
INAUGURAL–DISSERTATION

zur

Erlangung der Doktorwürde

der

Naturwissenschaftlich-Mathematischen Gesamtfakultät

der

Ruprecht-Karls-Universität

Heidelberg

vorgelegt von

Diplom-Mathematiker Thorsten Kräling

aus Langenfeld

Tag der mündlichen Prüfung:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Heidelberger Dokumentenserver

https://core.ac.uk/display/32584501?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Joins and Meets

in the Partial Orders

of the Computably Enumerable

ibT- and cl-Degrees

Betreuer: Prof. Dr. Klaus Ambos-Spies

...

Abstract

A bounded reducibility is a preorder ≤r on 2N which is obtained from Turing re-

ducibility by the additional requirement that, for a reduction of A to B, for every

input x the oracle B is only asked oracle queries y ≤ f(x), where f is from some

given set F of total computable functions.

The most general example of a bounded reducibility is weak-truth-table reducibility,

where F is just the set of all computable functions. In this thesis we study the so-

called strongly bounded reducibilites ≤ibT and ≤cl, which are obtained by choosing

F = {id} and F = {id+ c : c ∈ N}, respectively (where id is the identity function).

We start by giving a machine-independent characterisation of these reducibilities,

define the degree structures RibT and Rcl of the computably enumerable ibT- and

cl-degrees and review some important properties of ≤ibT and ≤cl concerning strictly

increasing computable functions (called shifts) and the permitting method.

Then we turn to the degree structures mentioned above, and in particular to exis-

tence and nonexistence of joins and meets of a finite set of degrees. As Barmpalias

[Barm 05] and independently Fan and Lu [Fan 05] have shown, Rr is not an upper

semi-lattice for r ∈ {ibT, cl}; it is also known that it is not a lower semi-lattice. We

extend these results by showing that the existence of a join or meet of n degrees

does in general not imply the existence of a join or meet, respectively, of any subset

containining more than one element of these degrees. We also show that even if

degr(A) and degr(B) have a join, there is no uniform way to compute a member of

this join from A and B, contrasting the join in the Turing degrees. We conclude this

part by looking at the substructure of Rr which consists of the degrees of simple sets

and show that this structure is not closed with respect to the join operation. This

is the dual of a theorem of Ambos-Spies [Amboa] stating that the simple degrees

are not closed with respect to meets.

Next, we investigate lattice embeddings into Rr. Due to an observation of Ambos-

Spies, the proof that every finite distributive lattice can be embedded into the

computably enumerable Turing degrees carries over to Rr. We show that the small-

est nondistributive lattices N5 and M3 can also be embedded into Rr, but only

the N5 can be embedded preserving the least element. Since every nondistributive

lattice contains at least one of these two lattices as a sublattice, this motivates the

conjecture that every finite lattice can be embedded into Rr. We show this for two

other nondistributive lattices, the S7 und S8.

Finally, we compare RibT and Rcl and prove that these are not elementarily equiv-

alent. To show this, we study under which conditions on two degrees a and c

with a < c it holds that there exists a degree b < c such that c is the join of a

and b. In this context we also show that, while shifts provide a simple method to

produce a lesser r-degree a to some given noncomputable r-degree c, there is no

computable shift which uniformly produces such an a with the additional property

that no degree b as above exists.

Zusammenfassung

Eine beschränkte Reduzierbarkeit ist eine Quasiordnung ≤r auf 2N, die man durch

Einschränkung der Turing-Reduzierbarkeit erhält, indem man zusätzlich verlangt,

dass für eine Reduktion von A auf B bei Eingabe x nur Anfragen y ≤ f(x) an das

Orakel B gestellt werden dürfen, wobei f aus einer vorgegebenen Menge F total

berechenbarer Funktionen stammt.

Das allgemeinste Beispiel einer beschränkten Reduzierbarkeit ist weak-truth-table-

Reduzierbarkeit, hierbei besteht F gerade aus allen berechenbaren Funktionen. In

der vorliegenden Arbeit werden Ergebnisse über die sogenannten stark beschränkten

Reduzierbarkeiten ≤ibT bzw. ≤cl vorgestellt, die man bei Wahl von F = {id} bzw.

F = {id+ c : c ∈ N} erhält (wobei id die Identitätsfunktion ist).

Wir geben zunächst eine maschinenunabhängige Charakterisierung dieser Reduzier-

barkeiten an, definieren die zugehörigen Gradstrukturen RibT und Rcl der rekursiv

aufzählbaren ibT- und cl-Grade und rekapitulieren einige wichtige Eigenschaften von

≤ibT und ≤cl im Zusammenhang mit streng monotonen berechenbaren Funktionen

(Shifts) und mit der Permitting-Methode, die im späteren Verlauf von Nutzen sind.

Danach wenden wir uns den obigen Gradstrukturen zu, insbesondere dem Aspekt

der Existenz von Suprema und Infima einer endlichen Menge von Graden. Von

Barmpalias [Barm 05] und unabhängig von Fan und Lu [Fan 05] wurde gezeigt,

dass Rr für r ∈ {ibT, cl} kein oberer Halbverband ist; ebenso ist bekannt, dass

es sich um keinen unteren Halbverband handelt. Wir verallgemeinern diese Resul-

tate dahingehend, dass aus der Existenz eines Supremums bzw. Infimums von n

Graden im Allgemeinen noch nicht folgt, dass eine echte Teilmenge dieser Grade

mit mehr als einem Element ein Supremum bzw. Infimum besitzt. Ferner zeigen

wir, dass Suprema von Graden degr(A) und degr(B) selbst im Fall der Existenz

nicht in der gleichen Weise uniform aus A und B berechnet werden können wie im

Fall der Turing-Reduzierbarkeit. Wir beschließen diesen Teil mit einer Betrachtung

der Teilstruktur von Rr der Grade einfacher Mengen und weisen nach, dass diese

nicht unter Suprema abgeschlossen sind. Dies komplementiert ein entsprechendes

Resultat von Ambos-Spies [Amboa] über die Nicht-Abgeschlossenheit unter Infima.

Das folgende Kapitel ist der Untersuchung von Verbandseinbettungen in Rr gewid-

met. Nach einer Beobachtung von Ambos-Spies überträgt sich der Beweis, dass jeder

endliche distributive Verband in die rekursiv aufzählbaren Turinggrade einbettbar

ist, auf Rr. Wir zeigen, dass auch die kleinsten nichtdistributiven Verbände N5 und

M3 in Rr eingebettet werden können, letzterer allerdings nicht unter Bewahrung

des kleinsten Elements. Da jeder nichtdistributive Verband mindestens einen dieser

beiden Verbände als Teilverband besitzt, gibt dies Anlass zu der Vermutung, dass

jeder endliche Verband in Rr eingebettet werden kann. Wir weisen das für zwei

weitere nichtdistributive Verbände S7 und S8 nach.

Zum Abschluss wenden wir uns dem Vergleich von RibT und Rcl zu und zeigen, dass

diese nicht elementar äquivalent sind. Dazu untersuchen wir, wann für zwei Grade

a und c mit a < c gilt, dass ein Grad b < c derart existiert, dass c das Supremum

von a und b ist. In diesem Zusammenhang zeigen wir außerdem, dass, während

Shifts eine einfache Methode liefern, zu einem nicht berechenbaren r-Grad c einen

echt kleineren r-Grad a anzugeben, dieser nicht uniform so gewählt werden kann,

dass kein b wie oben existiert.

Contents

Contents ix

1 Introduction 1

2 Strong Reducibilities 7

2.1 Sets, strings and trees . 7

2.2 Computable functions, coding functions, and computable enumerable sets 8

2.3 Relative computability . 8

2.4 Strong reducibilities . 10

2.5 Degree structures . 12

2.6 Computable shifts . 12

2.7 The Permitting Lemma . 14

3 Joins and Meets 17

3.1 The ibT-cl-Conversion Lemmas . 17

3.2 The Splitting Lemma . 18

3.3 n-Tuples with and without Joins . 19

3.4 n-Tuples with and without Meets . 27

3.5 Noneffectivity of the Join . 33

3.6 Joins and Meets in Substructures of RibT and Rcl: Simple Degrees 44

3.6.1 The Algorithm . 48

3.6.2 Verification. 50

4 Lattice embeddings into RibT and Rcl 61

4.1 Lattice embeddings . 61

4.2 Embedding linear orders . 62

4.3 Embedding distributive lattices . 62

4.4 Embedding nondistributive lattices . 65

4.5 Embedding the N5 . 66

4.6 Embedding the S7 . 70

4.6.1 Conflicts between the requirements . 73

ix

CONTENTS

4.6.2 Building safe intervals for two requirements under a maximal response

hypothesis . 75

4.6.3 Building safe intervals for n requirements under a maximal response hy-

pothesis . 76

4.6.4 Building safe intervals without a maximal response hypothesis 77

4.6.5 Eliminating requirements . 78

4.6.6 Bringing the strategies together on a tree 79

4.6.7 The construction . 80

4.6.8 Verification . 83

4.7 Embedding the M3 . 103

4.7.1 The construction . 108

4.7.2 Verification . 111

5 Cuppable degrees and the theories of RibT and Rcl 129

5.1 Elementary equivalence of degree structures . 129

5.2 Cuppability in RibT . 130

5.3 Cuppability in Rcl . 133

References 141

x

Chapter 1

Introduction

This thesis deals with the computably enumerable ibT- and cl-degrees.

Given some preorder (i.e. a reflexive and transitive 2-ary relation)≤r on the power set {0, 1}N

of the integers, one can define an equivalence relation ≡r on {0, 1}N by letting A ≡r B if and

only if A ≤r B and B ≤r A. The theme of degree theory is the study of the resulting equivalence

classes, the r-degrees. In computability theory one also uses the term “degrees of unsolvability”

(“unsolvable” meaning “not computable”), which reflects the fact that the relation ≤r is chosen

such as to formalise a way to compare sets with respect to their computational power.

Degree theory in this sense is almost as old as computability theory itself. It was Turing

himself, who, only a few years after inventing his now famous Turing machine [Turi 37], also

brought up the notion of oracle Turing machines [Turi 39], thus giving a formal definition of

what it meant for a set A to be computable from another set B and hence computationally not

more powerful than B. The corresponding preorder ≤T is now known as Turing reducibility

[Post 44]. There has been excessive research on the structure of the Turing degrees since then,

and more and more complex techniques were developed – for an overview of the most important

results (as of 1983) see the comprehensive textbook by Lerman [Lerm 83].

The subject of degree theory was continuously broadened in two different main directions.

Firstly, instead of considering all degrees, one can study only a certain subset of the degrees.

The subset which received the most interest is the subset of computably enumerable (c.e.)

degrees, the degrees of c.e. sets. Post was the first to study these degrees and it turned out that

already the most basic question on the c.e. degrees that he posed [Post 44], the question whether

there are more than two such degrees, turned out to be all but trivial. It took more than ten

years before Friedberg [Frie 57] and independently Muchnik [Mucn 56] could answer it to the

positive by inventing the groundbreaking finite injury priority method. With this method, if

one wants to show the existence of a c.e. set with some specified property, the desired global

property is first split up into an infinite set of requirements which can be satisfied locally (i.e.

whose satisfaction is determined by only a finite part of the set to be constructed); then a

1

1. Introduction

total order is fixed on the set of requirements and they are satisfied one by one in such a

way that each requirement has to respect the action done by higher-priority requirements but

may injure lower-priority requirements. The ideas of this method were refined and extended

to the more complicated infinite injury priority method and beyond that. It also turned out

that in the more elaborate proofs using these methods it is often more convenient to work

with a tree of requirements instead of just a linearly ordered set (where each requirement

appears along each infinite branch of the tree). A lot of difficult questions on the c.e. degrees

could be tackled by exploiting these methods. For example, it is known that the c.e. Turing

degrees form a dense partial order [Sack 64], that they do not constitute a lower semi-lattice

[Lach 66, Yate 66] (though it is very easy to see that they are an upper semi-lattice), and that

some but not all finite lattices can be embedded into the structure of the c.e. Turing degrees

[Lach 80]. However, there are still some interesting open questions, for instance, whether there

is a simple characterisation of the finite lattices which are embeddable into the c.e. degrees.

The second direction in which the subject of degree theory evolved was changing the notion

of relative computability, that is the relation ≤r. Instead of using the full power of oracle

machines when computing one set from another, one can put restrictions on the number of

oracle queries asked, the size of the oracle questions, or the way how the answers to oracle

questions may correlate to the final result of the computation. Of course there are many other

possibilities for interesting reducibility notions ≤r. An example for a reducibility notion where

the number of oracle questions is restricted to one and the final result must be the same as the

answer to this oracle question, is many-one-reducibility. An example where both the number of

oracle questions and the way how the answers to these questions correlate to the final output

are arbitrary but must be fixed before checking the answer to any of these questions, is truth-

table reducibility. Both notions were already defined by Post in his 1944 paper cited above. A

weaker notion, where only the number of oracle questions asked has to be fixed in advance,

is weak truth-table reducibility, first defined by Friedberg and Rogers [Frie 59]. More formally,

A is weak truth-table reducible to B if there is a computable function f such that f(x) is an

upper bound to the oracle questions asked during the computation of A(x) with oracle B (with

respect to some fixed oracle machine). Weak truth-table reduciblity is thus a close variant of

Turing reducibility.

What happens if we replace the condition that f from the definition above be computable

by the condition that f be in some set F of non-decreasing computable functions, where –

in order to make ≤r reflexive and transitive – we assume F to contain the identity function

and be closed under composition? This has been the subject of more recent studies during

the last decade. The most important cases apart from F being the class of all non-decreasing

computable functions (which leads to weak truth-table reducbility) are that F contains only

one element, the identity function, or that F consists of all functions f with f(n) = n + c

for some constant c. The former case was first considered by Soare [Soar 04] and gives rise

to the notion of identity-bounded Turing (ibT-) reducibility ≤ibT, the latter was looked at

2

by Downey, Hirschfeldt and LaForte [Down 04] and the resulting reducibility notion ≤cl is

now called computable Lipschitz (cl-) reducibility. The notion of cl-reducibility is of particular

interest also to the field of algorithmic randomness, because the class of Martin-Löf random

sets is closed upwards with respect to ≤cl.

As we said at the beginning of this introduction, the focus in this thesis lies on results of

degree theory with respect to the computably enumerable sets only, and with respect to ibT-

and cl-reducibility. The outline is as follows.

In Chapter 2 a short summary of the basic ideas and notions from computability theory will

be given. We will formally define ibT- and cl-reducibility. Since the ad-hoc definitions are not

very robust with respect to slight variants of the oracle machine model (note that, for example,

if an oracle machine with oracle B always were to ask at least the fixed oracle question B(1),

then no set would be ibT-reducible to any set, because the use function at input 0 would always

be greater than 0), we will offer an alternative, machine-independent definition. We will also

review some properties which are very helpful tools when working with ibT- and cl-reducibility.

One is the observation that by shifting all the bits of a set by a certain amount to the left

or right we obtain an easy way to find a computationally harder or simpler (in the sense of

ibT- or cl-reducibility) set than a given noncomputable c.e. set. The other is a representation

theorem stating that ibT- and cl-reducibility can in some sense be characterised as a reduction

by permitting.

In Chapter 3 we study greatest lower and least upper bounds (or meets and joins) of finite

sets of c.e. ibT- or cl-degrees. In the first two sections we review two more important tools.

The ibT-cl-Join and -Meet Lemmas simplify considerations because they state that joins and

meets in the c.e. ibT-degrees are preserved when we consider the corresponding cl-degrees.

The Splitting Lemma is a positive result about the existence of joins, stating that if finitely

many degrees can be represented by pairwise disjoint c.e. sets, then they have a join which is

represented by the union of these sets. In contrast, as has been shown by Barmpalias [Barm 05]

and by Fan and Lu [Fan 05], joins in the c.e. ibT- and cl-degrees do not exist in general. In

Section 3.3 we generalise this result and show that for every n ≥ 0 there exist c.e. ibT- or

cl-degrees a0, . . . ,an which have a join but such that no k of these degrees have a join for

2 ≤ k < n. In Section 3.4 the corresponding result for meets in place of joins is proven, thereby

also showing that the c.e. ibT- and cl-degrees are neither upper nor lower semi-lattices.

By the Splitting Theorem, a representative of the join of the degrees of two disjoint c.e.

sets A and B can be computed from A and B in a simple and uniform way. Since for Turing

degrees the join of two degrees degT(A) and degT(B) is always represented by A ⊕ B = {2x :

x ∈ A} ∪ {2x + 1 : x ∈ B}, the same can be said for general (not necessarily c.e.) sets A and

B with respect to joins in the Turing degrees. In Section 3.5 we show that in contrast there is

no such uniform procedure to compute a representative of the join of the ibT- or cl-degrees of

c.e. sets A and B, though there are nonuniform procedures.

In Section 3.6 we look at joins of c.e. degrees of simple sets and show that these must not

3

1. Introduction

necessarily be simple, thus closing a gap in a paper of Ambos-Spies [Amboa].

While the focus of Chapter 3 is on existence and nonexistence results of joins and meets

separate from each other, in Chapter 4 we look at joins and meets at the same time and study

lattice embeddings. We sketch the proof that every distributive lattice can be embedded into

the c.e. T-, wtt-, cl- and ibT-degrees before we turn to the more difficult area of embedding

nondistributive lattices. Here we first sketch a proof that the nondistributive nonmodular

5-element lattice N5 can be embedded into the c.e. ibT- and cl-degrees. This result is due to

Ambos-Spies, Bodewig, Kräling, and Yu [Amboc]. Then we extend the methods from this proof

to show our main results that the nondistributive 7-element lattice S7 and the nondistributive

modular 5-element lattice M3 can also be embedded, but only the former can be embedded

preserving the least element. The proofs of these two results employ similar infinite injury tree

constructions using rather technical combinatorial arguments. We also deduce an embeddability

result of the 8-element lattice S8, contrasting a non-embeddability result of this lattice in the c.e.

Turing degrees. The embeddability theorem for the lattice M3 is joint work with Ambos-Spies,

Bodewig, and Wang (unpublished).

Throughout Chapters 3 and 4 all purely degree-theoretic results are equal, irrespective of

the fact whether we consider ibT-reducibility or cl-reducibility. In Chapter 5 we show that

this is not true in general, i.e. that the partial orders of the c.e. ibT-degrees and the c.e. cl-

degrees are not elementarily equivalent. To this end we study the c.e. degrees b below a given

noncomputable c.e. degree a which cup to a, that is, for which there exists a degree c such a is

the join of b and c. Precisely, we show that these degrees have an upper bound less than a if

we look at ibT-degrees but they do not have such an upper bound if we look at cl-degrees. We

also prove some related results about cuppable and noncuppable degrees. Most of this chapter

is based on joint work with Klaus Ambos-Spies, Philipp Bodewig and Yun Fan, and has been

published in the Annals of Pure and Applied Logic in 2013 [Ambo 13a].

Acknowledgements

I owe many thanks to those people who supported me in different ways during the creation of

this thesis. First of all, I would like to thank my advisor, Klaus Ambos-Spies, who gave me

the opportunity to work in the Heidelberg Logic Group and who always lent me an ear to help

with questions and problems. He also stimulated most of the results in this thesis and taught

me most I know about how to do computability theory.

I also wish to thank the other current and former members of the group: Wolfgang Merkle,

who introduced me to algorithmic randomness and let me take part in research in a world

without infinite injury tree arguments; our secretaries Felicitas Hirsch and Anja Kamp, who

provided a friendly atmosphere and helped with much of organisational work; and my fellow

doctoral students Timur Bakibayev, Philipp Bodewig, Rupert Hölzl, Nadine Losert and Martin

Monath, with whom I did some inspiring mathematical work and also spent time not doing

4

mathematics.

Among the many guest researchers who visited Heidelberg during my time here, foremost I

want to thank those who contributed most to this work: Yun Fan and Liang Yu from Nanjing,

and Wei Wang from Guangzhou, who shared our interest in the strongly bounded degrees and

each worked with us on this topic during their time in Heidelberg. I am happy that I got the

chance to visit their home country China in 2009, and am indebted to the people hosting me

there, as well as to the organisers of the German-Chinese cooperation project.

I am grateful to Frank Stephan for his willingness to be the second reviewer of my thesis.

Laurent Bienvenu and André Nies were only two of our other guests. I thank both of them

for sharing their views on how to present mathematics in a clear and understandable way with

me.

Finally, I want to thank my family, my girlfriend and my friends, none of whom understands

a single page of this thesis, but who still supported me mentally and motivated me to finish

this work.

5

1. Introduction

6

Chapter 2

Strong Reducibilities

2.1 Sets, strings and trees

Computability theory usually deals with subsets of N = {0, 1, 2 . . . , }. Whenever we just use

the term set without further explanation, it will refer to a set of this kind. Sets will be denoted

by capital letters A, B, C, . . ., A0, A1, The power set of N is denoted by {0, 1}N.

We identify a set A with its characteristic function cA : N→ {0, 1},

cA(n) =

1 if n ∈ A

0 otherwise.

From the viewpoint of this identification, a set is just a sequence of zeros and ones (in the

formal mathematical sense). Hence we will occasionally write A(0)A(1) . . . to denote the set A.

For n ≥ 0, we call A(n) = cA(n) the n-th bit of A.

A string is an element from {0, 1}∗, the language of all finite binary words. The length of

a string α is denoted by |α|. We say that α is an initial segment of a set A if α(i) = A(i) for

i < |α|, and we write α < A. The unique initial segment of A of length n is denoted by A � n.

Similarly, given two strings α = α(0) . . . α(n) and β = β(0) . . . β(m), we say that α is a

prefix or initial segment of β, denoted by α v β, if n ≤ m and for all i ≤ n, α(i) = β(i); if,

additionally, n < m, we call α a proper initial segment of β and write α < β. With respect to

tree constructions we also say that α is below β (or β is above α) in this case. The lexicographic

order <L on {0, 1}∗ is defined by α <L β if there exists some string γ such that γ0 v α and

γ1 v β. In this case we say that α is to the left of β (or β is to the right of α). We can extend

this partial order to a total order < by defining α < β if α <L β or α v β.

A (binary) tree is a set T of strings such that, for all α ∈ T and all β v α, it holds that

β ∈ T (i.e. T is closed under taking prefixes). When we talk about trees, we also call the

elements of T nodes of T . A path in a tree T is a set A such that, for all n ∈ N, A � n ∈ T . The

7

2. Strong Reducibilities

lexicographic order extends to paths in a natural way.

2.2 Computable functions, coding functions, and com-

putable enumerable sets

A partial function is a function f : A→ N, where A ⊆ N. Given some n ∈ N, if n /∈ A, we write

f(n) ↑; if n ∈ A and f(n) = x, we write f(n) ↓= x or just f(n) ↓ to stress the fact that f is

defined at n. In the special case that A = N, we also call f total.

We assume that the reader is familiar with the notion of (one of the close variants of) the

standard Turing machine model. For the remainder of this text, let (Ne)e∈N be a standard

enumeration of all Turing machines with input and output alphabet {0, 1}. A Turing machine

M computes some partial function ψ if for all n ∈ N, given the n-th binary word as input, the

machine M outputs the ψ(n)-th binary word if ψ(n) is defined and does not halt if ψ(n) ↑. We

write ϕe for the partial function computed by the machine Ne. Then a partial function ψ is

partially computable if ψ = ϕe for some e ∈ N; if a partially computable function ψ is total, we

just call ψ computable.

The notion of partial functions f : A→ N, where A ⊆ Nk, k > 1, and the notion of partial

computability of these functions are defined similar. In particular, for any fixed k we have a

computable bijection 〈 〉k : Nk → N with computable inverse projections on each component,

and it holds that a partial function ψ : A → N with A ⊆ Nk is partially computable if and

only if the partial function ψ1 with ψ1(〈x1, . . . , xk〉k) = ψ(x1, . . . , xk) for all x1, . . . , xk ∈ N is

partially computable. Since the index k will always be clear from the context, we usually omit

it. Sometimes we will even let 〈〉 denote coding functions which code tuples of different arities

from a finite set. We assume 〈〉 to be defined in such a way that x1, . . . , xk ≤ 〈x1, . . . , xk〉.
A set A is computable if cA is computable. It is computably enumerable (c.e. for short) if it

is the domain of a partially computable function. We write We for the domain of the partial

computable function ϕe.

We can extend the notions of partially computable functions, computable and c.e. sets etc.

to sets and functions of strings, finite sets, pairs of a string and a number, or any other finitary

codable objects by saying that a set of strings is computable if the set of its codes is computable

etc. We will henceforward use the terms “computable function”, “computable set” and “c.e.

set” in this wider sense. We also use expressions like 〈D, e〉 (where D is a finite set) without

further ado, thus tacitly identifying finitary codable objects with their codes.

2.3 Relative computability

While the name may suggest otherwise, the focus of modern computability theory is not on the

computable functions and sets but on the numerous relations between the noncomputable ones.

8

A key question is the following:

How much does the knowledge of a set A improve the notion of computability?

Here “knowledge of A” means that during a computation we may pick certain numbers and

ask questions about whether these numbers are in A or not, and always get the correct answer;

and “improve” means that we are able to compute more functions than in the standard model

of computability.

One way to formalize this is the notion of Turing reducibility. An oracle (Turing) machine

is defined like a Turing machine, but with an additional read-only tape with one cell marked by

a special symbol #. To the right of this cell the bits A(0), A(1), . . . , of any set A, the so-called

oracle, are written. Apart from the usual Turing machine instructions, the program of the

machine may contain a new kind of instructions, which are of the type “when the machine is in

state q and there are exactly k zeros written to the right of the reading head on its main tape,

then check (by means of the oracle tape) whether the k-th bit of A is a 1; if yes, go into state

q1, otherwise go into state q0”. If such an instruction is carried out during some computation

of the oracle machine M , we say that M asks the oracle query k.

A (partial) function f is (partially) A-computable or Turing-reducible to A, denoted by

f ≤T A, if there exists an oracle machine M which, if A is written on the oracle tape of

M , computes f . The notions of A-computability and A-computable enumerability of sets are

defined analogously to the oracle-free case. As for oracle-free Turing machines, there is an

effective enumeration (Me)e∈N of all oracle Turing machines. For the remainder of this text

we fix such an enumeration. We write Φe(A) or ΦAe for the A-computable partial function

computed by Me with oracle A. Sometimes we also identify an oracle machine M with the

partial function it computes and just write MA
e (n) instead of ΦAe (n) etc.

With each machine Me and oracle A we associate the so-called use function, the partially

A-computable function uAe : {n : ΦAe (n) ↓} → N such that uAe (n) is the largest oracle query

asked by M during the computation of M with oracle A and input n, and 0 if no oracle query

is asked during this computation.1

For any set A and any e, n, s ∈ N, let ΦAe,s(n) = ΦAe (n) if Me with input n and oracle A

halts after at most s steps and max(e, n, uAe (n)) < s. We define ϕe,s analogously and let We,s

be the domain of ϕe,s.

For any σ ∈ {0, 1}∗ we let Φσe (n) ↓= y if there is a set A such that σ < A, ΦAe (n) ↓ and

|σ| ≤ uAe (n); otherwise we let Φσe (n) ↑. For s ∈ N, Φσe,s(n) is defined analogously.

1Usually the use function is defined slightly different as the largest oracle query asked +1, and 0 only if no
oracle query is asked. For our purpose, however, the above definition seems more convenient.

9

2. Strong Reducibilities

2.4 Strong reducibilities

Looking at Turing reducibility is one way to answer the key question from the previous section,

but not the only one. Other ways have been proposed, which in some way or the other restrict

the oracle queries that an oracle Turing machine is allowed to ask. For example, if only one

question may be asked to the oracle and must immediately halt and output the answer to this

question (0 or 1), then we obtain the well-studied notion of many-one reducibility [Post 44].

Many-one reducibility is a strengthening of weak-truth table reducibility [Frie 59]. A set B

is weak-truth table (wtt-)reducible to a set A if B = ΦAe for some e such that uAe (n) ≤ f(n) for

all n, where f is a computable function, i. e. B is Turing reducible to A via an oracle machine

whose use function at oracle A is computably bounded.

Many-one reducibility is more restrictive than weak truth-table reducibility only regarding

the number of oracle queries asked and the way how the answers to these questions are evaluated.

However, the size of the oracle queries can still be as big as any computable function. The next

notion, which is the central definition of this thesis, proposes a different way of strengthening

weak truth-table reducibility.

Definition 2.1. [Soar 04, Down 04] Let A and B be sets. Then B is called identity-bounded

Turing (ibT) reducible to A, or B ≤ibT A for short, if B = ΦAe for some e ∈ N such that

uAe (n) ≤ n for all n.

More generally, for c ≥ 0 we say that B is (i + c)bT-reducible to A (B ≤(i+c)bT A) if B = ΦAe

for some e ∈ N such that uAe (n) ≤ n+ c for all n. B is called computable Lipschitz (cl) reducible

to A, or B ≤cl A for short, if B ≤(i+c)bT A for some c ≥ 0.

It may be criticized that these definitions have little relevance for computability theory

because they strongly depend on the model of relative computability we have chosen, namely

standard oracle machines. Indeed, if instead of Me we considered the oracle machine M ′e which

for any input n first reads the first 2n bits of its oracle and then simulates machine Me, then we

would arrive at the same notion of relative computability as before; on the other hand, no set

would be cl-reducible to any other with respect to this model, because the use of any reduction

would be at least 2n. Moreover, for some models of relative computability, like the abstract

definition by recursive functions, there is no obvious substitute for the use function at all.

However, cl- and ibT- reducibility can be defined without mentioning relative computability,

using only the notion of unrelativized computability, and hence, by Turing’s thesis, are definable

with respect to any model of computability.

Lemma 2.2. Let A and B be sets. We call a c.e. set W consistent if for each α ∈ {0, 1}∗,
there is at most one y ∈ N such that n = 〈α, y〉 ∈W . Then the following are equivalent:

(i) B ≤(i+c)bT A

(ii) there exists a partially computable function ψ : N→ N such that, for all n,

ψ(〈A(0) . . . A(n+ c)〉) = B(n).

10

(iii) there is a consistent c.e. set W such that {〈A � n+ c+ 1, B(n)〉} ⊆W .

Proof. (i) ⇒ (ii): If B ≤(i+c)bT A is witnessed by the oracle machine Me, then a function

ψ as above can be computed by a machine N with an additional tape which for any input

〈x0 . . . xn+c〉 with x0, . . . , xn+c ∈ {0, 1} writes x0, . . . , xn+c on its additional tape. Then it

deletes its input, writes n on the input tape and simulates Me with this input, where the

additional tape takes the role of the oracle tape as long as only oracle queries ≤ n+c are asked.

If an oracle query m > n+ c is asked, then N goes into an infinite loop.

Thus ψ(〈A(0) . . . A(n+ c)〉) = N(〈A(0) . . . A(n+ c)〉) = MA
e (n) = B(n), because uAe (n) ≤

n+ c.

(ii)⇒ (iii): Let ψ be a partially computable function as in (ii). Then the graph of ψ is c.e.

and consistent and contains 〈A � n+ c+ 1, B(n)〉 for every n ∈ N.

(iii) ⇒ (i): Let W as in (iii) be given. Let M be the oracle machine which, for input

n and oracle X, reads the string X � n + c + 1 and then enumerates W until some element

〈X � n+ c+ 1, y〉 ∈W is enumerated (if this never happens, the machine does not halt). When

this happens, it outputs y. For M = Me, obviously uXe (n) ≤ n+ c for every n. If X = A, then

by (iii) 〈X � n+ c+ 1, B(n)〉 ∈W , hence a number 〈X � n+ c+ 1, y〉 is enumerated in W and

for the first such number the machine outputs y. But y = B(n) by consistency of W . Hence

B ≤(i+c)bT A.

The consistent sets W appearing in Lemma 2.2(iii) are just the analogues of the consistent

sets Rogers [Roge 67] uses for an alternative characterization of Turing reducibility. The main

difference is that in the case of Turing reducibilty the elements 〈σ, y〉 of W (sometimes called

axioms) need a third component refering to the input, while in our case the input n is already

implicitly given by the length of σ.

It is easy to see that the uniform enumeration of all c.e. sets (We)e∈N induces a uniform

enumeration (Ŵe)e∈N of all consistent c.e. sets by just changing the enumeration of We in such

a way that 〈σ, y〉 is enumerated only if no 〈σ, y′〉 with y′ 6= y has been enumerated before.

Furthermore in the proof of Lemma 2.2 (for n = 0) from each Ŵe we have effectively obtained

an oracle machine Mf(e) which for any input x and irrespective of the oracle X asks only oracle

queries ≤ x. We call Φf(e) an ibT-functional. Letting Φ̂e = Φf(e) we thus get an effective

enumeration (Φ̂e)e∈N of all ibT-functionals, and Lemma 2.2 says that B ≤ibT A if and only if

B = Φ̂Ae for some e ∈ N.

Similarly, the proof of Lemma 2.2 with each Ŵi and each c ∈ N effectively associates an

oracle machine Mg(i,c) which for any input x and irrespective of the oracle X asks only oracle

queries ≤ x+ c. We call Φg(i,c) a cl-functional. Letting Φ̃〈i,c〉 = Φg(i,c) we thus get an effective

enumeration (Φ̃e)e∈N of all cl-functionals, and Lemma 2.2 says that B ≤cl A if and only if

B = Φ̃Ae for some e ∈ N. We define ũX〈i,c〉 = uXg(i,c). Since we assume that i, c ≤ 〈i, c〉, for every

11

2. Strong Reducibilities

oracle X, every x and every e = 〈i, c〉 such that ũXe (x) ↓, it holds that

ũXe (x) = uXg(i,c)(x) ≤ x+ c ≤ x+ 〈i, c〉 = x+ e.

2.5 Degree structures

Throughout this section, let r ∈ {ibT, cl,wtt,T}. We call two sets A and B r-equivalent and

write A ≡r B if A ≤r B and B ≤r A. From the easily shown facts that ≤r is a reflexive

and transitive relation it follows that ≡r is indeed an equivalence relation. The equivalence

classes with respect to ≡r are called r-degrees. To be more precise, for any set A ⊆ N, the

set degr(A) = {B ⊆ N : B ≡r A} is called the r-degree of A. A computably enumerable (c.e.)

r-degree is a r-degree which contains some c.e. set. Usually we denote r-degrees by lower-case

boldface letters a, b, . . .

By reflexivity and transitivity again, ≤r induces a partial order on the class of r-degrees.

We are particularly interested in the restriction of this order to the class of the c.e. degrees.

Definition 2.3. For r ∈ {ibT, cl,wtt,T}, let Rr be the class of all c.e. r-degrees. The partial

order Rr = (Rr,≤) with universe Rr is defined by letting degr(B) ≤ degr(A) if B ≤r A.

Since the computable sets can be computed by an oracle Turing machine without any oracle

queries, it holds that B ≤r A whenever B is computable. This implies that all computable sets

are contained in the same r-degree, and that this r-degree 0 is below any other r-degree. In

fact, 0 consists of exactly the computable sets, because if any set is r-reducible to a computable

set then it is itself computable (since oracle queries can be answered by computations, not using

the oracle).

Summarizing, Rr always has a least element, the r-degree 0 of the computable sets. With

respect to other properties, however, the structures Rr behave differently, depending on which

r ∈ {ibT, cl,wtt,T} we choose. It is one of the main topics of computability theory to investigate

such properties.

We want to end this section with the remark that for c > 0, (i + c)bT-reducibility does not

induce a degree structure as above. Indeed, (i + c)bT-reducibility is not transitive and hence

≡(i+c)bT is not an equivalence relation. Since we are mainly interested in properties of degrees,

we will not say much about (i + c)bT-reducibility for fixed c in this thesis.

2.6 Computable shifts

Given a noncomputable c.e. set A ⊆ N and a reducibility notion ≤r we may ask whether there

is a noncomputable c.e. set B <r A. For r = T and A = ∅′, this is Post’s famous problem

which took several years to resolve. In contrast, for r ∈ {ibT, cl}, such a set B can be obtained

from A in a very simple and constructive way by just shifting the elements of A slightly to the

right.

12

Definition 2.4 ([Ambo 13b]). (a) A (computable) shift is a strictly increasing (computable)

function f : N → N. A shift f is nontrivial if f(n) > n for some (hence for almost all) n, and

f is unbounded if for every number c there is a number n such that f(n)− n > c.

(b) For any set A and any shift f , the f -shift of A is defined by

Af = {f(n) : n ∈ A}.

Note that, for any shift f , n ≤ f(n) and f(n) − n is nondecreasing in n. So a shift f is

unbounded if and only if

lim
n→∞

(f(n)− n) = sup
n→∞

(f(n)− n) =∞.

Moreover note that for any bounded shift f there is a number c ≥ 0 such that f(n) = n+ c for

almost all n. We call f(n) = n+ c the c-shift and write A+ c in place of Af .

Lemma 2.5 (Bounded Shift Lemma; [Ambo 13b, Ambob]). Let A be a noncomputable c.e. set

and let c ≥ 1. Then A + c is c.e., A + c ≡cl A, and A + c <ibT A. Moreover, for any c.e. set

B such that A+ c ∩B = ∅ and such that A ≤ibT A+ c ∪B, A ≤ibT B.

Proof. It is easy to see that A + c is c.e., A + c ≡cl A, and A + c ≤ibT A. Assume that

A+c∩B = ∅ and that A = Φ̂A+c∪B
e for some ibT-functional Φ̂e. Then A(n) can be recursively

computed from B � (n + 1) for n = 0, 1, . . . by the following algorithm. If A(x) has already

been computed for x < n, to compute A(n) simulate the computation of Φ̂A+c∪B
e (n), where

each oracle query y ≤ n is answered by first checking whether y ∈ B (with oracle B � (n+ 1))

and then whether y − c ∈ A (using the values A(x) for x < n). This shows that A ≤ibT B.

For B = ∅ this also shows that A 6≤ibT A+ c = A+ c ∪B, because otherwise A ≤ibT ∅ and

A were computable.

Note that A ≡ibT B implies that A+ c ≡ibT B + c. So, for a noncomputable c.e. set A and

the ibT-degree a of A we may let a + c denote the ibT-degree of A+ c. Then, by the Bounded

Shift Lemma, · · · < a + 2 < a + 1 < a.

The following is the analogue of the Bounded Shift Lemma for cl-reducibility.

Lemma 2.6 (Computable Shift Lemma; [Ambo 13b, Ambob, Ambo 13a]). Let A be a non-

computable c.e. set and let f be an unbounded computable shift. Then Af is c.e., Af ≡wtt A,

Af <ibT A, and Af <cl A. Moreover, for any c.e. set B such that Af ∩ B = ∅ and such that

A ≤cl Af ∪B, A ≤cl B. In fact, for any c.e. set B and any splitting of A into disjoint c.e. sets

A0 and A1 such that (A0)f ∩B = ∅ and such that A ≤cl (A0)f ∪B, A ≤cl B.

Proof. It is easy to see that Af is c.e., Af ≡wtt A, and Af ≤cl A. Moreover, Af ≤ibT A + 1,

implying Af <ibT A by the Bounded Shift Lemma. A 6≤cl Af follows from the second part of

the lemma by letting B = ∅, and from noncomputability of A. To prove the second part, in

13

2. Strong Reducibilities

fact it suffices to prove the third part, which for A0 = A, A1 = ∅ is equivalent to the second

part.

For a proof of the third part assume that A = A0∪A1 is a splitting of A into disjoint c.e. sets

A0 and A1 such that (A0)f∩B = ∅ and A = Φ̃
(A0)f∪B
e for some cl-functional Φ̃e. Remember that

by our assumption on Φ̃e the largest oracle query of the computation of Φ̃
(A0)f∪B
e (x) is bounded

by x+ e. Let m = min({x ∈ N : f(x) > x+ e}). Then A(n) can be recursively computed from

B � (n + e + 1) for n = 0, 1, . . . by the following algorithm. For n ≤ m compute A(n) using a

finite table (not using the oracle at all). For n > m, assuming A(x) has already been computed

for all x < n, to compute A(n) simulate the computation of Φ̃
(A0)f∪B
e (n) with the following

modification. To answer an oracle query “y ∈ (A0)f ∪B?”, y ≤ n+e, first check whether y ∈ B
(with oracle B � (n+ e+ 1)), and if so, give a positive answer. If y /∈ B, using the values A(x)

for x < n to check whether x ∈ A and f(x) = y for x = min{z < n : f(z) ≥ y} (note that the

set {z < n : f(z) ≥ y} is nonempty, since f(n − 1) > n − 1 + e, hence f(n − 1) ≥ n + e ≥ y).

If this is the case and a simultaneous enumeration of A0 and A1 enumerates x into A0, give a

positive answer to the oracle query; otherwise give a negative answer.

2.7 The Permitting Lemma

In this section we introduce another very helpful tool in working with ibT- or cl-reducibility.

For a set A, being c.e. is equivalent to A being finite or the range of an injective computable

function a. We call such a function an enumeration function for A.

If A and B are two infinite c.e. sets with enumeration functions a and b, respectively, and

for all s ∈ N it holds that

a(s) ≤ b(s) + c, (1)

then B is (i+c)bT-reducible to A. More generally, if (As)s≥0 and (Bs)s≥0 are computable

approximations of A and B, respectively, such that As ⊆ As+1 and Bs ⊆ Bs+1 for all s ≥ 0

and

As � n+ c = A � n+ c⇒ Bs � n = B � n for every s, n ≥ 0, (2)

then B is (i+c)bT-reducible to A.

This is because to check whether n ∈ B it suffices to check whether n ∈ Bs for some s such

that Bs � n+ 1 = B � n+ 1. But the least s such that As � n+ 1 + c = A � n+ 1 + c satisfies

this property and can be computed from A � n+ 1 + c, i.e. by asking oracle queries y ≤ n+ c

to the oracle A.

Since Friedberg [Frie 57] and Yates [Yate 65] this property (usually with c = 0) has been

used to effectively enumerate sets A and B satisfying 2 (and having additional properties as

desired in the given context) to the end that B will be A-computable. We say that for sets A

and B constructed in this fashion B ≤r A (r ∈ {(i + c)bT, cl,wtt,T}) holds by permitting.

The interesting new property of ibT- and cl-reducibility is that as long as we are only

14

interested in the degrees of sets, every reduction B ≤cl A can be assumed to hold by permitting

[Ambob]. We state this lemma in a stronger form for systems of simultaneous reductions.

Lemma 2.7 (Permitting Lemma). Let c ≥ 0. Let A0, . . . , Ak be noncomputable c.e. sets. Then

there are sets Â0 ⊆ A0, . . . , Âk ⊆ Ak with enumeration functions â0, . . . , âk, respectively, such

that for all i, j ∈ {0, . . . , k}, Ai ≡ibT Âi and if Ai ≤(i+c)bT Aj, then âj(n) ≤ âi(n) + c for all n.

Proof. Let a0, . . . , ak be enumeration functions for A0, . . . , Ak, respectively, and let Ai,s =

{ai(0), . . . , ai(s− 1)} and R = {(i, j) : Ai ≤(i+c)bT Aj , 0 ≤ i, j ≤ k}. For (i, j) ∈ R, let Φ̃e(i,j)

be a cl-functional such that Φ̃
Aj
e(i,j) = Ai and for all x, ũ

Aj
e(i,j)(x) ≤ x+ c. Define

li,j(s) = max{x ≤ s : (∀y ≤ x) (Φ̃
Aj ,s

e(i,j),s(y) = Ai,s(y)).}

Note that for (i, j) ∈ R it holds that

lim
s→∞

li,j(s) =∞. (3)

For all (i, j) ∈ R, given some computable sequence t0 < t1 < . . ., there are infinitely many

n such that

(∃x < li,j(tn))(x ∈ Ai −Ai,tn), (4)

because otherwise we could compute Ai as follows: To compute Ai(x), find the least n such

that li,j(tn) > x; then Ai(x) = Ai,tn(x) up to finitely many exceptions x. This contradicts the

noncomputability of Ai.

Now using 3 we can obtain a computable sequence t0 < t1 . . . such that, for all (i, j) ∈ R

(∀n)(li,j(tn) < li,j(tn+1)). (5)

Furthermore, using 4, we can, by induction on the coded pairs 〈i, j〉 with (i, j) ∈ R, extract

computable subsequences t
(i,j)
0 < t

(i,j)
1 < . . . of (tn)n∈N such that for all n

(∀ 〈i′, j′〉 ≤ 〈i, j〉)((i′, j′) ∈ R⇒ ∃x < li′,j′(t
(i,j)
n))(x ∈ A

i′,t
(i,j)
n+1
−A

i′,t
(i,j)
n

). (6)

Since R is finite, this induction consists of only finitely many steps and the outcome is a

sequence s0 < s1 < . . . satisfying 5 (with sn instead of tn) and 6 (with sn instead of t
(i,j)
n) for

all (i, j) ∈ R simultaneously.

For 0 ≤ i ≤ k, define

âi(n) = min{x : x ∈ Asn+1 −Asn}.

From (i, i) ∈ R and 6 (with sn instead of t
(i,j)
n) it follows that this minimum exists for all n. The

functions â, . . . , âk are obviously computable and one-to-one, hence the enumeration functions

of c.e. sets Â0, . . . , Âk.

15

2. Strong Reducibilities

If (i, j) ∈ R, then âi(n) < li,j(sn) < li,j(sn+1) by 5 and 6. Hence

Φ̃
Aj,sn
e(i,j) � (âi(n) + 1) = Ai,sn � (âi(n) + 1) 6= Ai,sn+1 � (âi(n) + 1) = Φ̃

Aj,sn+1

e(i,j) � (âi(n) + 1).

Since ũ
Aj
e(i,j)(x) ≤ x+c for all x, this implies that Aj,sn � (âi(n)+c+1) 6= Aj,sn+1

� (âi(n)+c+1).

But then âj(n) ≤ âi(n) + c as desired.

It remains to show that Âi and Ai are ibT-equivalent. For any x, with oracle Ai we can,

asking only oracle queries ≤ x, compute a stage sn such that Ai,sn � (x + 1) = Ai � (x + 1).

Then x ∈ Âi if and only if x ∈ {âi(0), . . . , âi(n)}, showing that Âi ≤ibT Ai. On the other

hand, if {âi(0), . . . , âi(n)} � (x+ 1) = Âi � (x+ 1), then x cannot enter Ai at any stage s > sn,

because otherwise, for sm < s ≤ sm+1, it would follow that âi(m) ≤ x by definition of âi. This

shows that x ∈ Ai if and only if x ∈ {âi(0), . . . , âi(n)} for some n as above. Since such an n

can be computed from x with oracle Âi asking only oracle questions ≤ x, Ai ≤ibT Âi.

This lemma is the reason why in degree-theoretic constructions in the following chapters we

can and will usually make all desired order-relations hold by permitting.

16

Chapter 3

Joins and Meets

In this chapter we start to look at the special aspect of greatest lower and least upper bounds

of a finite number n of elements in a degree structure, the most important case being n = 2.

The central definition is the following.

Definition 3.1. Given a partial order P = (P,≤), finitely many elements b0, b1, . . . , bn ∈ P
have least upper bound or join c (in P) if c ∈ P , b0, b1, . . . , bn ≤ c and for every d ∈ P , if bi ≤ d
for all i ∈ {0, . . . , n}, then c ≤ d. In this case we write b0 ∨ b1 ∨ . . . ∨ bn = c. If each two

elements of P have a join in P, then P is called an upper semi-lattice.

Finitely many elements b0, b1, . . . , bn ∈ P have greatest lower bound or meet a in P if a ∈ P ,

a ≤ b0, b1, . . . , bn and for every d ∈ P , if d ≤ bi for all i ∈ {0, . . . , n}, then d ≤ a. In this case

we write b0 ∧ b1 ∧ . . . ∧ bn = a. If each two elements of P have a meet in P, then P is called a

lower semi-lattice.

P is a lattice if it is an upper semi-lattice and a lower semi-lattice.

A very nice property of the usual degree structures RT, Rwtt and others, like the structure

Rm of the c.e. m-degrees, is that they are upper semi-lattices. The proof is very simple: If b0

and b1 are r-degrees and B0 and B1 are sets in b0 and b1, respectively, then for C = B0⊕B1 =

{2x : x ∈ B0} ∪ {2x+ 1 : x ∈ B1} it holds that degr(C) = b0 ∨ b1.

In this chapter we look at a number of different topics related to the aspect of joins and

meets in the RibT and Rcl, but for now restrict ourselves to questions concerning either greatest

lower or least upper bounds, but not both. The latter will be postponed until the next chapter.

3.1 The ibT-cl-Conversion Lemmas

When we look at questions concerning joins and meets in RibT and Rcl, the following two lemmas

often prove to be useful. In many cases they permit us to restrict certain considerations to the

ibT-case and carry over results to the cl-case.

17

3. Joins and Meets

Lemma 3.2 (ibT-cl-Join Lemma [Ambo 13b]). Let B0, . . . , Bn, C be c.e. sets such that

degibT(B0) ∨ . . . ∨ degibT(Bn) = degibT(C).

Then

degcl(B0) ∨ . . . ∨ degcl(Bn) = degcl(C).

Proof. Since ibT-reducibility is stronger than cl-reducibility, B0, . . . , Bn ≤cl C.

Let W be some c.e. set such that Bi ≤cl W for every i ∈ {0, . . . , n}. Choose c ∈ N
sufficiently large such that Bi ≤(i+c)bT W for every i ∈ {0, . . . , n}. Then Bi ≤ibT W − c for

every i ∈ {0, . . . , n}, where W − c = {x : x + c ∈ W}. Since degibT(B0), . . . , degibT(Bn) have

join degibT(C), it follows that C ≤ibT W − c and in particular C ≤cl W − c. But W − c ≡cl W ,

hence degcl(C) ≤ degcl(W), proving the lemma.

Lemma 3.3 (ibT-cl-Meet Lemma [Ambo 13b]). Let B0, . . . , Bn, C be c.e. sets such that

degibT(B0) ∧ . . . ∧ degibT(Bn) = degibT(C).

Then

degcl(B0) ∧ . . . ∧ degcl(Bn) = degcl(C).

Proof. Analogous to the proof of Lemma 3.2.

3.2 The Splitting Lemma

When working with r ∈ {ibT, cl}, there is no longer any reason why a noncomputable c.e. set

B0 should be r-reducible to B0 ⊕ B1 (for any c.e. set B1). Indeed, the information whether

B0(x) = 0 or B0(x) = 1 is coded into B0⊕B1(2x), which for large x is not available with a use

bound of x+ c, where c is a constant. For this reason, degr(B0⊕B1) will in general not be the

join of degr(B0) and degr(B1). In fact, we will see that such a join does not even need to exist

at all.

If the sets B0 and B1 are disjoint, however, then the join of the Turing degrees of B0 and

B1 is not only represented by B0⊕B1 but also by the disjoint union B0∪B1. This latter result

carries over to the r-degrees.

Lemma 3.4 (Splitting Lemma). [Ambo 13b] Let B0, . . . , Bn be pairwise disjoint c.e. sets.

Then, for r ∈ {ibT, cl},

degr(B0) ∨ . . . degr(Bn) = degr(B0 ∪ . . . ∪Bn).

Proof. Let i ∈ {0, . . . , n}. Then for x ∈ N, to compute Bi(x) with oracle B0 ∪ . . . ∪ Bn, check

whether x ∈ B0 ∪ . . . ∪ Bn. If not, then Bi(x) = 0. Otherwise by enumerating B0, . . . , Bn in

18

parallel find the least j ∈ {0, . . . , n} such that x ∈ Bj ; if i = j, then Bi(x) = 1, and otherwise

Bi(x) = 0, because Bi∩Bj = ∅. Note that this describes an ibT-reduction of Bi to B0∪. . .∪Bn.

Furthermore, if Bi ≤r C for all i ∈ {0, . . . , n}, then to compute B0 ∪ . . . ∪ Bn(x) with

oracle C it suffices to compute B0(x), . . . , Bn(x) with oracle C and let B0 ∪ . . . ∪Bn(x) be the

maximum of these values. This describes an r-reduction of B0 ∪ . . . ∪Bn to C.

3.3 n-Tuples with and without Joins

A basic result concerning joins and meets in Rr for r ∈ {ibT, cl}, which was proven inde-

pendently by Barmpalias [Barm 05] and by Fan and Lu [Fan 05], is that Rr is not an upper

semi-lattice. Indeed, this is true in a strong sense, since degr(B0) and degr(B1) may have no

upper bound at all (and not even no least upper bound):

Theorem 3.5 (Maximal Pair Theorem, [Barm 05, Fan 05]). For r ∈ {ibT, cl}, there exist r-

maximal pairs, i.e. there are c.e. sets B0 and B1 such that there is no c.e. set C with B0 ≤r C
and B1 ≤r C.

The existence of maximal pairs, however, is not the only obstacle to the existence of joins

as was shown by Ambos-Spies, Ding, Fan, and Merkle:

Lemma 3.6. [Ambo 13b] For r ∈ {ibT, cl}, there exist c.e. sets B0 and B1 such that there is

some c.e. set C with B0 ≤r C and B1 ≤r C, but degr(B0) and degr(B1) do not have a join.

This lemma can be immediately obtained as a corollary from the following new and stronger

theorem, which states that the existence of a join of n+ 1 r-degrees does not necessarily imply

the existence of a join of any nontrivial subset of these degrees.

