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Abstract

This thesis introduces the physical simulation of surgical thread for usage in a micro-
surgical training simulator for the education of medical students. To allow interactive
simulation the thread must be real time capable. Importantly, in the simulation,
the thread must behave in a way that it looks like a real thread to the user. The
user can then ”dive into” the simulation, because for the user, the simulation of the
thread appears real. We refer to this ”diving into” the simulation as “immersion”.
The physical model of the thread is a mass-spring model based on the Kirchhoff
theory for elastic rods. One challenge is the stiffness constraint of the thread. A
real world thread does not change it’s length significantly even under high stress. In
a mass-spring model this property can be obtained by using high spring constants.
But if an explicit integration method is applied the so called “overshooting” effect
presents a problem. It causes the system to diverge when the spring constants are
too high. In this thesis the problem is addressed by applying an implicit integration
method. A key property of implicit integration methods is that it is unconditionally
stable and thereby allows a large time step in the numerical integration. But it also
requires that a linear system of size equal to the number of degrees of freedom in
the system is solved. If the number of degrees of freedom is high this conflicts with
the real-time requirement of the simulation. In this work it is shown that for the
case of the thread the matrix in the linear system is banded and can therefore be
solved in linear time. Another advantage of the implicit integration is that forces
are propagated along the complete thread within one time step.

For the simulation of microsurgical sutures knots have to be modeled. A knot
causes numerous contacts of the thread with itself. The contact forces are modeled
and calculated using a physical model. Because all forces propagate along the whole
thread within one time step all contacts interact with each other. A force applied
at one contact affects all other contacts.

Because of this all contact forces have to be solved for simultaneously. The inter-
action of the contacts due to the implicit integration are calculated resulting in a
linear system which describes the relation between the contact forces and the relative
movement of the thread at the contacts. Physically correct contact forces have to
be found with this linear system. Similar to the simulation of rigid bodies, a linear
complementary problem or a nonlinear complementary problem results depending
on the model that is used for the contact forces. In case of rigid body simulation the
“projected Gauss-Seidel” is a proven method for solving the problem. In this thesis
the nonlinear conjugate gradient (NNCG) method from Silcowitz-Hansen et al. [101]
is applied. This method was originally developed for rigid body simulations.

The thread has been integrated into the microsurgical training simulator “Mi-
croSim”. Which is to say, interactions between the thread and tissue and forceps
have been modeled and incorporated into ”MicroSim”. These interactions have to



be compatible with the implicit integration of the thread. In a joint work with Sis-
manidis [102] and Schuppe [96] a training module for MicroSim has been developed.
This training module allows for training of a microsurgical anastomosis of blood
vessels.

Zusammenfassung

In dieser Arbeit wird eine physikalische Simulation eines chirurgischen Fadens für den
Einsatz in einem mikrochirurgischen Trainingssimulator zur Ausbildung von Medi-
zinern vorgestellt. Der Faden muss echtzeitfähig sein, um in einer interaktiven Simu-
lation eingesetzt werden zu können. Um die Immersion der Simulation zu garantieren
muss das Verhalten des Fadens glaubhaft sein. Der Faden wird mit einem auf der
Kirchhoff Theorie für elastische Stäbe basierenden Feder-Masse Modell simuliert.
Eine Herausforderung stellt dabei die Zugfestigkeit des Fadens da. Ein realer Faden
verändert seine Länge selbst unter starkem Zug kaum. In einem Feder-Masse Modell
kann diese Eigenschaft durch hohe Federkonstanten abgebildet werden. Bei Verwen-
dung eines expliziten Integrationsverfahren führen hohe Federkonstanten zu dem so-
genannten “overshooting” Effekt, bei dem das System divergiert. In dieser Arbeit
wird das Problem durch Anwendung eines impliziten Integrationsverfahren gelöst.
Implizite Integrationsverfahren zeichnen sich dadurch aus, dass sie unbedingt stabil
und dadurch einen hohen Zeitschritt bei der numerischen Integration erlauben. Sie
beinhalten allerdings auch, dass ein lineares Gleichungssystem von der Größe der
Anzahl der Freiheitsgrade in jedem Zeitschritt gelöst werden muss. Für Systeme
mit vielen Freiheitsgraden steht der hierfür benötigte Rechenaufwand im Wider-
spruch zu der Echtzeitanforderung der Simulation. Für den Fall des Fadens wird
in dieser Arbeit gezeigt, dass die Matrix in dem Gleichungssystem eine Bandmatrix
ist. Dadurch lässt das Gleichungssystem sich in linearer Zeit lösen. Die implizite
Integration hat auch den Vorteil, dass Kräfte innerhalb eines Simulationsschrittes
entlang des gesamten Fadens propagieren.

Um die Simulation von mikrochirurgischen Nähten zu ermöglichen müssen mit
dem simulierten Faden Knoten geformt werden können. In einem Knoten gibt es
viele Kontakte des Fadens mit sich selber. Die Kontaktkräfte werden physikalisch
modelliert und berechnet. Da Kräfte innerhalb eines Simulationsschrittes zwischen
den Kontaktpunkten propagieren, interagieren alle Kontakte miteinander. Wird an
einem Kontakt eine Kraft angewendet, verändert dies die Voraussetzungen an allen
anderen.

Dies bedeutet, dass die Kontaktkräfte für alle Kontakte simultan gefunden werden
müssen. Dafür werden die Interaktion der Kontakte durch die implizite Integration
berechnet. Das Ergebnis ist ein Gleichungssystem für die Relation zwischen den
Kontaktkräfte und die relativen Verschiebung an den Kontakten. Für dieses Gle-
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ichungssystem müssen die physikalisch korrekten Kontaktkräfte gefunden werden.
Ähnlich wie bei der Simulation von starren Körpern ergibt sich, je nach Formulierung
der Voraussetzungen an die Kontaktkräfte, ein lineares Komplementaritätsproblem
(engl. linear complementarity problem, kurz LCP) oder ein nichtlineares Komple-
mentaritätsproblem (engl. non-linear complementarity problem, kurz NCP). Bei der
Simulation von starren Körpern ist eine bewährte Methode das “projected Gaus-
Seidel” (kurz PGS) Verfahren. In dieser Arbeit wird die nonlinear nonsmooth con-
jugate gradient (NNCG) Methode von Silcowitz-Hansen et al. [101], welche auch für
Starrkörpersimulation entwickelt wurde, angewendet.

Der Faden wurde in den mikrochirurgischen Trainingssimulator “MicroSim” einge-
bunden. Dafür wurden Interaktionen, welche mit der impliziten Integration kompat-
ibel sind, mit dem Gewebe und den Pinzetten modelliert. In Zusammenarbeit mit
Sismanidis [102] und Schuppe [96] wurde ein Trainingsmodul für MicroSim entwick-
elt, welches das Trainieren einer mikrochirurgischen Anastomosis von Blutgefäßen
erlaubt.
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1. Introduction

Microsurgery is a subdiscipline of surgery which is characterized by the use of an
operating or surgical microscope.

In 1921, a pioneer of microsurgery – C. O. Nylén – used a monocular microscope
for experiments with the ears of rabbits. In the same year he performed operations
on the human ear using a binocular microscope.

Since then microsurgery has made tremendous advancements. In 1964, Harry
Buncke made the first replantation of a rabbit’s ear. Buncke’s success has been seen
as a milestone because the replantation required an anastomosis of blood vessels of
only 1mm in diameter. This is the size of the main blood vessels supplying muscles
and skin. With the continuous improvement of microscopy, microsurgery became
more and more important in medicine1.

Today, microsurgery has many applications in various medical fields, such as rhi-
nology, ophthalmology and neurosurgery. Anastomosis of blood vessels and nerves
in the millimeter and sub-millimeter scale remains an important discipline especially
for the free transfer of organs and the replantation of tissue.

To protect the patients’ safety a sound education and training of surgeons is
required. Because of the small scale in which the operations are performed in micro-
surgery, the surgeon needs a steady hand and precise coordination. This is further
complicated by the indirect work with the microscope. One can only indirectly see
the actions performed with one’s hand. Hence a good hand-eye coordination must
be acquired. Moreover, the surgeon must have a well-developed confidence in his
skills so that he can react well in stressful and unexpected situations. The needed
skills are best acquired through direct and frequent exercise of the procedures.

A common procedure in the education of medical students is the “See one, do
one, teach one” approach. A student watches operations and thereby learns how to
perform them. As Mason and Strike [71] observed, this is still the most commonly
practiced method of training medical students. Bergamaschi [12] argues that this
approach is not appropriate anymore considering the complexity and required skills
for medical tasks and operations today.

To avoid training surgeons directly on patients, a variety of simple models,
manikins, animals and cadavers are used [40, 123, 46]. All these methods have
their advantages and disadvantages:

1Miehlke [72] describes the history of microsurgery.
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1. Introduction

• Manikins can portray the anatomy of the patient and the steps of the pro-
cedure can be illustrated visually. Low tech manikins are inexpensive but not
suited for training of complex and filigree procedures.

• Training on animals has the advantage that one operates on real tissue. How-
ever the use of animals for microsurgery training raises ethical and legal con-
cerns. In addition, access to laboratory animals is not always possible[40].
Furthermore, animal anatomy differs from human anatomy. Therefore an an-
imal can only be seen as an approximation of a human[123].

• Human cadavers have the correct anatomy, but dead tissue responds different
from live tissue. In addition the acquisition of cadavers is costly and limited.
Additional ethical and legal questions have also to be considered with the
usage of dead bodies.

Virtual reality (VR) simulations are therefore increasingly in the focus of atten-
tion when considering the training of medical students. There are several works
supporting the importance and usage of surgical training simulators [39, 81, 55].

With a simulator a medical student can practice common scenarios. But also
unusual situations which seldomly occur in real operations can be simulated, thus
allowing the student to be prepared for them when they occur in the operation
room. The simulation can be set up and switched to a different scenario quickly
without a lengthy assembly of the needed parts or costly acquisitions. This allows
for higher numbers of students being trained and for more flexibility without the
need of a tutor watching and supervising the training. Importantly, no ethical or
legal problems with animals, cadavers or patient safety occur.

Training simulators avoid many issues occurring with other methods. In addition,
the issue of error management is another advantage of VR simulations as a training
method, as Ziv et al. [123] argue:

“Simulation offers ethical benefits, increased precision and relevance of
training and competency assessment, and new methods of teaching error
management and safety culture.”

Ziv et al. argue that medical simulations have much to offer in the regard to error
management, training for risky procedures, and assessing competences. They further
argue

“[Medical simulation] reduces the exposure of patients to health profes-
sionals that are less experienced, and thus contributes to better protec-
tion of patient rights to receive quality care that focuses on the patient’s
needs.”

2



1.1. The MicroSim project

Virtual reality simulations are well suited for the training of many medical pro-
cedures. Similar to pilots who train for unforeseen as well as common scenarios in
a simulator, surgeons can train for both unanticipated and common situations. In
2012, Sigounas et al. [99] investigated the effect of three vascular surgery simulators
on the advancement of surgical skills of surgeons. Their work showed a significant
improvement of skills for the test persons.

1.1. The MicroSim project

MicroSim is a microsurgery simulator which is developed by the ViPA2 group of
the “Lehrstuhl für Informatik V” under the supervision of Prof. Dr. R. Männer in
cooperation with the VRmagic GmbH. A prototype has been published in [56].

The goal of the MicroSim project is the creation of a microsurgical training sim-
ulator which supports students in the acquisition and improvement of microsurgery
skills. Trainees learn indirect hand-eye coordination while working with a microscope
and learn to deal with tiredness and tremor due to unusual positioning of hands and
arms. It allows students to train regularly without a time consuming setup and
thereby supports early learning success. It also avoids the ethically questionable use
of animals, human cadavers or endangering of patients.

In MicroSim the display is a stereo display which is used in such as wat as the way
as in a real surgery. Trainees use real microsurgical forceps to perform the virtual
interventions. Lannon et al. [65] argues:

Microsurgery lends itself well to immersion because both the real and
virtual environments are observed via an intermediate optical device with
a relatively narrow field of vision.

He further argues that in contrast to other surgical disciplines no haptic feedback is
needed due to the small scale of the operation. The use of real instruments increases
the immersion of the system.

For tracking, colored markers are applied to the forceps. Cameras track the mark-
ers allowing the reconstruction of the forceps’ position and opening. The tracking
space is inside a box laid out with black velvet. The black velvet allows the camera
to better distinguish the markers from the background. The tracking system has
been developed by Schuppe [96].

MicroSim is developed to support multiple training scenarios which can be
switched according to the trainee’s needs.

2Virtual Patient Analysis
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1. Introduction

1.2. Goal of the Thesis

A difficult task in microsurgery is the anastomosis of blood vessels. The filigree
thread requires a steady hand and good hand-eye coordination. The tying of knots
requires a degree of advanced spatial imagination. The goal of this thesis is the
development of a simulation of a thread to be used in the microsurgery simulator
MicroSim. Real time capability is a requirement of the simulation.

The thread has to interact with the tissue and the forceps. It should be able to
collide with both objects. The trainee must be able to grab the thread with the
forceps. When the thread gets into a configuration where it exerts force on the
tissue, the tissue has to react. A suture consists of the two points where the thread
goes through the tissues to be joined, in such a way that when the tread is tied, it
pulls these two tissues (or blood vessels) together.

The thread also has to interact with itself. It must come in contact with itself
and the trainee must be able to tie knots. Knots should hold tight and later dissolve
realistically in accordance with to behavior of the same knot in the real world.

Even more important than physical realistic behavior is that the topology of the
configuration does not change. This means that the thread must not pass through
itself or tunnel through tissue or the forceps. When the thread passes through itself
it could potentially cause a knot to dissolve. Also when it passes through tissue or
the forceps, unrealistic configurations can be created.

The thread should be adjustable in it’s behavior. It will be most beneficial if the
adjustment is directly related to the visual features of its behavior. For example
parameters that directly control the strength of bending and torsion forces.

1.3. Contributions

Real time simulation of a stiff thread with implicit integration The Kirchhoff
theory for elastic rods [64] has been used for the deformation model of the thread.

For a sustainable training of suturing, the simulation of the thread must be realis-
tic. Unrealistic simulation of the thread can lead the student to develop inappropri-
ate or faulty habits. A major difficulty with the simulation of threads is that a real
thread is very stiff along it’s longitudinal axis. While it is a deformable object it’s
behavior when pulled along it’s longitudinal axis is more like that of a rigid body. If
one pulls at one end the force is transferred to the other end without stretching the
thread significantly. On the other hand, bending and twisting behaviors show the
characteristics of a deformable object. When using a force based model, as it seems
appropriate for a deformable object, forces have to propagate fast along the thread
without causing numerical instabilities.

A formalism for an implicit integration scheme has been developed and applied
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to a discretization of a Kirchhoff rod. The implicit integration allows for making
the thread stiff. It is shown that the resulting linear system is solvable in linear
time3 making the simulation realtime capable. For this all forces and their spatial
derivatives based on the discretized of a Kirchhoff rod have been derived. For the
torsional forces the formalism from Bergou et al. [13] has been used.

Contact handling and simulation of knots Due to the implicit integration all
contacts involving the thread interact with each other. The interactions of the
contacts have been quantified. This allows for solving all contacts at once in a
global solver. A contact and friction model based on Coulomb friction has been
applied and solved similarly to how contacts of rigid bodies are commonly solved.
The contact model allows for simulation of knots that hold tight or dissolve in a
realistic way.

Incorporation of the thread into MicroSim and building of an anastomosis training
module The thread simulation has been integrated into the microsurgery simulator
MicroSim. Contact handling with the tissue and forceps that is compatible with
the implicit integration of the thread has been developed. The thread can also be
grabbed by the forceps enforcing the position of the grabbed part. A training module
in which the tying of a knot for a microsurgery end-to-end anastomosis has been
developed. The module trains anastomosis of blood vessels as it occurs e. g. in a
free DIEP breast reconstruction. The trainee has to knot and secure a knot holding
together two blood vessels. The simulation of the blood vessels has been developed
by Sismanidis [102].

3linear in the number of vertices the simulated thread is made of
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2.1. Simulation of threads and rods

Simulation of threads, rods or other one dimensional objects is an active research
area with applications in hair simulation, computer games and medical virtual reality
simulations. For the state of the art in strand and hair simulation, refer to the
surveys by Ward et al. [119] and Hadap et al. [51].

One of the most simple models for thread simulation is “Follow the leader”, intro-
duced by Brown et al. [18]. The thread is discretized into N control points. When
an external constraint grasps and moves a control point, the motion is propagated
along the thread, moving all control points such that the length constraints are
maintained. While this approach is extremely efficient and allows hard constrain-
ing of the total length of the thread, it is also very limited. Bending and torsion,
which can be essential for correct thread behavior in a suturing situation, are not
supported. In general due to its non-physical nature, it is difficult to model force
based effects such as gravity.

In the work by Müller et al. [78] “Follow the leader” is extended with “Dynamic
Follow-The-Leader” for hair simulation allowing a more dynamic behavior of the
hair strands.

Not directly related but similar is the work of Kubiak et al. [61]. In this work the
authors employ the position based approach from Müller et al. [77] for constraints.
This results in an algorithm similar to “Follow the leader” with torsion and bending.
A torsion constraint governs the torsional torques. The algorithm is unconditionally
stable but to archive stiff bending or torsion, many iterations per integration step
are needed.

For a more immerse behavior one can look at increased physically motivated
approaches. Physically-based simulation and animation of deformable objects is an
active research area in computer graphics. For an overview of the topic refer to [79].

Physically based models for threads include spline based approaches. In these
models the rod or thread is also discretized into vertices. The position of the vertices
represent the control points of a spline curve.

The earliest spline-based deformation model known to the author has been pro-
posed by Terzopoulos et al. [110]. They modeled elastically deformable objects
using physically based dynamics of splines. While they focus on a general model
for elastically deformable objects, one of the examples they mention is a telephone
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cord.
A spline contains more information than a linear connection of the control points.

The local curvature (bending) and torsion are also represented by this mathematical
description. Qin and Terzopoulos [90] take advantage of this fact by formulating
Lagrangian mechanics for the equation of motion of D-NURBS solving them with
finite element analysis. Rémion et al. [91] use a similar technique. The Lagrangian
formalism is applied to obtain the dynamic movement of a spline curve to model
knitted clothing.

Using this work as a base, Lenoir et al. [67] creates a real-time performance thread
with the goal of using it to simulate a surgical thread. They are able to create knots
by handling self-collisions with penalty methods. While this allows to preserve the
topological properties of the thread, physical behavior is not represented accurately
enough, making knots breakable. Also, torsional behavior is not included.

Another simpler but still physically motivated approach is the mass spring
model. Similar to the spline approach a spatial discretization into mass points
is carried out. The mass points are connected by springs enforcing the stretching
constraint and with more complex springs possible other constraints.

The first mass spring model for thread-like objects known to the author of this
thesis was introduced by Rosenblum et al. [92] to simulate hair. To be able to
simulate large quantities of hair, they chose a very simple model of mass points
connected by springs. Additional hinge springs provide bending resistance.

Anjyo et al. [5] also used a physically based approach to simulate hair, based on the
mass spring model. A lot of heuristics based on aesthetic observations are applied,
which allows faster processing than the direct physical formulation would allow. The
resulting elastic laws result in a particular simple second-order differential equation
with an analytically derived solution for the dynamics of the mass points. The same
deformation model has been used by Daldegan et al. [27], developing a framework
for the simulation of hair. Plante et al. [86] and Chang et al. [21] focus on simulating
cluster of hairs. This reduces the complexity of simulating large amounts of hair
strains and simplifies collision detection.

Phillips et al. [85] do knot-tying with a spring-based deformation model. Their
model is adaptive allowing for the insertion and removing of mass points as required
by the configuration of the thread. Knots are not maintained by the modeling of
friction or explicit constraints but simple impulse based collision resolution. Often
the holding of knots is not correctly simulated.

Wang et al. [117] add torsional behavior to threads simulated with a mass spring
system. The control points are linked with torsional springs. This requires an
additional degree of freedom describing the torsion of the thread. The whole system
is integrated with a simple Euler integrator. On the other hand Selle et al. [97]
attach triangles to the edges of a hair strand. The triangles allow capturing twist
and add springs which counteract the twist.
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A common starting point for physically based simulation of rods or threads which
includes torsion behavior is the Kirchhoff theory of elastic rods. For details see
the work of Langer and Singer [64]. Yang et al. [122] employed finite elements to
solve the discretized equations obtained from the theory. Klapper [60] applied finite
differences for the same purpose.

Goldstein and Langer [45] observed that using the Bishop frame simplifies both
the analytical formulation and the numerical implementation of the dynamics of
symmetric rods especially when considering the behavior under twist. The Bishop
frame has been used in most of the later works involving twisting behavior of threads
or rods. As this work also utilizes the Bishop frame, it is explained in more detail
in section 3.1.1.

Another physical theory used in many simulation models for threads and rods is
the Cosserat deformation model. It is inspired by the Kirchhoff theory [57]. As
in the Kirchhoff theory, the idea of the model is an oriented continuous curve with
an orthonormal basis at every point corresponding to the material frame. Stress,
and thereby forces are described by spatial differentiation of the frame. The main
drawback of most Cosserat models is that they reconstruct the center line of the
thread instead of explicitly simulating it. This makes it difficult to find and maintain
contacts or other geometric constraints. With spline-based deformation models,
mass spring models or other models with an explicit center line representation,
contacts are much easier to maintain. The main advantage of the Cosserat based
models is its consistent handling of torsion.

Pai [83] first introduced the Cosserat in the field of computer simulation. Using
the Cosserat theory, differential equations are derived which allow for finding the
configuration from boundary conditions. These boundary conditions are given by
the orientations and positions of the end points of a solid object, such as a thread.
In other words, the explicit representation of the thread between those boundary
points is not stored but reconstructed in every simulation step. This complicates
the handling of collisions and makes preservation of the topology very difficult.

Bertails et al. [14] provide a robust solution for simulating the dynamics of a
Cosserat rod in the field of hair simulation. Their approach allows bending and
twisting instabilities as well as buckling of hair stands. A drawback is that the
mass-matrix is dense which lets the number of operations grow with O(N2) per
time step (where N is the number of segments).

Grégoire and Schömer [48] model bending and torsion following the Cosserat
model with a generalized mass-spring system. They chose quaternions to represent
the angular orientation of segments deriving the forces from the representation. This
requires coupling the quaternion with the positional degrees of freedom. Quaternions
are also used in the work of Choe et al. [23]. They introduce a framework for sim-
ulating the dynamic movement of human hairs treating it as a collection of wisps.
The segments of a wisp are represented as rigid bodies with a center of mass and
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an orientation represented by quaternions. The bodies are connected by linear and
angular springs. A similar approach is used by Green et al. [47] where quaternions
are also used to represent the orientations of segments. But instead of the center of
mass, the end points (which connect the segments) are used for the representation.
To couple the quaternions to the segment orientation a penalty method is used.

Spillmann and Teschner [104] address the contact handling problems most
Cosserat models have due to the lack of an explicit representation for the center
line. They introduce a deformation model called “CoRdE”. They utilize finite ele-
ments and compute energies per element, instead of solving the boundary problem
as other Cosserat inspired models do. Later they extend their approach in [105] with
a method for adaptively subdividing the rod depending on the local bending, allow-
ing them to build knots with short segments while not reducing performance with
a high number of vertices. Punak and Kurenov [89] simplifies “CoRdE” to archive
better performance. The CoRdE model can bee seen as a mass-spring approach
where forces are based on the Cosserat theory.

A different representation of the center line is used in the work of Wakamatsu
and Hirai [116]. Instead of representing the center line by explicit vertex positions,
it is parametrized by the Euler angle between the material frames making them
the degrees of freedom. They introduce a modeling approach for linear objects
based on an extension of differential geometry. The energy is minimized to obtain
the configuration of a deformed rod. Similar to Pai [83] this approach does only
allow for computation of static deformation. Theetten et al. [113] have proposed an
extension of their deformation model that can dynamically switch between a static
and a dynamic solution, depending on the required simulation context.

Hadap [50] introduces an oriented strands system, which is implemented as the
dynamics of a serial multi body chain. He uses an implicit center line representation
based on reduced curvature coordinates. The chain is made very stiff by employing
an implicit integration method formulated as a linear complementarity problem
(LCP).The LCP is then solved with an iterative scheme. While this allows for
simulation of very stiff strands, the LCP solver is computationally too complex to
allow real-time simulation.

