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Kombinierte Rekonstruktion der Massenverteilungen von Galaxienhaufen
mittels Gravitationslinseneffekt und thermischem Gas

Massereiche Galaxienhaufen sind die größten gravitativ gebundenen Objekte im Universum. Ihre Mas-
se kann mittels des Gravitationslinseneffekts bestimmt werden. Um verlässliche Aussagen treffen zu
können, ist es besonders wichtig, die dabei auftretenden Unsicherheiten zu quantifizieren, dies ist
aber numerisch sehr aufwendig. Wir erarbeiten eine neue Methode, diese Unsicherheiten analytisch
zu bestimmen, wobei wir uns auf Massenrekonstruktionen beschränken, die auf dem schwachen Lin-
seneffekt beruhen.

Galaxienhaufen enthalten eine große Menge an intergalaktischer Materie, was zu einer Vielzahl
von weiteren Beobachtungsgrößen führt. Die von uns entwickelte Methode kann aus zweien dieser
Observablen das Linsenpotential des Haufens bestimmen: Hierzu nutzen wir Signale des thermischen
Sunyaev-Zel’dovich-Effekts und die Emission von Röntgenstrahlung in Folge von thermischer Brems-
strahlung. Unter der Annahme, dass sich das Gas im hydrostatischem Gleichgewicht befindet und einer
polytropischen Zustandsgleichung folgt, verknüpfen wir diese Observablen mit dem Gravitationspo-
tential. Hierbei ist eine Deprojektion vonnöten, welche wir mittels der Richardson-Lucy-Methode
durchführen. Das gesuchte Linsenpotential ergibt sich dann durch eine Projektion des Gravitationspo-
tentials entlang der Sichtlinie. Den Erfolg unserer Methode testen wir an Galaxienhaufen mit vorge-
gebenem Dichteprofil, einer numerischen N-Teilchen-Simulation und dem Galaxienhaufen RXJ1347.

Unsere Bemühungen sind als die ersten Schritte in Richtung eines nicht-parametrischen Algo-
rithmus zu verstehen, bei welchem wir alle zur Verfügung stehenden Observablen für eine gemein-
same Rekonstruktion der Massenverteilung nutzen wollen. Durch das Einbeziehen mehrerer unter-
schiedlicher Beobachtungsgrößen, vereint in einem gemeinsam rekonstruierten Linsenpotential, ist es
möglich, die Massen von Galaxienhaufen sowie deren interne Struktur deutlich präziser zu bestimmen.

Joint reconstruction of the mass distributions of galaxy clusters
from gravitational lensing and thermal gas

We focus on the reconstruction of mass distributions of the massive galaxy clusters, which are the
largest gravitationally bound objects in the Universe. An approach to determine the masses of clusters
is based on the effects of gravitational lensing. Estimating errors induced by this method is crucial but
computationally expensive. We present a novel approach to estimate analytically the errors made by
reconstructions which use weak-lensing information.

As galaxy clusters host a large amount of intracluster medium they provide a multitude of observ-
ables. We present a new method to infer the lensing potential from two of these: signals of the thermal
Sunyaev-Zel’dovich effect and the emission of X-rays due to thermal bremsstrahlung. By assuming
that the gas is in hydrostatic equilibrium and follows a polytropic equation of state, we link these
observables to the gravitational potential, which is then projected along the line-of-sight to infer the
lensing potential. For this we deproject the observables by means of the Richardson-Lucy algorithm.
We test our method on clusters with analytic profiles, a numerical simulation and on the galaxy cluster
RXJ1347.

Our efforts are the first steps towards a non-parametric algorithm for a joint cluster reconstruction.
By taking all possible cluster observables into account, mass distributions of clusters will be deter-
mined more accurately.
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1 Chapter 1

Introduction

In recent years modern cosmology has become a major branch in physics. With a multitude of new
available data sets and an ever increasing accuracy, cosmology evolved to a field of research illumi-
nating the Universe as a whole with tight bounds on introduced cosmological parameters.

The successful cosmological standard model, also known as ΛCDM, explains the Universe with a
minimal set of six parameters. According to this model the Universe emerged from a singularity with
a Big Bang 13.7 billion years ago. Shortly thereafter – considering cosmological time scales – matter
and radiation decoupled. This is nowadays observed in the Cosmic Microwave Background (CMB).
It was released approximately 400,000 years after the Big Bang. The ΛCDM model postulates the
existence of a cosmological constant Λ. It was introduced in the field equations by Einstein himself
to account for the possibility of a static Universe. The standard model further postulates the existence
of an unknown and not electromagnetically interacting – hence dark – matter component, so far only
known to interact gravitationally (or maybe weakly) with ‘ordinary’ matter. It further states that
structures in the Universe evolved hierarchically starting with tiny density fluctuations, imprinted in
the CMB. Their amplitudes grew over time and due to non-linear structure formation they formed the
cosmic web and the massive galaxy clusters imbedded there. The dark matter component accounts for
26.8% and the cosmological constant for 68.3% of the total energy density of the Universe, leaving us
with 4.9% (see Planck Collaboration, 2013a) for the world we know – given by baryonic matter. To
summarise: 95.1% of the energy density lie in the dark and are not understood so far.

The Universe we observe today appears spatially flat. A spatially flat universe involves a high
degree of fine-tuning, raising the so called flatness problem. Another observational constraint is the
CMB, which is almost perfectly isotropic – relative primary anisotropies are of the order 10−5. The
primordial density fluctuations imprinted in the CMB are correlated on large scales. These scales
are larger than the horizon within which signals have been able to be in causal contact at the time of
recombination. This issue is stated by the so-called horizon problem. Some form of early accelerated
expansion – called inflation – is capable to resolve both mentioned problems.

The latest objects formed, according to hierarchical structure formation, are galaxy clusters. The
core structure of galaxy clusters provides important cosmological information. Based on numerical
simulations, we expect the dark-matter distribution to follow a universal profile with characteristic
gradients and a scale radius (Navarro et al., 1997). Outside relatively small central regions, cluster
density profiles should not be strongly affected by baryonic physics because of the long cooling times
in the intracluster plasma compared to the Hubble time. Cold dark matter is expected to clump on
virtually arbitrarily small scales. The level of substructure in clusters thus potentially constrains the
nature of the dark matter particles (Boylan-Kolchin et al., 2009; Gao et al., 2011). Further, the ratio
between the scale and the virial radii of galaxy clusters, dubbed the concentration parameter, has been
frequently observed to be substantially different than theoretically expected. In particular, in strongly
gravitationally lensing clusters, concentration parameters that are significantly higher than those found
in numerical simulations have been reported (e.g. Coe et al., 2012, Fig. 14), for example Abell 1689
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INTRODUCTION

(Goldberg & Leonard, 2007; Umetsu & Broadhurst, 2008; Broadhurst et al., 2008). For Abell 1689
a multitude of different observations are available. This cluster has been modelled to explain the
observed strong and weak-lensing features favouring a low concentration parameter. X-ray analyses,
however, draw a different picture of this massive cluster as they favour very high concentrations ≈ 14
(Peng et al., 2009). These findings are claimed to be in some tension with the standard model of
cosmology (Corless et al., 2009; Oguri et al., 2009) as at present they are only weakly consistent
with ΛCDM. However, this issue is maybe due to our present techniques to infer the concentration
parameter of massive galaxy clusters.

Another problem, closely related to the concentration problem, is the arc-statistic problem (Bartel-
mann et al., 1998), stating that massive galaxy clusters produce more arcs (i.e. strong-lensing features)
than theory is able do predict. This problem remains largely unsolved up to date. Attempts have been
made at explaining high concentrations and thus a high number of arcs by including trixiality of the
clusters (e.g. Oguri et al., 2003), but the core of this problem still remains.

Numerous other problems are raised once high-resolution simulations of structure formation of
cold dark matter are compared to observations. A prominent one is concerning the aforementioned
density profile. Simulations predict a universal profile of dark matter halos which have cuspy cores.
Observations, however, favour flat cores in the central regions of clusters. This discrepancy is called
the core-cusp problem (e.g. de Blok, 2010).

Even though many attempts have been made to explain the discrepancies, we are far from a con-
sistent picture of structure formation. It is fundamental to find out whether these discrepancies reflect
insufficient understanding at the level of our theory of cosmological structure formation, or whether it
is a combination of baryonic physics, selection effects, and measurement biases that gives rise to these
differences between theory and observations.

Considering the constraints they give on the cosmological standard model, the mysteries they hold
and the multitude of observables they provide, galaxy clusters are clearly the class of objects to study.
In the following discussion we will focus on the following observables: Weak and strong gravitational
lensing effects enable a direct estimate of the scaled surface-mass density of a lensing mass distribu-
tion. X-ray emission and the thermal Sunyaev-Zel’dovich (SZ) effect reflect the physical state of the
hot intracluster gas. Assuming equilibrium and hydrostatic stability, the gas properties can also be
related to the gravitational potential. This suggests to devise a method by which lensing, X-ray, and
thermal SZ data can be combined in a joint analysis aiming at recovering the gravitational potential
best compatible with all observables. We enter the stage of multi-wavelength reconstructions. There
already exist several works on reconstructions based on multiple data sets (Reblinsky, 2000a; Doré
et al., 2001; Puchwein & Bartelmann, 2006). However, these works use separate reconstructions for
each observable rather than one consistent algorithm to reconstruct them all together. Recent applica-
tions (e.g. De Filippis et al. 2005; Sereno 2007; Yuan et al. 2008; Nord et al. 2009; Basu et al. 2010)
have shown how precious and valuable the information is one is capable to retrieve with multiple
probes.

In this work we present a consistent method to infer the lensing potential from the thermal SZ
effect and the X-ray emission. This marks, together with the findings from Sarli et al. (2013) on
galaxy kinematics and the work of Merten (2010) on gravitational lensing, the beginning of a multi-
wavelength approach on the common ground of the line-of-sight projected gravitational potential –
which is proportional to the lensing potential.

In two major parts we cover the three aforementioned observables – gravitational lensing, thermal
SZ effect and X-ray emission – and explain our method to infer the lensing potential from them. The
first part focusses on the errors made by using reconstructions of the mass distribution based on weak
gravitational lensing and how these are estimated. The second part covers our approach to reconstruct
the lensing potential from the thermal SZ effect and the X-ray emission of galaxy clusters.

The overall structure of this thesis is as follows: We start with a short review of modern cosmology
in Chapter 2 to familiarise the reader with those parts of cosmology which are needed in the subse-
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INTRODUCTION

quent chapters. We then concentrate the discussion in Chapter 3 on massive galaxy clusters and the
different observables they provide. There we also discuss the fundamental relation between the used
observables and the lensing potential. But before we apply our reconstruction method to data, we
first explain the strong- and weak-lensing reconstruction code SaWLens of Merten (2010) in Chap-
ter 4. For the weak-lensing reconstruction of SaWLens we derive an analytic error estimation and
verify our results with a numerical experiment. We finish this first major part with an application to a
hydrodynamical/N-body simulation of a massive galaxy cluster. Entering the second major part, we
proceed to the details of our reconstruction algorithm in Chapter 5. Here we describe the used depro-
jection method. With it, we are capable to retrieve the line-of-sight projected cluster potential from
the X-ray surface brightness and observations of the thermal SZ effect. By applying our deprojection
method to the galaxy cluster Abell 1689, we compare our deprojection method to the conventionally
used onion peeling method. Numerical tests, described in Chapter 6 and 7, illustrate how our recon-
struction algorithm performs under realistic conditions. Although we adopt a spherically symmetric
cluster potential for the tests, spherical symmetry is not a necessary condition for our algorithm to
work. The influence of a possible deviation from spherical symmetry is exemplified in Section 6.3
with a data set from a hydrodynamical/N-body simulation. We further extend our algorithm towards
spheroidal cluster geometries and apply it to a simulated cluster in Section 6.4 for the thermal SZ
effect. In the same manner we use X-ray emission in Section 7.3. Finally, we have a thermal SZ
observation of the galaxy cluster RXJ1347-1145 from Sayers et al. (2013) to apply our reconstruction
method to. The detailed results of this application are presented in Chapter 8. We conclude and give
an outlook in Chapter 9.

Parts of this work were published in the following articles:

• Konrad, S., Majer, C. L., Meyer, S., Sarli, E., & Bartelmann, M. (2013): Joint reconstruction
of galaxy clusters from gravitational lensing and thermal gas I. Outline of a non-parametric
method. A&A, 553, A118.

• Majer, C. L., Meyer, S., Konrad, S., Sarli, E., & Bartelmann, M. (2013): Joint reconstruction of
galaxy clusters from gravitational lensing and thermal gas II. Inversion of the thermal Sunyaev-
Zel’dovich effect. ArXiv e-prints: 1304.6522

• Tchernin, C., Majer, C. L., Meyer, S., Sarli, E., Eckert, D., & Bartelmann, M. (2013): Recon-
struction of the lensing potential of the cluster A1689 from X-ray measurements. Submitted
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2 Chapter 2

Cosmology

Cosmology has its linguistic origins in the greek language, kì
os logÐa, meaning study of
the world and was more of philosophical nature. The Greek also marked the earliest form of
cosmology, nowadays known as celestial mechanics. More than 2300 years after that, cosmol-
ogy has evolved to a fundamental branch in modern physics, amongst others describing the
evolution of our Universe. Even though we are capable to observe the Universe ‘shortly’ after
the Big Bang, we sometimes touch the realm of philosophy, just as our ancient ancestors.

In this chapter we want to present some parts of modern cosmology which the reader may
be in need of to follow the line of thought throughout this thesis. Focussing only on the very
fields of cosmology needed, this overview is certainly not complete. As we concentrate on the
discussion of massive galaxy clusters and structure formation, it is not necessary to discuss the
field of the early Universe. This includes the time of recombination, primordial nucleosynthe-
sis as well as inflation. These special fields of cosmology, as well as the content presented, are
covered in numerous text books, e.g. Weinberg (2008); Mukhanov (2008); Schneider (2006b),
notes by Bartelmann (2004) or the thesis of Angrick (2011) and Merkel (2013).

2.1 Cosmological principle

We want to start this chapter with an axiom – the cosmological principle, which consist of two state-
ments. The first implies that the Universe is isotropic. This is a bold assumption dating back to the
beginnings of modern cosmology, though this principle is clearly violated on small scales as we ob-
serve the night sky. But it is accepted if averaged over sufficiently large scales. On scales larger than
100 Mpc isotropy is observed by a multitude of surveys, e.g. of the cosmic microwave background
(CMB) with the Wilkinson Microwave Anisotropy Probe satellite (WMAP). The second assumption
of the cosmological principle is the Copernican principle, saying that our position in the Universe is
not preferred over others. Both the assumptions combined obviously lead to an Universe which has to
be homogeneous.

Given this cosmological principle more questions about our Universe are raised. The most promi-
nent and crucial question for modern cosmology is how anisotropies, like the Milky Way, evolved
whereas the Universe remains homogeneous on large scales.

Observations of the CMB are heavily supporting the assumption of homogeneity. The CMB itself
originates from the time when the temperature of the cosmic plasma dropped below ∼ 3000 K and
photons decoupled from protons and electrons. At this time, roughly 400,000 years after the Big
Bang, our Universe turned from opaque to optically thin, allowing the CMB photons to reach us today.
Due to the cosmic expansion the temperature of the CMB photons dropped to T0 = 2.73 K today.
Observations of the CMB reveal very small relative temperature fluctuations of the order 10−5 K,
reflecting those of the energy distribution of the Universe back at the time of decoupling. This is taken
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CHAPTER 2. COSMOLOGY

as a proof that the early Universe was extremely homogeneous and today’s anisotropies emerged from
these fluctuations and evolved to what we today see as galaxies and galaxy clusters.

The time evolution of the Universe is governed by gravity as the other fundamental interactions are
limited to length scales typical for elementary particles (i.e. strong and weak interactions) or limited
by the shielding of opposite charges (i.e. electromagnetic interactions). Gravity is described in the
framework of General Relativity (GR) (Einstein, 1915), describing space-time as a four-dimensional
manifold with a metric gµν. Due to symmetry, this rank-2 tensor in four dimensions has ten indepen-
dent components. The dynamics of the metric are then described by Einstein’s field equations which
connect the geometry of space-time with its energy content. The field equation can be written as

Rµν − 1
2

gµνR − Λgµν =
8πG
c4 Tµν , (2.1)

with the Ricci tensor Rµν, the Ricci scalar R and the cosmological constant Λ. The Ricci tensor is
obtained from the Riemann tensor by contraction Rµν = Rαµαν and the Ricci scalar is given by the
trace of the Ricci tensor R = Rµµ. The Riemann tensor itself characterises the curvature and contains
second derivatives of the metric. The energy-momentum tensor Tµν describes the matter content of
the Universe. The constants are Newton’s gravitational constant G and the speed of light c. For weak
gravitational fields and non-relativistic matter Newtonian gravity is restored. GR is highly non-linear
as seen above: The geometry of space-time dictates the motion of matter and energy, vice versa the
energy content determines the geometry of space-time.

2.2 Friedmann-Lemaı̂tre-Robertson-Walker models

K > 0

K < 0

K = 0

Figure 2.1: Three different curvature parameters which
correspond to different geometries.

For describing the geometry of space-time we
are in need of a metric with the line element

ds2 = gµν dxµ dxν , (2.2)

containing the metric tensor gµν which is chosen
to have the signature (−1, 1, 1, 1).

If the metric fulfils the cosmological princi-
ple it is called a Robertson-Walker (RW) met-
ric (Robertson, 1935; Walker, 1935). Due
to isotropy synchronisation between any two
clocks needs to be possible, reducing the line el-
ement to

ds2 = c2 dt2 + gi j dxi dx j , (2.3)

and allowing the global foliation of space-time
into spatial hyper-surfaces. These are scaled by
the cosmological scale factor a(t), responsible
for potential isotropic contractions or expansions
of the Universe as a whole. Since the hyper-
surfaces have to be isotropic and homogeneous,
they are spaces of constant curvature and are pa-
rameterised by the curvature K and further illustrated in Fig. 2.1. Three different cases are distinguish-
able:

(1) K < 0: open Universe,

(2) K = 0: flat Universe,

6



2.3. COSMOLOGICAL REDSHIFT

(3) K > 0: closed Universe.

By introducing the set of polar coordinates (χ, θ, φ), we can rewrite the line element from above as

ds2 = −c2 dt2 + a2(t)
[
dχ2 + f 2

K(χ)(dθ2 + sin2 θ dφ2)
]
, (2.4)

with

fK(χ) =


sinh(

√|K|χ)√|K| if K < 0 ,

χ if K = 0 ,
sin(
√

Kχ)√
K

if K > 0 .

(2.5)

Moving on to the time evolution of the scale factor, we specify the energy-momentum tensor in
Eq. (2.1) as the one of a perfect fluid with density ρ and pressure p. In its eigenframe it has the
components T 0

0 = −ρc2,T i
j = pδi

j, and all other entries are equal to zero. With this we can simplify
the field equations (2.1) to the two Friedmann equations (Friedmann, 1922, 1924; Lemaı̂tre, 1927):(

ȧ
a

)2

=
8πG

3
ρ − Kc2

a2 +
Λ

3
, (2.6)

ä
a

= −4πG
3

(
ρ +

3p
c2

)
+

Λ

3
. (2.7)

The scale factor a(t) may be normalised such that at present a(t0) ≡ 1. If the scale factor of a RW
metric satisfies Eq. (2.6) and Eq. (2.7) this metric is called a Friedmann-Lemaı̂tre-Robertson-Walker
(FLRW) metric.

2.3 Cosmological redshift

In the year 1917 Vesto Slipher measured the redshift of galaxies, though it was Georges Lemaı̂tre who
interpreted the data correctly in 1927 as the expansion of the Universe. However, credits were given to
Edwin Hubble in 1929 and the relation between velocity and distance is called Hubble’s law (Hubble,
1929). It states that extragalactic objects like other galaxies are moving away from us with a velocity
proportional to their distance to us. The light emitted from these moving objects is then redshifted.
The expansion itself is parameterised by the scale factor a(t), as explained above. In the framework of
GR this observation can be understood as follows: as light moves on null geodesics with constant θ
and φ, the line element ds2 has to vanish

ds2 = 0 ⇒ c dt = −a(t) dχ . (2.8)

By integrating this from the time of photon emission te to present time t0

χ =

∫ t0

te
dχ =

∫ t0

te

c dt
a(t)

= const. , (2.9)

we see that the derivative of χ with respect to te has to vanish:
dχ
dte

= 0 =
c

a(t0)
dt0
dte
− c

a(te)
⇒ dt0

dte
=

a(t0)
a(te)

. (2.10)

A time interval changes during the time of emission and detection of the signal by an observer. This
change is proportional to a change in the scale factor of the Universe. Since the frequency of the
emitted signal is inversely proportional to a physical time interval and the scale factor increases with
time, the signal is shifted towards smaller frequencies. This in turn implies that the wavelength λ

is shifted to larger values, e.g. blue light is shifted to the red end of the optical band, the light gets
redshifted. The cosmological redshift z is then defined as

1 + z ≡ 1 +
λ0 − λe

λe
=

a(t0)
a(te)

=
1

a(te)
. (2.11)
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2.4 Hubble function and density parameters

It is common to define the Hubble function H(t),

H(t) ≡ ȧ
a
, (2.12)

with the value H0 ≡ H(t0) today. This time-dependent function quantifies the recessional velocity
of distant objects, or equivalently the time evolution of Hubble’s law, see Section 2.3. The Hubble
constant is given in units km s−1 Mpc−1 and often written as h in units of 100 km s−1 Mpc−1.

We now introduce the so-called equation of state parameter w,

w ≡ p
ρc2 . (2.13)

For different types of matter we may have different values for w. Non-relativistic matter ρm is char-
acterised by w = 0 and relativistic matter (any form of radiation and neutrinos) ρr by w = 1/3.
Non-relativistic matter is composed of baryonic matter ρb and cold dark matter (CDM) ρCDM. The
term ‘cold’ refers to the non-relativistic character and ‘dark’ as it is not electromagnetically inter-
acting. CDM is so far only accessible to us through its gravitational interaction and its existence is
indicated by rotation curves of galaxies and CMB measurements.

By combining the Friedmann equations (2.6) and (2.7), we find an adiabatic equation. This in
combination with Eq. (2.13) allows us to infer the dependence of the density on the scale factor,

ρm ∝ a−3 and ρr ∝ a−4 . (2.14)

The difference of the two types is understood as follows: The density of non-relativistic matter is
diluted by the expansion of the Universe but photons experience an additional redshift, diminishing
their energy. Introducing the dimensionless critical density

ρcrit ≡ 3H2(t)
8πG

, (2.15)

allows us to define the dimensionless density parameters,

Ωm ≡ ρm

ρcrit
and Ωr ≡ ρr

ρcrit
. (2.16)

Correspondingly, contributions from the cosmological constant ρΛ and from the curvature ρK are given
by:

ΩΛ ≡ Λ

3H2 and ΩK ≡ −Kc2

H2 . (2.17)

With these dimensionless parameters and the Hubble function and further replacing ρ by ρm + ρr, the
first Friedmann equation (2.6) yields

H2(a) = H2
0

(
Ωr0a−4 + Ωm0a−3 + ΩK0a−2 + ΩΛ0

)
≡ H2

0 E2(a) , (2.18)

where we define quantities with the subscript ‘0’ as their present values and also define the expansion
function E(a). Equation (2.6) additionally constrains the density parameters

Ωr + Ωm + ΩK + ΩΛ = 1 for all a , (2.19)

which implies that only three of the density parameters are independent. Most interestingly, referring
to Eq. (2.18), all density parameters scale with different powers of the scale factor a. For instance,
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Table 2.1: Density parameters, Hubble constant, and σ8.

Parameter WMAP Planck

Ωm0 0.288+0.0093
−0.0092 0.314 ± 0.014

Ωb0 0.0472 ± 0.0010 0.0486 ± 0.0021

ΩCDM0 0.2408+0.0093
−0.0092 0.263 ± 0.013

Ωr0 (8.689 ± 0.110) × 10−5 (9.187 ± 0.382) × 10−5

ΩΛ0 0.712 ± +0.010 0.686 ± 0.020

h 0.6933 ± 0.0088 0.674 ± 0.014

σ8 0.830 ± 0.018 0.834 ± 0.027

Compilation of the density parameters and the Hubble constant today and σ8. The normalisation of the
linear power spectrum σ8 will be discussed in Section 2.6.2. The WMAP data is a best-fit from the nine-
year ΛCDM WMAP+BAO+H0 data (Hinshaw et al., 2013) and the third column gives the results from
the Planck CMB temperature power spectrum alone (Planck Collaboration, 2013a). The radiation density
parameter Ωr0 = 2.469 × 10−5 h−2(1 + 0.2271 Neff) includes the contribution of neutrinos with an effective
number of species Neff = 3.046.

the radiation density is much smaller than the matter density today, but going back in time, it grows
inevitably faster until the epoch when radiation dominated. Vice versa, at present the density parameter
of the cosmological constant dominates over the other density parameters. Figure 2.2 depicts the three
density parameters in dependence of the scale factor and indicates the different epochs of evolution in
a spatially flat Universe.

The expansion function E(a) further determines the age t of the Universe since H = ȧ/a,

H0t =

∫ a

0

da′

a′ E(a′)
, (2.20)

assuming t = 0 for a = 0. Concentrating on the radiation-dominated and matter-dominated eras we
can make further statements. For the matter-dominated era we assume a so-called Einstein-de Sitter
Universe, a flat Universe that only contains matter (i.e. Ωm = 1) and obtain

a ∝

√

t for radiation-domination and E(a) =
√

Ωr0 a−2

t2/3 for matter-domination and E(a) =
√

Ωm0 a−3/2 .
(2.21)

A major goal in modern cosmology has been to measure the above density parameters, where-
fore several missions have been launched. The latest measurements infer their results from CMB
measurements combined with measurements from baryon acoustic oscillations (BAO) and local mea-
surements of the Hubble constant H0 (Hinshaw et al., 2013). BAOs are oscillations of sound waves,
which emerge from the counteraction of the radiation pressure pointing outwards and inwards point-
ing gravitational force in the primordial plasma before recombination. In Tab. 2.1 we show the results
from the WMAP (Hinshaw et al., 2013) after the nine-year data release and the first measurements of
Planck (Planck Collaboration, 2013a).

According to the Planck measurements and assuming a flat Universe, the Universe is filled by
roughly 4.9% matter that we are familiar with, baryonic matter. 26.8% are due to dark matter. But
even more energy, namely 68.3%, is contributed from the cosmological constant Λ. Today the con-
tribution from radiation is negligible and of the order of 10−5. This leaves us with 95.1% of the total
energy content which is dark and unknown to us. Despite this lack of understanding of the ‘dark’
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Figure 2.2: Evolution of the three density parameters assuming a flat ΛCDM model with best-fit values
from WMAP9+BAO+H0 measurements.

components, for which ‘observations’ must always be indirect, the sketched ΛCDM describes our
Universe accurately to a high degree. Therefore, it is nowadays also called the standard model of
cosmology.