Theorem 3.7. For r ∈ {ibT, cl} and for any n ∈ N there exist noncomputable c.e. sets

B0, B1, . . . , Bn such that degr(B0) ∨ degr(B1) ∨ . . . ∨ degr(Bn) exists but
∨
i∈D degr(Bi) does

not exist for any proper subset D ⊂ {0, 1, . . . , n} with |D| ≥ 2.

Proof. For n = 0 this is trivial and for n = 1 it suffices to let B0 and B1 be noncomputable c.e.

sets such that B0∩B1 = ∅ (for example, let B0 contain only even numbers and B1 contain only

odd numbers). Then degr(B0)∨degr(B1) = degr(B0∪B1) by the Splitting Lemma (Lemma 3.4).

Now let n ≥ 2. For the proof we effectively enumerate c.e. sets B0, . . . , Bn, C such that

degibT(B0) ∨ degibT(B1) ∨ . . . ∨ degibT(Bn) = degibT(C). Note that by the ibT-cl-Join Lemma

this implies degcl(B0)∨ degcl(B1)∨ . . .∨ degcl(Bn) = degcl(C), too. The part of Bi enumerated

up to stage s will be denoted by Bi,s and the part of C enumerated up to stage s will be denoted

by Cs.

To guarantee Bi ≤ibT C for i ∈ {0, . . . , n}, whenever we enumerate a number x into Bi at

stage s of the construction, then we enumerate a new number y ≤ x into C at stage s. Then

equation (2) holds with C in place of A and Bi in place of B and with c = 0, whence Bi ≤ibT C

19

3. Joins and Meets

by permitting. Additionally we enumerate y into Bj at stage s for some j ≤ n. If W is a c.e.

set such that Bj ≤ibT W for every j ∈ {0, . . . , n}, then for any x with oracle W � x+ 1 we can

compute a stage s such that Bj,s � x+ 1 = Bj � x+ 1 for every j ∈ {0, . . . , n}. By the strategy

described above this will imply Cs � x+ 1 = C � x+ 1. Hence we can compute C(x) with oracle

W � x+ 1, that is C ≤ibT W .

To make sure that
∨
i∈D degr(Bi) does not exist for some subset D = {i0, . . . , id} of

{0, 1, . . . , n} with 2 ≤ d < n and ik < il for k < l, we enumerate sets V = V D〈e0,e1,...,ed,ed+1〉,

which need to satisfy the following requirements.

N〈D,e0,e1,...,ed,ed+1,ed+2〉 : ((∀k ≤ d)(Φ̃
Wed+1
ek = Bik))⇒ (∀k ≤ d)(Bik ≤ibT V) and Wed+1

6= Φ̃Ved+2

Indeed, if there were some c.e. set W = Wed+1
such that

∨
i∈D degr(Bi) = degr(W), then∨

i∈D degcl(Bi) = degcl(W) by the ibT-cl-Join Lemma. Hence there are e0, . . . , ed such that

Φ̃Wek = Bik for 0 ≤ k ≤ d. But then, since the premise of requirement N〈D,e0,e1,...,ed,ed+1,ed+2〉 is

satisfied for every ed+2 ∈ N, satisfaction of all these requirements implies that Bi0 , . . . , Bid ≤ibT

V D〈e0,e1,...,ed,ed+1〉 and W 6≤cl V
D
〈e0,e1,...,ed,ed+1〉, a contradiction.

We define the length of agreement ls(Ne) of requirement Ne = N〈D,e0,e1,...,ed,ed+1,ed+2〉 at

stage s by

ls(Ne) = max(x ≤ s : (∀k ≤ d)(Φ̃
Wed+1,s

ek,s � x = Bik,s � x)).

Then the premise of Ne is true if and only if lim infs≥0 ls(Ne) =∞.

The strategy to satisfy requirement N〈D,e0,e1,...,ed,ed+1,ed+2〉 is as follows. We assign to each

Ne an interval I such that |I| ≥ min(I) · e. We will try to satisfy W 6= Φ̃Ved+2
by enumerating

numbers from I into Bi0 and Bi1 and into V , but we only do this at stages s+ 1 such such that

ls(Ne) > max(I).

More precisely, we say that Ne requires attention at stage s+ 1 if e ≥ 1 and

(Case 1) Ne has no interval assigned at stage s

(Case 2) Ne has an interval I but no diagonalisation witness assigned at stage s, ls(Ne) >

max(I) and I 6⊆ Bi0,s ∪ Cs

(Case 3) Ne has an interval I and a diagonalisation witness x ∈ I assigned at stage s, ls(Ne) >

max(I), min(I) /∈ Cs and Ws � x+ 1 = Φ̃Vsed+2,s
� x+ 1.

Now the construction is as follows:

Let Bi,0 = C0 = V De,0 = ∅ for all i ∈ {0, . . . , n}, all e ∈ N and all sets D as above. No

requirement has an interval or a diagonalisation witness assigned at stage 0.

At stage s + 1, let e be minimal such that Ne requires attention at stage s + 1 (note that

there is such an e, because at every stage only finitely many requirements have an interval

20

assigned). We say that Ne is active due to Case 1, Case 2 or Case 3, respectively, at stage s+1,

depending on which Case gave rise to Ne requiring attention.

If Ne is active due to Case 1, then let x be the least number that is not contained in any

interval assigned to any requirement up to stage s. Assign the interval I = [x, x+ (x+ e+ 2) ·
(2e+ 1)] to Ne.

If N〈D,e0,e1,...,ed,ed+1,ed+2〉 is active due to Case 2 and has the interval I assigned, then

(a) if there is some y ∈ I such that [y, y+2e] ⊆ I∩Wed+1,s, then assign y+e as diagonalisation

witness to Ne; let Bi,s+1 = Bi,s for every i ∈ {0, . . . , n}, Cs+1 = Cs and enumerate min(I) into

V D〈e0,...,ed+1〉;

(b) if there is no y ∈ I such that [y, y + 2e] ⊆ Wed+1,s, then for bs = max({x ∈ I : x /∈
Bi0,s∪Cs}) set Bi0,s+1 = Bi0,s∪{bs}, Bj,s+1 = Bj,s for j 6= i0, Cs+1 = Cs∪{bs} and enumerate

bs into V D̃ẽ for every ẽ and every D̃ with (D̃, ẽ) 6= (D, 〈e0, . . . , ed+1〉);
If Ne is active due to Case 3, then let I be the interval assigned to Ne at stage s and let x ∈ I

be the diagonalisation witness of Ne in I. Set Bi1,s+1 = Bi1,s ∪ {x}, Bi,s+1 = Bi,s ∪ {min(I)}
for the least i ∈ {0, . . . , n} − D and Bj,s+1 = Bj,s for j 6= i0, i, Cs+1 = Cs ∪ {min(I)},
enumerate x into V D〈e0,...,ed+1〉 and enumerate min(I) into V D̃ẽ for every ẽ and every D̃ with

(D̃, ẽ) 6= (D, 〈e0, . . . , ed+1〉).
In either case, for every ẽ ≥ e, initialise Nẽ: If Nẽ has an interval Ĩ but no diagonali-

sation witness assigned at stage s and ẽ = 〈D, ẽ0, ẽ1, . . . , ẽd+2〉, then enumerate min(Ĩ) into

V D〈ẽ0,ẽ1,...,ẽd+1〉. Cancel the assignment of Ĩ to Nẽ.

This finishes the construction. Obviously the construction is effective up to the fact that

at some stages we enumerate numbers into infinitely many sets; but since each stage depends

on only finitely many of the actions of previous stages, by a dovetailing method one can easily

define an effective equivalent construction.

To prove the theorem, we first prove the following claim:

Claim: Each requirement Ne is active at only finitely many stages and is satisfied.

We show this by induction on e. Without loss of generality assume that the claim holds

for e = 0 (otherwise rearrange the requirements such that ls(N0) = 0 for every s ≥ 0). Fix

e = 〈D, e0, e1, . . . , ed, ed+1, ed+2〉 ≥ 1 and let the claim be true for all e′ < e. Since Ne is

initialised at some stage s only if some requirement Ne′ with e′ < e is active at stage s, there is

a maximal stage s0 such that Ne is initialised at stage s0 (if Ne is never initialised, let s0 = 0).

Then Ne requires attention and is active due to Case 1 at stage s0 + 1, because if any Ne′ with

e′ < e would require attention at stage s0 + 1, then some such requirement were active and

would initialise Ne at stage s0 + 1, contradicting the choice of s0. So Ne gets an interval I

assigned which is assigned to Ne at every stage s ≥ s0 + 1.

Since each time that Ne is active after stage s0 + 1 some new number from I is enumerated

into C or Ne gets a diagonalisation witness x ∈ I, but the latter can happen at most once, Ne

can be active at most finitely often. It remains to show that Ne is satisfied.

21

3. Joins and Meets

If Φ̃
Wed+1
ek 6= Bik for some k ≤ d, where D = {i0, . . . , id} and i0 < . . . < id, then Ne is

trivially satisfied. Hence we may assume that Φ̃
Wed+1
ek = Bik for all k ≤ d. In particular,

lims→∞ ls(Ne) =∞.

For m > 0, let sm be the m-th stage greater than s0 such that lsm(Ne) > max(I). For

a contradiction assume that Ne never gets a diagonalisation witness x ∈ I assigned. Since

I∩(Bi0,s0+1∪Cs0+1) = ∅ and since no requirement Nẽ with ẽ 6= e enumerates any numbers from

I into Bi0 or C during the construction, it follows that for 1 ≤ m ≤ |I| requirement Ne requires

attention and is active due to Case 2(b) at stage sm + 1 and enumerates bsm = max(I)−m+ 1

into Bi0,sm+1 −Bi0,sm and Csm+1 −Csm . Since lsm(Ne) > max(I) and lsm+1(Ne) > max(I), it

follows that

Φ̃
Wed+1,sm
e0,sm � bsm + 1 = Bi0,sm � bsm + 1 6= Bi0,sm+1

� bsm + 1 = Φ̃
Wed+1,sm+1
e0,sm+1 � bsm + 1. (7)

Since Φ̃e0 is an (i + e0)− bt-functional by our convention, this implies that there is some

zm ∈ Wed+1,sm+1
− Wed+1,sm such that zm ≤ bsm + e0 ≤ max(I) + e. Hence |Wed+1,s|I| ∩

[0,max(I) + e]| ≥ |I| − 1 = (min(I) + e+ 2) · (2e+ 1). In particular,

|Wed+1,s|I| ∩ I|

=|Wed+1,s|I| ∩ [0,max(I) + e]| − |Wed+1,s|I| ∩ [0,min(I))| − |Wed+1,s|I| ∩ (max(I),max(I) + e]|

≥|I| − 1−min(I)− e.

This means that I is contained in Wed+1,s|I| , except for up to min(I) + e+ 1 numbers. Since I

contains min(I)+e+2 pairwise disjoint subintervals of length 2e+1, there must be at least one

such interval [y, y + 2e] which is contained in Wed+1,s|I| , and Ne gets a diagonalisation witness

assigned at stage s|I| + 1.

This proves that Ne gets a diagonalisation witness x ∈ I assigned at some stage sm + 1,

1 ≤ m ≤ |I|. Note that min(I) /∈ Csm+1, since the elements from I were enumerated into C in

decreasing order at stages s1, . . . , sm−1 and no number is enumerated into C at stage sm + 1.

Let V = V D〈e0,...,ed+1〉. Assume that there is some stage sm′ , m
′ > m, such that Wed+1,sm′ �

x + 1 = Φ̃
Vs
m′

ed+2,sm′ � x + 1. Then the diagonalisation witness x is enumerated into Bi1,sm′+1 −
Bi1,sm′ , where i1 ∈ D (note that no numbers from I have been enumerated into Bi1 before

stage sm′). Since lsm′ (Ne) > max(I) and lsm′+1
(Ne) > max(I), we conclude that

Φ̃
Wed+1,sm′
e1,sm′ � x+ 1 = Bi1,sm′ � x+ 1 6= Bi1,sm′+1

� x+ 1 = Φ̃
Wed+1,sm′+1
e1,sm′+1

� x+ 1. (8)

As before, this implies that there must be some z ≤ x + e in Wed+1
−Wed+1,sm′ . But by the

choice of diagonalisation witnesses, [x − e, x + e] ⊆ Wed+1,sm ⊆ Wed+1,sm′ . Hence z < x − e.
Moreover, no number less than x is enumerated into V at any stage s ≥ sm′ + 1, because

requirements Nẽ with ẽ ≤ e are not active or initialised at any such stage, requirement Ne is

22

active only at stage sm′ + 1, when it enumerates only x into V , and is not active or initialised

thereafter, and requirements Nẽ with ẽ > e were initialised at stage s0 and only enumerate

numbers into intervals Ĩ with min(Ĩ) > max(I) when they become active or initialised after

stage s0.

Since we assume for the use function ũXe1 of Φ̃Xe1 that ũXe1(z) ≤ z+ e1 ≤ z+ e (for any oracle

X), it follows that

Φ̃Ved+2
(z) = Φ̃

Vs
m′

ed+2,sm′ (z) = Wed+1,sm′ (z) 6= Wed+1
(z).

Hence to show that Ne is satisfied it only remains to prove that Bik ≤ibT V for 0 ≤ k ≤ d.

But indeed, Bik ≤ibT V by permitting. To see this, first note that the proof just given actually

showed that if some requirement Nẽ gets an interval assigned at some stage s0, then Nẽ is

active for at most |I| − 1 times due to Case 2(b) while I is assigned to Nẽ. Hence if some

Nẽ = N〈D̃,ẽ0,...,ẽd̃+2〉 is active due to Case 2(b) at some stage s+ 1 for the n-th time since the

current interval Ĩ became assigned to Nẽ, then bs = max(Ĩ)−n+1 is enumerated into Vs+1−Vs
if 〈D, e0, . . . , ed+1〉 6=

〈
D̃, ẽ0, . . . , ẽd̃+1

〉
. Since the only number possibly enumerated into Bik

at stage s + 1 is bs, this enumeration is permitted by V . Note that no number is enumerated

into Bik or V at stage s+ 1 if Nẽ is active due to Case 1 or Case 2(a) at stage s+ 1. Moreover,

if it happens for the first time that some number from Ĩ is enumerated into Bik (ik ∈ D) by Nẽ

being active due to Case 3 or initialised at stage s+1, then min(Ĩ) is enumerated into Vs+1−Vs
and no number from Ĩ is enumerated into Bik , ik ∈ D at any stage t > s + 1. Hence every

enumeration into Bik by Nẽ being active due to Case 3 or initialised at stage s+ 1 is permitted

by V .

On the other hand, if some number from an interval I assigned to Ne is enumerated into

Bik by Ne being active due to Case 2(b) at stage s+1, then, as we have shown, Ne is initialised

at some stage t + 1 > s + 1 or gets a diagonalisation witness x ∈ I assigned at some stage

t + 1 > s + 1. In either case, min(I) is enumerated into Vt+1 − Vt for the least such t. Hence

the enumeration into Bik at stage s+ 1 is permitted by V .

Finally, if some number from I is enumerated into Bik by Ne being active due to Case 3,

then the only number enumerated into any Bik with ik ∈ D at stage s+1 is the diagonalisation

witness x of Ne. Since x > min(I) (by e ≥ 1 and [x−e, x+e] ⊆ I), x /∈ Vs. But x is enumerated

into Vs+1; hence the enumeration of x into Bik is permitted by V .

This completes the proof of the claim.

It is easy to check that C permits every enumeration into any Bi, i ≤ n (note that

Cs ∩ I = V D̃〈ẽ0,...,ẽd̃+1〉,s
∩ I for every s, whenever I is assigned to some N〈D,e0,...,ed+2〉 with

〈D, e0, . . . , ed+1〉 6=
〈
D̃, ẽ0, . . . , ẽd̃+1

〉
) and that the construction obeyed the strategy described

at the beginning of the proof to make degibT(C) the join of degibT(B0), . . . , degibT(Bn).

This completes the proof of Theorem 3.7.

23

3. Joins and Meets

For r = cl the dual (with respect to existence and nonexistence of joins) of Theorem 3.7 is

also true. In fact, it is possible to find a maximal n-tuple of cl-degrees, i.e. a set of n cl-degrees

which do not have a common upper bound, such that every proper subset of the given degrees

has a least upper bound.

Theorem 3.8. For any n ∈ N there exist c.e. sets B0, B1, . . . , Bn such that
∨
i∈D degcl(Bi)

exists for any proper subset D of {0, 1, . . . , n}, but degr(B0), degr(B1), . . . , degr(Bn) do not

have an upper bound.

Proof. We effectively enumerate sets B0, . . . , Bn that will satisfy the theorem. To ensure that∨
i∈D degr(Bi) exists for each D = {i0, . . . , id} ⊂ {0, . . . , n} with i0 < . . . < id, we simultane-

ously enumerate a c.e. set CD such that Bi ≤ibT CD for every i ∈ D holds by permitting. To

ensure that degibT(B0), . . . , degibT(Bn) are a maximal (n + 1)-tuple, we satisfy the diagonali-

sation requirements

D〈e0,...,en+1〉 : Φ̃
Wen+1
e0 6= B0 or . . . or Φ̃

Wen+1
en 6= Bn

for every e = 〈e0, . . . , en+1〉 ∈ N. This guarantees that there exists no c.e. set W = Wen+1

such that Bi is cl-reducible to W for i ∈ {0, . . . , n}.
To satisfy a diagonalisation requirement De = D〈e0,...,en+1〉, we adapt the standard strategy

for maximal pair constructions, as described in [Ambo 13b]. Let

ls(De) = max({x ≤ s : (∀i ≤ n)(Φ̃
Wen+1,s

ei,s � x = Bi,s � x})

be the length of agreement of De at stage s.

Define a computable sequence of disjoint intervals Ie = (pe · (n + 1), qe · (n + 1)] for e ∈ N
such that

|Ie| > (n+ 1) · (min(Ie) + e) = (n+ 1) · (pe · (n+ 1) + e+ 1).

We assign the interval Ie to requirement De.

Then we consider a sequence of stages s1 < s2 < . . . < smax(Ie)+e+3 such that lsm(De) >

max(Ie) for m ∈ {0, . . . ,max(Ie) + e + 3}. (If no such sequence exists, then lim infs≥0 ls(De)

is finite and De is satisfied.) For each such stage sm with 1 ≤ m ≤ max(I) + e + 2 we choose

some im ∈ {0, . . . , n} and some bm ∈ Ie−Bi,sm and enumerate bm into Bi,sm+1. Since no other

requirement will enumerate any numbers from Ie into any set Bi, there are indeed (n+1) · |Ie| ≥
|Ie| + |Ie|

n > |Ie| + min(Ie) + e = max(Ie) + e + 1 enumerations possible, hence the strategy is

feasible. Since lsm(De) > max(Ie) and lsm+1
(De) > max(Ie) for 1 ≤ m ≤ max(Ie) + e + 2, it

holds that

Φ̃
Wen+1

,sm
eim ,sm (bm) = Bim,sm(bm) 6= Bim,sm+1(bm) = Φ̃

Wen+1
,sm+1

eim ,sm+1 (bm).

Since Φ̃eim is a cl-functional with ũ
Wen+1

,sm
eim (bm) ≤ bm + eim ≤ bm + e, this implies that

24

there must be some zm ∈ Wen+1,sm+1
−Wen+1,sm such that zm ≤ bm + e, in particular zm ≤

max(Ie)+e. But there are only max(Ie)+e+1 such numbers zm, while we follow the strategy for

max(Ie) + e+ 2 many stages. Since this is a contradiction, the sequence s1 < . . . < smax(I)+e+3

as above does not exist and De is satisfied.

We say that a requirement De requires attention at stage s+ 1 if ls(De) > max(Ie) and

(Case 1) Ie 6⊆ (B0,s ∪ . . . ∪Bn,s ∪
⋃
D⊂{0,...,n} CD,s) or

(Case 2) Ie ⊆ B0,s ∪ . . . ∪Bn,s ∪
⋃
D⊂{0,...,n} CD,s and there is some k ∈ N such that

(k · (n+ 1), (k + 1) · (n+ 1)] ⊆ Ie,

(k+1) ·(n+1) /∈ B1,s and for every D ⊂ {0, . . . , n} there is some y ∈ (k ·(n+1), (k+1) ·(n+1)]

such that y /∈ CD,s.

The formal construction is now as follows.

Stage 0: Let Bi,0 = CD,0 = ∅ for every i ∈ {0, . . . n} and every D ⊂ {0, . . . , n}.
Stage s + 1: If no requirement requires attention at stage s + 1, let Bi,s+1 = Bi,s and

CD,s+1 = CD,s for every i ∈ {0, . . . n} and every D ⊂ {0, . . . , n}.
Otherwise let e be minimal such that De requires attention at stage s+ 1. We say that De

is active at stage s+ 1.

If De requires attention due to Case 1, then let bs be the maximal number in Ie that is not in

B0,s∪ . . .∪Bn,s∪
⋃
D⊂{0,...,n} CD,s. Let k ∈ N and i ∈ {0, . . . , n} be such that bs = k ·(n+1)+i.

Let Bi,s+1 = Bi,s ∪ {bs} and Bj,s+1 = Bj,s for j 6= i. Also let CD,s+1 = CD,s ∪ {bs} for every

D ⊂ {0, . . . , n} with i ∈ D and CD,s+1 = CD,s for all D with i /∈ D.

If De requires attention due to Case 2, then let k be maximal such that the conditions

described above are true and for every D ⊂ {0, . . . , n} let yD,s be the maximal number in

(k ·(n+1), (k+1)·(n+1)] such that yD,s /∈ CD,s. For bs = (k+1)·(n+1) let B1,s+1 = B1,s∪{bs}
and Bj,s+1 = Bj,s for j 6= 1. Also let CD,s+1 = CD,s ∪ {yD,s} for every D ⊂ {0, . . . , n} with

1 ∈ D and CD,s+1 = CD,s for all D with 1 /∈ D.

To show that the construction is correct, first note that indeed Bi ≤ibT CD by permitting

for every D ⊂ {0, . . . , n} with i ∈ D.

Let S1 = {s : some De is active due to Case 1 at stage s + 1} and S2 = N − S1. For

i ∈ {0, . . . , n} define

BS1
i =

⋃
s∈S1

(Bi,s+1 −Bi,s) and BS2
i =

⋃
s∈S2

(Bi,s+1 −Bi,s),

and for D ⊂ {0, . . . , n} define

CS1

D =
⋃
s∈S1

(CD,s+1 − CD,s) and CS2

D =
⋃
s∈S2

(CD,s+1 − CD,s).

25

3. Joins and Meets

Fix D ⊂ {0, . . . , n}. We claim that degcl(CD) =
∨
i∈D degcl(Bi).

Note that by the construction
⋃
i∈D B

S1
i = CS1

D . Moreover BS1
i ⊆ (n + 1) · N + i, hence

BS1
0 , . . . , BS1

n are pairwise disjoint. By the Splitting Theorem it follows that
∨
i∈D degcl(B

S1
i) =

degcl(C
S1

D).

Furthermore, BS2
i = ∅ for i 6= 1 and CS

2

D = ∅ if 1 /∈ D. Hence if 1 /∈ D, then degcl(CD) =∨
i∈D degcl(Bi). On the other hand, if 1 ∈ D, then CS2

D ≡(i+n)bT BS2
1 by permitting, because

each enumeration of a number x into CS2

D,s+1 − CS2

D,s is of the form x = yD,s where bs ∈
BS2

1,s+1 −B
S2
1,s and yD,s ≤ bs ≤ yD,s + n. Hence

∨
i∈D degcl(B

S2
i) = degcl(B

S2
1) = degcl(C

S2

D).

Now ∨
i∈D

degcl(Bi) =
∨
i∈D

degcl(B
S1
i ∪̇B

S2
i)

=
∨
i∈D

(degcl(B
S1
i) ∨ degcl(B

S2
i)) [by the Splitting Lemma]

=
∨
i∈D

degcl(B
S1
i) ∨

∨
i∈D

degcl(B
S2
i)

= degcl(C
S1

D) ∨ degcl(C
S2

D)

= degcl(C
S1

D ∪ C
S2

D) [by the Splitting Lemma]

= degcl(CD).

This proves the claim.

To prove the theorem, it hence suffices to show that every requirement De is satisfied. By

induction on e we see that every requirement De requires attention only finitely often: If this

holds for all e′ < e, then let s0 be a stage such that no e′ < e requires attention after stage s0.

Then whenever De requires attention at a stage s+ 1 > s0, then De is active at stage s+ 1 and

a new number from Ie is enumerated into some Bi with i ∈ {0, . . . , n}. But this can happen at

most |Ie| · (n+ 1) times. Hence De requires attention only finitely often.

For a contradiction assume that some De is not satisfied. Then lim infs→∞ ls(De) = ∞.

By a straightforward induction it follows that there are stages s1, . . . , s|Ie| such that, for m ∈
{1, . . . , |Ie|}, requirement De is active due to Case 1 at stage sm + 1 and the number bsm =

max(Ie)−m+1 = qe ·(n+1)−m+1 is enumerated into Bi at stage sm+1, where i ∈ {0, . . . , n}
and bsm = k · (n+ 1) + i. Since there can be no other stages s ≤ s|Ie| such that De is active at

stage s+ 1, and since no other requirement enumerates any numbers from Ie into B1, it holds

that (n+ 1) · N ∩ I ∩ B1,s|Ie|+1 = ∅. Moreover, for every D ⊂ {0, . . . , n} and every r ∈ [pe, qe)

there is a number yrD ∈ (r · (n + 1), (r + 1) · (n + 1)] such that yrD /∈ CD,s|Ie|+1: There exists

some least number i ∈ {0, . . . , n} −D. If i = 0, then let yrD = (r + 1) · (n + 1); otherwise let

yrD = r · (n+ 1) + i.

By another easy induction it now follows that there are stages s|Ie|+1, s|Ie|+2, . . . , s|Ie|+(qe−pe)

such that, for m ∈ {1, . . . , qe − pe} requirement De is active due to Case 2 at stage s|Ie|+m + 1

and the number (qe − m + 1) · (n + 1) is enumerated into B1. By the choice of Ie, |Ie| >

26

(n + 1) · (min(Ie) + e), hence qe − pe > min(Ie) + e. But this means that |Ie| + (qe − pe) >
min(Ie) + e+ |Ie| = max(Ie) + e+ 1.

By the argument that we have given before the construction, the existence of these stages

s1, . . . , smax(Ie)+e+3 (where we let smax(I)+e+3 be the least stage s > smax(Ie)+e+2 with ls(De) >

max(Ie) if smax(I)+e+3 is not yet defined), is a contradiction. This shows that all requirements

are satisfied and completes the proof.

3.4 n-Tuples with and without Meets

The dual of Theorem 3.7 with respect to joins and meets also holds; in fact, it is possible to

choose the sets B0, . . . , Bn in such a way that they form a minimal n-tuple.

Theorem 3.9. For r ∈ {ibT, cl} and for any n ∈ N there exist noncomputable c.e. sets

B0, B1, . . . , Bn such that degr(B0) ∧ degr(B1) ∧ . . . ∧ degr(Bn) = 0 but
∧
i∈D degr(Bi) does

not exist for any proper subset D ⊂ {0, 1, . . . , n} with |D| ≥ 2.

Proof. For n = 0 this is trivial and for n = 1 it suffices to take c.e. sets B0 and B1 such that

degT (B0) and degT (B1) form a minimal pair in RT (the existence of such pairs was proven by

Lachlan [Lach 66] and independently by Yates [Yate 66]).

Let n ≥ 2. For the proof we effectively enumerate c.e. sets B0, . . . , Bn such that degibT(B0)∧
degibT(B1)∧ . . .∧degibT(Bn) = 0. Note that by the ibT-cl-Join Lemma this implies degcl(B0)∧
degcl(B1) ∧ . . . ∧ degcl(Bn) = 0, too. The part of Bi enumerated up to stage s will be denoted

by Bi,s.

To make sure that
∧
i∈D degr(Bi) does not exist for some subset D = {i0, . . . , id} of

{0, 1, . . . , n} with 2 ≤ d < n and i0 < . . . < id, we enumerate sets V = V D〈e0,e1,...,ed,ed+1〉,

which need to satisfy the following requirements.

N〈D,e0,e1,...,ed,ed+1,ed+2〉 : ((∀k ≤ d)(Φ̃
Bik
ek = Wed+1

))⇒ (∀k ≤ d)(V ≤ibT Bik) and V 6= Φ̃
Wed+1
ed+2

Indeed, if there were some c.e. set W = Wed+1
such that

∧
i∈D degr(Bi) = degr(W), then∧

i∈D degcl(Bi) = degcl(W) by the ibT-cl-Join Lemma. Hence there are e0, . . . , ed such that

Φ̃
Bik
ek = W for 0 ≤ k ≤ d. But then, since the premise of requirement N〈D,e0,e1,...,ed,ed+1,ed+2〉 is

satisfied for every ed+2 ∈ N, satisfaction of all these requirements implies that V D〈e0,e1,...,ed,ed+1〉 ≤ibT

Bi0 , . . . , Bid and V D〈e0,e1,...,ed,ed+1〉 6≤cl W , a contradiction.

We define the length of agreement ls(Ne) of requirement Ne = N〈D,e0,e1,...,ed,ed+1,ed+2〉 at

stage s by

ls(Ne) = max(x ≤ s : (∀k ≤ d)(Φ̃
Bik,s
ek,s � x = Wed+1,s � x)).

Then the premise of Ne is true if and only if lim infs≥0 ls(Ne) =∞.

To guarantee that degibT(B0) ∧ degibT(B1) ∧ . . . ∧ degibT(Bn) = 0, we need to satisfy the

meet requirements

27

3. Joins and Meets

M〈e0,...,en,en+1〉 : Φ̂B0
e0 = . . . = Φ̂Bnen = Wen+1

⇒Wen+1
is computable.

Similarly as above, we define the length of agreement ls(Me) of requirement Me = M〈e0,...,en〉

at stage s by

ls(Me) = max(x ≤ s : Φ̂B0,s
e0,s � x = . . . = Φ̂Bn,sen,s � x = Wen+1

� x).

Then the premise of Me is true if and only if lim infs≥0 ls(Me) =∞.

Assuming that the premise of requirement Me is true, our basic strategy to satisfy Me is

simple: If s is a stage such that ls(Me) > x and s′ is the least stage after stage s such that

ls′(Me) > x, then there will be some set Bj such that Bj,s � x+ 1 = Bj,s′ � x+ 1. This implies

that

Wen+1,s � x+ 1 = Φ̂Bj,sej ,s � x+ 1 = Φ̂
Bj,s′

ej ,s′
� x+ 1 = Wen+1,s′ � x+ 1.

By induction, it follows that Wen+1,t � x + 1 = Wen+1,s � x + 1 for all t ≥ s, hence Wen+1,s �

x + 1 = Wen+1 � x + 1. Consequently, to compute Wen+1(x), it suffices to wait for a stage s

such that ls(Me) > x and compute Wen+1,s(x).

Since it is not effectively decidable whether the premise of requirement Me is true, we

implement the full construction on a tree T = {0, 1}∗. Each node α ∈ T represents a guess

about the premises of which meet requirements Me with e < |α| are true; to be more precise,

if α(e) = 0 for some e < |α|, then α represents the guess that the premise of Me is true, while

otherwise α represents the guess that the premise of Me is false.

The concept of guessing after stage s that α represents the true outcomes of the first s meet

requirements (with respect to the underlying coding) is formalised by so-called α-stages. Every

stage s ≥ 0 is a λ-stage. Stage s is an α0-stage if s is an α-stage which is α-expansionary, i.e.

for |α| = e,

ls(Me) > max({lt(Me) : t < s and t is an α-stage});

and s is an α1-stage if s is an α-stage but not α-expansionary. Then for each s ≥ 0 there exists

a unique node δs ∈ T such that |δs| = s and s is a δs-stage.

We define a path TP ∈ 2N in T by TP(e) = 0 if the hypothesis of Me is true, that is

Φ̂B0
e0 = . . . = Φ̂Bnen , where e = 〈e0, . . . , en〉, and TP(e) = 1 otherwise. TP is called the true path

of T .

Lemma 3.10 (True Path Lemma). It holds that TP = lim infs≥0 δs, i.e. α < TP if and only

if α is the leftmost string of length |α| in T such that α v δs for infinitely many s.

Proof. The proof is by induction on |α|. Since λ is the only string of length 0, the claim is true

for |α| = 0. Let the claim be true for |α| = e and consider α = TP � e. If TP(e) = 1, then

the hypothesis of Me is not true. In this case ls(Me) is bounded in s and hence there are only

28

finitely many α-expansionary stages. In particular, there are only finitely many α0-stages and

finitely many s such that α0 v δs, while there must be infinitely many s such that α1 v δs.
Consider the case that TP(e) = 0. By the inductive hypothesis, there are infinitely many

s such that TP � e v δs, hence infinitely many TP � e-stages. Since the hypothesis of Me

is true, lim infs≥0 ls(Me) = ∞, so there must indeed be infinitely many TP � e-expansionary

TP � e-stages. Consequently, there are infinitely many TP � e+1-stages, that is, TP � e+1 v δs
for infinitely many s. Moreover, if β is a string of length e+ 1 such that β <L TP � e+ 1, then

β � e <L TP � e; by the inductive hypothesis then β � e v δs for only finitely many s and a

fortiori β v δs for only finitely many s.

Hence the claim is true for |α| = e+ 1.

We are now ready to give the construction. At Stage 0 let Bi,0 = V De = ∅ for every

i ∈ {0, . . . , n}, every e ∈ N and every D ⊂ {0, . . . , n}.

Stage s+ 1 consists of two phases.

Phase 1: For every node α that has an interval I assigned and is ready for diagonalisation at

stage s, check whether ls(Ne) > max(I) + e, where e = |α| = 〈D, e0, e1, . . . , ed, ed+1, ed+2〉. In

this case do the following: Say that α is not ready for diagonalisation any more; additionally, if

V D〈e0,e1,...,ed,ed+1〉,s(max(I)) = Φ̃
Wed+1,s

ed+2,s (max(I)) = 0, enumerate max(I) into V D〈e0,e1,...,ed,ed+1〉,s+1

and assign max(I) as diagonalisation witness to α.

We say that a node α with |α| = e = 〈D, e0, e1, . . . , ed, ed+1, ed+2〉 requires attention at stage

s+ 1 if α v δs and

(Case 1) α has no interval assigned at stage s or

(Case 2) α has an interval I but no diagonalisation witness assigned after Phase 1 of stage

s + 1, and there is some x ∈ I such that x + 3e ∈ I, ls(Ne) > max(I) + e,

V D〈e0,e1,...,ed,ed+1〉,s(max(I)) = Φ̃
Wed+1,s

ed+2,s (max(I)) = 0,

x /∈
⋃

i∈D−{i0}

Bi,s, where i0 = min(D), (9)

and

x+ 3e /∈ Bi0,s. (10)

Phase 2: Let α be the least node that requires attention at stage s+ 1 (such a node exists,

because δs has no interval assigned at stage s and hence requires attention). We say that α is

active at stage s+ 1.

(Case 1) If α has no interval assigned at stage s, let x be the least number which is larger than

s and larger than max(I ′) + 2e′ for any interval I ′ assigned to any node of length e′

during the construction up to stage s. Assign the interval I = [x, x + 6e] to α. Let

Bi,s+1 = Bi,s for every i ∈ {0, . . . , n}.

29

3. Joins and Meets

(Case 2) If α has the interval I assigned at stage s, let x be the least number in I satisfying

(9) and (10).

If x /∈ Bi0,s and x + 3e /∈
⋃
i∈D Bi, then set Bi0,s+1 = Bi0,s ∪ {x}, Bi,s+1 = Bi,s ∪

{x+ 3e} for i ∈ D − {i0} and Bj,s+1 = Bj,s for j /∈ D.

Otherwise set Bi0,s+1 = Bi0,s ∪ {x + 3e}, Bi,s+1 = Bi,s ∪ {x} for i ∈ D − {i0} and

Bj,s+1 = Bj,s for j /∈ D.

Say that α is ready for diagonalisation at stage s+ 1.

In either case, initialise all nodes β > α, that is, cancel the assignment of all intervals and

diagonalisation witnesses to these nodes and say that they are not ready for diagonalisation at

stage s+ 1.

The assignment of all intervals, diagonalisation candidates and diagonalisation witnesses,

and all aproximations to sets V De not mentioned so far remain the same as after stage s. This

ends the construction.

Lemma 3.11. Every node α < TP is initialised, requires attention and is active at only finitely

many stages.

Proof. The proof is by induction on |α|. Let the claim be true for TP � k and let α = TP � k+1.

By the True Path Lemma and by the inductive hypothesis, there is a stage s0 such that δs 6<L α
and no node α′ < α requires attention at stage s, for every s ≥ s0. Then α is not initialised

after stage s0, and if α requires attention at some stage s > s0, then α is active at stage s.

If α does not require attention after stage s0, then the claim is true. Otherwise, let s1 be the

least stage after stage s0 such that α requires attention at stage s1. Then α is active at stage

s1 and has an interval I assigned after stage s1. Since α is not initialised after stage s1, this

interval is assigned to α at all stages s > s1. Now whenever α requires attention at some stage

s + 1 > s1, α is active at stage s + 1 and enumerates some number from I into Bi,s+1 − Bi,s,
for some i ∈ {0, . . . , n}. Since I is finite, this can happen at most finitely often, thus proving

that α requires attention and is active at most finitely many times.

Lemma 3.12. Every meet requirement Me, e ∈ N, is satisfied.

Proof. For e = 〈e0, . . . , en, en+1〉, assume that Φ̂B0
e0 = . . . = Φ̂Bnen = Wen+1

(otherwise Me

is trivially satisfied). Let α < TP be the unique node of length e on the true path. By

Lemma 3.11 and by the True Path Lemma there is a least stage s0 such that for all s > s0,

nodes α′ v α are not active and δs 6< α0. Now Wen+1
can be computed as follows. To determine

Wen+1
(x), compute the least stage s1 > max({s0, x}) such that α0 v δs1 and ls1(Me) > x; such

a stage exists by the True Path Lemma, because α0 v TP, too. We claim that x ∈ Wen+1
if

and only if x ∈Wen+1,s1 .

30

To prove this claim, note that, by the choice of s0, no node α′0 < α0 enumerates any

numbers into any Bi after stage s1. Moreover, nodes α′ >L α0 are initialised at stage s1 and

only get intervals I ′ with min(I ′) > s1 > x assigned after stage s1; hence they enumerate only

numbers greater than x into any set Bi after stage s1. It follows that every enumeration of

a number y ≤ x into any set Bi after stage s1 is caused by some node α′ with α0 v α′. In

particular, if such an enumeration occurs at stage t+ 1 > s1, then t is α-expansionary, that is

lt(Me) > ls1(Me) > x.

Let s1 < s2 < . . . be the sequence of α0-stages, starting with s1 (by the True Path Lemma,

this sequence is infinite). At every stage sk + 1, k ≥ 1, there is at least one i ∈ {0, . . . , n} such

that Bi,sk+1 = Bi,sk . By the above observation, Bi,sk+1
� x+1 = Bi,sk+1 � x+1, too. Together,

this amounts to Bi,sk � x+ 1 = Bi,sk+1
� x+ 1 and hence by lsk(Me) > x and lsk+1

(Me) > x to

Wen+1,sk � x+ 1 = Φ̂
Bi,sk
ei,sk � x+ 1 = Φ̂

Bi,sk+1
ei,sk+1 � x+ 1 = Wen+1,sk+1

� x+ 1,

because Φ̂ei is an ibT-functional. It follows thatWen+1
(x) = limk→∞Wen+1,sk(x) = Wen+1,s1(x),

as claimed.

Lemma 3.13. Let D = {i0, . . . , id} ⊂ {0, . . . , n} with i0 < . . . < id and let e0, . . . , ed+1 be such

that Φ̃
Bik
ek = Wed+1

for all k ≤ d. Then V = V D〈e0,e1,...,ed,ed+1〉 ≤ibT Bi for all i ∈ D.

Proof. Let i ∈ D. Then V is Bi-computable as follows. Check whether x = max(I) for some

interval I assigned to some node α with |α| = e = 〈D, e0, . . . , ed+1, ed+2〉 until stage x. If

not, then x 6= max(I ′) for every interval I ′ assigned to any such node during the construction,

because after stage x only intervals I ′ with min(I ′) > x become assigned. In this case, x /∈ V .

Otherwise, let I and α be as above, and using the oracle Bi � x + 1 compute the least stage

s such that I has been assigned to α before stage s, such that Bi,s � x + 1 = Bi � x + 1 and

such that ls(Ne) > x+ e. Such a stage exists because Φ̃
Bik
ek = Wed+1

for all k ≤ d. Then x ∈ V
if and only if x ∈ Vs+1. Indeed, if I is not assigned to α any more or if α is not ready for

diagonalisation at stage s, then it is never declared ready for diagonalisation after stage s while

I is assigned to α, because there are no enumerations into Bi ∩ I after stage s. On the other

hand, if I is assigned to α and α is ready for diagonalisation at stage s, then during Phase

1 of stage s + 1 it is declared not ready for diagonalisation any more. Since x = max(I) can

be enumerated into V only at a stage s′ + 1 such that I is assigned to α and α is ready for

diagonalisation at stage s′, the claim follows.

Lemma 3.14. Every requirement Ne, e ∈ N, is satisfied.

Proof. Let e = 〈D, e0, . . . , ed+2〉, where D = {i0, . . . , id} with i0 < . . . , id. By padding, we may

assume that e ≥ 4. Assume that Φ̃
Bik
ek = Wed+1

for all k ≤ d (otherwise Ne is trivially satisfied).

By the previous lemma, V = V D〈e0,e1,...,ed,ed+1〉 ≤ibT Bi for all i ∈ D. It remains to show that

V 6= Φ̃
Wed+1
ed+2 .

31

3. Joins and Meets

Let α < TP be the unique node of length e on the true path, and let s0 be the last stage

such that α is initialised at stage s0, or s0 = 0 if α is never initialised; such a stage exists by

Lemma 3.11. Let s1 be the least α-stage with s1 ≥ s0; such a stage exists by the True Path

Lemma. Since α had no interval assigned at the end of stage s0 and did not get an interval

assigned at stages s with s0 ≤ s ≤ s1, α requires attention at stage s1 + 1. By the choice of s0,

no node α′ < α requires attention at stage s1 + 1, because otherwise the least such node would

become active and initialise α. It follows that α is active at stage s1 + 1 and gets an interval I

assigned; by the choice of s1 ≥ s0 again, this interval is permanently assigned to α after stage

s1.

If there is any stage s > s1 such that α gets a diagonalisation witness assigned at stage

s + 1, then Φ̃
Wed+1,s

ed+2,s (max(I)) = 0 6= 1 = V (max(I)). In this case Ne is satisfied unless

Φ̃
Wed+1
ed+2 (max(I)) 6= Φ̃

Wed+1,s

ed+2,s (max(I)). Since ũ
Wed+1,s

ed+2 (max(I)) ≤ max(I) + ed+2 ≤ max(I) + e,

this is only possible if Wed+1
� max(I)+e+1 6= Wed+1,s � max(I)+e+1. But by the conditions

for α getting a diagonalisation witness assigned, ls(Ne) > max(I) + e, hence

Φ̃
Bi0,s
e0,s � max(I)+e+1 = Wed+1,s � max(I)+e+1 6= Wed+1

� max(I)+e+1 = Φ̃
Bi0
e0 � max(I)+e+1.

Since ũ
Bi0,s
e0 (x) ≤ x + e0 ≤ x + e for every x, it follows that Bi0,s � max(I) + 2e + 1 6= Bi0 �

max(I) + 2e + 1. But no node α′ < α enumerates any numbers into any set Bi after stage

s0, node α is never active after stage s, and nodes α′ > α were initialised at stage s1 + 1 and

only get intervals I ′ with min(I ′) > max(I) + 2e assigned after stage s1 + 1. Hence no node

enumerates any number less than max(I)+2e+1 into any set Bi after stage s1, a contradiction.

This shows that in this case Ne must be satisfied.

For a contradiction assume that α never gets a diagonalisation witness assigned after stage s1

and that V = Φ̃
Wed+1
ed+2 . Note that max(I) /∈ V in this case. Inductively define stages s2 < . . . <

s6e such that sk+1 is the least stage s > sk with ls(Ne) > max(I) + e and Φ̃
Wed+1,s

ed+2,s (max(I)) =

Vs(max(I)). By our assumptions such stages exist for k = 1, . . . , 6e− 1. A simple induction on

k ≥ 2 shows that at stage sk + 1 the node α requires attention and equations (9) and (10) are

satisfied for xm = min(I) +m− 1 if k = 2m or k = 2m+ 1; moreover, since no α′ < α is active

after stage s0, α is active at stage sk + 1 and enumerates xm into Bi0,sk+1 and xm + 3e into

Bi1,sk+1, . . . , Bid,sk+1 if k = 2m while it enumerates xm into Bi1,sk+1, . . . , Bid,sk+1 and xm+3e

into Bi0,sk+1 if k = 2m+ 1.

For k = 2, . . . , 6e, let tk be the least stage t > sk such that lt(Ne) > max(I) + e. Since α

was active and defined ready for diagonalisation at stage sk + 1 (and has not been initialised

after stage s0), Phase 1 of stage tk + 1 applies to α. But since α does not get a diagonalisation

witness at stage tk + 1, it must hold that

Φ̃
Wed+1,tk

ed+2,tk
(max(I)) 6= 0 = Φ̃

Wed+1,sk
ed+2,sk (max(I)).

By ũ
Wed+1,sk
ed+2 (max(I)) ≤ max(I)+ed+2 ≤ max(I)+e, it follows that Wed+1,tk � max(I)+e+1 6=

32

Wed+1,sk � max(I) + e + 1. On the other hand, if k = 2m is even, then Bi1,tk � min(I) + 3e =

Bi1,sk � min(I) + 3e, because no node α′ < α enumerates any numbers into any set Bi after

stage s0, node α only enumerated xm ≥ min(I) + 3e into Bi1 at stage sk + 1 and did not

enumerate any numbers from I at stages s ∈ {sk + 2, . . . , tk}, and nodes α′ > α were initialised

at stage s1 + 1 and only get intervals I ′ with min(I ′) > max(I) + 2e assigned after stage s1 + 1.

By ũ
Bi1 ,sk
e1 (x) ≤ x+ e1 ≤ x+ e it follows that

Wed+1,tk � min(I)+2e = Φ̃
Bi1,tk
e1,tk

� min(I)+2e = Φ̃
Bi1,sk
e1,sk � min(I)+2e = Wed+1,sk � min(I)+2e.

Similarly, if k = 2m+ 1, then Bi0,tk � min(I) + 3e = Bi0,sk � min(I) + 3e and hence

Wed+1,tk � min(I)+2e = Φ̃
Bi0,tk
e0,tk

� min(I)+2e = Φ̃
Bi0,sk
e0,sk � min(I)+2e = Wed+1,sk � min(I)+2e.

Altogether, this shows that

|Wed+1,sk+1
∩ [min(I) + 2e,max(I) + e]| ≥ |Wed+1,tk ∩ [min(I) + 2e,max(I) + e]|

> |Wed+1,sk ∩ [min(I) + 2e,max(I) + e]|

for k ∈ {2, . . . , 6e}. Inductively it follows that |Wed+1,sk ∩ [min(I) + 2e,max(I) + e]| ≥ k− 2, in

particular |Wed+1,s6e ∩ [min(I) + 2e,max(I) + e]| ≥ 6e− 2. But

|[min(I) + 2e,max(I) + e]| = max(I) + e−min(I)− 2e+ 1

= min(I) + 6e+ e−min(I)− 2e+ 1

= 5e+ 1

< 6e− 2

for e ≥ 4, a contradiction.

Corollary 3.15. [Barm 05, Fan 05, Down 04] For r ∈ {ibT, cl}, Rr is neither an upper semi-

lattice nor a lower semi-lattice.

Proof. By Theorem 3.7 there exist r-degrees b0,b1 which have no join in Rr and by Theorem 3.9

there exist r-degrees b′0,b
′
1 which have no meet in Rr.

3.5 Noneffectivity of the Join

As remarked above, for c.e. sets B0 and B1 it holds that degT(B0)∨degT(B1) = degT(B0⊕B1).

Hence there exists a simple and effective procedure to obtain a c.e. set C representing the join

33

3. Joins and Meets

of two c.e. Turing degrees degT(B0) and degT(B1) from the c.e. sets B0 and B1. One way to

formalise what “effective” means here is the following.

Definition 3.16. Let ≤r be a reducibility notion and Rr = (Rr,≤) be the corresponding

degree structure of c.e. r-degrees.

(i) We say that the join is weakly effective in Rr if for all degrees b0,b1, c ∈ Rr, there

are c.e. sets B0 ∈ b0, B1 ∈ b1 and C ∈ c, a computable function g : N → N and a partial

computable function ψ : A→ N, A ⊆ N× {0, 1}∗ × {0, 1}∗, with

b0 ∨ b1 = c⇒ C(n) = ψ(n,B0 � g(n), B1 � g(n))

for every n.

(ii) We say that the join is strongly effective in Rr if there is a computable function g : N→ N
such that for all degrees b0,b1, c ∈ Rr, there are c.e. sets B0 ∈ b0, B1 ∈ b1 and C ∈ c and a

partial computable function ψ : A→ N, A ⊆ N× {0, 1}∗ × {0, 1}∗ with

b0 ∨ b1 = c⇒ C(n) = ψ(n,B0 � g(n), B1 � g(n)) (11)

for every n.

Hence the join is weakly effective in Rr if, whenever two r-degrees b0 and b1 have a join

c, then it is possible to compute a finite prefix of a member C of c from sufficiently long finite

prefixes of members of b0 and b1, where we can compute how long these prefixes have to be.

If the length of the prefixes only depends on the length of the prefix of C we want to compute

(but not on b0, b1 or c), then the join is strongly effective in Rr. In particular, every strongly

effective join is weakly effective.

The join is strongly effective in Rr for r ∈ {T,wtt,m}, because we can just let g(n) = n+ 1

and

ψ(n, σ, τ) =

σ(m) if n = 2m and |σ| > m

τ(m) if n = 2m+ 1 and |τ | > m

0 otherwise

in the above definition.

For r ∈ {ibT, cl}, on the other hand, the situation looks different. First let us make the

following easy observation.

Lemma 3.17. For r ∈ {ibT, cl}, the join is strongly effective in Rr if and only if there is

a strictly increasing computable function g with g(x) > x for all x such that for all degrees

b0,b1, c ∈ Rr and for all c.e. sets B0 ∈ b0, B1 ∈ b1 and C ∈ c there is a partial computable

function ψ : A→ N, A ⊆ N× {0, 1}∗ × {0, 1}∗ satisfying (11).

Proof. Assume that the join is strongly effective in Rr and let g be as in Definition 3.16 (ii).

If we substitue g by any computable function ĝ with ĝ(x) > g(x) for all x, and a partial

34

computable function ψ satisfying (11) by ψ̂ with

ψ̂(n, σ, τ) = ψ(n, σ � min({|σ|, g(n)}), τ � min({|τ |, g(n)})),

then (11) is still true. In particular, we may assume that g is strictly increasing and satisfies

g(x) > x for all x.

Define g′(x) = 2 · g(2x) for x ∈ N. Let b0,b1 and c be c.e. r-degrees. By the assumption,

there exist c.e. sets B0 ∈ b0, B1 ∈ b1, C ∈ c and a partial computable function ψ such that

(11) is satisfied. Let B′0 ∈ b0, B′1 ∈ b1 and C ′ ∈ c be c.e. sets. Then there are cl-functionals

Φ̃e0 , Φ̃e1 and Φ̃e2 such that Φ̃B̂0
e0 = B0, Φ̃B̂1

e1 = B1 and Φ̃Ce2 = Ĉ.

We define

ψ′(n, σ, τ) = Φ̃ρe2(n),

where ρ is the string of length n+ e2 + 1 or less defined by

ρ(m) =

C(m) if |σ| = |τ | = 2 · g(2n) ≤ g(m) + max({e0, e1})

ψ(m, Φ̃σe0 � g(m), Φ̃τe1 � g(m)) if |σ| = |τ | = 2 · g(2n) > g(m) + max({e0, e1})

↑ otherwise

for 0 ≤ m ≤ n + e2. Note that for the definition of ρ the first case is only used if 2 · g(2n) ≤
g(n + e2) + max({e0, e1}), because we assume that g is increasing. But for almost every n,

2n > n+ e2 and hence g(2n) > g(n+ e2); and then clearly 2 · g(2n) > g(n+ e2) + max({e0, e1})
for almost every n. Hence the first case is only used for finitely many n and only those finitely

many σ and τ which have length n. This shows that ψ′ is partially computable, since only

finitely many values C(m) (which can be hard-coded into a machine) are needed.

If b0 ∨ b1 = c, then for every n ∈ N and for σ = B′0 � g′(n), τ = B′1 � g′(n) we obtain

ρ(m) = C(m) if 2 · g(2n) ≤ g(m) + max({e0, e1}), while for 2 · g(2n) > g(m) + max({e0, e1})
we obtain

ρ(m) = ψ(m, Φ̃σe0 � g(m), Φ̃τe1 � g(m))

= ψ(m, Φ̃
B′0�2·g(2n)
e0 � g(m), Φ̃

B′1�2·g(2n)
e1 � g(m))

= ψ(m, Φ̃
B′0
e0 � g(m), Φ̃

B′1
e1 � g(m))

= ψ(m,B0 � g(m), B1 � g(m))

= C(m).

