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Abstract

Multi jet observables are a powerful tool to new physics as well as a boost to standard
analysis strategies. We show their use in a reasonably model independent dark matter
search and a jet veto Higgs analysis. We find however that, these observables are
plagued by huge theoretical uncertainties connected to unphysical scale parameters.
In the democratic limit we compute analytically the all order resummed jet spectrum
at leading log. It obeys so called staircase scaling. With the help of state of the art
Monte Carlo tools we study the jet spectrum features in great detail. In addition we
also study so called Poisson scaling. This allows us to develop a data driven strategy
to fix the standard model multi jet backgrounds.

Zusammenfassung

Multijetobservablen sind nützliche Werkzeuge in new physics Suchen. Des Weit-
eren führt ihr Verständnis zu einer Verbesserung von Standardanalysestrategien. Wir
zeigen das in einer einigermaßen Model unabhängigen SUSY Suche und einer Jetveto
Higgsanalyse. Wir stellen jedoch fest, dass diese Observablen mit großen theoretischen
Unsicherheiten belastet sind, die mit unphysikalischen Skalenparameteren verknüpft
sind. In einem bestimmten Limes berechnen wir die resummierte Form des Jetspek-
trums zu führender logarithmischer Ordnung. Wir finden, dass das Spektrum so genan-
ntem staircase scaling folgt. Unter Zuhilfenahme modernster Monte Carlo Simulatio-
nen untersuchen wir das Jetspektrum ausführlich. Des weiteren studieren wir auch so
genanntes Poisson scaling. Dies Alles erlaubt uns eine datengestützte Strategie für die
Standardmodel Multijetuntergründe zu entwickeln.
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Why Jets?

Finally – the Higgs! These are exciting times. The nature of electroweak symmetry breaking is
about to unfold in front of us [1–4]. It is the last step of a longstanding endeavor we just like to call
the standard model and a milestone in the history of science. Of course, there are still plenty of
open questions. Will this really be the standard model Higgs [6–10]? How well can we determine
all its couplings or better: are we able to reconstruct the Lagrangian from the available data? This
is all about Yukawa, electroweak gauge, and self interactions, about the nature of the weak sector.
More and more people start to think about the features of future Higgs factories [11] to dwell on
the physical properties of this new particle. So why bother with jets?

Despite the fact that certain properties of the Higgs might only be measurable at future linear
colliders, the LHC physics program has by no means reached its full potential yet. The machine and
the detectors are currently being upgraded [12–16] to deliver and deal with tremendous amounts of
energy and data. Not only will this help us to further narrow down the properties of the Higgs [17],
but maybe also answer the second big question the LHC was constructed for. Even if the Higgs
appears to be standard model like, there are good reasons to search for new physics at the LHC [6]1.
The LHC, however, has always been, and will be even more at higher energies, a jet factory. It is
therefor crucial to understand QCD jet production in all its glorious details, if we want to identify
and interpret the different sources of the physics we observe.

At the beginning of the LHC era we were all eager for more data. We wanted those statistical
uncertainties to shrink. The big experimental collaborations published a great variety of physics
analysis in many different search channels [19,20]. With the discovery of the Higgs our data analysis
mode starts to change. The LHC data has reached an overwhelming size and some studies start
to feel theory limitations. We are in the middle of an era of precision physics at the LHC2. QCD
computations, especially jet production, however, suffer from huge theoretical uncertainties. We
have to control these uncertainties, if we want to use jets as a tool to understand hadron collider
physics.

In this thesis we study jet radiation patterns in great detail. It is our goal to show that we can
understand jet physics from fundamental principles and put this knowledge to use. This means
to really use the information contained in the additional jet radiation, which accompanies every
process at the LHC. Therefor, we have the following outline. In chapter we introduce the equations
which describe jet evolution. We develop an intuitive ansatz of the physical picture at colliders,
which will be the frame of our considerations. Of course, we have to limit the depth of these
arguments in a thesis like this. There are many very good introductions into particle theory and
collider physics. We give some references for those who like to deepen their knowledge or like
to study more mathematical and theoretical aspects. Everything about QFT and the standard
model can be found in [5, 21–23]. These books also contain some collider applications. Detailed
collider phenomenology introductions are, for example, [24, 25]. We then show in a first example,
how the understanding of multi jet rates helps to interpret data in terms of broad new physics
classes. In addition we explore the theoretical uncertainties, which plague our computations. To
improve our theoretical understanding of jet physics we study jet evolution and construct analytic
solutions. We discuss the validity and limitations of these solutions. In chapter 1.3 we show, how
this knowledge can be used for a data driven take on jet rates. We then study the application
of Fox–Wolfram–Moments built from jets to Higgs analysis. Including the knowledge about jets
greatly improves the sensitivity of such studies. In chapter 3.0.7 we recapitulate and conclude.

A few remarks about the research presented in this thesis. I already started studying jets at the
LHC in my diploma thesis “Jets in LHC searches” [26]3. In this time I had the pleasure to work
together with Christoph Englert, Steffen Schumann, and Tilman Plehn [27, 28]. The findings and
plots from this time will also find their way into this thesis. They will be marked correspondingly,

1Even at the moment we see the one and other deviation from the standard model expectation [18]. Rumors
point to possible SUSY explanations. Nothing with statistical significance yet. There might be exciting times ahead!

2Considering that the LHC is a hadron collider this is an outstanding fact on its own.
3Thus motivating the title of this thesis.
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of course. The baseline of chapter will be based on [29,30], where Erik Gerwick joined our efforts,
and [27]. Text or plots taken from this work are marked beforehand. Note that [29] also contains
some collider applications, which we do not present here. The study of jet radiation patterns
in WBF Higgs searches was originally initiated by Erik Gerwick, Steffen Schumann, and Tilman
Plehn in [31]. The potential of Fox–Wolfram–Moments was independently studied by Catherine
Bernaciak, Malte Buschmann, Anja Butter, and Tilman Plehn in [32]. I then had the possibility
to join for [33]. Together with [28] this will be the foundation of chapter 1.3. Again text and plots
used from this research will be marked correspondingly. I am very grateful to my collaborators
from whom I learned a lot. I hope in this way I can present our research in a coherent fashion.



Jet Radiation at the LHC

1.1 Physics at hadron colliders

1.1.1 Scales and colliders

At the LHC it is our goal to put the fundamental symmetries, which, to our knowledge, guide
natures interactions, to the test. Symmetries and their spontaneous breaking are at the heart of
the standard model and the interactions it describes. The principle idea behind collider physics in
general is that of scales in nature. These scales are directly connected to the boundaries of validity
of our theoretical frame works. There are fundamentally three different scales in physics4: time T ,
spatial resolution R, and available energy E. However, these scales are all linked to each other by
special relativity and quantum mechanics via T = R = 1/E. Each development in the history of
physics was connected to the push of at least one of these scales beyond its former boundaries5.

Colliders are a natural choice, because of the enormous amount of energy, which can be focused
at a single point. The design energy at the LHC, for example, is 14 TeV. This corresponds to time
scales of the order of 10−26 seconds. The way nature works at these short times is reflected by the
correlations and production rates of the particles hitting the detector, which is built around the
interaction point. At the LHC this is done by the two big multi purpose experiments ATLAS [34]
and CMS [35]. However, interpreting these patterns is far from trivial. We have to overcome
several obstacles before we can interpret the LHC data and think about new physics ideas. The
first lies within the detector itself. The primary signals are energy deposits as a function of time
and space. These need to be turned and interpreted into physical particles and their four momenta
or tracks in space6. This highly non trivial procedure is within the realm of experimental particle
physics and way beyond the scope of this thesis or the expertise of its author. We rely on our
experimental colleagues, which do a fabulous job understanding their detectors, to provide data,
which can be interpreted in terms of particles. The particle species which can be in principle directly
reconstructed are: Photons, Electrons, Muons, neutral and charged hadrons, if their lifetime is long
enough. However, even if we trust the identity and four-momenta7 of the reconstructed particles we
are still far away from understanding what happened at the interaction point. In the language of
scales the detector is the outer most part in a chain of processes which connect the short (time) scale
physics (also called hard interaction) with the observer. With typical sizes of several meters, we
talk about roughly 10−8 seconds until the produced particles leave the detector8 or are absorbed by
it. As a matter of fact, however, most known particles are unstable with typical life times shorter
then 10−10 seconds [36]. Their decays can be well understood from other experiments9. This
knowledge is collected in decay tables, giving us the decay rates and correlations to the daughter
particles. However, these are not the fundamental final and initial states which are familiar to
us from quantum field theory [21, 22]10. Closing in further on the hard interaction, around 10−22

seconds, we encounter a dramatic effect: confinement [25]. Being the result of the non abelian
nature of the strong interaction, we have to deal with the observation, that there are no free color
charges. Quarks and gluons, the fundamental fields describing the strong interaction, also called
QCD, are no observable degrees of freedom in nature. Only color neutral states can be observed as
final states or be prepared as initial states in any experiment. It is precisely behind this wall built

4One could also quote density in this context. For the sake of simplicity we will not think about it here.
5Note in this context also, that time T is connected to the origin and history of our universe.
6It is worthwhile to note, that there are also other reconstructed objects than particles, for example the energy

deposit in the calorimeter only, which can be used to study certain aspects of collider phenomenology.
7This is all we can (and need to) know about a particle. Note that spins and polarizations of particles cannot

be detected directly at the LHC, but need to be reconstructed from other observables.
8It is an astonishing matter of fact the the interaction rate at the LHC lies roughly at the same order of

magnitude. This shows the technological maturity of the LHC experiments ATLAS and CMS.
9The LHCb experiment [37], for example, studies the decay and properties of B mesons.

10This is meant from the perspective of the standard model. Of course, we can describe hadron interactions with
effective field theories [22].



16 CONTENTS

Mn−1,i
θjk

i

j

k

Figure 1.1: Matrix element with a soft respectively collinear structure. We have a total of n+ 1 external
lines. Any two of these, say j and k, can always be split apart as shown here.

by confinement, where the physics lives we are interested in. Confinement is a non perturbative
effect and cannot be dealt with by our standard text book approaches. However, for physics at
shorter time scales than this so called hadronization scale, we know that we can do perturbative
QCD and use quarks and gluons as fundamental objects in our computations11. This is guaranteed
by another astonishing effect of QCD: asymptotic freedom [25]. For shorter and shorter time scales
the coupling αs in QCD approaches zero. Therefor, we are allowed to use perturbative QCD for
scales shorter then the hadronization time. Hadronization itself needs to be described by models,
which need data input [25]. Lattice computations, which are our theoretical tool to deal with
non perturbative QCD, do not have the power to turn a quark gluon distribution into a hadron
distribution, yet. However, as will turn out in the following section, jets allow us to ignore most
of the effects of hadronization in our considerations. Leaving the realm of very soft12 physics even
shorter time scales can be handled with our standard QFT approaches [5, 21–25].

It is these QFT’s, which we want to study and test at the LHC. The theoretical handling of
correlation functions in QFT is well understood [21,22]. Usually we use Feynman graphs to depict
the physical process we are interested in. In addition, these graphs serve as computational tool
to compute production rates and correlation functions. The standard model is our prime QFT
candidate to describe all short scale physics. From other observations, especially concerning the
structure of our universe and the matter of fact that gravity is not included in the standard model,
as well as theoretical considerations, like the divergent structure in the Higgs sector, we know
that it cannot be a complete theory. However, the standard model has not failed us at a particle
collider, yet.

1.1.2 What are jets?

We already mentioned that jets play an important role to avoid non perturbative effects. In
fact, this whole thesis is about jets. So, what are jets?

There is still some space between the hadronization scale and the scales which we probe at
the LHC. Take Higgs production as an example. To produce a Higgs we need at least 126 GeV
of energy. Hadronization occurs at approximately 1 GeV. Imagine further, that together with
the Higgs we produce a QCD parton. What happens to this parton, when we evolve in time?
To understand this we have to take a closer look at the structure of QCD. The fact that QCD
(as well as QED) contains mass-less gauge bosons causes a tremendous effect: soft and collinear
divergences [22,24,25]. Soft divergences are quite intuitive. The amount of energy we have to pay
to radiate softer and softer gauge bosons tends to zero. Thus, naively, we can emit infinite many
of them. They are an inevitable fact of gauge theories. However, collinear divergences are not
that naively accessable. We can understand this fact, if we study the technical situation in which
divergences arise. Consider a situation as depicted in Fig. 1.1. The matrix element is

Mn+1 =Mn−1,i
f(pi)

p2
i −m2

i

Vijk ψj(pj)ψk(pk). (1.1)

With ψ(p) we indicate the external wave functions, where p is the particles momentum. V is the
corresponding vertex and f some function of the internal momentum, which might be a unit matrix
or just a /p depending on the particle. Let us investigate the propagator in more detail. We use

11External states in QFT are defined at infinite time. The fact that the different time scales at which physical
processes happen at a collider are factorized by orders of magnitude in time allows us to keep this picture.

12We are still orders of magnitude below the available hard energy scale at the LHC.
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Figure 1.2: Typical event as seen by the ATLAS detector. The two cyan tracks are identified as muons.
The red, green, and orange tracks are identified as hadrons. We clearly see their collimated structure.
Picture taken from [34].

the implicit δ-function contained in the vertex and find

p2
i −m2

i = m2
j +m2

k −m2
i − 2pjpk

≈ m2
j +m2

k −m2
i − 2EjEk

(
1−

(
1−

m2
j

2E2
j

− m2
k

2E2
k

)
cos θjk

)
m→0

= −2EjEk (1− cos θjk) . (1.2)

The propagator diverges for Ej,k → 0 (soft) and for θjk → 0 (collinear). However, if one of the
involved particles is massive the divergence is shielded. In this case there is a center of mass
system where the other particles are back to back. Note in addition that only bosons can have
a soft divergence due to the Fermi–Dirac statistics. If, however, all three involved particles were
gluons, we face a fully divergent structure. In reality we cannot hit these divergent structures as
hadronization and detector resolution shield them. In addition, we know that divergent structures
point us to inconsistencies in our approach: observable quantities in nature are finite [21, 22].
Nevertheless, this information is enough to know how our parton will evolve. It will radiate other
soft and collinear partons, because the divergent structure tells us that exactly this pattern has
to be enhanced. These partons then will be the seeds turned into hadrons during hadronization.
However, hadronization, living at 1 GeV, has not enough energy available to change the four
momenta of the partons too much. This is just Heisenberg’s principle: large ∆x causes13 a small
∆p. Thus the produced hadrons follow closely the distribution of the radiated partons. This is
known as the concept of parton hadron duality [25]. However, their distribution follows from the
divergent structure of QCD as argued before. We therefor expect a collimated spray of hadrons:
this is what we call a jet.

In Fig. 1.2 we show a typical ATLAS event. The hadronic activity is clearly collimated in
distinct detector regions. In contrast, in Fig. 1.3 we show a CMS event with huge hadronic activity.
The whole detector is flooded with hadrons. In this case we cannot naively associate jets. What
we need is a formal procedure to merge hadrons unambiguously into a jet. This is done by so called
jet algorithms [24,25,38]. A jet algorithm uses a QCD inspired metric and a truncation parameter
to define jets. At the LHC we use generalized kT algorithms with the truncation parameters R
and p2k

T . We define the distance between two particles i and j to be

dij = min
(
p2k
T,i, p

2k
T,i

) ∆Rij
R

, (1.3)

where ∆Rij is the distance in (η, φ) space14. k defines the specific jet algorithm we use: k = 1
corresponds to the kT algorithm, k = 0 is the C/A algorithm, and k = −1 corresponds to the
anti-kT algorithm. A jet algorithm than works as follows:

13Compared to the hard process our system has expanded over a much larger range in space now.
14The parameter R is connected to the geometrical size of a jet.
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Figure 1.3: An ATLAS event with lots of hadronic activity. The colored tracks are identified hadrons.
Picture taken from [34].

1. find dmin = min
ij∈particles

(
dij , p

2k
T,i

)
2. if dmin is of the type p2k

T,i: call i a jet and remove it from the list of particles, go back to (1.)

3. if dmin is of the type dij : replace i and j by i+ j, go back to (1.)

4. iterate until all particles are called jets.

There is one last caveat we have to take care of. Following the previous procedure, we could get
arbitrarily soft jets. In addition, arbitrarily collinear jets with respect to the incoming beams would
still be allowed, too. However, this would be exactly the region where we would need to take care
of the soft and collinear divergence. In addition, it is also the region where hadronization plays a
role. An effect we explicitly want to avoid. Therefor, we only keep jets which lie above a certain
momentum threshold pmin

T , which is far away from the hadronization scale. This way we make
sure that the jets we define are really connected to the partons produced in the hard interaction.
Typical values in LHC analysis are R = 0.4− 0.7 and pmin

T = 20− 100 GeV.

Jets are our best connection to the partons which built the QCD Lagrangian. What we call a
jet in the end depends on the definition of the used jet algorithm. However, once this is fixed, it is
unambiguous what belongs to a certain jet. Therefor, studying jet physics is deeply connected to
the study of QCD. We will see, that this statement is true, when we take a look at the equations
which guide jet evolution in the following sections. This is connected to the fact, that even starting
with a single parton we can observe several jets, when some of the branchings happen to be outside
the area defined by the jet algorithm.

1.1.3 The factorization theorem

We already argued that the divergent structure of QCD15 guides the evolution of partons. This
structure can be formalized and is known as factorization theorem [22,24,25,39,40]. If two external
particles j, k in a process become collinear16, i.e their separation angle θ → 0, we can write the
cross section as17

dσn+1 =
∑
i

dσn−1,i ×
dp2
T

p2
T

dz
αs
2π
Pi→jk(z), (1.4)

where z is the energy fraction of j with respect to i and pT , the transverse momentum of j, is defined
relative to the direction of i and is therefor connected to the collinear angle θ. The total number of

15The same arguments are true for QED. However, due to the fact, that the photon carries no charge and is
therefor not self interacting, the phenomenology is much simpler [22].

16Some care has to be taken if one of the particles is in the initial state. The line of arguments, however, is not
touched.

17There is also a version starting with the soft limit Ei → 0. However, the collinear version is our choice. More
advanced techniques like dipole showers use more involved kinematic considerations to encode both cases as limiting
case.
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final state particles is n+ 1. Note that the phase space factorizes, too. Therefor this relation holds
also for the full cross section [24]. The energy distribution is described by the splitting kernels
P (z), which are essentially squared vertices. We compute them in detail in App. A. Dependent on
the particular branching the splitting kernels can have divergences for z → 0 or z → 1. These are
exactly the soft divergences mentioned earlier. The collinear divergence shows itself in the factor
of 1/p2

T . This theorem is only exact in the limiting case θ → 0 or equivalently pT → 0. For finite
pT , especially for large values, we expect deviations from this behavior18. However, integrating
over phase space it is clear that the largest part of the cross section will come from regions close
to the divergent structure. In addition, for events with a lot of jets we see by purely geometrical
considerations, that we have a situation where most jets are collinear to each other.

From the factorized structure we can conclude that we can describe a single radiation with some
probabilistic factor. In addition it tells us that we can use this prescription iteratively. Therefor,
we can actually describe any number of final state parton configuration. To do this properly we
need to find formal evolution equations which give us the radiation pattern generated by a parton
when evolving through time. An important observation in this regard is the qualitative behavior
of the total cross section when we integrate Eq. (1.4). To avoid the divergence we integrate from
some pmin

T to pmax
T [24]. This is exactly the pmin

T used in the definition of the jet algorithm.
Our cross section then will be proportional to αs× log2(pmax

T /pmin
T ). We get a squared logarithm

here because technically pT is connected to the boundary condition of the integral of the soft
divergence, too [25]. There will be also terms with less powers associated to the logarithm. For
example coming from the non divergent parts of the splitting kernel. Dependent on the ratio of the
phase space boundaries this factor can easily be O(1) or larger. However, this would mean that our
perturbative expansion did not converge at all. We talk about large logarithms occurring in this
context. Due to the structure of the factorization theorem it is clear, that adding higher and higher
terms does not save us. This is schematically depicted in Tab. 1.1, which shows systematically the
logarithms which appear in, and spoil, our computation. A column in this table corresponds to a

LO NLO NNLO . . .

LL/DLA αs log2 α2
s log4 α3

s log6

NDLL α2
s log3 α3

s log5

NLL α3
s log4

...
. . .

Table 1.1: Schematic arrangement of the perturbative series in terms of large phase space logarithms. A
standard fixed order computation considers everything in the corresponding column of this table.

fixed order computation, where different logarithms may appear. Each row collects terms with the
same quotients between the power of αs and the logarithm. The technique to solve our problem is
known as resummation. We need to sum the whole row depicted with leading log (LL) respectively
double logarithmic approximation (DLA) to collect the main effects. Effectively we rearrange the
terms of the expansion into a new perturbative series: a logarithmic expansion [24,25]. Terms with
a different relation between the logarithm and the power of αs are sub leading in this expansion
and therefor called next to (double) leading logarithms (N(D)LL).

The factorization theorem and the logarithmic considerations following from it are at the heart
of all jet radiation considerations. It really is the underlying principle of all following discussions
and computations. It is therefor worthwhile to mention that it has been proven only for inclusive
DIS and Drell-Yan processes. For all other processes we use it as a working ansatz [41]19.

1.1.4 Inclusive cross section computations

Before we study the details of parton evolution, let us first discuss how actual rates are computed
at a hadron collider. The equations and physics which we need to perform this computation are

18As a matter of fact we have to deal with a semi classical result, where interference effects are not taken into
account. In addition, naively, the distribution in the polar angle is flat. Gluon polarizations are averaged out.
However, modern Monte Carlo programs can take care of some of these problems.

19This “ansatz” however works astonishingly well.
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well known [22,24,25]. As a matter of fact, they almost encode everything we need to understand
jet evolution and radiation in a much broader context. This will only be clear after detailed
discussion though. It is well established, that at hadron colliders, colliding hadrons h1 and h2 with
a center of mass energy of

√
s, cross sections σ for the final state P are computed via the master

equation [22,24,25]

σ(h1h2 → P +X,
√
s) =

∑
i,j=q,q̄,g

∫
dx1dx2fi/h1

(x1, µF )fj/h2
(x2, µF )

× σ̂(ij → P, µF , µR,
√
x1x2s). (1.5)

This formula encapsulates a lot of physics. Let’s begin with its most familiar part. The partonic
cross section σ̂ is computed via Feynman rules at a fixed order20 in the strong coupling αs and
the electro-weak coupling α. It encodes the probability amplitude of the physical process we are
interested in [22]. This is the physics we are after at the LHC. These are the distributions which
tell us if we can falsify a model, which we hope to be the standard model in the end. Due to
the handling of ultra violet divergences in loop calculations, perturbative cross sections depend on
the renormalization scale µR, which occurs even at leading order as the argument of the running
coupling. These concepts are well known from standard QFT text books [21, 22, 24]. It is the
fact, that the hadron in the initial state is not a fundamental particle, where we first encounter a
specialty at hadron colliders. This fact is encoded in the parton density function (pdf) fi/h(x, µF ).
Here f is the probability to find a parton i in the hadron h carrying the momentum fraction x of
the hadrons total momentum21 at a given resolution scale µF . From the previous discussion about
scales in physics and the divergent structure of QCD it is immediately clear that the apparent
field content of the proton will change dramatically if we probe smaller structures. This change is
reflected by the famous DGLAP equation22, which the pdfs have to obey [22,24,25]:

µ2 d

dµ2
fi/h (x, µ) =

∑
i→jk

1∫
x

dz

z

αs
2π
P+
i→jk(z)fj/h

(x
z
, µ
)
,

fi/h (x, µ) = ∆i (µ, µ0) fi/h (x, µ0) +
∑
i→jk

µ∫
µ0

dµ′2

µ′2
∆i (µ, µ′)

∫
dz

z

αs
2π
Pi→jk(z)fj/h

(x
z
, µ′
)
, (1.6)

presented here in its differential and integrated form23. P (+)(z) are the (regularized) splitting
kernels, mentioned earlier and computed in App. A. The Sudakov form factor ∆i is given by [22,
24,25]

∆i (µ, µ0) = exp

−∑
i→jk

µ∫
µ0

dµ′2

µ′2

∫
dz
αs
2π
Pi→jk(z)

 . (1.7)

Note that in Eq. (1.6) and (1.7) i, j, k ∈ [q, q̄, g]. It is exactly the second form in Eq. (1.6), which
is the key to jet evolution. Technically, the DGLAP equation resums the collinear radiation of the
incoming parton. It is therefor a result of the proper treatment of the divergent structure of QCD.
The pdfs are non perturbative objects which have to be measured at some reference scale µ0. The
DGLAP equation then tells us how the pdfs change, if we change the energy scale we probe the
proton with. The first term in Eq. (1.6) has a simple interpretation: nothing changed. This means
no radiation occurred. The Sudakov form factor ∆i (µ, µ0) can therefor be interpreted as a non

20These computations are non trivial on their own and teach us a lot about QFT. Note that actually the expansion
in α is separated into an expansion in the weak coupling and the electro-magnetic coupling. However, relative to
αs they have the same size. Modern MC tools hide this by just assigning them the same expansion (not numerical)
value. If we are interested in the rates of new physics then other couplings in which we need to expand our
computation might appear, too. In the case of standard model Higgs physics, of course, Yukawa couplings enter the
game as well.

21Naively, the partons only have momenta in the longitudinal directions. As the proton has a size of 1 GeV we
don’t expect transverse momenta to be large. Nevertheless, with amount of available LHC data people are interested
in transverse momentum distributions, too [42].

22The derivation of the DGLAP equation relies on the factorization theorem. That is why its associated scale is
called factorization scale µF .

23One obtains the upper line from the lower one easily by differentiation
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splitting24 probability between the scales µ and µ0. The second term involves exactly one splitting
at the intermediate scale µ′. The primed Sudakov form factor guarantees that no splitting occurred
before. Then we fold in the pdf again. We see, that if we build an iterative solution we sum an
infinite tower of radiations. It is exactly the factorization theorem which allows us to do this. The
integral ensures that all possible radiation histories are taken into account. Nevertheless, the pdfs
are finite objects treated by the finite DGLAP equation. This is what we mean by resummation
being the proper treatment of the divergent structures, which would naively produce infinitely
many radiations. However, these resummed jets still could be detected. That is why we compute
the cross section for h1h2 → P + X. The master equation describes inclusive cross sections25. If
the final state P contains n jets (with respect to a given jet algorithm), then the cross section
computation predicts the rates of events with at least n jets. That fact is denoted by X.

As mentioned before, scales play a fundamental role in physics. Therefor, we need a prescription
to chose them for a given computation. That’s where our dilemma starts. There is no such thing
as a correct choice [24]. What we do instead, is to take a reasonable choice26. The scale occurring
in the pdfs is called factorization scale, because it is exactly the point from which on we us the
factorization theorem to resum additional radiation via the DGLAP equation. Radiation above this
scale has to be encapsulated in the partonic cross section. It is clear that we can always shift one
jet from one region to the other. As discussed together with the factorization theorem additional
not resummed jet radiation causes large logarithms. These we need to avoid. Otherwise we would
need to resum them, too. This happens for example in Higgs searches where jet vetoes play a
role [43]27. Avoiding logarithms through scale choices tells us on the other hand that we cannot fix
the scale precisely, but only the order of magnitude. The result of only having logarithmic control
however, is that we introduce an uncertainty in our cross section computation which depends on
our scale choice.

This is not the only uncertainty we have to deal with. In general, we have to deal with the
following sources of uncertainties when computing cross sections [22,24,25]:

– parametric uncertainties: The parameters defining the standard model need to be measured
in experiment and come along with their own uncertainties. The largest influence usually
comes from the strong coupling constant αs. To estimate its impact we can vary αs within
its experimental uncertainties in our computation. For the LHC one usually finds effects of
O(10%).

– perturbative uncertainties: The truncation of the perturbative series automatically intro-
duces uncertainties of O(αs). However, typical K-factors for QCD NLO computations range
from O(1) to O(2). For large K-factors higher order computations are needed then to show
that the perturbative expansion converges.

– scale uncertainties: Because we do not know what the correct scale choice is, we usually vary
some central scale choice, which is given by the topology of the hard process28, by factors of
two or four. In practice, we choose the renormalization scale and the factorization scale to be
the same. To test this assumption we can also vary them independently. The arbitrariness of
this procedure reflects itself in the fact that the uncertainties we get, can become unreasonably
huge, e.g. O(1) to O(100) for some LO computations29. The QCD Lagrangian does not
depend on any scale and thus should neither the result of our computation30. The impact

24We call additional radiation of partons splittings, because their probability is described by splitting kernels.
These kernels are computed by studying a 1→ 2 particle splitting configuration.

25Computing fixed order cross sections at a lepton collider is inclusive, too. As mentioned earlier final state
partons can branch into two or more jets, too.

26It is a familiar fact, that the coupling runs logarithmic. The same is true for everything connected to the
factorization scale. Therefor, scale choices can only be argued for in their order of magnitude.

27One might have the impression, that we completely switched from fixed coupling order to fixed logarithmic
order. However, this is not true. We always have to combine the fixed coupling computation with the logarithmic
one. Dependent on the case that might be highly non-trivial. Iterating the factorization theorem we reach σ0 at
some point, which is exactly a fixed order cross section. It is the large n limit, which we treat with resummation to
compute physical probabilities.

28Producing a heavy particle of mass m sets the scale somewhere at O(m).
29This huge uncertainties actually appear in exclusive cross section computations, which we discuss in the next

paragraph.
30Note: this is not a contradiction to our previous discussion about scales in physics! Physics should change

depending on the scale at which we probe it. The observation of the running coupling is another good example for
this fact. However, the computation of an observable quantity like a cross section should not depend on the choice
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of scale variations are a remnant of our perturbative ansatz. Higher order computations can
therefor strongly shrink scale uncertainties by cancellation effects. In addition resummation,
which is the technique used to treat the incoming partons, also helps to shrink the scale
uncertainties of observables.

– logarithmic uncertainties: Observables which suffer from large logarithms need to be re-
summed. As argued before this resummation is a truncated perturbative expansion with a
new expansion parameter. This truncation introduces uncertainties in the same manner as
the truncation of the expansion in the coupling. Treating logarithms better with higher order
logarithmic computations can help to shrink scale uncertainties, too.

– numerical uncertainties: Almost always we have to do computations numerically. Computers,
however, can only store finite size numbers. In addition, we need to check for the proper
convergence of integrations. Usually both issues effect results with negligible impact as they
can be over come by stronger computer power, i.e time.

If we are to use any theoretical computation as comparison base to data, we need to understand
and control all these uncertainties. Only then we can assign statistical meaning to new physics
interpretations. In addition one needs to remember that some theoretical computations are done
in certain limiting cases. The factorization theorem is one example for this. Another one is the
coupling of the Higgs to two gluons via a top loop, where the coupling reduces to a number in the
heavy top limit [24]. Particular care has to be taken if moving away from the validity region of
such assumptions. Note that independently, experiments have to deal with systematic uncertainties
sourced in their understanding of the detector and, especially for rare processes, have to face limited
statistics.