Observations of Supernovae Type Ia 1 (SN Ia) indicate that the Universe is currently in a state
of accelerated expansion (Riess et al., 1998; Perlmutter et al., 1999). The second Friedmann equa-
tion (2.7) then requires an equation of state parameter w < −1/3 or equivalently ‘negative pressure’.
One candidate for this energy density contribution is the cosmological constant Λ which has w = −1.
An explanation for Λ may be found in the vacuum energy density, which serves as a further source
of gravity. However, this would lead to an energy density 120 orders of magnitude larger than the
observed value of the critical density. In a more general context the missing energy density is phrased
dark energy. Various explanations for the dark energy exist in the literature, one is the class of the
so-called quintessence models (Wetterich, 1988; Ratra & Peebles, 1988; Caldwell et al., 1998). In
this framework dark energy is supposed to be distinguishable from the cosmological constant and de-
scribed by a scalar field. The energy-momentum tensor of this scalar field acts on the right-hand side
of Eq. (2.1). Another class of models considers changes on the left-hand side of Eq. (2.1), which alters
the nature of gravity. Hence they are called modified gravity models.

A further puzzling fact of the ΛCDM model is that the cosmological constant started to dominate
the energy content of the Universe rather recently, allowing us to observe the accelerated expansion.
This is called why now problem.

2.5 Distance measures

Euclidian space allows us the definition of unique distance measures, which is not possible anymore
in a curved space-time. Depending on the measurement description different measures have to be
considered, wherefore we want to explain four commonly used measures: The proper distance, the

1SN Ia, according to current models, are located in binary systems, where a white dwarf and a red giant are in close
proximity. As the red giant evolves and exceeds its Roche volume, it starts to lose mass to the white dwarf. On the other
hand, the white dwarf’s mass is limited by the Chandrasekhar mass, as its stability arises from the Fermi pressure of its
degenerated relativistic electron gas. Once the white dwarf exceeds the Chandrasekhar mass it collapses and releases a
specific amount of energy. Therefore all SN Ia nearly peak at the same absolute luminosity, allowing a distant observer
to infer its luminosity distance.
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comoving distance, the angular diameter distance and the luminosity distance. The luminosity and
angular-diameter distance are defined in regard of their Euclidian counterpart and reparameterised in
curved space-time.

i. Proper distance
The proper distance Dp is given by the time a light signal needs to propagate from the source to the
observer, defined as

dDp ≡ −c dt = −c
da
ȧ
, (2.22)

where the minus sign ensures that the proper distance increases away from the observer while a and t
decrease. Integrating this equation and using Eq. (2.18), the proper distance between two redshifts z1
and z2 is

Dp(z1, z2) =
c

H0

∫ a(z1)

a(z2)

da′

a′E(a′)
. (2.23)

ii. Comoving distance
The comoving distance Dc describes the distance between a source and a distant observer, both co-
moving with the cosmic flow on the spatial hypersurface. Any change in the expansion given by the
scale factor a has to be divided out, thus

dDc ≡ −cdt
a

= −c
da
aȧ

. (2.24)

Again, the integral gives the distance between two redshifts,

Dc(z1, z2) =
c

H0

∫ a(z1)

a(z2)

da′

a′2E(a′)
. (2.25)
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Figure 2.3: Double logarithmic plot of the four distance
measures in dependence of redshift z for a spatially flat
ΛCDM model (Ωm0 = 0.272 and ΩΛ0 = 0.728).

iii. Angular diameter distance
The angular diameter distance DA is defined, as
in Euclidian space, as the fraction of the proper
size of an object δl and its observed solid angle
δϑ,

DA ≡ δl
δϑ

. (2.26)

The physical size in comoving coordinates is
given by the FLRW metric Eq. (2.4)

δl = a fK(χ) δϑ , (2.27)

which yields the angular diameter distance

DA(z1, z2) = a(z2) fK[χ(z1, z2)]

= a(z2) fK[Dc] , (2.28)

with fK from Eq. (2.5).
iv. Luminosity distance

The luminosity distance DL is derived from the relation between the total luminosity L of an object at
z2 and the received flux F at z1

F ≡ L
4πD2

L

. (2.29)
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This definition is again generalised to curved space and comoving coordinates. Due to the Etherington
relation, the luminosity distance is given as

DL(z1, z2) ≡
[
a (z1)
a (z2)

]2

DA

=
a (z1)2

a (z2)
fK[Dc] . (2.30)

The above defined cosmological distance measures are plotted in Fig. 2.3 in dependence of redshift
for a spatially flat ΛCDM model. For small redshifts (i.e. z . 0.2) all distance measures return
approximately the same distance, but for larger redshifts the discrepancy becomes more severe. For
instance, in a spatially flat Universe the angular diameter distance DA is given by

DA(z) =
χ

1 + z
. (2.31)

This has the interesting feature that for small z the angular diameter distance increases, but for larger
redshifts it decreases, as seen in Fig. 2.3. Furthermore, the proper and the comoving distance flatten
for large redshifts, which indicates the existence of a particle horizon. Such a horizon implies that
since the Big Bang light can only have travelled a finite distance, limiting the influence on particles to
finite regions.

2.6 Structure formation

Up to this point the picture we drew of our Universe was based on the assumption of homogeneity,
thus the Universe would be structureless. However, observing the night sky reveals a multitude of
structures visible, like our Milky Way, massive galaxy clusters, large filamentary structures or the
voids in between, together also known as the cosmic web. In the following sections we want to
explain how structures in the Universe evolved. As indicated by the measured matter power spectrum
structure formed hierarchically: Small halos form at high redshifts and larger ones formed later. This
scenario is called hierarchical structure formation.

The model of structure formation assumes that structures are forming by gravitational instability
emerging from small fluctuations at early times in the Universe. The amplitudes of these fluctuations
then grow due to gravitational instability. The origin of these fluctuations is unknown. One assumes
them to be related to quantum fluctuations shortly after the Big Bang, enlarged in scale during the
phase of inflation. In this scenario the fluctuations would be uncorrelated and their amplitudes would
be Gaussian distributed. Assuming further that the relative matter fluctuations are small, they can be
assessed as small perturbations of a uniform background density, allowing us to apply linear perturba-
tion theory.

Assuming dark matter particles to be collisionless and other matter components to interact micro-
scopically very strong, mass, momentum and energy conservation is guaranteed. In this case we can
describe the matter content of the Universe as a perfect fluid, applicable at least on large scales. We can
apply the hydrodynamic equations for the density ρ, the velocity v and pressure P in the gravitational
field Φ:

i. The continuity equation
∂ρ

∂t
+ ∇ · (ρv) = 0 , (2.32)

ii. the Euler equation
∂v
∂t

+ (∇ · v)v = −∇Φ − ∇P
ρ
, (2.33)
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iii. the Poisson equation
4Φ = 4πGρ . (2.34)

Having this set of equations at hand, we will proceed with the linear perturbation theory.

2.6.1 Linear structure formation

For small density perturbations we can linearise the hydrodynamic equations and decompose the quan-
tities into a time-dependent background term and a perturbation term,

ρ(x, t) = ρbg(t) + δρ(x, t) , (2.35)

v(x, t) = vbg(t) + δv(x, t) , (2.36)

p(x, t) = pbg(t) + δp(x, t) , (2.37)

Φ(x, t) = Φbg(t) + δΦ(x, t) , (2.38)

where the quantities with the subscript ‘bg’ denote the homogeneous background components. The
aforementioned density perturbations are characterised by the density contrast δ(x, t),

δ(x, t) ≡ ρ(x, t) − ρbg(t)
ρbg(t)

. (2.39)

We define the comoving peculiar velocity u ≡ v/a and the adiabatic sound speed c2
s ≡ δp/δρ. These

relations are inserted into the set of Eqs (2.32), (2.33) and (2.34) to yield a second-order differential
equation for the density contrast when leaving out terms which are not linear in the perturbations,

δ̈ + 2Hδ̇ − 4πGρbgδ − c2
s

a24δ = 0 . (2.40)

Decomposing the density contrast into plane waves, inserting this in Eq. (2.40) and additionally trans-
forming the equation to Fourier space reveals a more familiar form – an oscillator-like equation. In
Fourier space the density contrast δ̂(k, t) is written as

δ̂(k, t) =

∫
d3x δ(x, t) exp (ik · x) . (2.41)

We can identify a particular length scale called Jeans length λL ≡ cs
√
π/(Gρbg). Perturbations with

length scales smaller than the Jeans length will oscillate, perturbations larger than the Jeans length will
either grow or decay. On these scales the pressure term in Eq. (2.40) is neglected, which simplifies the
equation as no spatial derivatives appear.

In the radiation-dominated era, however, we have to use relativistic fluid mechanics. This alters the
shape of Eq. (2.40). We give here the perturbation equations for scales much larger than the Jeans
length in both cases,

matter-domination (Ωm = 1): ¨̂δ + 2H ˙̂δ =
3
2

H2δ̂ , (2.42)

radiation-domination: ¨̂δ + 2H ˙̂δ = 4H2δ̂ . (2.43)

With the ansatz δ̂(k, t) ∝ tn we find for the matter-dominated case n = 1,−2/3 and in the radiation-
dominated case n = ±1. If we omit the decaying solution, we get, using the proportionalities from
Eq. (2.21),

δ̂ ∝
a for matter-domination ,

a2 for radiation-domination .
(2.44)
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The linear evolution of δ is then described by the linear growth factor D+, which allows us to rewrite
the density contrast as

δ(x, t) = δ(x, t0)D+(t) . (2.45)

Considering the evolution-equation Eq. (2.40), we see that matter density drives the growth of struc-
tures whereas the Hubble expansion counteracts. In more general cases than Ωm = 1, the evolution
equation of the density contrast may only be solved numerically.

2.6.2 The power spectrum

Considering the scenario of cosmic single-field inflation, density perturbations are initially expected
to follow a Gaussian distribution (e.g. see Liddle & Lyth, 2000) according to the central limit theorem.
Deviations from this Gaussian random field, called non-Gausianities, are expected to be negligible if
measurable at all (Komatsu et al., 2011). Such a Gaussian field is fully described by its mean and
variance, whereas in our case the mean equals zero by construction, leaving us only in the need of the
power spectrum of the density perturbations to fully describe their statistics.

The variance of δ defines the power spectrum P(k), which only depends on the modulus of k due to
isotropy,

〈δ̂(k) δ̂?(k′)〉 ≡ (2π)3P(k) δD(k − k′) . (2.46)

Dirac’s delta distribution δD ensures that different k-modes are uncorrelated, otherwise the assump-
tion of homogeneity would be violated. The star indicates the complex conjugate. In real space the
correlation function ξ is defined as

ξ(y) ≡ 〈δ(x) δ(x + y)〉 with y = |y| due to isotropy. (2.47)

ξ(y) is a measure for the coherence of the density contrast for all points separated by the distance
modulus y. The variance σ2 is then given by ξ(y = 0),

σ2 = 4π
∫

dk k2

(2π)3 P(k) . (2.48)

By introducing a window function WR and its Fourier-transform ŴR and using Eq. (2.46) we can
consider specific scales only

σ2
R(a) ≡ 1

2π2

∫
dk k2 D2

+(a) Ŵ2
R P(k) . (2.49)

Usually, a scale of 8 Mpc h−1 is considered using a top-hat filter function, defining the cosmological
parameter σ8 today.

The above discussion of the power spectrum is true for the matter-dominated era of the Universe
in which density perturbations that enter the horizon either grow or decay. The picture changes if
we take a closer look at perturbations small enough to enter the horizon in the radiation-dominated
era. We inferred from Eq. (2.44) that perturbations in the density contrast grow proportional to a
in the matter-dominated era, while they grow proportional to a2 in the radiation-dominated era. But
modes entering the horizon during the radiation-dominated era feel the radiation pressure and will be
hindered from growing until the Universe is matter-dominated. Therefore, we can define a scale factor
aeq, corresponding to the time when radiation density and matter density were nearly equal. This also
defines a specific length scale λeq (or wavenumber keq) equal to the Hubble radius at that time and
further allows modes to grow normally with k < keq and hinders the growth of modes with k > keq
nearly entirely. Modes entering the horizon at aenter < aeq will start growing again once the Universe
enters the matter-dominated phase.
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2.6.3 Non-linear structure formation

Up to now we only considered first order density perturbations, requiring the density contrast to be
rather small. However, structures in the Universe do exist, i.e. massive galaxy clusters with densities
of 200× ρbg, heavily violating our previous assumption. Numerical simulations allow us to determine
the shape of the power spectrum for non-linear structure formation which differs from the shape of
the linear power spectrum. The reason for this is the following: In non-linear structure formation the
transfer of power from larger to smaller scales is possible and necessary to form small scale structures–
mode coupling occurs.

A glimpse into non-linear structure formation was developed by Zel’dovich (1970), explaining the
cosmic fluid with a kinematical approach and decomposing it into particles following specific trajec-
tories r,

r(t) = a(t)x + b(t) f (x) , (2.50)

written as the sum of a universal expansion at position x and a peculiar motion described by the dis-
placement field f (x) = ∇φ(x), being the gradient of some scalar field φ. The function b(t) describes
the time evolution of the displacement field. The derivative of Eq. (2.50) can be written in terms of the
deformation tensor ∂2φ/(∂xi∂x j). With this ansatz one obtains a relation between the density contrast
δ and the eigenvalues of the deformation tensor and the ratio b/a. Even though this Zel’dovich ap-
proach is an approximation, it allows us to enrich our understanding of structure formation. Assuming
a Gaussian random field for the perturbations of the gravitational field, one can infer the probability
distribution for the eigenvalues of the deformation tensor. This results in the fact that the probability
for any two eigenvalues to be equal is zero, ruling out isotropic collapse of structures. The anisotropic
behaviour of gravitational collapse is observationally confirmed. Eventually, the Zel’dovich approx-
imation fails once the trajectories of particles start to cross each other as their self-interaction was
neglected.

2.6.4 Spherical collapse model

In the preceding section we motivated that isotropic collapse of structures is not possible. Neverthe-
less, the so-called spherical collapse model takes a closer look at collapsing spherical overdensities in
a homogeneous background with density ρbg. This model is interesting, as one is capable to compute
an analytic solution for the evolution of the density contrast (e.g. Padmanabhan (1993) or the thesis of
Puchwein (2007)).

Considering only small scales in an Einstein-de Sitter Universe, a test particle at a physical dis-
tance r from the centre of the spherical overdense halo follows the Newtonian equation of motion,

r̈ = −GM
r2 , (2.51)

with the total mass M = 4
3πr3 ρ. This equation could, if not focused on an Einstein-de Sitter Universe,

contain contributions from the cosmological constant Λ. The integral of the equation of motion is
given by

E =
1
2

ṙ2 − GM
r

(2.52)

with the total energy E of the system. In the case of E < 0 the spherical halo first will expand together
with the Universe reaching a maximum radius rta and eventually start to collapse at a turn-around time
tta. A solution for the equation of motion in parametric form is given by

r = A (1 − cos θ) , (2.53)

t = B (θ − sin θ) , (2.54)
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which depends on the parameter θ. The constants A and B are related by

A3 = B2GM . (2.55)

Assuming r = 0 at t = 0 and inserting the above equation, Eqs. (2.53) and (2.54) yield

r =
rta

2
(1 − cos θ) , (2.56)

t =
(tta/2)3/2

√
GM

(θ − sin θ) . (2.57)

As restricted to an Einstein-de Sitter Universe, we define the overdensity ∆,

∆ ≡ ρ

ρbg
=

9
2

(θ − sin θ)2

(1 − cos θ)3 . (2.58)

The density contrast δ ≡ ρ/ρbg − 1, see Eq. (2.39), to lowest order in t is then

δ ≈ 3
20

(
6t
B

)2/3

∝ a , (2.59)

giving the linear density contrast δc. The proportionality is due to the fact that during matter-domination
the scale factor a is proportional to t2/3. For θ = π the overdensity is at its turn-around point and en-
tirely collapses at t = 2tta (i.e. θ = 2π) due to symmetry. This implies an infinite density for this
model, but a realistic halo will rather settle in virial equilibrium, where the mean potential energy of
the halo is twice the energy at the turn-around. Assuming energy conservation and considering that at
turn-around the kinetic energy is zero, the halo will have a radius of rvir = rta/2. At virialisation we
find θ = 2π and thus the critical linear density contrast is δc ≈ 1.69. Given the density contrast we can
calculate the mean density ρv

ρv =

(
rta

rvir

)3

[δ(tta) + 1] ρbg(tta) ≈ 178 ρbg(tvir) . (2.60)

Following from Eq. (2.58) the overdensity is

∆v ≈ 178 . (2.61)

A virialised overdense halo thus has a mean overdensity of about 178 times the background density.
The linear density contrast δc and the overdensity ∆v are used in cosmology to characterise dark
matter halos. For a more general cosmology than the one considered here, an analytic calculation is
not possible and one has to rely on numerical solutions.

2.7 Mass function

In the preceding section we sketched how structures in the Universe form and that they must not
collapse isotropically. This allows us to ask the following question: Given that we observe structures,
how is the distribution of dark matter halos with mass?

This distribution of halos over mass at a given redshift z is called mass function n(M, z). Using the
spherical collapse model from Section 2.6.4, Press & Schechter (1974) derived a formula for the mass
function. It was reformulated by Bond et al. (1991) assuming halo formation to be a random walk
process.

We define a characteristic length scale R(M) of a halo with given mass M. A sphere filled with the
average background density ρbg = Ωm ρcrit has the mass

M =
4
3
πΩm ρcrit R3 , (2.62)
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which defines the length scale

R(M) =

(
3M

4πΩm ρcrit

)1/3

. (2.63)

To obtain the variance of the density contrast according to Eq. (2.49), the Gaussian density field is
smoothed on the scale R(M). This is achieved by convolving the density contrast with a window
function WR,

δR(x, z) ≡
∫

d3y δ(y, z) WR(|x − y|) . (2.64)

Once the linearly scaled density contrast δR is larger than a specific density contrast δc the overdense
regions should collapse. For this barrier we take the result obtained with the spherical collapse model
from Section 2.6.4. The probability to form such a halo with mass M is

P(δR ≥ δc) =

∫ ∞

δc(z)
dδR p(δR) =

1√
2πσR(z)

∫ ∞

δc(z)
dδR exp

− δ2
R

2σ2
R(z)

 =
1
2

erfc
[

δc√
2σR(z)

]
, (2.65)

with the complementary error function erfc(x) ≡ 1 − erf(x). One main assumption of the Press-
Schechter formalism is the following: The probability to find a δR above or equal to δc equals the
fraction of the cosmic volume F with halos of mass M; we can write P(δR ≥ δc) = F(M). The halo
distribution in dependence of mass is then

∂F(M)
∂M

dM =
∂P(δR ≥ δc)

∂σR

∂σR

∂R
∂R
∂M

dM . (2.66)

The consideration by Press & Schechter (1974) as sketched above is missing a factor of two. The inte-
gral of Eq. (2.66) over all masses is not equal to one but to one half. The solution to this normalisation
problem was found by Bond et al. (1991) by interpreting the halo formation as a random walk. It is
then given by the cloud-in-cloud problem, i.e. the fact that haloes may contain smaller halos.

With the correct normalisation, which we insert here by hand without proof, we can divide the
equation by the typical volume Vm = M/ρbg of a halo,

n(M, z) =
∂2N
∂M ∂V

=

√
2
π

ρbg

M
δc(z)

D+(z)σR

∣∣∣∣∣∣∂ lnσ2
R

∂M

∣∣∣∣∣∣ exp
[
− δ2

c(z)
2D2

+(z)σR

]
(2.67)

with the total number N of halos. This function is called Press-Schechter mass function and gives a
good insight into structure formation with redshift as the linear power spectrum of density fluctua-
tions can be computed. The obtained mass function compares very well to those found by numerical
simulations.

Even better results are found with a model that accounts for ellipsoidal collapse, which was devel-
oped by Sheth et al. (2001) and yields the following mass function:

n(M, z) = A

√
2
π

(
1 +

1
ν2q

)
ρbg

M
dν
dM

exp
(
−ν

2

2

)
, (2.68)

where ν =
√
α δc/[D+(z]σR). For the remaining parameters, Sheth et al. (2001) find by comparison to

numerical results: A = 0.322, α = 0.707 and q = 0.3. The Press-Schechter mass function is obtained
for A = 1/2, α = 1 and q = 0. Further work by Jenkins et al. (2001) suggests values of A = 0.353,
α = 0.73 and q = 0.175.

To measure the mass function provides a good way to infer the normalisation of the power spectrum
as the mass function depends exponentially on the variance of the density contrast. It also allows us
to study the evolution of Ωm as it enters in the mean background density ρbg.
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3 Chapter 3

Galaxy clusters

Galaxy clusters are the most massive gravitationally bound objects in the Universe. In the sce-
nario of hierarchical structure formation (see Section 2.6) they are the class of objects formed
latest. As cold dark matter is expected to clump on all scales, massive objects such as galaxy
clusters should have a broad spectrum of massive sublumps embedded (cf. Boylan-Kolchin
et al., 2009; Dolag et al., 2009; Gao et al., 2004, 2011; Giocoli et al., 2010; Zentner et al.,
2005). However, the distribution of cold dark matter in galaxy clusters should be least affected
by baryonic physics, due to the long cooling time exceeding the Hubble time, of the baryonic
matter (e.g. Duffy et al., 2010). Galaxy clusters are the class of objects best suited for testing
expectations raised by simulations.

On the other hand, galaxy clusters provide information on the cosmological parameters,
by means of their population statistics. As pointed out by different authors (e.g. Press &
Schechter 1974; Jenkins et al. 2001; Sheth & Tormen 2002; Schuecker et al. 2003; Warren
et al. 2006) cluster mass functions constrain the growth of structure, thus testing ΛCDM, see
also Section 2.7.

In the light of these opportunities, many new data sets of cluster observables are becoming
or will become available. As an extraordinary example we want to point out a specific HST
Multi-Cycle Treasury programme – CLASH (Cluster Lensing And Supernova survey with
Hubble), in the course of which 25 X-ray luminous clusters have been observed in 16 bands
with a wavelength coverage in the main survey from HST/WFC3/IR through HST/ACS optical
to HST/WFC3/UVIS. All of these clusters will be analysed by the CLASH-Team (e.g. Coe
et al., 2013; Postman et al., 2012; Umetsu et al., 2012; Zitrin et al., 2012, 2013), amongst other
techniques, applying strong- and weak-lensing reconstructions of the mass distributions.

This chapter is dedicated to the constituents and the structure of galaxy clusters, as well as
the different wavebands which clusters may be observed in.

3.1 Cluster structure

In the following we briefly discuss the current understanding of the structure of galaxy clusters. Exam-
ples for four massive galaxy clusters (Abell 383 (A), MACS 1149.6+2223 (B), Abell 2261 (C), MACS
1206.2-0847 (D)), are shown in Fig. 3.1. We further give an overview of the different components of
galaxy clusters and how their generalised radial density distribution is phrased.

3.1.1 Constituents

First galaxies were observed in our close neighbourhood, though later galaxies in large agglomerations
were found by Frederick William Herschel – giving galaxy clusters their name. Galaxies are prominent
in the optical band. A cluster may host up to 1000 galaxies, each containing billions of stars. The
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Figure 3.1: Images of strong gravitationally lensing galaxy clusters which are part of the CLASH project.
Abell 383 (A), MACS 1149.6+2223 (B), Abell 2261 (C), and MACS 1206.2-0847 (D; Postman et al.
2012).

visible mass of the galaxies is responsible for roughly 1-2% of the total cluster’s mass. Galaxies are
used to infer their velocity dispersion (see Binney & Tremaine, 1988; Schneider, 2006a) first measured
by Zwicky (1933, 1937) and now widely used to recover mass estimates of clusters, via the Virial
Theorem (e.g. Diaferio et al., 2005).

Concerning the mass fraction the more massive component is the intracluster medium (ICM) with
a mass fraction of roughly 10-15%. Mostly consisting of hydrogen and helium, the ICM radiates
thermal bremsstrahlung revealing clusters in the X-ray band. Another signal the ICM is responsible
for is the thermal Sunyaev-Zel’dovich effect (SZ) (Sunyaev & Zeldovich, 1980) measurable in the
microwave regime. For many clusters the assumption of hydrostatic equilibrium is applicable thus the
ICM directly probes the cluster potential well.

The total baryonic mass of clusters is therefore around 15%, thus galaxy clusters are missing a large
amount of visible matter. The last 85% are due to dark matter, previously discussed in Section 2.4.

It was Zwicky (1937), who observed the Coma cluster which provided the first evidence for the
presence of dark matter in galaxy clusters. Estimating the total mass of the Coma cluster much higher
than inferred from optical measurements was a clear hint for a discrepancy, so far only solvable by a
dark matter component.

3.1.2 NFW profile

Many numerical simulations have shown that gravitationally bound structures dominated by dark mat-
ter are following a universal density profile, first described by Navarro et al. (1996, 1997, hereafter
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NFW). The NFW profile itself is flatter in the core, steepens around a scale radius rs and then asymp-
totically approaches a double-logarithmic slope near -3 towards the virial radius rvir (e.g. Jing & Suto
2000; Merritt et al. 2006; Navarro et al. 2004; Power et al. 2003; Moore et al. 1998, 1999 and Fig. 3.2).
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Figure 3.2: Double logarithmic plot of the NFW den-
sity profile for x = r/rs. The asymptotic behaviour is
illustrated by the dashed lines with slopes of -1 and -3.

The NFW profile is written as

ρ(r) =
ρs

(r/rs)(1 + r/rs)2 , (3.1)

with the characteristic density ρs of the halo.
Slight deviations from this universal profile

exist, such as steeper slopes in the cluster core
as pointed out by serval authors (Moore et al.,
1999, 1998). Furthermore, recent findings by
Power et al. (2003) and Navarro et al. (2004) ar-
gue for a slope probably depending on the halo
mass. These efforts are combined in the gener-
alised NFW profile (see Jing & Suto, 2002).

However, the above profile is spherically sym-
metric, clearly contradicting observed ellipsoidal
cluster shapes, as a triaxial cluster shape fits bet-

ter to real cluster observations (Allgood et al., 2006). This is also in agreement with the model of
structure collapse according to the Zel’dovich approximation (see Section 2.6.3).

The importance of possible triaxial cluster shapes is also revealed by the following: The fraction
rvir/rs is called the concentration parameter c and is found in simulations to depend only weakly
on the mass M, decreasing with ∝ M−0.1 (see Navarro et al., 1996, 1997; Seljak, 2000; Bullock
et al., 2001; Eke et al., 2001; Dolag et al., 2004; Shaw et al., 2006; Neto et al., 2007; Macciò et al.,
2007; Duffy et al., 2008; Gao et al., 2008; Macciò et al., 2008; Zhao et al., 2009, for examples).
The concentration parameter is frequently observed to be substantially different than theoretically
expected. Particularly in strong gravitationally lensing clusters concentration parameters significantly
higher than those found in numerical simulations have been claimed (Broadhurst et al., 2008; Coe
et al., 2012, Fig. 14). Some of this discrepancy may be overcome, as pointed out by Sereno & Zitrin
(2012), by taking cluster triaxiality into account, raising concerns on the universality of the spherical
NFW profile. Other explanations to this problem of over-concentrated clusters exist. For instance,
an introduced bias given by selection effects due to the used cluster sample (e.g. Meneghetti et al.,
2010a).

