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Abstract

This work is devoted to analysis and development of efficient adaptive algorithms for
problems related to the transport of chemical species in the Earth’s atmosphere from data
of remote-sensing instruments.

Processes describing the transport of chemical species are given by nonlinear systems of
partial differential equations. For the determination of the concentrations in a domain of
interest so-called inverse problems must be solved. The observations obtained by remote-
sensing instruments and used as overspecification for the inverse problems must be often
calculated from radiative transfer models. The form of the radiative transfer models depends
strongly on cloudiness. This makes necessary the analysis of available cloud maps, which
can be carried out by the means of image processing techniques.

For the numerical treatment, we discretize these infinite dimensional problems by a
Galerkin finite element method. For the solution of the resulting algebraic systems iter-
ative methods should be employed. This discretization process and subsequent iterative
solution cause errors which should be taken into account in order to obtain reliable results.

Focal point of the thesis is the assessment of different types of errors by a posteriori
error analysis. On the basis of these a posteriori error estimates the algebraic iteration
can be adjusted to discretization within a succesive mesh adaptation process. For the
solution of the resulting algebraic systems any fixed-point iteration can be used. We pay
a special attention to the Newton-type methods. Since the considered problems describing
atmospheric transport are ill-posed, we consider different types of regularization particularly
accounting for the perturbations of the model.

The presented adaptive algorithms are applicable for a wide range of problems. The
efficiency and reliability of the proposed techniques are confirmed by several examples in-
volving the cloud segmentation from satellite observations, the calculations of radiative
transfer models and nonlinear parabolic systems of partial differential equations. Further-
more, the recovery of the concentrations of bromine oxide in a Polar region from integrated
measurements is presented.

Zusammenfassung

Gegenstand dieser Arbeit ist die Analysis und die Entwicklung von adaptiven Algorithmen
zur Lösung von Problemen, die den Transport von chemischen Stoffen in der Erdatmosphäre
mit Hilfe von Daten aus der Satellitenfernerkundung beschreiben.



Prozesse, die den Transport von chemischen Spezien beschreiben, sind durch Systeme von
nichtlinearen partiellen Differentialgleichungen gegeben. Um die Konzentrationen in einer
bestimmten Region der Atmosphäre zu bestimmen, müssen inverse Probleme gelöst werden.
Die Messungen, die aus der Satellitenfernerkundung erhalten und als zusätzliche Lösungsin-
formation verwendet werden, müssen oft aus den Strahlungstransfermodellen berechnet
werden. Die Form der Strahlungstransfergleichungen hängt von der Bedeckung des Himmels
ab. Das macht die Analyse der verfügbaren Himmelskarten notwendig. Diese Analyse kann
mit Hilfe von Bildverarbeitungstechniken durchgeführt werden.

Für die numerische Behandlung diskretisieren wir diese unendlich dimensionale Probleme
mit der Galerkin Finite Elemente Methode. Zur Lösung der resultierenden algebraischen
Systeme müssen iterative Verfahren eingesetzt werden. Dieser Diskretisierungsprozess und
die anschließende iterative Lösung verursachen Fehler, welche für das Erzielen zuverlässiger
Resultate berücksichtigt werden müssen.

Schwerpunkt der vorliegenden Dissertation ist die Abschätzung verschiedener Fehlerquellen
mit Hilfe von a posteriori Fehleranalyse. Auf der Basis dieser a posteriori Fehlerabschätzun-
gen kann der algebraische Fehleranteil an den Diskretisierungsfehler im Rahnem eines sukzes-
siven Gitterverfeinerungsprozesses angepasst werden. Für die Lösung der algebraischen Sys-
teme können beliebige Fixpunktiterationen verwendet werden. Insbesondere werden die
Newton-artige Methoden betrachtet. Die Probleme, die den atmosphärischen Transport
beschreiben, sind schlecht gestellt. Zu diesem Zweck betrachten wir verschiedene Regular-
isierungstechniken, die ebenfalls die Störungen des Modells berücksichtigen.

Die entwickelten adaptiven Methoden können auf eine breite Klasse von Problemen
angewendet werden. Die präsentierten Ergebnisse und die entwickelten Konzepte werden
durch verschiedene numerische Tests bestätigt. Im Rahmen dieser Tests werden die Segmen-
tierung von Objekten anhand Satellitenmessungen, ein Strahlungstransfermodell und ein
nichtlineares System von parabolischen Gleichungen betrachtet. Zusätzlich wird ein Prob-
lem zur Rekonstruktion der Bromoxid-Konzentration in einer Polarregion aus integrierten
Messungen betrachtet.
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CHAPTER 1

Introduction

This work is devoted to analysis and development of adaptive techniques for problems
related to the transport of chemical species in the Earth’s atmosphere. Such problems
include nonlinear systems of partial differential equations for the species’ concentration,
hyperbolic equations given by radiative transfer models and Euler equations resulting from
image segmentation techniques.

Equations describing the atmospheric transport of chemical species involve parameters
that cannot be measured directly or whose parametrization involves uncertainties. The most
uncertain factors in such systems constitute the sources in the free atmosphere and the
near-surface processes. The exact knowledge of these parameters would contribute to the
understanding of underlying mechanisms. Consequently, the identification or calibration of
these imprecisely known or even unknown parameters is necessary in order to describe the
corresponding processes. This results in formulation of inverse problems in which the addi-
tional information of the solution (so-called overspecification) is obtained by remote sensing
techniques. However, the concentrations of atmospheric constituents very often cannot be
measured directly. Rather, they are deduced from the radiative absorption properties of
chemical species. To this end, related radiative transfer models must be solved. The form
of the radiative transfer models depends strongly on meteorological parameters such as
cloudiness. This makes necessary analysis of supplied cloud maps, which can be carried out
by the means of image processing techniques.

Provided observations are contaminated by noise due to the instrumental accuracy and the
approximative solution of radiative transfer models. Thus, it is important to know the sta-
bility properties of the resulting inverse problems in order to obtain reliable approximations.
From numerical point of view solution algorithms for parameter identification governed by
partial differential equations require a certain amount of forward and backward solves and,
as a consequence, more computational effort than a direct simulation. Furthermore, the
analysis of the satellite-based observations results in a large amount of information needed
to be processed, which makes the solution process expensive. The main goal of this work is to
provide the analysis and the systematic approach for adaptivity for problems related to the
atmospheric transport. Our approach bases on a posteriori error analysis for Galerkin finite
element methods. Thus, the goal is to construct meshes that are optimized with respect to
a desired quantity leading to an automatic model reduction. Furthermore, we address the
question how exact the discrete systems must be solved. The answer leads to the assessment
of different types of errors and, thus, to reliable and efficient adaptive techniques.
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1. INTRODUCTION

The concepts of adaptivity based on a posteriori error estimation for finite element dis-
cretization are well accepted for numerical solution of partial differential equations. The
underlying theoretical framework of the proposed adaptive techniques is the Dual Weighted
Residual (DWR) method originally proposed by Becker & Rannacher [17]. The provided
concept is rather general and can be applied to the direct simulation for computing certain
quantities as well as to the parameter identification problems. We apply these methods to
problems related to the atmospheric transport including stationary and nonstationary non-
linear systems, hyperbolic equations given by radiative transfer models, and Euler equations
resulting from image segmentation techniques.

The thesis is organized as follows: In Chapter 2, we discuss equations modeling the
change of the concentrations of chemical species in the atmosphere. These are given by
system of semilinear weakly-coupled parabolic equations. We pay special attention to the
sources in the free atmosphere and near the surface. Furthermore, we discuss the mass
kinetics constituting couplings between the equations and, thus, nonlinearities in the system.
Without any assumptions on the nonlinearity in general blow-up can occur in finite time.
Thus, we pose necessary conditions in order to circumvent this phenomenon and state the
regularity of solutions of the system. These conditions are verified at the end of the chapter
for two chemical reaction chains used later in our numerical calculations.

In Chapter 3, we discuss the Galerkin finite element method for the discretization of result-
ing nonlinear species equations. The problem is convection-dominated and, as a consequence,
the presented spatial discretization scheme may become unstable. To avoid the instability,
we introduce two stabilization techniques and discuss the advantages and the drawbacks of
both presented schemes.

The most uncertain factors in chemical transport models are the sources. Therefore, we
formulate in Chapter 4 the calibration problem scaling the modeled source terms. We treat
the initial concentrations as a further unknown parameter. The resulting atmospheric inverse
problem is further reformulated as an operator equation. We show that also in the case of
provided distributed measurements this problem is ill-posed in the sense of Hadamard. In
this sense, small errors in given observations can be arbitrarily amplified. Finally, we show
the differentiability properties of the forward operator. These are used, on the one hand,
for the stability analysis of the regularized solutions and for the construction of numerical
methods, on the other.

Chapter 5 treats regularization methods for the inverse problems. The presentation is
quite general allowing the direct transfer of the results to the atmospheric inverse problem.
Particular emphasis is put on the ordinary and iterated Tikhonov regularization methods.
The accuracy of the obtained regularized solutions depends strongly on the choice of the
regularization parameters. In this sense, we review a priori, a posteriori, and heuristic pa-
rameter choice rules. Stability estimates for a posteriori parameter choice rules are usually
derived under the assumption that the nonlinear operator equation is given without pertur-
bations. We consider the perturbed Tikhonov functional with a rather general error source
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1. INTRODUCTION

and derive optimal stability estimate for the Morozov’s discrepancy principle. Then, we
discuss algorithmic aspects for the numerical solution of the inverse problems. At the end
of this chapter, we give the precise form of the discrete equations of the atmospheric inverse
problem regularized by a Tikhonov-type method. The behavior of the regularization meth-
ods is demonstrated for a numerical example involving a chemical reaction chain describing
the ozone loss in Polar regions.

Chapter 6 is devoted to a posteriori error analysis for stationary and nonstationary situ-
ations. Usually a posteriori error estimates are developed generally for the unknown exact
discrete solutions. We derive error estimator which assesses the influences of the discretiza-
tion and the inexact solution of the arising algebraic equations. This allows us to balance
both sources of the error. The estimator derived for the discretization error is used as stop-
ping criterion for the algebraic iteration and provides the necessary information for the
construction of locally refined meshes in order to improve the accuracy of the discretization.
The method is formulated for a general fixed-point iteration. The iteration error can be
further refined exploiting the structure of the DWR method and the Newton algorithm.
The efficiency and reliability of the developed approach are verified by the computations in-
cluding a weakly nonlinear diffusion-reaction problem, Euler equations resulting from cloud
segmentation, a hyperbolic inverse problem, and a nonstationary inverse problem governed
by a system of nonlinear convection-diffusion-reaction equations.

In Chapter 7, we consider the problem of reconstruction of distributed concentrations
of bromine oxide from integrated measurements. The species equations are rewritten in
accordance with the given observations in units of mole fractions and further transformed
into terrain-following spherical coordinates. Here, we are faced with the situation in which the
mechanisms responsible for the release or the destruction of bromine oxide are not precisely
known. Due to this reason, the space and time dependent source represents an unknown
parameter in the system. The comparison of the obtained results with the assimilated
concentrations verifies the calculations.

In the last chapter conclusions and an outlook on future work are given. Here, we sum-
marize the results presented in this work and discuss the possible extensions.
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CHAPTER 2

Equations

In this chapter, we present the equations that model the change of the concentration of
chemical species in the Earth’s atmosphere. The main factors affecting the transport of
the chemical constituents are the wind, the temperature, the turbulent diffusion, and the
chemical and nonchemical transformations. In the following a mathematical modeling of these
processes is presented. The resulting equations are written in an Eulerian framework. For
the formulation in the Lagrangian and semi-Lagrangian coordinates, we refer to Jacob [62]
and Fisher & Lary [38], respectively.

The underlying mathematical model describing the transport of chemical species in the
atmosphere is the full set of the Navier-Stokes equations for the wind field, the energy
equations for the temperature accompanied by the balance equations for the chemical species.
This system of equations is coupled: the wind field transports the species, the chemicals
react and produce heat affecting the temperature, and, finally, the temperature affects the
wind field through buoyancy effects. This approach makes it possible to consider all the
quantities at once in a monolithic manner but leads to a high computational effort.

On the other side, the influence of the trace gases on the temperature and wind field
is usually negligibly small. Consequently, it is justifiable to consider the mass balance
equations independently from the Navier-Stokes and the energy equations and vice versa.
This approach is widely accepted in the area of data assimilation concerned with the modeling
of the transport of atmospheric chemical constituents. In this thesis, we pursue the latter
approach and assume the wind field and the temperature to be given by a general circulation
model. Thus, our aim is derivation and analysis of the balance equations describing the
chemical transport in the atmosphere.

The outline of this chapter is as follows: First, we discuss the equations modeling the
transport of atmospheric constituents. Then, we explain the choice of boundary conditions.
A special attention is put on the modeling of chemical and nonchemical source and sink
terms, which are treated in Section 2.2. In Section 2.3, we analyze the derived system of
nonlinear weakly-coupled parabolic equations. Without any assumptions on the nonlinearity
in general blow-up can occur in finite time. To this end, we make necessary assumptions
in order to circumvent this phenomenon and state the regularity of solutions of the system.
At the end of the chapter, we verify these conditions for two chemical reaction chains used
later in our numerical computations.
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2.1. CONTINUITY EQUATION

2.1. Continuity equation

In this section, we describe the equations governing the change of the concentrations of
chemical species in the Earth’s atmosphere. The main factors affecting the transport are
the convection by wind, turbulent diffusion, emissions, and chemical reactions. The species
can be represented by their mass density, mass or molar fractions. We present here the
formulation in which the concentration of species is expressed in units of so-called “number
density”, i.e., the number of molecules of species per unit volume of air.

If we consider a fixed volume of the atmosphere, then the transport is characterized by
the diffusion behavior ∇ · F of flux F and source and sink terms S(t, x, Θ, u), where Θ

stands for the temperature and u := (u1, . . . , ud)T for the vector of the concentrations of
all species involved in the chemical reactions. t denotes the time and x the spatial variable.
Generally the source may depend on the concentration of the trace gas itself and of other
constituents coupled through chemical reactions. Thus, for a mixture of d chemical species
the corresponding mass balance equations are given by

∂tu+∇ · F = S(t, x, Θ, u), (2.1)

where ∂tu = ∂u
∂t . In addition to the requirement that the species u must fulfill the above

equation, the wind field v and the temperature Θ must in turn satisfy the Navier-Stokes
and the energy equations, which are coupled through v, u, and Θ with the species equation
and the ideal gas law

p = ρaRΘ

Ma
, (2.2)

where p is the pressure, R the universal gas constant, Ma the mean molar mass of air,
and ρa the air density.

In general, it is necessary to solve the coupled equations of mass, momentum and energy
conservation in order to describe the changes in u,Θ, and v and the effect of the changes of
these quantities on each other. However, as already mentioned in dealing with atmospheric
trace gases, it is justifiable to consider the wind field v and the temperature Θ independently
from the species concentrations u. Thereupon, we assume in the following that the convection
velocity and the temperature are supplied by carrying out separate simulations. Thus, we
concentrate on the modeling aspects of the transport coefficients and the source terms of
system (2.1).

2.1.1. Transport coefficients

The flux F can be separated into the convection and diffusion components:

F = Fconv + Fdiff. (2.3)

The convective part of the flux depends on the wind field and is given by

Fconv = v u. (2.4)
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2. EQUATIONS

The diffusion flux can be further separated in molecular and turbulent components

Fdiff = Fturb + Fmol. (2.5)

The molecular diffusion Fmol is usually neglected since its contribution to the transport is
not significant. In order to model the turbulent component of the diffusion, we consider the
convective part of the flux. Due to the turbulent nature of the flux both v and u show
large fluctuations in time and are random functions of space and time, see, e.g., Seinfeld
& Pandis [107]. The turbulent behavior of the atmospheric motion is a distinctive feature
especially of the boundary layer of the atmosphere, i.e., in the region between the Earth’s
surface and 500-3000 m height. Direct measurements of the turbulent fluxes usually are not
performed.

The most common approach to treating turbulence consists in considering the mean value
of diffusive flux F̄ = v · u over some time interval. Thus, we decompose the wind field v

and the concentrations u as the sums of the mean and fluctuating components

v = v̄ + v′,

u = ū+ u′,
(2.6)

where v′ and u′ denote the turbulent fluctuating components. By the Reynolds assumption
the average of all perturbation is zero, u′ = 0 and v′ = 0. Inserting quantities (2.6) into (2.3),
we obtain the mean value of the flux

F̄ = ūv̄ + ūv′ + u′v̄ + u′v′

= ūv̄ + u′v′.
(2.7)

Thus, the turbulent diffusion part of the flux is given by

Fturb = u′v′, (2.8)

which corresponds to a new unknown variable. This effect is known as the closure problem.
The closure problem can be overcome by using the Lagrangian coordinates. However, the
Lagrangian approach cannot be directly applied to the problems involving nonlinear chemical
reactions, see, e.g., Seinfeld & Pandis [107].

The usual approach to parametrization of the occurring turbulence is the use of the
so-called mixing-length K-theory or the Monin-Obukhov similarity theory, see, e.g., Jacob-
son [63]. In particular, a linear relationship between the turbulent diffusion flux and the
gradient of the species concentration is assumed. Thus, the diffusive contribution of the flux
is given by

Fturb = −D∇u, (2.9)

where D(t, x) = (D11, D22, D33) is a diagonal matrix whose entries are the turbulent eddy
diffusivities in general in terms of time and position.
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2.1. CONTINUITY EQUATION

By adding all the contributions, we obtain the total mean flux

F̄ = v̄ · ū−D∇ū. (2.10)

We insert quantity (2.10) into equation (2.1) and obtain the species continuity equation for
the mean concentration

∂tū−∇ · (D∇ū) +∇ · (v̄ ū) = S̄, (2.11)

where we have suppressed the dependence of S̄ on the temperature Θ. In the following, we
omit the overbars in order to simplify the notation and always mean the averaged quantities,
that is u ≡ ū, v ≡ v̄, and S ≡ S̄.

Although the mixing-length approach is the most widely used method to modeling tur-
bulences, it has several limitations. It is applicable if the chemical reaction processes are
slow compared to the turbulent transport, see, e.g., Lamb [76]. The alternative approach
consists in estimation of the unknown diffusivity coefficients by solving a corresponding
inverse problem, see, e.g., Storch et al. [111] and Campos et al. [23] for more details.

2.1.2. Boundary and initial conditions

In order to specify the boundary conditions, we consider a domain Ω ⊂ IRn, n = 2, 3,
covering a region of the atmosphere. Let n be the outward unit normal vector to the
boundary Γ of the domain. The boundary of the domain Ω consists of three parts

Γ = ΓI ∪ ΓO ∪ ΓG,

corresponding to inflow, outflow, and ground portions of the boundary. Let T > 0 be a
fixed time and I = [t0, T ] be a time interval. Without loss of the generality, we set t0 = 0
and define

ΩT := I ×Ω, ΣI := I × ΓI , ΣO := I × ΓO, and ΣG := I × ΓG.

For the inflow boundary comprising of the set of lateral or top boundary points, we impose
nonhomogeneous Dirichlet boundary conditions

u(t, x) = uin(t, x) on ΣI ,
v · n < 0.

(2.12)

On the outflow boundary ΣO, we prescribe homogeneous Neumann boundary conditions

D∂nu = 0 on ΣO,
v · n > 0,

(2.13)

where ∂nu = n · ∂u∂x .
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2. EQUATIONS

The boundary condition at the ground part of the boundary must account for uptake and
emissions of atmospheric species on the Earth’s surface. Thus, we obtain

D∂nu− w u = Es(u, t, x) on ΣG,
v · n = 0,

(2.14)

where Es(u, t, x) represents the surface emission rate and w(t, x) the deposition velocity.
The emission rate Es(u, t, x) usually is provided by ground-based or satellite measurements.
The deposition velocity w is calculated using the aerodynamic resistance ra, the bulk
resistance of the diffusion of surface elements rb, and the bulk surface resistance rc:

w = 1
ra + rb + rc

. (2.15)

The aerodynamical resistance can be computed using the Stokes assumption and depends
on the drag coefficient and the wind speed. The resistance rb depends on the Schmidt
and Prandtl numbers and the air kinematic viscosity. The surface resistance rc depends
on the surface and the season. These parameters depend on the particular species. Thus,
the deposition velocity depends on the surface, species under consideration, and stability
conditions of the atmosphere. For more details on the latter issue, we refer to Chapter 7. A
detailed description of the calculation of the deposition velocity is given in Gao & Wesely [41]
and Seinfeld & Pandis [107].

Finally, equation (2.11) is supplemented at the initial time point t0 = 0 with the initial
condition

u(0) = u0 in Ω, (2.16)

with a nonnegative function u0 = (u0
1, . . . , u

0
d)T . The initial condition is either treated as an

unknown parameter of the system or given by the available measurements.

2.2. Modeling source terms

In this section, we consider modeling of surface emissions and source and sink terms in
the free atmosphere constituting the right-hand side of the ground part boundary (2.14)
and the continuity equation (2.11), respectively. The source terms depend on the area of
interest, and we distinguish between anthropogenic and biogenic sources. Anthropogenic
emissions occur due to human activities such as fuel combustion and traffic. Biological
emissions that influence the transport of atmospheric constituents include emissions from
forest canopies, pasture, sea salt, and wind-blown dust. The rate of emitted species depends
on the meteorological parameters such as temperature and radiation. In many cases the
emission terms can be considered as surface or be treated as elevated sources.

Other source and sinks in the free atmosphere occur due to the chemical reactions between
the species and the wet deposition processes. In order to model chemical transformation
terms, we use the Arrhenius law. Additionally, as a special chemical reaction, we consider
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2.2. MODELING SOURCE TERMS

the loss of the concentration due to the radiation corresponding the first-order sink. In the
following, we decompose the source term on the right-hand side of (2.11) as follows:

S = E + f,

where E corresponds to the non-chemical sources and sinks, and f describes chemical
transformations. In general the nonchemical emission term has the form

E = e a, (2.17)

where e is the emission factor per unit of activity and a the amount of activity.

2.2.1. Anthropogenic emissions

Anthropogenic emissions originate mostly from burning of different kinds of fuel. Pollutants
emitted into the atmosphere over urban areas due to industrial complexes, power plants, and
factories include such species as nitrogen oxides NOx (NO and NO2), sulfur dioxide (SO2),
and formaldehyde (CH2O). These emissions can be considered as surface fluxes or be treated
as elevated sources. In the latter case the most common approach to representing the vertical
distribution is the Gaussian plum model. The concentrations from emitting source are then
proportional to the emission rate and inversely proportional to the wind speed. The time
averaged pollutant concentration is described by a Gaussian distribution. This is justified
by the fact that the solution of problem (2.11) with Dirac right-hand side representing a
point source is given by Gaussian puff formula, see, e.g., Ermak [34] or Hurley [60].

