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Abelsche Eichsymmetrien und Instantonen mit Eichflüssen
in Kompaktifizierungen von Typ IIB und F-Theorie
Wir untersuchen die Rolle von Abelschen Eichsymmetrien in Typ IIB Stringtheo-
rie und ihrem Analogon in F-Theorie, wobei das Hauptaugenmerk auf U(1)en
liegt, welche in Typ IIB durch den geometrischen Stückelberg-Mechanismus mas-
siv werden. Wir präsentieren einen Vorschlag zur Beschreibung solcher geome-
trisch massiver U(1)en in F-Theorie mit Hilfe von nicht-harmonischen Formen
in der Kaluza-Klein-Reduktion. Dieser Vorschlag wird durch explizite Berech-
nung der effektiven F-Theorie-Wirkung und Vergleich mit den bekannten Typ
IIB Resultaten verifiziert. Desweiteren diskutieren wir, inwiefern Eichfluesse auf
D3-Instantonen die Ladung der Instantonen unter U(1) Eichsymmetrien und das
chirale Spektrum geladener Nullmoden beeinflussen. Die klassische Zustandssum-
me von M5-Instantonen in F-Theorie wird berechnet und mit den entsprechen-
den Resultaten fuer Typ IIB D3-Instantonen verglichen. Dieser Vergleich erlaubt
es uns, die physikalisch relevante Zustandssumme des M5-Instantons eindeutig
zu identifizieren. Schliesslich besprechen wir Auswahlregeln, welche die Abwesen-
heit von geladenen chiralen Nullmoden auf M5-Instantonen in Hintergründen mit
nichtverschwindendem G4 Fluss garantieren, und vergleichen diese Auswahlregeln
mit den entsprechenden Typ IIB Resultaten. Im Anhang wird die dimensionale
Reduktion der effektiven M-Theorie-Wirkung in der demokratischen Formulierung
durchgeführt.

Abelian gauge symmetries and fluxed instantons
in compactifications of type IIB and F-theory
We discuss the role of Abelian gauge symmetries in type IIB orientifold compact-
ifications and their F-theory uplift. Particular emphasis is placed on U(1)s which
become massive through the geometric Stückelberg mechanism in type IIB. We
present a proposal on how to take such geometrically massive U(1)s and the as-
sociated fluxes into account in the Kaluza-Klein reduction of F-theory with the
help of non-harmonic forms. Evidence for this proposal is obtained by working
out the F-theory effective action including such non-harmonic forms and match-
ing the results with the known type IIB expressions. We furthermore discuss how
world-volume fluxes on D3-brane instantons affect the instanton charge with re-
spect to U(1) gauge symmetries and the chiral zero mode spectrum. The classical
partition function of M5-instantons in F-theory is discussed and compared with
the type IIB results for D3-brane instantons. The type IIB match allows us to
determine the correct M5 partition function. Selection rules for the absence of
chiral charged zero modes on M5-instantons in backgrounds with G4 flux are dis-
cussed and compared with the type IIB results. The dimensional reduction of the
democratic formulation of M-theory is presented in the appendix.
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Chapter 1

Introduction and summary

String theory has been amongst the most-studied subjects in fundamental theo-
retical physics for over four decades. The original interest in studying a theory
based on quantised strings was sparked mainly by two key observations. One is
the fact that the extended nature of the string worldsheet allows for the formula-
tion of a consistent scattering theory that avoids the UV divergences ubiquitous
in quantum field theory. The second crucial point is the observation that the
spectrum of massless states obtained by quantising the string oscillations always
includes states that can be understood as belonging to a symmetric 2-tensor, the
graviton [1–3]. This tantalisingly suggests that string theory has the power to
reconcile the subjects of quantum mechanics and general relativity, and to this
day string theory remains arguably the most promising candidate to describe such
a theory of quantum gravity.
Over the years, a large number of significant discoveries have transformed our
understanding of string theory. In fact, starting with the basic idea of a quantised
string a number of quite different approaches have been developed to construct
ever more phenomenologically viable theories. These approaches have led to sev-
eral distinct string theories which on the surface appear to be quite different from
one another, making string theory as a whole an extremely broad subject. More
recently, evidence of striking duality relations between the different string theories
has been found. These discoveries not only pull the subject area closer together
again, but also intriguingly hint at the presence of an as yet undiscovered funda-
mental theory unifying the different manifestations of string theory [3].
While the first investigations into string theory focused on a purely bosonic formu-
lation, it is clear that fermionic degrees of freedom must also be included if string
theory is to have any chance of describing our visible universe. Various construc-
tions to achieve this were developed in the 1970s and 1980s. These constructions
differ in the field content and quantum spectrum of the string worldsheet theory
and lead to 5 different branches of string theory. Two of these branches are the
so-called heterotic string theories with gauge group SO(32) and E8 × E8, while
the remaining three are known as type I, type IIA and type IIB string theory.

1



2 Chapter 1: Introduction and summary

All of these theories exhibit supersymmetry relations between the bosonic and
fermionic parts of the spectrum1, and are thus collectively known as superstring
theories.
The first string theories to attract widespread attention in the physics community
were the heterotic and type I string theories. This interest was due to the fact
that these theories naturally include gauge symmetries and thus offer a chance to
not only describe a viable theory of quantum gravity, but to combine gravity with
the gauge theories of the Standard Model of particle physics in one unified theo-
retical picture [1–3]. In the heterotic formulation, gauge symmetries arise directly
from symmetries of the worldsheet field content of oriented closed strings [5–7].
In type I and type II theories on the other hand, gauge symmetries appear when
open strings are taken into account2. When quantising open strings it is necessary
to specify suitable boundary conditions, which can be of Dirichlet or von Neu-
mann type. Allowing for Dirichlet boundary conditions clearly breaks spacetime
Poincaré invariance and effectively introduces surfaces known as Dirichlet-branes
or D-branes on which the open strings end [2, 3]. To avoid breaking Poincaré
invariance, string theorists initially focused on open strings with von Neumann
boundary conditions only, or in other words on situations in which the D-branes fill
spacetime completely. In 1984, Green and Schwarz [8] made the crucial discovery
that anomaly cancellation, which is required for a consistent theory, occurs in the
context of type I string theory if and only if the open string gauge group is SO(32).
Together with the construction of the first heterotic string theories, which took
place around the same time, this discovery sparked the so-called first superstring
revolution and initiated a period of intense study of type I and heterotic string
theory.
A striking feature of all the superstring theories mentioned above is that their
mathematical consistency requires the background spacetime to be 10-dimensional
[1–3]. To reconcile this with the fact that our universe appears to be 4-dimensional
at experimentally accessible energy scales, it is necessary to consider a process
known as compactification. Essentially, this amounts to assuming that the back-
ground spacetime M10 in which the strings propagate is given by a suitable prod-
uct of a non-compact, maximally symmetric 4-dimensional spacetime M4 and a
compact 6-dimensional ’internal’ space M6

M10 ∼M4 ×M6. (1.1)

In such a scenario, the size of M6 must be sufficiently small in order to explain
why it has so far escaped direct experimental detection.
A crucial aspect of such compactifications is that many features of the effective
4-dimensional theory, which is obtained after integrating out the internal space,

1In fact, the discovery of supersymmetry is closely tied to string theory because string world-
sheet actions involving fermions were amongst the first systems in which supersymmetry was
identified and consistently implemented [4]. Of course, it was subsequently realised that super-
symmetric quantum field theories can be studied without making recourse to string theory.

2Open strings are not possible in the heterotic setting.
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depend on the geometry of the compactification manifold M6. A famous early re-
sult along these lines is that the effective 4-dimensional theory exhibits unbroken
supersymmetry at the compactification scale if and only if M6 is a Calabi-Yau
space [9]. Strictly speaking this holds only for the simplest backgrounds in which
other background fields besides the metric are taken to be trivial. More generally
one may consider backgrounds involving topologically non-trivial field configura-
tions known as fluxes or sources for the fields such as D-branes. In this case,
requiring 4-dimensional supersymmetry leads to corrections both to the Calabi-
Yau geometry of M6 and to the pure product structure of the ansatz (1.1) [3].
While many of these effects can be treated as small corrections and neglected in a
first approximation, let us already mention one result which will play an important
role in the following. Namely, in the presence of D-branes the consistency of the
theory requires M6 to be a geometric quotient of a Calabi-Yau manifold known
as a Calabi-Yau orientifold [10]. Of course, it is in principle also possible to con-
sider compactifications to a non-supersymmetric 4-dimensional theory. However,
the assumption of supersymmetry is very helpful from a technical perspective as
it greatly simplifies the process of finding suitable compactification geometries.
Furthermore, there is well-documented phenomenological motivation e.g. from
gauge coupling unification or the so-called hierarchy problem to consider models
in which supersymmetry is only broken at a scale some way below the compactifi-
cation scale3 [12]. The continued absence of any explicit experimental hints for low
energy supersymmetry at the LHC may lead to a change in perspective regarding
this point in the coming years, but throughout this thesis we follow the majority
of the historical string theory literature and assume unbroken supersymmetry at
the compactification scale.
From the discussion above it is clear that studying explicit string compactifica-
tions forms an essential part of the field of string phenomenology, which focuses
on deducing the effective 4-dimensional consequences of string theory. The con-
ventional approach towards deriving such 4-dimensional predictions from string
theory, which we will follow throughout this thesis, can actually be broken into
three distinct steps. The first step is to derive an effective action which encodes
the low-energy dynamics of string theory in the sense that it reproduces the string
theory scattering amplitudes of the lightest states. At the level of the massless
string states and the lowest levels of string perturbation theory one obtains the
famous 10-dimensional type I, type IIA and type IIB supergravity actions and
their heterotic cousins [1–3]. In principle, corrections to the effective actions can
be computed systematically by considering higher orders in string perturbation
theory, but in this thesis we will largely stick to the leading terms in the super-
gravity action. The second step on the way to a 4-dimensional effective theory is
to specify a consistent compactification background. As discussed in more detail
in chapter 2, this effectively means that one must specify the background flux and

3The compactification scale can vary from model to model, but throughout this thesis we
assume that it lies no lower than in the so-called LARGE volume models [11]. In these models
the compactification scale can be estimated to lie at about 1011 GeV, see section 3.1.1.
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D-brane configurations as well as the compactification manifold M6. Finally, the
effective 4-dimensional action can then be derived by performing a Kaluza-Klein
reduction of the fields in the 10-dimensional supergravity action and integrating
out the internal space M6.
As the metric is one of the dynamical degrees of freedom of string theory, the
background spacetime must be a solution of the string equations of motion4 [1–3].
This means that conceptionally the compactification ansatz (1.1) should actually
be considered as arising from a dynamical process, and not as an outside input
into the theory. From a theoretical perspective this fact can be simultaneously
viewed as one of string theory’s biggest strengths and one of its biggest weaknesses.
The reason is that, as mentioned above, the couplings and parameters of the 4-
dimensional effective theory are determined largely by the compactification geom-
etry. At least in principle, if one was able to understand how precisely the various
geometric parameters of the compactification are fixed dynamically5 one would
thus be able to essentially predict the 4-dimensional parameters. However, it has
become clear over the years that the vacuum structure of string theory is so rich
that much of the direct predictive power of string theory is lost. More precisely,
huge numbers of different 4-dimensional theories can be obtained depending on
which string vacuum is chosen for the compactification. In light of this fact, some
authors have advocated following a statistical approach and attempting to study
the probabilities of finding certain parameter values in the landscape of string the-
ory vacua [13,14]. A complementary approach, which will be followed throughout
this thesis, is to approach the problem from a model building perspective. By this
we mean that rather than attempting to derive general string theory predictions
from arbitrary compactifications one explicitly constructs classes of vacua which
exhibit certain phenomenologically desirable features. Examples of such features
may be low energy supersymmetry, a gauge group which accommodates that of
the Standard Model as a subgroup or a potential for moduli stabilisation. Within
these restricted classes of vacua, one may then look for generic predictions for the
low energy theory.
When aiming to construct a phenomenologically viable 4-dimensional model from
a string theory compactification, it is clear that one of the first things to consider
is the effective gauge group. As mentioned above, gauge groups arise naturally in
the context of type I and heterotic superstring theories, and initially most model
building efforts focused on these sectors of string theory. It had also been known
for a long time that gauge theories arise also in type II string theories if lower-
dimensional D-branes6 are included. However, such lower-dimensional D-branes
were typically disregarded for model building because they were thought to be

4More precisely, this is true for the entire vacuum configuration including also other back-
ground string fields beyond the metric.

5This problem is known as the problem of moduli stabilisation.
6By lower-dimensional we mean that the D-branes do not span all 10 spacetime dimensions. A

consistent, anomaly free type II string theory including only D-branes spanning all 10 dimensions
is identical to type I string theory [10].
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unstable and the introduction of lower-dimensional D-branes seemed somewhat
ad hoc. The picture fundamentally changed following the discovery by Polchinski
that D-branes form essential components of type II string vacua, because they
carry conserved charges with respect to a class of fields of type II supergravity
known as the Ramond-Ramond (R-R) form fields [10]. This also showed that
D-branes could be identified with a specific class of solutions of the supergrav-
ity equations of motion involving non-trivial profiles of the R-R fields. When
including D-branes in compactifications to 4-dimensions, consistency requires R-
R charge cancellation on the internal space. This can be achieved by consid-
ering compactifications on Calabi-Yau orientifolds, because such spaces involve
so-called orientifold planes which carry R-R charges of opposite sign to those of
the D-branes [10].
The discovery of the importance of D-branes in 1995 had major repercussions
for the field of string theory model building, and many string phenomenologists
subsequently switched their attentions to type II orientifold compactifications with
D-branes. The advantage of such models in comparison with compactifications of
heterotic or type I string theory is that it is very easy to tune the 4-dimensional
gauge group by specifying how the D-branes lie inside the compactification space
M6. In particular, it is reasonably straightforward to construct models with the
Standard Model gauge group or a closely related extension, without having to
take the detour via SO(32) or E8 as in heterotic or type I string theory [15, 16].
Both type IIA and type IIB compactifications have been investigated extensively
from a model building perspective in recent years [17]. The type IIB setting has
a slight advantage in that the D-brane geometry in type IIB compactifications
is mathematically slightly simpler than in the type IIA setting. This is also the
reason why many investigations into moduli stabilisation have focused on the
IIB sector [11, 18]. Throughout this thesis, we focus on the corner of the string
landscape comprising of type IIB vacua.
At around the same time as the importance of D-branes became clear, a number of
duality relations were discovered which could be used to relate compactifications
of different types of string theory7. This means that in many cases the specific
10-dimensional superstring theory and compactification manifold used to obtain a
given 4-dimensional model is actually only a matter of choice and computational
convenience, and the same 4-dimensional theory could also have been obtained
starting with a different theory. This realisation, together with the expansion
of the type II picture to include D-branes, led to a major paradigm shift in the
field of string model building which has become known as the second superstring
revolution. The appearance of the web of string dualities has been interpreted
as a tantalising hint that there may exist an as yet unknown fundamental theory
of which the various superstring theories are simply different limits [3]. A fur-
ther hint in this direction comes from the fact that some of the dualities involve

7A famous example is T-duality, which relates type IIB with D-branes to type IIA with
slightly different D-branes.
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the (unique) 11-dimensional supergravity theory. Clearly, for simple dimensional
reasons this supergravity cannot be understood as a low energy description of a
superstring theory, as was the case for the various 10-dimensional supergravity
theories. Nevertheless, the analogy strongly suggests that 11-dimensional super-
gravity should also be connected to some fundamental quantum theory which has
been named M-theory [19]. Various attempts have been made over the years to
construct this theory, for example as a theory of quantised membranes or as a ma-
trix theory, but a complete picture remains elusive to this day [3]. In this thesis
we will use the name M-theory to simply denote the 11-dimensional supergravity
theory.
The most important duality for the purposes of this thesis is a duality between type
IIB compactifications and compactifications of M-theory to three dimensions on a
specific type of 8-dimensional manifold M8. More precisely, the duality appears if
M8 is elliptically fibered over a 6-dimensional base. In this case, after taking the
limit of vanishing volume of the elliptic fiber one obtains a 4-dimensional theory
which can be regarded as a type IIB compactification on the 6-dimensional base.
The 4-dimensional theories constructed in this manner via the M-theory duality
are known as F-theory vacua [20]. Although they are effectively type IIB vacua, a
different name has established itself for F-theory vacua because they include some
strong-coupling features which are not directly visible in standard perturbative
IIB orientifold compactifications [21–23]. One such non-perturbative F-theory
effect, which is largely responsible for their recent phenomenological popularity,
is that F-theory models combine the comparatively easy model building of type
II theories with D-branes with the appearance of exceptional gauge symmetries
familiar from heterotic and type I models. This in particular makes it possible
to construct realistic grand unified (GUT) models based e.g. on the gauge group
SU(5) in F-theory. In perturbative type IIB vacua with SU(5) GUT gauge group
on the other hand certain phenomenologically required quark couplings are forced
to vanish [23]. This is the most famous example where the non-perturbative effects
that are automatically encoded in the F-theory construction have a crucial impact
on the effective 4-dimensional theory which cannot be seen directly in perturbative
type IIB compactifications.
The discovery of the apparent suitability of the F-theory construction for GUT
model building has led to a considerable amount of work being put into the study
of F-theory models in recent years, as reviewed e.g. in [22,23]. Because F-theory
can be viewed as a sort of non-perturbative extension of type IIB, it is concep-
tionally clear that many of the effects familiar from type IIB orientifolds should
have F-theoretic analogues. However, from the point of view of the actual compu-
tational formalism there are considerable differences between the IIB orientifold
construction and the F-theory construction via an M-theory compactification on
an elliptically fibered space. For this reason, the F-theoretic understanding of
some aspects which are relatively easy to understand in the type IIB setting has
remained incomplete to this day. The topic of this thesis is a discussion of the F-
theory uplift of two such classes of well-known type IIB effects, relating to massive
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and massless Abelian gauge symmetries and D-brane instantons.
Arguably the most important aspect of type IIB vacua whose F-theory uplift
has remained poorly understood until recently is the appearance of Abelian U(1)
gauge symmetries in the effective action [22,23]. Such Abelian gauge symmetries
are extremely common in type IIB orientifold compactifications, because a stack
of N D-branes leads to a unitary gauge group8 U(N) = U(1) × SU(N). The
description of non-Abelian gauge groups in F-theory, in this case the SU(N)
factor, is related to the degeneration of the elliptic fibration and has largely been
known since the early days of F-theory [24,25]. However, the situation regarding
the Abelian gauge factors is far less clear, and the precise aspects of the geometry
of the elliptic fibration that are responsible for the appearance of massless U(1)
gauge factors9 in F-theory have only been identified relatively recently [26–32].
Furthermore, it is well-known that in the type IIB setting even U(1) symmetries
which become massive via the so-called geometric Stückelberg mechanism can
have important consequences for the low energy theory [17]. The F-theory uplift
of such massive U(1)s is particularly complicated because they do not appear
in the usual harmonic Kaluza-Klein reduction of M-theory. The role of massive
Abelian gauge symmetries and the associated fluxes in F-theory was investigated
in reference [33], which forms the basis of large parts of chapter 3 of this thesis.
A further important ingredient of type IIB vacua whose F-theory uplift is not
yet completely understood is given by D-brane instantons. D-brane instantons
are D-branes which lie fully inside the compactification manifold M6 and are thus
pointlike from the point of view of the external spacetime M4. D-brane instantons
yield corrections to the low energy effective action which are non-perturbative in
the string coupling. At weak coupling these corrections are therefore generically
negligible in comparison with perturbative corrections [34]. Instantons can nev-
ertheless play a crucial role for certain quantities in the low energy action which
are protected from perturbative corrections due to U(1) symmetries or axionic
shift symmetries. A famous example of this is that D-brane instantons can induce
Yukawa-type couplings between charged matter fields which are forbidden at the
perturbative level due to U(1) symmetries [35, 36]. Furthermore, instantons play
a crucial role in many moduli stabilisation scenarios [11,18,37,38], due to the fact
that they involve a class of moduli fields which cannot appear in the perturba-
tive potential as a consequence of axionic shift symmetries. As is familiar from
instantons in quantum field theory, fermionic zero modes can cause the instan-
ton contribution to the effective action to vanish. Therefore evaluating the zero
mode spectrum is one of the most important tasks when computing an instanton
contribution. In reference [37] it was argued that in many phenomenologically
interesting IIB compactifications charged zero modes would affect instanton con-
tributions in such a way that the success of moduli stabilisation is endangered.

8Strictly speaking orthogonal or symplectic groups are also possible depending on the precise
location of the D-branes, but this will not be relevant for the moment.

9Here we mean additional massless U(1)s that are not associated with Cartan generators of
a non-Abelian part of the gauge group.
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However, it was shown in [39] that gauge flux on the instanton world-volume can
alleviate this problem by removing some of the charged zero modes.
The findings of [39] reinforce the fact that it is crucial to take into account the
full partition sum over all instanton configurations, and in particular over world-
volume fluxes on the instanton, when evaluating the instanton contribution to the
low energy effective action. As shown in [40], thinking in terms of the instan-
ton partition function rather than a single instanton configuration actually also
helps to understand the F-theory uplift of these type IIB effects. In particular,
reference [40] finds a one-to-one correspondence between the classical partition
function of M5-instantons in F-theory and the classical type IIB instanton par-
tition function10. This correspondence can in fact be used to identify the M5
partition function in F-theory, which is non-trivial to accomplish directly in the
F-theory picture. For model building purposes, it is often sufficient to demonstrate
that a certain type of instanton contribution is present in the model without hav-
ing to evaluate the entire instanton partition sum. Essentially, this boils down to
evaluating certain selection rules which guarantee the absence of fermionic zero
modes which could cause the instanton contribution to vanish. The selection rules
for the absence of chiral charged zero modes on M5-instantons in F-theory are
discussed in [40] and compared with the corresponding type IIB results. Just as
in the type IIB setting, an interesting interplay between the instanton zero modes
and the massless and massive Abelian gauge symmetries emerges. This makes
it clear that further investigations into both topics will be important for future
progress in F-theory model building and moduli stabilisation.
In the following we briefly outline the structure and the main results of the re-
mainder of this thesis. We begin in section 2.1 with a very brief review of the
basic definition of string theory using a quantised worldsheet action, before pro-
ceeding in section 2.2 to an overview of type IIB orientifold compactifications with
D-branes. As a motivation for the F-theory construction we discuss the problem
of D-brane back-reaction on the IIB compactification geometry in section 2.3. A
review of the construction of F-theory vacua via the compactification of M-theory
on elliptically fibered spaces is given in section 2.4.
Chapters 3 and 4 form the core of this thesis and focus on similarities and differ-
ences between the type IIB and F-theory descriptions of Abelian gauge symme-
tries and fluxed instantons, respectively. The role of U(1) symmetries in type IIB
compactifications is discussed in section 3.1, while section 3.2 contains a detailed
discussion of how the relevant effects can be replicated in the F-theory derivation
of the effective action. The central result of section 3.2, which is based on [33],
is that geometrically massive U(1)s can be explicitly made visible in F-theory
compactifications by including certain non-harmonic forms in the dimensional re-
duction. Strong evidence for this proposal is given by a detailed discussion of the
F-theory limit of a compactification including such non-harmonic forms, which

10More precisely, the match of the partition functions is obtained for a certain class of type
IIB instantons known as O(1) instantons.
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exhibits exactly the features that our IIB intuition leads us to expect. A brief
discussion of the geometric interpretation of both massless and massive U(1)s in
F-theory is given in section 3.3. Chapter 4 begins with a general review of the role
of D-brane instantons in type IIB string theory. Special emphasis is placed on the
role of world-volume flux, which was shown in [39] to influence the charged zero
mode structure and to allow some instanton configurations to contribute to mod-
uli stabilisation even though the contribution of the unfluxed instanton vanishes.
In section 4.2 we consider fluxed M5-instantons in F-theory and their relation to
fluxed instantons in type IIB. The main result, which was first given in [40], is that
the classical partition function of the M5-instantons can be identified unambigu-
ously using the duality with type IIB. We extend the discussion of [40] slightly by
presenting additional evidence for the form of the F-term supersymmetry condi-
tion for the M5 flux which was conjectured in [40]. We then proceed to discuss the
role of charged zero modes on M5-instantons in F-theory and consider how the
findings can be understood from the type IIB perspective. The analysis provides
convincing evidence that selection rules associated with geometrically massive
U(1) symmetries in type IIB continue to be relevant in F-theory, underlining the
importance of studying massive U(1)s in F-theory as in chapter 3 [40]. Finally,
the main text is supplemented by two appendices. In appendix A, we summarise
our conventions and present a number of mathematical definitions and theorems
that are used in the earlier parts of the thesis. Appendix B contains an explicit
discussion of the Kaluza-Klein reduction of the so-called democratic formulation
of the M-theory supergravity on an elliptically fibered complex fourfold. While
appendix B is in part based on [40], we significantly extend the analysis presented
there, which in particular allows us to explicitly identify the imaginary part of
one set of chiral fields associated with the Kähler moduli of the fourfold. This
imaginary part, which cannot be explicitly computed in the dimensional reduction
of the standard formulation of M-theory, is crucial for a precise match with the
type IIB theory and in order to determine the exact moduli dependence of the
effective action of M5-instantons.





Chapter 2

Low energy theories from
compactifications of type IIB
string theory and F-theory

In this chapter we begin with a very brief review of the fundamentals of string
theory. Many further details on the points we are only able to touch upon can be
found in standard textbooks on string theory such as references [1–3,41], which we
roughly follow in our presentation. We then specialise to type IIB string theory
and its orientifold compactifications, before reviewing how the geometric picture
of F-theory arises in this context and finally proceeding to more general features
of F-theory that are not visible in the perturbative type IIB setting. While clearly
a comprehensive review of these very extensive subjects is beyond the scope of
this thesis, we aim to introduce the main tools and concepts that will be needed
in the analysis of the later chapters.

2.1 From quantised strings to effective actions

The motion of a point particle in D-dimensional spacetime with metric gµν can be
described by its world-line. Such a world-line is a 1-dimensional submanifold of
spacetime which can be parametrised e.g. by the eigentime τ of the particle and
is embedded into spacetime by a set of functions Xµ(τ), µ = 0, ..., D − 1. The
action describing the motion of a (free) point particle is then simply the length of
this world-line

S = −m
∫
dτ

√
−gµν(X)∂X

µ

∂τ

∂Xν

∂τ
. (2.1)

Here m is the mass of the particle.
Bosonic string theory can be seen as arising from the obvious generalisation of
this description to the case of a 1-dimensional object or string. The motion of
such a string clearly traces out a 2-dimensional submanifold of spacetime - the

11
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worldsheet or world-volume. The generalisation of (2.1) is the Nambu-Goto action
measuring the area of this worldsheet

SNG = −T
∫
d2σ

√√√√− det
(
gµν

∂Xµ

∂σα
∂Xν

∂σβ

)
. (2.2)

As before, the functions Xµ(σα) parametrise the embedding of the world-volume
- parametrised by the worldsheet coordinates (σα) = τ, σ - into D-dimensional
spacetime. As suggested by the notation, τ ≡ σ0 is taken to be a timelike coor-
dinate on the world-sheet while σ ≡ σ1 is spacelike. The parameter T describes
the string tension and is the only dimensionful parameter appearing in the funda-
mental definition of string theory. Instead of the string tension we will often use
the string length scale `s or the Regge slope α′, which are related to T by1

T = 1
2πα′ = 2π

`2
s

. (2.3)

Although the Nambu-Goto action has the advantage of having a very clear ge-
ometric interpretation as the area of the string worldsheet, the presence of the
square root leads to problems when attempting to quantise the theory. To over-
come this difficulty, one typically introduces an auxiliary world-sheet metric hαβ
and considers the Polyakov action

SP = −T2

∫
d2σ
√
− deth hαβgµν

∂Xµ

∂σα
∂Xν

∂σβ
, (2.4)

which is classically equivalent to the Nambu-Goto action.
To specify the classical dynamics completely, the actions must still be supple-
mented with suitable boundary conditions chosen in such a way that the variation
of the action vanishes. There are two qualitatively different ways to achieve this,
corresponding to open or closed strings. In the closed string case the variable σ
is a periodic variable whose fundamental domain can be chosen to be 0 ≤ σ ≤ π
without loss of generality, and the boundary conditions are

Xµ(τ, σ = 0) = Xµ(τ, σ = π). (2.5)

In the open string case we may take the same domain for σ, but there are now two
possible boundary conditions that allow for the variation of the action to vanish.
One option is to fix the position of the string endpoints in space by imposing

Xµ(τ, σ = 0) = Xµ
0 (τ) , Xµ(τ, σ = π) = Xµ

π (τ), (2.6)

where Xµ
0 and Xµ

π are arbitrary but fixed functions. These conditions are known
as Dirichlet boundary conditions. While the position of the string endpoints are
fixed in the case of Dirichlet boundary conditions, there is non-zero momentum

1Throughout this thesis we always work in conventions where ~ = c = 1.
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flow off the end of the string. For this reason, the surfaces on which an open string
with Dirichlet boundary conditions ends must themselves be dynamical objects in
order to be able to absorb this momentum. These objects are known as Dirichlet
branes or D-branes, and will play a very important role in the following chapters.
The second option is to take so-called von Neumann boundary conditions, given
by

∂σX
µ(τ, σ = 0) = 0, ∂σX

µ(τ, σ = π) = 0. (2.7)

In contrast to the previous case, the momentum flow off the end of the string is
zero in the case of von Neumann boundary conditions. Note that for open strings
it is not necessary to take the same type of boundary conditions for all of the D
coordinates Xµ. In fact, even for just one fixed coordinate Xµ it is admissible to
impose Dirichlet boundary conditions at one end of the string and von Neumann
boundary conditions at the other end.
The equations of motion (e.o.m.) obtained from the Polyakov action (2.4) are the
vanishing of the energy momentum tensor

Tαβ = − 2
T

1√
−h

δSP
δhαβ

= 0 (2.8)

and
hαβ∂α∂βX

µ = 0. (2.9)

Apart from the usual diffeomorphism symmetry on the worldsheet, the Polyakov
action enjoys a Weyl symmetry under a conformal rescaling of the world-sheet
metric hαβ → exp(f(τ, σ)) hαβ. Note that this additional symmetry appears
only for the case of strings, where the world-volume is 2-dimensional, and would
be absent in a theory based on membranes or other higher-dimensional objects.
The local Weyl×diffeomorphism symmetry is large enough to allow us to always
find a gauge in which the world-sheet metric takes the form of a 2-dimensional
Minkowski metric2. After moving to such a flat gauge, the e.o.m. (2.9) simplifies
into the 2-dimensional wave equation. The general solution of this equation of
motion is a superposition of plane waves e−2in(τ−σ), the precise form of which
depends on the chosen boundary conditions.
To quantise the theory, the coefficients αµn of the waves e−2in(τ−σ) appearing in
the general solution of the e.o.m. are promoted into operators, and canonical
commutation relations

[αµn, ανm] = nδm+n,0g
µν (2.10)

are imposed. The operators αµn can then be interpreted as raising and lowering
operators belonging to different oscillation modes of the string and can be used
to create a Fock space of one-particle states in the usual manner. Note that as
the local symmetries of the worldsheet were used to fix the form of the worldsheet

2Such a choice may not be possible globally on worldsheets of more complicated topology,
but this potential subtlety will not be important for us.
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metric h, the e.o.m associated with the field h, i.e. the vanishing of the energy
momentum tensor (2.8), must now be imposed by hand.
From (2.8) the energy momentum tensor Tαβ is obtained as a function of the
fields Xµ. Due to the symmetries of the theory and the boundary conditions Tαβ
actually contains only one independent component in the case of open strings,
while there are two components for closed strings. For simplicity we will consider
the open string case in the following, although the main ideas can be carried over
straightforwardly to the case of closed strings. After plugging in the oscillator
expansion of the Xµ, one arrives at a similar expansion into plane waves for
the independent component of the energy momentum tensor. The coefficients
appearing in this expansion are known as the Virasoro operators and denoted by
Ln.
The Virasoro operators play a crucial role in the quantisation of the theory. Using
their expression in terms of the αµn together with the relation (2.10) one it is
possible to show that they obey the Virasoro algebra

[Lm, Ln] = (m− n)Lm+n + c

12m(m2 − 1)δm+n,0, (2.11)

with central charge c equal to the dimensionality D of spacetime. The appearance
of the Virasoro algebra is due to the fact that there is a residual symmetry which
is left unfixed even after imposing the flat gauge condition on the worldsheet.
This residual symmetry is given by conformal Killing transformations, i.e. diffeo-
morphisms whose effect on the worldsheet metric can be undone by a conformal
Weyl transformation. The Virasoro operators are generators of precisely these
residual gauge transformations, and the appearance of the central charge term in
their algebra signals the fact that this symmetry suffers from an anomaly after
quantisation.
In the quantum theory the condition that the energy momentum tensor must
vanish is rewritten in terms of the action of the Virasoro operators on physical
states. Due to the appearance of the central charge in (2.11), not all of the
operators can be chosen to annihilate the physical states. Instead, one imposes
the condition Lm − aδm,0 |φ〉 = 0, m ≥ 0 for all physical states |φ〉, where the
constant term a for m = 0 is an unknown normal ordering constant arising from
the moving the operators in L0 into the correct order.
Restricting the space of physical states by imposing the Virasoro constraints is not
quite sufficient to lead to a consistent, unitary quantum theory for arbitrary values
of the central charge c (or spacetime dimension D). For example, it is possible to
explicitly construct states fulfilling all Virasoro constraints but having negative
norm if a > 1, or if a = 1 and D > 26 (see e.g. [1] for an explicit construction).
It is possible to show that the free bosonic theory is free of negative norm states
and is unitary up to one-loop level if and only if a = 1 and D = 26. In other
words, (free) bosonic string theory would predict the existence of 26 dimensions
of spacetime.
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The underlying reason for the appearance of a critical number of dimensions in
string theory is a quantum anomaly of the conformal symmetry on the worldsheet.
This fact becomes much more clearly visible by considering BRST quantisation of
the worldsheet theory instead of the canonical quantisation mentioned above. As
part of the Faddeev-Popov gauge fixing procedure, a set of ghost fields is intro-
duced to take into account the diffeomorphism×Weyl symmetry of the worldsheet
theory. By an explicit computation it is easy to check that the Faddeev-Popov
ghosts contribute a value of cg = −26 to the central charge of the total Virasoro
algebra. It is thus clear that exactly 26 spacetime dimensions are needed to ensure
that the central charge of the Xµ system cancels the ghost contribution, such that
the total conformal anomaly vanishes.
Although it is consistent in D = 26 dimensions, the bosonic string theory dis-
cussed so far is clearly not much use as a description of our world simply because
it does not include fermionic degrees of freedom. In addition, in a flat background
spacetime the ground state of the theory is tachyonic, signalling an instability of
such backgrounds. Both of these problems are rectified when moving to super-
string theory. This amounts to introducing a set of worldsheet spinor fields3 ψµ

to partner the bosonic fields Xµ and modifying the Polyakov action (2.4) to4

SP = − 1
2π

∫
d2σ
√
− deth gµν

[
πT∂αX

µ∂αXν − iψ̄µρα∂αψν
]
. (2.12)

Here ρα denote 2-dimensional Dirac matrices and we have followed the conventions
of [1].
When choosing boundary conditions for the fermionic fields ψµ an additional sign
ambiguity appears which is not present in the bosonic case. Depending on the
choice of sign in the boundary conditions, one speaks of the Neveu-Schwarz (NS)
or Ramond (R) sectors. In the case of closed strings the sign may be chosen
independently for left- and right-moving modes, leading to 4 different sectors
known as the R-R, R-NS, NS-R and NS-NS sectors.
The superstring theory defined by (2.12) exhibits manifest worldsheet supersym-
metry and can be quantised in a similar manner to the bosonic theory discussed
previously. The worldsheet theory now admits a superconformal symmetry leading
to additional ghost fields appearing in the Faddeev-Popov gauge fixing procedure.
The contributions to the Virasoro central charge from the various ghost fields
partially cancel, leaving an overall ghost contribution of -15 to the central charge.
As each fermion field ψµ contributes 1/2 to the central charge, one obtains the
famous result that superstring theory requires D = 10 to guarantee absence of
the superconformal anomaly.

3It is also possible to introduce a different number of worldsheet spinor fields, which leads
to heterotic string theory. However, we focus here on the worldsheet action that leads to type I
and II string theory.

4For strings propagating in more complicated backgrounds, further terms may be added to
describe the interaction of the string with other background fields beside the metric g. Specifi-
cally, the fundamental string couples to the dilaton and Kalb-Ramond fields that are introduced
in section 2.2.1, but we will neglect these potential additional terms here for simplicity.
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In principle it would be possible to construct a large number of different su-
perstring theories simply by projecting to different combinations of the various
possible sectors of states mentioned above. However, additional consistency con-
ditions beyond the restriction to 10 spacetime dimensions must be fulfilled in order
to obtain a consistent interacting theory, which rule out most of these would-be
superstring theories. When calculating string scattering amplitudes, asymptotic
in-going and out-going states are mapped to suitable operators known as ver-
tex operators. The scattering amplitudes are then obtained by evaluating the
path integral with the insertion of the vertex operators at different points on the
intermediate string world-sheet connecting the participating asymptotic states.
Due to the underlying superconformal symmetry of the theory these scattering
amplitudes must be invariant under modular transformations. Furthermore, the
products of vertex operators are not in all cases well-defined as the positions of
the operators on the world-sheet are varied.
In order to obtain a theory with consistent interactions it is necessary to project
out parts of the spectrum of states and keep only certain combinations of sec-
tors. This truncation of the spectrum is known as the Gliozzi-Sherk-Olive (GSO)
projection [42]. A further important aspect of the GSO projection relates to the
supersymmetry of the theory from the point of view of the 10-dimensional space-
time. Despite the fact that supersymmetry on the worldsheet is built in from the
beginning, spacetime supersymmetry depends on the choice of sectors included in
the theory. The GSO projection acts precisely in such a way that the resulting
theory exhibits spacetime supersymmetry.
Evaluating the abovementioned conditions in detail shows that there are in fact
only 4 consistent inequivalent theories of oriented closed strings which originate
from the worldsheet action (2.12) [2]. Two of these theories contain a tachyonic
state in the spectrum and are thus unstable, leaving two stable theories known
as type IIA and type IIB string theory because they lead to N = 2 supersym-
metry in 10 dimensions. When including both open and closed strings in a flat
10-dimensional spacetime without extra structure there is only one consistent
theory, which is known as type I string theory and leads to N = 1 spacetime su-
persymmetry. In addition, two further consistent theories in 10 dimensions may
be constructed, which can be seen as hybrids between bosonic string theory and
superstring theory and are known as heterotic string theories. Although these dif-
ferent string theories were initially thought to be independent, an intriguing web
of dualities connecting the different theories has been discovered over the years.
This suggests that they can all be though of as different limiting cases of an as
yet unknown underlying theory. Nevertheless, in this thesis we will focus almost
exclusively on type IIB string theory and the related M- and F-theories, while the
other string theories mentioned above will play at most minor roles.
Although string theory allows for the calculation of transition amplitudes between
different quantum states just like any other quantum theory, the techniques in-
volved are quite different from the field theoretic techniques generally used in



2.2 Type IIB SUGRA and orientifold compactifications 17

the field of particle physics. In order to begin analysing string theory from a phe-
nomenological point of view it is therefore advantageous to translate the dynamics
encoded in the scattering amplitudes of string theory into the language of an ef-
fective field theory, which gives rise to the same scattering amplitudes. In fact, we
will see that in particular in the case of type IIB string theory this reformulation
of the theory in terms of an effective action does more than just make it easier to
read off particle interactions and couplings. Namely, the effective action will make
apparent an additional symmetry and eventually lead us towards a duality with
M-theory via F-theory that was not visible from the fundamental formulation of
the type IIB string theory.

2.2 Type IIB SUGRA and orientifold compact-
ifications

2.2.1 The type IIB effective action of the closed string
sector

The starting point of our investigations will be the type IIB supergravity theory
in 10 dimensions, which is well-known to describe the low energy dynamics of the
massless degrees of freedom of closed type IIB string theory [1,2]. More precisely,
we will focus on the bosonic part of the action for simplicity, which in principle is
sufficient to reconstruct the full action by supersymmetry. The massless bosonic
spectrum of closed type IIB superstrings from which the action is constructed can
be split into the Neveu-Schwarz-Neveu-Schwarz (NS-NS) and Ramond-Ramond
(R-R) sectors and is given in table 2.1.

Field Symbol Spacetime transformation

NS-NS sector
Graviton / metric g Symmetric 2-tensor
Dilaton Φ Scalar
Kalb-Ramond B-field B2 2-form

R-R sector p-form potentials
C0 Scalar
C2 2-form
C4 Self-dual 4-form

Table 2.1: Bosonic fields of type IIB supergravity.

Due to the presence of an infinite tower of massive states in the spectrum the exact
effective action for the massless modes will include an infinite number of terms
with more and more derivatives (see e.g. the discussion in [1]). When calculating
scattering events at an energy E, a term with n such derivatives will give rise to
a contribution suppressed by a factor of (E/Ms)n, where Ms = `−1

s . As we are
interested in energies far below the mass scale of the lightest massive states of
string theory, we may safely keep only the leading powers of derivatives in our
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action. Complementary to this grouping in terms of powers of α′, the terms in the
effective action may be arranged into a power series in the string coupling gs = eΦ.
In the type IIB setting we will always assume to be in the weak coupling limit and
restrict ourselves to the leading order in gs. Hence the effective actions presented
in the following represent the leading terms in terms of powers of derivatives and
of the string coupling.
Before proceeding let us point out that the self-duality of the Ramond-Ramond 4-
form field makes a purely Lagrangian description of the dynamics of the massless
modes of closed type IIB superstrings impossible. Instead, one can only define
what is strictly speaking a pseudo-action in terms of an unconstrained 4-form field
and then impose the self-duality constraint by hand at the level of the equations
of motion. Keeping this caveat in mind, we will nevertheless drop the linguistic
distinction and speak simply of a type IIB supergravity action in the following.
In terms of the fields listed in table 2.1, this action is given in the string frame
by5 [2]

SIIB = 1
2κ2

10

∫
d10x

√
− det g e−2ΦR + 2

κ2
10

∫
e−2ΦdΦ ∧ ∗dΦ

− 1
4κ2

10

∫ [
e−2ΦH3 ∧ ∗H3 +G1 ∧ ∗G1 +G3 ∧ ∗G3

+ 1
2G5 ∧ ∗G5 +

(
C4 −

1
2B2 ∧ C2

)
∧H3 ∧ F3

]
.

(2.13)

Here we have used the field strengths

H3 = dB2,

Fp = dCp−1 , p = 1, 3, 5,

Gp =
{

F1,

Fp − Cp−3 ∧H3,

p = 1,
p = 3, 5.

(2.14)

In this language the self-duality constraint that must be imposed at the level of
the equations of motion reads

∗G5 = G5. (2.15)

Before proceeding, let us briefly consider the mass dimensions of the various fields
in (2.13). Throughout this thesis, we choose conventions in which the spacetime
coordinates xi as well as the metric components gij and all p-form fields are
dimensionless (see also appendix A.1). This means that also the 10-dimensional
gravitational coupling constant κ10 is dimensionless and is simply given by

κ2
10 = 1

4π . (2.16)

These conventions are particularly convenient for the dimensional reduction of the
action from 10 to 4 dimensions. To extract physical quantities like masses in the

5See appendix A.1 for details on the differential form notation used and in particular for our
conventions regarding the Hodge star operator ∗.
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4-dimensional theory it will then of course be necessary to rescale the spacetime
coordinates and perform a suitable Weyl rescaling of the metric6. This rescaling
reintroduces appropriate powers of α′, or equivalently of `s. This makes it clear
that although no explicit factors of `s or α′ appear in (2.13) in our conventions,
possible corrections which we have described as being of higher order in α′ are
actually of higher order in derivatives or in the metric in our conventions.
In many references, including the standard reference [2], the type IIB supergravity
action is written not in terms of C4 as above but rather in terms of a shifted field
related to C4 by

C̃4 = C4 −
1
2B2 ∧ C2. (2.17)

This choice would lead to a different definition of G5 and would simplify the
appearance of the Chern-Simons term in the IIB action. However, the advantage of
using the field C4 is that it is this field which appears in the standard expression for
the Chern-Simons action of D-branes, see e.g. the discussion in [43]. Furthermore,
the democratic formulation of type IIB supergravity, which we will introduce
momentarily, can be written more concisely in terms of C4 rather than the shifted
C̃4. We will therefore stick to using C4 throughout this thesis.
While the action (2.13) supplemented with the self-duality constraint (2.15) is fine
when considering only closed string effects, it is advantageous to use a slightly
different reformulation of the theory when including D-branes. The basic idea
stems from the fact that in 10 dimensions the theory of a p-form potential is dual
to that of an (8 − p)-form potential, where the roles of Bianchi identities and
equations of motion of the potential are simply exchanged and the field strengths
are related by

∗ Fp+1 = ±F9−p. (2.18)
This duality is the analog of the well-known electric-magnetic duality in 4 dimen-
sions. In the absence of any sources the choice of which formulation to use is
simply a question of preference, but this changes when sources are introduced in
the form of D-branes. A Dp-brane couples electrically to a p + 1-form potential
while forming a magnetic source for a (7 − p)-form potential. While the electric
coupling can be easily described by a term of the form

S ⊃
∫
Dp-brane

Cp+1 (2.19)

in the action, the magnetic coupling cannot be easily given in such a manner.
Therefore the question of which of the equivalent formulations of the theory is
best suited depends on the D-brane content of the model at hand.
The most flexible and at the same time the most symmetric choice is the so-called
democratic formulation [44, 45], which includes all p-form potentials Cp, p =
0, 2, 4, 6, 8 on an equal footing in the pseudo-action. Of course, the doubling of

6Note that large parts of the string theory literature, such as e.g. references [3, 17], work
directly with a metric related to our metric by such a Weyl rescaling such that κ2

10 = `8s/4π.
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the number of degrees of freedom in the pseudo-action must be compensated for
by introducing additional duality relations similar to the one given in (2.15). More
precisely, the new pseudo-action is defined by

SIIB = 1
2κ2

10

∫
d10x

√
− det g e−2ΦR + 2

κ2
10

∫
e−2ΦdΦ ∧ ∗dΦ

− 1
4κ2

10

∫ e−2ΦH3 ∧ ∗H3 + 1
2

∑
p=1,3,5,7,9

Gp ∧ ∗Gp

 , (2.20)

with the field strengths Gp given as before by

Gp =
{

F1,

Fp − Cp−3 ∧H3,

p = 1,
p > 1,

Fp = dCp−1 , p = 1, 3, 5, 7, 9.
(2.21)

The duality relations to be imposed after deriving the equations of motion from (2.20)
read

G1 = ∗G9, G3 = − ∗G7, and G5 = ∗G5. (2.22)

Note that the Chern-Simons coupling in the action (2.13) is no longer present
in the democratic action (2.20). Nevertheless, it can easily be checked that the
equations of motion derived from the democratic action with the field strengths
defined by (2.21) reduce precisely to the original equations obtained from (2.13)
when the relations (2.22) are imposed. In particular, the elimination of the re-
dundant degrees of freedom using the duality relations reproduces the effects of
the Chern-Simons coupling.
Furthermore let us emphasise that in the democratic formulation we can consis-
tently describe interactions between R-R fields and all types of D-branes using
terms in the action of the form (2.19). In other words, the magnetic interaction
between a Ramond-Ramond potential and a D-brane can be replaced by the more
easily treatable electric interaction of the brane with the dual potential. It is
due to this advantage that we will use the democratic formulation throughout the
majority of this thesis.
Each R-R potential Cp appearing in the IIB action is associated with an Abelian
gauge symmetry [45]. We denote the associated p-form gauge parameters by
Λp. To write down the associated gauge transformation in a concise form it
is convenient to combine the various parameters into a formal sum denoted by
Λ = ∑

p Λp. The gauge transformation can now be written as

Cp → Cp +
[
Λ eB2

]
p
, (2.23)

where [. . .]p denotes the p-form part of the formal sum of differential forms of
various degrees contained in the brackets. It is straightforward to check that
this transformation leaves the field strengths Gp and therefore also both the
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action (2.20) and the duality relations (2.22) invariant, provided only that the
gauge parameters Λp are closed forms. For the scalar field C0 the gauge trans-
formation (2.23) is simply a shift by a constant, explaining why C0 is sometimes
referred to as the R-R axion field. Finally, we note that a shift of B2 by an arbi-
trary closed 2-form is also a symmetry, because both the action and the duality
relations involve B2 only through the field strength H3. As we will discuss in more
detail in section 2.3.1, in the quantum theory the shift symmetries of C0 and B2
are broken to discrete sub-symmetries due to the fact that these fields appear in
the action of D(−1) and string world-sheet instantons, respectively.

2.2.2 Compactifications and Calabi-Yau orientifolds

String theory exhibits many beautiful theoretical properties that make it proba-
bly the most promising candidate theory available today for unifying gravity and
gauge theories into a common theoretical framework. Nevertheless, as with any
physical theory it is of course essential to work out string theory’s phenomeno-
logical implications at low energy scales, with the aim of eventually testing them
experimentally.
Having obtained the effective action given in the previous subsection, it is natural
to proceed in the usual manner by constructing a vacuum of the theory and
calculating the scattering amplitudes of asymptotic states within this background.
The canonical choice of vacuum to perform perturbation theory around would be
simple Minkowski space. However, the fact that string theory requires a 10-
dimensional spacetime for mathematical consistency while our visible universe
has only four dimensions means that one has to instead consider vacua involving
spacetimes of the general form

M10 = M1,3 ×M6. (2.24)

Here M1,3 denotes 4-dimensional Minkowski spacetime (or more generally a maxi-
mally symmetric spacetime), while M6 is a compact manifold of sufficiently small
size to have evaded direct experimental detection up to now.
Of course, the geometry of the internal manifold M6 is restricted by the fact that
the metric must form a solution of the equations of motion arising from (2.13).
Nevertheless, there is still an enormous freedom in the choice of M6. The situation
may be simplified by considering solutions with vanishing internal field strengths
H3, Fi = 0 and a constant dilaton profile as well as imposing that the theory after
compactification should exhibit some unbroken supersymmetry. Of course, what
is meant here is supersymmetry at the compactification scale, and supersymmetry
must still be broken by another mechanism at a lower scale. While of course not
strictly necessary, looking to preserve supersymmetry during compactification has
several advantages. From a phenomenological point of view it makes possible
models with low-energy supersymmetry, which exhibit the usual advantages of
such models such as alleviating the hierarchy problem. On a more technical



22 Chapter 2: 4D effective actions from IIB and F-theory

level, it can be shown that a compactification preserving supersymmetry will be a
solution of the equations of motion and hence a true vacuum of the theory [9], and
the supersymmetry equations are generally much easier to solve than the more
complicated equations of motion. Furthermore, supersymmetric compactifications
are automatically stable while the vacuum may be destabilised e.g. by tachyons
in the non-supersymmetric case.
In the absence of fluxes the requirement of supersymmetry requires M6 to be a
Kähler manifold and to admit a covariantly constant spinor, which means that
M6 must have SU(3) holonomy [9]. In other words, M6 must be taken to be a
Calabi-Yau manifold. In the following we will usually use the notation Xn or Yn to
denote Calabi-Yau manifolds of the complex dimension n. The situation changes
slightly if we consider compactifications involving either non-vanishing fluxes or
sources for the closed string fields, such as D-branes. In this case an ansatz of the
form (2.24) with a pure direct product metric is no longer possible and one must
instead consider a warped product in which the metric of the external spacetime
is scaled by a warp factor depending on the internal coordinates, as first noted
in [46]. For Dp-branes with p < 7 the warping can be seen as a local back-reaction
effect in the vicinity of the brane, and vanishes asymptotically as one moves away
from the source [47]. In the so-called probe brane approach one may therefore
consistently neglect warping effects as a first approximation. However, for D7-
branes back-reaction effects become more important and we will return to this
point in more detail in section 2.3.3.
Compactifying type II string theories on a Calabi-Yau manifold leads to a 4-
dimensional theory with N = 2 supersymmetry, as both gravitinos present in the
original 10-dimensional theory yield 4-dimensional gravitinos after dimensional
reduction. This situation is of course disfavoured phenomenologically due to the
somewhat restrictive nature of N = 2 supersymmetric theories. To eliminate
one of the supersymmetry generators and obtain a N = 1 theory one therefore
typically mods out the particle spectrum by a so-called orientifold projection. This
projection involves a world-sheet parity operation and an isometric involution σ
of the underlying Calabi-Yau manifold. In this case one speaks of compactifying
on a Calabi-Yau orientifold. In fact, partial supersymmetry breaking is not the
only reason to consider Calabi-Yau orientifolds, because orientifold geometries are
necessary for consistency when looking to add D-branes to the vacuum in order to
introduce non-Abelian gauge theories into the model. Implementing an orientifold
involution leads to the appearance of orientifold planes at the fixed locus of the
involution σ. These orientifold planes can be shown to carry tension as well as
being charged with respect to the Ramond-Ramond form fields. The charge and
tension of orientifold planes have the opposite sign to the charge and tension of
D-branes [10], which makes it possible to cancel the overall net charges in the
model as is necessary for consistency due to the compactness of M6. In type IIB
orientifolds σ must be taken to be holomorphic [48], and to preserve Poincaré
invariance it must act as the identity on the external spacetime. Therefore in
the models considered the orientifold planes will be a product of the external
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spacetime M1,3 with an even-dimensional submanifold within M6. Depending on
the choice of σ it is possible to obtain models with either O3- and O7-planes or
with O5- and O9-planes [48]7. As we will be primarily interested in type IIB
models with D7-branes, we will stick to the case with O3/O7-planes for easier
R-R tadpole cancellation.
As mentioned before, the full orientifold action is a combination of the geometric
orientifold involution and a parity operation on the world-sheet. Each field in the
type IIB spectrum given in table 2.1 picks up a particular sign under the world-
sheet parity operation. To obtain a well-defined state in the orientifold geometry
the fields must exhibit the correct parity under pullback along the orientifold invo-
lution to cancel the sign caused by the world-sheet parity. For future convenience,
we note that the parities of the various fields of table 2.1 in compactifications with
O3/O7-planes are given by [49]

σ∗F =
{
F,

−F,
F = g,Φ, C0, C4

F = B2, C2.
(2.25)

In the democratic formulation the fields C6 and C8 carry the same orientifold
parity as their respective dual fields C2 and C0.
At this point we should mention a slight caveat that allows certain discrete positive
parity B-field configurations to be switched on [50]. To make the distinction
between the parts with different orientifold parity clear we will in the following
sometimes explicitly decompose B2 = B+ + B−. The reason why non-zero B+ is
admissible is that, as noted at the end of section 2.2.1, the Kalb-Ramond field
enjoys a discrete shift symmetry B2 → B2 + δB. For certain discrete values of
B+ it is possible to find such a gauge transformation which precisely transforms
B+ = σ∗B+ into −B+, so that (2.25) is fulfilled up to a gauge transformation.
However, because the gauge transformations are generated by closed forms δB also
the positive parity part B+ of the Kalb-Ramond field must be closed. Therefore
the field strength H3 = dB2 actually depends only on the negative parity part
B−.
While dimensional reduction on a compact manifold M6 as described above is
essential in order to extract 4-dimensional low energy physics from the underlying
10-dimensional string theory, the process does also dilutes the predictive power
of string theory. This is because many features of the resulting low energy the-
ory, including aspects such as the visible gauge group, particle content, number
of generations or existence and magnitude of certain couplings, depend heavily
on the geometric details of the compactification manifold. The situation is made
even worse by the many different choices relating to the configuration of D-branes
and fluxes for a given background manifold. The number of such configurations
was famously estimated at 10O(500) in [51] for a certain class of type IIB models.

7We use the standard notation Dp-brane denote to denote a D-brane with (p+1)-dimensional
world-volume. Similarly an Op-plane is a (p+ 1)-dimensional object.
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Taking into account different types of string theories or even relaxing the Calabi-
Yau condition will of course only exacerbate this issue. Of course, the estimates
mentioned above are only heuristic in nature and do not fully take into account
equivalences between various models. Nevertheless, they serve to show that the
proposition of searching for individual concrete compactification models realising
the Standard Model carries limited promise. This realisation has led to the de-
velopment of statistical approaches, which attempt to analyse the distributions
of values of various parameters and observables on the ensemble of string theory
vacua and were initiated in [13] and [14]. In this thesis we will not pursue this
direction further, but rather than constructing explicit compactifications we will
mostly work with classes of Calabi-Yau manifolds and look for generic features of
the resulting low energy theories within these classes of vacua.

2.2.3 D-branes and their effective action

D-branes form an essential tool in phenomenological attempts to build string
theory vacua which lead to realistic effective 4-dimensional theories. They owe
their importance to the fact that they represent the only source of non-Abelian
gauge symmetries in type II theories. D-branes are by definition objects on which
open strings may end. In the presence of stacks of multiple identical D-branes
it is therefore necessary to introduce so-called Chan-Paton labels to distinguish
which of the branes a string is ending on. A more general open string state is then
described by a Chan-Paton matrix λij whose entries give the number of strings
stretching from brane i to brane j [52]. For strings beginning and ending on
a stack of N D-branes this gives an N2 multiplicity of all associated open string
states, suggesting that the states transform in the adjoint representation of U(N).
This symmetry group is confirmed by an analysis of the open string scattering
amplitudes, and the low energy effective theory on the brane worldsheet describing
these string states is a U(N) Yang-Mills theory8. Similarly, strings stretching from
one brane stack to another give rise to fields in the effective action which transform
in the bifundamental representation of the gauge groups of the two brane stacks.
The dynamics of the open strings ending on a stack of Dp-branes can be described
by an effective field theory on the (p+ 1)-dimensional brane world-volume. In the
low energy limit we may again restrict ourselves to the massless fields as in the
closed string sector. The massless field content of the low energy theory is given
by a (p + 1)-dimensional vector field A and a set of (9 − p) scalar fields9 si, as
well as their fermionic superpartners. All these world-volume fields transform in
the adjoint representation of the gauge group on the stack of D-branes. In the

8In an orientifold setting the gauge symmetry may be projected down to a symplectic or or-
thogonal group, depending on the precise orientation of the D-brane in relation to the orientifold
planes, but we will ignore this subtlety for the moment.

9While this number of massless scalars is correct for a D-brane in empty 10-dimensional
Minkowski space, some of these fields can become massive in the presence of non-trivial fluxes
or for D-branes on a non-trivial compactification manifold.
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Abelian case, the scalar fields mentioned above can be viewed as parametrising
the transverse displacement of the brane in a tubular coordinate system around its
rest position. More precisely, denoting coordinates on the brane world-volume by
(ξa), a = 0, ..., p and letting Xm, m = 0, ..., 9 be coordinates of the 10-dimensional
spacetime M10, the embedding of the brane can be written in tubular coordinates
as [53]

Xm(ξ) =
{

δma ξ
a ,

xm0 + sm−p(ξ) ,
0 ≤ m ≤ p.

p+ 1 ≤ m ≤ 9. (2.26)

Recall that we work in conventions in which the spacetime coordinates Xm are
dimensionless, so that the same holds true for the scalar fields sm−p and the world-
volume coordinates ξa. The intriguing appearance of non-commuting, matrix-
valued spacetime coordinates when extending this to the non-Abelian case was
first noted in [54] and much work has been carried out to clarify the interpretation
of this effect and to understand its implications, but we will not pursue this
direction further here.
Fields arising from strings stretching between two different stacks of D-branes are
generically massive and can be neglected in the low energy theory. An exception
occurs at the intersection locus between two stacks of branes, where the strings
stretching from one stack to the other can shrink to zero length. For these strings
the mass of the lowest-lying string states, given by the product of the string
tension and the string length, vanishes. In the language of the low energy theory
one obtains additional massless fields supported on the intersection locus of the
two brane stacks. Fields of this type will play an important role in our discussion
of instanton effects in section 4.1, but for now we will consider an isolated stack
of D-branes for simplicity.
Similarly to the bulk action of equation (2.13), the effective action for the massless
modes can be constructed by evaluating suitable open string scattering amplitudes
and formulating a field theory action that reproduces these scattering amplitudes.
As discussed in section 2.2.1, this effective action may be considered as a power
series in the number of derivatives and the string coupling gs. When considering
the low energy theory we may restrict ourselves to the leading terms in the deriva-
tive expansion. As discussed around equation (2.16), the derivative expansion can
also be viewed as an expansion in terms of α′, although the factors of α′ would not
be directly visible in our conventions in which the coordinates and metric have
been rescaled to make all fields dimensionless. We furthermore again assume to
be in the weak coupling limit and restrict ourselves to the leading order in gs,
although as we will discuss more closely in section 2.3.1 there is a tension between
the validity of the weak coupling assumption and the presence of D7-branes. In
fact, this tension will be one of the key motivations to reformulating the theory
in the language of F-theory. To summarise, the D-brane actions presented in the
following are accurate to leading order in derivatives and in the string coupling,
and may receive corrections at higher orders of α′ or gs.
The low energy effective theory on the world-volume of a D-brane can be split
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into two distinct parts. The first part, known as the Dirac-Born-Infeld or DBI
action [55, 56], contains the kinetic terms of the world-volume fields mentioned
above and describes the couplings to the closed string fields of the NS-NS sector,
i.e. the metric, the dilaton and the Kalb-Ramond 2-form B2. We again restrict
ourselves to the bosonic part of the DBI action, which for the Abelian case of a
single Dp-brane with the world-volume Wp+1 is given in the string frame by

SDBI = −µp
∫
Wp+1

dp+1ξ e−Φ

√
− det

[
ι∗g − 1

2πF
]
. (2.27)

In this expression we have introduced several new pieces of notation that require
clarification. Firstly, ι : Wp+1 ↪→ M10 is shorthand for the embedding of the
Dp-brane into the 10-dimensional spacetime as described in (2.26). The brane
tension is given in our conventions by

µp = 2π. (2.28)

The field strength F = dA of the brane gauge field has been combined with the
B-field into the combination

1
2πF = 1

2πF − ι
∗B2. (2.29)

This combination is chosen in such a way that the invariance of the bulk ac-
tion (2.20) under the symmetry transformation B2 → B2 + dχ is preserved in
the presence of D-branes if it is accompanied by a shift A → A + 2πχ of the
brane gauge field. Note that this is an additional Abelian gauge symmetry that is
distinct from the Yang-Mills gauge symmetry on the D-brane. The determinant
appearing in (2.27) is taken over the world-volume indices of the 2-tensors ι∗g
resp. F. Finally, let us note that although in our conventions both A and F = dA
are dimensionless, many authors work instead in conventions where A and F
have dimensions of `−1

s and `−2
s , respectively. In that situation, the dimensionless

combination entering the D-brane actions is 2πα′F = 2πα′F − ι∗B2 [17]. It is
important to keep the relative normalisation factor of `2

s in mind when comparing
the results of this thesis to the existing literature, in particular to the results of
references [33,39] and [40], which will be heavily used in the later chapters of this
thesis.
In general we will of course usually be more interested in the case with non-Abelian
gauge symmetry, i.e. with more than one Dp-brane in the stack. In this case, the
general form of the action is complicated to write down due to the appearance
of non-commuting matrix-valued forms, such as the spacetime coordinates Xm(ξ)
appearing in the pullback formula

(ι∗g)ab = gmn∂aX
m∂bX

n. (2.30)

Both these spacetime coordinates and the world-volume gauge field A are repre-
sented as Hermitian N × N matrices for a stack of N branes, and transform in
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the adjoint of the gauge group as mentioned before [43,57]. In particular, a trace
over the gauge indices has to be taken in a manner symmetrised over the various
possible field orderings to remove ordering ambiguities [57]. We will refrain from
writing out the full non-Abelian form of the action in a general background, which
was worked out by Myers and can be found in [43]. In the following we will always
consider backgrounds with D-brane configurations which preserve supersymmetry.
As noted by Witten [54], the matrices Xm are proportional to the unit matrix
in gauge space for such supersymmetric configurations, so that in particular no
additional effects from non-commutativity arise. Furthermore, we will focus al-
most exclusively on the diagonal U(1) lying in the U(N) = SU(N)× U(1) gauge
group of a stack of N branes10. The generator associated with this diagonal U(1)
is simply an N × N unit matrix. Hence as long as we consider supersymmet-
ric backgrounds and restrict to switching on field strengths F along the diagonal
U(1) we may work with the simpler form (2.27), and the only effect from the non-
Abelian symmetry that we must keep in mind is an overall factor of N arising
from the trace.
The second part of the D-brane action is given by the Chern-Simons (CS) ac-
tion [58], which describes the coupling of the brane to the closed string fields of
the Ramond-Ramond sector. Restricting as above to the bosonic part and the
Abelian case for simplicity, the action is given by

SCS = −µp
∫
Wp+1

ch
( 1

2πF
)
∧

√√√√ Â(RT )
Â(RN)

∧
∑
q

Cq , (2.31)

where we follow the conventions of [17]. Here ch (1/2πF) is the Chern character of
the gauge bundle of the D-brane, whose curvature is given by the gauge invariant
combination of F and B2 defined in (2.29). RT and RN denote the curvature
forms of the tangent and normal bundles to the brane world-volume, respectively,
while Â is the A-roof genus. Note that RT and RN are dimensionless in our
conventions, as the metric and the world-volume coordinates are dimensionless.
The characteristic classes used in this expression are defined in appendix A.3. The
integrand in (2.31) is formally a power series involving forms of various degrees. It
is of course understood that the integral picks out only the terms of total degree
(p+ 1) from this power series.
Throughout this thesis we will work under the assumption that all curvature radii
can be taken to be large compared to the string length, as is necessary to ensure
validity of the supergravity assumption. In the following we will therefore usually
keep only the leading terms in the power series defining the A-roof genus, and use
the simpler form

SCS = −µp
∫
Wp+1

∑
q

ι∗Cq ∧ exp
[ 1
2πF − ι

∗B2

]
(2.32)

10We assume again that the branes are not placed in such a way as to develop symplectic or
orthogonal gauge groups.
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for the Chern-Simons action.
As in the DBI case, some modifications, including the introduction of a sym-
metrised trace over gauge indices, need to be made in order to obtain the full
non-Abelian Chern-Simons action [43]. However, as discussed above we will re-
strict ourselves to field strengths corresponding to the diagonal U(1) ⊂ U(N)
and to supersymmetric brane configurations in which the fields describing the
embedding of the brane are proportional to the unit matrix. In this case the
additional complications introduced by the non-commutativity of the fields in the
non-Abelian case are largely absent and we may use the Abelian form (2.32) of
the action, keeping in mind to include a factor of N from the gauge trace when
considering a stack of N branes.
The introduction of Dp-branes breaks some or all of the original N = 2 supersym-
metry of type II string theory. Polchinski discovered in 1995 [10] that Dp-branes
with odd p in type IIB (or even p in type IIA) are stable half-BPS states that
leave half of the supersymmetry unbroken and lead to an effective theory with
N = 1 supersymmetry. The observation of half-BPS Dp-branes with odd p of
course matches the fact that precisely the Cq R-R potentials with even q exist in
type IIB string theory, and in fact the existence of a set of gauge symmetries with
respect to which the Dp-branes with odd p carry a conserved charge can be seen
as the reason for their stability. While Dp-branes with the “wrong” values of p can
in principle be introduced, they are unstable and break all of the supersymmetry,
and such branes will not be considered in this thesis.
When including D-branes in compactifications on Calabi-Yau spaces (or compact-
ifications with non-trivial B2-field backgrounds), further conditions must be sat-
isfied to avoid breaking the supersymmetry of the low energy theory completely.
A D-brane in such a compactification will wrap a cycle Γ within the compactifi-
cation space X3. The conditions for unbroken supersymmetry can be translated
into a set of geometric calibration conditions for these cycles, which were worked
out in [59–61] and depend on the dimension of the cycle Γ. In this thesis we
will mainly be interested in spacetime-filling D7-branes and Euclidean D3-brane
instantons, in which case the internal cycle Γ is 4-dimensional. The calibration
conditions then require Γ to be a holomorphic cycle or in other words a divisor,
and there must hold

d4ξ

√
det

[
ι∗(g) + 1

2πF − ι
∗(B2)

]
= 1

2e
−iθ

[
ι∗(J) + i

( 1
2πF − ι

∗(B2)
)]2

, (2.33)[ 1
2πF − ι

∗(B2)
]2,0

= 0. (2.34)

In this expression ι∗ denotes the pullback of forms from X3 to the cycle Γ, and
J is the Kähler form of X3. The parameter θ appearing in (2.33) controls which
linear combination of the original 2 supersymmetry generators remains unbroken.
The second condition (2.34) implies that the internal part of the gauge invariant
combination F defined in (2.29) must be a (1, 1)-form (see appendix A.1).
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In a compactification on a Calabi-Yau orientifold the parameter θ in (2.33) can no
longer be chosen freely. This is due to the fact that the process of orientifolding
itself already breaks half of the supersymmetry, so to maintain N = 1 supersym-
metry the D-brane placement and the orientifold projection must be correlated
to leave precisely the same combination of supercharges unbroken. As discussed
in [62], this implies that θ = 0. As long as we fulfill the calibration conditions with
θ = 0 in each case, we may of course also add multiple stacks of D-branes without
breaking supersymmetry completely. The stability of such a configuration with
multiple half-BPS D-branes is guaranteed by a cancellation between the mutual
gravitational attraction and the repulsion mediated by the R-R form fields [10],
such that the supersymmetric branes exert no net force upon one another.
As already mentioned in section 2.2.2, if some of the D-branes are spacetime-filling
the consistency of the theory requires compactifying on a Calabi-Yau orientifold
rather than on a normal Calabi-Yau manifold. This is due to the fact that D-
branes act as sources for the R-R form fields as discussed above, and the net R-R
charge on a compact space must be zero. More precisely, the equation of motion
for a Ramond-Ramond potential Cp+1 in the presence of a single Dp-brane and
no other sources takes the schematic form

d ∗Gp+2 = δDp, (2.35)

where δDp stands for the form Poincaré-dual to the world-volume of the brane.
If δDp has indices purely in the internal compactification manifold M6, we may
integrate (2.35) over a basis of the appropriate homology group of M6. This yields
the the condition that the part of δDp that is non-trivial in the cohomology of M6
must be cancelled by additional terms on the right hand side of (2.35) coming
from other D-branes and orientifold planes11. However, if δDp cannot be fully
defined as a form on M6, one would have to integrate over cycles lying partially
in the non-compact part M1,3 of spacetime. In this case Stokes’ theorem cannot
be applied to show that the left hand side vanishes, so no non-trivial condition is
obtained. As δDp has indices in the directions normal to the world-volume of the
brane, this argumentation shows that only spacetime-filling D-branes contribute to
potentially dangerous R-R tadpoles. In particular, non-trivial Dp-brane tadpoles
which lead to potential inconsistencies exist only for p ≥ 3.
The objects cancelling the R-R charge in a Calabi-Yau orientifold compactifica-
tion are the orientifold planes located at the fixed point locus of the orientifold
involution12. The conditions arising from the requirement of vanishing net R-R

11As first noted in [63, 64], the natural mathematical framework to describe D-brane charges
and R-R fields is actually K-theory rather than the simpler cohomology of differential forms.
Full consistency thus actually requires the cancellation of all R-R charges in K-theory [65], which
can in some cases render models inconsistent even though the R-R charges cancel in cohomology.
Keeping this potential caveat in mind, we will stick to the cohomological description and only
check for R-R charge cancellation at this level.

