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Abstract

Traceability supports the software development process in various ways, amongst oth-
ers, change management, software maintenance and prevention of misunderstandings.
Traceability links between requirements and code are vital to support these development
activities, e.g., navigating from a requirement to its realization in the code, and vice
versa. However, in practice, traceability links between requirements and code are often
not created during development because this would require increased development effort.
This reduces the possibilities for developers to use these links during development.

To address this weakness, this thesis presents an approach that (semi-) automatically
captures traceability links between requirements and code during development. We do
this by using work items from project management that are typically stored in issue
trackers. The presented approach consists of three parts. The first part comprises a
Traceability Information Model (TIM) consisting of artifacts from three different areas,
namely requirements engineering, project management, and code. The TIM also includes
the traceability links between them. The second part presents three processes for capturing
traceability links between requirements, work items, and code during development. The
third part defines an algorithm that automatically infers traceability links between
requirements and code based on the interlinked work items. The traceability approach is
implemented as an extension to the model-based CASE tool UNICASE, which is called
UNICASE Trace Client.

Practitioners and researchers have discussed the practice of using work items to capture
links between requirements and code, but there has been no systematic study of this
practice. This thesis provides a first empirical study based on the application of the
presented approach. The approach and its tool support are applied in three different
software development projects conducted with undergraduate students. The feasibility
and practicability of the presented approach and its tool support are evaluated. The
feasibility results indicate that the approach creates correct traceability links between
all artifacts with high precision and recall during development. At the same time the
practicability results indicate that the subjects found the approach and its tool support
easy to use. In a second empirical study we compare the presented approach with an
existing technique for the automatic creation of traceability links between requirements
and code. The results indicate the presented approach outperforms the existing technique
in terms of the quality of the created traceability links.
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Zusammenfassung

Nachverfolgbarkeit unterstützt den Softwareentwicklungsprozess auf verschiedene Weise,
u.a. beim Veränderungsmanagement, in der Wartung von Software und der Vermeidung
von Missverständnissen. Verbindungen zwischen Anforderungen und Quellcode sind von
entscheidender Bedeutung zur Unterstützung dieser Entwicklungsaktivitäten, z.B. für das
Navigieren von einer Anforderung bis zu ihrer Umsetzung im Quellcode, und umgekehrt.
Jedoch werden diese Verbindungen häufig in der Praxis nicht während der Entwicklung
erstellt, da dies erhöhten Entwicklungsaufwand erfordern würde. Somit können Entwickler
die Verbindungen nicht während der Entwicklung nutzen.

Um dieses Problem anzugehen, stellt diese Arbeit einen Ansatz zur (semi-) automa-
tischen Erfassung von Verbindungen zwischen Anforderungen und Quellcode während der
Entwicklung vor. Dies wird durch die Verwendung von Arbeitsaufträgen aus dem Projekt-
management erreicht, die typischerweise in Fehlerverfolgungswerkzeugen gespeichert sind.
Der vorgestellte Ansatz besteht aus drei Teilen. Der erste Teil umfasst ein Traceability
Information Model (TIM), bestehend aus Artefakten aus drei Bereichen, nämlich Require-
ments Engineering, Projektmanagement und Quellcode. Das TIM beinhaltet auch die
Verbindungen zwischen den Artefakten. Der zweite Teil präsentiert drei Prozesse für die
Erfassung von Verbindungen zwischen Anforderungen, Arbeitsaufträgen und Quellcode
während der Entwicklung. Der dritte Teil stellt einen Algorithmus für die automatis-
che Ableitung von Verbindungen zwischen Anforderungen und Quellcode vor basierend
auf den damit verbundenen Arbeitsaufträgen. Der Ansatz ist als Erweiterung für das
modellbasierte CASE-Tool UNICASE implementiert und heißt UNICASE Trace Client.

Praktiker und Forscher haben die Verwendung von Arbeitsaufträgen zur Erfassung von
Verbindungen zwischen Anforderungen und Quellcode bereits diskutiert, aber es existiert
dafür noch keine systematische Studie. Diese Dissertation präsentiert eine erste solche
empirische Studie basierend auf dem vorgestellten Ansatz. Der vorgestellte Ansatz mit
seiner Tool-Unterstützung wird in drei verschiedenen Softwareentwicklungsprojekten mit
Studierenden angewendet. Die Machbarkeit und Praktikabilität des vorgestellten Ansatzes
und seiner Tool-Unterstützung werden evaluiert. Die Ergebnisse zur Machbarkeit zeigen,
dass der Ansatz richtige Verbindungen zwischen allen Artefakten mit hoher Präzision
während der Entwicklung erstellt. Gleichzeitig zeigen die Ergebnisse zur Praktikabilität,
dass die Studierenden den Ansatz und seine Tool-Unterstützung einfach zu bedienen fanden.
Eine zweite empirische Studie vergleicht den vorgestellten Ansatz mit einer bestehenden
Technik zur automatischen Erstellung von Verbindungen zwischen Anforderungen und
Quellcode. Die Ergebnisse zeigen, dass der vorgestellte Ansatz die bestehende Technik in
Bezug auf die Qualität der erstellten Verbindungen übertrifft.
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Chapter 1
Introduction

One never notices what has been done;
one can only see what remains to be done.

– Marie Curie, 1867-1934 –

1.1 Motivation

"The importance of traceability is well understood in the software engineering community
and adopted by numerous software development standards" [Cleland-Huang et al. (2012c)].
Requirements traceability, defined as the "ability to follow the life of a requirement in
both a forward and backward direction" [Gotel & Finkelstein (1994)] is a critical element
of any rigorous software development process [Cleland-Huang et al. (2012a)]. Frequently
reported benefits of requirements traceability include the facilitation of communica-
tion between project stakeholders, support for the integration of changes, the preserva-
tion of design knowledge, quality assurance, and the prevention of misunderstandings
[Egyed & Gruenbacher (2005)].

According to [Cleland-Huang et al. (2012c)], in practice, traceability links are usually
created and maintained by using a requirements management tool or Computer Aided
Software Engineering (CASE) tool, or through the use of a spreadsheet or text document.
However, there are numerous issues that make it difficult to achieve successful traceability
in practice. For example, acquiring traceability links is mostly a manual process with only
little automation [Egyed & Gruenbacher (2005)]. This results in tremendous effort and
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1.1 MOTIVATION

complexity [Ramesh et al. (1995)]. Technical issues are related to creating, maintaining,
and using a large amount of traceability links [Cleland-Huang et al. (2012c)].

The full potential of requirements traceability can only be exploited if complete trace
information is available [Ramesh et al. (1995)]. However, incomplete trace information is a
reality due to complex trace acquisition and maintenance. "As a result, many organizations
struggle to implement and maintain traceability links, even though it is broadly recognized
as a critical element of the software development life cycle" [Cleland-Huang et al. (2012c)].
Therefore, there is almost "universal failure across both industry and government projects
to implement successful traceability" [Cleland-Huang et al. (2012a)].

"In order to overcome the significant challenges in creating, maintaining, and using trace-
ability, over the last 20 years the research community has been actively addressing trace-
ability issues through the exploration of various topics" [Cleland-Huang et al. (2012c)].
A particular focus is on "automating the traceability process, developing strategies for
cost-effective traceability, and supporting the evolution and maintenance of traceability
links" [Cleland-Huang et al. (2012c)].

A major focus of the research community is on the traceability between requirements and
source code (hereinafter referred to as code). Generally speaking, this type of traceability
ensures the logical link between the abstract description of what a software is supposed
to do and its concrete implementation. For example, traceability between requirements
and code is used to demonstrate that all requirements stated by the customer are fully
implemented in the code. Furthermore, it helps developers understand how a proposed
change to a requirement impacts the code.

Traceability between requirements and code has been extensively researched in the
past and much progress has been made in this field. Because the manual creation
of traceability links between requirements and code is cumbersome, error-prone, time
consuming, and complex [Spanoudakis & Zisman (2004)], a major focus in research is on
(semi-) automatic approaches. However, these (semi-) automatic approaches are often
only used after development [Cleland-Huang et al. (2012a)] to create traceability links
between requirements and code. This reduces the possibilities for developers not only to
use their project knowledge to improve the quality of the traceability links, but also to use
the traceability links during software development. For example, traceability helps the
developer understand the relationships that exist within and across software requirements,
design, and implementation [Gotel & Finkelstein (1994)] and it provides comprehension
support. Therefore, we argue that traceability links between requirements and code should
also be created during the software development process and not only after development.
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CHAPTER 1: INTRODUCTION

This thesis focuses on the specific problem of (semi-) automatically creating traceability
links between requirements and code during development. In this thesis, we present an
innovative traceability approach that combines three different types of models used for ab-
straction in software development projects: system model, project model, and code model.
We build upon a model called MUSE (Management-based Unified Software Engineering)
by [Helming (2011)], which already integrates the system model and the project model.
The system model comprises artifacts that describe "the system under construction, such
as requirements and design documents" [Helming (2011)]. The project model comprises
artifacts that describe "the on-going project, such as work items, developers, sprints
or meetings" [Helming (2011)]. The code model comprises artifacts that represent the
concrete implementation of the requirements described in the work items that are assigned
to the developers in the sprints of the software development project.

The main idea of (semi-) automatically creating traceability links between requirements
and code during development is letting the developers create these links themselves while
they work on work items. Work items can help to achieve these links because the realization
of the requirements is described in the work items, while the implemented code is linked
to the work items. We consider the work required to create links between requirements
and work items as well as between work items and code as less effort than creating direct
links between requirements and code because it is integrated in the regular development
work flow, that has to be performed anyway, which is the description of the realization of
the requirements using work items, and the implementation of the requirements in the
code described in the work items. Although various approaches for automatically creating
links between requirements and code have been presented [De Lucia et al. (2012)], the
validation of the created links still requires extensive manual effort [Kong et al. (2011)],
which we believe is higher than linking work items to requirements and code.

Three traceability link creation processes are presented to (semi-) automatically link
requirements, work items, and code during development. The links between requirements
and work items and between work items and code are then used to infer direct traceability
links between requirements and code. An algorithm is presented for inferring these
direct links while considering particular special cases of how code can be modified during
software development.

1.2 Contributions of Thesis

This thesis describes a novel approach for the creation of traceability links between
requirements, work items, and code. The approach represents a new way to (semi-)

4



1.3 OUTLINE OF THESIS

automatically link these artifacts during software development. The approach is (semi-)
automatic because it works with work items used by developers during software devel-
opment. Furthermore, the approach allows to infer direct traceability links between
requirements and code based on the interlinked work items.

The main contributions of this thesis are fourfold. First, a systematic literature review
is presented investigating existing research on the traceability between requirements,
work items, and code. Second, the traceability approach itself is presented integrating
artifacts from requirements engineering, project management, and code implementation
alongside the three traceability link creation processes and the algorithm for inferring direct
traceability links between requirements and code. Third, the practical implementation of
the traceability approach as an extension to the model-based CASE tool UNICASE1 is
discussed. Finally, two empirical studies were conducted: an empirical study applying
the presented traceability approach and tool support in practice, as well as an empirical
comparison of the traceability approach to an existing technique creating traceability
links between requirements and code.

1.3 Outline of Thesis

The remainder of this thesis is structured as follows:

Chapter 2: Background. This chapter presents background knowledge about the
terminology and general terms used in this thesis. Furthermore, the focus is set upon open
research issues surrounding the creation of traceability links. Additionally, basic version
control concepts are introduced that are the foundation for the traceability approach
presented in this thesis.

Chapter 3: State of the Art. This chapter presents the results of a systematic
literature review on the traceability between requirements, work items, and code. It
explains existing approaches and discusses their strengths, weaknesses, and limitations to
expose gaps that a new approach in that area can fill.

Chapter 4: Traceability Approach. This chapter describes the traceability approach
that (semi-) automatically captures traceability links between requirements, work items,
and code during development. Preconditions and assumptions of the approach are
discussed. The main stages of the approach are briefly introduced and rationale is
provided for the kind of approach that has been chosen.

1UNICASE open source project – http://www.unicase.org/ [retrieved: August, 2013]
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Chapter 5: UNICASE Trace Client. This chapter describes a system called UNI-
CASE Trace Client (UTC), which implements the traceability approach introduced in
this thesis. Information about the architecture, components and actual implementation is
provided. Furthermore, UNICASE and UTC are compared to other existing CASE tools.

Chapter 6: An Empirical Study Using the Traceability Approach. This chapter
presents an empirical evaluation of the presented traceability approach and its tool support.

Chapter 7: Assessing the Performance of the Traceability Approach. This
chapter provides an empirical comparison of the presented traceability approach to an
existing technique for creating links between requirements and code, focusing on the
quality of the created links.

Chapter 8: Conclusion and Future Work. The final chapter consists of the conclu-
sion (i.e., the current state of this work and its limitations) as well as suggestions for
future work (i.e., research problems and potential improvements).

Appendix A: Requirements of UNICASE Trace Client. This appendix lists all
features and functional requirements used as a basis for developing UTC.

Appendix B: User Manual of UNICASE Trace Client. This appendix offers a
user manual for UTC, including a description of the installation process, a setup guide,
and explanations about its preferences.

Appendix C: Questionnaire. This appendix includes the questionnaire that has been
used during the empirical evaluation of the traceability approach (see Chapter 6) to
identify its practicability.

1.4 Publications

We published parts of the literature reviews, formal concepts and evaluation results of this
thesis as scientific publications. The following list provides an overview of the relevant
publications in chronological order and to what chapters and sections they contribute:

1. Delater, A., Paech, B. Traceability between System Model,
Project Model and Source Code. Doctoral Symposium of the
18th International Working Conference on Requirements Engineer-
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7



Chapter 2
Background

An investment in knowledge pays the best interest.

– Benjamin Franklin, 1706-1790 –

This chapter describes background knowledge used in this thesis. First, general terms
in the context of traceability are described (see Section 2.1). This includes a brief
introduction to requirements traceability (see Section 2.1.1) with additional information
about the classification (see Section 2.1.1.2) and representation of traceability links (see
Section 2.1.1.3). Furthermore, the focus is set upon open research issues surrounding
the creation of traceability links (see Section 2.1.1.4). Afterwards, the different types of
work items are discussed and what is described in them (see Section 2.1.2). Second, basic
version control concepts (see Section 2.2) are introduced that are the foundation for the
traceability approach presented in Part II of this thesis.

2.1 Terminology and General Terms

[Gotel et al. (2012)] provide an overview about the fundamental terms and definitions
on traceability. The term traceability is defined in the [IEEE Std. Glossary (1990)] of
Software Engineering Terminology as:

1. The degree of which a relationship can be established between two or more products
of the development process, especially products having a predecessor-successor or
master-subordinate relationship to one another. [...]
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2. The degree of which each element in a software development product establishes its
reason for existing.

In this thesis, we will use the term artifact to refer to these "elements in a software
development product".

The [IEEE Std. Glossary (1990)] defines a trace as "a relationship between two or more
products of the development process". Note that the [IEEE Std. Glossary (1990)] lists a
second definition of trace: "A record of the execution of a computer program, showing
the sequence of instructions executed, the names and values of variables, or both". This
definition is usually referred to as an execution trace and applied in the field of dynamic
program analysis [Winkler & von Pilgrim (2010)]. To avoid ambiguities, the term trace
refers to the descriptions given above. The latter concept will be explicitly referred to as
execution trace.

2.1.1 Requirements Traceability

In the following sections, we provide definitions for requirements traceability as well as
information about the classification and representation of traceability links. An extensive
overview about requirements traceability is provided in [Cleland-Huang et al. (2012c)],
[Dahlstedt & Perrson (2005)], and [Winkler & von Pilgrim (2010)]. Please refer to these
references for a more detailed overview.

2.1.1.1 Definitions of Requirements Traceability

In requirements engineering, the term traceability is defined as the ability to follow the
traces to and from requirements [Winkler & von Pilgrim (2010)]. There are two common
definitions of requirements traceability. The first and most widely accepted definition by
[Gotel & Finkelstein (1994)] defines requirements traceability as:

"... the ability to describe and follow the life of a requirement, in both a for-
wards and backwards direction (i.e., from its origins, through its development
and specification, to its subsequent deployment and use, and through periods
of on-going refinement and iteration in any of these phases)."

A second definition by [Pinheiro (2003)] defines requirements traceability as:

"... the ability to define, capture, and follow the traces left by requirements
on other elements of the software development environment and the traces
left by those elements on requirements."
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We use the definition of [Gotel & Finkelstein (1994)] in this thesis because it is more
widely accepted and used in the field of requirements traceability.

2.1.1.2 Classification of Traceability

Over the years, several other terms related to requirements traceability have been es-
tablished. According to [Winkler & von Pilgrim (2010)], the most common ones are
pre-requirements specification, post-requirements specification, forwards, backwards, hori-
zontal, and vertical traceability. These terms are shown in Figure 2.1 and described in
detail in the following.

Figure 2.1: Dimensions & directions of traces (Source: [Winkler & von Pilgrim (2010)])

[Gotel & Finkelstein (1994)] have introduced the classification of pre-requirements specifi-
cation (pre-RS) traceability and post-requirements (post-RS) traceability. Pre-RS trace-
ability is concerned with those aspects of a requirement’s life prior to its inclusion in the
RS, which means all traces that occur during elicitation, discussion, and agreement of
requirements. This includes dealing with informal, conflicting, or overlapping information
[Winkler & von Pilgrim (2010)]. Post-RS traceability is concerned with those aspects
of a requirement’s life that result from its inclusion in the RS, which means all traces
that occur during the stepwise implementation of the requirements in the design and
coding phases. It includes documenting the traces of the various manual and automatic
transformation steps eventually producing the system [Winkler & von Pilgrim (2010)].
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The [IEEE Std. 830-1984] has introduced the terms backward traceability and forward
traceability. Backward traceability refers to the ability to follow the traceability link from
a specific artifact to its sources from which is has been derived. Forward traceability
stands for following the traceability links to the artifacts that have been derived from the
artifact under construction.

[Ramesh & Edwards (1993)] have introduced the terms horizontal traceability and vertical
traceability. These terms differentiate between traceability links of artifacts belonging to
the same project phase or level of abstraction (horizontal), and links between artifacts
belonging to different ones (vertical) [Winkler & von Pilgrim (2010)].

Besides the terms described above, we differentiate in this thesis between three other
essential terms, as they were defined by [Winkler & von Pilgrim (2010)], and which are
cited below:

1. Traceability means the ability to describe and follow the life of a software artifact
in the sense of the generalized definition presented by [Gotel & Finkelstein (1994)].

2. A trace is a piece of (implicit or explicit) information which is an indication or
evidence showing what has existed or happened [Simpson & Weiner (1989)].

3. Finally, a traceability link is, as already stated, a relation that is used to interrelate
artifacts (e.g., by causality, content, etc.). Following the notation of a trace, a
traceability link is a more concrete (but not the only) form of information that
can be used to describe and follow certain aspects of the life of the representative
software artifacts.

2.1.1.3 Representing Traceability

In order to use traceability links, it is necessary to represent them in a form that
is appropriate for its purpose. Several different ways exist to represent traceability
links, which are also supported by tools. [Wieringa (1995)] distinguishes between three
different kinds of traceability representation (traceability matrices, graphical models, cross
references), while [Schwarz et al. (2009)] represent artifacts and the traceability links
between them as a graph:

• Traceability matrices: Traceability links are represented as a matrix. The horizontal
and vertical dimensions list artifacts that can be linked. The entries in the matrix
represent links between the artifacts in the matrix [Wieringa (1995)].
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• Graphical models: Entity Relationship Models (ERM) are another way to represent
traceability links. Various UML diagrams support the representation of traceability
links directly embedded in the different development models [Wieringa (1995)].

• Cross references: Traceability links between artifacts are represented as links,
pointers or annotations in the text [Wieringa (1995)].

• Graphs: In a graph, the nodes represent artifacts and the edges the traceability
links between the artifacts [Schwarz et al. (2009)].

[Cooper et al. (2009)] provide a comprehensive overview about ways to represent trace-
ability links between requirements and other artifacts.

2.1.1.4 Open Research Issues

During the last years, much research has been done in the area of requirements traceability,
and problems like the automated creation of traceability links have been studied in depth.
Nevertheless, many problems still remain unsolved and more work focusing on these
issues is necessary. The traceability research community recognized the demand for
more research and organized a workshop on that topic. The First Workshop on Grand
Challenges for Traceability (GCT’06) brought together members of the traceability
community from academia, industry, and government with the goal to identify unsolved
problems in the field of traceability. The outcome of the workshop was a list of various
problems and grand challenges related to various aspects of traceability in software systems
[Cleland-Huang et al. (2006)]. The high number of challenges and problems listed in the
document shows the demand for more research work in the field of traceability.

The focus of this thesis is on the creation of traceability links. Category C of problems and
challenges, Supporting Evolution, is related to the creation, maintenance and evolution of
traceability links. Three problems of this category related to this thesis are:

C-P1 Accurate, consistent, complete, up-to-date traceability information is vital to
diverse groups of stakeholders working in various domains and applications,
however, current techniques for link recovery are still human intensive and
error-prone (e.g., due to documentation quality, level of detail, etc.)

C-P2 For traceability links to be useful, they must reflect current dependencies
between artifacts, however, the cost and effort to maintain links during system
evolution is burdensome, and (as a result) the links often erode into an
inaccurate state.
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C-P4 Traceability links need to synchronously evolve with their related artifacts,
however, current change management systems and link semantics are not
sufficiently sophisticated to support effective evolution of traceability links.

These problems show that there is a large demand for an approach that effectively supports
the creation of traceability links without much additional work required by humans and
making the traceability links evolve with their related artifacts synchronously during
software development. Especially the following three challenges associated to the problems
above appear relevant:

C-GC1 Develop link recovery techniques for textual artifacts that are at least as
accurate as manual processes and are much more time- and cost-effective.

C-GC2 Develop incremental, almost real-time, traceability recovery approaches to be
integrated into Integrated Development Environments.

C-GC3 Develop change management systems that effectively support the evolution of
traceability links across multiple artifact types.

Furthermore, one problem from category L, Measurement and Benchmarks, as well as
one problem from category J, Process, emphasize empirical evidence in the context
of traceability and the need for integrating traceability in the development lifecycle,
respectively:

L-P1 Empirical studies are needed to demonstrate the effectiveness of traceability
methods and facilitate collaborative and evolutionary work among researchers
and practitioners; however, there is a lack of common experimental design,
methodologies, and benchmarks.

J-P1 In order to generate and maintain quality and sound traceability information,
an organizational process is required; however, traceability is often not included
as an integral part of the development lifecycle.

Chapter 3 will provide a comprehensive state of the art overview about traceability
between requirements and work items, work items and code, as well as requirements
and code. It will also show that this topic is not sufficiently supported by current
approaches. The chapter finally lists requirements for an approach trying to tackle these
grand challenges (see Section 3.4). These requirements refer back to the grand challenges
above and to the strengths and weaknesses found in related approaches.
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2.1.2 Work Items

On the one hand, work items describe what has been done by project participants in the
past. On the other hand, they also describe what will be done by project participants in
the future. Work items have a completion status, a due date and are assigned to project
participants. Typically, work items are very detailed and document an aspect of the
software development work relevant in a particular moment of the project. In this thesis,
we use the term work item instead of task to avoid misunderstandings with the term task
used in requirements engineering.

Work items can concern work related to the system that is being developed as well as
the project management for the project. For example, one work item can require the
project manager to define a project plan and another work item can require a developer
to implement a requirement. Therefore, work items can be useful for the project manager,
but also for any other team role.

As described in the Project Management Body of Knowledge [PMBOK], the overall
tasks and responsibilities of the project manager are to initiate, plan, execute, monitor
and control, as well as close a project. Typical activities include developing the project
management plan and all related component plans, keeping the project on track in terms
of schedule and budget, identifying, monitoring, and responding to risks, as well as
providing accurate and timely reporting of project metrics. Thus, a major activity of
the project manager is to define work items and assign them to team members who are
responsible for their realization. However, particular types of work items can also be
created by other team members as well, e.g., a bug report or defect identified by a tester
or an action item describing a particular activity for another team member.

2.2 Basic Version Control Concepts

The proposed traceability approach for tracing requirements to code presented in this
thesis (see Part II) builds upon a Version Control System (VCS). To provide a basis for
concepts used by the traceability approach, this section first explains basic version control
concepts. This includes an introduction to version control in general (see Section 2.2.1),
as well as introducing the general concepts of a VCS as an implementation of version
control in particular (see Section 2.2.2). After that, Subversion (SVN) is introduced and
explained in detail (see Section 2.2.3), because the proposed traceability approach builds
upon this popular VCS. Finally, further modern VCSs are presented (see Section 2.2.4).
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2.2.1 Version Control

A sub-discipline of software configuration management is called version control, revision
control, software versioning, or just versioning [Murta et al. (2010)]. Version control is
the act of "tracking the changes of a particular artifact over time" [Leon (2004)]. In the
context of code implementation, version control refers to the management of different
versions of code of a project [Pilato et al. (2008)]. A version of a project depicts a
snapshot of all code artifacts at a given point of time.

Another term related to a version is a revision. A revision is defined as "a revised edition
or form of something" [Simpson & Weiner (1989)]. In the field of version control, the term
revision refers to a version that was created by changing another version. In this thesis,
the term revision is often used as a synonym of the term version. Since every version is
created by changing another version (with the first version being created by changing
a virtual, empty version), the use of the term revision for any version is reasonable. In
general, versioning has the following advantages [Pilato et al. (2008)]:

• All versions of the code are archieved so that any previous version can be re-created,
if necessary.

• Destructive changes in the code, e.g. the accidental deletion of parts of the content of
a code artifact, can be revised by recovering an older version, even if the destructive
changes are already stored in the repository.

• The changes implemented by a specific person at a specific point of time can be
reproduced. This requires very fine-grained versioning.

• The existence of more than one development branch can be managed. Different
development branches allow that parts of a software are developed at the same time.
For example, while a new major release is already under development, changes to
the current release, e.g. bug fixes, can still be introduced and published, which is
quite common for larger projects.

2.2.1.1 Development Histories & Revision Graphs

In its simplest form, a development project has only one major development branch and
all developers only work with the latest version. Thus, any newly created version is the
successor of the latest version. A version has always only one direct successor, with the
exception that the latest version has no successor yet. Version histories can be graphically
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represented as revision graphs2. In a revision graph, the versions are represented as nodes
and the "is-successor-of" relations between the versions are represented as edges. To
ensure a clear layout, the nodes are usually ordered by their creation date. In case of
linear development, where the latest version is always created from one predecessor, a
revision graph shows a linear series of nodes (see upper part of Figure 2.2).

Figure 2.2: Revision graphs for linear development without branches (top) and with
multiple development branches (bottom)

As soon as multiple development branches are introduced, a version can have more than
one successor. A branch starting at a specific version, which belongs to another branch, is
also called to branch, diverge or fork [Pilato et al. (2008)] from the other branch at that
version. The changes done to two development branches can be recombined, which is
called merging [Pilato et al. (2008)]. If branches are used, the revision graph becomes a
directed acyclic graph, as shown in the lower part of Figure 2.2. In such a revision graph,
a version has an additional successor for each additional branch which forked from it.
A version originating from a merge of two or more branches has as many predecessors
as branches were merged. Because the "is-successor-of" relation is consistent with the
chronological order of versions, no directed cycles can exist. Therefore, such a revision
graph with branches is represented as a directed acyclic graph.

2.2.1.2 Repositories

One of the most essential elements for any software development project is a repository
[Pilato et al. (2008)]. Although today the term is often used in the context of version

2Revision Graph – http://www.eclipse.org/subversive/documentation/teamSupport/revision_

graph.php [retrieved: August, 2013]
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control, a repository in general is just a place where the versions of the code of a project are
stored [Pilato et al. (2008)]. Even if no version control is used, a repository is commonly
used to allow collaboration between developers [Mason (2006)]. A repository has the
following functions [Mason (2006)]:

• It archieves all versions. If the data on a local machine of a developer is lost, then
s/he can retrieve the code from the repository. Thus, the repository should be
protected against hardware failure and other causes of data loss.

• The repository is the main source for collaboration between developers as changes
to an artifact are shared with other developers by updating this artifact in the
repository.

• New developers joining the project or established developers working at a new
machine can obtain the latest versions of the code from the repository.

• Depending on the type of the repository, it can offer additional services like versioning.
This is especially the case for repositories managed by VCSs.

The general concepts of a VCS used to manage repositories are introduced below.

2.2.2 Version Control Systems

A VCS is a tool for software development that controls the different versions of the code.
Non-code artifacts can also be versioned by a VCS. However, since code artifacts are the
most common artifacts found in VCS repositories [Mason (2006)], the remainder of this
thesis will only use the terms code artifacts or simply code. Whenever one of these terms
is used, it actually refers to any possible artifact to be versioned. The basic mechanism of
each VCS is that it features one or more repositories storing the revisions. A working
copy is a copy of the code the user has on his/her local machine and to which s/he applies
the changes [Mason (2006), Pilato et al. (2008)]. The basic operations of a VCS consist
mainly of transferring data from the repository to the working copy, or vice versa. The
user can retrieve revisions from the repository and upload the changes in his/her working
copy to the repository, thus creating a new revision.

Versioning does not necessarily mean that a VCS is used. However, VCSs are used by most
of modern development projects [Pilato et al. (2008)]. Some operations, e.g., recombining
two development branches, are very complicated without a VCS, because they require
the calculation and recombination of changes which appeared since the divergence of the
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branches. In case of linear development without using branches, copying all artifacts of
the project to a new location to create a version would be a possibility to accomplish
versioning without using any tool support. However, this is cumbersome and the reason
why versioning without the tool support of a VCS is very uncommon [Mason (2006)].

Every VCS supports a basic set of commands. The creation of a new revision in the
repository, by uploading the changes in the working copy, is usually called commit or check-
in [Pilato et al. (2008)]. A developer commits his/her work after s/he has implemented
and, in the best case, tested a piece of code. Most VCSs allow to reproduce every single
revision that was committed to the repository. However, some systems allow the deletion
of older revisions that are no longer needed. The operation that retrieves a certain revision
from the repository and writes the data to the working copy is usually called check-out or
fetch [Pilato et al. (2008)]. Most newer VCSs allow the divergence to different branches
and the merging of those. Some of the systems maintain a special main branch called
trunk, while others treat each branch equally. For one branch, the latest version is
usually called the head revision of this branch [Pilato et al. (2008)]. Most of the time,
developers are only interested in checking out the head revision of a branch to retrieve the
latest changes, which is called updating [Pilato et al. (2008)]. Most VCSs also provide
utilities for comparing two revisions, thus identifying the changes made between these two
revisions. Another feature that is provided by most VCSs is tagging [Pilato et al. (2008)].
A revision can be tagged with a specific name so that it can be found later among the
large number of revisions. Therefore, tags are used to mark special revisions, e.g. the
ones that were used to build a release.

The most basic approach of creating a new revision in a repository would be to transmit
all artifacts to the repository and save a complete copy of all artifacts. However, this is
not practicable, because it would require a large amount of disk space and the commit
would take a very long time if the bandwidth of the connection to the repository is limited.
Therefore, VCSs use mechanisms to reduce the amount of required disk space and network
traffic. A common possibility to reduce disk space and network traffic, which is used
by the majority of VCSs, is only to store the differences between two revisions, which
is called diff or delta [Pilato et al. (2008)]. These deltas contain detailed information
about what was changed in the artifacts of the revisions. If the versioned artifacts are
text-based, such as code artifacts, the deltas are very fine-grained so that even a single
character changed in a line of code can be identified [Pilato et al. (2008)].

To ensure data integrity, most VCSs provide guarantees known from database management
systems. For example, most VCSs guarantee parts of the ACID (atomicity, consistency,
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isolation, durability) properties for any transaction, similar to commits. Either a commit
is executed thoroughly and successfully, or the commit is aborted and no change is made
to the repository (atomicity). Two people cannot commit concurrently, or if they can, the
system guarantees sequentially consistent semantics (isolation). Some VCSs also protect
against other threats to data integrity, e.g. malicious changing of data.

2.2.3 Subversion

An example of a VCS is Subversion (SVN). Historically, it is one of the most important
and popular VCSs [Pilato et al. (2008)] and the UNICASE Trace Client presented in this
thesis (see Chapter 5) is based upon it. SVN, now Apache Subversion3, was initially
created as an open source project at CollabNet in the year 2000. The explicit goal of SVN
was to overcome some limitations and design flaws of previous VCSs [Collins et al. (2004)],
especially the Concurrent Versions System (CVS)4 [Grune (1986)].

According to [Pilato et al. (2008)], a SVN repository consists of one directory tree starting
at a specified root. Different projects are usually stored in the same SVN repository by
creating sub-folders in the repository’s root folder. Instead of versioning single artifacts,
a revision in SVN may represent an entire directory tree of artifacts. SVN uses global
revision numbers to identify revisions, starting from zero and increasing the revision
number by one for each successive commit [Mason (2006), Pilato et al. (2008)]. Only
artifacts that are actually changed in a commit receive the new revision number of the
commit, others retain their old ones. The revision number of a directory is calculated as
the highest revision number of its contents. The reason why unchanged artifacts retain
their old revision number after a commit is because a commit does not include an update
in SVN. Thus, these artifacts could have been changed by other people in the meantime.
If their revision number was updated, their content should be updated as well to maintain
consistency. Since no update is performed during commit, they are not updated. Once
an update to the latest revision is done, all artifacts’ revisions are updated to the latest
revision number even if they have not changed. This is done to flag these artifacts as
up-to-date. Since trees have a revision, too, it is very easy to describe a specific revision
of the whole project by stating the revision number of the root directory of the project.
In contrast, in CVS a revision of a project can only be specified by stating a certain date
and then searching the revision for each artifact which was the latest at that date. The
improved support for versioning of projects is one of SVN’s key advantages over CVS.
3Apache Software Foundation. Apache Subversion – http://subversion.apache.org

[retrieved: August, 2013]
4Free Software Foundation, Inc. Concurrent Versions System – http://savannah.nongnu.org/

projects/cvs [retrieved: August, 2013]
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SVN stores meta data for each folder in a hidden sub-folder called .svn. This folder
also contains the base version of each artifact resulted from the last check-out or update
operation. While this increases disk usage, it allows the execution of some commands
locally instead of having to query the remote repository, which would introduce network
delay. For example, the changes in the working copy can be calculated locally. Also, local
changes can be reverted without querying the repository. SVN also uses deltas to save
disk space. Furthermore, it is a client-server based VCS, which means the working copy
is linked to exactly one remote repository.

