous Galerkin schemes. One notable class of schemes where ansatz and test
functions are from different spaces if finite volumes.

The double ∇× operator would be problematic when discretizing with lowest order
base function, so we reformulate the first term using Green’s first vector theorem. The
negative sign in the resulting surface integral vanishes when reordering the integrand.∫

Ω
drµ−1(∇×E(r)) · (∇× F(r)) +

∮
∂Ω
dr(n̂× µ−1∇×E(r, t)) ·F(r)

+ ∂2
t

∫
Ω
drεE(r, t) ·F(r) + ∂t

∫
Ω
drσE(r, t) ·F(r)

= −
∫

Ω
dr∂tJi(r, t) ·F(r) ∀F ∈ U (3.9)
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We can now apply (3.7) on the boundary:∫
Ω
drµ−1(∇×E(r)) · (∇× F(r)) + ∂t

∮
∂Ω
drY (n̂×E(r, t)) · (n̂× F(r))

+ ∂2
t

∫
Ω
drεE(r, t) ·F(r) + ∂t

∫
Ω
drσE(r, t) ·F(r)

= −
∫

Ω
dr∂tJi(r, t) ·F(r)−

∮
∂Ω
drU(r, t) ·F(r) ∀F ∈ U (3.10)

We approximate U by a suitable finite element space Uh with the base {N(i)} and
substitute F by its approximation

F(r) ≈ Fh(r) =
∑
j

FjN
(j)(r) (3.11)

Since (3.10) is linear in Fh, demanding that it holds for any Fh ∈ Uh is equivalent to
demanding that it is fulfilled for any base function N(j).∫

Ω
drµ−1(∇×E(r)) · (∇×N(j)(r)) + ∂t

∮
∂Ω
drY (n̂×E(r, t)) · (n̂×N(j)(r))

+ ∂2
t

∫
Ω
drεE(r, t) ·N(j)(r) + ∂t

∫
Ω
drσE(r, t) ·N(j)(r)

= −
∫

Ω
dr∂tJi(r, t) ·N(j)(r)−

∮
∂Ω
drU(r, t) ·N(j)(r) ∀j (3.12)

We approximate E in the same manner by Eh

E(r, t) ≈ Eh(r, t) =
∑
i

Ei(t)N
(i)(r). (3.13)

This way, we have a separation of time and space; the base functions N(i) depend only
on the spatial coordinates while the coefficients Ei depend only on time. This results in
the matrix equation

T∂2
tE(t) + (R + Q)∂tE(t) + SE(t) + f(t) = 0 (3.14)

with the matrices given by

Tij =

∫
Ω
drεN(i)(r) ·N(j)(r) (3.15)

Rij =

∫
Ω
drσN(i)(r) ·N(j)(r) (3.16)

Qij =

∮
∂Ω
drY (n̂×N(i)(r)) · (n̂×N(j)(r)) (3.17)

Sij =

∫
Ω
drµ−1(∇×N(i)(r)) · (∇×N(j)(r)) (3.18)

and the vector f by

fj =

∫
Ω
dr∂tJi ·N(j)(r) +

∮
∂Ω
drU ·N(j)(r). (3.19)
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3.1.3. H(curl)-conforming Base Functions

The definition of the H(curl)-conforming base functions was taken from [23]. I’m going
to reiterate the most important aspects here, in particular using a notation appropriate
for Dune.

These elements are commonly known under a number of names: Whitney elements
after a book by H. Whitney from 1957[39], Nedelec elements after a paper by J. C. Ned-
elec from 1980[31], edge elements since in the lowest order the degrees of freedom are
located on the mesh element edges, tangential (vector) finite elements since they provide
for tangential continuity across mesh element boundaries, sometimes even simply vector
finite elements since they are vector-valued and cannot be decomposed into scalar-valued
base functions (although there are other finite elements that share this property), and
finally H(curl)-conforming finite elements since they are conforming in H(curl).

There are also incompatible nomenclatures regarding the order of these basis functions.
[23] calls the lowest order the zeroth order, [31] calls the lowest order the first order. Some
people even compromise on calling the lowest order the 0.5th order (e.g. [2]). We are
dealing with lowest order basis functions only. Where the order matters, we will call
them 0.5th order, following the compromise, since that provides the least potential for
confusion.

For the purpose of this work we implemented these elements in the dune-localfunc-

tions module for both 2D and 3D.

Given the P 1 basis functions {L(i)} with the property L(i)(x(j)) = δij for the mesh
element’s vertices x(i), the edge shape functions are

N(i) =
f (i)

`(i)
(L(i(0))∇L(i(1)) − L(i(1))∇L(i(0))) (3.20)

Here, i is an index for the edge within the mesh element, `(i) is the length of edge
i and i(0) and i(1) are the indices of the vertices of edge i within the mesh element.
f (i) ∈ {−1, 1} is the orientation of the edge; this is needed so we can ensure tangential
continuity when constructing basis functions out of the shape functions on neighboring
mesh elements. For a given edge in some mesh element we determine f (i) by comparing
the ordering of edge’s vertices within the mesh element to the global ordering of the
same vertices: if they match then f (i) = 1, otherwise f (i) = −1.

Interpolation using lowest order edge elements converges with h in theH(curl) norm[31]
and thus in the L2 norm.

3.1.4. A Note on Spurious Modes

The most common way to solve a cavity problem is to use an eigenvalue solver: The
eigenmodes are the fundamental solutions, and the corresponding eigenvalues are the
squared frequencies of these modes. The result is then a spectrum of eigenvalues, giving
the frequencies supported by the cavity.

In the earliest node-based finite element models this approach led to so called spurious
modes, observed as nonphysical frequencies in the spectrum. The introduction of edge
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finite element methods resolved the problem of the spurious modes. In [37] Webb pro-
vided a good explanation why node-based elements suffer from spurious modes and edge
based elements do not: in essence the ∇ × ∇× operator has a null subspace of modes
of the form −∇Φ for some scalar field Φ. Analytically, these modes have frequencies
ω = 0. However, with node-based finite elements these modes are approximated badly,
leading to ω > 0, i.e. spurious frequencies in the spectrum. Edge elements spend a
far greater part of the finite element space on modeling the null space and are better
at approximating these modes, leading to ω = 0, so these modes don’t appear in the
spectrum.

That explains the situation for eigenvalue solvers. For time-domain solvers this has
the following consequences: Any excitation, whether by currents or by initial conditions
will likely also excite modes from the null space of the form −∇Φ. These modes are
unaffected by the wave equation (2.43), meaning they will stay constant over time. If
σ = 0 the situation is even worse: then −∂t∇Φ will be unaffected too, leading to a linear
increase of the maximum/minimum field values over time, and to a quadratic increase
of the energy density (E ·D + B ·H)/2.

This can be avoided by choosing the excitations carefully. We’ll give here some thumb
rules that excitations should satisfy to avoid trouble. They are somewhat stricter than
actually necessary, but most of the time this does not pose problems.

An excitation by current sources should have the following properties:∫ tend

tstart
J ≈ 0 (3.21)∫ tend

tstart
∂tJ ≈ 0 (3.22)

Violation of the first property means that charges are left in the domain after tend.
Actually, since this has a physical meaning, this may sometimes be desired. Violation
of the second property means that a current is left in the domain after tend. This
will lead to the linear increase in field values described above. An excitation with a
Gaussian temporal shape violates the first property and is thus seldom used. Note that
the integrals are discrete ones as used by the time stepper—a numerical error here may
become relevant for long enough computations. So in addition it may be necessary to
choose the time step size carefully.

For a problem without charges, initial conditions should fulfill the compatibility con-
dition

∇ · εE = 0 (3.23)

More important however is the second condition

∇ · ε∂tE = 0 (3.24)

If this is violated, then there is a current in the domain, which will, again, lead to
the maximum field values increasing linearly in time. Keep in mind that the initial
condition need to be evaluated at t(0) −∆t in addition to t(0). The easiest way to fulfill
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this condition is to start with E(t(0) − ∆t) = E(t(0)) = 0 and this is most often done.
However, then excitation must happen via other means. Another possibility is to use
E(t(0)−∆t) = E(t(0)). This avoids any currents in the domain, but charges may still be
present—these are however much less problematic.

3.2. Discontinuous Galerkin

For the discontinuous Galerkin scheme we chose to use the system formulation, since
this can easily be written as a hyperbolic conservation law. The choice of D and B as
primary variables makes it easier to show hyperbolicity.

The DG scheme is built up as follows: First we derive a general DG scheme for
hyperbolic conservation laws of fields u(r, t) of m components – e.g. for scalars we would
have m = 1, for spatial vector fields we would have m = 3, and for Maxwell we will have
m = 6 (since we collect the components of D and B into one 6-component vector).

This scheme will require numerical upwind fluxes which we will derive in a second
step. In the scalar (and linear) case this decision is straightforward, but for the case of a
hyperbolic system the upwind side differs for different components of the solution. Here,
it helps to consider the Riemann problem. The usual method for a hyperbolic system
is to transform the solution into a basis of characteristic variables and doing an upwind
decision for each component of the transformed variable individually. However, this is
only valid for homogeneous material. To still be able to derive an upwind flux, we need
to consider the Rankine-Hugoniot conditions of the problem.

It should be noted that the same expression for the numerical flux can also be derived
by considering the physics of interfaces in the context of Maxwell’s equation. This has
been done e.g. by Mohammadian, Shankar and Hall in [30] for finite volumes schemes.

3.2.1. DG for Hyperbolic Conservation Laws

Consider a hyperbolic conservation law

∂tu+

n∑
j=1

∂jF
(j)(u) = q in Ω× Σ (3.25)

with the unknown function u = u(r, t) ∈ Rm, the fluxes F (j)(u) = F (j)(u(r, t), r, t) ∈
R
m, j = 1, . . . , n and the source term q = q(r, t) ∈ Rm. Ω ⊂ Rn is the spatial domain

and Σ = (t(0),∞) is the temporal domain. We will usually omit explicitly writing the
dependency on space and time. Initial and boundary conditions are specified as

u(r, t(0)) = u(0)(r) in Ω, (3.26)

u(r, t) = g(r, t) on ∂Ω. (3.27)

(3.25) can be written in a more compact form as

∂tu+ div F(u) = q in Ω× Σ (3.28)
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if we define Fji = F
(j)
i and use div F(u) = (∇ ·F(u))T .

To derive a discontinuous Galerkin scheme for this problem, let us first introduce some
notation. Let T h be a decomposition of Ω into elements (a mesh): Ω̄ =

⋃
T∈T h T̄ and

T (1) ∩ T (2) = ∅ for T (1) 6= T (2) and T (1), T (2) ∈ T h. Let Γ =
⋃
T∈T h ∂T be the skeleton

of T h and let Γ(0) = Γ\∂Ω be the interior skeleton. For every mesh element T ∈ T h and
every point r ∈ ∂T , let n̂|T denote a unit outer normal to T in r. For every point r ∈ Γ,
let T− ∈ T h denote an element such that r ∈ ∂T−. Note: this choice of T− is only
necessary for the sake of notation. The final result does not depend on the particular
choice. For every point r ∈ Γ(0), let T+ ∈ T h denote an element such that r ∈ ∂T+ and
n̂|T− = −n̂|T+ . When the element is T−, we will usually simply write n̂ instead of n̂|T− .
Let ( · , · )ω denote the bilinear form

(u, v)ω :=

∫
ω
dru · v =

∫
ω
dr

∑
i=1,...,m

uivi u, v : ω → R
m (3.29)

for vector-valued functions and

(U,V)ω :=

∫
ω
drU : V =

∫
ω
dr

∑
i=1,...,m
j=1,...,n

UijVij F,G : ω → R
m×n (3.30)

for matrix-valued functions. Here, ”:” denotes the Frobenius inner product. When both
arguments are from the same function space, this bilinear form is just the L2 scalar
product over a domain ω.

On any mesh element T ∈ T h we require that the conservation law is fulfilled in a
weak sense: for (possibly) vector-valued test functions v we require that

∂t(u, v)T + (div F(u), v)T = (q, v)T ∀v ∈ V (T ). (3.31)

Using grad v = ∇vT and applying integration by parts yields

∂t(u, v)T − (F(u), grad v)T + ((n̂ ·F(u))T , v)∂T = (qt, v)T ∀v ∈ V (T ) (3.32)

Next we combine this for all mesh elements to obtain a weak formulation for the whole
domain. We do this by asserting for any two mesh elements T (1) and T (2), that whatever
flux leaves one element via the common interface I := T̄ (1) ∪ T̄ (2) must enter the other
element – otherwise there would be sources or sinks at mesh element boundaries. This
means that the normal flux must be continuous across I: n̂ · [F(u)]T (1) = n̂ · [F(u)]T (2) .
This requirement is what makes this scheme conservative. We require the test functions
v and ansatz function u to be differentiable in each mesh element T , but allow them to
be discontinuous across mesh element boundaries.

We call JvK := v|T+−v|T− and JuK := u|T+−u|T− the jump of v and u respectively on
Γ(0), and for convenience we extend v|T+ = 0 and u|T+ = g on ∂Ω such that the jump
is even defined on the domain boundary.

Note that the jump changes sign depending on the choice of T−. The flux function
F depends on the value of the ansatz function u, which may be discontinuous, but the
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normal flux value needs to be continuous. We resolve this by replacing the normal flux
with the numerical flux F̂ , which depends on both values of u

(n̂ ·F(u))T → F̂ (u|T− , u|T+) on Γ. (3.33)

For the scheme to be consistent the numerical flux needs to equal the normal flux when
the normal flux has no jump: for u such that

f := (n̂ · [F(u)]T−)T = (n̂ · [F(u)]T+)T (3.34)

it must also hold that

F̂ (u|T− , u|T+) = f (3.35)

for all r ∈ Γ.

Then the weak formulation for the whole domain is

∂t(u, v)Ω − (F(u), grad v)Ω + (F̂ (u|T− , u|T−), JvK)Γ = (q, v)Ω ∀v ∈ V (Ω) (3.36)

Note that, since the choice of T− and T+ is arbitrary, and the jump J · K changes
sign when their meaning is exchanged, F̂ must change it sign too so the value of
(F̂ (u|T− , u|T−), JvK)Γ is independent of this choice.

To complete the spatial discretization, we need to approximate u and v in some basis

u(t, r) ≈
∑
i

uhi (t)φ(i)(r) span{φ(i)} = Uh ≈ U (3.37)

v(r) ≈
∑
j

vhj ψ
(j)(r) span{ψ(j)} = V h ≈ V (3.38)

and the weak formulation becomes

M∂tu
h(t) + Auh(t) = fh(t) (3.39)

with

Mji = (φ(i), ψ(j))Ω, (3.40)

Aji = −(F(φ(i)), gradψ(j))Ω +
(
F̂ (φ(i)|T− , φ(i)|T+),

r
ψ(j)

z)
Γ
, (3.41)

fhj (t) = (qt, ψ
(j))Ω. (3.42)

Since this is a Galerkin scheme, ansatz and test space are identical U = V and are
approximated in the same way Uh = V h. For convenience we also assume that the base
functions φ(i) = ψ(i) are identical.

What is left now is to derive a suitable numerical flux F̂ .
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r

t

s(1), JuK(1)

s(2), JuK(2) s(3), JuK(3) s(4), JuK(4)

u(l) = u(0)

u(1)

u(2) u(3)

u(r) = u(4)

Figure 3.1.: Example of a general solution to the linear Riemann problem. In this ex-
ample there are four discontinuities, each with a jump JuK(i) = u(i) − u(i−1)

in u and traveling with a speed s(i). u(i), i = 0, . . . , 4 are the values of the
solution constant in between the waves. u(l) and u(r) are the values of the
initial condition.