1.1.5 Exclusive cross sections

In contrast to the previous paragraph exclusive cross sections have a fixed number of final
state objects, e.g exactly n jets. The advantage of such a prescription is, that we get statistically
uncorrelated observables. In the inclusive case, for example, the three and four jet cross section
are highly correlated. Therefor, exclusive cross sections open the path to safely use multi-jet
observables. These are observables which are constructed from the four momenta of the observed
jets. A simple example would be the transverse missing energy, where we sum all the ~pT of
the visible final state objects. This observable identifies not only neutrinos, but also many new
physics models like dark matter candidates or invisible Higgs decays. Due to detector effects and
the detectors fiducial volume jets will contribute to this observable even if there was no invisible
particle involved. From an inclusive computation we could not construct this observable. A further
big difference is that inclusive computations open the road to rate computations and differential
distributions only. However, they do not tell us anything about the kinematic structure of a single
event. The power of this knowledge is, for example, demonstrated in top tagging algorithms [44],
where the substructure of a single fat jet is studied. It is therefor desirable to compute exclusive
cross sections and construct the kinematic structure of single events.

The basic kinematic information is of course encoded in the matrix element. However, we
already saw, that a parton coming from the hard interaction undergoes an evolution in which it
will radiate additional partons. This radiation pattern is closely connected to the total number
of jets observed in the event, but also to the kinematic distribution within a given jet. Given a
matrix element configuration with some external partons, how can we evolve them to a full event
with proper jets? For simplicity let us start with a single parton. The answer to our question lies
within Eq. (1.6) and (1.7) and is known as parton shower [24, 25]. Taking the interpretation of
the Sudakov form factor literally, that it is the non splitting probability between two scales, we
can invert that relation and compute the scale where a splitting occurred. This way we can build
a Markov chain to dress the original partons to get the full event structure. This is the method
of the parton shower. Take the scale µF of the hard interaction and some lower cut off scale µ0,
where hadronization effects become important. This is exactly the intermediate area of the picture

of any intermediate parameter. What µF technically does, is that it separates the additional radiation computed
by the matrix element from that which is resumed with the DGLAP equation. The final result should not depend
on this choice.



1.1. PHYSICS AT HADRON COLLIDERS 23

developed in the beginning. We want to compute the intermediate scale µ′ of the first branching.
Once this is done we only need to iterate until we reach µ0. We solve

∆i (µF , µ
′) = R, (1.8)

for µ′, where R is a random number [24,25]. If µ′ is outside the range of µ0 we stop the procedure.
The energy and angular distribution we then get from the corresponding splitting kernel31. The
µ′ gained that way then serves as the new µF for the next splitting. Using this procedure we
can fill the full time evolution of the event. We get all the kinematic distributions of the partons.
Once the event is “full” we cluster it into jets. We now have constructed an exclusive event. It
is important to note that the proper procedure is much more involved then the sketch we give
here. In particular we have to take care of the incoming parton line, too. There we have to fold
in the pdf’s to obtain the correct result [24, 25]. In addition we have to define how many partons
should come from the matrix element. If we compute up to five partons in the matrix element a
three parton matrix element with two branchings could describe the same state. This obviously
results in a double counting problem. Matching algorithms like CKKW [45] and MLM [46] have
been developed to take care of this issue. Algorithms like these are implemented in state of the
art Monte Carlo methods. Sherpa [47], MadGraph [48], and Alpgen [49] together with Pythia [50]
and Herwig [51] use the concepts described here, but also a lot of additional physics knowledge, to
simulate full events. These we can compare to the data at the LHC, but also to think about new
analysis strategies. These Monte Carlo codes are the work horses of theoretical and experimental
particle physics and also represent the link between the two.

In the previous paragraph we use the Sudakov form factor to develop the method of the parton
shower, which is implemented in modern simulation tools. There is, however, also another path
starting from Eq. (1.6). The DGLAP equation does not tell us what the pdf actually is. We
put that information in by hand and interpret it as the momentum fraction distribution within
the proton. From the structure of the equation we could put in any parton distribution we want.
We use this insight to compute the number distribution of the partons. The method is known as
generating functional formalism [25]. In contrast to the previous described parton shower we do
not get a full kinematic event distribution, but on the other hand we get an analytic prescription of
exclusive event rates. This can be of great advantage if we want to study jet radiation at the LHC.
Analytic equations help us to understand better the sources of some of the effects we observe.
Given the fraction Pn of events with n jets for a given hard matrix element σ0 the generating
function is then defined as

Φ(u) =
∑
n

unPn. (1.9)

We get the rates back by differentiation32 with respect to u at u = 0.

Pn =
1

n!

dn

dun
Φ(u)

∣∣∣∣
u=0

. (1.10)

It is clear, that the number of possible branchings depends on the distance between the scales µF
and µ0. If these scales coincide there is no space for branching and we have Φ(u, µ0) = u. If we
move the scales apart the generating functions have to obey the DGLAP equation. However, this
time we know the initial condition.

Φi(u, µF ) = ∆i(µF , µ0)Φi(u, µ0) +
∑
i→jk

µF∫
µ0

dµ′2

µ′2
∆i (µF , µ

′)

∫
dz

z

αs
2π
Pi→jkΦj(u, µ

′)Φk(u, µ′).

(1.11)

Using this equation we can compute the rates for exclusive n jet cross sections for a given hard
matrix element by multiplying a factor of Φi(u, µF ) for each parton i. In contrast to the numer-
ical methods using matching and the parton shower, we cannot naively compute the kinematic
distribution or use several matrix elements to describe more jets more precisely. Note, that this

31The splitting kernels are averaged over angles, thus for a correct description we include additional knowledge
about polarization correlations.

32In general u is a function and we need a functional derivative. Therefor, the name of the method.
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Figure 1.4: Phenomenological illustration of a Z plus jets event (compare Fig. 1.2). The colors are
connected to the different concepts we use to describe the corresponding part of the evolution of the
particles. Red: short range interaction, Blue: partonic evolution, Green: hadronization, Black detector
interaction. The circles are interpreted as radii of equal time distance.

time we have two generating functions after the splitting kernel. This is because the parton gets
destroyed by a splitting and replaced by its daughters. The advantage we obtain from knowing the
initial condition is tremendous. We can write down the integral equation in a closed exponentiated
from [25].

Φi(u, µF ) = u exp

 µF∫
µ0

dµ′2
∑
i→jk

Γi→jk(µF , µ
′)

[
Φj(u, µ

′)Φk(u, µ′)

Φi(u, µ′)
− 1

] , (1.12)

where Γi→jk(µF , µ
′) is the integrated splitting kernel Pi→jk(z). The integration boundary de-

pends on the actual scale µF . The integration is performed exactly in the logarithmic expansion
mentioned earlier. At NLL we have [25]33

Γg→gg(µF , µ
′) = CA

αs
2πµ′2

(
log

µ2
F

µ′2
− 11

6

)
,

Γg→qq̄(µF , µ
′) = TR

αs
2πµ′2

(nf
2

)
,

Γq→qg(µF , µ
′) = CF

αs
2πµ′2

(
log

µ2
F

µ′2
− 3

2

)
. (1.13)

1.1.6 The full picture

We have collected all the information to understand the basics of collisions at the LHC. In
Fig. 1.4 we show the concepts introduced before and at which time scale they live to put everything
in a closed illustration. At the heart of each interaction we have the short range physics, which
are described with matrix elements computed in perturbative QFT (red region). At the LHC
each matrix element has at least two external partons. Moving to larger time scales each parton
evolves and generates a complicated radiation pattern, which we describe with the parton shower
or the generating functional formalism (blue region). Two of the resulting parton lines need to be
connected to the proton and are thus weighted with pdf factors (green disks at p1 and p2). All
other partons are seeds for hadronization (green blobs). The hadrons then decay. Together with

33Remember that CA, CF and TR are color factors. The number of flavors nf in the standard model is six.
However, as the top and b quarks are heavy we usually deal with four or five flavors in applications.



1.2. THE POWER AND TROUBLE OF MULTI JET OBSERVABLES 25

the other stable elementary particles34 they leave a distinct pattern in the detector enabling us to
identify them (black circle).

There are more effects then these described here, which effect the signatures we detect in the
experiments. There is the possibility that more than one parton per proton interacts, known as
multiple parton interaction (MPI). In addition we have to face the fact that not only one proton
per bunch crossing produces scattered particles. This effect is known as pile up (PU). For certain
applications jets do offer the possibility to deal and correct for these so called soft effects via
trimming methods [52]. Hadronization needs to be modeled and cannot be derived from first
principles [25]. We get model dependent effects therefor. This is also true for the rest of the
proton, the so called beam remnants. Modern MC simulations include all these effects. However,
they all will be of no concern to us regarding our analytic ccomputations.

1.2 The power and trouble of multi jet observables

Let us now put this knowledge to use. We study the jets plus missing energy channel. Missing
energy is a generic dark matter candidate signature. In addition, we assume these dark matter
particles to be produced from the decay of some colored new physics. This will produce additional
jets, whose structure differs from the simple evolution of QCD partons described before. We
show how understanding jet radiation enables us to construct fairly model independent35 search
strategies. The focus in our study is on the standard model background as a tool to identify
new physics. Therefor, we discuss the theoretical uncertainties, which confront our method, in
detail. This will be exactly the scale and parametric uncertainties mentioned in the context of
cross section computations. Irrespective of the size of the uncertainties we find that standard
model backgrounds obey so called staircase scaling patterns. These will be the seed of our further
theoretical considerations.

The rest of this section has already been published in [27] together with Christoph Englert,
Steffen Schumann and Tilman Plehn.

1.2.1 Jets with missing energy

Missing transverse energy is a general signature for dark matter related new physics at hadron
colliders [53]. It has a long history at the Tevatron and to date gives the strongest bounds on squark
and gluino masses in supersymmetric extensions of the Standard Model. At the LHC the first new
exclusion limits for squarks and gluinos have recently appeared, in the CMSSM toy model as well
as in a more general setup [54–56]. All of these analyses are based on jets plus missing energy
including a lepton veto which constitutes the most generic search strategy for strongly interacting
new particles decaying into a weakly or super-weakly interacting dark matter candidate [53,57].

While the first results are based on very inclusive cuts, following the ATLAS [58] and CMS [59]
documentations we expect more specific analyses to appear soon. The reason is that in their
current form the analyses can and should be optimized for specific new physics mass spectra.
More specialized analyses for jets plus missing energy rely on a missing transverse momentum cut
and on a certain number of staggered jet transverse momentum cuts [58, 59]. Unfortunately, they
are therefore hard to adapt to modified mass spectra and by definition show a poor performance
for not optimized model parameters. In addition, they are counting experiments in certain phase-
space regions, which means that for any additional information on the physics behind an anomaly
we have to wait for a dedicated analysis.

A major problem of searches for new physics in pure QCD plus missing energy final states is the
prediction of background distributions. Aside from the improved signal-to-background ratio this is
one of the reasons why applying fairly restrictive cuts on the number of jets and on their transverse
momentum is a promising strategy. Such cuts relieve us from having to understand the complete pT
spectra [60] of general exclusive or inclusive njets-jet events at the LHC. Experimentally, however,
we should by now be in a position to simulate these distributions using the Ckkw [45, 61] or

34In principle leptons would undergo an evolution, too. However due to the smallness of the electromagnetic
coupling α we ignore this effect.

35The assumption of a strong production and decay jets is already a constraint. However, what we mean is, that
we do not need to test for particular model parameters.
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Mlm [46] matching methods implemented in Sherpa [47], Alpgen [49], or MadEvent [48]. The
different approaches have been compared in some detail, for example for W+jets production [62,
63]. What is still missing is a systematic study of theory uncertainties in multi-jet background
simulations for top quark analyses and new physics searches, i.e. including large jet multiplicities
down to intermediate jet transverse momenta, but reflecting a well defined hard scale given by the
signal process. Motivated by theoretical and statistical considerations we define all observables as
exclusive, specifically in the number of jets.

In this paper we establish a proper simulation of multi-jet processes and estimate these theory
uncertainties, with a focus on the question what actually constitutes the theory error. This way
LHC data in control regions can be used to understand very generic scaling features (staircase
scaling36) which have already been observed in data [65, 66] and which we can extend based on
appropriate Monte Carlo studies. This staircase scaling we can reproduce and study using QCD
Monte Carlo simulations, including different hard processes and the effects of cuts. Combining
these simulations with LHC data should give us a quantitative handle on multi-jet rates in many
applications.

Moreover, we can use our knowledge about the exclusive njets distributions to predict other
notoriously difficult multi-jet observables. So once we understand the uncertainties on the multi-jet
spectra we turn to the effective mass. In its many incarnations it either includes the leading jet or
it does not and is either limited to four jets or any other number of jets [67]. Obviously, any specific
definition of this mass variable increases its sensitivity to theory uncertainties. We study the most
generic definition of the effective mass including all jets visible above a transverse momentum
threshold. The theory uncertainties of this observable can be closely linked to the jet-multiplicity
distribution. Using the scaling properties of the exclusive jet multiplicities we can strongly reduce
the theory uncertainty in the effective-mass spectrum in a consistent manner. The same should be
true for other variables which we can use to extract new physics from jet dominated backgrounds.

Similar questions are currently being asked to control regions in a purely data-driven approach.
However, the conversion from background regions into the signal region either by shifting the
kinematic regime or by changing the hard core processes off which we radiate jets requires a
good understanding for example of the effects of background rejection cuts and of background
sculpting features in the definition of these observables. These effects we can reliably estimate in
an appropriate Monte Carlo study and then combine for example with an over-all normalization
from data.

Finally, we suggest an analysis strategy which on the one hand makes maximum use of the
jet patterns and on the other hand does not require any tuning of cuts. The only ingredient of
our analysis which does not involve jets is a missing transverse energy cut to reduce pure QCD
backgrounds and an isolated lepton veto against W+jets backgrounds. To reduce both of them to
a manageable level we require

/ET > 100 GeV and a lepton veto if pT,` > 20 GeV, |y`| < 2.5 (1.14)

as the basic and only electroweak cuts to reduce the QCD background. The exact numbers are
not very dependent on the details of the model as long as the new physics sector provides a WIMP
dark matter candidate. To account for fake missing energy from QCD jets we apply an additional
factor of 1/500 for pure QCD and hadronic top-quark final states. This rough fake rate we estimate
from Ref. [54]. It provides us with a rather conservative estimate compared e.g. to Ref. [59].

After these very generic acceptance cuts a two-dimensional correlation of the effective mass vs
the exclusive jet multiplicity is the appropriate distribution to extract limits on strongly interacting
new physics or in the case of an excess study the mass scale as well as the color charge of the new
states. Because all our observables are defined jet-exclusively we can to a good approximation
study this two-dimensional distribution using a log-likelihood shape analysis. The contributions
of different regions in the njets- meff space to the binned log-likelihood automatically focus on the
correct phase-space region and are readily available for improved analyses as well as theoretical
interpretation.

1.2.2 Jet number scaling

To separate new physics events from a QCD sample after some very basic cuts we have to
understand the number of jets and their energy or pT spectra. This will allow us to exploit two

36Staircase scaling for jet rates is often referred to as Berends scaling. However, to our best knowledge it was
first introduced and discussed by the authors of Ref. [64].
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distributions: the number of jets observed ( njets) and their effective mass ( meff), where the
definition of the latter usually requires us to define the number and hardness of the jets included
in its construction. Our maximally inclusive approach means that aside from the fiducial volume
of the detectors all we fix is the algorithmic jet definition to count a jet towards each of the
two measurements. Throughout this paper we define jets using the anti-kT algorithm [68] in
FastJet [38] with a resolution Ranti−kT = 0.4 and then require

pT,j > pT,min = 50 GeV and |yj | < 4.5 . (1.15)

This defines which jets are counted towards njets as well as the meff distribution. Given pT,min

we can then evaluate the 2-dimensional njets vs meff plane in Section 1.2.5 using a binned log-
likelihood approach.

Before we can use the njets distribution to extract new physics in the jets plus missing energy
sample at the LHC we need to show that we understand this distribution in detail. Obviously, the
overall normalization of this distribution is not critical. For any kind of new physics not completely
ruled out by the Tevatron experiments the two jet and three jet bins are practically signal free. So
the question becomes: what can we say about the shape of dσ/d njets.

For W+jets events this kind of distribution has been studied, even at the LHC [66]. We observe
the staircase scaling [64, 69], an exponential drop in the inclusive njets rates with constant ratios
σ̂n+1/σ̂n. The numerical value of this ratio is obviously strongly dependent on pT,min. The
original staircase scaling describes inclusive jet rates, i.e. it uses σ̂n including all events with at
least n jets fulfilling Eq.(1.15). In the light of recent advances in QCD and because our likelihood
analysis should be based on independent bins we define the scaling in terms of exclusive jet rates,
i.e. counting only events with exactly n jets fulfilling Eq.(1.15) towards σn. This preserves the
normalization of the njets histogram as σtot =

∑
n σn and makes it possible to add the bins in the

computation of the log-likelihood. It is interesting to note that staircase scaling defined either way
implies staircase scaling using the other definition, and that the jet-production ratios of the two
approaches are identical. If we define the universal exclusive staircase-scaling factor as

R ≡ R(n+1)/n =
σn+1

σn
, (1.16)

we find for the usual inclusive scaling denoted by a hat over all parameters

R̂ ≡ σ̂n+1

σ̂n
=

σn+1

∑∞
j=0R

j

σn + σn+1

∑∞
j=0R

j
=

Rσn
(1−R)σn +Rσn

= R . (1.17)

The same relation we find when we include a finite upper limit to the number of jets in the sum
over j. Note, however, that this argument only holds for a strict staircase scaling where the ratio
R(n+1)/n does not depend on the number of jets n. For our analysis this means that we can use
the staircase scaling for a statistical analysis of the dσ/d njets distribution either in its inclusive or
in its exclusive version, the latter based on independent njets bins.

In this section we will show that (1) such a scaling exists not only for W/Z+jets but also for
pure QCD events and (2) we can reliably estimate the scaling factor and possible deviations from
it from theory. A purely data-driven background analysis of this distribution might be possible
and should be combined with our results. For example, we can one by one remove the missing
energy cut and the lepton veto in Eq.(1.14) which gives us background dominated event samples
to a reasonably large number of hard jets. Adding the background rejection cuts will then have
an impact on the scaling, which we can estimate reliably. For the signal hypothesis we have to
entirely rely on QCD predictions.

As a starting point we discuss the established staircase scaling in W+jets production. The
behavior of Z+jets is exactly the same. For our analysis we produce Ckkw-matched [61] back-
ground samples for W+jets (to 5 ME jets), Z+jets (to 5 ME jets), tt̄+jets (to 2 ME jets), and
QCD jets (to 6 ME jets) with Sherpa-1.2.3 [47]. Higher order corrections to the inclusive scaling
we expect to, if anything, improve the assumption of a constant jet ratio R̂ for example in W+jets
production [70].

In the left panel of Figure 1.5 we show the exclusive njets distribution for the LHC running at
7 TeV center of mass energy. To increase our statistics to large enough values of njets we do not
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Figure 1.5: Exclusive dσ/d njets distribution for W+jets (left) and QCD jets production at the LHC.
Only the jet cuts given in Eq.(1.15) are applied, neither a /ET cut nor a lepton veto is imposed. The
second panel shows the parametric uncertainty due to a consistent change of αs(mZ) between 0.114 and
0.122. The third panel shows the reach of a consistent scale factor treatment which can be experimentally
determined and should not be considered a theory uncertainty.

apply the selection cuts Eq.(1.14) in this first step. We already see that we can qualitatively fit a
line through the central points on a logarithmic axis for each set of input parameters.

Before we quantitatively evaluate this scaling we need to consider the uncertainties associated
with our simulation. This is crucial if we want to use the njets scaling as a background estimate
for new physics searches in QCD final states. There are two distinct sources of uncertainty in our
simulation. First, there exists a parametric uncertainty, namely the input value of αs(mZ) or some
other reference scale. To address this, we consistently evaluate the parton densities around the
central NLO value αs(mZ) = 0.118 inside a window 0.114 − 0.122 [71] and keep this value for all
other appearances of the strong coupling in our matrix-element plus parton-shower Monte-Carlo
simulations. In Figure 1.5 we see that the resulting error bar on the dσ/d njets increases with the
number of jets, but stays below 30% even for the radiation of six jets. For luminosities around
1 fb−1 the error on αs is roughly of the same order as the experimental statistical error. Systematic
errors we do not consider, even though they will at some point dominate over the statistical errors.
After any kind of realistic background rejection the combined experimental error will exceed the
parametric αs uncertainty.

The reason why we cannot use staircase scaling in W+jets to measure αs is a second source
of QCD uncertainty: aside from the parametric αs error band, an actually free parameter in
our QCD simulation is a common scaling factor µ/µ0 in all appearances of the factorization and
renormalization scales, including the starting scale of the parton shower. Identifying all scales
follows the experimental extraction of the parton densities and αs in a simultaneous fit. The
interpretation of DGLAP splitting in terms of large logarithms tells us that the factorization and
renormalization scales have to be identified with the transverse momentum of the radiated jets.
By definition, such leading-logarithm considerations leave open the proportionality factor in the
relation µ ∝ |pT,j |. Any constant factor can be separated from the dangerous logarithm as a
non-leading constant value.

Because this constant cannot be derived from first principles we vary it in the range µ/µ0 =
1/4 − 4 and show the numerical result in Figure 1.5. As expected, the variation of the jet rates
with this scaling parameter is huge — much larger than the experimental uncertainties we expect
from the LHC and which we know from the Tevatron. In Figure 1.5 we can first of all check
that introducing such a scaling factor does not seriously impact the observed staircase scaling.
Counting such a constant towards the theory uncertainty is questionable if we can determine it
experimentally. For example for Sherpa we know from Tevatron that the scaling factor should
essentially be unity [72], which in the spirit of Monte-Carlo tuning means that for example in
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channel (cuts) R2/1 R3/2 R4/3 R5/4 R6/5 R7/6 R0
dR

d njets

Sherpa simulation linear fit

W+jets (pT,j > 50 GeV) 0.1931(3) 0.1494(5) 0.157(1) 0.138(3) 0.115(8) 0.09(2) 0.150(1) −0.001(1)

W+jets (+ lepton veto) 0.2290(4) 0.1494(7) 0.164(2) 0.139(4) 0.12(1) 0.09(2) 0.149(1) −0.002(1)

W+jets (+ /ET > 100 GeV) 0.252(1) 0.224(2) 0.190(5) 0.16(1) 0.15(2) 0.09(4) 0.239(3) −0.032(3)

Z+jets (pT,j > 50 GeV) 0.1463(2) 0.1504(6) 0.147(1) 0.138(4) 0.123(9) 0.07(2) 0.154(1) −0.006(1)

Z+jets (+ /ET > 100 GeV) 0.2251(6) 0.185(1) 0.166(3) 0.154(6) 0.14(1) 0.08(3) 0.193(2) −0.018(2)

QCD jets (pT,j > 50 GeV) — 0.0552(1) 0.1074(5) 0.106(1) 0.125(5) 0.12(1) 0.105(2) 0.001(1)

(tt̄)hh+jets (pT,j > 50 GeV) 3.69(9) 1.26(2) 0.67(1) 0.366(9) 0.24(1) 0.15(5)

(tt̄)``/h+jets (pT,j > 50 GeV) 1.96(2) 0.851(7) 0.465(5) 0.260(5) 0.168(8) 0.12(2)

(tt̄)``/h+jets (+ lepton veto) 1.75(2) 0.765(10) 0.391(7) 0.228(8) 0.14(1) 0.12(3)

(tt̄)``/h+jets (+ /ET > 100 GeV) 1.60(5) 0.83(2) 0.49(2) 0.25(2) 0.15(2) 0.19(7)

Table 1.2: Jet ratios for all Standard Model channels, including (semi-)leptonic and hadronic top pairs for
the central scale choice µ = µ0. The quoted errors are statistical errors from the Monte Carlo simulation.
The numbers correspond to the curves shown in Figures 1.5 and 1.6.

Sherpa the naive default parameter choice comes out as correctly describing the data. Of course,
this does not have to be true for other simulation tools. An interesting question to ask once we
have access to it at the LHC would be if this per se free parameter really is the same for different
channels, like W/Z+jets and QCD jets.

In the right panel of Figure 1.5 we show the same distributions for pure QCD jet production.
Again, not applying the cuts in Eq.(1.14) we observe staircase scaling, however, with some caveats
for the two and three jet bins. This is related to the definition of the hard process. As expected,
the scale factor µ/µ0 has very large impact not on the existence of a staircase scaling but on the jet
ratio R. The parametric uncertainty due to the error bar on αs(mZ) is again small once we vary
the strong coupling consistently everywhere, staying below 30% for up to six jets. The parametric
uncertainty for the pure QCD case and the W+jets case is clearly very similar. The scale factor
variation µ/µ0 = 1/4 − 4 gives an even larger band of possible ratios of cross sections, to be
contrasted with a reduced statistical uncertainty compared to the W+jets case. Our argument
that this over-all scale factor should be determined experimentally is therefore even more applicable
for the QCD case. To date such an analysis does not exist, so while in the following we will use
unity as the appropriate scale factor for Sherpa this needs to be verified experimentally.

Once we understand the size of theory uncertainties for the exclusive dσ/d njets distribution we
need to quantify the quality of the observed staircase scaling. Since the quantitative outcome will
depend on the background rejection cuts we apply, we study the scaling without the cuts shown in
Eq.(1.14), after the lepton veto only, and including the lepton veto as well as the missing energy
cut. Starting from the individual R(n+1)/n values we fit a line through all relevant data points, as
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Figure 1.6: Jet ratios for Z+jets production (without and with the /ET > 100 GeV cut) and QCD jets
production, corresponding to the numbers listed in Table 1.2. The error bars indicate the remaining Monte
Carlo uncertainty in our simulation.
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a function of njets

R( njets) = R0 +
dR

d njets
njets , (1.18)

and determine the slope to compare it to our prediction dR/d njets = 0.

In Table 1.2 we list the exclusive jet ratios as shown in Figure 1.5. For the W/Z+jets case
we see that the radiation of one compared to a second jet off the Drell-Yan process R2/1 does not
show this scaling. The reason for this specific feature is the definition of the hard core process
alluded to before. To generate the relatively hard jets and the large missing energy mimicking the
signal events we need to at least consider W/Z+1 jet as the core process. In addition, we do not
take into account any separation criterion between the first jet and the gauge boson, which means
we treat σ1 different from all other σn. In Table 1.2 we see that we are lucky for the Z+jets case,
but we are not for the W+jets case. The tricky definition of the hard process σ1 as the base of
additional jet radiation suggests that we start our staircase scaling analysis with R3/2.

The statistical uncertainties which we show in Table 1.2 and which enter the fit of the slope as
defined in Eq.(1.18) always increase towards larger jet multiplicity. This is an effect of the way we
simulate these events which completely corresponds to an experimental analysis. If we generate (or
measure) all njets bins in parallel the first bin will always have by far the smallest error. Therefore,
it determines the constant scaling factor R0 in our fit as well as in a measurement. For larger values
of njets we become statistics dominated, which means that Monte Carlo simulations can extend the
reach of actual measurements at any given point in time towards larger jet multiplicities. This is
the phase space region in which we need to provide new physics searches at the LHC with accurate
background estimates.

Some of the rows listed in Table 1.2 we also depict in Figure 1.6. For electroweak gauge boson
production we see that without any cuts W and Z production show the same scaling parameter
R0 as well as a small negative slope. Within errors the staircase scaling holds to six and possibly
seven jets, even though we see a slight slope developing towards larger numbers of jets. This is a
phase space effect which is expected once we start probing gluon parton densities and their sharp
drop towards larger parton momentum fractions and which is well modeled by our computation.

Adding the lepton veto does not change the staircase scaling at all. This means that forcing
the W boson to decay into one fairly soft lepton and a harder neutrino does not affect the behavior
of the recoiling jets. Adding a significant /ET cut, on the other hand, has a measurable effect on
the jet ratios as well as on the slope. For experimental applications of this scaling, however, it is
important to note that the phase space effects for large njets as well as the effect of kinematic cuts
are completely described by our simulation.

For pure QCD events we find a remarkable agreement with the staircase scaling hypothesis,
which seems to be supported by recent LHC analyses [73]. The definition of the hard core process
is somewhat problematic since there exists no inherent hard scale in the 2 → 2 process and the
infrared behavior of s-channel and t-channel diagrams is very different. Therefore, we define σ3 as
the starting point of our analysis and R4/3 as the first relevant cross section ratio. Table 1.2 and
Figure 1.6 show that the ratios R(n+1)/n are essentially constant to eight jets. The slope within
statistical uncertainties is, in contrast to W/Z production, fully compatible with zero. The central
R0 values for W/Z+jets and QCD jets production are slightly different, which is expected by the
different core processes and by the different background rejection cuts.

1.2.3 Decay jets vs jet radiation

In contrast to the QCD and gauge-boson background njets distributions from heavy particles
decaying to jets include two sources of jets: first, there are decay jets, which dependent on the
spectrum might or might not be hard enough to stick out. Second, there is QCD jet radiation,
which for heavy states will generically be relatively hard and dominated by collinear splitting in
the initial state [74, 75], leading to a non-zero maximum value of the number of expected initial-
state radiation jets [53, 76]. Due to the hard scale of new-physics processes on the one hand and
because we need to simulate supersymmetric decays inclusively we best generate the new-physics
events with Herwig++-v2.4.2 [77] and normalize the cross sections with Prospino2.1 [78]. All
supersymmetric mass spectra we generate with SoftSusy [79] using the SLHA output format [80]
and use Sdecay [81] to calculate the leading-order branching ratios. We check the jet-radiation
results from the Herwig++ shower with Mlm merging implemented in MadEvent [75], using
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Pythia [50] for parton showering and hadronization. As expected, the two simulations agree well
within their uncertainties.

The question for heavy-particle production is how universal its njets distributions are when we
consider Standard Model as well as new-physics particles with different masses and color charges,
like top quarks, squarks and gluinos. In Figure 1.7 we first show the njets distributions for
(semi-)leptonic and hadronic top-pair production. We see how all unsubtracted distributions show
maxima away from njets = 0, driven by the presence of decay jets plus relatively hard jet radiation.
In addition, they do not show a staircase scaling at large jet multiplicities. Because the particles
produced in the hard process have non-negligible masses even compared to the hadronic center-
of-mass energy the phase-space suppression for example due to rapidly dropping gluon densities
kicks in immediately and bends the otherwise exponential fall-off.

