View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by Heidelberger Dokumentenserver

INAUGURAL-DISSERTATION

ZUR ERLANGUNG DER DOKTORWURDE DER
NATURWISSENSCHAFTLICH- MATHEMATISCHEN GESAMTFAKULTAT DER
RUPRECHT-KARLS-UNIVERSITAT HEIDELBERG

VORGELEGT VON
ULRICH SCHMITT

GEBOREN AM 24.12.1985

IN KOLN

TAG DER MUNDLICHEN PRUFUNG:



https://core.ac.uk/display/32584732?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




TOWARDS A TWIST CONJECTURE IN
NON-COMMUTATIVE IwWASAWA THEORY

GUTACHTER: PRrOF. DR. OTMAR VENJAKOB






Abstract

In this thesis we study three conjectures of Kato. The first one concerns p-adic Lie exten-
sions Fo,/Q containing the cyclotomic Z,-extension Q¢ and the existence of an element Ly, ,, €
K1(Zp[[G(Fs/Q)]]s+) depending on a global unit u. Ly, is required to map to a specified
element under the connecting morphism Jyopq from K-theory and to satisfy a prescribed inter-
polation property. We state an analogous conjecture for imaginary quadratic number fields K
and, under a torsion assumption, prove it for certain abelian CM elliptic curves cases.

The second conjecture is Kato’s local main conjecture for p-adic Lie extensions F. /Q, con-
taining Q;’ and concerns the existence of a element &, € K1(ZY [[G(F.,/Qp)]]5+) depending
on a global unit u. &,/ is required to map to a specified element under 0ocq; and to satisfy a
prescribed interpolation property. In [Venl3], for certain abelian extensions an element &, is
constructed and we prove that it satisfies the desired interpolation property.

Regarding the third conjecture, we prove the following for certain CM elliptic curves E/Q
and good ordinary primes p. Up to an element €, ,, , reflecting a base change related to u and v/,
twists of L, and &, . by representations related to E assemble to an element £, ,, g that, up to
an Euler factor, is a characteristic element of the dual Selmer group Sel(K(E[p™]),T,E*(1))"
and that has an interpolation property related to that expected of a p-adic L-function of E.

Zusammenfassung

In dieser Arbeit werden drei Vermutungen von Kato untersucht, von denen die erste fiir eine
p-adische Lie Erweiterung Fo,/Q formuliert wird, die die zyklotomische Z,-Erweiterung Q¢
enthalt. Es wird die Existenz eines von einer globalen Einheit u abhangigen Elementes Ly, €
K1(Zp[[G(Foo/Q)]]s+) vermutet, das einerseits Urbild eines gewissen Elementes unter dem
Verbindungshomomorphismus dgjoper aus der K-Theorie ist und andererseits eine vorgegebene
Interpolationseigenschaft besitzt. Wir formulieren ein Analogon der Vermutung fiir quadratisch
imaginare Zahlkorper K und beweisen dieses - unter einer Torsionsannahme - fiir abelsche Er-
weiterungen K (FE[p™])/K fir eine bestimmte Klasse von CM elliptischen Kurven E.

Die zweite Vermutung betrifft eine p-adische Lie Erweiterung F. /Q,, die Q. enthalt. Es
wird die Existenz eines Elementes &,/ € Kl(zg’”[[G(Fo’o /Qp)]]g~) vermutet, das von einer
lokalen Einheit u/ abhéingt, wiederum eine bestimmte Interpolationseigenschaft besitzt und unter
Olocal auf ein gewisses Element abbildet. In [Venl3] wird fiir gewisse abelsche Erweiterungen ein
Element &, .+ konstruiert, fiir das wir das gewiinschte Interpolationsverhalten nachweisen.

Beziiglich der dritten Vermutung beweisen wir Folgendes fiir gewisse CM elliptische Kurven
E/Q und gute, ordinére Primstellen p. Wir betrachten von E induzierte Twists von L, , und &, .
und definieren ein Element €, ,, ., das einen Basiswechsel beschreibt, der von « und u' abhéngt.
Mittels dieser Twists und €2y, ., definieren wir £, g, das einerseits, bis auf einen Eulerfaktor,
ein charakteristisches Element des Duals Sel(K (E[p*]),T,E*(1))" der Selmer Gruppe ist und
andererseits eine Interpolationseigenschaft besitzt, die in engem Zusammenhang zu der steht, die
von einer p-adischen L-Funktion von E erwartet wird.
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Introduction

We begin this introduction by giving a brief summary of the development of a select few topics
from Iwasawa theory in order to recall some of the context of this thesis. Most facts about the
historical development are taken from the more detailed and expertly written accounts by J.
Coates and R. SusaTHA [CS06], K. KaTo [Kat07] and R. GREENBERG [GreO1b]. Afterwards,
we summarize the contents and main results of this thesis.

Historical Development

In the middle of the 19th century E. E. KUMMER made several remarkable discoveries includ-
ing what is nowadays called Kummer’s criterion for the irreqularity of primes and Kummer’s
congruence ([CS10], Theorems 1.1.2 and 1.1.3), compare [KumT75] for KUMMER’s original work
and some of his correspondence and the review [Maz77] for a concise summary. The criterion
for the irregularity of a prime p establishes a connection between special values of the Riemann
zeta function ((s) and the ideal class group C1(Q(1p)) of Q(1p), the number field obtained by
adjoining i, to Q, where 1, k > 1, denotes the group of pP-th roots of unity. It says that a
prime p is irregular, i.e., it divides the order #CI(Q(pyp)) of CI(Q(pp)), if and only if it divides
the numerator of at least one of ((-1),{(-3),...,((4-p).

In 1964, T. KuBoTA and H.-W. LEorpoLDT [KL64| proved the existence of a p-adic analogue
¢p of the Riemann zeta function that interpolates special values of ((s). Five years later, K.
IwasawA [Iwa69] gave a different description of ¢, in terms of power series in one indeterminate
T, which enabled an interpretation of (, in terms of the Iwasawa algebra A(G) = lim | Zy|G|U],
where U runs through all open normal subgroups of G and G = Gal(Q(pp~)*/Q) is the Galois
group of the maximal real subfield Q( gy~ )™ of Q(pp=) = U, Q(ppn ) over Q. It is this construction
of ¢, and results from K. IWASAWA’s paper [[wa64], which led to Iwasawa’s Theorem as stated
in [CS06]. One should note that in loc. cit. the existence of (, is proved by different means than
used in [Iwa69)]. In fact, it is shown that ¢, can be expressed as the image of a compatible system
of cyclotomic units under a map £ involving R. F. COLEMAN’s [C0l79] interpolating power series
and an integral logarithm [CWT78]. In order to state Iwasawa’s theorem let us write U, for the
principal units of Q,(up»)* and Cy, n > 1, for the subgroup of cyclotomic units as defined in loc.
cit. Setting Us = Linn U, and Cy = linn C,, where the limits are taken with respect to norm
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ii CHAPTER 0. INTRODUCTION

maps and writing 1(G) = ker(A(G) =3 Zyp) for the augmentation ideal we can formulate the

following theorem.

Theorem (Iwasawa’s Theorem, see ([CS06], Theorem 1.5.1)). There is a canonical iso-
morphism

Uso/Coo 2 A(G) [(1(G) - )
of A(G)-modules.

Via class field theory Us, /Cs is closely connected to the Galois group X, of the maximal abelian
p-extension of Q(pp~)" which is unramified outside the unique prime above p of Q(pp=)" over
Q(pp=)*. It was proven by K. IwWAsAwA [Iwa73] that X, is finitely generated and torsion as a
A(G)-module and that to such modules one can associate a characterictic ideal char gy (Xo),
an arithmetic invariant which, by definition, is a principal ideal in A(G), see [CS06] for details.
The natural question about generators of chary(g)(Xe) was (initially conjecturally) answered
by the cyclotomic main conjecture.

Theorem (Cyclotomic Main Conejcture). We have an equality

chary (@) (Xo) = I(G) - G (MC(Gm, Qpp=)*/Q))
of ideals in A(G).

The augmentation ideal appears in the equation |(MC(Gyy,, Q(p )" /Q))|for the following reason.
Let us write G = Gal(Q(pp~)/Q). {p, by definition, is the image in Quot(A(G)) of an element
of the form A(e)/(oe — 1) in Quot(A(G)), where A\(e) € A(G) is the image of a a cyclotomic unit
associated to an integer e under the map £ mentioned above and o -1 is a generator of I(G) such
that the quotient A(e)/(o.—1) is independent of e. Therefore, while (, is only a pseudo-measure,
any element of the form x - ¢, where x € I(G), belongs to A(G).

As remarked by J. COATES and R. SuJATHA (loc. cit., p. 8f) K. IwAsawA’s work [Iwa64] can
be considered as the “genesis of the main conjecture”. The conjecture (MC(Gyy,, Q(pp=)"/Q)))
was first proven by B. MAzUR and A. WILES [MWS84]. A different proof was given by K.
RUBIN in the appendix of [Lan90] using V. KoLyVAGIN’s [Kol90] and F. THAINE’s [Tha8§|
Euler systems. For an exposition of the Iwasawa main conjecture for more general number fields
we refer to the book [NSWOS8| by J. NEUKIRCH, A. SCHMIDT and K. WINGBERG, which also
contains several explanations of the analogy between the number field and the function field case.

The A(G)-module X is closely related to the inductive limit lim | (CUQ(ppn)){p}) of the
p-primary parts of the ideal class groups CI(Q(ppn)) of Q(upn) via multiplicative Kummer
theory, see (loc. cit., (1.22)). From this viewpoint, the main conjecture [(MC(G,,, Q(pp~)"/Q))|
constitutes a connection between the p-adic analogue ¢, of the Riemann zeta function and the
Galois module structure of the inductive limit of the ideal class groups associated to the tower
Q(:up" )’ n 21

From a historical point of view, one of the key new features of Iwasawa theory is the focus
on the action of the Galois group G on arithmetic objects. K. Karo ([Kat(Q7], p. 338) phrases
it as
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“Compared with Kummer’s criterion and class number formula, Iwasawa theory is
finer in the point that it describes not only the class number, i.e. the order of the ideal
class group, but also the action of the Galois group on the ideal class group. In fact,
one could even say that the aim of Iwasawa theory is to describe Galois actions on
arithmetic objects in terms of zeta values.”

This description of Iwasawa theory is substantiated by the array of Iwasawa main conjectures
that have been formulated and studied over the past 60 years. In several abelian cases and in
a few non-abelian settings main conjectures have been proven. Among the most notable, A.
WILES [Wil90] proved the main conjecture for totally real base fields and K. RUBIN [Rub91]
proved certain cases of (one- and two- variable) main conjectures for quadratic imaginary fields
(versions without p-adic L-function). M. KAkDE [Kakl1], [Kak13] proved a non-commutative
main conjecture for (certain) p-adic Lie extensions of a totally real base field.

K. RUBIN’s main conjecture for quadratic imaginary base field has applications to the Iwa-
sawa theory of elliptic curves, which was initiated by B. MAzUR [Maz72], [MSD74] for cyclotomic
extensions. In loc. cit. B. MAZUR and P. SWINNERTON-DYER constructed a p-adic L-function
L,(E) for an odd prime p and a (modular) elliptic curve £/Q which has good ordinary reduc-
tion at p. L,(F) is characterized by interpolating (up to a period and local term) the value
at 1 of the twisted Hasse-Weil L-series L(z, E, x), where y is a Dirichlet character of p-power
conductor regarded as a character of G via the cyclotomic character, see [GreQlb] for a more
detailed discussion. In the Iwasawa theory of elliptic curves curves the Galois group X is re-
placed by the Pontryagin dual Sel(E/Q(pp=))" = Hom(li_n}n Sel(E/Q(ppn)), Qp/Zy) of the direct
limit lim - Sel(E/Q(ppn)) of Selmer groups, which, for a general number field F' fit into an exact
sequence induced by the Kummer map

0 E(F)®Q/Z - Sel(E/F) - III(E/K) - 0,

where II(E/K) c H'(Gp,E(F)) is the Tate-Safarevi¢ group and Sel(E/F) is a subgroup of
HY(Gp,E(F)ior), see [Gre0la] for a detailed discussion of these groups. K. Karo [Kat04]
proved that Sel(E/Q(up=))" is A(G)-torsion and the Iwasawa main conjecture now states

Conjecture. We have an equality
char (g (Sel(E/Q(up=))") = AG)Lp(E), (MC(E, Q(up~)/Q))
of ideals in A(G).

Note the analogy to the cyclotomic main conjecture |(MC(Gyy,, Q(1p~)"/Q))l In [Kat07], K.
KATO gives a list of cases in which this conjecture is proven, which includes C. SKINNER’s and
E. UrBAN’s work [SU| on elliptic modular forms.

Up to this point we have considered the cyclotomic Galois extension Q(pp~)/Q, which was
Iwasawa’s starting point and can be considered as the extension obtained by adjoining the p-
power torsion points of the multiplicative formal group G,, to Q. There are, however, numerous
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other interesting Galois extensions arising, for example, from geometric objects such as abelian
varieties A over number fields F'. Adjoining to F' the coordinates of all p-power division points of
A one obtains a p-adic Lie extension F'(A[p*])/F which coincides with the trivializing extension
of the action of G on the p-adic Tate-module T, A = l(inn E(F)[p"] of A. The existence of p-adic
L-functions in these cases is mostly conjectural and since, in general, the extensions F'(A[p®])/F
are non-abelian, one no longer has the notion of principal characteristic ideal at disposal. A
suitable analogue for non-commutative settings has been developed by O. VENJAKOB [Ven(3] in
terms of K-theory and used in [CEK*05] to formulate a main conjecture for elliptic curves over
a large class of p-adic Lie extensions, compare the beginning of chapter [1| for a discussion. One
should mention that proven non-commutative main conjectures are scarce, M. KAKDE’s result
mentioned above being one of the few examples.

Historically, elliptic curves E over a quadratic imaginary number field K with complex mul-
tiplication (CM) by Ok were among the examples studied first. To have complex multiplication
means that the endomorphism ring End;(E) of E is equal to O, i.e., strictly bigger than Z.
These CM-cases are in some sense the most simple cases after Q(j,~)/Q since the Galois group
G(K(E[p™])/K) is also abelian and contains an open subgroup (the Galois group of the compos-
ite of all Z,-extensions of K over K') isomorphic to Zg. For split primes p, K. RUBIN’s [Rub91]
two variable main conjecture and R. I. YAGER’s [Yag82] results on M. Katz’ [Kat76] p-adic
L-function(s) combined, imply the main conjecture in this case. It was shown by T. BOUGANIS
and O. VENJAKOB [BV10] that these results also imply the main conjecture for the non-abelian
p-adic Lie extension K (E[p*])/Q adding to the short list of proven non-commutative cases.

The cyclotomic units that were used above are, in the CM setting, replaced by elliptic units.
Especially the p-adic L-function is now obtained from a compatible system of elliptic units in the
tower K(E[p"])n, n>1 (and the Coleman map). R. I. YAGER’s main result ([Yag82], Theorem
1) is completely analogous to Iwasawa’s Theorem from the cyclotomic theory above. It states
that the p-adic L-function of M. KATZ is a generator of the characteristic ideal of the quotient
of the (respective projective limits of) principal semi-local units and the elliptic units for the
tower K(E[p"])n, n > 1.

We want to end this historical account by noting that several generalizations of Iwasawa
theory have been proposed and developed. For example, R. GREENBERG and P. SCHNEIDER
have formulated an Iwasawa theory for p-adic representations [Gre89] and, more generally, for
motives [Sch89], [Gre94]. Moreover, non-commutative Iwasawa main conjectures as in |[CEK™05]
and for more general motives (with good ordinary reduction above p) are nowadays also studied
in the context of equivariant Tamagawa number conjectures. The compatibility of the two
conjectures was shown in [FK06].

Content and Results of the Thesis

In this thesis three conjectures are studied that were stated by K. KATO during a talk he gave in
Cambridge on the occasion of J. COATES’ sixtieth birthday. As was explained in the historical



account above, the search for p-adic L-functions and their relation to arithmetic objects such
as ideal class groups and Selmer groups has been central to Iwasawa theory. K. KATO’s three
conjectures are concerned with the possibility of expressing p-adic L-functions of motives by
twisting certain universal local and global elements. We note that T. FUKAYA and K. KATO
[FK06] expect twisting principles to hold in much greater generality in the context of (global and
local) non-commutative Tamagawa number conjectures.

Before discussing the three conjectures in more detail, let us note that the first two conjectures
about the universal elements are stated independently of any motive and depend just on a global,
resp., local p-adic Lie extension Fy,/F. Moreover, while we state the conjectures in full generality,
our results only concern certain special cases. In fact, we focus mainly on the case which arises
from the study of an elliptic curve over Q with complex multiplication by the ring of integers
Ok of a quadratic imaginary number field K, building on K. RUBIN’s [Rub91] two variable
main conjecture and K. KaTo’s [Kat] and O. VENJAKOB’s [Venl3| work on (commutative) local
e-isomorphisms. Let us describe the conjectures.

The first conjecture is of global nature and will be studied in chapter 2 Let us fix a prime p
and a compact p-adic Lie extension Fo/Q containing Q(jp=), where pp~ denotes the group of
all p-power roots of unity. Moreover, we assume that Foo = U,>1 Frn, where

U Sl ) Sl S

is a tower of finite Galois extensions F, of Q. We write G = Gal(F»/Q) and H = G(Fs/QY°),
where Q®¢ is the cyclotomic Z,-extension of QQ, such that

GIH 2 Z,.

Then, we write S and §* for the canonical left and right Ore sets of the Iwasawa algebra A(G)
from [CFK*05] associated to H, see also the beginning of section for a definition. Moreover,
let ¥ be the set of primes of Q consisting of the archimedean prime ve, of Q, the prime (p) and
those primes that ramify in Fi,/Q and assume that ¥ is finite. The first conjecture predicts the
existence of a universal element

Ly € K1(A(G)s+).
This universal element L,, depends on a global unit u € mn(O}n ® Zy,) which is a A(G)s-

generator of 5_1(1}31,1(0?” ® Zy)) (in general, such a unit is only conjectured to exist). Ly,
is characterized by two properties. Firstly, it is supposed to satisfy an interpolation property
(how to evaluate elements of K1(A(G)s+) at Artin representations is explained in [CFK05]): its
values at Artin representations p are supposed to interpolate the leading coefficient of the Artin
L-function Lyx(p,s) of p divided by a regulator R(u,p) depending on p and u, i.e.,
sfrﬁ(p)LE(p S)
L =lim ————~ Ly ~val

pvu(p) 81—1}’(1) R(u, p) ) ( b,u va ues)
where r5:(p) is the order of vanishing of Ly, (p, s) at s = 0. Note that this formula is reminiscent
of the class number formula for number fields.
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Secondly, Ly, is supposed to map to a prescribed element under the connecting homomor-
phism 0 : K1(A(G)s+) — Ko(My(G)) from K-theory, where My (G) denotes the category of

finitely generated G-modules that are S*-torsion. To be more concrete, let us define

. 1 .
™= @Hg’t‘(opn[z—f],zp(l)) 2 lim H™ (G (F), Zyp(1))
n n
for m > 1 and note that these groups vanish for m > 3 since ¢d,Gx(Fy,) < 2 for any F),, where

we also write ¥ for the primes of F;, above ¥. The Kummer sequence gives an isomorphism
lim (0% +®z7Z,) — Hi so that we can consider the image of u in Hj,. The idea is to consider
n n

]I-]IlE and HZZ as universal Iwasawa modules attached to the extension F,,/Q. Now, the second
defining property of Ly, is given by

(Lpu) = [H3] - [Hy/A(G)u]. (¢-image Lyp.)

While K. KATO formulated the global conjecture for the base field Q and, in general, non-
abelian extensions Fo/Q, we formulate an analogue of the conjecture for a quadratic imaginary
base field K and prove it in the following commutative setting

(i) there exists an elliptic curve E/K with complex multiplication by the ring of integers O
and conductor divisible by one prime of K only,

(i) Ko/K, where Ko = K(E[p™]) is the field obtained by adjoining all coordinates of p-
power division points of E to K for some prime p # 2,3 above which F has good ordinary
reduction,

under the assumption that lim Cl(Kk){p} is S*-torsion, where we write K} ,, = K (E[7"7*]),

k,n >0, for two generators 7 and 7 of the distinct primes p and p of K above p (p splits in K by
assumption (ii)). CI(K}j,){p} denotes the p-primary part of the ideal class group of K}, and
S* denotes the canonical Ore set in A(G), where we write G for the abelian p-adic Lie group
G(Kx®/K).

It is more than likely that K. KATO knew (or at least expected) that an analogous conjecture
holds in this abelian setting when he formulated the conjecture for the base field Q. As for the
generality of the above setting we note that all elliptic curves defined over QQ that are listed in
Appendix A, §3 of J. SILVERMAN’s book [Sil99] satisfy the assumptions (i) and (ii) (and, in
fact, all assumptions of the cases in which we prove the local conjecture and the twist conjecture
discussed below).

It turns out that under the just mentioned torsion assumption one can choose u to be a
sequence of norm-compatible elliptic units u = u(q) in the tower Ky ,, k,n > 1, depending on an
auxiliary ideal q of Ok which is unramified in Ko /K. The universal element L, , is then given
by m which we show belongs to A(G)§, where Nq is the norm of the ideal q and Frob,

denotes the arithmetic Frobenius in G(Ko/K). In [dS87], the element is used to

1
(Ng—Frobg)
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make the p-adic L-function corresponding to u(q) (under the Coleman map for the formal group
E and the integral logarithm) independent of the choice of g, just as the term o, — 1 appearing
in the definition of {, makes (, independent of e, which we discussed in the paragraph after the
cyclotomic main conjecture [(MC(Gyy,, Q(pp= )" /Q))}

Commutative Main Theorem (see Theorem [2.4.41)). Let the setting be as in (i) and (ii)
above, assume that 1(£nk . Cl(Kyn){p} is S*-torsion and write xq = Nq—-Frobg. Then, under the

connecting homomorphism 0, the class [1/x4] € K1(A(G)g+) of the element % € A(G)g maps to

0([1/z4]) = ~[A(G)/A(G)zq] = [HE] - [Hp/A(G)u(q)] in Ko(Mpu(G)).

Moreover, i = m satisfies the following interpolation property. Let x be a complex

Artin character x : Gg — C* such that the fixed field of the kernel is equal to Kker(x) = Kp p,
k,n >1. Then, we have (Kronecker’s second limit formula)

d 1 1

— Lz, (X,8) |s=0 = - ‘ '
ds *f Nq—X(Frobq) 12(.Uﬂ‘3kpn aeG(I%:,n/K)

log | o(exn(9)) |* x(o),

where e, ,(q) € Ok, so that the image of (e (q)) iy In lglkn((’)f(kn ® Zy) coincides with

u(q) and wkyn denotes the number of roots of unity in K congruent to 1 modulo fpFp", where
f is the conductor of the GroBencharacter vy attached to E/K.

Let us remark that for the interpolation property little work is needed as it is just a slight
restatement of L. KRONECKER’s classical second limit formula. As for the determination of the
image of [1/x4] under 0, there are two main ingredients besides a vanishing result for finitely
generated Z,-modules in Ko(9My(G)) (which we derive in chapter (1| from results of G. ZABRADI
110] and K. ARDAKOV and S. WADSLEY [AW06], [AW08]) and the fact that the image of u(q)
under the semi-local version of the Coleman map for E is not a zero-divisor in the Iwasawa algebra
(which we prove in subsection[2.4.5). On the one hand, we use K. RUBIN’s result [Rub91] on the
two variable main conjecture. On the other hand, we carefully compare K. RUBIN’s elliptic units
Co (which satisfy the analytic class number formula needed for the main result in loc. cit.) and
the smaller group Do, considered by R. I. YAGER [Yag82]. Strictly speaking, this comparison
is needed in order to derive the two variable main conjecture in the CM case from K. RUBIN’s
and R. I. YAGER’s work. Under assumption (i) from above, i.e., that the conductor f of E is a
prime power { = [" for some prime [ of K, we prove

Theorem (see Theorem [2.4.33). In Ko(My(G)) we have an equality
[Coo/Deo] = [A(G/Dy)],

where we write Dy for the decomposition group of | in G.
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Next, we discuss the second of K. KATO’s conjectures, which is of local nature and will be
studied in chapter [3| For a fixed prime p, we let F., be a p-adic Lie extension of Q, containing
Qp(ppe). We write G’ = Gal(FL /Q,) and H' = Gal(F.,/Q,’°). Later, in the CM setting consid-
ered above, we will be interested in the case F., = Ko 5 such that G’ = G is the decomposition
group in G of a place 7 of K above p. Let us write Z;;T for the ring of Witt vectors W (F,) of
a fixed algebraic closure F, of F,. Moreover, we write S"* and S’ for the canonical Ore sets in
A(G") and 'Z;;T[[g’]], respectively.

The local conjecture predicts the existence of a universal local constant-like element

Epur € K1(Zy'[[G' 1] 5)

depending on a local A(G")s-generator u' of U'(FL,)s belonging to U’ (FL,) = lim 05 [(03)P",
where the limit is taken over all finite subextensions L/Qj, of F,/Q,, with respect to norm maps,
and all m € N. The element &, ., similar to L, , above, is characterized by an interpolation prop-

erty and by the requirement to map to a prescribed element under the connecting homomorphism
0: Ki(Zy'[[G']]gr) = Ko(Mgue 5,,(G")) from K-theory, where Mz, ,,,(G") denotes the category
p b p b

of finitely generated Z;”[[g’ ]]-modules that are S"*-torsion. In order to state the conjecture let
us define the local universal cohomology groups

HYY, = lim H™(L, Z,(1))
LI

for m > 1, where L’ ranges through the finite subextensions of F, /Q,, and note that H{”. =0 for

loc
m > 3 since cd,(G /) = 2. We note that Kummer theory gives a map U’ (F.,) — Hj

loc*
Local Main Conjecture. There exists £, € Kl(/Z;”[[g’]]g,*) such that for any Artin repre-
sentation p:G' — Autc,(V),

ep(p)
Rp(ulvp)
whenever R,(u', p) # 0, where €,(p) = €,(V') is the local constant attached to V and R,(u', p)
is a p-adic regulator associated to p and u'. Moreover, the image of £, .,/ under the connecting
homomorphism from K-theory is given by

6(5p,u/) = [erész%oc] - [ZZT®ZP (H%OC/A(QI)UI)] n KO(WZ;YVH,(QI)). (6—image gp,u’)

gp,u’ (,0) =

(Ep,w-values)

Based on the existence of an e-isomorphism e;\(G)(']I‘un), O. VENJAKOB [Venl3] constructs an
element &, ., satisfying for abelian p-adic Lie extensions F_ /Q, of the form
F!, = K'(pp=), where K’ is an infinite unramified extension of Q,. Moreover, in this setting
a local A(G")s-generator u' of U'(F. )s exists. We will prove that for Fl, = K'(uy~) O.
VENJAKOB’s element &, (multiplied by —1) has the desired interpolation property
for Artin characters. Since &, or rather £, !, actually belongs to ’Zgr[[g’ 1] m(’Zg’“[[g’ 1gn)* we
may consider £, 1u, as a Zgr—valued measure on G'. Our main result towards the local conjecture
is
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Theorem (see Theorem [3.3.7). Let F., be of the form K'(py~) as above. Then, for an Artin
character x : G’ — C, we always have

( G X d(g];,}/)) '%(X;%*hdiﬁ) = _Rp(u,7X)7

regardless of whether R,(u', x) # 0.

It follows that =&, v (O. VENJAKOB’s element multiplied by —1) has the interpolation property
(Ep,w-values|). Note that multiplying by —1 does not change the image of &,,/ under ¢. The
proof of this interpolation property is a rather lengthy computation unwinding the definition of
&, L,, which involves the Coleman map for G, and the integral logarithm, and using the fact that
the local constans e,(x,¥-1,dx) can be expressed as Gaul sums. The use of R. F. COLEMAN’s
machinery for the formal group G,, is the reason why we have to introduce Z;T—coefﬁcients.
The third of K. KATO’s conjectures, which will be studied in chapter [6] brings together

the elements Ly, = m € K1(A(G)s+) from the commutative main theorem and &, €

K, (Zg’“[[g’]] &) from the local main conjecture. In fact, let £/Q be one of the elliptic curves
from ([Sil99], Appendix A, §3) with complex multiplication by O, K quadratic imaginary (these
curves have bad reduction at one prime () only and this prime ramifies in K/Q). As before, we
set Ko = K(E[p*]) for some prime p at which E has good ordinary reduction, which implies
that p splits in K into disctinct primes p = (7) and p = (7).

Let us write G for the non-abelian Galois group G(K/Q) and H = G(K o /Q¢). Moreover,
we fix some prime © of K., above p and consider the extension K 5 /Qp which is abelian (since
p splits) and of the form K'(pp~) for some infinite unramified extension K'/Q,, in fact, one
can take K’ = Uy Ky(E[7"*]) which follows from the Weil pairing. In particular, the local main
conjecture holds for G’ = G(K o 5/Qp), i.e., &y exists. The Galois groups we consider are related
as follows

G'cGcg,
where G’ and G are abelian and G is non-abelian.
In chapter basAed on work from [Ven03], we define twist operators 75_(_1) on K1(A(G)s*)
and Ty ;) o0 K1(Zy'[[G']] g ) which are induced by the G-module Tz E(~1) and the G'-module
(T,E|T,E)(-1), respectively, where (-1) denotes the —1-th Tate twist, TzE = @nE[ﬁn] and

T,E = lim | E[p™]. In particular, we are interested in the elements

e (L) € Ku(A@)s)s Ty 1) (Epr) € KL (TG )0 ).

In section we recall that the modules le, HQE, Hlloc and H%OC appear in the sequence of
G. Porrou [Poi67] and J. TATE [Tat63] for the module Z,(1). Using a result of T. FUKAYA
and K. KATO (about cases when tensoring commutes with taking cohomology), we then show
that tensoring these modules by T3 F(-1) and (TpE/TpE)(—l), respectively, and passing to the
induced G-modules, the resulting modules are related to the Pontryagin dual of the Selmer group

Sel(Koo, T,E*(1))"
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through the Poitou-Tate sequence for T,E. Here, T,E* denotes the Z,-dual representation of
T,E. The dual Selmer group is introduced in chapter {4, where we also study its relationship
to the Poitou-Tate sequence. One of the noteworthy results of this chapter is the vanishing of
LiLnn H}(GZ(K (E[p"])),T,E), where H} denotes the finite part of cohomology, which we prove
in subsection (similar results appear in the literature for the cyclotomic Zy-extension, e.g.,
in [Kat04]). In order to derive relations in Ko(My,. 5,(G)) from the Poitou-Tate sequence for
T,E we have to introduce the quotients !

Hioe/A(G)u' and  Hy/A(G)u(q)

which belong to My (G') and My (G), respectively, while Hj , and Hi do not.
This aim motivates the definition of €, . € A(G)%5. in chapter |5, which, by definition is a
base change between two generators determined by u and u’, respectively, of

(Indg (T,E/T,E(-1) ®z, Hi,.)) .

which is a free A(G)s+-module of rank 1. It turns out that there is a canonical way to define
Qpu,w SO that it is independent of chosen bases of Tz E(-1) and T,E /TpE(—l). Finally, we may
define

TEﬁ(—l)(Lp,u)

- € K1(Z)'[[G]]50);
Toii)Epw) pTes

LpuE =

where S* is a canonical Ore set in Z;f[[g]] and for which we note that there are canonical maps

between Ki-groups K1(A(G)s+) = K1(Z,'[[G]]g.) and K1(Zy [[G']]g+) = K1(Z, [[G]]5.)- Let

us write M, 5, (G) for the category of finitely generated Z,'[[G]]-modules which are S*-torsion.
ur,

Our main theorems are the following.

Twist Theorem (see theorem |6.2.3)). Assume that Sel(K,T,E*(1))" is S*-torsion. Then,

up to a twisted Euler factor, L, , i is a characteristic element of ertézp Sel(Keo, T,E*(1))Y, i.e.,
we have

ZUr 2 * ZUr A G .
N Lpur) =2, ®z7,5e( Ko, Tp (1))V] + [Z, ®z,Indg '"T,E(-1)] in Ko(fm@w(g)),
where [ is the unique prime at which E/Q has bad reduction and G,, is the decomposition group
of some place of K., above l.

In order to determine the interpolation property of £, , r we then first prove

Q ’ . .
Theorem (see theorem [6.2.5)). The element % is equal to the Tg_(_1)-twist of the
E/E(-1 p,uw

image of u under the semi-local version of the Coleman map for G,,, i.e.,

= oy Y o (- Laloc(ow))) i (Z(9N)s.

TE/E(-1) (Epu) 0eG/G’

Qp7u7u,

which shows that the left side does not depend on u'. In particular, L, g is independent of u'.
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From this theorem we conclude that £, , g is just a different guise of a well-known element
studied in [dS87] for which an interpolation formula exists. In fact, we have the following

Corollary (see corollary [6.2.6)). We have an equality of elements in ng[[g]]s*
£p,u,E = T¢—1 ()\),

where T,-1(\) denotes the twist of de Shalit’s element \ € A(G) (from definition by the
G-module (T E)*. The action of G on (TE)* is given by 1)~'. For an Artin character x of G
we have

1 1 _
Q—-fGResgx dlpwE = —-G(@Z)-Resx)-(l— - Lip((¢) - Resy) 1.0), (0.0.1)
P

(¢ Resx) (p) )
Q p

where 1 = ¢ is the Grofiencharacter of E/K and we refer to (|[dS87], p. 80) for the definition
of G(¢ - Resx) which is related to a local constant. In the expression (1) - Resx)(p) we consider
1 - Resx as a map on ideals of K prime to §. ) is a complex period and €2, is a p-adic period
determining an isomorphism of formal group G,, & E.
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Notation and Conventions

(i)

(i)

(iii)

(iv)

Unless stated otherwise, group actions are assumed to be left-actions and modules over any
ring are assumed to be left-modules.

If G is a profinite group and Oy, is the ring of integers of a finite extension L of Q,,, then we
assume all O [[G]]-modules to be Hausdorff topological O [[G]]-modules. In particular,
the G-action is continuous implying that for compact modules M and discrete modules D
we have
~ T _ U
M= 1(%1 My and D= LﬁJ D",

where U runs through the open normal subgroups of G and the My denote the U-
coinvariants while the DY denote the U-invariants.

Let G be a group and H a subgroup of GG. For a module A with an action of H we write
IndfA=Z[G]l®zmA and  Coindf A = Mapy(G,A),

for the induced and the coinduced module, which are left- and right adjoint to the forgetful
functor G-Mod - H-Mod, respectively. If G is a profinite group, H a closed subgroup of
G and M a compact Z,[[H ]]-module, then we write

C—IndgA = Zp[[G]]é)Zp[[H”M (0.0.2)
for the compact induction of M from the closed subgroup H to G.

For a profinite group G and a topological finitely generated (free) Z,-module T with a
continuous Zy-linear action of G we write

T" = Homg, (T, Zy)

for the Z,-dual representation, where g € G acts on f € T* by (g.f)(t) = f(g7't), t e T.
For a compact module like T" we write

T = Homes (T, Qp/Zy)

xiii
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for the Pontryagin dual, the discrete module of continuous homomorphisms from 7" to the
discrete module Q,/Z,. If T'is endowed with an action of G as above, then we define an
action on TV by (g.f)(t) = f(g7t), g€ G, f e TV, t € T. For a discrete Z,-module D we
define DV similarly

DY =Homs(D,Q,/Zy) = Hom(D,Q,/Z,)

where the second equation holds since D is discrete. As before, if D carries a Zjy-linear
action of G, then so does DV.

For any ring R, an R-module M and a right and left denominator set S of R we will Rg
for the ring localized at S and Mg for the usual localized Rg-module. Sometimes we also
write ST'R and S~'M for the localizations Rg and Mg, respectively.



Chapter 1

Some K-theory

In classical commutative Iwasawa theory one uses the notion of pseudo-isomorphism in order to
define principal characteristic ideals attached to (torsion) Iwasawa modules M, see, e.g., [Rub91]
and [Was97]. Generators of the characteristic ideals attached to M are called characteristic
elements of M and the search for characteristic elements of certain Iwasawa modules prompted
the formulation of several well-known main conjectures. As is explained in [CFK*05], in general,
in non-commutative Iwasawa theory the structure theory from the commutative setting is no
longer at our disposal.

For Iwasawa algebras of (non-abelian) p-adic Lie groups G containing a closed normal sub-
group H such that G/H =z Z, an alternative approach has been developed in [Ven03] and
[CFKT05]. Instead of defining characteristic ideals one considers classes of modules in the
Grothendieck group Ko(9Mpy(G)) of the category My (G) of finitely generated A(G)-modules
M that are S*-torsion (see for a definition of S*), the hope being that arithmetically
interesing A(G)-torsion modules belong to this category. Moreover, an element of Kq(A(G)g+)
is called a characteristic element of a module M belonging to My (G) if it maps to [M] e
KoM (G)) under the connecting homomorphism

0:K1(A(G)s+) — Ko(Mu(G))

from K-theory. We refer to [Ven03| for a discussion that this appoach is an adequate alternative
to the classical one used in commutative Iwasawa theory.

In section of this chapter we introduce twist operators on the above K-groups building
on results of ([Ven03|, chapter 7), but working with more general discrete valuation rings O than
Zy, since we will later also be interested in results over Z;”. The twist operators are defined in
such a way that they are compatible with the map ¢ and with extensions of scalars from Z, to
Z;,” coefficients.

In section building on results of Zabradi [Z10] and Ardakov and Wadsley [AW06], [AW0S],
we will show in corollary that for certain pairs H c G the classes of finitely generated Z,-
modules vanish in Ko(9Mgy(G)).
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1.1 Twist Operators on K- and Kj-groups

In this section we will define twist operators on Kj-groups of certain localized Iwasawa algebras
and also give compatible definitions for alternative descriptions of the Ki-groups. We twist with
respect to continuous representations

p: G — Autz, (T),

where G is a p-adic Lie group containing a closed subgroup H such that G/H = Z, and T is a
free Z,-module of finite rank.

With a view to the algebraic side of the main conjectures from Iwasawa theory we want to
determine how twisting affects the image of an element under the connecting homomorphism
from K-theory. As we will see in lemma twisting on the K7-side corresponds to tensoring
and passing to the diagonal action on the Ky-side. This result will then be used in the next
chapter in the proof of the twist conjecture for the p-adic L-function of an elliptic curve with
CM.

1.1.1 Technical background

In this section we prove some lemmata for Z,[[G]]- and Zg’”[[G]]—modules that we need in order
to define twist operators on K-groups. Let us begin with Z,[[G]]-modules. Let G be a profinite
group and let O = Of, be the ring of integers of a finite extension L of Q,. We write A(G) = Ap(G)
for the Iwasawa algebra with coefficients in O and consider continuous representations

p:G— Autp(T),

where T is a finitely generated O-module, free of rank r. We fix an O-basis of T', i.e., an O-linear
isomorphism
¢r:T=0",

where we consider the elements of O" as column vectors. In the following, for any finitely
generated left A(G)-module M, unless specified otherwise, we always consider the left action of
A(G) on T®p M induced by g.(t®@m) = (p(g)(t)) ® gm for g€ G,t € T,m € M. We will call this
the diagonal action. For p(g)(t) we simply write g.t, for any ge G, t e T.

We will need the following Lemma.

Lemma 1.1.1. For any choice of ¢ : T = O" we have a canonical isomorphism of left A(G)-
modaules
T ®o A(G) — A(G)",

with respect to the diagonal A(G)-action on the left and the canonical A(G)-action on the right.
The isomorphism is induced by mapping t® g to qﬁ(g_l.t)g, where g € G, t € 'T'. Here we consider
the elements of A(G)" as column vectors.
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Proof. This lemma is quoted from ([Ven03], Lemma 7.2), but note that we use the canonical
isomorphism
Teo AG)2AG)eo T,

which is A(G)-linear with respect to the diagonal actions on both sides. o

Next we turn to Zgr[[G]]-modules. As above, let G be a profinite group. The aim of the
rest of this subsection is threefold. First, we want to show that the tensor product of a finitely
generated pseudo-compact Z,"[[G]]-module with a free Z,-module of finite rank naturally has

a Z“’"[[G]] action induced by the diagonal G-action (as in the Z [[G]] case), see lemma m
Then, we show that a Z‘“"—VerSlon of lemmaholds see lemma 5L Lastly, we will prove that

tvvlstlng commutes Wlth extension of scalars from Z,[[G]]- to Z;;”"[[G]] -modules, see corollary
For the notion of pseudo-compact modules over topological rings we refer to [Wit03] and
note that being pseudo-compact is not an intrinsic topologlcal property of the module but a
relative property with respect to the ring. For example, Z“T is pseudo-compact as a Z“” module,
but not as a Z,-module.

We write INX(G) = A(G)@ZPZ;”. For any open (or closed) subgroup U of G we write I(U) for
the kernel of the augmentation map A(U) - Z;D”’.

Remark 1.1.2. (i) Underlying all of what follows in this subsection is the fact that the two-
sided ideals of A(G) of the form

(p"A(G) + I(U)), n >1,U open and normal in G,
generate the topology of A(G) and that the modules
AG)("MG) + [(U)) = 2" [p"[GU]
for open and normal U in G and n > 1, are discrete and of finite length as Zgr—modules,
compare ([Schll], Chapter IV, §19).

(ii) All topological rings that we will consider, i.e., Zj, Zgr, Zp[[G]] and 2;;7"[[61]], are pseudo-
compact as right- and left-modules over themselves.

(iii) Note that (as in the case of A(G)-modules) any A(G)-linear map M — N between modules
M, N equipped with the topologies induced by the submodules {p" M + I (U)M}y,r and
{p"N + I (U)N}p v, respectively, where n ranges through Ny; and U through the open
normal subgroups of GG, is continuous.

In our setting, proposition says the following.

Proposition 1.1.3. Let G be a profinite group. The topology of any finitely generated pseudo-
compact A(G)-module M coincides with the topology induced by the submodules {p"M +
I(U)M },, v, where n ranges through Ny and U through the open normal subgroups of G.
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Using proposition [1.1.3| we can prove the following lemma. We remark that for a finitely gen-
erated pseudo-compact A(G)-module M, the submodules {p"M + I(U)M }nu, considered as
Zy-submodules, form a cofinal system among all open Z,-submodules of M, simply because the
{p"M + I(U)M},, 7 form a fundamental system of open neighbourhoods of 0.

Lemma 1.1.4. Let T' be a free Zy-module of finite rank r > 1 with a continuous Zy-linear
G-action and let M be a finitely generated pseudo-compact A(G)-module. Then, we have an
isomorphism

T ®7z, M= T®ZPM
induced by the natural map T' ®z, M — T ®ZPM . In particular, one can extend the diagonal
G-action on T®z, M, i.e., g.(t®m) = (g.t)®(g9.m),ge G,t €T, me M, to an action ong’”[[G]].

Proof. In the following we will consider pairs (n,U) such that n € Ny; and U is an open and
normal subgroup of G acting trivially on T/p". Such pairs (n,U) form a cofinal subsystem
of all pairs (n,U) without any restriction on the open and normal U. Fixing an isomorphism
¢r : T = Z,,, we have

Tz, M € lim (T/p" @z, M[(p" M + I(U)M))

U
im (7 ®z, M/(p"M + I(U)M))

3

112
g

S

I
B

im (Z), ®z, M/(p"M +1(U)M))

&l

112
=
=

im (M /(p"M + [(U)M))")

&

<

=T @z, M. (1.1.1)

But the module li£1n7U (T/p”@ZpM/(p”M+f(U)M)) carries a natural action of Zgr[[G]] induced
by the action of Zgr/p"[G/U] on T'/p" ®z, M/(p”M + I(U)M), which, in turn, is induced by
the diagonal action of G/U. o
Next, we state a Zg’"—version of lemma, m

Lemma 1.1.5. For any choice of ¢ : T' 2 Z;, we have a canonical isomorphism of left 1~\(G)—
modules ~ ~
T ®z, A(G) — A(G)",

with respect to the diagonal A(G)-action on the left (see lemma and the canonical A(G)-
action on the right. The isomorphism is induced by mapping t ® g to qb(g_l.t)g, where g € G,
t € T. Here we consider the elements of A(G)" as column vectors.
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Proof. One can copy the proof of lemma see ([Ven03|, Lemma 7.2), using that for pairs
(U,n), where n > 1 is an integer and U is an open normal subgroup of G such that U acts trivially
on T/p"™, the isomorphism

T[p" @z, Zy[G|U] 2 Zp,[p" ®z, Z,[G[U], t@g— ¢(g"t)®3F,
induces an isomorphism
TIp" ®z, 2" [GIU] 2 Z,[p" ®2, 2, [G/U],
by tensoring with — ®z, Z;’“. The only point that needs special attention is the isomorphism
T ®z, A(G) 2 T&z, A(G),
which holds by lemma [1.1.4 o

We now prove the fact that twisting commutes with extension of scalars A(G) ® A(c) — for finitely
presented A(G)-modules. For any open or closed subgroup U of G let us write I(U) for the
kernel of the augmentation map A(U) - Z,,.

Remark 1.1.6. (i) Let M be a finitely presented A(G)-module. Then, as in remark |A.8.18
one can show that

IN\(G) OA(G) M= Z;Té)ZPM.

(ii) If M is finitely generated as a A(G)-module, then Z;fré)ZPM is finitely generated and

pseudo-compact as a /N\(G)—module. Indeed, if M is finitely generated over A(G), then it
is compact and its topology is generated by the submodules {p"M +I(U)M },51,17, U open
and normal in G, see ([NSWOS], (5.2.17) Proposition (ii)). By ([Wit03], Proposition 1.10),
Z”"@Z — is right exact on compact Z,-modules showing that Z"T®Z M is certainly finitely

generated as a A(G) module. Moreover, by definition, we have

Ly &z, M =1im (Zy" [p" @z, M[(p"M + I(U)M))
n,U

and Zg”/p” ®z, M[(p"M+I(U)M) is of finite length even as a Zgr—module (since M /(p" M +

I(U)M) is finitely generated as a Zy,-module), so it is certainly of finite length as a AG)-
module.

If M is a finitely generated pseudo-compact A(G) module and T" a free Z,-module of rank r with
continuous action of G, then we equip T' ®z, M with the A(G) action 1nduced by the diagonal

action of G, i.e., g.(t®m) = (g.t) ® (gin), for g € G,t € T,/ € M, compare lemma
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Corollary 1.1.7. Let M be a finitely presented A(G)-module. Then, we have an isomorphism
AMG) ®pe) (T @z, M) 2T &z, (AMG) ® () M)
of A(G)-modules, mapping A ® (t ® m) to S\(t ®(le® m)), where A€ A,t € T,m € M.

Proof. Recall that for finitely generated A(G)-modules N the original topology coincides with
that induced by the submodules {p"N + I(U)N}, y where U is open and normal in G by
(INSWOS§|, (5.2.17) Proposition). Therefore, any A(G)-homomorphism between finitely gen-
erated A(G)-modules is continuous. Now, one can show that there always is a map

AG) @) (T ®z, M) — T ®z, (AG) ®7(c) M)

as in the statement of the corollary and that it is functorial with respect to continuous (hence,
any) morphism M — N of finitely generated A(G)-modules. By our assumption that M is finitely
presented, the right exactness of the usual tensor product and the five lemma, it is sufficient to
prove the corollary for M = A(G)* for any k > 1. But in this case, by lemmata [1.1.1] and [1.1.5]
(recall the isomorphism in lemma is induced by the one from lemma we have

A@) 8 ) (T oz, MG)F) = MG) ®p () (T ©2z, A(G))"
= A(G) ®p () AMG)™
=~ A(G)™*
= (T ®z, A(G))"
=T oz, (MG) @) AMG)Y),

which concludes the proof. o

1.1.2 Twist operators on K; of localized Iwasawa algebras

For a unital ring R we define GL(R) to be the inductive limit GL(R) := lim | GL,(R), where
GL,(R) is embedded into GL,+1(R) by

a1 - aip O
ai v Qi D o
GLn(R) ) — : s : ‘e GLn+1(R).
an,1 - Adnpn
an,1 - dpn 0 0 1

Similarly, we define the subgroup of elementary matrices E(R) := h_rr)1 E,(R), which is equal to
the commutator subgroup [GL(R),GL(R)] of GL(R), see ([Ros9%4], 9.1.4. Proposition (White-
head’s Lemma)). We then set

K1(R) = GL(R)/E(R),
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which is the definition of first K-group found in loc. cit. We see that K;(R) is the abelianization
of GL(R).
Now, let G be a p-adic Lie group.

Remark 1.1.8. Both Iwasawa algebras A(G) = Or[[G]], for some finite extension L of @,
and A(G) = Z;“”[[G]] are now Noetherian as was proven by Lazard [Laz65]. This implies that
any finitely generated abstract A(G)—module M becomes pseudo-compact with respect to the
topology induced by the submodules {p" M + I (U)M},, v, where n ranges through Ny; and U
through the open normal subgroups of G. Indeed, for any such module we can now find a finite
presentation

MG S MG > M -0,

and the statement follows from the proof found in ([Gab62], Chapitre IV, §3, Théoréme 3) of
the fact that the category of pseudo-compact A(G)-modules is abelian. In short, since ker(y) is
closed one can show that A(G)"/ker(y), equipped with the quotient topology, is pseudo-compact.
Identifying A(G)"/ker(p) with the image im(¢) of ¢ one then shows that the quotient topology
on im(¢) coincides with the subspace topology induced by A(G)*. In particular, im(p) must
then be a closed submodule of A(G)* since A(G)"/ker(p) is complete. Since im(¢) is closed in
A(G)*, it follows that A(G)*/im(¢) is pseudo-compact with respect to the quotient topology.
That the latter module carries the topology as claimed was shown in proposition [1.1.3

Henceforth we shall assume that G contains a closed normal subgroup H such that
G/H =T 2 Z,.
Moreover, in the following O will stand for either
0=17, or 0= ZZT

and we will write Ap(G) = O[[G]] for the Iwasawa algebra with coefficients in O. We write S
and S™ for the two Ore sets of Ap(G) as defined in (A.8.1) and (A.8.2).

Now, let p : G — Autz, (T') be a continuous Zy-linear representation, where 7" is a free
Zyp-module of finite rank 7. We fix an isomorphism

¢r: T 2 Zy, (1.1.2)
which is equivalent to choosing a Zj,-basis of T', and for any g € G' we shall denote by

p(f)T(g) € MT(ZP)

the (r x r)-matrix with coefficients in Z, associated to ¢ o p(g) o ¢7' and the standard basis of
Zy,. For any matrix A let us write A" for the transpose of A. Consider the homomorphism
X

G — (M:(80(®))) . 9 (por(a™)'s.
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which induces an O-algebra map
T, Ao(G) — MT(AO(G)).

We want to show that 7, extends to the localized Iwasawa algebra, which will enable us to define
the twist operator 7, on Ki(Ap(G)s+).

Proposition 1.1.9. The homorphism 7, extends to a ring homomorphism
Tp - AO(G)S* - MT’(AO(G)S*)'

Proof. The proof uses similar arguments as the proof of Lemma 7.6 in [Ven03]. First we note
that 7,(p) = p-id, so it suffices to show that 7, extends to a ring homomorphism 7, : Ao (G)s —
M,(Ao(G)s). Let s be any element of S. Since s is a non-zero divisor in Ap(G) by theorem
multiplication with s from the right induces an exact sequence of left Ap(G)-modules

0— Ao(G) = Ao(G) — Ao(G)/Ao(G)s — 0.
Applying the exact functor T'®z, — we get an exact sequence

idr®-s

0—T®z, Ao(G) — Tz, Ao(G) — T ®z, (Ao(G)/Ao(G)s) — 0,

which is an exact sequence of right Ap(G)-modules with respect to the diagonal Ap(G)-actions.
By lemma [1.1.11] which we prove below, this sequence induces an exact sequence

'TP(S)

0—Ao(GQ)" — Ao(G)" — T &z, (Ao(G)/Ao(G)s) — 0, (1.1.3)

where we view Ap(G)" as a set of row vectors and -7,(s) denotes multiplication with 7,(s) from
the right. By lemmataand we know that T'®z, (Ao(G)/Ao(G)s) is finitely generated
as a Ao(H)-module and, hence, that it is S-torsion by proposition Since localizing by
S is an exact functor, gives the desired isomorphism -7,(s) : Ao(G)Y = Ao(G)Y, e,
7,(s) belongs to GLT(A@(G) 5). The universal property of localization implies that 7, extends
to the localized Iwasawa algebra. o

Using the fact ([Lam99], §17B, (17.20) Theorem) that Ap(G)g+ and M,(Ao(G)s+), r > 1,
are Morita-equivalent and the Morita invariance of K; ([Weil3|, III §1, Proposition 1.6.4), we
immediately get the following result.

Corollary 1.1.10. The homomorphism 7, induces an operator 7, on Ki(Ao(G)s+).

It remains to prove the lemma that we used in the proof of proposition We note that 7,
induces a ring homomorphism

Mi(Ao(G)) — My (M, (Ao (G))),

which, by abuse of notation, we also denote by 7,,.
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Lemma 1.1.11. For any k x k-matrix A € Mp(Ao(G)), k > 1, we have a commutative diagram
of left Ao (G)-modules

idr®-A

T ®7z, A@(G)k

T ®z, Ao(G)k

'TP(A)

(Ao(G)")F (Ao (G)")E,

where we consider Ap(G)* and (Ap(G)")* as modules of row vectors and the vertical maps are
the composite of the natural map T ®z,, Ao (G = (T ®z, Ao(G))* and the maps induced from
lemmata and (for which, of course, we use the fixed ¢r) and the transpose map

(Ao(G)", column vectors) - (Ap(G)",row vectors), v — v*.
Moreover, -7,(A) denotes multiplication with 7,(A) from the right.

Proof. Using that any matrix A = (a;;)1< j<k can be written as A = i<i i<k Aij, where A ;
is the matrix that has entries equal to zero everywhere except for its (7,7)-th entry, which is
given by a;;, and by linearity of the involved maps, one easily reduces to the case £ = 1. In
this case, first consider an element A = h belonging to G. Then, for an element of the form
t'®geT ®z, Ao(G) with g € G we have

= (or (o) (plg™)(E))) gh
(por (B - 62(plg™)(t))) gh

= (2o ®))) - (por (h7)) g
= (¢1(p(a™)(t)) g 7(h),

(6(p((gh) ™)) gh

which, by continuity, shows that the diagram commutes for all elements of T'®z, Ap(G) and for
h belonging to G. The universal property of the Iwasawa algebra then implies that it commutes
for arbitrary A € Ap(G). o

1.1.3 Fukaya and Kato’s K, (Ao (G),X)

There is a another description of K1(Ap(G)s+). We refer the reader to ([FKO06], section 1.3) for
the definition of the localized Ki-group K1(Ap(G), %), where ¥, in our case, denotes the category
of bounded complexes of finitely generated projective Ap(G)-modules, the cohomology groups

of which are S*-torsion. Fukaya and Kato prove the following proposition ([FK06], Proposition
1.3.7).
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Proposition 1.1.12. There is an isomorphism
Ki1(Ao(G),Y) 2 K1(Ao(G)g+). (1.1.4)

Fukaya and Kato give an explicit desciption of this isomorphism and its inverse. A representative
of an element A in K1(Ap(G)g), can be written as A/s, where A € M,(Ao(G))NGL,(Ao(G)s+)
and s € S*. The inverse of ([1.1.4) is given by

A — [[Ao(@)" -5 Ao(G)"],id] - [[Ao(G)" =5 Ao(G)"],1d] ™,

where we consider Ap(G)" as the set of row vectors, matrix multiplication is from the right and
the complexes are concentrated in degrees 0 and 1.

Remark 1.1.13. Note that for A € M,,(Ao(G))nGL, (Ao (G)g+) the map Ap(G)" A4, Ao(G)"
has S*-torsion kernel and cokernel. Hence, [Ap(G)™ -4, Ao(G)™] belongs to X.

Next, we want to define a twist operator on K;(Ap(G),X) and show that with respect to the
isomorphism it is compatible with the twist operator on K1 (Ap(G)s+).

First of all, let C* = ...C" ! - C* - C™' ... be an element of ¥. We want to show that
T ®z, C* defined by ...T' ®z, cl > T ®z, C' > T ®z, C™1 ... also belongs to ¥, where, on the
tensor products, we consider the diagonal action. This follows from two observations. If P is a
finitely generated, projective Ap(G)-module, such that P& Q = Ap(G)? for some Ap(G)-module
Q, then with respect to the diagonal Ap(G)-actions on each tensor product

(T®z, P)e(Tey Q) 2Tey (PeQ)=Teos Ao(G) = (T ez, Ao(G))*, (1.1.5)

from which it follows by lemmata and that T'®y, P with the diagonal action is also
finitely generated and projective. On the other hand, we have the following

Lemma 1.1.14. If M is finitely generated over Ap(G) and S*-torsion, then so is T ®z, M
equipped with the diagonal G-action.

Proof. M is S*-torsion if and only if M /(M (p)) is S-torsion (where M (p) denotes the p-primary
torsion part of M) and a finitely generated Ap(G)-module is S-torsion if and only if it is finitely
generated over Ap(H) by proposition Let us prove that (7' ®z, M)/((T ®z, M)(p))
is finitely generated over Ap(H). Choose a surjection Ap(H)* - M/(M(p)) which induces a
surjection (T®z Ao(H))" = Tey Ao(H)F - Tez, (M/(M(p))). By lemmata|l.1.1/and|1.1.5we
have (T®Zp A@(H))k = Ao(H)™, so T®z, (M/(M(p))) is finitely generated over Ao (H ). Now,
we only have to note that we have a surjection T'®z, (M/(M(p))) -» (T'®z, M)/((T@Zp M)(p)),
which concludes the proof. o
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Together, these observations and the exactness of T'®z, — imply that
C*—Tez,C*

defines a functor from X to itself. For a morphism f between complexes, the functor is defined
by extending f to idr ® f, of course.

Now, given an element [C*,a] of K1(Ap(G),X), by definition of the morphisms in the
determinant category Cy,(g) given in ([FKO06], §1.2.1), the isomorphism a : Dety, () (0) —
Det (@) (C*) canonically induces an isomorphism id7®a : Dety , () (0) — Detp, () (T®z,C*).
Now we define our twist operator on K;i(Ap(G),Y) and afterwards remark that this definition
can be extended to more general modules, see remark (ii).