12Note that charge cancellation alone can also be achieved by including anti-branes, however
this breaks supersymmetry completely and will not be considered here.
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charge are often referred to as tadpole cancellation conditions. Note that to ob-
tain a well-defined theory after taking the orientifold quotient, D-brane stacks
wrapped on cycles that are not pointwise invariant under the orientifold action
can only appear together with an image stack such that the pair of stacks together
is invariant under the orientifold action.
Although orientifold planes are not dynamical objects and do not give rise to addi-
tional world-volume fields as is the case for D-branes, they do couple to the fields
of the closed string sector. These couplings can be described by a worldvolume
action formally similar to that of the D-branes with world-volume fields set to
zero, given for an Op-plane13 with worldvolume WO by [66,67]

SOpDBI = 2p−4 µp

∫
WO

dp+1ξ e−Φ
√
− det [ι∗(g)], (2.36)

SOpCS = 2p−4 µp

∫
WO

√√√√L(RT/4)
L(RN/4) ∧

∑
q

ι∗Cq

= 2p−4 µp

∫
WO

ι∗Cp+1 +O(RT , RN). (2.37)

The notation is similar to that used in the actions (2.27) and (2.31) except for the
appearance of the Hirzebruch L-polynomial defined in appendix A.3. As before
we will work in the limit where curvature radii are large compared to the string
length and take the simplified form of (2.37) for the Chern-Simons couplings.
The sum of forms ∑q ι

∗Cq appearing in the Chern-Simons actions of D-branes and
O-planes in type IIB theory includes a non-dynamical 10-form C10 in addition to
the Ramond-Ramond forms of degree 2, 4, 6 and 8 introduced in section 2.2.1.
Despite its non-dynamical nature, this additional form has an important con-
sequence in the presence of D9-branes [10]. To cancel the 10-form tadpole, the
theory must include an O9-plane, which means that if no lower-dimensional branes
are present it is none other than type I string theory. Furthermore, from the rel-
ative charge of the Chern-Simons actions we see that for tadpole cancellation the
number of D9-branes must be exactly 32, which explains the appearance of the
gauge group SO(32) in type I string theory. However, in this thesis we will focus
on backgrounds without D9-branes, so that the 10-form will play no role.
In analogy with the Ramond-Ramond tadpoles discussed above, the theory may
also include tadpoles for the NS-NS fields. However, the equations of motion are
in a sense more forgiving toward the appearance of NS-NS tadpoles than towards
the appearance of uncancelled R-R as discussed above [17]. More precisely, while
the equations of motion of the R-R fields were inconsistent in the presence of
uncancelled D-brane tadpoles, the NS-NS equations can often still be solved in
principle by altering the background field profile. For example, as mentioned in

13The objects we consider here and throughout this thesis can be referred to more precisely as
Op−-planes. A slightly different choice for the orientifold action on the string degrees of freedom
gives rise to Op+ planes which have R-R charges of the same sign as Dp-branes [21,50], but we
will stick to Op−-planes throughout.
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section 2.2.2, the presence of D7-branes requires a warped background spacetime
as well as a non-trivial dilaton profile. In this sense the possible NS-NS tadpoles
encode the back-reaction of the D-branes, which we will discuss in more detail in
section 2.3.1.
When trying to build a vacuum satisfying the tadpole cancellation conditions it
is important to note that a Dp-brane may act as a source not only for Cp+1,
but also for the lower R-R forms14. As can be easily read off from the Chern-
Simons action (2.32), this occurs if the brane carries a topologically non-trivial
flux of the (twisted) world-volume gauge field F defined in equation (2.29). This
means that the tadpole cancellation conditions will act as a restriction on the
world-volume fluxes that can be included in the model. Conversely, switching
on non-trivial fluxes may allow adding configurations of lower-dimensional branes
which would otherwise be forbidden by the tadpole cancellation conditions. For
example, a model with fluxed D7-branes may allow for the inclusion of D5-branes
even without any O5-planes being present in the model.

2.3 F-theory as a non-perturbative extension of
type IIB

2.3.1 The SL(2,Z) symmetry of type IIB string theory

The tadpole cancellation conditions discussed in the previous section are global
conditions in the sense that they only require the overall net R-R charge to vanish.
However, they allow for charges to be cancelled between orientifold planes and D-
branes wrapped on topologically distinct cycles of the compactification manifold.
This means that locally there may exist uncancelled R-R charges which affect the
profile of the R-R potentials in the spacetime surrounding the branes.
A particularly interesting and at first sight puzzling case is the profile of the field
C0 in the vicinity of a D7-brane. Let W8 and W ′8 be the world-volumes of the
D7-brane and its image brane, respectively. As mentioned in section 2.2.1, the
interaction between C0 and a D7-brane is most easily described not in terms of
C0 itself but in terms of its dual field C8. Using the IIB bulk action (2.20) and the

14As shown in [43], additional couplings to the higher R-R potentials Cq, q > p+1, appear in
the case where the fields describing the embedding of the brane in the ambient spacetime do not
commute. However, as mentioned before we will consider the supersymmetric case where the
embedding fields can be taken to be diagonal, so that these additional couplings do not arise.
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Chern-Simons action (2.32) of the 7-brane, the equation of motion of C8 reads15

d ∗G9 = 1
2 [δ(W8) + δ(W ′8)] + (other source terms). (2.38)

In the above δ(W8) and δ(W ′8) describe the Poincaré-dual 2-forms which are
sharply localised around the world-volumes of the brane and image brane, re-
spectively. The other source terms in (2.38) arise from other brane stacks and
orientifold planes, at least some of which must be present due to tadpole cancella-
tion. For simplicity we will assume for now that the D7-brane onW8 is isolated, so
that the forms describing the other sources have no support in the vicinity of the
D7-brane. As long as we consider only a neighborhood of the chosen D7-brane,
the other source terms may then be safely neglected.
For the case of D7-branes, the transverse space to the brane world-volume is
2-dimensional, and the branes can be viewed as points in this transverse plane.
Consider integrating dC0 over a path ∂S lying in this transverse plane and encir-
cling the D7-brane once. In order to yield a well-defined path in the orientifold
geometry, ∂S must similarly encircle the image brane once. The notation has
been chosen to suggest that ∂S is the boundary of a region S in the transverse
plane, which by assumption includes both the positions of the brane and the im-
age brane. Using the duality relation ∗G9 = G1 = dC0 together with (2.38) we
obtain ∫

∂S
dC0 =

∫
∂S
∗G9 =

∫
S
d ∗G9 = 1

2

∫
S

[δ(W8) + δ(W ′8)] = 1. (2.39)

In other words, the field C0 develops a non-trivial monodromy around the D7-
brane. This means that the potential C0 can only be defined patchwise, and
that the different values must be related by a symmetry transformation of the
theory on the overlap of two patches to allow for a consistent interpretation of the
background.
A closer inspection of the IIB supergravity action (2.13) indeed shows that the
action enjoys a classical SL(2,R) symmetry which can explain the shift of C0
required by (2.39). To make this symmetry manifest, it is helpful to make a
change of variables and transform the action into the so-called Einstein frame in
which the curvature term has the canonical form. Following [17] we define

gEµν = e−Φ/2gµν , τ = C0 + ie−Φ,

C̃4 = C4 −
1
2B2 ∧ C2 G̃3 = F3 − τH3.

(2.40)

15As brane and image brane provide equivalent descriptions of the same physics in the orien-
tifold geometry, the physical action is obtained by adding the actions of brane and image brane
and then dividing the result by 2. An additional factor of 1/2 must be taken into account in the
Chern-Simons action when deriving these equations of motion in the democratic formulation,
see also the discussion in [33].
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In terms of these variables the action (2.13) takes the form

SIIB = 1
2κ2

10

∫
d10x

√
− det gE RE −

1
4κ2

10

∫ 1
(Imτ)2dτ ∧ ∗Edτ

− 1
4κ2

10

∫ [ 1
Imτ G̃3 ∧ ∗EG̃3 + 1

2G5 ∧ ∗EG5 −
1

2iImτ C̃4 ∧ G̃3 ∧ G̃3

]
.

(2.41)

We have explicitly added the subscript E in (2.41) to signify that all metric-
dependent quantities are evaluated using the Einstein frame metric gE. An
SL(2,R) transformation can be parametrised by a matrix

A =
(
p q
r s

)
, with p, q, r, s ∈ R and detA = ps− qr = 1. (2.42)

It is now straightforward to check that the action (2.41) is invariant under the
transformation which is associated with such an SL(2,R) matrix A and acts on
the Einstein frame fields by [2]

τ → sτ + r

qτ + p
,

(
B2
C2

)
→ A

(
B2
C2

)
,

gE → gE, C̃4 → C̃4.

(2.43)

The Weyl rescaling of the metric performed in moving from the string frame to
the Einstein frame does not change the action of the Hodge star operator (A.16)
when acting on 5-forms. In particular, the form of the self-duality constraint is
not changed when moving from one frame to the other

G5 = ∗G5 = ∗EG5, (2.44)

so that the self-duality constraint is clearly also invariant under the SL(2,R) trans-
formations. Note that from (2.43) the imaginary part of τ transforms as

Imτ → 1
|qτ + p|2

Imτ, (2.45)

so that the sign of Imτ remains fixed even though the magnitude might change.
This property is important because the imaginary part of τ is none other than the
inverse of the string coupling gs = eΦ, which must remain positive for consistency.
Upon quantisation of the theory, the classical SL(2,R) symmetry is broken non-
perturbatively to the discrete subgroup SL(2,Z). This can be seen in various
ways. For example, the transformation (2.43) takes a fundamental string into
an object having p units of NS-NS charge under B2 and q units of R-R charge
with respect to C2, which is conventionally referred to as a (p, q)-string. Due
to the Dirac quantisation condition, the charges p and q must be integers16 [2,

16Note that the integers p and q (as well as r and s) are relatively coprime due to the condition
ps− qr = 1 and Bézout’s lemma.
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3]. Furthermore, D-brane instantons contribute to the low-energy action through
terms involving factors of the schematic form exp(iSCS), which remain invariant
under the SL(2,Z) ⊂ SL(2,R) subgroup [34]. The transformation necessary to
explain the observed monodromy (2.39) is simply the special case of the general
SL(2,Z) transformation (2.43) obtained by taking q = 0 and p = r = s = 1, which
yields

C0 → C0 + 1, C2 → C2 +B2. (2.46)

As a side note let us point out that the transformation (2.46) can also be under-
stood as a Ramond-Ramond gauge transformation of the type (2.23) with Λ0 = 1
and Λp = 0, p > 0. At first sight it may seem that the inclusion of D-branes
breaks the R-R gauge symmetry discussed in section 2.2.1 due to the appearance
of the non-derivative couplings in the Chern-Simons action (2.32). However, a
closer inspection reveals that in a Lorentz invariant and tadpole-free brane and
flux configuration the R-R gauge symmetry is actually maintained due to a cancel-
lation between the variations of the actions of different brane stacks. To see this,
it is necessary to carefully distinguish between the positive and negative parity
components of B2 introduced in section 2.2.2. As discussed there, any possible
positive parity B-field contribution B+ must be closed. These contributions may
therefore be absorbed into the gauge parameters Λp appearing in (2.23), so that
the gauge transformation may be written as

δCp =
[
Λ eB−

]
p
. (2.47)

Under this transformation, the Chern-Simons action (2.32) of a single Dp-brane
shifts by

δSCS = −µp
∫
Wp+1

ι∗Λ ∧ exp
[ 1
2πF − ι

∗B+

]
. (2.48)

Because the negative parity form B− does not restrict to the world-volume of an
orientifold plane one similarly obtains

δSOpCS = 2p−4 µp

∫
WO

ι∗Λ. (2.49)

It is not obvious that the variation of the action vanishes, and indeed we will see
that this relies on a cancellation between the contributions from several branes
which only occurs in a Lorentz invariant and tadpole-free vacuum. First note that
in order to preserve Lorentz invariance all D-branes must be spacetime-filling17,
such that they are all related by the tadpole cancellation conditions. By the same
reasoning any fluxes F/2π − ι∗B+ must be taken to be forms lying fully in the
internal space M6. This implies that only terms involving Λp, p ≥ 4 can contribute
to a nonzero value in (2.48), as all dependence on the external coordinates of M1,3
must come from the gauge parameters Λp.

17The exception is given by instantonic D-branes lying purely in the internal manifold M6. As
before, the presence of such instantons non-perturbatively breaks the classical shift symmetries
generated by forms Λp with non-trivial pullback to M6 to a discrete subgroup.
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After summing up the shifts (2.48) and (2.49) of the actions of all the D-branes
and orientifold planes present in the model, one finds that the overall coefficients of
the Λp terms with p ≥ 4 are precisely the combinations that are required to vanish
due to the R-R tadpole cancellation conditions18. In order to verify this result it
is important to note that, as shown in [50], the contribution of B− drops out of
the tadpole cancellation constraints so that they involve precisely the combination
F/2π − ι∗B+ that also appears in (2.48).
While we have just seen that in a consistent compactification to a Lorentz invari-
ant 4-dimensional theory the R-R gauge transformations survive as a symmetry
and can explain the monodromy (2.46), consistency in an uncompactified 10-
dimensional setting requires the SL(2,Z) symmetry discussed above. This is one
of the main reasons why, as argued in [20, 68, 69], the SL(2,Z) symmetry is ex-
pected to survive as a symmetry of the full quantum theory and is not just viewed
as an accidental symmetry of the IIB bulk action (2.41).
Note that equation (2.45) shows that for q 6= 0 the SL(2,Z) duality relates back-
grounds with large and small string couplings. As no intrinsically non-perturbative
description of string theory is known, it is not possible to solve the strongly cou-
pled theory explicitly to check the SL(2,Z) symmetry directly. However, one
prediction of the conjectured SL(2,Z) duality which can be verified using pertur-
bative means is the existence of (p, q)-strings with relatively co-prime p and q.
Such states were constructed in the weakly coupled theory in [54,70], where they
can be seen as bound states between fundamental strings and D-strings. As these
states are BPS states, they must continue to exist in the strongly coupled theory
by supersymmetry (see e.g. the discussion in [2]).
If we denote the coupling of a general 1-brane or string state to B2 and C2 by
means of a charge vector (q1, q2)T, we may also interpret the SL(2,Z) transforma-
tion (2.43) as acting on the charge vector instead of on the fields C2 and B2. The
transformation A[p,q] of equation (2.42), which takes a fundamental string with
charges (1, 0) into a (p, q) string19, acts on a general charge vector by(

q1
q2

)
→ AT

[p,q]

(
q1
q2

)
=
(
p r
q s

)(
q1
q2

)
. (2.50)

As we have just seen, the SL(2,Z) transformation of the fields B2 and C2 can be
interpreted alternatively as a transformation of the charged objects these fields
couple to20, leading to the appearance of a whole SL(2,Z) family of 1-branes. By
duality there exists a similar family of 5-branes, including as special cases the

18More precisely, the coefficients of the Λp only vanish in cohomology, however this is sufficient
to ensure that the total associated gauge shift vanishes due to the fact that the Λp are closed.

19Although specifying p and q does not fully fix the integers r and s appearing in the ma-
trix Ap,q of equation (2.42), the charges p and q encode the full physical information and the
ambiguity in r and s drops out of physically observable quantities [71].

20This becomes particularly clear if one views D-branes simply as solitonic configurations of
the background fields that are being transformed [72].
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familiar D5- and NS5-branes. As the SL(2,Z) transformation also acts on the
field τ coupling naturally to D(−1)-branes, the same consideration shows that
there must be families of D(−1)-branes and by duality also D7-branes labelled by
integers (p, q). This can also be seen from the point of view of charge conservation:
different (p, q)-strings carry different charges, which implies that the branes that
they end on must have somewhat different world-volume theories to account for
these charges [71,73]. 7-branes on which (p, q)-strings can end are will be referred
to as [p, q] 7-branes in the following.
The monodromy (2.46) caused by an ordinary D7-brane can be described by the
monodromy matrix

M[1,0] =
(

1 1
0 1

)
, (2.51)

which acts on the fields in a similar manner as the matrix A in equation (2.43).
The monodromy of a more general [p, q] 7-brane can be evaluated most easily by
first transforming into a frame in which the brane is an ordinary D7-brane using(
AT[p,q]

)−1
, applying the monodromy M[1,0], and then transforming back into the

original SL(2,Z) frame [71]. The resulting monodromy matrix is given by

M[p,q] = AT[p,q] M[1,0]
(
AT[p,q]

)−1
=
(

1− pq p2

−q2 1 + pq

)
. (2.52)

In a model containing only a single type of [p, q] brane, one may of course always
transform into a frame where all the branes are ordinary D7-branes. However,
this is clearly no longer possible branes of several different [p, q]-types are present.
In this situation one speaks of mutually non-local 7-branes, and the non-trivial
monodromy (2.52) must be taken seriously. As discussed in [72], a consistent
interpretation of these monodromies requires taking into account more exotic
objects like string junctions or multi-pronged strings. Remarkably, this leads to
the appearance of exceptional gauge groups, which are not visible in perturbative
type IIB string theory involving only [1, 0] branes. As we will see, monodromies
of the form (2.52) and exceptional gauge groups arise in a very elegant manner in
the F-theory formulation.

2.3.2 The axio-dilaton as the modular parameter of a torus

The discussion of subsection 2.3.1 strongly suggests that the SL(2,Z) symmetry
is not just an accidental perturbative symmetry of type IIB supergravity, but is
instead a crucial ingredient of the full quantum theory. This naturally leads to
the question of whether there might exist an alternative formulation of the theory
in which the essential role of the SL(2,Z) symmetry is manifest. If so, it might be
expected that this formulation might be more suited towards understanding the
interesting non-perturbative phenomena associated with the symmetry.
By the mid 1990s, the study of supergravity theories obtained by compactifications
of string theory had turned up a number of symmetries or dualities which could be
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connected to geometric properties of the compactification manifold. Examples of
such dualities include T-duality, the S-duality of toroidally compactified heterotic
strings or the type II analogue dubbed U-duality21. Guided by these observations,
string theoreticians soon started trying to interpret the 10-dimensional type IIB
SL(2,Z) symmetry as arising from geometric properties of a dimensional reduction
of some higher-dimensional theory.
A clue towards such a geometrical reformulation lies in the fact that the group
SL(2,Z) is identical to the symmetry group PSL(2,Z) of the 2-dimensional torus,
up to an identification of matrices differing only by an overall minus sign22. Due to
its importance in the following, let us briefly review the key features of the torus
geometry as discussed e.g. in [75]. A flat 2-torus can be seen as a lattice in the
complex plane, defined by two period vectors ω1, ω2 and endowed with the induced
Euclidean metric. The lattice is left invariant by an SL(2,Z) transformation acting
on the period vectors by(

ω1
ω2

)
→ A

(
ω1
ω2

)
, A =

(
p q
r s

)
∈ SL(2,Z). (2.53)

The torus geometry can be characterised by two parameters: the Kähler modulus
ρ giving the area of the lattice unit cell and the complex structure or modular
parameter τT = ω2

ω1
, which can be interpreted as the ratio of the lengths of the two

fundamental cycles on the torus.
Using (2.53) it is straightforward to check that τT transforms as

τT →
s τT + r

q τT + p
, (2.54)

matching the transformation (2.43) of the IIB axio-dilaton field τ . It is there-
fore very tempting to identify the axio-dilaton with the complex structure τT of
a suitable torus, and we will drop the subscript T in the following. This identifi-
cation suggests that type IIB string theory might be obtained by compactifying
a suitable theory on a torus.
At the level of low energy effective actions, there is not much choice for this
candidate theory. In fact, as explained in [2], an analysis of the dimensionali-
ties of spinor representations shows that a supergravity theory in D-dimensional
Lorentzian space with D > 10 can exist only for D = 11. The 11-dimensional
supergravity theory was explicitly constructed in [76], and attempts were made
to understand it as forming the long-wavelength limit of a theory of quantised
membranes. These attempts were of course inspired by the familiar relationship
between string theory and D = 10 supergravity [77]. The discovery of the various
string dualities served as further evidence for the existence of a quantum theory

21The various symmetries are reviewed e.g. in [2, 24,68,69,74].
22The extra generator present in SL(2,Z) is identified in the type IIB setting as being associated

with a reversal of the string orientation.
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dubbed M-theory [19] underlying D = 11 supergravity, although the fundamental
formulation of the theory remains elusive.
Indeed, as first studied in [70, 78], it is possible to establish a correspondence
between M-theory compactified on a 2-torus T 2 and type IIB string theory. More
precisely, the compactification of M-theory on the torus first yields type IIA theory
compactified on an S1 to 9 dimensions [24], which in turn is T-dual to type IIB
compactified on a dual S1. This correspondence, which we will use extensively
in the remainder of this thesis, gives a beautiful geometric explanation for the
observed SL(2,Z) symmetry of the compactified IIB theory.
A drawback of the correspondence as described above is that the original 10-
dimensional IIB supergravity is only reached indirectly by decompactification in
the limit in which the radius of the circle on which the IIB theory is compactified
goes to infinity. By T-duality, this limit corresponds on the IIA side to the case
where the radius of the compactification circle goes to zero. This in turn implies
that the area of the torus T 2 of the M-theory compactification vanishes, so that
strictly speaking the decompactification limit on the IIB side corresponds to a
singular limit on the M-theory side. These observations make it plausible to con-
sider the existence of a 12-dimensional theory which would be directly connected
to IIB by dimensional reduction on a torus, just as M-theory and type IIA string
theory are directly connected via compactification on a circle.
Some hints towards such an underlying 12-dimensional theory were uncovered
in [20] by Vafa, who gave the theory the name F-theory. By considering the
world-volume theory of [p, q]-strings, Vafa was able to provide evidence [20] that F-
theory might admit a reformulation in terms of objects with a 4-dimensional world-
volume of signature (2,2) instead of strings with a world-sheet of signature (1,1).
Such a theory would naturally be defined in a spacetime of signature (10,2)23.
Vafa furthermore argued that the BRST quantisation conditions would ensure
that the spectrum of the theory matches the spectrum of 10-dimensional IIB
string theory, and that the moduli space of theories that would be obtained by
compactifying to (9,1) dimensions on a (1,1) space would be the same as if one
had compactified on an Euclidean torus24. Despite these hints, a more thorough
understanding of the fundamental nature of F-theory remains elusive. For this
reason, and the duality with M-theory compactifications outlined remains the
most fruitful approach towards the construction of lower-dimensional F-theory
vacua.

23Intriguingly, the appearance of a second time direction might offer a way around the ’no-
go theorem’ mentioned above restricting supergravity theories to D ≤ 11, because spacetimes
of signature (10,2) admit 32-component Majorana-Weyl spinors [2]. Nevertheless, no proper
12-dimensional supergravity theory has been formulated yet, although the possibility of a su-
persymmetric theory in (10,2) spacetime has been explored using the different ideas of 2-time
physics in [79].

24More generally, on a manifold admitting a holomorphic elliptic fibration [25,80].
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2.3.3 D-brane back-reaction, varying dilaton profiles and
elliptic fibrations

As already noted by Vafa in [20], the F-theory construction of IIB vacua car-
ries more advantages than simply offering a natural explanation of the SL(2,Z)
symmetry. One such advantage, which will play an important role in the later
parts of this thesis, is that F-theory compactifications naturally give rise to ex-
ceptional gauge groups. As mentioned above, exceptional groups are visible in the
perturbative IIB approach only through the complicated dynamics of [p, q]-string
junctions. A closely related but even more immediate advantage is that the F-
theory formulation is well-suited to constructing consistent compactifications with
a varying axio-dilaton field. This is highly relevant in compactifications involving
D-branes due to the back-reaction on the fields of the bulk or closed string sector.
To illustrate this point, let us first consider the D-brane back-reaction from the
original type IIB perspective, following the discussion in [22]. Consider a Dp-
brane spanning the directions x0, . . . , xp in 10-dimensional Minkowski space. By
symmetry, finding a solution for the bulk fields in the presence of this brane
reduces to a problem in the 9 − p spatial dimensions normal to the brane. In
this normal space, the equations of motion of the bulk fields take the form of a
Poisson equation with a source term at the origin. The solutions to the Poisson
equation have significantly different dependence on the radial distance r to the
brane depending on the codimension n = 9 − p of the brane. If the codimension
n is larger than 2, corresponding to the case p < 7, the solutions of the Poisson
equation vanish asymptotically away from the brane as some power of 1/r. In
fact, an explicit solution of the supergravity equations of motion describing a Dp-
brane with p < 7 was constructed in [47], in which it was shown that the spacetime
metric as well as the dilaton and R-R fields depend on the radial coordinate only
through the function

Hp = 1 + const.
r7−p . (2.55)

The constant appearing in (2.55) is related to the overall charge of the Dp-brane
at the origin and the asymptotic value of the dilaton, and controls the size of the
region in which the presence of the D-brane noticeably affects the surrounding
geometry. Note that the non-trivial part of (2.55) decays fast enough that asymp-
totically away from the brane the field configuration approaches flat Minkowski
space with a constant dilaton field. This asymptotic value of the dilaton field is a
modulus of the solution and can be chosen to be arbitrarily small.
The behaviour of the dilaton field is particularly important, because as mentioned
before it controls the magnitude of the string coupling gs = eΦ. Clearly, if this
coupling becomes too large, the perturbative description of string theory can no
longer be trusted. In the case of p < 7 discussed above, the coupling can be
kept small everywhere except for at most a finite region in the vicinity of the
brane. In this sense, it is possible to consistently include Dp-branes with p < 7
in a perturbative setting, at least in compactifications in which the volume of the
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internal space is large enough that the back-reaction can be considered negligible
on the majority of the compactification manifold.
This situation changes significantly in the case of p = 7, in which case the space
normal to the brane is only 2-dimensional. Essentially, the problem stems from
the fact that solutions of the Poisson equation in 2 dimensions decay only loga-
rithmically with the distance to the brane. If one introduces a complex coordinate
z = x8 + ix9 on the normal plane, it was shown in [81] that supersymmetric so-
lutions for the axio-dilaton τ = C0 + ie−Φ which saturate a BPS bound for the
energy are holomorphic25 in z. The monodromy (2.39) of the real part of τ around
a D7-brane located at z = z0 thus implies that the solution can be written locally
in a neighborhood of the brane as

τ(z) = τ0 + 1
2πi log(z − z0) +O(z − z0). (2.56)

The specific form of the solution and the monodromies that appear were analysed
in much more detail in [81–84]. In contrast to the case of p < 7 considered
previously, the appearance of non-trivial monodromies or branch cuts breaks the
rotational invariance in the directions normal to the brane. Note that the string
coupling gs = 1/Im(τ) actually vanishes at the position of the brane, which implies
that gravity does not couple to the energy density of the D-brane itself. However,
the non-trivial τ -field gives rise to an energy density which can be shown to
give rise to a non-vanishing deficit angle in the limit r = |z| → ∞, even though
asymptotically far away from the brane the spacetime is locally flat. Furthermore,
the asymptotic value of the string coupling in the presence of a single D7-brane26

is fixed to the non-perturbative value gs = 2√
3 .

The discussion above means that it is in general not possible neglect the effect of
D7-branes at large distances. However, there is instead a region in the immedi-
ate vicinity of the brane in which the string coupling is small and spacetime is
approximately flat with no deficit angle [84]. The size of this region is related
to the exponential of the parameter τ0 appearing in (2.56). If there is only a
single D7-brane present, this parameter can be chosen so that the region of weak
coupling is arbitrarily large. However, in a compactification with multiple branes
and orientifold planes present it is clear that generically the profile of τ will vary
non-trivially over the compactification manifold and there will be regions in which
the string coupling takes on non-perturbative values.
As we have seen, when constructing vacua of type IIB string theory including
D7-branes it is necessary to take the back-reaction into account and in particular
to consider solutions with varying axio-dilaton profile. Although such solutions

25Anti-holomorphic solutions would carry the same energy, but would correspond to the oppo-
site supersymmetry generator remaining unbroken. By convention the holomorphic solution for
τ is associated with a D7-brane, while the anti-holomorphic solution describes an anti-D7-brane.

26A small asymptotic string coupling can be achieved in more complicated configurations
involving at least 6 D-branes of varying [p, q]-types [83].
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of IIB supergravity can be constructed in 10 dimensions [83], the problem be-
comes even harder when working within a non-trivial compactification manifold.
Fortunately, the F-theory construction via the duality with an M-theory com-
pactification on a torus gives a much better handle on this problem. Recall from
subsection 2.3.2 that in this approach the axio-dilaton of type IIB is identified
with the modular parameter of the torus. Roughly speaking, IIB compactifica-
tions with the axio-dilaton varying over the internal space27 therefore correspond
to M-theory compactifications on manifolds in which the shape of the torus varies
as a function of the other coordinates.
To make this correspondence more precise, let us follow [21] and consider compact-
ifying M-theory on a space formed by attaching a torus on to some 9-dimensional
space M9. This situation can be described by the metric ansatz

ds2
M = v

τ2

(
(dx+ τ1dy)2 + τ 2

2 dy
2
)

+ ds2
9. (2.57)

Here v describes the overall volume while τ = τ1 + iτ2 is the complex structure of
the torus parametrised by coordinates x, y. For a fixed point on M9, the equations
y = 0 and x = 0 define two 1-cycles on the torus. We denote these cycles as the
A- resp. B-cycle and their lengths in units of `s by LA resp. LB. By dimensional
reduction along the A-cycle, this theory is dual to type IIA theory on a 10-
dimensional space with the metric [21]

ds2
IIA =

√
v

L
√
τ2

(
vτ2dy

2 + ds2
9

)
. (2.58)

The overall scale of the IIA metric is controlled by the parameter L, which can
be chosen freely in the reduction from M-theory to IIA but which also appears in
the expression for the resulting type IIA string coupling

gIIA = L
(

v

L2τ2

) 3
4
. (2.59)

In the reduction, the real part of the complex structure of the M-theory torus
gives rise to the type IIA 1-form potential, C1 = τ1dy.
The next step is to perform a T-duality along the B-cycle. Under this duality, C0
is obtained from the component of C1 along the cycle direction, which is just τ1.
Furthermore, the coupling constants are related by

gIIB = 1
LIIAB

gIIA =
√
L

v3/4τ
1/4
2

gIIA = 1
τ2
, (2.60)

just as required to be able to identify the IIB axio-dilaton with the modular
parameter of the M-theory torus. The form of the (string frame) metric on the

27For Lorentz invariance all D-branes are taken to be spacetime-filling, so that the normal
space to the branes lies purely in the compactification manifold.
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IIB side can be deduced from the fact that the length LIIBB of the B-cycle measured
in the IIB frame is related to the corresponding length measured on the IIA side
by LIIBB = 1/LIIAB , which yields

ds2
IIB =

√
vgIIB
L

(
L2

v2 dy
2 + ds2

9

)
. (2.61)

Finally, after rescaling into the Einstein frame and choosing L =
√
v this can be

brought to the form
ds2

IIB = 1
v
dy2 + ds2

9. (2.62)

A striking feature of this result is that the y-direction, which originated from a
torus cycle on the M-theory side, can be decompactified by taking the limit v → 0.
Moreover, this procedure works in a Poincaré invariant manner, in the sense that if
M9 = Bd×M1,8−d is the product of some d-dimensional internal space Bd with (9−
d)-dimensional Minkowski space M1,8−d we obtain type IIB on Bd×M1,9−d in the
limit v → 0. This observation implies that we can construct phenomenologically
interesting IIB vacua involving 4-dimensional Minkowski space28 by starting with
a compactification of M-theory to 3 dimensions on an 8-dimensional compact
space!
It is clear that the entire procedure outlined above goes through unchanged if the
parameters τ and v are allowed to vary as functions of the (local) coordinates of
M9, i.e. if we consider a torus fibration instead of a direct product. This means
that as mentioned before type IIB vacua with a varying axio-dilaton profile can
indeed be constructed via a fiberwise duality with the M-theory compactification
on a non-trivial torus fibration. Furthermore, supersymmetry is preserved both
under the reduction from M-theory to type IIA as well as under T-duality. More
precisely, to obtain a 4-dimensional theory with N = 1 supersymmetry the M-
theory reduction must be chosen in such a way as to lead to an N = 2 theory,
as can be seen by a simple counting of the supercharges [2]. A 3-dimensional
theory with N = 2 supersymmetry is obtained by compactifying on a Calabi-Yau
fourfold [87], or a warped generalisation in the presence of fluxes [85, 86]. Un-
der certain conditions this theory may be related to a 4-dimensional theory with
N = 1 supersymmetry [21,87,88]. As mentioned before, a necessary condition for
supersymmetry on the IIB side is that the axio-dilaton is a holomorphic function.
In the M-theory language, the fact that the complex structure of the torus varies
holomorphically over the base of the fibration means that we are actually consid-
ering an elliptic fibration in which the torus may be described as a holomorphic
elliptic curve [20,25,80]. In turn, this means that the powerful mathematical tools
of algebraic geometry are available to construct and describe the compactification

28More generally, as mentioned in subsection 2.2.2, we must consider warped products of
Minkowski space and the compactification manifold in the presence of non-trivial sources like
fluxes or D-branes [46,85,86]. Remarkably, the various warp factors cancel out in precisely the
right manner that 4-dimensional Poincaré invariance is maintained even though the 4 dimensions
do not share a common origin on the M-theory side [21].
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manifolds. It is this fact which encodes much of the power of the F-theory refor-
mulation, as constructing elliptically fibered Calabi-Yau fourfolds is much simpler
than attempting to directly construct consistent compactifications with varying
dilation profiles on the type IIB side.
To illustrate the power of the F-theoretic description, let us briefly consider as an
example the compactification of F-theory on an elliptically fibered K3 manifold.
This model was first discussed in [20] and is closely related to the 4-dimensional
cosmic string solution of [81]. The torus fiber is described by an elliptic curve
defined as the vanishing locus of cubic a polynomial of the form

P = y2 − x3 − fx− g = 0. (2.63)

In this language, the shape of the torus is controlled by the parameters f and g.
A non-trivial fibration is obtained by letting f and g vary over the base manifold,
which we take to be the projective plane P1. The requirement that the total space
of the fibration be Calabi-Yau (in other words, a K3 surface) can be shown to imply
that f and g must be taken to be polynomials of degree 8 and 12 respectively in
the coordinates of the base P1 [21].
When analysing the behaviour of τ in section 2.3.2, we found that in the vicinity of
an ordinary D7-brane τ approaches i∞. As τ describes the ratio of two periods of
the torus, this corresponds to a location in which one of the 1-cycles of the torus
shrinks to zero size. Such a degeneration of the torus described by the elliptic
curve (2.63) occurs at the points on the base where the so-called discriminant

∆ = 4f 3 + 27g2 (2.64)

vanishes [21]. By the Calabi-Yau condition ∆ is a polynomial of degree 24 on the
base, so there are in general 24 such degeneration points. Locally around each
such point one can use the SL(2,Z) invariance to go into a frame in which τ takes
the form (2.56). However, this is in general not possible globally, so that although
any one of the zeroes of ∆ can be chosen to describe the location of an ordi-
nary D7-brane, the other zeroes will describe branes of different [p, q] types [20].
A careful analysis of the monodromies shows that the interplay between these
branes of different types is such that some combinations mimic the behaviour of
IIB orientifold planes and one indeed obtains a consistent compactification, even
though naively the presence of 24 7-branes in the compact K3 surface might have
been expected to lead to inconsistencies [21]. While such configurations are in
general very difficult to describe in the type IIB language (see e.g. [89]), the F-
theory description above gives a much more powerful handle and only requires
specifying the polynomials f and g! In the following sections, we will review some
of the key features of elliptically fibered Calabi-Yau manifolds which elucidate
the description of D-branes in this language and discuss how some of the config-
urations constructed in this manner may be understood from a perturbative IIB
perspective.
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2.4 Introduction to constructing F-theory vacua

2.4.1 Elliptically fibered Calabi-Yaus and the Weierstrass
form

Elliptic surfaces and algebraic geometry in general are extremely rich mathe-
matical subjects with long histories, and in the following we will present only a
selection of important facts following the discussion in [22, 90]. Some important
definitions regarding Calabi-Yau manifolds constructed as hypersurfaces of toric
ambient spaces can be found in appendix A, but we refer to text books such
as [91–93] for proofs and a far more complete discussion of the subject.
An elliptic curve can be defined as an algebraic variety of genus one, which means
that it can be represented as the vanishing locus of a suitable set of polynomials
in a (weighted) projective space. While an elliptic curve can be represented in a
variety of different ways, the most important for many of our purposes will be the
so-called Weierstrass form. In this form, the elliptic curve is given by a degree 6
hypersurface in the weighted projective space P2,3,1. The subscript indicates that
the homogeneous coordinates x, y, z transform with weights 2, 3 and 1, respec-
tively, under the projective rescaling29. By suitable coordinate redefinitions, every
polynomial of degree 6 in this space may be brought to the form

PW = y2 − x3 − fxz4 − gz6. (2.65)

As a consequence of the implicit function theorem, a surface defined as the vanish-
ing locus of a function is singular at most at the points where the function and its
first derivative vanish simultaneously30. Evaluating the condition PW = dPW = 0
for the Weierstrass polynomial (2.65) shows that such a singular point exists if
and only if the discriminant vanishes [22], i.e. if

∆ = 4f 3 + 27g2 = 0. (2.66)

An elliptic curve defined in the manner above can be endowed with an addition
operation in a canonical manner, which gives the curve the structure of an Abelian
group. The distinguished zero element with respect to this addition is the point
z = 0. Note that the condition (2.66) only tells us that the curve has a singularity,
but not where on the curve the singularity lies. However, it is easy to see that the
point z = 0 = PW is never a singular point, regardless of the choice of f and g.
As we will later be interested mainly in possible singularities of the elliptic curve,
it will sometimes be convenient to work in a coordinate patch in which z 6= 0, in
which the scaling relation of P2,3,1 can be used to set z = 1.

29Further details on the definitions and notation used can be found in appendix A.4.
30Note that the ambient space P2,3,1 is itself singular, which could potentially lead to further

singularities. However, the curve (2.65) misses these singularities of the ambient space regardless
of the choices of f and g, so no further complications arise [94].
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Before proceeding to the physically more interesting case of elliptic fibrations, let
us briefly describe how the abstract description of an elliptic curve given above re-
lates to the more intuitive picture of a torus defined as the complex plane modulo
a lattice. Associated to such a lattice Λ is a particular doubly-periodic meromor-
phic function, the famous Weierstrass ℘ function, whose periods are given by the
lattice vectors. This function obeys the differential equation [93]

℘′τ (z)2 = 4℘τ (z)3 − g2,τ℘τ (z)− g3,τ , (2.67)

where the constants g2,τ and g3,τ are the so-called modular invariants of the lat-
tice. Despite the name, neither the ℘ function nor the modular invariants are
actually invariant under SL(2,Z) transformations, as emphasised by the subscript
τ . However, their transformation is covariant in the sense that if τ and τ ′ are
related by an SL(2,Z) transformation, then (2.67) is fulfilled for all z if and only
if it is also fulfilled for all z with τ replaced by τ ′ [93]. If one now defines a map
from the torus T 2 = C/Λ into C3 by31

z 7→
{

(42/3℘τ (z), 2℘′τ (z), 1),
(1, 1, 0),

z 6= 0,
z = 0, (2.68)

the identity (2.67) together with the identifications

f = −41/3g2,τ , g = −4g3,τ , (2.69)

shows that the image of this map is none other than the elliptic curve (2.65).
Note that this shows that under an SL(2,Z) transformation both the (inhomo-
geneous) coordinates x, y and the parameters f, g appearing in the Weierstrass
equation (2.65) transform non-trivially, although the actual surface defined by
the equation remains unchanged.
While the modular discriminant is not invariant under SL(2,Z) transformations, it
transforms covariantly in such a way that the vanishing locus of the discriminant
is well-defined without any SL(2,Z) ambiguity32. Nevertheless, it is often more
convenient to characterise the lattice (or equivalently the elliptic curve) by a
manifestly SL(2,Z)-invariant object, the so-called Jacobi j-invariant. For future
convenience we note that the j-invariant is related to the parameters of the elliptic
curve by [22]

j(τ) = 4(24f)3

∆ = 4(24f)3

4f 3 + 27g2 . (2.70)

The j-invariant can be viewed as an bijective map from the fundamental region
of SL(2,Z) into the complex plane. While an explicit formula for the j-invariant
can be given in terms of Jacobi theta functions, for the purposes of this thesis it

31The powers of 4 are implemented to take into account that the definition of the modular
discriminant in the mathematical literature differs from the definition used in (2.66) by an overall
factor of -16.

32In mathematical terms, ∆ can be viewed as a modular form of weight 12 [93].
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will be sufficient to note that in the vicinity of z ∼ i∞ it may be expanded into
a Laurent series whose leading terms are

j(z) = e−2πiz + 744 + e2πiz +O(e4πiz). (2.71)

A crucial fact is that the pole of j at z ∼ i∞ is the only pole lying in the closure
of the fundamental region of SL(2,Z), although of course there are further poles
at all of its SL(2,Z) transforms.
As motivated previously, for the construction of F-theory vacua we are interested
in compactification manifolds in which a torus or elliptic curve varies over a suit-
able base space, i.e. an elliptic fibration. A complex n-dimensional manifold Yn is
elliptically fibered if it admits a holomorphic projection map π to a base manifold
Bn−1, whose generic fiber is a non-singular elliptic curve. In the less abstract
language of equation (2.65), an elliptic fibration can (locally) be built by allowing
the parameters f and g of the elliptic curve to vary holomorphically over the base
Bn−1.
Given a general elliptic fibration, one may ask whether the projection π may be
inverted in some sense in order to obtain an embedding of the base in the total
space Yn, or in other words whether the fibration admits a section. Note that if the
fibration can be written at least locally in Weierstrass form (2.65), such a section
is always present irrespective of the details of the fibration. The canonical section
is given by the so-called zero section z = 0, which as discussed above will always
avoid any possible singularities of the fibration and is thus manifestly well-defined
and holomorphic. The importance of the Weierstrass form lies in the fact that
in a sense the converse of the above statement is also true, in that any elliptic
fibration with a section can be brought into the Weierstrass form via a birational
transformation [22, 90]. As emphasised in [95], F-theory compactifications on
birationally equivalent spaces may lead to inequivalent low energy theories, so
that Weierstrass fibrations do not cover the full landscape of F-theory vacua. In
this thesis we will nevertheless exclusively consider fibrations with section33 and
work mostly with fibrations in the Weierstrass form or the closely related Tate
form.
As discussed above, the elliptic fiber degenerates over the codimension 1 locus
in the base where the discriminant ∆ vanishes34. Fixing an arbitrary point p on
the discriminant locus, we can generically assume that f does not simultaneously
vanish35 at p. Locally around p, we can parametrise the normal direction to the
discriminant locus by a complex coordinate z, choosing z = 0 to correspond to

33F-theory models on elliptic surfaces without a section were considered in [87] and correspond
to IIB vacua with non-trivial configurations of B2 and C2.

34Such a locus will exist unless the fibration is trivial and the functions f and g in (2.65) are
constant, as we are considering closed and compact base manifolds. A holomorphic hypersurface
in Bn−1, such as the locus defined by {∆ = 0} is often referred to as a divisor. See appendix A.3
for further details.

35The loci where f and ∆ vanish simultaneously lead to a more complicated degeneration of
the elliptic fiber at codimension 2 in the base. As we will discuss in the following subsections,



2.4 Introduction to constructing F-theory vacua 47

the discriminant locus at p. If the discriminant vanishes to order n at z = 0,
equation (2.70) shows that the leading term in a Laurent expansion of the j-
invariant is of the form z−n. The value of the j-invariant of course determines τ
only up to an SL(2,Z) transformation. Locally we may take τ to lie within the
fundamental domain of SL(2,Z), in which j has only one pole. Around this pole
it obeys the Laurent expansion (2.71), which can be inverted to obtain

τ(z) ' i

2π log j ' τ0 + n

2πi log z + . . . . (2.72)

Comparison with (2.56) shows that this is precisely the behaviour that is expected
in the vicinity of a stack of n D7-branes. This motivates the view that from a
type IIB perspective the component of the discriminant locus under consideration
should be identified with part of the world-volume of a stack of n D-branes. Note
that while we may locally always choose τ to lie in the fundamental domain
of SL(2,Z), this is in general not possible globally, so that other parts of the
discriminant will describe [p, q]-branes with [p, q] 6= [1, 0].
While from a type IIB perspective it is natural to study the behaviour of the
axio-dilaton, in the geometric F-theory perspective τ actually appears only rather
indirectly by locally inverting the j-invariant. In this language, the presence of
the D7-branes in the shape of the discriminant locus manifests itself more directly
in the appearance of monodromies which act on the 1-cycles on the torus fiber. At
the locus where the discriminant vanishes, one of the cycles of the torus shrinks
to zero size. This can be seen e.g. by the fact that τ essentially describes the
ratio of the lengths of two cycles, and that by an SL(2,Z) transformation we may
always have τ going to infinity at the discriminant locus. With respect to a fixed
local basis of 1-cycles, we may denote an arbitrary cycle by a pair of integers. Let
(p, q) be the coordinates of the vanishing cycle with respect to this basis36. As
discussed in [94], upon transport around the discriminant locus an arbitrary cycle
(a, b) is transformed as (

a
b

)
→
(

1− pq p2

−q2 1 + pq

)(
a
b

)
, (2.73)

which matches the monodromy of a [p, q]-brane derived in equation (2.52). Note
that the cycle (p, q) itself is invariant under the transformation (2.73), so that the
type of the vanishing cycle can be defined consistently at least in the vicinity of the
corresponding brane. However, if we transport the (p, q)-cycle around a different
part of the discriminant locus at which the (p′, q′)-cycle vanishes, the (p, q)-cycle
will be transformed non-trivially unless [94] pq′−qp′ = 0. This transformation acts
on the monodromy matrix by conjugation such that M[p,q] → M[p′,q′]M[p,q]M

−1
[p′,q′].

In the case of branes with pq′−qp′ 6= 0 one speaks of mutually non-local 7-branes,

these loci are responsible for interesting physical effects such as the appearance of additional
massless states and enhanced gauge symmetries. For now we focus on the degenerations of the
fiber at codimension 1.

36In the SL(2,Z) basis in which τ → i∞ at discriminant locus, we would have (p, q) = (1, 0).



48 Chapter 2: 4D effective actions from IIB and F-theory

and the (p, q) type of each brane can no longer be defined in a globally meaningful
manner.
Up to now it might seem that we may construct F-theory models with D7-branes
lying along arbitrary divisors of the base manifold. This might seem surprising
from a type IIB perspective, where as discussed in section 2.2.3 the branes are
subject to a tadpole cancellation condition. It turns out that the locations of the 7-
branes in a consistent F-theory compactification are restricted by the requirement
that the compactification manifold is Calabi-Yau. The reason for this is that, as
already noted by Kodaira [96], the singular locus of the fibration gives rise to a
negative contribution to the curvature of the total space. More precisely, the first
Chern class of the total space Yn can be related to the first Chern class of the
base c1(Bn−1) ≡ c1(TBn−1) and the cohomology class of the discriminant by

c1(Yn) = π∗(c1(Bn−1)− 1
12[∆]). (2.74)

In particular, we see that in order for the total space to have vanishing first Chern
class as required for a Calabi-Yau manifold the base Bn−1 must have a positive
Chern class to cancel the contribution of ∆. To make it clearer that this in some
sense plays the role of a tadpole cancellation condition let us split the discriminant
into its irreducible components [∆] = ∑

i δi[∆i]. Here the integers δi denote the
vanishing orders of the discriminant along the components ∆i, or in the type IIB
language the number of D7-branes on the divisor ∆i. The Calabi-Yau condition
thus simplifies to37

12c1(Bn−1) =
∑
i

δi[∆i]. (2.75)

As we will discuss in more detail in the next subsection, it is possible to tune the
parameters f and g of the fibration in such a manner that the string coupling
becomes small over the entire base manifold. In this weak coupling limit the
theory reduces to perturbative type IIB orientifold compactification such that
Bn−1 can be viewed as the orientifold quotient of a suitable Calabi-Yau manifold.
In these weak coupling limits c1(Bn−1) can be related to the homology class of
the orientifold plane, which in turn relates the condition (2.75) to the type IIB
D7 tadpole cancellation condition [97].
The discussion around equation (2.69) already served to show that the modular
discriminant as well as the quantities f and g transform non-trivially under a
transformation of τ . This implies that they cannot truly be regarded as functions
on the base manifold Bn−1, but must instead be viewed as sections of appropriate
line bundles. The relation (2.74) now allows us to identify the line bundles in
question as powers of the canonical bundle KB of the base, which has first Chern

37Strictly speaking, these formulae hold for the case where the discriminant locus has no
complicated self-intersections rendering the total space Yn singular. In such a case, further
corrections appear on the right hand sides of (2.74) and (2.75) which encode the contributions
of the higher codimension loci of singularity enhancement [25], but these corrections will not be
important for us at the moment.
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class c1(KB) = −c1(Bn−1). More precisely, by (2.74) ∆ must be a section of K−12
B ,

which together with the defining equation (2.66) implies that f and g transform
as sections of K−4

B and K−6
B , respectively. Homogeneity of the Weierstrass equa-

tion (2.65) requires the coordinates x and y to also transform as sections of sim-
ilar bundles. Putting this information together, we deduce that the Weierstrass
equation is to be read as a degree (6,6) hypersurface in the weighted projective
bundle [90,98] P2,3,1(K−2

B ⊕K−3
B ⊕O). To each of the coordinates appearing in the

Weierstrass form we may assign two integers denoting the weights with respect to
the scaling relations associated with the P2,3,1 and the anticanonical bundle K−1

B ,
respectively. Written in this way, the weights are

x : (2, 2), y : (3, 3), z : (1, 0),
f : (0, 4), g : (0, 6).

(2.76)

We have already encountered one application of these general relations, in the
example of the elliptic K3 surface briefly considered at the end of section 2.3.3.
There, the base was just a P1, whose anticanonical bundle K−1

B = O(−2) is the
bundle whose sections are homogeneous polynomials of degree 2 in the coordinates
of the P1. The appearance of 24 D-branes in the shape of 24 zeroes of the dis-
criminant in the K3 compactification then immediately follows from the general
rules (2.76).

2.4.2 The Sen limit

The discussion in the previous subsection shows that F-theory allows us to rel-
atively easily construct consistent vacua involving 7-branes and a varying axio-
dilaton profile. Explicitly constructing such a model essentially reduces to choos-
ing a base manifold whose anticanonical bundle is sufficiently easy to handle that
we can construct the various sections given in (2.76). In particular, the analogue
of the type IIB tadpole constraints are in a sense automatically satisfied in a con-
sistent Calabi-Yau compactification of F-theory. Nevertheless, the perturbative
type IIB formulation has the advantage of offering a more intuitive interpretation
of the physical properties of the model in terms of collections of D-branes and
orientifold planes with open strings stretched between them, and it would be nice
to have a more precise interpretation of the F-theory vacua in this language. Con-
versely, a more precise relationship between the two pictures might allow us to
better understand some aspects of perturbative IIB vacua from the vantage point
of F-theory.
At first sight our previous discussion of F-theory vacua seems to suggest that they
will typically involve non-local 7-branes and that there will always be regions in
which the string coupling is large, regardless of the chosen SL(2,Z) frame. Of
course, as we discussed in section 2.3.1 this is also the generic situation in the type
IIB setting. On the other hand it is known that there do exist purely perturbative
IIB vacua, the simplest examples being situations in which all branes coincide with
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the orientifold planes so as to cancel all tadpoles locally. This gives an additional
motivation to study how such situations can arise in F-theory.
The question of how to formally relate the F-theory construction to the weakly
coupled IIB picture was addressed by Sen in [99–101]. Although the techniques are
independent of the dimensionality of the compactification, for concreteness we will
in the following focus on F-theory compactifications to 4 dimensions on a fourfold
Y4 fibered over a threefold base B3. Sen’s approach38, which we summarise in the
following, is based on attempting to specialise the forms of f and g in such a way
that a weak coupling limit can be obtained by tuning one of the parameters of
the model to zero. Concretely, f and g may be rewritten as [22]

f = −3h2 + εη, g = −2h3 + εhη − ε2

12χ, (2.77)

with h, η, χ and ε sections of appropriate powers of K−1
B as required by (2.76).

In particular, if we choose ε to be a constant, this parametrisation is completely
general in the sense that any f and g may be rewritten in this manner. The
advantage of this reparametrisation is that the discriminant carries an overall
prefactor of ε2 [101]

∆ = ε2
(
η2(4εη − 9h2)− 18

4 h(εη − 2h2)χ+ 3
16ε

2χ2
)
. (2.78)

Together with equation (2.70), the form of the discriminant implies that by taking
ε to be small it is possible to ensure that |j| is arbitrarily large everywhere on the
base manifold except at the locus where f vanishes. If |j| stays uniformly large
as we move around the base, then τ stays in a neighborhood of an inverse image
τ0 = j−1(∞). Of course, the inverse image τ0 is defined only up to an SL(2,Z)
transformation, but the key point is that τ stays within the same SL(2,Z)-patch39

of the complex plane. Choosing the SL(2,Z) frame in which τ0 = i∞, we see that
the limit ε→ 0 thus corresponds to the case of (almost) globally weak coupling40.
In the weak coupling limit, we expect a dual description as a perturbative IIB
vacuum to be possible. Sen provided this interpretation by observing that the
discriminant at leading order in ε factorises as

∆ = −9ε2h2(η2 − hχ) +O(ε3). (2.79)

In other words, the discriminant locus splits into several components as ε→ 0. By
analysing the monodromies around the loci h = 0 and η2 = hχ, Sen deduced that

38For more recent discussions of weak coupling limits of models with non-Abelian gauge groups
or of fibrations not in the Weierstrass form, see [97,102].

39By this we mean a subset of the complex plane which can as a whole be mapped into the
fundamental region of SL(2,Z) by the same SL(2,Z) transformation.

40Different limits are possible in which the coupling is constant over the base, but in these
cases it cannot be tuned to be perturbatively small [103]
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these equations should describe the locations of an O7-plane and a pair of D7-
branes in the base, respectively. Note that locally around a point at which hχ 6= 0,
the portion η2−hχ of the discriminant looks like it describes two separate branes
located at η = ±

√
hχ, but globally they are recombined into a single object [101].

Having identified the surface h = 0 as a potential orientifold plane by the mon-
odromy analysis, Sen confirmed this identification by explicitly constructing the
double cover of B3 and the orientifold involution which leaves the locus h = 0 in-
variant. In a similar manner to the Weierstrass construction of elliptic fibrations
discussed above, Sen attempted to define a double cover X3 of B3 as a hyper-
surface in the anticanonical bundle over B3. In order to define a double cover of
B3 branched over h = 0, it must be possible to choose coordinates in which the
hypersurface equation takes the form

X3 : ξ2 − h = 0. (2.80)

The orientifold involution is then simply σ : ξ 7→ −ξ. In the limit ε → 0, we
expect that the F-theory model reduces to the type IIB compactification on X3
modded out by the involution σ, with a D7-brane at the locus

D7 : η2 − ξ2χ = 0. (2.81)

In general, this is a single object invariant under the orientifold action, however
for in the special situation where χ is a perfect square, χ = ψ2, the brane splits
into a pair of branes located at η = ±ξψ. Clearly, the two branes are precisely
exchanged by the orientifold involution σ, so that they describe a brane-image
brane pair.
As noted in [84, 104], the form of the equation (2.81) describing the D7-brane
is not entirely generic. Instead, it requires the brane to intersect the orientifold
plane only in double points. Although this requirement follows directly from the F-
theory construction, its origin from the point of view of perturbative type IIB is far
from obvious. The authors of [104] showed that it could be derived by Dirac charge
quantisation arguments, but the double point intersection still showed that the F-
theory construction can shed light on new and surprising aspects of perturbative
IIB compactifications. Note that by specialising the choice of the sections η and
χ, the equation (2.81) can also be split into several factors describing individual
D7-brane stacks. As the double point intersection property must hold for each
individual brane stack [104], each one of the factors can be put into the form of
equation (2.81).
The weak coupling limit of F-theory allows us to explore the interplay between
tadpole cancellation and Calabi-Yau conditions when switching back and forth
between the F-theory and IIB pictures. To illustrate these relationships, let us
follow [104] and consider a particularly simple example with B3 = P

3. The sections
of the anticanonical bundle K−1

P3 are simply homogeneous polynomials of degree
4 in the homogeneous coordinates of P3 (see appendix A.4 for further details). In
order for the ansatz (2.77) to yield the correct degree of f , h must be a section of
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K−2
B , i.e. a polynomial of degree 8. For the equation (2.80) defining the double

cover X3 to transform homogeneously, this in turn requires ξ to be a polynomial
of degree 4. The total space of the K−1

B bundle in which the equation (2.80) is
defined can be viewed as a weighted projective space whose coordinates are the
coordinates ui, i = 1, ..., 4 of P3 and ξ. The sum of the weights of the coordinates
is thus 8. As this matches the degree of the equation defining X3, it follows from
the adjunction formula that X3 is a Calabi-Yau manifold [21]. Furthermore, the
Sen ansatz (2.77) implies that η and χ are of degree 16 and 24, respectively. This
means that in terms of the hyperplane class H = [ui = 0] on P3 the classes of the
D7-brane and the orientifold plane are given by

[D7] = [η2] = 32H = 4[h] = 4[O7]. (2.82)

This is precisely the relation that is required by 7-brane tadpole cancellation [50].
In other words, the Calabi-Yau condition for Y4 on the F-theory side implies both
the Calabi-Yau condition for X3 as well as tadpole cancellation on the IIB side. It
is straightforward to check that the converse is also true, i.e. tadpole cancellation
together with the Calabi-Yau condition for X3 fix the degrees of the polynomials
and ensure that Y4 is also Calabi-Yau.
A second consequence of the non-generic form (2.81) of the D7-brane besides
the double intersection with the orientifold plane was noted in [104]. Namely, the
brane world-volume generically has singularities that locally look like the so-called
Whitney umbrella singularity. For this reason, a brane of the form (2.81) is often
referred to as a Whitney brane. The presence of these singularities complicates the
calculation of the contribution of the D7-brane to the D3-brane tadpole, which
in the smooth case involves calculating the Euler characteristic of the D7-brane
cycle. The calculation of the contribution of the singularities to the D3-tadpole
directly in type IIB is rather complicated [104], but it can be determined much
more easily by comparison with the tadpole on the F-theory side. This serves
as another example that the F-theory formulation can be advantageous even in
calculating quantities that are well-defined in the perturbative IIB limit.
When moving away from the perturbative limit by allowing finite values of ε, the
discriminant (2.78) no longer factorises for generic choices of the sections h, η, χ.
This means that the orientifold plane and the 7-branes that were visible in the
perturbative limit recombine into a single object. This recombination is a truly
non-perturbative effect, as we can see by estimating that for small ε we have ε ∼
j(τ)−1/2 ∼ exp(iπτ) ∝ exp(−π/gs) [99]. Alternatively, this can be seen by noting
that there are no suitable recombination modes in the perturbative spectrum, so
that the recombination modes are presumably non-perturbative (p, q)-strings [22].
In general, at finite coupling the discriminant locus is a single irreducible object
that has no simple interpretation in terms of orientifold planes and D-branes.
Nevertheless a factorisation of the discriminant into objects that may admit such
an interpretation can be achieved by suitably specialising the forms of the sections
f, g specifying the elliptic fibration. This is the key point that makes it possible
to explicitly engineer fibrations with singularities leading to certain gauge groups
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as required e.g. in the construction of the F-theory GUT models. This point
will be discussed slightly more detail in section 2.4.4. One example in which the
discriminant factorises for finite ε was obtained by Sen in [101] by setting χ = 0 in
the ansatz (2.77). In this case the discriminant still describes a pair of coincident
branes at η = 0, but the erstwhile orientifold plane splits non-perturbatively into
two [p, q]-branes located at h = ±2

3
√
εη.

2.4.3 Non-Abelian gauge groups in F-theory

In our discussion of F-theory compactifications so far, we have essentially viewed
the elliptic fibration as just an elegant bookkeeping device that allows us to keep
track of the non-trivial behaviour of the axio-dilaton τ . The singularities of the
fibration (at codimension 1 in the base) were interpreted as 7-branes due to the
appearance of SL(2,Z) monodromies around them. However, beyond simply acting
as sources for bulk fields, D-branes in type IIB compactifications are associated
with another essential feature for model building purposes in that they can give
rise to non-Abelian gauge symmetries. This immediately raises the question of
how such gauge symmetries appear in the F-theory description.
As 7-branes in F-theory are associated with singularities of the elliptic fibration, it
is natural to expect that the gauge group is related in some way to the geometric
structure of the singularity. Even before the advent of F-theory, the fact that
some singularities of the compactification manifold can be tied to the appearance
of enhanced gauge symmetries had been noted in the context of type II and
heterotic strings [24, 89, 105, 106]. The key to understanding the relationship
between gauge symmetry and geometry in the F-theory context lies in the fact
that the ways in which an elliptic Calabi-Yau may degenerate are quite restricted.
Kodaira [96] studied the types of singularities and the structure of the space
obtained by resolving the singularities of elliptic Calabi-Yaus41. He found that
in the resolved geometry the previously singular fibers are replaced by a set of
intersecting P1’s, whose intersection structure can be depicted by a simply-laced
affine Dynkin diagram (with possibly some nodes appearing with multiplicities).
Such Dynkin diagrams are associated with the Lie algebras of the families An, Dn

and En [24,25]. The type of singular fiber which appears in an elliptic Calabi-Yau
in the Weierstrass form was related by Kodaira [96] to the vanishing orders of
the sections f, g and ∆ along the portion of the discriminant in question. This
relationship is shown in table 2.2. If the vanishing orders of f and g are too large,
specifically if ord(f) ≥ 4 and ord(g) ≥ 6, the singularities are called non-minimal.
A non-minimal singularity at codimension 1 in the base signals that the singular
space can no longer be resolved to a Calabi-Yau manifold [107]; such cases will
not be considered in this thesis.

41Not every singularity of the elliptic fiber actually renders the total space singular, to be
precise the space only needs to be resolved if the vanishing order of the discriminant is at least
2 [22].
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ord(f) ord(g) ord(∆) Fiber type Number of Intersection
(Kodaira) components graph (ADE)

≥ 0 ≥ 0 0 smooth 1 none
0 0 1 I1 1 none
≥ 1 1 2 II 1 none
1 ≥ 2 3 III 2 A1
≥ 2 2 4 IV 3 A2
0 0 n ≥ 2 In n An−1
2 ≥ 3 n+ 6 I∗n 5+n Dn+4
≥ 2 3 n+ 6 I∗n 5+n Dn+4
≥ 3 4 8 IV ∗ 7 E6
3 ≥ 5 9 III∗ 8 E7
≥ 4 5 10 II∗ 9 E8

Table 2.2: Kodaira classification of singular fibers (based on [25, 95, 107]). The
number of components given does not include possible multiplicities of some
components. The fiber types I1 and II correspond to a nodal and a cuspidal
curve, respectively. In the cases where the fiber consists of multiple components,
the different intersection points are always distinct except for the type III and
IV fibers.

Strictly speaking, the above enumeration of singular fibers is complete only for
elliptic K3 surfaces. In higher dimensions, non-trivial monodromies can appear
as one moves about the base, which can lead to some of the fiber P1’s being
identified [107]. As explained lucidly in [94], these monodromies act at the level
of Dynkin diagrams by folding the diagram, leading to the appearance of double
intersections between some fiber components. In this manner, Dynkin diagrams
of all simple Lie groups including those of type Cn, Bn, F4 and G2 may arise [107].
Additional complications can arise for singularities at higher codimension in the
base, especially for fibrations not in the Weierstrass form. As we will see in
the following, singularities at higher codimension in the base play an important
role in the construction of F-theory GUT models and their structure has been
studied extensively in the recent literature, see e.g [27, 29, 90, 95, 108–111]. At
higher codimension, the fiber type can in some cases deviate from the Kodaira
types, either through the intersection structure or the multiplicity of the nodes.
Nevertheless, these potential subtleties have little effect on most of the topics
covered in this thesis, and the physical intuition obtained from table 2.2 will be
sufficient in many cases.
For elliptically fibered Calabi-Yau n-folds with n ≥ 3, the classification of ta-
ble 2.2 can be further refined to distinguish between different ways in which the
monodromy group acts on the components of the fiber. The monodromies that
may appear were analysed in detail in [107], where in particular it was shown that
singular fibers of type Cn and Bn can indeed be constructed if the sections f, g
are specialised in a particular manner. This means that the spectrum of singu-
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lar fibers is rich enough to include fibers with intersection diagrams isomorphic
to the Dynkin diagrams of SU(n), SO(n) and Sp(n), i.e. all the gauge groups
that occur in perturbative IIB compactifications. The new feature in table 2.2,
which has no perturbative IIB analogue, is the appearance of the exceptional Lie
algebras E6, E7 and E8. Note that generically (more precisely, if f and g do not
share a common factor) only singularities of type In appear at codimension 1 in
the base. However, enhancements to the higher Lie algebras can easily occur at
codimension 2 and 3 even in a reasonably generic setting. As we will see, the
appearance of loci of exceptional enhancement is one of the main reasons for the
popularity of F-theory constructions for GUT model building, as it allows the
construction of certain Yukawa couplings that are forbidden in perturbative type
II compactifications.
The discussion above naturally suggests that a singularity of the compactification
manifold leads to the appearance of the corresponding gauge symmetry in the low
energy effective theory obtained by compactifying F-theory on the singular space.
Note that due to the lack of a true fundamental formulation of F-theory, it is
not easy to show this directly. Nevertheless, strong indirect evidence exists in the
shape of striking dualities with other string theories in which the gauge symmetry
is known, in particular with type IIB for the SU(n), SO(n) and Sp(n) groups and
with certain heterotic compactifications for the exceptional groups [107,112–115].
Further evidence for the appearance of gauge symmetries matching the fiber sin-
gularities comes from the duality of F-theory and M-theory discussed in subsec-
tion 2.3.3. This duality gives a natural interpretation for the gauge degrees of
freedom in terms of M2-branes wrapping P1’s in the elliptic fiber [21–23]. Strictly
speaking, the P1’s are not directly visible in the singular geometry and become
manifestly visible only after the singularities are resolved. In the resolved situa-
tion, the P1’s have non-zero volume, so that the corresponding gauge bosons are
massive42. However, the mass vanishes in the F-theory limit in which the fiber
volume is taken to zero [88], leading to the appearance of additional massless
states describing the gauge bosons of the non-Abelian gauge group.
This picture is actually quite similar to the IIB picture in which non-Abelian gauge
generators come from strings stretched from one brane to another, leading to gauge
symmetry enhancement when some of these states become massless for stacks of
coincident branes. In fact, the correspondence can be made even more precise
using the language of (p, q)-strings and string junctions [72]. In this language, a
singularity with a non-Abelian gauge group is viewed as corresponding to several
coincident 7-branes of different [p, q]-types. As discussed in subsection 2.4.1, (p, q)-
string states undergo non-trivial monodromies in the presence of such non-local 7-
branes. The appearance of these monodromies and multi-pronged string junctions
means that string states can no longer be labelled by just two Chern-Paton labels
as in the perturbative IIB case. The analysis of [72, 116, 117] shows that this

42More precisely, only the Cartan generators of the gauge group remain massless, so that when
compactifying on the resolved space we are in the Coulomb branch of the gauge group [88,107].
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richer structure can indeed account for the exceptional groups not visible in the
perturbative IIB setting.
At the codimension 2 loci where two components of the discriminant meet, the
singularity type worsens and additional massless states appear in the F-theory
limit [118]. For elliptic Calabi-Yau fourfolds, these loci are curves in the base
known as matter curves43. In the type IIB picture the corresponding phenomenon
is the appearance of massless charged matter localised at the intersection of two
brane stacks. Similarly, interactions between these charged matter states can arise
at so-called Yukawa points where two matter curves meet [112–114].
The results quoted above make it clear that the key to constructing phenomeno-
logically viable F-theory models lies in being able to engineer and manipulate
singularities of the fibration in a controlled manner. An explicit constructive al-
gorithm to build fibrations with particular singularities was given by Tate in [119].
The Weierstrass form (2.65) that we have used so far is actually not the best suited
formulation to engineer singularities in this manner, and it is instead advantageous
to rewrite the fibration in a related form known as the Tate form [90, 107]. Fol-
lowing the conventions of [120, 121], we define the fibration in the Tate form by
the equation

PT = x3 − y2 + a1xyz + a2x
2z2 + a3yz

3 + a4xz
4 + a6z

6 = 0. (2.83)

This equation is defined in the same space P2,3,1(K−2
B ⊕K−3

B ⊕O) as the original
Weierstrass equation. Note that homogeneity of the equation requires the ai to
transform as sections of K−iB . The Tate form can be related to the Weierstrass
form by the coordinate shift [30]

x̃ = x+ 1
12
(
4a2 + a2

1

)
z2, ỹ = y − 1

2a1xz −
1
2a3z

3. (2.84)

This shift brings the Tate equation (2.83) into the usual Weierstrass form

PT = x̃3 − ỹ2 + fx̃z4 + gz6. (2.85)

Here f and g related to the sections ai by [107,121]

f = − 1
48
(
β2

2 − 24β4
)
, g = − 1

864
(
−β3

2 + 36β2β4 − 216β6
)
, (2.86)

with
β2 = a2

1 + 4a2, β4 = a1a3 + 2a4, β6 = a2
3 + 4a6. (2.87)

43Intersections between two divisors carrying some gauge group are not the only way to obtain
chiral matter in F-theory. Starting with a gauge group G on a divisor one can break the group
to a subgroup G1 ⊂ G by switching on suitable flux [22, 112]. Chiral matter then arises from
a decomposition of fields in the adjoint of G into the representations of G1. Such fields are
sometimes referred to as ’bulk matter’ as they propagate over the entire divisor and are not
localised further on intersection curves.
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Plugging the expressions (2.86) for f and g into the general formula (2.66) yields
the discriminant in terms of the Tate sections [22]

∆ = −1
4β

2
2(β2β6 − β2

4)− 8β3
4 − 27β2

6 + 9β2β4β6. (2.88)

This analysis shows that it is always possible to bring a fibration from the Tate
form into the Weierstrass form. As discussed in [122], the converse is not always
possible globally and for all gauge groups. However, the Tate form can be con-
structed at least locally for the gauge groups usually used in GUT model building,
and for simplicity we will restrict our attention to fibrations that can be globally
written in Tate form throughout this thesis.
The advantage of the Tate form from a model building perspective is that by
specifying the vanishing orders of the sections ai we can fix44 not only the vanishing
orders of f and g (and therefore the original Kodaira fiber type), but also the
monodromy acting on the fiber P1’s [107]. The way in which this monodromy
acts makes it possible to identify three distinct fiber types dubbed split, semi-
split and non-split in [107], where the split case is the case of trivial monodromies.
The relationship between the vanishing orders of the ai and the singular fibers as
obtained from Tate’s algorithm is given in table 2.3.
The discussion so far has centered on gauge groups that can be associated with
codimension 1 divisors in the base, and the enhancements that take place when
two or more such loci intersect. However, it is also possible that the fibration
is singular along a locus of codimension 2 (or 3) which cannot be written as the
intersection of two codimension 1 singularity loci. In the process of resolving the
singular space, such singular loci also give rise to additional P1 fibers, which in
turn lead to additional gauge bosons in the low energy effective theory that are
not associated with Cartan generators of some non-Abelian gauge group. In this
manner, further Abelian gauge factors can arise in F-theory compactifications in
addition to the groups listed in table 2.3 [27,29,30,121,123]. Such Abelian symme-
tries can have important consequences for the phenomenology of the low energy
theory e.g. by forbidding certain couplings and interactions. The investigation of
the construction, the mathematical description and the effects of Abelian gauge
symmetries in F-theory compactifications will be a central topic of the following
chapters.