Emissions due to domestic heating are related to area sources and used to model ground
level releases with no plume rise. Thus, in this case the source term constitutes the ground
boundary condition (2.14). The pollutants emitted in this instance are SO2, CO and CO2.

Emissions due to road traffic include such species as carbon monoxide (CO), nitrogen
oxides (NOx), and carbon dioxide (CO2). The main factors needed to model the emission
rates are traffic intensity with its temporal variation and classification of vehicles. Road
traffic emissions are commonly represented as the sum of hot emissions (thermally stabilized
motors) and cold emissions, where each contribution is modeled accordingly to (2.17). In
general the amount of activity a on the right-hand side of (2.17) is given by the number
of vehicles multiplied by the length of the stretch. More involved obstacle resolving models
account for the arising turbulences in the street canyons. For more details on this issue, we
refer to Jourmard [66] and Eggleston et al. [28]. Vehicle emissions are related to line sources
consisting of infinitely many point sources. However, they are commonly treated as volume
sources. The vertical distribution is given by the Gaussian distribution multiplied by the
line integral over the length of stretch.
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2. EQUATIONS

2.2.2. Natural emissions

Natural emissions comprise emissions of volatile organic compounds (VOC), NOx and
NH3 from vegetation and soils, sea salt aerosols, the emissions from wind blown dust, and
the re-emission of mercury from soils, vegetation and water, biomass burning. We do not
aim at the detailed description of all of these processes but rather give a short description of
modeling aspects used for some of the emissions. As in the case of anthropogenic emissions
some of the natural sources can be treated either as surface or volumetric fluxes. In the
second case the vertical distribution depends on the underlying process.

Thus, in order to model the emissions due to the vegetation such as forest, the canopies
are divided into a number of horizontal layers. Each layer has a specific temperature and
radiation flux for a prescribed chemical species. Furthermore, the rate of emissions depends
on the sun light. The total source term is then obtained by summing the emissions from all
layers. A detailed description of the modeling procedure with the corresponding values of
emission rates is given in Guenther et al. [48] or in Norman [90]. The vertical distribution of
the emitted species usually is taken to follow a triangular distribution as described in Lamb
et al. [75].

The VOC emissions from pasture and grasses are related to the area sources. The rate
of emission in equation (2.17) shows strong radiation and temperature dependency. For a
detailed description of pasture emission model, we refer to Kirstine et al. [72]. Estimation
methods for wind blown dust emissions are based on the threshold friction velocity, particle
size, and horizontal saltation flux. The vertical flux is modeled using the plastic flow pressure
and soil bulk density, see, e.g., Lu & Shao [77].

Sources in the free atmosphere that are treated as volumetric include the processes such
as wet deposition resulting from cloud and precipitation scavenging. Wet deposition can be
split into in-cloud scavenging and below-cloud scavenging. In-cloud scavenging deposition
results from pollutant mass transfer into cloud followed by transport to the Earth’s surface
by perspiration. The mass removed by the rain is modeled with the help of the scavenging
coefficient depending on rain intensity and cloud liquid water content. Below-cloud scav-
enging represents effect of falling rain drops on the species. Here, a scavenging coefficient
is again used for the determination of the deposition flux. The presence and the modeling
of these deposition processes depend on the chemical constituent under consideration and
precipitation intensity. Thus, this source term is modeled using the meteorological observa-
tions such as cloud and precipitation maps. For detailed description of the modeling of this
process, we refer to Sportisse & Bois [110] and Binkowski & Roselle [19].

Furthermore, the chemical species such as radon (Rn) and caesium (Cs) can be removed
from the atmosphere by radioactive decay. In this case the source term is given by

E(u, t, x) = −λu(t, x), (2.18)
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2.3. MODELING SOURCE TERMS

where λ ∈ IR denotes the decay rate. This process corresponds to the first-order sink in the
bulk atmosphere.

2.2.3. Chemical transformations

Other sources in the free atmosphere are due to chemical reactions. In order to describe
the chemical transformations, we consider an elementary reaction r represented by

d∑
k=1

akrχk
kr−→

d∑
i=1

bkrχk,

where χk are the chemical species, akr and bkr the stoichiometric coefficients of the
elementary reaction, and kr the rate of reaction, r = 1, . . . , nr. Usually for each reaction up
to three species are involved, i.e., only up to three coefficients akr do not vanish for each r.
Very often in these three-body reaction the third species is inert and only gives the kinetic
energy to stabilize the exited product. Thus, for large reaction mechanisms the matrices
A = {akr}nrk,r=1 and B = {bkr}nrk,r=1 are sparse.

The production rate fk for species k expressed in units of number density is obtained
by adding all reactions involved

fk(Θ, u) =
nr∑
r=1

(ark − brk)kr(Θ)
ns∏
j=1

u
arj
j

 . (2.19)

The rate of reaction is given following the Arrhenius law

kr(Θ) = A(Θ) exp
(
− Ea
RΘ

)
, (2.20)

with activation energy Ea and the universal gas constant R. The frequency factor A(Θ) is
usually determined experimentally and can be assumed to be independent on the tempera-
ture.

The other chemical transformation in the free atmosphere is the photolysis. It occurs if
molecules are drop down by the sun light. An example of such reaction is given by

O3 + hν → O +O2,

which generates an excited oxygen. We treat this process as a chemical transformation with
the corresponding source term given by

f(Θ, u) = −λ(t)u(t, x), (2.21)

with a time-dependent photolysis rate λ(t). In the following, we suppress the dependency
on temperature and use the notation f(Θ, u) = f(u).

12



2. EQUATIONS

2.3. Analysis of the state equation

In this section, we formulate the results concerning existence, uniqueness, and regularity
of weak solutions of the derived equations. Thus, we first formulate the weak form of
the chemical transport model. The obtained results are then used for the analysis of the
corresponding parameter estimation problems and the formulation of numerical algorithms.

Putting all together, the model describing the transport of chemical species in the atmo-
sphere is given by

∂tu−∇ · (D∇u) +∇ · (v u) = f(u) + E(u, t, x) in ΩT ,
u = uin on ΣI ,

D ∂nu = 0 on ΣO,
D ∂nu− w u = Es(u, t, x) on ΣG,

u(t0) = u0 in Ω,

(2.22)

for u = (u1, . . . , ud)T and D = diag(Di). Here, d denotes the number of chemical species
involved in corresponding chemical reactions. System (2.22) is then referred to as the state
equation.

Since the problem under consideration is later discretized by a Galerkin finite element
method, we postulate its weak form. To this end, we introduce notations from theory of
functional spaces, which we will use throughout. The properties of these spaces are given in
Evans [37] and in Alt [2].

NOTATION FOR FUNCTION SPACES

In order to introduce the spaces of test and trial functions, we define the space

V := {ψ ∈ H1(Ω) ; ψ = 0 on ΓI}.

Together with H := L2(Ω) the Hilbert space V and its dual V ∗ build a Gelfand triple

V ↪→ H ↪→ V ∗.

We adopt standard notation for the L2-scalar product (·, ·). We use the Bochner space
Lp(ΩT ) comprising of all functions with

‖u‖Lp(ΩT ) :=

∫
I

∫
Ω

|u(t, x)|p dx dt

1/p

<∞,

for 1 ≤ p <∞ and
‖u‖L∞(ΩT ) := ess supt∈I,x∈Ω |u(t, x)| <∞.

13



2.3. ANALYSIS OF THE STATE EQUATION

Moreover, we use Lebesgue spaces and Sobolev spaces of mappings with values in other
Banach spaces. Thus, we denote by Lp(I;V ) the space of all strongly measurable functions
with

‖u‖Lp(I;V ) :=

∫
I

‖u‖pV dt

1/p

<∞,

for 1 ≤ p <∞ and
‖u‖L∞(I;V ) := ess supt∈I ‖u(t)‖V <∞.

We note that from Fubini’s theorem follows Lp(ΩT ) = Lp(I;Lp(Ω)).

Next, we introduce the Hilbert space

W (0, T ) :=
{
v ; v ∈ L2(I, V ) and ∂tv ∈ L2(I, V ∗)

}
.

The space W (0, T ) is endowed with the scalar product

(u, v)W (0,T ) =
∫
I

(u, v)V dt+
∫
I

(∂tu, ∂tv)V ∗ dt.

The space W (0, T ) is continuously embedded into C(I;L2(Ω)) , the space of all continuous
functions from I into L2(Ω) , such that there exists a constant C > 0 satisfying

‖w‖C(I;H) ≤ C‖w‖W (0,T ) for all w ∈ W (0, T ), (2.23)

see, e.g., Dautray & Lions [26]. Moreover, we have

W (0, T ) ⊂ L2(ΩT ),

with a continuous embedding. In the following, we make the use of the Aubin-Lions lemma.

Lemma 2.3.1 (Aubin-Lions lemma). Let Y ⊂ X ⊂ Z be Banach spaces. Suppose that
the inclusion Y ⊂ Z is a compact embedding. Moreover, let Y and Z be reflexive spaces.
Then, for any 1 < p, q <∞ the space

{u ∈ Lp(I;Y ) ; ∂tu ∈ Lq(I;Z)}

is compactly embedded into the space Lp(I;X).

The proof of this result can be found in Temam [114]. By Rellich-Kondrashov theorem
V is compactly embedded into H. Then, Aubin-Lions lemma yields that

W (0, T ) ↪→↪→ L2(ΩT ).

Finally, we define the product space for the species concentrations

X := W (0, T )× · · · ×W (0, T ), (2.24)

consisting of d Hilbert spaces.

14



2. EQUATIONS

2.3.1. Regularity of solutions

In order to postulate the weak form of (2.22), we define for all φ ∈ V the spatial semilinear
form ā : V × V → IR as

ā(u)(φ) := (D∇u,∇φ)+(∇·(v u), φ)−(f(u)+E(u, t, x), φ)−(w u+Es(u, t, x), φ)ΓG . (2.25)

So as to incorporate the inhomogeneous boundary condition, let û ∈ W 1,0
2 (ΩT )d represent

the inflow data, that is û = uin on ΓI for almost all t ∈ I. With this notation the variational
form of problem (2.22) reads in short terms: Find u ∈ û+X, such that

(∂tu, φ) + ā(u)(φ) = 0 and (u(0), φ(0)) = (u0, φ(0)), (2.26)

for almost all t ∈ I and all φ ∈ V . For simplicity, we introduce the definitions

(v, w)I :=
∫
I

(v(t), w(t)) dt and a(u)(φ) :=
∫
I

ā(u(t))(φ(t)) dt,

and rewrite the weak formulation (2.26) in a more compact form

(∂tu, φ)I + a(u)(φ) + (u(0), φ(0)) = (u0, φ(0)) ∀φ ∈ X. (2.27)

System (2.11) is of a rather general form. Before we begin with the analysis of the equations,
we make the following assumptions concerning the data:

Assumption 2.3.1 (Data). There holds

(i) Ω ⊂ IRn, n = 2, 3, is a convex domain with Lipschitz boundary.

(ii) The wind field v : ΩT → IR is continuously differentiable with ∇ · v = 0.

(iii) For the diffusion coefficients there holds

0 < c0 ≤ D(t, x) ≤ c1, c0, c1 ∈ IR.

(iv) The emission term E(u, t, x) : IRd×ΩT → IR is measurable with respect to (t, x) ∈ ΩT
for all u ∈ IRd , and at least two times continuously differentiable with respect to u

for almost all (t, x) ∈ ΩT . For u = 0 the source term E and its derivatives up to
order two are uniformly bounded by a constant K > 0

‖E(0, ·, ·)‖L∞(ΩT ) + ‖∂uE(0, ·, ·)‖L∞(ΩT ) + ‖∂uuE(0, ·, ·)‖L∞(ΩT ) ≤ K.

(v) The surface emission term Es(u, t, x) : IRd ×ΣG → IR is measurable with respect to
(t, x) ∈ ΣG for all u ∈ IRd, and at least two times continuously differentiable with
respect to u for almost all (t, x) ∈ ΣG. For u = 0 the surface source term Es and
its derivatives up to order two are uniformly bounded by a constant Ks > 0

‖Es(0, ·, ·)‖L∞(ΣG) + ‖∂uEs(0, ·, ·)‖L∞(ΣG) + ‖∂uuE(0, ·, ·)‖L∞(ΣG) ≤ Ks.
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2.3. ANALYSIS OF THE STATE EQUATION

(vi) The deposition velocity w is measurable for almost all (t, x) ∈ ΣG.

(vii) In presence of radioactive decay, for the decay constant in (2.21) there holds

‖λ(t)‖L∞(I) ≤ C,

for a constant C ∈ IR.

(viii) The initial condition possesses the regularity u0 ∈ L∞(ΩT )d and is componentwise
positive u0 ≥ 0.

We note that the assumptions on the domain and the wind field are satisfied by the most
chemical transport models since the wind field v is usually obtained by the solution of the
Navier-Stokes equations. The assumptions concerning the diffusion coefficients and emission
terms are fulfilled by model (2.22), see also Chapter 7, Section 7.1.

System (2.11) is a weakly-coupled system of semilinear parabolic differential equations. The
couplings occur due to the chemical reactions. Without any assumptions on the nonlinearity
f in general blow-up can occur in finite time. Thus, we make the following assumptions
concerning the structure and the differentiability properties of the nonlinearity:

Assumption 2.3.2 (Nonlinearity). There holds

(i) The nonlinearity fi = fi(u) : IR→ IR, i = 1, . . . , d, is at least two times continuously
differentiable with respect to u.

(ii) The nonlinear source term f preserves the positivity of the solutions

fi(u) ≥ 0, whenever ui = 0.

(iii) There holds the following dissipative property: there exist ai ∈ IR and bi ∈ IR with
ai > 0, bi ≥ 0, i = 1, . . . , d, such that for all u ∈ IRd+ there holds

d∑
i=1

aifi(u) ≤
d∑
i=1

biui. (2.28)

The differentiability properties and the quasi-positivity of the nonlinear term f are natural
assumptions fulfilled by the presented mass kinetics model, see, e.g., Norman [89] and Manley
et al. [78]. The dissipative property is assumed similarly to Pierre & Texier-Picard [93] (see
also the survey article Pierre [92]) and is satisfied by many of chemical reaction mechanisms
employed in simulation of atmospheric transport.

Since the emission terms are still rather general, we suppose that they are positive and
of form (2.17) and, thus, independent of u , i.e., E = E(t, x) ≥ 0 and Es = Es(t, x) ≥ 0.
The generalization of the following results in the presence, e.g., of radioactive decay and wet
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deposition process is under the given assumptions straightforward. We state the following
result concerning the existence and the regularity of weak solutions of problem (2.26).

Proposition 2.3.1. Let assumptions 2.3.1 and 2.3.2 be satisfied. Then, there exists
a unique positive solution u ∈ û + X ∩ L∞(ΩT )d, of problem (2.26) with û = uin on ΣI .
Furthermore, there hold the following stability estimates

‖u‖L∞(I;L2(Ω)d)d ≤ C
(
‖u0‖+ ‖E‖+ ‖Es‖L2(ΓG) + ‖w‖L2(ΓG)

)
, (2.29)

and
‖u‖W (0,T ) ≤ C

(
‖u0‖+ ‖E‖I + ‖Es‖L2(ΣG) + ‖w‖L2(ΣG)

)
, (2.30)

with a constant C that depends only on the data of problem (2.26) and not on the initial
concentrations.

Proof. For the proof of existence and regularity of the positive solution, we refer to
Pierre & Texier-Picard [93] and Fitzgibbon et al. [39] (see also Norman [89] and Manley et
al. [78] for a more general problem with presence of Navier-Stokes and energy equations). The
uniqueness of the solution can be shown by similar techniques as the stability estimate (2.30).

In order to show estimates (2.29) and (2.30), we set

ū :=
d∑
i=1

aiui, Ē :=
d∑
i=1

aiEi, Ēs :=
d∑
i=1

aiEs,i, and f̄(u) =
d∑
i=1

aifi(u).

Then, there holds

(∂tū, φ) + (D∇ū,∇φ) + (v · ∇ū, φ) = (f̄(u) + Ē, φ) + (w ū+ Ēs, φ)ΓG , (2.31)

for all φ ∈ W (0, T ) and almost all t ∈ I. We test equation (2.31) with φ = ū , use the
ellipticity condition in Assumption 2.3.1, (iii), and obtain

1
2
d

dt
‖ū‖2 + c0

(
‖ū‖2V − ‖ū‖2

)
+ (v∇ū, ū) ≤ (w ū+ Ēs, ū)ΓG + (f̄(u) + Ē, ū), (2.32)

for almost all t ∈ I. For the convection term on the left-hand side, we obtain using the
definition of the vector space V , the sign of v·n in the boundary conditions (2.13) and (2.14),
and Assumption 2.3.1, (ii),

(v∇ū, ū) = 1
2

∫
Ω

v∇ū2 dx = 1
2

∫
Ω

(∇ · v)ū2 dx+ 1
2

∫
Γ

ū2(v · n) dS ≥ 0. (2.33)

Consequently, this positive term can be neglected. Using the dissipative property, we obtain
for the nonlinear term on the right-hand side

(f̄(u), ū) ≤ ‖f̄(u)‖ ‖ū‖ ≤ ‖
d∑
i=1

bifi(u)‖ ‖ū‖ ≤ C‖ū‖2, (2.34)
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2.3. ANALYSIS OF THE STATE EQUATION

for some C depending only on ai and bi. For the volumetric emission term, we obtain by
the help of the Cauchy-Schwartz and Young inequalities

(Ē, ū) ≤ C‖Ē‖2 + C‖ū‖2, (2.35)

where C depends on the constant K in Assumption 2.3.1, (iv). Due to L2(ΓG) ↪→ H1(Ω),
we obtain using the Young inequality again

(Ēs, ū)ΓG ≤ ‖Ēs‖L2(ΓG)‖ū‖L2(ΓG) ≤ C‖Ēs‖2L2(ΓG) + c0

4 ‖ū‖
2
V , (2.36)

with the constant c0 from Assumption 2.3.1, (iii). The boundary term including the depo-
sition velocity is treated similarly,

(w ū, ū)ΓG ≤ C‖w‖2L2(ΓG) + c0

4 ‖ū‖
2
V . (2.37)

Using the identity
T∫

0

d

dt
‖ū(t)‖2 dt = ‖ū(T )‖2 − ‖ū(0)‖2, (2.38)

integrating inequality (2.32) with respect to time, neglecting the positive terms on the
left-hand side, and collecting the above estimates, we infer that

max
t∈Ī
‖ū(t)‖ ≤ C

(
‖ū0‖+ ‖Ē‖+ ‖Ēs‖L2(ΓG) + ‖w‖L2(ΓG)

)
. (2.39)

Since ai > 0, i = 1, . . . , d, this shows estimate (2.29). Integrating inequality (2.32), we
obtain the same type of bound in L2(I;V )d. This fact implies that ‖∂tu‖L2(I;V ∗) is uniformly
bounded. Therefore, u is bounded in X and the assertion follows.

The existence and the boundedness of the solutions of problem (2.26) rely strongly on
the quasi-positivity of the concentrations and the dissipative property. Whereas Assump-
tion 2.3.2, (ii) is always true due to the structure of the used mass kinetics, the dissipativeness
must be considered more carefully. In the following, we verify this crucial property for two
special chemical reaction chains later used in our numerical computations.

EXAMPLE 1

As first example, we consider the Chapman mechanism describing the ozone loss in the
stratosphere. The reaction chain is given by

O2 + hν
k1−→ O +O (2.40)

O +O2 +M
k2−→ O3 +M (2.41)

O3 + hν
k3−→ O +O2 (2.42)

O +O3
k4−→ O2 +O2 (2.43)
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Here, M is a nonreactive species stabilizing the ozone O3. We denote the unknowns by
u1 = [O3], u2 = [O], and u3 = [O2], where the square brackets stand for the corresponding
concentration values. Accordingly to the used mass kinetics the nonlinearities are given by

f1(u) = k2u2u3 − k3u1 − k4u1u2, (2.44)
f2(u) = 2k1u3 + k3u1 − k2u2u3 − k4u1u2, (2.45)
f3(u) = −k1u3 − k2u2u3 + k3u1 + 2k4u1u2. (2.46)

Due to the high concentration of oxygen in comparison to the concentrations of other species,
it is assumed to be constant over time, cf. Jacob [62]. Consequently, there holds u3 = const
and f3(u) = 0. Using this steady state approximation and adding up the nonlinearities
fi(u), i = 1, 2, 3, we infer dissipative property given in Assumption 2.3.2, (iv). For the
numerical test involving this reaction mechanism, we refer to Chapter 6, Section 6.6.

EXAMPLE 2

In the second example, we consider a reaction chain describing the ozone loss in Polar
regions, which includes six atmospheric constituents interacting with each other in four
chemical reactions. The corresponding reaction chain is given by

Cl +O3
k1−→ ClO +O2 (2.47)

ClO +NO
k2−→ Cl +NO2 (2.48)

NO +O3
k3−→ NO2 +O2 (2.49)

NO2 +O2 + hν
k4−→ NO +O3 (2.50)

In this case the unknowns are denoted by u1 = [Cl], u2 = [O3], u3 = [ClO], u4 = [NO], u5 =
[NO2], and u6 = [O2]. The nonlinear reaction terms read as follows:

f1(u) = −k1u1u2 + k2u3u4, (2.51)
f2(u) = −k1u1u2 − k3u4u2 + k4u5u6, (2.52)
f3(u) = −k2u3u4 + k1u1u2, (2.53)
f4(u) = −k2u3u4 − k3u4u2 + k4u5u6, (2.54)
f5(u) = −k4u5u6 + k2u3u4 + k3u4u2, (2.55)
f6(u) = −k4u5u6 + k1u1u2 + k3u4u2. (2.56)

In this case, we obtain
6∑
i=1

fi(u) = 0,

and, thus, dissipative assumption 2.3.2, (iv) is fulfilled with the constant C = 0. For the
corresponding numerical calculations, we refer to Chapter 5, Section 5.5.
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CHAPTER 3

Finite Element Discretization

In this chapter, we treat the discretization of the weak form of problem (2.26) by the
Galerkin finite element method. We begin in Section 3.1 with the temporal discretization and
introduce discontinuous Galerkin (dG) and continuous Galerkin (cG) methods. The spatial
discretization is done by the continuous finite element method described in Section 3.1.
Since the resulting equations are convection-dominated, they must be stabilized. To this
end, we consider two stabilization schemes. The first residual-based streamline upwind
Petrov-Galerkin scheme (SUPG), introduced in Subsection 3.3.1, allows to treat hyperbolic
equations with the presented continuous finite elements. The second scheme is the local
projection stabilization method (LPS) presented in Subsection 3.3.2.

