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Zusammenfassung

Diese Doktorarbeit stellt die Ergebnisse der theoretischen Untersuchungen verschiedener
Szenarien für die Ausbreitung und Strahlung ultrarelativistischer Teilchen in Abhängigkeit
von den sie umgebenden Magnet- und Strahlungsfelder dar.

Im ersten Teil wird, ausgehend von einer analytischen Lösung der Boltzmann-Gleichung
in der Näherung für kleine Winkel, eine genaue Berechnung der Winkel-, Energie- und
Zeitverteilungen der ultra-energiereichen Protonen, der durch Synchrotronstrahlung von
sekundären Elektronen und Positronen erzeugten Gammastrahlung sowie der sekundären Neu-
trinos von den Quellen der kosmischen Strahlung dargestellt unter Berücksichtigung einer Mag-
netfeldumgebung der Stärke B ∼ 10−9 G.

Der zweite Teil behandelt die Erklärung der TeV-Gamma-Strahlung von fernen Blazaren
durch sekundäre Gammastrahlung von kosmischer Strahlung entlang der Sichtlinie bei Anwe-
senheit schwacher Magnetfelder der Stärke B ∼ 10−15 G. Wir haben dabei die Möglichkeit
der Entdeckung von TeV-Strahlung von Blazaren mit Rotverschiebungen größer als z = 1
untersucht.

Schliesslich wird im letzten Kapitel die Strahlung geladener Teilchen in den extrem starken
Magnetfelder von kompakten Objekten wie Pulsar und schwarzes Loch untersucht. Wir
haben dabei die Bereiche und den Übergang zwischen Synchrotron- und Krümmungsstrahlung
analysiert und die starke Empfindlichkeit der Strahlungsspektren vom Steigungswinkel (pitch
angle) aufgezeigt.

Abstract

The thesis work presents the results of theoretical studies of different scenarios for the propa-
gation and the radiation of ultrarelativistic particles depending on the environment determined
by the magnetic and low energy radiation fields.

First, using the analytical solution of Boltzmann equation in the small-angle approximation,
we have accurately calculated the angular, energy, and time distributions of the ultrahigh
energy protons, gamma rays produced by synchrotron radiation of secondary electrons and
positrons, and secondary neutrinos from the source of cosmic rays embedded in the magnetized
environment of the level of B ∼ 10−9 G.

The second part considers the scenario explaining TeV gamma radiation from distant blazars
by secondary gamma rays produced by cosmic rays along the line of sight in the weak magnetic
field of the level of B ∼ 10−15 G. We have studied the possibility of detection of TeV radiation
from blazars with redshifts greater than z = 1.

Finally, the last chapter of the work is addressed to the radiation of charged particles in the
extremely strong magnetic fields of compact objects such as pulsar and black hole. We have
studied the synchrotron and curvature radiation regimes and transition between them showing
the strong sensitivity of radiation spectra on the pitch angle.
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1 Introduction

1.1 Ultrahigh energy cosmic rays

Ultrahigh energy (UHE) cosmic rays are charged particles with energies E & 1018 eV.
The detection of cosmic rays of such energies is a quite rare event. Following the gen-
eral trend (with some variations) of changing the flux with energy ∼ E−2.7, the UHE
cosmic rays come with rate about 1 particle per km2 per century at ∼ 1020 eV [1, 2, 3].
The main strategy to increase the possibility of registration is construction of detectors
with the large area and time exposure. The feasible way to meet this requirement is
ground-based arrays of detectors or fluorescence telescopes which use the atmosphere
as a part of a detector [4, 5]. The collision of UHE particle with air matter produces
the cascade of secondary particles called extensive air shower. The array of detectors
collect the secondary particles determining the energy and the arrival direction. The
fluorescence telescopes detect the radiation from the ionized and excited gas molecules
produced during propagation of charged particles of the air shower. The detection of the
event using both techniques allows to reconstruct the arrival direction more accurately.
Unfortunately, the combined events have smaller statistics [6].

Thus the detection of UHE cosmic rays is indirect. This creates additional difficulties
in the determination not only the energy and direction but even the type of the detected
particle. All this uncertainties along with low statistics result in quite contradictory re-
ports from different observatories detecting UHE cosmic rays. In some cases the picture
becomes unclear because the conflicting trends are consistent within systematic uncer-
tainties, as it has happened with mystery of the heavy nuclei composition at highest
energies detected by Auger [7, 8, 9]. At the same time the problem of chemical composi-
tion is a very important question from the point of view of particle physics. The study of
extensive air showers allows investigation of the interactions for currently non-reachable
by accelerators range of energies. The conflict in the determination of chemical cosmic-
ray composition may indicate that the models of interactions and cascade development
for different primaries do not reflect the real physical situation. Therefore the astro-
physical methods become important in clarification of this question. At relatively high
statistics the combination of other two measurables - energy and small and large scale
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1 Introduction

anisotropies - may be very useful for the solution of this problem [10].
In spite of uncertainties even the general properties the UHE cosmic-ray flux imply

the far-reaching conclusions. The existence of particles with ∼ 1020 eV by itself poses
very important questions. First of all, it is the question of the acceleration mechanisms
and the closely related to it the question of the possible astrophysical objects where
these scenarios could be realised. The theoretical studies of these issues should not only
explain existence of the detected highest energies but also predict the principle limit
for maximum attainable energies in the known types of astrophysical sources. This will
help to understand better the physics of these objects as well as their influence on the
local environment and the evolution of the Universe as whole. However, to relate these
issues to observations the problem of cosmic-ray propagation should be solved.

The propagation of cosmic rays in the interstellar and intergalactic medium is deter-
mined mainly by the interactions with radiation backgrounds and the influence of the
magnetic fields [11, 12, 13, 14, 15, 16, 17]. The former affects the energy of cosmic rays
whereas the latter has an effect on the direction of propagation. In the presence of mag-
netic fields the trajectory of charged particles becomes entangled and the reconstruction
of the initial direction becomes difficult or impossible. Moreover, in most cases the tra-
versed magnetic fields are very uncertain or unknown. Thus, the information which can
help to distinguish the particular source is lost [18], although the energy of the particle
can give some information about the type of the source.

Nevertheless, the extreme energies of UHE cosmic rays imply distinctive features
which are advantageous compared with cosmic rays of lower energies. In spite of the
poor knowledge of intergalactic magnetic fields we can claim that their strength is quite
low. The models of magnetic field generation connect the strength with the density of
the surrounding matter [16, 19]. It means that in the dilute medium of intergalactic
space the strength of the magnetic fields is much smaller than the typical strength of the
galactic magnetic fields. The different type of large-scale structures - from clusters of
galaxies to superclusters and voids - should represent different levels of the intergalactic
magnetic fields [20, 21, 22, 23]. Since the density of the large-scale structures varies
for many orders of magnitude the value of the magnetic fields changes significantly for
different environments as well. The upper limit of intergalactic magnetic fields outside
clusters of galaxies is established on the level of several nanoGauss. This is about
three order of magnitude lower than typical strength for normal galaxies and clusters of
galaxies. Such level of magnetic fields allows cosmic rays propagate significant distances
without large deflections. If the intergalactic magnetic field is much smaller than nG level
the cosmic rays of lower energies could be potentially useful for realisation of so-called
"cosmic-ray astronomy". But it should be noted that the galactic magnetic field would
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1 Introduction

have a significant impact on these cosmic rays. The combination of weak magnetic fields
of the order of nG with large energy of cosmic rays ∼ 1020 eV leads to the giroradius
of the order 100 Mpc which is of the order of size of elements of large-scale structure
- filaments and voids. Thus UHE cosmic rays can traverse filaments preserving most
of the information about their source. In voids the rectilinear character of propagation
could be retained for much larger distances. Because the largest gravitationally bound
structure is a cluster of galaxies, the magnetic fields of different clusters could not be
correlated and the largest correlation length of intergalactic magnetic field should be
of the order of size of typical galaxy cluster which is 1 Mpc. Thus the propagation of
UHE cosmic rays on large distances has a character of small-angle diffusion where each
scattering is induced by the next traversed cluster.

The approximate retention of the initial direction along with the detected distribution
of arrival directions suggests the extragalactic nature of UHE cosmic-ray sources. Indeed,
this distribution has isotropic character [24, 25]. If the sources locate inside the Galaxy,
the arrival direction would be preferentially concentrated close to the Galactic plane.
Moreover, the galactic magnetic field are not able to confine the UHE cosmic rays inside
the Galaxy, since the their giroradius even in the relatively strong galactic magnetic
field is still large than the size of the Galaxy. The last argument has to do with the
acceleration to ultrahigh energies which is difficult to associate with the galactic sources
and the overall energy budget of the Galaxy [26, 10].

The extragalactic nature of UHE cosmic rays increases the number of potential
sources. Taking into consideration the increase of uncertainty for the determination
of initial direction with distance, the discovery of the UHE cosmic-ray sources becomes
more difficult problem. However, there is the second, independent, factor which is im-
portant for reduction of the number of observable sources. The interaction of UHE
cosmic rays with cosmic microwave background (CMB) radiation leads to significant
energy losses for particles with energies ∼ 1020 eV [27]. Thus the interaction establishes
the "horizon" beyond which the particles of highest energies could not come. This re-
duces the number of potential sources of highest cosmic rays and increases the chances
for their association with known astrophysical objects.

Unfortunately, in spite of the fact that UHE cosmic rays of ∼ 1020 eV presents such
unique combination of properties for the identification of cosmic ray sources, their low
flux restricts the realisation of "cosmic-ray astronomy". The recent observations reveals
a steep decline above 3 · 1019 eV in the cosmic ray spectrum [1, 2, 3]. This feature
resembles the predicted end of the spectrum due to interaction with CMB called the
Greisen-Zatsepin-Kusmin (GZK) cutoff [28, 29]. There is another possible explanation
of the cutoff feature related to the maximum attainable energy at the acceleration.
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1 Introduction

Many acceleration models predict the maximum acceleration energy at the same energy
domain where the GZK cutoff is expected. It is not excluded that the cutoff is the
combination of both factors. The increase of statistics with the study of anisotropy
of arrival directions as well as the improvement of the acceleration models will help to
distinguish these two cases.

In addition to the energy changes, the interactions with background radiation
fields introduces the changes of cosmic-ray chemical composition via different photo-
disintegration processes. The main effect of these processes on the propagation of nuclei
is that the light nuclei with mass number A < 20 cannot travel further than several tens
of megaparsecs without being disintegrated [30]. After the propagation of the distance
greater than ∼ 50 Mpc only protons and iron nuclei survive. Thus the chemical compo-
sition of the observed UHE cosmic rays should be proton-iron mixture. The dominance
of heavy nuclei at highest energies would be possible if the initial composition consists
mostly of iron group nuclei. This could happen because the maximum energy of protons
attainable at the accelerator is less than the energy of iron nuclei with larger electric
charge. The observations of the shower maximum produced in atmosphere by UHE
cosmic rays by most of the detectors indicate the predominately proton composition.
The only exception from this tendency, which was mentioned above, is the unexplained
change towards heavy primaries above 1019 eV in the data of Auger Observatory [7, 8, 9].
Therefore in the first approximation the study of UHE cosmic ray propagation can be
restricted to consideration of pure proton composition.

Because the matter of intergalactic medium is very diluted the UHE cosmic rays
interact mostly with the background radiation fields: cosmic microwave background
(CMB) and extragalactic background light (EBL). For UHE cosmic rays the interaction
with CMB radiation is dominant since it is more dense and less energetic. The EBL
photons become more important for cosmic rays of lower energies. The UHE protons
interact with background photons via pair production and photohadronic processes. The
less energetic process is electron-positron pair production, also known as Bethe-Heitler
process. This is an electromagnetic process of the electron-positron pair production
by photon in the vicinity of charged nucleus. Thus it is relevant not only for protons
but also for heavier nuclei. The pair production decreases the energy of heavy nucleus
during propagation without change of mass number. The cross section of Bethe-Heitler
process exceeds the cross section of photohadronic processes by 2 orders of magnitude
[31, 32]. This results in more frequent interactions via pair production process. But
since at each interaction the proton loses only a small (∼ me/mp) part of the energy,
the energy loss rate due to pair production process is much less than the energy loss
rate due to photohadronic interactions.
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1 Introduction

The protons start interact with CMB photons via pair production at energy ∼ 1018

eV. The threshold for the photohadronic processes with CMB photons is ∼ 6·1019 eV. At
energies greater than this threshold the dominant energy losses are due to photohadronic
processes. The photohadronic processes consist of several channels [33]. At low energies
close to threshold the photon is absorbed by the nucleon exciting baryon resonance with
its subsequent decay. The decay results in the production of nucleon and mesons most
of which are pions. At the same energies the direct pion production occurs with smaller
probability. At high energies the total cross section is approximately energy-independent
and the interactions are dominated by inelastic multiparticle production. All secondary
mesons are short-lived particles producing in the subsequent chain of decays electrons,
positrons, gamma rays, and neutrinos of different flavours. Unlike the electromagnetic
pair production the photohadronic interactions occurs quite rarely but the amount of
energy lost at each collision is large varying from 13% at the threshold to about 40% at
energies 1022 eV [31]. Thus the propagation of UHE cosmic rays is restricted by several
interaction lengths relative to photohadronic processes. The average interaction length
of protons is about ∼ 10 Mpc. At every interaction the proton loses ∼ mπ/mp ∼ 15%

of its energy. Thus UHE protons can propagate in average the distance of 100 Mpc
before lose their energy. More specifically, 90% of protons detected at energies E & 1020

eV have travelled less than 130 Mpc, whereas 90% of protons detected with energies
E & 6 · 1019 eV have not travelled more than 200 Mpc [34]. Therefore the sources of the
detected cosmic rays should be located in our local Universe. The appearance of GZK
feature in the cosmic-ray spectrum indicates the lack of relatively close sources of UHE
cosmic rays. The distance to the sources should be of about several interaction lengths
and the most of the sources of the detected cosmic rays should be located below the
GZK horizon.

1.2 Sources of UHE cosmic rays

In the searching of sources of UHE cosmic rays the additional factor should be taken into
account. The arrival directions of the detected cosmic rays should be correlated with the
most powerful sources. The general considerations shows that the maximum possible
energy of acceleration is in direct ratio with overall luminosity of the sources. The first
condition that should be fulfilled is the so-called Hillas criterion which describes the
sources parameters allowing to bound particles of maximum energy in the acceleration
region. It arise from the fact that the size of the source should be larger that the
giroradius of accelerated particle. Besides the size of the source there is another principle
restrictive factor. The electromagnetic fields (mostly magnetic fields) are responsible
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1 Introduction

for radiation of the particles. The energy losses due to electromagnetic radiation is the
lower limit factor which restraint the maximum acceleration energy. Additionally the
interaction with matter in the source will increase the energy losses affecting on the
maximum energy. The electromagnetic radiation could occur in two major regimes:
synchrotron and curvature radiation. Since at the curvature radiation the energy losses
is less energetic and the curvature of the magnetic field responsible for this radiation is
connected to the size of the source, this mechanism could be considered for the estimation
of optimal electromagnetic energy at the source. Thus combining the limiting factors of
the radiation and the size of the source we can find the total electromagnetic energy in
the acceleration region [26]

W w 1

9

√
1 + η2

η

Emax

(mc2)4
, (1.1)

where η is the ration of electric to magnetic strength which is typically less than unity.
This estimate gives the value W w 3·1051 erg for the maximum energy of protons Emax =

1020 eV. Moreover, taking into account ultrarelativistic bulk motion the estimates favour
to the gamma ray bursts (GRBs)[35, 36, 37] and active galactic nuclear jets(AGNs). In
the latter type of sources the hadronic models are more preferential compared to the
leptonic one. Here it should be mentioned that the magnetars is sometimes considered
as an another candidate type of UHE cosmic-ray sources. The Ref. [10], comparing
acceleration time with the dynamical time of the outflow, have estimated the luminosity
of the source to accelerate the particles to Emax = 1020E20 eV as L > 1045Z−2E2

20 erg/s.
The only sources which possess luminosities of L > 1045 erg/s are FRII/FSRQ radio-

galaxies. However the arrival directions of cosmic rays detected by the Auger mostly
correspond to less energetic Seyfert galaxies in the nearby Universe < 75 Mpc and do not
correlate with the local FRII galaxies. The possible reason for the discrepancy could be
in the underestimation of the magnetic fields or the heavy nuclei composition. Also the
AGN flares could meet the acceleration requirements of UHE cosmic rays being transient
sources which are not easy to identify. Considering the low statistics it is more promising
to search the correlation rather with large scale distribution of the matter in the local
Universe than with individual sources. For example, the well-known clusterization of
the Auger events around the closest AGN Centaurus A could be explained not only by
the source itself but also by the Centaurus cluster which is located in the direction of
Cen A but much further away [10].
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1 Introduction

1.3 Intergalactic magnetic field

The general picture of the magnetic field influence on the propagation of UHE cos-
mic rays have been discussed above. The details of the magnetic field generation and
its influence on the cosmic-ray deflections is discussed here. From the observations of
different galactic environments it is possible to extract information about Galactic mag-
netic fields. The Faraday rotation measurements of radio sources provide us with the
information about the strength of magnetic fields in the direction parallel to the line of
sight. The starlight polarisation data and synchrotron emission gives information about
perpendicular component of the field. The Galactic magnetic field consist of the regular
and the turbulent components. The regular component have the configuration similar
to the structure of spiral arms of the Galaxy with the strength ∼ 3µG in the vicinity of
the Earth[38]. The turbulent component is less certain and depends on the direction of
observation. The regular component is responsible for the translation of the cosmic-ray
source image as a whole whereas the turbulent component distorts this image. The
study of their effect on the UHE cosmic-ray propagation indicates the deflections not
greater than ∼ 10◦Z(40EeV/E) for the particle of charge Z and energy E.

The knowledge of the intergalactic magnetic field is less certain. The Faraday rotation
measurements of the magnetic field in the core of clusters of galaxies give estimates of the
level ∼ 1− 40µG. In the less dense environment outside clusters the upper limit for the
intergalactic magnetic field is estimated as ⟨B2

∥λ⟩ . 10−8GMpc1/2 with coherent length
λ . 1 Mpc [39, 11]. For measurements of the lower of magnetic fields limit the gamma
rays from blazars can be used. The propagation of high energy gamma rays is not free.
Interacting with the low energy radiation background (mostly with EBL) they create
electron-positron pairs. In their turn the electrons and positrons upscattering on CMB
photons produce high energy gamma rays. Thus the electromagnetic cascade develops.
Acting on the charged part of the electromagnetic cascade the intergalactic magnetic
fields scatter the initial direction of the primary photon. This leads to the extended
gamma-ray emission around point source and causes delays of gamma-ray flares. The
electromagnetic cascade produces a lot of low energy gamma rays. The influence of
the intergalactic magnetic fields on the low energy part of the cascade produces the
suppression of the part of the spectrum. The value of this suppression is determined
by the strength of intervening magnetic fields. The suppression of the flux as well as
time delays have been used by different authors to establish the lower limits of the
order of B ∼ 10−16 − 10−15 G [40, 41, 42, 43]. The detection (although debatable, see
Neronov2011 ) of the pair halos in the stacked images of a large number of sources has
been revealed by Ref. [44].
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The problem of the structure of the intergalactic magnetic fields is related to the ques-
tion of their origin [45]. If the origin of the magnetic fields in the primordial Universe
[46], they should permeate all structures being amplified in the dense regions due to
dynamical effects of the large-scale structure formation. In the case of the magnetic
pollution from galaxies the intergalactic magnetic fields should be concentrated mostly
in the dense regions and highly suppressed in the voids [47]. In both cases the dynami-
cal amplification plays important role but the final result considerably depends on the
initial conditions which is provided by the origin of seeded magnetic fields. In the sim-
ulations of the large-scale structure of inhomogeneous intergalactic magnetic fields the
different initial assumptions lead to different final structures and filling factors of the
magnetic fields. Thus the simulations Refs. [39, 13] assumed the magnetic seeds gener-
ated by Biermann battery effect around accretion shocks whereas Ref. [14] seeded the
homogeneous magnetic field at redshift z ∼ 20. Consequently, the difference in the final
magnetic fields causes the different influence on the propagation of the cosmic rays: for
protons with energy E > 100 EeV Refs. [13] indicates the deflection of 10◦−20◦ whereas
Ref. [14] gives the deflection of less than a degree. Another approach of inhomogeneous
magnetic field modelling is the scaling of the strength with the density of underlying
matter as it was done by Ref. [16].

1.4 Multi-messenger approach

Summing aforesaid, the interaction of cosmic rays with the background radiation re-
stricts the cosmic-ray astronomy to the nearby Universe around 100 Mpc. The uncer-
tainties in the knowledge of the intergalactic magnetic fields also limits the identification
of the UHE cosmic rays. Having this in mind it becomes promising to use so-called multi-
messenger approach. The interactions of UHE cosmic rays with CMB can provide us
with the information about cosmic-ray propagation in the form of secondary gamma rays
and neutrinos which are devoid of the drawback being deflected by intergalactic mag-
netic fields. The neutrino astronomy does not depend on the magnetic fields at all and
the possibility of its realisation is related to the luminosity and spectrum of cosmic rays
[48, 49]. The gamma-ray signal from the propagating UHE cosmic rays can originate
from the different mechanisms depending on the strength of intergalactic magnetic fields.
Because of the interaction with the radiation backgrounds the high energy gamma rays
initiate electromagnetic cascades which are influenced by the magnetic fields deflecting
electrons in the cascade. The detection of a strong signal from the cascade is possible
in the case of weak magnetic fields of the order of B ∼ 10−15 G and less [50]. The mag-
netic field of such strength weakly deflect electrons over their effective interaction length,
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therefore the most of the flux is concentrated along the initial direction of the primary
gamma rays. The suppression of the flux would be observed at the low energy part of
the gamma ray spectrum. From the other side, the flux at high energies depends on the
distance from the origin of the cascade. For distances greater than several hundred Mpc
the gamma-ray flux at TeV energies is significantly attenuated due to the conversion of
these gamma rays to lower energy part of the cascade. Considering that the UHE cosmic
rays convert the most of the energy to the secondary particles at first several tens of
Mpc due to the photomeson production, the very distant sources will be observed only
at low energy gamma rays and their flux will be attenuated due to deflection of the low
energy part of the cascade[43]. From the other hand, if the most of the luminosity is in
cosmic rays of E < 1019 eV and the energy losses primarily due to pair production, the
secondary gamma rays can be produced on much larger distances initiating the cascade
closer to the observer. In this case the gamma rays of TeV energies could be observed
from the distant sources from which the intrinsic TeV radiation should be considerably
attenuated [51, 52, 53, 54]. This mechanism is not related to the identification of UHE
cosmic-ray sources but it can explain the hard spectra of blazars and TeV radiation for
the distant blazars as it is discussed in the Chapter II.

The electrons of the low energy part of the cascade become to be isotropized if the
intergalactic magnetic field is stronger than B ≫ 10−14 G. The deflection angle in the
cascade can be estimated as follows. The main contribution to the deflection comes
from the lowest energy electrons. We can estimate the deflection angle of the electron
producing the gamma rays with the energy Eγ induced by the magnetic field B over the
effective inverse Compton cooling length in the Thomson regime. Then the deflection
angle in the cascade is θ ≈ 0.63◦(1TeV/Eγ)(B/10−14G). The full isotropization for TeV
gamma rays begins at the magnetic field B ∼ 10−12 G. To estimate the the length of
the cascade development one can notice that the cooling length of the electrons Ee ∼ 20

TeV producing the gamma rays of the energy ∼ 1 TeV is about tens of kpc. It is
much smaller than the interaction length of their parent gamma rays which is about
several tens of Mpc. Since the interaction length of the gamma rays relative to the pair
production rapidly decreases with the increase of energy, the interaction length of the
lowest energy gamma rays could be taken as the cascade development length. Thus the
gamma rays of the energy 1 TeV are produced at the distance about several tens of Mpc
from the particle initiating the cascade. Considering that the UHE cosmic rays produce
the secondary particles initiating cascade at the distance about several tens of Mpc from
their source, the final isotropized particles give a very dilute halo [55] contributing in
this way to the extragalactic gamma-ray background radiation [56, 57, 58]. Even the
conservative estimates shows that angular size of the halo is larger than the field of view
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of Cherenkov telescopes and thus such halo would be hardly detectable [59].

1.5 Synchrotron gamma rays

The promising mechanism for the identification of UHE cosmic ray sources can oper-
ate if the intergalactic magnetic field is enough strong. The source embedded in the
environment of the strong magnetic field could be seen in the synchrotron radiation
of the secondary electrons produced by the UHE protons in photomeson interactions
[60, 61, 17, 19, 62]. The galaxy clusters and filaments of the large-scale structure can
provide the magnetic field of the order of B ∼ 10−9 G favourable for this scenario. The
presence of the strong magnetic field is required only for the region 10− 20 Mpc around
the source. In this case UHE cosmic rays lose a significant part of the energy producing
secondary electrons, positions, gamma rays, neutrinos inside this region. The electrons
(positrons) radiate their energy in the form of synchrotron GeV gamma rays passing
less than Mpc. The interaction length of the gamma rays produced in photomeson
processes with the cosmic radio background is several Mpc. The electron-positron pair
produced at this interaction also radiates synchrotron gamma rays. Thus the most of
the energy lost by UHE protons is converted to the synchrotron radiation of secondary
electrons on the distance of several Mpc. It is important to note that in photomeson
interactions the secondary gamma rays are more energetic that electrons and positrons.
At the interaction with the cosmic radio background the gamma rays transfer the most
of the energy to the one component of the pair. Therefore the electrons(positrons) from
the pair production are more energetic than the electrons and positions produced in
photomeson interactions.

For the realisation of the discussed scenario the two requirements concerning to the
magnetic field should be fulfilled. The electron should emit most of its energy via
synchrotron radiation. This situation occurs if the energy losses due to synchrotron
radiation are dominant over the inverse Compton losses due to interaction with the
CMB radiation. For the magnetic field B = 10−9 G the regime of dominant synchrotron
losses occurs for the electrons with energy Ee ≈ 1018 eV. The typical production energy
for secondary particles is about 5% of the energy of the parent proton for electrons and
positrons and 10% for the gamma rays. Taking into account the maximum energy of
UHE protons ∼ 1021 eV one can find that there is no production of the electrons which
would radiate predominantly via synchrotron mechanism if the magnetic field is less
than B ∼ 10−10 G. This imposes the lower limit on the strength of magnetic field for
the realisation of the mechanism under consideration. The upper limit is determined
from the condition of the small deflections for charged particles. In the magnetic field of
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the order of 10−7 G the UHE protons of ∼ 1020 eV have the giroradius about 1 Mpc. It
means they are deflected at large angle before they interact and produce the secondary
particles. In such magnetic field the electrons are isotropized before emission their energy
in the initial direction. Therefore a lot of radiation is lost and the mechanism becomes
less efficient. Additionally the radiation becomes more energetic and the synchrotron
gamma rays start to interact with the background radiation initiating cascades which
further dilute the gamma-ray flux.

In the favourable range of the magnetic field strength B ∼ 10−7 − 10−9 G the deflec-
tion of the UHE protons is small in the region of the photomeson production and the
secondary electrons radiate most of their energy on the almost rectilinear part of the
trajectory. Thus the synchrotron gamma rays have small deflection angles relative to
the initial proton directions. The initial radial directions of the protons transforms to
the narrow beam of gamma rays. Thus the source of UHE cosmic rays would appear as
point-like source of gamma rays although the formation of the radiation occurs in the
extended region.

The energy spectrum and flux of synchrotron radiation of secondary electrons from
photomeson interactions of protons with CMB radiation have been studied in Ref. [61].
The calculations have been limited by the first 10 Mpc range of propagation of protons,
assuming that at this stage protons propagate radially without significant deviations,
and the secondary electrons move along the same direction before they emit synchrotron
photons. While this approximation gives a correct estimate of the flux, it does not
specify the angle within which the radiation is confined. This approach ignores also the
non-negligible tails of distribution of synchrotron radiation formed at the later stages of
propagation and interactions of protons.