The work of Theetten et al. [112] has combined the Cosserat theory with a spline
based deformation model. Each vertex gains an additional degree of freedom: It’s
rotation field. The twisting force can be expressed as the sum of the geometric
twisting and the material torsion, which is given by the rotation field. The model
allows for very accurate simulation even of stiff objects utilizing a fast implicit inte-
gration method from Hilde et al. [53]. Their approach allows for dynamic behavior
and is geometrically exact where the only approximation is the spatial and tempo-
ral discretization. They achieve reasonable interactive simulation rates except in
the case of very high stiffness, for which the integration method requires excessive
computation time for stability.
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Another approach to rod or thread simulation is chain shape matching (CSM),
see for example the work of Rungjiratananon et al. [93]. The rod is represented
by a chain of particles which are connected by segments. Chain regions, which
are multiple overlapping, group the particles. External forces move the particles
independently. For each region (which are treated as rigid), variables like rotation
and translation are computed with the new particle positions. The transformations
of the regions define goal positions for the particles. The goal position for each
particle is obtained from the average of all regions of which it is a part of. The
stiffness is controlled by the size of the regions. Collisions are resolved by moving
penetrating segments apart. This allows simulating stiff threads with self collisions.
But physical realistic knots with friction are difficult to model due to the nonphysical
nature of this approach.

Bergou et al. [13] introduce a reduced coordinate formulation with a minimal
number of degrees of freedom avoiding the need of stiff coupling between material
frame and center line. The torsion of the material is represented by the torsion an-
gle between the untwisted and the current configuration, which is stored with every
segment. The problem of propagating this torsion angle is avoided by observing that
twist waves propagate much faster than other material deformations (like bending).
Motivated by this observation, they set the torsion angle in such a way that the
energy is evenly distributed along the thread. For a thread without intrinsic bend-
ing, this reduces to distributing the difference between neighbored torsion angles
evenly along the thread. This approach is also applied in this thesis. The twist
forces are derived from the spatial derivative of the material torsion using discrete
holonomy. Their model reproduces both static and dynamic phenomena. The model
for torsional behavior in this thesis is greatly inspired by this work.

Other recent works are [70] and [66]. Martin et al. [70] create a unified treatment
for elastic rods, shells and solids. Such an approach misses the benefit of incorpo-
rating the properties unique to a thread. Larsson et al. [66] allow the thread to have
arbitrary cross sections. Their simulation is based on Continuum mechanics based
threads and is real time capable.

2.2. Implicit Integration

While a thread is in general a deformable object, it usually cannot be made to
change it’s length significantly without big forces. When modeling it as a chain of
mass points connected by springs, this poses great difficulties to the integration.
The model needs to be integrated forward in time. Mathematically this corresponds
to solving an ordinary differential equation with a given initial value: the equation
of motion. One of the simplest integration methods is the Euler integrator. Applied
to a physical problem, the Euler integrator assumes that the force is constant within
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one time step. This is subject to error. It can lead to diverging systems in the
case of stiff equations. The assumption of the constant force can add an unrealistic
amount of energy to the system and transform it into a situation where the forces
are even higher. This leads to a problem called “overshooting”. For a more detailed
explanation, refer to section 3.2.

Different integration methods, such as the Leap-frog, Runge-kutta [19], or Verlet
[115] improve the stability, but are still not able to stably integrate extreme stiff
equations. Incidentally, the Verlet integrator is used for the simulated tissue in the
MicroSim, the microsurgery simulator the thread is made for.

A simple method for avoiding these errors is reducing the time step with which
the model is simulated. Unfortunately this approach hits the limit of what is com-
putationally possible with modern computers when simulating stiff threads. But
this problem is not inherent to the simulations of threads. When trying to simu-
late cloth with almost inextensible fabric, the same problem occurs. Terzopoulos
et al. [110][108][109] use implicit integration schemes to simulate various deformable
objects.

The idea of implicit integration is simple: Instead of using the force at the current
time step, the force at the next time step is applied [88, chapter 17.5]. This archives
unconditional stability which allows integrating stiff springs allowing to model the
thread with springs. Implicit integration has the disadvantage that a linear system
of equations has to be solved in every time step. For a more in depth explanation
refer to section 3.2.

The fact that implicit integration is unconditionally stable allows for increasing
the time step and thereby reducing the computational burden. Also, forces are dis-
tributed throughout the complete system within one time step. Baraff and Witkin
[10] demonstrate that implicit methods for cloth simulation can overcome the per-
formance limits inherent in explicit simulation methods. The linear system is solved
with a fast iterative solution algorithm, a modified version of the conjugate gradient
(CG) method.

Servin and Lacoursière [98] also use a model made of constrained rigid bodies
connected in a chain. With this model they simulate a cable that can hold a heavy
load. The physics are integrated with an implicit scheme. The occurring linear
equations are solved with a Gauss Seidel approach.

Sobottka et al. [103] use the implicit integration scheme from Chung and Hulbert
[24] called the Generalized-α method to integrate the dynamic Cosserat equations.

Desbrun et al. [30] propose an implicit integration method that allows fast integra-
tion of arbitrary deformable objects with a mass spring model. The computational
burden of solving the linear system is reduced by splitting forces into linear and
nonlinear components. This results in the linear problem of the implicit integration
being also split into two, one for the linear forces and one for the nonlinear forces.
For the linear part the matrix is constant, which means that it can be solved in a
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pre-computation step by inverting the matrix. For the nonlinear part it is assumed
that the forces are constant within one time step, as with an explicit integration
scheme. This way the matrix is zero.

Other works ensure the stiffness of the thread by explicitly enforcing the non
extensibility of the thread. Bergou et al. [13] apply the fast manifold projection
from [44]. First an explicit symplectic Euler integrator is applied to integrate the
unconstrained system. Then the manifold projection calculates a nearby constraint
configuration.

A similar approach has been done by Becker [11]. With a projector the external
forces are projected onto all mass points. The resulting forces do not stretch the
thread. Due to linearization errors a correction step, correcting the length of the
segments is necessary after every integration step. Allner [3] also distributes external
forces, but directly without a projector following a Gauss distribution around the
mass point where the force is applied.

2.3. Collision and Contact Handling

For a realistic simulation of a suturing situation, especially for the simulation of
knots, it is crucial that collisions of the thread with itself are resolved in a physical
way. Finding the interpenetration of the thread with itself and other objects is a
geometrical task and will be handled in sections 3.5, 3.6 and 3.7.

Once contacts have been found, they must be resolved in such a way that any
interpenetration of objects are removed. Furthermore, a realistic behavior of knots
which correspondents to their behavior in the real world is required. This can be
archived with contact and friction forces taken from a physical model.

One of the more simple approaches for resolving collisions are penalty forces.
The general idea is to apply a force on penetrating objects in the direction of sepa-
ration. A common choice for the magnitude of this force is making it proportional
to the penetration depth. Setting a good proportional constant requires fine tuning.
If the constant is too high, objects get pushed apart beyond separation. If it is too
low objects continue to penetrate up to the point where the separation direction
is no longer well defined. In addition, for many situations, a universal proportion
constant does not exist. For example, when two boxes are stacked on each other
more force is needed to separate the lower box from the ground than when only one
box is lying on the ground. Works employing penalty forces are [59, 29].

The example with the stacked boxes is in the realm of rigid bodies. In the realm
of deformable bodies, penalty forces are more suitable. The reason is that when
deformable objects collide, there is a non zero contact time [84]. In one integration
step the objects get compressed by the penalty force and it takes one or more
integration steps to propagate that compression to other colliding objects. On the
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other hand, for rigid objects the change in momentum is instantaneous and therefore
should propagate to all other colliding objects within the same integration step.

Penalty forces allow for penetration of the objects which can lead to ambiguities
for small objects. Terzopoulos et al. [110] cope with this problem in the area of hair
simulation by putting a force field around hair strands which is much bigger than
the hair strand itself to prevent collision. This can be seen as preemptive penalty
forces, which act before the objects collide.

Gissler et al. [43] improve penalty forces by setting the proportionality constant
per collisions to a value which separates the (deformable) objects exactly in the next
integration step. This avoids the tuning of the proportional constant and results in
a more concise penalty force. Yet, for rigid body situations, where contacts interact,
this does not help to prevent penetrations in stacking situations.

Penalty forces resolve the problem locally for every collision. Different from ap-
proaches which try to find global solutions, this has a low computational burden.
But for situations in which contacts interact – such as stacking of rigid objects – it
is impossible to find a correct solution locally. This is because the question of how
big the separating force has to be does not only depend on the objects in contact
but for example also on whether objects are stacked on top.

To completely prevent the penetration of objects in the first place, predictor-
corrector approaches separate the integration in a predictor and a projector step.
In the predictor step, normal integration takes place and penetrations are detected.
Then the integration step is rewound and forces preventing the detected penetrations
are added to the system. The correction step than repeats the integration with the
added forces included. Weinstein et al. [121] do this for rigid bodies by computing
allowable trajectories before moving the rigid bodies to their new positions. For
rods, Spillmann and Teschner [104] employ a predictor-corrector method integrated
with an explicit integration method. Guendelman et al. [49] use a predictor-corrector
scheme for the collisions for massive amounts of rigid objects. They proposed em-
ploying the predicted positions to compute the impulses. However, since the resting
contacts require more accuracy, they use the original positions to compute the con-
tact forces.

Outside of the realm of force based approaches, position-based approaches re-
solve collision and contact situations by explicitly setting the positions of colliding
objects such that interpenetrations are resolved. This requires the simulation to be
suited for this, e. g. being position based itself. Also for rigid objects contacts can
still interact. Moving two objects apart can result in one of the objects penetrating
a new object. Milenkovic [73] apply linear programming to find positions that yield
the non-penetration constraint. The linear programming is necessary to guarantee
that these constraints are fulfilled for all objects at the same time. Müller et al. [77]
bases its position-based approach on the velocity verlet integrator. Since they focus
on deformable objects no global solver is needed.
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To ensure consistent collision responses and contact handling for situations where
contacts interact, such as stacking of rigid bodies, some sort of global solver is
needed. A global solver solves all contact forces at once. If one ignores friction
forces and solves only the penetration problem, the problem can be formulated as a
linear complementary problem (short LCP, see [32]), as it is done in [106] and [20].
Catto [20] also includes a simplified friction model by which the problem remains
a LCP problem. The Coulomb friction model states that the magnitude of the
frictional force Ffric is limited by Ffric ≤ µFN where µ is the coefficients of friction
and FN the magnitude of the normal force. Catto [20] simplifies this constraint by
Ffric ≤ µ′ with some constant µ′. While by this simplification the problem remains
an LCP problem, it leads to some unrealistic situations. For example in a stack of
boxes the friction on the lowest box is the same as the friction on boxes located
above it.

The full constraint Ffric ≤ µFN leads to the friction force being restricted to a
circle. If one draws this circle in dependents of FN the so called “friction cone”
results. Stewart and Trinkle [106] and Anitescu and Potra [4] approximate this cone
by a polyhedral cone. This way the problem remains a LCP.

The contact problem with the correct Coulomb friction formulation, with the re-
striction that the coefficient of friction for kinetic and static friction are equal, can
be formulated as a nonlinear complementary problem (NCP), which has the advan-
tage of a lower memory consumption than the LCP formulation with a polyhedral
friction cone ([101, 106]).

The formulation of the NCP for the contact problem with the thread will be done
in section 3.7.2.

In many situations, if one knew the nature of the situation in advance, the prob-
lem would be much less complex. An example of such a situation is a stack of boxes.
One could propagate an impulse from the lowest box upward respecting the con-
straint, that the box below cannot be accelerated downwards. The idea from Hahn
[52] is similar. They built a contact graph. Impulses are propagated starting from
immovable nodes. This ensures that no immovable nodes are penetrated. For ex-
ample a simple stack of objects is solved by propagating from the ground to the top
box. When the graph has cycles, contacts have to be rechecked after one iteration
of traversing the graph. Guendelman et al. [49] built on this idea. They noticed
that only strongly connected components in the contact graph have to be solved at
once, which they do with an iterative method. They start with infinite mass objects
(immovable objects) and propagate into strongly connected components. Afterward
the masses of all objects in the components are temporally set to infinite and the
propagation is continued. The contact graph allows them to efficiently propagate
shocks.

For the thread in this thesis, this would not yield any improvements because all
contacts interact and therefor only one strongly connected component, involving all
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contacts, exists.
The contact problem can also be formulated as a quadratic programming (QP)

problem (see e. g. [74]). Milenkovic and Schmidl [74] improve their previous work in
[73]. Stacking is done with standard Newtonian physics and an optimization based
method to adjust correcting the predicted positions of objects to avoid overlaps.
Contacts, collisions and position updates are solved with quadratic programming.
Kaufman et al. [58] reduce the expensive global QP problem for a velocity-level sim-
ulation to two convex, separable QPs per object. Different methods for formulating
this QP for bodies composed of polyhedral and curved surfaces have been presented
in [6, 7, 69, 41].

Schmidl [95] improve on their previous work in [74] by freezing objects that are
still, or almost still, removing the need to solve constraints for them.

Once the LCP or NCP has been formulated, it has to be solved. An often used
direct solver is Lemkes algorithm [8, 106]. Lloyd [68] improve Lemkes algorithm
for rigid body simulations lowering the computational burden from O(n3) to O(mn+
m2) where n is the number of contacts and m the number of bodies in the system.

Different from the direct methods, an iterative solver improves the solution by
applying the same step iteratively. An iterative solver for optimization problems is
the conjugate gradient method. It has been reported that the conjugate gradient
method is computationally intractable due to frequent changes of the active set
[38]. The active set is the set of contacts for which the contact force is non zero.
Additional iterative methods are the Newton and the Interior point methods. In
theory the Newton method converges quadratically, but Lacoursiere [62] reports
linear convergence rates in experiments. A step in the Newton method requires
solving a linear subsystem and has therefor a complexity of O(n3). Even when
only few steps are required the complexity of the Newton method is cubic. For the
interior-point method the same problem occurs as these methods require solving a
linear subsystem in every step too.

A simple iterative method is the projected Gauss-Seidel (PGS) approach, which
is explained e. g. by Silcowitz-Hansen et al. [101]. The PGS loops over all contacts
solving the current contact. Catto [20] applied it to rigid body physics with a
simplified friction model. Duriez et al. [31] applies a Gauss-Seidel like method to
solve the frictionless contact problem for deformable objects simulated with finite
element methods. Another work utilizing PGS is [38].

Most iterative methods, like PGS, have the advantage that they can be stopped
at any time and give an approximation of the correct solution. This approximation
improves with each iteration step. In contrast direct methods like Lemkes algorithm
cannot yield any useful results before they have finished. This allows for limiting the
computational burden of these iterative methods by stopping when the consumed
time exceeds a given threshold. In addition, they benefit from being initialized with
an approximation of the correct solution. For the approximation the result from
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2.4. Microsurgery Training Simulators

the last simulation step can be taken. The method of initializing a solver with an
approximation of the correct result is called “warm-starting” [20].

Poulsen et al. [87] and Silcowitz-Hansen et al. [100] indicate that the PGS method
is well suited for solving NCP problems for contact forces, as it is robust and versa-
tile. Based on this experience Silcowitz-Hansen et al. [101] improve the convergence
rate of the PGS method by a Fletcher-Reeves type nonlinear nonsmooth conjugate
gradient (NNCG) type method. A PGS step is interpreted as the gradient of a
nonsmooth nonlinear quasi-quadratic function. The local minimizer of the squared
PGS step (which corresponds to the error) is found with a Fletcher-Reeves nonlin-
ear conjugate gradient method. The NNCG method has been used with a small
adaption for contact resolution of the thread.

2.4. Microsurgery Training Simulators

One of the first training simulators for a surgical procedure known to the author
was introduced by Salvendy and Pilitsis [94]. It was an electromechanical training
simulator utilized as part of a study regarding skill acquisition. However, computers
were not yet fast enough for computer based virtual reality training for physical
simulation.

The general interest in this research can be seen for example in the numerous
papers developing algorithms for microsurgery training simulators (see e. g. [17]). A
particular interest is on the simulation of tissue [76, 28, 25, 15, 75].

A review for microsurgery simulators from 2003 can be found in [36].

O’Toole et al. [82] developed an interactive virtual reality surgical training sim-
ulator for the training of suturing technique. It utilizes surgical tools with force
feedback by a pair of PHANToM devices. A PHANToM device is a haptic input
device by SenseAble1. Tissue and tools are simulated with a physically based sim-
ulation. The software is able to measure and evaluate the trainee’s performance.
The system is able to distinguish between experienced and novice trainees. The
output is done by a 3-dimensional graphics display. The graphics are projected on
semi-reflective mirrors and viewed with a pair of stereo goggles. A disadvantage of
the system is that the trainee has to maintain a standing position.

Webster et al. [120] developed a training simulator for sutures. As with most
simulators, it uses a haptic feedback device. It allows for training piercing and
tightening of sutures, but no knot tying or other interaction with suture material.

A microsurgery simulator developed by Brown et al. [16] used two real surgical
forceps tracked electromagnetically as an input device. The simulation allowed in-
teractions between the surgical tools and the tissue modeled by deformable objects
using mass-spring systems. It utilizes the “Follow the leader” approach [18] for

1http://sensable.com
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thread simulation. The used collision detection and response algorithm allows for
maintaining the correct topology of knots. However, it does not comply to real world
situations in simulating the physical behavior for holding the knot. Also “Follow
the leader” does not provide the realistic physical properties needed in a suturing
situation.

Another medical simulator based on “Follow the leader” is presented by
Figueras Sola et al. [42] focusing on laparoscopic suture training. It allows for
training fine motor skills such as accurate grasping of the thread.

Holbrey et al. [54] [55] develop a suturing simulator for vascular surgery. De-
formable objects, such as tissue, are simulated with the finite element method
(FEM). For haptical input with a pair of needle holders a PHANToM device is
used. Its opening and closing is detected using a magnetic switch.

Allard et al. [2] present the open source framework SOFA. It provides numerous
tools and algorithms for medical simulations.

Wang et al. [118] introduce a microsurgery training simulator which allows for
making sutures. The physical model is a simple explicit integrated mass spring
model. The work does not explain how they deal with the strong forces occurring
in a suture.
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3. Theory

One of the requirements in a complex suture situation is robust detection and reso-
lution of contacts.

An explicit representation of the center line facilitates complex contact scenarios.
Many approaches use geometric curves, such as splines, for the center line [108,
90, 91, 67]. These represent the center line with the control points of a spline.
Even better suited are linear connections of the control points. Mass-spring models
have this property. Mass-spring models also have the advantage of being force based.
This allows for interaction with other objects with forces, which is a flexible generally
applicable approach. For simulation of knots it is also necessary to have realistic
friction and repulsive forces, which is hard to archive with a non-force based model.
A force based approach also allows for applying implicit integration, which will be
discussed later.

For virtual reality it is more important that objects behave plausibly, than that
their behavior accurately follows real physics. It therefore seems attractive to fol-
low descriptive approaches. These approaches model the behavior of the simulated
object by directly recreating observed behavior from the real world. An example of
a descriptive model is recreating the bending behavior of a thread with springs.

On the other hand, physical models can be based on the laws of physics or some
physical theory. Physical models are more general and often work better in un-
foreseen situations. But in some situations they get complicated and unnecessarily
increase the computational burden.

The thread in this thesis is based on a physical model. But at some points
descriptive approaches are used.

3.1. Notation and representation of the thread

In this section the physical model of the simulation of the thread will be introduced.
This model will be discretized making it suitable for a computer simulation. All
quantities describing the configuration and dynamics of the thread will be defined.

3.1.1. Deformation model

In this section the model describing the dynamic behavior of the thread is introduced.
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3. Theory

~γ(s)

~T (s1)

~M1(s1)

~M2(s1)

~T (s2)

~M1(s2)

~M2(s2)

Figure 3.1.: The material frame at different positions on the thread

Many works use the Cosserat theory as a starting point for the physical model
[83, 14, 47, 23]. Spillmann and Teschner [104] show that the Cosserat theory can also
be adapted to an explicit center line representation. The Kirchhoff theory of elastic
rods are related to the Cosserat rod model [63], but do not handle extension or
shearing. Shearing is beyond the requirements of this thesis. Extension (stretching)
can easily be added by adding a stretching energy. The physical model for the thread
simulation used in this theory is based on the Kirchhoff theory of elastic rods[64].
The energies on which stretching, bending and torsion base are derived from the
Kirchhoff theory of elastic rods. The forces are the derivatives with respect to the
degrees of freedom of these energies. The following derivation is inspired by the
work of Langer and Singer [64] as well as Bergou et al. [13].

Assuming the cross section of the thread does not change by elastic deformation,
its configuration can be described by its center line. While in reality this assumption
is of course wrong, the effect of elastic deformation of the center line on the physical
behavior is so minor it can be ignored and hence does not affect immersion into the
simulation.

Following the Kirchhoff theory of elastic rods, the thread is represented by an
adapted frame curve Γ = {~γ(s); ~T (s), ~M1(s), ~M2(s)} over a parameter s ∈ [0, 1].
~γ(s) ∈ R3 represents the center line of the thread. {~T (s), ~M1(s), ~M2(s)} form an
orthonormal coordinate system at every position s on ~γ called the “material frame”.
It is adapted to ~γ by requiring that ~T (s) is always aligned to ∂

∂s~γ(s) making it
tangent to ~γ(s) (See figure 3.1).

For representing the position of the thread in space, ~γ(s) would suffice. But the
material frame contains information about the twist of the thread. As will be seen
later, the twist of the thread is represented by the rotation of ~M1(s) and ~M2(s)
around ~T (s).
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3.1. Notation and representation of the thread

The Darboux Vector

The Energy of the thread can be found with this material frame using the Darboux
vector which will be defined below. For this a few aspects of the material frame
must be analyzed.

Because the material frame is normalized, the derivative with respect to s ∈
[0, 1] of its components must be orthogonal to the corresponding component itself.
Therefore it can be represented by the corresponding other components:

∂ ~T (s)

∂s
= a ~M1(s) + b ~M2(s) (3.1)

∂ ~M1(s)

∂s
= c~T (s) + d ~M2(s) (3.2)

∂ ~M2(s)

∂s
= e~T (s) + f ~M1(s) (3.3)

with appropriate values for a, b, c, d, e and f .
Because

∂

∂s
(~T (s) · ~M1(s)) = 0 ⇒ ∂ ~T (s)

∂s
~M1(s) = −∂

~M1(s)

∂s
~T (s)

and equivalent calculations for the other pairs of material frame vectors, the number
of unknowns in (3.1) - (3.3) can be reduced. There are ω1, ω2 and m such that

∂ ~T (s)

∂s
= ω1

~M1(s) + ω2
~M2(s) (3.4)

∂ ~M1(s)

∂s
= −ω1

~T (s) +m ~M2(s) (3.5)

∂ ~M2(s)

∂s
= −ω2

~T (s)−m ~M1(s). (3.6)

Defining the “Darboux vector” by ~Ω(s) := m~T (s) − ω2
~M1(s) + ω1

~M2(s) allows
rewriting (3.4) - (3.6) as

∂ ~T (s)

∂s
= ~Ω(s)× ~T (s) (3.7)

∂ ~M1(s)

∂s
= ~Ω(s)× ~M1(s) (3.8)

∂ ~M2(s)

∂s
= ~Ω(s)× ~M2(s). (3.9)

which will be very helpful for finding the bending and twisting energy.
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3. Theory

Stretching energy

The stretching indicates how much the thread is stretched or compressed from it’s
original length. Assuming ~γ0(s) is the unstretched configuration of the thread then
it’s rest length corresponds to the line lengths of ~γ0(s). This is easily found with

l :=

1∫
0

∣∣∣∣∂~γ0(s)

∂s

∣∣∣∣ ds (3.10)

Since ~γ0(s) is not stretched,
∣∣∣∂~γ0(s)

∂s

∣∣∣ must be constant and because of 3.10 equal to

l.

Here it is assumed that the thread reacts to stretching and compression as a spring
with spring constant kS following Hooks law. The subscript “S” marks the constant
for belonging to the stretching energy as opposed to the bending and twisting energy.

The local stretching at position s is given by the difference of
∣∣∣∂~γ(s)
∂s

∣∣∣ and l. The

stretch energy is given by:

ES =
kS
2

1∫
0

(
1

l

∣∣∣∣∂~γ(s)

∂s

∣∣∣∣− 1

)2

ds (3.11)

Assuming a spring like behavior is of course only an approximation. It has the
advantage of being simple and working well with the integration algorithm used
in this work. The main requirement of the stretching energy is that it does keep
the thread stiff along it’s main direction which is archived by using a high spring
constant kS .

Bending and Twisting Energy

The material frame is everything needed to define the bending and twisting energy
of the thread. They are given by Langer and Singer [64]:

EB =
kB
2

1∫
0

ω1(s)2 + ω2(s)2ds (3.12)

ET =
kT
2

1∫
0

m(s)2ds (3.13)

with the corresponding constants kB, kT > 0.
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3.1. Notation and representation of the thread

For an intuitive idea on how to get (3.12) and (3.13) one can picture that ω1 and
ω2 represent how much ~T changes towards ~M1 and ~M2 and therefore measure how
γ bends. Analog m measures the rotation of ~M1 and ~M2 around ~T .

When the torsional energy vanishes (which implies m = 0), the Darboux vector
reduces to

~ΩB(s) := −ω2(s) ~M1(s) + ω1(s) ~M2(s).

In this case (3.7) - (3.9) define a special case for the material frame, called the Bishop
frame.