In the Standard Model we can fit the (semi-)leptonic and purely hadronic top-pair distributions
for all jets fulfilling Eq.(1.15) to the function

d log σ( njets)

d njets
= −b

n2
jets − a1 njets + a2

0

njets
. (1.19)

The two relevant fit parameters for the normalized distributions shown in Figure 1.7 correspond
to the maximum at njets = a0, and the (staircase) scaling parameter for QCD jet radiation at
large njets given by R = exp(−b). Because we do not include higher suppression terms towards
large njets we stop the fit at the endpoints of the curves shown in Figure 1.7.

In Table 1.3 we list the best fit values for these parameters for both top decays. We immediately
see more quantitatively than in Figure 1.7 that for example hadronically decaying top pairs on
average include not even one more jet than the (semi-)leptonic sample. Typically only one of two
jets from the W decay is accounted for because of the cutoff at pT,min = 50 GeV. Comparing
this value to the W mass it is likely that one of the two W decay jets gets boosted above pT,min,
but the other one stays below. In contrast, the Jacobian peak of the b-quark energy from the top
decay lies above pT,min. Going back to Table 1.3 this means that for top pairs the most likely
number of radiated jets is zero, closely followed by one jet emission [76].

For squarks and gluinos the features we see in top-pair production become more pronounced
and the jet multiplicity reflects the color charge of the produced particles. As a reference point
in supersymmetric parameter space we consider reasonably low mass gluinos and squarks in the
SPS1a benchmark scenario [82], with mg̃ = 608 GeV and typical light-flavor squarks around
mq̃ ∼ 558 GeV. The new LHC exclusion limits are right at the edge of excluding this standard
parameter choice37. Because the gluino cannot decay to a gluon it requires two quarks to get rid of
its color charge. Squark pairs, including squark-antisquark production, predict two hard decay jets

jn
0 1 2 3 4 5 6 7 8 9

j
/d

n
σ

  dσ
1/

-410

-310

-210

-110

+jets hadronictt

+jets (semi)leptonictt

jn
0 1 2 3 4 5 6 7 8 9

 j
/d

n
σ

  dσ
1/

-410

-310

-210

-110

g~g~SPS1a 

g~q~SPS1a 

q~q~SPS1a 

jn
0 1 2 3 4 5

 j
/d

n
σ

  dσ
1/

-410

-310

-210

-110

  w/o decayg~g~SPS1a 

 w/o decayg~q~SPS1a 

 w/o decayq~q~SPS1a 

Figure 1.7: Normalized exclusive dσ/d njets distributions for top pairs (left) and supersymmetric particle
production. For the latter we show all decay jets plus QCD jet radiation (center) as well as QCD jet
radiation only (right). Jets are counted once they fulfill Eq.(1.15).

37Due to the presentation of the LHC results in the m0 vs m1/2 plane it is also not possible to precisely read off
the actual limits in terms of physics mass parameters. Moreover, since squark and gluino masses are both mostly
driven by m1/2, there does not exist a mapping of the m0-m1/2 plane into the squark-gluino mass plane. Models
with significantly heavier gluinos than quarks are excluded in CMSSM searches.
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(tt̄)hh (tt̄)``/h q̃q̃ q̃g̃ g̃g̃ SUSY q̃q̃ q̃g̃ g̃g̃
full full jet radiation

a0 3.13 2.34 2.89 3.53 4.16 3.15 n.a. n.a. n.a
a1 5.41 3.73 5.28 6.16 7.15 5.48 0.45 0.36 0.21
b 1.25 1.07 1.71 1.25 1.09 1.27 1.14 1.07 0.98

Table 1.3: Parameters defined in Eq.(1.19) and extracted from the unsubtracted distributions shown in
Figure 1.7. The parameter a0 corresponds to the position of the maximum while b captures the approximate
scaling at larger njets. The combined supersymmetric result is based on the appropriately weighted event
samples for squarks and gluinos.
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Figure 1.8: Exclusive njets distribution for all considered Standard-Model backgrounds and the SPS1a
signal for supersymmetry. We present the results for an LHC center-of-mass energy of 7 TeV with an
integrated luminosity of 1 fb−1 and after the cuts specified in Eqs. (1.14) and (1.15).

plus some QCD radiation and sub-leading decay jets. In Table 1.3 we see that for this production
channel the maximum of a continuous njets distribution indeed resides almost at njets = 3. For
associated squark-gluino and gluino-pair production the number of jets increases by almost one,
corresponding to the second gluino-decay jet which not in all cases is hard enough to appear after
requiring pT,min = 50 GeV. The jet multiplicity of the entire supersymmetric sample is close to
the average for squark pair production and squark-gluino production which reflects the hierarchy
in cross sections of the three processes [78].

Breaking down the supersymmetric signal into individual production processes we can examine
the distinct radiation patterns. Gluino pairs radiate significantly more than associated production
or squark pairs, which is reflected in the right columns of Table 1.3: b(g̃g̃) < b(q̃g̃) < b(q̃q̃). The
scaling parameter R = exp(−b) is consistently larger than for the background samples in Table 1.2.
For example for the jet radiation off squark pair production we find R ≈ 0.32. Moreover, in
Figure 1.7 we see that the jet rates for QCD radiation drop off even faster for large multiplicities.
This means that there definitely does not exist any staircase scaling behavior for heavy particle
pair production above a threshold of 1 TeV at the LHC with a hadronic center-of-mass energy of
7 TeV. This phase space argument should not be mixed with the fact that the hard scale of such
processes and with it the logarithmic enhancement for collinear radiation is large, i.e. the validity
of the collinear approximation extends to larger values of pT,j .

Finally, in Figure 1.8 we show the njets distribution for the supersymmetric signal assuming the
SPS1a parameter point and the various Standard Model backgrounds. We apply the background
rejection cuts specified in Eqs.(1.14) and (1.15). The variation in shape when including the signal
events is statistically significant and appears as an excess of high jet-multiplicity events for njets >
5. The associated statistical significance we compute in Section 1.2.5.

1.2.4 Effective mass

Before we turn to exploit the number of jets to extract a new physics signal at the LHC an
obvious question is if we can make use of our understanding of the njets distribution looking
at other observables in multi-jet final states. More specifically, we will use the measured scale
parameter µ/µ0 shown in Figure 1.5 to reliably predict observables, which, based on traditional
QCD simulations, show an overwhelming theory uncertainty. A classic observable in this respect
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Figure 1.9: Effective mass distribution for W+jets and QCD jets production. Only the jet cuts given in
Eq.(1.15) are applied. The second panels show the parametric uncertainty due to a consistent change of
αs(mZ) between 0.114 and 0.122. The third panels show a consistent scale factor variation which can be
experimentally constrained and should not be considered a theory uncertainty.

is the effective mass [67], which for exclusive jet multiplicities we define as

meff = /ET +
∑

all jets

pT,j , (1.20)

including all jets fulfilling Eq.(1.15). This definition is neither optimized to take into account
a correlation between hard jets and the missing-energy vector nor to remove hard initial-state
radiation. Instead, Eq.(1.20) makes a minimal set of assumptions to avoid sculpting the background
distribution.

Just like the njets distribution meff in the Standard Model cannot be reliably predicted by
parton-shower Monte Carlos. Jets entering the sum in Eq.(1.20) we have to understand over their
entire transverse-momentum spectrum. Ckkw [45,61] or Mlm [46] matching is therefore the most
adequate approach for simulating meff.

Exactly following the treatment of the njets distribution in Section 1.2.2 we estimate two
sources of theory uncertainties, the parametric error from varying the strong coupling and the
scale-variation systematics. To not be limited by statistics of our background samples we for now
discard the missing energy cut and the lepton veto and instead study the fully inclusive processes.
In Figure 1.9 we present the meff distribution for W+jets and the QCD jets production with
njets ≥ 2. The same way as in Figure 1.5 we show the relative impact of the two sources of
uncertainty in the lower panels. The parametric error from αs(mZ) ranges well below 20% even
towards large values of meff. For the electroweak process this is of similar size to the expected
statistical error for an integrated luminosity of 1 fb−1. As expected, towards large meff the error
band increases, but not dramatically.

In contrast, the scale-factor variation µ/µ0 = 1/4− 4 has a huge effect on the meff simulation,
essentially rendering it unpredictive. For values above meff = 500 GeV the error bands become
large enough to make it impossible to extract new physics from this observable, were we to consider
the scale variation a proper theory error. However, measurements of multi-jet rates and other
jet observables at Tevatron and LHC indicate that for the case of Sherpa this scaling factor is
approximately one [72]. Measuring the staircase-scaling factors even more precisely with the 2011
LHC data will further constrain the scale ambiguities underlying our QCD simulations – allowing
us to make reliable predictions for e.g. the meff observable.

To see the impact of meff in searches for supersymmetry we show the meff distribution for
exclusive 2-jet and 3-jet events in Figure 1.10. It includes Standard-Model backgrounds as well as
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the supersymmetric signal. All jet-selection and background-rejection cuts specified in Eqs.(1.14)
and (1.15) are applied. As mentioned before, QCD jets are the by far dominant channel. Only
for meff > 800 GeV the signal starts overcoming the backgrounds. The statistical uncertainty
for 1 fb−1 we indicate by the shaded regions in the lower panels. It is worth noticing that the
signal+background sample when compared to the pure background sample exhibits a maximum
at around meff ∼ 1.1 TeV. This scale corresponds to the squark and gluino masses which for
pair production add to 1100 to 1200 GeV. This means that the meff distribution for exclusive jet
multiplicities can serve as background rejection as well as a measure for the mass scale of the new
heavy colored states.

1.2.5 Autofocusing

Following our results in the previous sections we should be able to use the shapes of the njets

and meff distributions to extract a supersymmetric signal from the now quantitatively understood
Standard Model backgrounds. Given that the two distributions are affected independently by the
color structure of the new physics sector and by its mass scale(s) we will assess the power of the
two-dimensional njets vs meff correlations in extracting a discovery or an exclusion. Such a two-
dimensional shape analysis is the natural second step after the first completely inclusive searches
based on counting events. According to Sections 1.2.2-1.2.4 systematic experimental uncertainties
will start dominating for luminosities around O(1 fb−1). Since those are subject to continuous
refinement during data taking and need to be addressed within a full detector simulation study
we limit ourselves to statistical uncertainties for a given luminosity. While this means that we will
not obtain reliable estimates for the discovery reach, we will see that it allows us to discuss the
main benefits and limits of the proposed analysis.

As supersymmetric reference models we choose the benchmark point SPS1a, two variations of
it, and SPS4. Again, we only apply the cuts given in Eqs.(1.14) and (1.15) and use the exclusive
definition of njets and meff. For the meff distribution we choose a binning of 100 GeV, which
approximately reflects the experimental resolution towards large meff.

For given background and signal+background hypotheses we use a binned log-likelihood ratio
to compute statistical significances assuming statistically uncorrelated bins

logQ =
∑
bins

[
ni log

(
1 +

si
bi

)
− si

]
. (1.21)

It includes the luminosity via the signal and background event numbers si and bi in each bin.
While it avoids the limitations of S/

√
B in regions requiring Poisson statistics it approaches a

Gaussian limit for each individual channel when the bin content becomes large. Some features of
this well established approach we summarize in Appendix B. Applying a “simple hypothesis test”
tells us how likely it is that the background-only hypothesis fakes the predicted signal+background
distributions as a statistical fluctuation, i.e. we define the p-value as the SPS1a likelihood ratio’s
median. The likelihood ratio given in Eq.(1.21) we compute for the exclusive njets, meff, and
two-dimensional ( njets, meff) distributions. In this two-dimensional plane the definition of meff,
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Figure 1.10: Effective mass distribution for exclusive 2-jet and 3-jet events for Standard-Model back-
grounds and the supersymmetric signal using the SPS1a parameter point. We assume a center-of-mass
energy of 7 TeV with an integrated luminosity of 1 fb−1 and apply all cuts in Eqs.(1.14) and (1.15).
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signal significance

for 35 pb−1

inclusive 0.2σ
njets (1D) 1.6σ
meff (1D) 3.3σ
(njets,meff) (2D) 4.6σ

Table 1.4: Confidence levels for the signal plus background sample ruling out the background-only
hypothesis based on one and two dimensional log-likelihood distributions. The supersymmetric mass
spectrum is given by SPS1a.

following Eq.(1.20), only includes exactly njets jets. With this completely exclusive definition of
njets and meff we ensure that the sum over all bins in the ( njets, meff) reproduces the total cross
section.

Considering this correlation is similar in spirit to the ( /ET , HT ) analysis proposed in Ref. [83].
However, first we focus on the njets and meff distributions because in Sections 1.2.2-1.2.4 we
have shown that we can quantitatively understand the staircase scaling behavior of the Standard
Model backgrounds and translate its precision into other variables. In addition, as we will see
in this section these two variables play a special role, as they not only distinguish signals from
backgrounds, but also contain information on the structure of the underlying new-physics model.
As mentioned above, for the sake of a proof of concept we ignore all uncertainties except for
statistical experimental errors, to avoid correlations in the definition of the log-likelihood.

We can expect from Figures 1.8 and 1.10 that the rate in each individual njets bin is dominated
by Standard-Model processes at low meff. Most likely, this region will be the control region to
normalize the QCD and W/Z+jets backgrounds. With the exception of hadronically decaying
top pairs all Standard-Model channels will then show a simple decrease in both directions of the
two-dimensional ( njets, meff) plane which we can predict following the arguments in Sections 1.2.2-
1.2.4. The signal contribution will become visible only once meff reaches the mass range of the
particles produced.

In Table 1.4 we compare the statistical significances for the supersymmetric SPS1a parameter
point at 7 TeV center-of-mass energy for the various analysis strategies: first, we show the results
based on the total production rates after the inclusive cuts of Eqs.(1.14) and (1.15). As expected,
including the signal events leaves us completely consistent with the background-only hypothesis.
Next, the likelihood ratio computed from the njets distribution gives rise to sizable deviations
from the background for integrated luminosities as small as 35 pb−1. The one-dimensional meff

distribution turns out to be an even better discriminator. It gives us more than twice the njets

significance, namely 3.3σ for L = 35 pb−1. The highest significant discriminative power we
obtain for the two-dimensional binned ( njets, meff) case. This is a direct consequence of the
additive binned log-likelihood given in Eq.(1.21).

Beyond the relevance of the ( njets, meff) distributions to extract new particles from back-
grounds, we can utilize it to study signal properties. Above, we argue that new physics contribu-
tions to njets will only appear once meff reaches the mass scale of the sum of both heavy particles
produced. However, this only happens if the exclusive njets value allows us to include the decay
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Figure 1.11: Log-likelihood contributions over the ( njets, meff) plane for the supersymmetric signal
using the SPS1a spectrum. The color code is normalized to different maximum significances.
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Figure 1.12: Log-likelihood distributions over the ( njets, meff) plane for the different supersymmetric
spectra. Due to the smaller signal rates we present results for an integrated luminosity of 5 fb−1.

jets contributing to meff. Hence, the new physics contributions to the two observables will show
a correlation based on the mass and decay channels of the new particles produced. The decay
channels can typically be linked to the color charge of the new particles if we assume that the
missing energy particle cannot carry color charge. Color triplets will tend to decay to one hard
quark jet while color octets with their diagonal coupling to gluons will radiate two quark jets. This
means breaking down the binned log-likelihood ratio over the fully exclusive ( njets, meff) plane
and keeping track of the individual contribution of each bin will automatically focus our search on
the appropriate properties of the particles we are looking for.

This statement is not limited to supersymmetry, the SPS1a parameter point or any other
assumption about the signal. It can be applied to general physics beyond the Standard Model with
strongly interacting new particles and a stable dark matter candidate. In Figure 1.11 we show the
contributions of the individual bins to the summed log-likelihood ratio for all signal events combined
and split into three production processes. The maximum significance automatically reflects SPS1a’s
decay paradigm q̃q̃(∗) → 2 jets and q̃(∗)g̃ → 3 jets, and g̃g̃ → 4 jets, know already from Figure 1.7.
The first two channels we can study using an integrated luminosity of 1 fb−1. Squark pair
production is dominant because at the LHC it includes a quark-quark initial state. Associated
production, which often is the dominant channel at the LHC, has a comparable statistical yield
and features a slightly higher meff range. Both channels combined define the diagonal correlation
we see for the combined signal events.

Gluino pair production has the smallest production rate and therefore becomes subleading in
the combined supersymmetry sample. However, for this channel we can best follow the imprint of
higher jet multiplicities. Due to its large mass and its color charge gluino pairs produce significantly
more jet radiation which we can resolve for a sufficiently low pT,min threshold. For pT,min = 50 GeV
we might just capture the first decay jet from the gluino cascade, reflecting the mass hierarchy
mg̃ − mq̃ ∼ 60 GeV. The peak in the log-likelihood plane around njets = 4 results from the
maximum in the g̃g̃ production cross section. For njets = 5 the background is still large compared
to the signal, but dropping at an exponential rate it gets surpassed for njets = 6, explaining the
structure we observe in Figure 1.11.

Finally, we can study how changes to the new physics spectrum are reflected in the significances
computed from the binned log-likelihood Q( njets, meff). We investigate three different supersym-
metric mass spectra : first, we increase only the gluino mass by 150 GeV with respect to SPS1a
(σNLO

SUSY = 2.69 pb according to Prospino2.1 [78]); second, we increase all colored-sparticle masses
by 100 GeV with respect to SPS1a (σNLO

SUSY = 1.63 pb); third, we consider the SPS4 benchmark [82]
with an inverted mass hierarchy mq̃ ∼ 750 GeV > mg̃ ∼ 730 GeV (σNLO

SUSY = 0.83 pb). All of
these cross sections are significantly smaller than for SPS1a with its σNLO

SUSY = 4.68 pb, which
means we increase our nominal luminosity to L = 5 fb−1.

In Figure 1.12 we clearly see the effect of the increased gluino mass. The meff peak for
associated squark-gluino production moves to larger values, as does the njets maximum. However,
because the balance between squark pair production and associated squark-gluino production shifts
into the direction of the squark pairs, this effect is not quite as pronounced. The second scenario
with increased squark and gluino masses leads to a pronounced maximum at larger meff. Due to
the smaller signal cross section the sensitivity in particular in the njets = 2 bins gets considerably
diminished, appearing as a shift towards higher njets values. For the all-hadronic search in the
SPS4 parameter point longer decay chains for gluinos through bottom squarks appear in the high



1.2. THE POWER AND TROUBLE OF MULTI JET OBSERVABLES 37

njets bins only.

The SPS4 case illustrates that njets = 6 does not have to be the maximum jet multiplicity we
need to consider. Once we rely on a combination of data and Monte Carlo methods to describe
the njets staircase scaling for background processes we can extend our analyses to very large jet
multiplicities. On the other hand, Figure 1.11 also clearly indicates that for example in the SPS1a
parameter point the optimal signal extraction strategy by no means requires us to go to very large
jet multiplicities. For the SPS1a parameter point the two-jet bins are leading contributions to the
total significance.

Outlook

Multi-jet events with and without a weak gauge boson are the dominant backgrounds to inclusive
searches for example for supersymmetry. Simulating them with traditional parton shower Monte
Carlos does not lead to reliable results. This changes when we make use of jet merging to predict
the shapes of multi-jet backgrounds.

One of the most challenging distributions to describe theoretically is the inclusive or exclusive
number of jets per event. From data we know that the inclusive W/Z+jets distributions without
rigid cuts follow a staircase scaling with constant jet ratios R = σ̂n+1/σ̂n. We have shown that
staircase scaling in the inclusive jet rates is equivalent to the same scaling in exclusive rates.
Nowadays, the exclusive scaling we can compare to the predictions of jet merging Monte Carlos,
like Sherpa. Moreover, we have seen that QCD jet production shows an even more pronounced
scaling than W/Z+jets production to jet multiplicities of njets = 8.

We studied the validity of the staircase scaling behavior, the theory uncertainties in the njets

distributions, its link to other multi-jet observables, and the application of jet-exclusive observables
to new physics searches and found:

1. While we cannot derive the staircase scaling of the njets distribution from first principles we
can reproduce it using the appropriate Monte Carlo tools. This includes the scaling feature
itself, a careful error analysis, and the scaling violation effects towards large values of njets

due to phase space restrictions.

2. The theory uncertainty on the staircase scaling consists of tunable parameters like scale
factors in the factorization and renormalization scales and on parametric errors like the
dependence on αs. The latter are small. The scale factor hugely overestimates the error and
should be thought of as a tuning parameter for the different jet merging implementations.
For Sherpa it comes out close to unity.

3. The scaling parameter R = σn+1/σn depends on the hard process and on kinematic cuts.
Both effects we can reliably predict using Monte Carlos, as we have shown for the W/Z+jets
and pure jets cases. The γ+jets case we postpone to a later study with more specific details
for the LHC experiments [84].

4. These simulations of the staircase scaling in multi-jet processes can be easily combined with
data driven techniques, giving us the over-all normalization and a cross check for the first
njets bins. Statistically limited regions of phase space will become accessible via simulations,
including a reliable error estimate.

5. Understanding staircase scaling of multi-jet processes allows us to predict other multi-jet
variables, like the effective mass meff. Again, this includes a proper treatment of theory
uncertainties. In addition, the completely inclusive definition of meff removes dangerous
artifacts due to the usual truncations.

6. Based on for example the njets vs meff correlation for a fixed pT,min we can define a
likelihood-based analysis avoiding model or spectrum specific background rejection cuts. Such
shape analyses in multi-jet search channels are the natural extension of the early inclusive
ATLAS and CMS searches.
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Of course this simple first approximation to the exclusive zero-lepton search for jets plus missing
energy is not the only application of such methods. Searches including leptons, b tags, or hard
photons will benefit from the same treatment, as long as they include non-negligible numbers of
jets. The same is true for hadronically decaying top quarks in the Standard Model.

1.3 Scaling features in QCD

In Sec. 1.2 we study staircase scaling and use it to estimate the standard model backgrounds in new
physics searches. However, one very important ingredient is missing: why do we observe staircase
scaling? If we are to use this pattern for data driven background estimation and new physics
searches, we need to fully understand its emergence as well as its limitations. For this theoretical
enterprise it is necessary to know that there exits a second pattern, too: Poisson scaling. It is
defined by

Rn+1
n

=
n̄

n+ 1
=
σn+1

σn
. (1.22)

Radiation featuring this pattern is following a simple Poisson distribution. A fact well known from
QED [22].

1.3.1 Data

Before we move on to explain scaling patterns from theory, let us shortly collect the current status of
the data and in which phase space regions they are observed. The ATLAS collaboration published
a study in Z plus jets [123] and compared their data with the staircase scaling as well as the
Poisson scaling [22, 24] hypothesis. We show their results in Fig. 1.13. We see that both features
are realized. The Poisson pattern, however, turns into the staircase pattern for high multiplicities.
The kinematic regions defined by the experimental analysis cuts are called democratic selection
for the staircase case and large logarithm for the Poisson case. We call the former democratic,
because there is only one scale involved: the pmin

T defining the jets. The other scenario is called
large logarithm, because we ask for a high pT leading jet. This introduces a second scale and leads
to the occurrence of large logarithms as explained in Sec. 1.1.

We analyze these two phase space regions using the generating functional formalism introduced
in Sec. 1.1. We follow a systematic approach. After defining both scaling patterns formally we
study different possible matrix element configurations for the two jet emission case in the parton
shower approximation. This gives us a first hint why each pattern is associated with a certain phase
space regime. Next we study final state radiation in an e+e− collider environment. We find analytic
solutions for the generating function producing staircase and Poisson scaling. The translation to
hadron colliders then contains two steps. We first translate our findings from (E, φ, θ) coordinates
to the corresponding hadron collider coordinates (pT , φ, η). In a second step we add the effects of
initial state partons, the pdfs.

The following subsections “Multi-jet rates” and “Final-state parton shower” have already been
published in [29] together with Erik Gerwick, Steffen Schumann and Tilman Plehn.

1.3.2 Multi-jet rates

Multi-jets final states are ubiquitous at hadron colliders. QCD jet radiation mostly off the
initial state partons has huge impact on almost every LHC analysis. For example in Higgs searches
an accurate description of the jet recoil against the Higgs boson allows for an efficient rejection
of many backgrounds [89]. In top pair production and single top production the identification of
QCD recoil jets on the one hand and decay jets on the other hand is one of the limiting factors
in precision analyses [90,91]. New physics searches largely rely on hard decay jets of new strongly
interacting particles, which makes them vulnerable in the case of soft decay jets hidden in the QCD
jet activity [53,92,93]. Understanding the jet multiplicity and the jet spectra from QCD radiation
is a core ingredient to improving any of these analyses.
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Figure 1.13: ATLAS data for the Z plus jets channel. Plotted are the jet cross section ratios. Left:
staircase scaling. Right: Poisson scaling. Figure taken from [123].

Even though jet radiation seems to follow simple patterns [95, 97], theoretical predictions for
multi-jet observables in perturbative QCD are challenging. It is clear that the radiation of relatively
hard quarks and gluons is a direct consequence of the hierarchy between the large proton-proton
collider energy and the typical electroweak scale of the partonic interaction [98, 99]. Numerically,
we can combine the QCD parton shower with hard matrix element calculations, to predict jet
radiation patterns over wide phase space regions [45, 46, 100]. Analytically, Sudakov factors and
generating functionals can be used to describe QCD jet radiation [101]. A careful comparison of
analytical and numerical approaches to LHC data would allow us to determine the strengths and
limitations of the underlying theoretical concepts: fixed-order perturbation theory, parton showers,
and resummation based on generating functionals.

In fixed order perturbation theory leading-order jet rates are available for effectively arbitrarily
high multiplicities [48,102]. The number of jets we can consider is limited only by computing power.
However, leading order predictions suffer significant shortcomings when it comes to precision. The
renormalization scale dependence as a measure for the theoretical uncertainty grows with each
power of αs when we add a final state jet. High powers of the logarithmic scale dependence (logµR)n

mean that such cross section predictions can only be considered an order-of-magnitude estimate.
In addition, in the presence of phase space constraints large logarithms spoil the convergence of
fixed order perturbation theory. For example jet vetoes will induce sizable logarithms of ratios of
leading jet pT or masses (mH or mZ) to additional resolved jets (experimentally relevant down to
20− 30 GeV) [103,104].

Next-to-leading order computations ameliorate the scale dependence and capture an additional
logarithm. However, we are still limited in the available final-state multiplicity, e.g. pure jets are
available for njets ≤ 4 [105], njets ≤ 4 in association with W/Z bosons [106,107], for tt̄ production
and Higgs production in gluon fusion NLO corrections are known for njets ≤ 2 [108,109]. However,
over the past few years this field has progressed enormously. As a consequence for Standard Model
processes a similar level of automation as for leading-order calculations is within reach [110]. An
approach applicable for general New Physics extensions, though limited to 2 → 2 processes, has
been presented in [111].

Although NLO calculations contain one additional power of enhanced logarithms, this might
not be sufficient for high jet multiplicities. At NNLO, although there has been an enormous
amount of recent development [112], the number of fully differential calculations is limited, and an
automated implementation is not foreseeable in the near future.

On the other hand, we know that jet radiation is enhanced by traceable logarithms. This makes
improved predictions for QCD observables based on resummation possible. The general strategy
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is to redefine the perturbative series from powers of αs to including the relevant logarithms; the
simplified structure of these enhanced terms then allows for a resummation to all orders. Once the
resummed form is known we can match onto a fixed order calculation and avoid double-counting.
For Sudakov-type logarithms a general method for this type of resummation is available [113], and
for particular event shape observables an automated approach exists [114]. In LHC analyses, the
resummation of finite logarithms in the presence of a jet-veto scale is of interest [103,115].

A numerical approach to resummation is provided by parton-shower simulations [116]. It is
automated in the multi-purpose Monte Carlo generators Pythia [50], Herwig [51] and Sherpa [47] to
leading order in the strong coupling combined with the resummation of leading collinear logarithms
(LO/LL). This method differs from the previous approaches in that the full spectrum of final state
partons or hadrons is produced explicitly. While the parton shower is well defined for relatively
small transverse momenta of the jets it is not applicable for hard jet radiation. However, this
limitation is overcome by the CKKW [45], MLM [46], and CKKW-L [117] jet-merging algorithms,
that incorporate the tree-level matrix-element corrections for the first few hardest emissions [116,
118].

A complementary strategy is provided by the MC@NLO [119] and POWHEG [120] approaches,
that realize the matching of NLO calculations with parton showers. While these methods guarantee
NLO/LL accuracy only the first/hardest shower emission gets corrected by the real-emission matrix
element. Higher jet multiplicities are described in the parton-shower approximation only. First
attempts to combine the NLO/LL approaches with the tree-level merging ansatz have been reported
recently [121]. An unprecedented level of sophistication for predicting multi-jet final states is
achieved by the promotion of merging algorithms to next-to-leading order accuracy [122].

Even though we can nowadays simulate multi-jet events, a detailed understanding of inclusive
or exclusive njets distributions at the LHC is still missing. Its universal features have been studied
since 1985 [95]. Scaling patterns can be conveniently displayed in the ratio of successive exclusive
jet cross-sections

R(n+1)/n =
σn+1

σn
=

Pn+1

Pn
with Pn =

σn
σtot

. (1.23)

We define the jet multiplicity n as the number of jets in addition to the hard process, e.g. σ1 for
pure QCD di-jets is experimentally a 3-jet final state. Jets which are part of the hard process are
not included in the scaling analysis because they do not arise from single QCD emissions.

Two patterns provide limiting cases for most LHC processes and are referred to as staircase and
Poisson scaling. Staircase scaling is defined as constant ratios between the successive multiplicity
cross sections

R(n+1)/n = R ≡ e−b , (1.24)

where R and b are constant. The exclusive n-jet rate for this distribution is σn = σ0e
−bn where

σ0 is the 0-jet exclusive cross section. Staircase scaling for exclusive and inclusive jet rates is
equivalent, with identical values of R. For a Poisson distribution with expectation value n̄ the
rates are

Pn =
n̄ne−n̄

n!
or R(n+1)/n =

n̄

n+ 1
. (1.25)

More properties of the distributions are described in Ref. [89].

1.3.3 Final-state parton shower

The simulation of a LO/LL event in the parton shower approximation starts with the generation
of a single phase space point for the partonic core process. The process’ external (colored) lines
then act as seeds for the subsequent parton shower evolution. Driven by unitarity they start at
the hard process scale µF and finish at the shower cutoff scale µ0 ∼ 1 GeV. Hard matrix element
corrections for an arbitrary number of additional particles can be added to the parton shower
using the above-mentioned matching schemes [45, 46, 117]. However, in this section we treat all
additional emissions as coming from the parton shower and disregard matrix element corrections.