3.1. Time discretization

This section is devoted to the temporal discretization of problem (2.26). First, we consider
the discontinuous Galerkin method, which uses discontinuous trial and test functions. The
second method uses continuous trial and discontinuous test functions and is called continuous
Galerkin method.

To introduce the semi-discretization in time, we choose time points tm for 0 ≤ m ≤M ,
such that

0 = t0 < · · · < tm < · · · < tM = T.

Then, we partition the time interval Ī = [0, T ],

Ī = {t0} ∪ I1 ∪ · · · ∪ Im ∪ · · · ∪ IM ,

with subintervals Im := (tm−1, tm] of length km := tm− tm−1. The discretization parameter
k is given as a piecewise constant function by k|Im = km, for m = 1, . . . ,M . On the
subintervals Im, we define the following semi-discrete spaces Xr

k and X̃r
k , for r ∈ IN0:

Xr
k :=

{
vk ∈ C(Ī , H) ; vk|Im ∈ Pr(Im, V ), m = 1, . . . ,M

}
,

X̃r
k :=

{
vk ∈ L2(Ī , V ) ; vk|Im ∈ Pr(Im, V ), m = 1, . . . ,M, and vk(t0) ∈ H

}
,

where Pr denotes the space of polynomials up to degree r on Im with values in V . Thus,
Xr
k consists of functions which are continuous and piecewise polynomial with respect to

time. This space is used as trial space in the continuous Galerkin method. The space X̃r
k

consists of functions that may have discontinuities at the borders of the subintervals Im.
The space is used as trial and test space in the discontinuous Galerkin method and as test
space in the continuous Galerkin method.
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tm  1 tm

Im  1

uk

k,m
-

k,m
+

-

[uk]m

u

tm+1

- 

Figure 3.1: Notation of discontinuous functions uk in the case r = 1

DISCONTINUOUS GALERKIN METHOD

To account for possible discontinuity of a function uk ∈ X̃r
k at time points tm, we introduce

the notation

u+
k,m := lim

ε↓0
uk(tm + ε), u−k,m := lim

ε↓0
uk(tm − ε), [uk]m := u+

k,m − u
−
k,m,

i.e., u+
k,m and u−k,m are the limits “from above” and “from below” at time tm, respectively,

while [uk]m is the corresponding "jump" of uk at tm , see Figure 3.1.

Then, the dG(r) semi-discretization of problem (2.26) seeks uk ∈ X̃r
k , such that

M∑
m=1

(∂tuk, φ)Im + a(uk)(φ) +
M−1∑
m=0

([uk]m, φ+
m) + (u−k,0, φ−0 ) = (u0, φ−0 ) ∀φ ∈ X̃r

k . (3.1)

Here, (u, φ)Im is defined correspondingly to (u, φ)I

(u, φ)Im :=
∫
Im

(u(t), φ(t)) dt.

CONTINUOUS GALERKIN METHODS

The cG(r) discretization of problem (2.26) can be stated directly: Find uk ∈ Xr
k , such

that
(∂tuk, φ)I + a(uk)(φ) + (uk(0), φ−0 ) = (u0, φ−0 ) ∀φ ∈ X̃r−1

k . (3.2)

3.2. Discretization in space

In this section, we present the discretization in space of the semi-discretized problems
defined above by the continuous Galerkin finite element method. To this end, we consider
the discretization with usual bi-/trilinear H1-conforming elements as explained in standard
literature; see, e.g., Ciarlet [25].

We consider two or three dimensional shape-regular meshes Th = {K} consisting of
quadrilateral or hexahedral non-degenerate cells K, which constitute a non-overlapping
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3. FINITE ELEMENT DISCRETIZATION

covering of the computational domain Ω. The discretization parameter h is defined as a
cellwise constant function by setting h|K := hK with the diameter hK of the cell K. We
construct continuous V -conforming finite element spaces V s

h by

V s
h := {v ∈ C(Ω̄ ∩ V ) ; v|K ∈ Qs(K), K ∈ Th}. (3.3)

Here, Qs(K) consists of shape functions obtained via iso-parametric transformations of
bi/trilinear polynomials in Q̂s(K̂) defined on the reference cell K̂ = (0, 1)n, n = 2, 3. The
space of functions on the reference cell is given by

Q̂s(K̂) := span
{

n∏
i=1

xαii ; αi ∈ {0, 1, . . . , s}
}
.

The space Qs is defined using the transformation TK : K̂ → K as

Qs(K) =
{
v : K → IR ; v ◦ TK ∈ Q̂s(K̂)

}
.

To ease local mesh adaptation, we allow “hanging nodes” (at most one per face or edge)
where the corresponding “irregular” nodal values are eliminated from the system by linear
interpolation of neighboring regular nodal values (see Figure 3.2).

refinement

coarsening

Figure 3.2: Mesh refinement and coarsening using “hanging nodes”.

In order to use the meshes locally varying in time, we follow the procedure described in
Meidner [81] and Becker [11]. Thus, we associate with each time point tm a triangulation
T mh and a corresponding finite element space V s,m

h ⊆ V . By these means, we introduce the
fully discrete space-time finite element spaces

X̃r,s
k,h :=

{
ukh ∈ L2(I,H) ; ukh| ∈ Pr(Im, V s,m

h ), m = 1, . . . ,M, and ukh(0) ∈ V s,0
h

}
.

Due to the choice of the spaces V s,m
h , there holds the inclusion X̃r,s

k,h ⊆ X̃r
k .
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Using the definitions of these spaces the cG(s)dG(r) discretization of problem (2.26) seeks
ukh ∈ Xr,s

k,h satisfying

M∑
m=1

(∂tukh, φ)Im + a(ukh)(φ) +
M−1∑
m=0

([ukh]m, φ+
m) + (u−kh,0, φ−0 ) = (u0, φ−0 ) ∀φ ∈ X̃r,s

k,h. (3.4)

The formulation of the corresponding cG(s)cG(r) discretization on dynamically changing
meshes in time is more involved. In this case, we must ensure the global continuity in time
of functions in the trial space. To this end, we follow the approach described in Becker [11].
We choose {τ0, τ1, . . . , τr} to be a basis of Pr(Im, IR) satisfying

τ0(tm−1) = 1, τ0(tm) = 0, and τi(tm−1) = 0, i = 1, . . . , r.

Next, we define the spaces

Xr,s,m
k,h := span

{
τiui ; u0 ∈ V s,m−1

h , ui ∈ V s,m
h , i = 1, . . . , r

}
.

By the help of these spaces, we define the trial space for the cG(s)cG(r) discretization as

Xr,s
k,h :=

{
ukh ∈ C(Ī , H) ; ukh|Im ∈ X

r,s,m
k,h , m = 1, . . . ,M

}
.

Thus, the definition of Xr,s,m
k,h ensures the continuity in time of all functions in Xr,s

k,h.

With these preparations the cG(s)cG(r) discretization seeks ukh ∈ Xr,s
k,h, such that

(∂tukh, φ)I + a(ukh)(φ) + (ukh(0), φ−0 ) = (u0, φ−0 ) ∀φ ∈ X̃r−1,s
k,h . (3.5)

3.3. Stabilization

It is well known that the Galerkin discretizations are not appropriate for convection-
dominated problems since the computed solution usually exhibits global spurious oscillations.
For enhancing the stability and the accuracy, we need a stabilized formulation of the discrete
equations. In this section, we present two types of the stabilization. The first is a residual-
based stabilization technique and the second is the local projection stabilization scheme. In
both methods an additional stabilization term is added to the fully discrete formulations.

3.3.1. Residual based stabilization

One of the most widely used stabilization approaches is the streamline upwind Petrov
Galerkin method (SUPG) first proposed in Hughes & Brooks [59]. The additional terms in
this case are given by

sSUPG(ukh)(ψ) =
M∑
m=1


∫
Im

∑
K∈Th

(∂tukh +∇ · (D∇ukh) + v∇ukh + f − E, δK,mvkh∇ψ)K

 .
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3. FINITE ELEMENT DISCRETIZATION

The term (v∇ukh, v∇ψ) is a streamline diffusion term. The other terms are due to the
consistency of the method, i.e., the additional terms vanish for the continuous solution. The
cellwise stabilization parameter δK,m is defined as

δK,m = δ0
h2
K

‖D‖K + hK‖v‖K + hK
km

. (3.6)

For details on the choice of this parameter δK,M , we refer to Franca & Frey [40] or Braack
et al. [21]. In our numerical computations, we set δ0 = 0.3.

Consequently, the stabilized discrete formulation for the cG(s)dG(r) discretization reads
as follows: Find ukh ∈ X̃r,s

k,h, such that

M∑
m=1

(∂tukh, φ)Im + a(ukh)(φ) + sSUPG(ukh, φ) +
M−1∑
m=0

([ukh]m, φ+
m)

+ (u−kh,0, φ−0 ) = (u0, φ−0 ) ∀φ ∈ X̃r,s
k,h.

(3.7)

The corresponding formulation for the cG(s)cG(r) discretization seeks ukh ∈ Xr,s
k,h, such

that

(∂tukh, φ)I + a(ukh)(φ) + sSUPG(ukh, φ) + (ukh(0), φ−0 ) = (u0, φ−0 ) ∀φ ∈ X̃r−1,s
k,h . (3.8)

The disadvantage of this stabilization method from implementational point of view is the
appearance of second order derivatives in the stabilization terms which do not vanish for
finite element methods of higher order. Furthermore, this scheme is not symmetric and, thus,
two approaches “optimize-then-discretize” and “discretize-then-optimize” lead to different
first order optimality conditions for optimization problems. It is difficult to choose a priori
the approach leading to the more accurate solution. However, this stabilization scheme
allows to treat hyperbolic problems discretized by continuous finite element methods, see
Chapter 6 for a computational example.

3.3.2. Local projection stabilization

Another technique to stabilize the finite element discretizations of convection dominated
problems is the local projection stabilization (LPS) originally proposed for the Stokes prob-
lem by Becker & Braack [13]. For the definition of the method, we introduce an interpolation
operator Ih : V s

h → Ṽ s
h into a subspace Ṽ s

h ⊆ V s
h which is given by

Ṽ s
h =

{
V 1

2h for s = 1,
V 1
h for s = 2.

The nodal interpolation operator onto the mesh T2h in the case s = 1 can be easily computed
using the patch structure of the mesh. Additionally, we define a fluctuation operator

π : V s,m
h → V s,m

h , π := id−Ih.
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The defined operators can be extended in time by setting pointwise

(πukh)(t) := πukh(t).

The additional stabilization terms are given by

sLPS(ukh, φ) :=
M∑
m=1

∫
Im

smh (ukh(t), φ(t)) dt, (3.9)

where
smh (ukh, φ) :=

∑
K∈Th

(v · ∇(πukh), δK,mv · ∇(πφ))K . (3.10)

The cellwise defined parameter δK,m is given in the same way as in (3.6).

Consequently, the stabilized discrete formulation for the cG(s)dG(r) discretization reads
as follows: Find ukh ∈ X̃r,s

k,h, such that

M∑
m=1

(∂tukh, φ)Im + a(ukh)(φ) + sLPS(ukh, φ) +
M−1∑
m=0

([ukh]m, φ+
m)

+ (u−kh,0, φ−0 ) = (u0, φ−0 ) ∀φ ∈ X̃r,s
k,h.

(3.11)

The corresponding stabilized discrete formulation for the cG(s)cG(r) discretization seeks
ukh ∈ Xr,s

k,h, such that

(∂tukh, φ)I + a(ukh)(φ) + sLPS(ukh, φ) + (ukh(0), φ−0 ) = (u0, φ−0 ) ∀φ ∈ X̃r−1,s
k,h . (3.12)

The advantage of this method is that the nonphysical derivative with respect to time is
avoided. Furthermore, the stabilization of optimization problems leads to symmetric first
order optimality systems. Compared to the SUPG scheme this method is not consistent.
However, the additionally introduced error is of the same order as the discretization error.

3.4. Solution aspects

Due to the discontinuity of the test functions the presented discretizations lead to the
Padé schemes. Thus, the temporal discretization scheme dG(r) for r = 0 uses piecewise
constant test and trial functions in time and consequently ∂tukh|Im = 0.

We introduce the notation Um := u−kh,m for m = 0, 1, . . . ,M , and obtain the set of discrete
equations for all φ ∈ V s,m

h

cG(s)dG(0) discretization:

m = 0 :
(U0, φ) = (u0, φ)
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3. FINITE ELEMENT DISCRETIZATION

m = 1, . . . ,M :
(Um, φ) + kmā(Um)(φ) = (Um−1, φ)

Here, we have evaluated the temporal integrals on the right-hand side by the box rule.
Thus, we obtain the backward Euler method which is known to be a first order strongly
A-stable Padé scheme. This time stepping scheme is dissipative and provides the damping
of high-frequency error components. However, in Eriksson & Johnson [33] it was shown, that
the approximation of the temporal integrals by the box rules has disadvantages compared
to the exact evaluation of the integrals. Thus, especially for long time integrations, the use
of higher order quadrature is advisable.

The use of piecewise linear trial functions in time, that is r = 1, leads to the Crank-
Nicolson scheme if the temporal integrals are approximated by the trapezoidal rule. Here,
we use the notation Um := ukh,m and obtain for all φ ∈ V s,m

h

cG(s)cG(1) discretization:

m = 0 :
(U0, φ) = (u0, φ)

m = 1, . . . ,M :

(Um, φ) + km
2 ā(Um)(φ) = (Um−1, φ)− km

2 ā(Um−1, φ)

The Crank-Nicolson scheme is known to be of the second order and has only little dissipa-
tion. However, it is not strongly A-stable so that it suffers from instabilities caused by rough
perturbations in the data leading to the loss of regularity. This defect can be overcome by
means of a sample damping procedure which preserves the order of discretization and does
not increase the computational costs. For a detailed discussion of this issue, we refer to
Rannacher [96].

Each time step of both discretization schemes requires the solution of quasi-stationary
nonlinear system. They are solved by the means of the inexact Newton method. For the
inner iteration we employ either the Krylov subspace methods such as the Generalized
Minimal Method (GMRES) as described in Saad [102] or a multigrid iteration. For the
latter choice, we use the strategy described in Becker & Braack [9] in order to obtain the
optimal complexity. For more details, we refer to Chapter 6.
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CHAPTER 4

Atmospheric Inverse Problem

In this chapter, we consider an inverse problem modeling the transport of chemical species
in the Earth’s atmosphere. Since the formulation of parameter identification problems
depends on the ingredients of the problem, we first give a short overview about the existing
techniques used for observation of atmospheric composition. Here, we concentrate mainly
on the remote sensing methods. The obtained observations are often further used as input
parameters by radiative transfer models, which are introduced in Section 4.2.

The main uncertain factors in modeling the atmospheric transport of chemical species
are the sources in the free atmosphere and near the Earth’s surface. This gives a rise to
introduce parameters that scale the modeled source and sink terms, such that the solution
of the problem matches the available observations as well as possible. This leads to the
formulation of a calibration problem. In order to present a rather general analysis, we treat
the initial concentrations as a further unknown parameter of the system.

It is important to know the stability properties of the resulting inverse problem in order
to obtain reliable approximations of the solution. So in Section 4.3, we analyze the problem
under consideration and show that even in the case of provided distributed observations
the problem is ill-posed in the sense of Hadamard. To this end, we show that the inverse
of the corresponding operator is discontinuous, and the solution of the problem does not
continuously depend on the data. As a result, small errors in the provided observations can
be arbitrarily largely amplified. Consequently, we need some kind of stabilization. For that
reason, the next chapter is devoted to the regularization methods.

We close this chapter by showing the differentiability properties of the so-called parameter-
to-solution mapping in Section 4.4 and give explicit representations of the derivatives. These
are used in the analysis of regularization methods, on the one hand, and for the construction
of the numerical methods, on the other.

4.1. Atmospheric retrieval techniques

In this section, we review the most important atmospheric retrieval techniques. Thereby,
we concentrate mainly on remote sensing algorithms. These methods derive the atmospheric
composition by analyzing the absorption properties of the radiative transfer and are dis-
tinguished depending on the platform, the radiation source, and sounding geometry. Thus,
ground-based systems provide local measurements, whereas space-borne instruments can
measure global distributions of atmospheric species. The obtained spectral distribution is
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4.1. ATMOSPHERIC RETRIEVAL TECHNIQUES

then used for further calculations, e.g., in radiative transfer models in order to deduce the
concentrations of atmospheric constituents.

The measurements of the atmospheric composition are performed by analyzing the ra-
diative absorption properties of chemical species. The radiation is characterized by its
wavelength. In this regard the atmospheric species absorb the energy at different wave-
lengths. The methods for remote sensing differ in their dependence on the radiative source.
Instruments based upon thermal emission operate in the long wavelength range. In this case,
the atmospheric profile of chemical species is deduced from thermal images showing the
temperature emission of molecules. Methods that utilize solar radiation operate in the short
wavelength region. The concentrations are determined by the scattering and absorption
properties of the species. Thus, ozone molecules absorb solar radiation strongly at short
wavelengths in the range between 290 and 330 nm. This implies that if the measurement is
performed by a space-borne spectrometer the photons cannot pass through the ozone layer.
On the other hand, for longer wavelengths the protons can reach lower altitudes before the
absorption process begins. This also allows to scan the atmosphere as a function of altitude,
see also Zdunkowski, Trautmann & Bott [123].

Retrieval methods are further classified into active and passive. Active remote sensing
techniques such as lidar (light detection and ranging) use laser pulses which are emitted and
then collected by a detector. A network of ground-based lidar stations such as EARLINET
(The European Aerosol Lidar Network) or SHADOZ (Southern Hemisphere Additional
Ozonesondes Network) can provide dense spatially and temporally distributed chemical and
meteorological atmospheric fields, see Rocadenbosch et al. [100] and Thomson et al. [115],
respectively. Another source of local distributed measurements are coordinated field cam-
paigns (see, e.g., Hall [51], Emmons et al. [29], Su et al. [112]). In this case, it is possible to
perform the so-called in-situ measurements when the atmospheric composition is directly
analyzed onboard of an aircraft or a balloon. These measurements are often used in order to
validate the observations that are obtained from other sources or by numerical computations.

Passive remote sensing systems are positioned mainly onboard of satellites and use nat-
ural sources of radiation such as sun light and provide near real-time measurements. The
instruments measure the radiation of the sunlight transmitted, reflected and scattered by
the Earth’s atmosphere or reflected by the surface. An example of such instrument is the
GOME-2 (Global Ozone Monitoring Experiment 2) launched in 2006 onboard of the satellite
ERS-2, which measures the atmospheric ozone, trace gases, and ultraviolet radiation. The
form of the observations retrieved by such systems depends on the geometry of viewing. In
this sense, we distinguish between nadir, limb, and occultation modes. In the nadir viewing
the scanning is performed in down-looking direction. The resulting information is then given
in form of integrated column densities. Limb sounding analyzes the radiative absorption for
a range of tangential to the Earth paths with different vertical distributions. The retrieved
information represents the vertical profile of atmospheric composition. The observational
geometry in occultation mode is similar to limb but with sun or moon as light sources.
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Thus, this monitoring is used during the sun and moon rise and set events. Some of the
space-borne systems such as SCIAMACHY (Scanning Imaging Absorption Spectrometer for
Atmospheric Chartography) and TES (Tropospheric Emission Spectrometer) can combine
different monitoring geometries. This limb-nadir matching enables the reconstruction of
three-dimensional concentration fields, see, e.g., Noël et al. [88] and Bowman et al. [20]. We
note that atmospheric remote sensing is a challenging task since many trace gases such as
CO and NO2 show weak absorption properties.

4.2. Radiative transfer models

The spectral information obtained by remote sensing techniques is used in further compu-
tations in order to deduce the concentrations of atmospheric constituents. The most retrieval
techniques rely upon the solution of radiative transfer models, see Doicu, Trautmann &
Schreier [27]. This results in the formulation of inverse problems which must be solved for
specific chemical species.

The radiative transfer models take into account such processes as photon absorption,
scattering, and emission processes. The form of the equation can be derived analogously
to the continuity equation for the mass in fluid mechanics. In the following, we consider a
general form of the radiative transfer model employed in atmospheric applications for the
reconstruction of concentrations of trace gases. For a detailed description of all involved
processes in radiative transfer and modeling aspects, we refer to Zdunkowski, Trautmann
& Bott [123].

We consider a medium Ω ⊂ IRn, n = 2, 3, which can represent a part of the atmosphere.
We denote by Iν = I(x, ν) the radiation intensity, where x denotes the spatial variable
and ν the frequency. The nonstationary form of radiative transfer equation for the radiation
intensity is given by

1
vc
∂tIν + n · ∇Iν + σe,νIν −

σs,ν
4π

∫
S2

P ′(τ, n)Iν dτ = fν , (4.1)

where n is the unit vector pointing in the direction of the solid angle dτ of the unit
sphere S2, vc the propagation speed of photons, and P ′ the phase function. The function
σs,ν = σs,ν(x, ν) is the scattering coefficient, and σe,ν = σe,ν(x, ν) denotes the extinction
coefficient given as the sum of absorption and scattering coefficients

σe,ν = σa,ν + σs,ν .

The scattering coefficient describes the absorption properties of the specific gas in the
atmosphere. The source function fν describes the change of photons due to emission. In
view of high values of propagation speed the term including the time derivative is usually
neglected in atmospheric applications.
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For a black body the source term is given in terms of the Planck function B = B(Θ, ν)
which depends on the local temperature and the frequency

fν(x, ν) = σaB(Θ, ν). (4.2)

The absorption coefficient can be related to the species by

σa,ν =
∑
i

κi(x, ν)ci(x) + b(x, ν),

where b is the volume absorption coefficient, κi and ci the absorption cross sections and
concentration profile for a gas, respectively.

The scattering can be neglected in the case of the clear sky environment. The radiative
transfer equation in this case reads as follows:

n · ∇Iν + σa,νIν = σaBν . (4.3)

However, in the presence of clouds the scattering becomes to play an important role. For
the boundary conditions the incoming radiative transfer is prescribed. Thus, we impose

Iν(x) = I in(x), (4.4)

on the inflow part of the boundary ΓI = {x ∈ Γ ; n · nΓ < 0}, where nΓ denotes the
outward pointing unit normal vector.

