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1. SUMMARY  

	

Gene	 targeting	 technologies	 enabling	 a	 germline	 complete	 gene	 ablation	 mice	

had	an	enormous	impact	on	the	analysis	of	gene	functions	in	vivo	during	the	past	

two	decades.	However,	the	complete	loss	of	a	gene	function	often	leads	either	to	

embryonic	 or	 early	 postnatal	 lethality	 or	 to	 molecular	 compensation	 that	

compensate	for	the	function	of	the	missing	gene.	Tissue	or	cell	specific	knockouts	

mostly	 avoid	 those	 drawbacks,	 but	 are	 currently	 confined	mainly	 to	mice	 as	 a	

model	 system.	 Indeed,	development	of	gene	 inactivation	 technologies	 in	rats	 is	

still	far	behind	those	available	for	mice,	even	if	the	elucidation	of	gene	functions	

in	transgenic	rats	would	have	several	important	advantages	over	using	mice.	The	

larger	 body	 size	 of	 a	 rat	 simplifies	 interventions	 such	 as	 microsurgery	 or	

multiple‐electrode	 electrophysiological	 recording	 in	 vivo.	 Furthermore,	 higher	

order	cognitive	functions	are	more	developed	in	this	social	rodent	species	than	

in	 the	 more	 solitarily	 living	 mice.	 Indeed,	 many	 behavioral	 tests	 are	 more	

advanced	or	validated	for	the	rat,	especially	regarding	the	behavioral	assessment	

of	complex	neuropsychiatric	disease	phenotypes,	such	as	negative	symptoms	in	

schizophrenia	or	complex	cognitive	phenotypes.	

In	the	present	study	we	used	two	different	miRNA‐based	knockdown	rat	models	

to	 study	 the	 impact	 of	 those	 genes	 on	 emotional	 behavior	 and	 learning	 and	

memory	processes.		

The	 first	 transgenic	 rat	 model	 is	 deficient	 for	 the	 Nogo‐A	 protein	 within	 the	

entire	 animal.	 Nogo‐A	 is	 expressed	 in	 CNS	 oligodendrocytes	 as	 well	 as	 in	

subpopulations	 of	 neurons	 and	 is	 known	 to	 suppress	 neurite	 growth	 and	

regeneration.	 In	 vivo	 studies	 in	 rats	 have	 shown	 successful	 regeneration	 of	

corticospinal	 tract	 axons	 over	 long	distances	 and	 a	 significant	 enhancement	 of	

functional	 recovery	 using	 either	 neutralizing	 antibodies	 against	 Nogo‐A	 or	

peptides	 blocking	 the	Nogo	 receptor	NgR.	However,	 only	 few	 studies	 analyzed	

the	role	of	Nogo‐A	on	behavioral	processes.	Here,	we	show	that	Nogo‐A	deficient	

rats	display	behavioral	phenotypes	related	to	schizophrenia,	such	as	difficulty	in	

reversal	 learning,	 lower	 exploration	 and	 most	 importantly	 a	 reduced	 social	
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contact	behavior.	Our	behavior	observations	extend	those	described	for	Nogo‐A	

knockout	mice.	

In	 the	 second	 transgenic	 rat	 model	 were	 realized	 the	 first	 inducible	 tissue‐

specific	 gene	 inactivation	 rats	 described	 so	 far	 by	 knocking	 down	 Staufen2	

(Stau2)	protein	production	within	excitatory	neurons	of	 the	 forebrain	using	an	

artificial	miRNA	targeting	the	respective	protein.	Staufen2	is	a	double‐stranded	

RNA‐binding	protein	essential	for	the	localization	of	mRNAs	in	diverse	cell	types.	

In	neurons,	 Stau2	 regulates	 the	dendritic	 localization	and	 local	 translation	of	a	

subset	 of	 mRNAs	 that	 play	 a	 pivotal	 role	 in	 synaptic	 plasticity.	 In	 vitro	

experiments	 have	 shown	 that	 Stau2	 is	 involved	 in	 the	 formation	 of	 dendritic	

spines,	 thereby	 modifying	 synaptic	 plasticity.	 However,	 no	 studies	 of	 Staufen	

function	have	been	performed	 in	vivo.	Using	our	Stau2	deficient	rats,	we	could	

show	 that	 the	 animals	 have	 an	 unaltered	 spatial	 reference	 memory	 and	 fear	

conditioning.	However,	Stau2	deficient	rats	have	a	highly	significant	impairment	

of	spatial	working	memory.	 In	addition,	 the	transgenic	animals	have	significant	

difficulties	to	detect	spatial	novelty.	These	behavioral	finding	fit	very	well	to	the	

in	 vivo	 electrophysiological	 data	 recorded	 by	 our	 collaborations,	 who	 could	

demonstrate	 that	 Stau2	 deficient	 rats	 have	 an	 enhancement	 for	 LTP	 and	 an	

impairment	 of	 LTD.	 Together	 these	 findings	 suggest	 that	 Stau2	 transported	

mRNAs	are	responsible	for	modulating	synaptic	plasticity	at	dendritic	spines.					
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ZUSAMMENFASSUNG 

	

Die	Möglichkeit	der	Herstellung	sogenannter	„Knock‐out“‐Mäuse,	 in	denen	eine	

Genfunktion	 im	 gesamten	 Organismus	 inaktivert	 ist,	 hatte	 einen	 enormen	

Einfluß	 auf	 die	 Funktionsanalyse	 von	 Genen	 in	 vivo.	 Die	 ursprüngliche	

Technologie	 hat	 jedoch	 entscheidene	 Limitationen.	 Zum	 einen	 kann	 die	

komplette	Geninaktivierung	zur	embryonalen	oder	 frühen	postnatalen	Tod	der	

Tiere	 führen.	 Zum	 anderen	 kann	 die	 fehlende	 Genfunktion	 während	 der	

Embryonalentwicklung	 von	 anderen	 Genprodukten	 kompensiert	 werden,	 was	

eine	 Funktionsanalyse	 massiv	 erschwert.	 Gewebs‐	 und	 zelltypspezifische	

Geninaktivierungen	 haben	 diese	 Nachteile	 größtenteils	 nicht,	 jedoch	 war	 die	

Anwendung	von	modernen	konditionalen	Genregulationssysteme	bisher	auf	die	

Spezie	 der	 Maus	 beschränkt.	 Die	 Entwicklung	 der	 Technologien	 zur	

konditionalen	 Gen‐Inaktivierung	 für	 Ratten	 liegt	 sehr	 weit	 hinter	 der	 von	

Mäusen	zurück,	obwohl	die	Ratte	als	Tiermodell	mehrere	entscheidende	Vorteile	

hat.	 Ihre	 Körpergröße	 vereinfacht	 die	 Anwendung	 besonders	 feiner	

Operationstechniken	 und	 ermöglicht	 die	 Implantation	 von	 Multielektroden‐

Sonden	 für	 elektrophysiologische	 Messungen	 in	 vivo.	 Desweiteren	 sind	 die	

höheren	 kognitiven	 Funktionen	 in	 Ratten	 wesentlich	 besser	 ausgeprägt	 als	 in	

Mäusen.	Auch	ähneln	Ratten	in	ihrem	Sozialverhalten	eher	den	Menschen	als	die	

einzeln	 lebenden	 Mäuse.	 Alle	 wichtigen	 verhaltensbiologischen	 Paradigmen	

wurden	 in	 Ratten	 entwickelt	 und	 sind	 dort	 viel	 besser	 durchführbar,	 wie	 z.B.	

neuropsychiatrische	 Tests	 zur	 Bestimmung	 der	 Negativsymptomatik	 von	

schizophrenen	Erkrankungen.	

In	der	vorliegenden	Arbeit	wurden	zwei	transgene	„knockdown“	Rattenmodelle	

verhaltensbiologisch	 charakterisiert,	 in	 denen	 die	 Produktion	 der	

entsprechenden	 Gene	 durch	 die	 Expression	 einer	 artifiziellen	 miRNA	

unterdrückt	wurde.	

Im	ersten	Rattenmodell	wurde	die	Produktion	des	Proteins	Nogo‐A	im	gesamten	

Körper	 inhibiert.	 Im	zentralen	Nervensystem	wird	Nogo‐A	in	Oligodendrozyten	

und	 in	 Subpopulationen	 von	 Neuronen	 produziert	 und	 unterdrückt	 dort	 das	

Neuritenwachstum	und	die	neuronale	Regeneration.	Studien	mit	Ratten	 in	vivo	
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konnten	 zeigen,	 dass	 sich	 Axone	 von	 corticospinale	 Neuronen	 sich	 über	 eine	

lange	Distanz	regenerieren	können	und	dadurch	funktionelle	Wiederherstellung	

signifikant	 verbessert	 wird,	 wenn	 die	 Tiere	 entweder	 mit	 einem	

neutralisierender	 Antikörper	 gegen	 Nogo‐A	 oder	 mit	 Peptiden	 behandelt	

werden,	die	den	Nogo‐Receptor	Ngr	blockieren.	Jedoch	ist	über	die	Funktion	von	

Nogo‐A	 auf	 das	 Verhalten	 der	 Tiere	 sehr	 wenig	 bekannt.	 Hier	 konnten	 wir	

zeigen,	 dass	 die	 funktionelle	 Inaktivierung	 von	 Nogo‐A	 zu	 schizophrenie‐

ähnlichen	Verhaltensveränderungen	führt.	Diese	beinhalten	eine	Verminderung	

der	kognitiven	Flexibilität	 sowie	ein	 reduziertes	 soziales	Kontaktverhalten.	Mit	

dieser	 Studie	 konnten	 wir	 die	 Verhaltensänderung,	 die	 durch	 eine	 Nogo‐A	

defizienz	 ausgelöst	 werden,	 in	 Hinblick	 auf	 die	 Nogo‐A	 knockout	 Mäuse	

erweitern.	

Mit	 dem	 zweiten	 transgenen	 Modell	 konnten	 wir	 die	 erste	 induzierbare,	

gewebsspezifische	Geninaktivierung	 in	 der	Ratte	 realisieren,	 indem	durch	 eine	

artifizielle	 miRNA	 die	 Produktion	 des	 Proteins	 Staufen2	 (Stau2)	 in	 den	

exzitatorischen	Neuronen	des	Großhirns	unterdrückt	wird.	Stau2	ist	ein	Protein,	

das	an	doppelsträngige	RNA	bindet	und	essentiell	am	Transport	von	mRNAs	in	

verschiedenen	 Zelltypen	 beteiligt	 ist.	 In	 Neuronen	 wird	 durch	 Stau2	 der	

Transport	bestimmte	mRNAs	in	die	dendritischen	Fortsätze	reguliert,	die	an	der	

Ausbildung	 der	 synaptischen	 Plastizität	 beteiligt	 sind.	 Auch	 ist	 Stau2	 an	 der	

lokalen	 Translation	 dieser	 mRNAs	 beteiligt.	 In	 vitro	 Experimente	 konnten	

zeigen,	 dass	 Stau2	 die	 Morphologie	 von	 dendritischen	 Fortsätzen	 sowie	 ihre	

synaptische	 Plastizität	 reguliert.	 Dies	 konnte	 jedoch	 bisher	 nie	 am	 lebendigen	

Tier	 gezeigt	 werden.	 Mit	 den	 transgenen	 Tieren	 konnten	 wir	 zeigen,	 dass	 die	

Inaktiverung	 von	 Stau2	 zwar	 zu	 keiner	 Veränderung	 des	 räumlichen	

Referenzgedächtnisses	 führt	 und	 auch	 die	 Furchtkonditionierung	 unverändert	

ist,	 aber	 zu	 einem	 signifikanten	 Verschlechterung	 des	 räumlichen	

Arbeitsgedächtnisses	 führt.	 Zudem	 haben	 die	 transgenen	 Ratten	

Schwierigkeiten,	 neue	 räumliche	 Umgebungen	 zu	 erkennen.	 Diese	

Verhaltensänderungen	 passen	 sehr	 gut	 zu	 den	 elektrophysiologischen	 Daten	

unserer	Kollaborationspartner,	die	zeigen	konnten,	dass	die	Stau2	Inaktiverung	

zu	 einer	 Verstärkung	 der	 Langzeitpotenzierung	 und	 einer	 Inhibition	 der	

Langzeitdepression	 führt.	 Diese	 Daten	 zusammen	 demonstrieren	 die	 wichtige	
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Rolle	 von	 Stau2	 bei	 der	 Ausbildung	 von	 synaptischer	 Plastizität	 in	 den	

dendritischen	Fortsätzen.								
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2.    INTRODUCTION 

 

2.1 HISTORY OF RESEARCH IN COGNITIVE NEUROSCIENCE 

	

The	modern	 era	 of	memory	 research	 is	 the	 result	 of	 three	 different	 approach	

based	one	on	experimental	analyses	of	learning	and	memory	referring	to	ancient	

times,	a	second	reflecting	 the	 investigation	of	damaged	brain	 from	patient,	and	

the	third	that	is	based	on	use	of	animal	models	to	study	memory	phenomena	at	

both	the	cellular	and	system	levels.	

Already	 in	 the	 nineteenth	 century,	 empirical	 studies	 of	 memory	 established	

fundamental	 idea	 about	 learning	 capacity	 and	 forgetting	 mechanism	 with	 the	

hypothesis	of	multiple	forms	of	memory	existences	expressed	already	in	1890	by	

James	 together	 with	 the	 idea	 that	 memories	 took	 time	 to	 ‘consolidate’	 after	

learning	(Lechner,	Squire	et	al.	1999;	McGaugh	1999;	Nadel	and	Hardt	2011).		

Even	going	back	to	1804,	the	first	idea	that	memory	is	not	a	single	faculty	of	the	

mind	 could	 be	 found	 in	 notes	 that	 Maine	 de	 Biran	 wrote	 about	 mechanical	

memory,	 sensitive	 memory,	 and	 representative	 memory	 (Maine	 de	 Biran,	

1804/1929).	

Very	 frequently	 in	 the	 earlier	 literature	 is	 possible	 to	 finds	 the	 idea	 of	 two	

distinct	 kinds	 of	 memory.	 In	 fact,	 McDougall	 in	 1923	 differentiate	 between	

explicit	and	 implicit	 recognition,	and	Tolman	 in	1948	wrote	 that	 there	 is	more	

than	 one	 kind	 of	 learning	 (Tolman	 1948).	 Indeed	 Ryle	 in	 1949	 distinguished	

between	 “knowing	 how”	 and	 “knowing	 that”,	 followed	 by	 Bruner	 that	 in	 1969	

propose	 the	 idea	 of	 “memory	without	 record”	 and	 “memory	with	 record”.	 The	

idea	 in	 the	 artificial	 intelligence	 literature	 as	 procedural	 and	 declarative	

knowledge	was	discussed	in	1970s	by	Winograd.	

The	most	 important	 input	 for	 the	memory	 understanding	 came	 in	 1949	when	

Hebb	 in	 his	 “The	 Organization	 of	 Behavior:	 A	 neuropsychological	 theory”	

distinguished	 between	 the	 two	 form	 of	 memory	 asserting	 his	 seminal	 cell	

assembly	 theory.	 He	 defines	 a	 short‐term	 memory	 (STM)	 as	 continuous	 and	



11 
 

coordinated	 activity	 in	 cell	 assemblies	 (a	 set	 of	 interconnected	 neurons	 that	

encode	a	stimulus).	It	means	that	neurons	recurrently	excite	each	other	for	some	

time	after	the	original	stimulation.	At	some	point	the	interactionstop,	maybe	due	

to	 depletion	 of	 neurotransmitter,	 which	 marks	 the	 end	 of	 STM.	 A	 long‐term	

memory	 (LTM)	 can	 arise	 out	 of	 STM,	 if	 the	 reverberatory	 activity	 leads	 to	

structural	changes	in	the	synapses	connecting	the	neurons	of	the	cell	assembly.		

Hebb	 proposed	 that	 an	 association	 could	 not	 be	 localized	 to	 a	 single	 synapse.	

Instead,	 neurons	 were	 grouped	 in	 “cell	 assemblies”	 and	 an	 association	 was	

distributed	 over	 their	 synaptic	 connections.	 Hebb,	 also	 following	 an	 idea	 of	

Lorente	 de	 Nó,	 proposed	 that	 sensory	 stimulation	 could	 initiate	 patterns	 of	

neural	 activity	 that	were	 centrally	maintained	 by	 activity	 in	 synaptic	 feedback	

loops.	 This	 so	 called	 ‘reverberatory	 activity’	made	 possible	 a	 trigged	 response	

after	a	delay.		

 

2.2 TYPES OF MEMORY: DECLARATIVE AND NON‐DECLARATIVE MEMORY SYSTEM 

	

Declarative	 memory	 is	 involved	 in	 the	 acquisition,	 retention,	 and	 retrieval	 of	

knowledge	 that	 can	 be	 intentionally	 and	 consciously	 recollected	 (Cohen	 and	

Squire	1980).	 Such	knowledge	 includes	memory	 for	 events	 (episodic	memory)	

or	facts	(semantic	memory)	(Tulving,	E.	1983).	The	difference	between	the	two	

memory	systems	lies	in	the	differential	mechanisms	to	recall	stored	information.	

Indeed,	 non‐declarative	memory	 is	 expressed	 through	 performance	 and	 is	 not	

accessible	 through	 conscious	 faculties,	 declarative	 memory	 is	 subject	 to	

conscious	recollection	(Squire	and	Zola	1996).	The	declarative	memory	has	the	

ability	to	detect	and	encode	what	is	unique	about	a	single	event,	which	occurs	at	

a	particular	place	and	time.	In	the	case	of	non‐declarative	memory	can	gradually	

extract	the	common	elements	from	a	series	of	separate	events(Squire	2004).	

It	 is	 now	 generally	 accepted	 that	 declarative	 (also	 known	 as	 explicit)	memory	

requires	 for	 storage	 the	medial	 temporal	 lobe	 and	 the	 hippocampus,	 whereas	

procedural	 (also	 known	 as	 implicit)	memory	does	 not.	Nadel	 and	O’Keefe	wee	

the	 first	 to	 propose	 a	 distinction	 between	 episodic	 and	 semantic	memory	 and	

use	it	to	help	to	understand	what	amnesic	patients	could	and	could	not	learn	and	
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recall	(Gaffan	1974,	O'Keefe	J,	Nadel	L.	1978,	Kinsbourne	and	Wood,	1975).	They	

proposed	that	the	hippocampus	is	involved	in	representation	of	spatial	contexts	

with	a	major	role	in	episodic	memory.	However	for	them	the	hippocampus	was	

not	 important	 to	 semantic	 memory,	 which	 represents	 information	 without	

necessary	links	to	context.		

The	most	 strong	 evidence	 of	multiple	memory	 systems	 theory	 came	 from	 the	

double	 dissociation	 studies,	 performed	 by	 creating	 in	 experimental	 animals	

irreversible	 and	 reversible	 lesions	 of	 the	 hippocampus	 and	 striatum.	 The	

different	 effects	 of	 lesions	 to	 the	 hippocampus	 and	 caudate	 nucleus	 of	 the	

striatum	 were	 analyzed	 while	 performing	 two	 radial	 maze	 tasks	 in	 order	 to	

behaviorally	demonstrate	a	double	dissociation	of	the	mnemonic	functions	of	the	

two	memory	systems	(Packard,	Hirsh	et	al.	1989).	

Other	works	in	animals	added	pieces	to	the	theory	of	different	memory	systems.	

For	 example	 in	 1982,	 the	 cerebellum	was	 discovered	 to	 be	 essential	 for	 delay	

eyeblink	conditioning	(McCormick,	Lavond	et	al.	1982),	a	 form	of	 learning	 that	

was	entirely	preserved	both	in	animals	with	hippocampal	lesions	and	in	severely	

amnesic	 patients	 (Gabrieli,	 McGlinchey‐Berroth	 et	 al.	 1995;	 Clark	 and	 Squire	

1998).	In	addition	it	was	shown	that	still	other	types	of	learning,	which	involve	

the	 attachment	 of	 positive	 or	 negative	 relation	 of	 a	 stimulus	 (i.e.	 in	 fear	

conditioning	or	conditioned	place	preference)	have	an	essential	dependence	on	

the	amygdale	(Fanselow	MS	1994,	Debiec	and	Ledoux	2004).	

 

2.3. BRAIN STRUCTURES FOR DECLARATIVE MEMORY 

	

As	already	discussed	declarative	memory	refers	to	the	acquisition,	retention,	and	

retrieval	 of	 knowledge	 that	 can	 be	 consciously	 and	 intentionally	 recollected	

(Cohen	and	Squire	1980)	 and	 includes	memory	 for	 events	or	 facts	 (Tulving,	E.	

1983).	 Episodic	memories	 are	measured	by	direct	 or	 explicit	 tests	 of	memory,	

such	as	free	recall,	cued	recall,	or	recognition,	that	refer	to	a	prior	episode	(Clark	

and	 Squire	 1998).	 This	 kind	 of	memory	 is	 strictly	 bound	with	 a	 specific	 brain	

structure	 defined	 as	medial	 temporal	 lobe.	 The	medial	 temporal‐lobe	memory	

system	 consists	 of	 multiple	 structures.	 The	 perirhinal	 and	
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postrhinal/parahippocampal	 cortices	 are	 the	 recipients	 of	 differing	

combinations	of	sensory	information	and	provide	the	major	polysensory	input	to	

the	 hippocampus	 through	 their	 entorhinal	 connections	 (Suzuki	 &Amaral	

1994).provide	 the	 major	 input	 to	 the	 hippocampus	 through	 their	 entorhinal	

connections	and	receives	different	combinations	of	sensory	information	(Suzuki	

and	 Amaral	 1994).	 The	 parahippocampal	 region	 provides	major	 inputs	 to	 the	

hippocampal	 region,	 which	 is	 composed	 by	 several	 subregions	 such	 as	 of	 the	

subiculum,	the	Cornus	Amonis	(CA),	and	the	dentate	gyrus	(DG).		

Case	of	human	amnesia	after	surgery	as	in	patient	R.B	(Zola‐Morgan,	Squire	et	al.	

1986),	G.D,	L.M	and	W.H	(Rempel‐Clower,	Zola	et	al.	1996)	helped	in	undercover	

the	regions	 involved	 in	 learning	and	memory	formation.	 It	has	been	known	for	

nearly	 100	 years	 that	 declarative	memory	 is	 impaired	 by	 bilateral	 damage	 to	

either	the	medial	aspect	of	the	temporal	lobe	or	the	midline	of	the	diencephalon.	

Damage	to	these	areas	makes	it	difficult	to	establish	new	memories	(anterograde	

amnesia)	 as	 well	 as	 to	 retrieve	 some	 memories	 formed	 before	 the	 onset	 of	

amnesia	 (retrograde	 amnesia).	 General	 intellectual	 property	 is	 intact,	 as	 is	

immediate	memory,	 language	and	social	skills,	personality,	and	memory	for	the	

remote,	past,	especially	childhood.	

The	most	 famous	 case	 appeared	 in	 literature	with	Brenda	Milner	 in	1957.	 She	

reported	the	effect	on	memory	abilities	caused	by	bilateral	medial	temporal	lobe	

resection	 in	 a	 patient	 who	 became	 known	 as	 H.M.	 (1926–2008)	 (Scoville	 and	

Milner	1957).	H.M.	had	frequent	seizures	that	could	not	be	correctly	resolved	or	

controlled	 by	 anticonvulsant	 drugs.	 The	 surgery	 was	 a	 new	 radical	 approach.	

H.M.'s	 bilateral	 medial	 temporal	 lobe	 resection	 included	 the	 hippocampal	

formation	 and	 adjacent	 structures	 including	 most	 of	 the	 amygdaloid	 complex	

and	entorhinal	cortex.		

After	surgery,	H.M	showed	a	normal	general	intellect	and	perceptual	ability	but	

with	 a	 profound	 forgetfulness.	He	 could	not	 form	new	memories	 (anterograde	

amnesia)	and	also	could	not	access	some	memories	acquired	before	his	surgery	

(retrograde	 amnesia).	His	 impairment	 extended	 to	 both	 verbal	 and	non‐verbal	

material,	 and	 it	 involved	 information	 acquired	 through	 all	 sensory	modalities.	

The	 descriptions	 of	 H.M	 suggested	 some	 principles	 about	 how	 memory	 is	
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organized	in	the	brain.	It	was	clear	that	for	the	declarative	memory	storage	the	

medial	temporal	system	appears	to	have	only	a	temporary	role.	

Several	cases	of	circumscribed	human	amnesia	have	become	available	in	recent	

years,	which	confirm	and	extend	the	findings	that	bilateral	damage	limited	to	the	

particular	 region	 of	 the	 hippocampal	 formation	 is	 sufficient	 to	 produce	

moderately	severe	anterograde	memory	impairment.	Moreover	bilateral	damage	

beyond	 these	 regions,	 but	 still	 limited	 to	 the	 hippocampal	 formation,	 can	

produce	more	severe	anterograde	memory	impairment	(Squire	2004).	