Equation (3.4) - (3.6) define how the Bishop frame evolves along the thread, but
are arbitrary under the initial conditions. ~T (0) is given by the initial tangent, but
~M1(0) and ~M2(0) can be freely rotated around ~T (0). The consequence is, that the

Bishop frame can be rotated around ~T (s) and still remains a Bishop frame.

Changing the initial condition adds a constant offset to the angle between the
Bishop and the material frame. Since for the Bishop frame the twisting energy
vanishes it defines a frame along the thread which corresponds to the most relaxed
(twist-free) configuration.

With the Bishop Frame the twist of the thread can now be expressed by a simple
parametrization along the thread which is more suited for deriving the discrete
twisting energy later [64]. Let ~M0

1 (s), ~M0
2 (s) be a Bishop frame and Φ(s) the angle

by which the material frame is rotated around ~T (s) relative to the Bishop frame. It
will now be shown how m is related to Φ.

Φ(s) is defined by:

~M1(s) = R(Φ(s)) ~M0
1 (s)

where R(Φ(s)) ∈ R3 × R3 is the rotation around ~T (s) with angle Φ(s). This implies

∂ ~M1(s)

∂s
=

(
∂

∂s
R(Φ(s))

)
~M0

1 (s) +R(Φ(s))
∂ ~M0

1 (s)

∂s
(3.14)

Recall equation (3.5). m can be extracted from it via

m =
∂ ~M1(s)

∂s
· ~M2(s) (3.15)

Because the Darboux Vector for the Bishop frame has no component along ~T (s),
∂ ~M0

1 (s)
∂s is aligned to ~T (s). Therefore the second summand of (3.14) is aligned to ~T (s)

and does not tell us anything about m. The first summand can be rewritten as:
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3. Theory

(
∂

∂s
R(Φ(s))

)
~M0

1 (s) =
∂Φ(s)

∂s

(
∂

∂Φ
R(Φ)

)
~M0

1 (s)

=
∂Φ(s)

∂s
R(Φ(s))R(π/2) ~M0

1 (s)

=
∂Φ(s)

∂s
R(Φ(s)) ~M0

2 (s) =
∂Φ(s)

∂s
~M2(s) (3.16)

To find ∂
∂ΦR(Φ) call to mind that differentiating sin and cos produces the same

functions phase shifted by π/2.

From (3.15) and (3.16) it can easily be seen that

m =
∂Φ(s)

∂s
. (3.17)

allowing the twisting energy to be rewritten as

ET =
kT
2

1∫
0

(
∂Φ(s)

∂s

)2

ds. (3.18)

This result gives an intuitive picture of the torsion energy. It is quadratic in the
change of the twist angle with s.

Recall, that the Bishop frame was arbitrary under a constant rotation around ~T (s).
But since adding a constant offset does not affect the derivative, ET is independent
of it.

3.1.2. Discretization

To make the model suitable for a computer simulation, it has to be discretized. Based
on this discretizations, the forces will be calculated in section 3.3. The discretization
is needed because a computer can only store a limited quantity of numbers. This
means that a continuous function cannot be represented in the computer.

The discretization of stretching and bending energies is straightforward. For tor-
sion energy the notation from Bergou et al. [13] has been adopted.

First the quantities necessary for discretization will be introduced. The center
line of the thread is discretized along ~γ(s) into N ∈ N vertices. The position of the
i-th vertex at time t is denoted by ~pi.

For reasons of readability the parameter t will be omitted where the meaning is
clear, that is, without ambiguity.
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3.1. Notation and representation of the thread

Linear segments connect the vertices. The i-th segment connects the i-th and
(i+ 1)-th vertex resulting in a segment vector and tangent of

~si := ~pi+1 − ~pi (3.19)

~ti :=
~si
|~si|

(3.20)

The rest length of the i− th segment is denoted by li.

Stretching Energy

The stretching energy
∣∣∣∂~γ(s)
∂s

∣∣∣ has to be discretized. It holds that

li =

Li+1/l∫
Li/l

∣∣∣∣∂~γ(s)

∂s

∣∣∣∣ ds
where Li :=

i∑
j=1

lj . For the discretization it is assumed that
∣∣∣∂~γ(s)
∂s

∣∣∣ is constant within

a segment. Defining γi :=
∣∣∣∂~γ(s)
∂s

∣∣∣. γi can be determined by:

|~si| =
Li+1/l∫
Li/l

∣∣∣∣∂~γ(s)

∂s

∣∣∣∣ ds =

Li+1/l∫
Li/l

γids =
li
l
γi

⇒ γi =
l · |~si|
li

Inserting this into (3.11) reveals the discretized stretching energy.

ES =
kS
2

 L2/l∫
0

(
1

l

∣∣∣∣∂γ(s)

∂s

∣∣∣∣− 1

)2

ds+ · · ·+
LN−1/l∫
LN−2/l

(
1

l

∣∣∣∣∂γ(s)

∂s

∣∣∣∣− 1

)2

ds


=
kS
2

N−1∑
i=1

Li/l∫
Li−1/l

(
1

l
γi − 1

)2

ds

=
kS
2

N−1∑
i=1

li
l

(
|~si|
li
− 1

)2

(3.21)
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~pi

si

si−1

Θi

~ti−1
~ti

Figure 3.2.: Definition of Θi.

Bending Energy

Since ∂ ~T (s)
∂s is always orthogonal to ~T (s), using (3.4), (3.12) can be rewritten as

EB =
kB
2

1∫
0

(
∂ ~T (s)

∂s
· ~M1(s)

)2

+

(
∂ ~T (s)

∂s
· ~M2(s)

)2

ds =
kB
2

1∫
0

(
∂ ~T (s)

∂s

)2

ds.

Let {si|1 ≤ i ≤ N} be the parameter s at the midpoints of the segments. Now
~T (s) is assumed to rotate around ~ti−1 × ~ti from ~T (si−1) = ~ti−1 to ~T (si) = ~ti. This

means, that
∣∣∣∂ ~T (s)

∂s

∣∣∣ = Θi
si−si−1

where Θi is the angle between ~ti and ~ti−1 (see figure

3.2).

This reveals for the bending Energy:

EB =
kB
2

N−1∑
i=2

si∫
si−1

(
Θi

si − si−1

)2

=
kB
2

N−1∑
i=2

Θ2
i

si − si−1
=
kB
2

N−1∑
i=2

2l

li − li−1
Θ2
i (3.22)

Note that it is assumed that before s1 and after sN−1 the thread is straight and
has vanishing bending energy.
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3.1. Notation and representation of the thread

Torsional Energy

Finding a discretized version for (3.13) when having (3.18) is trivial. Φ(s) is assumed
to be a linear function between the segments midpoints. Defining

δΦi = Φ(si)− Φ(si−1) (3.23)

sets

∂Φ(s)

∂s
=

δΦi

si − si−1
for si > s > si−1.

Now (3.18) can be discretized:

ET =
kT
2

N−1∑
i=2

si∫
si−1

(
δΦi

si − si−1

)2

=
kT
2

N−1∑
i=2

2l

li − li−1
δΦ2

i (3.24)

Choosing a segment length

The length of the individual segments has an significant impact on the performance
and accuracy of the simulation. A small segment length requires the number of seg-
ments to be high and thereby increases the computational demands of the simulation.
On the other hand a long segment length increases the effects of the discretization
and reduced visual plausibility. When the bending between two adjacent segments
is high the simulation becomes inaccurate. The forces are only forwarded along the
direction of the springs. In the extreme case of a bending of 90◦ the adjacent springs
have no common direction and no force is transmitted. But even for smaller bending
angles this problem becomes noticeable.

Spillmann and Teschner [105] address this problem by splitting segments when
the bending angle is too high and unsplitting them when the bending angle is low
again. While this approach is applicable here, in this thesis the segment length have
chosen short enough so that the problem does not occur in the first place. The
reasons for this are the following:

• It is much more important that the simulation is efficient in the worst case.
For the segment length this means, in the case of a lot of subdivision. And in
that case there are many segments anyway. For the simulation it is irrelevant
if it has to deal with many segments all the time or only in certain cases.

• As will be shown section 3.7, the limiting factor is not the number of segments
but the number of contacts in a knot. So the impact on the performance is
not very significant.

• While Spillmann and Teschner [105] approach conserves the energy of the
thread, it still changes the circumstances for contacts. In a knot this can
causes unsettle situations decreasing the stability of the knot.
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3. Theory

3.2. Numerical integration

In this section the integration method, with which the thread is forwarded in time,
is introduced. First the reason why implicit integration is necessary for this task is
described. Then the integration method is derived and applied to the special case
of a one dimensional object, such as a thread.

3.2.1. Numerical integration and stiff equations

A variety of numerical time integration algorithms for advancing differential equa-
tions, such as Newton’s equations of motion, forward in time exists. One of the
simplest is the Euler-Cromer method, also known as “last-point approximation”
[26] which will serve as an example here.

Newton’s equation of motion is a second order differential equation of the form

m
∂2~x

∂t2
(t) = ~F (~x(t)) (3.25)

where m > 0 denotes the mass. Starting from given ~x(t0), ~v(t0) := ∂~x
∂t (t0) the Euler

method advances (3.25) from t0 to t0 + ∆t by

~v(t0 + ∆t) = ~v(t0) +
~F (~x(t0))

m
∆t (3.26)

~x(t0 + ∆t) = ~x(t0) + ~v(t0 + ∆t)∆t.

If (3.25) is stiff – meaning ~F (~x(t)) is big – which happens for example when ~F (~x(t))
resembles a stiff spring, a problem known as overshooting occurs. To illustrate the
problem, imagine a one dimensional system with a mass point connected to a spring.
The force on the mass point is given by the spring equation for which the rest point
is assumed to be at x = 0 (see figure 3.3).

FSpring(x) = −k · x (3.27)

k > 0 is the spring constant. The assumption (3.26) makes is, that ~F is constant
within one time step of length ∆t. If k is big this may result in a new position of
the mass point, that skipped the zero point of the spring and is now further away
from it (on the other side) than the original point. Because the force at this new
point is even bigger the same thing happens again making the mass point diverge
away from the zero point in oscillating behavior (see figure 3.4).

In the real world a thread is almost inextensible. The stretching of the thread
in this thesis is modeled with springs. To make the thread very stiff, kS has to be
chosen very high. This causes overshooting, as described above.
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3.2. Numerical integration

x0

Mass Point

Figure 3.3.: A mass point accelerated by a spring.

A solution to this problem would be decreasing ∆t up to the point where x would
not cross the zero point of the spring within one time step. While this works, it is
extremely computationally demanding and not feasible for real time applications.
Another common approach is introducing a damping term which slows down the
movement of the mass points reducing the energy of the system. This has the
disadvantage that it makes the whole system behave sluggishly. For such high spring
forces, which are needed to make the thread seem inextensible, the damping forces
would also have to be unacceptably high.

The Euler method is a first order method, meaning it’s error is of order O(∆t).
Other integration methods have an error of lower order. Among the most prominent
are the verlet method [115], the more numerically stable velocity verlet [107] and the
Runge-kutta method. There is also the class of semi-implicit integration methods
such as the symplectic Eulor method. These methods have the advantage of better
preserving the energy and thereby being more stable. For the thread to appear
almost inextensible the k of the springs must be so high, that all these methods
become unstable.

Niiranen [80] gives a more detailed analysis of the stability of the symplectic Eulor
method.

There is another problem which becomes eminent in the case of a long chain of
elements such as the discretized thread: Forces only affect neighboring elements
within one integration step. A force applied to one end of the thread with N
elements will affect the element on the other end after N integration steps. In
the simulation many of such interactions are needed for an equilibrium to be found.
For these reason using an explicit integrator causes the simulation to only converge
very slowly into stable situation such as knots. The implicit integration introduced
in the next section addresses these problems.

3.2.2. Implicit Integration

.

To enforce the length constraint of the thread Bergou et al. [13] project the thread
to a configuration that is similar to the current configuration where the constraint
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Figure 3.4.: Overshooting of a one dimensional system with a stiff spring. The dis-
placement of the mass point from the springs rest position results in an
oscillation behavior in time.

is fulfilled exactly after every integration step. The “Follow the leader” approach
from Brown et al. [18] enforces the constraint by moving the vertices towards each
other in such a way that it is fulfilled.

When interacting with other objects an approach where the position of the vertices
is corrected to fulfill the length constraint can lead to problems. The new position of
the vertices can conflict with other constraints, such as non-penetration constraints.
This is undesirable because often other constraints are difficult to correctly reinstate
once they have been violated. Also it is unclear how forces for contacts with other
objects could be calculated. To the knowledge of the author, there is no position
correction that ensures no conflict with other constraints and still enforces the length
constraint if the thread is known.

A force based approach pushed the system towards a configuration where the
length constraint is satisfied. But it does not enforce it exactly. When the length
constraints conflicts with other constraints (such as non-penetration) the thread
pushes the system in the correct direction without the need to violate any other
constraints. The problem with force based approaches are instabilities due to stiff
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3.2. Numerical integration

forces, as described in the section above.

Implicit integration has been used to make a variety of stiff systems stable (e. g.
[10] and [30]). The idea is to use the force at the next time step instead of the
current. So ~F (~x(t + ∆t) is used instead of ~F (~x(t)). The term “implicit” – in
contrast to “explicit” – underlines the fact, that the force at the next time step
is not known in advance (because it depends on ~x(t + ∆t)). Instead it becomes a
variable in the calculation. Here a short example will be given before jumping into
the mathematical details of implicit integration.

Consider the example of the one dimensional spring introduced above and illus-
trated in figures 3.3 and 3.4. When the force accelerating the mass point is the force
at the final position, it can only accelerate the mass point towards the springs rest
position if it is not crossed by the mass point. If, on the other hand, the mass point
crosses the rest point, the force is directed opposite to its velocity, thereby reducing
the energy of the system. This is of course only an illustrative example, for a more
general proof that implicit integration is stable consult appendix A.

While implicit integration can deal with extreme spring constants, it requires
solving a square matrix of size N (N being the number of involved vertices). The
thread should have vertices making such a matrix solution unfeasible. For implicit
integration it is needed to solve this matrix because it sets forces acting on vertices
depending on the next position of interacting vertices. In the case of the springs in
the thread, only neighboring vertices are interacting. As will be shown this leads to
a banded matrix solvable in linear time.

For the integration an explicit integration scheme – which will be transformed to
an implicit one – with an update rule of the positions, which yields the following
form has to be given:

∃a(t) ∈ RF and B(t) ∈ RF × RF where Bi,j(t) = 0 for i 6= j such that

∆x(t) := x(t+ ∆t)− x(t) = a(t) +B(t) · F (x(t)) (3.28)

Where ∆t is the time step. x represents the degrees of freedom in the system and F
its number of dimensions. An example would be the position of vertices in 3D space
(with 3 degrees of freedom for every vertex). x will sometimes be a spatial variable
but it can also be a variable for other degrees of freedom, or a mixture of both. B(t)
must be a diagonal matrix. Interaction between the degrees of freedom are modeled
through F . When all degrees of freedom are treated equally, B(t) degenerates to a
scalar. Most integration procedures fulfill this requirement.
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To give an example, the Euler-Cromer method sets a(t) and B(t) to

a(t) =

~v1(t)
~v2(t)

...

∆t B(t) =

1/m1

1/m2
...

∆t2.

Again, for reasons of readability the parameter t will be omitted where the mean-
ing is clear, that is, without ambiguity.

To transform (3.28) to an implicit integration scheme, F (x(t)) is replaced with
F (x(t+ ∆t)):

∆x(t) = a(t) +B(t) · F (x(t+ ∆t)) (3.29)

Since this position is the outcome of the calculation, it is not known in advance.
The trick is to approximate the forces by a Taylor expansion around x(t) yielding
an approximation for F (x(t+ ∆t) in dependence of ∆x(t):

F (x(t+ ∆t)) ≈ F (x(t)) +

N∑
j=1

∂F i(x(t))

∂xj(t)
∆xj(t)

Putting this back into (3.29) the substitution yields the equation that needs to be
solved by the implicit integration.

∆x(t) = a(t) +B(t)

(
F (x(t)) +

∂F (x(t))

∂x(t)
·∆x(t)

)
⇒

(
1−B(t)

∂F (x(t))

∂x(t)

)
∆x(t) = a(t) +B(t) · F (x(t)) (3.30)

If ∂F (~x(t))
∂x(t) takes any general form, then solving a linear system of size N is required,

which is not feasible for a real time simulation. But for the thread there is an
observation that reduces the computational burden significantly. It turns out that
the forces on the degrees of freedom of a vertex only depend on the degrees of
freedom of the neighboring vertices and on their neighbors.

As for every vertex there is an x,F ,a and B indexes are needed to delineate each
vertex. This is noted adding an index i the i-th vertex (for example x)i, F i). Now
(3.30) can be rewritten to

Di∆xi +O+
i ∆xi+1 +O++

i ∆xi+2 +O−i ∆xi−1 +O−−i ∆xi−2 = ai +BiF i (3.31)
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where

Di := 1−Bi
∂F i

∂xi
(3.32)

O+
i := −Bi

∂F i

∂xi+1
O++
i := −Bi

∂F i

∂xi+2
(3.33)

O−i := −Bi
∂F i

∂xi−1
O−−i := −Bi

∂F i

∂xi−2
. (3.34)

(3.35)

The thought behind this notation is the following: The + in O+
i indicates that

it is the relation to the next vertex. The ++ indicates the relation to the vertex
following the next vertex. Analogous to the above the − in O−i indicates the relation
to the previous vertex just as −− indicates the relation to the vertex previous to
the previous vertex.

(3.32) - (3.34) can be expressed as:

M∆x = a+BF (3.36)

where

M :=


D1 O+

1 0 0 . . .
O−2 D2 O+

2 0 . . .
0 O−3 D3 O+

3 . . .
...

...
...

...
. . .

 B :=

B1 0 . . .
0 B2 . . .
...

...
. . .


The matrix M is a banded matrix. If every vertex has n degrees of freedom the

matrix has 3n − 1 bands. This allows the system for being solved in linear time
using LU decomposition [114].

3.3. Internal Forces

For the physical simulation the internal forces acting on the thread must be calcu-
lated. The integration scheme requires knowing the forces and their derivatives with
respect to all degrees of freedom. The first step will be to determine the relevant
degrees of freedom.

The different types of forces modeled here have already been presented in the
choice of energies done in section 3.1.1. These are stretching, bending and torsion
forces. Given an energy E, the force on a degree of freedom x is given by

Fx := −∂E
∂x

When calculating the derivatives of these forces, there are some caveats one has
to take care of. The problematic situations are illustrated in section 3.3.3.
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3.3.1. Preliminary Calculations

Some calculations are often needed so abbreviations will be introduced here as the
forces are derived. These abbreviations are summarized below.

The tensor product of a vector with itself is needed quite often. A shorter notation,
defined by

T (~x) := ~x · ~xT

will be used.
The derivative of the tangent norms occur on numerous places:

∂|~si|
∂~pi

= −~ti

∂|~si|
∂~pi+1

= ~ti

And so do the derivatives of the tangents them self:

∂~ti
∂~pi

=
−1|~si|+ ~si~t

T
i

|~si|2
=
T
(
~ti
)
− 1

|~si|
∂~ti
∂~pi+1

=
1|~si| − ~si~tTi
|~si|2

=
1− T

(
~ti
)

|~si|

The derivative of the cross product with respect to one of its components is:

∂

∂~x
(~x× ~y) =

 0 y3 −y2

−y3 0 y1

y2 −y1 0

 =: [~y]

For a given ~y, [~y] has the property, that for any vector ~z:

[~y] · ~z = ~z × ~y

3.3.2. Degrees of Freedom

The positions ~pi, 1 ≤ i ≤ N of the vertices describing the discretized center line of
the thread are degrees of freedom that have to be integrated.

Another degree of freedom is needed to model the twist of the thread. One
possible choice would be to use would be the angle between the Bishop frame and
the material frame. In the following this will be called the the twist angle. But this
choice is not elegant: This degree of freedom is associated with segments as opposed
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to vertices. This causes an asymmetry. It cannot be paired one by one with the
positional degrees of freedom because it is not associated with vertices. Angles can
be defined for the vertices by averaging the angles of adjacent segments. Also, as
stated before, the angle is arbitrary under a constant offset. This is not a problem
per se, but nice if it can be avoided.

By taking the difference of the twist angle of adjacent segments which is associated
with every vertex, the author of this thesis feels this is a more natural way of
determining the degree of freedom describing the twisting behavior of the thread.
The delta angle has already been introduced in (3.23) and is denoted by δΦi.

With this notation the inelegance described above is avoided. However, this intro-
duces another situation one has to be aware of. The positional degrees of freedom
are independent of each other, which means

∂~pi
∂~pj

= 0 for i 6= j.

But the δΦi are not. The Φ(si) in (3.23) are independent, allowing to find the
dependence of the δΦi.

∂(δΦi)

∂(δΦj)
=


1 if i = j

−1 if i = j − 1 or j = i− 1

0 otherwise

(3.37)

As discussed later, the twist can also be excluded from the implicit integration.
For this the “quasi static updated” from Bergou et al. [13] is done prior to an
integration step.

The forces are found by deriving the discrete energies with respect to the degrees
of freedom. Most of the energies are independent of the twist. In these cases only
the positions of the vertices are relevant and the forces will be derived as if these
would be the only degrees of freedom.

3.3.3. Problems when calculating the derivatives of the forces

In 3.30 the force is approximated in the neighborhood of x(t) using a first order
Taylor expansion. It is assumed that this approximates the force at the next posi-
tion x(t+ ∆t) well. The values needed for the integration in (3.32)-(3.34) are found
with the help of the derivatives of F . It is important to remember, that the goal
of the Taylor expansion is not to improve accuracy but stability and thereby visual
plausibility. It assumes that a linear approximation of the force describes it accu-
rately in the neighborhood of x(t). A first order approximation of the force leads to
a second order approximation of the related energy potential.
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But certain types of forces lead to badly formed first order approximation causing
unstable or incorrect behavior of the system. For very small steps, the first order
Taylor expansion is always good, but when the system makes wider steps the ap-
proximation can be completely wrong. Often the incorrect approximation for wider
steps is the cause of the system making this big step in the first place.

When finding the values for (3.32)-(3.34), ∂F
∂x is good most of the times. But

when it is not, it must be modified to describe the force around x(t) better. Here
two problematic cases that occur during derivation of the forces on the thread are
described.

Problems with 1/|~si|

When deriving the bending forces in section 3.3.5, terms like ~ti+1/|~si| occur (remem-
ber the definition of ~si and ~ti+1 from (3.19) and (3.20)). This means the force along
~ti+1 is reduced, when the i-th segment is stretched.

In Figure 3.5 the effect on the force along ~ti+1 in dependency of |~si| is shown.
Also the linear approximation is displayed.

0

a

F
or

ce

|~si|

F = 1/|~si|
Linear appoximation of F

Appoximation with |~si| = const

Figure 3.5.: Linear approximation of 1/|~si|.

This approximation makes the algorithm assume, that at |~si| = a (see figure 3.5)
the effect on the force in direction ~ti vanishes, and worse, for |~si| > a is even negative.

36



3.3. Internal Forces

This is completely wrong. This is the primary problem, namely, the need to believe
that the simulation is describing plausible physical behavior.

Another linear approximation for the force must be found. A simple solution
is to assume that |~si| does not change during the time step making it a constant.
This simple adjustment leads to an approximation that makes the system stable and
plausible again.

Figure 3.5 also shows this new approximation of ~F . It is qualitatively better –
meaning that it leads to better results – has already been explained. Figure 3.5
illustrates that it is quantitatively a good fit, meaning how close it is to the correct
solution.

Problems with local maxima

Imagine an energy potential having a local maximum at x(t) as illustrated for a one
dimensional case with one mass point which position is described by x in figure 3.6.

x(t)

P
ot

en
ti

al
E

n
er

gy

Position x

Potential
Apprxoimated potential

Figure 3.6.: Approximation of potential with local maximum.

Approximating the force linearly results in a quadratic approximation of the po-
tential, as also shown in figure 3.6. This should immediately give one a bad feeling,
because this quadratic potential results in a repulsing force growing with distance.
If ones examines (3.29) for the one dimensional case (for simplicity here a(t) = 0 is
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Figure 3.7.: Graphical solution of (3.29) for attractive and repulsive potentials. The
solution of the equation is where b · F intersects with ∆x

assumed) one finds that the equation can be solved graphically. Both sides of (3.29)
are plotted in dependency of ∆x. The left side simply becomes the identity while
the right side becomes a straight line with slope B(t) · ∂F∂x . B(t) is assumed to be
positive. The solution of (3.29) is, where the two lines intersect.

The situation is illustrated for an attractive and a repulsive local approximation
of the energy potential in figure 3.7. If it is attractive (meaning the parabola is open
to the top), the slope of the right hand side term is negative and the intersection
is close to ~x(t). But in case of the repulsive potential, the slope is positive and the
intersection can be very far from ∆x = 0 causing the system to jump. Looking
back at 3.6, at a position far from ∆x = 0, the potential is again strongly attractive
towards the original position x and the quadratic potential is too. So the mass
point is moved back towards it’s original position where the process starts again.
This process describes an oscillating behavior which is undesirable.