The basis of the LL parton shower is the fully factorized form of the collinear matrix element
and phase space dσn+1 ∼ dσn P1→2 dΦ1. Using this simplification the parton shower remains
local, but loses information on spin, color correlations and interference effects in addition to higher
order terms neglected in the 1→ 2 splitting kernels P1→2. Besides practicality, one of the benefits
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Figure 1.14: Simplest primary (left) and secondary contributions (right) assuming a core process with a
hard quark line.

of collinear factorization is that the resummation of LL and some NLL contributions follow very
naturally. To see this, we represent the evolution along an individual line by integrating the
Sudakov factor over the appropriate virtuality scales from the lower cutoff µ2

0 to a free hard scale t

∆j(t) = exp

[
−
∫ t

µ2
0

dt′ Γj(t, t
′)

]
. (1.26)

For the regularized splitting kernels Γj we use the next-to-leading logarithmic approximation

Γj(t, t
′) = cj

αs(t
′)

2πt′

(
log

t

t′
−Aj

)
, (1.27)

with color factors cj = CF (CA) and the constant terms Aj = 3/2 (11/6) for gluon emission
off a quark (gluon). The lower cutoff scale µ0 is omitted in the argument of the Sudakov form-
factor. Expanding the exponential we see that Eq. 1.26 represents an arbitrary number of soft and
collinearly enhanced emissions, either resolved or unresolved.

To describe a parton-shower simulated event we note that the QCD evolution proceeds as an
integration of the product Sudakov along the virtuality t,

∆(t) =
∏

ext lines

∆j(t) ≡ e−Γ . (1.28)

The product defining Γ is over the appropriate factors for each external line, where j denotes the
particle flavor. Limiting ourselves to final state splittings this expression only contains evolution
kernels as shown in Eq. 1.26, and it is by construction guaranteed to exponentiate with an ap-
propriate expression Γ. As long as Γ is fully local and does not depend on previous emissions
it is guaranteed to produce a Poisson distribution for the multiplicities. The exponentiated form
in Eq. 1.28 immediately identifies n̄ = Γ. This statement does not depend on the form of Γ or
its dependence on the hard scale t. All that matters is that each splitting does not change the
subsequent evolution. In the remainder of this paper we define all emissions directly contained in
the expansion of Eq. 1.28 as primary with respect to the core process.

The first splitting in the parton shower picture defines the single emission probability. Following
1.14 a second emission can then appear from the original leg or off the first emission. For the former,
this emission is contained in Eq. 1.28 and does not change the Poisson pattern. The latter changes
the exponential; we refer to it as secondary with respect to the original hard process. From a scaling
perspective the relevant questions are first, what is the relative size of the two contributions; and
second if we can change the individual strengths of primary and secondary emissions through
kinematic cuts.

In the parton shower approximation we can associate specific integrals over virtuality with
individual partonic structures appearing in the final state evolution. An alternative evolution
ordered in a consistent variable (e.g. angle) is logarithmically equivalent. Using this formalism the
primary contribution to two gluon emission off a hard quark shown in 1.14 is

σprimary(µ2
F , µ

2
0) = cprimary

∫ µ2
F

µ2
0

dt Γ(µ2
F , t)∆g(t)

∫ µ2
F

µ2
0

dt′ Γ(µ2
F , t
′)∆g(t

′) . (1.29)

The coefficient cprimary which includes the Sudakovs associated with the hard line is process de-
pendent, as this hard line can be either a quark or a gluon. The two external scales are the scale
µF of the hard process and the lower cutoff scale µ0. If the primary emissions are strongly ordered
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in the evolution variable, the corresponding phase space factor 1/2 is absorbed in cprimary. The
simplest secondary contribution also shown in 1.14 is,

σsecondary(µ2
F , µ

2
0) = csecondary

∫ µ2
F

µ2
0

dtΓ(µ2
F , t)∆g(t)

∫ t

µ2
0

dt′ Γ(t, t′)∆g(t
′) . (1.30)

The splitting kernels in the two expressions only differ in the integral boundaries for the second
emission. In the leading logarithmic approximation (in the exponent) for the Sudakov factors, we
can perform the integrals in Eq. 1.29 and Eq. 1.30 in terms of error functions. The full expressions
are not particularly enlightening, but two specific limits contain crucial information.

(1)
αs
π

log2µF
µ0
� 1

In this limit we expand Eq. 1.29 and Eq. 1.30 around µ0/µF → 0 and find the leading terms

σprimary =
cprimary

4

[
αs
CA

log2µF
µ0
−
√

4αs
C3
A

log
µF
µ0

+ O
(
µ2

0

µ2
F

)]

σsecondary =
csecondary

4

[
(
√

2− 1)

√
αs
C3
A

log
µF
µ0

+ O
(
µ2

0

µ2
F

)]
. (1.31)

Their ratio scales like σprimary/σsecondary ∝ √αs logµF /µ0, i.e. the primary emissions are
logarithmically enhanced. In the limit of a large logarithm (high single emission probability)
the distribution of final state emissions are increasingly primary, and therefore give a Poisson
distribution.

Physically interpreting Eq. 1.31, a second logarithm in the secondary contribution would come
from the right-most Sudakov of Eq. 1.30. However, it has vanishing support for µF →∞ and
does not appear in the approximate result. The emitted gluon in this case spans a vanishing
relative fraction in virtuality space where it may emit an additional parton.

(2)
αs
π

log2µF
µ0
� 1

Taking this limit of Eq. 1.29 and Eq. 1.30, we find

σprimary(µ2
F , µ

2
0) = cprimary α2

s

4(2π)2
log4µF

µ0
+ O

(
α3
slog6µF

µ0

)
= 6

cprimary

csecondary
σsecondary(µ2

F , µ
2
0) . (1.32)

The two contributions become logarithmically equivalent and differ by an O(1) constant
depending primarily on color factors. In this regime the emission probability is small and
the final state is selected democratically. The formerly Poisson scaling pattern receives large
contributions from subsequent or secondary splittings. Note that to justify the logarithmic
expansion we still require log2µF /µ0 > 1 but not large enough to spoil the small emission
probability.

1.3.4 Scaling patterns at lepton colliders

Let us now explore these two limits via the generating functional formalism. We consider a
lepton collider environment, which means that we only study final state radiation. The generalized
kT algorithms at lepton colliders are defined with the following distance measure between two
particles i and j [38]:

dij = min
(
E2k
i , E2k

i

) 1− cos θij
1− cos θR

. (1.33)

The specific jet algorithm we use is defined by k, where k = 1 corresponds to the kT algorithm,
k = 0 is the C/A algorithm, and k = −1 corresponds to the anti-kT algorithm. A jet algorithm
than works as follows:

1. find dmin = min
ij∈particles

(
dij , E

2k
i

)
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2. if dmin is of the type E2k
i : call i a jet and remove it from the list of particles, go back to (1.)

3. if dmin is of the type dij : replace i and j by i+ j, go back to (1.)

4. iterate until all particles are called jets.

As in the hadron collider case we need a lower cut off. Therefor, we demand that only jets with
an energy above some ER are taken into account. It is convenient to introduce dimensionless
parameters e = E/ER and ξ(R) = 1− cos θ(R). In these parameters the DGLAP equation for the
generating functional reads [124]

Φi(e, ξ) = u∆i(e, ξ) +
∑
i→jk

ξ∫
ξR

dξ′

ξ′
∆i(e, ξ)

∆i(e, ξ′)

1∫
e

αs(k
2
T )

2π
Pi→jk(z)Φk(e, ξ′)Φj(ze, ξ

′). (1.34)

The interesting point to note is that this prescription separates the soft and collinear divergences.
In the original paper [29] we use the notion of scales as in the paragraphs before. However, the
generating functional is now connected to the actual jet algorithms used in LHC phenomenology.
In addition, it turns out that this description is much more powerful and we gain additional
knowledge. Remember, that in the exact collinear limit all evolution variables are equivalent. To
study scaling features, especially in the high multiplicity limit, we need the exponentiated form
(derived in app. C.2) of the evolution equation. It is

Φi(e, ξ) = u exp

 ξ∫
ξR

dξ′

ξ′

1∫
1/e

dz
αs(z, ξ

′)

2π

∑
i→jk

Pi→jl(z)

[
Φj(e, ξ

′)Φk(E(z), ξ′)

Φi(e, ξ′)
− 1

] , (1.35)

where i, j, l ∈ {q, q̄, g}. The function E(z) = ze except for g → qq̄ where it is just e. The form is
very similar to the one found for the so called Durham algorithm [24,25]38, which we used in [29].
From this result we can compute resummed jet rates to all orders. As we are mostly interested in
resumming logarithms we can use the logarithmic expansion of the running coupling [124].

αS(z, ξ′)

π
= ᾱ− b0ᾱ2

(
2logz + log

ξ′

ξ

)
. (1.36)

where ᾱ = αs(1, ξ)/π is defined in terms of the coupling at the hard scale. Last but not least, note
that the Sudakov form factor in these evolution variables reads

∆i(e, ξ) = exp

− ξ∫
ξR

dξ′

ξ′

1∫
1/e

dz
αs(z, ξ

′)

2π

∑
j,l

Pi→jl(z)

 . (1.37)

Let us now expand Eq. (1.35) in the two phase space regimes we are interested in.

Poisson limit

We know that if we induce large logs we expect Poisson scaling. The generalized kT version depends
in fact on two scale choices. The spacial jet resolution ξR = 1− cosR and the allowed energy range
defined by ER = pmin

T . In the limit 1 ≥ ξ � ξR the whole integral is dominated by the ξ′ ≈ ξR
part. From the last paragraph about primary and secondary emissions, we also know that in this
limit we can approximate the evolution of the emitted parton with Φi = u. The limit 1/e → 0 is
a little bit more complicated because it depends on the structure of the splitting kernels. These
have poles of the form 1/z which means that the z ≈ 0 region contributes most. Therefor, we have
ze→ 1. In both cases we find

Φi(e, ξ) = u exp

[u− 1]

ξ∫
ξR

dξ′

ξ′

1∫
1/e

dz
αs(z, ξ

′)

2π

∑
j,l

Pi→jl(z)

 . (1.38)

38That is an older version of the kT algorithm, where the soft and collinear structure are not separated. It is
used to compute jet rates for the Opal experiment and does agree well with data [25].
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This equation produces Poisson scaling, see App. C.1. However the g → qq̄ splitting drops out for
the energy limit case. Its splitting kernel is not divergent but goes to zero as z → 0.

Implicitly we have truncated the generating functional at some jet multiplicity. This allows
us to ignore the pieces, which are not in the dominant region we use to simplify the evolution
equation. After a certain amount of additional radiation we have moved down the scale and our
assumption of far apart integral boundaries fails. At this point also the Poisson scaling has to
break down. Therefor, Poisson scaling patterns are only expected for low multiplicities.

Staircase scaling

Staircase scaling occurs for democratic scale configurations. In the data example given in Fig. 1.13
we have a fixed jet radius, corresponding to fixed ξR. The only other scale is pmin

T . Therefor we
study Eq. (1.35) in the e → 1 limit. This is exactly the democratic limit. We also constrain our
self to the pure Yang-Mills case. The results for starting with a quark can be restored easily. In
accuracy this means that our findings are LL results. Note that we can write eq. (1.35) in the form

Φg(e, ξ) = u exp

 ξ∫
ξR

dξ′

ξ′

1∫
1/e

dz
αs(z, ξ

′)

2π
Pg→gg(z)

[
Φg(e, ξ

′) +

∞∑
l=1

(e(z − 1))l

l!

dlΦg(e, ξ
′)

del
− 1

] .

(1.39)

We Taylor expand around z0 ≈ 1 but with z < 1. Now, taking only the l = 1 term into account,
we are able to find a closed solution for Φg (see app. C.3), which is

Φg(e, ξ) =
1

1 + (1−u)
u∆g(e,ξ) − (u− 1)χ(e, ξ)

≈ 1

1 + (1−u)
u∆g(e,ξ)

+
(u− 1)χ(e, ξ)

(1 + (1−u)
u∆g(e,ξ) )2

. (1.40)

By taking successive u derivatives we find that the jet rate ratios follow

Rn+1
n

= (1−∆g(e, ξ))


1 +

1

(1−∆g(e, ξ))
3

χ(e, ξ)∆2
g(e, ξ)

− 1

∆g(e, ξ)
− 2︸ ︷︷ ︸

B(e,ξ)

+(n+ 1)


. (1.41)

This is a very interesting result. First of all we find that staircase scaling is predicted by theory. It
is not an accident. However, it only occurs for high multiplicities. For lower multiplicities we find
staircase scaling breaking terms, which fall off like 1/n. This is exactly the behavior we expect
from the low multiplicities following a Poisson pattern. However, the 1/n behavior is modified by
the quantity B. It is therefor not the Poisson scaling part of the distribution, but an approximation
to the intermediate part, where the Poisson turns into a staircase pattern.

Phase space effect

It is obvious that at some point we cannot produce more jets, because there is just no space in the
detector left. Note that at LL the generating functionals for all jet algorithms are equivalent [124].
In addition the anti-kT algorithm has the beautiful property, that its jets are circular with radius
R [38]. However, phase space will not just be covered by circles of size R. Jets, if viewed as circles
of size R in the anti-kT algorithm, will overlap. Therefor, there is more space for jets then naively
given by 4π/πR2. From the divergent structure of QCD we expect an additional jet 1 to occur
exactly at the border of another harder jet 2. The area for such a configuration is calculable and we
find A1/A2 = 0.4. Taking this information into account, phase space gets covered with an effective
jet area, which is smaller then the full possible area. This effective area, however, depends on the
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ratio between full area jets and partial area jets. In the anti-kT algorithm jets are built by a hard
parton seed, which sucks up all the soft stuff around it. The configuration of these seeds might
differ for different jet numbers. Therefor, the additional factor influencing the ratios of exclusive
jet cross sections is n dependent. To have a covered jet we need to have at least one uncovered
jet39. Therefor the ratio between these two cannot go beyond 50%. Of course, for more densely
packed configurations we get just more even smaller jets. Assuming that low multiplicities do not
produce many overlap jets, but high multiplicities do, we use

fn =
a

2

(
1 +

1

exp
[
n−b
c

]
+ 1

)
(1.42)

to describe how the ratio between full and partial jets changes. Here a, b, and c are constants.
This distribution is inspired by a Fermi–Dirac statistic. The parameter b describes where the
change from mostly full jets to mostly partial jets occurs. c tells us how abrupt this change
happens. The parameter a helps us to absorb some of the uncertainties introduced due to the
crude approximations, which guide our formula. The phase space suppression factor between jet
ratios is then given by

ϕn+1
n

=
4− (n+ 1)R2fn+1

4− nR2fn
. (1.43)

More then one parton to start with

In reality we will have several partons as seed for the evolution equation. We simply need to
multiply their respective generating functionals before taking the u derivative. This results just
in a combinatorical problem. For Poisson configurations that is trivial. For staircase scaling we
compute it in App. C.4. For i initial gluons, assuming staircase scaling without breaking terms, we
find

Rn+1
n ,i =

n+ i

n+ 1
(1−∆g(e, ξ)). (1.44)

For large n, which is exactly the region we are working in, we get pure staircase scaling again.
Note that what large n is does depend on the particular process and its phase space boundaries.
Therefor, staircase scaling is not dependent on the number of external legs of the matrix element
we use to describe the hard interaction, but might sometimes only be visible in the high multiplicity
region.

Monte Carlo study

We have computed both staircase as well as Poisson scaling from first principles in QCD using
the generating functional formalism. This means that these features are resummed to all orders in
perturbation theory at LL accuracy. Within their respective limits they are solid QCD statements.
We also studied the most leading effects contributing to phase space suppression factors as well
as the combinatorics for any given initial condition in the pure staircase case. We now carefully
compare these analytic prescriptions with MC data. From Sec. 1.1 it should be clear that the
generating function and the parton shower are two sides of one medal. We may call the generating
function an analytic parton shower. A MC computation gives us the additional information of
matrix element corrections to the lower jet bins and the full kinematic distribution. On the other
hand it is a Markov chain and therefor a black box regarding the structure of its results. This
means, that we expect the MC to reproduce our earlier results, but in addition we get a glimpse
on the quality and validity of our assumptions. Additionally MC events open the path to translate
our analytic findings to the hadron collider system later on.

We generate events of the form e+e− → qq̄ + ng with the Sherpa event generator [47] at√
s = 1000 TeV. We chose this high center of mass energy to allow for good statistics in the high

39Assuming not to high multiplicities at the moment. We will do a proper MC check of all the computations
done here in the next section.
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Figure 1.15: Exclusive jet cross section ratios in e+e− → qq̄ + ng with the e+e− anti−kT algorithm for
R = 0.01 and ER = 50GeV. The solid line corresponds to the bins used for the fit to eqs. (1.45) and (1.46).
The dashed lines indicate the predicted values outside the region of fit.
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Figure 1.16: Exclusive jet cross section ratios in e+e− → qq̄+ng with the e+e− kT algorithm for different
R = 0.01 and ER = 50GeV. The solid line corresponds to the bins used for the fit to Eq. (1.45). The
dashed lines indicate the predicted values outside the region of fit. Same as Fig. 1.15 but zoomed in the
region used for fitting. Note the different scale on the x and y axis.

multiplicity regime and to avoid internal cut off scales. We compute the exclusive jet cross section
ratios using the generalized e+e− anti−kT algorithm [38]40. We chose this particular algorithm,
because it produces circular shaped jets of half-opening angle R. This fact is useful if we like to
study phase space effects in the light of Eq. (1.43). We then fit the formula

Rn+1
n

= R0 ×
(

1 +
1

B + (n+ 1)

)
(1.45)

to the tail of the jet cross section ratios. This will happen in the high multiplicity region and we
do not have to take care of Eq. (1.44). We also show a fit to Poisson scaling for the first bins of
the form

Rn+1
n

=
n̄

n+ 1
. (1.46)

As we are studying a radiation phenomenon we adept the jet counting from [29] explained in the
previous section and drop the first two jets as they belong to the hard event41. We expect staircase
scaling only for the regime n > n̄. To achieve both a large logarithm to check the Poisson hypothesis
and a large multiplicity to check the staircase hypothesis we chose R = 0.01 and ER = 50GeV.

40Note that at LL kT , C/A, and anti−kT are equivalent [124].
41This means that experimentally our zeroth jet cross section has indeed two jets in the event.
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Figure 1.17: Exclusive jet cross section ratios in e+e− → qq̄ + ng for three different values of R. We fit
Eq. (1.45) to the tail of the distribution (red curve) and multiply it with Eq. (1.43) (yellow curve).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Jet area distribution

exclusive 2 jet case

 = 1 GeV
R

R = 0.5, E

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Jet area distribution

exclusive 4 jet case

 = 1 GeV
R

R = 0.5, E

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Jet area distribution

exclusive 6 jet case

 = 1 GeV
R

R = 0.5, E

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Jet area distribution

exclusive 8 jet case

 = 1 GeV
R

R = 0.5, E

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Jet area distribution

exclusive 16 jet case

 = 1 GeV
R

R = 0.5, E

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Jet area distribution

exclusive 25 jet case

 = 1 GeV
R

R = 0.5, E

Figure 1.18: Jet area distribution at R = 0.5 (A = 0.79) and ER = 1 GeV. Starting in the left upper
corner we show the 2, 4, 6, 8, 16, and 25 jet exclusive case.

The small value for R allows for a large log and high jet multiplicities as well as the avoidance of
phase space effects while the high value for ER ensures that we do not get in trouble with MC
internal shower cut-off. We show the cross section ratios in Fig. 1.15. We observe that both the
Poisson and the staircase hypothesis fit the run of the curve very well within their expected regions
of validity. The high value of R0 is due to the small R we chose. The staircase pattern expands
over the whole high multiplicity regime. A nice demonstration of the validity of Eq. (1.41) and
the democratic scale nature of staircase scaling. Furthermore, we find that we only need to fit a
few bins to Eq. (1.45) to correctly describe the distribution. It is worthwhile noting that the bins
used to fit the staircase hypothesis do not fall into a region which would be qualified as staircase
scaling, see Fig. 1.16. In fact we see the importance of the staircase breaking terms. They allow
us to obtain information about the staircase tail of the distribution without the need to even see
it. This knowledge can be useful in data driven background estimates. We can check the lower
multiplicity bins for their SM compatibility. This is usually much easier as they accumulate more
statistics. Then we use them to fit the QCD background to the staircase hypothesis. The value of
R0 and B is purely estimated by data this way and predicts the whole high multiplicity regime of
the jet cross section ratios.

In the last paragraph we check for the existence of staircase scaling and the staircase breaking
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Figure 1.19: ∆g(e) (blue) and B(e) (yellow) normalized to the fitted values R0 (green) and B (red) found
for R = 0.5 and ER = 50GeV. The bands indicate either the parametric fit error or the variation due to
different choices of αs(MZ).

terms. Therefor, we chose small R and moderate ER. In usual collider studies values of O(0.10) are
more realistic for R. With this value for the jet size we expect to see phase space suppression effects
due to Eq. (1.43). This equation is purely geometric. To check its validity we now chose a very
small ER = 1GeV. This way we avoid phase space effects due to energy conservation. Using higher
values for R we are still save from MC internal shower cut-off scales. We show the usual staircase
fit for three different values of R (0.5, 0.3, 0.1) in Fig. 1.17. We find that Eq. (1.43) describes the
drop off of the distribution well. However, the shape is not described well. To understand why
our simple picture of overlapping jets failed it is instructive to study the actual distribution of jet
areas for a fixed multiplicity. In Fig 1.18 we show how the area distribution changes for increasing
jet multiplicities. As expected we do find a peaky structure at 0.4 of the maximally possible area.
However, we see that there are many jets with different areas. In the high multiplicity regime the
area is nearly equally distributed over the whole available range. This explains why our phase space
formula in Eq. (1.43) is not able to fully describe the phase space suppression. Understanding the
effective area better could help to use jet scaling features in subjet studies, too.

Numerical quality of analytic formula

The analytic approach to staircase scaling has one unpleasant weakness. We use the dimensionless
variable e ≡ E/ER in the limit where it approaches unity. In this limit we are able to find a closed
solution to the generating function which produces staircase scaling. We are even able to write
down the equation as a formal Taylor expansion. Using only the first expansion terms we compute
a correction to the strict staircase scaling. Both, staircase scaling and the breaking term, we find
realized in a MC study. The patterns appear universal, i.e their exact values depend on the exact
choice of jet algorithm parameters, their existence does not. The problem with the expansion
parameter e is that it is formally connected to two fixed values: the hard scale E and the jet
definition ER. By studying the limit we let e run. As we cannot change ER by definition, this
means we lose the connection to the hard scale of the event. So to speak, we expand from the
soft limit away. On the one hand this is exactly what we want. Staircase scaling is a feature of
democratic QCD evolution. There is only one scale: ER. On the other hand we lose on the side of
computability. We cannot tell what the correct E is. We do need a little bit of running, because
otherwise there would be no jets at all. Therefor, we do not know, which e we need for the exact
values of ∆g(e, ξ) and B(e, ξ). However, we are still able to learn more about those quantities. The
flat staircase tail defines the value ∆g = 1 − R0. A priori the only free parameter is e as ξ = 1
for qq̄ production [124]. Therefor, we can fit for e and plug it in B(e, ξ). First let us look at the
characteristics of those two functions. In Fig. 1.19 we show the running of both, but normalized
to fit the values found for R = 0.5 and ER = 50 GeV. For a perfect prediction both curves would
intersect at one. If we, for example, take e = 7 in this configuration we find ∆g and B to be within
10% of the fitted values. For different parameter choices we find smaller and bigger uncertainties,
but we get the order of magnitude right. However, the shown uncertainties are not the only ones
entering our problem. As mentioned in App. C.3 we have no estimate for the uncertainty on B
for e > 1. A situation we clearly face. Furthermore, the exact value of B, although indicated to
be fitted within 10% strongly depends on the actual bins used for the fit. The fit of R0 as well as
the functional form of ∆g are more reliable. There we are able to get a better statement about e.
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Having an e of O(10) might seem to be far away from the e → 1 limit. However, the full system
is described by e of O(106). This shows, that we are clearly in the small e limit.

1.3.5 Hadron colliders

To translate the results from the last section to hadron colliders let us first study the consequences
of the coordinate system used at hadron colliders. Hadron collider events obey only a cylindrical
symmetry. Therefor, we use the pseudo rapidity η instead of the angle θ. This, however, changes
which partons are assigned to which jet. For small distances ∆θ = θ1 − θ2 they are related in the
following way

|∆η| = log
tan θ12
tan θ22

≈ ∆θ

2/tan (θ/2)
. (1.47)

Here θ ≈ θ1 ≈ θ2 is the direction of the jet. This means that we get less jets in the central region
in the detector and more in the forward region (in the forward region the same jet will produce a
bigger ∆η and will be divided in two hadron collider jets therefor). A further point which might
affect the counted number of jets is the η acceptance of the calorimeter. This point is not invoked in
our analysis so far. We study our MC sample with the combinations of R and ER respectively pmin

T

given in Tab. 1.5. For the hadron collider algorithm we add an η acceptance cut. However, the part
of the sphere not covered by the detector is rather small. We do not expect big differences from
this cut. In Fig. 1.20 to 1.22 we show the results for the e+e− anti−kT algorithm with no selection

R 0.1 0.3 0.5

ER/p
min
T [GeV] 10 50 90

Table 1.5: Values for R and lower jet scale used in the comparison between lepton and hadron collider
jet algorithms.

cuts imposed in contrast to the corresponding hadron collider algorithm with an η acceptance cut.
Each figure corresponds to a certain jet radius R. We find that Eq. (1.45) and (1.46) work out in
the whole tested parameter space. For high ER respectively pmin

T the high multiplicity regions show
large scattering, but within statistical uncertainties the staircase hypothesis holds. The pattern
we find in Fig. 1.15 and 1.16 are also valid. This strengthens the argument that staircase scaling
as well as its breaking is not dependent on the specific jet algorithm or collider environment. In
addition we observe, that indeed hadron collider coordinates produce more jets. This leads to an
even more stable staircase scaling tail in all distributions. We find that the fitted values do change,
however their relations and sizes do not.

The following two subsections “Generating functional for incoming hadrons” and “Parton den-
sity suppression” have already been published in [29] together with Erik Gerwick, Tilman Plehn,
and Steffen Schumann. Note a change in conventions. The generating functional until now was
expressed in terms of e and ξ. In the following sections it will (again) be expressed in terms of
scales µ. This has no impact on the results as different evolution variables are equivalent in the
collinear limit. However the notation of factorization scale might be a rather unfortunate choice
compared to the convention of scales used so far. In the following section we call the hard scale,
where the matrix element lives Q2. The scale where the parton shower stops and additional initial
state radiation is resumed by the DGLAP equation will be denoted by µF . This yields the following
mapping:

old convention→ new convention,

µ0 → µF ,

µF → Q2.
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Figure 1.20: Exclusive jet cross section ratios in e+e− → qq̄ + ng. Upper panels use the e+e− anti−kT
algorithm. Lower panels use the hadron collider anti-kT algorithm. We fix R = 0.1 and have from left to
right ER respectively pmin

T : 10, 50, and 90 GeV. The solid lines correspond to the bins used for the fit to
Eq. (1.45) and (1.46). The dashed lines indicate the predicted values outside the region of fit.

Generating functional for incoming hadrons

The basis of the QCD treatment of hadron collider physics is collinear factorization which allows
us to employ the generating functional method [98,99,101]. Before we can apply any of this to jet
counting we need to clarify our choice of the factorization scale µF in exclusive njet rates, i.e. in
the presence of a jet-counting or jet-veto scale pV . The resummation properties of the DGLAP
equation identify the combined renormalization and factorization scale with a collinear cutoff below
which initial state splittings are unresolved and influence only the functional dependence on the
partonic energy fraction x. Because we are interested in radiated jets with pT ≥ pV we identify
the factorization and the jet-veto scale, i.e. µF ≡ pV . Note that this choice furthermore avoids
generating additional finite though potentially large logarithms in the ratio µF /pV [103].

Symbolically, going from final state radiation in e+e− collisions to deep inelastic scattering
(DIS) with initial state radiation and parton densities we replace the two generating functionals,
distinguishing time-like from space-like splittings,

Φq(Q
2, p2

V )× Φq̄(Q
2, p2

V ) → Φq/q̄(Q
2, p2

V )×Zq/q̄(x,Q2, p2
V ). (1.48)

In the original DIS context all scales are defined in terms of the e+e− Durham algorithm [101],
most notably the hard scale Q and pV ≡ µF as well as the softer resolution scale Q0 ≤ µF . We
identify all three relevant scales Q0 = µF = pV . For the DIS analysis this corresponds to not
further resolving the original macro-jets which define the separation of resolved jets and beam
jets [101]. Again, this choice omits potentially large finite scale logarithms in our perturbative
treatment.

We also introduce an explicit x dependence in the generating functional for incoming partons as
it is clear that PDF effects alter the possibility to radiate jets. Each emission takes away an energy
fraction 1 − z of the emitter; the x value has to change correspondingly and splitting between
different partons needs to be taken into account. From the factorization theorem we know that
PDFs and partonic cross-sections also factorize at the generating functional level,

Za(x,Q2, p2
V ) =

∑
b

1∫
x

dz

z
fb

(x
z
, p2
V

)
Zba(z,Q2, p2

V ) . (1.49)
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Figure 1.21: Exclusive jet cross section ratios in e+e− → qq̄ + ng. Upper panels use the e+e− anti−kT
algorithm. Lower panels use the hadron collider anti-kT algorithm. We fix R = 0.3 and have from left to
right ER respectively pmin

T : 10, 50, and 90 GeV. The solid lines correspond to the bins used for the fit to
Eq. (1.45) and (1.46). The dashed lines indicate the predicted values outside the region of fit.

The parton densities we consistently evaluate at the scale pV . This way, logarithmically enhanced
parton splittings above pV are described by the partonic generating functional Zba. For the gen-
erating functional in DIS we start with a time-like generating functional for a single (anti-)quark
and weight it with the proper electromagnetic coupling [101]

ΦDIS =
∑
a

e2
a Φa(Q2, p2

V ) Za(x,Q2, p2
V ). (1.50)

The partonic cross-sections and jet evolution are the same for the quark and the anti-quark, but
the PDFs are different. In DIS the final state kinematics fix x. Additional jets radiated off the
incoming parton imply that in this case we probe higher x values as given by the convolution in
Eq. 1.49.

