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Abstract

In this thesis the measurement of the B0
s–B0

s oscillation frequency, ∆ms, in the
decay B0

s→ D−s π
+ is presented. It is an important step to prove that the LHCb

experiment is able to resolve the fast B0
s–B0

s oscillation and, thus, can perform
precision measurements in the B0

s system to search for physics beyond the Standard
Model. Examples for such searches are the measurement of the weak mixing phase,
φs, in the decays B0

s→ J/ψφ and B0
s→ J/ψπ+π− [1] and the CKM-angle, γ, in

the decay B0
s→ D±s K

∓ [2]. For the measurement of ∆ms presented in this thesis
a data set, accumulated by the LHCb experiment at the CERN LHC in 2011,
is used. The data sample corresponds to an integrated luminosity of 1 fb−1 and
about 34,000 signal B0

s candidates are reconstructed with an average decay time
resolution of 45 fs. To determine the production flavour of the B0

s candidates both
opposite and same side kaon flavour tagging algorithms are used with effective
tagging efficiencies εOST

eff = 2.4± 0.4% and εSST
eff = 1.2± 0.3%. Both, the excellent

decay time resolution and performance by the flavour tagging algorithms are
prerequisits for a precision measurement of ∆ms. The oscillation frequency is
measured to be ∆ms = 17.768 ± 0.023 (stat) ± 0.006 (syst) ps−1, which is the
world’s best measurement of this quantity.

Kurzfassung

In dieser Arbeit wird die Messung der Oszillationsfrequenz im B0
s–B0

s System ∆ms

im Zerfall B0
s→ D−s π

+ vorgestellt. Diese Messung stellt eine wichtige Vorausset-
zung für die Suche nach Neuen Physik Phänomenen im B0

s -mixing Sektor am LHCb
Experiment dar, wie zum Beispiel die Messung der schwachen CP -verletzenden
Phase φs in den Zerfällen B0

s → J/ψφ und B0
s → J/ψπ+π− [1] oder des CKM-

Winkels γ im Zerfall B0
s → D±s K

∓ [2]. Die Messung der Oszillationsfrequenz
∆ms demonstriert, dass das LHCb Experiment in der Lage ist die schnelle B0

s–B0
s

Oszillation aufzulösen und Präzisionsmessungen im B0
s -System durchzuführen.

Für die Messung der Oszillationsfrequenz wurde der Datensatz benutzt, der im
Jahr 2011 vom LHCb Experiment gesammelt wurde. Dieser entspricht einer
integrierten Luminosität von 1 fb−1 und enthält ca. rekonstruierte 34.000 B0

s -
Signalkandidaten. Die mittlere Eigenzeitauflösung beträgt 45 fs. Um den Produk-
tionsflavour der B0

s -Mesonen zu bestimmen werden sowohl Opposite-Side- als auch
Same-Side-Kaon-Flavourtaggingalgorithmen benutzt mit effektiven Taggingleis-
tungen εOST

eff = 2.4± 0.4% und εSST
eff = 1.2± 0.3%. Sowohl die exzellente Eigen-

zeitauflösung als auch die ausgezeichnete Leistung der Flavourtaggingalgorithmen
sind Voraussetzungen für die Präzisionsmessung von ∆ms. Der gemessene Wert der
Oszillationsfrequenz beträgt ∆ms = 17.768 ± 0.023 (stat) ± 0.006 (syst) ps−1,
welches die weltbeste Messung dieser Größe darstellt.
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CHAPTER 1

Introduction

The Standard Model of particle physics [3–5] describes the elementary particles
which are the fundamental building blocks of matter and their interactions to the
best of today’s knowledge. It has been extensively tested over the last decades
in laboratory experiments and the results agree well with the predictions made
by the theory. However there are several experimental observations that are not
answered in the Standard Model, such as:

Baryon asymmetry: Why does our universe consist mainly of matter and not
in equal parts of matter and antimatter as predicted by the theory [6, 7]?

Dark Matter/Energy: What is the origin of Dark Matter and Dark Energy,
which make up 27% and 68% of the universe, respectively [8–10]?

Additionally there are conceptual problems of the Standard Model, for example:

Gravity: Why can the gravitational force and the theory of General relativity
not be included in the Standard Model [11,12]?

Hierarchy problem: Why is the measured Higgs-Boson mass so low compared
to the Planck scale [11,13,14]?

There are two conceptually different approaches to look for effects from physics
beyond the Standard Model (BSM): direct and indirect searches. Direct searches
aim at directly producing new heavy particles and are, thus, performed at the
highest possible energies. This approach is currently mostly pursued by the
ATLAS and CMS collaboration at the LHC.

1



2 Chapter 1. Introduction

In indirect searches, precision measurements of observables in quantum loop
processes are performed. Any deviation from the theoretical predictions can be
attributed to physics beyond the Standard Model. Especially accurate theoretical
predictions can be made in the quark sector of the Standard Model, which
therefore is an excellent place for indirect searches. Transitions in the quark sector
are described by the so-called CKM-mechanism introduced by Kobayashi and
Maskawa in 1973 [15] (see Section 2.2). Especially decays from b hadrons have
been used to study the flavour sector of the Standard Model. b quarks can decay
into all other quark species, with exception of the t quark, which gives analyses of
b hadron decays access to a large variety of independent ways to measure CKM
parameters.

Dedicated b-physics experiments include the “B-factories” BaBar and Belle which
were e+e− accellerators with a center-of-mass energy of a bb resonance to produce
large amounts of B mesons. These experiments were the key in establishing the
CKM-mechanism which resulted in the Nobel Prize for Kobayashi and Maskawa
in 2008. LHCb is the next-generation B-physics experiment which now exploits
the B0

s system for indirect searches for physics beyond the Standard Model.

Most of the produced data samples at the “B-factories” were limited to the light
B meson species (B0, B+). The heavier B0

s mesons are only produced in large
amounts at hadron colliders like the Tevatron and especially now at the LHC.
Despite its short running time, the LHCb experiment at the LHC had in 2011
already collected a large sample of B0

s mesons.

Neutral B mesons pose a particularly interesting probe of the Standard Model since
these particles can oscillate into their antiparticles via quantum loop processes (B
mixing, see Section 2.3) which are susceptible to BSM contributions. While the
lighter B0 mesons have been studied extensively at the B-factories time-dependent
CP violation observables in the B0

s meson system like for example the weak mixing
phase φs [1] and the CKM angle γ in the decay B0

s→ D±s K
∓ [2] still leave room

for BSM contributions. Both analyses must resolve the B0
s–B0

s oscillation with a
frequency ∆ms which is 35 times larger than in the B0 meson system. Therefore,
the measurement of the oscillation frequency ∆ms which is presented in this thesis,
is an important benchmark for the LHCb experiment to prove that the fast B0

s

oscillation can be resolved and precision measurements in the B0
s -mixing sector

are possible at LHCb.

In 2006 the D0 collaboration gave a first two-sided limit on the B0
s–B0

s oscillation
frequency, ∆ms, at 17 ps−1 < ∆ms < 21 ps−1 at a 90% confidence level [16].
Shortly afterwards the CDF collaboration published a measurement of ∆ms =
17.77± 0.10(stat)± 0.07(syst) ps−1 [17].

The analysis presented in this thesis describes the measurement of ∆ms using
B0
s → D−s π

+ decays at LHCb which is the “Golden Channel” to measure B0
s
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oscillations. Even with a small data sample corresponding to the first 37 pb−1 of
data taken at the LHC in 2010, the LHCb experiment has been able to give a
comparable result [18] to the measurement by the CDF collaboration [17]. An
update with 340 pb−1 lead to a preliminary result [19] and the final measurement
utilizing the full dataset taken by LHCb during 2011 corresponding to 1 fb−1

integrated luminosity has been published in 2013 [20] and is described in detail
in this thesis. In each round of the analysis it has been refined and optimized
to achieve the best possible sensitivity for ∆ms leading to the world’s best
measurement of this quantity. The author of this thesis has been the main
contributor to all these three analysis updates.

This thesis is organized in the following way: In Chapter 2, an outline of the
theoretical background of flavour physics in the Standard Model is given and in
Chapter 3 an overview of the LHCb experiment is presented with the individual
subsystems and software framework. The analysis strategy is summarized in
Chapter 4 and the signal selection for the decay B0

s → D−s π
+ in Chapter 5.

Chapters 6 and 7 address the main experimental challenges for this analysis,
namely flavour tagging and the decay time resolution and acceptance. The two
dimensions of the fit with their probability density functions are explained in
Chapters 8 and 9. The validation of the fit procedure is briefly described in
Chapter 10 and in Chapter 11 the systematic uncertainties on this measurement
are summarized. Finally, Chapter 12 gives a short summary and conclusion.





CHAPTER 2

Theory

In this chapter the theoretical background of B0
s–B0

s mixing is provided. First,
the Standard Model of particle physics (SM) is briefly summarized [3–5]. Then, a
more detailed description of the quark flavour sector and the CKM formalism is
given, the mixing of neutral B mesons is introduced and the formalism describing
both mixing and decay is discussed. Finally, the theoretical prediction for the
B0
s–B0

s oscillation frequency, ∆ms, is given.

2.1. The Standard Model of Particle Physics

The Standard Model of particle physics is a relativistic, renormalizable quantum
field theory which combines the theory of strong interactions, Quantum Chromo
Dynamics (QCD), with the electroweak theory by Glashow-Salam-Weinberg [3–5].
Thus it is a unified theory describing three of the four fundamental forces in
nature, namely the electromagnetic force, the weak force and the strong force.
The gravitational force has not yet been incorporated in the Standard Model.
There is a tremendous amount of literature available on the Standard Model. The
brief overview presented in this section is based on [11,21,22].

The fundamental particles that build up the known matter in the universe consist
of spin 1/2 fields. In total there are 12 elementary fermion fields which are grouped
according to the charges they carry. Six of the fermions carry color charge (quarks)
which makes them able to interact via the strong interaction. The remaining six

5



6 Chapter 2. Theory

Quarks

Generation Flavour
Electric
Charge Mass

1st u 2/3 e 2.3+0.7
−0.5 MeV/c2

d -1/3 e 4.8+0.7
−0.3 MeV/c2

2nd c 2/3 e 1.275 ± 0.025 GeV/c2

s -1/3 e 95 ± 5 MeV/c2

3rd t 2/3 e 173.07 ± 0.52 ± 0.72 GeV/c2

b -1/3 e 4.18 ± 0.03 GeV/c2

Table 2.1.: Quarks of the Standard Model. Masses are taken
from [23].

Leptons

Generation Flavour
Electric
Charge Mass

1st e− −e 511 keV/c2

νe 0 < 2 eV/c2

2nd µ− −e 106 MeV/c2

νµ 0 < 2 eV/c2

3rd τ− −e 1776.82 ± 0.16 MeV/c2

ντ 0 < 2 eV/c2

Table 2.2.: Leptons of the Standard Model. Masses are taken
from [23].

particles that do not carry color charge are called leptons. The fermion fields
are divided into three generations with the same characteristics except for their
masses. Each generation includes one lepton that carries one unit of elementary
electric charge (e−, µ−, τ−) and one uncharged lepton, called neutrino (νe, νµ, ντ ).
Each quark generation consists of one up-type quark (u, c, t), with electric charge
2/3 and one down-type quark (d, s, b), with electric charge -1/3. The fermionic
fields of the Standard Model are summarized in Tables 2.1 and 2.2.

The Standard Model Lagrangian is invariant under local gauge transformations of
the symmetry group SU(3)C ⊗ SU(2)L ⊗ U(1)Y . This symmetry introduces the
interactions between the fermionic fields mediated by spin-1 gauge bosons. The
massless photon, γ, and gluons, g, are mediators for the electromagnetic force
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Bosons

Boson Spin Mass couples to

Photon γ 1 0 el. charge
Gluon g 1 0 color
W+ 1 80.4 GeV/c2 weak isospin

W− 1 80.4 GeV/c2 weak isospin

Z0 1 91.2 GeV/c2 weak isospin & el.
charge

H0 0 125.9±0.4 GeV/c2 mass
Table 2.3.: Bosons of the Standard Model including gauge bosons
mediating the forces and the Higgs boson. Masses are taken from
[23].

and strong force, respectively. The massive W± and Z0 bosons mediate the weak
interaction. The scalar Higgs boson H0 is not a mediator of a fundamental force
but the consequence of the spontaneous breaking of the electroweak symmetry,
which will be described in Section 2.1.3. The fundamental bosons of the Standard
Model are listed in Table 2.3.

2.1.1. Quantum Chromo Dynamics

Quantum Chromo Dynamics is the theory describing strong interactions. SU(3)C
is the gauge group of QCD, where the index C denotes the charge color which
is carried only by quarks. The color charge can take the quantum numbers red,
green and blue, as well as the corresponding anti-colors. The gauge bosons are
the 8 generators of SU(3)C, which are called gluons. They carry color charge as
well which results in three and four gluon self-interactions.

These gluon self-interactions give rise to a large dependence of the coupling
constant of the strong interaction, αS, on the transferred four-momentum q2. The
coupling becomes weak for large q2, which is an effect that is called “asymptotic
freedom”. It becomes very strong for low values of q2 which gives rise to an effect
called “confinement”. It is the reason why quarks exist only in bound states in
nature, so-called hadrons. There are two known types of hadrons. Mesons consist
of a quark–antiquark pair and baryons consist of three quarks or three antiquarks.
The lightest baryons are the constituents of atomic nuclei: protons and neutrons.
Due to the self-interaction of gluons the strong force has a very short range, even
though gluons are massless.
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2.1.2. Electroweak Sector of the Standard Model

SU(2)L ⊗ U(1)Y is the gauge group of the unified electroweak theory. It describes
electromagnetic and weak interactions. The electroweak gauge bosons are the
three W bosons W µ

i and a boson Bµ. The charges to which the electroweak
gauge bosons couple are the weak isospin, T , with third component T3 and the
hypercharge, Y = Q− T3, with the electric charge Q.

The fermionic fields are divided into doublets of one up-type and the corresponding
down-type quark, which carry weak isospin (left-handed). Similar doublets exist
for charged leptons and the corresponding neutrinos. Singlets which have weak
isospin T = 0 exist as well (right-handed) for all particles except neutrinos. For
antiparticles the right-handed fields are weak isospin doublets and the left-handed
fields are the singlets. The index L in SU(2)L denotes that the W µ

i bosons only
couple to the left-handed particle doublets and right-handed antiparticle doublets
of the weak isospin. Bµ bosons couple to particles carrying hypercharge, Y ,
independent of the weak isospin.

The SU(2)L ⊗ U(1)Y symmetry is broken by the Higgs-mechanism, which will be
discussed in Section 2.1.3. One result of this is, that the physical mediators of
the weak and electromagnetic force are not the W µ

i and Bµ bosons, but linear
combinations of those.

The electromagnetic interaction is mediated via the photon which is a linear
combination of the W µ

3 and the Bµ bosons. It couples to the electric charge Q,
but doesn’t carry charge itself. This together with the fact that the photon is
massless, implies that the range of the electromagnetic force is very large.

The weak interaction is divided into the charged and neutral currents. The charged
current is mediated by the W± bosons which are linear combinations of the W µ

1
and W µ

2 bosons. The neutral current of the weak interaction is mediated by the
Z0 boson which is like the photon, a linear combination of the W µ

3 and the Bµ

bosons. Since the mediators of the weak interaction are massive they are rather
short ranged interactions.

Due to the fact that W± and Z0 bosons couple differently to left- and right-
handed particles, the weak interaction does not conserve Parity, P , which is the
transformation of spatial inversion. The charged current of the weak interaction
is also the only possible interaction in the Standard Model between quarks from
different generations. Flavour changing neutral currents (FCNC) are forbidden in
the Standard Model in tree-level processes.
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2.1.3. Electroweak Symmetry Breaking

Experimental measurements have shown that the mediators of the weak interaction,
the W± and Z0 bosons, are massive. However separate mass terms for these
particles in the Standard Model Lagrangian would violate local gauge invariance.
Thus, another mechanism has to be responsible for the masses of these particles
as well as the massive fermions. In the Standard Model this mechanism is the
Higgs-mechanism which introduces an isospin doublet, φ, of two complex scalar
fields with the potential

, whichmakeuptheatomicnucleiV (φ) = µ2φ†φ+ λ(φ†φ) (2.1)

with µ2 < 0 and λ > 0.

This potential leads to a non-zero vacuum expectation value which spontaneously
breaks the electroweak SU(2)L ⊗U(1)Y symmetry down to the unbroken U(1)Q
electric charge symmetry. Thus, the photon is left massless. The massive gauge
bosons acquire their mass via the covariant derivatives in the kinetic Higgs term of
the Standard Model Lagrangian (Dµφ)†Dµφ. As a consequence also the fermionic
fields acquire mass via the Yukawa terms which will be discussed in more detail
in Section 2.2.

The Higgs-mechanism aside from introducing masses to the elementary particles
predicts one massive spin-0 particle, the Higgs-boson. Until recently the Higgs-
boson was the only particle in the Standard Model that had not yet been observed.
However, both the ATLAS [24] and CMS [25] collaborations published in 2012
the observation of a Higgs-like particle.

2.2. The Flavour sector of the Standard Model
and CKM formalism

As mentioned in the previous section the fermionic fields in the Standard Model
acquire mass through the so-called Yukawa terms in the Lagrangian. For the
quark fields this can be written as

LY = − v√
2
(
d̄′LYdd

′
R + ū′LYuu

′
R

)
+ h.c. , (2.2)

where the Higgs field, φ, is replaced by its vacuum expectation value v. d′ and
u′ denote the weak eigenstates of the down-type (d, s, b) and up-type (u, c, t)
quarks. d̄′ and ū′ are the weak eigenstates of the corresponding antiparticles.

The Yukawa matrices Yd and Yu have non-zero diagonal elements which results in
the weak eigenstates not being identical to the physical mass eigenstates. To derive
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the mass eigenstates, the Yukawa matrices are diagonalized to mass matrices Md

and Mu using unitary transformations V d
L , V u

L , V d
R and V u

R

Md = v√
2
V d

L Yd(V d
R)† Mu = v√

2
V u

L Yu(V u
R )†. (2.3)

These unitary matrices are hence absorbed into the quark fields transforming the
weak eigenstates d′ and u′ into the mass eigenstates d and u.

qL = V q
L q
′
L , qR = V q

Rq
′
R , with q = d, u (2.4)

These transformations leave all parts of the Standard Model Lagrangian unchanged
except for the term describing the charged current of the weak interaction since it
is the only interaction combining up-type with down-type quarks.

LCC = − g

2
√

2
[
ū′LW

+
µ γ

µ(1− γ5)d′L + d̄′LW
−
µ γ

µ(1− γ5)u′L
]
. (2.5)

Here the transformation from the weak eigenstates to the mass eigenstates leads
to an additional factor1 V u

L V
d

L
† which is called the Cabbibo-Kobayashi-Maskawa

(CKM) matrix [15]
VCKM = V u

L V
d

L
†
, (2.6)

which transforms Equation 2.5 to

LCC = − g

2
√

2
[
ūLW

+
µ γ

µ(1− γ5)VCKMdL + d̄LW
−
µ γ

µ(1− γ5)V †CKMuL
]
. (2.7)

The CKM-matrix is a complex, unitary 3 × 3 matrix relating the left-handed
down-type quarks with the left-handed up-type quarks

VCKM =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 . (2.8)

Since the matrix elements Vij are complex numbers, this results in 18 free pa-
rameters. Due to VCKM being unitary, nine of these parameters are fixed. Five
additional parameters are absorbed in unobservable, relative phases between the
quark fields. Thus, VCKM can be parametrized by the four remaining parameters,
using three Euler angles, θ12, θ23, and θ13 and one phase δ. Using the abbreviations
sij = sin θij and cij = cos θij the standard parametrization of the CKM-matrix is
given by [23]

VCKM =

1 0 0
0 c23 s23
0 −s23 c23


 c13 0 s13e

−iδ

0 1 0
−s13e

iδ 0 c13


 c12 s12 0
−s12 c12 0

0 0 1



=

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13


(2.9)

1In the case of the neutral current linking up-type quarks to up-type quarks this factor would
be V u

L V
u
L
† which is equal to 1 due to the unitarity of V u

L .
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Another common parametrization of the CKM-matrix is the so-called Wolfenstein
parametrization [26]. It illustrates better the hierarchy of the individual matrix
elements. It uses the real parameters λ, A, ρ and η with the definitions

λ = s12

Aλ2 = s23

Aλ3(ρ+ iη) = s13e
iδ.

(2.10)

The parameter λ ≈ 0.23 is used as expansion parameter to estimate the size of
the matrix elements. The parametrization up to order λ3 is given by

VCKM =

 1− λ2

2 λ Aλ3(ρ− iη)
−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4). (2.11)

The diagonal elements of the matrix are O(1) which define transitions between
quarks within the same generation. The matrix elements describing transitions
between the first two generations are suppressed by a factor λ, between the second
and third generation by λ2 and between the first and third generation by λ3.

The parameter η describes the imaginary part of the CKM-matrix. It is also
responsible for the effect of CP violation in the Standard Model. CP transforms
processes for particles into those for antiparticles by applying a charge conjugation
(C) and a parity transformation (P ) which is a spatial inversion of all fields2.
Applying the CP transformation to the charged current Lagrangian gives

LCC = − g

2
√

2
[
d̄LW

−
µ γ

µ(1− γ5)V T
CKMuL + ūLW

+
µ γ

µ(1− γ5)V ∗CKMdL
]
. (2.12)

which is identical to Equation 2.7, if VCKM = V ∗CKM, i.e. if all components of
VCKM were real. Therefore, the non-zero parameter η is the unique source of CP
violation in the Standard Model.

Due to the unitarity condition of the CKM-matrix (V †CKMVCKM = 1), multiplying
the third row with the first column gives the relation

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (2.13)

Five similar relations can be derived, but from now on this relation is used as
an example to illustrate the derivation of CKM-matrix elements. Since these are
complex numbers, Equation 2.13 can be interpreted as a triangle in the complex
plane. The corresponding angles of the triangle are

α ≡ arg
(
− VtdV

∗
tb

VudV ∗ub

)
β ≡ arg

(
−VcdV

∗
cb

VtdV ∗tb

)
γ ≡ arg

(
−VudV

∗
ub

VcdV ∗cb

)
. (2.14)
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Figure 2.1.: Unitarity triangle from the first row and third column
of the CKM matrix. Taken from [23]

Figure 2.1 shows this triangle with one side normalized to VcdV ∗cb. The coordinates
of the apex of the triangle are ρ and η, which are related to the Wolfenstein
parameters ρ and η as

ρ = ρ

(
1− λ2

2

)
and η = η

(
1− λ2

2

)
. (2.15)

The parameters of the CKM-matrix are not predicted by the Standard Model.
However, they are experimentally accessible. Since all sides as well as the angles of
the triangle can be measured, it is overconstrained. Figure 2.2 shows the current
experimental status of the measurement of the apex of this unitarity triangle. It
can be seen that all measurements agree well and the apex is well determined.
The Wolfenstein parameters are measured to be

λ = 0.22535± 0.00065 , A = 0.817± 0.015
ρ = 0.136± 0.018 , η = 0.348± 0.014

(2.16)

2To transform particles into their antiparticles the parity transformation must be included
because W± and Z0 bosons couple similarly to left-handed particles and right-handed
antiparticles
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Figure 2.2.: Experimental status of the unitarity triangle defined in
Equation 2.13. Shaded areas correspond to 95% Confidence Intervals
of the single measurements. Taken from [23]

2.3. Neutral B meson mixing

This brief overview of neutral B meson mixing is based on [27–29]. In these
references more detailed introductions into the mixing phenomenology are given.

2.3.1. Introduction to neutral B meson mixing

As mentioned in Section 2.1.1 quarks only exist bound in hadrons. Neutral B
mesons contain one b quark and one d or s quark respectively. The phenomeno-
logical description of mixing applies to both neutral B mesons in the same way.
Thus, they are denoted as B0

q where q stands for either d or s.

The process of B meson mixing describes transitions between the flavour eigen-
states B0

q = |bq〉 to B0
q = |bq〉 and vice versa. This requires transitions of the

form b→ d, s. However, as mentioned in Section 2.1.2, flavour changing neutral
currents (FCNC) are forbidden at tree-level in the Standard Model, but allowed
in higher order processes, like loop diagrams (see Figure 2.3).

Therefore, the processes for B meson mixing in the Standard Model are given by
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𝒃 𝒅, 𝒔 𝒖, 𝒄, 𝒕 

𝑾− 

𝒁𝟎 

Figure 2.3.: Feynman diagram of the flavour changing neutral
current (FCNC) in a loop process, which is allowed in the Standard
Model.
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Figure 2.4.: Dominant Feynman diagrams for neutral B meson
mixing in the Standard Model. Here, q stands for either an s quark
or a d quark.
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the exchange of two W± bosons. Figure 2.4 shows the corresponding Feynman
diagrams. For the up-type quarks (u, c, t) in these so-called box-diagrams, the
top quark contribution is by far the largest. This is due to the GIM suppression
(Glashow, Iliopoulos, Maiani) [30]. The amplitude of the sum of the box diagrams
with the three up-type quarks is proportional to the term

A ∝ m2
uVuqV

∗
ub +m2

cVcqV
∗
cb +m2

tVtqV
∗
tb (2.17)

If all quark masses were identical the three processes would completely cancel
because the amplitude would be proportional to

VuqV
∗
ub + VcqV

∗
cb + VtqV

∗
tb = 0. (2.18)

which for q = d and q = s corresponds to unitarity relations of the CKM-matrix.
In comparison to the top quark mass, the charm- and up quark masses are very
small and nearly identical (mu ≈ mc � mt). With this assumption Equation 2.17
becomes

A ∝ m2
u(VuqV ∗ub + VcqV

∗
cb + VtqV

∗
tb)︸ ︷︷ ︸

=0

+ (m2
t −m2

u)︸ ︷︷ ︸
=m2

t

VtbV
∗
ts (2.19)

Since B mixing processes are only allowed in loop processes, they are suppressed
in the Standard Model by the coupling constants at the vertices. An additional
suppression is given by the CKM matrix element |Vts|2 in case of B0

s–B0
s mixing

and |Vtd|2 in case of B0–B0 mixing. This results in an about thirty times larger
mixing frequency in case of B0

s mesons compared to B0 mesons.

2.3.2. Phenomenology of neutral B meson mixing

Defining the flavour eigenstates |B0
q 〉 = |bq〉 and |B0

q〉 = |bq〉 for neutral B mesons,
they transform under the CP operation as

CP |B0
q 〉 = −|B0

q〉 and CP |B0
q〉 = −|B0

q 〉 (2.20)

The time development of these states is given by the phenomenological Schroedinger
equation for 2-state systems

i
∂

∂t

(
|B0

q 〉
|B0

q〉

)
=
(
M − iΓ2

)(|B0
q 〉

|B0
q〉

)

=
(
M11 − iΓ11

2 M12 − iΓ12
2

M21 − iΓ21
2 M22 − iΓ22

2

)(
|B0

q 〉
|B0

q〉

) (2.21)

with two hermitian matrices, the mass matrix, M , and the decay width matrix,
Γ. The mass matrix describes the B mixing processes introduced in Section 2.3.1.
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The off-diagonal elements of the decay width matrix describe long distance effects
in which the quarks in the “box” of Figure 2.4 are produced on-shell.