Definition 1.1.15 (Twist operator on K1(Ao(G),X)). We define the operator
0, Ki(Ap(G),X) — Ki(Ao(G), %), [C*,a] — [T ®z, C*,idr ® a].

Remark 1.1.16. (i) It is a straighforward exercise to check that this operator is well-defined
(as in the case when proving that the functor Y ®, () — below in (ii) for general finitely
generated projective Y is well-defined); most of the relations in K;(Ap(G),X) can be
shown to be respected by the fact that T'is free as a Z,-module.

(ii) A more conceptual approach than the one used in deﬁnitionwould be to consider the
(Ao(G),Ao(G))-bimodule Y := Ap(G) ®z, T', where the left Ao(G)-module structure is
given by the action on the Ap(G)-factor and the right Ap(G)-module structure is induced
by the diagonal G-action from the right given by (A®t).g:= (A-g) ® g 1.t, A e Ao(G),t €
T,9 € G. Y is finitely generated and free as a left Ap(G)-module. In particular, it is
projective as a left Ap(G)-module and for such bimodules there is functor between the
determinant categories

Y ®r0 (@) = 1 Cho(@) — Chro(a)s (P,Q) — (Y ®roa) P, Y ®rp () Q)

see ([FKO06], §1.2.5). For O =Z, and any finitely generated left Ap(G)-module P there is
a natural isomorphism

(Ao(G) ®z, T) @y () P — T ®z, P

given in lemma [A.3.11] (the proof there works for a general p-adic Lie group G), which
shows that naturally

Y®AO(G) C’ET@ZP C* and Y®AO(G) DetAO(G)(C.);DetAo(G)(T®Zz, C.)
for any C'* in 3. We conclude that the operator
[C*a] — [Y ®rp () C°,Y ®rp(a) al

coincides with o,,.
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The following lemma shows that definition [1.1.15] of o,, via the isomorphism from ((1.1.4)), is
compatible with 7,,.

Lemma 1.1.17. The following diagram commutes

Ki(Ao(G)g) —— K1 (Ao(G)s+)

Ki(Ao(G),3) —= Ki(Ao(G), %) (1.1.6)

where the vertical maps are the isomorphisms from proposition

Proof. Let B be an element of Mi(Ap(G)) N GL(Ap(G)g+) for some k > 1. The statement of
the lemma immediately follows from the commutative diagram

idr ® B
T ®z, Ao(G)* re

T ®z, Ao(G)*

(B)

(Ao (G)")F — 2 (Ao (G))E,

(1.1.7)

from lemma [1.1.11} In fact, first note that as complexes concentrated in degrees 0 and 1 the

upper and the lower row of diagram belong to X, compare remark

The upper and the lower row of diagram are isomorphic as complexes. But isomorphic
complexes with compatible trivializations are equal in K1(Ap(G),X), compare section 1.3 on the
localized K7 in [FKO06]. Hence, the following two images are the same. Let A/s, A € Mi(Ao(G))n
GLp(Ao(G)s+), s € S*, be a representative of an arbitrary element of K1 (Ap(G)s+). Note that
Als = A- (% -idy) = A~ (s-idg)~!, where idy, is the k x k-identity matrix, and that s -id also
belongs to My (Ao (G)) NGLr(Ap(G)s+). On the one hand, under the top horizontal map from
, the class of A/s maps to the class of 7,(A) - 7,(s-idx) ™ € GL1(Ao(G)s), which maps
to

rk 7o (A) ks ri To(sd) rkq s q1-1
[[Ao(G)™ =" Ao(@)*]id] - [[A0(G)™ =" Ao(G)™,id] ™ in Ki(Ao(G), %),
On the other hand, the class of A/s maps to

[[Ao(G)* -2 Ao(G)*,id] - [[Ao(G) 22 Ao(6)F],1d]™ in K1 (Ao(G), %),

which, under o,, maps to

idr®-A . idr®-(s-idy) o
[T ®z, Ao(G)F 25" T @y Ao(G)F],id]- [T @z, Ao(G) "5 T oy Ao(G)F],id] ™,

which concludes the proof. o
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1.1.4 K, and the connecting homomorphism

Let the setting be as in section In ([FKO06], Theorem 1.3.15) Fukaya and Kato define an
exact sequence

(i)
K1(Ao(G)) — K1(Ao(G), X) — Ko(E) — Ko(Ao(G)),
where (ii) is defined by [C*®,a] — —[[C*]]. For the precise definition of K(3), which is the

abelian group, written additively, generated by elements of 3, subject to some relations, we refer
to (loc. cit., Definition 1.3.14). We make the following

Definition 1.1.18. Let O be a complete discrete valuation ring of characteristic 0 and of residue
characteristic p. By Mo u(G) we denote the category of finitely generated O[[G]]-modules that
are S*-torsion, where S* denotes the Ore set defined in and . If O = Z, we also
write My (G) = Mo 1 (G).

In case that G has no elements of order p, which we assume henceforth, it is important to note
that we have an isomorphism

Ko(2) — Ko(Mou(G)),  [[C*]]— 2 (-1)'[H(C)],

%

compare ([FKO0G], Section 4.3.3). We define a connecting homomorphism 0 : K1(Ao(G)s+) —
Ko(Mo, u(G)) by the commutativity of the following diagram

Ki(Ao(G)g+) —2— Ko(Mo.u(G))

.

K1(Ao(G), X) Ko(%).

Let us describe ¢ concretely. The class of A\/s € GL,(Ao(G)s+), where X\ € M,(Ao(G)) n
GL,(Ao(G)g+) and s € S*, maps to

n sidp

[[Ao(G)" 25 Ao(G)"],1d] - [[Ao(G)" 25 Ao(G)"],id] ™ € Ki(Ao(G), %)

under the vertical isomorphism on the left, where we recall that the complexes are concentrated
in degrees 0 and 1. Under (ii) this maps to

“[[Ao(G)" 25 Ao(G)"]] + [[Ao(G)" 2% Ao (G)"]] € Ko(®),
which, in turn, maps to

[coker(\)] - [coker(s-id,)] € Ko(Mo u(G)), (1.1.8)
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for which we note that multiplication from the right with both A and s-id,, has trivial kernel. In
particular, for A\/s € Ao(G)%. we have

o([Ms]) = [Ao(G) /Ao (G) ] - [Ao(G)/sho(G)],

where we write [A/s] for the class of A\/s in K1(Ap(G)s+). For a representation p : G —
Autz, (T') we have defined an operator o, on K1(Ao(G), ) in definition [1.1.15] which motivates
the following

Definition 1.1.19 (Twist operator on Ko(X)). We define an operator 6, on Ky(X) by
[C*]] — [T ®z, C*]],

where C*® is a complex in 3 and T'®z, C* is the complex which arises by tensoring each module
C" with T ®z, — and passing to the diagonal Ao(G)-action on T ®z, C".

It follows immediately from the definition of Ky(X) that this is well-defined. Evidently, we have
the following commutative diagram

K1(00(G). %) 2 Ky (3)

Op Op

Ki(ho(G), 3) 2 Ko(%).

Lemma 1.1.20. Assume that G has no elements of order p. Let p: G — Autz, (1) be as above
and consider a representative Als, A € M,(Ao(G)) NnGL,(Ao(G)s+), s € S*, of an element in
Ki1(Ao(G)g+). Then, we have

d(1p([A/s])) = [T ®z, coker(-A)] - [T ®z, coker(:(s-id,))] € Ko(Mo,u(G)).

Proof. Using that T is flat over Z,, this result can immediately be read off the following com-
mutative diagram, which summarizes the content of this subsection and subsection [I.1.3]

Ki(Ao(@)s+) —— K1(Ao(Q)s+) —— Ko(Mo u(G))

11

(i)

K1(Ao(G),2) — K1 (Ao(G), %) Ko(%).
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Comparing this result with (1.1.8]), we see that twisting on K indeed corresponds to tensoring
with T'®z, — and passing to the diagonal action on Ky as stated at the beginning of section
Therefore, making the following definition is compatible with our previous definitions.

Definition 1.1.21 (Twist operator on Ko(9Mo #(G))). We define a twist operator 7, on
Ko(Mo,u(G)) by

7 Ko(Mo,u(G)) — Ko(Mo,u(G)), [M] — [T ®z, M],
where the action of Ao(G) on T'®z, M is induced by the diagonal G-action.

All in all, we have a commutative diagram

Ki(Ao(G)s+) —2—= Ko(Mo,1(G))

‘Tp hT@Zp_

K1(Ao(G)s+) —7 Ko(Mo 1 (G)). (1.1.9)

1.2 Finitely generated Z,-modules and K\-groups

Let G be a p-adic Lie group and H a closed subgroup satisfying the conditions (i), (ii) and (iii)
defined below in section Our goal in this chapter is to show that the class [M] of a module
M e My (G), which is finitely generated as a Zy-module, vanishes in Ko(9Mg(G)), that is,

[M]=0 € KoMy (G)).

The proof we present for finitely generated free Z,-modules is due to Gergely Zabrédi, see ([ZiOJ,
Lemma 4.1 and Proposition 4.2), who considered special groups H and G (in fact he considered
the G La-case for elliptic curves without complex multiplication), but this proof can be adapted
to work in the setting described in section In contrast to Zabradi, we then show that the
general case of any finitely generated Z,-module, not necessarily free, follows from the case of
free modules.

1.2.1 Setting

For any profinite group P, as before, we write A(P) for the Iwasawa algebra of P with coefficients
in Z, and Q(P) for the Iwasawa algebra lim | F,[P/U] with coeffiecients in F),.

In this chapter we consider a compact p-adic Lie group G and a closed normal subgroup H
(which is automatically a compact p-adic Lie group, see [DASMS03], 9.6 Theorem (i)) satisfying
the following conditions

(i) Gz HxT', where I 2 Z,,
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(ii) G, and therefore H, has no element of finite p-power order,

(iii) for all regular elements h in H, that is, for all elements h in H of finite order, the centralizer
Cp(h) of h in H has dimension greater or equal to 1 as p-adic Lie group.

For such H and G we recall the facts that all of the following rings
AG),A(H),Q(G) and Q(H)

are Noetherian and have finite global dimension, compare the paper (JAWO06], 3.3 Proposition,
p. 349) by Ardakov and Wadsley.

We recall that for the Fp-algebra Q(H) one can introduce the concept of Gelfand-Kirillov
dimension, see ([MRS&T] chapter 8, p. 297ff). One considers a filtration defined by powers of the
radical J of Q(H) and then, for a finitely generated Q(H)-module M one defines

d(M) = GK(grM)

as the Gelfand-Kirillov dimension GK (grM) of gr M, which is a certain graded module associated
to M and J. GK(grM) is given by the growth rate vy(f) of the function

f(n) =dimp, M/MJ",

see the survey article of Ardakov and Brown (JABOG], proof of 5.4. Proposition). We are not
going to define what growth rate means - for a definition see ([MR&7] chapter 8, p. 297ff) - but
note that for a Q(H)-module M that is finitely generated as a Fp-vector space, the function f
is bounded by the dimension dimg, M, from which it immediately follows that the growth rate
equals 0, i.e., we have d(M) = 0.

1.2.2 Main results

We have the following proposition due to Serre, see [Ser98b], which was generalized by Ardakov
and Wadsley in [AWO0S].

Proposition 1.2.1. Let H be a compact p-adic Lie group satisfying conditions (ii) and (iii)
above and let M be a Q(H )-module which is finitely generated as a F,-vector space. Then, we
have

[M]=0 €Go(2H)),

where Go(Q2(H)) denotes Ko(Q2(H)-mod), the 0-th K-group of the category Q(H)-mod of
finitely generated Q)( H )-modules.

Proof. Due to Serre, see [Ser98b] or as a special case of the more general result ([AW0S|, Theorem
A) due to Ardakov and Wadsley, we know that under condition (iii) about the centralizers C'y (h)
for regular h € H, the Euler characteristic x(H, N) is given by

x(H,N) =1
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for all Q(H )-modules N which are finitely generated F,-vector spaces or, more generally, in the
language of Ardakov and Wadsley, for all finitely generated Q(H )-modules N such that d(N) <
dimCy (h) for all regular h € H. For a definition of the Euler characteristic see ([AWO06], 4.5.
Definition). Since Q(H) is Noetherian and has finite global dimension we have an isomorphism

v Go(QUH)) = Ko(UH)),

which is known as the resolution theorem, see, for example, the books on K-theory by Srinivas
([Sri08], Theorem (4.6)) and Rosenberg ([Ros94], 3.1.13. Theorem). Ardakov and Wadsley give
a formula for the map v in (JAWO06], 4.8. Proposition), which shows that

Y([M])=0 if x(H,M®F,V;")=1fori=1,...,s,

where V1,...,V; give a complete set of representatives for the isomorphism classes of simple
Q(H)-modules. Since H is virtually pro-p, the V; are all finite dimensional [F,-vector spaces,
see ([AWO06], beginning of section 4.1.) and therefore M ®p, V;* are finite dimensional and the
proposition follows from the result of Serre. o

Now, we are able to present the main result of this chapter, the proof of which is almost identical
to Zabradi’s proof of (|Z10], Lemma 4.1 and Proposition 4.2), who considered the G Ly-case.

Theorem 1.2.2. Let G be a compact p-adic Lie group and H a closed normal subgroup of G
such that the pair (G,H) satisfies the conditions (i), (ii) and (iii) from the beginning of this
section. Moreover, let M be a A(G)-module that is finitely generated and free as a Z,-module.
We then have

[M]=0 in Ko(Mu(G)).

Proof. We note that since p is contained in the radical of A(H) we have an isomorphism
Ko(A(H)) = Ko(2(H))

induced by sending the class [P] of a finitely generated projective A(H )-module P to [P/pP].
Together with the two isomorphisms from the resolution theorem for A(H) and Q(H), respec-
tively, we see that we have an isomorphism

Go(QH)) = Ko(Q(H)) = Ko(A(H)) = Go(A(H)), (12.1)

mapping [Fp] in Go(U(H)) to [Z,] in Go(A(H)), which we show in lemma below (this is
not obvious as it might seem, since there is generally no map between Go(A(H)) and Go(Q(H))
induced by A(H) - Q(H) since Q(H) is not flat as a A(H)-module).

Next, we have an exact functor

F:A(H)-mod — My (G),
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sending a finitely generated A(H )-module N to F(N) := N considered as a A(G)-module, where
we extend the action of H to an action of G by simply letting I' act trivially on N - recall that,
by (i), G is given by the direct product H x I'. The functor F induces a map

Fo: Go(A(H)) — Ko(Mu(G)),  [N]— [N]. (12.2)

Finally, we note that tensoring any N in My (G) with the flat Z,-module M and passing to
the diagonal G-action induces a map Ko(Mu(G)) — Ko(Mu(G)), [N] = [N ®z, M], which,
composed with ((1.2.2)) and ([1.2.1]), yields

_®ZPM

Go(QUH)) = Go(AH)) L5 KoMy (G)) -2 Ko(Mu(G)),

mapping [F,], F,, equipped with the trivial H-action, to [M] since Z, ®z, M = M. But [F,] =0
in Go(Q(H)) by proposition [1.2.1] o

Before giving the proof of the lemma mentioned in the proof above, we derive the general case
of the previous theorem for finitely generated, but not necessarily free Z,-modules and record a
corollary about induced modules.

Corollary 1.2.3. Let G be a compact p-adic Lie group and H a closed normal subgroup of G
such that the pair (G,H) satisfies the conditions (i), (ii) and (iii) from the beginning of this
section and let M be a A(G)-module that is finitely generated as a Z,-module. We then have

[M]=0 in Ko(Mpu(G)).

Proof. We can reduce to the case that M is a finite module as follows. Let T'(M) be the torsion
part of M which is finite of p-power order and consider the exact sequence

0—T(M)—M-— M|T(M)— 0, (1.2.3)

of A(G)-modules. Note that M /T'(M) is finitely generated and free as a Z,-module. The exact
sequence and the previous theorem show that it is sufficient to prove that the class of
T(M) vanishes in Ko(My(G)).

From now on we assume that M is finite, given by {mq,...m,}. For each i=1,...,r denote
by U; some open normal subgroup of G that acts trivially on m; and write U for the intersection
N;_,U;, which is itself open and normal in G. Then A(G) acts on M through Z,[G/U] and we
have an exact sequence of A(G)-modules

T
0—N—@PZ,[G/U] — M — 0,
i=1
where N is, by definition, the kernel of the map to M. Since @]_; Z,[G/U] is a finitely generated

free Z,-module so is NV and the exact sequence, in combination with the previous theorem, shows
that [M] =0in K()(MH(G)) O
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Sometimes one can use the previous corollary to derive vanishing statements for induced
modules of finitely generated Z,-modules and more general compact p-adic Lie groups G.

Corollary 1.2.4. Let G be a compact p-adic Lie group containing a closed normal subgroup H
such that G/H = Z,. Moreover, assume that G is an open, not necessarily normal subgroup of
G, set H :=H nG and assume that H and G satisfiy the conditions (i), (ii) and (iii) from the
beginning of this section. For a A(G)-module M which is finitely generated as a Z,-module we
then have

[Ind§ M] =0

in Ko(M3(G)).
Proof. By corollary we have an exact functor
Ind§ : My (G) — My (G), N — IndgN,

which induces a map
(Ind§). : Ko(Mu(G)) — Ko(M(G))

showing that, as the image of [M] =0 in Ko(9(G)) (which holds by assumption),
[Ind§ M] =0 in Ko(My(G)),

for all finitely generated Z,-modules M with an action of A(G). o
It remains to prove the following lemma, which Gergely Zabradi explained to me.
Lemma 1.2.5. Under the map from (1.2.1) [Fp] in Go(Q(H)) maps to [Z,] in Go(A(H)).
Proof. Let us consider a projective resolution

0—>Pn—>---—>P0—>Zp—>O (1.2.4)
of Z, as a A(H)-module, so that [Z,] maps to ¥;(~1)*[P’] under the isomorphism

Go(ACH)) = Ko(ACH)).

Moreover, ¥;(~1)"[P'] maps to ¥;(=1) [P'/pP!] in Go(Q(H)), so we have to show that

2 (-)'[P'[pP'] = [Fp).

)

Now, since the P’ are all projective as A(H)-modules, they certainly are Zy,-torsionfree and
therefore flat as Zj,-modules. This implies that for the right-exact functor I, ®z, — the exact

sequence l) is an acyclic resolution of Z,, (this means Torf” (Fp, PY) =0, Vi, k >1). Therefore,
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one can use 1} in order to compute Torin (Fp,Z,), which is equal to 0 for all ¢ > 1 since Z,
is flat as a Zy-module. It follows that tensoring (1.2.4) with [F, ®z, — yields an exact sequence

()_>P”/pP"—>---—>P0/pP0—>IFp—>O, (1.2.5)

regardless of the fact that I, is not flat as a Zy-module. Now, (|1.2.5) implies that we have the
relation

SDIPpPI=[F,]  in Go(Q(H)).

which is what we wanted to show. 0



Chapter 2

Global Conjecture

2.1 Introduction

In this chapter we introduce the first of three conjectures stated by Kato during a talk he gave
in Cambridge on the occasion of John Coates’ sixtieth birthday. While Kato stated a global
conjecture for a p-adic Lie extension Fs /Q (non-abelian, in general) of the base field Q, we want
to allow a number field F' which is either quadratic imaginary or equal to QQ as base field in the
statement of the conjecture. We do this mainly because later on we will prove the conjecture in
a commutative case with quadratic imaginary base field. In fact, we will prove the conjecture in
theorem for any extension Ko /K such that

(i) K is a quadratic imaginary number field,

(ii) there exists an elliptic curve E/K with complex multiplication by the ring of integers O
and conductor divisible by one prime of K only,

(ili) Ko = K(E[p*]) is the field obtained by adjoining all coordinates of p-power division points
of E to K for some prime p # 2,3 above which E has good ordinary reduction.

2.2 Setting

Let F be either a quadratic imaginary number field or equal to Q, fix an algebraic closure F of
F and an embedding F < C and let us fix a prime p € Z. Moreover, let Fo,/F, Foo € F € C, be a
compact p-adic Lie extension containing F'(jpe), where fipee = Upsq ptpn is the group of p-power
roots of unity. If p = 2, then assume that F is totally imaginary. We write G = Gal(Fo/F') and ¢
for the automorphism of Fi, induced by complex conjugation on C. Moreover, we write (F},)ns0
for a familiy of finite Galois extensions of F' = Fy such that Foo = U, Fr- Let X be the set of
primes of F' consisting of the infinite prime v., of F', the primes of I’ above p and those primes
that ramify in Fo,/F and assume that ¥ is finite. Then, F%;, the maximal subextension of F'/F

21
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that is unramified outside X, contains Fo. We will write Gy (F,) = G(Fx/F,), n > 0. Let us
assume that there are only finitely many places of F, above p, i.e., for each place v of F' above
p the decomposition group G, of some prime of F above v has finite index in G. We will write
Xy for the non-archimedean primes in ¥ and Yo = {Veo }, S0 that X = YUl

Remark 2.2.1. These assumptions are satisfied in the case when F,, is the field obtained by
adjoining to F' the coordinates of p-power torsion points of an elliptic curve E/F with complex
multiplication by O, the ring of integers of a quadratic imaginary number field K, such that p
splits in Ok and considering X = Ypaq U {v | v divides p}, where 3y,q is the set of primes where
F has bad reduction. The primes that ramify in F /F are precisely the primes of bad reduction
and the primes above p. Moreover, the primes above p are finitely decomposed.

We also write X, = ¥(F},) (or X if it is clear from the context which F}, is under consideration)
for the primes of F), that lie above the primes in ¥ and X, y = ¥¢(F,) (or Xf) for the finite
places contained in X(F},).

In accordance with the literature, we will write Opn[zif] = OF, » for the subring of F,
consisting of all x € F, that are integral at all finite primes not in X ¢(F,). We note that
Or, [ f] can be interpreted as a localisation of the Dedekind domain OF, at the multiplicatively

closed set {(ax,)" | n > 0} where ax, is an element of OF, such that vg(as,) is (greater or)
equal to 1 precisely for all finite places B of F;, contained in X and 0 for all other finite places.
Such an element ay,, exists by the finiteness of ¥ as is shown by an argument stated in [Conb]:

writing hy, for the class number of F),, we know that the product [Topes ; P is a principal ideal
generated by an element ay, that has the required property. Since the localisation of a Dedekind

domain is Dedekind again, we know that Op, [—] is Dedekind.
We define Iwasawa—modules

HY ._hmHgg(OFn[ -1 25(1)) = lim (SpeC(OFn[ D (Zp/ (0*))(1))

pa—
n,k

for m > 0, which we want to study in more detail. First we note that we can express these Iwasawa
modules in terms of Galois cohomology of the Galois groups Gx,(F,,) = G(Fx/F,), see section
In fact, since the modules (Z,/(p*))(1) are finite and of order a power of p, the étale cohomology
groups H'(Spec(Op, [Eif] ), (Zp] (P*)) (1) ) coincide with the Galois cohomology groups

H™(Gs(F), (Zy/(0°))(1)),
see also ([FKO6], section 1.6.3), and we get
2~ lim H™ (G (F), Z,(1)) 2 H™ (G (F), M(@)F(1)), (22.1)

n
the isomorphisms being explained in section In section [A:3.4) we recall that the Kummer
sequence gives an isomorphism

lim(OF, 5 ®7%Z,) — Hy. (2.2.2)

n
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As in ([Ven00], p. 84) we define
X = Gal(Fm(p)/Fy) and X2 = Gal(FY % (p)/Fy),

where F;ir’ab(p) denotes the maximal unramified abelian pro-p-extension of F, and we write
FL¢5 (pY for the maximal subextension of F"*"(p)/Fs such that every prime above ¥ is
completely decomposed in F&T’ab’cs(p) /Fe. Using the isomorphism , we have an exact
sequence by ([Ven00], Proposition 3.1.3 (ii)), which based on work of Jannsen ([Jan89], Theorem
5.4),

0 - lim(OF, ®22Z,) > Hy > @ c-IndJZ, — Xy > X2 >0, (2.2.3)

n VeXun
where Xy, = {v e X¢ | ™ + fu}, fu = [Koop t ku], Koo,y denotes the residue field of F 5, k,, denotes
the residue field of F), and v is some prime of F,, above v. For our extension Fo/F, since the
cyclotomic Zy,-extension Q%° is contained in Fs we see that ¥, ¢ ¥, = {v | v lies above p}.
The Kummer sequence also gives an exact sequence

1 — lim (Pic(Or, »){p}) — H} — Q; A(G) ®n(g,) Zp —> L, — 0. (2.2.4)
n ve f

It is also explained in section that we have a natural surjection

lim (CI(F,){p}) - lim (Pic(Or, ) {p}) (2.2.5)

the kernel of which is a finitely generated Z,-module.

2.3 Statement of the Global Conjecture

Writing H for the closed normal subgroup of G corresponding to Qcye € Q(ppe), i.e. G/H = Zp,
the Ore sets S and S* are defined as in [CEK™05] by

S={feAG)|A(G)/A(G)[ is finitely generated as a A(H) — module}

and

S =Up"S.

n20
Note that the exact sequence (2.2.3) implies that
S (lim(0F, ®22,)) 2 ™' Hy, (2.3.1)

n

since Indg”Zp is finitely generated over Z, for any v above p and hence S-torsion by (JCEK™05],
Proposition 2.3). We define
Ace = 1lim (CI(E,) (p})
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and note that due to (2.2.5)) and (2.2.4) we have an exact sequence

0— S U — ST'HE — Q; STHA(G) ®a(g,) Zp) — 0. (2.3.2)
Ve f

From now on we make the following assumption.

Assumption 2.3.1. There exists an element u = (uy, )y, € lim OF, such that the map A(G)s+ —

(S*)_l(LiI_nn OF, ®zZp) induced by 1~ u is an isomorphism of A(G)s+-modules.

In particular, the isomorphism li implies that HIE [Au is S*-torsion. Compare remark [2.4.40)

for a discussion of this assumption in the abelian CM case considered in section

Assumption 2.3.2. If the base field F' equals Q, we assume that the element u from assumption
2.3.1| is fixed by complex conjugation (induced by the fixed embedding Fo, c C).

For an Artin representation p : G — Aut(V,) that factors through G, = Gal(F),/F’), but not
through G,,_1 = Gal(F,,-1/F), and for a unit u as in assumption satisfying assumption
if F'=Q we make the following definition.

Definition 2.3.3. For u and p as above we define the regulator

det( Tyeg, /< 10g | g(un) [ p(g7!) V) if F=Q,
det( Y gegn log | g(un) | p(g™H) ;Vp) if K is quadratic imaginary,

R(u, p) = {

where we write Vp+ for the subspace of V,, on which complex conjugation ¢ acts as the identity.
We make the following torsion assumption.
Assumption 2.3.4. We assume that H% is §*-torsion.

Remark 2.3.5. In the CM elliptic curve case E/K, K quadratic imaginary, where we con-
sider the abelian extension K(E[p™])/K, G = G(K(E[p*])/K), we will later show that the

term @pex;\x, S’l(A(G) ®A(G) Zp) from 1) vanishes, see corollary [2.4.34, The term

@res, S ’1(A(G) ®AG,) Zp) also vanishes since the decomposition groups of primes of K above
p have finite index in . Therefore, in this situation, the condition that H22 is S*-torsion is
equivalent to A being S*-torsion, by (2.3.2).

Now we can formulate the first conjecture. We refer to [CEK*05] for a detailed explanation of
how one can evaluate elements of K1(A(G)g+) at Artin representations.

Conjecture 2.3.6 (Global Conjecture). Under the assumption |2.3.1| (and |2.3.2 if F' = Q),
there exists Ly, € K1(A(G)s+) such that
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(i) The value of L, at an Artin representation p of G is given by

S—TE(P)L ,S
Lpu(p) =lim Ef(p )7
’ s=0  R(u,p)

where rx;(p) is the order of vanishing of Ly (p,s) at s =0, and

(ii) under the connecting homomorphism 0 : Ki(A(G)s+) — Ko(9My(G)) the element L, ,
maps to

O(Lpw) = [HE] - [Hy/A(G)u]. (2.3.3)

2.4 The CM case

We fix an embedding Q < C and a prime number p € Z, p # 2,3. By the CM case we mean the
case of an elliptic curve E defined over Q or, more generally, over K, an imaginary quadratic
number field, such that E has complex multiplication by the full ring of integers Ok of K. In
this section, under a torsion assumption and an assumption on the reduction type of E above
p, we will show that an element as in assumption |2.3.1] exists and prove conjecture [2.3.6| in the
cases outlined in the introduction of this chapter.

Henceforth, we make the fundamental assumption that our elliptic curve F has good ordinary
reduction at (or, if F is only defined over K, above) the fixed prime p. Let us recall Deuring’s
reduction criterion, see proposition stating that the assumption on the reduction type is
equivalent to the following assumption.

Assumption 2.4.1. The prime p splits in K, i.e., (p) = pp in Ok, where p is unequal to its
complex conjugate p.

We will write § for the conductor of the Grolencharacter ¥ = 5 attached to F by the theory of
complex multiplication, the square of which is the conductor of E/K, see theorem or, for
example, [Coab]. We also write K (fp*°) = u, K (fp"™) for the union of the ray class fields K(fp™)
of K with respect to the moduli fp" for various n > 1.

Recall from subsection or [dS87], that the field Ko := K(E[p™]) is abelian over K and
the field K (fp*) is finite over Ko. We write G = Gal(Ko/K) for the Galois group of Ko over
K. The field Ko contains both, K¢ and K*¥¢, the cyclotomic and the anti-cyclotomic Z,-
extension of the quadratic imaginary field K, respectively. K¢ and K*%¥¢ are linearly disjoint
over K since p # 2. We have a decomposition

G 2= A x Teye x Cacyes (2.4.1)

where A = Z/(p-1) x Z/(p - 1) is a finite group of order (p - 1)?, Tye = G(KY°/K) 2 Z, and
LCocye 2 G(K*Y|K) = Zy,.
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2.4.1 Notation

Throughout the section, unless stated otherwise, we use the following notation.

K

K(a)
K

F

fioo (F)
fip=(F)
I(F/K)
E

YE

1

quadr. imag. number field, of class number 1 from assumption onwards
the ray class field of K modulo some integral ideal a of O

algebraic closure of K

finite abelian extension of K in K containing the Hilbert class field K (1)
group of all roots of unity in F’

group of all p-power roots of unity in F' for some prime p

augmentation ideal in Z[G(F/K)]

elliptic curve def. over K with CM by O, later required to be def. over Q
GroBencharacter attached to E/K

conductor of Yg

prime number of Z, p > 5, that splits in K and such that (p,f) =1

the two distinct primes of K above p

ray class field K (fp*p™)

the field K (E[p*p"])

group defined by elements of the form

= oo (F')Cr (Rubin’s elliptic units for F')

group defined over Z[G (K (m)/K)] by elements of the form ([2.4.7))

={ze O;((m) | 212 € f1oo (K (m))On} (De Shalit’s elliptic units for K (m))
subgroup of Cr, see definition

subgroup of Cr, see definition [2.4.9

= I(Kkn/K)Np, /K, ,Ofnpr (subgroup of C’}(k!n), see definition

the cyclotomic character.
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2.4.2 Global and semi-local units

First, we recall that Leopoldt’s conjecture holds for any finite abelian extension F' of our quadratic
imaginary field K, see ([NSWO08], Theorem (10.3.16)) for a proof. This implies, or, in fact, is
equivalent to the fact that the map

0 ®72Zy, — [[OF. (2.4.2)

vlp

induced by the diagonal embedding O < [1,), OF, , is injective. Here, for any abelian group A
we define A to be the p-adic completion of A

A=lim Afp" A, (2.4.3)

n

Assume that p splits in K/Q and write p and p for the two distinct primes of K above p. As
Bley remarks in ([Ble06], Remark 5.2) and kindly explained to the author, adjusting the proof
of the Leopoldt conjecture for an abelian extension F' of K, one can even show that

05 ®7Zy > [ OF, (2.4.4)
vlp

is an embedding, where we take the product only over the primes of F' above p. We will say that
the strong version of the Leopoldt conjecture holds for F'/K. This observation will prove useful
for our purposes since it allows us to identify O} ®z Z, with the topological closure £(F') of O
in I, @;V The notation £(F) is adopted from Rubin’s article [Rub91].

We recall that for any finite prime v of F' the inclusion (’)};V = OF, of principal local into
local units induces an isomorphism

O, 2 OF, .

Let p = char(k(v)), the characteristic of the residue field. The local units O, admit a decompo-
sition OF, = (’)};y x VE, into principal units and a finite group of order prime to p. In particular,
we can project a local unit z € O;V to its principal part pr,1(z). We will later frequently use
the commutativity of the following diagram

Op —— L Op,

{ (pru,l )l/

O;; ®7z Zp Hu\p O};V

2

[Lp OF, (2.4.5)
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which follows from the fact that for x € O and any place v above p we can write = = pry, 1 (2)y,
in O, for some y, in Vg, of order n, prime to p. Writing n =[], n,, in Of ®z Z;, we then have
r®l=2"® % and this maps to %(:B"),, = %(prml(ac)”),, = (prva(x))y in Tl @}V

Next, we introduce some notation for the tower Ky, ,, k,n > 1, where K, ,, = K(E[p*p"]) and
E/K is an elliptic curve with complex multiplication by Ok, K quadratic imaginary such that p
splits in K into p and p. We assume that K and all of its algebraic extensions are contained in
some fixed algebraic closure Q. Let us also fix an algebraic closure @, of Q, and an embedding
Q- @p. Assume that p is the prime of K determined by this embedding. For the semi-local
units we will write

Uoo = 1(&1 H O}(k,n,u’
k.n v|p

where the limit is taken with respect to the norm maps and for all £ and n, v ranges over all
primes of K}, , above p. We note that

~ 135 Ax
uoo = &n H OKk,n,V’
kn vip

since O}(k
RoN%

112

@;(k,n,u for all k,n and every place v above p. For the global units we will write

goo = lglg(Kk,n)a
k.n

so that (2.4.4) induces an embedding Ee = Uoo-

Remark 2.4.2. Write G = G(Ko/K), where Koo = Uj, 1K} 5, is the trivializing extension for
the action of Gi on the p-adic Tate module T,E of E/K. Recall that since G is a p-adic Lie
group, A(G) is Noetherian, see ([Laz65], V 2.2.4). We remark that U embeds into A(G) and is
therefore Noetherian, see ([Rub91], Theorem 5.1. (ii)) which builds on a result of Wintenberger
in [Win80] that we will use later. It follows that any submodule of U, in particular &, is
finitely generated over A(G). Since A(G) is compact, each submodule of Uy, (as the continuous
image of finitely many copies of A(G)) is compact.

For all k,n € N the p-adic completion &(K, kn) Of O;(k _ is separated as a topological space. In
particular, singletons {z} ¢ £(K},,) are closed for z € E(Ky,,). We will now prove a useful

lemma that we will need later when we deal with elliptic units.

Lemma 2.4.3. Let Do, be a A(G)-submodule of €. and let Dj, ., k,n > 1, be norm-compatible

submodules of £(K},,) such that the projection maps DTt Eco — E(Kk.p) induce surjections
Doo —> D,’C’n

for all k,n > 1 (in particular, we require that the image of Do, under the projection is contained
in ’D,’cn) Then, passing to the projective limit with respect to k,n induces an isomorphism

~ 3 ,
Doo = @Dkvn
k.n
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of A(G)-modules.

Proof. This follows from the fact that taking projective limits of exact sequences of compact
groups preserves exactness. o

2.4.3 Elliptic units

We will now turn our attention to the study of elliptic units. In the theory of abelian extensions
of an imaginary quadratic field K elliptic units play a role analogous to the role played by
cyclotomic units in the theory of abelian extensions of Q. For basic facts about elliptic units
our main references are the papers [Rub91] by Rubin and [dS87] by de Shalit. In ([Rub91],
Theorem 7.7), for certain extensions Ko /K, Rubin gives a description of the projective limit of
the p-adic completions of certain elliptic units for subfields F' of K /K that he defines earlier in
the same article (these are the elliptic units that satisfy the analytic class number formula given
in ([Rub91], Theorem 1.3)). In case K« /K is given by Ko = K(E[p*>]), K quadratic imaginary,
however, where E/K is an elliptic curve with complex multiplication by Ok with good ordinary
reduction above a split prime p, the description Rubin gives in (loc. cit., Theorem 7.7 (i)) does
not seem to describe the projective limit of elliptic units satisfying the analytic number formula,
but rather the limit considered by Yager in ([Yag82], Lemma 28, Theorem 29). Rubin’s elliptic
units (in the K(F[p™])/K case) contain Yager’s units, but also they are strictly bigger. After
recalling the definition of the Coleman map in the next subsection, we will determine the precise
structure of the projective limit of Rubin’s elliptic units in theorem for elliptic curves
whose conductor is a prime power.

The comparison of the two (Rubin’s and Yager’s units) will be the main theme of this sub-
section. The task will be to study Rubin’s elliptic units and, step by step, determine a relatively
small set of generators. The main results of this subsection are corollary which describes
the projective limit of Rubin’s elliptic units for our extension Ko /K, and theorem which
states that the quotient of the limits of Rubin’s and (a slight variant of) de Shalit’s elliptic units
is S-torsion and gives a concrete element of S that annihilates the quotient.

For Robert’s treatment of elliptic units see [Rob73|, [Rob90] and [Rob90]. There are other
useful accounts due to Rubin in the appendix of [Rub87] and due to Coates and Wiles in section
5 of [CWT7| and in section 3 of [CWT8]. The different notation used in some of the above papers
is compared by Bley in [Ble04].

After writing this section the author found the paper [Vigl2] by Viguié, who proves a similar
statement as lemma from this subsection, compare ([Vigl2], Lemma 2.4, Corollary 2.5).
He also determines a set of generators for projective limits of elliptic units for a certain Z,-
extension, see (loc. cit., Lemma 2.7). Our situation will be rather different in that we deal with
a Zg—extension, which requires different ideas.

Let us start by recalling Rubin’s definition of elliptic units for a number field F' which is an
abelian Galois extension of a quadratic imaginary field K containing the Hilbert class field H of
K. For an integral ideal m of K we denote by K (m) the ray class field of K modulo m. We fix an
embedding K c C and a period lattice L c C of some elliptic curve defined over H with complex
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multiplication by Of; for the existence of such a curve Rubin refers to ([Shi7l], theorem 5.7).
For any integral ideal a ¢ Ok, (a,6) = 1, Rubin then considers the meromorphic function

A(L)Ne\1/12 -1
Oo(z;a) = Oo(z; L, a) = (o7 [1  (p(=L)-p(wL))
(A(“ 1L)) ue(a1L/L)/+1
where A is the Ramanujan A-function, a twelfth root of % is fixed and p(z;L) is the

Weierstrafl p-function for the lattice L.

Now, let m be an integral ideal of K such that O} — Ok /m is injective and let 7 € C/L be
an element of order exactly m. It is shown in (|Ble04], Proposition 2.2) that @ (7;a) belongs to
K (m). Rubin then defines the group Cr generated by the various

o-1
(Nrg(myF ©o(T:0))" (2.4.6)

where o ranges through Gal(F/K), m through the integral ideals of K such that O — Ok /m
is injective, a through integral ideals such that (a,6m) = 1 and 7 through primitive m-division
points. Npg(m)/r denotes the norm map from F'K(m) to F' and we note that the elements o -1
generate the augmentation ideal I(F/K) of Z[G(F/K)]. Rubin then defines the elliptic units
of F' to be

C(F) = poo (F)CF,

where pio, (F') is the group of all roots of unity in F.
Next we briefly recall the definition of elliptic units used by De Shalit. He considers the
function

O(z; L,a) = Op(z;a)'?,

which is an elliptic function with respect to L and can be expressed in terms of the fundamental
theta function, which is noted in ([dS87], II, 2.3). Moreover, ©(z; L, a) satisfies the monogeneity
relation

O(cz;eL,a) =0O(z;L,a), ceC™.

Assumption 2.4.4. From now on we assume that K has class number one. Note that this is
automatically satisfied whenever we consider an elliptic curve E/K with complex multiplication

by Ok, see proposition[A.6.1]

So we can find ©Q,m such that L = OgQ and m = (m) for any integral ideal m of K. With this
notation 7 = /m is a point of order exactly m in C/L. De Shalit then defines ®y, to be the
subgroup of K(m)> generated by

O(1;m,a) =0O(Q/m; L,a), (2.4.7)

where a ranges through the integral ideals of K such that (a,6m) = 1. If m is divisible by at
least two distinct primes, then @y, is a subgroup of the group of units (9;(( m) in K(m)*. He then
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defines Cy, to be the group of units in K (m)* whose 12-th power belongs to pie (K (m))®y. The
group Ch, is G(K(m)/K)-stable, which follows from ([dS87], II, proposition 2.4 (ii)).

The main theorem of complex multiplication can be used to show that the values of @
at two different primitive m-division points are related through the action of the Galois group
G(K(m)/K), which we want to illustrate in the next remark. Let us first introduce some notation
for arithmetic Frobenius elements.

Definition 2.4.5. Let F'//K be an abelian (finite or infinite) extension in which the prime ideal
q is unramified. We then write

(9, F/K) € Dq c G(F/K)

for the arithmetic Frobenius at q which (topologically) generates the decomposition group Dj.
If ¢ is an ideal which has a prime decomposition [1;_; q;"* and each q; is unramified in F'/K, then
we define ,
(0, F/K) = I—{(qi,F/K)mi-

i=
Remark 2.4.6. Assume that the conductor fg associated to the Groflencharacter ¢ g divides m.
Now, if 7 is any primitive m-division point we can find ¢ € Ok, ¢ prime to m, such that 7 = c%.
Let us write o. = ((¢), K(m)/K) in G(K(m)/K). Then the Groflencharacter )y maps o, to a
generator of (c), so we can find a unit u. in O} such that ¥g((c)) = ucc. Then, by ([Rub87],
Proposition 12.3 (i)) and by the main theorem of complex multiplication (the part that says that
o. acts on E[m] through ¢g), we have

©(Q/m; L, a)’ = O(¢e((c))(/m); L, a) = O(ucc(2/m); L,a) = O(7; L, a), (2.4.8)

where, for the last equation, we have used the monogeneity property and the fact that u;'L = L.
We conclude that the values of © at two different primitive m division points belong to the same
orbit under the action of G(K(m)/K).

Note that Rubin’s group Cpg for arbitrary fields F', in general, is rather large, since in the
definition of generators as in (2.4.6) he allows m to range through all integral ideals of K such that
O — Og/mis injective. Other authors, e.g. Yager in [Yag82], consider only the conductor qz

of the extension F'/K they are interested in, i.e. they take (NK(qF)/F Ou(7; a))a_1 as generators,
T a primitive qp-division point and a, o as above.

We will eventually be interested in the fields F = K}, := K(E[p¥p"]) for an elliptic curve
E/K with complex multiplication by O, where K is an imaginary quadratic number field and
p and p are distinct primes of K above a rational prime p, at which E/K has good reduction.
In our comparison of Rubin’s and de Shalit’s elliptic units for such fields the following lemma
is our starting point, which says that in the definition of Ck, , we can restrict ourselves to
certain integral ideals m dividing the conductor of K}, ,,. We will prove in lemma that the
conductor of Ky, ,, for k,n >0, (k,n) # (0,0), is given by fp¥p™, where § is the conductor of 1z.
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Remark 2.4.7. Note that since K is quadratic imaginary, O} consists only of a finite number
of roots of unity. Therefore, for any prime q, the map

Ok — (Ok/da")”

will always become injective for n large enough. Likewise, for any non-trivial ideal b prime to q
O — (O /q"b)”

will always become injective for n large enough, since (Ok/q"b)* = (Ok/q")* x (Ox/[b)*.

Lemma 2.4.8. Let K be a quadratic imaginary number field and E/K an elliptic curve with
complex multiplication by Og. Moreover, let p € Z, p # 2,3, be a prime that splits in K
into distinct primes p = (7) and p = (7) and assume that E has good reduction at p and p.
Let k,n > 1 such that both OF — Ok/[p* and O} — Of/p" are injective. Let us write
F = Ky, = K(E[p*p"]). Then, as a Z,[G(F/K)]-module, Cr ®7 Z,, is already generated by
elements of the form

(Nrk(myr O(7; a))aila

where o ranges through Gal(F/K), m through the integral ideals of K such that either
m = §pp™ or m = f'p* or m = f'p" for some divisor §' of f,
a runs through integral ideals such that (a,6m) =1 and 7 through primitive m-division points.

Proof. First note that after extending scalars, since 12 is a unit in Z,, we have

-1 -1 1
(NFK(m)/F @O(T;a))a ®l= (NFK(m)/F @(T;a))g ® 12’
so clearly all elements of the form (NFK(m)/F o(r; a))a_l, for general m, 7, a and o as in 1)
generate Cr ®z Zj, as a Zy-module. Hence, from now on it is sufficient to consider the function
O(z,a) =0(z,L,a) (we omit the L from the notation).
Let us now fix an integral ideal m of K such that Oy — Og/m is injective. Write

7= Npg(my/r ©(7;0),

where a is an integral ideal such that (a,6m) = 1 and 7 is a primitive m-division point. We
will show that 2°~1, for any ¢ € G(F/K), is already contained in the module generated by the
elements from the statement of the lemma. We will show step by step that we can impose more
conditions on m and still obtain a set of Z,[G(Kj,/K)]-generators for Ck, , ®z Zp.

Let us first make some general definitions. We define §' = g.c.d.(f,m). We can then write

1=k’ n’ 1
m=fpp m,
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for some m’ such that g.c.d.(m’,p) = 1, so that n/, resp. k', are precisely the exponents of p, resp.
p, in m. We need not have g.c.d.(m’,§) = 1. Let us define q = g.c.d.(m, fp*p™), so that we have

FnK(m)cK(fp"p™) n K(m) = K(q),

where the last equality is a simple excercise in class field theory. Since f and p are prime to each
other, we have an equality

q= f/ﬁmin{k,k'}pmin{n,n'}
For the norm map Ny (m)/r restricted to K(m) we can write

Nek(m)/F = Ni(m)/(Fak (m)) = N ()/(Fak (m) © Vi (m)/K () (2.4.9)

where we note that F'nK(m) = FnK(q). Let us now start with the computations. We will show
that we may exclude the following classes of m and are still left with a set of Zy[G(K},/K)]-
generators for CKk,n ®7, L.

1. Case: g.c.d.(m,p) = 1.
In this case, since E/K has good reduction at p and p, we also have g.c.d.(mf,p) = 1. By ([dS87],
I1, proposition 1.6, corollary 1.7) we know that K(mf) = K(E[mf]) and that K(E[mf]) and
F = K(E[p*p"]) are linearly disjoint over K. Therefore, we have an inclusion

FnK(m)cFnK(mf) =K,

which implies that G(FK(m)/F) 2 G(K(m)/K). This shows that if we restrict the norm map
Npg(my/r to K(m), then Npg(m)/r = Ng(m)/x- We conclude that

277l = (NK(m)/K o(r; a))a_l =1.

since o fixes K. From now on, we may and will assume that g.c.d.(m,p) # 1, i.e., that p | m or
plm.

2. Case: n' >n or k' > k.
If n' > n, then ([dS87], II, proposition 2.5), see also ([Rub99], corollary 7.7, p. 197) for a more
detailed proof, shows that

Nk (m)/K (m/p) ©(7;0) =O(77;0),

where 77 is now clearly a primitive %—division point. We note that here we use the fact that
p" | % and that O — Ok /p" is injective, i.e., that there is precisely one root of unity in K
that is congruent to 1 modulo p”. Since q | %‘, we also have

FnK(m) = FnK(m/p).

Using (2.4.9), this shows that x = Npg(m/p),r ©(77;a). Proceeding inductively, we may and will
assume that n’ <n. Analogously, we can show that we may assume that &’ < k.
3. Case: 1<n’<nor 1<k’ <k.
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Without loss of generality, let us assume that n’ > 1 (if n’ = 0, then, by the first case, we may
assume that &’ > 1 and the following works precisely in the same way for k£’). So p | m. While we
have used ([dS87], II, proposition 2.5) above to see that we may make the exponent n’ of p in m
smaller if n’ > n, we now use it to see that we may make it bigger whenever n’ < n. In fact, by
the above-cited proposition we have

-
O(7;a) = NK(mp)/K(m)@(;; a),

where, if we consider 7 as an element of E(C), we write ~ for some primitive mp-division point
in E(C) such that 7= = 7 (while if we consider 7 as an element of C/L then we can actually
divide 7 by 7 - this depends on whether we view © as a function on E(C) or on C/L). Using

(2.4.9) again, it follows that
7_ . T .
= NK(mp)/(FnK(m»@(;’ @) = N (mp))/Forc(m) © NK(mp)/(FmK(mp))@(;v a).

showing that z is just a product of G(F'/K )-conjugates of NK(mp)/(FmK(mp))G(%; a). Proceeding
inductively, we may assume that n’ = n.

We conclude that so far we may assume k' < k and n’ < n and either n =n' or k = k'. If both,
k' and n’ are greater than zero, then the last argument shows that we may assume that k' = k
and n' =n.

In the last step we made m larger so that p” | m (or p¥ | m). By our assumption on n and
k, it follows that there is only one root of unity in K that is congruent to 1 modulo 7. This
enables us to use ([dS87], II, proposition 2.5) in the next step to eliminate m’.

4. Case: m' # 1.

Let [ = (1) be a prime ideal of K dividing m’. In particular, [ is prime to p. First note that
_ m ck.n
q —g.c.d.( [ ,p7p )

In fact, if g.c.d.(“—[‘, fﬁkp”) were equal to % (it certainly cannot be anything else), write [" for the
exact power of [ in q. We then see that [" | fp¥p", and hence [" | f. Moreover, [" | m, so that
[ |’f’. By the assumption g.c.d.(l[‘,fﬁkp") =q/l, we have [" + . On the other hand, I" | ' and
f'% | . This is a contradiction, showing that q = g.c.d.(“—[‘, ffakp") holds.

By (loc. cit.) we have

O(lr;a) if [,
Or;a)t=o if 14
where, in the case [+ %, o1 = ([,K(“—[‘)/K) We conclude that

Ni(m)/ Kk (myry O(750) = {

N w1/ (Frk(q)) ©UT;a) if [ 7,

=N O(ria) - )
R {NK<m/t>/<FmK<q>> (OGrsa)'=o) if 1+ 2.
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In the latter case, since all of the involved Galois groups are abelian, we see that

1

1-o71 1_&F
Nk (m/1)/(FnK (q)) (@(ZT;a) ‘ )= (NK(m/[)/(FnK(q)) @(ZT;G)) :

where we write & for any lift to F' of the restriction of oy to F'n K(q). In any case, we see that
z is a product of G(F'/K)-conjugates of Ny (m/1y/(Fni(q)) ©(IT;a). We conclude that we may
assume that m’ is trivial.

We have shown that we may restrict to m of the form m = {p*p" or m = {p* or m = §'p" for
some divisor ' of f and still get a generating set; in any case m | fpkp™. O

We now split the set of Z,[G(F[K)]-generators of Cr®yZ, determined in lemma (F =Kgn

as in the lemma) and define two new modules.

Definition 2.4.9. Let the setting be as in lemma in particular, n,k > 1 and we write
F = Ky, ,,. We define C. to be the subgroup of Cr generated by elements of the form

o-1
(Nrk(myr ©(5a))"
where o ranges through Gal(F/K), m through the integral ideals of K such that

m = §pFp" for some divisor ' of f,

a runs through integral ideals such that (a,6m) =1 and 7 through primitive m-division points.
Moreover, we define Dg to be the subgroup of Cr generated by elements of the form

-1
(Npgmyr ©(150))7 7,
where o ranges through Gal(F/K), m through the integral ideals of K such that

m = §p* or m = f'p" for some divisor § of f,

a runs through integral ideals such that (a,6m) =1 and 7 through primitive m-division points.

Remark 2.4.10. First note that, by definition and lemma we have (C’%DF) ®z, Ly =
Cr ®z Zy. Also, C}; and D are G(F/K)-stable, see ([dS87], II, proposition 2.4). Moreover, it
is not a difficult exercise to show that the norm maps Ng, /i, ,» k>k'>1, n>n'>1, restrict

!/ / .
to maps CKM — CKk, and D, , — DKk',nH respectively.

n'

Note that, in generzﬂ, elements of the form
O(7;a) € K(m)

for a primitive m-division point 7, where m = p™ or m = p*, i.e., where § is trivial and m is
divisible by only one prime, are not units in O, ,. However, in case m = p", they are units
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outside the primes above p and in case m = p*, they are units outside the primes above p, see
(loc. cit.). Moreover, in our definition of Cp,C}; and Dp, we twist by 0 —1, 0 € G(F/K) (which
we can lift to G(FK(m)/K) and then restrict to G(K(m)/K)). We claim that, in case m = p”,

(@(7‘; a))m1 is also a unit above p and therefore belongs to (9;{( m) And similarly, in case m = p*,

(@(T; a))g_1 is also a unit above p

To see this, let us consider the case m = p”, the other one works analogously. Let 3 be a
prime of K (p™) above p. And consider the decomposition group Dy of p in G(K (p")/K). It is
a fact that for the fixed field

Zy=K(p™)"

and the prime Bz of Z, below B, P has ramification index 1 over K, see ([Neu07], I, Satz 9.3).
This means that p is unramified in Z,. But Z, is also contained in K (p"), showing that it is
unramified everywhere and therefore contained in the Hilbert class field of K, which is K itself.
We conclude that Dy, = G(K (p™)/K), which means that there is only one prime of K (p™) above
p. In particular, any element o in G(K (p™)/K) fixes the unique prime 3 above p, which implies
for any a € K(p™),a # 0, that o(a)/a is integral and a unit at .

With the above definitions lemma implies that for all £,n > 1 as in the lemma, we have
surjections of Zy[G (K}, »/K)]-modules

DKk,n ®Z Zp - (CKk,n/C}(k,n) ®Z Zp.

The next lemma shows that the natural inclusions C}Q . = Cg,, induce isomorphisms of A(G)-
modules ’

im(Ck, , ®zZy) 2 lim(Ck, , ®2 Zp). (2.4.10)
k,n kmn

Lemma 2.4.11. We have the following identity

lim(Dr, , ®2%Zp) =0,
k.n

where the limit is taken with respect to the norm maps.

Proof. In remark [2.4.10] we have explained that Dy, , c O%k . This inclusion induces
DKk:,n ®7 Zp - O?(kn ®7 Zp,

and we note that by Dirichlet’s unit theorem the group on the right is given by the direct sum
of a finite number of copies of Z, and the finite group of p-power roots of unity in Ky .

Let us make a few more observations. For any integral ideal a of K we always have K(a) c
K (E[a]), see ([Sil99], II, Theorem 5.6). It follows from proposition that for all k,n >1

(Kinn K (78%)) < (Kin 0 K(E[5])) = Kro- (2.4.11)
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Likewise, we have for all k,n > 1
(Kinn K (75™) € (Kiwm 0 K(E[13"])) = Kon- (2.4.12)

. . -1
For any r > 1, let us consider an arbitrary generator dy., n+r = (NK;W rer K () Kormsr o(r; a))a

of Dk, ..., Where

I=k+r
p

m-=f or m = f'p"™*" for some divisor §" of f.

First assume that m = fp**". Note that for k,n > 1 the Galois group G(Kpsrnir/Kiirp) is
of order p", which follows from ([dS87], II, corollary 1.7), and any g € G(Kksrn+r/Kk+rn) fixes
Kjirpo. Then, (2.4.11)) shows that for k,n > 1 we have

o-1
NKk:+r,n+r/Kk,n(dk+T7n+T) = (NK]C+7",7’L+T'/K]€,TL °© NK(f’ﬁk+r)/(Kk+r,OﬂK(f,ﬁk+r)) 6(7—7 a))

o
= (NKkJr'r,n/Kk,n °© NKk+7‘,n+T/Kk+'r,n °© NK(f’ﬁk+T)/(Kk+7',OmK(f’ﬁlﬁ—r)) ®(T’ a))

p"(o-1)
= (Niyrn 110 © N (150 (g (i) O(750)) :
By a similar argument for m = {'p"*", for k,n > 1, we have

p"(c-1)
NKk+r,n+T/Kk,n(dk+T1n+T) = (NKk,n-H‘/Kk,n °© NK(f,anrT)/(KoynJr"‘mK(f’anrr) ®(T’ a)) :

which follows from (2.4.12)). These two cases imply that for any element d of Dk, ... we have

NKk+r,n+r/Kk,n (d) = Cpr (2413)

for some unit ¢ in O% .
Kk,n

Now, let (akn )k be an element of Lglk . Dk, . ®zZp. Let k,n > 1 be big enough so that they

)

satisfy the conditions of lemma i.e., such that both O — Ok /p* and OF — Og/[p™ are
injective.
For any r > 1 the element ayrn+r € DKy, .., ®z Zp is of the form
m
Ak+rm+r = Z d; ® b;

i-1
for some d; € Dy, .., and b; € Zy, i=1,...,m. Using (2.4.13)) we see that we can find c1,...,cn
in O;(k . such that

akvn = (NKk+r,n+r/Kk,n ® idZP)(ak+T1n+T)

= Czp ®b;
i=1
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and we see that as an element of O;(k L ®z Ly, agp is divisible by an arbitrarily large (we can
choose any r > 1) power of p. By the remark made at the beginning of the proof, we see that
only the trivial element satisfies this divisibility property. o

According to the definition we gave, elliptic units of an abelian extension F' of K contain the
roots of unity of F. Eventually, we will be interested in projective limits of elliptic units and
need the following vanishing result for p-power roots of unity for Z;—extensions of K.

Lemma 2.4.12. Let L be a number field and M /L an extension containing a Zy-extension Lo /L
that is independent of the cyclotomic Zy-extension Leyc/L of L. Then, we have

. !
im iy (L7) = 1,
LegL'eM

where pp~ (L") denotes the group of p-power roots of unity in L' and the limit ranges through
the finite extensions L' of L contained in M and is taken with respect to norm maps.