We introduce the space

Z :=
{
Iν ∈ L2(Ω) ; n · ∇xI ∈ L2(Ω)

}
. (4.5)

Then, the weak formulation of problem (4.3) reads: Find Iν ∈ Z, such that

(n · ∇Iν , φ) + (σa,νIν , φ) = (σaBν , φ) ∀φ ∈ L2(Ω). (4.6)

The above problem can be solved using the Galerkin discretization as described in Chapter 3.
Since the system is hyperbolic, it needs to be stabilized. To this end, the SUPG stabilization
can be employed. For more details on the numerical treatment and modeling aspects of the
forward problem, we refer to Kanschat et al. [70] and Meinköhn et al. [84].

To reconstruct the unknown concentration profile c(x), corresponding inverse problem
must be solved. However, for weakly absorbing trace gases the retrieval techniques based on
the radiative transfer models yield only integrated quantities. In the case of nadir sounding
mode, we obtain so-called vertical column densities, i.e., the concentrations are integrated
over the height. In the limb operational mode, we obtain slant column densities, which
means that concentrations are integrated over paths of light. For technical and theoretical
details concerning the reconstruction of unknown concentration with the help of Laplace
transformation, we refer to Bal & Ren [6].
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In the following, we assume to be given either integrated or distributed form of measure-
ments. In this case, we must take into account that the observations are contaminated by
noise due to the instrumental accuracy and approximative solution of the radiative transfer
equation. Furthermore, as shown the form of the radiative transfer model depends on the
local cloud coverage. Neglecting scattering may result in errors in measurements which are
stronger than the signal. To this end, it is customary first to analyze the supplied cloud
maps. The analysis can be accomplished by the means of the image processing techniques
such as image segmentation. The study of the supplied cloud coverage images results in a
large amount of information needed to be processed, and, thus, makes the use of adaptive
techniques unavoidable. We consider this issue in Chapter 6, Section 6.2, where the mini-
mization of the so-called Mumford-Shah functional leading to the segmentation of clouds
is considered. Numerical calculations of the inverse problem corresponding to the radiative
transfer model (4.6) aiming at the identification of the unknown profile c(x) are performed
in Chapter 6, Section 6.4.

4.3. Analysis of the inverse problem

The main uncertain factors in modeling of transport of atmospheric constituents are the
emissions in the free atmosphere and the surface sources. In this section, we consider the
calibration of problem (2.26). Here, we restrict ourselves to the case where the parameters
are only space dependent. In order to present a rather general analysis, we treat the initial
concentration of system (2.26) as a further unknown parameter. The aim of this section is
to show that the resulting inverse problems are ill-posed in the sense that the inverse of the
corresponding solution operator is not continuous. Consequently, small data in the available
observations may be amplified arbitrarily.

First, we postulate the calibration problem as an operator equation. To this end, we
introduce the measurement operator

C : X → Y,

u 7→ g,

which maps the function u ∈ X into the measurement space Y . Here, the space X is
defined accordingly to (2.24), and the choice of the space of measurements Y depends on
the given particular observations. Then, we consider the following inverse problem: Given
observations gδ ∈ Y find (u, µ, β, χ) ∈ X ×Q, such that

∂tu−∇ · (D∇u) + v · ∇u = f(u) + µ(x)E(u, t, x) in ΩT ,
u = uin on ΣI ,

D ∂nu = 0 on ΣO,
D ∂nu− w u = β(x)Es(u, t, x) on ΣG,

u(0) = χ(x) in Ω,
C(u) = gδ in ΩT ,

(4.7)
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for unknown concentrations of chemical species u = (u1, . . . , ud)T , unknown calibration pa-
rameters µ = (µ1, . . . , µd′)T and β = (β1, . . . , βd′)T , and initial conditions χ = (χ1, . . . , χd′)T
with d′ ≤ d. The upper index δ in the overspecification condition C(u) = gδ corresponds
to the noise level, i.e., we have perturbed observations satisfying

‖g − gδ‖Y ≤ δ. (4.8)

In the following, we will show that even in the case of distributed measurements the above
inverse problem is ill-posed. Thus, we assume that we are given measurements in ΩT , for
example, from a lidar network or as a solution of a radiative transfer model. In this case
the observation operator is given as identity C = id. Since only function values and not
derivative values can be measured, we set

Y := L2(ΩT )d. (4.9)

Next, we define

Q := Q1 ×Q2 ×Q3, Q1 := L∞(Ω)d′ , Q2 := L∞(ΓG)d′ , Q3 := Q1. (4.10)

The corresponding weak form of the inverse problem (4.7) reads as follows: Given obser-
vations gδ ∈ Y find u ∈ û+X and q := (µ, β, χ) ∈ Q, such that

(∂tu, φ)I + (D∇u,∇φ)I + (v · ∇u, φ) + (u(0), φ(0)) = (f(u), φ)I
+(µ(x)E(t, x), φ)I + (w u+ β(x)Es(t, x), φ)ΣG + (χ(x), φ(0)) ∀φ ∈ X,

C(u) = gδ.

(4.11)

Here, û ∈ W 1,0
2 (ΩT )d represents again the inflow boundary condition, that is û = uin on

the inflow boundary ΣI .

For this weak formulation, we define the parameter-to-solution mapping

S : Q→ X,

q 7→ u(q),
(4.12)

which maps the parameter vector q ∈ Q to the corresponding solution u ∈ X. Finally, we
introduce the forward operator F as the composition

F : Q→ Y, F = C ◦ S. (4.13)

With these preparations problem (4.7) can be equivalently rewritten as the following non-
linear operator equation

F (q) = gδ. (4.14)

The next lemma states the continuity properties of the parameter-to-solution mapping S.
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Lemma 4.3.1. Let p, q ∈ Q. Then, there exists a constant c > 0, such that

‖F (q)− F (p)‖Y ≤ c‖q − p‖Q. (4.15)

Proof. We follow closely the proof given in Tröltzsch [118] and Neitzel & Vexler [85].

We denote by u := F (q) and ū := F (p). The difference y := u− ū fulfills the equation

(∂ty, ϕ)I + (D∇y,∇φ)I + (v · ∇y, φ)I + (y(0), φ(0)) = (f(u)− f(ū), φ)I
+ ((µ− µ̄)E, φ)I + ((β − β̄)Es, φ)ΓG + (χ− χ̄, φ(0)) ∀φ ∈ X.

(4.16)

By the main theorem of calculus for vector-valued functions, we obtain

fξ(t, x) := f(u)− f(ū) =
1∫

0

∂uf(ū+ ξ(u− ū)) dξ y, (4.17)

which is componentwise bounded in L∞(ΩT ) due to Proposition 2.3.1. Thus, problem (4.16)
is equivalent to the linear system of equations

(∂ty, φ)I + (D∇y,∇φ)I + (v·∇y, φ)I + (fξy, φ)I + (y(0), φ(0)) = ((µ− µ̄)E, φ)I
+ ((β − β̄)Es, φ)ΣG + (χ− χ̄, φ(0)) ∀φ ∈ X.

(4.18)

The reaction term and the right-hand side of the system are bounded in L∞(ΩT ), and so
the unique solvability follows from the result in Fitzgibbon et al. [39]. The assertion follows
analogously as in Proposition 2.3.1.

The next result shows two important properties of the operator F characterizing the
stability of the atmospheric inverse problem.

Proposition 4.3.1. Operator F (·) defined in (4.13) is weakly sequentially closed and
compact.

Proof. First, we show that the operator F is weakly sequentially closed. To this end,
let (qn)n∈IN be a sequence, such that

qn ⇀ q weakly in Q. (4.19)

Furthermore, we assume that the sequence (un)n∈IN given by F (qn) = un satisfies

un ⇀ u weakly in X. (4.20)

Then, we must show that Fq = u.

We consider the sequence yn = f(un). From Proposition 2.3.1, we follow that un is bounded
in Y ∩ L∞(ΩT )d. This implies the existence of a weakly convergent subsequence (ynk)k∈IN .
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We denote this subsequence by (yn)n∈IN again. Next, we reformulate problem (4.7) and
consider the following linear parabolic system

(∂tun, φ)I + (D∇un,∇φ)I + (v · ∇un, φ)I + (un(0), φ(0)) = (Rn, ϕ)I
+ (w un, φ)ΣG + (χn, φ(0)) ∀φ ∈ X.

(4.21)

Here, the right-hand side is given by

(Rn, φ)I := (yn, φ)I + (µnE, φ)I + (βnEs, φ)ΣG .

Due to assumption (4.19) the term Rn converges weakly in Y ×Q1 ×Q2

(R, φ)I = (y, φ)I + (µE, φ)I + (β Es, φ)ΣG .

Analogously, we obtain the convergence u0
n ⇀ χ weakly in Q3. Since the mapping Rn 7→ un

is linear and continuous, we have the weak convergence of un to ū ∈ X with the space X
defined in (2.24). From the compact embedding W (0, T ) ↪→↪→ L2(ΩT ) (see the Aubin-Lions
lemma 2.3.1), we may deduce the strong convergence

un → ū in Y. (4.22)

From equality (4.17) and ‖un‖L∞(ΩT ) ≤M , we conclude

‖f(un)− f(ū)‖I ≤ L(M)‖un − ū‖I . (4.23)

Using the above inequality, putting (un, qn) into the variational formulation (4.11), and
letting n to go to infinity proves the assertion.

Next, we prove the compactness of the operator F . Let q ∈ Q and (qn)n∈IN be a sequence
in Q satisfying

qn ⇀ q weakly in Q.

Then, we will to show that the image of Fqn is pre-compact in Y .

Since q is bounded in Q, it is also bounded in L2(Ω)d′ × L2(ΣG)d′ × L2(Ω)d′ . The
operator F is weakly sequentially closed, and so we can define the sequence (Fqn)n∈IN given
by F (qn) = un. By the estimates in Proposition 2.3.1, we obtain

‖Fqn‖X ≤ C‖qn‖Q, (4.24)

with a constant depending on E, Es and the domain Ω. The assertion follows from the
Aubin-Lions lemma 2.3.1.

The result of the above proposition implies that the local inverses of F are discontinuous,
see Engl et al. [32]. Consequently, problem (4.11) is ill-posed, and small errors in the ob-
servations can be arbitrarily amplified. An analogous situation occurs in the case of given

36



4. ATMOSPHERIC INVERSE PROBLEM

integral overdetermination condition, where the measurement operator and space are given
by

C(u(t, x)) =
∫
Ω

u(t, x) dx ∈ Y, Y := L2([0, T ])d. (4.25)

Since the operator C is linear and continuous, the corresponding forward operator F is
compact. As a consequence, we need some kind of regularization. One possibility of the
stabilization of the problem is the restriction of the definition domain of F to a compact
set, see Rösch [101]. In this case the inverse F−1 is continuous as soon as it exists due to
the Arzela-Ascoli theorem. However, this kind of the regularization can hardly be analyzed
and yields no qualitative stability estimates. As a remedy, we consider in the next chapter
construction and application of special regularization methods and show the stability of the
regularized solutions.

4.4. Differentiability properties

In this section, we analyze the differentiability properties of the parameter-to-solution
mapping S defined in (4.12). This is needed to state the stability estimates for the parameter
variables, on the one hand, and convergence properties of the regularized solutions, on the
other. Additionally, the exact form of the derivatives is used for the construction of numerical
algorithms.

Before stating the differentiability properties of the parameter-to-solution mapping S,
we recall the standard definitions of differentiability, which can be found, for example, in
Jahn [64].

Definition 4.4.1 (Directional derivative). Let X and Y be Banach spaces, X0 ⊂ X

an open subset of X, and f : X0 → Y a given mapping. If for two elements x ∈ X0 and
δx ∈ X the limit

f ′(x)(δx) := lim
ε↓0

f(x+ εδx)− f(x)
ε

exists, then f ′(x)(δx) is called the directional derivative of f at x in direction δx. If the
limit exists for all δx ∈ X, then f is called directionally differentiable at x.

Definition 4.4.2 (Gâteaux derivative). Let X and Y be Banach spaces, X0 ⊂ X an
open subset of X. A directionally differentiable mapping f : X0 → Y is called Gâteaux
differentiable at x ∈ X0 if the directional derivative f ′(x) is a continuous linear mapping
from X to Y . f ′(x) is called Gâteaux derivative of f at x.

Definition 4.4.3 (Fréchet derivative). Let X and Y be Banach spaces, X0 ⊂ X an
open subset of X, and f : X0 → Y a given mapping. Furthermore, let be given an element
x ∈ X0. If there is a bounded linear mapping f ′(x) : X → Y with the property

lim
‖δx‖X→0

‖f(x+ δx)− f(x)− f ′(x)(δx)‖Y
‖δx‖X

= 0,
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then f ′(x) is the Fréchet derivative of f at x, and f is called Fréchet differentiable at x.

Remark 4.4.1. The given definition can be straightforward extended to higher order
derivatives. We give here as example the second order Fréchet derivative. Let f : X0 → Y

be a Fréchet differentiable function at all x ∈ X0. If the mapping f ′ : X0 → L(X, Y ) is
Fréchet differentiable at x ∈ X0, then f is called two times Fréchet differentiable at x. The
second derivative is denoted by (f ′)′(x) := f ′′(x).

In the next proposition, we state the differentiability properties of the parameter-to-
solution mapping.

Proposition 4.4.1. The mapping S defined by (4.12) is two times continuously Fréchet
differentiable.

Proof. The proof goes similarly as in Tröltzsch [118]. We consider the linear system

(∂tu, φ)I + (D∇u,∇φ)I + (v · ∇u, φ)I + (u(0), φ(0)) = (µE, φ)I
+ (w u+ βEs, φ)ΓG + (χ, φ(0)),

(4.26)

and define linear continuous operators as follows:

GΩ : Q1 → û+X ∩ L∞(Ω̄T )d, u = GΩµ for β = 0 and χ = 0,
GΓ : Q2 → û+X ∩ L∞(Ω̄T )d, u = GΓβ for µ = 0 and χ = 0,
G0 : Q3 → û+X ∩ L∞(Ω̄T )d, u = G0χ for µ = 0 and β = 0,

with û = uin on ΣI . By the help of these definitions, we can write the solution of the
nonlinear system (4.11) in operator form

F(u, q)(φ) = (u, φ)I − (GΩ(f(u)− µE), φ)I − (GΓ (w u+ βEs), φ)I − (G0χ, φ(0)) = 0.

The operator F is of class C2 since the corresponding Nemitskii operator u 7→ f(u) is
due to Assumption 2.3.2 two times continuously Fréchet differentiable in L∞(ΩT ), see, e.g.,
Tröltzsch [118]. The linear system of equations

F ′u(u, q)(w, φ) = (p, φ)I , (4.27)

admits for each p ∈ L∞(Ω̄T ) a unique solution, see, e.g., Fitzgibbon et al. [39]. Thus, the
application of the implicit function theorem proves the assertion.

In the following corollar, we give the precise form of the first and second Fréchet deriva-
tives of the parameter-to-state mapping S given in (4.12). In order to keep the resulting
representations readable, we consider a single species.
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Corollar 4.4.1. The first derivative of the parameter-to-state mapping δui = S′(qi)(δqi)
for δqi := (δµi, δβi, δχi) is given by

(∂tδui, φ)I+(D∇δui,∇φ)I + (v∇δui, φ)I + (δui(0), φ(0)) = (f ′i,∗(u)δui, φ)I
+ (w δui, φ)ΣG + (δµiEi, φ)I + (δβiEi,s, φ)ΣG + (δχi, φ(0)) ∀φ ∈ X.

(4.28)

Here, f ′i,∗ denotes the rows of the Jacobian Jij = (∂jfi)di,j=1.

Let ūi := S′(qi)(q̄i) for q̄i := (µ̄i, β̄i, χ̄i) and δui = S′(qi)(δqi) for δqi := (δµi, δβi, δχi).
Then, the second derivative δ2ui := S′′(qi)(q̄, δq) is the solution of

(∂tδ2ui,ϕ)I + (D∇δ2ui,∇φ)I + (v∇δ2ui, φ)I + (δ2ui(0), φ(0))
= (f ′i,∗(u)δ2ui, φ)I − (f ′′i,∗(u)(δui, ūi), φ)I ∀φ ∈ X,

(4.29)

where f ′′i,∗ denotes the tensor Hikl = (∂k∂lf ′i,∗)dk,l=1.

Proof. The first assertion can be proven by taking the total derivative of the weak
formulation (4.11). The form of the second derivative is obtained similarly by differentiating
equation (4.28). Details can be found in Becker [11].
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CHAPTER 5

Regularization of Inverse Problems

In this chapter, we treat the regularization methods for ill-posed problems. Thus, we
consider inverse problems formulated as operator equations where the direct inversion of
the corresponding operator cannot be done in a stable way. To this end, we describe the
approximation of the generalized inverse by a family of regularization operators. This varia-
tional approach is widely used in the field of chemical data assimilation methods (see, e.g.,
Carmichael et al. [24], Zhang & Sandu [124], and Hakami et al. [50]).

We begin in Section 5.1 with a general definition of regularization methods. We consider
some concrete schemes such as ordinary and iterated Tikhonov regularization and Landweber
iteration. The extension of the linear regularization methods to the nonlinear problems is
not obvious. The corresponding regularization concept is described in Subsection 5.1.2.

The performance of any regularization method depends on the choice of the parameters.
Here, we distinguish between a priori, a posteriori, and heuristic parameter choice rules.
One of the most widely used a posteriori methods is the Morozov’s discrepancy principle
introduced in Section 5.2. Usually it is assumed that the operator corresponding to the
inverse problem is given exactly. We consider a special case where the inverse problem under
consideration is perturbed. So in order to access the stability estimates in this case, we
consider a modified Morozov’s discrepancy principle accounting for general perturbations.
In Section 5.2.3, we discuss heuristic parameter choice rules. Although they do not lead in
general to a convergent algorithm, they are approved in many applications to be robust and
accurate regularization schemes for a fixed noise level.

In Section 5.3, we present numerical methods for the solution of the regularized problems.
To this end, we consider the Lagrange-Newton and the direct Newton methods for optimiza-
tion problems. Furthermore, we provide a discussion about the advantages of both solution
algorithms. We close this chapter by presenting a numerical example describing the loss of
ozone due to the chemical reactions with chlorine (Cl) and chlorine monoxide (ClO). Here,
we compare ordinary and iterated Tikhonov regularization methods for different noise levels.

5.1. Regularization methods

In this section, we discuss regularization methods of ill-posed problems. We introduce a
general form of a convergent regularization method leading to the construction of different
algorithms. In this sense, we consider ordinary and iterated Tikhonov regularization schemes.
Furthermore, we introduce the Landweber iteration in which the number of iterations serves
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as regularization parameter. We begin with a general linear operator equation and after
that consider the extensions to nonlinear problems.

5.1.1. Regularization of linear problems

As a prototype for a general linear inverse problem, we consider the following operator
equation

Kq = gδ, (5.1)

with a linear operator K : D(K) ⊂ Q → Y between two Hilbert spaces Q and Y . Here,
gδ ∈ Y represents the noisy data with a noise level δ, such that there holds

‖g − gδ‖Y ≤ δ. (5.2)

In the following, we assume the attainability of the ”exact solution”, that is for the exact
data g ∈ Y there exists an element q† ∈ D(K) satisfying

K(q†) = g. (5.3)

Very often the generalized inverse of K denoted by K† has an unbounded range. In this case
small errors in data can be arbitrarily largely amplified. The main idea of the regularization
methods is to replace problem (5.1) by a sequence of well-posed problems. The generalized
inverse K† is then approximated by a family of regularized operators Rα : Y → Q.

A regularization method consists of two ingredients. First of the sequence of operators
(Rα)α∈IR with the property

lim sup
δ→0

{‖Rα(δ,uδ)g
δ −K†g‖Q ; gδ ∈ Y, ‖g − gδ‖Y ≤ δ} = 0, (5.4)

and secondly of the so-called parameter choice rule α = α(δ, gδ) satisfying

lim sup
δ→0

{α(δ, gδ) ; gδ ∈ Y, ‖g − gδ‖Y ≤ δ} = 0. (5.5)

For the construction of convergent regularization methods, we assume that the regularization
operator has the form

Rαg
δ := yα(K∗K)K∗gδ, yα ∈ C

(
0, ‖K∗K‖

)
, (5.6)

where K∗ is the adjoint operator ofK. Furthermore, we define a parameter-dependent family
of functions

rα(ν) := 1− νyα(ν). (5.7)

Then, it is easy to see that there holds

q† − q = rα(K∗K)q†. (5.8)

Concerning the convergence of a regularization method in the case of given exact data
there holds the following result.
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Proposition 5.1.1. Let for all α > 0 for the functions yα the following conditions be
fulfilled:

|νyα(ν)| ≤ C, (5.9)

with some constant C, and
lim
α→0

yα(ν) = 1
ν
, (5.10)

for all ν ∈ (0, ‖K‖2). Then, for all g ∈ Y there holds

lim
α→0

yα(K∗K)K∗g = q†, (5.11)

where q† is the least-squares solution of problem (5.1).

Proof. The proof can be found, e.g., in Engl, Hanke & Neubauer [30].

Thus, the form of convergent regularization methods depends on the definition of the
function yα which must satisfy the assumptions of the above proposition. For the ordinary
Tikhonov regularization, we set

yα(ν) = 1
ν + α

, (5.12)

and, consequently,
rα(ν) = α

ν + α
. (5.13)

The regularized solution q = qδα is then characterized by the following minimization problem

min
q∈D(K)

j(q) := ‖Kq − gδ‖2Y + α‖q‖2Q. (5.14)

For the iterated Tikhonov regularization there holds

yα(ν) = (ν + α)n − αn
ν(ν + α)n and rα(ν) =

(
α

ν + α

)n
. (5.15)

This is equivalent to the minimization of the following sequence of functionals

min
q∈D(K)

j(q) := ‖Kq − gδ‖2Y + α‖q − qn−1‖2Q for n = 1, 2, . . . , (5.16)

with some initial value q0 ∈ Q. Here, the choice of the initial value is not crucial since
the above functional is strictly convex, and so the optimization problem admits a unique
solution. Consequently, a typical value q0 = 0 can be chosen.

One of the simplest iterative regularization methods is the Landweber iteration which
bases on the normal equation

K∗Kq = K∗g,
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and is given by the fixed-point iteration

qn = qn−1 − ωK∗(Kqn − gδ) for n = 1, 2, . . . , (5.17)

with a damping parameter ω. The standard choice for the initial value is again q0 = 0. Thus,
we obtain

yn(ν) =
n−1∑
j=0

(1− ν)j and rα(ν) = (1− ν)n. (5.18)

In this case only the number of iterations n serves as regularization parameter.