3.2.2. Numerical Flux

To solve a conservation law using a DG scheme we need to integrate expressions of the
form

n̂ ·F(u, r)v on ∂T (3.43)

on the mesh cell surfaces ∂T , for any test function v. The interesting part here is the
value of the normal flux n̂ ·F(u, r); since this is a DG scheme u may have a discontinuity
at ∂T . It is wrong to simply use the value u in T , since that would lead to a different
value if the normal flux is evaluated instead in the neighboring mesh element T ′. The
normal flux needs to be continuous across mesh cell interfaces – otherwise there would
be sources at the interfaces.

We solve this by substituting the numerical flux F̂ (u|T− , u|T+) for the normal flux
(n̂ ·F(u))T . We require the value of the numerical flux to be the same as the normal
flux, i.e. F̂ (u, u) = (n̂ ·F(u))T , when there is no jump in the value of u.

Riemann-Problem

One way to derive a numerical flux is to consider the Riemann problem. This is simply
a conservation law

∂tu+ ∂rf(u) = 0 in L× Σ = R× (t(0),∞) (3.44)

on a line L (with a coordinate denoted by r), together with a step as initial condition
to model the discontinuity.

u(r, 0) :=

{
u(l) r < 0,

u(r) r > 0.
(3.45)
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As before in (3.28), the flux function f may also directly depend on r and t, even though
we don’t explicitly write it.

A key component in solving the Riemann problem is the condition of Rankine and
Hugoniot, which puts restriction on the kind of discontinuities that may be present in a
solution. Given a solution u for the conservation law (3.44) and a curve C = {(σ(t), t)}
that divides the domain L × Σ into a left part N (l) and a right part N (r), then the
Rankine-Hugoniot condition requires that

s(C) JuK(C) = Jf(u)K(C) ∀(s, t) ∈ C ∩ L× Σ. (3.46)

Here we use the notation

JxK(C) = lim
r′→r
r′>r

x|(r′,t) − lim
r′→r
r′<r

x|(r′,t) (r, t) ∈ C (3.47)

to denote the jump in x across C, and s(C) = dσ/dt to denote the speed of C. A
derivation of this condition is given e.g. in chapter 3 of [34].

For Maxwell it is sufficient to only consider linear fluxes f(u) = A(r)u. For the
derivation of a numerical flux it is sufficient to consider a piecewise constant coefficient
matrix of the form

A(r) =

{
A(l) r < 0,

A(r) r > 0.
(3.48)

In this case the solution of the problem for t > 0 consists of a set of waves, of disconti-
nuities in u, see figure 3.1 for a general example. Each wave is traveling with a constant
speed left or right or is stationary at r = 0. Each wave has a certain constant amplitude,
which is just the jump in u. In between these waves, u remains at a constant value,
depending neither on r nor t.

A solution to the Riemann problem will yield an expression for the flux f̂ = f(u)|r=0

across r = 0 for all times t > t(0), even for discontinuous initial conditions. This can
be used to obtain a numerical flux for a conservation law in arbitrary dimensions: each
time we need a numerical flux in a point P at a cell boundary, we consider the Riemann
problem at a line L in direction n̂ perpendicular to that cell boundary, with a coordinate
r = (r − P) · n̂ such that P is at r = 0. The two values of u inside and outside of the
cell, u|T− and u|T+ are used as the values u(l) and u(r) for the initial conditions of the
Riemann problem, and the value of the numerical flux will be F̂ (u|T− , u|T+) = f̂ .

It is instructive to consider the scalar case of the general linear Riemann problem
first, and the system case later. Together with the variable- vs. constant-coefficient
classification we obtain a total of four cases, which we will consider in turn.

Scalar Constant-Coefficients Case

Here the conservation law takes the form

∂tu+ ∂r(au) = 0, (3.49)
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u

u(l) = u(0)

u(1)

u(r) = u(2)

Figure 3.2.: Solution of the scalar variable-coefficients Riemann problem for t > 0 and
a(l) > a(r) > 0.

and the initial condition is

u(r, 0) =

{
u(l) r < 0,

u(r) r > 0.
(3.50)

Any Rankine-Hugoniot condition (3.46) takes the form

v JuK = a JuK . (3.51)

Since the jump JuK is arbitrary, this means we have a single discontinuity, traveling at
constant speed v = a. To the left and to the right of the discontinuity the solution is
constant in r and t:

u(r, t) =

{
u(l) r < at,

u(r) r > at.
(3.52)

For our DG scheme we are interested in the flux at r = 0, which is

f̂ = f(u)|r=0 =

{
au(l) a > 0,

au(r) a < 0.
(3.53)

Scalar Variable-Coefficients Case

The conservation law now takes the form

∂tu+ ∂r(a(r)u) = 0. (3.54)

For our application it is sufficient to consider piecewise constant coefficients of the form

a(r) =

{
a(l) r < 0,

a(r) r > 0,
(3.55)

corresponding the coefficients inside and outside of T from the nD problem. Let a(l), a(r) >
0; then the case of a(l), a(r) < 0 can be obtained by replacing r → −r. We don’t consider
the case of a(l) and a(r) having different sign or being zero since we don’t need it for our
purpose.

Since both a(l) and a(r) are positive, any discontinuity in u to either side of r = 0
must travel rightward; this follows from the constant-coefficient case. For the region
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r < 0 this means that there can be no discontinuity since there is no discontinuity in the
initial condition to begin with. For the region r > 0 there is potentially a discontinuity
originating from (r, t) = (0, 0); it must adhere to the Rankine-Hugoniot condition

a(r)(u(r) − u(∗)) = f (r)(u(r))− f (r)(u(∗)) (3.56)

Unfortunately, this does not yield any information about the jump at the discontinuity,
since this also follows exactly from the definition of the fluxes.

The last possibility for a discontinuity is a stationary one at r = 0. Here the Rankine-
Hugoniot condition yields that the flux must be continuous

a(l)u(l) = a(r)u(∗), (3.57)

which lets us calculate the value of u between the two waves:

u(∗) =
a(l)

a(r)
u(0). (3.58)

The complete solution in the case a(l), a(r) > 0 is then

u(r, t) =


u(l) r < 0,
a(l)

a(r)
u(l) 0 < r < a(r)t,

u(r) a(r)t < r.

(3.59)

This is illustrated in figure 3.2. By symmetry, in the case a(l), a(r) < 0 the solution is

u(r, t) =


u(l) r < a(l)t,
a(r)

a(l)
u(r) a(l)t < r < 0,

u(r) 0 < r.

(3.60)

In both cases the flux at r = 0 is

f̂ = f(u)|r=0 =

{
a(l)u(l) a(l), a(r) > 0,

a(r)u(u) a(l), a(r) < 0.
(3.61)

This case is important because it shows that a discontinuity in the solution can arise
from a discontinuity in the material parameters, even if the initial conditions are chosen
such that u(l) = u(r).

Constant-Coefficients System Case

In this case the conservation law takes the form

∂tu+ ∂r(Au) = 0. (3.62)

We’re only considering hyperbolic conservation laws, so the coefficient matrix A must be
real diagonalizable, i.e. A = RDR−1, where R can be constructed such that its columns
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are eigenvectors e(i) of A, and Dii are the eigenvalues of A. By defining the characteristic
variables ũ = R−1u and left-multiplying the conservation law with R we obtain the
diagonal form

∂tũ+ ∂r(Dũ) = 0. (3.63)

This however is just a set of independent conservation laws, of which each can be solved
as in the scalar constant-coefficients case. By splitting D = D+ + D− such that

D+
ii :=

{
Dii Dii > 0,

0 Dii ≤ 0,
D−ii :=

{
Dii Dii < 0,

0 Dii ≥ 0,
(3.64)

and transforming the initial conditions into characteristic variables

ũ(l) = R−1u(l) ũ(r) = R−1u(r) (3.65)

we are able to write the flux f̃ in characteristic variables at r = 0 as

f̃(ũ)|r=0 = D+ũ(l) + D−ũ(r). (3.66)

It is now useful to define a splitting of A = A+ + A− with A± = RD±R−1. We can
back-transform this flux into original coordinates

f̂ = f(u)|r=0 = Rf̃(ũ)|r=0 = A+u(l) + A−u(r). (3.67)

From (3.63) it follows that the actual solution u(r, t) contains one discontinuity for
each component (sets of degenerate eigenvalues will yield only one discontinuity). The
jump at the discontinuity is a multiple of an eigenvector of A, and the discontinuity
travels with a speed determined by the corresponding eigenvalue. Using the Rankine-
Hugoniot condition (3.46) at each discontinuity, we can connect the left and the right
state by

JAuK = Au(r) − Au(l) = Au(m) − Au(0) =

m∑
i=1

Dii(u
(i) − u(i−1)). (3.68)

This suggests an alternate way to determine the intermediate states, which shall be
useful in the case of a variable-coefficient system.

Variable-Coefficients System Case

In this case the conservation law takes the form

∂tu+ ∂r(A(r)u) = 0. (3.69)

As in the scalar case we’ll assume piecewise constant coefficients

A(r) =

{
A(l) r < 0,

A(r) r > 0,
(3.70)

40



Unfortunately, we cannot transform the system into the diagonal form anymore. We can
do so just for the left side, or just for the right side, but in general (and in particular
for Maxwell) the eigenvectors of A(l) will be not match those of A(r). It is still possible
to find solutions and fluxes, following [27], although in that paper only waves traveling
left and right are needed and the flux at r = 0 is only considered tangentially.

The idea to the solution is to connect the left and the right state by a chain Rankine-
Hugoniot conditions derived from (3.46) to determine the intermediate states. These
Rankine-Hugoniot conditions have the following form:

s(i) JuK(i) = A(l) JuK(i) i = 1, . . . , θ − 1 (3.71)

0 = s(θ) JuK(θ) = A(r)u(θ) − A(l)u(θ−1) (3.72)

s(i) JuK(i) = A(r) JuK(i) i = θ + 1, . . . , d (3.73)

This means that for leftward traveling discontinuities the jump JuK(i) at the discontinuity
is an eigenvector of A(l) and the speed of the discontinuity is the corresponding eigenvalue.
Likewise for right traveling waves, however the jump and the speed are now an eigenpair
of A(r). We give any stationary discontinuity the index θ and count the discontinuities
from fastest left-traveling (index 1) to fastest right-traveling (index d).

Since s(θ) = 0, the Rankine-Hugoniot condition (3.72) does not directly restrict the

jump JuK(θ) in the solution, it only requires that the flux at r = 0 is continuous. We
can use either f(0, t) = A(l)u(θ−1) or f(0, t) = A(r)u(θ) to compute it. By inserting the
Rankine-Hugoniot conditions for the corresponding side, this gives us

f(0, t) = A(l)u(l) +
θ−1∑
i=1

s(i) JuK(i) (3.74)

or

f(0, t) = A(r)u(r) −
d∑

i=θ+1

v(i) JuK(i) . (3.75)

To use these expressions we need to determine the magnitude of each s(i) JuK(i).
To do this we construct a base {r(j)} from the eigenvectors to the negative eigenvalues

of A(l) and the eigenvectors to the positive eigenvalues of A(r). We call the eigenvalue
corresponding to r(j) λ(r(j)). We can now express s(i) JuK(i) in terms of this basis as

s(i) JuK(i) =
∑

j:λ(r(j))=s(i)

wjr
(j) i 6= θ (3.76)

This yields the expression

f̂ = f(u)|r=0 = A(l)u(l) +
∑

j:λ(r(j))<0

wjr
(j) (3.77)
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which computes the flux across the interface starting from the left and

f̂ = f(u)|r=0 = A(r)u(r) −
∑

j:λ(r(j))>0

wjr
(j), (3.78)

which computes the flux across the interface starting from the right. These can be
combined by eliminating f̂ to∑

j

wjr
(j) = A(r)u(r) − A(l)u(l). (3.79)

Introducing M as the matrix which has the basis vectors r(i) as its columns we see that
this is a linear equation system that needs to be solved for the coefficients w.

Mw = JAuK (3.80)

It should be noted that the matrix M is in general not square, since it does not include
columns for eigenvectors to 0-eigenvalues of A(l) or A(r), so it may be more convenient
to solve the system

MTMw = MT JAuK (3.81)

instead.
Once w has been determined, the flux can be obtained with the help of either of (3.77)

or (3.78).

3.2.3. Application to Maxwell

Now that the general framework is in place we can apply it to Maxwell’s equations. We
use the system form of Maxwell’s equations in D and B (2.42). For σ = 0 it may be
written as

∂tu+ ∂x(A(x)u) + ∂y(A
(y)u) + ∂z(A

(z)u) = j (3.82)

with

A(x) =

(
0 −µ−1C(ê(x))

ε−1C(ê(x)) 0

)
, (3.83a)

A(y) =

(
0 −µ−1C(ê(y))

ε−1C(ê(y)) 0

)
, (3.83b)

A(z) =

(
0 −µ−1C(ê(z))

ε−1C(ê(z)) 0

)
, (3.83c)

and

j =

(
−Js

0

)
, u =

(
D
B

)
. (3.83d)
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C(r) is a 3 × 3 matrix that has the same effect as a cross product with r from the left:
C(r)r′ = r× r′. It has the form

C(r) =

 0 −rz ry
rz 0 −rx
−ry rx 0

 . (3.84)

We use the remainder of this section to derive the numerical flux using the methodology
developed in section 3.2.2. We begin by restricting (3.82) to a line. This results a single
coefficient matrix A(n̂), and we continue by deriving a set of eigenvectors for it. We then
use the eigenvectors to assemble the matrix MTM needed for (3.81). Inversion of MTM
and insertion of the resulting coefficients w is done in appendix A. In this section we
simply conclude by giving the resulting flux, and by comparing it to the flux we would
derive for constant coefficients.

Riemann Problem for Maxwell

To compute the numerical flux, we restrict (3.82) to a line L perpendicular to the inter-
face. Then n̂ is a unit vector along this line, and we let r denote a coordinate on this
line, such that ∂r = n̂ · div = n̂x∂x + n̂y∂y + n̂z∂z. Then (3.82) becomes

∂tu+ ∂r(Au) = j on L, (3.85)

where A = n̂xA
(x) + n̂yA

(y) + n̂zA
(z) or, with Ĉ = C(n̂),

A =

(
0 −µ−1Ĉ

ε−1Ĉ 0

)
. (3.86)

We now need to determine the eigenvalues and eigenvectors of A.

Eigenvectors of the Flux Matrix

Using the similarity transformation

T = diag(
√
ε−1,
√
ε−1,
√
ε−1,

√
µ−1,

√
µ−1,

√
µ−1) (3.87)

we obtain the matrix

N :=
1

c
TAT−1 =

(
0 −Ĉ
Ĉ 0

)
(3.88)

with c = 1/
√
εµ denoting the local speed of light. Since Ĉ is antisymmetric, N is

symmetric. The eigenvectors and eigenvalues of N are

κ(1) = κ(2) = 0 ν(1) =

(
n̂
0

)
ν(2) =

(
0
n̂

)
(3.89)

κ(3) = κ(4) = 1 ν(3) =

(
α̂

β̂

)
ν(4) =

(
−β̂
α̂

)
(3.90)

κ(5) = κ(6) = −1 ν(5) =

(
β̂
α̂

)
ν(6) =

(
α̂

−β̂

)
. (3.91)
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α̂ and β̂ can chosen such that the eigenvalue equation is fulfilled for e.g. κ(3) and ν(3),
which yields the two conditions

Ĉα̂ = n̂× α̂ = β̂, −Ĉβ̂ = −n̂× β̂ = α̂. (3.92)

This shows that n̂, α̂, and β̂ must be mutually orthogonal. We also require α̂ and β̂ to
be unit vectors. This is not really necessary, but it will make later computations easier
by avoiding scaling factors. One possible choice of α̂ and β̂ results from choosing one of
the axis-parallel unit vectors

ê :=

{
ê(z) if |ê(z) × n̂| ≥ 1

2 ,

ê(y) else,
(3.93)

and then defining α̂ and β̂ as

β̂ :=
ê× n̂

|ê× n̂|
, α̂ := β̂ × n̂. (3.94)

If (κ, ν) is an eigenpair of N, then (λ, e) = (cκ,T−1ν) is an eigenpair of A. Thus the
eigenvectors and eigenvalues of A are:

λ(1) = λ(2) = 0 e(1) =

(√
εn̂
0

)
e(2) =

(
0√
µn̂

)
(3.95)

λ(+) = λ(3) = λ(4) = c e(3) =

(√
εα̂
√
µβ̂

)
e(4) =

(
−
√
εβ̂√
µα̂

)
(3.96)

λ(−) = λ(5) = λ(6) = −c e(5) =

(√
εβ̂√
µα̂

)
e(6) =

( √
εα̂

−√µβ̂

)
. (3.97)

Note that the condition for hyperbolicity of (3.82) is just that it is possible to deter-
mine real eigenvalues and a full set of eigenvectors for A for any n̂. Since we were able
to do just that, we have proven that the Maxwell conservation law (3.82) is hyperbolic.