2.4.4 Aspects of F-theory GUT model building

From a phenomenological perspective, the main aim of studying string compact-
ifications is to determine the properties of the resulting effective 4-dimensional
theory. A very important part of this procedure is obtaining the low energy gauge

44In a few specific cases, namely SO(7)/SO(8), SO(11)/SO(12) and SO(4k+ 3)/SO(4k+ 4),
the same vanishing orders of the ai can lead to different groups depending on the factorisation
properties of the Tate polynomial, see table 2.3 and the discussion in [94,107].
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Vanishing order Fiber type Group
a1 a2 a3 a4 a6 ∆
0 0 0 0 0 0 I0 none
0 0 1 1 1 1 I1 none
0 0 1 1 2 2 I2 SU(2)
0 0 2 2 3 3 Ins3 unconven.
0 1 1 2 3 3 Is3 unconven.
0 0 k k 2k 2k Ins2k Sp(k)
0 1 k k 2k 2k Is2k SU(2k)
0 0 k + 1 k + 1 2k + 1 2k + 1 Ins2k+1 unconven.
0 1 k k + 1 2k + 1 2k + 1 Is2k+1 SU(2k + 1)
1 1 1 1 1 2 II none
1 1 1 1 2 3 III SU(2)
1 1 1 2 2 4 IV ns unconven.
1 1 1 2 3 4 IV s SU(3)
1 1 2 2 3 6 I∗ns0 G2
1 1 2 2 4 6 I∗ss0 SO(7)
1 1 2 2 4 6 I∗s0 SO(8)∗
1 1 2 3 4 7 I∗ns1 SO(9)
1 1 2 3 5 7 I∗s1 SO(10)
1 1 3 3 5 8 I∗ns2 SO(11)
1 1 3 3 5 8 I∗s2 SO(12)∗
1 1 k k + 1 2k 2k + 3 I∗ns2k−3 SO(4k + 1)
1 1 k k + 1 2k + 1 2k + 3 I∗s2k−3 SO(4k + 2)
1 1 k + 1 k + 1 2k + 1 2k + 4 I∗ns2k−2 SO(4k + 3)
1 1 k + 1 k + 1 2k + 1 2k + 4 I∗s2k−2 SO(4k + 4)∗
1 2 2 3 4 8 IV ∗ns F4
1 2 2 3 5 8 IV ∗s E6
1 2 3 3 5 9 III∗ E7
1 2 3 4 5 10 II∗ E8
1 2 3 4 6 12 non-min. -

Table 2.3: Classification of singular fibers at codimension 1 obtained from Tate’s
algorithm; taken from [107].

group and the matter field spectrum including their interactions. These aspects
can be addressed quite explicitly in type IIB orientifold compactifications and it
is comparatively simple to build realistic effective theories in intersecting brane
models [17, 23, 124]. In order to obtain chiral matter spectra, such constructions
usually45 rely on intersecting D7-branes with world-volume fluxes [23,50]. As we

45Chiral spectra can also be achieved by including spacetime-filling D3-branes located at
singular points of the compactification manifold, see e.g. [23]. However, trying to uplift IIB
models based on singular manifolds to F-theory requires elliptic fibrations over singular bases,
which are mathematiclly difficult to handle. Throughout this thesis we will stick to smooth
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have seen in the previous sections, such 7-brane configurations generically lead
to vacua with varying axio-dilaton profiles which are not easy to describe outside
the F-theory framework. Nevertheless, from a phenomenological perspective it
is tempting to use the comparatively simpler language of intersecting branes for
model building without explicitly specifying the resulting complicated axio-dilaton
background. The implicit expectation in such an approach is that these IIB mod-
els can in principle be embedded into a consistent F-theory compactification, but
that the main phenomenological features can be determined already in the IIB
language without having to make recourse to the more complicated mathematical
framework of F-theory. Much of the recent phenomenological interest in F-theory
constructions comes from the realisation that this expectation fails to hold in
models with grand unification of the gauge group (GUT models) [112–114, 125].
In particular, the structure of the Yukawa couplings in such models can only be
fully understood by taking into account F-theoretic strong coupling effects in the
shape of the appearance of exceptional symmetry groups. In the following we will
briefly review the relevant reasoning for the case of SU(5) GUTs, following the
discussion of [23,50].
The main appeal of grand unified theories lies in the fact that the minimal super-
symmetric extension of the Standard Model predicts the (approximate) unification
of the three gauge couplings at a scale of around 1016 GeV [126]. This suggests
that the SM gauge groups might have a common origin in a single larger gauge
group, the GUT group, which is broken at the unification scale. The simplest
such GUT model is based on an SU(5) gauge group and was considered already
by Georgi and Glashow [127]. We will stick to the SU(5) model throughout this
thesis, although many statements can be easily adapted to other GUT groups as
well. After embedding the Standard Model gauge group into the SU(5), the actual
breaking SU(5)→ SU(3)× SU(2)× U(1)Y can be achieved e.g. by turning on a
flux along the hypercharge generator U(1)Y . In this breaking process, the leptons
of the Standard Model arise from the fundamental 5 and the antisymmetric 10
representation of SU(5) according to the breaking pattern [128]

5→ (3,1)−1/3 + (1,2)1/2 , (2.89)
10→ (3,2)1/6 + (3̄,1)−2/3 + (1,1)1 . (2.90)

In order to obtain all lepton generations of the Standard Model, the model must
therefore include 3 multiplets in each of the representations 5̄ and 10, while a
further pair of 5 multiplets combine to describe the Higgs fields.
The natural starting point when attempting to realise an SU(5) GUT model in
a type IIB orientifold compactification46 is to begin with a stack of 5 D7-branes
wrapped along a divisor Da ⊂ X3 in the compactification manifold X3. This gives
rise to a U(5) = SU(5) × U(1)a low energy gauge group. To obtain matter in
the 5 representation of SU(5) it is necessary to introduce (at least) an additional

bases and rely on fluxed intersecting D7-branes to generate chirality.
46As before we focus on orientifolds with O3/O7-planes and without singularities.
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brane on a different divisor Db ⊂ X3. The states in the 5 representation are then
localised at the intersections between Da and Db (and their orientifold images),
while the 10 representation arises from strings stretched between the GUT stack
and its orientifold image [50]. The gauge group of the IIB GUT model thus has
(at least) two further Abelian factors U(1)a and U(1)b in additional to the actual
GUT group.
By a suitable choice of the divisors Da and Db both of the additional U(1)s can
be made massive through the Stückelberg mechanism (see section 3.1), so that
they do not explicitly appear in the low energy gauge group [50]. Nevertheless,
the presence of the additional Abelian gauge symmetries still has a crucial effect
because the SU(5) multiplets appearing in (2.89) and (2.90) carry charges with
respect to these U(1)s, which leads to selection rules on the possible couplings.
In particular, the GUT origin of the top Yukawa coupling would be a coupling of
the form [23]

10(2,0)10(2,0)5(1,−1)
H , (2.91)

where the superscripts denote the charges of the fields under U(1)a × U(1)b.
Clearly, this coupling is forbidden perturbatively by U(1) gauge invariance. Of
course, in more complicated models with more brane stacks further symmetries
arise and the U(1) charges of the fields need not be exactly as in equation (2.91).
Nevertheless, this does not affect the fact that the top Yukawa coupling is forbid-
den. To see this, note that the 10 states arise from strings stretching between the
GUT stack and its image, so that the only U(1) symmetry they will be charged
under is the diagonal U(1)a ⊂ U(5). The Higgs field in the 5H representation
on the other hand must come from strings stretched between the GUT stack and
some other brane, so that they will always be charged under the U(1) associated
to this other brane. This reasoning also explains why couplings involving two
fields arising from strings between the GUT stack and a different brane stack, for
example the down-type Yukawa coupling [50]

10(2,0)5̄(−1,−1)5̄(−1,1)
H , (2.92)

may be gauge invariant.
Note that these observations do not imply that the top Yukawa coupling is com-
pletely absent in type IIB SU(5) GUTs. Indeed, on a non-perturbative level the
coupling can be generated e.g. by suitable Euclidean D3-instantons [35,36]. How-
ever, by definition such non-perturbative instanton contributions are expected to
be relatively small in a perturbative type IIB setting [23], so that some tuning of
the parameters of the compactification is required to obtain the observed fermion
mass hierarchies given the fact that the down-type (and lepton) Yukawa couplings
are present perturbatively [22,36,50].
Much of the recent phenomenological interest in F-theory stems from the realisa-
tion [113] that strong coupling effects in F-theory resolve the problem discussed
above. In particular, F-theory models can allow all types of Yukawa couplings,
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including the top Yukawa coupling in SU(5) GUTs, to appear on an equal foot-
ing. On a qualitative level this can be understood by noting that F-theory allows
for the appearance of multi-pronged strings ending on multiple different brane
stacks [23]. Roughly speaking, if the analogues of the 10 states in (2.91) arise
from multi-pronged strings rather than strings ending only on the GUT brane,
they can simultaneously carry charges under different U(1)s. This can allow for
charge cancellation to occur in a manner which is not possible in equation (2.91).
To understand this more precisely, let us review how the various matter states
and interactions arise in an F-theory SU(5) GUT model, following the discussion
in [22].
Let S ⊂ B3 be the divisor in the base of the elliptic fibration on which the GUT
group should arise, and w a (local) holomorphic coordinate parametrising the
normal direction to S in B3. The analysis of [122] shows that at least locally the
fibration can be written in Tate form, and the vanishing orders of the sections ai
near S that are required in order to obtain an SU(5) gauge group can be read off
from table 2.3. To make the vanishing orders manifestly visible, it is convenient
to rewrite

a1 = b5, a2 = b4w, a3 = b3w
2, a4 = b2w

3, a6 = b0w
5, (2.93)

where the sections bi do not vanish on the GUT brane S located at w = 0. Using
the expression (2.88) for the discriminant one obtains [129]

∆ = −w5
(
b4

5P + wb2
5(8b4P + b5R) + w2(16b2

3b
2
4 + b5Q) +O(w3)

)
, (2.94)

where P , Q and R are certain polynomials in the bi. We will only need the
expression for P , which is given by [129]

P = b2
3b4 − b2b3b5 + b0b

2
5. (2.95)

Following the discussion of subsection 2.4.3 we expect matter fields at loci where
the singularity enhances. Equation (2.94) makes it clear that there are two codi-
mension 2 loci at which the vanishing order of ∆ exceeds 5, which are located at
w = b5 = 0 and w = P = 0. Applying Tate’s algorithm as in table 2.3, we expect
that the states localised at these matter curves fill out the adjoint representations
of SO(10) and SU(6), respectively. To determine the transformation properties
of these fields with respect to the SU(5) gauge group the adjoint representations
of SO(10) and SU(6) are decomposed as [22,23]

SO(10)→ SU(5)× U(1) : 45→ 240 ⊕ 10 ⊕ 102 ⊕ 10−2,

SU(6)→ SU(5)× U(1) : 35→ 240 ⊕ 10 ⊕ 51 ⊕ 5−1.
(2.96)

These decompositions are the reason why the curve P10 ≡ {w = b5 = 0} is often
referred to as the 10-curve, while P5 ≡ {w = P = 0} is called the 5-curve. Note
that the U(1) group appearing in (2.96) is at the moment only formally defined
by the local enhancement to SO(10) resp. SU(6), and may or may not survive
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as a symmetry of the full low energy action [23], depending on the details of the
fibration. Additional GUT singlet states which describe true physical U(1) gauge
symmetries can arise from other singular loci at codimension two which do not lie
fully within the GUT brane S [22, 121].
To determine the interactions of these matter states, we must similarly identify
the higher singularity enhancements at codimension 3. Such enhancement points
are expected to lie at the intersection of the matter curves. Equation (2.95) shows
that P factorises over the locus b5 = 0, so that the matter curves intersect at two
separate loci given by [22]

w = b5 = b3 = 0 → D6 ⇔ SO(12),
w = b5 = b4 = 0 → E6.

(2.97)

Here we have already indicated the enhancement that is expected from Tate’s
algorithm. To identify the fate of the matter fields we again decompose the adjoint
representations of the enhancement groups, which can be broken to SU(5)×U(1)×
U(1) [23]

E6 : 78→ 24(0,0) ⊕
[(

1(0,0) ⊕ 1(−5,−3)

⊕5(−3,3) ⊕ 10(−1,−3) ⊕ 10(4,0)
)
⊕ c.c.

]
,

SO(12) : 66→ 24(0,0) ⊕
[(

1(0,0) ⊕ 5(−1,0) ⊕ 5(1,1) ⊕ 10(0,1)
)
⊕ c.c.

]
.

(2.98)

Again, the simple fact that the singularity enhances in this manner at the in-
teraction points is not sufficient to determine whether the U(1)’s appearing here
(and hence the associated selection rules) survive in the full low energy action or
not. Regardless of this, the charges given in (2.98) show that the sought-after top
Yukawa coupling

5(−3,3)10(−1,−3)10(4,0), (2.99)
is indeed allowed to appear at the point of E6 enhancement, while the point of
enhancement to SO(12) can yield the down type Yukawa. Finally, there is an
additional enhancement point at w = P = R = 0 where the singularity enhances
to SU(7) [129]. This enhancement point is different in nature from the other E6
and SO(12) points in that it does not arise from the intersection of two matter
curves. Instead, it can be viewed as the intersection of a codimension 2 curve
carrying a GUT singlet with the GUT brane [23]. This enhancement point yields
a µ-term type coupling of the form 551 [129].
We should point out that Tate’s algorithm, which was used above to motivate the
appearance of matter and interaction loci, is strictly speaking applicable only at
codimension 1 in the base. The structure of the fiber P1s found after resolving the
singularities was studied very explicitly in [108] (see also [27,29,90,95,98,109–111,
120, 129] for a variety of different approaches). The results show that while the
structure of the fiber P1s over the enhancement points does not exactly match the
expectations of Tate’s algorithm, the form of the Yukawa couplings is unaffected.
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An interesting aspect of F-theory GUT models is that, as discussed above, the
massless states charged under the visible gauge group and their interactions are
localised on the GUT divisor S. This forms the motivation for the so-called local
approach to F-theory model building, which focuses on the geometry of the fibra-
tion near S and attempts to deduce as many aspects of the low-energy theory as
possible without explicitly embedding S in a compact Calabi-Yau fourfold [130].
An advantage of the local approach is that the particle spectrum and the coeffi-
cients of the couplings can be studied and in some cases calculated explicitly in
local coordinate patches within S. For example, while the discussion above strictly
speaking only shows that certain Yukawa couplings can appear, local models can
allow the wavefunctions of the localised modes to be obtained explicitly by solv-
ing the associated Dirac equation [112, 114]. This in turn makes it possible to
explicitly calculate coefficients of Yukawa couplings and study flavour hierarchies
and mixing matrices [114,131–135].
One approach to local F-theory model building which was pioneered in [113,114]
is based on the fact that the structure of symmetry enhancements which can be
obtained from an elliptic fibration in Tate form (2.83) follows an E8 breaking
pattern [121]. The underlying reason for this is that an E8 singularity can be
described locally by the equation [113]

y2 = x3 + z5, (2.100)

of which the Tate model (2.83) describes a general unfolding47. The authors
of [113,114] argued that as the various singularities appearing over S in the Tate
model correspond to subgroups of E8, they should admit an interpretation in terms
of Higgsing of an underlying 8-dimensional E8 gauge theory on S. More precisely,
taking a Higgs bundle with structure group H ⊂ E8 breaks the symmetry to the
commutant G = E8/H over the bulk of S. In particular, the case G = SU(5) is
achieved by taking also H = SU(5) [22]. To distinguish it from the actual gauge
group G, the commutant is often denoted by H = SU(5)⊥. In the Higgs bundle
picture the loci of enhanced symmetry are identified with the loci on S on which
particular components of the Higgs field vanish.
A different but closely related tool for local model building is the so-called spectral
cover construction. The spectral cover can be defined by dropping all terms in
the Tate polynomial of higher order in the coordinate w normal to the brane, and
keeping only the leading terms. This reduces the sections bi appearing in (2.93) to
sections of KS. These sections can be used to define the so-called spectral surface,
which for the case of an SU(5) gauge group on S is given by the equation [22,23,
136]

C(5) : b0s
5 + b2s

3 + b3s
2 + b4s+ b5 = 0, (2.101)

47This can be generalised immediately to the cases of other ADE singularities corresponding
to a different gauge group G, such as G = E6 or G = E7 [113]. The resulting fibrations are
correspondingly known as G-fibrations [97]. For the moment we will stick to the usual Tate
equation, i.e. the case G = E8, although other forms play an important role in the study of
Abelian gauge symmetries [121].
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within a KS bundle with coordinate s over S. This surface effectively models
the base-dependent parts of the Tate equation (2.83) and hence the behaviour of
the discriminant in the vicinity of S. The spectral cover picture can be related
to the Higgs bundle picture discussed above by taking (2.101) to be part of an
equation describing a deformed A4 singularity fibered over S [23]. The SU(5)
group associated with this A4 singularity can be identified with the commutant
group H = SU(5)⊥. The fact that the A4 singularity is fully deformed over generic
points of S corresponds to the fact that the SU(5)⊥ subgroup of the overall E8
symmetry is broken, leaving the unbroken gauge group G = E8/SU(5)⊥ = SU(5).
Over certain loci in S some of the roots of the equation (2.101) may coincide,
corresponding to some of the P1’s of the resolved A4 shrinking to zero size [23].
This signals an enhancement of the group G at these loci, identifying them as the
matter curves and Yukawa points in the spectral cover language.
One advantage of the spectral cover approach is that it allows for an explicit
construction of gauge fluxes and allows to calculate the chirality of the matter
spectrum induced by the presence of these fluxes [137]. However, as the spectral
cover construction explicitly holds only in the vicinity of S care must be taken
when extrapolating the results beyond the local limit [98, 138], and we will not
pursue this approach to constructing fluxes in this thesis. A second advantage of
the spectral cover approach is that (leaving aside questions regarding its global
validity for a moment) it offers an explicit approach towards constructing models
with additional Abelian gauge factors. To understand this, we follow the discus-
sion in [23] and rewrite (2.101) (up to an overall factor) as a product of 5 factors
of the form (s + ti), i = 1, ..., 5. The fact that b1 = 0 in (2.101) is known as
the tracelessness constraint as it translates to ∑

i ti = 0. Each ti can be iden-
tified as corresponding to a U(1) symmetry. More precisely, the 4 independent
U(1)’s remaining after taking the tracelessness constraint into account are taken
to describe the Cartan U(1)’s of SU(5)⊥.
A crucial point is that the ti’s are not defined globally, but are instead related by
monodromies as one moves around the GUT divisor S [133,137]. In the completely
generic case all the ti are identified by the monodromies, such that no U(1) symme-
try remains after the tracelessness constraint is taken into account [23]. However,
one can reduce the monodromy group by restricting to the case of a so-called split
spectral cover, in which the equation (2.101) factorises globally on S. In this case
the ti arising from the various factors are not mixed by monodromies, and some
U(1) symmetries may remain. The simplest case is the so-called 4+1 split defined
by [23,137]

C(5) : (c0s+ c1)(d0s
4 + d1s

3 + d2s
2 + d3s+ d4) = 0, (2.102)

together with the tracelessness constraint c0d1 + c1d0 = 0. Such a configu-
ration can be seen as reducing the commutant group from H = SU(5)⊥ to
H = S[U(4)× U(1)], leaving an unbroken symmetry group of SU(5)× U(1) [23].
Cases with more U(1)’s are considered e.g. in [139]. The appearance of such
additional Abelian factors is very interesting from a phenomenological point of
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view, because they lead to selection rules on the allowed couplings between the
matter fields. As discussed more extensively in [22, 23], this gives hope that the
U(1) symmetries may be used to forbid phenomenologically dangerous operators
leading e.g. to proton decay or to large neutrino masses. Nevertheless, the U(1)
symmetries and selection rules obtained from such a local spectral cover construc-
tion are vulnerable to being broken by global effects [121,140]. This underlines the
importance of studying the appearance and nature of Abelian gauge symmetries
and the associated gauge fluxes in a global setting, which is one of the main topics
of the remainder of this thesis.
The discussion above makes it clear that F-theory compactifications offer a frame-
work well-suited to the construction and study of phenomenologically interesting
GUT models. In fact, the F-theoretic construction offers several advantages over
the study of GUTs in 4-dimensional field theories. An example of this is the fact
that additional GUT breaking mechanisms are possible, such as the breaking via
hypercharge flux in the compactification manifold [22]. A significant part of the
recent literature has been devoted to studying the phenomenological implications
of these scenarios, such as the possible appearance of light exotic particles or the
effects on gauge coupling unification. A discussion of these results as well as a list
of references can be found in the recent reviews [22, 23, 135]. It is to be expected
that the combination of the global and local approaches to model building and a
growing understanding of their respective strengths and limitations will lead to
many further interesting results in the context of F-theory GUTS in the coming
years.





Chapter 3

U(1) symmetries in type IIB and
F-theory

As discussed at the end of chapter 2, the appearance of Abelian gauge symmetries
in string compactifications can have important consequences for the phenomenol-
ogy of the resulting low energy theory. Such Abelian gauge factors are ubiquitous
in compactifications of type II string theory with intersecting branes, although
the gauge bosons often obtain a mass through the Stückelberg mechanism so that
the U(1)s affect the low energy theory only indirectly through selection rules on
possible couplings. While Tate’s algorithm yields a straightforward approach to-
wards identifying and constructing non-Abelian gauge symmetries, the Abelian
factors and the resulting selection rules are more difficult to treat in the F-theory
framework. This chapter forms a summary of the investigations into the nature
of massive U(1)s in F-theory which was presented in [33]. In section 3.1 we begin
by reviewing the dimensional reduction of type IIB string theory on a Calabi-Yau
orientifold with D7-branes, focusing on effects relating to massless and massive
Abelian gauge factors. We continue in section 3.2 by discussing how the F-theory
analogues of these U(1) symmetries can be described in an M-theory reduction on
an elliptically fibered fourfold, and how massive U(1)s and the associated fluxes
can be related to certain non-Kähler deformations of the fourfold. Sections 3.2.4
and 3.2.5 contain details of the M-theory reduction on such fourfolds, as well as
a discussion of the F-theory limit and the match between the U(1) effects in the
F-theory and IIB settings. Finally, section 3.3 contains a brief discussion of the
geometry of U(1) symmetries in F-theory, including a summary of recent results
on the construction of models with massless U(1)s using an approach based on
constructing fibrations with multiple sections.

67
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3.1 U(1) symmetries in type IIB compactifica-
tions with D7-branes

3.1.1 Kaluza-Klein reduction of type IIB with D7-branes

The 4-dimensional low energy theory of type IIB string theory compactified on
a Calabi-Yau orientifold can be computed by a Kaluza-Klein reduction of 10-
dimensional type IIB supergravity [49,141–146]. Spacetime-filling D7-branes can
be treated in a similar manner, by integrating out the internal part of the brane
world-volume in the Dirac-Born-Infeld and Chern-Simons actions. As already
discussed in section 2.2.1, it is convenient to use the democratic formulation of
type IIB supergravity when including D-branes. The dimensional reduction of the
combination of the democratic type IIB bulk action and the action of a spacetime-
filling D7-brane was first performed in reference [62], whose conventions we largely
follow.
The starting point for the compactification is a Calabi-Yau threefold X3 endowed
with a holomorphic involution σ. We choose the orientifold action in such a
way that it leads to O3/O7-planes, as tadpole cancellation in models involving
D7-branes can be most easily implemented in the presence of O7-planes. When
modding out the field spectrum of the effective theory by the orientifold symmetry,
only fields with certain parities under pullback along the involution σ survive.
Specifically, the parities of the fields of the democratic IIB bulk action given in
equation (2.20) are [49,62]

σ∗F =
{
F,

−F,
F = g, J,Φ, C0, C4, C8,

F = Ω3, B2, C2, C6.
(3.1)

To perform the Kaluza-Klein reduction, we assume that the 10-dimensional met-
ric and hence also the Laplacian can be split into two parts corresponding to 4-
dimensional Minkowski space and the 6-dimensional Calabi-Yau space X3. Note
that this is strictly speaking only an approximation valid in the case where the
volume of X3 is relatively large and the warp factor induced by the presence of
D7-branes and orientifold planes varies slowly over X3. We make a similar ansatz
for the other fields of the low energy action and split them into ’external’ pieces
propagating on Minkowski space and ’internal’ parts defined on X3. After inte-
grating out the internal space, the expectation value of the Laplacian evaluated
on the part of the fields defined on X3 yields a mass term for the correspond-
ing 4-dimensional fields. The internal parts of the fields can be expanded into
eigenfunctions of the Laplacian on X3, yielding a tower of 4-dimensional fields
with increasing masses. The mass scale of the first massive level is known as the
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Kaluza-Klein (KK) scale and can be straightforwardly estimated by1

MKK = MP

V2/3 . (3.2)

Here MP ' 2.4 × 1018 GeV is the 4-dimensional (reduced) Planck mass, and V
denotes the volume of the compactification manifold X3 measured in units of the
string length `s

V = 1
3!

∫
X3
J ∧ J ∧ J. (3.3)

Recall that we work in conventions where the metric and hence also the Kähler
form J are dimensionless, which is why no explicit factors of `s appear in (3.3).
Although we expect V to be large in order to be able to trust the α′ expansion
of the action, MKK typically still lies far beyond the energy scales accessible
with current experiments. For example, even in the so-called LARGE volume
scenarios [11], a typical numerical value might be V ' 1010. Such a volume would
lead to the Kaluza-Klein mass scale MKK ' 1011 GeV. In specific cases, e.g. for
highly anisotropic compactification manifolds, it may be possible to obtain certain
lighter Kaluza-Klein states. Nevertheless, the above estimates show that in general
the massive Kaluza-Klein modes may be safely neglected when determining the
4-dimensional theory at energy scales within or close to experimental reach. In
the following we therefore restrict to the massless Kaluza-Klein modes in the
dimensional reduction.
The massless Kaluza-Klein modes are described by harmonic forms2 on X3, which
in turn are in one-to-one correspondence with the cohomology groups of X3.
The non-trivial independent cohomology groups on a Calabi-Yau threefold are
H1,1(X3) and H2,1(X3). As the orientifold involution σ squares to the identity,
the cohomology groups may be split into parts with positive or negative parity
under pullback along σ, so that e.g. H1,1(X3) = H1,1

+ (X3)⊕H1,1
− (X3). We follow

the conventions of [62] and denote bases of the spaces of positive and negative
parity (1, 1)-forms by

H1,1
+ (X3) : ωα, α = 1, . . . , h1,1

+ ,

H1,1
− (X3) : ωa, a = 1, . . . , h1,1

− .
(3.4)

.
The volume form 1

6J
3 has even parity with respect to σ∗, so the Hodge star induces

isomorphisms ∗ : H1,1
+ (X3) → H2,2

+ (X3) and ∗ : H1,1
− (X3) → H2,2

− (X3). We may
1Strictly speaking, (3.2) gives the KK scale relevant for fields propagating in the bulk of the

Calabi-Yau X3. As discussed e.g. in [147], the KK scale may be different for fields propagating
on D-branes wrapped on sub-manifolds of X3, in which case it depends on the volume of the
cycle wrapped by the brane rather than the volume V of X3.

2A collection of the most important definitions and facts regarding to the calculus of dif-
ferential forms as well as a summary of the conventions used in this thesis can be found in
appendix A.1. Specific applications to Calabi-Yau manifolds are summarised in appendix A.2.
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therefore choose bases {ω̃α} for H2,2
+ and {ω̃a} for H2,2

− which are dual to the bases
of equations (3.4) in the sense that∫

X3
ωα ∧ ω̃β = δβα,

∫
X3
ωa ∧ ω̃b = δba. (3.5)

One could similarly choose bases for H2,1(X3)±, but as we aim to focus on the
Abelian gauge symmetries rather than reviewing the full reduction of the action,
the cohomology groups of even degrees will suffice for our purposes.
The basis elements of H1,1(X3) are normalised in such a way that they are
Poincaré-dual to a basis of the divisor group3 of X3. This in particular means
that the integrals

Kαβγ =
∫
X3
ωα ∧ ωβ ∧ ωγ, Kαab =

∫
X3
ωα ∧ ωa ∧ ωb, (3.6)

describe the geometric intersection number of three divisors and are therefore
integer-valued. In fact, as discussed in [33], Kαβγ and Kαab take values only in
the subset of even integers. This can be understood geometrically by noting that
the divisors associated to the ωα and ωa have a well-defined orientifold parity.
In other words, the divisors are left invariant by σ up to a possible reversal of
orientation. This in turn means that all intersection points must appear in point-
image-point pairs4, leading to even intersection numbers. Note that due to the
orientifold parity the only non-vanishing triple intersection numbers take the form
shown in (3.6) and involve either zero or two negative parity forms ωa.
The massless 4-dimensional fields from the closed string sector are obtained by
expanding the 10-dimensional fields of type IIB supergravity into the cohomol-
ogy groups of X3, taking into account the orientifold parities as given in (3.1).
Restricting to the expansion into forms on X3 of even degree, this yields

J = vαωα, C2 = caωa, B2 ≡ B− +B+ = baωa + bαωα,

C4 = cαω̃
α + cα2 ∧ ωα + . . . , C6 = (c̃2)a ∧ ω̃a + . . . ,

C0 = l, C8 = l̃(2) ∧ 1
V

Ω3 ∧ Ω̄3.

(3.7)

In the course of the Kaluza-Klein reduction, all the coefficient fields in these
expansions are taken to depend only on the 4-dimensional coordinates. Note that
cα2 , (c̃2)a and l̃(2) are spacetime 2-forms, while all other expansion fields shown
in (3.7) are scalars. As already discussed in section 2.2.2, certain discrete B-field
configurations with positive orientifold parity are allowed due to the symmetry of

3The definition of a divisor as well as several examples can be found in appendices A.3
and A.4.

4An exception to this rule is given by possible intersection points that lie on an orientifold
plane, however in this case the intersection is guaranteed to be a double point. This can be
seen e.g. by focusing on a local neighborhood of the intersection point, in which the orientifold
action reduces to a simple reflection along the orientifold plane. It is then clear that any divisor
with well-defined orientifold parity must intersect the O-plane in double points.
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the theory under shifts of B2 by integer quantised harmonic forms. To be precise,
the coefficients bα in the expansion of B+ may take the values 0 or 1/2, so that
B2 and −σ∗B2 can be identified up to a symmetry transformation.
The fixed point locus of the orientifold involution σ defines a divisor5 within
X3, which is wrapped by a spacetime-filling O7-plane and denoted by DO7. We
use the same notation to describe a divisor in X3 and its Poincaré-dual 2-form,
while we write [DO7] for the corresponding class in (co-)homology. The O7-plane
introduces a tadpole for the Ramond-Ramond form C8 which must be cancelled
by a suitable configuration of D7-branes. In a supersymmetric configuration,
the D7-brane stacks also wrap divisors in X3 [59–61], which we denote by DA.
Here the index A labels the different stacks of NA D7-branes each, each of which
is accompanied by an image stack wrapped on the divisor D′A = σ(DA). The
D7-brane tadpole cancellation condition then reads [17]∑

A

NA ([DA] + [D′A]) = 8[DO7]. (3.8)

It is often convenient to combine the brane divisors DA and their orientifold images
into the combinations D±A = DA∪(±D′A), where the minus sign signifies a reversal
of orientation. The Poincaré-dual cohomology classes are again denoted by [D±A ].
In the case where the brane divisor is invariant under the orientifold action we
include an additional factor of 1/2 in the definition of D+

A , such that [D+
A ] = [DA].

As the classes [D±A ] have a well-defined orientifold parity they may be expanded
into the bases of H1,1

± introduced above as

[D+
A ] = Cα

A ωα, [D−A ] = Ca
A ωa. (3.9)

Using (3.5), the (dimensionless) wrapping numbers Cα
A and Ca

A may also be cal-
culated as

Cα
A =

∫
D+
A

ω̃α, Ca
A =

∫
D−A

ω̃a. (3.10)

The addition of spacetime-filling D7-branes leads to the appearance of additional
massless fields propagating on the world-volume of the brane. As already discussed
in more detail in section 2.2.3, each stack gives rise to a set of scalar fields describ-
ing the deformations of the brane divisors and a one-form gauge field AA. These
fields transform in the adjoint representation of the gauge group associated to the
brane stack and are represented by suitable matrices in the world-volume DBI and
CS actions of the D-brane [57]. The world-volume gauge group depends on the
precise location of the divisors DA in relation to the orientifold plane. Throughout
this thesis we will focus on the cases in which the gauge group is U(NA). This
occurs either if [DA] 6= [D′A], or if the brane lies in the same homology group as
the orientifold plane without lying completely on top of the divisor DO7. In the
other cases, i.e. if either DA = D′A pointwise or if [DA] = [D′A] 6= [DO7], the gauge
group is either SO(2NA) or Sp(NA) [17].

5In addition to the fixed divisor DO7, σ may have isolated fixed points in X3, which give rise
to O3-planes.
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In the course of the Kaluza-Klein reduction, the massless 4-dimensional fields
which arise from the brane gauge and deformation fields can again be obtained by
expanding them into harmonic forms on the brane world-volume. This expansion
is performed in detail in [62]. In the following we will focus on the expansion of
the gauge field AA and the associated field strength F̂A, following the conventions
of [33]. As already mentioned in section 2.2.3, it is helpful to combine the field
strength with the pullback of the Kalb-Ramond field into a combined field FA

D7 =
F̂A − 2πι∗B2, as it is this combination which appears in the world-volume action
of the D-branes. FA

D7 can be expanded in terms of the generators of U(NA) as

1
2πFA

D7 =
( 1

2π F̂
A
0 − ι∗B2

)
T 0
A + 1

2π

NA−1∑
i=1

F̂A
i T

i
A + 1

2π

N2
A−1∑

j=NA
F̂A
j T

j
A. (3.11)

The first term describes the diagonal U(1)A ⊂ U(NA), whose generator T 0
A is just

the NA × NA unit matrix, while the second stands for the Cartan subsector of
SU(NA) with generators T iA. In the following we will concentrate on the Abelian
subsector and in particular on the diagonal U(1)A. This is because we aim to
eventually match the IIB results with F-theory compactifications, in which only
the Cartan of the non-Abelian gauge algebra remains visible after resolving the
compactification manifold and moving to the Coulomb phase of the gauge theory.
We use the capital index I running from I = 0 to I = NA − 1 to enumerate the
set of generators (T 0

A, T
i
A).

A crucial role in the following analysis will be played by topologically non-trivial
background configurations of the brane gauge field. To make these background
fluxes explicitly visible, we write

F̂A
I = dAAI + FAI . (3.12)

In order to preserve Lorentz invariance of the 4-dimensional vacuum, the fluxes
must correspond to 2-forms living completely on the internal part of the brane
world-volume, i.e. on the divisor DA ⊂ X3. In a supersymmetric configuration,
they are further restricted to lie in H1,1(DA) ⊂ H2(DA) [61]. Part of H1,1(DA) is
spanned by the pullback of the forms ωα and ωa, which form a basis of H1,1(X3).
It is possible to split H1,1(DA) into a direct sum of the subspace spanned by
these pullbacks, and a second subspace which is orthogonal to the pullbacks with
respect to the wedge product [39, 62]. Flux lying in this orthogonal subspace is
often referred to as variable flux, and denoted FAI,v. In summary, the gauge flux
can be expanded as

FAI = FA,αI ωα + FA,aI ωa + FAI,v, (3.13)

where we have suppressed the explicit pullbacks to the brane world-volume.
While most of the expansion coefficients of the fields appearing in (3.7) are 4-
dimensional fields, the coefficients in the expansion of the gauge flux (3.13) are
discrete constants which form a part of the specification of the chosen background.
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This is because the gauge flux is restricted by the Freed-Witten quantisation
condition [50,148]

1
2π F̂

A + 1
2c1(KDA)T 0

A ∈ H2(DA,Z)NA×NA . (3.14)

Here c1(KDA) is the first Chern class of the canonical bundle of DA, which is
defined in appendix A.3. The Freed-Witten quantisation condition can be de-
rived by considering the path integral of an open string ending on the brane,
whose endpoints couple to the brane gauge field AA. As the boundary of the
string worldsheet is taken around a closed loop in DA the path integral picks up
a phase related to the integral of F̂A/2π over the two-cycle traced out by the
loop. The condition that this phase vanishes then translates into the quantisation
condition (3.14) for the gauge flux. For future convenience, we follow [33] and
combine the flux along the diagonal U(1) with the other discrete quantity intro-
duced above, the positive parity component B+ of the Kalb-Ramond field, into
the discrete quantity

F̃A0 = 1
2πF

A
0 − ι∗B+ ≡ F̃A,α0 ωα + F̃A,a0 ωa + FA0,v. (3.15)

If the brane divisors are not orientifold-invariant, the involution σ cannot be
directly restricted to DA. Therefore the gauge field strength does not in general
have a well-defined orientifold parity like the other fields in (3.1). Instead, the
orientifold projection relates the gauge invariant combination of gauge and B2-field
on DA to the corresponding combination on the image stack D′A by [33]

1
2π F̂

A′

I − ι∗A′B2 = −σ∗
( 1

2π F̂
A
I − ι∗AB2

)
. (3.16)

The second part of the field strengths in (3.12) besides the fluxes comes from the
exterior derivative of the gauge field AAI . In the Kaluza-Klein reduction, the 10-
dimensional gauge field AAI gives rise to a 4-dimensional gauge field (AAI )µdxµ. In
the presence of non-trivial 1-cycles on DA, AAI additionally yields a set of Wilson
line moduli counted by b1

−(D+
A) [62]. However, these Wilson line moduli will play

no role in our analysis and for simplicity we assume that b1
−(D+

A) = 0, so that
FA
I ≡ dAAI is the 4-dimensional gauge field strength.

The 4-dimensional effective action can now be computed by inserting the expan-
sions of the various fields into the 10-dimensional supergravity action of equa-
tion (2.20) and the D7-brane DBI and CS actions, and proceeding to integrate
out the internal space. After this dimensional reduction, the redundant degrees
of freedom of the democratic formulation of type IIB supergravity have to be
eliminated using the duality relations (2.22). As the brane and flux configuration
is assumed to satisfy the supersymmetry conditions of refs. [59–61], the effective
theory is supersymmetric and can thus be cast into the general form of an N = 1
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supergravity6 [62, 149]

S(4)
N=1 = 1

2κ2
4

∫ [
−R ∗4 1− 2KMN̄∇MM ∧ ∗4∇M̄ N̄

+ RefAB FA ∧ ∗4F
B + ImfAB FA ∧ FB + (VF + VD) ∗4 1

]
. (3.17)

In this expression, MM enumerates the complex chiral fields and FA the field
strengths of the gauge fields of the theory, while KMN̄ = ∂MM∂MN̄K are the
components of a Kähler metric. The gauge kinetic function fAB is a holomorphic
function of the chiral fields. The F-term potential VF can be computed from the
superpotential W with the help of the Kähler metric and the Kähler covariant
derivatives DMW = ∂MMW + (∂MMK)W . It is given by

VF = eK
(
KMN̄DMWDN̄W̄ − 3 |W |2

)
. (3.18)

The D-term potential VD involves the inverse of the gauge kinetic function as well
as the so-called Killing potentials DA. These Killing potentials or D-terms are in
one-to-one correspondence with the gauged isometries of the target space manifold
parametrised by the chiral fields, and can be determined from the Killing vectors
XM
A of the gauged isometries by

i∂MDA = KMN̄X̄
N
A . (3.19)

The D-term potential is then given by

VD = 1
2
(
Re f−1

)AB
DADB . (3.20)

Finally, the 4-dimensional gravitational coupling constant κ4 is the inverse of the
4-dimensional Planck mass, κ4 = M−1

P . In our conventions, it is equal to the 10-
dimensional coupling constant introduced in section 2.2.1, such that κ2

4 = κ2
10 =

1/4π.
Jockers and Louis [62] were able to determine the characteristic N = 1 data of
the effective theory obtained from type IIB string theory with D7-branes on a
Calabi-Yau orientifold by working out the dimensional reduction in detail and
comparing the result with the general form (3.17). They found that a set of chiral
fields of the N = 1 theory are given in terms of the scalar fields appearing in the
reduction (3.7) by

Ga = ca − τba (3.21)

Tα = 1
2Kαβγv

βvγ + i
(
cα −

1
2Kαbcc

bbc
)

+ i

2 (τ − τ̄)KαbcG
b
(
Gc −Gc

)
= 1

2Kαβγv
βvγ + i

(
cα −Kαbccbbc

)
+ i

2τKαbcb
b bc . (3.22)

6The signs of the various terms are governed by our conventions for the Hodge star given in ap-
pendix A.1. Note in particular ∗41 = −

√
|det g|d4x and FA∧∗4FB = − 1

2
√
|det g|FAµνFBµνd4x.
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Here τ = l + ie−Φ is the axio-dilaton, which combines with the deformation
moduli of the D7-branes into another chiral field denoted S. The massless chiral
spectrum is completed by the complex structure moduli which can be obtained
from a variation of the holomorphic (3,0)-form Ω3. In the presence of Wilson
line moduli the fields Tα are corrected by an additional term, but this would not
affect the present analysis and so we assume for simplicity that no Wilson lines
are present.
The Kähler potential K of the effective theory can be written as [62]

K = − log
[
− i

∫
X3

Ω3 ∧ Ω̄3

]
− log

[
− i(τ − τ̄)

]
− 2 log[V ] . (3.23)

In order to evaluate the components of the Kähler metric, Ω3, τ and V have to
be viewed as functions of the chiral fields. In the following, we will only require
the derivatives of K with respect to Ga and Tα and the component KGaḠb of the
Kähler metric, which are given by [49,146]

∂GaK = − i

2V

∫
X3
ωa ∧ J ∧B2 , ∂TαK = − v

α

2V , (3.24)

KGaḠb = − 1
4e

ΦKαabvα

V
+ 1

16V2G
αβKαacbcKβbdbd. (3.25)

The matrix Gαβ appearing in (3.25) is the inverse of

Gαβ = −1
4

(
Kαβγvγ

V
− 1

4
KαγδvγvδKβεζvεvζ

V2

)
. (3.26)

The index A in (3.17) runs over the field strengths FA of all the gauge bosons of
the theory. Each stack7 of D7-branes in the model contributes the N2

A gauge fields
appearing in the expansion (3.11), which are associated to the generator of the
diagonal U(1)A and the generators of SU(NA). The real and imaginary parts of the
gauge kinetic function corresponding to these fields can in principle be obtained
by dimensionally reducing the DBI and CS actions, respectively, although this
may be complicated in the general case of multiple brane stacks with non-Abelian
gauge groups. In the following we will require only the simplest case of a single
stack of NA D7-branes in the absence of fluxes, in which case the gauge kinetic
function for the diagonal U(1)A was determined in [62]

fAA = − 1
16π2NAC

α
A Tα. (3.27)

It should be mentioned at this point that the D7-branes do not form the only
source of gauge bosons in the low energy theory. An additional set of U(1) gauge

7As before we assume for ease of notation that all brane stacks carry a world-volume gauge
group of U(NA).
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symmetries arises from the expansion of the Ramond-Ramond form C4 into har-
monic 3-forms on X3. To distinguish them from the brane U(1)s, we refer to these
additional U(1)s as R-R U(1)s or bulk U(1)s. In general, kinetic mixing between
the bulk and brane U(1)s is possible, depending on the pullback of the harmonic
3-forms from X3 to the brane world-volume. However, as discussed in more detail
in [62], in this case the entire derivation of the chiral N = 1 coordinates becomes
more complicated. Throughout this thesis we will assume that kinetic mixing of
this form is absent, so that the gauge kinetic matrix fAB splits into distinct blocks
corresponding to bulk and brane gauge fields, respectively. In this case, none of
the scalar N = 1 fields are charged under any of the bulk U(1)s. Furthermore, as
we will briefly discuss in section 3.2.1, the bulk U(1)s have a very straightforward
and clear uplift to F-theory. The discussion of section 2.4.3 already shows that
the case of the brane gauge fields, and in particular the diagonal U(1)A, is more
involved and interesting because at first sight the F-theoretic framework seems
to account for only the SU(NA) factor of the IIB gauge group. In addition, the
diagonal U(1)A may participate in gauging a shift symmetry of the scalar fields
and become massive via the Stückelberg mechanism, as we will review in the next
section. For these reasons, we will largely ignore the bulk U(1)s in this thesis and
focus instead on the brane gauge fields, with particular emphasis on the diagonal
U(1)A.

3.1.2 The Stückelberg mechanism and massive U(1)s from
D7-branes

The primary motivation behind studying type IIB compactifications involving
intersecting D7-branes with non-trivial gauge flux is that they lead to a chiral
massless 4-dimensional spectrum. The chiral index which measures the net chi-
rality of the matter localised at the intersection between the brane stacks A and
B is given by the topological integral [50]

IAB = −
∫
DA∩DB

[
F̃A − F̃B

]
= −

∫
X3

[DA] ∧ [DB] ∧
[
F̃A − F̃B

]
. (3.28)

When applying this formula to an intersection where the brane B is an image
brane, it is important to take into account the fact that the fluxes on image brane
stacks are given by (3.16), so that

IAB′ = −
∫
DA∩D′B

[
F̃A − F̃B′

]
= −

∫
X3

[DA] ∧ [D′B] ∧
[
F̃A + σ∗F̃B

]
. (3.29)

In the following, we will focus on the contribution from flux F0 in the diagonal
U(1), although as discussed e.g. in [50] analogous formulae apply for fluxes in the
non-Abelian part of the gauge group. The dependence of the chiral indices on the
flux quanta and the wrapping numbers of the D-branes can be made explicitly
visible by using the expansions (3.15) and (3.9) together with the intersection
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numbers (3.6). These expansions will be helpful when comparing the flux-induced
chirality calculated in the F-theory setting with the IIB result. One obtains [33]

IAB =− 1
4

(
KαβγCβ

AC
γ
B +KαabCa

AC
b
B

)(
F̃A,α0 − F̃B,α0

)
− 1

4

(
KαabCα

AC
a
B +KαabCa

AC
α
B

)(
F̃A,b0 − F̃B,b0

)
, (3.30)

IAB′ =− 1
4

(
KαβγCβ

AC
γ
B −KαabCa

AC
b
B

)(
F̃A,α0 + F̃B,α0

)
− 1

4

(
KαabCα

BC
a
A −KαabCa

BC
α
A

)(
F̃A,b0 − F̃B,b0

)
. (3.31)

In particular, the chiral index of the matter localised at the intersection of a brane
and its own orientifold image reduces to

IAA′ = −1
2

(
KαβγCβ

AC
γ
A −KαabCa

AC
b
A

)
F̃A,α0 . (3.32)

The chiral matter at the intersection of two brane stacks, which is counted by the
indices above, is charged under the gauge groups of both stacks. More precisely,
it transforms in the bifundamental representation of the two gauge groups [50].
In the presence of such charged chiral matter, it is in principle possible for gauge
anomalies to appear which would render the theory inconsistent. In principle these
anomalies could affect both the Abelian and non-Abelian parts of the gauge group.
However, the anomalies involving the gauge bosons of the diagonal U(1)A are
automatically cancelled in string compactifications with intersecting branes [17].
The mechanism responsible for this non-trivial cancellation is known either as
the Green-Schwarz or the Stückelberg mechanism, and we will use both names
interchangeably.
The anomalies involving U(1)A can be grouped into different types depending
on whether the other bosons participating in the anomalous interaction are also
Abelian gauge bosons, non-Abelian gauge bosons of SU(NA), or gravitons. If the
different anomalies do not cancel amongst one another, the overall anomaly may
be cancelled by additional terms in the Lagrangian which transform under U(1)A
gauge transformations in a specific manner. One way to achieve this is to include
a 2-form field c2 in the 4-dimensional action, which is coupled to the field strength
FA

0 of U(1)A via a so-called Stückelberg coupling of the form

SSt. ⊃
∫
M1,3

c2 ∧ FA
0 . (3.33)

Anomaly cancellation via couplings of the Stückelberg form is also known as the
Green-Schwarz mechanism. As we will explicitly review below, the dimensional
reduction of the Chern-Simons action of D7-branes contributes couplings of the
form (3.33). Both the coefficients of the Stückelberg coupling and the anomaly
coefficients are determined by the fluxes and geometric data of the D-brane con-
figuration. As discussed more extensively in [17], this dependence is such that the
anomalies cancel exactly.
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In the following, we will not attempt to demonstrate this anomaly cancellation
in detail and will focus instead on an important side-effect of the Stückelberg
mechanism. Namely, the U(1)A gauge boson acquires a mass in the course of the
Stückelberg mechanism by absorbing the scalar field which is dual to the 2-form
c2 appearing in (3.33) as a longitudinal mode8. Due to this mass, the gauge field
is no longer directly visible in the low energy effective action. Crucially, however,
the selection rules on 4-dimensional couplings resulting from the original U(1)A
gauge symmetry remain intact. Therefore, the U(1)A symmetry survives as an
accidental global symmetry of the effective 4-dimensional low energy theory even
after becoming massive. When the theory is re-expressed in the language of F-
theory, the effective selection rules survive although the underlying cause in the
shape of the massive U(1)A gauge symmetry is not directly visible in the F-theory
construction. In reference [33], we proposed a method of making the underlying
symmetry visible by including a certain class of non-harmonic forms in the Kaluza-
Klein reduction of the F-theory model. A review of this construction and the
evidence for it will form a central part of the present chapter. To establish the
connection between the proposed F-theory construction and the type IIB results,
it is necessary to carefully analyse the Stückelberg couplings and their dependence
on the type IIB compactification geometry, to which we now turn.
To derive the form of the 4-dimensional Stückelberg couplings which appear in
a type IIB orientifold compactification with D7-branes, we dimensionally reduce
the Chern-Simons action (2.32). In the orientifold setting, a brane stack and its
corresponding image stack are viewed as providing equivalent descriptions of the
same physical object. The overall action of such an orientifold pair of brane stacks
is thus obtained by adding the DBI and CS actions of the individual stacks and
dividing by 2 [33]. The actual dimensional reduction is accomplished by inserting
the expansions of the 10-dimensional fields given in equations (3.7) and (3.12) into
the action and integrating out the internal part of the brane world-volume. Using
the various intersection numbers defined in section 3.1.1, it is straightforward
to derive that the 4-dimensional couplings linear in the field strength F 0

A of the
diagonal U(1) can be written as

SSt. = − 1
4κ2

4

∑
A

(
Qa
A

∫
M1,3

FA
0 ∧

(
c̃2 a −Kαacbccα2

)
−QAα

∫
M1,3

FA
0 ∧ cα2

)
. (3.34)

The charges QAα and Qa
A appearing in this expression are given by9 [33, 62]

Qa
A = 1

2πNAC
a
A , (3.35)

QAα =− 1
2πNA

(
Kαβγ F̃A,β0 Cγ

A +Kαbc F̃A,b0 Cc
A

)
. (3.36)

8While anomalous U(1)s always obtain a mass from the Stückelberg mechanism, the converse
is not always true and it is also possible for a non-anomalous U(1) to become massive [17].

9Note that by definition the variable fluxes in (3.13) do not couple to the bulk forms, and
thus don’t contribute to the charges.
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The factors of NA appearing here originate from the trace over the generator T 0
A of

the diagonal U(1)A, which is just the NA×NA unit matrix. By inserting the expan-
sions (3.7), the duality conditions (2.22) can be used to relate the 4-dimensional
2-forms c̃2 a and cα2 to the scalar fields cα and ca, respectively. After eliminating
the 2-forms in favor of the dual scalars, the Stückelberg couplings (3.34) lead to
a gauging of the axionic shift symmetries of cα and ca. More precisely, the chiral
fields Ga and Tα of the 4-dimensional effective N = 1 action (3.17), which are
related to ca and cα by their definitions (3.21) and (3.22), couple to the U(1)A
gauge potentials through the covariant derivatives appearing in their kinetic terms.
These covariant derivatives take the form [33]

∇Ga = dGa −Qa
AA

A, (3.37)
∇Tα = dTα − iQAαA

A. (3.38)

The fact that the shift symmetries of Ga and Tα are gauged in this manner imme-
diately leads to a mass term for the U(1)A gauge potentials in the 4-dimensional
effective action, which schematically takes the form

S(4)
N=1 ⊃ −

1
κ2

4

∫
M1,3

KMN̄X
M
A X̄

N
BA

A ∧ ∗AB. (3.39)

As before, the indices M, N̄ run over the chiral fields of the theory, which include
Ga and Tα. A crucial fact is that in compactifications admitting forms of negative
orientifold parity a non-vanishing mass term arises even in the complete absence
of fluxes, as the charges Qa

A are independent of the fluxes. We will refer to the
gauging (3.37) and the U(1) mass terms induced by Qa

A as geometric gauging and
geometric mass terms, respectively, because the Qa

A depend only on the geometry
of the D7-brane configuration through the wrapping numbers Ca

A.
To obtain the physical masses of the gauge fields it is necessary to diagonalise
these mass terms and then rescale the metric and the gauge fields to get both the
Einstein-Hilbert term and the kinetic terms into canonical form. In the general
case involving multiple brane stacks, this is non-trivial and kinetic mixing between
the different U(1)s may appear if the kinetic and mass terms cannot be diago-
nalised simultaneously. In this thesis we will not attempt to derive the general
expression for the masses. To get an idea of the mass scales involved, we will
instead stick to the simplest case of a single D7-brane stack without fluxes. The
mass of the U(1)A gauge boson in this situation was worked out in10 [33]

m2 = M2
P

2πRefAA
KGaḠbN

2
AC

a
AC

b
A

= 4πM2
PNAC

a
AC

b
A

(
Cα
AKα − eφCα

AKαbcbbbc
)−1

×
[
eφ

V
Kab −

1
2V2KacKbdb

cbd + 1
V
KαβKαacKβbdbcbd

]
. (3.40)

10Our numerical prefactors differ slightly from those in [33] due to our choice of different
conventions regarding the mass dimensions of the fields.
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Here we have used the Kähler metric (3.25) and the gauge kinetic function (3.27).
The quantities Kab, Kαβ and Kα are defined following [62] by contracting the
intersection numbers of equation (3.6) with suitable numbers of the Kähler moduli
fields vα. This means that in an isotropic compactification Kab and Kαβ scale as
V1/3, while Kα ∼ V2/3. Kαβ is defined as the inverse matrix of Kαβ and therefore
scales as Kαβ ∼ V−1/3.
In the absence of fluxes the U(1) mass (3.40) contains several contributions which
depend on the moduli fields ba as well as one term which depends only on the
geometric and volume moduli. In comparison with the geometric mass term, the
contributions involving ba involve an additional factor of V−2/3, so that they are
subleading in a geometric large volume regime [33]. By comparison with (3.2),
we see that the purely geometric mass is suppressed by an additional factor of
gs compared to the (bulk) Kaluza-Klein mass scale. As already discussed in
section 2.3.3, the presence of D7-branes prevents gs from being arbitrarily small
over the entire compactification manifold11. Therefore, we expect the mass scale
of the geometrically massive U(1)s to be roughly comparable to the Kaluza-Klein
scale, so that the massive U(1)s can be neglected in the low energy theory. Note
that the estimates above are valid for an approximately isotropic compactification
manifold, and the mass may lie significantly lower e.g. if the volume of the D7-
brane divisor is much smaller than V2/3 [147]. However, we will assume a generic
isotropic compactification throughout this thesis for simplicity.
Let us emphasise once again that geometric mass terms of the form discussed
above will only appear for the diagonal U(1)s associated with brane stacks whose
divisors DA are not invariant under the orientifold action. In particular, if X3 has
no non-trivial orientifold-odd divisors12 and h1,1

− (X3) = 0, no geometric gauging
can occur. Even if h1,1

− (X3) > 0, it is possible to obtain U(NA) gauge symmetries
with a massless diagonal factor in the low energy action. This situation arises in
the presence of D7-branes which are placed in the same homology class as the
orientifold plane without lying completely on top of it. Let us further note that a
compactification which includes n brane stacks DA1 , . . . , DAn with [DAi ] 6= [D′Ai ]
does not necessarily lead to a low energy theory with n massive U(1)s. This
is because the physical U(1)s of the low energy action are superpositions of the
diagonal U(1)s of several brane stacks and are obtained by diagonalising the U(1)
mass matrix. The number of massive U(1) combinations is given by the rank of
the matrix Ca

A, which may be smaller than n. On the other hand, every stack of
D7-branes which hosts a U(NA) gauge theory and obeys [DA] = [D′A] immediately
contributes a massless diagonal U(1) to the low energy theory.

11The dilaton tadpole cannot be cancelled locally in the case we are considering, as that would
require the D7-branes to be placed on top of the O7-plane. In that case, the wrapping numbers
CaA would vanish and the gauge group would not be U(NA).

12This is the case e.g. for toric orientifolds built using an involution σ which can be written
as a reflection x→ −x of a homogeneous coordinate.
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3.1.3 D-terms and flux-induced tadpoles in type IIB

The form of the covariant derivatives (3.37) and (3.38) means that the shift sym-
metries of Ga and Tα are gauged by the non-linearly realised U(1)A gauge symme-
tries. The non-linear action of the gauge symmetry makes it easy to read off the
Killing vectors corresponding to these gauged isometries, which are given by [33]

Xa
A = −Qa

A , XAα = −iQAα . (3.41)

As these Killing vectors are constants and have no dependence on the moduli
fields of the theory, equation (3.19) may be integrated straightforwardly to yield
the D-term corresponding to the U(1)A gauge symmetry

DA = −iKM̄Q̄
M
A = NA

2πV

∫
DA

J ∧ ( 1
2πFA − ι

∗B2)

= vα

4πVNA

(
KαβγF̃A,β0 Cγ

A +Kαac(F̃A,c0 − bc)Ca
A

)
. (3.42)

Even in the absence of fluxes, a Fayet-Iliopoulos D-term depending on the moduli
ba can thus arise, corresponding to the geometric gauging of the shift symmetry of
Ga. This flux-independent D-term appears only in the case where the brane stack
is not orientifold-invariant and the wrapping numbers Ca

A do not vanish. This is
consistent with the fact that the associated U(1)A is geometrically massive13 if
Ca
A 6= 0.

As we have seen above, gauge fluxes along the diagonal U(1)A of the U(NA)
gauge theory which is present on suitable stacks of D7-branes can form a powerful
tool from a model building perspective. This is because such fluxes have many
important consequences for the low energy theory through their contributions
to the U(1) mass matrix, the D-terms and the chiral indices of charged matter.
This makes it crucial to understand any restrictions that might constrain the
fluxes which can be switched on. For one, fluxes must obey the Freed-Witten
quantisation condition (3.14), which restrict the fluxes to integer or half-integer
values depending on the form of the canonical bundle of the brane divisor. A
second set of constraints arises from the requirement of D5- and D3-brane tadpole
cancellation, which yield conditions relating fluxes from different D7-brane stacks.
The relevant tadpole cancellation conditions in the presence of spacetime-filling
D-branes can be derived from the equations of motion of the Ramond-Ramond
form fields C4, C6 and C8. These equations of motion are computed from the
total action obtained by adding up the IIB bulk action (2.20) and the actions of
all brane stacks and orientifold planes in the model. As discussed in detail in [33],
two important additional factors of 1/2 must be taken into account when comput-
ing these equations of motion. The first factor of 1/2 stems from the orientifold

13Strictly speaking, in the case with several brane stacks the U(1)A may be a superposition
of massive and massless physical U(1)s if the mass matrix (or, equivalently, the charge matrix
QaA ∝ CaA) does not have full rank.
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geometry and relates to the fact that, as already mentioned above, brane and
image brane stacks are indistinguishable from a physical perspective. Therefore,
the physical action of a brane-image-brane pair is obtained by adding the indi-
vidual brane actions and dividing the result by 2. The second factor is required
to take into account the doubling of the degrees of freedom which occurs in the
democratic formulation of type IIB. This doubling made it possible to include
both electric and magnetic couplings on an equal footing in the Chern-Simons
actions of D-branes and O-planes. As the two types of couplings are physically
dual to one another, only one should be taken into account when deriving the
tadpole cancellation conditions. In [33] it was argued that this can be achieved by
including an additional factor of 1/2 with the CS actions of D-brane and O-plane
stacks.
Taking the factors of 1/2 mentioned above into account, the equation of motion
of C8 reads [33]

d ∗G9 = 1
2
∑
A

NAδ(D+
A)− 4δ(DO7). (3.43)

Here δ(D+
A) and δ(DO7) are specific representatives of the cohomology classes [D+

A ]
and [DO7] which are sharply peaked around the corresponding divisors. Using the
duality relations (2.22), this can be translated into a Bianchi identity for F1

dF1 = 1
2
∑
A

NAδ(D+
A)− 4δ(DO7). (3.44)

As a consistency check for the factor of 1/2 appearing on the right hand side of this
equation, we follow [33,104] and consider computing the monodromy of C0 along
a path which encircles a D7-brane stack in the orientifold quotient B3 = X3/σ.
By definition, a single D7-brane should carry a unit of C0 charge and so this
monodromy should be 1. In the double cover X3, the path lifts to a path which
encircles both brane and image brane stacks. This implies that the factor of 1/2
in (3.44) is precisely as required to still obtain a unit monodromy along this path.
To preserve Lorentz invariance of the vacuum, all branes (and the O7-plane) are
assumed to be spacetime-filling. This implies that the forms on the right hand
side of (3.44) are forms lying completely in the compact space X3. By integrat-
ing (3.44) over a basis of H2(X3) and noting that the left hand side vanishes by
Stokes’ theorem, we thus obtain the D7-brane tadpole cancellation condition∑

A

NA([DA] + [D′A]) = 8[DO7]. (3.45)

The D5- and D3-brane tadpoles can be derived in an analogous manner by con-
sidering the equations of motion of C6 and C4, respectively. The only qualitative
difference is that in the presence of non-trivial gauge fluxes C6 and C4 couple to
more than one type of D-brane. As before, we focus on D7-branes with gauge
group U(NA) and specifically on flux in the diagonal U(1)A, whose contribution
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to the D5-brane tadpole is encoded in the Bianchi identity

dF3 = − 1
2
∑
A

NA

[( 1
2πF

A
0 − ι∗B2

)
∧ δ(DA)

−σ∗
( 1

2πF
A
0 − ι∗B2

)
∧ δ(D′A)

]
+ 4ι∗B−2 ∧ δ(DO7)− 1

2(δ(D5) + δ(D′5)) .

(3.46)

For completeness we have indicated the form of a possible contribution from D5-
branes in the final term, although we will assume for simplicity that no D5-
branes are present in the following. Note that due to the negative orientifold
parity of C6, the coupling to the O7-plane involves only B−2 and not B+

2 . Upon
integrating (3.46) over a basis of H4(X3), the D7 tadpole cancellation condition
can be used to show that the contribution of B−2 actually drops out of the D5
tadpole cancellation condition [33,50]∑

A

NA

(
KαbcF̃A,α0 Cb

A +KaβcF̃A,a0 Cβ
A

)
= 0 . (3.47)

This was of course to be expected, because the D5 tadpole describes a net overall
D5-brane charge, which obeys a Dirac quantisation condition and should thus not
depend on the continuous moduli ba.
The D3-brane tadpole potentially obtains contributions not only from D3-branes
and O3-planes, but also from fluxed D7- or D5-branes. We will follow [33] and
focus on the contribution of the diagonal U(1)A flux FA0 along D7-branes, and
in particular we assume for simplicity that no D5-branes are present. The (inte-
grated) D3-brane tadpole cancellation condition may then be written as [50]

ND3 +Nflux = N03

4 +
∑
A

NA
χ0(DA)

24 + χ(D07)
12 . (3.48)

Here ND3 and NO3 are the numbers of spacetime-filling D3 brane-image-brane
pairs and O3-planes present in the model. The last two terms on the right hand
side involving the Euler characteristics of the D7-branes and the O7-plane origi-
nate from the Â-genus in the CS actions (2.31) and (2.37). The index 0 in χ0(DA)
indicates that in the presence of singularities on the brane divisor the Euler char-
acteristic must be slightly modified as discussed in [104]. Finally, the term Nflux
includes possible contributions from both D7-brane gauge fluxes and from bulk
fluxes H3 = dB2 and F3 = dC2. The contribution of the diagonal U(1)A flux FA0
to Nflux is given by [33]

N
(0)
flux =− 1

4
∑
A

NA

( ∫
DA
F̃A0 ∧ F̃A0 +

∫
D′A

F̃ ′A0 ∧ F̃ ′
A

0

)

=− 1
4
∑
A

NA

(
KαβγCα

AF̃
A,β
0 F̃A,γ0 +KαbcCα

AF̃
A,b
0 F̃

A,c
0 +

2KabγCa
AF̃

A,b
0 F̃

A,γ
0

)
.

(3.49)
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In the second line of (3.49) we have restricted ourselves to fluxes which can be writ-
ten as pullbacks of forms from X3 to the brane world-volume for ease of notation,
although variable fluxes also contribute to the D3-brane tadpole [50]. Further-
more, we have used the D5-brane tadpole cancellation condition to eliminate the
continuous B− moduli [50]. In the following sections, we will discuss how fluxes
along the diagonal U(1)A can be uplifted into an F-theory compactification. In
particular, we will see how the expressions for the flux-dependent chiral indices,
U(1) masses and tadpoles derived above are reproduced in the F-theoretic setting.

3.2 U(1)s in the effective action of F-theory com-
pactifications

In the previous sections we have seen that type IIB compactifications with D7-
branes generically lead to low energy theories with U(N) gauge group factors, and
that in particular the diagonal U(1) ⊂ U(N) and its associated fluxes have many
important consequences for the effective theory. In contrast to U(1)s originating
from the Cartan subsector of a non-Abelian gauge group, which were already
discussed briefly in section 2.4.3, the diagonal U(1)s are somewhat hidden from
view in F-theory compactifications. In the following subsections, we will outline
a proposal which was presented in [33] and allows both massive and massless
diagonal U(1)s and their fluxes to be explicitly included in the F-theory reduction.
We then present additional evidence for the proposed construction by showing that
it allows the type IIB effects related to the diagonal U(1)s, which were discussed
in section 3.1, to be reproduced consistently in F-theory.

3.2.1 Kaluza-Klein reduction of F-theory at the massless
level

The starting point when constructing the 4-dimensional effective action of F-
theory is to use the correspondence with an M-theory compactification on an
elliptically fibered fourfold, as discussed in section 2.3.3. The M-theory compacti-
fication initially leads to an N = 2 supersymmetric theory in 3 dimensions, which
is uplifted to a 4-dimensional N = 1 theory in the F-theory limit of vanishing
fiber volume. The dimensional reduction and derivation of the F-theory effective
action at the massless level was carried out in [88]. In the following, we will not
attempt to present the full details of this reduction, and will instead focus on
aspects relating to U(1) gauge symmetries and their fluxes.
The elliptically fibered Calabi-Yau14 fourfold which forms the basis for the di-
mensional reduction of F-theory will be denoted by Y4. Y4 is endowed with the

14Further details on the mathematical description of such fibrations in terms of Weierstrass
models, which will be used throughout the present chapter, can be found in section 2.4.1.
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structure of a fibration by a suitable projection map πY : Y4 → B3 to a (complex)
3-dimensional base manifold B3. As we will rely quite heavily on the type IIB
results for inspiration, we focus on F-theory setups which have a well-defined type
IIB limit. This means that B3 is identified with the orientifold quotient X3/σ of a
Calabi-Yau threefold X3 which defines a IIB compactification. As in the type IIB
case, the M-theory compactification is performed by carrying out a Kaluza-Klein
reduction of the fields appearing in the low energy effective action of M-theory
and then integrating out the internal space Y4. Strictly speaking, in an F-theory
compactification involving non-Abelian gauge groups the dimensional reduction
cannot be directly carried out on Y4 itself, because Y4 develops ADE type sin-
gularities as discussed in section 2.4.3. Instead, it is necessary to first resolve
these singularities to obtain a smooth Calabi-Yau manifold Ŷ4, on which objects
like cohomology groups and topological intersection numbers may be defined in a
meaningful manner.
The low energy limit of M-theory can be described by the unique15 11-dimensional
supergravity, whose bosonic field content is given by the 11-dimensional metric g
and a 3-form potential C3. Up to terms of higher order in the curvature scalar,
the bosonic part of the action is given by [3, 21]

S11 = 1
2κ2

11

∫
d11x
√
−gR− 1

2κ2
11

∫ (1
2G4 ∧ ∗G4 + 1

6C3 ∧G4 ∧G4

)
. (3.50)

Here G4 = dC3 is the 4-form field strength associated to C3. As in the IIB setting,
we work in conventions where the 11-dimensional spacetime coordinates as well
as the fields C3, g are dimensionless. In these conventions, the 11-dimensional
gravitational coupling constant simply reduces to16 κ2

11 = 1/4π.
Just as in the type IIB reduction discussed in section 3.1.1, the multiplicities of
the massless 3-dimensional fields appearing in the Kaluza-Klein reduction of the
11-dimensional fields are given by the Hodge numbers of Ŷ4. Our notation for the
cohomology groups of Ŷ4 will be based upon the notation used in refs [33,40,88].
The variation of the 11-dimensional metric gives rise to h1,1(Ŷ4) real scalar fields
vΛ and a set of h3,1(Ŷ4) complex scalars zM [150,151]. While the zM can be related
to variations of the complex structure, the fields vΛ arise from the expansion

J = vΛωΛ (3.51)

of the Kähler form J of Ŷ4 into a basis {ωΛ} of the cohomology group H1,1(Ŷ4,Z).
For the Kaluza-Klein reduction of C3, we additionally require a basis of H3(Ŷ4,Z).
In the following, we will often write simply Hp(Ŷ4) instead of Hp(Ŷ4,Z) for the
sake of brevity, although all the basis forms used in this thesis are normalised

15Here, of course, we mean unique up to duality transformations which lead to equivalent the-
ories. We consider a dual democratic formulation of 11-dimensional supergravity in appendix B.