The task is to find the evolution equations for Zba. To leading logarithm (LL) this turns out
to be relatively simple. In the soft and collinear limit [98, 99] the eikonal approximation implies
z ≈ 1. Furthermore, the g → qq̄ splitting is logarithmically suppressed compared to the other
splittings, so we can neglect it. Under these two LL assumptions the evolution equation and the
corresponding generating function in 1.49 read [101]

Zba(z,Q2, p2
V ) = δ(1− z) δba Φa(Q2, p2

V )

Za(x,Q2, p2
V ) = fa(x, p2

V ) Φa(Q2, p2
V ) . (1.51)

The PDF effects and the jet generating function factorize in x, so we can treat them independently.
In general, Φa is a two-scale generating functional [101]. Because we identify Q0 = pV the second
scale is suppressed and its evolution equation is almost the same as in the e+e− case. To leading
logarithm we find

Φa(Q2, p2
V ) = exp

[∫ Q2

p2V

dt Γa(Q2, t)
(

Φg(t, p
2
V )− 1

)]
. (1.52)

Compared to Eq. 1.12 the factor u in front of the exponential is missing. The reason is that
we cannot resolve a jet if there is not at least one space like splitting. The hard parton cannot
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Figure 1.22: Exclusive jet cross section ratios in e+e− → qq̄ + ng. Upper panels use the e+e− anti−kT
algorithm. Lower panels use the hadron collider anti-kT algorithm. We fix R = 0.5 and have from left to
right ER respectively pmin

T : 10, 50, and 90 GeV. The solid lines correspond to the bins used for the fit to
Eq. (1.45) and (1.46). The dashed lines indicate the predicted values outside the region of fit.

produce a final state jet, so we always find the normalization condition Φa(p2
V , p

2
V ) ≡ 1. The

further evolution of emitted partons we describe with the time-like functional of 1.12.

Moving on to Drell-Yan production with two incoming partons we need to replace the generating
functionals, symbolically written, to

Zq/q̄(xa, Q2, p2
V )×Zq̄/q(xb, Q2, p2

V ) . (1.53)

Thus, we replace the remaining time-like generating functional with a space-like generating func-
tional to describe two incoming partons. A major complication is that the final state phase space
does not fix xa,b anymore. Instead, we have to integrate over their allowed ranges and find the
generating functional for the Drell-Yan process,

ΦDrell-Yan =
∑
a,b

∫
dxadxb Za(xa, Q

2, p2
V ) Zb(xb, Q2, p2

V )

≈
∑
a,b

∫
dxadxb fa(xa, p

2
V )fb(xb, p

2
V ) Φa(Q2, p2

V )Φb(Q
2, p2

V )

≈
∑
a,b

fa(x(0), p2
V )Φa(Q2, p2

V ) fb(x
(0), p2

V )Φb(Q
2, p2

V ) . (1.54)

From this generating functional we can derive the individual n-jet rates. For the second line of
Eq. 1.54 we use the leading logarithmic approximation as in the DIS case. To arrive at the third
line we replace the variable xa,b values by a typical partonic energy scale x(0). For typical hadron
colliders processes we assume this value to be close to threshold and equal for the two incoming
partons. The argument u which generates the different n-jet rates is carried only by the generating
functionals Φa,b(Q

2, p2
V ). Starting with two generating functionals for the two initial state particles,

hard jet radiation with pT > pV indeed factorizes from a PDF factor.

One apparent contradiction related to the PDF kinematics we need to resolve. On the one
hand, in Eq. 1.51 the eikonal approximation allows us to set z ≈ 1, which means that the entire
energy dependence is encoded in the PDF factor. On the other hand, each resolved jet requires a



1.3. SCALING FEATURES IN QCD 53

finite pT > pV . Hence, the integration range for xa,b is determined by the partonic n-jet process
and x(0) implicitly depends on u. This implicit dependence we have to account for by hand. In
particular for parton density regimes which increase towards small x the majority of multi-jet
events at the LHC are produced at threshold. The threshold value for any of the n-jet production
rates we denote as x(n), leading us to the modified factorized form

ΦDrell-Yan =
∑
a,b

fa(x(n), p2
V )Φa(Q2, p2

V ) fb(x
(n), p2

V )Φb(Q
2, p2

V ) . (1.55)

We emphasize that n is determined a posteriori upon differentiation with respect to u, so is
presented for illustrative purposes only. 1.55 means that to leading logarithm the jet radiation
pattern in the Drell-Yan case is the same as in e+e− → jets processes, modulo explicit PDF factors
estimated using an n-dependent threshold kinematics. A similar approach can account for energy
momentum conservation in soft-gluon resummation [94]. This way we leave the LL evolution of
jets untouched and instead shift the x value in the PDFs to account for additional jets. All our
findings from Sec. 1.3 we can immediately apply, once we understand the PDF correction factor
in the next section.

Parton density suppression

In Sec. 1.3 we have learned that to leading logarithmic accuracy the effects of the parton densities
and jet emission factorize. For large jet multiplicities this explains the observed staircase scaling
at hadron colliders [95, 138]. Parton densities contribute to this effect in particular at low multi-
plicities. When increasing the jet multiplicity the typical partonic energy fractions x probed by
the partonic process increase as well. The relative increase in x is largest for low jet multiplicities.

In terms of the assumed threshold kinematics adding a jet with finite transverse momentum
implies x(n+1) > x(n). To compute the relative cost of producing an additional jet we estimate
the ratio of PDF values evaluated at x(n) and x(n+1) as a function of the number of extra jets n.
In effect this is the discretized second derivative with respect to x. For hadron collider processes
involving two parton densities f(x,Q) we define the PDF correction factor to the ratio of successive
jet ratios R(n+1)/n/R(n+2)/(n+1) to be

Bn =

∣∣∣∣∣∣∣∣∣
f(x(n+1), Q)

f(x(n), Q)

f(x(n+2), Q)

f(x(n+1), Q)

∣∣∣∣∣∣∣∣∣
2

. (1.56)

The square in the definition of Bn reflects the two PDFs in hadron collisions. If for example the
partonic ratio of two successive jet ratios is R(n+1)/n/R(n+2)/(n+1) ∼ c then the proper hadronic
ratio becomes Bnc. We fix Q for simplicity, but this only mildly affects our results.

The main effects are, first, that Bn < 1 in most cases. This way PDF effects suppress the
lower multiplicity ratios R(n+1)/n. For large jet multiplicities the relative impact of yet another
jet becomes small, Bn → 1. The hadronic initial-state effect on the jet scaling disappears and we
are back to the staircase pattern. Second, the PDF effect is largest for the steep gluon densities,
as compared to the flatter valence quarks. Finally, allowing for variable Q the PDF values f(x,Q)
increase (decrease) with Q for low (high) x, with a cross-over point around x ∼ 0.1. For small x
values the initial state evolution then suppresses jet ratios at high multiplicity or large Q2.

What we are most interested in are PDF effects for the Drell-Yan process at lower multiplicities.
We consider the threshold values x(n), for example for producing an on-shell Z-boson and one
additional jet,

x(1) =

√
m2
Z + 2 (pT

√
p2
T +m2

Z + p2
T )

2Ebeam
. (1.57)

where Ebeam = 3500 GeV for the LHC in 2011. Comparing x(1) with x(0) ≈ mZ/(2Ebeam) shows
a sizeable shift. For the two-jet threshold x(2) two limiting cases are either the additional jet
adding merely pT /(2Ebeam) to x(1) or two approximately collinear jets recoiling against a hard
Z. The variation between these two cases estimates the uncertainty on our method which can be
generalized straightforwardly to the n-jet final state.
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Figure 1.23: Left panel: estimated PDF suppression for inclusive (solid) and jet-associated (dashed,
plead
T ≥ 100 GeV) Drell-Yan kinematics. We assume an initial state with d-quarks only. Right panel: same

for Higgs production in gluon fusion with mH = 125 GeV. The uncertainty encompasses two representative
kinematical limits of the multi-jet final state, described in the text.

In the left panel of Fig. 1.23 we display Bn for the estimated Drell-Yan kinematics, assuming
each jet has transverse momentum pT = pV = 30 GeV. The effect on the first jet ratios is large,
but quickly diminishes towards higher n. We also see that if we require a leading jet with large
transverse momentum, plead

T ≥ 100 GeV, we move to sufficiently high x such that additional jet
ratios are unaffected by the PDF effect. It is reassuring to see that if we combine the PDF
suppression of R1/0 (0.46 - 0.65) with the CA enhancement of R2/1 (1.36) and assume an original
Poisson scaling we find R1/0/R2/1 = (0.67 − 0.95), in nice agreement with ATLAS data [96].
This beautifully illustrates that staircase scaling at large multiplicities can be derived from first
principles QCD while for small multiplicities it is something like a sweet spot.

As an additional check, we present the PDF suppression in gluon-fusion Higgs production in
the right panel of Fig. 1.23. We assume mH = 125 GeV, ignore flavor changes and consider jets
with pT = pV = 30 GeV. The gluon PDF drops more rapidly for increasing x, inducing a large
PDF suppression. On the other hand, the increasing energy of the core process as compared to
the Drell-Yan process slightly decreases the effect. The combination of the two gives remarkably
similar results to the Drell-Yan process.



Jets in Action

In the previous chapter we have shown that we can understand the jet number spectrum from first
principle QCD. We already saw that multi jet observables are powerful tools to new physics, but
suffer from theoretical uncertainties. In this chapter we put this knowledge to use. We first show
how we can use scaling features as tool for data driven background estimation. Fixing the rates
from experiment and predicting the shape of the jet spectrum from theory allows us to trust in
multi jet observables. First we show in Sec. 2.1, that we can use the form of the jet spectrum as a
calibration for interesting backgrounds. We show how staircase scaling as well as Poisson scaling
can be used to understand this distribution. In Sec. 2.2 we show what we gain by including jets
to all orders into a Higgs search instead of vetoing them.

Sec. 2.1 has already been published in [28] together with Christoph Englert, Steffen Schumann
and Tilman Plehn. Also Sec. 2.2 has already been published in [33] together with Catherine
Bernaciak, Bruce Mellado, Tilman Plehn, and Xifeng Ruan. However, we present an additional
section at the end studying the source of the improvement in more detail.

2.1 Studying backgrounds from data: photon plus jets

2.1.1 Introduction

After testing and reproducing many interesting aspects of the Standard Model at the LHC, the
focus of the ATLAS and CMS collaborations is rapidly moving toward searches for Higgs par-
ticles [145] or physics beyond the Standard Model [53]. The production rates for any of these
search channels are small, for example compared to W/Z+jets or top pair production, channels
which constitute their main backgrounds. Traditionally, at hadron colliders we have relied on the
appearance of leptons, photons or missing transverse energy to point us to interesting new physics
processes. In this approach QCD effects and jet production are either ignored or considered a
nuisance.

Starting with the suggested searches for a light Higgs boson in weak boson fusion [125], this
attitude has changed; this search shows how the QCD structure of signal events can be turned into a
powerful handle to reject large backgrounds. The key analysis tool are (central) jet vetos [126,127],
which for example suppress QCD-initiated W/Z+jets events or hadronic top pair production.
Implicitly, this approach is adopted in Higgs searches for example in the H → WW or H → γγ
channels, when those searches are divided into 0-jet, 1-jet and soon 2-jet strategies [145].

In a similar spirit, searches for example for supersymmetry benefit from the measurement of the
number of jets which includes information on the color structure of the new heavy states [27]; the
only caveat is that we need to carefully separate decay jets from QCD jet radiation associated with
hard processes [27,129]. What is missing for all such analyses is an experimentally established and
theoretically sound link between choosing n-jet samples for an analysis and a systematic study of
the corresponding njets distribution for signal and background processes [127]. A dedicated study
along this line would map out the behavior of exclusive njets distributions after different cuts,
understand its basic features, and quantify the notorious theory uncertainties associated with jet
counting. As it will turn out, the production of a photon in association with QCD jets is a perfect
basis for such studies.

At hadron colliders we know two fundamentally different scaling patterns, both of which have
been observed experimentally. From text book quantum field theory we know that successive
photon radiation off a hard electron — as well as successive gluon radiation off a hard quark
— follows a Poisson pattern for the exclusive number of photons or gluons [22]. This pattern
corresponds to a simple probabilistic picture of successive independent splitting. The splitting
probability is linked to the coupling constant, the color factor, the form of the splitting kernel, and
a scale logarithm. The problem with this Poisson scaling pattern is that since UA1/UA2 it has never
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been observed for inclusive production processes at hadron colliders. Instead, for many processes
we find staircase scaling, namely a constant ratio of exclusive n-jet rates σn+1/σn = R [131,132].

The description of exclusive jet rates is fundamentally at odds with our description of QCD at
hadron colliders. Parton densities obeying the DGLAP equation [135] resum collinear logarithms
and absorb the corresponding infrared divergences. As a consequence, any computation based on
such parton densities is jet inclusive, i.e. it allows for an unspecified number of collinear jets radiated
off the incoming partons. Strictly following the DGLAP approximation, these perfectly collinear
jets are not observable at the LHC. However, the assumption of perfect collinearity is modified by
the initial state parton shower, which redistributes the dominantly collinear jet radiation into the
physical phase space. Evaluating exclusive event samples with exactly n jets is theoretically limited
by the precision of the parton shower description, including its obvious breakdown for sizeable
transverse momenta [136]. This is the reason why in the past exclusive njets distributions could
rarely be exploited to compare collider data to QCD predictions. However, as described above,
current LHC analyses force us to overcome this limitation and study exclusive njets distributions
(including cuts corresponding to jet veto survival probabilities) starting from perturbative QCD.

Matching of a hard QCD matrix element with a collinear parton shower [45,46,60,100] allows
us to reliably simulate and study jet scaling patterns from perturbative QCD. It does not require
a fundamental re-organization of QCD perturbation theory [137] but simply relies on the proper
phase space simulation of collinear logarithms. This way it does not only include the radiation of
one or two hard jets, as correctly described by fixed-order QCD calculations, but any number of
radiated jets including high multiplicities obviously well described by the parton shower. We use
Sherpa [47] with its Ckkw [45] matching scheme to describe radiation of up to seven jets with
high precision. Typically, we check an additional two more jets for unexpected features, but with
correspondingly reduced statistics.

As we will show in this paper, a particularly promising channel to measure exclusive jet rates
and compare them to QCD predictions is hard photon production in association with jets. The
cross section is large enough to already have enough data to not only validate Monte Carlos, but
also systematically study staircase and other scaling patterns. We will show how to define and
extract different kinematical regimes of the photon to compare various hypotheses of QCD radiation
with data. Poisson and staircase scaling are the two basic structures which allow us to understand
the performance of a central jet veto as a background rejection tool and which properly define the
crucial njets and effective mass distribution in new physics and Higgs searches [126,127,145].

2.1.2 Staircase scaling

Before we start using QCD structures of events with heavy states, we study the njets dis-
tribution in Standard Model processes. This includes pure QCD jets production [27, 138], W/Z
production with jets [131, 132,138], and possibly our new γ+jets channel. For total cross sections
such processes have for many years shown a staircase scaling pattern: if we evaluate the ratios of
historically jet-inclusive n-jet cross sections, we find

R̂(n+1)/n =
σ̂n+1

σ̂n
≡ R̂ . (jet-inclusive) (2.58)

It turns out that we can equivalently formulate this condition in terms of inclusive (σ̂) and exclusive
(σ) numbers of jets. Correspondingly defining

R(n+1)/n =
σn+1

σn
≡ R (jet-exclusive) (2.59)

for the exclusive rates, the resulting ratios are identical [27],

R̂ =

∑
j=n+1 σj

σn +
∑
j=n+1 σj

=
σn+1

∑∞
j=0R

j

σn + σn+1

∑∞
j=0R

j
=

Rσn
1

1−R
σn +Rσn

1

1−R
= R . (2.60)

This way the merits of perturbative QCD and its perturbative predictions directly translate to
the jet-exclusive final states in a well-defined approach where lower multiplicities are utilized to
constrain the higher ones.



2.1. STUDYING BACKGROUNDS FROM DATA: PHOTON PLUS JETS 57

2/1 3/2 4/3 5/4 6/5 7/6

n
n+

1
R

0

0.1

0.2

0.3

0.4

0.5

=-0.0064
dn
dR

=0.15970R
> 70 GeV, ,jγm

=-0.0007
dn
dR

=0.14880R
> 90 GeV, ,jγm

=0.0029
dn
dR

=0.14070R
>110 GeV, ,jγm

2/1 3/2 4/3 5/4 6/5 7/6

n
n+

1
R

0

0.1

0.2

0.3

0.4

0.5

=-0.005
dn
dR

=0.14370R
>1.0, ,jγ

minR

=0.0001
dn
dR

=0.12660R
>1.3, ,jγ

minR

=0.0053
dn
dR

=0.10870R
>1.6, ,jγ

minR

Figure 2.24: Two scenarios establishing staircase scaling for γ+jets production at the 7 TeV LHC. Left:
invariant mass criterion of mγj > 70, 90, 110 GeV for each jet. Right: geometric separation between the
photon and each of the jets. The extracted values for R0 and dR/dn are defined in Eq.(2.62). The error
bars correspond to our numerics with 1.6 · 107 events.

While a proper analytical derivation of this feature from first principles is still missing, there
is no doubt that this feature exists in data [138,139] and can be reproduced using matrix element
and parton shower merging [27]. Only using jet radiation via parton shower this scaling feature is
not matched as well, which is expected given that such inclusive processes do not offer a hard scale
in relation to which we can define collinear radiation. For W+jets production it has been shown
that fixed order QCD corrections stabilize the observed staircase pattern [70].

Unlike the other cases mentioned above, at first sight photon production does not posses an
obvious jet scaling behavior. It only occurs once we include strong separation cuts between the
photon and each of the jets, effectively removing any logarithmic enhancement linked to QED
photon radiation. Moreover, as we will show in this paper, different basic cuts can easily induce
different scaling patterns.

For our simulation we rely on Sherpa v1.3.0 [47] and its Ckkw matching up to five ma-
trix element jets. We reconstruct jets using the anti-kT algorithm from FastJet [38, 68] with
Ranti−kT = 0.4, which gives us a very moderate geometric separation of two jets. When dealing
with photons in a QCD environment some familiar subtleties have to be considered [140, 141]: a
photon can arise from non-perturbative fragmentation. Those photons are not useful in our case
where we attempt to define a hard and identifiable core process through the photon. Therefore,
we opt for a solid photon isolation. A naive hard cut e.g. on the jet-photon R distance limits the
phase space of soft gluon emission and is infrared unsafe. We instead define an isolated photon
through a hadronic energy deposit of less than 10% of pT,γ in a cone of size R < 0.4 [140]. If this
criterion is not met the photon candidate is pushed into the jet finding algorithm.

For reconstructed jets and photons in this section we then require

pT,γ > 50 GeV, pT,j > 50 GeV, |ηγ | < 2.5, |yj | < 4.5 , (2.61)

where η and y denotes the pseudo-rapidity and rapidity. These cuts are very inclusive and demo-
cratic, so we can expect to observe the staircase scaling behavior known for pure QCD jets.

It is known experimentally that photon plus jets events fulfilling Eq.(2.61) alone do not show any
kind of simple jet scaling behavior. What we are still missing is the crucial photon-jet separation
criterion. In Fig. 2.24 we show two sets of njets distributions for different separation criteria.
Inspired by the W/Z+jets analysis we can define a wide photon-jet separation in terms of the
invariant mass. In Fig. 2.24 we find that almost prefect staircase scaling appears for minimal
values of mγj & mZ , with a very slight degradation for alternative mass scales. The corresponding
description in terms of a geometric separation leads to very similar results, but only once we require
Rγ,j > 1. This value we can understand from the typical mγj values combined with pT > 50 GeV.
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Figure 2.25: Left: effect of a consistent variation of αs(Mz) on staircase scaling. Right: position of
the photon in comparison to all jets, ordered by pT . The two curves are for at least two-jet and at least
three-jet events.

In both cases the first ratio R2/1 is notorious [27], reflecting the fact that QCD scaling patterns
require the definition of a stable hard process. Furthermore, the universal jet separation criterion
imposed is not fully probed in the denominator, the γ+1 jet channel.

Theoretically, staircase scaling can be linked to the presence of the large gluon self coupling,
i.e. the non-abelian structure of QCD. In the absence of any hard scale from our process, relatively
hard jets are still mostly generated through initial state radiation (ISR). Our simulation confirms
that the final state radiation (FSR) pattern of ISR jets and its combinatorial factors generates the
large and democratic jet multiplicity which defines staircase scaling. In the pure Yang-Mills limit
the number of Feynman diagrams scales exactly like the combinatorial factor from the bosonic
final state phase space.

For hard photon production we start from qq̄ annihilation. Adding a hard gluon radiated off
one of the incoming quarks contributes to γ+1 jet production, but it is not the leading channel. As
for many processes at the LHC, it is advantageous to start from a qg initial state and add a quark
to the final state. The second jet defining R2/1 will again be gluon radiation off the initial state.
However, staircase scaling we know arises from splitting ISR, which for γ+2 jets would only be
possible off the sub-leading qq̄ → γ process. This implies that the combinatorically enhanced non-
abelian splitting starts from a suppressed parton luminosity, giving a relatively small value of R2/1.
In other words, the first entry R2/1 links two different dominant initial states and hence cannot
be described by a well defined hard process. Starting from two jets (or R3/2) we can attribute the
observed staircase scaling to splitting ISR gluons off the hard qg → γq production process.

Setting aside the first entry we can test the quality of staircase scaling by fitting the form

R(n+1)/n =
σn+1

σn
= R0 +

dR

dn
n , (2.62)

and determine the slope to compare it to our prediction dR/dn = 0. For all curves shown in
Fig. 2.24 we find dR/dn in the 0.01− 0.001 range, essentially compatible with zero. The constant
values R0 range around 0.14, but with a small spread. In Sec. 2.1.4 we will contrast these values
with the W/Z+jets cases [27, 131, 132]. While the definition of the hard process does play a role
in determining R0, in Sec. 2.1.3 we will see that the far dominant factor is pmin

T,j fixed in Eq.(2.61).

In the left panel of Fig. 2.25 we show the effect of αs on the observed staircase scaling pattern.
Between the largest and lowest values of αs there is a 7% difference. The effect of this shift on
R is correspondingly small. The reason is that αs and for example the gluon parton densities are
not independently extracted [71]. An increase in the value for the strong coupling is compensated
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by a decrease in the corresponding gluon density, postponing the expected blow up of the theory
uncertainty to larger n values than we can show in Fig. 2.25.

In the right panel of Fig. 2.25 we can check the reason why the first ratio R2/1 is comparably
small. The production of one hard jet with one hard photon is dominated by the partonic subpro-
cess qg → qγ. If there is no hard scale present in the partonic process the evolution of the incoming
quark or gluon is dominated by few splittings. The large number of jets constituting staircase scal-
ing arises through non-abelian splitting of ISR. Geometrically, for 2-jet events the quark-photon
system typically recoils against the harder of the QCD jets. Only from the 3-jet configuration on
we can simply split the ISR gluon, with a jet separation given by R > 0.4 according to the jet
algorithm. Correspondingly, in the right panel of Fig. 2.25 we see that the photon is typically as
hard as the hardest jets: if we require at least two jets the photon is the hardest or second hardest
object in roughly half of the events each and the third hardest object in O(5%) of all events. For
at least three jets in the final state the photon is equally likely to be the first, second and third
hardest object. In other words, while one of the jets might usually recoil against a relatively hard
photon, the additional jets responsible for the staircase scaling pattern are relatively soft. This is
a result of splitting hard ISR gluons.

2.1.3 Poisson scaling

According to field theory text book knowledge radiating massless gauge bosons off a hard
fermion does not follow a staircase pattern [22]. Instead, the exclusive number of jets follows a
Poisson distribution

σn = σ0
e−n̄ n̄n

n!
, (2.63)

with an expected n̄ jets observed. For the exclusive scaling ratios this translates into

R(n+1)/n =
σn+1

σn
=

n̄

n+ 1
. (2.64)

The assumptions entering the derivation of Poisson scaling are twofold: first, there should be
one splitting function, for example the radiation of a photon or a gluon off a fermion. In the soft
limit successive gauge boson radiation is automatically ordered by the emission angle. This way,
we avoid combinatorial factors of the kind n! from differently ordered emission in the numerator.
The crucial factor 1/n! in Eq.(2.63) appears through the over-counting of the bosonic phase space.
Poisson scaling is what one expects from a statistical point of view when we assign probabilities to
statistically independent splittings. An example for this statistical treatment are Sudakov factors
or collinear splitting probabilities following the DGLAP equation. The reason why solutions of
the DGLAP equation show a Poisson behavior is that in its derivation we only take into account
successive splittings of incoming partons on their way from the proton to the hard process. This
is exactly what corresponds to a resummation of collinear logarithms and the removal of infrared
divergences through the definition of scale dependent parton densities. For this reason, pure
parton shower simulations tend to reproduce Poisson scaling much better than staircase scaling in
the respective kinematic regime.

To force multi-jet scaling for example in association with a photon into such a Poisson regime
we can follow this argument of the parton shower and the Sudakov factors. What we need is a well
defined hard subprocess, e.g. the leading 2-particle γ-j1 system which requires many successive
splittings of the incoming partons.

Following the distance measures shown in Fig. 2.24 an obvious choice could be an increased
value of mγj1 � 100 GeV. This is similar to weak boson fusion Higgs production, where the large
invariant mass of the two tagging jets mjj > 600 GeV induces a Poisson scaling of the Z+jets
backgrounds [127]. However, we find that the cleanest Poisson distribution is induced by requiring
a single hard jet, i.e. requiring

pT,γ > 20 GeV, pT,j > 100, 20, 20, ... GeV, |ηγ | < 2.5, |yj | < 4.5 , (2.65)

instead of Eq.(2.61). Generating the hard scale through the hardest jet is more efficient than
asking for a hard photon, because according to our earlier argument a hard photon with pT,γ =
100− 200 GeV could easily recoil against several jets from splitting ISR. Requiring a hard average
pT for the jets would work as well, though.
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Figure 2.26: Poisson scaling for γ+jets production at the 7 TeV LHC. Left: different transverse momen-
tum criteria for the leading jet, all other jets have pT,j > 20 GeV. The extracted values for R0 and n̄ are
defined in Eq.(2.66). The error bars correspond to our numerics with 2.1 · 106 events. Right: effect of a
consistent variation of αs(mZ).

In Fig. 2.26 we see how enforcing a hard core process this way immediately changes the staircase
scaling pattern into a Poisson distribution. Already for pT,j1 > 100 GeV we see a clear deviation
from any kind of staircase behavior provided we allow all other jets to be as soft as pT,j > 20 GeV.
For pT,j1 > 150 GeV the leading R2/1 ratio increases to values above unity, which means that in
the exclusive njets distribution the maximum will move away from zero.

To test the quality of the Poisson description we fit the R(n+1)/n distribution which is expected
to follow Eq.(2.64). If we allow for a deviation from the one-parameter Poisson shape of the kind

R(n+1)/n =
n̄

n+ 1
+R0 , (2.66)

R0 is reminiscent of the staircase pattern Eq.(2.60) and should come out essentially zero while n̄ is
the only free parameter in the Poisson shape and gives the expected number of jets. As expected,
the value of n̄ increases for harder leading jets. Just as for the staircase scaling we do not include
the first entry R2/1 in the fit.

While it follows the basic expectation, namely becoming large and exceeding unity, R2/1 does
not fit the Poisson shape well. Again, this is due to the definition of the hard process with consistent
incoming partons. Initial state radiation off the γ + 0-jet process involves two incoming quarks,
with the typical color factor CF = 4/3. Once the numerically dominant subprocess qg → γq is
established, on one leg we can expect ISR with a color factor CA = 3. Hence, the 1-jet fraction is
slightly too small and R2/1 comes out too large. While this effect is much smaller than the mismatch
of R2/1 for staircase scaling, it is important to not include this bin into the fit to Eq.(2.66) because
it would lead to obviously wrong best-fit values for R0.

If we also exclude the high-multiplicity bins we find small values of |R0|, closer to zero than to
R7/6 ∼ R8/7. This is expected. Our argument for Poisson scaling rests on the impact of a large
scaling logarithm which has to be generated by successive and ordered ISR. Beyond some point
these successive splittings will stop feeling a large logarithm and we can expect to fall back onto a
non-negligible staircase scaling.

For example in the case of Higgs production we know that the large-n limits of R(n+1)/n in the
staircase and Poisson setups show hardly any difference. In Fig. 2.26 we estimate the staircase tail
to be in the R0 ∼ 0.3 range. This is significantly different from the R0 ∼ 0.15 which we find in
Fig. 2.24. The reason is simply the reduced pT threshold of 20 GeV for the Poisson studies. In
the right panel of Fig. 2.26 we again show the consistent variation of αs. Clearly, the dependence
is very small and does not affect the Poisson scaling feature.
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Figure 2.27: Scaling patterns for Z+jets production at the 7 TeV LHC. Left: staircase scaling for
pT,j > 50 GeV. Right: Poisson scaling for different transverse momenta of the hardest jet, all other jets
have pT,j > 20 GeV. The error bars correspond to our numerics with 107 events before cuts.

2.1.4 Massive gauge bosons

Originally, jet scaling studies have been established for W+jets events. Not surprisingly, Z+jets
events behave qualitatively and quantitatively exactly the same [27]. The purpose of the first two
Sections of this paper is to show that after strict jet-photon isolation we can see the same scaling
patterns in photon production.

Provided that for well separated photons the non-existence of large logarithms between inherent
mass scales leads to staircase scaling we expect γ+jets and Z+jets production to be very similar.
In Fig. 2.27 we first see that based on the same jet cuts as in Eq.(2.61) Z production follows the
same staircase pattern. The extracted value R0 = 0.149 for pT,j > 50 GeV is consistent with the
literature [27] as well with our findings in Sec. 2.1.2.

For the Poisson regime the situation is slightly different. For the photons a cut on the leading
jet of pT,j1 > 100 GeV compared to a reduced general jet threshold of 20 GeV already induces
a large enough logarithm. The Z mass in the final state could be expected to further enhance
this scaling logarithm, even though it does not really translate into a collinear logarithm expressed
in terms of pT,j . In the right panel of Fig. 2.27 we find that the n̄ values we extract from the
Z case are very close to those for the photons, in particular taking into account the statistical
uncertainties which affect the result for pT,j1 > 200 GeV. The high-multiplicity staircase limit of
the Poisson distribution for R0 ∼ 0.20− 0.25 again is similar to the photon case.

From both figures there is little doubt that any result from γ+jets analyses at the LHC can
be directly translated into Z+jets and hence W+jets [27] production. This holds not only on the
qualitative but also on the quantitative level. The only difference between the two channels is that
for photons the scaling patterns only appear once the photon is very well separated, controlling
any additional QED logarithms which for the massive Z case do not play any role at these energies.

2.1.5 Outlook

Counting numbers of exclusive jets has many applications in LHC searches, implemented for
example as distinct Higgs analyses for different njets values [145] or central jet vetos [125]. To
apply such cuts we need to properly understand exclusive njets distributions experimentally and
theoretically. For QCD this distribution is a challenge because historically it involves parton shower
simulations. Multi-jet merging, for example using the Ckkw scheme [45], allows us to for the first
time study njets distributions including a free choice of kinematic cuts.