Two of A’s eigenvalues are zero λ(1) = λ(2) = 0. The corresponding eigenvectors
represent components of D and B parallel to n̂ and perpendicular to the interface. Since
the eigenvalues are zero this means that those components are not transported across the
interface. There are two positive eigenvalues λ(3) = λ(4) = c; their eigenvectors represent
plane waves traveling in the direction of n̂. Plane waves come in two polarizations, thus
the twofold degeneration. The last two eigenvalues are negative λ(5) = λ(6) = −c. They
represent plane waves traveling in direction −n̂, and there are again two polarizations.

Determining the Amplitude of the Discontinuities

For the Riemann problem it is sufficient to only consider piecewise constant parameters

ε =

{
ε(l) r < 0,

ε(r) r > 0,
µ =

{
µ(l) r < 0,

µ(r) r > 0.
(3.98)
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r

t

s(1) = −c(l) s(2) = 0 s(3) = c(r)

u(l) = u(0)

u(1) u(2)

u(r) = u(3)

Figure 3.3.: Sketch of the Riemann problem for the variable-coefficient Maxwell problem.

This in turn leads to a left and right speed of light c(l) and c(r) and to a left and
right coefficient matrix A(l) and A(r) each with their own set of eigenpairs {(λ(l,i), e(l,i))}
and {(λ(r,i), e(r,i))}. There are three discontinuities that appear in the solution of the
Riemann problem: one for the negative eigenvalues λ(l,5) = λ(l,6) = −c(l) in the region
r < 0, one for the positive eigenvalues λ(r,3) = λ(r,4) = c(r) in the domain r > 0, and
one at r = 0, both for the zero eigenvalues λ(l,1) = λ(l,2) = λ(r,1) = λ(r,2) = 0 and for
the discontinuity in the material parameters. We will call the intermediate solutions
between the discontinuities u(1) and u(2). This is illustrated in figure 3.3.

This yields three Rankine-Hugoniot conditions:

−c(l) JuK(1) = A(l) JuK(1) , (3.99)

c(r) JuK(3) = A(r) JuK(3) , (3.100)

0 = A(r)u(2) − A(l)u(1). (3.101)

The jumps across these discontinuities are in spaces spanned by eigenvectors of the
respective coefficient matrix

JuK(1) ∈ span{e(l,5), e(l,6)}, (3.102)

JuK(3) ∈ span{e(r,3), e(r,4)}, (3.103)

and we can use these eigenvectors to define the columns of the matrix

M =
(
e(l,5) e(l,6) e(r,3) e(r,4)

)
. (3.104)

Now that we have M, we can solve (3.81) and plug the result into (3.78) to obtain an
expression for the flux across the interface. This is a tedious calculation, which we have
pushed into appendix A.
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The Riemann Flux for Maxwell

To give the result here we need to introduce

Y :=

√
ε

µ
= cε (local admittance), (3.105)

Z :=

√
µ

ε
= cµ (local impedance). (3.106)

These exists in a left and right variety: Y (l), Z(l) and Y (r), Z(r). It is convenient to
introduce an intermediate admittance and impedance

1

Y (∗) :=
1

Y (l)
+

1

Y (r)
,

1

Z(∗) :=
1

Z(l)
+

1

Z(r)
. (3.107)

Note that Y (∗)Z(∗) 6= 1. Finally, it is convenient to collect the quantities in matrices

X(l) := diag(Y (l), Y (l), Y (l), Z(l), Z(l), Z(l)), (3.108)

X(∗) := diag(Y (∗), Y (∗), Y (∗), Z(∗), Z(∗), Z(∗)). (3.109)

With these preparations in place the flux can be given as

f̂ = f(u)|r=0 = A(r)u(r) − X(∗)N(1+ X(l)N) JAuK (3.110)

Finally it is interesting to examine how this expression simplifies for constant coeffi-
cients ε := ε(l) = ε(r) and µ := µ(l) = µ(r). In that case we have the following identities

X := X(l) 1

2
X = X(∗) (3.111)

c := c(l) = c(r) A := A(l) = A(r) =
1

c
XN (3.112)

and we can simplify the flux as

f̂(u(l), u(r)) = Au(r) − 1

2c
A2(1+

1

c
A) JuK . (3.113)

Decomposing

u(l) :=
∑

γ
(l)
i e(i), u(r) :=

∑
γ

(r)
i e(i) (3.114)

we can further simplify this to

f̂ = c(γ
(l)
3 e(3) + γ

(l)
4 e(4))− c(γ(r)

5 e(5) + γ
(r)
6 e(6)) (3.115)

= A+u(l) + A−u(r), (3.116)

which is exactly the expression we get from considering characteristic variables.
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3.2.4. Boundary Conditions

On the boundary we must incorporate the boundary condition g. We will assume that
the material parameters are continuous across the domain boundary. The boundary
conditions are then incorporated into the numerical flux on the boundary

F̂ (u|T− , u|T+) = F̂ (u|T− , g) on ∂Ω, (3.117)

since u|T+ = g on ∂Ω.
Many boundary conditions popular in electromagnetics can be implemented by dif-

ferent specifications of g. When considering (3.116) it becomes obvious that only the
component of g that represents an incoming wave matters, i.e. four components may
be freely chosen. Similarly, the outgoing flux is completely determined by the relevant
components of u(l) and we cannot prescribe it. This has the effect of always applying an
outflow boundary condition for these components, which is exactly what we want.

Radiation Boundary Conditions For DG, this is the natural boundary condition. By
setting the outer field to zero

g := 0 on ΓRBC (3.118)

the incoming flux will be zero. For waves leaving the domain, i.e. the outgoing flux, the
outer field does not matter.

This boundary condition sets all outgoing characteristics to zero, and is thus identical
to the first approximation for systems of Engquist and Majda[12]. Engquist and Majda
also state that this boundary condition is equivalent to their first approximation for the
wave equation, which we use for the FE scheme.

Incident Waves Any known incident wave can be applied directly as the values of g.
In fact, the radiation boundary condition is a special case of this with no incoming wave.

Perfect Electric Conductor On the surface of a perfect electric conductor the tangential
electric field must be Etan = 0, which implies Dtan = 0 for isotropic ε and µ. The idea is
now to chose g dependent on u such that outgoing and incoming waves cancel each other
at the boundary and yield a zero tangential electric field. Let u and g be represented in
characteristic variables

u =
∑
j

ũje
(j) g =

∑
j

g̃je
(j). (3.119)

then we need to choose g such that

(ũ3e
(3) + ũ4e

(4) + g̃5e
(5) + g̃6e

(6))j = 0 j = 1, . . . , 3 (3.120)

from this choice and the definition of the eigenvectors of A it follows that

(ũ3e
(3) + ũ4e

(4) − g̃5e
(5) − g̃6e

(6))j = 0 j = 4, . . . , 6 (3.121)
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Given a solution u = (D,B)T an easy way to achieve this is to set

g :=

(
−D
B

)
on ΓPEC (3.122)

Note that what actually happens here is that the electric component of the flux be-
comes zero. This only ensures that the electric field does not change over time; to
actually make is zero, it must already be zero in the initial conditions.

Perfect Magnetic Conductor This follows the same argument as for the PEC boundary
condition; but exchanges D and B:

g :=

(
D
−B

)
on ΓPMC (3.123)

3.3. Other considerations

3.3.1. Probe Evaluations

To generate radargrams from the computed fields, and sometimes to compare the solution
to a reference solution we use point probes. This is simply an arbitrary position where
the field is evaluated and stored. A point probe that is placed right at the boundary of
two or more mesh elements evaluates to the mean field value of all adjacent elements.

The alternative, arbitrarily picking one element to evaluate the probe in, has disadvan-
tages when comparing computations on multiple refinement levels. The mesh element
that is picked for evaluation on the finer level is not necessarily a child of the mesh
element that is picked on the coarser level, which may make the convergence seem worse
than it actually is near that probe.

Additionally, when picking an element arbitrarily, we still need to ensure that all
processes in a parallel computation agree on the same element. This voids the advantage
of simplicity that this approach has in the sequential case.

3.3.2. Point Sources

Point sources are externally imposed currents in the form of a δ-distribution, i. e.

Jext(x, t) = J0
ext(t)δ(x− x0). (3.124)

Mathematically they are treated just like any other imposed current. However, when
plugged into the weak formulation they lead to terms of the form∫

Ωe

dxw(t)δ(x− x0)v(x) (3.125)

where v(x) is the test function. These terms cannot be assembled using the stan-
dard quadrature rules, but they are of course trivially assembled using the rules for
δ-distributions.
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As for the point probes it may happen that a point source is located right at the
boundary of one or more elements.1 We are using the same method here to resolve
ambiguities: the point probe is assembled in each adjacent cells, but the result is divided
by the number of adjacent cells such that the effect of the point probe is distributed
evenly among them. Let A be the set of cells adjacent to the point probe, then (3.125)
becomes ∑

e∈A

∫
Ωe

dx |A|−1w(t)δ(x− x0)v(x) (3.126)

1This was the case for the dipole test problem which had a spherical domain with the point source
located exactly in the middle, precisely where Gmsh placed a mesh vertex.
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4. Temporal Discretization

After spatial discretization, we are left with a system of linear second order ordinary
differential equations (ODEs) of the form

F (2)(d2
tu(t), dtu(t), u(t); t) = 0 (4.1)

for the finite element scheme and a system of linear first order ODEs of the form

F (1)(dtu(t), u(t); t) = 0 (4.2)

for the DG scheme. It should be noted that it is always possible to rewrite a linear
second order ODE in the form of a linear first order ODE by replacing u with (u, dtu)T :

F (2)(d2
tu(t), dtu(t), u(t); t) = 0 → F (1)

(
dt

(
u(t)
dtu(t)

)
,

(
u(t)
dtu(t)

)
; t

)
= 0 (4.3)

This is however not always advisable since it may lead to bigger matrices and vectors.

4.1. Time Stepper for FE

For the FE scheme we need to solve the second order ODE (3.14). We do not rewrite it
as a first order ODE, but use the central differences scheme as described by [23] to solve
the second order ODE directly.

This scheme can be derived by expanding u(t −∆t) and u(t + ∆t) as a Tailor series
around t up to second order:

u(t−∆t) = u(t)−∆t dtu(t) +
(∆t)2

2
d2
tu(t) +O((∆t)3), (4.4)

u(t+ ∆t) = u(t) + ∆t dtu(t) +
(∆t)2

2
d2
tu(t) +O((∆t)3). (4.5)

By subtracting and adding these two equations we obtain approximations for the first
and the second derivative:

dtu(t) =
u(t+ ∆t)− u(t−∆t)

2∆t
+O((∆t)2), (4.6)

d2
tu(t) =

u(t+ ∆t)− 2u(t) + u(t−∆t)

(∆t)2
+O(∆t). (4.7)
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Introducing time steps t(n) := t(0) + n∆t at regular intervals, approximating

u(t(n)) ≈ u(n) (4.8)

dtu(t(n)) ≈ u̇(n) :=
u(n+1) − u(n−1)

2∆t
(4.9)

d2
tu(t(n)) ≈ ü(n) :=

u(n+1) − 2u(n) + u(n−1)

(∆t)2
(4.10)

according to the tailor expansion, and inserting into (4.1) yields the discrete relation

F (2)

(
u(n+1) − 2u(n) + u(n−1)

(∆t)2
,
u(n+1) − u(n−1)

2∆t
, u(n), t

)
= 0. (4.11)

Given initial values u(n−1) and u(n) this can be used to compute a new approximation
u(n+1).

For the finite element scheme we identify u := E and

F (2)(d2
tu(t), dtu(t), u(t), t) := Td2

tu(t) + (R + Q)dtu(t) + Su(t) + f(t). (4.12)

Applying the same approximations as for (4.11) and bringing the terms that depend on
u(n+1) to the left hand side yields(

R + Q

2∆t
+

T

(∆t)2

)
u(n+1) =

(
2T

(∆t)2
− S

)
u(n) +

(
R + Q

2∆t
− T

(∆t)2

)
u(n−1) − f(t(n))

(4.13)
This scheme is explicit since the stiffness matrix S appears only on the right hand side. It
can be shown to be stable for ∆t ≤ 2/

√
ρ(T−1S). This however requires determination

of the largest eigenvalue ρ( · ) of T−1S. While this can be done efficiently, I did not
implement this. Instead I simply determined the time step size by trial and error.

Dune-pdelab did only contain one-step time stepping schemes, i.e. schemes where the
new solution only depends on one old solution. For the central difference scheme as
described here, two old solutions are required to implement the new solution, making it
necessary for me to implement a new time stepper.

4.2. Time Steppers for the DG scheme

The DG discretization yields a linear first order ODE of the form (4.2). There are many
time stepping schemes that can solve this kind of ODE. In our case it is important
to select a scheme which yields an accuracy comparable to the spatial discretization
and to use explicit schemes to make the resulting linear system easy to solve. We will
use explicit Euler, Heun’s method and Shu’s third order scheme [10] for first, second
and third order accurate spatial discretizations, respectively. Dune-pdelab provides a
framework for one-step multi-stage methods which can be used to implement all of these
methods.
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We rewrite the first-order ODE (4.2) employing its linearity as1

F (1)(dtu(t), u(t); t) = dtm(u(t); t) + r(u(t); t) = 0. (4.14)

Dune-pdelab solves this ODE in multiple stages. Each stage r = 1, . . . , s has an asso-
ciated time t(n,r) := t(n) + d(r)∆t(n) within the time step and an approximate solution
u(n,r). For convenience the initial time and solution of the time step are available as
t(n,0) := t(n) and u(n,0) := u(n). Each stage r then consists of finding u(n,r) such that

r∑
i=0

{
a(r,i)m(u(n,i); t(n,i)) + ∆t(n)b(r,i)r(u(n,i); t(n,i))

}
= 0. (4.15)

Finally, the approximate solution of the time step is that of the last stage u(n+1) := u(n,s).
The coefficients a(r,i) and b(r,i) together with the fractional stage times d(r) and the

number of stages s completely determine the particular scheme. Both explicit schemes
and diagonally implicit schemes may be described in this way. For explicit schemes the
coefficients b(r,r) are zero. This makes it sufficient to solve m(u(n,r); t(n,r)) in (4.15)
for u(n,r). In contrast, for implicit schemes a superposition of m(u(n,r); t(n,r)) and
r(u(n,r); t(n,r)) needs to be solved. Without loss of generality we shall restrict ourselves
to normalized schemes, those with a(r,r) = 1 for r = 1, . . . , s.