To avoid this problem it should always be guaranteed that the approximation of
the energy potential is attractive.
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3.3.4. Stretching Forces

The stretching forces are easily found by deriving (3.21) with respect to the degrees
of freedom. Since it is independent of the twist, only the derivative with respect to
the positions are needed. To find the forces first the derivatives of the individual
summands are deduced:

~S−i :=
∂

∂~pi

(
li−1

l

(
|~si−1|
li−1

− 1

)2
)

=
2

l

(
|~si−1|
li−1

− 1

)
~ti−1

~S+
i :=

∂

∂~pi

(
li
l

(
|~si|
li
− 1

)2
)

= −2

l

(
|~si|
li
− 1

)
~ti

The stretching forces are than easily found:

~FS1 = −kS
2
~S+

1

~FSN = −kS
2
~S−N

~FSi = −kS
2

(
~S+
i + ~S−i

)
for 1 < i < N

The derivatives of these forces are found by deriving ~S−i and ~S+
i . Here only the

non-vanishing terms are listed.

∂~S−i
∂~pi−1

=
2

l

[
−~ti−1

li−1
· ~tTi−1 +

(
|~si−1|
li−1

− 1

)
·
T
(
~ti−1

)
− 1

|~si−1|

]
= − 2

l · li−1

[
1 + ui−1

(
T
(
~ti−1

)
− 1
)]

(3.38)

∂~S−i
∂~pi

=
2

l · li−1

[
1 + ui−1

(
T
(
~ti−1

)
− 1
)]

= −
∂~S−i
∂~pi−1

(3.39)

∂~S+
i

∂~pi
=

2

l · li
[
1 + ui

(
T
(
~ti
)
− 1
)]

(3.40)

∂~S+
i

∂~pi+1
= − 2

l · li
[
1 + ui

(
T
(
~ti
)
− 1
)]

= −
∂~S+

i

∂~pi+1
(3.41)
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with ui := li/|~si|. (3.38)-(3.41) allows one to write the force derivatives as:

∂ ~FS1
∂~p1

= −kS
2

∂S+
1

∂~p1

∂ ~FS1
∂~p2

= −kS
2

∂S+
1

∂~p2

∂ ~FSN
∂~pN

= −kS
2

∂S−N
∂~pN

∂ ~FSN
∂~pN−1

= −kS
2

∂S−N
∂~pN−1

∂ ~FSi
∂~pi−1

= −kS
2

∂S−i
∂~pi−1

1 < i < N

∂ ~FSi
∂~pi

= −kS
2

(
∂S−i
∂~pi

+
∂S+

i

∂~pi

)
1 < i < N

∂ ~FSi
∂~pi+1

= −kS
2

∂S+
i

∂~pi+1
1 < i < N

Again, only the non vanishing terms are shown.

Ensuring Stability: The reason the ui has been extracted in (3.38)-(3.41) is that
there is a special case causing instability which can be avoided by redefining ui. To
illustrate the problem let ~v be a normalized vector perpendicular to ~ti. Then

∂S+
i

∂~pi
~v =

2

l · li
[
1 + ui

(
T
(
~ti
)
− 1
)]
~v =

2

l · li
[~v + ui (−~v)] =

2

l · li
(1− ui)~v

This means that ~v is an eigenvector of
∂S+

i
∂~pi

whose eigenvalue is negative if ui > 1.

A negative eigenvalue of
∂S+

i
∂~pi

causes
∂ ~FS

i
∂~pi

to have a positive eigenvalue which means
that the corresponding potential is repulsive in the direction of the corresponding
eigenvector. This causes the instability problems described in section 3.3.3. The
problem can be avoided by ensuring that ui is always smaller than or equal to 1,
which has been guaranteed by redefining ui to

ui := min

(
li
|~si|

, 1

)
.

ui then only deviates from it’s physical value, when the thread is compressed which
rarely happens during the simulation.

3.3.5. Bending forces

The discretized bending energy in (3.22) involves the angle Θi between adjacent
segments. Assuming this angle is small, it is approximated by the distance between
the tangents of the corresponding segments (see figure 3.3.5):

Θi ≈
∣∣~ti − ~ti−1

∣∣ 1 < i < N
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~ti

~ti−1

Θi

~ti − ~ti−1

Figure 3.8.: Approximating Θi with ~ti − ~ti−1.

Note that Θi is not defined for the outermost vertices since no bending can be
defined there.

Remembering the meaning and relation of the values on segments adjacent to Θi

and those belonging to Θi can be confusing. For guidance, figure 3.9 illustrates all
quantities involved.

~pi−2

~ti−2

~ti−1 ~ti

~ti+1

~pi−1

~pi

~pi+1

~pi+2

Θi−1

Θi

Θi+1

Figure 3.9.: Important quantities when deriving the bending energy.

Similar to the derivation of the stretching forces, first the individual terms in
(3.22) – which are the squared values of Θi – are derived. For Θi+1 the calculation
is:

A+
i :=

1

2

∂Θ2
i+1

∂~pi
=

(
1− T

(
~ti
)

|~si|

)(
~ti+1 − ~ti

)
≈
~ti+1 − ~ti
|~si|

1 ≤ i < N − 1
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A+
i :=

~ti+1 − ~ti∣∣~si∣∣ 1 ≤ i < N − 1 (3.42)

The last approximation is again based on the assumption, that ~ti and ~ti+1 are
similar, which implies ~ti · ~ti+1 ≈ 1. This means

(
1− T

(
~ti
)) (

~ti+1 − ~ti
)

=
(
~ti+1 − ~ti

)
−
((
~ti · ~ti+1

)
~ti − ~ti

)
,≈
(
~ti+1 − ~ti

)
justifying the approximation in (3.42).

Analogously one gets:

A−i :=
1

2

∂Θ2
i−1

∂~pi
=
~ti−1 − ~ti−2∣∣~si−1

∣∣ 2 < i ≤ N (3.43)

Ai :=
1

2

∂Θ2
i

∂~pi
=
(
~ti−1 − ~ti

)
·

(
1∣∣~si∣∣ +

1∣∣~si−1

∣∣
)

= −
(
A+
i−1 +A−i+1

)
1 < i < N (3.44)

For the bounds be aware that Θ1 and ΘN are not defined.

The bending forces are defined in terms of A−i , Ai and A+
i . The general form is:

~FBi := −∂E
B

∂~pi
= − ∂

∂~pi

N−1∑
j=2

Θ2
j .

This yields:

~FB1 = −kBA+
1

~FB2 = −kB
(
A2 +A+

2

)
(3.45)

~FBN = −kBA−N ~FBN−1 = −kB
(
AN−1 +A−N−1

)
~FBi = −kB

(
A−i +Ai +A+

i

)
2 < i < N − 1

For the integration scheme, the derivatives of this force with respect to ~pj are
needed.
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∂A−i
∂~pi−2

=
1− T

(
~ti−2

)∣∣~si−1

∣∣ |~si−2|
2 < i ≤ N (3.46)

∂A−i
∂~pi−1

=
1∣∣~si−1

∣∣
(
T
(
~ti−1

)
− 1

|~si−1|
+
T
(
~ti−2

)
− 1

|~si−2|

)
2 < i ≤ N (3.47)

∂A−i
∂~pi

=
1− T

(
~ti−1

)∣∣~si−1

∣∣ |~si−1|
2 < i ≤ N (3.48)

∂A+
i

∂~pi+2
=

1− T
(
~ti+1

)∣∣~si∣∣ |~si+1|
1 < i < N (3.49)

∂A+
i

∂~pi+1
=

1∣∣~si∣∣
(
T
(
~ti+1

)
− 1

|~si+1|
+
T
(
~ti
)
− 1

|~si|

)
1 < i < N (3.50)

∂A+
i

∂~pi
=

1− T
(
~ti
)∣∣~si∣∣ |~si| 1 < i < N (3.51)

The remaining terms for A−i and A+
i vanish. The terms for Ai follow from (3.44).

The derivatives of the bending forces are now found by inserting (3.46) - (3.51) into
(3.45).

3.3.6. Torsion forces

So far the derivatives of the energies with respect to δΦi have been omitted. This is
justified by the fact that all but the twisting energy are functions of only ~pj , which
are not seen as functions of δΦi. In other words:

∂~pj
∂δΦi

= 0

Changing δΦi changes the material frame, but only by rotating it around ~tj which
does not affect any of the vertex positions.

The discretized energy for the twisting forces on the other hand is a function of
δΦi. While the derivatives between the δΦi are given in (3.37), the derivatives with
respect to the vertex positions are a bit more complicated. How does δΦi change
when ~pj changes? The question involves asking how the Bishop Frame moves with
~pj .

Bishop frame and parallel transport

To define the twisting energy for the discrete case, the notion of parallel transport is
needed. The idea and formalism of using parallel transport for the twisting energy
is taken from Bergou et al. [13].
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Recall the Bishop frame section 3.1.1. It was defined by having vanishing torsional
energy, which reduces the Darboux vector to

~ΩB(s) := −ω2(s) ~M1(s) + ω1(s) ~M2(s).

A material frame is assigned to every segment. For the smooth case the twisting
energy depends on the angle between the Bishop frame and the material frame. This
angle is also needed in the discretized case. Parallel transport will play an important
role in finding it. The piece-wise linear discretized center line is smoothed at it’s
kinks (the vertices) by a circle segment which continuously merges into the segments
on each side of the kink. The radius of the circle segment is not important because
it will turn out that the result is independent of it. The only condition on the radius
is that adjacent circle segments do not overlap. This can be guaranteed by ensuring
that circle segments do not intersect with the midpoints of the connected segments
(see figure 3.10).

~pi

~pi+1

si+1
si

si−1

Figure 3.10.: The transition between adjacent segments is smoothed with circle
segments.

First the transportation of the Bishop Frame will be analyzed. For the straight
part of the segments, the Darboux Vector vanishes and the Bishop frame is constant.
Let ~v be a vector in the Bishop Frame on the i-th segment. Let further {si|1 ≤ i <
N, si ∈ [0, 1]} denote the parameter s at the midpoints of the segments. Note that
~ti = ~T (si) and ~ti+1 = ~T (si+1).

The parallel transport operator Pi transforms ~v into the Bishop frame of the
(i+ 1)-th Segment (see figure 3.11). It is defined in such a way that Pi(~v) expressed
in the Bishop frame of the (i + 1)-th segment is the same as ~v expressed in the
Bishop frame of the i-th segment.
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Pi

Figure 3.11.: Parallel transport of the material frame form one segment to the next.
The black arrows denote the tangents ~ti and ~ti+1. The red and blue
arrows denote the remaining elements of the Bishop frame ~M0

1 and ~M0
2

respectively. The green arrow illustrates how the parallel transport Pi
transforms one Bishop frame into the next.

To find the transportation from the i-th segment to i + 1 the segment ~v is
parametrized with s such that it is always ~v transformed to the material frame
at s.

~v(s) := v1
~T 0(s) + v2

~M0
1 (s)v3

~M0
2 (s)

Equation (3.7)-(3.9) define a differential equation for ~s:

∂~v(s)

∂s
= v1

∂ ~T 0(s)

∂s
+ v2

∂ ~M0
1 (s)

∂s
v3
∂ ~M0

2 (s)

∂s

= v1

(
ΩB(s)× ~T 0(s)

)
+ v2

(
ΩB(s)× ~M0

1 (s)
)

+ v3

(
ΩB(s)× ~M0

2 (s)
)

= ΩB(s)×
(
v1
~T 0(s) + v2

~M0
1 (s) + ~M0

2 (s)
)

= ΩB(s)× ~v(s)

So Pi(~v) is obtained by integrating

∂~v(s)

∂s
= ΩB(s)× ~v(s) (3.52)

from si to si+1 with starting value ~v(si) = ~v and setting P (~v) := ~v(si+1). The
fact that ~ΩB has no component tangential to ~T (s) combined with (3.7) implies,

that ~ΩB(s) is parallel to ~T (s) × ∂ ~T (s)
∂s and therefor always parallel to ~ti × ~ti+1.

Equation (3.52) means that ~v(s) rotates around ΩB(s) and therefore in this case
around ~ti × ~ti+1.

45



3. Theory

So Pi is a rotation around ~ti × ~ti+1. Since Pi(~ti) = ~ti+1, Pi must be a rotation
by the angle between the i-th and (i+ 1)-th segment. Intuitively this result makes
sense, since the Bishop frame is supposed to be twist free and Pi transforms the
material frame without rotating ~M1 and ~M2 around ~T .

Pi is known as the parallel transport from ~ti to ~ti+1 along a geodesic of the unit
sphere. This notion will play an important role in the next section.

The derivative of δΦi with respect to ~pj

The goal of the following section is to derive an expression for the derivative of the
twist angle with respect to the Cartesian coordinates of the vertices. This will be
done utilizing parallel transport. The idea of finding the derivative of the twist angle
with the help of parallel transport is taken from [13]. They use holonomy to find
the derivative. Here a different geometric approach is given, but the results are the
same.

Assume two adjacent segments with tangents ~tn−1 and ~tn. In a following time
step the end vertex of the second segment moves yielding a new tangent ~t′n for the
segment. How much did the twist angle δΦn between the segments change by this
movement?

As always, the movement of the vertex is assumed to be linear. So the tangent
moves in the plane spanned by ~tn and ~t′n. Since it is always normalized its movement
is a rotation around the normal of the plane. This normal is proportional to ~tn×~t′n.
The material frame is therefore transformed by this rotation around ~tn×~t′n (see also
[13]). Figure 3.12 illustrates this.

~pn−1
~pn’

~pn

~tn

~t′n

~tn × ~t′n

Figure 3.12.: Following the movement of ~pn to ~p′n, ~tn rotates onto ~t′n.

The twist angle before the movement is given by the angle between the material
frame of the n-th segment and the material frame of th (n−1)-th segment transported
onto the n-th segment via parallel transport. After the movement it is given the
same way, but with the moved n-th segment (which now has the tangent ~t′n).

The change of the twist angle is thus given by the difference between these angles.
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It can therefore be found by parallel transporting the material frame of the n-th
segment from ~tn−1 onto ~tn. From there the change of the tangent corresponds to
the parallel transport from ~tn to ~t′n. Repeating the process, but directly from ~tn−1

to ~t′n (without the extra stop on ~tn) and measuring the angles between the resulting
frames yields the desired change of twist angle.

The same result is obtained when the material frame of the (n− 1)-th segment is
parallel transported from ~tn−1 onto ~tn, from there into ~t′n and back onto ~tn−1. In
this case the change of twist angle is the angle between the original material frame
and the transported one.

Since the parallel transport always transforms the tangent of a segment into the
tangent of the target segment, the angle ∆δΦn is a rotation around ~tn−1. It is not
required to parallel transform the whole material frame. Using any vector orthogonal
to ~tn−1 yields the same result.

Let Pn−1,n be the parallel transport operator from ~tn−1 to ~tn and P ′n−1,n from
~tn−1 to ~tn. P∆~pn is the parallel transport for the transition from ~tn to ~t′n. If ~m is a
vector orthogonal to ~tn−1, the change of the twist angle ∆(δΦn) is the angle between
~m and ((P ′n−1,n)−1 ◦ P∆xn ◦ Pn−1,n)(~m).

Figure 3.13(a) and 3.13(b) should support intuition by giving two examples. One
example where the change of ~pn+1 does not change the twist angle, and one where
it does.

An alternate perspective on this, is the parallel transport along geodesics on the
surface of a unit sphere. ~tn−1,~tn and ~t′n build a triangle which has geodesics as sides
(see figure 3.14). ~m is tangent to the surface of the triangle at ~tn−1. Transporting
it around the triangle will result in ~m being rotated by the desired angle ∆(δΦn).
The case in figure 3.13(a) would correspond to a degenerated triangle, where ~tn−1,
~tn and ~t′n are located on the same geodesic.

From the differential geometry of a sphere, it is known that this angle is indepen-
dent of the original orientation of ~m (as long as it is tangent to the spheres surface),
which is in agreement with ∆(δΦn) being independent of ~m.

Let ~e1, ~e2, ~e3 with

~e1 :=
~tn−1 × ~tn∣∣~tn−1 × ~tn

∣∣
~e2 := ~tn

~e3 := ~e1 × ~e2

be an orthonormal coordinate system and ∂1, ∂2, ∂3 the directional derivatives along
the corresponding axis. Using these ∂δΦn

∂~pn+1
can be written as:

∂(δΦn)

∂~pn+1
=

3∑
i=1

~ei∂i(δΦn) (3.53)
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1&4

2 3

~tn−1

~t′n

~tn

∆(δΦn) = 0

(a) Without Torsion

~tn−1

~t′n
~tn

1

23

4 ∆(δΦn)

(b) With Torsion

Figure 3.13.: Two cases of parallel transport to calculate the change in the twist
angle. The red arrow denotes a vector parallel to the tangents that is
parallel transported. The numbers denote the steps. From ~tn−1 (1) to
~tn (2) to ~t′n (3) and back to ~tn−1 (4).
Left: The n-th segment moves, such that ~tn, ~t′n and ~tn−1 are in a
plane. All parallel transports are rotations around the normal of this
plane. When the transported vector is returned to ~tn−1, it is the same
as the original. Therefore the twist angle has not changed.
Right: The n-th segment is moves outside of the plane. When the vec-
tor is parallel transported back to ~tn−1, it has an angle to the original
vector. This angle is ∆(δΦn).

When moving ~pn+1 in the ~e2 direction, ~tn does not change. Thus ∂2(δΦn) vanishes.
A movement in ~e3 direction would yield a degenerated triangle (this is the case
pictured in figure 3.13(a)). Therefore ∂3(δΦn) also vanishes leaving ∂1(δΦn) to be
solved.

When ~pn+1 is moved along ~e1, ~tn rotates around a geodesic which is perpendic-
ular to the geodesic through ~tn and ~tn−1. Figure 3.15 pictures the situation and
introduces the angles α, β, a, b and c.

The position of ~t′n when moving along ~e1 is completely described by the angle b.

Therefore ∂(δΦn)
∂b |b=0 can be factored out from ∂1(δΦn)|b=0 using the chain rule:

∂1(δΦn) =
∂(δΦn)

∂b
∂1b

∣∣∣∣
b=0

=

(
lim
b→0

∆(δΦn)

b

)
∂1b|b=0 =

(
lim
b→0

∆(δΦn)

b

)
1

|~sn|

As stated above ∆(δΦn) is the rotation of a vector when parallel transported
around the triangle in 3.15. This is a quantity known in differential geometry as
the angle deficit and is equal to the difference between the sum of the angles in the
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~tn−1

~tn’
~tn

Figure 3.14.: Geodesic triangle formed by ~tn−1, ~tn and ~t′n

~e1

~e3

α

β

a

b

c

~tn ~t′n

~tn−1

Figure 3.15.: Right triangle on the surface of a sphere, defining a, b, c, α and β. This
picture corresponds to a situation where ~pn+1 is moved in ~e1 direction.

triangle and π.

∆(δΦn) = π − π

2
− α− β =

π

2
− α− β

⇒ lim
b→0

∆(δΦn)

b
= lim

b→0

π/2− α− β
b

= − lim
b→0

α− α |b=0

b
− lim
b→0

β − β |b=0

b

=− ∂α

∂b

∣∣∣∣
b=0

− ∂β

∂b

∣∣∣∣
b=0

Note that α |b=0= π/2 and β |b=0= 0 has been used here.
For a right triangle on a sphere it holds that:

sin(b) = tan(a) · cot(α) (3.54)

sin(a) = tan(b) · cot(β) (3.55)
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Since a is independent of b, it follows from (3.54) that:

∂

∂b
sin(b) = tan(a) · ∂

∂b
cot(α)

⇒ cos(b) = tan(a)
−1

sin2(α)

∂α

∂b

⇒ ∂α

∂b

∣∣∣∣
b=0

=
−1

tan(a)
.

An analog calculation on (3.55) yields:

∂β

∂b

∣∣∣∣
b=0

=
1

sin(a)

Therefore:

∂(δΦn)

∂b

∣∣∣∣
b=0

= lim
b→0

∆(δΦn)

b
=

1

tan(a)
− 1

sin(a)
= − tan(a/2) (3.56)

Putting it all together:

~T+
n :=

∂(δΦn)

∂~pn+1
= − tan(a/2)~e1

1

|~sn|
=

1

|~sn|
~Kn

~Kn :=
~tn × ~tn−1

1 + ~tn−1 · ~tn
For the last transformation the addition theorems for trigonometric functions have

been used.
For the derivative with respect to ~pn−1 the situation is symmetric.

~T−n :=
∂(δΦn)

∂~pn−1
=

1

|~sn−1|
~Kn

For the derivative with respect to ~pn be aware that δΦn only depends on ~pn−1, ~pn
and ~pn+1 via ~tn−1 and ~tn. Therefore:

~Tn :=
∂(δΦn)

∂~pn
=
∂(δΦn)

∂~tn

∂~tn
∂~pn

+
∂(δΦn)

∂~tn−1

∂~tn−1

∂~pn
=
∂(δΦn)

∂~tn

(
− ∂~tn
∂~pn+1

)
+
∂(δΦn)

∂~tn−1

(
− ∂

~tn−1

∂~pn−1

)
=

= −
(
∂(δΦn)

∂~pn−1
+
∂(δΦn)

∂~pn+1

)
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Torsion Forces

With these results finding the derivatives of (3.24) is trivial. The assumed degrees
of freedom are

xi =

(
~pi
δΦi

)
.

The torsion forces are:

F T
i = −k

T

2

∂ET

∂xi
= −kT

(
δΦi−1

~T+
i−1 + δΦi

~Ti + δΦi+1
~T−i+1

−δΦi−1 + δΦi − δΦi+1

)
(3.57)

As with all forces, the derivatives with respect to the degrees of freedom are needed
for the implicit integration. The simplest derivative is with respect to δΦj :

∂F T
i

∂δΦj
= kT

∂δΦi

∂~pj

The derivatives with respect ~pj involves deriving the ~T−i ,
~T+
i and ~Ti. These deriva-

tives are found trivially when the derivatives of ~Ki are known.

∂Ki

∂~pi−1
=
∂~si−1

∂~pi−1

∂

∂~si−1

~si × ~si−1

|~si||~si−1|+ ~si~si−1

=
∂

∂~si−1

~si−1 × ~si
|~si||~si−1|+ ~si~si−1

=
[~si] (|~si||~si−1|+ ~si~si−1)− (~si−1 × ~si)

(
~ti−1|~si|+ ~si

)T
(|~si||~si−1|+ ~si~si−1)2

=
[~si] + ~Ki

(
~ti−1|~si|+ ~si

)T
|~si||~si−1|+ ~si~si−1

.

The derivative with respect to ~pi+1 works analogously:

∂Ki

∂~pi+1
=

∂~si
∂~pi+1

∂

∂~si

~si × ~si−1

|~si||~si−1|+ ~si~si−1

=
[~si−1] (|~si||~si−1|+ ~si~si−1)− (~si × ~si−1)

(
~ti|~si−1|+ ~si−1

)T
(|~si||~si−1|+ ~si~si−1)2

=
[~si−1]− ~Ki

(
~ti|~si−1|+ ~si−1

)T
|~si||~si−1|+ ~si~si−1

.
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The last missing derivative can be solved with the already known solutions:

∂ ~Ki

∂~pi
=
∂~si
∂~pi

∂ ~Ki

∂~si
+
∂~si−1

∂~pi

∂ ~Ki

∂~si−1
= −

(
∂

∂~pi+1
+

∂

∂~pi−1

)
~Ki.

3.4. Coupling the thread with the outer world

For the thread to interact with the simulated physical world around it, it has to
somehow couple with other objects. The implicit integration allows two types of
coupling which can be applied depending on the nature of the interaction.

First the ideas behind these types of couplings are introduced. Later their appli-
cation to a concrete scenario is explained.

The first type of couplings constraints vertices to a position inhibiting any move-
ment but a prescribed one. This is useful when a vertex is held fixed or due to some
other reason constrained to a given position. The second kind of coupling is done
by applying forces that vanish when certain constraints are fulfilled. For example,
when the thread has moved from the inside to the surface of a solid object.

3.4.1. Constraining vertices to positions

When the thread is grasped by forceps, it is assumed that the external force applied
by the instrument is strong enough to hold the vertex at the position dictated by
the forceps’ position.

Assume the n-th vertex is grabbed. Let D be the set of indices that correspond to
the positional degrees of freedom of the n-th vertex (e. g. ~pn = (xd1 ,xd2 ,xd3) and
D = {d1, d2, d3}). Then the constraint is enforced by overwriting Bi(t) and ai(t)
from (3.28) with

Bi(t) = 0 ai(t) = xdest,i − xi(t)

for all i ∈ D. xdest,i denotes the position to which the mass point should be con-
strained. The new values for these degrees of freedom will be:

xi(t+ ∆t) = xi(t) +Bi · F i(t,x(t+ ∆t)) + ai = xi(t) + ai = xdest,i

as was required. Of course other degrees of freedom, not describing the position,
can also be constrained this way.