 

2.4 THE HIPPOCAMPUS 

	

The	 circuitry	 structure	 of	 the	 hippocampus	 has	 been	 known	 since	 the	 time	 of	

Ramon	 y	 Cajal	 (1911).	 It	 appears	 grossly	 as	 an	 elongated,	 banana‐shaped	

structure	with	 its	 long	 axis	 extending	 in	 a	 "C"‐shaped	 form	extended	 from	 the	

septal	nuclei	rostrally,	over	and	behind	the	diencephalon,	into	the	temporal	lobe	

caudally	 and	 ventrally.	 Distinct	 subregions	 can	 be	 distinguished:	 the	

hippocampus	proper	(consisting	of	CA3,	CA2	and	CA1),	the	dentate	gyrus	(DG),	

and	 the	 subiculum	 (Figure	 1	 A).	 Through	 a	 coronal	 sections	 of	 hippocampus	

(Figure	2	B)	is	possible	to	evidence	the	cortex	that	forms	the	hippocampus	with	

itsthree‐layered	structure.	The	first	layer	is	a	deep	layer,	composed	by	a	mixture	

of	afferent	and	efferent	fibres	and	interneurons.	In	the	CA	this	part	regions	it	is	

called	 stratum	oriens	whereas	 in	 the	DG	 this	 layer	 is	 called	 the	 hilus.	 The	 cell	

layer	 extended	 superficial	 to	 this	 polymorph	 layer	 and	 it	 is	 composed	 of	

principal	 cells	 and	 interneurons.	 In	 the	 CA	 regions	 and	 the	 subiculum	 it	 is	

referred	to	as	the	pyramidal	cell	layer	whereas	in	the	DG	this	layer	is	called	the	

granule	layer.	The	most	superficial	layer	is	the	molecular	layer	in	the	DG	and	the	

subiculum	(Figure	1	B).	
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2.4.1 DG: ANATOMY, ROLE AND CONNECTIVITY 

	

The	principal	layer	of	the	DG	is	the	granule	cell	layer;	it	contains	the	cell	bodies	

of	 the	 granule	 cells,	 with	 a	 soma	 of	 approximately	 7	 μm.	 The	 granule	 cell	

dendrites	extend	into	the	overlying	molecular	layer	where	they	receive	synaptic	

connections	 from	 several	 sources.	 Granule	 cells	 have	 dendrites	 emerging	 only	

from	the	top	or	apical	portion	of	the	cell	body.	The	axons	of	the	granule	cells	are	

called	mossy	fibers	and	they	originate	from	the	basal	portion	of	the	cell	body	and	

extend	into	the	hilus.	The	mossy	fibers	synapse	pass	through	mossy	cells	in	the	

polymorphic	 cell	 layer	before	merge	 into	a	bundle	of	 fibers	 that	exits	 the	hilus	

and	enters	stratum	lucidum	of	CA3.	There	are	various	types	of	polymorphic	cells		

but	 they	 only	 project	 to	 other	 parts	 of	 the	DG.	 The	 dendrites	 receive	 different	

types	 of	 synaptic	 contacts	 in	 each	 of	 these	 strata.	 The	 basal	 dendrites	 extend	

from	the	base	of	the	pyramidal	cell	body	into	stratum	oriens.	(	from	Gordon	M.	

Shepherd.	The	Synaptic	Organization	of	the	Brain).	

The	 DG	 combined	 the	 medial	 and	 lateral	 perforant	 path	 inputs	 to	 generate	 a	

spatial	representation.	However	only	the	lateral	perforant	path	input	is	used	for	

the	visual	objects	detection	involving	the	spatial	locations.	In	CA3	the	medial	and	

lateral	perforant	path	inputs	are	combined	to	generate	a	spatial	representation	

that	contains	within	a	representation	of	the	visual	objects	occupying	the	spatial	

locations.	In	CA1,	it	appears	that	the	medial	and	lateral	perforant	path	inputs	do	

not	mix	much	because	only	the	medial	perforant	path	appears	to	be	involved	in	

generating	a	representation	of	space,	whereas	the	lateral	perforant	path	is	used	

to	 identify	visual	objects.	The	DG	 (as	CA3,	and	CA1)	 receives	 information	 from	

both	 the	 medial	 and	 lateral	 entorhinal	 cortex	 that	 provides	 information	

necessary	 for	 proper	 hippocampal	 function	 (Witter,	 Naber	 et	 al.	 2000).	 This	

supportsthe	 concept	 that	 the	 dentate	 gyrus,	 CA3,	 and	 CA1	 can	 be	 dissociated	

from	each	other	using	behavioral	tasks	(Gilbert	and	Kesner	2003;	Kesner,	Lee	et	

al.	 2004;	 Rolls	 and	 Kesner	 2006).	 Converging	 evidences	 show	 that	 the	 DG	 is	

involved	 in	 binding	 animal's	 internal	 spatial	 representation	 with	 the	 sensory	

information	on	external	landmarks	(Hunsaker,	Mooy	et	al.	2007).	
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2.4.2 CA1 AND CA3:ANATOMY, ROLE AND CONNECTIVITY 

	

The	main	layer	of	the	CA	region	is	the	pyramidal	cell	layer	and	contains	the	cell	

bodies	of	the	pyramidal	cells.	The	CA1	region	is	adjacent	to	the	subiculum.	The	

CA3	region	is	adjacent	to	the	fimbria/fornix	and	choroid	plexus.	The	CA2	region	

is	a	small	boundary	between	CA1	and	CA3,	and	CA4	is	located	in	the	hilus	of	the	

DG.	 The	 somas	 of	 the	 pyramidal	 cells	 have	 a	 triangular	 shape	 and	 they	 are	

smaller	than	those	in	CA3.	They	measure	40	to	60	μm	at	their	base	versus	20	to	

40	μm	for	CA1	pyramidal	cells.	The	stratum	oriens	contains	the	basal	dendrites	

of	 the	pyramidal	cells.	The	stratum	moleculare	contains	 the	apical	dendrites	of	

the	 pyramidal	 cells.	 The	 dendrites	 of	 CA3	 pyramidal	 neurons	 are	 also	 shorter	

and	 thicker	 than	 those	 of	 pyramidal	 cellsinCA1.	 The	 axons	 of	 the	 granule	 cells	

called	MFs,	project	 to	 the	CA3	region	and	establish	synaptic	 contacts	with	CA3	

pyramidal	cells	in	the	stratum	lucidum.	The	stratum	lucidum	is	characterized	by	

a	postsynaptic	components	of	synapses	between	the	MF	terminals	and	the	apical	

dendrites	of	CA3	pyramidal	cells	called	“thorny	excrescences”.	

Hippocampal	 region	 CA1	 play	 a	 role	 in	 matching	 of	 CA3	 output	 with	 afferent	

input	 from	entorhinal	cortex	 (Eichenbaum	&	Buckingham,	1990,	Hasselmo	and	

Wyble	1997;	Lisman	and	Grace	2005).	

Moreover	 NMDA	 dependent	 plasticity	 in	 the	 CA1	 may	 be	 critical	 for	

intermediate,	but	not	short‐term	memory.	One	suggestion	is	that	the	CA1	region	

is	directly	 involved	in	a	part	of	 the	 information	across	time,	generating	specific	

units	 or	 duration	 of	 events	 based	 on	 specific	 order	 of	 occurrence	 of	 events	 in	

different	epochs	of	time	made	(Rolls	and	Treves	1998).	CA1	region	of	the	dorsal	

hippocampus	is	also	important	in	supporting	some	association	where	the	stimuli	

can	 be	 spatial	 or	 non‐spatial	 only	 if	 there	 is	 a	 temporal	 interval	 interposed	

between	the	two	stimuli	(Gilbert	and	Kesner	2003).	it	is	possible	to	state	that	the	

hippocampus	is	involved	in	supporting	a	large	number	of	arbitrary	associations,	

but	 if	 CA3	 requires	 the	 presence	 of	 a	 spatial	 component	 to	 facilitate	 the	

association,	CA1	requires	instead	the	presence	of	a	temporal	component	for	any	

arbitrary	 association	 (Kesner,	 Hunsaker	 et	 al.	 2005).	 Converging	 evidence	

suggests	that	the	projection	from	the	entorhinal	cortex	to	the	CA1	subregion	of	
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the	 hippocampus	 called	 perforant	 pathway	 (pp),	 may	 provide	 necessary	

environmental	 input	 to	 support	 specific	 computational	 resources	 underlying	

delay‐dependent	 retention	 and	 retrieval	 of	 spatial	 information.	 On	 the	 other	

hand,	 the	dentate/mossy	 fiber	 system	within	 the	 trisynaptic	 circuitry	provides	

the	necessary	framework	for	optimal	storage	or	encoding	of	new	information	in	

the	CA3	subregion	(Colbert	and	Levy	1992;	Hasselmo	1995;	Brun,	Otnass	et	al.	

2002).	 The	 CA1	 subregion	 play	 a	 role	 in	 comparing	 information	 from	 the	 two	

afferent	 inputs,	 and	 the	CA3	 input	 contains	 the	 contents	of	processed	 forms	of	

memory,	 while	 the	 perforant	 pathway	 supplies	 unprocessed	 sensory	

information.	 The	 comparison	 of	 converging	 inputs	 may	 lead	 to	 the	 mismatch	

from	 expectations,	 (Hasselmo	 and	 Schnell	 1994)	 detection	 of	 novelty	

(Vinogradova	 2001),	 and/or	 a	 facilitation	 of	 retrieval	 mechanisms	 (Lee	 and	

Kesner	2002;	Vago,	Bevan	et	al.	2007).	

CA3	 is	 involved	 in	 the	memory	 processes	within	 short‐term	memory	with	 the	

acquisition	 of	 novel	 information	 through	 NMDA	 receptor‐mediated	 plasticity	

mechanisms	 (Lee	 and	 Kesner	 2002).	 Contextual	 fear‐conditioning	 experiment	

with	subregion‐specific	lesions	provide	further	evidence	for	supporting	this	role	

of	 CA3	 in	 rapid	 acquisition	 of	 novel	 information	 (Lee	 and	 Kesner	 2004).	

However,	 short‐term	memory	 for	 distinct	 places	 depends	 on	 CA3	 but	 also	 on	

CA1.	It	has	been	shown	that	the	plasticity	mechanism	in	CA3	was	activated	only	

when	 animals	 encountered	 novel	 configurations	 of	 familiar	 cues	 for	 the	 first	

time(Lee	and	Kesner	2004).	Finally,	during	the	delay	period	 in	rats	 in	a	spatial	

position	short‐term	memory	task,	single	unit	activity	has	been	recorded	in	CA3	

(Hampson	 and	 Deadwyler	 2000)	 and	 in	 monkeys	 with	 experiment	 involving	

object–place	 and	 a	 location–scene	 association	 short‐term	 memory	 (Wirth,	

Yanike	 et	 al.	 2003).	 It	 is	 possible	 to	 affirm	 that	 the	 plastic	 changes	 in	 the	CA3	

network	 are	 essential	 in	 encoding	 novel	 information	 involving	 associations	

between	objects	and	places,	odors	and	places,	or	between	landmark	visual	cues	

and	spatial	locations,	and	that	the	mechanism	is	NMDA	receptor‐mediated.		

The	 CA3	 subregion	 of	 the	 hippocampus	 is	 also	 necessary	 in	 tasks	 that	 require	

multiple	trials	to	acquire	the	task.	Indeed,	lesions	of	the	CA3	(but	not	the	CA1	or	

DG)	 impair	 the	 acquisition	 of	 object–place	 and	 odor–place	 paired	 associate	

learning,	a	task	that	requires	multiple	trials	to	learn	(Gilbert	and	Kesner	2003).	It	
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has	 been	 suggested	 that	 the	 hippocampus	 and	 its	 subregions	 support	 the	

formation	 of	 arbitrary	 associations,	 including	 paired‐associate	 learning	

(Eichenbaum	H,	Cohen	NJ.	2001,	McNaughton	BL,	Morris	R.	1987,	Hasselmo	and	

Wyble	1997).	

The	CA3	 subregion	 is	 also	 	 essential	 in	 supporting	 the	 retrieval	 of	 information	

from	 when	 a	 short‐term	 delay	 is	 introduced	 (Kesner	 and	 Rolls	 2001;	 Kesner	

2007)	 As	 the	 information	 circulates	 through	 the	 recurrent	 network	 in	 CA3,	

buffering	of	information	within	the	network	is	likely	to	occur.	In	summary,	CA3	

may	play	a	key	role	 in	short‐term	memory	tasks,	especially	when	the	nature	of	

the	 tasks	 entails	 encoding	 of	 novel	 information	 or	 pattern	 completion.



19 
 

 Figure 1. The hippocampus: (A) 3D Rat brain organization of the hippocampus and related structures. 

(B) left hippocampus coronal sections. (C) Hippocampus network. Perforant Path: The perforant path 

(pp) is the major input to the hippocampus. The axons of the perforant path arise principally in layers 

II and III of the entorhinal cortex (EC). Axons from layers II/IV project to the granule cells of the dentate 

gyrus (DG) and pyramidal cells of the CA3 region, while those from layers III/V project to the pyramidal 

cells of the CA1 and the subiculum. The pp can be segregated  into  lateral and medial pathways (LPP 

and MPP,  respectively), depending on whether the  fibres arise  from  the  lateral or medial entorhinal 

cortex. Mossy Fibre Pathway:  are the axons of DG granule cells. They extend from the dendategyrus 

to CA3 pyramidal cells, forming their major input. MF synapses on CA neurons are large aggregations 

of  termini, with multiple  transmitter  release sites and post‐synaptic densities. Multiple granule cells 

can synapse onto a single CA3 pyramidal cell. Schaffer Collateral/Associational Commissural Pathway: 

This pathway  is derived from axons that project from the CA3 region of the hippocampus to the CA1 

region  (Figure  C  and Description  from Hippocampal  Pathways, MRC  Centre  for  Synaptic  Plasticity, 

University of Bristol). 
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2.5 SYNAPTIC PLASTICITY 

	

2.5.1 SYNAPTIC PLASTICITY AND MEMORY 

	

Memory	 formation	 dependents	 on	 changes	 in	 synaptic	 activity	 that	 triggers	

strengthening	 of	 associations	 between	 neurons;	 indeed,	 activity‐dependent	

synaptic	plasticity	at	appropriate	synapses	during	memory	formation	is	believed	

to	be	necessary	and	sufficient	for	storage	of	information.	

Within	the	hippocampus,	synaptic	efficacy	is	regulated	in	a	bidirectional	manner	

to	 prevent	 individual	 neurons	 and	 the	 underlying	 neural	 network	 from	

saturation.	 This	 regulation	 is	 mirrored	 through	 the	 processes	 of	 long‐term	

potentiation	 (LTP)	 and	 long‐term	 depression	 (LTD)	 (Martin	 and	Morris	 2002;	

Malenka	and	Bear	2004),	two	models	that	help	understanding	the	mechanism	by	

which	 strengthening	 of	 synaptic	 connections	 can	 be	 achieved.	 Whereas	

hippocampal	 LTP	 has	 been	 shown	 to	 be	 important	 for	 spatial	 learning	 and	

memory	(Tsien,	Huerta	et	al.	1996),	hippocampal	LTD	seems	to	be	essential	for	

cognitive	 flexibility	 and	working	memory	 (Zeng,	 Chattarji	 et	 al.	 2001;	Nicholls,	

Alarcon	et	al.	2008).		

 

2.5.2 LONG‐TERM POTENTIATION (LTP) 

	

LTP	 results	 from	 synchronized	 pre‐	 and	 post‐synaptic	 activity,	 causes	 a	

facilitation	of	chemical	transmission	that	lasts	for	hours	in	vitro,	and	in	vivo	also	

for	 weeks	 or	months	(Bliss	 and	 Gardner‐Medwin	 1973;	 Abraham,	 Logan	 et	 al.	

2002).		

The	first	description	of	LTP	made	by	Bliss	and	Lomo	in	1973	reported	that	trains	

of	 high‐frequency	 stimulation	 to	 the	 rabbit	 perforant	 path	 caused	 a	 sustained	

increase	in	efficiency	of	synaptic	transmission	in	the	granule	cells	of	the	dentate	

gyrus	 (Bliss	 and	 Lomo	 1973).	 Together	 with	 others	 studies	 which	 followed	

during	the	1970s,	this	hypothesis	confirmed	the	Hebbian	nature	of	this	form	of	

synaptic	plasticity,	and	it	was	immediately	recognized	that	the	synaptic	changes	

that	underpin	 certain	 forms	of	 learning	and	memory	might	be	 similar	 to	 those	

upon	which	expression	of	LTP	relied.	



21 
 

Numerous	variants	of	the	synaptic	plasticity	and	memory	hypothesis	have	been	

advanced	over	 the	years	 (Kandel	and	Schwartz	1982;	Lynch	and	Baudry	1984;	

McNaughton	 and	 Morris	 1987;	 Siegelbaum	 and	 Kandel	 1991;	 Izquierdo	 and	

Medina	 1995;	 Morris	 and	 Frey	 1997;	 Baudry	 1998).	 However,	 the	 common	

theme	 of	 the	 hypothesis	 is	 represented	 by	 the	 idea	 that	 activity‐dependent	

synaptic	plasticity	is	appear	in	specific	synapses	during	memory	formation,	and	

is	both	necessary	and	sufficient	for	the	information	storage	underlying	the	type	

of	 memory	 mediated	 by	 the	 brain	 area	 in	 which	 that	 plasticity	 is	 observed	

(Martin,	Grimwood	et	al.	2000;	Kesner	2007)	

The	mechanisms	by	which	LTP	consolidation	occurred	involve	NMDA	receptors	

activation	during	high‐frequency	stimulation.	The	reaction	consists	of	glutamate	

molecules	 released	 from	 the	 pre	 synaptic	 terminal	 diffuse	 across	 the	 synaptic	

cleft	 and	bind	 to	both	sub‐types	of	 receptor,	opening	AMPA	receptor	 channels.	

The	 resulting	 inward	 current	 flow	 carried	 by	 Na+	ions	 depolarizes	 the	 post‐

synaptic	 membrane	 to	 produce	 an	 excitatory	 post‐synaptic	 potential	 (EPSP).	

Low	 concentrations	 of	 released	 glutamate	 do	 not	 depolarize	 the	 postsynaptic	

membrane	sufficiently	to	relieve	the	Mg2+	‐block	of	the	NMDA	receptor	channel	

(Nowak	 et	 al.	 1984).	 High	 concentrations	 of	 glutamate	 released	 at	 a	 strongly	

active	 synapse	 produce	 strong	 depolarization	 of	 the	 post‐synaptic	 membrane,	

resulting	in	the	expulsion	of	magnesium	ions	from	the	NMDA	receptor	channel,	

and	allowing	influx	of	Na+	and	Ca2+	ions.	It	is	this	calcium	influx	that	induce	LTP	

(Lynch,	Larson	et	al.	1983,	Malenka	et	al.	1988).	The	consequence	of	the	increase	

in	 intracellular	 calcium	 concentration	 is	 the	 increased	 calmodulin	 kinase	 II	

(CaMKII)	and	protein	kinase	C	activity	(Lisman,	Schulman	et	al.	2002)	resulting	

in	 a	 significant	 effect	 is	 increased	 AMPA	 conductance	 as	 a	 result	 of	 AMPA	

receptor	 (AMPA‐R)	phosphorylation	and	 increased	recycling	of	AMPA‐R,	which	

is	due	to	CaMKII‐induced	changes	in	cytoskeletal	proteins.		Numerous	evidences	

suggested	 that	 to	 lead	 LTP	 expression	 the	 increased	 expression	 of	 AMPA	

receptors	 on	 the	 postsynaptic	 membrane	 is	 the	 primary	 requirement	 (Geiger,	

Melcher	et	al.	1995;	Lynch	2004).	

Another	important	point	is	that	the	molecular	mechanisms	of	LTP	induction	and	

maintenance	do	not	remain	the	same	in	all	synapses.	For	instance	at	the	mossy	

fibre–CA3	 pyramidal	 cell	 synapse,	 the	 NMDA	 receptor	 is	 not	 required	 for	 LTP	
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induction	(Harris	and	Cotman	1986)	and	the	site	of	LTP	expression	is	primarily	

pre‐synaptic	(Weisskopf	and	Nicoll	1995).	In	contrast,	at	both	medial	perforant	

path–dentate	 gyrus	 granule	 cell	 (Morris,	 Anderson	 et	 al.	 1986)	 and	 Schaffer	

collateral–CA1	pyramidal	cell	synapses	(Collingridge	et	al.	1983)	LTP	induction	

is	 mediated	 by	 the	 NMDA	 receptor.	 Moreover,	 there	 is	 a	 major	 post‐synaptic	

component	to	LTP	expression	at	both	the	latter	connections	(Nicoll	and	Malenka	

1995,	Cooke	and	Bliss	2006)	

 

2.5.3 LONG‐TERM DEPRESSION (LTD) 

	

LTD	 results	 in	 a	 long‐lasting	 decrease	 in	 synaptic	 efficacy.	 To	 induce	 LTD	 two	

principal	protocol	has	been	used	over	the	time:	a	long	trains	of	low‐frequency	(1	

Hz)	 stimulation	 (Dudek	 and	 Bear	 1992),	 or	 mismatching	 of	 pre‐	 and	 post‐

synaptic	action	potentials	(Markram	1997).	It	has	been	proposed	that	there	are	

two	mechanistically	 distinct	 forms	 of	 LTD.	 One	 consisting	 in	 a	 depotentiation,	

which	refers	to	the	reversal	of	LTP,	and	the	other	a	‘de	novo’	LTD,	which	refers	to	

depression	 from	an	unpotentiated	baseline.	 Some	 forms	of	LTD	are	dependent	

upon	 the	 NMDA	 receptor	 and	 are	 triggered	 by	 low	 concentrations	 of	 post‐

synaptic	 calcium	 (Nishiyama,	 Hong	 et	 al.	 2000).	 Calcium‐responsive	

phosphatases	 such	 as	 calcineurin	 and	 protein	 phosphatase	 1	 (PP1)	 are	

implicated	as	effector	molecules	in	the	mechanisms	of	LTD.	These	phosphatases	

dephosphorylate	kinase	targets	such	as	glutamate	receptors	(Morishita,	Marie	et	

al.	 2005)	 and	 the	 kinases	 themselves	 (Blitzer,	 Connor	 et	 al.	 1998).	 LTD‐like	

processes	have	been	suggested	to	be	equally	effective	at	storing	information	that	

is	 essential	 for	 learning	 and	 memory	 (Kemp	 and	 Manahan‐Vaughan	 2007;	

Massey	 and	 Bashir	 2007).	 For	 example,	 exist	 correlations	 between	

depotentiation,	LTD	and	spatial	exploration	(Abraham,	Logan	et	al.	2002,	Cooke	

and	Bliss	2006).	

The	 importance	 of	 hippocampal	 CA1	 LTD	 has	 been	 shown	 in	 the	 formation	 of	

long‐term	 spatial	 memory	 during	 Morris	 water	 maze	 tasks.	 (Ge,	 Dong	 et	 al.	

2010).	Anyway	Hippocampal	LTD	has	been	implicated	in	forms	of	 learning	and	

memory	 other	 than	 spatial	 memory.	 For	 example,	 LTD	 induction	 in	 behaving	

animals	can	be	 facilitated	by	exposure	to	novel	objects	(Manahan‐Vaughan	and	
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Braunewell	1999)	and	novelty	exposure	could	reverse	LTP	in	the	hippocampus	

(Xu,	Anwyl	et	al.	1998). 

 

2.6 CELLULAR AND MOLECULAR MECHANISMS: FROM SHORT TO LONG‐TERM MEMORY 

	

Long‐term	memory	differs	from	short‐term	memory	not	only	in	time	course	but	

also	in	molecular	mechanisms.	Long‐term	memory,	but	not	short‐term	memory,	

requires	the	synthesis	of	new	proteins	(Yin	and	Tully	1996;	Kandel	and	Pittenger	

1999).	Studies	during	 the	past	decade	 in	Drosophila,	Aplysia,	and	mice	suggest	

that	 cAMP,	 PKA,	 and	 the	 cAMP‐responsive	 transcription	 factor	 CREB	 are	

critically	involved	in	the	conversion	of	short‐term	to	long‐term	memory	for	both	

declarative	and	non‐declarative	memory.	Several	experiments	indicated	that	LTP	

itself	 has	 stages,	 as	 long‐term	 facilitation	 in	Aplysia.	 It	 has	been	proposed	 that	

LTP	 can	 be	 distinguished	 in	 an	 early‐stage	 LTP	 (E‐LTP)	 that	 requires	

modification	 induced	 by	 Ca2+/calmodulin‐dependent	 protein	 kinase	 II	 α	

(CaMKII	 α)	 and	 the	 tyrosine	 kinase	 fyn	 (Nicoll,	 Kauer	 et	 al.	 1988),	 and	 a	 late‐

phase	 LTP	 (L‐LTP)	 that	 requires	 the	 kinase	 PKA	 and	 protein	 synthesis	 (Frey,	

Huang	 et	 al.	 1993).	 Moreover,	 there	 is	 increasing	 evidence	 for	 rapid	 receptor	

insertion	and	remodeling	during	E‐LTP	and	for	actual	structural	changes	during	

L‐LTP	(Luscher,	Nicoll	et	al.	2000).	

Some	of	 these	 ideas	were	 tested	using	mice	with	 targeted	knockout	 of	 CaMKII	

and	the	tyrosine	kinase	fyn,	kinases	that	had	previously	been	implicated	in	LTP	

in	 pharmacological	 studies	 (Nicoll,	 Kauer	 et	 al.	 1988).	 Those	 experiment	

revealed	that	mice	lacking	CaMKII	α	displayed	a	partial	loss	of	E‐LTP	in	CA1	and	

impairment	on	spatial	memory	tasks	(Silva,	Paylor	et	al.	1992;	Malinow	1998).		

Other	studies	had	similar	conclusion	showing	how	mice	with	targeted	deletions	

of	 the	 tyrosine	kinase	 fyn	also	displayed	deficits	 in	E‐LTP	and	spatial	memory.	

On	the	contrary	mice	with	non‐receptor	tyrosine	kinases	src	and	yes	deficit	were	

normal	(Grant,	O'Dell	et	al.	1992).	Other	studies	demonstrated	that	expression	of	

a	 dominant‐negative	 inhibitor	 of	 PKA	 in	 neurons	 of	 the	 forebrain	 using	 the	

CaMKIIα	 promoter	 caused	 an	 attenuated	 L‐LTP	 but	 a	 normal	 E‐LTP	 (Abel,	

Nguyen	 et	 al.	 1997).	 These	 mice	 have	 no	 differences	 in	 a	 contextual	 task	
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compared	to	wild‐type	animals,	with	a		intact	good	short‐term	memory	but	they	

were	 impaired	 in	 selective	 long‐term	 memory.	 Therefore	 the	 PKA	 signaling	

pathway	 in	 mice	 (as	 in	 Aplysia	 and	 Drosophila)seems	 to	 be	 important	 for	

maintaining	both	LTP	and	memory	for	prolonged	periods	of	time.	