For explicit schemes we assume that m(u; t) is strictly linear in u, i. e. m(u; t) = M(t)u.
This allows us to reformulate (4.15) for explicit normalized schemes as

M(t(n,r))u(n,r) = −
r−1∑
i=0

a(r,i)m(u(n,i); t(n,i))−∆t(n)
r−1∑
i=0

b(r,i)r(u(n,i); t(n,i)), (4.16)

which can be solved by a suitable linear solver.
This algorithm and parameterization is a generalization of the one described in [10],

but can handle implicit schemes and non-autonomous m(u; t), too. Parameters for the
schemes used here are given in table 4.2.

1To see that this expression indeed depends only linearly on dtu(t) and u(t) conduct the total derivative.
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scheme explicit Euler Heun’s method Shu’s 3rd order scheme

(a(r,i))
(
−1 1

) (
−1 1
−1 0 1

) −1 1
−3

4 −1
4 1

−1
3 0 −2

3 1


(b(r,i))

(
1 0

) (
1 0
1
2

1
2 0

)  1 0
0 1

4 0
0 0 2

3 0


(d(i))T

(
0 1

) (
0 1 1

) (
0 1 1

2 1
)

Table 4.1.: Coefficients for the time stepping schemes.
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5. Linear Equation Solvers

After discretization we are left with one or more systems of equations of the form

Ax = b (5.1)

with the known matrix A and right-hand side b. The system is to be solved for x, which
consists either of the unknown coefficients themselves (E or u) or an update to them,
depending on the formulation. In the case of a stationary problem or for first-order ODE
discretizations there will only be one such system to be solved, however, higher-order
ODE discretizations may require multiple stages and thus multiple systems of the form
(5.1) must be solved.

For many discretization schemes, including FE and DG, A is a sparse matrix and thus
can be stored efficiently in a compressed format. The sparsity pattern, i. e. the set of
matrix entries that may possibly hold non-zero values, is fully determined by the mesh
and the finite element basis. A simple mesh and the corresponding sparsity patterns for
both FE and DG is shown in figure 5.1.

In the case of GPR we have neglected dependencies of the material parameters ε, µ
and σ on the fields E and H, thus A is independent of x and the system (5.1) is linear.
In addition, for our problem the material parameters and the mesh do not change over
time, resulting in A independent of t.

5.1. Finite Elements

For the finite-element scheme, the linear system to be solved is given in (4.13). To write
it in the form (5.1) we set

A :=
R + Q

2∆t
+

T

(∆t)2
, (5.2)

x := En+1, (5.3)

and

b :=

(
2T

(∆t)2
− S

)
En +

(
R + Q

2∆t
− T

(∆t)2

)
En−1 − fn. (5.4)

The matrix A is a sparse matrix with approximately 20 entries per row for 3D.
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Figure 5.1.: Matrix structure for DG (left) and FE (right). Non-zero entries are shown in
gray. For DG, each entry is a dense block corresponding to one mesh element.
For FE, each entry is a scalar corresponding to one mesh edge. The corre-
sponding mesh is shown on top, with numbering for edges (plain) and ele-
ments (circled). This example uses a 2D domain to keep it comprehensible.
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The matrix A results from the form

Aij :=
1

(∆t)2

∫
Ω
dr εN(i) ·N(j) (5.5a)

+
1

2∆t

∫
Ω
drσN(i) ·N(j) (5.5b)

+
1

2∆t

∮
∂Ω
drY

(
n̂×N(i)

)
·
(
n̂×N(j)

)
. (5.5c)

This form consists of three terms. ε is always positive, so (5.5a) is positive definite. σ is
positive or zero, so (5.5b) is positive semidefinite. (5.5c) positive semidefinite too; Y is
always positive, but the integral is zero for base functions that are zero on the domain
boundary. As a result, A is positive definite and we can use the Conjugate Gradient
method to solve it.

When using Conjugate Gradients to solve the finite element system, the number of
iterations required to achieve a reduction of the initial error of ρ is

i ≤
⌈√

κ

2
ln

2

ρ

⌉
κ =

λmax(A)

λmin(A)
(5.6)

This depends primarily on condition number of the matrix κ. But there is also another
way to get quicker convergence: all error components corresponding do a degenerate
eigenvalue are reduced together. Even if eigenvalues aren’t perfectly degenerate, clus-
tered eigenvalues still improve convergence.

Conjugate gradients can be derived from the method conjugate directions, which con-
structs a set of search directions, and cancels the error in each direction independently.
The search directions must be conjugate with respect to A and are constructed via Gram-
Schmidt conjugation from a set of linearly independent vectors, e.g. the coordinate axes.
In general, Gram-Schmidt conjugation has the disadvantage that all previous search di-
rections must be kept in memory, so new search directions can be made conjugate to
them. This is solved by Conjugate Gradients by using the residual as basis vectors—as
it turns out, the residual is already conjugate to all but the most recent search direction,
so only that needs to be kept around.

Applying n iterations of conjugate gradients to a problem with n degrees of freedom
yields the exact solution (in perfect arithmetic), since the error has been canceled in
all n directions. Unfortunately, n iterations is usually far too costly. Also, arithmetic
in real-world computers isn’t perfect, so the search directions will slowly loose conju-
gacy. Conjugate gradients is still effective as an iterative solver: For evenly distributed
eigenvalues the energy norm of the error can be proven to converge as

‖e(i)‖A ≤ 2

(√
κ− 1√
κ+ 1

)i
‖e(0)‖A (5.7)

and (5.6) follows.
Preconditioning can be applied to reduce the condition number κ or yield better clus-

tering of eigenvalues or both. Note that even for a symmetric and positive definite pre-
conditioner M−1 that approximates A−1, the matrix M−1A is not necessarily symmetric

57



nor positive definite, and thus cannot be solved using conjugate gradients. Instead M is
split such that EET = M and E−1AE−TETx = E−1b is solved for y = ETx using conjugate
gradients. E−1AE−T has the same eigenvalues as M−1A, so any improvement in to the
eigenvalues by the preconditioner still applies. The conjugate gradients algorithm can
be refactored in terms of M−1 to eliminate any use of E completely, which also avoids
the need to solve ETx = y separately.

We use a Jacobi preconditioner for our CG solver, i.e.

M = diag(A). (5.8)

This choice has the advantage that the parallel preconditioner is exactly equivalent to the
sequential preconditioner, and thus the only deviations in the result stem from reordering
of arithmetic operations.

5.1.1. Parallel Implementation

The Conjugate Gradient solver can be parallelized simply by supplying a parallel imple-
mentation a few operations: the scalar product of two vectors, the norm of a vector and
the application of the preconditioner to a vector. These operations are responsible for
communicating; the implementation of the CG method is then identical in the parallel
and the sequential case.

The parallel implementation of the scalar product x · y must take into account that the
entries of the vectors are distributed across the processors in an inconsistent representa-
tion. In particular, base functions that cross processor boundaries have one vector entry
in each adjacent processor. Assembly happens independently on each processor, so each
such vector entry only has a partial result, and the vectors must be made consistent by
summing up the entries for each base function across the processors. Then one processor
must be chosen for each base function that is responsible for computing the product for
that base functions. Finally all sum up their results in a global communication, and
the sum becomes the result of the scalar product, returned to the conjugate gradient
method on each processor.

The norm ‖x‖ =
√
x ·x could be implemented in terms of the scalar product. We

do however use a specialized implementation, since only one vector needs to be made
consistent and we can avoid some communication.

Parallelizing the application of the preconditioner to a vector M−1x must be done for
each preconditioner individually. For many preconditioners this is a difficult problem,
and often the preconditioner can only be applied on each processor individually, result-
ing in an increased number of iterations compared to the sequential case. The Jacobi
preconditioner is however simple enough to truly parallelize: it just consists of the diag-
onal of A. We can interpret the diagonal of a as a vector, make that vector consistent
across all processors in a preprocessing step, and invert each entry. Application of the
preprocessor to a vector can then be done without communication on each processor
individually.
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5.2. Discontinuous Galerkin

For the discontinuous Galerkin scheme there are multiple systems of the form (4.13),
one for each stage r of the time stepping scheme:

A(r)x(r) = b(r). (5.9)

The definitions of the quantities follow from (4.16) as

A
(r)
jk := arrm(φ(k), ψ(j); t(r)), (5.10)

x
(r)
k := u

(r)
k , (5.11)

and

b
(r)
j :=

r−1∑
i=0

{
arim(u(i), ψ(j); t(i))− bri∆t r(u(i), ψ(j); t(i))

}
. (5.12)

Since m(φ, ψ; t) only couples base functions on the same mesh element, the resulting
A(r) is block-diagonal, with one block per mesh element. This make it feasible to solve
the system by directly inverting A(r), since only each block needs to be inverted. This
is just what happens when we apply one step of a a Jacobi preconditioner.

What still needs to be shown is that each block on the diagonal of A(r) is actually
invertible. This can be seen by observing that 〈φ, ψ〉 = m(φ, ψ; t) is an inner product.
Thus the A(r) are a Gram matrices, thus positive definite, thus invertible.

5.2.1. Parallel implementation

For the DG scheme, in contrast to the FE scheme, each degrees of freedom is uniquely
owned by one processor. However, each processor has an overlap layer of one mesh
element, the vector entries associated with these overlap elements are copied from the
processor that owns that degree of freedom. Assembly of the residual results in an
inconsistent vector, where the entries in the overlap only contain partial values. To
apply the Jacobi preconditioner, we simply apply a sequential Jacobi preconditioner on
each processor, and then copy the values in the overlap from the processor that owns
them in a communication.

The resulting vector is consistent, and contains the solution for that stage.
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6. Testing

To check the implementation of both methods, I consider two test problems. Both
test problems have known analytic solutions. For the first test problem, the solution
is smooth, consisting of a superposition of circular polarized plane waves, which are
coupled into the domain via Dirichlet boundary conditions. This test problem is also
used to compare the solution quality of these two schemes.

The other test problem consists of an initially empty domain, which is excited by a
point current. This is a test for excitation by a point current, point probes and the
radiating boundary conditions.

6.1. Smooth Problem

The setup for the smooth test problem is a region of free space with the computational
domain Ω = (0, 1)3. The domain is terminated with time-dependent Dirichlet boundary
conditions

n̂×E = n̂×E∗

n̂×H = n̂×H∗

}
on ∂Ω (6.1)

where E∗ and H∗ denote the chosen analytic solution (the second condition applies only
to DG). Initial conditions are

E = E∗ at t ∈ {t0 −∆t, t0} (6.2)

for FE and
E = E∗

H = H∗

}
at t = t0 (6.3)

for DG.
Consider the following set of fields:

E1(x, t) =

 0
− cosαx0 sinαt

sinαx0 cosαt

 H1(x, t) =

 0
cosαx0 sinαt
sinαx0 cosαt

 (6.4a)

E2(x, t) =

 cosαx1 sinαt
0

cosαx1 cosαt

 H2(x, t) =

 sinαx1 sinαt
0

sinαx1 cosαt

 (6.4b)

E3(x, t) =

− cosαx2 sinαt
− cosαx2 cosαt

0

 H3(x, t) =

− sinαx2 sinαt
− sinαx2 cosαt

0

 (6.4c)
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Each pair (Ei,Hi) is a plane wave with circular polarization traveling along one of the
coordinate axes. They are solutions for Maxwell’s equations for ε = µ = 1 and σ = 0.

In addition to plane waves, fields of the form E = −∇Φ and H = −∇ΦM for scalar
fields Φ and ΦM are also solutions. Physically these solutions are governed by Gauss’
law ∇ ·D = ρ and the absence of magnetic charges ∇ ·B = 0. (2.42) and (2.43) don’t
use these equations, so as far as the numerical schemes are concerned these are valid
solutions.

The actual solution used for this test was obtained by summing solutions (6.4)

E∗ =

1
1
1

+

3∑
i=1

Ei (for FE) (6.5)

(E∗,H∗) =

3∑
i=1

(Ei,Hi) (for DG) (6.6)

One particular feature of these solutions is that they require non-zero and time-dependent
Dirichlet boundary conditions.

For FE the expected convergence rate is 1 during h-refinement. For DG with order k
the expected convergence rate is k + 1.

6.1.1. Dirichlet Boundary Conditions for FE

The finite element scheme was constructed with absorbing boundary conditions. How-
ever, in this test the domain is truncated with time-dependent Dirichlet boundary con-
ditions. I implemented them in the standard dune-pdelab way: in each time step the
boundary condition is interpolated into the degrees of freedom on ∂Ω and these degrees
of freedom are fixed, prohibiting any changes from the linear solver. This effectively
overrides any absorbing boundary condition.

6.1.2. Time Step Size

I determined time step size experimentally for each method. The test problem was
simulated with α = 2π in the time interval [0, T ] with the end-time T dependent on h
and the discretization as shown in table 6.1. To determine stability, the maximum norm
over the entries of the DoF vector was computed at time T and the result was plotted
for different time step sizes k. The resulting graph is almost constant for stable k, but
grows dramatically if k enters the unstable region, the transition is marked be a sharp
kink.

Time step sizes determined this way are problematic. A larger T will generally lead to
a smaller k for an otherwise unchanged setup. It is even possible to find stable values for
k that are smaller than some unstable ones; this happened in a case where the end-time
T was an integer multiple of the frequency α/π which in turn was an integer multiple of
k. Thus convergence computations below were often found to be unstable with the time
step sizes from table 6.1, and I had to successively decreased k until the computation
was stable.
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preliminary final
method h T [10−3] steps k [10−3] k [10−3]

DG0 1 8400.0 41 204.9 142.9
0.5 4200.0 47 89.4 71.4
0.25 2100.0 48 43.8 35.7
0.125 1050.0 47 22.3 17.9
0.0625 525.0 46 11.4 8.9
0.03125 262.5 45 5.8 4.5
0.015625 2.2
0.0078125 1.1

DG1 1 4200.0 35 120.0 90.9
0.5 2100.0 41 51.2 45.5
0.25 1050.0 41 25.6 22.7
0.125 525.0 41 12.8 11.4
0.0625 262.5 41 6.4 5.7
0.03125 2.8
0.015625 1.4

DG2 1 2100.0 24 87.5 71.4
0.5 1050.0 26 40.4 35.7
0.25 525.0 26 20.2 17.9
0.125 262.5 25 10.5 8.9
0.0625 4.5
0.03125 2.2

FE 1 4200.0 11 381.8 200.0
0.5 2100.0 16 131.2 100.0
0.25 1050.0 18 58.3 50.0
0.125 525.0 18 29.2 25.0
0.0625 262.5 18 14.6 12.5
0.03125 6.2
0.015625 3.1

Table 6.1.: Experimentally determined time step sizes k for the smooth test problem.
The columns marked preliminary show the time steps sizes determined using
a special test problem for this purpose. The column marked final shows the
time step sizes that were actually used later.
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Figure 6.1.: Convergence graphs for the smooth problem in the L2-error of E at time
t = 1 for α = 2π (λ = 1). For comparison, the upper gray line shows the
L2-error of E = 0 (≈ 1.25) and the lower gray line shows one tenth of that.

Also, for the purpose of convergence computations k has to be scaled in the same way
as h. This leads to much smaller time step sizes then necessary for the coarser meshes.
The time step sizes that were actually used for computations have been noted in the
rightmost column table 6.1.

6.1.3. Convergence

For the convergence computations the simulation was run in the interval [0, 1]. The
L2-error was computed at t = 1, using the analytic solution as the reference. Initial
values and Dirichlet boundary condition values were taken from the analytic solution as
well. The errors are plotted in figure 6.1.