Unlike W/Z+jets and pure QCD jets production, the associated production of jets with a
hard photon naively does not show simple scaling patterns. We show that once we require a
widely separated photon we recover the usual staircase scaling σn+1/σn = R0 for total cross
sections [27,131,132].
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Once we induce a large logarithm through kinematic cuts we see how the scaling pattern
turns into a Poisson distribution for the exclusive number of jets. This is known for weak-boson-
fusion cuts in Higgs production [127]. For our photon channel a transverse momentum cut on the
leading jet (and not on the photon) works best. Only in the high-multiplicity regime the Poisson
distribution turns into a staircase pattern.

Given our observations and the large available photon sample at LHC, this channel should be
the perfect laboratory to study jet scaling, including a proper experimental and theoretical error
analysis. A translation of photon measurements into W/Z+jets production should pose no problem
and is of extreme importance when e.g. relating γ+jets to (Z → νν̄)+jets as a background to new
physics searches in the jets+missing energy channel [144]. This is just one example of how we
should be able to significantly improve the status of many Higgs and new physics searches at the
LHC once such general analyses are available.

We are grateful to Alex Tapper for pointing us to this channel. The simulations underly-
ing this study have been performed in parts on bwGRiD, member of the German D-Grid ini-
tiative, funded by the Bundesministerium für Bildung und Forschung and the Ministerium für
Wissenschaft, Forschung und Kunst Baden-Württemberg.

2.2 Learn more about the Higgs: Fox–Wolfram–Moments

2.2.1 Introduction

After the recent Higgs discovery by ATLAS and CMS [54,55,145], the careful and systematic study
of Higgs properties is becoming a key research program at the LHC and a future linear collider [146].
The theoretical implications of the first fundamental scalar particle include many open questions,
including the actual generation of a vacuum expectation value, the stability of its physical mass,
or the link between the Higgs potential at the weak scale to high–scale structures [147]. In the
language of quantum field theory we need to construct the weak–scale Higgs Lagrangian including
the operator basis and the corresponding couplings [148].

At the LHC the weak boson fusion production channel (WBF) [53,149–152] plays an important
role in answering some of these question, in particular once the LHC runs closer to its design
energy. It allows us to directly probe the unitarization of WW → WW scattering and carries
information on tree–level Higgs couplings with negligible impact of perturbative extensions of the
Standard Model. Experimentally, two forward tagging jets are highly effective in reducing QCD
backgrounds [153], which means that Higgs analyses in weak boson fusion typically benefit from a
signal–to–background ratio around unity.

As an analysis tool utilizing the unique QCD structure of weak boson fusion we rely on a
central jet veto [103, 136, 154–157]. It is based on the fact that we can generate large logarithms
and increase central jet radiation in QCD backgrounds while leaving the jet activity in the signal
at low level. This shift from staircase scaling of jets (with constant ratios between successive
exclusive jet bins) in signal and background to staircase scaling in the signal and Poisson scaling
in the background can be derived from first–principles QCD [154]. The resulting jet veto survival
probabilities for the the QCD backgrounds can be measured in data. Their calculation from QCD
is plagued with significant theory uncertainties which in turn will soon dominate the extraction of
the Higgs couplings at the LHC [148]. In addition, a jet veto always removes a wealth of kinematic
information carried by these jets, so the question arises whether the information from the jets
recoiling against the Higgs cannot be used more efficiently.

To answer the question of how much information is encoded in the jet activity of Higgs candidate
events we need to systematically study multi-jet kinematics. For example in flavor physics Fox–
Wolfram moments (FWM) are an established tool to analyze such geometric patterns [158], but
they have hardly been employed by the ATLAS and CMS collaborations. By construction, they
are particularly well suited to study the geometry of tagging jets in weak boson fusion [159].
Dependent on the specific construction of their weights the moments can also be sensitive measures
of the additional jet activity in an event. Ideally, they will enhance a central jet veto defined on
a fixed phase space region to some kind of weighted jet veto over phase space regions based on
the kinematics of the hard process. Moreover, by choosing different weights the moments can be



2.2. LEARN MORE ABOUT THE HIGGS: FOX–WOLFRAM–MOMENTS 63

adjusted such that they avoid introducing a fixed scale below the factorization scale of the hard
process. At the expense of the background rejection efficiency they can be tuned to introduce
smaller theory uncertainties. This will allow the ATLAS and CMS experiments to optimize their
Higgs analyses including theory uncertainties and significantly improve the case for a luminosity
upgrade based on Higgs couplings measurements.

In this paper we will attempt to answer three questions based on the weak boson fusion analysis
with a Higgs decay to photons. This includes a study of the signal process, the Higgs background
from gluon fusion, and the continuum production of a photon pair with jets:

1. in Section 2.2.3 we will apply Fox–Wolfram moments to the kinematics of the two tagging
jets only. Based on a multivariate analysis we will estimate how much these additional
observables can improve the current ATLAS results at 8 TeV collider energy.

2. in Section 2.2.4 we will compare the performance of a set of Fox–Wolfram moments with
a specific (unit) weight in comparison to the usual central jet veto for the 13 TeV run.
Moreover, a multivariate analysis of Fox-Wolfram moments allows us to define a ROC curve
with a free choice of operating points.

3. in Section 2.2.5 we will introduce a new weight in the Fox–Wolfram moments. It avoids
introducing a physical momentum scale for the jet veto which lies below the factorization
scale.

Obviously, our conclusions are immediately applicable to ongoing and future LHC analyses. Fox–
Wolfram moments have been tested in a few ATLAS and CMS analyses, so it should be a simple
task to also include them in Higgs analyses.

2.2.2 Setting the Stage

The analysis presented in this paper will give an estimate of the impact which Fox–Wolfram
moments computed from jets can have on current and future LHC Higgs analyses. Fox–Wolfram
moments are one way to systematically evaluate angular correlations between jets in terms of
spherical harmonics. While such approaches are standard for example in cosmology, they are
largely missing in LHC physics. We will summarize their main features below. For a more detailed
account of the WBF-specific properties we refer to an earlier paper [159].

To allow for significant correlations between different moments we employ multivariate methods.
Our analysis will largely be based on boosted decision trees (BDTs), which we will also briefly
introduce below. Part of the analysis we cross–check with a neural net to make sure our findings
are independent of the MVA method used.

Fox–Wolfram moments

Most analyses of QCD jets at the LHC are based on an ad-hoc selection of angular correlation
variables, which have been shown to separate signals from backgrounds. For analyses where each
one–dimensional or two–dimensional distribution is carefully understood in terms of the underlying
physics and then tuned to the best cut value, this approach is natural and appropriate. For
multivariate analyses, where events are classified in terms of a more generic set of kinematic
observables, the choice of observables should be more systematic.

For angular correlations, we know how to generally describe underlying objects, in our case jets,
in terms of spherical harmonics. Obviously, Fox–Wolfram moments do not have to be based on
jets. They are closely related to event shapes [161,162], and for example at LEP they were based
on calorimeter information. At the LHC, particle flow objects or topoclusters might eventually
turn out more useful. In this analysis we use jets to avoid additional experimental or theoretical
complications, for example due to pile-up or underlying event.

Fox–Wolfram moments are constructed by summing jet–jet correlations over all 2`+1 directions,
including an unspecified weight function W x

i [158]

Hx
` =

4π

2`+ 1

∑̀
m=−`

∣∣∣∣∣
N∑
i=1

W x
i Y

m
` (Ωi)

∣∣∣∣∣
2

. (2.67)
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The index i sums over all final state jets defined by appropriate acceptance and selection criteria.
The general coordinates of the spherical harmonics Y m` (θ, φ) we replace by a reference angle Ω.
The moments can be rewritten as

Hx
` =

N∑
i,j=1

W x
ij P`(cos Ωij) with W x

ij = W x
i W

x
j . (2.68)

The angle Ωij is the total angle between two jets, which implies that it cannot be boost invariant.
The weight function W x

ij can be chosen freely. In Sections 2.2.3 and 2.2.4 we will use transverse–
momentum and unit weights [159]:

WT
ij =

pTi pTj

(
∑
pTi)

2 WU
ij =

1

N2
. (2.69)

The advantage of the transverse–momentum weight is that soft and collinear jets with their limited
amount of information about the hard process are automatically suppressed. The resulting analysis
becomes stable with respect to the parton shower and QCD jet radiation. For tagging jets without
an actual collinear divergence the transverse momentum weight should be appropriate.

Whenever we are interested in the color structure of the event, this jet radiation will carry the
crucial information. For studies of central jet radiation we therefore expect the unit weight to be
the most promising.

In analogy to a jet veto, Fox–Wolfram moments with unit weight introduce an energy or
momentum scale, above which we include jets in the moments. Because of the unit weight there
does not exist a smooth transition regime; requiring any Fox–Wolfram moment of such additional
jets to be different from zero corresponds to a step function in counting the number of jets.
Because the new momentum scale usually resides below the factorization scale of the hard event,
fixed–order precision predictions are not applicable, and a dedicated resummation is a theoretical
challenge [103,136,154–157]. In Section 2.2.5 we introduce the matched weight

WM
ij =

(pTi − pmin
T ) (pTj − pmin

T )(∑
pTi − pmin

T

)2 (2.70)

in order to reduce the theoretical uncertainty in comparing measured cross sections to QCD pre-
dictions. This new weight avoids introducing a new hard scale and will be less dominated by the
momentum scale pmin

Tj = 20 GeV, above which jets contribute to the Fox–Wolfram moments.

Event generation

While the description of the tagging jets in weak boson fusion is straightforward, the continuum
background with its QCD jet activity is more tricky. Moreover, the correct description of the QCD
activity in the Higgs signal requires a careful treatment of the color structure of the hard process.
Throughout this analysis we use Sherpa [47] with Ckkw merging [45]. For the weak boson fusion
signal we generate samples including up to three hard jets, including the tagging jets. Gluon fusion
Higgs production we simulate with up to three hard jets. For the QCD background we include
di–photon production plus up to two hard jets. For jet clustering we rely on the anti-kT algorithm
as in Fastjet [38] with R = 0.4.

The assumed Higgs mass value is 126 GeV. Our cuts are dominated by the detector acceptance
and jet–photon separation,

pTγ > 14 GeV Rγj > 0.3 mγγ > 80 GeV . (2.71)

After those cuts we are left with a weak–boson–fusion signal cross section times branching ratio
of 5.2 fb at 8 TeV collider energy and 9.24 fb at 13 TeV collider energy. To allow for an efficient
generation of background events we do not require a mass window for the two photons in the
background generation. Later in the analysis we add an mγγ window of ±10 GeV around the
Higgs mass. For a proper Higgs analysis we should require an mγγ window of 1-2 GeV around
the measured Higgs mass. However, with this condition the event generation for the background
becomes highly inefficient. Because our analysis does not intend to predict the actual signal and
background cross sections and instead focuses on the improvement over the established experimen-
tal analysis [164], the loose cuts of Eq.(2.71) allow for a much more efficient event generation and
will not affect our conclusions.
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Boosted decision trees

Any multivariate analysis is based on some kind of mapping of a set of observables onto a single–
valued quantity, the classifier response. Based on this classifier response we define a classification
rule to separate signal and background events. Training the multivariate analysis on a set of simu-
lated events aims to determine the best classification rule for a given signal and background. The
optimal classification rule has to be determined by some measure, for example the signal efficiency,
the statistical significance, or the signal–to–background ratio. Independent of this optimization,
we can quantify the performance of any classification rule in terms of the signal efficiency and the
background mis-identification probability. In this two–dimensional plane we can describe cuts on
the same response parameter as a receiver operating characteristics (ROC) curve. Given such a
ROC curve we are free to choose one or more operating points. In line with the ATLAS di-photon
analysis we use a fixed 40% signal efficiency εS after acceptance with a variable background re-
jection 1 − εB as the standard working point. In Section 2.2.4, we quote the main results of our
BDT analysis for the best possible significance S/

√
S +B given the set of kinematic observables

and Fox–Wolfram moments.

Decision tree algorithms — as they are utilized in high energy physics applications — are based
on a set of kinematic variables, intended to separate signal and background events. In the first
step they choose the ‘root node’ variable, i.e. the variable with the best separation between signal
and background. There exist several types of separation which we can choose from in Tmva [163].
We use the cross entropy

CE = − S

S +B
log2

S

S +B
− B

S +B
log2

B

S +B
, (2.72)

where S and B are the numbers of signal and background events in a particular subset of events.
This measure is the closest to the original definition of information entropy [165]. After choosing
the root node, the subsequent nodes are ordered by their separation at some threshold value.

For the complete decision tree the events are classified as signal–like or background–like by
some measure. In the training set we know how good the tree is at classifying the events. Our
training set include 100000 events for each signal and background channel. In the next step the
algorithm corrects for mistakes through a reweighting procedure, builds another decision tree,
tests its performance, and repeats for some user–defined number of iterations. For this ‘boosting’
procedure we mainly use the adaptive boost algorithm implemented in Tmva [163]. The final
classification rule for signal versus background events we then apply to an independent event
sample, again including 100000 events per signal and background process. To prevent over–training
we limit our forest to 400 trees, and the individual trees to three layers.

Because correlations between the different Fox–Wolfram moments are a key issue of our sys-
tematic approach to kinematic input variables, we carefully test two different boosting algorithms
(adaptive and gradient boost [163]) as well as different multivariate analysis methods. Per se,
boosted decision trees are not particularly well suited for studying strongly correlated variables.
The reason is that trees are built out of the individual variables. Two strongly correlated vari-
ables are best mapped through individual fine binnings in each of them, so a careful mapping
of correlations will eventually lead to statistical limitations and a possible training on statistical
fluctuations. Therefore, we compare BDT results to results using a multi–layer perceptron (MLP)
neural network whenever an independent test appears sensible. We utilize a MLP neural network
with a single hidden layer containing N + 5 neurons, where N is the number of training variables.

2.2.3 Tagging jet correlation

In this first analysis we are going to use Fox–Wolfram moments to systematically test the
completeness of the tagging jet correlations included by ATLAS. Because we directly refer to the
current ATLAS result we use a collider energy of 8 TeV for the most recent LHC run. The two
pT -ordered tagging jets have to fulfill either of the two conditions

pTj > 25 GeV for |yj | < 2.4

pTj > 30 GeV for 2.4 ≤ |yj | < 4.5 . (2.73)
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BDT MLP

εS = 0.4 1− εB
S√
S +B

S

B
1− εB

S√
S +B

S

B
ATLAS default Eq.(2.75) 0.887 1.50 0.76 0.888 1.50 0.78

HT,φ
1 → HT,φ

4 , HU,φ
1 → HU,φ

4 0.952 1.65 1.54 0.953 1.65 1.55

HT,φ
1 , HT,φ

3 , HU,φ
1 , HU,φ

3 0.952 1.66 1.56 0.952 1.65 1.54

HT,φ
1 , HT,φ

2 , HU,φ
2 , HU,φ

2 0.953 1.65 1.47 0.953 1.65 1.55

HT,φ
1 , HU,φ

1 0.953 1.65 1.43 0.952 1.65 1.46

HT,φ
1 0.950 1.63 1.45 0.950 1.63 1.44

HU,φ
1 0.952 1.65 1.40 0.952 1.65 1.44

cos ∆φ12, WT
12 0.952 1.65 1.53 0.952 1.65 1.50

cos ∆φ12 0.952 1.65 1.42 0.952 1.65 1.44

Table 2.6: BDT and MLP results including azimuthal–angle Fox–Wolfram moments based on the two
tagging jets only after Eq.(2.74). The background rejection is given for 40% signal efficiency. The value
for S/

√
S +B we compute for an integrated luminosity of 30 fb−1. All sets of variables subsequent to the

first row contain the default variables as well.

These two tagging jets must also pass

|∆yj1j2 | ≥ 2 and mj1j2 > 150 GeV . (2.74)

These cuts correspond to the variables used in the multivariate di-photon Higgs analysis by AT-
LAS [164],

{mj1j2 , yj1 , yj2 , ∆yj1j2} (ATLAS default). (2.75)

The angular correlations between the tagging jets in weak–boson–fusion Higgs production is
known to reflect the tensor structure of the WWH vertex [160]. In this application the collinearity
of the two tagging jets plays an important role, with the effect that the azimuthal angle between the
tagging jet is a more sensitive probe than the opening angle between them. For the Fox–Wolfram
moments this means that the definition in terms of the opening angle Ωij is not optimally suited.
For the tagging jet analysis we therefore replace the opening angle in the Legendre polynomials by
the azimuthal angle ∆φij between the two tagging jets,

Hx,φ
` =

2∑
i,j=1

W x
ij P`(cos ∆φij) . (2.76)

For a systematic study of the usefulness of the tagging jet correlations we perform a multi-variate
analysis of the Fox–Wolfram moments introduced in Section 2.2.2. Because the moments are based
on spherical harmonics they form a basis and include all available information, given the weight
W x
ij we use in their definition.

We show some sample BDT and MLP results based on the azimuthal moments in Table 2.6.
The full set of moments for each weight function by definition includes all available information for
the corresponding weights. First, we see that including a large set of Fox–Wolfram moments gives
a significant improvement of the current ATLAS set of observables, defined in Eq.(2.75). Both
multivariate analyses using the first four moments with unit weight as well as with transverse–
momentum weight reduces the remaining fraction of background events by a factor two. From the
Tmva output we have checked that these eight moments dominate the distinctive power of the
analysis.

Obviously, the next question is which of the Fox–Wolfram moments contribute most to this
improvement. From the earlier analysis [159] we know that lower moments will dominate in the
tagging jet analysis, and that only odd moments can distinguish between forward–backward and
forward–forward tagging jets. Individually, we find that the six best individual moments are (in



2.2. LEARN MORE ABOUT THE HIGGS: FOX–WOLFRAM–MOMENTS 67

order) HU,φ
1 , HT,φ

1 , HU,φ
3 , HT,φ

3 , HU,φ
2 , and HT,φ

2 .42 The moments with unit weight are slightly
more powerful than the transverse–momentum weight. The most striking feature is that for the
tagging jet the higher moments play hardly any role in improving the analysis.

As a matter of fact, the single moment HU,φ
1 is, within uncertainties due to the training pro-

cedure, almost as powerful as the set of the first 20 moments, both with unit and transverse–
momentum weight. Given that the corresponding Legendre polynomial is P1(cos ∆φij) = cos ∆φij
we can further simplify the analysis by separating the transverse–momentum weight from the az-
imuthal angle. Compared to the ATLAS default variables, adding the azimuthal angle between the
tagging jets, ∆φij , almost doubles the signal–to–background ratio. Systematically including the
Fox–Wolfram moments increases the signal–to–background ratio additionally by 8%. This result
persists between the two multivariate methods and we conclude that our improvement is truly due
to the nature of the moments and not to some advantageous choice of methods and/or parameters
for our multivariate analyses.

Following the tagging jet analysis in this section we extend the default set of tagging jet cuts
Eq.(2.75) for the remainder of this paper to include

{mj1j2 , yj1 , yj2 , ∆yj1j2 , ∆φj1j2} (WBF default). (2.77)

It could be argued that adding the azimuthal angle to the list of kinematic variables employed
in the background rejection will make the analysis result less applicable to modified Higgs–like
signal hypotheses. Indeed, the azimuthal angle between the tagging jets is the key observable in
the spin-0 CP analysis of the Higgs resonance [160]. On the other hand, the same is true for the
rapidity difference ∆y12 when it comes to spin-2 alternatives [160].

2.2.4 Replacing a jet veto

The key physics question we will answer in this Section is to what degree we can use information
on additional (central) jet radiation to enhance the tagging jet analysis described in the previous
Section 2.2.3. Because a detailed analysis of the jet activity has not been performed in the recent
LHC runs, we assume a collider energy of 13 TeV in this section. The physics of the additional jets
can be easily described: for the signal events the emission of additional central jets is suppressed
by the color structure of the process. This means that the number of jets in weak boson fusion
will in general follow the staircase pattern predicted for inclusive processes at the LHC [154]. In
contrast, gluon–fusion Higgs production or di-photon production will show this staircase pattern
only in the absence of tagging jet cuts. Once we require two hard jets with a large invariant mass
we induce large logarithms, which leads to a Poisson pattern in the number of jets [154]. The key
feature of this Poisson distribution is a significantly enhanced probability of radiating a central jet.

Throughout our analysis we require two tagging jets with the generic acceptance cuts

pTj > 20 GeV |yj | < 4.5 (2.78)

|∆yj1j2 | > 2 mj1j2 > 150 GeV . (2.79)

Correspondingly, we generate signal and background events using Sherpa [47] with CKKW [45]
jet merging with two or three hard jets from the matrix element. Throughout this Section we
assume a collider energy of 13 TeV. In addition to the general photon cuts of Eq.(2.71) we require
mγγ = 126 ± 10 GeV. The cuts of Eq. (2.78) lead to cross sections of 6.5 fb for the weak–boson–
fusion signal, 4.5 fb for gluon–fusion Higgs production, and 2050 fb for the continuum background.
As mentioned above, the signal–to–background ratio can be improved through additional cuts,
such as tightening the mγγ requirement. However, this makes it harder to reliably simulate the
background. In the following we will assume that additional cuts on the Higgs decay products are
orthogonal to the additional jet kinematics.

Because the selection criterion of the two tagging jets has a significant impact on the amount of
Poisson enhancement of the additional jet production we use two selection criteria for the tagging
jets:

1. pT -selection: of all jets fulfilling Eqs.(2.78) and (2.79) the two hardest are the tagging jets.
The mild cuts of Eq.(2.79) leave 3.36 fb for the signal, 1.04 fb for gluon–fusion Higgs pro-
duction, and 509 fb for the continuum background.

42Given that Tmva gives an ordered list of the most relevant observables, it is not clear to one of the authors
(TP) why this very interesting information is never shown in experimental publications.
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∆y-selection pT -selection
WBF GF γγ WBF GF γγ

generated [fb] 6.5 4.5 2050 6.5 4.5 2050
∆yj1j2 > 4.4 ×0.33 ×0.15 ×0.11 ×0.27 ×0.056 ×0.055
yj1yj2 < 0.0 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00
mj1j2 > 600 GeV ×0.72 ×0.55 ×0.46 ×0.77 ×0.61 ×0.47
cut level [fb] 1.52 0.37 107 1.36 0.15 52.9
central jet veto ×0.75 ×0.15 ×0.22 ×0.91 ×0.45 ×0.52
veto level [fb] 1.14 0.056 24.0 1.24 0.068 27.7

Table 2.7: Cut flow for the standard weak–boson–fusion analysis with a central jet veto for an LHC
energy of 13 TeV.

∆y-selection pT -selection

εS 1− εB
S

√
S + B

S

B
εS 1− εB

S
√
S + B

S

B
acceptance cuts Eqs.(2.78) and (2.79) 1 0 0.76 0.005 1 0 0.81 0.007
veto–level cuts Eq.(2.80) 0.402 0.854 0.80 0.014 0.405 0.996 1.01 0.026
jet veto 0.302 0.967 1.24 0.047 0.369 0.945 1.26 0.045

BDT: WBF default with Eq.(2.79)
0.400 0.862 0.79 0.014 0.400 0.904 1.04 0.027
0.634 0.674 0.84 0.010 0.414 0.897 1.04 0.027

BDT: WBF default plus FWM with Eq.(2.79)
0.400 0.952 1.34 0.041 0.400 0.944 1.35 0.047
0.232 0.986 1.42 0.083 0.302 0.972 1.43 0.071

Table 2.8: S/B and S/
√
S +B compared to classical cut and jet veto strategy for the ∆y and pT -selections

of the tagging jets. The value for S/
√
S +B we compute for an integrated luminosity of 30 fb−1. The

BDT analysis includes a set of Fox–Wolfram moments with unit weight, Eq.(2.81). We quote two working
points at 40% signal efficiency and optimized for S/

√
S +B.

2. ∆y-selection: of all jets fulfilling Eq.(2.78) and (2.79) the two most forward and backward are
the tagging jets, maximizing ∆yj1j2 . After Eq.(2.79) the remaining rates are 3.78 fb for the
signal, 1.71 fb for gluon–fusion Higgs production, and 736.2 fb for the non-Higgs background.

While the pT -selection is standard in most weak–boson–fusion analyses, it will turn out that the
∆y-selection is more efficient in generating a large Poisson enhancement for central jet emission in
the background processes. On the other hand, in particular for the 13 TeV run we have to see if
pile-up makes one of the two selections appear experimentally superior.

The standard approach to including the additional jet activity in the weak–boson–fusion Higgs
analysis is a central jet veto [153, 156]. To generate a sufficiently strong Poisson pattern in the
number of jets we demand

|∆yj1j2 | > 4.4 yj1 · yj2 < 0 mj1j2 > 600 GeV . (2.80)

In Table 2.7 we show the cut flow of the signal and background rates for each step in Eq.(2.80).
Finally, we include a central jet veto which does not allow for jets above pT = 20 GeV in between
the two tagging jets. While the two tagging jet selections show significant differences in the
intermediate steps, after the veto the numbers of signal and background events are comparable.
The survival rates for the central jet veto are in agreement with the literature [149,156].

In the first three rows of Table 2.8 we show different statistical measures after the acceptance
cuts of Eqs.(2.78) and (2.79), the veto–level cuts of Eq.(2.80), and after the central jet veto. The
background is composed of gluon–fusion Higgs production and continuum di-photon production.
We again see that the significance S/

√
S +B and the signal–to–background ratio are comparable

for the ∆y-selection and the pT -selection of the tagging jets. However, this is only true after the
jet veto. After only the hard cuts of Eq.(2.80) the pT -selection is significantly more promising.
As alluded to above, the jet veto benefits from the stronger Poisson enhancement from the ∆y-
selection, leaving the final results essentially identical.

In the next step, we use the default WBF observables of Eq.(2.77) and optimize them in a
multivariate BDT analysis as described in Section 2.2.2. The corresponding ROC curve we show
in Figure 2.28. As in Table 2.8 the efficiencies are defined with respect to the full set of acceptance
cuts from Eqs.(2.78) and (2.79). In the table we quote two points from this curve. First, we
show the usual working point with a signal efficiency of 40%. Second, we show the working point
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Figure 2.28: ROC curve for ∆y- (black) and pT -selection (red) of the tagging jets. Left: We compare
the WBF default observables (dashed) of Eq.(2.77) to an additional set of Fox–Wolfram moments (solid).
Right: We show how using Fox–Wolfram moments compare to a central jet veto.

with the best result for S/
√
S +B. Optimizing for the best result of S/B does not give a well

defined solution. As expected, the ROC curve indicates working points for the entire range of
signal efficiencies εS = 0...1.

The question we attempt to answer in this section is if we can use the available information
on the additional jet activity in reducing the two backgrounds more efficiently than with a central
jet veto. The baseline for this comparison is the corresponding row in Table 2.8. As described
in Section 2.2.2 we rely on a large set of Fox–Wolfram moments forming a basis for the angular
correlations given a weight W x

ij . Unlike for the tagging jet kinematics we now do not constrain
our system to the transverse plane, which means we use the original definition of the moments in
Eq.(2.68) with the opening angle Ωij . On the other hand, we already know what the benefit of
including the moments of the tagging jets are: according to Section 2.2.3 most of the information
is included once we add the azimuthal angle between the tagging jets, ∆φj1j2 , to the standard set
of observables given in Eq.(2.77). Therefore, we limit the analysis of the additional jet activity to
all jet–jet correlations with the exception of the two tagging jets. Moreover, we can expect the
unit weight to give the best sensitivity to the relatively soft additional jet activity, so we use

HU
` =

1

N2

∑
(i,j)6=(1,2)

P`(cos Ωij) . (2.81)

For both of the tagging jet selections we only include jets which fall between the two tagging jets, in
complete analogy of a central jet veto. For exactly two tagging jets and no additional jet radiation
this implies HU

` = 0 for all values of `.

In Table 2.8 we show the result of a combined BDT analysis of the observable of Eq.(2.77)
and the set of Fox–Wolfram moments. Again, we quote two operating points, one of them for a
fixed signal efficiency of 40% and one optimized for the best value of S/

√
S +B. In addition, we

show results for both, the ∆y-selection and the pT -selection of the tagging jets. A generic problem
for any BDT analysis is that for limited statistics of the training sample it can only include a
limited number of observables. On the other hand, the BDT first determines the most powerful
observables, so we only include the five best Fox–Wolfram moments in our analysis. We have
checked that adding more moments will not improve the result beyond numerical accuracy. For
the ∆y-selection the five leading moments with unit weight are HU

2 , HU
4 , HU

18, HU
19, and HU

17. For
the pT -selection the most powerful moments are HU

2 , HU
19, HU

17, HU
20, and HU

15. However, for the
pT -selection the most powerful variable in the BDT is ∆yj1j2 . For the ∆y-selection this observable
is maximized by construction.

The ROC curves in Figure 2.28 shows a clear improvement of the complete multivariate analysis
including the Fox–Wolfram moments as compared to the kinematic variables of Eq.(2.77) only. For
a fixed moderate signal efficiency of 40% adding information on the jets decreases the probability
of a background mis-identification by a factor of 2.9 for the ∆y-selection and a factor of 1.7 for the
pT -selection. The improvement relative to the jet veto we show in the right panel, zooming into
typical signal efficiencies around 35% relative to the acceptance cuts of Eq.(2.79). For the jet veto
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working point of the ∆y-selection with fixed signal efficiency of 30.2% we see that the background
misidentification is reduced by 30%. For the pT -selection with fixed signal efficiency of 36.9% we
find an improvement by 20%.

2.2.5 Avoiding new scales

The unit weights in the definition of the Fox–Wolfram moments used in the previous Sec-
tion 2.2.4 share a disadvantage with a jet veto when it comes to predicting them from theory: they
introduce an additional physical momentum scale in the process which is below the hard scale of
the Higgs production process. In Eq.(2.78) a transverse momentum scale of 20 GeV is introduced
as the minimum transverse momentum of the jets contributing to the moments. Collinear factor-
ization as the basis of defining the parton densities in perturbative field theory does not allow us
to consider the details of jets which are softer than the hard scale chosen to describe the process in
perturbative QCD. All measurements which are to be compared to fixed–order perturbative QCD
predictions have to be jet–inclusive for transverse momenta below the factorization scale. If we
introduce an additional energy scale below the factorization scale this implies that we introduce a
possibly large logarithm which needs to be resummed [103,136,157].