3.4.2. External forces

A common approach to prevent object penetration are penalty forces (see e. g.
[59, 29]). The idea is to apply a force proportional to the penetration depth. Unfor-
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tunately these are difficult to use for interactions with the thread. When suturing
the tissue the stress on the thread is big.

The tissue of the blood vessels are simulated using a tetrahedral mesh which is
explained by Sismanidis [102]. To prevent the thread from completely penetrating
the mesh the proportionality factor for the penalty forces has to be very large. On
the other hand, there are situations in which the thread touches the tissue without
being pulled and held against the mesh. A high penalty force results in the thread
jumping away from the mesh in these situations.

Luckily the implicit integration of the thread provides a tool for better dealing
with this situation. It allows for applying forces to the thread which are linear in the
position of the thread’s vertices. When a vertex penetrates the tissue or some other
object, a very large force can be applied that is linear to the penetration depth and
vanishes at the obstacle’s surface. This way the thread is pushed to the surface but
no further and the non-penetration condition can be maintained almost exactly.

As an example, assume a plane defined by

P := {~p| (~p− ~p0) · ~n = 0}.

with ~n, ~p0 ∈ R3, |~n| = 1.
The force

~FP (~pn) := −α · ~np · [(~pn − ~p0)~np] (3.58)

increases with the distance of ~pn to P and is always directed from ~pn to the closest
point on P . It is also linear in ~pn and can therefor be applied exactly in the implicit
integration.

The idea is still very similar to the concept of penalty forces, but while penalty
forces require subtle fine tuning to avoid overshooting as well as unresolved penetra-
tion, here the factor α can be set to some high value. A high value ensures that the
thread escapes the collision partner even if the force with which it is pressed against
it is high. But since the force vanishes at the surface of the object no overshooting
can occur.

Yet, there is a disadvantage: An ideal force would push the thread to the outside
of the object and vanish for any position where the thread does not penetrate the
object (or at least, with a simplification, on the other side of the plane). But
the dependence of the force on the position of the thread’s vertices is only linear
making such a force impossible. In (3.58) the force is chosen in such a way that
it attracts the vertices to the surface even if they crossed the plane. This has the
undesirable side effect, that the vertices are “glued” to the object’s surface. The
situation is easily detected by doing an integration step and determine in which
direction the resulting force points. One could remove the offending contacts and
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redo the last integration step. But since all vertices on the thread interact within
one time step, the question whether a contact is false can depend on the existence
of other contacts. One would have to redo the integration repeatedly, disabling false
contacts and (re) enabling correct contacts in between. Unfortunately reintegration
also requires recalculation of thread-thread contacts (see section 3.7) which is very
costly. Therefore reintegration is not an option.

The undesired effects and how they have been avoided is described in section 3.5.

3.5. Interaction with the Tissue

The tissue of the blood vessels are modeled using a mass spring model on a mesh.
This has been done in the work of Sismanidis [102], which is related to this work. As
the mesh represents the tissue the terms “tissue” and “mesh” are used synonymously
in this section.

3.5.1. Contact handling

For collisions and contacts of the thread with the mesh, the thread is treated as a
series of spheres located at the thread’s vertices. Since the lengths of the segments
are relatively small compared to the dimensions of the mesh, approximating the
thread in this way does not risk missing collisions. Since in a usual situation the
collisions happen with a run of vertices, the geometric situation is very similar to the
case where the thread is treated as a series of cylinders represented by the segments.

Contact detection

The tunneling of the thread with the mesh needs to be prevented. This will be
described in section 3.8 where it will be shown that the the thread can never be
inside the mesh. Therefor collision/contact detection has to be done only with the
surface triangles. The output is a set of contacts having the following properties:

• The vertex of the thread.

• The surface triangle.

• The penetration depth of the vertex sphere into the triangle.

• The penetration direction, which is the shortest distance along which the ver-
tex has to be moved to resolve the penetration.

• The collision point on the surface of the triangle, which is the last point where
triangle and vertex touch each other when the vertex is moved along the pen-
etration direction. This point is represented by it’s barycentric coordinates in
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Figure 3.16.: Collision between a surface triangle of the mesh and a vertex of the
thread. The blue arrow shows the penetration depth and direction
while the green dot is the collision point on the surface of the triangle.

the triangle. For an explanation of barycentric coordinates refer to appendix
B.1.

Figure 3.16 illustrates the situation. In the figure, the penetration direction is
aligned to the normal of the triangle. This is not necessarily the case when the
surface point is on the border of the triangle.

The algorithm for finding these properties works as follows:

1. The collision point and its barycentric coordinates are calculated by finding the
closest point on the surface of the triangle to the vertex. Finding the closest
point on the surface of triangle to a point is a known problem and described
e. g. in appendix B.4.

2. The penetration direction is the normalized vector between the vertex and the
collision point.

3. The penetration depth is the length of the vector between the vertex and
collision point plus the radius of the thread.

Contact response

Due to the implicit integration, the forces acting on the thread are not known before
the thread has been integrated. Therefore the thread has to be integrated before the
mesh. Once contacts have been found, response forces are applied to the thread as
described in section 3.4.2. The force is set to be proportional to the distance to the
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plane through the collision point with it’s normal equal to the penetration direction.
After the thread has been integrated and the forces that acted on it are known, the
opposite force is applied to the mesh.

Since forces on the mesh can only be applied to the nodes, the force on the colliding
triangle has to be distributed between the nodes of the triangle. An obvious choice
for the distribution weights are the barycentric coordinates of the collision points
(again, barycentric coordinate are explained in appendix B.1). The barycentric
coordinates are an interpolation between the nodes of the triangle. They sum to
one and are either positive or zero. At the corners of the triangle the barycentric
coordinate for the node at that corner is one while all others are zero.

A more accurate way of applying the force to the mesh would be to subdivide the
meshes triangle in such a way that a new node is created at the position where the
force is applied. The force could than be applied only to that node. The positions,
where forces are applied to the mesh, change in every simulation step. Creating
new nodes in every simulation step would result in a unfeasible overhead after a
few simulation steps. So the tissue would have to be remeshed often, removing
unnecessary nodes and creating nodes where force is applied.

For this work the approximation of applying forces proportional to the barycentric
coordinates has been found to suffice to create a visual believable behavior. As the
mesh simulation is not part of this thesis, no further investigation in more accurate
ways of applying force to the mesh has been done.

Remembering contacts from previous time steps

In a suturing situation the thread can pull the mesh together with a very strong
force. If the mesh would not constrain the thread, it could jump to a position that
is potentially inside of the mesh resulting in the thread tunneling the mesh.

But when the mesh is integrated the contact forces can move it away from the
thread so that the overlap between thread and mesh is resolved and no collision is
detected in the next time step. The contact would be removed and when the thread
is under strong stress this results in a big leap of the thread resulting in tunneling
of the mesh (see figure 3.17).

A common approach for solving this problem is to reset the last integration step,
add the contact and reintegrate. As already described in section 3.4.2 , setting
a contact affects the complete configuration of the thread after integration. The
positions of the vertices can change which means that other contacts may be needed
or that old contacts become obsolete by this change. To solve this, one would have
to repeat the process of reintegrating and adjusting contacts until no conflicting
contacts exist any longer. This requires resolving the thread-thread contacts (3.7) for
every reintegration which is computationally expensive. This approach is therefore
unfeasible for this application.
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Figure 3.17.: Schematic diagram of the thread tunneling the mesh. The thread is
depicted in red while the surface of the mesh is depicted in blue. In the
first image the thread is strongly pulled against the mesh producing a
force (green arrow) on the mesh. This force causes the mesh to moves
away from the thread removing the contact. Without the contact the
thread makes a big leap deep into the mesh in the next time step.

The solution suggested in this thesis is to keep contacts between time steps even
when thread and mesh do not overlap in the new situation. Only if the contact
forces determined by the implicit integration are “gluing” thread and mesh together
is the contact removed. This only happens when the thread is pulled away from the
mesh.

A negative side effect of this approach is, that the thread is “glued” to the mesh
for one time step when pulled away from the mesh. To avoid the mesh following the
thread, no force is applied to the mesh in these situations. Because the glue effect
exists only for one integration step, it is barely noticeable.

As mesh and thread do not only move in the normal direction of a contact, the
saved contacts have to be relocated after every integration step. The vertex of the
thread involved in the contact is kept while the corresponding point on the mesh
surface is recalculated.

The relocation is accomplished by finding the “locally closest” point to the vertex
on the surface of the mesh and setting it to the new collision point. The “locally
closest” point is found by walking to the neighboring triangle which is closest to the
colliding vertex until no neighboring triangle is closer.

1. Set t0 to the triangle where the collision point is located and p to the position
of the colliding vertex.

2. Set T := {t|Triangle t shares a corner with t0}.

3. Set t1 to the triangle in T whose minimal distance to p is the smallest.

4. If t0 = t1 then the closest triangle has been found, finish.
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5. Continue with step 2 with t0 = t1.

3.5.2. Sutures

For the purpose of the training simulation the thread in this thesis is made for, a
suture is made of two piercings through the blood vessels. The thread goes through
these piercings in such a way that when its open ends are knotted it pulls together
the blood vessels.

In a first attempt the parts of the thread in the tissue between two penetration
points have been modeled by a straight line connection between the piercing points.
In the following, we refer to this line as the “suture line”. Because of the implicit
integration it was possible to apply a force to the vertices forcing them onto the
suture line.

As a result of this approach, the thread often left the tissue almost perpendicular to
the surface. However, outside the mesh the thread is often parallel to the surface (see
figure 3.18(a)). This results in adjacent thread segments being almost orthogonal.
When a vertex is pulled outside the suture it is kept on the suture line for the
duration of the time step (see figure 3.18(b)). These extreme conditions can result
in the vertex moving further outside the mesh than desired leading to unsteady
behavior.

To resolve this problem, the thread has been “bent” away from the suture line
close to the piercing points in a direction such that the thread moves smoother away
form the mesh (see figure 3.19). This way the angle is not as sharp. Yet, maintaining
a smooth suture line proved to be difficult especially when the mesh is only a few
segment lengths thick.

For these reasons the approach introduced in the next section has been developed.

Portal Forces

The solution proposed and used in the thesis is not to have any vertices of the
thread inside the mesh. Instead the vertex directly before and after the suture are
connected through the piercing points.

The idea is reminiscent of the computer game “Portal”1. The vertices interact
through a “portal spring” that is connected by the piercing points. Figure 3.20
illustrates this. The stretching of this spring is given by the distance of the vertices
to the corresponding piercing points.

Let ~s and ~e be the piercing positions. The thread exits the mesh at ~s with ~ts and
at ~e with ~te.

Let the vertex before the suture be the i-th. Therefor the vertex after the suture
is the (i + 1)-th. To arrive at the forces for the portal spring, an energy is defined

1http://www.valvesoftware.com/games/portal.html
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(a) Thread segments close to
a penetration point

(b) Thread segment pulled
out of the mesh

Figure 3.18.: Illustration of problem with modeling a suture by a straight line.

Figure 3.19.: Thread segments in a bend suture line
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Figure 3.20.: Suture situation with “Portal spring”. The green spring connects the
vertices through the piercing points (shown in orange and blue).

similar to the energy of a regular spring. The difference is that stretching of the
spring is defined by the sum of the distances from ~s to ~pi and from ~e to ~pi+1.

EP =
kS

2

(
(~pi+1 − ~e) · ~te + (~pi − ~s) · ~ts

li
− 1

)2

(3.59)

The forces are found by deriving the energy with respect to the positions:

~FPi = −∂(EPortal)

∂~pi
= −k

S

li

(
(~pi+1 − ~e) · ~te + (~pi − ~s) · ~ts

li
− 1

)
· ~ts

~FPi+1 = −∂(EPortal)

∂~pi+1
= −k

S

li

(
(~pi+1 − ~e) · ~te + (~pi − ~s) · ~ts

li
− 1

)
· ~te

Also needed are the derivatives of these forces:

∂ ~FPi
∂~pi

= −k
S

l2i
~ts~t

T
s

∂ ~FPi
∂~pi+1

= −k
S

l2i
~ts~t

T
e

∂ ~FPi+1

∂~pi
= −k

S

l2i
~te~t

T
s

∂ ~FPi+1

∂~pi+1
= −k

S

l2i
~te~t

T
e

A definition for ~ts and ~te has not been given yet. The obvious definition is direction
from ~s to ~pi and ~e to ~pi+1.
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~ts :=
~pi − ~s
|~pi − ~s|

~te :=
~pi+1 − ~e
|~pi+1 − ~e|

In practice this definition leads to high fluctuations of ~ts and ~te when ~s and ~e
move with the mesh. To keep them more steady, they are defined by the direction
towards more distance vertices.

~ts :=
~pi−2 − ~s
|~pi−2 − ~s|

~te :=
~pi+3 − ~e
|~pi+3 − ~e|

Sliding through the suture

The portal forces form a “virtual” connection between two vertices. When one
vertex moves through its piercing, it should be transported to the other. But how
should one define “moving through a piercing”? In practice a piercing point is never
directly hit, so what is the difference between moving through a piercing and just
moving past it?

The direction vectors ~ts and ~te help to solve this dilemma. They define the direc-
tion along which the vertex moves towards or away from the piercing. So “moving
through a piercing” means passing the piercing along the direction vector.

Mathematically this is equivalent to defining planes at the piercings with normals
~ts and ~te that include ~s and ~e respectively. A vertex moves through a piercing when
it crosses the corresponding plane. This is given when

(~pi − ~s) · ~ts < 0.

The vertex is moved to a new position ~p′i that has the same distance to ~e along ~te
as it penetrates the plane (see figure 3.21).

~p′i = ~e+ ~te · din
din := (~s− ~pi) · ~ts
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din

din

Figure 3.21.: When a vertex slides through a piercing, it is “transported” through
the mesh exiting at the corresponding other piercing.

Sideway stability: The portal forces defined by the energy in (3.59) lead to un-
steady behavior when the thread is pulled strongly through a piercing point and
the pulling direction is not completely aligned with ~ts or ~te. The portal forces then
allow the attachment of the thread to the piercing plane to slide.

Imagine the thread being pulled on a vertex distant to the piercing plane. The
thread will move towards a configuration minimizing the distance between the dis-
tant vertex and the piercing plane. Figure 3.22 illustrates the situation. The out-
come is an inconsistent situation. ~ts and ~te will be recalculated as a countermeasure
in the next time step.

While this process does not cause the thread to diverge by itself, it leads to jumpy
behavior which is very undesirable.

As a countermeasure to this effect, the vertex at the piercing points are held on a
line through ~s or ~e in direction of ~ts and ~te respectively. The energy for the needed
force is given by the quadratic distance between the line and the vertex. In example
for the ~s this is

EL := kS
[(

1− T
(
~ts
))
· (~pi − ~s)

]2
.

Deriving the forces and their derivatives from this energy is trivial and will not
be shown here.

Applying suture forces to the mesh

As in all contact situations, to preserve momentum the total force applied to the
mesh and thread in a suture situation must sum to zero. The situation is similar to
thread mesh contacts. The forces applied to the thread are not known before the
thread has been integrated. Therefore the thread has to be integrated before the
forces on the mesh can be found.

62



3.6. Interaction with forceps

Piercing Point

Piercing Plane

Thread at t

Thread at t+ ∆t

Figure 3.22.: The thread (shown in red) is strongly pulled while attached to a
piercing point in a direction non perpendicular to the piercing plane.
As a result the touching point slides along the piercing plane making
pulling direction perpendicular.

The force on the mesh is applied at two positions: at the two piercings of the
suture. The sum of the forces at these two positions is equal to the negative sum
of forces applied to the thread due to the suture. There are various ways one could
split the total force between these two positions. A simple approach is to apply
half of the force to each piercing. As this is very simple and no other approach has
proven to work better or realistically, this approach has been used in this thesis.

The piercings are not necessarily at nodes, but at the interior of a triangle. As in
section 3.5.1 the force is distributed to the nodes of the triangle with the barycentric
coordinates of the piercing.

3.6. Interaction with forceps

This section features interactions with the forceps. There are two types of interac-
tions: First, when the forceps collide with the thread, a collision response similar to
the ones with the tissue is performed. Second, when the forceps closes, it grabs the
parts of the thread that is between the forceps arms.

3.6.1. Contact handling

The arm of a forceps has been split into 3 geometric objects for contact handling.
The main rounded body part is a halved and truncated cone. The tip is represented
by a quarter sphere while the cut off side of the cone is extruded with an inclined
plane. Figure 3.23 shows the geometric representation of a forceps arm for collision
handling. In the following the sum of these geometric objects will be called the
“collision object” of a forceps arm.
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Figure 3.23.: Representing of a forceps arm for collision handling.

As in the collision handling with the tissue, the spheres around the vertices of the
thread are used to detect collisions with the forceps. Collisions with a forceps arm
and a vertex of the thread are detected by finding the closest point on the surface
of the collision object.

To this end, the closest point on all geometric objects of the collision object have
to be found. In the following, ~p will be the position of the vertex against which
collision is detected. The closest point on the surface will be denoted with ~p0

The collision object is split into 4 regions. Figure 3.24 shows the regions. De-
pending on the region the vertex is in, only certain points on the surface can be the
closest point.

A
C

DB

Figure 3.24.: Division of the collision object into regions.

• When the vertex is in region A ~p0 can only be on the quarter sphere – assuming
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the opening angle of the cone is not more than 45◦. The closest point on the
quarter sphere is found by normalizing the vector from the center of the sphere
to ~p. The normalized vector is then multiplied by the radius of the sphere and
added to its center.

• If ~p is in region B, ~p0 is on the half circle at the bottom of the quarter sphere.
It is found by projecting ~p onto the plane between region A and B. If the
projected point is situated inside the half circle, it is already the closest point.
If not, it is moved toward the center of the circle until it hits the circles border.

• In region C the ~p0 must be on the halved and truncated cone. Finding the
closest point on the surface of a cone is described in [1]. A short summary is
given in appendix B.6.

• When the vertex is in region D, ~p0 is on the extended bottom plane of the
cone. ~p0 is found by splitting the extension into triangles and finding the
closest point on all of these triangles. Appendix B.4 describes how the closest
point on a triangle is found.

Once ~p0 has been found, the collision test reduces to testing if |~p− ~p0| < r where
r is the radius of the thread. If a collision has been detected, response forces are
found as described in section 3.4.2. As described in section 3.5.1, contacts are also
remembered between integration steps.

3.6.2. Grabbing

For grabbing the technique of enforcing the position of vertices described in section
3.4.1 have been applied.

When the opening of a forceps goes below a certain threshold, all vertices between
the forceps arms are grabbed. For this, the positions of the vertices are translated
to the local coordinates of the forceps as described in the last section. The vertices
between the forceps arms are detected by testing which are situated inside an axis
aligned box located between the forceps arms.

For these vertices the local coordinates of the vertices are stored. With the suc-
ceeding frames, for every grabbed vertex, the stored local coordinates are translated
to global coordinates using the new position of the forceps. The position of the
vertex is set to this position and the vertex is set to be fixed to this position as de-
scribed in section 3.4.1. Since the local forceps coordinates do not change for these
vertices, they remain at the same position between the forceps arms.
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3.7. Self-interaction of the thread

Interactions between the thread and itself are discussed in this section. To simulate
knots convincingly, an accurate collision and contact simulation is necessary. In the
literature, one finds the terms “collision” and “contact”, which are closely related. A
collision happens over an assumed infinitesimal short moment, leaving the colliding
objects in a state where they move apart. A contact is more permanent, it keeps
the objects separate but touching. It can be seen as a completely inelastic collision.

Since a knot is a rather static configuration, it is a valid assumption that all
collisions are inelastic – as contacts.

In the next section the quantities representing a contact are defined and contact
detection is described. Due to the implicit integration when a force is applied to a
vertex, it effects all other vertices within the same time step. This is also true for
contact forces. As a result, contacts cannot be resolved locally. A global solution is
needed to solve all contacts at once.

To find such a global solution, the coupling between contacts must be known. If a
force is applied to one contact, how does this effect all other contacts? The coupling
will be defined and derived in section 3.7.2.

Once the coupling has been found, a global solution for the contact forces must be
found. This problem is similar to the contact problem in rigid body simulations. In
section 3.7.2 the requirements for the contact forces and algorithm solving for them
are described.

3.7.1. Contact detection

To detect collisions and contacts of a thread with itself or other threads, a rigid
representation has to be found for which intersections between threads can be cal-
culated. The canonical representation for a segment is a cylinder whose center line
corresponds to the segments center line. Its radius is the radius of the thread.

When two successive cylinders are not perfectly aligned, there is a gap between
the cylinders bases. These gaps are filled by spheres with the same radius around
the vertices. See figure 3.25.

Pairs of segments have to be tested for contact. A simple approach would be to
test every segment against every other segment. The complexity of this brute force
approach is O(n2) where n is the number of segments. The computational burden
for this approach is to high for the number of segments needed in the simulation.
Various approaches for reducing this complexity exist. Most of them partition the
space, allowing to do collision detection only for objects that are close enough to each
other for a collision to be possible. In this thesis, the spatial hashing from Teschner
et al. [111] has been applied. It is explained a little more detailed in section 4.1.4.
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Figure 3.25.: Rigid representation of the thread. Segments are shown in green while
vertices are red.

Contact description

A contact consists of

• two contact positions ~c1,~c2 which represent the position on the center line of
the thread parts in contact. They are the point on the corresponding center
line that is closest to the other center line.

• a separation vector ~s := ~c2 − ~c1 connection the contact positions.

The separation vector is later used to apply the contact force to the segments.
Because a contact force is always orthogonal to the surface, ~s must be orthogonal
to the surface at both contact positions. In the following, this requirement will be
called the “orthogonality constraint of ~s”. The contact positions ~c1,~c2 are described
by the indexes a{1,2} ∈ {1 . . . N} of the vertex or segment involved in the contact and
a parameter µ{1,2} ∈ [0, 1] describing the position along the segment. The relation
is:

~cn = (1− µn) · ~pan + µn · ~pan+1 n ∈ {1, 2}

In summary a contact c is described by a 4-tuple

C := (a1, a2, µ1, µ2) (3.60)

Contact types

A contact must fulfill the following criterias:
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• The contact positions must be less than the sum of the radii apart. This means
|~s| ≤ r1 + r2 where r1 and r2 are the radii of the threads in contact.

• ~s must be orthogonal to the surface of the thread where the line between the
contact positions intersects. This must be true for both contact partners.

The first criteria is easily tested once the contact positions have been found.
In practice it is eased a little by testing |~s| ≤ 1.1 (r1 + r2). This way, positions
where the threads are almost in contact are also tested. The contact resolution does
not apply any force to contacts which remain resolved by themselves. The second
criteria must be tested differently depending on whether the shortest line between
the contact positions intersects with a cylinder or a sphere.

For a segment-segment contact first, the closest points between the center lines
of the segments are found (appendix B.5 explains how). If both of them are on the
interior of the segments, the orthogonality constraint is fulfilled (see figure 3.26). If
the positions are close enough a contact is found.

Figure 3.26.: Contacts between segments.
Left: The closest points are within a segment, the segments collide.
Right: For the lower segment, the closest point is outside. No collision
between the segments takes place.

If the closest points are not in the interiors of the center lines, one or both contact
positions might still be set to the ends of the center lines (to a vertex position).
This type of contact will be called a segment-vertex contact. The closest point
of one segment to a vertex of the other segment is found (appendix B.3 explains
how). For the orthogonality constraint to be fulfilled at the segments side, the
contact position must be again on the interior of the segment. On the vertex side
the contact position is set to the vertex position. As a result, the line between the
contact positions always intersects the spheres surface where ~s is orthogonal. But
the sphere must also be the threads surface at that position. This is the case when
~s points away from the bottom planes of both adjacent cylinders (see figure 3.27).
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Mathematically this means:

0 ≥ ~s · ~ti+1 (3.61)

0 ≥ ~s · (−~ti)

~ti+1−~ti

~s

Figure 3.27.: For a contact involving a vertex, ~s must point away from the bottom
plane of both adjacent cylinders.

A vertex-vertex contact is found if condition 3.61 is fulfilled for both setting
both contact partners when setting both contact positions to vertices..

While these are the obvious cases, there is another case for segment-vertex and
vertex-vertex contacts which only becomes important when the thread radius is
close to the segment length. The segment length has to be short enough to ensure
a flexible behavior of the thread. Figure 3.28 pictures the situation. One of two
segments is bended around the other, but no collision is detected.

This occurs because the surface of the thread is not smooth in the inner side of a
bend between adjacent segments.

The criteria in (3.61) can also be formulated as follows: For the vertex to become
the contact partner, the closest point to the other contact partner on the center line
of the adjacent segments must be outside the interior towards the vertex. It must
be lossened to account for the problem pictured in figure 3.28: The vertex can also
become the contact partner when the closest point to the other contact partner on
the center line of the adjacent segments is outside the interior away from the vertex.

3.7.2. Contact handling

Once contacts have been detected, the corresponding contact forces have to be found.
All contacts are assumed to be inelastic. The main task of the contact forces is to
maintain non-penetration constraints at all contact points.
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Figure 3.28.: A thread segment upright on the pictures plane (blue) collides two
segments that are bended around it (red). Also collisions occur, no
collision is detected between the blue and the red segments because
the contact points are outside the red segments center lines.