This setup also allows to investigate what mesh resolution is needed to resolve waves
of a certain wavelength. Figure 6.2 shows the L2-error for the case α = 8π (λ = 1/4).
As can be seen, the usual rule λ ≥ 10h isn’t much better than simply assuming E = 0
for FE and DG0. As expected, DG1 and DG2 are much better in this regard, however.
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Figure 6.2.: Convergence graphs for the smooth problem in the L2-error of E at time
t = 1 for α = 8π (λ = 1/4). For comparison, the upper gray line shows the
L2-error of E = 0 (≈ 1.25) and the lower gray line shows one tenth of that.
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Figure 6.3.: Per-timestep weak efficiency of the DG code on a NUMA system with 48
cores (fiona). The test used the smooth problem with α = 2π. Computa-
tions were done on a structured tetrahedral grid with with 6 · 483 cells and
prescribed optimal partitioning. The gray line shows the efficiency that can
be expected for DG when considering the effect one layer of ghost cells for
the given partitioning. The black line shows the efficiency of the FE scheme.
Here, only time steps with 21 iterations in the linear solver were considered.
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Figure 6.4.: (left) Setup for the dipole problem. The little arrow in the center repre-
sents the position and polarization of the point source; the crosses represent
the positions where the fields are evaluated (the evaluation positions are
also offset by 0.1 into the y-direction which cannot be shown in this 2D
representation.) (right) Neumann pulse, the temporal shape used for the
excitation. It is normalized such that its maximum is 1.

6.1.4. Scalability

We did some strong scalability computations on the shared-memory system fiona1 The
resulting efficiency graphs are shown in figure 6.3. All DG methods (up to the maximum
tested order 2) scale better than the FE method. For DG we are able to computed an
expected efficiency based on the size of the overlap regions in relation to the interior
regions an each processor. This does not take actual communication into account, only
computation overhead due to the need to duplicate data for the purpose of parallelization.
As the graph shows, the actual efficiency of the DG schemes is actually better than this
expected efficiency. This is due to effects of caching: as the number of processors grows,
the per-processor size of the problem shrinks. The size of the level 1 and 2 caches
however is constant per processor. This is also true for the level 3 cache for up to eight
processes2This means that the caches have a better chance to hold the problem the more
processes are used.
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6.2. Infinitely Small Dipole Antenna

The dipole problem is computed in a spherical domain of radius 1. In the origin there
is an infinitely small dipole antenna exciting the setup with a current pulse polarized
along the z-axis. The current pulse will create a circular wave traveling outwards to the
domain boundary, where it leaves the domain through an absorbing boundary condition
(ABC). This test problem is a check for the point source and the ABC.

For this test we only use the analytic solution for E, since we can’t test against H for
the FE scheme. The solution for E for a Neumann pulse with width σ emitted at x = 0
and centered temporally around t = 0 is

E(x, t) =
µc
√
e

4πr2
exp

(
−(r − ct)2

2c2σ2

)
·
{
−2êr cos θ

[
r − ct
cσ

+
cσ

r

]
− êθ sin θ

[
r(r − ct)2

c3σ3
− t

σ
+
cσ

r

]}
(6.7)

The polar unit vectors can be computed from the Cartesian unit vectors by

êφ = − êx sinφ + êy cosφ

êθ = êx cos θ cosφ + êy cos θ sinφ− êz sin θ,

The analytic solution is derived in appendix B.

6.2.1. Convergence

This problem has two peculiarities: The singularity at the center and the radiation
boundary conditions.

For the radiation boundary conditions the reflection coefficient depends on the angle
of incidence, see the book of Jin[23] figure 9.2. It is zero only for 0◦ (normal incidence).
As the angle of incidence tends towards 90◦, the reflection coefficient tends toward 1.
We use a piecewise linear boundary approximation and do not refine towards the mesh
boundary, so in the far field the worst angle of incidence is determined by the coarsest
mesh; it is approximately 11◦. Thus we expect a certain proportion of the wave to be
reflected, and this proportion does not depend on the mesh resolution. Effectively this
will mean that our scheme will converge to a solution slightly different from our analytic
reference.

The singularity at the center can reduce the convergence order when it is included in
the error measure. Excluding a region around that singularity is difficult:

• One could build a small fictitious spherical boundary around the center into the ge-
ometry, but that would force the mesh generator to produce lower-quality meshes.

1See appendix C for machine details.
2The limitation to eight processes stems from the fact that the machine only had eight level 3 caches.
Beyond eight processes there was no increase in total available level 3 cache. And even that required
careful placement of the processes.
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Figure 6.5.: Convergence of the dipole problem at pulse center for wavelength λ = 0.5
(center frequency ν = 2). This is the error at three different points as shown
by the crosses in figure 6.4: (0.1, 0.1, 0.1) (left), (0.1, 0.1, 0.4) (center) and
(0.1, 0.1, 0.8) (right) at the time when the center of the wave passes that
point.

• One could exclude mesh elements below a certain distance from the center from
the calculation of the error, but that would result in a very irregular shape of the
excluded region.

• One could use a cut-cell approach to integrate only certain parts of cells near the
center, but this is quite costly to implement.

Also, choosing the size of the excluded region is somewhat arbitrary and will influence
the number of refinements needed until asymptotic behavior is reached.

For this reasons we have opted to evaluate the error only at certain probe locations
chosen to represent different parts of the domain: one near the center at (0.1, 0.1, 0.1), one
near the boundary at (0.1, 0.1, 0.8) and one in the intermediate region at (0.1, 0.1, 0.4).

Another consideration is the time when to evaluate the error. The most interesting
time is when the pulse passes a certain probe location, so this is the time that we used.
For each probe i, we computed the time when the center of the pulse is expected to pass
as

t(i)p = t0 +
‖x(i)‖
c

(6.8)
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Figure 6.6.: Convergence of the dipole problem at pulse center for wavelength λ = 2
(center frequency ν = 0.5). This is the error at three different points as
shown by the crosses in figure 6.4: (0.1, 0.1, 0.1) (left), (0.1, 0.1, 0.4) (center)
and (0.1, 0.1, 0.8) (right) at the time when the center of the wave passes that
point.

The errors were then computed as

e
(i)
h = ‖Eh(x(i), t(i)p )−Eref(x

(i), t(i)p )‖ (6.9)

Figure 6.5 shows the errors for a wavelength λ = 0.5 and figure 6.6 for λ = 2. For
DG, in the latter case the probe near the boundary is strongly influenced by a wave
reflected from the boundary; this is expected due to the approximate absorbing boundary
condition. For the FE scheme we do not observe this problem, although the code can
barely reach a similar accuracy due to constraints in computing power.

For the shorter wavelength λ = 0.5, this problem does not occur, since the boundary
is no longer in the near field.
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7. Application to Ground-Penetrating
Radar

In this final chapter I apply the developed methods to ground penetrating radar. The
setup is that of an existing man-made test site for which appropriate GPR measurements
were available. For this setup I first do a comparison of the FETD method with the DG
method at comparable accuracy at a frequency of 200MHz. This allows to compare the
computational effort of these methods. Second, I do a second order DG simulation with
an exciting pulse of 400MHz and compare that to the measured data.

7.1. Setup: ASSESS-GPR

ASSESS-GPR is a man-made test site for GPR measurements operated by the group of
Kurt Roth near Heidelberg. Geometry, boundary conditions and hydraulic parameters
are known by construction, and regular GPR measurements are performed. A schematic
of the site is shown in figure 7.1 (top). The site has been built into a bunker silo roughly
19m long, 4m wide and 2m tall. The setup consists of some layers of different sands
on top of a layer of gravel. Together with a tube installed through the sand layers, the
gravel layer can be used to control the hydraulic head. In a 2001 paper[6] Buchner et
al. give a more detailed description of the site.

A portion of this test site as shown in figure 7.1 (bottom) has been chosen for the
computations based on a number of criteria: availability of WARR measurements for
comparison, abilities of the mesh generator influencing the quality of the resulting mesh
and available computing power limiting the size of the portion and trace duration. The
transmitter was placed to the right at (17.68m, 2m, 1.85m), roughly 5.5cm above ground.
The excitation was done using a point source to inject a current oriented in y-direction.
The exciting pulse had a center frequency of 200MHz, corresponding to wavelength in
air of 1.5m; its center was at t = 4.7ns. Point-probes measuring the electric field were
placed along the line at y = 2m, z = 1.85m at distances of 5cm; only the Ey component
of the measured electric field was used. An artificial permittivity distribution was used
for the simulation.

7.2. Material Parameters

Magnetic permeability is of no importance in the ASSESS-GPR setup, thus we used
µr = 1. Conductivity can be of importance but was neglected in this case, i.e. σ = 0.
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Figure 7.1.: (top) Schematic setup of the ASSESS site. (bottom) Part used for the
computations. The dot and the expanding waves represent the sending
antenna. The shaded areas are not shown in the measured radargrams.

Since good water content data wasn’t available I used some made-up data that was
reasonably within expectations. For each material a constant permittivity was chosen
as shown in figure 7.1 (bottom). Note that the gravel layer and the RS01 unten sand
layer have practically the same permittivity.

Radiating boundary conditions were chosen on the whole boundary. This is arguably
not completely correct for the bottom. On the other hand any response from the bottom
would be highly attenuated anyway due to the high dielectric permittivity at the bottom.

7.3. Mesh Generation

I modeled the mesh geometry in Gmsh[15], including the layer boundaries. The biggest
challenge during mesh generation was to generate a mesh of good quality, usable for both
FE and DG schemes. For DG, the CFL number and thus the time step size is limited
not only by the edge lengths, but also by the shape of the mesh elements; smaller angles
lead to smaller time steps. This seems to be less of a problem for FE.

For thin volumes in the model geometry gmsh tends to generate at least two layers of
cells. This became a problem for the gravel layer, since it led to smaller-than-necessary
cells and thus smaller-than-necessary time steps. I circumvented this problem by making
the gravel layer thicker than in the actual test site; this is no problem since I don’t expect
so see any meaningful reflection from the bottom of the gravel layer anyway.

The meshing of the geometry was done using Gmsh’ Delaunay algorithm both for the
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basic mesh coarse fine
Characteristic length 136mm 64mm

global refines 0 0 1

Number of elements 148 667 1 362 749 10 901 992
Number of edges 182 629 1 631 471 12 880 626

minh 30.8mm 15.6mm 7.8mm
maxh 295 mm 150 mm 112 mm

minh/maxh 0.104 0.104 0.070
min Γ 0.227 0.212 0.135

Table 7.1.: Properties of the meshes used for calculation. The left and middle were
directly generated by Gmsh, the right mesh is the same as the middle mesh
with one level of global refinement applied.

2D and the 3D mesh. The mesh was then optimized with -optimize netgen. Meshes
needed to stay smaller than ≈ 106 elements, otherwise distributing them to hundreds
of cluster nodes became impossible due to limitations of the ALUGrid library.1 When I
needed a finer mesh, I had to obtain it by applying global refinement after distribution.
However, I avoided global refinement as far as possible since it can severely impact
mesh quality, at least in the first three refinement level where it may introduce elements
dissimilar to already existing ones.

I constructed two basic meshes by trying different values of Gmsh characteristic length
parameter in the ranges of 0.06m to 0.08m and 0.12m to 0.14m (21 candidates in each
range). From these candidates I selected the fine basic mesh with a characteristic length
of 0.064m and the coarse basic mesh with a characteristic length of 0.136m. Selection
criteria were the quality of the mesh and the compatibility of the two meshes, i.e. the
coarse mesh was chosen such that it had roughly half the resolution of the fine mesh and
roughly 1/8th of the elements.

I judged the mesh quality by considering the following properties:

The ratio of the smallest and the largest edge length minh/maxh: Since minh de-
termines the time step size and maxh determines the resolution of grid their ration
should be as close to 1 as possible.

Worst element anisotropy min Γ: Γ is an element quality measure used by Gmsh. It is
described as proportional to the ratio of inscribed radius and circumscribed radius.
In fact, in the case of a tetrahedron T , it is

ΓT := 2
ri
ro

where ri is indeed the inscribed radius T , but ro is something different: let l be
the length of the longest edge in T and let R be the regular tetrahedron2with edge

1These limitations have since been lifted.
2A regular tetrahedron is a tetrahedron whose edges are all of the same length.
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scheme FE 1st order DG

mesh fine, refined once coarse, unrefined
#dofs 12 880 626 3 568 008

#steps 7 301 3 400
∆t 13.7ps 27.8ps
tend 100 ns 100 ns

#CPU threads 512 64
walltime 7h 15min 22min

Table 7.2.: Properties and performance of the numerical schemes.

x [m]

t
[n

s]

Figure 7.2.: WARR simulation using FE and hmax ≈ 11cm

length l, then ro is the circumscribed radius of R. The factor 2 in the definition of
ΓT makes sure that the maximum possible value for ΓT will be 1, this is exactly
the case when T is a regular tetrahedron.

Three meshes were used in the following calculation: the coarse and fine basic meshes,
and the fine basic mesh globally refined once. Their properties are listed in table 7.1.

7.4. Comparison of FE and First Order DG

Here I compare the computational effort of the FE scheme to that of the first order DG
scheme. From figure 6.1 I determined the mesh resolutions that should give me a similar
L2 error for both schemes. For the first order DG scheme I used the coarse basic mesh as
is, and for the FE scheme I used the fine basic mesh with one level of global refinement
applied.
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Figure 7.3.: WARR simulation using 1st order DG and hmax ≈ 30cm

The second order DG scheme has been excluded from the comparison, because for
the coarsest mesh I can generate that still represents the geometry of the domain this
scheme is still expected to yield a much better L2 error than any I can achieve with the
FE scheme given the computation power I had available. The zeroth order DG scheme
has been excluded because with the finest mesh I can apply it to given my limits of
computing power, it would be completely unable to resolve the waves and make the
computation meaningless.

The setting used was sufficient to obtain a WARR radargram: one sending antenna
represented by a point source, and many receiving antennas represented by a line of
point probes. The signal emitted by the point source was polarized in the direction of
the y-axis, had the shape of a Neumann pulse and a mean frequency of 200MHz. The
machine used for computation was helics3a (see appendix C for its properties). The
performance and effort for both schemes is shown in table 7.2. The DG scheme required
roughly a quarter of the number of degrees of freedom, half the time steps, and thus
required only ∼ 0.6% of the computational effort of the FE scheme as measured in used
CPU threads and time spent computing.

The radargram in figure 7.2 is the result of the FE simulation; the one in figure 7.3
is from the DG simulation. The FE radargram shows a lot of clutter but gives a much
sharper impression when compared to the DG radargram. There are some sampling
artifacts in the DG radargram, e.g. in the trace at x = 16.1m.

The sharper appearance of the FE radargram isn’t just due to the different mesh
resolutions. When comparing radargrams obtained with similar mesh resolutions (not
shown here) the FE radargram is still sharper, although a higher resolution does improve
the sharpness in the case of DG.
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basic mesh coarse fine

global refines 0 0 1

time steps 3 465 6 720 19 404
time step size [ps] 20.2 10.4 3.6

#DoFs 8 920 020 81 764 940 654 119 520
#CPU threads 64 256 512

execution time [h] 2.38 11.14 135.31
cost [CPU-days] 6.3 118.9 2886.5

Table 7.3.: Properties of the second order computations. Only the simulated time up to
70ns was considered. #DoFs does not include overlap.

7.5. Comparison of Second Order DG to a Measured
Radargram

The radargram in figure 7.4 is a result of a real measurement, the one in figure 7.5
is from a second order DG simulation. The measurement was done with a 400MHz
IDS antenna, consequently the simulation was done with a center frequency of 400MHz
too. Both radargrams look approximately how one would expect them to look given the
geometry of the setup.

In the measured radargram the air wave is pretty weak; in the simulated radargram
it is very strong and shows multiple ripples. This difference is to be expected; in the
measurement there is shielding between antenna and air and the geometry of geometry
of the antenna is that of a bow-tie, not an infinitesimal point leading to quite different
radiation characteristics. This also explains why the ground wave appears different in
the measured and the simulated radargram.