In the case of quasi-continuous operation of an extragalactic accelerator of protons
over timescales exceeding the typical delay time due to the deflection in the magnetic
field, the energy and angular distributions of protons, as well as accompanying photons
and electrons, can be accurately described by the steady-state solutions of the transport
equations. Generally, this is the case of a continuous proton accelerator of age T ≥
106 yr. In the case of shorter activity of the source (an "impulsive accelerator") or
solitary events like gamma-ray bursts, relatively simple analytical solutions of the arrival
time distributions of protons, gamma-rays and neutrinos can be obtained within an
approximation when the energy losses of protons are ignored. We consider the cases of
"continuous" and "impulsive" proton accelerations in Sections 2.1 and 2.3, respectively.
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1.6 Small-angle approximation

The realization of the small-angle multiple scattering considerably simplifies the de-
scription of propagation of protons through a scattering medium. In particular, in the
small-angle approximation the term v ∂f

∂r
of the Boltzmann transport equation can be

presented in a form allowing analytical derivation of the steady state solution. Because
of smallness of the single scattering angle one can write the elastic collision integral in
the Fokker-Planck approximation. To expand the distribution function into series in
terms of the single scattering angle one should have a smooth function of this angle.
This condition is satisfied if one neglects unscattered part of the distribution function
that has very sharp angle dependency. Such an approximation is justified in the case of
multiple scattering.

The approach provides solutions that can be applied to the various cases which, inde-
pendent of the details of the scattering medium, are characterized only by the average
scattering angle per unit length ⟨θ2s⟩. The scattering process depends on the particle
energy, i.e. ⟨θ2s⟩ is a function of energy. During the propagation through the medium
between two scattering centers, the energy of particles is gradually decreased due to
different dissipative processes. If the change of energy in each action of interaction is
considerably smaller than the initial energy, one can use the continuous energy loss
approximation. It should be noted that in the approach described here the processes
responsible for the scattering and the energy loss of particle are not required to be the
same. The particle scattering could have elastic character and do not cause energy losses.
On the other hand, the effect of deflection of particles from their original direction due
to the processes responsible for energy losses might be negligibly small. This is the case
of the problem considered below. One can safely ignore the change of the direction of
primary particles as well as the production angles (θ ∼ 1/γ) of the secondary products
(gamma-rays, electrons, neutrinos) due to all relevant processes including photo-meson
and pair production, inverse Compton scattering, synchrotron radiation.
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2 Gamma-ray signatures of UHE
cosmic-ray propagation

2.1 Steady state distribution functions

The aim of this section is to derive distribution functions for protons and accompanying
them secondary particles propagating through the galactic and extragalactic magnetic
fields for a spherically symmetric point source of protons. However, it is technically
more convenient to consider first a source emitting protons in a given (fixed) direction.
In this case we have a preferential direction along the infinitely narrow beam emitted
by the source. Let us choose z-axis along this direction. Because of the scattering,
particles deviate from the initial course. To define the deviation we introduce angles θx
and θy between the direction of propagation n and the coordinate planes YOZ and XOZ,
respectively. If n is close to z-axis, the angles θx and θy are small and can be treated
as components of two-dimensional vector θ in the XOY plane, where the absolute value
of θ corresponds to the deflection angle between n and the z-axis. Then we can write
n ≈ (θx, θy, 1− θ2

2
) = (θ, 1− θ2

2
).

The retention of the second-order term θ2/2 in the expansion of nz allows us to
take into account the effects relating to the elongation of the path like delay time,
but does not give any considerable contribution to steady-state solution. Therefore we
divide the problem into two sub-problems. In the first part of the chapter we solve
the steady-state equation that takes into account the energy losses but ignores the
elongation of particle trajectories. The results of these calculations are relevant to the
"continuous" source of protons and describe the energy and angular distributions of
protons and accompanying neutrinos and synchrotron radiation of secondary electrons
produced during the propagation of protons. In the second part of the chapter we
calculate the distributions of arrival times of protons, neutrinos and gamma-rays in the
case of an "impulsive" source. In this case the arrival time delays directly depend on
the elongation of trajectory. The time-dependent solutions for distribution functions
presented in Section 2.3 are limited by the approximation in which the energy losses of
protons are neglected.
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2 Gamma-ray signatures of UHE cosmic-ray propagation

Thus, to derive the steady-state solution of the transport equation we assume n ≈
(θx, θy, 1) = (θ, 1) . Let us denote by ρ = (x, y) the perpendicular displacement in the
plane XOY. For a point source characterized by a monoenergetic and infinitely narrow
beam of protons emitted along the z-axis we obtain the equation for Green function
G(r,θ, E) of the Boltzmann steady-state transport equation in the approximations of
a small-angle multiple scattering and continuous energy losses:(

∂

∂z
+ θ

∂

∂ρ
− ⟨θ2s⟩

4

∂2

∂θ2
− ∂

∂E
ϵ̄

)
G(r,θ, E,E0) =

1

c
δ(z)δ(ρ)δ(θ)δ(E − E0). (2.1)

Here we take into account that the particles are ultrarelativistic |v| = c. The solution
of Eq. (2.1) is obtained in Ref. [63] for the propagation of charged particles passing
through a layer of matter. The features of this solution are comprehensively discussed
in Ref. [64]. Using the notations introduced in Ref. [64], the Green function can be
written in the form:

G(r,θ, E, E0) =
δ(S(E,E0)− z)

cϵ̄(E)π2∆
exp

(
−A1ρ

2 − 2A2θρ+ A3θ
2

∆

)
, (2.2)

where S is the traveled distance that is uniquely related to the energy loss rate
ϵ̄(E) = |dE/dz|:

S(E,E0) =

E0∫
E

dE ′

ϵ̄(E ′)
, (2.3)

and
∆ = A1A3 − A2

2. (2.4)

The δ-function in Eq. (2.2) points to the fact that we neglect the elongation of trajectory
so the traveled distance is equal to z as if particles propagate strictly along z-axis. Taking
the relation between energy and z into account, Ai can be written in the following form:

Ai(E0, z) =

z∫
0

⟨θ2s⟩(z′)(z − z′)i−1dz′. (2.5)

It is easy to recognize the physical meanings of the coefficients A1, A2 and A3; A1 is
the mean square deflection angle, A3 is the mean square displacement, and A2 is the
mean value of θρ at the distance z:

A1 = ⟨θ2⟩z, A2 = ⟨θρ ⟩z, A3 = ⟨ρ2⟩z. (2.6)
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For the treatment of the case of spherically symmetric point source of protons, let
us rewrite Green function in the form which is independent of choice of the coordinate
system. After the replacements

θ → n− n0, ρ → r − rn0, z → r, (2.7)

where n0 is the direction of the emission, n is the direction of particle motion at the
point r, we find

G(r,n,n0, E, E0) =
δ(S(E,E0)− r)

cϵ̄(E)π2∆

× exp

(
−A1(r − rn0)

2 − 2A2(r − rn0)(n− n0) + A3(n− n0)
2

∆

)
. (2.8)

Performing integration over all directions of the vector n0 by the saddle point method
(see Appendix 2.5), we find

Gsph(r, θ, E,E0) =
δ(S(E,E0)− r)

cϵ̄(E)r2πD
exp

(
− θ2

D

)
, (2.9)

where
D = A1 − 2

A2

r
+

A3

r2
. (2.10)

Since we have spherically symmetric distribution, the Green function depends only on
the distance r from the source and θ which is the angle between the radius-vector from
the source to the observation point and the movement direction at this point.

We assume that the spherically symmetric source injects protons into the intergalactic
medium with a constant rate:

Qp(r, E) = cJp(E)δ(r). (2.11)

The substitution of this expression into

f(r, θ, E) =

∫
Q(r0, E0)Gsph(r − r0, θ, E,E0)dr0dE0 (2.12)

gives

fp(r, θ, E) =
1

ϵ̄(E)

∞∫
E

Jp(E0)

πr2D
exp

(
− θ2

D

)
δ(S(E,E0)− r)dE0, (2.13)
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2 Gamma-ray signatures of UHE cosmic-ray propagation

where D can be written as

D(E0, r) =
1

r2

r∫
0

⟨θ2s⟩(r′)r′2dr′. (2.14)

For the given energy and spatial distribution of protons we can calculate number
of secondary particles from the decays of π-mesons that are produced at interactions
between protons and 2.7 K CMBR photons. To obtain the energy distributions of
the secondary products - photons, electrons and neutrinos, we use the approximation
proposed in Ref. [31]. The energy of protons is ultrarelativistic so we can assume that
secondary particles initially move in the same direction as protons. The distribution of
second particles can be presented in the form

Q(r, θ, E) = Q̂(fp(r, θ, Ep)) (2.15)

where Q̂ denotes an integral operator. For example, for the energy distribution of
protons Jp(E), the energy distribution of photons produced in photomeson interactions
is

Qγ(Eγ) = Q̂γ(Jp(Ep)), (2.16)

where
Q̂γ(Jp(Ep)) =

∫
Jp(Ep)fph(ϵ)w(Eγ, Ep, ϵ)dEpdϵ . (2.17)

Here fph is the distribution function of CMBR photons, w is the differential interaction
rate of the pγ interactions, namely, the Bethe-Heitler pair production or photomeson
production (see Ref. [31]). Since we are interested in the distribution of ultrarelativistic
electrons that weakly deviate in the magnetic field, we can apply the Green function
given by Eq. (2.8) to the source function given by Eq. (2.15). Note that Q̂ acts only on
variable Ep , therefore we can change the order of integration. Tedious calculations (see
Appendix 2.5) yield:

fe(r, θ, Ee) =
1

c ϵ̄e(Ee)

∞∫
Ee

dEe0Q̂e

[
1

ϵ̄p(Ep)

∞∫
Ep

dEp0

×Jp(Ep0)

r2

exp
(
− θ 2

De+Dp

)
π(De +Dp)

δ(S − r)

]
. (2.18)

Here S is sum of the distances traveled by proton to the point of interaction with CMRB
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2 Gamma-ray signatures of UHE cosmic-ray propagation

and traveled by electron from the point of production to the point r:

S = Sp(Ep, Ep0) + Se(Ee, Ee0). (2.19)

The angular distribution of electrons in Eq. (2.18) is characterized by

De = Ae1 − 2
Ae2

r
+

Ae3

r2
, (2.20)

where Aei = Aei(Ee, Ee0) have the same meaning as in Eq. (2.5), and

Dp =
1

r2

r0∫
0

⟨θ2s⟩r′2dr′, (2.21)

where r0 = Sp(Ep, Ep0).
The main channel of production of gamma rays by HE electrons is synchrotron radi-

ation. Applying the modified Eq. (2.130) for the spectrum of synchrotron radiation in
chaotic magnetic field to the distribution of electrons given by Eq. (2.18), we find the
angular and spatial distributions of gamma ray. Let us describe the procedure as in
Eq. (2.15) by

Qs(r, θ, Eγ) = Q̂s(fe(r, θ, Ee)). (2.22)

In the general case the distribution function of gamma rays that are characterized by the
source function Q(r,n, E) and propagate through the absorbing medium with extinction
coefficient k(E), is

fγ(r,n, E) =
1

c

∞∫
0

Q(r − nτ,n, E)e−kτdτ, (2.23)

where n is the direction of movement at the point r that coincides with the direction
of emitting as the propagation of gamma rays is rectilinear. Since emitting electrons
have ultrarelativistic energy we assume that the direction of radiation coincide with the
electron direction, therefore the distribution function of synchrotron gamma rays for the
distribution of electrons given by Eq. (2.18) is

fγ(r, θ, Eγ) =
1

c

∞∫
0

Q̂s(fe(|r − nτ |, θi, Ee)) e
−k(Eγ)τdτ, (2.24)

where θi is the angle between n and r − nτ , and θ is the angle between n and r. It is
convenient to perform the integration over τ using delta-function in Eq. (2.18). For that
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we should change the order of integration so the integration over τ becomes internal.
Using the features of the delta-function we find

δ(|r − nτ | − S)

|r − nτ |2
=

1

Sr

1√(
S
r

)2 − sin2 θ

2∑
i=1

δ(τ − τi) , (2.25)

where τ1,2 = r(cos θ ∓
√(

S
r

)2 − sin2 θ). Since the term corresponding to τ2 does not
contribute to large angles θi in exponent (see Eq. (2.18)) we keep only the term corre-
sponding to τ1. After performing relevant calculations we obtain:

fγ(r, θ, Eγ) = Q̂s

 1

c2 ϵ̄e(Ee)

∞∫
Ee

dEe0Q̂e

[
1

ϵ̄p(Ep)

×
∞∫

Ep

dEp0f̃pη

(
1− S

r

)
η

(
S

r
− sin θ

)] , (2.26)

where

f̃p =
Jp(Ep0)

S
r

√(
S
r

)2 − sin2 θ

exp
(
− θ21

De+D′
p

)
πr2(De +D′

p)
e−k(Eγ)τ1 , (2.27)

η is Heaviside function. The angle between n and r − nτ is

θ1 = arccos

(√
(S/r)2 − sin2 θ

S/r

)
. (2.28)

2.2 The spectral and angular distributions of

protons, photons and neutrinos

2.2.1 Protons

Transport of protons substantially depends on the spatial distribution of magnetic fields.
The assumption of chaotically oriented magnetic cells is usually used for estimates of
the influence of IGMF on cosmic-ray propagation (see, e.g., Ref. [12]). The spectral
analysis of the correlation function of the magnetic field fluctuations [38] provides a
more appropriate and accurate treatment of the problem. We use this approach for
derivation of the mean square deflection angle.

UHE protons propagate large distances in IGMF without considerable deflections.
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Indeed, the evaluation of the deflection angle δθ ≃ λ/rg on the correlation length λ is

δθ ≃ 9× 10−3

(
λ

1Mpc

)(
B

10−9G

)(
1020eV

E

)
rad, (2.29)

where rg = E/eB is the gyroradius of the ultrarelativistic particle. Therefore change
of direction of ultrahigh energy protons is small on the scale λ ≃ 1 Mpc. The proton
energy can be assumed constant for this scale. Then the proton motion in the magnetic
field is described by the equation

v̇ =
ec

E
[v ×B(r)] . (2.30)

For ultrarelativistic particles v = cn, where n is a unit vector. Rewriting the change in
velocity over the time ∆t in the form ∆v = cθ, we find

θ =

t+∆t∫
t

ec

E
[n×B(r(t))] dt . (2.31)

Since the deflection angle is small, the trajectory of particle can be considered rectilinear
in integration.

Now one should make an assumption about the statistical properties of the magnetic
fields. Here we assume that IGMF is a statistically isotropic and homogeneous. While
⟨θ⟩ = 0 (since in this case ⟨B⟩ = 0), the mean square deflection is

⟨θ2⟩ =
(ec
E

)2 ∫
⟨[n×B1][n×B2]⟩ dt1 dt2

=
( e

E

)2
(δαβ − nαnα)

∫
⟨B1αB2β⟩ dz1 dz2 , (2.32)

where B1,2 = B(r(t1,2)). Here we switch to integration over coordinates of particle,
directing z-axis along n.

Eq. (2.32) includes the correlation function of the magnetic field

Kαβ(r1 − r2) ≡ ⟨Bα(r1)Bβ(r2)⟩ . (2.33)

It depends only on the difference (r1 − r2) because we assume statistical homogeneity
of the magnetic field. The mean square of magnetic field is determined as ⟨B2⟩ =

Kαα(0) = const.
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To turn to the spectral description, Kαβ should be written as a Fourier integral:

Kαβ(r1 − r2) =

∫
K̃αβ(k)e

ik(r1−r2)
d3k

(2π)3
. (2.34)

Since divB = 0, then Kαβ should satisfy the conditions

∂Kαβ/∂x1α = 0 , ∂Kαβ/∂x2β = 0 . (2.35)

For function K̃αβ these conditions take on form K̃αβkα = 0, K̃αβkβ = 0. Therefore, if
there is no preferential direction in space, K̃αβ has the following structure:

K̃αβ(k) =
1

2

(
δαβ −

kαkβ
k2

)
Φ(k2) ⟨B2⟩ . (2.36)

Here constant factor ⟨B2⟩ is introduced such that Φ(k2) meets the normalization con-
dition: ∫

Φ(k2)
d3k

(2π)3
=

1

2π2

∞∫
0

Φ(k2) k2 dk = 1 . (2.37)

It is convenient to change variables z1 = z + ζ/2, z2 = z − ζ/2 in the integral in
Eq. (2.32). Assuming that the traveled distance ∆z is much greater than a characteristic
scale on which the correlation function tends to zero, one can extend the limits of
integration over ζ to infinity. Meanwhile, the traveled distance should be smaller than
the distance on which the proton loses its energy appreciably. The integrand depends
only on ζ, therefore the integration over dz gives the length of integration interval ∆z.
The mean square deflection angle is proportional to the traveled distance, so the mean
square deflection per unit length is

⟨θ2s⟩ =
( e

E

)2
(δαβ − nαnβ)

∞∫
−∞

Kαβ(0, 0, ζ) dζ. (2.38)

Integration of Kαβ written in the form of Eq. (2.34) over dζ gives 2πδ(kz) that allows
us to calculate the integral over dkz. Then, the integral remains over the components
of k perpendicular to z-axis. Using Eq. (2.36), we obtain

⟨θ2s⟩ =
1

2

( e

E

)2
⟨B2⟩

∫
d2k⊥
(2π)2

Φ(k2
⊥) . (2.39)
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The derived result can be written in the form

⟨θ2s⟩ =
π

2

( e

E

)2
⟨B2⟩Λ , (2.40)

where

Λ =

∫
d3k

(2π)3
1

k
Φ(k2) =

1

2π2

∞∫
0

Φ(k2) k dk . (2.41)

Taking into account Eq. (2.37), the factor Λ can be treated as the mean value of k−1,
Λ = ⟨k−1⟩.

The calculation of ⟨θ2s⟩ requires the spectral energy distribution of magnetic field. To
obtain final form of ⟨θ2s⟩ we assume a power-law spectrum

Φ(k2)k2 ∼


(
k0
k

)α
, k > k0(

k
k0

)β
, k < k0

(2.42)

where k0 is an absolute value of the wave vector corresponding to the maximal scale of
correlation λ: k0 = 2π/λ. It gives

⟨θ2s⟩ =
(α− 1)(β + 1)

4αβ

( e

E

)2
⟨B2⟩λ. (2.43)

Taking into account the turbulent character of IGMF that has ⟨B⟩ = 0, we take α = 5/3

which corresponds to the Kolmogorov turbulence. The choice of the parameter β is, to
a certain extent, arbitrary. Here we assume β = 1 which leads to a simple expression
for the mean square deflection angle per unit length:

⟨θ2s⟩ =
λ

5

( e

E

)2
⟨B2⟩ . (2.44)

Because of uncertainties related to the spectrum of IGMF, the numerical factor in
Eq. (2.44) is somewhat different from the coefficients used in other works (see, e.g.,
Ref. [12]).

Significant uncertainty in calculations of ⟨θ2s⟩ is related to the absolute value of the
correlation length λ. It is expected to be between 100 kpc and 1 Mpc, i.e. comparable
to the the characteristic distances between galaxies. In the subsequent calculations we
normalize the correlation length to λ = 1 Mpc, but the presented results can be easily
recalculated for any λ.

Since the propagation of protons in IGMF can be treated as a set of large number
of small chaotic deflections, the problem can be reduced to the diffusion in angle. The
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Figure 2.1: The mean free path of protons in the intergalactic medium due to interactions
with photons of CMBR.

diffusion coefficient D(r, E0) given by Eq. (2.14)) contains information about the energy
loss and influence of IGMF on propagation, and gives angular distribution of protons at
the given point. Since there is a unique correspondence between the energy and r (see
Eq. (2.9)) we can rewrite Eq.(2.14) in terms of energy and energy losses per unit length.
Substituting Eq.(2.44) into Eq. (2.14), we obtain

D(E,E0) =
η

r2

E0∫
E

1

E ′2

 E0∫
E′

dE ′′

ϵ̄(E ′′)

2

dE ′

ϵ̄(E ′)
, (2.45)

where

r =

E0∫
E

dE ′

ϵ̄(E ′)
, η =

e2λ

5
⟨B2⟩. (2.46)

The function E/ϵ̄(E) based on results of Ref. [31] and implying the mean free path
of protons in the intergalactic medium due to the Bethe-Heitler pair-production and
photomeson processes at interactions with CMBR, is shown in Fig. 2.1.

Note that for many scenarios described by Eq. (2.1) the same process is responsible
for both the angular scattering and the energy losses. But in the case of propagation
of protons in the intergalactic medium we deal with two different processes: while the
interactions with CMBR lead to energy losses, the angular deflections are caused by
multiple scattering on magnetic inhomogeneities.
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Figure 2.2: The mean deflection angle of protons for the fixed observed energy Ef over
the distance r. The numbers at the curves indicate the energies which proton
had at the distance r from the observer.

The influence of energy losses on the angular distribution of protons can be traced
in Fig. 2.2, where mean deflection angle of protons with observed energies Ef is shown
as function of traveled distance r. As it is seen from Fig. 2.1, protons with energy
smaller than E = 6 × 1019 eV do not suffer noticeable energy loses over the distances
∼ 100 Mpc. In this case the diffusion in angular space can be treated as a homogeneous
random walk that brings us to the dependence of the mean deflection angle on the travel
distance ∝ r1/2. For protons with initial energy higher than the threshold of photomeson
production, the energy of protons gradually decreases which leads to deviation from this
simple dependence. In particular, for the given observed (final) energy Ef , this effect
implies higher original energies, and consequently smaller deflection angles at the initial
parts of propagation. This results in a weaker increase of the mean deflection angle with
the traveled distance in comparison with loss-free case. This effect is clearly seen from
analytical expressions, which is possible to obtain in the case of constant energy loss
rate

∣∣dE
dz

∣∣ 1
E
= b = const:

⟨θ2⟩ ∼ r

E2
f

(
ζ2 − 2ζ + 2(1− e−ζ)

ζ3

)
|ζ=2br

. (2.47)

Expanding this expression into series in terms of powers of r we obtain:

⟨θ2⟩ ∼ 1

E2
f

(
r

3
− br2

6
+ · · ·

)
. (2.48)

The first term does not depend on the value of b and thereby describes the loss-free
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Figure 2.3: Energy flux distribution of protons observed within different angles for the
source at the distance r = 100 Mpc (left panel) and r = 300 Mpc (right
panel). The initial spectrum of protons is assumed power-law with an expo-
nential cutoff at E0 = 3× 1020 eV, the IGMF is 1 nG.

propagation. The next term takes into account the energy losses and makes the depen-
dence on the distance r weaker. While Eq. (2.47) approximately describes the behavior
of mean deflection angle for the final energy Ef ≥ 1021 eV, the first term of Eq. (2.48)
describes the case of Ef ≤ 6× 1019 eV. In Fig. 2.2 the mean deflection angle of protons
is given for IGMF B = 1 nG. Since the dependence of the average deflection angle on
the magnetic field is linear, it is easy to produce plots for other magnetic fields.

In order to indicate the evolution of the energy of protons during their propagation
through the 2.7 K CMBR, in Fig. 2.2 we indicate at the corresponding curves, calculated
for the fixed observed (final) energies of protons, the energies which protons had at
different distances from the observer. For the fixed observed energies exceeding the
threshold of photomeson production, the calculated initial energies grow dramatically
with the increase of the distance, especially for ≥ 100 Mpc. Therefore any deficit
of protons of such high energies in the initial spectrum would results in the cutoff in
observed spectrum at the corresponding energies.

The energy distributions of protons at distances 100 Mpc and 300 Mpc are shown in
Fig. 2.3 for the initial differential energy spectrum Jp(E) = J0E

−2 exp(−E/E0). The
total luminosity of the source in CRs with energy above 109 eV is taken L = 1044 erg/s.
The upper dashed lines correspond to the case when protons propagate in empty space;
flux is determined by the geometrical factor 1/r2. Solid line presents the case when the
deflections in the magnetic field are ignored. Comparison of these two curves reveals two
features: a bump and a sagging at lower energies. Both features become more prominent
with increasing of the distance. The bump preceding the cutoff appears due to strong
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growth of energy losses at the threshold of photomeson production (see Fig. 2.1) that
makes particles to be accumulated in this energy region; the sagging is a consequence
of the energy losses due to the electron-positron pair production (see, e.g., Ref. [32]).

The approximation of continuous energy losses takes into consideration the mean en-
ergy losses. In general it provides an acceptable accuracy but some features connected
with stochastic properties of interactions should be taken into account for precise de-
scription of the spectrum in the cutoff region. The fluctuations in the energy losses
do have an impact on the form of the bump and the cutoff in the observed spectrum
of protons. It results, in particular, in a smoother cutoff and a broader and lower-
amplitude bump [27] compared to the results calculated within the continuous energy
losses approximation.

The impact of the magnetic field leads to strong dependence of the energy distribution
on the solid angle within which the particles are detected. As it is seen in Fig. 2.3, the
flux of protons at highest energies is concentrated along the direction to the source; the
protons of lower energies are scattered over large angles.

2.2.2 Electrons

The secondary gamma-rays and neutrinos are tracers of propagation of protons in the
intergalactic medium. The first generation gamma-rays from photomeson processes are
produced at extremely high energies E ≥ 1019eV. They are effectively absorbed due
to interactions with the photons of CMBR and the Cosmic Radio Background (CRB)
over distance ∼ 1 Mpc. Because of the threshold effects, at energies below 1014 eV the
efficiency of interactions with CMBR dramatically drops, but gamma-rays continue to
interact with the infrared and optical photons of the Extragalactic Background Light
(EBL). At these energies the mean three path of gamma-rays increases sharply achieving,
∼100 Mpc at Eγ ∼10 TeV, and ∼1 Gpc at E ≤ 200 GeV (see, e.g., Ref. [65]). Thus,
as long as we are interested in gamma-rays from the sources of highest energy cosmic
rays, the energy of gamma-rays should not significantly exceed 1 TeV. In this energy
band gamma-rays are produced through the electromagnetic cascade initiated by the
products of decays of short-lived mesons from the photomeson interactions and, partly,
by electrons from the Bethe-Heitler pair-production process. For the development of
an effective cascade the magnetic field should be smaller than 10−10G. Even so, the
observer can see the cascade gamma-rays in the direction of the source only in the case
of extremely small IGMF, B ≤ 10−15G. A collimated beam of gamma-rays of GeV–TeV
energies is expected in the case of magnetized intergalactic medium with B ≥ 10−9G.
These gamma-rays are produced through the synchrotron radiation of E ≥ 1019 eV
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electrons.
Due to very large Lorentz factor of particles, we can assume that secondary prod-

ucts from all interactions under consideration propagate strictly in the direction of the
parent particle. Therefore observed angular distribution of gamma rays depends on the
influence of IGMF on electrons that produce these gamma rays. To observe the UHECR
source in gamma rays it is necessary that producing electrons are only slightly deflected
in IGMF.

The almost rectilinear part of the path of electrons is much smaller than distances
traveled by protons and is comparable to the typical correlation length, λ ≃ 1 Mpc. So
the scattering of electrons takes place in almost homogeneous magnetic field. But since
direction of magnetic field have a random character the scattering occurs in random di-
rections. In case of electrons one can apply the formalism of the multiple scattering to the
random single scattering. Indeed, as have been noted the distribution function should
be smooth function of angle to write the elastic collision integral in the Fokker-Planck
approximation. If all particles are scattered, as in the case of electrons, the distribu-
tion function does not include a part with sharp angular distribution corresponding to
non-scattered particles.