Introducing a weight which smoothly interpolates between the jet counting scale pmin
Tj = 20 GeV

and the hard scale of the process according to Eq.(2.70) should alleviate this tension, suggesting
to repeat the same analysis as shown in Section 2.2.4 with the Fox–Wolfram moments

HM
` =

∑
(i,j)6=(1,2)

(pTi − pmin
T ) (pTj − pmin

T )(∑
pTi − pmin

T

)2 P`(cos Ωij) . (2.82)

The slow turn–on of these matched Fox–Wolfram moments should soften the impact of the ad-
ditional energy scale. While we cannot offer an estimate of the improvement in the perturbative
QCD treatment, we expect that the matched weights are less sensitive to large collinear logarithms
generated by the apparent violation of collinear factorization. While a full theoretical analysis of
the benefits of these new, matched moments is beyond the scope of this paper, we will estimate
how their experimental benefits compare to the unit weight moments shown above.

In Table 2.9 we extend the original Table 2.8, including the same BDT analysis now based on
matched Fox–Wolfram moments. For the standard working point with 40% signal efficiency we
see that the background rejection from the matched moments is essentially identical to the unit
weight moments. The main difference is the order of the most relevant set of moments, which now
is HM

1 , HM
2 , HM

3 , HM
4 , HM

6 for the ∆y-selection and HM
1 , HM

3 , HM
6 , HM

2 , HM
4 for the pT -selection.

Similarly, the working point optimized for S/
√
S +B is only slightly shifted. In Figure 2.29 we

compare the ROC curves for the jet radiation study based on the two Fox–Wolfram moment
weights. For signal efficiencies between 25% and 40% the unit weight is slightly superior, but most
likely this slight advantage will be compensated once we include theory uncertainties from QCD
predictions.

2.2.6 Outlook

Weak boson fusion analyses of Higgs production at the LHC are key ingredients to Higgs
couplings and Higgs property analyses in the upcoming LHC run. They allow for an efficient

∆y-selection pT -selection

εS 1− εB
S

√
S + B

S

B
εS 1− εB

S
√
S + B

S

B

jet veto Eq.(2.78) to (2.80) 0.302 0.967 1.24 0.047 0.369 0.945 1.26 0.045

BDT: WBF default plus unit–weight FWM
0.400 0.952 1.34 0.041 0.400 0.944 1.35 0.047

0.232 0.986 1.42 0.083 0.302 0.972 1.43 0.071

BDT: WBF default plus matched–weight FWM
0.400 0.949 1.32 0.040 0.400 0.942 1.32 0.045

0.240 0.985 1.43 0.081 0.256 0.979 1.40 0.082

Table 2.9: S/B and S/
√
S +B compared to jet veto strategy for the ∆y and pT -selections of the tagging

jets. The value for S/
√
S +B we compute for an integrated luminosity of 30 fb−1. Extending Table 2.8

the BDT analysis now includes a set of Fox–Wolfram moments with matched weight, Eq.(2.82). As BDT
results we quote the working point at 40% signal efficiency and the best point for S/

√
S +B.
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Figure 2.29: ROC curve for ∆y- (black) and pT -selection (red) of the tagging jets. Left: We compare
the choice of unit weight in the FWMs (solid) to a pT matched weight (dashed). Right: We show how
using Fox–Wolfram moments with different weights compares to a central jet veto.

background rejection based on two tagging jets and an additional central jet veto. The question is,
how we can make optimal use of the jet properties for example to improve the signal–to–background
ratio or the signal significance. In our detailed analysis we come to three conclusions:

1. For the two tagging jets we rely on a set of low-`moments with a transverse momentum weight
and azimuthal angle separation. Most of the improvement as compared to the standard
ATLAS analysis can be traced back to the missing azimuthal angle between the tagging jets.
In addition, the signal–to–background ratio can be increased by 8% by including a set of
Fox–Wolfram moments.

2. The additional jets can be studied using a wide range of moments with a unit weight and full
angular separation. It should be compared to a jet veto and delivers a significantly better
performance. The tagging jet selection with maximum rapidity distance is better suited
to distinguish the signal from the continuum background then the transverse momentum
selection. For both cases we computed a full ROC curve, allowing for optimized working
points depending on the details of the analysis.

3. To reduce theory uncertainties from QCD predictions we can introduce a softer, matched
weight in the Fox–Wolfram moments. It turns out that the analysis of jet radiation is almost
as promising as for the unit weights, but with a much improved theoretical behavior.

We conclude that tagging jet criteria as well as the jet veto as analysis tools for Higgs analyses in
weak boson fusion can be improved by a systematic study of the multi–jet system based on Fox–
Wolfram moments. The improvement is significant, both for the ∆y-selection and the pT -selection
of the tagging jets. The Fox–Wolfram moment analysis can be adapted to individual analyses by
choosing appropriate working points in the corresponding ROC curves.

2.2.7 Discriminative power

In the sections above we study how FWMs together with a BDT analysis enhance Higgs WBF
searches. We find two main improvements. First we can boost the tagging jet analysis, because
standard analyses miss an important observable, ∆Φjj . Second we find that we can replace a
jet-veto by using the FWMs. This results in a significant enhancement in S/B. In this sub section
we address the question of: How much enhancement in S/B comes from which particular source,
e.g. choice of TMVA method, set of observables, etc. The results presented here originate from
fruitful discussion with Jamie Tattersall. For simplicity we only consider the so called ∆y-selection
and the unit weight prescription, see [33]. Furthermore, if not stated explicitly, we always train on
the WBF default set of observables, defined by

mj1j2 , yj1 , yj2 , ∆yj1j2 , ∆φj1j2 (WBF default). (2.83)

We denote the identified tagging jets with 1 and 2. To be in accordance with [33] and the ATLAS
default we require the following generic acceptance cuts

pT,j > 20 GeV, |yj | < 4.5, (2.84)

|∆yj1j2 | > 2, mj1j2 > 150 GeV . (2.85)
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Figure 2.30: Comparison of boxed cuts (black) vs. BDT (red) for exclusive jet bins (njets = 2, 3, 4). The
dashed red line represents the full njets BDT analysis for comparison.

These cuts lead to the following cross sections: σWBF = 3.78 fb, σGF = 1.71 fb, σγγ = 736.2 fb.

Let us now deconstruct our previous analysis. We know that the construction of the FWMs is
sensitive to the number of jets. It is easy to check that using njets in the BDT analysis instead of
the FWM gives a similar (but still worse) ROC curve. Compare the red and green lines in Fig. 2.31.
If we use njets in a BDT analysis TMVA tells us that it is the most discriminating observable in
the tree. The next step is to quantify which of the enhancement is due to the inclusion of the
number of jets respectively the FWM into our strategy and which part is from the BDT. It is a
well established strategy to run different Higgs searches in different jet bins. Here, however, we
focus on a combined search for several bins. We understand combined in the sense that we do not
optimize separately in each exclusive jet channel, but combine εS and εB of the different channels.
For each exclusive jet bin we run a simple optimized boxed cut analysis. In addition we run a BDT
analysis in the same jet bin. We find that the cut based analysis is nearly as good as the BDT,
see Fig 2.30. The question is: to what degree can we translate this to the full analysis, where the
jet spectrum is just another variable? To compare them we have to melt the different ROC curves
of BDT-per-jet and cuts-per-jet into one object each. We do this via the following description:

εS =
∑
i

εiS
σS,i

σS,tot
,

εB =
∑
i

εiB
σS,i

σB,tot
. (2.86)

From our MC study we use the fractions

σS,2

σS,tot
= 0.71,

σS,3

σS,tot
= 0.19,

σS,4

σS,tot
= 0.07,

σB,GF,2

σB,GF,tot
= 0.27,

σB,GF,3

σB,GF,tot
= 0.30,

σB,GF,4

σB,GF,tot
= 0.20,

σB,γγ,2

σB,tot,γγ
= 0.35,

σB,γγ,3

σB,tot,γγ
= 0.34,

σB,γγ,4

σB,tot,γγ
= 0.19.

We plot all possible combinations into one graph. This gives us not a ROC curve but an ROC
area. The boundary of this area is our combined ROC curve, see Fig. 2.31. We observe that
njets (red) and FWM (green) agree with a very slight advantage for the FWM. Furthermore, the
deconstruction in exclusive jets with a BDT analysis in each jet is almost equivalent to a BDT
where njets is a variable. The cuts based analysis is comparable to a BDT analysis. The FWM
analysis seems to be slightly better in the range εS ≈ 0.4 − 0.7. However, in [33] we find that
to proper quantify the improvement in either S/B or S/

√
S +B, we need to exactly quantify the

background rejection rates because small changes there can have a strong impact on S/B. For
comparison we chose three different signal efficiencies. First εS = 0.232: here we find the highest
significance in our FWM analysis. Second εS = 0.302: this is the working point for the traditional
jet veto analysis. This point is defined by

|∆yj1j2 | > 4.4, yj1 · yj2 < 0, mj1j2 > 600 GeV . (2.87)

And last εS = 0.400 which is a default point for comparison. Our results are summarized in
Tab. 2.10. We find the BDT to be always slightly better than the cuts algorithm. This behavior
is expected because a BDT always maps the signal region better. For the jet veto we observe that
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Figure 2.31: Comparison of FWM BDT (solid, green) and njets BDT (dashed, red). The black area
corresponds to the combination of the exclusive jet bin analyses via Eq. (2.86). Left: exclusive jet bin
BDT analyses. Right: exclusive jet bin cuts analyses.

εS cuts comb. BDT comb. BDT njets BDT FWM jet veto cuts two jet BDT two jet
1− εB for ∆y-selection

and S/B

0.232
0.977(2) 0.981(2) 0.984 0.986 - 0.978 0.981
0.052(5) 0.063(6) 0.074 0.085 - 0.054 0.063

0.302
0.964(2) 0.965(2) 0.970 0.975 - 0.963 0.967
0.043(2) 0.044(3) 0.052 0.062 - 0.042 0.047

train eq. (2.87)
- - - - 0.967 0.965 0.967
- - - - 0.047 0.044 0.047

0.400
0.934(2) 0.944(2) 0.946 0.952 - 0.932 0.942
0.031(1) 0.037(1) 0.038 0.043 - 0.030 0.035

Table 2.10: Signal efficiencies and background rejection rates as well as S/B for the different analysis
strategies discussed in the text.

the cuts in Eq. (2.87) are already optimal. Before we answer our question from the beginning let
us address some details of the TMVA training procedure and estimate the uncertainty related to
our combination procedure. First of all note that by dividing our analysis in exclusive jet bins the
samples to train and test are statistically more limited than in [33]43. Furthermore, in [33] we are
able to include the signal and background cross sections (σWBF = 3.78 pb, σGF = 1.71 pbσWBF =
736.2 pb) as weights into the training process. Due to the limited statistic in the exclusive samples
we run into a convergence problem for the cut algorithms and have to set these weights to one.
We do not expect this to produce a very big difference in the results. However, knowing which
background is more important, we expect the TMVA to find at least better signal areas. This
means that especially slight differences (say of O < 0.001) between Tab. 2.10 and [33] might not
be significant, but only origin in numerical limitations44. Furthermore, our construction of the
ROC areas is, of course, not dense. This means that there is an uncertainty connected with the
statement what the highest possible background rejection is. We expect this uncertainty to be
much more dominant than any uncertainties coming from any possible variations due to statistics.
Note, however that this uncertainty is still way smaller than the difference to the other ROC curves,
see for example Fig. 2.32. The periodic structure we observe in Fig. 2.32 is a result of the finite
subset of points used in Eq. (2.86). We assume that the dips in this structure give a reasonable
error estimate for Eq. (2.86)45. In terms of background rejection they are of O(0.002). This
leads to an uncertainty for (S/B) for the combined analyses of O(0.001) for “small” background
rejection rates, e.g. the column “cuts combined” in Tab. 2.10 at εS = 0.4, up to O(0.006) for
“high” background rejection rates, e.g. the column “BDT combined” at εS = 0.232.

Tab. 2.10 tells us that the boost from the FWM does not result solely from the use of a BDT.
We see this especially in the difference between column three and four, for example in row two.
There the BDT has access to the different jet bins, but hardly outperforms the classical jet veto

43For the two and three jet category we use 100000 signal events for training and 200000 for testing. The
backgrounds have 75000 training and 175000 testing events each. However the four jet category only has 35000
training and 65000 testing events for signal as well as backgrounds.

44Note also that these numbers are rounded, of course.
45From Fig. 2.32 one could draw the conclusion that the deviation in the “up” direction, which is the important

one in our analysis, is much smaller than 0.002. However, we like to interpret these uncertainties in a conservative
way and take them face valued.
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Figure 2.32: Zoom on the ROC curves, respectively area. The black area represents the combination of
the BDT (left) and the cut (right) analyses. The dashed, red line is the ROC curve for the full njets BDT
analysis while the solid green curve is from the FWM analysis.
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Figure 2.33: Input variables for the exclusive three jet bin. The first five plots in the left figure display
Eq. (2.83). The others show the additional observables due to a third jet, namely: ∆ηj1j3, ∆ηj2j3, ∆φj1j3,
∆φj2j3 and pT,j3.

with only a 10% gain in S/B. However, using FWMs results in a 32% gain. This means the FWMs
include three times more additional information than naively including all jet bins into our analysis.
If we move to row one we find that using a full njets BDT improves the exclusive two jet BDT by
17% while the FWMs gain 35%. This is still a relative factor of two. Where does this additional
improvement come from? The FWM built a complete base of observables. Including an additional
jet into the analysis does not only change the distribution of the observables of eq. (2.83), but
also introduces new observables, e.g. the angels between the tagging jets and the third jet and its
pT . To demonstrate this point we redo the exclusive three jet analysis, but this time include more
observables. The input variables are shown in Fig. 2.33. It is immediately clear that ∆ηj1j3 and
∆ηj2j3 have strongly discriminating features. Furthermore, we observe a structure where the signal
encapsulates the background. This means that we are not able to access this additional information
via boxed cuts. We compute ROC curves for this new set of observables and compare them to
the old analysis where we only include Eq. (2.83) in Fig. 2.34. As expected the cuts analysis
(green, solid respectively dashed) is nearly identical46. However, the BDT analysis (thick solid
green) shows a huge improvement. This improvement is exactly the source of the improvement in
Sec. 2.2. If we also include a fourth jet the set of observables increases accordingly. This is the
strength of the FWMs, we do not need to care about the jet spectrum or the dimensionality of the
final state too much. In a rather simple final state configuration like WBF we might be able to
identify all relevant observables intuitively, but this for sure is not possible anymore for complex
final states like tt̄H. Furthermore, the dimensonality of the observable space grows rapidly. A
case where we cannot rely on simple cut strategies anymore. In this regard FWMs together with
a BDT are an elegant solution to efficiently explore high-multiplicity final states.

46We also include the “standard” cuts analysis (black) which has even worse convergence problems. This is due
to the fact that we randomly probe a 10D space with order 100000 MC points
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Figure 2.34: ROC curves for the exclusive three-jet analysis. Light green displays the cuts algorithm for
eq. (2.83) (solid) plus the new observables (dashed). The BDT analysis is red for eq. (2.83) while the solid
thick dark green is a BDT trained on all observables. (Sorry for this ugly plot. Our hard drive died and
exactly the data for this plot didn’t survive. Thus I had to use this backup version)





Conclusions

In this thesis we have computed the resummed jet spectrum to all orders in the democratic limit.
It is the first time that this observable is computed analytically. We find that it obeys the staircase
scaling pattern. The consequence is that the ratios of successive jet cross sections are constant.
This is a solid first principle QCD statement. The impact of this fact is huge. It allows us to
deduct the shape of standard model multi jet backgrounds from the low multiplicity region. We
show how this can be used to construct a data driven background estimation. In addition this is
the region where higher order calculations are manageable. Once the jet cross sections are fixed
we have the full power of multi jet observables to our disposal. We give two examples, which show
their usefulness: (1) a fairly model independent dark matter search and (2) the improvement of
the WBF Higgs analysis.

The analytic computation is necessary, because exclusive multi jet observables are plagued by
huge theory uncertainties. We solve this problem by proving that higher jet multiplicities can be
fixed via the staircase scaling argument. However, there is still room for improvement.

– A further study on the choice of the factorization scale within the Sherpa framework could
reveal, if scale uncertainties are really a tuning parameter or if there is some (maybe system-
atic) analysis dependence. Especially in the light of the Fox–Wolfram–Moments this has still
to be tested.

– The expansion of the generating functional offers the possibility to study higher order stair-
case scaling breaking terms. It is left to future research to show their impact. Together
with a better analytic understanding of phase space effects scaling features may be useful in
substructure studies, too.

At the moment Valerie Lang from the Heidelberg ATLAS group studies scaling features in W plus
jets in data. We are very excited to see her results.

Acknowledgments

First of all I want to thank Tilman for giving me this great opportunity. I only start to realize
how much support I got in Heidelberg. I hope I can turn the skills and connections obtained
here into more interesting research in the future. In this regard I also want to thank Werner
Rodejohann representative of the whole IMPRS for Precision Tests of Fundamental Symmetries
and their never ending support. Let me also thank my collaborators and colleagues here at the
ITP: Christoph Englert, Steffen Schumann, Erik Gerwick, David Lopez-Val, Dorival Gonzales-
Netto, Daniel Wiegand, Cathrine Bernaciak, Jamie Tattersall, Martin Jankoviak, Felix Kling, and
many more. We worked and discussed together and I am grateful for everything I learned so far.
The other part in our research program is simulation. I would like to thank Elmar Bittner and
Andreas Nussbaumer for local computing support and rescuing our hard drive. I also would like
to thank Sabine Richling representative of the bwGRiD, who never got angry at me when going
over their quota. My thanks extend to Hans-Christian Schultz-Coulon, Jan Pawlowski, and Björn-
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Appendix A

Splitting Kernels

Splitting kernels have first been discussed in the famous paper of Altarelli and Parisi [39], where
they compute massless QCD branchings. The procedere developed there can also be used to
compute splittings involving massive partons and SUSY vertices. Based on the massless definition
given in their paper, we compute the general massive splitting kernels. These can easily be taken
to the m → 0 limit. The most important part of the procedere is to notice, that we work in the
collinear limit, involved in terms of a pT expansion. There is one subtelty when working in the
collinear limit this way. As for the factorization theorem the equation only holds when we are
exactly in the limiting case. What the method actually does is just squaring a vertex. However, a
three particle vertex cannot be on shell and conserve energy momentum. Therefor, we have to take
special care of the polarization sum. For external gluons we only can allow transverse polarizations.
Usually we use the Lorentz structure of the gluon propagator. There the Ward identities garantue
that all non-transverse components give zero. However, to use the Ward identities we need energy
momentum conservation and that all external particles are on shell. The latter condition is given
for the four-momenta in the way we expand them in terms of pT . The former is not. This means
we must envorce a transverse polarization sum. We do this by using∑

polarizations

ε∗µ(k)εν(k) = δmn − kmkn

~k2
, (A.1)

which explicitly removes unphysical modes. Here (m,n) ∈ [1, 2, 3], while (µ, ν) ∈ [0, 1, 2, 3] and k
is the momentum of the gluon. To avoid this issue one can compute the Catanai–Seymour dipoles.
These contain the splitting kernels as a limiting case. Some of the techniques shown in the following
are also useful for their computation. In terms of physics the dipoles are preferable, because they
do conserve energy and momentum by taking a spectator parton into account. The spectator
is connected to the splitting kernel via a color line and absorbes the momentum. However, this
technique produces more combinatorics and in addition the generating functions are phrased in
terms of standard splitting kernels. Therefor, we limit ourselves to the standard splitting kernels
here. Note, however, that modern parton showers do use dipoles instead of splitting kernels. It is
left to future work to study if dipoles are useful for generating functions, too.

To compute the actual kernels of the type i→ jk we phrase the four momenta of the involved
particles in terms of energy fraction z = Ej/Ei and transverse momentum with respect to the
direction of i. These momenta are on shell, but conserve energy and momentum only up to terms
of O(p2

T ).

ki =

EP
0

 , kj =

zE +
p2T−z

2m2
i +m2

j

4zE

zP − p2T−z
2m2

i +m2
j

4zP
pT

 , kk =

(1− z)E +
p2T−(1−z)2m2

i +m2
k

4(1−z)E

(1− z)P − p2T−(1−z)2m2
i +m2

k

4(1−z)P
−pT

 . (A.2)

A technical note: Invovling masses we speak of the quasi collinear limit contrasted to the collinear
limit for massles partons. The collinear divergence will be shielded by these mass terms in form of
terms of log pT /m. The limiting case is defined as haveing pT and all m approach zero the same
way. Only the leading terms in this expansion are kept in Eq. (A.2). A consequence of this is that
the following relation holds.

(kj + kk)2 =
p2
T

z(1− z) +
m2
j

z
+

m2
k

1− z . (A.3)

Writing the momenta in this specific way the computation of the splitting kernels reduces to

Pi→jk =
1

2

z(1− z)
(kj + kk)2 −m2

i

∑
polarizations

|Vi→jk|2 , (A.4)
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where V is the vertex of the branching as defined by the Feynman rules. We compute LO vertices
here. It is possible to go beyond this approximation. Higher order corrections result in 1 → 3
splitting configurations and will in the end result in better logarithmic precission.

There are many different ways to obtain the splitting kernels. We follow the conventions by
Catani et al. The original method uses slightly different four momenta, but yields the same results.
Another method, however, widely used in text books [22,24,25,166] uses a collinear approximation
for the external spinors rather then for the resulting product of four momenta. While this works in
the massless case it is useless for the massive. In the end of this appendix we compare the different
ways one can use spinor techniques and what the trouble for the massive case is. In addition the
computation reviewed here are the first step to also understand the Catani Seymour dipoles, which
are very important quantities in resummation as well as next to leading order computations.

A.1 Massless splitting kernels

In the limit m→ 0 Eq. (A.4) reduces to

Pi→jk =
1

2

z(1− z)
p2
T

∑
polarizations

|Vi→jk|2 . (A.5)

The four momenta are now defined as

ki =

EE
0

 , kj =

zE +
p2T

4zE

zE − p2T
4zE

pT

 , kk =

(1− z)E +
p2T

4(1−z)E

(1− z)E − p2T
4(1−z)E

−pT

 . (A.6)

This yields the following list of products of four and three momenta

kikk =
p2
T

2(1− z) ,

kjkk =
p2
T

2z(1− z) ,

~ki~kj = zE2 − p2
T

4z
,

~ki~kk = (1− z)E2 − p2
T

4(1− z) ,

~kj~kk = z(1− z)E2 − p2
T

4z(1− z) (1 + 2z(1− z)) +O(p4
T ),

~k2
i = E2,

~k2
j =

1

2
p2
T + z2E2 +O(p4

T ),

~k2
k =

1

2
p2
T + (1− z)2E2 +O(p4

T ). (A.7)

These are the products which appear in the calculation of the splitting kernels. Thus all we have
to do is write down the vertex, square it, and put these resluts in.

Gluon radiation from a quark

The matrix element is

iM = igsū(kk)T jγµu(ki)ε
∗µ. (A.8)
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Squaring and averaging over spins and colors yields∑
polarizations

|Vi→jk|2 =
1

2
CF g

2
str{/kkγµ/kiγν}ε∗µεν

= CF g
22 (kk,µki,ν − kkkigµν + ki,µkk,ν)

(
δmn −

kmj k
n
j

~k2
j

)

= 2CF g
2

((
2~ki~kk + 3kikk

)
−
(

2
(~ki~kj)(~kj~kk)

~k2
B

+ kikk

))
. (A.9)

We therefor have in leading order of p2
T

Pq→qg = CF
1 + (1− z)2

z
,

Pq→gq = CF
1 + z2

1− z (by kinematic symmetry),

Pg̃→g̃g = CA
1 + (1− z)2

z
(by super symmetry),

Pg̃→gg̃ = CA
1 + z2

1− z . (A.10)

Gluon to quark splitting

The matrix element is

iM = igū(kj)T
iγµv(kk)εµ(ki). (A.11)

Squaring and averaging over polarizations and colors yields

∑
polarizations

|Vi→jk|2 = 2TR (kj,µkk,ν − kjkkgµν + kk,µkj,ν)

(
δmn − kmi k

n
i

~k2
i

)

= 2TRg
2

((
2~kj~kk + 3kjkk

)
−
(

2
(~ki~kj)(~ki~kk)

~k2
i

+ kjkk

))
. (A.12)

We therefor have in leading order of p2
T

Pg→qq̄ = TR
(
z2 + (1− z)2

)
,

Pg→g̃g̃ = CA
(
z2 + (1− z)2

)
(by super symmetry). (A.13)

Gluon triple vertex

The matrix element is

iM = −gf ijk
(

(ki − kj)ρ gµν + (kj − kk)µ gνρ + (kk − ki)ν gρµ
)
εµ(ki)ε

∗ν(kj)ε
∗ρ(kk). (A.14)

Squaring and averaging over polarizations and colors yields

∑
polarizations

|Vi→jk|2 =
8p2
T (1− 2z + 3z2 − 2z3 + z4)

(1− z)2z2
+O(p4

T ). (A.15)

We therefor have in leading order of p2
T

Pg→gg = CA

(
1− z
z

+
z

1− z + z(1− z)
)
. (A.16)
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Squark gluino gluon vertex

We start with the squark in the initial state. The matrix element is

iM = −1Lū(kj)ig
√

2T jPRv(−kk). (A.17)

Squaring and averaging over colors yields

M2 = CF g
22tr{/kjPR/kkPL}

= 2CF g
2 1

4

(
4kjkk − tr{/kjγ5/kkγ

5}
)

= 2CF g
2 1

4
(4kjkk + 4kjkk)

= 4CF g
2kjkk. (A.18)

We therefor have in leading order of p2
T

Pq̃→g̃q(z) = CF × (1). (A.19)

Putting the quark in the initial state we have kk → ki. This yields

Pq→q̃g̃(z) = CF (1− z). (A.20)

Symmetry then yields

Pq→g̃q̃(z) = CF (z). (A.21)

With the gluino in the initial state only the color factor changes CF → TR.

Pg̃→q̃q(z) = TR(1− z).
Pg̃→qq̃(z) = TR(z). (A.22)

Observe that, because no gauge coupling is involved, no configuration produces a soft divergence.

A.2 Massive splitting kernels

The computation for the massive splitting kernels works analoge. Only two things change. For
spin sums we need to put in the massive Dirac equation and squared four momenta might yield a
mass term now. The list of import four and three momentum products depends therefor on the
particular configuration we study.

Gluon radiation from a heavy quark

For this kernel we have mi = mj = mQ and mk = 0. The matrix element is changed and includes
now a factor m2

Q. The vector products are:

kikj =
p2
T +m2

Q(1 + z2)

2z

~ki~kj = zP 2 −
p2
T + (1− z2)m2

Q

4z

~ki~kk = (1− z)P 2 −
p2
T − (1− z)2m2

Q

4(1− z)

~kj~kk = z(1− z)P 2 −
(z2 + (1− z)2)p2

T + (1− z)2(1− 2z)m2
Q

4z(1− z)

~k2
k =

p2
T

2
+ (1− z)2

(
P 2 +

m2
Q

2

)
. (A.23)
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For the squared matrix element we find

4g2

(
~ki~kj + kikj −m2

Q −
(~ki~kk)(~kj~kk)

~k2
k

)

= 2g2
p2
T + (1− z)2m2

Q

z(1− z)

(
1 + z2

1− z −
2z(1− z)m2

Q

p2
T + (1− z)2m2

Q

)
. (A.24)

We therefor have in leading order of p2
T

PQ→Qg = CF

(
1 + z2

1− z −
2m2

Q

(pQ + pg)2

)
,

PQ→Qg = CF

(
1 + (1− z)2

z
−

2m2
Q

(pg + pQ)2

)
(by symmetry). (A.25)

Gluon splitting to two heavy quarks

For this kernel we have E = P → mi = 0,mj = mk = mQ. The matrix element is changed and
includes now a factor 2m2

Q. The vector products are:

kjkk =
p2
T +m2

Q

2z(1− z) −m
2
Q

~kj~kk = m2
Q + z(1− z)P 2 −

p2
T +m2

Q

4z(1− z)

(
1 + 2z(1− z)−

p2
T +m2

Q

4P 2

)

~ki~kj = zP 2 −
p2
T +m2

Q

4z

~ki~kk = (1− z)P 2 −
p2
T +m2

Q

4(1− z)
~k2
i = P 2 (A.26)

For the squared matrix element we find

2TRg
2

((
2~kj~kk + 3kjkk + 3m2

Q

)
−
(

2
(~ki~kj)(~ki~kj)

~k2
i

+ kjkk +m2
Q

))

= 4TRg
2

(
p2
T +m2

Q

2z(1− z) +m2
Q + z(1− z)P 2 −

p2
T +m2

Q

4z(1− z)

(
1 + 2z(1− z)−

p2
T +m2

Q

4P 2

)

−

(
zP 2 − p2T +m2

Q

4z

)(
(1− z)2P 2 − p2T +m2

Q

4(1−z)

)
P 2


= 4g2TR

p2
T +m2

Q

2z(1− z)

[
1− 2z(1− z) +

2z(1− z)m2
Q

p2
T +m2

Q

]
. (A.27)

We therefor have in leading order of p2
T

Pg→QQ̄ = TR

(
1− 2z(1− z) +

2m2
Q

(pQ + pQ̄)2

)
(A.28)

Massive squark gluino gluon vertex

With the squark in the initial state the squared matrix element does not change because the
projectors in the vertex multiply to zero for the mass term. However, the product of four momenta
does change, because of our new parametrization. We now have

2kjkk = (kj + kk)2 +m2
i −m2

j −m2
k −m2

i . (A.29)
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Therefor, we get

Pq̃→g̃Q = CF

(
1−

m2
g̃ +m2

Q −m2
q̃

(kj + kk)2 −m2
q̃

)
,

PqQ→g̃q̃ = CF

(
1− z −

m2
g̃ +m2

q̃ −m2
Q

(kj + kk)2 −m2
Q

)
,

Pg̃→q̃Q = TR

(
1− z −

m2
q̃ +m2

Q −m2
g̃

(kj + kk)2 −m2
g̃

)
. (A.30)

A.3 Spinors and the collinear limit

There is another way to obtain the splitting kernels using a collinear representation of the external
spinors and polarization vectors. In the literature this is done for massless splitting kernels. How-
ever, many different parametrizations are floating around. To understand the connection between
the different methods we study general massive splitting kernels in different Dirac representations
and their transformation properties under a basis change. We then compute massless spinors in
the collinear limit. We explicitly check the connection between the different basis choices and how
they are connected to the collinear spinors used in the literature.

Spinors in Weyl basis: Srednicki

In chapter 38 spinors are introduced by solving the Dirac equation in the Weyl basis.