SVN does not offer the concept of branches or tags directly. However, it is able to support
them by using the copy command [Pilato et al. (2008)]. This command makes a so-called
cheap copy of an artifact or directory in the repository. A cheap copy starts out as just a
symbolic link to the copied directory. Once changes are done to the copy, these changes
are stored as deltas only. Thus, although the cheap copy is shown as an own directory with
all the contents of the source directory in the repository, it does not take up the disk space
of a complete copy (at least not in the repository, only in the working copy). A branch can
be created by cheap-copying the whole project folder to another location. Developers who
want to work on the branch check out the destination where the artifacts were copied to
and introduce their changes on this destination. Since the resulting copy is not explicitly
marked as branch, a default directory structure is recommended to identify branches and
tags. The recommended project structure in an SVN repository is to have a directory for
each project in the root directory of the repository. In this directory, the folders trunk,
branches, and tags are created [Pilato et al. (2008)]. The trunk folder contains the main
development branch of the project. A branch is created by cheap-copying the content
of the trunk folder into a new subfolder in the branches directory, having the branch’s
desired name. A tag is created the same way, but copied into the tags folder. Thus, a tag
in SVN is basically the same as a branch, however, nobody should commit to this tag,
which would make it a branch. Access control mechanisms can be used to prevent users
from committing to the tags directory. To check out a tag or branch without having to
check out the whole directory, which would also take additional disk space, SVN provides
the switch command to replace the working copy with the specified directory or revision
[Pilato et al. (2008)].

2.2.4 Further Modern Version Control Systems

VCSs can be divided into two categories: centralized and decentralized. If one central
repository is stored on a globally accessible server, the VCS is called centralized. For
example, SVN is a centralized VCS. However, if each developer has also a local repository
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on his/her machine, the VCS is called decentralized, distributed or peer-to-peer. If the
VCS is distributed, data is exchanged by pulling or pushing data from one repository
to another [Loeliger (2012)]. Popular examples for decentralized VCSs include Git and
Mercurial. In addition, platforms exist that allow the free hosting of projects, e.g., GitHub5

supporting Git, and Google Code6 supporting SVN and Mercurial. Usually, VCSs directly
integrate themselves into integrated development environments via external plug-ins. For
example, for Eclipse various plug-ins exist that integrate centralized and decentralized
VCSs: Subversive7 and Subclipse8 for SVN, EGit9 for Git and MercurialEclipse10 for
Mercurial.

In this thesis, decentralized VCSs are not further explored, because the presented trace-
ability approach is based on SVN. In particular, the UNICASE Trace Client integrates
with the Subversive plug-in for Eclipse to provide its functionality to link work items to
revisions. The decision for SVN and Subversive is elaborated in detail in Section 5.3.3.

5GitHub – http://www.Github.com/ [retrieved: August, 2013]
6Google Code – http://code.google.com/ [retrieved: August, 2013]
7Subversive – http://www.eclipse.org/subversive/ [retrieved: August, 2013]
8Subclipse – http://subclipse.tigris.org/ [retrieved: August, 2013]
9EGit – http://www.eclipse.org/egit/ [retrieved: August, 2013]
10MercurialEclipse – https://bitbucket.org/mercurialeclipse/ [retrieved: August, 2013]
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Chapter 3
State of the Art

Knowledge of what is does not open the door directly to what should be.

– Albert Einstein, 1879-1955 –

In this chapter, we provide an overview about the state of the art of traceability between
requirements, work items, and code. We conducted a systematic literature review divided
in two separate searches. The first search identified existing research creating and using
links between requirements and work items (see Section 3.2.1) as well as between work
items and code (see Section 3.2.2). The second search looked for existing research creating
and using links between requirements and code (see Section 3.2.3). To reduce the number
of necessary searches, we combined the search for existing research on work items into
only one search by using different search terms, either focussing on requirements and
work items or on work items and code. In our systematic literature review, we had the
following research questions for our two searches:

• RQ1: How are the links between requirements, work items, and code created?

• RQ2: How are the links between requirements, work items, and code used?

• RQ3: What supporting tools are used for the creation or use of links?

• RQ4: What type of empirical evidence exists for the benefits of the links?

After presenting our research method (see Section 3.1), we provide an overview about the
identified approaches (see Section 3.2). The research questions are picked up again in the
discussion (see Section 3.3) to synthesize the results of the systematic literature review.
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3.1 RESEARCH METHOD

3.1 Research Method

We used the guidelines of [Kitchenham & Charters (2007)] for our search strategies and
documentation. The aim was to identify major contributions in the three research areas
of traceability between: a) requirements and work items, b) work items and code, and c)
requirements and code. [Kitchenham & Charters (2007)] recommend that a systematic
literature review has the following characteristics:

• a defined search strategy

• a broad collection of search sources

• a defined search string, based on a list of synonyms combined by ANDs and ORs

• a strict documentation of the search

• explicit inclusion and exclusion criteria

• paper selection should be checked by two researchers

We fulfilled all these criteria, except that the paper selection was only checked by one
researcher. The review followed a structured process with an initial phase with three steps
(1 - generation of search string, 2 - identification of research, 3 - first exclusion round)
and the refinement phase with two steps (4 - second round of exclusion, 5 - consolidation
of results). The results for each step are discussed below.

3.1.1 Generation of Search Strings

Since we conducted two separate searches, we generated two different search strings. The
first search string covers research for creating and using links between requirements and
work items as well as between work items and code. The second search string covers
research for creating and using links between requirements and code.

Search for Work Item Literature

The final search string for work item literature had three terms (see in Table 3.1). The
first term is divided in two terms, each focusing either on requirements or code. We used
term 1a or 1b to find research for creating and using links between requirements and
work items or between work items and code, respectively. The second term ensures that
traceability links between the artifacts are considered. Furthermore, we explicitly searched
for papers from the Mining Software Repositories11 (MSR) community by using the terms
"mining" and "msr" in term 2, because in this research area data mining techniques are
11Mining Software Repositories – http://www.msrconf.org/ [retrieved: August, 2013]
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often applied to create or use links between work items and code. The third term is a
collection of various synonyms for work item. All three terms had to appear in the title,
abstract or keywords of the papers.

Table 3.1: Derived Search Terms for Work Items
Search Terms Restriction

Term 1a requirement OR "system specification"
Title, Abstract,
Keywords

Term 1b
code OR repository OR revision OR "version control system"
OR vcs

Title, Abstract,
Keywords

AND

Term 2 trace OR traceability OR link OR relation OR mining OR msr
Title, Abstract,
Keywords

AND

Term 3
"work item" OR "action item" OR "bug report" OR "change
request" OR ticket OR "project management"

Title, Abstract,
Keywords

Search for Requirements and Code Literature

The final search string for requirements and code literature had four terms (see in Table
3.2). The first term addresses requirements, while the second term addresses code. The
third term ensures that traceability links between the artifacts are considered. However,
it differs from term 2 in Table 3.1 because "mining" and "msr" are only used by MSR in
conjunction with work items, which is not the focus of this search. The fourth term is
a collection of various synonyms to create traceability links. To reduce the number of
similar terms required in the search string, we used wild cards (*), e.g., creat* to cover
terms like creation, create, creating etc. All terms had to appear in the title, the abstract
or keywords of the papers.

Table 3.2: Derived Search Terms for Requirements and Code
Search Terms Restriction

Term 1 requirement OR "system specification"
Title, Abstract,
Keywords

AND

Term 2
code OR repository OR revision OR "version control system"
OR vcs

Title, Abstract,
Keywords

AND

Term 3 trace OR traceability OR link OR relation
Title, Abstract,
Keywords

AND

Term 4
creat* OR infer* OR deriv* OR deduc* OR automat* OR algorithm
OR retriev*

Title, Abstract,
Keywords
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3.1.2 Identification of Research

We want to create a comprehensive picture of the state of the art of traceability between
requirements, work items, and code using the two search strings. Therefore, we used
different kinds of sources. We used the domain-specific publication sources IEEE12,
ACM13, and SpringerLink14. To also ensure coverage of research in other less dominant
sources, we included the source ScienceDirect15 covering several other domain-specific
sources. These four sources also include research from the MSR community. All searches
were executed in February 2013. The first search for work item literature retrieved 439
hits, while the second search for requirements and code literature retrieved 968 hits.

3.1.3 First Exclusion Round

Following the recommendation of [Kitchenham & Charters (2007)], we did an initial
selection based on publication title and abstract, which lead to 41 results for the first
search and 65 results for the second search. Papers were only included if they explicitly
concerned either requirements, work items, or code in the title or abstract. The removing
of duplicate results lead to 32 for the first search and 59 results for the second search. As
a total of 91 publications are too many for a thorough analysis, we conducted a second
exclusion round.

3.1.4 Second Exclusion Round

In the second exclusion round, we looked at the abstract, introduction and conclusion
sections of the papers. We consciously included the conclusion section, as the quality of
abstracts was in some cases not very high. Papers were excluded if they did not explicitly
concerned either requirements, work items, or code. Papers were also excluded if they had
a different focus than or were out of the context of traceability in software engineering
or development. For example, some papers considered traceability in the development
of health care products. In the end, for work item literature we identified a total of 17
papers as relevant (requirements – work items = 5; work items – code = 12), while for
the requirements and code literature we identified a total of 34 papers as relevant.

3.1.5 Consolidation of Results

The resulting 51 papers were analyzed regarding the four research questions on the
creation and use of links between the artifacts, available tool support and evaluation.
12IEEE Xplore – http://ieeexplore.ieee.org/Xplore/home.jsp [retrieved: August, 2013]
13ACM – http://dl.acm.org/ [retrieved: August, 2013]
14SpringerLink – http://www.springerlink.com/ [retrieved: August, 2013]
15ScienceDirect – http://www.sciencedirect.com [retrieved: August, 2013]
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In the following Section 3.2, we provide an overview about all approaches creating and
using traceability links between requirements, work items, and code identified by our
systematic literature review. Figure 3.1 summarizes the identified number of papers.

Requirements and Code34

Work Items and Code

12

Requirements and Work Items

5

Figure 3.1: Number of Approaches for Creating and Using Traceability Links between
Requirements, Work Items, and Code

The overall findings of our systematic literature review are discussed in Section 3.3. Based
on the findings of our systematic literature review, we derived requirements for a new
traceability approach (see Section 3.4) overcoming the limitations of previous approaches.

3.2 Overview of Approaches

Section 3.2.1 discusses the five approaches concerning traceability between requirements
and work items. Section 3.2.2 presents the twelve approaches for traceability between
work items and code, while Section 3.2.3 provides an overview about the 34 approaches
for tracing requirements and code. For all approaches, first the creation of links with
available tool support and evaluation is discussed, followed by the usage of links with
available tool support and evaluation. At the end of each Section 3.2.1, 3.2.2, and 3.2.3,
the main findings are summarized.

In the following sections, we report about the quality of the created traceability links
using two measures, precision and recall, which are two standard metrics used in IR
[Frakes & Baeze-Yates (1992)]. Precision is the fraction of retrieved instances that are
relevant, while recall is the fraction of relevant instances that are retrieved. The metrics
are computed as follows:

Precision =
RelevantLinks ∩RetrievedLinks

RetrievedLinks
(3.1)

Recall =
RelevantLinks ∩RetrievedLinks

RelevantLinks
(3.2)
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3.2.1 Requirements and Work Items

Links between requirements and other artifacts are extensively studied in the requirements
engineering community, e.g., in [Cleland-Huang et al. (2012c)]. Work items represent
explicit knowledge about the processes executed in the project. This knowledge is gathered,
updated and detailed continuously over time. Only very few approaches consider links
between requirements and work items, which are discussed in the following.

Creation of Links between Requirements and Work Items (RQ1, RQ3, RQ4)

In Table 3.3, the approaches for creating links between requirements and work items are
summarized. Link creation, tool support, and empirical evidence are emphasized.

Table 3.3: Approaches for Creating Links Between Requirements and Work Items
Approach Link Creation Tool Support Empirical Evidence
[Helming et al. (2009a)]
[Helming et al. (2009b)]
[Helming et al. (2009c)]
[Helming et al. (2010)]

Manual UNICASE Academic

[Yadla et al. (2005)] Automatic RETRO Industrial

All approaches use textual requirements as development artifacts. We found four different
approaches by [Helming et al. (2009a), Helming et al. (2009b), Helming et al. (2009c),
Helming et al. (2010)]. However, in all those approaches traceability links between re-
quirements and work items are only created manually. They implemented their approach
in the model-based CASE-tool UNICASE, which is an application based on the Eclipse
framework and is developed in an open-source project16. UNICASE is capable of storing
all kinds of system and project knowledge and the traceability links between them in a
single environment. However, the authors did not provide empirical evidence that focuses
explicitly on the creation of links, only on the usage of links, which is discussed afterwards.

The approach by [Yadla et al. (2005)] supports the automatic linking of requirements to
bug reports as a special kind of work items, using Information Retrieval (IR) techniques.
It is implemented in the tool RETRO (REquirements TRacing On-target). Basically, the
approach uses IR techniques to search for similarities of texts in requirements and in bug
reports. The search is not automatically applied as soon as a bug report is created, but a
team member can manually initiate the approach at any time during the project. They
evaluated their approach based on two datasets for a NASA scientific instrument. They
found that for the first dataset, precision (fraction of retrieved instances that are relevant)
16UNICASE open-source project – http://www.unicase.org/ [retrieved: August, 2013]
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is 69% and recall (fraction of relevant instances that are retrieved) is 85%, while for the
second dataset precision is 99% and recall is 70%. Results in this range are very good
and comparable to manual linkage [Maeder & Gotel (2012)].

Usages of Links between Requirements and Work Items (RQ2, RQ3, RQ4)

Table 3.4 provides an overview about the usage of links between requirements and work
items. Links from work items are typically used to support comprehension of the work
item. For example, a developer navigates from a work item describing an implementation
task to the corresponding requirements to gather detailed information about his/her work.

Table 3.4: Approaches for Using Links Between Requirements and Work Items
Approach Usage Tool Support Empirical Evidence

[Helming et al. (2009a)]
[Helming et al. (2009b)]

Direct Navigation,
Comprehension Support,
Project Reporting

UNICASE Academic

Up-to-date Requirements
Specification

[Helming et al. (2009c)] Change Awareness UNICASE Academic

[Helming et al. (2010)]
Automatic Assignment of
Work Items to Developers

UNICASE Academic

[Helming et al. (2009a), Helming et al. (2009b)] describe a case study analyzing data
of the development project of UNICASE. They conducted two analyses regarding the
direct navigation as well as comprehension support for project managers. In the first
analysis, they observed that as long as work items and requirements stand in meaningful
relations to each other (e.g. a work item is referencing a requirement in its textual
description), users navigate between them, even when there are no explicit links between
them. In the second analysis, they studied the navigation distance between the work
items and requirements, which is the number of clicks required to get from one artifact to
another. They confirmed the expected benefit of links, namely that developers achieved
significantly lower navigation distances for linked artifacts than for non-linked artifacts.
The aggregation of links can provide further comprehension support. In another analysis,
[Helming et al. (2009a)] studied project reporting. UNICASE provides an overview of
the requirements and the number of associated open work items over time. A preliminary
analysis of a few requirements showed that this overview realistically visualizes the
team status, similar to burn-down charts in SCRUM. The authors also studied whether
requirements linked to work items have a higher level of actuality, meaning that developers
keep the requirements related to their work items more up-to-date. They showed that the
number of changes for linked artifacts is significantly higher than for non-linked artifacts.
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[Helming et al. (2009c)] studied change awareness, which supports team members in
keeping up with changes that were made to development artifacts by others. Change
notification strategies are used to inform the team members about changes relevant to
them. The notification strategy of Helming et al. is based on the traceability links between
requirements and work items. For example, a change of a functional requirement by one
user would lead to the notification of another user assigned to a work item related to
this functional requirement. Based on data of a big student project with a real customer
they showed that this traceability-based notification strategy results in a low number of
notifications with a high rating of user satisfaction.

According to the [PMBOK], one of the most important tasks of a project manager in a
software development project is the initial assignment of work items to the responsible
developers. In case that the software development project already comprises requirements
linked to work items, new work items can be automatically assigned to developers who
have worked on similar requirements in the past. [Helming et al. (2010)] applied existing
machine learning techniques as well as a novel approach relying on the links to assign
work items to developers. The latter approach can clearly only be applied if links are
available. They evaluated all approaches on three large UNICASE projects. The novel
approach outperformed the existing approaches whenever it was applicable.

Summing up, traceability links between requirements and work items are mainly created
manually, which is shown by the four approaches of Helming et al. This is reasonable, as
a project manager needs to plan the realization of the requirements and manually link
the corresponding requirements to the work items. However, [Yadla et al. (2005)] have
shown that links between requirements and bug reports (a special type of work item)
can be created automatically. Traceability links between requirements and work items
are typically used to support comprehension of work items, e.g., by directly navigating
between the artifacts [Helming et al. (2009a), Helming et al. (2009b)], or by providing
change awareness [Helming et al. (2009c)].

3.2.2 Work Items and Code

Many commercial software development projects as well as open source projects (e.g.,
Eclipse, Apache, etc.) use issue trackers17, together with a centralized VCS like Subversion,
or the increasingly popular Git. A major focus of the MSR community is to apply data
mining techniques to analyze the vast amounts of data stored in issue tracking systems
and VCSs. Our systematic literature review also found the paper by [Hassan (2008)],

17Skerrett, I. The Eclipse Foundation: The Eclipse Community Survey 2013 – http://eclipse.org/

org/press-release/20130612_eclipsesurvey2013.php [retrieved: August, 2013]
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which presents a brief history of MSR and discusses the achievements so far. The specific
approaches to create links between work items and code are discussed in the following.

Creation of Links between Work Items and Code (RQ1, RQ3, RQ4)

Table 3.5 provides an overview of approaches and tools creating links, sorted according to
their year of publication. Although [Nguyen et al. (2010)] do not present an approach for
creating links, we identified it as relevant and included it in the discussion of this section
because they present empirical evidence for creating links between work items and code.

Table 3.5: Approaches for Creating Links Between Work Items and Code
Approach Link Creation Tool Support Empirical Evidence

[Bachmann et al. (2010)] (Semi-) Automatic Linkster Open Source

[Sureka et al. (2011)] Automatic Experimental tool Open Source

[Bangcharoensap et al. (2012)] Automatic - Open Source

[Davies et al. (2012)] Automatic - Open Source

[Nguyen et al. (2010)] - - Open Source

[Bachmann et al. (2010)] present an approach that helps to automatically link revisions
and work items after development. They focus on bug reports, which are a special kind
of work items. They implemented a tool called Linkster that provides multiple queryable,
browseable, time-series views of VCS history and bug reports to support the (semi-)
automatic creation of links between revisions and work items after development. They
engaged an expert core developer from the Apache open source project to classify six full
weeks of the Apache VCS history using Linkster. They used this dataset consisting of 493
revisions and 103 bug reports to analyze the connections between the bug reports and
revision data. The authors had four findings. First, not all fixed bugs are stored in issue
trackers. Some are discussed (only) on the mailing list. Second, to fix a bug in an Apache
release, multiple similar revisions by different developers are needed. Third, developers
sometimes fix bugs that are only reported in other projects’ issue trackers, rather than in
their own, and vice versa. And fourth, even if the authors had linked all revisions to bug
reports, the cause of changing the code would still remain unspecified in some cases.

[Sureka et al. (2011)] present a novel method to automatically recover traceability links
between standalone bug reports and code artifacts within a VCS. In contrast to existing
research (e.g. [Bachmann et al. (2010)]) that primarily used regular expressions, their
approach uses formal mathematical foundation (primarily based on probability theory).
They performed a series of experiments on an evaluation dataset from the open source
projects of Apache and WikiMedia consisting of 8470 bug reports and 10159 revisions. The
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reported precision results (manual validation by visually inspecting each case carefully)
with precision between 88%-95% show the feasibility of their approach.

[Bangcharoensap et al. (2012)] propose a method to identify code artifacts that may
contain a bug described in an initial bug report description. This study uses three mining
approaches: text mining, code mining, and change history mining. In a first step, the text
mining approach measures the textual similarities between the description of a bug report
and all code artifacts to identify a ranked list of code artifacts. In a second step, the code
mining and change history mining approaches are used to further reduce the potential list
of erroneous code artifacts. They evaluated their approach using Eclipse platform project
data consisting of 2950 bug reports and 48764 code artifacts, achieving an accuracy of
about 53%. During their study, the authors had several interesting findings. First, the
study revealed that bug reports that contained a short description and many specific
words were easier to use to locate the buggy code artifacts. Second, they identified that
developers do not always change a single code artifact to fix a bug. According to their
analysis, for 43% of the bug reports, developers changed two or more code artifacts to fix
the bugs, which is in line with the findings made by [Bachmann et al. (2010)].

[Davies et al. (2012)] propose an approach that measures the similarity between the text
used in the bug report and the text of other already fixed bug reports together with the
fixed code. For their evaluation, the authors combine their approach with approaches
only measuring the textual similarity between bug report descriptions and code artifacts
(e.g. [Bangcharoensap et al. (2012)]). They evaluated this combined approach using 372
bug reports and 14375 methods in the code from four open source projects (ArgoUML,
JabRef, jEdit, muCommander). The authors showed that their own approach is not very
effective when used alone, but showed statistical significant improvements when used
in combination with approaches measuring the textual similarity between bug report
descriptions and code artifacts. However, the authors did not report about precision and
recall of the created links.

[Nguyen et al. (2010)] did not suggest a new approach, but studied linkage bias and
tagging bias. Linkage bias either means that a bug report is linked to the wrong code or
no code at all. Tagging bias means that not all bug reports in an issue-tracking system
actually represent bugs. Instead, developers often use issue-tracking systems to track
other issues such as tasks, decisions, and enhancements. Therefore, using such data might
lead to incorrect bug counts for the different parts of a software system. The authors
used a near-ideal dataset from the IBM Jazz project consisting of 13367 fixed bug reports
and examined the aforementioned biases. They found that even in this ideal setting, both
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types of biases do exist in the dataset. They argue that linkage bias is more likely due to
the software development process rather than being a side effect of the linking heuristics.
The authors also found that, even under tagging bias, existing bug prediction models will
still perform almost as if there is no bias. Their results suggest that these biases may
exist in software data as properties of the software process itself and that these biases
should not stop researchers from using such datasets.

Usages of Links between Work Items and Code (RQ2, RQ3, RQ4)

Links between work items and code can be used in various ways (see Table 3.6).

Table 3.6: Approaches for Using Links Between Work Items and Code

Approach Usage Tool Support
Empirical
Evidence

[Maeder & Egyed (2011)] Direct Navigation Experimental tool Academic

[Kadgi & Poshyvanyk (2009)]
Automatic Assignment of
Work Items to Developers

- Open source

[Canfora & Cerulo (2005)]
[Canfora & Cerulo (2006)]

Impact Analysis
Jimpa
(Eclipse plug-in)

Open Source

[Gethers et al. (2011a)]
[Gethers et al. (2012)]

Experimental tool Open Source

[Maeder & Egyed (2011)] conducted a controlled experiment with 52 subjects (students
of computer science) performing 315 maintenance tasks on two third-party development
projects: half of the tasks with and the other half without traceability navigation. They
concluded that the mere existence of traceability links between work items and code
has a profound effect on the performance (21% faster) and quality (60% better) of the
implementation tasks. Furthermore, the existence of links fundamentally changed the way
subjects navigated through the code. They found that the subjects relied predominantly
on traceability navigation when it was available, displacing the manual search navigation
in most cases. The subjects adopted traceability immediately as their major way of
navigation within the code, right from the first performed task, even without training.

The other approaches revealed in our search do not presume links. Instead, they create
temporary links between work items and code for specific usage. The empirical evidence
focuses on the correctness of the approaches and not on the usage of the links.

[Kadgi & Poshyvanyk (2009)] present an approach that combines two existing techniques
to recommend developers that are best suited to help with an incoming change request,
which is a special type of work item. Using IR techniques they identify code artifacts that
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are similar to the change request and then choose developers who contributed substantial
changes to these code artifacts. They evaluated their approach on data consisting of
change requests and code from the open source project KOffice. However, their evaluation
is very preliminary, as only one change request was analyzed.

[Canfora & Cerulo (2005), Canfora & Cerulo (2006)] propose an approach for deriving a
set of code artifacts impacted by a proposed textual change request. This is helpful for
developers to identify code to work on, as well for project managers to estimate the effort
of a change request. Their approach uses data stored in a VCS and an issue tracking
system and it is implemented in the tool "Jimpa", which is a plug-in for Eclipse. The
method exploits IR techniques to identify code artifact revisions impacted by past change
requests similar to the actual one. They showed by a case study consisting of four open
source projects (kcalc, kpdf, kspread, Firefox) that the set of code artifacts returned by
their approach is correct with a precision no less than 30% in some cases and reaches a
maximum of 78%, while recall ranges from 67%-98%.

In a follow-up work to Kadgi & Poshyvanyk and Canfora & Cerulo, [Gethers et al. (2011a),
Gethers et al. (2012)] also present an approach to perform impact analysis from a given
change request to code artifacts. The approach uses a combination of IR, dynamic analysis
and mining software repositories techniques. In addition, this approach uses contextual
information such as the execution traces of the code and an initial code artifact that
was verified for change, meaning that this code artifact needs to be definitely considered.
To validate their approach, the authors conducted an empirical evaluation on four open
source projects (ArgoUML, JabRef, jEdit, muCommander). Their results indicate that
their approach shows statistically significant improvements over the approaches which only
rely on the textual description of the change requests. In certain cases, an improvement
of 17% in precision and 41% in recall was gained.

Summing up, traceability links between work items and code are created mainly auto-
matically (cf. [Sureka et al. (2011), Bangcharoensap et al. (2012), Davies et al. (2012)]).
The study by [Maeder & Egyed (2011)] provides empirical evidence for the usefulness of us-
ing links between work items and code. Furthermore, research by [Canfora & Cerulo (2005),
Canfora & Cerulo (2006)] and [Gethers et al. (2011a), Gethers et al. (2012)] shows that
these links are useful during impact analysis.

3.2.3 Requirements and Code

In the following section, an overview about approaches creating and using traceability
links between requirements and code is provided.
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Creation of Links between Requirements and Code (RQ1, RQ3, RQ4)

The manual creation of traceability links between requirements and code is error-prone,
time consuming, and complex [Spanoudakis & Zisman (2004)]. Therefore, research fo-
cuses mainly on (semi-) automatic and automatic approaches.

In Table 3.7, the approaches for creating links between requirements and code are
summarized. The type of link creation, tool support, and empirical evidence with precision
and recall are emphasized. To provide a chronological overview, the approaches are ordered
and discussed according to their year of publication and their type of automation. The
large majority of 89% (26 of 29) of approaches use automatic techniques, while only two
approaches use manual techniques and one approach uses a (semi-) automatic technique.
Furthermore, the 26 automatic approaches are discussed according to the used technique,
e.g., IR, execution trace, machine learning, transformation or inference.

Information Retrieval:
[Antoniol et al. (2000a)] [Antoniol et al. (2000b)] [Antoniol et al. (2000c)]
[Antoniol et al. (2002)] [Marcus & Maletic (2003)] [De Lucia et al. (2004)]

[De Lucia et al. (2005)] [Marcus et al. (2005)] [Lin et al. (2006)]
[De Lucia et al. (2007)] [De Lucia et al. (2008)] [Eaddy et al. (2008)]

[Gethers et al. (2011b)] [Ali et al. (2011a)] [Ali et al. (2011b)]
[Bavota et al. (2012)] [Ali et al. (2013)] [Niu et al. (2012)]

[Charrada et al. (2012)]

19

Inference: [Nagano et al. (2012)]

1

Transformation:
[Kalnis et al. (2010)]

1

Machine Learning:
[Grechanik et al. (2007)]

1

Execution Trace:
[Egyed & Gruenbacher (2002)]

[Egyed (2003)]
[Egyed et al. (2007)]

[Eisenberg & De Volder (2005)]

4

Figure 3.2: Approaches for Automatically Creating Traceability Links between Require-
ments and Code
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From the 26 approaches for automatic creation of traceability links between requirements
and code, a majority of 73% (19 of 26) uses IR techniques, while only about 15% (4 of
26) use execution trace analysis (see Figure 3.2). The remaining approaches either use
machine learning, transformation, or inference.

Table 3.7: Approaches for Creating Links Between Requirements and Code

Approach Link Creation Tool Support
Empirical
Evidence

Pr. Re.

Automatic Approaches Using Information Retrieval
[Antoniol et al. (2000a)]
[Antoniol et al. (2000b)]
[Antoniol et al. (2000c)]

Automatic (PM) Experimental tool Industrial
54 -
58%

60 -
64%

[Antoniol et al. (2002)] Automatic (VSM) Experimental tool Industrial 49% 50%
[Marcus & Maletic (2003)]
[Marcus et al. (2005)]

Automatic (LSI) - Industrial 54% 93.5%

[De Lucia et al. (2004)]
[De Lucia et al. (2005)]
[De Lucia et al. (2007)]
[De Lucia et al. (2008)]

Automatic (LSI)
ADAMS,
ADAMS Re-Trace

Academic 29% 52%

[Lin et al. (2006)] Automatic (PM) Poirot
Academic,
Industrial

- -

[Eaddy et al. (2008)] Automatic (IR) CERBERUS Open Source 75% 73%

[Gethers et al. (2011b)]
Automatic (PM,
VSM, JS, RTM)

Experimental tool Academic 40% -

[Ali et al. (2011a)]
[Ali et al. (2011b)]
[Ali et al. (2013)]

Automatic (IR) Experimental tool Open Source
25 -
54%

12 -
16%

[Bavota et al. (2012)] Automatic (VSM) TraceME - - -

[Niu et al. (2012)] Automatic (IR) RETRO/Poirot Open Source 26% 91%

[Charrada et al. (2012)] Automatic (IR) Experimental tool Open Source 79% -
Automatic Approaches Using Execution Trace Analysis

[Egyed & Gruenbacher (2002)]
Automatic
(execution trace)

Trace Analyzer Industrial - -

[Egyed (2003)]
[Egyed et al. (2007)]

Automatic
(execution trace)

STRADA Open Source - -

[Eisenberg & De Volder (2005)]
Automatic
(execution trace)

Experimental tool Open Source - -

Automatic Approaches Using Other Techniques

[Grechanik et al. (2007)]
Automatic
(machine learning)

LeanArt Open source
34 -
87%

-

[Kalnis et al. (2010)]
Automatic
(transformation)

Experimental tool - - -

[Nagano et al. (2012)]
Automatic
(inference)

- Industrial 20% 70%

Manual and (Semi-) Automatic Approaches
[Ratanotayanon et al. (2009)] Manual Zelda Open Source 90% 73%

[Omoronyia et al. (2009)]
(Semi-) automatic
(capture)

Experimental tool - - -

[Egyed et al. (2010)] Manual Experimental tool Open Source - -
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Automatic Approaches Using Information Retrieval

[Antoniol et al. (2000a), Antoniol et al. (2000b), Antoniol et al. (2000c)] presented an
approach for recovering traceability between high level artifacts (e.g. requirements)
and low level artifacts (e.g. code). An assumption of their work is that developers
use "meaningful names for code items" [Antoniol et al. (2000b)], e.g., classes, methods,
functions, variables and types. They believe that the application-domain knowledge
that developers process when writing the code is often captured in these program items.
Therefore, the analysis of these program items can help to link high-level concepts
expressed in free text, such as requirements, with low-level concepts, such as code, and
vice versa. Under the above assumption, the knowledge of existing traceability links can
be exploited. The method can be fully automated and human intervention is only required
to confirm or reject automatically recovered traceability links. The approach uses as IR
method a Probabilistic Model (PM) consisting of a set of complex mapping equations
based on stochastic statistic models. Basically, the approach is automatically looking
for textual similarity between textual representation of the requirements and the code.
The approach was evaluated using data from an industrial hotel management system
consisting of 16 functional requirements and 95 classes containing 20 KLOC (KLOC =
thousand lines of code). The recovery process focused on the 60 classes implementing the
user interface of the software system. The peak performance of the approach achieved a
precision between 54%-58% and a recall between 60%-64%.

In a further work, [Antoniol et al. (2002)] extended their approach from above by applying
a Vector Space-Based Model (VSM) and compared the results to the previously presented
approach using a PM. They conducted two case studies. While the first case study
focused on tracing C++ code to manual pages, the second case study focused to trace
Java code to functional requirements. The second case study was again using the data
from the industrial hotel management system. The new approach using VSM achieved a
precision of 49% and a recall of 50%, achieving slightly lower results than the approach
using PM from their previous evaluation.