To obtain the mean square deflection angle per unit length we use expression for
deflection angle of ultrarelativistic electron traveled the path on which its energy has
changed from the initial energy E ′ to the final energy E:

θ =

E′∫
E

1

ϵ̄erg
dE ′′, (2.49)

where ϵ̄e is rate of energy losses due to synchrotron radiation and rg is gyroradius.
Taking into account random field orientations we find

⟨θ2s⟩ =
3

2

(mc2)4

e2E

(
1

E
− 1

E ′

)(
1

E
+

2

3

1

E ′

)
. (2.50)

After substitution this equation into Eq. (2.5) we find the coefficients Aei of the diffusion
coefficient De in simple analytical forms:

A1 =
5αβ

180

1

E4
(7ξ2 + 14ξ + 9)(1− ξ)2, (2.51)

A2 =
αβ2

180

1

E5
(19ξ2 + 22ξ + 9)(1− ξ)3, (2.52)
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Figure 2.4: Energy loss rates of electrons due to inverse Compton scattering on CMBR
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A3 =
αβ3

180

1

E6
(12ξ2 + 10ξ + 3)(1− ξ)4, (2.53)

where
α =

6

5

(mc2)4

e2
, β =

9

4

(mc2)4

e4B2
, ξ =

E

E ′ . (2.54)

Eq. (2.49) can be written in the form

θ ≈ 0.008◦
(1− ξ2)

BnGE2
20

, (2.55)

where BnG is the magnetic field in units of nanoGauss (nG), E20 is final energy in units
of 1020 eV, ξ = E/E ′. Here the random orientations of the field are taken into account.
This expression allows us to estimate the threshold of isotropization. Indeed, if the
electron loses considerable part of its energy, then ξ ≪ 1 and deflection angle mostly
depends on the final energy. The deflection angle becomes quite large (∼ 1 radian) in
the magnetic of field 1 nG when final energy is E ≈ 2 × 1018 eV. For greater magnetic
field the threshold of isotropization is shifted to the range of lower energies. It should
be noted that for magnetic fields 1− 100 nG this threshold appears in the energy region
where the energy losses due to synchrotron radiation dominate over the inverse Compton
scattering (see Fig. 2.4). It means that inverse Compton scattering can be neglected for
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electrons under consideration.
Let us estimate the energy of gamma rays produced by electrons with energy exceeding

the threshold of isotropization. Using modified Eq. (2.130) for energy distribution of
synchrotron radiation in chaotic magnetic fields, we find the energies of electrons that
produce synchrotron gamma rays with energy Eγ:

Ee = 1.23× 1014
√

Eγ

xBnG

. (2.56)

Here Ee and Eγ are given in units of eV, x is the dimensionless argument of distribu-
tion function Eq. (2.134). The latter has a maximum at x ≈ 0.2291 and exponentially
decreases for large x (see Eq. (2.136)). To make sure that observed gamma rays are pro-
duced by electrons with energies greater threshold of isotropization we should consider
gamma rays with energies Eγ & 109 eV. Indeed, electrons with energies correspond-
ing to x & 10 in the Eq. (2.56) give exponentially small contribution into radiation of
gamma rays of the given energy. Therefore, assuming x = 10, we find that the contri-
bution of electrons with energies below threshold of isotropization Ee . 1018 eV into
radiation of Eγ = 109 eV gamma rays is insignificant. According to Eq. (2.55) the
product BE2 is constant for the isotropization threshold. Since the same combination
enters in Eq. (2.56) the minimal energy of gamma rays produced by the electrons under
consideration does not depend on the magnetic field.

At interactions of protons with the intergalactic radiation fields the ultrahigh energy
electrons are produced via two channels: pair production and photomeson production
processes. In the pair production process only a small (≤ 2me/mp) fraction of proton
energy is converted to the secondary electrons. For the magnetic field of order of nG
or larger, the energies of these electrons appear below the threshold of isotropization,
thus they do not contribute to the gamma-ray emission emitted towards the observer.
The photomeson processes lead to several non-stable secondary particles, such as π, η,
K mesons, which decay into high energy gamma rays, neutrinos and electrons. The
electrons from the decays of these mesons are produced with energies [31] exceeding the
isotropization threshold.

In addition, a significant fraction of electrons is created at interactions of the first gen-
eration ("photomeson") gamma-rays with photons of CMBR and CRB. For the model
of CRB suggested by [66], the mean free path of gamma-rays of E ≥ 1019eV is deter-
mined by the interactions with MHz radiowaves; it is of order of several Mpc. Here we
neglect by the interaction length assuming that gamma rays interact with CRB imme-
diately after their creation. In this case the particle get additional deflection since it
is treated as electron all along. It results in broader angular distribution of observed
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Figure 2.5: Number of electrons of energy Ee located inside a sphere of the radius r.

gamma ray in comparison with exact consideration. The interaction of gamma rays
with CRB photons of energy ϵR occurs in the regime ϵREγ/m

2
ec

4 ≫ 1. It means that
the most of the energy is converted to one of the two electrons. The energy of gamma
rays is higher than the energy of electrons produced in the decays of mesons (see, e.g.,
Ref. [31]). Therefore electrons created by pair production process are more energetic
than electrons generated in the decays of nonstable products of photomeson processes.
Consequently, the pair-produced electrons result in higher flux of synchrotron radiation
than the direct ones from the meson decays.

2.2.3 Gamma rays and neutrinos

The apparent angular size of the synchrotron gamma-ray source depends on the linear
size of the emitter itself and the deflection angles of the parent electrons. Both are
defined by spatial and angular distributions of electrons, respectively. In the case of
spherically symmetric source and small deflection angles of electrons θdef , the source
located at the distance r with the gamma-ray emission region of radius d, has an angular
size ϑobs ∼ 2d

r
θdef . The case of isotropically emitted gamma-ray source corresponds to

θdef ∼ 1. The linear size of the gamma-ray emitter can be evaluated from Fig. 2.5,
where is shown the number of electrons of energy Ee located inside the sphere of radius
r. The saturation that takes place at large distances shows the absence of electrons in
this region. One can see from Fig. 2.5 that the size of the sphere, where the electrons are
located, decreases while the energy increases. This is explained by the fact that protons
producing electrons of such high energies disappear due to energy losses. For energies
below Ee = 1019 eV the electrons are not located in a definite region. The electrons with
energy below the thermalization threshold form an extended halo. These electrons have
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Figure 2.6: Flux distributions of gamma rays observed within different angles in the
direction of the source located at the distance r = 100 Mpc (left panel) and
r = 300 Mpc (right panel). Calculations correspond to the IGMF B =1 nG
and initial power-law distributions of protons with spectral index α = 2 and
exponential cutoffs at E0 = 1020eV; 3× 1020eV, and 1021eV. The total power
of injection of protons into IGM is 1044 erg/s.

energies at which the inverse Compton scattering losses dominates over the energy losses
due to the synchrotron radiation. They initiate electromagnetic cascades in the CMBR
and EBL photon fields that eventually results in a very extended GeV-TeV gamma ray
emission.

The spectral energy distributions (SED) of gamma-rays, E2F (E), received within
different angles are presented in Fig. 2.6. The fluxes are calculated for the same initial
proton energy distribution used in Fig. 2.3. Three series of curves for each of two
distances (left and right panels) correspond to different cutoff energies in the initial
proton spectrum. One can see that the cutoff energy has significant impact on the
flux of gamma rays; it increases the flux, shifts the maximum of SED towards higher
energies, and makes narrower the angular distributions. These features have a simple
explanation. The increase of the cutoff energy provides more secondary electrons and
extends the spectrum of electrons to more energetic region. The latter leads to smaller
deflections. It is interesting to note that although the angular distribution of gamma
rays is composed of deflections of both protons and electrons, their angular distribution
is more narrow compared to the angular distribution of protons (see, Fig. 2.3). This is
explained by the fact that the main portion of gamma rays is produced in regions close
to the source by the highest energy protons which did not suffer significant energy losses
(see, Fig. 2.5), while the multiple scattering in IGMF contributes to the formation of
the angular distribution of protons over the entire path from the source to the observer.
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Figure 2.10: The spectral energy distributions of gamma rays, muon neutrinos and
protons observed within the polar angle 3◦ from two identical source located
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Figure 2.11: The spectral energy distribution of gamma rays, muon neutrinos and pro-
tons observed within polar angles 0.3◦ and 3◦ towards a source located at
r = 30 Mpc. The parameters for the IGMF and the proton spectrum are
the same as in Fig. 2.10.

Since the angular size of the gamma-ray source is determined by the geometrical factor
d/r, the distribution of gamma-rays from a source at the distance r = 300 Mpc is
narrower than from an identical source located at the distance r = 100 Mpc. It is
remarkable that at very high energies the source becomes point-like. In particular, at
energies above Eγ ≈ 5× 1011 eV, the observer will see the gamma-ray source located at
the distance of 100 Mpc within an angle smaller than θobs = 0.1◦.

Fig. 2.7 shows the impact of the IGMF strength on the flux distribution of gamma
rays. The increase of the magnetic field leads to the shift of the maximum of SED
to higher energies. In accordance with Eq. (2.56), the shift of the synchrotron peak
is proportional to the strength of the magnetic field since the energy distribution of
electrons does not depend on the magnetic field. Finally note that the increase of the
magnetic field implies strong deflections which leads to the reduction of the flux and
widening of the angular distribution of gamma-rays.

For the sources located beyond 100 Mpc, TeV gamma-rays interact effectively with
optical and infrared photons of the Extragalactic Background Light (EBL). The energy-
dependent absorption of gamma-rays is characterized by the optical depth τγγ which
depends on the EBL flux and is proportional to the distance to the source. Unfortu-
nately the EBL flux contains quite large uncertainties, especially at the mid and far IR
wavelengths which are most relevant to the gamma-ray energy band and the source dis-
tances discussed here. The impact of these uncertainties on the intergalactic absorption
of gamma-rays is discussed in Ref. [65]. Even for the minimum EBL flux at infrared
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wavelengths, the absorption of TeV gamma-rays from sources beyond 100 Mpc can be
significant; at multi-TeV energies the optical depth τγγ exceed 1. Therefore the curves
in Figs 2.6, 2.7 and 2.8 should be corrected by multiplying the unabsorbed fluxes to the
factor exp(−τγγ).

The decay of nonstable products of photomeson processes leads to the appearance
of extremely high energy electrons (positrons) and neutrinos (antineutrinos). Since the
magnetic field does not have an impact on neutrinos, the angular distribution of neutri-
nos is determined only by the deflection of protons. This leads to more narrow angular
distributions of neutrinos compared not only to the distributions of protons (for the same
reason described above for gama-rays) but also compared to the distribution of gamma-
rays (because the gamma-ray distribution is additionally broadened due to deflections of
electrons). The left panel of Fig. 2.8 shows SED of neutrinos and antineutrinos received
within different angles. The right panel of the figure presents the integral fluxes of neu-
trinos. The impact of the cutoff energy in the initial proton spectrum on the neutrino
flux is demonstrated in Fig. 2.9.

For comparison, the spectral energy distributions of protons, gamma rays and muon
neutrinos are shown together in Fig. 2.10 and Fig. 2.11 for two distance to the source -
30 Mpc and 300 Mpc.

2.3 An impulsive source: arrival time distributions

Let assume that at the moment t = 0 an impulsive spherically-symmetric source injects
protons into the intergalactic medium. The multiple scattering of protons in the chaotic
magnetic field results in the deviation of the motion of particles from the rectilinear
propagation, therefore they arrive to the observer with significant time delays. The
arrival time of the proton moving with a speed vp over the path S is

t =
S

vp
=

S

c
+ 4.5× 10−4

(
SMpc

100

)(
1018

EeV

)2

s. (2.57)

For ultrarelativistic protons the second term is negligible, therefore in calculations we
adopt vp = c. In this chapter we will study the distribution of the arrival-time delays
τ = t− r/c ignoring the energy losses of particles.

Let denote by P (τ, ζ, r) dζ dτ the probability that the proton with arrival direction in
the interval (ζ, ζ + dζ) is detected at the distance r from the source in the time interval
(τ, τ + dτ). Here ζ = θ2, where θ is the angle between the proton direction at the point
r and the vector r. It is assumed that P satisfies to the condition of normalization
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given by Eq. (2.129). The equation for the function P for a pulse of radiation in the
small-angle approximation is obtained in Ref. [67]. In Appendix 2.5 we derive the exact
relation between P and the standard distribution function f , and obtain P in a quite
different (simpler) way than in Ref. [67]. Namely, our treatment of the problem is based
on the solution of equations written for the standard distribution function.

Following to Ref. [67] we introduce the function G which is determined from the
equation

P (τ, ζ, r) =
c

r3⟨θ2s⟩2
G(x, y) , (2.58)

where the dimensionless parameters x and y are

x =
ζ

r⟨θ2s⟩
=

θ2

r⟨θ2s⟩
, y =

cτ

r2⟨θ2s⟩
. (2.59)

Function G can be presented in the form of one-dimensional integral

G(x, y) =

∞∫
−∞

ds

2π
G̃(x, s) eisy . (2.60)

Here
G̃(x, s) =

z

j1(z)
exp

(
− x

zj0(z)

j1(z)

)
, (2.61)

where z =
√
s/(2i), j0 and j1 are spherical Bessel functions:

j0(z) =
sin z

z
, j1(z) =

sin z

z2
− cos z

z
. (2.62)

The angular distribution of particles changes with time. It can be shown, by using
Eqs. (2.60) and (2.61), that

⟨θ2⟩(τ) = 4cτ/r , (2.63)

where

⟨θ2⟩(τ) =
∞∫
0

θ2G(x, y) dx

/ ∞∫
0

G(x, y) dx (2.64)

is the mean square deflection angle at the moment τ . Quite remarkably no model
parameters enter in (2.63) in an explicit form. Thus, the measurements of θ2 at different
time periods allow an estimate of the distance to the source. This is a nice feature,
because it could be the only channel of information about the distance to the source, if
the latter is not active anymore.

From Eqs. (2.60) and (2.61) follows that G(x, y) = 0 at y < 0. We should note also
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the useful relation

G̃(x, s) =

∞∫
−∞

dy G(x, y) e−isy , (2.65)

which allows us to obtain the moments of the function G:

mn ≡
∞∫

−∞

dy yn G(x, y) = in
∂n

∂sn
G̃(x, s)

∣∣∣
s=0

. (2.66)

Let’s write down the first three moments:

m0 = 3 e−3x , (2.67)

m1 =
3

20
(1 + 2x) e−3x , (2.68)

m2 =
3

2800
(9 + 36x+ 28x2) e−3x. (2.69)

Correspondingly the mean values for ⟨y⟩ and ⟨y2⟩ are

⟨y⟩ = m1

m0

=
1

20
(1 + 2x) , (2.70)

⟨y2⟩ = m2

m0

=
1

100

(
9

28
+

9

7
x+ x2

)
. (2.71)

For the dispersion of distribution ∆ and the ratio ∆
⟨y⟩2 we have

∆ ≡ ⟨y2⟩ − ⟨y⟩2 = 1

1400
(1 + 4x) , (2.72)

and
∆

⟨y⟩2
=

2

7

1 + 4x

(1 + 2x)2
≤ 2

7
. (2.73)

This implies that we deal with a rather narrow distribution. Rewriting Eq. (2.70) in the
form

c⟨τ⟩
r2⟨θ2s⟩

=
1

20

(
1 +

2θ2

r⟨θ2s⟩

)
(2.74)

one can see that the measurement of ⟨τ⟩ for the particles with different values of θ allows
to estimate ⟨θ2s⟩.

Below we discuss two special cases of practical interest.
A. Detection of protons with arbitrary arrival angles. This is the case discussed in
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Figure 2.12: The arrival time distributions for the cases A (solid line) and B (dashed line)
discussed in the text. The distance to the source is r = 10 Mpc, the energy of
protons E = 1020 eV, and the strength of the magnetic field B = 1 nG. The
curves are shown in arbitrary unites; for convenience they are normalized to 1 at
the points of the maximum of distributions: max(fA,B) = 1.

Ref. [67]. In this case the distribution over τ is described as

fA ≡
∞∫
0

P (τ, ζ, r) dζ =
4π2c

r2⟨θ2s⟩

∞∑
n=1

(−1)n−1n2e−2π2n2y . (2.75)

with mean values for y:

⟨y⟩ = 1

12
, ⟨y2⟩ = 7

720
, ∆ =

1

360
. (2.76)

B. Protons arriving along the radius-vector at the registration point. For this case,
substituting x = 0 into Eq. (2.60), we obtain

fB ≡ P (τ, ζ = 0, r) = − c

r3⟨θ2s⟩2
∞∑
n=1

z2n
j′1(zn)

e−2z2ny , (2.77)

where 0 < z1 < z2 < · · · are the zeros of the function j1(z), located in the region z > 0.
The functions fA and fB corresponding to Eqs. (2.75) and (2.77) are shown in Fig. 2.12.
As it follows from Eq. (2.58), the arrival time τ enters into P only in the form of

combination of the variable y. Since

lg y = lg τ − 2 lg r − lg λ− 2 lgB + 2 lgE + const , (2.78)

the curves for other values of the relevant parameters, namely energy E, magnetic field
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B, correlation length λ, and the distance to the source r, can be obtained by a simple
shift along the τ -axis. However, it should be noted that Eq. (2.58) is obtained in the
approximation of ignoring the energy losses of protons. Therefore for the large distances,
r ≥ 100 Mpc, and especially for large energies, E ≥ 1020 eV, Eq. (2.58) overestimates
the arrival time, given that the energy of protons during their propagation significantly
exceeds the energy at the registration point (see Fig. 1). Therefore, for large distance
Eq. (2.58) should be treated as an upper limit for the time delay. On the other hand,
since gamma-rays are produced at the very beginning of propagation of protons (within
10 Mpc or so), the curves calculated for a distance of order of 10 Mpc, provide a quite
accurate estimate for the arrival times of gamma-rays.

2.4 Discussion

The angular, spectral and time distributions of UHE protons and the associated sec-
ondary gamma-rays and neutrinos propagating through the intergalactic radiation and
magnetic fields have been studied based on the relevant solutions of the Boltzmann trans-
port equation in the small-angle and continuous-energy-loss approximations. A general
formalism for the treatment of the steady state distributions is provided in the form of
relatively simple analytical presentations. The treatment of the secondary products, in
particular the synchrotron gamma-radiation of electrons from photomeson interactions
is reduced to the consecutive application of the solutions which schematically can be
presented as

Qp → fp → Qe → fe → Qγ → fγ.

Here Qi denotes a source function and fi denotes a distribution function. Qp is specified
as spherically symmetric source of protons. Qe is obtained from distribution function
of protons as the final product of photomeson interactions using the results Ref. [31].
Electrons generated in the pair production process of the first generation gamma-rays
(from the decay of neutral π-mesons) are also included in Qe. Finally, Qγ corresponds to
the synchrotron radiation of electrons with distribution function fe formed in the chaotic
magnetic field. We consider the case of strong magnetic field, B ≥ 10−9 G, when the
electrons from photomeson interactions are cooled predominantly via synchrotron radi-
ation. Such strong magnetic fields prevent the development of pair cascades at highest
energies, and, at the same time, allow very effective conversion of the electromagnetic en-
ergy released at photomeson interactions into synchrotron radiation. The latter peaks at
GeV and TeV energies. The electromagnetic cascades are developed at lower energies at
which the suppression of the Compton cooling due to the Klein-Nishina effect is becom-
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ing more relaxed. These sub-cascades are initiated basically by the electrons-positron
pairs produced at the inverse Bethe-Heitler process. However, because of deflections
of low-energy electrons in chaotic IGMF, the gamma-rays produced during the cascade
development lose the directionality. Moreover, if the initial energy distribution of pro-
tons extends to 1020eV, the electromagnetic energy released in photomeson interactions
greatly exceeds the energy supply from the Bethe-Heitler process. On the other hand,
the synchrotron radiation produced by highest energy secondary electrons not only pro-
vides an almost 100 % effective conversion into gamma-rays, but also preserves the initial
direction of protons as long as the magnetic field does not exceed 10−7 G. Remarkably,
while the main fraction of synchrotron gamma-rays and the highest energy neutrinos
is produced in the proximity of the source, namely within the first ≈ 10 Mpc of the
initial path of protons, the latter continue to suffer deflections with an enhanced rate
(because of gradual decrease of energy during the propagation through the 2.7 CMBR),
until they arrive to the observer. Therefore the gamma-ray and neutrino distributions
appear to be more narrow than the angular distribution of protons.

The distribution functions fp and fe are obtained by applying the Green function of
transport equation to the source functions Qp and Qe, respectively. The angular part of
fp and fe is a normal (Gaussian-like) distribution, the dispersion of which depends on
the energy loss rate, the deflection angle per unit length and the distance to the source.
fγ is calculated by integration along optical depth at different angles towards the source.

For specific realizations of the scenario of small-angle deflection of charged particles,
assuming that they move in a statistically isotropic and homogeneous turbulent magnetic
field with Kolmogorov spectrum, we considered the IGMF in the interval from 10−9 to
10−7 Gauss and adopted 1 Mpc for the correlation length. The propagation of protons is
considered, as long as it concerns the energy losses, as rectilinear with diffusion in angle.
Transport of electrons is considered in the homogeneous magnetic field with random
direction since their propagation length is of the order or less of 1 Mpc.

Despite the small-angle scatterings, the related elongation of particle trajectories
causes significant delays of their arrival time. The problem of propagation of parti-
cles can be described by the steady state solutions if the lifetime of the source exceeds
the delay times. Otherwise the problem should be treated as a time-dependent prop-
agation of particles injected in the intergalactic medium by an "impulsive" source of
extremely high energy protons. This could be the case of solitary events like Gamma
Ray Bursts or short periods (T ≤ 105 year) of enhanced activity of active galactic nuclei.
In this chapter we discuss the case of an "impulsive" source, ignoring the energy losses
of protons. This approximation limits the applicability of the derived time distribution
functions to the relatively nearby sources of protons located within 100 Mpc sphere
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of the nearby Universe. On the other hand, since the bulk of synchrotron radiation
of secondary electrons is produced close the source, R . 10 Mpc, the time-dependent
solutions derived for protons, can describe quite accurately the delayed arrival times of
synchrotron photons from sources located at cosmological distances.

The results presented in this chapter for gamma-rays are valid for intergalactic mag-
netic fields in a specific (but perhaps the most realistic) range between B = 10−9–10−7G.
IMGF stronger than 10−7G would lead to large deflections of charged particles, and thus
violate the condition of small-angle approximation. On the other hand, IGMF weaker
than 10−10G would reduce dramatically the efficiency of the synchrotron radiation since
in this case the electrons are cooled predominantly via Compton scattering. The pair
cascades initiated by these electrons also lead to GeV and TeV gamma-ray emission,
however these cascades form giant (hardly detectable) halos around the sources, unless
the magnetic field is extremely weak, smaller than 10−15G.

The realization of the scenario of synchrotron radiation of secondary electrons at
the presence of a relatively modest magnetic field, B ∼ 10−9G or larger, in the 10 Mpc
proximity of the sources of highest energy cosmic rays, has higher chances to be detected,
given the compact (almost point like) images at GeV and especially TeV energies, and
the very high (10 per cent or more) efficiency of conversion of the energy of protons to
high energy synchrotron gamma-rays. The fluxes of gamma-rays, protons and neutrinos
shown in Figs. 2.7 – 2.11 are obtained assuming a power-law energy spectrum of protons
with α = 2 and total injection rate into IGM Lp(≥ 1GeV) = 1044 erg/s. The expected
gamma-ray fluxes are close to the sensitivities of Fermi LAT at GeV energies and the
sensitivity of the Imaging Atmospheric Cherenkov telescope arrays at TeV energies.
While the total power of production of highest energy cosmic rays hardly can exceed,
except for very powerful AGN, 1044erg/s, in the case of blazars with small beaming
angles, the expected fluxes of gamma-rays could be significantly higher. Indeed, in the
case of small deflections, the directions of injection of observed particles from the source
are close to the observational line. Therefore the results for the spherically symmetric
source remain valid also for the narrow jet with solid angle Ωbeam = πϑ2, where ϑ2 & ⟨θ2⟩.
Then the required power of the source (to be detected in gamma-rays) is reduced by a
factor Ωbeam/4π which may be significantly small.

2.5 Summary

In this chapter the analytical solution of the Boltzmann transport equation has been
obtained in the limit of the small-angle and continuous-energy-loss approximation. The
solution comprises the rectilinear propagation with continuous energy losses and the
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diffusion in the angle describing the random scattering in turbulent magnetic field. The
Gaussian-like angular distribution is determined by the average deflection angle which
depends on the particle energy and statistical properties of the magnetic field. In the
calculations the statistically isotropic and homogeneous turbulent magnetic field with
Kolmogorov spectrum and typical coherence length λ = 1 Mpc has been used.

The solution has been applied for the calculation of the energy and angular distribu-
tions of UHE protons from the spherically symmetric source embedded in magnetized
region with the magnetic field strength of the level of B = 10−9 − 10−7 G. It allowed
us to find the distributions of the secondary particles produced in the photomeson and
pair-production interactions of protons with CMB radiation. The ultrahigh energy sec-
ondary electrons and positrons lose most of the energy through synchrotron radiation
on the nearly rectilinear part of the path producing compact (almost point-like) source
of gamma rays in the direction of the source of UHE protons. The considerable part of
population of the electrons and positrons is generated by secondary gamma rays through
the pair creation on the radio background radiation. The propagation and deflection of
the electrons and positrons has been taken into account for the calculation of angular
and energy distributions of the synchrotron GeV and TeV gamma rays.

The spectra of the secondary gamma rays, protons and neutrinos and their depen-
dence on the subtending observational angle are presented in Figs. 2.7 –2.11 for different
distances of the source and for different value of the intergalactic magnetic fields. The
expected gamma-ray fluxes are close to the sensitivity of Fermi Lat at GeV energies
and the sensitivity of the Imaging Atmospheric Cherenkov telescope arrays at TeV en-
ergies for the source with cosmic-ray luminosity Lp(≥ 1GeV) = 1044 erg/s located at
the distance 100 Mpc.

Appendix A: The Green function for spherically

symmetric source

The Green function for spherically symmetric point source is obtained by integration of
Eq. (2.8) over all directions of the vector n0. Let’s rewrite Eq. (2.8) in the following
form:

G(r,n,n0, E, E0) =
δ(S(E,E0)− r)

cϵ̄(E)π2∆
exp

(
−A−Bn0

∆

)
. (2.79)

Here

A = 2(A1r
2 − 2A2r + A3)− 2A2r(1− nrn),

B = 2((A1r
2 − A2r)nr + (A3 − A2r)n), (2.80)
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where nr = r/r. Since the directions of n, n0 and nr are close to each other,

Bn0 = |B| cos θ0 ≈ |B|
(
1− θ20

2

)
. (2.81)

Performing integration by saddle point method we obtain:∫
exp

(
−A−Bn0

∆

)
dΩn0 ≈

2π∆

|B|
exp

(
−A− |B|

∆

)
. (2.82)

Taking into account

nrn ≈ 1− θ2

2
, (2.83)

the expressions for A and |B| can be written:

A = 2Dr2 + θ2A2r,

|B| = 2
√

(Dr2)2 − θ2(A1r2 − A2r)(A3 − A2r) (2.84)

where
D = A1 − 2

A2

r
+

A3

r2
. (2.85)

Expanding |B| into series in terms of θ to the second-order term in exponent and
retaining the first term in denominator we find

Gsph(r, θ, E,E0) =
δ(S(E,E0)− r)

cϵ̄(E)r2πD
exp

(
− θ2

D

)
. (2.86)

Appendix B: Distribution function of electrons

After changing the order of integration in

fe(r,n, Ee) =

∫
Q̂e(fp(r0,n0, Ep))G(r − r0,n,n0, Ee, Ee0)dr0Ωn0dEe0 (2.87)

we arrive at the following integral over directions of the emission of electrons n0 at the
point r0 and directions of r0:

I =

∫
dΩnsdΩn0 exp

(
−(n0 − ns)

2

D

)
exp

(
−A1(r − r0 − |r − r0|n0)

2

∆

)
× exp

(
2A2(r − r0 − |r − r0|n0)(n− n0)− A3(n− n0)

2

∆

)
, (2.88)

42



2 Gamma-ray signatures of UHE cosmic-ray propagation

where
r = rnr, r0 = r0ns, r − r0 = r′n0, (2.89)

∆ and D are defined in Eq. (2.4) and Eq. (2.14), respectively. Taking into account that
all directions are close, the integral can be presented in the following form:

I =

∫
e−(A−Bns)dΩnsdΩn0 , (2.90)

where

A = X0 +X1(1− nrn0) +X2(1− nrn) +X3(1− n0n),

B = Y1n0 + Y2n+ Y3nr. (2.91)

Here we introduce the following notations:

X0 =
2

D
+

A1

∆
((r − r′)2 + r20), X1 =

2

∆
(A1r

′ − A2)r, X2 =
2

∆
A2r, X3 =

2

∆
(A3 − A2r

′),

Y1 =
2

D
+

2

∆
(A2 − A1r

′)r0, Y2 = − 2

∆
A2r0, Y3 =

2

∆
A1rr0. (2.92)

Since directions of n, n0 and nr are close, we can expand |B| into series to the first
order terms:

|B| ≈ ν − Y1Y2

ν
(1− n0n)−

Y1Y3

ν
(1− n0nr)−

Y2Y3

ν
(1− nnr), (2.93)

where
ν = Y1 + Y2 + Y3. (2.94)

The integration of I over dΩns by saddle point method gives

I ≈ 2π

ν

∫
e−(A−|B|)dΩn0 (2.95)
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To perform the integration over dΩn0 by the same method, we present the expression in
the exponent in the following form:

A− |B| = X0 − ν︸ ︷︷ ︸
Z0

+

(
X1 +

Y1Y3

ν

)
︸ ︷︷ ︸

Z1

(1− n0nr)

+

(
X2 +

Y2Y3

ν

)
︸ ︷︷ ︸

Z2

(1− nnr) +

(
X3 +

Y1Y2

ν

)
︸ ︷︷ ︸

Z3

(1− n0n)

= Z0 + Z1 + Z3 + Z2(1− nnr)︸ ︷︷ ︸
Ã

− (Z1nr + Z3n)︸ ︷︷ ︸
B̃

n0 = Ã− B̃n0. (2.96)

Expanding |B̃| into series

|B̃| ≈ µ− Z1Z3

µ
(1− nnr), (2.97)

where
µ = Z1 + Z3 (2.98)

we find
I ≈ 4π2

νµ
e−(Ã− ˜|B|). (2.99)

Making replacements of all notations by their actual values and taking into account that

r′ ≈ r − r0 , (2.100)

we finally obtain

I =
π2∆D

Der2 +Dr20
exp

(
− θ2r2

Der2 +Dr20

)
, (2.101)

where
De = A1 − 2

A2

r
+

A3

r2
(2.102)

and θ is the angle between nr and n. The Integration over r0 in the expression for
fe(r,n, Ee) can be readily performed because of δ-function.