5.1.2. Regularization of nonlinear problems

The extension of the linear regularization methods to nonlinear problems is not obvious.
In this case no general adjoint operators can be defined, see, e.g., Marchuk [79]. We consider
as a starting point the nonlinear operator equation of the form

F (q) = gδ, (5.19)

where F : D(F ) ⊂ Q → Y is a continuous nonlinear operator between two Hilbert spaces
Q and Y , and gδ represents the perturbed observations, such that (5.2) holds. Here, as in
the linear case, we assume the attainability of the solution, i.e., the existence of an element
q† ∈ D(F ), such that there holds

F (q†) = g. (5.20)

We assume that the nonlinear operator F is given by the composition F = C ◦ S with some
measurement operator C and the parameter-to-solution mapping S corresponding to the
problem

A(q, u) = 0, (5.21)

with a (nonlinear) operator A(·, ·).

Motivated by the linear case the construction of ordinary Tikhonov regularization consists
in replacing equation (5.19) by the optimization problem

min
q∈D(F )

j(q) := ‖F (q)− gδ‖2Y + α‖q − q∗‖Q. (5.22)

In contrast to the linear case the choice of the element q∗ is crucial since in general nonlinear
Tikhonov functionals possess only locally unique solutions. In this situation the concept of
the solution is changed, and we look for the q∗-minimum norm solution, i.e.,

F (q†) = g, (5.23)

and
‖q† − q∗‖Q = min{‖q − q∗‖Q ; F (q) = g}. (5.24)

Such q∗ can incorporate the prior knowledge of the exact solution q†. For the existence of
the solution of the optimization problem (5.22) there holds the following result.
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Proposition 5.1.2. Let F : Q → Y be a continuous weakly sequentially closed op-
erator. Then, for α > 0 there exists a locally unique solution q ∈ Q of the optimization
problem (5.22).

Proof. Since j(q) ≥ 0 there exists an infinum

j∗ := inf
q∈Q

j(q). (5.25)

Consequently, we can define a minimizing sequence (qi)i∈IN , that is

j(qi)→ j∗ as i→∞.

Next, we consider the set
Qad := {q ∈ Q ; j(q) ≤ c},

which is nonempty since
j(q∗) = ‖F (q∗)− gδ‖2Y <∞.

Furthermore, there holds
α‖q − q∗‖2Q ≤ c ∀q ∈ Qad.

From here and α > 0, we may deduce that there exists a constant K > 0, such that

‖q‖Q ≤ K.

Since Q is a Hilbert space, we can extract a weakly convergent sequence which is also denoted
by (qi)i∈IN , such that

qi ⇀ q in Q as i→∞.

The sequence (F (qi))i∈IN is bounded due to

‖F (qi)− gδ‖2Y ≤ c.

Consequently, there exists a weakly convergent subsequence (also denoted by (F (qi))i∈IN ),
such that

F (qi) ⇀ y in Y as i→∞.

Since F is weakly sequentially closed, we deduce that y = F (q) and, as a consequence,

j(q) = lim
i→∞

j(qi) = j∗.

This implies the result.

We want to apply this result to the atmospheric inverse problem (4.11) regularized by the
ordinary Tikhonov method. The corresponding problem reads

min
q∈Q
‖F (q)− gδ‖Y + α‖q − q∗‖2. (5.26)
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Here, the operator F is given by (4.13), and gδ represent either distributed or integrated
measurements that are perturbed. In the case of distributed measurements the space Y is
chosen accordingly to (4.9). We set Y as in (4.25) for the integrated observations. There
holds the following result.

Corollar 5.1.1. Problem (5.26) admits a locally unique solution q = (µ, β, χ) ∈ Q
with corresponding optimal state u ∈ X. Here, the spaces Q and X are defined accordingly
to (4.10) and (2.24), respectively.

Proof. The assertion follows immediately from Lemma 4.3.1 and Proposition 4.3.1.

We note that for the calibration parameters µ(x) and β(x) the selection criteria can be
chosen as µ∗(x) = 1 and β∗(x) = 1, respectively. The prior knowledge for the unknown
initial condition χ(x) is usually given in form of corresponding perturbed observations. It
can be shown that the regularized solution q = qα depends continuously on the data for a
fixed value α, and the minimizer of (5.22) converges towards a q∗-minimum-norm solution
of (5.19). The corresponding results can be found in Engl, Hanke & Neubauer [30].

The solution of the nonlinear problem (5.19) or (5.26) can be approximated analogously
to the linear case by iterative regularization algorithms. So the operator equation (5.19) can
be solved by Newton method which requires in each step the solution of the following linear
problem

F ′(qn)(qn+1 − qn) = gδ − F (qn). (5.27)

However, the problem of inversion of the derivative F ′(·) is in general ill-posed so that the
above equation must be further stabilized by regularization methods for linear problems.
This leads to the Levenberg Marquardt and iteratively regularized Gauss-Newton methods.
Alternatively, problem (5.19) can be solved by the nonlinear Landweber iteration given by

qk = qk−1 + ωF ′(qk−1)∗(gδ − F (qk−1)), (5.28)

with a damping parameter ω. A detailed analysis of these iterative forms of the regularization
can be found in Kaltenbacher, Neubauer & Scherzer [68].

The iterated Tikhonov regularization method applied to the nonlinear equation (5.19)
or (5.26) is given by the following sequence of optimization problems

min
q∈D(F )

jn(q) := ‖F (q)− gδ‖2Y + α‖q − qn−1‖2, n = 1, 2, . . . (5.29)

In this case the initial value q0 = q∗ serves analogously to the ordinary Tikhonov functional
as a prior guess for the unknown parameters. The existence and stability properties in this
case can be stated analogously to the ordinary Tikhonov regularization method.
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5.2. Parameter choice rules

The characterization of a convergent regularization method in Proposition 5.1.1 is given in
the case of provided exact data g. For the perturbed observations there holds the following
error estimate

‖qδα − q†‖ ≤ ‖Rαgδ −Rαg‖+ ‖Rαg − q†‖
≤ δ‖Rα‖+ ‖RαF (q†)− q‖.

(5.30)

The second term on the right-hand side converges to zero for α→ 0. However, if the range of
the corresponding operator is not closed, then, due to the Banach-Steinhaus theorem there
holds ‖Rα‖ → ∞ as α tends to zero. Thus, in order to construct a convergent regularization
method in the case of perturbed measurements, the right-hand side of (5.30) must be
minimized. This leads to the construction of appropriate parameter choice rules for α. The
parameter choice rules with α = α(δ), depending only on the noise level δ, are called a priori
parameter choice rules. If α also depends on actual data gδ, then, α = α(δ, gδ) is called a
posteriori parameter choice rule. Noise-free rules, i.e., if α depends only on δ, cannot lead
to a convergent regularization method as it was shown in Bakushinksii [5].

5.2.1. A priori parameter choice rules

The convergence of any regularization method can be arbitrarily slow if the range of the
operator is not closed, cf. Schock [106]. In order to guarantee optimal convergence rates of
the regularized solutions to the exact solution, certain assumptions need to be made. For
linear problems most often it is assumed that the following general source condition must
be fulfilled:

q† = Bζw, w ∈ Q, ‖w‖Y ≤ ρ, (5.31)

with a bounded linear operator B. The most common choice is to use B = (K∗K)ζ with
parameter ζ ∈ (0, 1

2). We assume that there exist constants c and ζ0 such that the following
condition holds:

νζ |rα(ν)| ≤ cαζ , 0 ≤ ζ ≤ ζ0, (5.32)

with the function rα(·) defined in (5.7). The constant ζ0 is called a qualification of the
regularization method. With assumptions (5.31) and (5.32), we obtain the following error
estimates:

‖q − q†‖Q ≤ cαζ and ‖Kq −Kq†‖Y ≤ cαζ+
1
2ρ. (5.33)

The choice of the regularization parameter αζ+ 1
2 = c δ leads to the optimal convergence rate

‖qδ − q†‖Q ≤ cδ
2ζ

2ζ+1 , (5.34)

see, e.g., Engl, Hanke & Neubauer [30] or Tautenhahn & Jin [113]. The qualification of the
ordinary and iterated Tikhonov regularization methods are ζ0 = 1 and ζ0 = n, respectively.
This provides the best possible convergence rates O(δ 2

3 ) and O(δ
2n

2n+1 ), respectively, cf. Engl,
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Hanke & Neubauer [30]. The obtained convergence rates cannot be further improved and
correspond to the so-called saturation levels of the regularization methods.

In order to show the convergence rates for the regularization methods applied to the
nonlinear problem (5.19), additional assumptions must be made depending on the particular
method. We consider the ordinary Tikhonov regularization applied to problem (5.19). The
next result yields the best possible convergence rate of O(δ 2

3 ) for a specific parameter choice
for α.

Proposition 5.2.1. Let D(F ) be convex and F Fréchet-differentiable with

‖F ′(q†)− F ′(q)‖Y ≤ γ‖q† − q‖Q, (5.35)

in a neighborhood of q† ∈ Q. Furthermore, let the following source condition be satisfied:
There exists an element ω ∈ Y , such that

q† − q∗ = (F ′(q†)∗F (q†))ζω with γ‖ω‖Y < 1 and ζ ∈ [1/2, 1]. (5.36)

Then, for the choice α = O(δ
2

2ζ+1 ), we obtain

‖q − q†‖Q ≤ C(ω, ζ)δ
2

2ζ+1 . (5.37)

Proof. For the proof, we refer, e.g., to Kirsch [71] or Engl, Kunisch & Neubauer [31].

The convergence rates for the iterated Tikhonov regularization and for the Newton-
types methods with corresponding source conditions can be found in Scherzer [104] and
Kaltenbacher et al. [69], respectively. For the convergence analysis of the nonlinear Landwe-
ber iteration, we refer to Hanke et al. [52].

5.2.2. A posteriori parameter choice rules

The result of Proposition 5.2.1 yields the convergence rate O(δ 2
3 ) with a constant C

depending on the smoothness condition (5.36). However, the value of ‖ω‖Y and of ζ in (5.36)
are in general not available. As a consequence, it is impossible to obtain the optimal constant
Copt for the a priori parameter choice rule. Due to this reason in practical applications the
regularization parameter α is usually determined by a posteriori rules. This allows to obtain
optimal convergence rates using only the noise level δ and the calculated approximation.

One of the most widely used a posteriori methods is the Morozov’s discrepancy principle.
It suggests the choice of the regularization parameter α in such a way that the error due to
the regularization is equal to the error due to the observation data. Thus, α is given as the
solution of the following nonlinear equation:

‖F (q)− gδ‖Y = δ. (5.38)
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This choice of the regularization parameter guarantees that, on the one hand, the discrepancy
is equal to the noise level δ and, on the other hand, α is not too small. Thus, this stopping
criterion requires the solution of the inverse problem for several different values of α. The
discrepancy principle used with the ordinary Tikhonov regularization and Landweber method
yields convergence rates for linear and nonlinear problems up to O(δ 1

2 ), see, e.g., Groetsch [47]
or Tautenhahn & Jin [113] and Hanke et al. [52], respectively. However, the regularization
parameter satisfying the discrepancy principle (5.38) may not exist for a general nonlinear
operator. For linear operators the simple condition

‖K(q)− gδ‖Y ≤ δ ≤ ‖gδ‖Y ,

ensures the solvability of equation (5.38), see Kirsch [71]. In the nonlinear case severe
additional assumptions must be made, see Kravaris & Seinfeld [73]. The assumptions can
be weakened using the modified discrepancy principle

τ1δ ≤ ‖F (q)− gδ‖Y ≤ τ2 δ for some 1 < τ1 ≤ τ2. (5.39)

For more details, we refer to Ramlau [95].

Usually the stability estimates for the a posteriori parameter choice rules are derived
under the assumption that the exact solution of the operator equation is available. However,
perturbations can occur due to errors in the model or by the need of the discretization. The
case of the perturbed Tikhonov functional has been considered in Neubauer & Scherzer [86].
We extend the presented stability estimates by using the Morozov’s discrepancy principle
as stopping rule. To this end, we consider problem (5.19) with a perturbed operator Fη. We
introduce the Tikhonov functional

jη(qη) := ‖Fη(qη)− gδ‖2Y + α‖qη − q∗‖2Q, (5.40)

where qη denotes the perturbed regularized solution. The exact Tikhonov functional j(·)
with corresponding regularized solution q are given by equation (5.22). As before, the q∗-
minimum-norm solution is denoted by q†. We assume that the perturbation of problem (5.22)
is given by η, such that there holds

jη(qη)− j(q) ≤ η. (5.41)

The error term is kept of a rather general form. The regularization parameter α is then
determined as the solution of the scalar nonlinear equation

‖F (qη)− gδ‖Y = δ +√η. (5.42)

For this perturbed discrepancy principle, we obtain the following result concerning the
convergence rate.
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Proposition 5.2.2. Let D(F ) be convex, and let F be Fréchet differentiable with

‖F ′(q†)− F ′(q)‖Y ≤ γ‖q† − q‖Q, (5.43)

for all q ∈ D(F ). Moreover, let the following source condition be satisfied: There exists an
element ω ∈ Y , such that

q† − q∗ = F ′(q†)∗ω with γ‖ω‖Y < 1. (5.44)

For the noise level and the perturbation of the operator F let (5.2) and (5.41) hold. If the
regularization parameter α is chosen in such a way that the discrete discrepancy equation
(5.42) is fulfilled, we obtain the following error estimate

‖qη − q†‖Q ≤ c(δ + η1/2)1/2.

Proof. The proof goes along the lines for general a priori parameter choice rules for
α provided in Engl, Hanke & Neubauer [30] (see also Engl, Kunisch & Neubauer [31] and
Tautenhahn & Jin [113]).

Due to the minimizing property of q there holds

jη(qη) ≤ ‖F (q)− gδ‖2Y + α‖q − q∗‖2Q + η

≤ ‖F (q†)− gδ‖2Y + α‖q† − q∗‖2Q + η

≤ δ2 + η + ‖q† − q∗‖2Q.
(5.45)

As in Engl, Hanke & Neubauer [30], we obtain

j(qη) ≤ δ2 + η + α
(
‖q† − q∗‖2Q + ‖qη − q†‖2Q − ‖qη − q∗‖2Q

)
= δ2 + η + 2α〈q† − q∗, q† − qη〉Q.

(5.46)

Condition 5.43 implies that

F (qη) = F (q†) + F ′(q†)(qη − q†) + rα,

with
‖rα‖Q ≤

γ

2‖qη − q
†‖2Q.

We obtain from the source condition (5.44)

‖F (qη)− gδ‖2Y + α‖qη − q†‖2Q ≤ δ2 + η + 2α〈ω, F ′(q†)(q† − qη)〉Y .

Combining the above estimates leads to

‖F (qη)−gδ‖2Y +α‖qη−q†‖Q ≤ δ2 +η+2αδ‖ω‖Y +2α‖ω‖Y ‖F (qη)−gδ‖Y +αγ‖ω‖‖qη−q†‖2Q,
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and, thus, to

‖F (qη)− gδ‖2Y + α(1− γ‖ω‖Y )‖qη − q†‖2Q ≤ δ2 + η + 2αδ‖ω‖Y + 2α‖ω‖Y ‖F (qη)− gδ‖Y .

Taking into account the discrete discrepancy equation (5.42) gives

α(1− γ‖ω‖Y )‖qη − q†‖2Q ≤ δ2 + η + 2αδ‖ω‖Y + 2α‖ω‖Y (δ +√η)− (δ +√η)2

≤ 2α‖ω‖Y (2δ +√η).
(5.47)

This together with the smallness assumption in the source condition (5.44) implies the
assertion.

We note that the source conditions are rather difficult to verify for nonlinear inverse
problems, especially for parameter identification for partial differential equations. If using
the Morozov’s discrepancy principle for the atmospheric inverse problem (4.11), then under
the assumption that (5.44) is satisfied, we may conclude from the above result that large
errors in the parameters can be expected in the case of perturbations in wind field in regions
with large gradients of the concentration. The other source of the error may come from the
discretization if meteorological fields are given with a rather coarse resolution. In this case
the discretization error can dominate over the noise level.

5.2.3. Heuristic parameter choice rules

All convergent regularization methods in the case of the perturbed measurements rely upon
a known observation level. In applications with unknown noise level data-driven methods
must be used. We just mention for completeness some of the most popular heuristic parameter
choice rules.

An interesting approach is described by Kunisch & Zou [74] and refined in Xie & Zou [121],
where the model functions are used in order to estimate the noise level ‖g − gδ‖Y . Another
popular heuristic method is the L-curve criterion proposed by Hansen [54], which bases
on the Tikhonov regularization. In this method the norm of the regularized solution is
plotted versus the norm of the data term for a number of parameters α in a logarithmic
scale. The corresponding graph has under certain conditions the L-shape. The value of
the regularization parameter α is then determined by choosing the point of maximum
curvature. This choice is a good compromise between the data fitting and the penalization
the norm of the reconstruction. This method is widely used due to its simple structure
and applicability to statistical ill-posed problems, i.e., when δ represents Gaussian white
noise where the Morozov’s discrepancy principle fails. Other widely used methods are the
quasi-optimality criterion developed by Tikhonov & Arsenin [116] and Hanke-Raus rule, see
Hanke & Raus [53]. The first one chooses a sequence of geometrically decaying regularization
parameters and minimizes the distance between two consecutive regularized solutions, see
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Tikhonov & Arsenin [116]. The second one chooses the regularization parameter α by
minimizing

1√
α
‖F (q)− gδ‖Y .

Although as shown in Bakushinskii [5] such heuristic methods in the worst case do not
converge, they can lead to good reconstructions in many practical applications.

5.3. Algorithmic aspects

In this section, we describe the solution algorithms in order to treat the discussed inverse
problems regularized by the ordinary or iterated Tikhonov-type methods. For simplicity, we
rewrite problem (5.22) in form of a general optimal control problem

min
{u,q}∈V×Q

J(u, q) = J1(u) + J2(q), (5.48)

subject to the constraint
A(u, q)(φ) = 0 ∀φ ∈ V, (5.49)

with cost functional J(·, ·). The semilinear form A(·, ·)(·) = A(t; ·, ·) denotes a possibly
time-dependent nonlinear equation in variational form corresponding to (5.21). We prefer
this notation in order to treat elliptic and parabolic problems simultaneously. The state
space V and the control space Q are assumed to be Hilbert spaces.

There are mainly two classes of algorithms for the solution of optimal control problems of
the type (5.48, 5.49) corresponding to the indirect and direct approaches. In the first case
the optimization problem is converted into a boundary value problem which can be solved,
for example, by Lagrange-Newton method. The second approach treats problem (5.48, 5.49)
directly. This can be accomplished by the Newton method for optimization problems applied
to the equivalent reduced formulation of the optimal control problem

min
q∈Q

j(q) = J(S(q), q), (5.50)

with the reduced cost functional j(·) : Q→ IR. Here, we denote by S : Q→ V the solution
operator of the state equation

A(S(q), q)(φ) = 0 ∀φ ∈ V. (5.51)

5.3.1. Newton-type methods

In order to introduce the Lagrange-Newton method, we employ the Lagrange principle
and define the Lagrangian L : V ×Q× V → IR by

L(u, q, λ) := J(u, q)− A(u, q)(λ), (5.52)
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where λ ∈ V denotes the associated adjoint state. We assume that there is a locally unique
minimum {u, q} ∈ V ×Q of problem (5.48,5.49) which is characterized as corresponding to
a stationary point {u, q, λ} ∈ V × Q × V of the Lagrangian. Thus, the triplet {u, q, λ} ∈
V ×Q× V is determined by the first-order optimality condition (so-called KKT system)

L′u(u, q, λ)(·) = 0 ⇔ J ′1(u)(ψ)− A′u(u, q)(ψ, λ) = 0 ∀ψ ∈ V, (5.53)
L′q(u, q, λ)(·) = 0 ⇔ J ′2(q)(ϕ)− A′q(u, q)(ϕ, λ) = 0 ∀ϕ ∈ Q, (5.54)
L′z(u, q, λ)(·) = 0 ⇔ −A(u, q)(φ) = 0 ∀φ ∈ V, (5.55)

where we call (5.53) the adjoint, (5.54) the control, and (5.55) the state equation. In order
to define the Lagrange-Newton method, we need the Hessian operator of the Lagrangian
L(·, ·, ·). For x = {u, q, λ}, we define

H(x) =

L
′′
uu(x)(·, ·) L′′uq(x)(·, ·) L′′uλ(x)(·, ·)
L′′qu(x)(·, ·) L′′qq(x)(·, ·) L′′qλ(x)(·, ·)
L′′λu(x)(·, ·) L′′λq(x)(·, ·) 0

 . (5.56)

Then, the Newton increment δxn = {δun, δqn, δλn} is given by the linear system

H(xn)

δu
n

δqn

δλn

 = −

L
′
u(xn)
L′q(xn)
L′λ(xn)

 , (5.57)

and the Newton update without damping reads

{un+1, qn+1, λn+1} = {un, qn, λn}+ {δun, δqn, δλn}. (5.58)

The direct solution approach solves the optimization problem (5.50) directly. We consider
the linearization of this problem. The starting point is again the first order optimality
condition, which in this case reads

j′(q)(ϕ) = 0 ∀ϕ ∈ Q. (5.59)

The direct Newton method applied to this problem requires the solution of the linear system

j′′(q)(δq, ϕ) = −j′(q)(ϕ) ∀ϕ ∈ Q. (5.60)

In order to calculate the second derivatives of the reduced functional j(·), we define the
so-called additional adjoint equation: Find δz ∈ X, such that

A′u(u, q)(ψ, δz) = −Auu(u, q)(δu, ψ, λ)−A′′qu(u, q)(δq, ψ, λ)+J ′′1 (u)(δu, ψ) ∀ψ ∈ V, (5.61)

for a direction δq ∈ Q, where δu = S′(q)(δq).

Using the above definitions the form of the derivatives of the reduced functional is given
in the following proposition.
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Proposition 5.3.1. By the help of the adjoint state λ ∈ V defined by (5.53) the first
derivative of the reduced cost functional in direction δq ∈ Q is given by

j′(q)(δq) = α(q − q∗, δq)Q − A′q(u, q)(δq, λ). (5.62)

Further, let δu = S′(q)(δq) be the solution of the tangent equation

A′u(u, q)(δu, φ) + A′q(u, q)(δq, φ) = 0 ∀φ ∈ V, (5.63)

and δz ∈ V the solution of the additional adjoint equation (5.61). Then, the second derivative
is given by

j′′(q)(δq, ϕ) = α(δq,ϕ)Q − Aqq(u, q)(δq, ϕ, λ)
− A′′uq(u, q)(δu, ϕ, λ)− A′q(u, q)(ϕ, δz).

(5.64)

Proof. The proof is given by direct calculations.