16Our action can be related to the action of [3,21] by a rescaling xi → xi/`M of the coordinates
followed by a Weyl rescaling gij → gij/`

2
M , where `M is the characteristic M-theory length scale.

Under these rescalings the 11-dimensional gravitational coupling changes to κ2
11 = `9M/4π.
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to have integer intersections. As Ŷ4 is Calabi-Yau, there holds h3,0(Ŷ4) = 0 and
therefore H3(Ŷ4) = H2,1(Ŷ4)⊕H1,2(Ŷ4). For future convenience, we choose a basis
of H3(Ŷ4,Z) which can be divided into two sets {ακ}, {βκ} of real 3-forms which
obey ∫

Ŷ4
ωΛ ∧ ακ ∧ αλ =

∫
Ŷ4
ωΛ ∧ βκ ∧ βλ = 0. (3.52)

In terms of the basis forms introduced above, the harmonic Kaluza-Klein reduction
of C3 reads [88]

C3 = AΛ ∧ ωΛ + cκακ + bκβ
κ. (3.53)

Here the AΛ are 3-dimensional vector fields which pair up with the vΛ to form
3-dimensional vector multiplets, while cκ and bκ are real scalar fields.
In the type IIB limit, the massless 3-dimensional fields appearing in these ex-
pansions lift to the 4-dimensional massless fields obtained in the Kaluza-Klein
reduction of type IIB on X3. The precise identification was worked out in detail
in [88] and will be briefly reviewed in the following. At first sight it may seem
tempting to assume that e.g. the vectors AΛ must uplift to 4-dimensional vectors
and scalars cκ, bκ lead to 4-dimensional scalars. However, this naive assumption
fails because scalar and vector fields are dual in 3 dimensions. Instead, to find
the correct correspondence between 3- and 4-dimensional fields it is necessary to
analyse the relationships between the cohomology groups of Ŷ4 and B3 (or X3)
which are induced by the structure of the elliptic fibration.
We focus on the cohomology groups which are relevant for the description of
Abelian gauge symmetries in the low energy action, namely H1,1(Ŷ4) and H2,1(Ŷ4).
The fact that Ŷ4 is elliptically fibered over B2 and arises by resolution from the
space Y4 makes it possible to divide the forms ωΛ ∈ H1,1(Ŷ4) into 3 distinct
categories [88]. First, H1,1(Ŷ4) includes a form ω0 which is Poincaré dual to the
homology class of the base B3 in Ŷ4. By this we actually mean that ω0 is dual
to the divisor in Ŷ4 defined by the vanishing of the zero section17 of the fibration.
ω0 can be used to pull back integrals of differential forms from B3 to Ŷ4. More
precisely, given a p-form ηp on B3 and a p-dimensional submanifold Γp of B3 there
holds ∫

Γp⊂B3
ηp =

∫
π−1
Ŷ

(Γp)⊂Ŷ4
ω0 ∧ π∗Ŷ ηp. (3.54)

In the case where there are additional sections beyond the canonical zero section,
each independent section contributes a further harmonic (1,1)-form [26, 30, 80].
This fact will be crucial for the discussion of massless U(1)s in section 3.3.3, but
for the moment we assume for simplicity that the fibration admits only the zero
section.
In addition to ω0, one obtains a set of forms ωα which arise by pullback of H1,1(B3)
along the projection πŶ . As the notation suggests, these forms are in one-to-one

17Throughout this thesis we are assuming that a section exists, so that Ŷ4 can be written
in Weierstrass form. For the definition of the zero section of a Weierstrass fibration, see sec-
tion 2.4.1.
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correspondence with the basis of H1,1
+ (X3), which was introduced in section 3.1.1

and which survives the orientifold projection to B3. We will use the same notation
for the forms ωα defined on Ŷ4, B3 and X3, trusting that it will always be clear
from the context which specific form is being considered. The ωα furnish Poincaré
duals of the so-called vertical divisors Dα ≡ π−1

Ŷ
(Db

α), which are obtained by
fibering the complete elliptic fiber over the divisors Db

α ⊂ B3 of the base.
In the case without non-Abelian gauge symmetries, where Y4 is smooth, the forms
discussed above span H1,1(Y4) [87]. However, in the general case the resolution
πR : Ŷ4 → Y4 introduces additional resolution divisors with associated (1,1)-forms.
More precisely, each component Db

A of the discriminant locus ∆ ⊂ B3 which
hosts a non-Abelian singularity gives rise to a set of forms in H1,1(Ŷ4,Z) which
correspond to Cartan generators of the gauge group GA on Db

A [88]. Following [33],
we denote these forms by wiA, i = 1, . . . , rk(GA). The divisors dual to the wiA

are formed by fibering the different fiber P1’s which appear after resolution over
the base divisor Db

A [108]. As already discussed in section 2.4.3, the resolution
P

1’s intersect according to the Cartan matrix CAij of the gauge group GA. More
precisely, the forms wiA obey [33,108]∫

Ŷ4
π∗
Ŷ

(γ) ∧ wiA ∧ wjB = −δABCAij
∫
DbA

γ ∀γ ∈ H4(B3). (3.55)

The cohomology classes associated with the divisors Db
A, or equivalently their

pullbacks DA = π−1
Ŷ

(Db
A), can be expanded into the forms ωα on B3 resp. Ŷ4. As

in section 3.1.1, we denote the expansion coefficients by Cα
A, so that

[DA] = Cα
A ωα. (3.56)

After dualisation, the 3-dimensional vector multiplets involving vα and Aα yield
a set of h1,1(B3) complex scalars. It is natural to expect that in the F-theory
uplift these scalars correspond to the h1,1(B3) scalars Tα which occurred in the
type IIB compactification. The general discussion of section 2.4.3 showed that a
component Db

A of the discriminant locus corresponds to a stack of D7-branes in
the IIB limit, whose gauge group GA matches the ADE type of the singularity
above Db

A. This immediately suggests that the 3-dimensional vector multiplets18

(viA, AiA) should lift to 4-dimensional vectors describing the gauge bosons in the
Cartan of GA. These expectations were confirmed by explicitly performing the F-
theory uplift in [88]. The same analysis showed that the leftover vector multiplet
(v0, A0) becomes a part of the 4-dimensional metric in the uplift from 3 to 4
dimensions. In the case where additional sections are present, the associated
3-dimensional vector multiplets lift to 4-dimensional gauge bosons.
The fact that Ŷ4 is elliptically fibered can also be used to split H2,1(Ŷ4) into two19

18Strictly speaking, the vector multiplets involve fields ξΛ which are related to vΛ by a rescaling
involving the volume of Ŷ4 [33, 88], but we will ignore this slight distinction for the moment.

19A third contribution to H2,1(Ŷ4) can arise in the presence of Wilson lines on the D7-brane
divisors [88]. Wilson lines play no role in the present analysis, and as in section 3.1 we assume
that no Wilson lines are present in the model to simplify the notation.
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distinct subspaces which are related to different cohomology groups of B3. One
part is simply given by the pullback of H2,1(B3) to Ŷ4. The reduction of C3 along
this part of H2,1(Ŷ4) yields a set of 3-dimensional scalars, which are related in
the F-theory uplift to the bulk U(1)s obtained by reducing C4 on H2,1

+ (X3) in the
type IIB compactification [88]. The second part of H2,1(Ŷ4) arises from an uplift of
H1,1
− (X3), which can be heuristically understood as follows [21,152]. Due to their

negative orientifold parity, the cohomology classes ωa ∈ H1,1
− (X3) do not survive

the orientifold projection to B3. This means that they cannot be directly uplifted
to Ŷ4 as was possible with the positive parity forms ωα. However, it turns out
to be possible to create well-defined 3-forms on Ŷ4 by combining the ωa with the
1-forms dx, dy on the elliptic fiber. The underlying reason is that the monodromy
around an orientifold plane acts on dx and dy by sign reversal [21], so that dx and
dy effectively have negative orientifold parity just like the ωa. As the negative
parities of the two factors cancel, the schematic combinations

αa ∼ ωa ∧ dy, βa ∼ δabωb ∧ dx (3.57)

can survive the orientifold projection and lead to well-defined 3-forms on Ŷ4. The
existence of the forms αa, βa can be confirmed by an explicit computation of the
F-theory limit, which shows that the scalars obtained by reducing C3 on αa and
βa are uplifted to the moduli fields ca and ba of the type IIB theory [33].
Although they will not be needed in the following, let us note that the complex
structure moduli zM of Ŷ4 can be related to the complex structure moduli of X3
and the deformation moduli of the D7-branes [21]. In summary, the number of
complex scalar fields in the 4-dimensional effective action of F-theory is given
by [88]

ns = h3,1(Ŷ4) + h1,1(B3) + h2,1(Ŷ4)− h2,1(B3). (3.58)

The remaining h1,1(Ŷ4) + h2,1(B3) − h1,1(B3) − 1 massless 3-dimensional vector
multiplets obtained in the Kaluza-Klein reduction on Ŷ4 uplift to 4-dimensional
gauge bosons. This number includes the multiplets (viA, AiA) which are associated
with the Cartan subalgebra of a non-Abelian part of the gauge group. As noted
in [88], these gauge bosons are absorbed into the non-Abelian gauge groups which
re-appear in the F-theory limit of vanishing fiber volume. Hence the true number
of massless Abelian gauge factors in the 4-dimensional F-theory gauge group is
given by

nU(1) = h1,1(Ŷ4) + h2,1(B3)− h1,1(B3)− 1−
∑
A

rk(GA). (3.59)

Here we have included the h2,1(B3) bulk U(1) gauge bosons for completeness,
although as in section 3.1 we will assume that h2,1(B3) = 0 in the following to
simplify the required notation.
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3.2.2 Geometrically massive U(1)s from non-harmonic forms

The discussion above shows a beautiful match between the effective theories ob-
tained from F-theory and type IIB compactifications, at least at the level of the
massless degrees of freedom appearing in the effective action. The expansions
of the 11-dimensional metric and of C3 along the various cohomology groups de-
scribed above have in particular allowed us to identify the F-theory analogues
of the type IIB Kähler and complex structure moduli, as well as of the bulk
U(1)s and the deformation moduli of D7-branes. Under the assumption that the
uplift (3.57) is well-defined in cohomology, we have also found analogues of the
scalars ca, ba appearing in the reduction of the IIB fields C2 and B2 given in (3.7).
After including the gauge bosons corresponding to off-diagonal generators, which
arise from M2-branes wrapped on P1’s in the resolved fiber and become massless
in the F-theory limit, we have also been able to account for the non-Abelian part
of the D7-brane gauge groups. From a type IIB perspective, this leaves only the
fate of the diagonal U(1)A gauge bosons20 discussed in section 3.1 unclear. A
natural guess is that the diagonal U(1)s are accounted for by the additional vec-
tor multiplets which appear in F-theory compactifications with multiple sections.
Such models have been studied recently e.g. in [27, 29, 30, 32], although to the
best of our knowledge the explicit relation to the type IIB picture has not been
worked out in full detail. Nevertheless, it is plausible that additional sections can
account for all the type IIB diagonal U(1)s which remain massless in the absence
of fluxes.
However, the F-theory reduction presented so far does not account for diagonal
U(1)s which in type IIB obtain a mass via the geometric Stückelberg mechanism
discussed in section 3.1.2. This was to be expected, because F-theory does not
have a direct analogue of the type IIB geometric Stückelberg mechanism21 [33,88].
In order for the effective theories obtained by the IIB and F-theory compactifi-
cations to match at the massless level, the geometrically massive U(1)A gauge
bosons should therefore be absent from the beginning in the massless Kaluza-
Klein reduction of F-theory. In a sense, we expect the effects of the geometric
Stückelberg mechanism to be built in automatically into the geometry of the F-
theory compactification. In particular, the F-theory setup should automatically
guarantee the absence of the anomalies which in type IIB are cancelled by the
Green-Schwarz mechanism involving geometrically massive U(1)s. This was ex-
plicitly checked and confirmed in [123].
Although the massless F-theory reduction yields a consistent and anomaly-free
theory, it is worthwhile exploring the role of the geometrically massive U(1)s in
F-theory further. The main motivation for this from a phenomenological point of
view is that massive U(1)s contribute to selection rules on allowed field couplings
in the low energy effective theory. As will be discussed further in chapter 4, the

20As before, we focus on the case in which the D7-brane gauge is U(NA).
21On the other hand, flux-dependent Stückelberg masses can appear in F-theory, as we will

see in section 3.2.5.
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U(1) charges also restrict the shape of the superpotential contributions due to cer-
tain instanton configurations, which can have important consequences for moduli
stabilisation. In the type IIB description, it is obvious that these selection rules
remain intact even when the U(1) gauge boson becomes massive. Furthermore,
the selection rules are expected to survive in F-theory models which have a smooth
type IIB limit. In [33], a prescription was given which can be used to make the
geometrically massive U(1) symmetries, and hence the underlying reason for the
low energy selection rules, explicitly visible in the F-theory reduction.
To describe the geometrically massive U(1)A gauge bosons, we follow [33] and
include an additional set of non-closed 2-forms w0A in the dimensional reduction
of C3

C3 = A0∧ω0 +Aα∧ωα +AiA∧wiA +A0A∧w0A + caαa + baβ
a ≡ AΛ∧ωΛ. (3.60)

Here and in the following we will extend the notation ωΛ to run over all the
(1,1)-forms appearing in the Kaluza-Klein reduction, including w0A, even though
the index Λ had originally been introduced in section 3.2.1 to label the harmonic
(1,1)-forms only. The 3-dimensional vector A0A will be identified with the diagonal
U(1)A of the brane stack on DA in the IIB limit, up to a normalisation factor which
will be worked out in detail in section 3.2.5.
The non-closedness of w0A implies that the 4-form field strength includes a term
of the form G4 ⊃ A0A ∧ (dw0A). Upon dimensional reduction of the

∫
G4 ∧

∗G4 term in the 11-dimensional supergravity action (3.50), this yields a mass
term for the gauge boson A0A. Allowing for non-closed forms in the Kaluza-
Klein reduction is well-known as a method of generating masses in the effective
theory, and was discussed e.g. in [153–155] in the type II context. Formally, the
inclusion of the non-closed forms w0A is very similar to the process of including
fields from higher Kaluza-Klein mass levels in the dimensional reduction. Indeed,
recalling the IIB mass formula (3.40) for the geometrically massive U(1)s shows
that the U(1) masses approach the Kaluza-Klein scale as we move away from
the perturbative IIB limit and allow for larger values of the string coupling gs in
F-theory [33]. This suggests that, in order to obtain a fully consistent F-theory
effective action involving the massive gauge bosons A0A as dynamic degrees of
freedom, other Kaluza-Klein modes of a comparable mass should also be included
along with A0A. However, our focus lies on effects relating to the geometrically
massive U(1) symmetries, and a full description of the F-theory effective action
including all massive Kaluza-Klein modes is beyond the scope of this thesis. In the
following we will therefore include only the non-closed forms required to describe
the geometrically massive U(1) symmetries and their associated fluxes, without
making any claim that this corresponds to a consistent truncation of the massive
field spectrum of the theory.
The discussion of the geometric Stückelberg mechanism in section 3.1.2 can be
used to gain additional intuition about the relationship between w0A and the other
forms of the dimensional reduction. A crucial point is that the diagonal U(1)A
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gauge boson is not the only field which is removed from the massless spectrum
in the course of the geometric Stückelberg mechanism. Instead, for each massive
gauge boson a certain linear combination of the would-be moduli ca is absorbed
to form the longitudinal component of the massive vector field. At the same
time, some of the fields ba obtain a mass because they appear in the D-term
potential (3.42). Therefore, following our previous logic not all of the h1,1

− (B3)
type IIB fields ca and ba should be uplifted to massless moduli fields in F-theory.
In other words, not all of the forms αa and βa appearing in (3.60) should be
harmonic. In fact, this can be intuitively understood as follows in the naive
picture of the geometric origin of αa and βa captured by equation (3.57). The
fields ca, ba which participate in the geometric gauging are associated with forms
ωa ∈ H1,1

− (X3) which have non-vanishing support on a divisor DA wrapped by
a stack of D7-branes, such that the wrapping numbers Ca

A are non-zero. In the
F-theory uplift, the elliptic fiber degenerates over the D7-branes, so that the 1-
forms dx, dy appearing in (3.57) are not well-defined over this locus. In other
words, the naive uplift (3.57) may fail exactly if ωa has non-zero restriction to
a D7-brane divisor and the fields ca, ba take part in the geometric Stückelberg
mechanism. More precisely, we expect that an uplift of the forms ωa to 3-forms on
Ŷ4 in the manner of (3.57) continues to exist, but that the resulting 3-forms fail
to be harmonic in the case where the ωa restrict non-trivially to a D7-brane. This
expectation is based on the fact that the ba continue to exist in the IIB effective
action, albeit with a non-zero mass.
As motivated above, we expect that both w0A and some of the forms αa, βa are
non-harmonic in the presence of geometric gauging, and that the non-harmonicity
is related in some way to the geometry of the D7-brane divisors DA in the IIB
limit. To match the effective theory of the IIB compactification, we finally note
that the ca appearing in the expansion C3 = caαa + . . . should be absorbed in
the process by which the vectors A0A become massive. In other words, we expect
the geometric gauging (3.37) to be mirrored on the F-theory side after the non-
harmonic forms are taken into account. Such a gauging appears naturally as a
consequence of the expansion (3.60) of C3 if the forms w0A and αa satisfy a relation
of the form dw0A = Ma

Aαa with a constant matrix Ma
A [33]. It was shown in [33]

that the matrix Ma
A can be related to the IIB quantities introduced in section 3.1

by
dw0A = NAC

a
Aαa. (3.61)

This relation captures the essence of the general discussion above in that the
non-closedness of w0A and the subset of forms αa which fail to be harmonic is
determined by the D7-brane wrapping numbers Ca

A. It also immediately implies
that the kinetic terms of the ca obtained by dimensionally reducing the field
strength G4 involve the covariant derivatives

G4 = dC3 = (dca −NAC
a
AA

0A) ∧ αa + . . . , (3.62)

in full analogy with the IIB expression (3.37). The exact prefactors appearing
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in (3.61) will be confirmed in section 3.2.5 by matching the F-theory effective
action in the type IIB limit to the IIB results of section 3.1.
To perform the dimensional reduction of the action, we will need to evaluate vari-
ous integrals over Ŷ4 involving both the harmonic forms introduced in section 3.2.1
as well as the non-harmonic forms αa, βa and w0A. In the following we give the
values of the required integrals, which were worked out in [33] by performing the
match with the IIB effective action. It will sometimes be convenient to group
the non-harmonic form w0A together with the forms wiA describing the Cartan
resolution divisors into the combined set

wIA , I = 0, i, i = 1, . . . , rank(GA) , A = 1, . . . , nD7, (3.63)

with nD7 the number of independent D7-brane stacks in the model. The intersec-
tion number of three base divisors is denoted by∫

B3
ωα ∧ ωβ ∧ ωγ = 1

2Kαβγ. (3.64)

The elliptic fibration structure and the fact that X3 is a double cover of B3 can
be used to relate these intersection numbers to integrals on X3 and Ŷ4

Kαβγ =
∫
X3
ωα ∧ ωβ ∧ ωγ = 2

∫
Ŷ4
ω0 ∧ ωα ∧ ωβ ∧ ωγ, (3.65)

where we have used the relation (3.54). This shows that the Kαβγ are identical
with the intersection numbers (3.6) appearing in the IIB compactification. The
structure of the elliptic fibration further implies that intersections of 4 vertical
divisors vanish [88] ∫

Ŷ4
ωα ∧ ωβ ∧ ωγ ∧ ωδ = 0. (3.66)

Furthermore, to obtain the correct IIB limit from the M-theory reduction the
integrals involving both the non-harmonic form w0A and the Cartan forms wiA

should vanish [33]. The generalisation of (3.55) to the full set wIA therefore takes
the form ∫

Ŷ4
wIA ∧ wJB ∧ ωα ∧ ωβ = −1

2δAB C
B
IJ C

γ
AKαβγ, (3.67)

where the matrix CBIJ obeys CB0i = 0, CB00 = NB and reduces to the Cartan matrix
CBij of the gauge group GB for the other values of the indices. Finally, the integrals
involving one form wIA and 3 forms out of the set {ω0, ωα} are expected to vanish,
just as in the harmonic case analysed in [88,108].
The form of the integrals involving αa and βa can be motivated by the schematic
formula (3.57). This picture makes it clear that all integrals involving αa ∧ αb or
βa ∧ βb are expected to vanish just as in the harmonic case (3.52). Furthermore,
the forms αa ∧ βb already have two legs along the elliptic fiber, so that the only
2-forms which will yield a non-vanishing integral over Ŷ4 after taking the wedge
product with αa∧βb are the forms ωα originating from B3. In this case, the forms
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dx, dy in (3.57) are essentially integrated to unity over the elliptic fiber, so that
the overall integral reduces to the corresponding integral over X3 involving the ωa
rather than αa and βa. In summary, we expect [33]∫

Ŷ4
ωα ∧ αa ∧ βb = 1

2

∫
X3
ωα ∧ ωa ∧ ωcδcb = 1

2Kαacδ
cb, (3.68)∫

Ŷ4
ωIA ∧ αa ∧ βb =

∫
Ŷ4
ω0 ∧ αa ∧ βb = 0, (3.69)

with the constants Kαab appearing in (3.68) being the same as those introduced in
section 3.1.1. The factor of 1/2 takes into account the fact that integrals involving
forms of well-defined orientifold parity on X3 are twice as large as on B3, as X3 is
the double cover of B3. Therefore, the Kαab are even and the intersections (3.68)
are integer despite the factor of 1/2. The integral relations involving αa and βb

will again be confirmed by matching the F-theory effective action to the IIB result
in section 3.2.5.
Note that consistency of the integral relation (3.68) with the exactness of Ca

Aαa
conjectured in (3.61) prevents βa from being closed with respect to exterior dif-
ferentiation. To describe dβa, we follow [33] in introducing an additional set of
non-harmonic 4-forms w̃bA which are related to βa by

dβa = −δac12KαcbNAC
α
A w̃bA. (3.70)

The prefactors in this relation are chosen for later convenience in the dimen-
sional reduction. Consistency between the various relations (3.61), (3.68), (3.69)
and (3.70) can now be achieved by imposing [33]

Cα
AKαab

∫
ωβ ∧ w0B ∧ w̃bA = δABKβabCb

A, (3.71)

Cα
CKαab

∫
wIA ∧ w0B ∧ w̃bC = Cα

CKαab
∫
ω0 ∧ w0B ∧ w̃bC = 0. (3.72)

Finally, we follow [33] in introducing a second set of 4-forms w̃aA, which are dual
to the w̃bA in the sense that ∫

Ŷ4
w̃aA ∧ w̃bB = δBAδ

b
a. (3.73)

The forms w̃aA will prove useful for the description of the F-theory uplift of fluxes
along the diagonal U(1)A discussed in the next subsection. Consistency with the
various integral relations introduced above requires

dw̃aA = NAC
α
Aωα ∧ αa. (3.74)

Furthermore, the forms w̃aA are taken to fulfill the integral relations [33]∫
Ŷ4

w̃aA ∧ w̃bB = − 1
2δABKαabNAC

α
A, (3.75)∫

Ŷ4
w̃aA ∧ wIB ∧ ωα = − 1

2δABδI0KαabNAC
b
A. (3.76)
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As we will see in section 3.2.3, the first relation is required in order to obtain a
match between the M2-brane tadpole induced by G4 fluxes along w̃aA and the
corresponding type IIB D3-brane tadpole. Similarly, the second relation (3.76)
can be deduced by requiring that the G4-induced chiral indices proposed in sec-
tion 3.2.3 correctly reproduce the known type IIB results.
A brief comment is in order regarding the proposed forms of the differential and
integral relations involving βa, w̃aA and w̃aA. At first sight, it seems that (3.70)
and the following relations can lead to the appearance of non-harmonic forms
even in the case where Ca

A = 0 and no geometric gauging occurs in the IIB pic-
ture. However, let us emphasise that the entire non-harmonic structure introduced
above is aimed at describing the F-theory uplift of D7-brane configurations with
gauge group U(NA) in the IIB picture. In other words, the brane index A in equa-
tion (3.70) should run only over the stacks of branes with unitary gauge group.
If Ca

A = 0, the gauge group U(NA) can appear only if the D7-brane divisor DA is
in the same homology class as the O7-plane [33]. The fact that forms of negative
orientifold parity have vanishing pullback to the orientifold plane then implies

Cα
AKαab =

∫
DA⊂X3

ωa ∧ ωb =
∫
DO7

ωa ∧ ωb = 0. (3.77)

Therefore the forms βa are actually closed in this case, and as expected no non-
harmonic structure appears in the absence of geometric gauging.
Before proceeding with the description of the uplift of fluxes along the diagonal
U(1)A to F-theory, a brief comment is in order about the implications of the
appearance of w0A for the expansion of the Kähler form. In order to be able
to match the 3-dimensional effective action obtained from the F-theory reduction
with theN = 1 effective action of type IIB, the 3-dimensional effective action must
also be supersymmetric. This in turn requires the massive vectors A0A to combine
with suitable scalar fields v0A into complete 3-dimensional vector multiplets. The
scalars v0A are obtained by including w0A in the expansion of the Kähler form

J = v0ω0 + vαωα + viAwiA + v0Aw0A ≡ vΛωΛ. (3.78)

At first sight, this seems to be in contradiction with the usual statement that
low energy supersymmetry requires a compactification on a Kähler manifold, be-
cause (3.78) implies

dJ = v0ANAC
a
Aαa. (3.79)

However, as discussed in more detail in [33,85,156], a compactification on a non-
Kähler space with a globally defined (1,1)-form22 J is actually not in contradiction
with the existence of a supersymmetric effective theory. Instead, Kählerity is only
required for a supersymmetric vacuum, so that we should require a vanishing
vacuum expectation value for dJ [33]

〈dJ〉 ∝ Ca
A

〈
v0A

〉
= 0. (3.80)

22Despite the fact that J is no longer a true Kähler form when dJ 6= 0, we will continue to
refer to J as ‘the Kähler form’ in the following.
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As the v0A become components of 4-dimensional vectors in the F-theory limit,
their expectation value is anyway required to vanish in order to preserve 4-
dimensional Lorentz invariance. In the following, we will therefore always assume
that (3.80) is fulfilled. Despite their vanishing vacuum expectation value, the
fields v0A can be formally viewed as describing massive fluctuations of Ŷ4 into
an auxiliary non-Kähler space Ẑ4 [33]. Strictly speaking, the dimensional reduc-
tion involving the massive fields v0A, A0A should be carried out on this auxiliary
space Ẑ4. However, all the topological integrals and differential relations intro-
duced above do not rely on the form of the metric and hold on both Ŷ4 and Ẑ4.
Therefore, we will ignore the subtle distinction between the two spaces in the
following and continue to denote the non-Kähler space on which the derivation of
the F-theory effective action is carried out by Ŷ4.

3.2.3 G4 fluxes and the induced tadpoles and chiralities

The discussion presented above shows that the inclusion of specific non-harmonic
forms in the Kaluza-Klein reduction can be used to implement a geometric gaug-
ing scenario and geometrically massive U(1) symmetries in F-theory compactifi-
cations. Although a precise match with the type IIB picture including all pref-
actors requires a careful discussion of the F-theory limit and is postponed to sec-
tion 3.2.5, it is evident that the massive gauge fields A0A introduced above provide
an F-theoretic description of the diagonal U(1)s in type IIB. As we had seen in
section 3.1, many interesting features of the low energy action are controlled by
gauge fluxes along these diagonal U(1)s, and we now turn to the description of
this type of flux in the F-theory reduction. Several flux-dependent quantities,
such as the flux-induced chiralities and tadpoles derived in the IIB setting in sec-
tions 3.1.2 and 3.1.3, are actually independent of the Kähler moduli. We therefore
expect that these quantities are not changed in the F-theory limit of vanishing
elliptic fiber volume, so that the type IIB results should be visible directly in the
M-theory picture. In the following, we will introduce the uplift of fluxes in the
diagonal U(1) to M-theory G4 fluxes that was proposed in [33], and show how the
IIB expressions for the chiralities and tadpoles are reproduced in this proposal.
In section 3.2.1, the relationships between certain cohomology groups on Ŷ4 and
X3 were used to derive correspondences between fields appearing in the M-theory
and IIB reductions. As we will see, these correspondences can also be used to
obtain an intuition for the uplift of the IIB fluxes which can be expanded along
forms on the brane divisors that arise by pullback23 from the Calabi-Yau X3. For
the convenience of the reader, let us recall the expansion (3.15) of the flux along
the diagonal U(1)A of the brane stack on DA ⊂ X3 in terms of the bases of the
cohomology groups H1,1

± (X3)

F̃A0 = F̃A,α0 ωα + F̃A,a0 ωa. (3.81)
23Throughout this chapter we will assume for simplicity that the brane divisors do not admit

any of the so-called variable fluxes defined in (3.13).
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In the absence of variable fluxes, the gauge flux is thus completely specified by
the dimensionless flux quanta24 F̃A,α0 and F̃A,a0 , and it is natural to expect that
these flux quanta will also appear in the uplift of F̃A0 to an M-theory G4 flux.
Let us consider first the D7-brane fluxes along the positive parity forms ωα. As
the ωα survive the uplift to Ŷ4, it is natural to expect that the corresponding G4
flux can be written as a wedge product of the IIB flux with a suitable 2-form on
Ŷ4. In fact, a very similar form is observed for the M-theory description of positive
parity fluxes in the Cartan of SU(NA), which in the IIB language are given by
F̃Ai = F̃A,αi ωα. The corresponding G4 flux in M-theory involves the forms wiA

that are dual to the resolution divisors of the singularity over DA, and can be
written as [22,33,88,108]

G4 = −
∑
i

F̃A,αi ωα ∧ wiA. (3.82)

It is natural to expect that the positive parity fluxes along the diagonal U(1)A
can be described by the direct analogue of this expression involving the additional
form w0A, which describes the diagonal U(1)A in the M-theory lift. Following [33],
we therefore make the ansatz

G4 = −F̃A,α0 ωα ∧ w0A (3.83)

to describe the G4 fluxes of this type.
The uplift of the negative parity fluxes F̃A,a0 is somewhat more involved as the
uplift of the forms ωa to Ŷ4 is more complicated. Note that non-zero fluxes F̃A,a0
along the diagonal U(1)A exist only in the presence of geometric gauging, be-
cause as discussed in section 3.2.2 negative parity forms have vanishing pullback
to branes with gauge group U(NA) and [DA] = [D′A]. This suggests that their
uplift to F-theory is connected to the non-harmonic structure associated with the
3-forms αa, βa, which describe the uplift of the forms ωa on X3. As we will see mo-
mentarily, the forms w̃aA introduced in (3.73) indeed have the required properties
to describe this uplift. In summary, we use the form

G4 = −F̃A,α0 ωα ∧ w0A − F̃A,a0 w̃aA, (3.84)

which was originally proposed in [33], for the uplift of fluxes along the diagonal
U(1)A to F-theory.
Of course, fluxes along the diagonal U(1)s as in (3.84) are not the only type of
G4 fluxes that can appear in an F-theory compactification. For example, G4 may
include other fluxes which originate from the open string sector in the IIB picture,
such as the Cartan fluxes appearing in (3.82) or variable fluxes which are trivial
from the perspective of the ambient bulk space but non-trivial on the D7-brane

24The flux quanta are restricted to integer or half-integer values by the Freed-Witten quan-
tisation condition (3.14). The fluxes F̃A,α0 of positive orientifold parity include a contribution
from the discrete B+ field.
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world-volume. In addition, G4 is well-known to include the uplift of closed string
fluxes, which in the IIB language are described by the field strengths F3 and H3
corresponding to the potentials C2 and B2, respectively [22]. This uplift can be
understood as locally arising in a similar manner to the uplift of the odd forms
ωa, such that [21]

(F3, H3)→ G4 ∼ H3 ∧ dx+ F3 ∧ dy. (3.85)

In the type IIB setting we had seen in section 3.1.3 that the presence of D7-
brane flux along the diagonal U(1) contributes to the effective D5-brane tadpole,
which manifests itself in the modified Bianchi identity (3.46) for F3. In the spirit
of (3.85), it is natural to expect that the fluxes defined in (3.84) lead to a similarly
modified Bianchi identity for G4 [33]. Indeed, directly evaluating dG4 by inserting
the expansion (3.84) and using the non-harmonicity of w0A and w̃aA described in
equations (3.61) and (3.74) of the previous subsection leads to

dG4 = −NA

(
F̃A,a0 Cα

A + F̃A,α0 Ca
A

)
ωα ∧ αa . (3.86)

Keeping in mind that the αa effectively describe the uplift of the forms ωa to Ŷ4,
this indeed seems to exhibit the correct structure to describe the F-theory uplift
of the IIB expression (3.46). To demonstrate the exact match, it is necessary to
keep in mind that the intersection forms of Ŷ4 and X3 differ by a factor of 2. To
take these relative factors into account, it is advantageous to consider the uplift
of the integrated tadpole contributions [33]∫

X3
dF3 ∧ ωb →

∫
Ŷ4
dG4 ∧ βb, (3.87)

rather than directly comparing the Bianchi identities of G4 and F3. Inserting the
explicit expression (3.86) for dG4 and using the integrals (3.68), one obtains the
result that the contribution to the D5-brane tadpole induced by a flux F̃A0 is

δab

∫
Ŷ4
dG4 ∧ βb = −1

2NA

(
F̃A,c0 Cα

A + F̃A,α0 Cc
A

)
Kαac . (3.88)

This exactly matches the corresponding contribution (3.47) obtained in the IIB
compactification. In particular, the restrictions on the fluxes which are obtained
in the IIB and F-theory pictures from the condition that the tadpoles must van-
ish in a consistent compactification are identical. An important aspect of the
result (3.88) is that the fact that the continuous moduli ba do not appear in
the integrated D5 tadpole is in a sense automatic in F-theory. Recall from sec-
tion 3.1.3 that the corresponding result in the IIB setting relied on the D7-brane
tadpole cancellation condition (3.45). This observation can be viewed as another
manifestation of the fact that, as already remarked in section 2.4.1, the analogue
of the IIB D7-brane tadpole cancellation condition is automatically fulfilled in a
consistent F-theory compactification.
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A second check on the proposed form (3.84) of the F-theory fluxes is obtained
by considering the analogue of the IIB D3-brane tadpole. As discussed in sec-
tion 3.1.3, the D3-brane tadpole can be derived in the IIB setting by consider-
ing the equation of motion of the field C4 which couples to the D3-branes. In
the M-theory lift, the D3-branes correspond to M2-branes, which in turn cou-
ple directly to the M-theory 3-form potential C3 [21]. Just as in the type IIB
setting, the consistency condition corresponding to cancellation of net charge in
the compact space, which in the M-theory setting is referred to as absence of the
M2-brane tadpole, can be derived from the equation of motion of C3 [21]. In
addition to M2 branes, two other types of sources contribute to the M2-brane
tadpole. A curvature-related source term is induced by an additional term in
the 11-dimensional supergravity involving higher orders of the curvature scalar,
which we have not displayed in (3.50). The curvature-induced contribution to the
integrated M2-brane tadpole is proportional to the Euler characteristic χ of the
fourfold used in the M-theory compactification to 3 dimensions, as first shown by
Sethi, Vafa and Witten in [157]. For a smooth elliptically fibered fourfold the Eu-
ler characteristic is determined fully in terms of the Chern classes of the base [157].
However, in an F-theory compactification with non-Abelian singularities it is im-
portant to use the Euler characteristic χ(Ŷ4) of the resolved space [22,130], and a
naive application of the Sethi-Vafa-Witten formula for smooth spaces can lead to
significant deviations from the true result [158].
A further source term for C3 appears in the presence of non-trivial G4-flux, as is
immediately evident from the coupling proportional to

∫
C3 ∧G4 ∧G4 in the 11-

dimensional action (3.50). Putting the various contributions together, one obtains
the integrated M2-brane tadpole cancellation condition [21,22]

NM2 +
∫
Ŷ4
G4 ∧G4 = χ(Ŷ4)

24 . (3.89)

In the type IIB limit, the spacetime-filling M2-branes counted by NM2 are dual to
spacetime-filling D3-branes, so that in relating (3.89) to the IIB expression (3.48)
there holds NM2 = ND3. Furthermore, the term involving χ(Ŷ4) accounts for
the terms involving the modified Euler characteristics of the O-planes and D7-
branes appearing on the right hand side of (3.48) [104]. This leaves the term
involving

∫
G4 ∧ G4 to account for the entire flux-dependent contribution Nflux

in (3.48), which includes contributions from both bulk and brane fluxes in the IIB
language. In the following we focus on the contribution to the M2/D3-tadpole
which is induced by gauge flux along the diagonal U(1). In the type IIB setting
this contribution was given in equation (3.49). The contribution to the M-theory
tadpole induced by the proposed G4 fluxes (3.84) can be computed using the
integral relations presented in section 3.2.2 [33]∫

Ŷ4
G4 ∧G4 = −1

4
∑
A

NA

(
KαβγCα

AF̃
A,β
0 F̃A,γ0 +KαbcCα

AF̃
A,b
0 F̃

A,c
0

+ 2KabγCa
AF̃

A,b
0 F̃

A,γ
0

)
.

(3.90)
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Here we have used the D5-brane tadpole cancellation condition. This purely flux-
dependent contribution again precisely matches the type IIB result (3.49). In
fact, this match between the IIB and F-theory pictures for the M2/D3-tadpole
extends also to the role of the continuous ba moduli. As discussed in section 3.1.3,
the naive D3-tadpole actually contains contributions linear and quadratic in the
continuous moduli. The quadratic contribution can be shown to vanish as long
as the D7-brane tadpole is zero, while the absence of the linear contribution fur-
ther requires the D5-brane tadpole to be cancelled [50]. In the corresponding
M-theory expression (3.90), the quadratic term is automatically absent, match-
ing the previously discussed expectation that the analogue of the IIB D7-brane
tadpole cancellation is automatically encoded in the geometry of the M-theory
compactification. However, (3.90) includes a contribution of the form∫ [
F̃A,a0 w̃aA + F̃A,α0 ωα ∧ w0A

]
∧bbdβb ∝ KαacNAδ

cbbb
(
F̃A,a0 Cα

A + F̃A,α0 Ca
A

)
. (3.91)

Comparison with (3.88) confirms that this term is absent precisely if the D5-brane
tadpole vanishes. This exactly mirrors the situation that was observed in the type
IIB framework. The match between the M2/D3 tadpoles in the F-theory and IIB
pictures yields a second non-trivial check for the proposed non-harmonic structure
and the G4 flux (3.84).
As already mentioned in section 3.1.2, the main motivation behind the inclusion of
non-trivial fluxes in compactifications of string or F-theory is that their presence
can lead to a chiral matter spectrum in the low energy theory. In particular, the
chiral index measuring the chirality of charged matter localised at the intersection
of 2 D7-branes in type IIB involves an integral of the relative D7-brane gauge
flux over the intersection curve. The corresponding matter states in F-theory
can be viewed as arising from M2-branes wrapped on P

1’s in the elliptic fiber
which become visible after the enhanced singularity over the intersection curve
is resolved [22, 113]. Fibering these P1s over the intersection curve leads to 4-
dimensional surfaces known as matter surfaces. The index measuring the net
chirality induced by G4 flux in F-theory is now given by the integral of G4 over
these matter surfaces [112,115].
Recent progress in the explicit construction of G4 fluxes and matter surfaces,
which was initiated in [108, 159], has made it possible to check these F-theoretic
chirality formulae in concrete examples. In particular, the detailed study of the
resolution of the so-called U(1)-restricted SU(5) Tate model performed in [108]
made it possible to identify the harmonic 2-forms corresponding to the Cartan
U(1)s and the additional massless U(1). These forms were used to construct
harmonic G4 fluxes of the form (3.82), whose integrals over the matter surfaces
were indeed shown to correctly reproduce the known type IIB chiral indices.
The type IIB results presented in section 3.1.2 show that also fluxes along mas-
sive U(1) symmetries influence the chiral spectrum. As the chiral spectrum is
protected in the uplift from IIB to F-theory [33], this makes it clear that also G4
flux corresponding to IIB fluxes along massive U(1)s must be included in the F-
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theory description in order to gain a complete understanding of the chiral matter
spectrum. A first step towards this goal was taken in reference [160], which showed
that a certain harmonic G4 flux in the SU(5) × U(1) model could be identified
with a type IIB flux configuration along massive U(1) symmetries which is free of
D5-brane tadpoles. As discussed in [160], this suggests that two complementary
approaches are possible towards constructing G4 fluxes corresponding to diagonal
U(1)s in F-theory. The description (3.84) given above in a sense provides an off-
shell description in the spirit of the IIB approach, in which the vanishing of the
D5 tadpole (3.88) must be imposed by hand. Although the individual forms w0A
and w̃aA appearing in (3.84) are in general non-closed, the overall tadpole-free
combination is expected to correspond to a harmonic G4. In other words, the
observation of [160] suggests that the D5 tadpole cancellation condition can be
automatically accounted for in F-theory by harmonicity of G4 flux. Note that this
is in some ways similar to the fact that, as discussed in section 2.4.1, the F-theory
analogue of the type IIB D7-brane tadpole cancellation condition is automatically
satisfied in a consistent compactification due to the geometric properties of the
compactification manifold.
Although the discussion above suggests that the contributions of fluxes along
both massive and massless U(1)s to the chiral indices can in some situations be
computed by evaluating integrals of harmonic G4 fluxes over matter surfaces,
there are several reasons why it is worthwhile exploring how the chiral indices
can be expressed in the language of non-harmonic forms used in (3.84). For one,
the analysis of [160] was carried out in the specific framework of an SU(5)×U(1)
model. It therefore strictly speaking does not rule out the possibility that in other
setups there may exist tadpole-free combinations of fluxes which do not admit a
dual description in terms of a harmonic form. Furthermore, in some situations it
may be simpler from a computational perspective to work with the non-harmonic
forms in (3.84) and solve the tadpole cancellation condition explicitly than to
construct the harmonic G4 fluxes directly. Finally, the analysis presented in [160]
focused on flux which could be viewed as the uplift of orientifold-even flux from
IIB. It is not immediately clear how to extend this analysis to fluxes of negative
orientifold parity, whereas such fluxes are explicitly included in (3.84). A proposal
for the F-theoretic chirality formulae written directly in the language of non-
harmonic forms was given in [33] and will be reviewed in the following.
As a guiding principle, the proposed chirality formulae are required to reproduce
the known chiralities of section 3.1.2 in the type IIB limit. Furthermore, from
the discussion above we expect the formulae for the chirality IAB of matter at
the intersection of two brane stacks A and B to involve the integral of the wedge
product of G4 with a suitable 4-form. This additional 4-form should depend
on the geometry of the two brane divisors DA and DB, and effectively provides
a description of the Poincaré duals of the matter surfaces in terms of the non-
harmonic forms introduced in section 3.2.2. Note that the intersection between DA

and DB generally gives rise to two different types of matter surfaces corresponding
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to matter fields which have either the same or the opposite charge25 with respect
to the U(1) gauge symmetries of the two brane stacks [33]. These two types of
matter states correspond in the type IIB language to matter at the intersection
between the two branes or the intersection between a brane and an image brane.
Correspondingly, we expect two types of chiral indices to arise measuring the net
chiralities of the matter fields at the two types matter curves. These indices will
be labeled IAB and IAB′ , in accord with the intuitive type IIB interpretation.
Finally, we expect that as in the IIB picture the net chirality should depend on
the orientation of the intersection in the sense that IAB = −IBA.
The chirality formulae proposed in reference [33] on the basis of the requirements
mentioned above can be conveniently written in terms of the forms w̃aA of equa-
tion (3.70) and the combinations

[D̃A] = [DA]−
rk(GA)∑
I=0

aIA wIA, [D̃A′ ] = [DA]−
rk(GA)∑
I=0

aIA′ wIA. (3.92)

The coefficients aiA = aiA′ , i = 1, . . . , rk(G) are the Dynkin labels of the Cartan
elements of the gauge group GA, while a0A = 1

NA
= −a0A′ . Up to the term

involving a0A, (3.92) describes the proper transform of the brane divisors Db
A

under resolution of the singularities above Db
A. As before, we focus on the case of

unitary gauge groups and therefore take aiA = 1.
In terms of the quantities introduced above, the proposed expressions for the
chiral indices in terms of the non-harmonic forms used to describe massive U(1)s
are [33]

IAB = 1
4

∫
Ŷ4

(
([D̃A] ∧ [D̃B′ ]− [D̃A′ ] ∧ [D̃B])

+Kαab(Cα
AC

a
Bw̃bA − Cα

BC
a
Aw̃bB)

)
∧G4,

(3.93)

IAB′ = 1
4

∫
Ŷ4

(
([D̃A] ∧ [D̃B]− [D̃A′ ] ∧ [D̃B′ ])

−Kαab(Cα
AC

a
Bw̃bA + Cα

BC
a
Aw̃bB)

)
∧G4.

(3.94)

The chiral indices in the presence of G4 flux of the form (3.84) can be explicitly
evaluated using the various integral relations presented in section 3.2.2. In this
way, one obtains

IAB = − 1
4

(
KαβγCβ

AC
γ
B +KαabCa

AC
b
B

)(
F̃A,α0 − F̃B,α0

)
− 1

4

(
KαabCα

AC
a
B +KαabCa

AC
α
B

)(
F̃A,b0 − F̃B,b0

)
,

(3.95)

25The overall sign is a matter of convention. In the type IIB language changing the overall
sign corresponds to reversing the roles of all branes and image branes in the model.
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IAB′ = − 1
4

(
KαβγCβ

AC
γ
B −KαabCa

AC
b
B

)(
F̃A,α0 + F̃B,α0

)
− 1

4

(
KαabCα

BC
a
A −KαabCa

BC
α
A

)(
F̃A,b0 − F̃B,b0

)
,

(3.96)

in agreement with the IIB results of section 3.1.2. This confirms that the proposed
expressions (3.93) and (3.94) fulfill all the requirements to describe the desired
chiral indices in the presence of G4 flux along the diagonal U(1). It would be inter-
esting to extend the analysis of [160] to the general case, and investigate whether
the given expressions can always be rewritten in the standard M-theory form for
chirality formulae involving the integral of a harmonic G4 flux over suitable matter
surfaces. However, such an analysis is beyond the scope of this thesis.
The discussion above shows that the proposed non-harmonic structure on Ŷ4 yields
a framework for implementing G4 fluxes corresponding to the diagonal U(1) which
formally allows us to exactly reproduce the known type IIB results. Of course,
in matching the F-theory and IIB results, we have always implicitly assumed
that the flux quanta F̃A,α0 , F̃A,a0 appearing in the definition of G4 correspond
to the IIB flux quanta of equation (3.15). In particular, the flux quanta must
be restricted to integer or half-integer values in accord with the type IIB Freed-
Witten quantisation condition (3.14). While this quantisation is obvious from the
point of view of the duality with IIB, it must be possible to derive it directly
in the F-theoretic setting without making recourse to the type IIB limit. It is
natural to expect that the relevant conditions arise from a suitable generalisation
of the standard M-theoretic quantisation condition for harmonic G4 fluxes on a
Calabi-Yau fourfold [161,162],

G̃4 = G4 −
1
2c2(Ŷ4) ∈ H4(Ŷ4,Z) (3.97)

to the case involving non-harmonic forms.
To include possible non-harmonic fluxes, it is helpful to rephrase (3.97) not in
terms of cohomology groups but in terms of integrals of G̃4 over suitable 4-
cycles [33]. More precisely, given a basis Γn of H4(Ŷ4), the condition (3.97) is
equivalent to requiring that ∫

Γn
G̃4 ∈ Z (3.98)

for all n. It is natural to assume that the generalisation to the case including
non-closed G4 involves evaluating similar integrals over certain 4-cycles which are
trivial from the point of view of the homology of Ŷ4 [33]. Furthermore, the non-
Kähler deformation of Ŷ4 to Ẑ4 might lead to a modification of the geometric part
of (3.97) [33]. Although it would be interesting to investigate this further, the
recent analysis of [162, 163] shows that the construction of the surfaces Γn used
to test for integrality of G̃4 is a highly non-trivial task even in the harmonic case.
For this reason, we will not pursue this direction further in this thesis.
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3.2.4 The dimensional reduction of M-theory on non-Kähler
fourfolds

In this subsection we discuss the 3-dimensional effective theory obtained when
including the non-harmonic forms introduced in section 3.2.2 in the M-theory di-
mensional reduction. In particular, we take the massive fluctuations δJ = v0Aw0A
of the Kähler form into account, which formally describe a fluctuation of Ŷ4 into
a non-Kähler space. We will not attempt to include all details of the harmonic
dimensional reduction, which is performed e.g. in [150, 151, 164]. Instead, we
follow [33] and focus on the new aspects which arise upon inclusion of the non-
harmonic forms related to the geometrically massive U(1) symmetries. In sec-
tion 3.2.5 we will discuss the F-theory limit and uplift the 3-dimensional action
obtained from the M-theory compactification to 4 dimensions. As we will see,
this 4-dimensional action will include shift symmetries gauged by the massive
U(1)s, gauge boson masses and D-terms in agreement with the IIB results of sec-
tion 3.1. This serves as another check on the non-harmonic framework proposed
in section 3.2.2, which is independent from the match between the flux-induced
tadpoles and chiralities found in section 3.2.3.
The 3-dimensional effective action of M-theory may be computed by inserting the
Kaluza-Klein expansions of the various fields into the 11-dimensional supergravity
action (3.50) and integrating out the internal fourfold26. In this way one obtains
a theory given in terms of the real scalar and vector fields appearing in the ex-
pansions (3.60) and (3.78) of C3 and J . In accord with N = 2 supergravity in 3
dimensions, we expect that it must be possible to combine the vectors AΛ with
the associated scalar fields vΛ into 3-dimensional vector multiplets. Similarly, the
other real scalars should combine into complex chiral multiplets. To isolate the
characteristic features of the effective action, it is useful to put it into a standard
form of an N = 2 supersymmetric theory in 3-dimensions. This is in full analogy
to the approach taken in (3.17) for the 4-dimensional effective action of the IIB
compactification.
In 3 dimensions a slight additional ambiguity appears because the form of the
characteristic supersymmetric N = 2 action is not unique due to the duality
between vector and scalar multiplets. In particular, it is possible to work with an
action where all dynamical degrees of freedom belong to chiral scalar multiplets.
In the case where some of the isometries of the target space are gauged, this action
nevertheless includes a set of non-dynamical vector fields and is given by [164]

S
(3)
N=2 = 1

κ2
3

∫ 1
2R3 ∗ 1−KAB̄∇NA ∧ ∗∇N̄ B̄ − 1

2ΘABA
A ∧ FB + V ∗ 1. (3.99)

26In appendix B, we consider the dimensional reduction of a democratic version of the 11-
dimensional supergravity theory. In the absence of branes, the standard dimensional reduction
considered here leads to results that are fully equivalent to the results of the reduction of the
democratic action, while being slightly simpler from a computational perspective. However, it
will be advantageous to use the democratic formulation when including M5-branes in chapter 4.
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In our conventions, where all fields and spacetime coordinates are dimensionless,
the 3-dimensional gravitational coupling constant κ3 is once again simply given by
κ2

3 = 1/4π. The NA denote the scalar fields of the theory, while the AA are vectors
with field strength FA = dAA. The constant symmetric matrix ΘAB is known as
the embedding tensor. Together with the Killing vectors X̃AB, it controls the
form of the gauging through the covariant derivatives [164]

∇NA = dNA + ΘBCX̃
AB AC . (3.100)

KAB̄ denote the components of the 3-dimensional Kähler metric, while V is a
scalar potential. Note that the action (3.99) includes no kinetic term for the
auxiliary vector fields AA, which are instead governed by the equation of motion

∗ FA = 2Re
(
KBC̄X̃

C̄A∇NB
)
. (3.101)

From the expansion (3.60) of C3, it is clear that the 3-dimensional action obtained
directly from the M-theory reduction is in a slightly different form as it includes
the dynamical vectors AΛ, Λ = 0, α, IA. It would be possible to extract the 3-
dimensional characteristicN = 2 data by dualising the vectors AΛ into scalars and
comparing the result with the form (3.99). The other option is to work out what
the general N = 2 action (3.99) looks like when some of the gauged scalars are
dualised into dynamical vector multiplets, and compare the result to the action
obtained from the M-theory reduction. We will follow reference [33] and use the
second approach.
After dualising some of the scalar multiplets from (3.99) into vectors, the field
content of the theory includes a set (ξΛ, AΛ) of dynamical 3-dimensional vector
multiplets. The remaining chiral multiplets will be denoted by M I following [33].
As worked out in detail in [33], the general 3-dimensional N = 2 action after
dualisation takes the form

S
(3)
N=2 = 1

κ2
3

∫ [ 1
2R3 ∗ 1− K̃IJ̄ ∇M I ∧ ∗∇M̄J + 1

4K̃ΛΣ dξ
Λ ∧ ∗dξΣ

+ 1
4K̃ΛΣ F

Λ ∧ ∗FΣ + FΛ ∧ Im(K̃ΛI ∇M I)

+ 1
2ΘΛΣA

Λ ∧ FΣ − (VT + VF) ∗ 1
]
.

(3.102)

In the following we will specify the various pieces of notation used in (3.102), and
discuss how the fields and couplings are related to the quantities appearing in
the original action (3.99). We stick closely to the discussion of [33]. While the
covariant derivatives

∇M I = dM I + ΘJ̄ΛX̃
IJ̄AΛ ≡ dM I +XI

ΛA
Λ (3.103)

remain unchanged from (3.100), the kinetic potential K̃(M, M̄, ξ) is related to the
Kähler potential K appearing in (3.99) by a Legendre transformation [33]

K(t, t̄,M, M̄) = K̃ − 1
2(tΣ + t̄Σ). (3.104)
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Here tΣ is the complex scalar dual to the vector multiplet (ξΣ, AΣ). The kinetic
potential K̃ is restricted by Re tΣ = K̃Σ. As before, subscripts I, Ī and Λ applied
to the kinetic potential K̃ signify a partial derivative with respect to the fields
M I , M̄ I and ξΛ, respectively. Similarly, we write TI , TĪ and TΛ for the derivatives
of the function T which appears in

VT = K̃IJ̄TITJ̄ − K̃ΛΣTΛTΣ − T 2. (3.105)

K̃IJ̄ and K̃ΛΣ are the inverses of K̃IJ̄ and K̃ΛΣ, respectively.
As we will see in section 3.2.5, VT can be viewed as the 3-dimensional analogue
of the 4-dimensional D-term potential (3.20). Just as in the 4-dimensional case,
the first step to computing the potential is to evaluate the Killing potentials DΣ,
which are defined by

i∂MIDΣ = K̃IJ̄X
J̄
Σ. (3.106)

Together with the embedding tensor Θ, the Killing potentials specify the function
T of equation (3.105) according to

T (M, M̄, ξ) = −1
2ξ

ΣΘΛΣξ
Λ + ξΣDΣ. (3.107)

In the case of interest to us, the Killing vectors of the gauged isometries will be
field-independent constants. In this case, (3.106) can be solved explicitly, and
after inserting the results into (3.107) and using (3.105) one obtains [33]

VT = − (K̃IJ̄ − K̃ΓIK̃
Γ∆K̃∆J̄)XI

ΣX
J̄
Λξ

ΣξΛ − K̃ΛΣDΛDΣ

−ΘΣΓK̃
Γ∆Θ∆Λξ

ΣξΛ + 2K̃ΛΣDΛΘΣΓξ
Γ + 2iK̃ΛΣK̃ΛIX

I
∆ΘΣΓξ

∆ξΓ

− 2iK̃ΛΣK̃ΛIX
I
∆DΣξ

∆ − T 2.

(3.108)

Although we will not be needing it in the following, let us for completeness also
give the definition of the remaining potential VF , which is the analogue of the
4-dimensional F-term potential (3.18). In terms of the superpotential W and the
Kähler covariant derivatives DIW = ∂MIW + (∂MIK̃)W , VF is given by [33]

VF = eK(K̃IJ̄DIWDJW − (4 + ξΣξΛK̃ΣΛ)|W |2). (3.109)

This completes the specification of the general 3-dimensionalN = 2 action (3.102)
involving both vector and gauged scalar multiplets. In the following, we discuss
how the effective action obtained by compactifying M-theory on the non-Kähler
space Ŷ4 can be cast in the standard form (3.102). We will not discuss the full
details of the calculations, which are presented in [88] for the case of a harmonic
Kaluza-Klein reduction. Instead, we follow the approach of [33] and focus on
presenting the most important results and the modifications that arise due to the
inclusion of non-harmonic forms in the compactification.
The first step is to identify the chiral and vector multiplets in terms of the fields
introduced in the Kaluza-Klein reduction of sections 3.2.1 and 3.2.2. One set of
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chiral multiplets is obtained from the complex structure moduli zM which appear
in the reduction of the 11-dimensional metric. A second set, which will be denoted
by Na as in [33], can be built from linear combinations of the fields ca and ba

appearing in the reduction (3.60) of C3. Without loss of generality, the Na can
be written as

Na = ca − ifab bb (3.110)
with a suitable matrix fab. The combinations Na can be viewed as arising from
an expansion of C3 into a new set of complex forms Ψa and their conjugates
Ψ̄a. These complex forms can in turn be related to the original basis αa, βa by
requiring that NaΨa + N̄aΨ̄a reproduces the ca and ba-dependence of the original
reduction (3.60). In this way one obtains [33]

Ψa = i

2Refba(βb − if̄ cbαc) , Ψa + Ψ̄a = αa, (3.111)

where Refab is the inverse of Refab. As discussed in [33, 88], the functions fab
must be chosen in such a way that the Ψa are in fact (2,1)-forms, so that the fab
depend on the complex structure moduli zM . The vectors AΛ appearing in the
3-dimensional vector multiplets (ξΛ, AΛ) are identical with the vectors appearing
in the Kaluza-Klein reduction of C3. On the other hand, their scalar partners ξΛ

are related to the Kähler moduli vΛ of (3.78) by [33]

ξ0 = v0

V
, ξα = vα

V
, ξIA = vIA

V
, (3.112)

with V being the (dimensionless) volume of Ŷ4

V = 1
4!

∫
Ŷ4
J4. (3.113)

An immediate consequence of the non-closedness of the forms w0A described by
equation (3.61) is that the shift symmetry of the real scalars ca is gauged. This
fact can be directly read off from the expression for the 4-form field strength

G4 ⊃ dC3 = FΛ ∧ ωΛ +
(
dca −NAC

a
AA

0A
)
∧ αa + dba ∧ βa + ba dβ

a. (3.114)

As the ca appear directly in the definition (3.110) of the chiral fields Na, it is clear
that the kinetic terms of these chiral fields will involve the covariant derivatives

∇Na = dNa −NAC
a
AA

0A. (3.115)

In other words, the 3-dimensional Killing vectors (3.103) which describe the gaug-
ing of the target space isometries are given by

Xa
0A = −NAC

a
A, XI

Λ = 0, for I 6= a or Λ 6= 0A. (3.116)

Let us emphasise that even in the presence of fluxes the geometric gauging (3.116)
is the only gauging that is directly visible in the M-theory reduction. At first
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sight, this may seem puzzling in light of the flux-induced gauging of the IIB Kähler
moduli Tα discussed in section 3.1.2. As shown in [33], this gauging appears in the
M-theory formulation upon dualisation of some of the vector multiplets (ξΛ, AΛ)
into scalars tΛ. More precisely, the gauging involves the embedding tensor ΘΣΛ
and takes the form [33]

∇tΣ = dtΣ − 2iΘΣΛA
Λ. (3.117)

As we will see in the following, a non-zero embedding tensor indeed appears in the
presence of non-trivial G4 fluxes. In other words, (3.117) describes the M-theoretic
realisation of flux-induced gauging. By working out the precise relationship be-
tween the tΣ and the IIB chiral fields Tα, we will confirm in section 3.2.5 that
the IIB flux-induced gauging of (3.38) is indeed reproduced in the presence of G4
fluxes of the form (3.84).
Before continuing with the discussion of flux-induced effects, let us briefly con-
sider the kinetic potential K̃. The derivatives of K̃ can be obtained by compar-
ing the dimensional reduction of the 11-dimensional action (3.50) to the general
form (3.102). The function K̃ which leads to the required derivatives was derived
in the context of the purely harmonic Kaluza-Klein reduction and in the large
volume limit in [88]. This kinetic potential admits a natural extension to the case
including the possibly non-harmonic forms w0A, αa and βa. Namely, it is possible
to formally replace the relevant intersection numbers of harmonic forms with the
corresponding intersection numbers introduced in section 3.2.2. This leads to [33]

K̃(M, M̄, ξ) = −3 logV+ i

4ξ
Λ(Na−N̄a)(N b−N̄ b)

∫
Ŷ4
ωΛ∧Ψa∧Ψ̄b̄+KCS. (3.118)

The part KCS, which yields the kinetic terms of the complex structure moduli
zM , is given in terms of the holomorphic (4,0)-form Ω4 on Ŷ4 by [88]

KCS = − log
[∫

Ω4 ∧ Ω̄4

]
. (3.119)

The form of KCS can in principle be confirmed by an explicit dimensional reduc-
tion of the 11-dimensional curvature scalar, but this will not be required in the
following. The second term in (3.118) can be verified by checking that it cor-
rectly reproduces the term FΛ ∧ Im(K̃ΛI ∇M I) in (3.102), which originates from
the reduction of the 11-dimensional Chern-Simons coupling

∫
C3 ∧ G4 ∧ G4. As

a second consistency check, note that (3.118) involves only the imaginary parts
of the Na, in accordance with the fact that the real parts enjoy the gauged shift
symmetry described by (3.115). It is somewhat less straightforward to confirm
that (3.118) correctly reproduces the kinetic terms of the Na, ξΛ and AΛ obtained
from the dimensional reduction. In the Calabi-Yau reduction of [88], the match is
obtained with the help of certain relations involving the Hodge star of the forms
used in the Kaluza-Klein reduction, such as ∗Ψa ∼ Ψa ∧ J . To confirm (3.118) in
a rigorous manner, it has to be shown that these relations continue to hold when
including the various non-harmonic forms introduced in section 3.2.2. Similar



108 Chapter 3: U(1) symmetries in type IIB and F-theory

problems were considered in the context of compactifications on non-Calabi-Yau
threefolds e.g. in [165–168]. For the purpose of this thesis, we will not attempt to
carry out the calculations explicitly. Instead, we will follow [33] in assuming that
the relevant threefold techniques can in principle be generalised to the fourfold
case and used to confirm (3.118).
The final ingredients needed to complete the specification of the 3-dimensional
action are the embedding tensor ΘΛΣ and the superpotential W . The superpo-
tential only appears in the F-term potential VF , which we will not require in the
following. We therefore focus our attentions on the embedding tensor, which can
be derived from the dimensional reduction of the 11-dimensional Chern-Simons
term

S
(11)
CS = − 1

12κ2
11

∫
C3 ∧G4 ∧G4 = 1

2κ2
3

∫
M1,2

ΘΛΣA
Λ ∧ FΣ + . . . . (3.120)

It will be helpful to distinguish explicitly between topologically trivial and non-
trivial parts of the 4-form field strength. We will therefore denote non-trivial
fluxes by Gf

4 in the following, so that G4 = dC3 + Gf
4 . In the context of the

harmonic dimensional reduction of [88], it is obvious that ΘΛΣ depends only on
Gf

4 and not on dC3. However, in the presence of the non-closed forms βa and w0A,
the reduction of the Chern-Simons term includes a term of the schematic form∫

M1,2
baA

Λ ∧ FΣ
∫
Ŷ4
ωΛ ∧ ωΣ ∧ dβa. (3.121)

At first sight, this seems to introduce a dependence on the moduli ba into the
embedding tensor. However, (3.121) should actually be viewed as a contribution
to the term of the form FΛ ∧ Im(K̃ΛI ∇M I) in the 3-dimensional action (3.102),
and not to ΘΛΣ. Therefore, even in the case including non-harmonic forms in C3
we obtain27

ΘΛΣ = −1
2

∫
Ŷ4
ωΛ ∧ ωΣ ∧Gf

4 . (3.122)

This shows that the embedding tensor is constant in the sense that it does not
depend on any of the scalar fields of the theory. As discussed in detail in [33],
this property is crucial in order to allow for the vectors multiplets (ξΛ, AΛ) to be
dualised into complex scalars tΛ consistently.
In a generic M-theory compactification, the form of the embedding tensor would
not be further restricted. However, the completely general 3-dimensional ac-
tion (3.102) does not necessarily admit an uplift to 4 dimensions. Such an uplift
is of course necessary in order to interpret is as furnishing a description of an
F-theory vacuum. The most general 3-dimensional action which can be obtained

27In determining the precise numerical prefactor, it is necessary to take into account that the
Chern-Simons coupling

∫
C3∧G4∧G4 is strictly speaking a shorthand notation for an interaction

of the form
∫
G3

4 over a suitable auxiliary 12-dimensional space. This effectively leads to a factor
of 3 appearing in the dimensional reduction, as discussed in detail in [161].
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by a dimensional reduction from a 4-dimensional N = 1 action was discussed in
reference [169], where it was shown that actions of this type must obey [33]

Θαβ = 0 = Θrs, with r, s = 0, (IA). (3.123)

These conditions can therefore be viewed as a further non-trivial restriction on
the fluxes Gf

4 which may be switched on in an F-theory compactification28, in
addition to the tadpole cancellation conditions of section 3.2.3. To evaluate the
conditions in practice, as carried out e.g. in the context of an SU(5) × U(1) F-
theory model in [160], a detailed understanding of the intersection properties of
the basis of forms used in the dimensional reduction is required. In the following,
we will focus on fluxes of the form (3.84) and assume as in [33] that the basis ωΛ
used in the dimensional reduction is such that (3.123) yields no further non-trivial
restrictions on the flux quanta F̃A,α0 and F̃A,a0 .
From the discussion above, the possible non-trivial elements of the embedding
tensor which can appear in the presence of fluxes along the diagonal U(1) or the
Cartan U(1)s are the components Θ(IA)α. These components can be evaluated
explicitly using the expansions (3.82) and (3.84) of the fluxes and the integral
relations of section 3.2.2. Using the given intersections of the non-harmonic forms
w0A and w̃a,A, it is in particular easy to see that the components Θ(iA)α depend
only on Cartan fluxes (3.82), while in turn Θ(0A)α depends only on the fluxes along
the diagonal U(1)A. This shows that Θ(iA)α, and therefore also the gauging (3.117)
induced by Cartan fluxes, is not altered by the introduction of the non-harmonic
forms. As Cartan fluxes were already discussed in the harmonic dimensional
reduction of [88], we focus in the following on the new components

Θ(0A)α = −1
4KαβγNAC

γ
AF̃

A,β
0 − 1

4KαabNAC
b
AF̃

A,a
0 . (3.124)

Through the embedding tensor, the fluxes contribute to the function T of (3.107)
and hence to the 3-dimensional D-term potential VT . Due to the simple form of
the constant Killing vectors in (3.116), the only non-vanishing Killing potentials
are D0A and (3.106) may be solved easily by

D0A = iNAC
a
A

(
∂N̄aK̃

)
. (3.125)

It is straightforward to evaluate the derivatives of the kinetic potential directly
using the explicit expression (3.118). Combining the various components, one
obtains the following expression for the function T [33]

T = − ξIAΘ(IA)αξ
α + iξ0ANAC

a
AK̃N̄a

= 1
4V2

∫
Ŷ4
J ∧ J ∧G4.

(3.126)

28Note that strictly speaking it is not necessary for (3.123) to hold in the full M-theory
reduction, as the components Θαβ and Θ(IA)(JB) are only required to vanish in the F-theory
limit of vanishing fiber volume [33].
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Note that this expression involves the full field strength G4, and thus includes
contributions from both dC3 and from non-trivial fluxes Gf

4 . As we will see in
the following section, even in the absence of fluxes the purely geometric part in
T involving dC3 yields a mass term for the scalars ξ0A in the D-term potential
VT [33]. This is of course to be expected, as the ξ0A combine with the vectors A0A

into 3-dimensional multiplets and the A0A obtain a geometric mass term due to
the gauging (3.115).

3.2.5 The F-theory limit

The M-theory reduction on Ŷ4 carried out in the previous section is the first step
towards obtaining the 4-dimensional effective action of F-theory compactified on
Ŷ4. The second step is to uplift the 3-dimensional action (3.102) to 4 dimen-
sions. Following the general logic outlined in section 2.3.3, the M-theory effective
action at finite fiber volume is expected to be T-dual to a compactification of a 4-
dimensional N = 1 supersymmetric action on a suitable circle. The 4-dimensional
action underlying this circle compactification is what is referred to as the effec-
tive action of F-theory on Ŷ4. It can be interpreted as describing a type IIB
compactification on the base B3 of the elliptically fibered fourfold Ŷ4, in which a
non-trivially varying dilaton profile and associated non-perturbative effects have
been taken into account. The limit of vanishing fiber volume on the M-theory
side corresponds to the limit in which the radius of the circle which defines the
4d→3d reduction goes to infinity, such that full 4-dimensional Poincaré invariance
is restored.
This discussion motivates the following strategy towards obtaining the F-theory
uplift, which was developed in [33, 88]. Starting with a general 4-dimensional
N = 1 action of the form (3.17), we dimensionally reduce this on a circle. This
leads to a 3-dimensional action which is specified in terms of the 4-dimensional
characteristic N = 1 data such as the 4-dimensional Kähler potential, gauge
kinetic function etc.. The 3-dimensional action obtained via this circle reduction
can then be compared to the action that was derived in the dimensional reduction
of M-theory on Ŷ4. This comparison determines the 4-dimensional characteristic
N = 1 data in terms of the geometry of Ŷ4. Finally, we perform the 4-dimensional
decompactification limit by taking the volume of the fiber of Ŷ4 to zero.
The generic F-theory effective action at the geometrically massless level was com-
puted using these techniques in [88]. Rather than reviewing the full discussion, we
will follow [33] and focus on the effects related to the non-harmonic forms in the
M-theory reduction. As extensively motivated above, these non-harmonic forms
describe effects which in the IIB picture are associated with diagonal U(1)s on
D7-brane stacks and the corresponding gaugings and D-terms. The relevant part
of the 4-dimensional N = 1 action is therefore

S(4)
gauge = 1

κ2
4

∫
M1,3
−KMN̄∇MM ∧∗4∇M̄ N̄ + 1

4Ref (IA)(JB)D(IA)D(JB) ∗4 1. (3.127)
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Here we have used the general 4-dimensional N = 1 notation introduced in sec-
tion 3.1.1. At this stage, the indices (IA), (JB) are actually general indices
running over all the gauge symmetries present in the theory, corresponding to the
indices A, B in (3.17). Of course, the 4-dimensional gauge bosons appearing in
the gaugings and D-terms are expected correspond to the 3-dimensional gauge
bosons describing the Cartan and diagonal U(1)s, which is why we use the same
indices (IA) that were introduced in the M-theory Kaluza-Klein reduction of sec-
tion 3.2.2. We will focus on the case where the shift symmetries of the chiral fields
MM are gauged in a non-linear manner, such that the associated Killing vectors
can be directly read off from the covariant derivatives

∇MN = dMN +XN
IAA

IA
(4). (3.128)

Furthermore, we take the Killing vectors to be field-independent constants, which
is the case of interest relating to the IIB and M-theory reductions discussed above.
In the following we will denote 4-dimensional spacetime indices by µ, ν = 0, 1, 2, 3,
while corresponding 3-dimensional indices are denoted by r, s = 0, 1, 2 as in [33].
The compactification circle is taken to lie in the x3 direction. In the course of
the Kaluza-Klein reduction of (3.127), all fields are taken to be independent of
x3. Clearly, the 4-dimensional scalars then descend to 3-dimensional scalar fields,
which we continue to denote by MM . Each of the 4-dimensional vectors AIA(4)
gives rise to a 3-dimensional vector ÃIA and an additional scalar ξ̃IA, such that
AIA(4) = (ÃIA, ξ̃IA). Finally, an additional 3-dimensional scalar ξ0 and vector A0

arise from the degrees of freedom associated with the components g(4)
r3 and g

(4)
33

of the 4-dimensional metric g(4)
µν . The precise relation between g(4)

µν and the 3-
dimensional metric g(3)

rs can be worked out by requiring that the reduction of the
4-dimensional curvature tensor yields a 3-dimensional Einstein-Hilbert term and
standard kinetic terms for A0 and ξ0. In this way, one obtains [33,88,170]

g(4)
µν =

(
g(3)
rs + (ξ0)−1A0

rA
0
s (ξ0)−1A0

r

(ξ0)−1A0
r (ξ0)−1

)
,

gµν(4) =
(

grs(3) −grs(3)A
0
s

−grs(3)A
0
s ξ0 + grs(3)A

0
rA

0
s

)
.