Since M and Γ are hermitian, the off-diagonal elements are complex conjugates
(M21 = M∗

12 and Γ21 = Γ∗12). Furthermore, CPT invariance gives M11 = M22 = M
and Γ11 = Γ22 = Γ so that Equation 2.21 becomes

i
∂

∂t

(
|B0

q 〉
|B0

q〉

)
=
 M − iΓ

2 M12 − iΓ12
2

M∗
12 − i

Γ∗12
2 M − iΓ

2

(|B0
q 〉

|B0
q〉

)
(2.22)

Diagonalizing the matrix leads to the mass eigenstates |BL〉 and |BH〉 which are
linear combinations of the flavour eigenstates |B0

q 〉 and |B0
q〉

|BL〉 = p|B0
q 〉+ q|B0

q〉 ,
|BH〉 = p|B0

q 〉 − q|B0
q〉 ,

(2.23)

with |p|2 + |q|2 = 1. The indices L and H denote the lighter and heavier mass
eigenstate, respectively. After diagonalization the mass eigenvalues are given by
(ML − iΓL

2 ) and (MH − iΓH
2 ) and the time evolution is given by the relations

|BL(t)〉 = e−(iML+ ΓL
2 )t|BL〉 ,

|BH(t)〉 = e−(iMH+ ΓH
2 )t|BH〉 ,

(2.24)

with ML, MH, ΓL, and ΓH the masses and decay widths of the mass eigenstates.
These are related to the parameters in the Hamiltonian in Equation 2.22 by

ML/H − i
ΓL/H

2 =M − iΓ2 ∓

√√√√(M12 − i
Γ12

2

)(
M∗

12 − i
Γ∗12
2

)
,

=M − iΓ2
∓
√
|M12|2 − 1/4|Γ12|2 − i|M12||Γ12| cos (φ12) ,

(2.25)

with the phase φ12 = arg− Γ12
M12

. Furthermore, the masses and decay widths in the
diagonal elements in the Hamiltonian in Equation 2.22 are the arithmetic means
of the masses and decay widths of the mass eigenstates:

M = MH +ML

2 ,

Γ = ΓH + ΓL

2 .

(2.26)

Using Equation 2.25 and the definitions

∆m = MH −ML and ∆Γ = ΓL − ΓH (2.27)
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for the mass difference ∆m and the decay width difference ∆Γ of the light and
heavy mass eigenstates, the following realtions can be derived

∆m2 − 1
4∆Γ2 = 4|M12|2 − |Γ12|2 ,

∆m∆Γ = −4|M12||Γ12| cos (φ12) .
(2.28)

It has been shown experimentally that the short-distance effects in the diagrams
in Figure 2.4 are dominant over the long distance effects of on-shell particles
(|M12| � |Γ12|) which translates to ∆m� ∆Γ. This simplifies Equations 2.28 to

∆m = 2|M12| , (2.29)
∆Γ = −2|Γ12| cos (φ12) . (2.30)

Furthermore, the coefficients of the flavour eigenstates q and p are related to the
matrix elements through

q

p
= −

√√√√M∗
12 − i

Γ∗12
2

M12 − iΓ12
2
,

= −

√√√√√e−2iφM
1− i |Γ12|

2|M12|e
−i(φ12)

1− i |Γ12|
2|M12|e

+i(φ12)
,

(2.31)

with the phase φM = argM12. Expanding this in |Γ12|
|M12| leads to

q

p
= −e−iφM

[
1− 1

2 sin (φ12) |Γ12|
|M12|

+O
(

Γ2
12

M2
12

)]
. (2.32)

The time evolution of the flavour eigenstates using Equation 2.23 is given by

|B0
q (t)〉 = 1

2p (|BL(t)〉+ |BH(t)〉) ,

|B0
q(t)〉 = 1

2q (|BL(t)〉 − |BH(t)〉) .
(2.33)

Using the identities for the mass eigenstates from Equations 2.23 and 2.24 this
leads to

|B0
q (t)〉 = g+(t)|B0

q 〉+ q

p
g−(t)|B0

q〉 ,

|B0
q(t)〉 = p

q
g−(t)|B0

q 〉+ g+(t)|B0
q〉 .

(2.34)

with the coefficients

g±(t) = 1
2

(
e−iMLte−

ΓL
2 t ± e−iMHte−

ΓH
2 t
)

(2.35)
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For later calculations, it is useful to calculate the following identities for these
coefficients

|g+(t)|2 = 1
2e
−Γt

(
cosh

(
∆Γ
2 t

)
+ cos (∆mt)

)

|g−(t)|2 = 1
2e
−Γt

(
cosh

(
∆Γ
2 t

)
− cos (∆mt)

)

g+(t)g∗−(t) = 1
2e
−Γt

(
− sinh

(
∆Γ
2 t

)
− sin (∆mt)

)

g∗+(t)g−(t) = 1
2e
−Γt

(
− sinh

(
∆Γ
2 t

)
+ sin (∆mt)

)
(2.36)

Looking at decays of B0
q and B0

q mesons to a final state f and the CP conjugate
f , the decay amplitudes are given by

Af = 〈f |H|B0
q 〉

Af = 〈f |H|B0
q〉

Af = 〈f |H|B0
q 〉

Af = 〈f |H|B0
q〉 .

(2.37)

For convenience the CP violation parameter λf is introduced

λf = q

p

Af
Af

. (2.38)

The time-dependent decay rates for the decay of meson that was produced as a
B0
q at time t = 0 into the final state f is given by

dΓ(B0
q → f)
dt

=
∣∣∣〈f |B0

q (t)〉
∣∣∣2

=
∣∣∣∣∣g+(t)Af + q

p
g−(t)Af

∣∣∣∣∣
2

= |Af |2
(
|g+(t)|2 + |λf |2 |g−(t)|2 + λ∗fg+(t)g∗−(t) + λfg

∗
+(t)g−(t)

)
= 1

2 |Af |
2 e−Γt

 (1 + |λf |2
)

cosh
(

∆Γ
2 t

)
+
(
1− |λf |2

)
cos (∆mt)

− 2 sinh
(

∆Γ
2 t

)
<(λf )− 2 sin (∆mt)=(λf )

 .
(2.39)

In the last step the identities of Equation 2.36 are used.
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Similarly the decay rate for a meson that was a B0
q at production into the final

state f is given by

dΓ(B0
q → f)
dt

=
∣∣∣〈f |B0

q(t)〉
∣∣∣2

=
∣∣∣∣∣pq g−(t)Af + g+(t)Af

∣∣∣∣∣
2

= |Af |2
∣∣∣∣∣pq
∣∣∣∣∣
2 (
|g−(t)|2 + |λf |2 |g+(t)|2 + λ∗fg

∗
+(t)g−(t) + λfg+(t)g∗−(t)

)

= 1
2

∣∣∣∣∣pq
∣∣∣∣∣
2

|Af |2 e−Γt

 (1 + |λf |2
)

cosh
(

∆Γ
2 t

)
−
(
1− |λf |2

)
cos (∆mt)

− 2 sinh
(

∆Γ
2 t

)
<(λf ) + 2 sin (∆mt)=(λf )

 .
(2.40)

The expressions for the decays to the CP conjugate final state f are identical to
Equations 2.39 and 2.40 when substituting the index f by f , with λf = q

p

A
f

A
f

.

The decay used in this analysis of the measurement of ∆ms is B0
s → D−s π

+.
D−s π

+ is a flavour specific final state, meaning that only decays B0
s→ D−s π

+ and
B0
s→ D+

s π
− are allowed. This results in Af = Af = 0 for this decay channel.

Additionally, since the decay is completely dominated by the tree-level process
(see Figure 2.5) and there is no other sizeable contribution from other processes,
which could interfere to cause CP violation3. This leads to

∣∣∣∣AfA
f

∣∣∣∣ = 1.

Additionally, in the Standard Model the CP violation due to different probabilities
for (B0

s → B0
s) and (B0

s → B0
s ) is expected to be negligible4 [31,32]. The reason

for this is that the only diagrams contributing to neutral B meson mixing are
shown in Figure 2.4. The only possible interference that could cause CP violation
would be due to the individual up-type quarks in the box. Due to the GIM
mechanism described in Equation 2.19, the contribution from u and c quarks are
highly suppressed. Therefore, also

∣∣∣ q
p

∣∣∣ = 1 can be assumed. This simplifies the
differential decay rates considerably

dΓ(B0
s→ D−s π

+)
dt

= dΓ(B0
s→ D+

s π
−)

dt

= 1
2 |Af |

2 e−Γt

 cosh
(

∆Γs
2 t

)
+ cos (∆mst)

 , (2.41)

3In the literature this effect is referred to as CP violation in decay
4In the literature this effect is referred to as CP violation in mixing
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𝑾+ 

𝑩𝒔
𝟎 

𝒔 

𝒃  

𝒔 

𝒄  

𝒖 

𝒅  

𝑫𝒔
− 

𝝅+ 

Figure 2.5.: Feynman diagram for the decay B0
s→ D−s π

+ that is
used in this analysis. The only sizeable contribution to this decay is
the shown tree-level diagram.

for decays where the production flavour and decay flavour of the B0
s meson are

identical. Simlarly

dΓ(B0
s→ D−s π

+)
dt

= dΓ(B0
s→ D+

s π
−)

dt

= 1
2 |Af |

2 e−Γt

 cosh
(

∆Γs
2 t

)
− cos (∆mst)

 (2.42)

give the differential decay rate for decays where the flavour at decay is different
from the flavour at production of the B0

s meson.

2.4. Theoretical prediction of ∆ms

The theoretical predictions for ∆ms have very large uncertainties. The reason for
this is that M12 is proportional to

M12 ∝ (V ∗tqVtb)2BB0
q
f 2
B0
q

(2.43)

with the decay constant fB0
q

and the so-called bag parameterBB0
q

which parametrize
the non-perturbative matrix element. Latice QCD calculations give [33]

fB0
s

= 231± 15 MeV BB0
s

= 0.841± 0.020 (2.44)
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which has leads to a relative uncertainty on the factor
√
BB0

q
fB0

q
of about 14%.

This leads to a theoretical prediction of ∆ms of [34]

∆ms = 17.3± 2.6 ps−1 (2.45)

It has been found useful to use the ratio ∆md
∆ms to constrain the CKM unitarity

triangle in Figure 2.2. In this ratio many hadronic uncertainties cancel and the
theoretical prediction is proportional to the factor ξ

ξ =
fB0

s

√
BB0

s

fB0
√
BB0

= 1.22± 0.04 (2.46)

which has a relative uncertainty of about 3% [33]. Other computations give similar
results also with a few percent relative uncertainty on ξ [35, 36].

Due to the large theoretical uncertainties on ∆ms, this analysis is not suited to look
for contributions from physics beyond the Standard Model directly, until the lattice
QCD calculations are improved considerably. However, the measurement is an
important benchmark measurement proving that very precise measurements in the
B0
s mixing system can be performed at the LHCb experiment. Furthermore, the

measured value of ∆ms is used as an input for the measurement of other observables
in the B0

s system, like the weak mixing phase φs in the decays B0
s→ J/ψφ and

B0
s→ J/ψπ+π− which has significantly smaller theoretical uncertainties or the

measurement of decay time-dependent CP observables in the decay B0
s→ D±s K

∓

to measure the CKM angle γ which is experimentally well constraint by the
measurements of the apex of the unitarity triangle in Figure 2.2.





CHAPTER 3

The LHCb Experiment

The LHCb (Large Hadron Collider beauty) experiment is one of the four large
experiments at the Large Hadron Collider (LHC) at CERN. Its design is dedicated
to perform precision measurements of CP violation in b- and c-hadron decays, as
well as searches for rare B meson decays.

In the following chapter the running conditions of the LHC and the production
mechanism of b quarks at the LHC are briefly discussed. The mode of operation
and technical details of the LHCb detector and its subsystems are summarized.
In the end, the trigger system of LHCb are described and the measured and
simulated data sets used in this analysis are discussed.

3.1. The Large Hadron Collider

The Large Hadron Collider is a proton-proton collider (pp)1 located at CERN in
Geneva. The proton beams are accelerated in a 27 km long underground tunnel
under the Swiss-French border and then brought to collision at four interaction
points. At these collision points the four major LHC experiments are located:
ATLAS (A Toriodal LHC ApparatuS), CMS (Compact Muon Solenoid), LHCb
and ALICE (A Large Ion Collider Experiment) (see Figure 3.1).

ATLAS and CMS are multi-purpose detectors designed for the search of the Higgs
1For a short period, the LHC also collided lead ions (PbPb).

23
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Figure 3.1.: Schematic view of the Large Hadron Collider with the
four major experiments: ATLAS, CMS, LHCb and ALICE. Taken
from [37]

boson and new heavy particles produced at high energies. LHCb is a dedicated b-
and c-physics experiment and ALICE is specialized in heavy-ion physics.

The design center of mass energy for pp collisions at the LHC is
√
s = 14 TeV

with a design luminosity of L = 1034 cm−2 s−1. The proton beams are divided in
2808 bunches with ∼ 1011 protons each. The collisions of the bunches occur with
a spacing of 25 ns which leads to an interaction rate of 40 MHz.

In 2011, during the data-taking period for the sample used in this analysis,
the LHC was operated at a center of mass energy of

√
s = 7 TeV. The LHCb

experiment operates at a lower instantaneous luminosity than the maximum that
the LHC can deliver because otherwise the particle density in the LHCb detector
would be too large. For this purpose the proton beams are slightly defocussed
before collision. This has the advantage that the instantaneous luminosity can be
held constant over the whole data taking process even though the proton beams
constantly loose their energy. In 2011 the LHCb experiment was operated with
an instantaneous luminosity of L = 4 · 1032 cm−2 s−1.

The total integrated luminosity recorded in 2011 by the LHCb experiment amounts
to 1 fb−1.
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Figure 3.2.: Feynman diagrams of the dominant processes for b
quark production at the LHC. Taken from [38]

3.2. Production of b hadrons at the LHC

In collisions at the LHC, b quarks are predominantly produced in bb pairs through
gluon fusion or quark–antiquark annihilation (see Figure 3.2). At LHC energies
the parton density functions of the proton are dominated by gluons. Thus, the
gluon fusion processes in Figure 3.2 are dominant.

Gluons have a broad momentum spectrum within the protons. Since the bb
production threshold is small compared to the center of mass energy, it is very
likely that the bb pair is produced by gluons with very different momenta. This
results in the bb pair being highly boosted in the forward or backward direction
along the beam line. Figure 3.3 shows the polar angle distribution for the b- and b
quark. It can be seen that they are mostly produced in the same direction close to
the beam line. Therefore, for the LHCb experiment the geometry of a single-arm
forward spectrometer is chosen. The geometrical acceptance of the LHCb detector
in Figure 3.3 is marked in red. In total ∼ 25% of all produced bb pairs end up in
the LHCb detector.

The total bb cross section in pp collisions at
√
s = 7 TeV has been measured at

LHCb using semileptonic b hadron decays. The result is [40]

σ(pp→ bbX) = 284± 20± 49µb . (3.1)

In 2011 an integrated luminosity of Lint = 1 fb−1 was recorded which leads to a
total of

σ(pp→ bbX) · Lint · 25% ≈ 7 · 1010 (3.2)

bb pairs produced within the LHCb detector acceptance.
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Figure 3.3.: Simulated distribution of the polar angles θ1 and θ2 of
the produced bb pair. The LHCb geometrical acceptance is marked
in red. Taken from [39]
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Figure 3.4.: Simulated 3d-view of the LHCb detector. Taken
from [39]

3.3. The LHCb Detector

As mentioned in the previous section, the LHCb detector is a one-armed forward
spectrometer designed to maximize coverage of produced bb pairs. It covers a
pseudorapidity range of 2 < η < 5. The coordinate system of the detector is
defined by the beam line (z-direction). The dipole magnet bends charged paticle
tracks in the xz-plane. The vertical y-direction is not affected by the magnetic
field.

Figure 3.4 shows a simulated view of the LHCb detector.

The LHCb detector took data during Run 1 of the LHC in the years 2010, 2011
and 2012 with a data taking efficiency of more than 90% (see Figure 3.5). Out of
the recorded data more than 99% are regarded good and can be used for physics
analyses.

The individual subsystems of the detector can be divided in two categories
(see Figure 3.6): track reconstruction and particle identification. The track
reconstruction subsystems include the Vertex detector (VELO) surrounding the
interaction point, a small tracking station (Tracker Turicensis, TT) before the
dipole magnet and the main tracking stations (T1–T3) after the magnet.

The subdetectors for particle identification include two Cherenkov detectors
(RICH1 and RICH2) before and behind the magnet to distinguish different hadron
species (charged kaons, pions and protons). Additionally, the calorimetry system
consists of a scintillating pad detector (SPD), a pre-shower detector (PS), and an
electromagnetic (ECAL) and hadronic (HCAL) calorimeter. Finally the muon
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Figure 3.5.: Delivered and recorded integrated luminosity, Lint,
during the years 2010–2012. Taken from [39]

stations (M1–M5) identify tracks from charged muons.

The individual detector components are described in detail in [41] and will be
summarized in the following sections. Figure 3.6 shows a schematic cross section
through the LHCb detector showing the individual subsystems.

3.4. Track Reconstruction

The purpose of the track reconstruction detectors is to measure the trajectories
(tracks) of charged particles and their momenta. Charged particles are bent in the
xz-plane by the magnetic field of the dipole magnet. The position measurements
before the magnet (VELO and TT) are combined with the measurements after
the magnet (T1–T3) to form the trajectory. The percentage of working detector
channels was > 99% over the whole data taking period and the track reconstruction
efficiency is about 96%.

3.4.1. Dipole Magnet

The momentum of charged particles is measured by how much the trajectory is bent
by the magnetic field. The LHCb dipole magnet is a non-superconducting magnet.
The shapes of the magnet coils and the iron yoke are shown in Figure 3.7(a). The
integrated magnetic field over l = 10 m in z-direction is∫

Bdl = 4Tm (3.3)
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Figure 3.6.: Schematic cross-section through the LHCb detector
showing the yz-plane. The individual subsystems are described in
sections 3.4 and 3.5. Taken from [42]

(a) (b)

Figure 3.7.: (a) Geometry of the LHCb dipole magnet. (b) Field
strength of the magnetic field as a function of z-position. Taken
from [41].
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Figure 3.8.: Geometry of the LHCb vertex locator (VELO). It
consists of 21 half-circular shaped stations along the beam line.
Until beam conditions are stable, the modules are retracted from the
nominal position. Taken from [41].

The field is designed to have the field lines in y-direction with minimal components
in x-direction. Thus, tracks from charged particles are not bent in y-direction.
Figure 3.7(b) shows the field strength as a function of the z-position. The polarity
of the LHCb magnet can be reverted which results in positively charged particles
occupying regions of the detector where before the negatively charged particles
were bent to. Thus many detector asymmetries are canceled in combining data
taken with magnet polarity upward (MagUp) and magnet polarity downward
(MagDown). The polartity was regularly switched during data taking.

3.4.2. Vertex Locator

The Vertex locator (VELO) is the subdetector surrounding the interaction point.
Its purpose is to measure precisely the tracks of charged particles produced in
the pp collisions and distinguish particles from secondary vertices from prompt
particles that were produced directly in the primary interaction.

The VELO comprises 21 stations with half-circular shaped modules located left
and right of the beam line (see Figure 3.8). Each module consists of two sensors,
one providing a measurement in radial direction (r) and the other one in azimuthal
direction (φ). Additionally, two pile-up stations are located before the main sensors
consisting of two r-sensors each. They are used in the trigger.
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Figure 3.9.: Geometry of VELO r- and φ-sensors which together
make up one VELO module. Taken from [41].

The VELO sensors are silicon strip detectors. The strips of the r-sensors are
concentric semi-circles with a minimum pitch of 40 µm, close to the beam, where
the occupancy is highest. The pitch increases to 102µm at the outer edge of
the sensors. For the φ-sensors the silicon strips are arranged in radial shape, but
divided into two regions. In the inner region the pitch is 38µm and in the outer
region it increases to 97µm. Figure 3.9 illustrates the geometry of the r- and
φ-sensors.

The precision on the position of vertices depends on the extrapolation of the
measured tracks to the point of origin. Therefore, the VELO modules are placed
as close to the beam as possible. Rather than mounting the modules on top of the
beam-pipe, the beam-pipe is removed and the active region of the VELO sensors
are in nominal position only 8 mm away from the beam. During acceleration of
the beam the beam position can change more than these 8 mm. Therefore, the
VELO modules are retracted from their nominal position by 30 mm while the
LHC is filled and the beams are accelerated to nominal energy (see Figure 3.8).
Only when the LHC operators declare that the beam conditions are stable, the
VELO modules are moved into nominal position for data taking.
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(a) (b)

Figure 3.10.: (a) Layout of one of the layers of the LHCb Tracker
Turicensis (TT) that is tilted by 5◦. (b) Layout of TT half module.
Taken from [41]

3.4.3. Tracker Turicensis

The Tracker Turicensis (TT) is a 150 cm wide and 130 cm high silicon microstrip
detector located just before the magnet. It consists of four layers out of which
two are tilted by 5◦ to be able to perform three dimensional measurements. The
design is chosen to have the best possible resolution in the bending plane of the
magnet (xz-plane).

Figure 3.10(a) shows the geometry of the TT modules. The detector is divided
into different readout sections, since the occupancy close to the beam is much
higher than in the outer regions. The layers of the TT are built up from half
modules which themselves consist of seven silicon sensors (see Figure 3.10(b)).
Each sensor is 9.44 cm long, 9.46 cm wide and has a pitch of 183µm. The single
hit resolution of the TT is about 50µm.

3.4.4. Inner Tracker

The main tracking stations (T1–T3) are divided into the Inner tracker (IT) and
the Outer tracker (OT). The IT is a silicon strip detector located in the high
occupancy region close to the beam pipe. It is about 120 cm wide and 40 cm high.

Each of the three IT-stations comprises four layers of silicon strip sensors of which
similar to the TT the middle two are tilted by 5◦. Each station consists of four
boxes arranged around the beam pipe. The layout of one IT station is shown in
Figure 3.11(a) and the arrangement of the sensors in one layer inside one of the
boxes is illustrated in Figure 3.11(b).
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(a) (b)

Figure 3.11.: (a) Layout of one of the Inner Tracker (IT) stations.
(b) Layout of the sensors in one of the IT layers. Taken from [41]

The silicon sensors are 7.6 cm wide and 11 cm long, with a pitch of about 200µm.
The sensors in the boxes above and below the beam pipe are 320µm thick and the
sensors in the boxes on the left/right are 410µm thick. This geometry was chosen
to limit the maximum occupancy to a few percent. The single hit resolution of
the IT is about 50µm as of the TT.

3.4.5. Outer Tracker

The Outer Tracker (OT) is the second subdetector of the main tracking stations
(T1–T3). In contrast to the other tracking subsystems it is not silicon-based,
but a drift tube detector. It covers the large area in the xy-plane outside the IT
acceptance (see Figure 3.12(a)). It is about 6 m wide and 5 m high.

Like in case of the IT the three tracking stations consist of four OT layers each.
They are as well arranged with the middle two layers tilted by 5◦ to allow three
dimensional measurements. Each layer consists of modules, each containing a
double layer of straw-tubes (see Figure 3.12(b)). The straws are filled with a
mixture of Argon/CO2/O2 with the proportions 70%/28.5%/1.5%. In the center
of the straw an anode wire made of gold coated tungsten is located. The straws
have a pitch of 5.25 mm with an inner diameter of 4.9 mm.

The single hit resolution of the OT is 200µm in x-direction.

3.4.6. Track reconstruction algorithms

The track reconstruction software used in LHCb is called Brunel. It constructs
four different track types depending on the sub detectors that contributed:
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(a) (b)

Figure 3.12.: (a) Layout of the Outer Tracker (OT) stations (light
blue). The TT and IT modules are indicated in purple. (b) Layout
of the straw-tubes inside an OT module. Taken from [41]

• VELO tracks contain only information from the vertex locator. Since
there is no magnetic field present in the VELO, these are straight line tracks.
They are used to build the primary vertices.

• Long tracks are the default tracks used in LHCb analyses. They combine
the information from all tracking detectors (VELO, TT2 and T1–T3). They
have the best momentum resolution and the smallest contribution from fake
tracks (ghosts).

• Upstream tracks have only information from the VELO and TT. These
are usually low momentum tracks from particles that are bent out of the
acceptance of the main tracking stations by the magnetic field. Since the
magnetic field reaches into the TT acceptance for these tracks a momentum
estimate is possible.

• Downstream tracks contain only information from the TT and the main
tracking stations (T1–T3). These tracks are mainly used to reconstruct long-
lived particles like K0

S or Λ which decay outside of the VELO acceptance.

• T-tracks are track segments built only from hits in the main tracking
stations. These tracks are used in the process of building Long tracks.

In the Brunel software, the first step are pattern recognition algorithms to find
hits belonging to a track. These algorithms reconstruct track segments in the

2Hits in the TT are added if they are found, but are not necessary to form a Long track.



3.5 Particle Identification 35

VELO and the main tracking stations. These tracks are used to build Long tracks.
Two different algorithms are used for the Long track reconstruction.

• Forward tracking starts with a VELO track and extrapolates it to the
main tracking stations. Hits in the main tracking stations are searched in a
window around the extrapolated VELO track. If certain quality criteria are
sufficiently satisfied, the resulting track is chosen as a Long track. Finally,
if available, hits in the TT are added to the Long track.

• Track matching also starts with a VELO track, but searches for matching
T-tracks. Both track segments are extrapolated inside the magnet and if
they match together, they are combined to a Long track. Again the hits in
the TT are added after the matching is finalized.

The two Long track finding algorithms have a large overlap of ∼ 90%. After the
track reconstruction, duplicate tracks (clones) are removed. Then the remaining
tracks are fitted using a Kalman Filter [43] which takes into account effects from
multiple scattering and energy loss.

One measure of the quality of the fitted track is the fit χ2 over the degrees of
freedom, χ2/ndf .

3.5. Particle Identification

The ability to distinguish different particle species (particle identification, PID)
is crucial for the reconstruction of B meson decays at the LHC. Especially,
separating charged π± from other particle species (K±, µ±, e±, p) is challenging
because there are are seven times more π± than charged particles from other
species. Particularly for purely hadronic final states, like used in this analysis
(B0

s→ D−s π
+), PID poses a considerable challenge. Several subdetectors provide

information for particle identification which is combined to a common particle
hypothesis.

3.5.1. Ring Imaging CHerenkov detector

Ring Imaging CHerenkov detectors (RICH) take advantage of the so-called
Cherenkov-effect. Charged particles emit photons if they traverse a medium
that has refractive index n with a velocity higher than the speed of light in the
material (c′ = c

n
). This light is emitted in the shape of a cone with the Cherenkov

angle θCh as opening angle:

cos θCh = c′

v
= 1
nβ

. (3.4)
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Figure 3.13.: Cherenkov angles for different particle species
traversing the three different materials used in the LHCb RICH
detectors (Aerogel, C4F10 and CF4) plotted against the particle mo-
menta. Taken from [41].

with β = v/c, the velocity of the particle. Combining the measurement of θCh
with the measured momentum from the tracking system, described in Section 3.4,
allows to calculate the particle’s mass.

Figure 3.13 shows the Cherenkov angles for different particle species over a large
momentum range for the three different radiator materials used in the LHCb
RICH detectors. It can be seen that the Aerogel is better for particle separation
at low momenta, whereas the CF4 gas is better suited to separate high momentum
K± and π±.