Studies	 in	Drosophila	suggest	 that	CREB‐mediated	 induction	of	 transcription	 is	

necessary	to	produce	the	long‐lasting	changes	in	synaptic	strength	required	for	

the	 long‐term	 storage	 of	 memories	 (Yin	 and	 Tully	 1996).	 In	 Aplysia,	

modifications	 of	 existing	 proteins	 create	 a	 short‐lasting	 increase	 of	 synaptic	

strength.	 CREB	 switch	 functions	 from	 this	 short	 lasting	 increase	 of	 synaptic	

strength	 to	 one	 that	 is	 long‐lasting	 and	 produced	 by	 the	 synthesis	 of	 new	

proteins	 (Martin,	 Casadio	 et	 al.	 1997).	 The	 CREB	 target	 genes,	 whose	

transcription	is	regulated	during	consolidation,	include	a	set	of	immediate‐	early	

genes	(such	as	C/EBP	or	zif268)	that	affect	transcription	of	downstream	genes.	

These	 results	 both	 increase	 and	 decrease	 of	 protein	 expression	 involved	 in	

protein	synthesis,	axon	growth,	synaptic	structure	and	function.	

 

2.7 SPINES AND MEMORY 

	

2.7.1  MORPHOLOGY OF SPINES 

	

A	morphological	change	that	has	been	reported	by	several	researches	involves	a	

rapid	expansion	of	spine	heads	after	tetanic	stimulation	in	hippocampal	slices	or	

cultures.	 Most	 excitatory	 synapses	 in	 the	 brain	 terminate	 on	 dendritic	 spines.	

They	are	specialized	locus	on	dendrites	that	contain	a	postsynaptic	density	(PSD)	

including	 receptors,	 channels	 and	 signaling	 molecules	 that	 couple	 synaptic	

activity	with	postsynaptic	biochemistry	(Sheng	and	Kim	2002).	Spines	provide	a	

closed	compartment	that	allows	rapid	changes	in	the	concentrations	of	signaling	

molecules,	 such	 as	 calcium,	 and	 therefore	 make	 possible	 rapid	 and	 efficient	

responses	 to	 inputs	 (Koch	 and	 Zador	 1993).	 Spines	 density	 is	 thought	 to	 be	

around	1–10	spines	per	micrometer	of	dendrite	length,	but	some	neurons,	as	the	

ones	 in	 hippocampus	 contain	 thousands	 of	 spines	 throughout	 the	 dendritic	

arbors.	They	come	in	a	wide	range	of	sizes	and	shapes,	their	lengths	varying	from	
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0.2	 to	2	µm	and	volumes	 from	0.001	 to	1	µm3.	Using	electron	microscopy	was	

possible	 to	 identified	 three	 main	 morphological	 categories	 of	 spines:	 thin,	

filopodia‐like	 protrusions	 (“thin	 spines”),	 short	 without	 a	 well‐defined	 spine	

neck	(“stubby	spines”)	and	large	with	a	large	bulbous	head	(“mushroom	spines”)	

(Bourne	and	Harris	2008;	Hotulainen	and	Hoogenraad	2010).	

 

2.7.2 FUNCTION OF SPINES 

	

It	has	been	suggested	already	from	Ramon	y	Cajal	and	Hebb	that	strengthening	

or	 weakening	 particular	 synaptic	 connections	 in	 response	 to	 experience,	

meaning	modulating	the	number	of	dendritic	spines	and/or	their	morphology	it	

could	 help	 to	 understand	 the	 storage	 of	 memories	 mechanism.	 Evidence	 of	

alterations	in	memory	process	and	storage	has	been	found	in	several	species	of	

animal	 underwent	 experiment	 using	 complex	 versus	 simple	 environments,	 or	

exposed	 to	various	 training	or	 stimulation	regimens	 (Bailey	and	Kandel	1993).	

Indeed,	there	is	evidence	that	induction	of	synaptic	plasticity	(LTP	induction	or	

memory	 formation)	 leads	 to	 changes	 in	 the	 number	 or	 shape	 of	 spines(Chang	

and	Greenough	1984;	Yuste	and	Bonhoeffer	2001;	De	Roo,	Klauser	et	al.	2008).	

However	changes	in	spine	morphology	have	also	been	seen	after	LTP	induction	

(Fifkova	and	Anderson	1981;	Malinow	and	Malenka	2002).	

Synaptic	 transmission	 that	 occurs	 after	 learning	 or	 LTP	 Long‐term	 can	 be	

modulated	by	different	spine	morphology	(Volfovsky,	Parnas	et	al.	1999).	Large	

spines	receive	input	from	large	pre‐synaptic	terminals	and	more	vesicles	as	well	

as	polyribosomes	are	preferentially	 translocated	 into	 those	 large	spines	during	

synaptic	 plasticity.	 This	 event	 probably	 facilitates	 the	 incorporation	 of	 local	

protein	 synthesis	 machinery	 (Ostroff,	 Fiala	 et	 al.	 2002).	 Also	 morphological	

change	as	shortening	or	widening	the	neck	of	a	spine	affects	calcium	influx	into	

the	dendrite	and	therefore	might	affect	biochemical	events	in	spines	(Majewska,	

Brown	et	al.	2000).	It	has	also	been	shown	that	glutamate	sensitivity	correlates	

with	 spine	 shape.	 The	 ratio	 AMPA	 /NMDA	 receptors	 in	 Schaffer	 collateral	

synapses	 increases	 linearly	 with	 the	 diameter	 of	 the	 postsynaptic	 density	

(Takumi,	 Ramirez‐Leon	 et	 al.	 1999).	 Transmission	 could	 be	 enhanced	with	 an	
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increase	 of	 spines	 number	 since	 more	 connections	 would	 be	 made	 with	 the	

presynaptic	neuron	(Lamprecht	and	LeDoux	2004).	

	

2.7.3 CHANGES IN SPINES AFTER A LEARNING EXPERIENCE 

	

The	architecture	of	 spines	depends	on	 the	 specialized	 structure	of	 cytoskeletal	

filaments	 (Matus	 2000).	 These	microfilaments	 are	 composed	of	 actin,	which	 is	

present	 in	 the	 spine	 cytoplasm	 in	 and	 connected	 with	 event	 in	 postsynaptic	

density.	 Developmental	 studies	 have	 shown	 that	 structural	 plasticity	 of	 spines	

after	LTP	 induction	and	memory	acquisition	depend	on	reorganization	of	actin	

(Fischer,	Kaech	et	al.	1998).	

Therefore	 a	 reduction	 in	 actin	 based	 spine	 motility,	 could	 results	 in	 LTP	 and	

memory	consolidation	leading	to	spine	stabilization	(Fischer,	Kaech	et	al.	1998;	

Matus	2000).	

It	 has	 been	 hypnotized	 that	 the	 AMPA	 glutamate	 receptors	 could	 have	 a	

stabilizing	 effect	 on	 spine	morphology(Fischer,	Kaech	 et	 al.	 2000).	Actin‐based	

spine	motility	is	suppressed	when	AMPA	is	applied	to	hippocampal	neurons,	and	

this	 suppression	 is	 completely	 blocked	 by	 AMPA	 antagonists.	 While	 NMDA	

receptors	might	be	important	in	the	initial	phase	of	spine	motility,	a	stabilization	

phase	 is	 mediated	 by	 AMPA	 receptors	 contributing	 to	 the	 long‐lasting	 spine	

stability	(Lamprecht	and	LeDoux	2004).	

At	present,	 the	evidence	 for	 spine	 involvement	 in	memory	 is	 still	debated,	 and	

the	main	issue	is	still	the	nature	of	the	changes	that	take	place	in	dendritic	spines	

after	 a	 learning	 experience.	Although	 all	 reported	 an	 increase	 in	 spine	 volume	

after	 tetanic	 stimulation,	 there	 is	 also	 heterogeneity	 of	 observations.	 For	

instance,	some	researchers	found	a	threefold	increase	in	spine	volume	within	2–

4	min	of	stimulation	(Matsuzaki,	Honkura	et	al.	2004).	A	similar	but	smaller	and	

slower	 change	 after	 the	 induction	 of	 LTP	 was	 also	 reported	 (Otmakhov,	 Tao‐

Cheng	et	al.	2004).	The	authors	affirmed	to	have	produced	a	persistent	change	in	

the	 spine	 volume	 independently	 of	 a	 marked	 increase	 in	 the	 expression	 of	

calcium/calmodulin‐dependent	protein	kinase	II.		
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It	has	been	shown	that	LTP	was	associated	with	an	increase	in	the	amount	of	F‐

actin	relative	to	G‐actin	in	the	spine	head,	and	with	a	parallel	increase	in	the	size	

of	 the	 spine	head	 (Okamoto,	Nagai	 et	 al.	 2004).	They	 also	 found	 that	 LTD	was	

associated	with	spine	shrinkage	and	an	increase	in	the	relative	amount	of	G‐actin	

in	the	spine	head.		Additionally,	it	has	been	reported	a	slow	and	small	increase	in	

the	diameter	of	the	spine	heads	after	high	frequency	(Zhou,	Homma	et	al.	2004).	

This	study	also	showed,	for	the	first	time,	symmetry	between	changes	in	spines	

and	synaptic	responses,	in	that	spine	heads	shrunk	after	the	induction	of	LTD.	It	

has	been	demonstrated	that,	after	the	induction	of	LTP,	enlargement	of	the	spine	

head	is	correlated	with	the	expansion	of	postsynaptic	density	(Geinisman,	Berry	

et	al.	2001;	Segal	2005).	

	

2.8 BRAIN NETWORK DISCONNECTIVITY 

	

As	 previously	 discussed,	 dendritic	 spines	 and	 memory	 formation	 are	 linked	

together.	Memory	 formation	 is	 thought	 to	 lead	 to	 an	 increase	 in	 spine	density.	

Vice	versa	,	increase	in	spine	density,	for	example	after	exposure	to	an	enriched	

environment	 may	 enhance	 learning	 ability	 (Moser,	 Trommald	 et	 al.	 1997).	

Synaptic	plasticity	activity		is	thought	to	be	involved	also	in	some	diffuse	mental	

diseases.	 For	 example	 a	 large	number	of	neurophysiological	 and	neuroimaging	

studies	 of	 patients	 with	 schizophrenia	 have	 furnished	 in	 vivo	 evidence	 for	

disconnectivity	 resulted	 from	 aberrant	 wiring	 of	 connections	 during	

development	or	from	aberrant	synaptic	plasticity(Stephan,	Friston	et	al.	2009).	

Two	 possible	 explanations	 for	 how	 disconnection	 arises	 have	 been	 proposed.	

The	 first	 refer	 to	 synaptic	 disconnection,	 for	 example	 due	 to	 impaired	

modulation	 of	 NMDAR‐dependent	 synaptic	 plasticity,	 for	 abnormalities	 of	

GABAergic	 and	 DAergic	 function	 resulting	 in	 NMDAR	 dysfunction	 (Laruelle,	

Frankle	 et	 al.	 2005).	 Postmortem	 studies	 on	 schizophrenia	 showed	 that	 the	

disconnection	 derives	 from	 a	 reduction	 in	 dendritic	 field	 size	 and	 dendritic	

spines	of	cortical	neurons	(Sullivan,	Kendler	et	al.	2003).	

The	 other	 possible	 disconnection	 involve	 the	 interregional	 or	 local	 functional	

coupling	 that	 in	 schizophrenia	 are	 abnormal	 because	 of	 impairments	 of	
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structural,	 anatomical	 connectivity,	 due	 to	 aberrant	 axonal	 wiring	 association	

(Davis,	 Stewart	 et	 al.	 2003).	 In	 this	 context,	 white	 matter,	 myelin,	 and	

oligodendrocytes	 have	 received	 increasing	 attention	 for	 their	 potential	 role	 in	

the	 pathophysiology	 of	 schizophrenia.	 In	 fact,	 various	 functional	 and	

microstructural	 changes	 have	 been	 detected	 in	 white	 matter	 of	 schizophrenic	

patients,	 including	 reductions	 in	 volume	 and	decreased	 coherence	 along	white	

matter	 tracts,	 the	 latter	being	consistent	with	misalignments	of	axons	(Kubicki,	

McCarley	 et	 al.	 2007;	 Carletti,	 Woolley	 et	 al.	 2012).	 Moreover	 post‐mortem	

brains	 analysis	 of	 schizophrenic	 patient	 and	 healthy	 subjects	 has	 identified	

differential	 expression	 levels	 of	 a	 number	 of	 oligodendrocyte‐	 and	 myelin‐

related	genes	in	multiple	brain	regions	(Kerns,	Vong	et	al.	2010;	Roussos,	Katsel	

et	 al.	 2012),	 pointing	 to	 disruption	 of	 oligodendrocyte	 function	 and	

abnormalities	in	myelin	maintenance	and	repair.	Myelin‐related	genes	represent	

only	 one	 part	 of	 the	 whole	 genetic	 contribution	 to	 schizophrenia,	 however	 a	

relatively	 large	 number	 of	 genes	 found	 to	 be	 associated	 with	 schizophrenia	

belong	 to	 this	 category	 (Rietkerk,	 Boks	 et	 al.	 2009)clearly	 indicating	 a	myelin‐

related	 function	 to	 schizophrenia	pathogenesis.	Among	 all	 the	 candidate	 genes	

potentially	involved	in	schizophrenia,	Nogo‐A	received	particular	attention	in	the	

last	few	years	(Willi	and	Schwab	2013).	

	

2.8.1 AXONAL PLASTICITY AND NOGO‐A PROTEIN 

	

The	molecular	mechanisms	by	which	axon	regeneration	is	restricted	in	the	adult	

mammalian	 CNS	 are	 poorly	 understood.	 The	 lack	 of	 growth‐promoting	

molecules	together	with	the	presence	of	negative	extracellular	cues	is	thought	to	

provide	a	non‐permissive	environment	 for	re‐growing	 fibers.	 In	particular,	one	

myelin	 component	 present	 in	 the	 central	 nervous	 system(CNS)	 have	 been	

characterized	 as	 potent	 inhibitors	 of	 axonal	 growth:	 Nogo‐A,	 the	 largest	

transcript	 of	 the	 recently	 identified	 Nogo	 gene	 (Chen,	 Huber	 et	 al.	 2000;	

GrandPre,	Nakamura	et	al.	2000).	

Nogo‐A	is	a	protein	with	potent	neurite	growth	inhibitory	activity	and	is	present	

in	CNS	myelin	(Caroni	and	Schwab	1988).		Studies	in	rats	(Schwab	2004)showed	
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a	 successful	 regeneration	 of	 corticospinal	 tract	 axons	 over	 long	 distances	 and	

significant	 enhancement	 of	 functional	 recovery	 using	 neutralizing	 antibodies	

against	 Nogo‐A	 (Schnell	 and	 Schwab	 1990;	 Liebscher,	 Schnell	 et	 al.	 2005),	 or	

peptides	blocking	the	Nogo	receptor	subunit	NgR	(GrandPre,	Li	et	al.	2002).	

Neuronal	Nogo‐A	 is	highly	 expressed	 in	 the	 fetal	 and	early	postnatal	brain.	On	

the	 contrary	 is	 down‐regulated	 in	 most	 anatomical	 structures	 in	 adulthood,	

except	in	some	regions	of	high	plasticity	(e.g.,	hippocampus),	in	which	neuronal	

Nogo‐A	expression	remains	high	(Huber,	Weinmann	et	al.	2002).	Nogo‐A	play	a	

major	 role	 in	 controlling	 neurodevelopmental	 processes	 and	 neural	 plasticity	

mechanism.	 Nogo‐A	 is	 highly	 expressed	 in	 pre‐	 and	 postsynaptic	 neurons	

including	pyramidal	cells	of	CA3	and	CA1	in	adult	hippocampus	known	to	show	

synaptic	plasticity	eventsthroughout	 life,	 (Lee,	Raiker	et	al.	2008).	Nogo‐A	 thus	

appears	here	again	as	a	stabilizer	of	synapses,	the	suppression	of	which	leads	to	

growth	and	higher	plasticity	 in	axons	and	dendrites.	Studies	using	anti‐Nogo‐A	

antibodies	or	Nogo‐A	KO	models	showed	an	induction	of	marked	changes	in	the	

complexity	of	the	basal	and	apical	dendritic	arbors	of	CA1	and	CA3	neurons	and	

leads	 to	massive	 sprouting	 of	 the	 CA3	 axons	 (Zagrebelsky,	 Schweigreiter	 et	 al.	

2010).	 Silencing	 NgR1	 expression	 can	 reproduce	 these	 phenotypes	 at	 the	

dendritic	 and	 spine	 level.	 Moreover,	 electrophysiological	 recordings	 in	 acute	

hippocampal	slices	have	revealed	that	 the	 inactivation	of	Nogo‐A	or	NgR1	with	

function‐blocking	 antibodies	 or	 KOs	 increases	 LTP	 (Raiker,	 Lee	 et	 al.	 2010;	

Delekate,	Zagrebelsky	et	al.	2011).	

Interestingly	NgR1	(also	known	as	Nogo66	receptor	and	Reticulon	4	receptor)	is	

encoded	 by	 a	 gene	 located	 on	 chromosome	 22q11,	 a	 well‐known	 hotspot	 for	

genetic	predisposition	in	schizophrenia	(Liu,	Abecasis	et	al.	2002).	Post‐mortem	

brain	 tissue	 Examination	 in	 patients	 with	 psychiatric	 disorders	 together	 with	

human	genetic	linkage	studies	and	suggested	a	link	between	Nogo	signalling	and	

bipolar	disorder	and	schizophrenia	(Novak,	Kim	et	al.	2002;	Sinibaldi,	De	Luca	et	

al.	2004;	Budel,	Padukkavidana	et	al.	2008).	One	study	in	individuals	affected	by	

schizophrenia	 from	 different	 families,	 described	 several	 point	 mutations	

inNgR1,some	of	which	directly	affected	Nogo	binding	(Budel,	Padukkavidana	et	

al.	 2008).	 Moreover,	 translational	 behavioral	 test	 relevant	 for	 assessing	 face	

validity	of	animal	models	of	schizophrenia	support	the	hypothesis	that	there	is	a	
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link	 between	 Nogo‐A/NgR	 signaling	 and	 schizophrenia.	 Indeed,	 mice	 lacking	

NgR1	 showed	 mild	 behavioral	 alterations	 that	 mimic	 some	 symptoms	 of	

schizophrenia.	Moreover	mice	KO	for	Nogo‐A	protein	showed	deficit	 in	Nogo‐A	

and	 subsequent	 deficient	 sensorimotor	 gating,	 disrupted	 latent	 inhibition,	

perseverative	 behavior,	 and	 increased	 sensitivity	 to	 the	 locomotor	 stimulating	

effects	of	amphetamine	(Willi	R.	et	al,	2010)	aspect	related	to	the	symptoms	of	

schizophrenia	(Baruch,	Hemsley	et	al.	1988).	

	

2.9 DENDRITIC MRNA 

	

2.9.1 IMPORTANCE OF DENDRITIC MRNAS IN LEARNING AND MEMORY 

	

The	 biological	 basis	 of	 learning	 and	memory	 are	 thought	 to	 be	 trigged	 at	 the	

synapse	 through	 molecular	 mechanisms	 known	 as	 LTP	 and	 LTD.	 Moreover,	

lasting	activity‐dependent	changes	 in	synaptic	strength	depend	on	new	protein	

synthesis	 and	 the	 growth	 or	 remodeling	 of	 synapses.	 Increasing	 evidence	

suggests	 that,	 in	 the	 dendrite,	 protein	 synthesis	 is	 carried	 out	 on	 a	 small,	

localized	scale	directly	adjacent	to	remodeling	synapses.	

In	neurons	mRNA	it	is	used	in	transport	during	development	to	regulate	growth	

cone	turning	(Lin	and	Holt	2007),	axon	determination	(Morita	and	Sobue	2009)	

and	neurite	outgrowth	(Hengst,	Deglincerti	et	al.	2009),	and	synapse	maturation	

(Miniaci,	 Kim	 et	 al.	 2008).	 Also	 after	 maturation	 neurons	 use	 dendritic	 local	

translation	 so	 that	 proteins	 are	 available	 at	 specific	 sites	 ready	 to	 respond	 to	

local	inputs	with	changes	in	the	proteome	that	regulate	synaptic	strength	(Sutton	

and	 Schuman	 2006;	 Sanchez‐Carbente	 Mdel	 and	 Desgroseillers	 2008;	 Lebeau,	

Miller	et	al.	2011).	

In	 particular,	 the	 mRNAs	 localization	 at	 the	 synapse	 has	 been	 proposed	 as	 a	

important	mechanism	for	synaptic	plasticity	and	memory	consolidation	(Kiebler	

and	DesGroseillers	2000;	Klann	and	Dever	2004).	

Several	 studies	 showed	 the	 presence	 of	 specific	 mRNAs	 encoding	 protein	

involved	 in	 cytosolic	 or	 cytoskeletal	 events	 in	 dendritic	 layers	 of	 the	

hippocampus	 and	 at	 postsynaptic	 densities	 of	 hippocampal	 neurons.	 These	
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proteins	 include	 mRNAs	 encoding	 microtubule‐associated	 protein	 2	 (MAP2)	

(Garner,	Tucker	et	al.	1988),	the	‐subunit	of	Ca	2+	/calmodulindependent	protein	

kinase	 II	 (CaMKII)	 (Miyashiro,	Dichter	et	 al.	1994),	brain‐derived	neurotrophic	

factor	(BDNF),	activity‐regulated	cytoskeleton‐associated	protein	(Arc)	(Lyford,	

Yamagata	et	 al.	 1995),	 tyrosine‐related	kinase	B	 (TrkB)	 receptor,	 IP3	 receptor,	

the	 atypical	 protein	 kinase	M,	 the	 NMDA	 receptor	 (NMDAR)	 NR1	 subunit	 and	

glycine	 receptor	 subunit	 (Blichenberg,	 Schwanke	 et	 al.	 1999;	 Steward	 and	

Schuman	2003).	

	

2.9.2 THE “SYNAPTIC TAGGING” HYPOTHESIS 

	

Synaptic	 plasticity	 is	modulated	 and	maintained	 in	 individual	 dendritic	 spines	

over	extended	period	of	time.	How	this	is	achieved	is	explained	bythe	hypothesis	

of	 synaptic	 tagging	and	 capture	 (Frey	 and	Morris	 1997;	Redondo,	Okuno	et	 al.	

2010).	 In	 this	 model,	 the	 activated	 synapse	 signals	 to	 the	 nucleus	 to	 activate	

transcription	of	plasticity‐related	genes	(Greer	and	Greenberg	2008).	In	order	to	

target	specific	mRNAs	in	the	dendrites,	they	must	first	be	sequestered	from	the	

translational	 machinery	 in	 the	 cytoplasm	 and	 organized	 into	

ribonucleoproteinparticle(RNPs).	 Later,	 mRNA	 translocation	 in	 live	 neurons	

involve	large	granules	containing	mRNAs,	RNA‐binding	proteins,	ribosomes,	and	

translational	 factors	 (RNA‐containing	 granules)	 in	 a	 rapid,	 bidirectional,	 and	

microtubule	 dependent	 manner	 (Knowles,	 Sabry	 et	 al.	 1996;	 Kiebler	 and	

DesGroseillers	 2000),	 (Kiebler	 and	 Bassell	 2006).	 Upon	 a	 yet	 to	 be	 identified	

“synaptic	 tag(s)”,those	RNPs	are	 internalized	 into	dendritic	 spines,	where	 local	

translation	 within	 the	 synapse	 maintains	 the	 initiated	 plasticity(Martin	 and	

Zukin	2006;	Sutton	and	Schuman	2006).	This	hypothesis	is	supported	by	several	

facts.	First,	specific	mRNAs	have	been	identified	in	neuronal	dendrites	(Steward	

and	Schuman	2003).	Second,	mRNA	sequence	elements	that	are	responsible	for	

the	 dendritic	 localization	 of	 specific	 mRNAs	 could	 be	 identified(Doyle	 and	

Kiebler	2011).	Third,	both	polyribosomes	and	translation	factors	can	be	detected	

in	dendritic	spines	(Ostroff,	Fiala	et	al.	2002;	Tang,	Reis	et	al.	2002).	Forth,	local	

translation	has	been	 shown	 to	be	 essential	 for	 the	maintenance	of	 long‐lasting	
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forms	 of	 synaptic	 plasticity,	 e.g.	 late	 phase	 LTP	 and	 mGluR‐dependent	 LTD	

(Huber,	Kayser	et	al.	2000;	Vickers,	Dickson	et	al.	2005).	

Several	 studies	 on	 composition	 of	 neuronal	 transport	 RNPs	 reported	 an	

heterogeneity	composition,	including	microtubule	motor	proteins	that	transport	

RNPs	 in	 dendrites,aswellas	 numerous	 other	 proteins,	 including	 well	 known	

regulators	of	mRNA	transport	as	purine‐rich‐element‐binding	protein	α	(Pur‐α)	

and	Staufen1(Ohashi,	 Koike	 et	 al.	 2002)	 or	 translation	 related	 protein	 such	 as	

eukaryotic	 translation	 initiation	 factor	 2	 α	 (eIF2	 α)	 and	 eukaryotic	 translation	

elongation	 factor	 1A	 (eEF1A)	 (Klann	 and	 Dever	 2004).	 RNPs	 can	 also	 contain	

mRNA‐binding	 proteins	 that	 have	 been	 implicated	 in	 mRNA	 stabilization	 as	

synaptotagmin‐bindingcytoplasmic‐RNA‐interacting	 protein	 (SYNCRIP),	 or	

protein	involved	in	translocation	and	translation	as	FMRP	or	protein	involved	in	

fragile‐X	mental	 retardation	as	 the	 autosomal	homolog	1	 (FXR1)	and	2	 (FXR2)	

(Bannai,	 Fukatsu	 et	 al.	 2004;	Bagni	 and	Greenough	2005;	Bramham	and	Wells	

2007).	