Here for the third equality we use the fact that ũ
B′0
e0 (x) ≤ x+ e0 ≤ g(m) + e0 < 2 · g(2n) for all

x ≤ g(m), and similarly for ũ
B′1
e1 (x).

Hence ρ = C � n + e2 + 1 and ψ′(n, σ, τ) = Φ̃ρe2(n) = Φ̃C�n+e2+1
e2 (n) = C ′(n), because

ũCe2(n) ≤ n+ e2.

35

3. Joins and Meets

Lemma 3.18. The join is weakly effective in RibT and Rcl.

The proof follows from the cl-wtt-Join Lemma:

Lemma 3.19 (cl-wtt-Join Lemma [Ambob]). Let B0, . . . , Bn, C be c.e. sets such that

degcl(B0) ∨ . . . ∨ degcl(Bn) = degcl(C).

Then

degwtt(B0) ∨ . . . ∨ degwtt(Bn) = degwtt(C).

Proof. Since wtt-reducibility is stronger than cl-reducibility, Bi ≤cl C implies that Bi ≤wtt C

for i ∈ {0, . . . , n}. Since degwtt(B0) ∨ . . . ∨ degwtt(Bn) = degwtt(B0 ⊕ . . .⊕ Bn) it follows that

B0 ⊕ . . .⊕Bn ≤wtt C.

Hence it suffices to show that C ≤wtt B0 ⊕ . . . ⊕ Bn. Let k ∈ N be such that all Bi are

(i + k)bT-reducible to C. We may assume that all Bi are noncomputable, because if all of them

are computable, then C is computable, too, and the lemma is clear; and if only some of the

Bi are computable then leaving them out does not affect the join. Since B0 ≤cl C, C must

also be noncomputable. Hence there is an infinite computable subset R ⊂ C, and C ′ = C −R
is ibT-equivalent to C. By Lemma 2.7 there are sets B̂0 ⊆ B0, . . . , B̂n ⊆ Bn, Ĉ ⊆ C ′ with

respective enumeration functions b0, . . . , bn, c such that each B̂i is ibT-equivalent to Bi, Ĉ is

ibT-equivalent to C and c(s) ≤ bi(s) + k for i ∈ {0, . . . , n}.
Let f be the computable function such that f(s) is the s-th element of R according to the

natural order. Define

C ′′ = Ĉf ∪ {c(s) : (∃i ≤ n)(bi(s) < f(c(s)))}.

Note that f is a computable unbounded shift and that Ĉf ⊆ R and {c(s) : (∃i ≤ n)(bi(s) <

f(c(s)))} ⊆ Ĉ ⊆ C ′ = C −R, hence the two sets are disjoint.

For

C ′′s = {f(c(t)) : t < s} ∪ {c(t) : (∃i ≤ n)(bi(t) < f(c(t))) and t < s},

we get a computable approximation (C ′′s)s≥0 of C ′′, and for B̂i,s = {bi(t) : t < s} we get a

computable approximation (B̂i,s)s≥0 of B̂i.

For i ≤ n it holds that B̂i ≤cl C
′′ by permitting. Indeed, if y = bi(s) enters B̂i,s+1 − B̂i,s,

then either f(c(s)) ≤ y and f(c(s)) ∈ C ′′s+1 − C ′′s , or bi(s) < f(c(s)) and c(s) ∈ C ′′s+1 − C ′′s ,

where c(s) ≤ bi(s) + k. Hence (2) holds with C ′′ in place of A and B̂i in place of B.

It follows that Bi ≤cl C
′′ for i ∈ {0, . . . , n}, and hence, by definition of the join, Ĉ ≡cl C ≤cl

C ′′. Using the Computable Shift Lemma (Lemma 2.6), it follows that

C ≤cl {c(s) : (∃i ≤ n)(bi(s) < f(c(s)))} ≤wtt B0 ⊕ . . .⊕Bn,

as claimed.

36

We can now give the short proof of Lemma 3.18.

Proof of Lemma 3.18. Let r ∈ {ibT, cl}. Let b0, b1, c ∈ Rr. Let B0 ∈ b0, B1 ∈ B1 and

C ∈ C be arbitrary c.e. sets.

If b0 ∨ b1 does not exist or is different from c, take arbitrary computable functions f

and g. Otherwise by Lemma 3.19 (and in the case of r = ibT, Lemma 3.2) it holds that

degwtt(B0 ⊕B1) = degwtt(B0)∨ degwtt(B1) = degwtt(C). Hence C ≤wtt B0 ⊕B1. That means,

C = ΦB0⊕B1
e for some e, where ue(x) ≤ g(x) for a computable function g. Now

ψ(n, σ, τ) =

Φσ⊕τe (n) if |σ| = |τ | = g(n) + 1

0 otherwise
,

(where σ(0) . . . σ(k) ⊕ τ(0) . . . τ(k) = σ(0)τ(0) . . . σ(k)τ(k)) witnesses that equation (11) is

satisfied.

Turning to strong effectivity, however, the join is not effective in Rr for r ∈ {ibT, cl}.

Theorem 3.20. The join is not strongly effective in RibT or Rcl.

Proof. Let g be a stricly increasing computable function with g(x) > x for all x. We will

construct c.e. sets B0, B1 and C such that degr(B0)∨degr(B1) = degr(C) but for every partial

computable function ϕe there exists some n ∈ N such that C(n) 6= ϕe(n,B0 � g(n), B1 � g(n)).

Then it follows by Lemma 3.17 that the join cannot be strongly effective in Rr.

By the ibT-cl-Join Lemma (Lemma 3.2) it suffices to consider the case r = ibT.

We will effectively enumerate the sets B0, B1 and C satisfying the following requirements

for all e = 〈e0, e1, e2〉.
B0, B1 ≤ibT C

De : (∃n)(C(n) 6= ϕe(n,B0 � g(n), B1 � g(n)))

Je : (B0 = Φ̂
We2
e0 and B1 = Φ̂

We2
e1)⇒ C ≤ibT We2 .

Satisfaction of the join requirements Je ensures that for every c.e. ibT-degree d, if d ≥
degibT(B0) and d ≥ degibT(B1), then d ≥ degibT(C). Namely, if e0, e1 and e2 are chosen in

such a way that We2 is some c.e. set with d = degibT(We2), B0 = Φ̂
We2
e0 and B1 = Φ̂

We2
e1 , then

with e = 〈e0, e1, e2〉 the satisfaction of Je implies that degibT(C) ≤ degibT(We2) = d.

Let B0,s, B1,s and Cs denote the finite parts of B0, B1 and C enumerated by the end of

stage s of the construction. B0 ≤ibT C will be satisfied by direct coding. That is, if a new

number x is enumerated into B0 at stage s+1 then x 6∈ Cs and x is simultaneously enumerated

into C at stage s + 1. Similarly, B1 ≤ibT C will hold by permitting. The requirements De

will be satisfied by the usual diagonalisation method, i.e. by waiting for a stage s such that

ϕe,s(n,B0,s � g(n), B1,s � g(n)) = 0 for some appropriate witness n /∈ Cs and then putting n

into Cs+1 and restraining B0 � g(n) and B1 � g(n).

37

3. Joins and Meets

In order to guarantee that putting n into C at stage s + 1 is compatible with the higher

priority join requirements, however, n will be appropriate only if for any requirement Je′ (e′ =

〈e′0, e′1, e′2〉 < e) with correct hypothesis B0 = Φ̂
We′2
e′0

and B1 = Φ̂
We′2
e′1

there is a number y ≤ n in

We′2
−We′2,s

, thereby implying that C ≤ibT We′2
by permitting. We will ensure the existence of

such a number y by guaranteeing that B1,s � g(n) + 1 = Φ̂
We′2,s

e′1,s
� g(n) + 1 and [n + 1, g(n)] ⊆

We′2,s
. In this case we will enumerate g(n) into B1 at stage s+ 1. The set We′2

has to respond

to this by enumerating some y ≤ g(n) into We′2
after stage s, and, by [n+ 1, g(n)] ⊆We′2,s

, this

y must be smaller than n+ 1.

We will create the just described setup for a diagonalisation candidate n by enumerating

large intervals bit by bit in decreasing order into B0 and C simultaneously.

The formal construction is a tree construction using the full binary tree T = {0, 1}∗.
In the tree, a node α of length e corresponds to a guess about which of the hypotheses of

the join requirements J0, . . . , Je−1 will be true for B0, B1 and C. For each n < e, if α(n) = 0

then α codes the guess that the hypothesis of Jn is true, otherwise it codes the guess that this

hypothesis is false. Depending on these guesses, the node α follows a unique strategy Dα to

satisfy the requirement De.

In order to guess whether or not the hypothesis of Je is true, we consider the length function

ls(e) = max({x < s : (∀y < x)(B0,s(x) = Φ̂
We2,s
e0,s (x) and B1,s(x) = Φ̂

We2,s
e1,s (x))})

and we use the observation that – since Φ̂e0 and Φ̂e1 are ibT-functionals –

B0 = Φ̂
We2
e0 and B1 = Φ̂

We2
e1 ⇔ lims→∞ ls(e) =∞

⇔ lim sups→∞ ls(e) =∞.
(12)

Now, for each node α, we inductively define α-stages as follows. Each stage s ≥ 0 is a λ-

stage. If s is an α-stage for some α with |α| = e, then s is called α-expansionary if ls(Je) > lt(Je)

for all α-stages t < s, and s is an α0-stage if s is α-expansionary, and s is an α1-stage if s is an

α-stage but not α-expansionary.

For each s ≥ 0, let δs ∈ T be the unique α of length s such that s is an α-stage. The node

δs represents the guess about which of the hypotheses of J0, . . . , Js−1 are true which is made at

the end of stage s.

Construction. We can now give the construction of B0, B1 and C. Let B0,0 = B1,0 = C0 = ∅.
For s ≥ 0, we say that a node α of length e requires attention at stage s+ 1 if α v δs and

(Case 1) α has no interval assigned to it at the end of stage s, or

(Case 2) α has an interval I assigned to it at the end of stage s such that for all x ∈ I it holds

that C(x) = ϕe,s(x,B0,s � g(x), B1,s � g(x)), ls(Je′) > max(I) for all e′ < e with α(e′) = 0, and

I ∩B0,s = I ∩ Cs ⊂ I.

If some node requires attention at stage s+ 1, find the least (with respect to v) such α and

38

say that α is active at stage s+ 1. We say that α is active due to Case 1 or active due to Case

2, respectively, depending on whether α has an interval assigned or not at the end of stage s.

Declare all intervals assigned to nodes β > α unassigned (i.e., initialise these nodes) and do the

following:

If α is active due to Case 1, let e = |α| and assign a new interval I ′ = [x, ge·(x+1)+1(x)] to

α where x is the least number ≥ s + 1 such that x is larger than all numbers from intervals

assigned to any node before stage s+ 1. Let B0,s+1 = B0,s, B1,s+1 = B1,s and Cs+1 = Cs.

If α is active due to Case 2, then distinguish the following subcases.

(Subcase 2.1) If there exists x /∈ Cs such that g(x) /∈ B1,s, [x, g(x)] ⊆ I and [x+ 1, g(x)] ⊆
We′2,s

for every e′ < e with α(e′) = 0 and e′ = 〈e′0, e′1, e′2〉, then let B0,s+1 = B0,s, B1,s+1 =

B1,s∪{g(x)} and Cs+1 = Cs∪{x} for the least such x (we say that α enumerates x into C and

g(x) into B1 at stage s+ 1).

(Subcase 2.2) Otherwise, for y = max({x ∈ I : x /∈ B0,s}), let B0,s+1 = B0,s ∪ {y},
B1,s+1 = B1,s and Cs+1 = Cs ∪{y} (we say that α enumerates n into B0 and C at stage s+ 1).

If no node requires attention at stage s+ 1, let B0,s+1 = B0,s, B1,s+1 = B1,s and Cs+1 = Cs

and initialise all nodes β > δs. Proceed to the next stage.

Verification. Obviously, B0 ≤ibT C and B1 ≤ibT holds by permitting. So it suffices to show

that the join and diagonalisation requirements are met. As we will show, this is achieved by

the initialisation rules and the strategies for the diagonalisation requirements on the true path.

The true path TP of the construction is defined by TP(e) = 0 if the hypothesis of Je,

B0 = Φ̂
We2
e0 and B1 = Φ̂

We2
e1 , (13)

is true (where e = 〈e0, e1, e2〉), and TP(e) = 1 otherwise.

Claim 1 (True Path Lemma). It holds that TP = lim infs→∞ δs, that is, if α ∈ T , then

α < TP if and only if α v δs for infinitely many s and there are only finitely many s such that

δs <L α.

Proof. The proof is by induction. Let α = lim infs→∞ δs � e = TP � e. Then there are

infinitely many α-stages. So, by (12), there are infinitely many α-expansionary stages if and

only if (13) holds. It follows that α0 = lim infs→∞ δs � e+ 1 if and only if (13) holds.

Claim 2. Let α < TP. Then α is initialised, requires attention and is active at only finitely

many stages. Moreover, there is an interval I permanently assigned to α from some stage on.

Proof. The proof is by induction on n = |α|. By α < TP fix s0 such that α ≤ δs for all

s ≥ s0, and by inductive hypothesis fix s1 ≥ s0 such that no node β < α requires attention at

39

3. Joins and Meets

any stage s ≥ s1. Then α will not be initialised after stage s1 and α will become active at any

stage s+ 1 > s1 at which it requires attention.

Now, by α < TP, let s2 be the least α-stage ≥ s1. Then either an interval I is assigned to α

at the end of stage s2 or α will become active at stage s2 + 1 and an interval I will be assigned

to α at stage s2 + 1. Since α is not initialised after stage s1, this interval I is permanent. It

follows that α will act at most |I| times after stage s2 + 1, since α can act only via Case 2 after

this stage and whenever α acts according to Case 2 after stage s2 then a new element from I

is enumerated into C. Since α acts whenever it requires attention after stage s1 it follows that

α requires attention only finitely often.

Claim 3. Every requirement Je, e ∈ N, is satisfied.

Proof. Let α = TP � e be the node on the true path of length e = 〈e0, e1, e2〉. Assume that

(13) holds, that is, B0 = Φ̂
We2
e0 and B1 = Φ̂

We2
e1 (otherwise Je is trivially satisfied). Then, by

the True Path Lemma, α0 is on the true path. So there are infinitely many α0-stages and, by

Claim 2, there is an α0-stage s0 such that no node γ < α0 is active at any stage s ≥ s0.

Now, in order to compute C(x) with oracle We2 � x+1 for given x, using the oracle compute

the least α0-stage s1 ≥ max(s0, x) such that

We2,s1 � x+ 1 = We2 � x+ 1. (14)

We claim that C(x) = Cs1(x).

For a contradiction assume that C(x) 6= Cs1(x), i.e., that x enters C at a stage s + 1 > s1

and let β0 be the node which enumerates x into C.

Note that, by choice of s0 and by s0 ≤ s1, α0 ≤ β0. Moreover, since s1 is an α0-stage, for

any node β to the right of α0, β does not become active and is initialised at stage s1 + 1. Since

a node β will enumerate a number y into C at stage s+ 1 only if there is an interval I assigned

to the node at the end of stage s and y is an element of I, and since min(I) ≥ s′ + 1 where

s′ + 1 is the stage at which I becomes assigned to β, it follows that a node β to the right of α0

will enumerate only numbers y with y > s1 + 1 > x into C after stage s1.

So α0 v β0, hence β0(e) = 0. Now, when β0 enumerates x into C at stage s + 1, then it

becomes active via Case 2. It follows, by definition of requiring attention, that x is an element

of the interval I assigned to β0 at the end of stage s,

B0,s � max(I) + 1 = Φ̂
We2,s
e0,s � max(I) + 1

and

B1,s � max(I) + 1 = Φ̂
We2,s
e1,s � max(I) + 1

(15)

40

(since ls(Je) > max(I)), and

Cs(x) = B0,s(x) = 0 (16)

(since I ∩B0,s = I ∩ Cs and x 6∈ Cs).
Now if Subcase 2.2 applies then x is enumerated not only into C but also into B0 at stage

s+ 1. So, by the first part of (15),

B0(x) = B0,s+1(x) 6= B0,s(x) = Φ̂
We2,s
e0,s (x) = Φ̂

We2
e0 (x),

where the final equality follows by (14) since Φ̂e0 is an ibT-functional. But this contradicts the

assumption (13).

So Subcase 2.1 must apply. It follows that [x, g(x)] ⊆ I and [x + 1, g(x)] ⊆ We2,s and that

g(x) is enumerated into B1 at stage s+ 1. Hence, by the second part of (15),

B1(g(x)) = B1,s+1(g(x)) 6= B1,s(g(x)) = Φ̂
We2,s
e1,s (g(x)).

On the other hand, by assumption (13), B1(g(x)) = Φ̂
We2
e1 (g(x)). It follows that a number

y ≤ g(x) has to enter We2 after stage s ≥ s1. In fact, by [x + 1, g(x)] ⊆ We0,s, this number y

has to be ≤ x. But this contradicts (14).

This completes the proof of Claim 3.

Claim 4. Every requirement De, e ∈ N, is satisfied.

Proof. For a contradiction assume that for all n

C(n) = ϕe(n,B0 � g(n), B1 � g(n)). (17)

We start with some notation and observations. Let α be the unique node on the true path for

which |α| = e. By Claim 2 there is a stage sα and an interval

Iα = [xα, g
e·(xα+1)+1(xα)]

(for some xα) such that Iα is assigned to α at stage sα+1 and Iα is never cancelled. Note that,

by permanence of Iα, α is not initialised after stage sα. So, in particular, α ≤ δs for s > sα, no

node β < α becomes active after stage sα, and α becomes active whenever it requires attention

after stage sα. Moreover, for a node β with α < β, β is initialised at stage sα + 1, hence

will enumerate only numbers x > max(Iα) into B0, B1 or C after stage sα. So the numbers

x ≤ max(Iα) enumerated into B0, B1 or C after stage sα are just the elements of Iα enumerated

by α into B0, B1 or C. In particular, Bi � xα = Bi,sα � xα for i ∈ {0, 1} and C � xα = Csα � xα.

Also note that

Iα ∩B0,sα+1 = Iα ∩B1,sα+1 = Iα ∩ Csα+1 = ∅ (18)

holds since when an interval becomes assigned to a node at a stage s+1 then no element of this

41

3. Joins and Meets

interval has been enumerated into B0, B1 or C prior to stage s+1 and no number is enumerated

into B0, B1 or C at stage s+ 1.

Let E = {e′ : e′ < e & α(e′) = 0} and for e′ ∈ E let e′ = 〈e′0, e′1, e′2〉. Since α is

on the true path there are infinitely many α-stages and, for e′ ∈ E, lims→∞ ls(Je′) = ∞.

So if we call a stage s > sα good if s is an α-stage, ls(Je′) > max(Iα) for e′ ∈ E, and

Cs(n) = ϕe,s(n,B0,s � g(n), B1,s � g(n)) for all n ∈ Iα then by equation (17) there are infinitely

many good stages. Note that α requires attention at a stage s + 1 > sα + 1 if and only if s is

good and Iα ∩B0,s = Iα ∩ Cs ⊂ Iα.

In order to get the desired contradiction we will argue that α enumerates all numbers x

from Iα into (C and) B0 according to Case 2.2 whereas Case 2.1 will never apply. We then

observe that, for any number e′ ∈ E, the enumeration of x into B0 will force a new number

≤ x into We′2
. Moreover, since Case 2.1 does not apply, we may argue that, for any subinterval

[x+ 1, g(x)] of Iα put into B0 and for some e′ ∈ E, We′2
will not react with the enumeration of

[x + 1, g(x)] but also some new smaller number(s) will enter We′2
. This will allow us to argue

that |We′2
� xα + 1| > xα + 1 for some e′ ∈ E which of course is impossible.

We first show that α does not require attention via Case 2.1 after stage sα + 1. For a

contradiction assume that α acts via Case 2.1 at stage s′ + 1 > sα + 1. Then a number x ∈ Iα
such that

Cs′(x) = ϕe,s′(x,B0,s′ � g(x), B1,s′ � g(x)) = 0

is enumerated into C at stage s′ + 1 whereas B0,s′+1 = B0,s′ and B1,s′+1 = B1,s′ ∪ {g(x)}.
Moreover, α will not act after stage s′+ 1 since Iα ∩Cs 6= Iα ∩B0,s for s ≥ s′+ 1. So, by choice

of sα, B0 � g(x) = B0,s′ � g(x) and B1 � g(x) = B1,s′ � g(x), hence ϕe(x,B0 � g(x), B1 � g(x)) =

ϕe(x,B0,s′ � g(x), B1,s′ � g(x)). It follows that C(x) 6= ϕe(x,B0 � g(x), B1 � g(x)) contrary to

assumption (17).

Next we show that α enumerates all the numbers from Iα into B0 and C according to Case

2.2 in decreasing order. I.e., for any x ∈ Iα there is a good stage sx > sα such that

Iα ∩B0,sx = Iα ∩ Csx = (x, ge·(xα+1)+1(xα)] & B0,sx+1 −B0,sx = Csx+1 − Csx = {x}. (19)

The proof is by induction on ge·(xα+1)+1(xα)− x. Fix x. By (18) (for x = ge·(xα+1)+1(xα)) or

by inductive hypothesis (for x < ge·(xα+1)+1(xα)) fix a stage s′ > sα such that Iα ∩ B0,s′ =

Iα ∩ Cs′ = (x, ge·(xα+1)+1(xα)] and let s′′ be the least good stage ≥ s′. Then α will become

active at stage s′′ + 1 and – since Case 2.1 does not apply after stage sα – α will enumerate x

into B0 and C at stage s′′ + 1. So s′′ is the desired stage sx.

In the remainder of the proof we will show that

(∃ e′ ∈ E)(|We′2
� xα + 1| > xα + 1) (20)

42

holds (which will give the desired contradiction since there are only xα + 1 numbers less than

xα + 1).

For a proof of (20) we first observe that, for e′ ∈ E, the enumeration of an element x > xα

of the interval Iα into B0 at stage sx + 1 forces We′2
to respond with the enumeration of a new

number ≤ x before the next smaller element x− 1 of Iα is put into B0:

(∀ x ∈ Iα − {xα})(∀ e′ ∈ E)(We′2,sx−1
� x+ 1 6= We′2,sx

� x+ 1). (21)

Namely, by goodness of sx and sx−1, lsx(Je′) > max(Iα) and lsx−1
(Je′) > max(Iα), hence

B0,sx(x) = Φ̂
We′2,sx
e′0,sx

(x) and B0,sx−1(x) = Φ̂
We′2,sx−1

e′0,sx−1
(x). Since B0,sx(x) = 0 6= 1 = B0,sx+1(x) =

B0,sx−1(x) and Φ̂e′0 is an ibT-functional, this implies the claim.

Now, recall that Iα = [xα, g
e·(xα+1)+1(xα)]. Hence we can split Iα−{xα} into e ·(xα+1)+1

disjoint intervals (x, g(x)] by letting

xn = ge·(xα+1)+1−n(xα) (n ∈ {0, . . . , e · (xα + 1) + 1})

and

Inα = (xn+1, xn] = (xn+1, g(xn+1)] (n ∈ {0, . . . , e · (xα + 1)}).

We claim that∑
e′∈E
|We′2,sxn

� xn + 1| ≥ n (for n ∈ {0, . . . , e · (xα + 1) + 1}). (22)

Note that for n = e · (xα + 1) + 1 this amounts to∑
e′∈E
|We′2,sxα

� xα + 1| ≥ e · (xα + 1) + 1,

since xe·(xα+1)+1 = xα. By |E| ≤ e this implies (20).

So it only remains to prove inequality (22). The proof is by induction on n. For n = 0

it is trivially true. Assuming that it is true for n ≤ e · (x + 1) we show that it is true for

n+ 1. Note that, for the xn − xn+1 numbers y from the interval Inα = (xn+1, xn] it holds that

sxn+1
> sy ≥ sxn . So, by (21), for any e′ ∈ E

|(We′2,sxn+1
\We′2,sxn

) � xn + 1| ≥ xn − xn+1.

By inductive hypothesis this implies∑
e′∈E
|We′2,sxn+1

� xn + 1| ≥ n+ |E|(xn − xn−1) = n+ |E| · |Inα |.

Moreover, there is at least one e′ ∈ E such that Inα 6⊆ We′2,sxn+1
, since otherwise by goodness

43

3. Joins and Meets

of sxn+1
and by (19), α will require attention via Case 2.1 at stage sxn+1

+ 1 contrary to our

above observation. Since [0, xn] = [0, xn+1] ∪ (xn+1, xn] = [0, xn+1] ∪ Inα it follows that

∑
e′∈E |We′2,sxn+1

� xn+1 + 1| =
∑
e′∈E |We′0,sxn+1

� xn + 1|
−
∑
e′∈E |We′2,sxn+1

∩ Inα |
> (

∑
e′∈E |We′2,sxn+1

� xn + 1|)− |E| · |Inα |
≥ (n+ |E| · |Inα |)− (|E| · |Inα |).
= n

This completes the proof of (22), the proof of Claim 4 and the proof of the theorem.

3.6 Joins and Meets in Substructures of RibT and Rcl: Sim-

ple Degrees

Knowing that, by Corollary 3.15, the answer to the question whether RibT or Rcl are upper

or lower semi-lattices is negative, we may extend this question to substructures of RibT or Rcl.

There are two possible directions these questions might lead into. The first is: Given a certain

lattice, can we find a substructure of Rr which is closed under joins and meets and isomorphic

to this lattice? This is the question of lattice embeddings, which will be addressed in Chapter

4. The second direction is: Given a certain (naturally definable) substructure of Rr, is it a

lattice, or at least an upper or lower semi-lattice?

One substructure of RibT and Rcl, respectively, which was studied recently by Ambos-Spies

[Amboa], is the structure of the degrees of simple sets.

Definition 3.21. A c.e. set A is called simple if its complement N − A is infinite but does

not contain an infinite c.e. subset, i.e. for every e ∈ N, if |We| = ∞, then A ∩We 6= ∅. For

r ∈ {ibT, cl,wtt,T}, an r-degree a ∈ Rr is called simple if a contains a simple set and nonsimple

otherwise. The substructure of Rr consisting of the simple r-degrees is denoted by (Sr,≤).

Simple sets were first defined by Post [Post 44] during his now famous program to find a

nontrivial property of c.e. sets which would guarantee Turing incompleteness. Finding such

a property which is witnessed by at least one noncomputable set A would immediately have

implied the existence of at least three c.e. Turing degrees, namely the degree 0 of the computable

sets, the degree 0′ of the Turing complete sets and the degree degT(A). Simplicity was a first

candidate for an appropriate property and could be shown to imply many-one incompleteness,

but Post also showed that it is not sufficient to ensure Turing incompleteness; in fact, except

for 0, every c.e. Turing degree contains a simple set. The notion of simplicity has nonetheless

been studied in many different contexts during the last decades.

In [Amboa] Ambos-Spies showed that even for linearly bounded Turing (lbT) reducibility,

which is defined like weak truth-table reducibility but with the use function bounded by a

44

linear function (instead of a computable one), it is still true that every lbT-degree except for 0

still contains a simple set. Considering ibT- or cl- degrees, however, the distribution of simple

degrees turns out to be less trivial. Using a finite-injury argument, Ambos-Spies constructs

a noncomputable c.e. set A such that degibT(A) is nonsimple. Remarkably, this implies that

degcl(A) is nonsimple, too, by the following general theorem.

Theorem 3.22 (Coincidence Theorem). [Amboa] For any c.e. set A it holds that degibT(A) is

simple if and only if degcl(A) is simple.

Concerning the question whether (Sr,≤) is a lattice for r ∈ {ibT, cl}, we get a negative

answer again.

Theorem 3.23. [Amboa] If A is a noncomputable c.e. set, then there exists a simple set B

with A ≤ibT B.

Theorem 3.24. [Amboa] For r ∈ {ibT, cl}, there is a maximal pair of simple r-degrees. Hence

the partial order (Sr,≤) is not an upper semi-lattice.

Proof. By Theorem 3.5, there exist c.e. sets B0 and B1 such that (degcl(B0), degcl(B1)) is a

cl-maximal pair. By Theorem 3.23, there are simple sets C0 and C1 such that B0 ≤ibT C0 and

B1 ≤ibT C1, and a fortiori B0 ≤cl C0 and B1 ≤cl C1. Then the pair (degcl(C0), degcl(C1)) of

simple cl-degrees is cl-maximal too.

Since ibT-reducibility implies cl-reducibility, the pair (degibT(C0), degibT(C1)) is also ibT-

maximal.

Theorem 3.25. [Amboa] If B is a noncomputable c.e. set, then there exists a simple set A

with A ≤ibT B.

Theorem 3.26. [Amboa] For r ∈ {ibT, cl}, there is a minimal pair of simple r-degrees. Hence

the partial order (Sr,≤) is not a lower semi-lattice.

Proof. By Theorem 3.9, there exist c.e. sets B0 and B1 such that (degr(B0), degr(B1)) is an

r-minimal pair. By Theorem 3.25 there are simple sets A0 and A1 such that A0 ≤ibT B0 and

A1 ≤ibT B1, and a fortiori A0 ≤cl B0 and A1 ≤cl B1. Then the pair (degr(A0), degr(A1)) of

simple r-degrees is r-minimal, too.

Since computable sets are not simple, the degree 0 is nonsimple. Hence degr(A0) and

degr(A1) do not have a meet in (Sr,≤).

Of course, if two simple r-degrees b0 and b1 have a meet a in Rr and a is itself simple, then

b0 and b1 have the same meet in (Sr,≤). Similarly, if two simple r-degrees b0 and b1 have a

join c in Rr and c is itself simple, then b0 and b1 have join c in (Sr,≤). Theorem 3.26 shows

that the condition that a be itself simple is necessary, because Sr is not closed under meets.

Note that we cannot analogously conclude from Theorem 3.24 that Sr is not closed under joins

(because r-minimal pairs and r-maximal pairs are not quite dual notions). To complete the

picture, we show that the latter is still true.

45

3. Joins and Meets

Theorem 3.27. For r ∈ {ibT, cl}, Sr is not closed under joins, namely there are simple

r-degrees b0 and b1 such that b0 and b1 have a join c in Rr and c is not simple.

Proof. We will construct c.e. sets B0, B1 and C such that B0 and B1 are simple but degibT(C)

is nonsimple and such that degibT(B0) ∨ degibT(B1) = degibT(C). By the Coincidence Theo-

rem 3.22 then degcl(C) is nonsimple, too, while by the ibT-cl-Join Lemma degcl(B0)∨degcl(B1) =

degcl(C). Hence the claim holds for b0 = degr(B0) and b1 = degr(B1), where r ∈ {ibT, cl}.
The sets need to satisfy the following requirements for i ∈ {0, 1} and for all e = 〈e0, e1, e2〉 ∈

N:

• Bi ≤ibT C ,

• Je : B0 = Φ̂
We2
e0 and B1 = Φ̂

We2
e1 ⇒ C ≤ibT We2 ,

• Se : |We| =∞⇒We ∩B0 6= ∅ and We ∩B1 6= ∅,

• Ne : We2 = Φ̂Ce0 and C = Φ̂
We2
e1 ⇒We2 not simple.

If B0, B1 and C satisfy all these requirements, then, since B0, B1 ≤ibT C, the join require-

ments Je guarantee that degibT(C) is the least upper bound of degibT(B0) and degibT(B1), that

is degibT(C) = degibT(B0)∨degibT(B1). The simplicity requirements Se make sure that B0 and

B1 are simple if N−B0 and N−B1 are infinite. By the Ne-requirements C is not ibT-equivalent

to any simple set, hence degibT(C) is nonsimple.

The construction will be in stages. B0,s, B1,s and Cs denote the finite approximations of

B0, B1 and C, respectively, after stage s. We define the length of agreement of requirement Je

(e = 〈e0, e1, e2〉) at stage s by

ls(Je) = max({x < s : (∀y < x)(B0,s(y) = Φ̂
We2,s
e0,s (y) and B1,s(y) = Φ̂

We2,s
e1,s)}).

Similarly, we define the length of agreement of requirement Ne (e = 〈e0, e1, e2〉) at stage s by

ls(Ne) = max({x < s : (∀y < x)(We2,s(y) = Φ̂Cse0,s(y) and Cs(y) = Φ̂
We2,s
e1,s)}).

Note that, since Φ̂e0 and Φ̂e1 are ibT-functionals, the premise of a join requirement Je is

true, i.e. B0 = Φ̂
We2
e0 and B1 = Φ̂

We2
e1 , if and only if lim infs→∞ ls(Je) = lim sups→∞ ls(Je) =∞.

Mutatis mutandis, the same holds for nonsimplicity requirements Ne.

Before giving the formal construction we describe the ideas underlying the individual strate-

gies for the requirements and the conflicts between these strategies we have to overcome.

Bi ≤ibT C will hold by permitting, that is, whenever we enumerate a number x into Bi at

stage s+ 1, then we enumerate a number y ≤ x into Cs+1 − Cs.
The simplicity requirements Se will be satisfied by waiting until a suitable number x is

enumerated into We and then enumerating this number into B0 and B1. Our definition of

46

“suitable” will be such that almost every number x ∈We will be suitable at almost every stage.

Hence we will eventually find a stage such that Se can be satisfied.

The nonsimplicity requirements N〈e0,e1,e2〉 are satisfied as follows. We try to enumerate an

infinite c.e. set V of numbers x which we keep out of C. If V ∩We2 = ∅, then V ⊆ N −We2 ,

witnessing that We2 is not simple. Otherwise there is some stage t and some v ∈ V such that

v ∈ We2,t. Now if the premise of N〈e0,e1,e2〉 is true, then there is a stage s ≥ t such that

ls(N〈e0,e1,e2〉) > v, in particular We2,s � v + 1 = Φ̂Cse0,s � v + 1 and Cs(v) = Φ̂
We2,s
e1,s (v). We

enumerate v into C at stage t + 1. To keep up the second part of the premise, C = Φ̂
We2
e1 , a

number x ≤ v has to enter We2 after stage s. In fact, since v ∈We2,s, it must hold that x < v.

Hence by preserving Cs � v we can destroy the first part of the premise, We2 = Φ̂Ce0 , and thus

satisfy the requirement. We say that v has become a diagonalisation witness for N〈e0,e1,e2〉.

To satisfy a join requirement J〈e0,e1,e2〉 the premise of which is true, we enumerate a number

x into C at a stage s+ 1 for the sake of a lower priority requirement only if we can enumerate

a number y ≥ x into B0,s+1 −B0,s or B1,s+1 −B1,s such that B0,s � y+ 1 = Φ̂
We2,s
e0,s � y+ 1 and

B1,s � y + 1 = Φ̂
We2,s
e1,s � y + 1 and [x+ 1, y] ⊆ We2,s. Then We2 has to react by enumerating a

number z ≤ y after stage s. Since [x+ 1, y] ⊆ We2,s, indeed z ≤ x, implying that C ≤ We2 by

permitting.

It might be tempting to just let y = x, thus making the condition [x+1, y] ⊆We2,s vacuous.

In general, however, this is not possible. Namely, consider the c.e. set V enumerated for the sake

of some nonsimplicity requirement N〈e′0,e′1,e′2〉. Moreover, consider some simplicity requirement

Sē. For each enumeration of a number v into V , the number v might later occur in Wē, causing

Sē to ask for an enumeration of v into B0 and B1. Since we do not know whether Wē = V and

V might be infinite, at some stage s we have to allow the enumeration of some such v (otherwise

Sē might not be satisfied). But now it happens that v enters We′2
at a stage t > s. Following

the strategy for the nonsimplicity requirements, we want to enumerate v into Ct+1 – but v is

already in B0,t and B1,t, hence we need to choose a number y > v to enumerate it into B0 or

B1.

This also shows that we need to take care about which numbers we enumerate into V for the

sake of some N〈e′0,e′1,e′2〉. We will enumerate a number v at a stage s+1 only if [v+1, v+n] ⊆We2

for each join requirement J〈e0,e1,e2〉 of higher priority than N〈e′0,e′1,e′2〉, where n is sufficiently

large. This permits us to enumerate n numbers from [v, v + n] into B0 and B1 in order to

satisfy up to n simplicity requirements while we still have one number left to enumerate into

B0 or B1 in order to satisfy the join requirements. By letting the number n grow each time we

enumerate any number into any set V , we can thus make sure that every simplicity requirement

is eventually allowed to enumerate every number it wishes to enumerate.

This leaves us with the task to create situations where suitable numbers v as above exist,

i.e. numbers v with [v+ 1, v+n] ⊆We2,s for each join requirement J〈e0,e1,e2〉 from a finite set R

or requirements with true premise. We say that [v + 1, v + n] is R-safe at stage s in this case.

To obtain a new suitable v for N〈e′0,e′1,e′2〉, we assign a finite sufficiently long interval I to

47

3. Joins and Meets

N〈e′0,e′1,e′2〉. Then we enumerate the elements b of I one by one in decreasing order alternately

into B0 and B1, always accompanied by an enumeration of the largest possible number c ≤ b

into C (to satisfy B0, B1 ≤ibT C). We only do this at stages s + 1 such that ls(Je) > max(I)

for each Je ∈ R, thus ensuring that for i = 0 or i = 1

Φ̂
We2,s
ei,s (b) = Bi,s(b) 6= Bi(b) = Φ̂

We2
ei (b),

and hence We2,s � b+ 1 6= We2 � b+ 1, since Φ̂ei is an ibT-functional. If s0 + 1 < s1 + 1 < . . .

is the sequence of stages at which we conduct these enumerations, bm is the number from

I enumerated into B0 or B1 at stage sm + 1, and cm is the number enumerated into C at

stage sm + 1 then in fact for each m a new number zm ≤ bm has to enter We2 at some stage

s ∈ [sm + 1, sm+1]. If zm is always the maximum number possible, which is just cm, then for

sufficiently large m we obtain that |[cm, bm]| ≥ n− 1 and [cm, bm] is R-safe at stage sm and can

set v = cm−1. On the other hand, if zm < cm, then at stage sm+1 + 1 we restart the algorithm

with the interval I ∩ [0, cm − 1] instead of I. We will see that if we choose I sufficiently large,

after finitely many restarts due to lack of space the number zm will always be maximal.

While we are creating such a suitable v we say that the interval I is being prepared by

N〈e′0,e′1,e′2〉.
Once we are finished preparing I, we can allow some simplicity requirements to enumerate a

number x from [v, v+n] intoB0 orB1. Of course, to satisfyB0, B1 ≤ibT C, we wish to enumerate

a number y ≤ x into C at the same time. We will reserve a finite part [min(I),min(I) + n]

purely for this purpose, and we will use the interval J = I − [min(I),min(I) +n] for the actual

preparation strategy.

Since we cannot compute the premises of which join requirements are true, the actual

construction is a tree construction, using the tree T = {0, 1}∗, where a node of length n

corresponds to a guess about which of the first n join requirements are true. The definition of

α-stages and α-expansionary stages for a node α ∈ T and the definition of δs are the same as

in Theorem 3.20.

3.6.1 The Algorithm

Stage 0: Let B0,0 = B1,0 = C0 = ∅ and Vγ,0 = ∅ for each node γ. No node has an interval or a

diagonalisation witness assigned or is preparing any interval.

Stage s + 1: We say that a node α of even length |α| = 2〈e0, e1, e2〉 requires attention at

stage s+ 1, if α v δs, α has no diagonalisation witness assigned and there exists some interval

In assigned to α at stage s and numbers v, d ∈ Jn such that

(1.1) v ∈ Vα,s ∩We2,s ,

(1.2) v /∈ Cs,

(1.3) ls(N〈e0,e1,e2〉) > v ,

48

(1.4) v is smaller than min(Im) for each interval Im some node β v α is preparing at the end

of stage s,

(1.5) v ≤ d ≤ v + n,

(1.6) d /∈ B0,s ∪B1,s,

(1.7) [v + 1, d] is {Je′ : α(e′) = 0}-safe at stage s

We say that a node α of odd length |α| = 2e+ 1 requires attention at stage s+ 1, if α v δs,
Bi,s ∩We,s = ∅ for i = 0 or i = 1 and there exist numbers x and y such that y ≤ x and

(2.1) x ∈We,s

(2.2) x < ls(Je′) for each node β with β0 v α and |β| = e′

(2.3) y > max(In) for all intervals In assigned to nodes α′ <L α up to stage s and for all

intervals In such that some α′ < α has a diagonalisation witness d ∈ In assigned at the

end of stage s

(2.4) y /∈ (B0,s ∩B1,s) ∪ Cs

(2.5) • if x ∈ In for some interval In defined up to stage s, then e < n − 1, and if In is

assigned to some node γ v α at the end of stage s, then In ∩ Vγ,s 6= ∅

• if x ∈ Jn for some interval Jn defined up to stage s, then y ∈ In − Jn

• if x /∈ Jn for any interval Jn defined up to stage s, then y = x.

If some node requires attention, let α be the least such node and say that α is active at

stage s+ 1.

If |α| = 2〈e0, e1, e2〉, let In be the least α-interval such that v and d satisfying (1.1)-(1.7)

exist, let v ∈ In be the least number such that d satisfying (1.5)-(1.7) exists and let d ∈ In be

the least number satisfying (1.5)-(1.7). Enumerate v into Cs+1 and enumerate d into B0,s+1 and

B1,s+1. Assign v as diagonalisation witness to α and say that α is not preparing any interval

at stage s+ 1 any more.

If |α| = 2e + 1, let x be the least number such that there exists y satisfying (2.1)-(2.5);

enumerate x into B0,s+1 and B1,s+1 and enumerate the greatest number y ≤ x satisfying (2.4)

and (2.5) into B0,s+1, B1,s+1 and Cs+1.

In either case, initialise all nodes α′ > α, i.e. cancel all assignments of intervals or diagonal-

isation witnesses to such nodes, say that they are not preparing any intervals any longer, and

set Vα′,s+1 = ∅. If no node requires attention at stage s+ 1, initialise all nodes α′ > δs.

For all nodes α′ < α (if α is active at stage s + 1) or for all nodes α′ v δs (if no node is

active at stage s+ 1) of even length do the following in order of priority:

49

3. Joins and Meets

(a) If α′ has no diagonalisation witness assigned and is not preparing any interval at the end

of stage s, then assign a new interval to α′ as follows. Let k = |{e′ < |α| : α(e′) = 0}| and

let x be the least number that is greater than k, greater than all numbers enumerated into

B0, B1 or C up to this point, greater than s and greater than max(In) for any interval In

already defined. Let m be the least number greater than s such that Im is not yet defined

and set

Im = [x, x+m+ (x+m) · (k + 1) · 2m],

assign Im to α′ and say that Im is an α′-interval and that α′ is preparing Im at stage s+ 1.

Let

Jm = [min(Im) +m,max(Im)] = [x+m,x+m+ (x+m) · (k + 1) · 2m].

(b) If α′ has no diagonalisation witness assigned and is preparing some interval In at the end

of stage s and there is a number c ∈ Jn such that

In ∩ (B0,s ∪B1,s) ⊆ In ∩ Cs = [c+ 1,max(In)], (23)

ls(Je′) > max(In) for each e′ with α′(e′) = 0, and for

b = max({y ∈ In : [c+ 1, y − 1] ∩ (B0,s ∪B1,s) = ∅, y /∈ B0,s ∩B1,s and

[c+ 1, y] is {Je′ : α′(e′) = 0}-safe at stage s})
(24)

it holds that b ≥ c + n, then enumerate c into Vα′,s+1 and say that α′ is not preparing In

any more at stage s+ 1 (note that such b necessarily exists and that b ≥ c, because y = c

satisfies the conditions above).

(c) If the conditions from (b) hold, but b < c+ n, then enumerate c into Cs+1; additionally, if

b /∈ B0,s, enumerate b into B0,s+1; otherwise enumerate b into B1,s+1.

The assignment of intervals and diagonalisation witnesses and the status of intervals being

prepared by nodes, unless mentioned otherwise in the algorithm so far, remains the same at

stage s+ 1 as after stage s.

3.6.2 Verification.

Lemma 3.28. It holds that B0 ≤ibT C and B1 ≤ibT C.

Proof. This holds by permitting since whenever some number x is enumerated into B0 or B1

at stage s+ 1, then some y ≤ x is enumerated into Cs+1 − Cs.

The true path TP of the construction is defined by TP(e) = 0 if the hypothesis of Je,

B0 = Φ̂
We2
e0 and B1 = Φ̂

We2
e1 , (25)

50

is true (where e = 〈e0, e1, e2〉), and TP(e) = 1 otherwise.

Lemma 3.29 (True Path Lemma). It holds that TP = lim infs→∞ δs, that is, if α ∈ T , then

α < TP if and only if α v δs for infinitely many s and there are only finitely many s such that

δs <L α.

Proof. As in Theorem 3.20.

Lemma 3.30. Every node α < TP is initialised at most finitely often and is active at most

finitely often. Moreover, if α with |α| = 2e is active at some stage s > s0, where s0 is the least

stage such that α is not initialised at any stage s > s0, then Ne is satisfied.

Proof. The proof is by induction. Assume that the claim is true for all α′ < α, and let s0 be

the least stage such that no α′ < α is active at any stage s > s0 and such that δs ≥ α for all

s ≥ s0. Such a stage exists by the inductive hypothesis and by the True Path Lemma. Then

no α′ < α is active and s0 is the least stage such that α is not initialised at any stage s > s0.

If |α| = 2e+ 1 for some e, then α can be active at most once: If α is active at stage s+ 1,

then some x ∈We is enumerated into B0,s+1 and B1,s+1, whence Bi,s′ ∩We,s′ 6= ∅ for i ∈ {0, 1}
and for all s′ > s and α never requires attention after stage s+ 1.

It remains to consider the case that |α| = 2 〈e0, e1, e2〉 (e0, e1, e2 ∈ N). If We2 6= Φ̂Ce0 or

C 6= Φ̂
We2
e1 , then N〈e0,e1,e2〉 is trivially satisfied and {ls(N〈e0,e1,e2〉) : s ≥ 0} is bounded. In this

case, there are only finitely many v satisfying (1.3) for any s; since each time that α is active

some such v is enumerated into C, and hence does not satisfy (1.2) at any later stages, we see

that α can be active at most finitely often.

Now assume that

We2 = Φ̂Ce0 and C = Φ̂
We2
e1 . (26)

If α is not active at any stage s > s0, then the claim is proven. For a contradiction assume

that α is active at some stage s+ 1 > s0. Then a number v from some α-interval In satisfying

(1.1)-(1.5) is enumerated into C at stage s+ 1. By equation (26), (1.2) and (1.3) it holds that

Φ̂
We2
e1 (v) = C(v) = Cs+1(v) = 1 6= 0 = Cs(v) = Φ̂

We2,s
e1,s (v).

Since Φ̂e1 is an ibT-functional, this implies that there is some x ≤ v such that x ∈We2 −We2,s.

Indeed, since v ∈We2,s by (1.1), x < v, hence We2 � v 6= We2,s � v. It now suffices to show that

C � v = Cs � v, because then, by (1.3) and the fact hat Φ̂e0 is an ibT-functional,

Φ̂Ce0 � v = Φ̂Cse0,s � v = We2,s � v 6= We2 � v,

contradicting equation (26).

51

3. Joins and Meets

For a contradiction assume that some number y < v is enumerated into C at a stage

t + 1 ≥ s + 1. Let α′ be the node causing this enumeration. Then α′ v δt. Since α ≤ δt for

t ≥ s0, it follows that α′ 6<L α.

Moreover, |α′| must be even: Otherwise α′ were active at stage t + 1. If α′ < α, then α

were initialised at stage t+ 1 ≥ s+ 1 > s0, contradicting the choice of s0. On the other hand,

if α < α′, then by (2.3) α′ enumerates only numbers greater than max(In) ≥ v into C at stage

t + 1 (note that α got the diagonalisation witness v ∈ In at stage s + 1, which is permanent

since α is never initialised after stage s0.)

Since y is enumerated by a node of even length, it follows that y must be an element of

some interval In′ assigned to α′ at stage t. If α′ > α, then In′ becomes assigned to α′ only at

or after stage s+ 1, because otherwise, by initialisation of α′, the assignment of In′ to α′ were

permanently cancelled at stage s + 1 and In′ would not be assigned to α′ at stage t. Hence

y ≥ min(In′) > max(In) ≥ v, contradicting y < v. Consequently, α′ v α. Now if In′ becomes

assigned to α′ only at or after stage s+ 1, we arrive at the same contradiction as above. Hence

In′ was assigned to α′ before stage s+ 1, and by min(In′) ≤ y < v and (1.4) α′ is not preparing

In′ at stage s any more. But this means that y ∈ In′ can only be enumerated into C at stage

t+ 1 > s by α′ being active whence α is initialised at stage t+ 1 – a contradiction to the choice

of s0.

Lemma 3.31. Let In be an α-interval for some α < TP. Then α is preparing In at only

finitely many stages.

Proof. Let s0 + 1 be the stage at which In becomes assigned to α. If α is ever initialised after

stage s0, then the claim is certainly true. Hence assume that α is not initialised after stage

s0. For a contradiction assume that α is preparing In at infinitely many stages. Then α is

preparing In at all stages s ≥ s0 + 1 and In ∩Vα,s = ∅ for all s ≥ 0. Let s1 + 1 < . . . < s|Jn|+ 1

be the first |Jn| stages s+ 1 after stage s0 + 1 for which s is an α-stage and ls(Je′) > max(In)

for all e′ < |α| with α(e′) = 0. These stages exist since α < TP and by the True Path Lemma.

Since In ∩ Vα,s = ∅ for every s, no node α′ enumerates any numbers from In into B0, B1 or

C by being active after stage s0 + 1; indeed, for α′ < α this holds by the assumption that α is

not initialised after stage s0, for nodes α′ of even length it holds by (1.1), for nodes α′ >L α of

odd length it holds by (2.3), and for nodes α′ w α of odd length it holds by (2.5). It follows

that after stage s0 numbers from In are enumerated into B0, B1 or C only by α due to the

instruction (c) of the algorithm. In particular, no enumeration of numbers from In into B0, B1

or C can take place at any stage s + 1 with sm + 1 < s + 1 ≤ sm+1 for m ∈ {0, . . . , |Jn| − 1},
that is,

In ∩ Csm+1 = In ∩ Csm+1
and In ∩Bi,sm+1 = In ∩Bi,sm+1

for i ∈ {0, 1}. (27)

52

We claim that

In ∩ (B0,sm ∪B1,sm) ⊆ In ∩ Csm = (max(In)−m+ 1,max(In)] (28)

and cm := max(In)−m+ 1 is enumerated into C at stage sm + 1 for m ∈ {1, . . . , |Jn|}.

To prove this, first notice that In ∩ (B0,s0+1 ∪ B1,s0+1 ∪ Cs0+1) = ∅ by the definition of In

at stage s0 + 1. By equation (27), this implies In ∩ (B0,s1 ∪B1,s1 ∪ Cs1) = ∅, so equation (28)

is true for m = 1.

Let (28) be true for some m ∈ {1, . . . , |Jn|}. Then c = max(In) − m + 1 is in Jn (since

max(In)−m+ 1 ≥ max(In)− |Jn|+ 1 = max(Jn)− |Jn|+ 1 = min(Jn)) and satisfies (23) for

s = sm. It follows that c is enumerated into Csm+1 according to (c) and is the only number

from In to be enumerated into C at stage sm+ 1. If m < |Jn|, then by equations (27) and (28),

In ∩ Csm+1 = In ∩ Csm+1 = (In ∩ Csm) ∪ {c} = (max(In)− (m+ 1) + 1,max(In)].

Additionally, if some number b ∈ In is enumerated into B0 or B1 at stage sm+1, then b ≥ c,
and hence b ∈ [c,max(In)] ⊆ Csm+1. Using equations (27) and (28) again, for m < |Jn| we

conclude that In ∩ (B0,sm+1 ∪B1,sm+1) = In ∩ (B0,sm+1 ∪B1,sm+1) ⊆ (In ∩ (B0,sm ∪B1,sm)) ∪
[c,max(In)] = In ∩ Csm+1 . Hence equation (28) is true for m+ 1 in place of m.

Let e′ = 〈e′0, e′1, e′2〉 < |α| such that α(e′) = 0 and let 1 ≤ m ≤ |Jn| − 1. Since cm is

enumerated into C at stage sm+1 via (c), by the construction there is also some number bm ∈ In
enumerated into Bi,sm+1−Bi,sm for i = 0 or i = 1. Since lsm+1

(Je′) > lsm(Je′) > max(In) ≥ bm,

it holds that

Φ̂
We′2,sm+1

e′i,sm+1
(bm) = Bi,sm+1

(bm) = 1 6= 0 = Bi,sm(bm) = Φ̂
We′2,sm
e′i,sm

(bm).

Since Φ̂e′i is an ibT-functional, this means that there must be some number zm ≤ bm with

zm ∈ We′2,sm+1
−We′2,sm

. But by (24), [cm + 1, bm] is already {Je′}-safe at stage sm, that is

[cm + 1, bm] ⊆We′2,sm
. Hence zm ≤ cm and it follows that (using cm+1 = cm − 1)

|{x ≤ cm+1 : x /∈We′2,sm+1
}| ≤ |{x ≤ cm : x /∈We′2,sm+1

}| (29)

≤ |{x ≤ cm : x /∈We′2,sm
}| − 1.