Appendix C: Distribution of arrival times in the case

of "impulsive" source

In the case of spherical symmetry the proton distribution function f = f(t, r, µ) depends
on time t, distance to the source r, and the variable µ = cos θ = (nr)/r. Here n is
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a unit vector towards the direction of the proton speed. Let’s normalize f using the
condition

∞∫
0

dr

1∫
−1

dµ r2f(t, r, µ) = 1 . (2.103)

Then r2f(t, r, µ) dr dµ is the probability that at the moment t the proton is located in
the layer (r, r + dr) and is moving in the direction within (µ, µ+ dµ). Let assume that
propagation of a single particle is fixed, i.e. the radius vector r0(t) and the direction
n0(t) are certain functions of time. For this particle, the distributions over r and µ are
described by δ-functions:

f0(t, r, µ) =
1

r2
δ(r − r0(t)) δ(µ− µ0(t)), (2.104)

where µ0(t) = (n0(t)r0(t))/r0(t).
By averaging Eq. (2.104) over the ensemble of particles gives the distribution func-

tion f :
f(t, r, µ) = ⟨f0(t, r, µ)⟩ . (2.105)

Let assume that for each particle r0(t) is a monotonically increasing function of time,
i.e. there are no particles in the ensemble with µ ≤ 0. Then the equation r = r0(t) has
a unique solution with t = t0(r), and thus one can write

δ(r − r0(t)) =
1

dr0/dt
δ(t− t0(r))

=
1

cµ0(t)
δ(t− t0(r)). (2.106)

Since in Eq. (2.104) this expression is multiplied to δ(µ−µ0(t)), in the denominator one
can replace µ0(t) by µ and take the factor 1/cµ out of the integral. This yields

⟨δ(r − r0(t)) δ(µ− µ0(t))⟩

=
1

cµ
⟨δ(t− t0(r)) δ(µ− µ̃0(r))⟩ , (2.107)

where µ̃0(r) = µ0(t0(r)).
Function ⟨δ(t− t0(r)) δ(µ− µ̃0(r))⟩ has the meaning of the probability distribution for

t and µ. Writing t = τ + r/c, we obtain the probability distribution for τ and µ at the
point r:

P (τ, µ, r) = ⟨δ(τ + r/c− t0(r)) δ(µ− µ̃0(r))⟩. (2.108)

45



2 Gamma-ray signatures of UHE cosmic-ray propagation

From this equation follows that P satisfies the condition of normalization

∞∫
0

dτ

1∫
−1

dµP (τ, r, µ) = 1 . (2.109)

Thus we arrive at the conclusion that the functions P and f are related as

P (τ, µ, r) = cµr2 f(τ + r/c, r, µ) ≡ cµr2 f ′(τ, r, µ) . (2.110)

The distribution function satisfies the equation

1

c

∂f

∂t
+ (n∇)f = I , (2.111)

where I is the collision integral. In the case of spherical symmetry

(n∇)f = µ
∂f

∂r
+

1− µ2

r

∂f

∂µ
. (2.112)

Replacing the variables in Eq. (2.111) from (t, r) to (τ = t− r/c, r) and presenting the
collision integral in the Fokker-Planck approximation, we obtain

1− µ

c

∂f ′

∂τ
+ µ

∂f ′

∂r
+

1− µ2

r

∂f ′

∂µ

=
⟨θ2s⟩
4

∂

∂µ

(
(1− µ2)

∂f ′

∂µ

)
. (2.113)

In the case of an impulsive source and no scattering (i.e. ⟨θ2s⟩ = 0) the distribution
function normalized according to Eq. (2.103) is

f(t, r, µ) = 2π δ(r − cnt). (2.114)

It is convenient to rewrite Eq. (2.114) in the form

f(t, r, µ) =
1

cr2
δ(t− r/c) δ(µ− 1). (2.115)

In order to demonstrate that the generalized functions in the forms given by Eqs.
(2.114) and (2.115) are identical, one should multiply the right parts of these equations to
an arbitrary function h(r,n) and integrate over the space coordinates and the direction
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of the vector n. This implies that at ⟨θ2s⟩ = 0

f ′(τ, r, µ) =
1

cr2
δ(τ) δ(µ− 1). (2.116)

It is clear, from general physical considerations, that in the limit r → 0 Eq. (2.116) is
valid also at ⟨θ2s⟩ ̸= 0. Therefore Eq. (2.116) can be treated as a boundary condition
to Eq. (2.113) at the point r = 0.

An analytical solution of Eq. (2.113) is possible to derive in the small-angle approx-
imation. In the case of multiple scattering, the average angle of deviation of at the
distance r is of order of (r⟨θ2s⟩)1/2. Therefore for r ≪ 1/⟨θ2s⟩ one can use the small angle
approximation. Let µ = 1−ζ/2, and let us denote function f ′(τ, r, 1−ζ/2) by f ′(τ, r, ζ).
Assuming ζ ≪ 1, from Eq. (2.113) we obtain

∂f ′

∂r
+

ζ

2c

∂f ′

∂τ
− 2ζ

r

∂f ′

∂ζ
− ⟨θ2s⟩

∂

∂ζ

(
ζ
∂f ′

∂ζ

)
= 0 . (2.117)

To solve Eq. (2.117) we apply the Fourier transformation:

f̃ ′(ω, r, ζ) =

∞∫
−∞

f ′(τ, r, ζ) e−iωτ dτ . (2.118)

Function f̃ ′ satisfies the equation

∂f̃ ′

∂r
+

iωζ

2c
f̃ ′ − 2ζ

r

∂f̃ ′

∂ζ
− ⟨θ2s⟩

∂

∂ζ

(
ζ
∂f̃ ′

∂ζ

)
= 0 , (2.119)

and the boundary condition given by Eq. (2.116) becomes

f̃ ′(ω, r, µ) =
2

cr2
δ(ζ) , r → 0. (2.120)

Let’s search the solution in the form

f̃ ′ = e−ζa(r)+b(r) , (2.121)

where the functions a(r), b(r) do not depend on ζ. Substituting Eq. (2.121) in
Eq. (2.119), we obtain the following ordinary differential equations:

da

dr
=

iω

2c
+

2

r
a− ⟨θ2s⟩ a2 , (2.122)

db

dr
= −⟨θ2s⟩ a . (2.123)
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The solution to Eq. (2.122) is

a(r) =
1

r⟨θ2s⟩
zj0(z)

j1(z)
, (2.124)

where z = r
√
ω⟨θ2s⟩/(2ic). The arbitrary constant which appears in the solution is

chosen requiring singularity at the point r = 0. At r → 0 the function a = 3/r⟨θ2s⟩. The
solution to Eq. (2.123) is

b(r) = ln

(
1

r3
z

j1(z)

)
+ const , (2.125)

therefore the function f̃ ′ is defined as

f̃ ′ = C
1

r3
z

j1(z)
exp

(
− ζ

r⟨θ2s⟩
zj0(z)

j1(z)

)
. (2.126)

For determination of the constant C one should use the boundary condition given by
Eq. (2.120). In the limit of small r, and using the relation

lim
r→0

(
β

r
e−ζβ/r

)
= δ(ζ) , (2.127)

we find
f̃ ′ = C

3

r3
exp

(
− 3ζ

r⟨θ2s⟩

)
= C

⟨θ2s⟩
r2

δ(ζ) . (2.128)

Comparing Eqs. (3.3) and (2.120), we obtain C = 2/c⟨θ2s⟩ and then using Eq. (2.110)
we find P . In the small-angle approximation we can replace the factor µ in Eq. (2.110)
by unity. In order to compare our results with the solution obtained in Ref. [67], we
adopt C = 1/c⟨θ2s⟩, which is equivalent to the change of the condition of normalization,
namely instead of Eq. (2.109) we use

∞∫
0

dτ

∞∫
0

dζP (τ, r, ζ) = 1 , (2.129)

where, because of rapid convergence, the upper limit of integration over dζ is set infinity.
In order to present the result in the form given by Eqs. (2.58) – (2.60), one should
introduce, instead of the variable ω, a new variable of integration s = ωr2⟨θ2s⟩/c.
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Appendix D: Emissivity function of synchrotron

radiation in random magnetic fields

For the case of chaotic magnetic fields one should average out the standard formula for
energy distribution of synchrotron radiation

dNγ

dEγdt
=

√
3

2π

e3B

mec2~Eγ

F

(
Eγ

Ec

)
, (2.130)

where

F (x) = x

∞∫
x

K5/3(τ)dτ, Ec =
3e~Bγ2

2mec
, (2.131)

over directions of magnetic field. After taking the perpendicular to velocity component
of magnetic field B⊥ = B sin θ, where θ is angle between B and v we come to the
following double integral:

G(x) =

∫
sin θF

( x

sin θ

) dΩ

4π
=

1

2

π∫
0

F
( x

sin θ

)
sin2θdθ. (2.132)

After changing the order of the integration it can be written as a single integral

G(x) = x

∞∫
x

K5/3(ξ)

√
1− x2

ξ2
dξ, (2.133)

that can be expressed in terms of modified Bessel functions:

G(x) =
x

20
[(8 + 3x2)(κ1/3)

2 + xκ2/3(2κ1/3 − 3xκ2/3)], (2.134)

where κ1/3 = K1/3(x/2), κ2/3 = K2/3(x/2). Note that while the function F (x) has
a maximum at x = 0.2858 (maxF (x) = 0.9180), the maximum of the function G(x)

is shifted towards smaller values: x = 0.2292 (maxG(x) = 0.7126). An alternative
presentation for G(x) in terms of Whittaker’s function has been derived in Ref. [68].
The functions F (x) and G(x), as well as the ratio G(x)/F (x) are shown in Fig. 2.13.

Although the function G(x) in Eq. (D5) is presented in a quite compact and elegant
form, for practical purposes it is convenient to have approximation which does not
contain special functions. Here we propose such approximations for F (x) and G(x)
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Figure 2.13: The emissivity functions for synchrotron radiation F (x) and G(x). The dashed-
dotted line shows the ratio G(x)/F (x).

which provide an accuracy better than 0.2 % over the entire range of variable x:

F̃ (x) ≈ 2.15x1/3(1 + 3.06x)1/6
1 + 0.884x2/3 + 0.471x4/3

1 + 1.64x2/3 + 0.974x4/3
e−x , (2.135)

G̃(x) ≈ 1.808x1/3

√
1 + 3.4x2/3

1 + 2.21x2/3 + 0.347x4/3

1 + 1.353x2/3 + 0.217x4/3
e−x . (2.136)
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3 Cosmologically distant UHE
cosmic-ray accelerators

3.1 Cosmologically distant sources

For cosmologically distant sources embedded in denser (nph ∝ (1 + z)3) and more en-
ergetic (T ∝ 1 + z) CMBR, protons lose their energy on distances significantly smaller
than 100 Mpc. In the presence of magnetic field of strength B = 10−9 − 10−8 G the
high energy electrons produced in photomeson processes intensively emit synchrotron
radiation in GeV range of energies. The electrons radiate most of their energy on almost
rectilinear part of the path that gives, along with the small deflection of protons, colli-
mated beam of gamma rays pointing to the acceleration site of UHE protons. Note that
the considerable contribution to the high energy electrons is provided by the gamma
rays produced in decay of mesons. The interaction of these gamma rays with cosmic
radio background radiation occurs in the regime when the most of the energy goes to
one of the component of the created electron-positron pair.

The probability of detection of cosmic ray sources via synchrotron radiation of sec-
ondary electrons strongly depends on the maximum energy of accelerated protons. In
the case of sources with redshift z ≪ 1, the interaction of protons with CMBR is effec-
tive only when the proton spectrum extends to 1020eV and beyond. Since acceleration
of protons to such high energies can be realized only at a unique combination of a few
principal parameters, in particular the linear size of the source, the strength of the
magnetic field, and the Lorentz factor of the bulk motion ([26]), the number of sources
of 1020eV cosmic rays can be quite limited compared to sources accelerating particles
to Emax ∼ 1019eV. Since protons at high redshifts interact with denser and more en-
ergetic photons of CMBR, the requirement to Emax is significantly relaxed, thus one
should expect dramatic increase of the number of UHE cosmic ray sources surrounded
by gamma-ray halos. Furthermore, at high redshifts the interaction of protons with
CMBR via pair production (Berhe-Heitler) process begins to play an important role
and a considerable part of proton energy is converted to less energetic electrons com-
pared to electrons generated in photomesons reactions. Appearance of dense halos of

51



3 Cosmologically distant UHE cosmic-ray accelerators

10-1

100

101

102

103

104

1018 1019 1020 1021 1022

l c
=

cE
/|d

E
/d

t|,
 M

pc

E, eV

z=0
z=0.1
z=0.5
z=1
z=2
z=3

102

103

1018 1019 1020 1021 1022

l c
(z

=
0)

/l c
(z

=
3)

E, eV

Figure 3.1: The cooling length of protons in the intergalactic medium due to interactions
with photons of CMBR at different redshift. The ratio of cooling lengths at
z = 0 and z = 3 are shown in the inset.

Bethe-Heitler electrons around the source at presence of magnetic field of the order
of B ∼ 10−6 G (comparable to the field of clusters of galaxies) results in radiation
dominated by synchrotron X-rays.

Below we study the energy and angular distribution of the synchrotron gamma-ray
emission from cosmologically distant sources. The calculations are based on the ap-
proach developed in the previous sections combined with cosmological effects on prop-
agation of gamma rays and protons. The space in the vicinity of the source, where
all relevant processes occur, can be considered as conventional one. Therefore, taking
into account denser ambient radiation at high redshifts, we can apply the developed
formalism to calculation of the distribution function of gamma rays in the vicinity of
the source. Using this function, we can easily obtain the distribution function of the
observed radiation which has propagated cosmological distance (see Appendix).

3.2 Energy budget

An accelerator of UHE protons located at high redshift has appreciably different con-
ditions of ambient media as compared to the ones in the nearby Universe. The photon
field of CMB is denser and more energetic due to cosmological expansion. The increase
of density by factor of (1 + z)3 leads to more frequent interactions of UHE protons
with CMB that intensifies the energy loss rate. The average energy of photons is also
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Figure 3.2: The fraction of the initial energy of protons with E > 1018 eV lost (thick
lines) and converted to the energy of electrons (thin lines) at the distance r
from the source. The injected proton spectrum is assumed power-law with
an exponential cutoff Jp(E) = J0E

−2 exp(−E/E0), with E0 = 3 · 1020 eV.

increased by factor of (1 + z) that decreases the threshold energy of the interactions for
protons. The energy loss rate of protons due to interaction with CMB at the epoch of
redshift z is expressed in terms of the present loss rate β(E) = − 1

E
dE
dt

as

β(E, z) = (1 + z)3β0((1 + z)E). (3.1)

It is convenient to present this relation in terms of the cooling length which is shown
in Fig. 3.1. The cubic dependence on redshift leads to considerable decrease of the
cooling length. In particular, for the constant losses at highest energies, E ≥ 1021eV, it
is reduced from ≈ 15 Mpc at the present epoch to ≈ 0.2 Mpc at z = 3. The plateau
of constant losses itself extends to lower energies due to the energy shift. At lower
energies, the combination of the effects related to the energy shift and the increase of
density jointly results in reduction of cooling length by a factor larger than (1 + z)3.
Indeed, as it is seen from the inset in Fig. 3.1 the reduction of the proton cooling length
can be an order of magnitude larger. The peaks show domains where energy loss at
z = 3 is the most intensive relative to the case of present epoch. If the energy cutoff in
the initial proton spectrum falls into this domain, the advantage of energy extraction at
cosmological distances becomes more significant. Moreover, at E = 1018eV, the cooling
length is reduced from ≥ 104 Mpc at z = 0 to tens of Mpc at z = 3. It is interesting to
note that the energy loss rate of protons of energy E < 1019 eV at z = 3 is comparable
to the loss rate of E ≥ 1020eV protons at the present epoch.

Fig. 3.2 describes the evolution of proton energy losses and the efficiency of their
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conversion to the electron component of secondaries with the distance to the source at
different redshifts. The electron component includes the electrons produced through
all channels under consideration: pair production by protons, decay of charged mesons
produced in photomeson processes and pair production by gamma rays produced from
decay of neutral mesons. As mentioned above, in the latter process almost all energy of
the photon goes to the energy of one of the electrons. Therefore the gamma rays can be
treated as electrons. Then the energy taken away by neutrinos is the difference between
the energy lost by protons and the energy converted to electrons. As can be seen from
Fig. 3.2, the protons with initial energies E > 1018 lose only 18% of their total energy
after passing r = 100 Mpc at the redshift z = 0.1, whereas at redshift z = 3 the same
protons lose 93% of the available energy already at r = 70 Mpc, where the saturation
begins. It can be explained by the fact that the cooling length of protons in the range
E > 1018 eV do not exceed tens of Mpc at z = 3, while for redshifts z ≪ 1, the protons
have the cooling length of cosmological scales relative to pair production process. As
the contribution of pair production process increases, the share of energy lost by protons
that goes to electrons increases from 74% at z = 0.1 to 86% at z = 3

The fraction of the initial energy of the protons with E > 1018 eV that can be converted
to the electrons generated at photomeson processes depends strongly on the position of
the cutoff energy. Left panel of Fig. 3.3 shows that the efficiency of extraction of proton
energy and its transfer to this component of electrons grows with the redshift, and at
z = 3 all available for conversion energy is transferred at first 5 Mpc. The fraction of
proton energy taken away by neutrinos in photomeson processes is 42% independently
of redshift. Due to more energetic photons of CMBR, the threshold of photomeson
interactions is shifted to lower energies that leads to the increase of extracted energy
from 6% to 17% (see Fig. 3.3). However, as pair production begins to play a significant
role at high redshifts the share of the electrons generated in photomeson processes is
decreased, from 49% to 22% at the distance r = 100 Mpc.

The importance of the shift of the reaction threshold on production of electrons be-
comes more obvious if the protons with energies close to threshold and higher are taken
into account. The percentage of initial energy of protons with energies E > 1019 eV
which is converted to the energy of electrons is presented in the right panel of Fig. 3.3.
While at z = 0.1 the production of electrons due to photomeson processes dominate at
all distances smaller than 100 Mpc, at high redshifts the pair production prevails.
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Figure 3.3: Left panel: the fraction of the initial energy of protons with energy E >
1018 eV converted to the energy of electrons from photomeson production at
distance r from the source. Right panel: the percentage of the initial energy
of protons with energy E > 1019 eV converted to the energy of electrons from
photomeson production (thick lines) and electrons from pair production (thin
lines) at the distance r from the source.
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Figure 3.4: Spectral energy distribution of gamma rays observed within different angles
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3.3 Gamma-ray source

Having the highest energy among secondaries, the electrons generated in photomeson
processes emit almost all their energy via synchrotron radiation. Therefore, because of
the shift of the threshold of photomeson interactions, the intensity of synchrotron gamma
rays is increased with the redshift of the source. On the other hand, the reduction of
cooling length of protons results in reduction of the apparent angular size of the region
emitting synchrotron radiation, in addition to the diminution because of geometrical
factor.

Fig. 3.4 shows spectral energy distribution of synchrotron gamma rays observed within
different polar angle in the direction to the source of protons. The geometry of expanding
Universe leads to more sophisticated dependence of apparent angular size on distance
compared to the ∼ 1/r dependence for the local Universe. It is useful to define a
reference angle θ∗z which is equal to the angular size of the region with the radius r =

0.5 Mpc located at the redshift z. Expressing the angles in units of corresponding
reference angles, we can compare the regions located at different redshifts eliminating
the geometrical factor. As expected, at large redshifts the reference angle increases with
z (see Appendix 3.6, Fig. 3.8). In Fig. 3.4 for each redshift the fluxes are presented
within three polar angles which differ from each other by factor of 3 and are expressed
in the units of corresponding reference angle. The maximal angle indicated in plots is
the polar angle within which the total flux is observed. Comparison of the maximal
angles in units of reference angles shows a tendency of decreasing the angular size of the
region of secondary synchrotron radiation with redshift, from 9θ∗0.1 to θ∗3/9.

The interaction of synchrotron gamma rays with extragalactic background light (EBL)
leads to considerable attenuation of the flux. As it is seen from Fig. 3.4 the intergalactic
absorption becomes substantial, depending on the distance to the source, from TeV
energies down to tens of GeV energy range. For calculation of the absorbtion of gamma
rays, the model of EBL developed in [69] have been applied.

At high redshifts, the electrons from photomeson reactions are produced close to
the acceleration cites of protons. In this case a considerable part of emitting electrons
might be found in much stronger magnetic field compared to the average intergalactic
field. The energy spectrum of synchortron radiation of secondary electrons is shifted
linearly with change of the strength of magnetic field to keep the ratio Eγ/B constant
(see [17]). Therefore the increase of the strength of magnetic field leads to the shift of
radiation spectrum towards higher energies; if the radiation extends to TeV energies, the
intergalactic absorption becomes quite violent; this results in the dissipation of almost
the entire radiation. The absorbed gamma rays initiate cascades which contribute to
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Figure 3.5: Energy flux distribution of gamma- and X-rays observed within different
angles in the direction of the source for the case of homogeneous magnetic
field B = 1 nG. Other parameters are the same as in previous figures.

the diffuse extragalactic background radiation.
Keeping in mind the sensitivity of instruments such as Fermi, the detection of the

collimated synchrotron radiation from sources located at high redshifts is possible only
in case of very powerful AGN. The anisotropic injection of UHE cosmic rays allows to
reduce the required power of source. Until deflection of protons is smaller than the angle
of a jet, there is no difference between the spherically symmetric and anisotropic case.
In both cases the observer will see identical pictures. For the given power of injection
the existence of anisotropy with the opening angle θbeam of jet means the increase of
the flux of gamma rays by the factor 4/θ2beam compared to the spherically symmetric
case. The fluxes of synchrotron gamma rays in Fig. 3.4 are calculated for the case of
θbeam = 10◦. The deflection of protons is smaller than this value of the opening angle
while protons produce secondary particles. It is seen from Fig. 3.4 that at the power
of proton injection L = 1045 − 1047erg/s, the fluxes of gamma rays can exceed the
sensitivity (minimum detectable fluxes) of Fermi LAT [70] The resolution of the Fermi
LAT varies in dependence of photon energy from 42′ at E = 109 eV to 4.2′ at E = 1011

eV [70]. Already for the source located at z = 0.2 the angular size is 46′, thus the source
of gamma rays would be seen as extended one only if z < 0.2.

3.4 X-ray emission

Protons lose part of their energy via pair production. The pair-produced electrons
have lower energies compared to the electrons produced in photomeson processes and
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Figure 3.7: The same as Fig. 3.6 but for z = 1, 2, 3 and the total power of injection of
protons L = 1048 erg/s .
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emit synchrotron radiation in the lower band of spectrum. At high redshifts the mean
free path of protons relative to pair production process is decreased and generated
electrons are located in more compact region. Moreover, the fraction of energy of protons
converted to the secondary electron component is increased and reaches to 68% at z = 3

(see Fig. 3.2, 3.3).
Synchrotron radiation for the strength of IGMF of B = 10−9 G and inverse Comp-

ton (IC) scattering give equal contribution to electron losses at energy E ≈ 3 · 1018

eV. At lower energies electrons lose their energy predominantly through IC scattering.
Scattering is carried out at Klein-Nishina regime and almost all energy is transferred to
photon. In turn the high energy photon produce electron-positron pair due to interac-
tion with CMBR and most of the energy goes to one component of the pair which again
suffer IC scattering. This process can be considered as alternation of the particle state
with gradual reduction of energy. The electromagnetic cascade produces a huge halo of
gamma rays with energy in GeV region. Region of synchrotron radiation is more com-
pact, and electrons radiate it at the place of their generation. In spite of this the region
is still quite extended as can be seen from angular distribution on Fig. 3.5. The flux
of synchrotron radiation drops at low energies and becomes very small in X-ray region.
The calculation of fluxes presented on Fig. 3.5 takes into account only homogeneous
IGMF with strength B = 10−9G. However, the strength of magnetic fields close to the
accelerator can be much higher. To take this into account, we consider the following
spatial distribution for IGMF magnetic field:

B = Bcl

(
r0

r + r0

)3

+B0, (3.2)

where Bcl = 10−6G is magnetic field in the cluster of galaxies with characteristic size of
r0 = 1 Mpc, B0 = 10−9 G is IGMF. Such a dependence of the magnetic field has been
chosen to have a dipole behavior at large distances. For this case the energy and angular
distributions of gamma- and X-rays are presented on left panels of Fig. 3.6 and 3.7. This
magnetic field gives considerable increase of the fluxes of synchrotron radiation at low
energies which is generated at small region close to the source and, therefore, has narrow
angular distribution. Right panels shows that the contribution of electrons produced in
pair production process (lower lines) is dominant in X-ray region, whereas gamma rays
are generated predominantly by electrons produced in photomeson processes. Horizontal
segments indicate sensitivity of Chandra [71, 72] for corresponding maximum angles of
observation. As can be seen the low energy part of X-rays (0.5−2 keV) is detectable for
specified power of injection of protons, whereas the radiation at higher energies can be
missing for sources located at high redshifts since Chandra is less sensitive in the range
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of energies 2− 8 keV.
As follows from Fig. 3.6 and 3.7, the electrons produced in photomeson processes

provide the main contribution to synchrotron gamma rays, although the most of energy
lost by protons is contained in the low energy component of secondary electrons from
the pair production process. The radiation of this component can be detected only
in the case of a quite large, Bcl ≃ 10−6 G magnetic field around the source. This
can happen if the source is located inside a cluster of galaxies with a typical size of
1 Mpc. Nevertheless, even in the case of intensive pair production that takes place in
cosmologically distant objects, only a small fraction of pairs is produced in the relatively
compact region with a linear size of ∼ 1 Mpc (see Fig. 3.2); the most of energy of protons
is converted to the energy of extended gamma ray halo.