3.2 Observing galaxy clusters

As mentioned before, clusters are observed in a multitude of different bands probing their different
components. For a compilation of commonly used probes see Fig. 3.3, where we show that different
methods probe different scales in galaxy clusters.

In this section we first want to describe the effect of gravitational lensing in the framework of general
relativity. Thereafter, we will focus on the physical principles of the thermal SZ effect and the X-ray
emission due to thermal bremsstrahlung.

For a detailed review on gravitational lensing we refer the interested reader to Bartelmann (2010),
the thesis of Angrick (2011), notes of Meneghetti (2007) and the book by Schneider et al. (2006).
Concerning the thermal SZ effect an excellent review is provided by Birkinshaw (1999), as well as
for X-ray emission by Sarazin (1986); Sarazin & Surdin (1988) and in the recent publication by Ettori
et al. (2013).
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strong lensing
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X-ray emission

thermal SZ effect

galaxy kinematics

flexion

Figure 3.3: Different methods probe different scales in galaxy clusters and thus also their mass distribution.
The picture further shows a possible range for flexion measurements (credits: M. Bartelmann).

3.2.1 Gravitational lensing

A method where observations of galaxies are crucial is the effect of gravitational lensing, even though
not the cluster members but rather the background galaxies are the ones of interest here. Gravitational
lensing effects give an insight into the surface-mass density or the effective lensing potential of the
cluster.

According to general relativity a propagating ray of light is bent towards massive objects by the
gravitational potential, nearly analogues to a convex glass lens. Such a propagating ray may be the
light emitted by a background galaxy, which in the following will be called source. The source is
located behind a massive object, e.g. a galaxy cluster, acting as the lens. This lensing effect leads to an
apparent position change of the source in the plane of the sky, as well as to distortions depending on
the alignment of the lens and source and the strength of the lens itself. Therefore, one can distinguish
between two different regimes:

Strong lensing leads to strong image distortions, multiple images, giant arcs or so called Einstein
rings. These visually striking effects occur whenever the source is exactly behind the lens (Einstein
rings) or near the centre (strong distortions, multiple images and giant arcs, see also Fig. 3.1).

Weak lensing in comparison is only responsible for minor distortions of the source leading to small
changes in the ellipticity of the background galaxies. This in turn implies a problem in measuring the
effects of weak lensing as galaxies have intrinsic ellipticities. It only allows statistical statements on
the weak-lensing signal as the intrinsic ellipticity is expected to vanish if one averages over a large
sample of lensed galaxies.

Lens equation

In the following we want to present the framework of gravitational lensing in the so-called thin-lens-
approximation as the distances are large in comparison to the size of the lens and the background
source. The distance between the observer and the lens is called Dd, at this distance the mass of the
lens is projected onto a plane – the lens plane. It describes the plane in the sky where lensing is
assumed to occur. The distance from the lens plane to the source plane is called Dds and the distance
from the observer to the source plane Ds. As distances are angular diameter distances, Ds is generally
not the sum of Dds and Dd (see also Section 2.5). The assumed geometry of the lensing system is
depicted in Fig. 3.4, defining the angular position β and the apparent position angle θ of the source,
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Figure 3.4: Geometrical description in the thin-lens-approximation, defining the source plane, lens plane
and the impact parameter ξ, as well as the position angles α̂, β and θ (see text).

lying at the distance η = βDs in the source plane. From Fig. 3.4 we further define the impact parameter
as ξ = θDd. As all the angles are expected to be small, simple geometric considerations lead to the so
called lens equation

η = Ddsα̂ =
Ds

Dd
ξ (3.2)

with the deflection angle α̂. We can further introduce the reduced deflection angle

α(θ) ≡ Dds

Ds
α̂(θ) . (3.3)

With it, in combination with the position angles β and θ, the lens equation can be simplified to

β = θ −α(θ) . (3.4)

Lensing Potential

From the linearised field equations Eq. (2.1) we can retrieve the deflection angle, which points towards
the mass, as

α̂ =
4GM

c2

ξ

|ξ|2 . (3.5)

This is twice the value expected from Newtonian physics where the time-time part of the metric is
neglected.

Furthermore, an object acting as a gravitational lens can be described with the three-dimensional
mass density ρ(r) with r = (ξ1, ξ2, r3), such that r3 points along the line-of-sight to the lens plane.
Giving this mass distribution as the sum of point masses allows us to replace the mass in Eq. (3.5) by
an integration over the density,

α̂(ξ) =
4G
c2

∫
d3r′ ρ(r′)

ξ − ξ′
|ξ − ξ′|2 =

4G
c2

∫
d2ξ′ Σ(ξ′)

ξ − ξ′
|ξ − ξ′|2 . (3.6)

The line-of-sight projection of this density is the so-called surface-mass density Σ(ξ). This further
defines the convergence κ as the dimensionless ratio of the surface-mass density and the critical mass
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density Σcrit, characterising the geometry of the lens system,

κ(θ) ≡ Σ(Ddθ)
Σcrit

, (3.7)

Σcrit ≡ c2

4πG
Ds

DdDds
. (3.8)

There is a sufficient condition for the convergence (κ ≥ 1) in order to have strong lensing. Given the
convergence, we rewrite Eq. (3.6) introducing the lensing potential ψ

α(θ) =
1
π

∫
d2θ′ κ(θ)

θ − θ′
|θ − θ′|2

= ∇ψ with ψ ≡
∫

d2θ′ κ(θ) ln |θ − θ′| . (3.9)

In the last equation we used

∇ ln |θ − θ′| = θ − θ′
|θ − θ′|2 . (3.10)

Defined according to Eq. (3.9), the lensing potential is the scaled line-of-sight projection of the New-
tonian potential Φ of the given mass distribution,

ψ(θ) =
2
c2

Dds

DsDd

∫
dr3 Φ(Ddθ, r3) , (3.11)

and satisfies Poisson’s equation in two dimensions,

4ψ = 2κ . (3.12)

Convergence and shear

The observed image of a background source may either get enlarged or reduced in size and additionally
distorted. But the lensing process does not create or destroy photons, conserving the surface brightness
of the source. If the source is small compared to the extent of the lens, the mapping β 7→ θ can be
linearised around a point θ0 using the local Jacobian A

β = β0 + A(θ0) · [θ − θ0] , (3.13)

where we use the angle between the line-of-sight and the centre of the source β0, as well as the angle
between the line-of-sight and the centre of the image θ0. The Jacobian can be rewritten in terms of the
lensing potential, further introducing the shear γ, with its two components γ1 and γ2,

A =

(
δi j − ∂2ψ

∂θi∂θ j

)
≡

(
1 − κ − γ1 −γ2
−γ2 1 − κ + γ1

)
. (3.14)

The shear components and the convergence in terms of the lensing potential are then given as combi-
nations of second order derivatives of the lensing potential,

γ1 =
1
2

∂2ψ

∂θ2
1

− ∂
2ψ

∂θ2
2

 , γ2 =
∂2ψ

∂θ1 ∂θ2
, κ =

1
2

∂2ψ

∂θ2
1

+
∂2ψ

∂θ2
2

 . (3.15)

We can finally define the magnification as the inverse of the determinant of the Jacobian

µ ≡ |det A|−1 =

∣∣∣∣∣∣det
(
∂βi

∂θ j

)∣∣∣∣∣∣−1

=
1

(1 − κ)2 − |γ|2 . (3.16)
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Figure 3.5: Distortions caused by the convergence, shear components and the components of F- and G-
flexion. The round shape of the unlensed source is indicated by the dashed circles.

Going back to Eq. (3.14), a factor (1 − κ) can be separated from the matrix. This defines the reduced
shear g with its components g1 and g2,

A = (1 − κ)
(
1 − g1 −g2
−g2 1 + g1

)
. (3.17)

The reduced shear is an observable, thus only image distortions as a combination of shear and conver-
gence are measurable. The prefactor (1 − κ) is acting as a homogenous distortion only changing the
apparent size of the source.

The intrinsic ellipticity ε(s) of galaxies is assumed to be randomly distributed and its contribution to
the observed signal should average out for a large number of observed galaxies in the same region if
correlations between nearby galaxies are not present. The transition from image ellipticity ε to source
ellipticity ε(s) is, as a function of the reduced shear g(θ), depending on the angular position θ (see
Seitz & Schneider, 1997),

ε(s) =


ε − g(θ)

1 − g?(θ)ε
for |g(θ)| ≤ 1 ,

1 − g(θ)ε?

ε? − g?(θ)
for |g(θ)| > 1 .

(3.18)

The inverse transformation from the image ellipticity to the source ellipticity is obtained by interchang-
ing ε(s) with ε and g with −g. The reduced shear implicitly depends on the redshift z of the source, but
by introducing the so-called cosmological weight Z(z) we can factorise the redshift dependence as

κ(θ, z) = Z(z)κ(θ) and γ(θ, z) = Z(z)γ(θ) . (3.19)

The function Z(z) is according to Bartelmann & Schneider (2001), for a source at distance Ds and the
distance Dds between the lens and the source, given as

Z(z) =
D∞Dds

Dd∞Ds
Θ(z − zd) , (3.20)

where the theta-function ensures that only sources behind the lens, located at redshift zd, are taken into
account for lensing effects. The function can be scaled to an arbitrary fiducial redshift. However, as
the angular diameter distance is finite for infinite redshift, a convenient choice is to scale the quantities
to a fiducial source redshift of infinity. This choice defines the angular diameter distances D∞ between
the observer and infinity and Dd∞ between the lens and infinity.

25



CHAPTER 3. GALAXY CLUSTERS

The expectation value of the ellipticity 〈ε〉 is then

〈ε〉 =


Z(z)γ(θ)

1 − Z(z)κ(θ)
for |g(θ, z)| ≤ 1 ,

1 − Z(z)κ(θ)
Z(z)γ?(θ)

for |g(θ, z)| > 1 .

(3.21)

From Eq. (3.13) we derived the distortions up to first order giving us the shear components. Including
the second order would reveal the so called F-flexion and G-flexion. Flexion is responsible for curva-
ture and other distortions in the images. Figure 3.5 gives an overview how the introduced quantities
act on a circular source.

3.2.2 Thermal SZ effect
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Figure 3.6: The relative intensity change of the CMB
due to the thermal SZ effect as a function of x =

~ω/kBTCMB. For values smaller than x = 3.83, corre-
sponding to a frequency of 217 GHz, the change is neg-
ative and for larger values positive.

The thermal Sunyaev-Zel’dovich effect is caused
by hot electrons in the intracluster plasma that in-
versely Compton scatter the much less energetic
photons of the CMB to higher energies. The SZ
effect thus slightly distorts the CMB spectrum
away from its Planckian shape.

Seen against the CMB, clusters cast shadows
below 217 GHz and shine at frequencies above.
Massive galaxy clusters can be identified by this
characteristic spectral appearance at centimetre
to millimetre wavelengths if the angular resolu-
tion of the telescope is of order 1′ or better.

The Compton-y parameter, depending on the
angular position s and the line-of-sight position
z, is quantified by

y(s) =
kB

mec2σT

∫
dz T (s, z)ne(s, z) , (3.22)

which compares the mean thermal energy kBT of
the electrons, with the Boltzmann constant kB, to their rest energy mec2 of the electrons and multiplies
their ratio with the Thomson cross section σT and the electron number density ne. Thus thermal
SZ effect is characterised by the scattering probability neσT dz and the mean relative energy change
kBT/(mec2). By Compton-upscattering, the specific intensity of the CMB seen through a galaxy cluster
changes by

∆ISZ(s)
Bω(T )

= g(x)y(s) (3.23)

relative to the Planck spectrum Bω(T ) of the CMB, where

x =
~ω

kBTCMB
(3.24)

is the photon energy in units of the mean thermal energy of the CMB. The function g(x) describes the
frequency and temperature dependence of the thermal SZ effect,

g(x) =
x4ex

ex − 1

(
x

ex + 1
ex − 1

− 4
)
. (3.25)

This dependence is shown in Fig. 3.6, which has no intensity change at a frequency of 217 GHz. Note,
the thermal SZ effect is independent of the redshift of the cluster, which is a most interesting feature.
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It arises due to the fact that in the thermal SZ effect depends on the CMB temperature in the rest frame
of the cluster. At the cluster’s redshift the thermal SZ effect has a different behaviour with frequency,
but after the CMB photons passed the cluster they are further redshifted as they travel towards the
observer, which renders the thermal SZ effect independent of redshift.

From Eq. (3.23), we can write the specific intensity as the projection of the effective pressure P(s, z)
along the line-of-sight,

∆ISZ(s)
Bω(T )

=

∫
dz P(s, z) , (3.26)

defining the effective pressure as

P(s, z) ≡ P0 T (s, z)ne(s, z) , (3.27)

P0 = g(x)
kBσT

mec2 T0ρ0 . (3.28)

Quantities with a subscript ‘0’ refer to an arbitrary but fixed radius, for instance the centre of the
cluster, provided the density is finite there.

Due to the finite telescope resolution, the observable quantity is not the Compton-y parameter or the
specific intensity change from Eq. (3.23), but rather the beam-convolved quantities. The Compton-y
profile convolved with a beam profile b(s) is

ȳ(s) ≡
∫

d2s′ y(s′) b(s − s′) . (3.29)

Current state-of-the-art instruments like Bolocam have an effective beam of almost 1′. In such cases
we would need to include the beam convolution in our calculations. However, future SZ observations
will reach an angular resolution much better than the angular resolution that can be achieved with po-
tential reconstructions based on gravitational lensing: For instance, assuming 50 background galaxies
per arcmin2 and averaging over 20 galaxies to obtain a sufficiently robust weak-lensing signal, the
resolution of a weak-lensing map corresponds to ≈ 35′′. Beam profiles of modern thermal SZ obser-
vations will be narrower than that, allowing us to approximate the beam b(s) in (3.29) by a Dirac delta
distribution. In such a case the beam convolution can in fact be ignored for our purposes. An example
for such a telescope is the Atacama Large Millimeter/submillimeter Array (ALMA) with a beam size
of 14.95′′ at a wavelength of 0.85 mm (Lundgren, 2013).

To illustrate current thermal SZ and X-ray observations we show in Fig. 3.7 an overview of the
Coma cluster in different regimes. The image shows the thermal SZ effect observed with Planck, the
X-ray emission (see Section 3.2.3) observed with ROSAT and additionally overlaid optical images.

SZ effect as a tracer for the lensing potential

We now consider the ICM in the gravitational potential well Φ of a massive galaxy cluster including
the dark matter halo. At least in or near hydrostatic equilibrium the density and temperature of the gas
are fully characterised by the Newtonian potential. Therefore, we begin with the hydrostatic equation

∇P = −ρ∇Φ , (3.30)

and assume that the gas satisfies the polytropic relation

P
P0

=

(
ρ

ρ0

)γ
, (3.31)

with an effective adiabatic index γ. Eq. (3.30) is immediately integrated to give(
ρ

ρ0

)γ−1

=
γ − 1
γ

ρ0

P0
(Φcut − Φ) , (3.32)
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Figure 3.7: Image of the thermal SZ effect observed with Planck, the X-ray emission observed with
ROSAT, and additionally overlaid optical images.

where quantities with a subscript ‘0’ refer to an arbitrary but fixed radius r0. For practical reasons we
introduce a cutoff radius rcut > r0 and fix the potential such that Φcut = Φ(rcut).

For γ > 1 and a density profile that decreases monotonically, Φ(r) can be arranged to be negative
for r < r0 by the structure of Eq. (3.32). Therefore ρ remains positive and semi-definite. The quantity

γ
P0

ρ0
= c2

s,0 , (3.33)

appearing in Eq. (3.32) is the squared sound speed at the cutoff radius. For convenience, we introduce
the dimensionless potential

ϕ =
γ − 1
c2

s,0

(Φcut − Φ) , (3.34)

and obtain a relation between the gas density and the dimensionless potential

ρ = ρ0 ϕ
1/(γ−1) . (3.35)

The temperature of an ideal gas is given by

T =
m̄
kB

P
ρ
, (3.36)

where m̄ is the mean gas-particle mass. If the gas is in in thermal equilibrium and the cluster settled
in virial equilibrium we can relate the temperature to the potential ϕ by

T =
m̄
kB

P0

ρ0
ϕ = T0 ϕ . (3.37)
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Equations (3.35) and (3.37) are fundamental for the key idea of our work and will be widely used
throughout the next chapters.

Combining Eqs. (3.22), (3.35) and (3.37), the Compton-y parameter can be rewritten in terms of the
dimensionless potential ϕ as

y(s) =
kBσT

mec2 T0ρ0

∫
dzϕη(s, z) , (3.38)

with the exponent η = γ(γ − 1)−1. For inferred polytropic indices, 1.1 . γ . 1.2 (Finoguenov et al.,
2001), the exponent η is a large number, 6 . η . 11. Equation (3.38) in terms of the specific intensity
change, combined with Eq. (3.26) relates the effective pressure P(r) and the gravitational potential
ϕ(r),

∆ĪSZ(s)
Bω(T )

= g(x)
kBσT

mec2 T0ρ0

∫
dzϕη(s, z)

=

∫
dz P(s, z) . (3.39)

leaving us with

P(s, z) ∝ ϕη(s, z) . (3.40)

With these equations we can define our method for recovering the projected gravitational potential:

(1) By deprojection of the measured relative specific intensity change ∆ISZ/Bω(T ), we find an esti-
mate for the three-dimensional effective pressure P using Eq. (3.26).

(2) Next, we use Eq. (3.40) to find an estimate ϕ̃ for the scaled gravitational potential ϕ,

ϕ̃(s, z) =

[
P(s, z)

P0

]1/η

. (3.41)

(3) The estimate ϕ̃ of the three-dimensional potential is then projected along the line-of-sight ac-
cording to Eq. (3.11) to find an estimate ψ̃ which is proportional to the two-dimensional lensing
potential ψ,

ψ̃(s) =

∫
dz ϕ̃(s, z) . (3.42)

Since η is large, the exponent 1/η is a small number, which is a most welcome property of Eq. (3.40).
Fluctuations in the estimate P̃ of the deprojected effective pressure will be substantially smoothed that
way.

3.2.3 X-ray emission

As mentioned above, galaxy clusters host a large amount of hot plasma. The ICM reaches temperatures
of 107 − 108 K. This ICM contains a significant amount of metals, with a metallicity of up to 30% of
the solar metallicity. Within this plasma electrons get accelerated in the electromagnetic field of other
ions, leading to the emission of thermal bremsstrahlung, which is a free-free radiation. Given this
gas mixture, the spectra of galaxy clusters are thus composed of a continuum emission due to thermal
bremsstrahlung and a line spectrum due to the line emission of heavy ions. Figure 3.8 shows the
difference between zero metallicity and 25% of the solar metallicity for two different temperatures.
Even though metals change the spectrum significantly in some regions, for this work the line emission
may be neglected as the temperatures are so high that line emission is subdominant.
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Figure 3.8: Spectrum of thermal bremstrahlung for two
different temperatures with and without metallicities
(Y = 0). The spectra were produced with the xspec soft-
ware package using a Raymond-Smith plasma model
and kindly provided by M. Bartelmann.

Detailed derivations of the bremsstrahlung
spectrum may be found in numerous textbooks,
the most recent one by Bartelmann (2013), giv-
ing the emissivity of non-relativistic thermal
bremsstrahlung,

jX(ω) =
16π2

3
√

3

Z2e6nine

m2
ec3

ḡff(ω)

√
2me

πkBT

× exp
(
− ~ω

kBT

)
, (3.43)

where e is the electron charge and me electron
mass, ni and ne are the ion and electron particle
densities. Z is the atomic number and ~ the re-
duced Planck constant. The Gaunt factor ḡff(ω)
is sufficiently approximated by 1. Integrating
Eq. (3.43) over all frequencies yields the total
emissivity

jX =
16π2

3
√

3

Z2e6nine

m2
ec3

√
2me

π

√
kBT
~

. (3.44)

We now replace the particle densities with the gas density ρ, introducing the mean particle mass m̄

jX =
16π2

3
√

3

Z2e6

m2
em̄2c3~

√
2me

π
ρ2

√
kBT

= C ρ2T 1/2 (3.45)

with the bremsstrahlung constant C. For a fully ionised hydrogen gas we find C ≈ 143.6/~. The
resulting X-ray emission may be observed with space-based telescopes like the Chandra X-ray Obser-
vatory (Chandra) or the X-ray Multi-Mirror Mission - Newton (XMM) in energy ranges between 0.2 -
12 keV.

However, telescopes only observe the line-of-sight projection of the three-dimensional emissivity,
the surface brightness S x. The surface brightness is expressed in the angular coordinate s by a line-of-
sight integral,

S x(s) =

∫
dz jX(s, z)

= C
∫

dz ρ2(s, z) T 1/2(s, z) . (3.46)

X-ray emission as a tracer for the lensing potential

The reader may notice that Eq. (3.46) has the same appearance as Eq. (3.22), a line-of-sight integral
of the density and the temperature with given exponents. This allows us to link the surface brightness
(equivalently the specific intensity) to the underlying gravitational potential of the cluster. Since the
frequency-integrated emissivity due to bremsstrahlung is given by Eq. (3.45) it can be related to the
potential by using the expression for the density and the temperature from Section 3.2.2, revealing

jX = Cρ2
0T 1/2

0 ϕη̂ with η̂ =
3 + γ

2(γ − 1)
. (3.47)

For observed effective adiabatic indices the exponent η̂ is again a large number, 10 . η̂ . 20.
Equation (3.47), together with the fact that ordinary lensing effects are determined by second-order

derivatives of the projected Newtonian potential, suggests the following algorithm for combining X-
ray and lensing data, in analogy to the method outlined for the thermal SZ effect in Sec. 3.2.2:
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(1) By deprojection of an X-ray surface brightness map S X we find an estimate j̃X for the X-ray
emissivity.

(2) We then use Eq. (3.47) to infer an estimate

ϕ̃ =

 j̃X

Cρ2
0T 1/2

0

1/η̂

(3.48)

for the three-dimensional, scaled Newtonian potential ϕ.

(3) By projecting ϕ̃ along the line-of-sight we obtain an estimate ψ̃ for the two-dimensional po-
tential, which is proportional to the lensing potential and can thus directly be combined with
estimates of ψ derived from lensing or other methods.

Since η̂ is again large, fluctuations in the deprojected estimate j̃X will be considerably smoothed as
in the case of the thermal SZ effect.
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4 Chapter 4

Reconstruction of the mass distribution
using gravitational lensing

Gravitational lensing probes the second derivatives of the line-of-sight projected Newtonian
potential of a galaxy cluster, observable due to distortions of background galaxies. As men-
tioned in Section 3.2.1 we can identify different regimes of lensing – strong and weak gravita-
tional lensing – which are applicable for massive galaxy clusters.

We further focus the following discussion on weak lensing only as this regime covers the
galaxy cluster as a whole. In comparison, strong lensing only occurs in a small region within
the core of the galaxy cluster.

A reliable error estimation is crucial for reconstructions of the mass distribution using the
effects of gravitational lensing. Due to the statistical nature of weak lensing, the signal at dif-
ferent positions in the reconstruction will be correlated. This correlation has to be considered
when the uncertainty of the reconstruction is to be evaluated.

In the following chapter we want to explain how the well-established strong- and weak-
lensing reconstruction code SaWLens (which is an acronym for Strong And Weak Lensing)
from Merten (2010) works in the weak lensing case alone. SaWLens belongs to a special class
of lensing reconstruction codes which are parameter-free and non-local, but like others suffers
from the same problem: The reconstruction method is non-linear due to the non-linearity of
the reduced shear (see Section 3.2.1). This in turn means that an error estimation in an analytic
fashion is difficult. So far, error estimations have been done by means of a bootstrap method, a
highly computationally expensive procedure. Therefore, an analytic way to estimate the errors
made in such reconstructions would be favourable but difficult to achieve due to the mentioned
non-linearities.

We will explain how an approach to an analytic error estimation can be made by strictly
following the weak-lensing reconstruction method from the SaWLens code. By testing our
analytic method with simulated NFW halos we can directly compare our result to the real
scatter in the retrieved convergence maps. Furthermore, we will compare our results to the
classical bootstrap method already implemented in SaWLens.

4.1 A strong- and weak-lensing reconstruction code

The reconstruction code SaWLens from Merten et al. (2009) and Merten (2010) is a non-parametric
maximum-likelihood reconstruction method based on the works by Bartelmann et al. (1996); Seitz
et al. (1998); Bradač (2004) and Cacciato et al. (2006). Using strong-lensing constraints, like the
positions of multiple images or giants arcs, and weak-lensing constrains, i.e. the mean ellipticity
of background galaxies, the code is capable to recover the underlying lensing potential ψ by a χ2-
minimisation. In this context non-parametric means that the code is independent of any a-priori as-
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sumptions regarding the underlying lensing potential. As the method is grid-based (see below for
details) with an adaptive-mesh-refinement technique, the obtained results are a discrete representation
of ψ that is most likely to produce the observed lensing features.

4.1.1 General concept

SaWLens divides the observational field into a given number of cells, from now on called pixels.
As an input SaWLens requires an ellipticity catalogue containing the positions of the sources in an
arbitrary coordinate frame and the two corresponding components of the ellipticity. For strong-lensing
constraints SaWLens needs the positions of multiple images and giant arcs.

Strong- and weak-lensing signals constrain the same underlying lensing potential, but the con-
straints are independent from each other. An appropriate χ2-function will therefore consist of a weak-
and a strong-lensing term,

χ2(ψ) = χ2
w(ψ) + χ2

s (ψ) . (4.1)

The χ2-function needs to be minimised with respect to the lensing potential at a given position a,

∂χ2(ψ)
∂ψa

=
∂χ2

w(ψ)
∂ψa

+
∂χ2

s (ψ)
∂ψa

!
= 0 . (4.2)

The term ‘position’ refers to a specific grid cell, and the minimisation is achieved by varying the
potential values in the grid cells.

This maximum likelihood approach is very flexible as it allows for the inclusion of arbitrarily many
terms in the χ2-function. At the present stage SaWLens includes multiple images, information on crit-
ical curves, ellipticity and flexion measurements. But in principle one could include an appropriate
term for constraints from thermal X-ray emission due to bremsstrahlung. Analogously, one could in-
clude a term for the CMB distortions caused by the thermal Sunyaev-Zel’dovich effect or information
based on measurements of galaxy kinematics. How statements on the lensing potential can be made
for the first two of these three will be discussed in Chapter 6 and Chapter 7. The last constraint, the
galaxy kinematics, is discussed in Sarli et al. (2013). There are also numerical tests on the feasibility
of adding further constraints provided by Huber (2013).

Concerning the χ2-minimisation it is obvious, due to the reduced shear in Eq. (3.17) and the strong-
lensing features, that it is not a linear system of equations. However, the non-linearities may be
approximately linearised in an iterative scheme, following the idea of Schneider & Seitz (1995), also
applied in Bradač et al. (2005). In doing so, the non-linear factors in each term are kept constant
in each iteration and their values are given by the preceding step, this iteration we call inner-level
iteration. As Bradač et al. (2005) suggested, an initial guess of no mass present is assumed, only
marginally affecting the result of the reconstruction.