Proof. Let ((1/)rs be an element of liLnchL'cM pipe(L"). Let us show that (7 =1 for any finite
extension L’. For any finite extension L’ of L the composite L' L., contains only finitely many
p-power roots of unity since Lo, /L is independent of the cyclotomic Z,-extension Lcy./L. In fact,
assume the contrary. Then, L'L /L contains L(fiy~) and therefore the Zg—extension LeycLoo/L,
which is impossible since L' Lo /L is a finite extension L'Los/Loo of the Zy-extension Lo /L.

Let (p» be a primitive p"-th root of unity belonging to L'Ls, such that n is maximal with
respect to this property. Write L/, for the m-th layer of the Z,-extension L'Lo /L’ (note that
G(L'Le/L") embedds into G(Los/L) = Z, and the image is the continuous image of a compact set
in a Hausdorff space and therefore closed in G(Lo/L), hence the image is of the form p"Z, c Z,
and it follows that G(L'L /L") is a Z,-extension). Then G(L;,/L") has order p™. Let k be large
enough so that (y» belongs to L; (such k exists since L' Lo = Uy, Ly,). Then, we have

Cor=Np Q)= NL;,/L'(NL;M/L;C(CL' )) = NL;C/L’(CZCM) =N (1) =1,

k+n k+n
since Crr € pipoo (L' Leo) = ptpn € L. o
o € Hp 00) = ppn © L,

Let us now recall that Rubin’s elliptic units for an abelian finite extension F of K were defined
by C(F') = oo (F')CF, where 10 (F") is the group of all roots of unity in F. Tensoring with Z,
kills the roots of unity of order prime to p, so that as subgroups of O ®z Z, (note that Z, is
flat as a Z-module) we have an equality

C(F) ®2Zp = (1= (F)Cr) @z Ly,

where pi, (F') is the group of p-power roots of unity in F. For the fields K}, = K(E[p*p"])
from lemma [2.4.8] let us consider the inclusions

ten : Crey, ®2 Zp = (pp= (Kin)Ck,, ) ©2 Zp.
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Certainly, we have surjections
fpeo (K ) 2 pipeo (K ) ®7 Ly - coker(tgp,).

Passing to the projective limit, lemma|2.4.12|shows that Llnk . coker(tg ) = 0 (to be able to apply

the lemma note that K /K contains the cyclotomic and the anti-cyclotomic Z,-extension), so
that

im(Cr, , ®z Zp) = Im(C(Kyn) ®z Zp).

k.n k.n

Together with (2.4.10]) this proves the following corollary.

Corollary 2.4.13. The natural inclusions induce an equality

lim(Ck, , ®z22Zy) =lim(Ck, , ®2Zp) = im(C(Ky,,) ®2 Zp).
k,n k,n k,n

Let us prove one more technical lemma that shows that multiplication with the augmentation
ideal commutes with passing to the limit. We will write

Fyn = K (fp"p™)

for the ray class field of K modulo fp¥p™. Recall the definition of @, from (2.4.7) and remark

Lemma 2.4.14. Let p be a prime number, (p,6) = 1, that splits in K into distinct primes p and
p. Then, as subgroups of Lgln k((’);(k  ®z Zp) we have the identity

Iim ((Ng, k., Ogprp) ®2.Zp) = @(([(Kk,n/K)NFkvn/Km@)fpnﬁk) ®z Zp), (2.4.14)
k.n n,k

where we write I for the augmentation ideal I(Koo/K), Koo = Upn 1. K (E[p"p"]).

Proof. Let us write I, for the augmentation ideal I(Fuoo/K), Foo = Uy, 1 K (fp"p"). For n’ k' > 1
let us consider the projection maps

I @(Gfp"ﬁk ®7 Zp) > (I(Fk’,n’/K)Gfpn’ﬁk’) ®z Zpa
n,k

which are surjective since the norm maps on the groups Ojngr are surjective, see ([dS87], I,

2.3 and proof of Proposition 2.4 (iii)). Considering (/e lilln7k(®fpnﬁk ®7Zy)) as a projective

n! k'
system with respect to n’, k" and identity maps, we can pass to the projective limit with respect

to n/, k" and get the identity

oo liil(@)fpnﬁk ®7 Zp) = lﬁl ((I(Fk’,n’/K)G)fpn’ﬁk’) ®7 Zp)

n,k n' k'



40 CHAPTER 2. GLOBAL CONJECTURE

as subgroups of gnnk(O K (o) ©Z Zyp), compare lemma This equality fits into the com-

mutative diagram

I @mk(@fpnﬁk ®z Zp) lim o ((I(Fpr [ K)@purinr ) ®2 L)

<«~—n'k

I@n,k‘ ((NFkyn/Kkyn@fp”f)k) ®z Zp) — LiLnn’,k’ ((I(Kn’,k//K)NFk/’nl/Kk/’n/@fpn’f,k’) ®7 Zp)?

where the vertical maps are given by the norm maps and from which we conclude that the lower
horizontal map defines an equality. O

We remark that for k,n > 1 the group I(KkJL/K)NFk’n/Kk’n@fpnﬁk is precisely the subgroup of
Ck, , generated by elements of the form

o-1
)

(Nt K ©(T30))

where o ranges through Gal(Kj,,/K), a runs through integral ideals such that (a,6fp) = 1 and
7 through primitive §p*p"-division points.

Definition 2.4.15. For k,n > 1, we define C}’(k _ to be the subgroup I(Kyn/K)Np, , /K, Ogpnph
of C, , which was defined in definition .

With this notation the previous lemma says

Iim ((Np /1, Opperpe) ©2.Zp) = 1m(CK, | @2.7Zp)
k,n n,k

and by corollary [2.4.13| these modules are submodules of lim n(C (Kkn) ®z Zyp). We now come

to the main result of this section, which uses most of the results proven so far in this section and
(IRub99l, corollary 7.7). In order to state it we need one more definition. For any prime ideal [
dividing f we define a Galois automorphism o in G(K/K) as follows. Write n; for the exact
exponent of [in f. Then, we can consider the arithmetic Frobenius

([,K(p‘”[n—[)/K)

at [ in G(K(p‘”[ni[)/K), take a lift of it to G(K(p™f)/K) and write oy for the restriction to
G(K/K).

Theorem 2.4.16. Fix any prime ideal ¢ of Ok, such that (¢,6pf) = 1. The quotient of the two
modules

Iim (N, /K., Opprpt) ©2 Zp) © Um(C(Kp ) ®2Zy)
k,n k,n
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is annihilated by the element
(- No)- T =07 1),
1y
where o = (¢, Kow/K) and the product is taken over the primes dividing the conductor f. In
particular, the quotient is S-torsion.

Proof. For the last statement about the quotient being S-torsion, just recall from lemmata[A.9.2]
and that choosing ¢ to be equal to a prime q such that N(q) is congruent to 1 modulo p,
the element (o — Nc) - [Tye(1 - o) belongs to S. Let us now prove the theorem.
By corollary and lemma the statement of this theorem is equivalent to proving
that the quotient of
@(C},(k,n ®z Zp) © LiI_n(C}(,m ®z Zp)
n,k k,n

is annihilated by (o¢— Nc) - [Tys(1 - o;'). This quotient is isomorphic to

n,k
and it is clearly sufficient to show that for all k,n > 1 as in lemma m (i.e. such that both
O — Og[pF and OF —> O [p™ are injective)

(O}(kn/c%kn) ®z Lp

is annihilated by (o — N¢) - TTye(1 - o). Take an arbitrary generator of Ck, ,» which is of the
form ’

(N, arc(rrpmyyicy,, O(Tia))”,

where o belongs to Gal(Kj,,/K), ' is some divisor of f, a is an integral ideal such that (a,6f'p) =
1 and 7 is a primitive fp*p"-division point. We will show that this generator multiplied by
(o= Nc)-Ty;(1 - o7") belongs to C}Qk’n.

Recall that we write

f-I10,
llf

where n( > 0 is the exponent of the prime [ in the decomposition of §.

If [, then we may assume that [™ | f'. This can be shown just as the third case in the proof
of lemma In fact, if [ is an Og-generator of [ and my, m( < ni, the exact exponent of [ in
f', then, by ([JRub99], corollary 7.7), we have

T
NK([”Vm‘f’fﬂkP”)/K(f']—JkP")@(W; a) = @(7'7 ﬂ)

which yields

o-1 T o-1
(N k(e 16, O3 0)) = (N qoemipgopn (10 n ) © (3 0))
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showing that our arbitrary generator is a product of Galois conjugates of

T o-1
(Nic(oimmpprpny i oemppipmni, 0@ (G 10))”

This shows that we may assume that the exponent of [ in { is equal to n; whenever [ already
divides f.

We now turn our attention to primes [ dividing f but not dividing f'. It is now, that the
element (o.— N¢)- [Tye(1 - a[_l) comes into play. The next observation will explain why we need
the term (o, — N¢). For our arbitrary generator

o-1
(Niy i (rppm) i, ©(T5))

of Ckk L we allow any a prime to 6pf. In particular, [ might divide a. But we want to use

([R,ubQQJ, corollary 7.7) again, which we can only do for a prime to [. Writing o also for the lift
(¢, Fss/K) to G(Fw/K), ([dS87], 11, proposition 2.4) shows that

_ O(r;ac)
O(r: (oc=N¢) _ )
(T,ﬂ) @(T;c)Na-@(T;a)Nc

= O(7; c)("“‘NC‘),

so that

(0e-NO)(o-1)
)7 (

(7a-Na)(o-1)
(N, (pprpm) 61, ©(T30) = (Ni k(pptomy i, ©(T30)) -

We see that it is sufficient to show that

(0q=Na)(o-1) Hllf(l—a[’l)

(Nity e (o) 1,0 ©(T56)) (2.4.15)

belongs to C, . Now, for a prime [ dividing f but not dividing f', ([Rub99], corollary 7.7) yields
T -
N (ypepm) K (75+p) @(7;c) =0(r;0) 177,

where we write oy also for the lift of ([, K(p‘x’[ni[)/K) to G(K (p*f)/K) as in the definition of oy.
Applying this to all the primes [y,...,[. dividing f but not dividing f* we see that the element

from (|2.4.15) is equal to

T (6a—Na)(o-1) H[|f/(1—¢7[_1)
(Nt ppom) (e (75 0m)) @(—h A ) ) (2.4.16)

where we write I; for generators of [;. Now we can proceed as in the first step, when we showed
that if []{’, then we may assume that [ | {', showing that the element from (2.4.16)) belongs to

I
Kk’,n' O
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2.4.4 The formal group E and Coleman’s theorem in a semi-local framework

Let K be a quadratic imaginary number field of class number one and let £ be an elliptic
curve defined over K with complex multiplication by Og. Assume that E/K has good ordinary
reduction above p € Z. We have noted before that this implies that p splits in K into distinct
primes p = () and p = (7). We write f = f,, for the conductor of the GréBlencharacter ¢ attached
to E/K and L for the period lattice associated to a fixed global minimal Weierstrafl equation for
E (recall that K has class number 1). Moreover, we fix {2 € L such that

OrgQ=1L.

Let us fix an embedding Q c Cp, where C, denotes the completion (@p of an algebraic closure @p
of Qp.

In this subsection we recall some work by de Shalit on the formal group E (corresponding to
the fixed Weierstraf equation) and Coleman’s theorem in a semi-local framework. We also prove
some probably well-known results for which a reference could not be found. We will write

Fk,n = K(m(]ﬁkpn)v (m(]vp) = 17

for the ray class fields of K of modulus mgp*p”. We are mostly interested in the case mg = f.
This is because we want to study fields of the form

Ky, = K(E[7"1"]),
the conductors of which over K are precisely fp*p”, which we now prove.

Lemma 2.4.17. Whenever k,n > 0, (k,n) # (0,0), the conductor of Ky, = K(E[z"r"]) is
fptp.

Proof. This lemma has already been proved by Coates and Wiles for fields of the form Kj g,
k>1, and Koy, n>1, see ([CWTT7], lemma 4). For general K}, we may therefore assume that
both k> 1 and n > 1. Write g for the conductor of K} ,. The inclusion

Kioc Kinc K(g)

and the result of Coates and Wiles (loc. sit.) shows that fp* | g. Similarly, one gets fp” | g.
It follows that fp¥p™ | g. On the other hand, according to ([dS87], II, proposition 1.6) we have
K(E[fp*p"]) = K (fp*p"). Since Ky, ¢ K(E[fp"p"]) we also see that g | fpp™. a
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For mg =f and k£ > 1, we have the following diagram

K()

We have Fy,, = K(E[§p*p"]) = Ki.K(E[f]), see, as before, ([dS87], II, proposition 1.6) for
the first equality and note that for two integral ideals m,n of Ok we have K(E[m])K(E[n]) =
K(E[l.com.(m,n)]), see proposition m Moreover, for the conductor f of F it holds that
K(E[f]) = K(f), see (loc. cit.). It follows that

Fien = Fr oKk - (2.4.17)

Moreover, we have
Kk,n n Fk70 = Kk,g (2.4.18)

since every prime above p is unramified in Fy, o/ K}, o by definition and totally ramified in Ky, ,,/ Ky o,
see ([dS87], II, proposition 1.9). We conclude from (2.4.17) and ([2.4.18)) that

G(Fin/Kipn) 2 G(Fro/Kko) (2.4.19)
for every n > 1. We define

Fkooiz UFk,n and Foolz U Fk,n

and likewise
Kioo=JKikn and Ko:= |J Kin
n>1 k>1,n>1
Again, if mg is divisible by the conductor of F, Fs /K is a finite extension. We define my, = mop”®
and from now on we fix some k > 1 such that O — Ok /p¥ is injective. Note that p is unramified
in K o/K, see ([dS87], II, Proposition 1.9). We define the following semi-local objects

Kk,n,p = Kk,n K Kp = 1—|[Kk7n7s;3 and Ok,n,p = OKkn R0y OK,, = 1—‘1 OKk,n,qw
PBlp PBlp
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where, in the products, the primes ‘B range through the primes of Kj,,, above p. We will write
Gi = G(Ki,00/ K)

Moreover, we will write

— 1 = 1 ~ )%
Uk,n - Ok,n,p - H OKk:,n,‘B = H OK’%”«‘B
Plp Flp

for the subgroup of principal units in the group of semi-local units Oy, p = oppp (’)Ix(k o

Remark 2.4.18. (i) As de Shalit, for every prime ideal B of K} above p we consider E as
a Lubin-Tate formal group of height one (recall our splitting assumption) relative to the
unramified extension Ky, q/Kp. At times, we will also consider E as a formal group with
coefficients in OKk,O ® Ok, 2 H‘B\P OKk,O,‘JS‘ For an excellent survey on commutative one
dimensional formal groups see ([dS87], section I.1).

(ii) Note that de Shalit, see (loc. cit., p. 64), starts with an integral ideal § and then fixes a
GroBencharacter dividing this ideal. He then considers the ray class fields K (fp™) which
coincide with the extensions generated by fp"-division points of an elliptic curve associated
to the chosen Groflencharacter. In contrast, we start with a fixed elliptic curve E and are
interested in extensions induced by division points the orders of which are prime to the
conductor of E. These fields are, in general, smaller than the ray class fields for moduli
divisible by the conductor. Coleman’s machinery applies to a norm-coherent system of units
in a tower of fields obtained by division points of E. As mentioned above, in de Shalit’s
setting these coincide with the ray class fields, so the reader should not be confused that
de Shalit does but we do not work over the ray class fields.

(iii) Moreover, note that de Shalit fixes, see (loc. cit., p. 64), for every ideal of the form fp* a
GréBencharacter ¢ of type (1,0) over K and with conductor dividing fp* and an elltipic
curve Epgr over K (jp*) for which ’QZJEfEk /K (5p%) is equal to Q,Z)Efﬁk = Yk © Nigspry - 1, as
we do, one starts with an elliptic curve E/K with CM, denote by ¢ the GroBiencharacter
of type (1,0) over K attached to E/K and write f for its conductor. Then, for every ideal
fp* one can simply consider E as an elliptic curve defined over K (fp¥) and take E as Esr
and 1) as 9. This is possible, since the Groflencharacter attached to E/K (fp*) is given
by

o Nic(jpr) e
see Perrin Riou’s article ([PR84], II, §1.2, p.26).

Next, we want to introduce p-adic periods. Let us define the fields in which they live. We note
that Koo = K(E[p*]) is an extension of K in which p is unramified and finitely decomposed,
see ([dS87], II Proposition 1.9). Hence, Ko 0p := Koo ®k K is a finite product of fields each

unramified over K. Likewise, we write Ok, , = Ok, , ®0, Ok,, only to define
D=0k

©0,0,p
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to be the completion of Ok We now quote proposition 4.3 from chapter IT of [dS87].

©0,0,p *

Proposition 2.4.19. There is an isomorphism of formal groups defined over the ring 15,

0: @m z E,
given by
0(X)=Q,X + terms of degree > 2 e D[[X]],
with Q, € D*.

We write ¢ = oy, for the arithmetic Frobenius at p in G(K«0/K) and note that G(Ke 0/K)
acts on Ko, o®g K via the action on the first factor and that, by continuity, this action extends
to the completion.

Definition 2.4.20. Let us fix a generator ((,), of lim  ipn (K), i.e., a compatible system of
primitive p-power roots of unity.

Moreover, we have remarked above that p is finitely decomposed in K« /K. It follows that
there exists a smallest ko > 1 such that the number of primes in Ky, o above p is the same as the
number of primes in Ko o above p.

We will write .
wn =07 (¢u—1).

Also, from now on we fix some k > kg. The semi-local version of Coleman’s theorem, see (|dS87],
IT, Proposition 4.5), says that for every

u= (un)n € Uk,oo = linUk,n

n

there exists a unique power series g,,(T") € Oy 0,p[[T']]* such that

Up = (6" gu)(wn)-

Moreover, see ([dS87], I, section 3.4 and II, Proposition 4.6), there is a unique Gx-homomorphism

it Upoo —> M(Gr, D), ig(u) = Ay (2.4.20)

such that
g(9.) 0 0() = [ (14 X)Dar(0), (2.4.21)
k,0

where Gy o = Gal( Ky, o0/ Kk0), & denotes the Z;-valued character defined by the action of G
on E[p>] and
— 1
log g(T) =logg(T) -~ 3 logg(T[+]w),
weE[p]
where, in turn, E[p] denotes the set of division points of level 1 in F and [+] is addition induced

by the formal group. The division points in E are, by definition, a subset of the valuation ideal
of C,, see ([dS87], I.1.7).



2.4. THE CM CASE 47

Remark 2.4.21. We want to explain how the measure A\, from equation is obtained in
the semi-local framework. First note that every prime P’ of Ky o above p is totally ramified in
K} 00/ K0 so that for every n > 1 there is a unique prime in K}, above ', which we will also
denote by 9’. With this notation we then have Gy o = G(Kp o0 g/ Kp,0,97). Also note that Uy o
admits a decomposition [Tsp Uk coqp 2 Uk,0o into P-parts Uy o := @n (’)}(Mm for primes P in
K}, 0 above p. Now let (ugp)q be an arbitrary element in [Tsp Uk,00,p- For every prime P’ of Ky
above p the local theory, see ([dS87], I, Definition 3.4), gives us a map

iy Ukooqy — MG (Koo, Kiogv), 23) (2.4.22)
so that for ug we get a Zgr—valued measure
i () = Augy,s

on G(Kk,co,9v/Kk,0,9v). By the method explained on page 20 in [dS87], every such Ay, can be
extended to Gy p = G(Ky 0,57/ Kp), the decomposition group of p in Gy, which is independent of
P’, so that, putting together the local maps for all P, we get a Gy, p-linear map

Uso = [[Usensp — MGy g{ Zy),  (us)p— (H > gy (H)) ),
p

where H denotes any compact open subset of Gi . Now, the map (2.4.20)) is obtained by the

universal property of Coindg:’p .

The map (2.4.20]) takes values in D-valued measures on Gy. However, eventually, as de Shalit
remarks, we want to integrate Cp,-valued characters of G, which are in general not K o p-valued.
Our fixed embedding Q c C,,, which determines a prime ‘B of Q above p, induces a map

Koo op= (Koo ®x Ky) — C, (2.4.23)

that sends the component of (Ko o ®x K pfcorresponding to the prime of Ko o below B isomor-
phically to a subfield of C, and the other components to 0. As de Shalit, we will write A\ for the
image of A under the map A(Gj, IA(OO707P) - A(Gk, Cp) induced by . We also note that the
restriction of to D takes values in Zg’" since p is unramified in Ko o /K. Therefore, since

for u € U o0, i (u) = Ay belongs to A(Gk,f)), we can interpret A\ as an element of A(Gk,Zg”).

Definition 2.4.22. We define
Liy : Up,o®2, 28" —> MGy, Z2")

as the map induced by the composition of i;, with the map A(Gk,f)) - A(Gk,ZZT) induced by

, so that Ly (u) = A0,
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Remark 2.4.23. We have explained in remark |2.4.21| how the map ([2.4.20)) is constructed. We
obtained a [Tqy, Z,"-valued measure on Gy, and then, in order to define L we projected to the

Z;T-factor corresponding to the prime of Koo below B, the prime of Q corresponding to our
fixed embedding Q c C,,. Let us write ‘B for the prime of K}, o below . We now want to remark
that using the isomorphisms

Coindg” A(Grp, [T Z27) 2 Indg A(Gryp, [T 227 = A(G, T] 227)
Tl Tl Pl

(Gpp is of finite index in G},) and

G
Ind " Ug,oo 3 2 [ [ Ukyoo,3 2 Uk,oo
q;l
it is a tedious, yet straighforward exercise to show that L is the same map as the one obtained
from applying Indg:"’ to the map

ik,‘l} . Ukjooﬂg — A(Gk,p,Z;“”), u+— (H = )\U(H))
from ([2.4.22)) (recall that the measures there can be extended to Gy, p) for the prime .

Next we want to study the images of l(gl ) Uk, and of elliptic units under the map @ . Ly (such

a limit map exists as we show later). We defined the semi-local principal units Uy, for Kj .
Let us define the elliptic units we are particularly interested in.

Definition 2.4.24. Assume that p is prime to 6 and set my = f, where f = fg = (f) is the
conductor of E. For k,n > 1 and an integral ideal a, (a,fpp) = 1, define

Q

€)= Q(W’L’ a) € OF.0

which defines a norm-compatible system €'(a) = (e}, (a))xn € Llnkn OF,.,, of global units. The

fact that the e;ﬁ’n(a) are norm-compatible follows from the distribution relation satisfied by O,
compare ([dS87], II, 2.3 and proof of Proposition 2.4 (iii)). Ultimately, we are interested in
elliptic units of the fields K}, ,, and therefore define

ekn(a) = NFk,n/Kk,n(efﬁ,n(a)) € Off,ma

which, again, gives a norm-compatible system e(a) = (€ (a))k,n € lim . Ok, ,, of global units.

k7
For fixed k > 1, the norm-compatible system e(a) maps to a norm-compatible system e(a) =
(ern(a))n,

lim Oy — lim O ., e(a) — ex(a).

k'.n' n
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Let us now think of lim Oy = as embedded into the semi-local units lim Oy " (recall Oy, p =
«n ’ <«~—n 5Ty )ty
Hgmp Ok, .y ) and write uy(a) for the projection of ex(a) to the pro-p part Uy, e of Llnn O nps
in symbols,
LiLnO;;n’p — Uk,oo, ek(a) [ uk(a)
n

o . . iy . “
Likewise we write u(a) for the projection of e(a) to the pro-p part Us, = lﬂlkn Uk oflink’n O p-
We define

Mea = A0 =Ly (up(a)),

ug(a)
as the p-adic integral measure on Gy corresponding to ux(a). We also define
1 )\k,a

A= — NGy, 75"
k 12 $k7a € Q( ( ks D ))7

where xyq = 0pq— Na, 0pq = (0, Kpo/K) € Gi. It can be shown that )\ is independent
of a and actually an integral measure, see (|dS87], II proof of Theorem 4.12), so that \j €
A(Gy,Zy"). Lastly, using the fact that for k' > k > 1, Ay maps to A, under the canonical

projection A(Gk,,ZgT) - A(Gk,ZgT), see (|dS87], II, Theorem 4.12), we define
A= (o) e A(G,ZY), (2.4.24)

where G = G(Ko/K), Koo = Up . Ky 1.

As before, we write
Ghrp c G

for the decomposition group of p in G. For a fixed prime ‘B of K}, o above p we write K}, o g for
the completion of K}, o at the unique prime above 8. With this notation Gy, p = G(Kj e,/ Kp)-
Likewise we denote by

GpcG

the decomposition group of p in G = G(K«/K). Fixing a prime P of K, above p and, by abuse
of notation, writing P also for the primes of K}, below B, we have maps G} = G(Koo g3/ Kp) >
G(Kk7oo7sp/Kp) ~ Gk,p- Let us write

J c Zp[[G]] (2.4.25)

for the annihilator of fipe (Koo).

The images of Uk7w®zngr and (@n((amkpn ® Zp))é)ZPZ;” under L are determined in
([dS87], III, Proposition 1.3 and Proposition 1.4). Closely following de Shalit’s proofs, in the
next theorem we explain that there is an injective map L = l(ink Ly of A(G,Z;T)—modules and
we will determine the images of both

Uso ®ZP Zgr and Do ®Zp ZZT,
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under L, where U, =lim Uy, and we define
«~—kmn ’

)

Do = I'lim ((Ng, /K, Ogpnph) ©2 ZLp)- (2.4.26)
n,k

At some points in the proof we provide some more explanation than can be found in (loc. cit.).

Theorem 2.4.25. Assume that (p,6) = 1. Then, there is a map L = Lglk L, that fits into an

exact sequence of A(G, Zgr)—modules
0 —> Unoz, 2" —> A(G, 227) —> TndSP 27 (1) —> 0. (2.4.27)

In particular, Uooész;T = (AnnA(G ZM),upoo(Koo QK Kp))ézpzz’". Moreover, 1L induces an iso-
&p

morphism

Deo®7, 22" = A(G,ZE") I I\
where we write I for the augmentation ideal I(Ko/K), J is the annihilator of iy~ (Ko ), A was

defined in and Do, was defined in .

Proof. The exact sequence is the semi-local version of an exact sequence arising in a
local framework. In fact, for k 1 write B for the prime of Kj o below the prime P of Q
corresponding to our fixed embeddlng Q c Cp. Then, we have Gy = G(Kj 0o 3/Kp). We write
Uk, 0,9 for the P-part of Uy, o, i.e., for hrn (91 e where, by abuse of notation, we also write
B for the unique prime of Ky, above ‘}3 We deﬁne Ny € Nu{oo} to be the largest integer
such that prk, a primitive pVs-th root of unity, belongs to K k,00,- Then, de Shalit proves, see
([dS87], I, Theorem 3.7), that there is an exact sequence

0—> UkmmészZT — A(Gk,p,z;;r) — (Z;’”/ka)u) — 0, (2.4.28)

where Z;“" /pN k should be replaced by Z;T in case Ny = co. We have a similar exact sequence for
any other k' > 1. If k' > k, and if we write P’ for the prime of Ky ¢ below B, so that there is a
canonical map G(Ky oo g /Kp) > G(Kj 00, /Kp), then the two sequences for k' and k fit into a
commutative diagram, see (|dS87], diagram (16) in I, 3.8),

0 Ukl7oo7qy®zngr A(Gk/’p,Z;T) B — (Zgr/ka’)(l) — 0
Nk:l’k’p
0 U, 00,997, 21" A(Grp 27 ——— (227 [pNe) (1) ——— 0

(2.4.29)

where the vertical map N/, on the left is induced by the norm maps N Kyt gt Kiomsp and
the other two vertical maps are the natural projections. For a proof of the commutativity of
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diagram see also the detailed account found in ([Venl3], section 2) that deals with the
mutliplicative formal group. Note that all vertical maps are surjective, which is clear for the
projections in the middle and on the right. For the vertical map on the left this follows from the
fact that for unramified extensions (K ,,/Kn, k' > k, is unramified at the primes above p since
E has good reduction at p, see ([dS87], II, prop. 1.9)) the norm map is surjective on principal
units, see ([Ser95], V, §2, proposition 3) or ([FV02], III, corollary to proposition 1.2, p.69).

Let us first make some general remarks about a Gy y,-module M, a G}, p-module N and a
map ¢ : M — N that is a G} y;-module homomorphism if we consider N as a Gy p-module
via the canonical map Gy, > G p, k' > k. First we can consider the map from the universal

property of Indg:”’N which is a G}, p-linear map N — Indg:’p N. We can consider Indg:"’ N as
a Gp-module via the map G - Gy and then, by restriction, as a G ,-module. The composite

. . . Gr
map M 2N — Indg:’p N is then a Gy p-linear map. By the universal property of IndGz,’pM

Gpr
we get a unique Gj-linear map Ind(¢) : IndG:,’p M — Indg:p N induced by ¢. This construction

is functorial with respect to both N and M and the map Ind(¢) is surjective if ¢ is surjective
(note that for every k" > 1 the group Gy, is of finite index in Gy ).

Now, we see that we can apply Indg';”’ to the lower horizontal sequence of (2.4.29)) and then

Gr . .
apply IndG:,"“ to the upper sequence and get a commutative diagram

A A I[A ’ A / A
0 Ut 00®2, 28" —— NG, 22") ——— mdg:,v (zyr [pNe ) (1) —— 0
Ny
A ~ L N ~
0 Upoo®2, 27— MGy Zi) ——— Tndg™ (22 [pN+) (1) ——— 0

(2.4.30)

where the vertical map Ny j, on the left is induced by the norm maps N, /k, . and the other
two vertical maps are the canonical projections. As we have noted above Ny is surjective.

Compare remark [2.4.23| for the fact that appying Indg:’lD and Indg::’” to diagram (2.4.29), in

fact, gives the maps L; and Lj in (2.4.30)). Next, we recall that Gy is of finite index in G and
it is straightforward to write down an isomorphism

Indg? Zy" (1) = Indg? (Lim (237 /p™*) (1)) = lim (Indg" (Z37 /p™* ) (1) ).
k k

We are no longer dealing with compact modules, which is why we need the following fact. The first
right derived functor of the left-exact Lglk applied to a projective system with surjective transition

maps vanishes, see ([Wei94], chapter 3, lemma 3.5.3). Therefore, passing to the projective limit
with respect to k, k > 1, and the vertical maps from ([2.4.30]), we obtain the desired exact sequence

0 — Unoz, 2" —> A(G, 227) —> TndSP 27 (1) —> 0. (2.4.31)



52 CHAPTER 2. GLOBAL CONJECTURE

We will now prove the second statement about the image under L of the elliptic units.
The elements e(a), (a,fpp) = 1, from definition [2.4.24] generate

lim (N, k., (Opnpr) ®2 Z)p) (2.4.32)
n,k

as a A(G)-module, which follows from lemma applied to the module generated by the e(a),
(a,fpp) = 1, which surjects onto the various Np 2/ K Ogpnprs Ky > 1

We know that Lglnk (an,k/Kn,k (Ojynpr) ®z Zp), as a submodule of the global units £, can
be embedded into

: AX ~T1; 1 _
Lln H OKn,k,qs = lin 1—[ OKn,k,‘I} =Us
n,k Plp n,k Plp

and the elements e(a), (a,fpp) = 1, under this identification, coincide with u(a), by which we

denote the projections of the elements e(a) € @nk [Ty Of(n’km to their pro-p-parts in Uy,

compare diagram (2.4.5). With this notation the elements u(a), (a,fpp) = 1, generate (2.4.32))
considered as a A(G)-submodule of Uy .
The image of u(a) under L is given by

L(u(a)) = (Li(u(a))), = Ak.a)k = (1225 M)k = 1224,
where 24 = 04— Na, 04 = (0, Koo /K) € G and zy, o is the image of x4 in A(G}). Note that 12 is a

unit in Z, by the assumption on p. The statement now follows from the fact that the elements
xq=0q— Na for varying a, (a, fpp) = 1, generate J, which is proved in lemma [2.4.27| below.

Corollary 2.4.26. The map L restricts to an injective A(G)-homomorphism
Uso = MG, Z27)
and this restriction defines an isomorphism of A(G)-modules
Do =TI
Proof. First note that as de Shalit remarks (|[dS87], I, 3.4 Corollary), the first non-trivial map

in ([2.4.28)) is the linear extension of an injective A(Gy, p)-homomorphism Uy, o g3 = A(Gp, Zg”).
This means we have the following commutative diagram

U003 © A(Gk,p,Z;r)

N

S ur
U]{;7007$®Zp Zp
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p

so that applying the exact functor Indg';’ and then passing to the projective limit we get

Ly,

Uy < A(G,Zvm)

NS

Uso®z, 22

showing the first part of the corollary and that the canonical map Us, — L{ooézngr is actually
injective. The statement about the elliptic units follows exactly as in the proof of the previous
theorem. o

Lemma 2.4.27. The annihilator J = Anny q)(pp= (Koo )) of pip= (Ko ) in A(G) is generated by
oa—Na, a, (a,6fpp) = 1, where o4 = (a, Koo/ K).

Proof. For each n we denote by [, the greatest number such that K, , = K(E[p"]) contains a
primitive p'"-th root of unity. Then, for each n > 1 we consider the Z,/(p")[G(K,,,/K)]-module
fip= (Knn). Let 3, aqg be an element of Z/(p')[G(Knn/K)] that annihilates fip=(Kny). By
Cebotarev’s density theorem, for all g € G(Kyn/K) we can find a prime ideal qg prime to 6fp
such that g = (q4, K n/K). We can then write

22099 = 3 ag(g = Nag) + 3 agNd,.
9 9 9

Clearly, ¥, ay4(g — Ng,) belongs to the annihilator of iy (K, ) (since g = (qq, Knn/K) acts as
multiplication by Nq, on iy (K, ) and we see that 3, agN gy, which is just the residue class of
an integer, must be congruent to 0 modulo (p**), which implies that Y099 =Y ga4(g - Ngq,) in
Zp](p"™)[G(Kpn/K)]. We see that Anng s pin)[G(Kn k)] (Fp (BKnn)) is generated by elements
of the form (a, K, ,/K) - Na, (a,6fpp) = 1.

For each n > 1 we can now consider the exact sequence

0~ Anng i) 6K /5] (o= () = L) (0" [G (K K)] = Zp/ (p) (1) = 0.

Passing to the projective limit, we get

J=lmAnng s qm) (6K, /5] (B (Knn)).-
Writing Jy for the ideal of A(G) generated by elements of the form 04— Na, a, (a,6fpp) =1, we
have shown above that for each n > 1 the natural projection A(G) - Z,/(p'")[G(Kpn./K)] in-
duces a surjection Jo > Anng i )(G (K0 k)] (Hp= (Knn)). Since A(G) is compact and Noethe-
rian, see remark Jo is also compact. Therefore, passing to the limit we get the desired
surjection Jy - J, which concludes the proof. o
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2.4.5 Triviality of the annihilator Ann, g ;.. (\)
"

Let the setting be as in the previous subsection In particular, we write G = G(Kw/K).
We also set my = fy such that Foo/K is a finite extension. We want to show that X is not a
zero-divisor in A(G,Z,") which is the main result of this subsection. We will relate A to elliptic

units studied by Yager in [Yag82] and use the fact that A(G, Zg”) is a finite product of integral
domains and that Yager’s elliptic units each correspond to a finite number of power series in
ZZ”[[Tl, T»]] each of which interpolates non-zero L-values. Let us fix a non-trivial prime ideal ¢
of K prime to 6pf and write

Ye = l-0.=1- (C7K°<>/K) EA(G’ZZT)7

which is not a zero-divisor in A(G,Zgr). In fact, Ko /K contains the cyclotomic Zy-extension
in which ¢ is unramified. Hence, powers of Frobenius elements for ¢ do not have finite order in
G. This is sufficient for y. not to be a zero-divisor, which can be seen from the aforementioned
decomposition of A(G, ZZT) into (p - 1)? integral domains from section

MG, 22y = ZE[[A xT]] = I1 Zv([Th, T2]), (2.4.33)
X€A

where A is a finite group of order (p-1)2, T = Zz% and A denotes the character group of A.
An element in A(G, Zg’") is not a zero-divisor if and only if it is non-zero in every y-component
Zy"[[T1,T2]] for x running through A. Recall the definition of the characters x;, i = 1,2, from
section which, together, generate A.

Proposition 2.4.28. The element \ from definition is not a zero-divisor in A(G,Zgr).

Proof. Clearly, it is sufficient to show that for some integral ideal a of K, (a,6pf) = 1, the

element y.12x4\ = L(ycu(a)) is not a zero-divisor, which is to say that 0 = ANty (G 7ur) (yc12zg\) =

anny  5ury (ycu(a)). Here, for aring R, an R-module M and an element m € M, we write anngm
p

for the annihilator of m in R.
Now, we want to relate ycu(a) to the units studied by Yager in [Yag82]. For k,n > 0, write

p= W, which is a primitive fp**1p"*1-division point for L. First note that, by ([dS87], II,

Proposition 2.4 (ii)), for all k,n > 1 and an integral ideal a, (a,fpp) = 1, we have

(p.L,0)0(p, L,c)""

@(p, L, ac)

I/ @ X
Yelhsini(a) = € Op, (2.4.34)

where we write y! = 1- (¢, Foo/K). Now, we choose and fix a non-trivial a coprime to ¢ and define
a map
w: {integral ideals of K prime to 6pf} — Z
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by
u(a) =1, wu(c)=Na, p(ac)=-1, u(d)=0, (2.4.35)

for all other ideals 0 of K. Using the Chinese remainder theorem (O is a principal ideal domain),
we then get

Y(Nb-1)u(b) = (Na-1)+(Nc—1)Na—- (Nac—1) =0

b

where the sum is taken over all integral ideals of K prime to 6pf. Yager, see ([Yag82], section
4), then defines

O(=L.p) =]10(= 2,6,

where the product is taken over all integral ideals of K prime to 6pf. With this notation the

identity (2.4.34) says

yée;€+1,n+l(a) = ®(p7 L7 N) (2436)

Next, let (7,)n, Tn € C, be a compatible system of primitive p"*!-division points for L - for
example, 7, = % Moreover, since 7 is a unit in Ok, , we can choose elements ¢, € O such
that

en®=1 mod p™.
Moreover, Cebotarev’s density theorem, see ([Neu07], VII, Theorem 13.4), allows us to choose a
prime gy, of K, (qn,6pf) = 1, such that

(qkms Frr1,0/K) = (0, Fra10/K)™" € G(Fii1,0/K),

where we recall that F,,, = K (fp*p"). Now, we note that Yager, in ([Yag82], Corollary 9), defines
norm-compatible elements

en,k(u) € O}((k+17n+1 )

where we recall that K}, = K(E[7*7"]). Unwinding Yager’s definition of these elements, one
can show that they are given by

Q
en,k(ﬂ) = NFk+1,n+1/Kk+1,n+1 (6( k+1Tn + w(% n) f kil , L, M)) (2'4'37)

For those trying to derive this equality from Yager’s definitions, we note that one uses the
addition theorem for the Weierstraf p-function, see ([Lan87] chapter 1, section 3), in order to
see, as Yager remarks, that ©(z + %,L,b) is a rational function of p(z2) and p’(z) with
coefficients in Fj1 for any integral ideal b of K prime to 6pf. From this expression as a
rational function of p(z) and p’(2) and the main theorem of complex multiplication, saying that
(Qk7n,Fk+170/K)(p(%)) = P(T/}(Qk,n)%) holds (and a similar equation for '), one can then
show that Q

@(CIk,n7Fk+1,O/K)(Z I
fﬁk+1 ’

L.b)= (z+¢(qkn)f w1 [b);
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where the left-hand side denotes the function obtained by letting (qx.», Fr+1,0/K) act on the coef-
ficients of @(z+ %, L, b). The last ingredient for (2.4.37)) is the isomorphism from ([2.4.19)) and

the fact that p(ef*17,), 0" (817, € Kjiy n+1 are fixed by any element in G(Fii1n+1/Ki+1,n+1)-
Now, we proceed with the proof. Note that f*lr, + @Z)(q,,m)fw,Hl is a primitive fpF*tipti

divison point for L. To see this, write 7”7, = a,Q for some a, € Ok prime to p, consider the
identity
Q

g Qo) o = (F7F 1R g, +w”+1¢(qk,n))w

f k+1

and note that the residue class of f7**1e¥*la, + 7"*14(qs ) is non-zero in Ok /f, Ok /p and in

Ok /% by the choice of g, (recall that ¥ (qr ) is a generator of qy,).
Knowing that ek+17'n+w(q ko) FpT ke is a primitive fp**!p™*!-divison point, we see from remark
[2.4.6) that we can find an integral ideal 4, of K prime to fpp such that

Q

f7_Tk+17rn+1 ’

ol Q
@( L7 M) Pkn = 8(65;17—" + 1,[1(5[]67”)%, L, /1), (2438)

where 03 = (0gn, Frs1,n+1/K). We conclude from (I2.4.37|), (l2.4.38p and (]2.4.36p that Yager’s
elliptic unit e, () is equal to

Q o]
en k() = NEt /K st not (@(W’ L, ,u) Dk’n)

Uak,n

= (NFk+1,n+1/Kk+1,n+l (yée;ﬁlﬂwl (a) ))
= yc€k+1,n+1(a)%k’", (2.4.39)

where 0o, = Ok, Kis1,041/K), Yo = 1= (¢, Koo/ K) € A(G) and epy1 p41(a) is our elliptic unit
from definition [2.4.24] If we write u(u) for the projection of (e, ,(t))ni to U, a simple
compactness argument shows that we can find 6 € A(G) such that

dycu(a) = u(p). (2.4.40)

In fact, if we write w, x(p) for the projection of e, j(u) to Olﬁ+1,n+1,p7 then, for all k,n > 1
the preimage of the closed set {w,, ;(x)} under the continuous projection maps A(G)yu(a) —
o} +1n+1,p 18 NOD-empty by . By compactness of A(G)ycu(a) and the norm-compatibility
of the various u, (), the intersection of all those preimages cannot be empty, which is precisely
what we claimed.

Now, we recall that our original goal was to show that annA(GZgr)(ycu(a)) = 0. For this it is

clearly sufficient, by (2.4.40)), to show that

ann, (g gury (u(4)) = 0. (2.4.41)
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Let (i1,12) be a pair of integers modulo p—1. We recall from section that we write e;, 5, (this

11,12

has nothing to do with our elliptic units) for the idempotent in Z,[A] corresponding to X' x5’
To show that (2.4.41)) holds it is sufficient to show

annA(G,Zgr)(il»iz)(ei1,i2u(:u)) =0 (2.4.42)

for all pairs (i1,i2) in Z/(p-1) xZ/(p—1). From now on, let (i1,i2) be any pair of integers
modulo p—1. Recall that upon choosing topological generators 71,72 of I' 2 Z, x Z,, one can define
an isomorphism A(I‘,ZET) = er[[Tl,Tg]], ~i — T, i =1,2, which we use to consider M(1:%2) ag
a Zg”[[Tl,Tg]]—module, where M is any A(G,Z;T)—module.

Now, we consider the injective Z,[[T1,T>]]-homomorphisms defined in ([Yag82], Lemma 24)

w i) (i) s 7 11Ty Ty

for each pair (i1,i2) as above. Since er is topologically flat over Z,, i.e., the functor —®ZPZ;O”"
is exact, we can extend the map Wi1:i2) 6 an injective map

W) (i), 7ur —s 707 ([Th, T2]].

We will not give a precise definition of the map W i) pug only use the interpolation property
of the power series W(1%2) (¢; u(p)) given in [Yag82] (note that Yager writes < e(u) > for
u(p)) to prove that

W) (e 5 ou(p)) #0. (2.4.43)

Assume we have already shown that (2.4.43) holds. Then, if e, ;,)0e(;, 5,)u(p) = 0 for some
0 € A(G,ZZT), let us first note that we can find 0 € A(F,Z};’" = Z;T[[Tl,Tg]] (it is via this
isomorphism that the action of Zgr[[T 1,T2]] on Ugl’i2)®ZngT is defined) such that

e(ihig)g = 6(1'171'2)(5

as elements in A(G,Zgr). Since e(;, ;,) is an idempotent and e(;, ;,) and 6 commute, it follows
that

0= W(ihig)(e(il,iz)(se(il,zé)u(u)) = gW(il,iZ)(e(ihig)u(:U’)L

from which we conclude that 6 = 0 since er[[Tl, T,]] is an integral domain and we have assumed
that holds. It follows that e(;, ;,)0 = 0 and, in particular, that (2.4.42)) holds, which is
what we wanted to show.

Lastly, it remains to prove , which we will do by showing that W12 (e, ; u(u))
interpolates non-zero values. We fix a generator u of 1+ pZ, and write o ;, k> 1,7 <0, for the
logarithmic derivative Z,-module homomorphisms

Ok,j : Use — (Oky ®0x Ok,)
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defined in ([Yag82], section 3). Then for all integers ki > —ko > 0, (k1,k2) = (i1,i2) mod p—1,
we have the following identities in (O, , ®0, Ok, )

. k1—ko
W(ll’w)(eil,mu(ﬂ))(ukl - 17 ukg - 1) = D, ) (1 h M) ’ 5k1,k2(ei1,i2u(ﬂ))

(Np)t-ke
k1—k2
:D'-(l—%)'ékl,b(u(ﬂ))
k1~ hk1=k2 (5
D" (1= ) (-0 (1= )
T \—k2 7 k1—k2
-(zh:u(b)(Nb—wkl(b)wk2(b)))'(\/2@) ' 'L(kalk;kl)’
(2.4.44)

where D', D" are units in (Ok,_, ®0, Ok, ), —dk denotes the discriminant of K, 7 for now
denotes the smallest positive real number such that cos(7/2) = 0 and for the first equation we
used theorems 27 and 22 from [Yag82|, for the second lemma 6 from (loc. cit.) and for the last
equation theorem 15 from (loc. cit.).

The term (1 - 28552) . (kg - 1)1 (1 - L5 2) from (2.4.44) is nonzero (just think of it

as an element in K and consider the valutations of the individual terms at v, and vj).

Next we look at the term ), ,u(b)(Nb—wk1 (b)ypk2 (b)) where the sum is taken over all integral
ideals of K prime to 6pf. Recalling the definition of y from and rearranging some terms
(here we use the multiplicativity of the norm N on coprime ideals), we see that it is given by

Y n(e) (N — "1 (0)972 (b)) = (Na - b ()" (a)) + Na(Ne - b ()9 (c))
~ (N (ac) ~ 4" (ac)* (ac) )
= (Na-¢h (a)*(a)) - (1- 95 ()™ (o) ). (2.4.45)

For any fixed ko <0, ko =io mod p—1, the last term can at most be equal to 0 for two different
ki1 satisfying k1 > 1, k1 =41 mod p— 1. In fact, if

Na =" ()" (a),
then
Na # " EED (q)g*2 (a)

for all k € Z - {0} since ¥ (a) generates a non-trivial ideal of Ok . The same argument applies to
the term (1 — kL (c)@ﬁl‘a(c)), so for fixed ko there can be at most two elements k; as above such

that ([2.4.45|) is equal to 0.
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Lastly, we will turn our attention to the term

2m \~k2  L(p*17R2 k)
(\/@) T Qkike

which is algebraic by Damerell’s theorem found in [Dam70] and [Dam71] and, as Yager notes, in
fact belongs to K for all integers k1 > —kg > 0. Greenberg remarks in [Gre85] quite generally for
primitive GroBlencharacters W of type Ag for an imaginary quadratic field and infinity type (n,0),
n 2 1, that due to the convergence of the Euler product for L(W, s) in the half-plane R(s) > 5 +1,
the L-function cannot have a zero there. Moreover, Greenberg quotes Lang ([Lan70], chapter
15) for the fact that also L(W,s) # 0 for :](s) = 5 + 1. Using the functional equation one can
then deduce that there cannot occur any zeros for 0 < () < § either (a fact which we will not
need).

For our purposes first note that, as Greenberg (loc. cit.) remarks, for the complex conjugation
automorphism ¢ € G(K/Q) we have L(*1*2 o ¢,s) = L(¢)*7*2 s) since ¢ simply permutes the
prime ideals of K. Moreover, the Gréfencharacter ¥¥17%2 o ¢ has infinity type (ki — k2,0). It
follows for ki, ko such that ki > kl%k? + 1, which happens precisely if k1 > 2 — ko, that we have

(2.4.46)

LM% k) = L(gF %2 0 ¢, k) 0.

But for fixed ko <0, ko =49 mod p—1, we have ky > 2—ko for almost all k; > 1, k1 =41 mod p—1.
We have shown that for fixed ko <0, ko =49 mod p -1, both and are non-zero
for almost all k1 > 1, k1 =47 mod p—1.

In conclusion, we have shown that W12 (¢; ;,u(p)) interpolates a non-zero value, so

W(il’iQ) (eil,izu(:u)) % 0,

which finishes the proof. o

2.4.6 Elliptic units continued

Let the setting be as in section In particular, we consider an elliptic curve E/K with
complex multiplication by Ok and, as before, write f for the conductor of the Gréflencharacter
¢ attached to E/K. Moreover, we write p for a fixed split prime and assume that E/K has
good ordinary reduction above p. If E is already defined over Q and FE is a representative with
minimal discriminant and conductor in its Q-isomorphism class as in ([Sil99], Appendix A, §3),

then, by theorem [A.6.8 and proposition [A.6.9] we know that
f=1", r>1,

is a prime power for some prime ideal [. It is precisely this condition that we want to impose on
a general elliptic curve E/K with CM by O in this subsection.
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Assumption 2.4.29. We assume that the conductor f of the GréBencharacter 1 over K is a
prime power
j-r

for some prime ideal | and some r > 1.

In theorem 5 and corollary [2.4.26] we have shown that the image of the A(G)-module
Ihm ((NFk /K 2 Ojpnph) ©7 Z ) under the map L in A(G, ZW) is equal to A(G)IJ\.
Uﬁder the above assumption, the image of Rubin’s elliptic units hm (C (Kkn)®zZy) under

L admits a similar description, the determination of which is the aim of this subsection. Recall
from corollary 2.4.13| that

@(C%k,n ®Z Zp) = Co<)7

k,n
where we define Co, := liLnk,n (C(Kkn) ®z Zy) and C}(k,n was defined in definition In
definition [2.4.24| we defined certain elliptic units that were values under @(—, —) of division points
the order of which was divisible by the conductor f. For our description of lim n(C(K kn) ®z Lyp)

we also need elliptic units that are values of division points the orders of which are prime to f.
Recall that we write Ly, = K (pFp™) for the ray class field of K modulo p*p™, so that we have
Lk:,n c Kk,n c Fk,n = K(ﬂakpn)

Definition 2.4.30. Assume that p is prime to 6 and prime to #(Ogk/f)*. For k,n > 1 and an
integral ideal a, (a,pp) = 1, define

s Q x
ern(a) = ®(W’ L.a)eOy, ,

which defines a norm-compatible system é(a) = (€n(a))gn € lim Oj, , of global units. Now let

k,n >1 such that Oy — (Ok [p*1p"1)* is injective. Since, Ly c Kipand G(Kpp/Kj-1n-1) =
G(Lkn/Lk-1,n-1) are bijections, see corollary é(a) is also a norm-compatible system in
Liﬂlkn(’);(kn. For fixed k > 1, the norm-compatible system é(a) maps to a norm-compatible

system €(a) = (€xn(a))n,

lim Oy — lim O ., é(a) — éx(a).
k' ,n' n
Let us now think of lim (’),: n as embedded into the semi-local units lim Or ., and write i (a)
~n P

for the projection of ek(a) to the pro-p part Uy o of hm O in symbols,

k,n,p’

mog,n,p - U/c,om ék(u) — ﬂk(a)‘
We define _
Moo =AY, (o) = L (@ (@),
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as the p-adic integral measure on Gy, corresponding to uy(a). For a such that (a,fpp) = 1 we also
define

Ap = — € Q(A(Gkvzzr))7

where xj, o := 0, — Na, 03 q = (0, Kj 0o/ K) € Gj,. For another b such that (b, fpp) = 1 we have an
equality
Th,oMeya = Thya kb

since the corresponding equation holds for uy(a) and ux(b), see (|dS87] II, proposition 2.4 (ii)).
It follows as in the proof of (|[dS87], 1I, theorem 4.12) that A, is independent of a and actually
an integral measure, so that \, € A(Gy, Z“T)

Using the fact that for k' > k> 1, uk/(a) maps to u(a) under the norm map, the commuta-
tivity of dlagramshows that A\ maps to A\, under the canonical projection A(Gyr, Z‘“") -

A(G, Zgr). We can therefore define

A= (\k e A(G. 2, (2.4.47)
where G = G(Ko/K), Koo = Up . Kj; .
Having defined A we can now state the main result of this subsection.

Theorem 2.4.31. The map Ly, from corollary|2.4.26| defines an isomorphism of A(G)-modules

Coo = TIN+IJN

where, we recall, Coo = linkn(C(Kk”) ®z Zyp), I denotes the augmentation ideal I(K«/K) in
A(G), J is the annihilator of pye(Ke) in A(G) and X was defined in .

Proof. We first look at C}(k _ for k,n > 1 and note that, due to assumption [2.4.29] it is generated
by elements ’

o-1
(N k(0 pm61, O(T30)) (2.4.48)

where ¢ ranges through Gal(Kj,/K), 0 < v’ < r, a runs through integral ideals such that
(a,6[7"/]3p) =1 and 7 through primitive " p*p"-division points. If 7 is greater or equal to 1 (ais
then prime to [), then, by ([dS87], II, proposition 2.5), we have

T
Ny (5 e @(T58) = Nic(pigmy vy ) (5 = ia).

This shows that in (2.4.48) we may restrict to 7’ = 0 and r’ = r and still obtain a set of
Z[Gal(Kgn/K)] generators of Cp, . We also may restrict to primitive division points of the

form ﬁks}r — and lrﬁslzwn since the values of ©(—,a) at other primitive division points are Galois



62 CHAPTER 2. GLOBAL CONJECTURE

conjugates, see remark for the case ' =r. The case r’ = 0 follows from ([dS87], II, proposi-
tion 2.4 (ii)), the proof of which uses, without mentioning it, (loc. cit., II, lemma 1.4, p.41); see
also ([Rub99], theorem 7.4).

So we have shown that

Cry = I(Kin/K)(NE, k0 Ofrpn ) + I (Kin/ K)O (2.4.49)

prpno

where +, of course, means the group generated by the two subgroups I( K}, ,,/K) (N Fon/ Kk’n@ﬂakpn)
and [(Kjpn/K)Ogkyn of O;(k’n and the augmentation ideals have coefficients in Z. Even though
we are dealing with units we use an additive notation because later we will tensor with Z, and
then naturally use the additive notation.

We have noted before that for n’ >n>1, k' >k >1 the norm maps

NFan//Fk?n : @ﬁgk’pn’ — @fﬁ’“p"
are surjective. It follows that the norm maps
NKk’,n’/Kk,n : NFk’,n’/Kk’,n’@ﬂBk’pn, - NFk,n/Kk,n@)fﬁkP"
are surjective and using corollary [A6.6] we also see that the norm maps
NKk’,n’/Kk,n : @ﬁk’pn’ I @ﬁkpn

are surjective. It follows that the norm maps

NKklynl/Kk,n : ((NFk’,n’/Kk’,n’@](ﬁk/p"’) + G)ﬁk’pn’) I ((NFk,n/Kk,nG)fﬁkp") + Gﬁkp") (2450)

are surjective and the same holds after tensoring with Z,. From this we conclude that the
projection maps

I Lln (I:(Npk,m,/Kk,’n,(afﬁk/pnl)+®ﬁk/pnl]®zzp) — I:I(Kk’vn/K)((NFk,n/Kk,n(afkaP")+®¥3kpn)]®ZZP

k’,n'

are surjective and the term on the right, by (2.4.49)), is equal to C’}(k . ®z Zy. Passing to the
projective limit with respect to k,n yields an isomorphism ’

I lim ([(Npk,vn, T @5k,pn,] ®y, Z,,) = lim(Cl, , ®2 Zp) = im(C(Ky,) ®7 Zy)

k' n' k,n k.n

by lemma [2.4.3
Another compactness argument shows that lim ([(Npk, K n'®ﬂ3’“'p"') + Qﬁk,pn,] ®z Zp)

<«~—k',n'

is generated over A(G) by e(a) and é(b), where a,b range through the integral ideals of K
such that (a,lp) = 1 and (b,p) = 1. In fact, this follows from lemma applied to the
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module generated by the e(a) and é(b), (a,Ip) =1, (b,p) = 1, which surjects onto the various

((NFk,n/Kk,ntﬁkpn) + @ﬁkpn) ®Z Zp, k, n 2 1
We embed the global units into the semi-local units Us as before and write u(a) and @ (b)
for the images of e(a) and é(b), respectively. Then, we have

L(u(a)) = (Lk(uk(a)))k = (Me,a)k = (1224 g Ak )k = 1220,

and likewise
L(a(b)) = (Ly (@ (b)), = (Meo)k = (1225 p Mg )k = 1220,

where, in the last line, xp = 0 — Nb with op = (b, Koo/K) as usual if (b,6pl) = 1. In case [ | b we
can consider (b, Loo/K) and then define o to be a lift to G(Kw/K). Note that py~(K) ¢ Lo
(because for any primitive p"-th root of unity (,» the extension K ((p»)/K is unramified outside
the primes above p so the conductor of K ((,»)/K divides a power of p, i.e., K({p) is contained
in a field Ly, ,, for some m > 1). It follows that even if [ | b the element zy = op — Nb belongs to
J. In combination with lemma this concludes the proof. o

2.4.7 Relations in Ky(S-tor)

Let the setting be as in the previous subsection [2.4.6] Moreover, we keep the assumption [2.4.29]
that the conductor of ¢ is a prime power f = [" for some prime [ and r > 1. We know from
theorem [2.4.16] that the quotient

Coo/Doo (2.4.51)

is S-torsion and by remark that it is finitely generated over A(G). Using corollary [2.4.26
and theorem [2.4.31] we see that its image in Ky(S—tor) is

[(ITX+IIX)[IIX] = [ITN/(ITXnTJN)], (2.4.52)

where we consider IJ) and IJ) as A(G)-submodules of A(G, Zgr). From lemma we know
that Ko /Lo is a Galois extension of degree wx = #u(K) and we define the norm element

N::NKOO/LOQ = Z g € A(G)

9€G(Koo/Loo)

From the same lemma we know that for all k,n > 1 such that O} — (Ok/p*p™)* is injective, we
have bijections
G(Ke/Leo) 2 G(Kgpn/Lin)-

induced by the restriction maps. It follows from ([dS87], II, proposition 2.5) that for such k,n
and for a prime to 6pf we have

(1-orh) . —o1
NKk,n/Lk,nekan(a) = NFk,n/Lk,nG)(Wv L, Cl) = B(W, L, Cl) 7)o ekm(a)(l o)
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and also
Nicy /L Chin (@) = En (@)K

since €y, (a) = @(#,L,a) belongs to Ozm and the extension Ky /Ly, has degree wy =
#u(K). It follows from this that for zq = (0, K/K) - Na, (a,6pf) = 1, we have equations in
A=ANG,Zy)"

Nzd=(1 -0 )ah and Nzgh = wrze)

and hence, since x4 is not a zero-divisor, we also have
NA=(1-oHA and NA=wgh (2.4.53)

and note that wk is a unit in Z,. This shows that we can apply the following lemma to R =
ANQ=ANM=TJ\N=IJ\z=N,y=1-0;" and get

N A(IIXNAITN) = (1 -0 ITA (2.4.54)

Lemma 2.4.32. Let R be a commutative ring, M, N submodules of a R-module Q) and x, y
elements of R such that xM = M and xN = yM. Then, we have an equality of submodules

x(MnN)=yM

of Q.