(/p+m)uW,s(p) = 0. (A.31)

The Weyl basis is defined by the following representation of gamma matrices

γµW =

(
0 σµ

σ̄µ 0

)
γ5
W =

(
−1 0
0 1

)
. (A.32)

In the rest frame where p = 0 we get the following solutions

uW,+(0) =
√
m


1
0
1
0

 uW,−(0) =
√
m


0
1
0
1

 vW,+(0) =
√
m


0
1
0
−1

 vW,−(0) =
√
m


−1
0
1
0

 .

(A.33)

To boost to an arbitrary frame p we use

DW (Λ) = exp (iηp̂KW) = cosh
(η

2

)
1+ sinh

(η
2

)(−σp̂ 0
0 σp̂

)

=


cosh

(
η
2

)
− cosθ sinh

(
η
2

)
−sinθ sinh 0 0

−sinθ sinh
(
η
2

)
cosh

(
η
2

)
+ cosθ sinh

(
η
2

)
0 0

0 0 cosh
(
η
2

)
+ cosθ sinh

(
η
2

)
sinθ sinh

(
η
2

)
0 0 sinθ sinh

(
η
2

)
cosh

(
η
2

)
− cosθ sinh

(
η
2

)
 .

(A.34)

where Kj
W = i/4[γjW , γ

0
W ] and η is the rapidity. Note that we use φ = 0. We thus have cosh

(
η
2

)
=√

E +m/
√

2m = A/
√

2m and sinh
(
η
2

)
=
√
E −m/

√
2m = B/

√
2m. The boost matrix now reads

1√
2m


A−Bcosθ −Bsinθ 0 0
−Bsinθ A+Bcosθ 0 0

0 0 A+Bcosθ Bsinθ
0 0 Bsinθ A−Bcosθ

 . (A.35)
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Using the rest frame solution from above general massive Dirac spinors in Weyl represantation
read

uW,+(p) =
1√
2


A−Bcosθ
−Bsinθ

A+Bcosθ
Bsinθ

 uW,−(p) =
1√
2


−Bsinθ

A+Bcosθ
Bsinθ

A−Bcosθ



vW,+(p) =
1√
2


−Bsinθ

A+Bcosθ
−Bsinθ

−A+Bcosθ

 vW,−(p) =
1√
2


−A+Bcosθ

Bsinθ
A+Bcosθ
Bsinθ

 . (A.36)

Spinors in Dirac basis: Bjorken and Drell

In chapter 3 spinors are introduced by solving the Dirac equation in Dirac representation.

γ0
D =

(
1 0
0 −1

)
γiD =

(
0 σi

−σi 0

)
γ5
D =

(
0 1

1 0

)
. (A.37)

The solution in the rest frame is

uD,+(0) =
√

2m


1
0
0
0

 uD,−(0) =
√

2m


0
1
0
0

 vD,+(0) =
√

2m


0
0
1
0

 vD,−(0) =
√

2m


0
0
0
1

 .

(A.38)

In contrast to Bjorken and Drell we introduce the norm
√

2m to avoid mass singularities in general
spinors. The transformation to an arbitry frame is given by

DD(Λ) = S = exp

(
−η

2

σv

|v|

)

=

√
E +m

2m


1 0 pz

E+m
px

E+m

0 1 px
E+m

−pz
E+m

pz
E+m

px
E+m 1 0

px
E+m

−pz
E+m 0 1

 . (A.39)

Using the identy pz/x =
√
E2 −m2cos/sinθ and introducing the terms A and B as above we get

=

√
1

2m


A 0 Bcosθ Bsinθ
0 A Bsinθ −Bcosθ

Bcosθ Bsinθ A 0
Bsinθ −Bcosθ 0 A

 . (A.40)

For simplicity we set py = 0 corresponding to φ = 0 above. Because of the structure of the rest
frame spinors we immediately read of the general form in Dirac representation.

uD,+(p) =


A
0

Bcosθ
Bsinθ

 uD,−(p) =


0
A

Bsinθ
−Bcosθ



vD,+(p) =


Bcosθ
Bsinθ
A
0

 vD,−(p) =


Bsinθ
−Bcosθ

0
A

 . (A.41)
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Basis transformation: Pokorski

In appendix A we find the unitary transformation connecting the Weyl and the Dirac basis. The
transformation matrix reads

ΨD = U†ΨW

U =
1√
2


1 0 −1 0
0 1 0 −1
1 0 1 0
0 1 0 1



U† =
1√
2


1 0 1 0
0 1 0 1
−1 0 1 0
0 −1 0 1


U†U = 1. (A.42)

For the Weyl spinors from Srednicki we get

uD,+ = U†uW,+ =
1√
2


1 0 1 0
0 1 0 1
−1 0 1 0
0 −1 0 1

 1√
2


A−Bcosθ
−Bsinθ

A+Bcosθ
Bsinθ



=


A
0

Bcosθ
Bsinθ

 . (A.43)

which is the same expression as in Bjorken and Drell. For the boost matrix we have

DD = U†DWU

=
1√
2


1 0 −1 0
0 1 0 −1
1 0 1 0
0 1 0 1

 1√
2m


A−Bcosθ −Bsinθ 0 0
−Bsinθ A+Bcosθ 0 0

0 0 A+Bcosθ Bsinθ
0 0 Bsinθ A−Bcosθ

 1√
2


1 0 1 0
0 1 0 1
−1 0 1 0
0 −1 0 1



=
1√
2m


A 0 Bcosθ Bsinθ
0 A Bsinθ −Bcosθ

Bcosθ Bsinθ A 0
Bsinθ −Bcosθ 0 A

 . (A.44)

Again we rederive the result from Bjorken and Drell.

Massless limit

In the massless limit m → 0 and thus A = B =
√
E. We are mainly interested in the small

scattering angle approxiamtion. Therefor we use cos θ ≈ 1 and sin θ ≈ θ. In the massless limit the
spinors only depend on the particle energy and the scattering angel. In the Dirac basis we find

uD,+(E, θ) =
√
E


1
0
1
θ

 uD,−(E, θ) =
√
E


0
1
θ
−1



vD,+(E, θ) =
√
E


1
θ
1
0

 vD,−(E, θ) =
√
E


θ
−1
0
1

 . (A.45)
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The same spinors in Weyl basis read

uW,+(E, θ) =
√

2E


0
−θ/2

1
θ/2

 uW,−(E, θ) =
√

2E


−θ/2

1
θ/2
0



vW,+(E, θ) =
√

2E


−θ/2

1
−θ/2

0

 vW,−(E, θ) =
√

2E


0
θ/2
1
θ/2

 . (A.46)

Helicity spinors in Dirac basis: Ellis, Sterling and Webber

In chapter 5 we find for the helicity spinors in Dirac basis in the small angel approximation

uD,+(E, θ) =
√
E


1
θ/2
1
θ/2

 uD,−(E, θ) =
√
E


−θ/2

1
θ/2
−1



vD,+(E, θ) =
√
E


−θ/2
−1
θ/2
1

 vD,−(E, θ) =
√
E


−1
θ/2
−1
θ/2

 . (A.47)

These spinors do not coincide with those we found in the massless limit. They are actually helicity
spinors describing Weyl fermions. To come to Weyl’s solution we need to incorporate projection
operators

PR/L =
1

2

(
1± γ5

)
. (A.48)

A general Dirac spinor has four independent complex entries, while a Weyl spinor only has two.
Acting with P on the spinors we find two solutions:

uD,+(E, θ) =
√
E


1
θ/2
1
θ/2

 uD,−(E, θ) =
√
E


−θ/2

1
θ/2
−1

 . (A.49)

The other solutions we find by constructing explicitly the anti-particles with

vD,s(p) = CPūTD,s(p), (A.50)

where C = iγ2γ0 is the charge conjugation and P = iγ0 & θ → −θ is the parity transformation.
We transform an outgoing particle ū into an incoming anti-particle v. We get

vD,+(E, θ) = i
√
E


−θ/2
−1
θ/2
1

 vD,−(E, θ) = i
√
E


−1
θ/2
−1
θ/2

 . (A.51)

To find the spinors in Weyl basis we use the unitary transformation from above. We find

uW,+(E, θ) =
√

2E


0
0
1
θ/2

 uW,−(E, θ) =
√

2E


−θ/2

1
0
0



vW,+(E, θ) =
√

2E


−θ/2
−1
0
0

 vW,−(E, θ) =
√

2E


0
0
−1
θ/2

 . (A.52)
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We find a reference to this representation in Peskin and Schroeder chapter 17 where the left handed
spinor in the splitting p→ qk is defined as

uL(k) =
√

2k0


pT

2(1−z)p
1
0
0

 . (A.53)

Keeping in mind that |k| ≈ (1− z)p and that k is defined with the minus pT component we have

pT ≈ (1− z)p×−θ. (A.54)



Appendix B

Hypothesis test

This appendix has already been published in [27] and was originally worked out by Christoph
Englert.

In this section we briefly review the binned log-likelihood ratio hypothesis tests which we
apply in Section 1.2. It discriminates between two specific hypotheses and has been used for
the combined LEP-Higgs limits [85], Tevatron analyses [86], and in various contexts of LHC Higgs
phenomenology [87]. According to the Neyman–Pearson lemma [88] the likelihood ratio is the most
powerful test statistic (e.g. signal+background vs background-only). We compute the (binned) log-
likelihood ratio

Q = −2 logQ = −2 log
L(data | S + B)

L(data | B)
= 2

[
s− n log

(
1 +

s

b

)]
binned

= 2
∑
i∈bins

[
si − ni log

(
1 +

si
bi

)]
,

(B.1)
where s and b denote the signal S and background B event numbers for a given luminosity, split
into the bins i. The probabilities to observe n events given the expected numbers s and b in
Eq.(B.1) are determined by Poisson distributions

L(data | S + B) =
(b+ s)ne−(s+b)

n!
L(data | B) =

bne−b

n!
. (B.2)

The sum in Eq.(B.1) extends over all contributing channels. The likelihood distributions we gen-
erate as pseudo-data around each hypothesis’ central value, which means that in principle we can
include any kind of correlation. In this work we limit ourselves to statistically independent bins i
of the njets and meff distributions. The set of entries in each bin {ni} we simulate numerically
and histogram them as a function of Q, following the Neyman-Pearson lemma. To simulate the
log-likelihood distributions we need to specify which hypothesis the bin entries {ni} should follow,
i.e. we can compute QS+B or QB. In Figure B.1 we show both Q distributions for the binned
one-dimensional njets distribution studied in our paper.

In our analysis we are interested in the probability that the background alone fakes the expected
signal+background distributions. This confidence level is given by the integral of the background
distribution QB over the signal+background range, indicated by the red-shaded region in Figure
B.1. This signal+background range is defined as all likelihood values above the median of the

-2 log Q
-10 -5 0 5 10
-410

-310

-210

-110

σ, 1.6-1, L=35 pbjetsn

background only

signal+background

Figure B.1: Log-likelihood ratio distributions based on the njets discriminator for a luminosity of
35 pb−1. The confidence level is computed by evaluating the overlap of the background-only distribution
with the signal+background maximum.
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likelihood distribution assuming the signal+background hypothesis

CLB =

∫ 〈QS+B〉

−∞
dQQB = erfc

( Z√∈
)
, (B.3)

where for illustration purposes we convert the confidence levels into the Gaussian number of stan-
dard deviations Z via the inverse error function.



Appendix C

Generating Functionals

C.1 The MLLA computation

We demonstrate the computation of the exponentiated form of the generating function for the case
of q → qg splitting at NLL. This means we include the running of the coupling. Eq. (1.11) then
reads with the replacement µF → t and µ0 → t0

Φq(t) = u∆q(t) +

t∫
t0

dt′

t′
∆q(t)

∆q(t′)

1∫
0

dz
αs(z

2(1− z)2t′)

2π
CF

(
2

1− z −
(
1 + z

))
Φq(z

2t′)Φg((1− z)2t′).

(C.1)

In a first step we simplify the divergent part by performing the transformation (1−z)2t′ = t′′, while
setting z = 1, where possible (logarithmic expansion). Note that t′′ ∈ [t′, t0] introduces another
minus sign.

−2
dz

1− z =
dt′′

t′′

⇒
1∫

0

dz
αs(z

2(1− z)2t′)

2π
CF

(
2

1− z

)
Φq(z

2t′)Φg((1− z)2t′) = Φq(t
′)

t′∫
t0

dt′′
CF
2π

αs(t
′′)

t′′
Φg(t

′′).

(C.2)

For the non-divergent part we use an approximation [25], where the z dependence of the functions
is neglected, while all explicit occurrences of z are substituted by its average of 1/2.

1∫
0

dz
αs(z

2(1− z)2t′)

2π
CF
(
−
(
1 + z

))
Φq(z

2t′)Φg((1− z)2t′) = CF
αs(t

′)

2π

(
−3

2

)
Φq(t

′)Φg(t
′).

(C.3)

Hence eq. (C.1) now reads

Φq(t) = u∆q(t) +

t∫
t0

dt′

t′
∆q(t)

∆q(t′)
Φq(t

′)
CF
2π

 t′∫
t0

dt′′
αs(t

′′)

t′′
Φg(t

′′)− 3

2
αs(t

′)Φg(t
′)

 , (C.4)

while its differentiation yields

Φ′q(t) = u∆′q(t) +

t∫
t0

dt′

t′
∆′q(t)

∆q(t′)
Φq(t

′)
CF
2π

 t′∫
t0

dt′′
αs(t

′′)

t′′
Φg(t

′′)− 3

2
αs(t

′)Φg(t
′)


+

1

t

∆q(t)

∆q(t)
Φq(t)

CF
2π

 t∫
t0

dt′
αs(t

′)

t′
Φg(t

′)− 3

2
αs(t)Φg(t)


=

∆′q(t)

∆q(t)
Φq(t) + Φq(t)

1

t

t∫
t0

dt′
αs(t

′)

t′
Φg(t

′)− 3

2

αs(t)

t
Φg(t)

 . (C.5)
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The solution to this equation is

Φq(t) = u∆q(t)exp

 t∫
t0

dt′
CF
2π

αs(t
′)

t′

(
ln
t

t′
− 3

2

)
Φg(t

′)

 ,
= u∆q(t)exp

 t∫
t0

dt′Γq→qg(t, t
′)Φg(t

′)

 , (C.6)

which we see by differentiation. The computation for Φg(t) is equivalent.

Poisson scaling

If the generating function is of the form

Φ(u; t) = uexp

 t∫
t0

dt′Γ(t, t′)
(
u− 1

)
= u∆qexp [−uln∆q] , (C.7)

introducing the Sudakov form factor as

∆q = exp

− t∫
t0

dt′Γ(t, t′)

 . (C.8)

We prove by induction that

dn

dun
Φ(u) =

(
− ln∆q

)n−1

∆qexp [−uln∆q]
(
n+ u

(
− ln∆q

))
. (C.9)

Note first that

d

du
Φ = ∆qexp [−uln∆q]

(
1 + u

(
− ln∆q

))
and

d2

du2
Φ =

(
− ln∆q

)
∆qexp [−uln∆q]

(
2 + u

(
− ln∆q

))
. (C.10)

Now we compute

dn+1

dun+1
Φ =

d

du

(
− ln∆q

)n−1

∆qexp [−uln∆q]
(
n+ u

(
− ln∆q

))
=
(
− ln∆q

)n−1

∆qexp [−uln∆q]
(
n+ u

(
− ln∆q

))(
− ln∆q

)
+
(
− ln∆q

)n−1

∆qexp [−uln∆q]
(
− ln∆q

)
=
(
− ln∆q

)n
∆qexp [−uln∆q]

(
(n+ 1) + u

(
− ln∆q

))
. (C.11)

This gives us for the jet rates

P (n) =
1

n!

dn

dun
Φ(u)

∣∣∣∣
u=0

=

(
− ln∆q

)n−1

(n− 1)!
∆q, (C.12)

which is a Poisson distribution. The occurrence of (n− 1) tells us that for starting with one hard
parton, there is no zero jet rate. Thus we reformulate the formula in forms of the probability to
radiate additional soft gluons.

Psoft(n) =
λn

n!
e−λ. (C.13)
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Note, that n = 0 now means no additional soft radiation. We also use a common factor λ instead
of the Sudakov. Depending on the number of hard partons to start with, λ is a combination of
quark and gluon Sudakovs. The cross section ratios for Poisson scaling go like

Rn+1
n

=
λ

n+ 1
. (C.14)

We have to be careful though. If we are to use this formula in a fit, the pole is not at n = −1, but
depends on the number of hard partons. Thus for e+e− it is at least at n = 0 or even at n = 1.

Staircase scaling

If the generating function is described by the differential equation

Φ′(t) = Γ(t, t0)Φ(t)
(

Φ(t)− 1
)

and

Φ(t0) = u, (C.15)

we can solve it exactly. The solution is

Φ(u; t) =
u

u+ (1− u)exp

[
t∫
t0

dt′Γ(t, t0)

]
=

u

u+ (1− u)∆̃−1
g

, (C.16)

introducing the short notion

∆̃g = exp

− t∫
t0

dt′Γ(t, t0)

 , (C.17)

which is very similar to the Sudakov form factor, but note the different scales in the branching Γ.
We prove by differentiation that eq. (C.16) solves the differential equation.

d

dt
Φ(t) =

−u(
u+ (1− u)exp

[
t∫
t0

dt′Γ(t, t0)

])2 ×

−u+ u + (1− u)exp

 t∫
t0

dt′Γ(t, t0)

Γ(t, t0)

= Γ(t, t0)Φ(t)
(

Φ(t)− 1
)
. (C.18)

Now we compute the derivatives with respect to u

d

du
Φ(u) =

{(
u+ (1− u)∆̃−1

g

)−1

+ u(−1)
(
u+ (1− u)∆̃−2

g

)−2 [
1− ∆̃−1

g

]}
d2

du2
Φ(u) =

[
1− ∆̃−1

g

]{
2 ∗ (−1)

(
u+ (1− u)∆̃−1

g

)−2

+ u(−1)(−2)
(
u+ (1− u)∆̃−1

g

)−3 [
1− ∆̃−1

g

]}
d3

du3
Φ(u) =

[
1− ∆̃−1

g

]2{
3 ∗ (−1)(−2)

(
u+ (1− u)∆̃−1

g

)−3

+ u(−1)(−2)(−3)
(
u+ (1− u)∆̃−1

g

)−4 [
1− ∆̃−1

g

]}
dn

dun
Φ(u) = n!

[
∆̃−1
g − 1

]n−1 (
u+ (1− u)∆̃−1

g

)−n{
1 + u

(
u+ (1− u)∆̃−1

g

)−1 [
∆̃−1
g − 1

]}
(C.19)
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That the last equality holds we prove by induction

dn+1

dun+1
Φ(u) =

d

du
n!
[
∆̃−1
g − 1

]n−1 (
u+ (1− u)∆̃−1

g

)−n{
1 + u

(
u+ (1− u)∆̃−1

g

)−1 [
∆̃−1
g − 1

]}
= n!

[
∆̃−1
g − 1

]n−1

×[
n
[
∆̃−1
g − 1

] (
u+ (1− u)∆̃−1

g

)−n−1
{

1 + u
(
u+ (1− u)∆̃−1

g

)−1 [
∆̃−1
g − 1

]}
+
(
u+ (1− u)∆̃−1

g

)−n (
u+ (1− u)∆̃−1

g

)−1 [
∆̃−1
g − 1

]
+
(
u+ (1− u)∆̃−1

g

)−n
u
(
u+ (1− u)∆̃−1

g

)−2 [
∆̃−1
g − 1

]2]
= (n+ 1)!

[
∆̃−1
g − 1

]n (
u+ (1− u)∆̃−1

g

)−(n+1)
{

1 + u
(
u+ (1− u)∆̃−1

g

)−1 [
∆̃−1
g − 1

]}
(C.20)

Thus we get for the jet rates

S(n) =
1

n!

dn

dun
Φ(u)

∣∣∣∣
u=0

= ∆̃g

[
1− ∆̃g

]n−1

, (C.21)

which follows staircase scaling.

C.2 Exponentiated form of the evolution equation for the
generalized kT algorithm

We start from [124]

Φq(E, ξ) = u+

ξ∫
ξR

dξ′

ξ′

1∫
ER/E

dz
αs(k

2
T )

2π
Pq→qgΦq(E, ξ

′) [Φg(zE, ξ
′)− 1]

Φg(E, ξ) = u+

ξ∫
ξR

dξ′

ξ′

1∫
ER/E

dz
αs(k

2
T )

2π
{Pg→ggΦg(E, ξ′) [Φg(zE, ξ

′)− 1]

+Pg→qq̄
[
Φ2
q(E, ξ

′)− Φg(E, ξ
′)
]}
. (C.22)

This we rewrite in the form

Φi(e, ξ) = u+

ξ∫
ξR

dξ′

ξ′

1∫
1/e

dz
αs(z, ξ

′)

2π

∑
j,l

{
Pi→jl(z)Φi(e, ξ

′)

[
Φj(e, ξ

′)Φl(E(z), ξ′)

Φi(e, ξ′)
− 1

]}
. (C.23)

i is either q or g and we sum over all allowed splittings. Now we take the derivative of ξ and find

dΦi(E, ξ)

dξ
=

1

ξ
Φi(E, ξ)

1∫
ER/E

dz
αs(z, ξ)

2π

∑
j,l

{
Pi→jl(z)

[
Φj(E, ξ)Φl(E(z), ξ)

Φi(E, ξ)
− 1

]}
. (C.24)

The solution is

Φi(E, ξ) = u exp

 ξ∫
ξR

dξ′

ξ′

1∫
ER/E

dz
αs(z, ξ

′)

2π

∑
j,l

{
Pi→jl(z)

[
Φj(E, ξ)Φl(E(z), ξ)

Φi(E, ξ)
− 1

]} . (C.25)
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C.3 Closed solution in the staircase limit with breaking
terms

We start from eq. (1.39)

Φg(e, ξ) = u exp

 ξ∫
ξR

dξ′

ξ′

1∫
1/e

dz
αs(z, ξ

′)

2π

{
Pg→gg(z)

[(
Φg(e, ξ

′) +

∞∑
n=1

(e(z − 1))n

n!

dnΦg(e, ξ
′)

den

)
− 1

]} .
(C.26)

Note that due its exponantial form the derivativ of Φg can always be written in the following form

dnΦg(e, ξ
′)

den
= Φg(e, ξ

′)×DP[n](e, ξ′; Φg), (C.27)

where DP[n] is a polynomal of derivatives of Φg. We plug this in eq. (C.26) and get

Φg(e, ξ) = u exp

 ξ∫
ξR

dξ′

ξ′

1∫
1/e

dz
αs(z, ξ

′)

2π
×

Pg→gg(z)


Φg(e, ξ

′) + Φg(e, ξ
′)

∞∑
n=1

(e(z − 1))n

n!
DP[n](e, ξ′; Φg)︸ ︷︷ ︸

T (z,e,ξ′)

− 1


 . (C.28)

Up to this point we have not gained any new insight. All we do is using exact reformulations and
introducing new symbols. To evolve further we need to employ some assumptions. This is exactly
what we mean by dropping the explicit Φg dependence in T . We assume that it is possible, in
some approximation of course, to write down such an equation. For example we could expand
around e ≈ 1 and write Φg as an explicit series in u, dropping higher terms. At the moment we
just assume that such an approximation exists. We can now rewrite eq. (C.28) and bring it in the
form

Φg(e, ξ) = u exp


ξ∫

ξR

dξ′ [Φg(e, ξ
′)− 1]

1

ξ′

1∫
1/e

dz
αs(z, ξ

′)

2π
Pg→gg(z)

︸ ︷︷ ︸
γg(e,ξ′)

+

ξ∫
ξR

dξ′Φg(e, ξ
′)

1

ξ′

1∫
1/e

dz
αs(z, ξ

′)

2π
Pg→gg(z)T (z, e, ξ′)

︸ ︷︷ ︸
r(e,ξ′)



= u exp

 ξ∫
ξR

dξ′ [Φg(e, ξ
′)− 1] γg(e, ξ

′) +

ξ∫
ξR

dξ′Φg(e, ξ
′)r(e, ξ′)

 . (C.29)

Taking the derivative this defines a differential equation of the form1

dΦg(e, ξ)

dξ
= Φg(e, ξ)× [γg(e, ξ) (Φg(e, ξ)− 1) + r(e, ξ)Φg(e, ξ)]

Φg(e, ξr) = u. (C.30)

1The differential equation itsself is still valid even if we take the Φg dependence of r(e, ξ) into account. Never-
theless, we can only solve the equation if we can get rid of it.
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We note that for the case r(e, ξ) → 0 Eq. (C.30) produces exact staircase scaling [29]. Thus we
connect this term to staircase breaking. We also can solve eq. (C.30) for arbitrary r(e, ξ). The
solution is

Φg(e, ξ) =
1

1 + (1−u)
u∆g(e,ξ) −

ξ∫
ξR

dξ′
∆g(e, ξ

′)

∆g(e, ξ)
r(e, ξ′)

︸ ︷︷ ︸
R(e,ξ)

(C.31)

where ∆g(e, ξ) = exp

[
−

ξ∫
ξR

dξ′γ(e, ξ′)

]
is the Sudakov form factor. We check the solution explicitly

by differentiating eq. (C.31) with respect to ξ. We note that we have

d∆g(e, ξ)

dξ
= −γ(e, ξ)∆g(e, ξ)

dR(e, ξ)

dξ
= r(e, ξ) + γ(e, ξ)R(e, ξ). (C.32)

Therefor, we get

dΦg(e, ξ)

dξ
= (−1)

(
1 +

1− u
u∆g(e, ξ)

−R(e, ξ)

)−2

×
[

1− u
u∆g(e, ξ)

γ(e, ξ)∆g(e, ξ)− r(e, ξ)− γ(e, ξ)R(e, ξ)

]
= Φg(e, ξ)× [γg(e, ξ) (Φg(e, ξ)− 1) + r(e, ξ)Φg(e, ξ)] . (C.33)

There is one important step left if we actually like to compute jet rates from this equation. We
need to know the u dependence of R. Plugging in all definitions we have

R(e, ξ) =

ξ∫
ξR

dξ′
∆g(e, ξ

′)

∆g(e, ξ)
r(e, ξ′)

=

ξ∫
ξR

dξ′
∆g(e, ξ

′)

∆g(e, ξ)

1

ξ′

1∫
1/e

dz
αs(z, ξ

′)

2π
Pg→gg(z)T (z, e, ξ′)

=

ξ∫
ξR

dξ′
∆g(e, ξ

′)

∆g(e, ξ)

1

ξ′

1∫
1/e

dz
αs(z, ξ

′)

2π
Pg→gg(z)

∞∑
n=1

(e(z − 1))n

n!
DP[n](e, ξ′; Φg) (C.34)

The task at hand is to find a Φg independent approximation for DP[n]. An obvious step is to
truncate the Tayler expansion at n = 0. We are then left with

DP[1](e, ξ′; Φg) =
dΦg(e, ξ

′)

Φg(e, ξ′)de
. (C.35)

We need to find the significant part in the limit e→ 1 and its u dependence.

DP[1](e, ξ′; Φg) =

ξ′∫
ξR

dξ′′

ξ′′

αs(1/e, ξ′′)Pg→gg(1/e)
2π e2

Φg(1, ξ
′′)︸ ︷︷ ︸

=u

−1

 +

1∫
1/e

dz
αs(z, ξ

′′)Pg→gg(z)z

2π

[
dΦ(e, ξ′′)

de

∣∣∣∣
e=ze

] (C.36)
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In principle we get a nested series of Φg differentiations. To argue that first term is the most
important we note that formally in the e→ 1 limit we can write

1∫
1/e

dz
αs(z, ξ

′′)Pg→gg(z)z

2π

[
dΦ(e, ξ′′)

de

∣∣∣∣
e=ze

]
≈ (1− 1/e)

αs(1/e, ξ
′′)Pg→gg(1/e)

2π e

[
dΦ(e, ξ′′)

de

∣∣∣∣
e≈1

]
.

(C.37)

We note that the last term of eq. (C.37) is exactly zero in the formal limit e→ 1. This is our first
argument that the second term vanishes faster than the first one in the e → 1 limit. We also can
controll its size this way and we set it to u − 1 which is for sure over estimated as at the end of
the day we have u→ 0. We than see that for e > 1 and e→ 1

1 > e− 1

1

e
>
e− 1

e
1

e
> (1− 1/e). (C.38)

Therefor, the first term is greater than the second one. However, this is only valid in the e → 1
limit. From this estimate we can not deduce the uncertainty we introduce by dropping the second
term nor can we conclude on the range of e where this estimate is valid, because we do not know
the correct e dependence. Nevertheless, we compute formally the u dependence of the staircase
breaking term in the staircase limit e→ 1. Thus we write

DP[1](e, ξ′; Φg) ≈
ξ′∫

ξR

dξ′′

ξ′′
αs(1/e, ξ

′′)Pg→gg(1/e)

2π e2
(u− 1)

≡ (u− 1)ρ(e, ξ′)

R(e, ξ) =

ξ∫
ξR

dξ′
∆g(e, ξ

′)

∆g(e, ξ)

1

ξ′

1∫
1/e

dz
αs(z, ξ

′)

2π
Pg→gg(z)(z − 1)e(u− 1)ρ(e, ξ′)

≡ (u− 1)χ(e, ξ). (C.39)

C.4 Jet rates with i initial soft gluons

In app. C.1 we compute the behavior of one soft gluon initializing the shower cascade. It is very
useful to generalize this formula to the case of i initial gluons.

S(n; 1) = ∆̃g

[
1− ∆̃g

]n−1

S(n; 2) =

n−1∑
k=1

S(k; 1)× S(n− k; 1)

= (n− 1)∆̃g

[
1− ∆̃2

g

]n−2

S(n; 3) =

n−1∑
k=2

S(k; 2)× S(n− k; 1)

=
1

2
(n− 1)(n− 2)∆̃3

g

[
1− ∆̃g

]n−3

S(n; i) =
(n− 1)!

(n− i)!
∆̃i
g

(i− 1)!

[
1− ∆̃2

g

]n−i
. (C.40)
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To show that the last equality is true in general we perform the induction step

S(n; i+ 1) =

n−1∑
k=i

S(k; i)× S(n− k; 1)

=

n−1∑
k=i

(k − 1)!

(k − i)!
∆̃i
g

(i− 1)!

[
1− ∆̃2

g

]k−i
× ∆̃g

[
1− ∆̃g

]n−k−1

=
∆̃i+1
g

(i− 1)!

[
1− ∆̃2

g

]n−(i+1) n−1∑
k=i

(k − 1)!

(k − i)!

=
∆̃i+1
g

(i− 1)!

[
1− ∆̃2

g

]n−(i+1) (n− 1)!

(n− (i+ 1))!

1

i

=
(n− 1)!

(n− (i+ 1))!

∆̃i+1
g

((i+ 1)− 1)!

[
1− ∆̃2

g

]n−(i+1)

(C.41)

Note, that for n >> i the distribution gets staircase like again.
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