	

2.9.3. MRNA TRAFFICKING: ROLE OF STAUFEN2 

	

The	double‐stranded	RNA‐binding	protein	 family	Staufen	(Stau)	 is	essential	 for	

the	localization	of	mRNAs	in	different	cell	types	in	Drosophila	and	mammals.	 It	

has	been	implicated	both	in	dendritic	RNA	transport	and	cell	body	translational	

regulation.	In	invertebrates,	Stau	is	required	for	the	proper	localization	of	bicoid	

and	oskar	mRNA	 to	 either	 the	 anterior	or	 the	posterior	pole	of	 the	Drosophila	

oocyte	 and	 in	 the	 asymmetric	 localization	 of	 mRNAs,	 such	 as	 prospero	 in	

Drosophila	neuroblasts	 (St	 Johnston	1995;	Campos‐Ortega	1997;	Li,	Yang	et	al.	

1997;	Broadus,	Fuerstenberg	et	al.	1998;	Kiebler,	Hemraj	et	al.	1999).	It	has	been	

show	 that	 Stau	 is	 also	 involved	 in	 the	 translation	 of	 oskar	 message	 at	 the	

posterior	 pole	 of	 the	 Drosophila	 oocyte	 (Breitwieser,	 Markussen	 et	 al.	 1996).	

Two	Staufen	 isoforms	 (Stau1	and	Stau2)	are	present	 in	 the	n	Xenopus	oocytes	

and	 move	 to	 the	 vegetal	 cytoplasm(Allison,	 Czaplinski	 et	 al.	 2004;	 Goetze,	

Tuebing	et	al.	2006).		

So	 farin	 mammals	 two	 homologus	 of	 Staufen	 proteins,	 that	 are	 encoded	 by	

distinct	 genes,	 Staufen1	 (Stau1)	 and	 Staufen2	 (Stau2)	 have	 been	 identified	
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(DesGroseillers	and	Lemieux	1996).	At	least	two	(Stau163	and	Stau155)	and	four	

(Stau262,	 Stau259,	 Stau256and	 Stau252)	 splice	 isoforms	 exist	 for	 Stau1	 and	

Stau2,	 respectively	 (Monshausen,	Gehring	et	al.	2004).	All	 the	 isoform	of	Stau1	

and	 Stau2	 conserved	 dsRNA‐binding	 domains.	 To	 note	 that	 that	 Stau1	 is	

ubiquitously	expressed,	while	Stau2	is	mainly	expressed	in	the	brain	(Duchaine,	

Hemraj	et	al.	2002).	

Stau1	and	2	proteins	play	a	role	 in	 the	transport	of	RNAs	along	microtubule	to	

dendrites	 of	 polarized	neurons	 (Kiebler,	Hemraj	 et	 al.	 1999).In	 neurons,	 Stau1	

and	Stau2	are	 located	 in	 the	 somatodendritic	 compartment	 and	 associate	with	

RNA	granules	 (Kiebler	 et	 al.,	 1999;	(Tang,	Meulemans	 et	 al.	 2001).	However,	 it	

seems	 that	 they	 do	 not	 colocalize,	 suggesting	 that	 they	 are	 located	 in	 distinct	

RNA	granules	and	 involved	 in	different	RNA	regulation	(Duchaine	et	al.,	2002).	

Although	 Stau2is	 predominantly	 localized	 in	 the	 cytoplasm,	 it	 was	 recently	

shown	 that	 is	 able	 to	 shuttle	 between	 the	 nucleus	 and	 the	 cytoplasm(Macchi,	

Brownawell	 et	 al.	 2004).The	 export	 of	 Stau2	 depends	 on	 exportin‐5,	 which	 is	

known	to	be	responsible	also	for	the	export	of	tRNAs,	microRNAs	and	maybe	for	

dsRNA‐binding	 proteins	 (Yi,	 Qin	 et	 al.	 2003).	 Interestingly,	 only	 the	 largest	

isoform	of	 Stau2	 (Stau2	 62,	which	 contains	five	 dsRNA‐binding	 domain	 like	 in	

Drosophila),	but	not	the	other	two	differentially	spliced	isoforms	(Stau2	59	and	

Stau2	52	),	changes	 its	 intracellular	 localization	upon	down‐regulation	of	exp‐5	

(Bohnsack,	 Czaplinski	 et	 al.	 2004).	 However	 also	 Stau2	 59	 isoform	 is	 able	 to	

leave	 the	 nuclear	 compartment,	 but	 in	 a	 CRM1‐dependent	 manner	 (Lund,	

Guttinger	et	al.	2004).	

Stau2	mediate	 the	 coordinate	post‐transcriptional	expression	of	bound	mRNAs	

depending	on	cell	signaling.Stau2	is	associated	with	hnRNP	H1,	or	with	protein	

and	 mRNA	 chaperone	 also	 involved	 in	 nuclear	 import/export	 (as	 hsc70).	

Moreover	it	is	also	associated	with	proteins	that	regulate	translation	initiation	as	

PABPC1	and	YB1	suggesting	 that	Stau2‐	 containing	mRNPs	may	be	 involved	 in	

mRNP	formation	in	the	nucleus	and/or	in	post‐transcriptionally	(Maher‐Laporte,	

Berthiaume	et	al.	2010).	Other	mRNAs	identified	in	Stau2‐containing	mRNPs	in	

brains	 play	 a	 role	 in	 protein	 modifications	 such	 as	 phosphorylation,	

dephosphorylation	and	ubiquitination.	Inhibition	of	Stau2	protein	production	in	

cultured	 hippocampal	 neurons,	 led	 to	 a	 reduction	 in	 the	 number	 of	 dendritic	
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spines	and	an	increase	of	filopodia‐like	structures	(Goetze,	Tuebing	et	al.	2006).	

Other	 major	 Stau2‐associative	 proteins	 include	 intracellular	 transport,	

translation,	 RNA	 metabolism,	 neurogenesis	 and	 synaptic	 functions.	 All	 these	

evidences	 suggests	 that	 Stau2	 mRNPs	 may	 carry	 mRNAs	 whose	 translation	

generates	proteins	involved	in	the	regulation	of	their	own	transport,	translation	

and	degradation	allowing	an	auto‐stimulatory	process	after	an	 initial	signalling	

event.	

However	a	 fundamental	question	 is	how	mRNA	translation	 is	repressed	during	

transport	 and	 reactivated	 in	 response	 to	 cell	 needs.	 It	 is	 believed	 that	 mRNA	

transport	particles	are	translationally	repressed	at	the	level	of	initiation	whereas	

ribosome‐associated	 granules	 are	 kept	 silent	 during	 elongation.	 Proteomic	

results	on	Stau2‐containing	RNPs	identified	YB1	and	PABPC1,	two	proteins	that	

modulate	 translation	and	 that	may	play	a	 role	 translational	 regulation	 (Maher‐

Laporte,	Berthiaume	et	al.	2010).	

An	important	role	for	Stau2	was	shown	when	down‐regulation	of	Stau2	resulted	

in	 a	 reorganization	of	 the	 actin	 cytoskeleton	 in	dendrites	 and	also	 affected	 the	

levels	of	β‐actin	mRNA	in	both	the	cell	body	and	the	dendrites	(Goetze,	Tuebing	

et	 al.	 2006).	 Stau2	may	bind	 to	 β‐actin	RNA	 influencing	 its	 stability	 and/or	 its	

dendritic	transport.	It	has	been	proposed	that	the	down‐regulation	of	Stau2	may	

cause	 a	 reorganization	 of	 the	 dendritic	 actin	 cytoskeleton	 by	 affecting	 the	

stability	 of	 Stau2‐interacting	 transcripts	 or	 by	 controlling	 the	 translation	 of	

transcripts,	which	code	for	key	players	in	the	observed	actin	dynamics.	Another	

theory	about	Stau2	role	 in	cognition	regards	 impairment	 in	chemically	 induced	

mGluR‐dependent	LTD	after	Stau2	knockdown	in	organotypic,	hippocampal	slice	

culture	(Lebeau,	Miller	et	al.	2011).	While	Stau1	specifically	down	regulates	only	

Late‐LTP,	Stau2	knockdown	alters	only	mGluR‐LTD,	demonstrating	distinct	roles	

for	these	two	proteins	in	distinct	forms	of	plasticity.		
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Figure 2. Synaptic tagging: molecular mechanisms for synaptic tagging in Aplysia sensory neurons or 

rodent  hyppocampal  neurons:  (1)  activation  of  protein  kinases,  (2)  activation  of  local  protein 

synthesis,  (3)  release  of  neurotrophic  factors,  (4)  changes  in  ion  channels,  (5)  local degradation  of 

protein, (6) internalization of adhesion molecules, and (7) structural changes. Synaptic capture might 

result from the  interaction of these mechanisms with the burst of gene expression achieved through 

the activation of transcription and/or translation (figure and description from Barco A., et al. 2008) 
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AIM OF THE STUDY	

	

Gene	targeting	technologies	are	powerful	tools	for	the	study	of	gene	functions	in	

vivo.	 Moreover,	 animal	 models	 with	 cognitive	 deficits	 or	 animal	 models,	 that	

resemble	particular	diseases,	 are	 indispensabletools	during	 the	drug	discovery	

processes	and	optimization.	

Our	 laboratory	 generated	 novel	 transgenic	 rat	 modelsbased	 onthe	 RNA	

interference	technology	and	used	it	to	study	the	role	of	two	particular	proteins	

on	synaptic	plasticity	and	cognition.	

The	 first	 transgenic	 rat	 model	 is	 a	 constitutive	 knockdown	 ofNogo‐A	 protein	

within	 the	entire	animal.	A	 large	amount	of	 studies	have	already	characterized	

the	 role	 of	 this	 protein	 on	 axonal	 and	 spinal	 cord	 regeneration	 but	 poor	

information	 are	 available	 concerning	 the	 role	 of	 Nogo‐A	 protein	 in	 cognitive	

disease	 such	 as	 schizophrenia.	 Webehaviorally	 analyzed	 the	 effect	 of	 Nogo‐A	

protein	depletion	within	 the	 frame	of	 this	disease,	 focusing	on	 the	 three	major	

classes	of	symptoms	characteristic	for	the	schizophrenia:	positive,	cognitive	and	

negative	symptoms.	

The	 second	 transgenic	 rat	 modelis	 the	 first	 inducible	 tissue‐specific	 gene	

inactivation	 rats	 described	 so	 far.Stau2	 protein	 is	 knocked	 down	 within	

excitatory	 neurons	 of	 the	 forebrain,	 thanks	 to	 the	 use	 of	 an	 artificial	 miRNA	

targeting	the	respective	protein.	Stau2	function	has	been	very	well	characterized	

with	in‐vitro	studies	and	in	non‐mammalian	models,	but	few	in	known	about	its	

role	in	cognition	in	mammalian	models.	After	validationof	the	gene	inactivation	

technology,wecharacterized	 the	 phenotype	 of	 this	 rat	model	 to	 understandthe	

role	of	Staufen2	in	learning	and	memory	processes.		
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3.    MATERIALS AND METHODS 

 

3.1 EXPERIMENTAL ANIMALS 

	

For	the	behavioral	assessment	of	Nogo‐A	Knockdown	rats,	six	months	old	male	

(L2,n=10)	 or	WT	 littermate	 (n=10)	 rats	 were	 used.	 Effect	 of	 tamoxifen	 on	 rat	

behaviour	 was	 investigated	 with	 8	 male	 vehicle	 injected	 rats	 and	 8	 male	

tamoxifen	 injected	 rats.	 The	 role	 of	 Staufen	 2	 conditional	 knockdown	 was	

studied	 using	 male	 Stau2‐/‐	 rats	 and	 with	 a	 single	 transgenic	 controlrat	 line:	

CaMK‐CreERT2.	All	 animals	were	hosted	and	provided	by	 the	Animal	House	of	

the	Central	 Institute	of	Mental	Health	 (Mannheim,	Germany).	All	Animals	were	

kept	 in	 collective	 cages	 (3‐5	 animals/cage)	 on	 a	 12‐h	 light/dark	 cycle	 with	

constant	temperature	(21	±	1	ºC)	and	humidity	(50	±	7%)	and	were	allowed	ad	

libitum	 access	 to	 commercial	 rat	 chow	 and	water.	 The	 experimental	 protocols	

used	 were	 in	 line	 with	 national	 and	 international	 ethical	 guidelines	 and	

performed	 in	 compliance	with	 the	European	Union	Council	 (2003/65/EU),	 the	

German	 Animal	 Welfare	 Act.	 All	 experiments	 were	 approved	 by	 the	 Animal	

Welfare	Comission	of	the	Regierungspräsidium	Karlsruhe,	Germany.		

 

3.2 OPEN FIELD 

	

Basal	locomotor	activity	was	assessed	in	an	open	field	(four	equal	areas,	51	x	51	

x	 50	 cm).	 Distance	 travelled	 [cm]	 in	 the	 open	 field	 apparatus	 was	 digitally	

recorded	 for	 30	minutes	 at	 a	 light	 intensity	 of	 50	 lx.	 The	 test	 was	 started	 by	

placing	the	rats	in	the	center	of	the	box	and	locomotor	activity	was	analysed	by	

the	observation	program	Viewer²	(Biobserve).	
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3.3 NOVEL OBJECT RECOGNITION: MEMORY WITHOUT STRESS 

	

Object	recognition	testing	was	performed	in	an	open	arena	(four	equal	areas,	51	

x	51	x	50	cm)	at	a	light	intensity	of	50	lx.	The	rats	were	habituated	to	the	open	

field	for	20	min,	1	day	before	testing.	All	stimulus	objects	used	in	the	test	were	

made	out	of	ceramic	or	glass	and	were	applied	in	duplicates.	The	test	consisted	

of	an	initial	three	minutes	sample	phase	(P1)	and	a	three	minutes	discrimination	

phase	(P2),the	two	phases	separated	by	an	inter‐trial	interval	of	15	min.	During	

P1,	 the	 rats	 were	 placed	 in	 the	 center	 of	 the	 open	 field	 and	 exposed	 to	 two	

objects	 (A1	 and	 A2).	 After	 cessation	 of	 P1	 the	 rats	 were	 returned	 to	 the	

homecage	and	 the	objects	were	 removed.	The	rat	was	placed	back	 in	 the	open	

field	 after	15	min	 for	object	 discrimination	 in	P2	 and	was	now	exposed	 to	 the	

familiar	object	(A1,	an	identical	copy	of	the	object	presented	in	P1)	and	a	novel	

test	object	A3	(B).	For	the	novel	object	relocation	test,	the	animal	was	exposed	to	

A1	 and	 A2	 objects.	 Fifteen	 min	 after,	 the	 discrimination	 phase	 (P2)	 was	

performed:	the	A1	object	was	place	in	the	same	position	respect	to	P1	phase	and	

the	A2	object	was	instead	placed	in	a	different	position	respect	to	P1	phase.	Both	

object	were	newly	used	and	equal	to	the	object	used	in	P1,	this	to	avid	smell	bias.	

Exploration	 of	 the	 objects	 (sniffing,	 licking)	 was	 recorded	 during	 P1	 and	 P2.	

Sitting	 beside	 or	 standing	 on	 top	 of	 the	 objects	 was	 not	 scored	 as	 object	

investigation.	Cleaning	was	done	with	70	%	alcohol	followed	by	a	drying	phase	

before	 and	during	 testing.	Animals	were	 videotaped	during	P1	 and	P2,	 and	 an	

observer	blind	to	the	genotype	analyzed	videos.	For	the	calculation	of	percentage	

object	discrimination,	the	exploration	time	of	the	novel	object	was	expressed	as	

percentage	 of	 the	 total	 exploration	 time	 of	 both	 objects	 during	 P2	 [100/(A1	+	

A2(or	A3))	*	A2	(orA3)]	(Figure	adapted	from	Buckley	F.	et	al.,	2007).	
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3.4 PREPULSE INHIBITION (PPI) OF THE ACOUSTIC STARTLE RESPONSE (ASR) 

	

Prepulse	inhibition	(PPI)	was	measured	using	the	Startle	Response	System	(SR‐

LAB™	Startle	Response	System,	San	Diego	 Instruments).	As	a	startle	stimulus	a	

white	 noise	 pulse	 (intensity	 of	 110,	 duration	 of	 40	 ms	 dB)	 was	 used.	 Four	

different	white	noise	intensities	(66,	70,	74	and	78	dB	SPL)	each	of	20	ms,	were	

used	as	prepulses.	An	acclimatization	time	of	5	min	to	the	background	noise	(60	

dB)	 was	 followed	 by	 the	 presentation	 of	 five	 initial	 startle	 stimuli.	 After	 this	

habituation	program	the	test	program	was	started	with	six	different	 trial	 types	

presented	 in	 a	 pseudorandom	 order:	 (1)	 pulse	 alone,	 (2)	 no	 stimulus,	 (3)‐(6)	

pulse	with	preceding	prepulse	(prepulse	66,	70,	74	or	78	dB	SPL	100	ms	before	

pulse).	A	total	of	10	presentations	of	each	trial	type	was	given	with	an	inter‐trial	

interval	 randomized	 between	 10	 and	 20	 s.	 PPI	 was	 calculated	 as	 the	 percent	

decrease	 of	 the	 acoustic	 startle	 response	 (ASR)	 magnitude	 in	 trials	 when	 the	
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startle	 stimulus	 was	 preceded	 by	 a	 prepulse	 [100	 x	 (mean	 ASR	 amplitude	 on	

pulse	 alone	 trials	 –	 mean	 ASR	 amplitude	 on	 prepulse‐pulse	 trials)/mean	 ASR	

amplitude	on	pulse	alone	trials].	

	

3.5 FEAR CONDITIONING	
	

Auditory	 fear	 conditioning	 and	 extinction	 were	 performed	 in	 an	 operant	

chamber	 (Coulbourn	 Instruments,	Allentown,	PA)	 located	 in	 sound‐attenuating	

cubicles	 (Med	 Associates,	 Burlington,	 VT)	 throughout	 all	 phases	 of	 the	

experiment.	 The	 floor	 of	 the	 chambers	 consisted	 of	 stainless	 steel	 bars	 that	

delivered	a	scrambled	electric	footshock.	Between	experiments,	shock	grids	and	

floor	trays	were	cleaned	with	soap	and	water,	and	chamber	walls	were	cleaned	

with	 wet	 paper	 towels.	 The	 Footshock	was	 delivered	 from	 a	 precision	 animal	

shocker	 (H13‐15,	 Coulbourn	 Instruments)	 and	 the	 sound	 stimulus	 was	

generated	 with	 a	 conventional	 sound	 card,	 amplified	 with	 a	 HiFi	 amplifier	

(PR530A,	Pyramid)	 and	delivered	 via	 speakers	 in	 the	 chamber	walls.	Different	

chambers	 were	 used	 (contexts	 A	 and	 B).	 Context	 A	 measured	 17cm	 ×18	

cm×32cm	 in	 size	 (H10‐11M‐TC,	 Coulbourn	 Instruments)	with	 two	 transparent	

walls	 and	 stainless	 steel	 grid	 floors.	 For	 the	 Context	 B,	 the	 same	 box	 was	

modified	 with	 the	 insertion	 of	 a	 plastic	 dark	 panel	 to	 cover	 one	 of	 the	

transparent	wall	and	the	metal	grid.	On	the	other	transparent	wall	some	stripes	

of	different	shapes	were	fixed.	After	each	use	context	B	was	cleaned	with	alcohol.	

All	 the	 apparatus	 was	 controlled	 by	 a	 personal	 computer	 equipped	 with	

FreezeFrame	software	(Actimetrics	Software)	and	an	IMAQ‐A6822	interface	card	

(National	Instruments).	The	movements	of	the	tested	animal	were	recorded	with	

a	digital	video	camera	mounted	at	the	ceiling	of	the	cubicle	and	analyzed	for	the	

percentage	of	 freezing	using	FreezeView	software	(Actimetrics	Software).	 In	all	

experiments,	the	virtual	threshold	for	freezing	was	set	to	value	of	3.	For	Staufen	

study,	on	Day	1,	rats	received	five	conditioning	(30	s,	4	kHz,	77	dB;	3	min	average	

intertrial	 interval	 (ITI))	 that	 co‐terminated	with	 foot	 shocks	 (1	 s,	 0.5	mA).	 On	

Day	 2,	 rats	 were	 returned	 to	 the	 chambers	 A	 for	 context	 extinction	 training,	

which	consisted	of	30min	in	absence	of	foot‐shock.	On	Day	3,	rats	were	returned	

to	 the	chamber	B	 for	cue	extinction	and	presented	with	20	 tones	 in	absence	of	
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footshock.	 On	 day	 4	 rats	were	 tested	 for	 context	 recall	 in	 the	 box	 A	 for	 5min	

without	any	tone	and	after	1h	in	the	context	B	for	the	cue	recall	presenting	30s	

tone	twice.	For	the	tamoxifen	study,	rats	were	tested	only	with	training	phase,	a	

context	and	cue	recall. 

 

 

Scheme	of	fear	conditioning	test	

 

 

3.6 MORRIS WATER MAZE 

	

Animals	were	trained	in	a	black	circular	water	maze	(1.5	m	diameter,	50	cm	in	

height;	 25	 °C	 water	 temperature).	 The	 apparatus	 was	 located	 in	 a	 room	

containing	extra	maze	visual	cues	consisting	of	various	geometric	shapes,	placed	

on	the	wall	surrounding	the	maze.	During	training,	an	invisible	escape	platform	
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(14x11cm)	was	 located	 in	 the	water	 in	 a	 particular	 quadrant,	 1	 cm	 below	 the	

water	 level.	 Swim	 behaviors	 were	 recorded	 using	 the	 tracking	 software	

NoldusEthovision®	v.3.	On	Staufen	study,	the	water	maze	behavioral	procedures	

consisted	of	four‐days	training.	Each	training	session	consisted	of	6	swim	trials,	

during	which	rats	were	placed	in	a	starting	point	(changed	randomly	during	each	

trials),	and	were	allowed	to	swim	to	the	escape	platform,	which	was	consistently	

located	in	the	same	position.	Rats	remained	on	it	for	10	s	before	being	returned	

to	their	cages	and	being	replaced	in	the	maze	after	an	inter‐trial	interval	of	30	s.	

Rats	that	failed	to	find	the	escape	platform	within	60	s	were	manually	guided	to	

it.	On	the	day	4,	a	learning	trial	was	performed.	Rats	were	placed	into	the	maze	

but	 the	 escape	 platform	 was	 removed	 from	 the	 water	 maze.	 Behavioral	

parameter	as	distanced	moved	and	distance	to	zone	were	measured	for	a	total	of	

2	minutes.	

For	the	tamoxifen	study	the	protocol	consisted	of	3	days	of	training	including	3	

trials	per	day	and	a	probe	trial	on	day	4.	

	

3.7 WATER T‐MAZE TEST 

	

For	reversal	learning	capability	of	Nogo‐A	knockdown	rats,	animals	were	trained	

in	 a	 black	 circular	water	maze	 (1.5	m	 diameter,	 50	 cm	 in	 height;	 25	 °C	water	

temperature)	 into	 which	 a	 plastic	 plus‐maze	 (arms	 wall	 38	 cm	 height,	 15	 cm	

arm‐width,	and	51	cm	arm‐length)	was	inserted.	The	plus‐maze	was	elevated	5	

cm	from	the	bottom	of	the	water	maze.	Final	water	level	in	the	tank	was	35	cm.	

The	maze	was	surrounded	by	visual	cues	consisting	of	various	geometric	shapes.	

None	of	these	cues	were	placed	in	proximity	to	the	ends	of	the	plus‐maze	arms	to	

avoid	spatial	bias.	During	training,	an	invisible	escape	platform	(14x11cm)	was	

located	at	the	end	of	one	arm	of	the	maze	(e.g.	East),	1	cm	below	water	level.	The	

arm	opposite	to	the	start	arm	was	blocked	by	a	guillotine	door,	resulting	in	a	“T”	

configuration	of	the	maze.	Swimming	behaviour	was	recorded	using	the	tracking	

software	Ethovision	v.3	(Noldus).	Rats	were	trained	in	the	plus‐maze	for	a	total	

of	 four	 days.	 Each	 training	 session	 consisted	 of	 five	 swim	 trials,	 during	which	

rats	were	placed	in	the	start	arm	of	the	maze	(South),	and	were	allowed	to	swim	
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to	 the	escape	platform,	which	was	consistently	 located	 in	one	arm	of	 the	maze	

(East).	 Rats	 remained	 on	 it	 for	 10	 s	 before	 being	 returned	 to	 their	 cages	 and	

being	replaced	in	the	maze	after	an	inter‐trial	interval	of	30	s.	Rats	that	failed	to	

find	the	escape	platform	within	60	s	were	manually	guided	to	it.	On	the	fifth	day,	

a	reversal	learning	trial	was	performed.	Rats	were	placed	into	the	same	start	arm	

(South),	but	 the	 location	of	 the	escape	platform	was	switched	to	the	West	arm.	

Each	other	arms‐entering	during	test	trial	were	scored	as	an	error.	