[Marcus & Maletic (2003), Marcus et al. (2005)] applied Latent Semantic Indexing (LSI)
to the data of [Antoniol et al. (2000a), Antoniol et al. (2000b), Antoniol et al. (2000c)],
again using precision and recall for evaluation. They improved the results by Antoniol et
al., achieving a prevision of 54% and a recall of 93.5%.

[De Lucia et al. (2004), De Lucia et al. (2007)] extended a tool called ADAMS (AD-
vanded Artefact Management System) with LSI. The authors call this extension ADAMS
Re-Trace and it is presented in detail in [De Lucia et al. (2005), De Lucia et al. (2008)].
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ADAMS is an artifact-based process support system for the management of human
resources, projects, and software artifacts. In particular, ADAMS provides support for
traceability and event-based notification of changes, thus increasing the context awareness
during the evolution of software artifacts. In the basic version of ADAMS, the software
engineer is in charge of manually maintaining traceability links between software artifacts.
The extended tool ADAMS Re-Trace highlights the candidate links not identified yet by
the software engineer and the links already identified, but missed by the tool, probably
due to inconsistencies in the usage of domain terms in the traced software artifacts. The
authors conducted a case study using data from a software project developed by under-
graduate students consisting of 30 use cases and 37 code artifacts [De Lucia et al. (2004)].
ADAMS is not only able to store use cases and code artifacts, but also other artifacts,
e.g., interaction diagrams and test cases. De Lucia et al. achieved better results when
tracing interaction diagrams onto test cases (a precision of 33% and a recall of 95%) and
worse results when tracing use cases onto code artifacts (a precision of 29% and a recall
of 52%), probably due to the higher abstraction of the two types of artifacts.

[Lin et al. (2006)] present Poirot, a web-based tool supporting traceability of distributed
heterogeneous software artifacts. A PM is used as IR technique to dynamically generate
traces between various types of software artifacts, including requirements and code. These
artifacts can be stored in distributed third party case tools such as IBM DOORS, IBM
Rational Rose, and VCSs. Poirot has been deployed at DePaul University’s Center
for Requirements Engineering and has been tested on both experimental projects and
on distributed UML diagrams and requirements obtained from two Siemens projects.
However, they did not use precision and recall to evaluate the quality of the created links.

[Eaddy et al. (2008)] present a technique called Prune Dependency Analysis (PDA) that
can be combined with existing techniques to improve the accuracy of concern location.
The concern location problem is to identify the code within a program related to the
features, requirements, or other concerns of the program. They developed CERBERUS
(after the three-headed dog of Greek mythology), a hybrid technique for concern location
that combines IR, execution tracing, and PDA. The authors evaluated CERBERUS to
trace the 360 requirements of RHINO to its code consisting of 32134 lines of code written
in Java. RHINO is an open-source implementation of JavaScript written entirely in Java.
In their evaluation, they achieved a precision of 75% and a recall of 73%.

[Gethers et al. (2011b)] recognized that several IR methods have been proposed, but
"there is no single method that sensibly outperforms the others". Therefore, they
have exploited this empirical finding and proposed an integrated approach to combine
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IR techniques that have been statistically shown to produce dissimilar results. More
specifically, their approach combines the following methods: PM, VSM, Jensen and
Shannon (JS) model. Moreover, they introduce a new technique called Relational Topic
Model (RTM), which has not been used in the context of traceability link recovery before.
A RTM is a hierarchical probabilistic model of links and document attributes. RTM
defines a comprehensive method for modeling interconnected networks of documents.
Generating a RTM model consist of two steps: 1) modeling the documents in a corpus, and
2) modeling the links between pairs of documents. The authors conducted an empirical
case study on six software systems developed by undergraduate students in an academic
environment consisting of 294 use cases and 477 classes. The authors achieved an average
precision of about 40%. However, they did not provide concrete values for recall. The
results indicate that the integrated method outperforms stand-alone IR methods as well as
any other combination of IR methods with a statistically significant margin, for example,
improvements in precision exceed 30% in certain cases.

Ali et al. made several contributions. In a first work, [Ali et al. (2011a)] proposed an
approach to reduce the number of false positive links retrieved by other IR approaches.
Their approach is called Coparvo and it assumes that information extracted from different
entities (e.g., class names, comments, class variables or methods names) are different
sources of information. Each information source may act as an expert recommending
traceability links. The authors applied Coparvo to reduce false positive links of a standard
VSM with "term frequency / inverted document frequency" (TF/IDF) weighting scheme.
They used three open source software systems: Pooka, SIP communicator, and iTrust.
Their findings show that, in general, Coparvo improves accuracy of VSMs and it also
reduces between 39% to 83% efforts required to manually remove false positive links.

In their second work, [Ali et al. (2011b)] reduced the amount of links to be validated
by humans, reducing the human effort. They analyze the VCS change logs and use IR
techniques to measure the textual similarity of the commit message of each revision
in order to link them to a matching requirement. Afterwards, direct links are inferred
between requirements and the code artifacts that are contained in the revision. For
evaluation, the authors again used the open source software systems Pooka and SIP. Their
approach achieved precision between 25-54% and recall between 12-16%.

The approach presented in the third work of [Ali et al. (2013)] is called Trustrace, which
is an approach to improve the precision and recall of baseline traceability links. Trustrace
consists of several parts, and two parts are called "Histrace-commits" and "Histrace-
bugs". "Histrace-commits" uses VCS commit messages to create traceability links between
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requirements and code. An example for how "Histrace-commits" works is given now. Using
an IR technique, a requirement stating "it should have spam filter option" can be traced to
the VCS commit message "adding prelim support for spam filters" from a revision in the
VCS. Then, all the code artifacts contained in this revision, i.e., SpamSearchTerm.java
and SpamFilter.java, are recovered. Finally, direct traceability links between the code
artifacts SpamSearchTerm.java and SpamFilter.java and the requirement "it should
have spam filter option" are created. An example for how "Histrace-bugs" works is
as follows. Again using an IR technique, a bug report "bug434" can be traced to
the requirement "r11" because of the textual similarity of their description. The bug
report can contain the number of one or more revisions that fix the bug, e.g., r2evision
"4912". Revision "4912" contains the changed code artifacts FirstWizardPage.java

and DictAccountRegistrationWizard.java. Thus, "Histrace-bugs could link "r11" to
FirstWizardPage.java and DictAccountRegistrationWizard.java.

However, both "Histrace-commits" and "Histrace-bugs" only analyze the textual similarity
between the commit messages of a revision of the description of a bug report to link
requirements and code. Both parts do not use explicit traceability links between require-
ments and commit messages or bug reports, respectively. If there is no textual similarity
between these textual descriptions, no links can be created. Furthermore, the authors
did not provide the algorithm that infers direct traceability links between requirements
and code. The approach requires a human to validate the retrieved traceability links
afterwards. The authors also did not explain how their approach can maintain previously
created traceability links between requirements and code. [Ali et al. (2011b)] applied
Trustrace on four open source projects (jEdit, Pooka, Rhino, and SIP) and compared the
created links with those recovered using standard IR techniques, e.g. VSM, in terms of
precision and recall. They showed that Trustrace improves with statistical significance
the precision and recall values of the links, in some cases up to 66% improvements for
precision and recall. This result shows that work items linked between requirements and
code are good candidates to infer direct traceability links between requirements and code.

[Bavota et al. (2012)] built upon work by [De Lucia et al. (2005), De Lucia et al. (2008)].
The authors developed TraceME, a follow-up tool to ADAMS Re-Trace, which is developed
as an Eclipse plug-in. Unlike ADAMS Re-Trace, it does not require to be integrated in
the ADAMS system. Another difference of TraceME to ADAMS Re-Trace is that it uses
VSM instead of LSI as IR technique. For example, TraceME can automatically create
traceability links between use case and source code. Using VSM, potential traceability links
are recovered. However, all recovered traceability links have to be checked individually
for their validity, either marking a link as "false positive" or "correct". Furthermore,
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the tool does not provide traceability maintenance, which means once the artifacts are
changed, the traceability link recovery and the manual check for validity of each link has
to be performed again. Furthermore, the authors did not provide an empirical evaluation
for their tool.

[Niu et al. (2012)] aim to enhance IR-based candidate link generation by examining the
"cluster hypothesis". The cluster hypothesis states that relevant documents tend to be
more similar to each other than to irrelevant documents. When adapted to traceability,
the hypothesis suggests that correct and incorrect links can be grouped in high-quality
and low-quality clusters, respectively. Thus, the performance of IR-based tracing can be
enhanced by selecting candidate links from high-quality clusters. The authors evaluated
their approach on three different open source datasets from different application domains
and one industrial case study. The results show that their approach outperforms a baseline
IR method using a pruning strategy with a precision of 26% and a recall of 91%.

[Charrada et al. (2012)] propose an approach for automatically detecting outdated re-
quirements based on changes in the code. Their approach first identifies the changes
in the code that are likely to affect requirements. They build upon observations that
requirements-related changes in source code differ from refactorings and bug-fixes. Then
it extracts a set of keywords describing the changes. The keywords for tracing are only
extracted from the changed elements and their context, such as call hierarchy and con-
taining code elements. These keywords are then traced to the requirements specification,
using an existing automated traceability tool, to identify affected requirements. They
evaluated their approach in a case study analyzing two consecutive code versions and
were able to detect 12 requirements-related changes out of 14 with a precision of 79%.
However, the authors did not provide values for recall.

Automatic Approaches Using Execution Trace Analysis

[Egyed & Gruenbacher (2002)] presented an approach that relies on the existence of usage
scenarios that are linked to requirements. They developed a system called Trace Analyzer
that captures which code artifacts are used when a usage scenario is executed. The
executed code artifacts are then linked to the usage scenario that itself is linked to one or
more requirements. They applied their approach on a video-on-demand system consisting
of 10 requirements, 21 Java code artifacts and 10 scenarios. However, they did not conduct
an extensive evaluation as they did not use metrics such as precision and recall to measure
the quality of the created links. They simply showed that their approach can create links
between requirements and code based on the executed usage scenarios.
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[Egyed (2003), Egyed et al. (2007)] present a tool for Scenario-based TRAce Detection
and Analysis (STRADA). Given a set of features and knowledge on how to test those
features, the tool silently observes what code is being executed during testing. The tool
then concludes that the code executed during the testing of a feature must implement
that feature. The authors showed the capabilities of STRADA in half a dozen industrial
and open-source software systems, including ArgoUML, GanttProject, Siemens Route
Planner, and a video-on-demand system. However, the approach and its tool support
has two shortcomings. First, test scenarios typically relate to more than one feature. As
a result, there is an uncertainty about which section of the executed code belongs to
what feature. Second, test scenarios often execute code that does not belong to one of its
features. This is typically the case with code that is co-located (i.e. executed together)
but otherwise independent. As a result, there is uncertainty about what requirements
belong to any given method.

[Eisenberg & De Volder (2005)] introduced an automated technique for feature location,
which means mapping features to relevant code. The technique is based on execution
trace analysis and requires a list of test cases before execution. A developer has to
manually create links between the test cases and features. During execution, the code
artifacts and methods executed per test case are linked to the feature that the test
is linked to. Thus, the presented approach is similar to the STRADA approach of
[Egyed (2003), Egyed et al. (2007)], but it requires test cases instead of scenarios. The
approach also uses heuristics to rank methods in relation to what extent a method is
relevant to a feature. The authors evaluated their approach using three open source
systems and they could show that their approach did create reasonable traceability links.
However, the created links were not evaluated regarding precision and recall.

Automatic Approaches Using Other Techniques

[Grechanik et al. (2007)] present an approach automating parts of the process of recover-
ing traceability links between code written in Java programming language and elements
of use case diagrams. Their approach is called LEarning and ANAlyzing Requirements
Traceability (LeanArt). It combines program analysis, run-time monitoring, and ma-
chine learning to automatically propagate a small set of initial traceability links between
variables and types in the code (program entities) and elements of use case diagrams
to additional unlinked program entities thereby recovering new traceability links. The
input to LeanArt is code and use case diagrams. The core idea of LeanArt is that after
developers initially link a few program entities to elements of the use case diagrams, the
system knows enough from these links that it can recover the traceability links for much
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of the rest of the code automatically. The authors evaluated their approach on a variety
of open-source software projects consisting of code written in Java and use case diagrams.
The results suggest that the approach is effective. The results show that after users link
approximately 6% of the program entities within the code to elements from use case
diagrams, LeanArt correctly recovers with a precision of 87% traceability links in the
best case, 64% precision on average, and 34% precision in the worst case, taking less than
thirty minutes to analyze an application with over 20000 lines of code. However, the
authors do not provide values for recall.

[Kalnis et al. (2010)] present an approach that uses requirements specified in the Require-
ments Specification Language (RSL) as a basis for automatic transformation to code. The
approach uses a variety of models comprising an analysis model, a platform independent
model and a platform specific model. All transformations are then implemented in the
Model Transformation Language (MOLA). Models are generated according to a particular
architecture style, including the selection of appropriate design patterns for these models.
During transformation, traceability links are created between the transformed artifacts,
achieving requirements-to-code traceability at the end of the transformation. However,
the authors did not use precision and recall during evaluation to measure the quality of
the created traceability links.

[Nagano et al. (2012)] propose another method using a PM to create traceability links
between code and a functional specification. However, the authors do not explicitly state
the type of these functional specifications, e.g. functional requirements or use cases. The
approach creates for each code artifact and each function in the functional specification a
keyword index. The system then uses a PM to predict which function belongs to which
code. The approach was evaluated using real product data from a non-disclosed enterprise
project. The used code was written in Java and consisted of 347 code artifacts and 482
classes, while the functional specification consisted of 22 functions. The approach achieved
a maximum of precision of 20% and a maximum of recall of 70%.

Manual and (Semi-) Automatic Approaches

[Ratanotayanon et al. (2009)] tackle the problem of traceability across artifacts, including
textual documents (e.g. representing requirements) and code, and maintaining traceability
links through successive changes. The authors developed Zelda, a prototype for manually
associating arbitrary lines in text-based artifacts with a feature map. A feature map
can be used to manually link together textual sections from many types of artifacts,
e.g., textual requirements and code, and can also contain annotations and notes. The
approach also provides a mechanism to automatically maintain the links over successive
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changes in the code by analyzing the difference information provided by a VCS for two
specific versions. After the links are created in a specific version of a text file, the change
information obtained from the VCS is used by the approach for retrieving the correct
location of the links in the future versions of the text file. To evaluate the effectiveness
of their approach in maintaining traceability links over successive changes, the authors
performed an empirical study using jEdit, an open source text editor written in Java (260
KLOC). In this study, they traced the evolution of five feature maps over 25 releases of
jEdit, which includes over 2000 incremental revisions. The feature maps were created
based on changes made in commit transactions. The resulting links in the feature maps
joined both code and other supporting text files, such as documentation and configuration
files. The result shows that, after 25 releases, the approach achieved an average precision
of 90% and average recall of 73% for each feature map, assuming that the initial links
had 100% precision and recall.

[Omoronyia et al. (2009)] present an approach achieving (semi-) automatic traceability
between use case and code during development. Their approach is based on tracing the
operations carried out by a developer called navigation trails. Traceability links between
use cases and code are created by monitoring events initiated by a developer working in
the context of a use case on one or more code artifacts. This means that a developer
has to select the use case before starting development, while the approach monitors
which code artifacts are changed during development. This can create a large amount of
traceability links between use case and code, including lots of incorrect links. Therefore,
the approach comprises an elaborate model with rankings of navigation trails to derive
the most relevant links. Each interaction with the code is weighted, either with 0.01
(create), 0.001 (view), or 0.0001 * x (update; x = absolute update delta [magnitude of
the update]). The approach is also able to identify which developer is involved in the
realization of a specific use case. The contribution of Omoronyia et al. shows that tracking
changes displays some advantages over other approaches, e.g. using IR techniques. For
example, relating a developer to code and requirements is almost impossible with the
other approaches, but very easy if changes/operations are tracked. However, the authors
did not evaluate their approach in practice. Furthermore, their approach is not able to
deal with changing requirements, e.g., when a use case is changed, the already created
traceability links to code artifacts can become irrelevant.

[Egyed et al. (2010)] present an empirical study on the effort and quality of manually
created traceability links between requirements and code. They conducted two exploratory
experiments with 100 subjects who recovered trace links for two open source software
systems in a controlled environment. In the first experiment, subjects recovered trace
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links between the two systems consisting of requirements and code artifacts. In the second
experiment, trace links were established between requirements and individual methods of
the code artifacts. Their study yields interesting observations: traceability links can be
created surprisingly fast and within minutes even for larger classes. The quality of the
created links, while good, does not improve with higher trace effort. Furthermore, it is not
harder though slightly more expensive to manually create links for larger, more complex
classes. However, this approach still increases development time and development costs
as it requires extensive manual effort, even when the effort can be considered adequate
for certain amounts of requirements and code artifacts.

Summing up, the majority (19 of 26) (see Figure 3.2) of automatic approaches create
requirements-to-code traceability using various IR techniques. IR techniques analyze
the textual similarity between the descriptions of the requirements and the code. Other
approaches use execution trace analysis [Egyed & Gruenbacher (2002), Egyed (2003),
Egyed et al. (2007), Eisenberg & De Volder (2005)], or inference [Nagano et al. (2012)],
or machine learning [Grechanik et al. (2007)], or transformation [Kalnis et al. (2010)].
Only a subset of approaches provide precision and recall as empirical evidence.

Usages of Links between Requirements and Code (RQ2, RQ3, RQ4)

According to [Maeder & Egyed (2011)], "despite its growing popularity, there is little
published evaluation about the use of traceability links between requirements and code".
Table 3.8 shows approaches that use explicit traceability links between requirements and
code.

Table 3.8: Approaches for Using Links Between Requirements and Code

Approach Usage Tool Support
Empirical
Evidence

[Maeder & Egyed (2011)] Direct Navigation Experimental tool Academic

[Ghabi & Egyed (2012)]
Identifying missing /
incorrect links

Experimental tool Open Source

[Maeder & Egyed (2011)] showed in a controlled experiment that the subjects (students
from computer science) using traceability links between requirements and code for direct
navigation were able to perform their implementation tasks on average 21% faster with
60% better quality.

[Ghabi & Egyed (2012)] introduce a novel approach for validating requirements-to-code
traces through calling relationships within the code. As input, the approach requires an
executable software system, the corresponding requirements, and the requirements-to-code
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traces that need validating. Because this approach already requires a list of requirements-
to-code traces to work with and only checks them to identify missing/incorrect links,
we did not mention it above alongside the other approaches for creating links. As
output, the approach identifies likely incorrect or missing traces by investigating calling
relationships within the code (i.e., method or function). "For example, a given method
is likely implementing a given requirement if it is called or calls other methods that
also implement the given requirement" [Ghabi & Egyed (2012)]. Thus, the approach
"computes a trace expectation for a given method by investigating the known traceability
of neighboring methods (callers and callees)" [Ghabi & Egyed (2012)]. The approach
reports an error "if this expectation differs from the known trace of the given method"
[Ghabi & Egyed (2012)]. The empirical evaluation of four case study systems (Chess,
GanttProject, jHotDraw, Video On Demand) covering a total of 150 KLOC and 59
requirements demonstrates that the approach detects most errors with 85-95% precision
and 82-96% recall and is able to handle traces of varying levels of correctness and
completeness.

Our systematic literature review identified also papers that list several other uses of
requirements-to-code traceability, but did not provide an evaluation. Table 3.9 provides
an overview about other possible uses.

Table 3.9: Papers Naming Uses of Links Between Requirements and Code
Approach Usage

[Winkler & von Pilgrim (2010)] Requirements Coverage, Justification

[Dahlstedt & Perrson (2005)] Re-Use of Requirements & Implementation

[Winkler & von Pilgrim (2010)] state that traceability links between requirements and
code are often used to analyze the requirements coverage in the code, e.g. for the customer
to ensure that every requirement is realized in the code. Furthermore, those links are
used for the justification that all written code is based on a specification.

[Dahlstedt & Perrson (2005)] name further uses, e.g. requirements and their implemen-
tation can be re-used: "When variants of software products are developed, part of the
requirements may be the same since products are often built on the same basic function-
ality." Therefore, the links from a to-be re-used requirement to its implementation can be
used to also re-use the code. However, the re-used code needs to be adapted to the new
environment.

After we now have presented many approaches either using traceability links between
requirements and work items, or work items and code, or requirements and code, we want
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to highlight the research of [Bouillon et al. (2013)]. The authors conducted an extensive
survey among 56 practitioners actively using traceability to understand which traceability
usage scenarios are most relevant in practice. They identified a list of 29 regularly cited
usage scenarios. The scenarios range from requirements engineering and management,
project management, compliance demonstration, design and implementation, testing to
maintenance and evolution.

The listed usage scenarios include all three types of traceability links (requirements –
work items, work items – code, and requirements – code) that we discussed in detail in
this chapter. Seven scenarios use requirements-to-code traceability links: 1) analyzing
requirements coverage in source code, 2) justification of all written code based on spec-
ification for certification purposes, 3) navigate between specification, design, test, and
code via traces, 4) understanding of software artifacts, e.g. project familiarization of
development team members, 5) defect location within the source code, 6) change impact
analysis and 7) reuse of specification and code components. Six scenarios use traceability
links between requirements and work items: 1) tracking requirement/task implementation
state, 2) release planning 3) progress assessment on project or subproject level, 4) task
assignment, 5) notification of stakeholders about changes, 6) adjusting project and release
plan. And two scenarios use traceability links between work items and code: 1) progress
assessment on project or subproject level, and 2) change effort estimation.

Thus, 15 of the 29 scenarios identified by [Bouillon et al. (2013)] use traceability links
between requirements, work items, and code in practice. The remaining usage scenarios
cover other relations, e.g. requirements-to-test traceability links.

Summing up, traceability links between requirements and code are used for direct nav-
igation [Maeder & Egyed (2011)] and empirical evidence exist that this type of usage
has a positive effect when performing implementation tasks. Other uses are identifying
incorrect/missing requirements-to-code traces [Ghabi & Egyed (2012)], identifying the
requirements coverage in the code [Winkler & von Pilgrim (2010)], or reusing the imple-
mentation of requirements [Dahlstedt & Perrson (2005)]. However, empirical evidence for
these usages were not provided by the approaches. The survey by [Bouillon et al. (2013)]
listed seven usage scenarios using requirements-to-code traces in practice.

3.3 Discussion

Based on the results of our systematic literature review, we made several interesting
findings that are discussed in the following. These findings are discussed with respect to
the four research questions defined at the beginning of this chapter.
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RQ1: How are the links between requirements, work items, and code created?

IR techniques are mainly used to create links between requirements and code, analyzing
their textual similarity. However, other researchers have shown that IR techniques
can also be used to create traceability links between requirements and work items (e.g.
[Yadla et al. (2005)]), or to create traceability links between work items and code (e.g.
[Ali et al. (2013)]).

From the identified approaches using IR techniques for creating links between requirements
and code (see Table 3.7), the best approach was presented by [Eaddy et al. (2008)] with
75% precision and 73% recall. Some approaches may have achieved higher individual
values for precision or for recall alone, but no approach scored higher in precision and
recall than the one of [Eaddy et al. (2008)]. While these results are already good, this
approach did not achieve 80% or higher for precision and recall. However, results on this
scale mean that an approach delivers high quality links, which is comparable to manually
performed linkage [Maeder & Gotel (2012)]. Thus, there is still room for an approach
achieving 80% or higher for precision and recall.

Once requirements, work items, and code are linked together, one can exploit these
links to create direct traceability links between requirements and code. [Ali et al. (2013)]
provided a first step in this direction. However, [Ali et al. (2013)] did not provide the
algorithm that infers direct traceability links between requirements and code based on
requirements. Furthermore, [Ali et al. (2013)] also did not explain how their approach
can maintain previously created traceability links between requirements and code, as
those links might become obsolete by work on other work items. Therefore, an algorithm
needs to discard links that are not relevant anymore.

RQ2: How are the links between requirements, work items, and code used?

The usage of direct navigation was named for all three types of traceability relations
between requirements, work items, and code. Another main usage is comprehension
support: while traceability links between requirements and work items are used, e.g. to
better understand the realization of requirements described in work items, traceability
links between requirements and code are used, e.g. to understand how a requirement
is implemented in the code. Other usages are specific to the kind of relation between
requirements, work items, and code. For example, links between requirements and code
can be used for identifying the requirements coverage in the code or the justification that all
written code is based on a requirements specification. Furthermore, the implementation of
requirements can be re-used, however, only with adjustments to the respective environment.
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Only few studies, e.g. [Maeder & Egyed (2011)], study the usage of traceability links and
provide empirical evidence of its usefulness.

RQ3: What supporting tools are used for the creation or use of links?

Often a supporting tool is provided. The majority of papers use experimental tools to
demonstrate the effectiveness and usefulness of their approaches. No approach extends an
established CASE tool or Commercial Off-The-Shelf (COTS) tool to create or use links.
However, proprietary tools such as COTS tools sometimes do not support individual
extensions. Thus, experimental tools are required and developed.

RQ4: What type of empirical evidence exists for the benefits of the links?

Figure 3.3 provides an overview about the 51 approaches and their used type of evaluation.

No Evaluation

16

Open Source

13

Industry

10

Academic

12

Figure 3.3: Types of Evaluation used by Approaches

To provide empirical evidence for their approaches, authors used data from open source
projects (13 of 51), projects conducted with students in an academic environment (12 of
51) as well as projects with data from industry projects (10 of 51). However, 31% of the
approaches (16 of 51) do not provide an evaluation to either demonstrate the quality of
the created traceability links or the benefits of using traceability links.

3.4 Conclusion & Requirements for New Approach

This chapter discussed the results of a systematic literature review on the creation and
use of traceability links between requirements and work items, work items and code,
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and requirements and code. While work items are often captured in practice, only few
approaches link them explicitly with requirements. First empirical evidence exists that
links between requirements and work items and work items and code are beneficial. The
explicit linking and exploration of traceability links between requirements, work items,
and code has not been combined and explored so far in a single approach.

Based on the results of our systematic literature review and the findings discussed in the
previous Section 3.3, we identified the following seven requirements for a new approach.
These requirements correlate with and substantiate the grand challenges in the field of
traceability [Cleland-Huang et al. (2006)] listed in Section 2.1.1.4:

• Requirement 1: Create traceability links (semi-) automatically during
development. Only few approaches create traceability links (semi-) automatically
during development, e.g. [Omoronyia et al. (2009)]. [Cleland-Huang et al. (2012b)]
state that "in practice, traceability links are often created towards the end of the
project specifically for approval or certification purposes". This practice can result
in inaccurate and incomplete traces, and also means that traceability links are
not available to support early development efforts during development. Further-
more, project stakeholders often fail to create and maintain correct traceability
links due to time pressure demands, lack of knowledge, and coordination issues
[Gotel & Finkelstein (1994)]. Therefore, project stakeholders need to be supported
by approaches automatically creating these links during development (C-P2, C-P4,
C-GC1, J-P1).

• Requirement 2: Exploitation of the links to and from work items. For
example, from the links between requirements and work items, as well as between
work items and code, one can infer direct links between requirements and code
(C-GC3). [Ali et al. (2013)] made a first step in this direction to link requirements,
work items, and code. However, they did not use explicit traceability links, as they
had to apply an IR method first to create initial links between requirements and
work items, which does not work without textual similarity.

• Requirement 3: Discarding obsolete traceability links. Furthermore, such
an approach also needs to consider that over time, traceability links might be made
obsolete by work on other artifacts. Thus, an approach for inferring traceability
links needs to discard links not relevant anymore (C-GC3). This situation is not
yet supported by the approach of [Ali et al. (2013)].
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• Requirement 4: Integrate traceability in developers work environment
and development process. To achieve full traceability between requirements,
work items, and code, all these artifacts need to be ideally stored in a single inte-
grated environment (C-GC2) [Herzig & Zeller (2009)]. Furthermore, the automatic
traceability link creation needs to be integrated with the development activities that
the developers perform during development so that the traceability link creation
seamlessly integrates within the development process, reducing the extra work
required of the developers.

• Requirement 5: High-quality traceability links. The created traceability
links need to be of high quality, meaning 80% or higher for precision and recall.
Results on this scale mean that an approach delivers high quality links, which is
comparable to manually performed linkage (C-P1, C-GC1) [Maeder & Gotel (2012)].

• Requirement 6: Easy to apply and use in practice. We think that an ap-
proach would be easily applicable and usable in practice if it considered the following
three points. First, it should only work with the available and existing artifacts
of the development process and not require the creation of new artifacts. Second,
it should only slightly change the usual development processes to automatically
capture traceability links to minimize the additional work required by the developers
(J-P1). Third, it should be rated as easy to use in practice by the developers actually
using it in a development project.

• Requirement 7: Achieve higher quality of traceability links than other
existing approaches. A comparison to existing approaches is required in terms
of the quality of the created traceability links (L-P1), providing further empirical
evidence that the presented approach provides more accurate results than existing
approaches. This means that existing approaches need to be applied to the same
data as the new traceability approach to compare the quality (i.e. precision and
recall) of the created traceability links.

In the following Parts II and III, we present a new traceability approach and tool support
as well as two empirical evaluations that fulfill these requirements, respectively. The
fulfillment of these requirements is discussed in detail at the end of each chapter. An
overall summary of the requirements is discussed in Section 8.1.
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Chapter 4
Traceability Approach

All truths are easy to understand once they are discovered;
the point is to discover them.

– Galileo Galilei, 1564-1642 –

This chapter presents a new traceability approach integrating artifacts from requirements
engineering, project management, and code implementation. The traceability approach
is implemented in the tool UNICASE Trace Client, which is presented in Chapter 5.
Together with the evaluation of the traceability approach and its tool support regarding
its feasibility and practicability (see Chapter 6), as well as a comparison to other existing
approaches (see Chapter 7), it fulfills the requirements described in Section 3.4.

The traceability approach consists of three parts. The first part (see Section 4.1) introduces
a Traceability Information Model (TIM) defining all artifacts and the traceability links
between them. The second part (see Section 4.2) defines three traceability link creation
processes for the (semi-) automatic creation of traceability links between all artifacts
during development. The third part (see Section 4.3) presents an approach for inferring
traceability links between requirements and code using interlinked work items. A summary
of how all three parts work together is provided in Section 4.4.

Section 4.5 describes a fictional example project to highlight the benefits of the presented
traceability approach. Section 4.6 presents a catalogue of information needs and how
they are satisfied using the artifacts and the traceability links created by the traceability
approach in the example project. Section 4.7 discusses the presented contributions, and
Section 4.8 provides a summary.
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4.1 Traceability Information Model

Traceability in a project should be documented in and driven by TIM [Maeder et al. (2009),
Cleland-Huang et al. (2012a)]. "While TIMs are currently used in only a small percentage
of industrial projects, their use is considered to be a best practice for effectively managing
and planning traceability across the project life-cycle" [Cleland-Huang et al. (2012b)].
A basic TIM consists of two types of entities: traceable artifacts and traceability links
between these artifacts [Maeder et al. (2009)]. It also defines which types of artifacts are
intended to be traced to which related artifact types and by what type of link.

In the following section, we provide background knowledge about a model unifying system
development and project management that we build upon for defining the TIM, as well
as the subset of artifacts from this model that we focus on in this thesis.

4.1.1 Building upon the MUSE model

In software development projects, two different types of models are used for abstrac-
tion: the system model and the project model [Helming et al. (2009b), Helming (2011)].
Artifacts from the system model describe "the system under construction, such as require-
ments, components or design documents" [Helming (2011)]. Artifacts from the project
model specify "the on-going project, such as work items, developers, sprints or meetings"
[Helming (2011)]. These two models have already been integrated within a model called
MUSE: Management-based Unified Software Engineering [Helming (2011)]. While MUSE
describes the system under development and its project management, it does not provide
traceability to the actual realization of the system in the code. For this work, we build
upon MUSE and extend it with a new code model to support traceability to code.

The MUSE model supports a large amount of artifacts. Therefore, we focus on a subset
of artifacts that are required for describing requirements and developers implementing
these requirements. From the system model, we focus on the artifacts of feature and
functional requirement representing requirements at different levels of detail. A feature
is an abstract description of a requirement, and it is detailed by one or more functional
requirements. From the project model, we focus on the artifacts of developers, work
items and sprints. Work items represent a unit of work and are the task descriptions
used in software development projects. They can describe, amongst others, work for new
implementations and bug fixing. As they are the basis of daily work, they are regularly
kept up-to-date [Helming et al. (2010)]. Developers are assigned to work items. Sprints
are used to organize work items in work packages and provide a time frame to realize the
work items.
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4.1.2 Defining the Code Model

The code model contains file-based and change-based representations of code. We chose to
use these representations because they are widely used in software development projects
and are independent of any programming language, both of which is supported by the
literature survey of [Kadgi et al. (2007)]. For file-based representations, we focus on code
artifacts which can either contain code or represent files that are used within the code, e.g.,
images, icons, scripts and so forth. "Considering packages is likely to be too coarse-grained,
as a package contributes to the implementation of several requirements, while considering
methods is likely to be too fine-grained as a method only participates in the implementation
of some requirement(s), rarely implements them entirely" [Ali et al. (2013)]. Moreover,
VCSs only consider entire artifacts/files, not packages or methods.

For change-based representations that are supported by a VCS, we focus on revisions.
Revisions themselves contain changed code artifacts. As described above, other represen-
tations would be possible, e.g. class or interface. However, not all programming languages
support these artifacts, reducing the applicability of the code model. Table 4.1 shows the
different representations of code and their attributes.