To ensure a good K–π separation over the whole momentum range these three
radiators are used in two RICH detectors in the LHCb detector. The first, RICH1
(see Figure 3.14(a)), is located before the magnet and uses the radiators, an
aerogel with refractive index n = 1.03 and C4F10 with n = 1.0014 to cover
a momentum range from about 1 GeV/c to 60 GeV/c. The emitted Cherenkov
photons are reflected and focussed through a system of mirrors onto Hybrid Photo
Detectors (HPD) to form the shape of a circle. By measuring the radius of the
circle the Cherenkov angle is determined. The HPDs are sensitive to photons with
a wavelength of 200–600 nm. RICH1 covers the full LHCb angular acceptance of
25–300 mrad in x-direction and 25–250 mrad in y-direction.

The second RICH detector, RICH2 (see Figure 3.14(b)), is located behind the main
tracking stations. Its purpose is to identify charged particles with a momentum
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(a) (b)

Figure 3.14.: Layout of the Ring Imaging CHerenkov detectors,
RICH1 (a) and RICH2 (b). Taken from [41]

from 15 GeV/c to 100 GeV/c. It uses CF4 with a refractive index of n = 1.0005
as radiator. RICH2 covers an angular acceptance of 15–120 mrad in x- and
15–100 mrad in y-direction.

The efficiency to identify charged kaons is 95% for a probability of 5% to misidentify
a π± as a K±.

3.5.2. Calorimetry

The purpose of the calorimeter system is to measure the amount and position of
energy depositions of particles. It is the only subsystem of the LHCb detector
that is sensitive to neutral particles like photons. The calorimetry system is used
in the first stage of the LHCb trigger (L0) which will be described in Section 3.6.
This imposes strong requirements on the speed of the readout of the calorimetry
system since the L0 decision has to occur after only 4µs.

The LHCb calorimetry system consists of several subsystems which have the same
working principle. The particles first traverse an absorber material which induces
particle showers. The particles in the shower pass through scintillating material.
The photons emitted from the scintillators are read out via wavelength shifting
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(a) SPD, PS and ECAL (b) HCAL

Figure 3.15.: Granularity for the different detector regions of the
SPD, PS, and ECAL (a) and of the HCAL (b). Taken from [41]

Figure 3.16.: Scintillator pad used in the SPD and PS with the
wavelength shifting fiber layout. Taken from [41].

fibers and detected with photomultiplier tubes. By collecting all photons induced
by the particle shower, the energy of the initial particle can be calculated.

The calorimeter subsystems include the Scintillating pad detector (SPD), the
preshower detector (PS) and the electromagnetic (ECAL) and hadronic (HCAL)
calorimeters. The granularity of the sensors becomes finer with proximity to the
beam pipe. Figure 3.15 shows the different regions for the individual calorimeter
subsystems.

Scintillating Pad Detector and Preshower Detector

The first subdetector of the LHCb calorimetry system are the Scintillating pad
detector (SPD) and preshower detector (PS). They are located behind the first
muon station (M1) which will be discussed in Section 3.5.3. The SPD and PS are
separated by a 15 mm thick lead absorber. Both detectors use scintillating pads
as shown in Figure 3.16. Figure 3.15(a) shows the granularity for the different
detector regions for both the SPD and PS.
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Figure 3.17.: Energy depositions in the PS detector for 50 GeV/c
electrons (a) and π± (b) are shown in arbitrary units. Taken from
[41].

The purpose of the SPD is to distinguish electrons from photons, since the
electrically neutral photons do not induce a signal in the scintillating pads. The
misidentification rate of photons as electrons is found to be below 3%.

The lead absorber in front of the PS detector intiates showers from electrons
and photons. The purpose of the PS detector is to distinguish between electrons
and π±. The energy depositions for 50 GeV/c electrons and π± are shown in
Figure 3.17 in arbitrary units. In this momentum region the PS shows an electron
identification efficiency of 97% while rejecting 99.7% of the π±.

Electromagnetic calorimeter

The electromagnetic calorimeter, ECAL, detects particle showers from photons
and electrons. It is has a so-called “shashlik” structure, which means that it is a
sampling calorimeter with a stack of alternating layers of 2 mm thick lead absorber
and 4 mm thick scintillator material. The scintillators are again read out using
wavelength shifting fibers.

Three different types of ECAL modules were produced (see Figure 3.18(a)) for
the different granularity regions shown in Figure 3.15(a). The length of the ECAL
corresponds to 25 radiation lengths X0 and 1.1 hadronic interaction lengths λI.
The energy resolution of the ECAL is

σE

E = 10%√
E[GeV]

⊕ 1% (3.5)
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(a) ECAL module (b) HCAL module

Figure 3.18.: (a) Three ECAL modules for the different detector
regions described in Figure 3.15(a). (b) schematic view of an HCAL
module. Taken from [41]

where the symbol ⊕ denotes the summation in quadrature. The efficiency to
identify electrons is ∼ 90% for a 5% π± → e± misidentification probability.

Hadronic calorimeter

The hadronic calorimeter, HCAL, detects particle showers from hadrons and is
located behind the ECAL. It is a sampling calorimeter using alternating iron
absorbers and scintillator material. The special feature of the HCAL is the
orientation of the scintillating tiles parallel to the beam pipe. They are in
longitudinal direction intersected with iron absorbers which in thickness correspond
to one hadronic interaction length in steel λI. In transverse direction the active
scintillator tiles are separated by 1 cm thick iron tiles.

Figure 3.18(b) illustrates an HCAL module. The total length of absorber and
scintillating material corresponds to 5.6 hadronic interaction lengths. The energy
resolution of the HCAL is

σE

E = 80%√
E[GeV]

⊕ 10% (3.6)

where again the symbol ⊕ denotes the summation in quadrature.
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Figure 3.19.: Schematic view of the LHCb muon system. Taken
from [41].

3.5.3. Muon Chambers

The LHCb muon stations (M1–M5) are crucial for identifying B meson decays
with muons in the final state. Furthermore, they are used in the first stage of the
trigger (L0). The muon system consists of five stations (M1–M5), as shown in
Figure 3.19.

The first station (M1) is located before the calorimetry system and its purpose is
to improve the momentum resolution in the muon trigger by using a measurement
before multiple scattering occurs in the calorimeter. Between the stations M2–
M5 80 cm thick iron absorbers are placed to filter out all particles that are not
muons. These absorbers introduce an implicit momentum requirement on muons
of 6 GeV/c to traverse the whole detector until M5.

Similar to the calorimeters the muon stations are divided into regions of different
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Figure 3.20.: Schematic view of the different detector regions in
M1. Taken from [41].

granularity depending on their proximity to the beam pipe. Figure 3.20 shows the
different regions for M1. In M2 and M3 the number of pad columns per chamber
is double than in M1, while in M4 and M5 it is half. The number of pad rows per
chamber is the same in all stations.

In all regions the pads consist of multiwire proportional chambers (MWPC) except
of R1 in M1. Here, gas electron multiplier (GEM) detectors are used since MWPCs
are too susceptible to radiation damage to be operated in the high particle flux in
this region. The angular acceptance of the muon chambers reaches from 20 mrad
to 306 mrad in the xz-plane and from 16 mrad to 258 mrad in the yz-plane. The
muon identification efficiency is ∼ 97% for a 1–3% π± → µ± misidentification
probability.

3.6. Trigger System

The purpose of the LHCb trigger system is to reduce the event-rate from the
nominal 40 MHz bunch crossing rate to about 5 kHz at which the data is recorded
for physics analyses. With an instantaneous luminosity of L = 4 · 1032 cm−2 s−1

and the bb cross section in Equation 3.1, a production of about 30,000 bb pairs
per second in the LHCb acceptance can be calculated. Since the rate at which
data can be recorded is limited to 5 kHz, it is not enough to just identify bb events
in the trigger. The b hadron decays that are interesting for the physics analyses
have to be distinguished from other b hadron decays already at trigger stage.

The LHCb trigger is a three stage system consisting of one hardware trigger, called
Level0 (L0), and two software trigger stages, called High-Level-Trigger (HLT1 and
HLT2). Figure 3.21 illustrates the trigger scheme. The trigger system is designed
to be adjustable to different running conditions. The trigger configuration and
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Figure 3.21.: Overview of the LHCb trigger scheme. The event
rate is reduced by the hardware stage (L0) from 40 MHz to 1 MHz.
The software stage reduces it further to 5 kHz. Taken from [39].

performance for the data taking during 2011 are described in [44] and will be
briefly summarized in this section.

3.6.1. Hardware Trigger

The first stage of the LHCb trigger is completely implemented in hardware and
called Level0 (L0). It is divided into two parts: The L0-muon trigger and the
L0-calorimeter trigger.

The L0-calorimeter trigger uses information from the calorimetry system de-
scribed in Section 3.5.2 (SPD, PS, ECAL and HCAL). It selects events with high
transverse energy, ET, depositions in 2× 2 cells, which is defined as

ET =
4∑
i=1

Ei sin θi, (3.7)

with Ei being the energy deposition in cell i. The angle θi is defined as the angle
between the beam axis and the connection between the primary interaction point
and the center of cell i. Candidates with high ET are selected and a particle
hypothesis (L0-Hadron, L0-Photon, L0-Electron) is assigned.
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The L0-muon trigger reconstructs in each quadrant of the detector the two muon
candidates with the largest transverse momentum pT. The muon candidates’
pT is estimated assuming they originate from the primary interaction point and
using the slope in the xz-plane in M1 and M2. The event is accepted if either
a requirement on the pT of the candidate with the largest pT (L0-Muon) or the
combination of the two largest pT candidates (L0-DiMuon) is met.

3.6.2. Software Trigger

The software stage of the LHCb trigger is called High Level Trigger (HLT). It
runs on a large computing cluster with about 26,000 CPUs. The HLT works in
two consecutive steps (HLT1 and HLT2).

In the HLT1 a partial event reconstruction is performed based on the candidates
passed on by the L0 decision. A fast track reconstruction in the VELO and main
tracking stations is performed to find displaced vertices. The purpose of the HLT1
is to reduce the event rate to 30 kHz.

The HLT2 fully reconstructs the whole event which is done in a similar manner to
the offline reconstruction, but with concessions to the timing constraints. In this
step PID information is added and the output bandwidth is divided in 131 trigger
lines. A large portion of the recorded output is dedicated to inclusive topological
trigger lines which attempt to reconstruct all b-hadron decays with two or more
charged particles in the final state and a displaced vertex. This analysis uses
events triggered by the topological trigger lines.

The rest of the bandwidth is divided into inclusive and exclusive trigger lines
selecting c-hadron decays and inclusive and exclusive Single- and Di-Muon trigger
lines. The combined trigger efficiency for the hardware and software stages is
about 90% for signal decays containing two muons and about 30% for multi-body
hadronic final states.

3.7. The LHCb Software Framework

To perform an analysis, the data taken by the LHCb experiment has to be
processed by two software packages.

• Brunel
The first step to process the raw data, is track reconstruction. This is
performed by the Brunel software package [45]. Aside from the track
fit described in Section 3.4.6, Brunel also uses PID information from
the RICH, calorimeter system and the muon chambers, combines it and
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assigns it to the tracks. Furthermore the electromagnetic and hadronic
showers in the calorimeters are reconstructed and the energy is added to the
particle candidates. The result of this reconstruction step are so-called Data
Summary Tape (DST) files on which the LHCb analysis software DaVinci
is run.

• DaVinci
The analysis software package DaVinci [46] is built on the Gaudi framework
[47]. During the analysis process particle hypotheses are added to the tracks
and the stable particles are combined to reconstruct the signal decays for
the analysis. Within this process the decay tree fitter (DTF) [48] uses the
particle tracks as inputs and fits simultaneously all vertices specified in the
signal decay chain.

Various selection criteria are applied in two steps. First there is a central
processing of all LHCb data in which a preselection is applied. This step is
called Stripping. The reason is to reduce the data analysed in each single
physics analysis to a manageable amount. The second step is applying
the final offline selection that is unique for each analysis. Both steps are
performed using the DaVinci analysis software and will be discussed in
detail for the signal B0

s→ D−s π
+ decays used in this analysis in Chapter 5.

Simulated data sets are produced using the following software packages which are
all built on the Gaudi framework

• Gauss
Simulated events are generated using the Gauss [49] software package.
pp collisions are simulated using Pythia 6.4 [50] with a special tuning for
LHCb [51]. The decays of hadronic particles is simulated using EvtGen [52]
in which final state radiation is generated using Photos [53]. The interaction
of particles with the detector material is simulated by Geant4 [54], [55].

• Boole
The output of the simulated interaction of the particles with the detector is
digitized by the Boole [56] software which simulates the detector response
to the signals induced in the individual subdetectors.

• Moore
The Moore [57] software package emulates the signals of the trigger on the
detector responses in the same fashion as on data.

• Brunel and DaVinci
All individual steps of the track reconstruction and analysis software are
performed in the same way as on data.
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3.8. Data sets used

The data set used in this analysis consists of all data of pp collisions at a center of
mass energy of

√
s = 7 TeV taken by the LHCb experiment in 2011. It corresponds

to 1 fb−1 of integrated luminosity.

Additionally simulated data samples are used for several exclusive decay modes.
In these samples is made sure that the specified signal decay is present in each
event and the stable decay products are within the LHCb acceptance.



CHAPTER 4

Analysis setup

This chapter gives an overview of the analysis strategy for the measurement of
∆ms. In Section 4.2 the Maximum Likelihood formalism is explained which is
used by the fit algorithm in this analysis.

4.1. Analysis strategy

The goal of this analysis is to provide a measurement of the B0
s–B0

s oscillation
frequency ∆ms. This analysis is performed decay-time-dependent. The decay
time t of the particle describes the time between production and decay of the
particle in its rest frame. It is measured as:

t = ( #—

` · #—p )m
| #—p |2

, (4.1)

with #—

` being the vector from the production vertex of the particle to its decay
vertex, m being its reconstructed invariant mass and #—p being its reconstructed
three-momentum. It can also be calculated as

t = |
#—

` |
βγ

(4.2)

with β = v
c

and γ = 1√
1−β2

being the usual relativistic quantities describing the
Lorentz boost.
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The decay time resolution is limited by two effects, the uncertainty of the mo-
mentum and the uncertainty of the measured flight distance. LHCb achieves
an excellent decay time resolution because both contributions are small. The
relative momentum resolution is ∆p

p
is 0.4% for low momentum tracks (< 5 GeV/c)

and 0.6% for high momentum tracks (> 100 GeV/c), provided by the tracking
system described in Section 3.4. The effect on the decay time resolution from the
uncertainty on the flight distance | #—` | is dominated by the accuracy with which
the position of the secondary vertex can be measured. Due to the strong boost of
the B0

s mesons produced at the LHC, the B0
s decay vertex is well separated from

the primary interaction point. The treatment of the decay time resolution in this
analysis will be discussed in detail in section 7.1.

The second challenge for this analysis is that the signal B0
s candidates have to

be sorted into two categories, namely if they were mixed or unmixed. Mixed, in
this case, refers to candidates that were produced as B0

s mesons, but decayed as
B0
s mesons or vice versa. It is irrelevant for this definition how often the meson

changed flavour (B0
s or B0

s) in between, only that the flavour at production is
different from the flavour at decay. Unmixed candidates respectively are those
which have the same flavour at production and decay. The decay B0

s→ D−s π
+ is

chosen because it is self-tagging. This means that the flavour at decay is directly
determined by the charge of the decay products, i.e. the D∓s and the π±. The
pion produced in association with the D∓s will in the following be referred to as
bachelor pion. The probability to assign the wrong charge to both reconstructed
particles is low enough to be neglected. The flavour at production is provided by
so called flavour tagging algorithms which will be described in detail in Chapter 6.
Since the decay channel is self-tagging, the decision by these algorithms give
directly the decision, q, whether the B0

s candidate was mixed or unmixed.

The final challenge for this analysis is to provide a sample of B0
s→ D−s π

+ signal
candidates with large statistic and high purity. The decay B0

s → D−s π
+ is

reconstructed in five different D−s decay modes namely D−s → φ(K+K−)π−,
D−s → K∗0(K+π−)K−, D−s → K+K−π−1, D−s → K−π+π− and D−s → π−π+π−.
The signal selection used to maximize statistics is discussed in Section 5.

4.2. Unbinned Maximum Likelihood Fit

The fit algorithm used in this analysis is based on the unbinned maximum likelihood
technique. It estimates a set of unknown parameters ~λ = {λ1, λ2, ...} from a set
of measured observables #—

X = {X1, X2, ...} assuming a theoretical distribution
f( #—

λ ; #—

X). In this analysis the measured observables #—

X = {m, t, q} consist of the
1If there is no intermediate resonance specified “D−s → K+K−π−” will refer to only the

non-resonant part from now on
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reconstructed invariant mass, m, of the B0
s candidate, its reconstructed decay

time, t, which is defined in Equation 4.1 and the decision, q, given by the flavour
tagging algorithms. The probability density function (PDF) is defined as the
distribution f( #—

λ ; #—

X) normalized over the whole range of #—

X

P( #—

λ ; #—

X i) = f( #—

λ ; #—

X i)∫
f( #—

λ ; #—

X ′i)d
#—

X ′i
. (4.3)

It gives, for a certain set of parameters, #—

λ , the probability to measure in a single
event, i, the data, #—

X i, within an interval, ∆ #—

X i. The likelihood function, L, is the
product of the PDFs of all reconstructed candidates.

L( #—

λ ; #—

X) =
candidates∏

i

P( #—

λ ; #—

X i) (4.4)

The likelihood function gives a measure for the probability for a certain parameter
set, #—

λ , to measure the data set
#—

X =
⋃
i

#—

X i. (4.5)

The fit algorithm maximizes the likelihood by varying the parameters #—

λ . In this
way, the set, #—

λmax, for which the probability to measure the given data set, #—

X, is
maximal, is found.

The word “unbinned” refers to the fact that the data sets #—

X i are not filled in
bins before the fit is performed, but every event is used individually by the fit.
Therefore, no information is lost.

The PDF used in this analysis is divided into two parts. One part describes
the contributions from the signal components, Psig, and another describes the
background components, Pbkg, which will be listed in Section 5.8. They are
combined in the following way:

P( #—

λ ; #—

X) = fsig · Psig( #—

λ sig;m, t, q) + (1− fsig) · Pbkg( #—

λ bkg;m, t, q), (4.6)

with the fraction of signal events

fsig = Nsig

Nsig +Nbkg
. (4.7)

The union of the parameter sets #—

λ sig and #—

λ bkg gives the total set #—

λ

#—

λ = #—

λ sig ∪
#—

λ bkg (4.8)

The invariant mass, m, is assumed to be uncorrelated to the other variables, t
and q. Thus a factorization ansatz is chosen for the PDFs describing the mass
and mixing distributions

PJ = PJ ;m · PJ ;t,q, (4.9)
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where J stands for the individual signal/background contribution. The mixing
PDF, PJ ;t,q, is two dimensional in decay time and the discrete flavour tagging
decision. The mass PDFs for the individual components will be explained in detail
in Chapter 8. The mixing PDFs with the respective parameters #—

λ including ∆ms

will be discussed in Chapter 9.

In this analysis, several event-by-event quantities are used. One example is an
estimate for the decay time resolution σt. It has been shown that for each of
those variables an additional PDF has to be included as a conditional probability
in the fit to avoid biased results [58]. Therefore, the complete PDF for each
signal/background contribution is

PJ = PJ ;m · PJ ;t,q · PJ ;σt · PJ ;ηOST · PJ ;ηSST . (4.10)

More information on the event-by-event uncertainty estimate σt and mistag
estimates ηOST and ηSST will be given in Chapters 7 and 6.



CHAPTER 5

Signal selection for the decay B0
s→ D−s π

+

As mentioned in Section 3.7 the selection of signal B0
s → D−s π

+ candidates is
performed sequentially. The first stage is the selection in the trigger before the
events are stored. The next step is a preselection that is performed centrally for
all LHCb analyses. This step is called Stripping. The last step is the final offline
signal selection that was optimized by the individual analysis to achieve the best
signal significance.

There are other analyses in LHCb using the decay B0
s→ D−s π

+ like for example
the measurement of CP violation in the decay B0

s→ D±s K
∓ [2]. For comparability

reasons the signal selection was tried to be kept as close as possible among these
analyses.

5.1. Variables used in the signal selection

In this section, the most important variables used in the signal selection are intro-
duced and explained via small diagrams. Additionally, the signal and background
distributions for these variables from simulated data are given.

The signal selection of the decay B0
s→ D−s π

+ is challenging since the final state is
purely hadronic. Many physics analyses rely on final states including muons since
muons leave clear signatures in the detector. For this analysis, however, a high
statistics decay channel with a flavour specific final state is required. Furthermore,
the final state has to be fully reconstructed to be able to use the B0

s invariant

51
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Figure 5.1.: (a) Diagram for the definition of the impact parameter
(IP) and (b) distribution of the IP χ2 for B0

s daughter particles (blue)
and prompt particles from the PV (red)

mass to distinguish between signal and background. This excludes semileponic
decays, which are also self-tagging and have the largest Branching Ratio, and the
only possible choice is B0

s→ D−s π
+. Therefore, many variables are necessary to

separate signal from background.

One of the most powerful variables is the impact parameter (IP) which is the
minimum distance between the reconstructed track and the primary vertex (see
Figure 5.1(a)). It is used to distinguish between particles coming from the
primary interaction or short-lived resonances and daughter particles from long-
lived particles like B mesons. Daughter particles of B mesons will, on average, have
larger IPs than particles that were produced directly at the primary vertex. This
can be seen in Figure 5.1(b) which shows the IPχ2 distributions for B0

s daughter
particles (red) and prompt particles (blue). The χ2 of the impact parameter shows
a better separation than the IP itself.

Another useful geometrical selection criterion is the direction angle (DIRA). It is
the angle between the flight direction, given by the connection between production
vertex and decay vertex of the particle, and its reconstructed momentum (see
Figure 5.2(a)). It is a good measure to see if all particles were reconstructed
correctly, i.e. if all reconstructed particles were produced in the same decay
and their momenta were also reconstructed correctly. Figure 5.2(b) shows the
distribution of the cosine of the DIRA for B0

s mesons and for background.

Another way to take advantage of the long lifetime of B mesons in the selection is
cutting directly on the flight distance (FD) of the decay particles (see Figure 5.3(a)).
For this selection, the radial flight distance (RFD) of the B0

s candidate, which
is the flight distance in the xy-plane, is used. In combination with the other
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Figure 5.2.: (a) Diagram for the definition of the direction angle
(DIRA) and (b) distribution of the cosine of the DIRA for B0

s mesons
(blue) and background (red)

variables used in the selection it shows a better separation between signal and
background than the three dimensional flight distance. In Figure 5.3(b) the radial
flight distance for B0

s mesons and for background is shown.

For the bachelor π± variables like the transverse momentum (pT), i.e. the momen-
tum in the xy-plane, and the polar angle, θ, between the reconstructed momentum
and the z-axis are used in the selection (see Figure 5.4(a)). The distributions of the
pT and the cosine of θ for bachelor π± and background are given in Figures 5.4(b)
and 5.4(c).

To decide if reconstructed particles originate from a common vertex, a small
χ2/ndf of the vertex fit is required.

Due to timing constraints in the software trigger, no full event reconstruction
is performed. Also the decay tree fitter (DTF) is not run in the trigger stage.
Therefore, not all of the aforementioned variables can be used to select B0

s

candidates. Thus, other variables with similar characteristics have to be used
like for example instead of a vertex χ2/ndf the distance of closest approach
(DOCA) between two tracks is used (see Figure 5.5(a)). Figure 5.5(b) shows the
distributions of these DOCA for signal and background tracks. Signal refers to
tracks originating from the same vertex and background refers to particles coming
from different vertices.

To distinguish pions, kaons, protons, and muons, particle identification (PID)
information from the RICH detector, the calorimeters, and the muon stations are
combined. In the LHCb software these are given by the difference of the logarithms
of their respective likelihoods to give a measure of the likeliness of the particle
being one species relative to it being another. These Delta Log Likelihoods (DLL)
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Figure 5.3.: (a) Diagram for the definition of the flight distance
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Figure 5.5.: (a) Diagram for the definition of the distance of
closest approach (DOCA) between two tracks and (b) distribution of
the DOCA for tracks coming from the same vertex (blue) and tracks
coming from different vertices (red)

are always given relative to the pion hypothesis which is by far the most common
particle species in the detector.

∆ lnLXπ = (lnL(X)− lnL(π)) (5.1)

5.2. Multivariate analysis tools

In the various stages of the signal selection, boosted decision trees (BDT) are used
to discriminate signal from background. BDTs are so called multivariate analysis
tools, as they combine multiple variables which have discriminating power, and
compute one response from them. The response from this multivariate classifier
contains all information of the single input variables, but it is combined in a more
efficient way than applying single rectangular cuts.

Therefore, a signal selection including multivariate tools usually results in a better
performance than simple cut-based selections. The improved performance is shown
in Figure 5.6 where the background levels in the nominal signal selection used
in this analysis including a BDT and a cut-based selection used in a previous
analysis of ∆ms using B0

s→ D−s π
+ decays at LHCb [19] are compared. For better

comparison only the D−s → K+K−π− decay modes have been used. The previous
analysis was performed on a smaller data sample. Thus, the absolute number of
candidates should not be compared, but only the signal to background ratio. The
individual background components will be discussed in detail in Section 5.8.

Multivariate analysis tools are required to be “trained”. Clean samples of signal
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Figure 5.6.: Comparison of the background level of a cutbased
selection (a) and a selection including multivariate tools (b). For
comparison only the D−s → K+K−π− decay modes have been used.
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Figure 5.7.: Impact parameter resolution in x-direction (a) and
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Taken from [39]

and background must be provided for the algorithms to find the best way to
separate the two using the input variables. These samples can be taken from
simulated data, which has the advantage that it is known whether the event is
signal or background. The disadvantage is that the simulation does not always
reproduce the real data. One known example is that the IP resolution in data
is not well reproduced in simulation (see Figure 5.7). The alternative is to take
the training samples directly from data. In this case the disadvantage is that the
samples are not pure signal/background samples. Also, if they are taken from
control channels, it is not guaranteed that they represent the data used in the
analysis completely.

Other commonly used multivariate analysis tools include Fisher discriminants,
Neural networks and decision trees. For the offline selection, the gradient boosted
decision tree (BDTG) shows the best performance and is therefore chosen for the
final selection.
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5.2.1. Boosted decision trees

Decision trees are sequences of binary splits of the data sample. In each step
the variable with the largest separation power is chosen. Then the data is split
according to a cut placed on this variable at the value with the best separation
which is defined by the training algorithm. Then the resulting two samples are
evaluated in the same way. This procedure is repeated until either all resulting
samples are split completely into signal and background or the statistics are too
small to decide (see Figure 5.8). These final data samples are called “leafs” and
are classified to be either signal-like or background-like.

𝐈𝐏𝛘𝟐 > 𝟔 𝐈𝐏𝛘𝟐 < 𝟔 

𝐅𝐃 > 𝟎. 𝟓𝐦𝐦 𝐅𝐃 < 𝟎. 𝟓𝐦𝐦 𝐩𝐓 > 𝟓𝐆𝐞𝐕/𝒄 𝐩𝐓 < 𝟓𝐆𝐞𝐕/𝒄 

Figure 5.8.: Diagram illustrating the structure of a decision tree.
Blue arrows indicate signal-like branches, red arrows background-like
branches.

Decision trees are powerful classifiers, but unstable. Their separation power
depend on the statistical fluctuations of the input samples. Therefore they are
made more robust by the use of so-called boosting. Boosting is a procedure in
which the optimization procedure is repeated and, in each iteration, events which
are wrongly assigned to a leaf, i.e. a background event ends up on a signal-like
leaf or vice versa, are given larger weights. In this way a large number of decision
trees are built and the final response is calculated by looping over all of the trees
for each event and add a weight of +1 if the event ended up on a signal leaf and
-1 if it ended up in a background leaf. The response is normalized to the total
number of trees. This stabilizes the procedure considerably.