Proof. Clearly, we have z(M nN) c ((zM)n (zN)) = yM. On the other hand, for an element
ya € yM, with a € M we can find a’ € M such that a = za’. It follows that ya = zya’ and ya’
belongs to M n N since N = yM. o

Since multiplication with N induces an isomorphism of I.J X and therefore also of IJX N I.J A,

equation shows that the class on the right of is equal to
[TIX/(ITXATIN)] = [ITN/((1 =07 ") ITN)]. (2.4.55)

It follows from the lemmata [A.9.2] and [A.9.5| that all of the modules in the following two exact
sequences are S-torsion

0 IJN((1 -y ")IIN) - AN/ (1 = oy )IIX) > AN/ITX >0 (2.4.56)
and
0 ((1=o7HAN)/((1=o)ITX) > AN (1 =7 )IIN) » AN/(A(L-07)X) > 0. (2.4.57)

For all modules in the above two exact sequences it is clear that they are finitely generated over
A, recall that IJ)\/((l - a[l)IJ/\) is isomorphic to (2.4.51). Since 1 - o' is not a zero-divisor
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in A(G,Zg’”), i.e., for any A(G)-submodule M of A(G,Z;””) multiplication with 1 - o' defines
an isomorphism M = (1 - O'[_I)M , the two exact sequences show that

[TIX((1=o7")IIN)] = [AN/(A(L-o7")N)]. (2.4.58)
Recall the identity on the left of
Nx=(1-aHA

Since 1 - a[‘l is not a zero-divisor in A(G,Z;f") we see that the class on the right of (2.4.58]) is
equal to

[AL - DN (A = 07)2N)] = [ANN/ (AL - o YN N)]. (2.4.59)

Theorem 2.4.33. In Ky(S-tor) we have an equality
[Coo/ D] = [A(G/D)],

where we write Dy for the decomposition group of [ in G = G(K«/K).

Proof. Equations (2.4.52)), (2.4.55)), (2.4.58) and (2.4.59) show that

[Coo/Doo] = [ANN/(A(1 - o7 )N N)]

and since A is not a zero-divisor in A(G,Zg”) by proposition [2.4.28 we see that the class on the
right is equal to
[AN/(A(L - o7

We remark that AN and A(1 —0[1)/\/ are now already submodules of A and not only of A. Let us
write H' for the closed subgroup G(Ke/Ls) of G and pr: A(G) - A(G/H") for the canonical
projection. Then, we have an exact sequence

0— ker(pr|A(G)N) —_—> A(G)N I A(G/H,) — 0, (2.4.60)

which is exact because under pr the element N maps to wg € Zy,. Now, we claim that
ker(pria(cyn) = 0. In fact, let 2N, x € A(G), belong to ker(pr). Then, we have

0=pr(aN) =pr(z)wk,

from which we conclude that = € ker(pr), because wy € Z;. But ker(pr) is generated over A(G)
by elements of the form 1-g, g € H', and for such elements (1 - g)N =0 and therefore 2N = 0.

It follows from (|2.4.60]) that
AG)N = A(G/H"),
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which is not surprising since ideals generated by norm elements in group rings and augmentation
ideals are annihilators of each other, compare ([Neu69], I, §1, (1.3) Satz). We get

AMGIN[(MG) (1 - ot HN) = AG/H) [(MG/H) (1 =51 ), (2.4.61)

where we write o for the restriction of oy to L. Note that, by definition, oy = (I, Leo/K) is
the arithmetic Frobenius at [ for the extension Lo, /K, in which [ is unramified. In particular, 7
topologically generates the decomposition group Dy of [ in G/H' = G(Le/K). It follows that

AGIH)[(MGIH)Y(1-67")) 2 A(G(Leo/K) | DY). (2.4.62)

Next, we claim that any place £ of Lo, above [ does not split in Ko /L, i.€., for £ there is a
unique extension £ to Ko. We also write vg for a non-archimedean place q in order to stress
that we think of it as a valuation. This means that we have to show that if £ is a place of K,
above £, then

Vgr0g =vVg (2.4.63)

for all g € G(Ko/Ls). But for any g € G(Ko /L) and any k,n > 1, the following lemma [2.4.35
applied to m = p¥p” shows that (Ug/)‘Kk’n, the restriction of vgr to Ky, 5, is the unique place of
Ky, above (ver))r, ., which implies that

(/US’)|K]€7H o g‘Kk,n = (’Ugl)‘Kk’n'

This equation holds for all k,n > 1 and therefore implies the equation from (2.4.63)).
Having shown that for any place £ of L., above [ there is a unique extension £’ to Ko, we
can conclude that the canonical restriction map induces an isomorphism

G/D; — G(Lw/K) /Dy, (2.4.64)

where we write Dy for the decomposition group of [ in G = G(Kw/K).
All in all, equations (2.4.61)), (2.4.62)) and (2.4.64]) show that we have an isomorphism of
A-modules

AN/(A(L- o7 )N) 2 A(G/Dy), (2.4.65)
which finishes the proof. o

Before proving the lemma we have referred to above, let us record one immediate consequence

of (2.4.65)) and lemmam
Corollary 2.4.34. The A(G)-module A(G/Dy) is S-torsion.

Lemma 2.4.35. Let m be an integral ideal of K and let [ be a prime of K such that (I,m) = 1. For
any integer r > 1 and any prime £ of K(m) above [, £ cannot split in the extension K (I"'m)/K (m).
In particular, £ cannot split in any subextension L/K(m) of K(I"'m)/K (m).
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Proof. Let £ be a prime of K(m) above [. Assume that £ splits in the extension K (["m)/K (m).
Then, the fixed field Z of the decomposition group of £ in G(K(I"m)/K(m)) is strictly bigger
than K (m) and £ is unramified in the extension Z/K (m), see ([Neu07], I, §9, (9.3) Satz (iii)) for
the last fact. Since [ is unramified in K (m)/K this implies that there is one prime of Z above [
which has ramification index 1 in Z/K. But then, since Z/K is Galois, all primes of Z above [
have ramification index 1 which means that [ is unramified in the extension Z/K. In particular,
[ does not divide the conductor of the extension Z/K. But the conductor of Z/K divides ['m
and therefore must divide m, which contradicts the fact that Z is strictly bigger than K(m).
Therefore, £ cannot split in the extension K (["'m)/K(m). o

2.4.8 Commutative main theorem

Let the setting be as in subsections and including assumption [2.4.29] In this subsec-
tion we want to derive a commutative main theorem in our CM setting from the results of the
previous subsections and from Rubin’s proof of the two variable main conjecture.

Remark 2.4.36. We note that the compact p-adic Lie group G = G(K«/K) and its closed
normal subgroup H = G(Ko/K®°) satisfy the conditions (i), (ii) and (iii) from subsection [1.2.1]
for which we recall the isomorphism from the appendix and that H is abelian and contains
a subgroup corresponding to the anticyclotomic Z,-extension of K, so that H is of dimension 1
as a p-adic Lie group. In particular, the classes of modules that are finitely generated over Z,

vanish in Ko(9My(G)) by corollary

We write X = {p,p, [, Vo0 }. Assume that p # 2,3, as before, and write A = A(G). Moreover, for
any integral ideal b of K prime to 6pf we define

to= N(b) - 0 € AG),
where 0 = (b, Ko /K). Next we fix an integral auxiliary ideal q of K, (q,6pf) =1, q# Ok.

Definition 2.4.37 (Choice of auxiliary q). We choose and fix a prime q of K, subject to the
following conditions:

(i) (a,6pf) =1,
(ii)) N(q) is congruent to 1 modulo p, in symbols

N(q) =1 mod p.

Note that by Dirichlet’s theorem on arithmetic progressions infinitely many such prime ideals
exist, compare ([NeuO7], VII, (5.14) p. 490). Henceforth, we will write q for the prime of Q
below q.

Remark 2.4.38. By lemma the element x4 belongs to the Ore set S of A.
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Let us write I = I(Ko/K) for the kernel of the augmentation map aug : A(G) - Z, and J for
the annihilator in A(G) of pyee = e (Koo) = {C € Koo | ¢P" =1 for some n > 1}.

Lemma 2.4.39. Assume that p # 2. Then, the ideals I and J are coprime, i.e., I +J = A(G).
In particular, we have an equality of ideals IJ =1nJ.

Proof. Fix an element g € Z such that g and g—1 belong to Z;. This is possible by our assumption
on p. Then, 1 - ¢ certainly belongs to Z;. Now, fix an element o € G that acts on li(Lnn Hpr as
multiplication by 1-¢, which is possible since the cyclotomic character xcyc : G = Zj is surjective.
Then, g=1-0+0—(1-q) belongs to I +.J. But ¢ is also a unit, which concludes the proof of
the first claim. The second claim is easily derived from the first, see ([BIV9§], p.12). o

We now come to our main theorem in the commutative setting. Recall that we write

Coo = Im(C(Kk ) ®22Zy), Doo = Ilim ((Np, k., Ogpnih) ®2 Zyp)
k.n k,n

for the elliptic units, Dy € Coo, and

£ = Im(Of, , @27,)
k,n

for the global units, Do, € Coo € Eeo. It follows from ([2.2.3)) (note that X, = @ since p (resp. p)
is unramified in U,s1 K (E[7™]) (resp. Ugs1 K (E[77])) that o = HY,.
Let us recall the following exact sequence from K-theory

s Ki(A) — Ki(Ase) -5 KoMy (G)) — Ko(A) — Ko(Age) — 0,

where, we recall, My (G) is the category of finitely generated A-modules that are S*-torsion.
Note that we have a canonical map Ko(S-tor) — Ko(MMu(G)), where S—tor denotes the
category of finitely generated A-modules that are S-torsion.

Remark 2.4.40 (S*-torsion modules). (i) Recall the definition of the compatible system
u(q) of elliptic units

U(q) € ]iin ((NFk,n/Kk,nG)fpnﬁk) ®Z Zp) c 5_00 c UOO
k,n

from definition The module £, /Co is always A(G)-torsion, see (JRub91], Corollary
7.8). We want to remark that under the assumption that £, /Co is not only A(G)-torsion
but even S*-torsion, Hi,/Au(q) is also S*-torsion. In fact, let us fix an auxilliary prime
ideal ¢ of K prime to 6pf. Then y.:= 1 - (¢,K/K) € I belongs to S, see lemma
Corollary shows that L induces an isomorphism

Doo [Ayeu(q) 2 IIN[Ayczg,
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and these modules are S-torsion since y.rq belongs to S, see lemmata [A.9.2/and [A.9.3| In
theorem we have seen that Co /Do is S-torsion. Hence, Coo/Ay.u(q) is S-torsion.
Under the assumption that € /Coo is S*-torsion, we see that Eu/Aycu(q) is S*-torsion.
Since Au(q)/Aycu(q) is S-torsion, we conclude that £ /Au(q) = Hi/Au(q) is S*-torsion.

(ii) It is also a fact that A. = Llnkn(Cl(Kkn){p}) is always A(G)-torsion, see ([Rub91],
Theorem 5.4). Recall remark 2.3.5L where we explained that the assumption of A, being
S*-torsion is equivalent to HQE being S*-torsion, which follows from ([2.3.2)) and corollary
2434

(iii) Lastly, we want to remark that we may conclude from Rubin’s main theorem 4.1 (i) in
[Rub91] (proof of the 2-variable main conjecture), that A being S*-torsion is equivalent
t0 oo /Cs being S*-torsion. Indeed, this follows from the fact, as Rubin shows, that A
and Eoo /Cs have the same characteristic ideal. In conclusion, if we assume that either A,
or £o/Coo is S*-torsion, then the other is S*-torsion and by (i) and (ii) Hi/Au(q) and HZ
are S™-torsion.

(iv) For the previous point (iii) we should note that for our G ((z Z3)?) one can show that
a finitely generated pseudo-null (in the sense of Rubin [Rub91]) A(G)-module M is S*-
torsion.

For an Artin character x : Gxg — C* factoring through G(Kj ,/K) we write

x(b)
Ly, (x,s) = seC, R(s)>1
! hc%:K N(b)*
(b,Ef):l

for the L-function attached to x, where x(b) = x((b, Ky, /K)). This L-function can also be
expressed in terms of partial (-functions

LZf (Xa S) = Z X(U)CKk’,L/K,Z(O-vs) S € Ca iR(S) > 1’
0eG (K n/K)

where

1
N(b)

CK;“L/K,E(U,S) = seC, R(s)>1.

b0, (6.5)=1
(bka,TL/K):U

Theorem 2.4.41 (Commutative main theorem). Assume that f =" for some prime [ of K.
Moreover, assume that A = @kn(Cl(K’“v”){p}) is S*-torsion. Then, under the connecting

homomorphism 0, the class [1/xq] € K1(Ag+) of the element % € A maps to

0([1/24]) = ~[A/Azq] = [HE] - [Hy/Au(q)] in Ko(Mp(G)). (2.4.66)
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Moreover, i =7 qu_o_q) satisfies the following interpolation property. Let x be a complex Artin

character y : Gx —> C* such that the fixed field of the kernel is equal to K*¥*(X) = Kyp, k,n > 1.
Then, x has conductor f, = fpkp™ and we have (Kronecker’s second limit formula)

d 1 1

—Lys;, (X, 8) [s=0 =

ds > loglo(ern(a)) P x(o),  (2.4.67)

Na=x(0q) 12050 qeqicr /K)

where ey () = Np, /K., (€5, (a)) € Of{km so that u(q) is the image of (e n/(q))kr i Uso and

wigkpn denotes the number of roots of unity in K congruent to 1 modulo fpkp™.
Before we give a proof of the theorem let us make a remark about the interpolation property.

Remark 2.4.42. (i) The interpolation property is derived from a classical result known as
Kronecker’s second limit formula. For the connection to the rank one abelian Stark con-
jecture, we refer to Tate’s book [Tat84], Stark’s original paper [Sta80] and the course notes
[DGII].

(ii) The requirement on y that Krer(x) = Kp n, k,n > 1 is rather strong. We can relax the
condition slightly by requiring only that x has conductor f, = fpkpn (which follows from
the stronger requirement) and then get the interpolation property as in with the
units e, (q) € OF,., instead of ern(q) € Ok

(iii) A question that immediately arises from is: when are both sides of the equation
unequal to 07 An answer is provided by the following fact: In the course notes [DG11]
there is a formula for the order of vanishing rx(x) of Lx,(x,s) at s = 0, see (loc. cit.,
equation (1.11)), it is given by

#{reX|x(Gy) =1} if x#1,

7”E(X):{#zq if y =1,

where G, denotes the decomposition group at a place v € ¥ = ¥y UXq. In particular, since
the complex archimedean place v = vy € Yoo of K has trivial decomposition group, i.e.,
G(Kin/K)u., =1, we see that r5(x) > 1 for all x. On the other hand, if x is ramified at
the other primes, i.e., at the primes in 3, then ry(x) = 1. Moreover, we see that (2.4.67)
always holds for the trivial character y, since both sides are equal to 0; for the left hand
side, note that #X =4 and for the right hand side note that ey, (q) is a unit so that

> loglo(ern(a)) ’=log| Nk, ko (ern(a)) =0
UEG(Kk,n/K)

since N,  /k0(exn(a))is a unit in K, i.e., a root of unit, and therefore has absolute value
1.
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We also want to make a remark about some identifications that we will use without mentioning.

Remark 2.4.43. (i) For this remark let G be any profinite group and H any closed subgroup

(iii)

of G, not necessarily of finite index. Then we consider Z,, equipped with the trivial H action,
which extends to an action of A(H). Write augy : A(H) — Z, for the augmentation map.
The action of § €e A(H) on a € Z, is then given by d.a = augy(d)a. If H is normal in G,
write I(H) for the kernel of the map pr: A(G) - A(G/H). The ideal I(H) is generated
by elements of the form 1 - h, h € H. For H normal in G we then have an isomorphism

AG) ®n(m) Zyp S A(G/H), A®ar— pr(\)a. (2.4.68)

Indeed, first note that A(G) x Z, - A(G/H) is A(H)-bilinear which follows from the fact
that for § € A(H) we have pr(d) = augy(9). Secondly, note that the inverse of the map in
(2.4.68)) is induced by A(G) - A(G) ®,(m) Zp, A= A®1, which factors through I(H).

Now, assume that A(H) is Noetherian, which holds, e.g., if H is a p-adic Lie group. Then,
we have

def 3
c-IndfZ, = AG)& a1y Zp = MG) ®p(11) Lo,

where the module on the left is the compact induction and the isomorphism follows from
([Wit03], Proposition 1.1.4 (2)) which says that for finitely presented modules the usual
and the completed tensor product coincide, just note that Z, is finitely presented as a
A(H)-module since by the assumption that A(H) is Noetherian, the kernel I(H) of the
augmentation map A(H) - Z, is finitely generated.

Lastly, we note that if H is of finite index and normal in G, then
MG) () Zp 2 MGIH) = Zp[G[H] = Z,[G] ®z,11) Zp = Ind{E Z,y,

where IndZ is just the usual induction.

Proof (of theorem [2.4.41). We first consider the relations in Ko(9My(G)). We will use repeatedly
corollary from section stating that classes [M] € Ko(My(G)) of modules M that are
finitely generated as Z,-modules are equal to the zero class, compare remark [2.4.36, We fix an
auxilliary prime ideal ¢ of K prime to 6pf. Then y. := 1 - (¢, Koo/K) is not a zero-divisor in A.
In fact, y. even belongs to S, see lemma We then have

[Eco/Co0] = [Eco/Aycu(a)] = =[Coo/Aycu(a)]
= ~[Doo/Aycu(q)] = [Coo /Do ]
= —[1JA/AycxqA] - [A(G/Dy)]
= -[1J[Ayczq] - [A(G/Dy)]
= —[A/Aycxq] - [A(G/DY)], (2.4.69)
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where the first two equations follow from the exact sequences
0> CoofApern(a)  EucAyeti(9) = Ene/Cer 0
and
0 = Doo/Aycu(q) = Coo/Aycu(q) = Coo /Do — 0,

the third equation follows from corollary [2.4.26] and theorem [2.4.33] the fourth equation from
the fact that A is not a zero-divisor, see proposition [2.4.28 and the last equation from the fact
that

[A/LT] = [A/(InJ)] =0,

where the first equality is lemma and the second stems from the fact that A/(InJ) embeds
into the finitely generated Z,-module Z, @ Z,(1).

Recall that L(u(q)) = 12z4\. Then, using the isomorphism Eeo/Aycu(q) = L(Ex)/Aycz X and
the fact that x4 is not a zero-divisor one sees that

[Eoo/Aycu(a)] = [Eco/Au(a)] + [A/Ayc].
Similarly, using that x4 is not a zero-divisor, we see that
[A/Ayexq] = [A/Azq] + [A/Ayc].
It follows from that we have an equation
[Eco/Co0] = [Eco/Au(a)] = —[A/Azq] - [A(G/Dy)], (2.4.70)

in which the auxilliary element y. no longer appears. Now, we use Rubin’s main result on the
two variable main conjecture, see ([Rub91], theorem 4.1 (i)), stating that

[Ec0/Co0] = [Awo], (2.4.71)

where Ao = liLnkn(Cl(Kkm){p}) is the projective limit over the p-primary parts of the ideal
class groups Cl (K kn)- It follows that

~[A/Azq] = [As] + [A(G/D1)] - [Eoo/Au(a)]- (2.4.72)

Note that Xy, the set of finite primes of K above p and those that ramify in K. /K, by our
assumption on the conductor f, is given by {p,p,[}. The decomposition groups of p and p have
finite index in G. Therefore, the map from has a kernel which is a finitely generated
Zyp-module, showing that

[Aoo] = [lim(Pic(Ok, , »){p})]
k.n
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The modules kiLnkn(Pic((’)Kk,mg){p}) and A(G/Dy) 2 A(G) ®x(p,) Zp appear in the exact se-
quence ((A.3.25)), y’ielding

[H3] = [lim(Pic(Ok, , »){p})] + [A(G/Dy)], (2.4.73)
k,n

where we used that Indg‘“ Z,, and Imdgﬁ Z,, are finitely generated over Z,. Together with @
(note that X, = & since p (resp. p) is unramified in U1 K (E[7"]) (resp. Ups1 K(E[7*])), we
can rewrite as

~[A/Azq] = [HE] - [Hy/Au(q)],
which is what we wanted to prove.

Next, we determine the interpolation property of x4 for a prime to 6pf, which, as noted above,
is derived from Kronecker’s (second) limit formula. The latter has already been stated in the
form in which we want to use it in an article by Flach, see ([Fla09], Lemma 2.2 €), p. 265f).
For a lattice L ¢ C, L = Zw + Zwy, Flach defines a Theta-function ¢(z,7), where 7 = £L. In
([dS87], II, 2.1) De Shalit defines a Theta-function 6(z, L) and thanks to the product expansion

of 0(z, L/ws) for the normalized lattice L/ws one immediately derives an equality
‘9(27 L/w2) = SD(Za 7_)12'

Using the monogeneity property of #, one can now show for an integral ideal a of K, (a,6) =1,
that the 12-th power of Flach’s function (2, L,a 'L) is given by

U(z, La ' L)? =0(z, L, a).

For an integral ideal g of K, considered as a lattice in C and generated over Ok by g, it follows
that

Q
¥(1,9,07'9)"” = 0(1,8,0) = (=, L,a)
g
and we see that Flach’s element
azjprpn = V(1 Fp", a7 fp"p")
is a twelfth root of our e;w(a) = G)(fﬂ-k%’ L, a) € (’)}k,n, recall that we write Fj, ,, = K(fp*p™).
Now, let x be an Artin character as in the statement of the theorem. The claim that x has
conductor f, = fpp" follows from a fact from the theory of Artin conductors, see ([Neu07], VII,
§11, (11.10) Satz), and the fact that K} , has conductor fpFp™, see lemma [2.4.17
Racall that Fy,, = K (fp*p™). Kronecker’s second limit formula, as stated in ([Fla09], Lemma
2.2 e), p. 265f), says

d 1 1
—Ly, (X, 8) s=0= - : : 10g | 7 (azgpepn) [* X(0)
dS f s Na - X(O-Cl) wfﬁkpn UGG(FZ]‘;’H/K) ¢ fp P

1 1

= - : : log | o (e}, () [* x(0) (2.4.74)
Na- X(Ua) 12&)ﬂ§kpn UEG(F%n/K) *
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where wk,n denotes the number of roots of unity in K congruent to 1 modulo fp¥p™. Note that
wipkpn divides 12. Since y factors through G(K} ,/K), we immediately conclude that

d 1 1

%sz (X) S) |S=O =

~ . , log | o (epn(a)) ? x(o), (2.4.75)
Na-x(0a) 12wipkpn aeG(lgk:,n/K)

where exn(a) = Np, /K, (€ ,(a)) € Ok, . Compare also the limit formulas in ([dS87], II, §5,
p. 88) and ([Kat04], section 15, p. 252). 0



Chapter 3

Local Main Conjecture

In this chapter we study a local conjecture due to Kato that, as the global conjecture from
the previous chapter, he stated during a talk in Cambridge on the occasion of John Coates’
sixtieth birthday. The conjecture presented here concerns a p-adic Lie extensions Fu,/Q, and
the universal case T = Z,(1). The idea is to prove the universal case and then derive analogous
results for more general representations 7' through twisting (and induction), compare corollary
For general conjectures concerning local e-isomorphisms see [Kat] and [FKO06].

Venjakob’s article [Venl3], based on Kato’s work [Kat], contains a proof of the existence of
e-isomorphisms in certain abelian cases (arising from twists of the universal case). In the same
article Venjakob shows that the existence of e-isomorphisms implies the algebraic part of the
(abelian version of the) local main conjecture studied in this thesis. The purpose of this chapter
is to build on these results and prove the analytic part of the abelian local main conjecture,
i.e., to determine the interpolation property of &, = &,./, see conjecture for the precise
statement.

For basic facts about local fields that are used, see [Cas03] and [Ser95].

3.1 Setting

We fix an algebraic closure @p of Q, and a generator € = (€y),, = ((pn )n of Zp(1) = lim  pipn, where

ppn, 1> 1, denotes the group of p"-th roots of unities in @p. We note that this choice determines
a unique homomorphism . : Q, — C, with kernel ker(t.) = Zj, such that 1¢(1/p") = (pn.
For an arbitrary, possibly infinite algebraic extension L/Q, we set

U'(L) = lim 03,/ (01",

L'm

where the limit is taken over all finite subextensions L'/Q, of L/Q, with respect to norm maps
and all m € N with respect to the natural projections. Here, O7F, is the unit group of the ring of

75
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integers O, of L'. For any extension F'/L, there is a canonical projection map

U'(F) —uU'(L).

Convention 3.1.1. In general, unless specified otherwise, we use the notation ()" for objects
related to a local setting.

In this chapter we consider the cohomology groups

iioc = Hi(@paTun)7 1=1,2,

where the definition of Ty, = Ty, (Fo) is as follows, compare [Venl3]. We write G’ for the Galois
group Gal(Fu/Qp) of a not necessarily abelian p-adic Lie extension Foo/Q,. Then, we define the
universal module T, by

Tun = A(G)# (1), (3.1.1)
where (1) denotes the Tate twist and A(G')* is just A(G') as a A(G')-module, but has the
following action of Gg,. An element g € Gg, acts on A € A(G') by g.\ = g~ !, where g is the
image of g in G'.

Using and the Kummer sequence for local fields, we get isomorphisms
Hllocg Lﬂl Hl(F’Zp(l))gl(iLan/(Fx)pma
QpcsFclu Fm

where c; means that F//Q, is a finite extension. For extensions Fo,/Q) of infinite residue degree,
compare ([Venl3], section 2.1), we have

UI(FOO) = Hlloc'

Convention 3.1.2. For the reciprocity map from local class field theory for a general non-

archimedean local field F' we assume that a prime element wg of F' corresponds to a geometric

Frobenius element @ye,, i.e. a map that, on an algebraic closure kr of the residue field kr of I,
1

corresponds to x — x9% where q is the number of elements of k. Writing W (F/F) for the
Weil group and I for the inertia group, as in [Del73], we then have a commutative diagram

Ip W(F|F) Z
Pgeo > TF ~(—1)
o5, F* * 7

(3.1.2)

where vp is the valuation of F' and the upper horizontal map is defined as the composite G —
GEF — 7. where the second map sends the arithmetic Frobenius to 1.
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Remark 3.1.3. Convention is in line with the conventions in Deligne’s article [Del73],
compare ([Del73], p. 523), Tate’s article [Tat79], compare ([Tat79], p. 6), and the conventions
in the book [BHO6] by Bushnell and Henniart, compare ([BHOG], p. 186).

Recall that for any topological ring A, we write PC(A) for the category of pseudo-compact
A-modules with continuous homomorphisms as morphisms, which is an abelian category, see
([Gab62], Chapitre IV, §3, Théoreme 3) - as remarked in [Wit03], the proof in [Gab62] of this fact
does not require A to be pseudo-compact. In proposition we prove in greater generality
that the functor

PC(Z,) — PC(ZY), N — Y&z, N (3.1.3)

is exact. Assume that the p-adic Lie group G’ = G(Fs/Q)) contains a closed normal subgroup
‘H' such that
G'|H =7,

Let us write A’ = A(G") and ) A

K= A 2)
for the Iwasawa algebra of G’ with coefficients in Z;T and note that

A~ 5 /

A = Z;'r@ZpA. .

We recall our convention that any A’-module is a Hausdorff topological A’-module. Hence, any
such compact A’-module M is the projective limit of finite A’-modules, see ([NSWOS|, (5.2.4)
Proposition). Therefore, compact A’-modules M are pseudo-compact as A’-modules (and as
Zp-modules) in the sense of [Wit03].

Remark 3.1.4. As explained in remark we have a natural isomorphism
AN ey M =78 &, M (3.1.4)

induced by the universal property of — ®ps —.

As in (A.8.1) and (A.8.2) we define canonical Ore sets of A’ and A’
S'c8*cAN and S cS*cA
and refer to section of the appendix for basic properties of these Ore sets.

Remark 3.1.5. Since Z;Té)Zp— is exact on PC(Zy) by 1’ and since finitely generated A’-

modules are pseudo-compact over Z, we see from (|A.8.12)) that A ®,/ — is an exact fl}nctor from
the category of finitely generated A’-modules to the category of finitely generated A’-modules.
Lemma then shows that there is a map

Ko(Myur(G')) — Ko(Myy, 5,,(G)), [M]— [N @n M] = [Z;7 &z, M],

for which we also note that S’ ¢ &’ by lemma |A.8.19|
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3.2 Statement of the Local Main Conjecture

We make the following assumption, which is satisfied by the isomorphism from (3.3.8) in the
setting considered in section i.e., the setting considered by Venjakob in [Venl3].

Assumption 3.2.1. There exists u' € U'(Fs) such that
AMG)s ~ U (Fx)s,  1—,
is an isomorphism of A(G")s-modules. We will say that u is a local generator of U'(Fu).

As above we write A’ = A(g',Z;T) and S” and S for the Ore sets in A’. We now state the local
main conjecture.

Conjecture 3.2.2 (Local Main Conjecture). There exists &£, ./ € K; (1~\:§,*) such that

(i) for any Artin representation p:G' — Autc,(V),

ep(p)
Epur (P) = 5 (3.2.1)
? Rp(ulz p)
if Ry(u',p) #0,
(ii) the image of &y, under the connecting homomorphism from K-theory is given by
0(Epar) = [N @ Hie] - [A @nr (Hige/A'w)] in Ko(Mze 5,(G)). (3.2.2)

We will also write £, = £,,/. In the above equation €,(p) = €,(V') is the local constant attached
to V and R,(u', p) is the p-adic regulator associated to p and ', see subsection At the end
of section 2 in [Venl3| an element &, s satisfying is given explicitly under the assumption
that Fo/Q, is an abelian p-adic Lie extension of the form K'(pp=), where K’ is an infinite
unramified extension of Q,. We will prove that in this case &, , has the desired interpolation

property (3.2.1]) for Artin characters.

3.3 Interpolation Property

In order to determine the values of &, . at Artin characters in the abelian setting, let us recall
its construction. In particular, we need to review Coleman’s interpolation theory for the mul-
tiplicative formal group, see Coleman’s article [Col79] for general Lubin-Tate groups and also
[Col83] for applications; there is also a summary contained in [dS87] and for the theory over Q,
compare [CS06].
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3.3.1 Coleman map

For any L/Q, we set Ly, = L(jpn) and Los = Uy, Ly,. We assume throughout the rest of this chapter
that K'/Q, is an unramified Galois extension of infinite degree and that G’ = Gal(K,/Q)) is a
p-adic Lie group. As noted in [Venl3], these assumptions imply that G’ ~ ZIQ, x A’, where A’ is a
finite group of order prime to p. There is also a decomposition of G’

G'=TxH (3.3.1)

into the ramified part T' = G(Qp(pp=)/Qp) = Z,, and the unramified part H = G(K'/Q,). We
will write A’ for A(G') and )

A= A,®ZpZIU:T = Z]“f[[g']]
for the Iwasawa algebra of G’ with Z}?—coefﬁcien‘cs. We write ¢ for the arithmetic Frobenius

(given by a ~ a” on residue fields) in G(Q}"/Q,). Note that the action of ¢ extends to Z};\’". We
define an element ¢, € G’ that under the decomposition (3.3.1)) corresonds to

$p = (idF>¢|K’)a

i.e., pp is the element that acts trivially on Q,(pp~) and as the arithmetic Frobenius on K.

Let us recall the definition of &, ,s which we will also denote by &,/. In order to do this we
define a A’ submodule of A’. We let ¢ act on A’ through its action on the coefficients and denote
this action by ¢(x), z € A’. Now, we define

A:op ={xelN|p(x) =z},

where ¢, -z is multiplication in the Iwasawa algebra A’. Since ¢ acts trivially on the coefficients
of any element in A’ it is clear that A, is a A-module.

We note that for any quotient of G of the form (I'/U) x Hy,, where Hy, = G(L/Q,), L c K',
we can define a A((I'/U) x Hp,)-submodule A((I'/U) x Hy)p, of Zy"[[(I'/U) x HL]] in the same
manner

A((T/U) x HL)g, :=A{z e Zy"[[(D/U) x HL]] | ¢(2) = @p - 2},
where ¢,, denotes the image of ¢, in Z;?"[[(F/U) x Hp]]. If (T/U) x Hy, is a finite quotient of G’
then we have
2y [[(T/U) x He]] = Zg [(T/U) x Hp ] = Zy'[D/U][HL]
and also write Z,[I'/U][HL]p, for A(I'/U) x Hr) g,
Next, we follow [Venl3] and explain that there is an exact sequence

‘C’K',e
0 — U (KL) — Tuw(KL) ®ar A:Op — Zp(1) — 0 (3.3.2)

which arises as the projective limit of the following compatible exact sequences (3.3.3). Let
L/Q, be a finite unramified extension contained in K', L ¢ K'. Then, as in (3.3.1)), we have a
decomposition of the Galois group

G(Loo/Qp) =T'x Hy,
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into a ramified and an unramified part, where Hy, = G(L/Q,). Writing A’(L) = A(T' x Hy) there
is an exact sequence

LL,e
0 — Zp(1) — U'(Leo) —> Tun(Loo) ®pr(ry A (L), — Zp(1) — 0, (3.3.3)
where Ly, . is given by the composite map

U (Low) 25" OL[[T]] > A (L), —> Tun(Leo) @2y (L), (3.3.4)

which we now want to explain. The third map is given by  — (1 ® €) ® x, where (1 ®¢€) ¢
Tun(Leo) = A(T x Hp)# ®z, Zp(1). The second map in @), which is an isomorphism of
A'(L)-modules, not of algebras, is given as follows. If d = [L : Q,] is the degree of L over Q,,
then Hp is a cyclic group Hy, = {id,cﬁp,...,cﬁpd’l} generated by the image of ¢, in Hy. In
([Venl13|, Proposition 2.1) Venjakob shows that for all open normal subgroups U of I" there is an
isomorphism given by

d-1 . .
OL[T/U] = Z,[T/U)[HL]p, < ZF[T/UIHL], ar— Z(; ¢~ (a)pp".

Passing to the limit with respect to open normal subgroups U and the canonical projection maps
one obtains the second map in .

The first map in is the Coleman map, which we want to review in order to introduce
some notation. First recall that the p-adic completion lim - O3, /(OF,)P" of the units OF, in
a finite extension L’ of Q, can be naturally identified with the principal units Oi, in OF,. In
particular, we have

def . x X \p™ s . x
U'(Leo) = lim OF, /(O 2lim O, ¢ lim OF,
L'm L’ )

where we let L’ range through the finite subextensions of L /Q,, or, equivalently, through the
(cofinal subsystem of) finite subextensions of Lo /L, note that we still assume [L : Q,] < co. For
our fixed generator € = ((yn )y, of the Tate module Z,(1) = Hnn ppn Coleman’s theory gives a map

I 0;, > OL[ITIT, = (un)n — fu
such that .
(fu )(Cp”_l):una VnZL

where ¢ acts on the coefficients of f,. The elements (,» — 1 are the p"-torsion points in Gm(m),
where m is the valuation ideal of C,, since multiplication by p" on the formal multiplicative
group G is given by

[P"g, (X) = (1+X)" - 1.
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One may think of [p]s (X) as an endomorphism of the formal group G,y lifting Frobenius, see
([dS87], I, section 1.2, 1.3). We define a Z,-algebra homomorphism ¢ by

v OL[[T]] — OL[[T]], F(T)— [P ((1+T)"-1),

where f¢ means that ¢ acts on the coefficients of f. Let us fix the topological generator v = 1z,
of Z, considered as an additive profinite group. Then, there is an isomorphism

M:OL[[Z,]] — OL[[T]], 1z, —1+T,

which is non-canonical in the sense that it depends on the choice of v, see ([Was97], Theorem
7.1). Here, M stands for Mahler transform, compare ([CS06], §3.3) and Mahler’s article [Mah58].
We note that there is a multiplicative norm operator N on OL[[T]], see [dS8T], such that for
fu € OL[[T]], u € lim (92 , we have N f, = f2. Using property (loc. cit., I, §2.1, equation (1))
of N one gets an equahty

p(fu) = W)@+ T =1) = [T fulT [+]g,, (¢~ 1) = [T fu(c(1+T) - 1).

Cepp Cepp
Let u € lim (’)b now be a norm-compatible system of principal units. One can then show

that 1log( U )) has integral coefficients, see (loc. cit., I, §3.3 Lemma). The integral measure

o € OL[[Zy]] satisfying M () = log(@( )) is supported on Z, by which we mean that s,
belongs to the image of the map

12 OL[[Z,]] = OL[[Zp]], (3.3.5)

which sends a measure A on Z; to the measure (()\) = A extended by 0 to pZ,, see (loc. cit.,
§3.3).
As before we write r: T' — Z,, for the cyclotomic character. We define

kvt O[[T]] — OL[[Z,]]

to be the isomorphism of Iwasawa algebras induced by k. Finally we can define the first map in

(3:3.4)
Cole 1,

111 L fi
U'(Leo )_hmOL/ — Or[[T]], wur—kr, M (—o ( )) (3.3.6)
N7 p e(fu)
where we note that only the element f;, depends on the choice of e. We have now defined the map
Ly, from . The first non—tr1v1al map of ([3.3.3) is just the inclusion and the last non-trivial
map (via the 1dent1ﬁcat10ns from (3.3.4))) is given by the composite of Of[[T']] = Or(1) (induced
by mapping v € I' to (7)) and TrL/@p ®id : Op ®z, Zy(1) — Zp ®z, Zp(1). It is explained
in [Venl3| that, with respect to the norm maps and the natural projection maps, the sequences
from are compatible for extensions Q, cy L cy L' ¢ K'. Passing to the projective limit

one gets the sequence from (3.3.2)).
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Remark 3.3.1. We note that starting with the generator e™' = (¢ )n of Zy(1) we get in an
entirely similar fashion a map Col.-1 ;, and an exact sequence

_LK’,s_l

0—U(KL) —> Tw(KL) ®AIA:pp—>Zp(1)—>O (3.3.7)

as in (3.3.2) for ! and ~Lgr e

We fix a A’-basis of Tyn(KL,) @ Afpp which free of rank 1, i.e., an isomorphism ¢ : Ty, (KL, ) ®
A:Op ~ A". Since Zy(1) is S'-torsion, the exact sequence from (3.3.7) induces an isomorphism

_LK’,e’l

)
U (KL)s — (Tun(K) ®a Ay ) 2 Ay, (3.3.8)

showing that assumption is satisfied. In fact, let v’ e U'(K.,), s € S’ be such that
u/
Ly (571 (1) = — (3.3.9)

Then, u'/s is a Al-generator of U'(K,)s and it follows that u’ is also a Al-generator of
U' (KL )s. The map 1+ v’ then gives a map as required for assumption
Let us remark that the map —Ly/ 1 from (3.3.7)) canonically induces a map

L e (U (Kg) ®nr AN — Tun(K %) ®A A

of A’-modules, where the A’-module on the right is of rank 1 and generated by (1 ® €) ® 1. The
existence of this map is based on the fact that the intersection

Al n (MY 4 @

is non-empty, see ([Venl3], §2.2) or ([FKO06], Proposition 3.4.5), where we note that Ki(A) =
(A)* for our abelian p-adic Lie group G'. Let ¢ be an element belonging to A}, n (A")*. Then,
we have a canonical isomorphism

A, en A =N, a®boa-b (3.3.10)

as in ([Venl3], explanation preceding equation (2.18)) with inverse z = ¢ ® ¢ ™'z, which does not
depend on ¢ (recall A:op is free of rank 1 as a A’-module). Now, tensoring the exact sequence

l) with ®,/A’” and using the isomorphism from (3.3.10), we get the exact sequence

“Lyer -

0—U'(KL)on N 57 Tyu(KL) @p A — Z27(1) — 0, (3.3.11)

see proposition [A.8.17|and remark for the fact that ® A’ is an exact functor.
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3.3.2 Definition of &,
We now define &,/ = &y € (1~\:§,)X by the equation

L (W ®1) =€, (1oe)®1). (3.3.12)

Let us introduce some notation and then make a remark about &,. For L < K', [L: Q)] < oo, we
will write ur,, and ur, for the images of any u € U'(K ) under the maps U'(Kl) — U' (L)
and U'(KL) — U'(Ly,) = lim OF /(OF, LA @zn, respectively. Moreover, we will write T',, =
G(Qp(¢pn)/Qp), n>1, and for an element A € O [[I']] 2 lim Or[T',] we write A = (A,), where
the A, belong to the group rings O[T, ]. For example, we will write (ColEq’L(uLoo )”)n Let us
write O+ = Ur, Oy, for the valuation ring of K’, where L ranges through all finite subextensions

of K'|Q,.

Remark 3.3.2. First note that &, is actually a unit in /~\"§, since both —Lg _(u' ® 1) and
(1®¢€)®1 are generators of Ty (KL, ) ®ar /~\:§,. Moreover, £} even belongs to O [[G']]N(A',)*

since for L c K’ a finite extension of @, of degree d;, we have

dp-1

_‘CL,G_l (ulLoo) = (1 ® 6) ® ( - Zg ¢_i(0016‘1,L(ule )n)@;)n € F]Fun(Loo) ® liLan[Fn][HL](ﬁpa

where the elements qﬁ‘i(ColeA’L(u’Lw )n) belong to O[T, ], i.e., have coefficients in Op,. It follows
that we get a compatible system of elements

dr-1 .
&1 = (= X ¢7(Colen p(up, )n)@h) € TmZy[Ty][Hp g, € lim O [T,][H,]
°° 1=0 " n n

for L ranging through all finite extensions of Q, contained in K'. For the inclusion Z,[I",][HL ], €
O[T, ][HL] see the proof of ([VenI3], Proposition 2.1). This system gives &' = (£} ) which
Loo

has coefficients in Q.

3.3.3 Local constants and p-adic regulators

Let x:G'= HxT — Cj be an Artin character, i.e., a character with finite image. We fix x for
the rest of this section. Restrict x to H and define L to be the fixed field of the kernel of x g,
i.e., such that
x:Hp =G(L/Qy) - C)

is injective. Note that L/Q), is a finite extension since we assumed x to be an Artin character.
We write Hy, = G(L/Q)). Let d be the degree of L over Q,. Likewise, restrict x to I' and let n
be the smallest integer such that xr factors through I';, = G(Q,({pn)/Qp) but not through Ty, 1.
We will consider x as a character of the finite group Hy, xI';, 2 G(L({pn)/Qp). When we restrict
x to 'y, 2 (Zp/p™)* we can also interpret it as a primitive Dirichlet-character modulo p".
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Definition 3.3.3 (Local constants). Let ¢! = (C;%)m be the inverse of our fixed generator of
Zp(1). We write

¢e‘1 : @p - (C;
for the map with kernel equal to Z, and 1 1(1/p™) = CI}%. Moreover, let dx = dx1 be the Haar
measure on Q, assigning the value 1 to Z,, see the discussion in ([Tat79], section (3.6)) for
consequences of this convention. Let us write ag, : Q) — W(@p/(@p) for the reciprocity map
satisfying our sign convention |3.1.2. Then, we also interpret x as a character

x:Q, = W(Q,/Qp) = G, » G~ G,

of Q, and the element n > 0 (which is the smallest integer m > 0 such that x| factors through
'), ) is then its conductor. We now define the local constant attached to x by

-1 : 1
?mEZ fme; x(@) M1 (x) de  if n>1, (ramified case) (3.3.13)

if n=0, (unramified case),

gp(Xv ¢e—17d$) = {

which is in line with [Del73] and [Tat79).

Remark 3.3.4. In the ramified case, n > 1, the local constant e(x,1.-1,dz) can be expressed
as a Gaufl sum. In fact, first note that our Haar measure u = dx assigns to each residue class
a(1+(p)") = a+ (p") of Z; modulo (the n-th principal units) (1 + (p)"), a € Z,, the value
pla+(p™)) = p((p™)) = 1/p", see ([BouO4], INT VII.18). Also recall the explicit description of
the local reciprocity map for I'y,, see ([Mill3al, I, §3, Example 3.13) or ([Ser10], §3.1, Theorem
2, p.146), but note that the sign convention there is opposite to ours. Then, using the change of
variables x — x/p"™ we get as in ([Hid93|, §8.5, Example of integrals, Gauff sum, p. 259) that

Ep(Xawe*hd‘T) = /Z:_an X($)71¢e*1 (:II) dx
=x(@)7" > x(N) e (k() [0"™)

vel'n

=x(@) ™" 2 x() (G, (3.3.14)
vel'n
where the for the first equation see (loc. cit., (4b), p. 259). See also the discussion in ([Venl3],
Appendix A, p. 33, footnote 2) regarding the conventions made in [FKO0G].

We will now define the p-adic regulator associated to a character x as above and a norm-
compatible sequence of principle units u € U'(KL,).

Definition 3.3.5 (p-adic regulator). Let x be an Artin character as above and let u e U'(K,).
Write uy, for the image of w under the projection U'(K.)) — (’)}—m to the principal units of Oy, .
Then, we define the p-adic regulator of x and u by

Ry(u,x)= Y. x(g7")-log(g(ur,))
gl xHp,
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and note that this is equal to ¥ ger, «xp, x(g™H) -g(log(uL”)) since every Galois automorphism
g eIy, x Hy, is continuous.

3.3.4 The values of &, at Artin characters

Let G’ = G(K[,/Q,) be as in subsection @ Moreover, let x : G’ = H xT' — C; be an Artin
character and adopt the notation from the previous subsection i.e., so that L is the fixed
field of the kernel of the restriction x|; of x to H and x restricted to I' factors through I',, but
not through I',,_1. Moreover, let v’ € U'(K,) be an element as in assumption which exists
as we have explained after equation (|3.3.9)).

Remark 3.3.6. While we work under the assumption that K'/Q, is of infinite degree, we note
that this is not necessary. The proof of theorem shows that the same interpolation property
holds for finite unramified extensions L'/Q,, the corresponding extension L,,/Q, and elements
5,;,1L, € Op/[[I' x Hr/]] defined by

Ly (uel)=E (1o el), ueld(LL). (3.3.15)

In fact, the value of £, at x only depends on Eu_é € OL[[T x HL]], the image of £, under the
projection Ok/[[G']] = Ok/[[I" x HL]], compare remark

We now want to determine the value of £, at x, which, by definition, is given by

fg,x €, = (fgx d(&}l))_l,

recall that &' € OK,[[Q’]]H([\‘%,)X so that &, is of the form g%’l e (A))*. That means we

interpret 5;,1 as an Op-integral measure on G’'. Compare the interpolation property given in
the next theorem with the formula in ([FKO06], §3.6.1) for the extension Q,((p~)/Q, which
is stated without proof.

Let us make the convention that elements of Hy, will be denoted h or h’ and elements of T',,
will be denoted v or v'. We identify h with (h,1) in Hy xT';, and likewise we identify v with (1,7).
Moreover, as before, we will write uz, and uy, for the images of any u € U'(K.,) under the
maps U'(K.)) — U'(Le) and U'(KL) — U'(Ly) 2 lim O, /(0F »P" = @zn, respectively.

Theorem 3.3.7 (Interpolation property of £,/). The value of £, at an Artin character x

def -1 -1 5p(X7¢6‘1’d‘T)
d&, = [ d(& =
/g’X ( Q’X (Eu )) Rp(u,aX)

is given by

whenever Ry(u’, x) #0. In fact, we always have

(-/g’ X d(g;})) '5p(X7¢6—1,d1‘) = _Rp(u/7X)7

regardless of whether R,(u', x) # 0.
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Proof. We adopt the same notation for x as at the beginning of this subsection. In particular, y

factors through I'y, x Hy, and n is the smallest integer with this property. We know from remark

3.3.2 that £, belongs to O+[[G']] and that it is given by the compatible system &' = (€.} )r,
il

where 5;,1 was defined in the same remark. Recall that under the canonical projection
LI

dp1 . A
OK’[[g,]] — OK/[Fn X HL], 5;11 —_— — Z ¢_Z(COIE—17L(U2w)n)@; € OL[Fn X HL],
i=0
where Col.-1 f(u}_)n is the image of Col.1 f(u7 ) under the projection Or[[I']] = Or[I',].
Elements of O[T, x H] have the form ¥, ;y a[v,4](7, @;) with a[v,i] € O, (7, @;) e, xHp
and where we sum over I';, x {0,...,d;, — 1}. Using this notation, and an analogous notation for
elements Y .cr, B[7]y in OL[T',], we have

dr-1

- Z ¢~ (Coler (ul, )n) @) (Z)¢ Y(Coler (uy n[7]) (7, @))€ OL[Tn x Hy],

so the coefficient of (7, 95;;,) is the coefficient Col -1 1,(u},_)n[7] € OL acted upon by ¢~*. We can
now start with the calculations. Since y factors through I';, x Hy, by definition of the integral
we get

E) == Y (67(Colen 1 (ur )al7']) - XV, 8}))- (3.3.16)
(')
Multiplying this expression with x (@) - €p(X; ¥e1,dz), in view of (3.3.14) we get
( J, x A€ (@) epx s, )

:—( > (¢_i(0016—1,L(U'Lm)n[’y'])-x(v’wﬁé)))-( > x(v)’lv(@})) (by definition)

(') veln

:‘(Z) ZF (gb_i(COle‘l,L(ule)nh,])'X(WI'Y_lv@;)"Y(Cg:nl )) (multiplying)
v'5t) veln

:—(Z) ZF: (07 (Colemr L (ur)n[¥]) - x(v,80) 17 (G)) (7 25 4y
v'si) vel'n

:_ZZZ(X(V a@p) 7Y (Cp ) o” (COI lL(ULw) [7'])) (rearrange).

(3.3.17)

Let us consider the summands of the last sum; ¢~ acts on Cole-1 1 (u}_)n[7'] € Or and v acts
on 7'(¢;). Since @, is the restriction of ¢ to L, we may also write ¢ (Cole-r (u) In[y']) =

@;i(ColefgL(u’Lw )n[fy’]) Since (*y,@;i) € G(L(¢pn)/Qp) acts on L through @;i and on Qp(¢pn)
through v, we have

VY (Gr) - 67 (Colemn p(up )nl3']) = (78, (7 (Git) - Colen 1 (ur, 7)) (3.3.18)
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Therefore, the last sum in (3.3.17)) is equal to

=YY (6@ () (Y (G - Coler p(up )a[y]))  (use B3I))

i Y v
==Y (L) (1) (A (G - Cole (u JalyT)]  (factor out).  (3.3.19)
iy !

The element Y., ' (457})-0015_17 L(u7_)nl[7y'] from the last sum looks familiar. Note that the func-
tion I" - ppn defined by v — V(CI}}) is locally constant modulo G(Qp(ptp=)/Qp(pepn)). Therefore,
considering Col.-1 (u}_) € Or[[T']] as a measure on I', we get

S (G- Colen (a1 = [ 4G d(Coles n(uh,)) (1)
2

- fr GO d(Colr  (uy))(7) (def. of k)

= | G d(keColer p(up ) (2) (use OL[[T]] = OL[[Z;]])

= [ ¥ d(keCol-r (uf ) (@) (extend measure by 0 to pZ,),
(3.3.20)

where ¢+ : Op[[Z,;]] = OL[[Zp]] is defined as in (3.3.5). By definition of the Coleman map

Col-1 1, see (3.3.6), the measure appearing in the last term of (3.3.20) is given by
1
v Coln p(uf ) = M7 =log( ——2=—)),
SPTRRE e

where f,; € OL[[T]]" is the Coleman power series attached to uy  €U'(Loo) (and with respect
to the generator €' of Zp). Using lemma m that we prove after this theorem, we see that the

last term of (3.3.20)) is equal to
1 ffffL (C;:T} - 1)
—10g( o —

p go(fu}/m )(<p" - 1)

) =108, (G =1)) = Jloa(ff, (Gl =D), (3.3.21)

where, we recall that for f(T) € Or[[T]] we defined o(f)(T) = f®((1+T)P-1). Note also that the
evaluation map eve-1 : OL[[T]] — O, T +— C]}} -1, from lemma [3.3.9is continuous. Hence,

for a power series f(T') € Or[[T]] congruent to 1 modulo (my,T"), where my, is the maximal
ideal of Oy, evaluating log(f(7T)) at C];} — 1 yields the same as evaluating log at f(gr} -1).
Since u7_ is a norm-coherent series of principal units, the Coleman power series fU'L (T)

and also fff, (T) are congruent to 1 modulo (mz,T), see ([dS87], I, §3.3, p. 18). Let us write
Loo



88 CHAPTER 3. LOCAL MAIN CONJECTURE

my, for the maximal ideal of Oy, L, = L({n). Then, since CI}} -1 and anl,l —1 are uniformizers
for Q,(¢pr) and Q,(¢,yn-1), respectively, they also belong to mz, and mz,, _,, respectively, and we
conclude that fuer (C;}} -1) and f;f,Lw (C;,},l —1) are principal units in O and OF _, respectively.

Hence, their logarithms are given by the usual formula. Since (1,¢;) = (1,¢,) € I'y x Hy, is a
continuous automorphism of L, (and acts trivially on Q,({y») and the coefficients of log), we
have

tox(fy_ (G =) = Stoa(ff, (Gl -D)
- (L) (1085, (G -1) = J1oa(r5, " (G - 1)
- (1.4)" (log(ut, ) - 1080, ) (3.3.22)

by definition of the Coleman power series (note we considered the maps constructed with respect
to e 1). From (3.3.20) until now we have shown that

_ _ 1
27 (G ) - Colen 1 (ur, )aly'] = (1,8p)" (log(ur,) - Slog(u, ).
’Y’
We get that the last term of (3.3.19) is equal to

-2 2 e ) (0 )((1 )" (lor ) = Slog(a, )]

=- Z > [X(’Y_la 2p) - (7, @;“”)(log(u’Ln) - %log(uinl ))] (associativity)
==Y e - () (log(uy,) - %)IOg(U’Ln1 )] (% 4 )
i
=-x(%p) Z > [X(’Yﬁla Zp) - (7, @;i)(log(u’Ln) - %IOg(UILn_l))] (factor out), (3.3.23)
i

where we note that we may make the substitution ¢ — ¢ +n since this just permutes Hy, through
multiplication by ¢,. Since —%log(uinil) belongs to L1 (u},__ is a principal unit in O ),
it follows from lemma which we prove after this theorem, that the last term of (3.3.23) is
equal to

(@) XX X8 - (1.8, (log(ur,)) | = X (@) Bul(', )
So we have shown that
( G X d(gz:’l)) : (X(@Z) ’ Ep(X7¢e’17dx)) = _X(@Z)Rp(ula X)a

which concludes the proof upon cancelling out the factor x(¢,) # 0. o
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We prove two lemmata that we used in the above proof.

Lemma 3.3.8. Let L be a finite unramified extension of Q, as before and let x : Hy xI';, — (C;
be character such that X, Is injective and X, does not factor through I'n_y for n, n > 1. If
n =1, then assume that p > 2. Then for any x € L((yn-1) the identity

> (X(a.9) Mo 9)(x)) =0

(0,9)eHpxT'p
holds.

Proof. By assumption we have )Z(G(@p(cpn)/Qp(Cpn—l))) # 1. In case n > 2, the Galois group
G (Qp(cpn) /Qp(gpn_l)) is cyclic of order p and in case n =1 it is cyclic of order p—1. In any case

fix a generator gy of G(Qp(¢n)/Qp((pn-1)). We then have (go) # 1. In G(L,/Qp) = Hy x Ty
the element go corresponds to (idg,, go), hence it acts trivially on L and Q,({,n-1), i.e., on Ly_1.