In the measured radargram the next reflection is at 14ns (at x = 17.98m). This
reflection does not appear to be present in the simulated radargram. There are three
possible explanation:

The reflection originates from the capillary fringe.
The capillary fringe is not a sharp boundary like the boundaries between differ-
ent layers of sand. Both the 14ns and the 20ns reflection are too narrow to be
originating from the capillary fringe.

The estimated permittivity used for the simulation is too far of.
In this case the 14ns reflection in the measured radargram actually corresponds to
the 20ns reflection in the simulated data and originates at the boundary between
the B01 mitte and RS01 unten layers. Then the 20ns reflection in the measured
radargram must originate from the boundary between RS01 unten and the gravel
layer. The thickness of the RS01 unten layer between x = 17m and x = 18m is
a pretty constant 0.86m, which has to be traveled twice. Assuming for a moment
εr = 1 in RS01 unten, and that the wave is traveling straight down, there should be
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Figure 7.4.: Real-world WARR measurement with a 400MHz IDS antenna.
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Figure 7.5.: WARR radargram from a second order DG simulation using the fine base
mesh without refinement.
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Figure 7.6.: Simulated radargram taken on a vertical line through the sending antenna.
This is from the same simulation as figure 7.5.

a distance of 5.7ns between the reflections, which is pretty much what is observed.
However the wave is not traveling vertically, and εr will be much larger than 1
in RS01 unten. Correcting these bad assumptions will lead to a longer interval
between both reflections.

There is an unexpected reflector in the experimental setup.
Indeed, as it turns out, during construction of the ASSESS site the sand had to
be compressed, which introduced artificial compression layers.

Therefore I conclude that the 14ns reflection in the measured radargram originates at a
compaction boundary.

In the simulated radargram there is a reflection at 33ns. This reflection is actually a
multiple of the 20ns reflection. To make sure this is the case I put probes on a vertical
line through the sending antenna and used that data to generate a radargram, see figure
7.6. This kind of radargram is of course only possible to do in a simulation.

Finally, there is the reflection at 42ns in the measured data. It is definitely not a
multiple of the 20ns reflection, it occurs clearly too late for that. It probably originates
either at the upper or the lower boundary of the gravel layer. However, I cannot rule out
the possibility that it originates at another compression boundary, or the water table,
or even the capillary fringe.

Another difference is the slope of the reflections: the reflection that crosses the right
boundary at 20ns crosses the left boundary at 40ns in the measured data but at 45ns
in the simulated data. This is probably due to the water content distribution that was
used for the simulation and that doesn’t quite correspond to the actual water content
distribution at the time of the measurement.
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8. Conclusions

In this work we were concerned with simulation of ground-penetrating radar. Our
method of choice was a full-scale 3D simulation of Maxwell’s equations for best ac-
curacy. The typical layered structure of the ground required a method that can handle
unstructured meshes. The large problem size required a method that is both efficient
and has good scalability on parallel systems.

We developed a novel explicit discontinuous Galerkin scheme based on schemes for
hyperbolic conservation laws. We implemented it with the help of the Dune-framework
and dune-pdelab using message-passing parallelization. Strong scalability for the DG
scheme was excellent. In fact, at 48 nodes the second order scheme was at an efficiency
of 89%, even better than the expected 87%. This is due to the effect of caching; as the
number of nodes goes up, the size of the per-node problem decreases and is more likely
to fit into the various caches. Experimental convergence of the DG scheme in the L2

norm was as expected: k + 1 for the kth order scheme. This was tested for schemes
of order zero, one and two using to homogeneous test problems with known analytic
solutions. The tests showed a great benefit in accuracy of the higher order schemes.
The second order DG schemes proves almost three orders of magnitude more accurate
in the L2 norm than both the zeroth order DG scheme and the FE scheme, using far
less resources.

As a further check, we also implemented a standard finite element scheme based on
lowest order H(curl)-conforming finite elements. Comparison was difficult since the finite
element scheme had trouble keeping up the DG scheme in accuracy.

The results were compared with real-world measurements. These were taken at the
man-made ASSESS-GPR test site with a known ground structure. These measurements
showed good agreement with the simulation feature-wise, even though the permeability
field had to be guessed.

These results show that it is possible to conduct 3D GPR simulations with current com-
puters. This opens the possibilities for a far greater understanding of ground-penetrating
radar systems.

8.1. Outlook

These simulation were limited to WARR measurement. Other interesting measurement
modes are common offset (CO) and common midpoint (CMP) measurements. Both
of them have in common that the sending antenna moves during the measurement.
Since one full simulation is necessary per sending antenna position, this means the
computational effort increases by another order of magnitude. To meet this challenge
the scheme needs to be optimized further.
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One approach is to use even higher order shape functions. This is however limited
by the fact that the mesh cells cannot become arbitrarily large; they still must be able
to resolve the ground structure. Another approach is to reduce the number of mesh
elements by creating the mesh adapted to the permeability field. This is possible since
the wavelength limits the size of the mesh elements, and the wavelength for any given
frequency is itself determined by the local permeability. A third approach may be an
improved time stepping scheme. One possibility are exponential integrators[21]: they
promise to eliminate the need to observe a CFL condition for the sake of stability; the
remaining limitation for the time step is only due to accuracy. This is particularly
promising since the location of the smallest mesh element are mostly determined by the
meshing process and not where the highest accuracy is required.

The influence of conductivity has been neglected here. Conductivity mostly leads to
a quicker attenuation of waves, so it was not considered of great importance. However,
jumps in conductivity can also give rise to reflections, and a conductive medium can alter
the shape of a traveling wave, delaying the passage of the waves maximum compared to
an unaltered wave.

The addition of conductivity should just lead to an additional term (σεu, v) in the
residual. With regard to the theory, only superficial additions should be necessary.

Open issues are the reflections at the boundary, that turned out to be worse than
expected. These particularly seem to arise when a discontinuity in the permittivity
meets the domain boundary. If this cannot be resolved, a perfectly matched layer (PML)
may help mitigate the problem.
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A. Derivation of the Maxwell Flux

Let us first consider the basis {n̂, α̂, β̂} of the R3 that is used to express the eigenvectors.
Due to the requirements (3.92), this basis is orthogonal

n̂ · α̂ = n̂ · β̂ = α̂ · β̂ = 0. (A.1)

Since we also required α̂ and β̂ to be unit vectors, and n̂ is a unit vector anyway, we
have

n̂ · n̂ = α̂ · α̂ = β̂ · β̂ = 1, (A.2)

i.e. the basis is also orthonormal. (3.92) can also be used to recognize the terms β̂α̂T −
α̂β̂

T
and α̂α̂T + β̂β̂

T
= 1− n̂n̂T as the cross product with n̂ applied once or twice:

β̂α̂T − α̂β̂
T

= Ĉα̂α̂T + Ĉβ̂β̂
T

= Ĉ(n̂n̂T + α̂α̂T + β̂β̂
T

) since Ĉn̂ = n̂× n̂ = 0

= Ĉ since n̂n̂T + α̂α̂T + β̂β̂
T

= 1 (A.3)

α̂α̂T + β̂β̂
T

= −Ĉβ̂α̂T + Ĉα̂β̂
T

= −Ĉ(β̂α̂T − α̂β̂
T

)

= −Ĉ2 (A.4)

These identities will be useful in the following calculation.

To compute the numerical flux for the DG scheme, we need to solve (3.81) for w, and
then insert w into (3.78). From (3.104) we compute MTM with the help of (A.1) and
(A.2):

MTM =


√
ε(l)β̂

T √
µ(l)α̂T

√
ε(l)α̂T −

√
µ(l)β̂

T

√
ε(r)α̂T

√
µ(r)β̂

T

−
√
ε(r)β̂

T √
µ(r)α̂T


(√

ε(l)β̂
√
ε(l)α̂

√
ε(r)α̂ −

√
ε(r)β̂√

µ(l)α̂ −
√
µ(l)β̂

√
µ(r)β̂

√
µ(r)α̂

)

=


q(l) −q(∗)

q(l) q(∗)

q(∗) q(r)

−q(∗) q(r)

 (A.5)
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Here we have used the abbreviations

q(l) := ε(l) + µ(l), q(r) := ε(r) + µ(r), q(∗) :=
√
ε(l)ε(r) −

√
µ(l)µ(r). (A.6)

We observe that MTM consists of two independent 2× 2 matrices that can be inverted
separately by (

α β
γ δ

)−1

=
1

αδ − βγ

(
δ −β
−γ α

)
. (A.7)

The denominator is the same for both submatrices, and we obtain for the inverse

(MTM)−1 =
1

q


q(r) q(∗)

q(r) −q(∗)

−q(∗) q(l)

q(∗) q(l)

 , (A.8)

q := q(l)q(r) − (q(∗))2 =

(√
ε(l)µ(r) +

√
µ(l)ε(r)

)2

. (A.9)

For the right hand side we introduce the notation b := MT JAuK. This lets us write for
the entries of w

w = (MTM)−1b =
1

q


q(r)b1 + q(∗)b4
q(r)b2 − q(∗)b3
q(l)b3 − q(∗)b2
q(l)b4 + q(∗)b1

 . (A.10)

Finally we split the flux difference JAuK into an upper part f (D) and a lower part f (B).
This lets us express the right hand side in terms of the eigenvectors as

b = MT JAuK = MT

(
f (D)

f (B)

)
=


√
ε(l)β̂

T
f (D) +

√
µ(l)α̂T f (B)

√
ε(l)α̂T f (D) −

√
µ(l)β̂

T
f (B)

√
ε(r)α̂T f (D) +

√
µ(r)β̂

T
f (B)

−
√
ε(r)β̂

T
f (D) +

√
µ(r)α̂T f (B)

 . (A.11)

For Maxwell (3.78) takes the form

f̂ = f(u)|r=0 = A(r)u(r) − w3e
(r,3) − w4e

(r,4). (A.12)

By inserting (A.10) and reordering we obtain

f̂ = A(r)u(r) − 1

q

(
q(l)[e(r,3)b3 + e(r,4)b4] + q(∗)[−e(r,3)b2 + e(r,4)b1]

)
. (A.13)
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Now we have to compute the two terms in the square brackets:

e(r,3)b3 + e(r,4)b4

=

(
ε(r)(α̂α̂T + β̂β̂

T
)f (D) +

√
ε(r)µ(r)(α̂β̂

T − β̂α̂T )f (B)√
ε(r)µ(r)(β̂α̂T − α̂β̂

T
)f (D) + µ(r)(α̂α̂T + β̂β̂

T
)f (B)

)
(A.14)

−e(r,3)b2 + e(r,4)b1

=

(
−
√
ε(l)ε(r)(α̂α̂T + β̂β̂

T
)f (D) +

√
µ(l)ε(r)(α̂β̂

T − β̂α̂T )f (B)√
ε(l)µ(r)(α̂β̂

T − β̂α̂T )f (D) +
√
µ(l)µ(r)(α̂α̂T + β̂β̂

T
)f (B)

)
(A.15)

By using (A.3) and (A.4), this can be simplified to

e(r,3)b3 + e(r,4)b4 =

(
−ε(r)Ĉ2f (D) −

√
ε(r)µ(r)Ĉf (B)√

ε(r)µ(r)Ĉf (D) − µ(r)Ĉ2f (B)

)
(A.16)

−e(r,3)b2 + e(r,4)b1 =

( √
ε(l)ε(r)Ĉ2f (D) −

√
µ(l)ε(r)Ĉf (B)

−
√
ε(l)µ(r)Ĉf (D) −

√
µ(l)µ(r)Ĉ2f (B)

)
(A.17)

This is now inserted into (A.13).

f̂ = A(r)u(r) − 1

q

 (−q(l)ε(r) + q(∗)
√
ε(l)ε(r)

)
Ĉ2f (D)(

−q(l)µ(r) − q(∗)
√
µ(l)µ(r)

)
Ĉ2f (B)


− 1

q

(−q(l)
√
ε(r)µ(r) − q(∗)

√
µ(l)ε(r)

)
Ĉf (B)(

q(l)
√
ε(r)µ(r) − q(∗)

√
ε(l)µ(r)

)
Ĉf (D)

 (A.18)

We now expand the abbreviations q, q(l) and q(∗). It is most convenient to write the
resulting coefficients in terms of the admittance (3.105) and impedance (3.106), as well
as the intermediate admittance and impedance (3.107). The coefficients then take the
form

1

q

(
−q(l)ε(r) + q(∗)

√
ε(l)ε(r)

)
= −Z(l)Y (∗), (A.19)

1

q

(
−q(l)µ(r) − q(∗)

√
µ(l)µ(r)

)
= −Y (l)Z(∗), (A.20)

1

q

(
−q(l)

√
ε(r)µ(r) − q(∗)

√
µ(l)ε(r)

)
= −Y (∗), (A.21)

1

q

(
q(l)
√
ε(r)µ(r) − q(∗)

√
ε(l)µ(r)

)
= Z(∗), (A.22)

and the flux can be written as

f̂ = A(r)u(r) +

(
Z(l)Y (∗)Ĉ2f (D)

Y (l)Z(∗)Ĉ2f (B)

)
+

(
Y (∗)Ĉf (B)

−Z(∗)Ĉf (D)

)
. (A.23)

With the matrices (3.108), (3.109) and (3.88) this can be simplified to

f̂ = f(u)|r=0 = A(r)u(r) − X(∗)N(X(l)N + 1) JAuK . (A.24)

83





B. Analytic Solution for the Dipole Problem

For the moment we’ll assume that the exciting current has the form

Jω(x, t) = Jω(x)e−iωt = êzδ(x)e−iωt. (B.1)

According to [22] eq. (9.3) this allows us to write the vector potential as

Aω(x, t) =
µ

4π

∫
Jω(x′, t)

eik|x−x
′|

|x− x′|
d3x′. (B.2)

The fields can then be obtained from the vector potential via

Hω(x, t) = µ−1∇×Aω(x, t) (B.3)

Eω(x, t) =
iZ

k
∇×Hω(x, t) =

ic2

ω
∇×∇×Aω(x, t). (B.4)

Here the following quantities were used:

k =
ω

c
λ =

2πc

ω
=

2π

k
Z =

√
µ

ε
(B.5)

Inserting our current into (B.2) we obtain

Aω(x, t) = êz
µei(kr−ωt)

4πr
. (B.6)

Here and in the following we assume the following translation into spherical and cylin-
drical coordinates:

x0 = ρ cosφ x1 = ρ sinφ x2 = z (B.7)

ρ = r sin θ φ = φ z = r cos θ (B.8)

x0 = r sin θ cosφ x1 = r sin θ sinφ x2 = r cos θ (B.9)

To continue we need

∇× êz
eikr

r
= êφ

sin θ

r2
(1− ikr)eikr (B.10)

∇×∇× êz
eikr

r
= êr

2 cos θ

r3
(1− ikr)eikr − êθ

sin θ

r3
(k2r2 + ikr − 1)eikr (B.11)
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The first was obtained using the curl in cylindrical coordinates

∇× F = êρ

[
1

ρ
∂φFz − ∂zFφ

]
+ êφ[∂zFρ − ∂ρFz] + êz

1

ρ
[∂ρ(ρFφ)− ∂φFρ] (B.12)

= −êφ∂ρFz for F||êz,F = F(r) (B.13)

= −êφ(∂rFz)∂ρr = −êφ
ρ

r
∂rFz = −êφ sin θ ∂rFz, (B.14)

the second by using the curl in spherical coordinates

∇×G = êr
1

r sin θ
[∂θ(sin θGφ)− ∂φGθ]

+ êθ

[
1

r sin θ
∂φGr −

1

r
∂r(rGφ)

]
+ êφ

1

r
[∂r(rGθ)− ∂θGr] (B.15)

= êr
1

r sin θ
∂θ(sin θ Gφ)− êθ

1

r
∂r(rGφ) for G||êφ,G = G(r, θ) (B.16)

Now we can write the magnetic and the electric fields

Hω(x, t) =
ei(kr−ωt)