Several boosting procedures exist. The two most commonly used are AdaBoost
and Gradient Boost. They are described in detail in [59]. The gradient boosting is
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found to give the better performance for this analysis and has the advantage that
it is more robust against outliers. Therefore it is chosen for the offline selection
step.

5.3. Trigger selection

As explained in Section 3.6, the LHCb trigger is a two stage system. In this analysis,
no additional selection is applied in the first stage, the L0 trigger components [41].
All events passing this stage are used.

For the second stage, the software trigger (HLT), events used in this analysis are
restricted to those which pass certain trigger lines. In addition, it is not only
required that the corresponding trigger line selected the event but also that it was
activated by tracks belonging to the offline signal candidate. These events are
called triggered-on-signal (TOS). Since the composition of trigger lines changed
over the course of data taking in 2011, a higher compatibility between data and
simulated events is achieved by limiting the analysis to the trigger lines described
in this section.

In the HLT1 stage, only events that triggered the HLT1TrackAllL0Line [60] were
selected. The cuts applied in this trigger line are listed in Table 5.1.

Due to timing reasons, not all track segments built in the VELO are extrapolated
to the tracking stations. Only track segments that pass requirements on the
impact parameter, number of hits on the track, and number of missed hits are
used. The missed hits variable is given by the difference between the number of
hits on the track and the number hits expected which is given by a straight line
extrapolation for the track and comparing it to the active region of the VELO.
On the full tracks, selection criteria based on the number of hits, momentum , p,
and transverse momentum, pT, the χ2 of the track fit divided by the number of
degrees of freedom, and IPχ2 are applied.

The HLT2 lines used, are comprised of topological trigger lines that select 2-, 3-
and 4-body decays and a trigger line that reconstructs φ resonances exclusively
in the channel φ → K+K−. The topological trigger lines, which are called
HLT2Topo2(3,4)BodyBBDTLine [61], apply a very loose cut-based preselection
and then use a boosted decision tree to select decays of B mesons. For the
preselection, tracks which satisfy certain criteria on their IPχ2, track χ2 and
momenta are used as input. These tracks are combined to form vertices which
must fulfill requirements on the sum of the transverse momenta of the tracks, their
invariant mass, their distance of closest approach (DOCA) and their flight distance
(FD) χ2 with respect to the PV. These requirements are shown in Table 5.2.

A boosted decision tree is used in the last step of the trigger selection (BDTtrig).



5.3 Trigger selection 59

Cuts on VELO tracks
IP > 100µm
Number of hits > 9
Number of missed hits < 3

Cuts on full tracks
Number of hits > 16
pT > 1700 MeV/c
p > 10 GeV/c
χ2/ndf of track fit < 2
IP χ2 > 16

Table 5.1.: Selection of candidates that pass HLT1TrackAllL0Line.

Cuts on input tracks
IP χ2 > 4
track χ2 < 3
Transverse momentum pminT > 500 MeV/c
momentum > 5 GeV/c

Cuts on 2-,3-,4-body combinations∑ |pT | > 3, 4, 4 GeV/c
invariant mass < 7 GeV/c2

DOCA < 0.2 mm
FDχ2 > 100
BDTtrig > 0.4, 0.4, 0.3

Table 5.2.: Selection of candidates that pass
HLT2Topo2(3,4)BodyBBDTLine.
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Cuts on K±

IPχ2 > 6
track χ2 < 5
DOCA < 0.2 mm
pT

min > 800 MeV/c

Cuts on φ
|m−mPDG| < 20 MeV/c2

pT < 1800 MeV/c
vtxχ2 < 20

Table 5.3.: Selection of candidates that pass HLT2IncPhiLine.

The input variables are the sum of the momenta, ∑ |pT |, and the minimum of the
transverse momenta of the tracks pminT , the invariant mass, the corrected mass,
DOCA, the candidate IPχ2 and the flight distance χ2. The corrected mass takes
the missing pT into account assuming the particle originates from the primary
vertex.

mcorr =
√
m2 + |pmissT |+ |pmissT |, (5.2)

where m is the invariant mass of the B candidate. The final cut, depending on
whether it is a 2-, 3- or 4-body decay candidate is given in Table 5.2 as well. More
details on the topological trigger lines can be found in [61].

Since one of the signal decay channels contains the φ resonance, the HLT2IncPhiLine
adds signal events to the analysis as well. The selection of the φ→ K+K− candi-
dates is given in Table 5.3. It uses the IPχ2, the track χ2, DOCA and pminT of the
final state particles and the invariant mass, pT and χ2 of the vertex fit of the φ
candidate.

5.4. Stripping selection

The candidates that pass the trigger selection described in the Section 5.3 are
recorded. On these events, a loose preselection that is performed within the central
processing of all data taken by LHCb. This analysis uses the preselection that
was applied during the Stripping17 processing of the data.

The selection is listed in Table 5.4. There are also cuts applied on the reconstructed
B0
s , D−s and bachelor π+ candidates.

The cuts on the B0
s candidate include the reconstructed invariant mass, m(B0

s ),
the χ2 of the B0

s -vertex fit from the decay tree fitter (DTF) [48] as well as the
impact parameter of the B0

s , the cosine of the direction angle (cos DIRA), the
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Cuts on B0
s candidate

m(B0
s ) [4.75, 7.0] GeV/c2

vtxχ2 < 10
IPχ2 < 25
cos DIRA > 0.999
t > 0.2 ps∑
pT > 5 GeV/c

BDTstrip > 0.05

IsTopo cut (Boolean flag if following cuts are passed)
track χ2 < 3
pT > 500 MeV/c
p > 5 GeV/c

Cuts on D−s candidate
|m(D−s )−m(D−s )PDG| < 100 MeV/c2

vtxχ2 < 10
vtx distance wrt. PV χ2 > 36
cos DIRA > 0∑
pT > 1.8 GeV/c

at least 1 daughter: IsTopo True

Cuts on bachelor π+

IsTopo True
∆ lnLKπ < 20

Table 5.4.: Stripping selection of B0
s→ D−s π

+ candidates.

reconstructed decay time, t, and the sum of the transverse momenta, ∑ pT, of the
B0
s daughter tracks. Additionally a boosted decision tree (BDTstrip) is used. The

input variables are the B0
s transverse momentum and flight distance χ2 as well as

the sum of vertex χ2 from the DTF, summed over the B0
s and D−s vertices.

The cuts on the D−s candidate include, as well, requirements on the reconstructed
invariant mass, the χ2 of the vertex fit from the DTF, as well as of the distance
between the D−s decay vertex and the primary vertex. Additionally, it is required
to pass cuts on the cos DIRA, and the sum of the transverse momenta, ∑ pT, of
its daughters. At least one of the daughter tracks is required to pass the isTopo
cut which places harder requirements on track χ2, transverse momentum and
momentum. The bachelor π+ is required to pass the isTopo cut as well as a loose
cut on the PID separating variable ∆ lnLKπ.

The background level after this step of the selection is already quite moder-
ate, as shown in Fig 5.9(a). The ratio of number of signal candidates to num-
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ber of background candidates, in a tight window around the B0
s mass [23] of

[5320,5450] MeV/c2, is S/B = 1.4. This is further improved in the final step of the
selection.
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Figure 5.9.: Invariant mass distributions for B0
s candidates after

the Stripping selection step (a) and the complete offline selection (b)

5.5. BDT in offline selection

BDTs are used in all stages of the selection process (trigger, Stripping and offline).
For this analysis, the BDTs that were provided by LHCb were used. The training
of the BDTG1 used in the offline selection will be presented in this section. To be
consistent with publications of the LHCb collaboration with the latest results on
∆ms [20] the official LHCb BDTG is used in this analysis.

For the BDTG used in the offline signal selection, the training samples were
taken from data. To obtain the signal/background sample, all requirements
described in Section 5.4, are applied and then a fit to the mass distribution
is performed. From that fit, weights are calculated according to how likely an
event is signal or background, using the sPlot method [62]. By applying these
weights, the background is statistically subtracted from the signal and vice versa.
This procedure has the disadvantage that the background is only subtracted
statistically and there is some polution of background events in the signal sample
remaining. Another disadvantage is that, if the same sample is used for training
the BDT and the final analysis, there is a chance of “overtraining”, i.e. being
sensitive to statistical fluctuations in the signal/background samples. If the BDT
is overtrained the estimated signal efficiency does not reflect the real separation
power of the BDT. However, since in this analysis the absolute value of the signal
efficiency is not of interest, overtraining is not regarded as an issue.

1The G refers to the fact that this boosted decision tree uses the Gradient boost algorithm as
described in [59]
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B0
s variables

IPχ2

cos DIRA
RFD

vtxχ2/ndf
decay time χ2/ndf

Bachelor π+ variables
IPχ2

pT
cosθ

D−s variables
IPχ2

cos DIRA wrt. primary vtx
cos DIRA wrt. B0

s vtx
RFD

vtxχ2/ndf

stable particle variables
Minimum(D−s daughters pT)

Minimum(D−s daughters IPχ2)
Maximum(all stable particles: track ghost probability)

Table 5.5.: Input variables for the boosted decision tree used in the
offline selection (BDTG).

The input variables for the BDTG are listed in Table 5.5. They include the radial
flight distance, RFD, and decay time χ2/ndf of the B0

s candidate, the IPχ2 of
the B0

s daughters, the cosine of the direction angle with respect to the PV and
the RFD of the D−s which all take advantage of the long lifetime and, thus, the
long flight distance of the B0

s meson. Additionally, variables like direction angle
and vertex χ2/ndf of the B0

s and D−s candidates and the IPχ2 of the B0
s add

information about the decay topology to the BDTG. Kinematic variables like the
pT of the bachelor π+ and the D+

s daughters also add to the separation power of
the BDTG. Other input variables are the angle between the bachelor π+ and the
beam axis, and a track ghost probability of the stable particles.

5.6. Offline signal selection

The candidates passing the Stripping selection are then used as input for the
final offline signal selection. The largest separation power between signal and
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background is given by the offline BDT described in Section 5.5. The cuts are
summarized in Table 5.6. They include tighter invariant mass windows for the
reconstructed B0

s and D−s candidates. Additionally, the trigger lines of the HLT2
stage described in Section 5.3 are required to be triggered on signal (TOS). For
the bachelor π+, the PID requirement is tightened with repect to the Stripping
selection.

In the offline selection, different criteria are applied for the individual D−s decay
modes. For the D−s → K+K−π− modes, a cut to remove events from the decay
Λ

0
b→ Λ

−
c π

+, where the Λ−c decays into K+pπ−, is placed: The D−s candidate is
reconstructed using the proton mass hypothesis for the K− and if the resulting
invariant mass lies within a window around the nominal Λ+

c mass, a harder PID
requirement is applied to the K− candidate to reduce the possibility of p→ K−

misidentification. A similar requirement is placed for the D−s → K−π+π− mode.

For the D−s → φ(K+K−)π− and D−s → K∗0(K+π−)K− modes, cuts on windows
around the invariant masses of the corresponding resonances are placed. In case of
the D−s → K∗0(K+π−)K− and the non-resonant D−s → K+K−π− modes the PID
requirements on the D−s daughters are tightened further. These cuts are harder
for the same-sign K than for the opposite-sign K. The terms “same-sign” and
“opposite-sign” refer to the charge of the K with respect to the Ds charge. To
reject background contributions from semileponic B0

s decays in the D−s → K−π+π−

decay mode the bachelor pion is required not to fulfill the ISMUON requirement
which is a momentum dependent requirement on the presence of hits in the muon
stations. Additionally, there are loose PID requirements placed on the π± and a
hard PID requirement on the K candidate. Also, there is a cut on the χ2 of the
flight distance of the D−s candidate with respect to the B0

s decay vertex to reject
background contributions from other B0

s decays.

Finally, for the D−s → π−π+π− decay mode, there is also a loose PID requirement
on all reconstructed D+

s daughter particles as well as requirements on the invariant
masses of the combinations of two of the D+

s daughters. In this way, signal
enriched regions in the Dalitz plane are taken advantage of. For example the f 0

resonance is selected.

After all selection criteria are applied the remaining background level is very low,
as shown in Fig 5.9(b). The signal to background ratio in the reconstructed B0

s

mass window [5320,5450] MeV/c2 is S/B = 7.4.

5.7. B0
s→ D±s K

∓ signal contribution

After the signal selection is applied, there is a contribution left from B0
s→ D±s K

∓

decays where the bachelor K∓ is misidentified as a π∓. This decay is considered
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Cuts on B0
s candidate

mB0
s

[5320, 5980] MeV/c2

BDTG > 0.3

Cuts on D−s candidate
mD−s

[1944, 1990] MeV/c2

Trigger requirements
Triggered on signal (TOS) Hlt2Topo2(3,4)BodyBBDT

OR Hlt2IncPhi

Cuts on bachelor π+

∆ lnLKπ for pions < 10

Cuts specific for the D−s → K+K−π− modes
If |m(D−s )

Λ
−
c hypo

−m(Λ−c )PDG| < 50 MeV/c2:
∆ lnLKp for same-sign K > 0

Cuts specific for D−s → φ(K+K−)π−

|m(φ)−m(φ)PDG| < 12 MeV/c2

Cuts specific for D−s → K∗0(K+π−)K−

|m(K∗)−m(K∗)PDG| < 70 MeV/c2

∆ lnLKπ for same-sign K > 5
∆ lnLKπ for opposite-sign K > 0

Cuts specific for D−s → K+K−π− non-resonant
∆ lnLKπ for same-sign K > 5
∆ lnLKπ for opposite-sign K > 0

Cuts specific for non-resonant D−s → K−π+π−

ISMUON for bachelor π+ False
D−s FDχ2 wrt. B0

s vertex > 4
∆ lnLKπ for π± < 5
∆ lnLKπ for K > 5
If |m(D−s )

Λ
−
c hypo

−m(Λ−c )PDG| < 24 MeV/c2:
∆ lnLKp for same-sign π > 0

Cuts specific for D−s → π−π+π−

∆ lnLKπ for π± < 5
Either |m(π+π−)−m(f 0)| < 30 MeV/c2

Or m(π+π−) > 700 MeV/c2

If m(π+π−1 ) < 900 MeV/c2: m(π+π−2 ) < 1000 MeV/c2

Table 5.6.: Offline selection applied additional to the Stripping17
selection of the B0

s→ D−s π
+ candidates.
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Figure 5.10.: Distribution of B0
s decay time residuals for B0

s →
D−s π

+ events (red) and B0
s→ D±s K

∓ events (blue).

signal in the decay time analysis. Since the mass hypothesis for the bachelor is
wrong, the reconstructed momentum and invariant mass of the B0

s candidate are
wrong as well. The effect on the reconstructed decay time has been studied using
simulated data (see Fig. 5.10). It can be seen that the distributions of the decay
time residuals which is the difference between the true, simulated decay time and
the reconstructed decay time are slightly different from the B0

s→ D−s π
+ signal

candidates. The distribution is wider and shifted towards lower values. The effect
of ignoring this different resolution for B0

s→ D±s K
∓ events has been studied using

pseudo-experiments. It shows no effect on the measurement of ∆ms. Therefore it
is concluded that it is justified to treat these events as signal in the decay time
analysis.

5.8. Background Composition

For this analysis, several sources of backgrounds have been considered. Aside from
combinatorial background, which arises from the combination of four random
tracks that pass the signal selection, there are two sources of physics backgrounds
present. “Physics” refers to the fact that these are real b hadron decays in
which one or several particles were misidentified and make the reconstruction
of those decays mistakenly consistent with the B0

s→ D−s π
+ hypothesis. These

backgrounds are henceforth referred to as “misid.” background. Additionally,
there are contributions from partially reconstructed decays, but they are rejected
by an invariant mass requirement on the B0

s candidate.
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Figure 5.11.: Distribution of the reconstructed B0
s invariant mass

in a wide mass window. At the low invariant masses the contribution
from partially reconstructed decays can be seen (green).

5.8.1. Partially reconstructed decays

The decay B0
s→ D−s π

+ is possible via higher resonances of the D−s and π+ mesons,
like for example the decays B0

s → D∗−s π+ and B0
s → D−s ρ

+, with D∗−s → D−s γ
and ρ+→ π+π0. The neutral particles are not reconstructed, which is why the
contributions from these decays are called “partially reconstructed”. Due to the
missing momentum of the neutral particle, the reconstructed B0

s invariant mass is
lower than the nominal B0

s meson mass (see Figure 5.11).

The partially reconstructed modes are still B0
s meson decays, which show the

same mixing behaviour as B0
s→ D−s π

+ signal decays, and could in principle be
included as signal as shown in [63]. However, the gain in statistical significance is
small and the decay time distributions for these decays are hard to model due
to the missing momentum of the particle that was not reconstructed. Therefore,
it has been decided to place a hard cut at the lower edge of the invariant mass
signal region at m > 5320 MeV/c2 to remove these background contributions.

5.8.2. Combinatorial background

The first source of background considered in this analysis is combinatorial. It
results from the random combination of tracks in the event that do not originate
from a common particle decay. It is also possible that a real D−s meson is combined
with a random π+ which happens to have the correct kinematic properties to make
the resulting B0

s candidate pass the selection. This background does not pose a
problem for this analysis since it is expected to be well described by a smooth,
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non-peaking function in the B0
s invariant mass distribution. In the selection, the

B0
s invariant mass window is chosen in a way that selected events with an invariant

mass higher than the range of the signal peak (high-mass sideband) are a clean
sample of combinatorial background events. This is used to find a fit function
parametrization to model this background distribution in the decay time.

5.8.3. Physics backgrounds

The physics backgrounds considered in this analysis are so called misid. back-
grounds. This means that they are resulting from b hadron decays with identical
decay products as the signal B0

s → D−s π
+ decay, except for one particle. This

particle is then misidentified so that the candidate is reconstructed as a signal
decay. In principle these decays could be suppressed by harder cuts on the PID
variables ∆ lnLXX, but due to the limited separation power of these variables, too
many signal B0

s candidates would be lost. Thus, there are still contributions from
these backgrounds present in the final dataset.

B0→ D−π+ background

The first contribution to the misid. backgrounds originates from the decay
B0→ D−π+ with D−→ K+π−π−. For B0

s→ D−s π
+ decays with D−s → K+K−π−,

one of the π− in the decay of the D− meson can be misidentified as a K−.
Therefore, the reconstructed D− invariant mass is higher than the nominal D−
mass and falls into the D−s invariant mass window of the selection. To reject this
background, a harder PID requirement is placed on the “same-sign” K which is
the one that is potentially a misidentified π.

In case of B0
s→ D−s π

+ decays with D−s → K−π+π−, this background is present
as well due to the double misidentification of a K and a π meson. This mode
has the highest background level and the lowest signal yield among the D−s decay
modes considered in this analysis. Therefore, it was decided to keep the PID
requirements loose to maximize the signal yield accepting the higher contribution
from this background.

Contributions from this background are assumed not to be present in the sample
containing B0

s → D−s π
+ decays with D−s → π−π+π−, since in this case the K+

meson is misidentified as a π+ the reconstructed D− invariant mass is shifted to
lower values due to assigning the wrong mass hypothesis to the K+. Therefore,
these candidates do not pass the D−s mass cut.
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Λ
0
b→ Λ

−
c π

+ background

The last misid. background considered in this analysis is the decay Λ0
b→ Λ

−
c π

+

where the Λ−c decays into K+pπ−. Due to the veto-cuts described in Section 5.6
the contribution from this background is low. Again, in case of the D−s → π−π+π−

mode, the contribution from this background is neglected since the same arguments
hold as for the B0→ D−π+ misid. background.





CHAPTER 6

Flavour Tagging

As mentioned in Section 4.1, one of the challenges in this analysis is to determine
whether the B0

s candidate was a B0
s or a B0

s at the time of its production, to
divide the signal sample into mixed and unmixed candidates. This information is
obtained by so-called flavour tagging algorithms, or short: flavour taggers. There
are two conceptionally different approaches how to determine the production
flavour of the B0

s candidate.

The so-called opposite side taggers (OST) take advantage of the fact that, in
pp collisions, b quarks are predominantly produced in bb pairs (see Figure 3.2).
Therefore, there must be a second b hadron in addition to the signal B0

s candidate
with the opposite b flavour produced in the primary interaction. Due to the
strong boost in z-direction most of the time both b hadrons are in the geometrical
acceptance of the LHCb detector (see Figure 3.3). By partially reconstructing
this second B hadron the flavour of the signal B0

s can be determined.

The so-called same side tagging algorithm (SST) uses the fact that the net
strangeness in the pp collisions is zero. Therefore, the s quark used in the
hadronization of the signal B0

s must originate from an ss pair produced from the
vacuum. Analogous to the opposite side tagging, the second s quark in the event
has the opposite flavour to the s quark in the signal B0

s meson. Therefore, by
reconstructing the hadron containing the second s quark in the vicinity of the
signal B0

s , the flavour of the signal B0
s can be determined.

The flavour tagging algorithms perform independently of the decay products of
the reconstructed B0

s candidate. Therefore, it is assumed that the performance in

71
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B0
s→ D±s K

∓ decays is the same as for signal decays.

6.1. Flavour tagging quantities

The flavour tagging algorithms estimate whether aB0
s candidate was, at production,

a B0
s or B0

s meson. This response is combined with the charge of the reconstructed
decay particles to form the mixing decision q. The latter decision is relevant for
this analysis, stating if the signal B0

s is mixed (q = +1) or unmixed (q = −1).

Flavour tagging algorithms do not work perfectly. The performance of these
algorithms can be described by two quantities: firstly the tagging efficiency

εtag = NR + NW

NR + NW + NU
, (6.1)

is calculated using the number of correctly tagged candidates NR, wrongly tagged
candidates NW and untagged candidates NU. The tagging efficiency is the fraction
of candidates for which the algorithms give a decision. Depending on the algorithm,
εtag usually lies between 15% and 30%. The second benchmark for the algorithms
is the so-called mistag probability

ω = NW

NR + NW
, (6.2)

which gives the fraction of tagged candidates for which the given tagging decision
is wrong. This quantity usually lies between 30% and 40% at hadron colliders.
The two quantities, εtag and ω, can be combined to be the tagging power or
effective tagging efficiency

εeff = εtag(1− 2ω)2 = εtagD2, (6.3)

with the dilution factor
D = 1− 2ω. (6.4)

The flavour tagging algorithms were optimized to measure decay-time-dependent
CP asymmetries of processes in which B0

s or B0
s mesons decay into a final state f .

These have the form

A(t) = Γ(B0
s → f)(t)− Γ(B0

s → f)(t)
Γ(B0

s → f)(t) + Γ(B0
s → f)(t)

= Γ(t)− Γ(t)
Γ(t) + Γ(t)

, (6.5)

with the time dependent decay rates Γ for B0
s and Γ for B0

s. Including the effects
of wrong tagging decisions, the measured decay rates are

Γm(t) = (1− ω)Γ(t) + ωΓ(t) (6.6)
Γm(t) = (1− ω)Γ(t) + ωΓ(t). (6.7)
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which leads to the measured asymmetry

Am = Γm(t)− Γm(t)
Γm(t) + Γm(t)

= DA. (6.8)

with the uncertainty
σAm = DσA (6.9)

Using Gaussian error propagation

σ2
Am =

(
∂Am
∂Γm

)2

σ2
Γm +

(
∂Am
∂Γm

)2

σ2
Γm , (6.10)

and assuming Poisson distributions for Γm and Γm

σΓm =
√

Γm and σΓm =
√

Γm , (6.11)

the uncertainty on the measured asymmetry is given by

σ2
Am = 4ΓmΓm

(Γm + Γm)3 = 1−A2
m

Γm + Γm
, (6.12)

using 1−A2
m = 4ΓmΓm

(Γm+Γm)2 in the second step. With N tag = Γm + Γm = εtagN (the
number of events with tagging information available), the uncertainty becomes

σ2
Am = 1−A2

m

εtagN
. (6.13)

Using Equation 6.9 and 6.8, the uncertainty on the true asymmetry is given by

σ2
A = 1−D2A2

εtagND2 = 1
εtagN

( 1
D2 −A

2
)
. (6.14)

Dis typically 20–40% at hadron colliders and the decay-time-dependent CP asym-
metries are usually of the order of a few percent. Thus, the assumption 1

D2 � A2

can be made and the uncertainty σA becomes

σA = 1√
εtagD2N

= 1√
εeffN

. (6.15)

Thus, the effective tagging efficiency, εeff , is the factor by which the statistical power
of a data sample in a measurement of a decay-time-dependent CP asymmetry is
reduced due to imperfect tagging.
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6.2. Opposite Side tagging algorithms

As mentioned before, the opposite side taggers take advantage of the predominant
bb quark pair production by partially reconstructing the second b hadron, called
Bopp, in the event [64]. The particles used in the reconstruction of the signal decay
are excluded from the selection of the tagging candidates.

There are two different approaches to determine the Bopp flavour. The first is to
reconstruct single particles from the Bopp decay chain, like muons and electrons
from semileptonic decays, and kaons from b → c → s transitions. The second
approach is to inclusively reconstruct the Bopp decay vertex and sum the charges
of all tracks belonging to the vertex. The former are called single particle taggers,
the latter, vertex charge tagger. Both are described in detail in the following
sections. Figure 6.1 shows the principle of the opposite side tagging algorithms.

vertex charge  
      tagger 

𝝁− and 𝒆− tagger 
 (from 𝑏 → 𝑐ℓ−𝜈ℓ ) opposite side 𝑲− tagger 

(from 𝑏 → 𝑐 → 𝑠 cascade) 

𝑲− 

𝝅− 

𝝅+ 

𝑲+ 

signal side 

opposite side 

𝑫𝒔
− 

𝒃  

𝒃 

signal 𝑩𝒔
𝟎 

𝑩𝐨𝐩𝐩 

Figure 6.1.: The diagram shows the principle of the opposite side
tagging algorithms. The produced bb pair is divided into signal
side and opposite side. The opposite side B hadron is partially
reconstructed and from the charge of the reconstructed particles the
flavour of the signal B0

s at production is determined.

For the opposite side taggers, it is assumed that the Bopp flavour at decay is the
same as at production. Thus by determining the flavour of the Bopp at the decay
the signal B0

s flavour at production can be identified. This assumption leads to an
intrinsic dilution, if the Bopp is neutral and changed flavour between production
and decay.
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6.2.1. Single particle taggers

The single particle tagging algorithms attempt to determine the flavour of the
Bopp hadron (and thus the flavour of the signal B0

s candidate at production) by
reconstructing single daughter tracks which are directly linked to the Bopp decay
flavour. Tracks taken into account as Bopp daughter tracks are called tagging
candidates. To reject background contributions from particles from the primary
interaction only tagging candidates with a large IPχ2 are considered. There are
three individual single particle taggers used at LHCb.

First there is the opposite side kaon tagger which reconstructs candidates from the
b→ c→ s transition. Thus, a K− corresponds to a b quark in the Bopp hadron
and respectively a K+ corresponds to a b in the Bopp hadron. The K± candidates
are selected using requirements on the PID information to distinguish them from
π±.

Secondly, there are two lepton taggers which reconstruct candidates from semilep-
tonic b→ c`−ν` decays. Similarly to the opposite side kaon tagger the charge of
the reconstructed lepton (muon or electron) identifies the decay flavour of the
Bopp candidate. The contribution from semileptonic b → c → s`+ν` decays are
reduced by placing a minimum pT cut on the lepton tagging candidate.