Write p for the order of G(@p(gpn)/(@p({pnq)), sop=pifn>2andp=p-1ifn=1.
Now, for any 7 € I',_1 fix an element v € I';, mapping to 7 under the projection I';, — I'; 1.
Then {v,vg0,793, - - - ,ygg_l} is the preimage of {7} under the projection and we get
p-1

> @A) e )2 = Y Y Y x(evg0) (ovg0) (2)

(o,y")eHpxT'y oeHyp vyel'y -1 1=0

p-1 )
> Y Y x(egh) He)(x) (o)L, =1dL,_)

oeHyp, 7yel'p—1 1=0

Z Z [)2(@7)(@7)(36)(2)2(96)1)] (factor out)

oeHp yel'p-1
=0

where the last equality follows because Xx(g, 1) is a p-th root of unity and not equal to 1 and
hence it is a root of the polynomial

(XP-1)/(X-1)=XP1+ XP 2441,

showing that Zf;ol X(go1) = 0. o
For the next lemma, let L be a finite unramified extension of Q, and consider L, = L((pn),
where (,n is our (or any) fixed primitive p™-th root of unity. The element CI}} —1 belongs to the
maximal ideal mp, ~of Of,, which is complete with respect to the mp, -adic topology. By the
universal property of the ring of power series we get a map

eve) orl[T]] — O, T+— C:;nl -1,

which is a continuous Op-algebra homomorphism. Recall that we have a topological algebra
isomorphism M : O[[Z,]] — OL[[T]], 1z, — 1+T.
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Lemma 3.3.9. For every n>1 and every p e Op[[Z,]] we have the equality
[ (Ghyrdua) = ey o M(y).
Zp P

Proof. First let a € Z c Z, c Or[[Zp]]*. Then, we can consider the measure da on Z, associated
to a, which is the Dirac measure, and get

[, (Ghydatay = (G
On the other hand we have
evey o M(a) = vy (1+7)") = (G)™

By continuity the same holds for a € Z;, ¢ OL[[Z,]]* so that, as maps Z, — Oj , the above
two agree. Now, the result follows by the universal property of the completed group ring, see,
for example, ([Wit04], Satz 2.5.2), which says that the maps extend uniquely to continuous Op-
algebra homomorphisms. Only note that €Ve-1 oM is a continuous algebra homomorphism (since

evg-y and M are) and OL[[Zp]] > p — [ZP(C;%)xdu(a:) is, too, it factors through O [Z,/p"]. o



Chapter 4

Selmer Groups of p-adic (zalois
Representations

4.1 Definition

Let p be an odd prime and let us consider a number field F', a finite set of places ¥ of F' containing
¥, and Y, and a finitely generated free Z,-module T" endowed with a continuous action of G'r
which is unramified outside X. We note that such T give rise to compact p-adic Lie extensions. In
fact, if Fiw denotes the fixed field of the kernel of the representation and r denotes the Z,-rank of
T, then G(Fw/F) is isomorphic to a closed subgroup of the compact p-adic Lie Group GL,(Zy)
and therefore a compact p-adic Lie group itself, compare (JOV02], section 4.2, p. 561). Note that
by general topology the image of G(Fw/F) in GL,(Zy) is compact (since the representation is
continuous) and since GL,(Z,) is Hausdorff it is then also closed, see ([Bre93], I, 7.5. Theorem).
Likewise, if v is a non-archimedean prime of F,, above a prime v of F, then the decomposition
group of 7 in G(Fs/F') is closed in G(F/F) and therefore a compact p-adic Lie group.

Before we define a Selmer group for the Galois representation T' we recall that H }(F,,, TeQp,)
is defined as follows; compare ([Kat04],14.1, p. 235). For a finitely generated Q, vector space V'
with an action of G, for some v € ¥ we define H}(F,,, V) to be

ker(H'(F,,V) — HY(F,V)) if veXNY,
Hi(F,,V) = ker(H (F,,V) — HY(F,, Bays ®g, V)) if ve,,
0 if veXe,

where Beyys is the ring defined by Fontaine (and Messing) in [FMS87], see also [Fon82], [Fon94]
or the more recent [FO]. We remark that in the literature the space H}(Fy7 V) forveXds\y,
is often denoted H..(F,,V) and called the subgroup of H'(F,,V) of unramified cohomology
classes.

We will also need the notion of finite cohomology groups for finitely generated free Z,-modules
T and discrete modules T’ ®z, Q,/Z, with an action of G’ and define these to be the inverse

91
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image and image of H}(F,,7 T ® Qp), respectively, under the natural maps

HY(F,,T) 2> HY(F,, T®Q,) 2> HY(F,,T ® Qy/Z,),
i.e., for any place v € ¥ we define
Hi(F,,T) = (H}(F,,T®Q,))
and
Hi(F), T ®Qy/Zy) = pr(H{(F,,T®Qy,)).

We note that, p being odd, the first cohomology groups H'(F,, V) vanish for archimedean places
v € Yoo. Accordingly, we have H(F,,T) = H'(F,,T) and H;(F,,T ® Q,/Z;) = 0 for v € Tee.
We make the following definition, similar to ([Kat04], 14.1, p. 234).

Definition 4.1.1 (Selmer group). (i) For a number field F, a finite set of places ¥ con-
taining ¥, U Y., and a finitely generated free Z,-module T' endowed with an action of G
that is unramified outside ¥ we define

Sel(F,T) = ker(Hl(Gz, T®Qp/Zy) — @ H'(F,, T ® Qy/Z,)[H}(F,, T ® Q,,/Z,,)),
Ve

where v runs through all places of F' in .

(ii) For an infinite algebraic extension F [F with finite subextensions ...F, c Fy.1-+- ¢ Fo
such that Fo, = U, F),, we define

Sel(Foo, T*(1)) := li_r)nSel(Fn,T*(l)),

n
which is a subgroup of H* (G e 5, T*(1) ® Q,/Zy), the Pontryagin dual of which appears in
the Poitou-Tate sequence (A.4.10).
4.2 Connection with the sequence of Poitou-Tate
We want to show that the map

H' (Goon, T*(1) ® Qp/Zy)" — lim H* (G, 5, T)

n

from the Poitou-Tate sequence (A.4.10) factors through the canonical epimorphism

HY (Goox, T*(1) ® Qp/Zp)" > Sel(Fuoo, T*(1))".



4.2. CONNECTION WITH THE SEQUENCE OF POITOU-TATE 93

We show this at the level of each F), for Sel(F),,T*(1))" and then pass to the limit. Let F' and
Y be as before. We extract from (A.4.2]) the exact sequence

@ H'(F,,T) — H (Gx, T*(1) ® Q,/Z,)" — H*(Gx,T)
vex

and consider its dual

H2(GZ7T)V - Hl(szT*(l) ® QP/ZP) )\—1) @ HI(FWT*(l) ® Qp/Zp)v
vey
where we use local Tate duality @,cx H(F,,T)" 2 ®,es H'(F,,T*(1) ® Qy/Z,) (note that for
H' local Tate duality also holds for archimedean places, see ([Rub00], Theorem 1.4.1)). By
exactness, H%(Gyx,T)" maps onto ker(A') which certainly is contained in Sel(F,7*(1)). But
this implies that H'(Gx,T*(1) ® Q,/Z,)" — H?*(Gx,T) factors through Sel(F,T*(1))". This
holds for each fields F;,, n > 1. Passing to the projective limit we get a commutative diagram

Hl(Goo,E’T*(l) ® Qp/Zp)” — klnn HQ(Gn,E»T)v

Sel(Foo, T*(1))Y
( (1) (4.2.1)
where we note that the vertical limit map is surjective as the dual of the injection Sel(Foo, T (1)) <
H'(Goox, T*(1)®Qp/Z,). Substituting Sel(Foo, T*(1))Y for H(Goo 2, T*(1) ®Qp/Z,)" into the
Poitou-Tate sequence (A.4.10) we preserve exactness at Sel(Fw,T*(1))" and all the following

terms, but lose exactness at lﬂln @rex, Hl(Fm,,T) because the kernel of the composite map

im @ H'(FupT) — H (Geo. T (1) © Qy/Z,)" ~ Sel(Fuo, T*(1))

n I/EEnJ

is, in general, larger than the kernel of just the first map. In order to remedy this failure of
exactness, we need to introduce the finite parts of cohomology for compact modules 7" and
discrete modules T'® Q,/Z,, that we defined at the beginning of this chapter.

We remark that our definition of H} (Fy,T®Qy/Zy) coincides with the definition of H oy (F,, W)
for discrete modules W of the form (Q,/Z,)* given in ([FK06], 4.2.28). We now recall an impor-
tant duality result. We will write H;f( ..) for the quotient H'(... )/H}( ..) both in local and
in global settings.

Proposition 4.2.1. Let I' be a number field, ¥ a finite set of places containing ¥,, and T
a finitely generated free Zp-module endowed with a Zy-linear continuous action of Gr that is
unramified outside ¥. Assume for v € ¥,, that T'® Q, is de Rham as a representation of G,.
Then, for any v € ¥ (archimedean primes included) the subgroups

Hy(F,,T) and  Hy(F,,T*(1)®Q/Z)
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are exact annihilators of each other with respect to the perfect pairing
H'(F,, T) x H'(F,, T*(1) ® Q/2) — H'(F,, Qp/Zy(1)) = Qp/Z
that induces local Tate duality. See section [A.2 for our definition of perfect pairing.

Proof. A full proof of this duality result is obtained as follows. Combine ([BK90], Proposition
3.8) for the case v € ¥, and de Rham V = T'® Q, with ([Rub00], chapter 1, propositions 1.4.2
and 1.4.3) to see that

Hi(F,,T)=H{(F,,T*(1) ® Q/Z)",

for any v € ¥, i.e., that H}(FV,T) is the exact annihilator of H}(F,,,T*(l) ®Q/Z). The identity
H}(F,,,T)l = H}(F,,,T*(l) ® Q/Z) then follows from proposition for v € ¥, compare also
example We note that the statement is trivially true for archimedean primes v € X,
since, by definition,

Hi(F,,T)=H'(F,,T) and  H}(F,T®Qy/Z,) =0
for v e Y. 0

Moreover, proposition shows that we get an isomorphism
Hy(F,,T)=H(F, T*(1)®Q/Z)",
for any v € 3. For T as in the proposition we have

Sel(F, T*(1))"
= ker(H'(Gx, T*(1) ® Q/Z) —> E%H/lf(Fl,,T*(l) ®Q/2))"

~ coker( E%H}(FV,T) — H'(Op[1/2],T*(1)  Q/Z)").

It is now clear that we have to pass to the quotient @, s H'! (FV,T)/H}(FV,T) in order to pre-
serve exactness when substituting Sel(F,T*(1))" for H(Gx,T*(1)®Q,/Z,)" in the Poitou-Tate
sequence (|A.4.10). In order to guarantee exactness at H'(Gx(F),T) (when cutting off the se-
quence {) before this term), we define H}(GZ(F), T) to be the preimage of @, H}(Fl,, T)
under the map
HY(Gx(F),T) — @ H'(F,,T).
vex

We conclude this section with the result of the above considerations, which is analogous to
the exact sequences Kato considers for the set ¥, in ([Kat04], (14.9.3)) and which Perrin-Riou
considers in both ([PR0O0], Appendix A.3.) and ([PR92], chapters 3 and 4).
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Corollary 4.2.2. In the setting and under the assumptions of Proposition[4.2.1], the Poitou-Tate
sequence from (A.4.2) yields a six term exact sequence

0- H/lf(Gg,T) - @y, H/lf(F,,,T) — Sel(F, T*(1))"

H*(Gx,T) - Myes. H*(F,,T) - H°(Gx, TV(1))" - 0,
(G, T) = Iyes, H( ) (Gs,T7(1)) (4.2.2)

where we note that for v € ¥ we have H/lf(Fl,,T) =0 by definition of H}(F,,,T). Likewise, the
dual Poitou-Tate sequence from gives an exact sequence

0 Hjp(Gx, T(1) ® Qp/Zy) » @5 H)((F,, T*(1) ® Qp/Zy) » Hi(Gx, T)"

H*(Gx, T*(1) ® Qp/Zy) —— Tyes, H'(F,, T) —— H(Gx,T)" -+ 0. (4.2.3)

Later we will use projective limits (passing through finite subextensions of a p-adic Lie extension
Fo/F) of the above sequences in order to derive relations in the group Ko(9y(G)). However,
in order to get exact sequences in My (G) we will have to pass to quotients of the corresponding
modules by appropriate submodules related to our fixed global and local units u € i and v’ € U’.

4.3 Tate Module of an abelian variety

In this subsection we consider an abelian variety A of dimension d defined over a number field
F with good reduction at all primes above a fixed prime p. We will separately study (projective
limits of) the modules appearing in the exact sequence for T' =T, A.

We are particularly interested in the following case. We fix algebraic closures Q, @p and an
embedding Q c @p. All algebraic extensions of Q are considered inside Q. Now, let £/Q be an
elliptic curve with complex multiplication by Og and good ordinary reduction at p. Consider
the extension Ko = U,K,, where K, = K(E[p"]) (inside Q). We write p (resp. v) for the
prime of K (resp. K ) above p that is determined by the embedding Qc @p. Moreover, we set
Y ={p} UXpad, where Xy,q is the finite set of primes where E has bad reduction.

Under the assumption that p splits in O we are able to prove that l(gln H}(Gmg,T) =0
so that (as we will see) passing to the projective limit of the general exact sequence
with respect to the K, and the corestriction and dual restriction maps yields an exact sequence
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isomorphic to

0 — HY (Gs(Q),AG)* & T) — Indg’Hl(Qp,A(g@

Sel( Koo, T* (1))

Hz(Gz(@)#\#pT)

Gu
Dyes,, Indy ' T(-1) T(-1)

0.

(4.3.1)

where G = Gal(K«/Q), G’ = Gal(Kw,,/Qp), Gy, = Gal(Keo b, /Qq), where for every q € ¥y we
fix a prime v, of Ko above ¢, T = T,E and T° = T,E n Mg(p). The Qp-vector space Mg(p) is
defined as follows.

Let us denote the other prime of K above p by p, p # p. Since K has class number one, we
may fix an Og-generator m of p and a generator 7 of p. We have Q, = K}, and 7 is a uniformizer
for Ok, , i.e., a generator of the maximal ideal of Of,. Note that 7 is a unit in Ok, i.e., belongs
to leﬂ,‘

For any finite extension L of K in Q we write v = vy, for the prime of L above p determined
by the embedding Q c @p and L,, which is a finite extension of K, for the completion at v.
Moreover, we write my,, for the maximal ideal of the ring of integers Op, of L,. Note that 7
belongs to the units OF . Let us write m for m = Uy my,, in Uy Ly, where the union is taken over
all finite subextensions L/Q of Q/K. Considering F as an elliptic curve over K. p>» We then have
exact sequences

redyp

0— E(mp,) — E(L,) — E(kr,) —0, KcLcQ, [L:K]< oo,

where E is the formal group law associated to I, kr, denotes the residue field of L, and red, is
the reduction map to the elliptic curve E with coefficients in F,,. Passing to the inductive limit
gives

— — dy ~ —
0— E(m) — B(Q,) = E(F,) —0,
which induces an injection of Galois modules

T,E|T,E - T,E. (4.3.2)

Note that the p-power division points in E (m) are actually m-power division points since the
element 7 is a unit in (’)}}p and therefore defines an isomorphism of the formal group E/Of,

(and hence of E(m)), see ([Serl(], section 3.3, proposition 3). We define

Mp?(p) = @p ®z, Tp(E)
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and recall that we defined 7° = T »E N Mg(p), so clearly T, p(E) c T°. Recall that due to our

ordinary good reduction assumption TpE’ and T, pE are both free of rank 1 as Z,-modules. Since
T,E/T,E # 0 embeds into the free Z,-module T,E = Z,, it is itself free of rank 1. The module
T/T° is a natural quotient of T,E/T,E such that Q, ® T/T" has Q,-dimension 1. Therefore,
T/T° must be free of rank 1 as a Z,-module and it follows that T, E/T,E = T/T°. Therefore and
since T,(E) c T° we have

T,E=T°.

We recall that the action of G, on TpE factors through G, i.e., is unramified. Therefore, the
action on T/T,E = T/T° is unramified.

4.3.1 First local cohomology groups for ve¥;\ %,

Assume that the abelian variety A/F has good reduction at all places of F' above p. We will

prove the following proposition for primes belonging to X \ X, = Xy,q, the finite places where
A/F has bad reduction.

Proposition 4.3.1. For T'=T,A and a finite place v of F' where A has bad reduction, we have
HY(F,,T)/H{(F,,T)=0
for the modules Hl(F,,,T)/H}(Fl,,T) from the sequence (4.2.2).

We write VA for T,A®z, Q,. Let A be the dual abelian variety of A and recall that there is a
non-degenerate Zy-bilinear (Weil) pairing

T,A x Ty(AY) —> Z,(1)

that commutes with the action of G, see, for example, ([Mum85], section 20. Riemann forms).
This pairing induces a G p-isomorphism (V,A4)*(1) = V,,(A4Y).

We recall a well-known theorem proven by Lutz (in the case of an elliptic curve) und Mattuck
(in the general case), describing the structure of rational points over local fields. Let v be a finite
place of I’ above the prime [ of Q. A proof of the theorem can be found in Mattuck’s paper
([Mat55], VI, 13., Theorem 7, p. 114).

Theorem 4.3.2. The group A(F),) of F,-rational points of A contains a subgroup of finite index
that is isomorphic to d = dim(A) copies of Op,, the ring of integers of F,,. In symbols, there is
an isomorphism

A(F,) = O%V x (a finite group).

In particular, for a prime p, p # 1, A(F)) does not contain an element of order a power of p that
is infinitely divisible by p, i.e., in terms of the Tate module of A(F),), T,A(F,) = 0.
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Now, let the setting be as in Proposition in particular we consider a free Zy,-module T" with
a continuous Z,-linear Galois action. Propositions [4.2.1 and |A.2.1]imply that for any v € ¥ we
have

(HY(F,,T)/H}(F,, 7))’ = Hi(F,, T*(1) ® Qp/Zy), (4.3.3)

which holds without any restriction for v € X \ ¥,,, while for v € X, in general, one has to
assume that the G'p -representation 7'® Q, is de Rham.

We now give a proof of proposition which is rather lengthy (but gives more information
on the Galois actions invloved). After this proof we give another, shorter one, so the reader may
skip the following one and proceed with the other proof that uses Mattuck’s theorem.

Proof (of Proposition . We use equation (4.3.3) for T' = T,A and v € ¥y,q, a place of F
where A has bad reduction. So we have to show that

Hi(F,, T*(1) ® Qy/Z,) = 0.

By definition, H}(FV,T*(l) ® Qp/Zy) is the image of H}(F,,,T*(l) ® Qp) under the canonical
map

HY(F,,T*(1)®Q,) — H'(F,, T*(1) ® Qy/Z,).

Hence it is sufficient to prove that H}(F,,,T *(1) ® Qp) vanishes for T' = T, A and a finite place
v of ¥ not above p. We have remarked above that the Weil pairing induces an isomorphism
T7(1) ® Qp = (V,A)*(1) = V,(AY). Using this isomorphism and the inflation-restriction exact
sequence, we get

Hy(F, T (1) Q) 2 H'(G(F"[F,), H (Gryr, Vp(A"))),

but the group on the right vanishes, see (|[BK90], Example 3.11), which we want to show next
for elliptic curves. If A is an elliptic curve then AY = A.

As for the vanishing of H*(G(F*[F,), H*(Gpw, V,E)), Malte Witte explained to me a proof
that works for elliptic curves E and places v of bad reduction. We sketch this proof. So let E
be an elliptic curve defined over F' and let v be a place of F' where E has bad reduction. Write
l € Z for the prime below v. Let p be a prime different from [. We write k, ~ F;» for the residue
field of v and k, for an algebraic closure. We consider the two exact sequences found in ([Sil86],
VII. proof of Theorem 7.1). Firstly, consider

0— Eo(F)") — E(FY) — E(E")/Eo(F)") — 0,

where Eo(F") is the subset of points of E(F,") that under the reduction map E(F;") — E(k,)
map to a nonsingular point in Fys(k,) ¢ E(k,), and, secondly, we have,

0 — E1(FY) — Eo(FY) — Eys(k,) — 0, (4.3.4)

where E1(F]") is the kernel of the reduction map, and, by a fact about formal groups, does
not have any non-trivial p-torsion. Now, assume that H°(G rur, ToE ® Qp) is non-trivial (if it
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is trivial then there is nothing to show). By proposition we have HO(GF;nr,TpE ®Qp) =
HO(GFIEr,TpE) ® Q, and, hence, the Tate module for F,"-rational points h(LnnE(Fl}“)[p”] has
positive Z,-rank. But E(F}")/Eo(F,") is finite, due to Kodaira and Néron, see ([Sil86], VII.
Theorem 6.1), and hence lim Eo(F)[p™] is non-trivial. In fact, if p” is the maximal power
of p that divides the cardinality of E(F,")/Eo(F)") and (t,)n>1 is a non-trivial element that
belongs to lim | E(FM)[p"], then p"ty ., = t, belongs to Eo(F") for all n € N. Hence, (£, )n>1 also
belongs to lim Eo(Fy™)[p™]. We have just seen that H*(Gpur, T,E) = lim | E(F))[p"] is equal
to lim Eo(F)[p™]. Now, by the exact sequence , and since E1(F}") does not contain

any non-trivial p-torsion, we have an embedding

lim Bo(F,")[p"] = lim Bu(F,) [p"]. (4.3.5)

Recall that the reduction type of E over F) is the same as the reduction type of E over F}",
compare ([Sil86], VIL. Proposition 5.4 (a)). Now, if I/ had additive reduction over F)", then,
we would have an equality Eyng(k,) 2 k,, which is impossible, because k, does not have any
p-torsion. So F must have multiplicative reduction over F}" (and therefore over F,), which
implies Fns(k,) 2 (k,)* (as abelian groups), see ([Sil86], VII, §5, proposition 5.1 (b)). In case
the reduction is non-split multiplicative, then the isomorphism of abelian groups Eus(%,) 2 (k,)*
need not be G(FY/F,)-linear. However, if P € E(k,) denotes the node, i.e., the singular point
of the reduced curve, let us write k, for the finite extension of k, obtained by adjoining the
coefficients of the two distinct tangent lines at P. Then, write L for the finite extension of F},
inside F})" corresponding to k;, such that we have canonically G(F)"/L) = G(k,/k.). Tt now
follows from the explicit description of the isomorphism Eys(k,) = (k,)* that it is G(FY/L)-
linear, see (loc. cit., ITI, §2, proposition 2.5 (a)). In particular, we have a G(F}"/L)-isomorphism

lim Eng (k) [0"] 2 Zp(1).

Pa—
n

We conclude from this and from 1' that H(Gpu, T,E) = lim | Eo(F)")[p"] is a free Zy-
module of rank 1 and that we have an isomorphism

H* (G, T,E) ® Qp = (lim Eo(F)")[p"]) ® Qp 2 (lim Eys (k) ["]) © Qp 2 Qy(1)

n
of G(F}"/L)-modules. In particular, the Frobenius in G(F.*/L), and therefore the Frobenius
in G(F™/F,), do not act trivially on H*(Gpu,T,E). Let us write x : G(F\"/F,) — Z, for
the character giving the action on H(Gpur, T,E) (restricted to G(F."/L) this is the cyclotomic

character).
Then, we have H*(Gpu, T,E ® Q,) 2 Q,(x). The first cohomology group of the Priifer ring

7 = G(F™/F,) for modules as in our situation is well-known, see ([Rub00], Appendix B, Lemma
B.2.8) or ([Ser95], XIII, §1), and given by

Hl(G(F;lr/Fu)an(X)) = Qp(X)/(l - X(FrObz/))@p(X) =0,

11
P—
n
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which holds, since the Frobenius does not act trivially on Q,(x). This completes the proof. g

Of course, in the last step, we could have also used the inflation-restriction sequence to conclude
that

HY(G(FY|F,),H(Gpx, T,E®Q,)) =0

using the facts that H'(G(F"/L),Q,(1)) = 0 and that H(G,, T,E®Q,) = H*(G 1, T,E)®Q, = 0
by Mattuck’s theorem.

After writing up the above proof, the author found a similar, but shorter one using Mattuck’s
theorem as suggested in ([BK90], Example 3.11).

Proof (of Proposition[4.3.1], second version). As in the first proof one reduces to showing that
HY (G(FX|F,),H(Gpw,T,E ® Q,)) = 0. Since E/F has bad reduction at v € Spaq, Gpu
does not act trivially on the Tate-module T,E. Therefore, dime((TpE ® Qp)GFt‘/“) <2 If
dime((TpE@)Qp)GFﬁr) =0 we are done, so assume dime((TpE@)Qp)Gﬂ‘f") = 1. If the Frobenius
of G(F}'/F,) acted trivially on (T,E ® Qp)GFu“r then we would have dime((TpE ® Qp)GFV) =1,
which is a contradiction by Mattuck’s theorem (using that taking cohomology commutes with
- ®z, Qp). Therefore, the Frobenius does not act trivially, and we have

HY (G(FX[F,), H(Gruw, T,E®Q,)) = (T,E ® Q,) ™ [((1 - x(Frob,))(T,E ® Q,)“™") =0

by the well-known formula for the first cohomology groups of Z, where x(Frob,) € Qp ~ {1} is
the element that gives the action of the Frobenius on (T,E ® Qp)GFb“. o

4.3.2 First local cohomology groups for v e,

We write A" for the dual abelian variety of A. We will now study the groups H'(F,, T)/H} (F,,T)
for T'=T,,A and places v € ¥,,. Recall the non-degenerate Z,-bilinear Weil pairing

T,A x Tp(Av) — Zy(1),

see ([Mum85], section 20. Riemann forms), which induces an isomorphism T,A = T,(A")*(1),
see example [A.2.1] Propositions [£.2.1] and [A.2.T] imply that

(H'(F,,T)/H}(F,,T)) = H{(F,,T"(1)), (4.3.6)

for which we note that the Tate module of an abelian variety is de Rham as a representation
of Gp, for v € 3, see the work of Fontaine [Fon82]. Recall that T7(1) ® Q,/Z, = TV (1) is
isomorphic to the p-primary part AY(F,){p} = U, AV(F,)[p"] of F,-rational points AY(F,) of
AY; note that there is a natural isomorphism A = (AY)Y, see ([Mum85], p. 81) or ([Mil08], I,
section 8). In order to avoid confusion, note that our 7' is isomorphic to Fukaya and Kato’s
module Ty, a Galois stable Z,-lattice of the p-adic realization of the motive h'(AY)(1).
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We have already noted that our definition of H} for discrete modules like TV (1) coincides
with the definition of H},(2) found in ([FKO06], 4.2.28) and goes back originally to the paper
[BK9Q] of Bloch and Kato. However, there is a second definition due to Greenberg of a finite
part of the first local cohomology group given in [Gre89|. In our setting of an abelian variety and
a place v above p one uses the unique G, -stable Q,-subspace of M, = V,(A) = Q, ®z, T,(A),
denoted by Mg(u) in ([FKO06], 4.2.3), that satisfies

DdR(Fw M;?(V)) = DdR(FU7 Mp)/DgR(Fva Mp)-

The existence of this subspace (for a general motive M and its p-adic realization) is called the
condition of Dabrowski-Panchishkin. In ([Ven05|], Chapter 6, p. 25) Venjakob explains that for
the motive M = h(A")(1), where AY/Q is an abelian variety with good ordinary reduction at
v =Dp, MI?(V) is given by V,(4) = Q, ®z, T,(A), where A is the formal group associated to
A (the m-valued points of which give the kernel of the reduction map at v, m is the valuation
ideal of @p). See also the article [Nek93] by Nekovar, in particular, 1.28 - 1.31, which includes
the definition of an ordinary p-adic Galois representation and ([Nek06], (9.6.7.2)) by the same
author. For more information on the theory of ordinary representations see also [PR94] and
[Gre89].

Now, we come to the definition of Greenberg’s finite cohomology group which is denoted by
H}y(l)(Fv,TV(l)) in the paper of Fukaya and Kato.

Definition 4.3.3 (Greenberg’s H;) We write
T°(v) =T n M) (v) (4.3.7)

for a G, -stable Z,-lattice of V,,(A) and define H}
map

(1)(Fv,TV(1)) to be the kernel of the natural

H'(F,,TY(1)) — H'(F, (T°(v))"(1))
induced by the embedding T°(v) c T.

We now specialize to A = F, an elliptic curve defined over F' with good ordinary reduction above
p, so that A = AY. For a place v above p Fukaya and Kato then show, see ([FK06], Lemma
4.2.32), that

H},(z)(Fv,Tv(l)) = H},(l)(FmTv(l))(diV)a

where the right hand side denotes the divisible part of H}7(1)(FU,TV(1)). In order to be able
to apply the quoted Lemma we note that HO(FV,MP/MS(I/)) =0=HYF,, (Mg(l/))*(l)), see
([FK06], 4.2.31).

For our purposes it is important to consider the situation for the whole tower F' c F), ¢ Fo,
where F,, = F(E[p"]), Foo = UpFy,. We will write F,, F), for the composite field of F}, and F}, inside
a fixed algebraic closure F,, F' c F,,. The proof of ([FK06], proposition 4.2.30), the conditions
of which are met by E/F with good ordinary reduction at every place above p and the extension

F/F, see (loc. cit., 4.2.31), shows the following proposition.
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Proposition 4.3.4. Passing to the inductive limit with respect to n € N we get an equality

lim Hy ) (B, Fp, TV (1)) = lim Hy oy (F, o, TV (1))

as subgroups of H'(F,Fu,TV(1)).

From this proposition and the duality result (4.3.6) we conclude that for a prime v of F' above
p we have

lim H' (F, Fo, T)/H}(Fy Fo, T) = (lim Hj o) (F, F,, TV(1)))"

n

= (lim Hy () (F,F, TV(1)))

2 lim coker(H' (F, Fy, T°(v)) — H'(F, F,,T)), (4.3.8)

n

where, in the last equation, we use local Tate duality and the fact that for amap ¢ : M — N, we
have ker(¢)" = coker(¢"). Let us write Coker(v,n) = coker(H'(F, F,,T°(v)) — H*(F,F,,T)).
By the long exact cohomology sequences attached to

0—T(v) —T—T/T°(v) — 0
we have exact sequences for all n > 1
0 — Coker(v,n) - H (F,F,,T/T°(v)) - H*(F,F,,T°(v)) - H*(F,F,,T) - ...

in which all modules are projective limits of finite modules and therefore compact, compare
propositions |A.3.2| and |A.3.4] Passing to the projective limit with respect to n > 1, we get an
exact sequence and we want to show that the map

. . 1 0
lim Coker(v,n) - lim H" (F, I, T/T"(v)) (4.3.9)
n n

is an isomorphism. By exactness of the sequence, this amounts to showing that the image of
the map lim HY(F,F,,T|T°(v)) - lim H?*(F,F,,T°(v)) is equal to 0. But the image of the
latter map is equal to the kernel of lim H?*(F,F,,T°(v)) - lim | H?*(F,F,,T), which, we will
now show, is injective.

By local Tate duality we have

. . \%
lim H?(F, F,,T) = (lim H(F, F,, TV(1))) " 2 H(F, Foo, TV (1)) 2 T(-1),
n n

where the last equation holds since G, ., acts trivially on 7V (1) (remember Fi, is precisely the
trivializing extension for 7" and it contains F'(u,~)). Likewise we have

lim H*(F, F,, T°(v)) 2 T°(v)(-1)

n



4.3. TATE MODULE OF AN ABELIAN VARIETY 103

and we see that lim H?*(F,F,, T°(v)) - lim_ H?*(F,F,,T) is just the embedding T°(v)(-1) =
T(-1). We conclude that the map from (4.3.9)) is an isomorphism. The next proposition is the
main result of this subsection and summarizes the above observations.

Proposition 4.3.5. Let F be an elliptic curve defined over a number field F' with good ordinary
reduction at all primes above p. Then, for all v € ¥, we have an isomorphism

lim H' (F, F,, T)/H}(F, F,, T) = lim H'(F, F,, T/T°(v)),

n n

where T = T,F and T°(v) is as in (4.3.7).

Remark 4.3.6. We want to remark that the results in this subsection are easily generalized to
Galois-stable Z,-lattices 1" of M,, for motives M over F' and extensions F /F such that

(i) the p-adic realization M, is ordinary as a representation of G, for all places v above p,
il) Foo/F is a trivializing extension for M,, i.e., Gg_ acts trivially on M, and Fi,. C Fs,
P o p y
(ili) M/F satisfies the assumptions of ([FKO06], proposition 4.2.30).

Note that when M, is ordinary as a representation of G'r,, v € ¥, then it is semistable, see
(INek93], 1.30 Theorem), and therefore de Rham, so we may apply the duality result of Bloch
and Kato for the finite parts of the local cohomology groups. Moreover, if M, is ordinary at each
prime above v, then the condition of Dabrowski-Panchishkin is satisfied, see ([Nek93], 6.7).

We conclude this subsection by giving a more concrete description of the finite part H}(Fy, VpA)
for the Tate module V,A = Q, ®z, T, A of an abelian variety A/F with scalars extended to Q,.
By ([BK90], Example 3.11, p. 361) we have an isomorphism

A(F) @ Q2 Hi(F,, V,A),
which is induced by the limit of the boundary maps of the Kummer sequences

A(F,) = lim A(F,)/p™ A(F,) = H' (F,, T,A).

m

We note that A(F,) ® Q is actually a finitely generated Q,-vector space by Mattuck’s theorem.

4.3.3 Second local cohomology groups

Assume we are given a p-adic Lie extension Fo/F such that F'(up~) ¢ Foo and U, F), = F,
where each F), is a finite Galois extension of F. Also T is a free finitely generated Z,-module
with Gp-action. Moreover, assume that Fo, trivializes T, i.e., Gg,_ acts trivially on 7. We
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consider the groups @y, HQ(Fn,,,,T), where Y, ; denotes the set of primes of F;,, above ¥y.
Using local Tate duality, we have

lim @ H*(F,,,T)=lm @ H°(F,,,T'(1))"

n ZIGEnyf n I/Ezn’f

= (lm @ H(Fup, TY(1))’

n VEEnﬁf

( E'; Coindg”HO(Foo,D,Tv(l)))v
ve f

P c—Indg”T(—l).
I/Ezf

4.3.4 First global cohomology groups

We now consider the groups H!(G's, T)/H}(Gg, T). For a more detailed study of the finite parts
H}’E(F ,T) for general T see the work of Bloch and Kato ([BK90], chapter 5) and of Perrin-Riou
and Fontaine ([FPRO1], Chapitre II, 1.3, p. 643f). The notation used in these sources differs
slightly from ours. With our notation, for a representation V unramified outside a finite set of

places X
Hp(Gx(F),V) =ker(H'(Gx,V) — @ H};(F,,V))
vex

and H}(GE(F),T) is the inverse image of H}(GE(F), V) in HY(Gx(F),T). In the notation of
[FPRI1] ¥ is not mentioned explicitly and our H(Gx(F),V) is denoted H(F,V).

Conjecturally, see Perrin-Riou’s work ([PR92], p. 137f), for the motive M = h'(A)(1) asso-
ciated to an abelian variety A defined over a number field F', we have an isomorphism

Qy ®0 H}(F, M) = H}(GZ(F), V,A),

where H }(F, M) denotes the first motivic cohomology group. In our case H }(F M) 2 QezA(F),
see, for example, Flach’s survey article [Fla04].

In the next subsection we study the example of an elliptic curve E/Q with complex multipli-
cation and good ordinary reduction at p and show that lﬂln H}(GH,E,T) =0for T=T,FE.

4.3.5 Vanishing of lim H}(G, s, T,E) for E/Q with CM and good ordinary
reduction at split p

Fix a prime number p € Z,, p # 2, and embeddings Qc @p and Q c C. Let E/Q be an elliptic
curve with complex multiplication by O and good reduction at p and set Ko = U, K,, where
K, = K(E[p"]). We assume that p splits in K, i.e., Ogp = pp, p # p, which implies that E has
good ordinary reduction at p, see proposition

We will use the same notation as at the beginning of section In particular, we write p
(resp. ) for the prime of K (resp. Ko ) above p that is determined by the embedding Q c @p.
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Moreover, we set G = G(K«/Q), G = G(Ko/K) and G’ = G(Ko 5/Qp). We identify G(K o 5/Qp)
with the decomposition group of 7 in G.

Recall that we have Ty = TpE. In this subsection we will study the first map appearing in
the Poitou-Tate sequence

HY(Gx(Q),A(9)* ® T) — Ind] H'(Q,, A(G")* ® (T/T")), (4.3.10)

the kernel of which is precisely linn H}(Gmg,T). We want to show that this kernel vanishes
when p splits in Og. For any Galois-module M we write M (1) = M ®z, Z,(~1) for the —1-Tate
twist. We recall that we have an isomorphism

T(-1) &z, Hy, = H' (Gx(Q), A(G)* & T)
of A(G)-modules and an isomorphism
(T/T°)(-1) ® H'(Qy, A(G")7 (1)) = H'(Qp, A(G")T & (T/T7)),

of A(G")-modules, which both follow from corollary [A.3.10, Therefore, we have to study the
induced map

T(-1) &z, Hy — Indd ((1/T°)(-1) ® H'(Q,, A(G)*#(1))) (4.3.11)

and show that it is injective; recall that Hi, = lim | H'(Gx(K,),Zy(1)). The map (4.3.11)) is
given by
(tee)efr— > 0@ [0 '] ® o eg ® locs (a7 f), (4.3.12)
0eG/G’

where we write €y for some fixed generator of Z,(-1), [¢] for the image of £ € T in T/Tj and
locy for the following composition. We compose the localization map A! from the Poitou-Tate
sequence with the projection to the p-part, compare diagram (4.3.14) below, and we
compose this composition with the natural map IndM = CoindM — M that exists for any M.
The resulting map HE - H'(Q,, A(G")#(1)) is denoted by loc; (in terms of units this is the
natural map £ —> U'(Ke ) from global to principal local units).

Let us consider the isomorphism between T,F and Indgg T.E, as described in subsection
[A.6.4 g, the GroBencharacter attached to E, gives the action of G on T;E. Recall that
we write 7 for the prime of Ko above p determined by the embedding Q c @p and defined
G' = G(Ko5/Qp). We note that due to the splitting assumption the decomposition groups
of 7 in G and G coincide, i.e., if we write G = G(Kw,/Kp), then G' = G'. In particular,
HY(Q,, A(G")# (1)) = H (Kp, A(G')#(1)). The map [1z] : ToE — T,E/T,E from is

G'-equivariant. We get a G'-equivariant map

T E(-1) 9, Hy — (T/T°)(-1) @z, H' (Kp AG)#(1))
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given by
t®e® f— [1z](t) ® g ® locy(f). (4.3.13)

For every q € ¥ fix a prime 74 of Ko above q (of course, we choose 7 above p). We then have
the following commutative diagram

1 4
HE s @, 000 IndS lim H (K, Z(1)) —» IndG B (K, A(G))# (1))

: X c G'1; A%
l&nn(OKn ®7 L) Indg lim OF -

(4.3.14)
where the vertical map on the left, by , is an isomorphism since Ko /K contains a Z,-
extension of K unramified at p (which is the one in K(E[7*])/K) and another one unrami-
fied at p, (the one in K(E[7*])/K). Moreover, the vertical map on the right is an isomor-
phism since K« /K, contains an unramified Z,-extension (the one contained in the compositum
K(E[7*])Kp), compare ([Venl3], section 2.1). The lower horizontal map is injective since we
have seen that the Leopoldt conjecture (which is a theorem for the abelian extensions K, /K)
implies that for each n, n>1, O ®z7Zp > @, @;(nw is injective, where we only sum over the
primes w of K, that lie above p and not over all that lie above p, i.e., we omit the ones lying
above p, see subsection [2.4.2] We conclude that the composite of the upper horizontal maps in

(4.3.14])) is injective.
Remark 4.3.7. That the map HY — Ind H(Q,, A(G")#(1)) = Ind§ H (K, A(G")#(1)),
where we induce up to G, is injective we already knew from the usual (or even weak) Leopoldt

conjecture. For the injectivity of the composite of the upper horizontal maps in (4.3.14f), however,
we needed the stronger version of Leopoldt’s conjecture that we stated in subsection [2.4.2

Now, note that since G’ is of finite index in G, there is an isomorphism of functors between Indg/
and Coindg . The map locy appearing in (4.3.13]) is the map

locy : Hy — H(Kp, A(G)#(1))

that induces, by the universal property of Coind$ = Indg’, the composite of the upper horizontal
maps in (4.3.14)), i.e., so that this composite is given by

H: > fe— Y (0®locy(a7'f)) € Indg H'(Ky, A(G")#(1)). (4.3.15)
geG|G"

By the universal property of Coindé = Indg’ the map (4.3.13)) induces the following G-equivariant

map

T2 B(-1) ®z, Hy — Indg ((T/T°)(-1) @z, H' (K, A(G)#(1))) (4.3.16)
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given by

t@e®fr— Y o®[z](c7't) @0 g ®locy (a7 f).
aeG/G’

Note that o leg = r(0)ep, where s denotes the cyclotomic character. We claim that the map
is injective. Indeed, fixing a Z,-generator ¢ of the free Z,-module T E of rank 1, we first
see that any element of Tz E(-1) ®z, MY can be written in the form ¢ ® ey ® f for some f € Hi,.

Recall that G’ is of finite index in G and note that for any Z,[G']-module M we have an
isomorphism

@ oM = ZP[G] ®ZP[G’] M = IndG,M, (Um5)5— — E o®mg,
ceG/G’ geG|G"

where oM is just M as a Z,-module. Hence, for the injectivity of it is sufficient to show
that if (t®eg® f) #0, then there is at least one coset & € G/G’ such that [¢7](c7!t) ® K(0)eg ®
locy (71 f) #0.

So let (t®ey® f) # 0. By the injectivity of the composite of the upper horizontal maps

n (4.3.14) which is given explicitly by (4.3.15) we must have locy (o7 f) # 0 for at least one
7 € G/G'. Let & be such a coset. Since t # 0 we have x(c)o 't # 0 and therefore the image

[tz](k(c)o™'t) under the injective map [1z] from (A.6.19) is non-zero in the free Z,-module
T,E|T,E =T /TE) of rank 1, (recall that due to our ordinary reduction assumption T, E/T,E # 0
embeds into T, E = Z,, see ) Fixing a Z,-generator ¢’ of T,,E/T,E we can write

[tz](k(0)o ™ ) = at’
for some a € Z,, a # 0. Noting that
(T/T°)(-1) ®z, H' (K, AG")* (1)) 2 H' (Kp, A(G) (1)), bt'®@cc@g— by,

defines a Z,-linear isomorphism, we can conclude our proof that (4.3.16) is injective by observing
that under the isomorphism just defined [¢z](07!t) ® Kk(0)eg ® locy (o1 f) maps to

a-locy (o7 f) #0

which is not zero since H'(Ky, A(G")# (1)) has no non-trivial p-torsion. For the last fact we quote
Wintenberger’s result ([Win80], section 4, Théoréme (i)), see also Yager’s ([Yag82], section 8,
Lemma 23, p.436) or Rubin ([Rub91], Theorem 5.1 (ii)). Recall that o is the prime of Fo, above p
determined by Q c Q,. Wintenberger’s result says that H' (Kp, A(GN#(1)) = lim I?,XL’Z—, embeds
into a free A(G')-module of rank 1, and hence it does not have any p-torsion. Recall that I?,XL’D
is the p-adic completion of K7 ;. Let us note that we may actually apply Winternberger’s result
since G', as a subgroup of finite index in G = ZIQ, x (Zp/(p-1))?, is itself of the form Zg x A') with
A’ finite and p + #A'.



108 CHAPTER 4. SELMER GROUPS OF P-ADIC GALOIS REPRESENTATIONS

To conclude, we have shown that the map from (4.3.16)) is injective. Now, note that in
(4.3.16]) we considered ]I-]IlE as a G-module, which it is by restriction from its G-action. Therefore,

using the identification
T,E(-1) ® Hy = Ind§ (T:E(-1) ® Hy,),

compare remark and applying the exact functor Indg to yields the map from
(4.3.11) and shows that it is injective. Since it is not entirely obvious (one has to be careful when
using the identifications of Ind and Coind) that applying Indg to yields the map from
, we show that it does in the following remark.

Remark 4.3.8. First recall that for a general G-module M and a G-module N one has the
canonical G-isomorphism

Ind§ (M ® Resg,N) = (Ind§ M) ® N, (4.3.17)
given by
1o (mi®ny)+c®(ma®@ng) — (1®emy)®ny + (c®ms) ® cna,
where ¢ € G denotes the complex conjugation isomorphism, compare ([Lan05] XVIII, Theorem
7.11). We will use this isomorphism twice below. Recall the isomorphism T,E - T ExT:E, t —
(trx,tz) from (A.6.12)) and also the isomorphism T, FE x T F = IndgTﬁE given by
(y,2) — (c@cy) + (1®2),

the inverse of which is the natural map induced by T7F < T, FE x Tz E.
We will use the following identifications

[T,E®Z,(-1)| ® Hy, = [(T-E x Tz E) ® Z,(-1)] ® H;
= [(Ind§T=E) ® Z,(-1)] ® H,

~ [Indg (T-E ® Z,(-1)) ] ® Hj; use (£3.17)
~ Ind§[TxE ® Z,(-1)  Hy | use ([£.3.17)

under which an element of the form t® g ® f in [TpE ® Zp(—l)] ® Hi, maps to

(t®e)® fr— ((tr,tz) ®€0) ® f
— (((c® )+ (1 ®t7—r)) ®60) Qf

— ((c® (c 'ty ® 6_160)) + (1 Q (tz ® 60))) Q f

— (c® (c_lt7r ®c e ® c_lf)) + (1 ® (tT—r ® €y ® f)) (4.3.18)

Under the map

Ind§ [ T3 E(-1) @z, Hy] — md§[Indg ((T/T°)(-1) @z, H' (K, A(G)# (1)) )]
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induced by (|4.3.16)), the element from (4.3.18)) maps to

c® ( > oelzl(c e ) @0 e @ loc,;(a_lc_lf))
ceG/G’

+1@ (6EGZ/G/ c®[1z)(0c 7 tz) @0 g @ locs(07' ) ). (4.3.19)

We know by remark [A.6.14that [1z](c7 ¢ t,) = [o7 ¢ ] and [1z](0  tz) = [0~ '] in T, E/T, E
for any o € G, where we use the brackets [-] to denote the residue classes modulo T, E. Hence,
the element from (4.3.19)), under the canonical map Indglndg’ S Indg’ ... maps to

Y co® [0l cHt]eo e g locl—,(a_lc_lf))
5¢GG"

+ ( Y o® [ct]®o e ® locf,(a_lf))
5eG/G"

= > 0o® [0 '] ® o eg ®locy (a7 f),
5eG|G’

which, since elements of the form t ® ¢y ® f generate [TpE ® Zp(—l)] ® Hi,, shows that applying
Indg to (4.3.16)) and using the above standard identifications indeed yields the map from (4.3.11)).

4.3.6 Second global cohomology group

Let the setting be as in the last subsection, i.e., we are given a p-adic Lie extension Fo/F such
that F'(pp~) ¢ Foo and U, F), = Fo, where each F), is a finite Galois extension of F'. As above, T
is a free finitely generated Z,-module with continuous Gx-action which factors through G. We
then have isomorphisms, see section

liLnHQ(G?LE?T) = H2(GZ7A# ®T)

n

= T(-1) @z, H*(Gs, A*(1)).

Now, we also assume that only finitely many primes ramify in Foo/F. We then have a short
exact sequence, see ([Kat06], p. 555),

0— H?*(Gy,,A?(1)) — H*(Gs,A*(1)) — @ c-Ind%*Z, — 0.
veXipNYp

Having studied (the projective limits of) the terms appearing in (4.2.2)), we conclude that
passing to the projective limit of (4.2.2)) for the various F,, yields an exact sequence isomorphic

to (3.1).
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Chapter 5

The element iju,u/

We will see in this chapter that a choice of global unit u as in assumption and a choice of local

unit v’ as in assumption each canonically determine a generator of (Indg’(T »E[T(-1) ®7z,
Hlloc))S* which is a free A(G)s+-module of rank 1. The element €, ,, v € A(G)%. is then defined
to be the base change of these two bases. In (5.4.1) we will determine its image in Ko(9My(G))

under the connecting homomorphism from K-theory, which will be an important ingredient in
the proof the main theorem in chapter [6]

5.1 Setting

Fix a prime number p € Z,, p # 2, and embeddings Q c @p and Q c C. Let E/Q be an elliptic
curve with complex multiplication by Og and good ordinary reduction at p, which we assume
to split in the quadratic imaginary number field K.

As before, we set Koo = U, K, where K,, = K(E[p"]). We write p = (m) (resp. ) for the
prime of K (resp. Ko ) above p that is determined by the embedding Qc @p. The other, complex
conjugate prime of K above p we denote by p = (7). Moreover, we set

g :G(Koo/(@)’ G:G(KOO/K) and g/ :G(Koo,ﬂ/(@p) :G(Koo,ﬂ/Kp)
and define subgroups
H=G(Kw/QY), H=G(K&/KY) and H' =G(Kwp/Q)°)

of G, G and G’ respectively. By the splitting assumption we have G(Ko 5/Qp) = G(Keo,5/Kp)
and we also write G’ for G’. This makes sense since when we identify G’ with the decomposition
group of 7 in G (which we will do without further mentioning) it is already a subgroup of G.
Note that the extension Ko 5/Q, meets all requirements of the setting that we studied in chapter
In fact, G(K«,»/Qp) ¢ G is abelian, u, K(E[7"]) contains a Z,-extension of K in which p
is unramified and pp~ ¢ Ko by the Weil pairing so that the abelian extension Ko /K, is

111
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indeed of the form K'(j,~)/Q) for some infinite unramified extension K'/Q,. Let us write A’
for A(G") = A(G"). For the Ore sets as defined in chapters [2| and [3| we write

ScS cA(G), Sc8 cA(G) and S cS*cA.

Remark 5.1.1. We recall that the discriminant —D of any quadratic imaginary field K =
Q(V/-D) as above is divisible by one (positive) prime number in Z only, which we will de-
note by lx, compare ([Sil99], Appendix A, §3) or see subsection In the following we will
write ¥ for the set of places of K consisting of the places ¥, = {p,p} above p, of the complex
archimedean place Yo = {Veo } and the places ¥y, x Where E/K has bad reduction, i.e.,

Y= Ep UXeo U Ebad,K
Then, we write ¥ for the places of Q below those in ¥ and assume that

Qsy = Ky, (5.1.1)

so that, in particular, Gx(K) c Gx,(Q). This condition is satisfied if we choose one of the
representatives F/Q with complex multiplication by Ok with minimal discriminant listed in
Appendix A, §3 of Silverman’s book [Sil99]. In fact, writing f = f, for the conductor of the
Groflencharacter 1 attached to E/K (considered as a curve over K), we know by theorem
and proposition [A.6.9] that for such a curve

f=0, r>1,

is a prime power of the unique (I ramifies in K) prime ideal [ lying above Zix. Hence, ¥paq x =
{1} so that 3g = {p} U {lx} U {Ve|,} and {lx} coincides with the set Ypaqq consisting of the
unique prime of Z at which E/Q has bad reduction. We conclude that ¥ is precisely the set of
primes of K above the primes of ¥g and, since ¥ contains the unique prime Zlx which ramifies

in K/Q, that (5.1.1)) holds.

Recall that for m > 0 we defined the global universal cohomology groups

¥ 2 lim H™(Gs(Kp), Zy(1)) 2 H™(Gx(Q), A(G)* (1)) 2 H™(Gx(K), A(G)* (1))

n

Note that, since Gx(K) c G, (Q), each module H™(Gx(K,,),Zp(1)) naturally carries an action
of G(K,/Q) = Gx,(Q)/Gx(K,) and, by restriction, a G(K,/K)-action, just note that K, as
the composite of K and Q(E[p"]), is Galois over Q and see ([NSWO0§]|, (1.6.3) Proposition). For
m > 0 we also define local universal cohomology groups

Hio. 2 lim H™ (K5, Z,(1)) 2 H™(@p, A(G) 7 (1)),

n
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where we write 7 also for the prime of K, below the prime v of K.,. We set

Eoo = LiLn(O;(n ®z Zp),

n

for the projective limit of the p-adic completions of the units of K, which, for all practical
purposes, we identify via the Kummer sequence with Hy?

Eoo = HY,
compare (2.2.3]). For the principal semi-local units we will write

Uso =1lim [ o}w 2 lim ] OKW

n wlp n wlp

where K, ,, denotes the completion of K, at the some prime w of K, above p. Note that since
the (strong) version of the Leopoldt conjecture holds for the fields K, see (2.4.4), we have an
embedding €. <> Us. For the local principal units in the extension Ko, /Qp we write

U (Koo y) =lim O, .

Note that G’ = G’ is of finite index in G' and that we have an isomorphism
IndS U (Koo ) = Uso

induced by the natural embedding U’ (K 0o,v) > Uso. Since Kooy /Qp is of infinite residue degree,
the Kummer sequence identifies U'( Ko ) with H

loc

ul(Koo7l7) = Hlloc'

5.2 Choices of u and u’
Recall the assumption that there exists u € Lgln O}, such that
M@)se — (Ex)se 2 (Hy)sx, 1r—u

is an isomorphism of A(G)g+-modules. Also recall assumption that there exists u’ €
U' (K ) such that
A"S"* e (UI(KOO’,;))SM i~ (Hlloc)s'*7 1+— ’U,’

is an isomorphism of Ay.-modules. These assumptions guarantee that the quotients
Hy/A(G)u and  Hi,o/A(G ),

are S*- and S"*-torsion, i.e., they belong to the categories S* — tor = My (G) and S™ - tor =
M4, (G'), respectively. We want to recall the choices of u and u’.
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5.2.1 Local Case

Fix a generator € of Z,(1) = lim ppn and write K' for the intersection Ko p N Q" in Q,.
We defined A, := {z € A | ¢(z) = ¢, - x}, where the arithmetic Frobenius ¢ e G(Qy"/Qp)

acts on the coefficients of A’ = @@ZT,A’ and ¢, - o is multiplication of x with the element

op= (1, dx) € G(Qp(Cp=)/Qp) x G(K'/Qp) = G'. Recall the exact sequence from (3.3.7)

-L _
0— U (Koo ) —> Tun(Keo) ®a Ay — Zp(1) —> 0 (5.2.1)

which, as in [Venl3], was constructed by passing to the limit of Coleman’s exact sequences for
G, and the finite unramified subextensions in K o0,7/Qp. The module Tyy(Koo5) ®ar A:Dp in the
middle of is non-canonically isomorphic to A’, see (loc. cit. Proposition 2.1 and its proof).
Fixing a A’-generator A\ of A, , we get an isomorphism

110\ (_‘Ce_l )7}
b = (Tun(Kewp) @00 AL, ) gy~ U (Kei)s (522

and define the element uy /sy € U (K 5)s as the image of 1 under this isomorphism. Then uy/
is an element satisfying the condition for assumption Note that for any A € A’ n (A%,)*,
the element Auys also satisfies the condition for assumption [3.2.1

The annihilator of uy, in A’ is trivial. Indeed, if a € A’ annihilates wuys, then it annihilates
uy /sy €U'(Keo,p)s and hence also 1 =1/1 € Ay, which means that a/1 =0 in A, which implies
that a = 0 since S’ does not contain any zero-divisors, see ([CEFK*05], Theorem 2.4).

5.2.2 Global Case

In the global setting we considered compatible systems of elliptic units e(a) € gnn O, for an
integral ideal a of K prime to 6pf, see definition (we used two variables there to distinguish
between 7- and 7-power torsion points, which is not necessary for our purposes in this chapter).
We write u(a) for the image of e(a) in . ¢ Us. For the commutative main theorem
we then restricted to a prime ideal q of K that, in addition to being prime to 6pf has norm
Ng congruent to 1 modulo (p). Let us assume that £ /Coo is S*-torsion, which implies that
HL/A(G)u(q) is S*-torsion, see remark

We know from proposition that A is a non-zero divisor in A(G,Zg\’“). Since neither
xq=N(q) - 04 nor 12 € Z; are zero divisors, it follows that 1224\ = L(u(q)) is not a zero divisor
in A(G,Zg\’”). In particular, anny gyu(q) = 0. We conclude that u(q) (or, strictly speaking, e(q))
satisfies the above global assumption under the assumption that £ /Coo is S*-torsion.
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5.3 Definition

Using corollary |A.3.10[ we extract from the Poitou-Tate sequence (4.3.1) an exact sequence

1 loc

0 T(-1) ®z, Hy, —> Indd (T/T°(-1) ®7, Hi,) - Sel(K o, T*(1))", (5.3.1)
where T = T, E and T° = T,E n V,,(E). As before, we write
ScS*cAG), Sc8 cA(G) and S cS*cA.

for the canonical Ore sets in A(G), A(G) and A’ = A(G") = A(G"), respectively, as in (A.8.1)
and 1' Let u ¢ linn Ok, and v’ € U'(Ks ) be any global and local units satisfying

assumptions [2.3.1] (for G) and [3.2.1] respectively. We also write v and v’ for the images in HL
ptions [2.3.1] p y g 5

and Hllo ., respectively.

5.3.1 Global contribution

Since S* contains no non-trivial zero divisors by ([CFK*05], Theorem 2.4) we have ann gyu = 0.
Hence, we get an exact sequence

0 > A(G) =% ResHY, — H/A(G)u — 0,

where we write Resgﬂ-ﬂlE for Hi, to emphasize that the A(G) action on Hi is the restriction of a
A(G)-action. We twist this sequence with T7(-1) = Tz (E)(-1) and get

0 Tx(-1) ®z, A(G) - Tx(-1) ®7, ResgHy, » Tx(-1) ®z, (HE/A(G)u) - 0, (5.3.2)

where each modules is equipped with the A(G)-action induced by the diagonal G-action. We
now fix a basis ¢tz of T 2 Z, and, as before, a basis € of Zy,(1), which determines a basis of
Zp(-1). Together, tz and e determine a basis t = tz ¢ of Tz(-1), which, in turn, determines an
isomorphism

bt = ¢1z . Tr(-1) ®z, A(G) = A(G)
of left A(G)-modules as in lemma Using this isomorphism and applying Indg to (5.3.2)

we get an exact sequence

0> A(G) 25 Ty (-1) @7, HY - Ind§ (75 (-1) ®z, (HL/A(G)u)) -0, (5.3.3)

where we used the isomorphism Indg(TT—r(—l) ®z, Rengé) = T,(-1) ®z, Hi,.

Remark 5.3.1. We note that for a finitely generated A(G)-module M we canonically have
IndgM = A(G) ®x(q) M, compare corollary A.8.9l
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Since Hy/A(G)u is S*-torsion, lemma shows that Tx(-1) ®z, (H$/A(G)u) is S*-torsion.
Tz(-1) ®z, (H/A(G)u) is also finitely generated over A(G), which follows from lemma m
Therefore, we may apply corollary |A.8.16| stating that Indg(Tﬁ(—l) ®z, (H%/A(G)u)) is then
S*-torsion.
We conclude that the image of 1 under the map ¢;, from , which is given by
dru(l) =t®u,

generates (Tp(—l)@)Zp]HIlE)S* as a A(G)s+-module. It also follows from li that in Ko (M (G))

we have

[(Tp(-1) ®2, HE) [A(G)b1.u(1)] = [ndG (Tx(-1) ©z, (HE/A(G)u))). (5.3.4)

5.3.2 Local contribution

In the local situation we proceed similarly and note that while G’ is, in general, not a normal
subgroup of G, it still holds that for a finitely generated A’-module M we canonically have
Indg’M = A(G) ®r M, compare corollary

Since S™ contains no non-trivial zero divisors ann/(u’) = 0, see ([CEK*05], Theorem 2.4),
and we get an exact sequence

0-A 25 HY . - Hi /AW - 0.