3.5 Discussion

High energy gamma rays are unavoidably formed around the sources of UHE cosmic
rays because of synchrotron radiation of secondary electrons produced at interactions of
highest energy protons with the cosmic microwave background radiation. In the previous
chapter we have shown that even for relatively large intergalactic magnetic fields in the
neighborhood of UHE cosmic ray accelerators, B ∼ 10−7 − 10−9 G, these process lead
to formation of high-energy point-like gamma-ray sources. Because of relatively weak
gamma ray signals, the chances of detection of such sources are higher for objects located
in the nearby Universe, namely at distances less than 100 Mpc. Since the efficiency of
conversion of the proton energy to secondary gamma rays is dramatically reduced at
protons energies E ≤ 1020 eV, one may hope to detect gamma rays only from extreme
objects accelerating protons to energies 1020 eV and beyond. Given the fact that this
requirement can be satisfied only in the case of unique combination of parameters,
as well as the limited volume of the ≤ 100 Mpc region, realistically one can expect
not a very large number of such sources. One can gain a lot if extends the study to
cosmological distances. First of all, this allows to probe the most powerful objects in the
Universe (e.g. quasars and AGNs) in which more favorable conditions can be formed
for acceleration of protons to energies 1020eV. Secondly, because of higher temperature
of the CMBR at cosmological epochs, i.e. because of denser and hotter relic photons,
less energetic protons (with energy down to 1019 eV) can lead to effective production of
gamma rays. Given that the conditions of acceleration of protons to 1019 eV in suspected
cosmic accelerators are much relaxed as compared to the 1020 eV extreme accelerators
(see [26]), we should expect dramatic increase of such gamma-ray sources. Another
factor of enhancement of number of sources comes from the increase of the volume of
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3 Cosmologically distant UHE cosmic-ray accelerators

the explored region to redshifts z ≥ 3. An obvious caveat in this case is the decrease of
gamma ray flux. However, this factor can be at least partly compensated by the huge
power of objects in the remote Universe. Moreover, due to dramatic reduction of mean
free paths of UHE protons at cosmological epochs z ≥ 1, the conversion efficiency of
proton energy to gamma rays is increased almost an order of magnitude, which makes
these objects an extremely effective gamma-ray emitters. Finally, since the secondary
gamma-ray emission generally follows the direction of parent protons, the beamed cosmic
accelerators like GRBs and blazars seem to be quite attractive targets for search of point-
like but steady GeV gamma-ray emission from cosmologically distant objects.

3.6 Summary

In this chapter the scenario of synchrotron gamma-ray signatures of cosmologically dis-
tant UHE cosmic-ray accelerators has been considered. The probability of detection of
cosmic ray sources via synchrotron radiation of secondary electrons strongly depends
on the maximum energy of accelerated protons. In the case of sources with redshift
z ≪ 1, the interaction of protons with CMB radiation is effective only when the proton
spectrum extends to Emax = 1020eV and beyond. Since protons at high redshifts interact
with denser (nph ∝ (1 + z)3) and more energetic (T ∝ 1 + z) photons of CMB radia-
tion, the requirement to Emax is significantly relaxed, thus one should expect dramatic
increase of the number of UHE cosmic ray sources surrounded by gamma-ray halos.
Protons lose their energy on distances significantly smaller than 100 Mpc and produce
the compact gamma-ray source.

The energy conversion from UHE protons to the synchrotron radiation of the sec-
ondary electron has been calculated for different redshifts. The significant increase of
the efficiency is shown for cosmologically distant sources. Using the formalism of the
previous chapter combined with effects in the expanding Universe the angular and spec-
tral distributions of radiation in the gamma- and X-ray bands has been calculated and
discussed in the context of their detectability by the Fermi LAT and Chandra observa-
tories.

Appendix: Angular size of sources at large redshifts

If the radiation is generated on scales smaller than cosmological ones, the relevant pro-
cesses can be considered as they take place in the conventional stationary Euclidean
space. However, when radiation propagates over cosmological distances, the expansion
of space should be taken into account. Based on the law of free motion of massless
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3 Cosmologically distant UHE cosmic-ray accelerators

particles in expanding space, one can find the distribution function of photons at the
observation point. Then we need to convert the distribution function calculated in the
reference frame with origin at the source to the reference frame of the observer ([73]). In
the present chapter the free propagation of photons is considered in the flat expanding
Universe with parameters ΩΛ = 0.73, Ωm = 0.27 and H0 = 71 km/s Mpc.

Figure 3.8: Angular size of the source with diameter D = 1 Mpc located at different redshifts
z.

We consider an isotropic gamma-ray source of radius R∗ located at redshift z. Let us
assume that photons escape this region with spherically symmetric distribution fz(E, θ),
where E is the energy of photon and θ is the angle between photon momentum and
radial direction at the escape point. Finally we assume that after the escape gamma
rays propagate freely. In the case of small angles the distribution function f0(z, E,Ω(θ))

of gamma rays at the observation point integrated over the solid angle Ω (with polar
angle θ) can be expressed in the following form:

f0(z, E,Ω(θ)) = 2π

(
Θ∗

1 + z

)2
θ/Θ∗∫
0

fz(E(1 + z), x)xdx, (3.3)

where

Θ∗ =

 c

H0R∗(1 + z)

z∫
0

dz′√
Ωm(1 + z′)3 + ΩΛ

−1

. (3.4)

The final result (3.3) differs from analogous one corresponding to the stationary space
by the dependence on the redshift as well as by the nonlinear dependence of angular
size on distance. The latter is determined by the parameter Θ∗ given by Eq. (3.4).
The parameter ∆θ = 2Θ∗ has the meaning the angular size of the isotropically emitting
source. In the case of anisotropic source, the angular size of radiation cannot be arbitrary
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large and is limited by ∆θ. In Fig. 3.8 we show the angular size of the emission region
with diameter D = 2R∗ = 1 Mpc. The parameter ∆θ has a minimum 1.95 arcmin at
redshift z = 1.64 when recession velocity equals to the speed of light c ([73]).
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4 The case of weak intergalactic
magnetic fields

4.1 Time structure of gamma-ray signals

Active Galactic Nuclei (AGN) are expected to be sources of both cosmic rays and gamma
rays. While gamma rays have been observed from a number of blazars, the identifica-
tion of cosmic rays with their sources is impossible (except at the highest energies),
because the Galactic magnetic fields change their directions considerably. However, as
long as the intergalactic magnetic fields are relatively small, cosmic rays produced in
blazars can travel close to the line of sight and produce secondary gamma rays which
would significantly contribute to the radiation observed from the direction of the point
sources. For nearby blazars such contributions are expected to be small in comparison
with direct gamma-ray signals reaching Earth. However, for more distant blazars, the
line-of-sight produced gamma rays can dominate over the direct gamma rays from the
source [53]. The transition occurs because the primary gamma rays are filtered out
in their interactions with extragalactic background light (EBL), while the fraction of
secondary gamma rays produced by cosmic rays in intergalactic space grows with dis-
tance traveled. Based on the spectra of individual blazars [53, 51, 52] and on the trend
in spectral softening [74], one expects the secondary contribution to be important for
redshifts z > 0.15 and energies E > 1 TeV.

The intrinsic gamma-ray spectra of some blazars, after correction for absorption
in EBL, appear extremely hard, challenging the standard, e.g. the synchrotron-self-
Compton (SSC) or External Compton models of blazars. Several solutions to this prob-
lem have been proposed. Intergalactic cascading of gamma rays from blazars in the
case of very weak intergalactic magnetic fields (IGMFs) can increase the effective mean
free path of gamma-rays [65, 75], however, for distant blazars this effect alone appears
to be insufficient to explain the gamma-ray spectra above 1 TeV. The very hard spec-
tra of primary gamma rays [76, 77, 78], or special features in the sources [79] can help
reconcile the data with theoretical predictions, at the cost of introducing some ad hoc
assumptions. Hypothetical new particles [80, 81] and Lorentz invariance violation [82]
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have been invoked to explain the data.
The inclusion of cosmic-ray contribution offers an alternative solution to the problem.

Indeed, since a significant fraction of gamma rays in this model is produced relatively
close to the observer, this model reduces dramatically the impact of gamma-ray absorp-
tion in EBL. This is illustrated in Fig. 4.1. Protons with energy E ≥ 1016 eV propagating
through weak IGMFs without strong deviations from the line of sight can carry energy
from the source close to the observer and can generate a substantial gamma-ray flux
at multi-TeV energies. Remarkably, the predicted spectra of secondary gamma rays de-
pend only on the source redshift (determined from independent observations). For each
source, the power emitted in cosmic rays is the only fitting parameter which can be used
to fit the data. As long as the source redshifts are known, the predictions of this model
are solid and robust. The spectra calculated for the redshifts of all observed distant
blazars provide a very good fit to observational data [53, 51, 52, 83], with a reasonable
required luminosities in cosmic rays assuming that the escape of protons from the source
is strongly beamed toward the observer [52, 84].

Confirmation of this model by future observations will have several important conse-
quences. It will imply that (i) cosmic rays are, indeed, accelerated in AGN, as has long
been suspected, but never before confirmed by observations; (ii) intergalactic magnetic
fields are fairly small, of the order of several femtogauss (10−15 G) or lower [85]; and (iii)
the problem of intergalactic gamma-rays can be somewhat relaxed, and consequently
the upper limits on EBL derived while neglecting the cosmic-ray contributions may need
be revised. Within this model, the expected temporal structure of signals from distant
blazars at the highest energies should reflect the time delays cosmic rays undergo in
the intergalactic magnetic fields. We note that while time variability has been observed
for nearby TeV blazars at TeV energies and for distant TeV blazars at energies above
a few hundred GeV, no variability has been reported so far for distant TeV blazars at
TeV energies. Here we call distant those blazars that have large enough redshifts for the
primary TeV gamma-rays to die out. Based on the spectral fits [53, 51, 52, 83], and the
spectral softening of blazars [74], one concludes that most blazars with redshift z ≥ 0.15

should fall in this category. Since the ratio of gamma-ray luminosity to cosmic-ray lu-
minosity can vary from source to source, one expects a mixed population to exist at
some intermediate redshifts 0.1 < z < 0.15, where stronger cosmic ray emitters should
be observed in secondary gamma rays, while stronger gamma ray emitters should be
observed in primary gamma rays. Furthermore, if stronger IGMFs exist in the direc-
tions of specific sources, the secondary contribution can be suppressed. For example,
PKS 2155-304 at z = 0.12 is an example of a source at an intermediate redshift from
which primary signals are observed, as indicated by its TeV variability [86]. Whether
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Figure 4.1: Secondary gamma rays produced in line-of-sight interactions of cosmic rays
result in harder spectra for distant sources. Since most of the observed
photons are produced relatively close to the observer, there is less attenuation
due to the interactions with EBL.
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the lack of TeV variability is a generic feature of distant blazars, or merely an artifact
of low statistics in multi-TeV photons, should be clarified in future observations. An
important issue in this context is the knowledge of the spectral and temporal features of
the radiation predicted by the model. The spectral features of the radiation have been
studied in detail by [52].

In this chapter we consider the extent to which the time variability at high energies
should be erased by the cosmic ray propagation delays. We will focus on calculating the
Green’s function, which corresponds to a time delay from an infinitely narrow pulse of
protons at the source. Realistic time profiles can be obtained by convolving the time-
dependent source luminosity with this Green’s fucntion. However, since a fair fraction
of the blazar flaring activity occurs on the time scales much sorter than those we discuss
below, in many cases the Green’s function can be interpreted as a distribution of photon
arrival times from a flaring source. In applications of our method to data analysis, one
can employ time-dependent templates inferred from lower energies.

4.2 Basic estimates and scaling laws

There is no doubt that, for nearby blazars, the primary gamma rays produced at the
source are responsible for most of the observed radiation. While these objects can
also produce cosmic rays, the contribution of secondary gamma rays is not expected to
dominate. However, for larger distances, the primary gamma-ray component is filtered
out above a TeV, while the secondary contribution is enhanced. Indeed, the scaling of
the primary gamma rays with distance is determined by the losses due to pair production
in gamma-ray interactions with extragalactic background light (EBL):

Fprimary,γ(d) ∝ 1

d2
exp(−d/λγ). (4.1)

In contrast, gamma rays generated in line-of-sight interactions of cosmic rays exhibit a
very different scaling with distance [53, 51, 52]:

Fsecondary,γ(d) ∝ λγ

d2

(
1− e−d/λγ

)
∼

{
1/d, for d ≪ λγ,

1/d2, for d ≫ λγ.
(4.2)

Here λγ is the distance at which EBL opacity to TeV gamma rays is of the order of 1.
The lack of suppression is due to the fact that the photon backgrounds (CMB and EBL)
act as a target on which gamma rays are produced by the cosmic rays. Hence, a higher
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column density of background photons for a more distant source boosts, not hinders the
gamma-ray production.

As long as IGMFs are weak enough to cause only small deflections, for a sufficiently
distant source, secondary gamma rays dominate because they don’t suffer from expo-
nential suppression as in Eq. (4.1), which is absent from Eq. (4.2). The transition from
primary to secondary photons occurs when the optical depth to pair production exceeds
1. The corresponding redshift can also be inferred from the spectral softening of the
spectra [74]. Based on these estimates, one can expect the secondary gamma rays to
dominate for sources at redshifts z >

∼ 0.15.
The success of the spectral fits to the data for secondary gamma rays [53, 51, 52] can

be interpreted as possible evidence of cosmic ray acceleration in blazars. Within this
interpretation, the beamed energy output in E > 1017 eV cosmic rays required to fit
the observed spectra of distant blazars is of the order of 1043 erg, or 1045 erg isotropic
equivalent [53, 51, 52], which is consistent with many models [32]. The luminosity
required to explain ultrahigh-energy cosmic rays (UHECR) depends on the assumed
spectrum, which is often parameterized by a broken power law with a break at some
value Ec (unknown a priori). According to [32], the AGN luminosities in cosmic-ray
protons needed to account for the UHECR data are 5.6 × 1043 erg/s, 2.5 × 1044 erg/s,
and 1.1 × 1045 erg/s, for Ec = 1018 eV, Ec = 1017 eV, and Ec = 1016 eV, respectively.
These estimates are in general agreement with our results. We also note that, because of
the selection effects, the sources observed from large distances are by no means average:
they are the brightest AGNs, which generate exceptional power in cosmic rays.

The spectra of observed gamma rays generated in this fashion depend on the inter-
vening intergalactic magnetic fields. It is easy to understand some qualitative features
of this dependence in terms of a simplified random-walk description of the proton prop-
agation. Let us consider a short pulse of protons emitted from a source at distance d.
At later times, the proton pulse broadens and takes the shape f(t, r). The explicit form
of f(t, r) was computed by [17] and will be discussed below. (See also [67]; [87].)

At every point in its trajectory, the proton interactions with the cosmic background
generate a flux of gamma rays, which quickly (on a kpc length scale) cascade down to
energies below the threshold. From that point on, gamma rays travel without further
time delays. However, during the cascade development, the IGMFs cause some delays
(which are longer than the delays of the protons in the IGMFs for Eγ below 10 TeV).

Let us consider the proton propagation in IGMFs. We assume that IGMFs form a
lattice with correlation length lc, in which a proton with energy Ep = 1017eV random-
walks over a distance d ∼ 1000Mpc = n× lc, where n ∼ 103.

The angle between the proton momentum and the line of sight performs a two-
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dimensional random walk in small steps of ∼ 10−6. When the proton interacts with
a background photon, it emits a narrow shower in the direction of the proton’s mo-
mentum. The prompt gamma rays are emitted into a narrow angle (∼ Ep/MeV)−1 for
Bethe–Heitler pair production, or (∼ Ep/0.2GeV)−1 for pion photoproduction. The cas-
cade develops and broadens this angle, with larger angles at lower energies. To shower
in the direction of observer after n steps of random walk, the proton angle should return
to 0. For a 2D random walk, the probability of not returning to zero after n steps is
γ2(n) =

π
lnn

+ O
(

1
(lnn)2

)
. This probability drops below 1/2 for n > exp(2π) ∼ 5× 102.

For d ∼ 1000Mpc, n ∼ 103, and so each proton angle returns to the origin about
∼ 1 time per distance traveled. Therefore, the diffusion approximation is justified, and
a “typical” delay can be computed using the distance traveled, assuming the random
walk.

Deflection of a proton in a single cell is θ0. This deflection and the time delay are
determined by the Larmor radius

RB =
E

eB
= 105Mpc Ep,17/B−15,

where Ep,17 is the proton energy in units of 1017 eV, and B−15 is the value of the magnetic
field in femtogauss.

Therefore,

θ0 =
lc
RB

= 10−5

(
lc

Mpc

)
B−15/Ep,17.

Time delay in crossing a single cell is

∆t0 =
lc
c
θ20 = 104s

(
B−15

Ep,17

)2

.

After n ∼ 103 steps of random walk, the time delay is

τp = n∆t0 ∼ 107s

(
B−15

Ep,17

)2

. (4.3)

Significant time delays are also incurred in the EM showering process. Each observed
gamma ray was at some point an electron in the cascade. The time delay of each
gamma ray with an observed energy Eγ is dominated by the delay during the lowest-
energy “electron” phase of this gamma ray. The electron energy is related to the energy
of observed IC γ ray by Eγ ∝ E2

e . IGMFs act on the electron over a distance of the
order of its cooling distance De ∝ 1/Ee. The time delay incurred in this process is
proportionate to the sum [88, 89] of De and the mean free path to pair production λPP,
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which has the same energy dependence (with a much larger prefactor), λPP ∝ 1/Ee.
The resulting delay is

τe = (λPP +De)θ
2
e/c, where θ = De

eB

Ee

.

Therefore,

τγ ≈ τe = D2
e(λPP +De)

e2B2

cE2
e

∝ B2

E5
e

∝ B2

E
5/2
γ

(4.4)

where we have assumed De ∼ kpc ≪ lc.
The proton delay (4.3) is

τp ∝
B2

E2
p

. (4.5)

The total time delay of an observed photon is the sum of τp and τγ:

τtot = τp + τγ = C1
B2

E2
p

+ C2
B2

E
5/2
γ

, (4.6)

where C1 and C2 are some constants.
One can, therefore, expect the following structure of time delays. The shortest de-

lay time is determined by the delay in the arrival of the highest-energy proton; this
time delay is given by Eq. (4.5). High-energy protons travel faster than the gamma-ray
cascades, and they are followed by a tail of trailing gamma rays. There are two con-
tributions to the total delay time, which have a different dependence on energy (4.6).
As the second term in Eq. (4.6) diminishes with energy, the time delay approaches a
plateau independent of the photon energy. The height of this plateau is determined
by the energy of the proton. This agrees with the results of numerical caclculations
presented in Figure 4.2.

4.3 Semi-analytical description

Let us consider the time delays due to the propagation of protons. Protons interactions
with extragalactic background radiation (both CMB and EBL) occur with a very low
probability for energies below the pion production threshold. In the pair production
process, a proton loses only ∼ 10−3 of its energy in each collision. Thus, one can ne-
glect the energy losses for protons in making some basic estimates. (However, in our
numerical calculations, we take into account all the energy losses, including adiabatic
losses.) Also, the deflection angles can be assumed small for the relevant range of pa-
rameters. Calculation of the electromagnetic cascade initiated by the secondary gamma
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rays produced in proton-photon interactions is much more difficult, and there is no sim-
ple analytical approach that could allow one to calculate the distribution function of
gamma rays. Therefore we will employ a hybrid approach by combining an analytical
treatment of protons with a Monte Carlo simulation for the electromagnetic cascade.

To calculate the distribution function of protons, let us consider a mono-energetic
beam of protons emitted with energy E at some point in time. Random deflections
in weak IGMFs result in arrival time distribution which is convenient to consider as a
function of time delay parameter τ = t− r/c, where r is the distance to the source and
c is the speed of light. In a small-angle approximation, one can express the distribution
function as follows [17]:

fA(E, τ, r) =
1

τ

(
cτ

r2⟨θ2s⟩
f̃A

(
cτ

r2⟨θ2s⟩

))
, (4.7)

where

f̃A(y) = 4π2

∞∑
n=1

(−1)n−1n2e−2π2n2y (4.8)

⟨θ2s⟩ =
lc
5

( e

E

)2
⟨B2⟩. (4.9)

Here ⟨θ2s⟩ is the mean square deflection angle per unit length. The correlation length
lc and the mean square of magnetic field ⟨B2⟩ enter in Eq. (4.7) as parameters. The

normalization of the function fA is so that
∞∫
0

fAdτ = 1. Then the distribution function

of protons injected with energy spectrum Jp(E) at the distance r from the source is

fp(E, τ, r) =
Jp(E)fA(E, τ, r)

r2
. (4.10)

Let protons interact with low energy photon field fph(ϵ). The protons with a monoen-
ergetic distribution (normalized to one particle) produce electron-positron pairs at the
rate Φ(Ee, Ep), where Ep is the energy of protons, Ee is the energy of pairs. Following
[31], one can express Φ(Ee, Ep) as follows:

Φ(Ee, Ep) = c2
∫

dϵ
dΩ

4π
fph(ϵ)

k · up

ϵγp

∫
δ(Ee − c(ulf · pe))dσ , (4.11)

where k, up, and ulf are four-velocities of photon, proton, and the laboratory frame,
respectively; and pe is four-momentum of electron (or positron). γe and ϵ are the proton
Lorentz factor and the energy of photon in the laboratory frame. dσ is the Bethe-Heitler
cross section. The photon field used in this calculations includes the CMB and EBL,
and one can neglect the redshift evolution.
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Then distribution function of electrons produced at the distance r with inherited time
delay τ is

fe(Ee, τ, r) =

∫
dEp

Jp(Ep)fA(Ep, τ, r)

r2
Φ(Ee, Ep). (4.12)

These electrons initiate an electromagnetic cascade. Let fcas(Ee, Eγ, s) be the number
of photons with energy Eγ produced in the cascade initiated by an electron with energy
Ee at the distance s from the observer and detected at the point of observation. The
mean time delay of the photons is τcas(Ee, Eγ, s). The extragalactic magnetic field is a
parameter. Then for the UHE proton source at the distance d the number of photons
produced in the cascade with time delay τ = τcas + τprot is

fγ(Eγ, τ, d) =

d∫
0

dr

∫
dEefe(Ee, τ − τcas(Ee, Eγ, r), d− r)fcas(Ee, Eγ, r) (4.13)

The Eqs. (4.7), (4.12) and (4.13) constitute the integral which is calculated numerically.
The functions fcas and τcas actually depend on redshift but not on distance, therefore
we use the relation

dr =
c

H0

1

(1 + z)
√
(1 + z)3Ωm + ΩΛ

dz, (4.14)

to express distance via redshift and perform integration over z.
We assume that the source produces a power-law spectrum of protons with a spectral

index α and the energy range from 0.1E0 to E0. The results for the mean time delay
of gamma rays are presented in Figs. 4.2 and 4.3 as a function of the varying cut-off
energy, distance to the source and spectral index. In these calculations we assumed that
the intergalactic magnetic field has the strength B = 10−15 G and the coherence length
lc = 1 Mpc. Unless specified otherwise, we use E0 = 1017 eV, α = 2.

The advantage of the analytical description presented above is the possibility to study
the time delay distribution of gamma rays for a variety of initial proton spectrum pa-
rameters. The numerical Monte Carlo approach described below has computational
limitations on the number of initial particles, which can complicate the study of how a
proton spectrum with a wide energy range can affect the time delays of gamma rays.
The protons injected with slightly different energies would have the time distribution
which is similar to the time distribution for a monoenergetic proton beam. In contrast,
the time distribution of protons with a broad energy spectrum is a sum of time distri-
butions of protons with different energies, which is stretched out in time. This would
spread the arrival times of gamma rays along a large time span. The illustration of this
effect can be seen from the comparison of the second panel of Fig. 4.4 and Fig. 4.5.
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Figure 4.2: Mean time delay of gamma rays at redshift z = 0.17 for different cutoff
energies E0 of proton spectrum.
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Figure 4.3: Left panel: mean time delay of gamma rays for the sources at different
redshifts and the proton spectrum with cutoff energy E0 = 1017 eV. Right
panel: mean time delay of gamma rays for the source at z = 0.17 and the
proton spectrum with cutoff energy E0 = 1017 eV and different spectral
indices α.

The range of the proton energies has a strong effect on the lower energy gamma rays,
whereas the time distribution for Eγ = 1 · 1014 eV does not change significantly. This is
because, in the case of a broad spectrum, protons with different energies can contribute
gamma rays of a given energy. On the other hand, only the protons of highest energies
are responsible for the production of gamma rays of Eγ = 1 · 1014 eV. Therefore, the
corresponding time distribution is similar to the one for the monoenergetic protons (cf.
Fig. 4.6).

The flux of gamma rays arriving at any given time comprises contributions from
protons at different points along the line of sight. We obtain this flux by integrating
over the proton distributions shifted by a time delay incurred in the electromagnetic
cascade. The latter delays were obtained from numerical calculations using a single
Monte Carlo numerical run. The results are shown in Figs. 4.4 and Fig. 4.5. The
multiple-peak structure apparent in these curves is the result of adding contributions
from different distances with the delay profile obtained from a single numerical run. If
we adopted a different approach and used an averaged delay profile, as in Fig. 4.7, the
“many-peak“ structure would be erased.
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Figure 4.4: Time delay distribution of gamma rays in arbitrary units (the maximum
of distribution is normalized to unity) at different energies from the source
at z = 0.17. Each plot corresponds to the proton spectrum with different
cutoff energy E0 and spectral index α = 2. The injected spectra of protons
are taken in the range from 0.1E0 to E0.
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Figure 4.5: Time delay distribution of gamma-ray in arbitrary units (the maximum
of distribution is normalized to unity) from the source at z = 0.17. The
injected spectrum of protons is almost monoenergetic with energy E = 1017

eV.
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4.4 Numerical Monte-Carlo calculations

In addition to the semi-analytical results we also performed a full scale Monte Carlo
simulation to track the arrival times of individual particles. The source was modeled by
an instantaneous pulse of protons to represent the Green’s function needed to calculate
the distribution of arrival times. Particles are advanced in time steps of roughly 0.1 −
1 kpc, updating momentum, position and time delay with all relevant interactions taken
into account. Gamma rays arriving at the z = 0 surface are binned and the mean arrival
time and standard deviation are calculated.

The proton energy loss processes are well studied [90] and can be described by a
standard approach. We calculate all the relevant energy losses, including adiabatic losses
and the losses due to the interactions with photon backgrounds. The most important
contributions to secondary photon production are photopion production and proton pair
production (PPP).

The photopion production processes involve the following reactions:

p+ γb → n+ π+

p+ γb → p+ π0 (4.15)

where γb is either a CMB or EBL photon. PPP occurs in the reaction

p+ γb → p+ e+ + e−. (4.16)

The pair production on the CMB is the dominant reaction, but pion photoproduction
on EBL also contributes. Pion photoproduction on CMB has a threshold above 1019 eV,
but pion production on EBL is possible for all energies we consider. The efficiency of
energy transfer to the electromagnetic shower depends on the proton energy and on the
distance to the source. A more detailed discussion is presented elsewhere [54].

The mean interaction length, λ, for a proton of energy E traveling through a photon
field is given by

[λ[E]]−1 =
1

8βE2

∫ ∞

ϵmin

n(ϵ)

ϵ2

∫ smax(ϵ,E)

smin

σ(s)(s−m2
p)dsdϵ, (4.17)

where n(ϵ) is the differential photon number density of photons of energy ϵ, and σ(s)

is the appropriate total cross section for the given process for the center of momentum
(CM) frame energy squared, s, given by

s = m2
p + 2ϵE(1− β cos θ), (4.18)
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where θ is the angle between the proton and photon, and β is the proton’s velocity.
For pion photoproduction,

smin = (m2
p +m2

π)
2 (4.19)

and
ϵmin =

mπ(mπ + 2mp)

2E(1 + β)
. (4.20)

For proton pair production
smin = (m2

p + 2m2
e)

2 (4.21)

and
ϵmin ≈ me(me +mp)

E
. (4.22)

For both processes,
smax(ϵ, E) = m2

p + 2ϵE(1 + β). (4.23)

Both pions and neutrons quickly decay via the processes

n → p+ e− + ν̄e,

π+ → µ+ + νµ → e+ + νe + ν̄µ + νµ,

π0 → 2γ. (4.24)

The outgoing distribution functions for pion photoproduction were generated using the
SOPHIA package [33].