We now summarize the direct Newton algorithm for optimization problems:

Newton algorithm for optimization problems

(1) Choose an initial q0 and set k = 0.
(2) Compute uk, i.e., solve the state equation (5.55).
(3) Compute λk, i.e., solve the adjoint equation (5.53).
(4) Compute δuk, i.e., solve the tangent equation (5.63).
(5) Compute the derivative j′(qk)(ϕ) according to (5.62).
(6) Compute the derivative j′′(qk)(δq, ϕ) according to (5.64).
(7) Compute update δq, i.e., solve the linear system (5.60).
(8) Set qk+1 = qk + ωδq.
(9) Stop if stopping criterion is satisfied. Else set k = k + 1

and go to (2).

Both presented solution algorithms correspond to the inexact Newton methods since the
linear systems in (5.57) and (5.60), respectively, are usually solved by some iterative solver
only approximately. For the direct approach in the case of distributed unknown parameters
Krylov-space methods using only matrix-vector products are used. By this way the expensive
procedure of the assembling the Hessian is avoided. The most common choice for stopping
criteria for these Newton-type methods uses the first-order optimality condition. Thus, for
the indirect approach the residual of system (5.53, 5.54, 5.55) is to be reduced by a sufficiently
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small factor, which depends on the particular application. For the direct Newton method
for optimization problems usually

‖j′(qk)‖Q < TOL, (5.65)

is claimed.

There are various pros and cons of the indirect approach. It leads to a system with a
saddle-point character. This makes the solution process for the linear solver more involved.
Especially in nonstationary situations arising large algebraic systems require the use of
special space-time solvers. Furthermore, the iterates are infeasible with respect to the state
equation. Although the presented direct approach requires the solution of additional auxiliary
problems, it leads to a more stable solution algorithm. However, the structure of the Lagrange-
Newton method allows for the separation of the errors in inner and outer iterations with
respect to a quantity of interest, as it is presented in Chapter 6. Moreover, this solution
approach allows the use of multigrid method leading to an algorithm with the optimal
complexity. For more details concerning this issue, we refer to Hinze et al. [57]. For a further
discussion about the relations between the both approaches, we refer to Becker [11] and
Meidner [81].

5.3.2. Morozov’s discrepancy principle

Next, we consider the implementation of the unperturbed Morozov’s discrepancy principle
for Tikhonov-type regularization methods. For the iterated Tikhonov regularization this
reads as follows:

k∗(δ, gδ) := inf{k ∈ IN ;
∣∣∣ ‖F (qk)− gδ‖ < δ}, (5.66)

i.e., the iteration is stopped if the error reaches the noise level. This stopping criterion
requires only one computation of the residual in each iteration. The parameter α in (5.29)
can be chosen to be constant, so the simplest choice is to set α = 1. Another possibility
is to use a geometric sequence of the regularization parameters αn = αpn−1 for an initial
starting value α and 0 < p < 1. The latter case corresponds to the so-called nonstationary
iterative Tikhonov method and can lead to a smaller k∗.

The calculation of the optimal parameter α for the ordinary Tikhonov regularization via
Morozov’s discrepancy principle requires an additional optimization process. Thus, in order
to solve the discrepancy equation (5.42), we introduce the scalar function

i(α) := ‖F (q)− gδ‖2 − δ2. (5.67)

So i(α) = 0 is equivalent to equation (5.42). This can be solved, for example, by the
standard Newton method. To this end, we consider the evaluation of the derivatives of the
function i(α). We denote by x = (u, q, λ) and introduce an auxiliary Lagrange functional
M = IR× V ×Q× V → IR

Mα(x, x1) = ‖F (q)− gδ‖2Y + L′x(x)(x1).

55



5.4. ALGORITHMIC ASPECTS

Here, we use the notation x1 = (u1, q1, λ1). The form of the derivative i′(α) is given in the
following proposition.

Proposition 5.3.2. Let y = (u, q, λ, u1, q1, λ1) be a stationary point ofM. Then, there
holds

i′(α) = −2α2(q − q∗, q1)Q. (5.68)

Proof. The proof can be found in Griesbaum, Kaltenbacher & Vexler [45].

For the calculation of the stationary point y the following problem must be solved

Lxx(x)(δx, x1) = −i′(u)(δu) ∀δx = (δu, δq, δz) ∈ V ×Q× V. (5.69)

This can be seen by taking the total derivative of the auxiliary LagrangianM. Problem (5.69)
is linear. Thus, using the computed approximation x the computation of the derivative i′(·)
corresponds to one additional step of the Newton-type algorithm and, consequently, can
be performed almost without additional effort. The algorithm for the computation of the
optimal parameter choice for α = α(δ, gδ) is given as follows:

Calculation of regularization parameter α

(1) Choose initial α0 > 0 and set k = 0.
(2) Solve problem (5.48, 5.49) approximately by a Newton-

type method.
(3) Solve the additional auxiliary problem (5.69).
(4) Apply one Newton step to the Morozov’s discrepancy equa-

tion
αk+1 = αk − i(αk)

i′(αk) .

(5) Solve problem (5.48, 5.49) approximately with calculated
α(δ, gδ).

(6) Stop if stopping criterion is satisfied. Else set k = k + 1
and go to (2).

The presented algorithm can be extended by accounting for the model perturbations. Each
step of the Newton iteration requires the solution of the optimization problem (5.48, 5.49).
This suggests the use of adaptive techniques for the optimization procedure. This can be
accomplished by using optimized meshes as presented in Kaltenbacher, Kirchner & Vexler [67].
For the case of perturbations due to the discretization and the inexact solution of algebraic
systems, we refer to Chapter 6.
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5.4. Discrete equations for atmospheric inverse problem

As shown in the previous section Newton-type algorithms require the solution of the
auxiliary problems. In this section, we derive the form of these additional problems for
the atmospheric inverse problem (4.11) and describe their discretization. The discretization
of the related problems such as radiative transfer model is handled in numerical exam-
ples. Furthermore, the presented solution algorithms can be directly transferred to the
discrete level. The equations are stabilized by the LPS scheme for which the two approaches
”discretize-then-optimize“ and ”optimize-then-discretize“ coincide.

In order to shorten the notation, we redefine the spatial semilinear form ā(·)(·) given
in (2.25) by introducing the dependency on the unknown parameter q := (µ, β, χ) ∈ Q

ā(u, q)(φ) := (D∇u,∇φ)+(v · ∇u, φ)− (f(u), φ)− (µ(x)E(u, t, x), φ)
− (wu+ β(x)Es(u, t, x), φ)ΓG .

(5.70)

Here, we use the spaces Q and X defined accordingly to (2.24) and (4.10), respectively. Next,
we introduce the semilinear form a : X ×Q×X → IR

a(u, q)(φ) :=
∫
I

ā(u(t), q)(φ(t)) dt. (5.71)

With these preparations the atmospheric inverse problem (4.11) can be written in the
following compact form: Find u ∈ û+X and q := (µ, β, χ) ∈ Q, such that

(∂tu, φ)I + a(u, q)(φ) + (u(0), φ(0)) = (χ, φ(0)) ∀φ ∈ X,
C(u) = gδ.

(5.72)

Next, we state the precise form of the equations related to the inverse problem (4.11)
describing the transport of atmospheric constituents needed by the Newton-type methods
as described in Subsection 5.3.1. To this end, we note that the semilinear form A(t; ·, ·)(·)
defined in (5.49) reads in this case as follows:

A(t;u, q)(φ) = (∂tu, φ) + a(u, q)(φ) + (u(0), φ(0))− (χ, φ(0)). (5.73)

The functionals are given by

J1(u) = ‖C(u)− gδ‖2Y and J2(q) = α‖q − q∗‖2, (5.74)

with an appropriately chosen regularization parameter α.

We first derive the weak form of the adjoint equation corresponding to (5.53). This is
given as follows: Find λ ∈ X, such that

−(ψ, ∂tλ)I + a′u(u, q)(ψ, λ) + (ψ(T ), λ(T )) = 2(C(u)− gδ, ψ) ∀ψ ∈ X, (5.75)
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for the vector-valued functions λ = (λ1, . . . , λd)T and ψ = (ψ1, . . . , ψd)T . Using integration
by parts and observing that v · n = 0 on the ground-level part of the boundary ΣG, we
obtain for a species i

a′u(ui, qi)(ψi, λi) = (D∇λi,∇ψi)I − (∇ · (vλi), ψi)I − (f ′i,∗(u)Tλi, ψi)I
+(λi ui, ψi)ΣO − (w λi, ψi)ΣG ,

(5.76)

where f ′i,∗(u) denotes the the i-th row of the Jacobian (∂ifk(u))di,k=1.

The control equation corresponding to (5.54) is given by: Find q := (µ, β, χ) ∈ Q, such
that

a′q(u, q)(ϕ, λ) = J ′2(q)(ϕ) ∀ϕ ∈ Q, (5.77)
where λ ∈ X is the solution of the adjoint problem (5.75). The derivative of the semilinear
form a(·, ·)(·) and the functional J2(·) are given by

a′q(u, q)(ϕ, λ) = (λE(t, x), ϕ)I + (λEs(t, x), ϕ)ΣG + (λ(0), ϕ(0)), (5.78)

and

J ′2(q)(ϕ) = 2α(µ(x)− µ∗, ϕµ) + 2α (β(x)− β∗, ϕβ)ΓG + 2α (χ(x)− χ∗, ϕχ), (5.79)

for all ϕ = (ϕµ, ϕβ, ϕχ) ∈ Q.

The weak form of the tangent equation corresponding to (5.62) obtained by the total dif-
ferentiation of the state equation (5.72) with respect to q in the direction δq = (δqµ, δqβ, δqχ)
reads as follows: Find δu ∈ X, such that

(∂tδu, φ)I + a′u(u, q)(δu, φ) + (δu−0 , φ−0 )
= −a′q(u, q)(δq, φ) + (δqχ(0), φ−0 ) ∀φ ∈ X.

(5.80)

The precise form is given in Corollar 4.4.1 by equation (4.28).

The additional adjoint equation corresponding to (5.61) is given by: Find δz ∈ X satisfying

−(ψ, ∂tδz)I + a′u(u, q)(ψ, δz) + (ψ(T ), δz(T )) = −a′′uu(u, q)(δu, ψ, λ)
− a′′qu(u, q)(δq, ψ, λ) + 2(C′(u)(δu), ψ) ∀ψ ∈ X.

(5.81)

In order to formulate the second derivatives of the semilinear form a(·, ·)(·), we introduce
the tensor Hikl(f(u)) =

(
∂i∂kfl(u)

)d
i,k,l=1

. Then, we obtain for a species i

a′′uu(ui, qi)(δui, ψi, λi) = (Hikl(f(u))λi, ψi). (5.82)

For the mixed second derivative, we obtain a′′qu(u, q)(δq, ψ, λ) = 0.

The unknown parameters q ∈ Q can be discretized using the cG(s)-scheme as for the
state variable as described in Chapter 3 or by cellwise constant functions. In both cases, we
denote the discrete control space by Qd ⊂ Q and the discretized control variable by qσ ∈ Qd.
Other related discrete variables are marked by the index σ. In order to stabilize the discrete
convection-dominated auxiliary problems, we employ the LPS scheme. In the following, we
present analogously as for the state equation two different discretization schemes.
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DISCONTINUOUS GALERKIN METHOD

First, we state the discretization of the above equations by the cG(s)dG(r) discretization
as described in Chapter 3. To this end, we use the stabilization bilinear form sLPS(·, ·) defined
in (3.9).

Adjoint equation: Find λσ ∈ Xr,s
k,h satisfying

−
M∑
m=1

(ψ, ∂tλσ)Im + a′u(uσ, qσ)(ψ, λσ) + sLPS(ψ, λσ)−
M−1∑
m=0

(ψ−m, [λσ]m)

+ (φ−M , λ−σ,M ) = 2(C(uσ)− gδ, ψ) ∀ψ ∈ X̃r,s
k,h.

(5.83)

Tangent equation: Find δuσ ∈ Xr,s
k,h, such that

−
M∑
m=1

(∂tδuσ, φ)Im + a′u(uσ, qσ)(δuσ, φ) + sLPS(δuσ, φ) +
M−1∑
m=0

([δuσ]m, φ+
m)

+ (δu−σ,0, φ−0 ) = −a′q(uσ, qσ)(δq, φ) + (δqχ(0), φ−0 ) ∀φ ∈ X̃r,s
k,h,

(5.84)

for direction δq = (δqµ, δqβ, δqχ) ∈ Qd.

Additional adjoint equation: Find δzσ ∈ X̃r,s
k,h, such that

−
M∑
m=1

(ψ, ∂tδzσ)Im + a′u(uσ, qσ)(ψ, δzσ) + sLPS(ψ, δzσ)−
M−1∑
m=0

(ψ−m, [δzσ]m)

+ (ψ−M , δz−σ,M ) = −a′′uu(uσ, qσ)(δuσ, ψ, λσ) + 2(C′(uσ)(δuσ), ψ) ∀ψ ∈ X̃r,s
k,h,

(5.85)

CONTINUOUS GALERKIN METHOD

Next, we summarize the discretization of the above equations by the continuous Galerkin
method.

Adjoint equation: Find λσ ∈ X̃r−1,s
k,h , such that

−
M∑
m=1

(ψ, ∂tλσ)Im + a′u(uσ, qσ)(ψ, λσ) + sLPS(ψ, λσ)−
M−1∑
m=0

(ψm, [λσ]m)

+ (ψM , λ−σ,M ) = 2(C(uσ)− gδ, ψ) ∀ψ ∈ Xr,s
k,h.

(5.86)

Tangent equation: Find δuσ ∈ Xr,s
k,h, such that

(∂tδuσ, φ)I + a′u(uσ, qσ)(δuσ, φ) + sLPS(δuσ, φ) + (δuσ,0, φ−0 )
= −a′q(uσ, qσ)(δq, φ) + (δqχ(0), φ−0 ) ∀φ ∈ X̃r−1,s

k,h ,
(5.87)

for direction δq = (δqµ, δqβ, δqχ) ∈ Qd.
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Additional adjoint equation: Find δzσ ∈ X̃r−1,s
k,h , such that

−
M∑
m=1

(ψ, ∂tδzσ)Im + a′u(uσ, qσ)(ψ, δzσ)−
M−1∑
m=0

(ψm, [δzσ]m) + (ψM , δzδ,M )

= −a′′uu(uσ, qσ)(δuσ, ψ, λσ) + 2(C′(uσ)(δuσ), ψ) ∀ψ ∈ Xr,s
k,h.

(5.88)

For the derivation of the time-stepping methods involving a general semilinear form
a(·, ·)(·), we refer to Meidner [81].

5.5. Numerical example

In this section, we examine the approximation properties of ordinary and nonstationary
iterated Tikhonov regularization methods and compare the corresponding computational
effort. For this purpose, we consider the chemical reaction chain describing the ozone loss
in Polar region presented in Chapter 2, Example 2. The reaction mechanism includes five
atmospheric constituents interacting with each other in four chemical reactions. The aim of
the computations is to reconstruct all concentrations, whereas the source term and initial
condition of chlorine are unknown. The given integrated measurements are perturbed by
different levels of Gaussian noise. In order to cope with the convection-dominated character,
the equations are stabilized by the local projection method as explained in Chapter 3.

For convenience, we state the reaction chain again:

Cl +O3
k1−→ ClO +O2

ClO +NO
k2−→ Cl +NO2

NO +O3
k3−→ NO2 +O2

NO2 +O2 + hν
k4−→ NO +O3

The reaction rates are given by

k1 = 7.9 · 10−12 cm−3 molec−1 s−1, k2 = 2.7 · 10−11 cm−3 molec−1 s−1,

k3 = 1.8 · 10−15 cm−3 molec−1 s−1, k4 = 10−2 s−1.

The initial concentrations are set to be equal u0
O3 = u0

ClO = u0
NO = u0

NO2 = 107 molec cm3.
For the chlorine the initial concentration is supposed to be unknown, u0

Cl = χ(x). We consider
a time period of one hour. The calculations are carried out in a domain of dimensions
Ω = 6 km × 4 km. Furthermore, we assume an isothermal atmosphere with temperature
Θ = 298 K, such that the dependency of reaction rates on the temperature can be dropped.
Furthermore, we use as diffusivity tensor D = (D11, D22) with D11 = 3 · 10−5 cm2 s−1 and
D22 = 10−4 cm2 s−1. The wind field is given by v = (30 m/s, 10 m/s). As boundary conditions,
we prescribe the pollutant flux for Cl to be 107 molec cm−2 s−1.
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The chemical reaction terms are modeled accordingly to the mass kinetics as described in
Chapter 2 and are given by (2.51) - (2.56). Furthermore, we assume the emission term for
chlorine to be of the following form:

ECl(t, x) = M

2πσ2µ(x) exp
(
−(x− xc)2 + (y − yc)2

2σ2

)
.

Here, the emitted pollutant mass is M = 10 kg. The parameters in the emission term are set
to be σ = 0.3, xc = 0.5, and yc = 1. The unknown profile of the emission µ(x) constitutes
the second unknown parameter in the chemical system.

Thus, as the solution space we chooseX as defined in (2.24) for the unknown concentrations
and Q := L2(Ω)× L2(Ω) for the unknown parameters q := (µ, χ) ∈ Q. We use integrated
observations as overspecification condition. The observation operator C : X → Y and the
measurement space Y are given by

C(ui) =
∫
Ω

ui(t, x) dx ∈ Yi, Yi := L2(I), i = 1, . . . , 6.

In order to calculate the integrated measurements, we solve the corresponding forward
problem on a finer temporal and spatial mesh for the following choice of parameters:

χ†(x) =
{

10−3(x1 + x2) if 0 ≤ x1 ≤ 2,
0 else,

and
µ†(x) = x1 + x2.

The perturbed measurements are given by

gδ = g + δ
6∑

n=1
‖C(ui)‖Yi

r

‖r‖Yi
,

where r denotes the uniformly distributed random noise, g = C(u), and δ the percentage of
the perturbation. We compare the ordinary and iterated Tikhonov regularization methods
for different choices of the noise level δ. The Tikhonov functional is given by

J(u, q) =
6∑

n=1
‖C(ui)− gδi ‖2L2(I) + α‖q − q∗‖.

For the nonstationary iterated Tikhonov regularization, we set for each noise level α0 = δ

which is reduced in each iteration by the factor p = 4
5 . The initial value for the unknown

parameters is chosen accordingly to q0 = 0. For the ordinary regularization, we set also
q∗ = 0.

We solve the inverse problem on a spatial mesh with 3 506 nodes. For the discretization
in time, we divide the interval I = [0, T ] into M = 40 subintervals of equal length. The
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Table 5.1: Ordinary Tikhonov regularization

δ It ‖qσ−q†‖Q
‖q†‖Q α

1.00e-02 5 3.31e-02 2.27e-03
2.00e-02 5 4.54e-01 7.14e-03
4.00e-02 7 6.27e-01 9.48e-03
8.00e-02 8 8.71e-01 1.17e-02

Table 5.2: Iterated Tikhonov regularization

δ It ‖qσ−q†‖Q
‖q†‖Q α

1.00e-02 5 3.41e-02 3.28e-03
2.00e-02 4 4.49e-01 8.19e-03
4.00e-02 4 6.30e-01 1.64e-02
8.00e-02 4 8.69e-01 3.28e-02

problem is then discretized using the cG(1)cG(1)-scheme and solved by the direct Newton
method for optimization problems. The corresponding results are presented in Tables 5.1
and 5.2.

From the second column, we can observe that the nonstationary iterated Tikhonov regu-
larization needs less computational effort almost for each noise level in order to satisfy the
Morozov’s discrepancy principle. Especially for larger noise levels, we can observe a double
work saving. Furthermore, for the ordinary regularization, we need a smaller regularization
parameter α which can influence the stability properties of the employed iterative solver.
However, in the present case, we can conclude that both solution strategies have comparable
approximation properties.
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CHAPTER 6

Adaptivity

The purpose of this chapter is to derive adaptive algorithms for the solution of problems
governed by partial differential equations. The method is based on a posteriori error estimates
which assess the different contributions of the error. Thus, the accuracy in the algebraic
solution process can be balanced with that due to discretization using computable a posteriori
error estimates in which the outer nonlinear and inner linear iteration errors are separated
from the discretization error. This results in effective stopping criteria for the algebraic
iteration, which are elaborated particularly for Newton-type methods.

The concept of adaptivity is well accepted in the context of finite element discretizations,
see, e.g., Verfürth [119], Babuška & Stouboulis [4], Bangerth & Rannacher [7]. However,
usually a posteriori error estimates are developed for the generally unknown exact discrete
solutions. Although, the convergence properties of linear as well as nonlinear iterative meth-
ods such as the multigrid method or the Newton method are discussed in many publications
(see, e.g., Bank & Dupont [8], Bramble [22], and Hackbusch [49]), there are only few results
on a posteriori error estimation of the iteration error, which yield stopping criteria in balance
with the discretization error.

First simultaneous a posteriori error estimates for discretization and iteration errors have
been derived in Becker et al. [14] for the multigrid method applied to the Poisson equation
and in Becker [10] for the Stokes equations. There, the errors are measured with respect to
global L2- and energy norms while the finite element discretization using uniform meshes.
Later, related results for a special finite volume discretization have been derived in Jiranek et
al. [65]. However, in many applications the error measured in global norms does not provide
useful bounds for the error in terms of a given functional, so-called a quantity of interest.
This has led to the concept of “goal-oriented” adaptivity based on duality techniques such
as the Dual Weighted Residual (DWR) method described in Becker & Rannacher [17] and
Bangerth & Rannacher [7]. The application of the DWR method to the simultaneous control
of discretization and iteration errors has been developed in Meidner et al. [82] for various
kinds of linear problems including as simplest model the Poisson equation but also linear
saddle-point problems such as the Stokes system in fluid mechanics and the Karush-Kuhn-
Tucker (KKT) system of linear-quadratic elliptic optimization problems. For the treatment
of eigenvalue problems, we refer to Heuveline & Rannacher [56] and Rannacher et al. [99].