Modern weak-lensing observations only allow an angular resolution of roughly 0.5′, if pixels should
be uncorrelated. This number is only influenced by the number of observed background galaxies.
Though a higher resolution is favourable, it inevitably correlates different pixels, clearly affecting
the reconstruction. A higher resolution will also cause the reconstructed mass to be increased, as
at a higher grid resolution, grid cells in the central part of the cluster are expected to contain more
mass. But increasing the signal strength clearly contradicts the starting assumption of a vanishing
convergence. This problem can be overcome by introducing another iteration level (called outer-
level iteration) beginning with a very low resolution. With this resolution the inner-level iteration
from above is performed until the reconstruction converges. Thereafter, the resolution is slightly
increased by interpolation of the obtained lensing potential (for further details, see Bradač et al.,
2005). The inner-level iteration is repeated till again the reconstruction converges. In this manner the
reconstruction is repeated in the outer-level iteration until the desired resolution is reached.
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Figure 4.1: Averaging procedure of SaWLens. A circle is drawn around a pixel position and its size is
iteratively increased to cover a predefined number of galaxies (black crosses).

4.1.2 Weak-lensing constraints

To account for the statistical nature of the weak-lensing signal, each pixel is assigned with two values,
one for each mean ellipticity of that area. This averaging process produces correlations between
adjacent pixels. The number of galaxies used in each pixel is crucial for the reconstruction, as the
signal-to-noise ratio increases with the number of used galaxies. Each pixel should contain the average
value obtained from roughly the same number of background galaxies. This is achieved by an adaptive
averaging process in which the mean is taken in circles around each pixel centre. The radius of
each circle is iteratively increased until a predefined number of galaxies is reached. This results in a
specific radius for each pixel, due to local fluctuations in the background galaxy density, the correlation
between pixels will also dependend on position. Figure 4.1 shows this adaptive averaging process for
a random position in the observational field.

Given the theoretical background from Section 3.2.1, we are able to define the χ2
w-function needed in

Eq. (4.1). Since the pixels are correlated because of the chosen averaging method and the expectation
value of the ellipticity is given by the reduced shear (see Eq. 3.17), we write

χ2
w(ψ) =

(
〈ε〉 − γ(ψ)

1 − κ(ψ)

)T

i
C−1

i j

(
〈ε〉 − γ(ψ)

1 − κ(ψ)

)
j

(4.3)

=

(
1

1 − κ(ψ)
[〈ε〉 (1 − κ(ψ)) − γ(ψ)

])T

i
C−1

i j

(
1

1 − κ(ψ)
[〈ε〉 (1 − κ(ψ)) − γ(ψ)

])
j
, (4.4)

where C−1
i j is the inverse of the covariance matrix (see below) and 〈ε〉 is the mean ellipticity in each

pixel. Also note, that we sum over all indices appearing twice. The cosmological weight Z(z) from
Eq. (3.20) is implicitly included in the shear and convergence. The inverse covariance matrix C−1

i j
depends on the number of averaged galaxies per pixel and thus on the size of the corresponding
averaging circle. Given the standard deviation σ of the ellipticity in each pixel obtained from the
averaging procedure, the inverse covariance matrix can be written as

C−1
i j = wi jσiσ j (4.5)

with a weight factor wi j representing a relative weight which depends on the number of shared galaxies
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between pixels i and j. Going back to Eq. (4.3) and applying the differential operators from Eq. (3.15),
the shear components and convergence can be replaced in terms of the lensing potential.

Convergence and shear are now discretised on a grid and may be written as a column vector, chang-
ing only the data handling itself. The used differential operators are approximated by finite differenc-
ing, according to a Taylor expansion (see Merten et al. (2009); Merten (2010) for further details), and
represented by symmetric sparse matrices. This conversion allows us to write the second derivatives
of ψ, i.e. the convergence and shear, as simple multiplications with the respective differential operator,

κi = Ki jψ j , (4.6)

γ1
i = G1

i jψ j , (4.7)

γ2
i = G2

i jψ j . (4.8)

We return to Eq. (4.4) and write the factors containing the non-linearities 1/(1−κ) as a diagonal matrix
M and combine it with the inverse covariance matrix C−1, which defines the matrix H such that

Hkl ≡ Mki C−1
i j M jl . (4.9)

This changes Eq. (4.4) to

χ2
w(ψ) =

[〈ε〉 (1 − κ(ψ)) − γ(ψ)
]>
i Hil

[〈ε〉 (1 − κ(ψ)) − γ(ψ)
]
l , (4.10)

We define the diagonal matrix

N ≡ diag(1 − κi) = diag(1 − Kikψk) , (4.11)

which changes Eq. (4.10), once the products are expanded, to

χ2
w(ψ) = 〈ε〉iNi jH jkNkl〈ε〉l − 2〈ε〉iNi jH jkγk + γ jH jkγk . (4.12)

From now on we will excessively use the fact that all calligraphic matrices as well as N and H are
symmetric. Minimising this χ2-function yields

∂χ2

∂ψa
= 2〈ε〉i

(
Ni jH jk

) ∂Nkl

∂ψa
〈ε〉l − 2〈ε〉i

∂Ni j

∂ψa
H jkγk − 2〈ε〉iNi jH jk

∂γk

∂ψa
+ 2γ jH jk

∂γk

∂ψa
. (4.13)

With the definitions from Eqs. (4.7), (4.8) and (4.11), we find for the derivatives

∂γk

∂ψa
=

∂

∂ψa
Gkbψb = Gka , (4.14)

∂Nkl

∂ψa
=

∂

∂ψa
diag(1 − κk) = diag(−Kka) . (4.15)

Returning to Eq. (4.13), we insert the results from above to obtain

∂χ2

∂ψa
= −

N∑
k=1

(
2〈ε〉iNi jH jk〈ε〉kKka

)
+

N∑
j=1

(
2〈ε〉iH jkγkK ja

)
− 2〈ε〉iNi jH jkGka + 2γ jH jkGka . (4.16)

In the first sum in Eq. (4.16) we can insert the definition (4.11) of the matrix N, thus

−
N∑

k=1

2〈ε〉iNi jH jk〈ε〉kKka = −
N∑

i,k=1

2〈ε〉i(1 − κi)Hik〈ε〉kKka

= −
N∑

i,k=1

2〈ε〉iHik〈ε〉kKka +

N∑
i,k=1

2〈ε〉iKibψbHik〈ε〉kKka

≡ −ya + Aabψb . (4.17)
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The second sum of Eq. (4.16) turns into

N∑
j=1

2〈ε〉iH jkγkK ja ≡ Babψb . (4.18)

The third and fourth term in Eq. (4.16) can be re-defined correspondingly,

−2〈ε〉iNi jH jkGka = −
N∑

i=1

2〈ε〉i(1 − Kibψb)HikGka

≡ −za + Dabψb , (4.19)

2γ jH jkGka = 2G jbψbH jkGka

≡ Eabψb . (4.20)

Once we combine the results from Eqs. (4.17) – (4.20) we find

∂χ2

∂ψa
= −ya + Aabψb + Babψb − za + Dabψb + Eabψb , (4.21)

which should be equal to zero. This complete formalism directly results in a solvable system of linear
equations,

Babψb = Va (4.22)

with the coefficient matrix Bab and the vectorVa for one shear component,

Bab = Aab + Bab + Dab + Eab , (4.23)

Va = ya + za . (4.24)

The system for the second shear component can be written in the exact same form. We note here once
more that the matrix H contains the non-linearities discussed in Section 4.1.1 and is only updated in
the outer-level iteration.

4.1.3 Regularisation

Up to now the reconstruction is sensitive to intrinsic noise patterns not reflecting real features of the
underlying lensing potential. This can be avoided by introducing a further term R(ψ) in Eq. (4.1),
adding another summand to the final system of linear equations (4.22). This is chosen such that its
amplitude can be regulated by the parameter η,

R ≡ η [
κ̄i − κi(ψ)

]T [
κ̄i − κi(ψ)

]
. (4.25)

The convergence κ̄i is chosen as the convergence of the preceding outer-level iteration step – or of the
prior, if no outer-level iteration preceded.

This definition implies that the convergence must not deviate too strongly from the result – or the
prior – preceding the current iteration step, starting the iteration with the assumption of no conver-
gence (as mentioned in Section 4.1.1). The additions to the set of linear equations (4.22) due to the
regularisation term are given by,

Breg
ab = ηKalKlb , (4.26)

Vreg
a = ηκ̄iKia . (4.27)
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4.2 Approaching an analytic error estimation

4.2.1 Covariance of the ellipticity

Starting with the correlation between the measured ellipticities, we have to return to the averaging
scheme explained in Section 4.1.1. Once the averaging circles contain the given number of background
galaxies, also the overlap between two pixels is constrained. From Fig. 4.2 we can determine the
overlap area A, depending of the pixel separation d and pixel radius R, taken as the mean value of all
radii,

A(d) = 2R2

arcsin


√

1 − d2

4R2

 − d
2R

√
1 − d2

4R2

 for d ≤ 2R . (4.28)

R

d

Figure 4.2: Geometry of the averaging scheme for two
pixels with distance d and corresponding averaging cir-
cles with radius R. The green area shows the overlap.

The ellipticity ε̄i in a pixel i is given by the sum
of all ellipticity measurements in the correspond-
ing circle, thus

ε̄i =
1
Ni

Ni∑
a=1

εa (4.29)

with Ni being the number of galaxies in the av-
eraging circle. This relation certainly holds for
any two pixels (i, j) as well, further allowing us
to give an estimator for the covariance 〈ε̄iε̄ j〉 of
two pixels (i, j),

〈ε̄iε̄ j〉 =
1

NiN j

Ni j∑
a=1

〈ε2
a〉 (4.30)

with the summation over all galaxies contained
in the overlap of the two circles, Ni j. We note
here that the above consideration is only possible
if nearby galaxies are assumed to have uncorre-
lated ellipticities. Further, the expectation value
〈ε2

a〉 is given by half of the intrinsic variance σ2
ε of the ellipticities as we have two independent ellip-

ticity components. Inserting the expectation value of the ellipticity yields the expectation value of the
covariance Cε

i j,

Cε
i j ≡ 〈ε̄iε̄ j〉 =

1
NiN j

σ2
ε

2
Ni j

=
σ2
ε

2nπR2 A(di j) (4.31)

with the given galaxy density n at the position (i, j) and the distance di j between two pixels. In the case
of an unknown galaxy density at the specific position we can replace n with the mean galaxy density
of the complete field of view.

4.2.2 Covariance of the convergence

The χ2-function for weak lensing including the regularisation term from Section 4.1.3 can be re-
written with the use of the general differential operators from Section 4.1.1. For practical reasons we
will from now on drop the matrix indices which gives the operators from the definitions in Eqs. (4.6)
– (4.8) the following form,

K ≡ 1
2

(
∂2

∂x2 +
∂2

∂y2

)
, G1 ≡ 1

2

(
∂2

∂x2 −
∂2

∂y2

)
, G2 ≡ ∂2

∂x∂y
. (4.32)

38



4.2. APPROACHING AN ANALYTIC ERROR ESTIMATION

In this notation the χ2-function from Eq. (4.1), only including the weak lensing and regularisation
term, is given as

χ2 = (ε1 − NG1ψ)> C−1
1 (ε − NG1ψ) + (ε2 − NG2ψ)> C−1

2 (ε2 − NG2ψ)

− η (κ̄ − Kψ)> (κ̄ − Kψ) , (4.33)

where ε, ψ and κ are functions of the two coordinates (x, y), or equivalently of the pixel ‘numbers’
(i, j). The matrix N is defined as

N ≡ diag
[
(1 − κi)−1

]
. (4.34)

We will now assume that the entries of N are spatially constant, during an inner-level iteration, which
allows us to find the minimum of the χ2-function at

∂χ2

∂ψ

!
= 0 = 2 (ε1 − NG1ψ)>C−1

1 (−NG1) + 2 (ε2 − NG2ψ) C−1
2 (−NG2) − 2η (κ̄ − Kψ)K . (4.35)

Note here, that in this way we do not account for the linearised terms from Eq. (4.4). We further
transform Eq. (4.35) to(

K2η + NG1C−1
1 NG1 + NG2C−1

2 NG2
)
ψ = C−1

1 NG1ε1 + C−1
2 NG2ε2 + ηK κ̄ . (4.36)

We assume the covariance matrix of the first shear component to be equal to the covariance of the
second component as they should follow the same statistics if we neglect intrinsic correlations of
nearby galaxies. Of course, the inverse covariance matrices C−1

1 = C−1
2 then have to be equal as

well. We further assume the covariance matrix to be diagonal with entries σ2
i , thus we can define a

matrix S ≡ diag(σ−2
i ). Additionally, we apply the convergence operator K on both sides to make the

transition from the lensing potential ψ to the convergence κ,(
K2η + NG1S NG1 + NG2S NG2

)
κ = KS NG1ε1 +KS NG2ε2 + ηK2κ̄ . (4.37)

We can abbreviate this equation by introducing the following quantities,

P−1 ≡
(
K2η + NG1S NG1 + NG2S NG2

)
, (4.38)

Ak ≡ KS NGkεk , (4.39)

B ≡ ηK2 (4.40)

with k ∈ (1, 2), which results in the short-hand notation of Eq. (4.37),

κ = P (A1ε1 + A2ε2 + Bκ̄) . (4.41)

From this equation we can calculate the covariance of the convergence using the tensor product ⊗,

Cov(κ) ≡ 〈κ ⊗ κ′〉 . (4.42)

This leads us to an expression for the covariance,

〈κ ⊗ κ′〉 = P2A2
1〈ε1 ⊗ ε′1〉 + P2A2

2〈ε2 ⊗ ε′2〉 + P2B2〈κ̄ ⊗ κ̄′〉
+ P2A1B〈ε1 ⊗ κ̄′〉 + P2A1B〈κ̄ ⊗ ε′1〉 + P2A2B〈ε2 ⊗ κ̄′〉 + P2A2B〈κ̄ ⊗ ε′2〉

= P2A2
1〈ε1 ⊗ ε′1〉 + P2A2

2〈ε2 ⊗ ε′2〉 + P2B2〈κ̄ ⊗ κ̄′〉
+ 2P2A1B〈ε1 ⊗ κ̄′〉 + 2P2A2B〈ε2 ⊗ κ̄′〉 . (4.43)

The difference between the convergence and the preceding estimate should be zero and thus κ̄ = κ once
the algorithm has converged. But for now we will take κ̄ as a smaller estimate of the final convergence
as it leads us to a better understanding in the following, so that

κ̄ = aκ with a ≤ 1 . (4.44)
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The convergence κ̄ is expected to be smaller than the final convergence κ since we start our iteration
with κ ≡ 0. However, we cannot guarantee that at some iteration step we will find κ̄ > κ, but due to
experience and the regularisation term this is unlikely to happen.

We now need to evaluate the terms containing the ellipticity and convergence from Eq. (4.43). This
is done by inserting Eq. (4.41) again,

〈ε1 ⊗ κ̄′〉 =〈ε1 ⊗ (aP (A1ε1 + A2ε2 + Bκ̄))′〉
= (I − aPB)−1 aPA1〈ε1 ⊗ ε′1〉 , (4.45)

〈ε2 ⊗ κ̄′〉 =〈ε2 ⊗ (aP (A1ε1 + A2ε2 + Bκ̄))′〉
= (I − aPB)−1 aPA2〈ε2 ⊗ ε′2〉 . (4.46)

These expressions are now replaced in Eq. (4.43) for the covariance, which changes it to

(I − aPB) 〈κ ⊗ κ′〉 =
(
P2A2

1 + P2A2
2

)
(I − aPB)−1 〈ε ⊗ ε′〉 , (4.47)

while we use

〈ε ⊗ ε′〉 = 〈ε1 ⊗ ε′1〉 = 〈ε2 ⊗ ε′2〉 . (4.48)

This equation is now transferred to Fourier space, where the differential operators are represented as
simple multiplication factors with the respective k-vectors. Here we are able to calculate the covariance
〈κ̂ ⊗ κ̂′?〉 between to convergences κ̂ and the complex-conjugated convergence in Fourier space κ̂′?.
The Fourier transformations of the differential operators are given as

K̂ = −1
2

(
k2

1 + k2
2

)
, (4.49)

Ĝ1 = −1
2

(
k2

1 − k2
2

)
, (4.50)

Ĝ2 = −k1k2 , (4.51)

Ĝ2
1 + Ĝ2

2 =
1
4

(
k2

1 + k2
2

)2
= K̂2 , (4.52)

with an important identity in the last equation. Once we Fourier transform Eq. (4.47), the differen-
tial operators G1, G2, and K are replaced by simple multiplications. We can further infer with the
definitions of Eqs. (4.38) – (4.40),

P̂−1 =
(
K̂2η + N2S K̂2

)
= N

(
ηNK̂2N + S K̂2

)
N

= N
{[
η(N−1)2 + S

]
K̂2

}
N , (4.53)

Âk = K̂ĜkNS , (4.54)

B̂ = ηK̂2 . (4.55)

Given these expressions we can evaluate the terms in Eq. (4.47) in Fourier space,

P̂ = N−1
(
ηN−2 + S

)−1
N−1 K̂−2 , (4.56)

P̂2Â2
k = N−1

(
ηN−2 + S

)−1
N−1 K̂−2Ĝ2

k S 2 , (4.57)

I − aP̂B̂ = I − aηN−1
(
ηN−2 + S

)−1
N−1 . (4.58)

In the Fourier-transformed Eq. (4.47) we find a term P̂2Â2
1 + P̂2Â2

2, which contains the operators K
and Gk, where we can substitute the sum of both squared shear operators with the operator for the
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converge according to the identity (4.52). In this way the calligraphic operators in Eq. (4.47) cancel
each other, and we find(

P̂2Â2
1 + P̂2Â2

2

) (
I − aP̂B̂

)−2
= N−1

(
ηN−2 + S

)−2
N−1S 2

[
I − aηN−1

(
ηN−2 + S

)−1
N−1

]−2
. (4.59)

As the matrices N and S are diagonal, we can easily obtain their inverse, which transforms the above
equation to (

P̂2Â2
1 + P̂2Â2

2

) (
I − aP̂B̂

)−2
= I (1 − κ)2[

ησ2 (1 − κ)2 (1 − a) + 1
]2 . (4.60)

Once we apply the inverse Fourier transform and insert this result into Eq. (4.47), we find for the
covariance of the convergence κ,

〈κ ⊗ κ′〉 =
(1 − κ)2[

ησ2 (1 − κ)2 (1 − a) + 1
]2 〈ε ⊗ ε′〉 . (4.61)

This equation holds an intuitive explanation for the effect on the covariance of the convergence κ if
regularisation is present and the algorithm did not fully converge yet: The difference between the
current result and the fully converged solution, is still large due to strong regularisation, reducing the
covariance. But we have to make statements about the unknown κ̄ if we want to calculate values for
the covariance. Ideally, the difference between the convergence and the preceding estimate is zero
and thus κ̄ = κ, equally we can state that the factor a should approach one. This assumption will also
eliminate the regularisation parameter η, obvious from Eq. (4.25), as the above equation reduces to

〈κ ⊗ κ′〉 = (1 − κ)2 〈ε ⊗ ε′〉 . (4.62)

Unfortunately, we do not know exactly if SaWLens has fully converged and is independent of any
prior for a specific reconstruction, posing problems in evaluating the factor a. By simply assuming
convergence of the algorithm, the obtained error estimate will certainly be biased to higher values.

4.3 Application to mock data

In the following sections we want to test our analytic expression from Eq. (4.61) for the covariance
of the convergence on mock cluster catalogues. From the density profile of a spherically symmetric
NFW halo we derive the convergence map and the two components of the ellipticity in a field covering
the whole cluster to the virial radius.

4.3.1 Creation of ellipticity catalogues

We simulate a galaxy cluster with a mass of M = 5 × 1014 M� h−1 resulting in a virial radius (taken
as r200) of rvir = 1.25 Mpc h−1. Further we choose a concentration parameter of c = 5. The redshift is
taken to be z = 0.2. We reconstruct the cluster within its virial radius which defines the field of view
to be 17.5 × 17.5 arcmin2.

The background galaxies are placed randomly over the entire field and to each of them we assign
the ellipticities, which are generated by the convergence and shear as predicted from the density pro-
file. Furthermore, to account for intrinsic ellipticities, we use a Gaussian distribution with a standard
deviation of 0.3 (Heavens, 2003) for each component of the ellipticity. According to Eq. (3.18) we
transform the reduced shear and the intrinsic ellipticity to obtain the measured ellipticity. With this
model we can create different noise realisations of the same cluster and can directly measure the vari-
ance in the reconstructed convergence. This procedure we will call our numerical experiment.

The density of background galaxies is chosen to be n = 30 arcmin−2, matching observations. As
we want to compare the reconstructed halos with the expected convergence, we smooth the introduced
convergence on the same angular scale as our reconstruction.
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Figure 4.3: (a) Convergence profile for different regularisation parameters (η = 10, 30, 50, 70) compared
to the true convergence smoothed on the same angular scale (dotted red curve). (b) Standard deviation of
the convergence for different regularisation parameters.

4.3.2 Dependence on the regularisation

According to Eq. (4.25) the regularisation term should approach zero as the reconstruction algorithm
converges. However, SaWLens has an internal stopping criterion by comparing two consecutive it-
eration steps and allowing only for a pre-set deviation. For high values of η the reconstruction will
need many iterations to converge as the prior of no lensing potential will dominate. Considering the
limited computational power there is clearly a tradeoff between the time needed for a reconstruction
and accuracy. On the other hand, η must be high enough to prevent the algorithm from fitting noise
patterns.

For regularisation to be efficient in the first iteration steps, the χ2-contributions of the reconstruction
and the regularisation should be similar; as the iteration proceeds, the regularisation will (and should)
shrink. In our case the amplitude of the signal is governed by the strength of the covariance between
two pixels, thus approximately by the main diagonal elements of the inverse covariance matrix C−1.
In our chosen example the optimal regularisation would be of the order η ≈ 30 as directly inferred
from the inverse covariance matrix.

We test SaWLens by reconstructing our mock catalogues with different regularisation parameters
and compare the results to the convergence we created the initial catalogues with. The smallest tested
value is η = 10, as for lower regularisation the noise becomes too strong. We bin our ellipticity cata-
logues on an 18×18 grid and increase the resolution up to 32×32 with 20 galaxies per pixel. A higher
resolution would significantly increase the computational time needed for our test. Furthermore, a
resolution much higher than 45× 45 would result in such a strong correlation between different pixels
that the system of linear equations is not solvable any more. Due to the spherical symmetry we will
focus on azimuthally averaged radial profiles, allowing us to compare the reconstruction to the true
convergence profile.

Figure 4.3(a) shows the result of the reconstruction using different regularisation parameters com-
pared to the true convergence in dependence of the cluster radius in pixels. A low regularisation
parameter (i.e. η = 10, green curve in Fig. 4.3(a)) results in fitting the noise pattern and overestimating
the convergence in the outskirts of the cluster. A higher regularisation parameter enforces the starting
assumption of a vanishing convergence and the overestimation in the outskirts is eliminated. On the
other hand, stronger regularisation than effectively needed (i.e. η = 70, orange curve in figure 4.3(a))
will result in a flatter profile in the cluster centre.

We produce 50 ellipticity catalogues for the same cluster and reconstruct each of them with SaWLens
using the given regularisation amplitudes η from above. With this set of noise realisations of the same
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underlying cluster we can calculate the standard deviation in each pixel. Following the spherical sym-
metry, the resulting standard deviation is again plotted as a radial profile in Fig. 4.3(b). We see that
a stronger regularisation leads to a flatter profile in the standard deviation following our expectations
if the reconstruction did not fully converge yet. The pre-factor a from definition (4.44) should be less
than unity and according to Eq. (4.61) the standard deviation has to be flatter. Apparently, even though
the best possible interpolation between different resolutions is used (i.e. one pixel per iteration), the
algorithm is still not independent of the regularisation parameter for high values of η. This would
imply that we have to focus on Eq. (4.61) rather than on Eq. (4.62) if we were to estimate the variance.

4.3.3 Testing the analytic model

In the light of the results from the above section we are now capable to compare our analytical model
from Eq. (4.61) to these findings. We will focus again on the standard deviation, thus we can replace
ε′ with ε and the convergence κ′ with κ. This corresponds to the case in Section 4.2.1 if the averaging
circles fully overlap. From this we can derive the standard deviation of the convergence again as an
azimuthally averaged profile and compare it to our numerical experiment.

According to Eq. (4.61) we need the convergence κ itself in each pixel. The variance of the ellipticity
is obtained from Eq. (4.31) where we replace the intrinsic variance σ2

ε with the value obtained with
SaWLens in each pixel. In the same manner we can insert the number of galaxies obtained in each
averaging circle.

Furthermore, we can compare our analytic results to the traditional method of bootstrapping. So far,
reconstructions of the mass distribution using this iterative scheme obtain their errors by re-sampling
the input catalogues (Bradač et al., 2005), with the two ellipticity components. This is done by draw-
ing galaxies from the parent catalogue but returning the galaxies. In this way a set of new catalogues is
produced. A reconstruction is run on each of them and the resulting scatter provides the standard de-
viation. However, this technique is computationally expensive as every sample has to be reconstructed
with the same resolution and the same number of iterations. We compare our analytic result with the
bootstrapping method for one specific regularisation η = 30 and use 50 bootstrapping catalogues.

In Fig. 4.4 the numerical result from Section 4.3.2, the analytical result from Eq. (4.61), using a = 1
(see Section 4.3.2 for explanation), and the mentioned bootstrap method from SaWLens are shown.
Obviously, both methods underestimate the standard deviation of the convergence for the centre pixels,
though this effect is stronger for the analytic model. However, as we are considering radial profiles
each data point is given as the mean of several pixels with the same distance to the centre, allowing
us to give a corresponding error. Figure 4.4 also illustrates the corresponding one-sigma-error with
the light-blue area for the numerical experiment, explained in Section 4.3.1. We see that both error
estimations are within one standard deviation, indicating that our analytic error estimation is capable
to give quantitive statements.

4.4 Application to a realistic N-body/hydrodynamica cluster
simulation

4.4.1 N-body cluster simulations

To further test our analytic model for the variance of the convergence we test Eq. (4.61) on a realistic
cluster simulation. Our data set is taken from Meneghetti et al. (2010b) (denoted g1), based on original
work from Saro et al. (2006). This cluster is based on an N-body/hydrodynamical simulation with a
ΛCDM model (Ωm = 0.3, Ωb = 0.04, h = 0.7, and σ8 = 0.9), see also Tab. 4.1 for more details of the
cluster, including the best-fitting values for an NFW profile.

The cluster simulation itself was obtained as follows: A simulation with only dark matter was car-
ried out and in regions where clusters formed the area was re-simulated with a higher mass resolution
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Figure 4.4: Profile of the standard deviation of the reconstructed convergence for η = 30 (blue curve),
the same quantity according to Eq. (4.61) (red) and obtained from the bootstrapping technique (black)
implemented in SaWLens. The standard deviation obtained from the numerical experiment due to the
azimuthal average in each bin is indicated by the light-blue area.

and an additional baryonic component. The parent simulation was carried out by Yoshida et al. (2001)
with the ΛCDM model from above. The new initial conditions for the re-simulation were obtained
with the Zoomed Initial Condition technique from Tormen et al. (1997). Many publications (Dolag
et al., 2005; Puchwein et al., 2005; Meneghetti et al., 2007, 2008; Rasia et al., 2006, 2008) have
analysed some of these clusters – including g1 – in great detail.