Primary gamma rays and gamma rays produced from the above equations can interact
and pair-produce on background photons. The resulting electron positron pairs will IC
scatter CMB photons. The upscattered photons can once again pair produce, this chain
reaction is known as electromagnetic (EM) showering.
The interaction length for photons for pair production off the EBL is

[λ]−1 =
(m2

e

E

)2 ∫ ∞

m2
e

E

ϵ−2n(ϵ)

∫ ϵE

m2
e

1

2sσ(s)dsdϵ, (4.25)

where
σ =

1

2
π
( e2

m2
e

)2
(1− β2)

[
(3− β4) ln

1 + β

1− β
− 2β(2− β2)

]
(4.26)

and
β = (1− 1/s)1/2, (4.27)

and n(ϵ) is the differential photon number density of photons of energy ϵ.
To simulate magnetic field effects, the IGMF is modeled by cubic cells of a given
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magnetic field strength with sides equal to the chosen correlation length, lc, and a
random direction. Particles are moved forward in fine time steps and the deflection of
the particle is calculated using the Larmor radius and IGMF direction. Time delays for
charged particles are calculated in comparison to a photon traveling in a straight line
to the observer.

For the analysis of time delays, we have performed multiple runs and averaged the
results, as shown in Fig. 4.7.

The results of the simulation are shown in Fig. 4.8, where delays from deflections
in the IGMF are shown for a source at z = 0.2. It is evident that secondary photons
produced at large distances conform to the power-law behavior as in Eq. (4.4). This
approximate power law is illustrated in Fig. 4.8 by a dashed line. The flattening at low
energies can be understood by the way the code handles deflections. Particles are moved
forward in time steps of roughly 0.1− 1 kpc and deflections are assumed to be less than
π within a single time step. For the lowest energies this is not always true and the code
will underestimate the deflection, thus producing time delays below the power law.

4.5 Discussion

The main qualitative features of the Green’s function computed numerically and shown
in Fig. 4.2 and Fig. 4.8 can be easily understood. For lower energies (below TeV), time
delays τ ∝ B2E−5/2d, where d is distance to the source. The nearby showers arrive
before distant showers, so that the late arriving gamma rays have lower energies and
longer delays. The plateau that develops at E > 1TeV is due to the prompt showers
emitted by the protons nearby, for which the time delays are determined by the proton
deflections in IGMFs. In the absence of cosmic rays, the spectrum would drop above
1 TeV, and the multi-TeV gamma rays would not be observed.

For sub-TeV secondary gamma rays the electromagnetic cascade delays are always
longer than the proton delays, and the arrival photons peak at the time given by
Eq. (4.4). At energies above TeV, the proton delays come to dominate, in accordance
with the broken power law in Eq. (4.6). The numerical results differ somewhat from
the scaling in Eq. (4.6). In particular, at low energies, the delays appear to scale as
E−2 rather than E−2.5. The difference can be explained by a combination of several
effects. For electron energies below 30 GeV, the cooling distance exceeds the magnetic
field correlation length, which we assumed to be lc ∼ 1 Mpc. This changes the energy
dependence in Eq. (4.4) because the energy-dependent cooling distance must be replaced
by the constant correlation length. Furthermore, integration over energies in the cascade
affects the power-law behavior. For these reasons, our basic estimates in section 2 were
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Figure 4.6: Arrival time probability distribution in arbitrary units for secondary gamma
rays with energies 1 TeV (blue, long-dashed line), 10 TeV (purple, short-
dashed line) and 100 TeV (red, solid line). Results are shown for a cosmic
ray source at z = 0.2 with a high energy cutoff of 108 GeV and an IGMF of
10−15 G.
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Figure 4.7: Arrival time probability distribution in arbitrary units for 1 TeV secondary
photons for multiple numerical runs. The results shown are for roughly
300,000 secondary photons with an IGMF of 10−15 G and UHECR cutoff of
1010 GeV. The blue thick line represents the sum of all distributions and the
thin red lines are a representative set of distributions.
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Figure 4.8: Arrival time delays from an instantaneous pulse emitted by a source at z =
0.2, assuming B = 10−15 G with lc = 1 Mpc correlation length.

not expected to capture all the features evident in the numerical results.
The proton delay is strongly dependent on the high energy cutoff of the cosmic ray

source, which affects the energy at which the proton delays begin to dominate. This can
be seen in Fig. 4.9. This behavior is further illustrated in Fig. 4.4 and Fig. 4.6, where
one can see that the proton delays begin to dominate at E ∼ 10 TeV for a proton high
energy cutoff of 108 GeV and an IGMF = 10−15 G.

The distribution of gamma-ray arrival times depends on the injection spectrum of
protons, as one can see from a comparison of Fig. 4.4 and Fig. 4.5. This is in contrast
with the spectra of gamma rays, which are not sensitive to the proton injection spectrum
[51, 52]. Hence, one can, at least in principle, learn about the proton injection spectrum
from timing observations, but not from the spectra alone. (Neutrino spectra also depend
on the proton injection spectrum [51].) Furthermore, stochastic broadening illustrated
in Fig. 4.7 also affects the predictions.

Based on our results, the observed time variability should be washed out on time
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Figure 4.9: Arrival time probability distribution in arbitrary units for primary cosmic
rays. Results are shown for a cosmic ray source at z = 0.2 with a high energy
cutoff of 1010 GeV (blue, long dashed), 109 GeV (purple, short dashed) and
108 GeV (red, solid) and an IGMF of 10−15 G.
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scales shorter than ∼ 0.1 yr, for distant blazars (z > 0.2), at TeV and higher energies.
Time variability can be present for z > 0.2, E > 1 TeV on the time scales of 0.1− 1 yr.
If gamma rays with E ∼ 102 TeV are observed, they can exhibit variability on shorter
time scales.

Of course, one must also consider the delays the cosmic rays undergo at the source.
Blazars are known to be highly variable, and this variability could affect the shape of
the observed spectrum. The magnetic fields within galaxies are on the order of 1 µG

which can lead to significant delays in the source. On the other hand, the structure of
magnetic fields in front of the blazar jets is not known. Furthermore, the effect of the
source variability would be to suppress the observed power of the source by a factor

fdamp ∼ Nactive

(
tactive
tdelay

)
, (4.28)

where tdelay is the typical proton delay at the source, tactive is the typical time the source
is active or flaring and Nactive is the number of times the source is active in the time
period tdelay. This damping should not be a significant effect [91], especially since the
typical deflections at the source are not big enough to affect the beaming factors assumed
in popular models.

An alternative situation is that the magnetic fields within the blazar jet are not
randomly distributed, but are, instead, strongly correlated with the direction of the
jet. Blazar jets emit an extremely large amount of charged matter and the wind in
the direction of the jet can eliminate any random-field configuration that one usually
expects in a galaxy. Thus, it is possible that cosmic rays escape the source along the
jet with very small time delays, preserving the intrinsic variability of the source. In
this case, delays in the intergalactic medium can broaden the intrinsic variability to the
energy dependent timescales of these delays.

At energies where the optical depth of the observed gamma rays is below one, we ex-
pect the signal to be primary gamma rays, and any variability in this signal is indicative
of the source variability. This variability should not depend strongly on the energies of
the gamma rays, but rather on the scale of the structure at the source producing the
gamma rays.

However, we expect a very different behavior for energies at which primary gamma
rays are significantly attenuated by pair production off EBL. In the case of strongly
correlated magnetic fields in the jet, we expect that the variability should show different
structure in the low energy component, where it should depend on the energy. The
spectrum should show variability on shorter timescales for higher energies until some
critical energy Ec ∼ TeV, where the timescales cease to decrease further, thanks to the
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domination of the cosmic ray contribution. In the case of large delays within the source,
we expect all variability to be washed out at these higher energies (typically around a
TeV for most observed sources).

Some exceptionally bright flares can come through around Ec and rise above the
pedestal created by the stochastic arrival times of protons. Such flares should have
distinctly softer spectra than the hard pedestal, which can be a means of distinguishing
these flares from the stochastic pedestal.

For most of discussion, we have assumed that IGMFs have strengths are of the order of
a femtogauss. This range is suggested by the spectral fits to the data [85]. However, field
strengths well below a femtogauss can be consistent with the data as well. In the case
of very weak IGMFs, the time delays become smaller, since τ ∝ B2. For B ∼ 10−18 G,
the time delays can be as short as minutes.

We have also assumed that the strength of IGMF is constant on average, which is a
good assumption for propagation in the voids. However, if the line of sight intersects
a filament of stronger, e.g., nanogauss magnetic field, the reduction of the secondary
photon signal depends on the size of the filament and on its location. Thin filaments
can only intercept as small fraction of protons within the 0.1 degree associated with a
given source. However, a thick filament or a sheet of strong field can deflect protons,
reducing the secondary signal.

Temporal structure of gamma-ray signals can be used to measure the IGMF structure
and EBL intensity in different directions, on a source-by-source basis. In addition,
it may provide a way to probe the high energy cutoff of cosmic ray sources, as well
as the spectrum of EBL. A statistical analysis on multiple bins of data is needed to
determine the variability at different energies. This presents challenges at the highest
energies because of the low statistics, but longer observation times and the advent of
next generation experiments should make this analysis increasingly powerful.

4.6 TeV gamma rays from distant blazars

Recent observations of active galactic nuclei with ground-based gamma-ray detectors
show growing evidence of very high energy (VHE) gamma-ray emission from blazars
with redshifts well beyond z = 0.1. In this chapter we examine the question of whether
TeV blazars can be observed from even larger redshifts, z ≥ 1. Although primary TeV
gamma rays produced at the source are absorbed by extragalactic background light
(EBL), we will show that it is possible to observe such distant blazars as point sources
due to secondary photons generated along the line of sight by cosmic rays accelerated
in the source.
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To a large extent, the observations of blazars with z > 0.1 came as a surprise, in view
of the severe absorption of such energetic gamma rays in the EBL. One of the obvious
implications of these observations is the unusually hard (for gamma-ray sources) intrinsic
gamma-ray spectra. Remarkably, the observed energy spectra of these objects in the very
high energy band are, in fact, very steep, with photon indices Γ ≥ 3.5. However, after
the correction for the expected intergalactic absorption (i.e. multiplying the observed
spectra to the factor of exp [τ(z, E)], where τ(z, E) is the optical depth of gamma rays
of energy E emitted by a source of redshift z), the intrinsic (source) spectra appear to
be very hard with a photon index Γs ≤ 1.5. Postulating that in standard scenarios the
gamma-ray production spectra cannot be harder than E−1.5, it was claimed that the
EBL must be quite low, based on the observations of blazars H 2356–309 (z = 0.165)
and 1ES 1101–232 (z = 0.186) by the HESS collaboration [92]. The derived upper limits
appeared to be rather close to the lower limits on EBL set by the integrated light of
resolved galaxies. Recent phenomenological and theoretical studies (e.g., Refs. [69, 93])
also favour the models of EBL which are close to the limit derived from the galaxy
counts (for a recent review see Ref. [94]). This implies that further decrease in the level
EBL is practically impossible, thus a detection of TeV gamma rays from more distant
objects would call for new approaches to explain or avoid the extremely hard intrinsic
gamma-ray spectra.

The proposed nonstandard astrophysical scenarios include models with very hard
gamma-ray production spectra due to some specific shapes of energy distributions of
the parent relativistic electrons – either a power law with a high low-energy cutoff or a
narrow, e.g., Maxwellian-type distribution. While the synchrotron-self-Compton (SSC)
models allow the hardest possible gamma-ray spectrum with the photon index Γ = 2/3

[95, 78], the external Compton (EC) models can provide gamma-ray spectrum with
Γ = 1 [78]. Within these models one can explain the gamma-ray emission of the blazar
1ES 229+200 at z = 0.139 with the spectrum extending up to several TeV [96] and sub-
TeV gamma-ray emission from 3C 279 at z = 0.536 [97] (Γs ∼ 1). Formally, much harder
spectra can be expected in the case of Comptonization of an ultrarelativistic outflow
[65], in analogy with the cold electron-positron winds in pulsars [98]. Although it is not
clear how the ultrarelativistic MHD outflows could form in active galactic nuclei (AGN)
with a bulk motion Lorentz factor γ ∼ 106, such a scenario, leading to the Klein-Nishina
gamma-ray line-type emission [99], cannot be excluded ab initio. Further hardening of
the initial (production) gamma-ray spectra can be realized due to the internal γ − γ

absorption inside the source [79, 100]. Under certain conditions, this process may lead
to an arbitrary hardening of the original production spectrum of gamma rays.

Thus, the failure of “standard" models to reproduce the extremely hard intrinsic
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gamma-ray spectra is likely to be due to the lack of proper treatment of the complexity
of nonthermal processes in blazars, rather than a need for new physics. However, the
situation is dramatically different in the case of blazars with redshift z ≥ 1. In this
case the drastic increase in the optical depth for gamma rays with energy above several
hundred GeV implies severe absorption (optical depth τ ≫ 1), which translates into
unrealistic energy budget requirements (even after reduction of the intrinsic gamma-ray
luminosity by many orders of magnitude due to the Doppler boosting). In this case,
more dramatic proposals including violation of Lorentz invariance [101, 102, 103] or
”exotic“ interactions involving hypothetical axion-like particles [80, 104] are justified.
Despite the very different nature of these approaches, their main objective is the same
– to avoid severe intergalactic absorption of gamma rays due to photon-photon pair
production at interactions with EBL. This feat was accomplished either by means of
big modifications in the cross-sections, or by assuming gamma-ray oscillations into some
weakly interacting particles during their propagation through the intergalactic magnetic
fields (IGMFs), e.g., via the photon mixing with an axion-like particle. Alternatively,
the apparent transparency of the intergalactic medium to VHE gamma rays can be
increased if the observed TeV radiation from blazars is secondary, i.e., if it is formed in
the development of electron-photon cascades in the intergalactic medium initiated by
primary gamma rays [65]. This assumption can, indeed, help us to increase the effective
mean free path of VHE gamma rays, and thus weaken the absorption of gamma rays
from nearby blazars, such as Mkn 501 [65, 43]. However, for cosmologically distant
objects the effect is almost negligible because the ”enhanced“ mean free path of gamma
rays is still much smaller than the distance to the source.

A modification of this scenario can explain TeV signals from objects beyond z = 1

if one assumes that the primary particles initiating the intergalactic cascades are not
gamma rays, but protons with energies 1017 − 1019 eV [53, 51, 52, 83, 84, 85, 74, 105].
AGN are a likely source of very high energy cosmic rays [106, 60]. High-energy protons
can travel cosmological distances and can effectively generate secondary gamma rays
along their trajectories. Secondary gamma rays are produced in interactions of protons
with 2.7 K cosmic microwave background radiation (CMBR) and with EBL.

4.7 Rectilinear propagation and deflections

Secondary photons from proton induced cascades point back to the source if the proton
deflections are small [60]. Rectilinear propagation of protons is possible along a line
of sight which does not cross any galaxies, clusters of galaxies, because their magnetic
fields would cause a significant deflection. In addition, IGMFs can cause deflections in
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the voids, where the fields can be as low as 10−30 G [107, 108, 109, 110], but the analysis
of blazar spectra including cosmic rays and secondary photons points to a range from
0.01 to 30 femtogauss [85]. As long as IGMFs are smaller than a femtogauss, they do not
affect the point images of blazars. It remains to show that a typical line of sight does not
cross a galaxy, cluster, etc. The mean rectilinear propagation length for protons reaching
us from a distant source was discussed in Ref. [110]. Given homogeneity of the large-
scale structure at large redshifts, this distance can be estimated as the mean free path
of a proton in a volume filled with density n of uniformly distributed scatterers, each
of which has a size R [110]. A typical distance the proton passes without encountering
a scatterer is L ∼ 1/(πR2n). One can estimate this distance for galaxies, clusters, etc.,
and adopt a constraint based on the minimal distance Lmin. Sources at distances much
larger than Lmin should not be seen as point sources of secondary photons. It turns out
that the strongest limit comes from galaxy clusters [110]:

Lmin ∼ 1/(πR2n) ∼ (1− 5)× 103Mpc. (4.29)

This distance is large enough for a random source at z ≥ 1 to be seen with no obstruc-
tion by a cluster, or a galaxy [110]. Thus, the protons of relevant energies propagate
rectilinearly, assuming the IGMFs are small.

If IGMFs on cosmological distance scales are smaller than 10−15G, the protons propa-
gate almost rectilinearly, and they carry some significant energy into the last, most im-
portant for us segment of their trajectory determined by the condition l ≤ λγ,eff , where
λγ,eff is the effective mean free path of gamma rays. The secondary electron-positron
pairs produced with an average energy of (me/mp)Ep ∼ 1015eV initiate electromagnetic
electron-photon cascades supported by the inverse Compton (IC) scattering of electrons
on CMBR and photon-photon pair production of gamma rays interacting with EBL and
CMBR. As long as the magnetic field is as small as is required to avoid the smearing
of point sources, the cascade develops with an extremely high efficiency. Therefore, the
gamma-ray zone is determined by the condition that λγ,eff be larger (typically, by a
factor of 2 or 3) than the gamma-ray absorption mean free path λγγ shown in Fig.4.10.

Our analysis so far (and that of Berezinsky et al. [110]) left out the filaments between
the clusters. Their size, volume filling factor, and geometry are uncertain, and observa-
tions provide only the upper limits. Models can accommodate a variety of field strengths
in these filaments [23, 22, 21]. If nanogauss fields exist in large, numerous filaments, and
if the line of sight passes through one or more filaments, the signal strength is reduced,
as discussed in Ref. [83].
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Figure 4.10: The mean free paths of photons and protons as a function of energy and
the source redshift. The calculations are based on the formalism developed
in Ref. [62]. The gamma-ray absorption mean free path λγγ is shown for
the EBL model of Ref. [69].

4.8 Energy requirements

The efficiency of this scenario depends on the energy of primary protons and the size
of the gamma-ray transparency zone. It is approximately determined by the fraction of
the proton energy released in e+e− pairs inside the gamma-ray transparency zone, at
distances less than λγ,eff from the observer. Obviously, in the case of a broad energy
distribution of protons, the main contribution to the gamma-ray flux comes from some
energy range in which the proton mean free path is comparable to the distance to the
source: d = λpγ(E, z = 0). In the case of nearby objects with z ≪ 1, the corresponding
energy E∗ can be found from Fig. 4.10 as the point where the distance to the source
is equal the mean free path of protons at the present epoch, d = λpγ(E

∗, z = 0). The
contributions of protons with lower or higher energies would be significantly smaller. For
lower energies, the interaction probability is too small, while, for higher energies, the
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energy losses outside the gamma-ray transparency zone are too large. However, in the
case of cosmologically distant objects, such a simple argument does not work because
of very strong dependency of the proton’s mean free path on both the energy and the
redshift. It appears that, independent of the initial energy, only the low-energy protons
with E ∼ 1017 eV enter the gamma-ray transparency zone. This dramatically reduces
the efficiency of production and transport of VHE gamma rays to the observer. At the
same time, the efficiencies for gamma rays, the mean free paths of which are comparable
to the distance to the source, remain high. This is the case for GeV gamma rays from
cosmologically distant, z ≥ 1, objects and for VHE gamma rays from small-z objects.
This can be seen from Fig.4.11, where we show the spectral energy distribution (SED)
of gamma rays normalized to the initial energy of the proton. The curves are calculated
for two redshifts, z = 0.2 and z = 1.3, and for several different proton energies.
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Figure 4.11: The energy spectra of secondary gamma rays produced by protons of differ-
ent energies emitted from a source at z = 0.2 (left panel) and z = 1.3 (right
panel). The curves are normalized to the proton energy, hence, they show
the differential efficiency of the energy transfer from protons to gamma
rays. It is assumed that the intergalactic magnetic field B = 0.

In Fig. 4.12 we show the dependence of the efficiency of energy transfer on the redshift
of the source. It is determined by the character of evolution of radiation fields with z.
While the energy density of CMBR monotonically decreases with z, namely wCMBR ∝
(1+ z)4, the dependence of the density of EBL on z is more complex and uncertain. For
small redshifts, the density of EBL increases with z, but at redshifts corresponding to the
epochs before the maximum of the galaxy formation rate (z ∼ 2), the density of EBL is
contributed only by the first stars, therefore it drops at large redshifts. Correspondingly,
the probability of gamma rays to reach the observer has a nonlinear dependence on the
energy of protons and the source redshift. Depending on the energy of gamma rays,
the efficiency reaches its maximum at intermediate redshifts, z ∼ 0.1 − 0.3. We note
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Figure 4.12: The differential efficiency of the energy transfer from protons to gamma
rays as a function of the redshift of the cosmic-rays source for different
initial energies Ep of the monoenergetic proton beam.

that at z ∼ 0.1, the efficiency could be rather high (greater than 1%) even at 10 TeV.
Therefore, the contribution of this channel to the quiescent component of VHE radiation
from nearby blazars can be quite significant. At large redshifts, z ≥ 1, the efficiency
at TeV energies drops dramatically, and it does not exceed 10−5 at z = 1. Yet, even
with such a small efficiency, one can expect TeV gamma rays from sources with z ∼ 1,
provided that the parent protons leave the blazar in a narrow beam. In contrast, TeV
gamma rays emitted directly by the source at z ≥ 1 suffer severe absorption, thus only
a negligible fraction can survive and reach the observer.

Indeed, for gamma rays with energy in excess of several hundred GeV arriving from a
source at z = 1, the optical depth is very large, τγγ ∼ 10, for any realistic model of EBL.
VHE gamma rays cannot survive the severe intergalactic absorption (see Fig. 4.13). This
could be relevant for TeV gamma-ray emission from the blazar PKS 0447-439 [113], given
the large redshift of the source z ≥ 1.126, as claimed in Ref. [114]. However, recently two
independent groups [115, 116] challenged the interpretation of the redshift measurements
of Ref. [114]. Thus, the redshift of PKS 0447-439 remains uncertain.
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Figure 4.13: Spectra of secondary gamma rays produced by protons from a source at
z = 1.3, calculated using semianalytical and Monte Carlo techniques. All
theoretical curves are normalized to the observed flux around 1 TeV. The
Fermi LAT data are shown according to 1LAC catalog [111] (smaller error
bars), and according to Ref. [112] (large error bars). The data above 0.1 TeV
are from HESS [113]. The semianalytical calculations correspond to the
magnetic field B = 0 and protons injected with E−2

p type energy spectrum
in the energy interval Ep = 1017 − 1018 eV. Monte Carlo results for the
secondary spectrum from protons with a high energy cutoff of 1019 eV are
shown for IGMF B = 10−16 G and B = 10−15 G. The effect of significantly
enhanced magnetic field within D <∼ 100 Mpc of the observer is shown for
illustration of a possible suppression of the spectrum above 1 TeV. Also
shown is the spectrum from a pure-gamma (no cosmic rays) source with
injection spectrum E−2

γ , after intergalactic absorption for the EBL model
of Ref. [69].

4.9 Case study: a blazar at z = 1.3

Regardless of the observational status of PKS 0447-439 redshift, it is important to
understand whether secondary gamma rays can be detected from a source at a large
redshift. Therefore, we use PKS 0447-439 as a case study for this more general question,
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assuming it has a redshift z ≈ 1.3, as claimed in Ref. [114]. The analysis presented below
should be viewed as a methodological study whose goal is to demonstrate that the model
does allow TeV blazars at redshifts z ≥ 1 to be observed, and that neither a dramatic
revision of high-energy processes in blazars, nor new nonstandard interactions of gamma
rays are necessary.

Cosmic-ray protons with energies E ≤ 1018 eV do not lose a significant part of their
energy to interactions with the background photons, and, as long as the IGMFs are
very weak, the protons can provide an effective transport of the energy over a large
(cosmological) distance toward the observer. Cosmic ray interactions with CMBR and
EBL, via the Bethe-Heitler pair production pγ → pe+e− and the photomeson reactions
p+γb → p+π0, initiate electromagnetic cascades. The resulting secondary VHE gamma
rays are observed as arriving from a point source, provided that the broadening of both
the proton beam and the cascade electrons due to the deflections in IGMFs does not
exceed the point spread function of the detector. In the case of detection of VHE gamma
rays from PKS 0447-439 by the HESS telescope array [113], θp, θcas ≤ 3 arcmin. While
the broadening of the proton beam takes place over the entire path of protons from the
source to the observer (zone 1), the diffusion of electrons in the transparency zone (zone
2) is the most important factor for the broadening of the cascade emission. Therefore,
strictly speaking, one should distinguish between the magnetic fields in these two zones,
B1 and B2, respectively. The corresponding deflection angles are [17]

θp ≈ 0.05 arcmin

(
1018eV

Ep

)(
B1

10−15G

)(
L

Mpc

d

Gpc

)1/2

(4.30)

and
θcas ≈ 3.8 arcmin

(
1012eV

Eγ

)(
B2

10−15G

)
, (4.31)

where L is the coherence length, and d is luminosity distance. One can see that, for
comparable strengths of magnetic fields in two zones, the angular broadening is mainly
due to the electron deflections in the transparency zone. Remarkably, such a deflection
depends only on the magnetic field B2 and the gamma-ray energy Eγ. Thus, a detection
of an energy-dependent angular broadening of gamma-ray emission from blazars can
provide a direct measurements of IGMF in a given direction [44].

The deflections of protons and cascade electrons result in delays of the arrival times
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of the signal. In the two zones defined above,

∆τp ≈ 1.5 · 106 s
(

Ep

1018eV

)−2(
B

10−15G

)2

×

×
(

L

1Mpc

)(
d

1Gpc

)2

(4.32)

and

∆τγ ≈ 1.3 · 106s
(

Eγ

1012 eV

)−5/2(
B

10−15G

)2

. (4.33)

One can see that, for B1 ∼ B2 ∼ 10−15 G, any time structure in the initial signal
of 1018eV protons on time scales of the order of a month or shorter are smeared out.
Conversely, the interpretation of a variable VHE gamma-ray signal on time scales less
than 1 month, in the framework of this model, would require magnetic field in both
zones to be significantly weaker than 10−15 G. On the other hand, even for such small
magnetic fields, the gamma-ray signals at GeV energies should be stable on time scales
of tens of years.

Finally, a distinct feature of the proposed model is the spectral shape of gamma
radiation. For relatively nearby sources, z ≪ 1, the gamma-ray spectrum is flat, with
a modest maximum around 1011 eV. For cosmologically distant sources with z ≥ 1,
the spectrum is steep in the sub-TeV part of the spectrum (down to 10 GeV), with a
tendency of noticeable hardening above 1 TeV (see Fig. 4.11). Remarkably, the spectrum
effectively extends to 10 TeV and higher energies even for cosmologically distant objects.
However, a cutoff in the spectrum below a TeV energy cannot be excluded if the magnetic
field in the ≈ 100 Mpc vicinity of the observer significantly exceeds 10−15 G.

For a nearby source, the spectral shape of secondary photons is remarkably inde-
pendent of the details of the proton energy spectrum [51, 52], although the efficiency
decreases dramatically for the proton energy below 1018 eV. For cosmologically distant
sources, the shape of the gamma-ray spectrum does depend on the proton energy, espe-
cially at E ≤ 1018 eV. For a source at z ≥ 1, the proton energy is transferred to gamma
rays with a maximal efficiency if E ≈ 1018eV. Therefore, for an arbitrary spectrum of
cosmic rays, the main contribution to secondary gamma rays comes from a relatively
narrow energy interval of protons around 1018 eV. On the other hand, the gamma-ray
spectrum produced by these protons in extremely low IGMF (B ≤ 10−17 G) disagrees
with the broadband SED of gamma rays detected by Fermi LAT and HESS as shown
in Fig. 4.13. This suggests the presence of magnetic fields stronger than 10−17 G. In a
stronger magnetic field, deflections of the cascade electrons make the gamma-ray beam
at low energies broader. The deflected flux does not contribute to a point source, but
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rather to the diffuse extragalactic background radiation. Meanwhile, VHE gamma rays
may be confined in the initial narrow beam. This effect is demonstrated in Fig. 4.13
which is produced using the method described in Ref. [52]. For the IGMF B ≥ 10−17 G,
the GeV gamma-ray flux within an angle corresponding to the PSF of HESS, drops
by two orders of magnitude to the level detected by Fermi LAT. The impact on the
spectrum of VHE gamma rays is less pronounced, unless the magnetic field exceeds
10−14 G.