(3.129)

The field ξ0 is therefore related to the circumference r of the compactification
circle along x3 by [33]

ξ0 = 1
r2 . (3.130)

The dimensional reduction of (3.127) to 3 dimensions can now be carried out by
inserting the expansions of the metric and the vectors AIA(4) and integrating out
the circle direction. To put the kinetic terms into the standard form, it is helpful
to write the resulting action in terms of fields AIA, ξIA which are related to the
fields ÃIA, ξ̃IA introduced above by [88,170]

AIA(4) = (ÃIA, ξ̃IA) = (AIA + (ξ0)−1ξIAA0, (ξ0)−1ξIA). (3.131)
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After a suitable Weyl rescaling g3 → ξ0g3 of the 3-dimensional metric, which is
required to obtain a canonical Einstein-Hilbert term, (3.127) reduces to29 [33]

S(3)
gauge = 1

κ2
3

∫
KMN̄∇MM ∧ ∗3∇M̄ N̄ + Vgauge ∗3 1, (3.132)

Vgauge = KMN̄X
M
IAX

N̄
JBξ

IAξJB + 1
4ξ

0 Ref (IA)(JB)DIADJB. (3.133)

Note that the three-dimensional covariant derivatives

∇MM = dMM +XM
IAA

IA (3.134)

involve only AIA, while the term involving A0 in (3.131) cancels against contribu-
tions coming from the reduction of the metric (3.129).
The full 3-dimensional action obtained by reduction from 4 to 3 dimensions can
be put into the standard form of (3.102) by using the kinetic potential [33]

K̃4→3(M, M̄, ξ) = log ξ0 +K(M, M̄) + 2
ξ0 Ref(IA)(JB)ξ

IAξJB. (3.135)

This expression can be confirmed explicitly by checking that it correctly accounts
for the kinetic terms and the D-term potential obtained after reduction from 4 to
3 dimensions. Firstly, it is obvious that the kinetic terms of the MM in (3.132)
are correctly reproduced due to the term in (3.135) involving the 4-dimensional
Kähler potential K(M, M̄). Although we have not displayed the kinetic terms of
the vector multiplets (ξ0, A0

3), (ξIA, AIA3 ) obtained after reduction, it can similarly
be checked directly that they are also described by (3.135) [33,150].
To understand the form (3.133) of the effective D-term potential, it is crucial to
note that no 3-dimensional Chern-Simons terms appear in the reduction from 4
to 3 dimensions. In other words, the embedding tensor vanishes and

Θ(4→3)
(IA)(JB) = Θ(4→3)

(IA)0 = Θ(4→3)
00 = 0. (3.136)

The 3-dimensional D-term potential of a theory obtained by reduction from 4
dimensions therefore simplifies from the general form (3.108) to

V
(4→3)
T = K̃MN̄

4→3TMTN̄ − K̃
(IA)(JB)
4→3 TIATJB − T 2. (3.137)

The function T here is given simply by T = D
(4→3)
IA ξIA. The 3-dimensional D-

terms D(4→3)
IA are determined by the kinetic potential (3.135) and the constant

Killing vectors using equation (3.106). Due to the fact that K̃4→3 involves the
chiral multiplets MM only through the 4-dimensional Kähler potential K, they
are identical to the 4-dimensional D-terms

D
(4→3)
IA = −i(∂M̄N̄ K̃4→3) X̄N̄

IA = −i(∂M̄N̄K) X̄N̄
IA = DIA. (3.138)

29The seemingly different sign of the kinetic term is due to the Hodge star identity (A.18).
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The inverse of the kinetic metric obtained from the kinetic potential (3.135) can
be directly evaluated, with the result [33]

K̃00
4→3 = − (ξ0)2, K̃

(IA)0
4→3 = −ξ0ξIA,

K̃
(IA)(JB)
4→3 = 1

4ξ
0 Ref (IA)(JB) − ξIAξJB.

(3.139)

Plugging these expressions into the general formula (3.137) leads precisely to the
potential Vgauge obtained by direct dimensional reduction in (3.133). In particular,
the form of the kinetic potential guarantees that the potential V (4→3)

T is positive
definite, which is not obvious from (3.137) but is necessary for consistency in 4
dimensions. This completes the necessary checks to confirm that the kinetic po-
tential of the 3-dimensional theory obtained by a reduction from 4 to 3 dimensions
is indeed given in terms of the 4-dimensional Kähler potential K and gauge kinetic
function f(IA)(JB) by equation (3.135).
As our goal is to uplift the 3-dimensional action obtained from the M-theory re-
duction to 4 dimensions, we would like to essentially run the above reasoning in
reverse. More precisely, we would like to derive the 4-dimensional Killing vec-
tors, D-terms and Kähler potential from the 3-dimensional quantities using the
relations (3.134) and (3.135). However, as pointed out in [33], it is not possible
to directly compare (3.135) to the kinetic potential (3.118) obtained from the
M-theory reduction in the previous section. One way to see this is to note that
the general action obtained by reduction from 4 to 3 dimensions has no embed-
ding tensor, while the M-theory reduction of section 3.2.4 led to Θα(IA) 6= 0. To
compare the different actions, it is therefore necessary to first dualise the vector
multiplets (ξα, Aα) in the M-theory reduction into complex scalars tα. In the
course of this dualisation, the embedding tensor elements Θα(IA) essentially be-
come elements of a Killing vector describing the gauging of a shift symmetry of
tα by the vectors AIA, as described by (3.117).
The set of scalars that can be identified as arising from 4-dimensional scalars is
thus MN = (tα, Na, zM). On the other hand, the vector multiplets AIA, A0 of
section 3.2.4 can be identified with the vectors AIA, A0, which arise from the 4-
dimensional vectors and the 4-dimensional metric according to (3.131) and (3.129),
respectively. In the course of the Legendre transformation which realises the
dualisation of the would-be vectors (ξα, Aα) into the tα, the Kinetic potential K̃
of section 3.2.4 is transformed according to [33]

K̃4→3(zM , Na, tα, ξ
IA, ξ0) = K̃(zM , Na, ξΛ)− 1

2(tα + t̄α)ξα, (3.140)

Re tα = ∂ξαK̃(zM , Na, ξΛ). (3.141)

In principle, these relations suffice to uplift the action obtained from the M-theory
reduction to 4 dimensions, and determine the characteristic quantities of the F-
theory effective action in terms of the geometry of Ŷ4.



114 Chapter 3: U(1) symmetries in type IIB and F-theory

Unfortunately, the complicated form of the kinetic potential K̃ given in equa-
tion (3.118) is such that the relation (3.141) cannot be explicitly inverted in gen-
eral [33]. This means that K̃4→3, and with it the 4-dimensional Kähler potential,
will only be determined implicitly by the relation (3.140). Note that this mirrors
the situation in the type IIB compactification discussed in section 3.1.1, where the
Kähler potential also involves the volume of the Calabi-Yau, which cannot explic-
itly be written in terms of the IIB chiral fields Tα. In the following, we will discuss
the most important features of the F-theory Kähler potential and gauge kinetic
function and demonstrate the match with the corresponding IIB expressions as
in [33].
To simplify the evaluation of the Legendre transform (3.141), it is helpful to
expand K̃ in terms of the fields ξΛ and focus on the leading terms which are
dominant in the F-theory limit v0 → 0. The precise scaling behaviour of the
various fields in the F-theory limit was worked out in [88] for the massless fields and
extended in [33] to include the fields of the non-harmonic Kaluza-Klein reduction.
In terms of a parameter ε, which describes the F-theory limit by ε→ 0, the scaling
is given by

v0 ∼ ε, vα ∼ 1√
ε
, vIA ∼ ε3/2, V ∼ 1√

ε
+O(ε), (3.142)

or equivalently

ξ0 ∼ ε3/2, ξα finite, ξIA ∼ ε2. (3.143)

These scaling properties may be used to expand the quantum volume V , which
appears in the large volume expression (3.118) for the kinetic potential, into a
power series in ε. Due to the fact that the intersection of 4 vertical divisors
vanishes, this expansion starts with

V =
∫
Ŷ4

J4

4! = 1
2

1
3!V

4Kαβγξαξβξγξ0 +O(ε), (3.144)

where we have used the intersection numbers (3.65). Note that due to the inter-
section properties of the forms wIA the expansion does not include a term linear
in the ξIA. In order to capture the leading terms involving ξIA, we will therefore
have to expand V up to order ε2, for which we need the intersection numbers (3.67)
as well as

K00αβ ≡
∫
Ŷ4
ω0 ∧ ω0 ∧ ωα ∧ ωβ. (3.145)

Inserting the expansion of V into the large volume kinetic potential (3.118) and
using the fact that

∫
Ŷ4

wIA ∧ Ψa ∧ Ψ̄b̄ =
∫
Ŷ4
ω0 ∧ Ψa ∧ Ψ̄b̄ = 0 due to (3.69) leads
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to [33]

K̃ = log ξ0 + log
[1
2

1
3!Kαβγξ

αξβξγ + 1
4K00αβξ

0ξαξβ

− 1
4ξ0C

A
IJC

λ
AKλαβξαξβξIAξJA +O(ε3)

]

+ i

4ξ
α(Na − N̄a)(N b − N̄ b)

∫
Ŷ4
ωα ∧Ψa ∧ Ψ̄b̄ +KCS.

(3.146)

By expanding the logarithm and evaluating the derivative with respect to ξα we
immediately obtain

Re tα = 1
4K̂
Kαβγξβξγ + i

4dα +O(ε3/2), (3.147)

where we have introduced the abbreviations

K̂ = 1
2

1
3!Kαβγξ

αξβξγ, (3.148)

dα = (Na − N̄a)(N b − N̄ b)
∫
Ŷ4
ωα ∧Ψa ∧ Ψ̄b̄. (3.149)

On the other hand, comparing (3.146) to the general form (3.135) suggests

Re f(IA)(JB) = − 1
8K̂

δABCAIJCα
AKαβγξβξγ. (3.150)

As the gauge coupling function must be a holomorphic function of the chiral fields,
this suggests [33,88] that a term of the form

− i

4ξ0C
A
IJC

α
Adαξ

IAξJB (3.151)

is missing in (3.146), which is needed to match the second term in (3.147). Note
that this missing term involves 5 of the fields ξΛ, Na, while it is clear that the
reduction of the M-theory action (3.50) can only lead to terms involving at most
3 fields through the Chern-Simons interaction

∫
C3 ∧G4 ∧G4. Therefore it seems

natural to guess that the missing term (3.151) may be accounted for by higher
order terms in the 11-dimensional action, which were not included in (3.50). How-
ever, we will not try to investigate the possible origin of the term (3.151) any
further and will simply assume that it arises in a dimensional reduction of the full
11-dimensional action. Including this term, one obtains the gauge kinetic function

f(IA)(JB) = −1
2δABC

A
IJC

α
Atα. (3.152)

The form of the gauge kinetic function obtained above is very reminiscent of
the type IIB result (3.27). To demonstrate the precise match, we will require
the correspondence between the fields on the M-theory and IIB sides which was



116 Chapter 3: U(1) symmetries in type IIB and F-theory

worked out in [33]. The fields Na can be directly identified with the IIB fields Ga

defined in (3.21), while the vector fields on the M-theory and IIB sides are related
by

A0A ↔ 1
2πA

A. (3.153)

Taking this scaling factor into account, it is clear that the gauging (3.115) of the
Na precisely reproduces the IIB gauging (3.37) in the uplift from 3 to 4 dimensions.
Furthermore, the Kähler moduli vα arising from the expansion of J into forms ωα
are expected to be related to the Kähler moduli vαIIB, which appear in the type
IIB reduction on X3, by

vαIIB =
√
v0 vα +O(ε). (3.154)

The factor of
√
v0, which was not included in [33], is necessary in order to obtain

finite Kähler moduli in the IIB limit in the face of the scaling properties of the
fields given in (3.142). As we will see in section 4.2.2, this factor can also be
deduced by comparing the actions of vertical M5-instantons and E3-instantons.
At leading order in ε we thus obtain

ξα ∼ 12vα
Kβγδv0vβvγvδ

+O(ε)→ 12vαIIB
KβγδvβIIBv

γ
IIBv

δ
IIB

= 2 v
α
IIB

VIIB
, (3.155)

where the volume of the Calabi-Yau manifold X3 used in the type IIB reduction
is

VIIB = 1
3!

∫
X3
J3 = 1

3!Kαβγv
α
IIBv

β
IIBv

γ
IIB. (3.156)

By plugging the relation (3.155) into the definition (3.147) of the tα we see that
in the F-theory limit there holds

tα = 3 Kαβγξβξγ

Kα′β′γ′ξα′ξβ′ξγ′
+ . . .→ 1

4Kαβγv
β
IIBv

γ
IIB + . . . = 1

2Tα, (3.157)

with Tα the chiral field of the IIB effective action defined in (3.22). The same
result was obtained in a slightly different way in [33]. Taking into account the
different normalisation of the gauge fields as given in (3.153), we thus obtain an
exact match between the gauge kinetic function f(0A)(0B) of the diagonal U(1)A
in the F-theory limit and the IIB result (3.27). In particular, this justifies the
intersection numbers (3.67) with CA00 = NA for the non-harmonic forms w0A.
Having derived the precise relation between the fields tα and Tα, we are now in a
position to verify that our treatment of G4 fluxes along the diagonal U(1) repro-
duces the flux-induced gauging of the Tα encoded in (3.38). As shown explicitly
in [33], if the embedding tensor Θα(IJ) is non-vanishing the Legendre transforma-
tion (3.140) results in a gauging of the shift symmetries of the tα. The covariant
derivatives take the form [33]

∇tα ≡ dtα +Xα(IA)A
IA = dtα − 2iΘα(IA)A

IA. (3.158)
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The element of the embedding tensor relevant for the gauging with respect to the
diagonal U(1) A0A was given in (3.124). After taking into account the factors
which were shown above to appear in the relations between tα, A0A and their IIB
counterparts Tα, AA, this exactly reproduces the gauging (3.38) obtained in the
type IIB setting. This match serves as another piece of evidence supporting the
proposed uplift (3.84) of the fluxes along the diagonal U(1) to F-theory.
In a similar manner, it is possible to see that the F-theory reduction correctly re-
produces the D-terms (3.42) associated with the diagonal U(1)A in the IIB setting.
To verify this, we require the fact that the Legendre transformation implies [33]
∂tαK = ∂tαK̃ = −1

2ξ
α and ∂NaK = ∂NaK̃. The discussion above furthermore

shows that the Killing vectors are unchanged in the uplift from 3 to 4 dimensions.
Plugging these results into the general expression D0A = −iKN̄aX̄a

0A− iKt̄αX̄α(0A)
for the 4-dimensional D-terms corresponding to A0A leads to [33]

D0A = iK̃N̄aNAC
a
A + 2Kt̄αΘα0A = iK̃N̄aNAC

a
A −Θα0Aξ

α. (3.159)

The derivative of K̃ with respect to the Na can be directly evaluated from (3.118).
In order to facilitate the comparison with the type IIB results, it is helpful to
use the definitions (3.110) and (3.111) of Na and Ψa together with the integral
relation (3.68) to evaluate

K̃N̄a = − i

4ξ
α(N b − N̄ b)

[∫
Ŷ4
ωα ∧Ψa ∧ Ψ̄b +

∫
Ŷ4
ωα ∧Ψb ∧ Ψ̄a

]
= i

4ξ
αKαacδcbbb.

(3.160)

Using the form of Θα(0A) given in (3.124) we thus obtain

D0A = 1
4ξ

αNA

(
KαβγF̃A,βCγ

A +Kαab(F̃A,a − δacbc)Cb
A

)
. (3.161)

After taking into account (3.155) and the relation between A0A and AA, this again
perfectly matches the type IIB result (3.42).
The only aspect of the type IIB reduction relating to the geometrically massive
U(1)s which remains to be discussed in the F-theory picture is the actual form of
the geometric mass (3.40). We have already established that the IIB expressions
for the Killing vectors and the gauge kinetic function, which enters the mass (3.40)
after rescaling the gauge bosons to put the kinetic terms into canonical form,
are reproduced correctly in the F-theory compactification on Ŷ4. It therefore
remains to consider the elementsKNaN̄b of the 4-dimensional Kähler metric. These
derivatives can be obtained by differentiating equation (3.140), which describes
the Legendre transformation of the kinetic potential K̃. In evaluating these partial
derivatives, the ξα are to be considered as functions of the Na and tα according
to (3.141). In this way one obtains [33]

KNaN̄b = K̃NaN̄b − K̃NaξαK̃
ξαξβK̃ξβN̄b (3.162)



118 Chapter 3: U(1) symmetries in type IIB and F-theory

Here K̃ξαξβ is the inverse of the subblock K̃ξαξβ of the kinetic metric K̃ given
in (3.118). Up to corrections of order O(ε3/2) one obtains

K̃ξαξβ = ∂ξα∂ξβ log
[
V−3

]
= 1

2K̂
Kαβγξγ −

1
16K̂2

KαγδξγξδKβγ′δ′ξγ
′
ξδ
′
. (3.163)

Using relation (3.155) to relate the ξα to the type IIB Kähler moduli vαIIB and
taking the limit of ε→ 0 this yields

K̃ξαξβ →
1
4VIIBKαβ −

1
16KαKβ. (3.164)

Here Kα and Kαβ are contractions of the intersection numbers Kαβγ with the IIB
Kähler moduli vαIIB, as in section 3.1.2. Therefore K̃ξαξβ coincides with the matrix
Gαβ defined in (3.26) up to an overall factor of −1/V2

IIB. The mixed derivatives
involving ξα and Na are easily obtained from (3.160) and the fact that K̃ is real

K̃Naξα = − i4Kαacδ
cdbd, K̃ξβN̄b = i

4Kαbcδ
cdbd. (3.165)

Furthermore, (3.160) yields

K̃NaN̄b = −1
8ξ

αKαacδcdRefdb, (3.166)

where f bd is the function appearing in the definition (3.111) of the forms Ψa.
Putting the various pieces together allows us to compare KNaN̄b to the corre-
sponding IIB expression KGaḠb of (3.25). As expected, we find an exact match
provided that in the F-theory limit we have

Refbd → δbde
Φ = 1

Re(−iτ)δbd, (3.167)

where τ is the axio-dilaton. This suggests that

fab = −iτδab. (3.168)

Note that (3.168) is just as expected from the identification of the Na with the
Ga if the fields ca and ba appearing in the two definitions can be identified. The
relation (3.168) will also be confirmed independently by the match of the partition
functions of E3- and M5-instantons found in section 4.2.2, and by the dimensional
reduction of the democratic M-theory supergravity carried out in appendix B.
The F-theory/IIB match found above completes our discussion of the effective de-
scription of massive U(1) gauge symmetries and their associated fluxes in F-theory
with the help of suitable non-harmonic forms in the dimensional reduction. How-
ever, before we proceed let us briefly comment on the special form of fab in (3.168).
Note that of course the function f can be changed by choosing a different basis
{αa, βb} of H2,1(Ŷ4). The basis we have chosen is distinguished by the fact that
αa and βa are both constructed from the same form ωa ∈ H1,1(X3). This is the
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rationale behind the expectation that the intersection numbers (3.68) and the
fields ca, ba in (3.60) can be identified with the corresponding IIB quantities. Now
of course (3.168) is only expected to be valid in this chosen basis and should
not be assumed in a general F-theory model with no direct IIB connection. In
order for this picture to be consistent, the relation (3.168) should hold indepen-
dently of the basis ωa chosen on the IIB side. To check this, let us consider a
general basis change ωa → ω′b = Rabωb. Under this transformation we also have
βa → βa′ = Rabβ

b, αa → α′a = Rabαb. Therefore, the intersection numbers (3.68)
of α′a and βb

′ will still match the corresponding type IIB intersection numbers
K′αab evaluated using ω′a, although of course K′αab 6= Kαab. The complex forms
Ψa in (3.111) transform into Ψ′a = RabΨb, which is an admissible basis change
because the Ψ′a will still be (2, 1)-forms provided this was the case for the Ψa. It
is easy to check that the new forms Ψ′a can still be written as a linear combination
of the α′a, βb

′ as in (3.111) using a function f ′ab related to fab by

f ′ = (RT)−1fRT. (3.169)

Here we have used matrix notation and written RT for the transpose of the basis
change matrix. Clearly, if f is proportional to the unit matrix as in (3.168) then
f ′ = f . This is consistent with our expectation that (3.168) holds in the F-theory
limit in models with a IIB dual, independently of the basis chosen on the IIB side.
However, let us emphasise that a general basis change on the M-theory side, in
which the αa and βb are rotated by different matrices, will not leave f unchanged.

3.3 Geometric interpretation of U(1)s in F-theory

The discussion of the previous section shows that geometrically massive U(1) sym-
metries can be made explicitly visible in F-theory compactifications by including
certain non-harmonic forms in the dimensional reduction. At the level of the
effective supergravity all the effects due to these massive U(1)s that are known
from the type IIB setting can be reproduced in F-theory in this way. The various
differential and integral properties of the required non-harmonic forms given in
section 3.2.2 were motivated based on expectations from the type IIB picture.
However, from a purely F-theoretic point of view the introduction of these forms
is somewhat ad hoc, and in the framework of the Kaluza-Klein reduction it is
not clear what distinguishes the chosen forms from the multitude of other non-
harmonic forms present on the compactification manifold. It is natural to expect
that the properties of the forms relating to the massive U(1)s are somehow en-
coded in the geometry of the elliptic fiber above the D7-brane locus in the base.
Let us therefore now turn to a discussion of how U(1) symmetries appear from a
geometric point of view in the F-theory compactification. We begin by reviewing
how certain cycles corresponding to Cartan U(1) gauge symmetries appear upon
resolution of a non-Abelian An singularity, following [33,118]. We then discuss the
proposal given in [33] for how a cycle corresponding to the diagonal U(1) can be
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identified in this framework. Finally, in section 3.3.3 we review recent progress in
the description of massless non-Cartan U(1) symmetries using a different approach
based on constructing additional sections of the elliptic fibration.

3.3.1 Cartan U(1)s from resolution of SU(N) singularities

In this subsection we consider Cartan U(1)s, which can by definition be viewed as
arising from a larger non-Abelian gauge group. As reviewed in section 2.4.3, such
non-Abelian gauge groups are described in the F-theory construction by ADE sin-
gularities in the elliptic fiber of the compactification manifold. The group theory
details of the associated gauge group are encoded in the geometric structure of the
singularity, which is hidden in the singular phase but becomes visible upon reso-
lution. In particular, the resolution introduces a set of holomorphic curves which
are associated with the Cartan U(1)s of the gauge group. Let us review explicitly
how these Cartan curves arise, following the presentation of [118, 171]. We focus
on F-theory models with non-Abelian gauge group SU(N). These models are of
course expected to correspond to type IIB configurations with gauge group U(N)
and thus furnish the correct setting to study the uplift of the diagonal U(1) in the
next section.
According to the Tate classification of table 2.3, the gauge group SU(N) arises in
the presence of singularities of the type AN−1. Such a singularity can be locally
described by the equation

−XY + ZN = 0 (3.170)

in the weighted projective space PN,N, 2 [171]. In other words, we expect that the
Tate polynomial (2.83) which describes the elliptically fibered fourfold can be put
into this form in a vicinity of the SU(N) component of the discriminant locus
by suitable coordinate redefinitions. Choosing local coordinates in the base in
which the discriminant is described by w = 0, it is possible to check that the Tate
polynomial can be rewritten in this form if the sections ai appearing in (2.83)
have certain vanishing orders in w. These vanishing orders are determined by
Tate’s algorithm and given in table 2.3. For our purposes, it will not be necessary
to include the full details of the Tate polynomial and we instead work directly
with the standard form (3.170). Nevertheless, it should be kept in mind that
after embedding the singularity in an elliptically fibered fourfold the coordinate
redefinitions necessary to bring the Tate polynomial into the form (3.170) ensure
that X, Y and Z depend on the coordinates of the base of the fibration.
The singularity of the hypersurface described by (3.170) is located at the origin
X = Y = Z = 0. To resolve the singularity, we first extend the ambient space
by introducing N − 1 additional P1’s with homogeneous coordinates (uj, vj), j =
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1, ..., N−1. The resolved surface is given by the intersection of the equations [171]

XY = ZN ,

Xvj = ujZ
j, 1 ≤ j ≤ N − 1,

Zj−kujvk = ukvj, 1 ≤ k < j ≤ N − 1,
(3.171)

inside the extended ambient space. Note that away from the original singular
point X = Y = Z = 0 these equations suffice to fix the coordinates of the P1’s
completely. Therefore the component of the fiber away from the singularity, which
we denote by t̃0, remains essentially unaffected by the resolution. Additional fiber
components appear after resolution in the so-called exceptional set given by the
preimage of the singular point X = Y = Z = 0. Specifically, one obtains N − 1
independent curves (or 2-cycles) t̃i, which can be specified by [171]

t̃i : X = Y = Z = u1 = ... = ui−1 = vi+1 = ... = vN−1 = 0. (3.172)

We use lower case indices i, j, k to run over the values 1 to N − 1, while capital
letters I, J will be used in the following for indices running over the range 1 to N .
The fact that the fiber splits into the N different components t̃0, . . . , t̃N−1 can be
encoded in the homological relation

[t̃0] +
N−1∑
i=1

[t̃i] = [e], (3.173)

where [e] denotes the homology class of the smooth elliptic fiber [33]. It is useful
to formally define an additional curve by t̃N ≡ t̃0 − [e]. Then the relation (3.173)
can also be written simply as

N∑
I=1

[t̃I ] = 0. (3.174)

The geometry of the resolved fiber can be related to the group theory of the
gauge group by identifying the combinations ṽi ≡ t̃i − t̃i+1 with the simple roots
of SU(N) [33]. In other words they correspond to the nodes of the Dynkin diagram
of SU(N). By including the additional node ṽ0 = t̃0− t̃1, one obtains the extended
Dynkin diagram. The correspondence between the nodes of the Dynkin diagram
and the 2-cycles t̃I is particularly clear in the case of F-theory compactifications on
K3. In that case, 2-cycles naturally intersect in points, and it is possible to verify
explicitly that the 2-cycles intersect according to the extended Cartan matrix
of SU(N). In the physically more relevant case of F-theory compactifications
on fourfolds, the natural intersection structure pairs 2-cycles and 6-cycles. To
describe the Cartan intersection structure in this case, it is helpful to introduce
6-cycles t̃I which are defined to be dual to the 2-cycles t̃I in the sense that [33]

t̃I · t̃J = −δJI . (3.175)
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The divisors Di ≡ t̃i − t̃i+1 then clearly intersect the 2-cycles ṽj according to the
Cartan matrix Cij of SU(N), i.e.

ṽi ·Dj = Cij. (3.176)

The 2-forms wi which are Poincaré-dual to the divisors Di can therefore be identi-
fied with the 2-forms which were introduced in section 3.2.1 to describe the Cartan
U(1) gauge symmetries in the M-theory Kaluza-Klein reduction.
The discussion so far was quite general in the sense that it involved only on the
local geometry around the singular locus. In situations where the fibration can
be written globally in the Tate form appropriate for an AN−1 singularity, it is ac-
tually possible to directly resolve the codimension one singularities at the global
level without first bringing the Tate equation into the standard form (3.170).
This global resolution process was described in detail in [108] in the context of
an SU(5)×U(1) GUT model, although the generalisation of the process to other
special unitary gauge groups is clear. The resolution techniques used in [108] are
somewhat different from those used above. In equation (3.171), we had explic-
itly pasted in a set of P1’s locally above the singular locus by first enlarging the
ambient space of the fiber and then describing the resolved fiber by the intersec-
tion of several equations in this space. A resolution carried out in this manner is
sometimes also referred to as a small resolution [90]. In contrast, the approach
of [108] is to add a set of additional coordinates ei together with suitable scaling
relations which act on the ei and the original coordinates x, y, z of the elliptic
fiber. This of course changes the fiber ambient space, but does not enlarge its di-
mension. Therefore the resolved fiber is still specified by a single equation, which
is a modified form of the original Tate equation, in the new ambient space. The
advantage of this approach is that it is easier to construct the exceptional divisors
Di corresponding to the Cartan U(1)s. Whereas in the small resolution approach
described above the Cartan divisors were defined only implicitly as 6-cycle duals
to the curves t̃I , the Di can be explicitly constructed in the approach of [108] by
intersecting the equations ei = 0 with the modified Tate equation. This makes
it possible to verify the intersection properties of the divisors Di or their dual
2-forms wi, by direct calculation [108]. Note that the global resolution approach
is not restricted to Cartan U(1)s arising from non-Abelian singularities at codi-
mension 1 in the base. Indeed, the resolution of a so-called U(1)-restricted global
SU(5) Tate model, which exhibits an additional codimension 2 singularity with
gauge group U(1) in addition to the SU(5) singularity, was discussed in [108]. In
complete analogy with the Cartan case, the resolution of the additional singular-
ity introduces an additional coordinate with associated exceptional divisor. The
harmonic 2-form associated with this additional resolution divisor then leads to a
massless U(1) gauge boson in the Kaluza-Klein reduction of C3, which describes
the extra Abelian factor in the low energy gauge group.
Before proceeding with the discussion of how the diagonal U(1) ⊂ U(N) is ex-
pected to arise in the geometric resolution picture, let us note that the resolution
processes outlined above are not the only way to remove the original singularity.
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A different approach is to simply deform the original equation (3.170) in such
a way that the singularity is absent. Just as in the resolution picture discussed
above, it is possible to construct specific cycles related to the roots of the gauge
group corresponding to the singularity in the deformation picture30. In the fol-
lowing, we will briefly review the construction of these cycles in the geometry
obtained by deforming the AN−1 singularity, sticking closely to the presentation
of [33]. Although from a physical perspective we are more interested in the the
case where the singularity is removed by resolution, the deformation picture will
provide useful intuition for our discussion of the diagonal U(1)s in the next sub-
section.
By suitable coordinate redefinitions, the most general deformation of the AN−1
equation (3.170) can be put into the so-called preferred versal form [171]

−XY + ZN +
N−1∑
I=2

bIZ
N−I = 0. (3.177)

The deforming polynomial can be factorised, which allows the deformed equation
to be rewritten as

−XY +
N∏
I=1

(Z + tI) = 0, (3.178)

with suitable parameters tI . The parameters bI and tI can be chosen real with-
out loss of generality [94]. The fact that there is no term corresponding to b1
in (3.177) translates into the constraint ∑I tI = 0. This relation is reminiscent of
the homological relation (3.174), or the analogous relation obeyed by the 6-cycles
t̃I in the resolution picture. Indeed, the tI can be identified with the weights of
the fundamental representation of SU(N) [33,118]. Therefore, they can be viewed
as playing analogous roles to the t̃I in the resolution picture31.
In type IIB language, deforming the AN−1 singularity can be viewed as moving
apart the N D7-branes which originally formed a stack with gauge group U(N).
Roughly speaking, the parameters tI then correspond to the positions of the D7-
branes. It is clear that (3.178) describes a non-singular surface in the completely
deformed case in which all tI are pairwise distinct, such that all N branes are
completely separated from one another. If on the other hand N ′ < N of the tI are
equal to some common value t, we obtain an enhancement to an AN ′−1 singularity
at the point Z = t. The full original AN−1 singularity is recovered if all of the tI
are equal, in which case they are required to vanish by the tracelessness constraint∑
I tI = 0.

We had already argued in section 2.3.3 that one of the 1-cycles of the elliptic fiber
is expected to shrink to zero size over the location of a D7-brane. This vanishing

30In fact, in compactifications on K3 deformations and resolutions can be viewed as equivalent
as they are related by mirror symmetry [33,172].

31The fact that the weights should be associated to the 6-cycles t̃I rather than the 2-cycles
t̃I can be deduced from the fact that the weights naturally live in the dual space to the simple
roots, which in the resolution picture were given by the 2-cycles ṽi [118].
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cycle can be seen explicitly in the deformation picture [33]. To make the shrinking
S1 manifest, it is helpful to change coordinates in (3.178) to X ≡ X̃ + iỸ , Y ≡
X̃ − iỸ , and to project the equation to plane spanned by the imaginary parts of
X̃ and Ỹ . This yields

(
Im Ỹ

)2
+
(
Im X̃

)2
= −

N∏
I=1

(Z + tI) , (3.179)

which shows that the circle in the Im X̃− Im Ỹ plane shrinks exactly at the points
where Z = tI for some I. The collapsing circle can be viewed as the A-cycle of
the elliptic fiber [33]. Because the A-cycle shrinks over the brane locations tI , it is
possible to construct closed 2-cycles by fibering the A-cycle over (real) lines in the
base connecting two of the branes. Following [33], we denote such a line running
from tJ to tI by tI − tJ .
Of particular importance are the 2-cycles vi, i = 1, ..., N−1, which are constructed
by fibering the A-cycle over the lines ti − ti+1. This is because these 2-cycles can
be seen to intersect32 according to the Cartan matrix of SU(N) and can therefore
be identified with the simple roots [33,118,171]. More general 2-cycles vIJ fibered
over tI − tJ can be viewed as sums or differences of the simple root cycles vi. In
the deformation picture, the gauge bosons of the full non-Abelian gauge group
are viewed as arising from M2-branes wrapped on these 2-cycles vIJ [118]. It
is obvious that the gauge boson state associated to the 2-cycle vIJ is massless
if and only if tI = tJ and the cycle shrinks to zero size. Note that in the fully
deformed picture all gauge boson states are massive, including the Cartan gauge
bosons corresponding to the cycles vi. This is in contrast to the case in which the
singularity was removed by resolution, where the Cartan gauge bosons remained
massless and only the gauge bosons corresponding to off-diagonal generators of
the gauge group became massive.

3.3.2 Geometry of the diagonal U(1)

The discussion of the local resolution of an AN−1 singularity in the previous sub-
section shows that the singular fiber naturally splits into N components in the
resolution process. The singularity structure is related to the SU(N) gauge the-
ory by identifying the rk(SU(N)) = N − 1 homologically independent resolution
spheres in the fiber with the Cartan U(1)s. However, this identification leaves one
component of the resolved fiber unaccounted for. It is natural to expect that this
additional component is associated with an additional U(1) symmetry [33], which
would match the type IIB picture where the gauge group of a stack of N branes
is U(N) = SU(N)× U(1).

32Strictly speaking, a pair of 2-cycles can be directly intersected only on K3. In the fourfold
case, we mean that the intersections of the 2-cycles with dual 6-cycles yield the Cartan matrix
as in (3.176).
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To be more precise, let us follow [33] and denote the 2-forms Poincaré-dual to the
6-cycles t̃I by ωI . The intersection property (3.175) can then be written as∫

t̃I
ωJ = −δIJ . (3.180)

Note that the forms ωI are individually non-closed. This can be easily shown
using an argument given in [33], which is based on the fact that the sum of the
2-cycles t̃I is homologically trivial. To begin with, we rewrite equation (3.174) as

N∑
I=1

t̃I = ∂C, (3.181)

where C is a suitable 3-cycle. After summing over the index I in (3.180) one then
obtains

− 1 =
∫∑

I
t̃I
ωJ =

∫
C
dωJ . (3.182)

The fact that the individual ωJ are non-closed is not in contradiction with the
well-known fact that the Cartan U(1)s remain massless upon resolution [33]. This
is because the Cartan U(1)s are associated to the 2-forms wi = ωi − ωi+1, which
makes it possible for the non-harmonic components of the ωI to cancel out in the
differences ωi−ωi+1. On the other hand, as discussed in section 3.2.2 the diagonal
U(1) should be described by a form w0 which is in general non-closed. In [33] it
was suggested that this form w0 is described by the combination

w0 =
N∑
I=1

ωI . (3.183)

The proposed form (3.183) can be motivated by the following observations. Firstly,
note that the exterior derivatives dωI must be independent of I in order for the
Cartan forms wi to be closed. Therefore (3.183) yields

dw0 = Ndω1, (3.184)

so that the factor of N in the differential relation (3.61) appears naturally as a
consequence of the form of w0. Furthermore, the ωI are expected to be mutually
orthogonal in the sense that∫

Ŷ4
ωI ∧ ωJ ∧ ωα ∧ ωβ ∝ −δIJ , (3.185)

where ωα and ωβ are 2-forms arising by pullback from the base B3 as in section 3.2.
This relation is necessary in order for the Cartan forms wi to intersect according
to the Cartan matrix of SU(N) as in (3.55). As argued in section 3.2, the form
describing the diagonal U(1) is expected to be orthogonal to all the Cartan forms
wi in the sense that ∫

Ŷ4
w0 ∧ wi ∧ ωα ∧ ωβ = 0, (3.186)
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see equation (3.67). In light of (3.185), the only combination of the ωI which satis-
fies this relation is precisely the combination (3.183). Finally, we note that (3.185)
implies ∫

Ŷ4
w0 ∧ w0 ∧ ωα ∧ ωβ ∝ −N, (3.187)

in agreement with the intersection numbers given in (3.67).
The arguments presented above show that the form w0 related to the 2-cycles ap-
pearing in the resolution of the AN−1 singularity by (3.183) has the right properties
to be identified with the form w0A introduced in section 3.2.2. As established in
section 3.2, this form describes the diagonal U(1) which is expected to be present
from the IIB perspective in the case where this U(1) is geometrically massive. It
remains to discuss what happens in the F-theory uplift of IIB configurations in
which the diagonal U(1) remains massless at the geometric level. At first sight,
the expression (3.183) seems to be problematic in this case because the ωI are non-
closed according to (3.182). In [33] it was argued that this apparent contradiction
can be resolved by taking into account that the homological relation (3.181), which
arises in the local resolution of the AN−1 singularity, fails to hold in the global
picture. Let us briefly review the argumentation of [33] in the following.
In order to gain intuition about the F-theory geometry which may give rise to a
massless diagonal U(1), let us consider the corresponding type IIB picture. As
outlined in section 3.1.1, a U(N) gauge symmetry with massless diagonal U(1)
arises in the case where the brane divisor D is in the same homology class as the
orientifold divisor DO7. In this sense, the masslessness of the diagonal U(1) is a
non-local effect even in the IIB setting, because it depends on the full details of
the orientifold involution and not only on the local geometry around the brane
divisor D [33]. The key to understanding the relevant F-theory geometry is to note
that in the IIB picture the brane configuration can be smoothly deformed into a
configuration where the branes lie on top of the orientifold plane, which would
lead to the gauge group SO(2N). According to tables 2.2 and 2.3, an SO(2N)
gauge group is described in the F-theory picture by singularity of type DN . This
suggests that a massless diagonal U(1) is described by an F-theory geometry in
which a DN singularity is deformed into an AN−1 singularity [33].
A DN singularity can be described by the equation [171]

−X2 − Y 2Z + ZN−1 = 0 (3.188)

in the weighted projective space PN−1, N−2, 2. The most general deformation of this
equation can again be described by N real deformation parameters tI . Without
loss of generality, the deformed equation can be taken to be in the preferred versal
form

−X2 − Y 2Z + ZN−1 −
N−1∑
i=1

δ2iZ
N−i−1 + 2γNY = 0, (3.189)

where the δ2i are elementary symmetric polynomials in the tI and γN = ∏
I tI [33,

171]. Note that in contrast to the case of the AN−1 singularity, the tI do not have
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to satisfy a tracelessness constraint of the form (3.174).
To construct the 2-cycles which shrink to zero size in the singular limit tI → 0,
we proceed as in the case of the AN−1 singularity by fibering a cycle in the fiber
over a line in the base connecting two points where the fiber cycle collapses. We
follow the discussion of [33]. The first step is to identify the collapsing fiber cycle,
which is facilitated by changing coordinates to

X ′ =
√
ZX, Y ′ = Y Z +

N∏
I=1

tI . (3.190)

In terms of these coordinates, the deformed equation (3.189) takes the form

(X ′)2 + (Y ′)2 =
N∏
I=1

(Z + t2I). (3.191)

Restricting to the real X ′, Y ′ plane yields the equation of a circle which collapses
to zero at the points Z = −t2I . It would be tempting to attempt to construct 2-
cycles by simply fibering the collapsing cycle over lines in the Z-plane connecting
the points tI . However, in comparison with the case of the AN−1 singularity a
new subtlety appears due to the fact that the coordinate transformation (3.190)
introduces a branch cut for the coordinate X ′ [33].
To avoid the difficulty associated with the branch cut in the Z plane, it is helpful to
consider a local double cover of the base parametrised by Z ′ =

√
Z. Effectively, we

now have two sets of degeneration points located at Z ′ = ±itI . At the same time,
the number of paths over which the collapsing cycle can be fibered appears doubled
in the double cover picture, as the point itI can be connected with either itJ or
−itJ . Note that after the coordinate change to Z ′, equation (3.191) essentially
looks like a pair of deformed AN−1 singularities with deformation parameters itI
and −itI , respectively [33]. In the IIB language, the two AN−1 singularities can
be interpreted as describing the homologous brane and image brane stacks. The
2-cycles constructed from fibrations over paths connecting points itI and −itJ
then correspond to strings stretched between the brane stack and its orientifold
image in this picture.
If a line running from one brane at itI to a different brane in the same stack
at itJ is denoted by tI − tJ as before, then the lines between itI and a brane
in the image stack at −itJ corresponds effectively to tI + tJ [33]. In the IIB
picture, the plus sign can be viewed as an effect of the change of orientation that
is experienced in crossing the orientifold plane when moving from the brane stack
to the image stack. Let us emphasise that the new type of lines tI + tJ and the
associated 2-cycles do not have a direct analogue in the discussion of a general
AN−1 singularity as in section 3.3.1. In this sense the appearance of a new type
of 2-cycle in the singularity deformation can be really seen as intrinsic to the DN

geometry. Of course, the appearance of the new cycles can also be seen in the
single cover picture without making the coordinate change from Z to Z ′. Here
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the two types of paths are distinguished according to whether the path passes
through the branch cut of X ′ or not [33].
As in the AN−1 case, the 2-cycles vi constructed from fibrations over ti− ti+1 can
be identified with the simple roots of the gauge group [33,171]. The novelty in the
case of the DN singularity is that an additional, homologically independent simple
root of the form vn = tN−1 + tN appears. Clearly, all positive roots corresponding
to fibrations over ti± ti+1 with i < j can then be written as positive combinations
of the vI . The DN singularity can be deformed into an AN−1 singularity by taking
all tI to be equal, tI ≡ t, which yields an AN−1 singularity located at Z = t2.
The explicit resolution of the of the singularity performed in [171] shows that the
AN−1 contains the vanishing cycles vi just as in section (3.3.1). However, due to
the underlying DN structure we have an additional non-trivial cycle vn, which
collapses as t → 0. The fact that this cycle is linearly independent from the vi
means that in the dual resolution picture the resolution 2-cycles no longer obey a
relation of the form (3.181) [33]. In particular, the 2-form w0 constructed by the
analogue of (3.183) can be harmonic, matching the fact that the diagonal U(1) is
should remain massless in this setting.

3.3.3 Massless U(1)s and rational sections

In the previous sections we have discussed how the appearance of massive or mass-
less U(1) gauge factors beyond the non-Abelian gauge groups appearing in Tate’s
classification of table 2.3 can be understood in F-theory from the local geometry
of the resolved fibers. While this approach is very explicit and in principle al-
lows for a direct construction of the resolution curves, it is also technically rather
involved and can in general only be carried out patchwise. For model building
purposes a more direct approach to detecting the presence of U(1) symmetries
and computing the charges of the matter fields with respect to these U(1)s from
the geometry of the compactification manifold would thus be desirable. Recently,
significant progress has been made in this direction using techniques based on the
study of the group of sections of the elliptic fibration [26–32], whose relation to
U(1) symmetries in the low energy effective action had already been noted in [80].
In the following, we briefly review the concepts used in this approach. Our pre-
sentation in this section will be based mainly on refs. [27,28,30]. Let us emphasise
from the beginning that studying sections of the elliptic fibration directly yields
information only on massless U(1) symmetries. In particular, this approach does
not help in understanding the geometric origin of the non-closed 2-forms describ-
ing massive U(1) gauge symmetries, for which purpose we have to use the local
resolution picture as in section 3.3.2.
As was already mentioned in section (2.4.1), a section s of an elliptically fibered
fourfold Y4 can be viewed as an embedding of the base B3 into Y4 which is com-
patible with the fibration structure in the sense that π ◦ s = idB3 . If the elliptic
fibration is holomorphic, which is assumed to be the case throughout this thesis,
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then such a globally defined section is also automatically holomorphic [28]. As
before, we focus on elliptic fibrations in the Weierstrass form, which are given by
an equation

PW = y2 − x3 − fxz4 − gz6 = 0 (3.192)
in the weighted projective space P2,3,1 with homogeneous coordinates x, y, z. The
geometry of the fibration is specified by the parameters f and g, which are holo-
morphic sections of the bundles K−4

B and K−6
B , respectively. A section can essen-

tially be viewed as a map

s′ : u ∈ B3 7→ [A(u), B(u), C(u)] (3.193)

from B3 into P2,3,1, in which [A(u), B(u), C(u)] lies on the surface given by the
Weierstrass equation (3.192) for every point u in the base. Clearly, this gener-
ally requires A,B and C to depend on f and g. However, the Weierstrass form
always admits the holomorphic section [1, 1, 0], which is also referred to as the
zero section. Depending on the precise form of f and g, it may or may not be
possible to find additional holomorphic sections. This construction can be im-
mediately generalised to the case where A,B and C are rational functions on B3
instead of being holomorphic. In this case one speaks of rational sections [28]. A
rational section can fail to be well-defined on a codimension 2 locus in the base
where two of the three functions A,B and C simultaneously develop poles [28,30].
After resolving the singularities of Y4 and moving to the resolved fourfold Ŷ4, a
rational section s′ describes a birational morphism from B3 to a surface S ′ ⊂ Ŷ4.
Over the points where s′ fails to be well-defined, S ′ wraps an entire component of
the resolved elliptic fiber [28]. In the following, we will not distinguish between
holomorphic and rational sections and will instead simply refer to both types of
objects as sections.
Algebraically, the Weierstrass polynomial in (3.192) can be viewed as a polynomial
with coefficients f and g in the function field on B3 [26,30]. A point on an elliptic
curve whose homogeneous coordinates [x0, y0, z0] lie in the field over which the
curve is defined is known as a rational point [30]. Clearly, for each point in the
base in which it is well-defined, a section [A(u), B(u), C(u)] yields such a rational
point. As was already mentioned in section 2.4.1, it is possible to canonically
define an addition operation on the set of rational points of an elliptic curve. This
addition gives this set the structure of an Abelian group, which is known as the
Mordell-Weil group of the elliptic curve. When applied to an elliptic fibration
rather than a single elliptic curve, the group structure extends directly to the
rational sections and one speaks of the Mordell-Weil group of the elliptic fibration.
A crucial mathematical result is that this group is finitely generated [26, 30]. In
other words, there can be only finitely many linearly independent rational sections.
Let us now turn to the relation between sections of the fibration and U(1) gauge
symmetries. The key point is that each section s′ yields an associated divisor
S ′ in the resolved fourfold Ŷ4. By the Shioda-Tate-Wazir theorem [173], these
divisors are linearly independent from the other divisors that we have discussed
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previously, namely the vertical and Cartan divisors and the divisor associated to
the zero section. In other words, each independent section s′ leads to an additional
harmonic 2-form ws′ which appears in the Kaluza-Klein reduction (3.53) of C3 and
yields an additional gauge field As

′ .
The analysis of [27] shows that the new divisors corresponding to additional sec-
tions can be seen as originating from the resolution of certain singularities33 in Y4
which arise at codimension 2 in the base. To see this explicitly, it is convenient
to work with the Tate form34

PT = x3 − y2 + a1xyz + a2x
2z2 + a3yz

3 + a4xz
4 + a6z

6 = 0, (3.194)

rather than the Weierstrass form (3.192). Let us follow [27] and focus on sections
[A(u), B(u), C(u)] which fulfill A3 = B2. In order for such a section to lie inside
the fourfold Y4, the remaining part of the Tate polynomial (3.194) must factorise
at x = A, y = B as35

PT |x3=y2 = a1ABz + a2A
2z2 + a3Bz

3 + a4Az
4 + a6z

6 = z(z − C)R[z;u]. (3.195)

The remainder R[z;u] is some polynomial in z and also depends on the coordinates
u of the base. The overall factor of z describes the zero section, while the factor
z − C is present as we assume [A(u), B(u), C(u)] to be a section. This implies
that the overall Tate polynomial PT can be written as

PT = (x3 − y2)Q+ z(z − C)R[z;u], (3.196)

with a suitable function Q [27]. An equation of this type is said to be in binomial
form.
The significance of the fact that the Tate equation factorises into the binomial
form (3.196) is that the resulting fourfold is manifestly singular at the locus given
by the intersection of the 4 equations [27,159]

x3 − y2 = 0 ∩ z − C = 0 ∩Q = 0 ∩R = 0 (3.197)

in the ambient 5-fold. The first two equations together with the rescaling relation
fix the coordinates of the P2,3,1 fiber, so that (3.197) describes a curve of singular-
ities at codimension 2 in the base. This singularity can be eliminated by means of
a small resolution as in section 3.3.1. In this process, two additional homogeneous

33In this sense they are broadly similar to the Cartan divisors, which were discussed in sec-
tion 3.3.1 and arise from singularities at codimension 1 in the base. However, the explicit
resolution processes for singularities at different codimensions in the base differ somewhat at
the technically level [27, 159].

34For definiteness let us consider SU(5) GUT models, in which it is possible to rewrite the
fibration in Tate form at least locally around the GUT divisor [27]. Although globally certain
obstructions can in principle arise [122], this subtlety will not be important for the following
and we assume for simplicity that the Tate form is globally defined.

35As we are working in a projective setting the overall scale is irrelevant, so x = A, y = B is
actually equivalent to the single condition x3 = y2.
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coordinates λ1, λ2 of a P1 are introduced and the resolved space is given by the
intersection of the equations [27,90,159]

(x3 − y2)λ1 = Rλ2 ∩ Qλ2 = (z − C)λ1 (3.198)

in the extended ambient space. Note that over the original singular locus (3.197)
the additional coordinates λi are unconstrained, so that the small resolution acts
by pasting in an additional P1 over the singularity. After resolution, the additional
6-cycle S ′ associated to the section is given by [27]

λ1 = (x3 − y2) = z − C = 0, (3.199)

away from the original singular locus (3.197), while it wraps the entire resolution
P

1 over the erstwhile singularity.
From the discussion above it is clear that the appearance and form of additional
sections is determined by the factorisation properties of the Tate polynomial. Fo-
cusing on sections of the form x3 = y2, the number of U(1)’s in the low energy
theory is equal to the number of different ways in which we can achieve a fac-
torisation of the remainder of the Tate polynomial as in (3.195). The different
inequivalent types of sections that can be obtained can be related to the different
ways in which PT |x3=y2 can be factorised holomorphically [27,28]. Let us focus in
particular on factorisations into at most two pieces. After extracting the overall
factor of z corresponding to the zero section, PT |x3=y2 describes a polynomial of
order 5 in z. Different types of factorisations can then be labelled by the degrees
in z of the individual factors. At the level of two factors the possibilities are (5,0),
(4,1) and (3,2). Let us emphasise that we explicitly allow for rational sections,
so that in particular C(u) in (3.193) is allowed to be a rational function. This
means that a rational section can be present even in the case labelled above as
the (5,0) split, in which it is not possible to factorise PT |x3=y2 holomorphically in
a non-trivial manner [28].
At this point, let us briefly discuss the relationship between the explicit description
of a section as in (3.193) and the description used in [27]. The authors of [27]
considered factorisations of the Tate polynomial of the form

PT = (x3 − y2)Q+ z
n∏
i

Yi, (3.200)

with suitable holomorphic factors Yi. A section was then defined implicitly by
the intersection of two equations (x3 = y2) ∩ (Yi = 0). In the case of a (4,1) split
in a factorisation into two factors, it is clear that the factor linear in z can be
identified with the factor z−C in (3.195). In the case of a (3,2) split, [27] defined
the section as the torus sum of the two roots of the quadratic factor. Even though
these roots can vary holomorphically over the base if the corresponding equation
Y1 is holomorphic, the operation of adding points on an elliptic curves explicitly
introduces ratios of the functions defining the individual roots [26]. Therefore
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this case is described in our language by a factorisation of the form (3.195) with
a rational function C.
The relationship between U(1) symmetries and sections of the elliptic fibration
discussed in this subsection is particularly interesting from a phenomenological
point of view. This is because it offers an explicit approach towards geometri-
cally engineering Abelian gauge factors in the low energy theory by tuning the
parameters of the fibration in such a way that the Tate (or Weierstrass) polyno-
mial factorises. In phenomenologically interesting models, the U(1) gauge factors
should of course be combined with a suitable non-Abelian gauge group. In this
case, it is necessary to study the factorisation properties of the transformed Tate
polynomial which is obtained after the non-Abelian singularities at codimension
1 have been resolved. The resolution geometry of fibrations with an SU(5) GUT
gauge group and one or more additional U(1)s was studied explicitly in [27–32].
The explicit description of the divisors corresponding to the U(1) gauge sym-
metries makes it possible to directly calculate the intersections with the matter
curves above the SU(5) locus. These intersections encode the U(1) charges of
the various matter fields, and therefore yield the selection rules for the possible
couplings in the low energy theory which result from the massless U(1)s.



Chapter 4

Fluxed D3- and M5-instantons in
type IIB and F-theory

In this chapter we turn to a discussion of D- and M-brane instantons in type
IIB orientifold compactifications and in the F-theory limit of M-theory compact-
ifications on elliptically fibered fourfolds. We begin in section 4.1.1 with a brief
review of some background on D-brane instantons and the reasons for their im-
portance to the phenomenology of string compactifications, which will be largely
based on [34]. It will become apparent that there is an important interplay be-
tween D-brane instanton effects and the Abelian gauge symmetries discussed in
chapter 3. To be more precise, the U(1) symmetries affect the shape of the in-
stanton contributions to the low energy action, while conversely the instantons
can generate effective couplings in the low energy theory which break the U(1)
symmetries. In section 4.1.2 we show that non-trivial gauge flux on the instan-
ton can have important consequences for the U(1) charges of the instanton, and
discuss how these results affect the question of moduli stabilisation in type IIB in
section 4.1.3. We then turn our attention to M5-instantons wrapped on vertical
divisors in an elliptically fibered fourfold, which in the F-theory limit are related
to D3-brane instantons in type IIB. The partition function of such M5-instantons,
which encodes their contribution to the low energy effective action, is derived in
section 4.2.1 and compared to the corresponding IIB results in section 4.2.2. In
section 4.2.3 we consider how switching on non-trivial G4 flux affects the form of
the M5 partition function. The selection rules that must be fulfilled by an M5-
instanton in the presence of G4 flux in order to generate low energy couplings of
uncharged fields are discussed in a general setting in section 4.2.4. Finally, these
selection rules are evaluated in a specific example and compared to the known
type IIB results.
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4.1 Euclidean D3-brane instantons with world-
volume fluxes

4.1.1 D-brane instantons in type IIB compactifications

A well-known feature of the quantum effective action of a perturbative quantum
field theory is that it receives two conceptually different types of contributions.
One part can be obtained by summing up contributions that essentially arise
from Feynman diagrams with more and more loops, which yields a power series
in the coupling constant g of the theory. In addition, non-perturbative effects
can give rise to terms whose dependence on g is schematically given by e−1/g2 .
At weak coupling, perturbative contributions will in general of course dominate
over the non-perturbative terms. However, non-perturbative contributions can
still be extremely important for some couplings if the structure of the theory is
such that only a finite number of perturbative contributions to these couplings
are non-zero. This situation in particular arises in the context of 4-dimensional
theories withN = 1 supersymmetry, in which the superpotential and gauge kinetic
functions receive perturbative corrections only up to 1-loop level [174, 175]. The
low energy theories obtained by compactifying string theory to 4 dimensions on
suitable compactification manifolds fall precisely into this class. It is thus natural
to expect that non-perturbative effects can play an important role in string theory
compactifications, and this subject has received widespread interest in the past
two decades. Our discussion will be based on the reviews [34, 176], to which we
refer the reader for references to much of the original literature.
One way to understand non-perturbative corrections to the effective action in
field theory is via the path integral formula for the computation of correlation
functions, which schematically takes the form1

〈O(φ)〉 = 1
Z

∫
DφO(φ) exp (iS[φ]) . (4.1)

Here the various fields of the theory are collectively denoted by φ, while O(φ)
is the operator whose expectation value is computed and Z is the path integral
without insertion of any operators. The key point is that the path integral will be
dominated by the region in field space which is close to field configurations that
describe stationary points of the action S [177, 178]. The standard perturbative
expansion corresponds to an expansion around one particular such stationary
point, namely the vacuum of the theory. However, additional contributions can
arise if there exist stationary points of S which correspond to field configurations
that are topologically non-trivial and cannot be continuously deformed into the
vacuum. The original examples of such solutions to the equations of motion
were constructed in a gauge theory framework and correspond to configurations

1In order to obtain a convergent integral it is often helpful to carry out a Wick rotation such
that the exponential factor becomes exp(−S).
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of the field strength F which are localised in space and time [177, 178]. Due
to this localisation property, such configurations are known as instantons. The
contribution to the correlation function due to such an instanton can be evaluated
using a saddle point approximation, in which the fields are expanded around
the instanton configuration and the path integral is approximated by a Gaussian
integral.
As already mentioned in section 2.2.1, the calculation of string theory amplitudes
on non-trivial background spacetimes actually involves two separate perturbative
expansions. This of course also means that two different types of non-perturbative
effects may appear. The first perturbative expansion arises in the quantum field
theory on the string worldsheet, which is an interacting theory known as a non-
linear sigma model for strings propagating in non-trivial backgrounds [1–3, 17].
The interaction terms appear when the background fields appearing in the world-
sheet action are expanded into Taylor series about the rest position of the string.
The terms of this Taylor series are suppressed by powers of

√
α′/R, with R the

typical scale over which the background fields vary. Higher order terms of this
type on the worldsheet lead to corrections to the string theory effective action
which are known as α′ corrections. In analogy with the discussion around (4.1),
we expect corrections that are non-perturbative in α′ to arise due to configura-
tions of the string worldsheet that cannot be continuously shrunken to a point.
Such configurations can arise in string theory compactifications if the worldsheet
is wrapped around a non-trivial 2-cycle of the compactification manifold. As such
configurations appear pointlike from the perspective of the non-compact exter-
nal spacetime they are known as worldsheet instantons. The corrections to the
low energy action due to worldsheet instantons were initially studied in heterotic
string theory in [179–181], and applied to the type II setting e.g. in [182–186].
The second perturbative expansion in string theory is an expansion in terms of the
string coupling gs. It arises from the fact that the contribution to a string theory
amplitude from a worldsheet of genus g includes a factor2 of g2g−2

s . Polchinski
showed in [10] that the non-perturbative corrections in gs can be described in terms
of the theory of open strings ending on D-branes. As was extensively motivated in
the previous chapters, spacetime-filling D-branes are an essential ingredient in the
construction of phenomenologically interesting models from the compactification
of type II string theory or F-theory. In addition, it is possible to include D-branes
wrapped fully on non-trivial cycles of the compactification manifold [54, 58, 187].
These so-called D-instantons are pointlike from the perspective of 4-dimensional
spacetime and thus do not break Lorentz invariance. The picture that emerges in
the context of string theory compactifications with D-branes is very similar to the
field theory picture discussed around (4.1). Namely, the chosen compactification
manifold and configuration of spacetime-filling branes is viewed as the vacuum of
the theory, and corrections arise from the different ways in which D-instantons on

2This formula is valid for the case of oriented closed strings, for open or unoriented strings
also the number of boundaries and crosscaps of the worldsheet enter in addition to the genus.
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non-trivial cycles of the internal manifold can be added to this configuration [34].
Following their discovery, D-instanton effects have been extensively studied in the
type II setting. In particular, it was soon realised that D-instantons can give a
microscopic description for certain gauge instantons in the low energy theory, as
discussed e.g. in [188]. Beyond this, D-brane instantons can give rise to effects
which do not scale with the coupling of a visible gauge group, as would be the
case for a classical gauge instanton. For this reason, D-instantons have also been
referred to as stringy or exotic instantons [189, 190]. For example, D-instanton
effects can give rise to supersymmetry breaking effects whose scale is naturally
small due to the non-perturbative nature of the instanton contribution [34, 191]
and is not directly related to the size of the gauge coupling. The fact that D-brane
instantons can lead to non-trivial effective F- or D-term potentials was used in [18]
to show that they can play a crucial role for moduli stabilisation. This can be
seen particularly easily in type IIB compactifications, where the specific form of
the Kähler potential guarantees that some of the Kähler moduli do not appear
in the perturbative scalar potential. This means that D-instantons, despite being
non-perturbative in gs, actually form the leading3 terms which depend on bespoke
moduli and are crucial in ensuring that they are stabilised as required.
A further crucial property of D-instantons is that their action contains fields which
shift non-trivially under the U(1) symmetries of the model. Such charged instan-
tons appear in the low energy effective action together with fields of the opposite
U(1) charge, as required in order to guarantee gauge invariance of the total action.
When some or all of the moduli fields in the instanton action gain a mass and are
fixed around their vacuum expectation value, this leads to effective interactions in
the low energy theory which are not invariant under the U(1)s [35, 189, 192, 193].
In other words, charged instantons can effectively break the low energy U(1) sym-
metries. Their contribution is thus particularly important from a model builder’s
perspective if some phenomenologically required couplings are forbidden at the
perturbative level by U(1) symmetries, as was the case for example for the top
Yukawa coupling in type IIB SU(5) GUT models discussed in section 2.4.4. The
generation of certain Yukawa couplings including µ-terms and neutrino masses
via D-brane instanton effects has been extensively studied and is reviewed e.g.
in [34, 176,194].
To determine the contribution of a given instanton to the effective action, it is
in principle necessary to directly evaluate correlators of fields in the instanton
background by summing over the relevant string theory scattering amplitudes [34].
The result can then be compared to the known field theory expressions of these
correlators, which makes it possible to extract the effective superpotential and
Kähler potential. In [35] it was shown that the instanton contribution to the 4-
dimensional effective action can be written in a form which is reminiscent of the

3Here we mean leading in the sense that there are no dominant perturbative contributions.
Different non-perturbative contributions, e.g. from gaugino condensation on D7-branes, can in
principle contribute at a similar scale [18].
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field theory expression (4.1), namely4

S
(4d)
E ∼

∫
DM0 exp

[
−ŜE(M0)

]
. (4.2)

Here M0 stands for the massless fields on the instanton world-volume, which
are known as zero modes. Whereas in the field theory expression (4.1) the path
integral runs over all fields including the massive parts [178], the contribution due
to the massive string modes is already included in (4.2) in the effective instanton
action ŜE. In other words, ŜE can be viewed as consisting of the usual classical
action SclE of the instanton plus an additional term SintE , which describes interaction
terms of the zero modes and encodes the full contribution of the massive modes to
the string theory correlator [34]. For D-brane instantons, the bosonic part of the
classical action SclE is simply the sum of the Dirac-Born-Infeld and Chern-Simons
actions of section 2.2.3. On the other hand, determining the interaction terms
in SintE is somewhat less straight forward, and requires explicitly evaluating the
relevant string theory amplitudes in the chosen instanton background [35].
The zero modes M0 have been extracted explicitly in (4.2) because this makes
it easy to see that in particular the fermionic zero modes play a crucial role for
the instanton contribution. This fact is familiar already from the field theoretic
setting [178], and can be seen as a consequence of the integration over Grassmann-
valued fermionic fields in (4.2). Recall that an integral over a Grassmannian
variable vanishes unless the integrand is linear in the integration variable. This
means that if there is a fermionic zero mode which does not appear in SintE ,
the entire instanton contribution (4.2) vanishes [34]. To illustrate schematically
what happens when fermionic zero modes do appear in SintE let us consider a
representative pair5 λi, i = 1, 2, of fermionic zero modes. These zero modes may
appear in the interaction Lagrangian in terms of the schematic form

SintE ⊃
∫
λ1Φ12λ2, (4.3)

with Φ12 a bosonic operator. Now the path integrals over λi in (4.2) lead to∫
Dλ1Dλ2 exp

[
−ŜE

]
= Φ12 exp

[
−SclE − S̃intE

]
, (4.4)

with S̃intE denoting the part of SintE not involving the λi. In this situation, one
says that the fermionic zero modes λi have been soaked up or saturated by the
interaction (4.3).
From the discussion above, the calculation of the contribution of a D-instanton
to the effective action can be roughly split into three distinct steps. First, one

4Here and in the following, we use an index E for quantities associated with a D-brane
instanton, as in [39]. This notation stems from the fact that D-instantons are Euclidean D-
branes.

5As SintE is an ordinary number, the number of Grassmannian variables in each individual
term in SintE must be even.
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specifies the actual instanton configuration. This includes identifying the cycle
it wraps in the compactification manifold, its position relative to other D-branes
in the model and any world-volume gauge flux that may be present on the in-
stanton. In a second step one can then identify the different types of zero modes
that appear on the instanton. Finally, the string scattering amplitudes in the
given background must be evaluated to explicitly determine the couplings (4.3).
For later use, let us simply note at this point that instanton corrections to the
superpotential involve string theory amplitudes only up to one-loop order [34].
Nevertheless, the final step is generally the most involved from a computational
perspective. Once the types of zero modes have been identified it is however often
possible to see directly which type of string worldsheets can contribute to which
types of couplings between the zero modes [34]. In particular, it can often be
determined whether or not all fermionic zero modes can in principle be soaked
up via couplings of the form (4.3) without having to explicitly evaluate the cou-
plings. For many phenomenological purposes it is sufficient to know that a term
of the form (4.4) is induced, without requiring the exact form of the prefactor
Φ12. Therefore it is often only checked whether an interaction as in (4.3) is gener-
ically allowed, and then the interaction is assumed to be present without working
out the explicit scattering amplitudes. Throughout this thesis, we will follow this
approach. However, it is important to remember the caveat that the interaction
term (4.3), and hence the entire instanton contribution, can in principle still van-
ish if an unfortunate cancellation between the contributing scattering amplitudes
takes place.
Let us now turn to the types of zero modes that can appear, following [34, 152].
For definiteness we focus on the case of a Euclidean D3, or E3, instanton wrapped
on a non-trivial 4-cycle DE in a type IIB orientifold. Regardless of the geome-
try of DE, one always obtains a set of zero modes that can be identified as the
Goldstinos due to the breaking of super-Poincaré invariance by the introduction
of the instanton. These zero modes are known as the universal zero modes. On
the bosonic side, they are simply given by the coordinates xµ of the instanton in
4-dimensional space. The number of fermionic zero modes depends on the number
of supersymmetries that are broken by the instanton. If the instanton is placed
on an arbitrary cycle, it will generically break supersymmetry completely, and
one obtains 8 fermionic zero modes corresponding to the 8 broken SUSY genera-
tors [34]. However, just like a spacetime-filling D-brane a D-instanton will leave
an N = 1 supersymmetry unbroken if it fulfills the calibration conditions (2.33)
and (2.34). In this case one speaks of a 1/2-BPS instanton, and generically obtains
4 universal fermionic zero modes.
Due to its localisation in spacetime an instanton actually breaks a different com-
bination of supersymmetry generators than a spacetime-filling D-brane wrapped
on the same cycle [34]. To be precise, two of the 4 universal fermionic zero modes
of a 1/2-BPS instanton, conventionally denoted by a spinor θα, can be related to
the generators of the 4-dimensional N = 1 supersymmetry algebra which remains
unbroken after the introduction of the spacetime-filling D-branes. The path in-
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tegral factor
∫
d2θ corresponding to these zero modes can therefore be identified

with a part of the usual superspace measure of the 4-dimensional N = 1 effective
action [34]. The other two universal fermionic zero modes of a 1/2-BPS instanton
are usually denoted by τ̄ α̇. Depending on the geometry of the instanton cycle
DE, some of the universal fermionic zero modes can be removed by the orientifold
projection. For a single instanton one distinguishes two distinct cases, known as
U(1) and O(1) instantons6. A U(1) instanton is characterised by a cycle DE which
is not invariant under the orientifold involution σ. Of course, one must strictly
speaking consider instanton-image-instanton pairs in this case in order to obtain a
well-defined orientifold model. None of the universal zero modes are projected out
in the case of a U(1) instanton, which in particular means that the τ̄ modes must
be soaked up by a suitable interaction in order for the instanton to contribute to
the low energy action. This difficulty is avoided for O(1) instantons, for which
the τ̄ modes are projected out by the orientifold projection. An instanton is of
type O(1) if the cycle DE is invariant under the orientifold action in the sense
that σ(DE) = DE. In the following, we will mostly focus on O(1) instantons as
they are generically more likely to be relevant for the low energy phenomenology
than U(1) instantons and in addition admit a clearer F-theory uplift.
The fact that a 1/2-BPS instanton breaks only two of the 4-dimensional super-
symmetry generators θα, θ̄α̇ means that it can only contribute to terms in the
effective action which are integrated over only half of superspace. In other words,
these are the holomorphic quantities of an N = 1 supersymmetric theory, namely
the superpotential [34]

SW =
∫
d4xd2θW (Φ) (4.5)

and the gauge kinetic function

Sgauge =
∫
d4xd2θf(Φ)tr(WαWα). (4.6)

Corrections to non-holomorphic quantities like the Kähler potential or D-terms
are given by terms which are integrated over the full N = 1 superspace and thus
involve the integral measure

∫
d2θd2θ̄. Such corrections can therefore be induced

only by non-BPS instantons, which break supersymmetry completely. Such non-
BPS instantons of course also generically include 4 additional fermionic zero modes
τα, τ̄ α̇. These must again be soaked up by suitable interactions or projected out
by the orientifold action in order to obtain a non-vanishing correction. Further
comments regarding corrections from non-BPS instantons as well as additional
references are given in [34]. All instantons appearing in the remainder of this
thesis will be taken to be 1/2-BPS instantons, although it will be obvious that
many results can also be easily carried over to the non-BPS case.