We use the specific re-simulations of Saro et al. (2006), which were done with the N-body/Smoothed
Particle Hydrodynamics-code Gadget 2 (Springel, 2005), including radiative cooling, galactic winds,
supernova feedback and chemical enrichment. From this simulation the lensing data were obtained
with the SkyLens-tool (Meneghetti et al., 2008). SkyLens is a ray-tracing code which follows light
rays through different planes in the sky and evaluates the position and intensity changes in each of
them, corresponding to the scenario in Fig. 3.4. SkyLens itself uses a realistic catalogue of background
galaxies from the Hubble Ultra Deep Field (Beckwith et al., 2006) and the Great Observatories Ori-
gins Deep Survey (Giavalisco et al., 2004) archives. These sources are decomposed using shapelets
(Melchior, 2010) and the components are lensed by the cluster. The last step to proceed towards a
realistic observation is the imitation of the SUBARU Suprime-Cam. Details on the parameters for this
chosen simulation are found in Merten (2010) and Meneghetti et al. (2010b).

This simulated observation is then analysed using again SkyLens with the KSB-method (Kaiser
et al., 1995; Luppino & Kaiser, 1997; Hoekstra et al., 1998). This method decomposes the surface
brightness of each observed galaxy into multipoles. After a correction for the point spread function of
the telescope one finally obtains the ellipticity components for each galaxy. This catalogue is then the
input for our reconstruction with SaWLens.

Table 4.1: Main properties of cluster g1, taken from Meneghetti et al. (2010b). Given are the redshift z of
the cluster, the used projection plane, axis ratios and best-fitting NFW-profile parameters.

z projection plane r200 M200 b/a c/a c200 rs
[h−1Mpc] [h−1M�] [h−1Mpc]

0.297 xy 1.54 1.14×1015 0.64 0.57 4.46 0.31
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Figure 4.5: (a) Convergence of the g1 cluster on a resolution of 32 × 32 pixels, the centre reaches values
up to κ = 1.5. (b) Reconstruction using SaWLens with weak-lensing information only. The convergence
reaches values of κ = 0.8 and we are capable to retrieve the elongation along the main diagonal. We
see slightly elevated values of the convergence in the lower left part, for which we find a corresponding
structure in (a). (c) Standard deviation of (b) using Eq. (4.62). (d) Same as (c) but obtained with the
bootstrapping method implemented in SaWLens.

4.4.2 Cluster reconstruction and error estimation

Our data set is the projection along the z-direction of the simulation and has a field of view of 21′×21′.
It contains roughly 13700 background galaxies, corresponding to a galaxy density of n ≈ 30 galaxies
per arcmin2. Using the same starting resolution of 18 × 18 pixels and step-width of one pixel per
outer-level iteration like in Section 4.3.3, we again stop at a resolution of 32 × 32 pixels, using 10
galaxies per pixel. Again we estimate the best value for the regularisation parameter η by evaluating
the inverse covariance matrix C−1: We find η = 50.

This regularisation is higher than before in Section 4.3.3 due to the intrinsic difference of the cat-
alogues. With η = 50, Eq. (4.61) with a reasonably chosen value of a should be used. We choose a
value a = 0.98, corresponding to a marginal correction to κ̄. The result of the weak-lensing recon-
struction in comparison to the real convergence map with the same resolution is shown in Fig. 4.5(a)
and (b). We see that a weak-lensing reconstruction underestimates the convergence significantly. This
issue of underestimating the convergence while using weak-lensing measurements has already been
discussed in Merten (2010), see also Fig. 4.6(a). Nevertheless, SaWLens is capable of reproducing the
elongation along the main diagonal from the lower left to the upper right corner, which corresponds to
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Figure 4.6: (a) Azimuthal average of the convergence obtained from the simulation directly and from the
weak-lensing reconstruction. (b) Azimuthal average of the standard deviation (red) squares corresponding
to Fig. 4.5(c) and the profile obtained from bootstrapping (black), corresponding to Fig. 4.5(d). The grey-
shaded area indicates the one-sigma region due to the circular average obtained from the bootstrap.

the inclination of nearly 45◦ as given in Meneghetti et al. (2010b).
In the same way as explained in Section 4.3.3 we can calculate the standard deviation of the conver-

gence in each pixel. This is also shown in Fig. 4.5, where we compare the analytic standard deviation
(Fig. 4.5(c)) and the standard deviation obtained from bootstrapping (Fig. 4.5(d)). In both plots we
see the lowered standard deviation in the cluster centre. This is expected as close to the cluster centre
the signal strength should increase and less scatter is expected. However, the dip obtained with the
bootstrapping method is not as deep as the one from the analytical model. We further can state from
Fig. 4.5(c) in comparison to (d) that the scatter of the obtained standard deviation is much larger in the
analytic model.

Furthermore, we can evaluate the standard deviation of the convergence as a azimuthally averaged
profile. Figure. 4.6(b) shows this profile obtained analytically and by bootstrapping together with the
one-sigma region (grey-shaded area) due to the azimuthal averaging process. As in Fig. 4.5(c) and (d),
the central dip in the standard deviation is visible in the averaged profile of Fig. 4.6(b). Our analytic
estimate for the standard deviation is mostly inside the one-sigma region obtained from the bootstrap
but is slightly biased to higher values. This is most likely due to the chosen value of a = 0.98. Using
Eq. (4.61) together with a smaller value for a would lower the standard deviation, better matching the
obtained values from the bootstrap.

4.5 Summary and conclusion

In this chapter we have explained the reconstruction code SawLens, especially focussing on recon-
structions using weak-lensing information. Starting from the χ2-function for weak lensing including a
regularisation term we showed how an analytic expression for the variance of the convergence κ can be
obtained, see Eq. (4.61 and Eq. (4.62)). This expression needs the reconstructed convergence as well
as the variance of the ellipticities used in the reconstruction. Both quantities are already computed
by SaWLens, thus no further computational effort is needed. From Eq. (4.61) the dependence on the
regularisation parameter η could be explained compared to the fully converged reconstruction using
the relative size a of κ̄ compared to κ. This factor is so far unconstrained and needs further assessment
in future projects to reliably match it to the used value of η.

We used mock catalogues with an underlying NFW density profile to compare this analytic expres-
sion to the real scatter obtained from reconstructing different realisations of the same galaxy cluster.
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Furthermore, we tested the bootstrap implementation from SaWLens with one specific regularisation
parameter η = 30 and compared it to the analytic model. The analytically obtained, azimuthally aver-
aged profile of the standard deviation of the convergence showed the same lowered value in the cluster
centre, in compliance with the numerical experiment and the bootstrap method. The analytic model
lay within the one-sigma region of the standard deviation indicated by our numerical experiment.

To obtain results in a more realistic scenario we applied our model to the simulation of a massive
galaxy cluster based on an N-body/hydrodynamical simulation with a ΛCDM model. A comparison
between the analytic model and a bootstrap for this cluster revealed good agreement for the obtained
uncertainties of the convergence κ. Also the feature of a diminishing standard deviation towards the
cluster centre was reproduced within one standard deviation. We further noted that the scatter in the
standard deviation is larger and the standard deviation was slightly biased to higher values, though
mostly still within the one-sigma region of the results obtained with bootstrapping.

With these findings a reliable error estimation for weak-lensing reconstructions using SaWLens
can be achieved by this analytic model. Even more, as the analytic model relies only on quantities
which have to be calculated by SaWLens anyway, an error estimation can be done without any further
computational effort. This is also interesting in the sense that fields with better angular resolution -
than the one used above – can be achieved by current weak-lensing observations.

The runtime of common bootstrap methods is a major limiting factor in the reconstruction of the
mass distribution of galaxy clusters. Large science projects like the CLASH project (see Chapter 3)
analyse observed clusters in the weak-lensing regime with resolutions of up to 150 × 150 pixels. Due
to these large fields the error estimation consumes roughly 80% of the time needed for a reconstruc-
tion. This severe issue can be completely overcome by this novel approach we presented here. Our
analytic approach can readily be implemented in existing weak-lensing reconstruction pipelines, once
the parameter a is chosen. However, if the reconstruction has fully converged and is independent of
any prior – which its most favourable – the result should be independent of the regularisation and
hence a = 1.

Following the procedure explained, i.e. carefully following the reconstruction prescription, an ana-
lytic error estimation for strong-lensing features seems also feasible. Certainly, due to the non-linear
behaviour of the strong-lensing constraints in the reconstruction further assumptions have to be made
for an analytic error estimation.
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5 Chapter 5

Richardson-Lucy deprojection

In the following chapters we will focus on reconstructions of the potential of galaxy clusters
using the thermal Sunyaev-Zel’dovich effect or the emission of thermal bremsstrahlung. Both
observables have been explained in Section 3.2.2 and Section 3.2.3. With the assumptions
made there these observables probe the gravitational potential of galaxy clusters. However,
only their corresponding three-dimensional quantities may give this insight. Inevitably, we
need a deprojection technique to retrieve the three-dimensional quantity from its line-of-sight
integrated observable.

This chapter explains the chosen deprojection algorithm based on the method presented
by Lucy (1974, 1994b,a), first assuming spherical symmetry and then relaxing this assump-
tion to a spheroidal cluster geometry. Furthermore, we will briefly discuss the merits of this
Richardson-Lucy deprojection method compared to other techniques.

We also present a direct comparison to the well established onion peeling method. This
method was recently applied to the massive galaxy cluster Abell 1689 by Eckert et al. (2012).

The contents of this chapter have been published in Tchernin, Majer, Meyer et al. (2013),
Majer, Meyer, Konrad et al. (2013) and Konrad, Majer, Meyer et al. (2013).

5.1 Merits and limits of deprojections

As described above we adopt the Richardson-Lucy algorithm (Lucy, 1974, 1994b) for deprojection.
Because there are different algorithms for the deprojection of two- into three-dimensional distribu-
tions, we want to give a brief discussion of the main features of other deprojection methods.

We begin with the well known onion peeling method (Fabian et al., 1981; Kriss et al., 1983), which
is very intuitive, though it has the drawback of being a non-local method. The data is binned around the
centre of the cluster in annuli with a chosen width. In each of these annuli the average value is taken,
in doing so the deprojected quantity is approximated by this constant multiplied with the volume of the
three-dimensional shell corresponding to the chosen position. This procedure is progressing inwards
once the outer shells have been calculated and subtracted. For each three-dimensional shell at a given
radius one has to know the result of all shells with larger radius. This method therefore produces
a strong correlation between different shells. Another disadvantage is the strong dependence on the
outermost shell, or equivalently, the problem of defining the boundaries of the cluster.

Another widely used method is the deprojection based on an Abel transform (for a brief discus-
sion see Mamon & Boué, 2010). This technique involves numerical integration as well as calculating
derivatives in each data-bin. Due to the latter the inversion is highly sensitive to fluctuations, in-
evitable in real observations. This disadvantage may be overcome by smoothing the data or fitting
it to an assumed model, but the second approach would give up the non-parametric character of this
deprojection.
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Considering these points, avoiding non-locality is a good choice for our purpose, one choice for
such a method is the Richardson-Lucy deprojection. It is non-parametric and local, in the sense that
all, within the limits of observational smoothing, lines-of-sight are independent. An individual line-
of-sight certainly collects information from a large number of radial bins. But, as each line-of-sight
integral does not depend on the integral of another line-of-sight we may have holes of missing data
in our input, which is a most welcome feature. It is of great importance as we assume hydrostatic
equilibrium and a polytropic stratification of the ICM to proceed from the deprojected quantity to the
gravitational potential. The mentioned assumptions are often not applicable in the centre of clusters
due to a number of processes (e.g. cooling effects) wherefore the Richardson-Lucy algorithm allows
us to leave out the centre of clusters. The RL-scheme includes an entropic regularisation term, which
in turn smoothes the result and accelerates the convergence of the code itself. It is important to say
that the strength of the regularisation is relaxed as the deprojection proceeds.

A recent comparison of our method with the onion peeling algorithm from Eckert et al. (2012) can
be found in Tchernin et al. (2013) and will also be discussed in Section 5.6.

5.2 Principles of the Richardson-Lucy deprojection

Generally, the Richardson-Lucy (RL) deprojection connects two functions, say g(s) and f (r), related
by projection and deprojection,

g(s) =

∫
dr K(s|r) f (r) , (5.1)

f (r) =

∫
ds K′(r|s) g(s) , (5.2)

and mediated by the projection kernel K(s|r) and the deprojection kernel K′(r|s) respectively. The
functions g(s) and f (r) as well as their kernels need to be designed such that they fulfil the non-
negativity and normalisation criteria,∫

ds g(s) = 1 and
∫

dr f (r) = 1 , (5.3)∫
ds K(s|r) = 1 and

∫
dr K′(r|s) = 1 . (5.4)

Neither the deprojection f (r) nor the deprojection kernel K′(r|s) are known. However, given an esti-
mate f̃i(r) at the iteration step i for the function f (r) and using Bayes’ Theorem, an estimate g̃i(s) of
the projection g(s) is

g̃i(s) =

∫
dr K(s|r) f̃i(r) , (5.5)

implying the estimate for the deprojection kernel

K̃′(r|s) =
f̃i(r)
g̃i(s)

K(s|r) . (5.6)

The RL-scheme is now given by the estimate f̃i(r) for the function f (r) at the iteration level i and an
improved estimate f̃i+1(r) is found by

f̃i+1(r) = f̃i(r)
∫

ds
g(s)
g̃i(s)

K(s|r) . (5.7)

Beginning with a reasonable guess for f̃0(r), the iteration Eq. (5.7) usually converges quickly.
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A regularisation term needs to be included in presence of noise to prevent overfitting. Lucy (1994b)
showed that, provided g(s) is normalised, the deprojection algorithm described by the above iteration
can be cast into the form

∆H f̃i(r) = f̃i+1(r) − f̃i(r)

= f̃i(r)
(
δH[ f̃i]
δ f̃i(r)

−
∫

dr f̃i(r)
δH[ f̃i]
δ f̃i(r)

)
, (5.8)

containing the functional derivative of

H[ f̃ ] =

∫
ds g(s) ln g̃(s) , (5.9)

with respect to f̃i(r), as g̃(s) is a function of f̃ through Eq. (5.1). If we interpret g(s) at a given position
as the probability density assigned to each g̃(s), the likelihood L writes as

lnL = H[ f̃ ] + const , (5.10)

hence H[ f̃ ] is equivalent to a likelihood function. It is maximised in order to obtain the best possible
solution. Lucy (1994b) suggested to augment H[ f̃ ] by the entropic term

S [ f̃ ] = −
∫

dr f̃ (r) ln
f̃ (r)
χ(r)

, (5.11)

which contains a prior χ(r) to suppress small scale fluctuations. The functional H is then replaced by

H[ f̃ ]→ Q[ f̃ ] = H[ f̃ ] + αS [ f̃ ] (5.12)

with a parameter α, called strength of regularisation, controlling the influence of the entropic term.
Since

δS [ f̃i]
δ f̃i(r)

= − ln
f̃i(r)
χ(r)

− 1 , (5.13)

the entropic term changes the iteration prescription to

∆ f̃i = f̃i+1(r) − f̃i(r) = ∆H f̃i + ∆S f̃i with ∆S f̃i = −α f̃i

(
ln

f̃i
χ

+ S [ f̃ ]
)
, (5.14)

again provided that f̃i is normalised.
The prior χ(r) against which the deprojection is to be regularised should reflect a-priori knowledge

of the expected solution. If such knowledge is absent an appropriate choice would be a constant prior.
But as shown by Narayan & Nityananda (1986); Lahav & Gull (1989) and Lucy (1994b), the choice
of a constant prior leads to a statistical bias in the estimates of the deprojected functions such that
they appear flatter than they should. This issue can be addressed by selecting as a default solution
a smoothed version of the previously obtained result. This approximation, known as floating default
solution (Horne, 1985; Lucy, 1994b), is built by adopting the following definition,

χ(r) =

∫ ∞

0
dr′ P(r|r′) f (r′) , (5.15)

where P(r|r′) is a normalised, sharply peaking and symmetric function of r − r′. In our investigations,
we choose a properly normalised Gaussian form with smoothing scale L corresponding to the standard
deviation of the Gaussian

P(r|r′) =
1√

2πL2
exp

[
− (r − r′)2

2L2

]
. (5.16)
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5.3 Richardson-Lucy deprojection and spherical symmetry

Assuming spherical symmetry, we rewrite Eq. (5.1) as

g(s) =

∫ ∞

0
dr K(s|r) f (r) (5.17)

with the specific projection kernel

K(s|r) =
2
π

r√
r2 − s2

Θ(r2 − s2) , (5.18)

where the factor 2/π was introduced to ensure that the kernel K is normalised. The theta-function only
allows radii r which are larger than a given value of s.

Exploiting the assumed spherical symmetry of the cluster, we can re-bin our two-dimensional data
in concentric annuli, averaging the observable in each of them. An overview of these annuli and the
line-of-sight is given in Fig. 5.1(a) and (b). The function g(s) is now replaced by a specific observation,
e.g. SZ or X-ray measurements. By deprojecting this observable we find an estimate f̃ (r) for the
corresponding three-dimensional quantity f (r).

Proceeding in this manner we can use the connection between the effective pressure P, the three-
dimensional equivalent to the specific intensity change from the thermal SZ effect (see Section 3.2.2),
and the gravitational potential. Correspondingly, we can use the link between the X-ray emissivity
(see Section 3.2.3), the deprojected quantity from the X-ray surface brightness, and the gravitational
potential. According to Eq. (3.11) the lensing potential ψ is the properly scaled line-of-sight projection
of the gravitational potential. Therefore we can infer an estimate ψ̃ for the two-dimensional potential,
which is proportional to the lensing potential. It can thus be directly combined with estimates of ψ
derived from lensing or other methods.

s

(a)

line-of-sight

s

r

(b)

Figure 5.1: (a) Procedure of radial averaging in the observational plane and the corresponding radius s.
(b) Orthogonal view to (a), explaining the orientation of the line-of-sight. Due to the spherical symmetry
and convenience we can draw the three-dimensional radius r in this orientation.
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5.4. RICHARDSON-LUCY DEPROJECTION AND SPHEROIDAL SYMMETRY

Z

X = x

Y

z

y

ι

Figure 5.2: Relation between the observer’s frame of reference (x, y, z) and the cluster coordinate system
(X,Y,Z). The systems are assumed to be inclined to each other with an inclination angle ι. Also compare
this geometrical setup with the spherical one in Fig. 5.1(a) and (b) from Section 5.3.

5.4 Richardson-Lucy deprojection and spheroidal symmetry

We now relax our symmetry assumption towards spheroidal cluster geometries. The observer’s frame
of reference is denoted by small letters (x, y, z); the cluster is then observed in the (x, y)-plane, and
the z-direction corresponds to the line-of-sight. The coordinate frame of the cluster is defined by
capital letters (X,Y,Z), this frame is inclined by the angle ι against the observer’s frame of reference,
as depicted in Fig. 5.2. The observed galaxy cluster has its own frame of reference, namely the (R,Z)-
plane, while Z is pointing along the symmetry axis of the spheroidally shaped cluster and R is the
radius. This definition allows us to define the following coordinate-transformations and a relation for
R,

X = x , (5.19)

Y = y cos ι − z sin ι , (5.20)

Z = y sin ι + z cos ι , (5.21)

R =
√

X2 + Y2 . (5.22)

The line-of-sight projection is then given as an integral of f (R,Z),

g(x, y) =

∫
dz f (R(x, y, z),Z(x, y, z))

=

∫
dR

∫
dZ f (R,Z) K(x, z|R,Z) . (5.23)

So far we have not specified the deprojection kernel K(R,Z|x, y), which was given by Eq. (5.18) in
the spherically symmetric case from Section 5.3. If we want to construct the kernel, we have to
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define it in our specific geometry. Following the line of thought from Binney et al. (1990), also
presented in Reblinsky (2000a,b); Puchwein & Bartelmann (2006); Puchwein (2007), a deprojection
kernel K(x, y|R,Z) for elliptical objects may be derived. Binney et al. (1990) formulated this kernel
for the deprojection of elliptical galaxies, beginning with the deprojected quantity f (R,Z),

f (R,Z) =

∫ ∞

0
dR′2

∫ ∞

−∞
dZ′ f (R′,Z′) δ(R2 − R

′2) δ(Z − Z′) . (5.24)

This is now projected along the line-of-sight using Eq. (5.23) to yield the projected quantity g(x, y) in
the observer’s frame of reference,

g(x, y) =

∫ ∞

−∞
dz

∫ ∞

0
dR′2 δ

[
R2(x, y, z) − R′2

] ∫ ∞

−∞
dZ′ f (R′,Z′) δ

[
Z(x, y, z) − Z′

]
. (5.25)

The δ-distribution can be rewritten as δ
[
f (x)

]
=

∑
s
δ(x−xs)
| f ′(xs)| . The function f ′ is the derivative of f

with respect to x. f (x) has to be a real and differentiable function with f (xs) = 0. By replacing the
δ-distribution and applying the coordinate transformation from Eqs. (5.19), (5.20), and (5.21), we find

f (zs) = y sin ι + zs cos ι − Z′ !
= 0⇒ zs =

Z′ − y sin ι
cos ι

∣∣∣∣∣
cos ι,0

. (5.26)

The inclination angle can be restricted to 0 ≤ ι < π/2 which leads to non-zero and positive values of
cos ι. Further substituting R with the relation given in Eq. (5.22) yields

g(x, y) = π

∫ ∞

0
dR′2

∫ ∞

−∞
dZ′

∫ ∞

−∞
dz

f (R′,Z′)
cos ι

× δ
[
x2 + (y cos ι − z sin ι)2 − R′2

]
δ

(
z − Z′ − y sin ι

cos ι

)
. (5.27)

After an integration over z, we identify the projection kernel as

K(x, y|R,Z) =
δ
[(

y
cos ι − Z tan ι)2 − (R2 − x2

)]
π cos ι

. (5.28)

This kernel obeys the normalisation constraint∫ ∞

−∞
dx

∫ ∞

−∞
dy K(x, y|R,Z) = 1 . (5.29)

Given the explicit form of the deprojection kernel allows us to proceed in the RL-scheme. The integral
of Eq. (5.25) is given by an integral along the line-of-sight according to Eq. (5.23) which yields an
estimate for the projected quantity. At the iteration step n, we proceed in the RL-formalism by re-
writing Eq. (5.7) with the estimated deprojection f̃n,

f̃n+1(R,Z)
f̃n(R,Z)

=

∫
dx

∫
dy

g(x, y)
g̃n(x, y)

K(x, y|R,Z) . (5.30)

The δ-distribution in the kernel K(x, y|R,Z) above can be eliminated by the same computational rule
for the δ-distribution using roots, already used above,

f (y) =

( y
cos ι

− Z tan ι
)2
− (R2 − x2) !

= 0

⇒ y± = cos ι
(
Z tan ι ±

√
R2 − x2

)
. (5.31)
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This describes a full ellipse in the observer’s sky for a fixed pair of coordinates (R,Z). The derivative
f ′ is then given as

f ′(y) =
2

cos ι

( y
cos ι

− Z tan ι
)

⇒ f ′(y±) = ± 2
cos ι

√
R2 − x2 . (5.32)

This allows us to integrate Eq. (5.30) over the y-coordinate so that

f̃n+1(R,Z)
f̃n(R,Z)

=
1

2π

∫
dx

1√
R2 − x2

[
g(x, y+)
gn(x, y+)

+
g(x, y−)
gn(x, y−)

]
. (5.33)

As the integration over the x-coordinate is limited to −R ≤ x ≤ +R, we can introduce a variable t:

x(t) = R cos t ⇒ x(−π) = −R and x(0) = R ,√
R2 − x2 = R

√
1 − cos2 t = −R sin t for t ∈ [−π, 0] , (5.34)

which leads to the final result where we sum over both signs,

f̃n+1(R,Z)
f̃n(R,Z)

=
1

2π

∑
±

∫ 0

−π
dt

g(R cos t,Z sin ι ± R sin t cos ι)
g̃n(R cos t,Z sin ι ± R sin t cos ι)

. (5.35)

In this way the RL-algorithm in spheroidal geometry is fully described by Eq. (5.23) and Eq. (5.35),
corresponding to Eq. (5.5) and Eq. (5.7) from the general scheme.

Evaluating Eq. (5.35) involves a problem which concerns Z and R: Imagine our data set to be given
by an observation with a specific field of view (FOV) with the coordinates x and y. For large values
of Z and R the ellipse, which we integrate over, may partly reach outside this FOV. We therefore need
to set some sort of conditions for the boundaries. This issue has been addressed by Reblinsky (2000b)
where different methods were tested. A robust solution, regarding the obtained results, is to keep
values outside the bounding box constant at the last value along the path of integration inside the box.
We will also use this scheme throughout this work.

5.5 Constraining the two degrees of freedom α and L

The strength of regularisation α as well as the smoothing scale L, which we have introduced in Sec-
tion 5.2, are still unconstrained. α carries a prejudice on how smooth the result should be. Small
values of α allow the algorithm to fit the noise and the data rather than the data alone. Contrarily, too
strong regularisations result in under-fitting. On the other hand, the floating default kernel with the
scale L smoothes the deprojection effectively on the given scale L.

Further improving the idea of the floating default kernel, we make the smoothing scale L dependent
on the position s, motivated as follows: The signal-to-noise ratio (S/N) of all cluster observables
diminishes towards the outskirts of the cluster. This may be compensated by increasing the effective
width of each annulus with the cluster’s radius for the spherically symmetric case. The effective width
may be changed by either using a non-linear binning and keeping L constant or by keeping the width
of each annulus fixed and varying L. The latter is more practical since it allows us to choose an L
value according to the given data set and independent of the binning. One simple choice, which is
increasing with the radius, is a linearly increasing L with a maximum value Lmax at the lagest position
smax of the profile. In this way we reduce the influence of L at the centre of the cluster, whereas we
keep the smoothing properties for larger radii. In this manner we tend to have a flatter S/N profile
in the smoothed data. But varying the smoothing scale might also cause errors to be correlated in
spatially varying ways. For simplicity we do not consider this throughout this work. If we render the
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smoothing scale dependent on the position, we still have to set the maximum scale Lmax of the floating
default kernel (see below).

As pointed out by Lucy (1994b), there is no generally applicable criterion to find the best value for
α, though this α does exist. But by testing different expressions and in combination with the floating
default kernel, we are able to estimate the best-fitting α. We find it by iterating each deprojection over
a given set of possible α values. Certainly, there is an upper limit for α, given by Eq. (5.14), as ∆ f̃i + f̃i
must remain strictly positive due to the normalisation condition. To find the best-fitting α and Lmax,
we calculate the integrated difference, thus we take information from each radial position into account,
of the projected deprojection and observational data for each α with a pre-defined Lmax = Lmax,i,

W(Lmax,i, α) =

∣∣∣∣∣∣
∫

ds
[
g(s) −

∫
dr K(s|r) f̃i(r)

] ∣∣∣∣∣∣
Lmax,i

. (5.36)

This quantity should be as small as possible, implying that the projected deprojection follows the data
as well as possible. All the profiles considered in this analysis decrease with s, thus the inner radii
contribute most to W.