4πr2
êφ sin θ(1− ikr) (B.17)

Eω(x, t) =
iei(kr−ωt)

4πεωr3
[2êr cos θ(1− ikr)− êθ sin θ(k2r2 + ikr − 1)] (B.18)

Up to now everything was done for one particular frequency ω. To cover the whole
frequency range we need a weighted integral over all frequencies:

J(x, t) =
1√
2π

∫ ∞
−∞

dωJ(ω)Jω(x, t) =
1√
2π

êzδ(x)

∫ ∞
−∞

dωJ(ω)e−iωt (B.19)

By the principle of superposition, the same integral has to be applied to the fields:

H(x, t) =
1√
2π

∫ ∞
−∞

dωJ(ω)Hω(x, t) (B.20)

E(x, t) =
1√
2π

∫ ∞
−∞

dωJ(ω)Eω(x, t) (B.21)

We define the temporal dependency of the exciting current

J(t) =
1√
2π

∫ ∞
−∞

dω J(ω)e−iωt (B.22)

such that J(x, t) = êzδ(x)J(t). This is just the Fourier-transform – to obtain J(ω) we
need the corresponding back-transform

J(ω) =
1√
2π

∫ ∞
−∞

dt J(t)eiωt. (B.23)
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Now we have to commit to one particular temporal form of for the excitation. We use
a Neumann-pulse normalized such that maxt J(t) = 1:

J(t) =

√
e

σ
t exp

(
− t2

2σ2

)
(B.24)

J(ω) =

√
e√

2πσ

∫ ∞
−∞

dt t exp

(
− t2

2σ2

)
eiωt

= iωσ2√e exp

(
−ω

2σ2

2

)
(B.25)

Inserting this into (B.20) and (B.21) leads to

H(x, t) =

√
e

4πr2
exp

(
−(r − ct)2

2c2σ2

)
êφ sin θ

[
t

σ
− r(r − ct)2

c3σ3

]
(B.26)

E(x, t) =
µc
√
e

4πr2
exp

(
−(r − ct)2

2c2σ2

){
− 2êr cos θ

[
r − ct
cσ

+
cσ

r

]

− êθ sin θ

[
r(r − ct)2

c3σ3
− t

σ
+
cσ

r

]}
(B.27)

To return to Cartesian coordinates, we use

êr =

sin θ cosφ
sin θ sinφ

cos θ

 êφ =

− sinφ
cosφ

0

 êθ =

cos θ cosφ
cos θ sinφ
− sin θ

 (B.28)
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C. Machines used for Computations

fiona helics3a

machine type shared-memory cluster
CPU model AMD OpteronTM 6172 AMD OpteronTM 6212
cluster interconnect -/- InfiniBand
cluster nodes 1 32
total RAM 128GiB 4TiB
total CPU threads 48 1024
per cluster node. . .

sockets 4 4
NUMA nodes 8 8
CPU threads 48 32
caches

L3 8× 5MiB 8× 6MiB
L2 48× 512KiB 16× 2MiB
L1 instruction 48× 64KiB 16× 64KiB
L1 data 48× 64KiB 32× 16KiB

RAM 128GiB 128GiB
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D. Global-valued Finite Elements in
Dune-localfunctions

In the course of implementing the finite element scheme for electromagnetics, it became
necessary to design a more widely applicable interface for global-valued finite elements.

Formerly only local-valued finite element were available – shape functions where both
domain and range a defined in the coordinate system of a reference element. User code
(or a discretization module) was expected to apply the correct transformation into global
coordinates. This proved successful as long as only scalar and normal-conforming vector
finite elements were used – the discretization modules were easily able to chose the
correct transformation.

Edge elements however require a different transformation. Either this transformation
must be communicated to the user of the finite element, or the range of the finite element
must be shifted from the reference element into global space. The latter choice nicely
abstracts the details of the transformation and keeps them to the finite element, so that
is what I chose to do.

To evaluate a function represented by a finite element basis on a particular grid element
T with geometry µ we can use the following formula:

u(x) =

NT−1∑
i=0

ciPT,iϕi(µ
−1(x)) ∀x ∈ T (D.1)

The basis function ϕ on the reference element is provided by the local basis. The global
basis takes this local basis and applies an operator PT,i to the values it returns. This
operator is dependent on the grid element T and the number of the basis function i.
The global basis thus provides values of the global basis functions

Φi(x̂) = PT,iϕi(x̂) (D.2)

For the transformation P the following information about grid element is important:

1. The geometry µ of a grid element, which handles the transformation of coordinates
from the reference element to the grid element. But values of the base functions
and in particular their derivatives need to be transformed as well in general – the
correct transformation depends on the family of the finite element, the coordinate
transformation µ and the number of the base function i.

2. The vertex ordering τ of a grid element, which says how the grid elements vertices
are globally numbered in comparison to the numbering in the reference element.
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This is needed to match multiple dofs on a common sub-entity between two grid
elements. Another use is to choose a consistent tangential orientation of edges for
edge elements.

3. The normal orientation of faces of a grid element. This is useful for instance for
Raviart-Thomas elements: their dofs orientation points from one of the neighbour-
ing elements into the other. This information can generally not be extracted from
the vertex ordering and geometry information alone.

This section explicitly does not deal with the following issues:

• Different geometry types for different grid elements. This will lead to different
number of basis functions and must already be dealt with in the local finite element.

• p-adaptiviy. Again, this will lead to different number of basis functions and must
already be dealt with in the local finite element.

D.1. Geometry

The geometry information must be provided by a class basically modelling the interface
of GenericGeometry::BasicGeometry – that includes implementations of Geometry.
The precise requirements are as follows:

struct Geometry

{

// type information

typedef ImplementationDefined ctype;

// local dimension

static const std:: size_t mydimension =

implementation_defined;

// global dimension

static const std:: size_t coorddimension =

implementation_defined;

// some vector type with mydimension components of type

// ctype

typedef ImplementationDefined LocalCoordinate;

// some vector type with coorddimension components of type

// ctype

typedef ImplementationDefined GlobalCoordinate;

// some matrix type with coorddimension x mydimension

// components of type ctype

typedef ImplementationDefined JacobianInverseTransposed;

// some matrix type with mydimension x coorddimension

// components of type ctype

typedef ImplementationDefined JacobianTransposed;
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// general properties of the geometry

GeometryType type() const;

bool affine () const;

// access to the coordinates of the corners

std:: size_t corners () const;

GlobalCoordinate corner(std:: size_t) const;

// local to global and inverse mapping

GlobalCoordinate global(const LocalCoordinate &) const;

LocalCoordinate local(const GlobalCoordinate &) const;

// access to Jacobian of the mapping

const JacobianTransposed&

jacobianTransposed(const LocalCoordinate &) const;

const JacobianInverseTransposed&

jacobianInverseTransposed(const LocalCoordinate &) const;

// other information

GlobalCoordinate center () const;

ctype integrationElement(const LocalCoordinate &) const;

ctype volume () const;

GlobalCoordinate normal(std:: size_t face ,

const LocalCoordinate &) const;

};

The coordinate types (ctype, mydimension, coorddimension, LocalCoordinate, and
GlobalCoordinate) of a Geometry object provided when creating an instance of a finite
element should coincide with the coordinate types of that finite element’s basis class.

D.1.1. Gradient Transformation

The transformation of a scalar function from the reference element to a grid element
using the geometry µ is trivial:

f̂(x̂) = f(µ(x̂)) (D.3)

The transformation of the gradient of such a function is a little bit more complicated.
First we will need to employ the Jacobian, which we define for a function u as:

Ju(x) =

 ∂0u0|x . . . ∂n−1u0|x
...

. . .
...

∂0um−1|x . . . ∂n−1um−1|x

 (D.4)

This definition of the Jacobian lets us write a linear vector-valued function u in terms
of its Jacobian Ju as u(x) = Ju ·x. For a scalar valued function f the gradient is the
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x0 x1

x2

ϕ̂1

Figure D.1.: Raviart-Thomas element in 2D.

transpose of the Jacobian:

∇f |x =

 ∂0f |x
...

∂n−1f |x

 = JTf (x) (D.5)

To do the actual transformation we employ the chain rule

Ĵf̂ (x̂) = Jf (µ(x̂)) · Ĵµ(x̂) (D.6)

After transposing, left-multiplying by Ĵ−Tµ (x̂) and replacing the transposed Jacobians
by gradient where applicable, we obtain

∇f |µ(x̂) = Ĵ−Tµ (x̂) · ∇̂f̂ |x̂ (D.7)

D.1.2. Raviart-Thomas Elements – Piola Transformation

Raviart-Thomas elements are finite elements that ensure continuity of the normal com-
ponent across grid elements. They do allow for jumps in the tangential components,
however. For these elements, the degrees-of-freedom (dofs) are usually associated with
the face (sub-entity of codimension 1) on which the normal component is non-zero – see
figure D.1.

These elements have the following property:

ϕi(x) ·nj = δij ∀x ∈ face j (D.8)

Here nj is the outer normal unit vector to face j and δij is the Kronecker delta. Naturally,
transforming the basis should preserve that property. This is achieved by the Piola-
transformation:

ϕi(µ(x̂)) =
Ĵµ(x̂)

|Ĵµ(x̂)|
ϕ̂i(x̂) (D.9)

D.1.3. Edge Elements

Edge elements are used in finite element electro-magnetics. In the lowest order, their
dofs are associated with edges, i.e. sub-entities of dimension 1. They can be expressed
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x0 x1

x2

N̂1

Figure D.2.: Edge-element in 2D.

in terms of first order node-based Lagrange finite elements Li as follows:

N i = `i(Li0∇Li1 − Li1∇Li0) (D.10)

Here i0 and i1 are the indices of the nodes at the endpoints of edge i and `i is the length
of edge i. See figure D.2.

Edge elements have a similar property as Raviart-Thomas elements: the tangential
component is 1 on the associated edge and 0 on all other edges:

N i(x) · tj = δij ∀x ∈ edge j (D.11)

For the transformation we make the ansatz

N i(µ(x̂)) = αiAN̂ i(x̂) (D.12)

with the scalars αi and a matrix A. We express N i and N̂ i in terms of the corresponding
P1 bases

`i{Li0(µ(x̂)) · ∇Li1 |µ(x̂)−Li1(µ(x̂)) · ∇Li0 |µ(x̂)} = αiAˆ̀i{L̂i0(x̂) · ∇̂L̂i1 |x̂−L̂i1(x̂) · ∇̂L̂i0 |x̂}
(D.13)

By replacing the global P1 bases by the their transformations

Li(µ(x̂)) = L̂i(x̂) (D.14)

∇Li|µ(x̂) = Ĵ−Tµ (x̂)∇̂L̂i|x̂ (D.15)

we obtain

`iĴ−Tµ (x̂){L̂i0(x̂) · ∇̂L̂i1 |x̂ − L̂i1(x̂) · ∇̂L̂i0 |x̂}

= αiAˆ̀i{L̂i0(x̂) · ∇̂L̂i1 |x̂ − L̂i1(x̂) · ∇̂L̂i0 |x̂} (D.16)

The expression inside the curly braces on both sides is the same. We identify

A = Ĵ−Tµ (x̂) (D.17)

αi = `i/ˆ̀i (D.18)
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The full transformation then looks like this:

N i(µ(x̂)) =
`i

ˆ̀i
Ĵ−Tµ (x̂) · N̂ i(x̂) (D.19)

Note that this transformation only works for the base functions, not for superpositions of
them. Each base function N i has a different transformation because the base multiplier
αi depends on the number of the base function.

D.1.4. Conclusions

From the examples above we can conclude that the following information is needed from
a Geometry class. It is quite possible that the list below is incomplete since the examples
above may have missed some piece of information that may be needed in general.

• The inverse transposed of the Jacobian Ĵ−Tµ (x̂).

• The Jacobian itself Ĵµ(x̂).

• The determinant of the Jacobian |Ĵµ(x̂)|.

• The lengths of the edges of the grid element `i.

• The lengths of the edges of the reference element ˆ̀i.

When local coordinates x̂ are provided the local-to-global map µ(x̂) and its inverse
µ−1(x) as well as the corner coordinates xi themselves are never needed. This makes
the required information independent of a shift in the global coordinates and opens an
optimisation possibility for regular grids.

D.2. Vertex Ordering

The vertex ordering information is based completely on the global numbering of the
vertices of a grid element. To obtain it, we collect the global IDs of the vertices in a
vector indexed by the indices of the vertices within the reference element:

void collectVertexIds(const Element& e,

const GlobalIdSet& idSet ,

std::vector <GlobaIdSet ::IdType >& ids)

{

ids.resize(e.geometry ().corners ());

for(int i = 0; i < ids.size(); ++ids)

ids[i] = idSet.subId(e, i, Element :: dimension);

}

In the next step the ordering reduction operation is applied: the smallest id in the array
is replaced by the number 0, the second-smallest is replaced by the number 1 etc.
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template <class InIterator , class OutIterator >

void reduceOrder(const InIterator& inBegin ,

const InIterator& inEnd ,

OutIterator outIt)

{

static const std::less <

typename std:: iterator_traits <InIterator >:: value_type

> less;

for(InIterator inIt = inBegin; inIt != inEnd;

++inIt , ++outIt)

*outIt = std::count(inBegin , inEnd ,

std:: bind2nd(less , *inIt));

}

To obtain an actual vector of reduced indices one can use the following code:

std::vector <typename GlobalIdSet ::IdType > ids;

collectVertexIds(elem , globalIdSet , ids);

std::vector <std::size_t > reduced_indices(ids.size());

reduceOrder(ids.begin (), ids.end(),

reduced_indices.begin ());

As an example, lets assume we have a quadrilateral or a tetrahedron with the global
ids of the vertices being 14 for vertex 0, 27 for vertex 1, 3 for vertex 2 and 800 for vertex
3. After ordering reduction the reduced vector will contain 1, 2, 0 and 3 in that order.

When determining the vertex ordering for a sub-entity, the reduced indices corre-
sponding to the vertices sub-entity are extracted into a smaller vector and the reduction
is applied again, at least conceptually. In reality, the reduction is mostly only necessary
because the type of the global ids may be a complicated non-integral struct, and we want
to keep the vertex ordering information as lean as possible. The actual information is
always contained in the relative ordering of the indices/ids, and the reduction preserves
that.

The ordering information can always be obtained from the global ids of the vertices.
However, for some grids, such as ALUGrid, using the global ids is quiet expensive.
On the other hand, ALUGrid already stores a twist of the faces, which can be easily
extracted and contains the same information as the vertex ordering, just encoded in a
different way. Though this does not provide vertex ordering information for the whole
element, this information is seldom needed.

To accommodate all sides, we define an interface class VertexOrderingInterface.
Implementations of this interface can be used to provide vertex ordering information.
Grids that store the vertex ordering internally for certain sub-entities can provide an
optimised implementation. These implementations may omit vertex ordering informa-
tion for sub-entities where such information is not readily available; they should throw
NotImplemented if such information is requested anyway.
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Note that the information is still required to be consistent for those sub-entities where
information is available: Consider a tetrahedron and pick two triangular faces A and B
with a common edge. If someone requests vertex ordering information for one of the
faces and reduces that information to the edge, the result must be the same no matter
whether face A or B was used or whether the ordering was requested directly for the
edge itself.

The interface for the class is as follows:

struct VertexOrderingInterface {

// dimension of the entity this applies to

static const std:: size_t dimension;

// geometry type of the entity this applies to

const GeometryType type() const;

// iterate over some sub -entity ’s vertex indices; must be

// a RandomAccess iterator , value_type may be constant

class iterator;

// get begin iterator for the vertex indices of some

// sub -entity

iterator begin(std:: size_t codim ,

std:: size_t subEntity) const;

// get end iterator for the vertex indices of some

// sub -entity

iterator begin(std:: size_t codim ,

std:: size_t subEntity) const;

// get reduced vertex ordering for the specified

// sub -entity

void getReduced(std:: size_t codim , std:: size_t subEntity ,

std::vector <std::size_t >& order) const;

};

Information about the dimension and the geometry type is included because it de-
termines the limits for the parameters (via the GenericReferenceElements). The
getReduced() method shall resize the vector passed in the order parameter to the
suitable size.