The results presented in Fig. 4.13 show that secondary gamma rays can describe
correctly the spectrum of PKS 0447-439, as long as IGMFs are in the range 10−17G <

B < 10−14G, assuming random fields with a correlation length of 1 Mpc. This range of
IGMF can be narrowed significantly in the future angular and temporal studies, leading
to a more precise measurement of the magnetic field strengths along the line of sight.
For example, detection of variability of VHE emission on timescales less than a few days
would imply the values of magnetic fields close to 10−17 G. It is also important to search
for an unavoidable (in the framework of this model) broadening of the angular extent
of gamma-ray signals from cosmologically distant blazars. The choice of the gamma-ray
energy for such studies depends on the magnetic field. The detection of such an effect
would be another strong argument in favor of the proposed scenario, and it would allow
an accurate measurements of IGMFs in different directions.

4.10 Discussion

One can see from Fig. 4.13 that the energy spectrum of gamma rays is quite stable
from several hundred GeV to 10 TeV and beyond. Although the current statistics of
the results reported by HESS does not allow robust conclusions regarding the energy
spectrum above 1 TeV, the detection of multi-TeV gamma rays from PKS 0447-439 as
well as from other cosmologically distant blazars would not be a surprise, but rather a
natural consequence of the proposed scenario. However, we note that, if the magnetic
field is enhanced in the transparency zone, i.e. in the vicinity of the observer, it could
cause a strong suppression of the gamma-ray flux above some energy which can be found
from the condition λγγ(E) = D. The impact of this effect on the gamma-ray spectrum
detected by an observer strongly depends on the linear scale of the enhanced magnetic
field, D, but not much on the magnetic field itself (as long as the latter is significantly
larger than 10−15G). For example, for D ∼ 300 Mpc, the steepening of the gamma-
ray spectrum starts effectively around 1 TeV. This effect is illustrated qualitatively in
Fig. 4.13.

The isotropic luminosity of the source in protons required to explain the data [113],
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is in the range (1 − 3) × 1050 erg/s, depending on the spectrum of protons. This is an
enormous, but not an unreasonable power, given that the actual (intrinsic) luminosity
can be smaller by several orders of magnitude if the protons are emitted in a small
angle. In particular, for Θ = 3◦, the intrinsic luminosity is comparable to the Eddington
luminosity of a black hole with a mass M ∼ 109M⊙. Assuming that only a fraction
of the blazar jet energy is transferred to high-energy particles, the jet must operate at
a super-Eddington luminosity. While it may seem extreme, this suggestion does not
contradict the basic principles of accretion, provided that most of the accretion energy
is converted to the kinetic energy of an outflow/jet, rather than to thermal radiation of
the accretion flow. Moreover, there is growing evidence of super-Eddington luminosities
characterizing relativistic outflows in GRBs and in very powerful blazars [117].

Finally, we note that the protons emitted by cosmologically distant objects are poten-
tial contributors to the diffuse gamma-ray background. The total energy deposited into
the cascades through secondary Bethe-Heitler pair production does not depend on the
orientation of the jet or the beaming angle, but only on the injection power of ≥ 1018eV
protons and on the number of such objects in the universe. Generally, the total energy
flux of gamma rays is fairly independent of the strength of the intergalactic magnetic
fields, except for the highest energy part of the gamma-ray spectrum. If the contribution
of these sources to the diffuse gamma-ray background is dominated by cosmologically
distant objects, then the development of the proton-induced electron-photon cascades
is saturated at large redshifts. One should, therefore, expect a rather steep (strongly
attenuated) spectrum of diffuse gamma rays above 100 GeV. However, in the case of
very small intergalactic magnetic fields, the 1018eV protons can bring significant amount
of nonthermal energy to the nearby universe, and thus enhance the diffuse background
by TeV photons. Perhaps, this can explain the unexpected excess of VHE photons in
the spectrum of the diffuse gamma-ray background as revealed recently by the Fermi
LAT data [118].

4.11 Summary

Blazars are expected to produce both gamma rays and cosmic rays. Therefore, observed
high-energy gamma rays from distant blazars may contain a significant contribution
from secondary gamma rays produced along the line of sight by the interactions of
cosmic-ray protons with background photons. Secondary photons contribute to signals
of point sources only if the intergalactic magnetic fields are very small, B . 10−14 G,
and their detection can be used to set upper bounds on magnetic fields along the line of
sight. Secondary gamma rays have distinct spectral and temporal features. The tempo-

96



4 The case of weak intergalactic magnetic fields

ral properties of such signals using a semi-analytical formalism and detailed numerical
simulations, which account for all the relevant processes, including magnetic deflections
have been explored. In particular, the interplay of time delays coming from the proton
deflections and from the electromagnetic cascade is clarified, and it is found that, at
multi-TeV energies, secondary gamma rays can show variability on timescales of years
for B ∼ 10−15 G.

Moreover, it has been shown that TeV gamma rays can be observed even from a source
at z ≥ 1, if the observed gamma rays are secondary photons produced in interactions of
high-energy protons originating from the blazar jet and propagating over cosmological
distances almost rectilinearly. For TeV gamma-ray radiation detected from a blazar
with z ≥ 1, this model would provide the only viable interpretation consistent with
conventional physics. It would also have far-reaching astronomical and cosmological
ramifications. In particular, this interpretation would imply that extragalactic magnetic
fields along the line of sight are very weak, in the range 10−17G < B < 10−14G, assuming
random fields with a correlation length of 1 Mpc, and that acceleration of E ≥ 1017 eV
protons in the jets of active galactic nuclei can be very effective.

Appendix: Distribution function in the expanding

space

In this section the evolution of the distribution function of the ultrarelativistic particles
propagating in the expanding Universe is described. The formalism is used for calcula-
tion of the distribution functions of the protons propagating cosmological distances and
suffering from the energy losses.

Let us consider the collisionless Boltzmann equation(
∂

∂t
+

∂H
∂p

∂

∂r
− ∂H

∂r

∂

∂p

)
f(t, r,p) = 0. (4.34)

For further usage it is convenient to rewrite this equation in terms of the distribution
function over energy E and direction n = p/p

dN = F (t, r,n, E)
dΩ

4π
dE d3r (4.35)

instead of the distribution function f(t, r,p) over the the generalized momentum p

dN = f(t, r,p)d3p d3r. (4.36)

97



4 The case of weak intergalactic magnetic fields

Taking into account that
d3p d3r = d3P dV, (4.37)

where dV is the element of physical volume, and P is the usual momentum registered
by observer, the relation between both distribution functions is

f(t, r,p) =
F (t, r,n, E)

4πPE
. (4.38)

We consider ultrarelativistic particles freely propagating in the flat space. In this case
the Hamiltonian H (or the energy) is expressed in terms of generalized momentum as

H =
p

a
. (4.39)

The expression p = a(t)E results in the following change of variables in the Boltzmann
equation: (

∂f

∂t

)
p

=

(
∂f

∂t

)
E

− ȧ

a
E

(
∂f

∂E

)
t

. (4.40)

Taking this expression into consideration, and substituting Eqs. (4.38) and (4.39) into
the Boltzmann equation (4.34) we obtain

∂F

dt
− ∂

∂E
[(HE)F ] + 3HF +

1

a
n
∂F

∂r
= 0, (4.41)

where H = ȧ/a is the Hubble constant. The second term in the left side of the equation
describes adiabatic losses due to expansion of the space. We can generalise the equation
for the case of the arbitrary energy losses b(t, E) which includes the adiabatic losses,
and the arbitrary source function S(t, r,n, E)

∂F

dt
− ∂

∂E
[b(t, E)F ] + 3HF +

1

a
n
∂F

∂r
= S(t, r,n, E). (4.42)

To solve this equation we use the method of Green function. Then the source is presented
by the instant injection of the particles at the point r0 in the moment t0 with the energy
E0 in the direction n0

Sδ(t, r,n, E) = δ(t− t0)δ(r − r0)δ(E − E0)δ(n− n0), (4.43)

where δ is the Dirac delta function. From the physical consideration the particles prop-
agating without deflection with the speed of light and losing energy in the expand-
ing universe should pass the comoving distance dr = n0dt/a(t) and have the energy
E = E(t, E0, t0). Also taking into account the change of density due to expansion we
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seek the Green function G in the form

G(t, r,n, E, t0, r0,n0, E0) = exp

−3

t∫
t0

H(t′) dt′

 δ(E − E(t, E0, t0)) (4.44)

×δ

r − r0 − n0

t∫
t0

dt′

a(t′)

 δ(n− n0)θ(t− t0).

Substituting this expression into the Boltzmann equation for the Green function

∂G

dt
− ∂

∂E
[b(t, E)G] + 3HG+

1

a
n
∂G

∂r
= Sδ(t, r,n, E) (4.45)

we obtain the differential equation for the function E

dE
dt

+ b(t, E) = 0 (4.46)

with the initial condition
E0 = E(t0, E0, t0). (4.47)

The first term in the right side of Eq. (4.44) can be rewritten as

exp

−3

t∫
t0

H(t′) dt′

 =

(
a(t0)

a(t)

)3

. (4.48)

Then the solution of Boltzmann equation (4.42) is

F (t, r,n, E) =

t∫
0

dt0

(
a(t0)

a(t)

)3 ∫
dE0 δ(E − E(t, E0, t0)) (4.49)

×S

t0, r − n

t∫
t0

dt′

a(t′)
,n, E0

 . (4.50)

Eq. (4.49) with Eqs. (4.46) and (4.47) gives the distribution function of the particles
propagating in the expanding space with the energy losses b(t, E) which include adiabatic
losses due to expansion and the arbitrary source function S(t, r,n, E).

Let us consider the case of the continuous in time point-like source which starts its
activity at the moment ts and radiates isotropically ultrarelativistic particles with the
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energetic spectrum J(E)

S(t, r,n, E) =
J(E)

4πa3(t)
δ(r)θ(t− ts) (4.51)

The term a3(t) appears because the delta function depends on comoving coordinate
whereas the source function is determined over usual (not comoving) volume. Substi-
tuting the source function (4.51) into the solution (4.49) and using the properties of
delta function we come to the expression of the distribution function

F (t, r,n, E) =
a(t∗)

a(t)

J(E∗)

4πR2

(∣∣∣∣dE(t, E0, t∗)

dE0

∣∣∣∣
E0=E∗

)−1

δ(n− nr), (4.52)

where R = a(t)r, t∗ is determined from the equation

r =

t∫
t∗

dt′

a(t′)
(4.53)

and E∗ is determined from the equation

E = E(t, E∗, t∗). (4.54)

To find E∗ it is convenient to solve Eq.(4.46) inversely over time from t to t∗.In the
function E(t′, E, t) only the first argument t′ changes, the second and the third one are
initial conditions. Then we should solve the equation

dE(t′, E, t)

dt′
+ b(t′, E(t′, E, t)) = 0 (4.55)

with the initial condition
E(t, E, t) = E. (4.56)

Notice that E ′(E0) = E(t, E0, t∗) and E0(E
′) = E(t∗, E ′, t). Therefore(

dE(t, E0, t∗)

dE0

)−1

=
dE(t∗, E ′, t)

dE ′ . (4.57)

We can determine the derivative of E over energy as a new function

Ψ(t′, E ′, t) =
∂E(t′, E ′, t)

∂E ′ . (4.58)

This function obeys the equation obtained from the differentiation of the Eq. (4.55) over
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variable E
dΨ(t′, E, t)

dt′
+ b′(t′, E(t′, E, t))Ψ(t′, E, t) = 0 (4.59)

with the initial condition
Ψ(t, E, t) = 1. (4.60)

Here we introduce the notation b′(t, E) = db(t, E)/dE. Finally the distribution function
can be written in the form

F (t, r, E) =
a(t∗)

a(t)

J(E∗)

4πR2
Ψ(t∗, E, t), (4.61)

where E∗ = E(t∗, E, t) and Ψ(t∗, E, t) are found from differential Eqs. (4.55), (4.59) with
initial conditions Eqs. (4.56), (4.60), respectively.

It is useful for calculations to write the solution (4.61) in the terms of redshift. The
standard model gives the following relation between time and redshift

dt

dz
= − 1

H0(1 + z)
√
Ωm(1 + z)3 + ΩΛ

, (4.62)

where z is the redshift, Ωm = 0.27 is the matter density, ΩΛ = 0.73 is the dark energy
density, H0 = 71 km/s/Mpc is the Hubble constant. With the introduction of the
function

H(z) = H0

√
Ωm(1 + z)3 + ΩΛ (4.63)

we can rewrite Eqs. (4.55), (4.59) in the following system of the differential equations:

dE(z, E, zo)

dz
=

1

1 + z

(
E(z, E, zo) +

b(z, E(z, E, zo))

H(z)

)
, (4.64)

dΨ(z, E, zo)

dz
=

Ψ(z, E, zo)

1 + z

(
1 +

b′(z, E(z, E, zo))

H(z)

)
(4.65)

with the initial conditions
E(zo, E, zo) = E, (4.66)

Ψ(zo, E, zo) = 1. (4.67)

Here, unlike the previous notations, the adiabatic energy losses due to the expansion of
the Universe are written separately and described by the first term on the right side.
The function b(z, E) describes the energy losses due to other processes. This system is
integrated from the redshift of the observer zo to the redshift of the emission ze. Having
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found the solution of the system at the emission point ze we can write the distribution
function in the form:

F (zo, ze, E) =
(1 + zo)

3

1 + ze

J(E(ze, E, zo))

4πr2
Ψ(ze, E, zo), (4.68)

where the comoving distance r is

r = c

ze∫
zo

dz

H(z)
, (4.69)

and c is the speed of light.
For the case of the free propagation of the photons the solution is found analytically:

F (zo, ze, E) = (1 + zo)
2
J
(
E 1+ze

1+zo

)
4πr2

. (4.70)

If the observer is located at zo = 0 and ze = z we obtain

F (z, E) =
J (E(1 + z))

4πr2
. (4.71)
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5 Synchrocurvature radiation in a
strong magnetic field

5.1 Introduction

The efficiency of synchrotron radiation depends on the pitch angle between the magnetic
field and the particle velocity. The damping of the perpendicular motion in course of
radiation reduces the pitch angle. Typically, in moderate magnetic fields the pitch angle
changes slowly. Therefore, for calculations of synchrotron radiation, it is sufficient to
specify the initial pitch angle distribution of particles.

The situation is different in strong magnetic fields, namely when the energy losses
become so intensive that on fairly short timescales the pitch angle can be reduced by
orders of magnitude. In this regard, the adequate theoretical treatment of particle tra-
jectories becomes a key issue for correct calculations of radiation properties. In a curved
magnetic field the strong damping of the perpendicular motion causes transition from
synchrotron to the curvature radiation regime of radiation. The solutions of equations
that describe the particle motion with an inclusion of energy losses, allow us to trace
this transition, and thus to calculate the magnetic bremsstrahlung without additional
assumptions regarding the radiation regime.

In this chapter, we study the case of motion of a charged particle in the dipole mag-
netic field, and calculate self-consistently the radiation spectrum taking into account
the time-evolution of particle’s energy, coordinates, and direction. We demonstrate that
even a small deviation of particle’s initial direction from the magnetic field line may
have a strong impact on the character of radiation. Despite the fast transition to the
final (curvature) regime, the particle radiates away the major fraction of its energy in
the initial (synchrotron) or transitional (synchro-curvature) regimes. Consequently, the
energy spectrum of radiation may differ considerably from the spectrum of curvature
radiation.
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5.2 General comments

In a strong magnetic field, the motion of a charged particle perpendicular to the field is
damped. The amount of energy lost during this process depends on the initial energy
and the pitch angle. In the case of relativistic motion along and perpendicular to the
magnetic field, p∥ ≫ mc and p⊥ ≫ mc, particles can lose a large fraction of their
energy even if the initial pitch angle is small. Indeed, after the complete damping of
the perpendicular component of motion in a homogeneous magnetic field, the parallel
momentum becomes [119]

p′∥ = p∥
mc√

p2⊥ +m2c2
. (5.1)

Then for small initial pitch angles α ≪ 1 and for the relativistic motion perpendicular
to the magnetic field, we obtain that the final Lorenz factor depends only on the initial
pitch angle:

γ′ ≈ 1

α
. (5.2)

It is convenient to rewrite this expression in the following form:

γ′ ≈ γ

γ⊥
, (5.3)

where γ⊥ = γ sinα is referred hereafter as perpendicular Lorenz factor. We see that at
an ultrarelativistic motion of particle, even a tiny deflection α = γ⊥/γ from the magnetic
field line can cause large energy losses ∆E = E (1− 1/γ⊥) ≈ E.

The damping rate depends on the strength of the magnetic field. The super-strong
magnetic fields surrounding of compact astrophysical objects, such as pulsars and black
holes, cause very fast damping of the perpendicular component of motion, and in this
way force the particle to move along magnetic field lines. However, since the magnetic
field lines are curved, the change of the field direction results in an appearance of the
perpendicular velocity. The curvature of magnetic field lines and the presence of the
perpendicular velocity lead to the curvature drift (an averaged motion perpendicular to
the magnetic field due to non-compensated differences in the trajectory of the periodic
motion arising from changes of the magnetic field direction). Thus, after losing most
its perpendicular motion in a curved magnetic field, the particle moves along the drift
trajectory gyrating around it.

The radiation spectrum is determined by the curvature of particle’s trajectory which
is a superposition of the drift and the gyration around it. As long as the real trajectory
is close to the magnetic field lines, for calculations of radiation spectra one can use the
curvature of the magnetic field lines instead of the trajectory curvature. The difference
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between the magnetic field curvature and the drift trajectory curvature can be neglected
until the curvature drift velocity is small. In case of the magnetic field of a long straight
wire, the curvature of the drift trajectory is

KD =
1

r0(1 + β2
D)

≈ 1− β2
D

r0
, (5.4)

where r0 is the curvature radius of the magnetic field, βD is the drift velocity in the
units of the speed of light expressed as [120]

βD =
vD
c

=
c

Ωr0
=

mc2γ

eBr0
, (5.5)

where Ω = eB/mcγ is the gyration frequency, and B is the strength of the magnetic
field. The gyration itself introduces a much larger difference if the velocity perpendicular
to the drift trajectory β⊥ is of the order of the drift velocity [119]

K =
1

r0

√
1− 2

β⊥

βD

cos τ +
β2
⊥

β2
D

. (5.6)

Note that the particle in the magnetic field of a long straight wire can move strictly
along the drift trajectory without gyration (β⊥ = 0) and therefore with minimum pos-
sible energy losses. Because of the possibility of such motion, and treating the motion
with gyration as a perturbation, [119] has called the drift trajectory as a “smooth tra-
jectory”. Having the potential minimum on the drift trajectory, the particle with any
initial pitch angle due to energy losses will asymptotically reach the motion strictly
along the drift trajectory. In the case of an arbitrary magnetic field, when the curvature
is variable, it is not possible to make a definite statement, except that the particle tries
to reach the potential minimum according to the local values of the magnetic field. If
the curvature changes slowly, the particle motion could become very close to the drift
trajectory (β⊥ ≈ 0), but, because of gyration, never strictly approaches it (β⊥ = 0) as
in the case of magnetic field of an infinitely long straight wire.

The energy loss rate and the radiation spectrum behave differently from the case of the
curvature radiation when the velocity component perpendicular to the drift trajectory
β⊥ is comparable or larger than the drift velocity βD. Because of gyration, the radiation
is expected to be different from the pure curvature radiation, even when initially the
particle moves strictly along the magnetic field line (β⊥ = βD). The nominal curvature
radiation is generally treated as the same synchrotron radiation [121] with a spectral
maximum at the characteristic frequency ω∗ corresponding to the curvature radius of
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the magnetic field line instead of the curvature radius of the real trajectory. The sub-
stitution of the real trajectory curvature affects the radiation spectrum, namely shifts
the maximum to ≈ (1 + β⊥/βD)ω∗. Thus, the difference from the curvature radiation
becomes significant when β⊥/βD ≫ 1. If the pitch angle is much larger than the angle
between the magnetic field line and the drift trajectory, one can neglect it and con-
sider β⊥ as the velocity perpendicular to magnetic field line (although β⊥ is the velocity
perpendicular to the drift trajectory). It implies the dominance of the ratio β⊥/βD in
the expression 1 + β⊥/βD, i.e. the radiation deviates significantly from the curvature
radiation when the velocity perpendicular to the magnetic field is greater than the drift
velocity.

It is interesting to study the possibility of pitch angles greater than βD. This question
is specific and its answer depends on the acceleration mechanism, but here we would like
to discuss very general points. The pitch angle of the particle accelerated by the electric
field in the presence of magnetic field depends on the relation between strengths of the
fields and the angle between them. It is worth to mention the result of acceleration in
the crossed homogeneous fields. In this case one can find the reference frame where the
fields are parallel. The particle in this reference frame is infinitely accelerated along the
parallel fields and lose the perpendicular component of the motion. Taking the motion
along the field and transforming the velocity back to the laboratory reference frame, the
pitch angle can be expressed as

sinα =
ρ sin θ√

1
2

(√
(1 + ρ2)2 − 4ρ2 sin2 θ + (1 + ρ2)

) , (5.7)

where ρ = E/B is the ratio of the electric and magnetic fields, and θ is the angle between
them. Assuming that typically the electric field is smaller than magnetic field, we obtain

sinα ≈ ρ sin θ (5.8)

which states that the pitch angle equals the drift velocity due to electric drift (in the
units of the speed of light).

In a more general case, a drift due to the electric field should appear as well. Then we
arrive at a quite general conclusion that the radiation of the accelerated particle could
be considerably different from the curvature radiation if the electrical drift exceeds the
curvature drift

ρ sin θ ≫ βD. (5.9)

The so-called outer gap model of pulsars gives an example of existence of a perpen-
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dicular component of the electric field. In the acceleration gaps, the electric field could
not be parallel to the magnetic field everywhere, in particular close to the border of the
gap the perpendicular component of the electric field is increased [122]. In these regions
the radiation can be different from the curvature radiation.

5.3 Local trajectory

The accurate calculation of the radiation spectrum requires detailed knowledge of the
trajectory of charged particle. The latter obtained in the drift approximation is not
suitable for this purpose since the fast gyrations are erased in the course of averaging.
Fortunately, under the assumption that the gyroradius is small, it is possible to obtain
a local solution which takes into account fast gyrations for the motion in an arbitrary
curved magnetic field [123]. This approach is equivalent to the consideration of parti-
cle motion in the magnetic field which is constant along binormal and has a constant
curvature and zero torsion. The magnetic lines of this field present circles with centres
lying on a straight line. The magnetic field of this structure is created by the current of
an infinitely long straight wire. It allows us to consider the solution obtained in [119]
for such field as a local one. This consideration is also possible because a small part of
the curved magnetic field line can always be approximated by the arc of a circle with
the radius equal to the curvature radius of the line.

We consider the particle motion in the local coordinate system:

r = sh+ xn+ yk, (5.10)

where h = B/B is the unit vector in the direction of the magnetic field, k = h × n is
the binormal vector, n = r0(h∇)h is the normal vector with r0 as the curvature radius.
Then, in accordance with [119], the local velocity can be written as

v = vsh+ vxn+ vyk, (5.11)

where

vs = cβ∥

(
1 +

β⊥βD

β2
∥

cos τ

)
,

vx = cβ⊥ sin τ, vy = cβD − cβ⊥ cos τ.

(5.12)

Here β∥ is the component of the velocity along magnetic field line, β⊥ is the component
of the velocity perpendicular to the drift trajectory, βD is the drift velocity defined in
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Eq. (5.5) (all velocities are in units of c), τ = Ω t is the time in the units of the gyration
period 1/Ω.

The expressions in Eq. (5.12) describe the motion along the magnetic field line with
gyration around it and the drift in the direction of the binormal to the magnetic field line.
The solution formally includes also the case of strict motion along the drift trajectory
without gyration (β⊥ = 0). Such a situation can occur only locally. Since the curvature
of the magnetic field lines changes, the gyration does not disappear completely although
it could be very small compared to the drift. Eq. (5.12) is correct if the radius of gyration
is much smaller than the curvature radius. This is equivalent to the conditions β⊥ ≪ β∥

and βD ≪ β∥. Moreover, it allows us to neglect the drift gradient which, otherwise,
would lead (in the case of the vacuum magnetic field ∇×B = 0) to the drift velocity

vD =
v2∥ +

v2⊥
2

r0Ω
. (5.13)

The expression for the acceleration in the magnetic field

a =
e

mcγ
(v ×B), (5.14)

and Eq. (5.12) allow us to find the absolute value of the acceleration

a = a0
√

1− 2η cos τ + η2, (5.15)

where a0 = c2β2
∥/r0 is the acceleration due to curvature of the magnetic field, η = β⊥/βD

is the ratio between the velocity perpendicular to the drift trajectory and the drift
velocity. It is convenient to introduce, as suggested in [119], a parameter which shows the
difference between the total acceleration and the acceleration induced by the magnetic
field curvature

q(η, τ) =
a

a0
=
√
1− 2η cos τ + η2. (5.16)

Because of the simple relation between the acceleration and the curvature radius of the
trajectory in the ultrarelativistic case a = c2/Rc, the q-parameter indicates also the
difference between the trajectory curvature and the curvature of the magnetic field lines
(compare with Eq. (5.6))

Rc =
r0
q
. (5.17)

As discussed in Sec. 2, we will neglect the difference between the curvature of the drift
trajectory and the curvature of the magnetic field line.

The solution given by Eq. (5.12) can be applied locally if the parameters of the motion
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such as the energy of the particle, the curvature and the strength of the magnetic field
are changed slowly. In this case, the parameters of the solution Ω, β⊥ and βD change
slowly as well. The q-parameter varies in the limits |1 − η| 6 q 6 1 + η. If η 6 1,
then q appears within the band of width 2η around q = 1. If η > 1, then q varies in
the band of width 2 around q = η. So over the period of gyration, q could not change
greater than 2. Naturally, if the parameters of the motion change considerably over the
gyration period, the behaviour of q-parameter would be different.

5.4 Radiation spectrum

The spectral power density of the synchrotron radiation is defined by the instantaneous
curvature radius of the particle trajectory [124]. For the curvature radius given by
Eq. (5.17) the spectral power density of radiation of the particle moving in the curved
magnetic field can be written in the form

P (ω, t) =

√
3e2

2π

γ

r0
G

(
ω

ω∗

)
, (5.18)

where
G

(
ω

ω∗

)
= qF

(
ω

ω∗q

)
. (5.19)

Here ω∗ = 3cγ3/(2r0) is the characteristic frequency of the curvature radiation and

F (x) = x

∫ ∞

x

K5/3(u)du (5.20)

is the emissivity function of synchrotron radiation. The q-parameter defined as the
ratio between the total acceleration and the acceleration induced by the curvature of
the magnetic field, can be expressed as

q =
a

a0
=

evB sinα

mcγ
/
v2∥
r0

≈ sinα

βD

, (5.21)

where α is the pitch angle, v is the particle velocity, v∥ is the velocity along the magnetic
field. If the energy and the magnetic field are changed slowly, the local representation
given by Eq. (5.16) can be used. Then the spectrum averaged over the period of the
gyration is determined by the function⟨

G

(
ω

ω∗

)⟩
=

1

π

∫ π

0

q(η, τ)F

(
ω

ω∗q(η, τ)

)
dτ. (5.22)
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In all cases under consideration the form of the spectrum is defined by the same function
F (x). The relevant parameters change only the position of the maximum and the
intensity. However, the function F (x) should be changed to its quantum analogue (see
Eq. 5.39) if the parameter χ = Bγ sinα/Bcr is of the order of unity and higher, where
Bcr = 2m2c3/3e~ ≈ 2.94 · 1013 G [125]. Note that at such conditions, the energy of the
produced photon is close to the energy of the radiating electron. The electron-positron
pair production by a gamma-ray photon in the strong magnetic field occurs when the
parameter χ & 1, where γ is the photon energy in the units of the electron rest mass,
and α is the angle between the photon and magnetic field. In the curved magnetic
field the angle between photon and magnetic field could become sufficiently large for
production of electron-positron pairs. This could lead, provided that the optical depth
is large, to development of electromagnetic cascade and formation of radiation which is
considerably different from the initial one.