Muons are selected by requiring hits in the muon chambers and RICH information.
Additionally, misidentified π± which share hits with true muons are rejected. This
cut is especially useful in signal decays containing muons in the final state. Electron
candidates are selected using information from the electromagnetic calorimeter.
Furthermore, electron candidates are required to be in the acceptance of the
hadronic calorimeter to reject contributions from π±. They are also required to
have deposited less than a maximum ionization charge in the VELO to reject
contributions from photon conversions.

The lepton taggers are naturally limited by the Branching Fraction of semileptonic
B decays which is about 10%. They have usually a low tagging efficiency εtag
while having also a low mistag probability ω and, thus, a high purity.

6.2.2. Vertex Charge tagger

The vertex charge tagger is based on the inclusive reconstruction of the Bopp
decay vertex. The algorithm starts by forming a seed two-track vertex that is
not compatible with the PV by requiring large IPχ2 for both tracks. Additional
requirements on kinematic and geometric variables are applied to ensure that the
selected tracks originate from a b hadron decay [65]. Afterwards, more tracks are
added to the seed vertex if they are not compatible with the PV (large IPχ2 with



76 Chapter 6. Flavour Tagging

respect to PV) and at the same time are compatible with the seed vertex (small
IP and DOCA with respect to the seed vertex).

After all tracks in the event that pass the required selection are added to the Bopp
vertex, the tagging decision is made based on the weighted vertex charge which is
calculated as

Qvtx =
∑
i pT

κ(i)Qi∑
i pTκ(i)

. (6.16)

Each track included in the Bopp vertex is weighted by its transverse momentum
to the power of a calibration parameter κ. The value for this parameter κ that
maximizes εeff of this algorithm has been found to be κ = 0.4 [65].

For the tagging decision only candidates with |Qvtx| > 0.25 are considered. The
resulting tagging decision is equal to the sign of Qvtx.

Typically this algorithm has a high tagging efficiency of about 15% while also
having a large mistag probability ω.

6.3. Same Side Kaon tagger

The same side kaon tagger determines the signal B0
s flavour by exploiting its

hadronization. Since the s quark present in the signal B0
s must be created from

the vacuum there has to be an s quark present in the event. In about 50% of
the cases this s quark forms a charged kaon. Figure 6.2 shows the corresponding
Feynman diagram.

Contrary to the opposite side tagging algorithms, in this case, tracks from the PV
are selected by requiring small IPχ2. This also minimizes the correlation between
opposite and same side taggers since they are using samples of tracks with almost
no overlap. However, the small IPχ2 poses the largest challenge for this tagger at
hadron colliders. Finding the correct kaon is difficult because the track density
around the PV is high.

To select the correct K± from the underlying event, only tracks which are close to
the signal B0

s candidate in phase space are selected by requiring small differences
in polar angle, φ, and pseudo-rapidity. Low momentum background is rejected by
a minimum requirement on the tagging candidate’s pT. Background contributions
from misidentified π± are reduced by hard requirements on the PID variable
∆ lnLKπ.
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Figure 6.2.: Feynman diagram of the fragmentation chain exploited
in the same side kaon tagger.

6.4. Physical sources of mistags

There are several reasons for wrong tagging decisions of the opposite side tagging
algorithms. Firstly, if the second b quark hadronizes into a neutral B meson,
which happens in about 50% of the cases, the Bopp meson can oscillate which will
lead to a wrong tagging decision. The fraction of B0 mesons in all Bopp is about
40%. These still hold some information because only 19% change flavour before
decay. This is different for the quickly oscillating B0

s mesons. They make out 10%
of all Bopp, but half of them change flavour before decaying. Therefore they hold
no information about the original Bopp flavour. This is relevant for all opposite
side taggers.

Secondly, for the single particle taggers, if a track from the underlying event is
selected, this track will have a random charge leading in 50% of the cases to a
wrong tagging decision. For the lepton taggers, if the Bopp meson decays through
a b→ c→ s`+ transition instead of direct semileptonic decay, the resulting lepton
will have the wrong charge. This will also lead to a wrong tagging decision.

If additional tracks, which did not originate from the Bopp decay, are included in
the vertex charge tagger, this might lead to a wrong tagging decision. This can
also be true if one true daughter particle from the Bopp hadron is missed in the
reconstruction.

The main source for wrong tagging decisions by the same side kaon tagger is if
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the associated s quark does not form a charged kaon. Then the particle selected
by the algorithm will give a wrong tagging decision in 50% of the cases.

Table 6.1 shows the performance of the individual opposite side taggers in the
control channel B+→ J/ψK+ taken from [64]. For the combination of the opposite
side taggers events with poor mistags have been removed to increase the effective
efficiency εeff . Furthermore, the responses from the individual opposite side taggers
are correlated. Thus, the efficiency is smaller than the sum of the single taggers.

Taggers εtag [%] ω [%] εeff [%]
µ 4.8±0.1 29.9±0.7 0.77±0.07
e 2.2±0.1 33.2±1.1 0.25±0.04
K 11.6±0.1 38.3±0.5 0.63±0.06
Qvtx 15.1±0.1 40.0±0.4 0.60±0.06
OS average 17.8±0.1 34.6±0.4 1.69±0.10

Table 6.1.: Tagging performance of the opposite side tagging algo-
rithms in B+→ J/ψK+ decays. Taken from [64].

The same side kaon tagger has a tagging efficiency of εtag = 15.8 ± 0.3 and an
effective tagging efficiency of εeff = 1.5± 0.4 in B0

s→ D−s π
+ events. These results

are taken from [66].

6.5. Calibration of flavour taggers

The individual flavour tagging algorithms give, in addition to the tagging decision,
q, also an estimate, η, for the mistag probability for each B0

s candidate. This
estimate is the output of a neural net with several event variables as input. The
estimate has to be calibrated to represent the actual mistag probability ω. This
is done in external analyses using high statistics control channels. Since the
performance of the opposite side taggers is largely independent of the signal decay
mode, it is possible to calibrate them in non-oscillating B+ decay modes like
B+→ J/ψK+ [64]. The advantage is that the flavour at decay is identical to the
flavour at production for these B+ candidates. Thus it can be directly determined
if the tagging decision was correct by means of the charges of the decay products.

For the relation between the estimated mistag probability η and the actual mistag
probability ω a linear dependency is assumed.

ω = p0 + (η − 〈η〉) · p1. (6.17)

This function is chosen to have the most simple parametrization with minimal
correlation between the calibration parameters p1 and p0. Figure 6.3, taken
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from [64], shows the calibration for B+→ J/ψK+ decays. It can be seen that
the linear parametrization describes the relation between estimated mistag η and
actual mistag ω well.

c
η
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Figure 6.3.: Actual mistag probability ω plotted as a function of
the estimated mistag probability η. Taken from [64].

The same side kaon tagger depends on the signal fragmentation and thus has to be
calibrated in a B0

s decay mode. This means that the B0
s–B0

s oscillation has to be
fitted and from the fitted amplitude of the oscillation the calibration parameters
are determined. The B0

s decay mode that is suited best for this is B0
s→ D−s π

+ [66].
Since the data sample used for this calibration has a large overlap with the sample
used in this analysis it was decided not to constrain the calibration parameters
p0 and p1 to the values from the external calibration, but to include them in the
PDFs described in Section 9.1 and leave them free in the fit. For consistency, the
same is done for the calibration parameters of the opposite side taggers. However,
these parameters are closely related to the amplitude of the oscillation which is
orthogonal to the frequency. Therefore, they are uncorrelated to ∆ms and leaving
them free does not influence the final result (see Appendix D).
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6.6. Combination of flavour taggers

The information from the decisions, qi, and mistag estimates, ηi, of the individual
flavour tagging algorithms are combined into a single decision q and estimate η.
This is done in a way that no information is lost from the individual taggers and
they are assumed to be uncorrelated. This assumption is true for all flavour tagging
algorithms except for the vertex charge tagger which is found to be correlated
with the single particle opposite side taggers. This correlation is ignored and
therefore, even though the individual taggers were calibrated, the combination of
opposite side taggers has to be calibrated as well.

The combination is only relevant if more than one algorithm gave a tagging decision
q. In this case their predicted ηi are combined using the following formula:

p(q = −1) =
∏
i

(1 + qi
2 − qi(1− ωi)

)
, (6.18)

p(q = +1) =
∏
i

(1− qi
2 + qi(1− ωi)

)
, (6.19)

with ωi being the calibrated mistag probability of the individual tagger

ωi = p0,i + (ηi − 〈ηi〉) + p1,i, (6.20)

The quantities p(q = −1) and p(q = +1) give measures of how likely a candidate
was unmixed or mixed, respectively. These measures have to be normalized to be
probabilities:

P(q = −1) = p(q = −1)
p(q = −1) + p(q = +1) ,

P(q = +1) = 1− P(q = −1).
(6.21)

The combined decision, q, is made according to which probability is larger:

q = +1 for P(q = +1) > P(q = −1)
q = −1 for P(q = −1) > P(q = +1)

(6.22)

The combined estimated mistag probability is set to η = 1−P of the corresponding
combined tagging decision. At the time this analysis was conducted, the calibration
of the opposite side taggers has been completed, but the same side kaon tagger has
not yet been calibrated. Thus for the opposite side taggers the combination was
used, but the same side kaon tagger was used separately. The tagging decisions
qOST and qSST and estimated mistag probabilities ηOST and ηSST of the combined
opposite side taggers and the same side kaon taggers are combined in the way
explained above and the calibration parameters pOST

0 , pSST
0 , pOST

1 and pSST
1 are

free parameters in the fit.
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6.7. Flavour Tagging for background events

The flavour tagging decisions are designed to be meaningful only in case of a
real B0

s → D−s π
+ signal decay. However, this doesn’t mean that the decisions

are completely random in case of background decays. This has to be taken into
account for relative normalization purposes of the samples tagged as mixed or
unmixed.

6.7.1. Combinatorial background

Since the combinatorial background consists of random combination of particles
not originating from a single decay, the flavour tagging algorithms are assumed
to give random responses without information for this background contribution.
However, the fraction of tagged events do not have to be the same as for signal
decays. Since combinatorial background candidates that pass the signal selection
are more likely to occur in events with a high particle density and such events
are also more likely to produce a tagging candidate, the tagging efficiencies for
combinatorial background candidates are expected to be larger than for signal
candidates. To check this, additional tagging efficiencies for the opposite side
taggers εOST

tag;comb and the same side kaon tagger εSST
tag;comb are free parameters in the

fit.

Additionally, a parameter is introduced to allow for different numbers of candidates
which are tagged as mixed or unmixed. These asymmetry parameters, ωOST

comb and
ωSST

comb, for opposite and same side taggers, are, as well, free parameters in the fit,
but are expected to be compatible with 0.5.

6.7.2. B0 background

The background contribution from B0→ D−π+ decays must be treated differently
for candidates tagged by the opposite side taggers and candidates tagged by the
same side kaon tagger.

For the opposite side taggers this background is treated as signal since B0 mesons
contain real b quarks and it has a flavour specific final state. Therefore, the
opposite side flavour tagging algorithms are assumed to be able to distinguish
between mixed and unmixed decays. However B0 mesons oscillate with a lower
frequency than B0

s mesons. This is taken into account in the mixing PDF of this
background.

For the same side kaon tagger the tagging behavior of this background is assumed
to be random because B0 mesons do not contain an s quark and thus there cannot
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be a charged kaon from the fragmentation chain. This background consequently is
treated in the same way as the combinatorial background, with floating parameters
εSST
B0 and ωSST

B0 for the efficiency and tagging asymmetry. As for the combinatorial
background, the asymmetry parameter, ωSST

B0 , is expected to be compatible with
0.5.

6.7.3. Λ0
b background

The background contribution from Λ
0
b→ Λ

−
c π

+ decays are assumed to have the
same tagging behavior as the B0→ D−π+ decays. For the opposite side taggers it
has the same tagging behavior as the signal sample. The only difference is that Λ0

b

baryons do not oscillate into their antiparticles. Therefore they are all unmixed
and the only way they are tagged as mixed is in case of a wrong decision.

For the same side kaon tagger the same argument as for the B0→ D−π+ back-
ground is valid and the tagging behavior is assumed to be random. Like for the
other background contributions, the parameters εSST

Λ0
b

and ωSST
Λ0
b

are free parameters
in the fit, with ωSST

Λ0
b

expected to be compatible with 0.5.
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Decay Time Resolution and Acceptance

When performing a decay-time-dependent analysis, there are two important
issues: the decay time resolution and the decay time acceptance. The decay
time resolution dilutes the decay time distribution so that the amplitude of the
measured oscillation is reduced. Therefore, an excellent decay time resolution is
required to resolve the fast B0

s oscillation. This is provided by three effects:

• The B0
s particles are highly boosted in the forward direction. This helps to

separate secondary vertices from the PV.

• The amount of material the particles will traverse is minimized to reduce
effects from multiple scattering.

• The excellent vertex resolution of the VELO detector at LHCb (The IP
resolution of the VELO in data is 13µm in x-direction and 12µm in y-
direction for tracks with high pT, see Figure 5.7)

Historically, this analysis was used not only to measure the B0
s oscillation frequency

∆ms, but also to calibrate the same side kaon tagger. The decay time resolution as
well as the mistag probability is closely related to the amplitude of the oscillation.
Figure 7.1 shows the effects on the measured oscillation due to imperfect flavour
tagging and decay time resolution. Figure 7.1(a) shows the theoretical mixing
distribution. It can be seen that the amplitude of the oscillation is maximal.
Figure 7.1(b) shows the effect from realistic flavour tagging1. Due to wrong tagging
decisions mixed candidates are counted as unmixed and vice versa, dampening

1For this simulation the same tagging performance as measured in data was used

83
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(a) Perfect tagging, perfect resolution
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(b) Realistic tagging, perfect resolution
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(c) Perfect tagging, realistic resolution
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Figure 7.1.: Simulation showing the effects of flavour tagging and
decay time resolution on the measured B0

s–B0
s oscillation. (a) shows

the true oscillation with maximal amplitude. (b) shows the effect of
realistic tagging and (c) shows the effect of a realistic decay time
resolution on the measured oscillation.
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the oscillation amplitude. The amount of the dampening is equal to the dilution
factor D, defined in Equation 6.4.

Figure 7.1(c) shows the effect of a realistic decay time resolution2. Due to resolution
effects the measured decay time is slightly smaller or larger than the true decay
time. This also results in an effective dampening of the amplitude by a dilution
factor Dres. The resolution model is used to convolute the theoretical distribution

S(ttrue) ∝ cos ∆msttrue. (7.1)

A mathematical convolution of a function f with another function g is defined as

f(t)⊗ g(t) ≡
∞∫
−∞

f(t)g(t− t′)dt′ (7.2)

Assuming a Gaussian resolution model with mean zero and width σres

S(ttrue)⊗ G(0, σres; t) ∝ Dres · cos ∆mst (7.3)

with the dilution factor
Dres = e

−∆m2
s·σ

2
res

2 (7.4)

The measured average decay time resolution in data is about 45 fs. This leads to
a dampening factor of Dres = 0.73.

Since both the parameters describing the flavour tagging and the decay time
resolution are related to the measured amplitude, it is not possible to fit for both
at the same time, and the parameters describing the decay time resolution have
to be fixed. To be able to accurately determine the parameters describing the
tagging performance, the resolution has to be known very precisely. This is why it
is not possible to rely on simulated data and in Section 7.1 the calibration of the
decay time resolution model using a data driven study is described. Even though
the precise knowledge of the decay time resolution has only a secondary effect on
the measurement of ∆ms the same method is used in this analysis.

The second issue for the analysis, the decay time acceptance, describes the
distortion of the measured decay time distribution due to the signal selection
which was described in Section 5. The determination of its parametrization from
simulated data is described in Section 7.2.

2For this simulation a resolution of 45 fs, as measured in data, was used.
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7.1. Calibration of the Decay Time Resolution

The decay time resolution has to be modelled correctly in the fit for ∆ms to
accurately describe the B0

s–B0
s oscillation. As mentioned in Section 3.7 the decay

tree fitter (DTF) [48] takes the particle tracks and fits simultaneously all vertices
specified in the decay chain. In this analysis an event-by-event estimate of the
uncertainty on the measured decay time provided by the DTF is used. It is
calculated using the uncertainties on the particle momenta calculated in the track
fit and the uncertainty on the position of the B0

s decay estimated in the vertex fit.
The latter is the dominant effect. The data driven study described in the following
sections has been used to calibrate this event-by-event uncertainty estimate.

7.1.1. Principle of the Calibration Method

The method to calibrate the decay time resolution takes advantage of the fact that
the resolution is dominated by the uncertainty on the position of the secondary
vertex, i.e. the B0

s decay vertex. The uncertainty on the position of the primary
interaction vertex is much smaller because there are many more tracks coming
from the primary interaction that are used to fit this vertex. In contrast to that,
there are only four tracks that contribute to the fit of the B0

s decay vertex.

The event-by-event error estimate coming from the algorithm that fits the B0
s

decay time already propagates the uncertainties coming from the track fit of the
final state particles. Other detector resolution effects cannot be taken into account,
such as imperfect detector alignment and uncertainties on the amount of material
the decay particles traverse which leads to multiple scattering. Therefore, the
resulting uncertainty estimate must be calibrated on data.

This calibration is performed using reconstructed D−s → K+K−π− candidates that
do not come from any B meson decay, but from the primary interaction. These
D−s candidates are then combined with random π+ from the primary interaction to
form so-called fake B0

s candidates. These fake B0
s candidates have, by construction,

decay time t = 0, because they were built using only particles from the primary
interaction.

Figure 7.2 illustrates the calibration method. In the left diagram, a normally
reconstructed signal decay is shown. The B0

s meson is produced in the primary
vertex and propagates oscillating until it decays into a D−s meson and a pion. In
the right diagram the fake decay used in the calibration is shown. It is identical to
the right part of the real signal decay, but there was no B0

s in the first place and
the secondary vertex is identical to the primary vertex. Thus, the reconstructed
decay time is equal to zero, aside from the resolution effects.

The selection criteria for these fake B0
s candidates are chosen to be as close to
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Figure 7.2.: Diagram of the method used to calibrate the decay time
resolution. The left figure shows a normally reconstructed signal
B0
s→ D−s π

+ decay. The right figure shows a D−s → K+K−π− decay
from the primary interaction combined with a random π+ from the
primary interaction.

the signal selection described in Section 5, without applying any cuts that would
influence the fake B0

s decay time distribution. Examples for such cuts are given
in Section 7.2.

It would be ideal to apply all cuts that do not influence the decay time spectrum
while omitting the others. Unfortunately, this is not possible since these variables
are used in the BDT and cannot be easily ommitted. A different Stripping
selection using only variables that leave the B0

s decay time spectrum unchanged
was available. Therefore, it has to be checked whether the differences in the
selections have any influence on the B0

s decay time resolution.

Figure 7.3 shows the signal B0
s decay time residuals on simulated data for the

nominal offline selection (left figure) and the selection used for the calibration
(right figure). Both distributions are fitted with Gaussian distribution. It can
be seen that the two distributions have the same width. Thus it is concluded
that the differences in the selections do not influence the measured decay time
resolution and it is justified to use the calibration sample to calibrate the decay
time resolution.

There are several other crucial points for the calibration of the decay time resolution.
For the fake B0

s candidates, it has to be ensured that the sample on which the
calibration is performed contains only real D−s mesons. This is achieved by
statistically subtracting the background from particles other than real D−s . A fit
to the invariant mass of the D−s candidates is performed and weights are computed
using the sPlot method [62], as in the training of the BDT for the selection (see
Section 5.5).
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Figure 7.3.: Decay time residuals for signal B0
s candidates from

simulated data comparing the nominal signal selection (left) with
the selection used for the calibration of the decay time resolution
(right).

This sample of true D−s candidates has to be cleaned from D−s mesons that were
not prompt (they were not produced in the primary interaction), but are daughter
particles from long-lived particles, like b hadrons. The reason for this is that in
these cases the resulting fake B0

s candidates do not have decay time t = 0 and
they must not be used to determine the resolution. To disentangle the prompt
D−s candidates from the non-prompt D−s candidates the D−s log(IP ) distribution
is used. Again, the sample is reweighted using the same method to subtract the
long-lived background.

Finally the distribution of the decay time pull is fitted, which is defined as the
decay time divided by the event-by-event error estimate, σit. If the event-by-event
error estimate described the real uncertainty on the reconstructed B0

s decay time
accurately, this distribution would be a Gaussian distribution with mean µ = 0
and width σ = 1. A width σ = Sσt which is greater than one indicates that the
error estimate underestimates the real uncertainty. Scaling the error estimate by
the fitted width (Sσt · σit) yields to the desired pull distribution.

Due to limited statistics in data this study is actually performed using D−→
K+π−π− passing the same selection instead of D−s → h−h+h− decays. D−→
K+π−π− decays are kinematically and topologically very similar to D−s → h−h+h−

decays. Figure 7.4 shows the log(IP ) and decay time pull distributions for
D−→ K+π−π− and D−s → K+K−π− candidates in simulated data. There is no
difference visible and it is concluded that it is justified to use D−→ K+π−π−

decays for the calibration of the B0
s decay time resolution.

In the following sections each step required for the calibration of the decay time
resolution is be discussed in detail.
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Figure 7.4.: log(IP ) (left) and decay time pull (right) distribution
for D−→ K+π−π− (red) and D−s → K+K−π− (black) candidates
in simulated data.

7.1.2. Fit of the D−→ K+π−π− invariant mass
distribution

As described in the previous section the first step for the calibration of the decay
time resolution is fitting the invariant mass distribution of the D−→ K+π−π−

candidates to separate signal from combinatorial background.

The fit model to describe the signal candidates in the invariant mass distribution
is given by the sum of two Gaussian distributions with a common mean

Psig,m
D−s

=fm
D−s
· G(µm

D−s
, σ1,m

D−s
;mD−s

)

+ (1− fm
D−s

) · G(µm
D−s
, σ2,m

D−s
;mD−s

).
(7.5)

The combinatorial background is described by a first order polynomial with the
slope parameter αm

D−s
. The fit is performed as a binned extended maximum

likelihood fit. Therefore, the yields for signal Nsig and background Nbkg are fit
parameters as well. The fitted invariant mass distribution is shown in Figure 7.5.
From this fit result, weights are calculated using the sPlot technique [62] to
subtract the combinatorial background from the signal. The weights are applied
to the data set in the consecutive steps of the calibration. The fit results and the
distribution of the calculated weights are given in Appendix A.

7.1.3. Fit of the D− log(IP ) distribution

As described in Section 7.1.1, the second step of the calibration of the decay time
resolution is to select only those D−→ K+π−π− candidates which were produced
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Figure 7.5.: Distribution of the invariant mass of the D− →
K+π−π− candidates used for the calibration of the B0

s decay time
resolution. The red curve describes the fitted background distribution
and the blue curve describes the signal distribution.

directly in the primary interaction. From now on, these candidates will be referred
to as “prompt”. The variable used to separate these candidates from those that
were part of a decay chain of a long-lived particle, like a b hadron, is the logarithm
of the impact parameter, log(IP ), of these candidates. The IP gives a measure
of how well the reconstructed momentum of the D− meson points back to the
primary vertex, PV. In this case the logarithm of the IP is chosen.

The shape of the log(IP ) distribution for prompt and non-prompt D−s candidates
are parametrized using the so-called Bukin PDF [67]. The complete parametriza-
tion of the Bukin PDF is given in Appendix A.

The shape of the prompt D− and those from long-lived particles are fitted to
simulated data. For this study, a sample of 20 million D−→ K+π−π− was used.
After selection, about 10,000 prompt and 6,700 non-prompt candidates remain.
In Figure 7.6, the distributions together with the fitted functions are shown.

For fit stability reasons, the shape parameters ξ, ρ1 and ρ2 are fixed to the values
obtained on simulated data for the fit on data. Only the peak position parameters,
xp, and the widths, σp, are left floating in the fit, since the simulated data are
not expected to reproduce these. Figure 7.7 shows the log(IP ) distribution of the
D− candidates on data as well as the fitted functions for the prompt component
(green, dotted) and the non-prompt component (red, dashed). The figure shows
that the distribution is described well by the fitted function.
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Figure 7.6.: log(IP ) distributions for prompt (left) and non-
prompt (right) D−→ K+π−π− candidates. The fitted Bukin PDFs
are overlaid.
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Similar to, the fit of the invariant mass distribution, weights are calculated using
the sPlot technique [62], from the fit to the log(IP ) distribution of the D−

candidates to subtract the non-prompt component. Again, the fit results and the
distribution of the calculated weights are given in Appendix A. Applying these
weights to the data subtracts effectively the non-prompt component. Thus, in the
final step, the fit to the distribution of the decay time pull, the fake B0

s candidates
represent candidates with real decay time t = 0.

7.1.4. Fit to the decay time pull of the fake B0
s candidates

The resolution model describing the relation between the measured decay time
and the real decay time is assumed to be a Gaussian distribution.

tmeas = G(0, σt; ttrue). (7.6)

The final step of the calibration of the decay time resolution is the determination
of the proportionality factor Sσt between the event-by-event estimate σit and the
actual resolution σt

σt = Sσt · σit. (7.7)

Therefore, the weights determined in the previous sections are applied to the decay
time pull of the fake B0

s candidates. The distribution is shown in Figure 7.8. It
can be seen that it is well described by a Gaussian distribution. The fitted width
corresponds directly to the scale factor Sσt . The fitted value is Sσt = 1.36.

7.1.5. Dependence of Sσt
on kinematic variables

The final step for the calibration of the decay time resolution is the determination
of the uncertainty on Sσt . The statistical uncertainty on the fitted width in
Figure 7.8 is negligible. The dominant effect is found to be the dependence of
Sσt on the kinematics of the fake B0

s candidates. Even if Sσt is found to depend
on these variables, the average scale factor could accurately describe the real
resolution of the signal B0

s → D−s π
+ candidates. To ensure this the fake B0

s

candidates used for the calibration would have to show the same distributions in
these variables as the signal B0

s candidates.

The variables used for this cross-check are the transverse momentum pT, the
momentum p and the χ2 of the vertex fit of the B0

s candidates because they
show the largest dependence of Sσt . The distributions of these three variables for
signal candidates and the fake B0

s candidates from simulated data are shown in
Figure 7.9. It can be seen that the distributions do not agree with each other.
Therefore, to determine the systematic effect of a wrong scale factor, Sσt , on the
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Figure 7.8.: Distribution of the decay time pull of the fake B0
s

candidates used for the calibration of the decay time resolution. The
fit function is a Gaussian distribution.

measurement of ∆ms, the full range of the variation of Sσt as a function of these
variables is taken into account.

The three steps of the calibration (invariant mass fit, log(IP ) fit, decay time pull
fit) are performed in bins of B0

s vtx χ2, pT and p, respectively. The bins are chosen
in a way that there are roughly the same number of candidates in each bin. The
results for Sσt as function of these variables are shown in Figure 7.10. The fitted
values vary in the range between [1.25, 1.45]. This range is chosen to assign the
systematic uncertainty on ∆ms, as will be discussed in Section 11.

7.1.6. Decay time resolution on simulated data

As a cross-check, the method to calibrate the decay time resolution is applied to
simulated data. The distribution of the decay time pull of the fake B0

s candidates
built from prompt D−→ K+π−π− candidates is shown in Figure 7.11 on the left.
On the right in Figure 7.11 the decay time pull for signal B0

s→ D−s π
+ candidates

is shown.