Table 4.1: Attributes of Representations of Code in the Code Model
Type Attributes

Code Artifact fileName, projectName, pathInProject

Revision
date, author, number, repositoryUrl, pathInRepository, commitMessage,
changedCodeArtifacts [added, modified, or deleted]

The attributes of the representations of code are predefined by the VCS itself. Below we
describe the reasons why our approach also requires these attributes. For code artifacts,
we need the attributes fileName, projectName and pathInProject to locate them in a
project. For revisions, we require the attributes date and author to tell when and by
whom the revision was created. We also need the attributes number, repositoryUrl
and pathInRepository to reliably locate the revision in a VCS. Moreover, the attribute
commitMessage is require to describe the changes contained in this new revision. This
comment is usually written by the author of the revision and is optional. The most
important information of a revision is stored in the list changedCodeArtifacts and each
artifact in this list has the same attributes as a code artifact. Moreover, each changed
code artifact in the revision has a state [added, modified, or deleted] that shows if the
code artifact was newly added, existed before and was only modified or was deleted in
the revision.
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4.1.3 Defining the Traceability Information Model

We define a TIM (see Figure 4.1) consisting of artifacts from requirements engineering
(features, functional requirements), project management (work items, sprints, developers),
and code (code artifacts, revisions) as well as the traceability links between them. An
extended UML notation was used to represent these three models with their artifacts.

Figure 4.1: Traceability Information Model integrating Requirements, Project Manage-
ment and Code

The attributes of the artifacts are predefined in the MUSE model by [Helming (2011)]
and are listed in Table 4.2. Thus, we adopt these attributes for defining the TIM.

Table 4.2: Attributes of Artifacts from System Model and Project Model
Model Type Attributes

System Model
Feature name, description, priority, functionalRequirements

Functional Requirement name, description, feature

Project Model
Sprint name, features, workItems, dueDate, status

Work Item name, description, type, assignee, dueDate, status

Developer name, assignments

All artifacts have an attribute name. A feature has a description, a priority defining
its importance, and a list of linked functionalRequirements which detail the feature. A
functional requirement also has a description, as well as a feature that is linked to it.
A sprint has a dueDate when it needs to be finished, a status indicating whether it is
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open/closed, as well as contained features that are realized in the sprint, and contained
work items. A work item describes work to be done to realize functional requirements and
has a description, a type (e.g., bug report, action item etc.), an assignee, a dueDate when
it needs to be finished, and a status indicating whether it is open/closed. A developer
has a list of assignments, i.e., a list of work items.

Now we describe the traceability links in the TIM (see Figure 4.1). A feature is realized
in a sprint and is linked to one or more functional requirements. A work item must
have one or more linked functional requirements, is contained in a sprint and assigned
to a developer. A feature can be related to a work item, e.g. during bug fixing. The
implementation described in a work item be can linked to one or more revisions. A
revision contains one or more changed code artifacts.

We presume the following situation in a development project. First, a list of features and
functional requirements exists. Second, a project manager has planned the implementation
of the features in sprints and s/he has broken down the implementation schedule of the
functional requirements into work items for the developers. Third, all work items have
already been assigned to developers. Below, we use the term requirement to refer commonly
to both: features and functional requirements.

4.2 Traceability Link Creation Processes

The traceability approach uses work items to link requirements and code during develop-
ment. As we presume that the implementation of the requirements is planned in work
items, we need to capture links between the work item and the code that is created by its
assigned developer. We identified three possibilities of developers to select a work item
that is related to their implemented code. Developers can select a work item before they
start the implementation of code (Process A), during implementation, when they have
created code but have not yet stored it in a VCS (Process B), or after implementation,
when they have created code that is already stored in a VCS (Process C). All three
processes are depicted in Figure 4.2 and explained in the following sections.

4.2.1 Process A: Select Work Item Before Implementation

In Process A (see top part in Figure 4.2), the developer first selects a work item from
his/her list of assigned work items. While working on the work item and implementing
new code or changing existing code, all requirements the developer looks at during
implementation are automatically captured. For example, s/he may look at requirements
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Figure 4.2: Traceability Link Creation Processes A, B and C

to find out what to implement. When finishing the implementation of the work item in the
code, the developer is asked to validate all captured requirements and new/changed code
artifacts, which means s/he confirms all related and removes all non-related requirements
or code artifacts. Note that the system does not capture code artifacts. It only stores code
artifacts which are new, were changed or were deleted. So, the developer selects which
code artifacts s/he wants to be contained in the new revision. The validated requirements
are linked to the work item and the selected code artifacts are stored in a new revision in
the VCS. Finally, the new revision is linked to the work item. The new/changed code
artifacts that were not selected by the developer to be contained in the new revision
remain in the project and can be selected again as soon as another revision is about to
be created.

4.2.2 Process B: Select Work Item During Implementation

In contrast to Process A, in Process B (see middle part in Figure 4.2) a developer does
not need to select a work item before implementation. Instead, s/he starts with the
implementation directly. After the implementation of code and before creating a new
revision stored in the VCS, the developer validates the new/changed code artifacts (i.e.,
selecting the new/changed code artifacts to be contained in the new revision) and selects
a work item from his/her list of assigned work items. A new revision with the selected
code artifacts is stored in the VCS and is automatically linked to the selected work item.
In this process, no requirements are captured and need to be validated. Again, the
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new/changed code artifacts that were not selected by the developer to be contained in the
new revision remain in the project and can be selected again as soon as another revision
is about to be created.

It is important to note that Processes A and B do not force developers to finish the
processes. In case the developer implemented code that s/he does not want to be linked
to a work item, s/he can omit the validation of code, which ends Processes A and B and
does not create any traceability links.

The developer can also decide to create a new revision from new/changed code artifacts
without performing either Process A or B, and thus omitting that the new revision is
linked to a work item. Revisions with no linked work items can be linked by Process C,
which is described below.

4.2.3 Process C: Link Work Item After Implementation

In contrast to Processes A and B, Process C (see lower part in Figure 4.2) occurs after
implementation and it represents an alternative way for the developer to link code to a
work item. A VCS stores the history of all previously created revisions with information
by whom and when each revision was created, as well as all changed code artifacts. In case
a developer has implemented code without selecting a work item before implementation
(see Process A) or without selecting a work item during implementation (see Process B),
s/he can manually select to link a previously created revision to a work item from his/her
assigned work items list. Similar to Process B, no requirements are captured and validated.

A developer can perform a mixture of all three processes during the course of the project.
However, one of the processes can only be applied once per revision. This means each
revision in the VCS is either created (Process A, B) or linked (Process C) by only one of
the three processes.

4.3 Inferring Traceability Links

In the TIM (see Figure 4.1 in Section 4.1), the central artifact is the work item, as it
connects the artifacts from the system model to artifacts from the code model. Using work
items, we can achieve traceability between requirements and code by inferring traceability
links. An inferred traceability link between requirements and code is derived from all
work items in between these two artifacts. For example, a requirement is realized in two
work items, and each work item creates one revision containing code artifacts. Thus,
we can infer traceability links between the requirement and the code artifacts contained
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in the revisions. The inferred traceability links are represented as dashed lines between
requirements and code artifacts in Figure 4.1 (see Section 4.1).

The approach for inferring traceability links consists of two parts: the actual inference
algorithm, and validity checks that are executed to discard traceability links between
requirements, work items, and code once they are changed, and those links might become
incorrect. Those validity checks are performed by project participants who change those
artifacts, e.g., the requirements engineer or project manager. The approach for inferring
traceability links supports the project participants with these validity checks and only
requires information of him/her that the inference algorithm cannot decide itself based
on the available information in the link structure.

In the following Section 4.3.1, an example for an initial link structure is described and
what desired inferred traceability links should be created by the inference algorithm.
After that, Section 4.3.2 discusses various change operations in a VCS that control which
inferred traceability links are created, updated, or deleted. Section 4.3.3 presents the
inference algorithm covering the various change operations, while Section 4.3.4 discusses
when and by whom the inference algorithm is executed. Finally, Section 4.3.5 describes
the validity checks that are performed to discard traceability links.

4.3.1 Initial Link Structure and Desired Inferred Traceability Links

Figure 4.3 depicts an example of how requirements, work items, and code can be linked
using entities from the TIM (see Figure 4.1).

Assume that the realization of Requirement1 is planned in WorkItem1 and WorkItem2.
The assigned developer of WorkItem1 implements two revisions with three code artifacts.
In each revision, the code artifacts are modified by change operations (add, modify,
delete) that originate from the VCS storing the revisions. These change operations affect
which inferred traceability links are created, modified, or deleted. A detailed discussion
of the change operations is provided in Section 4.3.2.

Based on the initial link structure (see upper part of Figure 4.3), direct traceability links
between requirements and code can be inferred (see lower part of Figure 4.3). Since
code artifacts Code1.java and Code2.java are added in Revision1, inferred traceability
links to Requirement1 are added, as it is connected by WorkItem1 to Revision1. In
Revision2, Code1.java needs to be modified in order to integrate with the added
Code3.java. However, a link between Code3.java is not inferred, because this code
artifact is deleted in Revision3.
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Figure 4.3: Example of Initial Link Structure and Inferred Traceability Links

As briefly mentioned above, during the execution of the inference algorithm, various
links are added, modified, or deleted. This means that the inference algorithm creates
intermediate links while it is executed, but only those links between requirements and
code that remain after the various change operations are applied and the execution of the
inference algorithm is finished. The execution of the inference algorithm is described in
detail in Section 4.3.4.
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4.3.2 Change Operations Affecting the Inference of Traceability Links

As briefly introduced and discussed in the previous Section 4.3.1, the inference algorithm
is based on various change operations for code artifacts in the VCS. Those change
operations control what links are created, updated, or deleted during inference. However,
not every change operation results in either the creation, update, or deletion of an inferred
traceability link. The change operations that can occur in a VCS are: add, modify or
delete of files and/or folders. The various change operations are depicted in Table 4.3:

Table 4.3: Change Operations in VCS
Change Operation File Folder

Add 3 3

Modify Name/Path 3 3

Modify Content 3 –

Delete 3 3

The VCS restricts that in each revision only one type of change operation can be applied
per file or folder. A file or folder can be modified multiple times until a revision is created,
but only the last state is transmitted to the VCS. For example, a file can either be added,
modified (multiple times, but only the last state is stored in revision), or deleted only
once per revision. The creation of a new revision transmits all applied change operations
to the VCS, and allows that new change operations can be applied to files or folders in
the next revision.

The change operation modify is handled by a VCS in two different ways: modify name/path
and modify content. The change operation modify content does not exist for folders, as
such a change operation would represent either add, modify name/path or delete of a
file. In the following sections, we discuss for each change operation how it either creates,
updates, or deletes an inferred traceability link between requirements and code.

4.3.2.1 Change Operation: Add

If a single code artifact is added in a revision, an inferred traceability link is created
between the code artifact and each requirement that is connected by the work items that
are linked to the revision. The same actions are performed if either multiple code artifacts
are added, or a folder with one or more code artifacts is added.

An example is provided in Table 4.4. A new artifact Code1.java is added to the folder
folderA in the project project1. Since the revision is linked to WorkItem1 and the work
item is linked to Requirement1, an inferred traceability link between Requirement1 and
Code1.java is created.
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Table 4.4: Change Operation – Add
Revision Number: 1 Author: amy Date: 1/11/13 9:41 PM
Comment: Added Code Artifact for User Interface
Linked Work Item(s) & their Requirements: WorkItem1 <–> Requirement1

Change Name Path Copied From

Add Code1.java /project1/folderA –

Inference Action(s): Add Link between Requirement 1 <–> Code1.java

4.3.2.2 Change Operation: Modify Name/Path

The change operation for modifying the name/path of a code artifact is represented in
the VCS as follows: the old code artifact is deleted, and a new code artifact with the new
name/path is added, including information where it was copied from. The copied from
field contains the old name/path of the code artifact that was deleted. The copied from
information is used to update the existing traceability links between the modified code
artifact and its linked requirements. The same actions are performed if the name/path
of an entire folder is changed: all existing links of the contained code artifacts to their
linked requirements are updated with the information from copied from. If a code artifact
is not yet linked to each requirement that it is connected to by the work item(s) linked to
its revision, new inferred traceability links are added. An example is shown in Table 4.5.
The existing link between Requirement1 and Code1.java needs to be updated so that it
now points to Code1X.java instead of Code1.java and its changed path. The old name
of the code artifact Code1.java is changed to the new name Code1X.java. Furthermore,
in the example, also the path in the project is changed from /project1/folderA to
/project1/folderB. The link between Requirement1 and Code1X.java is only added if
it is not existent. The link can exist before, if a revision was not linked to a work item
and this revision added or modified Code1.java before.

Table 4.5: Change Operation – Modify Name/Path
Revision Number: 2 Author: bob Date: 1/11/13 9:42 PM
Comment: Renamed and moved code for user interface
Linked Work Item(s) & their Requirements: WorkItem1 <–> Requirement1

Change Name Path Copied From

Delete Code1.java /project1/folderA –

Add Code1X.java /project1/folderB /project1/folderA/Code1.java

Inference Action(s): (Add link (if not existent) between Requirement1 – Code1X.java)
Change Link between Requirement1 and Code1.java:
1) Change "Name" from "Code1.java" (see "Copied From") to "Code1X.java"
2) Change "Path" from "/project/folderA" (see "Copied From") to "/project/folderB"
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4.3.2.3 Change Operation: Modify Content

If the content of a code artifact is changed, an inferred traceability link is created between
the code artifact and each requirement that is connected to the work item(s) linked to
the revision. However, those links are only created if they did not exist before. The same
actions are performed if either multiple code artifacts are modified. Table 4.6 provides an
example:

Table 4.6: Change Operation – Modify Content
Revision Number: 3 Author: carl Date: 1/11/13 9:43 PM
Comment: Changed User Interface
Linked Work Item(s) & their Requirements.: WorkItem1 <–> Requirement1

Change Name Path Copied From

Modify Code1X.java /project1/folderB –

Inference Action(s): Add link (if not existent) between Requirement1 <–> Code1X.java

Again, the link between Requirement1 and Code1X.java is only added if it is not existent.
The link can exist before, if a revision was not linked to a work item and this revision
added or modified Code1X.java before.

4.3.2.4 Change Operation: Delete

If a single code artifact is deleted in a revision, all inferred traceability links to its linked
requirements are deleted (see Table 4.7). The same actions are performed if either multiple
code artifacts are deleted, or a folder with one or more code artifacts is deleted.

Table 4.7: Change Operation – Delete
Revision Number: 4 Author: amy Date: 1/11/13 9:44 PM
Comment: Removed old User Interface
Linked Work Item(s) & their Requirements.: WorkItem1 <–> Requirement1

Change Name Path Copied From

Delete Code1X.java /project1/folderB –

Inference Action(s): Remove Link between Requirement 1 <–> Code1X.java

4.3.2.5 Refactorings: Split and Join

Code artifacts can be refactored, e.g., two or more code artifacts could be joined into
one code artifact, or one code artifact could be split up into multiple code artifacts. The
refactoring of code artifacts is realized in the VCS as multiple add, modify, and delete
change operations, including optional copied from information. If a refactoring occurs,
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the actions for inferring traceability links are executed as described above (see Sections
4.3.2.1 - 4.3.2.4) for the various change operations. Figure 4.4 depicts the various options
of how code artifacts could be refactored. To simplify the explanations, we assume that
one code artifact is split up into two code artifacts, or two code artifacts are joined into
one code artifact. The same options could be applied to multiple code artifacts.

Figure 4.4: Refactoring – Split/Join of Code Artifacts

The code artifact Code 1 can be split up into two code artifacts Code 2 and Code 3 (see
Split (a) on the left hand side of Figure 4.4). The original code artifact Code 1 is deleted,
while the other two artifacts Code 2 and Code 3 are added. Another possible option to
split up Code 1 is to modify its name/path and/or content so that it becomes Code 1’
(including optional copied from C1 information) as well as adding Code 2 (see Split (b)
on the left hand side of Figure 4.4). The original code artifact Code 1 is deleted.

Two code artifacts Code 1 and Code 2 can be joined into a new code artifact Code 3 (see
Join (a) on the right hand side of Figure 4.4). The two original code artifacts Code 1
and Code 2 are deleted, while the new code artifact Code 3 is added. Another possible
option is to modify the name/path and/or content of Code 1 so that it becomes Code 1’
(including optional copied from C1 information) and it is added, while Code 1 and Code 2
are deleted (see Join (b) on the right hand side of Figure 4.4).

4.3.3 Algorithm for Inferring Traceability Links

The inference algorithm works with a sorted list of revisions, starting with the oldest
revision with the smallest revision number. This is required because the inference
algorithm applies the various change operations in chronological order as they occurred
during the project. However, if one or more revisions are missing in the sequence of
revisions, e.g., a developer forgot to link a revision to a work item, the algorithm still
produces correct traceability links since it follows the change operations discussed in
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Section 4.3.2. Nevertheless, missing revisions reduce the quality in terms of precision and
recall of the inferred traceability links, because either not all links are inferred or obsolete
links are not removed.

The inference algorithm is presented using a pseudo code Java notation in Listing 4.1. To
improve the general understanding of the algorithm, various operations are simplified and
generalized, which require much more lines of code when implemented in Java.

Listing 4.1: Inference Algorithm
1 for ( Rev i s ion rev : r e v i s i o n s )
2 c odeAr t i f a c t s = rev . ge tCodeArt i f a c t s ( ) ;
3 workItems = rev . getAllWorkItems ( ) ;
4 requi rements = workItems . getAl lRequirements ( ) ;
5 for ( CodeArt i fact c odeAr t i f a c t : c od eAr t i f a c t s )
6 s t a t e = codeAr t i f a c t . g e tS ta t e ( ) ;
7 i f ( s t a t e == ADDED && codeAr t i f a c t . getCopiedFrom ( ) == null )
8 for ( Requirement req : requ i rements )
9 req . addLinkTo ( codeAr t i f a c t ) ;

10 i f ( s t a t e == ADDED && codeAr t i f a c t . getCopiedFrom ( ) != null )
11 copiedFrom = codeAr t i f a c t . getCopiedFrom ( ) ;
12 f i leName = copiedFrom . getFileName ( ) ;
13 projectName = copiedFrom . getProjectName ( ) ;
14 pathInPro jec t = copiedFrom . getPathInPro ject ( ) ;
15 for ( Requirement req : requ i rements )
16 i f req . isNotConnectedTo ( codeAr t i f a c t )
17 req . addLinkTo ( codeAr t i f a c t ) ;
18 req . getLinkedCodeArt i fact ( c odeAr t i f a c t )
19 . update ( f i leName , projectName , pathInPro ject ) ;
20 i f ( s t a t e == MODIFIED)
21 for ( Requirement req : requ i rements )
22 i f req . isNotConnectedTo ( codeAr t i f a c t ) ;
23 req . addLinkTo ( codeAr t i f a c t ) ;
24 i f ( s t a t e == DELETED)
25 for ( Requirement req : requ i rements )
26 req . removeLinkTo ( codeAr t i f a c t ) ;

The following list describes what each line of code does and how it relates to the change
operations described in Section 4.3.2.

• In lines 2-4, the changed code artifacts (2), the work items linked to the revision
(3) and the requirements linked to the work items (4) are stored that the inference
algorithm works with during its execution.

• After that, each code artifact (5) is handled separately. The change state of the

65



CHAPTER 4: TRACEABILITY APPROACH

code artifact in the VCS is stored (6), which is either ADD, MODIFY or DELETE.

• Lines 7-9 relate to the change operation "Add" (see Section 4.3.2.1). The copied
from information is not available (null) for this change operation.

• Lines 10-19 relate to the change operation "Modify Name/Path" (see Section 4.3.2.2).
The copied from information is available (not null) for this change operation and is
used to update the linked code artifacts.

• Lines 20-23 relate to the change operation "Modify Content" (see Section 4.3.2.3).

• Lines 24-26 relate to the change operation "Delete" (see Section 4.3.2.4).

4.3.4 Execution of Inference Algorithm

The inference algorithm is executed each time a sprint is completed in the software
development project. Thus, the inferred traceability links are created during development
and are available to be used by the project participants, e.g. for direct navigation between
requirements and code. However, the inference algorithm can be executed manually
at any time. During the execution of the inference algorithm, all inferred traceability
links between requirements and code are re-computed. Because of the re-computation,
outdated traceability links are removed automatically and do not need to be removed
individually. A new set of inferred traceability links between requirements and code is
readily available that can be used by the project participants.

We conducted a simple performance test to ensure the scalability of the inference algorithm.
We executed the performance test with 10 requirements, 100 work items and 1000 revisions
using a single core CPU with 2.6 GHz. The inference algorithm created all inferred
traceability links between requirements and code in less than 90 milliseconds. This low
execution time ensures that the re-computation does not hinder the project participants
during development in using the inferred traceability links, because they are created
almost instantly.

However, during two executions of the inference algorithm, various changes on requirements
and work items can result in incorrect inferred traceability links if the user is not guided
by the system. For example, suppose in Sprint 1 the realization of Requirement 1 is
described in Work Item 1 and both artifacts are linked together. A new Revision 1 is
created and linked to Work Item 1. At the end of Sprint 1, the inference algorithm is
executed, which would link the changed code artifacts in Revision 1 to Requirement 1
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because both are linked by Work Item 1. In the new Sprint 2, the project manager
wants to link a new Requirement 2 to Work Item 1 as well. Because Work Item 1 is
already linked to a revision, this would mean that the changed code artifacts in Revision 1
would also be linked by the inference algorithm to Requirement 2. Therefore, the project
manager is guided by the system and notified that Work Item 1 has already a linked
Revision 1. If s/he proceeds, this would mean that either the realization of Requirement 2
is already described in Work Item 1 and is already contained in Revision 1, or it would
require implementing new or changing existing code artifacts resulting in a new revision.
If the project manager would not be guided by the system, this situation could lead to
incorrect inferred traceability links. The example given above is just one example of
how various validity checks are required to ensure that no incorrect traceability links are
created unconsciously. The following Section 4.3.5 discusses those various validity checks
in more detail.

The validity checks can only be performed by a human, because a system cannot decide
automatically if the traceability links that are going to be created would be valid or not.
One might say that automated IR techniques can be used to perform those validity checks.
However, IR techniques cannot help in such situations. Consider the previous example
given above: although Requirement 2 and Work Item 1 do not have textual similarity
between each other, they need to be linked together because a developer assigned to
Work Item 1 should also consider implementing Requirement 2. If IR techniques were
used, this link would not be created automatically, later resulting in missing traceability
links between the changed code artifacts in the revisions linked to Work Item 1 and
Requirement 2. Thus, those validity checks can only performed by the project participants
who change the requirements or work items. The validity checks support the maintenance
of the traceability links between requirements, work items, and code artifacts.

4.3.5 Discarding Traceability Links

As briefly described in Section 4.3.4, the traceability links between requirements and work
items can change during the two executions of the inference algorithm. To address this
problem, we use validity checks to maintain existing traceability links and to discard
obsolete traceability links between requirements and work items. If those links would
not be discarded, incorrect traceability links between requirements and code would be
inferred again and again by the inference algorithm.

The validity checks are applied either if the content of a requirement is changed, or the
links of a requirement are changed, and are discussed in detail below.
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4.3.5.1 Changing Content

Ultimately, our goal is to discard obsolete traceability links between requirements and
code artifacts. We identified four possibilities to achieve this goal. However, three of the
possibilities would not be practicable or would require too much manual effort. In the
following paragraphs, we discuss these possibilities and provide rationale why we chose
one of the available possibilities:

1. Changing the content of a requirement deletes all inferred traceability
links to code artifacts. This possibility can be fully automated and all inferred
traceability links between a changed requirement and its linked code artifacts could
be deleted, resulting in no manual effort. However, this possibility is not practicable,
as those traceability links would be created again after the re-execution of the
inference algorithm, because the requirement is still linked to the work item that is
linked itself to one or more revisions.

2. Changing the content of a requirement deletes only a subset of inferred
traceability links to code artifacts. The project participant changing the
requirement has to decide which links are deleted. The problem with this possibility
is the same as above: those traceability links would be created again after the
re-execution of the inference algorithm, as the requirement is still linked to the work
item that is linked itself to one or more revisions. Therefore, this possibility is also
not practicable. Furthermore, the additional effort of validating the links would
re-occur every time the content of the requirement is changed.

3. Changing the content of a requirement marks some inferred traceability
links to code artifacts as "suspects". The project participant changing the
requirement has to decide which links are marked as suspects. The problem with
this possibility is that "in most non-trivial projects the number of suspect links
quickly become excessive, drastically minimizing the usefulness of the suspect link
feature" [Cleland-Huang et al. (2006)].

4. Changing the content of a requirement requires a validation of its ex-
isting links to work items. Changing the content of a requirement requires
a validation of its existing links to work items. The project participant who is
changing the content of a requirement has to validate its existing traceability links
to work items. The advantage of this possibility over all previous possibilities is that
the inference algorithm would not create the links between the requirement and

68



4.3 INFERRING TRACEABILITY LINKS

the code artifacts again, because the links from the requirement to its work items
would be validated and, if necessary, discarded. Furthermore, we expect that the
number of traceability links between requirements and work items is considerably
lower than the number of links between requirements and code. Because we expect
that only a few traceability links need to be validated, we consider the required
manual effort to be lower than in the possibilities 2) and 3) described above.

Therefore, we chose possibility 4) for discarding traceability links based on changing the
content of a requirement, although it does not have the lowest manual effort. Still, it
represents the best alternative among the four presented possibilities.

4.3.5.2 Changing Links

There exist two cases of how traceability links between requirements and work items can
be changed. Those two cases are depicted in Figure 4.5 and discussed below.

Figure 4.5: Validity Checks for Changing Links

Case (a) is as follows. Suppose
a new Requirement 2 is linked to
Work Item 1 that itself is already
linked to an existing Requirement 1
as well as Revision 1 implementing
the work described in Work Item 1.
The inference algorithm would connect
the changed code artifacts contained
in Revision 1 also to Requirement 2.
However, this could result in incor-
rect traceability links. Therefore, if
a project participant tries to link a
new requirement to a work item with
existing links to requirements and code, s/he needs to explicitly state that s/he wants to
create this link.

Case (b) is as follows. Suppose Work Item 2 with a linked realization in Revision 2 is
linked to Requirement 1, which itself is already linked to Work Item 1 with a realization in
Revision 1. The inference algorithm would connect the changed code artifacts contained
in Revision 1 and Revision 2 to Requirement 1. However, this could result in incorrect
traceability links. Therefore, if a project participant tries to link a new work item with
an already linked realization in a revision to a requirement, s/he needs to explicitly state
that s/he wants to create this link.
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4.4 Short Summary and Overview of Traceability Approach

After we now have presented all three parts of the traceability approach, we want to provide
a short summary and overview of the process of achieving traceability links between
requirements and code using interlinked work items. Furthermore, this summary provides
an overview about the activities that are performed manually, (semi-) automatically, or
fully automatically. Figure 4.6 and Table 4.8 provide an overview about what project
participant creates and maintains the traceability links in the project. Although the
inference algorithm is not a project participant in itself because it is non-human, we list
it in Figure 4.6 and Table 4.8 as a project participant because it performs the activity of
creating and maintaining traceability links. Below we summarize the various activities to
create and maintain traceability links between requirements, work items, and code.

Figure 4.6: Traceability Links Created and Maintained by Project Participants

Table 4.8: Activities of Project Participants
Project
Participant

Activity Type
Does traceability approach
introduce additional effort?

(a) Plan realization of requirements
using work items

Manual No, activity done in any project

(1) Project
Manager

(b) Assign work items to developers Manual No, activity done in any project

(c) Discarding links when changing
content or links of requirements

Manual Yes

(a) Apply three traceability link cre-
ation processes A, B, C

(Semi-)
Automatic

Yes

(2) Developer
(b) Implement code without using
traceability link creation process

Manual No, activity done in any project

(c) Change status of work items Manual No, activity done in any project
(3) Inference
Algorithm

Inferring traceability links Automatic Yes

As described in Section 4.1.3, we presume the project manager has (1a) planned the
realization of the requirements using work items. Furthermore, we also presume that
(1b) all work items have already been assigned to developers. Both activities are manual,
but do not introduce additional effort, because they have to be performed in a software
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development project anyway. The presented traceability approach introduces additional
manual effort when the project manager (1c) changes the content or the links of the
requirements and needs to discard traceability links (see Section 4.3.5).

The developer is (2a) applying the three traceability link creation processes A, B, C
(see Section 4.2), which is a (semi-) automatic activity because s/he is supported by the
system which creates traceability links between the work items and the implemented code.
This activity is the central part of the traceability approach and introduces additional
effort. However, a developer can also (2b) implement code without using any of the
three traceability link creation processes, which does not introduce additional effort since
it can be performed in any software development project without using the presented
traceability approach. Furthermore, the developer needs to (2c) change the status of a
work item once it is done, which again does not introduce additional effort, because it
has to be performed in a software development project anyway.

Finally, the inference algorithm automatically (3) infers traceability links between require-
ments and code using the interlinked work items. The inference algorithm is executed
at the end of each sprint, but can be performed any time during development, which
introduces additional effort.

4.5 Example

We use a fictional example project to highlight the benefits of the presented traceability
approach and to support discussion. The example project is a Java application called
Movie Manager that one can use to manage his/her movie collection. Users can add,
modify, and delete movies as well as rate them. The application supports importing data
about performers (actor/actress) of a movie from an Internet movie database. Presenting
all information about the artifacts in the project is beyond the purpose of this section.
Therefore, we only provide a list of used artifacts with short descriptions to support basic
understanding. There are two features (F) and six detailing functional requirements (R)
(see Table 4.9). The project is planned in three sprints with feature F1 developed in
Sprint 1 and feature F2 developed in Sprints 2 and 3. Amy, Bill, and Carl are members
of a team collaborating to develop the application and they have eight work items (W)
(see Table 4.10). Amy is mainly focusing on the data objects within the application, Bill
is responsible for the user interface, and Carl is doing bug fixing. A number of code
artifacts are developed to achieve Movie Manager: Movie.java (C1), MoviesUI.java (C2),
RatingControl.java (C3), Performer.java (C4), PerformerImport.java (C5).
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Table 4.9: Example Project – Features and Functional Requirements
Artifact Description Detailing
F1 Movie Management: Add, modify and delete movies as well as rate them -

F2 Performer Management: Import performers from Internet movie database -

R1 Users should be able to add and remove a movie from the list F1

R2
Users should be able to display and change the textual information about a se-
lected movie

F1

R3
Users should be able to display a list of available movies and select one from the
list

F1

R4 Users should be able to rate movies F1

R5
Users should be able to import textual information about the performers of a
movie from Internet movie database

F2

R6
Users should be able to display textual information about the performers of a
movie

F2

F = Feature R = Functional Requirement

Table 4.10: Example Project – Developers and Work Items
Artifact Description Assigned To
Amy Database Expert W1 W4 W7

Bill UI Expert W2 W3 W5

Carl Bug Fixing W6 W8

Artifact Description Realizing Related To Sprint
W1 Create Data Object for Movie R1 - S1

W2 UI for Movies R2 R3 F1 S1

W3 UI Control for Rating R4 F1 S1

W4 Create Data Object Performer R6 - S2

W5 UI for Performers R6 - S2

W6 Bugfix for Rating Control R4 - S3

W7 Performer Import R5 F2 S3

W8 Bugfix for Performer Import R5 F2 S3

W = Work Item F = Feature R = Functional Requirement

Table 4.11 provides an overview about the ten created revisions, created (c) and modified
(m) code artifacts, used traceability links (LB) from the TIM and created traceability
links (CL) during the software development (in the small example, there are no code
artifacts that needed to be deleted). Furthermore, all three developers have entered
commit messages for each revision that roughly describe what they have changed in the
code.

The team used the three traceability link creation processes (see Figure 4.2) during
development. In the following paragraphs, the creation of revisions 1-4 is shortly explained
because these revisions were created using one of the three processes. All other revisions
were created in the same way.
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Table 4.11: Example Project – Code Artifacts and Traceability Links over ten revisions
of Movie Manager

C
1

C
2

C
3

C
4

C
5

R
1

R
2

R
3

R
4

R
5

R
6

F
1

F
2 Work

Item D
ev
.

P
ro
c.

R
ev
.

Commit Message

c LB CL W1 Amy A 1
Created Data Object
’Movie’ #W1

m c CL LB LB CL W2 Bill A 2
Implemented basic
UI for listing Movies
#W2

m LB LB LB W2 Bill B 3
Display and change
information of Movie
#W2

m c LB LB W3 Bill C 4
Added basic Rating
Control and added it
to Movies UI #W3

m LB LB W3 Bill B 5
Completed 5 star Rat-
ing Control #W3

c LB CL W4 Amy A 6
Created Data Object
’Performer’ #W4

m m LB W5 Bill C 7

Display information
of Performers for
Movie, currently
showing dummy data
as import needs to be
implemented #W5

m LB CL W6 Carl A 8
BugFix for Rating
Control #W6

c LB LB W7 Amy C 9
Performer Import
#W7

m LB LB W8 Carl B 10
Bugfix for Performer
Import #W8

c = created m = modified LB = Linked Before CL = Created Link

Work item W1 was assigned to Amy and she had to implement the data object for storing
movies. She used Process A and selected W1 before development. First, she looked at the
linked functional requirement R1 of her selected work item to get a better understanding
of the attributes of the data object. She started implementing Movie.java (C1) and
looked at F1 for the feature description. She finished implementation and validated and
confirmed all captured links to F1 and R1. Next, she entered a commit message and the
system created a new revision with the new code artifact C1.