This procedure is then repeated for a reasonable range of values for Lmax,i. For each deprojection
we compare the projected deprojection with the original data. Again, this quantity is minimised to
find the best-fitting Lmax,i, which is then used for the deprojection.

However, we still have to define the range of Lmax values. This range has to be chosen independently
for each data set, though the following points give some guide line for Lmax:

• It should be larger than the average width of two adjacent bins, otherwise L would have a
negligible effect.

• For our analysis the data could be smoothed on scales of the same size as the resolution from
weak-lensing observations for a later combination of the data sets.

• The noise of the data itself, especially at the outskirts of the cluster, has a strong impact on the
scale of the kernel. Once the signal-to-noise profile is known, L could be assessed correspond-
ingly.

5.6 Richardson-Lucy method compared to onion peeling

For testing our algorithm and comparing it to well-established methods like the onion peeling method,
we choose the prominent cluster Abell 1689. For this massive cluster numerous observations exist
(e.g. Chandra, ROSAT, Subaru or HST). Motivated by the low background and the data provided by
Eckert et al. (2011), reduced with the ESAS software (Snowden et al., 1994), we use an archival 13.4 ks
surface brightness profile from ROSAT/PSPC, see also Fig. 5.3(a). For a detailed description of the
data reduction we refer the reader to Eckert et al. (2011). This profile reaches out to large radii in the
energy range of 0.4 - 2 keV (see also Vikhlinin et al., 1999).

First of all, we reconstruct the three-dimensional emissivity from the two-dimensional surface
brightness using the algorithm for spherical symmetry as described in Section 5.2. We use the er-
rors provided by Eckert et al. (2011) to re-sample the surface brightness with a Gaussian distribution
and reconstruct each of the 100 samples. The scale of the floating default kernel L is chosen to be
linearly increasing with Lmax = 1.05 Mpc, whereas the strength of regularisation is taken as α = 0.2.
Both values are determined once for the original data set by the bootstrap method explained in Sec-
tion 5.5, and are then kept constant for each sample. In this way we obtain the mean of those 100
samples and the standard deviation, shown in Fig. 5.3(b). The RL deprojection method is normalised,
if we want to compare it to other methods we are free to multiply our deprojection with a constant.
This multiplicative normalisation constant between both methods is determined by matching our re-
construction and the result from the onion peeling at a radius of 1 Mpc. We find that the performance of
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Figure 5.3: (a) Surface brightness profile obtained with ROSAT. (b) Reconstructed emissivity using the
RL-method (blue) and the onion peeling method (red).

our algorithm is compatible with the onion peeling method. Both methods agree within one standard
deviation. However, this comparison does not exclude a bias present in both deprojection methods.
From the emissivity we proceed to the three-dimensional density as follows: The temperature of Abell
1689 lies between 2 keV and 10 keV (Kawaharada et al., 2010), the observed energy band of 0.4 to
2 keV is below the bremsstrahlung cut-off energy. In this regime the emissivity depends only weakly
on the temperature. Therefore, we can express the electron density as

ρe

ρe,0
= C

√
jband

jband,0
(5.37)

with the emissivity jband in the specific energy band and quantities with the subscript ‘0’ refer to an
arbitrary radius. The constant C is found by matching the reconstruction to the density profile from
Eckert et al. (2013) at 1 Mpc. Figure 5.4(a) shows the comparison of our reconstruction with the onion
peeling method for the electron density. Again the results are in very good agreement and well within
one standard deviation except for the innermost data point at r ≈ 0.2.

Further, by assuming a polytropic stratification of the ICM and using the relation from Eq. (3.31)
the temperature profile can be expressed as a function of the emissivity,

T (r) ∝ ρ(r)γ−1 ∝ j(γ−1)/2
band . (5.38)

To obtain the temperature profile, we first have to infer the adiabatic index γ. For this purpose we use
the pressure profile by Nagai et al. (2007) and the corresponding parameters from Planck Collaboration
(2013b). By fitting the polytropic equation, we infer an adiabatic index of γ = 1.19 ± 0.04. Given
this index, we can derive the temperature profile by applying Eq. (5.38) and compare it to the onion
peeling method and direct measurements. Figure 5.4(b) shows the reconstructed temperature profile
and the one-sigma region, again found by bootstrapping (one bootstrap for each bound on the adiabatic
index). The dark-blue curve shows the reconstruction with γ = 1.19. Figure 5.4(b) compares our
reconstruction to the onion peeling method (red), to the data from Susaku (Kawaharada et al., 2010)
(black), and to the data from XMM-Newton (Snowden et al., 2008) (grey). The data from Susaku and
XMM-Newton were obtained by spectral fitting. According to these results the polytropic assumption
is well justified as we can reproduce the decrease in the temperature profile accurately.

However, a cautionary remark has to be made here: In the inner part of galaxy clusters cooling
processes may occur, rendering the cooling time shorter than the Hubble time (e.g Fabian, 1994), thus
changing the adiabatic index. It may imply that assuming a constant adiabatic index is a bold assump-
tion as we do not take this effect into account in our model. Another problem is the assumption of
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Figure 5.4: (a) Comparison of the reconstructed density profile using the onion peeling method (red) and
the RL-method (blue). (b) Temperature profile of A1689 obtained from Susaku (black), XMM-Newton
(grey), using the onion peeling method (red) and the RL-method (blue).

hydrostatic equilibrium as kinematics and X-ray studies suggest deviations from it for Abell 1689.
Findings from Sereno et al. (2013); Andersson & Madejski (2004) indicate that Abell 1689 might be
a merging cluster aligned with the line-of-sight and thus not relaxed.
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Figure 5.5: Reconstructed and normalised lensing po-
tential of Abell 1689 obtained with the RL-method
(blue) and with SaWLens (red, credits: J. Merten). The
light-blue area indicates the two-sigma region.

However, we do calculate the lensing potential
and compare it with a weak-lensing reconstruc-
tion obtained with SaWLens, shown in Fig. 5.5.
We proceed in the same manner as we did for
the emissivity. Only the normalisation is cho-
sen such that both profiles are evaluated at the
same positions which is achieved by interpo-
lating the profile obtained with weak lensing.
Both profiles further obey the normalisation con-
straint from Eq. (5.4). Our reconstructed pro-
file roughly reproduces the shape of the lensing
potential obtained with the weak-lensing recon-
struction. As the lensing reconstruction is based
on weak-lensing data only, it is expected to be
biased as well. Even though the assumption of
spherical symmetry seems not justified, our re-

construction still reproduces the lensing potential within two standard deviations.

5.7 Testing the influence of the free parameters α and L

In the above section we used a bootstrapping method to quantify the uncertainty of our reconstruction.
The parameters α and Lmax were constrained according to Section 5.5. But now we consider how these
parameters influence a reconstructions if they are chosen freely.

We take the surface brightness data from Abell 1689 and reconstruct them in the following two
ways:

(1) We fix the strength of regularisation α and reconstruct with different values of Lmax.

(2) We fix the smoothing scale Lmax and carry out the reconstruction for different values of α.
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Figure 5.6: (a) Upper panel: Reconstructed and normalised emissivity for Abell 1689 with a constant
value for α = 0.2 and different values for Lmax. The light-red area illustrates the three-sigma region.
Lower panel: Same as the upper panel but with fixed Lmax = 1.05 Mpc and varying α. (b) Upper panel:
Same as the lower panel of (a) but now the optimal α was determined according to Eq. (5.36) with a fixed
value for Lmax = 1.05 Mpc. Lower panel: The best-fitting α in dependence of the chosen value of Lmax.

We fix the chosen value α = 0.2 and sample Lmax in the range of 0.4 ≤ Lmax ≤ 1.35 Mpc. The mean
value of all reconstructions with one value fixed and the three-sigma region are shown in Fig. 5.6(a).
For the second test, we set the maximum value of the smoothing scale constant at Lmax = 1.05 Mpc
and reconstruct the emissivity of Abell 1689 with different values for α in the range of 0.05 ≤ α ≤ 1.0.
For these reconstructions we calculate the mean value and the corresponding standard deviation.

In the same way we can test how the optimisation from Eq. (5.36) influences the standard deviation
of our reconstruction. We iterate the same range of values for Lmax, but this time we determine the
best-fitting α by applying Eq. (5.36). This result is shown in the upper panel of Fig. 5.6(b), and the
lower panel shows the optimal α in dependence of Lmax.

We summarise here the findings from Fig. 5.6:

• The scatter in Fig. 5.6(a) is large in both panels for large radii. But the upper panel shows an
even larger scatter which implies that the reconstruction is sensitive to the chosen value for Lmax.

• In the lower panel Fig. 5.6(a) the mean result is slightly biased to higher values for larger radii.
This fact is due to the mentioned under-fitting for large values of α, see also Section 5.5.

• We further see from Fig. 5.6(a) that the maximum scale of the smoothing scale Lmax has large
influence on the outskirts of the radial profile, indicating the need of a properly chosen Lmax.

• The scatter in the upper panel in Fig. 5.6(b) is much smaller than in both panels of Fig. 5.6(a).
According to this result the optimisation criterion from Eq. (5.36) is able to adjust the value of
α to the given value of Lmax. This is a very important finding as it allows us to choose a value
of Lmax, which may not be the best-fitting one. But still we will have reliable results once the
algorithm is allowed to assess the best-fitting α.

• The behaviour of the best-fitting α with a changing value of Lmax is as expected as both pa-
rameters have a smoothing effect on the deprojection: The larger the smoothing scale the less
regularisation is needed – α decreases with Lmax.
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5.8 Summary and conclusion

In the this chapter we generally explained the Richardson-Lucy deprojection method and reformulated
this method in two special geometries, the spherical and spheroidal geometry. With this method we
are able to retrieve the deprojection of radial profiles for spherically symmetric distributions and the
deprojection of two-dimensional spheroidal distributions. The Richardson-Lucy method includes two
variables, the strength of regularisation α and the scale of the floating default kernel L. Both of them
have to be assessed with the specific data set to be considered. However, we made the scale of the
floating default kernel dependent on the examined position, allowing us to change the S/N profile of
the data supplied to the algorithm. On the other hand both parameter – α and Lmax – are chosen in such
a way that the difference between the projection of the deprojected data and the data itself is minimal.

We also note here a major difference between the spherical and spheroidal deprojection method: In
both geometries we average over a given number of pixels of our image as we carry out the integration
along the three-dimensional contour. However, the spherical geometry in comparison to the spheroidal
has one degree of freedom more, due to the additional symmetry. In the spherical case we exploit this
symmetry explicitly by binning our data in annuli around the cluster centre. Afterwards we integrate
over specific bins, which are given by the kernel. In the spheroidal case we only average over a given
number of pixels as we integrate along the three-dimensional contour, as indicated by the kernel.
In this way the average in the spherical case is taken over more pixels than in the spheroidal one.
This will, as we see later in this work, directly influence the possible usage of data sets, as it gives
constraints on a needed S/N.

Figure 5.7: Schematic overview of our used re-
construction method. It involves a deprojection,
assumptions about the physical state of the ICM
and a projection (credits: M. Bartelmann).

Furthermore, we compared our algorithm in spher-
ical symmetry to the existing onion peeling method
from Eckert et al. (2013) by applying it to the massive
galaxy cluster Abell 1689. We were able to show, con-
sidering our results concerning the obtained emissiv-
ity profiles, that both deprojection methods yield the
same result within their errors. Even more, the agree-
ment of the retrieved temperature profile and temper-
ature profiles inferred from spectral fitting lies well
within the one-sigma region. Further, the temperature
profile seems to obey a polytropic relation or at least
it is not in conflict with one. This also implies that
in the case of Abell 1689 the assumption of spheri-
cal symmetry, the ideal gas equation and a polytropic
stratification is applicable.

From the obtained emissivity profile we proceeded
to the three-dimensional gravitational potential by us-
ing Eq. (3.47) and further on to the two-dimensional
lensing potential by applying Eq. (3.11). This allowed
us to compare our retrieved result with the lensing po-
tential of Abell 1689 obtained with weak-lensing data using SaWLens. This comparison showed a
good agreement between both methods. The overall scheme of our used reconstruction method is
depicted in Fig. 5.7. It uses the RL-method for deprojection and links the deprojected observable with
the gravitational potential under given assumptions about the ICM. Finally, an estimate proportional
to the lensing potential is obtained by a projection along the line-of-sight.

In the last section we have evaluated how the results from Section 5.6 are biased by the free param-
eters α and Lmax. We have shown that the search for the best-fitting value of α for a given value of
Lmax lowers the scatter in the reconstruction tremendously. We have also shown that α exhibits the
assumed behaviour with a varying Lmax: It decreases as the smoothing scale increases.
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6 Chapter 6

Reconstruction of the mass distribution
of clusters using the thermal
Sunyaev-Zel’dovich effect

The thermal SZ effect probes the ICM embedded in the dark-matter potential well of a galaxy
cluster as the background photons of the CMB undergo inverse Compton scattering. This
effect has been explained in Section 3.2.2 as well as the link between the specific intensity
change and the lensing potential, which allows us to reconstruct the latter. This involves the
deprojection of the observed SZ signal to obtain the effective pressure of the ICM, which is
then related to the gravitational potential. As we want to infer the three-dimensional structure
of the galaxy cluster from a two-dimensional distribution, we clearly need certain symmetry
assumptions.

To test our reconstruction algorithm with the deprojection method from Chapter 5, we start
with the explained scheme for spherical symmetry (see Section 5.3). We use mock data of a
spherical galaxy cluster with an NFW density profile. The mock thermal SZ signal includes
the noise characteristics of the Atacama Large Millimeter/submillimeter Array (ALMA).

Proceeding to a more realistic scenario, we improve our cluster model by applying our
method to a cluster based on an N-body/hydrodynamical simulation with a ΛCDM model.
The simulation is taken from Meneghetti et al. (2010b), based on original work of Saro et al.
(2006), and was explained in detail in Section 4.4.1. To this specific cluster simulation we
also apply our Richardson-Lucy deprojection algorithm for spheroidal cluster geometry from
Section 5.4. The result of our reconstruction is then compared to the real underlying lensing
potential retrieved from the simulation itself.

The contents of this chapter have been published in Konrad, Majer, Meyer et al. (2013) and
Majer, Meyer, Konrad et al. (2013).

6.1 Simulation of ALMA observations

In this section we will briefly discuss the realistic noise model our mock cluster is embedded in. As
possible noise sources we take into account background fluctuations due to unresolved clusters and the
instrumental noise of ALMA itself. Furthermore, we include an estimate of the fluctuations introduced
by primary CMB anisotropies.
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6.1.1 Background fluctuations due to unresolved clusters

Galaxy clusters unresolved by the telescope beam contribute a background noise level ybg that needs
to be taken into account in all following calculations. Clusters are unresolved if they appear (much)
smaller than the beam size. The background signal is thus dominated by low-mass clusters (Bartel-
mann, 2001). Since an ideally homogeneous background could be removed from the data, we only
have to consider the average background fluctuation level ∆ybg. The mean background level con-
tributed by unresolved clusters with the differential mass function n(M, z) is

ybg =

∫
dM

∫
dV Y(M, z) n(M, z) , (6.1)

where the mass- and redshift-integrations have to be carried out over that area in the mass-redshift
plane where clusters are unresolved. The integrated Compton-y parameter Y(M, z) of a cluster with
mass M at redshift z is

Y =

∫
d2s y(s) =

kBT
mec2

σT

D2
d

Ne , (6.2)

where the angular-diameter distance Dd to the cluster appears and the total number of electrons Ne.
We choose the cluster mass function n(M, z) described by the Sheth-Tormen model (Sheth & Tormen,
1999) (see also Section (2.7) for further details),

n(M, z) = A

√
2
π

(
1 +

1
ν2q

)
ρbg

M
dν
dM

exp
(
−ν

2

2

)
M . (6.3)

The number of background sources follows a continuos probability distribution. If one neglects any
cluster correlations and a constant background which could be removed, the rms due to background
fluctuation is

σbg =

[∫
dM

∫
dV Y2(M, z) n(M, z)

]1/2

. (6.4)

6.1.2 Instrument noise

Another relevant source of noise is the measurement noise of the telescope and the detector. We
assume that the measurement error of the telescope has a Gaussian distribution with standard deviation
σTel around zero, with σTel depending on the telescope and detector configuration and the setup of the
specific observation.

Since we need a resolution for our simulation that is comparable to other observations of massive
galaxy clusters, we choose the Atacama Large Millimeter/submillimeter Array (ALMA) as an example
telescope for achieving sufficiently precise thermal SZ observations. For all simulations presented in
the remainder of this work, we use the following configuration of ALMA: All Nant = 32 antennae
are assumed to be available with a yet to set baseline. This configuration has then a given angular
resolution in a frequency band chosen to be centred on ν = 116 GHz. Its bandwidth is assumed to be
∆ν = 7.5 GHz. According to the ALMA user manual (Lundgren, 2012) the point-source sensitivity
σTel of ALMA is

σTel =
2kBTsys

ηqηcAeff

√
Nant(Nant − 1)np∆νtint

, (6.5)

where Tsys is the temperature of the system2, ηq the quantum efficiency (ηq = 0.96), ηc the correlator
efficiency (ηc = 0.88), Aeff the effective area of an individual antenna, np the number of polarisation
states (np = 2), and tint is the integration time. Given the standard deviation of the instrument noise,
the final observed image can be simulated assuming a Gaussian distribution of the signal with the
variance σ2

Tel.

2The system temperature is a combination of the receiver temperature, sky temperature and the ambient temperature
(Lundgren, 2013).
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6.1.3 CMB fluctuations

On small angular scales, roughly around 1′, the primary CMB anisotropy may be negligible due to
its exponential cut-off at these length scales. However, observing massive galaxy clusters implies
the observation of a large patch of the sky. Thus, on cluster scales one has to take primary CMB
anisotropies, as a source of background noise, into account.

As the thermal SZ effect measures the CMB intensity change due to a cluster, we need to quantify
the intrinsic CMB intensity change across the field. Since the observation is done with a beam of finite
width, the CMB signal needs to be convolved with this beam B. The correlation function ξ(r) between
two points on the sky in flat-sky approximation is then given as

ξ(r) =

∫
dk

k
2π

P(k) |B̂(k)|2 J0(k r) (6.6)

with the angular power spectrum P(k) of the CMB and the Fourier transform B̂ of the beam profile
and the Bessel function of 0th. The correlation function depends only on the distance, allowing us to
evaluate the variance of these two points as the average over a circular FOV with radius R:

σ2
CMB =

1
πR2

∫
d2r ξ(r)

=
2

R2

∫ R

0
r dr

∫
d2k

(2π)2 P(k) |B̂(k)|2 eik·r

=
1
πR

∫
dk P(k) |B̂(k)|2J1(k R) (6.7)

with the Bessel function of 0th and 1st order, J0 and J1 respectively. This variance may now be
calculated and included in our noise model. The CMB power spectrum is computed using CAMB
(Lewis et al., 2000).

6.2 Application to mock data with spherical symmetry

To test the algorithm sketched in Section 3.2.2, we simulate the thermal SZ signal of a massive
galaxy cluster, assuming spherical symmetry, hydrostatic equilibrium, and an NFW density profile.
We choose the concentration parameter c = 5 and a spatially flat standard ΛCDM cosmology with
Ωm0 = 0.3 and Ωb0 = 0.04. The properties of the ICM are chosen as follows:

• The plasma contains 75% hydrogen and 25% helium by mass.

• Both hydrogen and helium are completely ionised.

• The gas-mass fraction equals the universal baryon mass fraction fb = Ωb/Ωm.

• The gas has a constant polytropic index of γ = 1.2.

The gas density and temperature profiles are then calculated using Eqs. (3.35) and (3.37). To obtain
a temperature profile which drops to zero at a large radius, we choose a cut-off radius for the gravita-
tional potential of rcut = r200. Given the density and temperature profiles, the specific intensity change
∆ISZ can be calculated using Eq. (3.23).

The mass of the cluster is chosen to be 5 × 1014 M� h−1 at redshift 0.2, the scale radius is rs =

0.25 Mpc h−1.
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Figure 6.1: Azimuthally averaged and normalised spe-
cific intensity in dependence of the angular radius s.
The displayed maximal range of radial values corre-
sponds to the virial radius of the cluster.

Since the above noise contributions from Sec-
tions 6.1.1, 6.1.2, and 6.1.3 are not correlated
with each other, the total uncertainty is then
given by Gaussian error propagation. For our
mock simulation this results in S/N = 1.25 per
pixel at the scale radius for the chosen ALMA
configuration. With this, the radial profile of the
thermal SZ signal can be obtained by averaging
the simulated image in annuli around the cluster
centre. This profile is shown in Fig. 6.1 for one
realisation of the noise for the simulated galaxy
cluster. At a radius s & 0.8 Mpc h−1 (i.e. 3 × rs),
the cluster signal sinks below the noise level and
becomes nearly constant.

Applying our Richardson-Lucy algorithm to
the simulated specific intensity change ∆ISZ re-
turns an estimate for the three-dimensional effec-
tive pressure. Through Eq. (3.41), an estimate of
the gravitational potential is obtained. For the specific data set shown in Fig. 6.1, the estimate for the
gravitational potential is shown in Fig. 6.2(a). The reconstruction is carried out with α = 0.25 and
Lmax = 0.31 Mpc h−1. Both values are the best-fitting ones according to the procedure explained in
Section 5.5. From the obtained gravitational potential we can carry out the line-of-sight integration to
retrieve the lensing potential. The comparison of our reconstruction and the true lensing potential in-
ferred from the simulation is shown in Fig. 6.2(b). The reconstruction is reliable to a maximum radius
of r ≈ 0.7 Mpc h−1 (cf. Fig. 6.3) as beyond this radius the deviations from the true lensing potential
grow.
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Figure 6.2: (a) Comparison between the recovered and normalised gravitational potential and the expected
result, α was chosen by the best fit (see text). (b) Comparison between the normalised lensing potential ψ
and the expected result.

We quantify the error of our algorithm by 100 bootstrap samples of the noise model described
above, which yields different realisations of the same cluster. To these we apply our reconstruction
algorithm. From all reconstructions we calculate the rms deviation of the recovered lensing potential
from its true profile, according to,

rms(s;ψ, ψtrue) =

 1
N

N∑
n=1

(ψ(s) − ψtrue(s))2

ψ2
true(s)


1/2

. (6.8)
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Figure 6.3: Relative rms deviation of the projected potential ψ from the true profile ψtrue, derived from
100 realisations of the modeled galaxy cluster. The green line shows the 15% level for comparison.

The rms obtained from this bootstrap is shown in Fig. 6.3 together with a reference line at the 15%
level of deviation (green line). We achieve a relative accuracy of less than 15% for radii smaller than
≈ 0.7 Mpc h−1. At larger radii, the rms reaches much higher values. This is clearly due to the increas-
ing noise at large radii, since the S/N per pixel at the virial radius is below 0.02. Furthermore, the
true lensing potential approaches zero by construction at the virial radius, whereas our reconstruction
remains finite and positive.

6.3 Application to a hydrodynamical simulation assuming spherical
symmetry
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Figure 6.4: The Compton-y parameter as obtained from
the hydrodynamical simulation.

Up to now we have relied on spherical symmetry
and an ICM which is in hydrostatic equilibrium.
But it is well known that these assumptions are
not necessarily applicable for observed galaxy
clusters. Even though our algorithm so far as-
sumes spherical symmetry and hydrostatic equi-
librium, we test our method on a realistic data set
that is not restricted in this sense.

Our data set is taken from Meneghetti et al.
(2010b) (see also references therein) and is based
on an N-body/hydrodynamical simulation. This
cluster may not be in hydrostatic equilibrium
and is certainly not spherically symmetric (see
Fig. 6.43 and Section 4.4.1 for more details).
Therefore both our assumptions may not be
strictly fulfilled, but according to the quality of
agreement we achieve below with our reconstruction, they are still applicable, at least within the mea-
surement uncertainty.

Our data set has a field of view of 21.5′ and a resolution of 512×512 pixels (i.e. 2.51′′ per pixel). For
the same FOV we have the convergence map at hand to estimate the underlying lensing potential. We
obtain the lensing potential by solving Poisson’s equation numerically with a fast-Fourier transform
using the surface-mass density of the cluster.

The Compton-y parameter from Fig. 6.4 is used to create a mock observation of this cluster with
ALMA by adopting the appropriate parameters and adding noise as described in Section 6.1.1, 6.1.2,
and 6.1.3. In this manner we obtain a simulation with a resolution of 5′′ and a S/N = 1.27 per pixel
at the scale radius (i.e. s ≈ 2.4′). The radial profile of the normalised specific intensity is shown in
Fig. 6.5(a). This profile is deprojected with our algorithm and used to infer the lensing potential. This

3The image was produced with Splotch: http://www.mpa-garching.mpg.de/˜kdolag/Splotch
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Figure 6.5: (a) The computed specific intensity, derived from the Compton-y parameter obtained from
the hydrodynamical simulation. The radial profile was produced with ALMA properties at 116 GHz, a
resolution of 5′′ and S/N = 1.27 per pixel at the scale radius. (b) Upper panel: Normalised reconstruction
of the lensing potential compared with the real lensing potential from the hydrodynamical simulation
(α = 0.4 and Lmax = 1.75′). Lower panel: The relative modulus of the residual from the reconstruction
and the true lensing potential. The green line indicates the 15% level.

is then compared to the real lensing potential mentioned above. Crucial for the result is the knowledge
of the polytropic index, for which we take a value of γ = 1.22 ± 0.02. This value is inferred by
fitting the the surface brightness and temperature profile presented in Meneghetti et al. (2010b), which
constrains the index η from Eq. (3.41) to η ≈ 5.55.

Referring to Fig. 6.5(a), the mean noise level of the input data is crucial for the reconstruction to
work reliably as the noise exceeds the signal at s ≈ 9′. Note that the virial radius, taken as r200 from the
best-fitting NFW profile, of this cluster lies at rvir ≈ 8′. The effect is visible as the signal approaches
a constant corresponding to the noise level.

However, Fig. 6.5(b) shows that up to a radius of s ≈ 8′ − 9′ our reconstruction reproduces the
lensing potential well. The relative deviation, see the lower panel in Fig. 6.5(b), of the reconstruction
from the underlying real lensing potential shows only deviations which do not exceed 15% within the
virial radius.

6.4 Application to a hydrodynamical simulation assuming
spheroidal symmetry

The galaxy cluster considered in the section above is not spherically symmetric, obvious from Fig. 6.4.
This statement is even more evident once the axis ratios from Tab 4.1 are evaluated. However, refer-
ring to Section 5.4, the adopted Richardson-Lucy deprojection method may also be applied to such
spheroidal objects.