It can be seen that the two distributions have slightly different widths. The reason
for this are the different kinematic distributions mentioned in Section 7.1.5. The
widths of the two distributions are well in agreement within the 10% uncertainty
assigned to this effect.

Secondly, the single Gaussian distribution does not describe the decay time pull
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+ candidates from simulated data. The fit function is the
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for the B0
s→ D−s π

+ candidates well as can be seen in Figure 7.11, the reduced χ2

of the fit is χ2/ndf = 14.6. A more accurate description is given by the sum of
two Gaussian distributions instead (see Figure 7.12). The reduced χ2 of this fit is
χ2/ndf = 1.2. The second, wider Gaussian distribution has a contribution of about
10% and a width that is about double the size of the inner one. Since the decay
time pull distribution of the prompt D− is described well by a single Gaussian
distribution in data, this will be the nominal resolution model in the fit for ∆ms.
The systematic effect of adding a second Gaussian with 10% contribution and
double the width to the nominal resolution model will be studied in Chapter 11.

7.2. Decay Time Acceptance

Several of the selection criteria that are applied in the signal selection distort the
decay time distribution of the B0

s signal candidates. The reason for this is that
the efficiency of those cuts depends on the B0

s decay time. The efficiency of a cut
is defined by the number of B0

s candidates passing the cut over the number of
candidates before the cut was applied. One example for such a cut is the IPχ2 of
the B0

s and D−s daughters. These cuts are more efficient for B0
s candidates that

decayed at a later time than for very shortlived ones. In the case of the shortlived
B0
s , the daughter tracks will be more likely to point to the PV. Other examples

are the radial flight distance of the B0
s , the direction angle cosDIRA, and the

χ2 of the distance between the PV and the secondary vertex. A second effect is
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introduced due to the fact that also the reconstruction of tracks has an efficiency
that depends on the decay time of the B0

s .

Due to these efficiencies, the decay time distribution of the signal B0
s candidates

cannot be modelled by a simple exponential. An acceptance function has to be
taken into account. This acceptance describes the decay time dependence of the
overall signal selection efficiency. It is obtained from Monte Carlo simulated data
by dividing the decay time distribution of the B0

s signal candidates that pass the
selection by a theory distribution which represents the reconstructed decay time
distribution of the candidates before the selection.

Et(t) = Sreco(t)
Stheo(t) (7.8)

The theory distribution is the one given in Equations 2.41 and 2.42 to describe the
time evolution of the B0

s candidates without the part describing the oscillation.
The acceptance is assumed to be the same for mixed and unmixed candidates. To
take into account resolution effects due to the reconstruction, this distribution is
convoluted with a Gaussian distribution using the same per-event error estimate
σit and scale factor Sσt as determined on simulated data in Section 7.1.6.

Stheo(trec) = e−Γsttrue cosh ∆Γs
2 ttrue ⊗G(0;Sσtσt) (7.9)

This acceptance function could also be determined as a function of the true decay
time (without the convolution), since the true, simulated decay time is available for
the selected events. It has been found that the overall probability density function
is analytically integrable for an acceptance as function of the reconstructed decay
time (see Appendix B). This achieves a considerable reduction in computing time.
Therefore, the acceptance is chosen as a function of the reconstructed decay time
rather than the true one.

The resulting acceptance histogram is shown in Figure 7.13. The decay time
acceptance should not be understood as an efficiency. For the acceptance, only
the shape is relevant and not the overall scale which would be the case for an
efficiency. Therefore the y-axis is given in arbitrary units. The function fitted to
the histogram is parametrized as

Et(t) = (1− e−
(t−sacc)
αacc )(1 + βacct) ·Θ(t− ζacc) (7.10)

with the parameters sacc, ζacc, αacc and βacc. The parameters sacc and αacc describe
the shape of the rising edge for low decay times. The parameter βacc describes
the decrease of efficiency for larger decay times parametrized as a linear drop-
off. Finally the Heaviside step-function Θ describes the cut-off for decay times
t < ζacc which are hard to model. In the analysis there is a hard cut placed at
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Figure 7.13.: Decay time acceptance for B0
s candidates passing

the signal selection. The fitted function is parametrized as shown in
Equation 7.10. Fit results are summarized in Tab 7.1.

Parameter Fit results
αacc 0.6329±0.0013 ps
βacc -0.0237±0.00024 1./ ps
sacc 0.1571±0.0005 ps
ζacc 0.2 ps

Table 7.1.: Fit results for decay time acceptance on simulated data.
The parameter ζacc is fixed in the fit.
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Figure 7.14.: Decay time acceptance for B0
s candidates passing the

signal selection for the individual D−s decay modes. The individual
acceptances are normalized to the same area.

t = ζacc = 0.2. Therefore, it is fixed in the fit in Figure 7.13. The fitted parameters
are summarized in Table 7.1.

The acceptance is assumed to be identical for the five different D−s decay modes.
To justify this assumption, the decay time acceptance distributions for simulated
data samples for each of the different D−s decay modes are plotted on top of
each other in Figure 7.14. It can be seen that the shape of the acceptance is
identical for all five decay modes. For the fit shown in Figure 7.13, the sum of the
histograms in Figure 7.14 is used.

Also, for the B0
s → D±s K

∓ mode and the two misid backgrounds, the same
acceptance function is used. For the misid backgrounds the simulated data samples
were not large enough to compare the acceptances, but for the B0

s→ D±s K
∓ mode

the acceptance distribution is compared to the B0
s→ D−s π

+ signal in Figure 7.15. It
can be seen that the acceptances are the same within the uncertainties. Therefore,
it is concluded that it is justified to use the same acceptance parameters for the
signal and backgrounds. Variation of the IP resolution in simulation to reproduce
the one in data and different trigger selections lead to variations of the parameter
αacc of about 20%. The systematic effect of this variation on the measurement of
∆ms is described in Chapter 11.
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CHAPTER 8

Fit to the B0
s Mass Distribution

As discussed in Section 4.2, the physical probability density function (PDF) used
in this analysis is divided into two parts which are considered independent. One is
describing the invariant mass distribution of the reconstructed B0

s signal candidates
and the second one is describing the mixing behaviour, namely the decay time
distribution depending on the flavour tagging decision, q. In this chapter, the
signal and background PDFs for the B0

s invariant mass distribution are described.
The results for the parameters for these PDFs are given as determined in the
combined fit in B0

s invariant mass, m, decay time, t, and flavour tagging decision,
q.

As discussed in Section 5.8.1, there are a large number of background contributions
from partially reconstructed decays present in the invariant mass region below the
signal peak. These background contributions, in which one or more particles are
not reconstructed, are difficult to model in the decay time distribution. Therefore,
it has been decided to place a tight cut at the lower edge of the invariant mass
signal region at m > 5320 MeV/c2 to remove these background contributions.

8.1. Invariant Mass PDF for signal decays

In this section the PDFs describing the two signal contributions are given. The
invariant mass PDF for signal is divided into one part describing the B0

s→ D−s π
+

decay, which includes most of the statistics, and the contribution fromB0
s→ D±s K

∓

101
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Figure 8.1.: Invariant mass distributions for B0
s candidates for

the individual D−s decay modes in simulated data. The individual
distributions are normalized to the same area.

decays, which have a different invariant mass distribution than B0
s→ D−s π

+ decays,
but a signal-like mixing distribution. These two contributions are combined using
their relative fraction fDsK as a fit parameter

Psig = fDsKPDsK + (1− fDsK)PDsπ. (8.1)

8.1.1. B0
s→ D−s π

+ invariant mass distribution

The invariant mass shape for the B0
s → D−s π

+ signal candidates is motivated
from simulated data. The invariant mass shapes for the five different D−s decay
modes used in this analysis are assumed to be identical. This assumption is
made because, in the calculation of the invariant mass of the B0

s candidate, the
D−s invariant is constraint to the PDG value [23]. This should correct possible
differences in the shape of the B0

s mass due to different phase space regions of the
D−s daughters. As a cross-check, Figure 8.1 shows the invariant mass distributions
of the B0

s candidates for the five D−s decay modes in simulated data. It can be
seen that the distributions are identical and, thus, it is justified to use the same
parameters for all five modes.

As parametrization for the signal shape, the sum of two Crystal Ball (CB) functions
[68] has been chosen. It is an asymmetric function with 4 parameters defined as

CB(α, n, µ, σ;x) = N ·

e−
(x−µ)2

2σ2 , for x−µ
σ

> −α
A · (B − x−µ

σ
)−n, for x−µ

σ
6 −α,

(8.2)
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with A and B defined as

A =
(
n

|α|

)n
· e−

|α|2
2 and

B = n

|α|
− |α| .

(8.3)

The parameter µ describes the peak position, σ describes the width of the distri-
bution and α and n describe the asymmetric tail.

To be used as a PDF the CB function has to be normalized. The normalization
factor N is given by

N = 1
σ(C +D) , (8.4)

with

C = n

|α|
· 1
n− 1 · e

− |α|
2

2 and

D =
√
π

2

(
1 + erf

(
|α|√

2

))
.

(8.5)

where erf is the error function1 For the invariant mass signal shape the peak
position of the two CB functions is required to be the same. The full invariant
mass PDF for the B0

s→ D−s π
+ signal decays is then given by

PB0
s→D

−
s π+;m = fm ·CB(α1

m, n
1
m,mB0

s
, σ1

m)+(1−fm)·CB(α2
m, n

2
m,mB0

s
, σ2

m), (8.6)

with fm the relative fraction of the two CB functions.

Figure 8.2 shows the fitted distribution for simulated data. Table 8.1 summarizes
the results for the fitted parameters. In the final fit using data, all of these
parameters, except for the peak position mB0

s
and the two widths σ1

m and σ2
m, are

fixed to the results in Table 8.1. The systematic effect on ∆ms of an alternative
mass model of the sum of two Gaussian distributions is studied in Chapter 11

8.1.2. B0
s→ D±s K

∓ mass distribution

The template for the B0
s→ D±s K

∓ signal contribution is taken from simulated
data. The full signal selection described in Chapter 5 is applied and approximately

1The error function is defined as

erf(x) ≡ 2√
π

∫ x

0
e−t2

dt.
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Figure 8.2.: Invariant mass distributions for B0
s candidates in

simulated data. The fitted function is the sum of two CB functions as
defined in Equation 8.6. The fit results are summarized in Table 8.1.
The dashed (red) line indicates the invariant mass cut applied in the
signal selection.

parameter Fit results
mB0

s
[ MeV/c2 ] 5366.50±0.02

σ1
m [ MeV/c2 ] 12.47±0.13
σ2
m [ MeV/c2 ] 21.9±0.3
fm 0.78±0.02
α1
m 2.13±0.06
α2
m -2.07±0.04
n1
m 1.10±0.06
n2
m 5.8±0.4

Table 8.1.: Fit results for the invariant mass distribution of the
B0
s→ D−s π

+ candidates from simulated data. The fit function is the
sum of two CB functions as defined in Equation 8.6.
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Figure 8.3.: Invariant mass distributions for B0
s→ D±s K

∓ candi-
dates reconstructed as B0

s→ D−s π
+ in simulated data. The dashed

(red) line indicates the invariant mass cut applied in the signal
selection.

55,000 candidates remain. The invariant mass distribution of the candidates that
were reconstructed under the B0

s→ D−s π
+ hypothesis is shown in Figure 8.3.

The histogram is normalized to have an integral equal to one. This histogram
could in principle be used directly as the invariant mass PDF PDsK;m in the fit.
However, it has been found that, due to imperfect momentum calibration, the
reconstructed invariant mass spectrum is shifted by 3.9 MeV/c2 compared to the
simulated distributions. Therefore, the histogram is shifted by this amount to be
compatible with the reconstructed B0

s mass in data. The histogram in Figure 8.3
already includes this shift.

It should be noted that for PDFs the normalization has to be calculated in the
range of the selected data. The nominal invariant mass window of the selection is
[5320, 5980] MeV/c2. Therefore, the histogram used as mass PDF is normalized
so that the integral in this mass range is equal to one. Another complication with
histograms arises if the edge of the mass window does not coincide with a bin edge.
In such a case the area of the excluded rectangle must also be excluded from the
calculation of the normalization. These two effects are taken into account for this
histogram as well as every other histogram that is later used as a PDF in the fit.
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8.2. Invariant Mass PDFs for background decays

The templates for the mass distributions of the background components described
in Section 5.8 are taken from different sources, both simulated and real data. The
mass templates for the misid. background contributions from B0→ D−π+ and
Λ

0
b→ Λ

−
c π

+ are taken from [2]. The shape of the combinatorial background is
fitted directly to data. In this section the PDFs describing these three background
contributions are given.

8.2.1. B0→ D−π+ and Λ0
b→ Λ

−
c π

+ mass distribution

The mass distributions for the misid. background contributions from the decays
B0→ D−π+ and Λ

0
b→ Λ

−
c π

+ have been provided by an external analysis of CP
violation in the decay B0

s→ D±s K
∓ [2]. They have been obtained from data as

follows: A clean sample of reconstructed B0→ D−π+ and Λ0
b→ Λ

−
c π

+ candidates
has been selected by reconstructing them with their respective correct mass
hypotheses and applying tight invariant mass cuts. Since the performance of the
PID cuts depend on the momentum of the corresponding particle, these cuts can
influence the resulting invariant mass shape. Thus, calibration functions obtained
from D∗ decays have been used to reweight the momenta of the misidentified
particles. The samples have then been reconstructed a second time using the
B0
s→ D−s π

+ mass hypotheses to obtain the invariant mass shapes.

The resulting mass distributions are shown in Figure 8.4. Similar to the B0
s→

D±s K
∓ signal mass distribution these are normalized histograms which are shifted

by 3.9 MeV/c2 compared to the simulated distributions.

8.2.2. Combinatorial background mass distribution

The combinatorial background mass distribution is fitted directly to data. It is
exponentially distributed, thus the mass PDF is given by

Pcomb;m = 1
N
e−αcombm, (8.7)

with the normalization factor N

N =
mmax∫
mmin

e−αcombmdm = 1
αcomb

·
(
e−αcombmmin − e−αcombmmax

)
. (8.8)

B0
s mesons are the heaviest B mesons produced in large quantities. Therefore,

contributions from partially reconstructed other B meson decays are all located
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in the invariant mass region below the B0
s→ D−s π

+ signal peak. In the high-mass
sideband region there are only contributions from combinatorial backgrounds
present. Thus, the slope parameter αcomb can be determined accurately in the
mass fit independent of the models for the other background contributions. The
slope and the amount of this contribution is highly dependent on the selection
criteria applied. Therefore, both parameters αcomb and the fraction fcomb are
floating individually for the five D−s decay modes.

8.3. Results of the invariant mass parameters in
data

The full PDF including all signal and background components is given by

P =fsig
(
fDsKPB0

s→D
±
s K∓

+ (1− fDsK)PB0
s→D

−
s π+

)
+ (1− fsig)

(
fcombPcomb

+ (1− fcomb)
(
fΛ0

b
P
Λ

0
b→Λ

−
c π

+ + (1− fΛ0
b
)PB0→D−π+

) ) (8.9)

with the fractions fsig, fDsK , fcomb and fΛ0
b
.

As discussed in Section 4.2, the individual PDFs each consist of the five components
describing the mass, PJ ;m, the decay time and tagging decision, PJ ;t,q, the decay
time error estimate, PJ ;σt , and the mistag estimates for the opposite side tagger,
PJ ;ηOST , and the same side tagger, PJ ;ηSST . However, the largest separation power
between the individual signal/background components comes from the mass
PDFs. Therefore, the fractions will be listed as parameters of the invariant mass
distribution.

The shape of the mass templates of the signal contribution from B0
s→ D±s K

∓

decays and the misid. backgrounds described in Sections 8.1.2 and 8.2.1 are fixed
since histograms are used. Only their relative fractions are free parameters in the
fit. The strategy for the simultaneous fit of the five D−s decay modes is to have
as many parameters as possible to be shared among the modes. The common
fit parameters of the invariant mass description are the signal peak position,
mB0

s
, and widths, σ1

m and σ2
m, and the fraction, fDsK , of B0

s→ D±s K
∓ candidates

compared to the B0
s→ D−s π

+ signal candidates.

In the mass range [5320, 5980] MeV/c2 the shapes of the B0→ D−π+ background
and the B0

s→ D±s K
∓ background are very similar. Therefore, it is not possible to

fit both fractions individually at the same time. Thus, the B0
s→ D±s K

∓ fraction
is obtained from an additional mass fit to the sample of B0

s→ D−s π
+ decays with

D−s → π−π+π−. As explained in Section 5.8.3, in this D−s decay mode there is no
contribution from B0→ D−π+ background and only B0

s→ D±s K
∓ background
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and combinatorial background are present. The fraction fDsK is extracted from
this mass fit and then, since it is assumed to be independent of the D−s decay,
fixed in the fit of all decay modes. Using only the D−s → π−π+π− mode to fit
fDsK results in a large uncertainty on the fitted fraction fDsK = 0.019± 0.010%.
The variation of fDsK within these uncertainties is part of the systematic studies
on the measurement of ∆ms.

The parameters fsig, fcomb, fΛ0
b

and αcomb are floating independently in the five
decay modes with except for the aforementioned decay mode D−s → π−π+π− in
which fcomb is set to 1.0 to set the contribution by misid. backgrounds to zero.
The fit results of the invariant mass parameters are summarized in Table 8.2. The
invariant mass distributions with the fitted PDFs are shown in Figure 8.5 for the
different D−s decay modes.

Table 8.3 lists the fitted number of signal candidates given by the total number of
candidates used in the fit multiplied by the corresponding fractions. The correla-
tions between the different fractions are taken into account in the uncertainties
quoted.

To justify the exponential model used to describe the combinatorial background
the invariant mass distributions are shown on a logarithmic scale in Figure 8.6. It
can be seen that the high-mass sidebands are well described by the exponential
function.

Figure 8.7 shows the mass distribution for all candidates passing the signal selection
and the sum of the PDFs for the five decay modes.
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Common parameters among the five D−s decay modes
mB0

s
[ MeV/c2] 5370.44±0.13

σ1
m[ MeV/c2] 15.23±0.13
σ2
m[ MeV/c2] 27.96±0.87
fDsK 0.019±0.0 (fixed)

Parameters of the D−s → φ(K+K−)π− decay
fsig 0.8502±0.0075
fcomb 0.826±0.045
fΛ0

b
0.46±0.13

αcomb 0.00238±0.00020

Parameters of the D−s → K∗0(K+π−)K− decay
fsig 0.8748±0.0085
fcomb 0.748±0.058
fΛ0

b
0.27±0.11

αcomb 0.00279±0.00029

Parameters of the D−s → K+K−π− non-resonant decay
fsig 0.6066±0.0089
fcomb 0.700±0.024
fΛ0

b
0.560±0.043

αcomb 0.00300±0.00017

Parameters of the D−s → K−π+π− decay
fsig 0.446±0.013
fcomb 0.849±0.026
fΛ0

b
0.460±0.090

αcomb 0.00275±0.00018

Parameters of the D−s → π−π+π− decay
fsig 0.6310±0.0081
fcomb 1.0±0.0 (fixed)
αcomb 0.00287±0.00014

Table 8.2.: Results of the mass parameters in the fit of the five
B0
s→ D−s π

+ decay modes.
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(d) D−s → K−π+π−
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(e) D−s → π−π+π−
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Figure 8.5.: Projection of the fitted mass distribution in (a) the
D−s → φ(K+K−)π− decay, (b) the D−s → K∗0(K+π−)K− decay, (c)
the D−s → K+K−π− non-resonant decay, (d) the D−s → K−π+π−

decay and (e) the D−s → π−π+π− decay in data.
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(a) D−s → φ(K+K−)π−
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(e) D−s → π−π+π−
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Figure 8.6.: Projection of the fitted mass distribution in (a) the
D−s → φ(K+K−)π− decay, (b) the D−s → K∗0(K+π−)K− decay, (c)
the D−s → K+K−π− non-resonant decay, (d) the D−s → K−π+π−

decay and (e) the D−s → π−π+π− decay in data on a logarithmic
scale.
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D−s decay mode B0
s→ D−s π

+ B0
s→ D±s K

∓

signal yield signal yield
D−s → φ(K+K−)π− 12250±110 240±130
D−s → K∗0(K+π−)K− 9320±90 180±90
D−s → K+K−π− non-resonant 6700±100 130±70
D−s → K−π+π− 1870±60 40±20
D−s → π−π+π− 4000±50 80±40
Total 34140±190 670±360

Table 8.3.: Number of B0
s signal candidates in the data. The

uncertainties on the B0
s→ D±s K

∓ yields result from the fit to the
D−s → π−π+π− sample alone.
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Figure 8.7.: Projection of the fitted mass distributions for the sum
of the five D−s decay modes in normal scale (top) and logarithmic
scale (bottom).





CHAPTER 9

Fit to the B0
s Mixing Distribution

The B0
s→ D−s π

+ mixing distribution depends on the B0
s decay time, t, and the

flavour tagging decision, q. The mixing PDF is the second part of the full PDF
describing the physics parameters in this analysis. In this chapter the mixing
PDFs for signal and background components are described and the results for
the floating parameters in the mixing PDF are given for the combined fit in B0

s

invariant mass, decay time and flavour tagging decision. The physical quantities
of the signal mixing PDF include the B0

s–B0
s oscillation frequency ∆ms.

The factorization ansatz for the combination of the invariant mass PDF and
the mixing PDF is only justified if there is no correlation between the invariant
mass and the mixing variables, t and q. To test this, a fit of the invariant mass
distribution for low decay time (t < 2 ps) and high decay time (t > 2 ps) is
performed1.

For the signal PDF, the signal mass resolution between the two fits is compared
in Table 9.1. Since the parameters describing the two widths (σ1

m and σ2
m) of the

signal CB functions are highly correlated, one is fixed to the nominal fit result
and the other width is floating.

It can be seen that the signal mass resolution is compatible within the uncertainties
for high and low decay times. Thus, it is concluded that there is no sizeable
correlation between these two dimensions for signal decays.

1The cut at 2 ps was chosen to split the sample in two parts with approximately the same
statistics.
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parameter > 2 ps < 2 ps
σ1
m 15.15±0.18 15.25±0.17
αφπ

−

comb [1/ MeV/c2 ] 0.0024±0.0005 0.0021±0.0003
αK

∗0K−
comb [1/ MeV/c2 ] 0.0039±0.0007 0.0028±0.0004
αK

+K−π−
comb [1/ MeV/c2 ] 0.0042±0.0005 0.0027±0.0002
αK

−π−π+
comb [1/ MeV/c2 ] 0.0025±0.0006 0.0016±0.0003
απ

+π−π+
comb [1/ MeV/c2 ] 0.0042±0.0005 0.0024±0.0002

Table 9.1.: Results of the signal mass resolution for events with
high (> 2 ps) and low (< 2 ps) decay time.

For the background PDF, the shape parameters of the exponential describing the
combinatorial background are also compared in Table 9.1. The slope parameters
αcomb in the high decay time sample are significantly larger than for low decay
times. This effect has, however, a negligible effect on the measurement of ∆ms,
as will be shown in a systematic study described in Chapter 11.

9.1. Mixing PDF for signal decays

As described in Section 8.1, the signal contributions in the fit consist of B0
s→ D−s π

+

decays and B0
s→ D±s K

∓ decays. In this section the PDFs describing these two
signal contributions are given.

9.1.1. B0
s→ D−s π

+ mixing distribution

The mixing PDF for B0
s→ D−s π

+ signal candidates is the theory distribution from
Equations 2.41 and 2.42 in Section 2.3

PDsπ;t,q ∝ e−Γst ·

cosh
(

∆Γs
2 t
)
− cos (∆mst) for mixed B0

s cand.
cosh

(
∆Γs

2 t
)

+ cos (∆mst) for unmixed B0
s cand. ,

(9.1)

including as physics parameters the decay width, Γs, the decay width difference,
∆Γs, and the oscillation frequency, ∆ms. In the fit, Γs is fixed to the world average
(Γs = 0.6596 ± 0.0073 ps−1 [23]) and ∆Γs is fixed to the latest result by LHCb
(∆Γs = 0.106± 0.011(stat)± 0.007(syst) ps−1 [1]). The systematic effect of wrong
values for Γs abd ∆Γs are studied in Section 11. Using the combined flavour
tagging decision for opposite and same side taggers (see Section 6.6) q = +1 for
mixed events and q = −1 for unmixed events, Equation 9.1 can be written as

PDsπ;t,q ∝ e−Γst ·
[
cosh

(
∆Γs

2 t

)
− q cos (∆mst)

]
. (9.2)
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To include the finite decay time resolution, the PDF is convoluted with a Gaussian
distribution with a mean equal to zero and width equal to the calibrated error
estimate, σ = Sσt · σt, described in Section 7.1. This resolution is assumed to be
independent from the tagging decision, q. This gives

PDsπ;t,q ∝
(
e−Γst ·

[
cosh

(
∆Γs

2 t

)
− q cos (∆mst)

])
⊗ G(0, Sσtσt; t). (9.3)

The scale factor is fixed to the value obtained in the calibratrion, Sσt = 1.36. In
the next step, the mixing PDF is multiplied by the decay time acceptance, Et(t),
described in Section 7.2. Similar to the resolution, it is assumed to be identical
for different tagging decisions

PDsπ;t,q ∝

(e−Γst ·
[
cosh

(
∆Γs

2 t

)
− q cos (∆mst)

])

⊗ G(0, Sσtσt; t)
 · Et(t).

(9.4)

The acceptance parameters βacc, sacc and ζacc are fixed in the fit to the values
obtained from simulated data (see Table 7.1). The parameter αacc describes the
shape of the rising edge for low decay times. To describe the data accurately, it is
left floating.

Imperfect tagging is taken into account in the decay time PDF by the dilution
factor D = (1− 2ω) and the tagging efficiencies εOST

sig and εSST
sig . The final mixing

PDF for B0
s→ D−s π

+ signal candidates is:

PDsπ;t,q ∝

(e−Γst ·
[
cosh

(
∆Γs

2 t

)
− q · (1− 2ω) · cos (∆mst)

])

⊗ G(0, Sσtσt; t)
 · Et(t) · NOST

tag · N SST
tag .

(9.5)

with the combined mistag probability ω which is calibrated using

ωi = p0,i + (ηi − 〈ηi〉) + p1,i , (9.6)

and combined as described in Section 6.6. NOST
tag is the relative normalization

factor for the flavour tagging dimension

NOST
tag =

|qOST|εOST
sig

2 + (1− |qOST|) · (1− εOST
sig ), (9.7)

which is equal to εOST
sig
2 for tagged events (qOST = ±1) and (1− εOST

sig ) for untagged
events (qOST = 0). Analogously, the normalization factor for the same side kaon
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tagger is defined as

N SST
tag =

|qSST|εSST
sig

2 + (1− |qSST|) · (1− εSST
sig ). (9.8)

Equation 9.5 describes the dependencies of the signal mixing distribution. It has
to be normalized to be used as a PDF. The derivation of the full normalization
factor N is described in Appendix B

9.1.2. B0
s→ D±s K

∓ mixing distribution

The mixing distribution of B0
s → D±s K

∓ decays is similar to the B0
s → D−s π

+

mixing distribution. However B0
s→ D±s K

∓ have an ambiguous final state, meaning
that B0

s mesons can decay both into D−s K
+ and D+

s K
−. Hence in contrast to

B0
s→ D−s π

+ decays B0
s→ D±s K

∓ decays are not self-tagging, i.e. the charge of
the final state particles do not give directly the decay flavour of the B0

s . Therefore,
the mixing PDF for B0

s → D±s K
∓ decays has to include the charge qK of the

bachelor kaon in addition to the tagging decision q.