Recall the definition of T° from section and let us write T for T, E considered as a G'-module.
We twist the above exact sequence with 7" = (T/T")(-1), which is free as a Z,-module of rank
1 (it always embedds into TpE , which is free of rank one by our ordinary reduction assumption)
and get

0T ®z, A - T &z, Hi, ~T @z, (Hy./Au') 0. (5.3.5)

Fixing a basis ty of T/T° and a basis € of Z,(1) as above (the one induced by the global choice
and the fixed embedding Q c Q,) we get a basis ' = ;. of T". This choice determines an
isomorphism

b T' @z, A2 A’

of left A’-modules as in lemma Using this isomorphism and applying Indg’ to 1' we
get an exact sequence

¢ 7! i /
0 A(G) % Wd] (T @3, HY,.) ~ mdf (T’ &z, (Hi,./A'w')) 0. (5.3.6)
As in the global case, using (J[CFK*05], Proposition 2.3), lemma and corollary [A.8.16] one
can show that Indg’(T’ ®z, (H}OC/A’U’)) is S*-torsion.

We conclude that the image of 1 under the map ¢y, from (5.3.6)), which is given by

prw(l)=10t 0u € AG)en (T ®z, Hy,),
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generates (Indg/(T' ®z, Hlloc)) g+ asa A(G)s+-module. Moreover, it follows from 1) that in
Ky(M3,(G)) we have the equality

[(dd (1" @2, H,.)) /A(G)bvw (1)] = [ (T" 3, (H],o/A"W))] (5.3.7)
From now on we assume the following fundamental conjecture.

Conjecture 5.3.2 (Torsion Conjecture). The dual Sel(Fu,T*(1))" of the Selmer group is
S*-torsion.

This assumption implies that the first two terms of (5.3.1) become isomorphic after extending
scalars to A(G)s+. In particular, we now have two generators

¢ (1) and  loc(eru(1))
of (Indg’(T/To(—l) ®z, Hj} ))S* as a A(G)s+-module.

loc

Definition 5.3.3 (of Q, 4../). We define the element €y, ., ¢+ € A(G)s+ by the equation

Qp,u,t,u’,t’ : th’,u’(l) = loc(gbt,u(l))

and note that Q. ¢ actually belongs to A(G)S. since ¢y (1) and loc(¢yu(1)) are both
generators of (Indg’(T/TO(—l) ®z, HL.)) 5+- We will show next that a choice of t determines t'
canonically and that €, 1. is then independent of t and t'.

Remark 5.3.4 (Independence of t,t'). In the local setting we fixed a generator tg of T,E /TpE
and in the global setting we fixed a generator tz of Tz E. It follows from (A.6.14]) and proposition
that we have a canonical isomorphism

T:E = T,E|T,E = T,E, (5.3.8)

which means that a global choice, i.e., a generator of Tz F, canonically determines a local choice,
and vice versa.

Let us choose a generator tz of Tz E and write ¢y for the image of ¢z under T E = T, F /TpE .
Moreover, for a fixed generator € of Liﬂln Hpr (Q) let us also write € for the generator of lu_nn Hpn (Qp)

induced by Q c Q,. With these choices we have
T=E(-1) 2 (T,E/T,E)(-1), t—t.
Any other choice of generator of Tz E(~1) is of the form at for a € Z; and at determines at’ via

t. Since garr (1) = 1@ at’ ® u' and ¢atu(1) = at ® u for any a € Z,, we have

loc(par (1)) = a-loc(pr (1)) and ady (1) = Garr (1)
and therefore
Qp,u,t,u’,t’ = Qp,u@t,u’,at’
for any a € Z;. We conclude that €2, ;, ¢ . ¢ is independent of ¢ and t" as long as we let ¢ determine
t' canonically via ¢. We shall henceforth let ¢ determine ¢ and simply write €y, for Qp, ¢ 0 4.
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5.4 Relations in Ky(9My(G))
Next we derive the relation for which we introduced the element €2, ,, .. Let us write

AQ
sq
T = ¢t’7u’(1)

y =loc(du(1))

M =ndg ((T,E/T°)(-1) ©z, HL,,)
A=A(G).

= Qp7u7u,

By definition and since §* does not contain any non-trivial zero divisors, we have
Ao T =580y
in A. We get the two exact sequences
0> Az/A(Aq-z) > M/A(N\q-x) > M/Ax -0

and

0 Ay/A(sq-y) > M[A(sq-y) > M /Ay — 0.

Since x and y are generators of Mg+ ¥ Ag+ and since S* does not contain any non-trivial zero
divisors we have annp (z) = 0 = annp (y). It follows that

Azx[A(Aq-z) 2 AJANqg and Ay/A(sq-y) = A/Asq.

In Ko(M3(G)) we get

[M/Az] = [M/A(Aq-2)] - [Az/A(Aq - )]

[
[M/A(sq-y)] - [A/ANa]
[
[

M[Ay]+[Ay/A(sq-y)] - [A/AXr]
M[Ay]+[AJAsq] - [A/AXa]

Rewriting this reads

[A/ANo] - [A/Asq] + [Indg ((T,E/T°)(-1) ®z, Hiy) /Ay (1)]
= [Ind§ ((T,E/T°)(-1) ®z, Hiy.)/Aloc(dru(1))] (5.4.1)
and we note that 0([Qpuw]) = [A/AXq] — [A/Asq] where ¢ : K1(A(G)s+) = Ko(My(G))

is the connecting homomorphism from K-theory and [, /] denotes the image of €, in

K1(A(9)s+)-



Chapter 6

Twist conjecture for Elliptic Curves
E/Q with CM

In this chapter, we study the third and last of Kato’s conjectures which were mentioned in the
introduction of this thesis. This last conjecture, in some sense, is the culmination of the work
we have done so far. While the study of Ly, ,, € K1(Zy[[G]]s+) and & € Ky (Zg?‘[[g’]]g,*) from
the previous chapters is certainly interesting in its own right, it is strongly motivated by the
following question: Is it possible to express p-adic L-functions of motives M (satisfying, at the
minimum, conditions (C1) and (C2) from [FKO06]), up to elements of the form €, ,, ./, as twists of
universal elements such as L, and &, by p-adic representations associated to M? Moreover,
is such an element a characteristic element of the Pontryagin dual of the Selmer group (or Selmer
complex as in loc. cit.)?

Since (in his talk in Cambridge) Kato did not give a precise interpolation formula for the
element starring in his third conjecture, we do not aim to state the conjecture in the greatest
generality and simply restrict to the setting in which we can prove it. Therefore, let us consider
an elliptic curve E defined over Q with complex mutliplication by Ok, the conductor of which
is a prime power (in K). In this setting we will define an element £, ./ £ € Kl(Z;r[[g]]g*) in
terms of twists of the elements L, and &, studied in chapters [2| and [3| respectively, and in
terms of €2, ., .+ defined in section We will then prove that £, ./ g (up to an Euler factor)
is a characteristic element of the dual Selmer group, see theorem Moreover, we show in
corollary hat Ly uw g coincides with 7,-1(\), the twist of de Shalit’s element A (from
definition [2.4.24)) by the inverse ¢! of the GroBencharacter 9 attached to F/K which gives the
action of G = G(K([p*])/K) on TxE. For 7,-1()\) an interpolation property is immediately
derived from ([dS87], Theorem 4.14, p. 80) and ([BV10], Lemma 2.10, p. 394).

119
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6.1 Setting

Let E/Q be one of the elliptic curves listed in Appendix A, §3 of Silverman’s book [Sil99] with
complex multiplication by Op, which are representatives of their Q-isomorphism classes with
minimal discriminant. Such a curve has bad reduction at precisely one prime number [ = (i in Z,
which coincides with the unique prime dividing the discriminant of K as we explain in subsection

[A.6.3

Remark 6.1.1. Instead of restricting to one of the above curves, we could take any elliptic curve
E/Q with complex multiplication by O that has bad reduction at precisely one prime [ of Z
such that [ is the only prime of Z that ramifies in K. The conductor over K of such a curve is
then a non-trivial prime power by the fact that E cannot have good reduction everywhere over
K, which was proven by Stroeker ([Str83], (1.7) Main Theorem).

We fix a prime number p € Z, p > 5, at which F has good reduction and which splits in K.
Recall from proposition [A.6.2] that E has then good ordinary reduction at the primes p and p
of K above p. We fix an embedding Q c Qp and assume that restricted to K this embedding
determines the valuation corresponding to p. We assume that the torsion conjecture [5.3.2 holds,
i.e., that Sel(Feo, TpE*(1))" is S*-torsion.

Remark 6.1.2. Assuming that Sel(F.,,T,E*(1))" is S*-torsion implies, by the Poitou-Tate
sequence from , and corollary that H?(Gx(Q),A(G)* ® T,FE) =2 T,E(-1) ® H is
S*-torsion. Since G is of finite index in G it follows that T,E(-1) ® HZ is S*-torsion. But as G-
modules we have an injection T, E(-1) ® HZ < T,E(-1) ® HZ, which shows that T, F(-1) ® HZ
is S*-torsion. Since T;E(-1) is of Z,-rank 1 we can twist this module by the inverse of the
character giving the action of G on T F(-1) and, hence, conclude that HZ must be S*-torsion.
It follows now from remark that Ao, = Llnkn(Cl(Kkn){p}) is S*-torsion. Hence, the

Sel(Foo, T, E*(1))"-torsion assumption implies the torsion assumption from the commutative
main theorem [2.4.41]

Let us fix a complex period 2 such that for the period lattice L of E we have L = O ). We also
fix a generator € of Z,(1) as in [dS87] and let these choices determine the period €2, as in (loc.
cit., p. 67f), which determines an isomorphism 6 = 0, : G, = E of formal groups.

__As before we write ¢ for the GroBencharacter attached to E/K and set 7 = v(p) and 7 =
P(p) =Y(p) (where the last equation holds by ([Kat76], p. 559)) for the generators of p and p,
respectively. Recall that we write

ScS*cA(G), ScS8* cA(G) and S cS"cA(G).

for the canonical Ore sets in A(G), A(G) and A(G'), respectively, as in [CEK"05]. For the Ore
sets in the Iwasawa algebras with Zu’”—coefﬁ(nents Zur[[G]] Zur[[g]] and Zur[[g 1] we will write

S*cZy[[G]). S*cZy[[G]] and S™cZy[G]].
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Let us make a remark linking the setting considered in this chapter to some of the previous
chapters. We write K,, = K(E[p"]), n>1, and A’ = A(G') = A(G").

Remark 6.1.3. (i) If we consider the curve E/Q as a curve over K all the assumptions from

(iii)

the setting of subsection [2.4.6] are satisfied, including assumption [2.4.29] that

where f denotes the conductor of the GroBlencharacter ¢ attached to E/K and [ is a prime
ideal of Ok, compare remark Hence, up to the assumption that l(inn(Cl(Kn){p})
is S*-torsion, the commutative main theorem holds. Moreover, when we consider
the decomposition group G’ = G(K« »/Qp) of a fixed prime v of Ko, = K(E[p™]) above p,
then we are in the setting of section In particular, the local main conjecture holds in
this case. Furthermore, since we assume that the torsion conjecture holds (which was
used to define €, ,, ,/), our present setting satisfies all conditions of the setting considered
in section where we studied €, ./, including the assumption from , compare
also remark 5.1.91

We note that the compact p-adic Lie group G’ and its closed normal subgroup H' =
Gal(Ks 5/Q,/¢) satisfy the conditions (i), (ii) and (iii) from subsection for which
we recall the decomposition from , that G’ embedds into G, which has no elements
of order p, and the fact that K, 5 contains an unramified Z,-extension of K, = QQ, gener-
ated by the coordinates of points in E[7*°], where 7 denotes a fixed generator of p implying
that the abelian group H’ also has dimension 1 as a p-adic Lie group. Therefore, the classes
of modules that are finitely generated over Z, vanish in Ko(9y(G")) by corollary
Recall from remark [2.4.36] that a similar statement holds for G and H. Moreover, corollary
applies to Gc G and H=Gn®H and to G’ ¢ G and H' = G' nH, respectively (here we
identify G and H’ with their images in G, compare example in the appendix).

Recall from that in order to define the twist operators on Ki-groups, we fixed a Z,-
basis of the representation space. Throughout this chapter we fix the same basis tz of Tz E
asin sectionwhere we defined Q,, ,, .. We also identify T3 E with T% ., E (the 7-adic Tate
module with transition maps given by multiplication with p) as in remark and recall
from the same remark that T ., E naturally embedds into T, E. Let us write [-]: T,F —
Yy /TpE’ for the canonical projection and recall from remark that it restricts to an
isomorphism [~] : Ty E — T,E/T,E. Hence, t; canonically determines a basis to = [tz]
of T,,E/T,E. Together with our fixed generator ¢ of Z,(1) which determines a basis ¢y of
Zp(-1), these determine bases t = tz ® ¢g and t' = [tz | ®¢€g of TR E(-1) and (TpE/TpE)(—l),
respectively, such that under the natural map ¢; : T, E(-1) — (T, E/T,E)(~1) induced by
[-] we have t — t'. We also write ¢; for the restriction of ¢1 to TzFE(-1).
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6.2 Main theorems

Our first task is to define the element £, ,, ./ g € K 1(2;,“[[9’ 11g+) in terms of twists of the elements
Ly, and &, and in terms of Q, ,, .. The element &, from the local main conjecture (which is a
theorem in the setting considered in the present chapter) will be twisted by the G’-representation
(T,E[T,E)(-1), which is of Z,-rank 1. We will write Tpyi(-1) for the twist operator from
corollary [1.1.10| on Kl(Z;r[[g’]]g,*) induced by (T,E/T,E)(~1). The element L, = ﬁ from
the commutative global theorem will be twisted by the G-representation Tz E(—-1), which
is also of Zj-rank 1. We will write 7p_(_1) for the twist operator from corollary @ on
K1(A(G)g+) induced by T=E(-1). We want to consider the elements

o (-1) (Lpw) € Ki(MG)s+), 701y (Epar) € K1(Z 1G5 )s Qs € Ki(A(G)s)
(6.2.1)

in one common Ki-group. By corollary and remark we have inclusions
§*cS8*cS* and S§*cS*

and therefore we have natural inclusions of rings (via which we consider all of the following rings
as subrings of Z"[[G]]s.)

AG)ge —— N(G)s —— L[[G

i

15
Mg

er[[ (6.2.2)
which induce maps
Ki(MG)s) —— Ki(M(9)s+) —— K1(Z)[[G]]5.)
K1(er[[g']]g,*). (6.2.3)

It is through these maps that we consider the images of the elements from (6.2.1)) in the group
K1(Z,'[[G]]s.)- We are now in a position to make the following

A~

Definition 6.2.1 (of £y, ., E). We define an element L, , g in K1(Z,'[[G]]g.) by

75 (-1)(Lp.u) 1

Ly = Qpuu Iz’

TE/E(—l)(g )

which is independent of u’' as we show in theorem and note that 12 € Z; since p > 5 by
assumption.
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Remark 6.2.2. We could have also defined £, , g as an element in the intersection of Iwasawa
algebras

(21190 s) N2y 19 ))s-

since the representations by which we twist have Zy-rank 1. In fact, 75_(_1)(Lpu) comes from
Ta. (-1)(1/7q) € A(G)§ with 24 = Ng - Frobg € A(G)j5, where we also write 7p_(_1 for the ring
homomorphism A(G)g+ > A(G)s+ from proposition corresponding to TzF(-1). Likewise,
recall from (3.3.12) that &, , was originally defined as an element in (er[[g’ 1] 5,*)X and &, 1 e

Z;;r[[g’]], so that we can interpret TE/E(_l)(é’p’u,) as an element of (Zgr[[g’]]g,*)x, where, as
above, we consider 75 5y also as the ring homomorphism 219 g — 2y [[G']] g from

proposition induced by (TpE/TpE)(—l). Lastly, €., is, by definition an element
in A(G)%S-

Before stating our first theorem let us recall some more facts from K-theory. First, recall the
definition of the torsion categories My (G), My (G), sz;w(g ) and ingw,(g’ ) from definiton
Moreover, recall from lemma that A(G) is free of rank [G : G] over A(G) (in
particular flat over A(G)) and Z'[[G]] is free over Zy"[[G']] of rank [G : G']. Moreover, for
a finitely generated A(G)-module M we have er[[g]] ®rg) M = Zgré)ZpM, see remark
and er@)zp— is exact on pseudo-compact Z,-modules, see proposition |A.8.17| (finitely generated
A(G)-modules are pseodo-compact as Z,-modules). Corollary[A.8.16/and lemma|A.8.20 therefore

imply that we have maps

Ko(M(G)) — Ko(M(9)). [M]— [A(G) @iy M] = [Ind§ M]
Fo(D(G)) — KoMy, 1(9)). [M] > (2782, M] = [Z7[G]] @A(6) M]
Ko(Mye 10(G)) — KoMz (), [M]— [Z5((6)] @311y M] = [Indd M),

see also corollary Lastly, let us recall the following exact sequence from K-theory

KA(Z3[6) — Ki(Z(6])s) > Ko(My 3,(9) — Ko(Z'[[G1]) > Ko(Zy'[[G]]s)-
We now prove one of the main theorems of this thesis.

Theorem 6.2.3. Let the setting be as above. Assume that Sel(Keo,T™(1))" is S*-torsion.
Then, up to a twisted Euler factor, Ly, p is a characteristic element of 7y &z, Sel(Keo, Tp E* (1)),
i.e., we have

(Lpu) = [Sel(Koo, T,E*(1))"]; + [Ind " T, E(-1)];,

where [ is the unique prime at which E/Q has bad reduction, G,, is the decomposition group of
some place of K, above | and the notation [~]3 is defined in .
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Proof. Let us write A = Z;r[[g]] For any finitely generated A(G)-module M that is S*-torsion
let us write

[M]; = [Zy[[G]] @acg) M] = [2} &2, M] (6.2.4)

for its class in Ko(9 (G)). We will adopt a similar notation

Zur H
[M]5 = (2, [[9]] @y M]

for a ﬁnitely generated Zur[[g "1]-module M that is S"*-torsion. We will use repeatedly the
diagram (|1.1.9)) which states that twisting on Ki-groups corresponds to taking the tensor product
with the representatlon on Ko-groups. The contribution of 75_(_1)(Lyp,.), by the defining property

of Ly = %, is given by
(75, (-1)(Lpw)) = [Ind§ (Tz E(-1) ®z, ResgH3,) |5 - [Ind§ (TE(-1) ®z, Hy/A(G)u)];
[T,E(-1) @z, ) ]; - [(THE(-1) ®2, Hg ) [A(G) 10 (1) |5 (6.2.5)

where the second equality follows from (5.3.4)).
We write A" = Z*[[G']] and T" = (TpE/TpE)( 1) as before. The element &, ./ from the local
main theorem, by the defining property (3.2.2)) of £, ./, maps to

'@z, (A ©x Hie) |5 = [T" @z, (A" @ (Hioo/Av')) 5
= [N ey (T" oz, Hi ) |5 - [N ®n (17 €z, (Hioo/A'w)) ]
O (1" ®z, Hig)]| - [A & (T @2, (Hio/A'v'))]
Indg( ®z, Hipo) |5 - [Indg (1" &z, (Hi./A'W))];
= [mdf (1" 2, Hi,e) 5 - [ (1] (1 @z, H,o)) [AG)dra (D] (6:2:6)

a(TE/E( 1) (gp u! ))

where the second equality follows from corollary (twisting commutes with extension of
scalars to Z"), the last equality from 1) and in the third and fourth equation we use the
isomorphisms

Aoy, Ney MzAey M=Aeyg) AG) @y M
for a finitely generate A’-module M.
Let us write A = A(G). The element €, ,, ,/, by , maps to
O(Qpuw) = [AAXa]; - [A/Asa];
= [md§ (7" @z, Hi.)/Aloc(eru(1))];
~ [mag (1" ®z, Hiye)/Adr . (1)];- (6.2.7)
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We conclude from (6.2.5)), (6.2.6) and (6.2.7)) that the element £, g (the term 1/12 € Z; does
not alter the image) maps to

a(ﬁp,u,E) = a(TEir(—l) (Lp7u)) - a(7—5/‘/]_@(_1)(5 7u’)) + a(Q;D,u,u’)
- (BB o2, B, - [(TE(-1) 02, HY)/A@é (D]

~ [mag (1" &z, Hy)]; + [Ind§ (7" ®z, Hi,.)/Aloc(ru(1))];- (6.2.8)
Using corollary |[A.3.10[ we can write the Poitou-Tate sequence from (4.3.1)) as
0 T,E(-1) @z, Hy —=— IndJ (1" ez, ]}b
Sel(Koo, T,E*(1))" T,E(-1) ®%
Gy,
Byes;, Ind " T, E(-1) T,E(-1) 0.
(6.2.9)

where we recall ¥ = {p,1} where [ is the unique prime at which £/Q has bad reduction. In the
above sequence we may pass to the quotients (7,E(-1) ®z, H%)/A(G) (1) and Indg,(T’ ®z,
Hlloc) /Aloc(¢¢.,(1)) and still get an exact sequence as Aloc(¢y,,(1)) lies in the kernel of the map
to the dual selmer group. By assumption Sel(F.,T*(1))" is S*-torsion. Moreover, corollary

2.4.34] implies that
nd" T, E(-1) 2 (Indg" Z,)) ®z, T,E(-1)

is S*-torsion. It follows from corollary which we may use by remark (ii), that
[Ind T,E(-1)]=0, [T,E(-1)]=[Ind§T-E]=0, [Ind§(I"®z, HZ,)]=0

in Ko(My(G)). Hence, their images in Ko(ingrﬂ(g)) vanish. It follows from 1} and the
above Poitou-Tate sequence that

(L) = [Sel (Koo, T,E* (1)) + [Indg " T, E(-1)]5.
which concludes the proof. o

Next, we want to study the interpolation property of £, r and make a preparatory

Remark 6.2.4. (i) It is well-known that the Weil pairing (compare subsection [A.2.1)) induces
an isomorphism A?(T,E) = Z,(1). Hence, the determinant of pg : G — Autz, (T,E) is
given by the cyclotomic character , i.e., we have

¢ 1/_} = det(pE) =Ry
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where 1) is the GroBencharacter of infinity type (0,1) attached to E. Since the action of
G on T:E is given by 1) we see that Tz F(-1) corresponds to 9 - s 1 = 1p~1. In particular,
under the ring homomorphism 75_(_1y : A(G) - A(G) we have for any g € G

def -1, -

T (-1)(9) T ¥ (g g = v(9)g.
(ii) Recall from proposition that the twist operators 7, 5 ) and 7g,_(_1) are induced by
ring homomorphisms between the respective localized Iwasawa algebras and note by the

isomorphism from (5.3.8)) that these fit into a commutative diagram

. TEIE(-1) .

Z¥((G Mg ————— Z¥([[¢' N5 — Z¥([[G]]5-
BTG5, — 2 BTG

(6.2.10)

where the vertical injections and the maps on the right are induced by the natural embed-
dings G’ ¢ G c G and the inclusions 8" ¢ S* ¢ §* which hold by corollary |A.8.15

The second main theorem of this chapter, which we prove next, will enable us to derive as a
corollary an expression of £, ,,  for which an interpolation property has been established. Let us
first recall that in theorem we explained de Shalit’s construction of the semi-local version
L: Uooézngr — Z;T[[G]] of the Coleman map associated to E, where Us, = lim Tl O}(n,w
denote that semi-local principal units for the tower K,, = K(E[p"]), n > 1 (earlier we considered
the fields Ky, = K(E[7*7"]) in order to distinguish between the 7- and the m-variable, so that
with this notation K, = K, ,,). One can proceed in an entirely similar fashion for the formal group
G- In fact, as we explain in the proof of theorem|[6.2.5| below, the (local) Coleman map —£ -1 for
Gy, from may be viewed as amap L1 : U (Koo,5) — ZI[[G']] of A(G')-modules, where
U (Kwp) = lim | O%(n’g are the local principal units for the extension Ko ,/Q),. Considering the

induced map of G-modules and using the natural isomorphism Uy, = Indglu' (Ko,p) wWe obtain
the map

ndd (L)

Lsemi-toc : Uso = Indgul(Kw,D) Indgzgr[[gl]] = Z,'[[G]],

P (6.2.11)

which is the semi-local version of the Coleman map for G,,. Note that via the natural (diagonal)
map Eo = l(gln((”);(n ®z Zp) = Us, which is an embedding by 1) we can also evaluate
Lgemi-loc at global units. We also consider the natural map

locy : Eo — U (Koo )
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from global to local principal units, which we also interpret as a map locy : le - Hlloc as we

explain after (4.3.12) via the isomorphisms s 2 HIE and U' (Koo p) 2 H! from Kummer theory.

loc
We will intepret the elements €, .+ and TE/E(J)(‘C/’ID,U’)_l =Tg E(,l)(g_l ) as elements in

pyu’
(Z;r[[g]]) s+ Which is possible as we have explained in remark (6.2.2, Here and in the following
proof, when we localize with respect to $* we always consider the modules in question as A(G)-
modules.

Q ’ . . .
Theorem 6.2.5. The element ——"*—— is equal to the Tp_(_1)-twist of the image of u under
TE/E(—l)( pou’) T

the semi-local version Lgemi_ioc of the Coleman map for G,,, i.e.,

Qp -1
— " = TE=(-1 (»Csemi—loc(u)) = TEz(-1 § : -\~ ‘Ce’l (lOCp(O’ 'LL))
Tr/6(-1) (Epar) oy ( )(oeG/g' ( ))

in (Z;r[[g]])s*, which shows that the element on the left side does not depend on u'. In
particular, L, ,, g is independent of u'.

Proof. Let us write A’ = Zgr[[g’]] and recall that U'(Kw ) 2 Hi .. By abuse of notation let

us also write —L.1 for the composition of the map —£.1 from (5.2.1) with the isomorphism
Tun(Ko,5) ®ar Al = Al, and the natural embedding A}, c A, i.e., for the map

Lo U (Koo ) — N (6.2.12)

of A’-modules. By definition of &,,s from (3.3.12) we have —L1(u") = SZ;L,. Let us write
T = (TpE/TpE)(—l),/ which is free of Z,-rank 1. Tensoring (6.2.12) with 7" ®z, -, using lemma
applying Indg and applying (-)s+ (viewing all modules as A(G)-modules) yields the
composite map

’ 1 l ~ (1) ’~ (IIT) & ur
(Indg (T &z, Hi,.)) 5. A (Indg (T’ &z, N)) . ~— (Indg A') . — (Zp'[[G]])s.. (6.2.13)

We note that our fixed basis ¢’ of 7" (compare remark (iii)) determines the isomorphism
T'®z, A" = A" from lemma and under this isomorphism we have

' @X— Ty (A, Aed, (6.2.14)

which follows from lemma [1.1.11} By the defining property of €, , . = 2‘—3 € A(G)s+ we have an
equality
Ao d)t’,u’(l) =sq- loc(d)t,u(l))

in (Ind¥ (T’ ®; ML .- Recall that ¢y v(1)=1®t ® u’' and
g P S )

loc

loc(pru(1)) =loc(t®u)= Y. o®u(c't)®locs (o u),
oeG|G’
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where ¢, is the natural projection T, E(~1) — (T,E/T,E)(~1) mentioned in remark (iii).
Now, we make the important observation that for g € G\G, i.e., for an element that can be written
as g = goc where c is complex conjugation and gg belongs to G, the element g.tz belongs to T ., E

(see remark [A.6.12| for the definition of Ty ., E and Tx.,E and remark for our convention
that we identify T7E with T% ,E). This is true since by definition ¢tz € T%.,E and the action

of complex conjugation turns 7-power divisions into m-power division points, compare (A.6.17)).
It follows from proposition |A.6.13| that T,E/T,E = T,E/T, ,E and hence that [g7'.tz] = 0 in
T,E|T,E and 11(g~'t) =0 in T" for all g € G ~ G. We conclude that

Y o® 1(o™) ®locy(o7 ) = Y o® 1 (o 't) ®@locy (o ),
oeG/G! oeG/G’

where on the right we sum only over representatives of G/G’. We have noted in remark (1)
that G acts on t € Tz(~1) through ¢ - k! and hence we can rewrite the last sum as

Y o® n(o ') ®@locy (o u) = > ((1; K (e ™) 'a) ® 11(t) ® locy (0 u)

oeG /G’ oeG (G’

= Z TEﬁ(_l)(a)®t'®loc,;(a_1u), (6.2.15)
oeG/G’

where the last equation holds by definition of 7_(_;) and t'.
Now, we compare the images of A\q - ¢y /(1) and sq -loc(¢y (1)) under the composite map

from (|6.2.13)) using (6.2.14)). On the one hand we have

Ao orw(1) g (181 ® L, (u')) in (Indg (7" ©z, 1)) .
(I1) _ . /o~
— A\ - (1 ® TE/E(fl)(gpﬂlA’)) in (Indg A,)S*
(II1) AQ i A
— in (Z2[[G]]) .- (6.2.16)
TE/E(—l)(gp,u’) P s
On the other hand we have
) _
sa-loc(gru(1)) r=sa-( Y To.(1y(0) 8 ® L (locs(ow)))
oeG/G!
(1) _
— 5Q - ( Y TE.-n(o)® TE/E(_l)( = L1(locg(o 1u))))
oeG/G!
(I11) _
—> SO ( g}g, TE?r(—l)(O-) . TE’/E(—I)( - Ee—l (lOC,j(O' 1U))))
= so-mpn( X 0 (- Ler(locy(o7Mn)))), (6.2.17)

oeG/G’
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where the last equality follows from the commutativity of (6.2.10). We conclude so far that

Q / A
Torpn (@) 7 (= Ler(locs(o™u in (Zy([9])g., (6218
gy = ol B o (- Lo lloen(o™) (76T, (6:218)

which shows, in particular, that the left side does not depend on u’. Next, let us consider the
composite map

_ Coind¥, (locy) , , Ind? (~L£,-1)
Eno G Coind% U (Ko p) 2 S U (Koo ) —

mdd A’ = Z¥[[G]]

(6.2.19)
under which u maps to ¥,cq/g/ 0 - (- Le1(locs (07 u))), the argument of TE.(-1) On the right

side of (6.2.18)).

Now, in order to conclude the proof, we only have to note that the composite map from
(6.2.19) coincides with the composite of the embedding . = Uso With Lgemi_ioe- o

As above, compare remark we consider €, ., TE/E(—1)(‘SP,"’)_1 and 7g, (—1)(Lpu) (and,
hence, also £, r) as elements in Z;f[[g]] s+ and get the following

Corollary 6.2.6. We have an equality of elements in Z;r[[g]]g*
Ep,u,E = de—l ()\),

where 7,-1(\) denotes the twist of de Shalit’s element \ € A(G) (from definition by the
G-module (T E)*. The action of G on (TE)* is given by 1)~'. For an Artin character x of G
we have

1

1 R
Q_p.]GReS%X dlpur = ﬁ.G(w.ReSX).(l_w

P ) Lip((4- Resx) ™', 0), (6.2.20)

where we refer to (JdS87], p. 80) for the definition of G(1 - Resy) which is related to a local
constant and in the expression (¢ -Resx)(p) we consider ¢ - Resx as a map on ideals of K prime
to f. The periods ) and (2, are defined at the beginning of this chapter.

Proof. By the previous theorem [6.2.5] we know that

Qp
P = T (1) (Laemictoc(1)).
Te1B(-1) (Epar)

But for large enough (unramified) abelian extensions the Coleman maps (composed with an
integral logarithm and an isomorphism to G,, and then extended to measures) induced by two
formal groups (in our case E and G,,) coincide, which is proven in ([dS87], Proposition 3.9, p.
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23) for the maximal abelian extension. The arguments in loc. cit. also work in our case using
the fact that for any n > 1 we have

Ky(E[7"], E[x"]) = K(E[7"], ppn ),

i.e., adjoining to the local field K,(E[7"]) the p" division points of E or G,, yields the same
extension, which follows from the Weil pairing. Hence, we have an equality

Esemi—loc(u) = ]L(u), (6221)

where Lgomi-ioc 18 the semi-local Coleman map for G, and L is the one for E. By definition 2 4.24
u =u(q) is the the compatible system of elliptic units attached to q c Ok and L, = m

By definition of A and since 75_(_1)(12) = 12 we get

hm [6.2.7] 1
Ep,u,E ! = TEﬁ(—l)(Lp,u) 'TEﬁ(—l)(ﬁsemz loc(u)) E
EZZ) ( L(u(q)) )
E=(-D\12. (Ng-Frobg)
def .\
=" 71g 1) (V).

Now, we only have to note that 1)™! =¢-x~! as was explained in remark (i) and that - s
gives the action on Tz E(-1), i.e., Tp_(_1) = Ty

Now we note that for an element g € G, by definition of the twist operator, we have 7,,-1(g) =
Y (g7 1)g = ¢¥(g)g, which shows that for an Artin character § of G and any measure ;. we have

fG 5 d(ry1 (i) = fG 54 dp. (6.2.22)

But § - is a GroBencharacter of type (1,0) and for such GroBencharacters de Shalit ([dS87],
Theorem 4.14, p. 80) determines the interpolation property for A. The interpolation property
for 7,-1(X) is now derived from ([BV10], Lemma 2.10, p. 394) and ((6.2.22). a
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Appendix

A.1 Some Galois Isomorphisms

Let T be a finitely generated free Z,-module with continuous Z,-linear action of Gp = G(F/F),
where F is a perfect field and F an algebraic closure. We write 7% := Homgz, (T, Zy) for the
Zp-dual representation and TV := Homes(T, Qp/Zy) for the Pontryagin dual, the discrete Z,-
module of continuous homomorphisms of abelian groups where Q,/Z, is equipped with the
discrete topology. By continuity, the maps in T are also Z,-linear. Now, there is a canonical
isomorphism

T*(1) @z, Qp/Z, = T (1), (A.1.1)

which can be seen by applying ()" to both sides. In fact, we have

(T7(1) @z, Qp/Zy)" = Homes(T*(1) ®z, Qp/Zp, Qp/Zp)
= HomZp (T*(l) ®7, Qp/Zpa Qp/zp)
= Homs, (T*(1), (Q/Z,)")
= (I"(1))"
T (-1)

where the second equation holds since T (1) ®z, Q,/Z,, is discrete (and therefore any map from it
is continuous), compare also the following remark. On the other hand, we have (7V(1))" 2 T'(-1),
so there is an isomorphism as in (A.1.1]), indeed.

Remark A.1.1. (i) Every Z-linear map B — A between abelian groups, where B is a Z,-
module that coincides with its p-primary part B = B{p}, and A is an arbitrary Z,-module,
is also Zy-linear. In particular, for any discrete module D such that D = D{p} we have

Homs(D,Qp/Zy,) = Hom(D,Q,/Z,) = HomZp(D, Qp/Zy).

131
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(ii) If T is a finitely generated Zy-module (which we always equip with the p-adic topology),
then it is compact. Hence, any continuous Z-linear map 7' - Q,/Z, factors through a
finite quotient of of the form T'/p"T, n > 1. By (i) we see that T" - T'/p"T — Q,/Z, is
Zp-linear. On the other hand, any Z,-linear map T' - Q,/Z,, factors through T'/p"T for
some n > 1 (simply choose a basis t1,...,t, of T, the image of each t; will be annihilated
by some power of p). Since T'/p"T is equipped with the discrete topology the composite
T - T[p"T - Qp/Z, is then continuous. We have shown that

Homs(T,Qp/Zy) = Homgz, (T,Qp/Zy).

Now, let W be a discrete Z,-module of the form W = (Q,/Z,)", r > 1, with a continuous Z,-linear
action of Gg. Then, we have a Gp-linear isomorphism

Homs(Qp, W) 2 Q, ®7, (@W[pn])a (A.1.2)

of Qp-vector spaces, where lﬂan[p"] denotes the Tate-module of W, W[p™] denotes the p"-
torsion subgroup of W and the transition maps in the limit are multiplication by p. The Q,-vector
space structure for the module on the left is defined by (y.¢)(z) := ¢(yx), ¢ € Homes(Qp, W),

z,y € Qp.
The isomorphism ([A.1.2) is given as follows. Let ¢ # 0 belong to Homs(Qp, W) and let k € Z
be the largest integer such that there exists a unit u € Z; satisfying ©(up®) £ 0. By continuity,

¢ is Zp-linear and, hence, we must have ©(p*) # 0. Now, let us write
o= (") e Wp"]
and define one direction of by
p— " ® (2n)n,

which is easily seen to be Qp-linear. The inverse of (A.1.2]) is defined as follows. A non-trivial
element of the form z ® (y,)n belonging to Q, ®z, (@n W([p™]) can be written as z ® (yn)n =

p' ® (25,)n with t € Z and x1 # 0, since if y1 = -+ =y, = 0 for m > 1, then p™(Ynsm)n = Yn)n-
Note that a continuous linear map v : Q, — W is determined by its values at powers of p. We
define the inverse of (A.1.2)) by mapping p' ® (z,,), to the continuous map induced by

which satisfies pi)(p') = 1 (p'*!) and can therefore be extended to Qp by defining Y(uph) = up(p),
uez;.
P
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A.2 Non-degenerate and perfect Pairings

In this section we recall some isomorphisms induced by non-degenerate pairings that we will
need. Let A, B and C be R-modules. Then, we say that an R-bilinear pairing

AxB—C
is nondegenerate if it induces R-linear injections
A - Hompg(B,C) and B < Hompg(A,C).

It is called perfect if both of these two maps are isomorphisms.

A.2.1 Weil pairing

Let A be an abelian variety defined over a a field F' of characteristic 0 and write A for its dual
abelian variety. We write A[p"] for the p™-torsion points of A(F"). Moreover, we write

en  A[p"] < AY[p"] — ppn

for the Weil pairing e, = epn, see [Lan83|] or ([Mum85], section 20. Riemann forms), compare
also [Mil86a]. This pairing is non-degenerate in both variables, see ([Lan83], VII, §2 Proposition
4 and its proof, p.189f). Moreover, it commutes with the action of Gp.

For a finite abelian group B we write B’ = Hom(B, ) where p = U,, itm, denotes the union
of all roots of unity in F. One has B = (B’)’. Moreover B has the same cardinality as B’ (this
is clear for cyclic groups and then follows for general finite abelian B). By the non-degeneracy,
the maps e,, induce injective maps

Alp"] = A'[p"]"  and  AY[p"] - A[p"], (A.21)

which must already be bijections since all groups have the same cardinality. Alternatively, write
C for the cokernel of A[p"] = AY[p"]’. Dualizing, one gets

0-C" = (A[p"]) - Alp"

and checks immediately that the composite AY[p"] = (AY[p"]")" - A[p"] is the map from
(A.2.1)), which is injective. Hence, C’ = 0 and therefore C' = (C')" = 0. We see that the maps
from (A.2.1)) are bijections. Note that A[p™]" = Hom(A[p"], upn) and that any Z-linear map in
Hom(A[p"], pipn) is automatically Z,-linear. Using the canonical identification T,A/p™ = A[p"]
and noting that any linear map T,A — p,» factors through 7, A/p", the right map from (A.2.1)
induces an isomorphism

AY[p"] - A[p"] = Homgz, (A[p"], ppr) 2 Homg, (TpA, pipn) (A.2.2)
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which maps a € AY[p"] to the map in Homgz, (T, A, jupn) given by t = (t ) — en(tn,a), where
(tk)r € LiﬂlkA[pk]. The maps form a projective system of maps with repect to the natural

maps AY[p"] 3 AV[p"'] and the maps Homg, (T, A, ppn) - Homg (TpA, pim-1) induced by

p
pn (—)> ppn-1, which follows from the fact that the Weil pairing satisfies

en(tm a)p =€n-1 (p “lnyD- a) =€n-1 (tn—lyp ’ a)a (tk)k € lﬂlA[pk], ac Av[pn]~
k
Passing to the limit of the maps from (A.2.2)) we get an isomorphism

T,(A") — lim Homg, (T, A, i) 2 Homg, (T, A, Z,(1)) = (T, A)*(1).

n

Likewise, we get T),(AY)*(1) 2 T,A.

A.2.2 Q,/Z,-valued pairings
Now let A and B be Z,-modules and consider a non-degenerate Z,-bilinear pairing
<=, =>AxB— Qp/Zy.
Let Ay c A and By c B be two Z,-submodules. We define the orthogonal complements
Bi={acAl<a,b>=0V¥beBs} and Aj;={beB|<a,b>=0VYaecAs}.

of By in A and of Ay in B, respectively. The non-degenerate pairing < —, — > induces two more
pairings
Ay x (BJAf) — Qu/Zy and (A/Bj) x By — Qp/Zy, (A.2.3)

which are both non-degenerate. We say that Ay and By are ezact annihilators or orthogonal
complements of each other if

AfZB;E and BfZA#.

From the theory of finite (and equi-) dimensional k-vector spaces V,W and perfect pairings
V x W — k we know that if V; c V is the orthogonal complement of Wy c W, then Wy is also
the orthogonal complement of Vy. We want to show that this also holds in the following setting
using that Q,/Z, is Z,-divisible, hence injective as a Z,-module. Consider the conditions:

(i) One of A, B is finitely generated as a Z,-module and the other is a discrete abelian p-
primary torsion group, i.e., each element is annihilated by some power of p. Compare
remark for the fact that then AY = Homgz, (A, Qp/Z,) and BY = Homgz, (B,Q,/Zy).

(ii) Assume (i) holds. The Zy-linear maps A - Homgz,(B,Q,/Z,) and B - Homgz, (A, Q,/Z,)
induced by < —,— > are continuous, where the Hom-sets are each equipped with the
compact-open topology.
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Proposition A.2.1. Assume that the above (i) and (ii) hold, that < —,— > Ax B — Q,/Z, is
perfect and that Ay = B}. Then, we also have By = AJ%, ie., Ay and By are exact annihilators of
each other. Moreover, the two pairings from (|A.2.3)) are perfect.

Proof. By assumption Ay = B}, so we have a non-degenerate pairing (A/Ay) x By — Q,/Z,,.
Moreover, the image of the map A; — Hom(B,Q,/Z,) is contained in Hom(B/B¢,Qp/Zy) c
Hom(B,Q,/Z,). Now, since Q,/Z, is injective as a Z,-module, see ([Rot09], chapter 3, Corollary
3.35), we get a commutative diagram

0 Aj A AJA; 0

21

112

L2

0 — Homgz,(B/By,Q,/Zy) — Homg, (B, Qy/Z,) — Homgz, (By,Q,/Zy) — 0

(A.2.4)
where ¢; and ¢9 are injective and the vertical map in the middle is an isomorphism, by assumption
(all vertical maps are induced by the pairing). It follows that o is surjective and a diagram chase
(or the five lemma) then shows that ¢; is also surjective, so that both ¢; and t9 are isomorphisms.

Now, by condition (ii) the isomorphism A — Homg, (B, Q,/Z,) is a topological isomorphism.
This is clear if A is discrete and if A is finitely generated as a Z,-module, hence compact, then
it follows from general topology since the map is continuous and Homgz, (B, Q,/Z,) is Hausdorff.
It follows that ¢; and to are topological isomorphisms. We get an isomorphism

B/By = HomZp(B/Bfan/Zp)v (L;)’ A;
which is immediately verified to be the map induced by < —, - > and see that By = A;. Likewise
we can apply (—)Y to t2 and see that the pairings from ((A.2.3]) are perfect. o

Example A.2.2. For alocal non-archimedean field F' of characteristic 0 and a finitely generated
free Zy-module T with continuous Zjy-linear action of G the cup product and the local invariant
map induce perfect pairings

H'(F,T) x H*(F,T"(1)) — H*(F,Qp/Zy(1)) 2 Qp/Z,

for i =0, 1,2 which are known as local Tate duality, see ([Rub00], Chapter 1, Theorem 1.4.1) and
([Sex97], Chapter II, §5.2, Theorem 2, p.91). The group H>™*(F,T"(1)) is a discrete torsion group
and H'(F,T) is finitely generated as a Z,-module, see ([PR00], Appendix A.1). Moreover, the
discussion following lemma [A.3.5] see ({A.3.5)) and (A.3.6]), shows that condition (ii) is satisfied.

We will later define finite parts of cohomology H}(F,T) c HY(F,T) and H}(F, TV(1)) c
HY(F,TV(1)) and then quote results stating that H}(F7 T)= H}(F, TV(1))* with respect to the
above pairing (under the assumption that T'® Q) is de Rham in case F' is a finite extension of
Qp). Proposition then shows that H}(F,T ) and H}(F, TV(1)) are exact annihilators of
each other and that the induced pairings as in are perfect.
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A.3 Galois Cohomology

Let us review some basic facts about Galois cohomology. Unless stated otherwise group actions
are assumed to be left actions. We will consider continuous cochain cohomology as defined in
(INSWOS], section 2.7). Whenever F is a field (we will only consider perfect fields), we write
F for an algebraic closure of F and Gr = G(F/F) for its absolute Galois group. If F is a
number field and ¥ a set of places of F' we write Fy; for the maximal extension of F inside F
that is unramified outside ¥ and Gx(F') = G(Fx/F) for the Galois group of Fx/F. We recall
the following results (loc. cit., Proposition (8.3.18), Theorem (8.3.20) (i)). Let p € Z be a prime
number and write cd,G for the cohomological p-dimension of a profinite group G.

Proposition A.3.1. Let F' be a number field and . a finite set of places of F' containing all
infinite places and ¥, the set of places above p. Then,

cdpGg(F) <2

Moreover, for a finite Gy (F')-module T of order a power of p, H*(Gx(F),T) is finite for all
n > 0.

For non-archimedean local fields we recall ([NSWO08], Theorem (7.1.8) (i), (iii)).

Proposition A.3.2. Let L be a finite extension of ;. For the cohomological p-dimension of
the absolute Galois group Gy, of L we have

cdp(Gp) = 2.

Moreover, for a finite Gp-module T of order a power of p, the groups H*(Gp,T) are finite for
all n >0.

Remark A.3.3. In particular, profinite groups of the form G and Gx(F'), L a finite extension
of Qp, F a number field and ¥, ¢ ¥, satisfy the finitetess conditions (i) and (ii) of Case 1 of
([EFK06], Proposition 1.6.5), which states that, for certain modules, Galois cohomology of such
groups commutes with the tensor product; see the next subsection for details.

For finitely generated free Z,-modules T" with a continuous action of a profinite group G one can
often reduce questions concerning H*(G,T) to questions regarding cohomology groups of the
finite discrete groups T'/p", n > 1. Let us quote a result of Tate as stated in ([Rub00], Appendix
B, Proposition B.2.3) (see also ([Jan88], section 2)).

Proposition A.3.4. Leti>1andT = LiLnn T, where each T,, is a finite module with a continuous

action of a profinite group G. Assume that H'"'(G,T,,) is finite for every n. Then we have an
isomorphism

HY(G,T) =lim H'(G,Ty,). (A.3.1)
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A.3.1 Functoriality of local Tate duality

Let F be a finite extension of Q; for some prime [, fix an algebraic closure ' and write x for the
group of all roots of unity in F' and G for the absolute Galois group. For a finite G p-module
A write A" = Homy (A, ). Recall Tate’s local duality result, for example from ([NSWOS], (7.2.6)
Theorem). For lack of a reference we state the following lemma that we need for duality results
for finitely generated free Z,-modules.

Lemma A.3.5. Let m: A > B be a homomorphism of finite Gp-modules. Then, for i =0,1,2
we have the following diagram

H'(F,B) x H*'(F,B') —— H*(F,p)=Q/Z

H'(F,A) x H*(F,A") —— H*(F,n)=Q/Z,

T (%)

(A.3.2)

which commutes in the sense that for f e H(F,A) and g € H>**'(F,B’) we have f u (7*).(g) =
7+(f)ug. Here we write n* : B' - A’ for the map induced by m and we write (-), for the maps
induced on cohomology groups.

Proof. This is immediately verified at the level of cochains. o

Given a finitely generated free Z,-module T" with continuous Z,-linear G'p-action, we may apply
the lemma to the canonical maps T/p™*! — T'/p"™, n > 1. This means that the induced bijections

H'(F,T[p") - Homz(H*"(F,(T/p")"),Q/Z), n>1, (A.3.3)
form a projective system of maps and the induced bijections
H'(F,(T/p")") - Homy(H*"(F,T/p"),Q/Z), n>1, (A.3.4)

form a direct system of maps. The groups H*(F,T/p™) and H(F,(T/p")"), i =0,1,2, are finite
discrete torsion groups annihilated by p". They naturally are Z,-modules. If, in and
(A.3.4) we replace Q/Z by Qp/Z, (which we may) then the above Homgz-sets become Homg, -
sets and the bijections from (A.3.3) and (A.3.4)) become Z,-linear bijections. The modules on
the right of and are the Pontryagin duals of the finite discrete torsion modules
H?>7(F,(T/p™)") and H?>™*(F,T/p"), compare remark Hence, passing to the projective and
direct limit, respectively, we get a Zy-linear topological (see the following remark) isomorphism

H'(F,T) - lim Homg, (H*™*(F,(T/p")"),Qp/Zy) = Homg, (H*"(F,T"(1)),Qp/Zp)  (A.3.5)

n

of compact modules, where the module on the right is equipped with the compact-open topology,
and a Zp-linear topological isomorphism

H'(F,T"(1)) - Homg, (H*(F,T),Qp/Z,) (A.3.6)

of discrete modules.
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Remark A.3.6. Let (D;);c; be a direct system of abelian discrete groups. The natural maps

D; —» lim D;, j € I, induce compatible continuous maps (lim D;)" — DY where (lim, D;)"
—>1 —>1 J —>i

and D7 are equipped with the compact-open topology. We get a continuous map (h_r)nl D) -

LiLnj(D}’), which is a bijection and where linj(D;’) is equipped with the projective limit topology.

It follows that this must be a topological isomorphism since it is a continous map from a compact

space to a Hausdorff space.

A.3.2 Connection with étale Cohomology and the Kummer sequence

In this subsection we want to recall that for a number field F', a finite set of places ¥ of F
containing the infinite places ¥ and a finite discrete Gx(F')-module A such that the order #A
of A is a unit in OFfy, continuous cochain cohomology coincides with the étale cohomology of
the sheaf determined by A on Spec(Opyx )¢, i-e., we have canonical isomorphisms

H'(Gx(F),A) = H (Spec(Opx),A),  i20,

see ([Nek06], section (9.2.1)). Let us briefly recall the connection between the category Spec(F')gt
of étale F-schemes (resp., Spec(F) ¢ of finite étale F-schemes) and the category G — Set? of
discrete left Gp-sets, (resp., Gp — Set‘jc, the subcategory of finite discrete left G p-sets).

For a scheme S, let us write Sg for the category of étale S-schemes and Sy for the sub-
category of finite étale S-schemes. Moreover, we write Et(S ) for the category of sheaves of
sets on Sgt, i.e., the étale topos on Sy, and lcc — Et(S ) for the subcategory of locally constant
constructible sheaves.

The following diagram summarizes several well-known results, which we quote from Conrad’s
notes [Conal, see also Milne’s [Mil13b] and [Mil80]. We write X g(-) := Morg(—, X) for the
sheaf on Sg associated to an étale S-scheme X € Sy and for a sheaf F ¢ Et(Spec(F)) we write
Mg :=lim F (Spec(L)) for the associated discrete G p-set, where the limit ranges over all finite
subextensions L/F of F c F. As a localisation of the Dedekind domain O, O ry. is a Dedekind

domain and we write ¢ : Spec(#') - Spec(Op,x) for the inclusion of the generic point.
X(F) for Morg(Spec(F), X).

Spec(F)et Et(Spec(F)) Gr - Set?
c c c
SpeC(F)f’ét s lcc — Et(épec(F)) T Mz Gr - Setjcl
(=) xopy F Feo ' F
XX

=Op s .
Spec(OFx )¢ — lec — Et(Spec(OFx)) (A7)



A.3. GALOIS COHOMOLOGY 139

where the lower diagram commutes up to isomorphism, which can be shown using the Yoneda
Lemma, see ([Conal, Example 1.1.6.1). The functor (-)xo, . F' denotes base change and F ~ (*F
is the pullback. Both of the arrows in the top row define equivalences of categories, see (loc.
cit., Theorem 1.1.4.3 and Corollary 1.1.4.6). Moreover, the other two horizontal arrows on the
left (X » X, X € Spec(F)sg and X — XOF,E’ X e Spec(OFyx)tét) also define equivalences of
categories, see (loc. cit., Theorem 1.1.7.2). The pullback functor F ~ ¢*F is fully faithful with
essential image equal to the category of finite discrete Gp-sets unramified at the closed points of
Spec(Opy) = Spec(Op) \ Xy, see (loc. cit., Corollary 1.1.7.3).

In the top row, group schemes over F' correspond to sheaves of abelian groups, which corre-
spond to discrete G p-modules. Under the functor Et(Spec(F)) - G - Set?, the global sections
functor corresponds to taking Galois invariants, which explains the relation between Galois coho-
mology (for discrete Gp-modules) and étale cohomology (for the corresponding sheaf of abelian
groups), see ([Conal, Corollary 1.1.45 and the discussion preceding it). We also note that if X
is an étale F-scheme, then My  is given by the discrete G'p-set Xp(F) = Morg(Spec(F), X).

Let us now look at the sequence of sheaves of abelian groups on Spec(Opyx )¢t known as the
Kummer sequence

oz

0—uw, — G — G,, — 0, n € Nyq, (A.3.8)

where G, is the sheaf of points of the group scheme G, (note the abuse of notation, in (A.3.8])
we should write Gy, Ops instead of G,,, for the sheaf associated to G,, to be in line with our
notation), x — z™ is the map that, on points, is given by raising to the n-th power and w, is
the kernel. We just quote as a fact that if n is unit in Opy;, then the sequence is exact
in the category of sheaves of abelian groups on Spec(Opyx )¢t (0 > wp = Gy, = Gy, is always
exact). Let us assume that n € (’)IX;’E from now on. The sheaf p, is represented by the finite
étale Op x-group scheme Spec(Z[T]/(T"-1)) xz OF5, = Spec(Opx[T]/(T™-1)). We have noted
already that for X € Spec(F )4, Mx , is given by the discrete Gp-set Xp(F'). Hence, the finite
discrete G'p-module that, through 1} corresponds to Spec(OF,g[T]/(T" - 1)) is given by
Morg(F,Spec(F[T]/(T™-1))) which is just the finite G p-module 4, (F') of n-th roots of unity
in the algebraic closure F', which is unramified outside X.

A.3.3 Tensor products and cohomology

Next we turn to the behaviour of Galois cohomology with respect to twisting. We recall the
result ([FKO06], Proposition 1.6.5 (3)) of Fukaya and Kato and explain how we want to use it
later on. We will not work in the greatest generality, but restrict to the following setting. Fix a
prime number p € Z. Let Fo/F be a p-adic Lie extension inside a fixed algebraic closure F of F,
where F is either a number field or a finite extension F'/Q, for some fixed prime p € Z. In case
F is a number field, assume that Fo,/F is unramified outside a finite set of primes ¥ containing
Y. Also in the number field case we assume that I is totally imaginary if p = 2. Then, define a
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field
P Eg %f F %s a nu@ber ﬁeld., (A.3.9)
F if F'is a finite extension of Q,.
We will write .
G=G(F|F) (A.3.10)

and note that by propositions [A.3.1] and [A.3.2] the Galois group G, for both cases, ' a number
field and a local field, satisfies the conditions (i) and (ii) of Case 1 of (loc. cit., Proposition 1.6.5).
By definition, we have a canonical projection

G > G(Fx/F),

in both, the global and the local case. Let us briefly recall some isomorphisms. Let L/F be a
finite Galois extension inside F'/F and write H = G(F/L), H ¢ G. Moreover, let T be a finitely
generated Z,-module with a continuous Z,-linear action of G and write Z,(0) for Z, equipped
with the trivial H-action from the right. More generally, whenever it makes sense, we write
T(k), k € Z, for the k-th Tate twist of T. Using a standard result for induced modules ([Lan05]
XVIII, Theorem 7.11), we then have

InddResfT = Indd (Z,(0) ®z, Res§;T) = (Ind4Z,(0)) ®z, T = Z,[G(L/F)]# ®z, T, (A.3.11)

where G acts on Z,[G(L/F)]# (which is just Z,[G(L/F)] as a left Z,[G(L/F)]-module) from
the left via g.z = x-g~!, where g denotes the image of g € G in G(L/F) and the tensor product
on the right carries the diagonal action g.(z®t) =2-g ' ®g.t.

Now, assume we are given an, in general, infinite Galois extension F, = U,F, of F as
above, with Galois group G(Fs/F'), where the F,, n > 1, form an increasing chain of finite

Galois extensions of F'. Moreover, assume we are given a finitely generated Z,-module 7" with a
continuous action of G = G(F/F). For A = A(G(Fw/F)) we then have

A @z, T 2 lim (Z,/(p")[G(Fu/F)]” @z, T/p"T),

n

since for finitely generated Z,-modules T' the completed tensor product agrees with the usual
tensor product, see (|Bru66], Lemma 2.1 (ii)).

We note that by propositions [A.3.1] and [A.3.2] we may apply proposition to G, H,, :=
G(F/F,), n>1, and projective limits of finite modules of p-power order. In particular, we may
apply it to the projective limits of the finite modules T,, = Z,/(p™)[G(F,./F)]* ® T/p"T and
T = ResgnT/me. Note that T, = Indg”ResgnT/p”T. Then, using Shapiro’s Lemma and the

isomorphism (A.3.11) we have
H'(G(F/F),A* ® T) 2 lim H'(G,T,)

x @Hi(ﬂn, Res§ T/p™T)
= lim H'(G(F/F,), Resf, T). (A.3.12)

n
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Les us now discuss Fukaya and Kato’s result about the behaviour of Galois cohomology with
respect to twisting. Note that A = A(G(F«/F)) satisfies the condition (%) of ([FKO06], 1.4.1),
saying that there exists a two-sided ideal I of A such that A/I" is finite of p-power order for all
n > 1 and such that

AzlimA/T™.
“n
Let A’ lim | A'/(I")", where I' is a two-sided ideal of A" such that A’/(I")", for all n > 1, is finite
of p-power order, be another such ring. The example we have in mind is A’ = A(G(Fx/K)),
where K is a subfield of F' such that F/K is a finite extension and such that F. /K is also a
p-adic Lie extension.