Letting {e′ < |α| : α(e′) = 0} = {e1, . . . , ek}, set π(ej) = e′2 if ej = 〈e′0, e′1, e′2〉 (j ∈
{1, . . . , k}). Summing up, we conclude that

k∑
j=1

|{x ≤ cm+1 : x /∈Wπ(ej),sm+1
}| ≤

k∑
j=1

|{x ≤ cm : x /∈Wπ(ej),sm}| − k. (30)

53

3. Joins and Meets

Furthermore, if 1 ≤ p < p+ 2n ≤ |Jn|, then by induction

k∑
j=1

|{x ≤ cp+2n : x /∈Wπ(ej),sp+2n
}| ≤

k∑
j=1

|{x ≤ cp : x /∈Wπ(ej),sp}| − 2n · k. (31)

We will show that this inequality is strict. Indeed, if equality would hold in (31), then for

p ≤ m < p + 2n equality would hold in (30), too, which in turn implies that for all m with

p ≤ m < p+2n and all j ∈ {1, . . . , k} equality holds in (29) with π(ej) in place of e′2. The latter

is equivalent to cm ∈Wπ(ej),sm+1
for all such m and j, that is, {cm} is {Jej : 1 ≤ j ≤ k}-safe at

stage sm+1. By induction, since cm+1 = cm − 1,

[cm, cp] is {Je′ : α(e′) = 0}-safe at stage sm+1. (32)

It now follows by another inductive argument that, for all m ∈ {p, . . . , p + 2n}, if m ∈
{p+ 2r − 1, p+ 2r}, then bm − cm ≥ r, and moreover, if m = p+ 2r, then cm + r /∈ B1,sm+1:

For m = p this holds because bm ≥ cm. If bm > cm, then still cm /∈ B0,sm+1 ∪ B1,sm+1;

otherwise, according to the instructions in (c), cm is enumerated into B0, but not into B1 at

stage sm + 1.

For the inductive step, let the claim be true for m. First consider the case that m = p+ 2r.

Then bm ≥ cm+r by the inductive hypothesis. Hence [min(I), cm+r−1]∩ (B0,sm ∪B1,sm) = ∅
by (23) and (24). Since bm is the only number from In enumerated into B0 or B1 at any stage

s with sm + 1 ≤ s ≤ sm+1, it still holds that [min(I), cm + r − 1] ∩ (B0,sm+1 ∪ B1,sm+1) =

∅. Moreover, still by the inductive hypothesis, cm + r /∈ (In ∩ B1,sm+1) = (In ∩ B1,sm+1).

Since cm + r ≤ cm + 2r = cm + (m − p) = cm−(m−p) = cp, by equation (32) we know that

[cm+1 + 1, cm + r] = [cm, cm + r] is {Je′ : α(e′) = 0}-safe at stage sm+1. Hence y = cm + r

satisfies the conditions from equation (24) at stage sm+1 + 1, whence bm+1 ≥ cm + r and

bm+1 − cm+1 ≥ cm + r − cm+1 = cm + r − (cm − 1) = r + 1 = r′, where m+ 1 = p+ 2r′ − 1.

Similarly, if m = p+ 2r− 1, then again bm ≥ cm + r by the inductive hypothesis and hence

[min(I), cm + r − 1] ∩ (B0,sm ∪ B1,sm) = ∅ by (23) and (24). Since bm is the only number

from In enumerated into B0 or B1 at any stage s with sm + 1 ≤ s ≤ sm+1, it still holds that

[min(I), cm + r− 1]∩ (B0,sm+1
∪B1,sm+1

) = ∅. Since cm + r− 1 ≤ cm + 2r− 1 = cm + (m− p) =

cm−(m−p) = cp, by (32) we know that [cm+1 +1, cm+r−1] = [cm, cm+r−1] is {Je′ : α(e′) = 0}-
safe at stage sm+1. Hence y = cm + r − 1 satisfies the conditions from (24) at stage sm+1 + 1,

whence bm+1 ≥ cm + r− 1 and bm+1 − cm+1 ≥ cm + r− 1− cm+1 = cm + r− 1− (cm − 1) = r,

where m+1 = p+2r. Also, since cm+1 +r = cm+r−1 /∈ B0,sm+1
∪B1,sm+1

, if bm+1 6= cm+1 +r,

then cm+1 + r /∈ B1,sm+1+1; and if bm+1 = cm+1 + r, then bm+1 is enumerated only into B0 at

stage sm+1 + 1, hence again cm+1 + r /∈ B1,sm+1+1.

But now bp+2n−cp+2n = n, whence (b) applies to α at stage sp+2n+1 and Vα,sp+2n+1∩In 6= ∅,

54

a contradiction. This completes the proof that the inequality in equation (31) is strict, that is

k∑
j=1

|{x ≤ cp+2n : x /∈Wπ(ej),sp+2n
}| ≤

k∑
j=1

|{x ≤ cp : x /∈Wπ(ej),sp}| − 2n · k − 1.

Let pq = 1 + q · 2n for 0 ≤ q < (min(In) + n) · (k + 1). Then 1 ≤ pq and

pq + 2n ≤ 1 + (min(In) + n) · (k + 1) · 2n

= |[min(In) + n,min(In) + n+ (min(In) + n) · (k + 1) · 2n]|

= |Jn|.

Hence the above inequality applies to pq and since pq+1 = pq + 2n, by induction on q we get

k∑
j=1

|{x ≤ cpq+1
: x /∈Wπ(ej),spq+1

}| ≤
k∑
j=1

|{x ≤ cp0
: x /∈Wπ(ej),sp0

}|− (q+ 1) · (2n ·k)− (q+ 1).

In particular, for q = (min(In) + n) · (k + 1)− 1 this amounts to

k∑
j=1

|{x ≤ cpq+1
: x /∈Wπ(ej),spq+1

}|

≤
k∑
j=1

|{x ≤ cp0 : x /∈Wπ(ej),sp0
}| − (q + 1) · 2n · k − (min(In) + n) · (k + 1)

< k · (cp0
+ 1)− k · (q + 1) · 2n− k · (min(In) + n+ 1) [since k < min(In)]

= k · (c1 + 1− (q + 1) · 2n− (min(In) + n+ 1)).

Consequently, there is some j ∈ {1, . . . , k} such that

|{x ≤ cpq+1
: x /∈Wπ(ej),spq+1

}| < c1 + 1− (q + 1) · 2n− (min(In) + n+ 1)

= c1 − (min(In) + n) · (k + 1) · 2n− (min(In) + n)

= c1 − (min(In) + n+ (min(In) + n) · (k + 1) · 2n)

= max(In)−max(In)

= 0,

a contradiction. This proves the lemma.

Lemma 3.32. Every simplicity requirement Se is satisfied and B0 and B1 are simple.

Proof. Let α = TP � 2e+ 1 be the unique node of length 2e+ 1 on the true path. By the True

Path Lemma and by Lemma 3.30 there is a stage s0 such that α ≤ δs for all s ≥ s0 and no node

α′ < α is active at any stage s > s0. Then no node α′ <L α gets a new interval assigned at

55

3. Joins and Meets

any stage s+ 1 > s0 (because α′ 6v δs); moreover, a node α′ < α has a diagonalisation witness

v ∈ In assigned at stage s for some s > s0 and some n if and only if it has the diagonalisation

witness v assigned at stage s0 + 1.

Hence, if we let y0 be some number that is larger than max(In) for every interval In assigned

to any node up to stage s0, then for any y ≥ y0 and any s > s0, (2.3) is true. We may assume

that y0 = min(Im) for some interval Im.

If We is finite, then Se is trivially satisfied. For a contradiction assume that We is infinite

and Se not satisfied. Let x ∈ We be such that x ≥ y0 and x /∈ In for n ≤ e + 1. Further, let

s1 > s0 be a stage such that x ∈ We1,s1 . Since α < TP, by the definition of the true path and

by the True Path Lemma there is an α-stage s2 ≥ s1 such that ls2(Je′) > x for all e′ < |α| with

α(e′) = 0. Then (2.1) and (2.2) are true for any α-stage s ≥ s2.

If x ∈ In for some γ-interval In with γ v α, then γ < TP, and by Lemma 3.31, there must

be a least α-stage s3 ≥ s2 such that In is defined but not in preparation at stage s3. Then (b)

must have applied to In at some stage s ≤ s3 and Vα,s3 ∩ In 6= ∅, or γ was initialised since the

assignment of In and In is not assigned to γ at any stage s ≥ s3. In both cases, the first item

of (2.5) holds for s = s3 + 1. If x /∈ In for any γ-interval with γ v α, let s3 = s2; then the first

item of (2.5) trivially holds at stage s = s3.

We claim that α requires attention due to Case 2 at stage s3 +1, and hence, by the choice of

s0 is active and enumerates x into B0 and B1 at stage s3 +1. Then Se is satisfied, contradicting

the assumption.

First assume that x /∈ Jn for any interval Jn defined up to stage s3. Then (2.5) is true

for y = x and s = s3 and it remains to show that (2.4) is also true for these choices of s

and y. Since Se is not satisfied by our assumption and since y = x ∈ We, it follows that

y /∈ B0,s3 ∩ B1,s3 . On the other hand, y = x /∈ Cs follows from the fact that the only way for

a number outside of any interval Jm which is defined until stage s3 to be enumerated into C

until stage s3 is to be enumerated by some node of odd length being active; but in this case the

number is simultaneously enumerated into B0 and B1, contrary to what we just showed. Note

that y0 ≤ y ≤ x. Hence (2.1)-(2.5) are all satisified for y = x and s = s3, proving the claim.

Next consider the case that x ∈ Jn for some interval Jn (with n > e+ 1) defined up to stage

s3. We show that there is a number y ∈ In − Jn with y /∈ C. Let γ be the node In is assigned

to. As we just remarked, a number z ∈ In − Jn can be enumerated into C at some stage s+ 1

only by some node α′ of odd length |α′| = 2e′ + 1 being active at stage s+ 1. Since for each e′

only one node of length 2e′ + 1 is active, it is active at most once and enumerates only a single

number from In into C, there are at most n− 1 numbers from In enumerated into C by nodes

α′ with |α′| = 2e′ + 1 and e′ < n − 1. On the other hand, no node α′ with |α′| = 2e′ + 1 and

e′ ≥ n − 1 enumerates any y′ ∈ In into C by being active at any stage s + 1: Otherwise In

would have to be defined until stage s, because for intervals Im defined at or after stage s+ 1

it would hold that min(Im) > y′; furthermore, α′ would enumerate some x′ into B0 or B1 at

stage s + 1. Now by the second and third item of (2.5) it would follow that x′ ∈ Jn ⊆ In or

56

x′ = y′ ∈ In, and by the first item of (2.5) it would hold that e′ < n − 1, contradicting the

choice of e′.

This shows that at most n−1 numbers from In−Jn are enumerated into C by nodes of odd

length being active. Hence |{z ∈ In − Jn : z /∈ C}| ≥ |In − Jn| − (n− 1) = |[min(In),min(In) +

n− 1]| − (n− 1) = 1.

Let y ∈ In − Jn be such that y /∈ C. Note that y0 ≤ y, because y0 = min(Im), y0 ≤ x

and hence y0 ≤ min(In) ≤ y; hence (2.1), (2.2) and (2.3) are true for s = s3. Also note that

y ≤ x. As above, y /∈ B0 ∪ B1, because if s were minimal with y ∈ B0,s ∪ B1,s, then y would

be enumerated by some node of odd length being active at stage s, and by (2.5) y would be

enumerated into Cs as well. Hence (2.4) is true for y at every stage s and (2.5) is true for

s = s3, proving the claim in this case.

To show that B0 and B1 are simple it now suffices to show that N−Bi is infinite for i = 0

and i = 1. To see this, note that for every m such that Im gets defined during the construction

there exists a number ym ∈ Im such that ym /∈ B0∪B1. The proof is as shown above for m = n.

Since there are infinitely many intervals defined, the claim follows.

Lemma 3.33. Every nonsimplicity requirement N〈e0,e1,e2〉 (e0, e1, e2 ∈ N) is satisfied.

Proof. We only need to consider the case that We2 = Φ̂Ce0 and C = Φ̂
We2
e1 , because otherwise

N〈e0,e1,e2〉 is trivially satisfied.

Let α = TP � 2e be the unique node of length 2e on the true path, where e = 〈e0, e1, e2〉.
By Lemma 3.30 there is a least stage s0 such that α is never initialised at any stage s > s0;

and if α is active at any stage s > s0, then N〈e0,e1,e2〉 is satisfied.

It remains to consider the case that α is not active at any stage s > s0. Then α has no

diagonalisation witness at any stage s > s0. By Lemma 3.30 and by the True Path Lemma,

there are infinitely many stages s such that α < δs but no α′ v α is active at stage s+ 1. For

each such s (a) applies to α at stage s + 1 unless α is already preparing some interval In at

the end of stage s. But since by Lemma 3.31 each interval In assigned to α is being prepared

at only finitely many stages, (a) must apply to α infinitely often and α is preparing infinitely

many intervals during the construction. Moreover, after stage s0, since α is not initialised or

active, α only stops preparing some interval In if (b) applies to α and In, whence Vα ∩ In 6= ∅
for Vα =

⋃
s≥s0 Vα,s. It follows by Lemma 3.31 again that |Vα| =∞.

Since Vα is effectively enumerated during the construction, Vα is computably enumerable.

Hence to show that Ne is satisfied, i.e. We2 is not simple, it suffices to show that We2 ∩Vα = ∅.
For a contradiction assume that there is some v ∈ We2 ∩ Vα and let s1 > s0 be such that

v ∈ We2,s1 ∩ Vα,s1 , ls(Ne) > v for all s ≥ s1 and v < min(Im) for any interval Im some node

α′ < α is preparing at the end of any stage s ≥ s1. Such a stage exists by the assumption that

We2 = Φ̂Ce0 and C = Φ̂
We2
e1 and by Lemma 3.31. It holds that (1.1), (1.3) and (1.4) are true for

every s ≥ s1.

57

3. Joins and Meets

Note that v ∈ Jn for some α-interval In. Let t < s1 be the stage such that v ∈ Vα,t+1−Vα,t.
By the definition of Vα it holds that t + 1 ≥ s0. By (b) In is already defined at stage t and

v /∈ Ct+1. Then v is not enumerated into C by any node α′ of odd length, because such α′ does

not enumerate numbers from defined intervals Jm into C. Furthermore, v is not enumerated

into C by any node α′ 6= α of even length, because these nodes do not enumerate numbers from

defined α-intervals. Since α is not active after stage s0, v is not enumerated into C by α being

active. Finally, (b) and (c) do not apply to α and In after stage t+ 1 (since α stops preparing

In at stage t + 1), hence v is not enumerated into C by α due to (b) or (c). Altogether this

implies that v /∈ C, hence (1.2) is true for every stage s.

At stage t + 1, since b ≥ c + n = v + n for b and c defined according to equations (23)

and (24) (with t in place of s), it follows that [v, v+n− 1]∩ (B0,t ∪B1,t) = ∅. No number from

In is enumerated into B0 or B1 due to (a), (b) or (c) or due to any node of even length being

active after stage t. Since x ∈ Jn for every x ∈ [v, v + n], by (2.5) only nodes α′ of odd length

|α′| = 2e′+1 with e′ < n−1 can enumerate any number from [v, v+n] into B0 or B1. Moreover,

for every e′ there is at most one node of length 2e′+ 1 ever active and this node enumerates at

most one number from Jn into B0 ∪B1. Hence for each e′ < n− 1 there is at most one number

from [v, v + n− 1] enumerated into B0 or B1 during the construction. In particular, if s2 > s1

is an α-stage, then there is some d ∈ [v, v + n− 1] such that d /∈ B0,s2 ∪B1,s2 . Then (1.5) and

(1.6) are satisfied for s2 in place of s. Since [v + 1, v + n] was {Je′ : α(e′) = 0}-safe at stage t

and s2 > s1 > t, the same is true at stage s2, so (1.7) is satisfied. Hence α requires attention

and is active at stage s2 + 1, a contradiction.

Lemma 3.34. Every join requirement J〈e0,e1,e2〉 (e0, e1, e2 ∈ N) is satisfied.

Proof. If the premise of Je, where e = 〈e0, e1, e2〉, is false, then Je is trivially true. Hence we

may assume that B0 = Φ̂
We2
e0 and B1 = Φ̂

We2
e1 . Let β < TP be the unique node of length e on

the true path. By the definition of the true path, β0 < TP, too.

By Lemma 3.30 there is a stage s0 such that β0 is not initialised at any stage s ≥ s0.

To compute C(x) with oracle We2 � x + 1 for some x, compute a β0-stage s1 > max{s0, x}
such that ls1(Je) > x, ls1(Je) > max(In) if x ∈ In, no α v β0 is preparing any interval In

with max(In) < x at stage s1, and We2,s1 � x + 1 = We2 � x + 1. Such a stage exists by the

True Path Lemma, because the hypothesis of Je is true, and by Lemma 3.31. We claim that

Cs1(x) = C(x).

For a contradiction assume that x ∈ Cs+1 − Cs for some s ≥ s1.

If x is enumerated into C by some node α being active, then α ≥ β0, because otherwise β0

were initialised at stage s+ 1, contradicting the choice of s1 ≥ s0.

In fact, if |α| is even, then α w β0, because nodes to the right of β0 are initialised at stage

s1 + 1 and only assigned intervals In with min(In) ≥ s1 > x after stage s1, and because a

node α of even length only enumerates some number x into C at stage s + 1 by being active

if x is in an interval In assigned to α at stage s. Since α w β0, we know that β0 v δs, hence

58

ls(Je) > ls1(Je) > max(In). Since some d ∈ [x, x+ n] ⊆ In is enumerated into Bi,s+1 −Bi,s for

i = 0 and i = 1, it follows that

Φ̂
We2
ei (d) = Bi(d) = 1 6= 0 = Bi,s(d) = Φ̂

We2,s
ei,s (d). (33)

Since Φ̂ is an ibT-functional, this implies that We2,s � d + 1 6= We2 � d + 1. But x was

enumerated into Vα at some stage t + 1 ≤ s according to (b), whence [x + 1, x + n] was

{Je′ : α(e′) = 0}-safe at stage t. In particular, [x + 1, d] ⊆ [x + 1, x + n] ⊆ We2,t ⊆ We2,s.

Consequently We2,s � x+ 1 6= We2 � x+ 1, contradicting the choice of s1.

If |α| is odd and α enumerates x into C at stage s+ 1, then α enumerates some y ≤ x into

Bi,s+1 −Bi,s for i = 0 or i = 1. Then

Φ̂
We2
ei (y) = Bi(y) = 1 6= 0 = Bi,s1(y) = Φ̂

We2,s1
ei,s1 (y).

As above it follows that We2,s1 � x+ 1 6= We2 � x+ 1, contradicting the choice of s1.

Finally consider the case that x is enumerated into C due to (b). Then x ∈ In for some

α-interval In. Again, α w β0, because nodes to the right of β0 are initialised at stage s1 + 1

and only prepare intervals with numbers greater than x after stage s1, nodes below β0 are

not preparing any intervals containing x after stage s1 and nodes to the left of β0 are not on

δs. Since ls(Je) > max(In) and since some b ∈ In is enumerated into Bi,s+1 − Bi,s, where

[x + 1, b] is {Je′ : α(e′) = 0}-safe at stage s, we conclude that equation (33) holds for b in

place of d and that We2,s � b + 1 6= We2 � b + 1. But since [x + 1, b] ⊆ We2 , it must hold that

We2,s � x+ 1 6= We2 � x+ 1, contradicting the choice of s1 again.

59

3. Joins and Meets

60

Chapter 4

Lattice embeddings into RibT and

Rcl

While in Chapter 3 we considered existence theorems for joins and meets separately from each

other, bringing together both, the present chapter is devoted to the study of lattice embeddings.

We give an overview over the known results concerning such embeddings into RibT and Rcl and

prove some new embedding theorems.

4.1 Lattice embeddings

While the common degree structures Rr are not lattices and usually not even lower semi-lattices,

there can be subsets of Rr which are closed under joins and meets and are lattices. The question

whether a certain lattice (P,≤) can be found in Rr can be formalised by the concept of lattice

embeddings.

Definition 4.1. Let P = (P,≤P) be a partial order. An embedding of P into a degree structure

Rr (r ∈ {ibT, cl,wtt,T}) is a function h : P → Rr such that h is one-one and for all a, b ∈ P
it holds that a ≤P b if and only if h(a) ≤ h(b).

An embedding h of P into Rr preserves joins and meets if for all a, b, c ∈ P it holds that

a ∨ b = c⇒ h(a) ∨ h(b) = h(c)

and

a ∧ b = c⇒ h(a) ∧ h(b) = h(c).

If P is a lattice, then an embedding h of P which preserves joins and meets is called a lattice

embedding.

61

4. Lattice embeddings into RibT and Rcl

If P has a least element a (with respect to ≤P), then an embedding h of P into Rr preserves

the least element if h(a) = 0.

P is called embeddable into Rr (preserving joins and meets or the least element, respectively)

if there exist an embedding of P into Rr (preserving joins and meets or the least element).

Remark 4.2. Let L′ be the language consisting of the binary relation symbol ≤ and the ternary

relation symbols ∨ and ∧. If P′ and R′r are the expansions of P and Rr, respectively, to L′-

structures, then an embedding of P into Rr preserving joins and meets is just an embedding of

P′ into R′r in the usual sense of mathematical logic.

Similarly, an embedding preserving the least element is just an embedding in the usual sense

if we consider the expansions of the structures to L0-structures, where L0 is the language of

orders with an additional constant symbol 0.

4.2 Embedding linear orders

The most simple lattices are linear orders P = (P,≤P), in which joins and meets become trivial,

because a ∨ b = b and a ∧ b = a for a ≤P b.

Lemma 4.3. Every finite linear order is embeddable into Rr for r ∈ {T,wtt, cl, ibT} preserving

the least element.

Proof. Let P = ({a0, . . . , an},≤P) with a0 < . . . < an be a linear order. Let An be a c.e.

noncomputable set. By downward induction, using Sack’s Splitting Theorem [Sack 63] define

c.e. noncomputable sets An−1, . . . , A1 and Bn−1, . . . , B1 such that Ak−1 ∩ Bk−1 = ∅, Ak =

Ak−1∪Bk−1 and Ak 6≤T Ak−1 (hence Ak 6≤r Ak−1) for 2 ≤ k ≤ n−1. Let A0 = ∅. By Lemma 3.4

and since ibT-reducibility implies r-reducibility, it holds that A0 <r . . . <r An. Hence h(ak) =

degr(Ak) defines an embedding of P into Rr which preserves the least element.

It will follow from Theorem 4.8 that not only every finite but indeed every countable linear

order is embeddable into Rr for r ∈ {T,wtt, cl, ibT}.

4.3 Embedding distributive lattices

Next we consider the so-called diamond.

Definition 4.4. The diamond (lattice) is the finite partial order D = ({a, b0, b1, c},≤D) such

that a <D bi <D c for i ∈ {0, 1}, b0 ∧ b1 = a and b0 ∨ b1 = c.

It is obvious that the diamond is indeed a lattice, that up to isomorphism it is the only

lattice with exactly four elements in its domain which is not a linear order, and that every

lattice with less than four elements is already a linear order.

62

Lemma 4.5. There is a lattice embedding of the diamond into Rr preserving the least element,

for r ∈ {T,wtt, cl, ibT}.

Proof. By the minimal pair strategy which we described in Theorem 3.9, Lachlan [Lach 66]

and independently Yates [Yate 66] constructed c.e. sets B0 ⊆ 2N and B1 ⊆ 2N + 1 such that

(degT(B0), degT(B1)) is a minimal pair in RT. Since r-reducibility implies Turing reducibility,

it follows that the pair (degr(B0), degr(B1)) is a minimal pair in Rr. Moreover, by disjointness

of B0 and B1 and by Lemma 3.4,

degr(B0) ∨ degr(B1) = degr(B0 ∪B1) (34)

for r ∈ {ibT, cl}. For r ∈ {wtt,T}, equation (34) directly follows from the fact that B0∪B1 ≡r
B0 ⊕B1 and degr(B0 ⊕B1) = degr(B0) ∨ degr(B1).

Hence h(a) = 0, h(b0) = degr(B0), h(b1) = degr(B1) and h(c) = degr(B0 ∪ B1) defines an

embedding of D into Rr preserving the least element.

We now turn to a whole class of lattices.

Definition 4.6. Let P = (P,≤P) be a lattice.

P is called distributive if for all a, b, c ∈ P it holds that

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

and

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

Otherwise P is called nondistributive.

P is called a Boolean algebra if P is distributive, P has a least element 0 and greatest element

1 and for every a ∈ P there exists some ā ∈ P such that

a ∨ ā = 1 and a ∧ ā = 0.

P is called atomless if P has a least element 0 and the set P−{0} does not have any minimal

elements.

Lemma 4.7 (Folklore). Up to isomorphism, there exists a unique countably infinite atomless

Boolean algebra B = (B,≤B). Moreover, for every countable distributive lattice L there is a

lattice embedding of L into B. If L has a least element, then the lattice embedding can be chosen

to preserve the least element.

Proof. Let the elements of B be all finite unions of intervals [a, b) ⊆ [0, 1) with a, b ∈ Q, and

let ≤B be the subset relation restricted to these sets. It is straightforward to verify that this

defines a countably infinite atomless Boolean algebra B, where the join of two sets in B is just

their union and the meet of two sets in B is their intersection.

63

4. Lattice embeddings into RibT and Rcl

The fact that B is unique with the above conditions is shown by means of a back-and-forth

construction. For details and for the lattice embedding of countable distributive lattices into

B, see for example [Verm 10].

Ambos-Spies observed that the proof of the following theorem, which was given long before

the notions of cl- and ibT-reducibility came up, holds for these reducibilities, too.

Theorem 4.8 (Lachlan, Lerman, Thomason [Thom 71]). There is a lattice embedding of the

Boolean algebra B into Rr preserving the least element, for r ∈ {T,wtt, cl, ibT}.

Proof (idea). By a computable bijection ι : Q ∩ [0, 1) → N we can define a countably infinite

atomess Boolean algebra B′ = (B′,≤B′), where the elements of B′ are the sets of the form

VM = {ι(q) : q ∈ M} with M ∈ B and ≤B′ is the subset relation. By Lemma 4.7 B′ is

isomorphic to B (the isomorphism is given by M 7→ VM) and it suffices to embed B′ into Rr.

Given a uniformly computable sequence (Vn)n∈N of sets such that {Vn : n ∈ N} = B′,

Thomason constructs c.e. sets Ai for i ∈ N and defines AV = {〈i, x〉 : x ∈ Ai and i ∈ V }. Then

he sets h(V) = degr(AV) for V ∈ B′.
If V ⊆ W , then 〈i, x〉 ∈ AV if and only if i ∈ V and 〈i, x〉 ∈ AW ; hence AV ≤ibT AW

and a fortiori AV ≤r AW , that is h(V) ≤ h(W). In particular, h(V1), h(V2) ≤ h(V1 ∪ V2)

for V1, V2 ∈ B′. Moreover, AV1∪V2 = AV1 ∪ AV2 . It follows that AV1∪V2 ≤ibT W whenever

AV1 , AV2 ≤ibT W . Hence degibT(AV1)∨degibT(AV2) = degibT(AV1∪V2). By Lemmas 3.2 and 3.19

it follows that

h(V1) ∨ h(V2) = degr(AV1
) ∨ degr(AV2

) = degr(AV1∪V2
) = h(V1 ∪ V2).

It also follows that h(V1 ∩ V2) ≤ h(V1), h(V2). To prove that h is a lattice embedding, for

r = T it now suffices to satisfy the requirements

Di,j : N−Ai 6= Wj

and

Mn0,n1,e0,e1,e2 : Φ
AVn0
e0 = Φ

AVn1
e1 = We2 ⇒We2 ≤T AVn1∩Vn2

.

For r ∈ {wtt, cl, ibT}, we additonally need to ensure that if the premise of Nn0,n1,e0,e1,e2

is true, then the use of the oracle computation of We2(x) with oracle AVn1
∩Vn2

is bounded by

max({u
AVn0
e0 (x), u

AVn1
e1 (x)}).

The sets Ai satisfying these requirements can be enumerated via a standard tree construc-

tion, where a requirement Di,j is satisfied by chosing a diagonalisation candiate x, waiting until

x is enumerated into Wj (if ever) and then enumerating x into Ai. A requirement Mn0,n1,e0,e1,e2

is satisfied as in the proof of Theorem 3.9. Of course, since we do not construct AVn0
and AVn1

directly, it can now happen that we wish to enumerate a number x into Ai at some stage

s + 1, where i ∈ Vn0
∩ Vn1

. In this case 〈i, x〉 enters both AVn0
and AVn1

(which was not

64

possible in the construction for Theorem 3.9), but also AVn0∩Vn1
. This is why we obtain merely

We2 ≤r AVn0∩Vn1
instead of We2 being computable.

Corollary 4.9. For r ∈ {T,wtt, cl, ibT}, every countable distributive lattice is embeddable into

Rr preserving joins and meets and the least element.

Proof. This is a direct consequence of Lemma 4.7 and Theorem 4.8.

4.4 Embedding nondistributive lattices

Turning to nondistributive lattices, the situation becomes more complicated. Since every lattice

with less than five elements is a linear order or (up to isomorphism) the diamond, which

is distributive, the smallest nondistributive lattices can have five elements in their domain.

Indeed, there are exactly two such nondistributive lattices, called the N5 and the M3
1.

Definition 4.10. The N5 is the finite partial ordering N5 = ({a, b0, b1, c, d},≤N5
) such that

(N1) a <N5
b0 <N5

b1 <N5
d,

(N2) a <N5 c <N5 d,

(N3) b0 ∨ c = b1 ∨ c = d, and

(N4) b0 ∧ c = b1 ∧ c = a.

Definition 4.11. Let n ≥ 2 with n ∈ N or n = ω. The Mn is the partial ordering Mn =

({a, c} ∪ {bi : 0 ≤ i < n},≤Mn
) such that

(M1) bi and bj are incomparable for i, j < n with i 6= j,

(M2) bi ∨ bj = c for i, j < n with i 6= j, and

(M3) bi ∧ bj = a for i, j < n with i 6= j.

It is easy to see that the N5 and the Mn are uniquely defined by these conditions and that

they are lattices. Notice that the M2 is just the diamond lattice. The following diagrams

illustrate what the M3 and the N5 look like.

a
•

b0• b2•b1•

c•

a
•

c •
b0•

b1•

d•

1The notation found in the literature is not consistent here; elsewhere the M3 is called the M5[Birk 79] or
the 1 − 3 − 1 [Wein 88].

65

4. Lattice embeddings into RibT and Rcl

The N5 is nondistributive, because

b1 ∧ (b0 ∨ c) = b1 ∧ d = b1 6= b0 = b0 ∨ a = (b1 ∧ b0) ∨ (b1 ∧ c).

The Mn is nondistributive for n ≥ 3, because

b0 ∧ (b1 ∨ b2) = b0 ∧ c = b0 6= a = a ∨ a = (b0 ∧ b1) ∨ (b0 ∧ b2).

The two lattices N5 and M3 are of particular interest to the study of lattice embeddings

because they are not only the smallest nondistributive lattices with respect to the size of their

domains, but also the only minimal elements of the class of all nondistributive lattices (modulo

isomorphisms) ordered by lattice embeddability.

Theorem 4.12. [Dede 00, Birk 79] A lattice L is nondistributive if and only if there is a lattice

embedding of the N5 or the M3 into L.

It was shown by Lachlan [Lach 72] that there are lattice embeddings preserving the least

element of both the N5 and the M3 into RT. This led to the question whether every finite lattice

could be embedded into RT by a lattice embedding. Lachlan and Soare [Lach 80] answered

this question to the negative by proving that the 8-element-lattice S8, consisting of a copy of

the diamond on top of a copy of the M3 (see Definition 4.54), cannot be embedded into RT

preserving joins and meets.

While some sufficient conditions for finite lattices to be or be not lattice embeddable into RT

have been found (see [Lemp 06],[Ambo 86] or [Ambo 89] for examples), a complete nontrivial

characterisation of the embeddable finite lattices is not known up to date.

For Rwtt, the situation looks different.

Theorem 4.13. [Stob 83] There are no lattice embeddings of the M3 or the N5 into Rwtt.

Hence by Corollary 4.9 and Theorem 4.12 a countable lattice L can be embedded into Rwtt via

a lattice embedding if and only if L is distributive.

4.5 Embedding the N5

Now we consider lattice embeddings of nondistributive lattices into RibT and Rcl. For the N5

we get the same result as in RT.

Lemma 4.14. Let P = (P,≤P) be a partial order. Then a mapping h : {a, b0, b1, c, d} → P is

a lattice embedding of the N5 into P if and only if

(N1’) h(a) ≤P h(b0) <P h(b1) ≤P h(d)

(N2’) h(a) ≤P h(c) ≤P h(d)

(N3’) h(b0) ∨ h(c) = h(d)

66

(N4’) h(b1) ∧ h(c) = h(a).

Proof. Let h be a lattice embedding of the N5 into P. Then by the definition of lattice embed-

dings and by (N1)-(N4) it is immediate that (N1’)-(N4’) are true.

For the converse, assume that (N1’)-(N4’) are true. Then since, by (N1’) and (N3’),

h(b0) ≤P h(b1) ≤P h(d) = h(b0) ∨ h(c) it follows that h(b1) ∨ h(c) = h(d). By a dual argu-

ment, h(b0) ∧ h(c) = h(a).

Moreover, h(b0) 6≤P h(c), because otherwise h(b1) ≤P h(d) = h(b0) ∨ h(c) = h(c) and then

h(b1) = h(b1) ∧ h(c) = h(a) ≤P h(b0), a contradiction to (N1’). It follows that h(a) <P h(b0)

and h(c) <P h(d).

By a dual argument, h(c) 6≤P h(b1) and hence h(b1) <P h(d) and h(a) <P h(c).

By h(b0) 6≤P h(c), h(c) 6≤P h(b1) and h(b0) ≤P h(b1) it follows that h(c) is incomparable to

both h(b0) and h(b1).

This completes the proof that h is one-to-one and that (N1)-(N4) are preserved by h. Hence

h is a lattice embedding of the N5 into P.

Theorem 4.15. (Ambos-Spies, Bodewig, Kräling, and Yu [Amboc]) There is a lattice embed-

ding of the N5 into RibT and Rcl preserving the least element.

Proof (idea). To prove the theorem, we need to construct c.e. sets B0 B1, C and D such

that B0 ≤ibT B1 ≤ibT D and C ≤ibT D and the following requirements are satisfied for all

e = 〈e0, e1, e2〉 ∈ N

De : B1 6= Φ̃B0
e

Je : Φ̂
We2
e0 = B0 and Φ̂

We2
e1 = C ⇒ D ≤ibT We2

Me : Φ̂B1
e0 = Φ̂Ce1 = We2 ⇒We2 is computable.

We claim that then, for r ∈ {ibT, cl}, by defining h(a) = 0, h(b0) = degr(B0), h(b1) =

degr(B1), h(c) = degr(C) and h(d) = degr(D) we obtain a lattice embedding of N5 into Rr

preserving the least element. To see this, it suffices to show that (N1’)-(N4’) from Lemma 4.14

are true.

Indeed, if degibT(B0) ≤ x and degibT(C) ≤ x for some x ∈ RibT, then choose a c.e. set

We2 ∈ x and e0 and e1 such that Φ̂
We2
e0 = B0 and Φ̂

We2
e1 = C. By J〈e0,e1,e2〉 it follows that

degibT(D) ≤ degibT(We2) = x. Since B0, C ≤ibT D, this implies that h(d) = degibT(D) =

degibT(B0) ∨ degibT(C) = h(b0) ∨ h(c) for r = ibT. Using Lemma 3.2 we obtain the same for

r = cl, i.e. (N3’) is true.

In an analogous way, satisfaction of the minimal pair requirements Me implies that h(a) =

0 = degr(B1) ∧ degr(C) = h(b1) ∧ h(c), i.e. (N4’) holds.

Finally, B0 ≤ibT B1 ≤ibT D and C ≤ibT D ensures that h(a) = 0 ≤ h(b0) ≤ h(b1) ≤ h(d)

and h(a) ≤ h(c) ≤ h(d). Since satisfaction of all diagonalisation requirements De ensures that

67

4. Lattice embeddings into RibT and Rcl

B1 6≤cl B0 and hence B1 6≤ibT B0, it actually holds that h(b0) < h(b1), i.e. (N1’) and (N2’) are

true.

Since the formal tree construction of B0, B1, C and D can be found in [Amboc] or [Bode 10],

we confine ourselves to give an overview of the ideas underlying the construction.

Let B0,s, B1,s, Cs and Ds denote the approximations to the sets B0, B1, C and D, respec-

tively, as constructed after stage s. We guarantee B0 ≤ibT B1 ≤ibT D and C ≤ibT D by

permitting; to be more precise, whenever we enumerate some number x0 into B0 at stage s,

then we enumerate a number x1 ≤ x0 into B1 and D at stage s, whenever we enumerate a

number y0 into B1 at stage s, then we enumerate a number y1 ≤ y0 into D at stage s, and

whenever we enumerate a number z0 into C at stage s, then we enumerate a number z1 ≤ z0

into D at stage s.

To satisfy a diagonalisation requirement De we use the standard diagonalisation strategy,

i.e. we wait for a stage s+1 and an appropriate number x such that Φ̃
B0,s
e,s (x) ↓= 0 and x /∈ B1,s.

Then we enumerate x into B1,s+1 and restrain all further enumerations of numbers y ≤ x + e

into B0, thus ensuring (since Φ̃e is a cl-functional with ũ
B0,s
e (x) ≤ x+ e) that

Φ̃B0
e (x) = Φ̃B0,s

e,s (x) = 0 6= 1 = B1(x).

To satisfy a minimal pair requirement Me with e = 〈e0, e1, e2〉 the premise of which is true,

we use the strategy described in the proof of Theorem 3.9. That is, defining the length of

agreement of Me at stage s by

ls(M〈e0,e1,e2〉) = max({x ≤ s : Φ̂B1,s
e0,s � x = Φ̂Cse1,s � x = We2,s � x}),

we take care that, whenever we enumerate some number x < ls(Me) into B1 or C at stage

s + 1 for the sake of a lower priority requirement, then we enumerate it into only one of B1

and C and do not enumerate any number y ≤ x into B1 or C before the next stage t > s with

lt(Me) > x. This makes sure that B1,t � (x+ 1) = B1,s � x+ 1 or Ct � x+ 1 = Cs � x+ 1, and

as in Theorem 3.9 we conclude that We2 is computable.

To satisfy a join requirement Je with e = 〈e0, e1, e2〉 the premise of which is true, we follow

the strategy described in the proof of Theorem 3.27. That is, defining the length of agreement

of Je at stage s by

ls(J〈e0,e1,e2〉) = max({x ≤ s : Φ̂
We2,s
e0,s � x = B0,s � x and Φ̂

We2,s
e1,s � x = Cs � x}),

whenever we enumerate a number x into D at stage s + 1 for the sake of a lower priority

requirement, then we simultaneously enumerate some number y ≥ x with ls(Je) > y and

[x+ 1, y] ⊆We2,s into B0,s+1−B0,s or Cs+1−Cs. (We say that the interval [x+ 1, y] is Je-safe

68

at stage s.) Then

Φ̂
We2,s
e0,s � y + 1 = B0,s � y + 1 6= B0 � y + 1 = Φ̂

We2
e0 � y + 1

or

Φ̂
We2,s
e1,s � y + 1 = Cs � y + 1 6= C � y + 1 = Φ̂

We2
e1 � y + 1.

Since Φ̂e0 and Φ̂e1 are ibT-functionals, this implies that We2,s+1 � y + 1 6= We2 � y + 1. Hence

by [x+ 1, y] ⊆ We2,s there must be some number z ≤ x in We2 −We2,s. Then D ≤ibT We2 by

permitting.

When making these strategies work together, we encounter the following problem. Assume

we want to enumerate some number x into B1 at stage s+1 in order to satisfy some requirement

Di. To obtain B1 ≤ibT D, we need to enumerate some number x′ ≤ x into D at stage s + 1.

Now assume that there are some join requirement Je and some minimal pair requirement Me′ of

higher priority than Di such that the premises of Je and Me′ are true and x′ < ls(Je) < ls(Me′).

Following our strategy to satisfy Je, we need to enumerate some number y with x′ ≤ y < ls(Je)

into B0 or C at stage s + 1, where [x′ + 1, y] is Je-safe at stage s. By our strategy to satisfy

Me′ , since we already enumerate x into B1 at stage s + 1, we may not enumerate y into C at

stage s+ 1. Hence we must enumerate y into B0. But by our strategy to satisfy Di we are only

allowed to do so if y > x+ i.

The upshot of the previous discussion is that for any n ≥ 0 we need to ensure that there

is a stage s and an interval J of length n such that J is Je-safe at stage s and such that

x = x′ = min(J) − 1 /∈ B1,s ∪ Ds and y = max(J) /∈ B0,s. Only then can we safely use x as

diagonalisation witness for Di with i < n.

To create such an interval J , starting at some stage s0 + 1 we assign a long interval I with

I ∩ (B0,s0 ∪ B1,s0 ∪ Cs0 ∪Ds0) = ∅ to Di. We now enumerate the numbers from I one by one

in decreasing order into C and D. The k-th such enumeration is performed at a stage sk + 1

(k ≥ 1), where lsk(Je) > max(I) and lsk(Me′) > max(I). Note that this is compatible with our

strategies to satisfy the join and meet requirements and with our strategy to make C ≤ibT D.

Let xk = max(I)−k+ 1 be the number enumerated into C and D at stage sk + 1. It holds that

Φ̂
We2,sk
e1,sk (xk) = Csk(xk) 6= Csk+1

(xk) = Φ̂
We2,sk+1
e1,sk+1 (xk).

Since Φ̂e1 is an ibT-functional, this implies that there must be some number yk ≤ xk in

We2,sk+1
−We2,sk . In particular,

|We2,sk+1
∩ [0,max(I)]| ≥ k. (35)

If there is any k such that [xk+n−1, xk] ⊆ We2,sk+n
, then J = [xk+n−1, xk] is an interval of

length n which is Je-safe at stage sk+n and satisfies the conditions that max(J) /∈ B0,sk+n
and,

provided that min(J)− 1 ∈ I, min(J)− 1 /∈ B1,sk+n
∪Dsk+n

.

69

4. Lattice embeddings into RibT and Rcl

On the other hand, if there is no such k, then for each k there must be some number

zk ∈ [xk+n−1, xk] such that zk 6= yk′ for k′ ≤ k + n − 1. Since for k′ ≥ k + n we have that

yk′ ≤ xk′ ≤ xk+n < xk+n−1, it follows that zk 6= yk′ for every k. Hence we can refine the

inequality given above to

|We2,sk+1
∩ ([0,max(I)]− {zk′ : k′ ≥ 1})| ≥ k.

Since we enumerate the complete interval I into C and D in this case, we get

|We2,s|I| ∩ ([0,max(I)]− {zk′ : k′ ≥ 1})| ≥ |I| − 1. (36)

By choosing the interval I sufficiently large (without changing min(I)), we can ensure that

|{zk′ : k′ ≥ 1}| > min(I) + 1. Then the left-hand side of equation (36) becomes smaller than

max(I) + 1− (min(I) + 1) = max(I)−min(I) = |I| − 1, which contradicts equation (36).

In the actual construction, where we have to deal with several join requirements Je1 , . . . , Jem

at once, the combinatorics become a bit more difficult, but the strategy to obtain intervals of

a desired length which are simulatenously Je-safe for e ∈ {e1, . . . , em} basically remains the

same. Since we cannot compute whether the premise of some join or minimal pair requirement

is true, additionally we have to use a tree argument, and the strategies we described so far only

work along the true path of this tree. For details see the references given above.

4.6 Embedding the S7

Before we turn to lattice embeddings of the M3, we consider a nondistributive lattice which

looks somewhat similar to the M3 but imposes less restrictions on an embedding.

Definition 4.16. The S7 is the finite partial ordering ({a, a1, a2, b0, b1, b2, c},≤S7
) such that

(S1) a <S7
ai <S7

b0, bi <S7
c for i ∈ {1, 2},

(S2) b0, b1 and b2 are pairwise incomparable,

(S3) a1 and a2 are incomparable,

(S4) a1 ∨ b2 = a2 ∨ b1 = c,

(S5) a1 ∨ a2 = b0,

(S6) b0 ∧ bi = ai for i ∈ {1, 2}

(S7) b1 ∧ b2 = a

It is not hard to see that these conditions indeed define a unique partial ordering and that

the S7 is a lattice with least element a and greatest element c as illustrated below.

70

a
•

a1 • a2•

b0•b1• b2•

c•

We prove the following equivalent characterisation.

Lemma 4.17. Let P = (P,≤P) be a partial order. Then a mapping h : {a, a1, a2, b0, b1, b2, c} →
P is a lattice embedding of the S7 into P if and only if

(S1’) h(a) ≤P h(ai) ≤P h(b0), h(bi) ≤P h(c) for i ∈ {1, 2},

(S2’) h(bi) 6≤P h(a3−i) for i ∈ {1, 2},

(S3’) h(c) 6≤P h(b0)

(S4’) h(a1) ∨ h(b2) = h(a2) ∨ h(b1) = h(c),

(S5’) h(a1) ∨ h(a2) = h(b0),

(S6’) h(b0) ∧ h(bi) = h(ai) for i ∈ {1, 2}

(S7’) h(b1) ∧ h(b2) = h(a).

Proof. Let h be a lattice embedding of the S7 into P. Then by (S1)-(S7) and the definition of

lattice embeddings it follows that (S1’)-(S7’) must hold (for (S2’) note that a3−i ≤S7
b0 and

bi 6≤S7
b0 imply bi 6≤S7

a3−i).

For the converse, assume that (S1’)-(S7’) are true. It suffices to prove that h is an embedding

of the S7 into P. Then the fact that h preserves joins and meets (i.e. h is a lattice embedding)

follows easily by (S1’) and (S4’)-(S7’).

First we show that h(bi) 6= h(c) for i ∈ {1, 2}. Otherwise h(b3−i) ≤P h(c) = h(bi) by (S1’)

and h(b3−i) = h(bi) ∧ h(b3−i) = h(ai) ≤P h(a3) by (S7’), contradicting (S2’).

It follows that h(a3−i) 6≤P h(bi) for i ∈ {1, 2}, because otherwise h(c) = h(a3−i) ∨ h(bi) =

h(bi) by (S4’), contradicting the above. By (S2’) we conclude that h(bi) and h(a3−i) are

incomparable for i ∈ {1, 2}. Then h(a1) and h(a2) must be incomparable too, because otherwise

h(a3−i) ≤P h(ai) ≤P h(bi) for i = 1 or i = 2.

71

4. Lattice embeddings into RibT and Rcl

Next, h(a) 6= h(a1), h(a2). Indeed, if h(ai) = h(a) for i = 1 or i = 2, then h(ai) ≤P h(b3−i),

contradicting the incomparability of h(ai) and h(b3−i).

Further, it holds that h(a1), h(a2) 6= h(b0), because by (S1’) otherwise h(ai) ≤P h(b0) =

h(a3−i) for i = 1 or i = 2, contradicting the incomparability of h(a1) and h(a2).

Moreover, h(b0) 6= h(c) by (S3’). It also follows from this fact that h(ai) 6= h(bi) for

i ∈ {1, 2}, because h(ai) ∨ h(a3−i) = h(b0) 6= h(c) = h(bi) ∨ h(a3−i) by (S5’) and (S4’).

So we have shown that all the inequalities occuring in (S1’) are strict. It remains to show that

h(b0), h(b1) and h(b2) are pairwise incomparable. By (S6’) and since h(ai) 6= h(b0), h(bi) it holds

that h(b0) and h(bi) are incomparable for i ∈ {1, 2}. By (S7’) and since h(a) <P h(ai) ≤P h(bi)

for i ∈ {1, 2} it holds that h(b1) and h(b2) are incomparable.

Now we can use this characterisation to embed the S7 into RibT and Rcl.

Theorem 4.18. There is a lattice embedding of the S7 into RibT and Rcl preserving the least

element.

Proof. We will describe a stage-by-stage construction of c.e. sets A1, A2, B0, B1, B2 and C such

that the desired embedding is given by h(a) = 0, h(ai) = degr(Ai), h(bj) = degr(Bj) and

h(c) = degr(C) for i ∈ {1, 2}, j ∈ {0, 1, 2}.
During the construction we will meet the following requirements for all e = 〈e0, e1, e2〉 ∈ N

and all i ∈ {1, 2}.

• Ai ≤ibT B0, Bi ≤ibT C,

• Di
e : Bi 6= Φ̃

A3−i
e ,

• D0
e : C 6= Φ̃B0

e ,

• Jie : (Bi = Φ̂
We0
e1 and A3−i = Φ̂

We0
e2)⇒ C ≤ibT We0 ,

• J0 : B0 = A1 ∪A2 and A1 ∩A2 = ∅,

• Mi
e : (We0 = Φ̂B0

e1 = Φ̂Bie2)⇒We0 ≤ibT Ai,

• M0
e : (We0 = Φ̂B1

e1 = Φ̂B2
e2)⇒We0 is computable.

Using the fact that ibT-reducibility implies cl-reducibility and Lemmas 3.2 and 3.3 as well

as Lemma 3.4 we see that satisfaction of these requirements ensures (S1’)-(S7’) and hence that

h is a lattice embedding of the S7 into Rr by Lemma 4.17.

Let Ai,s, Bj,s, Cs denote the finite approximation to the sets Ai, Bj and C, respectively, as

given after stage s of the construction (i ∈ {1, 2}, j ∈ {0, 1, 2}).
Again, we will obtain Ai ≤ibT B0, Bi ≤ibT C by permitting. The definition of the lengths

of agreement ls(J
i
e) (i ∈ {1, 2}) and ls(M

i
e) (i ∈ {0, 1, 2}), and the basic strategies to satisfy

the diagonalisation requirements Di
e (i ∈ {0, 1, 2}), the join requirements Jie (i ∈ {1, 2}) and

the minimal pair requirements M0
e are – with the obvious changes imposed by the sets and

72

functions occuring in the requirements having different names – the same as in the proof of

Theorem 4.15. Remember that we say that an interval [x, y] is Jie-safe at stage s if [x, y] ⊆We0,s,

where e = 〈e0, e1, e2〉; and we say that [x, y] is R-safe at stage s for a set R of requirements if

it is Jie-safe at stage s for every join requirement Jie ∈ R.

The basic strategy to satisfy some meet requirement Mi
e (i ∈ {1, 2}, e = 〈e0, e1, e2〉) the

premise of which is true is a slight relaxation of the minimal pair strategy. Let s be a stage

such that ls(M
i
e) > x, assume that we enumerate x into Bj (j ∈ {0, i}) at stage s + 1, and

let t > s be the next stage such that lt(M
i
e) > x. While the minimal pair strategy did not

permit us to enumerate any number y ≤ x into Bi−j at any stage s′ with s + 1 ≤ s′ ≤ t, the

modified strategy allows for such an enumeration, provided that we also enumerate a number

z ≤ x into Ai at or after stage s′. In particular, if we know a stage s0 such that ls0(Mi
e) > x

and Ai,s0+1 � x+ 1 = Ai � x+ 1, then for any s, t as above with s, t ≥ s0 with ls(M
i
e) > x and

lt(M
i
e) > x we know that B0,s � x+ 1 = B0,t � x+ 1 or Bi,s � x+ 1 = Bi,t � x+ 1 and hence

We0,s � x+ 1 = Φ̂B0,s
e1,s � x+ 1 = Φ̂B0,t

e1,t � x+ 1 = We0,t � x+ 1

or

We0,s � x+ 1 = Φ̂Bi,se2,s � x+ 1 = Φ̂Bi,te2,t � x+ 1 = We0,t � x+ 1.

By induction it follows that We0,s � x + 1 = We0,s0 � x + 1 for all s ≥ s0 and hence We0 �

x+ 1 = We0,s0 � x+ 1. This shows that we can compute We0 � x+ 1 given a stage s0 as above;

but such a stage is computable from Ai � x+ 1, implying We0 ≤ibT Ai as desired.

4.6.1 Conflicts between the requirements

We now take a look at dynamics and the problems which occur when we make these basic

strategies work together. For a start we use the simplified assumption that we know which join,

meet and minimal pair requirements have a true premise.