6This can also be generalised to stacks of multiple instantons. In this case also the possibility
of symplectic Chan-Paton groups arises and the different cases are referred to as U(N), O(N)
and Sp(N) instantons [34]. However, in this thesis we will not consider multi-instanton effects
and will stick to the case N = 1.
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To identify additional instanton zero modes, recall that zero modes are given
by the massless fields which propagate on the world-volume of the instantonic
D-brane. As already briefly discussed in section 2.2.3, a set of bosonic fields
and their fermionic superpartners can be associated to deformations of the brane
world-volume. Such fields remain massless if the associated deformations leave the
calibration conditions (2.33) and (2.34) intact [17]. In this case they are referred
to as deformation moduli resp. modulini. Note that the universal zero modes
discussed above fall exactly into this category, corresponding to deformations of
the instanton in the external 4-dimensional spacetime. Additional moduli and
modulini may arise from deformations of the internal cycle DE. The number of
bosonic and fermionic zero modes that arise in this manner is related to the Hodge
numbers h2,0(DE) resp. h2,0

± (DE) in the case of E3-instantons [152]. Further
massless fields are given by the Wilson line moduli of the instanton world-volume
gauge field and their fermionic superpartners. These fields can be viewed as
arising from a Kaluza-Klein expansion of the gauge field and are counted for E3-
instantons by h1,0(DE) resp. h1,0

± (DE) [152]. This completes the specification
of the zero modes which can appear on isolated U(1) or O(1) instantons, i.e.
instantons which do not intersect any other spacetime-filling or instantonic D-
branes.
If the instanton intersects another D-brane, further massless modes appear at
the intersection. Microscopically, they can be understood as arising from strings
stretching from the instanton to the D-brane, which shrink to zero size and lead to
massless states at the intersection locus. Note that in particular zero modes can
appear at the intersection locus between two instantons, for example at the inter-
section between a U(1) instanton and the associated image instanton [34]. How-
ever, the zero modes that arise at intersections between instantons and spacetime-
filling D-branes will be of more interest to us in the following. This is because such
zero modes are charged with respect to the gauge group of the spacetime-filling
D-brane, which is visible in four dimensions. They are therefore also known as
charged zero modes, in contrast to all the previously discussed zero modes which
are uncharged with respect to the 4-dimensional gauge group.
Let us schematically denote the charged fermionic zero modes between the chosen
instanton and a stack of spacetime-filling D-branes by λAi, where A labels the
different D-brane stacks and i the different zero modes at each intersection. The
interaction terms in the effective instanton action involving λAi then take the
schematic form [34]

SintE ⊃
∫
λAiΦ(Ai)(Bj)λBj. (4.7)

It can be shown that such interactions are always induced in such a way that the
overall term (4.7) is gauge invariant [34]. As before, we focus on the case where
the visible gauge group due to the spacetime-filling D-branes is U(NA). Then if
qAi denotes the charge of λAi with respect to the diagonal U(1) on stack A, the
operator Φ(Ai)(Bj) carries charges (−qAi,−qBj) with respect to the diagonal U(1)s
on the two brane stacks. Φ(Ai)(Bj) can be seen as originating from a charged matter
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field localised at the intersection of the brane stacks A and B [34]. Performing
the path integral over λAi and λBj and assuming that all other zero modes are
also saturated by appropriate interactions one obtains a contribution to the low
energy action of the form

S(4d) ∼
∫
d4x d2θ

∏
(Ai,Bj)

Φ(Ai)(Bj) exp[−SclE ]. (4.8)

Although each matter field Φ(Ai)(Bj) is charged, it is possible that the product
appearing in (4.8) is neutral with respect to U(1)A. This can happen if the zero
modes between the instanton and the D-brane can be grouped into pairs of op-
posite charge. In other words, this can happen if and only if the net chirality of
the zero modes at the instanton-brane intersection is zero. In the following we
will be mostly interested in the intersection between an E3-instanton on DE and
a stack of spacetime-filling D7-branes on DA, in which case the net chirality is
measured by the integral IAE of section 3.1.2. Note that if the net chirality IAE is
non-zero, the classical instanton action SclE also transforms under gauge transfor-
mations of U(1)A, so that the overall term (4.8) is gauge invariant. However, as
discussed above the U(1) symmetries of the low energy action are spontaneously
broken when the fields in the instanton action are fixed around a certain vacuum
value, so that exp[−SclE ] in (4.8) is viewed as a constant. In particular, charged
instantons can thus give rise to effective couplings that would perturbatively be
forbidden by the U(1) symmetries of the action, as already mentioned above.

4.1.2 The importance of instanton gauge flux

The previous chapters have shown that a type IIB compactification with D-branes
but no extra structure in general leads to a low energy effective action involving
a number of massless scalar fields or moduli. As these scalars often appear in
the couplings of the matter and gauge fields, we will only obtain experimentally
testable predictions for the visible couplings if the moduli fields are fixed to certain
values in some way. This problem is known as the problem of moduli stabilisa-
tion, and in principle affects all types of string compactifications. Nevertheless,
specifically in the type IIB setting significant process has been made and a certain
standard approach to moduli stabilisation has emerged. As we will briefly review
in the following, this approach to moduli stabilisation relies heavily on the exis-
tence of certain non-perturbative contributions due to E3-instantons. Throughout
this chapter, we will use the notation introduced in section 3.1 for the bases of
the cohomology groups on the Calabi-Yau orientifold X3, the expansions of the
various fields and Poincaré duals of the brane divisors into these bases and for the
relevant intersection numbers.
The moduli in a type IIB orientifold compactification with D7-branes can be
grouped into 3 distinct groups [49, 62, 146], comprising of the complex structure
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moduli zM , the D7-brane moduli and the Kähler moduli7 Tα of (3.22). As dis-
cussed in [53,62], the bulk and brane moduli spaces are actually somewhat entan-
gled due to the fact that the brane calibration conditions (2.33) and (2.34) depend
on the bulk fields. To avoid these difficulties, we focus on the stabilisation of the
bulk moduli and assume for simplicity that the D7-branes are wrapped on rigid
divisors without Wilson lines, so that no brane moduli arise.
The standard approach to type IIB bulk moduli stabilisation relies on two crucial
ingredients, namely bulk fluxes and E3-instantons. As noted in [195], non-trivial
bulk fluxes of H3 = dB2 or F3 = dC2 induce a tree-level superpotential of the
form

WGKV ∝
∫
X3

Ω3 ∧ (F3 − τH3). (4.9)

This superpotential is known as the Gukov-Vafa-Witten superpotential and clearly
depends on the complex structure moduli zM through the holomorphic (3, 0)-form
Ω3. For suitably chosen fluxes, this superpotential can stabilise the complex struc-
ture moduli and the dilaton τ completely8 [196]. However, the characteristic no-
scale structure of the tree-level IIB Kähler potential [49,146] shows that at leading
order the perturbative superpotential leaves the Kähler moduli unfixed [18]. This
can be remedied by including one (or several) E3-instantons9, whose classical ac-
tion SclE explicitly depends on the Kähler moduli. Due to their perturbative shift
symmetries, the Kähler moduli can in fact only enter the effective action through
the exponential of the classical instanton action [34]. Therefore, the overall effec-
tive superpotential can be written schematically as [11,18]

W = WGKV (z, τ) +
∑
E

AE(z, τ)e−SclE , (4.10)

where the prefactors AE encode the string one-loop contribution due to SintE

in (4.2). Note that a superpotential similar to (4.10) can also be induced by
gaugino condensation on D7-branes [18]. However, as noted in [11] this can lead
to a dependence of the prefactors AE on the Kähler moduli, which would com-
plicate the evaluation of the minima of the potential. In comparison with the
generation of non-perturbative effects via gaugino condensation, E3-instanton ef-
fects also give more flexibility as the instantons can be placed on divisors which
do not correspond to spacetime-filling D7-branes. Therefore, we focus in the fol-
lowing on the case where the non-perturbative contributions to the superpotential
are generated by E3-instantons.

7In compactifications with h1,1
− 6= 0 one additionally obtains the Ga of (3.21). As will

become apparent below, the Ga behave very similarly to the Tα from the point of view of
moduli stabilisation, which can be traced back to the fact that they both involve axionic scalars
with perturbative shift symmetries. In the general discussion of moduli stabilisation we will
therefore slightly inaccurately refer to both Tα and Ga as ’Kähler moduli’.

8It also leads to a non-trivial warp factor, which is important in showing that the compacti-
fication can lead to a 4-dimensional de Sitter vacuum [18].

9In order to contribute to the low energy action the instantons must of course have the correct
zero mode structure. This can be achieved e.g. for O(1) instantons wrapped on rigid divisors
with no Wilson line moduli, as discussed in the previous section.
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To find the vacua in the presence of the superpotential (4.10), the authors of [11,18]
use a two-step approach and assume that the Gukov-Vafa-Witten superpotential
can be used to first stabilise the complex structure moduli at a high mass scale. In
the second step, (4.10) can then be viewed as a function of the Kähler moduli only,
with WGKV and the AE treated as constants. The minimisation of the resulting
F-term potential with respect to the Kähler moduli was explicitly discussed in [11,
18], where it was shown that consistent minima can indeed be found. In particular,
the authors of [11] showed that, after taking perturbative α′ corrections to the
Kähler potential into account and choosing suitable instanton configurations, the
Kähler moduli can be stabilised in such a way that the Calabi-Yau volume V
is exponentially large. This is important because it shows that it is possible
to remain within the domain of validity of the supergravity approximation, as
required for the self-consistency of the minimisation procedure. For completeness,
let us briefly mention that the moduli stabilisation proposal presented here leads to
a supersymmetric vacuum with a negative cosmological constant, which therefore
describes an anti-de-Sitter spacetime. In [18] it was proposed that this can be
uplifted to a phenomenologically more interesting de Sitter vacuum by introducing
a number of anti-D3-branes. These anti-branes break supersymmetry completely
and add a positive term to the potential. The fact that the bulk fluxes introduce
a non-trivial warp factor is crucial in order to show that this positive contribution
to the potential energy can be made small enough that the original vacuum is not
destabilised [18].
The general analysis reviewed above shows that it is in principle possible to sta-
bilise the moduli in a phenomenologically acceptable regime using the F-term
constraints obtained from the superpotential(4.10), provided that suitable instan-
ton contributions to the superpotential are present. However, the authors of [37]
noted that this assumption is more problematic than it seems at first sight in mod-
els with a phenomenologically viable chiral matter sector. The problem arises from
the fact that in light of the chirality formulae given in section 3.1.2 a chiral matter
sector requires non-trivial fluxes to be present on the spacetime-filling D7-branes
hosting the visible sector. Such fluxes lead to a gauging of the Kähler moduli
with respect to the diagonal U(1)s on the D7-branes, as described by (3.38). It
was shown in [37] that the classical action of the simplest E3-instantons which
would be necessary to stabilise the Kähler moduli describing the volume of the
D7-brane divisors DA would involve a combination of the Kähler moduli with
non-trivial gauging. As discussed at the end of section 4.1.1, this means that the
prefactor of exp[−SclE ] in the effective superpotential must involve charged mat-
ter fields Φ(Ai)(Bj). These matter fields must in particular be charged under the
visible sector gauge group in order to cancel the charge of the exp[−SclE ] factor.
In order for the visible gauge group to remain unbroken the vacuum expectation
value of these charged fields must therefore vanish. However, this means that
the instanton does not contribute to the effective superpotential for the Kähler
moduli which remains after all other fields in (4.10) have been stabilised. As a
consequence, the Kähler moduli of the D7-brane cycles will not be fixed by the
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resulting F-term constraints [37]. On the other hand, the gauging of the Tα leads
to non-trivial D-term constraints as in (3.42). The authors of [37] argued that
it is still possible for all moduli to be stabilised by a suitable interplay between
the F- and D-term constraints. However, this stabilisation mechanism is necessar-
ily much more complicated than the purely F-term-based mechanism envisioned
in [11, 18]. Furthermore, the D-terms typically drive the Kähler moduli to the
boundary of the Kähler cone, which means that a certain cycle collapses to zero
size and higher order α′ corrections may become important [37].
As noted in [39], the problems in reconciling moduli stabilisation with a chiral
matter sector can be alleviated by taking into account the fact that gauge flux
can be switched on not only on the D7-branes but also on the E3-instantons. As
we will review below, the instanton fluxes contribute to the charge of the instanton
with respect to the visible U(1)s. In particular, by switching on suitable instanton
flux it is possible to obtain gauge-invariant configurations even for instantons
involving the Kähler moduli associated with the D7-brane cycles. This means that
such fluxed instantons can appear in the effective superpotential(4.10) without
necessarily involving charged matter fields in the prefactors. This therefore once
again opens up the possibility of fixing the moduli completely via the F-terms and
avoiding the problems discussed in [37]. To verify these claims we will explicitly
analyse the superpotential contribution of a given instanton with non-vanishing
world-volume fluxes, following the presentation of [39].
The first step is to specify which type of instanton flux may be switched on. Note
that as the gauge flux is a purely internal mode in the sense that it does not depend
on the 4-dimensional spacetime, the orientifold projection acts on instanton flux in
exactly the same manner as it would on gauge flux of a spacetime-filling D7-brane
wrapping the same divisor [39]. In other words, flux on a U(1) instanton-image-
instanton pair wrapped on the divisors DE, D′E must obey

F̃E′ = −σ∗F̃E. (4.11)

Here we are using the notation10 that was introduced in (3.15) for the gauge
invariant combination of fluxes and the Kalb-Ramond field. For an O(1) instanton
on a single invariant divisor, the flux must be purely orientifold-odd such that
F̃E = −σ∗F̃E. Furthermore, the instanton fluxes are subject to the Freed-Witten
quantisation condition

F̃E + ι∗B+ + 1
2c1(KDE) ∈ H2(DE,Z), (4.12)

in full analogy with D7-brane fluxes. As emphasised in [39], this constraint can
be particularly restrictive for O(1) instantons. The reason for this is that the
fluxes are restricted to be orientifold-odd, so that a possible half-integer11 B+

10As we focus on the case of single instantons and do not consider stacks, we may drop the
subscript that was used to label the generators of the gauge group.

11Recall from section 3.1.1 that B+ can essentially only take the values 0 or 1/2.
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contribution can only be cancelled if the first Chern class of the instanton divisor
has some odd periods. Conversely, if B+ = 0 then the term c1(KDE) must be
even. In practice, the Freed-Witten condition can rule out a significant number
of candidate instanton divisors which would otherwise be expected to contribute
to the superpotential [39,50,197].
Next let us consider how the introduction of non-trivial fluxes affects the fermionic
zero mode structure. For simplicity, let us focus on instantons on rigid divi-
sors with no deformation or Wilson line moduli. This means we must consider
only the universal zero modes. As we want the instanton to yield a superpo-
tential contribution, no θ̄ zero modes should appear and the instanton should
remain 1/2-BPS. This means that the flux must satisfy both F- and D-term su-
persymmetry conditions. The F-term condition requires F̃E ∈ H1,1(DE), how-
ever this is trivially satisfied as we have assumed DE to be rigid12 and thus
H2,0(DE) = H0,2(DE) = 0 [39]. The D-term condition (2.33) can be written
as [39,62]

∫
DE

J ∧ F̃E = 1
2

∫
D+
E

J ∧ F̃E,+ + 1
2

∫
D−E

J ∧ F̃E,− = 0. (4.13)

As in section 3.1, superscripts ± are used to indicate the orientifold-even and
-odd components of the gauge flux and the instanton divisor. Equation (4.13) is
the analogue of the D-term (3.42) induced by gauge flux on a spacetime-filling
D7-brane. Note that for an O(1) instanton this condition is trivially fulfilled, as
in this case D−E = F̃E,+ = 0. In other words, an O(1) instanton on a rigid divisor
will remain 1/2-BPS for any orientifold-odd flux that is switched on, regardless
of the value of the Kähler moduli [39]. Furthermore, as the configuration of O(1)
instanton with flux F̃E,− is orientifold-invariant as a whole, the orientifold action is
unchanged from the fluxless case. In particular, the τ̄ modes will still be projected
out [39]. Therefore, in the absence of deformation or Wilson line modulini an O(1)
instanton with orientifold-odd flux can contribute to the effective superpotential,
provided that any charged fermionic zero modes that may be present can be
soaked up by suitable interaction terms. The expectation that the only effect
of the introduction of instanton flux on the fermionic zero mode spectrum is a
possible lifting of deformation modulini was confirmed by a careful analysis of the
fermionic part of the instanton action in [198].
Having established that fluxed instantons can give rise to terms in the effective
superpotential, let us now analyse how the fluxes affect the explicit form of the
instanton contribution. The fluxes appear in the classical instanton action SclE ,
which is given (up to an overall sign originating from the different Wick rotation)
by the sum of the Chern-Simons and Dirac-Born-Infeld actions for a spacetime-
filling D3-brane given in (2.32) and (2.27). The dependence of the instanton

12More generally, in the non-rigid case switching on flux can lift zero modes corresponding
to deformations of the instanton divisor [198]. Roughly speaking, only those deformations can
remain unobstructed which do not change the Hodge type of the instanton flux.
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action on the 4-dimensional fields can be derived in a straightforward manner
using techniques similar to those used in the case of spacetime-filling D7-branes
in [62]. More precisely, we use the calibration condition (2.33) valid for a 1/2-
BPS instanton and insert the expansions (3.7) of the bulk fields and (3.15) of the
instanton flux into the action. In the case of a U(1) instanton, it is clear that as
they form equivalent descriptions of the same physics we must add the actions of
instanton and image instanton and divide by 2. As discussed in [40], it is actually
necessary to include this factor of 1/2 even for O(1) instantons on a single invariant
divisor. This takes into account the fact that the physical instanton couplings
involve intersections on the orientifold quotient, which are only half as large as
the intersections computed on the threefold X3. In the case where the instanton
can be seen as arising during the recombination of an instanton-image-instanton
pair it is also clear that we must divide the action of the O(1) instanton by 2
to maintain consistency over the recombination process. As in section 3.1.1 it is
helpful to introduce the even and odd combinations of the instanton cycle and its
orientifold image for a U(1) instanton

D+
E = DE +D′E = Cα

E ωα, D−E = DE −D′E = Ca
E ωa. (4.14)

For an O(1) instanton, we follow [40] and choose D+
E = DE = Cα

Eωα. Further-
more, as in (3.13) we distinguish between fluxes that can be written in terms of
forms that arise by pullback from X3 to DI and variable fluxes in the orthogonal
complement

F̃E = F̃E,αωα + F̃E,aωa + F̃Ev . (4.15)

The integrals over the instanton cycle can then be evaluated using the rela-
tion (3.5) and the intersection numbers (3.6). Putting all the components to-
gether, one obtains [39]

SclE = π
(
Cα
E(Tα + i∆E

α ) + iCa
E∆E

a + i∆E
v

)
,

∆E
α = KαbcGb F̃E,c + τ

2

(
KαbcF̃E,b F̃E,c +KαβγF̃E,β F̃E,γ

)
,

∆E
a = KabγGb F̃E,γ + τ Kabγ FE,b F̃E,γ,

∆E
v = τ

∫
DE
F̃Ev ∧ F̃Ev .

(4.16)

A crucial aspect of (4.16) is that in the presence of instanton fluxes F̃E the
action involves the moduli Ga. Under a gauge transformation of a U(1) symmetry
associated with a stack of D7-branes, both Ga and Tα transform due to (3.37)
and (3.38). Using the charges (3.35) and (3.36), on finds that the overall variation
of the instanton action under a gauge transformation AA → AA + dΛA of the
diagonal U(1) on brane stack A takes the form

e−SE → e−iqAΛAe−SE , (4.17)
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where the charge is given by [39]

qA = −1
2NA

(
KαbcCα

E C
b
A (FA,c −FE,c)

+ KαβγCα
E C

β
A F̃A,γ −KabγCa

EC
b
AF̃E,γ

)
.

(4.18)

This implies that for a suitable choice of flux the instanton can be gauge invari-
ant even if the action of an unfluxed instanton on the same divisor DE would
transform non-trivially. If the instanton flux is chosen in such a way that qA = 0,
the superpotential contribution of the instanton therefore does not necessarily in-
volve matter fields charged under the gauge group on the brane stack DA. In
particular, the contribution of the fluxed instanton to the effective superpotential
for the Kähler moduli obtained after the other moduli have been stabilised has a
chance of being non-zero, despite the fact that the vacuum expectation values of
the charged matter fields must vanish13. Fluxed instantons may therefore provide
a way around the problems noted in [37] and can make it possible to stabilise
all Kähler moduli using F-term constraints even in models with a chiral matter
sector. Let us emphasise that cancellation of the instanton charge qA depends
crucially on the existence of orientifold-odd 2-forms on X3, and in particular on
the appearance of geometric gauging due to non-zero orientifold-odd wrapping
numbers Ca

A for the D7-brane divisors DA. Therefore, the discussion of [37] re-
garding the complications in Kähler moduli stabilisation in models with chiral
charged matter remains valid for compactifications with H1,1

− (X3) = 0.
From the general discussion of section 4.1.1, we expect that instanton contribu-
tions which do not involve any matter fields charged under U(1)A can arise only
if the net chirality of the instanton zero modes with respect to U(1)A vanishes.
Note that zero modes with a non-zero U(1)A charge can arise at the intersection
DE∩D′A between the instanton and the image brane stack, as well as at DE∩DA.
The net number of zero modes with U(1) charges (−1E, 1A) at the locus DE ∩DA

is given by the chiral index IEA defined in (3.28) [50]. Similarly, IEA′ counts the
zero modes with charges (−1E,−1A) localised at DE ∩D′A. Combining the two,
and taking into account that the number of zero modes is multiplied by NA for
a stack of D7-branes14, one obtains the net U(1)A chirality of the charged zero
modes [39]

IEA − IEA′ = 1
2NA

(
KαbcCα

E C
b
A (F̃A,c − F̃E,c)

+KαβγCα
E C

β
A F̃A,γ −KabγCa

EC
b
AF̃E,γ

)
.

(4.19)

13Note that even if the instanton is uncharged, vectorlike pairs of charged zero modes can
still cause pairs of charged matter fields with opposite charges to appear in the superpotential
contribution. Therefore the vanishing of the instanton charge in itself does not guarantee that it
contributes to the effective superpotential for the Kähler moduli, and the absence of vectorlike
pairs of charged zero modes must also be explicitly checked [39].

14This factor can be viewed as arising from a trace over the gauge indices, noting that the
generator of U(1)A is simply the NA ×NA unit matrix.
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This equation is valid for U(1) instantons, with [DE] = 1
2C

α
Eωα+ 1

2C
a
Eωa. For O(1)

instantons with [DE] = Cα
Eωα the zero modes at the the intersections DE∩DA and

DE ∩ D′A should be identified, so the physical number of zero modes is actually
1
2(IEA−IEA′). The net result for an O(1) instanton is still given by the expression
on the right side of (4.19) with Ca

E = F̃E,α = 0. Note that for both U(1) and
O(1) instantons the net chirality is precisely the negative of the U(1)A charge of
the classical instanton action obtained in (4.18). The minus sign is as expected,
because it ensures that the charge of exp(−SE) in the path integral∫

D{λAi}e−SE (4.20)

exactly cancels the charge of the zero modes λAi. As expected, a vanishing net
charge of the classical instanton action is therefore equivalent to zero net chirality
of the charged instanton zero modes. In other words, from a microscopic perspec-
tive flux which leads to an uncharged instanton actually lifts some of the charged
fermionic zero modes at the instanton-brane intersection.

4.1.3 Moduli stabilisation with fluxed D3-brane instantons

In the discussion of the preceding sections, we have largely focused on the con-
tribution of a single arbitrary but fixed instanton configuration. From the field
theory path integral picture discussed around (4.1), it is clear that the overall non-
perturbative D-instanton correction to the 4-dimensional effective action involves
a sum over all possible instanton configurations15. The instanton sum in particu-
lar involves a sum over the number nI of instantons. However, contributions from
configurations with multiple instantons are clearly suppressed ever more strongly
with growing nI . In the following we will therefore focus on the single-instanton
sector. In the spirit of [11, 18], we assume that the dilaton and complex struc-
ture moduli are stabilised by bulk fluxes at a high scale. The remaining effective
superpotential for the Kähler moduli can then be written in the form [39]

W = W0 +
∑
E, F̃E

AE(F̃E) e−πCαETα−q̃EaGa ,

q̃Ea = iπKαab
(
Cα
E F̃E,b + Cb

E F̃E,α
)
.

(4.21)

Here the sum over E is effectively a sum over all the possible divisors DE ⊂ X3
on which the instanton may be wrapped. For every fixed instanton geometry we
then sum over the lattice of possible instanton fluxes FE that are compatible with
the Freed-Witten quantisation constraint (4.12). As in [39], we have absorbed the
part of the instanton action (4.16) that is quadratic in the fluxes into the constants
AE(F̃E).

15Of course, many of the instanton configurations that could in principle be considered are
expected to involve fermionic zero modes that are not soaked up, so that their contribution to
the effective action vanishes.
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The fact that charged matter fields are expected to have vanishing vacuum ex-
pectation values in order to leave the visible gauge group unbroken means that
the sum over fluxes in (4.21) actually runs only over the sublattice of instanton
fluxes for which the instanton charge of equation (4.18) vanishes. To be precise,
the charge qA has to vanish simultaneously for all indices A which correspond to
a stack of D7-branes hosting a visible gauge group. Whether suitable instanton
configurations which achieve this exist at all depends on the intersection numbers
of X3 as well as on the chosen configuration of D7-brane divisors and fluxes. Let
us also emphasise once more that the vanishing of the instanton charge in (4.18)
is only a necessary but not sufficient condition for the instanton contribution
to the effective superpotential for the Kähler moduli to be non-vanishing. The
contribution of an uncharged instanton can still vanish due to the appearance of
vectorlike pairs of charged zero modes with zero net charge, or indeed due to other
uncharged zero modes such as the universal τ̄ modes for U(1) instantons or zero
modes associated with deformations and Wilson lines. Nevertheless, for a generic
orientifold X3 with a suitable D7-brane configuration it is natural to expect that
the sum over instanton fluxes and divisors in (4.21) will include some instantons
with the right zero mode structure to contribute to the superpotential.
It was argued in [39] that a non-vanishing instanton contribution is only possible
for divisors with Cα

E 6= 0. In other words, the classical instanton action (4.16)
must always depend on the Kähler moduli Tα. This is because an instanton
independent of Tα could lead to an effective superpotential for the Ga which
survives in a decompactification limit Tα →∞, in which all internal volumes are
taken to infinity. However, this would be in contradiction with the fact that there
is no superpotential in the decompactified 10-dimensional theory [39]. Therefore,
instantons with Cα

E = 0 must automatically have some fermionic zero modes which
cannot be soaked up by any interactions. As noted in [199], such behaviour is
expected of U(1) instanton-image-instanton pairs whose geometry does not allow
them to recombine into a single invariant O(1) instanton (see also [152]). It is thus
natural to expect that Cα

E = 0 describes a case in which instanton recombination
is impossible, although we will not attempt to check this explicitly.
Let us now consider the minima of the effective scalar potential that arise in the
presence of suitable instanton contributions as in (4.21). We will follow [11,18,39]
and consider vacua with unbroken supersymmetry. This amounts to requiring the
D-terms DA of (3.42) and the F-terms Fi ≡ (∂i + Ki)W, i = Ga, Tα to vanish
in the vacuum. Note that in the case where h1,1

− (X3) = 0, no moduli Ga appear
and (4.21) reduces to the superpotential considered in [11, 18]. In this situation
supersymmetric Anti-de-Sitter vacua with all moduli stabilised were shown to
exist16 if W0 < 0. In the following we will discuss how this picture changes upon
allowing for h1,1

− (X3) 6= 0.

16To be precise, such vacua were shown to exist provided suitable instanton contributions are
present, and as discussed above this proviso is generically not fulfilled in models with h1,1

− (X3) =
0 and a chiral matter spectrum [37].
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When considering compactifications with h1,1
− (X3) 6= 0, (4.21) gives rise to two

types of F-terms corresponding to the fields Tα and Ga. Using the partial deriva-
tives of the Kähler potential given in (3.24), one can directly evaluate the Kähler
covariant derivatives of the superpotential to obtain [39]

FTα = − vα

2VW − π
∑
E, F̃E

Cα
EAEe

−πCαETα−q̃EaG
a

, (4.22)

FGa = − i

2VKαabv
αbbW −

∑
E, F̃E

q̃EaAEe
−πCαETα−q̃EaG

a

. (4.23)

As in [11, 18] we focus on vacua in which the vacuum expectation value 〈W 〉 of
the superpotential does not vanish. In order to discuss the moduli stabilisation
problem in such vacua it is sufficient to focus on the conditions obtained from
the vanishing of the F-terms. This is because the D-terms of17 (3.42) vanish
automatically if the F-terms are zero [39]. To check this explicitly using the
expressions (4.22) and (4.23), it is crucial to note that the instanton sum runs
only over flux configurations which cause the net instanton charge of (4.18) to
vanish. This implies [39]

Ca
Aq̃Ea = iπCα

E

(
KαabCa

AF̃A,b +KαβγCβ
AF̃A,γ

)
, (4.24)

which can be used to show that

〈W 〉 〈DA〉 ∝ −
(
KαabCa

AF̃A,b +KαβγCβ
AF̃A,γ

)
〈FTα〉 − iCa

A 〈FGa〉 . (4.25)

It was noted in [39] that this result is no coincidence. In fact, it is a specific
example of the general result that F- and D-term equations are always proportional
in vacua with non-vanishing superpotential vev [149,200]. This general result can
be most easily checked by performing a Kähler transformation K → K+log |W |2,
which is well-defined in the vicinity of the vacuum as long as 〈W 〉 6= 0.
As each of the equations 〈FTα〉 = 0 is linear in vα, it is clear that the real parts18

of this set of equations fix the Kähler moduli vα completely. This in turn fixes one
part of the chiral fields Tα, which according to (3.22) also involve the fields cα, ca
and ba. Let us assume for the moment that the fields ca and ba appearing in Ga are
fixed completely by the vanishing of 〈FGa〉, which will be checked explicitly below
for the simplest case involving only a single instanton. Then the vanishing of the
imaginary part of 〈FTα〉 effectively yields a set of linear equations for the axion
fields cα. Note that the number of axions cα that is fixed in this manner is given

17We consider vacua where the visible gauge group is taken to remain unbroken. This means
that the expectation values of any charged matter fields that may be present are zero, such that
also the additional contributions to the D-terms generated by the charged matter fields vanish
in the vacuum.

18Here we assume for simplicity that 〈W 〉 is real. The same discussion goes through in the
general case with complex 〈W 〉, one must simply be slightly more careful when referring to real
and imaginary parts of the equations.
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by the rank of the matrix Cα
E. In particular, some axions will in general remain

unfixed at this level because generically we expect that not all independent divisor
classes on X3 will lead to the right zero mode structure to host non-vanishing
instanton contributions. In the case where the Tα exhibit a non-trivial Stückelberg
gauging as in (3.38), some of the axions will be eaten up in the process by which
the U(1) symmetries become massive. The remaining axions are expected to be
fixed by subdominant contributions to the superpotential such as those associated
with multi-instanton configurations [38]. Some of the axions are thus expected
to be significantly lighter than the other stabilised moduli fields, which can have
interesting phenomenological consequences as discussed e.g. in [201]. Here we will
not discuss these axion-related effects any further and will simply assume that all
axion fields are stabilised once higher order effects are taken into account, fixing
the Tα completely.
In order for the supergravity approach used above to be self-consistent, we require
all Kähler moduli to be fixed in the interior of the Kähler cone so that no non-
trivial cycles of X3 shrink to zero size. To analyse the relevant conditions for
this, let us follow [39] and assume that the basis ωα is chosen in such a manner
that the Kähler cone corresponds to {vα > 0 ∀α}. Equation (4.22) then clearly
shows that a necessary condition for the vα to lie inside the Kähler cone is that
for every index α there must be an instanton contributing to the superpotential
with Cα

E 6= 0 [39]. Note that this is true regardless of whether h1,1
− (X3) = 0 or

not. The advantage of considering compactifications with h1,1
− (X3) 6= 0 and fluxed

instanton configurations is that the number of divisors that can contribute to the
superpotential (4.21) is enlarged, as the scope for finding uncharged instanton
configurations is increased. In this sense, non-trivial instanton fluxes play an
important role in making it generically possible for the vα to be stabilised inside
the Kähler cone in compactifications with orientifold-odd 2-forms [39].
The general ideas regarding moduli stabilisation with E3-instantons can be illus-
trated already in the simplest case in which only one instanton divisor contributes
to the superpotential (4.21). This case was considered in [38,39]. Taking 〈W 〉 < 0
as in [11, 18], the discussion above and the F-term (4.22) shows that the vα will
lie inside the Kähler cone if and only if19 the instanton divisor obeys Cα

E > 0 ∀α.
In other words, the instanton must be wrapped on an ample divisor. Of course,
the assumption that an instanton configuration on an ample divisor exists which
is uncharged with respect to all D7-brane gauge groups as required to contribute
to (4.21) is highly non-trivial. This is especially true in the case with h1,1

− (X3) = 0
in which no charges can be absorbed by instanton fluxes. However, let us assume
for the sake of the present argument that such configurations can indeed be found
in the given model by suitable choices of instanton flux. After inserting (4.22)
into (4.23), and noting that the term involving Tα can be cancelled in the case

19Actually, CαE < 0 ∀α is also possible as long as it is accompanied by a suitable shift of the
axions cα [39].
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where only a single instanton divisor contributes, one obtains

iπKαabCα
Eb

b =
∑
F̃E q̃EaAEe

−q̃EcGc∑
F̃E AEe

−q̃EcGc
. (4.26)

This shows that the Ga can be stabilised independently from the Tα. As noted
in [39], the quantity Kαabvα is proportional to the kinetic metric of the Ga and
must therefore be non-degenerate for all values of vα in the Kähler cone. This
guarantees that the imaginary part of (4.26) is sufficient to fix all moduli bb
provided the instanton divisor is ample and Cα

E > 0 ∀α. The real part of (4.26)
yields a set of equations for the axions ca, in analogy with the case of the axions
cα discussed above. The number of axions that are fixed in this manner is given
by the number of linearly independent vectors q̃Ec that appear as a consequence
of the sum over instanton fluxes in (4.26). As above, it is assumed that the
remaining axions are either eaten up by massive U(1) symmetries due to the
geometric Stückelberg mechanism or fixed at lower masses by subleading effects.
In this case the discussion presented here shows that it is in principle possible to
stabilise all moduli with vα inside the Kähler cone with just a single instanton,
generalising the results of [38] to the case with h1,1

− (X3) > 0. The success of
moduli stabilisation of course hinges upon the existence of a suitable instanton
configuration which gives rise to the required terms in the superpotential, and as
argued above we expect that it is easier to find such configurations if h1,1

− (X3) > 0
and one takes instanton fluxes into account.
Let us briefly mention one further aspect relating to the stabilisation of the axions
ca and cα that was pointed out in [39]. Namely, each axion which is unfixed will
have a superpartner that is tachyonic [202]. Note that this is not incompatible with
the stability of the superpartners as discussed above, because we are working in an
Anti-de-Sitter setting where tachyonic fields can still be Breitenlohner-Friedmann
stable. However, it is crucial that this stability is not destroyed by the uplift
mechanism that is used to uplift the vacuum to a configuration with 4-dimensional
Minkowski or de Sitter spacetime. This requirement can of course restrict the
uplift mechanisms that may be considered.
In this section we have seen that Euclidean D3-brane instantons can play an
important role for moduli stabilisation in type IIB orientifolds. However, only in-
stantons with the right zero mode structure can contribute to the effective super-
potential for the Kähler moduli. Especially in models with a chiral 4-dimensional
charged matter spectrum it can be difficult to achieve complete moduli stabilisa-
tion using only unfluxed instanton configurations. Instanton fluxes can help to
avoid these problems as they can lift both charged and uncharged fermionic zero
modes. This makes it crucial to take into account the different flux configurations
that can arise on the instanton. In other words, even after fixing the instanton
divisor it is necessary to consider the full instanton partition function including
the sum over all possible fluxes instead of focusing on just one fixed flux configu-
ration. In the following, we will discuss how similar effects arise in the F-theory
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setting, in which the role of the type IIB E3-instantons is taken over by M5-brane
instantons wrapped on vertical divisors.

4.2 Fluxed M5-instantons in F-theory and the
IIB limit

The study of instanton effects in M/F-theory was initiated by Witten [87], who
showed that M5-branes wrapped on 6-cycles of the compactification manifold con-
tribute to the effective superpotential in compactifications of M-theory to three
dimensions. Just like D-instantons in the type IIB case discussed above, the M5-
branes couple directly to axions, i.e. to scalar fields which enjoy a shift symmetry
at the perturbative level. These axions were identified by Witten as being the
scalars dual in three dimensions to the 3-dimensional vectors AΛ appearing in
the dimensional reduction (3.53) of C3. In order to describe the axionic coupling
directly, it is convenient to use a democratic formulation of the 11-dimensional
supergravity involving a 6-form field C6 in addition to C3. This democratic for-
mulation is discussed in more detail in appendix B. The fact that M5-branes form
magnetic sources for C3 is described by an electric coupling to C6, which appears
in the classical world-volume action of an instantonic M5-brane [40]

SM5 ⊃ 2π
∫
d6x

√
det g + 2πi

∫
C6. (4.27)

The duality between C6 and C3 is described by the fact that their field strengths
are related by ∗G7 = G4, mirroring the situation in the democratic formulation
of type IIB supergravity discussed in section 2.2.1. M5-brane instantons induce
interactions in the 3-dimensional effective actions which involve the factor e−SM5

times a one-loop determinant of the world-volume fields. As in the type II setting,
this one-loop determinant is independent of the Kähler moduli of the compactifi-
cation fourfold and the axionic scalars [87].
In this thesis we are primarily interested in an M-theory compactification on an
elliptically fibered fourfold Y4, which leads to a 4-dimensional effective theory in
the F-theory limit of vanishing fiber volume. The action of an M5-instanton stays
finite in the F-theory limit if and only if the divisor DM wrapped by the instanton
is a vertical divisor [87], and we focus on instantons on such vertical divisors in
the following. In other words, DM must be related to a divisor Db

M in the base
B3 by DM = π−1(Db

M), where π is the projection defining the elliptic fibration. If
the model admits a smooth type IIB limit, the M5-instanton on DM is expected
to be dual to a type IIB E3-instanton wrapped on Db

M [87].
Despite the fact that it is possible to argue on general grounds that the low en-
ergy effects of M5-instantons are similar to those of D-brane instantons in type
II string theory, the treatment of M5-instantons is somewhat more complicated
at the technical level. The underlying reason for this is the fact that the funda-
mental quantum theory behind the 11-dimensional supergravity approximation to
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M-theory is not explicitly known. This is in contrast to the type II case, where
aspects such as the instanton zero mode spectrum and interactions between the
zero modes can be studied directly by quantising open strings and computing
string scattering amplitudes. This means that the zero mode spectrum of M5-
brane instantons has to be determined by more indirect methods, for example
by studying the fermionic part of the world-volume action. By studying a pos-
sible world-volume anomaly, Witten was able to determine that different types
of uncharged fermionic zero modes are counted by the holomorphic cohomology
groups Hp,0(DM). Despite the fact that the world-volume action is rather com-
plicated due to the existence of a self-dual 2-form field which makes a purely
Lagrangian description problematic [203,204], significant progress towards under-
standing zero modes in the presence of background fluxes has been made by study-
ing the fermionic action [205–210]. The effects of instanton fluxes and charged
zero modes have been studied using an approach based on the IIB-F-theory du-
ality in [152, 198]. By computing and matching the cohomology groups of DM

and Db
M in specific examples, the authors of [152] were able to show how exactly

the neutral zero mode spectrum is uplifted from IIB to F-theory. Further work
on instanton zero modes in M/F-theory using techniques based for example on
F-theory-heterotic duality or anomaly inflow arguments can be found in [211–216].
In this section, which is largely based on reference [40], we aim to use the duality
with E3-instantons on Db

M to derive information about M5-instantons on the
vertical divisor DM . Throughout, we will attempt to clarify how these results can
be obtained or interpreted in a purely F-theoretic setting without making recourse
to the type IIB picture. It is clear that, just as in type IIB, the full contribution
to the low energy action due to M5-instantons will involve calculating the full
instanton partition function. This partition function, which can be split into a one-
loop quantum part and a classical part involving a sum over all instanton fluxes in
the classical instanton action, is the object of study in subsection 4.2.1. Due to the
complicated form of the instanton action the evaluation of the partition function
is highly non-trivial. We follow the prescription of Witten [217], who suggests that
the partition function is given by one of the factors obtained from holomorphic
factorisation of an auxiliary partition function derived from a simpler auxiliary
instanton action. Identifying the correct factor directly using the prescription
of [217] is rather complicated, however we will see in subsection 4.2.2 that a
match with the type IIB partition function allows us to identify this factor in an
elegant way. In fact, we will see that the prescription that emerges for picking
the correct factor can be formulated directly in the M-theory language, so that
it can be used to calculate the M5-instanton partition function without requiring
explicit knowledge (or existence) of the type IIB limit.
In the following subsections, we focus on charged chiral zero modes in the presence
of non-trivial G4 flux. In subsection 4.2.4, we will attempt to construct certain
integrals which may be used to explicitly check for the existence of chiral charged
zero modes in concrete examples. These integrals can in some sense be viewed
as the F-theory uplift of the chiral indices of (4.19), which characterise the chi-
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ral charged zero mode spectrum in type IIB. Finally, we consider the resulting
selection rules for the absence of chiral charged zero modes in a specific example
with a known type IIB limit in subsection 4.2.5. The comparison with the type
IIB results will provide evidence that chiral charged zero modes can be linked
to instanton charges under U(1) symmetries. In particular, we will see that it is
important to take into account not only massless U(1)s but also the geometrically
massive diagonal U(1) which was the focus of section 3.2.

4.2.1 The classical M5-instanton partition function

In this subsection we review the derivation of the classical partition function of
an M5-instanton wrapped on a divisor DM of an elliptically fibered fourfold Y4,
using the technique of holomorphic factorisation as in [40,217]. Although we will
later be interested mostly in the case where DM is a vertical divisor, such that the
instanton can be related to an E3-instanton in type IIB, the results of this section
are valid also for a more general divisor. To avoid any complications that may
arise due to the appearance of charged zero modes, we assume that the instanton
divisor is isolated in the sense that it does not intersect any of the D7-branes
that may be present in the model. Although we will discuss generally how the
instanton partition function splits into classical and quantum pieces, we focus on
the calculation of the classical part only. We will therefore simply assume that
the structure of neutral instanton zero modes is such that the quantum partition
function20 yields a non-zero result, such that the instanton contributes to the
effective superpotential.
The world-volume theory of an M5-brane involves a chiral 2-form B, which means
that the associated 3-form field strength H = dB is restricted to be imaginary self-
dual [217]

∗ H = iH. (4.28)
Here we are focusing specifically on M5-brane instantons, whose 6-dimensional
world-volume has a metric of Euclidean signature. In this case, our Hodge star
conventions and in particular equation (A.17) shows that the Hodge star applied
to 3-forms obeys ∗2 = −1, such that the eigenvalues are ±i. For future use, let
us note that any 3-form Q on DM can be split into chiral and anti-chiral pieces
by [40]

Q± = 1
2(1∓ i∗)Q , Q = Q+ +Q−. (4.29)

The self-duality constraint (4.28) means that a purely Lagrangian description of
the M5-brane world-volume theory involving only true physical fields is not pos-
sible. One way around this problem is to introduce additional auxiliary fields,
whose equations of motion reproduce the self-duality constraint. The relevant La-
grangian was discussed in [203, 204, 218–221], and takes a relatively complicated

20The quantum partition function is nothing other than the one-loop determinant of the
world-volume fields which gives rise to the prefactor AE in (4.10).
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form. Therefore, we will follow [40,217] and use a different approach. Namely, we
first consider a pseudo-action SB involving a non-chiral field, and then implement
the self-duality constraint in an appropriate manner when deriving physical quan-
tities such as the equations of motion and the partition function. In this sense,
our approach is analogous to the treatment of type IIB supergravity presented in
section 2.2.1, where we also used a pseudo-action supplemented by an additional
constraint to account for the self-duality of G5.
The part of the pseudo-action of an M5-brane which involves B can be written
as [40,217]

SB = −2π
∫
DM

[
(H + aι∗C3) ∧ ∗(H + aι∗C3) + bH ∧ ι∗C3

]
, (4.30)

where a, b are suitable constants. In the following, we will often suppress the ex-
plicit pullback ι∗ of C3 to the M5-brane world-volume. The pseudo-action (4.30)
shares a number of features with the type IIB D-brane actions discussed in sec-
tion 2.2.3, with B playing an analogous role to the D-brane world-volume gauge
field. For example, it involves the combinationH+aι∗C3, which is gauge-invariant
under an 11-dimensional gauge transformation of C3

C3 → C3 − dχ2, B → B + aι∗χ2. (4.31)

The analogue for type IIB D-branes is the fact that the D-brane action involves
the combination F/2π − ι∗B2 of the brane gauge field and the Kalb-Ramond 2-
form. Furthermore, the second term in (4.30) shows that in the presence of non-
trivial H-flux the M5-brane carries a non-zero M2-brane charge. The analogous
effect for fluxed D-branes was discussed in the context of tadpole cancellation in
section 3.1.3.
Let us emphasise that despite these similarities, we cannot directly compare the
M5-brane action (4.30) dimensionally reduced on the elliptic fiber of Y4 to that of
a D3-brane in type IIB. The underlying reason is of course that (4.30) does not yet
take the chiral nature of B into account. In particular, it is dangerous to directly
attempt to identify specific D-instanton world-volume flux configurations F̃E with
3-form flux H on an M5-instanton. A central result of [40], whose derivation we
review in the following, is that an explicit correspondence between E3- and M5-
instantons on vertical divisors can nevertheless be established at the level of the
classical partition functions.
The first step towards deriving the abovementioned correspondence is to actu-
ally define the partition function of the chiral 2-form B. Witten argued in [217]
that the desired chiral partition function can be extracted from the non-chiral
partition function which can be obtained in the usual manner by evaluating the
path integral over the pseudo-action (4.30). More precisely, the non-chiral par-
tition function can be split into a sum of terms which are each a product of a
factor involving only the chiral part H+ of H and a second factor which involves
only the anti-chiral piece H−. This process is known as holomorphic factorisa-
tion [217, 222]. The partition function of the chiral 2-form is then identified with
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the chiral factor of one of these summands. A prescription for identifying the
correct summand was given by Witten [217]. However, this prescription relies
on a rather complicated mathematical construction21 and is difficult to carry out
in practice. As we will see, the comparison with the known type IIB instanton
partition function makes it possible to avoid this complicated construction and to
identify the correct summand much more easily.
In order to facilitate the identification of the chiral partition function, it is helpful
to choose the coefficients a, b in (4.30) in such a way that only the chiral part H+

couples to C3. After holomorphic factorisation it is then clear that only the chiral
factor involves C3. Due to the fact that∫

DM
H± ∧ C±3 =

∫
DM
∗H± ∧ ∗C±3 = (±i)2

∫
DM
H± ∧ C±3 , (4.32)

it is clear that requiring only H+ to couple to C3 is equivalent to imposing that
only C−3 should couple to H. Inserting the expansion C3 = C+

3 + C−3 into (4.30),
it is easy to see that this is the case if and only if b = −2ai [40]. This allows
us to eliminate one of the parameters in favour of the other. The value of the
remaining parameter can be fixed by comparing the final result for the partition
function with the known type IIB expressions. The result of this match is [40]

b = −i, a = 1/2, (4.33)

as will be explicitly confirmed in the next subsection.
Let us point out that the specific values (4.33) can be determined up to a sign
also directly in the M-theory setting by demanding the gauge invariance of the
overall M5-brane action under the gauge transformation (4.31). To demonstrate
this gauge invariance, it is crucial to note that under a gauge transformation
δC3 = −dχ2, the dual field C6 must shift according to [40]

δC6 = 1
2χ2 ∧G4. (4.34)

This behaviour follows from the fact that the field strength G7 must be gauge
invariant and the specific form of G7 derived in appendix B. It implies that the
part of the instanton action involving C6, which is given in (4.27), shifts as

δ
(

2πi
∫
DM

C6

)
= πi

∫
DM

χ2 ∧G4. (4.35)

Using partial integration, it is straightforward to check that this shift is cancelled
by

δSB = πib2
∫
DM

χ2 ∧G4 (4.36)

21Witten’s approach uses the form of the 11-dimensional Chern-Simons interaction to con-
struct a specific line bundle on the intermediate Jacobian H3(DM ,C)/H3(DM ,Z) on the M5-
brane. This line bundle can then be used to identify the physical partition function.
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provided that b = ±i. In particular, the values given in (4.33) guarantee gauge
invariance of the overall action, as required22. The fact that the part SB itself is
not gauge invariant shows that the partition function derived using only SB trans-
forms as a section of a non-trivial line bundle over the configuration space of the
background 3-form C3. This famous result plays a crucial role in the construction
used by Witten to obtain the correct chiral partition function [217]. However, it
will not be important in the context of this thesis because as mentioned above we
will identify the correct chiral partition function by using the duality with the par-
tition function of type IIB E3-instantons. Let us also mention at this point that
although we have only demonstrated gauge invariance of the pseudo-action (4.30),
the full covariant action including auxiliary fields shares this property [203].
While our focus in this thesis is on the partition function of the chiral 2-form B, it is
important to keep in mind that the full partition function of the M5-brane involves
also contributions from other degrees of freedom. These include the fermionic de-
grees of freedom that are associated with the superpartner of B, as well as the
bosonic and fermionic degrees of freedom originating from the embedding of the
M5-instanton into superspace [40]. Much of the discussion in section 4.1.1, which
centered on D-instantons in type IIB, can be directly transferred to the case of
M5-instantons. In particular, some of the zero modes associated with the su-
perembedding of M5-instantons can be identified with the superspace measure
of the low energy effective action [87]. Just as before, additional fermionic zero
modes can cause the instanton contribution to the effective action to vanish if they
are not soaked up by suitable interactions. A necessary condition for the instan-
ton contribution to be non-vanishing is that the holomorphic Euler characteristic
χ(DM ,ODM ) of the instanton divisor is equal to 1 [87]. In the type IIB language,
this condition is necessary for the absence of uncharged fermionic zero modes.
The type IIB analogy further suggests that non-trivial G4 flux on the instanton
world-volume can lead to the appearance of chiral charged zero modes. In fact,
the M-theory version of the Freed-Witten anomaly cancellation condition [148]
implies that [ι∗G4] 6= 0 is only possible if there are suitable M2-branes ending on
the M5-instanton which cancel the induced tadpole for B [40]. These M2-branes
are natural candidates to describe the expected charged zero modes. For the mo-
ment, we leave these zero mode considerations aside and focus on the evaluation
of the partition function of B. In other words, we take [ι∗G4] = 0 and further-
more implicitly assume that the structure of the neutral zero modes is such that
a superpotential contribution is induced. The additional effects that appear upon
the inclusion of non-trivial G4 flux will be discussed further in subsection 4.2.3.
We now turn to the computation of the non-chiral gauge invariant partition func-
tion of B as in [40]. As discussed above, this part of the partition function can be

22Gauge invariance of the M5-instanton action is also discussed in [169,216].
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written as

W tot.
M5 =

∫
DB e−SM5 , (4.37)

SM5 = 2π
∫
d6x

√
det g + 2πi

∫
C6 + SB. (4.38)

The superscript in W tot.
M5 is included to indicate that this is the total, non-chiral

partition function and contains contributions from both the chiral and anti-chiral
parts of H. Following the usual field theory logic of [178], the path integral can
be approximated by taking a sum over the saddle points of the integral and a
Gaussian integral over the fluctuations around these saddle points. Without loss
of generality we can choose a gauge for C3 in which C3 is co-closed, such that
d ∗ ι∗C3 = 0. For vanishing pullback of G4, C3 can thus be taken to be harmonic,
which can be used to show that the solutions to the equations of motion of B
obtained from (4.30) are given by harmonic flux configurations H0 [40]. Although
a full translation of the analysis carried out by Freed and Witten in [148] to M-
theory is beyond the scope of this thesis, it is clear23 that a quantisation condition
should be present which restricts H0 to discrete values. By analogy with type IIB,
we expect that up to a possible half-integer shift depending on the geometry of the
instanton divisor, H0 will lie in H3(DM ,Z). For simplicity, we will assume in the
following that H0 is integer-quantised, and briefly comment on what is expected
to change in the case where a half-integer shift is present in subsection 4.2.2. In
analogy with the type IIB calibration condition (2.34), we also expect that F-
term supersymmetry constraints may arise which limit the summation over H0 to
a sublattice of H3(DM ,Z). However, to simplify the notation we will not indicate
this sublattice explicitly in the following, and will instead write a sum simply over
the full lattice H3(DM ,Z). We will briefly return to this point at the end of the
next subsection.
Decomposing the path integral into fluctuations around the consistently quantised,
supersymmetric classical solutions such that H = H0 + dδB leads to

W tot.
M5 =

∑
H0∈H3(DM ,Z)

e−SM5[H0]
∫
DδB e−S′M5[dδB,H0]. (4.39)

As in [40], we use a prime in the second factor to signify that it involves H0 only
through the cross-term in the kinetic part of the action. Furthermore note that
the path integral over DδB should run over non-closed 2-forms only, because in
the absence of non-trivial G4 flux any closed components of δB can be removed
by a gauge transformation of B [40].
In the following, we focus on the classical part of the total partition function

23As in [148], we expect the argumentation to be based on the fact that M2-branes ending
on the M5-instanton couple to B. If we take the 2-cycle on which the M2-brane ends around
a closed loop in the M5-brane world-volume, single-valuedness of the M2 partition function
requires H to be quantised.



160 Chapter 4: Fluxed instantons in type IIB and F-theory

including chiral and non-chiral contributions,

W tot., cl.
M5 =

∑
H0∈H3(DM ,Z)

e−SM5[H0]. (4.40)

For a rigid instanton in a fixed background geometry, the harmonicity of the
fluxesH0 ensures that the fluctuation-dependent piece in (4.39) actually decouples
completely from the classical partition function [40]. This follows from the fact
that harmonicity implies

d ∗0 H0 = 0, (4.41)

where ∗0 is the Hodge star built using the background metric. Clearly, the de-
coupling in general breaks down as soon as fluctuations around the background
geometry are taken into account. In type IIB language this can be seen as a
manifestation of the fact that the overall moduli space of a theory with D-branes
cannot be easily split into parts corresponding to open and closed strings, see
e.g. [53,62,223]. Put differently, the presence of fluxes H0 can induce an effective
potential for some of the would-be moduli, in particular for possible deformation
moduli of the instanton divisor and for Kähler and complex structure moduli
of the bulk space Y4. The moduli that remain unobstructed are those which
leave the supersymmetry of the fluxed instanton solution unaffected, and which
in particular maintain harmonicity of H0. In section 4.1.2 we saw that for cer-
tain types of fluxed E3-instantons, namely for O(1) instantons on rigid divisors
with orientifold-odd fluxes, no bulk moduli are obstructed and the sum over fluxes
can be evaluated separately without having to take into account any background
fluctuations. It is natural to expect that similar statements hold at least for the
class of fluxed M5-instantons which describe the F-theory uplift of such rigid O(1)
E3-instantons. While in the general case the interplay between instanton fluxes
and bulk moduli can in principle be obtained from the second factor in (4.39), the
explicit evaluation of this path integral is technically challenging24. Therefore we
will follow [40] and focus on the classical sum over integer quantised harmonic in-
stanton fluxes H0 in (4.40), assuming that we are in a situation where fluctuations
around the background geometry can be decoupled at least in a first approxima-
tion. With this understanding, we drop the index 0 in the following and denote
the 3-form instanton flux simply by H.
The classical partition function for an action closely related to the form of (4.30)
was computed in [222]. These results were adapted to the case of an M5-instanton
in [40], whose presentation we now briefly review. The part of SM5[H] which
actually depends on H can be split off from the remainder by

SM5 = −2π
∫
DM
H ∧ ∗H − 4πi

∫
DM
H ∧Q+ S ′M5. (4.42)

24Note that even in the type IIB case the evaluation of the quantum partition function is
highly non-trivial, and we simply absorbed the entire one-loop contribution into the possibly
flux-dependent prefactors AE(F̃) in (4.21).
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Here S ′M5 contains the volume of the instanton divisor as well as the couplings to
C6 and C3 which do not depend on the instanton flux H. Clearly, e−S′M5 simply
appears as an overall prefactor of the classical partition function (4.40). We
therefore focus on the non-trivial part of the partition function first and reinstate
the prefactor at a later stage. As explained above, we will later take b = −2ai
such that H couples only to the anti-chiral part. This will lead to Q = −ibC−3 ,
however for the moment let us consider a general Q ∈ H3(DM ,C).
To evaluate

W (Q) =
∑

H∈ H3(DM ,Z)
exp

(
2π
∫
H ∧ ∗H + 4πi

∫
H ∧Q

)
, (4.43)

we follow [40,222] and introduce a real symplectic basis (EM , FN) of H3(DM ,Z).
This basis is taken to satisfy∫

DM
EM ∧ FN = δNM , (4.44)∫

DM
EM ∧ EN = 0 =

∫
DM

FM ∧ FN , M,N = 1, . . . , 1
2b

3(DM). (4.45)

Any form in H3(DM ,Z) can be expanded into this basis with integer expansion
coefficients. In particular, the sum over H in (4.43) becomes a double sum over
Z

1
2 b

3(DM ) after expanding H into this basis25. As a linear operator, the Hodge
star restricted to H3(DM ,Z) can be represented in the basis (EM , FN) by a ma-
trix. Following [40], we actually introduce two real matrices X, Y of dimension
1
2b

3(DM)× 1
2b

3(DM) such that

FN = XMNEN + Y MN(∗EN). (4.46)

It is easy to check that X and Y are symmetric. The fact that the Hodge star
operator evaluated on 3-forms in 6 Euclidean dimensions is negative definite ac-
cording to equation (A.18) furthermore implies that Y is negative definite and
in particular invertible. It is sometimes convenient to use a complex self-dual or
anti-self-dual basis of H3(DM), made up of forms E±M which satisfy ∗E±M = ±iE±M .
The relation between the E±M and the previous basis (EM , FN) is given by [40]

E+
M = − i2ImZMN(FN − ZNP

EP ), E−M = i

2ImZMN(FN − ZNP EP ). (4.47)

Here we have combined X and Y into the complex matrix

ZMN = XMN + iY MN , (4.48)

while ImZMN with lowered indices is used to denote the inverse of the imaginary
part of Z. Splitting Q into self-dual and anti-self-dual components leads to

Q = Q+ +Q− = Q+,ME+
M +Q−,ME−M . (4.49)

25In the case where the sum over H is restricted to a sublattice of H3(DM ,Z), we of course
also need only consider a basis EM , FM of this sublattice. Apart from the reduced range of the
indices M,N , this has no effect on the results derived in the following.
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The sum in (4.43) was evaluated in [222] for the case where Q is real and Q+ =
(Q−)∗. Using a Poisson resummation, the result can be written as a sum of
products of theta functions up to an overall anomalous prefactor, which is expected
to cancel against the quantum part of the partition function. Leaving aside this
prefactor, the result was adapted to the case of complex Q in [40], with the result26

W (Q) '
∑
α,β

Θ[αβ](−Z,−Q+,−Q−) Θ[αβ](Z,Q−, Q+). (4.50)

The sum runs over 1
2h

3(DM)-dimensional vectors αM , βN with entries 0, 1
2 . These

vectors label a choice of a line bundle on the intermediate Jacobian
H3(DM ,C)/H3(DM ,Z). The theta functions can be viewed as sections of these
line bundles [40]. Explicitly, they are given by

Θ[αβ](Z,Q+, Q−) = exp
[
π

2Q
+,M ImZMN(Q+,N −Q−,N)

]
×

∑
kM∈Z

exp
[
iπ((k + α)MZMN(k + α)N + 2(k + α)M(Q+,M + βM))

]
.

(4.51)

The overall partition function (4.50) clearly contains contributions both from the
chiral and anti-chiral parts of H. As argued by Witten in [217], the physical
partition function of the chiral field B can be identified with one factor of one of
the summands. The correct factor can be identified using the natural covariant
derivatives

D

DQ+,M = δ

δQ+,M −
π

2Q
−,N ImZNM ,

D

DQ−,M
= δ

δQ−,M
− π

2Q
+,N ImZNM ,

(4.52)

which are defined on the intermediate Jacobian. The two factors in (4.50) are
respectively holomorphic and anti-holomorphic with respect to these covariant
derivatives, in the sense that [40]

D

DQ+,M Θ[αβ](Z,Q−, Q+) = 0 = D

DQ−,M
Θ[αβ](−Z,−Q+,−Q−). (4.53)

As argued before, the chiral part H+ of the field strength couples only to Q−.
Therefore, the desired partition function of the chiral 2-form is given by one of
the anti-holomorphic factors in (4.50), which is annihilated by D/DQ+,M .
The problem of finding the chiral partition function is therefore reduced to the
problem of picking the correct summand in (4.50). In other words, it is necessary
to choose the correct line bundle labelled by the vectors αM , βN . The prescription
to construct this line bundle is given in [217]. However, as already mentioned
above carrying out this construction in practice is highly non-trivial. Therefore for

26In the case where Q is real, the two factors in each summand of (4.50) are related by complex
conjugation.
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the moment we will sidestep this issue and simply pick one of the terms in (4.50),
leaving αM and βN undetermined. As we will see in the next subsection, the
comparison with the type IIB partition function of an E3-instanton will allow us to
identify the correct partition function without having to use Witten’s construction.
It is a simple matter to apply these general results to the case of the pseudo-action
of the M5-instanton given in (4.38). Choosing b = −2ai in (4.30) leads to Q =
−ibC−3 . After reinstating the overall prefactor of the partition function coming
from the H-independent part of the action, we obtain the non-chiral partition
function [40]

W tot., cl.
M5 = e

−2π
(

Vol(DM5)+i
∫
C6+ b2

4

∫
C3∧∗C3

)
W (−ibC−3 ). (4.54)

The physical classical partition function of the chiral 2-form is obtained by choos-
ing one of the anti-holomorphic factors in W (−ibC−3 ), which finally leads to [40]

W cl.
M5 = e−2π(Vol(DM5)+i

∫
C6)Z[αβ] , (4.55)

Z[αβ] = exp
[
π

2 b
2C−,M ImZMN(C−,N − C+,N)

]
(4.56)

×
∑

kM∈ Z

exp
[
iπ
(
(k + α)MZ

MN(k + α)N + 2(k + α)M(βM − ibC−,M)
)]
.

In the next subsection, we will compare this result to the partition function of a
suitable E3-instanton. As we will see, the match not only provides an important
consistency check for the result (4.55), but also allows us to identify the correct
values of αM , βN .

4.2.2 Matching the M5 and D3 partition functions

Let us now focus on the case where the M5-instanton is wrapped on a vertical
divisor DM = π−1(Db

M) of an elliptically fibered, resolved fourfold Ŷ4. Following
the general logic of the F-theory/type IIB duality, such an instanton is expected
to be dual to an E3-instanton in the double cover X3 of B3. More precisely, the
divisor DE ⊂ X3 wrapped by the E3-instanton is the preimage of Db

M ⊂ B3 under
the orientifold projection. As part of the duality, the classical partition functions
of the E3- and M5-instantons should match. The aim of this subsection is to
explicitly demonstrate this match, following the discussion in [40]. We will focus
on the case where the type IIB instanton is of O(1) type, such that DE is a single
divisor invariant under the orientifold involution.
The classical partition functions discussed in sections 4.1.3 and 4.2.1 are essen-
tially determined by sums over instanton fluxes. As these fluxes are classified by
cohomology groups on the instanton divisors, it is clear that it is necessary to
understand how the cohomology groups of DE and DM are related. The uplift
of the cohomology groups of DE was discussed in general terms in [40]. Further
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evidence for the expected relationships is provided in reference [152], in which
the relevant Hodge numbers of DE and DM are computed and compared for the
case where X3 is a hypersurface in a weighted projective space. We focus on the
cohomology group H3(DM), which is the relevant group to describe non-trivial
3-form flux H.
References [40, 152] argue that H3(DM) can be split into several distinct sub-
spaces comprising forms with different origin in terms of the geometry of DE. To
understand this split, it is important to note that forms on DE with different
orientifold parities have a qualitatively different uplift behaviour. To be pre-
cise, the orientifold-even cohomology groups Hp,q

+ (DE) should directly contribute
to Hp,q(DM), while the orientifold-odd forms in Hp,q

− (DE) are expected to con-
tribute to Hp+1,q(DM)⊕Hp,q+1(DM) [40,152,214]. To understand this, note that
orientifold-even forms have a well-defined orientifold projection to a 3-form on
Db
M , which can in turn be pulled back to yield a 3-form on DM . Orientifold-odd

forms on the other hand cannot easily be defined directly on Db
M . Neverthe-

less, orientifold-odd forms can be combined with the 1-forms dx, dy of the elliptic
fiber27 over Db

M . As already discussed around equation (3.57), this is expected
to yield well-defined forms on DM as the monodromy of the elliptic fiber cancels
the orientifold parity of the base form. Schematically, the uplift can be depicted
as [40,152,214]

ω ∈ Hp,q
− (DE)→ ω ∧ dx, ω ∧ dy ∈ Hp+1,q(DM)⊕Hp,q+1(DM). (4.57)

Continuing the analogy with the discussion of section 3.2.1, we expect that the
intuitive uplift (4.57) fails if the form ω has non-trivial pullback to the discrim-
inant locus over which the fibration degenerates. In the type IIB language, the
discriminant describes the locations of the orientifold planes and D7-branes of
the model. Note that an O(1) instanton necessarily has an intersection with the
I1-part of the discriminant locus which describes the O7-plane [40]. However,
this intersection does not impact on the uplift of the cohomology groups because
the orientifold-odd forms have vanishing pullback to the orientifold plane. There-
fore, problems may arise only on the intersection between DE and a D7-brane
divisor DA. As DE ∩ DA is a non-trivial holomorphic 2-cycle in X3, the only
forms whose uplift can be affected are forms in H1,1

− (DE) which are furthermore
non-trivial on X3 in the sense that they can be viewed as arising by pullback
from a bulk form28 [40]. In the following we continue to use the notation of
sections 3.1.1 and 4.1.2, which allows us to identify the forms with potentially
problematic uplift as the pullbacks ι∗ωa, ωa ∈ H1,1

− (X3). Using DE = Cα
Eωα and

DA = 1
2(D+

A +D−A) = 1
2(Cα

Aωα+Ca
Aωa) immediately allows us to deduce that the

uplift (4.57) of ι∗ωa can fail if [40]

0 6=
∫
DE∩DA

ι∗ωa = 1
2KabαC

b
AC

α
E. (4.58)

27As DM is assumed to be a vertical divisor, it contains the entire elliptic fiber.
28This explains why no mismatch in the dimensions of the cohomology groups is observed in

the model considered in [152], which is built on an orientifold (X3, σ) with H1,1
− (X3).
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In other words, we see that we can ensure that the uplift of the cohomology groups
goes through without problems at the harmonic level if we take Ca

A = 0 for all D7-
brane stacks in the model. This nicely matches the discussion of section 3.2.2, in
which we saw that it is necessary to include non-harmonic forms on the F-theory
side to explicitly account for all known type IIB effect precisely if Ca

A 6= 0. To
avoid any potential problems with the instanton cohomology uplift it would be
sufficient to require that the intersections (4.58) vanish. However, we follow [40]
and impose the stronger condition Ca

A = 0, which simplifies the notation because
we don’t have to be so careful about the distinction between the bulk forms and
their pullbacks to the instanton divisor. We will briefly comment on the general
case with some non-vanishing intersections (4.58) at the end of subsection 4.2.5.
From the discussion above, an obvious contribution to H3(DM) arises from forms
in H3

+(DE). Hodge duality on DE implies H3
+(DE) ' H1

+(DE), so that this
class of 3-forms is associated with non-trivial Wilson lines on DE. As the Hodge
type should not change in the uplift of orientifold-even forms and H3

+(DE) =
H2,1

+ (DE) ⊕ H1,2
+ (DE), the 3-forms on DM associated with Wilson lines on DE

actually lie in H2,1(DM)⊕H1,2(DM). Let us denote the corresponding subspace of
H2,1(DM) by H2,1

W.l.(DM). As discussed above, additional contributions to H3(DM)
come from the uplift of the orientifold-odd forms in H2

−(DE). More precisely, we
expect that H2,0

− (DE) contributes to H3,0(DM) and H2,1(DM) while H1,1
− (DE)

contributes to H2,1(DM) and H1,2(DM) [40, 152]. Note that forms in H
(2,0)
− (DE)

are in one-to-one correspondence with holomorphic, orientifold-even sections of
the normal bundle of DE, where the concrete link is obtained by contracting such
a section of the normal bundle with the orientifold-odd holomorphic 3-form Ω3
on X3 [62]. In other words, H(2,0)

− (DE) corresponds to deformations of DE which
maintain the structure of DE as a holomorphic, orientifold-invariant object. We
therefore denote the subspace of H2,1(DM) related to H2,0

− (DE) by H2,1
def.(DM) and

the remaining part of H2,1(DM), which is related to H1,1
− (DE), by29 H2,1

flux(DM).
Finally, the analysis of [152] suggests that additional 3-forms on DM can arise if
an intersection between the instanton and a D7-brane has h1,0

− (DE ∩DA) 6= 0. In
the following, we will always assume as in [40] that h1,0

− (DE ∩ DA) = 0, so that
this possible contribution is absent. In summary, we have

H2,1(DM) = H2,1
W.l.(DM)⊕H2,1

def.(DM)⊕H2,1
flux(DM)

' H2,1
+ (DE)⊕H(2,0)

− (DE)⊕H1,1
− (DE).