 

 

Scheme of reversal water maze 

 

 

 

 

 

3.8 DELAYED NON‐MATCHING TO PLACE TASK ON AN 8‐ARM RADIAL MAZE (DNMTP) 

	

The	 apparatus	 used	 for	 behavioural	 testing	 was	 an	 elevated	 eight‐arm	 radial	

maze	(arms	wall	38cm	height,	15cm	arm‐width,	and	51cm	arm‐length)	made	of	

grey	 Plexiglas	 and	 located	 in	 a	 testing	 room	 enriched	with	 distal	 partial	 cues.	

Guillotines	 doors	 were	 located	 at	 the	 entrances	 of	 each	 arm	 and	 they	 were	

controlled	manually	 using	 a	wire	 system	 that	 did	 not	 allowed	 the	 operator	 to	

interfere	with	the	maze	area	remaining	in	a	hidden	position.	Rats	were	put	on	a	

food	restriction	diet	so	that	their	body	weights	were	reduced	to	and	maintained	
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at	85%of	the	ad	libitum	weights.	Before	behavioral	testing,	they	were	habituated	

to	 the	 apparatus	 over	 2	 days	 by	 allowing	 them	 the	 free	 exploration	 until	 they	

collected	 condensed	 milk	 (MilchMädchen,	 Nestlè®)in	 food	 wells	 of	 each	 arm.	

The	working	Memory	 Tasks	 consisted	 on	 a	 first	 part	 (Run)	 during	which	 rats	

were	forced	to	visit	one	arm	and	a	second	one	(choice)in	which	they	visited	an	

adjacent	 arm,	 randomly	 chosen	 between	 the	 Left	 and	 Right	 side.	 The	 arm	

presentation	 was	 delayed	 of	 1minin	 which	 the	 rats	 were	 held	 on	 the	 central	

platform	 of	 the	 maze.	 To	 avoid	 a	 door	 strategy	 choice,	 a	 black	 cylinder	 was	

lowered	covering	the	view	on	the	arms.	Each	daily	sessions	were	composed	by	a	

total	of	4	 trials.	Once	 the	 rats	maintained	a	 criterion	of	around	85%	of	 correct	

choice	over	6	consecutive	days,	 the	delay	was	 increased	 to	5	min	 for	3	days	of	

test	and	to	10	min	for	further	3	days	of	cognition	task.		

 

Scheme of DNMTP 

 

 

 

 

3.9 ELEVATED PLUS MAZE 

	

To	measure	 anxiety‐like	 responses,	 the	 elevated	 plus‐maze	 test	was	 used.	 The	

apparatus	consisted	of	two	dark	gray	PVC	with	two	open	arms	(50	cm	×	12	cm)	

and	 two	closed	arms(with	50	cm	high	walls),	which	were	arranged	so	 that	 the	

similar	 arms	were	 opposite	 to	 each	 other.	 The	 open	 arms	were	 also	 equipped	

with	0.5	×	0.5	cm	edges	to	ensure	that	no	animals	would	 fall	off	 the	maze.	The	

maze,	 elevated	50	 cm	 above	 the	 floor,	was	 cleaned	with	 30%	ethanol	 solution	

and	dried	afterward.	It	was	placed	in	a	room	under	40lux	light	conditions.	The	5‐

min	test	procedure	began	when	the	animal	was	placed	in	the	centre	of	the	maze,	

facing	a	closed	arm.	The	trials	were	video	recorded	and	computer	analyzed	with	

the	 ethological	 software	 viewer2	 (Biobserve	 GmbH,	 Bonn,	 Germany).	 The	

percent	 of	 time	 spent	 in	 open	 arms	 and	 the	percent	 of	 open	 arm	entries	were	
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used	as	measures	of	anxiety‐like	behaviour,	while	the	number	of	entries	into	the	

closed	arms	was	used	as	an	indicator	of	general	motor	activity	(Cruz	et	al.	1994).		

 

3.10 IMMUNOHISTOCHEMISTRY 

	

After	 behavioural	 studies,	 rats	 were	 perfused	 with	 4%	 PFA	 and	 brains	 were	

dissected.	Dissected	brains	 from	perfused	 animals	were	 further	 postfixed	with	

4%	paraformaldehyde/PBS	at	4°C	 for	24	 to	48	hrs	and	brain	sections	 (50	μm)	

yielded	 by	 using	 a	 vibratome	 (Leica,	 Nussloch,	 Germany).	 Double	

immonofluorescence	 staining	 was	 performed	 in	 order	 to	 characterize	 the	

cellular	 expression	 pattern	 of	 Stau2	 and	 to	 provide	 evidence	 for	 an	 efficient	

knockdown	of	Stau2	in	eGFP	positive	neurons.	The	following	primary	antibodies	

were	 used:	 rabbit	 polyclonal	 anti‐Stau2	 (kindly	 provided	 by	 Michael	 Kiebler,	

1:750),	 chicken	 polyclonal	 anti‐eGFP	 (Millipore,	 Germany,	 1:1000),	 mouse	

monoclonal	anti‐CaMKIIa	(Acris,	Germany,	1:500),	mouse	monoclonal	anti‐NeuN	

(Millipore,	 Germany,	 1:4000),	 mouse	 monoclonal	 anti‐GAD67	 (Millipore,	

Germany,	 1:1000).	 Secondary	 antibodies	 used	were	AF488	 donkey	 anti‐mouse	

IgG	 (Invitrogen,	 Germany,	 1:200),	 AF488	 donkey	 anti‐chicken	 IgG	 (Invitrogen,	

Germany,	 1:200),	 Cy3	 donkey	 anti‐mouse	 IgG	 (Jackson	 Immuno,	 Germany,	

1:200),	 AF555	 donkey	 anti‐rabbit	 IgG	 (Invitrogen,	 Germany,	 1:1000)	 and	 Cy2	

donkey	 anti‐rabbit	 IgG	 (Jackson	 Immuno,	 Germany,	 1:200).	 Stained	 sections	

were	examined	using	a	Leica	SP5	confocal	laser‐scanning	microscope.	

	

3.11 DAB STAINING 

	

DAB	staining	was	used	to	characterize	Staufen2	expression	in	wildtype	rats	and	

eGFP	 expression	 in	 tamoxifen‐treated	 and	 non‐treated	 Stau2	 ‐/‐	 rats	 (slightly	

modified	from(Spergel,	Kruth	et	al.	1999).	For	DAB	staining,	brain	tissue	sections	

were	 permeabilized	 in	 1%	 H2O2	 in	 phosphate‐buffered	 saline	 (PBS)	 (150	

mMNaCl,10mM	Na‐phosphate,	pH	7.4)	for	10	min	at	room	temperature	and	than	

three	 times	washed	with	PBS	 for	 10	min	 each.	 Sections	were	 incubated	 in	 2%	

goat	serum	in	1%	BSA/0.3%	Triton	X‐100/PBS	for	1	h	at	room	Temperature	to	

block	 unspecific	 binding	 sites.	 The	 primary	 antibody	 anti‐GFP	 (Millipore,	
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Germany,	 1:1000)	 in	 blocking	 solution	 and	 slices	 were	 incubated	 at	 48°C	

overnight.	 Slices	were	 twice	washes	 in	0.3%	BSA/0.1%	Triton	X‐100/PBS,	 and	

incubated	for	1	h	at	room	temperature	with	the	biotinylated	secondary	antibody	

in	0.3%BSA/0.1%	Triton	X‐100/PBS.	Slices	were	than	washed	twice	in	the	same	

buffer	 without	 antibody.	 Sections	 were	 then	 incubated	 in	 DAB	 solution	 in	 20	

mMTris–HCl	with	0.012%	H2O2	until	staining	raised.	The	reaction	was	stopped	

by	 washingwith	 PBS.	 Stained	 slices	 were	 mounted	 on	 glass	 slides	 and	 cover	

slipped	with	Eukitt	 (Sigma	Aldrich,	Taufkirchen,	Germany).	Slices	were	 imaged	

with	a	stereoscope.	

 

3.11 QUANTIFICATION OF MRNA CONCENTRATIONS BY REAL TIME RT‐PCR 

	

Tissue	 from	 hippocampal	 subregions	 was	 yielded	 from	 200	 µm	 thick	 frozen	

brain	slices	by	manual	microdissection	using	self‐made	punching	needles.	Total	

RNA	 was	 subsequently	 isolated	 using	 TRIzol	 Reagent	 (Invitrogen,	 Germany)	

according	to	the	manufacturer’s	recommendations.	Next,	1	µg	of	 total	RNA	was	

used	 for	 reverse	 transcription	 with	 SuperScript	 III	 and	 oligo(dT)20	 primer	

(Invitrogen,	Germany)	according	to	manufacturer’s	protocol.	Resulting	undiluted	

cDNA	solutions	were	subjected	to	real	time	PCR	analysis	as	triplicates.		

Real‐time	PCR	reactions	were	run	on	an	Applied	Biosystems	7900	HT	fast	real‐

time	 PCR	 system.	 For	 the	 quantification	 of	 Stau1,	 Stau2	 and	 the	 housekeeping	

control	gene	CycA,	real	time	PCR	was	performed	in	a	total	volume	of	20	µl	using	

the	Taqman	Universal	PCR	master	mix	(Applied	Biosystems,	Germany)	according	

to	 the	manufacturer’s	 protocol	 with	 the	 following	 primers	 and	 probes:	 Stau1:	

forward	 primer	 5’‐ttccagagcccagggatt‐3’;	 reverse	 primer	 5’‐

gagagatacacactcgttcttgttg‐3’,	 probe	 #60	 from	 universal	 probe	 library	 (Roche	

Applied	 Science,	 Germany);	 Stau2:	 forward	 primer	 5’‐aggatcagctcgacaagacc‐3’;	

reverse	 primer	 5’‐ggaaatccaggctttggac‐3’,	 probe	 #58	 from	 universal	 probe	

library	 (Roche	 Applied	 Science,	 Germany);	 CycA:	 forward	 primer	 5’‐

CTTCCCAAAGACCACATGCT‐3’;	reverse	primer	5’‐TGCTGGACCAAACACAAATG‐3’,	

probe	#42	from	universal	probe	library	(Roche	Applied	Science,	Germany).	For	

the	 quantification	 of	 eGFP	 and	 the	 housekeeping	 control	 gene	 PPIA,	 real	 time	

PCR	was	performed	 in	a	 total	volume	of	20	µl	using	 the	Taqman	Power	SYBR‐
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Green	 PCR	 master	 mix	 (Applied	 Biosystems,	 Germany)	 according	 to	 the	

manufacturer’s	 protocol	with	 the	 following	 primers:	 eGFP:	 forward	 primer	 5’‐

ACCCAGTCCGCCCTGAGCAA‐3’,	reverse	primer	5’‐GCGGCGGTCACGAACTCCAG‐3’;	

PPIA:	 forward	 primer	 5’‐GTCAACCCCACCGTGTTCTT‐3’;	 reverse	 primer	 5’‐

CTGCTGTCTTTGGAACTTTG‐3’.	Final	concentrations	of	primer	were	300	nM.		

	

3.12 QUANTIFICATION OF MATURE MIRNA	
	

Detection	 of	 processed	 miRNA	 was	 performed	 using	 a	 Custom	 Taqman	 Small	

RNA	 Assay	 (AssayID:	 CS70K4Q,	 Applied	 Biosystems)	 according	 to	 the	

manufacturer’s	protocol.	Briefly,	10	ng	of	total	RNA	was	dissolved	in	5	µl	RNAse	

free	water	and	then	mixed	with	7	µl	of	recommended	RT‐master	mix	(containing	

Superscript	III	reverse	transcriptase)	and	3µl	of	the	5	x	RT	primer	provided	with	

the	 Taqman	 Small	 RNA	 Assay.	 RT‐reaction	 was	 run	 in	 a	 thermocycler,	

programmed	for	30	min	at	16	°C,	30	min	at	42	°C	and	5	min	at	80	°C.	Real	time	

PCR	reactions	were	 run	on	an	Applied	Biosystems	7900	HT	 fast	 real‐time	PCR	

system	 in	 accordance	with	 the	 recommended	protocol.	 Each	PCR‐reaction	was	

performed	in	triplicates	and	consisted	of	1	µl	undiluted	RT	reaction,	1	µl	Custom	

Taqman	Small	RNA	Assay	and	10	µl	Taqman	Universal	PCR	Master	Mix	(Applied	

Biosystems)	in	a	total	volume	of	20	µl.	
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4.    RESULTS 

 

4.1 CONSTITUTIVE NOGO‐A KNOCKDOWN IN RAT BRAIN 

 

4.1.1 MOLECULAR DATA 

	

To	 investigate	 the	 role	 of	 Nogo‐A	 in	 the	 central	 nervous	 system	 and	 more	

precisely	 during	 learning	 and	 memory,	 our	 lab	 created	 a	 Nogo‐A	 (Rtn4)	

knockdown.	 The	 transgenic	 rat	 was	 generated	 by	 using	 microRNAs	 (miRNA)	

against	Nogo‐A,	expressed	by	Pol	II	promoters.	This	model	consists	of	a	Nogo‐A‐

targeting	miRNA	 in	 an	 intronic	 sequence	 preceding	 the	 open	 reading	 frame	 of	

the	reporter	gene	EGFPin	the	vector	pCAG‐Intron‐EGFP.	This	construct	enables	

the	 labelling	 of	 miRNA‐expressing	 cells	 and	 a	 quantitative	 measure	 of	 the	

amount	 of	 miRNA	 produce	 since	 the	 miRNA	 is	 spliced	 from	 the	 EGFP	 mRNA	

(Tews,	Schonig	et	al.	2013).	

Quantitative	PCR	revealed	significant	reduction	of	Nogo‐A	mRNA	in	several	CNS	

regions	in	knock‐downrats	to	about	50%	of	WT	levels.	Western	blots	revealed	a	

reduction	of	Nogo‐A	expression	in	the	cortex	to	about	30%	of	WT	mean,	and	in	

hippocampal	 regions	 the	expression	was	 reduced	 to	30%	(Tews,	 Schonig	et	 al.	

2013).	Importantly,	Nogo‐B	expression	remained	unchanged.	Maximum	synaptic	

strength	(LTP	saturation)	was	significantly	increased	in	Nogo‐A	knockdown	rats	

compared	to	WT	rat	suggesting	that	Nogo‐A	is	a	repressor	of	synaptic	plasticity	

also	in	the	motor	cortex	(Tews,	Schonig	et	al.	2013).	

	

4.1.2  BEHAVIORAL CHARACTERIZATION OF NOGO‐A KNOCK DOWN RATS 

	

Those	transgenic	rats	(n=10)	were	analysed	to	 investigate	the	consequences	of	

reduced	Nogo‐A	 expression	 on	 behavior	 compared	 to	WT	 animals	 (n=10).	We	

focused	 on	 the	 analysis	 of	 distinct	 neuropsychiatric	 intermediate	 phenotypes,	

some	of	which	have	been	associated	with	Nogo‐A	function	in	a	KO	mouse	model	

(Willi,	Weinmann	et	al.	2010).	
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Basal	 locomotor	activity	was	assessed	 in	an	open	 field(Figure3A).	No	genotype	

differences	were	observed	between	the	groups	for	the	distance	travelled	during	

the	 30	 min	 test	 session(Student’s	 t‐test;	 p	>	 0.05).	 The	 effect	 of	 Nogo‐a	

knockdown	 in	anxiety	 related	behavior	was	 tested	with	an	elevated	plus	maze	

(Figure	3B).	 Analysis	 of	 the	 time	 spent	 in	 closed	 arms	was	 equal	 between	WT	

and	knockdown	rats.	Also	the	time	spent	in	the	closed	and	in	the	central	part	of	

the	maze	did	not	show	any	difference,	from	which	one	can	deduce	an	absence	of	

anxiety	related	phenotype	derived	from	genetic	manipulation	of	Nogo‐A.		

	

	

 

 

 

 



50 
 

Figure 3: Behavioral characterizationby basal locomotor activity and anxiety. (A) Locomotor activity 

in the open field arena showed no difference on distance travelled between wild‐type (WT) and Nogo‐

A knockdown rats (L2). (B) On elevate plus maze transgenic rats show an anxiety tract similar to WT 

animals. The time spent in the closed arms (CO) open arms (OA) and in the centre (C) are comparable 

between  the  two groups of animals  (C) Prepulse  inhibition  (PPI)  revealed a  significant  reduction  in 

knock‐down  rats  compared  to WT  rats  (FGenotype  (1,54)=4.97;  Two way ANOVA  p=0.039). However, 

Bonferroni post hoc testing revealed that startle amplitudes of L2 rats were significantly  lower than 

those of WT rats only at a prepulse intensity of 70 dB (PPI‐70) (*: p<0.05; **: p<0.01; § p=0.039). 

	

However,	when	animals	were	 tested	 for	 their	 sensorimotoric	 gating,	 a	marked	

deficit	 in	 prepulse	 inhibition	 (PPI)	 could	 be	 observed	 in	 knockdown	 rats	

compared	to	WT	controls	(FGenotype	(1,54)=4.97;	p=0.039,	Figure	3C).	

Cognitive	 functions	 of	 the	 animals	 were	 evaluated	 using	 the	 novel	 object	

recognition	 and	 the	 object	 relocation	 paradigms	 (Figure	 4).	 In	 these	 tasks	

evaluating	short‐term	memory	capacity,	 the	animal	had	to	 identify	a	novel	or	a	

relocated	 object	 from	 the	 familiar	 objects,	 memorized	 before.	 During	 object	

recognition	and	object	location	testing,	Nogo‐A	knockdown	animals	were	found	

to	 show	 decreased	 short‐term	memory	 capabilities	 compared	 to	WT	 controls.	

Percentage	 discrimination	 between	 the	 novel/familiar	 object	 (Student’s	 t‐test;	

p=	 0,0015)	 (Figure	 4	 A)	 and	 the	 object	 location	 (Student`s	 t‐test;	 p	 =	 0.0004)	

(Figure	 4	 B)	 were	 significantly	 reduced	 compared	 to	 WT	 rats.	 However	 no	

significant	 differences	 were	 seen	 between	 the	 genotypes	 in	 effective	 object	

exploration	 time	 during	 the	 sample	 phase	 P1	 of	 novel	 object	 recognition	

(Exploration	values	[s]:	WT:	13.4	(±	0.65	S.E.M);	Nogo‐A:	11.3	(±	1.73	S.E.M))	and	

during	 novel	 object	 relocation	 test	 (Exploration	 values	 [s]:	 WT:	 (14.9	 (±	 4.7	

S.E.M);	Nogo‐A:	13.2	(±	4.2	S.E.M))indicating	the	absence	of	any	bias	for	a	special	

position	or	object	(Figure	4).	
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Figure  4:  Behavioral  characterization with  novel  object  recognition  and  relocation  (A)  Effects  of 

Nogo‐A  knockdown  on  novel  object  recognition  memory  showed  no  significant  differences  in 

percentage of time spent  in exploration of the  identical objects  (IO) between Nogo knock‐down  (L2) 

and WT  rats,   during  the  training phase of  the  test.  In contrast, knock‐down  rats have a significant 

impairment  in discriminating between the novel and the familiar object during testing (NO)t‐tests.(B) 

Novel object relocation tasks showed no significant differences  in exploration of the  identical objects 

(IO) between knock‐down and WT rats, during the training phase of the test. During the test phase L2 

rats had a significant impairment in discriminating between the familiar and the relocated object (RO) 

t‐test: *: p<0.05; **: p<0.01. 

	

Behavioral	 differences	 between	 knock‐down	 rats	 and	 controls	 were	 also	

observed	during	 tests	of	 social	 interaction	 (Figure	5).	A	 significant	decrease	 in	

total	social	interaction	was	observed	in	Nogo‐A	rats	compared	to	WT	(p=0.009,	

Figure	5	B).	These	differences	originated	only	from	a	highly	significant	decrease	

in	 non‐anogenital	 exploration	 (p=0.0006;	 non‐ag),	 since	 no	 significant	

differences	 between	 the	 groups	 were	 detected	 for	 anogenital	 exploration	 and	

approach/following	 during	 interaction	 with	 the	 unfamiliar	 social	 partner	

((p=0.136;	Figure	5	A).	Furthermore,	knock‐down	rats	showed	a	strong	tendency	

for	 lower	social	contact	behaviors	compared	to	WT	animals	(p=0.054;	Figure	5	

D).	 Finally,	 knock‐down	 rats	were	 found	 to	withdraw	 significantly	more	 often	

from	 social	 contact	 if	 initiated	 by	 the	 social	 partner	 (social	 evade,	 p=0.0037;	

Figure	5	E).	
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Figure 5: Behavioral performance during social  interaction with an unknown social partner  (social 

interaction).  (A) Significant differences between WT and knock‐down  rats  (L2) were  found  for non‐

anogenital exploration  (non‐AG, while no differences were observed  for anogenital exploration  (AG) 

and  following/approach  (FA).  (B) The  total  frequency of all  these social behaviors  resulted higher  in 

WT  rats  compare  to Nogo‐A  animals.  (C)  Self  grooming  activity  did  not  change  between  the  two 

groups  of  rats.  (D) A  strong  trend was  found  for  a  decrease  in  number  of  social  contact  behavior 

(grooming/crawling). (E) Nogo‐A knock‐down rats show significantly more social withdrawal behavior 

than WT littermates. t‐test: *: p<0.05; **: p<0.01. 

	

No	 significant	differences	between	 the	groups	were	detected	 for	 self‐grooming	

behavior	(Figure	5	C),	which	could	be	considered	another	source	of	evidence	for	

non‐anxiety	phenotype	event.	This	 is	 supported	also	by	 the	strong	tendency	 to	

do	not	create	new	social	contacts	(Figure	5	D).	This	behavior	is	correlated	also	to	
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the	social	evade	frequency,	that	is	significant	higher	in	knock‐down	rats	(Figure	

5	E).	Behavioral	 flexibility	was	assessed	 in	 the	discrimination	reversal	 learning	

task	 using	 a	 water	 T‐maze	 (Figure	 6).	 A	 learning	 deficit	 occurring	 during	 the	

reversal	 phase	 of	 the	 task	 without	 any	 deficit	 at	 the	 initial	 acquisition	 is	 an	

indicator	 of	 preservative	 behavior,	 a	 factor	 known	 to	 be	 implicated	 in	

schizophrenia	 and	 autism	 (Ridley	 1994).	 Performance	 during	 the	 initial	

acquisition	 phase	 did	 not	 differ	 between	 both	 genotypes,	 indicating	 that	 there	

was	 no	 general	 learning	 deficit	 in	 Nogo‐A	 knock‐down	 animals(Figure	 6	 A).		

During	the	reversal	phase,	knock‐down	rats	showed	similar	 learning	compared	

to	 WT	 rats	 (correct	 choice	 %;	 F	 value	 (1,126)	 =	 0.86;	 p=	 0.365,	 Figure	 6	 B).	

However,	 during	 the	 second	 trial	 they	 showed	 a	 much	 lower	 accuracy	 in	

searching	 the	 platform	 in	 the	 correct	 arm	 (Bonferroni	 post‐hoc	 test;	 p	 <	

0,05)(Figure	6	B),	meaning	that	they	have	more	difficulty	in	adapting	to	reverse	

contingency.	The	same	was	found	for	the	latency	of	escape	(F	value	(1,126)	=	1.47;	

p=	 0.24)	 (Figure	 6	 D)	 that	 on	 the	 second	 trial	 was	 significantly	 different	

(Bonferroni	post‐hoc	test;	p	<	0,05)	and	on	the	total	number	of	errors	(F	value	

(1,126)	 =	 1.00;	 p=	 0.329)	 with	 a	 significant	 difference	 on	 the	 second	 trial	

(Bonferroni	post‐hoc	test;	p	<	0,05)	(Figure	6	E).	
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Figure 6: Reversal  learning  in  the water T‐maze.  (A) Two way ANOVA  revealed  that  there was no 

significant difference between animals of the two genotypes in the reversal of their escape strategy in 

the  water  T‐maze,  as  seen  from  their  percentage  of  correct  trails  within  the  task  (FGenotype 

(1.108)=1.22;  p=0.284).  In  contrast, Bonferroni  post  hoc  testing  revealed  that  in  trial  two, Nogo‐A 

knock‐down (L2) rats have a significant impairment in finding the escape platform. All data are mean 
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values ±  SEM.  Asterisks  represent  p‐values  obtained  by  comparing  L2  and WT  rats  with  either 

unpaired  t‐test  or  Bonferroni  post‐hoc  test  following  two  way  ANOVA  of  repeated  measures:  *: 

p<0.05; **: p<0.01; ***: p<0.001 

	

In	 conclusion,	 Nogo‐A	 knockdown	 rats	 showed	 deficit	 in	 gating	 property,	

associated	with	difficulty	in	reversal	learning	and	lower	exploration	and	reduced	

social	contact	behavior,	correlated	to	higher	withdrawal	from	social	 interaction	

initiated	by	the	social	partner.	The	presence	of	these	symptoms	in	the	rat	model	

is	of	particular	 significance	 since	 they	describe	a	 schizophrenia‐like	phenotype	

(Marcotte,	Pearson	et	al.	2001).	

	

4.2 INDUCIBLE STAUFEN 2 KNOCKDOWN IN RAT BRAIN 

 

4.2.1 STAUFEN2 EXPRESSION IN ADULT RAT BRAIN 

	

As	 previously	 described	 by	 using	 Northern	 blot	 analysis	 and	 in	 situ	

hybridisation,	 Staufen2	 (Stau2)	 is	 expressed	 throughout	 the	 entire	 brain	

(Monshausen,	 Putz	 et	 al.	 2001).We	 further	 characterized	 Stau2	 expression	

within	 the	 adult	 rat	 brain	 by	 using	 a	 rat	 polyclonal	 Stau2	 antibody	 for	

immunohistochemistry	on	respective	brain	sections(Figure.7).	Particularly	high	

expression	 of	 Stau2	 was	 observed	 in	 the	 bed	 nucleus	 of	 striaterminalis,	 the	

hippocampus,	the	central	nucleus	of	the	amygdale	and	the	hypothalamus	(Figure	

7	 A).	 Within	 the	 hippocampus,	 Stau2	 protein	 is	 present	 in	 the	 pyramidal	 cell	

layers	 of	 all	 CA	 subregions,	 the	 granule	 cell	 layer	 (GCL),	 the	hilus	 (Hi)	 and	 the	

subgranular	zone	of	the	dentate	gyrus	(DG)	as	well	as	in	individual	cells	located	

in	the	stratum	oriens	and	stratum	radiatum	(Figure	7	B).	