Another consequence of the ambiguous final state is that time dependent CP
violation is possible in this decay2. It is described by three coefficients, C, Deff,
and Seff which are defined as follows

C = 1− λ2

1 + λ2 (9.9)

with λ being the ratio of the amplitudes of the two Feynman diagrams of B0
s →

D−s K
+ and B0

s → D+
s K

−. It is set to λ = 0.372 [23].
Deff and Seff depend on the charge of the bachelor kaon qK = +1,−1 for K+ and
K− respectively

Deff = 1
2
(
(1 + qK)Df + (1− qK)Df̄

)
, (9.10)

Seff = 1
2
(
(1 + qK)Sf + (1− qK)Sf̄

)
, (9.11)

with the CP violation parameters Df , Df̄ , Sf and Sf̄

Df = 2λ cos (δs − (γ + φs))
1 + λ2 , Df̄ = 2λ cos (δs + (γ + φs))

1 + λ2 (9.12)

Sf = 2λ sin (δs − (γ + φs))
1 + λ2 , Sf̄ = 2λ sin (δs + (γ + φs))

1 + λ2 , (9.13)

2This makes the PDF considerably more complicated. Since the fraction from B0
s→ D±s K

∓

decays is found to be only 2%, there is no big effect expected on ∆ms from simplifying the
mixing PDF and ignoring the ambiguous final state. However, to be consistent with other
analyses in LHCb [2], the full description of the B0

s→ D±s K
∓ mixing PDF is included.
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which depend on the strong phase δs, the CKM-angle γ and the weak phase φs.
These parameters are fixed in the fit to

δs = 20◦, γ = 60◦ and φs = −0.02. (9.14)

Variations of these parameters showed no effect on the measured value of ∆ms.

With the three parameters C, Deff and Seff the final mixing PDF of B0
s→ D±s K

∓

candidates becomes

PDsK;t,q ∝
[(
e−Γst ·

[
cosh

(
∆Γs

2 t

)
−Deff sinh

(
∆Γs

2 t

)

− q · (1− 2ω) · (C cos (∆mst)− Seff sin (∆mst))
])

⊗ G(0, Sσtσt; t)
]
· Et(t) · NOST

tag · N SST
tag ,

(9.15)

using the same decay time resolution and acceptance as for the B0
s → D−s π

+

decays. With C = 1, Deff = 0 and Seff = 0 this PDF would be identical to the
mixing PDF of B0

s→ D−s π
+ decays.

9.2. Mixing PDFs for background decays

In this section the mixing PDFs for the background contributions are described.
The PDFs for the B0→ D−π+ and Λ

0
b→ Λ

−
c π

+ contributions are motivated from
the physical decay time distributions and the flavour tagging behaviour described
in Section 6.7. The shape of the decay time distribution of the combinatorial
background is motivated from the high-mass sidebands and obtained from a fit to
data.

9.2.1. B0→ D−π+ mixing distribution

The decay time distribution of B0→ D−π+ decays is similar to the B0
s→ D−s π

+

signal distribution. The same acceptance and resolution model as for the signal
decays are used. The mixing frequency of B0 mesons is ∆md = 0.510± 0.004 ps−1,
which is about 35 times smaller than ∆ms and the decay width is Γd = 0.658±
0.003 ps−1, which is slightly smaller than the B0

s decay width Γs. The third
difference in the parameters is the decay width difference ∆Γd which is consistent
with zero in the case of B0 mesons [23]. Thus, the hyperbolic cosine term in the
PDF can be assumed to be equal to one.

As described in Section 6.7.2, only the opposite side flavour tagging algorithms
give any information about the mixing state of B0 background candidates. Thus,
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the B0 oscillation can only be resolved by the opposite side taggers. The resulting
PDF is

PB0;t,q ∝
[(
e−Γdt ·

[
1− qOST(1− 2ωOST) · cos (∆mdt)

])
⊗ G(0, Sσtσt; t)

]
· Et(t) · NOST

tag ,
(9.16)

with the calibrated mistag probability of the opposite side taggers, ωOST

ωOST = pOST
0 + (ηOST − 〈ηOST〉) + pOST

1 , (9.17)

and with the same relative normalization factor NOST
tag as for the signal decays.

Since in the hadronization of B0 mesons no s quark is involved, the same side kaon
tagger is not expected to yield any information about the production flavour of B0

mesons and, hence, the mixing state of the B0 background candidate. Nevertheless,
the response given by the same side kaon tagger has to be taken into account for
the relative normalization.

Therefore, the mixing PDF is multiplied by a factor N SST
tagB0 defined as

N SST
tagB0 = qSST ·

(
ωSST
B0 + (qSST − 1)

2

)
εSST
B0

2 + (1− |qSST|) · (1− εSST
B0 ) (9.18)

which is equal to ωSST
B0

εSST
B0
2 for events tagged as mixed (qSST = +1). It is equal

to (1 − ωSST
B0 ) ε

SST
B0
2 for events tagged as unmixed (qSST = −1) and (1 − εSST

B0 ) for
untagged events (qSST = 0).

The parameters ∆md, Γd and ∆Γd are fixed in the fit to their nominal values. The
additional parameters from this background contribution which are floating in
the fit are the tagging efficiency εSST

B0 and the asymmetry parameter ωSST
B0 . Every

decision from the same side kaon tagger in B0 decays is based on the wrong
assumption of a charged kaon produced in association with the signal B meson.
Therefore, the same side kaon tagging behaviour is expected to be random and
the parameter ωSST

B0 is expected to be consistent with 0.5, which will be checked.

9.2.2. Λ0
b→ Λ

−
c π

+ mixing distribution

The mixing PDF for Λ0
b→ Λ

−
c π

+ decays is the same as the PDF for B0→ D−π+

events except for the fact that Λ0
b baryons do not oscillate. Thus the decay time

distribution of this background contribution is a simple exponential. As for the
B0→ D−π+ decays, the same decay time acceptance and resolution model as for
signal candidates is assumed. The decay width ΓΛ0

b
is fixed to the nominal value

(0.700± 0.012 ps−1 [23]).
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As described in Section 6.7.3 only the opposite side taggers are assumed to carry
information about the production flavour of the Λ0

b background candidates. Due
to the absence of oscillation in this decay all Λ0

b baryons that were tagged correctly
have tagging decision qOST = −1 and all events tagged wrongly have qOST = +1.
Thus the final PDF is

PΛ0
b
;t,q ∝

(
e
−Γ

Λ0
b
t ⊗ G(0, Sσtσt; t)

)
· Et(t) · NOST

tagΛ0
b
· N SST

tagΛ0
b
, (9.19)

with the normalization factor

NOST
tagΛ0

b
= qOST ·

(
(qOST + 1)

2 − ωOST
)
εOST

sig

2 + (1− |qOST|) · (1− εOST
sig ). (9.20)

The normalization factor for the same side kaon taggerN SST
tagΛ0

b
is defined analogously

to N SST
tagB0 with its parameters εSST

Λ0
b

and ωSST
Λ0
b

N SST
tagΛ0

b
=qSST ·

(
ωSST
Λ0
b

+ (qSST − 1)
2

)
εSST
Λ0
b

2
+ (1− |qSST|) · (1− εSST

Λ0
b

).
(9.21)

The additional parameters from this background contribution which are floating
in the fit are the tagging efficiency εSST

Λ0
b

and the asymmetry parameter ωSST
Λ0
b

. As
for B0 meson decays, the same side kaon tagging behaviour is expected to be
random and the parameter ωSST

Λ0
b

is expected to be consistent with 0.5, which will
be checked.

9.2.3. Combinatorial background mixing distribution

The mixing PDF of combinatorial background candidates is determined from
the B0

s candidates in the high-mass sideband (m > 5500 MeV/c2). The response
for both the opposite side and same side tagging algorithms is assumed to be
random. Therefore, the only contribution from the flavour tagging algorithms to
the mixing PDF of combinatorial background candidates are the normalization
factors NOST

tag;comb and N SST
tag;comb

Pcomb;t,q = Pcomb;t · NOST
tag;comb · N SST

tag;comb (9.22)

which are defined as:

NOST
tag;comb =qOST ·

(
ωOST

comb + (qOST − 1)
2

)
εOST

tag;comb

2
+ (1− |qOST|) · (1− εOST

tag;comb)
(9.23)
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and

N SST
tag;comb =qSST ·

(
ωSST

comb + (qSST − 1)
2

)
εSST

tag;comb

2
+ (1− |qSST|) · (1− εSST

tag;comb).
(9.24)

with the efficiencies, εOST
tag;comb and εSST

tag;comb, and the asymmetry parameters, ωOST
comb

and ωSST
comb, which are free parameters in the fit. Since the tagging behaviour is

expected to be random, also the parameters ωOST
comb and ωSST

comb are expected to be
consistent with 0.5. Additionally since combinatorial background candidates are
random combination of particles in the event, they are more likely to pass the
signal selection in events with large activity which result in many particles in the
detector. Such events have also a higher probability to find a tagging candidate.
Therefore, the parameters εOST

tag;comb and εSST
tag;comb are expected to be larger than

the corresponding signal parameters.

The decay time distribution for events in the high-mass sideband is given in
Figure 9.1 for the five D−s decay modes. In each histogram the fitted distribution
is parametrized as

Pcomb;t ∝ (t− aDT
comb)2 · (fDT

combe
−αDT

combt + (1− fDT
comb)e−βDT

combt) (9.25)

Due to large correlations between the parameters fDT
comb, αDT

comb and βDT
comb these

parameters cannot be fitted at the same time. Therefore, it was decided to fix
αDT

comb to 0.4 · βDT
comb and fDT

comb to 0.02. These are the values obtained from a fit
to the sum of the three D−s → K+K−π− modes and the D−s → K−π+π− mode.
The D−s → π−π+π− mode is found to be incompatible to the other modes due to
the different selection criteria (see Figure 9.1(f)). The fits shown in Figure 9.1
have aDT

comb and βDT
comb as free individual parameters. In the final fit on data, the

floating parameters aDT
comb and βDT

comb are common among the four aforementioned
modes and the D−s → π−π+π− decay mode has separate parameters aDT

comb;3π and
βDT

comb;3π.

9.3. PDFs for event-by-event quantities

Three event-by-event variables are included in the mixing PDFs: the decay time
error estimate, σt, and the mistag probability estimates, ηOST and ηSST. As
mentioned in Section 4.2, it has been shown [58] that additional PDFs must
be included as conditional probabilities to avoid biased results if event-by-event
variables are used in the PDFs. These PDFs are the normalized distributions
of the event-by-event variables for signal and background components. Possible
biases in the fit results only occur if an event-by-event variable is distributed
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(a) D−s → φ(K+K−)π−
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(b) D−s → K∗0(K+π−)K−
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(c) D−s → K+K−π− non-resonant
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(d) D−s → K−π+π−
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(e) D−s → π−π+π−
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(f) Comparison
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Figure 9.1.: Decay time distribution for candidates in the high-
mass sideband [5500, 5980] MeV/c2 in (a) the D−s → φ(K+K−)π−
decay, (b) the D−s → K∗0(K+π−)K− decay, (c) the D−s → K+K−π−

non-resonant decay, (d) the D−s → K−π+π− decay and (e) the
D−s → π−π+π− decay in data. (f) shows the comparison of the
D−s → π−π+π− decay mode with the sum of the other D−s decay
modes.
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Figure 9.2.: Normalized distributions of the decay time resolu-
tion estimate, σt, used in the fit for signal (blue triangles) and
combinatorial background (red circles) candidates in data. The back-
ground candidates are obtained from the high-mass sideband [5500,
5980] MeV/c2.

differently for the signal components and the background components and the
conditional probabilities are not included.

For this analysis the distributions PX;σt , PX;ηOST and PX;ηSST are taken from data.
For the combinatorial background they are taken from the high-mass sideband. For
the signal contributions, the combinatorial background is statistically subtracted
from the signal region. For the misid. backgrounds, the indivdual event-by-event
variables are treated differently. The decay time resolution estimate distribution
and the opposite side tagger mistag estimate distribution are assumed to be
identical for the misid. backgrounds and signal. The distribution of the same side
kaon tagger mistag estimate is assumed to be identical for the misid. backgrounds
and the combinatorial background.

Therefore, for each variable there is one signal and one background PDF. They are
shown in Figures 9.2 and 9.3. It can be seen that the σt distributions for signal and
background are significantly different, whereas for the mistag estimates they are
very similar. It should be noted that as for the flavour tagging decision is expected
to be random in background events3, the predicted mistag probability is also
wrong in these decays. It is the output of a neural net with random numbers as
input. Therefore, also the distribution of these predicted mistag fractions should
not be interpreted in any physical way. The point of including the distribution as

3Background refers in this context to non-B-meson decays in case of the opposite side tagger
and non-B0

s -meson decays in case of the same side kaon tagger
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(a) estimated mistag probability ηOST
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(b) estimated mistag probability ηSST
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Figure 9.3.: Normalized distributions of the mistag estimate given
by the opposite side taggers, ηOST, and the same side kaon tagger,
ηSST, used in the fit for signal (blue triangles) and background (red
circles) candidates in data. The combinatorial background candidates
are obtained from the high-mass sideband [5500, 5980] MeV/c2.
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conditional PDFs, is just that if they are different from the signal distribution,
the result on ∆ms would be biased purely due to mathematical reasons of using
the maximum likelihood technique.

The assumptions for the misid. backgrounds are based on simulated data samples.
However, the statistics of the samples are limited and the behaviour of flavour
taggers are also not too reliable on simulation. Therefore, it has been decided to
conservatively estimate the systematic effect by completely neglecting them (see
Chapter 11).

9.4. Results of the mixing parameters in data

The measurement of ∆ms was performed “blinded”, i.e. throughout the analysis
process the result of ∆ms was shifted by an unknown value. The reason to do this,
is to not introduce any biases in the fit results if the result does (not) agree with
the expectations. The whole process of the analysis should be finalized including
all cross checks before the final result of ∆ms is revealed. After “unblinding” the
result of the analysis must not be modified.

The final results for the free parameters in the mixing PDFs for the signal and
background components are summarized in Table 9.2. It can be seen that, as
expected, for the parameters describing the tagging behaviour of the background
contributions, ωOST

comb, ωSST
comb, ωSST

B0 , and ωSST
Λ0
b

, the results are compatible with 0.5.
If these parameters would not be compatible with 0.5, this would point to another
background contribution that is not described by the PDFs. Additionally, it can
be seen that, as expected, the tagging efficiencies for the combinatorial background
candidates, εOST

tag;comb and εSST
tag;comb, are indeed larger than the corresponding signal

parameters, εOST
sig and εSST

sig . So it can be summarized that the results of the tagging
parameters of the background are reassuring that the backgrounds are correctly
described.

Figure 9.4 shows the decay time distributions of the five D−s decay modes to-
gether with the projections of the fit results. It can be seen that the decay
time distributions are well reproduced by the fitted functions. For illustration
purposes these distributions are plotted only for events in the signal region
m ∈ [5320, 5450] MeV/c2. Figure 9.5 shows the decay time distribution for all
candidates in the signal invariant mass window that pass the signal selection
described in Chapter 5 and the sum of the decay time PDFs for the five D−s decay
modes.

As a cross check, the fit is performed using only the opposite side taggers and only
the same side kaon tagger. This does not check the result on ∆ms, since lower
quality of flavour tagging has no impact on ∆ms. It only influences parameters
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Parameters of the signal mixing PDF
∆ms [ ps−1 ] 17.768±0.023
αacc [ ps ] 0.771±0.016
εOST

sig 0.3957±0.0026
εSST

sig 0.1518±0.0022
pOST

1 0.96±0.11
pOST

0 0.4105±0.0093
pSST

1 0.58±0.14
pSST

0 0.377±0.013

Parameters of the combinatorial background mixing PDF
aDT

comb [ ps ] −0.056±0.021
βDT

comb [ ps−1 ] 2.872±0.065
aDT

comb;3π [ ps ] 0.069±0.019
βDT

comb;3π [ ps−1 ] 3.85±0.13
εOST

tag;comb 0.4962±0.0060
εSST

tag;comb 0.1752±0.0048
ωOST

comb 0.5042±0.0084
ωSST

comb 0.490±0.015

Parameters of the misid. backgrounds mixing PDFs
εSST
B0 0.121±0.034
ωSST
B0 0.27±0.15
εSST
Λ0
b

0.155±0.022
ωSST
Λ0
b

0.471±0.077

Table 9.2.: Results of the mixing parameters in the fit of the five
B0
s→ D−s π

+ decay modes using both opposite and same side kaon
tagging algorithms.
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(a) D−s → φ(K+K−)π−
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(b) D−s → K∗0(K+π−)K−
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(c) D−s → K+K−π− non-resonant

decay time [ps]
0 2 4 6

ca
n
d
id

at
es

 /
 0

.2
 p

s

0

50

100

150

200

250

300

350

400

450 data

total

signal

background

(d) D−s → K−π+π−
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(e) D−s → π−π+π−
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Figure 9.4.: Projection of the fitted decay time distribution in (a)
the D−s → φ(K+K−)π− decay, (b) the D−s → K∗0(K+π−)K− decay,
(c) the D−s → K+K−π− non-resonant decay, (d) the D−s → K−π+π−

decay and (e) the D−s → π−π+π− decay in data.
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Figure 9.5.: Projection of the fitted decay time distributions for
the sum of the five D−s decay modes.

that are related to the amplitude of the oscillation and not the frequency. So
it should be seen as a cross check that nothing goes wrong in the progress of
combining the opposite and same side kaon taggers. The results for the fit using
only the opposite side taggers are summarized in Table 9.3 and the results for
the fit using only the same side kaon tagger in Table 9.4. It can be seen that the
results for all tagging parameters are in good agreement.

In Figure 9.6 the mixing distributions for tagged events are shown for all candidates
in the invariant mass signal window. Overlaid are the fit projections on the mixing
dimension of decay time and flavour tagging decision for the three fits. Figure 9.6(a)
shows the nominal fit using both the opposite side tagging algorithms and the
same side kaon tagger. Figures 9.6(b) and 9.6(c) show the fits using only the
opposite side tagger and only the same side kaon tagger respectively. It can be
seen that for all three fits the oscillation can be resolved over many periods.

The effective tagging efficiency εeff , defined in Equation 6.3, for each tagger is
computed as

εeff = εtag ·
1
Nsig

signal
candidates∑

i

D2
i = εtag ·

1
Nsig

signal
candidates∑

i

(1− 2ωi)2. (9.26)

with the number of signal candidates Nsig and the calibrated per-event mistag
probabilities ωi = p0 + (ηi − 〈η〉) · p1. The sum over the signal candidates is
performed by statistically subtracting the background. The result is

εOST
eff = 2.4± 0.4% (9.27)

for the opposite side taggers and
εSST

eff = 1.2± 0.3% (9.28)
for the same side kaon tagger.
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Parameters of the signal mixing PDF
∆ms [ ps−1 ] 17.781±0.027
αacc [ ps ] 0.772±0.016
εOST

sig 0.3957±0.0026
pOST

1 0.98±0.11
pOST

0 0.4102±0.0092

Parameters of the combinatorial background mixing PDF
aDT

comb [ ps ] −0.058±0.021
βDT

comb [ ps−1 ] 2.866±0.064
aDT

comb;3π [ ps ] 0.068±0.019
βDT

comb;3π [ ps−1 ] 3.83±0.13
εOST

tag;comb 0.4959±0.0060
ωOST

comb 0.5054±0.0084

Table 9.3.: Results of the mixing parameters in the fit of the five
B0
s→ D−s π

+ decay modes using only opposite side tagging algorithms.

Parameters of the signal mixing PDF
∆ms [ ps−1 ] 17.745±0.042
αacc [ ps ] 0.769±0.016
εSST

sig 0.1519±0.0022
pSST

1 0.59±0.14
pSST

0 0.376±0.013

Parameters of the combinatorial background mixing PDF
aDT

comb [ ps ] −0.058±0.021
βDT

comb [ ps−1 ] 2.866±0.065
aDT

comb;3π [ ps ] 0.068±0.019
βDT

comb;3π [ ps−1 ] 3.84±0.13
εSST

tag;comb 0.1751±0.0048
ωSST

comb 0.487±0.015

Parameters of the misid. backgrounds mixing PDFs
εSST
B0 0.128±0.033
ωSST
B0 0.31±0.13
εSST
Λ0
b

0.150±0.022
ωSST
Λ0
b

0.490±0.079

Table 9.4.: Results of the mixing parameters in the fit of the five
B0
s → D−s π

+ decay modes using only the same side kaon tagging
algorithm.
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(a) Nominal Fit
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(b) only OST
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(c) only SST
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Figure 9.6.: Projection of the fitted mixing distributions for tagged
candidates from the sum of the five D−s decay modes in the nominal
fit using opposite (OST) and same side kaon (SST) taggers (top),
using only the opposite side taggers (middle) and using only the
same side kaon tagger (bottom).





CHAPTER 10

Validation of the Fit Procedure

In this chapter a consistency check to validate the fit procedure is presented. The
goal is to show that all PDFs described in Chapters 8 and 9 are implemented
correctly in the fit algorithm and the fitter gives correct results for ∆ms with the
correct uncertainty estimate.

The fit procedure is validated using pseudo-experiments, so-called “toy-experiments”.
In these toy-experiments values for the observables:

m, t, q, σt, ηOST and ηSST

are generated according to the PDFs used in the fit. For the generation of these
distributions random number generators are used. This way, the resulting data
samples have the assumed distribution with just statistical fluctuations. This
generated data sample is then fitted in the same way the real data sample is fitted
which is described in chapters 8 and 9. The fit results of this pseudo-experiment

#—

λFit = {λFit
1 , λFit

2 , ...}

is saved together with the uncertainty estimate on each fitted parameter, σλi , and
the value used in the generation,

#—

λGen = {λGen
1 , λGen

2 , ...}.

Using these quantities the pull of each parameter is calculated as

pulli = λFit
i − λGen

i

σλi
. (10.1)
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Figure 10.1.: Results of 6000 toy-experiments. The distribution of
the fit results for ∆ms fitted with a Gaussian distribution are shown.
The generated value has been set to ∆ms =17.7 ps−1.

This procedure is repeated six thousand times. If the fit procedure works properly
the fit results should follow a Gaussian distribution centered around the generated
values. Additionally, the uncertainty estimate given by the fit represents the
actual uncertainty of the fitted parameter. If these two conditions are fulfilled,
the pulls of the fitted parameters follow a Gaussian distribution with mean µ = 0
and width σ = 1.

In each toy experiment, the number of generated events is set to the number of
events available in data. The fit results of the fit on data for all free parameters
are used for these parameters in the generation.

Figure 10.1 shows the distribution of the fitted values for ∆ms in the toy-
experiments. Figure 10.2 shows the distribution of the uncertainty estimates
given by the fit. Finally, Figure 10.3 shows the pull distribution of ∆ms.

It can be seen that the pull distribution is well described by a Gaussian with
a mean compatible with zero and a width compatible with one. The statistical
uncertainty given by the fit on data (0.023 ps−1, see Table 9.2) is very close to the
mean of the distribution of uncertainties in Figure 10.2. This is reassuring that
the uncertainty given by the fit on data represents the real statistical uncertainty
on this measurement of ∆ms.

This method uses the same physical models in generation and fit. It is meant as a
consistency check that the models are implemented correctly in the fit algorithm.
This method does not probe effects due to wrong underlying theory models.
Therefore, in the next chapter additional systematic effects are studied.
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Figure 10.2.: Results of 6000 toy-experiments. The distribution
of the uncertainty estimate on ∆ms given by the fit algorithm are
shown.
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Figure 10.3.: Results of 6000 toy-experiments. The pull distribu-
tion for ∆ms as defined in Eq 10.1 is shown. The distribution is
fitted with a Gaussian distribution.





CHAPTER 11

Systematic Studies

In this chapter the studies of systematic uncertainties on the measurement of ∆ms

are summarized. Systematic uncertainties are all effects that can bias the result
of ∆ms which are not due to the statistical limitation of the data sample used.

One source for such an effect is fixing some of the fit parameters to values obtained
from external studies with finite precision. In this study the decay width Γs and
the decay width difference ∆Γs are such fixed parameters.

Another possible source of systematic effects is wrong modelling of the signal
or background components in the PDFs. For the signal components the models
studied are the decay time acceptance shape, the decay time resolution model and
an alternative mass model. For the mass templates of the background components
histograms are used. To evaluate the influence of this model, it has been decided to
fix the background fraction to values within the fitted uncertainties. Additionally,
the effect of the additional PDFs including the conditional probabilities for the
event-by-event variables is studied.

A third possible systematic uncertainty arises from the uncertainties on the
measured quantities themselves. For example if detector or reconstruction effects
bias the measured decay time and the fit functions do not take this into account,
the measured value for ∆ms will be shifted from the real value. The effect of such
a systematic shift seen on simulated data is investigated. Additionally, the effect
from uncertainties on the calibration of the length scale of the detector and the
scale of the measured momentum is studied.
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The results of these studies are divided into two categories:

• cross-checks where no effect is observed and, thus, no systematic is assigned,

• observed effects with a resulting systematic.

11.1. Cross-checks

These systematic effects are studied using pseudo-experiments as described in
Chapter 10. The same number of events as available in data are generated, but
with different distributions than used in the fit on data. Then these data samples
are fitted with the nominal distributions. The distribution of fit results for ∆ms

is compared to the generated value. The uncertainty on the mean of the fitted
values of ∆ms for 500 pseudo-experiments is 0.0004 ps−1 which corresponds to 5%
of the statistical uncertainty. Therefore, if the mean of the resulting distribution
of the fitted values for ∆ms minus the generated value (∆∆ms = ∆mFit

s −∆mGen
s )

is compatible with zero within 2σ, no systematic effect is assigned. Table 11.1
summarizes the observed shifts ∆∆ms for the individual cross-checks

11.1.1. Decay width Γs and decay width difference ∆Γs

The value for the B0
s decay width Γs is fixed to the world average [23]

Γs = 0.6596± 0.0073 ps−1 .

The value for the B0
s decay width difference ∆Γs is fixed to the latest value

measured by LHCb [1]

∆Γs = 0.106± 0.011(stat)± 0.007(syst) ps−1 .

The systematic effect of fixing Γs and ∆Γs to wrong values is estimated using four
sets of 500 pseudo-experiments. The data samples are generated using values for
Γs or ∆Γs which are one standard deviation1 above or below the nominal value,
respectively.

The resulting distributions of fitted values for ∆Γs/∆Γs
∆ms are compatible with zero

(see Table 11.1). Thus, it is concluded that there is no systematic effect on the
measurement of ∆ms from the uncertainty on Γs and ∆Γs.