The diagonalisation requirements Di
e, i ∈ {1, 2}, do not impose big problems. We can just

reserve some number x for the satisfaction of these requirements and wait for a stage s with

Φ̃
A3−i,s
e,s (x) ↓= 0 = Bi,s(x) and ls(M

j
e′) > x, ls(J

j
e′) > x for all requirements M

j
e′ , J

i
e′ of higher

priority than Di
e the premise of which is true. Then, following the basic diagonalisation strategy,

we enumerate x into Bi at stage s + 1 and preserve A3−i,s � x + e + 1. To satisfy Bi ≤ibT C

we also enumerate x into C. Note that this is compatible with the strategy to satisfy join

requirements Jie′ of higher priority than Di
e (because we enumerated x into Bi and the interval

[x + 1, x] = ∅ is trivially Jie′ -safe at every stage). However, for the sake of join requirements

J3−i
e′ of higher priority than Di

e we also have to enumerate some number y ≤ x into B3−i or

Ai. Since the strategy for the minimal pair requirements does not allow for an enumeration of

x into Bi and y into B3−i at the same stage, we let y = x and enumerate x into Ai. To satisfy

Ai ≤ibT B0 we also enumerate x into B0. (The enumeration of x into B0 and Bi at stage s+ 1

73

4. Lattice embeddings into RibT and Rcl

is compatible with the strategy for meet requirements Mi
e′ , because we enumerated x into Ai,

too.) Since we only enumerated x into Ai, B0, Bi and C, but not into A3−i and B3−i, we did

not hurt the requirement J0.

Satisfying a diagonalisation requirement D0
e requires for a more advanced technique. Indeed,

suppose that there are join requirements J1
e1 and J2

e2 and a minimal pair requirement M0
e′ , all

of higher priority than D0
e and with true premises. If we want to enumerate some number x

into C at a stage s + 1 such that Φ̃
B0,s
e,s (x) ↓= 0 = Cs(x), then by the strategy to satisfy J1

e1

we need to enumerate some y ≥ x such that [x + 1, y] is J1
e1-safe at stage s into B1 or A2; by

the same reasoning for J2
e2 we need to enumerate some y′ ≥ x such that [x+ 1, y′] is J2

e2-safe at

stage s into B2 or A1. Since ls(M
0
e′) may be much larger than x, by the minimal pair strategy

we are not allowed to enumerate y into B1 and y′ into B2 at the same time. Hence say we

enumerate y′ into A1. Now to satisfy A1 ≤ibT B0, we need to enumerate some z ≤ y′ into B0

as well. Since the diagonalisation strategy for D0
e requires us to restrain all enumerations of

numbers less than x + e + 1 into B0 after stage s, this is only possible if y′ ≥ x + e. In this

case we can enumerate y′ into A1 and B0 and, to satisfy A1 ≤ibT B1, enumerate y := x into B1

(thus following the strategy for J1
e1 , because [x + 1, x] = ∅ is trivially J1

e1-safe at every stage).

Note that the simultaneous enumeration of x into B1 and y′ into B0 is compatible with the

meet requirements since we enumerate y′ into A1, too. Also note that requirement J0 is not

hurt. Hence these enumerations are compatible with the basic strategies for all join, meet and

minimal pair requirements.

So, as in the proof of Theorem 4.15, we are left with the task of creating a J2
e2-safe interval

J = [x+ 1, y′] of length e such that y′ /∈ A1,s ∪B0,s. Again, to do this we assign a long interval

I to D0
e at some stage s0 + 1, where I ∩ (A1,s0 ∪ A2,s0 ∪ B0,s0 ∪ B1,s0 ∪ B2,s0 ∪ Cs0) = ∅. The

goal is to obtain J ⊆ I.

If we try to proceed by the naive approach and – in analogy to the proof of Theorem 4.15

– let Di
e enumerate I one by one in decreasing order into B2, then we run into a new problem,

which is caused by the fact that now we have to respect two kinds of join requirements (not

counting the requirement J0). Indeed, each enumeration w into B2 has to be accompagnied by

an enumeration v ≤ w into C to satisfy B2 ≤ibT C, and a fortiori by an enumeration of some

v′ ≥ v into B1 or A2, where [v + 1, v′] is J1
e1-safe at the stage before the enumeration. But

the minimal pair requirements do not allow for an enumeration into B1 and B2 at the same

time; hence we must enumerate v′ into A2. Then, since we enumerate v′ into A2 and v into

C, we need to enumerate a number v′′ with v ≤ v′′ ≤ v′ into B0. So if we choose v = v′ in

each such situation, then we must enumerate v into B0 and will finally obtain that J ⊆ B0,s,

contradicting y′ /∈ A1,s ∪B0,s.

This shows that before we can create a J2
e2-safe interval, we need a J1

e1-safe interval, the

construction of which in turn relies on the existence of a J2
e2 -safe interval and so on. Hence the

above approach fails.

Instead, we will give the responsibility for the creation of safe intervals to the join require-

74

ments themselves. For the next section assume that J1
e1 has higher priority than J2

e2 .

4.6.2 Building safe intervals for two requirements under a maximal

response hypothesis

Assume that t is a stage such that lt(J
i
ei) > x (i ∈ {1, 2}) and we enumerate x into Bi,t+1−Bi,t

or A3−i,t+1 − A3−i,t, and let t′ be the first stage after stage t such that lt′(J
i
ei) > x. Then we

have that, for ei = 〈ei0, ei1, ei2〉,

Φ̂
Wei0,t

ei1,t (x) = Bi,t(x) 6= Bi,t′(x) = Φ̂
Wei0,t

′

ei1,t′
(x)

or

Φ̂
Wei0,t

ei2,t (x) = A3−i,t(x) 6= A3−i,t′(x) = Φ̂
Wei0,t

′

ei2,t′
(x).

Since Φ̂ei1 and Φ̂ei2 are ibT-functionals, this implies that there is some y ≤ x in Wei0,t′−Wei0,t.

To simplify the construction, for a moment we will assume the following hypothesis to be true.

Hypothesis 4.19 (Maximal response hypothesis). In each situation as described above it holds

that max({z ≤ x : z /∈Wei0,t}) ∈Wei0,t′ . In particular, {x} is Jiei-safe at stage t′.

The interval I assigned to D0
e at stage s0 + 1 is partitioned into the singleton {min(I)} and

ι(I) + 1 subintervals [min(I) + 1, y1) = [y0, y1), [y1 + 1, y2), . . . , [yι(I), yι(I)+1), where it will hold

that |[yk, yk+1 − 1)| > yk for 0 ≤ k ≤ ι(I).

We first use the rightmost of these subintervals, [yι(I), yι(I)+1), to obtain an ∅-safe subinterval

J0 ⊆ [yι(I), yι(I)+1) of length yι(I). Of course, since every interval is ∅-safe at every stage, this

is a trivial task, because by our assumption that |[yι(I), yι(I)+1 − 1)| > yι(I) we can just take

the subinterval [yι(I), yι(I)+1) itself. Set c0 = yι(I).

Next, we use the two rightmost intervals, [yι(I)−1, yι(I)+1), to create a J1
e1-safe subinterval

J1 ⊆ [yι(I)−1, yι(I) + 1) of length yι(I)−1. This task is less trivial, but still easy. Let s0 < s1
1 <

s1
2 < . . . be a computable sequence of stages with ls1m(J1

e1) > max(I) for m ≥ 1. Then at

the stages s1
1 + 1, s1

2 + 1, . . . we enumerate the elements from [yι(I)−1, yι(I) − 1) one by one in

decreasing order into B1 and C. By the maximal response hypothesis, if we enumerate cs1m into

B1 at stage s1
m + 1, then {cs1m} is J1

e1 -safe at stage s1
m+1. Hence once we have enumerated the

complete subinterval [yι(I)−1, yι(I) − 1) into B1 at some stage s1
m + 1, then [yι(I)−1, c

0 − 1) =

[yι(I)−1, yι(I)− 1) is J1
e1 -safe at stage s1

m+1, and by assumption, |[yι(I)−1, c
0− 1)| > yι(I)−1. Let

m be minimal such that |[cs1m , c
0 − 1)| > yι(I)−1. The interval J1 = [cs1m , c

0 − 1) is J1
e1-safe at

stage s1
m+1. Set s1 = s1

m+1 and set c1 = cs1m . We stop the enumerations into B1 and C at stage

s1.

Note that what we did so far was compatible with the basic strategies for all requirements,

except for J2
e2 . When we enumerated cs1m into C at stage s1

m + 1, then if ls1m(J2
e2) > cs1m ,

the basic strategy for requirement J2
e2 asked for the enumeration of some number into A1 or

B2, which we did not yet perform. Instead, we satisfy this strategy with some delay and

75

4. Lattice embeddings into RibT and Rcl

enumerate the number c1 − 1 ≤ cs1m into A1, B0, B1 and C at stage s1 + 1. Note that this is

again compatible with the basic strategies for all requirements. Also note that by the maximal

response hypothesis {c1−1} is J1
e1 safe at the next stage s after stage s1 with ls(J

1
e1) > max(I).

Finally, we use the three rightmost intervals, [yι(I)−2, yι(I)+1), to create a {J1
e1 , J

2
e2}-safe

subinterval J2 ⊆ [yι(I)−2, yι(I) + 1) of length yι(I)−2. Let s1 < s2
1 < . . . be a computable

sequence of stages with ls2m(J1
e1) > max(I) and ls2m(J2

e2) > max(I) for m ≥ 1. Then at the

stages s1
2 +1, s1

2 +1, . . . we enumerate the elements from [yι(I)−2, c
1−1) one by one in decreasing

order into B2 and C. By the maximal response hypothesis, if we enumerate cs2m into B2 at stage

s2
m+1, then {cs2m} is J2

e2-safe at stage s2
m+1. At the same time, we enumerate the elements from

J1 one by one in decreasing order into A2 and B0. By the maximal response hypothesis, if we

enumerate as2m into A2 at stage s2
m + 1, then max({z ≤ as2m : z /∈We10,s2m

}) ∈We10,s2m+1
. Since

J1 and {c1 − 1} are already J1
e1-safe at stage s2

m, it follows by induction that cs2m ∈We10,s2m+1
,

i.e. {cs2m} is J1
e1 -safe at stage s2

m+1. Hence once we have enumerated the complete subinterval

[yι(I)−2, c
1 − 1) into B2 at some stage s2

m + 1, then [yι(I)−2, c
1 − 1) is {J1

e1 , J
2
e2}-safe at stage

s2
m+1, and by assumption |[yι(I)−2, c

1−1)| ≥ |[yι(I)−2, yι(I)−1−1)| > yι(I)−2. Let m be minimal

such that |[cs2m , c
1 − 1)| > yι(I)−1. The interval J2 = [cs2m , c

1 − 1) is {J1
e1 , J

2
e2}-safe at stage

s2
m+1. Set s2 = s2

m+1 and set c2 = cs2m . We stop the enumerations into B2 and C at stage s2.

To end the construction, we enumerate c2−1 into A2, B0, B2 and C at stage s2+1 (although

in the case of only two requirements, this would not be necessary). By the maximal response

hypothesis, the interval [c2 − 1, c1 − 1) is still {J1
e1 , J

2
e2}-safe at the next stage s after stage s2

such that ls(J
1
e1) > max(I) and ls(J

2
e2) > max(I).

Since we may assume that yι(I)−2 ≥ y0 ≥ e, the interval J = [c2−1, c1−1) is now as desired

and can be used for the diagonalisation strategy of D0
e (note that indeed max(J) = c1 − 2 has

not been enumerated into A1 or B0 so far).

4.6.3 Building safe intervals for n requirements under a maximal re-

sponse hypothesis

It is straightforward to generalise the strategy described above to the case that D0
e has to

respect n join requirements Ji1e1 , . . . , J
in
en (i1, . . . , in ∈ {1, 2}), all with true hypothesis and such

that Jikek has higher priority than J
ik+1
ek+1 . We still assume that a maximal response hypothesis as

above holds for all these join requirements. Let Ek = {Jik′ek′ : k′ ≤ k} for 0 ≤ k ≤ n.

By induction 0 ≤ k ≤ n we define stages sk and tk and intervals Jk = [ck, ck−1 − 1) ⊆ I

such that

(i) sk < tk

(ii) Jk is Ek-safe at stage sk

(iii) {ck − 1} is Ek-safe at stage tk

(iv) [min(I), ck − 1) ∩ (A0,tk ∪A1,tk ∪B0,tk ∪B1,tk ∪B2,tk ∪ Ctk) = ∅

76

(v) Jk ∩ (A0,tk ∪A1,tk ∪B0,tk) = ∅

(vi) ck ≥ yι(I)−k

(vii) |Jk| > yι(I)−k.

Indeed, for k = 0 we can set s0 = s0, t0 = s0 +1 and J0 = [yι(I), yι(I)+1). Assume that Jk, sk

and tk have already been defined. Then J
ik+1
ek+1 is responsible for building Jk+1. Let tk = sk+1

1 <

sk+1
2 < . . . be a computable sequence of stages such that lsk+1

m
(Ji0e0) > max(I), . . . , lsk+1

m
(J
ik+1
ek+1) >

max(I) for m ≥ 1. Then at the stages sk+1
1 + 1, sk+1

2 + 1, . . . we enumerate the interval

[yι(I)−(k+1), c
k − 1) one by one and in decreasing order into Bik+1

and C. Let csk+1
m

be the

number thus enumerated at stage sk+1
m + 1. At the same time, we enumerate the numbers from

Jk one by one and in decreasing order into B0 and Aik+1
. Every join requirement J

ik′
ek′ , k

′ ≤ k,

has to respond to the enumeration into B0, and J
ik+1
ek+1 has to respond to the enumeration into

Bik+1
. By the fact that Jk is already {Jik′ek′ : k′ ≤ k}-safe at stage sk+1

m and by the maximal

response hypothesis it follows (by induction on m) that [ck+1
m , ck − 1) is {Jik′ek′ : k′ ≤ k+ 1}-safe

at stage sk+1
m+1. Let m be minimal such that |[csk+1

m
, ck − 1)| > yι(I)−(k+1) and set ck+1 = csk+1

m
,

set sk+1 = sk+1
m+1 and set tk+1 = sk+1

m+2. By the inductive hypothesis that ck ≥ yι(I)−k and by

the assumption that |[yι(I)−(k+1), yι(I)−k − 1)| > yι(I)−(k+1) it holds that ck+1 ≥ yι(I)−(k+1).

At stage sk+1 +1 we enumerate ck+1−1 into Aik+1
, B0, Bik+1

and C. Hence by the minimal

response hypothesis, {ck+1 − 1} is {Jik′ek′ : k′ ≤ k + 1}-safe at stage tk+1. At this stage we stop

the construction for Jk+1. We see that sk+1, tk+1 and Jk+1 are as desired.

4.6.4 Building safe intervals without a maximal response hypothesis

Note that in the previous discussion, to build a safe interval for n requirements we just needed

n+ 1 subintervals [yk, yk+1] of I, that is, we could have chosen ι(I) = n.

Now we drop the minimal response hypothesis. To have the construction still work, we will

have to “restart” certain parts of it, which will require the use of exponentially more than n+1

subintervals.

We start the construction of {Ji1e1 , . . . , J
in
en}-safe intervals as before. However, now it can

happen that, why we try to create an interval Jk which is Ek′ -safe (not necessarily k = k′

anymore), we find that {cskm} is not Ek′ -safe at stage skm+1 for some minimal m. In this case

we define ck = cskm , sk = skm+1, tk = skm+2 and we enumerate ck − 1 into Aik′ , B0, Bik′ and

C. Of course, we cannot guarantee any longer that {ck − 1} is Ek′ -safe at stage tk. Instead,

we define k′′ ≤ n to be maximal such that {ck − 1} is Ek′′−1-safe at stage tk and we can define

some Ek′′−1-safe interval Jk = [ck, x] at stage tk with

|Jk − (A1,tk ∪A2,tk ∪B0,tk)| > yι(I)−k. (37)

(Before, this was implied by (v) and (vii).)

77

4. Lattice embeddings into RibT and Rcl

Then (i), (iv), (vi) and (vii) still hold, and (ii) and (iii) hold with Ek′′−1 in place of Ek.

While (v) does not hold anymore, it can be replaced by the weaker condition (37). As described

above, we can then proceed by trying to build an Ek′′ -safe interval Jk+1.

4.6.5 Eliminating requirements

For the construction to work, there are still two obstacles. We have to tackle the following

questions:

(1) How does (37) ensure that whenever we need to enumerate a new number from Jk into B0,

there still exists such a number which is not already enumerated?

(2) If we need too many “restarts” as described above, then finally we may have enumerated

all numbers in I into C and cannot go on. How can we put a computable upper bound to

the number of “restarts” needed (in order to choose I large enough in advance)?

The important new feature that helps us overcome these questions is that if some join re-

quirement Jikek (ek = 〈ek0, ek1, ek2〉) gives too many non-maximal responses to our enumerations

of numbers from I, then we will be able to actively diagonalise against Jikek .

To wit, assume that some requirements which have lower priority than Jikek enumerate the

number csm into C at stage sm + 1 and the next smaller number csm+1 = csm − 1 into C at

stage sm+1 + 1. Then by the construction, as described above, we enforce that there must be

some y ≤ csm in Wek0,sm+1 −Wek0,sm . Hence

|{x ≤ csm+1
: x /∈Wek0,sm+1

}| ≤ |{x ≤ csm : x /∈Wek0,sm}| − 1.

Moreover, if {csm} is not Jikek -safe at stage sm+1, then the above inequality is strict.

Let [s, t] be an interval of stages during which only requirements of lower priority than Jikek
are active, and let s1 + 1 < s2 + 1 < . . . < sr+1 + 1 be the stages in [s, t] at which some number

from I is enumerated into C. Let csm be the number enumerated at stage sm+ 1. Furthermore

let

p = |{m ∈ {1, . . . , r} : {csm} is not Jikek -safe at stage sm+1}|.

Then

|{x ≤ csr+1 : x /∈Wek0,sr+1}| ≤ |{x ≤ cs1 : x /∈Wek0,s1}|− r−p ≤ cs1 + 1− r−p = csr+1 + 1−p.

Here, the final equality follows from the fact that we enumerate the numbers from I one by one

and in decreasing order into C.

If p > min(I) + 1, then we derive that

|{x ≤ csr+1 : x /∈Wek0,sr+1}| < csr+1 + 1−min(I)− 1 = |(min(I), csr+1]|. (38)

78

But by the construction we will ensure that

(min(I), csr+1] ∩ (A1,sr+1 ∪A2,sr+1 ∪B0,sr+1 ∪B1,sr+1 ∪B2,sr+1 ∪ Csr+1) = ∅;

hence we can change our strategy at stage sr+1 + 1 and start to enumerate the numbers from

(min(I), csr+1
] one by one and in decreasing order into A0, B0, B1 and C at stages t with

lt(J
ik
ek

) > max(I). By (38) and the fact that Jikek has to respond to each of these enumerations

by enumerating a new number y ≤ csr+1 into Wek0
we arrive at a contradiction. We say that

Jikek is ready for elimination.

Note that if Jikek gives sufficiently many non-maximal responses while we try to construct

safe-intervals, then there will always be at least min(I) + 1 such responses during an interval

[s, t] of stages at which no requirement of higher priority is active, unless some requirement

of higher priority gives a non-maximal response. Hence by a combinatorial argument we can

determine an upper bound to the number of non-maximal responses given by any requirement

to enumerations of numbers from I. Since this upper bound only depends on min(I), we can

choose ι(I) greater than this upper bound. This solves problem (2).

By a refined argument we can make sure that once we had at least k non-maximal responses

to enumerations of numbers from I, then we need to enumerate at most yι(I)−k further numbers

from I into C. Hence it suffices for the interval Jk defined at stage sk + 1 to contain at least

yι(I)−k many numbers not yet enumerated into A1, A2 or B0. This solves problem (1).

4.6.6 Bringing the strategies together on a tree

At last, we drop the assumption that we know the premises of which join and meet requirements

are true. Instead, we have to use a tree argument for the construction. We use the tree

T = {0, 1}∗.
Let ρ : N→ {Jje : e ∈ N, j ∈ {1, 2}} ∪ {Mi

e : e ∈ N, i ∈ {0, 1, 2}} be a computable one-to-one

enumeration of all join and meet requirements (except for J0). A node α ∈ T of length n

corresponds to a guess about which of the first n join and meet requirements ρ(0), . . . , ρ(n− 1)

have true premises. Moreover, nodes of length 3e + i will be responsible for the strategy to

satisfy the diagonalisation requirement Di
e (i ∈ {0, 1, 2}).

The definition of α-stages and α-expansionary stages, and the definition of δs and the true

path TP are analogous to the definitions given in the proof of Theorem 3.20.

Instead of assigning an interval to a certain diagonalisation requirement Di
e (i ∈ {0, 1, 2}),

each node α of length 3e+i will now get assigned its own interval. When we refer to an interval I

as being an α-interval, we mean that I was assigned to α at some point during the construction.

As long as α gets not initialised, I will be a candidate to construct a long {ρ(|β|) : β0 v α}-safe

interval within. Whenever α is responsible for enumerating numbers from I at stage s+ 1, this

will be denoted by cands(α) = I. In particular, we will have cands(α) = I if I becomes freshly

assigned to α at stage s, if s corresponds to one of the stages tk from the informal description

79

4. Lattice embeddings into RibT and Rcl

of the construction above, or if some node β with β0 v α corresponds to a join requirement

which is ready for elimination at stage s (we say that β is ready for elimination at stage s).

In this status, α tries to give responsibility for the enumeration of numbers from I to some

node β with β0 v α corresponding to a join requirement to create a {ρ(|β′|) : β′0 v β0}-safe

interval Jk+1 if there already exists a {ρ(|β′|) : β′0 < β0}-safe interval Jk satisfying the desired

conditions for such an interval. When β becomes responsible for enumerations of numbers

from I, we say that I is demoted to β; henceforth we write jobs(β) = I at all stages s at

which β is responsible for these enumerations. The node β will return the responsibility for

enumerations of numbers from I to α as soon as it has finished the construction of Jk+1 or

some join requirement corresponding to a node β′ with β′0 v β0 gives a nonmaximal response.

Finally, the node α can be assigned a diagonalisation witness from I. In this construction,

by the term “diagonalisation witness” we mean a pair (x, y) of numbers, where x is the number

to be enumerated into C and Bi and y the corresponding number to be enumerated into Ai and

B0 according to the basic strategy to satisfy a diagonalisation requirement Di
e (i ∈ {1, 2}). To

avoid case distinctions, diagonalisation requirements D0
e will also formally be appointed pairs

(x, y) as diagonalisation witnesses, but in this case only x really matters.

We have now explained all parts of the construction. Putting these together, the algorithm

is as follows.

4.6.7 The construction

Stage 0: Let A1,0 = A2,0 = B0,0 = B1,0 = B2,0 = C0 = ∅ and job0(β) ↑ and cand0(β) ↑ for

each node β. No node has an interval or a diagonalisation witness assigned.

Stage s+ 1:

We say that a node α requires attention at stage s + 1 if α v δs and one of the following

holds.

(Case 1.1) α has no interval assigned to it at the end of stage s.

(Case 1.2) α has an interval I assigned to it at the end of stage s, cands(α) = I, for every

β with β0 v α it holds that ls(ρ(|β|)) > max(I), there is a number cs ∈ I such that

I ∩ (A1,s ∪A2,s ∪B0,s ∪B1,s ∪B2,s) ⊆ I ∩ Cs = [cs + 1,max(I)] (39)

and there is a join requirement Jie = ρ(|β|) (i ∈ {1, 2}, e = 〈e0, e1, e2〉) for some β with

β0 v α such that

|{x ≤ cs : x /∈We0,s}| < |{x ≤ cs : x ∈ I}|. (40)

(Case 1.3) α has an interval I assigned to it at the end of stage s, cands(α) = I, for every

β with β0 v α and every α′-interval I ′ = jobs(β) it holds that α ≤ α′ and ls(ρ(|β|)) > max(I),

and there are numbers as and cs ∈ I and a node β such that

• equation (39) holds for cs

80

• β is the longest node such that either β = α, or ρ(|β|) is a join requirement and β0 v α,

and such that there is some y > cs, y ∈ I, for which

[cs + 1, y] is E′-safe at stage s, where E′ = {ρ(|β′|) : β′ < β and β′0 v α} (41)

and if I is relevant above yk(I) at stage s, then

|{z ∈ [cs + 1, y] ∩ I : z /∈ A1,s ∪A2,s ∪B0,s}| ≥ yk(I) (42)

• as = y for the least such y (note that as /∈ A1,s ∪A2,s ∪B0,s by minimality of as and by

yk(I) > 0).

(Case 1.4) α has an interval I and a diagonalisation witness (x, y), x, y ∈ I, assigned at the

end of stage s, for every β with β0 v α and every α′-interval I ′ = jobs(β) it holds that α ≤ α′

and ls(ρ(|β|)) > y and

(a) if |α| = 3e, then x+ e+ 1 ≤ y, Φ̃
B0,s
e (x) ↓= B1,s(x) = Cs(x) = 0 and y /∈ A1,s ∪A2,s ∪B0,s;

(b) if |α| = 3e+ i, i ∈ {1, 2}, then Φ̃
A3−i,s
e (x) ↓= 0 and x /∈ A1,s ∪A2,s ∪B0,s ∪B1,s ∪B2,s ∪Cs.

We also say that a node β requires attention at stage s+ 1 and is α-linked if

(Case 2) β0 v δs and α ≤ δs, jobs(β) = I for some α-interval I, for every β′ with β′0 v β0

it holds that ls(ρ(|β′|)) > max(I) and there exists a number cs ∈ I satisfying equation (39).

Let η be the least node that requires attention at stage s + 1 (such a node exists, because

δs always requires attention due to Case 1 at stage s + 1). Let X ∈ {1.1, 1.2, 1.3, 1.4, 2} be

minimal such that η requires attention due to Case X. We say that η receives attention and is

active due to Case X.

(Case 1.1) If η = α is active due to Case 1.1, then assign a new interval I to α in the

following way. Let |α| = 3e + i, i ∈ {0, 1, 2}. Let x be the least number that is larger than

max(|α|, s + 1) and larger than all numbers from intervals assigned to any node before stage

s+ 1. Let E = {β : β0 v α}. Define

ι(I) = (x+ 3)2|E| − 1

and

I = [x, 2ι(I)+1 · ((x+ 1) + (ι(I) + 1)),

i.e. I = {x}∪
⋃ι(I)
k=0[yk, yk+1), where yk = yk(I) = 2k(x+ 1 +k) for 0 ≤ k ≤ ι(I) + 1. For k < 0,

define yk(I) = x. Say that I is an α-interval.

Let cs = yι(I). Set Â1,s+1 = A1,s ∪ {yι(I)}, Â2,s+1 = A2,s, B̂0,s+1 = B0,s ∪ {yι(I)}, B̂1,s+1 =

B1,s ∪ {yι(I)}, B̂2,s+1 = B2,s and Ĉs+1 = Cs ∪ [yι(I), yι(I)+1). If E = ∅ or i 6= 0, assign

81

4. Lattice embeddings into RibT and Rcl

(x, x + e + 2) as diagonalisation witness to α. Otherwise set cands+1(α) = I. Say that I is

relevant above yι(I) at stage s+ 1.

(Case 1.2) If η = α is active due to Case 1.2, set Â1,s+1 = A1,s ∪ {cs}, Â2,s+1 = A2,s,

B̂0,s+1 = B0,s ∪ {cs}, B̂1,s+1 = B1,s ∪ {cs}, B̂2,s+1 = B2,s and Ĉs+1 = Cs ∪ {cs}. We say that

α is ready for elimination at stage s+ 1.

(Case 1.3) If η = α is active due to Case 1.3, let cands(α) = I, let as, cs and β be as in the

hypothesis of Case 1.2. Say that cands+1(α) is undefined.

If β = α, assign (cs, as) as diagonalisation witness to α and set Âi,s+1 = Ai,s for i ∈ {1, 2},
B̂j,s+1 = Bj,s for j ∈ {0, 1, 2} and Ĉs+1 = Cs.

If β 6= α and ρ(|β|) = Jie, i ∈ {1, 2}, then set jobs+1(β) = I, Âi,s+1 = Ai,s∪{as}, Â3−i,s+1 =

A3−i,s, B̂0,s+1 = B0,s ∪ {as}, B̂i,s+1 = Bi,s ∪ {cs}, B̂3−i,s+1 = B3−i,s and Ĉs+1 = Cs ∪ {cs}.
Say that I is demoted to β.

If I was relevant above yk(I) at stage s, say that I is relevant above yk−1(I) at stage s+ 1.

(Case 1.4) If η = α is active due to Case 1.4 and has the diagonalisation witness (x, y)

assigned, then let cs = x and as = y and

(a) if |α| = 3e, set Â1,s+1 = A1,s ∪ {as}, Â2,s+1 = A2,s, B̂0,s+1 = B0,s ∪ {as}, B̂1,s+1 =

B1,s ∪ {cs}, B̂2,s+1 = B2,s and Ĉs+1 = Cs ∪ {cs}.

(b) if |α| = 3e + i with i ∈ {1, 2}, set Âi,s+1 = Ai,s ∪ {cs}, Â3−i,s+1 = A3−i,s, B̂0,s+1 =

B0,s ∪ {cs}, B̂i,s+1 = Bi,s ∪ {cs}, B̂3−i,s+1 = B3−i,s and Ĉs+1 = Cs ∪ {cs}.

(Case 2) If η = β is active due to Case 2 and is α-linked at stage s+ 1, let I = jobs(β) and

let k be such that I is relevant above yk(I) at stage s. Let ρ(|β|) = Jie.

Let as be the greatest number y ∈ I such that

y ≥ cs, (43)

y /∈ (A1,s ∪A2,s ∪B0,s), and (44)

[cs + 1, y] is E-safe at stage s for E = {ρ(|β′|) : β′0 < β0}. (45)

(Note that such a number exists, because by (39) y = cs satisfies all three conditions.)

(a) If [cs+1, cs+yk(I)] is {ρ(|β′|) : β′0 v β0}-safe and [cs+1, cs+yk(I)]∩(A1,s∪A2,s∪B0,s) = ∅,
or if {cs + 1} is not {ρ(|β′|) : β′0 v β0}-safe at stage s, set Âi,s+1 = Ai,s ∪{cs}, Â3−i,s+1 =

A3−i,s, B̂0,s+1 = B0,s∪{cs}, B̂i,s+1 = Bi,s∪{cs}, B̂3−i,s+1 = B3−i,s and Ĉs+1 = Cs∪{cs}.
Set jobs+1(β) ↑ and cands+1(α) = I.

(b) If {cs+1} is {ρ(|β′|) : β′0 v β0}-safe at stage s, but [cs+1, cs+yk(I)] is not or has nonempty

intersection with A1,s ∪ A2,s ∪ B0,s, then set Âi,s+1 = Ai,s ∪ {as}, Â3−i,s+1 = A3−i,s,

B̂0,s+1 = B0,s ∪ {as}, B̂i,s+1 = Bi,s ∪ {cs}, B̂3−i,s+1 = B3−i,s and Ĉs+1 = Cs ∪ {cs}.

82

In all cases, initialise all nodes α′ > δs, i.e. declare all intervals I ′ assigned to these nodes

unassigned and not relevant above any number, set cands+1(α′) ↑ and set jobs+1(β̃) ↑ for all β̃

with jobs(β̃) = I ′. Also initialise every node α′ > α.

Let

Z = {min(I ′) : (∃β̃0 v δs)(jobs(β̃)) = I ′ and I ′ is an α′-interval for some α′ initialised at stage s+ 1}.

If Â1,s+1 6= A1,s, set A1,s+1 = Â1,s+1 ∪ Z, A2,s+1 = Â2,s+1, B0,s+1 = B̂0,s+1 ∪ Z, B1,s+1 =

B̂1,s+1 ∪ Z, B2,s+1 = B̂2,s+1 and Cs+1 = Ĉs+1 ∪ Z.

Otherwise set A1,s+1 = Â1,s+1, A2,s+1 = Â2,s+1 ∪Z, B0,s+1 = B̂0,s+1 ∪Z, B1,s+1 = B̂1,s+1,

B2,s+1 = B̂2,s+1 ∪ Z and Cs+1 = Ĉs+1 ∪ Z.

For all nodes α′, unless stated otherwise before, leave the assignment of intervals and diag-

onalisation witnesses, the values of cand(α) and job(α) and the relevant parts of α-intervals at

stage s+ 1 as they were at stage s.

Quit the stage.

4.6.8 Verification

Lemma 4.20 (True Path Lemma). It holds that TP = lim infs→∞ δs, i.e. if α ∈ T , then

α < TP if and only if α v δs for infinitely many s and there are only finitely many s such that

δs <L α.

Proof. Analogous to the proof of Theorem 3.20.

Lemma 4.21. For every α-interval I and every stage s exactly one of the following holds:

• I is not assigned to α at stage s

• cands(α) = I

• jobs(β) = I for some β v α

• α has a diagonalisation witness (x, y) with x, y ∈ I assigned at stage s

Proof. Immediate by induction on s.

Lemma 4.22. Let I be an α-interval and let β be a node such that β0 v α. Assume that I

is demoted to β and is relevant above yk := yk(I) at stage t0 + 1 and that for some r ≤ yk

there are minimal stages t0 < t1 < . . . < tr such that I ∩ Ctn+1 6= I ∩ Ctn for n ∈ {0, . . . , r}
and α is not initialised at any stage s ∈ [t0 + 1, tr + 1]. Furthermore assume that {ctn} is

{ρ(|β′|) : β′0 v β0}-safe at stage tn+1 for 0 ≤ n < r.

Then for 1 ≤ n ≤ r the node β is active due to Case 2(b) at stage tn + 1 if n < yk and due

to Case 2(a) at stage tn + 1 if n = yk, and for 0 ≤ n ≤ r it holds that

[ctn + 1, ctn + n] ∩ (A1,tn ∪A2,tn ∪B0,tn) = ∅ and ctn + n+ 1 ∈ B0,tn . (46)

83

4. Lattice embeddings into RibT and Rcl

Proof. The proof is by induction on n. If n = 0, then the first part of (46) is trivially true

because [ctn + 1, ctn + n] = ∅. For the second part, note that candt0(α) = I. Let s < t0

be maximal such that I ∩ Cs 6= I ∩ Cs+1. Then cands+1(α) = I. Hence by Lemma 4.21 the

enumeration into I∩C at stage s+1 must be caused by some node being active due to Case 1.1,

Case 1.2 or Case 2(a). In each case, cs ∈ B0,s+1 ⊆ B0,t0 . But by (39) it holds that ct0 + 1 = cs,

so the second part of (46) is true, too.

Now fix n < r and assume that the inductive hypothesis is true for all numbers up to n.

By the inductive hypothesis, since n < r ≤ yk, at stage tn + 1 either I was demoted to β

(if n = 0) or β was active due to Case 2(b). Hence jobtn+1(β) = I. Then still jobtn+1
(β) = I.

Since I ∩ Ctn+1+1 6= I ∩ Ctn+1
, but I is not initialised at stage tn+1 + 1, β must be active due

to Case 2 at stage tn+1 + 1.

By (39) we know that ctn+1
= ctn − 1 and hence ctn+1

+ (n+ 1) + 1 = ctn + n+ 1 ∈ B0,tn ⊆
B0,tn+1

by the inductive hypothesis. Hence the second part of (46) is true for n+1. For the first

part, since [ctn+1
+1, ctn+1

+(n+1)] = [ctn , ctn +n] and [ctn , ctn +n]∩(A1,tn ∪A2,tn ∪B0,tn) = ∅
by the inductive hypothesis and by (39), it suffices to show that no number from [ctn , ctn + n]

is enumerated into A1, A2 or B0 at any stage t ∈ [tn + 1, tn+1]. In fact, since each such

enumeration is accompanied by an enumeration of a new number from I into C at the same

stage and since I ∩ Ctn+1 = I ∩ Ctn+1
, it suffices to show that no number from [ctn , ctn + n] is

enumerated into A1, A2 or B0 at stage tn + 1. This means to show that atn > ctn + n = ct0 .

If n = 0, this is clear by definition of at0 in Case 1.3. If n > 0, by (42), there are at least

yk+1(I) numbers z ∈ [ct0 + 1, at0] which are not in A1,t0 ∪ A2,t0 ∪ B0,t0 . Since at each of the

stages t0 +1, t1 +1, . . . , tn−1 +1 only one such number z is enumerated into A1∪A2∪B0, while

at stages t ∈ [t0 + 1, tn]−{t0 + 1, t1 + 1, . . . , tn−1 + 1} there are no such enumerations, there are

still yk+1(I)− n ≥ yk − n > 0 numbers z ∈ [ct0 + 1, at0] which are not in A1,tn ∪A2,tn ∪B0,tn .

Let y be the greatest such number. Then [ct0 + 1, y] was {ρ(|β′|) : β′0 < β0}-safe at stage

t0 by (41). On the other hand each number x ∈ [ctn + 1, ct0] has the form x = ctm for some

m ∈ [0, n− 1]. Since by the hypothesis {ctm} is {ρ(|γ|) : γ0 v β0}-safe at stage tm+1, hence at

stage tn, it follows that [ctn + 1, y] is {ρ(|β′|) : β′0 < β0}-safe at stage tn. Hence the number y

satisfies equations (43) to (45) with tn instead of s. It follows that atn ≥ y > ct0 .

This completes the proof of (46).

Now if 1 ≤ n+ 1 < yk, then it follows from the second part of (46) (for n+ 1) that β must

be active due to Case 2(b) at stage tn+1 + 1.

If n+ 1 = yk, then [ctn+1
+ 2, ct0] = [ctn + 1, ctn+1

+ yk] is {ρ(|β′|) : β′0 v β0}-safe at stage

tn as we argued above, and {ctn+1
+ 1} = {ctn} is {ρ(|β′|) : β′0 v β0}-safe at stage tn+1 by the

hypothesis. Together with the first part of (46) this implies that β must be active due to Case

2(a) at stage tn+1 + 1.

Lemma 4.23. Let I be an α-interval. Assume that for some k ∈ {0, . . . , ι(I) − 1} there is a

sequence of minimal stages t0 < t1 < . . . < tyk(I)+1 such that Ctn+1 ∩ I 6= Ctn ∩ I and I is

relevant above yk := yk(I) at stage tn + 1 for n ∈ {0, . . . , yk + 1}. Then there must be a stage

84

tn such that α is ready for elimination at stage tn + 1.

Proof. For n ∈ {0, . . . , yk + 1} let βtn be the node that is active at stage tn + 1. For a

contradiction assume that α is not ready for elimination at any stage tn + 1.

If I would already become relevant above yk at a stage s+ 1 before stage t0 + 1, then since

Cs ∩ I = Cs+1 ∩ I (by minimality of t0), α would get the interval I and a diagonalisation

witness assigned at stage s + 1. In this case α could only be active due to Case 1.4 at stage

t0 + 1 and never enumerate anything into C ∩ I after stage t0 + 1, contradicting the fact that

Ctyk+1 ∩ I 6= Ctyk+1+1 ∩ I. Hence I becomes relevant above yk at stage t0 + 1, i.e. βt0 = α and

I is demoted to βt1 at stage t0 + 1.

Let r be the greatest number in {0, . . . , yk} such that {ctn} is {ρ(|β′|) : β′0 v βt10}-safe

at stage tn+1 for all n < r. If r = yk, then by Lemma 4.22 βt1 is active due to Case 2(a)

at stage tyk + 1. If r < yk, then by Lemma 4.22 βt1 is active due to Case 2(b) at all stages

t1 + 1, . . . , tr + 1. Then βt1 must be active due to Case 2 at stage tr+1 + 1, too (because α is

not initialised but a new number from I is enumerated into C at stage tr+1 + 1). But since

{ctr+1 + 1} = {ctr} is not {ρ(|β′|) : β′0 v βt10}-safe at stage tr+1, βt1 is active due to Case 2(a)

at stage tr+1 + 1.

This shows that there is a least stage tp with p ≤ yk such that βt1 is active due to Case 2(a)

at stage tp + 1. Then candtp+1(α) = I. Since α is not initialised or active due to Case 1.3 at

stage tp+1 + 1 (otherwise I would not be relevant above yk any more), it must be active due to

Case 1.2, proving the claim.

Lemma 4.24. Let I be an α-interval and let

E = {β : β0 v α and ρ(|β|) is a join requirement} = {β′0, . . . , β′|E|−1}

with β′0 < β′1 < . . . < β′|E|−1. Let y0 = y0(I). Then for ē ∈ {0, . . . , |E| − 1} there is no sequence

of minimal stages s0 < s1 < . . . < s|E|·y0
such that I is demoted to β′ē at stage sn + 1 for

n ∈ {0, . . . , |E|·y0} and I is not demoted to any β′e with e < ē at any stage s ∈ [s0+1, s|E|·y0
+1].

Proof. For a contradiction assume that there is such a sequence s0 < s1 < . . . < s|E|·y0
for some

ē. We show by induction on m that, for m ∈ {0, . . . , |E| · y0},

ē∑
e=0

|{w ≤ csm : w /∈We0,sm}| ≤ (ē+ 1) · (csm + 1)−m, (47)

where ρ(|β′e|) = J
i(e)
〈e0,e1,e2〉 for e < |E|.

For m = 0 (47) is trivially true, because |[0, cs0]| = cs0 + 1− 0.

Fix m < |E| · y0 and assume that (47) is true for m. Define a sequence of stages sm = t0 <

t1 < . . . < tp+1 = sm+1 such that {tq : 0 ≤ q ≤ p + 1} = {t ∈ [sm, sm+1] : I ∩ Ct 6= I ∩ Ct+1}.
Let βtq be the node that is active at stage tq + 1.

85

4. Lattice embeddings into RibT and Rcl

We will show that, for all q ∈ {0, . . . , p} and all e ≤ ē,

|{w ≤ ctq+1 : w /∈We0,tq+1}| ≤ |{w ≤ ctq : w /∈We0,tq}| − 1 (48)

and that there is some q ∈ {0, . . . , p} and some e ≤ ē such that

|{w ≤ ctq+1
: w /∈We0,tq+1

}| ≤ |{w ≤ ctq : w /∈We0,tq}| − 2. (49)

Then, using the inductive hypothesis (47) and t0 = sm we know that

ē∑
e=0

|{w ≤ ct0 : w /∈We0,t0}| ≤ (ē+ 1) · (ct0 + 1)−m,

and by (48) and (49) it follows that, for q ∈ {0, . . . , p},

ē∑
e=0

|{w ≤ ctq+1 : w /∈We0,tq+1}| ≤ (ē+ 1) · (ct0 + 1)−m− (q + 1) · (ē+ 1)

and

ē∑
e=0

|{w ≤ ctp+1
: w /∈We0,tp+1

}| ≤ (ē+ 1) · (ct0 + 1)−m− (p+ 1) · (ē+ 1)− 1. (50)

Since ctq+1
= ctq − 1 must hold for q ∈ {0, . . . , p}, we see that csm+1

= ctp+1
= ct0 − (p + 1).

Using (50) this implies

ē∑
e=0

|{w ≤ csm+1
: w /∈We0,sm+1

}| ≤ (ē+ 1) · (ct0 + 1)− (m+ 1)− (p+ 1) · (ē+ 1)

= (ē+ 1) · (ct0 − (p+ 1) + 1)− (m+ 1)

= (ē+ 1) · (csm+1 + 1)− (m+ 1),

i.e. (47) is true for m+ 1. So to prove (47), it suffices to prove (48) and (49).

To prove (48), fix e ≤ ē and q ∈ {0, . . . , p}. Let ρ(|β′e|) = Ji〈e0,e1,e2〉. Since I is demoted to

β′ē at stage sm + 1 = t0 + 1 and not demoted to any node below β′ē at any stage t with t0 + 1 ≤
t ≤ tp+1, it holds that β′e v β′ē v βtq v δtq and δtq (|β′e|) = 0, as well as β′e v β′ē v βtq+1

v δtq+1

and δtq+1
(|β′e|) = 0. Since βtq is active at stage tq + 1 and βtq+1

is active at stage tq+1 + 1 (due

to Case 1.2, Case 1.3 or Case 2), it follows that

ltq (J
i
〈e0,e1,e2〉) = ltq (ρ(|β′e|) > max(I), (51)

ltq+1
(Ji〈e0,e1,e2〉) = ltq+1

(ρ(|β′e|) > max(I). (52)

86

If β′e = βtq , then c = ctq is enumerated into A3−i,tq+1 − A3−i,tq or Bi,tq+1 − Bi,tq at stage

tq + 1 (note that ctq /∈ A3−i,tq ∪Bi,tq by (39)). By (51) and (52) it follows that

Φ̂
We0,tq+1

e1,tq+1
� (c+ 1) = Bi,tq+1

� (c+ 1) 6= Bi,tq � (c+ 1) = Φ̂
We0,tq

e1,tq � (c+ 1) (53)

or

Φ̂
We0,tq+1

e2,tq+1
� (c+ 1) = A3−i,tq+1

� (c+ 1) 6= A3−i,tq � (c+ 1) = Φ̂
We0,tq

e2,tq � (c+ 1). (54)

Since Φ̂e1 and Φ̂e2 are ibT-functionals, this implies

We0,tq+1 � (c+ 1) 6= We0,tq � (c+ 1), (55)

in particular there is some minimal zeq ≤ ctq in We0,tq+1 −We0,tq .

On the other hand, if β′e < βtq , then some c ∈ {atq , ctq} is enumerated into A3−i,tq+1−A3−i,tq

or Bi,tq+1−Bi,tq at stage tq+1. As above we can deduce (55) and there is some minimal zeq ≤ c
in We0,tq+1 −We0,tq . In the case that c = ctq , trivially zeq ≤ ctq . In the case that c = atq , by

the conditions on atq in Case 1.3 or Case 2 [ctq + 1, atq] is {ρ(|β′|) : β′0 < βtq}-safe at stage tq,

hence in particular [ctq + 1, atq] ⊆We0,tq . It follows that zeq ≤ ctq again.

Consequently,

{w ≤ ctq+1 : w /∈We0,tq+1} ⊆ {w ≤ ctq : w /∈We0,tq} − {zeq},

and (48) follows.

To prove (49), it suffices to show that for some q ∈ {0, . . . , p} and some e ≤ ē, ctq /∈We0,tq+1
,

whence zeq 6= ctq and

{w ≤ ctq+1 : w /∈We0,tq+1} ⊆ {w ≤ ctq : w /∈We0,tq} − {zeq , ctq},

proving (49).

For a contradiction assume that for all q ∈ {0, . . . , p} and all e ≤ ē,

ctq ∈We0,tq+1
. (56)

Let I be relevant above yk(I) at stage t0 + 1 and let r ∈ {1, . . . , p} be maximal such that

βtr = β′ē (since I is demoted to β′ē at stage t0 + 1, it must hold that βt1 = β′ē, hence such r

exists). Then from Lemma 4.22 we can conclude that r = yk(I) and that β′ē is active due to

Case 2.2(a) at stage tr + 1. Since ctr + 1 = ctr−1
∈ We0,tr by assumption, it must hold that

[ctr + 1, ctr + yk(I)] is {ρ(|β′|) : β′0 v β′ē}-safe at stage tr and [ctr + 1, ctr + yk(I)] ∩ (A1,tr ∪
A2,tr ∪ B0,tr) = ∅. Indeed, then by (39), [min(I), ctr + yk(I)] ∩ (A1,tr ∪ A2,tr ∪ B0,tr) = ∅. At

each stage t ∈ {tr + 1, . . . , tp + 1} at most one number from I is enumerated into A1 ∪A2 ∪B0

and at stages t ∈ [tr + 1, tp+1] − {tr + 1, . . . , tp + 1} no such number is enumerated into

87

4. Lattice embeddings into RibT and Rcl

A1 ∪ A2 ∪ B0. Hence |[ctp+1
+ 1, ctr + yk(I)] ∩ (A1,tp+1

∪ A2,tp+1
∪ B0,tp+1

)| ≤ p+ 1− r. Since

|[ctp+1
+ 1, ctr + yk(I)]| = ctr + yk(I)− ctp+1

= p+ 1− r + yk(I), it follows that

|{z ∈ [ctp+1 + 1, ctr + yk(I)] : z /∈ A1,tp+1 ∪A2,tp+1 ∪B0,tp+1}| ≥ yk(I) ≥ yk′(I),

where I is relevant above yk′(I) at stage tp+1. Moreover, since each c ∈ [ctp+1
+ 1, ctr + yk(I)]

is of the form c = ctq for some q ∈ [0, . . . , p], by (56) we know that [ctp+1
+ 1, ctr + yk(I)] is

{ρ(|β′|) : β′ < β and β′0 v α}-safe at stage tp+1, where β = β′ē+1 if ē < |E| − 1 and β = α

otherwise. But then by (41) and (42) at stage tp+1 + 1 the interval I is demoted to β or α

gets a diagonalisation witness from I assigned, contradicting the fact that tp+1 = sm+1 and the

hypothesis that I is demoted to β′ē at stage sm+1 + 1.

This completes the proof of (49).

Now substituting m = |E| · y0 in (47), we get

ē∑
e=0

|{w ≤ cs|E|·y0 : w /∈We0,s|E|·y0
}| ≤ (ē+ 1) · (cs|E|·y0 + 1)− |E| · y0

≤ (ē+ 1) · (cs|E|·y0 + 1− y0).

Hence there must be some e ≤ ē with

|{w ≤ cs|E|·y0 : w /∈We0,s|E|·y0
}|

≤ cs|E|·y0 + 1− y0

< |[min(I), cs|E|·y0]|

= |{w ≤ cs|E|·y0 : w ∈ I and w /∈ A1,s|E|·y0
∪B0,s|E|·y0

∪B1,s|E|·y0
∪ Cs|E|·y0 }|.

Then α is ready for elimination at stage s|E|·y0
+1 and I is not demoted to β′ē, contradicting

the assumption.

Lemma 4.25. Let I be an α-interval such that I ⊆ C and such that there is a node β with

β0 < α. Let I0 = [min(I), yι(I)(I)], let t0 < . . . < t|I0|−1 be such that for n ∈ {0, . . . , |I0| − 1},
at stage tn + 1 the number ctn = yι(I)(I)− n is enumerated into C and let βtn be the node that

is active at stage tn + 1. Then either α is initialised and the assignment of I to α is cancelled

at stage t|I0|−1 + 1, or candt|I0|−1+1(α) = I and α 6v δs for any s > t|I0|−1.

Proof. We claim that there is some m ∈ {0, . . . , |I0| − 2} such that α is ready for elimination

at stage tm + 1. Let E = {β′ : β′0 v α} = {β′0, . . . , β′|E|−1} with β′0 < β′1 . . . < β′|E|−1. Note

that by the hypothesis E 6= ∅. By Lemma 4.23, if for some k ∈ {0, . . . , ι(I) − 1} there is a

sequence of stages tn + 1 < tn+1 + 1 < . . . < tn+yk+1 + 1 ≤ t|I0|−2 + 1 at which I is relevant

above yk := yk(I), then the claim is true.

88

For a contradiction assume that there is no such sequence and no m as above. Since

candt0+1(α) = I at stage t0 + 1 (when I becomes assigned to α), α must be active due to Case

1.3 at stage t1 + 1 and I becomes relevant above yι(I)−1. Hence I is relevant above yι(I)(I) at

stage tn + 1 if and only if n = 0. Using the assumption that I is relevant above yk at at most

yk + 1 many stages tn + 1 for k ∈ {0, . . . , ι(I)− 1}, we see that there are at most

1 +

ι(I)−1∑
k=0

(yk + 1) = 1 +

ι(I)−1∑
k=0

(2k(y0 + k) + 1)

= 1 +

ι(I)−1∑
k=0

(2 · 2k(y0 + k)− 2k(y0 + k) + 1)

< 1 +

ι(I)−1∑
k=0

(2k+1(y0 + (k + 1))− 2k(y0 + k))

= 1 +

ι(I)−1∑
k=0

(yk+1 − yk)

= 1 + yι(I)(I)− y0(I)

= |I0| − 1

many stages tn+ 1, n ∈ {0, . . . , |I0|−1} at which I is relevant above some yk(I) with k ≥ 0.

In particular, at stage t|I0|−2 + 1 it is relevant above some yk(I) with k < 0. Since I is relevant

above yι(I)(I) at stage t0 + 1, there must be at least ι(I) + 1 many stages ti0 + 1, . . . , tiι(I) + 1

(with 0 < i0 < . . . < iι(I) ≤ |I0| − 2 chosen to be minimal) at which α is active due to Case 1.3

and the number yk that I is relevant above is decreased.

For e ∈ {0, . . . , |E| − 1}, let

De = {t ∈ {ti0 , . . . , tiι(I)} : jobt+1(β′e) = I}.

Then each tik , 0 ≤ k ≤ ι(I) is in De for exactly one e. We show that there must be some e

such that

|De| ≥ (|E| · y0 + 1) · (
∑
e′<e

|De′ |+ 1). (57)

If this were not true, then for all e < |E|,

|De| < (|E| · y0 + 1) · (y0 + 2)2e, (58)

as we can see by induction on e: In fact, if (57) fails, then |D0| < (|E| · y0 + 1) = (|E| · y0 + 1) ·

89

4. Lattice embeddings into RibT and Rcl

(y0 + 2)2·0, and once we have shown that |De′ | < (|E| ·y0 + 1) · (y0 + 2)2e′ for e′ ≤ e, we see that

|De+1| < (|E| · y0 + 1) · (
e∑

e′=0

|De′ |+ 1) [by failure of (57)]

< (|E| · y0 + 1) · (
e∑

e′=0

(|E| · y0 + 1) · (y0 + 2)2e′ + 1) [by inductive hypothesis]

≤ (|E| · y0 + 1) · ((|E| · y0 + 1)
(y0 + 2)2e+2 − 1

(y0 + 2)2 − 1
+ 1)

≤ (|E| · y0 + 1) · (((y0 + 2)2 − 1)
(y0 + 2)2e+2 − 1

(y0 + 2)2 − 1
+ 1) [since 0 < |E| ≤ |α| < y0]

= (|E| · y0 + 1) · (y0 + 2)2(e+1),

proving (58) for e+ 1.