The developed error estimators are mainly based on results already published in Rannacher
& Vihharev [98, 97]. However, we extend the concept presented there to the nonstationary
inverse problems. The goal is to incorporate the iteration method into the adaptive solu-
tion process of a given problem. The developed approach is sufficiently general to include
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6.1. ITERATION ERROR FOR STEADY PROBLEMS

weakly nonlinear diffusion-reaction problems with linear diffusion but nonlinear reaction
terms, Euler-Lagrange equations stemming from image segmentation, and inverse problems
involving radiative transfer models with state constraints. Related results in the context of
energy-norm error control have been derived in El Alaoui et al. [1] for nonlinear monotone
problems and more recently in Ern & Vohralik [35, 36] also for inexact Newton methods.
This chapter is organized as follows: In Section 6.1, we begin with an abstract stationary

problem given in a variational form and derive a posteriori error estimates for a general
fixed-point iteration. On this basis, we propose an adaptive method with balanced error
contributions due to the discretization and the iterative solution. Thereby, we explain the
practical realization of the presented algorithm. In Subsection 6.1.3, we consider a special
case of Newton-type iterations. Here, we exploit the structure of the Newton algorithm
and the DWR method and separate the algebraic error into contributions from the inner
and outer iterations. The reliability and the efficiency of the proposed algorithm is shown
by numerical examples in Section 6.2. The first example is concerned with a special form
of a non-Lipschitz nonlinearity modeling chemical reactions in the case of interactions of
gas-phase chemical species with aqueous surfaces. In the second example, we consider an
application concerned with the denoising and the segmentation of the clouds from satellite
observations. In Section 6.3, we consider general stationary inverse problems regularized by
Tikhonov-type methods. We derive a posteriori error estimates for the resulting optimal
control problems. Furthermore, we discuss the application of the proposed adaptivity concept
to the Landweber iteration. The developed adaptive algorithm is applied in Section 6.4 to
a radiative transfer model. The identification of the unknown concentrations constituting
the reaction term of the equation requires to pose constraints to the state variable. We
show the reliability and efficiency of the proposed adaptive method. We close the chapter by
presenting error estimates for the nonstationary inverse problems. As a numerical example,
we consider in Section 6.6 a chemical reaction chain describing the ozone loss.

6.1. Iteration error for steady problems
In this section, we present a posteriori error estimators for discretization and iteration

errors for a general nonlinear partial differential equation in variational form. Based on
the error estimators, we propose an adaptive algorithm in which the errors due to the
discretization and the iterative solution of the discrete systems are balanced. The adaptive
method is first derived for a general fixed-point iteration and after that extended to inexact
Newton methods. Here, we exploit the structure of the DWR and Newton methods and
separate algebraic error contributions due to the linearization and iterative computations
in the inner iteration.

6.1.1. Iteration error for general fixed-point iteration

We consider an abstract model problem

A(u) = 0 in Ω, u = 0 on ∂Ω, (6.1)
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with a nonlinear elliptic operator A(·) , where Ω is a bounded domain in IRn, n ∈ {2, 3},
with polygonal (polyhedral) boundary ∂Ω. For simplicity, we impose homogeneous Dirichlet
boundary conditions. However, the developed techniques can also be applied to problems
with other types of boundary conditions. For the variational formulation of problem (6.1),
we introduce the usual Sobolev Banach space V := W 1,p

0 (Ω) for 1 < p < ∞ . With the
semilinear form A(·)(·) : V ×V → IR associated to the operator A(·), the weak formulation
of problem (6.1) reads as follows: Find u ∈ V , such that

A(u)(φ) = 0 ∀φ ∈ V. (6.2)

We discretize this problem by a standard finite element method in finite dimensional spaces
Vh × Vh ⊂ V × V resulting in “discrete” problems

A(uh)(φh) = 0 ∀φh ∈ Vh, (6.3)

which are equivalent to systems of nonlinear algebraic equations. Usually the a posteriori
error estimators for the discretization error u− uh are derived under the assumption that
the discrete problems (6.3) are solved exactly. This ensures the crucial property of Galerkin
orthogonality,

A(u)(φh)− A(uh)(φh) = 0, φh ∈ Vh. (6.4)

In contrast, here, we assume that the discrete problems are solved only approximately and
denote the obtained approximate solution in Vh by ũh in contrast to the notation uh
for the “exact” discrete solution. Let the quantity of interest J(u) of the computation be
given in terms of a (nonlinear) functional J(·) : V → IR . Our goal is the derivation of an
a posteriori error estimate with respect to the functional J(·). To this end, we define the
Lagrange functional

L(u, z) := J(u)− A(u)(z),
where z ∈ V ∗ is a solution of the associated linear dual problem

A′(u)(φ, z) = J ′(u)(φ) ∀φ ∈ V. (6.5)

The corresponding discrete dual solution zh ∈ Vh is defined by the equation

A′(uh)(φh, zh) = J ′(uh)(φh) ∀φh ∈ Vh. (6.6)

These problems are also supposed to be uniquely solvable. Then, there holds the following
proposition.

Proposition 6.1.1. Let {ũh, z̃h} ∈ Vh × Vh be approximations to the continuous
solutions {u, z} ∈ V × V ∗ of the primal and dual problems (6.2) and (6.5), respectively,
obtained by any iterative process on the mesh Th . Then, there holds the following error
representation:

J(u)− J(ũh) = 1
2ρ(ũh)(z − z̃h) + 1

2ρ
∗(ũh, z̃h)(u− ũh)

− ρ(ũh)(z̃h) +R(3)
h ,

(6.7)
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with the residual terms

ρ(ũh)(·) := −A(ũh)(·), ρ∗(ũh, z̃h)(·) := J ′(ũh)(·)− A′(ũh)(·, z̃h).

The remainder term R(3)
h is cubic in the primal and dual errors ẽ := u− ũh and ẽ∗ := z− z̃h ,

respectively,

R(3)
h =1

2

1∫
0

{
J ′′′(ũh + s ẽ)(ẽ, ẽ, ẽ)− A′′′(ũh + s ẽ)(ẽ, ẽ, ẽ, z̃h + sẽ∗)

− 3A′′(ũh + sẽ)(ẽ, ẽ, ẽ∗))
}
s(s− 1) ds.

(6.8)

Proof. We set

x := {u, z}, x̃h := {ũh, z̃h}, L(x) := L(u, z), L(x̃h) := L(ũh, z̃h).

With this notation there holds

L(x)− L(x̃h) =
1∫

0

L′(x̃+ s (x− x̃h))(e) ds.

Using the general error representation for the trapezoidal rule

1∫
0

f(s) ds = 1
2(f(0) + f(1)) + 1

2

1∫
0

f ′′(s) s (s− 1) ds,

we conclude
L(x)− L(x̃h) = 1

2L
′(x̃h)(x− x̃h) +R(3)

h ,

with the remainder term R(3)
h given by (6.8). Recalling the particular structure of the

functional L(·) and observing that u satisfies (6.2), we obtain

J(u)− J(ũh) = L(x) + A(u)(z)− L(x̃h)− A(ũh)(z̃h)

= L(x)− L(x̃h)− A(ũh)(z̃h) = 1
2L
′(x̃h)(x− x̃h) +R(3)

h − A(ũh)(z̃h).

The proof is completed by observing that

L′(x̃h)(·) = J ′(ũh)(·)− A′(ũh)(·, z̃h)− A(ũh)(·).

The extra third residual term ρ(ũh)(z̃h) on the right-hand side of (6.7) would vanish
if evaluated for the “exact” discrete solution uh . In the present situation with an only
approximate solution ũh , it will be used for estimating the iteration error.
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6.1.2. Practical realization

The error representation (6.7) involves the unknown errors z− z̃h and u− ũh as weights.
Hence its evaluation requires the generation of reasonable approximations. We approximate
the interpolations errors using the computed approximations z̃h and ũh and patchwise
interpolations into higher-order finite element spaces. To this end, we introduce the linear
operator Πh, which maps the computed solution to the approximations of the corresponding
errors,

Πhz̃h := I
(2)
2h z̃h − z̃h ≈ z − z̃h, Πhũh := I

(2)
2h ũh − ũh ≈ u− ũh.

The piecewise biquadratic (triquadratic) interpolation I
(2)
2h can easily be computed if the

underlying mesh provides a patch structure. That is, one can always combine four adjacent
cells to a macro cell on which the biquadratic (bicubic) interpolation can be defined.

We obtain the following computable error estimator for the discretization error:

ηh := 1
2

∣∣∣ρ(ũh)(Πhz̃h) + ρ∗(ũh, z̃h)(Πhũh)
∣∣∣

= 1
2

∣∣∣A(ũh)(Πhz̃h)− 1
2

(
J ′(ũh)(Πhũh) + A′(ũh)(Πhũh, z̃h)

)∣∣∣. (6.9)

This error representation is used for controlling the discretization error and for steering
mesh refinement. For the latter purpose, the error estimator ηh must be localized to cellwise
contributions. We describe the procedure for the primal residual term ρ(·)(·). The contribu-
tion of the dual residual is computed in the same way. Thus, we consider the nodal basis
{φi, i = 1, 2, . . . , N} of Vh, where N = dim Vh. Letting Z denote the coefficient vector of
zh, we have the representation

zh =
N∑
i=1

φiZi.

We can rewrite the error estimator as ρ(uh)(Πhzh) = 〈Ψ, Z〉 , where 〈·, ·〉 denotes the
Euclidian inner product on IRN and Ψ is given by Ψi := ρ(uh)(Πhφi). However, a direct
localization of this term leads to an overestimation of the error due to the oscillatory behavior
of the residuals. To avoid this, we introduce a filtering operator π : id−Ih2h, where Ih2h is an
interpolation operator in the space of bilinear (trilinear) finite elements defined on patches
and denote by Zπ the coefficient vector of the filtered dual solution πzh ,

πzh =
N∑
i=1

φiZ
π
i .

Then, the properties of π and I
(2)
2h and the linearity of the residual ρ(·)(·) with respect

to the weight imply ρ(uh)(Πhzh) = 〈Ψ, Zπ〉. A further localization leads to nodewise error
indicators

ρ(uh)(Πhzh) =
N∑
i=1

ΨiZ
π
i .
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The contributions of the dual residual are computed in the same way. Thus, we obtain

ηh,i = 1
2 |Z

π
i Ψ

u
i + Uπ

i Ψ
z
i |,

where Uπ
i and Ψyi are defined analogously,

Ψ zi := ρ∗(uh, zh)(Πhφi),

and

πhuh =
N∑
i=1

φiU
π
i .

For the mesh refinement the nodewise contributions ηh,i are shifted to the corresponding
cellwise contributions. Then, these error indicators are used to select the cells which have
to be refined within the adaptive algorithm.

The additional term in representation (6.7) for the total error is used as estimator for the
iteration error:

ηm :=
∣∣∣A(ũh)(z̃h)

∣∣∣, (6.10)

while the cubic remainder R(3)
h is neglected. This results in the error estimator

|J(u)− J(ũh)| ≈ η = ηh + ηm. (6.11)

The estimator ηm for the iteration error vanishes in the limit ũh → uh and will therefore
on each fixed mesh eventually fall below the estimator ηh for the discretization error.
Surprisingly, this is true for any choice of the approximate dual solution z̃h ≈ zh indicating
that the term ηm simply measures the deviation of ũh from “Galerkin orthogonality”, while
the error z̃h − zh only affects the size of the (neglected) remainder term.

Based on estimator (6.11) the algorithm for adaptively balancing discretization and non-
linear iteration errors reads as follows:

Adaptive fixed-point iteration

(1) Choose an initial discretization Th0 and set l = 0.
(2) Choose an initial value u0

hl
and set n = 0 .

(3) Apply one step of the nonlinear iteration unhl → un+1
hl

.
(4) Solve the corresponding discrete dual problem for zn+1

h ,

A′(un+1
h )(φh, zn+1

h ) = J ′(uh)(φh) ∀φh ∈ Vh,

and evaluate the estimators ηn+1
hl

and ηn+1
ml

.
(5) If ηn+1

hl
+ ηn+1

ml
≤ TOL quit.

(6) If ηn+1
ml
≥ κ ηn+1

hl
increment n and go to (3).

(7) Refine Thl → Thl+1 using information from ηn+1
hl

.
(8) Increment l and go to (2).
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As initial value in step (2) of the above algorithm, we use the values from the computations
on the previous mesh, thus avoiding unnecessary iterations on fine meshes. In the numerical
tests below this leads to rather small iteration errors already at the very beginning. We use
an equilibration factor κ = 0.1. This ensures that the local mesh refinement results from the
value of the discretization error estimator. Selecting an even smaller value does not improve
the accuracy of the computed solution but increases the number of iterations. A larger value
can affect the local mesh refinement. In order to reduce the computational work, we save
the value ηhl obtained on the current mesh. On the next finer mesh Thl+1 , we evaluate the
discretization error estimator if for the iteration error estimator there holds ηn+1

ml+1
≤ κ ηn+1

hl
.

6.1.3. Inexact Newton method

As special choice of a fixed-point iteration, we consider an inexact Newton method. Then,
solution process uses the following algorithm:

Adaptive inexact Newton method

(1) Choose an initial discretization Th0 and set l = 0.
(2) Choose an initial value u0

hl
and set n = 0 .

(3) Compute an approximate solution ṽnhl of the correction
equation

A′(unhl)(v
n
hl
, ψ) = −A(unhl)(ψ) ∀ψ ∈ Vhl ,

by any iterative method vn−1
hl
→ vnhl .

(4) Update: un+1
hl

= unhl + ϑn ṽ
n
hl

with some ϑn ∈ (0, 1] .
(5) Compute an approximate solution z̃n+1

hl
of the linear dual

problem

A′(un+1
hl

)(φ, zn+1
hl

) = J ′(un+1
hl

)(φ) ∀φ ∈ Vhl ,

by any iterative method znhl → zn+1
hl

and evaluate the
corresponding error estimators ηn+1

hl
and ηn+1

ml
.

(6) If ηn+1
hl

+ ηn+1
ml
≤ TOL quit.

(7) If ηn+1
ml
≥ κ ηn+1

hl
increment n and go to (3).

(8) Refine Thl → Thl+1 using information from ηn+1
hl

.
(9) Increment l and go to (2).

As initial value for the Newton method in step (2), we use again the result from the
previous coarser mesh, which again leads to rather small iteration errors already at the very
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beginning. The evaluation of the discretization error estimator is done using the strategy
described above.

For the further discussion, we define the following residuals corresponding to the interior
linear iterations in steps (3) and (5) of the above algorithm:

〈rnhl , ·〉 := A′(unhl)(ṽ
n
hl
, ·) + A(unhl)(·),

〈dnhl , ·〉 := A′(un+1
hl

)(·, z̃n+1
hl

)− J ′(un+1
hl

)(·).

For the exact Newton method the linear residual occurring due to the inexact solution
of the correction equations vanishes, i.e., for the inner iterations of the primal and dual
problems there holds 〈rnh , ·〉 ≡ 0 and 〈dnh, ·〉 ≡ 0. We aim at the equilibration of the errors
due to the linearization, the iterative computations in the inner iteration, and the inexact
solution of the dual problem. For this purpose, we consider the difference between two
Newton iterates. For the sake of brevity, we consider a quadratic functional J(·) : V → IR.
Using Taylor expansion and the definition of the dual problem, we obtain

J(un+1
h )− J(unh) = J(unh + ϑnṽ

n
h)− J(unh)

= ϑnJ
′(unh)(ṽnh) + 1

2ϑ
2
nJ
′′(unh)(ṽnh , ṽnh)

= ϑnA
′(unh)(ṽnh , z̃nh)− ϑn 〈dnh, ṽnh〉

+ 1
2ϑ

2
nJ
′′(unh)(ṽnh , ṽnh),

(6.12)

and recalling the structure of the Newton method,

J(un+1
h )− J(unh) =− ϑnA(unh)(z̃nh) + ϑn〈rnh , z̃nh〉 − ϑn 〈dnh, ṽnh〉

+ 1
2ϑ

2
nJ
′′(unh)(ṽnh , ṽnh).

(6.13)

The first term on the right hand side corresponds to the linearization error whereas the
second and the third terms are due to the inexact solution of the correction equation for
the primal problem and the solution of the dual problem. The last term occurs due to the
quadratic structure of the error functional and it dominates over the residual terms of the
linear problems. It vanishes, e.g., if J(·) is linear. Taking into account (6.13), we propose
the following stopping criterion for the linear subiteration:

max{|〈rnh , z̃nh〉|, |〈dnh, ṽnh〉|
}
≤ κηnml

= κ |A(unh)(z̃nh)|. (6.14)

If we consider a linear error functional, we have the following representation for the full
linear iteration error.

Lemma 6.1.1. Let vnh and ṽnh be exact respectively inexact solutions of the correction
equation in the Newton method starting from the preceding iterate unh and with the Jacobi
matrix assembled for unh. Further, let z̃nh be the inexact solution of the corresponding linear
dual problem. Then, for the error in the next “inexact” iterate un+1

h = unh + ϑnṽ
n
h and its
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“exact” analogue ûn+1
h := unh +ϑnv

n
h with respect to a linear functional J(·) : V → IR , there

holds
J(ûn+1

h )− J(un+1
h ) = −ϑn〈rnh , z̃nh〉 − ϑn〈dnh, vnh − ṽnh〉. (6.15)

Proof. By the definition of the Newton method there holds

J(ûn+1
h )− J(un+1

h ) = J(unh + ϑnv
n
h)− J(unh + ϑnṽ

n
h) = ϑnJ(vnh)− ϑnJ(ṽnh).

Now, we use the definition of the dual problem to obtain

J(ûn+1
h )− J(un+1

h ) = ϑnA
′(unh)(vnh , z̃nh)− ϑnA′(unh)(ṽnh , z̃nh)− ϑn〈dnh, vnh − ṽnh〉

= −ϑnA(unh)(z̃nh) + ϑnA(unh)(z̃nh)− ϑn〈rnh , z̃nh〉
− ϑn〈dnh, vnh − ṽnh〉,

which proves the assertion.

Remark 6.1.1. Under the same assumptions as in Lemma 6.1.1 for a quadratic func-
tional there holds

J(ûn+1
h )− J(un+1

h ) = −ϑn〈rnh , z̃nh〉 − ϑn〈dnh, vnh − ṽnh〉

+ 1
2ϑ

2
n

(
J ′′(unh)(vnh , vnh)− J ′′(unh)(ṽnh , ṽnh)

)
.

(6.16)

The error representation (6.15) may be considered as additional justification of the stopping
criterion (6.14). It is valid for any linear solver. If a multigrid method is used, then following
the argument in Meidner et al. [82] the error representation (6.15) can be developed further
into a form, which also allows to adaptively tune the inner smoothing iterations on each
mesh level.

Next, we discuss how the developed adaptive algorithm can be applied to ill-posed problems
regularized by the Landweber iteration. To this end, we consider the nonlinear operator
equation (5.19) formulated as the constraint problem

min
q∈Q

j(q) = ‖Cu− gδ‖2Y , (6.17)

subject to
A(q, u)(ψ) = 0 ∀ψ ∈ V, (6.18)

where Q, V , and Y denote appropriate Hilbert spaces. The corresponding (nonlinear) opera-
tor F is given by the composition F = C ◦S with the linear observation operator C : V → Y

and the parameter-to-solution map S : q 7→ u(q). It is easy to see that one step of the
Landweber iteration (5.28) requires the solution of the state equation (6.18) and the adjoint
equation, which reads as

−A′u(u, q)(φ, z) = 2(Cu− gδ, φ) ∀φ ∈ V. (6.19)
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This can be carried out by the adaptive inexact Newton method as described above. Obvi-
ously, for the update qn there holds

F ′(q)(ψ, F (q)− gδ) = A′q(S(q), q)(ψ, z), (6.20)

from where the update can be evaluated. Thus, in this case the discretization and iteration
errors are measured with respect to functional (6.17). Alternatively, we can consider the
functional i(·) defined in (5.67) corresponding to the Morozov’s discrepancy principle

6.2. Numerical examples

In this section, we demonstrate the efficiency and reliability of the proposed adaptive
algorithm. We compare the adaptive Newton method described above with a Newton method
employing a residual based stopping criterion. To this end, we replace the adaptive stopping
criterion in the Newton solver by requiring that the initial residual is to be reduced by a
factor of 10−11. Moreover, we employ the adaptive stopping rule for the linear solver in
the inner Newton iteration. This will be analogously compared to the linear solver with a
residual based rule. As in nonlinear case, we require that the initial residual must be reduced
by a factor of 10−11. The discretization error estimator will still be used for the construction
of locally refined meshes and the error control. We denote this algorithm by S I, the adaptive
Newton method with algebraic stopping criterion in the inner iteration as S II, and with an
adaptive stopping rule as S III.

In the tables below, the following notation is used for the discretization error:

Eh := J(u)− J(uh) “exact” discretization error,
ηh estimator of discretization error,

Iheff =
∣∣∣∣ ηhEh

∣∣∣∣ effectivity index of discretization error estimator,

for the iteration error

Em := J(uh)− J(ũh) “exact” iteration error,
ηm estimator of iteration error,

Imeff =
∣∣∣∣ ηmEm

∣∣∣∣ effectivity index of iteration error estimator,

and for the total error

E := J(u)− J(ũh) total error,

Itoteff =
∣∣∣∣ ηhEh

∣∣∣∣ effectivity index of total error estimator.

We emphasize that the discretization and iterations error estimators ηh and ηm, respec-
tively, depend on the computed approximations ũh and z̃h and, thus, represent computable
quantities.
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6.2.1. Example 1

This example concerns the case of a non-differentiable nonlinearity (even non-Lipschitzian),
in which the usual definition of the Newton method (or its semi-smooth variants; see
Ito&Kunisch [61]) fails. In this case, we need to use some kind of regularization. Such
nonlinearities occur due to chemical reactions in the case of interactions of gas-phase chem-
ical species with aqueous surfaces. We will see that even in this “irregular” situation the
derived a posteriori error estimators work well and can be used as the basis for an adaptive
stopping criterion of the nonlinear iteration.

We consider the following steady-state nonlinear boundary value problem

−ν∆u+ f(u) = 0 in Ω, u = g on ∂Ω, (6.21)

where Ω := (−1, 1)2\([0, 0]× [0,−1]) is the slit domain shown in Fig. 6.1. Here, u denotes
the concentration of a chemical species diffusing in a medium.

We consider a simple case of an isothermal mixed-order reaction such that the non-
Lipschitzian nonlinearity is given by f(u) = |u|p with p = 0.15 . We set the diffusivity of
the medium to be equal ν = 10−1 . On the slit part of the boundary, Γs , the boundary
values are given by g(x) = 0 and on the remaining part, we prescribe the following values:

g(x) =


exp(|x|) sin(−1

2π x1), if x ∈ Γ1,

exp(|x|) sin(1
2π x2), if x ∈ Γ2,

exp(|x|) sin(1
2π x1), if x ∈ Γ3,

exp(|x|) sin(−1
2π x2), if x ∈ Γ4.

This problem is well posed with the choice V = W 1,2
0 (Ω) . The goal functional is given by

point value J(u) := u(a) at the point a = (−0.75,−0.75). Since in this case the functional
J(·) is not defined on the space V , it has to be regularized like

Jε(u) := |Bε(a)|−1
∫

Bε(a)

u(x) dx = u(a) +O(ε2),

where Bε(a) := {z ∈ Ω ; |z − a| ≤ ε} is a ball with center a and radius ε ≈ TOL.