Work item W2 was assigned to Bill and he was supposed to implement a user interface for
listing the movies. He used Process A and selected W2 before development. Thus, he first
looked at the functional requirements R2 and R3 linked to W2. During implementation
Bill looked at feature F1 because it was already linked to R3. Furthermore, he looked
at R1 because this requirement was also linked to F1. Bill changed Movie.java (C1)
because it missed an attribute that Amy forgot to implement, and created the code
artifact MovieUI.java (C2). He finished implementation and validated and confirmed all
captured traceability links to R1 and F1. Finally, he entered a commit message and the
system created a new revision with new code artifact C2 and modified code artifact C1.
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Bill conducted a change to C2 for displaying and changing information in MovieUI.java.
This time, he used Process B and started changing C2 without selecting work item W2
first. He finished implementation, selected work item W2, entered a commit message and
the system created a new revision 3 with changed code artifact C2.

Work Item W3 was again assigned to Bill and he had to implement a basic user interface
control for ratings. However, because he was already familiar with the code artifacts he
created and modified before, he implemented the new code artifact RatingControl.java (C3)
without selecting a work item before (Process A) or during (Process B) implementation
and the system created a new revision. Afterwards, he recognized that he forgot to link
W3 to his previously created revision 4. Thus, he performed Process C and manually
linked revision 4 to W3.

After the completion of each sprint, traceability links were inferred using the presented
algorithm (see Algorithm 4.1). At the end of sprint 2, this resulted in the traceability
links between features, functional requirements, and code artifacts shown in Figure 4.7.

Figure 4.7: Example Project – Existing and Inferred Traceability Links

4.6 Information Needs on Requirements During

Development

Developers have various information needs during the software development process. The
importance of such information needs is presented by [Ko et al. (2007)] for collocated
software development teams, and [Sillito et al. (2008)] on questions raised during a pro-
gram change task. [Ko et al. (2007)] identified 21 and [Sillito et al. (2008)] identified 44
information needs, respectively. From these 65 information needs represented as questions,
we have identified those which are asked by developers during software development
focusing on requirements, code that implements these requirements, and work done by
co-workers related to these requirements. We looked through all information needs and
used the following criteria for identification: a) mentioning terms that are related to
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requirements, e.g., feature, concern, behavior or expressions like supposed to, b) mentioning
the term impact in conjunction with a changing requirement, and c) mentioning terms
like developer or co-worker. We have identified six information needs (see Table 4.12, Nr.
1-3 from [Ko et al. (2007)] and Nr. 4-6 from [Sillito et al. (2008)]) that met these criteria.
All other information needs are rather specific for implementation and do not focus on
requirements, e.g., reproducing a failure during bug fixing or understanding execution
behavior. In Table 4.12 we defined for each information need on requirements during
what development activity the information need occurs and the used traceability links.

Table 4.12: Information Needs on Requirements During Development Activities with Used
Traceability Links

Nr. Information Need on Requirement Development Activity Used Traceability Links

1. What is the program supposed to do?
Implementation, Program
Comprehension

F-R, F-W, R-W, F-C*, R-C*

2. Why was this code implemented this way? Program Comprehension C-Rev

3. What have my co-workers been doing? Change Awareness F-W, R-W, W-D, W-S

4.
Which code is involved in the implemen-
tation of this feature?

Maintenance F-C*, R-C*

5.
To move this feature into this code, what
else needs to be moved?

Change Management F-C*, R-C*

6. What will be the impact of this change? Change Management F-R, F-W, R-W, F-C*, R-C*

F = Feature R = Functional Requirement W = Work Item S = Sprint
D = Developer C = Code Artifact Rev = Revision * = inferred

4.6.1 Identified Information Needs on Requirements During
Development

In the following sections, we explain how these information needs of developers can be
satisfied by employing the TIM (see Figure 4.1), the captured traceability links from the
processes (see Figure 4.2) and the inferred traceability links (see Algorithm 4.1) for the
example project mentioned in Section 4.5.

4.6.1.1 What is the program supposed to do?

The features and functional requirements define what the program is supposed to do. As
a work item needs to have a relation to functional requirements and can be related to
features, an assigned developer can use the linked artifacts during implementation and
program comprehension. For example, Amy knows during implementation what attributes
the data object for movies requires since the functional requirement R1 is linked to her
work item W1. However, she forgot to implement one attribute in revision 1; so, Bill had
to change the data object again in revision 2. Furthermore, if a developer is interested in
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the purpose of a code artifact during program comprehension, s/he can use the inferred
traceability links from the code artifact to the features and functional requirements. For
example, if Carl is interested in the purpose of C3 (RatingControl.java), he can use the
inferred traceability links to F1 and R4 that were created when Bill finished the work
item W3 in revision 5 and sprint 2 was completed.

4.6.1.2 Why was this code implemented this way?

Starting from the code artifacts, a developer can look at the linked revisions. The commit
messages may contain information concerning why the code was implemented this way.
For example, Bill decided to implement the Rating Control with a 5 star rating and
documented his decision in the commit message of revision 5. Documenting these decisions
as artifacts of type decision/rationale would be part of future work.

4.6.1.3 What have my co-workers been doing?

Since all work items are contained in a sprint and assigned to developers, a developer
is able to see on what features or functional requirements his/her co-workers will be
working on or have been working on in the past, which is supporting change awareness.
Furthermore, a developer is able to identify the co-workers who have previously worked
on the same feature or functional requirement. Using this information, s/he can seek
further knowledge from these co-workers. For example, Carl can see that Bill has worked
previously on the Rating Control and he can ask him for advice during bug fixing.

4.6.1.4 Which code is involved in the implementation of this feature?

A feature is detailed in functional requirements. A developer can use the inferred
traceability links from features and functional requirements to code artifacts to quickly
identify code that is involved in the implementation of a feature. For example, Carl
can see that code artifacts C4 (Performer.java) are involved in feature F2 (Performer
Management) during bug fixing described in W8. This enables him to identify not realized
features and functional requirements as well as the progress of their implementation.

4.6.1.5 To move this feature into this code, what else needs to be moved?

’Moving a feature’ means that an entire feature with all its detailing functional requirements
and realizing code can be moved from one development project to another project. As one
feature is connected to detailing functional requirements, and these artifacts are connected
by inferred traceability links to code artifacts, related code artifacts can be identified
during change management. For example, the code artifacts C1, C2 and C3 are related
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to feature F1 by their relations to the requirements R1, R2, R3 and R4 (see Figure 4.7).
Therefore, if a feature needs to be moved, all its related functional requirements and the
realizing code artifacts can be easily identified. However, this may require additional code
artifacts to be moved that are required by the to-be-moved code artifacts. Additional
work on integrating the moved code artifacts in the new environment may be necessary
as well.

4.6.1.6 What will be the impact of this change?

If a feature or a functional requirement need to be changed to reflect changed customer
demands, all related artifacts maybe affected by this change can be identified easily during
change management. For example, suppose R4 is changed to support a different rating.
The traceability approach would then identify that the work items W3 and W6 are maybe
affected by this change (see Section 4.3.5). Thus, if the change in R4 is comprehensive,
the planning of the realization in the work items W3 and W6 needs to be adapted. If
W3 and W6 are changed, an initial set of code artifacts can be identified as well, which
is potentially affected by this change. The changes in the code artifacts can result in
additional changes in other code artifacts. Thus, the initial set of code artifacts can be a
starting point for detailed change impact analysis.

4.6.2 Frequently Unsatisfied Information Needs

Many of the frequent information needs are problematic, because the searches for this
information are often unsatisfied and have long search times. It is of particular interest that
according to [Ko et al. (2007)], the most difficult information needs to satisfy are questions
regarding requirements and co-workers working on these requirements. [Ko et al. (2007)]
have identified seven most frequently unsatisfied information needs, from which three
are exactly the same information needs 1-3 from Table 4.12 that met our criteria. For
example, searches for the information need 1. Why was the code implemented this way?
resulted in 44% of unsatisfied searches and a maximum of 21 minutes search time.

One of the most frequently sought and acquired information by a developer includes what
co-workers have been doing, which corresponds to the information need 3. What have my
co-workers been doing?. To determine who to ask, developers often identify co-workers by
inspecting commit logs, but such information is not always accurate [Ko et al. (2007)].
Our approach helps developers determining co-workers who have worked on the same
requirements as themselves in the past to seek further information.
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4.7 Discussion

[Egyed et al. (2010)] investigated the effort of recovering traceability links between re-
quirements and code after development. In general, these traceability links were recovered
by project members who were not directly involved in the realization of a particular
requirement, but knew the code base. Our approach distributes the effort of creating
traceability links over all developers actively participating in the project while they
perform their implementation work. Using our approach, the developers are now involved
in the traceability process, they can use their expertise and project knowledge to create
reliable traceability links and these links also help them to satisfy their information
needs during development. As a developer benefits not only from these traceability links
himself/herself, but also his/her co-workers, we expect that they are better motivated to
create and validate traceability links during software development.

Additionally, one might ask: "Why is (manually) creating links between requirements and
work items, and between work items and code artifacts less complex compared to existing
work on linking requirements to code directly?". We argue that our approach is less
cumbersome and error-prone than manually creating direct links between requirements
and code, because the only manual work is to establish initial links between work items and
requirements (which is typical for issue management) and to validate the automatically
captured links (which should be easy as the links refer to the work just finished) or
validate traceability links when a requirement is changed, which might have an impact
on its linked work items (see Section 4.3.5). Creating direct links manually requires the
developer to keep every relationship in mind.

In the current approach, developers might make mistakes when adding non-related features
or functional requirements to a work item. However, this risk is reduced since we let
the developer validate all traceability links before they are created. It has been shown
that humans were better at validating links as opposed to searching for missing links
[Kong et al. (2011)]. This strengthens our approach of letting the developers validate
the links going to be created instead of recovering links or searching for missing links.
The additional work of the developers introduced by validating traceability links and
manually adding additional ones is considered as small, compared to the effort to establish
traceability links after development using various approaches identified in the systematic
literature review (see Section 3.2.3).

During development, traceability links between requirements and code can become
irrelevant when a requirement has changed considerably so that the linked code is no
longer relevant for the realization of the particular requirement. We addressed the
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discarding of traceability links with validity checks (see Section 4.3.5) that have to be
performed by the project participant who is changing the requirement. It is an open
research issue for us whether we can improve our inference algorithm so that it can detect
these non-relevant links automatically and discard them. This would reduce the manual
effort and make our inference algorithm more "robust" against this cause of error.

4.8 Summary

This chapter introduced the traceability approach integrating artifacts from requirements
engineering, project management and code implementation. The traceability approach
consists of three parts. The first part (see Section 4.1) introduced a traceability information
model defining all artifacts and the traceability links between them. The second part (see
Section 4.2) defined three traceability link creation processes for the (semi-) automatic
creation of traceability links between all artifacts during development. The third part (see
Section 4.3) presented an algorithm for the exploration of the links between requirements,
work items, and code, as well as validity checks to cope with special situations during
the course of the project when requirements are changed and linked, which could be a
potential source of incorrect traceability links. Section 4.4 provided a short summary and
overview of the traceability approach. Using a fictional example project, we highlighted
the benefits of the presented approach (see Section 4.5). We showed that our traceability
approach can satisfy various information needs developers have during development
regarding requirements, code that realizes these requirements, and work done by co-
workers implementing these requirements (see Section 4.6). The achieved results so far
fulfill three requirements presented in Section 3.4:

• Requirement 1: Create traceability links (semi-) automatically during
development. The traceability link creation processes (see Section 4.2) support
the developers to (semi-) automatically create traceability links during development.
Thus, the traceability links are readily available to be used during development.

• Requirement 2: Exploitation of the links to and from work items. The
links between requirements and work items, as well as between work items and code,
are used to infer direct links between requirements and code (see Section 4.3).

• Requirement 3: Discarding obsolete traceability links. The approach also
considers that over time, traceability links might be made obsolete by work on other
artifacts. Thus, the presented inference approach also discards links not relevant
anymore (see Section 4.3.5).
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Chapter 5
UNICASE Trace Client

Technology is nothing. What’s important is that you have a faith in people,
that they’re basically good and smart, and if you give them tools, they’ll do

wonderful things with them.

– Steve Jobs, 1955-2011 –

This chapter introduces UNICASE Trace Client (UTC), which stores artifacts from
requirements engineering, project management, and code implementation in a single
environment with full traceability between all artifacts. UTC is an extension to the
model-based CASE tool UNICASE [Bruegge et al. (2008)], which is an Eclipse plug-in
developed in an open-source project. UTC integrates itself seamlessly in Eclipse and
supporting plug-ins, e.g., the Subversive plug-in that integrates SVN into Eclipse. UTC
implements the traceability approach presented in Chapter 4 consisting of the TIM (see
Section 4.1), the three traceability link creation processes (see Section 4.2), and the
inference algorithm (see Section 4.3), including the discarding of traceability links.

This chapter is structured as follows: Section 5.1 introduces UNICASE and provides a
short introduction to the Eclipse Modeling Framework (EMF) that is used by UNICASE
and UTC. Furthermore, the Eclipse extension point concept is explained, which is
extensively used by most Eclipse plug-ins, including UNICASE and UTC. In Section 5.2,
the requirements used for developing UTC are presented. Section 5.3 discusses the
design of UTC, namely its architecture and components. Furthermore, interesting design
decisions made during the development are discussed. Section 5.4 provides a short
overview about the implementation of UTC. Finally, Section 5.5 provides a comprehensive
comparison of UNICASE and UTC to various other CASE tools.
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5.1 Preliminaries

This section introduces the model-based CASE tool UNICASE, which is used as a
foundation for UTC. Afterwards, a short introduction of EMF is provided that is used
to implement the TIM (see Section 4.1) using model driven development. Finally, the
concept of extension points is introduced that is extensively used by UNICASE and UTC.

5.1.1 UNICASE

UNICASE is a CASE tool realized as a plug-in for the Eclipse platform. It integrates
the artifacts of different development activities into one unified model, thus allowing
cross references between them. The unified model of UNICASE is based on a model
called MUSE (Management-based Unified Software Engineering) [Helming (2011)], which
integrates the two models system model and project model (see Section 4.1.1 for more
details on MUSE). For example, in UNICASE, a functional requirement can be linked
to a work item describing its realization. UNICASE consists of a client that allows
the graphical creation and editing of the unified model. It also provides different tools
for viewing the artifacts from different perspectives, thus allowing different monitoring
activities to be executed efficiently. The second part of UNICASE is the server, which
is called EMFStore18. The server allows to share UNICASE projects. Once a project is
shared, the server provides version control for the project, allowing to view the revisions
of all artifacts and also reverting changes done to them. The EMFStore represents a
repository and VCS for all artifacts designed for collaborative editing and versioning.
Currently, UNICASE supports the following development activities:

• Requirements Modeling: Functional and non-functional requirements can be
specified and use cases can be described accurately.

• UML Modeling: UNICASE supports the modeling of UML diagrams, e.g., class
or use case diagrams.

• Issue and Bug Tracking: UNICASE provides support for tracking bug reports
and issues and linking them to all artifacts of the system model.

• Integrated Project Management: UNICASE allows the specification of work
items to describe a work breakdown structure, including iteration planning, project
status visualization and review support.

18EMFStore, A model repository for EMF-based models – http://www.eclipse.org/emfstore/

[retrieved: August, 2013]
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Different types of work items and groups of work items can be specified and assigned to
developers. Additionally, a reviewer can be assigned to a work item, the status of the
work item can be tracked and the priority and estimated effort can be set.

UTC is developed as an extension to UNICASE, adding support for code traceability.
The unified model of UNICASE is extended by adding the artifacts defined in the code
model (see Section 4.1.2). The requirements modeling context is enhanced by adding the
"related to" association, which allows the association of requirements and code artifacts
as a result of the inference process. The work item concept is enhanced by adding the
"creates" association, which allows the association of work items to revisions in which the
changed code artifacts of the work described in the work item should be contained.

5.1.2 Eclipse Modeling Framework

The data model of UNICASE, and consequently also the data model of UTC, is modeled
with the Eclipse Modeling Framework (EMF). The EMF project is a modeling framework
and code generation facility for building tools and other applications based on a structured
data model. From a model specification described in XML Metadata Interchange (XMI),
EMF provides tools and runtime support to produce a set of Java classes for the model,
along with a set of adapter classes that enable viewing and command-based editing of
the model, and a basic editor19.

Modeling with EMF is very close to UML modeling, because the EMF meta model ECore
is an implementation of a subset of the UML meta model MOF (Meta Object Facility).
ECore contains only the most important parts of the meta model like classes and their
associations. It is therefore comparable to EMOF (Essential MOF), which is the core of
the MOF meta model. The reason for that was that the goal of EMF was to provide a
implementation of MOF. However, many unimportant features, which are barely used
and would only increase complexity, were left out, resulting in the ECore meta model.

The Java classes generated by the EMF framework use various design patterns. For
example, they strictly separate interface from implementation. Each model class becomes
a Java interface and a concrete class implementing the interface. The client code should
never access the implementation and only work with the interfaces. This enables features
that are usually impossible in Java, like multiple inheritance (which is allowed by UML and
thus shall also be allowed by EMF). Since client code should not access the implementation

19The Eclipse Foundation. Eclipse Modeling Framework project (EMF) – http://www.eclipse.org/

modeling/emf [retrieved: August, 2013]
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directly, it may not create model elements directly (as this would require a call to the
constructor of the concrete implementation). Instead EMF makes use of the abstract
factory design pattern and provides generic factory classes for the creation of model
elements. It also supports many reflective aspects, e.g., obtaining the classes contained in
a package or the operations and attributes of a model element class.

5.1.3 Extension Points

Eclipse uses a modular Java runtime called Equinox. Equinox is an implementation of
the Open Service Gateway initiative (OSGi) framework specification20. By using OSGi,
Eclipse gained the infrastructure for many features, e.g. the ability to dynamically add or
remove plug-ins during runtime. The modularity of Java is captured in OSGi by elements
called bundles. A bundle is a normal .jar-file containing compiled Java classes and
resources. It contains additional manifest information describing the dependencies to
other bundles as well as the visibility of the Java packages of this bundle to other bundles.

An Eclipse plug-in is an extension of the bundle mechanism: a plug-in is an OSGi bundle
with additional content. The most important additional content is an XML file called
plugin.xml. In this file, the plug-in declares extension points it offers and extensions
for points of other plug-ins. It is very important to understand the difference between
an extension and extension points. An extension point declares the availability of a
plug-in’s functionality to other plug-ins. In contrast, an extension uses a previously
defined extension point of some plug-in to extend its functionality. The extension point
mechanism allows plug-ins to contribute to the functionality of other plug-ins without
introducing a dependency from the extended plug-in to the extending one.

Figure 5.1 shows the concept of extending plug-ins via extension points. It shows a UML
class diagram containing different plug-ins depicted as UML packages with a «plug-in»
stereotype. The Eclipse platform itself is also shown as a UML package. The extended
plug-in usually contains the code working with the extensible data, shown as the Client

class in Figure 5.1. This code must instantiate an object of a class that implements a
certain Interface. The extending plug-in provides an Implementation of this interface.
To avoid the dependency on the extending plug-in, the client code cannot instantiate
the implementation class directly. Instead, it defines an extension point and requires in
the extension point definition that each extension must provide a class that implements
Interface. In addition, the class may also be required to extend a certain class or more than

20OSGi framework specification – http://www.osgi.org/Specifications/ [retrieved: August, 2013]
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one interface. The extending plug-in provides the Implementation class. It therefore has
a dependency on the extended plug-in. While this dependency is desired, a dependency
from the extended plug-in to the extending plug-in is undesired.

Figure 5.1: Extension Point Usage

The extending plug-in defines an extension in its plugin.xml. Assuming the extension
point is named X, an XML representation of an extension point could look as follows:

Listing 5.1: Example for an Extension Point in plugin.xml
1 <extens i on po int="X">
2 <c l a s s="XImplementation"/>
3 </ extens i on>

This code specifies that the extension point named X is to be extended with the class
XImplementation. The Eclipse platform contains a singleton class ExtensionRegistry. It
reads the plugin.xml files of all currently installed plug-ins. Therefore, it has information
about the extension points and corresponding extensions. To receive an instance of
Interface, the Client asks the extension registry for any extensions to the extension
point X.

For each extension point, the ExtensionRegistry maintains a set of IConfiguration-
Elements. Each IConfigurationElement contains information about one extension of
this point. Furthermore, the IConfigurationElement provides a method to create an
instance of the class specified in the extension.

UNICASE itself uses various extension points provided by the Eclipse platform, while UTC
uses various extension points provided by UNICASE, Eclipse and supporting plug-ins,
e.g., Subversive plug-in. The use of the most important extension point provided by the
Subversive plug-in is described in Section 5.3.3.
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5.2 Requirements of UNICASE Trace Client

This section provides a brief overview about the user tasks and use cases that were used
as a basis for developing UTC. For describing user tasks, we used the task descriptions
by [Lauesen (2003)]. The user tasks and use cases along with the actors and system
functions are depicted in Figure 5.2. A detailed description of all user tasks and use cases
can be found in Appendix A. The user tasks, use cases and system functions were used as
basis for developing UTC, which is introduced in Section 5.4. We specified only those
user tasks and use cases that are necessary to realize the new functionality of UTC, and
did not specify any user tasks and use cases that are already implemented in Eclipse and
UNICASE.

Figure 5.2: Actors, User Tasks, Use Cases, and System Functions of UTC

For defining the user task and use case of the project manager, we relied on the activities
described in [PMBOK] (brackets contain the knowledge area from [PMBOK]). Work
items support knowledge area 4 "Project Integration Management" and knowledge area 6
"Project Time Management". They are used to define the project management plan
(4.2) and the project schedule (6.1, 6.2, 6.5), to direct and manage project execution
(4.3), to monitor and control project work (4.4 and 6.5) and to perform integrated change
control (4.5). We combined these activities in an user task "Project Integration and Time
Management". During this activity, one use case of the project manager is to "Manage
Traceability Links" in the project.
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User Task (Project Integration and Time Management) The goal of this user task
is to manage the work items in sprints as they are used to define the project management
plan and the project schedule. Part of this user task is managing the traceability links in
the project, which is described in its realizing use case "Manage Traceability Links".

Use Case (Manage Traceability Links) The goal of this use case is that the actor
manages the traceability links in the project. The actor can get an overview about
the progress of requirements realization using the completion status of the work items,
which are linked to the requirements. If the actor is changing a requirement or linking a
requirement to a work item, s/he needs to check the validity of the existing links of this
requirement and optionally discard obsolete traceability links (see Section 4.3.5). At the
end of each sprint, the project manager infers traceability links between requirements
and code (see Section 4.3) to be used during the next sprints.

For defining the user task and use cases of the developer, we relied on the three traceability
link creation processes defined in Section 4.2 for realizing the requirements. Furthermore,
the developer can use the traceability links for direct navigation during development.

User Task (Requirements Realization) The goal of this user task is to realize the
requirements as they were described in the work items. The actor implements and
links code to the work items (see three traceability link creation processes A, B, C in
Section 4.2). Furthermore, the actor can navigate between requirements and code using
traceability links.

Use Case (Implement and Link Code to Work Items) The goal of this use case
is to implement and link code to work items. The actor can select a work item before
development (process A), select a work item during development (process B), or link a
work item after development to a previously creation revision (process C). Furthermore,
the actor can infer traceability links at any time during the project and does not have to
wait for project manager to infer traceability at the end of the sprint (see Section 4.3).

Use Case (Navigate between Requirements and Code using Traceability Links)
The goal of this use case is to navigate between requirements and code using traceability
links. For example, the actor can show the traceability links between requirements and
code and directly navigate between them. Furthermore, the actor can show only the
requirements that are linked to the currently opened code artifact that s/he is working
on during implementation, as well as visualize the traceability links as a graph. The
visualization of the traceability in a graph also shows traceability links to any other linked
artifacts of the requirements or the code.
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5.3 System Design

This section describes the system design of UTC. First, the subsystem decomposition is
described (see Section 5.3.1), with the general architecture of UTC as well as the actual
decomposition into subsystems. The subsystem decomposition contains the mapping
of the subsystems to components. After that, the previously identified components are
mapped to hardware (see Section 5.3.2). Finally, further design decisions are discussed
(see Section 5.3.3).

5.3.1 Subsystem Decomposition

The goal of the subsystem decomposition is the division of the system into replaceable
subsystems with defined interfaces, dependencies, and responsibilities. The goal is to
create subsystems (high cohesion) while not introducing too many dependencies between
subsystems (low coupling). With low coupling, changes in one subsystem are less likely
to enforce changes in other subsystems, thus increasing the maintainability of UTC. High
cohesion also increases maintainability by setting clear responsibilities per subsystem. If
each subsystem has exactly one clearly defined purpose, developers can understand the
system faster and make changes to the correct subsystem.

5.3.1.1 Architecture Overview

UTC uses a three layer architecture. The bottom layer is the data model, which has no
dependencies on other subsystems, but most other subsystems query and alter it. The
middle layer is the business logic layer containing classes responsible for the functionality
of the plug-in, e.g., the inference algorithm. The business logic accesses the data model.
The topmost layer is the user interface. As a basic design principle, the business logic
should never depend on the user interface. Instead, the user interface only calls the
business logic to access functionality. The observer design pattern may be used to allow
notification from the business logic to the user interface without introducing dependencies.
The user interface also accesses the data model directly to display parts of it. Thus, this
represents an open architecture, as defined by [Rumbaugh (1991)].

5.3.1.2 Subsystems

Figure 5.3 shows a UML package diagram depicting the subsystem decomposition of
UTC. It also shows the dependencies to off-the-shelf components. The dependencies to
packages of the Eclipse platform are not shown, since this would complicate the diagram.
In addition, these dependencies are not important as the Eclipse platform is the host
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environment for the plug-in. Thus, its classes can be regarded as a globally accessible
standard library.

Figure 5.3: UTC – Subsystem Decomposition

The system boundary for UTC is the org.unicase.trace package (shown in yellow). All
packages inside belong to UTC. The other packages depict existing components (shown
in green). The org.unicase package depicts the unified model of the UNICASE plug-in,
which is extended by UTC. The package org.eclipse.team.svn is the Eclipse version of
the SVN version control system. The dotted lines in the main package separate the three
architectural layers. In Figure 5.3, the data model subsystem is shown in red, the business
logic subsystems are shown in blue, and the UI subsystems in orange. The lowest layer
in UTC consists of the model package. It contains the data model consisting of classes
generated by EMF. This data model is built upon the UNICASE unified model and thus
has a dependency to it. The model.edit package is also generated by EMF and contains
classes for editing and viewing the model. Therefore, it is not located in the model layer,
but instead in the user interface layer.

The svn package contains all classes related to handling the SVN version control system
and has a dependency to the org.eclipse.team.svn plug-in. The svn package depends
on the model package because it uses model elements (like revisions and code artifacts)
to read and store information. The handling of the business logic is provided by the
controllers subsystem. All control classes reside in this package. This subsystem is
dependent on the model because the controllers create, change and query model elements.

The topmost layer of UTC is the user interface layer and it contains the ui package
and graph package. The ui package contains the user interface, while the graph package
contains components to visually represent the artifacts as nodes and their dependencies
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to other artifacts as edges in a graph. The ui creates and starts the different controllers
and it thus depends on the controllers subsystem. The dependencies of ui and graph

on the model package and the model.edit package originate from their needs to display
artifacts.

5.3.1.3 Components (Plug-ins)

Since UTC is built for the Eclipse platform, it consists of plug-ins. A plug-in is the
smallest indivisible unit that can be deployed independently to a hardware device. Thus, a
plug-in corresponds to a component on the lowest level in the hardware/software mapping.

Figure 5.4: UTC – Plug-ins

Figure 5.4 shows a UML component diagram depicting the plug-ins of UTC and their
dependencies. The subsystems that are mapped to a plug-in are shown as packages inside
the component. The components are flagged with the «plug-in» stereotype to emphasize
that they are realized as Eclipse plug-ins. All plug-in names start with the common
prefix org.unicase.trace. The remainder of this section will therefore only use the
suffixes that are not shared by all plug-ins. For example, the model plug-in refers to the
org.unicase.trace.model plug-in. Eclipse plug-ins can "export" the dependencies they
have, allowing other plug-ins depending on them to use their own dependencies. Thus,
transitive dependencies do not need to be specified and are therefore not shown in the
diagram.

Using the EMF framework, we separated the plug-ins into code for the user interface,
the business logic, and the data model, which is comparable to the model-view-controller
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design pattern. Second, we separated the code that is generated by EMF from the hand-
written code, which increases the maintainability. To separate the generated code from the
hand-written one, the model and model.edit subsystems must be located in a separate
plug-in, as they are both generated by EMF. They could be put into one plug-in, but
this was not done because the model.edit plug-in contains classes for viewing the model
elements and thus has dependencies to the Eclipse UI. Therefore, it can be seen as a user
interface component and should not be mixed with the data model classes. Furthermore,
it is a recommendation of the Eclipse platform that code, that has dependencies to the
Eclipse UI packages, should not be merged with code from the data model. For Eclipse
and UNICASE, this is especially important for reusing plug-ins for client-server purposes.
For example, servers usually do not have a graphical UI and therefore do not need any
of Eclipse’s UI classes. Having no dependency on the heavyweight UI framework of
Eclipse allows the server to run with less resource usage. The server, however, needs
the same data model as the clients it communicates with. If data model classes are
mixed with UI-dependent classes in the same plug-in, this would add an unwanted UI
dependency on the server code. As for UNICASE, the UNICASE server (the EMFStore)
needs the model plug-in to be able to store artifacts defined with it. If the model code
would be in the same plug-in as the model.edit code, the EMFStore would require
this combined plug-in, which in turn would introduce an undesired dependency on the
entire Eclipse UI framework. This is the reason why the model.edit code must be
in its own plug-in, separated from the model code. For the same reason, the plug-in
containing the business logic (org.unicase.trace) was separated from the user interface
code (org.unicase.trace.ui plug-in).

5.3.2 Hardware/Software Mapping

The software components discussed in the previous section are now mapped to hardware.
Figure 5.5 shows a UML deployment diagram depicting the runtime configuration of
the machines used by UTC. Components of UTC are shown in orange, while off-the-
shelf components are shown in green. The org.unicase prefix at the beginning of the
component names was omitted to simplify the diagram. UTC is mainly used on the
machine of the developer s/he is working on. All components of the plug-in must be
installed on this machine. The plug-in does not do any networking with other machines.
Instead, this is done by the off-the-shelf components.

The UNICASE client plug-in, on which UTC depends, communicates with a UNICASE
server. The server component of UNICASE (EMFStore) allows the sharing of UNICASE
projects containing the artifacts, thus allowing collaboration with other developers. The

90



5.3 SYSTEM DESIGN

Figure 5.5: UTC – Hardware/Software Mapping

client uses Java’s remote method invocation (RMI) to communicate with the server. The
trace.model plug-in must be installed at the UNICASE server, because the EMFStore
must have access to the classes of all artifacts received from the client. The communication
between the SVNClient and the SVNServer hosting the repository is entirely held by the
SVN, which is accessed by an adapter plug-in represented by trace.svn.

5.3.3 Further Design Decisions

Before implementing UTC, the capabilities of existing plug-ins integrating VCSs in Eclipse
were investigated and it was examined to what extent they can be used to implement
the functionality to realize the three traceability link creation processes (see Section 4.2).
The main functionality is to "listen" to specific user actions, in particular before a commit
to the VCS is executed to get information about the new/changed code artifacts (see
Processes A and B). The plug-ins integrating Subversion, Git and Mercurial (see Section
2.2.4) into Eclipse were investigated according to whether they supported this main
functionality via extension points (see Section 5.1.3 for more details on extension points).

At the time of writing this thesis, only the Subversive plug-in provided the necessary
functionality, while Subclipse, EGit and MercurialEclipse did not. In particular, Sub-
versive provided the extension point org.eclipse.team.svn.ui.commit for extending
the standard commit process for SVN. Thus, we were restricted to use the Subversive
plug-in and decided to use Subversion as the only VCS supported by UTC. However, if
later versions of Subclipse, EGit and MercurialEclipse would provide the functionality to
listen to user actions, UTC could be extended to support Git and Mercurial, as well.
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5.4 Overview of the Implementation

After the previous section has described the system design of UTC, the following section
provides an overview of the implementation of UTC. First, Section 5.4.1 presents the
functionality that is used to create traceability links, which means linking work items to
requirements and the resulting implementation in the code, as well as inferring traceability
links between requirements and code based on interlinked work items and discarding
obsolete traceability links. Afterwards, Section 5.4.2 introduces functionality for using
the created traceability links in various ways.

The Traceability Center (see Figure 5.6) provides an entry point to the majority of the
functionality of UTC. The Traceability Center can be opened by selecting the context-
menu on a UNICASE Project. A pie chart provides an overview
about the number of requirements, work items and code artifacts in the project as well as
all other elements. On the right hand side, links to the most common actions a developer
can perform with UTC are provided.

Figure 5.6: UTC – Traceability Center

5.4.1 Creating Traceability Links with UTC

UTC implements the three traceability link creation processes presented in Section 4.2.
The following subsections describe their realization in UTC. For a better understanding
of the implementation, the following subsections resemble some of the descriptions used
for describing the three traceability link creation processes in Section 4.2.

5.4.1.1 Selecting a Work Item Before Development (Process A)

The implementation of Process A is shown in Figures 5.7, 5.8 and 5.9. First, the developer
selects a work item from his/her list of assigned work items and starts implementing code
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(see upper right part of Figure 5.7). While working on the work item, all requirements
the developer looks at during implementation are automatically captured (see right hand
side of Figure 5.7), meaning that these types of artifacts are logged while a developer
opens them during implementation.