But then it also follows that

(y0 + 2)2|E| = ι(I) + 1 [by definition of ι(I) and y0]

=

|E|−1∑
e=0

|De| [since (D0, . . . D|E|−1) is a partition of {ti0 , . . . , tiι(I)}]

<

|E|−1∑
e=0

(|E| · y0 + 1) · (y0 + 2)2e [by(58)]

= (|E| · y0 + 1) ·
|E|−1∑
e=0

(y0 + 2)2e

≤ ((y0 + 2)2 − 1) · (y0 + 2)2|E| − 1

(y0 + 2)2 − 1

= (y0 + 2)2|E| − 1,

which is not possible. This shows that (57) must be true for some e.

Let ē be the least e such that (57) holds. Assume that Dē = {tj0 , . . . , tj|Dē|−1
} with tj0 <

. . . < tj|Dē|−1
. Since there are at least

∑
e<ē |De|+ 1 pairwise disjoint sequences of |E| · y0 + 1

stages tjn , . . . , tjn+|E|·y0
in Dē, there must be at least one such sequence with

[tjn , tjn+|E|·y0
] ∩De = ∅ for all e < ē. (59)

But the existence of such a sequence is a contradiction to Lemma 4.24. We have thus proven

that α is ready for eliminiation at stage tm + 1 for some m ∈ {0, . . . , |I0| − 2}.

Now assume that α is not initialised at stage t|I0|−1 + 1. Let m < |I0| − 1 be such that α is

ready for elimination at stage tm + 1, that is

|{x ≤ ctm : x /∈We0,tm}| < |{x ≤ ctm : x ∈ I}|, (60)

90

for some β′0 v α with ρ(|β′|) = Ji
′

e′ , e
′ = 〈e′0, e′1, e′2〉. We claim that α is ready for elimination

at stage tm+1 + 1, too.

In fact, α requires attention at stage tm + 1 and – since candtm+1
(α) = candtm+1(α) = I –

at stage tm+1 + 1. Hence

ltm(Ji
′

e′) > max(I)

and

ltm+1
(Ji
′

e′) > max(I).

Since (using (39)) ctm is enumerated into Bi′,tm+1 − Bi′,tm or A3−i′,tm+1 − A3−i′,tm at stage

tm + 1, it follows that

Φ̂
We′0,tm+1

e′1,tm+1
� (ctm + 1) = Bi′,tm+1

� (ctm + 1) 6= Bi′,tm � (ctm + 1) = Φ̂
We′0,tm
e′1,tm

� (ctm + 1)

or

Φ̂
We′0,tm+1

e′2,tm+1
� (ctm + 1) = A3−i′,tm+1

� (ctm + 1) 6= A3−i′,tm � (ctm + 1) = Φ̂
We′0,tm
e′2,tm

� (ctm + 1)

Consequently, since Φ̂e′1 and Φ̂e′2 are ibT-functionals, there is some z ≤ ctm in We′0,tm+1
−

We′0,tm
. Hence

|{x ≤ ctm+1 : x /∈We′0,tm+1
| < |{x ≤ ctm : x /∈We′0,tm

}|. (61)

Also,

|{x ≤ ctm+1 : x ∈ I}| = |{x ≤ ctm : x ∈ I}| − 1, (62)

since ctm = ctm+1
+ 1.

Using (60), (61) and (62) it follows that

|{x ≤ ctm+1 : x /∈We′0,tm+1
}| < |{x ≤ ctm+1 : x ∈ I}|. (63)

Hence α is ready for elimination at stage tm+1 + 1.

By induction, this shows that α is ready for elimination at every stage tm′ + 1, m′ ∈
{m, . . . , |I0| − 1}. In particular, candt|I0|−1+1(α) = I and |{x ≤ min(I) : x /∈ We0,t|I0|−1

}| = 0

and it follows that for s > t|I0|−1

Φ̂
We′0,s

e′1,s
(min(I)) = Φ̂

We′0,t|I0|−1

e′1,t|I0|−1
(min(I)) = Bi′,t|I0|−1

(min(I)) = 0 6= 1 = Bi′,s(min(I))

if i′ = 1 and

Φ̂
We′0,s

e′2,s
(min(I)) = Φ̂

We′0,t|I0|−1

e′2,t|I0|−1
(min(I)) = A3−i′,t|I0|−1

(min(I)) = 0 6= 1 = B3−i′,s(min(I))

if i′ = 2.

Then ls(J
i′

e′) ≤ min(I) and α 6v δs for all s > t|I0|−1, proving the lemma.

91

4. Lattice embeddings into RibT and Rcl

Lemma 4.26. (i) Let β0 v δs and let jobs(β)) = I be an α-interval. Assume that α ≤ δs and

for every β′ with β′0 v β0 it holds that ls(ρ(|β′|)) > max(I). Then β requires attention and is

α-linked at stage s+ 1.

(ii) Let α v δs and let cands(α) = I. Assume that for every β′ with β′0 v α it holds

that ls(ρ(|β′|)) > max(I) and if jobs(β
′) = I ′ is an α′-interval, then α ≤ α′. Then α requires

attention at stage s+ 1.

Proof. (i) From Lemma 4.25 it is clear that I 6⊆ Cs, because otherwise, if the last enumeration

into I ∩C were at some stage t ≤ s, then candt′(α) = I for all t′ ≥ t until α becomes initialised

and the assignment of I to α is cancelled, contradicting the fact that jobs(β) = I. Note that

by (39) the numbers from I are enumerated into C in decreasing order (unless the assignment

of I to α is cancelled, which does not happen until stage s). Moreover, for i ∈ {1, 2} and

j ∈ {0, 1, 2}, a number b ∈ I is enumerated into Ai or Bj at some stage only if a number c ∈ I
with c ≤ b is enumerated into C at the same stage. From these facts it follows that there is

cs ∈ I satisfying (39) at stage s and hence that β requires attention and is α-linked at stage

s+ 1.

(ii) Again, from Lemma 4.25 it follows that I 6⊆ Cs (there is a node β with β0 v α, because

otherwise cands(α) were undefined at every stage). As in (i) we can conclude that cs satisfying

(39) exists.

Let β be the least node such that β0 v α and ρ(|β|) is a join requirement, if such a node

exists, and β = α otherwise. Then (41) is trivially satisfied for every y > cs.

At the stage s0+1 when I is assigned to α, for cs0 = yι(I)(I) there are yι(I)+1(I)−yι(I)(I)−1

numbers z > cs0 with z ∈ I − (A1,s0 ∪A2,s0 ∪B0,s0). Since a new number from I is enumerated

into A1∪A2∪B0 only if a new number from I is enumerated into C, and since the numbers from

I are enumerated into C in decreasing order, it still holds that there are yι(I)+1(I)−yι(I)(I)−1

numbers z ≥ cs with z ∈ I − (A1,s ∪A2,s ∪B0,s). But

yι(I)+1(I)− yι(I)(I)− 1 = 2ι(I)+1(y0(I) + (ι(I) + 1))− 2ι(I)(y0(I) + ι(I))− 1

≥ 2ι(I)(y0(I) + ι(I))

= yι(I)(I)

≥ yk(I).

for k ≤ ι(I). Hence for the greatest number y ∈ I with y /∈ (A1,s ∪A2,s ∪B0,s), (42) is true. It

follows that as exists and α requires attention due to Case 1.3 at stage s+ 1.

Lemma 4.27. (i) Let α < TP. Then α is initialised only finitely many times.

92

(ii) Let β0 < TP. Then for each interval I, there are only finitely many stages s such that

jobs(β) = I.

Proof. (i) The proof is by induction on |α|. Let the claim be true for all α′ < α and let s0

be a stage such that no α′ < α is initialised at any stage s ≥ s0 and such that α ≤ δs for all

s ≥ s0. Such a stage exists by the True Path Lemma. Then whenever an interval is assigned to

some α′ < α after stage s0, this assignment is permanent. Hence there are only finitely many

α′-intervals for α′ < α defined during the construction. Whenever α is initialised at some stage

s ≥ s0, this is because some α′ < α is active at stage s. Then either α′ gets a diagonalisation

witness assigned at stage s – which is possible only once for each α′, because these assignments

are permanent, too –, or a new number from some α′-interval is enumerated into C at stage s,

which by the above observation can happen only finitely often. The claim follows.

(ii) For a contradiction assume that there is some least node β0 < TP such that there exists

an α-interval I with jobs(β) = I for infinitely many s. Note that jobs(β) = I for almost every

s. This holds because whenever jobs(β) = I and jobs+1(β) 6= I, then either α is initialised at

stage s+ 1 and jobs′(β) 6= I for all s′ ≥ s+ 1, or β is active due to Case 2.2 and a new number

cs is enumerated into I ∩ Cs+1 − I ∩ Cs. Since I is finite, the latter can happen only finitely

often.

Let s0 be the least stage such that jobs(β) = I for all s ≥ s0. In particular, for s+ 1 ≥ s0,

α is not initialised at stage s + 1; hence α ≤ δs. By the fact that β0 < TP, it holds that

lims→∞ ls(ρ(|β′|)) = ∞ for every β′ with β′0 v β0. Hence at almost every β0-stage s ≥ s0 it

holds that β0 v δs, α ≤ δs and ls(ρ(|β′|)) > max(I) for β′0 v β0. By Lemma 4.26 β requires

attention and is α-linked at stage s+ 1 for each such s.

Note that by the True Path Lemma there are infinitely many β0-stages. We can now

conclude that β must be active at infinitely many stages s ≥ s0. Let s1 be the least β0-stage

after stage s0 such that β requires attention and is α-linked at stage s + 1 whenever s ≥ s1

is a β0-stage. Then no node α′ w β0 is active at stages s > s1. This implies that there are

only finitely many α′-intervals with α′ w β0 defined during the construction. By the True Path

Lemma, the same holds for α′-intervals with α′ <L β0. Finally, since β0 is initialised only

finitely often by (i), there are only finitely many α′-intervals with α′ v β defined during the

construction. Hence by minimality of β there is a stage s2 ≥ s1 such that for all β′ < β, all

α′-intervals I ′ with α′ ≤ β0 or α′ w β0 and all s ≥ s2, jobs(β
′) 6= I ′. In other words, whenever

I ′ = jobs(β
′) for such β′, I ′ and s, it holds that β0 <L α

′.

Hence no β′ < β requires attention due to Case 2 at any stage s + 1 where s ≥ s3 is a

β0-stage. Moreover, no α′ v β requires attention due to Case 1.1, Case 1.2, Case 1.3 or Case

1.4 at any stage s ≥ s3, because otherwise β0 and α were initialised and I 6= jobs+1(β). It now

follows that β receives attention and is active at every stage s + 1 where s ≥ s3 is a β0-stage.

Hence β is active due to Case 2 infinitely often.

93

4. Lattice embeddings into RibT and Rcl

But each time that happens, a new number from I is enumerated into C, which is impossible.

This is a contradiction, so the claim must be true.

We are now ready to show that all requirements are satisfied.

Lemma 4.28. It holds that A1 ≤ibT B0, B1 ≤ibT C, A2 ≤ibT B0, B2 ≤ibT C, B0 = A0 ∪ A1

and A0 ∩A1 = ∅.

Proof. The desired reductions hold by permitting. This and the fact that J0 is true can directly

be verified by considering the conditions and the respective actions in the various cases of the

construction.

Lemma 4.29. Every meet requirement M0
e (e = 〈e0, e1, e2〉 ∈ N) is satisfied.

Proof. Let n = ρ−1(M0
e) and let γ < TP be the unique node of length n on the true path.

Assume that the premise of M0
e is true, that is We0 = Φ̂B1

e1 = Φ̂B2
e2 (otherwise M0

e is trivially

satisfied). Since γ0 < TP by the definition of the true path, due to the True Path Lemma there

are infinitely many γ0-stages. By Lemma 4.27 (i), there is a γ0-stage s0 such that γ0 is never

initialised at any stage s ≥ s0. Then for no node α ≤ γ any numbers from an α-interval are

enumerated into B1 or B2 at any stage s ≥ s0.

Now, in order to compute We0(x) for some given x, compute the least γ0-stage s1 ≥
max({s0, x}) such that ls1(M0

e) > x, such that ls1(ρ(|β|)) > max(I) for every node β0 v γ0 and

every interval I assigned to any node up to stage x, and such that x < min(I ′) for every interval

I ′ such that jobs1(β) = I ′ for some β0 v γ0. Such a stage exists because lims→∞ ls(ρ(|β|)) =∞
for all β0 v γ0 and by Lemma 4.27 (ii). We claim that x ∈We0 if and only if x ∈We0,s1 .

Let s1 ≤ s2 ≤ . . . be the sequence of γ0-stages, starting with s1. An inductive proof shows

that for every n ≥ 1, there is at most one interval I with min(I) ≤ x and jobs(β) = I for any

s ∈ (sn, sn+1] and any β0 v γ0. Indeed, any such interval I must be an α-interval for some

α w γ0. This is true because if I is an α-interval with α < γ0, then I 6= jobs1(β) for any

β0 v γ0 and I is never demoted at stages t ≥ s0 (otherwise γ0 would be initialised at stage t);

if I is an α-interval with γ0 <L α, then the assigment of I to α is cancelled at stage s1 + 1, or

I only becomes assigned to α after stage s1 + 1, in which case min(I ′) > s1 ≥ x.

So let above claim be true for n − 1. By the inductive hypothesis there is at most one

interval I with min(I) ≤ x and jobsn(β′) for any β′0 v γ0. If there is no demotion of such an

interval at stage sn + 1, then the same holds with sn + 1 in place of sn. On the other hand,

if any α-interval I with min(I) ≤ x is demoted to any β with β0 v γ0 at stage sn + 1, then

for all β′0 v α (hence by the argument from the previous paragraph, for all β′0 v γ0) and

all α′-intervals I ′ with jobsn(β′) = I ′ it holds that α ≤ α′ and in fact α < α′, because α can

only have one interval assigned at any time; but then all these α′ are initialised at stage sn + 1

and jobsn+1(β′) is set to undefined for all such β′ 6= β. Hence I is the only interval I ′ with

min(I ′) ≤ x and jobsn+1(β′) = I ′ for any β′0 v γ0.

94

Furthermore, at stages t + 1 ∈ (sn + 1, sn+1] there are no demotions of α-intervals I with

min(I) ≤ x, because otherwise γ0 v α v δt, as we argued, contradicting the choice of sn and

sn+1. This shows that the claim above holds for n.

We claim that, for n ≥ 1,

B1,sn+1
� (x+ 1) = B1,sn � (x+ 1) or B2,sn+1

� (x+ 1) = B2,sn � (x+ 1). (64)

Indeed, the only way that numbers y ≤ x can be enumerated into B1 or B2 at stages s + 1

with sn + 1 < s + 1 ≤ sn+1 is because some node β with β0 < γ0 is active due to Case 2

and y is enumerated into an α-interval I = jobs(β), or because y does belong to an α′-interval,

where α′ is initialised at stage s + 1. As we have argued, the first reason holds for only one

interval I. Since α 6v δs for any s ∈ (sn, sn+1), the interval I is not demoted at any stage

s+ 1 ∈ (sn + 1, sn+1]. But between two demotions of I numbers from I are enumerated into at

most one of B1 or B2 (because each node β performs enumerations into at most one of these

sets when it is active due to Case 2). On the other hand, if y belongs to an α′-interval, where

α′ is initialised at stage s+ 1, then α′ = γ0, since nodes α′ ≤ γ0 are not initialised and nodes

α′ >L γ0 have intervals I ′ with min(I ′) > x assigned. But then α′ is only initialised because

some β0 with β0 < γ0 is active due to Case 2 at stage s + 1, and y is enumerated into B1 if

β enumerates some number into B1 and into B2 otherwise. This shows that we may neglect

enumerations into B1 or B2 which are due to initialisation at stages s with sn + 1 < s ≤ sn+1.

Hence

B1,sn+1
� (x+ 1) = B1,sn+1 � (x+ 1) or B2,sn+1

� (x+ 1) = B2,sn+1 � (x+ 1). (65)

Assume that B1,sn+1
� (x + 1) 6= B1,sn+1 � (x + 1). Let I be an α-interval such that some

y ∈ I with y ≤ x is enumerated into B1 at some stage s ∈ (sn + 1, sn+1]. Since I is not

demoted at any such stage s, there is some β with β0 v γ0 such that either jobsn(β) = I or

I is demoted to β at stage sn + 1. If I is demoted at stage sn + 1, then ρ(|β|) = J1
e′ for some

e′, because the enumeration of y into B1 must be caused by β being active due to Case 2.

Then no number is enumerated into I ∩B2 at stage sn + 1, that is B2,sn � (x+ 1) = B2,sn+1 �

(x+ 1) = B2,sn+1
� (x+ 1) by (65). If I is not demoted at stage sn+ 1, then β0 v γ0 v δsn and

α ≤ δsn (otherwise α were cancelled at stage sn+1 and y would not be enumerated later). Also,

lsn(ρ(|β′|)) ≥ ls1(ρ(|β′|)) > max(I) for all β′ with β′0 v β0 (note that I must become assigned

to α up to stage x, because after stage x only intervals I ′ with min(I ′) > x are assigned to

nodes). By Lemma 4.26, β requires attention at stage sn + 1. Since there are no nodes β′ with

β′0 < β0 and jobsn(β′) = I ′ for any I ′ with min(I ′) ≤ x and since no node α′ v β can be active

due to Case 1.1, Case 1.2, Case 1.3 or Case 1.4 at stage sn+1, no node below β enumerates any

number z ≤ x into B2 at stage sn + 1, while by β requiring attention nodes above β cannot be

active at stage sn + 1. If β is active at stage sn + 1, then there is neither an enumeration into

B2 at stage sn + 1, because otherwise this enumeration would be a number from I – but then

95

4. Lattice embeddings into RibT and Rcl

again there were no enumeration of numbers from I into B1 until the next demotion of I, that

is until stage sn+1. Hence in all cases B2,sn � (x + 1) = B2,sn+1 � (x + 1) = B2,sn+1
� (x + 1).

This completes the proof of (64).

From (64) it follows that, if x /∈We0,s1 , inductively

Φ̂B1,sn
e1,sn (x) = Φ̂B2,sn

e2,sn (x) = We0,sn(x) = 0.

This is true for s1, because ls1(M0
e) > x. If it is true for sn, then B1,sn+1

� (x+ 1) = B1,sn �

(x+ 1) or B2,sn+1
� (x+ 1) = B2,sn � (x+ 1). If, say B1,sn+1

� (x+ 1) = B1,sn � (x+ 1), then

0 = Φ̂B1,sn
e1,sn (x) = Φ̂B1,sn+1

e1,sn+1
(x) = Φ̂B2,sn+1

e2,sn+1
(x) = We0,sn+1

(x),

proving the equality for sn+1.

Since We0(x) = limn→∞We0,sn(x), this implies that We0(x) = 0.

Lemma 4.30. Every meet requirement Mi
e (i ∈ {1, 2}, e = 〈e0, e1, e2〉 ∈ N) is satisfied.

Proof. Let n = ρ−1(Mi
e) and let γ < TP be the unique node of length n on the true path.

Assume that the hypothesis of Mi
e is true, that is We0 = Φ̂B0

e1 = Φ̂Bie2 (otherwise Mi
e is trivially

satisfied). Since γ0 < TP by the definition of the true path, due to the True Path Lemma there

are infinitely many γ0-stages. By Lemma 4.27(i), there is a γ0-stage s0 such that γ0 is never

initialised at any stage s ≥ s0. Then for no node α ≤ γ any numbers from an α-interval are

enumerated into B0 or Bi at any stage s ≥ s0.

Now, in order to compute We0(x) for some given x with oracle Ai � (x + 1), compute the

least γ0-stage s1 ≥ max({s0, x}) such that Ai,s1 � (x+1) = Ai � (x+1), such that ls1(Mi
e) > x,

such that ls1(ρ(|β|)) > max(I) for every node β0 v γ0 and such that x < min(I ′) for every

interval I ′ such that jobs1(β) = I ′ for some β0 v γ0. Such a stage exists by Lemma 4.27 (ii).

Let s1 ≤ s2 ≤ . . . be the sequence of γ0-stages, starting with s1. We claim that, for n ≥ 2,

B0,sn+1
� (x+ 1) = B0,sn � (x+ 1) or Bi,sn+1

� (x+ 1) = Bi,sn � (x+ 1). (66)

For a contradiction, assume that there are minimal stages t0, ti ∈ [sn, sn+1) and numbers

y0, yi ≤ x such that y0 ∈ B0,t0+1−B0,t0 and yi ∈ Bi,ti+1−Bi,ti . There must be some α0-interval

I0 such that y0 ∈ I0 and some αi-interval Ii such that yi ∈ Ii.
Note that γ0 < α0 and γ0 < αi: By the choice of s0 there are no enumerations into α-

intervals for α ≤ γ after stage s0, and nodes α >L γ0 are initialised at stage s1 + 1 and only

assigned intervals I with min(I) > x after stage s1 + 1.

We consider the following cases.

• Assume that α0 6= αi and neither α0 is initialised at stage t0 + 1 nor αi is initialised at

stage ti + 1. Since α0 6= αi, it follows that I0 6= Ii. Then also t0 6= ti. Hence there

is j ∈ {0, i} such that tj > sn. Let β0 and βi be the nodes which are active at stage

96

t0 + 1 and ti + 1, respectively. Necessarily βj v αj ; in fact βj v γ, because γ0 6v δtj and

βj v δtj . It follows that βj is active due to Case 2 at stage tj + 1. Hence jobtj (βj) = I,

and in fact jobsn+1(βj) = Ij , because αj is not active and cannot demote Ij at stages

s ∈ (sn + 1, sn+1]. There are two cases: Either jobsn(βj) = Ij , or Ij is demoted at stage

sn + 1.

If the second case holds, i.e. Ij is demoted at stage sn + 1, then αj is active and αi−j is

not active. By the conditions on demotion of I, if αi−j < αj , then there is no node β′

with β′0 v γ0 and jobsn(β′) = Ii−j ; then, since Ii−j is not demoted at stage sn + 1 and

cannot be demoted at any stage s ∈ (sn + 1, sn+1], there is no node β′ with β′0 v γ0 and

jobti−j (β
′) = Ii−j ; but then γ0 < βi−j and βi−j cannot become active at stage ti−j + 1,

a contradiction. On the other hand, if αj < αi−j , then αi−j is initialised at stage sn + 1,

which implies that ti−j = sn and contradicts the assumption on α0 and αi.

If the first case holds, i.e. jobsn(βj) = Ij , then there is no node β′ with β′0 v γ0 and

jobsn(β′) = Ii−j . Indeed, otherwise there were a stage s < sn such that jobs(β
′) = Ii−j

and Ij were demoted at stage s + 1, or the other way round. Again, this would lead

to the contradiction that one of α0 and αi would be initialised at stage s + 1. It holds

that αj ≤ δsn (otherwise αj were initialised at stage sn + 1, a contradiction again),

βj0 v γ0 v δsn and for every β′0 v βj0 we know that lsn(ρ(|β′|)) > ls1(ρ(|β′|)) > max(I)

by the choice of s1. Hence by Lemma 4.26 (a) βj requires attention at stage sn + 1. A

fortiori, αi−j is not active and Ii−j is not demoted at stage sn + 1. Again, since Ii−j

cannot be demoted at any stage s ∈ (sn + 1, sn+1], there is no node β′ with β′0 v γ0 and

jobti−j (β
′) = Ii−j ; then βi−j cannot be active at stage ti−j + 1, a contradiction.

• Assume that αi is initialised at stage ti + 1. Then yi is enumerated not only into Bi, but

also into Ai,ti+1 −Ai,ti (note that yi = min(Ii) /∈ Ai,ti , because whenever a number from

Ii is enumerated into Ai, then the same or a smaller number from Ii is enumerated into

Bi; hence if min(I) were in Ai,ti , then it would also be in Bi,ti). This contradicts the

choice of s1.

• Assume that α0 is initialised at stage t0 +1 and that t0 > sn. Then there is a node β ≤ α0

which is active at stage t0 + 1. By the choice of s0, β 6<L γ0, and since γ0 6v δt0 , neither

β w γ0. Hence β v γ. Again by the choice of s0, β can only be active due to Case 2 and

is α-linked for some α ≥ γ0 at stage t0; in particular, jobt0(β) = I for some α-interval I.

By the fact that α0 is initialised at stage t0 + 1 it follows that γ0 v α < α′. Then I was

assigned to α before I0 was assigned to α0, and hence max(I) < min(I0) < x. At stage

t0 + 1 some number z0 ∈ I is enumerated into B0. Hence we can substitute y0 by z0 and

α0 by α and are in the case that α0 is not initialised at stage t0 + 1.

• Assume that α0 is initialised at stage t0 + 1 = sn + 1, but αi is not initialised at stage

ti + 1. If ti = sn, then yi is enumerated into Bi at stage sn + 1 and some number is

97

4. Lattice embeddings into RibT and Rcl

enumerated into Ai,sn+1 − Ai,sn . But then y0 is also enumerated into Ai,sn+1 − Ai,sn ,

contradicting the choice of s1.

Hence ti > sn. Let βi be the node which is active at stage ti + 1. As in the first case

considered above we conclude that either αi is active at stage sn + 1 and Ii is demoted

to βi, or jobsn(βi) = jobsn+1(βi) = Ii. Since βi enumerates yi into Bi by being active

due to Case 2, it must hold that ρ(|βi|) = Jie′ (e′ ∈ N). Hence if Ii is demoted to βi at

stage sn + 1, then asn is enumerated into Ai,sn+1 − Ai,sn ; then by the instructions for

initialisation y0 is enumerated into Ai,sn+1 − Ai,sn , too, contradicting the choice of s1.

On the other hand, if jobsn(βi) = jobsn+1(βi) = Ii, then as in the first case above we

argue that βi requires attention at stage sn + 1, and similarly to the argument above we

see that for all nodes α′ w γ0 there is no α′-interval I ′ with jobsn(β′) = I ′ for any β′

with β′0 v γ0. The latter holds for nodes α′ <L γ0, too, because if jobsn(β′) = I ′ for

an α′-interval I ′ with α′ <L γ, then by Lemma 4.27 there is a least stage s > sn with

jobsn(β′) 6= I; then α′ is initialised at stage s or β′ is active and α′-linked at stage s – in

either case, γ0 is initialised at stage s, contradicting the choice of s0.

It follows that no node β′ < βi requires attention due to Case 2 at stage sn + 1. Hence βi

receives attention and is active due to Case 2 at stage sn+1. Then βi enumerates a number

into Ai,sn+1−Ai,sn , and hence by the instructions for initialisation y0 is enumerated into

Ai,sn+1 −Ai,sn , too, contradicting the choice of s1.

• Finally, assume that none of the above holds, i.e. α0 = αi and neither α0 is initialised

at stage t0 + 1 nor αi is initialised at stage ti + 1. Then for j ∈ {0, i} the interval Ij

must already be assigned to α0 up to stage sn + 1, because αi is not active at any stage

s ∈ (sn + 1, sn+1]. In fact Ij must be assigned to α0 at stage sn or sn + 1. It now follows

that I0 = Ii, because α has only one interval assigned at any time, and if α were initialised

at stage sn + 1, then it would not get a new interval assigned at stage sn + 1.

If t0 = ti = sn, then y0 is enumerated into Ai,t0+1 −Ai,t0 , contradicting the choice of s1.

If sn < ti, let βi be the node that is active at stage ti+1. Then again jobti(βi) = I0. Since

yi is enumerated into Bi at stage ti + 1, it holds that ρ(|βi|) = Jie′ (e′ ∈ N). Moreover,

as above, βi is active at stage t0 + 1, or I0 is demoted to βi at stage t0 + 1 = sn + 1. In

either case, y0 is enumerated into Ai,t0+1−Ai,t0 , contradicting the choice of s1. The case

that sn = ti < t0 leads to a contradiction in a similar way.

Now from (66) it follows that, if x /∈We0,s2 , then for n ≥ 2,

Φ̂B0,sn
e1,sn (x) = Φ̂Bi,sne2,sn (x) = We0,sn(x) = 0.

This is true for n = 1, because ls2(Mi
e) > ls1(Mi

e) > x. If it is true for sn, then B0,sn+1 � (x+

1) = B0,sn � (x+1) or Bi,sn+1 � (x+1) = Bi,sn � (x+1). If, say B0,sn+1 � (x+1) = B0,sn � (x+1),

98

then

0 = Φ̂B0,sn
e1,sn (x) = Φ̂B0,sn+1

e1,sn+1
(x) = Φ̂Bi,sn+1

e2,sn+1
(x) = We0,sn+1

(x),

proving the equality for sn+1. The case that Bi,sn+1
� (x+ 1) = Bi,sn � (x+ 1) is analogue.

Since We0(x) = limn→∞We0,sn(x), this implies that We0(x) = 0.

Hence We0(x) = We0,s2(x), and We0 ≤ibT Ai.

Lemma 4.31. Every join requirement Jie (e ∈ N, i ∈ {1, 2}) is satisfied.

Proof. Let n = ρ−1(Jie) and let β < TP be the unique node of length n on the true path. For

e = 〈e0, e1, e2〉, assume that the premise of Jie is true, that is Bi = Φ̂
We0
e1 and A3−i = Φ̂

We0
e2

(otherwise Jie is trivially satisfied). Since β0 < TP by the definition of the true path, due to the

True Path Lemma there are infinitely many β0-stages. By Lemma 4.27(i), there is a β0-stage

s0 such that β0 is never initialised and no node α ≤ β0 is active due to Case 1 at any stage

s ≥ s0.

Now, in order to compute C(x) with oracle We0 � (x+ 1) for some given x, using the oracle

compute the least β0-stage s1 ≥ max({s0, x}) such that

We0,s1 � (x+ 1) = We0 � (x+ 1) (67)

and ls1(Jie) > x.

We claim that x ∈ C if and only if x ∈ Cs1+1. If x /∈ I for any interval I assigned to

any node during the construction, this is clearly true. So assume that x ∈ I, where I is an

α-interval.

Since at stages s > s1 only intervals I ′ with min(I ′) > s1 ≥ x become assigned to any node,

I must be assigned to α at some stage s ≤ s1. If α < β0, then x is not enumerated into C at

any stage s ≥ s1, because otherwise β0 were initialised at stage s, contradicting the choice of

s0. Furthermore, if β0 <L α, then δs1 <L α, whence α is initialised at stage s1 + 1 and I is not

assigned to α at any stage s > s1; then there are no enumerations of numbers from I into C at

stages s > s1 + 1.

Hence it suffices to consider the case that β0 v α. For a contradiction assume that C(x) 6=
Cs1+1(x), i.e. that x enters C at some stage s+ 1 > s1 + 1. We now consider the possible cases

why x enters C at stage s+ 1. Let βs be the node which is active at stage s+ 1.

• If α is initialised at any stage t + 1 with s1 + 1 ≤ t + 1 ≤ s + 1, then y = min(I) ≤ x is

enumerated into Bi,t+1 −Bi,t or A3−i,t+1 −A3−i,t. Then

Φ̂
We0
e1 (y) = Bi(y) = 1 6= 0 = Bi,s1(y) = Φ̂

We0,s1
e1,s1 (y) (68)

or

Φ̂
We0
e2 (y) = A3−i(y) = 1 6= 0 = A3−i,s1(y) = Φ̂

We0,s1
e2,s1 (y) (69)

99

4. Lattice embeddings into RibT and Rcl

So there must be some z ≤ y ≤ x in We0 −We0,s1 , contradicting the assumption. Hence

for the remaining cases we may assume that α is not initialised up to stage s+ 1.

• If βs is active due to Case 1.2, Case 1.4 (b) or Case 2 (a) at stage s + 1, or if βs is

active due to Case 1.4 (a) and i = 1, then x = cs is enumerated into Bi,s+1 − Bi,s or

A3−i,s+1 −A3−i,s at stage s+ 1 and it follows that (68) or (69) is true with x in place of

y. Again it follows that there must be some z ≤ x in We0 −We0,s1 .

• If βs = α is active due to Case 1.4 (a) at stage s+ 1 and i = 2, then there is some stage

t + 1 < s + 1 such that x = ct and (ct, at) has been assigned as diagonalisation witness

to α via Case 1.3 at stage t + 1. By (41) [ct + 1, at] was {Jie}-safe at stage t. By the

hypothesis of Case 1.4, ls(ρ(|β|)) > at and y = at is enumerated into A3−i,s+1 − A3−i,s.

Then

Φ̂
We0
e2 (y) = A3−i(y) = 1 6= 0 = A3−i,s(y) = Φ̂

We0,s
e2,s (y). (70)

Since Φ̂e2 is an ibT-functional, there must be some z ≤ y in We0 − We0,s. But since

[x+ 1, y] = [ct + 1, at] ⊆ We0,t ⊆ We0,s, it follows that z ≤ x, contradicting the choice of

s1.

• If βs = α is active due to Case 1.3 at stage s+1 and I is demoted to some β′ with β v β′,
or if β′ = βs is active due to Case 2 (b) and β0 v βs0, then x = cs and x is enumerated

into Bi,s+1 −Bi,s or y = as is enumerated into A3−i,s+1 −A3−i,s. Then

Φ̂
We0
e1 (x) = Bi(x) = 1 6= 0 = Bi,s(x) = Φ̂

We0,s
e1,s (x) (71)

or

Φ̂
We0
e2 (y) = A3−i(y) = 1 6= 0 = A3−i,s(y) = Φ̂

We0,s
e2,s (y). (72)

If the first inequality holds (in particular, this is the case if β = β′), there must be some

z ≤ cs = x in We0 −We0,s. If the second inequality holds, there must be some z ≤ as in

We0 −We0,s. Since β0 < β′0 in this case, by(41) or (45), respectively, [cs+ 1, as] ⊆We0,s.

Hence z ≤ cs = x again.

• If βs = α is active due to Case 1.3 at stage s + 1 and I is demoted to some β′ with

β′ < β, or if β′ = βs is active due to Case 2 (b) and βs0 < β0, then by Lemma 4.27

there is a least stage s′ > s such that jobs′(β
′) = I 6= jobs′+1(β′). If α is initialised and

the assignment of I to α cancelled at stage s′ + 1, then I 6⊆ Cs′ by Lemma 4.25, and in

particular min(I) /∈ Cs′ , hence min(I) /∈ A1,s′ ∪ A2,s′ ∪ B0,s′ ∪ B1,s′ ∪ B2,s′ . Then for

y = min(I) ≤ x the same analysis as in the first case above shows that there is some

z ≤ x in We0 −We0,s1 .

If I is not cancelled at stage s′ + 1, then β′ must be active due to Case 2.2 (a) at stage

s′ + 1 > s+ 1. As we have seen above, then some z ≤ cs′ ≤ cs = x enters We0 −We,s1 .

100

In all cases we have arrived at a contradiction to (67). Hence C(x) = Cs1+1(x), completing

the proof of the lemma.

Lemma 4.32. Every diagonalisation requirement Dj
e (e ∈ N, j ∈ {0, 1, 2}) is satisfied.

Proof. Let α < TP be the unique node of length 3e+ j on the true path. By Lemma 4.27 and

the True Path Lemma, there is some stage s0 such that for any stage s ≥ s0, α is not initialised

at stage s and for all α′ ≤ α, all β0 v α and every α′-interval I, jobs(β) 6= I.

For a contradiction assume that α has no interval assigned at any stage s ≥ s0. Then no

α′ w α is active after stage s0, because α requires attention at every α-stage s ≥ s0. For any

α-stage s ≥ s0 some node β < α must be active at stage s + 1 and enumerate some number

c in Cs+1 − Cs, where c is in an α′-interval for some α′ ≤ δs. Since no α′ w α is active after

stage s0, almost all of these enumerations are into α′-intervals with α′ < α. But by the choice

of stage s0 no such enumerations are possible.

Hence there must be a least α-stage s1 ≥ s0 such that α has some interval I assigned at

stage s1 +1. Since α is never initialised after stage s1, I is assigned to α at all stages s ≥ s1 +1.

Since s1 ≥ s0 and by the choice of s0, for all s > s1 it holds that either α has a diagonalisation

witness (x, y) with x, y ∈ I assigned at stage s or cands(α) = I.

Since α v TP, there is an α-stage s2 ≥ s1 + 1 such that ls2(ρ(|β|)) > max(I) for all β0 v α.

For a contradiction assume that cands(α) = I for all s ≥ s2. By Lemma 4.26 (ii) α requires

attention at every stage s + 1 for which s ≥ s2 and s is an α-stage. Hence no node above α

is active after stage s2 and there are only finitely many intervals assigned to such nodes. Let

s3 ≥ s2 be an α-stage such that for all β with β0 v α and all α v α′, there is no α′-interval I ′

with jobs(β) = I ′. Such a stage exists by Lemma 4.27. Nodes α′ v α do not require attention

due to Case 1.1, Case 1.2, Case 1.3 or Case 1.4 at any stage s+ 1, where s ≥ s3 is an α-stage,

because otherwise α were initialised, and they do not require attention due to Case 2 at such a

stage s+ 1, because if jobs(β) = I ′ for some β with β0 v α, then I ′ is an α′-interval for some

α′ >L α, hence α′ >L δs. It follows that α is active at every such stage s + 1. In fact, since

α has no diagonalisation witness assigned at stage s and since cands+1(α) = I by assumption,

α must be active due to Case 1.2 and enumerates the number cs ∈ I into Cs+1 − Cs. But

since there are infinitely many α-stages, this implies that infinitely many numbers from I are

enumerated into C, which is impossible.

Hence there is a stage s ≥ s2 such that cands(α) 6= I and α has a diagonalisation witness

(x, y) with x, y ∈ I assigned at stage s.

Let (x, y) become assigned as diagonalisation witness to α at stage s̄+1. Then x /∈ A1,s̄+1∪
A2,s̄+1 ∪B0,s̄+1 ∪B1,s̄+1 ∪B2,s̄+1 ∪ Cs̄+1.

Case A: j ∈ {1, 2}
Then α is active due to Case 1.1 at stage s̄+1 and y = x+e+2. Now if x is never enumerated

into Bj , then Bj(x) = 0 6= Φ̃
A3−j
e (x): For a contradiction assume that Φ̃

A3−j
e (x) = 0. Then

there is an α-stage s4 ≥ max({s̄, s2}) such that ls(ρ(|β|)) > x + e + 2 for all β with β0 v α,

101

4. Lattice embeddings into RibT and Rcl

A3−j,s4 � (x + e + 1) = A3−j � (x + e + 1) and Φ̃
A3−j,s4
e,s4 (x) = 0. By the choice of s4 ≥ s2, α

requires attention due to Case 1.4 at every stage s+ 1, where s ≥ s4 is an α-stage. Similar as

above we can argue that α must be active at some such stage s + 1, whence x is enumerated

into Bj , contradicting the hypothesis.

On the other hand, if x is enumerated into Bj at some stage t+ 1 > s̄, then, since α is not

initialised after stage s̄, α is active due to Case 1.3 at stage t+ 1 and

Bj(x) = 1 6= 0 = Bj,t(x) = Φ̃
A3−j,t
e,t (x).

Since ũ
A3−j,t
e (x) ≤ x + e, it suffices to show that A3−j,t � (x + e + 1) = A3−j � (x + e + 1),

because then Φ̃
A3−j,t
e,t (x) = Φ̃

A3−j
e (x) and Dj

e is satisfied.

But this is true because there are no enumerations into A3−j from any α′-intervals with

α′ ≤ α after stage t (otherwise α would be initialised and I cancelled), while nodes α′ with

α < α′ are initialised at stage t + 1 and only get intervals I ′ with min(I ′) > max(I) assigned

at later stages.

Case B: j = 0

If there is no β0 v α, then α is active due to Case 1.1 at stage s̄ + 1 and ι(I) = 0,

I = [x, 2 · (x + 2)), and since e ≤ |α| < x it holds that y0(I) = x + 1 < x + e + 2 ≤ max(I).

Then y = x+ e+ 2 /∈ A1,s̄+1 ∪A2,s̄+1 ∪B0,s̄+1.

If there is some β0 v α, then α is active due to Case 1.3 at stage s̄ + 1, and by (42)

|[x + 1, y]| = |[cs̄ + 1, y]| ≥ yk(I) ≥ x ≥ min(I) > |α| ≥ e, where I is relevant above yk(I) at

stage s̄, hence y ≥ x+ e+ 1. Moreover, y /∈ A1,s̄+1 ∪A2,s̄+1 ∪B0,s̄+1.

Now if x is never enumerated into C, then C(x) = 0 6= Φ̃B0
e (x): For a contradiction assume

that Φ̃B0
e (x) = 0. Then there is a stage s4 ≥ max({s2, s̄}) such that B0,s4 � (x+ e+ 1) = B0 �

(x + e + 1) and Φ̃B0,s4
e,s4 (x) = 0. By the choice of s4 ≥ s2, α requires attention at every stage

s+ 1, where s ≥ s4 is an α-stage. Similar as above we can argue that α must be active at some

such stage s+ 1, whence x is enumerated into C, contradicting the hypothesis.

On the other hand, if x is enumerated into C at some stage t+ 1 > s̄, then

C(x) = 1 6= 0 = Ct(x) = Φ̃
B0,t

e,t (x).

It suffices to show that B0,t � (x + e + 1) = B0 � (x + e + 1), because then Φ̃
B0,t

e,t (x) = Φ̃B0
e (x)

and Dj
e is satisfied.

But this is true because there are no enumerations into B0 from any α′-intervals with α′ ≤ α
after stage t (otherwise α would be initialised and I cancelled), while α′-intervals with α < α′

are cancelled at stage t + 1 and nodes α′ > α are assigned intervals I ′ with min(I ′) > max(I)

at later stages.

This completes the verification and the proof of Theorem 4.18.

102

In the search for a characterisation of the finite lattices for which a lattice embedding into

RT exists, the notion of a so-called critical triple turned out to be of interest.

Definition 4.33. Let P = (P,≤P) be a partial order. A critical triple in P is a triple

(b0, b1, b2) ∈ P 3, such that b0, b1 and b2 are pairwise incomparable, b0 ∨ b1 = b0 ∨ b2 and

b1 ∧ b2 ≤ b0 (in particular, the two joins and the meet exist).

For example, Downey [Down 90] showed that if a lattice L has a critical triple, then there is

a c.e. Turing degree a 6= 0 such that there exists no lattice embedding of L into (RT(≤ a),≤),

where RT(≤ a) = {b ∈ RT : b ≤ a}. He conjectured that the converse were true as well, that

is, if L has no critical triple, then there is a lattice embedding of L into every initial segment

RT(≤ a) with a 6= 0. This conjecture was later refuted by Lempp and Lerman [Lemp 97], but

only by giving a rather complicated lattice with 20 elements in its domain as a counterexample.

Since the S7 is lattice embeddable into Rr for r ∈ {ibT, cl}, we get the following result as a

corollary.

Corollary 4.34. For r ∈ {ibT, cl} there exists a critical triple (b0,b1,b2) in Rr such that

b1 ∧ b2 = 0.

Proof. For a lattice embedding h of the S7 into Rr preserving the least element, such a triple

is given by (h(b0), h(b1), h(b2)).

4.7 Embedding the M3

So far all our results on lattice embeddings were the same for RibT and Rcl as for RT and Rwtt.

Now, investigating lattice embeddings of the M3 into RibT and Rcl preserving the least element,

we will see that here the situation looks different.

Note that a critical triple (b0,b1,b2) in Rr with b1 ∧ b2 = 0 would give rise to a lattice

embedding h of the M3 preserving the least element into Rr if b1 ∨ b2 = b0 ∨ b1 and (b0,b1)

and (b0,b2) both were minimal pairs. We could just set h(a) = 0, h(bi) = bi for i ∈ {0, 1, 2}
and h(c) = b0∨b1. However, a critical triple with these additional requirements does not exist

in Rr for r ∈ {ibT, cl}.
To prove this, we need the following lemma, which is the dual of Lemma 3.19.

Lemma 4.35 (cl-wtt-Meet Lemma [Ambo 13b]). Let B0, . . . , Bn, C be c.e. sets such that

degcl(B0) ∧ . . . ∧ degcl(Bn) = degcl(C).

Then

degwtt(B0) ∧ . . . ∧ degwtt(Bn) = degwtt(C).

Proof. Let W be a c.e. set such that W ≤wtt B0, . . . , Bn. For k ∈ {0, . . . , n}, let W = ΦBkek and

let fk be a computable function such that uBkek (x) ≤ fk(x) for every x. Let f be a computable,

103

4. Lattice embeddings into RibT and Rcl

strictly increasing function such that fk(x) ≤ f(x) for every x and every k ∈ {0, . . . , n}. Then

Wf = {f(x) : x ∈ W} ≤cl B0, . . . , Bn: To compute Wf (y) with oracle Bk, first check whether

y = f(x) for any x; if not, then Wf (y) = 0. Otherwise Wf (y) = ΦBkek (x), hence we can compute

Wf (y) with a use bound of fk(x) ≤ f(x) = y.

Since degcl(B0)∧ . . .∧degcl(Bn) = degcl(C), it follows that Wf ≤cl C, in particular Wf ≤wtt

C. But since Wf ≡wtt W , it holds that W ≤wtt C, proving the lemma.

Lemma 4.36. (Ambos-Spies, Bodewig, Kräling, and Yu [Amboc]) Let r ∈ {ibT, cl} and let

h : {a, b0, b1, b2, c} → Rr be a lattice embedding of the M3 into Rr. Then h(a), h(b0), h(b1), h(b2)

and h(c) are all contained in the same wtt-degree.

Proof. Let A ∈ h(a), B0 ∈ h(b0), B1 ∈ h(b1), B2 ∈ h(b2) and C ∈ h(c) be c.e. sets. We need to

show that degwtt(A) = degwtt(B0) = degwtt(B1) = degwtt(B2) = degwtt(C).

For a contradiction, first assume that degwtt(A) 6= degwtt(C). Since h is an embedding of the

M3 into Rr, it holds that degr(A) ≤ degr(Bi) ≤ degr(C) for i ∈ {0, 1, 2}. Since r-reducibility

implies wtt-reducibility, then degwtt(A) ≤ degwtt(Bi) ≤ degwtt(C) for i ∈ {0, 1, 2}. Moreover,

degr(Bi) ∧ degr(Bj) = degr(A) and degr(Bi) ∨ degr(Bj) = degr(C) for i 6= j, i, j ∈ {0, 1, 2},
and by Lemmas 3.2, 3.3, 3.19 and 4.35 it follows that degwtt(Bi)∧ degwtt(Bj) = degwtt(A) and

degwtt(Bi) ∨ degwtt(Bj) = degwtt(C).

Now if degwtt(B0) ≤ degwtt(B1), then degwtt(B0) = degwtt(B0) ∧ degwtt(B1) = degwtt(A)

and degwtt(B1) = degwtt(B0)∨degwtt(B1) = degwtt(C); then further degwtt(B0) ≤ degwtt(B2) ≤
degwtt(B1) and hence

degwtt(C) = degwtt(B0) ∨ degwtt(B2) = degwtt(B2) = degwtt(B1) ∧ degwtt(B2) = degwtt(A),

contradicting the assumption that degwtt(A) 6= degwtt(C). Hence degwtt(B0) 6≤ degwtt(B1).

For symmetric reasons, degwtt(B0), degwtt(B1) and degwtt(B2) are pairwise incomparable.

Since degwtt(A) ≤ degwtt(Bi) ≤ degwtt(C) for i ∈ {0, 1, 2}, then degwtt(A) 6= degwtt(Bi) and

degwtt(Bi) 6= degwtt(C).

This shows that h′ : {a, b0, b1, b2, c} with h(a) = degwtt(A), h(bi) = degwtt(Bi) for i ∈
{0, 1, 2} and h(c) = degwtt(C) is a lattice embedding of the M3 into Rwtt. But the existence of

such an embedding contradicts Theorem 4.13.

We conclude that degwtt(A) = degwtt(C). Again, since degr(A) ≤ degr(Bi) ≤ degr(C) and

r-reducibility implies wtt-reducibility, it follows that degwtt(A) = degwtt(Bi) = degwtt(C) for

i ∈ {0, 1, 2}, proving the lemma.

Theorem 4.37. (Ambos-Spies, Bodewig, Kräling, and Yu [Amboc]) For r ∈ {ibT, cl}, there is

no lattice embedding of the M3 into Rr that preserves the least element.

Proof. If h were such a lattice embedding, then by Lemma 4.36 it would hold that h(c) and

h(a) = 0 = degr(∅) were contained in the same wtt-degree. But since h(c) 6= h(a), i.e. every

set C ∈ h(c) is noncomputable, it holds that C 6=wtt ∅. This is a contradiction.

104

We will now show that if we drop the requirement of preserving the least element, then the

M3 and, more generally, the Mn can be embedded by a lattice embedding into Rr. This shows

that not every lattice which can be embedded by a lattice embedding can also be embedded

by a lattice embedding preserving the least element (an unpublished result of Ambos-Spies and

Wang exhibits the S∗7, the dual lattice of the S7, as another example of such a lattice).

For the desired embedding, first we simplify the requirement derived from (M1) of Defini-

tion 4.11 that h(b0), . . . , h(bn) are pairwise incomparable.

Lemma 4.38. Let P = (P,≤P) be a partial order. Let n ≥ 3 (possibly n = ω). Then a mapping

h : {a, c} ∪ {bi : i < n} → P is a lattice embedding of the Mn into P if and only if

(M1’) h(a) ≤P h(bi) ≤P h(c) for i < n

(M2’) h(c) 6≤P h(a)

(M3’) h(bi) ∨ h(bj) = h(c) for i, j < n with i 6= j

(M4’) h(bi) ∧ h(bj) = h(a) for i, j < n with i 6= j

Proof. Let h : {a, c} ∪ {bi : i < n} → P be a lattice embedding of the Mn into P. Then (M3’)

and (M4’) clearly hold by (M2) and (M3) and the definition of lattice embeddings. By (M2)

and (M3), a ≤Mn
bi ≤Mn

c for i < n, hence (M1’) holds. And since a 6= c (otherwise b0 = b1,

contradicting the incomparability of b0 and b1) (M2’) follows, too.

On the other hand, assume that the mapping h : {a, c} ∪ {bi : i < n} → P satisfies (M1’)-

(M4’). For a contradiction assume that h(bi) ≤ h(bj) for some i, j < n with i 6= j. Then

h(bi) = h(bi) ∧ h(bj) = h(a) by (M4’) and h(bj) = h(bi) ∨ h(bj) = h(c) by (M3’). Since n ≥ 3,

there is some k < n with k 6= i and k 6= j. Then further h(bi) ≤P h(bk) ≤P h(bj) and hence

h(c) = h(bi) ∨ h(bk) = h(bk) = h(bj) ∧ h(bk) = h(a),

contradicting (M2’).

This proves that h(bi) and h(bj) must be incomparable for all i, j < n with i 6= j. By (M3’)

and (M4’) it follows that h(a) 6= h(bi) and h(bi) 6= h(c) for all i < n. Hence h is an embedding;

since by (M3’) and (M4’) h preserves joins and meets, it is a lattice embedding.

Now we have all the ingredients to prove the next theorem, which for the case n = 3 was

obtained in joint work with Ambos-Spies, Bodewig, and Wang. The details of the proof are

worked out here for the first time.

Theorem 4.39. (Ambos-Spies, Bodewig, Kräling, and Wang) Let n ≥ 3 (possibly n = ω) and

let r ∈ {ibT, cl}. Then there is a lattice embedding of the Mn into Rr.

Proof. Since the identity function on {a, b0, . . . , bn} is a lattice embedding of the Mn into the

Mω, it suffices to show that there is a lattice embedding h of the Mω into Rr. We describe a

105

4. Lattice embeddings into RibT and Rcl

stage-by-stage construction of c.e. sets A, Bi (i ∈ N) and C such that the desired embedding is

defined by h(a) = degr(A), h(bi) = degr(Bi) for i ∈ N and h(c) = degr(C).

We will satisfy the following requirements for all e = 〈e0, e1, e2〉 and all i, j ∈ N with i 6= j.

• A ≤ibT Bi ≤ibT C,

• De : C 6= Φ̃Ae ,

• Ji,je : (Bi = Φ̂
We0
e1 and Bj = Φ̂

We0
e2)⇒ C ≤ibT We0 ,

• Mi,j
e : (We0 = Φ̂Bie1 = Φ̂

Bj
e2)⇒We0 ≤ibT A.

The diagonalisation requirements De ensure that degcl(C) 6≤ degcl(A) and, since ibT-

reducibility is stronger than cl-reducibility, degibT(C) 6≤ degibT(A). The join requirements

Ji,je together with Bi, Bj ≤ibT C ensure that degibT(Bi) ∨ degibT(Bj) = degibT(C) for i 6= j

(i, j ∈ N}). By Lemma 3.2, this also implies that degcl(Bi) ∨ degcl(Bj) = degcl(C). The meet

requirements Mi,j
e together with A ≤ibT Bi, Bj ensure that degibT(Bi)∧degibT(Bj) = degibT(A)

for i 6= j (i, j ∈ N). By Lemma 3.3, this also implies that degcl(Bi) ∧ degcl(Bj) = degcl(A).