It would be possible to exploit the implicit integration scheme and define im-
plicit forces at a contact point that vanishes when the non-penetration constraint is
fulfilled. There are two obvious approaches to this:

• The first approach is defining a contact force that vanishes when the contact
positions have a distance of twice the thread radius in the separation direction,
similar to section 3.5 and 3.6. The resulting force would be linear in all involved
vertex positions and can therefore be expressed exactly as an implicit force.
Unfortunately this creates forces on the vertices in contact that depend on
the position of vertices at completely different positions on the thread. This
introduces non zero entries outside the bands of the banded matrix for the
implicit integration (see section 3.2.2). Doing so would raise the complexity
for solving the system from O(n) to O(n3), which is not acceptable.

• To address this problem, forces for both contact partners that are independent
from each other could be defined. The forces would simply push the threads
away from the contact position (which is fixed in space for a time step). While
the complexity problem would vanish, the vertices involved in the contact
would now be fixed to the position where the contact occurs. Even when both
threads move as a whole, vertices involved in a contact would stick to a fixed
position in space, leading to unrealistic physical behavior.

At this point it is interesting to see that while the second approach is very similar
to the approach used for contacts with the mesh, it still works there. The difference
is that in a thread-mesh collision, one of the collision partners (the mesh) is not
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simulated with the implicit integration. It is therefore not constrained by the mini-
mum of the potential of the implicit forces and can move freely. With mesh-thread
contacts, the mesh ”guides” the movement while the thread influences it by applying
forces to the mesh. It is also important that the mesh has a much bigger mass then
the thread and moves slower. On the time scale that the thread moves, the mesh
can be seen as almost fixed.

In addition to the discussed problems above, both approaches do not describe the
contact forces correctly. They do not vanish when the contacts are separated while
friction forces are difficult to model. If the threads happen to be separated by other
effects (i.E. other contacts), contacts that should have vanished “stick” the thread
together.

Coupling of contacts

After excluding unfavorable methods a more in depth view for the requirements of
the contact forces is desirable. Since there may exist multiple contacts at once, the
contacts will be given an index and denoted by

Ci := (a1,i, a2,i, µ1,i, µ2,i) 1 ≤ i ≤M

Where M is the number of contacts. On every contact a contact force ~F ci is
applied. Given the movement of the adjacent mass points, the relative contact
movement is

∆~ci := ∆~c2 −∆~c1

= (1− µ2,i) ·∆~p′a2,i + µ2,i ·∆~p′a2,i+1 − (1− µ1,i) ·∆~pa1,i − µ1,i∆~pa1,i+1.

(3.62)

Having a set of contacts {Ci}, a set of contact forces {~F ci } must be found. Because
contacts are coupled, the contact forces have to be found globally solving all contacts
at the same time. The exact meaning of “solving a contact” will be elaborated in
the subsection “contact resolution” below.

Firstly the relation between an external force applied to a vertex and the effect
on the position of all vertices will be analyzed. Assume an additional force ~En is
applied to the n-th vertex. The force is “additional” because it is added to any other
force already applied to that vertex. How does this force change the movement of
the i-th vertex? ∆~pi is a function of ~En. Based on this δn,i is defined by:

~δn,i( ~En) := ∆~pi( ~En)−∆~pi(0). (3.63)
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Figure 3.29.: An external force (blue arrow) results in displacements of all mass
points (green arrows).

Figure (3.29) illustrates the relation between the defined quantities.
Note that ~δn,i( ~En) can be defined as above, and is in particular independent of

∆~pi(0). This is concluded from the fact, that the ∆~pi are linear in all forces applied
to any vertices. This also means that ~δn,i is linear in ~En. It will be illustrated later
by deriving the linear relations.
~δn,i could be found simply by setting the ~En and doing the integrating step. ~δn,i

is then found by applying (3.63). Unfortunately this requires a lot of integrations
which have a complexity of O(N). This is not doable due to limited computational
power.

The relation between ~δn,i and ~En needs to be found by plugging them into (3.31).
To do this they must be extended to all degrees of freedom – not only the position.

Let δn,i be ~δn,i extended to all degrees of freedom of the i-th vertex while δn ∈ RN

(without the second index) is the same for all degrees of freedom in the thread. En

is defined from ~En by setting the forces on the remaining degrees of freedom for
the n-th vertex to zero. Ên ∈ RN additionally has a vanishing force for all other
vertices.

The quantities can now be plugged into (3.36):

M(∆x(0) + δn) = a+B(F + Ên). (3.64)

Subtracting (3.36) from (3.64) yields:

Mδn = BÊn. (3.65)

Or, written more explicitly:

Diδn,i +O+
i δn,i+1 +O++

i δn,i+2 +O−i δn,i−1 +O−−i δn,i−2 =

{
BnEn if i = n

0 otherwise

(3.66)
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Since (3.65) is linear, the relation between ~δn,i and ~En is also linear.

It will now be shown, that for i < n there are M+
i ,M

++
i ∈ RF such that

δn,i = M+
i δn,i+1 +M++

i δn,i+2. (3.67)

Remember the intent of the +, ++, − and −− from equation (3.31). The same
notation is followed here. The + and ++ in M+

i and M++
i indicate the relation to

previous vertex and the vertex before the previous respectively.

Equation (3.67) will be shown using mathematical induction deriving M+
i and

M++
i along the way. The base clause with i = 1 is easy to show. Starting from

(3.66) one gets:

D1δn,1 +O+
1 δn,2 +O++

1 δn,3 = 0

⇒ δn,1 = −D1

(
O+

1 δn,2 +O++
1 δn,3

)
= M+

1 δn,2 +M++
1 δn,3

with

M+
1 = −D−1

1 O+
n M++

1 = −D−1
1 O++

n (3.68)

The induction step to i = 2 is treated differently from the following steps. The
relation for δn,2 can be found utilizing the just found result for δn,1:

D2δn,2 +O+
2 δn,3 +O++

2 δn,4 = 0

⇒ D2δn,2 +O−2
(
M+

1 δn,2 +M++
1 δn,3

)
+O+

2 δn,3 +O++
2 δn,4 = 0

⇒
(
D2 +O−2 M

+
1

)
δn,2 +

(
O−2 M

++
1 +O+

2

)
δn,3 +O++

2 δn,4 = 0

⇒ δn,2 = M+
2 δn,3 +M++

2 δn,4

with

M+
2 = −

(
D2 +O−2 M

+
1

)−1 ·
(
O+

2 +O−2 M
++
1

)
M++

2 = −
(
D2 +O−2 M

+
1

)−1 ·
(
O++

2

)
(3.69)

M+
2 and M++

2 are defined in terms of M+
1 and M++

1 . M+
i and M++

i will also be
defined in terms of M+

i−1 and M++
i−1 . For the induction step with i > 2 let M+

j ,M
++
j
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be known for j < i. Then starting from (3.66):

Diδn,i +O+
i δn,i+1 +O++

i δn,i+2 +O−i δn,i−1 +O−−i δn,i−2 = 0

⇒ Diδn,i +O−−i
(
M+
i−2δn,i−1 +M++

i−2δn,i
)

+O−i
(
M+
i−1δn,i +M++

i−1δn,i+1

)
+O+

i δn,i+1 +O++
i δn,i+2 = 0

⇒ (Di+ O−−i M++
i−2 +O−i M

+
i−1)δn,i

+O−−i M+
i−2

(
M+
i−1δn,i +M++

i−1δn,i+1

)
+
(
O−i M

++
i−1 +O+

i

)
δn,i+1 +O++

i δn,i+2 = 0

⇒ (Di+ O−−i M++
i−2 +O−i M

+
i−1 +O−−i M+

i−2M
+
i−1)δn,i

+
(
O−−i M+

i−2M
++
i−1 +O−i M

++
i−1 +O+

i

)
δn,i+1

+O++
i δn,i+2 = 0

⇒ δn,i = M+
i δn,i+1 +M++

i δn,i+2

where

M+
i = K+

i

(
O+
i + T+

i M
++
i−1

)
M++
i = K+

i O
++
i (3.70)

K+
i := −

(
Di +O−−i M++

i−2 + T+
i M

+
i−1

)−1
T+
i := O−i +O−−i M+

i−2

For i > n one can do similar calculations, but then the recursion starts at the last
vertex (the N -th), and gets:

δn,i = M−i δn,i−1 +M−−i δn,i−2 (3.71)

with

M−N = −D−1
N O−N

M−−N = −D−1
N O−−N

M−N−1 = −
(
DN−1 +O+

N−1M
−
N

)−1 ·
(
O−N−1 +O+

N−M
−−
N

)
M−−N−1 = −

(
DN−1 +O+

N−1M
−
N

)−1 ·
(
O−−N−1

)
M−i = K−i

(
O−i + TM−−i+1

)
M−−i = K−i O

−−
i

T−i := O+
i +O++

i M−i+2

K−i := −
(
Di +O++

i M−−i+2 + TM−i+1

)−1
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The last calculations missing are δn,n, δn,n−1 and δn,n+1. Actually δn,n and one of
its neighbors would be enough, but since the situation is symmetric there is no harm
in calculating both. At least one of the neighbors is needed, because the calculations
of δn,i always needs two previous values to be known already. Note the requirement
i > n and i < n cannot be dropped because for i = n the right hand side of (3.66)
does not vanish for this case.

First δn,n+1 will be found. In (3.71) for i = n + 1, δn,n−1 is replaced using 3.67,
which reveals the formula for δn,n+1:

δn,n+1 = M−n+1δn,n +M−−n+1

(
M+
n−1δn,n +M++

n−1δn,n+1

)
⇒ δn,n+1 = N+

n δn,n (3.72)

N+
i :=

(
1−M−−i+1M

++
i−1

)−1 (
M−i+1 +M−−i+1M

+
i−1

)
.

An analogous calculation can be done to find δn,n−1:

δn,n−1 = N−n δn,n (3.73)

N−i :=
(
1−M−−i+1M

++
i−1

)−1 (
M+
i−1 +M++

i−1M
−
i+1

)
.

This leaves δn,n to be calculated. The starting point is again (3.66), but this time
the right hand side is not zero:

Dnδn,n +O+
n δn,n+1 +O++

n δn,n+2 +O−n δn,n−1 +O−−n δn,n−2 = En

δn,n+2 and δn,n−2 are replaced using (3.67) and (3.71), and the whole set of
equations is reordered, grouping the factors of δn,n, δn,n−1 and δn,n+1.

[
Dn +O++

n M−−n+2 +O−−n M++
n−2

]
δn,n

+
[
O−n +O−−n M+

n−2

]
δn,n−1

+
[
O+
n +O++

n M−n+2

]
δn,n+1

=Anδn,n +Bn,1δn,n−1 +Bn,2δn,n+1 = En (3.74)

where

Ai = Di +O++
i M−−i+2 +O−−i M++

i−2

Bi,1 = O−i +O−−i M+
i−2

Bi,2 = O+
i +O++

i M−i+2

Combining (3.74), (3.72) and (3.73) yields the equation for δn,n as follows.
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Anδn,n +Bn,1N
−
n δn,n +Bn,2N

+
n δn,n = En

⇒ δn,n =
(
An +Bn,1N

−
n +Bn,2N

+
n

)−1
En (3.75)

The coupling Matrices between vertices:

While (3.67), (3.71) , (3.72) (3.73) and (3.75) define relations between subsets of
δn,i, it is now necessary to find matrices Gn→i defined by

δn,i = Gn→i ·En

(3.72), (3.73) and (3.75) already directly define Gn→n and Gn→n±1:

Gn→n =
(
An +Bn,1N

−
n +Bn,2N

+
n

)−1
Gn→n+1 = N+

n Gn→n−1 = N−n

The rest follows a recursive definition. If e. g. Gn→i−1 and Gn→i−2 are given,
then:

Gn→i = M−i Gn→i−1 +M−−i Gn→i−2. (3.76)

Analogously, if Gn→i+1 and Gn→i+2 are given, then:

Gn→i = M+
i Gn→i+1 +M++

i Gn→i+2. (3.77)

To resolve a set of contacts simultaneously, pairwise couplings between a given
set of vertices are needed. Using (3.76) one needs to iterate between all possible
pairs of vertices. To reduce the computational burden, it would be desirable if less
iterations between the outermost vertices would be needed.

And indeed, a reduction to only 2 iterations is possible. To reach it, a relation
between different Gn→i is needed. A direct relation between a single arbitrary Gn→i
cannot be found, but if successive coupling matrices are paired, a relation between
these pairs can be found.

To put it in mathematical terms, there is a matrix Hj→i with i ≥ j, such that:

(
Gn→i
Gn→i+1

)
= Hj→i

(
Gn→j
Gn→j+1

)
(3.78)

Hj→i is split into 4 parts:
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3.7. Self-interaction of the thread

Hj→i =

(
H1
j→i H2

j→i
H3
j→i H4

j→i

)

Starting with j = i, Hj→i is defined inductively. When looking at (3.78), the
initial case with i = j is trivial:

(
H1
j→i H2

j→i
H3
j→i H4

j→i

)
=

(
1 0
0 1

)

The induction step i→ i+ 1 is:

(
H1
j→i+1 H2

j→i+1

H3
j→i+1 H4

j→i+1

)
=

(
H3
j→i H4

j→i
M−i+1H

3
j→i +M−−i+1H

1
j→i M−i+1H

4
j→i +M−−i+1H

2
j→i

)

Finding the matrix Hj→i for i < j is done analogously.

With these new tools and observations, all Gn→i can be calculated with only two
iterations over the thread’s vertices in a given index set I, one in upward direction
and one in downward direction. The upward direction calculates the Gn→i for i ≥ n
while the downward direction calculates those with i ≤ n. The resulting algorithm
is given in listing 1. It has to be run for d = 1 and d = −1.
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Algorithm 1 Finding Gn→i for n, i ∈ I. d ∈ {1,−1} indicates the direction in
which I is iterated

sort I
j ← Nil . j is the index of the last vertex that was visited
for i ∈ I in ascending order if d = 1 and descending order if d = −1 do

Gi→i ←
(
Ai +Bi,1N

−
i +Bi,2N

+
i

)−1

if d = 1 then
Gi→i+1 ← N+

i

else
Gi→i−1 ← N−i

end if
if j = Nil then

continue . Do not go into section below, it is not for the first element
end if
calculate Hj→i
for all n ∈ I, d · n < i do(

Gn→i
Gn→i+d

)
← Hj→i

(
Gn→j
Gn→j+d

)
end for
j ← i

end for

While the algorithm is still quadratic in the number of constraints, the complexity
is reduced from O(M2N) to O(M2 +N) when compared to the direct approach.

Coupling matrix between contacts

Assume two contacts Ci := (a1,i, a2,i, µ1,i, µ2,i) and Cj := (a1,j , a2,j , µ1,j , µ2,j). First

the effect of a given Contact force ~F ci will be examined. The force is split up and
applied to the nodes adjacent to the segment in contact proportional to their distance
to the contact position. For the first thread the applied forces are:

∆ ~Ea1,i = ~F ci · (1− µ1,i)

∆ ~Ea1,i+1 = ~F ci · µ1,i (3.79)

While for the second thread they are:

∆ ~E′a2,i = −~F ci · (1− µ2,i)

∆ ~E′a2,i+1 = −~F ci · µ2,i (3.80)
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3.7. Self-interaction of the thread

Since the force is constant over the time step,
∂ ~F c

i
∂~xi

= 0. Momentum is preserved
because these forces sum to zero.

Because of the implicit integration, applying a force to one vertex affects the
future position of all vertices in the thread. This means that contacts are coupled
even when they do not involve the same vertices.

How does ~F ci affect Cj? In particular, how does it effect the relative contact

movement ∆~cj? The coupling GCi→Cj is defined by the relation between ~F ci and
the relative contact movement ∆~cj . Without any contact forces there is already a
relative movement of contacts originating from other external and internal forces.
This movement is found by integrating the thread without any contact forces. These
movements will be denoted by ∆~c 0

i . With this quantity, the definition of GCi→Cj is:

∆~cj −∆~c 0
j = GCi→Cj

~F ci (3.81)

To derive GCi→Cj , remember the definition of ∆~cj from (3.62). With the index
set paired with factors

P ((i1, i2, µ1, µ2)) := {(i1, 1− µ1), (i1 + 1, µ1), (i2, µ2 − 1), (i2 + 1,−µ2)}

(3.62) can be rewritten as:

∆~cj =
∑

(i,µ)∈P (Cj)

µ∆~pi

Assuming the external forces ~En are applied (the index n corresponds to the
vertices to which the force is applied) are added by contacts, this can be written as:

∆~cj −∆~c 0
j =

∑
(i,µ)∈P (Cj)

µ

(∑
n

~δn,i( ~En)

)

The contact force ~F ci will be applied to the vertices in the first contact by:

∆ ~Ej := ν ~F ci for (j, ν) ∈ P (Ci).

Putting these together reveals:

GCi→Cj :=
∑

(i,µ)∈P (Cj)
(j,ν)∈P (Ci)

µνGi→j
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3. Theory

Moving from 2 to M ∈ N contacts {Ci}, i = 1 . . .M , and the corresponding
contact forces ~F ci . To arrive at the equations solving the contacts, a few quantities
have to be defined.

The contact force vector is defined by

F {Ci} :=

((
~F c1

)T
,
(
~F c2

)T
, . . .

)T
. (3.82)

A vector for the relative movements before contact forces have been applied is
defined by:

∆c0
{Ci} :=

((
∆~c 0

1

)T
,
(
∆~c 0

2

)T
, . . .

)T
,

and also a vector for the relative movements after the contact forces have been
applied:

∆c{Ci} :=
(

(∆~c1)T , (∆~c2)T , . . .
)T

.

With matrix Q given by

Q :=

Gc1→c1 Gc2→c1 . . .
Gc1→c2 Gc2→c2 . . .
. . . . . . . . .


the relation between these quantities is given by

∆c{Ci} = Q · F {Ci} + ∆c0
{Ci} (3.83)

This relation has to be solved respecting the condition given in the next section.

Normal contact force constraint

The contact force as well as the relative contact movement are split into a normal
and a tangential part. The normal is aligned to the separation direction ~si while the
tangential part is the projection onto the plane with normal ~si. The normal part is
responsible for keeping the separation constraint while the tangential parts model
friction.

Let ~ni := ~si/ |~si| the normalized separation vector. There is an orthonormal
coordinate system {~ni, ~fi, ~gi} with the normal and 2 friction directions. ~F ci ,∆~ci and
∆~c 0

i are projected into this coordinate system:

αi := ~F ci · ~ni βi := ~F ci · ~fi γi := ~F ci · ~gi
ai := ∆~ci · ~ni bi := ∆~ci · ~fi ci := ∆~ci · ~gi
a0
i := ∆~c 0

i · ~ni b0i := ∆~c 0
i · ~fi c0

i := ∆~c 0
i · ~gi
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3.7. Self-interaction of the thread

There are several conditions defining the resolution of a contact. Firsty, the pen-
etration must be resolved:

ai − r1 − r2 ≥ 0 (3.84)

where r1 and r2 are the radii of the colliding threads.
The contacts are resolved by applying a normal force which has to push the

contacts apart.

αi ≥ 0 (3.85)

The normal force must either resolve the penetration exactly (ai− r1− r2 = 0) or
it must be zero αi = 0. This can be expressed by a complimentary condition:

αi(ai − r1 − r2) = 0 (3.86)

Equation (3.84) - (3.86) form a linear complimentary problem (short LCP, see
e. g. [32]) which can be solved with e. g. Lemkes algorithm. The equations can also
be reformulated as a quadratic programming (QP) problem. When no friction is
involved, all forces have only a component in normal direction. Reducing (3.83) by
projection all quantities on the normal parts, it becomes:

a = A ·α + a0

with

a :=

a1

a2
...

 α :=

α1

α2
...

 a0 :=

a
0
1

a0
2
...

 A :=

~nT1 GC1→C1~n1 ~nT1 GC2→C1~n2 . . .
~nT2 GC1→C2~n1 ~nT2 GC2→C2~n2 . . .

. . . . . . . . .


Since (3.84) and (3.85) imply that 0 is the minimum of (3.86), the problem can

be written as:

min
α
α
(
A ·α + a0

)
subject to A ·α + a0 ≥ r1 + r2 and α ≥ 0

which is a quadratic programming (QP) problem. [9] argue that moving to a QP
problem discards the information in (3.86) and therefore makes the problem more
general and thus harder. The problem will also not be an LCP anymore when adding
general friction constraints and cannot be transformed into a QP directly. These
are the reasons why the QP view will not be followed any further.
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3. Theory

Friction force constraint

The formulation so far does not involve friction constraints, which are also important
for a physical plausible behavior – especially when simulating knots. The Coulomb
laws for friction are as follows:

1. The magnitude of the friction force is smaller (static friction) or equal (kinetic
friction) to the normal force times the coefficient of friction.

2. Static friction occurs only when the friction force is strong enough to prevent
any tangential movement.

3. The force of friction is always directed in the opposing direction of movement.

For simplicity in many simulations it is assumed, that the coefficient of friction
for kinetic and static friction are equal. This assumption will also be made here.
The first friction constraint translated to a formula is:

β2
i + γ2

i ≤ µ2α2
i (3.87)

where µ ≥ 0 is the coefficient of friction. In case of kinetic friction, the limiting
case β2

i +γ2
i = µ2α2

i is hit. In case of static friction the inequality is not an equality.
When plotting this constraint as a function of αi a cone results, which is called

the friction cone (see figure 3.30).

αi

βi

γi

Figure 3.30.: The friction cone resulting from (3.87)

When adding this constraint, the problem is not a linear complementary problem,
but a nonlinear complementary problem (NCP). Many LCP algorithm cannot be
applied anymore. There are several ways in the literature to modify this constraint
keeping it compatible with the LCP formulation. Usually they approximate the
constraint in 3.87. The Box constraint constraints both directions independently:
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3.7. Self-interaction of the thread

−µαi ≤ βi ≤ µαi
−µαi ≤ γi ≤ µαi

A constraint like this has the unfortunate side effect that the tangential friction
forces are not invariant under rotations around ~ni. This raises the question of how
to choose ~fi and ~gi and how to ensure that this choice does not oscillate between
integration steps. An oscillation would lead to unsteady behavior of the simulation,
which is very undesirable. Other works (e. g. [106, 4]) reduce this invariance by ap-
proximating the friction cone with a polygon (see figure 3.31). The LCP formulation
in this form has a much higher memory demand (more constraint equations) than
the NCP formulation with (3.87). Fortunately, the algorithms applied in this thesis
are able to solve the NCP problem.

αi

βi

γi

Figure 3.31.: Polygonal approximation of the friction cone.

The second friction law states, that the friction force must be on the border of
the friction cone or the tangential movement must be zero. This can be stated as a
complimentary condition:

(β2
i + γ2

i − µ2α2
i ) · (b2i + c2

i ) = 0 (3.88)

which is again not a LCP condition. Again, it can be made LCP compliant by
stating it for both directions separately.

The last friction law can be stated as:

(
βi
γi

)
= −λ

(
bi
ci

)
λ ≥ 0 (3.89)
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Baraff [9] simplifies this constraint by stating that the friction force be at least
partially opposed to the tangential acceleration:

(
βi
γi

)
·
(
bi
ci

)
≤ 0 (3.90)

which, in difference to (3.89) is LCP compatible. Note that (3.90) follows from
(3.89).

Contact Resolution

Several algorithms exists to resolve LCPs. Chapter 2 lists related works and algo-
rithms for solving the contact problem.

Iterative approaches have the advantage that they can be interrupted any time
and output approximations of the final result. This bears the advantage that the
computational burden is predictable, e. g. by fixing the number of iterations. In real
time application this is important to maintain the real time constraint.

The projected Gauss-Seidel (PGS) (see e. g. [20]) is an iterative algorithm for
solving LCPs. The idea of the projected Gauss-Seidel is simple. In essence, every
constraint is solved in turn using the current result from the other constraints.
Assuming a function “solveConstraint” that satisfies the conditions from section
3.7.2 for a single contact, the PGS applied to the contact problem is stated in
algorithm 2.

Algorithm 2 The projected Gauss-Seidel, applied to the contact problem.

for all {1 . . . NUM ITERATIONS} do
for all i ∈ {1 . . . |{Ci}|} do

∆c←
∑
j
Qi,j · F {Cj} + ∆c0(Ci)

FCi ← solveContact(Ci,∆c)
end for

end for

In this thesis, the PGS approach has been taken by providing a function that solves
(3.84), (3.85), (3.86), (3.87), (3.88) and (3.89). (3.89) is solved only approximately
by assuming that the direction of the kinetic friction force is the same as a static
friction force that is not constrained by (3.87).