1In case of ∆Γs the quadratic sum of statistical and systematic uncertainty was taken.
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Systematic observed shift ∆∆ms
[ ps−1]

∆Γs−σ
∆ms -0.0003±0.0004

∆Γs+σ
∆ms 0.0004±0.0004

∆∆Γs−σ
∆ms 0.0000±0.0004

∆∆Γs+σ
∆ms -0.0006±0.0004

∆αacc+20%
∆ms -0.0005±0.0004

∆αacc−20%
∆ms 0.0003±0.0004

∆Sσt=1.25
∆ms 0.0003±0.0004

∆Sσt=1.45
∆ms 0.0000±0.0004

∆DG, reso
∆ms -0.0004±0.0004

∆DG, mass
∆ms -0.0001±0.0004

∆fsig+3σ
∆ms 0.0007±0.0004

∆fsig−3σ
∆ms -0.0002±0.0004

∆fDsK=0
∆ms -0.0006±0.0004

∆fDsK=4%
∆ms 0.0000±0.0004

∆t+0.2 fs
∆ms -0.0004±0.0004

∆t−0.2 fs
∆ms -0.0002±0.0004

∆per-ev
∆ms 0.0002±0.0004

∆corr
∆ms -0.0001±0.0004

Table 11.1.: Mean of the distribution of the observed deviations of
the fitted values for ∆ms from the generated values , ∆∆ms, for the
individual cross-checks presented in Section 11.1.
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11.1.2. Decay time acceptance

The effect of the decay time acceptance Et(t) on the measurement of ∆ms is
expected to be negligible since it is the same factor multiplied to both the mixed
signal PDF PDsπ;t,q=+1 and the unmixed PDF PDsπ;t,q=−1. The measurement of
∆ms is however sensitive to the difference between the two PDFs. Therefore,
no systematic effect due to a wrong decay time acceptance is expected. This
is, however, only true for the fast B0

s–B0
s oscillation in which the number of

candidates that are mixed/unmixed are the same. The measurement of the
slow B0–B0 oscillation frequency ∆md is sensitive also to the overall number of
mixed/unmixed candidates and, thus, also to acceptance effects.

This is checked using two sets of 500 pseudo-experiments in which the data samples
were generated with the parameter αacc varied ±20% around the value fitted in
data. The uncertainty of ±20% includes the variation seen in simulated data
when adjusting the IP resolution to better reflect data and for different trigger
scenarios. The parameter αacc was chosen because it describes the rising edge of
the acceptance curve at low decay times and this is where most of the background
is located.

As expected the distributions of deviations ∆αacc
∆ms from the generated value are

compatible with zero. Therefore, no systematic effect on the measurement of ∆ms

is assigned due to a wrongly determined decay time acceptance.

11.1.3. Decay time resolution

In Section 7.1 the determination of the decay time resolution in a data-driven
study is described. The resulting uncertainty on the calibration parameter Sσt
is ±10%. The systematic effect of this uncertainty on the measurement of ∆ms

is evaluated using two sets of 500 pseudo-experiments. The data samples are
generated using Sσt = 1.25 and Sσt = 1.45, respectively.

The distribution of ∆Sσt
∆ms are compatible with zero. Thus, it is concluded that

the systematic effect on the measurement of ∆ms due to the uncertainty of Sσt is
negligible.

11.1.4. Decay time resolution model

It has been seen that the single Gaussian model used in the nominal fit to describe
the decay time resolution, does not completely describe the decay time pull
distribution in simulation (see Section 7.1.6). Therefore, the effect of neglecting a
contribution of 10% of a second Gaussian distribution with width, that is twice
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the nominal width, in the decay time resolution is studied using 500 pseudo-
experiment.

The distribution of deviations of the fitted values for ∆ms, ∆DG, reso
∆ms are compatible

with zero. Thus, it is concluded that the systematic effect on the measurement of
∆ms due to the decay time resolution model is negligible.

11.1.5. Mass model

The effect of a different invariant mass model for the signal distribution is evaluated
by generating data-sets with the sum of two Gaussian distributions as signal PDF
instead of the sum of two Crystal Ball functions which is used in the nominal fit.
In the fit the nominal PDF is used. This pseudo-experiment is as well repeated
500 times.

The results for ∆ms are compatible with the nominal value (see ∆DG, mass
∆ms in

Table 11.1). Thus, it is concluded that the systematic effect on the measurement
of ∆ms due to the signal mass model is negligible.

11.1.6. Background yield

Since the signal fractions are free fit parameters, the systematic uncertainty due to
higher or lower background contributions than fitted should be already included
in the statistical uncertainty. However this does not account for the fact that the
invariant mass shapes for the individual background components that were taken
from simulated data could potentially not represent the real distributions.

This would result in a wrong signal fraction. Therefore, two sets of 500 pseudo-
experiments were performed in which the signal fraction is fixed to the nomi-
nal value. In the generation a value of three times the statistical uncertainty
larger/smaller than the nominal value was used. This should be a conservative
estimation for the systematic effect of a wrongly determined background yield.

The resulting distributions of ∆fsig
∆ms are compatible with zero. Thus, no systematic

effect due to a wrong background yield is assigned to the measurement of ∆ms.

11.1.7. B0
s→ D±s K

∓ yield

As discussed in Section 8.3 the fraction of the contribution from B0
s→ D±s K

∓

decays to the signal, fDsK , is fixed in the nominal fit. The systematic effect from
the uncertainty on fDsK on the measurement of ∆ms is evaluated by generating
data samples with fDsK set to 4% and zero respectively.
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Figure 11.1.: Difference between reconstructed decay time and true
decay time of signal B0

s→ D−s π
+ candidates in simulated data after

selection.

The resulting distributions of deviations from the generated value ∆fDsK
∆ms are

compatible with zero. Thus, no systematic effect due to a wrong B0
s→ D±s K

∓

yield is is assigned.

11.1.8. Decay time bias

In simulated data, the distribution of the reconstructed decay time minus the true
decay time, treco − ttrue, after the whole signal selection is applied, is not exactly
centered around zero, but slightly shifted to positive values. The observed shift
amounts to 0.2 fs (see Figure 11.1).

The systematic effect of such a shift on the measurement of ∆ms is evaluated
using 500 pseudo-experiments. The generated decay time is shifted by 0.2 fs and
the nominal PDFs are used in the fit. The distributions of fit results for ∆ms in
these pseudo-experiments, ∆t

∆ms , are compatible with the nominal value. Thus,
no systematic due to a decay time bias is assigned.

11.1.9. Decay time uncertainty and predicted η

distributions

As mentioned in Section 9.3, it has been shown in [58] that the distributions for
event-by-event variables must be included in the PDF as conditional probabilities
to avoid biased fit results. The effect of wrongly determined distributions of the
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decay time uncertainty estimate σt and the predicted mistag probabilities ηOST
and ηSST is determined using pseudo-experiments.

In 500 pseudo-experiments data samples are generated using the nominal σt, ηOST
and ηSST distributions. In the fit these distributions are set to be the same for
signal and background which is identical to ignoring them completely. The effect
on the distribution of the fit results for ∆ms, ∆per-ev

∆ms is negligible.

11.1.10. Correlation between invariant mass and decay
time

As shown in Chapter 9 there is no sizeable correlation between the invariant mass,
m, and the decay time, t, for signal decays. However, Table 9.1 shows a correlation
between those two variables for combinatorial background candidates. The effect
of this correlation is studied, using pseudo-experiments. The combinatorial
background candidates are generated according to an exponential distribution
with a slope parameter αcomb. If the candidate’s generated decay time is larger
than t = 2 ps, the invariant mass is generated using a slope parameter which is
twice as large as the nominal value

αt>2 ps
comb = 2 · αt<2 ps

comb (11.1)

This is a conservative estimation since the largest difference between the two
parameters seen in data is a factor 1.75. In the fit, the parameters αcomb are
floating for all five D−s decay modes. The observed shifts, ∆corr

∆ms , are compatible
with zero. Thus, no systematic due to the correlation between invariant mass and
decay time is assigned.

11.2. z-scale uncertainty

As defined in Equation 4.1 the decay time is proportional to the measured flight
distance of the B0

s candidate, given by the distance between its production and
decay vertex. The accuracy to measure this distance depends on the precision to
which the positions of the VELO modules along the beam direction (z-axis) are
known.

There are two contributions to this uncertainty. The first is the knowledge of
the overall length of the VELO. If the length of the VELO was in reality 1%
larger than in the reference frame, this would result in a 1% shorter measured
decay time. The precision of the position of the modules along the z-direction
describes the overall scaling of the length of the VELO. This has been evaluated
in a survey during assembly of the VELO. The measured deviations from the
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nominal positions of the modules have been found to be 100 µm of the baseplate
over the whole length of the VELO (1 m) [69]. This results in a z-scale uncertainty
of

σsurvey = 100× 10−3 mm
1000 mm = 0.01%. (11.2)

The second contribution to this systematic effect is due to a possible relative shift
of the individual modules within the VELO. This has been evaluated using track
based alignment [43,70,71] which is dominated by the uncertainty of the relative
z-position of the first two modules that were hit by the particle. Only the first
two modules are considered because the following modules are weighted down
in the track fit due to multiple scattering and don’t contribute as much to the
track precision. This estimate is conservative since it assumes infinite multiple
scattering and in reality the third and fourth modules do improve the precision.

In track based alignment the deviation of the z-position of single modules from
their nominal positions are statistically distributed with a width of 20 µm. The
systematic effect of the z-scale is in principle given by these 20 µm divided by
the spacing between two modules (30 mm). However, not always the same two
modules are hit first by the signal tracks. Therefore, this statistical spread is
averaged over all VELO modules that are hit first by the signal tracks. If all
modules contributed the same to the signal sample, the uncertainty would simply
be scaled by

√
Nmodules.

Figure 11.2 shows the distribution of the z-position of the first hit on the signal
tracks. It can be seen that this distribution is not unitary. In the calculation
of the RMS (100 mm) of this distribution, the weighted sum of the individual
z-positions is taken into account. Thus, the uncertainty on the z-scale due to
track based alignment is given by

σtrack = 20× 10−3 mm
100 mm = 0.02%. (11.3)

The uncertainties from the two contributions are added in quadrature to obtain
the final uncertainty on the z-scale

σz-scale = 0.022%. (11.4)

A relative uncertainty on the decay time results in a relative uncertainty on
∆ms. Thus, a systematic uncertainty on ∆ms due to the z-scale uncertainty of
±0.004 ps−1 is assigned.
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Figure 11.2.: z-position of the first hit on each track used in this
analysis.

11.3. Momentum scale uncertainty

As defined in Equation 4.1 the decay time is proportional to the measured mo-
mentum, p, over the measured invariant mass, m, of the B0

s candidate. Therefore,
the effect of the accuracy to which the momentum is measured at LHCb has
to be evaluated. The uncertainty on the momentum scale has been found in
an independent study, using mass measurements of well-known resonances. The
measured deviations from the nominal values [23] are found to be within 0.15%.

However, since the momentum scale uncertainty influences both the measured
momentum and the invariant mass of the B0

s candidates, the effect partially
cancels. The uncertainty on the measured decay time can be estimated using

2m2
K± + 2m2

π±

m2
B0
s

× 0.15% = 0.003%. (11.5)

The full derivation of this formula is given in Appendix E. One simplification made
in the derivation of this formula, mi/pi � 1, does not hold for all B0

s daughter
tracks. Therefore, this systematic effect is underestimated.

To determine the systematic effect of the momentum scale uncertainty correctly, a
study on simulated data was performed. In this study the three-momenta of the
stable particles in the decay chain were scaled by a factor α = 1.0015 and then the
four-momenta were added to compute the B0

s momentum and invariant mass.

Figure 11.3 shows the distribution of the relative shift of the decay time computed
using the scaled momenta compared to the true decay time of the B0

s candidates.
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Figure 11.3.: Results of the study on simulated data to assess
the size of the effect of the uncertainty of the momentum scale on
the decay time. Shown for D−s → K+K−π− decays (Upper left
plot), D−s → K−π+π− decays (Upper right plot) and D−s → π−π+π−

decays (lower plot).
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It can be seen that, as expected, the effect depends on the mass of the stable
particles. For the D−s → π−π+π− decay mode the assumption mi/pi � 1 is given
and the mean of the distribution is compatible with the result using Equation 11.5.
However, the distributions for the other D−s decay modes are shifted to higher
values. The shift is largest for D−s → K+K−π− decays. Since these decays also
constitutes the largest part of the data set, it was decided to conservatively use
the observed shift of

∆t
t

= 0.02% (11.6)

for the D−s → K+K−π− mode as systematic effect on ∆ms. The relative un-
certainty on the measured momentum results in a relative uncertainty on ∆ms.
Thus, a systematic uncertainty on ∆ms due to the momentum-scale uncertainty
of ±0.004 ps−1 is assigned.

11.4. Summary of systematic studies

In this section the different contributions to the systematic uncertainty on the
measurement of ∆ms have been presented. They are listed in Table 11.2 as well
as the quadratic sum which is the total systematic uncertainty assigned to this
analysis.

The dominating contributions to the systematic uncertainty on ∆ms originate
from the z-scale and momentum uncertainties, which will be the long term limits
for this analysis.
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systematic ∆∆ms [ ps−1 ]
Γs –

∆Γs –
decay time acceptance –
decay time resolution –

decay time resolution model –
mass model –

background yield –
B0
s→ D±s K

∓ yield –
σt and predicted η PDFs –

decay time bias –
mass/decay time correlation –

z-scale 0.004
momentum scale 0.004
total systematic 0.006

Table 11.2.: Summary of the systematic uncertainties on ∆ms

and their quadratic sum. The first rows summarize the cross checks
described in Section 11.1 where no effect is observed and therefore
no systematic is assigned. The dominant systematics are the z-scale
and momentum scale.
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Summary and Conclusion

In this thesis, the analysis to measure the B0
s–B0

s oscillation frequency ∆ms has
been presented. A sample of 34,000 signal candidates of the decay B0

s→ D−s π
+

has been selected reconstructing five different D−s decay modes, with very little
background contribution in the signal region (S/B = 7.4). In this dataset,
which was taken by the LHCb experiment in 2011 corresponding to an integrated
luminosity of L = 1 fb−1, the distributions of the B0

s invariant mass, decay time
and flavour tagging decision were fitted to obtain ∆ms.

For this analysis the two main challenges pose the determination of the production
flavour of the B0

s meson and the decay time resolution. The production flavour is
obtained using both opposite and same side kaon flavour tagging algorithms. The
effective tagging efficiencies are εOST

eff = 2.4± 0.4% and εSST
eff = 1.2± 0.3% which

represent the statistical reduction of the data sample due to imperfect flavour
tagging. The decay time resolution is calibrated on data finding an average decay
time uncertainty of 45 fs.

Various systematic effects have been studied and most have been found negligible
compared to the statistical uncertainty. The dominant systematic uncertainties in
this analysis are the uncertainties on the scales with which lengths and momenta
can be measured at the LHCb experiment.

The final result for ∆ms is

∆ms = 17.768± 0.023(stat)± 0.006(syst) ps−1 (12.1)

which is the most precise measurement of this quantity to date. Its combined
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uncertainty (statistical and systematic) is a factor three smaller than the current
world average [23]. The result is well in agreement with the previous result by the
CDF collaboration [17] and with the first published result by LHCb [18] which
used a statistically independent sample. Over the individual rounds, the analysis
was more and more refined and the systematic uncertainties have been reevaluated
and reduced from 0.024 ps−1 to 0.006 ps−1.

The result is also well in agreement with the theoretical prediction which suffer
from poor uncertainties due to insufficient lattice QCD calculations [33]. Therefore,
it is not feasible to look for deviations from the theoretical predictions until these
lattice QCD calculations are more accurate. However, The B0

s–B0
s mixing sector

is still an excellent place to look for physics contributions beyond the Standard
Model [72]. Other observables like the weak phase φs in the decays B0

s→ J/ψφ and
B0
s→ J/ψπ+π− [1] have much better theoretical predictions. These analyses must

resolve the fast B0
s oscillation, which is why the measurement of the oscillation

frequency ∆ms is a prerequisite to prove that LHCb is able to perform precision
measurements in the B0

s mixing sector. The excellent decay time resolution
and flavour tagging performance provided by the LHCb experiment lead to this
precise result of ∆ms and Figure 9.6 which is the first visualization of the B0

s–B0
s

oscillation over so many periods ever shown.

The analysis presented in this thesis was also the base for the optimization and
calibration of the same side kaon tagger in data, which will be the long-term
application of this analysis. In recent studies this resulted in an improvement of
the same side kaon tagger performance by about 56% [73].

This measurement of ∆ms is still statistically limited. Adding the dataset taken
by LHCb in 2012 which corresponds to 2 fb−1 and using the optimized same side
kaon tagger with the improved performance will improve the uncertainty on ∆ms

significantly.
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APPENDIX A

Additional Information on the calibration of the
decay time resolution

In this appendix the fit results and resulting distribution of weights are given.
The fitted parameters from the D− mass fit in Figure 7.5 are sumarized in Table
A.1 and the distribution of the resulting weights is shown in Figure A.1. It can
be seen that the weights are negative for events outside the invariant mass signal
region to subtract the background.

The Bukin PDF used in the fit of the D− log(IP ) distribution is defined as

P(x;xp, σp, ξ, ρi) = Ape

(
ξ
√
ξ2+1(x−x1)

√
2 ln 2

σp(√ξ2+1−ξ)2
ln(√ξ2+1+ξ)

+ρi
(
x−xi
xp−xi

)2
−ln 2

)
, (A.1)

where ρi = ρ1 and xi = x1 for x < x1, and ρi = ρ2 and xi = x2 for x ≥ x2 with

x1,2 = xp + σp
√

2 ln 2
(

ξ√
ξ + 1 ∓ 1

)
(A.2)

while in the central region (x1 < x < x2) it is parametrized as

P(x;xp, σp, ξ, ρ) = e
− ln 2

(
ln(1+4ξ

√
ξ2+1

x−xp
σ2
√

2 ln 2
)

ln(1+2ξ(ξ−
√
ξ2+1))

)
. (A.3)

The parameters xp and σp describe the peak position and the FWHM. The
parameter ξ describes the asymmetry of the distribution is and the parameters ρ1
and ρ2 decribe the left and right tail, respectively.
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decay time resolution

Parameter Fit results
µm

D−s
1870.953±0.0055 MeV/c2

σ1,m
D−s

12.2±1.2 MeV/c2

σ1,m
D−s

6.08±0.25 MeV/c2

fm
D−s

0.386±0.072
αm

D−s
0.0495±0.0013

Nsig 51898±6600
Nbkg 656000±83000

Table A.1.: Fit results for the invariant mass distribution of the
D−→ K+π−π− candidates used for the calibration of the decay time
resolution.
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Figure A.1.: Distribution of the weights obtained from the fit to
the D− → K+π−π− invariant mass. These weights are applied
to the sample to subtract the background for the next steps of the
calibration.
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Parameter Prompt D− Non-prompt D−

xp -3.847±0.015 -2.330±0.032
σp 0.5993±0.0079 0.963±0.016
ξ -0.145±0.016 -0.006±0.023
ρ1 -0.229±0.027 -0.177±0.057
ρ2 -0.359±0.026 -1.22±0.46

Table A.2.: Fit results for the log(IP ) distribution of the prompt
and non-prompt D−→ K+π−π− candidates from simulated data.

Parameter Prompt D− Non-prompt D−

xp -3.767±0.0043 -2.503±0.016
σp 0.549±0.0044 1.25±0.07
ξ -0.145 -0.006
ρ1 -0.229 -0.177
ρ2 -0.359 -1.22

Table A.3.: Fit results for the log(IP ) distribution of the prompt
and non-prompt D−→ K+π−π− candidates from data. The shape
parameter ξ, ρ1 and ρ2 have been fixed from the fit to simulated data.

Table A.2 summarizes the results for the fitted Bukin PDFs to the log(IP )
distributions in Figure 7.6 of prompt and non-prompt D− candidates in simulated
data. The fit results for the fit of the log(IP ) distribution in data, shown in
Figure 7.7, are summarized in Table A.3.

The distribution of the weights obtained from this fit is shown in Figure A.2. It
can be seen that the weights have negative values for the region dominated by
the non-prompt component and positive values for low log(IP ).
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Figure A.2.: Distribution of the weights obtained from the fit to the
D− log(IP ) distribution. These weights are applied to the sample
to subtract the contribution of non-prompt D− for the final step of
the calibration.



APPENDIX B

Normalization of the Signal Decay Time PDF

The signal decay time PDF is definend in Equation 9.5 as1

PDsπ;t,q ∝

(e−Γst ·
[
cosh

(
∆Γs

2 t

)
− q · (1− 2ω) · cos (∆mst)

])

⊗ G(0, Sσtσt; t)
 · Et(t) · NOST

tag · N SST
tag .

The PDF has to be normalized so that the integral is equal to one. Therefore, the
normalization factor N is the integral

N =
∫
PDsπ;t,qdt dq . (B.1)

The integral over the discrete flavour tagging decision is performed explicitly by
summing over the possible values (q ∈ {+1;−1; 0})

∫
PDsπ;t;qdt dq =

∫ +1;−1;0∑
q

PDsπ;t,qdt . (B.2)

Due to this sum the cosine terms in the mixing PDF completely cancel and the
relative normalization factors NOST

tag and N SST
tag add up to one. This leaves the

1Only positive true decay times are physical. Therefore the exponential eΓst implies the
Heaviside Function Θ(t)
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normalization factor N to be:

N =
∫ [

e−Γst · cosh
(

∆Γs
2 t

)]
⊗ G(0, Sσtσt; t) · Et(t)dt

=
∫

0.5
[
e−(Γs+ ∆Γs

2 )t + e−(Γs−∆Γs
2 )t

]
⊗ G(0, Sσtσt; t) · Et(t)dt .

(B.3)

Using the linearity of the integral and the convolution this can be reduced to two
terms of the form ∫

e−ct ⊗ G(0, σt; t) · Et(t)dt (B.4)

Involving the simple convolution of an exponential function with slope c starting
at t = 0 with a Gaussian with a mean equal to zero and a width equal to σt which
is given by

e−ct ⊗ G(0, σt; t) = c

2e
−c
(
t− cσ

2
t

2

)
· Erfc

(
cσ2

t − t√
2σt

)
(B.5)

with the complementary error function Erfc(z) ≡ 2√
π

∫∞
z e−u

2
du. So Equation B.3

becomes

N =
∫ ∞
−∞

2∑
i=1

ci
2 e
−ci
(
t− ciσ

2
t

2

)
· Erfc

(
ciσ

2
t − t√
2σt

)
· Et(t) (B.6)

with the coefficients ci = Γs ± ∆Γs/2. For simplicity, from now on only one
coefficient c will be considered. With the decay time acceptance function defined
in Equation 7.10 as

Et(t) = (1− e−
(t−sacc)
αacc )(1 + βacct) ·Θ(t− ζacc),

the normalization of the signal decay time PDF is given by

N = c

2b

(a0 + a1

bc

(
1− bcσ2

t

αacc

))

·
(

2− Erfc
(
− 1√

2
·
(
ζacc

σt
+ σt
αacc

)))
· e

σ2
t

2α2
acc

+
(
a0 + a1

bc
(1 + bcζacc

)

· Erfc
(
− 1√

2
·
(
ζacc

σt
− cσt

))
· e
(
−bcζacc+σ2

t c
2

2

)

+ a1σt

√
2
π
· e
−cζacc·

(
1

cαacc
+ ζacc

2cσ2
t

)

(B.7)

with the coefficients
a0 = esacc/αacc

a1 = esacc/αacc · βacc

b = 1 + 1
cαacc

(B.8)



APPENDIX C

Results from validation of fit procedure

In this appendix the results from the pseudo-experiments described in Chapter 10
are given. Table C.1 shows the means and widths of the pull distributions as
defined in Equation 10.1 for all free parameters in the fit. It can be seen that the
means are all compatible with zero and the widths are compatible with one. This
shows that the PDFs are correctly implemented in the fit algorithm.

parameter pull mean pull width
mB0

s
0.017±0.013 0.998±0.010

σ1
m −0.004±0.013 0.994±0.010
σ2
m −0.027±0.013 1.006±0.010

fφπsig −0.020±0.013 1.035±0.010
fφπcomb −0.045±0.014 1.028±0.010
fφπ
Λ0
b

−0.014±0.012 0.985±0.010
aDT

comb 0.034±0.013 1.012±0.010
βDT

comb −0.002±0.013 1.000±0.010
αacc 0.004±0.013 1.003±0.010
αφπcomb 0.009±0.013 1.000±0.010
∆ms −0.017±0.013 1.023±0.010
εOST

sig −0.014±0.013 0.992±0.010
εSST

sig −0.008±0.013 0.999±0.010
ωOST

comb −0.006±0.013 0.993±0.010
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ωSST
comb 0.037±0.013 1.012±0.010

εOST
tag;comb 0.011±0.013 1.009±0.010
εSST

tag;comb 0.000±0.013 1.000±0.010
ωSST
Λ0
b

−0.012±0.013 0.991±0.010
εSST
Λ0
b

−0.038±0.013 1.015±0.010
ωSST
B0 0.023±0.013 0.980±0.010
εSST
B0 −0.014±0.013 1.005±0.010
pSST

1 0.010±0.013 0.974±0.010
pOST

1 0.015±0.013 1.001±0.010
pOST

0 −0.011±0.013 0.982±0.010
pSST

0 −0.024±0.013 1.002±0.010
fK

∗0K
sig −0.021±0.013 1.019±0.010
fK

∗0K
comb −0.008±0.013 1.036±0.010
fK

∗0K
Λ0
b

−0.022±0.012 0.983±0.010
αK

∗0K
comb 0.028±0.013 0.995±0.010
fKKπsig −0.020±0.013 0.990±0.010
fKKπcomb −0.019±0.013 1.010±0.010
fKKπΛ0

b
−0.020±0.013 0.998±0.010

αKKπcomb 0.004±0.013 1.003±0.010
fKππsig −0.003±0.013 1.009±0.010
fKππcomb −0.000±0.013 1.015±0.010
fKππΛ0

b
0.037±0.013 0.978±0.010

αKππcomb 0.003±0.013 1.020±0.010
fπππsig −0.017±0.013 1.003±0.010
aDT

comb;3π 0.025±0.013 1.026±0.010
βDT

comb;3π −0.017±0.013 1.015±0.010
απππcomb 0.030±0.013 1.000±0.010

Table C.1.: Result of 6000 pseudo-experiments to vali-
date the fit procedure. Mean and width of the pull distri-
butions for all free parameters are given.



APPENDIX D

Correlation matrix of the nominal fit

Tables D.1 and D.2 show the full correlation matrix from the nominal fit to obtain
∆ms using both opposite side and same side kaon taggers. It shows how much
the individual parameters are intertwined in the fit. The correlation coefficients
ρij are defined as

ρij = Cov(i, j) · σi · σj, (D.1)

with the covariance Cov(i, j) and the variances σ of the individual parameters i
and j. The coefficients ρij range from -1 to 1.

The row and columns of ∆ms are highlighted. It can be seen that there are barely
any correlations present between ∆ms and all other free parameters in the fit.

167
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APPENDIX E

Momentum scale systematic

For a simple two-body decay the mass of the B-meson is given by:

m2
B0
s

= m2
1 +m2

2 + 2p1p2

√√√√1 + m2
1

p2
1

m2
2

p2
2

+ m2
1

p2
1

+ m2
2

p2
2
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Using m1,2
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<< 1 one receives:
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Now a scaling of the momenta of p1,2 → (1− α)p1,2 is considered.
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Factoring out (1− α)2 leads to
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Taking the Taylor expansion of 1
(1−α) in α until the linear term and neglecting

quadratic terms in α:
1

(1− α)2 → (1 + α)2 → 1 + 2α (E.5)

one gets:
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Inserting a zero ((m2
1 +m2

2)− (m2
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2)) gives:
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For the proper decay time we need the uncertainty on
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This leaves us with:
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Inserting a one (
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) we have in the end:
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By inserting another negigible factor quadratic in α of the form
(
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get:
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multiplying with the flight distance the proper decay time is given by:
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So with α being the relative uncertainty of the momentum, we get a relative
uncertainty of the proper decay time that has the form:
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Since the D+
s mass constraint is not used for the computation of the proper decay

time in principle a four-body decay is given. The above shown derivation holds in
the same way for more-body decays. Therefore the final uncertainty is
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