Hence, by Lemma 4.38, h is an embedding into Rr for both r = ibT or r = cl.

The construction is quite similar to the one described in the proof of Theorem 4.18.

Let As, Bi,s and Cs denote the finite approximation to the sets A, Bi and C, respectively,

as given after stage s of the construction.

Again, we will obtain Bi ≤ibT C by permitting. Since we want the construction to be

effective, i.e. we may only perform finitely many actions at each stage, however, we will not

enumerate any numbers into Bi before stage i + 1. Hence enumerations into A before stage

i+1 will not necessarily be permitted by Bi. But if we let Âi = A−Ai, then (since Ai is finite)

Âi ≡ibT A and Âi ≤ibT Bi will hold by permitting. Hence A ≤ibT Bi.

The definition of the lengths of agreement ls(J
i,j
e) and ls(M

i,j
e) (i, j ∈ N, i 6= j), and the basic

strategies to satisfy the diagonalisation requirements De, the join requirements Ji,je and the meet

requirements Mi,j
e are – with the obvious changes imposed by the sets and functions occuring in

the requirements having different names – the same as in the proof of Theorem 4.18. Remember

that we say that an interval [x, y] is Ji,je -safe at stage s if [x, y] ⊆ We0,s, where e = 〈e0, e1, e2〉;
and we say that [x, y] is R-safe at stage s for a set R of requirements if it is Ji,je -safe at stage s

for every join requirement Ji,je ∈ R.

Suppose that for some pairwise different numbers i, j, k ∈ N there are a diagonalisation

requirement De, three join requirements Ji,je0 , Ji,ke1 and Jj,ke2 and three meet requirements M
i,j
e′0

,

M
i,k
e′1

and M
j,k
e′2

the premises all of which are true and such that all meet requirements have

higher priority than each of the join requirements and the join requirements all have higher

priority than the diagonalisation requirement.

Then in order to satisfy De we want to enumerate a number x into C at some stage s + 1

such that Φ̃Ase,s(x) ↓= 0 and we wish to restrain the enumerations of numbers z ≤ x + e into

A after stage s. However, by the basic strategy to satisfy Ji,je0 we need to enumerate a number

106

yi,j ≥ x such that [x+ 1, yi,j] is Ji,je0 -safe at stage s into Bi −Bi,s or Bj −Bj,s, and analogous

for Ji,ke1 and Jj,ke2 . Say, for example, we enumerate yi,j into Bi and yj,k into Bj . Then due to

the basic strategy for M
i,j
e′0

we need to enumerate a number z ≤ max({yi,j , yj,k}) into A− As.
Hence in order to make this compatible with the basic strategy for De we need to require that

at least one of yi,j and yj,k is greater than x + e, i.e. we need to construct an interval J of

length e+ 1 which is Ji,je0 - or Jj,ke2 -safe at stage s.

The construction of R-safe intervals of a desired length is very much as in the proof of

Theorem 4.18. If, in the situation described above, Ji,je0 had higher priority than Ji,ke1 and Ji,ke1
had higher priority than Jj,ke2 , then first we would create a very long Ji,je0 -safe interval J0, use

this interval to obtain a long {Ji,je0 , J
i,k
e1 }-safe interval J1, and finally use that interval to create

the desired {Ji,je0 , J
i,k
e1 , J

j,k
e2 }-safe interval J of length at least e+ 1.

There is one difference to the strategy in the proof of Theorem 4.18. There, every join

requirement Jie (i ∈ {1, 2}) had to react to an enumeration of a number x into Aj ∪ Bj ,
j ∈ {1, 2} (provided that ls(J

i
e) > x), irrespective of the values of i and j. For this reason, in

(37) it was sufficient to require that there were many numbers in the interval Jk which were

not in B0 = A1 ∪A2 at stage tk.

Now, in general we will need to enumerate a number a from Jk into many sets Bi in order

to make all join requirements which we have to respect give a response. Since we may also need

to respect some meet requirements, this forces us enumerate a into A as well. But then, if the

enumeration of x takes place at stage s+ 1, in order to obtain A ≤ Bi we have to enumerate a

number ai less than or equal to a into every set Bi with i ≤ s.
Therefore, in order to make the construction as uniform as possible with respect to the

different join requirements we change condition (37) to

|Jk − (Atk ∪
⋃
i≥0

Bi,tk)| > yι(I)−k. (73)

In order to obtain a Ji,je -safe interval J containing many numbers that are not yet enumerated

into any set Bi′ when J is defined, we change the enumerations performed by Ji,je as follows.

Starting with an interval I0 at a stage s such that I0 ∩ (As ∪
⋃
i≥0Bi,s ∪Cs) = ∅, we enumerate

the numbers from I0 into C one by one in decreasing order and at the same time we enumerate

the numbers from I0 alternately into Bi and Bj one by one and in decreasing order (unlike in

the proof of Theorem 4.18, where we always enumerated the same number into C and one of

B1 and B2). That way after 2m stages we end up with an interval of length 2m which has

completely been enumerated into C but the lower half of which, an interval of length m, has

not yet been enumerated into Bi or Bj . We can now only take the lower half of I0 into account

for the desired interval J , but since we may choose I0 sufficiently large, this does not provide

an obstacle to the construction.

Once again, the construction takes place on the tree T = {0, 1}∗. Let ρ : N→ {Ji,je : e, i, j ∈
N, i 6= j} ∪ {Mi,j

e : e, i, j ∈ N, i 6= j} be a computable one-to-one enumeration of all join and

107

4. Lattice embeddings into RibT and Rcl

meet requirements, where we assume that if ρ(n) = Ji,je , then i, j ≤ n. A node α ∈ T of length

n corresponds to a guess about which of the premises of the first n join and meet requirements

ρ(0), . . . , ρ(n− 1) are true. Nodes of length e will also be responsible for the strategy to satisfy

the diagonalisation requirement De. The definitions of α-stages and α-expansionary stages, of

δs and of the true path TP are analogous to the ones from the proof of Theorem 4.18. Note

that if β v δs, then |β| ≤ s; hence if ρ(|β|) = Ji,je , then i, j ≤ s by the choice of ρ.

4.7.1 The construction

Stage 0: Let A0 = Bi,0 = C0 = ∅ for i ∈ N and job0(β) =↑ and cand0(β) ↑ for each node β. No

node has an interval or a diagonalisation witness assigned.

Stage s+ 1:

We say that a node α requires attention at stage s + 1 if α v δs and one of the following

holds.

(Case 1.1) α has no interval assigned to it at the end of stage s.

(Case 1.2) α has an interval I assigned to it at the end of stage s, cands(α) = I, for every

β with β0 v α it holds that ls(ρ(|β|)) > max(I), there is a number cs ∈ I such that

I ∩ (As ∪B0,s ∪B1,s ∪ . . . ∪Bs,s) ⊆ I ∩ Cs = [cs + 1,max(I)] (74)

and there is a join requirement Ji,je = ρ(|β|) (i, j ∈ N, e = 〈e0, e1, e2〉) for some β with β0 v α

such that

|{x ≤ cs : x /∈We0,s}| < |{x ≤ cs : x ∈ I}|. (75)

(Case 1.3) α has an interval I assigned to it at the end of stage s, cands(α) = I, for every

β with β0 v α and every α′-interval I ′ = jobs(β) it holds that α ≤ α′ and ls(ρ(|β|)) > max(I),

and there are numbers as and cs ∈ I and a node β such that

• eqation (74) holds for cs

• β is the longest node such that either β = α, or ρ(|β|) is a join requirement and β0 v α,

and such that there is some y > cs, y ∈ I, for which

[cs + 1, y] is E′-safe at stage s for E′ = {ρ(|β′|) : β′ < β and β′0 v α} (76)

and if I is relevant above yk(I) at stage s, then

|{z ∈ [cs + 1, y] ∩ I : z /∈ As ∪B0,s ∪B1,s ∪ . . . ∪Bs,s}| ≥ yk(I) (77)

• as = y for the least such y (note that as /∈ As ∪B0,s ∪B1,s ∪ . . . ∪Bs,s by minimality of

as and by yk(I) > 0).

108

(Case 1.4) α has an interval I and a diagonalisation witness (x, y), x, y ∈ I assigned at

the end of stage s, for every β with β0 v α and every α′-interval I ′ = jobs(β) it holds that

α ≤ α′ and ls(ρ(|β|)) > y and if |α| = e, then x + e + 1 ≤ y, Φ̃Ase (x) ↓= Cs(x) = 0 and

y /∈ As ∪B0,s ∪B1,s ∪ . . . ∪Bs,s.

We also say that a node β requires attention at stage s+ 1 and is α-linked if

(Case 2) β0 v δs and α ≤ δs, jobs(β) = I for some α-interval I, for every β′ with β′0 v β0

it holds that ls(ρ(|β′|)) > max(I) and there exists a number cs ∈ I satisfying (74)

Let η be the least node that requires attention at stage s + 1 (such a node exists because

δs always requires attention due to Case 1 at stage s + 1). Let X ∈ {1.1, 1.2, 1.3, 1.4, 2} be

minimal such that η requires attention due to Case X. We say that η receives attention and is

active due to Case X.

(Case 1.1) If η = α is active due to Case 1.1, then assign a new interval I to α in the following

way. Let |α| = e. Let x be the least number that is larger than max(|α|, s+ 1) and larger than

all numbers from intervals assigned to any node before stage s + 1. Let E = {β : β0 v α}.
Define

ι(I) = (x+ 3)2|E| − 1

and

I = [x, 3ι(I)+1 · ((x+ 1) + (ι(I) + 1)),

i.e. I = {x}∪
⋃ι(I)
k=0[yk, yk+1), where yk = yk(I) = 3k(x+ 1 +k) for 0 ≤ k ≤ ι(I) + 1. For k < 0,

define yk(I) = x. Say that I is an α-interval.

Let cs = yι(I). Set Âs+1 = As ∪ {yι(I)}, B̂i,s+1 = Bi,s ∪ {yι(I)} for i ≤ s and Ĉs+1 =

Cs ∪ [yι(I), yι(I)+1). If E = ∅, assign (x, x + e + 2) as diagonalisation witness to α. Otherwise

set cands+1(α) = I. Say that I is relevant above yι(I) at stage s+ 1.

(Case 1.2) If η = α is active due to Case 1.2, define bs = cs and set Âs+1 = As ∪ {cs},
B̂i,s+1 = Bi,s ∪ {cs} for i ≤ s and Ĉs+1 = Cs ∪ {cs}. We say that α is ready for elimination.

(Case 1.3) If η = α is active due to Case 1.3, let cands(α) = I, let as, cs and β be as in the

hypothesis of Case 1.2 and let bs = cs. Say that cands+1(α) is undefined.

If β = α, assign (cs, as) as diagonalisation witness to α and let Âs+1 = As, B̂i,s+1 = Bi,s

for i ≤ s and Cs+1 = Cs.

If β 6= α and ρ(|β|) = Ji,je , then set jobs+1(β) = I, Âs+1 = As ∪ {as}, B̂i′,s+1 = Bi′,s ∪ {as}
for i′ ≤ s and i′ 6= i, B̂i,s+1 = Bi,s ∪ {cs} and Ĉs+1 = Cs ∪ {cs}. Say that I is demoted to β.

If I was relevant above yk(I) at stage s, say that I is relevant above yk−1(I) at stage s+ 1.

(Case 1.4) If η = α is active due to Case 1.4 and α has the diagonalisation witness (x, y)

assigned, then let cs = x and as = y and set Âs+1 = As ∪ {as}, B̂i,s+1 = Bi,s ∪ {as} for i ≤ s

and Ĉs+1 = Cs ∪ {cs}.

109

4. Lattice embeddings into RibT and Rcl

(Case 2) If η = β is active due to Case 2 and is α-linked at stage s+ 1, let I = jobs(β) and

let k be such that I is relevant above yk(I) at stage s. Let ρ(|β|) = Ji,je .

Let as be the greatest number y ∈ I such that

y ≥ cs (78)

y /∈ (As ∪B0,s ∪B1,s ∪ . . . ∪Bs,s) and (79)

[cs + 1, y] is E-safe for E = {ρ(|β′|) : β′0 < β0}. (80)

(Note that such a number exists, because by (74) y = cs satisfies all three conditions.)

Let bs be the greatest number x ∈ I such that

cs ≤ x ≤ as (81)

[min(I), x− 1] ∩ (Bi,s ∪Bj,s) = ∅ (82)

x /∈ Bi,s ∩Bj,s and (83)

[cs + 1, x] is E-safe for E = {ρ(|β′|) : β′0 v β0}. (84)

(Note that such a number exists, because again by (74) y = cs satisfies all three conditions.)

(a) If [cs + 1, cs + yk] is {ρ(|β′|) : β′0 v β0}-safe and [cs + 1, cs + yk(I)]∩ (As ∪B0,s ∪B1,s ∪
. . . ∪ Bs,s) = ∅, or if {cs + 1} is not {ρ(|β′|) : β′0 v β0}-safe at stage s, set Âs+1 = As ∪ {cs},
B̂j′,s+1 = Bj′,s ∪ {cs} for j′ ≤ s and Ĉs+1 = Cs ∪ {cs}. Set jobs+1(β) ↑ and cands+1(α) = I.

(b) If {cs + 1} is {ρ(|β′|) : β′0 v β0}-safe at stage s, but [cs + 1, cs + yk(I)] is not or

has nonempty intersection with As ∪ B0,s ∪ B1,s ∪ . . . ∪ Bs,s, then let i′ = i if bs /∈ Bi,s and

i′ = j otherwise and set Âs+1 = As ∪ {as}, B̂j′,s+1 = Bj′,s ∪ {as} for j′ ≤ s with j′ 6= i′,

B̂i′,s+1 = Bi′,s ∪ {bs} and Ĉs+1 = Cs ∪ {cs}.

In all cases, initialise all nodes α′ >L δs, i.e. declare all intervals I ′ assigned to these nodes

unassigned and not relevant above any number, set cands+1(α′) =↑ and set jobs+1(β′) ↑ for all

β′ with jobs(β
′) = I ′. Also initialise every node α′ > α.

Let

Z = {min(I ′) : (∃β̃0 v δs)(jobs(β̃) = I ′ and I ′ is an α′-interval for some α′ initialised at stage s+1}.

Set As+1 = Âs+1 ∪ Z, Bi,s+1 = B̂i,s+1 ∪ Z for i ≤ s and Cs+1 = Ĉs+1 ∪ Z.

Set Bi,s+1 = Bi,s for all i > s. For all nodes α, unless stated otherwise before, leave the

assignment of intervals and diagonalisation witnesses, the values of cand(α) and job(α) and the

relevant parts of α intervals at stage s+ 1 as they were at stage s.

Quit the stage.

110

4.7.2 Verification

Lemma 4.40 (True Path Lemma). It holds that TP = lim infs→∞ δs, i.e. if α ∈ T , then

α < TP if and only if α v δs for infinitely many s and there are only finitely many s such that

δs <L α.

Proof. Analogous to the proof of Theorem 3.20.

Lemma 4.41. For every α-interval I and every stage s exactly one of the following holds:

• I is not assigned to α at stage s

• cands(α) = I

• jobs(β) = I for some β v α

• α has a diagonalisation witness (x, y) with x, y ∈ I assigned at stage s

Proof. Immediate by induction on s.

Lemma 4.42. For i ≥ s it holds that Bi,s = ∅.

Proof. Immediate by induction on s.

Lemma 4.43. Let I be an α-interval and let β be a node such that β0 v α and ρ(|β|) = Ji,je .

Assume that I is demoted to β and becomes relevant above yk := yk(I) at stage t0 + 1 and

that for some r ≤ 2yk there are minimal stages t0 + 1 < t1 + 1 < . . . < tr + 1 such that

I ∩ Ctn+1 6= I ∩ Ctn for n ∈ {0, . . . , r} and α is not initialised at any stage s ∈ [t0 + 1, tr + 1].

Furthermore assume that {ctn} is {ρ(|β′|) : β′0 v β0}-safe at stage tn+1 for 0 ≤ n < r.

Then for 1 ≤ 2n+ q ≤ r (q ∈ {0, 1}) the node β is active due to Case 2(b) at stage t2n+q +1

if 2n+ q < 2yk and due to Case 2(a) at stage t2n+q + 1 if 2n+ q = 2yk and for 0 ≤ 2n+ q ≤ r
it holds that

[ct2n+q + 1, ct2n+q + n] ∩ (At2n+q ∪
⋃
i′∈N

Bi′,t2n+q) = ∅ (85)

and

ct2n+q + n+ 1 ∈

Bi,t2n+q
∩Bj,t2n+q

if q = 0

Bi,t2n+q −Bj,t2n+q if q = 1.
(86)

Proof. The proof is by induction on 2n + q. If 2n + q = 0, then (85) is trivially true because

[ct0 + 1, ct0 + 0] = ∅. For (86), note that candt0(α) = I. Let s < t0 be maximal such that

I ∩ Cs 6= I ∩ Cs+1. Then cands+1(α) = I. Hence the enumeration into I ∩ C at stage s + 1

must be caused by some node being active due to Case 1.1, Case 1.2 or Case 2(a). In each case,

111

4. Lattice embeddings into RibT and Rcl

cs ∈ Bi,s+1 ∩ Bj,s+1 ⊆ Bi,t0 ∩ Bj,t0 (remember that i, j ≤ |β| ≤ s). But by (74) it holds that

ct0 + 1 = cs, so (86) is true, too.

Now fix 2n+ q < r and assume that the inductive hypothesis is true for all numbers up to

2n+ q.

By the inductive hypothesis, since 2n+ q < r ≤ yk, at stage t2n+q + 1 either I was demoted

to β (if n = q = 0) or β was active due to Case 2(b). Hence jobt2n+q+1(β) = I. Then

still I ∈ jobst2n+q+1
(β). Since I ∩ Ct2n+q+1+1 6= I ∩ Ct2n+q+1

, but α is not initialised at stage

t2n+q+1 + 1, β must be active due to Case 2 at stage t2n+q+1 + 1.

For the proof of equations (85) and (86) we first show that at2n+q
> ct2n+q

+n. If 2n+q = 0,

this is immediate by the definition of at0 via Case 1.4. If 2n + q > 0, since I is demoted at

stage t0 + 1, by (77), there are at least yk+1(I) numbers z ∈ [ct0 + 1, at0] which are not in

At0 ∪ B0,t0 ∪ . . . ∪ Bt0,t0 . By Lemma 4.42, these numbers are not in
⋃
i′∈NBi′,t0 . Since at

each of the stages t0 + 1, t1 + 1, . . . , t2n+q−1 + 1 only one such number z is enumerated into

A ∪
⋃
i′∈NBi′ , while at stages t ∈ [t0 + 1, t2n+q−1] − {t0 + 1, t1 + 1, . . . , t2n+q−1 + 1} there

are no such enumerations, there are still yk+1(I) − (2n + q) ≥ yk − (2n + q) > 0 numbers

z ∈ [ct0 + 1, at0] which are not in At2n+q
∪
⋃
i′∈NBi′,t2n+q

. Let y be the greatest such number.

Then [ct0 + 1, y] was {ρ(|β′|) : β′0 < β0}-safe at stage t0. On the other hand each number

x ∈ [ct2n+q
+ 1, ct0] has the form x = ctm for some m ∈ [0, 2n+ q − 1]. Since by the hypothesis

{ctm} is {ρ(|β′|) : β′0 v β0}-safe at stage tm+1, hence at stage t2n+q, it follows that [ct2n+q
+1, y]

is {ρ(|β′|) : β′0 < β0}-safe at stage t2n+q. Hence the number y satisfies equations (78) to (80)

with t2n+q in place of s. It follows that at2n+q
≥ y > ct0 . But ctm+1

+ 1 = ctm for all m < r,

and hence by induction ct2n+q
+ n = ct2n+q−n = ctn+q

≤ ct0 < at2n+q
.

Now first consider the case q = 0. We claim that bt2n+q
= ct2n+q

+ n. This is clear by

definition if n = q = 0. For n > 0, indeed x = ct2n+q
+n satisfies equation (81) with t2n+q instead

of s, as we have just shown. Moreover, x satisfies equations (82) and (83) by equation (74) and

equation (85). Finally, x satisfies equation (84) because for every number x′ ∈ [ct2n+q
+1, ct0] the

set {x′} is {ρ(|β′|) : β′0 v β0}-safe at stage t2n+q, as already mentioned, and because x ≤ ct0 .

Altogether, this shows that bt2n+q
≥ x. On the other hand, by equation (86), x is the greatest

number in I satisfying both equations (82) and (83) (for x′ = x+ 1 equation (83) fails and for

x′ > x + 1 equation (82) fails). Hence bt2n+q
= ct2n+q

+ n. Since by the inductive hypothesis

bt2n+q
= ct2n+q

+ n = ct2n+q+1
+ n + 1 is enumerated into Bi at stage t2n+q + 1 due to Case 2

(b), but is not in Bj,t2n+q+1 (this follows from equation (85)), since no other number from I is

enumerated into A or any set Bi′ at stage t2n+q + 1, no number from I is enumerated into A or

any set Bi′ at any stage s ∈ (t2n+q+1, t2n+q+1], and since ct2n+q+1
/∈ At2n+q+1

∪
⋃
i′∈NBi′,t2n+q+1

by Lemma 4.42 and equation (74), we can conclude that equations (85) and (86) are true for

2n+ q + 1.

Now we turn to the case q = 1 and claim that bt2n+q
= ct2n+q

+n+1. Similar to the case q = 0,

x = ct2n+q
+n+ 1 satisfies equation (81) with t2n+q instead of s by what we have shown above,

x satisfies equations (82) and (83) by equations (74), (85) and (86), and x satisfies equation (84)

112

because x = ctn+q
+1 ≤ ct0 and because {x′} is {ρ(|β′|) : β′0 v β0}-safe at stage t2n+q for every

x′ ∈ [ct2n+q
+ 1, ct0]. This shows that bt2n+q

≥ x. Since x ∈ Bt2n+q
by (86), x is the greatest

number in I satisfying (82); hence bt2n+q
= x, as claimed. Since by the inductive hypothesis

bt2n+q
is in Bi,t2n+q

and is enumerated into Bj at stage t2n+q+1 due to Case 2 (b), it holds that

ct2n+q+1
+(n+1)+1 = ct2n+q

+n+1 = bt2n+q
∈ Bi,t2n+q+1

∩Bj,t2n+q+1
. Since ct2n+q+1

= ct2(n+1)+0
,

this proves equation (86) for 2n+ q+ 1. Equation (85) for 2n+ q+ 1 follows from the fact that

no number from I less than bt2n+q+1
is in At2n+q

∪
⋃
i′∈NBi′,t2n+q

(by Lemma 4.42, (74) and

(85)) or is enumerated into A or any set Bi′ at any stage s ∈ [t2n+q + 1, t2n+q+1].

This completes the inductive proof of equations (85) and (86).

Now if 1 ≤ 2n+ q + 1 < 2yk, that is, n+ 1 ≤ yk, then it follows from equation (86) that β

must be active due to Case 2(b) at stage t2n+q+1 + 1.

If 2n + q + 1 = 2yk, that is, n + 1 = yk and q = 1, then [ct2n+q+1 + 1, ct2n+q+1 + yk] ⊆
[ct2n+q+1 + 1, c0] is {ρ(|β′|) : β′0 v β0}-safe at stage t2n+q+1 as we argued above. Together with

equation (85) this implies that β must be active due to Case 2(a) at stage t2n+q+1 + 1.

Lemma 4.44. Let I be an α-interval. Assume that for some k ∈ {0, . . . , ι(I) − 1} there is a

sequence of minimal stages t0 < t1 < . . . < t2yk(I)+1 such that Ctn+1 ∩ I 6= Ctn ∩ I and I is

relevant above yk := yk(I) at stage tn + 1 for n ∈ {0, . . . , 2yk + 1}. Then there must be a stage

tn such that α is ready for elimination at stage tn + 1.

Proof. For n ∈ {0, . . . , 2yk + 1} let βtn be the node that is active at stage tn + 1. For a

contradiction assume that α is not ready for elimination at any stage tn + 1.

If I would already become relevant above yk at a stage s + 1 before stage t0 + 1, then

since Cs ∩ I = Cs+1 ∩ I by minimality of t0, α would get the interval I and a diagonalisation

witness assigned at stage s + 1. In this case α could only be active due to Case 1.4 at stage

t0 + 1 and never enumerate anything into C ∩ I after stage t0 + 1, contradicting the fact that

Ct2yk+1 ∩ I 6= Ct2yk+1 ∩ I. Hence I becomes relevant above yk at stage t0 + 1, i.e. βt0 = α and

I is demoted to βt1 at stage t0 + 1.

Let r be the greatest number in {0, . . . , 2yk} such that {ctn} is {ρ(|β′|) : β′0 v βt10}-safe

at stage tn+1 for all n < r. If r = 2yk, then by Lemma 4.43 βt1 is active due to Case 2

(a) at stage t2yk + 1. If r < 2yk, then by Lemma 4.43 βt1 is active due to Case 2 (b) at all

stages t1 + 1, . . . , tr + 1. Then βt1 must be active due to Case 2 at stage tr+1 + 1, too (since

α is not initialised but a new number is enumerated into I ∩ C at that stage). But since

{ctr+1 + 1} = {ctr} is not {ρ(|β′|) : β′0 v βt10}-safe at stage tr+1, βt1 is active due to Case 2(a)

at stage tr+1 + 1.

This shows that there is a least stage tp with p ≤ 2yk such that βt1 is active due to Case 2

(a) at stage tp + 1. Then candtp+1
(α) = I. Since α is not initialised and not active due to Case

1.3 at stage tp+1 + 1 (otherwise I would not be relevant above yk any more), it must be active

due to Case 1.2, proving the claim.

113

4. Lattice embeddings into RibT and Rcl

Lemma 4.45. Let I be an α-interval and let s < s′ be stages such that cands(α) = I and α is

ready for elimination at stage s+ 1, α is not initialised at stage s′ + 1 and Cs′ ∩ I 6= Cs′+1 ∩ I.

Then α is ready for elimination at stage s′ + 1, too.

Proof. It suffices to show this for the case that s′ is the least stage t > s such that Ct ∩ I 6=
Ct+1 ∩ I; then the general claim follows by induction on s′.

By the hypothesis it holds that

|{x ≤ cs : x /∈We0,s}| < |{x ≤ cs : x ∈ I}| (87)

for some β0 v α with ρ(|β|) = J
i,j
〈e0,e1,e2〉.

By the conditions of α requiring attention at stage s+ 1,

ls(J
i,j
e) > max(I).

Since cands′(α) = cands+1(α) = I, α must require attention and be active at stage s′ + 1, too,

hence

ls′(J
i,j
e) > max(I).

Since cs is enumerated into Bi,s+1 −Bi,s at stage s+ 1, this means that

Φ̂
We0,s

′

e1,s′
� (cs + 1) = Bi,s′ � (cs + 1) 6= Bi,s � (cs + 1) = Φ̂

We0,s
e1,s � (cs + 1).

Consequently, since Φ̂e1 is an ibT-functional, there is some z ≤ cs in We0,s′ −We0,s. Since

cs′ = cs − 1 by (74) and the fact that no number from I is enumerated into C between stages

s+ 1 and s′ + 1, it follows that

|{x ≤ cs′ : x /∈We0,s′ | < |{x ≤ cs : x /∈We0,s| (88)

and

|{x ≤ cs′ : x ∈ I}| = |{x ≤ cs : x ∈ I}| − 1. (89)

Using (87), (88) and (89) it follows that

|{x ≤ cs′ : x /∈We0,s′}| < |{x ≤ cs′ : x ∈ I}|. (90)

Hence α is ready for elimination at stage s′ + 1.

Lemma 4.46. Let I be an α-interval and let

E = {β : β0 v α and ρ(|β|) is a join requirement} = {β′0, . . . , β′|E|−1}

114

with β′0 < β′1 < . . . < β′|E|−1. Let y0 = y0(I). Then for ē ∈ {0, . . . , |E| − 1} there is no sequence

of minimal stages s0 < s1 < . . . < s|E|·y0
such that, for n ∈ {0, . . . , |E| · y0}, I is relevant above

some yk(I) with k ≥ 0 at stage sn, I is demoted to β′ē at stage sn + 1, and I is not demoted to

any β′e with e < ē at any stage s ∈ [s0 + 1, s|E|·y0
+ 1].

Proof. For a contradiction assume that there is such a sequence s0 < s1 < . . . < s|E|·y0
for some

ē. We show by induction on m that, for m ∈ {0, . . . , |E| · y0},

ē∑
e=0

|{w ≤ csm : w /∈Wπ0(e),sm}| ≤ (ē+ 1) · (csm + 1)−m, (91)

where ρ(|β′e|) = J
ie,je
〈π0(e),π1(e),π2(e)〉 for e ∈ E.

For m = 0 (91) is trivially true, because

ē∑
e=0

|{w ≤ cs0 : w /∈Wπ0(e),s0}| ≤ (ē+ 1) · |[0, cs0]| = (ē+ 1) · (cs0 + 1)− 0.

Assume that (91) is true for m. Define a sequence of stages sm = t0 < t1 < . . . < tp+1 = sm+1

such that {tq : 0 ≤ q ≤ p+ 1} = {t ∈ [sm, sm+1] : I ∩Ct 6= I ∩Ct+1}. Let βtq be the node that

is active at stage tq + 1.

We will show that, for all q ∈ {0, . . . , p} and all e ≤ ē,

|{w ≤ ctq+1
: w /∈Wπ0(e),tq+1

}| ≤ |{w ≤ ctq : w /∈Wπ0(e),tq}| − 1 (92)

and that there is some q ∈ {0, . . . , p} and some e ≤ ē such that

|{w ≤ ctq+1 : w /∈Wπ0(e),tq+1
}| ≤ |{w ≤ ctq : w /∈Wπ0(e),tq}| − 2. (93)

Then, using the inductive hypothesis (91) and t0 = sm we know that

ē∑
e=0

|{w ≤ ct0 : w /∈Wπ0(e),t0}| ≤ (ē+ 1) · (ct0 + 1)−m,

and by (92), (93) and ctq+1
= ctq − 1 (by (74) it follows that, for q ∈ {0, . . . , p},

ē∑
e=0

|{w ≤ ctq+1 : w /∈Wπ0(e),tq+1
}| ≤ (ē+ 1) · (ct0 + 1)−m− (q + 1) · (ē+ 1)

and

ē∑
e=0

|{w ≤ ctp+1
: w /∈Wπ0(e),tp+1

}| ≤ (ē+ 1) · (ct0 + 1)−m− (p+ 1) · (ē+ 1)− 1. (94)

115

4. Lattice embeddings into RibT and Rcl

Since ctq+1
= ctq − 1 for q ∈ {0, . . . , p}, we see that csm+1

= ctp+1
= ct0 − (p + 1). Using (94)

this implies

ē∑
e=0

|{w ≤ csm+1
: w /∈Wπ0(e),sm+1

}| ≤ (ē+ 1) · (ct0 + 1)− (m+ 1)− (p+ 1) · (ē+ 1)

= (ē+ 1) · (ct0 − (p+ 1) + 1)− (m+ 1)

= (ē+ 1) · (csm+1
+ 1)− (m+ 1),

i.e. (91) is true for m+ 1. So to prove (91), it suffices to prove (92) and (93).

To prove (92), fix e ≤ ē and q ∈ {0, . . . , p}. Let ρ(|β′e|) = J
i,j
〈e0,e1,e2〉 (in particular, π0(e) =

e0). Since I is demoted to β′ē at stage sm + 1 = t0 + 1 and not demoted to any node below β′ē

at any stage t with t0 + 1 ≤ t ≤ tp+1, it holds that β′e v β′ē v βtq v δtq and δtq (|β′e|) = 0, as

well as β′e v β′ē v βtq+1
v δtq+1

and δtq+1
(|β′e|) = 0. Since βtq is active at stage tq + 1 and βtq+1

is active at stage tq+1 + 1 (due to Case 1.2, Case 1.3 or Case 2), it follows that

ltq (J
i,j
〈e0,e1,e2〉) = ltq (ρ(|β′e|)) > max(I) (95)

ltq+1
(Ji,j〈e0,e1,e2〉) = ltq+1

(ρ(|β′e|)) > max(I). (96)

If β′e = βtq , then βtq is active due to Case 2 at stage tq+1 + 1 and some b ∈ {ctq , btq} is

enumerated into Bi,tq+1 − Bi,tq or Bj,tq+1 − Bj,tq at stage tq + 1 (note that ctq /∈ Bi,tq ∪ Bj,tq
by equation (74), and if btq 6= ctq , then btq /∈ Bi,tq ∩Bj,tq by (83)). By (95) and (96) it follows

that

Φ̂
We0,tq+1

e1,tq+1
� (b+ 1) = Bi,tq+1

� (b+ 1) 6= Bi,tq � (b+ 1) = Φ̂
We0,tq

e1,tq � (b+ 1) (97)

or

Φ̂
We0,tq+1

e2,tq+1
� (b+ 1) = Bj,tq+1

� (b+ 1) 6= Bj,tq � (b+ 1) = Φ̂
We0,tq

e2,tq � (b+ 1). (98)

Since Φ̂e1 and Φ̂e2 are ibT-functionals, this implies

We0,tq+1
� (b+ 1) 6= We0,tq � (b+ 1), (99)

in particular there is some minimal zeq ≤ btq in We0,tq+1−We0,tq . Since [ctq +1, b] ⊆ [ctq +1, btq]

is {βē}-safe at stage tq by equation (84), necessarily zeq ≤ ctq .

On the other hand, if β′e < βtq , then some b ∈ {atq , ctq} is enumerated into Bi,tq+1 − Bi,tq
at stage tq + 1 (note that i ≤ |δtq | ≤ tq by the choice of ρ, ctq /∈ Bi,tq by equation (74), and

atq /∈ Bi,tq by equation (77) or equation (79), respectively). As above we can deduce (99)

and there is some minimal zeq ≤ b in We0,tq+1
− We0,tq . In the case that b = ctq , trivially

zeq ≤ ctq . In the case that c = atq , by the conditions on atq in Case 1.3 or Case 2 [ctq + 1, atq]

is {ρ(|γ|) : γ0 < βtq}-safe, hence in particular [ctq + 1, atq] ⊆ We0,tq . It follows that zeq ≤ ctq

again.

116

Consequently,

{w ≤ ctq+1 : w /∈We0,tq+1} ⊆ {w ≤ ctq : w /∈We0,tq} − {zeq},

and (92) follows.

To prove (93), it suffices to show that for some q ∈ {0, . . . , p} and some e ≤ ē with π0(e) = e0,

ctq /∈We0,tq+1
, whence zeq 6= ctq and

{w ≤ ctq+1
: w /∈We0,tq+1

} ⊆ {w ≤ ctq : w /∈We0,tq} − {zeq , ctq},

proving (93).

For a contradiction assume that for all q ∈ {0, . . . , p} and all e ≤ ē,

ctq ∈We0,tq+1 . (100)

Let I become relevant above yk(I) at stage t0 + 1 and let r ∈ {1, . . . , p} be maximal such that

βtr = β′ē. Then using equation (100) from Lemma 4.43 we can conclude that r = 2yk(I) and

that β′ē is active due to Case 2.2 (a) at stage tr+1. Since ctr +1 = ctr−1
∈We0,tr by assumption,

it must hold that [ctr + 1, ctr + yk(I)] is {ρ(|β′|) : β′0 v βē}-safe and

[ctr + 1, ctr + yk(I)] ∩ (Atr ∪B0,tr ∪B1,tr ∪ . . . ∪Btr,tr) = ∅. (101)

Let k′ be such that I is relevant above yk′(I) at stage tp+1. By the hypothesis 0 ≤ k′ ≤
k. By Lemma 4.45, α is not ready for elimination at any stage s ∈ [tr + 1, tp+1], because

I ∩ Ctp+1+1 6= I ∩ Ctp+1
but α is not ready for elimination at stage tp+1 + 1. By Lemma 4.44,

then for each k̃ with k′ ≤ k̃ < k there are at most 2yk̃(I) + 1 stages s ∈ [tr + 1, tp+1] such that I

is relevant above yk̃(I) at stage s and some new number from I is enumerated into C at stage

s. For k̃ = k stage s = tr + 1 is the only such stage (because when the next number from I is

enumerated into C after stage tr + 1, then I is demoted), while for k̃ ≤ k′ there are no stages

117

4. Lattice embeddings into RibT and Rcl

s as above. Hence there are at most

1 +

k−1∑
k̃=k′

(2yk̃ + 1) = 1 +

k−1∑
k̃=k′

(2 · 3k̃(y0 + k̃) + 1)

= 1 +

k−1∑
k̃=k′

(3 · 3k̃(y0 + k̃)− 3k̃(y0 + k̃) + 1)

< 1 +

k−1∑
k̃=k′

(3k̃+1(y0 + (k̃ + 1))− 3k̃(y0 + k̃))

= 1 +

k−1∑
k̃=k′

(yk̃+1(I)− yk̃(I))

= 1 + yk(I)− yk′(I)

(102)

enumerations of numbers from I into C at stages s+1 ∈ [tr+1, tp+1]. Each such enumeration

is accompanied by the enumeration of at most one number from [ctr + 1, ctr + yk(I)] into

A ∪
⋃
i∈NBi. Indeed, since ctr is enumerated into B0, . . . , Btr at stage tr + 1, by equation (83)

and (74) it follows that if bs ∈ I at stages s + 1 ∈ [tr + 1, tp+1], then bs ≤ ctr ; hence as is

the only number from [ctr + 1, ctr + yk(I)] that can possibly be enumerated into A ∪
⋃
i∈NBi

at such a stage s + 1. Since there are no enumerations into A ∪
⋃
i∈NBi at stages s + 1 with

I ∩ Cs = I ∩ Cs+1, by (101) and Lemma 4.42 we can conclude that

|[ctr + 1, ctr + yk(I)] ∩ (Atp ∪
⋃
i∈N

Bi,tp)| ≤ yk(I)− yk′(I).

If y is the largest number in [ctr + 1, ctr + yk(I)] which is not in Atp ∪
⋃
Bi,tp , then this means

that

|{z ∈ [ctp+1
+ 1, y] ∩ I : z /∈ Atp ∪

⋃
Bi,tp}| ≥ yk′ ,

that is, equation (77) (with tp+1 in place of s) is true.

Moreover, since each c ∈ [ctp+1
+ 1, ct0] is of the form c = ctq for some q ∈ {0, . . . , p}, by

(100) we know that [ctp+1
+ 1, ctr + yk(I)] is {ρ(|β′|) : β′ < β and β′0 v α}-safe at stage tp+1,

where β = β′ē+1 if ē < |E| − 1 and β = α otherwise. But then by (76) and (77) at stage

tp+1 +1 either the interval I is demoted to β (and not to βē) or α gets a diagonalisation witness

assigned, contradicting the fact that tp+1 = sm+1 and the assumption on sm+1.

This completes the proof of (93).

118

Now substituting m = |E| · y0 in (91), we get

ē∑
e=0

|{w ≤ cs|E|·y0 : w /∈Wπ0(e),s|E|·y0
}| ≤ (ē+ 1) · (cs|E|·y0 + 1)− |E| · y0

≤ (ē+ 1) · (cs|E|·y0 + 1− y0).

Hence there must be some e ≤ ē with

|{w ≤ cs|E|·y0 : w /∈Wπ0(e),s|E|·y0
}|

≤ cs|E|·y0 + 1− y0

< |[min(I), cs|E|·y0]|

= |{w ≤ cs|E|·y0 : w ∈ I}|.

Then α is active due to Case 2 at stage s|E|·y0
+ 1 and I is not demoted to βē, contradicting

the assumption.

Lemma 4.47. Let I be an α-interval such that I ⊆ C and such that there is a node β with

β0 < α. Let I0 = [min(I), yι(I)(I)], let t0 < . . . < t|I0|−1 be such that for n ∈ {0, . . . , |I0| − 1},
at stage tn + 1 the number ctn = yι(I)(I)− n is enumerated into C and let βtn be the node that

is active at stage tn + 1. Then either α is initialised and the assignment of I to α is cancelled

at stage t|I0|−1 + 1, or candt|I0|−1+1(α) = I and α 6v δs for any s > t|I0|−1.

Proof. It suffices to show that α is ready for elimination at some stage tm+1, m ∈ {0, . . . , |I0|−
2}. Indeed, by Lemma 4.45, in this case, if α is not initialised at stage t|I0|−1 + 1, then α is

ready for elimination at stage t|I0|−1 + 1, whence candt|I0|−1+1(α) = I and there is some β with

β0 v α such that, for ρ(|β|) = J
i,j
〈e0,e1,e2〉,

|{x ≤ min(I) : x /∈We0,t|I0|−1
}| < |{x ≤ min(I) : x ∈ I} ≤ 1,

that is We0 � min(I) + 1 = We0,t|I0|−1
� min(I) + 1 = [0,min(I)]. Moreover,

lt|I0|−1(Ji,j〈e0,e1,e2〉) > max(I)

and min(I) is enumerated into Bi at stage t|I0|−1 + 1 (remember that i ≤ |δt|I0|−1
| = t|I0|−1 by

our assumptions on ρ).

Since Φ̂e1 is an ibT-functional, it follows that for s > t|I0|−1

Φ̂
We0,s
e1,s (min(I)) = Φ̂

We0,t|I0|−1

e1,t|I0|−1
(min(I)) = Bi,t|I0|−1

(min(I)) = 0 6= 1 = Bi,s(min(I)).

Then ls(J
i,j
〈e0,e1,e2〉) ≤ min(I) for all s > t|I0|−1 and β0 6v δs, hence α 6v δs, proving the

119

4. Lattice embeddings into RibT and Rcl

lemma.

Let E = {β′ : β′0 v α} = {β′0, . . . , β′|E|−1} with β′0 < β′1 . . . < β′|E|−1. Note that by the

hypothesis E 6= ∅. By Lemma 4.44, if for some k ∈ {0, . . . , ι(I) − 1} there is a sequence of

stages tn + 1 < tn+1 + 1 < . . . < tn+2yk+1 + 1 ≤ t|I0|−2 + 1 at which I is relevant above yk(I),

then α is ready for elimination at some such stage tm + 1, as we claimed.

For a contradiction assume that there is no such sequence. Then for each k ∈ {0, . . . , ι(I)−1}
there are at most 2yk(I)+1 stages tn, n ∈ {0, |I0|−2}, at which I is relevant above yk := yk(I).

Moreover, since candt0+1(α) = I at stage t0 + 1 (when I becomes assigned to α), α must be

active due to Case 1.3 at stage t1 + 1 and I becomes relevant above yι(I)−1(I). Hence I is

relevant above yι(I)(I) at stage tn if and only if n = 0. As in equation (102) we see that there

are at most

1 +

ι(I)−1∑
k=0

(2yk(I) + 1) < 1 + yι(I)(I)− y0(I) = |I0| − 1

many stages tn+ 1, n ∈ {0, . . . , |I0|−1} at which I is relevant above some yk(I) with k ≥ 0.

In particular, at stage t|I0|−2 + 1 it is relevant above some yk(I) with k < 0. Since I is relevant

above yι(I)(I) at stage t0 + 1, there must be at least ι(I) + 1 many stages ti0 + 1, . . . , tiι(I) + 1

(with 0 < i0 < . . . < iι(I) ≤ |I0| − 2 chosen to be minimal) at which I is demoted and the

number yk(I) that I is relevant above is decreased.

For e ∈ {0, . . . , |E| − 1}, let

De = {t ∈ {ti0 , . . . , tiι(I)} : jobt+1(β′e) = I}.

Then each tik , 0 ≤ k ≤ ι(I) is in De for exactly one e. We show that there must be some e

such that

|De| ≥ (|E| · y0 + 1) · (
∑
e′<e

|De′ |+ 1). (103)

If this were not true, then for all e < |E|,

|De| < (|E| · y0 + 1) · (y0 + 2)2e (104)

, as we can see by induction on e: In fact, if (103) fails, then |D0| < (|E| · y0 + 1) = (|E| · y0 +

1) · (y0 + 2)2·0, and once we have shown that |De′ | < (|E| · y0 + 1) · (y0 + 2)2e′ for e′ ≤ e, we see

120

that

|De+1| < (|E| · y0 + 1) · (
e∑

e′=0

|De′ |+ 1) [by failure of (103)]

< (|E| · y0 + 1) · (
e∑

e′=0

(|E| · y0 + 1) · (y0 + 2)2e′ + 1) [by inductive hypothesis]

≤ (|E| · y0 + 1) · ((|E| · y0 + 1)
(y0 + 2)2e+2 − 1

(y0 + 2)2 − 1
+ 1)

≤ (|E| · y0 + 1) · (((y0 + 2)2 − 1)
(y0 + 2)2e+2 − 1

(y0 + 2)2 − 1
+ 1) [since 0 < |E| ≤ |α| < y0]

= (|E| · y0 + 1) · (y0 + 2)2(e+1).

But then it also follows that

(y0 + 2)2|E| = ι(I) + 1

=

|E|−1∑
e=0

|De|

<

|E|−1∑
e=0

(|E| · y0 + 1) · (y0 + 2)2e

= (|E| · y0 + 1) ·
|E|−1∑
e=0

(y0 + 2)2e

≤ ((y0 + 2)2 − 1) · (y0 + 2)2|E| − 1

(y0 + 2)2 − 1

= (y0 + 2)2|E| − 1,

which is not possible. This shows that (104) must be true for some e < |E|.

Let ē be the least e such that (103) holds. Assume that Dē = {tj0 < . . . < tj|Dē|−1
}. Since

there are at least
∑
e<ē |De|+1 pairwise disjoint sequences of |E| ·y0 +1 stages tjn , . . . , tjn+|E|·y0

in Dē, there must be at least one such sequence with

[tjn , tjn+|E|·y0
] ∩De = ∅ for all e < ē. (105)

But the existence of such a sequence is a contradiction to Lemma 4.46.

Lemma 4.48. (i) Let β0 v δs and let I = jobs(β) be an α-interval. Assume that α ≤ δs and

for every β′ with β′0 v β0 it holds that ls(ρ(|β′|)) > max(I). Then β requires attention and is

α-linked stage s+ 1.

(ii) Let α v δs and let cands(α) = I. Assume that for every β′ with β′0 v α it holds that

121

4. Lattice embeddings into RibT and Rcl

ls(ρ(|β′|)) > max(I) and if I ′ ∈ jobss(β
′) is an α′-interval, then α ≤ α′. Then α requires

attention at stage s+ 1.

Proof. (i) From Lemma 4.47 it is clear that I 6⊆ Cs, because otherwise, if the last enumeration

into I ∩C were at some stage t ≤ s, then candt′(α) = I for all t′ ≥ t until α becomes initialised

and the assignment of I to α is cancelled, contradicting the fact that I ∈ jobss(β). Note that

by (74) the numbers from I are enumerated into C in decreasing order and without gaps (unless

α is initialised, which does not happen until stage s). Moreover, for i ∈ N, a number b ∈ I is

enumerated into A or Bi at some stage only if a number c ∈ I with c ≤ b is enumerated into

C at the same stage. From these facts it follows that there is cs ∈ I satisfying (74) at stage s

and hence that β requires attention and is α-linked at stage s+ 1.

(ii) Again, from Lemma 4.47 it follows that I 6⊆ Cs (there is a node β with β0 v α, because

otherwise cands(α) were undefined at every stage). As in (i) we can conclude that cs satisfying

(74) exists.

Let β be the least node such that β0 v α and ρ(|β|) is a join requirement, if such a node

exists, and β = α otherwise. Then (76) is trivially satisfied for every y > cs.

At the stage s0+1 when I is assigned to α, for cs0 = yι(I)(I) there are yι(I)+1(I)−yι(I)(I)−1

numbers z > cs0 with z ∈ I − (As0 ∪
⋃
i∈NBi,s0). A new number from I is enumerated into

A ∪
⋃
i∈NBi only when a new number from I is enumerated into C; and at every stage t + 1,

at most two numbers from I are enumerated into A ∪
⋃
i∈NBi (namely, at and bt). Since the

numbers from I are enumerated into C in decreasing order and there at most yι(I)+1−min(I) ≤
yι(I) many stages at which such an enumeration takes place, it follows that there are still

yι(I)+1(I)− 2 · yι(I)(I)− 1 numbers z ≥ cs with z ∈ I − (As ∪
⋃
i∈NBi,s). But

yι(I)+1 − 2yι(I) − 1 = 3ι(I)+1(y0(I) + (ι(I) + 1))− 2 · 3ι(I)(y0(I) + ι(I))− 1

≥ 3ι(I)(y0(I) + ι(I))

= yι(I)(I)

≥ yk(I)

for k ≤ ι(I). Hence for the greatest number y ∈ I with y /∈ (As ∪
⋃
i∈NBi,s), (77) is true. It

follows that as exists and α requires attention due to Case 1.3 at stage s+ 1.

Lemma 4.49. (i) Let α < TP. Then α is initialised only finitely many times.

(ii) Let β0 < TP. Then for each interval I, there are only finitely many stages s such that

jobs(β) = I.

Proof. Literally repeat the proof of Lemma 4.27 (using Case 2 where we used Case 2.2 before,

and Lemma 4.48 where we used Lemma 4.26 before).

Lemma 4.50. It holds that A ≤ibT Bi ≤ibT C for i ∈ N.

122

Proof. It can directly be verified by looking at the construction that Bi ≤ibT C by permitting.

Since ibT-reducibility is invariant under finite variants, for A ≤ibT Bi it suffices to prove that

A−Ai ≤ibT Bi. Again, this can immediately be verified by the construction.

Lemma 4.51. Every meet requirement Mi,j
e (i, j ∈ N, i 6= j, e = 〈e0, e1, e2〉 ∈ N) is satisfied.

Proof. Let n = ρ−1(Mi,j
e) and let γ < TP be the unique node of length n on the true path.

Assume that the premise of Mi,j
e is true, that is We0 = Φ̂Bie1 = Φ̂

Bj
e2 (otherwise Mi,j

e is trivially

satisfied). Since γ0 < TP by the definition of the true path, due to the True Path Lemma there

are infinitely many γ0-stages. By Lemma 4.49(i), there is a γ0-stage s0 such that γ0 is never

initialised at any stage s ≥ s0. Then for no node α ≤ γ any numbers from an α-interval are

enumerated into Bi or Bj at any stage s ≥ s0.

Now, in order to compute We0(x) for some given x with oracle A � (x + 1), compute the

least γ0-stage s1 ≥ max({s0, x}) such that As1 � (x + 1) = A � (x + 1) and ls1(Mi,j
e) > x. We

claim that x ∈We0 if and only if x ∈We0,s1 .

Let s1 ≤ s2 ≤ . . . be the sequence of γ0-stages, starting with s1. We claim that, for n ≥ 1,

Bi,sn+1 � (x+ 1) = Bi,sn � (x+ 1) or Bj,sn+1 � (x+ 1) = Bj,sn � (x+ 1). (106)

The proof is by induction. Let equation (106) be true for n. For a contradiction, assume

that there are stages ti, tj ∈ [sn, sn+1) and numbers yi, yj ≤ x such that yi ∈ Bi,ti+1 − Bi,ti
and yj ∈ Bj,tj+1−Bj,tj . The enumeration of yi into Bi at stage ti + 1 cannot be caused by the

initialisation of any node or by any node being active due to Case 1.1, Case 1.2 or Case 2(a),

because otherwise yi were enumerated into Ati+1 −Ati at stage ti + 1, contradicting ti ≥ s1 (if

yi = cti , then yi /∈ Ati by (74); if y = min(I) for some α-interval I, where α is initialised at stage

ti + 1, then yi /∈ Ati , because each enumeration of a number w ∈ I into A is accompanied by

an enumeration of a number v ∈ I with v ≤ w into C, and yi /∈ Cti). If it caused by some node

α being active due to Case 1.3 or Case 1.4, then α 6< γ0 (because otherwise γ0 were initialised

at stage ti + 1, contradicting ti + 1 ≥ s0) and α 6>L γ0 (because otherwise α is initialised at

stage sn + 1 and only enumerates numbers into intervals I ′ with min(I ′) > sn ≥ s1 ≥ x at later

stages). Hence in this case α w γ0; since ti must be an α-stage in this case, it follows that

ti = sn.

The same analysis holds with j in place of i. There is only one node which can be active at

stage sn+1 and if such a node enumerates both yi into Bi,sn+1−Bi,sn and yj into Bj,sn+1−Bj,sn ,

then it enumerates yi or yj into Asn+1 −Asn , contradicting yi, yj ≤ x and sn ≥ s1.

Hence ti 6= tj and at least one of the enumerations of yi and yj must be caused by some node

β being active due to Case 2 (b) at some stage t ∈ (sn + 1, sn+1). Without loss of generality

assume that this is the case for yi. Let yi ∈ I, where I is an α-interval. Since β0 v δti but

γ0 6v δti , we know that γ0 6v β0; since γ0 ≤ δti , we also know that β0 6<L γ0; finally, γ0 6<L β0,

because otherwise γ0 <L α, α were initialised at stage sn+ 1 and there were only enumerations

into α-intervals I ′ with min(I ′) > sn ≥ s1 ≥ x at later stages. Hence β0 v γ0 < TP.