Another advantage of the PGS is that it can be “warm-started” as suggested in
[20]. The idea is that the algorithm is initialized with an approximation of the
correct solution (the initial guess). Assuming the configuration of the thread and
contacts does not change drastically between integration step, the solution of the
last invocation provides a usable initial guess.
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Silcowitz-Hansen et al. [101] improves the convergence rate of the PGS. The prob-
lem is viewed as a nonlinear complementary problem (NCP) and a Fletcher-Reeves
type nonlinear nonsmooth conjugate gradient (NNCG) type method is applied. Both
PGS and NNCG have been tested for the problem and NNCG has been found to
output better results in most cases. Silcowitz-Hansen et al. [101] do no line search
in the gradient direction, because their experiments show that nothing is gained by
a line search. For this thesis also no line search is done, but the step size is limited
so that it does not step out of the area where (3.84) is fulfilled. This avoids some
cases where in the original NNCG algorithm the error increases drastically between
iterations.

The stopping criteria for the iterative solver has been chosen to a fixed number
of iterations. This has the advantage of making the time consumption of the solver
predictable, reducing variation in time consumption between update steps.

It should be noted that the problem could also have been solved by adding the
contact constraints to the integration matrix of the implicit integration scheme and
solving it as an LCP problem. This way the contact couplings would not have to
be calculated. But that would level the integration problem from solving a banded
linear system to solving a sparse LCP problem. In difference to the LCP problem
needed for solving the contacts in a separated step as it has been described in this
chapter, the integration is a problem of much bigger size. Therefore, the advantage
of calculating the coupling between contacts is that the LCP part can be extracted
from the integration and can be solved in a separated step where the problem has a
much smaller size.

Secondary contacts

A common problem with contact detection and resolution for rigid bodies is that
secondary contacts or collisions occur. Due to existing contacts being resolved, new
contacts are created at other positions which only occur because the existing contacts
change the movement of the objects.

A common solution to this problem consists in testing for contacts and resolving
them repeatedly until all occurring contacts are resolved. Unfortunately this is not
possible in this work because it would require rerunning the LCP solver which is
not feasible for a realtime application. The problem is reduced by using the “low
mass integrator” which will be described in section 4.1.2). Due to this integrator
the thread has no impulse and does not bounce of itself which would increase the
risk of a secondary contact.

Also the problem of secondary contacts mainly occurs when the thread is in a
“dynamic” situation, meaning it moves with a certain speed. In this situations
physical inaccuracy does not harm the believability for a human observer as much
as it does in static situation.
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Still, missed contacts are a big problem when they cause the thread to tunnel
through itself and thereby change the topology. This can cause knots to “magically”
disappear which is an unacceptable behavior. To resolve this, tunneling is prevented
in a additional step described in section 3.8.4.

Keeping a list of active contacts

There is an observation which allows to boost the performance of the constraint
solver. The contact detection also adds contacts when the segments do not yet
overlap but are still in a small distance from each other. This is done to prevent
tunneling effects. If the contact is added falsely, it does not change the result because
constraint solver will set the contact force to zero.

This and other effects cause many situations where there are many inactive con-
tacts during constrain solving. As the contact force of these inactive contacts is zero,
they do not affect the other contacts. When calculating

∑
j
Qi,j · F {Cj} + ∆c0(Ci)

in algorithm 2 these contacts can be skipped. To efficiently only iterate over the
contacts that are active, a list of active contacts is kept.

3.8. Continuous collision detection

The implicit integration allows integration of stiff forces with a large time step. But
due to the computational demand of the implicit integration, a smaller time step
cannot be chosen. This large time steps come with a burden. The thread is very
thin – a typical diameter of a microsurgery thread is 0, 02mm – and the movement
of a vertex within one time step can be a multiple of the threads diameter. When
the collision detection does not detect moments where the thread intersects with
itself, the tissue or the forceps might miss situations where the thread “tunnels”. In
this case a collision is missed.

The contradictions that come with such topological changes go beyond physical
plausibility. A knot can dissolve, which is of course fatal when trying to make the
suture knot. The thread can detach itself from the forceps or dissolve a suture by
tunneling through the tissue. For these reasons, tunneling must be prevented under
all circumstances.

How can tunneling be detected? Assume a thread with vertices positions ~pi(t).
The integration sets the positions at times n∆t where n ∈ N0. Between these
positions a linear interpolation is assumed. So for n∆t ≤ t ≤ (n + 1)∆t the vertex
positions are:

~pi(t) = ~pi(n∆t) +
t− n∆t

∆t
((~pi((n+ 1)∆t)− ~pi(n∆t)) .
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For the thread to tunnel, there must be a time t0 where

• a vertex is on the surface of a triangle.

• a vertex is on the surface of a forceps.

• the center lines of two segments touch.

In this section the counter measurements to tunneling are discussed. The tunnel-
ing is prevented by either moving the involved objects back to the position where
the tunneling happened or moving the vertices of the thread out of the object along
the normal of the surface.

In the following, the tunneling prevention strategies for tissue forceps and thread
are discussed separately. But first it will be discussed how to detect when 4 points
are planar (on a common plane) in 3D, as this is required for thread-tissue as well
as thread-thread tunneling.

3.8.1. Detecting when 4 moving points are planar

Assume 4 points which move linearly with time:

~q1(t) = ~q1(0) + t~v1 ~q2(t) = ~q2(0) + t~v2 ~q3(t) = ~q3(0) + t~v3 ~q4(t) = ~q4(0) + t~v4

The goal of this section is to detect if the 4 points are on the same plane within
a time-interval [t1, t2]. When they are, it should also be determined at what time-
point (there are potentially 3) the planarity occurs and what the earliest moment
is.

~q1(t0), ~q2(t0) and ~q3(t0) form a triangle with normal:

~N :=
(~q1(t0)− ~q2(t0))× (~q1(t0)− ~q3(t0))

|(~q1(t0)− ~q2(t0))× (~q1(t0)− ~q3(t0))|

For ~q4(t0) to lie in the same plane, its distance to any point in the triangle projected
onto ~N must vanish. See figure 3.32.

In other words, one has to solve:

[(~q1(t0)− ~q2(t0))× (~q1(t0)− ~q2(t0))] · (~q4(t0)− ~q1(t0)) = 0

which is a cubic system with potentially 3 solutions. The smallest solution in the
time interval [t1, t2] is the earliest moment of planarity.

For an algorithm to solve a cubic system refer to e.g. Press [88, chapter 5.6].
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~q1(t0)

~q2(t0)

~q3(t0) ~q4(t0)~N

~N · (~q4(t0)− ~q1(t0))

Figure 3.32.: The 4 points are planar, if ~N · (~q4(t0)− ~q1(t0)) = 0

3.8.2. Preventing tunneling of the thread with the tissue

To test if the thread is tunneling into the mesh representing the tissue, a vertex of
the thread has to go through a surface triangle of the mesh. A necessary condition
for this is that there is a time point in the time interval of the integration step, in
which the vertex is in the plane of the triangle. The planarity test from the last
section can be used to determine this.

If the vertex lies in the same plane in the inside of the triangle, a tunneling is
detected. To test this, the barycentric coordinates (see appendix B.1) of the planar
point are calculated and tested to determine if they are all in the interval [0, 1]. If
this is the case, the point is in the inside of the triangle.

For resolving the tunneling, it is assumed that the tissue is vastly heavier than
the thread. Therefore the vertex of the thread is moved to resolve the inconsistency
created by the tunneling. It is moved along the triangles normal to the outside of
the mesh.

3.8.3. Preventing tunneling of the thread with the forceps

The collision object of the forceps is represented by a cone, a sphere and planes
(see section 3.6). Doing continuous collision detection the same way as with the
tissue would require the difficult task of detecting intersections of a moving point
(the vertex) and a moving cone, sphere and plane.

To avoid this, it is assumed that the forceps and thread move alternating. This
involves detecting collisions of the moving cone with the vertex which is still difficult.
For that reason the vertex position is held fixed in the coordinate system of the
forceps when the forceps moves.

Every forceps arm has a coordinate system that moves with it. Since the arms of
the forceps have a static shape, the coordinate system can be defined in a way that
the corresponding forceps arm does not move or change in it.

Assume a vertex with position ~pi is not inside the collision object of a forceps arm.
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Now the arm is moved. Let ~p′i be the position which has the same representation
in the new coordinate system of the forceps arm as ~pi in the old coordinate system.
Then ~p′i is not inside the collision object after the arm has been moved.

The vertex is not really moved with the forceps arm. It is just assumed that
the old position of the vertex is ~p′i when doing continuous collision detection with a
forceps arm.

~pi(t)

~pi(t+ ∆t)

(a) ~pi(t) represented in the forceps coordinate sys-
tem

~pi(t)

~pi(t+ ∆t)
~p′i(t)

(b) Moving the forceps coordinate system and
thereby moving ~pi(t) to ~p′i(t)

~pi(t+ ∆t)~p′i(t)

(c) Movement of vertex due to integration step

Figure 3.33.: Movement of the i-th vertex for continuous collision detection with the
forceps

Figure 3.33 illustrates the process. In figure 3.33(a) ~pi(t) is represented in the
coordinate system of a forceps arm before it moves. Then the arm moves and the
vertex position moves to ~p′i(t) with the coordinate system. Then continuous collision
detection is done with the movement of the vertex from ~p′i(t) to ~pi(t+ ∆t).

Now that the process has been described, it will be put into more mathematical
terms. There is an affine transformation Mt : R3 → R3 from the global coordinate
system to the coordinate system of the forceps at time point t. ~p′i(t) is defined by:
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3. Theory

~p′i(t) =
(
M−1
t+∆t ◦Mt

)
(~pi(t))

The movement from ~p′i(t) to ~pi(t + ∆t) is assumed to be linear. To detect if
and when the vertex “hits” the collision object of the forceps arm, it is required to
find intersections between a line segment and a sphere, a cone and a triangle. In
appendix B.7 and B.8 the algorithm for finding intersections between a line segment
and a sphere and cone are described.

When a collision is detected, the vertex is moved back to the time point where
the collision occurs.

3.8.4. Preventing tunneling of the thread with itself

Let i and j be the indices of the vertices for which continuous collision detection
has been done. A necessary condition for the center line to touch at t0 is, that
~pi(t0), ~pi+1(t0), ~pj(t0) and ~pj+1(t0) are in the same plane. The test for the time-
points fulfilling these requirements is described above in section 3.8.1. The sufficient
condition for the thread to tunnel is that at the moment where the vertices are
planar, the center lines of the segments touch.

When a tunneling has been detected and the vertex has been moved back to
the moment of contact, the segments are pushed slightly apart so that the non-
continuous collision detection can find the correct separation direction. This can
cause other tunnelings. So the two segments have to be retested.
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4. Results

4.1. Implementing an anastomosis training module in
MicroSim

The thread has been embedded into MicroSim (see also [56]), a prototype for a
training simulator for microsurgical tasks. A training module has been created in
which the anastomosis of two blood vessels is performed.

4.1.1. MicroSim setup

The setup consists of a wooden box which has been covered with black velvet from
the inside. Four cameras are located in the top corners of the interior. The forceps,
with which the virtual operation is performed, are equipped with 3 colored markers
each. The cameras can detect the markers and thereby triangulate the position and
opening of the forceps. This system has been developed by Schuppe [96]. Figure 4.1
and 4.2 show the inside of the box as well as the forceps with markers.

Figure 4.1.: Microsim setup
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Figure 4.2.: Forceps with markers

The tissue simulation is based on a mass spring simulation which has been devel-
oped by Sismanidis [102].

The output of the simulation is displayed on a stereo display through which the
trainee can observe the scene similar to when looking through a stereo microscope
used in real surgery. Figure 4.3 shows how the aperture is used.

4.1.2. Low mass Integration scheme

The implicit integration from the last section must be based on an integration
scheme. When extending the Newton equation of motion with friction, that is linear
to the velocity of the motion, it becomes:

m
∂2x

∂t2
(t) + µ

∂x

∂t
(t) = F (x(t)) (4.1)

Where µ controls the strength of the friction. Assuming the mass m is very low and
the object moves in a viscous fluid – which makes µ high – it can be assumed, that

m
∂2x

∂t2
(t)� µ

∂x

∂t
(t) (4.2)

allowing (4.1) to be simplified to

µ
∂x

∂t
(t) ≈ F (x(t)). (4.3)

An object following this equation of motion has no impulse. There is no state in
equation (4.3). The movement only depends on the forces in the current configu-
ration and not on its history. The configuration always moves towards equilibrium.
The very light mass of the thread justifies this approximation. Visual inspection of
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4.1. Implementing an anastomosis training module in MicroSim

Figure 4.3.: A trainee using MicroSim

the behavior of light threads also supports the approximation. When brought out
of equilibrium they transform quickly to a new equilibrium state.

The approximation is desirable because it allows the thread to move more steadily.
This is important for the simulation of knots. With unsteady behavior, knots can
dissolve spontaneously in an unrealistic way. When pushing the threads apart in a
contact situation an impulsive behavior would result. This causes the segments in
contact to move further apart in the next time step and to terminate the contact.

Discretizing the approximated equation of motions gives

∆x = νF (x(t))

where ν := 1
µ is the mobility.

For the implicit integration in this thesis, this can be realized by setting

a = 0 B = ν1

This integration scheme has been used in all simulations in the results.

4.1.3. Removing the torsional degree of freedom from the implicit
integration

Bergou et al. [13] argue that torsional waves move much faster through a thread
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than bending waves. Based on this, they update the torsion decoupled from the
remaining degrees of freedom. For a thread with no intrinsic bending, this means
that the twist angle is evenly distributed between vertices for which the twisting is
fixed. In other words δΦi is equal for all vertices between the fixed vertices.

For a pair of fixed vertices that have no fixed vertex in between, the total twist
angle is calculated. Then it is divided by the number of vertices in between and
δΦi is set to this value for all of them. When this is done, δΦi can be removed
as a degree of freedom calculated by the implicit integration. Forces on the other
degrees of freedom due to twisting are still calculated the same way as when δΦi is
not removed as a degree of freedom handled by the implicit integration.

In section 3.7 self interaction of the thread is treated. For this, a number of
matrices with dimensions equal to the number of degrees of freedom for a vertex
have to be inverted. When δΦi is a degree of freedom, there are a total of 4 degrees
of freedom at every vertex. If not, there are only 3. Inverting a 3× 3 matrix takes
much less steps than inverting a 4 × 4 matrix. Removing the torsion degree of
freedom from the implicit integration saves some calculation time.

Treating δΦi with the implicit integration may be necessary when other dynamic
effects on the torsion are simulated. For example torsional friction would need a
fully dynamic simulation of the twist angles. But these effects play no role in the
simulation of the thread in MicroSim.

4.1.4. Spatial hashing

Section 3.5, 3.6 and 3.7 describe how contacts between the thread and the mesh
and the forceps and itself are detected and handled. What is not described in
these sections is which segments and vertices of the thread are tested against other
objects or each other. One could e. g. test every segment of the thread against
every other segment. This “Brute force” approach has the disadvantage that its
time consumption grows quadratically in the number of segments and soon becomes
unfeasible.

There are several approaches to overcome this problem. All approaches known to
the author subdivide space in some manner. This allows avoiding collision tests for
segments or vertices that are to greatly separated to be able to collide. As it is not
a subject of this thesis, the various spatial subdivision (SSD) algorithms will not be
discussed here.

For collision detections in MicroSim, the spatial hashing from Teschner et al. [111]
has been applied. It divides the space into equal sized cubes. For every node or
segment it tests with which cubes they overlap. Collision detection is done only for
segments that have a common cube with which they both overlap. Since dividing the
whole relevant space would result in a huge number of cubes, storing the contents
of the cubes in an array with size equal to the number of cubes would require more
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4.1. Implementing an anastomosis training module in MicroSim

memory than is feasible. The content of the cubes is therefore stored in a hash map.
The hash function is based on the integer position of the cube in the grid of all
cubes.

The side length of the cubes has been chosen empirically by testing for which side
length the least collision tests occur. A side length which corresponds to three times
the longest distance of a line within one segment has been detected to be optimal.
The longest distance includes the spheres of the adjacent vertices and is therefore
2 ∗ r + l0 where r is the radius of the thread and l0 the rest length of the segment.

The number of entries in the hash table has been set by testing for optimal exe-
cuting time. The best results were achieved with 2000 entries.

4.1.5. Structure of the simulation main loop

The thread is simulated with a time step of 5ms, doing 6 time steps per displayed
frame. This yields a total frame time of 30ms and a reactive frame rate of 33 frames
per second. The simulation of the tissue is updated twice as often as the thread and
has therefore a time step of 2.5ms.

There are a few things to consider when doing the various steps for the thread
simulation. First, as a side effect of the implicit integration, the forces acting on the
thread are not known until the thread has been integrated. In other words, the same
forces (in the opposite direction) would have to be applied to colliding objects. This
cannot be done before the integration of the thread. Second the continuous collision
detection potentially changes the position of individual vertices. Applying contact
forces and detecting contacts of the thread with itself and other objects requires the
positions of the vertices not to change until the integration. Therefore continuous
collision detection is done before contact detection.

When one minds these conditions, the order of the steps in the simulation main
loop is almost canonical. Here is a list of the steps with references to the sections of
the work describing the individual steps in more detail.

1. Update forceps position from input system (see the work of Schuppe [96]).

2. Continuous collision detection of thread with forceps, mesh and itself. In this
step the position of the thread vertices are potentially changed (section 3.8).

3. Collision detection of thread with itself (section 3.7.1).

4. Collision detection of thread with forceps (section 3.6.1).

5. Grabbing of thread with forceps (section 3.6.2).

6. Collision detection of thread with mesh (section 3.5.1).

7. Update sutures (section 3.5.2).
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8. Apply all forces from collisions to thread.

9. Solve self-contacts of the thread (section 3.7.2).

10. Integrate thread position (section 3.2.2).

11. Apply forces to mesh.

12. Integrate mesh (twice, see the work of Sismanidis [102]).

4.2. Tests

4.2.1. Metrics

Floating point values (the values with which real values are represented in comput-
ers) do not have any metrical unit. But in case of physical simulation they often
represent real values with metrical units. To give them meaningful values, one has to
know how to convert the floating point values to get the corresponding real values.

For the simulation in this thesis, all values can be broken down to combinations of
length, time and mass. In the simulation, length is measured in millimeters (mm),
so a floating point of 1.0 corresponds to 1mm. Mass is measured in grams (g). Time
is a little more tedious. The simulation assumes that a simulation step has a time
length of 1.0 (as a floating point value). This 1.0 corresponds to the duration of a
simulation step, which is 5 milliseconds. So time is measured in units of “5ms”.

Conversions for other units have to be represented in terms of grams, millimeters
and 5 milliseconds. For example a Newton (the unit for force) is equal to

1N = 1kg
1m

1s2
= 103g

103mm

106ms2
= 1g

1mm

1/25(5ms)2
= 25g

mm

(5ms)2
.

Therefor a force of 1N would be represented by 25.0 in the computer.
In the following, three test scenarios will be described. Table 4.1 lists the values

used for the thread parameters in these tests. It is important to note, that these
values have not been set based on material parameters but rather, by visual observing
which values gave the most plausible results.

The fact that the stiffness constants kS , kB and kT are directly related to distinct
observable behaviors (stretching, bending and twisting) has been beneficial. Tweak-
ing these variables by observation is easy. For example, when one observes that the
thread does not resist bending enough, one knows that kB has to be increased.

4.2.2. Test 1: Different types of knots

When binding together two ropes or threads, a common knot is the reef knot or
square knot. It is performed by tying a left-handed overhand knot and then a
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Scenario: Knot test Torsion test MicroSim

mobility [kg/s] 7.47 37.35 37.35

mobility (float) 37.35 186.73 186.73

kS [kgm2/s2] 1.25 · 108 1.25 · 106 1.25 · 108

kS (float) 5000 50 5000

kB[kgm2/s2] 1.25 · 104 1.25 · 103 2.5 · 104

kB (float) 0.5 0.05 1.0

kT [kgm2/s2] 2.5 · 104 2.5 · 104 2.5 · 104

kT (float) 1.0 1.0 1.0

thread radius [m] 5 · 10−4 10−4 10−4

thread radius (float) 0.5 0.1 0.1

l0[m] 5 · 10−4 10−4 10−4

l0 (float) 0.5 0.1 0.1

Coeff. of Friction varying 0.95 0.95

number of vertices 150 200 600

Table 4.1.: Values of the parameters for the different tests

right-handed overhand knot (or vice versa, see figure 4.4(a)). A overhand knot is
simply a rotation of the two knots around the longitudinal axis.

One can vary the reef knot in different ways. If two overhand knots with the
same hand-side are performed the so called granny knot results (see figure 4.4(b)).
Although it is similar to the reef knot, it is inferior in the sense that it can hold
slightly less load.

Another variation is the thief knot which resembles the reef knot, except that
the free ends are on opposite sides (see figure 4.4(c)). The grief knot has the same
relation to the granny knot as the thief knot to the reef knot as it is pulled by using
opposite sides of a granny knot as free sides (see figure 4.4(d)). It is highly insecure.

In summary, the reef knot is the most secure of the knots presented here. The
granny knot is less secure while the thief and grief knot are the most insecure knots.
It would be nice if the simulation would somehow resemble this relation.

A thread with the physical parameters given in table 4.1 column 1 is created
forming one of the knots. A force of 1N is applied in both directions. The coefficient
of friction µ is reduced (starting from a value of 0.95) in steps of 0.05 until the knot
dissolves.

To resemble reality, the coefficient of friction for which the reef knot dissolves
should be the lowest, while the grief knot should dissolve with highest coefficient
of friction. The results are given as four videos in the supplemental material or on
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(a) Reef knot (b) Granny knot

(c) Thief knot (d) Grief knot

Figure 4.4.: Variants of the reef knot

YouTube 1. For this simulation the segments have been colored alternating red and
green to better visualize the individual segments.

The reef knot tightens itself at several steps where the coefficient of friction is
reduced. At µ = 0.5 it is slightly unstable while at µ = 0.45 the knot starts
to dissolve. The granny knot seems to dissolve at µ = 0.7, but gets stable again.
Similar to the reef knot it gets unstable at µ = 0.5 and dissolves at µ = 0.45. At this
point it dissolves much faster than the reef knot. The thief knot starts dissolving
much earlier. At µ = 0.7 it seems to dissolve very slowly, while at µ = 0.65 the
dissolving is clear. The grief knot starts dissolving with µ = 0.55.

This result partly resembles reality. The reef knot is the most secure one, but
only very slightly compared to the granny knot. When one performs tests with real
threads, these results do not seem to far off. The secureness of reef and granny knot
does not differ that much. The result that the thief knot dissolves so fast is nice,
but is reduced by the fact that the grief knot is almost as secure as reef and granny
knots, which does not correspond to reality.

The question of when a knot dissolves is not only guided by physical parameters
but also by how good the NNCG converges, which is a very unphysical property.
When the NNCG converges badly, the movement of the thread gets unsteady, allow-
ing a knot to dissolve faster. Unfortunately the convergence of the NNCG is limited
by computing resources.

1 Reef-knot: http://youtu.be/i9YlzAAa56s

Granny-knot: http://youtu.be/Ok9RunnHkSU

Thief-knot: http://youtu.be/9KnAUMbIabI

Grief-knot: http://youtu.be/ERS26Y1IkG4
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4.2.3. Test 2: Torsion

When holding one end of a thread, while twisting the other, torsional energy builds
up. The thread can release the torsional energy by moving towards a configura-
tion where the twist is reduced. When the position of the thread’s end points is
fixed, this configuration has higher bending energy. So the thread moves towards a
configuration where bending and torsional energies are balanced.

This produces configurations with visually recognizable qualities. See figure 4.5.

Figure 4.5.: A twisted thread

This scenario has been reproduced in a simulation. A thread with the values found
in the third column of table 4.1 has been created. The position of the ends have
been fixed while the material frames of the outer most segments have been rotated
around the corresponding tangent in opposite direction. The total twist changes
with 0.8 radiant per second.

Again, segments have been colored alternating red and green to better visualize
the individual segments. A video of the simulation is given in supplemental material
or on YouTube2. A screen shot of the resulting configuration is shown in figure 4.6.

Comparing figure 4.5 and 4.6 one can clearly see that simulation can reproduce
the expected real behavior.

4.2.4. Test 3: Anastomosis in MicroSim

An anastomosis is performed partly in MicroSim. In the initial setup, the thread is
pierced through the ends of the vessels so that it can be knotted above where the

2http://youtu.be/aHjnR4Uahp4
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4. Results

Figure 4.6.: Simulation of the twisted thread.

vessels meet (see figure 4.7(a)).

Using the marker-tracking controlled forceps, a reef knot is performed pulling the
vessels together. Figure 4.7(b) shows the situation after the first overhand knot has
been performed. The final result of the anastomosis is shown in figure 4.7(c).

A video of the complete anastomosis is given in the supplemental material or on
YouTube3. It demonstrates the capabilities of MicroSim. But it also shows its limits.
The knot in the ends seems a little large. And indeed, a real surgical thread for this
anastomosis has a diameter of 0.02mm, while the simulated threads diameter is ten
times as large (0.2mm).