Figure 5.7: UTC – Capturing Requirements During Development

After finishing the implementation of a work item in the code, the developer does not
immediately commit the changes to SVN. Instead, before the commit, s/he has to validate
two lists of artifacts: one list of all new/changed code artifacts in the code (see Figure 5.8),
and another list of all captured requirements that s/he looked at during implementation
(see Figure 5.9).

While the former is standard in software development and already supported by any VCS,
the latter represents additional work for the developers. This validation is necessary to only
create relevant traceability links between the work item and the captured requirements
and new/changed code artifacts. For example, a developer can look at a requirement
during development, which is not directly involved in the implementation, but related to
the work item. During validation, a developer removes unrelated requirements from the
list (see check boxes in Figure 5.9). Furthermore, an optional activity for the developer is
to select additional requirements that are related to the work item, but that s/he has
not had a look at during implementation (see button "Add Requirement" in Figure 5.9).
Other optional activities are to enter a commit message for the new revision (see field
"Comment" in Figure 5.8) or to de-select one or more new/changed code artifacts that
should not be included in a new revision created in SVN (see list of code artifacts in lower
part of Figure 5.8).
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Figure 5.8: Commit Dialog of SVN plug-in

Figure 5.9: UTC – Validating the Captured Requirements
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After validating all requirements and code artifacts as well as optionally adding further
requirements, the developer selects to commit all information to SVN. UTC then creates
a new revision containing only the selected code artifacts. The work item is linked to the
newly created revision. Moreover, the system links all validated and selected requirements
to the work item.

5.4.1.2 Selecting a Work Item During Development (Process B)

Instead of selecting a work item before development like in Process A, a developer can
start directly with the implementation, which starts Process B. After s/he has finished
the implementation of the code and before creating a new revision stored in the VCS, the
developer selects a work item from his/her list of assigned work items (see Figure 5.10).
In a next step, the same dialog for validating the new/changed code artifacts is shown
(see Figure 5.8). After confirming the new/changed code artifacts or deselecting one or
more of them, UTC creates a new revision on the SVN with the validated code artifacts
and automatically links the newly created revision to the selected work item. In contrast
to Process A, no requirements are captured and need to be validated.

Figure 5.10: UTC – Selecting a Work Item During Development

However, in case the developer implemented code that s/he does not want to be linked
to a work item, s/he can omit the linking of a work item by selecting "No Work Items"
(see button "No Work Items" next to OK button in Figure 5.10), which ends Process B.
Furthermore, this functionality is only available if the user is currently not capturing
requirements, which would be Process A and requires a different work flow.
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5.4.1.3 Selecting a Work Item After Development (Process C)

Process C represents an alternative way for the developer to link previously changed code
to a work item. As described in Section 2.2, a VCS stores a history of all previously
created revisions with information by whom and when each revision was created, as well
as all changed code artifacts. In case a developer has implemented code without selecting
a work item before implementation (see Process A) or without selecting a work item
during implementation (see Process B), s/he can manually select to link a previously
created revision to a work item from his/her assigned work items list. Similar to Process
B, no requirements are captured and validated.

The developer needs to open the "SVN Repositories" view in Eclipse and select "Show
History" for a project or file. In the opened view "History", the developer needs to
right-click on a revision and select "Copy Revision to UNICASE" (see Figure 5.11) from
the context menu. After that, a dialog is opened where the developer can select a work
item the revision shall be linked to (see Figure 5.12). UTC links the selected work item
to the revision in the VCS.

Figure 5.11: UTC – Copy Revi-
sion to UNICASE

Figure 5.12: UTC – Selecting a Work Item to be
Linked to a Revision

5.4.1.4 Inferring Traceability Links between Requirements and Code

The created traceability links of Processes A, B and C are used by UTC to infer direct links
between requirements and code. Section 4.3 presented an algorithm for inferring links
that is executed at the end of each sprint. The algorithm connects all linked requirements
of a work item with all the code artifacts in the linked revisions of a work item.
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Figure 5.13 shows an overview of all revisions linked to work items in a particular
UNICASE project. The developer can select a single revision, multiple revisions, all
revisions or only a range specified by the start/stop revision number. Next, the developer
needs to select "Infer Traces" (see button in upper left part of Figure 5.13), which opens
a preview dialog on the results of the inference algorithm (see Figure 5.14). As the actual
creation of the inferred traceability links takes some time, the preview dialog allows the
developer to see what the result will look like as well as manipulate the result in advance
and only create particular traceability links between requirements and code by selecting
all or only a subset of links.

Figure 5.13: UTC – Revisions

In the preview dialog (see Figure 5.14), the developer can see for each code artifact on the
left what traceability links to requirements were inferred on the right. Next, the developer
can select a single or multiple code artifacts or select all of them. The actual creation of
the inferred traceability links is started by clicking "OK" in the dialog.

Figure 5.14: UTC – Inference Results
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5.4.1.5 Discarding Traceability Links

If a requirement with already linked work items is changed, the planning of the realization
of the requirement in its linked work items needs to be checked for validity (see Section
4.3.5). In such a case, a dialog (see Figure 5.15) is presented showing the existing links
between the changed requirement and its linked work items. The user can check or
uncheck the various traceability links. The unchecked traceability links are discarded
once the user clicks on the OK button.

Figure 5.15: UTC – Check Validity of Traceability Links for Requirement

5.4.2 Using Traceability Links with UTC

Based on the created traceability links, UTC offers functionality to use these links.

Versioning: All artifacts in UTC are part of a model that is versioned with EMFStore.
This allows versioning all artifacts and the traceability links between them and as a result,
supports merging and conflict detection. For example, one can follow all changes of a
requirement and its traceability links over time as well as revert to a previous version.
The versioning is provided by UNICASE and EMFStore and not UTC.

Requirement with linked Code Artifacts: For each requirement UTC allows to
view the linked code artifacts (see Figure 5.16). For example, a developer can open
a requirement and directly jump from there to the actual implementation in the code.
The traceability links between requirements and code are automatically managed by the
inference algorithm. This type of traceability is called forward traceability (see Section
2.1.1) and allows direct navigation.
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Figure 5.16: UTC – Element "Requirement" with linked Code Artifacts

Code Artifact with linked Requirement: For each code artifact UTC also allows to
view its linked requirements (see Figure 5.17). This allows a developer to see what code
artifacts implement certain requirements. This type of traceability is called backwards
traceability (see Section 2.1.1) and also allows direct navigation.

Traceability between Requirements and Code: The view "Requirements and Code"
(see Figure 5.18) provides an overview about all traceability links between requirements
and code. A toggle switch in the upper right corner allows to switch between forward
and backwards traceability. Thus, a developer can use this feature of UTC to see which
code contributes to the realization of which requirement, and vice versa.

Requirements Context: During implementation, a developer can look at the "Require-
ments Context", which shows all requirements linked to the currently open code artifact
(see Figure 5.19). This feature of UTC helps experienced developers and new developers
who have recently joined the team alike. Experienced developers can quickly navigate
between implemented code to see the requirements it is based upon. Furthermore, new
developers who have joined the project can use this feature to better understand the
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Figure 5.17: UTC – Element "Code Artifact" with linked Requirements

Figure 5.18: UTC – Traceability between Requirement and Code

purpose of the implemented code. In the view "Package Explorer" (see left hand side of
Figure 5.19), a blue dot highlights all the code artifacts that are linked to one or more
requirements. As soon as a code artifact is opened, the Requirements Context is updated
to display the linked requirements.

Requirements Progress: Work items have a completion status and are linked to
requirements. Thus, work items enable the project manager to identify not implemented
requirements as well as the progress of their implementation (see Figure 5.20).
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Figure 5.19: UTC – Requirements Context

Figure 5.20: UTC – Requirements Progress

UTC enables the project managers to see how far all requirements are already implemented,
as well as identifying not implemented requirements requiring increased attention.

Graph Visualization: UTC supports the visualization of all artifacts and the traceability
links between them as a graph, where the artifacts are represented as nodes and the
traceability links are represented as edges (see Figure 5.21). This functionality is not
available in the basic version of UNICASE. The developer can select to only visualize
single artifacts, a group of artifacts or all artifacts in the project. Searching within all
artifacts in the graph is supported, as well.
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Figure 5.21: UTC – Graph Visualization

Revision: A revision in UTC represents a link to the actual revision in the SVN. No
actual change data, e.g., the changed lines of code of the code artifacts, are stored in
UTC. Instead, only meta-data of the revision is stored (see upper right part "Revision
Details" in Figure 5.22). Furthermore, the list "Referring Model Elements" shows work
items linked to this revision, which can be used by developers for direct navigation.

Figure 5.22: UTC – Element "Revision"
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5.5 Comparing UNICASE and UTC to other CASE Tools

Because UTC was developed as an extension to UNICASE, we compared the features of
UNICASE in combination with UTC to a variety of other CASE tools. In the comparison,
we focused on the question to what extent other CASE tools support the same artifacts
as UNICASE+UTC as well as their capabilities with respect to traceability.

Section 5.5.1 lists the considered CASE tools and describes how they were selected.
Section 5.5.2 provides a list of criteria grouped in four categories that we used to compare
the CASE tools to one another. Section 5.5.3 discusses the results of the comparison and
highlights interesting findings.

5.5.1 Considered CASE Tools

There exists a wide range of CASE tools for the management of artifacts in the software
development process. Since we could not compare each CASE tool to UNICASE+UTC,
we selected a total of twelve CASE tools (see Table 5.1) for comparison.

Table 5.1: CASE tools from practice
Tool Website (All URLs retrieved in: August, 2013)

1. UNICASE+UTC http://code.google.com/p/unicase/wiki/TraceClient

2. IBM Rational Team Concert http://www-01.ibm.com/software/rational/products/rtc/

3. IBM Rational DOORS http://www-01.ibm.com/software/awdtools/doors/

4. IBM Requisite Pro http://www-01.ibm.com/software/awdtools/reqpro/

5. Microsoft TFS http://tfs.visualstudio.com/

6. Polarion Requirements http://www.polarion.com/products/requirements

7. Redmine & RE-plug-in http://www.redmine.org/

8. Atlassian Jira http://www.atlassian.com/software/jira/

9. Trac http://trac.edgewall.org/

10. Arcway Cockpit http://www.arcway.com/

11. Cradle http://www.threesl.com/

12. CaliberRM http://www.borland.com/products/caliber/

13. CASE Spec http://www.casespec.net/

The CASE tools were selected based on the following criteria:

• Market Share: IBM Rational Doors and IBM Rational Requisite Pro have together a
market share of about 70% [Schienmann (2002)] and are widely used in industry.

• Commercial: IBM Rational Team Concert, Microsoft Team Foundation Server and Polarion
Requirements are common-of-the-shelf (COTS) commercial tools and are also mainly used
in industry.
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• Research Interest: UNICASE+UTC and Redmine (with additional requirements engineering
plug-in) are in the interest of our own research.

• Developer Platform: Atlassian Jira provides a platform for collaboration between developers
integrating various models.

• Open Source: Trac is an open source tool integrating project management and code
implementation.

• Other Requirements Engineering Tools: Arcway Cockpit, Cradle, CaliberRM and CASESpec
are CASE tools that focus mainly on the management of requirements, but provide certain
support for project management and code implementation.

This list allows us to compare UNICASE+UTC to a variety of different CASE tools to
see where its strengths and potential weaknesses are.

5.5.2 Criteria of Comparison

We compared UNICASE+UTC to all other CASE tools according to the following list of
12 criteria grouped in four broad categories (see Table 5.2).

Category A contains criteria focussing on the different types of artifacts that are supported
by the CASE tools. In particular, we looked at to what extent the CASE tools allowed
the specification of artifacts from the system model, project model, and code model.

Category B contains criteria focussing on the support for (semi-) automatically creating
traceability links as well as using traceability links. For example, do other CASE tools
support the inference of traceability links between the artifacts? Do the CASE tools
support different types of traceability links and can they visualize them, e.g., in a graph,
tree or matrix? The visualization supports the direct navigation between between the
artifacts during development.

Category C contains criteria focussing on the supported VCSs to store and version code
artifacts and supported programming languages. Furthermore, do the CASE tools provide
integration into commonly used IDEs, e.g., Eclipse or Visual Studio? This integration
ensures that traceability links can be used between artifacts in the CASE tool and artifacts
in the IDE.

Category D contains criteria focussing on the communication support of the CASE tools,
e.g., do they support the notification of developers about certain changes on the artifacts
or do they support discussions and comments about the artifacts? Communication
support is important because it enables the project participants to satisfy some of their
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Table 5.2: Criteria for Comparison of CASE tools
Tool/Criterion Description

A) Support for Different Types of Artifacts
1. System Model
(Functional Requirement,
Non-Functional Requirement,
Use Cases etc.)

What types of system model artifacts does the CASE tool support?

2. Project Model
(Work Items, Sprints)

What types of project model artifacts does the CASE tool support?

3. Code Model
(Revision, Code Artifact)

What types of code model artifacts does the CASE tool support?

B) Support for (Semi-) Automatic Traceability Link Creation and Usage

4. Inferring
Traceability Links

Does the CASE tool support the inference of traceability links
between the artifacts, e.g., inferring traceability links between
requirements and code?

5. Different Types of
Traceability Links

Does the CASE tool support different types of traceability links,
e.g., refines, conflicts? Can different types of traceability links be
customized?

6. Visualizations
(e.g., Graph, Tree, Matrix)

Does the CASE tool support the visualization of traceability links,
e.g., in a graph, a tree or a matrix?

C) Support for VCS, Programming Languages and IDEs

7. Supported VCS
What VCS is supported by the CASE tool to store and version
code artifacts, e.g., Subversion, Git?

8. Supported
Programming Languages

If the CASE tool supports artifacts from the code model, which
programming language is supported, e.g., Java, C++, C# etc.?

9. Supported IDEs
Does the CASE tool support integration into various integrated
development environments (IDE), e.g., Eclipse, Visual Studio?

D) Communication Support
10. Notifications
(e.g., Email, Dashboard)

Does the CASE tool support the notification of project participants
about changes on particular artifacts?

11. Discussion /
Comments

Does the CASE tool support discussions and/or comments?

information needs during development (see Section 4.6). For example, the information
need "What have my co-workers been doing?" could be satisfied by notifications about
changes co-workers have done on artifacts.

Each criterion is rated with either 3 (fully supported), (3) (partially supported), or 7

(not supported). All CASE tools were installed on Windows/Linux operating systems or
a web-based demo application21 was used, e.g. Polarion Requirements. In each CASE
tool, an example project was created with the necessary artifacts and traceability links.

21Demo of Polarion Requirements – http://www.polarion.com/products/requirements/demo.php

[retrieved: August, 2013]
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5.5.3 Results

The results of the tool comparison are presented in Tables 5.3 and 5.4 at the end of this
chapter. In the following paragraphs, for each sub-category the results are summarized.

System Model: All tools except Trac support artifacts from the system model to
describe requirements. Only UNICASE+UTC, Arcway Cockpit, Cradle and CaliberRM
support the comprehensive modeling of requirements, e.g., functional and non-functional
requirements, use cases, user tasks, scenarios, system functions and work spaces. The
remaining tools only provide rudimentary support, e.g., only general requirements, only
use cases, or only user stories.

Project Model: IBM Rational Doors, IBM Requisite Pro, Cradle and CaliberRM are
the only tools that do not support the modeling of project artifacts, e.g., work items and
sprints. UNICASE+UTC and Polarion Requirements provide comprehensive support
for the modeling of the project, e.g., with work items, bug reports, users, sprints and
milestones. The remaining tools only provide basic support for modeling the project, e.g.,
only tasks, bug reports and milestones.

Code Model: UNICASE+UTC, IBM Rational Team Concert, Microsoft Team Founda-
tion Server, Polarion Requirements, Atlassian Jira, Redmine and Trac support the code
model artifact revision. UNICASE+UTC is the only tool that also supports individual
code artifacts from the code model.

Inferring Traceability Links: UNICASE+UTC is the only tool that supports inferring
traceability links requirements and code based on interlinked work items. Although other
tools support the same kind of artifacts as UNICASE+UTC, they cannot automatically
create traceability links between these artifacts.

Different types of traceability links: IBM Rational Team Concert, Microsoft Team
Foundation Server, Polarion Requirements, Atlassian Jira and Cradle support the cus-
tomization of traceability link types. This means that one can define its own types of
traceability links. Redmine and CASE Spec have pre-defined types of traceability links.
All other tools do not support different types of traceability links.

Visualizations: UNICASE+UTC is the only tool that supports the visualization of
the traceability links in a graph. Project participants can use the graph to visualize
the traceability links of one or more artifacts and directly navigate to other linked
artifacts. IBM Rational Doors, IBM Requisite Pro, Polarion Requirements, CaliberRM
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and CASE Spec can visualize the traceability links in a matrix. Redmine supports
uncommon visualizations, e.g., Sunburst and Netmap visualizations (please refer to
[Merten et al. (2011)] for more information on this type of visualization). Trac supports
roadmap and timeline visualizations.

Supported VCS: IBM Rational Doors, IBM Requisite Pro, Arcway Cockpit, Cradle
and CASE Spec are the only tools that do not provide VCS support. This means these
tools cannot store and version code artifacts. The other tools mainly support Subversion
and Git, while Microsoft Team Foundation Server only supports Git and a proprietary
VCS. CaliberRM only supports the proprietary VCS Borland StarTeam.

Supported Programming Languages: Almost all tools that support a VCS also
support any programming language. Only Microsoft Team Foundation Server is restricted
to .net programming languages, e.g. C#, while CaliberRM is restricted to Borland
programming languages, e.g. Delphi.

Supported IDE: IBM Rational Team Concert, Microsoft Team Foundation Server,
Polarion Requirements, Atlassian Jira and CaliberRM provide Eclipse and Visual Studio
support. UNICASE+UTC, Redmine and Trac only support the Eclipse IDE. All other
tools do not provide IDE integration.

Notifications: UTC and Polarion Requirements provide notification support in the form
of emails and a dashboard overview. IBM Requisite Pro only provides a dashboard. Tools
that do not provide any notification support are: IBM Rational Doors, Arcway Cockpit,
Cradle, CaliberRM and CASESpec.

Discussions: All tools except Arcway Cockpit support discussions and/or comments.

These results show that UNICASE+UTC provides the most comprehensive support
for modeling requirements, project management, and code implementation in a single
environment with full traceability between all artifacts. The commercial tools Polarion
Requirements, Microsoft Team Foundation Server, Atlassian Jira provide similar support,
but fall behind in one or more categories, in particular the automatic inference of
traceability links.

By adding UTC as an extension to UNICASE, both tools together become a fully-
functional CASE tool. In particular, UNICASE+UTC excels in Category A, as it provides
the most different types of artifacts from system model, project model, and code model.
For example, it is important to support different types of artifacts that occur in a project,
e.g. requirements. Considering Category B, UNICASE+UTC is the only tool that can
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infer traceability links between artifacts. This category is important, because in the other
CASE tools these links have to be created manually. Nevertheless, UNICASE+UTC does
not support different types of traceability links and can only visualize the traceability links
in a graph and not a matrix. In Category C, UNICASE+UTC provides similar support
as the other CASE tools, as it also supports Subversion as VCS, multiple programming
languages and integration into the Eclipse IDE. In Category D, UNICASE+UTC supports
email and dashboard notifications as well as discussion and comments, just like Polarion
Requirements.

5.6 Summary

This chapter introduced UTC, which stores artifacts from requirements engineering, project
management, and code implementation in a single environment with full traceability
between all artifacts. UTC is an extension to the model-based CASE tool UNICASE
[Bruegge et al. (2008)] and integrates itself seamlessly in Eclipse and supporting plug-ins,
e.g., Subversive. UTC implements the TIM (see Section 4.1), the three traceability link
creation processes (see Section 4.2), the approach for inferring traceability links between
requirements and code (see Section 4.3) and discarding obsolete traceability links (see
Section 4.3.5).

We compared UNICASE+UTC to twelve other CASE tools. The result showed that
UNICASE+UTC provides the most comprehensive support for modeling requirements,
project management, and code implementation. Furthermore, from all compared CASE
tools, UNICASE+UTC is the only one that supports inferring traceability links.

Section 3.4 presented the following requirement, which is fulfilled by UTC:

• Requirement 4: Integrate traceability in developers work environment
and development process. UTC integrates the traceability links between re-
quirements, work items, and code in the integrated development environment of
the developers. Furthermore, the automatic traceability link creation is integrated
within the development activities that the developers perform during development,
ensuring a seamless integration within the development process, while reducing the
extra work required of the developers for validating the traceability links.

This chapter concludes Part II of this thesis. In the next Part III, the presented traceability
approach and its tool support UTC are evaluated in practice.
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Part III

Evaluation of Traceability Approach
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Chapter 6
An Empirical Study Using the
Traceability Approach

It doesn’t matter how beautiful your theory is, it doesn’t matter how smart
you are. If it doesn’t agree with experiment, it’s wrong.

– Richard Philips Feynmann, 1918-1988 –

Practitioners and researchers have discussed the practice of using work items to capture
links between requirements and code, but there has been no systematic study of this
practice [Cleland-Huang (2012)]. This chapter presents such an empirical study based on
the application of the presented traceability approach (see Chapter 4) and its implementa-
tion in the UNICASE Trace Client (see Chapter 5). Section 6.1 describes the case study
design and research method. Section 6.2 presents the results and Section 6.3 the threats
to validity. Section 6.4 discusses related work and Section 6.5 discusses the results.

Before we conducted the empirical study, we investigated whether we could use data
from open source projects or mining challenges from the MSR community for evaluation.
However, we found out that these datasets usually only consist of work items and code
managed in issue trackers and VCSs, respectively. Therefore, we could not use these
datasets, because no explicit requirements were available and connected to the work items.
Thus, we had to carry out our own development projects in the empirical study comprising
requirements, work items, and code. Furthermore, it would not have been possible to
study how the project participants use the traceability links during development.
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6.1 Case Study Design & Research Method

The study context and the research questions and hypotheses are described below.

6.1.1 Study Context

We conducted three different development projects with undergraduate students of
different duration and number of participating students. In the following paragraph, we
describe the development projects and provide information about the participants and
the development process used. Table 6.1 provides an overview of the key metrics of all
three projects. For describing features and functional requirements, we used the user
task descriptions by [Lauesen (2003)] and use cases, respectively. Below, we use the term
requirements to refer commonly to user tasks and use cases.

Table 6.1: Development Projects
Metric Project 1 Project 2 Project 3

Participants 6 3 3

Sprints 6 3 3

Programming Language JavaScript, Java Java Java

Duration 5 months 3 weeks 3 weeks

Features 2 1 1

Functional Requirements 6 4 5

Work Items 395 51 20

Code Artifacts 183 25 23

Lines of Code 5528 3827 9527

Revisions 694 80 165

For project 1, we were working together with a company from industry specialized in
mobile business applications. The company integrates existing business applications such
as ERP systems with mobile applications for smart phones and tablet computers. For this
company, a system was developed retrieving data from various Internet data sources (e.g.,
Wikipedia, Google News). The system is capable of answering recurring questions based
on input data, e.g., a company name, and the retrieved data. Examples for questions
are: "Who is the CEO?" or "What are recent news?". The company was interested
in full traceability between requirements and code, because they wanted to maintain
the developed application later on. The company did not provide a list of requirements
before the project. Therefore, the students had to elicit the requirements themselves.
The requirements did change during development to reflect the changed demands of the
company. The functionality could be described in only a small number of requirements,
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but these requirements were very complex. JavaScript was used as the main programming
language, with only a small subset of code programmed in Java. Because JavaScript
was used, the functionality could be realized with a small amount of lines of code. The
same functionality would have required notably more lines of code if programmed in
another programming language. Therefore, the lines of code are not comparable across
the projects. The students were asked to add any missing traceability links between the
artifacts at the end of each sprint. The project lasted five months from Oct. 2012 until
Feb. 2013 and was divided into six sprints.

The project descriptions that we gave to the students at the beginning of both projects 2
and 3 were identical. In both projects, an extension to UNICASE was developed that
identifies missing traceability links between all artifacts of a project. For example, a work
item is missing an assigned developer. We acted as the "customer" for both projects,
because we wanted to use this extension in our future development projects and we
provided the subjects with a list of requirements before the project. The requirements did
not change considerably during development. Compared to project 1, the requirements
were less complex. Java was used as the programming language. The team of project 2
implemented more efficient code than the team of project 3, thus requiring less lines of
code. Like in project 1, the students were asked to add any missing traceability links
between the artifacts at the end of each sprint. Both projects lasted three weeks from
mid Feb. 2013 until the beginning of Mar. 2013 and were divided into three sprints.

We recruited a total of 12 undergraduate students for our development teams, all having
basic knowledge in software engineering. However, the team from project 1 was more
advanced in their studies and had a more extensive knowledge in software engineering.
To decrease variability in knowledge across students regarding UTC, we provided an
introductory tutorial of UTC 22. All teams were required to use UNICASE and UTC to
store and link all artifacts. All teams applied agile software development techniques, e.g.,
they held regular stand-up meetings discussing completed work, planned work and any
problems preventing them to continue work. The development process was as follows:
in the beginning, the team elicited and/or specified a first draft of the requirements. In
each sprint, the team detailed the requirements (if necessary) and broke them down into
work items describing their realization. They assigned each work item to a developer
and included it in a sprint. The team realized the requirements as described in the work
items, which means they implemented the code. Thus, the situation we presumed was
ensured (see Section 4.1.3).

22UTC on Google Code – https://code.google.com/p/unicase/wiki/TraceClient [retrieved: August,
2013]
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6.1 CASE STUDY DESIGN & RESEARCH METHOD

6.1.2 Research Questions & Hypotheses

The goal of this case study is to get an understanding of the feasibility and practicability
of our traceability approach in practice. According to the Goal Question Metric (GQM)
template by [Basili et al. (1994)], these goals can be reformulated as:

• Goal 1 : Analyze the traceability approach for the purpose of understanding with
respect to feasibility from the viewpoint of approach developers.

• Goal 2 : Analyze the traceability approach for the purpose of understanding with
respect to practicability from the viewpoint of approach users.

As we are the approach developers, we analyze in Goal 1 the traceability approach with
respect to its feasibility, which is the quality of the created traceability links. For Goal 2 ,
we hand out a questionnaire to the approach users, i.e. the students, to analyze the
traceability approach with respect to its practicability.

6.1.2.1 Feasibility

According to [Eusgeld et al. (2008)], feasibility studies evaluate the accuracy of the
results achieved by the approach. In our study, this means the precision and recall of the
created traceability links between requirements and work items, work items and code,
and requirements and code. Precision and recall are two standard metrics used in IR
[Frakes & Baeze-Yates (1992)]. In Section 3.2, we already described that precision is the
fraction of retrieved instances that are relevant, while recall is the fraction of relevant
instances that are retrieved. In our case, ’relevant’ refers to a correct traceability link. We
distinguish three types of correct traceability links:

1. Requirement and Work Item: a link between a requirement and a work item where
the work item describes (in part or whole) the realization of the requirement.

2. Work Item and Code: a link between a work item and a revision where the revision
contains code that realizes (in part or whole) the work described in the work item.

3. Requirement and Code: a link between a requirement and its code where the code
realizes (in part or whole) the requirement.

For comparing precision and recall across experiments, another metric known as F -Measure
exists. F2-Measure is a variant of F -Measure, which weights recall values more highly
than precision [Cleland-Huang et al. (2010)]. All metrics are computed as follows:

115



CHAPTER 6: AN EMPIRICAL STUDY USING THE TRACEABILITY APPROACH

Precision =
RelevantLinks ∩RetrievedLinks

RetrievedLinks
(6.1)

Recall =
RelevantLinks ∩RetrievedLinks

RelevantLinks
(6.2)

F2Measure =
3 ∗ Precision ∗Recall

(2 ∗ Precision) +Recall
(6.3)

While the links between requirements and work items and work items and code are
created by the developers themselves, the links between requirements and code are
automatically created by the inference algorithm (see Section 4.3.3). UTC does not
provide the functionality to manually create links between requirements and code. As our
approach creates links during development at the end of each sprint, we are interested in
the precision and recall per sprint (links only created during the sprint), aggregated from
sprint to sprint (all links created until a particular sprint) and at the end of the project.

UNICASE uses the EMFStore framework for storing and versioning all artifacts and their
changes. We use EMFStore to access all artifacts per sprint and at the end of the project
to calculate precision and recall. We manually identified all correct links and calculated
precision and recall with the given equations. During calculation, we also considered
that a link can be correct in one sprint, but the same link can become incorrect in the
next sprint or at the end of the project, because the artifacts may have changed during
the project. For example, a correct link between requirement A and code artifact X is
created in sprint 1. If requirement A changes during sprint 2 , code artifact X could be
no longer related to the requirement, but a new code artifact Y was created and linked
to requirement A. Thus, the link between requirement A and code artifact X would be
incorrect in sprint 2, but remains correct in sprint 1.

Table 6.2 shows the research questions (F-RQ1 to F-RQ8) and corresponding hypothe-
ses (F-H1 to F-H8). For F-RQ1 to F-RQ6, we used the scale of 80% or higher for
precision and recall in the hypotheses, because results on this scale indicate that an
approach delivers high quality links, which is comparable to manually performed link-
age [Maeder & Gotel (2012)]. As all traceability links are created by either one of the
processes, we measure how often each traceability link creation process is executed (see
F-RQ7 and F-H7). Processes B and C only create links between work items and code.
Since process A creates traceability links between requirements and work items as well as
between work items and code, and traceability links are inferred between requirements
and code, we analyzed this process in more detail (see F-RQ8 and F-H8).
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Table 6.2: Feasibility Research Questions & Hypotheses
Research Question Hypothesis

F-RQ1: What is the precision and recall of the cre-
ated links between requirements and work items "per
sprint" and at the "end of the project"?

The hypothesis F-H1 is that high values for
precision and recall will be achieved, which
means 80% or more.

F-RQ2: How does the precision and recall of the links
between requirements and work items develop from
sprint to sprint in the project?

The hypothesis F-H2 is that precision and re-
call will not fluctuate considerably (more than
20%) from sprint to sprint in the project.

F-RQ3: What is the precision and recall of the cre-
ated links between work items and code "per sprint"
and at the "end of the project"?

The hypothesis F-H3 is that high values for
precision and recall will be achieved, which
means 80% or more.

F-RQ4: How does the precision and recall of the links
between work items and code develop from sprint to
sprint in the project?

The hypothesis F-H4 is that precision and re-
call will not fluctuate considerably (more than
20%) from sprint to sprint in the project.

F-RQ5: What is the precision and recall of the cre-
ated links between requirements and code "per sprint"
and at the "end of the project"?

The hypothesis F-H5 is that high values for
precision and recall will be achieved, which
means 80% or more.

F-RQ6: How does the precision and recall of the links
between requirements and code develop from sprint to
sprint in the project?

The hypothesis F-H6 is that precision and re-
call will not fluctuate considerably (more than
20%) from sprint to sprint in the project.

F-RQ7: How often is each traceability link creation
process executed?

The hypothesis F-H7 is that all processes are
executed equally frequently.

F-RQ8: What is the precision and recall for all links
per sprint created by process A?

The hypothesis F-H8 is that high values for
precision and recall will be achieved, meaning
80% or more.

6.1.2.2 Practicability

Practicability studies evaluate the practicability of a method when it is applied by the
approach users instead of the approach developers [Eusgeld et al. (2008)]. In our case,
the approach users are the undergraduate students in the three software development
projects. To evaluate the practicability of our approach, we build upon the Technology
Acceptance Model (TAM) [Davis et al. (1989)]. TAM is modeling the user acceptance
of information technology. The user acceptance of information technology in TAM is
determined by its perceived ease of use, a subjects’ intension to use it and its perceived
usefulness. The variables of TAM are as follows:

• Ease of use refers to the degree to which a person expects the target system to be
effortless.

• A person’s intention to use determines whether s/he can imagine using the technol-
ogy in the future or not.
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• Usefulness is defined as a person’s subjective probability that using a specific system
will increase her/his job performance within an organizational context.

We use a questionnaire (see Appendix C) to ask the subjects about the practicability of
UTC. In the questionnaire, we focus on the variables "ease of use" and "intention to use".
The variable "usefulness" cannot be considered because perceived usefulness can only be
investigated when subjects work in an organizational context [Davis et al. (1989)], which
is not the case with the subjects of our case study.

Table 6.3 shows the research questions (P-RQ1 to P-RQ6) and corresponding hypotheses
(P-H1 to P-H6). To answer P-RQ1 to P-RQ5, the subjects have to assess predefined
statements in the questionnaire. We use predefined statements to ensure the comparability
of the subjects’ responses. Furthermore, we ask the subjects to provide responses in free
text form to get individual feedback. As the number of available subjects is too small to
achieve statistical evidence, we wanted to collect as much individual feedback as possible.
Therefore, we ask the subjects to provide a rationale for each assessment. The subjects
score each statement on a six point Likert scale [Likert (1932)]. The Likert scale is an
established approach in survey research for scaling the subjects’ responses. If the majority
of subjects tick 4 or higher on the Likert scale, we consider the statement as confirmed.
If less than the majority of subjects tick 4 or higher on the Likert scale, we consider the
statement as rejected.