123

4. Lattice embeddings into RibT and Rcl

But then, by Lemma 4.49 (b), there is a least stage t′ ≥ ti such that jobt′+1(β) 6= I. Then

either β is active due to Case 2 (a) at stage t′+1 or α is initialised at stage t′+1. In either case,

some number y ≤ yi ≤ x is enumerated into At′+1 −At′ , contradicting t′ ≥ s1. This completes

the inductive step of the proof of equation (106).

Now from (106) it follows that, if x /∈We0,s1 , for n ≥ 1,

Φ̂Bi,sne1,sn (x) = Φ̂Bj ,sne2,sn (x) = We0,sn(x) = 0.

This is true for n = 1, because ls1(Mi,j
e) > x. If it is true for sn, then Bi,sn+1 � (x + 1) =

Bi,sn � (x+ 1) or Bj,sn+1 � (x+ 1) = Bj,sn � (x+ 1). If, say Bi,sn+1 � (x+ 1) = Bi,sn � (x+ 1),

then

0 = Φ̂Bi,sne1,sn (x) = Φ̂Bi,sn+1
e1,sn+1

(x) = Φ̂Bj ,sn+1
e2,sn+1

(x) = We0,sn+1
(x),

proving the equality for sn+1.

Since We0(x) = limn→∞We0,sn(x), this implies that We0(x) = 0.

Lemma 4.52. Every join requirement Ji,je (i, j ∈ N, i 6= j, e = 〈e0, e1, e2〉 ∈ N) is satisfied.

Proof. Let n = ρ−1(Ji,je) and let β < TP be the unique node of length n on the true path.

Assume that the hypothesis of Ji,je is true, that is Bi = Φ̂
We0
e1 and Bj = Φ̂

We0
e2 (otherwise Ji,je

is trivially satisfied). Since β0 < TP by the definition of the true path, due to the True Path

Lemma there are infinitely many β0-stages. By Lemma 4.49, there is a β0-stage s0 such that

β0 is never initialised and no node γ ≤ β0 is active due to Case 1 at any stage s ≥ s0.

Now, in order to compute C(x) with oracle We0 � (x+ 1) for some given x, using the oracle

compute the least β0-stage s1 ≥ max({s0, x}) such that

We0,s1 � (x+ 1) = We0 � (x+ 1) (107)

and ls1(Ji,je) > x.

We claim that x ∈ C if and only if x ∈ Cs1+1. If x /∈ I for any interval I assigned to

any node during the construction, then C(x) = 0, and the claim is true. Hence assume that

x ∈ I, where I is an α-interval. We also assume that I is assigned to α at stage s1, because at

stages s > s1 only intervals I ′ with min(I ′) > s1 ≥ x become assigned to any node, and if the

assignment of I to α has already been cancelled at or before stage s1, then no numbers from I

are enumerated into C after stage s1.

If α < β0, then x is not enumerated into C at any stage s ≥ s1, because otherwise β0 were

initialised at stage s, contradicting the choice of s0. Furthermore, if β0 <L α, then δs1 <L α,

whence α is initialised at stage s1 + 1 and I is cancelled if it was not cancelled before; then

there are no enumerations into I at stages s ≥ s1 + 1.

Hence it suffices to consider the case that β0 v α. For a contradiction assume that C(x) 6=
Cs1+1(x), i.e. that x enters C at some stage s+ 1 > s1 + 1. We now consider the possible cases

why x enters C at stage s+ 1. Let βs be the node which is active at stage s+ 1.

124

• If α is initialised at stage s+ 1, then x = min(I) is enumerated into Bi,s+1 −Bi,s. Then

Φ̂
We0
e1 (x) = Bi(x) = 1 6= 0 = Bi,s1(x) = Φ̂

We0,s1
e1,s1 (x). (108)

Then there must be some z ≤ x in We0−We0,s1 , contradicting the choice of s1. So for the

remaining cases we may assume that α is not initialised at any stage t with s1 ≤ t ≤ s+ 1

(because I is assigned to α at stage s1 and still assigned to α at stage s+ 1).

• If βs is active due to Case 1.2 or Case 2(a) at stage s+ 1, then x = cs is enumerated into

Bi,s+1 − Bi,s and as above we conclude that there must be some z ≤ x in We0 −We0,s1 ,

contradicting the choice of s1.

• If βs = α is active due to Case 1.4 at stage s+ 1, then there is some stage t+ 1 < s+ 1

such that x = ct and (ct, at) has been assigned as diagonalisation witness to α via Case

1.3 at stage t+ 1. By (76) [ct+ 1, at] was {Ji,je }-safe at stage t. By the hypothesis of Case

1.4, ls(ρ(|β|)) > at and y = at is enumerated into Bi,s+1 −Bi,s. Then (108) holds with y

in place of x.

Since Φ̂e1 is an ibT-functional, there must be some z ≤ y in We0 − We0,s. But since

[x+ 1, y] ⊆We0,s, it follows that z ≤ x, contradicting the choice of s1.

• If βs = α is active due to Case 1.3 and I is demoted to some β′ with β < β′, or if βs = β′

is active due to Case 2 (b) and β0 < βs0 at stage s+1, then x = cs, and as is enumerated

into Bi,s+1−Bi,s or Bj,s+1−Bj,s. If as is enumerated into Bi, then equation (108) holds

with as in place of x and s in place of s1; if as is enumerated into Bj , then

Φ̂
We0
e2 (as) = Bj(x) = 1 6= 0 = Bj,s(as) = Φ̂

We0,s
e2,s (as). (109)

In either case, there must be some z ≤ as in We0 −We0,s. Since β0 < β′0 in this case, by

(76) or (79), respectively, [cs + 1, as] ⊆We0,s. Hence z ≤ cs = x, contradicting the choice

of s1 again.

• If βs = α is active due to Case 1.3 and I is demoted to some β′ with β′ v β, or if βs = β′

is active due to Case 2 (b) and βs0 v β0 at stage s + 1, then jobs+1(β′) = I, while by

Lemma 4.49 there is a least stage s′ > s such that jobs′+1(βs) 6= I. If α is initialised

at stage s′ + 1, then I 6⊆ Cs′ by Lemma 4.47, and in particular min(I) /∈ Cs′ , hence

min(I) /∈ Bi,s′ . Then the same analysis as in the first case above shows that there is some

z ≤ min(I) ≤ x in We0 −We0,s1 , contradicting the choice of s1.

If I is not cancelled at stage s′ + 1, then β′ must be active due to Case 2.2 (a) at stage

s′ + 1 > s + 1. As we have seen above, then some z ≤ cs′ ≤ cs = x enters We0 −We,s1 ,

contradicting the choice of s1 again.

125

4. Lattice embeddings into RibT and Rcl

In all cases we have arrived at a contradiction to (107). Hence C(x) = Cs1+1(x), completing

the proof of the lemma.

Lemma 4.53. Every diagonalisation requirement De (e ∈ N) is satisfied.

Proof. Let α < TP be the unique node of length e on the true path. By Lemma 4.49, there is

some stage s0 such that for any stage s ≥ s0, α is not initialised at stage s and for all α′ ≤ α,

all β0 v α and every α′-interval I, jobs(β) 6= I.

For a contradiction assume that α has no interval assigned at any stage s ≥ s0. Then no

α′ w α is active after stage s0, because α requires attention at stage s + 1 for every α-stage

s ≥ s0. For any α-stage s ≥ s0 some node β < α must be active due to Case 2 at stage s + 1

and enumerate some number c in Cs+1−Cs, where c is in an α′-interval for some α′ ≤ δs. Since

no α′ w α is active after stage s0, almost all of these enumerations are into α′-intervals with

α′ < α. But by the choice of stage s0 no such enumerations are possible.

Hence there must be a least α-stage s1 ≥ s0 such that α has some interval I assigned at

stage s1 +1. Since α is never initialised after stage s1, I is assigned to α at all stages s ≥ s1 +1.

Since s1 ≥ s0 and by the choice of s0, for all s > s1 it holds that either α has a diagonalisation

witness (x, y) with x, y ∈ I assigned at stage s, or cands(α) = I.

Since α < TP, there is an α-stage s2 ≥ s1 + 1 such that ls2(ρ(|β|)) > max(I) for all β0 v α.

For a contradiction assume that cands(α) = I for all s ≥ s2. By Lemma 4.48 (ii) and the

choice of s0, α requires attention due to Case 1.3 at stage s+ 1 for every α-stage s ≥ s2. Hence

no node above α is active after stage s2 and there are only finitely many intervals assigned to

such nodes. Let s3 ≥ s2 be an α-stage such that for all β with β0 v α and all α′ w α, there is

no α′-interval I ′ with jobs(β) = I ′. Such a stage exists by Lemma 4.49. Nodes α′ v α do not

require attention due to Case 1.1, Case 1.2, Case 1.3 or Case 1.4 at stage s+ 1 for any α-stage

s ≥ s3, because otherwise α were initialised, and they do not require attention due to Case 2 at

such a stage s+ 1, because if jobs(β) = I ′ for some β with β0 v α, then I ′ is an α′-interval for

some α′ >L α, hence α′ >L δs. It follows that α is active at every such stage s+1. In fact, since

α has no diagonalisation witness assigned and since cands+1(α) = I by assumption, α must be

active due to Case 1.2 and enumerates the number cs ∈ I into Cs+1 − Cs. But since there are

infinitely many α-stages, this implies that infinitely many numbers from I are enumerated into

C, which is impossible.

Hence there is a stage s ≥ s2 such that cands(α) 6= I and α has a diagonalisation witness

(x, y) with x, y ∈ I assigned at stage s.

Let (x, y) become assigned as diagonalisation witness to α at stage s̄+ 1. Then x /∈ Cs̄+1.

If there is no β0 v α, then α is active due to Case 1.1 at stage s̄ + 1 and ι(I) = 0,

I = [x, 3 · (x + 2)), and since e = |α| < x it holds that y0(I) = x + 1 < x + e + 2 ≤ max(I).

Then y = x+ e+ 2 /∈ As̄+1 ∪
⋃
i∈NBi,s̄+1.

If there is some β0 v α, then α is active due to Case 1.3 at stage s̄ + 1, and by (77)

|[cs̄ + 1, y]| ≥ yk(I) ≥ x ≥ min(I) > |α| = e, where I is relevant above yk(I) at stage s̄, hence

126

y ≥ cs + e+ 1 = x+ e+ 1. Moreover, y /∈
⋃
i∈NAs̄+1 ∪Bi,s̄+1.

Now if x is never enumerated into C, then C(x) = 0 6= Φ̃Ae (x): For a contradiction assume

that Φ̃Ae (x) = 0. Then there is a stage s4 ≥ s̄ such that As4 � (x+ e+ 1) = A � (x+ e+ 1) and

Φ̃A,s4e,s4 (x) = 0. By the choice of s4 ≥ s2, α requires attention due to Case 1.4 at stage s+ 1 for

every α-stage s ≥ s4. Similar as above we can argue that α must be active at some such stage

s+ 1, whence x is enumerated into C, contradicting the hypothesis.

On the other hand, if x is enumerated into C at some stage t+ 1 > s̄, then by the premises

of Case 1.4,

C(x) = 1 6= 0 = Ct(x) = Φ̃Ate,t(x).

It suffices to show that At � (x + e + 1) = A � (x + e + 1), because then Φ̃Ate,t(x) = Φ̃Ae (x) and

De is satisfied.

But this is true because there are no enumerations into A from any α′-intervals with α′ ≤ α
after stage t (otherwise α would be initialised), while nodes α′ with α < α′ are initialised at

stage t+ 1 and only get intervals I ′ with min(I ′) > max(I) assigned at later stages.

At the end of this chapter, we state that there is a finite lattice for which a lattice embedding

into RibT and Rcl exists but no lattice embedding into RT.

Definition 4.54. The S8 is the partial ordering S8 = ({a, b0, b1, b2, c, d0, d1, e},≤S8
) such that

1. h(a) = a, h(bi) = bi for i ∈ {0, 1, 2} and h(c) = c defines a lattice embedding of the M3

into S8,

2. h′(a) = c, h′(b0) = d0, h′(b1) = d1 and h′(c) = e defines a lattice embedding of the

diamond into S8.

The following diagram illustrates what the S8 looks like.

a
•

b1•b0• b2•

c •

d0• d1•

e•

Theorem 4.55. [Lach 80] There is no lattice embedding of the S8 into RT.

127

4. Lattice embeddings into RibT and Rcl

To show that the S8 is lattice embeddable into Rr for r ∈ {ibT, cl}, we cite a result which

is interesting in its own right.

Theorem 4.56. (Ambos-Spies, Bodewig, Kräling, and Yu [Amboc]) For r ∈ {ibT, cl}, Rr is

branching, that is for every c.e. r-degree c there are incomparable c.e. r-degrees d0,d1 > c such

that d0 ∧ d1 = c. Moreover, we can choose d0 and d1 in such a way that d0 and d1 have a

join e.

Corollary 4.57. For r ∈ {ibT, cl} there is a lattice embedding of the S8 into Rr.

Proof. By Theorem 4.39 there is a lattice embedding h of the M3 into Rr. For h(c) = c, let

d0, d1 and e be as in Theorem 4.56. Then we can extend h to an embedding h′ of the S8 into

Rr by defining h′(d0) = d0, h′(d1) = d1 and h′(e) = e.

128

Chapter 5

Cuppable degrees and the

theories of RibT and Rcl

5.1 Elementary equivalence of degree structures

Almost all of the results stated about some degree structure Rr in the previous chapters could be

formalised as “Rr satisfies some theorem of first-order predicate logic in the language containing

≤ as the only non-logical symbol”. For example, the statement of Lemma 4.5 that the diamond

can be lattice embedded into Rr preserving the least element (for r ∈ {T,wtt, cl, ibT}) could

be formalised as

Rr |= (∃a)(∃b0)(∃b1)(∃c)(∀x)((a ≤ x) ∧ (b0 6≤ b1) ∧ (b1 6≤ b0) ∧ (b0 ≤ c) ∧ (b1 ≤ c)

∧(x ≤ b0 ∧ x ≤ b1 → x ≤ a) ∧ (b0 ≤ x ∧ b1 ≤ x→ c ≤ x)).

This observation leads to the question whether two degree structures Rr and Rr′ satisfy the

same first-order theorems.

Definition 5.1. Two partial orders are elementarily equivalent if they satisfy the same theorems

of first-order predicate logic in the language containing ≤ as the only non-logical symbol.

For the most common degree structures studied in the literature, R1 (the structure of the

c.e. degrees with respect to one-one-reducibility), Rm, Rtt (the structure of the c.e. degrees with

respect to truth-table reducibility), Rwtt and RT, it is well known that they are pairwise not

elementarily equivalent. This follows from the facts that R1 does not constitute an upper semi-

lattice (in contrast to Rr for r ∈ {m, tt,wtt,T}), that the c.e. incomplete m-degrees are closed

under joins (in contrast to the c.e. incomplete r-degrees for r ∈ {tt,wtt,T}), that there exist

minimal c.e. tt-degrees (but no minimal c.e. wtt- or T-degrees) and that the upper semi-lattice

of c.e. wtt-degrees is distributive but the upper semi-lattice of c.e. Turing-degrees is not (see

[Odif 99] for details).

129

5. Cuppable degrees and the theories of RibT and Rcl

Since, for r ∈ {ibT, cl}, Rr does not have a greatest element (since there are r-maximal pairs

by Theorem 3.5), while R1, Rm, Rtt, Rwtt and RT all have a greatest element (the respective

degree of the halting problem), it follows that RibT and Rcl are not elementarily equivalent to

any of R1, Rm, Rtt, Rwtt and RT.

On the other hand, all theorems we have proven for RibT so far were also true for Rcl. In

some cases (the existence of maximal pairs, for example), the result for RibT directly carries

over to Rcl by general observations like the ibT-cl-Join and -Meet Lemma, in other cases the

proofs are very similar and just slightly more involved for Rcl (for example, the embedding of

the M3 into RibT and Rcl). In other cases, however, the known proofs for Rcl are considerably

more complex than the respective proofs for RibT. Examples are the proof of Theorem 4.56

or of the fact that neither RibT nor Rcl is dense (shown by Barmpalias and Lewis for RibT

[Barm 06] and by Day for Rcl [Day 10]).

Thus it would simplify matters if RibT and Rcl were elementarily equivalent, whence prop-

erties of the c.e. ibT-degrees would always carry over to the c.e. cl-degrees. In this chapter we

will establish a property witnessing that this is not the case. Most results in this chapter are

from joint work with Klaus Ambos-Spies, Philipp Bodewig and Yun Fan, and were published

in [Ambo 13a].

5.2 Cuppability in RibT

The property we consider is defined in terms of cuppability.

Definition 5.2. Let P = (P,≤P) be a partial order and let a, b ∈ P such that b ≤P a. Then b

is a-cuppable if there is an element c of P such that c <P a and a = b∨c; and b is a-noncuppable

otherwise, i.e. if, for all c <P a, a is not the join of b and c (i.e. b∨ c does not exist or b∨ c < a).

Let r ∈ {ibT, cl}. For any c.e. r-degree a let NCur(a) denote the class of the a-noncuppable

c.e. r-degrees. Ambos-Spies [Ambob] has shown that in case of r = ibT, for each r-degree a > 0

the class NCur(a) is bounded by some r-degree c < a.

Theorem 5.3 (Ambos-Spies [Ambob]). For any c.e. ibT-degree a > 0,

NCuibT(a) ⊆ {b ∈ RibT : b ≤ a + 1}.

For the sake of completeness we give the short proof of this result, which uses the following

easy lemma.

Lemma 5.4 (Disjoint Sets Lemma; [Ambob]). Let D and E be disjoint noncomputable c.e.

sets such that D ≤ibT E. Then D ≤ibT E + 1.

Proof. By Lemma 2.7 we may assume that there are enumeration functions d for D and e for

E such that for all n, e(n) ≤ d(n). Since D and E are disjoint, in fact e(n) < d(n). Then

130

h(n) := e(n) + 1 ≤ d(n), and h is an enumeration function for E + 1; hence D ≤ibT E + 1 by

permitting.

Proof of Lemma 5.4. Given a noncomputable c.e. set A and a c.e. set B ≤ibT A such that

B 6≤ibT A+ 1, it suffices to find a c.e. set C <ibT A such that

degibT(A) = degibT(B) ∨ degibT(C). (110)

By Lemma 2.7, without loss of generality we may assume that there are computable one-to-one

enumerations {a(n)}n≥0 and {b(n)}n≥0 of A and B, respectively, such that a(n) ≤ b(n) for all

n ≥ 0. Split A and B into c.e. sets

A0 = {a(n) : a(n) = b(n)} and A1 = {a(n) : a(n) < b(n)}

and

B0 = {b(n) : a(n) = b(n)} and B1 = {b(n) : a(n) < b(n)},

respectively. Note that A0 = B0. Hence, by the Splitting Lemma (Lemma 3.4),

degibT(A) = degibT(A0) ∨ degibT(A1) = degibT(B0) ∨ degibT(A1).

So, since (again by the Splitting Lemma) B0 ≤ibT B, it suffices to show that A1 <ibT A. (Then

(110) will hold for C = A1.)

For a contradiction assume that A1 ≡ibT A. Then A0 ≤ibT A1. Hence, by the Disjoint

Sets Lemma, A0 ≤ibT (A1) + 1. Since, by definition of A1 and B1, B1 ≤ibT (A1) + 1 by

permitting, it follows, by B0 = A0 and by the Splitting Lemma, that B ≤ibT (A1) + 1. Since

(A1) + 1 ≤ibT A+ 1, this contradicts the assumption that B 6≤ibT A+ 1.

We can also look at the converse of Theorem 5.3 and ask whether

{b ∈ RibT : b ≤ a + 1} ⊆ NCuibT(a)

holds for all c.e. ibT-degrees a > 0. Since NCuibT(a) is closed downwards, this is equivalent

to the question whether a + 1 ∈ NCuibT(a). Ambos-Spies [Ambob] has shown that the latter

is indeed true if there exists some sufficiently scattered c.e. set A ∈ a, for example a set A

containing only even numbers.

Lemma 5.5 (Ambos-Spies [Ambob]). Let A be a noncomputable c.e. set such that A ⊆ 2N =

{2n : n ∈ N}. Then degibT(A+ 1) is degibT(A)-noncuppable.

Another partial positive result is that, for any noncomputable c.e. set A, the ibT-degree of

A+ 1 does not cup to the ibT-degree of A by the ibT-degree of any c.e. set B <ibT A such that

A and B are cl-equivalent. This is a consequence of the following lemma since, for any c.e. sets

A and B such that A ≡cl B, A+ k ≤ibT B for some k ≥ 1.

131

5. Cuppable degrees and the theories of RibT and Rcl

Lemma 5.6. Let a,b be c.e. ibT-degrees such that a + 1 ∨ b = a. Then a + k ∨ b = a for all

k ≥ 1.

Proof. We give the proof for k = 2. The general claim follows by induction. Since the bounded

shifts induce automorphisms of the partial ordering of the c.e. ibT-degrees (see [Ambob]), it

follows from a + 1 ∨ b = a that a + 2 ∨ b + 1 = a + 1 (note that a + 2 = (a + 1) + 1). So

a + 2 ∨ b + 1 ∨ b = a. Since b + 1 ≤ b this implies a + 2 ∨ b = a.

Despite the above observations, however, in general a + 1 is not a-noncuppable. In fact, as

we will show now, for any computable shift f there is a nonzero c.e. ibT-degree c = degibT(C)

such that the f -shift degibT(Cf) of c cups to c.

Theorem 5.7. Let f be a computable shift. Then there are c.e. sets B and C such that

B <ibT C and degibT(Cf) ∨ degibT(B) = degibT(C).

Proof. W.l.o.g. we may assume that f(x) > x for all numbers x (if this is not the case we may

replace f by f + 1). It suffices to effectively enumerate sets B and C satisfying the following

requirements for all e = 〈e0, e1, e2〉 ∈ N.

B ≤ibT C

De : C 6= Φ̂Be

Je : (Cf = Φ̂
We0
e1 and B = Φ̂

We0
e2)⇒ C ≤ibT We0 .

Satisfaction of the diagonalisation requirements De ensures that C 6≤ibT B. Satisfaction

of the join requirements Je ensures that for every c.e. ibT-degree d, if d ≥ degibT(Cf) and

d ≥ degibT(B), then d ≥ degibT(C). Namely, if e0, e1 and e2 are chosen in such a way that We0

is some c.e. set with d = degibT(We0), Cf = Φ̂
We0
e1 and B = Φ̂

We0
e2 , then with e = 〈e0, e1, e2〉

the satisfaction of Je implies that degibT(C) ≤ degibT(We0) = d.

B ≤ibT C will be satisfied by direct coding. That is, if a new number x is enumerated into

B at stage s+ 1 then x 6∈ Cs and x is simultaneously enumerated into C at stage s+ 1.

Note the similarity between the requirements given above and the requirements in the proof

of Theorem 3.20. If we substitute the sets B0 and B1 from that proof by Cf and B, then the

join requirements are exactly the same, and the order requirements are also the same (note

that Cf ≤cl C automatically holds by the Computable Shift Lemma 2.6). The diagonalisation

requirements are different, of course; however, the strategies to satisfy them are very much alike.

In the proof of Theorem 3.20 they basically consisted in putting some number x into C and

restraining all further enumerations of numbers y ≤ g(x) into B0 or B1. In the current proof,

to satisfy the requirement De by the usual diagonalisation strategy, we wait for a stage s such

that Φ̂Bse,s(x) = 0 for some appropriate witness x /∈ Cs and then put x into Cs+1 and restrain all

enumerations of numbers y ≤ x into B. Since we satisfy B ≤ibT C by direct coding and since

x ≤ f(x), a stronger condition would be to restrain all enumerations of numbers y ≤ f(x) into

132

B and all enumerations of numbers y ≤ x into C, i.e. all enumerations of numbers y ≤ f(x)

into Cf . But this is – substituting B0 by B and B1 by Cf again, and substituting g by f – just

the strategy in the proof of Theorem 3.20.

To clarify matters, we state the modified construction. The notation is as in the proof of

Theorem 3.20.

Construction. Let B0 = C0 = ∅. For s ≥ 0, we say that a node α of length e requires

attention at stage s+ 1 if α v δs and

(Case 1) α has no interval assigned to it at the end of stage s, or

(Case 2) α has an interval I assigned to it at the end of stage s such that Cs(x) = Φ̂Bse,s(x)

for all x ∈ I, ls(Je′) > max(I) for all e′ < e with α(e′) = 0 and I ∩Bs = I ∩ Cs ⊂ I.

If some node requires attention at stage s+ 1, find the least (with respect to v) such α and

say that α is active at stage s+ 1. We say that α is active due to Case 1 or active due to Case

2, respectively, depending on whether α has an interval assigned or not at the end of stage s.

Declare all intervals assigned to nodes β > α unassigned (i.e., initialise these nodes) and do the

following:

If α is active due to Case 1, let e = |α| and assign a new interval I ′ = [x, fe·(x+1)+1(x)] to

α where x is the least number ≥ s + 1 such that x is larger than all numbers from intervals

assigned to any node before stage s+ 1. Let Cs+1 = Cs and Bs+1 = Bs.

If α is active due to Case 2, then distinguish the following subcases.

(Subcase 2.1) If there exists x /∈ Cs such that [x, f(x)] ⊆ I and [x + 1, f(x)] ⊆ We′0,s
for

every e′ < e with α(e′) = 0 and e′ = 〈e′0, e′1, e′2〉, then let Cs+1 = Cs ∪ {x} for the least such x

and Bs+1 = Bs (we say that α enumerates x into C at stage s+ 1).

(Subcase 2.2) Otherwise, for y = max({x ∈ I : x /∈ Bs}), let Cs+1 = Cs ∪ {y} and

Bs+1 = Bs ∪ {y} (we say that α enumerates y into C and B at stage s+ 1).

If no node requires attention at stage s + 1, let Cs+1 = Cs, Bs+1 = Bs and initialise all

nodes β > δs. Proceed to the next stage.

The verification is completely analogous to the proof of Theorem 3.20 and is left to the

reader. It can also be found in [Ambo 13a].

5.3 Cuppability in Rcl

Turning to the c.e. cl-degrees, we first notice that the analogue of Theorem 5.7 is true as well.

Theorem 5.8. Let f be an unbounded computable shift. Then there are c.e. sets B and C such

that B <cl C and degcl(Cf) ∨ degcl(B) = degcl(C).

Proof. By Theorem 5.7 there are c.e. sets B and C such that B <ibT C and degibT(Cf) ∨
degibT(B) = degibT(C). We will show that B and C have the required properties. By the

133

5. Cuppable degrees and the theories of RibT and Rcl

ibT-Join Lemma, degcl(Cf) ∨ degcl(B) = degcl(C). So, since ibT-reducibility is stronger than

cl-reducibility, it suffices to show that B 6≡cl C.

For a contradiction assume that B ≡cl C. Then C + k ≤ibT B for some k ≥ 0. Since

f is an unbounded computable shift, it follows that f(x) ≥ x + k for almost every x, hence

Cf ≤ibT C + k ≤ibT B. So

degibT(Cf) ∨ degibT(B) = degibT(B) < degibT(C).

But this contradicts the choice of B and C.

This shows that for some degrees a ∈ Rcl there exist cl-degrees d < a which are “much

smaller” than a and still a-cuppable. On the other hand, as we will see, there are degrees

a ∈ Rcl for which we can find a-noncuppable degrees which are arbitrarily close to a in the

sense that they can avoid any given lower cone {d : d ≤ b}, where b < a. Indeed, this will

hold for 2-scattered cl-degrees a.

Definition 5.9. Let R2 = {2m : m ≥ 0}. Call a set A 2-scattered if A ⊆ R2, and call a c.e.

degree 2-scattered if it contains a 2-scattered c.e. set.

Note that, for any c.e. set A, Â = {2n : n ∈ A} is 2-scattered, c.e. and wtt-equivalent to A.

So any c.e. wtt-degree contains a c.e. 2-scattered set.

Theorem 5.10. Let a and b be c.e. cl-degrees such that a is 2-scattered and b < a. There is

an a-noncuppable c.e. cl-degree c ≤ a such that c 6≤ b.

For the proof of Theorem 5.10 we will need the following observation.

Lemma 5.11. Let A,B0, . . . , Bk be c.e. sets such that A is 2-scattered and Bi <cl A for

i ∈ {0, . . . , k}. Then for k′ > k there are c.e. sets B̂0, . . . B̂k such that

B̂i ⊆ k′ · N + i = {k′ · n+ i : n ∈ N}

and Bi ≤cl B̂i <cl A for i ∈ {0, . . . , k}.
Moreover, the sets B̂i can be chosen in such a way that there is a splitting A = A0 ∪ A1 of

A and a splitting B̂i = B̂i0 ∪̇ B̂i1 of B̂i with B̂i0 ≤cl Bi and B̂i1 = (A1)fi for some unbounded

computable shift fi.

Proof. W.l.o.g. we may assume that 1, 2, . . . , 23k′−1 6∈ A and (by replacing Bi by some bounded

shift Bi + p with Bi ≤(i+p)bT A) that Bi ≤ibT A for i ∈ {0, . . . , k}.
For each i ∈ {0, . . . , k} do the following:

If Bi is computable, then we can just choose B̂i = k′ · N + i.

Otherwise, using Lemma 2.7, we may assume that there are enumeration functions a of A

and bi of Bi for i ∈ {0, . . . , k}, such that a(n) ≤ bi(n) for all n ≥ 0.

134

Fix a computable function lowi : N → N such that, for m ≥ 3k′ and y ∈ [2m, 2m+1),

lowi(y) ∈ [2m, 2m+1 − k′) ∩ (k′ · N + i), and |lowi(y) − y| ≤ 2k′. Such a function exists,

because for y ∈ [2m, 2m+1 − k′), m ≥ 3k′, at least one of the sets {y, y + 1, . . . , y + k′ − 1} and

{y, y−1, . . . , y−k′+1} is a subset of [2m, 2m+1−k′) (since |[2m, 2m+1−k′)| = 2m+1−2m−k′ =

2m − k′ ≥ 23k′ − k′ ≥ 3k′ − k′ = 2k′), and both sets contain a number from k′ · N; and for

y ∈ [2m+1−k′, 2m+1) the set [2m+1−2k′, 2m+1−k′) is a subset of [2m, 2m+1−k′) and contains

a number from k′ · N.

Also fix a computable function upi : N → N such that, for m ≥ 3k′ and y ∈ [2m, 2m+1),

upi(y) is the unique number from [2m+1 − k′, 2m+1) which is in k′ · N + i.

Then let B̂i = {b̂i(n) : n ≥ 0} for the computable function b̂i defined by

b̂i(n) =

lowi(bi(n)) if a(n) ≤ bi(n) < 2a(n)

upi(2a(n)− 1) otherwise (i.e., if 2a(n) ≤ bi(n)).

Obviously, B̂i is c.e. and B̂i ⊆ k′ · N + i. Moreover, since A is 2-scattered and a(n) ≥ 23k′ for

all n, the function b̂i is one-to-one and a(n) ≤ b̂i(n) ≤ bi(n) + 2k′. So Bi ≤cl B̂i ≤cl A.

It remains to show that A 6≤cl B̂i. For a contradiction assume A ≤cl B̂i. Split A, Bi, and

B̂i into the c.e. sets

A0 = {a(n) : a(n) ≤ bi(n) < 2a(n)} and A1 = {a(n) : 2a(n) ≤ bi(n)},

Bi0 = {bi(n) : a(n) ≤ bi(n) < 2a(n)} and Bi1 = {bi(n) : 2a(n) ≤ bi(n)},

and

B̂i0 = {b̂i(n) : a(n) ≤ bi(n) < 2a(n)} and B̂i1 = {b̂i(n) : 2a(n) ≤ bi(n)},

respectively. Note that, by the fact that any interval [2m, 2m+1−1) contains at most one element

of Bi0 and by definition of low(y), B̂i0 ≡cl Bi0. Moreover, B̂i1 = (A1)fi for the computable

unbounded shift fi defined by

fi(x) =

x, if x < 23k′

upi(2
m+1 − 1) + q, if x = 2m + q with m ≥ 3k′ and 0 ≤ q < 2m.

Note that fi is indeed strictly increasing, i.e. fi(x) < fi(x+1) for all x. For x < 23k′−1 and for

x = 2m + q with m ≥ 3k′ and q < 2m− 1 this is clear; for x = 23k′ − 1 we have fi(x) = 23k′ − 1

and fi(x + 1) = upi(2
3k′+1 − 1) ≥ 23k′+1 − k′ = 23k′ + 23k′ − k′ ≥ 23k′ = fi(x) + 1; and for

x = 2m+(2m−1) with m ≥ 3k′ it holds that fi(x) = upi(2
m+1−1)+(2m−1) < 2m+1+2m−1 ≤

2m+1 + 2m + 2m −m ≤ 2m+1 + 2m+1 − k′ = 2m+2 − k′ ≤ upi(2m+2 − 1) = fi(x+ 1).

By the above observation and by assumption,

A ≤cl B̂i = B̂i0 ∪̇ B̂i1 ≤cl B̂i0 ∪̇ (A1)fi .

135

5. Cuppable degrees and the theories of RibT and Rcl

Hence A ≤cl B̂i0 by the Computable Shift Lemma 2.6. By B̂i0 ≡cl Bi0 and Bi0 ≤cl Bi this

implies A ≤cl Bi contrary to the choice of A and Bi.

Proof of Theorem 5.10. Fix c.e. sets A andB in a and b, respectively, such that A is 2-scattered.

By replacing B by a bounded shift B + k, we may assume that B ≤ibT A. Note that A is non-

computable because B <cl A. If B is computable, we may substitute B by some noncomputable

set B′ <cl A, for example B′ = 2A. Hence by Lemma 2.7 we can assume that both A and

B are noncomputable and that there are enumeration functions a of A and b of B, such that

a(n) ≤ b(n) for all n ≥ 0.

It suffices to define a c.e. set C ≤cl A such that C 6≤cl B and degcl(C) does not cup to

degcl(A). In the following we inductively define an enumeration function for such a set C. We

ensure that the function c has the following properties.

(∀n) (a(n) ≤ c(n) < 2a(n)) (111)

(∀n) (c(n) is even) (112)

(∀e) (∃ne) (∀n ≥ ne) (c(n) > a(n) + e) (113)

In addition we guarantee that the set C = {c(n) : n ≥ 0} meets the requirements

Re : C 6= Φ̃Be .

To show that this guarantees that C has the required properties, note that (111) implies

that C ≤cl A while satisfaction of all requirements Re ensures that C 6≤cl B. It remains to

show that degcl(C) does not cup to degcl(A). For a contradiction assume that there is a c.e.

set D <cl A such that

degcl(A) = degcl(C) ∨ degcl(D).

By Lemma 5.11 (applied to k = 1, B0 = ∅, B1 = D and k′ = 2), w.l.o.g. we may assume that

D ⊆ 2N + 1. Since, by (112), C ⊆ 2N, it follows that A ≤cl C ∪ D by the Splitting Lemma.

So we may fix e such that A = Φ̃C∪De . Now in order to get the desired contradiction we show

that this reduction can be converted into a cl-self-reduction of A relative to D whence A ≤cl D

contrary to the choice of D. This self-reduction is as follows.

Since A is 2-scattered it suffices to compute A(x) for x = 2m (m ≥ 0). In fact, by (113),

we may fix a number me such that for any n such that a(n) = 2m for some m ≥ me, c(n) >

a(n) + e = 2m + e and w.l.o.g. we may assume that m ≥ me. So in the computation Φ̃C∪De (x)

any even query y with y ≥ x will be answered negatively since C ∩ [2m, 2m + e] = ∅ and

y ≤ ũe(x) ≤ 2m + e. For an even query y < x, compute m′ < m such that y ∈ [2m
′
, 2m

′+1).

Then, by using A � 2m
′

+ 1 as an oracle, check whether 2m
′ ∈ A. If 2m

′ 6∈ A then y 6∈ C by

(111). Otherwise, y ∈ C if and only if c(n) = y for the unique n such that a(n) = 2m
′
. Odd

136

queries in the computation of Φ̃C∪De (x) are simply answered by the oracle D.

Now the enumeration function c of C is inductively defined as follows. Given s ≥ 0 and

c(0), . . . , c(s − 1), let As−1 = {a(0), . . . , a(s − 1)}, Bs−1 = {b(0), . . . , b(s − 1)} and Cs−1 =

{c(0), . . . , c(s− 1)}. Say that requirement Re requires attention at stage s if e ≤ s, a(s) + 2e <

2a(s),

Cs−1 � a(s) + 2e+ 1 = Φ̃
Bs−1

e,s−1 � a(s) + 2e+ 1, (114)

and b(s) ≥ a(s) + 3e + 1. If no requirement requires attention then let c(s) = 2a(s) − 2.

Otherwise, for the least e such that Re requires attention, let c(s) = a(s) + 2e and say that

requirement Re is active at stage s.

Obviously, the enumeration function c(n) is computable and one-to-one. So it suffices to

show that c(n) satisfies (111) to (113) and that, for C = {c(n) : n ≥ 0}, the requirements Re

are met. Now (111) and (112) are obvious. For a proof of (113) note that, for sufficiently large

s, c(s) ≤ a(s) + e only if a requirement Re′ with e′ ≤ e is active at stage s, hence requires

attention at stage s. So it suffices to prove the following claim.

Claim. Every requirement Re requires attention at most finitely often and is met.

The proof of the claim is by induction on e. Fix e and, by inductive hypothesis, choose

a stage s−1 > e such that no requirement Re′ with e′ < e requires attention after stage s−1.

W.l.o.g. we may assume that s−1 is sufficiently large such that a(s)+2e < 2a(s) for all s ≥ s−1.

Next observe that if Re would require attention infinitely often then there were infinitely

many stages s such that (114) holds. Since lims→∞ a(s) = ∞ and since Φ̃e is a cl-functional

this would imply that C = Φ̃Be , i.e., that Re is not met. So it suffices to show that Re is met.

For a contradiction assume that

C = Φ̃Be . (115)

Then, by induction on m ≥ 0, let sm be minimal such that sm > sm−1,

Bsm−1 � 2m + 3e+ 1 = B � 2m + 3e+ 1, (116)

and

Csm−1 � 2m + 2e+ 1 = Φ̃
Bsm−1

e,sm−1 � 2m + 2e+ 1. (117)

We claim that A(2m) = Asm−1(2m) for all m. Since stage sm can be computed from B �

2m + 3e+ 1, it follows that A ≤cl B contrary to the choice of A and B.

For a contradiction assume that there is a number m ≥ 0 such that A(2m) 6= Asm−1(2m).

Then there is a stage s∗ ≥ sm such that a(s∗) = 2m. It follows by (116) that

b(s∗) ≥ a(s∗) + 3e+ 1. (118)

137

5. Cuppable degrees and the theories of RibT and Rcl

Moreover, by (117), (116) and ũe(x) ≤ x+ e, and by (115) it holds that

Csm−1 � 2m + 2e+ 1 = Φ̃
Bsm−1

e,sm−1 � 2m + 2e+ 1

= Φ̃Be � 2m + 2e+ 1

= C � 2m + 2e+ 1.

(119)

Since s∗ ≥ sm, it follows that Cs∗ � 2m + 2e+ 1 = C � 2m + 2e+ 1 and Φ̃Bs∗e,s∗ � 2m + 2e+ 1 =

Φ̃Be � 2m + 2e+ 1.

Now, since a(s∗) = 2m and s∗ ≥ sm ≥ s−1, it follows from (118) and (117) that Re requires

attention and becomes active at stage s∗. So c(s∗) = a(s∗) + 2e = 2m + 2e is enumerated into

C at stage s∗, i.e., 2m + 2e ∈ Cs∗ \ Cs∗−1. But this contradicts (119).

This completes the proof of the claim and the proof of the theorem.

Corollary 5.12. The first order theory Th(RibT) of the partial ordering of the c.e. ibT-degrees

and the first order theory Th(Rcl) of the partial ordering of the c.e. cl-degrees are different.

Proof. This follows from Theorem 5.3 and Theorem 5.10, because for the theorem σ of first-

order predicate logic stating that for all degrees a 6= 0 the set of the c.e. a-noncuppable degrees

has an upper bound b less than a it holds that

RibT |= σ

and

Rcl 6|= σ.

Note that the theorem

σ ≡(∀a)(∃b)(∀c)(∀d)(∃f)

(a 6= 0→ b < a ∧ (c < a ∧ (d < a→ c ≤ f ∧ d ≤ f ∧ a 6≤ f)→ c ≤ b))

in the proof above is a Π4-statement. It is an open question whether RibT and Rcl satisfy the

same theorems of first-order predicate logic with 2 or 3 quantifier changes; it is not hard to see

that they satisfy the same Σ1-theorems, since every finite partial order can be embedded into

RibT and Rcl.

By Theorem 5.10 for a 2-scattered cl-degree a, the set NCucl(a) has no greatest element.

At the end of this chapter we want to extend this result and show that NCucl(a) does not even

have maximal elements.

Lemma 5.13. Let a be 2-scattered. Then NCucl(a) has no maximal elements.

138

Proof. Let b ≤ a with b ∈ NCucl(a). By Theorem 5.10 there is a c.e. cl-degree c ∈ NCucl(a)

such that c 6≤ b. Now if b < c, then clearly b is not maximal in NCucl(a). Hence assume

that b and c are incomparable. We claim that there is some c.e. cl-degree d with b, c ≤ d and

d ∈ NCucl(a); since c is incomparable to b but not to d, necessarily b 6= d. Hence b < d and

b is not maximal in NCucl(a) again.

To prove that such d exists, choose c.e. sets A ∈ a, B ∈ b and C ∈ c such that A is 2-

scattered. Then B <cl A and C <cl A. By Lemma 5.11 (applied to k = 1, B0 = B, B1 = C and

k′ = 3) there are c.e. sets B̂ ⊆ 3N and Ĉ ⊆ 3N+ 1 such that B ≤cl B̂ <cl A and C ≤cl Ĉ <cl A

and such that there are splittings A = A0 ∪̇ A1 and A = A′0 ∪̇ A′1 of A, B̂ = B̂0 ∪̇ B̂1 of B̂ and

Ĉ = Ĉ0 ∪̇ Ĉ1 of Ĉ and unbounded computable shifts fB and fC with B̂0 ≤cl B, B̂1 = (A1)fB ,

Ĉ0 ≤cl B and Ĉ1 = (A1)fC .

Let d = degcl(B̂ ∪ Ĉ). By the Splitting Lemma, d ≥ degcl(b) and d ≥ degcl(c). Hence it

suffices to prove that d ∈ NCucl(a).

For a contradiction assume that there is some c.e. cl-degree e < a such that d ∨ e = a. Let

E be a c.e. set such that E ∈ e. Without loss of generality we may assume that E ⊆ 3N + 2,

because otherwise using Lemma 5.11 (applied to k = 2, B0 = B1 = ∅, B2 = E and k′ = 3)

we can replace E by a set Ê with this property and such that degcl(E) ≤ degcl(Ê) < a, and

replace e by degcl(Ê).

Now by the Splitting Lemma again, since B̂, Ĉ and E are pairwise disjoint,

degcl(B̂ ∪ Ĉ ∪ E) = degcl(B̂ ∪ Ĉ) ∨ degcl(E) = d ∨ e = a.

Hence

B̂1 ∪ Ĉ1 ∪ B̂0 ∪ Ĉ0 ∪ E ≡cl A.

Since B̂1 is disjoint from Ĉ1 ∪ B̂0 ∪ Ĉ0 ∪E and B̂1 = (A1)fB , it follows by the Computable

Shift Lemma 2.6 that

Ĉ1 ∪ B̂0 ∪ Ĉ0 ∪ E ≡cl A.

By similar reasoning for Ĉ1 instead of B̂1 we conclude that

B̂0 ∪ Ĉ0 ∪ E ≡cl A.

Now since B̂0 ≤cl B and degcl(B) = b ∈ NCucl(a), it follows that

Ĉ0 ∪ E ≡cl A.

Finally, since Ĉ0 ≤cl C and degcl(C) = c ∈ NCucl(a), we see that E ≡cl A, contradicting

e < a.

139

5. Cuppable degrees and the theories of RibT and Rcl

140

References

[Amboa] Ambos-Spies. “On the strongly bounded Turing degrees of simple sets”. To appear.

[Ambob] Ambos-Spies. “On the strongly bounded Turing degrees of the computably enu-

merable sets”. To appear.

[Amboc] K. Ambos-Spies, P. Bodewig, T. Kräling, and L. Yu. “Joins and meets in the

computably enumerable cl-degrees”. To appear.

[Ambo 13a] K. Ambos-Spies, P. Bodewig, Y. Fan, and T. Kräling. “The partial orderings

of the computably enumerable ibT-degrees and cl-degrees are not elementarily

equivalent”. Ann. Pure Appl. Logic, Vol. 164, No. 5, pp. 577–588, 2013.

[Ambo 13b] K. Ambos-Spies, D. Ding, Y. Fan, and W. Merkle. “Maximal pairs of computably

enumerable sets in the computably Lipschitz degrees”. Theory Comput. Syst.,

Vol. 52, No. 1, pp. 2–27, 2013.

[Ambo 86] K. Ambos-Spies and M. Lerman. “Lattice embeddings into the recursively enu-

merable degrees”. J. Symbolic Logic, Vol. 51, No. 2, pp. 257–272, 1986.

[Ambo 89] K. Ambos-Spies and M. Lerman. “Lattice embeddings into the recursively enu-

merable degrees. II”. J. Symbolic Logic, Vol. 54, No. 3, pp. 735–760, 1989.

[Barm 05] G. Barmpalias. “Computably enumerable sets in the Solovay and the strong weak

truth table degrees”. In: New Computational Paradigms: First Conference on

Computability in Europe, CiE 2005, pp. 8–12, Springer-Verlag, 2005.

[Barm 06] G. Barmpalias and A. E. M. Lewis. “The ibT degrees of computably enumerable

sets are not dense”. Ann. Pure Appl. Logic, Vol. 141, No. 1-2, pp. 51–60, 2006.

[Birk 79] G. Birkhoff. Lattice theory. Vol. 25 of American Mathematical Society Colloquium

Publications, American Mathematical Society, Providence, R.I., third Ed., 1979.

[Bode 10] P. Bodewig. Joins and meets in the c.e. ibT- and cl-degrees. Master’s thesis

(Diplomarbeit), Universität Heidelberg, 2010.

141

REFERENCES

[Day 10] A. R. Day. “The computable Lipschitz degrees of computably enumerable sets are

not dense”. Ann. Pure Appl. Logic, Vol. 161, No. 12, pp. 1588–1602, 2010.

[Dede 00] R. Dedekind. “Ueber die von drei Moduln erzeugte Dualgruppe”. Math. Ann.,

Vol. 53, No. 3, pp. 371–403, 1900.

[Down 04] R. G. Downey, D. R. Hirschfeldt, and G. LaForte. “Randomness and reducibility”.

J. Comput. System Sci., Vol. 68, No. 1, pp. 96–114, 2004.

[Down 90] R. Downey. “Lattice nonembeddings and initial segments of the recursively enu-

merable degrees”. Ann. Pure Appl. Logic, Vol. 49, No. 2, pp. 97–119, 1990.

[Fan 05] Y. Fan and H. Lu. “Some properties of sw-reducibility”. Nanjing Daxue Xuebao

Shuxue Bannian Kan, Vol. 22, No. 2, pp. 244–252, 2005.

[Frie 57] R. M. Friedberg. “The fine structure of degrees of unsolvability of recursively

enumerable sets”. In: Summaries of Cornell University Summer Institute for

Symbolic Logic, pp. 404–406, 1957.

[Frie 59] R. M. Friedberg and H. Rogers, Jr. “Reducibility and completeness for sets of

integers”. Z. Math. Logik Grundlagen Math., Vol. 5, pp. 117–125, 1959.

[Lach 66] A. H. Lachlan. “Lower bounds for pairs of recursively enumerable degrees”. Proc.

London Math. Soc. (3), Vol. 16, pp. 537–569, 1966.

[Lach 72] A. H. Lachlan. “Embedding nondistributive lattices in the recursively enumer-

able degrees”. In: Conference in Mathematical Logic—London ’70 (Proc. Conf.,

Bedford Coll., London, 1970), pp. 149–177, Springer, Berlin, 1972.

[Lach 80] A. H. Lachlan and R. I. Soare. “Not every finite lattice is embeddable in the

recursively enumerable degrees”. Adv. in Math., Vol. 37, No. 1, pp. 74–82, 1980.

[Lemp 06] S. Lempp, M. Lerman, and R. Solomon. “Embedding finite lattices into the com-

putably enumerable degrees—a status survey”. In: Logic Colloquium ’02, pp. 206–

229, Assoc. Symbol. Logic, La Jolla, CA, 2006.

[Lemp 97] S. Lempp and M. Lerman. “A finite lattice without critical triple that cannot be

embedded into the enumerable Turing degrees”. Ann. Pure Appl. Logic, Vol. 87,

No. 2, pp. 167–185, 1997. Logic Colloquium ’95 Haifa.

[Lerm 83] M. Lerman. Degrees of unsolvability - local and global theory. Perspectives in

Mathematical Logic, Springer-Verlag, Berlin, 1983.

[Mucn 56] A. A. Mučnik. “On the unsolvability of the problem of reducibility in the theory

of algorithms”. Dokl. Akad. Nauk SSSR (N.S.), Vol. 108, pp. 194–197, 1956.

142

REFERENCES

[Odif 99] P. G. Odifreddi. Classical recursion theory. Vol. II. Vol. 143 of Studies in Logic

and the Foundations of Mathematics, North-Holland Publishing Co., Amsterdam,

1999.

[Post 44] E. L. Post. “Recursively enumerable sets of positive integers and their decision

problems”. Bull. Amer. Math. Soc., Vol. 50, pp. 284–316, 1944.

[Roge 67] H. Rogers, Jr. Theory of recursive functions and effective computability. McGraw-

Hill Book Co., New York, 1967.

[Sack 63] G. E. Sacks. “On the degrees less than 0′”. Ann. of Math. (2), Vol. 77, pp. 211–231,

1963.

[Sack 64] G. E. Sacks. “The recursively enumerable degrees are dense”. Ann. of Math. (2),

Vol. 80, pp. 300–312, 1964.

[Soar 04] R. I. Soare. “Computability theory and differential geometry”. Bull. Symbolic

Logic, Vol. 10, No. 4, pp. 457–486, 2004.

[Stob 83] M. Stob. “Wtt-degrees and T-degrees of r.e. sets”. J. Symbolic Logic, Vol. 48,

No. 4, pp. 921–930 (1984), 1983.

[Thom 71] S. K. Thomason. “Sublattices of the recursively enumerable degrees”. Z. Math.

Logik Grundlagen Math., Vol. 17, pp. 273–280, 1971.

[Turi 37] A. M. Turing. “On computable numbers, with an application to the Entschei-

dungsproblem”. Proc. London Math. Soc., Vol. S2-42, No. 1, p. 230, 1937.

[Turi 39] A. M. Turing. “Systems of logic based on ordinals”. 1939.

[Verm 10] S. Vermeeren. “Embeddings into the countable atomless Boolean algebra”. 2010.

[Wein 88] B. Weinstein. On embeddings of the 1-3-1 lattice into the recursively enumerable

degrees. PhD thesis, University of California, Berkeley, 1988.

[Yate 65] C. E. M. Yates. “Three theorems on the degrees of recursively enumerable sets”.

Duke Math. J., Vol. 32, pp. 461–468, 1965.

[Yate 66] C. E. M. Yates. “A minimal pair of recursively enumerable degrees”. J. Symbolic

Logic, Vol. 31, pp. 159–168, 1966.

143

	Contents
	1 Introduction
	2 Strong Reducibilities
	2.1 Sets, strings and trees
	2.2 Computable functions, coding functions, and computable enumerable sets
	2.3 Relative computability
	2.4 Strong reducibilities
	2.5 Degree structures
	2.6 Computable shifts
	2.7 The Permitting Lemma

	3 Joins and Meets
	3.1 The ibt-cl-Conversion Lemmas
	3.2 The Splitting Lemma
	3.3 n-Tuples with and without Joins
	3.4 n-Tuples with and without Meets
	3.5 Noneffectivity of the Join
	3.6 Joins and Meets in Substructures of R(ibt) and R(cl): Simple Degrees
	3.6.1 The Algorithm
	3.6.2 Verification.

	4 Lattice embeddings into R(ibt) and R(cl)
	4.1 Lattice embeddings
	4.2 Embedding linear orders
	4.3 Embedding distributive lattices
	4.4 Embedding nondistributive lattices
	4.5 Embedding the N5
	4.6 Embedding the S7
	4.6.1 Conflicts between the requirements
	4.6.2 Building safe intervals for two requirements under a maximal response hypothesis
	4.6.3 Building safe intervals for n requirements under a maximal response hypothesis
	4.6.4 Building safe intervals without a maximal response hypothesis
	4.6.5 Eliminating requirements
	4.6.6 Bringing the strategies together on a tree
	4.6.7 The construction
	4.6.8 Verification

	4.7 Embedding the M3
	4.7.1 The construction
	4.7.2 Verification

	5 Cuppable degrees and the theories of the ibT- and cl-Degrees
	5.1 Elementary equivalence of degree structures
	5.2 Cuppability in R(ibT)
	5.3 Cuppability in R(cl)

	References