We test our method for spheroidal geometry on the same simulation as described in Section 4.4.1.
This time, however, we need a more robust signal as we do not average in annuli anymore (see the
discussion in Section 5.8). Thus a much higher S/N compared to the data set used in Section 6.3 has
to be created. This certainly limits crucially the resolution we can effectively use for our algorithm.
We enhance the S/N by lowering the resolution to 64 × 64 pixels and set the integration time to 24 h.
This results in a S/N = 1.36 at the virial radius, roughly at rvir ≈ 8′. The obtained specific intensity
change at a frequency of 116 GHz is shown in Fig. 6.6 together with the virial radius (black circle).

This data set is now reconstructed using the spheroidal implementation of our Richardson-Lucy
algorithm according to Section 5.4. We use α = 0.24, found by applying Eq. (5.36) and the method
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explained in Section 5.5. The smoothing scale is taken as Lmax = 1.6′ and increases quadratically
rather than linearly as explained in Section 5.5. This accounts for the greater number of pixels with a
low S/N towards the outskirts of the cluster. Further, we need the inclination angle ι, which we take
again from Meneghetti et al. (2010b) as ι = 84◦.
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Figure 6.6: Specific intensity change obtained from the
input data from Fig. 6.4 for a specific configuration of
ALMA (see text for details). The resolution of 64 × 64
pixel corresponds to an angular resolution of 20′′.

As in Section 6.3 we use an adiabatic index of
γ = 1.22 to calculate the exponent η. The grav-
itational potential is then obtained from the de-
projected specific intensity change. Projecting
the gravitational potential along the line-of-sight
then gives a scaled version of the lensing poten-
tial. We now have the freedom to subtract or
add a constant to the lensing potential as well as
to multiply our reconstruction with a constant.
By exploiting this freedom we scale the lensing
potential to a maximum value of ψmax = 1 and
add a constant such that the mean of the recon-
structed potential is equal to zero at the bound-
aries. To compare our reconstruction with the
true lensing potential we apply the same proce-
dure to the real lensing potential.

Figure 6.7(a) shows the reconstructed lensing
potential scaled and shifted as mentioned above
together with the virial radius (white line). The green curve shows the 15%-contour of deviation
regarding the true underlying lensing potential. The true lensing potential is shown in Fig. 6.7(b)
again with the virial radius of the cluster (white line). The mentioned 15%-contour is obtained from
the absolute residual shown in Fig. 6.7(c). We see that the reconstruction is roughly below the 15%
level nearly up to the virial radius. The corners in our FOV tend to deviate very strongly from the true
result which is obvious from our reconstruction method: According to Fig. 5.2 the cluster is assumed
to have a symmetry axis along the y-direction in the plane of the sky. But from Fig. 6.4 we see that the
cluster is rotated clockwise by an angle α ≈ 45◦ away from this symmetry axis. This means that we
first have to rotate the input data losing information outside the incircle. These missing values are then
replaced by a constant extrapolation as explained in Section 5.4. Clearly, the reconstruction obtained
in these regions contains no meaningful information on the lensing potential.

For the spherically symmetric case the scale of the smoothing scale Lmax has been chosen by the al-
gorithm itself by applying the method explained in Section 5.5. This procedure is very time-consuming
and not feasible for this two-dimensional data set. Therefore, we only test for the best-fitting α,
whereas Lmax is chosen, guided by the points mentioned in Section 5.5. However, we test a control
sample with a few different values of Lmax covering a reasonable range (i.e. 5% – 25% of the max-
imum value for R). All of them yield approximately the same result once we allow the strength of
regularisation α to vary. By adopting a quadratically increasing smoothing scale, we further limit the
effect of Lmax in the cluster centre.

Comparing the three panels from Fig. 6.7, we can make following statements:

• The reconstruction algorithm in spheroidal geometry is capable of reproducing the elliptical
shape of the lensing potential.

• For regions with a high S/N the reconstruction is reliable in reproducing the exact values of the
lensing potential.

• As soon as the noise exceeds the signal, deviations from the real lensing potential are large.
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Figure 6.7: (a) Reconstructed lensing potential from the specific intensity change shown in Fig. 6.6. The
white circle corresponds to the virial radius, and the green contour depicts a 15% deviation from the real
underlying lensing potential. (b) True lensing potential as obtained from the hydrodynamical simulation.
(c) Modulus of the relative residual from (a) and (b).

6.5 Summary and conclusion

In this chapter we showed how the observable provided by the thermal SZ effect in clusters, i.e. the
relative intensity change of the CMB observed through the hot intracluster plasma, can be connected
to the projected, two-dimensional lensing potential. The final goal of this study is to bring all clus-
ter observables – strong and weak gravitational lensing, X-ray emission, the thermal SZ effect and
ultimately also galaxy kinematics – on a common ground to use all of them in a joint reconstruction
procedure which recovers the lensing potential best compatible with all these observables.

Under the assumption of hydrostatic equilibrium, a polytropic gas stratification and an ideal gas, we
already derived in Section 3.2.2 how the Compton-y parameter is related to the gravitational potential.
This allowed us to construct an algorithm beginning with the Richardson-Lucy deprojection of the ob-
served specific intensity change, which is proportional to the Compton-y parameter, into the effective
pressure. The Richardson-Lucy deprojection was the first step in the algorithm requiring symmetry
assumptions. For simplicity, not by necessity, we chose to assume spherical symmetry initially. The
deprojected Compton-y parameter was then readily converted to the three-dimensional gravitational
potential, which was finally projected along the line-of-sight.
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We simulated the thermal SZ data with a spherically-symmetric NFW density profile for the under-
lying mass distribution. The cluster had a mass of M = 5×1014 M� h−1 at redshift 0.2. It was observed
with the signal-to-noise characteristics of one specific configuration of the ALMA interferometer. In
addition to instrumental noise, we included background fluctuations in the thermal SZ signal due to
unresolved clusters and CMB anisotropies. We sampled this cluster with different realisations of our
assumed noise model (see Section 6.1). For each of these mock observations of a galaxy cluster the
lensing potential was reconstructed using the algorithm for spherical symmetry from Section 5.3. In
this way, we could calculate the rms deviation from the mean of the reconstructions and the real lens-
ing potential obtained from the NFW density profile. The results looked very promising: The three-
and two-dimensional potentials were well reproduced with our method. The bootstrapping showed
relative rms accuracies of the recovered, two-dimensional lensing potential at or below the 15% level
up to a cluster-centric radius of s . 0.7 Mpc h−1.

Furthermore, we made our input data more realistic by replacing the mock catalogues with a cluster
from an N-body/hydrodynamical simulation. We used a specific configuration of the ALMA interfer-
ometer which enabled us to carry out the spherical reconstruction method in a more realistic scenario.
The simulated cluster was neither spherically symmetric nor in hydrostatic equilibrium. Nevertheless,
we were able to reconstruct a large fraction of the galaxy cluster below a relative deviation of 15%.

Assuming spherical symmetry for galaxy clusters is in some tension to the approximated elliptical
shape of clusters and does not agree with the model of structure collapse according to the Zel’dovich
approximation (see Section 2.6.3) either. However, due to the nature of observations we need at least
one symmetry assumption if we want to infer the three-dimensional structure of the cluster.

We extended the spherical RL to spheroidal cluster geometry already in Section 5.4, but applied
it in this chapter to data for the first time. We used the same realistic cluster from the simulation
in Section 6.3, taken from Meneghetti et al. (2010b). We changed the configuration of the ALMA
interferometer, i.e. we changed the resolution and observation time, to achieve a higher S/N, which
is needed for a two-dimensional reconstruction (see the discussion in Section 5.8). Again the results
were very promising as we were able to reconstruct the lensing potential up to a radius of r ≈ 0.9× rvir
with a relative residual of less then 15%. This is clearly a leap towards the combination of observations
based on the thermal Sunyaev-Zel’dovich effect and observations based on gravitational lensing. By
retrieving the two-dimensional lensing potential, we are now capable to implement an appropriate
χ2-term directly into the reconstruction scheme explained in Section 4.1.
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7 Chapter 7

Reconstruction of the mass distribution
of clusters using X-ray emission

So far we have studied the feasibility of recovering the lensing potential of massive galaxy
clusters using the thermal Sunyaev-Zel’dovich effect. But in Section 3.2.3 we also presented a
similar method to retrieve the lensing potential of clusters by using their X-ray emission. This
idea follows the same concept developed so far: We want to combine the obtained results with
other methods to infer the lensing potential, leading us to an overall best-fitting model.

By assuming the cluster to be in hydrostatic equilibrium and an ICM that follows a poly-
tropic equation of state, we sketched a method which involves a deprojection. The overall
scheme of the algorithm is identical to the one applied in Chapter 6, but due to the different
physics of X-ray emission and its noise, we need to test the validity of our method separately.

As we have elaborated on the physics of the emission of X-rays due to thermal brems-
strahlung in Section 3.2.3, we now concentrate first on the simulation of such an observation.
We use the properties of the Chandra X-ray Observatory (Chandra) to simulate mock data.
As in the case of the thermal SZ effect we include a background noise model. We choose
the same cluster properties as in Chapter 6: The simulated galaxy cluster has a spherically
symmetric NFW density profile. We apply our reconstruction method to this mock data set,
which contains the binned surface brightness of the cluster. As it turns out, we achieve a higher
degree of accuracy in reconstructing the lensing potential due to the different noise and beam
characteristics.

Furthermore, we extend our method towards spheroidal cluster geometries as in Section 6.4.
We apply this reconstruction algorithm to the cluster based on an N-body/hydrodynamical
simulation, discussed in Section 4.4.1. This time however, we have a realistic simulation of
an observation with the Chandra X-ray Observatory from Meneghetti et al. (2010b) using the
X-ray MAp Simulator (XMAS) (presented in Gardini et al., 2004; Rasia et al., 2008). It is
realistic in that sense that it mimics all uncertainties of the Chandra satellite.

The contents of this chapter have been published in Konrad, Majer, Meyer et al. (2013); Majer,
Meyer, Konrad et al. (2013); Tchernin, Majer, Meyer et al. (2013).

7.1 Simulation of Chandra observations

We choose a spherically symmetric cluster model with an NFW density profile, in detail explained in
Section 3.1.2, and apply a noise model corresponding to observations carried out with Chandra.

If we assume the cluster to be in hydrostatic equilibrium and an ICM that follows a polytropic
equation of state, we can use Eq. (3.35) and Eq. (3.37) to calculate the density and temperature profile
of the cluster. To obtain a temperature profile which drops to zero at a large radius, we choose a cut-off
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radius for the gravitational potential of rcut = r200. The specific emissivity jX(ν) due to bremsstrahlung
is given by Eq. (3.43) in Section 3.2.3. The expectation value for the number of photons emitted in a
detector in the energy interval [E0, E1] per unit volume and time then reads

NX =

∫ E1(1+zcl)

E0(1+zcl)

d (hν)
h

jX(ν)
hν

(7.1)

with the redshift zcl of the cluster. In order to obtain an image comparable to observations, we simulate
the CCD of Chandra as follows:

• We neglect the convolution of the image with the telescope beam: Each pixel is mapped to a
unique solid-angle element. The physical area δA at the distance of the cluster spanned by one
pixel is

δA = δθ2 D2
ang, (7.2)

where Dang is the angular diameter distance to the cluster and δθ the angular scale of the cluster
mapped onto one pixel, assuming them to be perfectly quadratic.

• Any absorption of X-ray photons between the cluster and the telescope is neglected.

• The detector has a perfect quantum efficiency within a sharp energy interval. Given the photon
counts of the cluster by Eq. (7.1), a pixel centred on the radial coordinate s is expected to collect

δN (s) = δA
∫

dz NX

( √
s2 + z2

) Aeff

4πD2
lum(zcl)

(1 + zcl) (7.3)

photons per second. Note that the z-integration refers to a line-of-sight integration. Dlum is
the luminosity distance to the cluster, and Aeff is the effective detector area. Since the above
equation includes a conversion from photon energy to photon counts, only one factor of (1 + zcl)
appears.

• The limited energy resolution of the telescope is imitated by choosing appropriate energy inter-
vals in Eq. (7.1).
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Figure 7.1: Azimuthally averaged and normalised sur-
face brightness profile of a simulated galaxy cluster with
a mass of 5 × 1014 M� h−1 and a redshift of 0.2.

For the exact properties of the CCD we adopt
the characteristics of the Chandra Advanced
CCD Imaging Spectrometer (ACIS). The detec-
tion energy range of Chandra is 0.5 − 8 keV. We
arbitrarily choose

(
Eup − Elow

)
/Eres = 15 en-

ergy intervals with the lower and upper energy
boundary Elow and Eup and the energy resolu-
tion Eres. We can choose the intervals since our
method is sensitive only to the total number of
photons and no spectral information is needed.
We calculate photon numbers to the pixels by
drawing Poisson deviates with the appropriate
expectation value δN for all 15 energy intervals.
The mean energy is assigned to each photon and
the sum of energies asigned to the corresponding pixel. We include statistical noise by adding a con-
stant background such that approximately 20% (arbitrarily chosen) of the detected photons are due to
background photons with the lowest considered energy of 0.5 keV (Hasinger, 1996). The pixel width
is taken to be 0.5′′ and the exposure time is set to 3000 s.

In this way we obtain an X-ray surface brightness, which is then azimuthally averaged around the
cluster’s centre, taken at the emission peak, and binned. This profile is used as an estimate for the X-
ray surface brightness profile and supplied to the Richardson-Lucy deprojection algorithm in the next
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Figure 7.2: (a) Reconstructed and normalised gravitational potential of a simulated galaxy cluster with
a mass of 5 × 1014 M� h−1 and a redshift of 0.2. The potential was reconstructed assuming α = 1.1 and
Lmax = 0.21 Mpc h−1. (b) Upper panel: Reconstructed lensing potential ψ (red) and real lensing potential
ψtrue (blue) for this simulated cluster. Lower panel: rms deviation of ψ from ψtrue calculated from 100
different realisations of the modelled galaxy cluster. The green line represents the 15% threshold.

section. Figure 7.1 shows the normalised surface brightness profile of a simulated Chandra image for
one realisation of a galaxy cluster with a mass of 5 × 1014 M� h−1 and a redshift of 0.2. With these
characteristics and the cosmology we already used in Section 6.2 and a concentration of c = 5, this
cluster has a scale radius of approximately rs = 0.25 Mpc h−1.

7.2 Application to mock data with spherical symmetry

In the above section we explained how we generate our mock simulation using the basic characteristics
of Chandra and a NFW density profile for the cluster. In this way we obtain a data set to which we can
apply our reconstruction method. In parallel to Chapter 6, we infer the lensing potential of the galaxy
cluster by applying Eq. (3.47) and using the method explained in Section 3.2.3.

The reconstructed and normalised gravitational potential is shown in Fig. 7.2(a) together with the
true potential inferred from the simulation. Despite the statistical fluctuations of the surface brightness
profile supplied to the algorithm, the contribution of the background noise exceeds the real surface
brightness profile at large radii (i.e. s & 0.8 Mpc h−1) which can easily be corrected by estimating and
subtracting the background prior to reconstruction. The reconstructed lensing potential follows the
true potential very well up to a radius of s ≈ 0.8 Mpc h−1 as seen in Fig. 7.2(b) and referring to the
15% level. The reconstruction is carried out with α = 1.1 and Lmax = 0.21 Mpc h−1. Both values are
found with the optimisation procedure from Section 5.5. The value for α is higher compared to the
one found in Section 6, i.e. α was of the order 0.3, which reflects the different noise characteristics of
the X-ray emission: In comparison to the thermal SZ effect we now have fluctuations on small scales
which requires more regularisation.

As in Chapter 6 we calculate the uncertainty of our reconstructed lensing potentials based on dif-
ferent realisations of the background noise. We create 100 samples of the background noise and
reconstruct each data set separately. For each result of the reconstruction the mean squared deviation
from the true potential is calculated and then averaged over the number of bootstraps, which gives
the rms deviation from Eq. (6.8). The rms is shown in the lower panel of Fig. 7.2(b). We choose the
parameters α and Lmax for each data set separately by applying the method explained in Section 5.5.
However, we restrict Lmax to the range 0.06 ≤ Lmax ≤ 0.25 Mpc h−1. This range is guided by the points
mentioned in Section 5.5 and further reflects the bin size and roughly 20% of the total field size. The
relative rms from the true lensing potential remains below 15% for radii smaller than s ≈ 0.8 Mpc h−1.
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Figure 7.3: (a) Masked and normalised surface brightness of the g1 cluster in the xy-plane. The masked
areas are filled with the mean value of their neighbouring pixels. The FOV has an angular diameter of
16′. with a resolution of 512 × 512 pixels. (b) Corresponding image to (a) but on a lower resolution of
128 × 128 pixels. In both figures the white circle indicates the virial radius.

7.3 Application to a hydrodynamical simulation assuming
spheroidal symmetry

We now use again the g1 cluster from the hydrodynamical simulation from Section 4.4.1. For this
simulation we have the same X-ray observation as in Meneghetti et al. (2010b) (see there and the
references therein for further details). The images were created with a constant response over the
whole detector using the properties of the ACIS-S3 CCD. The images have a field of view of 16′ side
length which corresponds to 2.97 Mpc h−1 in the given cosmology and a redshift of z = 0.297. The
exposure time is 500 ks using the soft band [0.7 − 2] keV. In this image regions with dense cold blobs,
which are related to the cores of structures that merged previously (Meneghetti et al., 2010b) with this
cluster, are masked. The masks are filled with the mean value of the pixels which surround the mask.
The resulting image of the g1 cluster is shown in Fig. 7.3(b). For our spheroidal deprojection method,
which is computationally rather expensive (the order of several hours for 128 × 128 pixels), we may
only reconstruct an image of up to 128 × 128 pixels rather than the full resolution of 512 × 512 from
Meneghetti et al. (2010b). We therefore lower the resolution of Fig. 7.3(a) to the above size, shown in
Fig. 7.3(b), which corresponds to an angular resolution of 7.5′′.

This image is supplied to our deprojection algorithm explained in Section 5.4. The inclination
angle ι is inferred from Meneghetti et al. (2010b) to be ι ≈ 84◦. We determine the strength of regular-
isation as explained in Section 5.5, but we set the value for to Lmax = 1.2′, due to the computational
time issue mentioned above. Like in Section 6.4 we choose a quadratically increasing smoothing scale
as it fits better to the S/N profile. In this way we constrain the best-fitting strength of regularisation
to be α = 0.1. This value is again rather small compared to the one needed in Section 7.2 due to the
fact that the observation has such a high S/N because of the long integration time. With the estimated
adiabatic index of γ = 1.22± 0.02 from the data presented in Meneghetti et al. (2010b) we can further
set the exponent from Eq. (3.47) to η̂ = 9.55.

Given the above parameters, we can carry out the reconstruction: First we apply our Richardson-
Lucy deprojection for spheroidal cluster geometry to infer the three-dimensional emissivity. Then, we
use Eq. (3.47) and the exponent η̂ to proceed to the three-dimensional gravitational potential. This is
finally projected along the line-of-sight to yield a scaled estimate for the lensing potential. Like in
Section 6 we can compare our result to the lensing potential inferred from the surface-mass density
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Figure 7.4: (a) Reconstructed lensing potential from the specific intensity change shown in Fig. 6.6. The
white circle corresponds to the virial radius and the green contour depicts a 15% deviation from the real
underlying lensing potential. (b) True lensing potential as obtained from the hydrodynamical simulation
together with the virial radius (white line). (c) Modulus of the relative residual from (a) and (b).

map. Both the reconstruction and the real lensing potential are shown in Fig. 7.4. Again we see the
elongated shape of the real lensing potential in Fig. 7.4(b), but this time the virial radius (indicated by
the white circle) covers the whole FOV as the angular diameter of the image is now only 16′ across
which corresponds to the FOV of Chandra. In Fig. 7.4(a) we show our reconstructed lensing potential
together with the virial radius and a 15%-contour (green line) derived from the relative residual in
Fig. 7.4(c). By comparing Fig. 7.4(a) with (b) we can see that we reproduce the elliptical shape of
the lensing potential reliably. In the residual from Fig. 7.4(c) we further see that the reconstruction is
below the 15% level for s ≈ 0.8 × rvir. Like in Section 6.4 we have larger deviations from the true
lensing potential for the boundaries of our FOV, again due to the principle of our deprojection method
as we are limited to the incircle.

Given these results we can say that our reconstruction algorithm based on a Richardson-Lucy de-
projection method works reliably also for a spheroidal cluster geometry. We can further state that
the assumption of hydrostatic equilibrium and a polytropic equation of state does not contradict the
measurement in the case of this simulated cluster. However, in comparison to the one-dimensional
reconstruction assuming spherical symmetry from Section 7.3 we need a stronger signal as we do not
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increase the S/N of the supplied data by a further averaging process. This issue was already discussed
in Section 5.8. Furthermore, the knowledge of the inclination angle ι is crucial for the reconstruction.
For this particular input parameter our reconstruction has to rely on other techniques to provide this
angle.

7.4 Summary and conclusion

In this Chapter we studied how our deprojection method performs with realistically simulated observa-
tions of X-ray emission due to thermal bremsstrahlung. In Chapter 5 we outlined our non-parametric
reconstruction method for the projected gravitational potential of galaxy clusters in general. In Chap-
ter 6 we applied this algorithm to observations of the thermal SZ effect. Like in Chapter 6, we first
assumed hydrostatic equilibrium and spherical symmetry to create a mock data set of a galaxy cluster
with an NFW density profile. To this mock data set, which included background noise as well, we
applied our reconstruction method showing how well the algorithm performs under realistic condi-
tions. Furthermore, we determined the rms deviation from 100 noise realisations which gave us an
estimate for the errors of our cluster reconstruction algorithm. It was calculated to be at most 15% for
s ≈ 0.8 × rvir.

Even though our simulated galaxy cluster had a rather smooth surface brightness profile, this tech-
nique can be applied without restrictions to less well-behaved observational data, e.g. strongly peaked
emission in the cluster centre due to cooling effects. In such cases, the centre could be masked and
then passed to the Richardson-Lucy algorithm. The results would still be reliable thanks to the local
character of the deprojection scheme.

We applied the spheroidal cluster deprojection method explained in Section 5.4 to a cluster from
the N-body/hydro-dynamical simulation from Section 4.4.1. For this simulation we used an imitated
Chandra observation from Meneghetti et al. (2010b) using the XMAS code (see Gardini et al., 2004;
Rasia et al., 2008). We re-binned the image to obtain a reasonable computational time for our recon-
struction method. We were able to reconstruct the lensing potential up to a radius of roughly 0.8× rvir
with a relative residual from the true lensing potential of less than 15%.

However, we want to summarise the major differences between the data sets used in this section and
the ones from Chapter 6 for the thermal SZ effect:

(1) The only difference in our scheme regarding the physical processes – emission versus inverse
Compton scattering – is the exponent η̂ which corresponds to η for the thermal SZ effect in
Eq. (3.41) and Eq. (3.47), which is related to the adiabatic index γ.

(2) The used telescope is different and thus has different characteristics, most importantly a different
beam size and shape.

(3) The signal is a discrete set of detected photons, whereas for the thermal SZ effect the signal was
a continuous distortion of the CMB.

(4) The noise of the X-ray emission is shot-noise, thus Poissonian. The noise in thermal SZ mea-
surements continuous due to the specific intensity change of the CMB.

The findings of Chapter 6 and 7 clearly show that our reconstruction method is capable to recover
the lensing potential of galaxy clusters both for the thermal SZ effect and for the X-ray emission of the
ICM. Even though we assume hydrostatic equilibrium and a polytropic equation of state, we obtain
reasonable results for a massive galaxy cluster which does not obey these assumptions per se. These
methods add a further term to the χ2-function of the mass reconstruction code SaWLens explained in
Section 4.1.
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8 Chapter 8

Application to RXJ1347-1145

In Chapter 6 we applied our reconstruction method to a spherically symmetric galaxy cluster
and to a non-spherically symmetric galaxy cluster from a hydrodynamical simulation using
their thermal SZ signals. Both applications showed promising results. In this Chapter we
utilise our reconstruction method to infer the lensing potential of the massive galaxy cluster
RXJ1347-1145 (hereafter RXJ1347). The observation was made with Bolocam and provided
by Sayers et al. (2013). This cluster is one of the most luminous ones so far detected in the X-
ray band. For this cluster we also have a lensing-based reconstruction of the mass distribution
at hand (Meneghetti et al., 2014), as part of the CLASH sample, to directly compare our results
with.

First we apply the spherical reconstruction method with the deprojection from Section 5.3
and then the spheroidal scheme from Section 5.4.

8.1 RXJ1347

The massive galaxy cluster RXJ1347 is one of the most luminous clusters in the X-ray band with a
X-ray luminosity of 6.0 × 1045 erg s−1 in the range of 2 − 10 keV and was first discovered within
the ROSAT all-sky survey (Voges et al., 1999). After that numerous other observations were carried
out, e.g. with Chandra (Allen et al., 2002, 2008) and with XMM Newton (Gitti & Schindler, 2004;
Snowden et al., 2008). Optical observations revealed two giant elliptical galaxies, coinciding with
the peaks of the X-ray emission (Cohen & Kneib, 2002; Bradač et al., 2008), which suggests that the
cluster has undergone a major merger (Gitti et al., 2007). Also a radio mini halo was reported (Gitti
et al., 2007). Together with lensing analyses (Bradač et al., 2008) and SZ observations (Carlstrom
et al., 2002; Bonamente et al., 2008; Mason et al., 2010; Plagge et al., 2013) this cluster is best suited
for a multi-wavelength approach. The mass of RXJ1347 within the virial radius was inferrerd, using
the assumption of spherical symmetry and hydrostatic equilibrium, by Schmidt & Allen (2007) to be
M ≈ 2.3 × 1015 M� h−1 at a redshift of z = 0.451. They calculated a concentration of c = 4.791 with
a scale radius rs = 0.54 Mpc for the best-fitting NFW profile. According to Medezinski et al. (2010)
the virial radius is rvir = 1.6 Mpc h−1. By a combination of the thermal SZ effect and X-ray emission
Sereno et al. (2006) inferred that the cluster may have a prolate or oblate shape. For the prolate case,
which we will assume here, Sereno et al. (2006) find an estimated inclination angle ι = 35◦ ± 12◦.
These findings are confirmed by Chakrabarty et al. (2008) who determine RXJ1347 to be a triaxial
and prolate cluster with ι < 47◦.

The SZ observation was kindly provided by Sayers et al. (2013) and obtained with Bolocam (Glenn
et al., 1998). It is part of the Bolocam X-Ray/SZ Galaxy Cluster Sample (Sayers et al., 2013). The
observation covers a FOV of 10′ × 10′ and the virial radius of this cluster has an extent of roughly
6.6′. The cluster was observed for 15.5 hours with the band centre at 140 GHz, achieving a maximal
signal-to-noise ratio of S/N = 36.6. The data are shown in Fig. 8.1.
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A potential problem occurs by applying our method to Bolocam data: The beam of Bolocam has
roughly a size of 58′′ (FWHM). In such a case the assumption of a narrow beam compared to the
resolution, like we stated in Section 3.2.2, is not applicable in a strict sense. By applying our method
we would obtain the beam-convolved effective pressure, which then is transformed to the gravitational
potential. One would expect the result to be flatter due to this convolution. However, for simplicity
we assume the beam to be narrow.
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Figure 8.1: Thermal SZ signal of RXJ1347 at 140 GHz
as obtained with Bolocam (Sayers et al., 2013). The
FOV has a size of 10′ × 10′ with an exposure time of
15.5 hours and maximal S/N = 36.6.

