Fluorescent nuclear track detectors as a tool for ionbeam therapy research

Grischa M. Klimpki^{1,2}, J.-M. Osinga^{1,3}, M. Niklas¹, H. Mescher^{1,2}, O. Jäkel¹, S. Greilich¹

- ¹ German Cancer Research Center, Heidelberg, Germany
- ² University of Heidelberg, Department of Physics and Astronomy, Heidelberg, Germany
- ³ Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany

GERMAN CANCER RESEARCH CENTER

50 Years – Research for A Life Without Cancer

- *space:* 500 m³
- *staff:* 3 employees

- *space:* 50,000 m³
- *staff:* 40 employees

Main characteristics

 inverse depth-dose profile (Bragg peak)

Main characteristics

- inverse depth-dose profile (Bragg peak)
- high ionization density (LET)

Main characteristics

- inverse depth-dose profile (Bragg peak)
- high ionization density (LET)
- reduced lateral scattering

Carbon ion radiotherapy

Main characteristics

- inverse depth-dose profile (Bragg peak)
- high ionization density (LET)
- reduced lateral scattering

Consequences

superior dose conformity

[Kosaki et al., Radiat. Oncol. 7, 2012]

50 Years – Research for A Life Without Cancer

Main characteristics

- inverse depth-dose profile (Bragg peak)
- high ionization density (LET)
- reduced lateral scattering

Consequences

- superior dose conformity
- enhanced relative biological effectiveness (RBE)

[Weyrather et al., Radiother. Oncol. 73, 2004]

Main characteristics

- inverse depth-dose profile (Bragg peak)
- high ionization density (LET)
- reduced lateral scattering

Consequences

- superior dose conformity
- enhanced relative biological effectiveness (RBE)
- reduced oxygen enhancement ratio (OER)

Main characteristics

- inverse depth-dose profile (Bragg peak)
- high ionization density (LET)
- reduced lateral scattering

Consequences

- superior dose conformity
- enhanced relative biological effectiveness (RBE)
- reduced oxygen enhancement ratio (OER)

Expected clinical benefits

50 Years – Research for

A Life Without Cancer

- sparing of critical structures
- higher local control for
 - (a) radioresistant, slowgrowing tumors
 - (b) hypoxic tumors

Gradients in energy deposition

Main characteristics

- inverse depth-dose profile (Bragg peak)
- high ionization density (LET)
- reduced lateral scattering

Large dose gradients on mm and nm scale
Ion-beam therapy research requires
detectors that function on both scales.

INTRODUCTION

Detector principle

developed and produced by Landauer Inc., Stillwater (OK), USA

FNTD technology

G. Klimpki 8th ECMP, Athens 9/12/2014 | Page 5

- detector stores trajectory information of traversing ions
- access information via confocal microscopy
 - scan focus plane laterally
 - change focus depth
- image stack contains full 3D information on individual ion tracks

Unidirectional field

12C irradiation

(entrance channel)

FNTD readout (Zeiss LSM 710)

1st APPLICATION

Particle counter project of J.-M. Osinga

A Life Without Cancer

Quality assurance and verification

G. Klimpki 8th ECMP, Athens 9/12/2014 | Page 8

Comparison experiment

Comparison experiment

Direct determination of k_Q

 $D_{WC} = \Delta T c_P \prod_i k_i$

Water calorimetry (primary standard)

$$D_{WC} = \Delta T \ c_P \ \prod_i k_i = D_{IC}$$

$$k_{Q,Q_0} = \frac{D_{WC}}{M_{Q,k_i} \times N_{D,Q_0}}$$

2nd APPLICATION

In vivo dosimeter

project of G. Klimpki

with fluorescent nuclear track detectors (FNTDs):

- measure dose in vivo
- estimate biological effect

measured quantities:

$$D_{biol} = f(\Phi, S, Z)$$

particle fluence Φ calculated from normalized particle number *N/A*_⊥

stopping power S

calculated from

track intensity *I*

atomic number Z attributed to track intensity distribution

$D_{biol} = f(\Phi, S, Z)$

(a) particle fluence Φ
(b) stopping power S
(c) atomic number Z

Multidirectional field

50 Years – Research for A Life Without Cancer

12C irradiation (Bragg peak)

FNTD readout (Zeiss LSM 710)

Proof of principle

Irradiation

Heidelberg Ion-Beam Therapy Center

1 detector under 6 angles: (θ = 0°, 15°, 30°, 45°, 60°, 75°)

- ion type: 12C
- energy: 90 MeV/u
- total fluence:

1.2 x 10⁶ cm⁻²

Readout

Zeiss LSM 710 microscope (30 min)

Angular distribution

$D_{biol} = f(\Phi, S, Z)$

(a) particle fluence Φ
(b) stopping power S
(c) atomic number Z

FNTD in mixed field

- high linear stopping power
- large number of secondary electrons
- large number of transformed color centers
- high local track intensity [Sykora et al., Radiat. Meas. 43, 2008]

correlate stopping power and intensity

list of limitations:

- FNTD: detector sensitivity fluctuations; ...
- **PHYSICS:** stochastic energy deposition; intensity loss of angular tracks; intensity measurements itself (maximum, Gauss peak, mean); ...
- **MICROSCOPE:** flat field correction; spherical aberration; ...

Calibration curve

50 Years – Research for A Life Without Cancer

Sensitivity correction

$D_{biol} = f(\Phi, S, Z)$

(a) particle fluence Φ
(b) stopping power S
(c) atomic number Z

Charge spectroscopy

1. correlate Z and track width

information on track width lost during confocal readout [Niklas et al., Radiat. Meas. 56, 2013]

FNTD placed in mixed heavy ion field

2. attribute Z to intensity spectrum

FNTD placed in mixed heavy ion field

Charge spectroscopy

2. attribute Z to intensity spectrum

FNTD placed in mixed heavy ion field

attribution feasible if knowledge on primary beam is available

3rd APPLICATION

Hybrid detector project of M. Niklas

G. Klimpki

8th ECMP, Athens

9/12/2014 | Page 20

Hybrid detector system

Hybrid detector system

Detected DSB sequences

Experiment overview

- irradiation with 270 MeV/u carbon ions
- 360 analyzed cells
- 100 detected nucleus hits
- 16 DSB sequences

correlation of all DSB sequences to ion tracks

[Niklas et al., Int. J. Radiat. Oncol. 87, 2013]

SUMMARY and outlook

Summary

Thank you for your attention!

GERMAN CANCER RESEARCH CENTER IN THE HELMHOLTZ ASSOCIATION

50 Years – Research for A Life Without Cancer

SP