Quantitative	 RT‐PCR	 analyses	 of	 Stau2	 expression	 performed	 with	 tissue	

samples	 from	 respective	 hippocampal	 subregions,	 demonstrate	 that	 Stau2	

mRNA	concentration	is	similar	in	CA1	and	CA3	and	slightly	elevated	in	the	DG,	an	

information	that	can	also	be	deduced	from	immunohistochemical	data	(Figure	7	

C).	
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Figure 7:  Staufen2  expression  in  the adult  rat brain.  (A)  Immunohistochemical  staining of  coronal 

sections of WT Sprague Dawley rats using a Staufen2 (Stau2) antibody. Most intense Stau2 signals can 

be  detected  in  the  bed  nucleus  of  thestriaterminalis  (BNST),  the  hippocampus  (Hip),  the  central 

nucleus  of  the  amygdala  (CeA)  and  the  hypothalamus  (HT).(B)  Higher  magnification  of  the 

hippocampus demonstrates substantial Stau2 signals  in CA1, CA3, the dentate gyrus‐hilar region (Hi) 

and the dentate gyrus granule cell layer (GCL). (C) Quantification of Stau2 expression in hippocampal 

subregions by qRT‐PCR.  In comparison to CA1  (100%), percentage of Stau2 expression  is 84%  in CA3 

and 124% in DG. 

	

Immunofluorescent	 visualization	 of	 Stau2	 protein	 further	 characterized	 its	

distribution.	Co‐immunostaining	of	Stau2	and	neuronal	marker	protein	NeuN	in	

hippocampus	shows	that	Stau2‐positiv	cells	are	all	neurons	with	the	exception	of	

some	 individual	 cells	 found	 in	 the	 subgranular	 zone	 of	 the	 DG.	 In	 addition,	 a	

substantially	lower	Stau2	protein	concentration	was	observed	in	neurons	of	the	

granule	cell	layer	compared	to	other	DG	and	CA	subregions	(Figure	8).	

In	 order	 to	 specify	 the	 types	 of	 neurons	 expressing	 Stau2	 in	 hippocampal	

subregions,	 double	 staining	 of	 Stau2	 with	 respective	 marker	 proteins	 was	

performed.	 In	CA1	and	CA3,	Stau2	protein	 is	 found	not	only	 in	CaMKII‐positive	
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excitatory	pyramidal	neurons	(Figure	8	C),	but	also	in	GAD67‐positive	GABAergic	

interneurons,	 which	 are	 located	 in	 the	 stratum	 oriens	 or	 stratum	 radiatum	 as	

well	 as	 in	 the	 pyramidal	 neuronal	 layer	 (Figure	 8	 B).	 Here,	 interneurons	 also	

display	 higher	 Stau2	 protein	 concentration	 compared	 to	 excitatory	 pyramidal	

neurons,	 even	 if	 the	 observation	 remains	 qualitative.	 Within	 the	 DG,	 Stau2	 is	

present	 in	 four	 different	 neuronal	 populations:	 CaMKII‐positive	 excitatory	

neurons	 granular	 neurons,	 CaMKII‐positive	 neurons	 within	 the	 hilus,	 GAD67‐

positive	 interneurons	 found	 in	 the	 subgranular,	 granular	 and	molecular	 layers	

and	 CaMKII	 negative	 neurons	 located	 in	 the	 subgranular	 zone.	 Stau2	 protein	

concentration	 seems	 to	 be	 similar	 in	 subgranular	 and	hilar	 neurons	 excitatory	

neurons	 and	 interneurons,	 but	much	 lower	 in	 CaMK‐II	 positive	 neurons	 of	 the	

granule	cell	layer.	However	quantitative	analysis	with	different	methods	should	

be	done	to	confirm	this	result.	
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Figure  8:  Analysis  of  Staufen2  expression  in  hippocampus  and  cortex  (A)  Double 

immunofluorescence  staining of hippocampal  sagittal  section of wildtype Sprague Dawley  rats with 

antibodies  specific  for Stau2  (red) and  the neuronal marker protein NeuN  (green).  In CA1 and CA3, 

Stau2 positive neurons can be detected in the respective pyramidal layers and in attached strata (s.o.: 

stratum oriens; s.r.: stratum radiatum). In dentate gyrus (DG), Stau2 can be detected in NeuN‐positive 

neurons of the hillus (Hi) and the granule cell layer (GLC) as well as in NeuN negative cells within the 

subgranular  zone  (SGZ).  Stau2  protein  concentration  of  granule  cell  layer  neurons  is much  lower 

compared  to Stau2 positive cells  in all other dentate gyrussubregions.  (B) Dual  immunofluorescence 

stainings of hippocampal  sagittal  section with antibodies  specific  for Stau2  (red) and  the molecular 

marker  for  ínterneurons  GAD67  (green).  Neurons  with  particular  strong  Stau2  signal  could  be 
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identified as interneurons located either within the pyramidal layers (see CA1 or CA3), the granule cell 

layer  (see  DG)  or  the  hippocampal  strata  (for  stratum  moleculare  see  DG).  (C)  Double 

immunofluorescence staining of hippocampal sagittal section with antibodies specific for Stau2 (red) 

and  the  neuronal marker  for  excitatory  pyramidal  neurons  alpha  calmodulin‐dependent  kinase  II 

(CaMKII) (green). Here, in CA1 and CA3 approx. 90% of Stau2 expressing neurons are CaMKII‐positive 

and  located  within  the  respective  pyramidal  layer.  In  addition,  CaMKII‐negative  neurons  with  a 

particular  high  Stau2  concentration  can  be  detected  within  the  pyramidal  layers  (see  CA1)  or 

hippocampal strata (for stratum oriens see CA3).		

	

4.2.2 GENERATION OF TRANSGENIC RATS FOR CRE‐DEPENDENT CONDITIONAL STAU2 

INACTIVATION 

	

In	 order	 to	 study	 the	 contribution	 of	 Stau2	 protein	 within	 forebrain	 CaMKII‐

positive	 pyramidal	 neurons	 to	 synaptic	 plasticity	 and	 learning	 and	 memory	

processes,	 we	 decided	 to	 generate	 genetically	 modified	 rats	 with	 cell‐type	

specific	 Stau2	 inactivation.	 In	 Bartsch’s	 laboratory	 an	 inducible	 Stau2	 knock‐

down	rat	line	was	generated.	The	Cre‐recombinase	and	RNAi	technologies	were	

combined.	 Rationally	 designed	miRNA,	 able	 to	 lead	 to	 gene	 inactivation,	 were	

used	 in	 combination	 with	 co‐expression	 of	 reporter	 eGFP	 to	 visualize	 the	

affected	neurons.		

Efficient	Stau2	knockdown	was	achieved	by	using	the	sequence	of	an	shRNA	that	

inhibited	Stau2	protein	expression	in	cell	culture	very	potently	(Goetze,	Tuebing	

et	 al.	 2006).	 This	 sequence	 was	 incorporated	 into	 the	miRNA	 design	miRNA3	

(Berger,	Pesold	et	al.	2010)	yielding	miR(Stau2).	After	required	in	vitro	tests,	the	

final	 construct	 (pCAG‐STOP‐Intron‐miRStau2‐EGFP)	 was	 microinjected	 into	

fertilized	Sprague	Dawley	oocytes,	 resulting	 in	6	 founder	animals	of	 transgenic	

linespCAG‐loxP.STOP.loxP‐miR(Stau2)‐EGFP	(CAGS‐Stau2).	
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4.3 SUITABILITY OF TAMOXIFEN‐INDUCIBLE GENE KNOCKDOWN IN THE ADULT RAT 

BRAIN.  
	

The	 obtained	 floxed	 Stau2	 rat	 line	 was	 mated	 with	 CaMK‐CreERT2	 animals,	

where	 CreERT2	 recombinase	 is	 expressed	 under	 the	 control	 of	 the	 αCaMKII	

promoter	 and	 is	 tamoxifen‐inducible.	 To	 obtain	 the	 transgenic	 Stau2	 rat	

line,CaMK‐CreERT2	x	CAGS‐Stau2	double	transgenic	animals	were	injected	with	

tamoxifen	 Tamoxifen	 (Tx,	 Sigma‐Aldrich,	Munich,	 Germany,	 T5648)	 previously	

dissolved	 in	 a	 pH	 neutral	 medium‐chain	 triglyceride	 (Neutralöl,	 Euro	 OTC	

Pharma,	Bönen,	Germany)	at	 a	 final	 concentration	of	20	mg/mL.	Rats	between	

two‐	 to	 three‐month‐old	 were	 injected	 intraperitoneally	 with	 40	 mg/kg	 body	

weight	of	tamoxifen	alternating	once	or	twice	per	day	for	five	consecutive	days	

(starting	 with	 a	 single	 injection	 on	 day	 1).	 Experimental	 animals	 for	

immunohistochemistry	 and	 Cre	 reporter	 analysis	were	 analysed	 10	 days	 after	

the	last	injection	(for	protocol	see	Schönig	et	al.,	2012).	

Before	 behaviorally	 characterize	 our	 Stau2	 (‐/‐)	 rats	 model,	 the	 effect	 of	

tamoxifen	injection	was	investigated,	to	determine	its	eventual	role	or	effect	on	

onset	of	some	behavioral	tracts	to	avoid	influences	to	our	further	investigations.	

Indeed	to	date	this	is	the	first	tamoxifen	inducible	rat	line	generated.	

Food	availability	was	maintained	ad	libitum	 for	all	 the	experimental	period	 for	

both	 groups	 of	 animals.	 Body	 weight	 variance	 was	 recorded	 under	 the	 whole	

time	during	the	tests	(Figure	9A).	During	3days	of	non	tamoxifen	administration,	

body	weight	was	 similar	 between	 the	 two	 groups	with	 a	 natural	 and	 constant	

increase.	At	day4	tamoxifen	injection	protocol	started	and	a	significant	reduction	

on	the	averaged	body	weight	was	registered	for	 the	treated	animal(Figure	9	A;	

P<0.001).	

 



61 
 

 

 

Figure  9:  Tamoxifen  injections  protocol    effect  (A)  Body weight  curve.  All  animals  had  a  similar 

average weight value at the beginning of the experiment. At day 4, tamoxifen was administered and 

treated rats showed a drop in body weight. (B) Prepulse inhibition (PPI) measured at 72, 76, 80 and 84 

db before and   14 day after tamoxifen administration revealed no significant differences.  (C) Startle 

response before and 14 days after tamoxifen injection led to similar startle amplitudes in both groups. 

	

As	 a	 further	 characterization,	 sensomotor	 gating	 properties	 were	 tested	 in	

tamoxifen	 treated	 rats	 using	 a	 Pre	 Pulse	 inhibition	 task	 (PPI,	 Figure	 9	 B).	 Pre	

injection	 stage	 show	 a	 normal	 value	 with	 no	 difference	 between	 tamoxifen	

injected	 rats	 and	 control	 group.	 Chronic	 treatment	 with	 Tamoxifen	 for	 two	

weeks	 revealed	 no	 significant	 effect	 on	 PPI	 and	 no	 significant	 differences	
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between	 the	 amplitude	 of	 startle	 response	 (ASR;	 pulse‐alone	 trials)	 of	 saline	

controls	and	the	 tamoxifen	 injected	group	neither	 in	 time	 	 (F	 (1,14)	=	1,908;	P	>	

0.05)	or	interaction	(F(1,14)	=	4,468;	P	>	0.05)	(Figure	9C).	

The	next	step	was	to	assess	the	effect	of	tamoxifen	on	anxiety‐like	behavior.	For	

this	purpose	elevated	plus	maze	was	carried	out.	The	 test	showed	a	significant	

preference	 in	 both	 group	 for	 closed	 arms	 (F(1,14)	 =	 54,90)	 with	 no	 significant	

changes	 in	 time	 spent	 on	 the	 open	 arms	 (treatment	 saline	 vs.	 +	 Tam	 p	>	

0.05)(Figure	 10	 A).	 Similarly	 the	 closed	 arm	 visits	 remained	 statistically	 non‐

significant	 for	both	analyzed	groups	(treatment:	F(1,18) = 0.07,	P = 0.79;	Figure	10	

B).	

Next,	rats	were	tested	to	assess	antidepressant‐like	behavior	effect	of	tamoxifen	

administration.	 The	 effects	 of	 Tamoxifen	 during	 the	 forced	 swimming	 test	 are	

illustrated	 in	Figure	10	C.	Both	control	and	tamoxifen	 injected	animals	showed	

no	 significant	 difference	 in	 immobility,	 latency	 to	 immobility	 and	 climbing.	 On	

the	 contrary,	 control	 group	 display	 a	 swimming	 action	 significant	 higher	

(P=0,0194).	

 

 

 

 

Figure  10:  Anxiety  related  behavior.  Time  spent  in  closed  arms  (A)  and  in  open  arms  (B)  in  the 

elevated plus maze did not reveal differences as well as number of entries in open arms (C). (D) In the 

forced swimming test, tamoxifen treated rats and vehicle rats has the same performance in terms of 

latency to reach immobility, the time spent immobile, the swimming time and climb activity. 
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Most	 important	 assessment	 was	 the	 study	 of	 tamoxifen	 administration	 on	

memory	 capability.	 The	 first	 test	 performed	previously	 in	 our	 lab	was	 a	 novel	

object	recognition	test	(Figure	11	B).	The	pre‐injection	phase	revealed	the	same	

ability	 for	 tamoxifen	treated	rats	and	control	group	 in	distinguish	a	new	object	

from	 the	 familiar	 object.	 Following	 tamoxifen	 administration,	 already	 at	 day	4,	

treated	 animals	 displayed	 a	 deficit	 in	 memory	 recognition	 (t‐test	 P=0,0063).	

From	day	 4	 to	 day	 46,no	more	 significant	 impairment	was	 found	 between	 the	

two	 groups,	 with	 a	 gradual	 recovery	 of	 memory	 recognition	 for	 tamoxifen	

treated	rats.	

To	deeply	study	the	effect	of	tamoxifen	administration	on	learning	and	memory	

abilities,	we	also	performed	a	Morris	water	maze	(Figure	11	B‐F).	Three	days	of	

training	(each	one	consisting	of	3	 trials)	revealed	 that	rats	receiving	 tamoxifen	

perform	 as	 well	 as	 the	 rats	 receiving	 vehicle	 in	 term	 of	 distance	 moved	 and	

latency	to	find	the	hidden	platform	(Figure	11	C,	D).	During	the	probe	trial	on	the	

fourth	 day,	 tamoxifen	 injected	 animal	 showed	 no	memory	 deficit	 compared	 to	

vehicle	 rats.	 For	 both	 groups,	 the	 times	 spent	 in	 the	 target	 quadrant	 and	 the	

distance	moved	in	it,	are	above	the	time	and	distance	of	the	others	quadrant	of	

the	maze,	revealing	an	intact	memory	ability	(Figure	11	E,	F).	
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Figure 11:  Learning and memory abilities.  (A) Rats were  tested before  the  treatment  (pre‐inj)  in a 

novel object recognition test. The test was repeated at day 4, 15, 26 and 46 after starting with vehicle 

or  tamoxifen administration, but no differences were observed.  (B‐F)  In  the Morris water maze  test 

tamoxifen or vehicle treated rat did not differ  in their performance.  (B) Mean of the distance to the 

hidden platform during the probe test. (C) Distance moved during the training phases. (D) Time spent 

to reach the hidden platform during the training phases. (E) Time spent in the target quadrant (TQ) in 

the opposite quadrant (OQ) or in the 2 lateral quadrants (AQ) of the tank during the probe test. 

	

Also	 the	 memory	 capability	 in	 stressful	 situation	 was	 tested	 using	 a	 fear	

conditioning	 paradigm.	 During	 the	 acquisition	 phase	 both	 groups	 showed	 a	

similar	curve	of	learning	(Figure	12	A).	The	freezing	times	during	tones/shocks	
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presentation	 were	 equal	 for	 tamoxifen	 injected	 rats	 and	 for	 vehicle	 animals	

(Figure	12	B).	During	 the	recall	phase	 for	 the	context,	both	groups	showed	the	

same	level	of	freezing	(p=0,2319).	The	same	happened	with	the	cue	recall	phase	

when	the	rats	were	in	a	new	environment	with	a	freezing	close	to	0	that	increase	

significantly	 and	 to	 the	 same	 level	 for	 tamoxifen	 injected	 rats	 and	 vehicle	 rats	

(Figure	12	C).	

 

 

 

Figure 12: Fear conditioning(A) Percentage of freezing time during the training phase where a sound 

stimulus  is paired with  foot  shook  indicating  learn of predict aversive events. The  first 5 points are 

baseline freezing before the start of the tone presentation protocol at 6days which show no arousal 

behavioral in bal condition. (B) Percentage of freezing time during the context recall phase in the same 

chamber without any sound presentation. (C) Percentage of freezing time during cue recall  in a new 
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chamber with tone presentation  (cue). Exposure to the new chamber without any cue as baseline  is 

indicated by pre‐cue bars. 

 

In	conclusion,	the	activation	of	the	transgenic	system	based	on	administration	of	

exogenous	antagonist	of	the	estrogens	receptor	with	tamoxifen,	do	not	alter	the	

behavioral	 tract	 of	 experimental	 animals	 at	 protocol	 dose.	 However	 a	 slightly	

impairment	 in	 novel	 object	 recognition	 was	 detected	 but	 limited	 to	 the	 first	

weeks	after	treatment	starts.	Therefore,	further	behavioral	test	were	performed	

after	6	weeks	from	the	tamoxifen	protocol	administration,	a	time	point	when	the	

substance	does	not	interfere	with	any	behavioral	aspect.	

	

4.4 CHARACTERIZATION OF TRANSGENIC RATS WITH FOREBRAIN‐SPECIFIC CONDITIONAL 

STAU2 DEFICIENCY 

 

4.4.1 MOLECULAR CHARACTERIZATION 

	

CAGS‐Stau2	 line	was	crossed	with	 the	 rat	 transgenic	 line	CaMKII‐CreERT2,	 in	

which	the	tamoxifen‐inducible	CreERT2	recombinase	has	been	shown	to	provide	

widespread	 Cre‐mediated	 recombination	 within	 the	 forebrain	 upon	 tamoxifen	

induction	(Schönig	et	al.,	2012).For	functional	characterisation,	CaMK‐CreERT2	x	

CAGS‐Stau2	double	 transgenic	animals	(Stau2‐/‐)	were	 injected	with	 tamoxifen	

(Tx)	 for	 1	 week	 and	 sagittal	 brain	 sections	 were	 analyzed	 by	

immunohistochemistry	 for	 eGFP	 expression.	 Intense	 eGFP	 positive	 neurons	

could	be	detected	across	all	layers	of	cortical	regions	(Figure	13	A),in	accordance	

to	 the	 expression	 pattern	 of	 endogenous	 αCaMKII	 (Ouimet,	 McGuinness	 et	 al.	

1984).	Within	 the	hippocampus,	 the	 focus	of	 our	 study,	 eGFP	positive	neurons	

were	abundantly	present	in	all	CA	subregions	and	in	the	hilus	of	the	DG	(Figure	

13	B).	However,	 only	 sparse	 eGFP	production	was	observed	 in	 the	DG	granule	

cell	 layer,	 which	 was	 unexpected	 considering	 the	 endogenous	 αCaMKII	

expression	pattern	(Figure	13	B).	In	the	brain	of	non‐induced	Stau2‐/‐	animals	(‐

Tx),	eGFP	positive	cells	were	absent.	(Figure	13).	



67 
 

 

 

 

Figure 13: Tamoxifen induced Stau2 deletion. (A) Immunohistochemical analysis of CreERT2 mediated 

recombination using an antibody specific for GFP. In uninduced double transgenic Stau2 ‐/‐ animals (‐

Tx),  no  eGFP  containing  neurons  could  be  identified  in  hippocampus  and  cortex  on  sagittal  brain 

sections.  Several  weeks  following  tamoxifen  injection  of  Stau2  ‐/‐  rats  (+Tx),  substantial  eGFP 

production  is  observed  on  respective  brain  sections  in  both  hippocampus  and  cortex.(B)  Higher 

magnifications  ofuninduced(‐Tx)  and  induced  (+Tx)  double  transgenic  Stau2  ‐/‐  animals  in 

hippocampus (left panel) and cortex (right panel) on sagittal brain sections.  

	

Stau2	 knockout	 neurons	 (eGFP	 positive)	 were	 further	 characterized.	 Co‐

immunostaining	 with	 an	 αCaMKII	 antibody	 revealed	 that	 80%	 of	 CaMKII‐

positive	neurons	were	labeled	with	eGFP	in	CA1	and	60%	in	CA3.	In	the	DG,	60%	

of	CaMKII‐positive	hilar	neurons	expressed	eGFP,	while	in	the	granule	cell	layer	

only	5‐10%	of	all	neurons	were	eGFP‐positive	(Figure	14).	Dual	 label	 immuno‐

fluorescence	 of	 Stau2	 and	 eGFP	 performed	 on	 brain	 slices	 from	 Tx‐induced	
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Stau2‐/‐	 rats	 demonstrate	 that	 Stau2	 protein	 expression	 is	 highly	 reduced	 in	

eGFP‐positive	 neurons	 in	 comparison	 adjacent	 eGFP	 negative	 cells	 in	 all	

hippocampal	subregions	(Figure	14	B).		
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Figure 14:Cells type specific analysis of eGFP and Staufen 2 proteins (A) Double immunofluorescence 

staining of hippocampal  sagittal  sections with antibodies  specific  for GFP  (green) and  the neuronal 

marker  for excitatory pyramidal neurons alpha calmodulin‐dependent kinase  II  (CaMKII)  (red).  In all 

investigated hippocampal subregions (CA1, CA3, hilus of the dentate gyrus (DG‐Hi), granule cell layer 

of  the  dentate  gyrus  (DG‐GCL))  and  the  cerebral  cortex  (Ctx),  eGFP  producing  neurons  are  CaMKII 

positive.  (B) Dual  immunofluorescence  visualisation  of  eGFP  (green)  and  Stau2  (red)  using  specific 

antibodies.  In hippocampal  subregions CA1, CA3 and  the hillus of  the dentate gyrus  (DG‐Hi)  Stau2 

concentration  is considerably reduced  in eGFP positive neurons compared to adjacent eGFP negative 

neurons. 

 

The	described	qualitative	analysis	was	supported	by	quantitative	qRT‐PCR	data.	

We	 collected	 tissue	 samples	 and	 isolated	 total	 RNA	 from	 CA1,	 CA3	 and	 DG	

regions	 of	 the	 hippocampus	 of	 both	 single	 transgenic	 CaMK‐CreERT2	 and	 Tx‐

induced	 double	 transgenic	 Stau2‐/‐	 animals.	 Quantification	 of	 eGFP	 mRNA	 by	

qRT‐PCR	 in	 hippocampal	 subregions	 showed	 that	 eGFP	 expression	 and	 Stau2	

knock	 down	 was	 different	 in	 different	 hippocampal	 subregions.	 eGFP	 was2.4‐

fold	 lower	 in	 CA3	 and	 6.1–fold	 lower	 in	 DG	 compared	 to	 CA1	 (Figure	 15	 A),	

mirroring	the	immunohistochemical	qualitative	analysis	(Figure	14).	

 

 

Figure 15: Quantification of eGFP and miR  (Stau2) after Tamoxifen  induction  (A) Quantification of 

eGFP expression  in hippocampal  subregions by RT‐PCR. Data are normalized  to CA1 expression and 

relative eGFP mRNA concentrations are 42% in CA3 and 17% in DG. (B) Quantification of miR(against 

Stau2) expression in hippocampal subregions by RT‐PCR. In comparison to CA1 (to which the data are 

normalized), relative eGFP mRNA concentrations are 22% in CA3 and 11% in DG. 
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After	 determining	 the	 regional	 distribution	 of	 eGFP,	 which	 should	 mirror	 the	

miR(Stau2)	expression,	we	next	measured	the	inhibition	of	Stau2	expression	by	

miR(Stau2).	qRT‐PCR	analysisof	processed	miR(Stau2)	showed	that	eGFP	mRNA	

and	 miRNA	 expression	 parallel	 each	 other	 in	 all	 hippocampal	 subregions	 of	

Stau2‐/‐	 animals	 (Figure	 15	 B).Furthermore	 Stau2	 downregulation	 was	

confirmed	 with	 the	 same	 technique	 (Figure	 16).	 In	 comparison	 to	 control	

animals,	 Stau2	mRNA	expression	was	 reduced	by	69%	 in	CA1,	 by	55%	 in	CA3	

and	by	59%	in	DG	tissue	samples	of	Tx‐induced	Stau2‐/‐	rats	(Figure	16	A).	This	

Stau2	 knockdown	 is	 not	 compensated	 by	 the	 other	 rat	 staufen	 homologue	 of	

Drosophila	staufen	 Staufen1	 (Stau1)	 since	 its	 expression	 is	unchanged	between	

Stau2‐/‐	and	CaMK‐CreERT2	rats	(Figure	16	B).	