(4.59)

As discussed in section 4.1.1, h1,0(DE) 6= 0 or h2,0(DE) 6= 0 leads to the appearance
of fermionic zero modes which often cause the entire instanton contribution to
vanish. Therefore the main phenomenological interest lies on rigid instantons
with no deformations or Wilson lines. In the following, we will assume that the

29In reference [40] the spaces H2,1
def.(DM ) and H2,1

flux(DM ) are called H2,1
hor.(DM ) and

H2,1
ver.(DM ), respectively. The reason for our different choice of nomenclature will become ap-

parent at the end of this subsection.
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instanton divisor DE is rigid in this sense, so that

H3(DM) = H2,1
flux(DM)⊕H1,2

flux(DM) ' H1,1
− (DE)⊕H1,1

− (DE). (4.60)

Recall from section 4.1.2 that the space of fluxes on O(1) E3-instantons is precisely
given by H1,1

− (DE). Therefore the general IIB/F-theory duality anyway leads us
to expect that even in the non-rigid case all the viable 3-form fluxes on DM should
lie in the part of H3(DM) given in (4.60). We will briefly consider relaxing the
rigidity condition at the end of this subsection.
The relationship between the cohomology groups discussed above strongly sug-
gests that the sum over fluxes in the classical type IIB instanton partition function

W cl.
E3 =

∑
F̃E

e−S
cl.
E (4.61)

can be identified with the sum over 3-form fluxes which contributes to the classical
M5-instanton partition function (4.55). In computing (4.55) we had chosen a
basis of H3(DM) in which the expansion coefficients of H were integer. To make
the correspondence with the E3 case more precise, it is helpful to take a similar
approach on the IIB side. In other words, we choose a basis {ωM} of H1,1

− (DE)
such that F̃E ≡ FMωM with integer FM . It was pointed out in [40] that the
Freed-Witten quantisation condition (4.12) actually requires the integral of F̃E
over any 2-cycle on the physical instanton divisor Db

M in the orientifold quotient
to be integer. As the integrals evaluated on the double cover X3 are twice as large
as on B3, this means that the integral of F̃E over a 2-cycle in DE must actually
be an even integer. In order for this to be compatible with FM being integer, we
normalise the basis {ωM} by [40]∫

DE
ωM ∧ ωN = 2δMN . (4.62)

As discussed in section 4.1.2, the instanton flux can be split into flux which can
be described by a form pulled back from X3 and the orthogonal so-called variable
flux Fv. To take this into account, it is helpful to split the set {ωM} into a
subset {ωm} which spans the subspace ι∗H1,1

− (X3) ∩ H1,1
− (DE) and a basis {ωm̂}

of the orthogonal complement. For integer quantised fluxes we therefore have the
expansion [40]

F̃E = Fmωm + (Fv)m̂ωm̂ ≡ FMωM , FM ∈ Z . (4.63)

When evaluating the classical E3-instanton action in (4.16) we had used a differ-
ent expansion of F̃E in terms of the pullbacks ι∗ωa. As discussed around equa-
tion (3.6), the ωa are normalised to have even integer intersection numbers on X3.
Nevertheless, it is important to note that their pullbacks to DE do not necessarily
share the same property [40]. We may of course expand the ι∗ωa into the basis ωm,
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such that ι∗ωa = Mm
a ωm. Using DE = Cα

Eωα and the intersection numbers (3.6)
it is easy to derive [40]

Cα
E Kαab =

∫
DE

ωa ∧ ωb = 2Mm
a M

n
b δmn. (4.64)

Mm
a can be used to relate the expansion coefficients of F̃E, ι∗C2 and ι∗B2 into

the ι∗ωa, which were used in (4.16), to expansion coefficients with respect to the
basis {ωm}. The result of this is [40]

GaMm
a ≡ Gm, F̃E,aMm

a = Fm. (4.65)

Using the new basis, we may write the classical partition function of the E3-
instanton as [40]

W cl.
E3 = exp

[
−π

(1
2C

α
EKαβγvβvγ + iCα

E(cα −
1
2Kαabc

abb)
)]

× exp
[
− iπ

τ − τ
δmnG

m(Gn −Gn)
]

×
∑
FM∈ Z

e−iπ(2δmnGmFn+τδMNFMFN).

(4.66)

Comparing this expression with the M5-instanton result of (4.55), let us first
focus on the overall prefactor

W cl.
M5 ∝ exp

[
−2π

(
Vol(DM5) + i

∫
DM

C6

)]
. (4.67)

To extract the moduli dependence of this factor, we insert the expansion (3.51)
of the Kähler form and the expansion of C6 given in appendix B. The Poincaré
dual of DM in Ŷ4 is formally given by the same expression [DM ] = Cα

Eωα as the
Poincaré dual of DE in X3, although as discussed in section 3.2.2 the intersection
forms of the ωα on Ŷ4 and X3 differ by a factor of 2. Using the intersection
numbers (B.5) and (B.8) immediately leads to

W cl.
M5 ∝ exp

[
−2π

( 1
12C

α
EKαΛΣΘv

ΛvΣvΘ + i
1
2 c̃α

)]
. (4.68)

The match of the two factors now follows from the relationship tα → 1
2Tα be-

tween the type IIB and F-theory Kähler moduli discussed in section 3.2.5 and
appendix B. Explicitly, the fact that the intersection of 4 vertical divisors in Ŷ4
vanishes and the identification (3.154) leads to

1
12C

α
EKαΛΣΘv

ΛvΣvΘ = 1
4C

α
EKαβγv

β
IIBv

γ
IIB +O(ε). (4.69)

The crucial shift in the relation

c̃α = cα −
1
2Kαabc

abb (4.70)
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between the M-theory axion c̃α and the type IIB axion cα was derived directly in
appendix B by considering the F-theory limit of the low energy action obtained
by dimensional reduction of the 11-dimensional supergravity in the democratic
formulation.
We now turn to the match of the remaining parts of the M5-instanton partition
function (4.55) and W cl.

E3. It is natural to expect that EM and FM used in the cal-
culation of W cl.

M5 can be viewed as arising from the forms ωM via the construction
in (4.57). Taking into account the usual factor of 2 difference between intersections
on X3 and Ŷ4, we see that the normalisation (4.62) is in agreement with (4.44).
In particular, the symplectic structure of the 1-forms on the elliptic fiber yields
a natural explanation for the symplectic structure of EM and FM . Just like in
the IIB case it is helpful to distinguish between forms in H3(DM) that arise by
pullback from H3(Ŷ4) and forms in the orthogonal complement. In other words,
we split the set EM used in the previous subsection into Em, Em̂, and similarly
for the FM . Of course, this means that in all parts of (4.55) which involve C3,
the index should run only over the subset M = m corresponding to the pull-
back forms. Alternatively, we can simply set C±,m̂ = 0. Then comparing (4.55)
to (4.66) reveals a precise match, provided that we identify [40]

FM ↔ δMNkN ; Gm ↔ C−,m ; G
m ↔ C+,m ; Z

MN = −τδMN . (4.71)

Furthermore, we must set the parameter b appearing in the M5-brane pseudo-
action to b = −i. A key result of the match is that we are able to unambiguously
identify [40]

αM = 0 = βM . (4.72)
In other words, we have been able to identify the line bundle on the intermediate
Jacobian of DM which is associated to the physical partition function of the chiral
2-form. As discussed in the previous subsection, this identification is highly non-
trivial directly in M-theory.
Let us now briefly discuss this result in the context of other investigations of
the M5-brane partition function, following [40]. Recall that the entries of the
vector αM are 0 or 1/2. As it enters the M5-brane partition function exclusively
through the combination kM + αM , it seems to account for a possible shift in
the quantisation of the fluxes. For O(1) instantons the fact that the fluxes are
orientifold-odd while the divisor is orientifold-even implies that the fluxes are
always integer-quantised [40], so that αM = 0 as stated above. Intriguingly, this
hints that type IIB U(1) instantons with half-integer quantised fluxes could be
related to M5-instanton configurations with αM 6= 0. However, we are not able
to confirm this explicitly, because it is unclear how the orientifold-even fluxes
on a U(1) instanton, which uplift to 2-forms on DM , should be described in
terms of the 3-form H [40]. For this reason, the uplift of U(1) instantons will
not be considered any further in this thesis. The M5 partition function has
previously been evaluated in the case where the brane divisor is a flat torus by
direct computation in [224] and by using modular invariance or comparison with
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D4-branes in [225,226]. In all cases, these references also obtain the result αM =
0 = βM in full agreement with (4.72). It is also compatible with analogous results
for NS5-instantons, which were studied in [227]. It was pointed out in [225] that
arguments based on modular invariance of the partition function can be used to
find (4.72) whenever the M5 world-volume takes the form T 2 × M4, with M4
simply connected. Let us emphasise that the derivation based on [40] which we
have presented here is applicable in a much more general setting. In particular, as
we will discuss momentarily, we expect that it is possible to relax the assumption
of rigidity of the instanton divisor without qualitatively changing the results.
Therefore we expect the result (4.72) to hold as long as DM is a vertical divisor,
provided that no non-trivial intersections of the form (4.58) with orientifold-odd
components of D7-brane divisors appear30. Note that this does not mean that
the instanton divisor is not allowed to intersect the discriminant. In fact, such
an intersection and hence a degeneration of the elliptic fibration in the instanton
world-volume is necessary in order for the instanton to be of O(1) type [40].
It is important to verify that the identifications made in (4.71) are consistent
with the various field identifications that were established in section 3.2.5. In
particular, we had found that the fields ca and ba appearing in C3 ⊃ caαa + baβ

a

can be directly identified with the corresponding type IIB fields which appear
in Ga = ca − τba. To see that this is consistent with Gm ↔ C−,m, we note
that Em, Fm ∈ H3(DM) are obtained from the ωm ∈ H1,1

− (DE) by the same
schematic uplift (4.57) which we had used to relate the forms αa, βb ∈ H3(Ŷ4) to
the ωa ∈ H1,1

− (X3). This allows us to translate the relation ωa = Mm
a ωm into [40]

ι∗αa = Mm
a Em, ι∗δabβ

b = Mm
a δmnF

n. (4.73)

Using ZMN = −τδMN in the definition (4.47) of the (anti-)self-dual basis E±m leads
to [40]

ι∗C3 ⊃ caι∗αa + bbι
∗βb = Mm

a (ca − τδabbb)E−m +Mm
a (ca − τ̄ δabbb)E+

m

= Mm
a G

aE−m +Mm
a Ḡ

aE+
m,

(4.74)

matching the expectation from (4.71).
To conclude this subsection, let us consider how the match of the partition func-
tions presented above is expected to change if some of the assumptions that
were made about the cohomology of DE are relaxed. In particular, we might
allow for the presence of Wilson lines counted by h2,1

+ (DE), holomorphic defor-
mations counted by h2,0

− (DE) and additional 1-forms on intersections with D7-
branes counted by h1

−(DE ∩DA). It is most instructive to consider first the case
30From the discussion in section 3.2 it is clear that in the case where D7-branes with CaA 6= 0

are present we expect that some non-harmonic forms should be taken into account in the F-
theory description. This suggests that a non-vanishing intersection (4.58) might signal that
we have to take into account non-harmonic H flux on DM [40]. We will briefly return to this
speculative suggestion at the end of section 4.2.5.
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h2,0
− (DE) 6= 0. In this case the type IIB flux F̃E does not run over the full

space H2
−(DE) that might naively be expected, as it is restricted to the subspace

H1,1
− (DE) by the F-term supersymmetry condition (2.34) [40]. To match this, it

is clear that the sum over H in the M5 partition function must also run over only
the subspace H2,1

flux(DM) ⊕ H1,2
flux(DM). In other words, as already alluded to in

subsection 4.2.1 we expect that there must be a corresponding supersymmetry
condition relating to the M5-brane which rules out fluxes lying in the subspace
H2,1
def.(DM) ⊂ H3(DM).

A natural suggestion for the form of this supersymmetry condition was presented
in [40]. This suggestion is based on the fact that the type IIB supersymmetry
condition (2.34) can be obtained from the superpotential term

WF̃E =
∫
DE

∑
v

ivΩ3 ∧ F̃E. (4.75)

Here v are holomorphic normal vector fields toDE, while iv denotes the insertion of
a vector field into a differential form. Note that ivΩ3 is a (2,0)-form with negative
orientifold parity, which shows that the background value of this superpotential
is potentially non-vanishing precisely if31 H2,0

− (DE) 6= 0. The natural uplift of the
expression (4.75) to the case of an M5-instanton is [40]

.WH =
∫
DM

∑
v

ivΩ4 ∧H. (4.76)

It is clear that this superpotential will rule out any contributions to H of Hodge
type (3,0), but it is not so obvious whether it suffices to eliminate the unwanted
contributions in H2,1(DM). In particular, it is not immediately clear why one
subspace, namely H2,1

def.(DM), should be eliminated while H2,1
flux(DM) remains un-

affected by (4.76). It was speculated in [40] that this may be related to the fact
that on a Calabi-Yau fourfold the variations of Ω4 span only a subspace of H2,2(Ŷ4)
known as the primary horizontal subspace [88,228], while in the threefold case the
variations of Ω3 span H3(X3) completely.
To provide support for this intuitive suggestion, let us slightly extend the analysis
of [40] as follows. The F-term superpotential (3.18) is built using the Kähler
covariant derivatives DMW = ∂MMW+(∂MMK)W . Focusing first on the type IIB
expression (4.75), the relevant derivatives with respect to the complex structure
moduli are

DzMW ⊃
∫ ∑

v

iv(∂zMΩ3) ∧ F̃E + (∂zMK)WF̃E . (4.77)

Now as the set {∂zMΩ3} completely spans H2,1(X3) we can always cancel the two
terms against one another for all32 fluxes in H1,1

− (DE). In other words, as long
31Even if H2,0

− (DE) = 0 with respect to some fixed background complex structure so that the
background value of (4.75) vanishes, derivatives with respect to the complex structure moduli
may still be non-vanishing, see discussion below.

32Strictly speaking, we mean all fluxes that can be accounted for by pullbacks from the bulk
X3. Variable fluxes do not contribute to the superpotential (4.75) at all and will be ignored for
the present discussion.
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as F̃E ∈ H1,1
− (DE) the vanishing of the F-term (4.77) fixes some of the complex

structure moduli but does not rule out the flux. By this logic, the only types of
fluxes that are projected out are those for which the first term in (4.77) vanishes
for all indices M . In the type IIB case, the only fluxes for which this occurs are
those in H2,0

− (DE). Translating (4.77) to the M-theory setting, we have

DzMW ⊃
∫ ∑

v

iv(∂zMΩ4) ∧H + (∂zMK)WH. (4.78)

Now H will be projected out exactly when no cancellation between the two terms
is possible, i.e. when

∫ ∑
v iv(∂zMΩ4) ∧ H = 0 ∀M . In this generalised sense

the fluxes that are eliminated are therefore orthogonal to the primary horizontal
subspace H2,2

H (Ŷ4) ⊂ H2,2(Ŷ4) which is spanned by the forms ∂zMΩ4.
This discussion, together with the expectation that the M5 and E3 partition
functions should match, forms compelling evidence for the assumption that a
superpotential of the form (4.76) arises for fluxed M5-instantons and that the
fluxes that are ruled out are the ones in the subset H3,0(DM) ⊕ H2,1

W.l.(DM) ⊕
H2,1
def.(DM). It would be interesting to evaluate the dimensions of the various

cohomology groups on DE and Ŷ4 in a specific example along the lines of [152], to
check whether

dim ι∗(H2,2(Ŷ4))− dim ι∗(H2,2
H (Ŷ4)) = h2,1

+ (DE) +H2,0
− (DE) (4.79)

as our suggestion implies. So far we have neglected the possibility of additional
3-forms on DM counted by h1

−(DE ∩ DA). Fluxes along such forms must also
be prevented from appearing in the M5 partition function to avoid spoiling the
match with type IIB. However, from their IIB origin we expect that the relevant
3-forms involve components of the resolved elliptic fiber and are localised in the
vicinity of the intersection Db

M ∩∆ of instanton and discriminant locus. As ivΩ4 is
not localised on DM , we expect that the integral in (4.76) vanishes for H related
to H1

−(DE ∩DA). In other words, to project out the additional fluxes we expect
that there must be an additional contribution to the superpotential (4.76) which
involves precisely this subspace of H3(DM) [40]. However, investigating the form
of such a putative additional superpotential term is beyond the scope of this thesis.

4.2.3 M5-instanton zero modes in backgrounds with G4
flux

In the previous two subsections we have focused on M5-instantons in backgrounds
with vanishing G4 flux. As extensively discussed in the earlier parts of this thesis,
non-vanishing G4 flux is an essential part of many approaches to F-theory model
building and plays an important role in particular for moduli stabilisation and in
generating chiral matter spectra. It is therefore very important to consider how
the presence of G4 flux affects the contribution of M5-instantons to the low energy
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effective action. We turn to this point in the present subsection, which is again
based on reference [40].
To obtain some intuition, let us briefly recall from section 4.1 how fluxes besides
the instanton world-volume flux affect E3-instantons in the type IIB setting. We
distinguish between D7-brane world-volume fluxes F̃A and bulk fluxes correspond-
ing to topologically non-trivial configurations of G3 ∼ dC2 − τdB3, which lead to
qualitatively different effects. Bulk fluxes G3 can induce interaction terms in the
effective instanton world-volume action, which can play a crucial role in lifting
neutral fermionic zero modes [34,199,209,229–234]. On the other hand, D7-brane
fluxes influence the charged zero mode spectrum originating from open strings
localised at the intersection between brane and instanton [34, 35, 189, 193]. As
discussed in detail in section 4.1.2, the net chirality of the charged zero mode
spectrum in fact depends on an interplay between the pullback of the D7-brane
flux and the instanton world-volume flux to the intersection curve [39].
Moving back to the F/M-theory setting, both types of type IIB fluxes are described
by G4 fluxes. Whereas type IIB D7-brane fluxes correspond to G4 fluxes along
forms localised near the discriminant locus, bulk fluxes correspond to G4 fluxes
that are spread out over B3. The effects of the analogues of bulk fluxes on M5-
instantons have been considered in references [205–207], who find that the flux
lifts neutral fermionic M5 zero modes just as in the IIB picture. Although we will
not always mention it explicitly, we follow [40] in this thesis and focus on analysing
the effects of fluxes that are associated with D7-brane gauge fluxes. Nevertheless
it will be obvious that many results do not rely on the distinction between the
different types of G4 fluxes and are in particular valid also for bulk fluxes.
The first step towards finding the effect of G4 flux on the partition function of
M5-instanton is to determine how it appears in the world-volume pseudo-action.
This can be derived unambiguously from the form used in (4.30) by using partial
integration to rewrite the coupling involving C3 as [40]

SB ⊃ 2πi
∫
H ∧ ι∗C3 = −2πi

∫
B ∧ ι∗dC3, (4.80)

and then promoting dC3 to the full non-trivial field strength

ι∗dC3 → ι∗G4 + ι∗dC3. (4.81)

We will always make the explicit distinction as in (4.81), so that when writing
ι∗G4 we mean only the part which is topologically non-trivial and harmonic on
DM , while the other parts appearing in SB will by written as ι∗dC3. With this
understanding, we therefore have the pseudo-action [40]

SM5,G4 = 2π
∫
d6x

√
det g + 2πi

∫
C6 + SB − 2πi

∫
B ∧ ι∗G4. (4.82)

Note that of course it is possible for ι∗G4 to be zero even if [G4] 6= 0 in the
cohomology of the bulk Ŷ4.
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One obvious consequence of the additional term in the action is that the group
of large gauge transformations of B is broken to a discrete subgroup33 [40]. If
G4 is integer quantised, it is clear that the unbroken discrete subgroup is simply
H2(DM ,Z), such that δSM5,G4 ∈ 2πiZ. If the quantisation of G4 is shifted to
include some half-integer periods, the unbroken group of large gauge transforma-
tions of B will also be shifted accordingly. However, to avoid complicating the
notation any further we will simply denote the unbroken group by H2(DM ,Z),
as in [40]. The partial breaking of the gauge symmetry implies that in the path
integral over B one must now integrate not only over non-closed 2-forms, but also
over H2(DM ,R)/H2(DM ,Z). In other words, we have∫

DBe−SM5,G4 ∝
∫
H2(DM ,R)/H2(DM ,Z)

DB′ exp
[
2πi

∫
B′ ∧ ι∗G4

]
. (4.83)

In the absence of any other effects cancelling the tadpole for B′, the integral is
proportional to the delta function δ(ι∗G4) [214], so that the contribution of the
M5-instanton vanishes for non-trivial pullback ι∗G4 [40].
As pointed out in [40], the fact that the partition function vanishes in the presence
of non-trivial flux if no other effects are taken into account is actually just as
one would expect from the type IIB perspective. This is because in the IIB
language non-trivial gauge flux would lead to a chiral charged zero mode spectrum,
which causes the instanton contribution to vanish if no suitable interaction terms
with open string fields are included to soak up the zero modes. In fact, the
correspondence between (4.83) and the type IIB instanton contribution can be
made even more precise [40]. Schematically denoting the charged zero modes by
λAi as in section 4.1.1, the type IIB instanton contribution includes an integral
over these zero modes of the form∫

D{λAi} exp [−SE] . (4.84)

This suggests that the integral over D{λAi} can be identified with the integral
of
∫
DB′ exp [2πi

∫
B′ ∧ ι∗G4] over H2(DM ,R)/H2(DM ,Z) in (4.83) [40]. As ar-

gued in section 4.1.2, in the presence of a chiral charged zero mode spectrum
the instanton action SE is charged with respect to the U(1) symmetries of the
model. This U(1) charge is cancelled by the path integral measure D{λAi}. At
the end of this subsection and in the next subsection we will analyse the charges
of the action of the M5-instanton with respect to U(1) symmetries. Although the
actual path integral measure DB′ is gauge invariant, it is clear from (4.31) that∫
DB′ exp [2πi

∫
B′ ∧ ι∗G4] does carry a U(1) charge. Due to (4.34) this charge

precisely cancels the charge of SM5 originating from the shift of C6 [40]. This ob-
servation again supports the intuitive identification of the new contribution in the
M5 path integral with the IIB charged zero mode path integral measure D{λAi}.

33Strictly speaking, only the part of the group generated by 2-forms in ι∗H2(Ŷ4) is broken.
Shifts along elements of H2(DM ,R) which are orthogonal to ι∗H2(Ŷ4) are still possible if such
forms are present, however we ignore this unimportant distinction in the following.
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Of course, at least in the type IIB setting it is well known that non-trivial superpo-
tential contributions can be induced even in the presence of a chiral charged zero
mode spectrum. As discussed in more detail in section 4.1.1, these contributions
involve charged open string fields Φ(Ai)(Bj) and can in fact be crucial for the low
energy phenomenology as they can induce couplings between charged fields which
are forbidden at the perturbative level. At the technical level the charged open
string fields help to saturate the Grassmann integral over D{λAi} via interaction
terms of the form

SintE ⊃
∫
λAiΦ(Ai)(Bj)λBj (4.85)

in the effective instanton action.
The corresponding mechanism for M5-instantons, which allows a non-vanishing
contribution even in the presence of topologically non-trivial G4 flux, was inves-
tigated in [40]. The crucial ingredient which effectively takes over the role of the
open string fields is the appearance of M2-branes ending on the M5-instanton.
There are several ways to see the appearance of these M2-branes. From a pure su-
pergravity perspective, one can consider the equation of motion of B that follows
from the action (4.82)

d ∗ H ∝ ι∗G4. (4.86)

The full background solution can thus not simply involve a harmonic instanton
field strength H. Roughly speaking, we can decompose H = H0 +H′, where H0
is one of the usual harmonic solutions that would be present in the absence of G4.
H′ on the other hand is an inhomogeneous special solution of (4.86). Crucially, in
a supersymmetric configuration such a solitonic solution H′ must be accompanied
by a non-trivial profile of the deformation modes of the M5-brane [235, 236].
This profile describes a sharp spike in the directions normal to the bulk of the
M5-brane which ends on the 2-cycle PDDM [ι∗G4] that is Poincaré-dual to G4 in
DM . From the supergravity perspective, this configuration can be viewed as an
M2-brane ending on the 2-cycle PDDM [ι∗G4] ⊂ DM . It was pointed out in [40]
that this picture provides an alternative way to understand the vanishing of the
naked M5 contribution to the superpotential in the presence of G4 flux. Namely,
the vanishing can be seen as a consequence of the appearance of additional zero
modes that describe deformations of the solitonic solution H′, or more precisely
of the associated fermionic superpartner to H [40]. In this sense the supergravity
explanation of the vanishing of the M5 contribution is somewhat similar to the
IIB picture.
The presence of the M2-branes can also be deduced without analysing the su-
pergravity solution by considering anomaly cancellation in the spirit of Freed and
Witten [148,216]. Anomaly cancellation in the path integral of a probe M2-brane
requires that the net tadpole for the field B, which couples to the boundary of
the M2-brane, must vanish. In other words, there must be physical M2-branes
ending on DM which cancel the tadpole (4.86). The world-volumes of these M2-
branes are therefore given by 3-chains Γi of the form [40,216] Γi = I × γi, with I
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a semi-infinite time interval such that ∂Γi = γi and

∑
i

γi = PDDM [ι∗G4]. (4.87)

Clearly, this exactly matches the supergravity picture discussed above.
The key to obtaining a non-vanishing M5-instanton contribution in the presence
of ι∗G4 6= 0 is to take the M2-branes seriously as an integral part of the back-
ground configuration. In other words, the full path integral must involve the
exponential of the M2-brane action on an equal footing with the action of the
M5-instanton [216]. These additional factors, which may be written as [77]

VM2,i ∝ exp
[
−2πi

(1
2

∫
Γi
C3 +

∫
γi
B
)]
, (4.88)

can be viewed in string theory language as the vertex factors of the M2-brane
states [40]. The full and potentially non-vanishing path integral over B then takes
the form

WM5 ∝
∫
DB

∏
i

VM2,i e
−SM5,G4 . (4.89)

When comparing this expression to the type IIB picture, the M2-brane vertex
factors can be seen as the analogue of the interaction term [40]

e−
∫
λAiΦ(Ai)(Bj)λBj (4.90)

in the type IIB path integral. Note that in both cases the total insertion is
uncharged with respect to any U(1) symmetries that may be present in the model.
To see this explicitly for the VM2,i, recall from the expansion of C3 in section 3.2
that a gauge transformation AΛ → AΛ + dχΛ of a massless U(1) leads to a shift
C3 → C3 + dχΛ ∧ ωΛ. According to equation (4.31), this is accompanied by a
shift B → B − 1

2ι
∗χΛωΛ. In fact, for a massless U(1) this is simply a large gauge

transformation of B, because χΛ depends only on the coordinates of the external
3-dimensional space and so ι∗χΛ is constant while ωΛ is harmonic. Plugging these
shifts into the M2-brane action (4.88), and using ∂Γi = γi immediately shows that
the vertex factor is gauge invariant. Although we will focus mostly on massless
U(1)s in the following, let us note that the gauge invariance also extends to gauge
transformations along massive diagonal U(1)s. The crucial point is that because
the M2-brane world-volumes have one dimension along the external spacetime,
the forms w0A are actually closed when pulled back to Γi despite the fact that
dw0A 6= 0 in Ŷ4. In particular, after pulling back to Γi the shift δC3 = dχ0A ∧w0A
is a shift by an exact form and we can again use partial integration to show the
gauge invariance of the vertex factor (4.88).
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4.2.4 Selection rules for a non-chiral charged zero mode
spectrum

As we have seen, the form of the M5-instanton contribution to the low energy
effective action depends on whether the flux pullback ι∗G4 vanishes or not, be-
cause non-vanishing flux implies that M2-brane vertex operators must be in-
cluded. From a model building perspective it is of course important to be able
to determine the form of the instanton contribution at least schematically, which
makes it necessary to check in particular whether ι∗G4 = 0.
Although this criterion looks deceptively simple, it is actually non-trivial to eval-
uate in practice. Of course, vanishing of the pullback is equivalent to requiring
that the integral ∫

C(4)

ι∗G4 (4.91)

vanishes for all 4-cycles C(4) ∈ H4(DM). The problem of determining ι∗G4 is thus
equivalent to the problem of constructing the 4-cycles in H4(DM).
Of course, constructing all possible 4-cycles on the instanton divisor DM is in
general a challenging mathematical problem. However, it was pointed out in [40]
that due to the properties of the G4 flux only a very restricted class of 4-cycles
has any chance of yielding a non-zero integral (4.91). For example, as ι∗G4 arises
by pullback from Ŷ4 it is clear that the cycle must be topologically non-trivial
when viewed as a cycle in Ŷ4. A further simplification arises if we consider M-
theory compactifications that can be uplifted to 4-dimensional F-theory vacua. In
this case 4-dimensional Lorentz invariance requires that, figuratively speaking, G4
has exactly one leg in the elliptic fiber [40, 169]. In other words, F-theory fluxes
have vanishing integrals over 4-cycles which either lie completely in the base or
wrap the elliptic fiber. We will stick to fluxes of this type in the following. Our
discussion of the 4-cycles which may yield a non-vanishing integral (4.91) and can
thus be used to detect a possible flux pullback is based on reference [40].
It is once again possible to gain some useful intuition from the type IIB picture.
The discussion in the previous subsection leads us to expect that in the type IIB
language ι∗G4 6= 0 signals the existence of a chiral charged zero mode spectrum
on the instanton. It was explicitly demonstrated in section 4.1.2 that in the type
IIB setting the net chirality of the charged zero modes is equal to the U(1) charge
of the instanton action. The IIB superpotential of an instanton with charged zero
modes takes the form

W ∝ Oe−SE , (4.92)

with O an operator built from charged matter fields whose U(1) charge ex-
actly cancels that of the instanton action. Let us point out that actually the
M5 contribution (4.89) can be interpreted in a similar way. Defining V̂M2,i =
exp

[
−πi

∫
Γi C3

]
, we can cancel theG4-dependent contribution in (4.89) using (4.87)
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to rewrite
WM5 ∝

∫
DB

∏
i

V̂M2,i e
−SM5 . (4.93)

Note that although the VM2,i are gauge invariant as mentioned at the end of the
previous subsection, this is not true of the V̂M2,i. In complete analogy with (4.92)
we thus have the usual contribution e−SM5 that would also be present in the
absence of G4 flux, times a charged operator ∏i V̂M2,i whose U(1) charge cancels
that of the instanton action.
Let us take a brief detour at this point to mention an important observation
that was made in [39] regarding the implications of chiral charged zero modes in
IIB and F-theory GUT models. Recall from section 4.1.2 that instantons whose
superpotential contributions take the form (4.92) cannot participate in Kähler
moduli stabilisation in type IIB GUT models. The problem is that the operator
O with non-vanishing U(1) charge will automatically be charged also under the
non-Abelian part of the GUT group, so that the vacuum expectation value of
O must vanish in order to leave the visible gauge group unbroken. In F-theory
models on the other hand it is possible to construct operators which have a non-
zero U(1) charge while being uncharged with respect to the GUT group. To
illustrate the principle, let us consider a model with an SU(5) stack and two
additional U(1) D7-branes as in [39]. At the intersection of the three branes the
SU(5) singularity experiences a rank two enhancement to SO(12), SU(7) or E6.
Following the general logic of section 2.4.4, these rank 2 enhancements encode the
possible matter field interactions or in other words the ways in which operators
O as in (4.92) can be constructed as products of matter fields. Focusing on the
E6 case, we recall the decomposition of the adjoint from (2.98)

78→ 24(0,0) ⊕
[(

1(0,0) ⊕ 1(−5,−3) ⊕5(−3,3) ⊕ 10(−1,−3) ⊕ 10(4,0)
)
⊕ c.c.

]
.

(4.94)
The states denoted 1(−5,−3) are the sought-after couplings which are GUT singlets
while nevertheless carrying non-vanishing U(1) charges. These operators are not
prevented from acquiring a non-zero vacuum expectation value. An instanton
contribution of the form (4.92) involving these GUT singlets can thus play a
role in Kähler moduli stabilisation despite the non-vanishing U(1) charge of the
instanton. Note that SU(5) GUT models with an E6 point do not admit a smooth
type IIB limit [160], so this is not in conflict with the IIB discussion of section 4.1.2.
Returning to the M5-instanton contribution in (4.93), the IIB intuition discussed
above leads us to expect that vertex factors appear if the M5-instanton action
experiences a non-vanishing shift under U(1) gauge transformations. As shown in
appendix B, the shift of the fields c̃α appearing in the expansion of C6 under such
a gauge transformation is34 [40]

AΛ → AΛ + dΛΛ ⇒ δΛΛ c̃α = 4ΘαΛΛΛ. (4.95)
34Here and in the following we use the notation of section 3.2 and appendix B.
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The coefficient matrix appearing in δΛΛ c̃α is given as before by

ΘαΛ = −1
2

∫
ωα ∧ ωΛ ∧G4. (4.96)

Applying this to the M5-instanton action SM5 = πiCα
E c̃α + ... we have

δΛΛSM5 = 4πiCα
EΘαΛΛΛ = −2πi

∫
DM

ι∗ωΛ ∧ ι∗G4. (4.97)

As G4 is orthogonal to surfaces wrapping the elliptic fiber or lying completely in
the base, the classification of the various 2-forms ωΛ given in section 3.2.1 shows
that non-vanishing shifts are possible if (4.95) corresponds to a gauge transforma-
tion of a massless low energy U(1) symmetry. In other words, we have identified
one possible set of 4-cycles C(4) which give a non-vanishing integral (4.91). These
4-cycles can be constructed as the Poincaré dual of ι∗ω in DM or of [DM ] ∧ ω in
Ŷ4, with ω a 2-form corresponding to either a Cartan U(1) or a massless addi-
tional non-Cartan U(1). In phenomenologically interesting models Cartan fluxes
are usually switched off to avoid breaking the non-Abelian part of the low energy
gauge group. However even in this case we obtain a non-trivial selection rule
from (4.97) if additional non-Cartan massless U(1)s are present in the model.
Let us briefly mention at this point that the supergravity argumentation can
be extended directly to gauge transformations of massive U(1) by including the
non-harmonic forms w0A of section 3.2.2. This strongly suggests that the well-
known type IIB selection rules due to geometrically massive U(1) continue to
hold in F-theory [40]. In other words, we expect an instanton charged under
a geometrically massive U(1) to lead to effective contributions involving M2-
brane vertex operators as in (4.93). We will present additional evidence for this
expectation in the next subsection.
Of course, it must be possible to recover the selection rules due to geometrically
massive U(1)s even in the massless F-theory reduction by considering suitable
4-cycles C(4) without explicitly using the non-harmonic form w0A. At a technical
level it is anyway desirable to understand the relevant 4-cycles directly, because
it is not clear how to construct the form w0A explicitly. Furthermore, there is no
reason to expect that all selection rules in F-theory have a connection with a type
IIB gauge symmetry [40], so in general we expect that DM can contain additional
4-cycles. It was argued in [40] that these 4-cycles are not described by algebraic
surfaces for general values of the complex structure moduli and can thus in par-
ticular not be viewed as an intersection of two divisors like the surfaces DM ∩ [ωΛ]
considered above. Roughly speaking, two types of cycles may be considered. One
type is related to the matter surfaces located at the intersection of two stacks of
7-branes [40]. The second type is related to the Higgsing of a massless U(1) sym-
metry, which is previously described by a harmonic form ω and has an associated
G4 flux G4 ∼ F ∧ ω. As explicitly discussed in [159], the G4 flux is transformed
into a non-algebraic 4-form which can no longer be written as a wedge product
of two 2-forms when one moves into a locus in complex structure moduli space
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in which the U(1) is Higgsed and ω ceases to exist. The non-algebraic cycles
mentioned here are difficult to describe in full generality due to the fact that their
Poincaré dual 4-form does not factorise. For this reason, rather than attempting
a general description we follow [40] and consider a specific model which suffices
to illustrate the essential features. In particular, it will be clear how to generalise
the results from the SU(5)×U(1)X model which we will consider to models with
SU(N), N 6= 5 or to models with multiple U(1)s.

4.2.5 Selection rules in the SU(5)×U(1)X model and com-
parison to the type IIB results

In this subsection we consider an SU(5) × U(1) model which can globally be
described as the vanishing locus of a Tate polynomial

PT = x3 − y2 + a1xyz + a2x
2z2 + a3yz

3 + a4xz
4 + a6z

6 = 0. (4.98)

As in (2.93) we ensure that the model exhibits an SU(5) singularity along a
divisor Wb = {w = 0} in the base B3 by assuming ai = ai,i−1w

i−1, with ai,i−1 not
containing an overall factor of w. We furthermore set a6 = 0, in which case the
model exhibits a massless U(1) symmetry in addition to the SU(5) [108,121]. Of
course, as discussed in section 3.3 this is not the only way in which an additional
U(1) symmetry can be engineered, and to distinguish it from other possibilities
the U(1) obtained by setting a6 = 0 is often referred to as U(1)X [108,121].
The singularities of the SU(5)×U(1)X model can be resolved by introducing a set
additional coordinates s, ei, 1 = 1, ..., 4 together with appropriate scaling relations,
and considering the transformed Tate equation [108]

PT : {y2 s e3 e4 − a1 x y z s− a3,2 y z
3 e2

0 e1 e4

= x3 s2 e1 e
2
2 e3 + a2,1 x

2 z2 s e0 e1 e2 + a4,3 x z
4 e3

0 e
2
1 e2 e4}.

(4.99)

The loci Ei ≡ {ei = 0} and S ≡ {s = 0} are the resolution divisors corresponding
to the Cartan generators of the SU(5) and to the additional U(1) singularity,
respectively. E0 = {e0 = 0} describes the proper transform of the original singular
divisor W = {w = 0}, such that W = ∑4

I=0EI . The 2-form wX , which describes
the additional U(1)X in the expansion of C3, is related to but not identical to the
resolution form S. The precise expression for wX was worked out in [108] using
the requirement that wX must be orthogonal to the intersection of three vertical
divisors, to the section Z of the elliptic fibration intersected with two vertical
divisors, and to the SU(5) Cartan generators. The result is [108]

wX = 5(S − Z − K̄B) + (2, 4, 6, 3)iEi, (4.100)

with K̄B denotes the first Chern class of the anticanonical bundle of the base.
We now turn to the types of G4 flux that can be constructed in the present model.
Quite generally it is possible to distinguish between ’vertical’ fluxes which can be
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written as a sum of products of 2-forms35 and ’horizontal’ non-algebraic fluxes
that cannot be factorised in this manner. Fluxes which admit a factorisation
into a sum of products of 2-forms are not only much easier to describe explicitly
than the non-algebraic fluxes, but also automatically fulfill the F-term constraints
regardless of how one moves around the complex structure moduli space [160].
We will therefore focus on vertical fluxes in the following. The possible vertical
G4 fluxes in the SU(5)×U(1)X model were classified in [160], where it was shown
that in addition to the Cartan fluxes G4 ∼ F ∧Ei exactly two types of consistent
flux can be constructed. One is the standard flux associated with the generator
of the additional massless U(1)X , given by36

GX
4 = −F b ∧ wX (4.101)

with F b a 2-form pulled back from B3. The second type of flux,

Gλ
4 = λ(5E2 ∧ E4 + (2,−1, 1,−2)iEi ∧ K̄B), (4.102)

is not directly associated with a massless U(1) symmetry. As argued in [160] it
describes a type of flux that is often considered in the spectral cover approach to
F-theory model building, which is why it will sometimes be referred to as spectral
cover flux. The parameters F b and λ must of course be chosen in an appropriate
manner in order to fulfill the Freed-Witten quantisation condition [162,163]

G4 + 1
2c2(Ŷ4) ∈ H4(Ŷ4,Z). (4.103)

We will implicitly assume in the following that this is the case.
The 2-form wX associated with the massless U(1)X immediately allows us to
construct a surface which can be used to test for a non-vanishing pullback of G4
along the lines of (4.91), by choosing [40]

[CX
(4)] = −DM ∧ wX . (4.104)

The integrals of the fluxes over this 4-cycle can be evaluated using the various
intersection numbers given in [160], with the result [40]∫

CX(4)

ι∗GX
4 = −10

∫
B3

(5K̄B − 3Wb) ∧Db
M ∧ F b, (4.105)∫

CX(4)

ι∗Gλ
4 = −5λ

∫
B3
K̄B ∧Wb ∧Db

M . (4.106)

A second type of 4-cycles that can be considered is related to the matter sur-
faces, which consist of additional P1’s fibered over codimension 2 loci in the base

35In mathematical terms such fluxes are said to lie in the primary vertical subspace
H2,2
ver.(Ŷ4) [160,228].
36Our normalisation of the fluxes differs from that used in [160] by an overall factor of 5, to

match the normalisation of the wX in [108].
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over which the singularity type enhances. Before explicitly considering surfaces
C(4) ⊂ DM , let us briefly review the construction of matter surfaces in the chosen
SU(5)×U(1)X model. Recent investigations into the matter surface structure in
the context of SU(5) GUT models include [90, 95, 98, 111], but we stick here to
the approach and notation of [108]. One matter surface in the SU(5) × U(1)X
model is fibered over the curve of SU(2) enhancement, which after resolution gives
rise to the additional divisor S and is denoted by C1−5 . Further matter surfaces
are fibered over matter curves lying inside the GUT divisor Wb, over which the
singularity enhances beyond SU(5). More precisely, one finds an enhancement to
SO(10) over the curve C101 =Wb ∩ {a1 = 0} and enhancement to SU(6) over the
two curves C53 = Wb ∩ {a3,2 = 0} and C5−2 = Wb ∩ {a3,2a2,1 − a1a4,3 = 0}. Note
that there are in general multiple matter surfaces associated to a given matter
curve, corresponding to different choices of the linear combination of P1’s which
is fibered over the matter curve. However, all matter surfaces associated with a
fixed matter curve lead to states in the same SU(5) representation and carrying
the same U(1)X charge. As a consequence, the integral of G4 flux over a matter
surface depends only on the matter curve, and not on the explicit choice of the
matter surface over the matter curve [108,160]. The naming of the matter curves
follows the transformation behaviour of the associated matter states, so e.g. mat-
ter surfaces over C101 lead to states in the 10 representation of SU(5) with unit
U(1)X charge.
Following [40], we focus on the matter surfaces Ck

101 , k = 1, ..., 10 associated with
the matter curve C101 . As mentioned above, we can pick an arbitrary represen-
tative matter surface to evaluate the G4 integrals, because this integral does not
depend on the choice of k. A convenient choice is the matter surface denoted by
C24 in [108], which can be written as a total intersection in the ambient 5-fold

C24 : {e2 = 0} ∩ {e4 = 0} ∩ {a1 = 0}. (4.107)

It is straightforward to check that this surface lies inside the fourfold Ŷ4 described
by (4.99). Note that it is not possible to rewrite (4.107) as an intersection of two
further equations with the Tate equation. In other words, the Poincaré dual to C24
in Ŷ4 cannot be written as a product of two 2-forms. Nevertheless, the integrals
of GX

4 and Gλ
4 over C24 can be evaluated without too much difficulty because it

is given by an intersection of 5 divisors in the ambient 5-fold X5. In this way, the
authors of references [108,160] obtain∫

C24
GX

4 = −
∫
C101

F b,
∫
C24

Gλ
4 = λ

∫
C101

5Wb − 6K̄B. (4.108)

Let us now return to the instanton wrapped on DM . Note that as DM is a vertical
divisor, it is described inside both X5 and Ŷ4 by the vanishing locus {DM = 0}
of a polynomial depending only on the base coordinates. This suggests that we
can build a surface analogous to C24 but contained inside DM by replacing a1
in (4.107) with the polynomial DM . In other words, we consider the intersection

C24|DM : {e2 = 0} ∩ {e4 = 0} ∩ {DM = 0} (4.109)
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in the ambient 5-fold X5. A look at the integrals (4.108) suggests that upon
replacing a1 → DM one obtains [40]∫

C24|DM
ι∗Gλ

4 = λ
∫
B3
Db
M ∧Wb ∧ (6K̄ − 5Wb), (4.110)∫

C24|DM
ι∗GX

4 =
∫
B3
Db
M ∧Wb ∧ Fb. (4.111)

It thus looks very much as if the surface C24|DM can indeed be used to derive
a non-trivial selection rule for the absence of chiral charged zero modes on the
M5-instanton. However, a potential subtlety was pointed out in [40]. The issue
is that while C24|DM is clearly contained in DM ⊂ X5, it will in general not lie
within DM ∩ Ŷ4. It was argued in [40] that despite this, a closely related non-
algebraic surface is expected to exist within DM ∩ Ŷ4 and that the integral of G4
over this non-algebraic surface equals the integral over C24|DM ⊂ X5. In fact,
as we will review in the following this can be shown explicitly at least if certain
mathematical assumptions are fulfilled.
The basic idea is that C24|DM clearly lies inside Ŷ4 if Ei ∩ DM is contained in
Ei ∩ {a1} for i = 2 or i = 4. As the divisors Ei are all fibered over Wb, this is
equivalent to requiring [40]

Db
M ∩Wb ⊂ a1. (4.112)

Of course, for general choices of a1 or in other words for general choices of the
complex structure moduli of Ŷ4 equation (4.112) will not be fulfilled. However,
as argued in [40] it is sufficient if there is a surface {ã1 = 0} in the same class
K̄B as {a1 = 0} inside which Db

M ∩Wb is contained. At the level of the defining
functions, this is the case if there exists an integer n and suitable sections α and
β on B3 such that [40]

(ã1)n = αDb
M + βWb. (4.113)

Note that we can allow for meromorphic α and β as long as all poles lie outside
of the locus Db

M ∩Wb. If equation (4.113) is fulfilled, C24|DM is contained in the
auxiliary fourfold {P̃T = 0}, where P̃T is obtained from PT in (4.99) by replacing
a1 with ã1. Because this auxiliary fourfold is obtained from Ŷ4 by a smooth
deformation from a1 to ã1, a 4-cycle C(4) related to C24|DM must have existed
already in Ŷ4 [40]. In the course of the complex structure deformation taking
ã1 → a1 the cycle C(4) can become non-holomorphic. At the level of the Poincaré
dual 4-form this means that it acquires pieces of Hodge type (1,3) and (3,1) in
addition to keeping the original piece of type (2,2). The crucial point is that
the deformation nevertheless does not change the values of the integrals (4.110)
and (4.111), due to the fact that G4 has Hodge type (2,2) [40].
The question remains how restrictive the assumption (4.113) is. We follow [40]
and focus on the case where B3 is a hypersurface (or total intersection) in a toric
space, which enables us to intuitively picture the sections appearing in (4.113) as
homogeneous polynomials in the toric coordinates. This is anyway the case which
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lends itself most directly to model building purposes due to the calculational
power of the toric approach. Most model building applications furthermore focus
on rigid instanton divisors DM to avoid vanishing contributions due to neutral
deformation zero modes. In the toric language it is clear that rigidity requires
DM to be described by a polynomial of quite a low degree. In many cases this
will also be true of the GUT divisor Wb, whose degree is restricted by the fact
that a2,1, which lies in the class 2K̄B −Wb, must be a holomorphic polynomial.
If the degrees of both Wb and DM are lower than the degree of a1 with respect
to every one of the toric scaling relations, then it is clear that (4.113) can be
fulfilled with n = 1. Slightly more generally, it was pointed out in [40] that in the
toric setting K̄B is often a so-called big divisor. Essentially, this means that the
polynomial a1 has a positive charge with respect to every toric scaling relation.
For any arbitrary but fixed divisor D one can then always find an integer n such
that an1/D has positive toric charges, such that an1/D corresponds to an effective
divisor class and can be represented by a holomorphic polynomial. This means
that it is possible to write [40]

(a1)n = αDb
M + βWb + δ. (4.114)

The question is therefore whether by a suitable choice of α, β and n it is possible
to achieve

(a1)n − δ = (ã1)n, (4.115)

with ã1 in the same class K̄B as a1. Due to the large amount of freedom in
choosing α, β and n we generically expect this to be possible [40]. It would of
course be desirable to prove this rigorously and also to extend the analysis to the
case where [a1] is not a big divisor, but this is beyond the scope of this thesis.
To summarise, we expect that beyond the surfaces (4.104) associated to massless
U(1) symmetries there do exist additional 4-cycles in DM ⊂ Ŷ4 which can sup-
port a non-vanishing integral of G4. For general choices of the complex structure
moduli these 4-cycles are not holomorphic, so that the Poincaré dual 4-forms are
not purely of Hodge type (2,2). However, by a suitable smooth deformation of
the geometry we expect that it is possible to relate them to holomorphic 4-cycles.
The deformations do not change the (2,2) part of the cycles and thus the value of
the integral of G4, so that it is possible to evaluate the selection rules at the point
in complex structure moduli space at which the cycles are holomorphic. Further-
more, we have argued that the relevant 4-cycles are related to fibrations of P1’s
over suitable curves lying inside the loci of singularity enhancement. We explicitly
demonstrated the relevant construction for a 4-cycle related to the matter surface
C24 in the SU(5)×U(1)X Tate model of [108]. Similar constructions are of course
possible starting with one of the other matter surfaces over C101 or indeed over
one of the other matter curves [40]. It is natural to expect that the cycle that
is obtained when starting from the matter surface over C1−5 , which is the locus
corresponding to the extra U(1)X , is related to the 4-cycle CX

(4) given in (4.104),
although we will not attempt to show this explicitly. This is in particular relevant
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if the geometry is deformed in such a way that the U(1)X is Higgsed, such that
the form wX ceases to exist and both GX

4 and [CX
(4)] can no longer be taken to lie

in H2,2
ver.(Ŷ4) [40]. It is clear that at least in principle the discussion of the present

subsection can be adapted to other models with gauge group SU(N), N 6= 5 or
to models with multiple massless U(1) symmetries.
Many of the 4-cycles that can be described using the construction outlined above
will of course lead to equivalent selection rules. This is in particular clear for
the various cycles related to different matter surfaces over the same matter curve,
because the integral of G4 over all these 4-cycles will be equal [108, 160]. Fur-
thermore, even cycles constructed from matter surfaces associated with different
matter curves are not necessarily linear independent [40]. This means that to
check whether ι∗G4 = 0 it is generically not necessary to evaluate the integral of
G4 over every 4-cycle C(4) that can possibly be constructed. However, unfortu-
nately there does not seem to be an easily available method of determining when
one has obtained a complete set of selection rules for the absence of charged chiral
zero modes. In models with a dual type IIB description, one can gain some in-
formation about the number and the underlying physical reason for the selection
rules by comparing the F-theory results to the known type IIB selection rules.
This will now be demonstrated for the SU(5) × U(1)X model considered above,
whose type IIB limit has been discussed very explicitly in [160]. As before, our
exposition will be based on referene [40].
The type IIB selection rules for the absence of chiral charged zero modes are
obtained by requiring the chiral indices (4.19) to vanish for every D7-brane stack
in the model. To evaluate these chiral indices we require knowledge of the type
IIB D7-brane divisors as well as the gauge flux configuration on the D7-branes.
For the orientifold dual of the SU(5)×U(1)X model discussed above, with fluxes
GX

4 , G
λ
4 as in (4.101) and (4.102), the relevant data was derived in [160]. In

the double cover πO : X3 → B3 of the base the SU(5) symmetry arises from
a stack of 5 D7-branes wrapped on a divisor DA and the image stack on the
divisor D′A. The divisors DA, D

′
A are related to the F-theory GUT divisor by [40]

[πO(DA +D′A)] =Wb. To satisfy the D7-brane tadpole cancellation condition the
IIB model in addition contains a single D7-brane37 on the divisor [160]

DB = 4DO7 − 2DA − 3D′A. (4.116)

Note that the class of the O7-plane corresponds to the anticanonical class of the
base

DO7 = π∗OK̄B. (4.117)

As before, the type IIB O(1) E3-instanton is wrapped on the divisor DE = π∗OD
b
M .

The type IIB low energy supergravity contains the two independent U(1) sym-
metries U(1)A, U(1)B associated with the brane-image-brane pairs38 on DA and

37Of course we must also include an image brane on the divisor D′B .
38In the case of the non-Abelian stack on DA, U(1)A refers to the diagonal U(1) ⊂ U(5).
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DB. Note that as neither of the divisors is orientifold-invariant, the two U(1)
symmetries are both geometrically massive according to the general discussion
of section 3.1.2. However, a massless linear combination of the two U(1) gauge
bosons was identified in39 [160]

U(1)X = 1
2(U(1)A − 5 U(1)B). (4.118)

As the notation suggests, this massless U(1) is the IIB equivalent of the mass-
less U(1)X symmetry that was present in the F-theory model. Note that this
correspondence also fixes the sign in (4.118), which is of course not fixed by mass-
lessness. To see this we consider the U(1)A,B charges of the type IIB matter fields
at the various intersections. For example, we find fields in the representation 51,−1
at the locus DA ∩DB and fields in 51,1 at the locus DA ∩D′B [17, 160]. Here the
first and second indices denotes the charges with respect to U(1)A and U(1)B,
respectively. In order for the U(1) charges to match the U(1)X charges of the
representations 53 and 5−2 that we had on the F-theory side we must use the
identification (4.118).
The general non-trivial flux configurations along U(1)A/B that fulfill the D5-brane
tadpole cancellation conditions were studied in [160], with the result that exactly
two independent types of consistent fluxes exist. Furthermore, reference [160]
showed that the flux configurations have a direct correspondence with the F-
theory G4 fluxes GX

4 and Gλ
4 . The results may be summarised as [40,160]

GX
4 : F̃+

A = −1
2π
∗
O(F b), F̃+

B = +5
2π
∗
O(F b), F−A,B = 0, (4.119)

Gλ
4 : F̃+

A = −2λDO7, F̃+
B = 0, F−A,B = 0. (4.120)

These results can be checked by comparing the chiral indices of the various matter
fields to the F-theory results. For example, focus on the configuration GX

4 and
consider the chiral index of the fields at the intersection between DA and DB

χ(51,−1) = IBA = −5
∫
X3
DA ∧DB ∧ (F̃B − F̃A)

= −
∫
B3

(9K̄B − 6Wb) ∧Wb ∧ F b.
(4.121)

Here we inserted (4.119) and used the cohomological relation [160] DO7 ∧ DA =
DA ∧D′A. Furthermore we included a factor of 5 to account for the trace over the
diagonal U(1)A generator. On the F-theory side, the corresponding chiral index
induced by the flux GX

4 of (4.101) is40 [108]

χ(53) =
∫
Ck53

GX
4 = −q(53)

∫
C53

F b. (4.122)

39To simplify the notation and in particular the U(1) charges of the various fields we suppress
the explicit factor of 2π between the M-theory and IIB gauge fields, see equation (3.153).

40The minus sign in (4.122) is due to the fact that our U(1)X is normalised differently to the
one used in [108], where the states on the curve {a3,2 = 0} carried charge −3. This minus sign
is important to obtain the correct signs in (4.119).



186 Chapter 4: Fluxed instantons in type IIB and F-theory

Using [C53 ] = [{a3,2 = 0}] = 3K̄B − 2Wb and q(53) = 3 we see that this
matches (4.121), which in particular confirms (4.119).
Having obtained the fluxes (4.119) and (4.120) it is straightforward to evaluate the
net chiralities of the charged zero modes at the intersections of the D7-branes with
the E3-instanton on DE. Let us focus first on the flux configuration corresponding
to GX

4 . Possible fluxes on the instanton as considered in section 4.1.2 are set
to zero throughout this section. As we are considering an O(1) instanton with
DE = Cα

Eωα and the orientifold-odd parts of the fluxes are zero we find

1
2(IEA − IEA′) = IEA = −5

4

∫
X3

(DA +D′A) ∧DE ∧ π∗O(F b)

= −5
2

∫
B3
Wb ∧Db

M ∧ F b.
(4.123)

In a similar manner we find

1
2(IEB − IEB′) = IEB = 5

4

∫
X3

(8DO7 − 5(DA +D′A)) ∧DE ∧ π∗O(F b)

= 5
2

∫
B3

(8K̄B − 5Wb) ∧Db
M ∧ F b.

(4.124)

Combining these results using (4.118) yields the net charge of the instanton zero
modes with respect to the massless U(1)X

1
2(IEA − 5IEB) = −10

∫
B3

(5K̄B − 3Wb) ∧Db
M ∧ F b. (4.125)

This exactly matches (4.105), which strongly suggests that the integral
∫
CX(4)

ι∗GX
4

measures the net U(1)X charge of the M5-instanton zero modes also in F-theory.
This is of course in agreement with our previous observation that according
to (4.97) the same selection rule is obtained by demanding invariance of the in-
stanton action SM5 with respect to U(1)X gauge transformations.
In the type IIB picture it is clear that requiring (4.125) to vanish is not a suffi-
cient condition to ensure total absence of chiral charged zero modes, because this
requires both IEA and IEB to vanish independently. To obtain a sufficient set of
conditions in IIB we may simply pick any combination of U(1)A and U(1)B that
is linear independent from U(1)X and require that the net chirality with respect
to this combination must also vanish. However, recall that (4.118) describes the
only geometrically massless combination of U(1)A and U(1)B. It is thus clear
that the second selection rule in F-theory cannot be derived from the gauge in-
variance of the instanton action with respect to a massless U(1) [40]. Therefore
it must be described by a selection rule obtained from one of the non-algebraic
4-cycles C(4) ⊂ DM discussed above. Indeed, a closer look at (4.111) shows that
the vanishing of

∫
C24|DM

ι∗GX
4 exactly corresponds to the vanishing of IEA in type

IIB [40].
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The discussion above confirms our expectation that the instanton selection rules
associated with geometrically massive U(1)s in type IIB continue to play a role
in F-theory despite the fact that the massive U(1)s are not directly visible in
the harmonic dimensional reduction [40]. Instead, the corresponding selection
rules can be derived in F-theory from the Freed-Witten anomaly cancellation
condition ι∗G4 = 0. Alternatively it is possible to introduce the non-harmonic
forms w0A of section 3.2.2, which as we have argued directly describe the F-
theory analogues of the geometrically massive U(1)A, U(1)B and not only of the
massless combination (4.118). As shown in appendix B, the shift of the M5
action under a gauge transformation along such a massive U(1) is still described
by equation (4.97). Explicitly evaluating this shift using the intersection numbers
and fluxes of section 3.2.2 shows that it exactly matches the shift of the IIB
instanton action under the corresponding massive U(1) [40]. In other words, we
expect that at least in F-theory models with a well-defined orientifold dual all
selection rules can be derived by demanding gauge invariance of the instanton
action, provided that geometrically massive U(1)s and the non-harmonic forms
necessary to describe them are taken into account.
We now turn to the flux configuration (4.120) corresponding to Gλ

4 . The chiral
indices of the instanton are found to be [40]

χA,E(Gλ
4) = −5λ

∫
X3
DO7 ∧DE ∧D+

A = −10λ
∫
B3
K̄ ∧Db

M ∧W ,

χB,E(Gλ
4) = 0.

(4.126)

The net chirality of the charged zero modes with respect to U(1)X is therefore

1
2(IEA − 5IEB) = −5λ

∫
B3
K̄ ∧Db

M ∧W , (4.127)

which is again in perfect agreement with
∫
CX(4)

ι∗Gλ
4 given in (4.106). Note that as

IEB = 0 the vanishing of (4.127) is the only selection rule that applies in the type
IIB setting. At first sight, this is somewhat puzzling because in the F-theory set-
ting we obtained a seemingly independent selection rule by requiring the integral∫
C24|DM

ι∗Gλ
4 of (4.110) to vanish. The resolution of this puzzle was given in [40].

Namely, the IIB orientifold limit of the SU(5)× U(1)X model with smooth GUT
divisor Wb is well-defined only if certain cohomological relations hold, in which
case the two seemingly different F-theory selection rules are actually equivalent.
The first relation, which is necessary for the smoothness of the orientifold limit,
is the absence of the so-called conifold point [40,160]

{w = 0} ∩ {a1 = 0} ∩ {a2,1 = 0} = 0. (4.128)

This can be directly translated to the cohomological relation

2Wb ∧ K̄2
B = (Wb)2 ∧ K̄B (4.129)
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on B3, or equivalently [160]

(D+
A)2 − (D−A)2 = 2D+

ADO7 (4.130)

on X3. Furthermore, in order for the GUT divisor Wb to be smooth DA and D′A
must have no intersections away from the orientifold plane, as these would lead
to self-intersections of the discriminant locus and thus to singularities in Wb [40].
Starting with

DA ∧D′A = 1
4D

+
A ∧D+

A + 1
4D

−
A ∧D−A −

1
2D

+
A ∧D−A , (4.131)

we note that the part of this intersection that lies inside DO7 can only be contained
in the first term because by definition D−A does not intersect DO7. In other words,
absence of an intersection point away from the orientifold plane leads to

D−A ∧D−A = 2D+
A ∧D−A −D+

A ∧D+
A |off O7. (4.132)

We can now take the wedge product of this equation with DE and integrate it over
X3. The first term on the right hand side vanishes due to the orientifold parity
of the integrand. The second term on the right side must also vanish, because as
argued above we can smoothly deform the geometry in such a way that D+

A ∩DE

lies inside the orientifold plane [40]. Plugging these cohomological relations into
the integral (4.110) leads to [40]∫

B3
Db
M ∧Wb ∧ (5Wb − 6K̄) = 2

∫
X3
DE ∧D+

A ∧DO7 + 5λ
2 DE ∧ (D−A)2

= 2
∫
X3
DE ∧D+

A ∧DO7.
(4.133)

This is proportional to
∫
CX(4)

ι∗Gλ
4 , so that we indeed only obtain one selection rule

both in F-theory and in type IIB.
In a general F-theory model it is of course not necessary to assume that a smooth
type IIB limit exists. The discussion above shows that in this case the number of
independent F-theory selection rules may be larger than we would naively assume
using our IIB intuition. An intuitive microscopic explanation for this observation
was offered in [40]. It is based on the fact that the conifold point located at the
triple intersection (4.128), if present, describes a point where the singularity of
the elliptic fiber enhances to type E6. It is natural to expect that M2-branes
wrapped on the additional fiber P1’s that appear over the E6 point can lead to
the appearance of additional charged zero modes. The additional selection rule
should then correspond to the absence of these additional zero modes. However,
to check this explicitly requires a better understanding of the microscopic nature
of the charged M5 zero modes, and we will not pursue this point any further.
To close this section, let us emphasise that despite the nice picture obtained above
the understanding ofM5-instanton selection rules in F-theory is far from complete.
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Indeed, even cases in which we have a very clear understanding in the type IIB
setting can be somewhat confusing in F-theory. The most obvious example of this
is the case of a U(1) E3-instanton, where it is not clear how the orientifold-odd part
of DE is accounted for in the F-theory uplift. The situation is even worse when
allowing for instanton flux, because U(1) instantons admit fluxes along orientifold
even 2-forms, which uplift to 2-forms in F-theory and can thus not be described
by 3-form flux H on the M5-instanton. Even for O(1) instantons, the uplift of the
selection rules is not clear in the presence of instanton flux [40]. As discussed in
section 4.1.2, in the type IIB setting it is clear that orientifold-odd flux on an O(1)
instanton can lift charged zero modes and in particular contributes to the chiral
index. However, the discussion above does not immediately show how instanton
flux can affect the selection rules for the absence of chiral zero modes in F-theory.
A possible solution for this puzzle was suggested in [40]. The key point is that
the IIB instanton fluxes which contribute to the chiral index are those for which
the pullback to the intersection between instanton and D7-brane is non-vanishing.
As discussed around (4.58), such fluxes correspond to 2-forms on DE which are
not expected to uplift to harmonic 3-forms on DM . This suggests that it may
be possible to describe chirality-inducing fluxes on the M5-instanton by means
of non-harmonic H [40]. Formally including such non-closed fluxes would lead
to an additional contribution to the U(1) gauge transformation of the instanton
action, due to the term H ∧ ι∗C3 in SB. This suggests that non-harmonic H
would contribute to the selection rules. Despite this intriguing observation, much
more work is of course required to clarify the role of possible non-harmonic 3-form
flux on M5-instantons and to investigate whether alternative explanations of the
selection rules can also be found.





Chapter 5

Conclusion

From a phenomenological perspective, F-theory vacua form one of the most in-
teresting corners of the string theory landscape. Conceptually, the F-theory con-
struction can be viewed as an improved method for constructing type IIB vacua,
which naturally incorporates the back-reaction of D7-branes and the associated
strong coupling effects. A famous manifestation of these strong coupling effects is
the appearance of exceptional gauge symmetry, which has crucial implications for
the phenomenology of GUT models. Despite these differences, it is often helpful
to keep the familiar type IIB orientifold picture involving intersecting branes in
mind when working with F-theory vacua. The reason is that some features of the
effective theory can have a very intuitive explanation in the type IIB picture which
is far less clear in the more abstract and geometric F-theory language. Two such
aspects, which are well-studied in the type IIB setting but are as yet relatively
poorly understood in F-theory, concern the form of instanton corrections to the
effective action and the impact of additional Abelian gauge symmetries which are
not part of the Cartan subalgebra of a non-Abelian gauge group. The main aim
of this thesis is to investigate how the known type IIB results relating to these
topics are reproduced in F-theory and to elucidate the similarities and differences
between the type IIB and F-theory descriptions.
The first part of this thesis focuses on the F-theory uplift of U(1) symmetries which
are associated with the diagonal generator of a U(N) gauge group that appears on
a stack of D7-branes in type IIB. Such U(1)s are ubiquitous in type IIB compact-
ifications, and often gain a mass via the so-called Stückelberg mechanism. More
precisely, it is possible to distinguish between two qualitatively different cases
which are referred to as the geometric and the flux-induced Stückelberg mecha-
nism. In the first case, the U(1) becomes massive even in the absence of fluxes,
while in the second case the U(1) mass matrix is quadratic in the world-volume
fluxes on the D7-branes. The description of U(1) symmetries in type IIB, and
in particular the Stückelberg mechanism and the derivation of the mass matrix
are reviewed in section 3.1. Although the exact mass of course depends on the
geometric details of the compactification manifold and the D7-brane divisors, the

191



192 Chapter 5: Conclusion

Stückelberg mass scale is generically comparable to the Kaluza-Klein scale. This
means that a U(1) which becomes massive via the Stückelberg mechanism is no
longer visible as a gauge symmetry in the low energy effective action below the
compactification scale. Nevertheless, the underlying U(1) symmetry has impor-
tant consequences for the low energy phenomenology in the shape of selection
rules on the couplings of the various fields that are charged under the U(1).
From the general logic of the F-theory/type IIB duality it is natural to expect that
the F-theory analogue of the flux-induced Stückelberg mechanism involves G4 flux,
which describes the F-theory uplift of D7-brane world-volume fluxes. On the other
hand, geometrically massive U(1)s should not appear at all in the F-theory Kaluza-
Klein reduction at the massless, harmonic level. The main guiding principle when
looking to get a handle on the F-theoretic description of geometrically massive
U(1)s is thus that the low energy selection rules that are known from the type
IIB setting should be reproduced. In particular, the fact that the Kähler moduli
and the moduli fields associated with the fields C2, B2 in the type IIB setting
can be charged with respect to the massive U(1)s should be reproduced in F-
theory. Based on these considerations, it was suggested in [33] that the effects
of geometrically massive U(1)s and the associated gauge fluxes can be derived in
the F-theory setting if certain non-harmonic forms are taken into account in the
dimensional reduction. The details of the relevant construction are discussed in
section 3.2 of this thesis. A careful analysis of the dimensional reduction involving
the abovementioned non-harmonic forms including the F-theory limit explicitly
shows that indeed all the known type IIB effects can be reproduced exactly. In
other words, including the non-harmonic forms gives a possibility to make the
underlying physical reason for the low energy selection rules directly visible in the
shape of a massive U(1) gauge symmetry.
In order to make use of this construction to derive the selection rules in concrete
F-theory models it is of course necessary to be able to construct the relevant non-
harmonic forms explicitly. As a first step in this direction, a discussion of how the
appearance of geometrically massive U(1)s manifests itself in the geometry of the
F-theory compactification manifold is given in section 3.3. To identify the massive
U(1)s it is necessary to focus on the local geometry in the vicinity of the singular
locus in the compactification manifold which forms the F-theoretic description of
the relevant stack of D7-branes. This is in contrast with massless U(1)s, which
are associated with global features of the compactification manifold in the shape
of additional sections of the elliptic fibration. The picture that emerges is thus
fully consistent with the type IIB intuition, where also the U(1)s of individual
brane stacks are generically massive, while massless U(1)s are global in nature in
the sense that they correspond to combinations of U(1)s from different stacks of
branes. Nevertheless, it would be desirable to further investigate the construction
of the non-harmonic forms required for the description of geometrically massive
U(1)s in explicit models. In particular, it would be interesting to understand how
the relevant forms are distinguished from the other non-harmonic forms in the
massive Kaluza-Klein tower, and whether G4 fluxes associated with geometrically
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massive U(1)s always admit an alternative description in terms of harmonic forms
as suggested by the analysis of [160].
The second part of this thesis is concerned with D3-brane instantons in type IIB
and their F-theory uplift in the guise of M5-instantons wrapped on vertical di-
visors of the elliptic fibration. In particular, we focus on the interplay between
instantons and the massless and massive U(1) symmetries discussed in the first
part of the thesis. The crucial point is that instantons can generate couplings that
break the U(1) symmetries if there is a chiral spectrum of charged zero modes on
the instanton world-volume. In the type IIB setting it is known that the existence
of a chiral charged zero mode spectrum is equivalent to a non-vanishing charge
of the instanton action under the U(1) symmetries. The question of whether an
instanton has a non-vanishing U(1) charge is very important for model building
purposes because it crucially affects the form of the effective instanton contribu-
tion. More precisely, charged instantons lead to couplings that involve matter
fields charged under the U(1) symmetries. This can be crucial in order to gener-
ate couplings that are forbidden by the U(1) symmetries at the perturbative level.
On the other hand, because charged matter fields must typically have a vanishing
vacuum expectation value for phenomenological reasons, charged instantons in
type IIB usually do not help with regards to moduli stabilisation.
The description of Euclidean D3-instantons in type IIB is reviewed in section 4.1.
Particular emphasis is placed on the derivation of the U(1) charge of the instanton
action and the selection rules for the absence of chiral charged zero modes. As first
pointed out in [39], world-volume instanton flux can affect the instanton charge
with respect to geometrically massive U(1)s. In particular, it is possible that
a certain configuration of instanton flux leaves the instanton uncharged even in
cases where the unfluxed instanton wrapped on the same divisor would have a non-
zero U(1) charge. This means that instanton fluxes can play a crucial role with
regards to moduli stabilisation because as mentioned above charged instantons
do not participate in moduli stabilisation. This observation also reinforces the
fact that it is crucial to take into account the full instanton partition function,
and in particular the sum over instanton fluxes, when computing the instanton
contribution to the low energy effective action.
The F-theory uplift of type IIB D3-instantons is given by M5-instantons on ver-
tical divisors. The importance of considering the full partition function rather
than a single instanton contribution is particularly obvious in F-theory. This is
because, as reviewed in section 4.2, the instanton world-volume action has quite
a complicated form whereas the instanton partition function can be computed
using a rather simpler auxiliary action. The computation of the M5-instanton
partition is performed in section 4.2, based on the analysis of [40]. The stan-
dard method for this computation, due to Witten, actually leads to a number of
candidate partition functions from which the correct physical partition function
must be chosen. To fully determine the moduli dependence of the M5-instanton
action we perform the dimensional reduction of the F-theory effective action in



194 Chapter 5: Conclusion

the democratic formulation in appendix B. In particular we extend the discussion
presented in [40] in order to explicitly identify the imaginary part of the F-theory
Kähler moduli which appear in the M5 action. This allows us to explicitly match
the M5 partition function with the type IIB result for the case of O(1) instantons.
In fact, the type IIB match allows us to identify the physical partition function
of the M5-instanton from amongst the set of candidates, which is non-trivial to
achieve directly in F-theory. The correspondence between the partition functions
furthermore suggests the existence of a type of F-term condition which restricts
the 3-form flux that can be switched on on the M5-instanton. A first suggestion
for the form of this F-term condition was given in [40], and we present additional
evidence for this suggestion in section 4.2.
Finally, we consider the selection rules for the absence of chiral charged zero
modes in the F-theory picture. The relevant selection rules can be deduced from
the Freed-Witten anomaly cancellation condition, which requires ι∗G4 = 0 in the
absence of charged chiral zero modes. The actual selection rules are obtained by
checking for non-zero integrals of G4 over various 4-cycles in the instanton world-
volume, and the form of the 4-cycles which can yield non-trivial selection rules is
discussed at the end of section 4.2. In the presence of massless U(1)s, one class of
selection rules can be associated with the vanishing of the instanton charge with
respect to these U(1)s, matching the type IIB picture. However, the number of
selection rules in F-theory is generically larger than the number of massless U(1)
symmetries. Based on a comparison of the F-theory and type IIB selection rules
in an explicit example, we argue that the additional selection rules can actually
be understood as arising due to geometrically massive U(1) symmetries, just as
in the type IIB picture. This gives another strong indication that geometrically
massive U(1)s can continue to play an important role in F-theory despite not
being directly visible in the low energy effective action.
Although the discussion of chapter 4 sheds light on many aspects of the relation-
ship between M5-instantons in F-theory and Euclidean D3-instantons in F-theory,
several important questions remain which require further study. One important
example concerns IIB configurations which involve a distinct instanton-image-
instanton pair, known as a U(1) instanton. Such instantons can support world-
volume flux with even orientifold parity. By considering the relationship between
the cohomology groups on the world-volume of the U(1) instanton and on the
divisor associated with the corresponding M5-instanton, it is easy to deduce that
orientifold-even flux is uplifted to a 2-form on the M5-instanton. It is as yet un-
clear how to interpret this in the F-theory picture, where instanton world-volume
fluxes are described by 3-forms on the M5 divisor rather than 2-forms. Further-
more, additional work is required to fully understand the F-theoretic analogue of
the IIB observation that instanton fluxes can influence the instanton U(1) charge
or equivalently the charged zero mode spectrum. Some hints are discussed at the
end of section 4.2, which suggest that chirality-inducing instanton flux may be
described in F-theory with the help of non-harmonic 3-forms on the instanton
divisor. Nevertheless, a more precise understanding of the F-theoretic origin of
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these non-harmonic forms and the reason for their appearance in the M5 partition
function would of course be very desirable.