One last piece of information is still missing
before we can apply our reconstruction method:
It is the polytropic index γ, which is needed
to calculate the exponent η = 1/(γ − 1) from
Eq. (3.41). Bonamente et al. (2012) used thermal
SZ observations with the Sunyaev-Zel’dovich Ar-
ray as part of the Combined Array for Research
in Millimeter-wave Astronomy (CARMA) to-
gether with Chandra X-ray observations to esti-
mate a mean pressure profile for a large number
of relaxed clusters – one of them is RXJ1347.
The pressure profile is computed using the model
of Bulbul et al. (2010). This analytic formula
is based on spherical symmetry and a polytropic
gas stratification with a single index linking the
gas temperature T to the electron density ne with
the polytropic index n,

ne ∝ T n . (8.1)

Bulbul et al. (2010) use a generalised NFW profile, see Section 3.1.2, for the density of the halo, which
yields for the gas pressure

Pe(r) = Pe0

[
1

β − 2
(1 + r/rs)β−2 − 1
r/rs(1 + r/rs)β−2

]n+1

, (8.2)

with the four fitting parameters Pe0, n, rs, and β.
However, Bonamente et al. (2012) reduce the density profile to the original NFW profile (i.e. β = 2)

and use n = 3.5, derived as the median of a fit. From Eqs. (3.35) and (3.37) we obtain γ = 1.28.

8.2 Reconstruction assuming spherical symmetry

The data from Fig. 8.1 are binned and averaged in annuli to obtain a radial profile, see Fig. 8.2(a).
Given the scatter in each bin we apply the same bootstrapping method as in Section 5.6 to create further
data sets by re-sampling the input data with a Gaussian distribution. With this method we obtain 100
realisations of the signal, which are all reconstructed with our algorithm assuming spherical symmetry.
The strength of regularisation α and the scale of the floating default kernel Lmax are calculated for each
realisation individually by applying the optimal fit criterion from Section 5.5. For the original data set
we report the values α = 0.9 and Lmax = 1.3′. From all 100 reconstructions we calculate the standard
deviation and assign this number to the original reconstruction as the error.

From Meneghetti et al. (2014) we have the convergence map reconstructed using the SaWLens code
(see Section 4.1) with strong and weak-lensing measurements. This convergence map is used to in-
fer the lensing potential on the same angular scale as the Bolocam observation by solving Poisson’s
equation numerically. The comparison of our reconstruction using thermal SZ data (blue) and the
result using gravitational lensing (red) is shown in the upper panel of Fig. 8.2(b). Our reconstruction
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Figure 8.2: (a) Averaged and normalised thermal SZ signal obtained from Fig. 8.1. The errors correspond
to the standard deviation in each annulus. (b) Upper panel: Normalised reconstruction of the lensing
potential from the profile in (a) together with the lensing potential from Meneghetti et al. (2014). Lower
panel: Modulus of the relative residual of both curves in the upper panel. The green line marks a 15%
threshold.

is fully compatible within its uncertainties to the azimuthally averaged profile of the reconstruction
using gravitational lensing. However, the assigned errors are most likely overestimating the real un-
certainties: The averaged bins contain not only information on the noise in each annulus but also a
bias, which is introduced by the non-sphericity of the cluster, as RXJ1347 is most likely not spheri-
cally symmetric (Sereno et al., 2006; Chakrabarty et al., 2008). This further implies that the spheroidal
reconstruction, which we apply in the next section, should yield more realistic results.

The lower panel of Fig. 8.2(b) shows the modulus of the relative residual. For the whole angular
range out to s = 4′ the deviation is below 15%.

8.3 Reconstruction assuming spheroidal symmetry

As in Section 6 we apply our reconstruction algorithm for spheroidal geometry to the Bolocam data
of RXJ1347. But before we go into a detailed analysis of the reconstruction, we explain how an error
estimatimation is obtained for this reconstruction.

8.3.1 Error estimation

We shortly discuss on the errors we expect for our spheroidal reconstruction method as the bootstrap
method used in the preceding section is not applicable in this case due to the long computing time of
the code.

Denoting the observational data with g(s) and the deprojected quantity with f (r) corresponding to
Section 5, we can make the following considerations: Starting with the general iteration scheme from
Eq. (5.7) and assuming the observational noise of Bolocam to be constant over the FOV, we write

f̃i+1(r) = f̃i(r)
∫

ds
g(s)
g̃i(s)

K(s|r)

= f̃i(r)
∫

ds
ḡ(s) + δg

g̃i(s)
K(s|r)

= f̃i(r)
(∫

ds
ḡ(s)
g̃i(s)

K(s|r) +
δg

ḡ(s)

∫
ds

ḡ(s)
g̃i(s)

K(s|r)
)
, (8.3)
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assuming that the data splits into a noise-free part ḡ(s) and a noise contribution δg such that g(s) =

ḡ(s) +δg. We further assume for simplicity – and as it yields reasonable results – the relative deviation
δg/ḡ(s) to be independent of s. The integrals in Eq. (8.3) approaches unity as our algorithm converges
to the mean solution ḡ, allowing us to write

f̃i+1(r) = f̃i(r)
(∫

ds
ḡ(s)
g̃i(s)

K(s|r) +
δg

ḡ(s)

)
= f̃i(r)

(
1 +

δg
ḡ(s)

)
≡ ¯̃fi+1(r) + δ fi+1 (8.4)

and to identify the error on the deprojected quantity f̃i+1(r). Dropping the indices, thus assuming our
algorithm has converged, the relative error of g(s) and f (r) should be equal,

δ f
f (r)

=
δg

g(s)
. (8.5)

Our algorithm then proceeds to the gravitational potential ϕ(r) with the exponent η from Eq. (3.41),

f (r) + δ f =
[
ϕ(r) + δϕ

]η
= ϕη(r)

[
1 +

δϕ

ϕ(r)

]η
≈ ϕη(r)

[
1 + η

δϕ

ϕ(r)

]
. (8.6)

The last approximation holds if we neglect higher order terms in δϕ. Again, we have a proportionality
between the relative deviations,

δ f
f (r)

= η
δϕ

ϕ(r)
. (8.7)

The final step in our reconstruction scheme is the line-of-sight projection of the gravitational potential
to infer the lensing potential ψ(s). We write

ψ(s) + δψ =

∫
dr K(s|r)

[
ϕ(r) + δϕ

]
=

∫
dr K(s|r)ϕ(r) +

∫
dr K(s|r) δϕ , (8.8)

from which we can conclude that

δψ =

∫
dr K(s|r) δϕ

=
1
η

∫
dr K(s|r)ϕ(r)

δ f
f (r)

=
1
η

δg
g(s)

∫
dr K(s|r)ϕ(r)

=
1
η

δg
g(s)

ψ(s) . (8.9)

The relative error δψ/ψ(s) is thus the relative error of the data g(s) divided by the exponent η. This is in
agreement with the statement we made in Sections 3.2.2 and 3.2.3: As η is a large number, fluctuations
in the data will be smoothed considerably once the algorithm proceeds to the lensing potential.

From Sayers et al. (2013) we have received 1000 independent noise realisations of the Bolocam field
considered here (see Sayers et al., 2011, for further details). With these we can estimate the relative
errors of the data and take the average over the entire FOV. With this constant, we apply Eq. (8.9) to
infer the errors of our reconstructed lensing potential.
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Figure 8.3: (a) Reconstructed lensing potential ψ of RXJ1347 using the signal of thermal SZ effect
shown in Fig. 8.1. (b) Lensing potential ψ reconstructed with weak- and strong-lensing information using
SaWLens (Meneghetti et al., 2014). (c) Modulus of the relative residual of (a) from (b). In all three panels
the green line indicates the section of Fig. 8.4.

8.3.2 Reconstruction
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Figure 8.4: Upper panel: Profile of the reconstructed
and normalised lensing potential. The position was indi-
cated by a green line in Fig. 8.3. Blue marks our recon-
struction with the errors obtained from Eq. (8.9). Red
indicates the lensing potential reconstructed with weak-
and strong-lensing constraints. Lower panel: Modulus
of the relative residual inferred from the upper panel.
The green dotted line marks a 20% level.

We choose a quadratically increasing smoothing
scale with Lmax = 1′ as we did in Sections 6.4
and 7.3 and the best-fitting strength of regulari-
sation is α = 0.315 (see Section 5.5 for details).
The convergence map from Meneghetti et al.
(2014) was transformed to the lensing potential
by solving Poisson’s equation by means of a fast
Fourier method and zero-padding (adding zeros
around the image before Fourier transformation)
to account for the periodic boundary condition
of this method. Once again exploiting our free-
dom to choose the normalisation and the back-
ground level, we normalise both lensing poten-
tials. We show our reconstruction in Fig. 8.3(a),
the lensing potential obtained from the lensing
reconstruction in Fig. 8.3(b), and the modulus of
the residual in Fig. 8.3(c). In all three figures the
green line indicates the section of Fig. 8.4, which
we will discuss below. Considering Fig. 8.3 we
conclude the following:

• The overall agreement of both reconstructions is very satisfactory. Even for areas with a low
S/N, i.e. for radii |s| & 3′, we achieve good results.

• Due to the assumption of spheroidal geometry we have to find a symmetry axis in the lensing
potential which is not visible in this extent in the reconstruction using lensing constraints.

• The lensing potential in Fig. 8.3(b) falls off more slowly in the outskirts of the cluster.

• The modulus of the residual in Fig. 8.3(c) shows deviations within 20% for the central region of
the cluster. The deviations in the outer parts of the cluster increase steeply towards the outskirts
of the cluster.

• The deviations in the corners of the FOV are mainly due to the rotation in the plane of the sky
as explained in Section 6.
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In Fig. 8.3 we indicate with a green line a specific section through our reconstruction, for which we
show the corresponding profile in Fig. 8.4. A section through the cluster’s centre seems reasonable
due to the highest S/N there. In this view we can further include the errors obtained with Eq. (8.9).
The shape of the reconstructed lensing potential follows the one of the lensing potential obtained
with SaWLens for an angular radius of −3′ . s . 3′ and the obtained values are within one standard
deviation. The modulus of the residual in the lower panel of Fig. 8.4 is below 20% for the same region.
As seen in the complete view of Fig. 8.3(c) the outskirts of the cluster are over-estimated.

8.4 Summary and conclusion

We applied our reconstruction method based on both spherical and spheroidal geometry to the massive
galaxy cluster RXJ1347. We used an observation of the thermal SZ effect obtained with Bolocam
(Sayers et al., 2013). Our results were compared to a strong- and weak-lensing reconstruction by
Meneghetti et al. (2014) using the SaWLens code. The adiabatic index was taken as γ = 1.28 as
inferred using the data presented in Bonamente et al. (2012) who assumed the pressure profile of
Bulbul et al. (2010).

The spherical reconstruction showed a very good agreement between the different reconstruction
methods. Errors were assigned to our reconstruction by using a bootstrapping method. However, the
inferred errors probably overestimate the real uncertainties due to the fact that we azimuthally average
over the signal fluctuations and over the obvious elliptical shape of the cluster by assuming spherical
symmetry. But the modulus of the relative residual from the lensing reconstruction was below 15%
for a radius of s . 4′.

The spheroidal reconstruction algorithm was applied directly to the Bolocam data assuming an in-
clination angle of ι = 35◦ (Sereno et al., 2006). The S/N, peaking in the centre at S/N = 36.6,
dropped towards the corners of the FOV allowing us only to reliably reconstruct an angular region of
−3′ . s . 3′. But the overall shape of the inferred lensing potential corresponded to the reconstruc-
tion using SaWLens accept for the assumed symmetry axis. We further explained how measurement
uncertainties propagate through our algorithm to first order. This information was used to calculate
a profile of both reconstructions along the y-axis of the FOV’s centre with the corresponding errors.
It revealed a very good agreement in the cluster centre, where our reconstruction agreed within one
sigma with the one obtained from lensing information.

But by applying our reconstruction method to RXJ1347, we also saw the current limits of this
method: The lensing potential obtained from weak- and strong-lensing constraints does not obey any
a-priori symmetry in the plane of the sky. Thus our algorithm was not capable of recovering features
prominent in the lensing reconstruction which deviated from the assumed spheroidal geometry. An-
other source of uncertainty was introduced with the polytropic index and the inclination angle as both
have to be inferred with other techniques and both are needed a-priori for the reconstruction. However,
once these parameters are known for a specific cluster and the S/N is large enough, our reconstruction
method yields reliable and promising results for future cluster analyses.

As explained above, we have problems to infer the lensing potential in the outer parts of the FOV
due to the rotation in the plane of the sky. The reliability of our method is further reduced in these
regions because of the lower S/N there. But once our reconstructed lensing potential is supplied to
the SaWLens code by an appropriate χ2-function, these parts could be excluded. Our reconstructed
lensing potential from thermal SZ measurements then serves as a further and independent constraint
on the convergence.
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9 Chapter 9

Conclusion and outlook

In this work we presented three different ways to infer the two-dimensional line-of-sight projection of
the gravitational potential – which is proportional to the lensing potential – of massive galaxy clus-
ters. This included observations of gravitational lensing, of the thermal Sunyaev-Zel’dovich effect and
finally of the X-ray emission due to thermal bremsstrahlung. All three observables can be brought to-
gether on the common ground of the lensing potential with the overall effort to extend common lensing
reconstruction methods based on gravitational lensing. Such a multi-wavelength approach combines
all available cluster observables in one consistent joint reconstruction, and well-tested strong- and
weak-lensing reconstruction codes are expected produce more reliable results. As it is straightforward
to proceed from the lensing potential to the convergence also estimates of cluster mass distributions
will become more accurate, which will in turn tighten the bounds on the cosmological parameters Ωm
and σ8. It is also important to answer the questions raised, for instance the claimed universality of
the NFW density profile or the problem of over-concentrated halos, by numerical simulations and to
understand how the discrepancies between simulations and observations arise.

Reconstructions using information from gravitational lensing are widely used to infer the mass dis-
tributions of galaxy clusters. This method relies on constraints from weak and strong lensing as both
give an independent estimate for the lensing potential of the cluster. However, to know the uncer-
tainties of such a reconstruction method is crucial if one wishes to assess their reliability and if one
wants to constrain cosmological parameters from it. Conventional and computationally very expen-
sive methods rely on a bootstrapping method where the input ellipticities get re-sampled to estimate
the statistical errors. To avoid this time-consuming procedure, we derived an analytic error estima-
tion for reconstructions using weak-lensing information. In doing this we followed the reconstruction
method implemented in SaWLens (Merten, 2010). This novel expression does not need any data re-
sampling but only uses quantities already calculated by the reconstruction code itself. We confirmed
that our analytic method is able to calculate the occurring errors compatible to the ones obtained with
the common bootstrapping approach.

However, for our ansatz to work reliably we were in the need to fix one specific parameter which has
to be inferred somehow. But, if the lensing reconstruction code has fully converged and is independent
of any starting assumption (i.e. a vanishing convergence), the missing parameter was shown to tend
towards unity. With these findings, this work is a step towards a fully analytic error estimation for
reconstruction codes which use weak-lensing information and further has shown some general con-
siderations, which may be also be applicable to an analytic error estimation regarding strong-lensing
constraints.

The used non-parametric reconstruction code SaWLens may be augmented with further terms by
means of additional χ2-contributions. In the aspect of exploiting this possibility by adding further
terms to the objective function, we established a relation between the lensing potential and observa-
tions of both the thermal SZ effect and X-ray emission. This relation was based on the assumption
of hydrostatic equilibrium and an ICM with a polytropic equation of state and further involved a de-
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projection of the observables. This deprojection was carried out by means of the Richardson-Lucy
deprojection algorithm to infer the three-dimensional structure of the relevant observable under given
symmetry assumptions. We started with spherical symmetry from where we extended the method to
spheroidal geometry, which is more suitable for real galaxy clusters.

An alternative deprojection method is given by the so-called onion peeling. We compared the per-
formance of our method in spherical symmetry to this broadly used method. This was done with the
massive galaxy cluster Abell 1689 to which the onion peeling was applied by Eckert et al. (2012)
using the X-ray surface brightness obtained with ROSAT. A comparison of our reconstructed emis-
sivity and the one from Eckert et al. (2013) revealed that both methods agreed within their errors.
Reassured by these findings, we tested our complete reconstruction method to infer the lensing po-
tential from the given observables. This was done in spherical and spheroidal symmetry, respectively.
We carried out a series of tests to estimate the reliability of our reconstruction, for which we started
with thermal SZ measurements of a mock galaxy cluster. A realistic observation was imitated using
the specifications of the ALMA interferometer with an elaborated noise model. To account for de-
viations of the above assumptions, we further applied our method to a galaxy cluster from a realistic
N-body/hydrodynamical simulation. This cluster was neither set to be in hydrostatic equilibrium nor
was the included ICM forced to follow a polytropic relation. Additionally, it was triaxialy shaped.
Despite these possible deviations from our assumptions, we were also able to reconstruct the radial
profile of the lensing potential very accurately, as we did before with our mock galaxy cluster.

Another observable of galaxy clusters is the X-ray emission from thermal bremsstrahlung. This
signal itself is different compared to the thermal SZ effect: X-ray emission is of statistical nature
compared to the continuous signal of the thermal SZ effect. Further differences between the data sets
exist in the telescope beams as well as in their noise properties. Even though the physical processes
behind the X-ray emission and the thermal SZ effect are different, we could formulate a similar method
to infer the lensing potential from this observable. We applied the spherical reconstruction method to
the same mock galaxy cluster as before, but now observations were imitated with the properties of
the Chandra satellite. Once again we found very promising results regarding the reconstructed lensing
potential.

An oblate or prolate cluster shape is certainly a much better assumption for most observed galaxy
clusters, and the presented spheroidal reconstruction method is clearly more adequate compared to
the spherical deprojection in such a case. We therefore applied our spheroidal reconstruction method
to the galaxy cluster mentioned above by assuming it to be observed with ALMA. We further used
a realistic simulation from Rasia et al. (2006) imitating the Chandra telescope for this cluster. In the
thermal SZ case as well as in the case of X-ray emission, we achieved comparable results in retrieving
the lensing potential. The reconstructions for these – more realistic cases – correctly inferred the
lensing potential for a large fraction of the virial radius. This application to both observables clearly
states that our method works reliably for both observables, despite the different physics.

As a proof of our concept and due to the fact that so far our efforts were confined to situations where
we exactly knew the lensing potential, we reconstructed an actual observation. We applied our recon-
struction method to the galaxy cluster RXJ1347 for which we used data obtained with Bolocam which
was kindly provided by Sayers et al. (2013). We applied both reconstruction methods – spherical and
spheroidal – to the thermal SZ signal of this cluster to reconstruct the lensing potential and directly
compare our results to the strong- and weak-lensing reconstruction of Meneghetti et al. (2014) as part
of the CLASH sample.

The spherical reconstruction showed a good correspondence between both data sets, though the
errors were overestimated due to the azimuthal average. This issue was resolved by applying the
spheroidal deprojection method. In this case the reconstruction showed a promising agreement for the
inner parts of the cluster where the S/N was high enough.

But this application to real data also showed the current limits of our approach: Besides the fact
that we need an observation with a high S/N, we also need to know the inclination angle of the
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cluster towards the line-of-sight. The latter issue is not straightforward to solve as estimates of this
inclination angle are difficult to obtain and the errors usually quite large. Attempts from combined
X-ray and thermal SZ observations have been made for example by Sereno et al. (2006). Moreover,
for small inclination angles – this equals clusters which are nearly aligned with the line-of-sight – our
deprojection method faces problems as the distinction between a spherical and a spheroidal cluster
geometry vanishes. Current limits of the spatial resolution of thermal SZ observations further pose
problems as we did not account for any convolution of the signal and the telescope’s beam.

We also state here once more that we have to rely at least on spheroidal symmetry of the cluster and
an ICM that is in hydrostatic equilibrium. We are further in the need of a polytropic equation of state
for the ICM which obviously limits our reconstruction method to a certain class of clusters: relaxed
clusters. Our method is certainly not applicable to merging clusters or clusters which are disturbed
otherwise. Even though the strong- and weak-lensing reconstruction code would yield very good
results on such a cluster, a combined χ2-function which includes our reconstruction from thermal SZ
effect or X-ray emission would bias the inferred mass distribution of the cluster.

However, all found results are reassuring and clearly state that our reconstruction method is ca-
pable to give better constraints to galaxy clusters for real observations once our assumptions for a
specific cluster are justified. The findings of this work additionally mark the beginning of a novel
multi-wavelength reconstruction method. It involves X-ray emission, the thermal SZ effect, galaxy
kinematics (see Sarli et al., 2013) and lensing information on the common ground of the lensing po-
tential. First promising attempts on this were made by Huber (2013), using a method based on the
χ2-minimisation of Merten (2010): In combining weak- and strong-lensing information with the re-
sults from our X-ray and thermal SZ reconstruction, Huber (2013) was capable to retrieve the lensing
potential from a simulated galaxy cluster more accurately than using lensing information alone. This
accuracy can even be improved by assigning different statistical weights to the X-ray and thermal SZ
data and exploiting the S/N of the given observable. Additionally, the issue of the unknown inclination
angle towards the line-of-sight might be resolvable to some degree: Puchwein (2007) reported that an
implementation based on an additionally measured temperature profile of the cluster might be feasi-
ble. In this way the reprojected deprojection of the observable could be compared to the additional
temperature profile and a best-fitting deprojection could be found in dependence of the inclination
angle. Such an approach may also be included in our formalism.

Finally, the most important point to be carried out in the future is the application to further galaxy
clusters using both – thermal SZ effect and X-ray emission – observables. Although we applied the
deprojection method to Abell 1689 using ROSAT data, a full analysis including thermal SZ measure-
ments and a full strong- and weak-lensing analysis is missing so far. Even more, an application of the
spheroidal deprojection method is yet to be carried out for an X-ray observation.

As we worked out, ALMA certainly opens the night sky to a large number of galaxy clusters yet to
be detected in the microwave band. However, even with the South Pole Telescope our analysis would
be applicable if the S/N was high enough and the issue of beam-convolution was solved. Concern-
ing the X-ray emission of clusters, a multitude of high-fidelity observations is already available, for
example from Chandra.

We can therefore state that by combining the work presented here with the results from Sarli et al.
(2013) on galaxy kinematics, Merten (2010) on gravitational lensing and certainly the efforts of Huber
(2013), we are at the edge of completing a reconstruction scheme including all these different data
sets. Due to the independent observables it will be capable of reaching an unprecedented accuracy in
determining the mass distribution of galaxy clusters.

85



86



Bibliography

Allen, S. W., Rapetti, D. A., Schmidt, R. W., et al. (2008): Improved constraints on dark energy from
Chandra X-ray observations of the largest relaxed galaxy clusters. MNRAS, 383, 879. [link]

Allen, S. W., Schmidt, R. W., & Fabian, A. C. (2002): Chandra observations of RX J1347.5-1145: the
distribution of mass in the most X-ray-luminous galaxy cluster known. MNRAS, 335, 256. [link]

Allgood, B., Flores, R. A., Primack, J. R., et al. (2006): The shape of dark matter haloes: depen-
dence on mass, redshift, radius and formation. MNRAS, 367, 1781. [link]

Andersson, K. E. & Madejski, G. M. (2004): Complex Structure of Galaxy Cluster A1689: Evidence
for a Merger from X-Ray Data? ApJ, 607, 190. [link]

Angrick, C. (2011): On the derivation of an X-ray temperature function without reference to mass and
the prediction of weak-lensing number counts from the statistics of Gaussian random fields. Ph.D.
thesis, Heidelberg, Univ., Diss., 2011

Bartelmann, M. (2001): Lensing Sunyaev-Zel’dovich clusters. A&A, 370, 754. [link]

Bartelmann, M. (2004): Cosmology. Lecture

Bartelmann, M. (2010): TOPICAL REVIEW Gravitational lensing. Classical and Quantum Gravity,
27 (23), 233001. [link]

Bartelmann, M., Theoretical Astrophysics: An Introduction (Wiley-VCH, 2013), 1 edition

Bartelmann, M., Huss, A., Colberg, J. M., et al. (1998): Arc statistics with realistic cluster potentials.
IV. Clusters in different cosmologies. A&A, 330, 1

Bartelmann, M., Narayan, R., Seitz, S., et al. (1996): Maximum-likelihood Cluster Reconstruction.
ApJL, 464, L115+

Bartelmann, M. & Schneider, P. (2001): Weak gravitational lensing. Phys. Rep., 340, 291. [link]

Basu, K., Zhang, Y.-Y., Sommer, M. W., et al. (2010): Non-parametric modeling of the intra-cluster
gas using APEX-SZ bolometer imaging data. A&A, 519, A29. [link]

Beckwith, S. V. W., Stiavelli, M., Koekemoer, A. M., et al. (2006): The Hubble Ultra Deep Field.
AJ, 132, 1729. [link]

Binney, J. & Tremaine, S., Galactic Dynamics (Princeton Series in Astrophysics) (Princeton University
Press, 1988)

Binney, J. J., Davies, R. L., & Illingworth, G. D. (1990): Velocity mapping and models of the elliptical
galaxies NGC 720, NGC 1052, and NGC 4697. ApJ, 361, 78. [link]

Birkinshaw, M. (1999): The Sunyaev-Zel’dovich effect. Phys. Rep., 310, 97. [link]

Bonamente, M., Hasler, N., Bulbul, E., et al. (2012): Comparison of pressure profiles of massive
relaxed galaxy clusters using the Sunyaev-Zel’dovich and x-ray data. New Journal of Physics,
14 (2), 025010. [link]

87

http://dx.doi.org/10.1111/j.1365-2966.2007.12610.x
http://dx.doi.org/10.1046/j.1365-8711.2002.05554.x
http://dx.doi.org/10.1111/j.1365-2966.2006.10094.x
http://dx.doi.org/10.1086/383258
http://dx.doi.org/10.1051/0004-6361:20010322
http://dx.doi.org/10.1088/0264-9381/27/23/233001
http://dx.doi.org/10.1016/S0370-1573(00)00082-X
http://dx.doi.org/10.1051/0004-6361/200913334
http://dx.doi.org/10.1086/507302
http://dx.doi.org/10.1086/169169
http://dx.doi.org/10.1016/S0370-1573(98)00080-5
http://dx.doi.org/10.1088/1367-2630/14/2/025010


BIBLIOGRAPHY

Bonamente, M., Joy, M., LaRoque, S. J., et al. (2008): Scaling Relations from Sunyaev-Zel’dovich
Effect and Chandra X-Ray Measurements of High-Redshift Galaxy Clusters. ApJ, 675, 106. [link]

Bond, J. R., Cole, S., Efstathiou, G., et al. (1991): Excursion set mass functions for hierarchical
Gaussian fluctuations. ApJ, 379, 440. [link]

Boylan-Kolchin, M., Springel, V., White, S. D. M., et al. (2009): Resolving cosmic structure forma-
tion with the Millennium-II Simulation. MNRAS, 398, 1150. [link]
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