The substitution of the q-parameter in the general form of Eq. (5.21) to Eq. (5.19)
results in the standard spectral power density of the synchrotron radiation. Thus the q-
parameter expresses the difference between the conventional curvature radiation (when
the curvature of the trajectory is accepted to be equal to the curvature of the magnetic
field line) and the actual radiation which is the small pitch angle synchrotron radiation.
One can see that there is no well-defined boundary between the curvature and the syn-
chrotron radiation. It seems natural to define the magnetic bremsstrahlung as curvature
radiation when the main contribution is introduced by the curvature of the magnetic
field line. This case corresponds to η ≪ 1; see Eqs. (5.6) and (5.16). Then the syn-
chrotron radiation occurs when the curvature of the trajectory induced by the strength
of the magnetic field provides the main contribution to the radiation. This corresponds
to q ≈ η ≫ 1. Finally, at η ∼ 1 both the strength and the curvature of the magnetic field
play equal role in production of emission which we will call synchro-curvature radiation.

The limits of applicability of Eq. (5.18) defining the energy spectra of the synchrotron
and the curvature radiation originate from the approach of its derivation proposed by
Swinger ([124]). The radiation of the ultrarelativistic particle is concentrated in a narrow
cone with the opening angle ∼ 1/γ and is therefore collected while the angle between
the velocity and the direction of the observation is of the order of the same of ∼ 1/γ.
The Swinger method is based on expansion of the trajectory in the small time interval.
During this time interval, the entire observable radiation should be collected. It means
that the approach works if the particle velocity changes the direction at an angle larger
than 1/γ while the expansion is valid. The analysis of the local trajectory given by
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Eq. (5.12) in the curved magnetic field gives the following limits of applicability:

β⊥ ≫ 1

γ
, if β⊥ & βD,√

β3
D

β3
D + β⊥

≫ 1

γ
, if β⊥ . βD.

(5.23)

The first condition corresponds to the case of synchrotron radiation and states that the
perpendicular motion should be relativistic as it is expected from the consideration of
radiation in the homogeneous magnetic field. The second condition corresponds to the
situation for the curvature radiation of a particle with a small perpendicular momentum.
Small gyrations almost do not influence on the applicability of Eq. (5.18) and in the limit
β⊥ = 0 the condition simply states that the motion should be relativistic.

5.5 Numerical implementation

The analytical approach described above allows us to study the local properties of the
particle trajectory and the radiation in the curved magnetic field. To solve the problem
in the general case, taking into account the energy losses of particles, we performed
numerical integration of the equations of motion. The radiation properties have been
studied in the dipole magnetic field which seems to be a quite good approximation for
the strong magnetic fields in compact astrophysical objects. The dipole magnetic field
has two distinct features to be taken into account. The first one is the fast decrease of
the strength with the distance ∼ 1/r3 with a strong impact on the radiation intensity.
The second one is the significant variation of the curvature with a change of the polar
angle θ from the dipole axis ∝ sin θ/r, so the radiation spectra in the vicinity of the
pole and the equator should be different.

For numerical calculations we use the equations of motion in the ultrarelativistic limit.
In this case the radiation reaction force is opposite to the velocity which changes only
its direction. The equation of motion can be written in the form

mc
d

dt
(γβ) = e(β ×B)− |f |β, (5.24)

where β is the velocity in units of c with |β| ≈ 1, B is the magnetic field, and f is the
radiation reaction force [121]. Taking the scalar product of Eq. (5.24) with velocity β we
obtain the differential equation for the energy losses. This equation allows cancellation
of the radiation reaction force with the Lorenz factor time derivative in Eq. (5.24).
Finally, the equation of motion has the same form as for the consideration without
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energy losses, where the energy enters as a parameter. For the sake of convenience of
the numerical treatment and comprehension of the structure of the system of equations,
these equations are written in the dimensionless form:

dr′

dτ
= u1β , (5.25)

dβ

dτ
= ξ(β × b) , (5.26)

dξ

dτ
= u2(β × b)2 . (5.27)

The system of equations depends on two dimensionless parameters

u1 =
mc2γ0
eB0R0

and u2 =
2

3

e3B0

m2c4
γ2
0 , (5.28)

where γ0 is the initial Lorenz factor, R0 is the characteristic distance to the radiating
region from the dipole, B0 = B∗ (R∗/R0)

3 is the characteristic magnetic field with R∗

and B∗ being the source radius and the magnetic field at the pole of the dipole, m is a
particle mass, c is the speed of light. Here we have introduced the following dimensionless
variables: r′ is the coordinate in the character units of length R0, β is the velocity of
the particle in the units of c, ξ = γ0/γ is the ratio of the initial and current value of
the Lorenz factor, τ = t eB0/mcγ0 is the characteristic time in the units of the initial
gyration period, b is the dimensionless dipole magnetic field which is expressed as

b =
3n(nµ)− µ

2r′3
, (5.29)

where µ is the unit vector in the direction of the dipole axes, n = r′/r′ is the unit vector
to the particle position.

It should be noted that depending on the specific conditions characterizing an as-
trophysical source, the parameters u1 and u2 may differ by many orders of magnitude.
For instance, for typical parameters of the so-called polar cap model of pulsar mag-
netosphere B0 = 1012 G, R0 = 106 cm, and γ0 = 108, we have u1 ≈ 1.7 · 10−7 and
u2 ≈ 1.1 · 1012. Thus the problem is non-stiff, therefore for integration of this system of
differential equations the implicit Rosenbrock method has been used.

The calculations of the trajectory have been carried out for different initial conditions.
The initial position determined by the radius R0 and the polar angle θ0 relative to the
magnetic dipole axis defines the typical environment parameters for the models under
consideration. The radiation spectrum has been studied for different initial pitch angles
α0 and initial Lorenz factors γ0. The detailed knowledge of the trajectory and the
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energy allows us to find q-parameter from Eq.(5.21) and the radiation spectrum given
by Eq. (5.18) at any moment of time. The spectra integrated over the time, the so called
cumulative spectrum, have been obtained for any initial condition under consideration.

Finally, in the case of a very strong magnetic field and/or very large Lorenz factor,
the particle may radiate in the quantum regime. More specifically, when the parameter
χ = Bγ sinα/Bcr becomes of the order of unity or larger, Eq. (5.27) should be replaced
by its quantum analogue (see Appendix)

dξ

dτ
=

u2(β × b)2

(1 + u3((β × b)/ξ)2/3)
2 , (5.30)

where u3 = 1.07 · 10−9(B0γ0)
2/3 and Bcr = 2m2c3/3e~ ≈ 2.94 · 1013 G.

5.6 Astrophysical implications

In this section we explore possible realizations of the synchrotron and curvature regimes,
as well as transitions between these two modes of radiation (the synchro-curvature
regime) in the context of three specific astrophysical scenarios. Namely below we discuss
the radiation of electrons and positrons in the pulsar magnetosphere for the outer gap
and polar cap models, and the radiation of protons at their acceleration in the vicinity
of a supermassive black hole.

5.6.1 Outer Gap

The high energy gamma radiation from pulsars is widely believed to be produced in the
outer gap of the pulsar magnetosphere [122, 126, 127]. Here we present the results of
our calculations of radiation of electrons (positrons) in the dipole magnetic field at the
location of the outer gap. The position of the outer gap was assumed along the last open
field line which is is determined by the inner boundary located at the null surface where
the Goldreich-Julian charge density is zero, and by the outer boundary taken on the
surface of the light cylinder. We adopt the parameters of the Crab pulsar: the radius
of the star R∗ = 106 cm, the rotation period P = 33.5 ms, and the magnetic field at
the pole B∗ = 1012 G. We consider non-aligned pulsar with an angle of π/4 between the
rotational axis and the magnetic dipole axis. The particle initial position is set at the
distance rinit = 0.5Rlc from the null surface along the last open field line, where Rlc is the
radius of the light cylinder. During the numerical calculations, the particle is followed
up to the intersection with the light cylinder. For the Crab parameters these conditions
correspond to θ0 = 51.5◦, R0 = 1.2 · 108 cm, B0 = 5.6 · 105 G, and Rlc = 1.6 · 108 cm,
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where θ0 is the polar angle relative to the magnetic dipole axis.
The spectra and the radiation regimes have been studied for different initial directions

and Lorenz factors of electrons. The resulting spectra are shown in Fig. 5.1. The
complementary plots in Figs. 5.2, 5.3, and 5.4 demonstrate the time-evolution of the
value of q-parameter (blue lines, right scale) and the Lorenz factor normalized the initial
Lorenz factor. The local behaviour of the q-parameter agrees well with Eq. (5.16)
obtained from the local solution. As discussed above, the oscillations caused by the
particle gyration are within the bandwidth of ≤ 2. The complementary plots allow us
to observe simultaneously the energy lose rate and the regime of the radiation presented
by the value of the q-parameter. If the energy loss rate is low, the rarefied output of the
points produces intermittent curves for the q-parameter.

It is interesting to examine the statement that the particle moving along drift tra-
jectory yields minimum intensity of radiation and produces less energetic photons. To
do this, the initial velocity is deflected by the angle βD from the magnetic field line to-
wards the binormal vector. The corresponding cumulative (integrated along trajectory)
energy spectra of radiation are shown in Fig. 5.1. The complementary plots are shown
in Fig. 5.2. We can see that indeed for the initial Lorenz factors γ0 = 106 and γ0 = 107

the radiation is less energetic compared to other cases and the rates of energy losses are
minimal as well (compare with corresponding plots in Figs. 5.3 and 5.4).

The situation however is different for larger initial Lorentz factors; see the curves
corresponding to γ0 = 5 · 107 and γ0 = 108. It is seen that for the initial direction along
the drift trajectory the radiation spectra extend to higher energies than in the case of
the initial direction along the magnetic field. This can be explained by the very intensive
energy losses occurring even before the particle has made the first gyration (the first
oscillation of q-parameter). During this time q ≈ 1 for the initial direction along the
drift trajectory and q ≈ 0 for the initial direction along the magnetic field. Eqs. (5.18)-
(5.19) show that larger values of q give a more energetic radiation. Correspondingly,
more energetic radiation is produced in the case of the initial direction along the drift
trajectory. However, after many gyrations the energy losses in the case of the initial
direction along drift trajectory become, as expected, less intensive compared to the case
of the initial direction along magnetic field line.

We call the attention of the reader to the regimes of the radiation demonstrated by
curves in Fig. 5.2. For γ0 = 106 and γ0 = 107, the q-parameter equals unity indicating
that the radiation proceeds in the curvature regime. However q = 1 is not exact as it
is demonstrated for γ0 = 107 where the scale for q-parameter slightly oscillates around
unity. These small oscillations correspond to the fine gyration around the drift trajec-
tory. As discussed above (see Eq. 5.23) the presence of such fine perpendicular motions
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does not influence on the applicability limits.
In the cases γ0 = 5 · 107 and γ0 = 108 the q-parameter has more complex behaviour.

The increase at the beginning is defined mostly by the fast energy losses. The decrease is
defined by the combination of several factors such as the reduction of the magnetic field
strength and the change of its curvature. The increase of q-parameter indicates that the
radiation occurs in the synchro-curvature or the synchrotron regimes when the radiation
due to curvature of the magnetic field line is less important (for γ0 = 5 · 107) or simply
negligible (for γ0 = 108). According to Eq. (5.19), the energy of the radiation maximum
scales as ∼ γ3q. The q-parameter reaches the maximum when the considerable amount
of energy has been lost. Therefore, in spite of large q, the peak of radiation shifts towards
low energies and does not affect the cumulative spectrum. The interesting feature can
be seen at first moments when the energy oscillates with q-parameter and the minimums
of q-parameter correspond to flatter parts of the Lorenz factor evolution curve.

The radiation spectra of electrons launched along the magnetic field line are slightly
more energetic except for γ0 = 5 · 107 and γ0 = 108. The reason is the same as discussed
above. Initially, the radiation for γ0 = 106 and γ0 = 107 is in transition regime, although
for γ0 = 106 the most of the energy is lost in the curvature regime which occurs fast.
Therefore the spectrum in this case almost coincides with the spectrum for the initial
direction along the drift trajectory. For γ0 = 107 the most of the energy is lost in the
transition regime, thus the spectrum is shifted to higher energies by q ≈ 2.

For illustration of the effect related to initial pitch angles larger than βD, we show
the case of initial direction deflected at the angle 10βD from the magnetic field line to-
wards the direction opposite to the normal vector. The corresponding spectra indicated
in Fig. 5.1 by dash-dotted lines are shifted towards higher energies. Although the q-
parameter (Fig. 5.4) reaches large values, the most of the energy is lost at initial stages
at q ≈ 10. Thus the spectra are shifted by q ≈ 10 compared to the curvature radiation
spectra.

We should note that the energy spectra of radiation produced in all regimes contain
an exponential cut-off at highest energies similar to the spectrum of the small-angle
synchrotron radiation. However, since the radiation spectrum is very sensitive to the
pitch-angle, a population of electrons with similar energies but different angles can result
in a superposition spectrum with a less abrupt cut-off. The condition for realization of
such a spectrum is that the distribution of electrons over pitch-angles around zero angle
should be wider than βD.
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Figure 5.1: The cumulative (integrated along trajectory) radiation spectra of electrons
calculated for the outer gap model of the pulsar magnetosphere. The curves
are obtained for different initial Lorenz factors of electrons γ = 106, 107, 5×
107, 108, and for different initial directions relative to the magnetic field lines:
along the drift trajectory (solid lines), along the magnetic field line (dashed
lines), and at pitch angle α = 10βD in the meridional plane opposite to the
normal vector of magnetic field lines (dashed-dotted lines).
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Figure 5.2: Time evolution of the q-parameter and the electron Lorenz factor in the
outer gap model (complementary to Fig. 5.1). Four panels correspond to
the initial Lorenz factor of electrons γ = 106, 107, 5 × 107, 108 and their
initial direction along the drift trajectory.
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Figure 5.3: The same as in Fig.5.2, but for the initial direction of electrons along the
magnetic field line.
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Figure 5.4: The same as in Fig.5.2, but for the initial direction of electrons at an angle
10βD.
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5.6.2 Polar Cap

In the polar cap model electrons radiate in the region located close to the surface of the
neutron star where the magnetic field is much stronger than in the outer gap model,
approaching to B ≈ 1012 G. This results in much faster damping of the perpendicular
component of motion. The very small drift velocity βD implies that the drift trajec-
tory and the magnetic field line almost coincide, thus even a small deflection from the
magnetic field line produces radiation quite different from the curvature radiation. How-
ever, the transition to the curvature radiation regime occurs very fast. In the curvature
regime, electrons radiate more energetic photons than in the outer gap model. But the
curvature of the magnetic field lines in the polar cap model with θ0 ∼ 1◦ is only an order
of magnitude larger than in the outer gap since the curvature of the dipole magnetic
field scales as ∼ sin θ/r. Correspondingly, the maximum energy of curvature radiation
at the polar cap is only an order of magnitude higher than in the outer gap.

The energy spectra of radiation calculated for the polar cap model are shown in
Fig. 5.5. The complementary plots for the evolution of the q-parameter and the electron
Lorenz factor are presented in Figs. 5.6, 5.7, and 5.8. The initial position of the particle
is R0 = 106 cm, and θ0 = 3◦. The spectra indicated by solid lines correspond to the
case when the initial direction of particle is along magnetic field line. In this case the
radiation is in the curvature regime. But at the initial stage, the radiation proceeds in
a very fast synchro-curvature regime, but abruptly turns to the regime with q ≈ 1 and
fast oscillations caused by fine gyrations.

The abrupt change of the regimes leads to an interesting feature in the cumulative
spectra for the case of an initial pitch angle α0 = 1/γ0 (dashed lines). Because of small
changes in energy and fast change of the q-parameter, the energy spectra consist of two
peaks. The peak at higher energies is produced by synchrotron radiation (q ≫ 1, see
Fig. 5.7), while the lower energy peak corresponds to curvature radiation regime. The
double-peak structure disappears for large initial pitch angles. For example, for the
pitch angle 100/γ0 the transition to the curvature regime is very fast, and the electron
enters into this regime with dramatically reduced Lorentz factor. Thus the peak of the
curvature radiation not only is shifted to smaller energies, but also is too weak to be
seen in the cumulative spectrum1.

In very strong magnetic fields, namely when the parameter χ = Bγ sinα/Bcr ≥ 1,
the radiation is produced in the quantum regime. Let’s assume that the initial pitch
angle is inverse proportional to the initial Lorentz factor, α0 = a/γ0. This makes the

1Note that the pitch angle 100/γ0 which we treat as ‘large’, still is extremely small, ∼
2(γ0/10

7)−1arcsec.
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condition of radiation in the quantum regime independent on γ0:

χ =
B

Bcr

γ sinα0 =
1 · 1012G

2.94 · 1013G
a ≈ 3.4 · 10−2a. (5.31)

Thus, at the initial pitch angle with a > 30, the electrons radiate in quantum regime.
Dash-dotted lines in Fig. 5.5 present radiation spectra for the initial pitch-angles
α0 = 100/γ0. Note that in the quantum regime almost the entire energy of the parent
electron is transferred to the radiated photon. Thus we should expect abrupt cutoff
in the radiation spectra. This effect is clearly seen in Fig. 5.5 (dot-dashed curves cor-
responding to the initial pitch angle α0 = 100/γ0). The gamma rays produced in the
quantum regime are sufficiently energetic to be absorbed in the magnetic field through
the e+e− pair production. This will lead to the development of an electromagnetic cas-
cade in the magnetic field. The spectrum of cascade gamma-rays that escape the pulsar
magnetosphere will be quite different from the spectra shown in Fig. 5.5.

5.6.3 Protons in the Black Hole magnetosphere

The acceleration of the protons to ultrahigh energies in the potential gap of the spinning
supermassive black hole should be accompanied by curvature radiation in the magnetic
field which threads the black hole ([128], [26]). Here we briefly examine the radiation
regimes and the gamma ray spectra of accelerated protons produced in this model. As
before, we consider the radiation in the dipole magnetic field adopting the following
(typical for a SMBH) parameters B∗ = 104 G and R∗ = 1014 cm. The initial position of
the particle is set at the polar angle θ0 = 5◦ relative to the magnetic dipole axis.

The larger (compared to electron) mass of proton leads to the larger drift velocity βD.
Therefore the spectra and the radiation regimes in the case of protons are less sensitive
to the initial direction of motion. The radiation of protons deviates from the curvature
radiation when the perpendicular component of proton’s Lorentz factor exceed

γ⊥ = γβD =
mpc

2γ2

eBr0
= 2.7 · 107

( γ

1010

)2
. (5.32)

This is larger by the factor of mp/me ≈ 2 · 103 compared to the same condition for
electrons. It is interesting to note that for the same Lorenz factor, in the synchrotron
regime protons radiates much weaker than electrons, whereas in the curvature regime
they radiate equally.

The radiation spectra of protons with different initial pitch angles are presented in
Fig. 5.9. The smallest angle α0 is close to βD, and the proton radiates in the synchro-
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Figure 5.5: The cumulative (integrated along trajectory) radiation spectra of electrons
calculated for the outer gap model of the pulsar magnetosphere. The curves
are obtained for different initial Lorenz factors of electrons γ = 106, 107, 108,
and for different initial directions relative to the magnetic field lines: along
the magnetic field line (solid lines), and for two pitch angles 1/γ0 (dashed
lines) and 100/γ0 (dashed-dotted lines).
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Figure 5.6: Time evolution of the q-parameter and the electron Lorenz factor in the
outer gap model (complementary to Fig. 5.5). Three panels correspond
to the initial Lorenz factor of electrons γ = 106, 107, 108 and their initial
direction along the magnetic field line.
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Figure 5.7: The same as in Fig.5.6, but for the initial direction of electrons at pitch
angle 1/γ0.
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Figure 5.8: The same as in Fig.5.6, but for the initial direction of electrons at pitch
angle 100/γ0.
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curvature regime (solid lines). Because of high energy the gyration period is large, and
in the case of γ0 = 1010 the particle makes only several gyrations before escaping the
region with high magnetic field (see Fig. 5.11). After that, the proton radiates with a
very low rate, and the q-parameter approaches zero. In the case of γ0 = 109, the proton
gyrates more frequently (see Fig. 5.10) and there is seen more pronounced tendency of
q approaching to zero. The other curves correspond to the initial pitch angles 10α0 and
100α0. The spectra are shifted towards higher energies by the same factors of q ≈ 10

and q ≈ 100. Accordingly, for the Lorenz factor γ0 = 1011 which is not shown in figures,
the proton will radiate predominantly in the curvature regime and the spectrum will
be shifted by a factor of (1011/1010)3 = 1000 relative to the curvature spectrum of the
proton with initial Lorenz factor γ0 = 1010. Despite the small energy losses relative to
the initial energy, the amount of the radiated energy is quite large. As in the case of the
pulsar polar cap model, for the chosen parameters the curvature radius of the magnetic
field lines is larger by an order of magnitude compared to the gravitational radius of the
black hole which usually is taken for evaluation of curvature radius. It yields smaller
energy losses and increase the maximum Lorenz factor of acceleration compared to the
case when the gravitational radius of the black hole is used as a curvature radius. To be
more specific, the maximum Lorenz factor of a particle in radiative-loss limited regime
scales with curvature radius Rc as

√
Rc/R∗ ([26], [128]).

5.7 Summary

The radiation of relativistic particles in a strong curved magnetic field is of a great
astrophysical interest, in particular in the context of magnetospheric gamma-ray emis-
sion of rotation-powered pulsars. In these objects with very strong magnetic fields, the
radiation proceeds in quite complex regimes, so it cannot be reduced merely to the con-
sideration of the nominal synchrotron and curvature channels. For proper understanding
of these radiation regimes and the transitions between them, the accurate treatment of
the particle trajectory is a key issue. It can be done by solving the equations of motion
taking into account energy losses of charged particles. In this chapter we followed this
approach to explore the radiation features of ultrarelativistic particles in a dipole field
which is a good approximation for the magnetic field structure in compact astrophys-
ical objects. The accurate numerical solutions for the test particle trajectory allowed
us to trace the radiation regimes and calculate self-consistently the radiation spectrum
without any a priori assumption concerning the radiation regime.

We demonstrated that even small deflections of the initial particle motion from the
magnetic field lines may result in a radiation spectrum quite different from the spectrum
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Figure 5.9: The cumulative (integrated along trajectory) radiation spectra of protons
in the magnetic field of rotating supermassive black hole. The chosen pa-
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Figure 5.10: Time-evolution of the Lorenz factor and the q-parameter in the magnetic
field of a supermassive black hole with the initial Lorenz factor of protons
γ0 = 109 and their initial pitch angles α = 10−4, 10−3, and 10−2.
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Figure 5.11: Time-evolution of the Lorenz factor and the q-parameter in the magnetic
field of a supermassive black hole with the initial Lorenz factor of protons
γ0 = 1010 and their initial pitch angles α = 10−3, 10−3, and 10−1.
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the curvature radiation. For any initial pitch angle, the particle tends, while losing
its energy, to turn to the curvature radiation regime and to move strictly along drift
trajectory (although never can achieve the latter). In principle, the fast increase of
curvature of the magnetic field lines can turn the regimes in inverse order.

In different environments (or different positions relative to magnetic dipole) the tran-
sition to the curvature radiation regime proceeds with different rate. While in the polar
cap model the transition occurs almost instantly, in the outer gap the transition could
last so long that the particle would not turn to the curvature regime while passing
the gap. The spectrum of the radiation becomes very different from the spectrum of
the curvature radiation if the pitch angle of the particle is greater than drift speed
βD = vD/c, and quite similar if it is smaller than βD. For the typical parameters of
the polar cap model, βD = 2.2 · 10−9(γ/108). This implies that the even tiny deflection
from the magnetic field line leads to the spectrum different from the curvature radiation
spectrum.

Significant deviations of the radiation spectra from the nominal curvature radiation
spectrum is expected also in the outer gap model. The particles do not move along
magnetic field lines but gyrate around drift trajectory. This results in a different (more
“energetic”) spectrum from the conventional curvature radiation spectrum. In the outer
gap model, electrons with initial direction along magnetic field line start to radiate in
the synchro-curvature regime, when the both the curvature of the magnetic field and
its strength play equally important role. The effect is quite significant at large Lorentz
factors of electrons, γ ≥ 107.

Finally, we demonstrate the strong impact of the initial pitch angle on the radiation
spectrum in the scenario of acceleration and motion of ultrahigh energy protons in the
magnetosphere of a supermassive black hole.

Appendix: Energy losses in the quantum regime

In a very strong magnetic field, the ultrarelativistic electrons can radiate in the quantum
regime, provided that

χ =
B

Bcr

γ sinα & 1, (5.33)

where Bcr = 2m2c3

3e~ ≈ 2.94 · 1013 G. The energy lose rate can be written in the form
[129, 125] ∣∣∣∣dEdt

∣∣∣∣ = e2m2c3√
3π~2

H(χ) , (5.34)
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where

H(χ) =

∫ 1

0

H(τ, χ)dτ , (5.35)

and

H(τ, χ) = χ
[
(1− τ)F (x) + xτ 2K2/3(x)

]
, x =

τ

χ(1− τ)
, (5.36)

where K2/3(x) is the modified Bessel function of the order 2/3, F (x) is the emissivity
function of the synchrotron radiation (see Eq. 5.20), τ = ϵ/E, where ϵ is the energy of
the radiated photon, E is the energy of the radiating particle.

For calculations it is convenient to express H(χ) in Eq.(5.34) in a simple approximate
analytical form. Using asymptotics of this function

H(χ) ≈ 8π
√
3

27
χ2, χ ≪ 1,

H(χ) ≈ 32π
√
3

243
22/3Γ

(
2

3

)
χ2/3, χ ≫ 1.

(5.37)

we have found the following approximation

H(χ) ≈ 8π
√
3

27

χ21 +
3

4

(2χ)2/3√
Γ
(
2
3

)
2 ×

(
1 +

0.52
√
χ(1 + 3

√
χ− 3.2χ)

1 + 0.3
√
χ+ 17χ+ 11χ2

)
(5.38)

The first two terms (before the sign ×) of Eq. (5.38) give right asymptotics at χ ≪ 1

and χ ≫ 1 and provide an accuracy better than 10% for other values of χ, whereas the
inclusion of the last term in the brackets makes the accuracy better than 0.1% for any
χ.

The spectrum of the radiation in the quantum regime is expressed as

Fq(x, τ) = (1− τ)F (x) + τ 2xK2/3(x), x =
τ

1− τ

E

ϵc
, (5.39)

where ϵc = 3e~B sinα
2mc

γ2 is the characteristic energy of the emitted photon. To use this
function in Eq. (5.18), the ϵc should be changed to ~ω∗. An analytical approximation
of this function can be obtained using the approximation for emissivity function of the
synchrotron radiation [17]

F (x) ≈ 2.15x1/3(1 + 3.06x)1/6
1 + 0.884x2/3 + 0.471x4/3

1 + 1.64x2/3 + 0.974x4/3
e−x, (5.40)
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and

xK2/3(x) ≈ 1.075x1/3(1 + 3.72x)1/6
1 + 1.58x2/3 + 3.97x4/3

1 + 1.53x2/3 + 4.25x4/3
e−x. (5.41)

Both approximations provide an accuracy better than 0.2% for any value of the argument
x.
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