Now, let M be a finitely generated projective left A-module equipped with a continuous A-
linear action of G. Moreover, let Y be a (A’, A)-bimodule (i.e., a left A’-module and a right
A-module such that the actions commute) such that

(i) as a left A’-module Y is finitely generated and projective,
(ii) Y has a topology such that the right A-action is continuous.

Then, the above-mentioned result from (loc. cit.) states that there is an isomorphism in the
derived category of A’-modules

Y ®k RT'(G, M) = RT(G,Y ®, M), (A.3.13)

where the action of G on Y ® M is defined by g.(y®m) =y®g.m, g€ G,y € Y,m € M, and
where for any G-module N we write RI'(G, N) for C(G, N), the complex of continuous cochains
of G with values in N, regarded as an object in the derived category.

In fact, Fukaya and Kato prove in (loc. cit., Lemma 1.6.8), that there exists a bounded
complex L*® of finitely generated projective A-modules and a homomorphism of complexes of
A-modules L* — C(G, M) such that for any pair (A’,Y") as above, the induced map

YorL®* - C(G,Y @y M) (A.3.14)

is a quasi-isomorphism, where Y ® L*® denotes the complex induced by tensoring each term L"
of L* with Y. By the induced map we mean the composite map

Y @)L > Y ey C(G, M) > C(G,Y &y M), (A.3.15)

where the first map is induced by L* — C(G, M) and the second map is defined in the obvious
way. In particular, from the case Y = A considered as a (A, A)-bimodule, we see that the map

L* - C(G, M) (A.3.16)

itself is a quasi-isomorphism. Now assume that Y is also flat as a right A-module. By the flatness
of Y the map Y ®) L* - Y @5 C(G, M) is then also a quasi-isomorphism. In fact, we have

H'Y @) L*) 2 Y @y H'(L*) 2 Y @) H(G, M) = H*(Y &5 C(G, M)),
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where the first and the last isomorphism hold by the flatness of Y and the middle one since
is a quasi-isomorphism. Now, consider the composite map from again. Since
both, the composite and the first map of the composite are quasi-isomorphisms, so must be the
second map of the composite and we record this in the following

Proposition A.3.7. Let the setting be as in the preceding discussion. In addition, assume that
Y is flat as a right A-module. Then, the map

Yoy C(G,M) - C(G,Y @y M)

is a quasi-isomorphism. In particular, we have Y @ H"(G, M) 2 H"(G,Y ®y M), for all n > 0.
We recall that the G-action on Y ®y M is given by the action on M, i.e., by 1®g, g € G, on the
tensor product.

We will now discuss some examples for Y arising from p-adic Galois representations 7', by which
we mean finitely generated free Z,-modules T" with a continuous Z,-linear action of G' that factors
through G(F./F). We fix such a Galois representation T" and assume, as before, that Fi,/F
is a p-adic Lie-extension (this is automatically satisfied if Fo is the trivializing extension, i.e.,
the fixed field of the kernel). Recall definition of F, and that for G = G(F/F) we have
a natural projection G - G(Fw/F'), for which we shall write g = g. Let us write x : G — Z,
for the p-cyclotomic character; note that F always contains the p-power roots of unity, since we
assumed that ¥, c 3 in the global case. Writing, as before, A = A(G(Fw/F')) we define the
following objects
M = A% (1),

which is just A as a left A-module (i.e., free of A-rank 1 and, in particular, projective) and g € G
acts (A-linearly!) on A e A#(1) by g.\:= A\g 'k(g),

A=A,

and
Y=A ®z, T,

which is a left A-module by the action on the first factor N.(A®t) := (MA) ® ¢t for M, \ € A,
t €T, and a right A-module via the action induced by (A®t).h:= (k) ® (h71.t) for e A, teT,
h € G(Fw/F). Note that the left and right action of A on A ®z, T' are compatible and that, as
a left-module (!), A ®z, T is free and isomorphic to A", where 7 := rkz T' is the Z,-rank of T'. In
particular, it is finitely generated and projective as a left-module. The continuity of the right
action follows since we assumed that the action of G(Fs/F) on T is continuous.

We claim that A®z, T is also free of rank r as a right A-module. In a slightly different form,
this has been proved by Venjakob in ([Ven03|], Lemma 7.2). Let us fix an isomorphism ¢ : 7' = Z;
of Zp-modules. Next, consider the map

A ®Zp T—>A ®Zp 75 = AT, (A317)
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induced by g ®t —» g ® ¢(gt) —» gp(gt). As we will explain below, it follows as in (loc.
cit., Lemma 7.2) that this map is an isomorphism of right A-modules (A" is equipped with
the canonical right A-module structure). In order to avoid confusion, we note that if we
write ¢(gt) = (¢(gt)1,...,¢(gt)r) for the image of gt under ¢ in Zj, then g¢(gt) is given by
(96(g)1,- . gd(gt)r)) € A,

Remark A.3.8. Our definition of is different from Venjakob’s, who defines a map
g®t = g d(gtt) » gop(g7't), with the inverse of g acting on ¢, which makes the map left
A-linear, with A-action induced by h.(A®t) = (hA) ® (ht), h € G(Fs/F') (and the canonical left
A-structure on A”). However, our map , with respect to our right A-structure (and the
canonical right A-structure on A”), is right A-linear

(9® 1)1 E gh® h™'t — ghd(ghh™'t) = gho(gt) = (96(gt)h, 9.1 € G(FoofF),t e T.
We do not claim that our map (A.3.17)) is left A-linear with respect to our left A-structure (and
the canonical left A-structure on A”). In fact, it is not unless the Galois action on 7' is trivial.

As for the existence of the map , i.e., that it actually extends from (the group ring
tensored with T') Zy[G(Fe/F)] ®z, T to A ®z, T, one proceeds as in the proof of ([Ven03],
Lemma 7.2). Consider pairs (U,n) where n > 1 is an integer and U is an open normal subgroup
of G(Fw/F') such that U acts trivially on the discrete space T'/p™T. Then, for each such pair,
one can define a map Zy[G(Foo/F)[U]®z, T [p"T — Zyp/(p")[G(Feo/F)/U]" by the same formula
as above just for cosets g&T — g®d(gt) ~ go(gt) and verify that it is an isomorphism. One then
passes to the projective limit and gets the desired map upon noting that the completed tensor
product coincides with the usual tensor product, since 7' is finitely generated as a Zj,-module.
We conclude that A ®z, T is a free right A-module of rank 7. In particular it is flat as right
A-module and we may apply proposition m to A®z, T' and A7 (1). Before we do this let us
record the following

Proposition A.3.9. Let the setting be as at the beginning of this subsection and recall the
definition and of G = G(F/F). Then, the modules H"(G, A% (1)) are 0 for n > 3
and for n = 0. In the global case, the modules H*(Gx,(F),A% (1)), i = 1,2 are finitely generated
over A. In the local case for F'|Q, a finite extension we have

lim  L*/(L)" ifn=1,
H"(Gp, A7 (1)) 2 { <Lk [ (A.3.18)
Ly, if n=2,

where L ranges through the finite subextensions of Fs /F and the limit is taken with respect to
norm maps Ny, L ¢ L', and projection maps L*/(L* )p’Hl - L*[(L* )pk. Let us, in addition,
assume that there exists a finite subextension K|F of F|F such that F /K is abelian and
G(Fo/K) = Z, x A, where v = 1,2 and A is finite of order prime to p, and that either the
following (i) or the following (ii) hold
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(i) ppe(F) c F and in case that p = 2, then also uy c K,

(i) pp=(Foo) = {1}.
Then, H(Gp,A¥ (1)) is finitely generated over A(G(Fw/K)) (and hence over A(G(Fu/F))).

Proof. The vanishing of H"(G, A% (1)) for n > 3 follows since both, cd,Gr for F local non-
archimedean and cd,Gx (F') for F' a number field, are less than or equal to 2, see propositions
IA.3.1{ and |[A.3.2l The vanishing of H°(G, A% (1)) follows from the fact that neither a number
field, nor a finite extension of Q, contain infinitely many roots of unity.

In the global case, for the fact that H'(Gx(F),A#(1)), i = 1,2 are finitely generated, see
[Kat06].

In the local case, the description of H!'(Gp, A% (1)) follows from Hilbert’s Satz 90 and the
Kummer sequence, while H?(Gr, A¥ (1))  Z, follows from local Tate duality, compare remark
A.4.0) (ii).

Now, assume the additional assumption on the existence of a finite subextension K/F of
Fs/F is satisfied. First consider the case r = 2. Note that since Fio/F is a p-adic Lie extension,
50 is F /K since G(Fs/K) ¢ G(Fw/F) is an open, hence closed, subgroup. It follows that
A(G(Fw/K)) is Noetherian, see ([Laz65], V 2.2.4). Then, the fact that H'(Gp, A7 (1)) is
finitely generated over A(G(Fs/K)) follows from a result of Wintenberger, see ([Win80], section
4, Théorem). When applying the quoted result, one only has to note that if ¢ is a character of A
and ey the associated idempotent, then ey A(G(Fo/K))9, d > 1, is Noetherian as a A(G(Fu/K))-
module (indeed, it is finitely generated, just consider the natural A(G(Fs/K))-linear projection
AG(Fuo/K)) » ey A(G(Fuo/K))%, note that G(Fw/K) is abelian!), so any eyA(G(Fu/K))-
submodule of esA(G(Fo/K))?, d > 1, (which is then automatically a A(G(Fw/K))-submodule)
is finitely generated over A(G(Fw/K)). Let us note that Wintenberger determines the structure

of LiLnL . L/ (Lx)pk much more precisely, but for now, we are only interested in it being finitely

generated.

The local case for r = 1 was treated by Iwasawa in ([Iwa73], §12, Theorem 25). In fact, if r = 1,
let K’ be the finite extension of K such that G(Fu/K') = Z,. Now, note that H'(Gp, A% (1))
is a different guise of the Galois group of the maximal abelian p-extension of Fi,. Indeed, using
local Tate duality, we have

H'Y(Gp, A" (1)) = lim HY(G,Zy(1)) = lim (H'(GL,Qp/Zp)") 2 Hom(Gr.,, Qp/Zy)"

L,cor L resV

Since A(G(Fs/K")) is Noetherian we can now derive the result for both cases (i) and (ii) from
(loc. cit.), where it is stated for the Galois group of the maximal abelian p-extension of Fi. g

For a more detailed description of the modules H"(G, A% (1)), see ([Ven00], chapters 2 and 3).
We note that there is a criterion due to Balister and Howson for a Hausdorff A-module X that
is profinite to be finitely generated, see [BHO3|, it says the following. Let I be an ideal of A
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such that I™ - 0, n - oo, in A. Then, if X/IX is finitely generated as a A/I-module, then X is
finitely generated as a A-module.
Let us deduce the following corollary from propositions [A.3.7 and [A.3.9]

Corollary A.3.10. Let the assumptions be as in proposition[A.3.9 Let T be a finitely generated
free Z,-module with a continuous Z,-linear action of G factoring through G(Fw/F'). For every
n > 0 we have an isomorphism of left A-modules

T ®z, H"(G, A% (1)) - H"(G,A*(1) @z, T),

where the A-action on the left is induced by the diagonal action h.(t® f) = ht®hf, h € G(Fs/F),
teT, fe H"(G,A¥(1)) and G acts on A*(1) ®z, T diagonally, i.e., as g(A®t) = Ar(g)g " ® gt,
geG, NelA teT.

Proof. As we have explained above, we may apply proposition m to A ®z, T and AT(1),
which gives us an isomorphism

(A®z, T) ®x H"(G, A% (1)) 2 H"(G, (A ®z, T) ® A" (1)), (A.3.19)

for any n > 0, where g € G acts on (X' ®t) ® A € (A ®z, T) &y A#(1) as g((N @t) ® \) =
(N ®t)® (Mg 'k(g)), ie., only on the A#(1) factor. We will show that the two modules in
are isomorphic to T ®z, H"(G,A#(1)) and H™(G, A7 (1) ®z, T'), respectively. Let us
begin with H"(G, (A ®z, T') ®) A#(1)). Forgetting the G-actions for a moment, the map

A (1)®z, T - (A®z, T) @A A#(1), Aet—(A0t)®1, (A.3.20)

certainly defines an isomorphism of left A-modules (the left A-module structure is in both cases
defined via the action on the first left factor). In fact, the map is even a (A, A)-bimodule
isomorphism (using the correct actions), but we do not need this fact. Recall from the statement
of the corollary that we let G act diagonally on A% (1) ®z, T It follows that is also
G-equivariant. Indeed, let g € G, then we have for A®t € A7 (1) ®z, T

g.(A®t) def Me(9)g @gt— (Me(9)g ' 0gt)®1=(A®t)®7 'k(g) = g.(()\ ®t)® 1),

where on the right-hand side we used the definition of the right A-action on A ®z, T'.

It remains to show that T'®z, H"(G,A% (1)) is isomorphic to (A ®z, T) ®A H"(G,A%(1)),
which follows from the following lemma, which we may apply since H"(G, A% (1)) is finitely
generated over A. o

Recall that any compact A-module N can be written as N LiI_nV Ny, where Ny denote the

coinvariants and the projective limit is taken over all open normal subgroups V ¢ G(F/F), see
(ICS06], Appendix A.1). Clearly, if N is finitely generated over A, then Ny /p" is finite for all
open normal subgroups V ¢ G(Fw/F') and n > 1.
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Lemma A.3.11. Let T be a free Zy-module endowed with a continuous left G(Fu[F')-action
and let N be a finitely generated left A-module. As above, we consider the right A-action on
A ®z, T induced by (A®t).g=Ag® g~ 't, where g € G(Fs/F),\€ A,t € T. We define a A-action
on T'®z, N induced by the diagonal action of g € G(Fw/F), that is g.(t®x) = gt ® gz, t € T,
x € N. Then there is an isomorphism

(A®z, T)®y N — T ®z, N, A®t)®zr— M(t®),

of left A-modules (for the A-action on the A-factor on the left and the diagonal action on the
right).

Proof. One checks that for fixed € N, the map A xT —» T'®z, N defined by (A,t) = \.(t ® x)
is Zy-bilinear. Hence, one gets a map

(A®z, T)x N — T &z, N, (Aet,z)r— A(t®),

which is easily seen to be Z,[G(Fs/F')]-bilinear. Now, consider pairs (n,U), where n > 1 is an
integer, and U is an open normal subgroup of G(Fw/F') acting trivially on 7'/p™. Note that if
V is any other open normal subgroup of G(Fw/F'), then (n,U n V) is also such a pair. Let us
write G’ = G(Fw/F). In an entirely similar fashion as above, for any pair (n,U) we get a map

(2, G' U] &z, T[p") x (Nu/[p") — T/p" &z, (Nu/p")

which is Z,[G(Fw/F')]-bilinear, and therefore A-bilinear (since the A-action factors through
Zy[G'JU]). Hence, we get a map

(Zp[G'|U] &z, T[p") ®n (Nu/p") — T/p" ®z, (Nu/p"),

which is left Z,[G'/U]-linear with respect to the induced actions. One checks immediately (on
generators) that t® Z — (1 ®¢) ® T, where T € (Ny/p"), t € T/p", defines an inverse. Recall
that A ®z, T' is free of rank r as a right A-module. Since for finitely presented modules (and
compact modules in the other variable) the completed tensor product coincides with the usual
tensor product, see ([Wit03], Proposition 1.14), we conclude

(A®z, T) @) N = (A®z, T)®AN
= lim ((2,[G'/U) ®z, Tlp") @1 (Nu/p"))
(n,U)

2 lim (T/p" @z, (Nu/p™))
(n,U)

= T@ZPN

T ®7, N,

which concludes the proof. o
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We will also need the following standard result, see (the proof of) (|[Tat76], proposition 2.3)
in Tate’s article or also (JRub00], Appendix B, Proposition B.2.4). Had we worked in greater
generality in this subsection we could have also deduced it from the result of Fukaya and Kato.

Proposition A.3.12. Let T be a finitely generated free Z,-module with a continuous Z,-linear
action of a profinite group G. Then, for all i > 0, the natural map

H'(G,T)®z,Q, — H'(G.T &z, Q)
is an isomorphism.

Proof. One can proceed similarly as in the proof of ([Tat76], proposition 2.3). Tensor the exact
sequence

OQZPQQP_)QP/ZPQO

with 7', which is flat over Z, by assumption, and look at the corresponding long exact cohomology
sequence. The groups H'(G,T ®z, Qp/Z,) are torsion, which yields

HY(G,T)®z,Q, 2 H(G,T®z,Q,) ®z, Q= H(G,T ®z, Q)

as desired, where the second isomorphism is given by v ® x ~ vz, ve H(G,T ®z, Qp), €Qp.g

A.3.4 Kummer sequence

Let the setting be as in section

Remark A.3.13. We note that, by definition of 3, each canonical morphism
7 : Spec(OF, ) — Spec(Opyx)

is étale. Therefore, compare ([Mil80], Remark 3.1 (a) Chapter 2, p. 68), if F is any sheaf on the
small étale site Spec(OF,x)et, then the inverse image m,F is just the restriction F |gpec(0p, 5)-
We will simply also write F for 7, F.

We want to recall that ]HIIE and H%, which were defined to be
m . . m 1
n f
appear in the Kummer sequence. In fact, for every n > 0 and every k > 1 there is an exact
sequence of sheaves

0 — tp —> Gy > Gy —> 0



148 APPENDIX A. APPENDIX

on the site Spec(@Fn[ELf])ét since p is different from the residue characteristic of every point
of Spec(OFn[ZLf]), compare ([Mil80], p.66) and recall ¥, c ¥¢. We note that for n > 1 these

sequences agree with
o
* * *
0 7Tn(l’Lp’“,OF,E) 7"-71((:‘"77%7(91?,2 ” 7TnGm,(’)F,z > 0,

the sequences obtained by applying the inverse image functors m,, to the exact sequence on
Spec(OFpyx )¢t For each n >0 and every k >0, we get a long exact sequence

pk

pk

H}(Op, s, 1Y) Pic(Op, ) Pic(Op, »)

1

k

p
HZ(Op, 5, i) » H2(Op, 5,Gy) —— HZ(Op, 5,Gp) — 1.

(A.3.21)

For the last arrow we note that, since the p-cohomological dimension of Gy (F,,) is less than or
equal to 2, see proposition we have

Hg)t(OFn,Ea Hpk) = 07

compare also ([FKO06], section 1.6.3). The above sequence induces a short exact sequence
X X k .
1 — Of, 5/(0F, £)" — Hi(Or, 5, Z/p*Z(1)) — Pic(Or, )[p"] — 1.

Then, taking projective limits, first with respect to k& and then with respect to n, we get an
isomorphism
. X ~ 1
I(EI(OFT“E ®7z Zp) — Hz. (A322)
n

We note that since Q%°¢ c F,, we have

liﬁl(an,z ®z Lp) = 1}31(01?”,2,, ®z Lp),
n n

see ([Kat06], section 2.5, p.554).
By a similar reasoning as above, for every n > 0, we can extract from (A.3.21)) a short exact
sequence

1 — Pic(Op, £){p} — HA(Or, 5. Z,(1)) — Im H3(Op, 5,Gu)[P] — 1, (A3.23)
k
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where, for an abelian group A, we write A{p} for the p-primary subgroup, i.e., the subgroup of el-
ements of finite p-power order. The cohomology group HZ (Or, s, G,)[p¥] € HZ.(OF, 5, Gp){p}
can be described as follows. By ([NSWO08], proof of (8.3.11) Proposition) there is a short exact
sequence

0— HZ(OF,5.Gu){p} — @D Qu/Z, = Qy/Z, — 0.
VEEf(Fn)

sum

Note that the summation map @,ex,(r,) Qp/Zy, — Qp/Z, as a map of abelian groups has a

section, i.e. a splitting homomorphism. The Snake Lemma applied to mupltiplication with p*
implies the existence of a short exact sequence

2 k? sum R
0 — Hg(Or, 5,Gn)lp"] — @D _kZp/Zp — 2 Zp[Zy — 0,
ves(Fp) P p

where the exactness on the right is clear by definition of the sum map (or follows formally from
the above splitting). Together with ([A.3.23), passing to the projective limit, we get

1 — Pic(Op, x){p} — Hz(0p, 5, Z,(1)) — @ 7, — 7, — 0. (A.3.24)
I/EEf(Fn)

Now, we can also pass to the projective limit with respect to the F,,, n > 1, and get

1 — lim (Pic(Or, 5){p}) — HE — @ A(G) ®(q,) Zp — Zp — 0. (A.3.25)
n veXy

We also have a surjective map

Pic(Op, [1/p]){p} - Pic(OF, s){r}

for every n > 0, see (A.5.2)), which, due to our assumption that Qcy. ¢ Feo, yields an isomorphism

lim (Pic(OF, [1/p]){p}) 2 lim (Pic(Or, »){p}),

n

see ([Kat06], section 2.5). Now, since the primes above p are finitely decomposed in Fo, we also
see that the epimorphism (see (A.5.2) again)

lim (CU(Fu){p}) — lim (Pic(Or, [1/p]){p})

has a kernel that is finitely generated as a Zj,-module. It follows that the composite map

lim (CI(E,){p}) - lim (Pic(Or, 5){p}) (A.3.26)

has a kernel which is a finitely generated Z,-module.
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A.4 The sequence of Poitou-Tate

Fix a prime p € Z, p # 2. Recall that in our global setting we have considered a tower of finite
Galois extensions of number fields F' € F;, € Fp41--- € Foo = Uy F), such that F(pp~) ¢ Feo.
Assume that only finitely many primes ramify in F./F and fix a finite set of places ¥ of F
containing the places above the fixed prime p, the infinite places of F' and those that ramify in
Fs/F. We write Fy, for the maximal extension unramified outside the primes of ¥ and Gy (F') for
Gal(Fx/F) or simply Gy, when F' is clear from the context. Note that by assumption Fs C F¥..
We also write Gy, »2 for Gy, (Fy,) = Gal(F, s, /F,), where ¥, is the set of places of F, above
those in X. Recall that we write G for Gal(Fu/F).

In the local setting we have considered Gal(K'(pp~)/Qp), where K'(pup~)/Q, is a Galois ex-
tension that is obtained by adjoining all p-power roots of unity p,~ c @p to an infinite unramified
extension K’ of Q,. The prime example we have in mind is G, = Gal(F ,,/Q,) where v is a prime
of Fos above p for Fs, = Q(E[p*°]), E/Q being an elliptic curve with complex multiplication by
Ok, K quadratic imaginary, and good, ordinary reduction at p. If E is only defined over K and
p splits in K, Ogp = pp, then K, = Q, = K and we are also in the setting just described.

We have encountered global and local cohomology groups in previous sections. To be precise,
we examined

HZZ = mHet(OFn[E_f]aZP(l)) = LLHH (Gn,Eva(l))a

n

i=1,2, in chapter [2.2] and

foc = HZ(QP’TU”) = Hl(QPVA(G)#(l)) = Lln Hz(L,ZP(l))7
QpclcKo

i = 1,2 where the limit is taken over all finite subextensions of Q, in K. in chapter |3 In this
chapter we study the sequence of Poitou-Tate that relates the above global and local cohomology
groups. We follow [NSWOS]| in our exposition. A modified version of the Poitou-Tate sequence
will allow us to integrate a Selmer group, see definition as one of its terms, which we will
show in the next chapter.

A.4.1 Definition

We now quote the nine-term exact sequence of Poitou-Tate from ([NSWO0S], (8.6.10)) for number
fields F' and finite sets of primes X, ¥ c X. For a finite Gx(F')-module B we write

T' = Hom(B, Ox,)

for the dual Gy (F')-module, where O5;, is the group of ¥-units of Fy; and Oyx; = Uprcp, O 5,
where the union is taken over all finite subextensions F' of Fx/F.

We adopt the convention of [NSWO08] that for an archimedean prime v € Yo of F and a
Galois-module B as in the following theorem, we write H°(F,,, B) for the modified cohomology
group HO(F,, B) := BGr /NGF,,B’ where NG, =Y geqp, 9 is the norm element in Z[GF, ].
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Theorem A.4.1 (Poitou-Tate). Let ¥ be a finite set of primes of a number field F' containing
all infinite primes. Let B be a finite Gx;(F')-module the order of which is a unit in Opy.. Then,
there is a long exact sequence of topological groups

0 \° 0 2 NV

0 H (szB) @VGEH (FuaB) H (quB)
)\1

H'(Gx,B) —— @, H'(F,,B) —— H'(Gx,B")"

2
H%(Gs,B) —— @yex H*(F,,B) —— H°(Gsx,, B')Y — 0,

where we write (—)" for Homets(—,R/Z), which, for finite B of p-power order coincides with our
usual (-)", compare remark (i). The maps X', i =0,1,2, are called localization maps.

For the definitions of the various maps appearing in the sequence, compare the proof of lemma
where they are reviewed. We will refer to the above sequence as PT(F,X, B).

Remark A.4.2. Let B be as in the theorem. Note that for a complex archimedean place
v € 5¢ C Yo, the groups H(F,,B) = H(F,,B), H'(F,,B) and H?(F,,B) are trivial. In
particular, if F' has no real archimedean places (e.g., when F' contains a non-trivial cyclotomic
field), then

[1H(F,B)=[] H'(F,,B), i=0,1,2,

vex 12
where X ; denotes the set of non-archimedean places in ¥. By a non-trivial cyclotomic field we
mean a field of the form Q((,») for a primitive ¢"-th root of unity (,» such that ¢ € Z is a prime
and either ¢ # 2 or n > 2. Moreover, note that if v € ¥y is a real archimedean place and 2 does
not divide the order of B, then we also have

H°(F,,B) = B [Ng, B =0.

If 2 does not divide the order #B of B, then it does not divide the order of B’ (since the latter
divides (#B)?) and the local duality theorem for the group G(C/R), see ([NSWO0S8], (7.2.17)
Theorem), shows that for B, 2 + #B, and a real archimedean place v € X we also have
H?*(F,,B) =0.

A.4.2 Functoriality

In this subsection, functoriality properties of the Poitou-Tate sequence (with respect to the
ground field F' and the module B) are reviewed. Most of them are well-known, but for lack of a
reference some details are provided concerning the functoriality with respect to F. Throughout
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this section we always assume Y to be a finite set of places of F' containing X, the set of
archimedean places of F', and ¥,, the set of finite primes above a fixed prime p. We will also
assume that F' is totally imaginary if p = 2, compare remark

Let us consider a finitely generated free Z,-module T" with a continuous action of G that is
unramified outside the finite set of primes > of F. Note that the units O5, contain the p-power
roots of unity, U, py» ¢ Os,. Moreover, we have

(T/p"T)" € Hom (T [p"T, Of.x) = Hom(T, i) = Hom(T, Z,y(1)) ® ((]%Zp) /Z,,),

where the last equation holds since T' is projective as a Z,-module. Passing to the direct limit
we get
: T I\ ~ *
lim ((T/p"T)") 2 T*(1) ® Qp/Zy, (A.4.1)
n
where we recall that T is defined to be the dual Z,-representation Homgz, (T, Z,;). It is time we
made a remark about Pontryagin duals.

Remark A.4.3. (i) For a general Hausdorff, abelian locally compact topological group A, one
defines AY = Homs(A,R/Z), where R/Z is equipped with the quotient topology induced by
the usual topology on R. If D is a discrete torsion group, then the embedding Q/Z c R/Z
induces an isomorphism Hom(D,Q/Z) = Homgs(D,R/Z). Moreover, if D is a discrete
torsion group and coincides with its p-primary subgroup D = D{p}, then Hom(D,Q/Z)
Homs(D,Qp/Zy), since the p-primary parts of Q/Z and Q,/Z, coincide, (Q/Z){p} =
Un(#Z)/Z = Um(meZp)/Zp = (Qp/Zy){p}. Note that if T is finite discrete of p-power

order, then 7" and H(Gx,T"), i =0, 1,2, are too, compare proposition

(ii) Note that for finitely many discrete abelian groups Di,..., Dy, the product topology on
I"[f;l D; coincides with the discrete topology on Hle D;. Hence, we have a homeomorphism
(1TE, D))V = Hé“:l(D;/ ). For finitely many Hausdorff compact abelian groups T1,..., Tk
vlifle]zC t?jeﬁrve)fore get (T, (TY))Y = IR ((TV)Y) = T15,T;, ie., we also have ([TE, 7))V =

=14 )

(iii) Let (D;)ier be a direct system of discrete abelian groups, then h_r)nZ D; equipped with the
final topology with respect to the canonical maps D; — h_n)ll D; is certainly also discrete.
Hence, we get a homeomorphism (lim. D;)" = lim (D;).

—>1 <1

(iv) Let (T;)ie; be a projective system of Hausdorff compact abelian groups and consider
the induced direct system of discrete groups (7} )is. Using (iii) we get (11_1)111(TZV))v =
lim ((7;')Y) =z lim_T; and therefore, lim (7}) = (lim_ T73)".
Pa— <1 —>1 1

Let us consider the Poitou-Tate sequences PT'(F,3,T/p"T) for the finite modules T'/p"T, n > 1,
where T is a finitely generated free Z,-module as above. Note that since we assumed X to be
finite, all groups in the sequences PT(F,X,T/p"T), n > 1, are compact, in fact, they are even
finite, see ([NSWO0S], (8.6.10)) and propositions [A.3.1{ and [A.3.2l We state without proof
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Lemma A.4.4. The Poitou-Tate sequence is functorial in the second variable, i.e., if f: A - B
is a morphism of finite Gx,(F')-modules, the orders of which are both units in Ofy,, then f
induces a map f.: PT(F,%,A) — PT(F,%,B).

The lemma allows us to pass to the projective limit of the sequences PT(F, %, T/p"T), n > 1,
where the transition maps are induced by the canonical maps T'/p"*'T — T /p"T. Since ¥ is finite,
the groups appearing in PT(F,%,T/p"T) are compact and in view of and proposition
we then get an exact sequence

0— H°(Gx,T) — @yes, H'(F,, T) — H*(Gx,T*(1) ® Qy/Zy)"
HY(Gs,T) — @®ex H'(F,,T) — HY(Gx,T*(1) ® Qy/Z,)"

H2(Gy, T) — @z, H(F,.T) — H(Gy,T*(1) © Qy/2,)" — 0,

(A.4.2)
where, see remark the groups H'(F,,,T), i =0,1,2, vanish for complex archimedean places
veXc and H(F,,T), H*(F,,T) also vanishes for v € ¥ (since if there are real places, then
p # 2 by assumption). We will denote the above exact sequence by PT'(F,3,T). We remark that
there is a dual version of this sequence, which is given by

0— HO(GZUT*(l) ®Qp/Zp) — @Ver HO(FwT*(l) ®Qp/Zp) —_— HQ(GXbT)V
HY (G, T*(1) © Qp/Z) — Bres H' (F,. (1) © Qp/Z,) — H' (G, T)"

H*(G5,T*(1) ® Qp/Zp) — @®pes, H*(F,, T*(1) @ Qy/Z,) — H°(Gx,T)" — 0.

(A.4.3)
Now, in our global setting, assume that p,~ ¢ Foo, which, e.g., holds in the case F,, = F(E[p"])
by the Weil pairing. More generally, it is also sufficient for our purposes in this section to assume
that F),, for some n > 1, has only complex archimedean places, which is then true for all F},,
m > n. Let T be a finitely generated free Z,-module with a continuous action of G that is
unramified outside ¥ again, and recall that we write T* = Homgz, (7',Z;). We then have for i > 0

limlim H (G5, (T/p™)) 2 H (Goo 5, T* (1) @ Qp/Zy)

n m

2 ' (Gox, TV (1)).

For each number field F,,, n > 1, we get a long exact sequence as in (A.4.2)). We want to show
that these sequences form a projective system (with respect to corestriction maps and duals
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of restriction maps) of sequences in the following lemma. It has been remarked in ([Mil86b],
Remark 4.19) that the dual statement is true, i.e., that with respect to restriction maps and
duals of corestriction maps, the Poitou-Tate sequences form a direct system.

By a map (¢,), between sequences ((My,)n,dy,), where dy, : My, - M,.1, and ((Ny)n,d),),
where d], : N, > Np.1, we mean, of course, a map such that ¢,1 0 d, =d, o ¢p,.

Lemma A.4.5. Given F and ¥ as above, let L/F be a finite Galois subextension of Fx,/F and
write X, for the primes of L above those in ¥. Write Gx(F') = G(Fx/F) and Gx(L) = G(Fx/L) =
G(Ls,/L). Then, there is a map of exact sequences from the Poitou-Tate sequence for
L and X, to the Poitou-Tate sequence for F and .. The map is given by the maps

(i) corgoty) s H™(Gs(L), T) — H™(Gs(F),T), m=0,1,2,

(ii) for each v € 3 and a fixed prime wy € ¥, of L above v, a map

G
ZCOI'GZ:]O O(Uw)*:@Hm(LwaT)—)Hm(Fl/?T)v m:071,27

wlv wlv

where (0,,)+ is the conjugation map H™(L,,T) - H™(Ly,,T) induced by certain Galois
automorphisms o, (fixing F') such that 0,Gr_ o' =G Loy
Gs(F)\V . gm v v m v v _
(iii) (reng(L)) : H™(Gx(L),TV(1))Y — H™(Gx(F),TV(1))Y, m=0,1,2.
Proof. We divide the proof into three parts.

1. Part: We begin with the compatibility of the maps from the first to the second non-trivial
column of (A.4.2)). Let us fix a prime v € ¥ of F', a prime @q of Fy;, above v and let us write Fy; g,
for the union of the completions at @y of the finite subextensions of Fx/F. Let us write wy for
the prime of L below wy and fix a prime @ of Fy. above each other prime w of L above v, so that
we have

wop W ... Fx

wo W o... L

NP2

v F
(A.4.4)

Moreover, for each w above v fix o, in Gx(F') so that &g o o, = @. For any w above v we write
Gx(F)g 2 G(Fyp/F)) and Gx(L)s = G(Fx o/L,) for the decomposition groups of @ in Gx(F)
and Gy (L), respectively; when we write w to mean any prime of L above v, then, in particular,
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w could be wy. We have 0,(Gx(L)z)o, = Gs(L)g, (note that Gx,(L) is normal in Gx,(F)) and
write

(o)« s H"(Gx(L)a, T) ~ H™(Gx(L)ay, T)

for the conjugation isomorphism, see ([NSWO0S]|, chapter I, §5) for a definition and note that
o,T = T. Moreover, we set G, = G(Fg@/Lw) for arbitrary w | v, and Gp, = G(FE@O/FV),
where Fg,@ denote fixed algebraic closures. Then, we have surjections Gy, - Gx(L)g and
GF, » Gx(F)g,. Note that the induced embeddings oy, : Fx g — Fz@o extend to isomorphisms
Oy Fg@ ~ Fg@o which we also denote by o,. As before, we have conjugation isomorphisms
(0w)+ : H™(Ly,T) 2 H™(Ly,,T). Then, consider the following diagram, where, by proposition
[A.3.1] [A.3.2] and [A.3.4] we may assume that T is of finite p-power order and therefore discrete,

Gx(L)

. Gx (L)
Bujv TeSG1 (1), @wh,mfaii )

H™(G=(L),T)

@y H" (G (L)s, T)

@w|u Hm(Lw’ T)

Gx(L)g, Gr,
Corgigf’)) Zw\u COI‘G;EF))QZ 0 (0w)« ZWIV COI‘G;’/0 o(ow)s
H™(Gx(F),T) H™(Gx(F)g,,T) H™(F,,T)
resC= () infGZ(F)wo
Gx(Fag Gr,

(A.4.5)
the left diagram commutes by the double-coset formula for res and cor, see ([NSWO0S], (1.5.6)
Proposition), and the right diagram commutes since conjugation commutes with inflation, see

(loc. cit., (1.5.4) Proposition) and by (loc. cit., (1.5.5) proposition), which states that infg/v o
Corg% = corg o infg/ V for V closed and normal and U open in a profinite group G. In our case
G=Gp,, U= GLWO and V = GFE,UO; V' is equal to the kernel of GLWO - G5 (L) g,-

2. Part: Next, using the same notation as before, we consider the maps from the second to
the third non-trivial column of and show that they are compatible. This is equivalent to
showing that for any v € 3, m =0, 1,2, the dual diagram

Doy (H™ (L, T)") H*™™(Gx(L),T¥(1))

Dulv ((corgi:’o o (Uw)*)v) resgig))
H™(F,,T)" H>™(Gs(F), TV (1))

(A.4.6)

commutes, compare remark (ii) for the fact that (-)" commutes with finite products for
both discrete and compact modules. The horizontal arrows in (A.4.6) are defined via local Tate
cohomology and the localization maps A\*>™™ for TV (1), which we explain now. Assume we have
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already shown that the following diagram commutes

EBw|V (Hm(LwaT)v) eaw\u H2_m(Lw7Tv(1))

ar . Cr
Dol ((COYGF:JO ° (”w)*)v) Do (057 )« 0 TG,

H™(F,,T)" z H*™(F,,TV(1)),

(A.4.7)

where the horizontal maps are induced by local Tate duality. Then, showing the commutativity
of (A.4.6]) is equivalent to showing that

Dupy HZ (Lo, TV (1)) 2 HE™(Gy (L), TV (1))

Gx(F)

Gp
-1 v
@ g ores (3
w|1/( w )* G, o SG ([)

)\27777,

H>™(F,, TV (1)) H>™™(Gx(F),TY(1))

(A.4.8)

commutes, where, by abuse of notation, we use the same symbol A>~™ for both of the horizontal
localization maps, which, as before, are given by the restrictions to the decomposition groups in
the extension Fy/F and Fy/L composed with the inflation maps to the absolute Galois groups
of the local fields. In fact, is, by definition, the diagram that arises by connecting
with . As in the first part of the proof, we divide the diagram into two diagrams,
one corresponding to the restriction maps and one to the inflation maps. The first commutes
since conjugation commutes with restriction. The second diagram commutes since conjugation
commutes with inflation and by ([NSWO0S], (1.5.5) Proposition) stating that for closed subgroups

V c U c G we have infg/v o resg% = resg o infg/v. Use this result for V =Gp, , , U =Gr,,, and
G=Gp,.

Now, it remains to prove that the diagram from commutes. By the compatibility of
conjugation with res and cor, this follows from the next diagram, where, for ease of notation, we
write M /K for an arbitrary finite extension of non-archimedean local fields. Whenever we have
amap f:A— B, then (f)* denotes the induced map Hom(B,(C) - Hom(A,C), g~ go f, while
(f)+ means Hom(D, A) -~ Hom(D, B), h~ f oh. Let us write H*(M) = H*(M,Q,/Z,(1)) and
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H?*(K) = H*(K,Q,/Z,(1)) and consider the diagram

Hom(H™(M,T), H*(M))

(invas)« (corgM). (z+— -Uz)
Hom(H™(M,T),Qp/Z,) (invic)- Hom(H™(M,T), H*(K)) H2>™(M, TV (1))
(corgM)* (corgM)* res
(inv g ) (y~-Uy)

Hom(H™(K,T),Q,/Z,)

Hom(H™(K,T), H*(K)) H>™(K,T(1))

(A.4.9)
where we write H™(K,T)x H*>™(K,T"(1)) N H?(K) for the cup product and invy : H*(K) =
Qp/Z, for the local invariant map (and likewise for M), so that the composite of the two lowest
(resp. diagonal) morphisms of the diagram gives the local Tate duality isomorphism for K (resp.
M). The right part of the diagram commutes by a general result about the compatibility of
restriction, corestriction and the cup product, see ([NSWOS], (1.5.3) Proposition (iv)). The
lower diagram on the left commutes by definition and the upper diagram on the left is just the
property ([INSWOS§|, (7.1.4) Corollary) satisfied by local invariant maps for extensions M /K.

3. Part: For the maps from the third to the first column one has to show the compatibility
of global Poitou-Tate duality. We skip the proof of this part. O

In view of remark and our assumption that for some n, n > 1, F,, has only complex
archimedean places, passing to the projective limit (with respect to the maps as in lemma|A.4.5))
yields a long exact sequence

0— lim H(Gps,T) — lim @yes,, , H (P, T) — HA(Gooiz, V(1))
lim H'(Go.T) = lim @yex, , H (Fup T) — H'(Goos, TV(1)”

. 2 - 2 0 v v
fm, H(Ghp, T) — M, @pes, , A7 (o, T) = H (G, TV =0y )
where X, ¢ denotes the set of finite places of F;, above X;.

For a prime v € ¥y we write F, for an algebraic closure of the completion of F' at v and fix an
embedding F' c F',,. This embedding determines a prime v of F, above v and we denote by G,
the correpsonding decomposition group in G = G(Fs/F). We have seen in the proof of lemma



158 APPENDIX A. APPENDIX

that local Tate duality turns corestriction maps into duals of restriction maps, see ((A.4.7))
and ((A.4.9). Hence, we get for i =0,1,2

lim @ H'(F,,,T)2 lim ( @ H(F,,,T'(1))")

P
n,cor V€Xn f n,resV vedy, r

(lm @ H*'(F T (1)

n,res VEEn,f

( D Coindg H*™(Foo 5, T"(1)))"
Vel

Q; c-Indd (H*™(Foo 5, TV (1))"), (A.4.11)
143 f

112

112

112

and we refer to remark for the properties of (=)" that we used. Above, when we write
Fo p for a prime v € ¥y we mean the union of the completions F), ; of F;, at the (restriction of
the) prime 7 of F,, above v induced by the embedding F c F,. For i = 0, 1,2, the last term from
(A.4.11]) above is isomorphic to

@ c-Indd (B> (Fup, TV (1)) 2 @ c—Indg”(( h_n}H?*i(Fn,;,TV(l)))v)

I/EZf I/EZf n,res
= @ c-Indg lim (H*(F,,T"(1))")
vedy n,resV
= @ c-Tndd lim H'(F,,T). (A.4.12)
veXy n,cor

Remark A.4.6. Consider the case T' = Z,(1). Then,

(i) we canonically have T* (1) ® Q,/Z, = Q,/Z,, with trivial Gg-action on the right. It follows,
compare ([NSWO08], Theorem (2.6.9)) that for all n > 1

HQ(Gn,Za T*(l) ® @P/Zp) = H2(Gn,EaZp)v-

Hence, if Leopoldt’s conjecture is true for p and all F,, i.e., if Hy(Gyx,Z,) vanishes,
then the Poitou-Tate sequence as in gives us a six term exact sequence consisting
of the lower two lines. This will be the case when F,, = K(E[p"]) for an elliptic curve
with complex multiplication by O, since F), is then abelian over the quadratic imaginary
number field K, compare ([NSWO08], Theorem (10.3.16)).

Regardless of whether the Leopoldt conjecture holds for each F,, the weak Leopoldt con-
jecture holds for Fy, and Q,/Z, whenever F'Y“ c F,,. In fact, it holds for each cyclotomic
extension FY“/F,, n > 1, see ([NSWO08], (10.3.25) Theorem) and compare also Iwasawa’s
article [Iwa73]. We may therefore conclude

H*(Goo5:, Qp/Zp) = lim H*(G(Fx/F"%),Qp/Zy) = 0,

n
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which shows that for 7" = Z,,(1) the sequence (A.4.10]) always restricts to an exact sequence
consisting of the lower two lines. We remark that the statement about the weak Leopoldt
conjecture holds for more general modules T' as long as F,/F contains the cyclotomic
extension of F' and the trivializing extension for 7V(1), compare ([Ven00], remark 3.0.4).
For more information on weak Leopoldt conjectures see ([PR00], appendix B) and [Sch85]
for some results concerning elliptic curves.

(ii) we have H'(Geo s, Qp/Zp)Y = Homys(Goo 52, Qp/Zy)Y = G(Fs/Foo ) (p).

(iii) by (A.4.11) for i = 2 we have

. 2 ~ v
lim @ H*(Fny,T)2 @ c-nddZ,.
n I/EE"yf VEEf

(iv) lastly, we also have

H(Goox, T*(1) ® Qp/Zy)" = Zy.

(v) assuming that F%¢ c F,,, in view of ({A.4.12), the Poitou-Tate sequences (A.4.10)) reduces

to

1
0 lim H'(Gy5,7Z,(1)) % @pex, c-Indd lim H'(Fp,Zp(1)) = H'(Goo 2, Qp/Z)"

2
A Bpex, c-ndJ Z, Zp 0,

lim H*(Gps,Zp(1))

(A.4.13)

where we recognise HY = lim HY(Gpnx,Z,(1)), i = 1,2, from the global theory and for
vey, Hi = lim | HY(F,5,Z,(1)) and H2 _ = Z,, from the local theory.

loc

A.5 X-units and X-ideal class groups

Let F' be a number field and ¥’ ¢ ¥ be finite sets of places containing the infinite places Yo,
of F. We write ¥ and Xy for the finite primes in ¥' and X, respectively. Denote by Jp the
ideal group of F, the free abelian group generated by all non-zero prime ideals of F' (i.e., by the
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non-archimedean primes). Then, by the Snake Lemma we have the following diagram

0

X
OF,Z’

Ffe—7F"———0

0%@V€Zf\2}ZV*>JF/<V€E}>*)JF/(I/EEf>*>O

i EByer\Z} Ly —— CZZ’(F)

Cl=(F) 0 (A5.1)

In particular, tensoring with Z, yields an exact sequence

0-Opsy ®2Zy— Ops @y~ B Zyy— Cls/(F){p} - Cls(F){p} - 0. (A.5.2)
O

A.6 Elliptic curves with complex multiplication

In this section we gather some known facts about elliptic curves defined over a quadratic imagi-
nary number field K with complex multiplication by an order in K. We write K for an algebraic
closure of K and G for Gal(K/K). If one is interested in curves already defined over Q, one
can find a complete list of the finitely many Q-isomorphism classes of elliptic curves defined over
Q with complex multiplication in ([Sil99], Appendix A, §3).

As a special case of ([Sil99], Chapter II, Theorem 4.3) we have the following proposition.

Proposition A.6.1. Let F/K be an elliptic curve with complex multiplication by Og. Then,
K coincides with its Hilbert class field.

In the above proposition by Hilbert class field we mean the big Hilbert class field, i.e., the ray
class field of K modulo the unit ideal (1), which coincides with the maximal abelian extension
of K that is unramified at all primes. The proof, in a more general situation, shows that the
j-invariant j(E) of E generates the Hilbert class field. In our situation, since F is defined over
K, j(FE) also belongs to K, which implies what we claimed.

We also note that for an elliptic curves E/K with complex multiplication, as Shimura remarks
n ([Shi71], (5.1.3)), every endomorphism in Endg(E) is rational over K, i.e., already defined
over K,

Endg(E) = Endg (E).

If Endg (F) is equal to the maximal order Ok and p € Z is a prime that splits in Ok into two
primes generated by 7 and 7, then we see that the 7-adic Tate module T E = lim E[ "] carries
an action of Gk since multiplication by 7, by the above remark, is defined over or K.
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Let us recall a reduction criterion in terms of decomposition behaviour due to Deuring for
primes of good reduction.

Proposition A.6.2. Let E/K be an elliptic curve and let p be a prime of K where E has good
reduction. Write p in 7Z for the prime below p. Then, the reduction of E modulo p is ordinary if
and only if p splits in K.

Proof. See [Lan87], chapter 13, theorem 12 and also Deuring’s article [Deudl]. o

A.6.1 Fields generated by division points

Next we come to some properties of the extensions obtained by adjoining coordinates of division
points of E/ to K that we will use repeatedly. Assume that F has complex multiplication by the
maximal order Og. Let m and n be two integral ideals of Ok . First note that for the ray class
fields K (m) and K (n), in general, we have an equality

K(m)nK(n)=K(g.c.d.(m,n)),
which is a simple exercise in class field theory. However, in general, we only have an inclusion
K(m)K(n) c K(l.em.(m,n)),

which need not be an equality. For extensions generated by division points of E the situation is
nicer.

Proposition A.6.3. Let m and n be two non-trivial integral ideals of Og. Then, we have
identities

K(E[m])nK(E[n]) = K(E[g.c.d.(m,n)]) and K(E[m])K(E[n])=K(E[l.c.m.(m,n)]).
Proof. Let us first prove the second identity. We clearly have
K(E[m])K(E[m]) c K(E[l.c.m.(m,n)])

since m-, resp. n-division points are also [.c.m.(m,n)-division points. On the other hand, let @
be a l.c.m.(m,n)-division point of E(K). We can find integral ideals m’ and n’ such that

m'm=1/lcm.(mn) and n'n=Llcm.(m,n)

and m’ and n’ are easily seen to be coprime. Let m’,n’ € Ok be generators (K has class number
1 by proposition of m’ and n’, respectively. Then we can find a,b € Ok, prime to each
other, such that

am’ +bn’ = 1.

It follows that
Q=am'Q+bn'Q,
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where am/@Q) and bn'Q are m- and n-division points, respectively. Since E is defined over K,
addition on F is a K-rational operation and we see that the coordinates of ) already lie in the
compositum K (E[m])K(E[n]).

Now, we come to the first identity. The inclusion

K(E[g.c.d.(m,n)]) c K(E[m])n K(E[n])
is obvious. This time, we can find integral ideals m’ and n’ such that
m=m'-g.cd.(m,n) and n=n'-g.cd.(m,n).

Again, m’ and n’ are easily seen to be coprime. Assume we have m = [[;["™ and n = [];[™,
where m| and n; are the exact exponents of the prime [ in the product decomposition of m and
n, respectively. Let us define

m”=]r™ and n"=]]M™

[|m! [

where the products are taken precisely over those primes that divide m’ and n’, respectively.
Since m’ and n’ are coprime, m” and n” are coprime, too. We claim that

m = l.cm.(m”, g.c.d.(m,n)). (A.6.1)

In order to show this write m” =[], (™ and g.c.d.(m,n) = [I 1% for the product decompositions.
Note that dy = min(my,n(). By definition of the least common multiple, the exponent of a prime
[ in the decomposition of l.c.m.(m”, g.c.d.(m,n)) is given by

max{m{, dy}.
If the prime [ divides m’, then, by definition of m”, we have
m{' =my > dj,

so the exponent of [ in l.c.m.(m”,g.c.d.(m,n)) is given by m;. Now assume that [ + m'. If
my = 0, then m{’ = 0 and d; = 0, so also in this case m; coincides with the exponent of [ in
l.c.m.(m",g.c.d.(m,n)). The last case to consider is [ + m’ and m; > 1. In this case [™ must
divide g.c.d.(m,n), so that m; < d;. By definition of d; we then have m = d;. Moreover, since
[+ m’ we have m!' = 0 and we conclude that also in this last case m coincides with the exponent
of [ in l.c.m.(m", g.c.d.(m, n)) This finishes the proof of 1} Similar to we can show
that
n= l.c.m.(n",g.c.d.(m, u))

Writing q = g.c.d.(m,n) and using the second equality from the statement of the proposition
proved above, we can now write

K(E[m]) = K(E[lL.cm.(m”,q)]) = K(E[a])(E[m"])



A.6. ELLIPTIC CURVES WITH COMPLEX MULTIPLICATION 163

and, likewise,
K(E[n)) = K(E[L.cm.(n",q)]) = K(B[a])(E[n"]),
where the fields on the right are the ones obtained by adjoining coordinates of m”- and n’-
division points, respectively, to K(F[q]). They coincide with K(F[q])K(E[m"]) and with
K(E[q])K(E[n"]), respectively. Considering E as defined over K(FE[q]) and recalling that m”
and n’ are coprime, (|dS87], corollary 1.7) yields
K(B[m]) n K(B[n]) = K(B[a]) (E[m"]) n K(B[a]) (E["]) = K(Flq]),

which finishes the proof. o

Now, assume that the prime number p € Z splits in O into distinct primes p and p. We
define Ky, = K(E[p*p™]), Lin = K(p*p™) and Fj,, = K(fp*p™). We write pu(K) for the roots
of unity contained in K. For k,n > 1 such that O} — (O /p*p™)* is injective, the cardinalities
of the Galois groups over K are given by

_ #(0k[ip"p")*
#Gal(Fy,,/K) = TR (A.6.2)
_ #(Ok [pFp")"
#Cal(Ly,,/K) = TR (A.6.3)
#Gal(Ky,n/K) = #(Ox [p"p")", (A.6.4)

where the first two equations follow from class field theory, see ([NeuQ7], VI, §1, Aufgabe 13),
and the third from ([dS87], II, corollary 1.7). For k > 2,n > 1 such that O} — (O /p*1p™)* is
injective, the fields build the following tower

Fk,n

#(Ox /D"
Fn(K) Frin

#Ok/ | Kin i

(A.6.5)
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where the numbers next to the edges are the degrees of the extensions. We define the following
infinite extensions of K

Foo = kUK(fﬁ’“p"), Koo = JK(E[p"D"]), Lo = kUK(ﬁkp")-

k,n

Lemma A.6.4. Assume that k,n > 1 are big enough such that O, — (Ok [p*p™)* is injective.
Moreover, assume that (p, #u(K)) = 1. Then, the restriction maps

Gal(Kk,n/Lk,n) - Gal(Kk:—Ln/Lk:—l,n)

are bijections. We have a similar statement for the roles of n and k interchanged. In particular,
G(Kwx/Ls) = lim G(Kjn/Lyn) has cardinality #up(K).

Proof. Since both groups have the same finite cardinality it is sufficient to show that the maps
are injective. To show this, it clearly suffices to show that

Lk’,nKk:—l,n = Kk:,n-

But Ly, Kj-1,, is a subextension of the degree p extension Ky ,/Kj_1,, so it suffices to show
that Ly, Kj_1, is strictly bigger than Kj_;,. But the exponent of p in the cardinality of
Gal(Ly , Kk-1,/K) is at least (k—-1) + (n—1) by our assumption (p,#p(K)) = 1, while the
exponent of p in the cardinality of Gal(Kj_1,/K) is (k-2)+ (n—-1). o

Lemma A.6.5. Assume that k,n > 1 are big enough such that O} — (O [p*1p" 1)< is injec-
tive. Moreover, assume that (p, #(Ok/f)*6) = 1. Then, in the following composite map, both of
the restriction maps

Gal(Fk,n/Fk—l,n) -_—> Gal(Kk,n/Kk—l,n) -_— Gal(Lk,n/Lk—l,n)

are bijections. We have a similar statement for the roles of n and k interchanged.

Proof. Since all groups are of order p, it is sufficient to show that the composite is an injection.
This, in turn, is equivalent to showing that Fy_; Ly n, = Fj 5. And since [Fj, : Fi_1 ] = p it suf-
fices to show that Fj,_q Ly, is strictly bigger than Fy,_; ,,. By the assumption (p, #(Ok/f)*6) = 1
the exponent of p in [Fj_1, : K] is n—1+k—2. However, the exponent of p in [Lg, : K] is
n—1+k -1 which is less than or equal to the exponent of p in [Ly ,Fj-1, : K], showing that
L nFj-1,, is bigger than Fj_q ,,. 0
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We then have a commutative diagram

1 —— G(Fyn/Fi-1n) —— G(Fen/Fr-1n-1) —— G(Fi-in/Fr-ip-1) — 1

! | :

11— G(Kpn/Ki-1n) = G(Kppn/Ki-1n-1) — G(Kp-1n/Ki-1p-1) — 1

! | !

1 —— G(Lin/Li1n) —— C(Lin/Litms) —— G(Liotn/Litn) — 1
(Lgn/Li-1,n) (Lipn/Lk-1,n-1) (Lg-1,n/Lk-1,n-1) (A.6.6)

with exact rows. By the five lemma we get the following corollary.

Corollary A.6.6. Let the setting be as in lemma[A.6.5 Then, in the following composite map,
both of the restriction maps

Gal(Fk,n/Fk—l,n—l) - Gal(Kk,n/Kk—l,n—l) - Gal(Lk,n/Lk—l,n—l)
are bijections.

Lemma A.6.7. Let E/Q be an elliptic curve with complex multiplication by O and good
ordinary reduction at p. Moreover, assume that (p, #(Og/f)*) = 1. Then, for any divisor " of f
and k,n > 1 such that O — (Ok [f'pp™)* is injective, the natural maps induced by restriction

Gal(Kpy1,n/Kin) — Gal((Kk+1,n NK(fp'p™))/(Kipn K(f’ﬁkpn))) (A.6.7)
are injective.
Proof. We can write the map from as the composite of the monomorphism
Gal(Kps1,0/Kin) = Gal(Kpr /(K 0 K(F59"))) (A6.8)

and the epimorphism
Gal(K1n/(Ki 0 K (F3*p™))) > Gal((Kior 0 K (75" 5™)) /(K 0 K(F555™))). (A.6.9)

By ([dS87], II, corollary 1.7), Gal(Ky+1,,/Kkn) has order p. We next show that the kernel of
the map (A.6.9) has order prime to p, which proves that (A.6.7) is injective. The kernel of the

map is given by
Gal( K1 n/ (Ko 0 K (755 9™)) ) 2 Gal( (Ko o K (75 19™))) /K (B 19™)),

which is a quotient of Gal(K(fﬁk“p"))/K(f’ﬁk“p")) by ([dS87], proposition 1.6). Due to our
assumption on k,n and ' and the fact that (f,p) = 1, class field theory, see ([NeuO7], VI, §1,
Aufgabe 13), shows that the latter Galois group has order

#(Ox /)"
#(Ok /)<

which is prime to p by our assumption. o
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A.6.2 Groflencharacters and conductors

Let us write f, for the conductor of the Gréfilencharacter 1 attached to E/K, which can be
interpreted in several ways as we explain next, see also ([BV10], section 2) for a discussion.
Writing ¥p,q for the primes of K where E has bad reduction, then i can be defined as a
homomorphism from the free abelian group Iy, , on primes of K not belonging to ¥j,q to the
multiplicative group K*. For a finite place v where E has good reduction write E,,/k:,, for
the reduction modulo v, where k, denotes the residue field. By definition, ¥ (v) € K™ is the
unique element that maps to the arithmetic Frobenius element in Endy, (E,) under the natural
(injective) map
K =Endg (F) ®2 Q — Endy, (E,) 2 Q

induced by reduction modulo v, compare [Coaal for the fact that one can lift the Frobenius
elements to K. It is proved in [Coaal that ¢ is a GroBencharacter of type Ay in the sense of
Weil [Wei55] with infinity type (1,0), which means that there exists an ideal f of K such that
Y((z)) = z for all x € K* satisfying ord,, (z — 1) > ord,, (f) for all q | f, where we write ord,,
for the valuation function associated to q. fy, by definition, is the smallest ideal f with this
propery as is also explained in [dS87]. Let p be a prime above which E has good reduction. Weil
[Weib5|] has shown that the character ¢ can be extended to a character G(K (p*fy)/K) — C,
which we also denote by v, where we write C, for the completion of an algebraic closure of Q,.
The extension to G(K(p™fy)/K) is defined in a way such that for the arithmetic Frobenius
(v, K(p=fy)/K) in G(K(p™fy)/K) attached to a finite prime v of K not above p where E has
good reduction, we have ((v, K (p*fy)/K)) = ¢ (v), see also [dS87].