Appendix A

Conventions and review of
mathematical techniques

In this appendix we present a brief overview of the most important mathematical
definitions and theorems used in this thesis. The material is standard and can
be found in most textbooks on differential geometry or algebraic topology, such
as [91, 92, 237–239]. Furthermore, many excellent reviews such as [21, 240, 241]
exist which focus the applications of these subjects to physics and string theory
in particular, and these reviews form the basis of the short presentation given in
this appendix.

A.1 Conventions for differential form calculus

In this section we recall some basic facts regarding the calculus of differential
forms, as well as fixing our conventions. A differential form ωp of degree p on a
manifold M can be viewed as a totally antisymmetric multilinear functional1 on
the p-fold tensor product of the tangent space of M . In local coordinates, there
exists a canonical basis of the tangent bundle of M denoted by {∂/∂xi}. The dual
basis, whose elements are denoted by dxi, is a canonical basis of the cotangent
bundle or the space of differential 1-forms. Any higher rank differential form can
be written as a superposition of tensor products of these basis elements. This
expansion takes the form

ωp =
∑

i1,...,ip

ωi1...ipdx
i1 ⊗ . . .⊗ dxip , (A.1)

where the coefficient functions ωi1...ip are totally antisymmetric. To simplify
the formulae for the various supergravity actions involving differential forms, we
choose conventions in this thesis in which the coordinates spacetime xi are dimen-
sionless. Furthermore, the coefficient functions ωi1...ip of all p-forms ω, including

1The base field will be R or C throughout this thesis.
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the p-forms used in the Kaluza-Klein reductions, will be taken to be dimensionless.
This in particular means that integrals of p-forms over p-cycles are dimensionless.
Note that the antisymmetry of (A.1) implies that forms of degree p with p larger
than the dimension of M must vanish. The bundle Ω∗(M) of differential forms
of various degrees is given the structure of an algebra by the exterior or wedge
product. The product of a p-form ω and a q-form η is a (p + q)-form defined in
local coordinates by

(ω ∧ η)i1...ip+q = (p+ q)!
p!q! ω[i1...ipηip+1...ip+q ]

≡ 1
p!q!

∑
σ

sgn(σ)ωiσ(1)...iσ(p)ηiσ(p+1)...iσ(p+q) .
(A.2)

The exterior derivative of a p-form ω is defined by

(dω)i1...ip+1 = (p+ 1)∂[i1ωi2...ip+1]. (A.3)

These definitions immediately lead to the basic identities

d2ωp = 0, ωp ∧ ηq = (−1)pqηq ∧ ωp, (A.4)
d(ωp ∧ ηq) = (dωp) ∧ ηq + (−1)pωp ∧ (dηq). (A.5)

A form annihilated by the exterior derivative is called a closed form, while a form
which can itself be written as an exterior derivative of another form is called exact.
A (smooth) map f : M → N between two manifolds defines a corresponding
pullback map f ∗ : Ωp(N) → Ωp(M). The pullback of a form ω can be defined in
local coordinates by

(f ∗ω)i1...ip = ∂f j1

∂xi1
. . .

∂f jp

∂xip
ωj1...jp . (A.6)

The pullback commutes with both the wedge product and the exterior derivative
in the sense that

f ∗(ω ∧ η) = (f ∗ω) ∧ (f ∗η), f ∗(dω) = d(f ∗ω). (A.7)

On a complex manifold M , the cotangent bundle can be split into a direct sum
of holomorphic and anti-holomorphic pieces. This decomposition immediately
extends to forms of higher degree, and forms with p holomorphic and q anti-
holomorphic indices are commonly referred to as (p, q)-forms. The space of (p, q)-
forms will be denoted by Ωp,q(M). The exterior differential can be decomposed as
d = ∂+ ∂̄, where ∂ (∂̄) takes a (p, q)-form to a form of degree (p+1, q) ((p, q+1)).
The wedge product is compatible with this decomposition in the sense that the
product of a (p, q)-form and a (p′, q′)-form is a form of degree (p + p′, q + q′). In
index notation, barred indices are often used for anti-holomorphic indices in order
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to emphasise the distinction between holomorphic and anti-holomorphic parts, so
that a (p, q)-form may be written as

ωi1...ipj1...jq . (A.8)

The nilpotence of the exterior derivative implies that the bundles of differential
p-forms form a cochain complex (Ω∗(M), d). The associated cohomology is known
as the de Rham cohomology (or Dolbeault cohomology in the complex case). The
corresponding cohomology groups are defined as usual by

Hp(M) = Ker d|Ωp
Im d|Ωp−1

, (A.9)

or the complex analog

Hp,q(M) = Ker ∂̄|Ωp,q
Im ∂̄|Ωp,q−1

. (A.10)

Given a differential form ω, we denote its cohomology class by [ω], although the
brackets are often omitted if it is clear from the context that we are working in
cohomology. The dimensions of the de Rham cohomology groups are known as
the Betti numbers and conventionally denoted bp(M) = dim(Hp(M)), while the
complex analogue are the so-called Hodge numbers hp,q = dim(Hp,q). The prop-
erty (A.5) implies that the wedge product of differential forms lifts to a product
on cohomology. We also denote this product by the wedge symbol, although the
explicit wedge symbol is sometimes left out if it is clear from the context that we
are considering products of cohomology classes.
There is a natural pairing between differential p-forms ωp and p-dimensional ori-
ented submanifolds Γp of M defined by integration

(ωp,Γp)→
∫

Γp
ωp. (A.11)

This integration is well-defined2 due to the antisymmetry of the differential form,
which ensures that under a coordinate change the transformation of the form
cancels that of the integration measure. In the context of integration of differential
forms, the change of variables formula takes the form∫

f(Γ)
ω = s

∫
Γ
f ∗ω, (A.12)

where s = 1 if f is orientation-preserving and s = −1 otherwise. The spaces of
p-dimensional oriented submanifolds together with the boundary operator form a
chain complex whose homology groups Hp(M) form the (singular) homology of
M . As a consequence of Stokes’ theorem∫

Γ
dω =

∫
∂Γ
ω, (A.13)

2We assume for simplicity that M and Γp are compact, or that ωp has compact support.
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the pairing (A.11) lifts to a pairing on homology and cohomology. Poincaré du-
ality implies that this is actually a duality pairing which induces an isomorphism
Hp(M) ' Hd−p(M), d = dim(M).
The previous definitions and results were purely topological in nature in the sense
that they made no reference to a metric. However, given a metric g on M an
additional isomorphism from the space of p-forms to the space of (d − p)-forms
can be defined in the shape of the so-called Hodge star operator ∗. In order to
define the Hodge star we will use the epsilon tensor ε̂, which transforms non-
trivially under coordinate changes and whose indices are raised and lowered using
the metric g. We use the hat to distinguish it from the ordinary ε-symbol, which
is defined by its antisymmetry and ε0...(d−1) = 1 and does not transform under
coordinate redefinitions. We use the conventions of [2, 17], in which there holds

ε̂µ1...µd = | det g|− 1
2 εµ1...µd , (A.14)

ε̂µ1...µd = sgn(g)| det g| 12 εµ1...µd , (A.15)

with sgn(g) denoting the signature of the metric. The Hodge star operator ∗ now
acts on a p-form η by

(∗η)µ1...µd−p = 1
p! ε̂µ1...µd−p

ν1...νp ην1...νp (A.16)

Defined in this way, it obeys

∗ ∗ ωp = sgn(g) (−1)p(d−p)ωp, (A.17)

ηp ∧ ∗ωp = sgn(g)(−1)p(d−p) 1
p! | det g| 12ηµ1...µpω

µ1...µpddx, (A.18)

where d is the dimension of M and sgn(g) is the signature of the metric.
The Hodge star defines an inner product on the space Ωp,q(M) given by

〈ω, η〉 =
∫
M
ω ∧ ∗η. (A.19)

The codifferential d† is defined as the formal adjoint of d with respect to this inner
product, so that it obeys

〈ω, dη〉 =
〈
d†ω, η

〉
. (A.20)

When acting on a p-form, d† can be written in terms of the exterior differential d
and the Hodge star as

d† = (−1)dp+d+1sgn(g) ∗ d ∗ . (A.21)

From this it immediately follows that (d†)2 = 0. In this sense the codifferential
behaves just like the exterior differential, and one can also define the concepts
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of co-closed and co-exact forms in a completely analogous manner. The Laplace
operator can be written in terms of the two differential operators as3

∆ = dd† + d†d. (A.22)

As in the case of flat space, forms annihilated by the Laplace operator are known
as harmonic forms. It is immediately clear from the definition that a form which
is both closed and co-closed is harmonic, and in fact the converse is also true.
The theory of harmonic forms is closely tied to the theory of cohomology by the
so-called Hodge decomposition, which states that every form ω can be written
uniquely as a sum of a harmonic, an exact and a co-exact form

ω = γ + dα + d†β, ∆γ = 0. (A.23)

If ω is closed, then d†β is also closed and hence harmonic. This means that the
co-exact contribution d†β vanishes if ω is closed, as all harmonic contributions
are already included in γ. It follows that γ and ω lie in the same cohomology
class. In other words, each cohomology class has a unique associated harmonic
representative, giving an isomorphism from the space of harmonic p-forms to the
cohomology group Hp(M).
In general, the interplay between the Hodge star and the pullback or wedge prod-
uct operations is non-trivial. However, let us conclude this appendix by mention-
ing two simpler special cases that are relevant at some points in this thesis. For
one, if σ : M → M is an isometry, then the pullback along σ commutes with the
Hodge star up to a sign

∗ (σ∗ω) = sσ∗(∗ω). (A.24)

Here s = 1 if σ is orientation-preserving and s = −1 if the orientation is reversed.
Now assume that M = M1 ×M2 is a direct product of two manifolds M1, M2,
and that the metric on M is block-diagonal with the blocks corresponding to
metrics on M1 and M2. In this case, letting d1 = dim(M1) and given forms
ωi ∈ Ωpi(Mi), i = 1, 2, there holds

∗M (ω1 ∧ ω2) = (−1)p2(d1−p1)(∗M1ω1) ∧ (∗M2ω2). (A.25)

A.2 Calabi-Yau manifolds

In this section we review some of the essential features of Calabi-Yau manifolds,
which play a distinguished role in the theory of string theory compactifications.
Calabi-Yau manifolds can be characterised in a number of equivalent ways. The

3In the complex case one can define similar operators out of the holomorphic and antiholo-
morphic partial derivatives ∂ and ∂̄ and their adjoints. However, in the case of Kähler manifolds,
which will be the primary case of interest for us, the resulting Laplacians differ from that built
using the total exterior derivative only by an overall factor of 2.



202 Chapter A: Conventions and mathematical definitions

most famous of these equivalent requirements is the existence of a certain form of
metric, which was conjectured by Calabi and later proven by Yau [242,243].
A common theme of all the equivalent characterisations is that a Calabi-Yau
manifold M is a Kähler manifold. This means that M is a complex manifold with
a metric g fulfilling certain additional conditions. The first condition is that the
metric must be Hermitian, which means that the complex structure acting on the
tangent space of M leaves the inner product invariant. In complex coordinates,
it can be shown that this is equivalent to all entries of g with purely holomorphic
or purely anti-holomorphic indices vanishing

gij = gij = 0, gij = gji 6= 0. (A.26)

Any complex manifold admits a Hermitian metric, so this requirement restricts
the metric g but not the underlying manifold M . To a Hermitian metric one can
associate a canonical (1, 1)-form defined in local coordinates by

J = igijdz
i ⊗ dz̄j − igjidz̄j ⊗ dzi = igijdz

i ∧ dz̄j. (A.27)

If this form is closed, i.e. dJ = 0, then J is known as a Kähler form and the pair
(M, g) is a Kähler manifold.
On a Kähler manifold of n complex dimensions the n-fold exterior product of J
is proportional to the volume form

vol(M) = 1
n!

∫
M
Jn. (A.28)

This proves that the Kähler form represents a non-trivial class in cohomology.
Furthermore, on a Kähler manifold the Laplace operators built from the differ-
ent exterior differential operators d, ∂, ∂̄ are all proportional, ∆d = 2∆∂ = 2∆∂̄.
This implies that the de Rham cohomology groups can be decomposed into the
Dolbeault cohomology groups, i.e.

Hp(M) =
⊕
r+s=p

Hr,s(M). (A.29)

The proportionality of the Laplace operators also shows that the complex con-
jugate of a harmonic form is again harmonic, so that the Hodge numbers obey
hp,q = hq,p. The absence of mixed metric components on a Kähler manifold implies
that Hodge duality (A.16) is compatible with the decomposition into holomorphic
and anti-holomorphic indices, in the sense that a (p, q)-form is transformed by
Hodge duality into a form with definite (p′, q′) type. More precisely, if ω is a
(p, q)-form then ∗ω is an (n− q, n− p)-form4.
The Kähler condition dJ = 0 can be shown to imply that the only non-vanishing
Christoffel symbols are those with all indices holomorphic or all indices anti-
holomorphic. This in turn means that the holomorphic and anti-holomorphic

4Some authors absorb an extra complex conjugation into the definition of the Hodge duality
in the complex case, which would lead to ∗ω ∈ Ωn−p,n−q(M).
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parts of the tangent space of M are not mixed under parallel transport along
a closed curve using the Levi-Civita connection. In other words, the holonomy
group of a Kähler manifold is restricted. The holonomy group of M is the group
of transformations of tangent vectors under parallel transport along closed curves.
For a generic manifold of real dimension d = 2n the holonomy group is SO(d).
The fact that holomorphic and anti-holomorphic components are not mixed un-
der parallel transport implies that for a Kähler manifold the holonomy group is
restricted to a U(n) subgroup of SO(2n).
A Calabi-Yau manifold can be defined as a compact Kähler manifold of complex
dimension n whose holonomy group is restricted even further to SU(n) ⊂ U(n).
From a physical perspective, this definition of Calabi-Yau manifolds appears quite
naturally. This is because unbroken N = 1 supersymmetry after compactification
requires the existence of a covariantly constant spinor, and SU(n) is the largest5

holonomy group that admits the existence of such a spinor [3]. There are a number
of different equivalent characterisations of Calabi-Yau manifolds, which can be
useful in different situations. The most famous is the existence of a Ricci-flat
Kähler metric. A criterion that is much easier to check on a practical level is that
the first Chern class of the (holomorphic) tangent bundle vanishes, or equivalently
that the canonical bundle is trivial. Finally, a complex Kähler n-fold is Calabi-
Yau if and only if it admits a nowhere-vanishing holomorphic (n, 0)-form, which
is conventionally denoted by Ωn. It is easy to check that the compactness of M
implies that Ωn is unique up to multiplication by a constant.
The conditions of compactness and of having holonomy SU(n) can be shown to
imply that for a Calabi-Yau n-fold M there holds [244]

hp,0(M) = h0,p(M) =
{

1, p = 1, n,
0, else. (A.30)

This fact, together with the symmetries between the various cohomology groups
of Kähler manifolds induced by complex conjugation and Hodge duality, implies
that only a few of the Hodge numbers of a Calabi-Yau manifold are independent.
To illustrate the various symmetries, the Hodge numbers are usually arranged
into a diamond. For the cases of Calabi-Yau 3- and 4-folds, which are the most

5In principle a holonomy group that is contained within SU(n) rather than filling out SU(n)
completely suffices for this condition, and often the definition of Calabi-Yau manifolds is slightly
adjusted to allow holonomy groups contained in SU(n). This definition would allow for several
special cases which are not simply connected (such as products of tori) to be classed as Calabi-
Yau, however we will generally take Calabi-Yau to mean that M is simply connected and the
holonomy is SU(n).
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important cases in the context of this thesis, the Hodge diamonds take the form [3]

Calabi-Yau 3-fold:

1
0 0

0 h1,1 0
1 h2,1 h2,1 1

0 h1,1 0
0 0

1

(A.31)

Calabi-Yau 4-fold:

1
0 0

0 h1,1 0
0 h2,1 h2,1 0

1 h3,1 h2,2 h3,1 1
0 h2,1 h2,1 0

0 h1,1 0
0 0

1

(A.32)

In the case of Calabi-Yau 4-folds there is an additional linear relation between the
Hodge numbers which implies that [3] h2,2 = 2(22 + 2h1,1 + 2h3,1 − h2,1).
The independent Hodge numbers are important because they count the number
of ways in which the manifold M can be deformed without destroying the Calabi-
Yau property. Each such deformation gives rise to a massless6 field in the low
energy action. This means that from a phenomenological perspective determin-
ing the Hodge numbers is one of the most important tasks when constructing
a compactification manifold. To accomplish this, it is often helpful to consider
the Euler characteristic defined by χ(M) = ∑2n

p=0(−1)p bp(M). For Calabi-Yau
3- and 4-folds, the specific form of the Hodge diamond implies that the Euler
characteristic can be written as [3]

χ = 2(h1,1 − h2,1), n = 3,
χ = 6(8 + h1,1 + h3,1 − h2,1), n = 4.

(A.33)

The advantage of these formulae is that the Euler characteristic can sometimes be
computed independently from the Hodge numbers, which reduces the number of
Hodge numbers that must be determined directly. For example, for a closed and
smooth manifold the Euler characteristic is equal to the Euler number, which is
given by the integral of the top Chern class (also called the Euler class) [241]

χ =
∫
M
cn(M). (A.34)

6Here we mean massless in the context of a compactification on a Calabi-Yau manifold
without further structure. In a realistic compactification, further ingredients such as fluxes
must be introduced to give masses to these would-be moduli fields.
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A.3 Vector bundles and characteristic classes

In this section we review some of the essential definitions and theorems relating
to vector bundles (or more generally fiber bundles), which play an important role
in the modern mathematical description of many physical concepts within string
theory and beyond. We largely follow the presentations of references [21,241,245],
to which we refer for proofs and further details.
Roughly speaking, a fiber bundle is a space E which admits a continuous projec-
tion π : E → B to a base manifold B and locally looks like a Cartesian product of
B and a fiber space F . More precisely, for each p ∈ B there must exist a neighbor-
hood U and a homeomorphism φU : π−1(U)→ U×F which is compatible with the
projection π. A vector bundle of rank n is a special case of this definition where F
is an n-dimensional real or complex vector space (for n = 1 one usually speaks of
a line bundle). In addition, when restricted to π−1(p′) with p′ an arbitrary point
in U , the map φU must define a vector space isomorphism to {p′} × F . In the
complex case one may further require π and φU to be holomorphic and biholo-
morphic, respectively, in which case one speaks of a holomorphic vector bundle.
A covering of B by a family {Uα} of open sets together with the associated maps
φα is called a local trivialisation of E. At the overlap of two patches Uα ∩ Uβ,
the composition φα ◦ φ−1

β defines a map tαβ from Uα ∩ Uβ to the group GL(n) of
isomorphisms of the fiber. These maps are known as the transition functions of
the trivialisation, which obey the cocycle condition tαβtβγ = tαγ.
A (global) section of a fiber bundle is a map s : B → E which inverts the
projection in the sense that π(s(p)) = p for all p ∈ B. The space of sections of E
is conventionally denoted by Γ(E). Locally, any section s can be viewed as a map
from U ⊂ B to the fiber F , but the value of s is defined only up to multiplication
by the transition functions. A vector bundle always admits a global section in
the shape of the zero section or trivial section. In contrast, nowhere-vanishing
global sections need not necessarily exist. In fact, if a vector bundle of rank n
has n nowhere-vanishing sections si such that for every p ∈ B the si(p) are linear
independent in F , then the bundle is trivial and can be globally written as a
Cartesian product E = B × F .
The operations of taking direct sums or tensor products of vector spaces can be
extended fiberwise to vector bundles7. The direct sum of two vector bundles of
ranks n and m yields a bundle of rank n + m, while the tensor product yields a
bundle of rank n ×m. Clearly, the transition functions of a bundle obtained as
a direct sum or tensor product of two vector bundles are simply the direct sums
or tensor products of the transition functions of the original bundles. Given a
line bundle L, we may construct the inverse line bundle L−1 as the bundle whose

7Given a subbundle E′ of E, i.e. a bundle E′ and a map f : E′ → E that allows the fibers of
E′ to be identified with subspaces of the fibers of E, one can also construct the quotient bundle
by applying the vector space quotient fiberwise. The rank of the quotient bundle E/E′ is given
by rank(E)− rank(E′).
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transition functions are the inverses of the transition functions of L. Clearly, L⊗
L−1 is the trivial line bundle, justifying the intuitive notation. Other powers Lm of
line bundles may be defined in a similar manner. Note that this construction does
not generally work for vector bundles of higher rank, as the would-be transition
functions do not necessarily commute, which can lead to a violation of the cocycle
condition.
An interesting aspect of holomorphic line bundles on a manifold complex M is that
they can be identified with a certain class of codimension 1 surfaces in M known
as divisors. A divisor D is a formal sum of the form D = ∑

i niSi, where the Si are
holomorphic irreducible hypersurfaces in M and ni ∈ Z. In 4-dimensional string
theory compactifications, understanding the nature of divisors of the compacti-
fication manifold is important because supersymmetric D7-brane configurations
are described by divisors. Each irreducible holomorphic surface Si can be repre-
sented locally in a patch Uα as the zero locus of a holomorphic function f iα. The
divisor is then represented by the meromorphic function fDα = ∏

i(f iα)ni . The set
of divisors (and by extension the set of homology classes of divisors) can be given
the structure of a group, with D +D′ being the divisor whose defining functions
are the products of the defining functions of D and D′. In order for the surfaces
Si to be well-defined, the ratios f iα/f iβ defined on the overlap of two patches must
not have any zeroes or poles. This means that the ratios fDα /fDβ can be identi-
fied as the transition functions of a line bundle, which is conventionally denoted
O(D). Similarly, the locus of zeros and poles of a meromorphic section of O(D)
will define a divisor that is homologically equivalent to D. In the case where fD
can be written as a globally defined meromorphic function all transition functions
are constant, so that O(D) is the trivial line bundle. Crucially, it can also be
shown that a divisor given by a globally defined function is trivial in homology.
Hence the relation between divisors and line bundles described above is actually
an isomorphism between the group of isomorphism classes of line bundles (en-
dowed with the tensor product operation) and the group of homology classes of
divisors.
In a similar manner to the direct sums and tensor products of vector bundles dis-
cussed above, one can define exterior powers of vector bundles. The p-th exterior
power of a vector bundle E is denoted by Λp(E). In the case where p = rank(E),
Λp(E) is a line bundle which is often called the determinant line bundle, because its
transition functions are the determinants of the transition matrices of the original
bundle E. Of particular significance is the case where E = T ∗(M) is the cotan-
gent bundle of the underlying manifold M . In this case, Λp(T ∗(M)) ≡ Λp(M) is
the bundle whose sections are differential p-forms on M . In the complex case, one
may similarly construct the complex vector bundle Λp,q(M) from exterior powers
of the holomorphic and anti-holomorphic cotangent bundles. Note that this is a
holomorphic vector bundle only if q = 0. In the case where p is the (complex)
dimension of M , Λp,0(M) defines a holomorphic line bundle which is known as
the canonical bundle. This makes it clear that, as mentioned in appendix A.2,
the existence of a nowhere-vanishing holomorphic (p, 0)-form is equivalent to the
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triviality of the canonical bundle.
Given a general vector bundle E over M , one may define E-valued differential
forms on M as sections of the product bundle E ⊗ Λr(M). In complete analogy
to the usual definition of de Rham cohomology one may then define E-valued
cohomology groups Hp(M,E). Any (smooth) vector bundle E over M may be
endowed with a connection, which can formally be viewed as a map ∇ : Γ(E)→
Γ(E⊗T ∗(M)) satisfying the product rule. Locally, a connection can be written as
∇ = d+ A∧. Here A is a 1-form with values in the endomorphism ring End(E),
i.e. locally the space of r× r matrices with r = rank(E). Often A itself is referred
to as the connection of the vector bundle. As usual, such a connection can be
used to construct a curvature form F = dA+A∧A, which is a 2-form with values
in End(E). One use of such connections is to define a notion of parallel transport
in the vector bundle. However, of more interest to us is the fact that connections
may be used to define certain characteristic classes which give measures of how
severely the vector bundle is twisted, i.e. how much it deviates from the trivial
bundle.
The most important characteristic class for the purpose of this thesis is the Chern
class of a complex vector bundle8. Given a complex vector bundle E of rank r
endowed with a connection A with curvature F , the (total) Chern class is defined
by

c(E) = det
(

1 + 1
2πF

)
. (A.35)

The determinant is of course evaluated with respect to the matrix indices of the
matrix-valued form F . Clearly, c(E) = c1(E)+c2(E)+. . .+cr(E) can be written as
a sum of forms of varying degrees. ci(E) is a form of degree 2i, whose cohomology
class is called the i-th Chern class. It is obvious that the representative forms ci(E)
depend on the choice of connection through the curvature F . However, the actual
Chern cohomology classes are independent of F and are thus well-defined for a
complex vector bundle without having to specify a connection. In the specific case
where E is the tangent bundle of the base manifold M one often speaks simply of
the Chern classes of M , denoted by ci(M). The top Chern class of a holomorphic
vector bundle is also called the Euler class of the bundle.
The total Chern class is compatible with the operations of taking direct sums or
quotients of vector bundles in the sense that

c(E ⊕ E ′) = c(E) ∧ c(E ′), c(E) = c(E/E ′) ∧ c(E ′). (A.36)

These formulae are known as the Whitney sum formulae. The Chern class can
also be expressed in terms of the so-called Chern roots, which are the eigenvalues
λi, i = 1, ..., r of the r× r curvature form 1

2πF . In terms of these eigenvalues, the

8The real analogues are given by the so-called Stiefel-Whitney and Pontryagin classes, which,
however, play a much smaller role in this thesis.
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determinant in (A.35) becomes

c(E) =
r∏
i=1

(1 + λi) , (A.37)

while the Euler class is simply the product of the Chern roots, cr(E) = ∏r
i=1 λi.

The Chern roots are particularly useful to define other characteristic classes and
to illustrate their relationship with the Chern class. In the following we give the
definitions of the most important characteristic classes used in this thesis.
The Chern character ch(E) is given by the trace of the exponentiated curvature,
and can be related to the Chern classes by

ch(E) = Tr(e 1
2πF ) =

∑
i

eλi = r+c1+ 1
2(c2

1−2c2)+ 1
6(c3

1−3c1c2−3c3)+. . . . (A.38)

When considering direct sums or products of vector bundles, the Chern characters
obey

ch(E ⊕ E ′) = ch(E) + ch(E ′), ch(E ⊗ E ′) = ch(E)ch(E ′). (A.39)

The Todd class of a vector bundle can be defined by

Td(E) =
∏
i

λi
1− e−λi = 1 + 1

2c1 + 1
12(c2

1 + c2) + 1
24c1c2 + . . . . (A.40)

Like the Chern character, the Todd class obeys Td(E ⊗E ′) = Td(E)Td(E ′). The
Todd class and Chern characters of a holomorphic vector bundle E over M can
be used to calculate the holomorphic Euler characteristic, which is defined by

χ(M,E) =
∑
i

(−1)ihi(M,E). (A.41)

The famous Hirzebruch-Riemann-Roch theorem states that

χ(M,E) =
∫
M

ch(E)Td(T (M)). (A.42)

Finally, two further characteristic classes that appear in the world-volume actions
of D-branes are the A-roof genus and the Hirzebruch L-genus, defined by

Â(E) =
∏
i

λi
2 sinh(λi/2) = 1− 1

24(c2
1 − 2c2) + . . . , (A.43)

L(E) =
∏
i

λi
tanh λi

= 1 + 1
3(c2

1 − 2c2) + . . . . (A.44)

Note that the A-roof genus and the Hirzebruch L-genus can be defined in exactly
the same manner in terms of the eigenvalues of the curvature forms for real bun-
dles, although in the real case of course the expansion in terms of Chern classes
should be ignored.
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A.4 Toric construction of Calabi-Yau spaces

Many interesting qualitative predictions of string theory compactifications can be
deduced from the general properties of Calabi-Yau manifolds. However, deriving
quantitative predictions e.g. on the existence and magnitudes of couplings in the
low energy theory often makes it necessary to explicitly construct the compacti-
fication manifold in order to be able to compute suitable integrals or intersection
numbers. While no general recipe for the construction of Calabi-Yau manifolds
is known, a class of Calabi-Yau spaces can be realised as algebraic subvarieties in
so-called toric varieties. The toric framework allows for the calculation of quanti-
ties like intersection numbers in a straightforward manner and even lends itself to
computerised calculations, allowing for computer-powered scans over large num-
bers of compactification manifolds. For these reasons, the overwhelming number
of explicit Calabi-Yau manifolds in the string theory literature and all concrete
examples used in this thesis are of a toric form. In this section, we provide a
short introduction to the basic concepts and calculational tools of toric geometry,
following [21,241].
Part of the power of toric geometry comes from the fact that there are several
different equivalent ways to describe a toric variety, which all have individual
strengths depending on which type of question one is trying to answer. We will
largely follow the approach of [241, 246], in which toric varieties are viewed as
a generalisation of the concept of weighted projective spaces. In this approach,
a toric variety is obtained from C

n by quotienting out an action of an algebraic
torus (C∗)p. In order to obtain a well-defined quotient, it is necessary to subtract
the set Z ⊂ C

m which is left invariant by a continuous subgroup of (C∗)p. A toric
variety9 M of (complex) dimension n = m− p can thus be written as

M = (Cm − Z)/(C∗)p. (A.45)

This definition clearly includes all weighted projective spaces as well as similar
objects generated by quotienting out by more than one rescaling action simulta-
neously. As suggested by the name, a toric variety is not necessarily smooth, but
a singular toric variety always has a resolution which is itself a toric variety. Toric
varieties inherit a complex structure and a Kähler form from the underlying space
C
m, and a homogeneous holomorphic function of the homogeneous coordinates

will (locally) define a holomorphic function on M .
Divisors on toric varieties can be defined as the zeroes and poles of homogeneous
rational functions of the homogeneous coordinates. The group of divisors10 of
a toric variety is spanned by the so-called toric divisors Di = {xi = 0}, where
the xi are coordinates of Cm. Divisors defined by a globally defined function, i.e.

9Sometimes we will be sloppy and refer to toric spaces as manifolds, although strictly speaking
they may include singularities and should thus formally be categorised as varieties.

10See appendix A.3 for the definition of the group of divisors and in particular the addition
operation between divisors.
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a function which is invariant under the (C∗)p action, are homologically trivial.
Two divisors differing by such a trivial divisor are said to be linearly equivalent.
Thus e.g. on the projective space Pn there is only one independent divisor class.
Using the fact that intersection numbers are invariant under linear equivalence,
the intersection between n = dim(M) general divisors can often be reduced to a
combination of simple intersections of n different toric divisors Di. These simple
intersections can often be directly computed using the very simple definitions of
the Di and the (C∗)p symmetry action, as demonstrated e.g. in [21]. Intersections
of n′ ≤ n divisors may also be considered, which result in holomorphic submani-
folds of M of complex dimension n − n′. Choosing n′ = n − 1, we obtain curves
or 2-cycles, and in fact intersections of divisors generate the entire cone of curves
with holomorphic representatives, which is known as the Mori cone. The Mori
cone in turn can be used to determine the Kähler cone of M . The Kähler cone is
defined as the space in which the parameters of M may be varied while keeping
the volumes of all holomorphic curves, as evaluated by integrating the Kähler
form over the curve, positive. As one varies the parameters defining M and one
reaches the boundary of the Kähler cone, one or more of the holomorphic curves
collapses to zero size. However, under variation of the parameters the intersection
properties of the divisors Di and hence the Mori cone may also change. It may
then be possible that one still has a well-defined geometry with positive curve
volumes after passing through the boundary of the original Kähler cone, taking
into account that the Mori cone on both sides of the boundary need not be the
same. Such a transition is known as a flop transition of the geometry.
The Chern class of a toric variety has a very simple expression in terms of the
Poincaré dual cohomology classes to the toric divisor classes Di, which we denote
by the same symbol

c(M) =
∏
i

(1 +Di). (A.46)

This shows that the first Chern class is given by the sum over all toric divisor
classes c1(M) = ∑

iDi. In other words, a section of the canonical bundle is
a homogeneous polynomial whose weights with respect to the toric rescalings
matches those of the monomial ∏i xi. As discussed in [241], this sum is non-zero
if M is compact. In order to obtain Calabi-Yau spaces as required for string
theory model building, it is therefore necessary to consider submanifolds of toric
varieties. In this thesis we will focus on submanifolds X which can be defined as
the simultaneous vanishing locus of a set of homogeneous polynomials Pi (or in
other words, an intersection of a set of divisors) in a toric variety M

X = P1 ∩ . . . ∩ Ps, Pj ⊂M, j = 1, . . . , s. (A.47)

The Chern class of such a submanifold can be computed using the Whitney sum
formula given in appendix A.3, as the tangent bundle of X can be written as the
quotient of the tangent bundle of the ambient space M by the normal bundle of
X in M . Using the fact that the Chern class of the normal bundle of a divisor is
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simply the divisor class, c(N(P )) = 1 + P , one obtains

c(X) = c(M)∏s
j=1(1 + Pj)

= 1 +
m∑
i=1

Di −
s∑
j=1

Ps + . . . . (A.48)

This formula translates the Calabi-Yau condition for X into a simple condition
on the homogeneous degrees of the defining polynomials Pj. In many cases, it
is also possible to derive similarly relatively simple expressions in terms of the
toric divisors for other characteristic classes. These expressions may then be used
with the Hirzebruch-Riemann-Roch index theorem to compute holomorphic Euler
characteristics and obtain relations between different Hodge numbers of X. As
the dimension of the complex structure moduli space of X can often be computed
by counting parameters appearing in the polynomials Pj, these index theorems
can then be used to determine the cohomology of X. For further details, we refer
the reader to [21].
While the construction of toric varieties presented above is very concrete, a dif-
ferent combinatorial approach is more suited for many calculational purposes. In
this language, an n-dimensional toric variety M can be described using a set of
vectors in an n-dimensional lattice Zn. The set of vectors defines a polytope in
the lattice, while sets of different numbers of these vectors span cones of various
dimensions. The definition a toric variety is completed by specifying a fan, which
is a set of cones satisfying several conditions as described in [241] (for example,
the intersection of two cones in the fan must again be an element of the fan).
When relating this description to the previous construction of toric varieties, each
of the vectors corresponds to a homogeneous coordinate of the underlying space
C
m. The linear relations between the vectors encode the action of the (C∗)p group

by which C
m is quotiented, while the fan specifies the excluded set Z in (A.45).

An advantage of this formulation is that hypersurfaces in toric varieties can also
be described by means of polyhedra in the lattice which is dual to the lattice used
in the definition of the ambient variety M [247]. More precisely, the polyhedron
defining M is required to be reflexive, which means that all vertices of the dual
polyhedron must lie on lattice points of the dual lattice. The vertices of the
dual polyhedron can then be interpreted as defining certain monomials built from
the homogeneous coordinates of M . As discussed in more detail in [241], the
hypersurface defined by the vanishing of the generic polynomial built from these
monomials is automatically Calabi-Yau. The main advantage of this construction
is that many properties of the resulting Calabi-Yau space X can be read off
directly from the properties of the defining polytopes. For example, it is possible to
determine in this way whether the space is smooth, whether it describes an elliptic
fibration, and what the Hodge numbers of X are. Furthermore, the algorithmic
combinatorial nature of the construction of lattice polyhedra is ideally suited to
use of computers, and scans and classifications of large numbers of toric Calabi-
Yau manifolds have been performed in this manner [248,249].





Appendix B

Dimensional reduction of the
democratic M-theory action

The dimensional reduction of M-theory on an elliptically fibered fourfold including
the F-theory limit was discussed in detail in section 3.2. In that analysis we used
the standard 11-dimensional supergravity action (3.50), whose form we recall for
the convenience of the reader

S11 = 1
2κ2

11

∫
d11x
√
−gR− 1

2κ2
11

∫ (1
2G4 ∧ ∗G4 + 1

6C3 ∧G4 ∧G4

)
. (B.1)

Just like in the type IIB case, it is advantageous to use a slightly different formula-
tion including a dual 6-form potential C6 in addition to C3 as soon as M5-branes
are included in the theory. The magnetic coupling of C3 to M5-branes can then
be described by an electric coupling involving C6, which is described by a simple
Chern-Simons type action as in (4.27).
Recall from section 3.2 that the Kaluza-Klein reduction of C3 leads to a set of
3-dimensional vector fields Aα. These vectors and their real scalar superpartners
ξα originating from the dimensional reduction of the Kähler form were dualised
into the complexified Kähler moduli tα in subsection 3.2.5. However, the Legendre
transformation (3.141) used in this dualisation process directly specifies only the
real part of tα. General arguments based on supersymmetry can be used to show
that the classical action of an M5-brane instanton should be a holomorphic linear
function of the tα [87]. The fact that the M5-brane action directly involves a scalar
from the Kaluza-Klein reduction of C6 makes it clear that the imaginary part of
tα should be related to this scalar. As we will see, performing the dimensional
reduction of M-theory directly in the democratic formulation involving C6 and C3
allows us to determine the precise relationship and show how exactly the tα enter
the M5-brane action. In particular, we are able to confirm the relationship (3.157)
between the tα and the type IIB Kähler moduli, which is used in subsection 4.2.2
to precisely match the moduli dependence of an M5-instanton on a vertical divisor
to that of an E3-instanton in type IIB.

213
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The authors of [250] showed that in order to be able to write down a covariant
action involving both C6 and C3 it is necessary to introduce auxiliary fields. As in
the other parts of this thesis, we will follow a different path and consider instead a
pseudo-action without auxiliary fields, which is supplemented by suitable duality
constraints at the level of the equations of motion. The basic idea behind this
construction, initially used in the type II setting in [44, 45], is to replace the
equations of motion of C3 obtained from the original action by the Bianchi identity
of a dual field strength. The equation of motion of C3 from (B.1) is

d ∗G4 + 1
2G4 ∧G4 = 0. (B.2)

This equation is solved by introducing a dual field strength G7 related to G4 by1

∗G7 = G4. Inserting this into (B.2) leads to

G7 = dC6 + 1
2C3 ∧G4. (B.3)

With these definitions, it is straightforward to check that the original Bianchi
identities and equations of motion are reproduced by the action

SD = 1
2κ2

11

∫
d11x
√
−gR− 1

6κ2
11

∫ (
G4 ∧ ∗G4 + 1

2G7 ∧ ∗G7

)
. (B.4)

The relative factor between the Einstein-Hilbert term and the term involving G4
and G7 can be fixed by requiring that the original action (B.1) is reproduced
if we introduce a Lagrangian multiplier −

∫
dC6 ∧ dC3 to the part of the action

involving G4 and G7 and integrate out C6 [40]. The dimensional reduction of
this democratic 11-dimensional supergravity on an elliptically fibered Calabi-Yau
fourfold was first considered in [40] and will be reviewed in the following.
In this appendix we focus on the dimensional reduction at the massless level,
and will only comment briefly at the end of the section on the modifications
that arise when non-closed forms such as those used in section 3.2.2 are included.
Our notation follows the notation used in chapter 3 and references [33, 40]. In
particular, we will use the bases {ωΛ} of H1,1(Ŷ4) and {αa, βb} of H3(Ŷ4) which
were introduced in section 3.2.1. Throughout this appendix we assume that any
singularities that may have been present on Y4 have been resolved and work with
the resolved space Ŷ4. In particular, the set {ωΛ} may include forms ωIA dual to
resolution divisors corresponding either to non-Abelian gauge groups or additional
massless Abelian gauge bosons. Beyond this, the set of (1,1)-forms includes the
forms ωα, which arise by pullback of H1,1(B3), and the form ω0 dual to the zero
section of the fibration. In the following, it will sometimes be convenient to group
ω0 and ωIA together into a set labelled by a common index for which we use the
letters r, s, .... We again assume that h2,1(B3) = 0 to simplify the intersection

1In 11-dimensional space with Lorentzian signature this is equivalent to G7 = − ∗ G4,
see (A.17).



215

numbers of the forms in H3(Ŷ4). For the convenience of the reader, let us recall
the relevant intersection numbers from subsection 3.2.2∫

ωΛ ∧ αa ∧ βb =
{1

2Kαacδ
cb, Λ = α,

0, Λ = r,
(B.5)∫

ωΛ ∧ αa ∧ αb =
∫
ωΛ ∧ βa ∧ βb = 0, (B.6)∫

ωΛ ∧ ωΣ ∧ ωΠ ∧ ωΘ = 1
2KΛΣΠΘ, with K0αβγ ≡ Kαβγ. (B.7)

For the Kaluza-Klein reduction of C6, we will also require the dual bases {ω̃Λ} of
H3,3(Ŷ4) and {α̃a, β̃b} of H5(Ŷ4), which are normalised by∫

ωΛ ∧ ω̃Σ = 1
2δ

Σ
Λ , (B.8)∫

αa ∧ α̃b =
∫
βb ∧ β̃a = 1

2δ
b
a, (B.9)∫

αa ∧ β̃b =
∫
βa ∧ α̃b = 0. (B.10)

Finally, we follow [40] in introducing a basis {ηm} of H4(Ŷ4) which satisfies2

∫
ηm ∧ ηn = δmn. (B.12)

Due to the term C3 ∧ G4 appearing in G7 we will also need to consider wedge
products of these basis forms. As the product is of course well-defined in coho-
mology, we can expand the product of, say, a p- and a q-form into the basis of
Hp+q at the level of cohomology classes. For example, the intersection numbers
above yield

[ωΛ] ∧ [ωΣ] ∧ [ωΠ] = KΛΣΠΘ[ω̃Θ] (B.13)
In the following we would like to use relations such as this at the level of differential
forms, and not just at the level of cohomology classes. However, due to the fact
that products of harmonic forms are not necessarily harmonic, this means that
we may have to absorb an exact piece into the ω̃Θ, and similarly into the bases of
H4(Ŷ4) and H5(Ŷ4). With this caveat in mind, we have [40]

ωΛ ∧ ωΣ ∧ ωΠ = KΛΣΠΘω̃
Θ, αa ∧ βb = Kαacδcbω̃α,

αa ∧ ωα = −Kαacδcbβ̃b, βb ∧ ωα = Kαacδcbα̃a,
αa ∧ αb = 0 = βa ∧ βb, αa ∧ ωr = 0 = βa ∧ ωr,

ωΛ ∧ ωΣ ≡ RmΛΣη
m ⇒ ωΛ ∧ ηm = 2δmnRnΛΣω̃

Σ.

(B.14)

2To summarise, the ranges of the different types of indices used in this appendix are

α, β = 1, ..., h1,1(B3), r, s = 1, ..., h1,1(Ŷ4)− h1,1(B3), Λ,Σ = 1, ..., h1,1(Ŷ4),
a, b = 1, ..., h2,1(Ŷ4), i, j = 1, ..., b3(Ŷ4), n,m = 1, ..., b4(Ŷ4).

(B.11)
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Note that the first equation in the last line can be viewed as the definition of the
constants RmΛΣ.
In the course of the Kaluza-Klein reduction, we expand C3 and C6 into the basis
of forms introduced above. Following the notation of [40], we have

C3 = AΛ ∧ ωΛ + caαa + bbβ
b, (B.15)

C6 = c̃Λω̃
Λ + Ũa ∧ α̃a + Ṽ b ∧ β̃b + rm ∧ ηm. (B.16)

Note that the fields rm are spacetime 2-forms and are therefore non-dynamical in
3 dimensions. However, as we will see below it is necessary to include them in the
dimensional reduction in order to consistently account for non-trivial G4 fluxes,
which appear in the Kaluza-Klein reduction via [40]

G4 = dC3 + Fmηm. (B.17)

After inserting these expansions into the action (B.4) and integrating over Ŷ4 one
obtains the 3-dimensional low energy effective action. The kinetic terms of the
3-dimensional fields involve the matrices

NΛΣ :=
∫
ωΛ ∧ ∗ωΣ, Mij :=

∫
ρi ∧ ∗ρj, P nm :=

∫
ηn ∧ ∗ηm. (B.18)

Here we have grouped the 3-forms αa, βa into the common set {ρi} as in [40].
Similarly, we write {ρ̃i} for the overall set of 5-forms {α̃a, β̃b}. Denoting the
inverses of N and M by matrices with raised indices, the relations (B.8) can be
used to show [40] ∫

ω̃Λ ∧ ∗ω̃Σ = 1
4N

ΛΣ,
∫
ρ̃i ∧ ∗ρ̃j = 1

4M
ij. (B.19)

Using these abbreviations, it was shown in [40] that the part of the action (B.4)
depending on C3 and C6 can be rewritten as3

SC = − 1
6κ2

3

∫ [
NΛΣF

Λ ∧ ∗FΣ +Mijdc
i ∧ ∗dcj + 1

8N
ΛΣDĉΛ ∧ ∗DĉΣ

+ 1
8M

ij∇Ui ∧ ∗∇Uj + 1
2P

mnDrm ∧ ∗Drn + PmnFmFn ∗ 1
]
.

(B.20)

Here the scalars ca, ba in (B.15) are collectively denoted by ci, while ĉΛ and Ui
in (B.20) are shifted in comparison with the corresponding fields in (B.15) by

ĉΛ =
{

c̃Λ,

c̃α − 1
2Kαacδcbcabb,

Λ = r,

Λ = α,

Ui =
{
Ũa − 1

2Kαacδ
cbbbA

α,

Ṽ b + 1
2KαacδcbcaAα,

Ui ∼= Ũa,

Ui ∼= Ṽ b.

(B.21)

3As before, we work in conventions where all fields are dimensionless, so that κ2
3 = κ2

11 = 1
4π .
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Finally, we have introduced the covariant derivatives [40]

DĉΛ = dĉΛ − 2ΘΛΣA
Σ +

{
0,

Kαacδcbbbdca,
Λ = r,

Λ = α,

∇Ui = dUi +
{
KαacδcbbbFα,

−KαacδcbcaFα,

Ui ∼= Ũa,

Ui ∼= Ṽ b,

Drm = drm + 1
2RmΛΣA

Λ ∧ FΣ.

(B.22)

Just as in section 3.2.5, one thus finds a flux-induced gauging of the scalars con-
trolled by the ’embedding tensor’

ΘΛΣ = −1
2Fmδ

mnRnΛΣ = −1
2

∫
ωΛ ∧ ωΣ ∧G4. (B.23)

Note that in the democratic formulation this flux-induced gauging appears directly
in the dimensional reduction, whereas in section 3.2.5 the gauging appeared only
after performing the Legendre transformation (3.140).
Of course, the action (B.20) still contains redundancies as it includes degrees
of freedom from both C3 and C6. These redundancies can be eliminated using
the duality relation ∗G7 = G4. More precisely, we follow [40] and translate the
11-dimensional duality relation into corresponding 3-dimensional relations using
equation (A.25). This leads to

2Mij ∗ dcj = −∇Ui ⇔ ∗∇Ui = 2Mijdc
j, (B.24)

2NΛΣ ∗ FΣ = −DĉΛ ⇔ ∗DĉΛ = 2NΛΣF
Σ, (B.25)

−δmnP npFp ∗ 1 = Drm ⇔ Fm = δmnP
np ∗ Drp. (B.26)

At this point it is necessary to slightly shift the definition of the covariant deriva-
tive of ĉΛ to

DĉΛ := dĉΛ − 4ΘΛΣA
Σ +

{
0,

Kαacδcbbbdca,
Λ = r,

Λ = α,
(B.27)

in order to achieve consistency of the duality relations with the equations of motion
that one obtains from the action (B.20) [40]. The fact that such a manual shift is
required for consistency is typical of the pseudo-action formalism for democratic
supergravity theories, and has been discussed in the type II setting in [53,62,144,
223].
After shifting DĉΛ as above, the duality relations (B.24) to (B.26) can be im-
plemented by inserting suitable Lagrangian multiplier terms into the action and
integrating out the redundant fields. Let us first consider the process of eliminat-
ing the non-dynamical 2-forms rm in favour of the flux quanta Fm. As in [40],
we add a Lagrangian multiplier (6κ2

3)−1 ∫ δmnFndrm to the action. Now varying
with respect to drm treated as an independent field leads to an equation of motion
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which is identical to the duality relation (B.26). Therefore we can consistently
eliminate drm using this duality relation, leading to the action [40]

SC = − 1
6κ2

3

∫
R1,2

[
NΛΣF

Λ ∧ ∗FΣ +Mijdc
i ∧ ∗dcj + 1

8N
ΛΣDĉΛ ∧ ∗DĉΣ

+ 1
8M

ij∇Ui ∧ ∗∇Uj −ΘΛΣA
Λ ∧ FΣ + 3

2P
mnFmFn ∗ 1

]
.

(B.28)

The vectors Ui can be eliminated in favour of the dual scalars ci in a completely
analogous manner after introducing the Lagrange multiplier (12κ2

3)−1 ∫ dUi∧dci [40].
In principle, we could use the same technique to eliminate either the vectors AΛ

or the scalars ĉΛ. However, as discussed in subsection 3.2.5 it is advantageous for
the uplift to 4 dimensions and the comparison with the type IIB results to keep
the scalars ĉα and the vectors Ar, with r = 0, (IA). In other words, we would like
to eliminate the scalars ĉr and the vectors Aα. A necessary condition for this to
be possible is that the Aα do not appear in the gauging of the dual scalars ĉα, or
in other words [40]

Θαβ = 0. (B.29)
Recall from section 3.2.4 that this condition must anyway be fulfilled by the G4
fluxes in order to allow for a consistent F-theory uplift. Therefore we assume in
the following that (B.29) is fulfilled. To eliminate the scalars ĉr we follow [40] and
introduce the Lagrangian multiplier (12κ2

3)−1 ∫ dĉr ∧ F r. Varying with respect to
dĉr leads to the duality relation

F r = 1
2N

rΛ ∗ DĉΛ. (B.30)

Crucially, this relation suffices to determine Dĉs completely in terms of Dĉα and
F r, without involving the vectors Aα which we also want to eliminate. To see this,
note that the subblocks N(1) := (Nαβ) and N(2) := (Nrs) of (NΛΣ) are expected to
be separately invertible and positive definite due to the differences in the geometric
origin and index structure between the forms ωα and ωr. Denoting the respective
inverses by (Nαβ

(1) ) resp. (N rs
(2)), we can construct the respective Schur complements

S(1)rs = Nrs −NrαN
αβ
(1)Nβs, S(2)αβ = Nαβ −NαrN

rs
(2)Nsβ. (B.31)

By the matrix inversion lemma, these Schur complements are again positive def-
inite and invertible, and form the inverses of the corresponding subblocks of the
inverse matrix. In other words, we have

S(1)rsN
sp = δpr , S(2)αβN

βγ = δγα. (B.32)

Multiplying (B.30) by S(1)rs leads to

Dĉr = S(1)rsN
sαDĉα − 2S(1)rs ∗ F s, (B.33)

which as claimed does not involve Aα due to (B.29). As above, the duality relation
involving the Aα can be obtained as the equation of motion of Fα after introducing



219

the Lagrangian multiplier −(6κ2
3)−1 ∫ Fα ∧ dĉα [40]. Using (B.33) and the matrix

inversion lemma Nαβ −NαrS(1)rsN
sβ = Nαβ

(1) , this duality relation can be written
as

Fα = 1
2N

αβ
(1) ∗ Dĉβ +NαrS(1)rsF

s, (B.34)

which does not involve ĉr. This guarantees that we may consistently eliminate
both ĉr and Aα from the action using the duality relations. The final result of the
dualisation procedure is [40]

SC = − 1
4κ2

3

∫
R1,2

[
S(1)rsF

r ∧ ∗F s −Nαβ
(1)NβrDĉα ∧ F r − 2ΘrsA

r ∧ F s

+ 1
4N

αβ
(1)Dĉα ∧ ∗Dĉβ +Mijdc

i ∧ ∗dcj + PmnFmFn ∗ 1
]
.

(B.35)

So far we have neglected the Einstein-Hilbert term of the 11-dimensional ac-
tion (B.4). Clearly, the dimensional reduction of this term is not changed when
passing from the usual formulation of the 11-dimensional supergravity to the
democratic formulation. We may therefore use the results of reference [150] for
the reduction of the curvature scalar. As already mentioned in subsection 3.2.1,
the fluctuations of the 11-dimensional metric give rise to the complex structure
moduli zM and the vΛ which appear in the expansion of the Kähler form. While
the zM are complex fields, the vΛ are real and combine with the ĉα and the Ar
into 3-dimensional chiral and vector multiplets, respectively [40]. Combining the
dimensionally reduced Einstein-Hilbert term from [150] with (B.35) leads to [40]

SD = 1
2κ2

3

∫
R1,2

d3x
√
−gR− 1

4κ2
3

∫
R1,2

[
VS(1)rs(dξr ∧ ∗dξs + F r ∧ ∗F s)

−Nαβ
(1)NβrDĉα ∧ F r + 1

4VN
αβ
(1)Dĉα ∧ ∗Dĉβ + 1

V
Nαβ

(1)dVα ∧ ∗dVβ

+ 4GMN̄dz
M ∧ ∗dz̄N̄ + 1

V
Mijdc

i ∧ ∗dcj − 2ΘrsA
r ∧ F s

+ 1
V3P

mnFmFn ∗ 1
]
.

(B.36)

Here we have rescaled the 3-dimensional metric by gµν → V−2gµν , with V the
volume of Ŷ4, in order to obtain a canonically normalised 3-dimensional curvature
term. As in subsection 3.2.4 we have defined ξr = vr/V , while

VΛ := ∂vΛV = 1
3!

∫
Ŷ4
ωΛ ∧ J3. (B.37)

We refrain from giving the explicit expression for the kinetic metric GMN̄ , as this
would require introducing additional notation and the result can be found in [150].
The action (B.36) can be cast into the form of a general 3-dimensional N = 2
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with non-trivial gauging [40]

S
(3)
N=2 = 1

κ2
3

∫ [ 1
2R3 ∗ 1−KIJ̄ ∇M I ∧ ∗∇M̄J + 1

4KAB dξ
A ∧ ∗dξB

+ 1
4KAB F

A ∧ ∗FB + FA ∧ Im(KAI ∇M I)

+ 1
2ΘABA

A ∧ FB − (VT + VF) ∗ 1
]
.

(B.38)

Here, the indices I, J label complex scalar fields while the pairs (ξA, FA) denote
3-dimensional vector multiplets. The covariant derivatives account for possible
gaugings ∇M I = dM I + XI

AA
A. Comparison with (B.36) makes it clear that

the vector multiplets in the dimensional reduction are given by (ξr, Ar) up to
a possible normalisation factor. The part of the action involving the complex
structure moduli and the real scalars {ci} ≡ ca, ba is identical to the corresponding
part in the action obtained from the dimensional reduction of the standard 11-
dimensional supergravity (B.1). The discussion of this reduction in [88, 150, 151]
shows that the zM can directly be regarded as chiral fields. As in section 3.2.4,
the ca and bb combine into chiral fields Na = ca − ifabbb, where fab is a suitable
function of the complex structure moduli.
Equation (B.36) also strongly suggests that the remaining chiral fields involve ĉα
and Vα through the combination

tα = Vα + i

2 ĉα + ..., (B.39)

as was already noted in [40]. In the following we extend the analysis of [40] to
explicitly confirm (B.39) and also identify the remaining contributions. In order
to do this, we require the 3-dimensional Kähler potential K(zM , Na, τα, ξ

r). From
the discussion in subsection 3.2.5 it is clear that the Kähler potential can be ob-
tained from the kinetic potential (3.118) by the Legendre transformation (3.140).
Furthermore, the Legendre transform also allowed us to derive

Re tα = Vα + i

4dα (B.40)

up to terms that vanish in the F-theory limit, with dα given in (3.149). The
advantage of the democratic formulation is that it is possible to compute not
only the real part of tα, but also the imaginary part as we will illustrate in the
following.
In order to compare the action (B.36) obtained from the dimensional reduction
to the general form (B.38), we require the derivatives of the Kähler potential K.
The defining equations of the Legendre transformation relating K to the kinetic
potential K̃ can be used to express the derivatives of K in terms of derivatives of
K̃. Explicitly, we require the relations [33]

Ktα t̄β = −1
4K̃

ξαξβ , KtαM̄ Ī = 1
2K̃

ξαξβK̃ξβM̄ Ī ,

KMIM̄ J̄ = K̃MIM̄ J̄ − K̃MIξαK̃
ξαξβK̃ξβM̄ J̄ .

(B.41)
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Here K̃ξΛξΣ is the inverse of the submatrix K̃ξΛξΣ , while M I can be any of the
fields ξr, Na, zM that are not dualised. Using the kinetic potential

K̃(zM , Na, ξΛ) = −3 logV+ i

4ξ
Λ(Na−N̄a)(N b−N̄ b)

∫
Ŷ4
ωΛ∧Ψa∧Ψ̄b̄+KCS (B.42)

of section 3.2.4 and the expression

V−3 = 1
4!V4

∫
J4 = 1

2
1
4!KΛΣΠΘξ

ΛξΣξΠξΘ (B.43)

for the volume it is straightforward to derive

K̃ξΛξΣ = V4KΛΣΠΘξ
ΠξΘ − VΛVΣ. (B.44)

We will also require the derivatives of K̃ with respect to Na and the mixed deriva-
tives involving ξr and zM . Using the expression (3.111) to express Ψa in terms of
αa and βb together with the intersection numbers (B.5), it is simple to check that

K̃ξΛNa = K̃ξΛN̄a = − i4δ
α
ΛKαabδbcbc, K̃NaN̄b = −1

8ξ
αKαadδdcRefcb. (B.45)

When evaluating the partial derivatives of K̃ with respect to zM , it is crucial that
the other fields are held fixed. In particular, ∂zM does not act on the function fab
appearing in the definition of Na, however it does act on fab when fab appears as
part of the forms Ψa. Keeping this in mind, one obtains

K̃ξrzM = 0 K̃ξαzM = i

4Kαabbcbdδ
bc′Re facRe fc′d′∂zM (Im fd

′d). (B.46)

In the second term we used ∂zMRe fab = −Re fac∂zM (Re f cd)Re fdb, as well as the
fact that fab can be chosen to be holomorphic in the complex structure moduli [88].
Holomorphicity of fab will be assumed here and in the following, and implies that
we may replace ∂zMRe fab = i∂zM Im fab.
As shown in [150], the Hodge dual of a (1,1)-form on a Calabi-Yau fourfold can
be expressed in terms of the Kähler form as

∗ ωΛ = 1
6
VΛ

V
J3 − 1

2ωΛ ∧ J2. (B.47)

Plugging this into (B.18) immediately leads to

NΛΣ = − 1
V
K̃ξΛξΣ , and in particular Nαβ

(1) = −VK̃ξαξβ . (B.48)

Using (B.41) we find

Kξrξs = −VNrs + VNrαN
αβ
(1)Nβs = −VS(1)rs, (B.49)
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which after comparing (B.36) and (B.38) confirms that (ξr, Ar) are the correctly
normalised 3-dimensional vector multiplets. This means that we can identify Im tα
by comparing the term proportional to

1
4N

αβ
(1)NβrDĉα ∧ F r (B.50)

in the action obtained by dimensional reduction to the term

F r ∧ Im(K̃rI ∇M I) (B.51)

in the general form of the action. Our strategy will be to compute the contribu-
tions of Na and zM to (B.51), to see which terms in (B.50) are already accounted
for. The remaining terms can then be identified with contributions to Im tα.
Explicitly evaluating the term (B.51) leads to

F r ∧ Im(K̃rI ∇M I) = 1
2K̃

ξαξβK̃ξβξrF
r ∧∇(Im tα)

+ 1
4K̃

ξαξβK̃ξβξrKαabδbcbcF r ∧
(
dca + (Im fad)bd + bdd(Im fad)

)
− 1

8K̃
ξαξβK̃ξβξrKαabbcbdδbc

′Re facRe fc′d′F r ∧ d(Im fd
′d).

(B.52)

Here we made use of equations (B.41), (B.45) and (B.46), and in particular the
fact that Kξrtα is real while KξrNa is purely imaginary. Furthermore we used
∂zM Im faddzM + ∂z̄M Im faddz̄M = d(Im fad) in order to rewrite the total contri-
bution of the complex structure moduli in terms of d(Im fad). The result (B.52)
may be compared to

1
4N

αβ
(1)NβrDĉα ∧ F r = 1

4K̃
ξαξβK̃ξβξrDĉα ∧ F r

= 1
4K̃

ξαξβK̃ξβξrF
r ∧

(
∇ĉα +Kαabδbcbcdĉα

)
,

(B.53)

with ∇ĉα = dĉα − 4ΘαrA
r. In this way we deduce

d Im tα = 1
2dĉα −

1
4Kαabδ

acd
(
Im f bdbcbd

)
− 1

8K̃
ξαξβK̃ξβξrKαabbcbd

(
δbcd(Im fad)− δbc′Re facRe fc′d′d(Im fd

′d)
) (B.54)

In order for this to be consistent, the right hand side must of course be a total
derivative. This is in general not clear for the term in the second line of (B.54).
However, in the special case where fab is proportional to δab it is easy to see that
the second line vanishes and so d Im tα is a total derivative as required. In other
words, we require

fab = fδab. (B.55)
It is beyond the scope of this thesis to explicitly prove that this is consistent with
the required holomorphy of the forms Ψa, however we will assume that this is the
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case and use (B.55) in the following. Recall that we had independently argued at
the end of section 3.2.5 that we expect

fab = −iτδab (B.56)

to hold in the type IIB limit. In other words we expect f = −iτ up to terms
that vanish in the F-theory limit of vanishing fiber volume. Note however that
equation (B.54) is valid without any reference to a type IIB limit, suggesting
that (B.55) is valid already in the full M-theory picture.
Combining (B.54) with the real part of tα in (B.40) and explicitly evaluating dα
using the various intersection numbers leads to4

tα = Vα −
1
4Kαabfb

abb + i
1
2 ĉα. (B.57)

Note that in particular the flux-induced gauging of the ĉα encoded in the co-
variant derivatives (B.27) precisely leads to the expected gauging of the tα given
in (3.117). Comparing the expression (B.57) to the type IIB Kähler moduli Tα
defined in (3.22) shows that it is exactly compatible with tα → 1

2Tα if f → −iτ in
the type IIB limit. In other words this yields an additional independent piece of
evidence for (B.56). Furthermore, we are able to read off the relationship between
the scalars ĉα (or equivalently the c̃α appearing directly in the expansion (B.15)
of C6) and the type IIB axion cα

c̃α = cα −
1
2Kαabc

abb = ĉ+ 1
2Kαabc

abb. (B.58)

Therefore our explicit calculation of Im tα has allowed us to confirm the relation-
ship between c̃α and cα which was already guessed in [40]. Let us emphasise that
the shift in (B.58) is crucial in order to obtain a match between the moduli de-
pendence of the partition functions of M5- and E3-instantons, as discussed in
section 4.2.2.
Having obtained explicit expressions for all the chiral fields as well as for the
Kähler potential, it is reasonably straightforward to verify that also the remaining
terms in (B.36) can be cast into the expected form of (B.38). In addition to the
expressions (B.45) and (B.46) we will use

K̃zM z̄N = (KCS)zM z̄N + 1
2Kαabξ

αbabb
1

Re f ∂zM (Re f)∂z̄N (Re f). (B.59)

Here and in the following we assume that fab = fδab as in (B.55) and furthermore
take f to be holomorphic, such that

∂zM∂z̄N (Re f) = 0, ∂zM (Re f) = i∂zM (Im f). (B.60)
4This expression is valid up to corrections which vanish in the F-theory limit. Here and in

the following we also use the obvious notation ba = δabbb.
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Using the relations (B.41) we can now evaluate all the derivatives of the Kähler
potential K. Inserting this into the the general expression for the kinetic term
in (B.38) and making use of the cancellations between the different terms leads to

−KIJ̄ ∇M I ∧ ∗∇M̄J = 1
4K̃

ξαξβ
[
dVα ∧ ∗dVβ + 1

4∇ĉα ∧ ∗∇
¯̂cβ
]

+ 1
8K̃

ξαξβKαabbbdca ∧ ∗
[
∇ĉβ + 1

2Kαcdb
cdcd

]
− (KCS)zM z̄NdzM ∧ ∗dz̄N

+ 1
8
ξα

Re fKαab
[
|f |2dba ∧ ∗dbb + 2Im f dca ∧ ∗dbb + dca ∧ ∗dcb

]
.

(B.61)

To see that this exactly matches the remaining terms in (B.36) we use (B.48) and
the definition ofDĉα given in (B.27) as well as the fact thatGMN̄ = (KCS)zM z̄N [88,
150]. To account for the kinetic terms of ca and ba, we explicitly evaluate the
entries of the matrix Mij in (B.18) using ∗Ψa = iJ ∧Ψa [88, 150], which leads to

∫
αa ∧ ∗αb = − 1

2Vξ
αKαab

1
Re f ,∫

αa ∧ ∗βb = − 1
2Vξ

αKαacδbc
Im f

Re f ,∫
βa ∧ ∗βb = − 1

2Vξ
αKαcdδadδbc

|f |2

Re f .

(B.62)

This completes our discussion of the dimensional reduction of the democratic 11-
dimensional supergravity at the massless level. Having cast the 3-dimensional
action into the general form (B.38) we could of course consider the F-theory
uplift to 4 dimensions as in section 3.2.5. However, we refrain from explicitly
performing this uplift as the essential features were already discussed in [88] and
in section 3.2.5. Let us only note that while the M-theory reduction considered
here allows for a 3-dimensional Chern-Simons term with Θrs 6= 0, an F-theory
uplift is only possible for G4 fluxes which obey Θrs = 0.
To close this appendix, let us follow [40] and briefly consider what changes arise
when the non-harmonic forms introduced in section 3.2.2 are included in the
dimensional reduction. In other words, we extend the set ωr to include the non-
closed forms w0A with A labelling the different stacks of D7-branes with unitary
gauge group. Of course, to carry out the democratic reduction consistently we
must then also include the 6-forms w̃0A which are dual to the w0A in the sense
of (B.8). Recalling5

dw0A = NAC
a
Aαa (B.63)

5Although we still use indices a, b for the 3-forms αa, βb, it is understood that the index
range is enlarged compared to the earlier parts of this appendix, as some or all of the 3-forms
αa, β

a are necessarily non-harmonic due to (B.63).
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from equation (3.61), it is obvious that the field strengths dci in all relevant
expressions above must be replaced by the covariant derivatives [40]

∇ci =
{
dca −NAC

a
AA

0A,

dbb,

ci = ca,

ci = bb.
(B.64)

Using the intersection numbers presented in section 3.2.2 we also find

ωΛ ∧ dβb =
{
−δbcKαacNAC

a
Aω̃

α,

0,
Λ = 0A,
otherwise. (B.65)

The non-closed forms lead to additional terms inG7, which using (B.14) and (B.65)
can be written as

G7 ⊃
1
2baA

0A ∧w0A ∧ dβa−
1
2baβ

a ∧A0A ∧ dw0A = −KαabNAC
a
Ab

bA0Aω̃α. (B.66)

This implies that the covariant derivatives of ĉα are also shifted and contain an
extra term, namely6 [40]

Dĉα = dĉα − 4ΘαrA
r +Kαabbbdca −KαacδcbbbNAC

a
AA

0A. (B.67)

As extensively discussed in section 3.2, the additional terms in the covariant
derivatives imply that the shift symmetry of the axions ca is gauged even in
the absence of fluxes. More precisely, we read off from (B.64) and (B.67) that the
shift of ca under a gauge transformation A0A → A0A + dΛA is given by [40]

δΛAc
a = NAC

a
AΛA. (B.68)

On the other hand, as the gauge transformations of the last two terms in (B.67)
cancel, the axions ĉα and hence the chiral fields tα transform only in the presence
of fluxes

δΛA ĉα = 4Θα(0A)ΛA. (B.69)

Note that in light of (B.58) both the type IIB axions cα and the fields c̃α appearing
directly in the reduction of C6 do experience a non-trivial shift under a gauge
transformation of A0A. The fact that the overall chiral field Tα is gauge invariant
despite the fact that cα and ca are charged is well known in the type IIB setting,
see equation (3.38). The discussion above shows that also this detail is accounted
for correctly in the F-theory reduction involving non-harmonic forms to describe
massive diagonal U(1)s.

6The second term in (B.66) was missed in [40], leading to a mismatch by a factor of 2 in [40].
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