Dual	 label	 immuno‐fluorescence	 of	 Stau2	 and	 eGFP	 performed	 on	 brain	 slices	

from	 Tx‐induced	 Stau2‐/‐	 rats	 demonstrate	 that	 Stau2	 protein	 expression	 is	

highly	 reduced	 in	 eGFP‐positive	 neurons	 in	 comparison	 to	 adjacent	 eGFP	

negative	cells	 in	all	hippocampal	subregions	(Figure	14	B).	Taking	into	account	

that	in	analysed	tissue	samples	the	RNA	from	identified	eGFP‐negative	neurons	

faithfully	expressing	Stau2	 is	present	along	with	RNA	from	neurons	with	Stau2	

knockdown,	one	might	suggest	that	knockdown	efficiency	achieved	in	individual	

eGFP	 positive	 neurons	 is	 underestimated	 in	 qRT‐PCR	 analysis	 and	 should	 be	

more	than	90	%.			

From	these	data	we	conclude	that	Stau2‐/‐	rats	represent	a	valid	animal	model	

to	 study	 the	 contribution	 of	 Stau2	 protein	 in	 CaMKII‐positive	 excitatory	

pyramidal	 and	 hilar	 neurons	 to	 hippocampal	 synaptic	 plasticity	 and	 related	

behaviors.		
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Figure  16:  Quantitative  RT‐PCR  analysis  of  Staufen1  (Stau1)  and  Staufen2  (Stau2).  (A)qRT‐PCR 

analysis  confirmed  that  the  expression  of  Stau2  in  hippocampal  subregions  displays  a  profound 

reduction  in CA1  (69%), CA3  (55%) and dentate gyrus  (DG; 59%)  in  Stau2‐/‐  rats  in  comparison  to 

controls. (B)On the contrary the expression of Staufen1 (Stau1) was unaltered between Stau2 ‐/‐ and 

control rats, excluding any compensatory effect. 

	

4.4.2  BEHAVIOR CHARACTERIZATION OF STAUFEN2 KNOCKDOWN RATS 

	

Stau2‐/‐ rats have normal motor activity, spatial memory and learning o n fear conditioning. 

In	collaboration	with	others	laboratories	it	was	showed	that	in	the	hippocampal	

subregion	CA1,	 the	spine	density	was	significantly	 lower	 (‐12	%)	 in	apical,	but	

not	 in	 basal	 CA1	 dendrites	 of	 Stau2‐/‐	 rats.	 In	 addition,	 length	 of	 spines	 from	

apical	 CA1	 dendrites	was	 significantly	 reduced	 but	 not	 in	 basal	 CA1	 dendrites	

(Oliver	 von	Bohlen	 und	Halbach,	 Institut	 für	Anatomie	und	 Zellbiologie,	 Ernst‐

Moritz‐Arndt‐Universität	Greifswald,	Germany).	However,	alteration	in	dendritic	

spine	morphology	did	not	have	any	functional	consequence	on	short‐term	plastic	

processes,	 and	 they	 are	 not	 affected	 in	 behaving	 Stau2‐/‐	 rats.	 Beside	 this	

founding,	 it	 was	 shown	 that	 Stau2‐/‐	 rats	 generated	 larger	 and	 longer‐lasting	

LTP	 than	 their	 respective	 controls.	 In	 contrast,	 Stau2‐/‐	 rats	 seem	devoid	 of	 a	

proper	 synaptic	 mechanism	 to	 generate	 LTD,	 showing	 a	 noticeable	 imbalance	

between	LTP	and	LTD	processes(Agnes	Gruart,	Division	of	Neurosciences,	Pablo	

de	Olavide	University,	Seville,	Spain,	data	not	shown).	
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Changes	 in	 long‐term	 synaptic	 plasticity	 in	 the	 hippocampus	 similar	 to	 those	

findings	were	 often	 correlated	with	 behavioral	 deficits	 in	 spatial	 learning	 and	

memory	 tasks	 (Zeng,	 Chattarji	 et	 al.	 2001;	 Nicholls,	 Alarcon	 et	 al.	 2008).	

Therefore,	 Tx‐induced	 Stau2	 ‐/‐	 rats	 and	 Tx‐injected	 single	 transgenic	 CaMK‐

CreERT2,	 serving	as	 control	animals,	were	subjected	 to	behavior	paradigms,	 in	

order	 to	 assess	 various	 forms	 of	 spatial	 learning	 and	memory.	 Before	 starting	

with	respective	learning	and	memory	task,	the	open	field	test	showed	that	Stau2	

‐/‐	 rats	were	 indifferent	 in	 their	 distance	moved,	 basal	 horizontal	 and	 vertical	

locomotor	 activity,	 speed	 and	 rearings	 when	 compared	 to	 CaMK‐CreERT2	

animals	(Figure	17,	for	all	t‐test	:	p	>	0.05).		

 

 

Figure 17: Locomotor behavior measurement. Stau2‐/‐  (black) were compared with CaMK‐CreERT2 

rats (gray)in an open field test. Distance moved (A), activities (B), speed (C) and rearing behaviors (D) 

were automatically recorded and did not show significant differences.  
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The	first	learning	and	memory	task	performed	was	the	hidden	platform	version	

of	 the	 Morris	 water	 maze,	 assessing	 spatial	 reference	 learning	 and	 memory	

(Figure	18).	Here,	both	Stau2‐/‐	and	CaMK‐CreERT2	rats	 learned	 to	escape	 the	

water	 maze	 with	 the	 same	 efficiency	 as	 deduced	 from	 the	 similar	 decay	 of	

latencies	 to	 find	 the	 escape	platform	 (Figure	18A)	 and	distances	moved	 in	 the	

maze	(Figure	18	C).	When	challenged	in	the	probe	trial,	both	groups	of	animals	

spent	 significantly	 more	 time	 in	 the	 quadrant	 of	 the	 water	 maze,	 where	 the	

platform	had	been	located	during	learning	trials	(Figure	18B).	This	suggests	that	

Stau2‐/‐	encode	spatial	reference	memory	with	same	efficiency	as	controls.		

 

 

 

Figure 18: The Hidden Platform Morris Water Maze Task.  (A)  Individual Stau2‐/‐  (black) or CaMK‐

CreERT2 (gray)rats were trained for 3 days with 6 training trials per day. No significant difference was 

observed between rats of both genotypes (FGenotype(1,306)=0.02; p = 0.894), sinceboth  learned to find 

the  location of  the hidden platform  in  the Morris Water Maze  (FTrials(17,306)=17.11; p < 0.001), an 

observation deduced from their respective latencies. (B) Percentage of time spent in comparison to the 
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located platform,inthe target quadrant (TQ), the opposite quadrant (OQ), and the average of the two 

adjacent quadrants (AQ) during the probe trial on day 4. No significant difference could be detected 

between  Stau2‐/‐  (black  bars)  and  CaMK‐CreERT2  rats  (gray  bars)  (FGenotype(1,36)=0.03;  p  =  0.860), 

showing that both memorized the platform location as seen by the significantly higher occupancy for 

the target quadrant of both groups of animals  (FQuadrant(2,36)=44.90; p < 0.001).  (C) The path  length 

during  the  training phase  (3 days with 6  trials per day) showed  that both Stau2‐/‐  (black bars) and 

CaMK‐CreERT2  rats  (gray  bars)  learned  to  find  the  location  of  the  hidden  platform 

(FTrials(17,306)=11.24; p < 0.001)  in the water maze. No significant difference was observed between 

rats of both genotypes (FGenotype(1,306)=0.005; p = 0.947). 

	

Next,	 Stau2‐/‐	 and	 CaMK‐CreERT2	 rats	 were	 subjected	 to	 a	 fear‐conditioning	

paradigm	(Figure	19).	Both	groups	of	animals	learn	the	association	between	the	

tone	and	the	shock	equally	well	as	seen	in	the	highly	similar	increase	of	freezing	

behavior	upon	tone	presentations	during	the	fear	acquisition	trial	(Figure	19	A,	

B).	When	 respective	 animals	were	 tested	 for	 their	 context	 and	 cue‐dependent	

memory,	Stau2	‐/‐	rats	showed	again	unaltered	fear	responses	specific	towards	

either	the	context,	in	which	the	tone‐shock	association	was	acquired	(Figure	19	

D)	 or	 the	 tone	 that	 was	 paired	 with	 shock	 presentations	 (Figure	 19	 C).	 This	

shows	 that	 Stau2	 ‐/‐	 have	 no	 deficit	 in	 both	 the	 hippocampus‐dependent	

contextual	 fear	 memory	 and	 the	 hippocampus‐independent	 fear	 memory	

towards	 the	 tone	 cue.	 Finally,	 the	 ability	 to	extinguish	 learned	 fear	 association	

was	 tested	 in	 a	 fear	 extinction	 trial.	 Here,	 both	 groups	 of	 rats	 showed	 a	

significant	 decrease	 in	 fear	 response	 toward	 repeated	 tone	 cue	 presentations	

that	are	not	paired	with	a	foot	shock	in	this	test	(Figure	19	D).	

From	 these	 findings	 we	 conclude	 that	 the	 observed	 alteration	 in	 Stau2	

expression	 has	 no	 impact	 on	 processes	 of	 hippocampus‐dependent	 reference	

learning	and	memory.	
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Figure  19:  Fear  Conditioning.  (A‐B)  In  the  acquisition  of  conditioned  fear  phase,  the  time  spent 

freezing plotted over tone presentations shows that both Stau2‐/‐ (black bars) and CaMK‐CreERT2 rats 

(gray bars) learn the association of the tone with the electric shock (Fpresentations(5,95)=32.19; p < 0.001). 

However, no significant difference was observed between rats of both genotypes (FGenotype(1,95)=0.06; 

p = 0.808). (C) In the recall of contextual fear phase, 24 h after the fear acquisition trial, animals were 

placed  into  the  conditioning  chamber  used  for  the  acquisition  of  conditioned  fear  for  5 min.  No 

significant difference (p = 0.707) was observed in the freezing response of Stau2‐/‐ (black) and CaMK‐

CreERT2 (gray) rats toward the context in which fear conditioning took place. (E) In the recall of cued 

fear, that followed the contextual recall session, animals of both genotypes were  introduced  into an 

unknown conditioning chamber. After 2 min habituation (pre‐cue), the tone associated with the shock 

was presented  for 2 min  (cue). Freezing  response  recorded during both  time  frames show that both 

Stau2‐/‐ (black) and CaMK‐CreERT2 rats (gray) displayed a highly specific fear response for the tone 

cue  (Fcue(1,19)=35.07;  p  <  0.001).  No  significant  difference  was  observed  between  rats  of  both 

genotypes  (FGenotype(1,95)=0.02; p = 0.899).  (D)  In  the extinction of  conditioned  fear phase,  the  time 

spent  freezing  plotted  over  tone  presentations  shows  that  both  Stau2‐/‐  (black  bars)  and  CaMK‐

CreERT2  rats  (gray  bars)  reduced  their  fear  response  toward  the  cue  upon  tone  presentations  not 
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paired with the electric shock (Fpresentations(7,126)=2.18; p = 0.04) with no difference observed between 

genotypes (FGenotype(1,126)=0.41; p = 0.893). 

 

Stau2‐/‐ rats are impaired in spatial working memory at intermediate, but not short‐term 

delays 

 

Impaired	 LTD	 in	 mice	 had	 been	 previously	 associated	 with	 deficits	 in	 spatial	

working	memory	tasks	(Zeng,	Chattarji	et	al.	2001;	Nicholls,	Alarcon	et	al.	2008).	

Therefore,	a	delayed	non‐matching	 to	place	 task	on	an	8‐arm	radial	maze	 (Lee	

and	Kesner	 2002;	 Lee	 and	Kesner	2003)	was	 conducted	with	 both	Tx‐injected	

Stau2‐/‐	 and	 CaMK‐CreERT2	 rats	 (Figure	 20).	 In	 this	 behavior	 paradigm,	 the	

animals	were	trained	to	choose	an	unvisited	over	a	previously	visited	arm	of	the	

radial	maze	 in	 order	 to	be	 rewarded.	Remembering	 the	 visited	 arm	was	made	

gradually	more	difficult	by	introducing	a	delay	time	between	the	initial	visit	and	

the	choice	phase,	during	which	the	animal	had	no	possibility	to	explore	the	maze.	

At	 short‐term	delay	 times	 (1	min),	 control	and	Stau2	 ‐/‐	 rats	displayed	similar	

accuracies	 in	 selecting	 the	 unvisited	 arm	 as	 seen	 from	 the	 high	 correct	 choice	

rate	 (Figure	 20	 A)	 and	 the	 low	 number	 of	 unrewarded	 arm	 visits	 per	 animal.	

However,	 when	 delay	 times	 were	 increased	 to	 5	 or	 10	 min,	 control	 rats	 still	

conducted	 the	 task	 with	 a	 similar	 accuracy	 as	 observed	 with	 a	 short	 delay,	

whereas	Stau2	‐/‐	rats	highly	significantly	dropped	in	their	performance	almost	

to	 the	 level	of	 a	 randomly	 choice	of	 the	arm	(Figure	20	A)	 increasing	 the	 total	

number	of	errors	(Figure	20	C).	Moreover,	Stau2‐/‐rats	significantly	increased	in	

their	 latencies	to	enter	the	arm	during	the	choice	phase	with	longer	delay	time	

compared	 to	 control	 animals	 (Figure	 20	 B).	 This	 suggests	 that	 the	 observed	

deficit	 in	 choosing	 the	 rewarded	 arm	 in	 Stau2	 ‐/‐	 rats	 is	 due	 to	 a	 working	

memory	deficit	and	not	caused	by	increased	impulsivity	of	these	animals. 
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Figure 20: Delayed non‐match  to place  (DNMP) 8 arms  radial maze  task. Animals were  trained  in 

blocks of 12 trials (4 trials/day) at individual delay times. (A) Performances of Stau2‐/‐ (black bars) and 

CaMK‐CreERT2  control  rats  (gray  bars)  in  the  DNMP  task  with  variable  delays  indicate  a  highly 

significant  deficit  in  spatial working memory  of  Stau2  deficient  animals  (FGenotype(1,36)=21.12;  p  < 

0.001).  Bonferrroni  post  hoc  testing  showed  that  Stau2‐/‐  rats  significantly  drop  in  their  task 

performance at  intermediate  (5 min, 10 min) but not at  short  time delays  (1 min).  (B)  Latencies  to 

enter  the  radial maze arm with  the anticipated  reward during  the  choice phase of  the DNMP  task 

displayed  that  Stau2  ‐/‐  animals  (black  bars)  take  significantly more  time  for  their  decision  with 

increasing  delay  times  compared  to  CaMK‐CreERT2  control  rats  (gray  bars)  (FGenotype*delay  time 

(3,36)=3.64; p = 0.022). (C) Performances of Stau2‐/‐ (black bars) and CaMK‐CreERT2 rats (gray bars), 

here expressed as the total number of entrances into unrewarded arms (errors) in the choice phase of 

the DNMP task, also indicate a highly significant deficit in spatial working memory of Stau2 deficient 

animals (FGenotype(1,36)=21.13; p < 0.001)  at intermediate (5 min, 10 min) but not at short time delays 

(1 min). Data are presented either as mean values + SEM or mean values ± SEM. Stars represent p‐
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values of  significances between genotypes obtained by Bonferroni post hoc analysis  following  two‐

way ANOVA of repeated measures: ** p<0.01; *** p<0.001. 

 

Stau2‐/‐ rats have a deficit in detecting spatial novelty 

	

Having	identified	a	spatial	working	memory	deficit,	we	next	aimed	to	investigate	

spatial	 novelty	 detection	 abilities	 in	 Stau2‐/‐	 rats,	 since	 both	 behaviors	 have	

been	 recently	 associated	 with	 deficits	 in	 EC‐CA1	 synaptic	 transmission	 (Vago	

and	 Kesner	 2008).	 Induced	 Stau2	 ‐/‐	 and	 control	 rats	 were	 tested	 in	 their	

abilities	 to	 encode	 hippocampus‐independent	 object	 recognition	 memory	

(Figure	21).	Here,	both	groups	of	animals	were	significantly	able	to	identify	the	

novel	object	(Figure	21A).	However,	when	respective	animals	were	subjected	to	

the	 hippocampus‐dependent	 novel	 object	 relocation	 paradigm,	 Stau2‐/‐	 rats	

significantly	failed	to	recognize	the	novel	position	of	a	familiar	object	in	contrast	

to	 CaMK‐CreERT2	 control	 rats	 (Figure	 21B).While	 the	 control	 group	 showed	

significant	 increase	 in	 exploration	 for	 the	 relocate	 object	 to	 the	 choice	

level,Stau2‐/‐	animals	showed	a	significant	reduction	of	investigation	time	to	the	

second	 exposure	 of	 the	 same	 but	 relocated	 object,	 carried	 out	 15	min	 later.	

During	the	sampling	phase	of	novel	object	recognition	and	relocation	both	group	

had	no	difference	in	time	of	exploration	maintaining	a	50%	value	in	time	sniffing	

(Figure	21).	Together	this	founding	show	the	rodents’	ability	to	recognize	a	novel	

object	in	the	environment	but	impairment	in	detect	a	novel	position	of	a	familiar	

object.	
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Figure 21: Memory ability on Novel objects tasks  (A) The novel object recognition task showed that 

both Stau2‐/‐  (black) and CaMK‐CreERT2 control rats  (gray) spent more time  investigating the novel 

object during the study phase of the task, an indication of an intact object recognition memory (F, Object 

(1,18)=16.34; p < 0.001)(FGenotype (1,18)=2.50; p = 0.131). One sample t‐test indicates that exploratory 

behavior  toward  the  novel  object  is  beyond  chance  level  in  both  groups  of  animals.  (B)  The  novel 

object relocation task showed that Stau2‐/‐ rats (black) display a significant deficit in recognizing the 

novel position of a  familiar object as  seen  from Bonferroni post hoc  testing of a 2 way ANOVA of 

repeated measures (FGenotype(1,18)=4.47; p = 0.049). One sample t‐test shows that only CaMK‐CreERT2 

control rats (gray) explore the relocated familiar object more than chance level. 
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5. DISCUSSION 
 

5.1 NOGO‐A KNOCK‐DOWN RAT MODEL UNCOVERED NOVEL PHENOTYPIC TRAITS, 

CORRELATED TO HUMAN SCHIZOPHRENIA. 

	

Nogo‐A	 is	 an	 important	 neurite	 growth‐inhibitory	 protein	 that	 stabilizes	 the	

adult	 CNS	 wiring,	 restricts	 regeneration	 and	 also	 negatively	 regulates	

hippocampal	 plasticity	 (Schwab	 2010).	 Moreover,	 a	 recent	 evidence	 suggests	

that	aberrant	Nogo‐A	signaling	poses	an	 increased	risk	for	schizophrenia	(Willi	

and	 Schwab	 2013).	 The	 Nogo	 gene	 has	 been	 mapped	 to	 chromosome	 2p16,	

which	is	a	genetic	regioninvolved	in	schizophrenia	(Lewis,	Levinson	et	al.	2003).	

Moreover	 Nogo	 mRNA	 was	 reported	 to	 be	 overexpressed	 in	 post‐

mortemsamples	of	frontal	cerebral	cortices	from	individuals	with	schizophrenia	

(Novak,	Kim	et	 al.	2002).	There	 is	 also	evidence	 for	an	association	of	 the	nogo	

receptor	 gene(NgR)	 since	 the	 gene	 is	 encoded	 by	 chromosome	 22q11,	 a	well‐

known	 hotspot	 locus	 for	 genetic	 linkage	 to	 schizophrenia	 risk	 (Karayiorgou,	

Morris	et	al.	1995)	

Animal	models	of	complex	heterogeneous	psychiatric	disorders	are	clearly	very	

valuable	preclinical	 tools	with	which	 to	 investigate	 the	neurobiological	basis	of	

the	disorder.	Animal	models	used	 to	 study	schizophrenia	can	be	classified	 into	

four	major	 categories:	 developmental,	 drug‐induced,	 lesion‐induced	 or	 derived	

from	 genetic	 manipulation.	 There	 are	 several	 potential	 difficulties	 during	 the	

attempt	 to	 model	 schizophrenia	 in	 animals,	 including	 the	 standard	 caveat	 of	

faithfully	reproducing	what	 is	generally	perceived	to	be	a	cognitive	disorder	 in	

less	 cognitively	developed	animals(Jones,	Watson	et	 al.	 2011).	 Indeed,	patients	

typically	experience	a	combination	of	symptoms,	often	divided	into	positive	(e.g.,	

hallucinations,	 delusions,	 thought	 disorganizations),	 negative	 (e.g.,	 loss	 of	

motivation,	 affective	 blunting,	 alogia,	 social	 withdrawal)	 and	 cognitive	 (e.g.,	

deficits	in	attention,	memory	and	executive	functions)	(Andreasen	1995).	

Recently,	 a	 Nogo‐A	 knock‐out	 mice	 showed	 several	 behavioral	 phenotypes	

commonly	 used	 as	 correlates	 of	 schizophrenia	 symptoms.	 Those	 mice	
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constitutively	 lacking	 Nogo‐A	 displayed	 deficiencies	 in	 both	 PPI	 and	 latent	

inhibition	 (Willi,	 Weinmann	 et	 al.	 2010).	 Other	 tests	 showed	 that	 these	 mice	

were	spontaneously	hyperactive	(Willi,	Aloy	et	al.	2009),	a	trait	of	rodent	models	

of	 schizophrenia	 	 (Gainetdinov,	 Mohn	 et	 al.	 2001)that	 could	 correspond	 to	

psychomotor	agitation	present	in	schizophrenic	patients.	Nogo‐A	knock‐out	mice	

showed	higher	sensitivity	 to	 the	motor	stimulant	effect	of	amphetamine	 (Willi,	

Aloy	 et	 al.	 2009,	 (Willi,	 Weinmann	 et	 al.	 2010),	 pointing	 to	 a	 psychotic‐like	

phenotypic	profile.	Beyond	the	phenotypes	 just	described,	mice	 lacking	Nogo‐A	

also	 exhibited	 behavioral	 perseveration,	 resembling	 another	 clinical	

manifestation	 seen	 in	 schizophrenic	 patients	 (Meyer,	 Feldon	 et	 al.	

2011).Compared	 to	 the	 existing	 animal	 model	 for	 schizophrenia,	 novel	

phenotypic	 traits	could	be	 identified	 in	our	 transgenic	Nogo‐A	knockdown	rats	

resembling	the	negative	symptoms	of	the	disease,	a	difficult	aspect	to	model	 in	

murine	 model.	 Indeed,	 Nogo‐A	 knock	 down	 rats	 showed	 significantly	 lower	

exploration	 and	 reduced	 social	 contact	 behavior,	 as	 well	 as	 much	 higher	

withdrawal	 from	 social	 interaction	 initiated	by	 the	 social	 partner	 compared	 to	

their	WT	littermates.	The	presence	of	these	negative	symptoms	in	the	rat	model	

is	of	particular	significance.	 In	 free	social	 interactions,	knockdown	rats	showed	

normal	exploratory	behavior,	but	a	marked	attenuation	and	avoidance	of	social	

contact.	We	 exclude	 that	 this	 social	withdrawal	 behaviour	might	 be	 related	 to	

increased	 anxiety,	 since	 the	 open	 field	 test	 with	 knockdown	 rats	 indicates	 no	

signs	of	anxiety	and	Nogo‐A	KO	mice	do	not	differ	in	anxiety‐related	behaviours	

from	their	WT	controls	(Willi,	Aloy	et	al.,	2009).	Social	withdrawal	and	isolation	

are	among	the	key	components	of	negative	symptoms	in	schizophrenia	and	thus	

social	 withdrawal	 observed	 in	 Nogo‐A	 knockdown	 rats	 supports	 a	

schizophrenia‐like	phenotype.	

Elucidating	schizophrenia‐related	gene	functions	in	transgenic	rats	offers	several	

important	 add‐ons	 to	 the	 research.	 Although	 mice	 can	 be	 used	 for	 a	 broad	

variety	 of	 behavioral	 task,	 the	 performance	 of	 rats	 in	 comparison	 is	 still	

outstanding.	Moreover,	when	it	comes	to	more	sophisticated	operant	procedure	

that	 requires	 recognition	 of	 complex	 changes	 to	 be	 rewarded,	 some	 of	 these	

tasks	 have	been	 reported	 only	 for	 the	 rat	 (Eagle,	 Lehmann	 et	 al.	 2009;	Abbott	

2010;	Enkel,	Gholizadeh	et	al.	2010).	Further,	rats	show	more	human‐like	social	
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behaviors	 than	solitary	 living	mice	 (Ben‐Ami	Bartal,	Decety	et	al.	2011);	 this	 is	

particularly	important	for	modelling	intermediate	phenotypes	for	disorders	such	

as	 autism	 and	 schizophrenia	 (Baker	 2011).	 Their	 larger	 size	 make	 rats	 more	

conducive	 to	 study	 by	 instrumentation	 and	 facilitates	 manipulation	 such	 as	

blood	 sampling,	 performing	 surgeries,	 in	 vivo	 electrophysiological	 recordings	

with	multiple	 electrodes	 (Colgin	 et	 al.,	 2009)	and	optogenetic	methods	 (Royer,	

Zemelman	et	al.	2010;	Witten,	Steinberg	et	al.	2011).	Rat	models	bridge	the	gap	

between	basic	research	and	drug	development,	since	they	are	widely	used	in	the	

pharmaceutical	 industry	 to	 predict	 how	 humans	will	 metabolize	 drugs	 and	 to	

identify	potential	side	effects.	Modelling	human	conditions	in	rats,	rather	than	in	

mice	enables	more	predictive	studies	of	complex	neurobehavioral	conditions.	In	

fact,	a	model	for	drug	addiction	resembling	the	human	situation	has	so	far	only	

developed	in	the	rat	(Deroche‐Gamonet,	Belin	et	al.	2004;	Hermann,	Weber‐Fahr	

et	al.	2012).	Since,	 several	behavioral	 tests	are	more	advanced	or	validated	 for	

the	 rat	 species,	 especially	 regarding	 the	 behavioral	 	 assessment	 of	 complex	

neuropsychiatric	disease	phenotypes	(e.g.	negative	symptoms	in	schizophrenia),	

the	analyzed	Nogo‐A	knock‐down	rat	model	provides	a	novel,	promising	tool	to	

study	a	potential	role	for	Nogo‐A	in	cognitive	and	behavioral	functions.	