We also have the notion of conductor fg/x of E/K in terms representations of the inertia
and higher ramification groups on Tate modules and certain torsion subgroups of E. We refer
to Silverman ([Sil99], IV, §10) and the article [ST68] by Serre and Tate for a precise definition
and the fact that fg/k is divisible precisely by the primes of K where E has bad reduction. The
relation between fg/x and fy is given in the following

Theorem A.6.8. For the conductors fy and fg g we have have an equality

f2 = §m/i

of ideals in Og. In particular, f, is divisible precisely by the primes where E/K has bad
reduction.

Proof. See the article of Serre and Tate ([ST68§|, theorem 12, p.514). See also Deuring’s work
[Deu55) and [Deub6] or Shimura’s book ([Shi7l], theorem 7.42). 0

A.6.3 Curves defined over Q

Appendix A, §3 in Silverman’s book [Sil99] contains a list of representatives with minimal discrim-
inant and conductor of all Q-isomorphism classes of elliptic curves defined over Q with complex
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multiplication by an order O in an imaginary quadratic field K = Q(v/-D) of discriminant —D.
The discriminant of any such quadratic imaginary field K belongs to the finite set

~De{-3,-4,-7,-8,-11,-19, -43,—67, 163},

which consists of numbers, all of which are divisible by one prime number only.

Moreover, if we restrict our attention to those E/Q that have complex multiplication by the
maximal order O, i.e., the full ring of integers of K = Q(\/j), then the following holds. Let
us write fg/q for the conductor of E over Q. Then, each Q-isomorphism class of elliptic curves
defined over Q with complex multiplication by Ok contains a representative F/Q such that

fE/q 1s divisible by only one prime number which is precisely the prime dividing - D.
In particular, if [ € Z is the prime dividing fg/q, then [ ramifies in K and we can write
Ol =1

for the prime [ in O that lies above the prime ideal generated by [. These considerations prove
part of the following proposition. We can consider E also as defined over K and when we do,
we write fg/r for the conductor of E/K.

Proposition A.6.9. Let E/Q be a representative as above and [ € Z be the prime dividing fgq-
Write | for the prime of K above ZI. Then, we have an equality of ideals

fex =1
for some r > 2 and r divisible by 2.

Proof. We have seen above that fg, i is divisible at most by one prime, namely . But since
the class number of K is 1, E has a global minimal equation over K and we can use a general
result of Stroeker ([Str83], (1.7) Main Theorem) saying that E considered as an elliptic curve
over K cannot have good reduction everywhere, so the exponent r must be greater or equal to
1. Theorem now concludes the proof. We note that we could have concluded that r > 2
independently of theorem In fact, since E has potential good reduction everywhere, the
reduction type at [ must be additive and therefore r > 2. o

We also state a fact in this subsection concerning fields generated by division points, which we
will use later when dealing with curves over Q. If E is a curve defined over Q with complex
multiplication by Ok, K quadratic imaginary, then the following holds. Let us write Ko =

U, K (E[p"]) and Qu, = U, Q(E[p"]).

Proposition A.6.10. Assume that p splits in K. Then, we have an equality of fields K+ = Q.
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The content of this proposition is that K is contained in Q. for split primes p. Write 7 for a
generator of one of the two primes of K above p. The proof of the proposition follows immediately
from the following general lemma applied to

p: G — Autg,(Qp ®z, TrE),

the representation of the m-adic Tate module T E of E and the two groups G < Gg. In fact,

we will see in ((A.6.18) that we have Indggp ~ pg, where

PE: GQ - AUt@p(QP ®Zp TPE)7

and ker(pg) = Gg... The lemma now says that Gg., ¢ ker(p) and, in particular, Gg., c Gk,
which proves what we wanted.

Lemma A.6.11. Let H <« G be a normal subgroup of finite index n. Furthermore, let p: H —
Autp (V') be a finite dimensional representation. Then, we have the inclusion

ker(IndZ p) ¢ ker(p),
where the kernels both are considered as subgroups of G.
Proof. Let g belong to ker(Indg p). We fix both, a system of left coset representives o1, ...,0p,
of H in G, with o1 =1, and a F-basis v1,...,v,, of V. IndgV = F[G] ®ppm V is a F-vector
space with basis (0; ® vj); ;. Now, for any i we can find a k and an element h € H such that
go; = oph. By assumption on g we get

i ®v; =g(0; ®vj) = (g0;) ®vj = oh®vj = 0, ® p(h)v;.

Since (0;®v;); ; forms a basis, we must have i = k. Hence, g = Jihai_l, which belongs to H, since
H is assumed to be normal in G. Moreover, by a similar reasoning, and since g € H, we have

lev=g(l®v)=1p(g)v,

for all v € V, whence it follows that v = p(g)v, Vv € V since (0; ® v;);; is a basis. This implies
that g belongs to ker(p), as was to be shown. o

We note that the Tate-module T,E for £/Q with complex multiplication by Of is irreducible
as a representation of G, see ([Ser98a], Chapter IV, 2.1) since E has no complex multiplication
over Q, by which we mean that Endg(E) = Z, one has to allow a larger ground field to achieve
complex multiplication, in fact, as we have remarked before End (FE) = Ok.
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A.6.4 The Tate modules T,F, T, F and Tz E

In this section we recall some facts about Tate module of elliptic curves with complex multipli-
cation. Fix a prime number p € Z,, p # 2, and embeddings Qc @p and Q c C. Let E/K, K
quadratic imaginary, be an elliptic curve with complex multiplication by O and good reduction
at p and set Ko = U, K, where K,, = K(E[p"]). We assume that p splits in K, i.e., Ogp = pp,
p # p, which implies that E has good ordinary reduction at p, see proposition

We write p (resp. ) for the prime of K (resp. K ) above p that is determined by the embed-
ding Q c Q,,. Moreover, we set G = G(Ko/K) and G’ = G(Ko,5/Kp). We identify G(Koo,5/Kp)
with the decomposition group of 7 in G. Let us write ¥ = ¥ g for the Groflencharacter attached to
E. We define 7 := ¢ (p) and write 7 = ¢(p) for the complex conjugate. Then, one has m, 7 € O,

7= Ngp(m) = N(p) =p,

where N(p) = #Ok/p, and
(m)=p and (7)=p,

see ([Coaal, lecture 3, Lemma 8 and lecture 4, theorem 9). Moreover, if E is already defined over
Q we also have

Y(p) =v(p) =7

see ([Kat76], p. 559).
In any case, we have fixed Og-generators w of p and 7 of p. Note that 7 is a uniformizer
for O, and 7 is a unit in Ok, i.e., belongs to O}}p. Let us write m for the valuation ideal of

@p, i.e., m = Uy, my;, where the unions is taken over all finite subsextensions L of @p/K p and my,
denotes the maximal ideal of Oy. There is an exact sequence

0— B(m) -5 BE(Q,) % £(F,) — 0, (A.6.10)

and the element 7, as a unit in (’)}}p, defines an isomorphism of the formal group E /Ok, (and

hence of E(m)), see ([Serl(], section 3.3, proposition 3). In particular, E(m) does not contain
any non-trivial 7-torsion. All non-trivial p-torsion of E(m) is m-torsion. Recall that due to our
ordinary good reduction assumption 7, E = lim E[p"] and Ty E = lim | E[p"] are both free of
rank 1 as Z,-modules. Let us make a remark about -, - and - prlmary Tate modules.

Remark A.6.12 (Conventions for Tate modules). One certainly defines the p-primary Tate
module T, E via the multpilication by p maps E[p"*'] - E[p"], = px. For the - and #-primary
Tate modules some authors adopt different conventions, one can either define T, F via the maps
E[n""1] - E[r"], « + 72, which will be our definition. Alternatively, recall that p = 7 - 7, one
could define a m-primary Tate module via the maps E[7"*!] - E[n"], x = pzx, which also gives
a well-defined module which we will denote by 75 ., E (similarly we define 7% .,F). The modules
T E and Ty , E are isomorphic for which we recall that E[7"] = O /(p™) as Og-modules. 7" and
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7" are coprime and hence multiplication with 7" induces an isomorphism -7" : E[7"] — E[7"].
Passing to the projective limit we get an isomorphism

('ﬁ-n)n : T7r,~pE o T E, (xn)n i (ﬁnxn)n

Note that T} ,F naturally embedds into T),E since the maps of the corresponding projective
systems are compatible. T;E embedds into T, F via the above isomorphism composed with
Ty pE = T,E. An analogous statement holds for the Tate modules Tz F and T% ., F, where the
latter is defined in an entirely similar fashion as 75 ,F.

Let us consider the maps
E[p"] — E[x"] x E[7"], x+— (7"z,7"x), n>1, (A.6.11)

for which we recall that 7 -7 = p. It is a fact that E[7"] 2 Og/(p") as Ox-modules and
likewise for . Since 1 is a greatest common divisor of 7™ and 7" in the principal ideal domain
Ok (hence 7" acts bijectively on Ok /(p™)), we see that the map is injective and
therefore bijective as a map between two groups of order (p")?. It is evident that the maps
are Z,[G]-linear and are compatible with respect to the maps E[p"] - E[p"!], z = pr and
E[n"] x E[7"] - E[z" '] x E[#" '], (y,2) v (7y,7z). For the latter fact just note

(7" tpx, 7" pa) = (7 rx, 7 TX).

Hence, we get an isomorphism

T,E — T E x T;E, (A.6.12)

which fits into the commutative diagram of G g-modules

T,E ToE x T+E

(C7™)n, (7™)n)

TF.EXT;T.E
P P (A.6.13)

where the vertical map is given by (s,t) —> s + ¢, the horizontal map is the map from
induced by and the diagonal one is the product of the maps from remark Since
the horizontal and the diagonal maps are isomorphisms, the vertical map is an isomorphism, too.
In particular, we have a direct sum decomposition of G g-modules

T,E=T E&T; ,E. (A.6.14)
The inverse of (A.6.11)) is given by
B[] x E[7"] 3 (y,2) — (") g + (=) 12, (A.6.15)
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where, we recall, 7" acts bijectively on E[n"] and 7™ acts bijectively on E[7"] (Note: we do not
claim that for = € E[p"] we have (7™)~}(n"2) = x, which is clearly false in general! Rather, we
can always find a1, a9 € Ok such that a;7™ +as7" = 1 so that we can decompose z = a1tz +as7"x
as the sum of a 7"-torsion element as7"z and a 7"-torsion element a;n"x).

Proposition A.6.13. The exact sequence from (A.6.10) induces an exact sequence of G'-modules

I d .
0-T,E -5 T,E "2 T,F >0, (A.6.16)
which maps TpE isomorphically to Ty ,E and Tk ., ¥ isomorphically to TpE.

Proof. The sequence is always left exact. Exactness on the right does not hold in general, but it
holds under our assumption that F has CM by Ok and good ordinary reduction at p above the
split prime p. In fact, it follows from ([PR&4], I, §1.2, Lemme 1, p.28) that

E@,)(7) 2 B(F,) ()

is an isomorphism, where we write N(7) and N(p) for the 7- and p-primary torsion parts of an
Og-module N, respectively. This induces an isomorphism of the Tate-modules

TrpE2T,E.

Let us now show that ¢ (7, E) T pE. Recall that Wp) = 7 is a generator of p. Since T
acts as an isomorphism on the formal group, we have E(m)(p) = E(m)(r), where m denotes
the valuation ideal of Qp Hence, the image of T), Ein TpE under ¢ is contained in Tr ., E, see
remark [A.6.12] for the definition of Tr ,E.

I thank Otmar Venjakob for pointing out that the image of T, pE in 7T, F must then coincide
with T ,E. In fact, Tr ,E/T), E is of finite order (both modules are free of Zp-rank 1 and the
one injects into the other) so for any ¢ € Ty ,F the element redy(t) is of ﬁmte order. But T,E
does not have any non-trivial torsion and therefore ¢ must already belong to T}, E. o

Assume now that E is already defined over Q and write G = G(Ko«/Q). Write c for the complex
conjugation isomorphism induced by Q c C. We let ¢ act on (y,z) € E[7"] x E[7"] by c¢.(y,2) =
(2z,79), and note that this is well-defined since

nz=0 (A.6.17)

3|

"z =

and likewise for y. With this action (A.6.11]) is Gg-linear. We extend this action to T E x Tz E/

and get the G-equivariant isomorphism

T,F = ToExT:E = Ind§T:E (A.6.18)
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where the second map is the map induced by the G-equivariant injection T3 F < T, FE x Tz E
and the universal property of IndngrE. Composing the inverse of (A.6.18) with the natural
G-equivariant inclusion Tz FE < IndngrE =ZplG] ®z,1c) T E, (2n)n = 1® (2n)n, We get

1z TrE > T,E, (zn)n — ((W")flzn)n,

where z, € E[7"], n > 1, compare (A.6.15). The elements (7")7'z, € E[7"] are 7"-torsion
points. Composing the last map with the natural projection [-]: T,E - T,E/T,E we get

[tz]: TxE - T,E|T,E = T/T° (A.6.19)
which is an isomorphism by proposition [A.6.13]

Remark A.6.14. Similar to ¢z, let us define v : Th E < T, E, (yn)n — ((T’r”)_lyn)n7 the image
of which is contained in T ., 2. Then, the inverse of the G-equivariant map T,F — T ExT:E, t

(tzx,tz) from (A.6.12)) is given by
TRExTzE — T,E, (y,2) — tz(y) + tz(2).

For t € T,F and for any 0 € G = G(K«/K), by G-equivariance, we have ot = 1. (0 (tr))+tz(o(t7)).
In T,E/T,E, by proposition |A.6.13| we therefore have

[ot] = [en(0(tr)) + t2(0(t2))] = [tx (0 (t2))] = [t](a (t7))-

Similarly, for the complex conjugation isomorphism ¢ and for any o € G, since in T, E x T7 E

(0¢™ 8)m (07 )0) = (7 )y (¢ 1)2) = (e () 7 () = (007 (t2),0¢7 (),

we get
[oc™1t] = [ta(oc™ (t)) +1a(0¢ (tx)] = [1r](o¢7 (1))

A.7 Modules over the completed group ring

Let O be a complete discrete valutation ring with uniformizer 7 and let G' be a profinite group.
For the notion of pro-discrete and pseudo-compact modules over a topological ring and the com-
pleted tensor product of such modules we refer to [Wit03]. We want to prove a fact about the
topology of pseudo-compact modules over the completed group ring

O[[G]] = lim(O/="O)[G/U],

n,U

where U runs through the open normal subgroups of G. See ([INSWO08], (5.2.17) Proposition)
for the analogous statement for compact finitely generated Z,[[G]]-modules. For any open (or
closed) subgroup U of G we write I(U) for the kernel of the augmentation map O[[G]] - O.
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Remark A.7.1. (i) Underlying all of what follows in this section is the fact that the two-sided
ideals of O[[G]] of the form

(m"O[[G]] + I(U)), n>1,U open and normal in G,
generate the topology of O[[G]] and that the modules
O[[GII/(="O[[G]] +I(U)) = O/x"[G/U]

for open and normal U in G and n > 1, are discrete and of finite length as O-modules,
compare ([Sch1l], Chapter IV, §19). Hence, the topological rings O and O[[G]] are pseudo-
compact as right- and left-modules over themselves and O[[G]] is pseudo-compact as an
O-module.

(ii) Note that (as in the case of Z,[[G]]-modules) any O[[G]]-linear map M — N between
modules M, N equipped with the topologies induced by the submodules {7 M+I(U)M},, i/
and {7"N +I(U)N}, v, respectively, where n ranges through Ny; and U through the open
normal subgroups of G, is continuous.

Proposition A.7.2. Let G be a profinite group. The topology of any finitely generated pseudo-
compact O[[G]]-module M coincides with the topology induced by the submodules {n" M +
I(U)M }y, v, where n ranges through Ny and U through the open normal subgroups of G.

Proof. The author thanks Malte Witte for explanations regarding this proof. Consider a surjec-
tion

0:O0[[G]]* > M, e m (A.7.1)

where e; denotes the element (0,...,1,...,0) with a 1 at the i-th place. The map ¢ is continuous
with respect to the given original topology of M, because M is a topological O[[G]]-module.
We can also endow M with the quotient topology. The proof proceeds in three steps. Whenever
we consider a module we consider it as a O[[G]]-module.

1. Step: We show that the quotient topology on M induced by ¢ coincides with the topology
given by the submodules {7 M + I(U)M}, ;. We will show that the latter topology is at least
as fine as the quotient topology, which implies that the two coincide, since ¢ is continuous with
respect to the topology defined by {n"M + I(U)M}, y and the quotient topology is the finest
topology on M such that ¢ is continuous.

Let M’ be an open set of M with respect to the quotient topology, i.e., ¢ ' (M') is open, and
take any m € M’. Fix 2 € O[[G]]* such that ¢(z) = m. Then —m + M is also open (with respect
to the quotient topology), since ¢t (-m+M') = —z+¢ 1 (M) is open. Now we can find an open
submodule N of O[[G]]¥ such that N c ¢~ '(-m + M'). Since ¢ '(p(N)) = Ugeker(y) (T + V)
is open, we see that ¢(NN) is an open submodule of M (w.r.t. the quotient top.) and that
©(N) c—m+ M'. We will show next that there is a set of the form 7" M + I(U)M contained in
©(N), which implies that

m+7"M+I(U)M cm+@o(N)c M,
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which shows that the topology generated by the 7" M + I(U)M is at least as fine as the quotient
topology.

So let V be any open submodule in M with respect to the quotient topology. By definition
¢ 1(V) is an open neighboorhood of 0 in O[[G]]¥. For large enough n and small enough U we
have

(T"O[[GN] + I(U))eic ™ (V),  Vi=1,...k,

by continuity of the finitely many maps O[[G]] - O[[G]]¥, 1 —> e; and since the {7 O[[G]] +
I(U") }im,ur generate the topology of O[[G]]. Since V' is a submodule, this implies that

(7"O[[G]] + I(U))M = (z"O[[G]] + I(U))p(< €1, .. ex >opc) € Vi

which is what we wanted to show.

2. Step: One has to show that M is pseudo-compact with respect to the quotient topology.
Note that M is Hausdorff with respect to the original topology and ¢ is continuous with respect
to the original topology, hence ker(¢) = ¢ 1({0}) is closed in O[[G]]*. Then, one can show as in
([Gah62], Chapitre IV, §3, proof of Théoréme 3) that O[[G]]* /ker(¢) equipped with the quotient
topology is pseudo-compact, using (|[Gab62], Chapitre IV, §3, Propositions 10, 11). Moreover,
O[[G]]¥ /ker(¢) — M, where both modules are equipped with the quotient topology, is certainly
a homeomorphism. Hence, M is pseudo-compact with respect to the quotient topology.

3. Step: Conclude that the original topology of M coincides with the topology generated
by {n"M + I(U)M}, . We have shown that the latter topology coincides with the quotient
topology in the first step. In the second step we have shown that M is pseudo-compact as a
O[[G]]-module with respect to the quotient topology. Hence the identity map

(M, quotient top.) — (M, original top.)

is a continuous bijection of pseudo-compact O[[G]]-modules. Now it follows as in (loc. cit.,
Chapitre IV, §3, proof of Théoréme 3) that this must be a homeomorphism, which concludes the
proof. The crucial fact used here is that for any open submodule U of (M, quotient top.), the
O[[G]]-module M /U is Artinian. O

A.8 Ore sets over complete DVRs

Let O be a complete discrete valutation ring with uniformizer 7, write F = O/On and assume
that char(F) = p > 0. Moreover, let G be a compact p-adic Lie group containing a closed normal
subgroup H such that

GIMH =Ly

It follows that G is the semidirect product G = H xI' for some subgroup I' = Z,. One can then
show that A(G) = O[[G]] is a skew power series ring over O[[H]], see ([Wit03], Proposition 3.2)
and compare [SV04] and [SV10] for the study of such skew power series rings.
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In [CFK'05] a canonical Ore set S of Zy,[[G]] was defined. The definition of the Ore set S
from loc. cit. can be extended to Iwasawa algebras A(G) = O[[G]] with coefficients in O and is
then given by

S={feA(G)|A(G)/A(G) is finitely generated as a A(H) — module}. (A.8.1)

Our first task is to show that S, for general coefficient ring O, is an Ore set and enjoys similar
properties as in the Z,-coeffiecient case. We also define

S*=Jp"S. (A.8.2)

n>1

A.8.1 Characterization

Let O be a complete discrete valutation ring as above. We will give different characterizations
of the set S and prove that it is actually an Ore set in A(G) = O[[G]]. We will proceed, with
modifications whenever needed, as in [CEK'05] where the Z,-coefficient case was treated. First
we recall the following proposition.

Proposition A.8.1. If P is a pro-p group, then O[[P]] is a local ring with residue field F =
O/Om and the unique maximal ideal m(P) of O[[P]] (which coincides with the Jacobson radical)

aug

is equal to the kernel of the composite map O[[P]] —5 O 25 F.
Proof. See ([Schll], Chapter IV, §19, Corollary 19.7). o

Now, fix a pro-p open subgroup J of H, which is normal in G. For example, since G is a p-adic
Lie group, by Lazard’s characterization, see [Laz65], we can find an open normal pro-p subgroup
J' of G. Then, J = J' nH is open in H, pro-p and normal in G. Similarly as in |[CFK*05] we
define maps

pg:MG) > A(G]T) and ¢g:AG) > QG/T),
where we write Q(G/J) =F[[G/T]].

Lemma A.8.2. Let J be a pro-p open subgroup of H, which is normal in G. Then,

(i) S coincides with the set of those f in A(G) such that A(G]/T)/NG/T)e7(f) is a finitely
generated left O-module,

(ii) S coincides with the set of those f in A(G) such that Q(G/T)/UG/T)Y7(f) is a finitely
generated left F-module,

(iii) S coincides with the set of those f in A(G) such that multiplication with ¢ 7(f) from the
right induces an injection Q(G/J) = QUG/T),

(iv) S coincides with the set of those f in A(G) such that A(G)/fA(G) is finitely generated as
a right A(H)-module,
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(v) S coincides with the set of those f in A(G) such that A(G/T)/e7(f)A(G]T) is a finitely
generated right O-module,

(vi) S coincides with the set of those f in A(G) such that Q(G/T)[V7(f)QG/T) is a finitely
generated right F-module,

(vii) S coincides with the set of those f in A(G) such that multiplication with ¢ 7(f) from the
left induces an injection Q(G/JT) = QUG/T).

Proof. The proof is almost identical to (JCFK*05], Lemmata 2.1, 2.2). First note that a A(#)-
module is finitely generated over A(H) if and only if it is finitely generated over A(J) since
J is of finite index in #H, compare ([Schll], Chapter IV, §19, Corollary 19.4 iv). Writing N =
A(G)/A(G)f for any element f € A(G) we have

Ng 2 MG/T)IMGT)ps(f) and N/m(T)N =UG/T) UG/ T)bg (),

where N7 denote the coinvariants and m(7) is the maximal ideal of the local ring A(J), compare
proposition For the above isomorphisms note that for any ring R, any ideal I of R and for
a R-module M passing to the quotient M /IM is right exact. The topological Nakayama lemma,
see ([Bru66], Corollary 1.5), for the local pseudo-compact ring A(J) now implies assertions (i)
and (ii).

Now, as in the proof of ([CFK*05], Lemma 2.1), we choose a lifting I'" of G/H to G/J so that
G|T =H|T =T'. T" acts on H/J by conjugation and we can find an open subgroup II of I that
acts trivially on #/J since the latter group is finite. Then, II = Z, and II lies in the center of
G/J. We note that for Q(II) = F[[II]] we have a topological isomorphism

Q(I0) = F[[T]], (A.8.3)

see ([Sch1l], Chapter IV, §20, Proposition 20.1 and its proof). Hence, Q(II) is discrete valuation
ring and, in particular, a principal ideal domain. Moreover, II is of finite index in G/J and
therefore Q(G/J) is a free Q(II)-module of finite rank, just reduce the coefficients modulo 7 in
the proof of ([Schll], Chapter IV, §19, Corollary 19.4 iv). For any f € A(G) consider the exact

sequence
Y7 (f)

0 ker(7 (£)) = 2G1T) "2 0(G/7) ~ coker (7 (1)) 0. (A.8.4)
Now assume that f satisfies the condition of (iii). Then the above sequence reduces to a short
exact sequence 0 - Q(G/J) - Q(G/T) - coker(-)7(f)) = 0. Tensoring this exact sequence with
the quotient field of Q(II), we conclude that coker(-¢)7(f)) must be a torsion Q(II)-module. We
consider coker(-¢p7(f)) as a finitely generated torsion F[[7']]-module via and choose
F[[T']]-generators x1,...,x. But then the annihilator of each z; must be of the form F[[T"]]T™
since F[[T']] is a DVR. It follows that coker(-07(f)) is finitely generated over F and therefore f
belongs to S by the characterization (ii).
On the other hand if f belongs to S, then, by (ii), coker(-¢7(f)) must be a torsion Q(II)-
module. If this were not true, then, by the structure theory of finitely generated modules over



A.8. ORE SETS OVER COMPLETE DVRS 177

PIDs, coker(-¢7(f)) would contain a copy of Q(II) = F[[T]] and then could not be finitely
generated over F, which would contradict (ii). But if coker(-)7(f)) is a torsion Q(II)-module,
then tensoring with the quotient field of Q(II) shows that ker(-7(f)) is Q(II)-torsion.
But this implies that ker(-)7(f)) = 0 since ker(-)7(f)) is contained in the finitely generated
free Q(II)-module 2(G/J). This completes the proof of (iii).

Now, since II lies in the center of G/J, the ring Q(G/J) is an Q(II)-algebra. In particular,
for any f € A(G), multiplication with 17 (f) from the left on Q(G/J) is Q(II)-left-linear. Recall
that an endomorphism of finite dimensional vector spaces is injective if and only if it is surjective
if and only if it is an isomorphism. Writing Q(€(II)) for the quotient ring of Q(II), we know
by (iii) and since Q(G/J) does not contain non-trivial Q(IT)-torsion that f belongs to S if and
only if multiplication by ¢ 7(f) from the right induces a Q((II))-linear isomorphism

Vg (f) : QD)) ®qqy (G/T) — Q(QUIN)) @) AG/T) (A.8.5)

of finite dimensional Q(€2(IT))-vector spaces. So if f belongs to S, then, in particular, there is
an element x € Q(UIL)) ®q ) 2(G/J) such that x -9 7(f) =1. The element

1-97(f)-=

then lies in the kernel of ¢ 7 (f), which is trivial, and hence ¥ 7 (f)-x = 1. Here, of course, we write
Y7(f) also for its image 1 ® ¥7(f) in Q(QIL)) ®qm) 2(G/T). But 7(f) -z =1 implies that
multiplication with ¢ 7(f) from the left is surjective on Q(Q(I1)) ®q ) 2(G/J ). In fact, for any
y in Q(QUIT)) ®qcm) 2(G/T), vy maps to y under ¥ 7(f)-, i.e., under mutliplication with 7 (f)
from the left. Hence ¢ 7(f)- is an automorphism of the Q(€2(II))-vector space Q(2(II)) ®q )
Q(G/J). In an entirely similar fashion one shows that if ¥ 7(f)- is an automorphism of the
Q((IT) )-vector space Q(Q(I)) ®qmy 2(G/T ), then 1) 7(f) is an automorphism of the Q((IT))-
vector space Q(Q(IT)) ®qmy G/ T ).

But ¢7(f)- is an automorphism of the Q(S2(II))-vector space Q((I1)) ®qm) 2(G/T) if and
only if multiplication with ¥ 7(f) from the left induces an injection Q(G/J) <= Q(G/J), again
since Q(G/J) does not contain non-trivial Q(II)-torsion. We have shown that (vii) holds. (iv),
(v), (vi) are now deduced from (vii) by reversing the arguments used for (i), (ii) and (iii), this
time for right modules. o

We next state the analogue of the useful criterion (JCEK*05], Proposition 2.3) for finitely gen-
erated modules to be S-torsion.

Proposition A.8.3. For a finitely generated A(G)-module N the following are equivalent
(i) N is finitely generated as a A(H)-module,
(ii) N is S-torsion.

Proof. Using lemma one checks immediately that the proof of (J[CFK™05|, Proposition
2.3) also works for O-coefficients. o



178 APPENDIX A. APPENDIX

One can now deduce the important analogue of theorem (JCFK*05], Theorem 2.4).

Theorem A.8.4. The set S is closed under mutliplication and it satisfies the left and right Ore
conditions. Moreover, S contains no zero divisors.

Proof. Using proposition and lemma one deduces the result just as one proves
([CFK*05], Theorem 2.4). 0

Ore sets have been considered in a more general setting in [Wit03] and the Ore sets defined in
loc. cit., in our setting and under the additional assumption that G contains no element of order
p, coincide with our &, which is proved in the following lemma. Let us first recall the following
well-known facts.

Proposition A.8.5. Let G be a profinite group. For the global dimension of O[[G]] we have
gldim(O[[G]]) = gldim(O) + ¢d,G =1 + ¢d,G.

If G is a compact p-adic Lie group with no elements of order p and dimension n as a p-adic Lie

group, then c¢d,G = n. In particular, in this case O[[G]] has finite global dimension.

Proof. For the first fact see ([Bru66], Theorem 4.1) and recall that discrete valuation rings are
regular local rings of Krull dimension 1 and that the Krull dimension coincides with the global
dimension, see ([Ser56], Théoreme 1) or ([Wei94], Main Theorem 4.4.16). For the second fact
see ([Ser65], Corollaire (1)). 0

Lemma A.8.6. Assume that G contains no element of order p. Then, the set S coincides with
those elements f € A(G) such that
-f
A(G) — A(9),
considered as a complex, say, in degree 0 and 1, is a perfect complex of A(H)-modules, i.e., it is

quasi-isomorphic to a bounded complex of finitely generated projective A(H)-modules.

Proof. Let f be an element of S. Then, since A(H) has finite global dimension by proposition
there is a finite projective resolution

0Py~ > P> AG)/AG)f ~0,
where the P; can be chosen to be finitely generated over A(H) since A(H) is Noetherian, compare

([Wei94], pd Lemma 4.1.6). But A(G) -, A(G), since f is a non-zero divisor, is quasi-isomorphic
to A(G)/A(G)f (concentrated in degree 1) and the latter is quasi-isomorphic to 0 - Py — --- —
Py - 0, (where P is placed in degree 1) which shows one inclusion of the claim.

Next assume that A(G) R A(G) is a perfect complex, quasi-isomorphic to the bounded
complex (Qg,dy ) consisting of finitely generated projective A(#H)-modules Q;. Then, we have

A(G)/A(G) [ = ker(dy)/im(dp).

But ker(d;), as a submodule of @1, is finitely generated over A(H) since A(#H) is Noetherian,
which shows that f belongs to S. o
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A.8.2 Functorial properties

We will prove some functoriality results for the canonical Ore set S. We will be interested in the
functoriality with respect to the groups H c G and with respect to the coefficient ring O. Let us
start with the groups.

Assume that G is an open subgroup of G, not necessarily normal. Then G has finite index in
G since G is compact. Define H := GnH. Then, H is normal in G and we have an embedding
G/H - G|H = Z,. Hence, either G/H = {1} or G/H = Z,. But G is of finite index in G, so the
image of G/H in G/H is of finite index and therefore we must have

G/H = 7.
For this setting we have two examples in mind.

Example A.8.7. (i) Let K be a perfect field, consider a p-adic Lie extension Ko /K con-
taining the cyclotomic Zy-extension K., and write G for its Galois group G(K«/K). We
define H = G(Koo/Kcye) so that G/H = Z,. Now let F//K be a finite Galois subextension
of Koo/K and write G = G(K«/F), which is open and normal in G. We then have

HY Gt = G(Keo/(KeyeF)) = G(K oo/ Feye),

where we write Fey. for the cyclotomic Z,-extension of F'.

(ii) The second example is one where G, in general, is not normal in G. Let K be a number
field, fix an algebraic closure K, consider a p-adic Lie extension K, /K inside K containing
the cyclotomic Z,-extension K.y and write G for its Galois group G(Ko/K). We define
H = G(Koo/Kcye) so that G/H = Z,. Now, let q be a non-archimedean prime of K, fix an
algebraic closure f(q and fix an embedding K c f(q. Write v for the prime of K., above
q determined by the embedding K c K'q and suppose that the decomposition group of v
which we denote by G = Gy = G(Ke 5/K,) is of finite index in G. Write Z = K97 for the
fixed field of the decomposition group Gz, which is a finite extension of K. Then, we have

HYYGnH = C(Kua)(KeyeZ)) = G(Koo| Zeye),

and G(Koof Zeye) = G(K oo/ (K ey
We recall the following well-known result.
Lemma A.8.8. A(G) is free as a right (resp. left) A(G)-module of rank n :=[G : G| generated

by representatives o1,...,0, € G of the left (resp. right) cosets of G in G. Moreover, A(G) =
IndgA(G) as left (resp. right) G-modules.
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Proof. For the first part see ([Schll], Chapter IV, §19, Corollary 19.4 iv), which implies that for
left coset representatives o1, ...,0, € G (the case of right coset representatives works analogously)
we have an isomorphism

@UiA(G) LA Q).

But the module on the left carries a left G-action (given by g.(oy)\) = 0y(4)9'A, where i(g) €
{1,...,n} and ¢’ € G are such that go; = Ti(g) ¢') such that the map is left G-equivariant and such

that @], o;A(G) 2 IndgA(G), compare ([Lan05] XVIII, Theorem 7.3) for the last isomorphism.g

Recall that a finitely generated left A(G)-module M is also finitely presented since A(G) is
Noetherian (G and G are compact p-adic Lie groups). Moreover, A(G) is pseudo-compact, both
as a left A(G)-module and as a right A(G)-module. It follows by ([Wit03], Proposition 1.14)
that

A(G) ®ny M = A(G) &) M.

Corollary A.8.9. For a finitely generated left A(G)-module M we have a natural isomorphism
IndgM = Zp[g] ®Zp[G] M SN A(g) ®A(G) M

of left A(G)-modules.

Proof. Using the previous lemma we have

A(g) ®A(G) Mz (Q?%A(G)) ®A(G) M = ealdiM = IndgM,

where @;%; 0; M is equipped with the left G-action defined by g.(o;m) = 0;(4)9'm, where i(g) €
{1,...,n} and ¢’ € G are such that go; = 0,(4)9’". o

The Ore-set for G is defined by
S={feA(G) | A(G)/A(G)f is finitely generated as a A(H)-module}.
We also consider the two Ore sets

S*=Jp"S and ST =p"S.
n=0 n=0

Let o be any element in G. We have a conjugation map t, : G - G c A(G)*,g = ogo~! which
induces an O-algebra isomorphism

te : A(G) > A(G).
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Remark A.8.10. (i) Note that the map ¢, coincides with the O-algebra isomorphism A(G) —
A(G), A oot

(ii) Likewise, we get O-algebra isomorphisms
te : A(G) > A(6Go ™) and te : A(H) > A(cHo™)

for any o € G. If G is normal in G, then H is normal in G and t, restricts to isomorphisms
of A(G) and A(H), respectively.

(iii) For any o € G we have a commutative diagram

AMH) = MG) — A(9)

A(oHo™ ) —— A(cGo™) —— A(G).
(sHo ™) A(oGo™) —— AG) s
For any o € G we also define
Sy ={f e ANcGo™) | A(cGo™")/A(cGo™ ) f is finitely generated as a A(cHo ')-module}

and S = U, p" S,

Remark A.8.11. Note that cHo ! = 6Go~! nH, so had we started with the group ocGo™*
instead of G then S, would be the Ore set associated to cGo~! and ¢Go ™' nH. Moreover, if G
is normal in G, then S, =S for any o € G.

We can now show how twisting through t, affects the Ore set S.

Lemma A.8.12. We have t,(S) =S, and t,(S*) = S} for every ¢ in G. In particular, if G is
normal in G, then t,(S) =S and t,(S*) = S* for every o in G.

Proof. The second statement follows from the first and the second equality of the first statement
follows from the first equality. Let f be an element of S and choose z1, ...,z € A(G) such that the
images of the z; in A(G)/A(G)f generate A(G)/A(G)f as a A(H)-module. We claim that (the
images of) t,(x1),...,t,(x1) generate A(cGo™1)/A(cGo )ty (f) as a A(c Ho™)-module, which
would imply that ¢, (f) belongs to S,. Indeed, for any A in A(cGo!) consider t,-1()\) € A(G).
We can find A\1,..., A\ € A(H) and X\ € A(G) such that

k
to.—l ()\) = Z )\le + )\,f
i=1
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Applying t, to both sides yields
k
A=Y te(Ni)to (i) +ta (Nt (f),
i=1

where t,(\;) € A(cHo ') and t,(\') € A(6Go™!). This shows that the t,(z1),...,t,(z;) indeed
generate A(cGo™1)/A(cGo Nty (f) over A(cHo™b). Tt follows that t,(S) € Sy for all o € G. In
the same way one shows that t,-1(S,) €5, i.e., Sy S t,(S5). a

Remark A.8.13. (i) The previous lemma applied to G = G shows that for o € G we always
have t,(S) = S, i.e., any Ore set of the form S c A(G) is invariant under twists for o € G.

(ii) The proof also works for any ring isomorphism ¢ : A(G) - A(G) that restricts to an
isomorphism of A(H ), implying that ¢(S) c S and hence also ¢(S) = S.

Lemma A.8.14. Let M be a A(G)-module which is finitely generated as a A(H )-module. Then,
A(G) ®p(c) M is finitely generated as a A(H)-module.

Proof. Let o1,...,0, € G be representatives of the (left-) cosets of G in G. Then, by corollary
we have an isomorphism

n

A(g) ®A(G) M= Zp[g] ®ZP[G] M = @JZ‘M

where each o;M can be considered as a o;A(G)o;-module. An element \ € 0;A(G)o; ! acts on
an element o;z of o, M by Aoz = oit,-1(\)z, where we note that ¢,-1(\) belongs to A(G) and
therefore acts on M. ' '

Now, let x1,...,x; be a set of A(H)-generators of M, then o;x1,...,0,2z) generate o; M over
o;:A(H)o;t. Since o;A(H)o;' ¢ A(H) for all i = 1,...,n, we see that o;M is contained in the
A(H)-submodule of EB;‘:1 oM generated by o;x1,...,0;x. Hence, o121,...,012%, 0221, ...,00,T%

generate @7_; 0;M over A(H). In particular, A(G) ®(q) M is finitely generated over A(H). o
Corollary A.8.15. We have S¢S and S* ¢ S”.

Proof. The second equality follows from the first. Let f be an element of S. Then, we have an
isomorphism

AG)/AG) ] 2 A(G) @) (MG)/A(G)[)
and the corollary follows from the previous lemma 0

Corollary A.8.16. Let M be a finitely generated A(G)-module which is S*-torsion. Then, the
module A(G) ®x gy M is finitely generated over A(G) and it is S*-torsion.
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Proof. For any module N denote by N(p) the p-primary torsion part of N. Then M /(M (p))
is S-torsion and, by proposition M /(M (p)) is finitely generated over A(H). By lemma

A(G) @) (M[(M(p))) is finitely generated as a A(#)-module. The surjection
A(G) ®aa) (M/(M(p))) > (A(G) ®ai) M) [ ((A(G) ®aiy M) ()

implies that (A(G) ®A@) M)/((A(g) CINGe) M)(p)) is finitely generated over A(#H) and hence
that it is S-torsion by proposition Hence, A(G) ®)(q) M is S*-torsion. o

Let us now study the functoriality with respect to the coefficient ring. Let O’ be a complete
discrete valuation ring with uniformizer 7’ containing the complete DVR O with uniformizer .
We do not assume that the residue fields are finite. The topology of O, resp. @', is the 7- resp
n’-adic one, i.e., the topology induced by the ideals 7O, n > 1, and (7x")"O’, respectively. For
any topological ring A, we will write

PC(A)

for the category of pseudo-compact A-modules with continuous homomorphisms as morphisms,
which is an abelian category, see ([Gab62], Chapitre IV, §3, Théoréme 3) - as remarked in [Wit03],
the proof in [Gab62] of this fact does not require A to be pseudo-compact.

The rings O/7n™O have finite length n as O-modules which follows immediately from the fact
that O/ O has length 1 and by induction using the obvious exact sequences. Therefore, O is
pseudo-compact as a module over itself. The same applies to @'. Important for our purposes is
the following

Proposition A.8.17. Assume that O'/O has finite ramification index, i.e., we can write 7w =
u- (n")¢ for some unit u € (O')* and some e € N. Then, the functor

PC(O) — PC(O'), N — O'®oN
is exact.

Proof. For the right exactness see the general result ([Wit03|], Proposition 1.10) which uses only
that O’ is pseudo-compact as a module over itself (and the fact that the ideals (7")"O’ are also
O-modules). For the left exactness let

p:N>M

be a continuous injection of pseudo-compact O-modules. For any open O-submodule U of M,
MU is discrete, see (loc. cit., Proposition 1.2). Therefore o !(U) is both, open and closed in
N. O’ is torsion-free over the principal ideal domain O and therefore flat over O, see ([Rot09],
§3.3, Corollary 3.50). Hence for any open submodule U of M we get an injection

O’ ®o (N[ (U)) > O &0 (M]U). (A.8.7)
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Since N and M are pseudo-compact N /¢ 1(U) and M/U are of finite length as O-modules,
see ([Wit03], Proposition 1.2). In particular, N/p (U) and M/U are both finitely generated
over 0. But for finitely generated @-modules T one has O'®»T = O’ ® T. Indeed, all finitely
generated O-modules are finitely presented and by the five-lemma it is sufficient to prove the
equality for finitely generated free O-modules. Since the completed tensor product commutes
with finite products it is sufficient to show the identity for T'= O, but in this case we have

0’00 ¥

=)

(O’/(ﬂ-/)m ®0 O/ﬂ'n) _ Lin (O//(ﬂ_/)n.e ®0 O/ﬂ'n) ~ @Ol/(ﬂ_l)n.e _ OI,

o

where we used the isomorphism O'/(7")" ®p O/n"™ = O"/(n")™¢, which holds by the finite
ramification assumption.

Hence we can rewrite (A.8.7) as
O0'&o(N/e  (U)) = O'&0(M/U).

Passing to the projective limit (which is left exact) over all open submodules U of M and
using ([Wit03], Proposition 1.7), which states that the completed tensor product commutes with
projective limits N = linz N; of filtered systems (NV;); such that the structure maps N — N; are
surjective, we get

O'®o(lim N /o™ (U)) = O'&0(lim M/U), (A.8.9)
U U

note that filtered means directed and that the systems (M /U)y and (N /¢ 1 (U))y are directed.
We certainly have a homeomorphism M = lim M JU. Moreover, we have Ny ¢ H(U) = {0},
where U ranges through all open submodules of M. Indeed, if z belongs to Ny ¢~ }(U), then
o(x) e Ny U ={0} (M is Hausdorff), hence x belongs to the kernel of ¢ which is trivial. We have
noted above that all submodules of the form ¢ =1 (U), where U is an open submodule of M, are
closed in N. It follows from ([Gab62], Chapitre IV, §3, Proposition 10) that N = yLnU N/ (U)

(and this is a homeomorphism since it is a continuous bijection of pseudo-compact modules,

compare (loc. cit, Chapitre IV, §3, proof of Théoréme 3)). Hence, the map from (A.8.9) implies
that O'®p N — O'®p M is injective. o

Let us continue to assume that O'/O has finite ramification index, i.e., we can write 7w = u- (7")°
for some unit u € (O')* and some e € N. We write

Sp and Sor

for the Ore sets in O[[G]] and O'[[G]], respectively, which are both pseudo-compact rings, see
([Sch1l], Chapter IV, §19). We have

O[[9]] = lim(O/="0)[G/U],
n,U
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where U runs through the open normal subgroups of G. Since the modules (O/n"O)[G/U] are
finite products of O/7" O they are of finite length over O, which means that O[[G]] and likewise
O[[#]] are also pseudo-compact as O-modules. The same applies to the O’-modules O'[[G]]
and O'[[H]]. We have an isomorphism

0'®00[[G]] = lim (((9'/(7T')”'e) ®0 (O/W")[Q/U]) = lim(O'/(«")")[G/U] = O'[[G]], (A.8.10)
n,U n,U

where we use that, by the finite ramification assumption, we have (O'/(7')"€)®0 (O/7™)[G/U]

(O'/(7")")G/U].

Remark A.8.18. The author wants to thank Malte Witte for pointing out the following facts.
Let M be a finitely generated O[[G]]-module, which is then finitely presented since O[[G]] is
Noetherian. Let

o[[6]]" - O[[G]]F - M -0 (A.8.11)

be a finite presentation. Equipped with the quotient topology, M becomes a pseudo-compact
O[[G]]-module, in fact, it also becomes a pseudo-compact O-module, since O[[G]]" and O[[G]]*
are pseudo-compact over O[[G]] and O, see ([Gab62], Chapitre IV, §3, proof of Théoreme 3).
Alternatively, if M already is a pseudo-compact O[[G]]-module, then its topology must coincide
with the quotient topology, see loc. cit. In any case, the exact sequence in is an exact
sequence of pseudo-compact O-modules.
One can now deduce that for the finitely generated O[[G]]-module there is an isomorphism
of O'[[G]]-modules
O’[[g]] ®O[[g]] M= 0,®0M (A.8.12)

induced by the universal property of — ®o[g)) = In fact, using the right-exactness of O'®o-,
the finite presentation , the five lemma and the fact that the completed tensor product
commutes with finite products, one reduces to the case where M = O[[G]], which was treated in
. For further information on completed tensor products see also Brumer’s article [Bru66].

As before, we write Sp) = Up»10"So and Sp = Ups1 p"Sor.
Lemma A.8.19. We have inclusions Sp ¢ Sor and S;, ¢ S;y,.

Proof. The second inclusion follows from the first. Let f be an element of Sp and O[[#H]]* -
O[[G]]/O[[G]]f be a surjection, then by right exactness of O'®»— we have

O'[[H]])F 2 O'60(O[[H]]") » O'®0(O[[G1]/011G]1f) 2 O'[[G11/O'1G11/,
hence f belongs to Ser. o

Lemma A.8.20. If M is a finitely generated O[[G]]-module, which is S()-torsion, then the
module O'[[G]] ®orgy) M is Sp-torsion.
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Proof. First consider an element of the form A ® m of O'[[G]] ®p[ig) M. Let s be an element
of Sf such that sm = 0. Since s also belongs to S}, by lemma [A.8.19, the left Ore condition
implies that there exist A" € O'[[G]] and s’ € S5, such that

Ns=sM\

We get s"-(A@m) = A's@m =\ ®sm =0. For a general element 1 ; \; ® m; we can now proceed
by induction on n. For A\, ® m, let s, be an element of S;, ¢ Sf, that annihilates m,,. By the
Ore condition we can then find A}, € O'[[G]] and s;, € S, such that A},s, = s, \,. Then we get

n-1

n
Ai®m; = Zs;)\i ®m; = Z 3;1)\1- ®m;.
i=1 i=1

M:

I
TL

I
—_

%

For the sum on the right, by the induction hypothesis, we can find an element ¢ € S5, that
annihilates it. Hence, ts), € S, annihilates Yi-; A\; ® m;. o

A.9 The Iwasawa algebra A(Zy; x Z5) and its modules

Our study of the Iwasawa algebra A(Z, x Z,) is motivated by the following example from arith-
metic geometry. Let E/K be an elliptic curve with complex multiplication by O, the ring of
integers of the quadratic imaginary field K. Assume that E has good reduction above the prime
p and that p splits in K into two distinct primes p and p with generators m and 7, respectively.
We write K, = K(E[p"*']) for 0 < n < co and define G = Gal(K./K). Moreover, we write
k1 : G — Z, (respectively kg : G —> Zp) for the character giving the action of G on T E
(respectively on T%E). The two characters induce an isomorphism

(Hl,ﬂg)iG;Z; XZ;. (Agl)

We write I' = Gal(K«/Kp) and A = Gal(Ky/K). Under the isomorphism ' maps
isomorphically onto (1+pZ,) x (1+pZ,) = Zf, and A maps to p,—1 x ftp—1. We now want to study
the Iwasawa algebra of G = A x .

We write x;, ¢ = 1,2, for the restriction of x; to A. So, x1 and x2 are Z;-valued characters of
the finite group A. Products of the form X’f x? give all characters in Hom(A,Z;) for i; and iz
running through sets of representatives of Z/(p —1). Given such a pair (i1,i2) we write

Ciryig = 7 1)2 Z X (5 1)5

deA

for the idempotent in Z,[A] associated to x'x%. For any Z p[A]-module M we write M (i2)
for the submodule e;, s, M of M on which A acts through lel le, yielding a decomposition

M = H M Cinsiz)

(i1,i2)
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In particular, we can apply this to M = Zy[A] and, since Z, contains the (p — 1)-th roots of

i1.. 19

unity, we immediately see that Zp[A](il’iZ) is just a copy of Z, on which A acts through xi'x5’.
Coming back to the Iwasawa algebra A(G) = Z,[[A xT']] = Z,[A][[I']] the above decompo-

sition induces

AG) = [T M@ 2 [T z,[A]2[[1]].

(i1,i2) (i1,i2)

Next, we fix a topological generator u of 1+ pZ, and let 71,72 be the elements of I' such that
k1(71) = u = ka(2) and K1(2) = 1 = k2(71). Using these generators we can define an isomor-
phism

Zp[[T]] 2 Zp[[Th, T]],  vir—1+T;, i=1,2.

We see that A(G) is given by (p—1)? copies of the local integral ring Z,[[T1, T»]]-

A.9.1 The Ore Set S and some of its elements
We define a subset S of A(G) by

S={feA(G)|A(G)/A(G) is finitely generated over A(H)},

which is an Ore set as we have seen in subsection Next we fix a prime ideal q of K,
q # Ok, subject to the following conditions:

(i) (a,6pf) =1,

(ii) N(q) is congruent to 1 modulo p, in symbols

N(q) =1 mod p.

Note that by Dirichlet’s theorem on arithmetic progressions infinitely many such prime ideals
exist, compare ([Neu07], VII, (5.14) p. 490). Henceforth, we will write ¢ for the prime of Q
below g.

Definition A.9.1. For k,n > 1 we write
(q7 Kk:,n/K) € G(Kk,n/K)

for the arithmetic Frobenius at q in G(K},,/K). The elements (q, K}, ,,/K) are compatible with
respect to restriction maps. We therefore get an element (q, Koo/K) € G(Ko/K). Any prime
(valuation) q" of K+ above q must be fixed by (q, K+ /K) € G(Kw/K) because all the restrictions
of q' to subfields Ky, are fixed by (q, Koo/ K)\x, , = (4, Kn/K). This implies that (q, Keo/K)
lies in the decomposition group Dyq ©¢ G(Keo/K). And since (4, Koo/K)|k, , is the Frobenius

for all k,n > 1, (q, Koo/K) must also be the Frobenius in Dy/q.
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We defined A = Gal(Ky/K) where Ko = K(E[p]). The restriction map induces an isomorphism
G(Ko/KYK*™) 2 A
and from now on, by abuse of notation, we shall write A for G(Ko /K Y K*¥°).

Lemma A.9.2. Let q satisfy the above two conditions (i) and (ii). Then, the element x4 :=
N(q) - (9, K« /K) belongs to the Ore set S of A(G).

Proof. We recall that G 2 G(KY°/K) x G(K*Y°/K) x A, where A is finite and of order prime
to p. Under this decomposition H corresponds to G(K*¥¢/K) x A and we write J ¢ H for
the pro-p open subgroup of H corresponding to G(K*¥“/K). We note that J is normal in
G and G/J 2 G(K%|K) x A. Considering G(K%°/K) x G(K*¥°/K) as a subgroup of G,
we write F' for the fixed field of G(K“°/K) x G(K*¥°/K), implying that A = Gal(F/K) and
G/J = Gal(FK®¥/K).

We write v for canonical map A(G) — Q(G/J) and recall from ([CFK05], Lemma 2.1, p.
166) that an element f in A(G) belongs to S if and only if

UG/ UG T)es(f)

is finite. Since (q,6pf) =1, q is unramified in K. We recall that, by definition, o4 = (q, Koo /K)
is the arithmetic Frobenius element in the decomposition group G(K o 3/Kq) € G for some fixed
prime q of K above q. The image 74 of o4 in G/J is then the Frobenius in G((FK%)5/Ky) c
G/J, where we also write g for the restriction of q to FK“°. In particular, o4 is a topological
generator of G(FY¢)q:= G((FK%)5/Kq). Moreover, G(F®¢)q is of finite index in G/.J, because
both groups contain precisely one copy of Z,. This implies that (G/J) is finitely generated as
a Q(G(FY)q/Kq))-module. It is therefore sufficient to show that

QG(FY)q) [UGFY) )1 (xq)
is finite. But this can be shown. Indeed, by condition (ii) for q we have
s(zq) = N(q) ~74=1-75.
Let us consider the augmentation map,
aug: Q(G(FY%)q) — Fp,

the kernel of which, we will now show, is precisely Q(G(F'Y°)q)1s(2q), which then concludes
the proof.

It is a fact that each finite quotient of G(F'Y¢), is cyclic, generated by the image of 75, and
that for finite cyclic groups < 7 >, generated by 7, the kernel of the augmentation map

Fol<7>] —Fp,
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is generated by 1 — 7. Now we can use a compactness argument to conclude the proof, which,
for the sake of completeness, we recall. First note that Q(G(F%¢)q)¢s(xq), as the image of the
compact algebra Q(G(F¢),) under the continuous multiplication with 1 ;(z4), is compact. Let
A € Q(G(FY°)q) belong to ker(aug). Then, for each open, normal subgroup U c G(F%¢), the
projection A\ of X to Fp[G(F%¢)4/U] belongs to the kernel of augy; : Fp[G(FY¢)4/U] — F), and
we see by the above fact for finite cyclic groups that the pre-image of {\y/} under the canonical
continuous projection map

pu s UG(EY)q)p(2q) — Fp[G(FY)/U]

is non-empty (we use here, that the maps defining the projective limit Q(G(F%¥¢),) are surjec-
tive). We now claim that

N () # 2,
U

where the intersection is taken over all open, normal U in G(F¥¢),. Assume the contrary. Since
each ¢t (Ap) is closed (Fp[G(F¢)4/U] has the discrete topology), Uy ¢ (Av)¢ is an open
covering of Q(G(FY)q)¥(xq). By compactness, we can find a finite subcovering such that

U 60 O)° = QGFY) )by (q),

for which we then have N, cp&zl_()\Ui) = @. But this contradicts the fact that for V' = N, U;,
i} (\v) # @. Therefore, Ny ¢ (A\v) # @, showing that A indeed belongs to Q(G(F%)q)(xq)-0

The proof of the previous lemma also shows that the following lemma holds.

Lemma A.9.3. Let q be a prime ideal that satisfies the above condition (i), i.e., (q,6pf) = 1.
Then, the element yq =1 - (q, Koo /K) belongs to the Ore set S of A(G).

Now, let us consider a prime [ dividing the conductor f of E/K and let r = n be its exact exponent
in the prime decomposition of f. Recall the facts about Lo, ¢ Ko € Fo from subsection
Since [ is unramified in K(%pm) = Ukn K(%ﬁkp”) we can consider

(LK) )

which is the Frobenius for [ in G(K([—’;p‘x’)/K), compare remark Certainly, (I, K([irp‘x’)/K)

restricts to ([, Loo/K). We define oy to be a lift of ([,K(%p“’)/K) to G(Fs/K) and also write
oy for its restriction to K. With this notation, o restricted to Lo also gives (I, Loo/K).

Remark A.9.4. We remark that the field Lo, = Uy, K (p¥p™) contains all p-power roots of unity
pipe (K). This is because for a primitive p™-th root of unity (,m, the field K((ym) is unramified
outside p. In particular, its conductor over K is only divisible by the primes p and p and therefore
we must have K ((pm) c Ly, for some k,n > 1.
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Lemma A.9.5. The element 1 - U[_l belongs to S.

Proof. For this we have to be more careful than previously for the element N(q) - (q, Ko /K),

g prime to f. In this proof, let us write o for a[_l.

Again, we consider the decomposition G 2 G(K%°/K) x G(K*¥°/K) x A, where A is finite
of order d prime to p and write
g = (GC, O'a,O'f),

where o, is the projection of o to G(K%°/K), o, is the projection of o to G(K*?¥°/K) and o
is the projection of o to A. We then have

Ud = (O'g,O'g, 1)

which belongs to the subgroup G(K%Y°¢/K)xG(K*¥°/K) of G. Moreover, for general a,b € A(G),
we have a surjection

MG)/A(G)ab > A(G)[A(G)b,

showing that if a - b belongs to S, then so does b. Therefore, since we can write
1-0%= (1+0+---+0d_1) . (1—0),

it is sufficient to show that 1 — ¢ belongs to S. As above, we write ¢ for canonical map
A(G) — Q(G]J) where we write J for the pro-p open subgroup of H = G(K*¥°/K) x A
corresponding to G(K%¥¢/K). Now, one of the equivalent conditions for 1 - ¢ to belong to S
is that

QG/T)[UG]T)s(1 -0

is finite. Since Gal(K“¢/K) is of finite index in G/J = Gal(K“¢/K) x A, Q(G/J) is finitely
generated as a Q(G(K%¢/K))-module. Since, 1;(c?) belongs to Q(G(K¥¢/K)) (this would not
have been true for o, which is why we had to take the d-th power!), we see that it is sufficient
to show that

(G [K)) JUGE [K) )iy (1 - o)

is finite. But o' restricts to a Frobenius element for the prime [ in the outside p unramified
extension K“/K. In particular, since d is a unit in Z,, o restricts to a topological generator
of the decomposition group Dy c G(K““/K). However, D= Zj, is of finite index in G(K“°/K)
and we can conclude the proof, as above, by noting that 1 ;(1 - 0¢) generates the augmentation
ideal of Q(Dy). o
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