In addition to the results from the questionnaire, we analyzed the gathered project data
regarding one further aspect that is related to practicability (see P-RQ6 and P-H6 in Table
6.3). For each link UTC logged how often it is used. Each link has a "click counter" that
increases each time a developer uses this link for direct navigation. Thus, UTC measures
how often each link between requirements and code is used for direct navigation and
stores it in the project data. Because of the large amount of traceability links, we presume
that subjects use at least 20% of the inferred traceability links for direct navigation.

6.2 Results

In the following sections, we report on the results from the analyses of the feasibility
and practicability of our approach. As stated in Section 6.1.2, we manually identified
all correct traceability links between all artifacts. Wrong traceability links are created,
e.g., when developers change code artifacts that are not particularly related to a work
item. Missing links are created when work items are linked to the wrong requirement,
e.g., when several requirements have similar names like the use cases "Manage Request"
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Table 6.3: Practicability Research Questions & Hypotheses
Research Question Hypothesis

1. Questions in the Questionnaire regarding Creation of Links

P-RQ1: Is it easy to create traceability links
between requirements and work items?

The hypothesis P-H1 is that the subjects find it
easy to create traceability links between require-
ments and work items using UTC.

P-RQ2: Is it easy to create traceability links
between work items and code?

The hypothesis P-H2 is that the subjects find
it easy to create traceability links between work
items and code using UTC.

P-RQ3: Is it easy to infer traceability links be-
tween requirements and code?

The hypothesis P-H3 is that the subjects find
it easy to infer traceability links between require-
ments and code using UTC.

2. Questions in the Questionnaire regarding Usage of Links

P-RQ4: Is it easy to use the inferred traceability
links between requirements and code?

The hypothesis P-H4 is that the subjects find it
easy to use the inferred traceability links between
requirements and code using UTC.

P-RQ5: Do the subjects have a concrete intention
to use UTC?

The hypothesis P-H5 is that the subjects have a
concrete intention to use UTC.

3. Analyses of the Project Data

P-RQ6: How often do developers use the inferred
traceability links between requirements and code
for direct navigation?

The hypothesis P-H6 is that developers use at
least 20% if the inferred traceability links for direct
navigation.

and "Manage Result" in projects 2 and 3, or when these links are not created at all. Both
situations are potential causes of errors decreasing precision and recall in our approach.
However, it has been shown that such "linkage bias is more likely due to the development
process rather than being a side effect of the linking heuristics" [Nguyen et al. (2010)],
which means it is not uncommon to have linkage bias in development projects.

6.2.1 Feasibility

Figures 6.1-6.3 show the precision, recall, and F2-Measure for the traceability links between
requirements and work items (left), work items and code (middle), and requirements
and code (right) for the three development projects 1, 2, and 3. Straight lines represent
aggregated values from sprint to sprint, while dashed lines represent values per sprint.
Below, the research questions and hypotheses are discussed together for all three relation-
ships. Each project is discussed one after another. Finally, a conclusion is drawn for each
specific type of relation and the hypotheses are confirmed or rejected.
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Figure 6.1: Project 1: Precision, Recall, and F2-Measure for Links between Requirements
and Work Items, Work Items and Code, and Requirements and Code

Figure 6.2: Project 2: Precision, Recall, and F2-Measure for Links between Requirements
and Work Items, Work Items and Code, and Requirements and Code

Figure 6.3: Project 3: Precision, Recall, and F2-Measure for Links between Requirements
and Work Items, Work Items and Code, and Requirements and Code
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Requirements and Work Items (F-RQ1, F-RQ2): In the graphs, the trend for aggregated
precision and recall from sprint to sprint between requirements and work items is increasing
in all three projects. All graphs for F2-Measures from sprint to sprint have an upward trend.
At the beginning of all projects, the precision and recall for links between requirements
and work items were above 80%. All teams improved from sprint to sprint and achieved
higher results at the end of the project. Especially for project 1, the values for precision
and recall were particularly high for sprint 3, because the project manager of this sprint
did a good job and looked after the work items and the requirements very thoroughly.
After sprint 3, precision and recall declined slightly per sprint as new work items were
created, but not all of them were linked correctly to requirements, which represents linkage
bias according to [Nguyen et al. (2010)]. The aggregated values for precision and recall
recovered and reached a peak in sprint 6 with a precision of 0.871 and a recall of 0.916.
Since the values for precision and recall are higher than 80% in all projects per sprint
and at the end of the project, our hypothesis F-H1 is confirmed. As precision and recall
do not fluctuate considerably from sprint to sprint, hypothesis F-H2 is also confirmed.

Work Items and Code (F-RQ3, F-RQ4): For project 1, precision and recall per sprint and
from sprint to sprint decreased over time up to sprint 5 to a minimum of an aggregated
precision of 0.825 and a recall of 0.84. The reason for decreasing precision was that one
project member constantly kept implemented non-relevant additional code that was not
particularly related to the work described in the work items. This increased the number of
wrong traceability links, which decreased precision. The reason for decreasing recall was
that the project member used process C after development and linked some work items
unintentionally to the wrong revisions, which also represents linkage bias according to
[Nguyen et al. (2010)]. This resulted in missing traceability links, which increased recall.
As the project was about to finish in sprint 6, the remaining five team members tried
to improve their implementation of the remaining work items. The mentioned project
member stopped the unhelpful behavior of implementing unnecessary code and all project
members checked the links between work items and revisions and fixed wrong links, which
increased precision and recall per sprint between the work described in the work items
and the actual implementation in the code, resulting in an aggregated precision of 0.83
and a recall of 0.85. In contrast to project 1, precision, recall and F2-Measures kept
fairly stable during projects 2 and 3 with a slight increase at the end. Since the values
for precision and recall are higher than 80% in all projects per sprint and at the end of
the project, our hypothesis F-H3 is confirmed. As precision and recall do not fluctuate
considerably from sprint to sprint, hypothesis F-H4 is confirmed as well.
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Requirements and Code (F-RQ5, F-RQ6): As in project 1 one project member kept
implementing non-relevant code and unintentionally linking revisions to wrong work items,
the precision and recall for traceability links between requirements and code decreased
per sprint as well as aggregated from sprint to sprint. In sprint 6, the team refactored
the entire code base and removed unnecessary code introduced by one project member
and linked revisions to correct work items. It is interesting to note that the code was
so unnecessary that the developed software was still compilable and runnable without
any noteworthy missing features or necessary adjustments to the code base after the code
was removed. This refactoring was successful and increased precision and recall between
requirements and code at the end of the project, reaching an aggregated precision of
0.835 and a recall of 0.89. However, both values never reached the peak of the beginning
of the project, because at the beginning only few requirements and code were available
and precision and recall were particularly high. For projects 2 and 3, precision, recall
and F2-Measures kept increasing steadily from sprint to sprint. As both teams had only
little experience in using the frameworks and technologies for implementing an extension
for UNICASE (although they were introduced to these frameworks and technologies in
practical courses at our university before), they tried different implementations that were
not particularly relevant for the realization of the requirements. Therefore, the values
for precision and recall were low at the beginning of the projects, but steadily increased
as unnecessary code was removed from sprint to sprint, missing links to required code
were added, and the team learned better how to implement the required functionality. At
the end, this resulted in an aggregated precision of 0.88 and a recall of 0.92 for project 2
and an aggregated precision of 0.87 and a recall of 0.90 for project 3. Therefore, we can
confirm our hypothesis F-H5, as all values for precision and recall are higher than 80%
in all projects per sprint and at the end of each project. As precision and recall do not
fluctuate considerably from sprint to sprint, hypothesis F-H6 is confirmed as well.

How often is each of the three traceability link creation processes executed? (F-RQ7) As
described in Section 4.2, each revision is created or linked by one of the three traceability
link creation processes. This means that the number of revisions equals the number of
executed processes. UTC logged the used process for each revision. Figure 6.4 shows how
often each process was executed for each project. The majority of executed processes
were process B and C with 66%-72%. Process A was only used between 5%-10% in
all three projects. This rejects our hypothesis F-H7 that all processes are executed
equally frequently. Process A would require the subjects to select a work item before
development. As the selection of a work item also occurs during process B, the subjects
did not execute process A often, because they knew the other selection possibility would
come in process B. In process B the developer is reminded to select a work item before
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Figure 6.4: Execution of Traceability Link Creation Processes by Project

committing the changes in the code to the VCS to create a new revision. Furthermore, we
think that because the requirements did not change considerably during development in
projects 2 and 3, the subjects could better link work items during development (process
B) as the work described in the work item was more precise. In project 1, the subjects
first implemented code and committed a new revision to the VCS, and then linked a
matching work item to the revision (process C).

As all three processes are executed before, during or after implementation, we analyzed
more deeply how the subjects used the processes. To accomplish this, UTC logged in
detail how the subjects used the processes. As process A includes a validation step for
the captured requirements, UTC logged whether the subjects confirmed or rejected the
captured requirements. In all the cases it was used, the subjects confirmed the captured
requirements and did not reject any of them. The confirmed requirements were the
ones that were linked to the previously selected work item. Here, the subjects read the
work described in the work item and looked at the linked requirement(s) to get an even
better understanding. Therefore, this link was valid and did not have to be rejected. We
analyzed whether the subjects linked new requirements to the selected work item after
the execution of process A, but no subject linked new requirements afterwards. Both
processes A and B include a validation step for the changed code artifacts. Again, in
all cases the subjects confirmed all changed code artifacts and did not reject any code
artifacts. During the execution of process C, the subjects had to select a work item to
be linked to a previously created revision. We analyzed whether the subjects linked new
requirements to the selected work item after the execution of process C, but no subject
linked new requirements afterwards.

Process A (F-RQ8): Figures 6.5-6.7 show the precision, recall, and F2-Measure for the
traceability links by created process A in each particular sprint in all three projects.
Although process A was only executed between 5%-10% in all projects, it can be seen that
if it was executed, it achieved high results. In project 1, precision, recall, and F2-Measure
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Figure 6.5: Process A in Project 1: Precision, Recall, and F2-Measure for Links between
Requirements and Work Items, Work Items and Code, and Requirements and
Code

Figure 6.6: Process A in Project 2: Precision, Recall, and F2-Measure for Links between
Requirements and Work Items, Work Items and Code, and Requirements and
Code

Figure 6.7: Process A in Project 3: Precision, Recall, and F2-Measure for Links between
Requirements and Work Items, Work Items and Code, and Requirements and
Code

kept fairly stable with a slight upward trend for all traceability links between requirements
and work items, work items and code, and requirements and code, reaching a precision
between 0.90 and 0.92 and a recall between 0.92 and 0.94.
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In projects 2 and 3, the same trend can be recognized with slightly better values for
precision, recall, and F2-Measure. This means, if subjects used process A and implemented
code, they looked at the requirements and knew exactly what to implement and only
implemented/changed relevant code artifacts. However, sometimes the subjects changed
a small amount of lines of code, e.g. Java documentation, in a code artifact that was not
related to the work described in the work item.

6.2.2 Practicability

To assess the practicability of our approach, we used a questionnaire (see Appendix C)
to ask the subjects whether it was easy to create links (see Table 6.4), easy to use links
for direct navigation in UTC (see Table 6.5), and whether they have an intention to use
UTC (see Table 6.6).

Table 6.4: Ease of Use – Creation

It was easy to ... St
ro
ng

ly
D
is
ag
re
e

D
is
ag
re
e

R
at
he

r
D
is
ag
re
e

R
at
he

r
A
gr
ee

A
gr
ee

St
ro
ng

ly
A
gr
ee

(1) create links between requirements and work items 5 7

(2) confirm requirements captured during the work on a work item
(Process A)

8 4

(3) link a work item to a revision before or during development
(Process A, B)

2 7 3

(4) link a work item to a previously created revision after develop-
ment (Process C)

2 3 5 2

(5) infer links between requirements and code 2 6 4

P-RQ1: Is it easy to create traceability links between requirements and work
items? These traceability links can either be created manually in UTC (1) or during
the execution of process A (2) (see Table 6.4). The majority of subjects ticked 5 on the
Likert scale, which confirms hypothesis P-H1. For question (1), the subjects provided the
feedback that while it was easy to link a requirement to a work item, it was harder to
link a work item to a requirement, because there was a large amount of work items in the
project and finding the right one required knowing the name of the work item. Therefore,
they did not "strongly agree" to question (1). For question (2), the subjects assessed that
it was easy to confirm the captured requirements, because they were pre-selected in the
confirm dialog. This required only one click to proceed to the next dialog for validating
the code artifacts.

125



CHAPTER 6: AN EMPIRICAL STUDY USING THE TRACEABILITY APPROACH

P-RQ2: Is it easy to create traceability links between work items and code?
These traceability links can either be created before or during implementation by executing
process A or B (3) as well as after implementation by executing process C (4) (see Table
6.4). Subjects ticked between 4 and 6 on the Likert scale, which confirms hypothesis P-H2.
For question (3), subjects provided the feedback that they liked that UTC reminded them
of linking a work item. However, again they had to search for the right work item which
required knowing the name. The subjects liked the ability to filter the dialog for selecting
a work item that was only assigned to themselves. For question (4), subjects "rather
agreed" by responding that they would like to be able to select more than one revision at
a time to be linked to a work item. Two subjects "rather disagreed", because currently it
is not possible to see which revision was already linked to a work item in the history of
the VCS. We will consider this feedback for improving UTC.

P-RQ3: Is it easy to infer traceability links between requirements and code?
Question (5) in Table 6.4 was concerned with the ease of inferring traceability links
between requirements and code. All the subjects ticked 4 or higher on the Likert scale.
The subjects confirmed the ease of use for inferring traceability links. Thus, hypothesis
P-H3 is confirmed. The subjects especially liked that the inference process is initiated
by a push of a button in UTC and all links are created automatically by the inference
algorithm. The subjects particularly liked the performance of the inference process. We
measured the performance and achieved on average about 80 milliseconds for 600 revisions
with linked work items and requirements for project 1. Thus, the subjects were able to
instantly create the traceability links and use them for direct navigation. However, we did
not conduct a comprehensive investigation of the performance of the inference algorithm.
Results can differ depending on the project data and the computer hardware used.

P-RQ4: Is it easy to use the inferred traceability links between requirements
and code? We asked the subjects whether it was easy to use the inferred traceability
links between requirements and code for direct navigation (see Table 6.5). As the majority
of subjects ticked 4 or higher on the Likert scale, P-H4 is confirmed. The subjects liked
that by opening a requirement in UTC, a list of linked code artifacts was automatically
presented (see Figure 5.16). With a single click on such a code artifact, the subjects
could navigate directly from the requirement to the code artifact (see Figure 5.17). The
subjects also liked that when they opened a code artifact in Eclipse, UTC showed all
linked requirements of this code artifact in a separate list (see "Requirements Context" in
Figure 5.19). However, two subjects responded that this list is not shown automatically
by UTC and had to be enabled manually, thus they ticked only "rather agree". We will
consider this feedback for improving UTC.
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Table 6.5: Ease of Use – Usage

It was easy to ... St
ro
ng

ly
D
is
ag
re
e

D
is
ag
re
e

R
at
he

r
D
is
ag
re
e

R
at
he

r
A
gr
ee

A
gr
ee

St
ro
ng

ly
A
gr
ee

use the inferred traceability links between requirements and code 2 6 4

P-RQ5: Do the subjects have a concrete intention to use UTC? In order to
determine the subjects’ intention to use our approach, we asked them whether they are
motivated to use UTC in the future. Table 6.6 shows their assessments.

Table 6.6: Intention to Use
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in the future for storing all artifacts (requirements, work items,
and code) in a development project

2 1 7 2

in the future for creating traceability links between all artifacts
(requirements, work items, and code) in a development project

2 8 2

as it is currently integrated in UNICASE 1 9 2

Table 6.6 shows the subjects mostly ticked 5 on the Likert scale. Thus, hypothesis P-H5
is confirmed. The subjects justified their statements by stating that the direct assignment
of the code changes in the form of a revision to work items (see Figure 5.22) is facilitating
teamwork and clarity in the long run. Two subjects "rather disagreed" with storing all
artifacts in one single environment, as they would have preferred to have quick web-based
access to the artifacts. Currently, the change of a single piece of information always
requires to open Eclipse with integrated UTC. The majority of subjects stated that they
especially liked the seamless integration of UTC in UNICASE and Eclipse.

P-RQ6: How often do developers use the inferred traceability links between
requirements and code for direct navigation? The subjects used a total of 25 of
387 links (6.5%) for project 1, 7 of 32 (21.9%) links for project 2, and 8 of 37 (21.6%)
links for project 3. Thus, our hypothesis P-H6 holds for projects 2 and 3, but needs to be
rejected for project 1. We noticed that particular types of links to code were used more
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often than others, especially the important code parts that comprise the core functionality.
In project 1, code artifacts containing the retrieval mechanisms for accessing the various
Internet data sources were used often. In project 2 and 3, code artifacts containing the
search procedures for finding missing links as well as the main code artifacts for creating
the user interface were used often.

6.3 Threats to Validity

[Runeson et al. (2012)] distinguish four different threats to validity in case study research:
internal, external, construct and reliability validity.

Internal Validity is concerned with the correlation between the investigated factors
and other factors [Runeson et al. (2012)]. The students knew that we had developed
UTC and thus might have been biased towards UTC. Therefore, we explicitly advised the
students to assess UTC objectively and that both, positive and negative feedback, are
desired. To decrease the variability of knowledge across students regarding the tracing
of requirements and code in UTC, we provided an introductory tutorial of UTC23. This
ensured that all students knew how to use UTC. We had no influence on how the students
created these links, we only ensured that they created links. This may have influenced
the motivation of the students to create links at all. This, in turn, could have an impact
on how well the students created the links. However, the good results for precision and
recall indicate that their motivation was no worse than usual. The assessment of each
created link is a manual task and cannot be automated. A potential bias is that the
assessment was performed by the first author. However, due to the manageable scale of
the projects, it was obvious whether a link was right or wrong.

External Validity is concerned with the extent to which the findings of a specific study
can be generalized [Runeson et al. (2012)]. Due to temporal restrictions, the sizes of the
development projects were limited, e.g. number of requirements and developed code. This
does not allow us to draw conclusions on larger projects. In the development projects, all
undergraduate students had basic knowledge in software engineering. However, no under-
graduate student had industrial experience. This does not allow us to draw conclusions
on more experienced developers from industry. However, case studies in an academic en-
vironment are common practice in empirical software engineering [Runeson et al. (2012)].
Studying approaches in practice is also rather difficult, as industry is rarely willing to use
research prototypes. Nevertheless, our projects contained situations common to industrial
projects, e.g., the elicitation of requirements by the participants (project 1) vs. a provided
23UTC on Google Code – https://code.google.com/p/unicase/wiki/TraceClient [retrieved: August,

2013]
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list with requirements (projects 2-3), changing requirements due to changed customer
demands (project 1), as well as communication problems with certain developers regarding
their task responsibility (project 1). Java and JavaScript were used as programming
languages. Even though we do not expect this, effects might be different for other pro-
gramming languages. During the projects we gave advice to the students and made sure
that they used UTC. The students may have behaved differently if they had not to use
UTC, e.g. storing some artifacts in a different CASE tool.

Construct Validity is concerned with the intended observations of the researchers
and their actual observations [Runeson et al. (2012)]. A possible threat to validity is
the inadequate usage of the variables of TAM in our questionnaire. Although TAM is
validated, the questionnaire could have measured something different than TAM, because
it was not evaluated under realistic conditions prior to the study.

Reliability Validity is concerned with the extent to which the data and the analyses are
dependent on the specific researchers [Runeson et al. (2012)]. As we wanted to evaluate
the feasibility of our approach, we had a great interest in the traceability links between
requirements, work items, and code. The students knew that we would look at those links
at the end of the project and our behavior could have influenced the students.

6.4 Related Work

In Table 3.7 in Section 3.2.3, we listed various approaches with empirical evidence creating
links between requirements and code that were identified by our systematic literature
review. From these approaches with empirical studies, some are related to our empirical
study. These empirical studies can be divided into two groups: studies evaluating the
creation and studies evaluating the usage of links between requirements and code.

6.4.1 Empirical Studies on the Creation of Traceability Links

As the manual creation of traceability links between requirements and code is error-
prone, time consuming, and complex [Spanoudakis & Zisman (2004)], research focuses on
(semi-) automatic approaches. Existing approaches with empirical evaluations use various
techniques, e.g., information retrieval [Antoniol et al. (2002)] [Marcus & Maletic (2003),
Marcus et al. (2005)] [De Lucia et al. (2007)], execution-trace analysis [Egyed (2003),
Eisenberg & De Volder (2005)], or a combination of techniques [Eaddy et al. (2008)].
However, in their evaluations all these approaches only focussed on the feasibility and not
on the practicability, as we did with our approach in this thesis.
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[Egyed et al. (2010)] investigated the effort of recovering traceability links between re-
quirements and code after development. In general, these traceability links were recovered
by project members who were not directly involved in the realization of a particular
requirement, but knew the code base. Our approach distributes the effort of creating
traceability links to all developers actively participating in the project while they perform
their implementation work.

6.4.2 Empirical Studies on the Usage of Traceability Links

[Maeder & Egyed (2011)] conducted a controlled experiment with 52 subjects (students
of computer science) performing 315 maintenance tasks on two third-party development
projects: half of the tasks with and the other half without traceability navigation. Their
findings show that subjects with traceability performed on average 21% faster and created
on average 60% more correct solutions, suggesting that traceability not only saves time
but can profoundly improve software maintenance quality. As our approach creates
traceability links between requirements and code during development, the traceability
links are readily available for software maintenance. However, in all our projects software
maintenance tasks did not have to be performed by the subjects as the development
ended when all requirements were realized and the duration was also fixed in time.

6.5 Discussion

As shown above, the hypotheses F-H1 to F-H6 for feasibility were confirmed. This
means that our approach creates correct traceability links between requirements and work
items, work items and code, and requirements and code with high precision and recall
during development. The processes were not equally frequently executed, which rejected
hypothesis F-H7. Process A was only used in 5%-10% of all three projects. However, if
process A was executed, it achieved high values for precision and recall, which confirmed
hypothesis F-H8.

The results for practicability from the questionnaires confirmed our hypotheses that our
approach is easy to use (P-H1 to P-H4) and the subjects have a concrete intention to
use our approach (P-H5). We had to partially reject our hypothesis P-H6, as in project 1
only 6.5% of the links were used for direct navigation between requirements and code. In
the empirical study of [Maeder & Egyed (2011)], the subjects mainly used traceability
links for direct navigation if they were available. Thus, one might think that also in our
development projects the traceability links should have been used more often. However,
in the three development projects, no maintenance tasks had to be performed by the
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subjects, like in the study of [Maeder & Egyed (2011)]. Furthermore, the subjects knew
the code base well and no new developer joined the team who was unfamiliar with the
code. We believe that the direct navigation will be used more often in projects where
new developers join the team who need to understand how the existing code artifacts
relate to the requirements. We did not have this situation in our projects. We think that
process A will be used more often in larger projects, as there was only a small amount of
requirements in our projects. Here, the subjects were very familiar with the requirements
and did not need to look at them often during development. We think that in larger
projects with more requirements it is more likely that the subjects will use process A,
because the subjects cannot keep every requirement in mind.

In the current approach, developers might make mistakes when adding non-related
requirements to a work item or implementing/changing code that is not described in the
work item. This would create incorrect traceability between these artifacts. However, this
risk is reduced since we let the developers validate all traceability links before they are
created. It has been shown that humans were better at validating links as opposed to
searching for missing links [Kong et al. (2011)]. This strengthens our approach of letting
the developers validate the links to be created instead of searching for missing links.

6.6 Summary

This chapter presented an empirical study based on the presented traceability approach
and its tool support. We applied both in three development projects conducted with
undergraduate students. Based on the data gathered in the projects, we have shown the
feasibility and practicability of our traceability approach and tool support in practice,
respectively. The empirical study fulfills two requirements defined in Section 3.4:

• Requirement 5: High-quality traceability links. The feasibility results (see
Section 6.2.1) indicate that our approach creates traceability links with 80% or higher
for precision and recall. Results on this scale mean that our approach delivers high
quality links comparable to manually performed linkage [Maeder & Gotel (2012)].

• Requirement 6: Easy to apply and use in practice. The practicability results
(see Section 6.2.2) indicate that our approach is easy to use in practice and that the
subjects used the created traceability links between requirements and code for direct
navigation. The approach works with the available and existing artifacts of the
development process and does not require the creation of new artifacts. Furthermore,
the traceability link creation processes (see Section 4.2) only slightly change the
usual development process, minimizing the additional work of the developers.
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Chapter 7
Assessing the Performance of the
Traceability Approach

No amount of experimentation can ever prove me right;
a single experiment can prove me wrong.

– Albert Einstein, 1879-1955 –

This chapter assesses the performance of the presented traceability approach in comparison
to an existing technique linking requirements and code. In the empirical comparison, we
focus on the feasibility, i.e. the quality of the achieved results in terms of precision and
recall. The empirical comparison is based on the requirements and code created during
the three development projects used in the empirical study of the traceability approach
(see Section 6.1.1 for an overview about the projects).

For the empirical comparison, our initial objective was to compare our approach to the
best approaches using IR techniques identified in the systematic literature review (see
Section 3.2.3). However, there are various issues that make it difficult to conduct an
objective comparison. According to the grand challenges of traceability, "researchers have
claimed successes in new traceability methods and techniques they have developed, but
there are no benchmarks enabling standard comparisons" [Cleland-Huang et al. (2006)].
Furthermore, it is not feasible, practicable, or sometimes simply not possible, to compare
our traceability approach to all approaches using IR techniques presented in Section 3.2.3.
This has four main reasons. First, some approaches do not provide any tool support
(e.g., [Marcus & Maletic (2003), Marcus et al. (2005)]). Second, some approaches only
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provide experimental tool support to demonstrate how the approach works in practice,
but this tool support is often not available publicly to be used by other researchers (e.g.,
[Eaddy et al. (2008)], [Gethers et al. (2011b)], [Ali et al. (2013)]. Third, some tools are
even not available upon request from the authors, e.g., due of licensing restrictions (e.g.,
[De Lucia et al. (2004), De Lucia et al. (2007)]). Fourth, some approaches only work
with requirements in a specific format, like scenarios (e.g., [Egyed & Gruenbacher (2002),
Egyed (2003), Egyed et al. (2007)]), which reduces their applicability for comparison
because we used a specific format for requirements ourselves: user tasks and use cases
(see Section 6.1.1).

[Keenan et al. (2012)] state that "although extensive research efforts in the past decade
have led to new discoveries and traceability solutions (...), these advances are hampered
because the stovepipe solutions of various research groups make it difficult to comparatively
evaluate and cross-validate solutions, or synthesize different algorithms in new and exciting
ways". Moreover, the authors conclude that "new researchers must invest significant
time recreating basic traceability functions and frameworks before they can even start to
investigate new solutions". To address these issues, [Keenan et al. (2012)] have developed
TraceLab24, which provides a "fully functioning experimental environment in which
researchers can compose experiments". TraceLab was developed to comparatively evaluate
traceability solutions.

Using TraceLab, we conduct a type of empirical comparison that is also performed by
other researchers, e.g., [Antoniol et al. (2000a), Antoniol et al. (2002), Helming (2011)]:
we compare our approach to a standard baseline IR technique. [De Lucia et al. (2012)]
state that there are mainly three different IR techniques of interest: Probabilistic
Model (PM), Vector Space-Based Model (VSM), and Latent Semantic Indexing (LSI).
[Antoniol et al. (1999), Antoniol et al. (2000d)] found out that VSM performs better
than PM. "LSI was developed to overcome the synonymy and polysemy problems, which
occur with the VSM model" [De Lucia et al. (2012)]. Therefore, we focus on LSI in our
empirical comparison.

The following Section 7.1 provides an overview about the theoretical foundation of LSI.
Section 7.2 introduces TraceLab, which we used to apply LSI. Section 7.3 describes the
experimental setup. The results of the comparison are presented in Section 7.4, while
Section 7.5 discusses the threats to validity. Section 7.6 provides a discussion of the
results and Section 7.7 summarizes the results.

24CoEST: Center of Excellence for Software Traceability – http://www.coest.org/index.php/tracelab

[retrieved: August, 2013]
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CHAPTER 7: ASSESSING THE PERFORMANCE OF THE TRACEABILITY
APPROACH

7.1 Latent Semantic Indexing

IR approaches have proven useful in recovering traceability links between free-text doc-
umentation, such as requirements, and code [Ali et al. (2011b)]. The foundation for
applying IR-based methods to traceability link recovery is the similarity between the
words in the text, which are contained in various software artifacts. A high textual similar-
ity means that the two artifacts probably share several concepts [Antoniol et al. (2002)]
and that, therefore, they are likely linked to one another. The underlying assumption is
that developers use "meaningful names for code items" [Antoniol et al. (2000b)], (e.g.,
classes, methods, functions, variables and types) and that the application-domain knowl-
edge that developers process when writing the code is often captured in these program
items. Thus, these program items can be analyzed to automatically link free-text doc-
uments, such as requirements, to code. A good overview about IR can be found in
[Singhal (2001)] and [De Lucia et al. (2012)].

According to [De Lucia et al. (2012)], "a common criticism of VSM is that it does not
take into account relations between terms". The authors use the example of "automobile"
and "car": having an "automobile" in one document and a "car" in another document
does not contribute to the similarity measure between these two documents. As already
stated above, "LSI was developed to overcome the synonymy and polysemy problems,
which occur with the VSM model" [De Lucia et al. (2012)]. LSI is based on the principle
that words used in the same contexts tend to have similar meanings. A key feature of LSI
is its ability to extract the conceptual content of a body of text by establishing associations
between those terms that occur in similar contexts. In LSI, "the dependencies between
terms and documents, in addition to the associations between terms and documents,
are explicitly taken into account" [De Lucia et al. (2012)]. "LSI assumes that there is
an underlying or so-called ’latent structure’ in word usage that is partially obscured by
variability in word choice, and uses statistical techniques to estimate this latent structure"
[De Lucia et al. (2012)]. For example, both "car" and "automobile" are likely to co-occur
in different documents with related terms, such as "motor", "wheel", etc. "LSI exploits
information about co-occurrence of terms (i.e., latent structure) to automatically discover
synonymy between different terms" [De Lucia et al. (2012)].

LSI works as follows: it creates a term-by-document matrix m×n, where m is the number
of all unique terms that occur within the documents, and n is the number of documents.
Then it applies Singular Value Decomposition (SVD) [Cullum & Willoughby (1998)] to
decompose the term-by-document matrix into the product of three other matrices:
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a term-concept vector matrix U , a singular values matrix S and a concept-document
vector matrix V .

A = U × S × Vt (7.1)

The singular values in S can be regarded as the impact certain parts of the matrix have.
These parts can be regarded as a "latent semantic" structure. By keeping just the first
k largest values in S, and subsequently in U and V , it is possible to construct a "LSI
subspace":

Ak = Uk × Sk × V k
t (7.2)

The LSI subspace can be regarded as a "noise reduction" for the former matrix, because
the lowest k values are eliminated. The new matrix is queried via a cosine function.
"The cosine of the angle between two vectors in this space represents the similarity of
the two documents (terms, respectively) with respect to the concepts they share. In this
way, SVD captures the underlying structure in the association of terms and documents"
[De Lucia et al. (2012)]. However, "the choice of k is critical: ideally, it is desirable to
have a value of k that is large enough to fit all the real structure in the data, but small
enough not to fit the sampling error or unimportant details" [De Lucia et al. (2012)].
Therefore, the selection of k is still an open issue [Lormans & Deursen (2006)].

7.2 TraceLab

Using TraceLab, researchers can design and execute experiments in a visual modeling
environment using a library of reusable components and third-party components developed
by other researchers. According to [Keenan et al. (2012)], "this research environment
lays a foundation for future advances in the field of traceability, and has the potential
to accelerate and shape future research and to remove currently inhibitive research
roadblocks". The TraceLab community offers a directory25 containing reusable third-
party components developed by other researchers. To apply LSI, we use a third-party
component26 developed and implemented by [Alhindawi et al. (2013)]. The authors
describe in detail how they developed this component and how it can be used in TraceLab.

TraceLab experiments are composed of a set of executable components and decision nodes.
In order to simplify the understanding, Figure 7.1 depicts a simple example experiment
using VSM. All nodes are laid out in the form of a precedence graph on a graphical

25CoEST: Component Directory – http://www.coest.org/index.php/tracelab/component-directory

[retrieved: August, 2013]
26CoEST: LSI Component – http://www.coest.org/index.php/tracelab/component-directory/

information-retrieval/lsi-alpha-component. Announcement of the LSI Component for TraceLab:
http://coest.org/coest-projects/boards/10/topics/34 [retrieved: August, 2013]
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canvas with a start- and end node. When an experiment is executed, TraceLab visually
depicts the progress by highlighting the components that are currently being executed.
Logging information defined in the component is displayed as output on the screen.

Figure 7.1: TraceLab Integrated Research Environment

7.3 Experimental Setup

The following sections describe the study context, research questions and hypotheses.