D.3. Matching Multiple Dofs on a Common Sub-Entity

Some finite elements have more than one dof on a given sub-entity of an element, and
assign a position inside the sub-entity to that dof (i.e. Pk k ≥ 4, Qk k ≥ 3). For
conforming schemes the ordering of the dofs on a sub-entity shared by two or more
elements must match such that the dofs on the same position can be identified.
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A similar situation arises with edge elements of order 1.5: For simplices they have
three base functions on a face but only two of them are independent. A finite element
implementation must make sure to pick the same two base functions for the face in
neighbouring elements so their dofs can be identified.

Both issues can be addressed using the information provided by the ordering of the
global ids of the vertices.

D.4. Flipping of Base Function Values

Some finite element families, most notably Raviart-Thomas and edge elements, assign
an orientation to (some of) their dofs. That is, the value of the dof ai is interpolated
from a function u as the functions value at the dofs position xi projected onto some unit
vector ei:

ai = u(xi) · ei (D.20)

The direction of that unit vector is the orientation of the dof. For Raviart-Thomas ei is
the unit vector normal to the face (codimension 1 sub-entity), for edge elements ei is the
unit vector tangential to the edge (dimension 1 sub-entity) on which the dof is located.

To be continuous over element borders, elements connected to a common sub-entity
must agree upon a common global orientation for that sub-entity. If their local ori-
entation differs from the global orientation, the Basis must multiply the value of the
corresponding basis function by −1. The tricky part is the to determine the global
orientation for the common sub-entity correctly.

D.4.1. Tangential Orientation for Lines

Lines have two vertices which can be used to choose the orientation of the line: the
orientation vector points from the vertex with the lower index/id to the vertex with
the higher index/id. That is the geometric interpretation, we actually don’t want to
compare coordinates, but preferably just integers.

To obtain the local orientation, of an edge in an element, collect the indices of the
edges vertices, and here we mean indices inside the reference element of the element:

unsigned local_orientation [2];

local_orientation [0] = refelem.subEntity(edge_index , dim -1,

0, dim);

local_orientation [1] = refelem.subEntity(edge_index , dim -1,

1, dim);

For the global orientation we do basically the same. However, this time we use the
vertex ordering information derived from the global ids of the vertices of the element
instead of vertex indices inside the reference element:

unsigned global_orientation [2];

global_orientation [0] = vertex_order[local_orientation [0]];

global_orientation [1] = vertex_order[local_orientation [1]];
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The ordering of the index values determines the local and global orientation:

if(( local_orientation [0] < local_orientation [1])

== (global_orientation [0] < global_orientation [1]))

{

// local and global orientation are identical

// nothing to do

} else {

// local and global orientation differ

// flip base function value

}

D.4.2. Normal Orientation for Codimension 1 Sub-Entities

Normal orientation for sub-entities of codimension 1 is important for Raviart-Thomas
elements. Normal orientation is more tricky and cannot be done using the ordering of the
indices/id of the corners alone. Some additional information is needed, such as the sign
of the determinant of the Jacobian of the geometry map sgn(det(Ĵµ)). This is however
not enough for lower dimensional grids in a higher dimensional world, since then the
Jacobian is no longer quadratic and has no determinant.

The reason why the information about the vertex ids is not enough is roughly that to
construct the normal orientation there is alway some kind of rotation involved. In 2D the
codimension 1 sub-entities are edges. We can obtain a normal orientation by rotating the
tangential orientation by 90◦. To get a consistent result however, this rotation must be
done in the global coordinate system for the global orientation and in the respective local
coordinate systems for the local orientations. Locally on the element we have only the
local coordinate system available, however. If the geometric transformation µ involves
mirroring, then the sense of the rotation will be different for the local and the global
coordinate system. The sign of the Jacobian’s determinant can tell us whether there is
mirroring involved or not.

In 3D the construction of the orientation differs: for triangles we walk through the
indices/ids in ascending order and determine the direction of the normal vector by the
right-hand rule:

0 1

2

0 2

1

Similar for quadrilaterals, although if their indices/ids are acyclic we just have to pick and
orientation (here we chose to ignore the highest index/id and determine the orientation
from the remaining indices/ids as for triangles):
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0 1

32

0 2

31

0 1

23

0 3

21

This is all rather tedious and in fact there is a much simpler way, which will even
work in the case of lower-dimensional grids in a higher-dimensional world. Sub-entities of
codimension 1 are always situated between two Elements. Choosing a normal orientation
for the sub-entity means to choose a vector that points from one element into the other.
The global orientation can thus be chosen by comparing the ids of the elements: it points
outward in the element with the lower id and inward in the element with the higher id.

The face orientation should be passed as a bool vector:

typedef std::vector <bool > FaceOrientation;

The vector is indexed by the index of the face in the reference element. A value of true
means the global orientation of the face is outward, false means it is inward.

D.5. API

The API for global-valued finite elements consists of five interface classes (BasisInterface,
InterpolationInterface, CoefficientsInterface, FiniteElementInterface, and
FiniteElementFactoryInterface) and two traits classes (BasisTraits and Finite-

ElementTraits). In contrast to the local interface which prefixes all its names with
“Local” we do not use any prefix here. “Local” is already taken, “Global” would sug-
gest that this interface is completely in global coordinates, “GlobalValue” is too clumsy
and adds too much to the lengths of names.

D.5.1. Finite Element Interface

struct FiniteElementInterface

{

// types of component objects

struct Traits

{

typedef ImplementationDefined Basis;

typedef ImplementationDefined Coefficients;

typedef ImplementationDefined Interpolation;

};

// constructor arguments are implementation specific

FiniteElementInterface (...);

// ... except for the copy constructor

FiniteElementInterface(const FiniteElementInterface &);
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// extract component objects

const typename Traits :: Basis& basis() const;

const typename Traits :: Coefficients& coefficients () const;

const typename Traits :: Interpolation&

interpolation () const;

GeometryType type() const;

};

The member class Traits may be a member typedef instead. Constructor signatures
and existence is implementation-defined, except for the copy constructor, which must be
present and publicly accessible. Construction is generally done by a factory class. To
keep copy-construction efficient it is recommended that instances of this class are light
proxy objects.

The reason to mandate copy-construction is as follows: Up to now with local finite
elements dune-pdelab used the class FiniteElementMap as a kind of finite element fac-
tory. If the finite element was required in different variants for a given grid (i.e. because
normal continuity was required for Raviar-Thomas elements), the FiniteElementMap

would store all the variants internally and return a reference to the correct variant upon
request. Since global-valued finite elements depend on the geometry of the grid element,
this trick is no longer useful, especially if you plan to modify the finite element object
by “binding” it to the geometry. The problem is that more than one finite element for
different grid elements may be required at the same time (think iterating over the inter-
sections). If the FiniteElementMap returns the same variant for both grid elements the
user code will first bind the finite element to the inside element and later to the outside
element, since both of his finite element references point to the same object. Thus when
he tries to access the inside finite element, he will in reality access the outside element.

D.5.2. Finite Element Factory Interface

struct FiniteElementFactoryInterface

{

// may also be an inline class

typedef ImplementationDefined FiniteElement;

// construction is implementation -defined

FiniteElementFactoryInterface (...);

// finite element object creation

// arguments are implementation defined

const FiniteElement make (...);

};

The method to create a finite element object is make(). The created object is returned
by value (const FiniteElement). The factory implementation may choose to return
by reference instead (const FiniteElement&). Because temporaries may be bound to
const references in C++, this way code using the factory can always bind the returned
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value to a const reference and avoid copy construction if that is not necessary:

const Factory :: FiniteElement& fe = factory.make();

In any case, the returned value or reference must be valid for as long as the factory
object exists.

Since each finite element family will need different information to create a finite ele-
ment object tailored to a particular grid element, the actual argument of the male() are
implementation-defined. Earlier in this section we have seen different types of informa-
tion which may be needed to create a tailored finite element: geometry, vertex ordering
and face orientation. If they are needed for a given finite element implementation, that
finite element should require necessary items in the order given above and in the encod-
ing given earlier. If neither geometry nor vertex ordering is required, but the geometry
type is, that should be given in place of geometry and vertex ordering directly. Any
extra information should be given after these arguments. The possible signatures for
make thus are:

make(const Geometry&, const VertexOrder&, const

FaceOrientation&, ...);

make(const Geometry&, const VertexOrder&, ...);

make(const Geometry&, const FaceOrientation&, ...);

make(const Geometry&, ...);

make(const VertexOrder&, const FaceOrientation&, ...);

make(const VertexOrder&, ...);

make(const GeometryType&, const FaceOrientation&, ...);

make(const GeometryType&, ...);

make(const FaceOrientation&, ...);

make (...);

Implementation must document what kind of arguments are required for make().

The constructor signature is implementation-defined.

It is recommended that the factory caches as much information as possible. For
instance, for regular hypercube grids the Jacobian of the geometry does not change and
is the only thing needed to transform the derivatives. For this case the constructor should
take a sample geometry and precompute the transformation. Whether the regular and
the general case are distinguished by different constructor arguments to the same factory
class, or whether there is one factory class for the regular and one for the general case
is left to the implementor of the factory.

D.5.3. Basis Interface

struct BasisInterface

{

struct Traits

{

// domain properties (local and global)

typedef ImplementationDefined DomainField;
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static const std:: size_t dimDomainLocal =

implementation_defined;

static const std:: size_t dimDomainGlobal =

implementation_defined;

typedef ImplementationDefined DomainLocal;

typedef ImplementationDefined DomainGlobal;

// range properties (global range only)

typedef implementation_defined RangeField;

static const std:: size_t dimRange =

implementation_defined;

typedef ImplementationDefined Range;

// jacobian properties (dimRange x dimDomainGlobal

// Matrix with components of type RangeField)

typedef ImplementationDefined Jacobian;

// maximum number of partial derivatives supported

static const std:: size_t diffOrder =

implementation_defined;

};

// Number of shape functions

std:: size_t size () const;

// Polynomial order of the shape functions for quadrature

std:: size_t order () const;

// Evaluate all shape functions at given position

void evaluateFunction

( const typename Traits :: DomainLocal& in ,

std::vector <typename Traits ::Range >& out) const;

// Evaluate jacobian of all shape functions at given

// position; required for Traits :: diffOrder >= 1

void evaluateJacobian

( const typename Traits :: DomainLocal& in ,

std::vector <typename Traits ::Jacobian >& out) const;

// Evaluate derivatives of all shape functions at given

// position; required for Traits :: diffOrder >= 2

void evaluate

( const array <std::size_t ,

Traits :: dimGlobalDomain >& directions ,

const typename Traits :: DomainLocal& in ,
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std::vector <typename Traits ::Range >& out) const;

};

The basis interface closely follows the local basis interface with some notable exceptions.

First there are the types in the traits class. Since coordinates are still given in the
reference elements coordinate system but derivatives are done with respect to global
coordinates, a distinction must be made between local and global domain. The other
change is that the member types of the traits class no longer have a suffix “Type” since
it is quite clear from the camel-case naming convention that they are types.

Second the method for general derivatives evaluate() is no longer a template method
and its argument directions has different semantics. In the local basis interface,
directions was a list of directions in which to take derivatives, i.e. directions={0,
1, 0, 2} for the derivative ∂0∂1∂0∂2. This is inconvenient since it requires directions
to be a list of variable length, making the length a template parameter, and because the
order implied in the above derivative does not really exist, it can just as well be written
as ∂2

0∂1∂2. So in the global-value interface directions lists the exponents in the last
expression: direction={2, 1, 1}. This way the length of directions will always be
Traits::dimDomainGlobal and evaluate() no longer needs to be a template.

D.5.4. Interpolation Interface

struct InterpolationInterface

{

// Export basis traits

typedef BasisInterface :: Traits Traits;

// determine coefficients interpolating a given function

template <typename F, typename C>

void interpolate (const F& f, std::vector <C>& out) const;

};

The interface for global-value interpolation objects also has little modifications compared
to local interpolation objects. Main addition is the member type Traits which is the
same as in the corresponding basis class. This is to document the parameter types that
interpolate() will use to evaluate the function f.

For the member method evaluate() the requirements for the function object f change
slightly: it is still required to support the expression f.evaluate(x, y), and x in that
expression is still a local coordinate (though the type is named a little bit different:
const Traits::DomainLocal&. The difference is that the returned value y is now in
global coordinates and of the type Traits::Range.

D.5.5. Coefficients Interface

struct CoefficientsInterface

{

// number of coefficients

std:: size_t size() const;
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// get i’th index

const LocalKey& localKey(std:: size_t i) const;

};

The interface for the coefficients class is exactly the same as for the local coefficients. If
the global-valued finite elements is implemented in term of a local finite element it will
often be possible to simply reuse the coefficients class of the local finite element.

If there is some dof-matching required for common sub-entities of neighbouring ele-
ments however, and this dof-matching can be done entirely by reordering the dofs on
the sub-entity, then the coefficients class is the place to do it.
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E. Notation

· i Lower indices are used to access elements of vectors and matrices, both Cartesian
vectors and degree-of-freedom vectors. E.g. ry, ui, Aij .

· (i) Upper indices are used to access elements of time series u(i) = u(t(i)) and other
collections like basis vectors ê(i), eigenvalues λ(i), eigenvectors û(i).

r Bold is used strictly for Cartesian vectors, e.g. x, E, H, n̂. The six component field

vector u =

(
E
H

)
is not a Cartesian vector, and is thus not bold.

·̂ The circumflex marks unit vectors, whether Cartesian or not: ê(x), û(i), n̂.

U : V Frobenius inner product of U,V ∈ Rm×n. U : V =
∑m

i=1

∑n
j=1 UijVij .

∂tx, dtx Partial and total derivative, equivalent to ∂x/∂t and dx/dt, respectively.

∇g, ∇r′g, grad g, gradr′ g Gradient. When used with a subscript, it denotes the gradient
with respect to that variable. When used without a subscript, it denotes the
gradient with respect to r. When applied to a vector g ∈ Rm, grad g = ∇gT or
(grad g)ij = ∂igj .

∇ ·E, ∇r′ ·E Divergence. When used with a subscript, it denotes the divergence with
respect to that variable. When used without a subscript, it denotes the divergence
with respect to r.

div F Divergence of a matrix F. div F = (∇ ·F)T , or (div F)j =
∑

i ∂iFij . div F is a
column vector.

∇×E, ∇r′ × u Curl. When used with a subscript, it denotes the curl with respect to
that variable. When used without a subscript, it denotes the curl with respect to
r. The curl may also be applied to the combined fields u, then it applies to the
component fields individually:

∇r × u = ∇r ×
(
E
H

)
=

(
∇r ×E
∇r ×H

)

Juf Jacobian of f with respect to u.
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JvK , JvK(C) Jump of a scalar or vector expression v(r) across some discontinuity C. For-
mally, let the domain be separated by some continuous line C into two parts N (l)

and N (r). Then

JvK |r := lim
r′→r

r′∈N(r)

v|r′ − lim
r′→r

r′∈N(l)

v|r′ ∀r ∈ C. (E.1)

Note that the sign of the jump changes when the two parts of the domain are
switched.

ê(x), ê(y), ê(z) Axis-parallel unit vectors of a Cartesian coordinate system.

C(a), Ĉ Left cross product with some vector represented as a matrix: C(a)b = a × b.
Ĉ means cross product with the normal vector Ĉ = C(n̂). The matrix C(a) is
antisymmetric.
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