Unfortunately there are limits to how small the thread may be. In particular the
NNCG solver does converge much worse with a smaller thread radius resulting in
unstable knots. This can be counteracted by reducing the mobility, but the thread
already seems to move rather slowly. In addition, tunneling of thread segments
occur much more frequently with a smaller radius. Also, when the thread needs
to keep its bending agility, the segment length must be reduced, requiring a higher
number of vertices for maintaining the threads length. This especially increases the
computational burden of the collision detection.

Note that at one point the simulation seems to stop for a short moment. This
is an artifact of the video recording software and does not happen when no screen
recording is active. Presumably at the moment the simulations seems to stop when
the recording software is writing to disc or demanding memory from the operation
system.

4.3. Performance

As the thread simulation in this thesis is supposed to work in real time applications,
it is important to analyze its computing time requirements. Time measurements
have been done for the tests listed above in which a special attention has been given

3http://youtu.be/ZWkQga7RIHc
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4.3. Performance

(a) Initial setup

(b) Performing the first overhand knot

(c) Final result

Figure 4.7.: Performing an anastomosis in MicroSim
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to the time consumption of the constraint solver.

The time measurements have not been done in the same execution of the program
as the video recording. This is because the video recording interferes with the
performance as it requires CPU time and memory. For the MicroSim test, the input
has been recorded and replayed for the measurement.

4.3.1. Time measurements in the tests

For all 3 tests discussed above, the amount of time various aspects of the simulation
consume in a frame have been recorded. Since there are 6 simulation iterations per
frame, these timings are summed over 6 invocations. The results are shown in figure
4.8, 4.9 and 4.10. For the knot test, only the test with the reef-knot has been taken
exemplary. The keys have the following meanings:

• Total frame: The total duration of the frame. To stay within 30 frames per
second, this should stay below 33ms.

• Thread integration: Integration of the thread.

• Internal forces: Calculation of all internal forces of the thread.

• Constraint solver: Resolution of the contact constraints including building
of the coupling matrix.

• CD (betw. threads): Collision detection of the thread with itself, or be-
tween different threads. This includes building of the hash map for segments
and continuous collision detection.

• Contacts w/ forceps & tissue: Contact detection and resolution (including
continuous collision detection) between the thread and the tissue and forceps.
This includes building of the hash map for vertices.

• Update Mesh: Integration of the mesh, which represents the tissue. Inter-
action (collision detection and resolution) between tissue and forceps.

In the plot for the torsion test (figure 4.8) and in the plot for the MicroSim test
(figure 4.10 and 4.11), one may notice that the time consumed by thread integra-
tion doubles when the constraint solver uses time. This is because when contact
constraints must be solved, the thread needs to be integrated twice. The first inte-
gration is required to predict where colliding segments would move without contact
forces (see section 3.7).

For the torsion test (see figure 4.8) the total frame time stays below 33ms but
till the end of the test. As the number of contacts increase, the time consumed
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Figure 4.8.: Performance analysis for the Torsion test

by the constraint solver increases and with it the total frame time. In the end the
constraint solver is the clear bottleneck, as it consumes most of the computation
time.

The collision detection and resolution between the threads slowly increases be-
cause the spatial hashing outputs more potential collisions and more collisions tests
have to be done. Never the less, it stays below 5ms. The torsion test uses the least
number of vertices for the thread. All factors but the constrain solver in sum stay
below 6ms.

For the knot test (see figure 4.9) the contribution of the thread integration also
stays below 4ms, which is less than an eight of the total allowed frame time. Most
of time, integration takes about 2.5ms in total. For about the first 350 frames the
total frame time is much higher than for the rest of the test. At its peaks it is above
70ms. From the graph it is clear that the constraint solver is mainly responsible.
Because in the beginning of the test, where the knot falls into place, there are a lot
of self contacts of the thread. This is not captured by the video.

For the MicroSim test (see figure 4.10), the real time capabilities of the simulation
reach their limits. While in the absence of any knots the requirement of a maxi-
mum frame time of 33ms is barely met, with knots the frame time goes up as high
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Figure 4.9.: Performance analysis for the Knot test

as almost 70ms (which corresponds to about 14 frames per second). For a short
moment around frame count 1200 it reaches almost 100ms. A frame time of 100ms
corresponds to a frame rate of around 10 frames per second. It is still possible to
work with these low frame rates, but the simulation feels sluggish.

Figure 4.11 shows the first 200 frames of the MicroSim test in more detail. In-
tegrating the thread with 600 vertices takes no more than 5ms, even when the
integration has to be done twice (for a short moment before frame 150).

The constraint solver is, as expected, the biggest variance in the execution time.
When it goes up, the whole frame rate drops. Other important contributors to the
frame time are the mesh forceps interaction (around 15ms), the collision detection
between the thread and itself (varying between 5ms and 9ms) and the update of
the mesh (around 10ms).

4.3.2. Constraint solver

The last section clearly shows that when knots are required the dominant perfor-
mance bottleneck is the constraint solver. For a real time application such as Mi-
croSim it is important that the frame rate stays above a certain rate at all times.
It is not acceptable when the frame rate drops significantly, even if it happens only
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Figure 4.10.: Performance analysis for the MicroSim test

in specific situations. Therefore, the worst case scenario is the most important to
improve.

When there are many self-contacts of the thread, the constraint solver is the clear
bottleneck. The constraint solver consist of two main parts: Building of the coupling
matrix and solving for the contact forces. As stated in section 3.7.2, building of the
coupling matrix has a complexity of O(M2 +N) were M is the number of contacts
and N the number of vertices in the thread. Since the number of iterations in
the constraint solver is set to a fixed number, solving for the contact forces has a
complexity of O(M2). In all the tests the constraint solver performs 10 iterations.

The timings for building the coupling matrix, solving for contact forces and the
total time of the constraint solver have been measured for the tests described above.
For the knot test, they have only been measured for the reef knot. Figure 4.12 and
4.13 show the time measurements for building the coupling matrix and solving for
the constraint forces respectively.

The quadratic dependence on the number of constraints is visible for all three
tests in figure 4.12 as well as in figure 4.13. The impact of the number of vertices
in the thread can be seen at the left border of figure 4.12. Since there are very few
contacts, the time consumption due to the quadratic dependence on the number of
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Figure 4.11.: Performance analysis, only first 200 frames.

contacts is low. The linear time dependence on the number of vertices on the other
hand is unchanged. In the MicroSim test, the thread is made of significantly more
vertices than in the knot or torsion test. In accordance with this the measurements
for the MicroSim tests start at about 0.8ms while for the knot and torsion test they
are at about 0.2ms at the left border of figure 4.12.

Figure 4.12 and 4.13 also reveal that for all tests, the time consumed by building
the coupling matrix is much higher than the time consumed by finding the contact
forces. One has to be aware that this changes when one increases the number of
iterations for the NNCG solver. For the tests, the number of iterations was set to 10,
which maintains the real time capabilities of the simulation. For more accurate knot
simulation, a higher number of iterations is called for. Iterations of 100 or even more
would be desirable. The time consumption for finding the contact forces is linear in
the number of iterations. So this change would multiple the time consumption by
10, moving it in the same scale as the time consumption for building the coupling
matrix.
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Figure 4.12.: Timings for building the couplings matrix
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Figure 4.13.: Timings for solving for contact forces
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Figure 4.14.: Timings for the NNCG constraint solver
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5. Discussion and Outlook

In this thesis, the simulation of thread, integrated with an implicit integration
scheme, has been developed. The thread is modeled with a mass spring model.
The challenge of simulating threads with high stiffness has been addressed with im-
plicit integration, which allows the thread to have practically unlimited stiffness.
The simulation runs with a very large time step (5ms, for comparison [104] uses a
time step of 0.1ms) making it real time capable.

The large time step has also the effect that the thread potentially moves by a
multiple of its diameter within a single simulation step. To prevent tunneling effects,
continuous collision detections between the thread and itself as well as all other
objects has been applied.

The implicit integration requires that all applied forces are given, including their
derivative with respect to the degrees of freedom in the thread. Such forces have
been calculated for torsion, bending and stretching of the thread. The physical
parameters of the thread have been chosen to directly control these qualities. This
allows the adjustment of the thread based on visual observation of its behavior. For
example, if it is required to stronger resist bending, there is a parameter directly
controlling this feature.

For collision resolution with other objects (the tissue and the forceps), collision
responses suited for the implicit integration have been developed. For collisions
of the thread with itself, there are higher demands on the quality of the collision
response. To simulate knots in a realistic way, accurate contact forces have been
calculated. Because of the implicit integration, all contacts interact. The strength
of this interaction has been calculated in a coupling matrix allowing the contact
problem to be formulated as a nonlinear complementary problem. Inspired by rigid
body contact problems, a nonsmooth conjugate gradient method (see also [101]) has
been applied.

One may note that instead of calculating the interactions between the contacts,
one could add the contact constraints to the linear system that is solved by the
implicit integration. But this would add entries outside the bands of the matrix of
the linear system and transform the problem of integrating into a complementary
problem. Solving this system would require too much computation time for an
interactive application. By calculating the interaction of the constraints and solving
the constraint in a separate step, the problem has been separated. The elements
outside the bands and the complementary equations are solved in a separate step.
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5. Discussion and Outlook

The solution is the same as the much larger complementary problem. But the
difficult complementary problem has now been reduced to size M instead of N ,
where M is the number of contacts and N the number of degrees of freedom of
the thread. The remaining problem is the banded matrix of the implicit integrator,
which can be solved in linear time.

The simulation has been integrated into the microsurgical training simulator Mi-
croSim and it has been demonstrated that a virtual anastomosis can be performed.
In addition it has been shown that knots can be simulated and that torsion and
bending forces interact in the expected ways. The behavior of the thread can be
adjusted with a number of parameters which are directly connected to visually ob-
servable behaviors. This allows for tweaking the thread and for adjusting observable
features directly.

When other time demanding calculations have to be done in addition to the thread
simulation (such as simulation of tissue), the real time capabilities have their limits.
The virtual anastomosis cannot be run with the full 30 frames per seconds, but
reaches frame rates as low as 10 frames per seconds. Shifting this limit would be very
desirable. The most limiting factors are the collision detection and the constraint
solver. The integration of the thread itself is not very time demanding.

Other works have extended the real time capabilities of different thread simula-
tions by making the length of segments dynamic (see e. g. [104]). When the bending
between segments is higher than a threshold, segments are divided decreasing the
bending. When the bending goes below a threshold, segments are combined. This
especially reduces the computational demands of the integration, which is not a lim-
iting factor here as has also been discusssed in section 3.1.2. Since inside of knots
the thread would be maximally divided, the constraint solver would not benefit.
The collision detection could benefit from fewer elements, but the spatial subdivi-
sion scheme used in this thesis (the hash map from [111]) cannot deal with elements
of different sizes efficiently. A different spatial subdivision scheme, such as Octrees
[22], could be applied. Then it could also be designed to take advantage of aligned
segments.

A large time step also has its disadvantages. If an assumption (such as a calculated
force) is not correct for the full time step, the error builds up more with a large time
step. A slightly smaller time step would be nice but is difficult because of the
computational demands. Collision detection would probably not be necessary in
every integration step. For example in every second step the collision information
from the last step could be updated, without detecting new collision.

A time intensive requirement that is needed in every step is the constraint solver.
It could benefit from a lower time step due to warm starting and require less itera-
tions. Still, the building of the coupling matrix would be required in every step and
it would not benefit from warm starting.

So in general, a speedup of the constraint solver would be very desirable. If
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more iterations could be performed, the radius of the thread could be decreased
to a realistic value and its mobility increased without hurting the convergence of
the solver. Probably a parallelization of the algorithm would yield the required
performance gain. The main part is a large matrix calculation, which could be
parallelized to a certain level. Another important aspect is calculating the coupling
matrix. The main computation burden is finding the Hi→j which could also be done
in parallel.

The virtual anastomosis in MicroSim is far from simulating the complete proce-
dure. It starts at a point where the thread has already been stitched into the blood
vessels and stops when the first stitch has been knotted. To simulate the complete
procedure including piercing the blood vessel with a needle, an interaction between
needle and thread has to be developed. The thread needs to be attached onto the
needle and follow its movements. This could e. g. be done with the same technique
used for grabbing the thread with the forceps. When more stitches should be per-
formed, the time demands of the constraint solver become even more problematic
than they are now because it would have to solve several knots at once. When there
are many knots, the coupling matrix could be split into strongly connected compo-
nents where small entries are thresholded. Then each component could be solved on
its own. Since the solver complexity is quadratic in the number of contacts, in the
presence of many knots a big gain would be attained. Also knots could be detected
by their topology and when they are known to hold, they could be transformed into
rigid objects that are connected to the thread. Sismanidis [102] developed other
training modules for microsurgical procedures not involving the thread.

Testing when a reef, granny, thief, or grief knot dissolves shows that knots can
be simulated realistically, at least to a certain extent. The realism fails when the
constraint solver does not converge fast enough. So this is again a problem of the
time consumption of the constraint solver. Still, a knot holding together the blood
vessels can be performed while the frame rate of the simulation stays high enough
for interactivity. However, a very loose knot, such as a simple loop, would not hold
under any conditions. Just as a tutor teaching medical students would check if
the students performed the correct knot suture, it would be desirable to have an
automatic classification of the knot a trainee performed in the training simulator.
The trainee could get feedback if he performed the correct knot or his test score
could be adjusted accordingly. Such a classification could be done by a topological
analysis of the knot.
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A. Example for implicit integration:
Harmonic Oscillator

Here an example of the unconditional stability of implicit integration is given.

The harmonic oscillator is a physical system described by the potential U(~x) =
1
2k~x

2 where k > 0. It results in the force

~F (~x) = ∇U(~x) = −k~x

and is the potential of a spring with vanishing rest length. Whenever springs are used
in the physical model, the harmonic oscillator or a variant of it is applied. Here it is
shown that the implicit integration scheme from section 3.2.2 with the semi implicit
Euler integrator is always stable when applied to the harmonic oscillator potential.
This is done by showing that the energy never increases in an integration step.

Assume an object with mass m, position ~x(t) and velocity ~v(t) is in the potential
of the harmonic oscillator.

Let t0 be the time before the integration step. ∆t is the time step and t1 := t0+∆t
the time after the integration step. The starting state of the system is defined by
~x(t0) and ~v(t0). To create a state vector with uniform units, ~w(t) := ~v(t) · ∆t is
used. The energy E(t) of the system is

E(t) =
1

2

(
k · ~x(t)2 +M ~w(t)2

)
where M := m/∆t2.

To shorten notation, so that the time argument does not always have to be written
down explicitly, ~w(ti), ~x(ti) and E(ti) are written as ~wi, ~xi and Ei respectively.

The integration updates position and velocity according to:

~w1 = ~w0 −
k

M
~x1 , ~x1 = ~x0 + ~w1

⇒ ~x1 = α~x0 + α~w0 , ~w1 = (1− β)~w0 − β~x0

where
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A. Example for implicit integration: Harmonic Oscillator

α :=
1

1 + k
M

, β :=
k

M
α =

1

1 + M
k

Stability will be proven by proving that the energy of the system decreases. For
this it will be shown that 2E0 − 2E1 > 0.

2E0 − 2E1 = k~x2
0 +M ~w2

0 − k~x2
1 −M ~w2

1

= a~x2
0 + b~w2

0 − 2c~x0 ~w0

where

a := k − kα2 −Mβ2

b := M − kα2 −M (1− β)2

c := kα2 −M (1− β)β

This can be expressed in the quadratic form:

(
~x0

~w0

)
A

(
~x0

~w0

)
, A :=

(
a1 −c1
−c1 b1

)
where 1 is the unit matrix. The quadratic form is always positive iff the eigenvalues

of A are all positive. A has the same eigenvalues as the 2×2 matrix A′ :=

(
a −c
−c b

)
.

The sum of A′ eigenvalues is given by the trace of A′ while there product is given by
A′s determinant 1

ab−c2 . If both are positive than A′s eigenvalues are also positive,
proving the claim.

Because k and M are positive, it must be that 0 < α < 1.

1 > α

⇒ 1 > 2α− α = 2

(
1 +

k

M

)
α2 − α

⇒ 1− 2α2 > 2
M

k

[(
k

M
α

)2

− k

M
α

]
⇒ k

(
1− α2

)
> M

(
2β2 − 2β

)
⇒ 0 < k

(
1− 2α2

)
+M

(
2β − 2β2

)
= a+ b
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Showing that the determinant is positive is done by showing, that ab− c2 > 0.

k

M
> 0

⇒ 2 + 2
k

M
> 2 +

k

M

⇒ 2 > (2 +
k

M
)α = 2α+ β

⇒ 2− 2α− β > 0

⇒ k2α (2− β − 2α) = kMβ (2− β − 2α) = kM
(
2β − β2 − 2αβ

)
> 0

⇒ ab− c2

= kM
[
1− (1− β)2 − α2 + (1− β)2α2 + β2α2 + 2α2(1− β)β

]
− k2α2 −M2β2

= kM
(
2β − β2

)
− α2k2 −M2β2 = kM

(
2β − β2 − 2λβ

)
> 0

with which the statement is proven.
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B. Geometric tests

In this appendix, various geometric tests, needed for collision detection, are given.

B.1. Barycentric Coordinates

Barycentric coordinates are a way to express a position within a triangle as a linear
product of the triangle’s corners. Let ~a, ~b and ~c be a triangle with normal ~n. ~n is
defined by

~n :=
(~c− ~a)× (~b− ~a)

|(~c− ~a)× (~b− ~a)|

which also defines the direction in which ~n points. The area of the triangle is given
by

A =
1

2

(
(~c− ~a)× (~b− ~a)

)
· ~n.

Let ~p be a point inside the triangle. Its barycentric coordinates is a triple
(t1, t2, t3) ∈ R3. Each element of the triple corresponds to a corner of the tri-
angle. When one replaces one of the corners of the triangle with ~p and calculates
the fraction this triangle has of the whole triangle area, one gets the corresponding
barycentric coordinate (see figure B.1).

t1 :=
1

2A

(
(~c− ~p)× (~b− ~p)

)
· ~n (B.1)

t2 :=
1

2A
((~c− ~a)× (~p− ~a)) · ~n (B.2)

t3 :=
1

2A

(
(~p− ~a)× (~b− ~a)

)
· ~n (B.3)

(B.4)

The sum of the coordinates represents the fraction for which the whole triangle is
of itself. Therefore

t1 + t2 + t3 = 1.
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B. Geometric tests

~a ~b

~c

~p

Figure B.1.: Point inside a triangle forming 3 triangles whose areas correspond to
the barycentric coordinates.

Another important property is, that:

~p = t1~a+ t2~b+ t3~c.

This can be shown by inserting t1~a+t2~b+t3~c into (B.1) - (B.3) and showing that this
point has the same barycentric coordinates as ~p. Here this will be done exemplary
for (B.3):

t′3 :=
1

2A

(
(t1~a+ t2~b+ t3~c− ~a)× (~b− ~a)

)
· ~n

=
1

2A

(
t3(~c− ~a)× (~b− ~a) + (t1~a+ t2~b+ t3~c− (1− t3)~a)× (~b− ~a)

)
· ~n

=
1

2A

(
t3(~c− ~a)× (~b− ~a)

)
· ~n+

(
(t1~a+ t2~b− (t1 + t2)~a)× (~b− ~a)

)
· ~n

=
1

2A
t32A+

1

2A

(
t2(~b− ~a)× (~b− ~a)

)
· ~n

= t3

Equations (B.1) - (B.3) allow for the calculation of the barycentric coordinates.
A more efficient algorithm is given in [37, chapter 3.4].

Note that (B.1) - (B.3) use signed areas to calculate t1, t2 and t3. This means
that the area fractions can get negative. This only happens when ~p is outside of
the triangle. So a test for whether a point in a plane is inside a given triangle is
calculating the barycentric coordinates and testing of they are all bigger or equal to
0.

B.2. Intersection between a plane and a line

Let the line be described by ~K(s) := ~a+~bs. The plane is given by its normal ~n and
a point ~p it contains. For a given s the distance between K(s) and the plane is:
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B.3. Closest point on a line to a point

d = ~n ·
(
~K(s)− ~p

)
~n ·
(
~a+~bs− ~p

)
The intersection is given by the point for d = 0. This is the case when

s =
~n · (~p− ~a)

~n ·~b

B.3. Closest point on a line to a point

Let ~p be the point for which the closest point on the line ~a+~bt has to be found. The
closest point on the line to ~p is the projection of P onto the line [35]. Or, in other
terms, the closest point on the line is the intersection of the line with the plane with

the normal ~b/
∣∣∣~b∣∣∣ containing ~p.

The distance between ~a and the plane is (~p− ~a) ·~b/
∣∣∣~b∣∣∣. Since ~b is orthogonal to

the plane, the intersection point is:

~p0 := ~a+~b
(~p− ~a) ·~b∣∣∣~b∣∣∣2

B.4. Closest point on a triangle to a line

Finding the closest point on a triangle is a matter of combining the tools presented
so far.

The point is projected onto the plane the triangle lies in. It is then determined
whether the projected point is inside the triangle by calculating the barycentric co-
ordinates. If this is the case, then the projected point is the closest point. Otherwise
the closest point lies on one of the borders of the triangles. In this case the closest
points on the line segments making the border of the triangles are calculated. The
one of these points which is closest to the test point is the desired closest point.

B.5. Closest point between two lines

Let K(s) := ~a + ~bs and L(t) := ~c + ~dt be the lines for which the closest distance
needs to be found. The vector between the closest points is orthogonal to ~d and ~b.
It is therefore proportional to

~s := ~b× ~d
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B. Geometric tests

If |~s| = 0 then the two lines are parallel. The closest points can be found by
choosing an arbitrary point on K(s) and find the closest point on L(s) to it (as in
section B.3).

The set of points can be reached from any point on K(s) following a vector
proportional to ~s is given by the plane with normal ~s/ |~s| which include ~a. The
closest point on L(t) is given by the intersection of this plane and L(t) (see appendix
B.2).

t =
~s · (~c− ~a)

~n · ~s

For a more detailed derivation as well as an implementation, look into the docu-
ment from Eberly [34],

B.6. Closest point on surface of a cone to a point

Finding the closest point on the surface of a cone is described in [1]. Here a short
summary is given. Let ~P be the point to which the closest point is required. Let
further ~P0 denote the closest point. If ~P0 is on the bottom plane of the cone, it
is found the same way as for the half circle at the bottom of the quarter sphere.
Otherwise it is on the coat of the cone. If one would extend a vector from ~P through
~P0 it would hit the center line of the cone. ~P0 is therefore in the plane formed by
~P and the end points of the center line. Intersecting this plane with the coat of the
plane results in 2 lines, ~P0 is on the line closer to ~P (see figure B.2). Let ~C0 be the
closest point in the center line to ~P and ~C1, ~C2 the endpoints of the center line. The
line on which ~P0 must be is between the following points:

~D1 := ~C1 +
~P − ~C0∣∣∣~P − ~C0

∣∣∣r1

~D2 := ~C2 +
~P − ~C0∣∣∣~P − ~C0

∣∣∣r2

~P0 is found by finding the closest point on the line between ~D1 and ~D2 to ~P .

B.7. Intersection of a sphere and a line

For a sphere and a line to intersect, there must be a point on the line that has a
distance to the center of the sphere equal to the sphere’s radius.
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B.8. Intersection of a cone and a line

~P
~P0

~C1

~C2

~D1

~D2

r1

r2

Figure B.2.: Closest point on coat of cone.

Let ~c denote the spheres center, r its radius and ~p+ t~d with t ∈ R the line. Then
the condition is

(
~p+ t~d− ~c

)2
= r2

⇒ t =

√
r2 − (~p− ~c)2 − 2~d · (~p− ~c)

~d2

If the equation has results, the results have to be plugged into the line equation
to find the intersection points.

B.8. Intersection of a cone and a line

This appendix is based on [33].

Without loss of generality, let the tip of the cone be at the origin. A point ~x is on
the coat of the cone extended to infinity when

~c · ~x = cos(Φ) |~p|

where ~c is the direction of the center line and Φ is the opening angle of the cone.
Let the line be described by ~p+ t~d with t ∈ R. The set of points on the line fulfilling
the equation is
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B. Geometric tests

(
~c ·
(
~p+ t~d

))2
= cos2(Φ)

(
~p+ t~d

)2
and

(
~p+ t~d

)
· ~c ≥ 0

⇔
(
~p+ t~d

)T (
~c~cT
) (
~p+ t~d

)
− cos2(Φ)

(
~p+ t~d

)2
= 0 and

(
~p+ t~d

)
· ~c ≥ 0

⇔
(
~p+ t~d

)T
M
(
~p+ t~d

)
= 0 and

(
~p+ t~d

)
· ~c ≥ 0

where

M := ~c~cT − cos2(Φ)

Expanding the equation gives a quadratic equation in t:

t2c1 + tc2 + c3 = 0 and
(
~p+ t~d

)
· ~c ≥ 0

where

c1 := ~d,TM~d

c2 := 2~pTM~d

c3; = ~pTM~p

The results for the equation have to be found and determined if they fulfill(
~p+ t~d

)
· ~c ≥ 0.
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