Furthermore,	KO	models	are	not	the	most	suitable	tools	for	a	translational	study,	

due	to	e.g.	compensation	and	lethality	that	are	frequent	undesirable	side	effects	

of	conventional	KO	mice.	Indeed	in	Nogo‐A	KO	mice	was	found	a	significant	up‐

regulation	of	the	small	splice‐isoform	Nogo‐B	(Simonen,	Pedersen	et	al.	2003).	

During	 the	 design	 of	 rodent	 model	 must	 be	 considered	 that	 several	 genes	 of	

interest	 for	 neurobiological	 research,	 such	 as	 protein	 kinases,	 transcription	

factors,	and	growth	factors,	subserve	critical	functions	throughout	development.	

Chronic	 expression	 of	 a	 transgene	 could	 therefore	 cause	 a	 developmental	

abnormality	or	adaptation,	 leading	to	masking	or	distortion	of	the	acute	role	of	

the	protein	of	 interest.	 In	our	knockdown	model	 for	Nogo‐A	protein,	a	miRNA‐

based	approach	 targets	splice‐form	specific	mRNAs	and	 leaves	 the	endogenous	

genetic	locus	intact.	

A	 more	 sophisticated	 method	 to	 avoid	 the	 complication	 of	 functional	 or	

developmental	 compensation	 or	 drastic	 developmental	 phenotypes,	 is	

represented	 by	 the	 CreERT2/loxP‐recombination	 system	 that	 allows	 temporal	
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control	 and	 region	 specificity	 of	 conditional	 gene	 manipulation.	 Temporal	

control	of	recombination	is	a	prerequisite	 for	distinguishing	the	developmental	

role	 of	 a	 gene	 from	 its	 present	 function	 during	 adulthood.	 Although	 inducible	

Cre‐recombinase	mediated	gene	knockouts	have	been	very	successfully	applied	

in	 mice	 (Branda	 and	 Dymecki	 2004),	 development	 of	 gene	 inactivation	

technologies	 in	 rats	 lag	 behind	 those	 available	 for	 mice.	 Targeted,	 ubiquitous	

gene	 inactivation	 in	 the	 rats	 could	 be	 accomplished	 by	 using	 either	 RNAi	

technology	 (Dann,	 Alvarado	 et	 al.	 2006;	 Lim,	 van	 den	 Brandt	 et	 al.	 2008),	

embryonic	injection	of	zinc	finger	nucleases	(Geurts,	Cost	et	al.	2009)	and	due	to	

the	recent	availability	of	 rat	embryonic	stem	cells	 (Buehr,	Meek	et	al.	2008;	Li,	

Tong	 et	 al.	 2008)	 through	 classical	 homologous	 recombination	 (Tong,	 Li	 et	 al.	

2010).	So	 far,	no	 inducible	 tissue‐specific	gene	 inactivation	has	been	described	

for	 the	 rat.	 However	we	 took	 advantage	 of	 a	 fusion	 protein	 consisting	 of	 Cre‐

recombinase	 and	 a	 mutated	 ligand‐binding	 domain	 of	 the	 human	 estrogen	

receptor	 (ER)	 that	was	developed	 to	 achieve	 tamoxifen	dependent	Cre	 activity	

(Feil,	Wagner	et	al.	1997);With	this	method	we	generated	a	transgenic	rat	model,	

where	 we	 specifically	 inactivated	 the	 mRNA	 transport	 protein	 Staufen2	 in	

forebrain	excitatory	neurons,	by	crossing	the	Stau2	floxed	rat	line	with	a	CaMK‐

CreERT2	transgenic	line.	

	

5.2 KNOCK‐DOWN OF THE MRNA TRANSPORT PROTEIN STAUFEN 2 LEADS TO A 

SPECIFIC DEFICIT IN SPATIAL WORKING MEMORY 

	

In	 this	 study,	we	 investigate	 the	 function	of	 the	mRNA	 transport	protein	Stau2	

using	 the	 first	 transgenic	 rat	 model	 providing	 inducible	 tissue‐specific	 gene	

inactivation.	 Using	 a	 conditional	 knockdown	 approach	 in	 transgenic	 rats,	 we	

specifically	 inactivated	 Stau2	 in	 forebrain	 excitatory	 neurons	 of	 adult	 animals.	

We	 obtained	 variation	 in	 terms	 of	 spine	 morphology,	 LTD	 and	 LTP	 (data	 not	

shown)	 and	 behavior.	 In	 our	 recent	 study	 (manuscript	 in	 preparation;	

experiment	 in	 collaboration	 with	 Prof.	 Agnès	 Gruart	,	 Sevilla	 )	 hippocampal	

neurons	 of	 Stau2	 deficient	 rats	 show	 a	 significant	 reduction	 in	 spine	 density,	

however	 only	 by	 a	 factor	 of	 10%.	 In	 addition	 a	 significant	 reduction	 of	 spine	
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length	in	both	apical	and	basal	dendrites	of	CA1	pyramidal	neurons,	conflicting	

with	both	previous	studies	has	been	shown.	This	found	can	add	new	information	

useful	 to	 clarify	 	 the	 controversial	 discussion	 about	 	 the	 role	 of	 Stau2	 in	 spine	

morphology	 (Goetze,	 Tuebing	 et	 al.	 2006;	 Lebeau,	 DesGroseillers	 et	 al.	 2011).	

The	 other	 finding	 in	 our	 Sta2	 (‐/‐)	 rats	 model	 (manuscript	 in	 preparation)	 is	

significantly	 enhanced	 LTP	 in	 Stau2‐/‐	 animals	 that	 maintained	 over	 up	 to	 4	

days.	 In	 addition,	 low	 frequency	 stimulation,	 instead	 of	 inducing	 LTD	 as	 seen	

from	 control	 animals,	 elicited	 LTP	 in	 respective	 hippocampal	 subregions	

obtaining	 an	 opposite	 electrophysiological	 phenotype	 with	 enhanced	 LTD	

combined	with	impaired	LTP.	

Parallel	 to	 the	profound	changes	of	 long	 term	synaptic	plasticity	 in	vivo,	 Stau2	

deficient	animals	showed	a	specific	deficit	 in	spatial	working	memory,	whereas	

spatial	 reference	 learning	 and	 memory	 and	 fear	 conditioning	 remained	

unaltered.	 This	 is	 in	 agreement	 with	 several	 studies	 using	 conditional	 mouse	

mutants	 that	 show	 that	 an	 LTD	 impairment	 in	 the	 hippocampus	 leads	 to	 this	

profile	 of	 learning	 and	 memory	 phenotypes.	 One	 example	 is	 represented	 by	

knockout	mice	for	the	dopamine	transporter	(DAT‐KO),	which	show	a	selective	

and	 reversible	 impairment	 in	 hippocampal	 LTD,	 associated	 with	 a	 delayed	 in	

acquisition	 of	 place	 navigation	 but	 intact	 spatial	 memory	 in	 the	 Morris	 water	

maze	 (Morice,	 Billard	 et	 al.	 2007).	 Another	 study	 supports	 our	 findings	 and	

describes	a	mouse	model	with	a	specific	loss	of	NMDA	receptor‐dependent	LTD	

that	was	accompanied	by	a	deficit	 in	behavioral	 	 flexibility.	 In	the	Morris	water	

maze,	these	animals	learn	normally	but	exhibit	both	delayed	acquisition	of	a	new	

platform	location	and	perseveration	behavior.	In	the	delayed	non‐match	to	place	

T‐maze	 task,	 these	 animals	 also	 exhibit	 a	 flexibility	 deficit	 in	 the	 form	 of	

enhanced	inter‐trial	interference,	performing	normally	on	the	first	trial	of	a	day	

but	exhibiting	 impaired	performance	on	subsequent	 trials	 (Nicholls,	Alarcon	et	

al.	 2008).	 Accordingly,	 our	 model	 of	 Stau2‐/‐	 rats,	 characterized	 by	 an	

impairment	 of	 a	 proper	 synaptic	 mechanism	 to	 generate	 LTD,	 showed	 a	

maintained	 spatial	memory.	However	a	deficit	 in	 spatial	working	memory	was	

revealed.	 This	 is	 further	 sustained	 by	 another	work,	where	 hippocampal	 long‐

term	 depression	 was	 found	 to	 be	 an	 index	 of	 spatial	working	 memory,	 with	

parameters	of	memory	capability	strongly	correlated	with	the	magnitude	of	LTD	
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(Nakao,	 Ikegaya	 et	 al.	 2002).	 Moreover	 the	 same	 conclusion	 came	 from	 an	

experiment	with	acute	exposure	of	exogenous	cannabinoids	in	rats	that	impaired	

in	vivo	LTD	of	 synaptic	 strength	at	hippocampal	CA3‐CA1	synapses	and	spatial	

working	memory	(Han,	Kesner	et	al.	2012).	

The	 normal	 ability	 during	 the	 fear	 conditioning	 of	 Stau2‐/‐	 rats	 could	 be	

explained	 taking	 in	 consideration	 the	 enhanced	 LTP	 that	 is	 thought	 to	 be	

correlated	 with	 an	 enhanced	 cued	 and	 contextual	 fear	 memory	 (DeAndrade,	

Zhang	et	al.	2012).	

However,	 the	genetic	modifications	applied	 in	our	case	affect	mainly	excitatory	

neurons	within	the	prefrontal	cortex,	which	could	have	a	significant	contribution	

to	 the	observed	working	memory	deficit.	 In	 fact,	 the	prefrontal	cortex	has	 long	

been	proposed	to	be	exclusively	involved	in	cognitive	flexibility	and	in	working	

memory	functions	(Fuster	2000).	Interestingly,	a	recent	study	provided	evidence	

that	 within	 a	 spatial	 working	 memory	 task	 the	 prefrontal	 cortex	 and	 the	

hippocampus	 process	 short	 term	 memory	 in	 parallel,	 thereby	 able	 to	

compensate	 each	 other	 (Lee	 and	 Kesner	 2003).	 By	 combining	 lesion	 and	

pharmacological	inactivation	techniques,	Lee	and	Kesner	observed	that	temporal	

inactivation	of	the	hippocampus	always	led	to	a	specific	deficit	at	intermediate‐	

but	 not	 short‐term	 delay	 times	 in	 a	 delayed	 non‐matching	 to	 place	 paradigm	

(DNMP)	on	the	8	arm	radial	maze	when	the	prefrontal	cortex	was	intact.	Since	in	

our	study,	we	used	exactly	 the	same	DNMP	paradigm	to	 investigate	 the	spatial	

working	 memory,	 the	 fact	 that	 Stau2‐/‐	 rats	 display	 a	 specific	 deficit	 at	

intermediated	 but	 not	 short	 term	 delay	 times	 strongly	 suggests	 that	 the	

alterations	observed	in	hippocampal	synaptic	plasticity	account	for	the	deficit	in	

spatial	 working	memory.	 Indeed,	 a	mutant	mouse	model,	 having	 the	 opposite	

shift	in	bidirectional	synaptic	plasticity	compared	to	our	Stau2‐/‐	rats	(impaired	

LTP	and	enhanced	LTD),	displayed	an	increased	performance	in	spatial	working	

memory	 also	 only	 at	 intermediate	 delay	 times	 (Malleret,	 Alarcon	 et	 al.	 2010),	

matching	our	observations.	 In	 the	 light	of	all	 these	data,	our	study	can	provide	

further	 evidence	 that	 hippocampal	 LTD	 is	 an	 essential	 electrophysiological	

correlate	for	short	term	memory	storage	during	spatial	working	memory.	

Beside	 the	 well‐documented	 role	 in	 the	 acquisition	 and	 storage	 of	 spatial	

memory,	 the	 hippocampus	 is	 known	 to	 perform	mismatch	predictions	 thereby	
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serving	as	a	detector	of	spatial	novelty	(Lisman	and	Otmakhova	2001;	Kemp	and	

Manahan‐Vaughan	2007).	Whereas	the	recognition	of	a	novel	object	is	processed	

by	 the	 perirhinal	 cortex,	 the	 associations	 of	 an	 object	 to	 a	 place	 require	 the	

hippocampus	(Brown	and	Aggleton	2001).	In	addition,	LTD	in	CA1	is	facilitated,	

when	 rats	 explore	 a	new	environment	 containing	new	and/or	 familiar	 objects,	

whereas	 the	 exploration	 of	 a	 new	 environment	 itself	 impairs	 LTD	 (Kemp	 and	

Manahan‐Vaughan	 2004).	 Other	 works	 are	 consistent	 with	 our	 finding.	 For	

example	it	has	been	shown	that	deficit	of	LTD	impair	the	mechanisms	of	visual	

recognition	memory	(	Griffiths	S.	et	al.	2008).	Consistent	with	these	findings,	the	

hippocampal	 LTD	 deficit	 in	 Stau2‐/‐	 rats	 occurs	 in	 parallel	 with	 the	 animal’s	

inability	to	detect	a	novel	position	of	a	 familiar	object,	although	it	 is	capable	to	

recognize	a	novel	object.	Our	study	provides	therefore	strong	evidences	that	LTD	

may	 encode	 the	 novel	 acquisition	 of	 object	 location,	more	 than	 exploration	 of	

new	space.	Finally,	our	study	demonstrates	that	Stau2	is	essential	for	the	form	of	

LTD	necessary	for	detection	of	spatial	novelty.		

Aberration	in	RNA‐binding	protein	expression	was	already	associate	with	spatial	

learning	and	memory	deficits	 (Bolognani,	Qiu	et	al.	2007)	and	patients	affected	

by	 the	 Fragile	 X	 syndrome	 (FXS)	 are	 characterized	 by	 developmental	 and	

behavioral	 deficits,	 that	 include	 mild	 to	 severe	 mental	 retardation,	 autism,	

anxiety,	 aberrant	 attention,	 learning,	 and	 memory	 (Hagerman,	 2002;	Tsiouris	

and	 Brown,	 2004;	Jacquemont	 et	 al.,	 2007).	 Our	 work	 support	 the	 thesis	 that	

RNA‐binding	 protein	 as	 Stau2	 play	 a	 major	 role	 in	 synaptic	 plasticity	 and	

learning	and	memory,	and	therefore	could	be	a	good	animal	model	 to	simulate	

such	diseases.	

	

5.3 IMPLICATIONS OF STAU2 ON THE SYNAPTIC TAGGING HYPOTHESIS 

	

The	 synaptic	 tagging	 hypothesis	 elegantly	 explains	 the	 molecular	 and	 cellular	

mechanisms	 underlying	 learning	 and	 memory	 (Redondo,	 Okuno	 et	 al.	 2010).	

This	hypothesis	allows	us	to	think	about	the	properties	of	LTP	in	a	new	way.	It	is	

based	on	 the	 idea	 that	 the	neural	mechanisms	of	 initial	 long‐term	potentiation	

(LTP)	 expression	 (potentiation	 and	 tagging)	 can	 be	 dissociated	 from	 those	
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regulating	 the	 availability	 of	 plasticity‐related	 proteins	 (PRPs)	 that	 stabilize	

synaptic	change	(Wang	et	al.,	2010).	The	synaptic	tagging	hypothesis	suggests	an	

early	phase	in	which	synapses	are	prepared,	or	“tagged,”	for	protein	capture,	and	

a	late	phase	in	which	those	proteins	are	integrated	into	the	synapses	to	achieve	

memory	consolidation.		

However,	 its	 major	 challenge	 remains	 the	 identification	 of	 a	 “synaptic	 tag”	

molecule	 necessary	 for	 positioning	 plasticity	 related	 proteins	 in	 activated	

synapses.	 Although	 a	 protein	 (Homer1a)	 has	 been	 shown	 to	 be	 specifically	

targeted	by	a	synaptic	tag	(Okada,	Ozawa	et	al.	2009),	the	majority	of	plasticity	

related	 proteins	 are	 synthesized	 within	 the	 “tagged”	 dendritic	 spine	 by	 local	

translation	of	mRNAs,	brought	to	the	synapse	by	RNA	transport	granules	(Doyle	

and	Kiebler	2011).	Since	so	far	no	synaptic	storage	of	mRNAs	could	be	identified,	

Doyle	 and	 Kiebler	 proposed	 the	 “sushi	 belt	 model”	 for	 dendritic	 transport	 of	

mRNAs	of	plasticity	related	genes.	In	this	model,	different	types	of	RNA	transport	

granules	 transport	mRNAs	specific	 for	a	certain	 form	of	synaptic	plasticity	and	

circulate	along	the	dendrite,	where	are	incorporated	on	demand	into	a	dendrite	

that	underwent	synaptic	stimulation	(Doyle	and	Kiebler	2011).	Several	findings	

support	this	idea.	It	has	been	shown	that	MAP2,	αCaMKII	and	ß‐actin	localize	in	

different	 RNA	 granules,	 which	 are	 transported	 fast	 along	 the	 dendrites	 of	

hippocampal	 neurons.	 In	 addition	mRNAs	 are	 present	 in	 very	 few	 copies	 in	 a	

transport	particle	 (Tubing,	Vendra	et	al.	2010;	Mikl,	Vendra	et	al.	2011).	 It	has	

been	 shown	 for	 the	 Stau2	 analogue	 Stau	 1,	 that	 its	 knockdown	 leads	 to	 an	

impairment	of	LTP	and	an	enlargement	of	dendritic	spines	 in	organotypic	slice	

cultures	(Lebeau,	Maher‐Laporte	et	al.	2008;	Lebeau,	DesGroseillers	et	al.	2011).	

This	is	the	exact	opposite	modification	of	synaptic	plasticity	in	comparison	to	the	

one	observed	in	our	Stau2knock‐down	model	(data	not	shown).	Although	much	

more	 investigations	need	 to	be	done,	 Stau1	and	Stau2	RNA	 transport	 granules	

might	be	sufficient	for	bidirectional	regulation	of	synaptic	plasticity.	

Our	 findings,	 moreover,	 support	 an	 RNA	 transport	 function	 for	 Stau2	 protein.	

This	becomes	evident	when	comparing	the	synaptic	plasticity	changes	in	Stau	‐/‐	

rats	with	those	obtained	in		fmr1	knockout	mouse	model,	for	Fragile	X	syndrome	

(Bakker,	Verheij	et	al.	1994).	Although	FMRP,	the	product	of	fmr1gene,	has	been	

implicated	 in	 the	 regulation	 of	 mRNA	 transport	 to	 dendrites	 (Dictenberg,	
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Swanger	et	al.	2008),	its	major	function	is	the	repression	of	mRNA	translation	at	

a	 local	 synapse,	which	 is	 relieved	 upon	mGluR	 activation	 (Bassell	 and	Warren	

2008).	 Interestingly,	 fmr1	 knockout	 mice	 display	 enhanced	 LTD	 (Huber,	

Gallagher	et	al.	2002)	and	an	enlargement	of	dendritic	spines	(Comery,	Harris	et	

al.	1997),	which	is	the	opposite	of	what	we	observe	in	Stau2	deficient	rats.	Since	

Stau	proteins	and	FMRP	colocalize	in	RNA	transport	granules	(Kanai,	Dohmae	et	

al.	2004),	 these	data	suggest	that	Stau2	might	be	necessary	to	anchor	mRNA	of	

plasticity	 related	 genes	 to	 the	 transport	 granules,	 whereas	 FMPR	 actively	

represses	their	translation	within	the	dendritic	spines.		

	

6. CONCLUSION  

 

6.1  THE RAT AS A PREFERRED MODEL IN NEUROSCIENCE 

	

Although	 mice	 can	 be	 used	 for	 a	 broad	 variety	 of	 behavioral	 tasks,	 the	

performance	of	rats	 in	these	tasks	 is	still	outstanding.	One	good	example	 is	the	

delayed	 non‐matching	 to	 place	 radial	 arm	 maze	 task,	 applied	 here	 for	

investigating	 spatial	 working	 memory.	 Whereas	 mice	 already	 drop	 to	 chance	

level	 at	delay	 time	of	1	min	 (Saxe,	Malleret	 et	 al.	 2007;	Malleret,	Alarcon	et	 al.	

2010),	wild‐type	Sprague	Dawley	rats	still	perform	well	at	delay	times	of	10	min.	

When	 it	 comes	 to	 more	 sophisticated	 operant	 procedures	 that	 require	

recognition	of	complex	changes	to	be	rewarded,	some	of	these	tasks	have	been	

reported	 only	 for	 the	 rat	 (Eagle,	 Lehmann	 et	 al.	 2009;	 Abbott	 2010;	 Enkel,	

Gholizadeh	et	al.	2010).	It	will	be	very	difficult	to	train	mice	for	such	a	paradigm	

in	reasonable	time	or	may	be	not	possible	at	all.	Further,	rats	show	more	human‐

like	 social	 behaviors	 than	 solitary	 living	 mice	 (Ben‐Ami	 Bartal,	 Decety	 et	 al.	

2011).	 This	 is	 particularly	 important	 for	modeling	 intermediate	 phenotypes	 in	

disorders	such	as	autism	and	schizophrenia	(Baker	2011).	Their	larger	size	make	

rats	 more	 conducive	 to	 study	 by	 instrumentation	 and	 facilitates	manipulation	

such	 as	blood	 sampling,	 surgeries,	 in	 vivo	 electrophysiological	 recordings	with	

multiple	 electrodes	 (Colgin	 et	 al.,	 2009),	 and	 optogenetic	 methods	 (Royer,	
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Zemelman	 et	 al.	 2010;	 Witten,	 Steinberg	 et	 al.	 2011).	 Moreover,	 rat	 models	

bridge	 the	 gap	 between	 basic	 research	 and	 drug	 development,	 since	 they	 are	

widely	 used	 in	 the	 pharmaceutical	 industry	 to	 predict	 how	 humans	 will	

metabolize	 drugs	 and	 to	 identify	 potential	 side	 effects.	 Modeling	 human	

conditions	 in	 rats,	 rather	 than	 in	 mice	 enables	 more	 predictive	 studies	 of	

complex	 neurobehavioral	 conditions.	 In	 fact,	 a	 model	 for	 drug	 addiction	

resembling	 the	human	situation	has	so	 far	only	developed	 in	 the	rat	 (Deroche‐

Gamonet,	 Belin	 et	 al.	 2004;	 Hermann,	 Weber‐Fahr	 et	 al.	 2012).	 The	 two	 rat	

models,	presented	in	this	work,	confirm	these	observations.	Indeed	only	through	

the	knock‐down	of	Nogo‐A	in	a	rat	but	not	in	mouse	(Willy	et	al.,	2010),	we	could	

unravel	 Nogo‐A‐dependent	 lower	 exploration	 and	 reduced	 social	 contact	

behavior.	 These	 are	 features	 already	 shown	 in	 schizophrenic	 patients	 but	

difficult	 to	 recreate	 in	 a	 murine	 model.	 Until	 now,	 in	 rats	 most	 of	 the	

schizophrenic‐like	 behavior,	 especially	 the	 negative	 were	 obtained	 only	 after	

pharmacological	 induction	 (Sams‐Dodd,	 Lipska	 et	 al.	 1997;	 Javitt	 and	 Zukin	

1991,	 Rung,	 Carlsson	 et	 al.	 2005).	 Our	 rat	 model	 is	 one	 of	 the	 first	 showing	

cognitive	deficit	and	negative	signs	for	schizophrenia	obtained	through	a	genetic	

manipulation.		

The	 miRNA	 induced	 downregulation	 of	 the	 CNS	 protein	 Nogo	 clearly	

demonstrated	 a	 reduction	 in	 Nogo‐A	 brain	 expression	 and	 led	 to	 cognition	

impairment	 beside	 a	 sensorimotor	 gating	 impairment	 and	 decrease	 of	 social	

behavior.	

	

6.2 NOGO‐A KNOCK‐DOWN AND STAU2 INDUCIBLE KNOCK‐DOWN 

	

The	Nogo‐A	knockdown	rat	resulted	a	good	model	for	the	study	of	schizophrenia.	

With	 its	 cognitive	 and	 negative	 schizophrenia‐like	 symptoms	 it	 give	 a	 valid	

support	 on	 schizophrenia	 research,	 defining	 more	 clearly	 the	 genetic	

background	of	this	still	poorly	understood	disease.	This	animal	model	may	also	

provide	a	tool	for	testing	compounds	created	selectively	for	negative	or	cognitive	

symptoms,	 considering	 the	 non‐satisfactory	 patient	 response	 to	 current	

antipsychotics,	This	animal	model	can	help	to	increase	our	therapeutic	power	for	
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example	 by	 controlling	 or	 better	 preventing	 the	 altered	 characteristics	 of	 the	

disease	in	its	evolution,	rather	than	focusing	only	on	reverse	symptoms.	

The	time	conditional	and	forebrain–specific	knockdown	of	Stau2	was	performed	

for	 the	 first	 time	 in	a	 rat	and	validates	 the	 transgenic	miRNA	 technology	as	an	

useful	tool	in	neuroscience,	in	a	preferred	model,	such	the	rat.	These	molecular	

and	 behavioral	 data	 increase	 our	 knowledge	 about	 the	 role	 of	 mRNA	

transportation	 before,	 during	 and	 after	 a	 synaptic	 event	 and	 even	 more	

underline	 the	 importance	 of	 this	 mechanism	 in	 memory	 formation.	 Further	

experiment	 are	 required	 to	 discover	 Stau2	 specific	 target	 molecules	 and	 the	

mechanism	 through	 which	 Stau2	 protein	 plays	 its	 role	 in	 dendritic	 mRNA	

localization	 and	 local	 protein	 synthesis	 at	 individual	 synapses	 with	 functional	

and	structural	remodeling	of	synapses	during	long‐term	memory.		
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