7.3.1 Study Context

For the empirical comparison, we used the requirements and code artifacts that were
created in the three development projects (see Section 6.1.1). However, we had to reformat
the requirements as plain text files so that they could be imported by TraceLab, as they
were stored in a proprietary format in UNICASE. The use cases contained actor- and
system steps that describe the actual interaction between a human that is using the
system. Thus, we created a plain text file for each use case containing the general textual
description of the use case itself, as well as all textual descriptions of the actor- and system
steps. Furthermore, we followed a step-by-step guide27 of how to create an LSI experiment
in TraceLab that resembles the steps of how LSI works described in Section 7.1.
27How To create an LSI experiment – http://www.cs.kent.edu/~bbartman/TraceLabComponents/

LSIPackage/Examples/index.html [retrieved: August, 2013]
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7.3 EXPERIMENTAL SETUP

Automatic IR approaches are often only used after development to create traceability links
between requirements and code [Cleland-Huang et al. (2012a)]. Thus, we also applied
LSI to the final state of all requirements and code artifacts of the three development
projects. However, UTC cannot be applied to the final state of all requirements and
code artifacts, as the traceability links between requirements and code artifacts created
by UTC reflect the behavior of the developers during development while they worked
on the work items. The inference algorithm uses the work items to create traceability
links between requirements and code artifacts during development. Thus, UTC uses
more information (i.e. work items) than LSI to create traceability links. To sum up, we
used the final state of the traceability links between requirements and code from the
three development projects created by UTC and compared them to the traceability links
created by LSI applied on the final state of the requirements and code artifacts at the end
of the three development projects. Thus, although the traceability links are created by
different techniques, they resemble the same final state of traceability links in the three
development projects.

To calculate precision and recall, TraceLab requires an answer matrix consisting of the
correct traceability links between requirements and code. TraceLab then compares the
results of the experiment to the answer matrix and identifies missing and incorrect
traceability links to calculate precision and recall. For the empirical comparison, we used
the same answer matrix of correct traceability links between requirements and code for
UTC and LSI (see Section 6.1.2).

7.3.2 Research Question & Hypothesis

The goal of this empirical comparison is to get an understanding of the feasibility of our
approach compared to the standard baseline IR technique LSI. Similar as in Section
6.1.2, we use the GQM template by [Basili et al. (1994)]. The goal can be reformulated
as: Analyze UTC and LSI for the purpose of understanding with respect to feasibility
from the viewpoint of approach developers. For comparing the quality of the traceability
links created by UTC and LSI, we again use precision and recall, which were also used
in the empirical evaluation (see Chapter 6). For comparing precision and recall across
experiments, we also use F2-Measure, which weights recall values more highly than
precision [Cleland-Huang et al. (2010)]. Please refer to Section 6.1.2 for all equations.

Table 7.1 shows the research question C-RQ1 and corresponding hypothesis C-H1. We
were interested in whether UTC creates traceability links with higher precision and recall
at the end of the project than LSI.
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Table 7.1: Comparison Research Question & Hypothesis
Research Question Hypothesis

C-RQ1: Does UTC create traceability links with
higher precision and recall at the end of the project
than LSI?

The hypothesis C-H1 is that UTC achieves
higher values for precision and recall than LSI.

7.4 Results

In the following section, we report on the results from the comparison. Table 7.2 provides
an overview about precision, recall, and F2-Measure of all two approaches (UTC and
LSI) for all three projects. The values for precision, recall, and F2-Measure for UTC
are the same as reported in Section 6.2.1. The values for LSI were computed using
TraceLab. The experiments showed the best results using the threshold selection strategy
with a threshold of ε = 0.7, which is also the most widely adopted threshold used for
LSI [De Lucia et al. (2012)]. A threshold ε is used to only retrieve the pairs of artifacts
having a similarity measure greater than or equal to ε [De Lucia et al. (2012)].

Table 7.2: Comparison Results of Traceability Links between Requirements and Code
Project 1 Project 2 Project 3

UTC LSI UTC LSI UTC LSI
Precision 0.835 0.275 0.88 0.31 0.87 0.32
Recall 0.89 0.841 0.92 0.85 0.90 0.89
F2-Measure 0.878 0.499 0.906 0.538 0.889 0.564

Does UTC create traceability links with higher precision and recall at the
end of the project than LSI? (C-RQ1): LSI creates about half as much wrong
traceability links as UTC, achieving only between 0.275-0.32 precision and 0.841-0.89
recall. These results mean that UTC and LSI found nearly the same amount of correct
traceability links between requirements and code artifacts. However, LSI creates much
more wrong traceability links as UTC in all three projects, which is reflected in a low
precision of 0.275-0.32, compared to 0.835-0.88 for UTC. Such results with low precision
and high recall are in line with the results achieved by other researchers applying LSI,
e.g., [Antoniol et al. (2002), Helming (2011)]. Considering F2-Measure, which enables a
comparison of precision and recall across different projects, it can be seen that UTC
performs considerably better than LSI in all three projects, sometimes twice as good.

We investigated more deeply why LSI only achieved such low precision. We think
that such low precision stems from the fact that certain terms used in the textual
description of the requirements can also be found in non-related code artifacts. Con-
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sider the following example from project 2, which comprises, amongst others, the two
use cases "Manage Results" and "Compare Results". The first use case "Manage Re-
sults" (The actor wants to manage the saved results...) has to be linked to, among
others, the three code artifacts ResultElement.java (for representing a single result),
ResultManager.java (for storing all results), and ManageResultsView.java (for display-
ing all results). The second use case "Compare Results" (The actor wants to compare
two different results....) has to be linked to CompareElement.java (for representing an
element during comparison), CompareResults.java (for the actual comparison of results),
and CompareTab.java (for displaying the results of a comparison in a tab). LSI now
creates correct traceability links between the use case "Compare Results" and the three
code artifacts CompareResults.java, CompareTab.java, and CompareElement.java, be-
cause the term "compare" is often used within them, e.g, by the constructors, various
methods, and in comments. However, in project 2 LSI also creates wrong traceability
links between "Compare Result" and ResultElement.java, ResultManager.java, and
ManageResultsView.java, simply because the term "result" is used very often in these
code artifacts. Thus, since LSI is only analyzing the textual similarity between the re-
quirements and code artifacts, it created far more wrong traceability links, simply because
the term "result" is used often in all of these artifacts, but in two different contexts. Since
UTC is not based on textual similarity, such traceability links are not created, because in
UTC only code artifacts that are changed in conjunction with a requirement through an
interlinked work item are linked together during inference. Therefore, UTC created far
less wrong traceability links than LSI. However, if the developers who are using UTC
would change code artifacts that are not related to the work described in a work item,
UTC would also create wrong traceability links. This situation occurred in project 1 and
was discussed in detail in Section 6.2.1.

As described above, LSI suffers from the problem that certain terms used in the textual
description of the requirements can also be found in non-related code artifacts. In all
three projects, UTC achieves a precision and recall that is better than the precision and
recall of LSI. Therefore, we can confirm hypothesis C-H1.

7.5 Threats to Validity

Similar as in Section 6.3, we use the differentiation by [Runeson et al. (2012)] to describe
the four different threats to validity: internal, external, construct and reliability validity.
Please refer to Section 6.3 for more details on each individual threat and what it concerns.
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Internal Validity: We used an abstract description of the requirements in the form of
use cases and user tasks during the software development projects. If other representations
of requirements would have been used, e.g., textual functional requirements, the results
in terms of precision and recall might have been different for LSI, because several textual
functional requirements would have been created instead of one use case. Furthermore,
the use of specific vocabulary in the textual descriptions of the use cases could have
influenced results in terms of precision and recall for LSI. However, we tried to reduce
this threat to validity since we also considered the actor- and system steps during the
transformation of the use cases, resulting in more available text that can be used during
the textual similarity analysis.

External Validity: Due to temporal restrictions, the sizes of the development projects
were limited, e.g., number of requirements and developed code. This does not allow us
to draw conclusions on larger projects. Furthermore, Java and JavaScript were used as
programming languages. Even though we do not expect this, effects might be different
for other programming languages.

Construct Validity: A possible threat to validity is the inadequate usage of TraceLab.
However, we mitigated this threat to validity by using proven and tested third-party
components28 from the TraceLab community component directory29, as well as using a
step-by-step guide30 for setting up an experiment using LSI in TraceLab.

Reliability Validity: It is expected that replications of the comparison should offer
results similar to the ones presented in this chapter.

7.6 Discussion

By considering F2-Measure for a comparison across all three projects, we conclude that
UTC outperforms LSI, which confirms our hypothesis C-H1. This IR technique only
produce low results in terms of precision, while achieving similar results in terms of
recall. Because our approach achieves 80% in terms of precision and recall, it creates two
times more correct traceability links than an approach using LSI. Therefore, the project
participants can to a greater extent rely on the created traceability links by UTC.

28CoEST: LSI Component – http://www.coest.org/index.php/tracelab/component-directory/

information-retrieval/lsi-alpha-component [retrieved: August, 2013]
29CoEST: Component Directory – http://www.coest.org/index.php/tracelab/component-directory

[retrieved: August, 2013]
30How To create an LSI experiment – http://www.cs.kent.edu/~bbartman/TraceLabComponents/

LSIPackage/Examples/index.html [retrieved: August, 2013]
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7.7 SUMMARY

In contrast to LSI which is fully automatic, our presented traceability approach relies on
the manual work of the developers to create correct traceability links between requirements
and work items, as well as between work items and code. For example, if the developers
change code artifacts that are not related to the work described in the work items, our
traceability approach would create incorrect traceability links.

There are further aspects that could be studied. An example for one further aspect would
be the effort of validating the traceability links. A project participant who is applying
IR-based approaches like LSI needs to validate all traceability links once they are created.
Since we provided TraceLab an answer matrix with all correct traceability links, the
validation was performed by TraceLab automatically. However, this answer matrix is
not available to the project participant who are using LSI to create traceability links.
The project participant needs to validate all created traceability links by himself/herself.
In the presented traceability approach, the validation effort is distributed to all project
participants during development. It would be interesting to measure how much time and
effort the project participants require to validate the traceability links after development
using IR-based approaches and during development using UTC.

7.7 Summary

This chapter assessed the performance of the presented traceability approach in comparison
to the standard baseline IR technique LSI. We used TraceLab to apply LSI on the data
from the three software development projects (see Chapter 6). The main finding of our
empirical comparison is that our presented traceability approach creates traceability links
between requirements and code with higher precision and recall than LSI. Thus, the
presented traceability approach fulfills the last requirement of the seven requirements
defined in Section 3.4:

• Requirement 7: Achieve higher quality of traceability links than other
existing approaches. Results show that the presented approach creates traceabil-
ity links with higher precision and recall than existing approaches using LSI.

This chapter concludes Part III of this thesis, which focused on the evaluation of the
presented traceability approach and its tool support UTC in practice. The next Part IV
wraps up this thesis and provides a conclusion as well as suggestions for future work.
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Summary
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Chapter 8
Conclusion and Future Work

If I have seen further, it is by standing on the shoulders of giants.

– Isaac Newton, 1642-1727 –

This chapter presents conclusions from the thesis. Section 8.1 provides a summary: it
reviews the problems of traceability creation that motivated the thesis, restates the
requirements, summarizes the approach, and shows how it meets the requirements.
Section 8.2 discusses limitations of the presented approach, while Section 8.3 describes
areas of future research.

8.1 Conclusion

In this thesis, an innovative approach for (semi-) automatically creating traceability links
between requirements and code during software development using work items from project
management is presented. The traceability approach comprises a Traceability Information
Model (TIM), three traceability link creation processes, as well as an algorithm for the
inference of direct traceability links between requirements and code using interrelated
work items. The traceability approach is implemented as an extension to the model-based
CASE tool UNICASE, called UNICASE Trace Client.

Both, the traceability approach as well as its tool support, were evaluated in two empirical
studies. The first empirical study applied the presented traceability approach in three
development projects conducted with undergraduate students. Based on the data gathered
within the projects, we have shown the feasibility and practicability of our approach
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in practice. The major finding of our evaluation is that our approach creates correct
traceability links with high precision and recall during development. Another finding is
that developers mainly used process B and C during development, while process A was
not often used. We think that process A would be used more often in larger development
projects. The subjects rated our approach and its tool support easy to use and used the
links between requirements and code for direct navigation. The second empirical study
assessed the performance of the presented approach in comparison to existing approaches
using the IR technique LSI. The comparison was executed on the same data as the
three development projects conducted with undergraduate students. Based on the results
regarding precision and recall of the created traceability links, we have shown that the
presented approach outperforms existing approaches using LSI in terms of the quality of
the created traceability links.

At the end of each chapter, we already discussed in detail the achieved results in accordance
to the requirements presented in Section 3.4. A brief overall summary of the requirements
is provided below:

• Requirement 1: Create traceability links (semi-) automatically during
development. The traceability link creation processes (see Section 4.2) support the
developers by (semi-) automatically creating traceability links during development.
Therefore, the traceability links are readily available to be used during development.

• Requirement 2: Exploitation of the links to and from work items. The
inference algorithm defined in Section 4.3 uses the links between requirements and
work items, as well as between work items and code, to create direct traceability
links between requirements and code.

• Requirement 3: Discarding obsolete traceability links. The presented ap-
proach also considers that over time, obsolete traceability links are discarded (see
Section 4.3.5).

• Requirement 4: Integrate traceability in developers work environment
and development process. UTC (see Chapter 5) integrates traceability links
between requirements, work items, and code in the integrated development environ-
ment and development processes used by the developers.

• Requirement 5: High-quality traceability links. The feasibility results (see
Section 6.2.1) indicate that our approach creates traceability links of high quality,
meaning 80% or higher for precision and recall.
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• Requirement 6: Easy to apply and use in practice. The practicability results
(see Section 6.2.2) indicate that our approach is easy to use in practice and that
the subjects used the created traceability links between requirements and code for
direct navigation.

• Requirement 7: Achieve higher quality of traceability links than other
existing approaches. The results from the empirical comparison (see Section 7.4)
show that the presented approach creates traceability links with higher precision
and recall than existing approaches using LSI.

Summing up, the presented traceability approach fulfills all requirements described
in Section 3.4. These requirements align with the grand challenges of traceability
[Cleland-Huang et al. (2006)]. Thus, the contributions presented in this thesis could
provide solutions to the challenges and problems presented in Section 2.1.1.4.

8.2 Limitations

The presented traceability approach also has some limitations, which are discussed below.

Developers might make mistakes when adding non-related requirements to a work item
or implementing/changing code that is not described in the work item. This would create
incorrect traceability links between these artifacts. However, this risk is reduced since we
let the developers validate all traceability links before they are created. It has been shown
that humans were better at validating links as opposed to searching for missing links
[Kong et al. (2011)]. This strengthens our approach of letting the developers validate the
links to be created instead of recovering links or searching for missing links. However, it
still represents a limitation to our approach.

As justified in Section 4.1.2, we chose to use code artifacts for our TIM which can either
contain code or represent files that are used within the code. This decision is supported
by other researchers, e.g. [Ali et al. (2013)]. However, VCSs also support change analysis
between two revisions on a more fine-grained scale, which is called "structured compare".
For two revisions, it is compared how the internal structure of the changed code artifacts
containing actual code changed. This "structured compare" then lists what structures have
changed, e.g., constructors, attributes or methods. An inference algorithm incorporating
a "structured compare" could potentially return more fine-grained results. However,
each programming language has its own structure. This would reduce the wide range
of applicability of the traceability approach, since for each programming language, a

146



8.3 FUTURE WORK

separate "structured compare" would have to be implemented. Nevertheless, if one is
willing to only focus on certain programming languages, e.g. Java, an inference algorithm
incorporating a "structured compare" could potentially retrieve results down to the level
of constructors, attributes or methods. For example, one would be able to identify which
attributes and methods make up the implementation of a requirement. This, in turn,
could provide more details during change impact analysis.

Another limitation is that our traceability approach needs to be implemented individually
for each integrated development environment. While we implemented it in UTC, which
integrates itself into UNICASE and the Eclipse environment, other integrated development
environments exist that are often used by practitioners, e.g., Microsoft Visual Studio.

8.3 Future Work

On the basis of the results presented in this thesis, the following potential avenues of
future research exist:

Improve inference algorithm: While we achieved good results during the evaluation of
the traceability approach, still wrong traceability links were created or some were missing
at all. Therefore, the inference algorithm could be improved further to increase precision
and recall. For example, currently the decisions to discard links are done by humans.
In future work, an inference algorithm could be implemented that relieves the humans
of making such decisions and applies advanced analysis and heuristics to automatically
decide which traceability links need to be discarded.

Implement traceability approach in other CASE Tools: Currently, the presented
traceability approach was only implemented as an extension to UNICASE. However,
as shown in Section 5.5, several other industrial tools fulfill the necessary prerequisites,
meaning they support requirements, project management and code implementation in a
single environment as well as traceability links between them. Examples for such industrial
applications are IBM Rational Team Concert and Polarion Requirements. In this thesis,
we chose UNICASE as a foundation because it is open-source and not commercial. This
would not have been possible with the other commercially available tools. Nevertheless,
the three traceability link creation processes as well as the inference algorithm could be
adopted by these commercially available tools.

Study the usage of traceability links during development in more detail: In
our empirical study, we looked at how traceability links between requirements code are
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used for direct navigation during development. [Bouillon et al. (2013)] identified a list of
29 usage scenarios of how traceability links are used in practice. It needs to be studied
in more detail how these traceability links could also be used in other usage scenarios
during development.

Support other types of artifacts: Currently the TIM supports artifacts from require-
ments engineering, project management and code implementation. The TIM could be
extended to support other types of artifacts. For example, before, during or after working
on a work item, developers make decisions. The decisions represent rationale that can
"serve as a form of corporate knowledge by providing insight into the history and reasoning
behind the system" [Burge & Brown (2008)]. Furthermore, this information "is especially
valuable during software development" [Burge & Brown (2008)]. The rationale created
during development could be linked to work items. Another type of artifact that could
be supported are test cases. During software development, various test cases are specified
and implemented to ensure that the implemented code meets the specified requirements.
Implemented test cases can also be considered as code artifacts. The presented traceability
approach could be extended to support test cases linked to requirements.

More empirical evidence: The empirical study presented in this thesis is the first
that comprehensively investigates the integration of requirements, work items, and code.
Empirical studies on the benefits of this integration can only be conducted as experiments
such as [Maeder & Egyed (2011)]. More such evidence is needed. Therefore, we hope that
in future work, the presented empirical study could be replicated in an industrial setting.
However, studying approaches in practice is rather difficult for the approaches providing
the links, as industry is rarely willing to use research prototypes. If the empirical study
is replicated in a larger industrial setting, it needs to be studied in more detail how the
three traceability link creation processes are used and why the developers did not often
use process A during development. In our three development projects, the developers
mainly used process B and C.

Examples of potential future work building upon the contributions of this thesis are as
follows:

Release management and strategic release planning: In release management, it
needs to be decided on which configuration a product is released and which features it
includes. During the release management it needs to be verified that the code, from
which the release is actually built, includes all features or requirements the release should
embody. However, it is generally assumed that a configuration of code already exists and
that it contains all required content. If it can be validated which features or requirements
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are included in the code of a release, the release management process can be improved,
e.g., assembling the code for the release autonomously. By specifying the base version
of code and a set of features or requirements to be included into the release, a system
could use the linked work items of the features or requirements to identify the code
artifacts that are required in the release. Therefore, a system should be able to merge the
implementation of all features or requirements into the code, ignoring already included
features or requirements. [Narayan et al. (2012)] made a first step into this direction, but
they only implemented a prototype tool and did not conduct an evaluation in practice.

Use traceability links to support decisions during development: The traceability
links between requirements and code can be used for decision support during development.
For example, if a requirement needs to be changed, its traceability links to the code can
be used to identify a starting impact set of code artifacts that are potentially affected
by the change. The analysis of the potential impact can be used to support decisions
that are made while changing the code artifacts during development. For example, the
potential impact affects a major component of a software system. However, changing this
component is not possible because this would require adapting various other components.
Therefore, the project participants can use the starting impact set to make a decision
that does not require extensive refactoring of the code artifacts, but still implements the
required change. Decision support systems could be extended to also consider traceability
links between requirements and code created during development.

Many challenges and problems that are listed in the grand challenges of traceability
[Cleland-Huang et al. (2006)] are still unresolved. We hope that this thesis functions
as a milestone as well as a starting point for future research and development in the
research area of tracing requirements and code during development, and that the presented
contributions help to overcome even more challenges and problems in the research area of
traceability in general.
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Appendix A
Requirements of UNICASE Trace Client

This section presents the user tasks and use cases that were used as a basis for developing
UTC. A brief overview of the requirements is given in Section 5.2. For describing user
tasks, we use the user task descriptions by [Lauesen (2003)]. The user tasks in Section
A.1 refer to the realizing use cases described in Section A.2. We specified only those user
tasks and use cases that are necessary to realize the new functionality of UTC. We did not
specify user tasks and use cases that are already implemented in Eclipse and UNICASE,
e.g., use cases like "Start UNICASE", "Quit UNICASE", "Manage Projects" etc.

A.1 User Tasks

UTC supports two user tasks. The user task of the project manager is "Project Integration
and Time Management" (see Table A.1). In the user task, the project manager focusses
on the management of traceability links between requirements and work items.

The user task of the developer is "Realizing Requirements" (see Table A.2). In this
user task, the developer implements and links code to work items using one of the three
traceability link creation processes (see Section 4.2) and uses the traceability links between
requirements and code for direct navigation during development.
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Table A.1: User Task "Project Integration and Time Management"
Name Project Integration and Time Management

Purpose (Goal) The goal of this user task is to manage the work items and their traceability
links during the project.

Frequency Often and at any time (depending on the user’s needs)

Actors Project Manager

Realizing
Use Case(s)

Manage Traceability Links

Sub Tasks
Sub Task Name Description Example of Solution
1. Show Requirements
Progress

Check the progress of requirements re-
alization

2. Discard Traceability
Links

Ensure the consistency of the trace-
ability links

3. Infer Traceability Links
Provide inferred traceability links be-
tween requirements and code at the
end of each sprint

Table A.2: User Task "Requirements Realization"
Name Requirements Realization

Purpose (Goal) The goal of this user task is to realize the requirements as they were
described in the work items.

Frequency Often and at any time (depending on the user’s needs)

Actors Developer

Realizing
Use Case(s)

Implement and Link Code to Work Items, Navigate between Requirements
and Code using Traceability Links

Sub Tasks
Sub Task Name Description Example of Solution

1. Apply Traceability Link
Creation Processes

Select a work item before or during de-
velopment, or link a work item after
development

2. Infer Traceability Links
Infer traceability links between re-
quirements and code during develop-
ment using interlinked work items

3. Direct Navigation
Use traceability links for direct naviga-
tion and visualization

A.2 Use Cases

The use cases realize the three traceability link creation processes (see Section 4.2), the
functionality to infer direct traceability links (see Section 4.3) and discard them (see
Section 4.3.5), as well as to use the traceability links for direct navigation. These use
cases support four of the seven requirements specified for the traceability approach in
Section 3.4:
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• Requirement 1: Create traceability links (semi-) automatically during
development. The (semi-) automatic creation of traceability links is supported
by Use Case A.4, which uses the three traceability link creation processes A, B, C
(see Section 4.2).

• Requirement 2: Exploitation of the links to and from work items. The
exploitation of the links to and from work items is supported by the Use Cases A.3
and A.4, which both infer traceability links between requirements and code using
interlinked work items (Section 4.3).

• Requirement 3: Discarding obsolete traceability links. The discarding of
traceability links is supported by the Use Case A.3, which uses described in Section
4.3.5.

• Requirement 4: Integrate traceability in developers work environment
and development process. The integration of traceability in the developers work
environment is supported by Use Case A.5, which describes how a developer can
use the traceability links between requirements and code to navigate between these
artifacts during development.

Workspaces describe data and system functions that are visible to the user of the system.
For describing the use cases, we specified the following workspaces.

• W1 Overview

W1.1 List Artifacts

• W2 Manage Traceability Links

W2.1 Requirements Progress

W2.2 Discard Traceability Links

W2.3 Infer Traceability Links

• W3 Work Items

W3.1 List Work Items

W3.2 Revision History

• W4 Traceability Links

W4.1 Requirements and Code

W4.2 Requirements Context

W4.3 Visualize Traceability Links
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A.2 USE CASES

Table A.3: Use Case "Manage Traceability Links"
Name Manage Traceability Links
Actor Project Manager
Supporting Actor -
Goal The actor wants to manage the traceability links during the project.
Precondition The system "UTC" is started. W1 Overview
Flow of Events Actor System

A1)
1.1) Actor chooses to view the progress
of requirements realization.
Next: S1

S1)
System executes the "Show Require-
ments Progress" function.
[SF: Show Requirements Progress]
W2.1 Requirements Progress

1.2) Actor chooses to change a require-
ment.
Next: S2

S2)
System executes the "Discard Trace-
ability Links" function.
[SF: Discard Traceability Links]
W2.2 Discard Traceability Links

1.3) Actor chooses to infer traceability
links at the end of a sprint.
Next: S3

S3)
System executes the "Infer Traceabil-
ity Links" function.
[SF: Infer Traceability Links]
W2.3 Infer Traceability Links

Exceptions -
Rules -
Quality
Requirements

-

Data,
System Functions

Data: Requirement, Work Item, Code Artifact, Revision
System Functions: Show Requirements Progress, Discard Traceability
Links, Infer Traceability Links

Postcondition Traceability links are managed. W1 Overview
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Table A.4: Use Case "Implement and Link Code to Work Items"
Name Implement and Link Code to Work Items
Actor Developer
Supporting Actor -
Goal The actor wants implement and link code to work items.
Precondition The system "UTC" is started. W1Overview
Flow of Events Actor System

A1)
1.1) Actor selects a work item before
development.
Next: S1

S1)
System executes the "Select Work
Item Before Development" function.
[SF: Select Work Item Before Develop-
ment]
W3.1 List Work Items
[Exception: No VCS Connection]

1.2) Actor selects a work item during
development.
Next: S2

S2)
System executes the "Select Work
Item During Development" function.
[SF: Select Work Item During Devel-
opment]
W3.1 List Work Items
[Exception: No VCS Connection]

1.3) Actor selects a work item during
development.
Next: S3

S3)
System executes the "Link Work Item
After Development" function.
[SF: Link Work Item After Develop-
ment]
W3.2 Revision History
[Exception: No VCS Connection]

A2) [optional]
Actor chooses to infer traceability
links at the end of a sprint.
Next: S4

S4)
System executes the "Infer Traceabil-
ity Links" function.
[SF: Infer Traceability Links]
W2.3 Infer Traceability Links

Exceptions [Exception: No VCS connection]
Work Item cannot be linked to Revision without VCS connection.

Rules -
Quality
Requirements

-

Data,
System Functions

Data: Requirement, Work Item, Code Artifact, Revision
System Functions: Select Work Item Before Development, Select Work
Item During Development, Link Work Item After Development, Infer Trace-
ability Links

Postcondition Requirements are realized. Revisions are linked to work items. Traceability
links are inferred. W1 Overview
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Table A.5: Use Case "Navigate between Requirements and Code using Traceability Links"
Name Navigate between Requirements and Code using Traceability Links
Actor Developer
Supporting Actor -
Goal The actor wants to use the traceability links between requirements and code

to navigate between these artifacts during development.
Precondition The system "UTC" is started. W1 Overview
Flow of Events Actor System

A1)
1.1) Actor chooses to view a list of all
requirements and their linked code ar-
tifacts.
Next: S1

S1)
System executes the "Show Traceabil-
ity Links between Requirements and
Code" function.
[SF: Show Traceability Links between
Requirements and Code]
W4.1 Requirements and Code

1.2) Actor selects a code artifact and
chooses to view its requirements con-
text.
Next: S2

S2)
System executes the "Show Require-
ments Context" function.
[SF: Show Requirements Context]
W4.2 Requirements Context

1.3) Actor chooses to visualize trace-
ability links as graph.
Next: S3

S3)
System executes the "Visualize Trace-
ability Links as Graph" function.
[SF: Visualize Traceability Links as
Graph]
W4.3 Visualize Traceability Links

Exceptions -
Rules -
Quality
Requirements

-

Data,
System Functions

Data: Requirement, Code Artifact
System Functions: Show Traceability Links between Requirements and
Code, Show Requirements Context, Visualize Traceability Links as Graph

Postcondition Actor navigated between requirements and code. W1 Overview
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Appendix B
User Manual of UNICASE Trace Client

Before using UTC, it needs to be installed and configured properly. In the following
sections, the installation process is described. Furthermore, a setup guide for UTC is
introduced and all its preferences are explained. We presume that Eclipse and UNICASE
are installed.

B.1 Installation

As a pre-requisite, the Eclipse plug-in Subversive is required for accessing the de-
veloped code in a Subversion (SVN) repository. Please install Subversive using the
following update site: http://download.eclipse.org/technology/subversive/0.7/

update-site/. Subversive Connectors are usually installed automatically after in-
stalling Subversive and restarting Eclipse. In case the connectors are not installed
automatically, please install them manually using this update site: http://community.
polarion.com/projects/subversive/download/eclipse/2.0/update-site/. ZEST
Framework is required for visualizing graphs. Please install ZEST using this update
site: http://download.eclipse.org/tools/gef/updates/. Please select only these two
ZEST plug-ins: Toolkit, Toolkit SDK. All other required plug-ins are identified/installed
automatically.

After installing all pre-requisites, please use the following update-site to install UTC:
http://unicase.googlecode.com/svn/trunk/other/heidelberg/trace/update/.
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B.2 SETUP GUIDE

B.2 Setup Guide

Using Subversive, a user has to enter username/password to access a SVN server. This
data is stored encrypted in the Secure Storage of Eclipse. Because each plug-in can
only access its own Secure Storage, UTC cannot use the already stored SVN reposito-
ries and usernames/passwords of Subversive. Therefore, the user has to first perform

(context menu on a project) and enter username/password for each
SVN repository (see repository list in view SVN Repositories in Subversive). In case
one is only accessing a repository anonymously, the option "Anonymous" can be enabled.

For example, http://unicase.googlecode.com/svn would be Anonymous since one
cannot commit to this repository. Only https://unicase.googlecode.com/svn (note
the https) allows committing files.

Please perform Register Repositories only after you added a new Repository to SVN.
You can skip already existing repositories by just selecting Cancel (see Figure B.1).

Figure B.1: UTC – Register Repositories

An information dialog is shown in case the registration was successful or not (see Figure
B.2).
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Figure B.2: UTC – Register Repositories Information Dialog

All repositories with the usernames/passwords are saved in the Secure Storage of Eclipse
under "org.unicase.trace" (see Figure B.3). The Secure Storage can also be deleted. This
requires a restart of Eclipse and again registering all repositories.

Figure B.3: UTC – Secure Storage
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B.3 PREFERENCES

B.3 Preferences

UTC provides various preferences that can be configured in Eclipse –> Preferences –>
Unicase.

Subversion Preferences

UTC needs to query SVN information after each Commit operation from SVN Server.
This query is delayed to wait until the SVN Server created new Revision by a pre-defined
query delay of 5 seconds. This query delay can be changed in case large Commit
operations, which are not finished in 5 seconds, will be performed.

Additionally, adding work items before Commit (see Processes A and B in Section 4.2)
can be enabled/disabled. This option is enabled by default (see Figure B.4).

Figure B.4: UTC – SVN Preferences
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User Interface Preferences

It can be enabled/disabled whether code artifacts shall be decorated with blue dots to
indicate that they are linked to requirements. This option is enabled by default. (see
"Show Trace Decorators" in Figure B.5). The linked requirements are shown in the view
Requirements Context.

Figure B.5: UTC – User Interface Preferences

Furthermore, it can be enabled/disabled whether project statistics shall be saved. This
option is disabled by default. The project statistics are stored inside a UNICASE
project in a document called "Statistics". These statistics are automatically managed
and are stored anonymously.
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Appendix C
Questionnaire

The following questionnaire (in German language) was handed to the students during the
empirical study described in Chapter 6 to assess the practicability of UTC.

This questionnaire is concerned with the application and usage of the UNICASE Trace
Client (UTC) in a software development project. UTC is an extension of the model-based
CASE tool UNICASE and integrates requirements management, project management
activities (hereafter called work items) and code in a single integrated environment.
Moreover, it allows to infer links between requirements and code based on work items.

We kindly ask you to answer the following questions and free text forms to evaluate the
statements. Please answer all questions completely and honestly. If you can not answer
any of these questions or any of the following statements, please give reasons why not.
Please provide a brief rationale for the evaluation of each statement. The questionnaire is
anonymous. Thank you for your help!
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APPENDIX C: QUESTIONNAIRE

1. Questions regarding the creation of links

a) Please describe the following activities that you have performed to create
links in UTC.

a) It was easy to ... St
ro
ng

ly
D
is
ag
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e

D
is
ag
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e

R
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r
D
is
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R
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r
A
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A
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St
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A
gr
ee

Rationale
(1) create links between requirements and
work items
(2) confirm requirements captured during
the work on a work item (Process A)
(3) link a work item to a revision before or
during development (Process A, B)
(4) link a work item to a previously created
revision after development (Process C)
(5) infer links between requirements and
code

b) What new features for the creation of links in UTC can you think of?

2. Questions regarding the usage of links

a) Please describe the following activitiy that you have performed to use links
in UTC.

It was easy to ... St
ro
ng

ly
D
is
ag
re
e

D
is
ag
re
e

R
at
he

r
D
is
ag
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e
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r
A
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A
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A
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ee

Rationale
use the inferred traceability links between
requirements and code
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b) What new features for the usage of links in UTC can you think of?

3. General Questions

a) Would you use UTC in the future?

I’m motivated to use UTC ... St
ro
ng

ly
D
is
ag
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e
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is
ag
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e
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e

R
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A
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A
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Rationale
in the future for storing all artifacts (re-
quirements, work items, and code) in a
development project
in the future for creating traceability links
between all artifacts (requirements, work
items, and code) in a development project
as it is currently integrated in UNICASE

b) What have you considered as good in the use of UTC?

c) What have you considered as bad in the use of UTC? Suggestions for
improvement are welcome.
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4. Comments

Do you have any further comments?
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