In this situation there exists a so-called “dead core” in the interior of the domain where
the solution is zero. In this region the nonlinearity is only Hölder continuous such that the
usual definition of the Newton method fails. To overcome this problem, we use a difference
quotient for approximating the directional derivative of the nonlinearity f(·) at points where
it does not exist,

f ′ε(u, φ) := ε−1
(
f(u+ εφ)− f(u)

)
,

with a small ε ≈ hmin. This is then used as the coefficient for the nonlinearity in the
dual problem as well as in the Newton iteration. Alternatively, we could also regularize

73



6.2. NUMERICAL EXAMPLES

Figure 6.1: Configuration of Example 1, slit domain and point value evaluation

the problem itself following the approach proposed in Nochetto [87] by introducing the
regularized functional

fε(u) :=

 up, if ε1/(1−p) ≤ u,

ε−1u, if 0 ≤ |u| ≤ ε1/(1−p),

which replaces the irregular functional in the variational formulation. The discrete weak
form then seeks an uh ∈ gh + Vh satisfying

Aε(uh)(φh) := ν(∇uh,∇φh) + (fε(uh), φh) = 0 ∀φh ∈ Vh, (6.22)

where gh := Ihg is chosen as the nodal interpolation of g . Both approaches, the “approxima-
tion approach” as well as the “regularization approach”, yield almost identical computational
results, i.e., almost identical meshes with only slight differences in the number of nodes and
structure of the refinement. Hence, in the following, we will consider only the above “ap-
proximation approach” since it only regularizes the solution process but keeps the problem
to be solved unchanged. The locally refined meshes are depicted in Figure 6.2.

Figure 6.2: Example 1, locally refined meshes obtained by the adaptive solution process.
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In order to access the “exact” discrete solutions (S I ), we solve the problems by the Newton
method using a multigrid algorithm in V -cycle form with 4 pre- and post-smoothing block-
ILU steps as inner linear iteration. For both iterations the stopping criterion is that the
initial residuals are reduced by a factor 10−15. The approximate discrete solutions ũh and
z̃h are computed by an adaptive Newton method also using the same multigrid solver in the
inner iteration (Alg. S II ). Tables 6.1 and 6.2 show the development of the discretization
and iteration errors and the a posteriori error estimators in the adaptive solution process
on a coarse grid with 1 605 nodes and a fine grid with 222 917 nodes, respectively. These
results demonstrate the sharpness of both error estimators. In this case, we would have
stopped the Newton iteration in the adaptive algorithm already after the first step since
then the discretization error dominates and carrying the iteration further would not improve
the total error.

Table 6.1: Example 1, effectivity of the different error estimators on a coarse mesh
with 1 605 knots (S II ).
It Eh ηh Iheff Em ηm Imeff
1 4.27e-03 5.13e-03 1.18 4.03e-04 4.03e-04 1.00
2 4.27e-03 5.13e-03 1.17 1.18e-05 1.18e-05 1.00
3 4.27e-03 5.13e-03 1.17 3.31e-07 3.31e-07 1.00
4 4.27e-03 5.13e-03 1.17 8.79e-09 8.79e-09 1.00
5 4.27e-03 5.13e-03 1.17 2.24e-10 2.24e-10 1.00
6 4.27e-03 5.13e-03 1.17 5.57e-12 5.57e-12 1.00

Table 6.2: Example 1, effectivity of the different error estimators on a fine mesh
with 222 193 knots (S II ).
It Eh ηh Iheff Em ηm Imeff
1 1.30e-04 1.35e-04 1.04 8.54e-06 8.55e-06 1.00
2 1.30e-04 1.35e-04 1.04 2.71e-07 2.98e-07 1.10
3 1.30e-04 1.35e-04 1.04 3.53e-08 3.54e-08 1.00
4 1.30e-04 1.35e-04 1.04 7.37e-10 7.36e-10 1.00
5 1.30e-04 1.35e-04 1.04 2.63e-12 2.61e-12 0.99
6 1.30e-04 1.35e-04 1.04 4.68e-13 4.67e-13 1.00

Next, we present the convergence history of the mesh adaptation process. The correspond-
ing values for the three algorithms S I, S II, and S III described above are given in Tables
6.3, 6.4, and 6.5. The values of the error E = |J(u) − J(ũh)| and of the total effectivity
indices show that the use of the adaptive stopping criterion for the Newton method leads to
a reliable algorithm. On all adapted meshes, we only need one Newton step in order to get
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the linearization error ten times smaller than the discretization error. The values of the error
E and the iteration error estimator ηm are almost identical in all cases. This demonstrates
the efficiency and the reliability of the fully adaptive algorithm S III.

Table 6.3: Example 1, iteration with Alg. S I (iteration towards round-off error level).
N #It E ηh + ηm ηh ηm Itoteff
631 6 5.01e-03 5.00e-03 5.00e-03 1.08e-11 0.99

1 605 6 4.27e-03 5.13e-03 5.13e-03 5.57e-12 1.20
4 401 8 2.49e-03 2.53e-03 2.53e-03 6.38e-14 1.02
12 211 10 1.29e-03 1.19e-03 1.19e-03 8.46e-15 0.92
32 679 5 6.45e-04 5.79e-04 5.79e-04 2.17e-11 0.90
87 069 7 3.06e-04 2.84e-04 2.84e-04 1.42e-14 0.93

222 193 6 1.30e-04 1.35e-04 1.35e-04 4.68e-13 1.04

Table 6.4: Example 1, iteration with Alg. S II (adaptive stopping rule for the Newton
iteration)
N #It E ηh + ηm ηh ηm Itoteff
631 2 5.01e-03 5.00e-03 5.00e-03 2.50e-05 0.99

1 605 1 4.27e-03 4.72e-03 5.13e-03 4.04e-04 1.11
4 401 2 2.49e-03 2.54e-03 2.53e-03 8.31e-06 1.02
12 211 1 1.29e-03 1.10e-03 1.19e-03 9.13e-05 0.85
32 679 1 6.45e-04 5.43e-04 5.78e-04 3.58e-05 0.84
87 069 1 3.06e-04 2.66e-04 2.84e-04 1.79e-05 0.87

222 193 1 1.30e-04 1.27e-04 1.35e-04 8.00e-06 0.98

Finally, we compare the algorithm S II with an algebraic stopping criterion in the inner
iteration with the method S III which uses an adaptive stopping rule for the multigrid solver
and the error for the dual problem. To this end, we consider the number of linear iterations
needed on each mesh by both methods. The corresponding results are shown in Fig. 6.3. On
all meshes in algorithm S III, we only need approximately 10 linear iterations in order to
fulfill the adaptive stopping criterion. The method S II needs over 20 iterations in order
to reduce the linear residual by the factor 10−11.
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Table 6.5: Example 1, iteration with Alg. S III (fully adaptive Newton iteration)
N #It E ηh + ηm ηh ηm Itoteff
631 2 5.01e-03 5.00e-03 5.00e-03 8.43e-06 0.99

1 605 1 4.27e-03 4.72e-03 5.13e-03 4.03e-04 1.10
4 401 2 2.49e-03 2.33e-03 2.52e-03 1.93e-04 0.94

12 211 1 1.29e-03 1.11e-03 1.19e-03 7.22e-05 1.03
32 679 1 6.45e-04 5.45e-04 5.78e-04 3.32e-05 0.86
87 069 1 3.06e-04 2.69e-04 2.84e-04 1.57e-05 0.89
222 193 1 1.30e-04 1.29e-04 1.35e-04 6.61e-06 0.99
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Figure 6.3: Example 1, number of interior linear iterations in dependence of refinement
number.

6.2.2. Example 2

As described in Chapter 4, Section 4.2 neglecting the scattering in radiative transfer
models may lead to large errors in computed measurements. Furthermore, the segmentation
of clouds is needed for parametrization of wet deposition processes. Due to these reasons, it is
customary to analyze the supplied cloud maps. This analysis can be carried out by application
of image segmentation techniques. In this example, we show the efficiency of the adaptive
algorithm applied to the task of simultaneous noise reduction and cloud segmentation from
satellite observations.

We consider the minimization of the so-called Mumford-Shah functional

M(u1, S) := γ1

2

∫
Ω

(u1 − g)2 dx+ γ2

2

∫
Γ\S

|∇u1|2 dx+ αHd−1(S). (6.23)

Here, Ω ⊂ IRd is the image domain with boundary Γ , g ∈ L∞(Ω) the perturbed image
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intensity, Hd−1 the one-dimensional Hausdorff measure, S the edge collection, γ1, γ2, and α
are positive weights. We seek a smooth representation u1 of g and an edge set S. In Ambrosio
and Tortorelli [3] the functional M(·, ·) is described by a sequence of elliptic functionals,
which are defined by

Ek(u) = γ1

2

∫
Ω

(u1−g)2 dx+γ2

2

∫
Ω

(u2
2+kε)|∇u1|2 dx+α

∫
Ω

(
ε |∇u2|2 + (1− u2)2

4ε

)
dx, (6.24)

for u := (u1, u2) with small numbers ε � 1 and kε � 1. In this formulation the edge set
S is described by a phase field u2(x) which is supposed to be small on S and close to one
apart from edges.

The Euler-Lagrange equations corresponding to the energy functional (6.24) are given by

−γ2∇ ·
(
(u2

2 + kε)∇u1
)

+ γ1 (u1 − g) = 0 in Ω,

∂nu1 = 0 on Γ,

−ε∆u2 + γ2

2α |∇u1|2 u2 + 1
4ε(u2 − 1) = 0 in Ω,

∂nu2 = 0 on Γ.

(6.25)

We set as solution space V := H1(Ω). For the weak formulation of system (6.25), we
introduce for all Φ = (φ, ψ) ∈ V × V the semilinear form

A(u)(Φ) :=(γ2(u2
2 + kε)∇u1,∇φ) + (γ1 (u1 − g), φ)

+ (ε∇u2,∇ψ) + γ2

2α(|∇u1|2 u2, ψ) + 1
4ε(u2 − 1, ψ).

Then, the corresponding weak formulation of system (6.25) seeks u = (u1, u2) ∈ V × V

satisfying
A(u)(Φ) = 0 ∀Φ = (φ, ψ) ∈ V × V. (6.26)

As the input image, we consider a cloud map created by NASA’s Earth observatory which
is disturbed by ten percent, as can be seen in Figure 6.4. We consider the error functional
given by the integral of the second component of the solution representing the contours of
the clouds

J(u) :=
∫
Ω

u2(x) dx.

In this case the application of the DWR method corresponds to the formulation of an
outer optimization problem, where the inner problem is given by the minimization of func-
tional (6.24). The outer dual problem reads as follows: Find z = (z1, z2), such that

(γ2(u2
2 + kε)∇z1,∇φ) + (γ1 z1, φ) + γ2

2 (u2∇u1 z2,∇φ) = 0,

ε(∇z2,∇ψ) + 2γ2(u2∇u1∇z1, ψ) + γ2

2 (|∇u1|2z2, ψ) + 1
4ε(z2, ψ) = (1, ψ),

(6.27)
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Figure 6.4: Example 2, cloud map observed by a satellite (source: NASA’s Earth Observatory,
data from public domain): original image (left), Gaussian noise added to the
cloud map (right)

for all Φ = (φ, ψ) ∈ V ×V . We discretize the primal and dual systems by continuous Galerkin
finite elements as described in Chapter 3, Section 3.2.

For substantiating the capabilities of the presented goal-oriented adaptive algorithm, we
additionally introduce a heuristic error estimator based on the energy functional (6.24). To
this end, using the ”exact“ discrete solution uh ∈ Vh and Galerkin orthogonality, we observe
for the error eh := u− uh:

‖e‖A := A(eh, eh) = A(e, u− ũh), (6.28)

where ũh denotes the approximated discrete solution. We use this identity for the construction
of the error estimator

ηA := A(I(2)
2h ũh − ũh)(I(2)

2h ũh − ũh). (6.29)

The error estimator is localized employing the procedure described in Subsection 6.1.2.

The discrete problems are solved using the Newton method with a multigrid solver with
V-cycle with two ILU-step for pre- and post-smoothing for the inner iteration. Due to the
jumps of the solution along the contours the solution method may become unstable. In order
to circumvent this problem, we formulate the Newton algorithm as a homotopy method. To
this end, the computational mesh is successively coarsened. The resulting mesh hierarchy is
then used in order to compute the starting values for the next refined mesh.

Although the image has many details, we show that the use of goal-oriented refined
meshes leads to a significant computational reduction. To this end, we consider the solution
processes on locally and uniformly refined meshes. In order to access the ”exact” solution,
we employ the Newton method on the uniformly refined hierarchy of meshes. The finest
mesh is then given by the original resolution of 512 × 512 pixels of the cloud map where
each pixel corresponds to two degrees of freedom. Figure 6.6 shows the logarithmic plot of
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Figure 6.5: Example 2, computational results: reconstructed smoothed cloud map (left), and
the corresponding contour solution (right)

error values in dependence of the degrees of freedom. Thus, with the chosen parameters,
we achieve an accuracy of |E| = 5 · 10−4. In the case of uniformly refined meshes, we need
to compute the solution on a mesh with 262 144 nodes. The computational process with
the refinement based on the heuristic error estimator requires a mesh with 162 177 nodes.
The goal-oriented refinement produces meshes which are strongly locally refined along the
contours of the clouds (see Figure 6.7). In this case a mesh with 88 591 nodes is sufficient in
order to calculate the solution with the same accuracy. The corresponding solution is shown
in Figures 6.5.
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Figure 6.6: Example 2, error values E for uniformly and locally refined meshes
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In order to show the reliability of the adaptive algorithms, we consider the effectivity
indices of the derived error estimators on the locally refined meshes with 2 905 and 32 417
nodes. The corresponding values are shown in Tables 6.6 and 6.7, respectively.

Figure 6.7: Example 2, goal-oriented refined meshes (top row) and meshes refined by the
help of the heuristic error estimator ηA (bottom row)

Table 6.6: Example 2, effectivity of the error estimators for dis-
cretization and “exact” Newton iteration on a coarse
mesh with 2 905 nodes.

It Eh ηh Iheff Em ηm Imeff
1 1.17e-02 3.73e-03 0.32 1.49e-02 1.50e-02 1.01
2 1.17e-02 1.04e-02 0.89 2.67e-05 2.84e-05 1.06
3 1.17e-02 1.03e-02 0.88 2.28e-08 2.28e-08 1.00
4 1.17e-02 1.03e-02 0.88 1.24e-13 1.24e-13 1.00
5 1.17e-02 1.03e-02 0.88 0.00e+00 1.30e-18 inf

Next, we compare the computational time needed by different algorithms. At the first
sight, the use of the DWR error estimation leads to a system of double size. However, the
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Table 6.7: Example 2, effectivity of the error estimators for dis-
cretization and “exact” Newton iteration on a fine
mesh with 32 417 nodes.

It Eh ηh Iheff Em ηm Imeff
1 2.30e-03 3.27e-03 1.42 3.40e-03 3.36e-03 0.98
2 2.30e-03 2.04e-03 0.89 2.86e-05 2.86e-05 1.00
3 2.30e-03 2.02e-03 0.88 7.11e-07 7.33e-07 0.97
4 2.30e-03 2.03e-03 0.89 2.45e-08 2.58e-08 0.95
5 2.30e-03 2.02e-03 0.89 2.99e-11 2.90e-11 1.03
6 2.30e-03 2.02e-03 0.89 6.00e-16 6.12e-16 0.98
7 2.30e-03 2.02e-03 0.89 5.67e-21 1.89e-19 0.03

dual equation (6.27) is linear and corresponds to only one additional Newton step if we use
the computed primal variables. Figure 6.8 depicts the CPU time for the algorithms based
on optimized and uniformly refined meshes.
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Figure 6.8: Example 2, comparison of the CPU time

The results show that the use of goal-oriented refined meshes (alg. S I ) leads to an
approximately two times faster method compared to the solution process on meshes refined
by the help of the heuristic error estimator ηA. Compared to the solution method based on
uniformly refined meshes, algorithm S I is approximately three times faster. Furthermore,
the algorithm S II clearly outperforms the method S I with an algebraic stopping criterion
and is approximately two times faster. The use of the adaptive stopping criterion for the
inner Newton iteration leads additionally to a double reduction of the computational effort.

82



6. ADAPTIVITY

Finally, we demonstrate the whole history of the solution process on goal-oriented refined
meshes. The corresponding values are shown in Tables 6.8, 6.9, and 6.10. The error values
E and the values of the error estimators show the reliability of the adaptive algorithms.

Table 6.8: Example 2, fully converged “exact” Newton iteration (S I ).

N #It E ηh + ηm ηh ηm Itoteff
81 4 3.10e-02 2.65e-02 2.65e-02 6.97e-18 0.85
233 4 2.86e-02 5.74e-03 5.74e-03 3.68e-18 0.20
823 5 2.10e-02 8.32e-03 8.32e-03 3.35e-18 0.40

2905 5 1.17e-02 1.03e-02 1.03e-02 1.30e-18 0.88
9967 6 4.79e-03 4.37e-03 4.37e-03 5.44e-19 0.91
32417 7 2.30e-03 2.02e-03 2.02e-03 1.89e-19 0.88

Table 6.9: Example 2, “exact” Newton iteration with adaptive stop-
ping criterion (S II ).

N #It E ηh + ηm ηh ηm Itoteff
81 2 3.10e-02 2.65e-02 2.65e-02 5.47e-09 0.85
233 2 2.86e-02 5.74e-03 5.74e-03 2.05e-07 0.20
823 2 2.10e-02 8.34e-03 8.35e-03 7.46e-06 0.40

2905 2 1.17e-02 1.04e-02 1.04e-02 2.84e-05 0.89
9967 2 4.81e-03 4.61e-03 4.61e-03 1.61e-06 0.96
32417 2 2.34e-03 2.08e-03 2.04e-04 2.86e-05 0.89

Table 6.10: Example 2, “inexact” Newton iteration with adaptive
stopping criterion (S III ).

N #It E ηh + ηm ηh ηm Itoteff
81 2 3.10e-02 2.65e-02 2.65e-02 3.27e-09 0.85
233 2 2.86e-02 5.74e-03 5.74e-03 2.00e-07 0.20
823 2 2.10e-02 8.34e-03 8.35e-03 7.45e-06 0.40

2905 2 1.17e-02 1.04e-02 1.04e-02 2.84e-05 0.89
9967 2 4.81e-03 4.61e-03 4.61e-03 1.61e-06 0.96
32417 2 2.34e-03 2.08e-03 2.04e-04 2.86e-05 0.89
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In order to compare the algorithms S II and S III, we consider the amount of the linear
iterations needed for satisfying the corresponding stopping rule for the multigrid solver. The
results are shown in Figure 6.9. In algorithm S III, we only need approximately 5-7 iterations
in order to get the linear residual 〈rk, z̃k〉 ten times smaller than the linearization error
estimator. For the method S II with the algebraic stopping criterion, we need approximately
16 linear iterations on each refinement level.
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Figure 6.9: Example 2, number of linear iterations in dependence of refinement number

6.3. Application to the Tikhonov regularization

In this section, we derive the discretization and iteration error estimators for stationary
inverse problems regularized by Tikhonov-type methods and solved by Newton algorithms as
described in Chapter 5, Section 5.3. For the Newton-Lagrange method, we refine the iteration
error estimator and separate it into contributions from the inner and outer iterations. On
the basis of the error representations, we develop an adaptive method where the different
error contributions are balanced. Most of the arguments are similar to those in the preceding
sections.

We consider general (elliptic) optimal control problem (5.48, 5.49)

min
{u,q}∈V×Q

J(u, q) = J1(u) + J2(q), (6.30)

subject to
A(u, q)(φ) = 0 for all ψ ∈ V, (6.31)
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with cost functional J(·, ·) and a semilinear form A(·, ·)(·). For simplicity, we assume the
state space V and the control space Q to be Hilbert spaces. We assume that there is a
locally unique minimum {u, q} ∈ V ×Q, which corresponds to a saddle-point of the Lagrange
functional (5.52)

L(u, q, z) = J(u, q)− A(u, q)(z).

In contrast to notation in (5.52), we denote the corresponding adjoint state by z ∈ V

indicating the dual variable in the DWR method. The triplet {u, q, z} ∈ V × Q × V is
determined by the first order optimality condition (5.53, 5.54, 5.55), which we state for
convenience again:

L′u(u, q, z)(·) = 0 ⇔ J ′1(u)(ψ)− A′u(u, q)(ψ, z) = 0 ∀ψ ∈ V, (6.32)
L′q(u, q, z)(·) = 0 ⇔ J ′2(q)(ϕ)− A′q(u, q)(ϕ, z) = 0 ∀ϕ ∈ Q, (6.33)
L′z(u, q, z)(·) = 0 ⇔ −A(u, q)(φ) = 0 ∀φ ∈ V. (6.34)

We consider the correction equations given by the Newton update (5.58), which are defined
by the help of the Hessian operator H(·)(·) in (5.56). Thus, the Newton correction equations
are explicitly given by

L′′uu(xn)(ψ, δun) + L′′uq(xn)(ψ, δqn) + L′′uz(ψ, δzn) = −L′u(xn)(ψ), (6.35)
L′′qu(xn)(ϕ, δun) + L′′qq(xn)(ϕ, δqn) + L′′qz(ϕ, δzn) = −L′q(xn)(ϕ), (6.36)

L′′zu(xn)(φ, δun) + L′′zq(xn)(φ, δqn) = −L′z(xn)(φ), (6.37)

for all {ψ, ϕ, φ} ∈ V ×Q× V . The equation for the adjoint correction δzn reads

J ′′1,uu(un)(ψ, δun)− A′′uu(un, qn)(ψ, δun, zn)− A′′uq(un, qn)(ψ, δqn, zn)
− A′u(un, qn)(ψ, δzn) = A′u(un, qn)(ψ, zn)− J ′1,u(un)(ψ),

(6.38)

for all ψ ∈ V , where we have used the fact that J ′′1,uq(u)(ψ, δqn) = 0 and that the adjoint
problem is linear, i.e., A′′uz(un, qn)(ψ, δzn, ·) = A′u(un, qn)(ψ, δzn). Then, the equation for
the control correction δqn takes the form

−A′′qu(un, qn)(ϕ, δun, zn) + J ′′2,qq(qn)(ϕ, δqn)− A′q(un, qn)(ϕ, δzn)
− A′′qq(un, qn)(ϕ, δqn, zn) = A′q(un, qn)(ϕ, zn)− J ′2,q(qn)(ϕ),

(6.39)

for all ϕ ∈ Q , where we have used J ′′2,qu(qn)(ϕ, δun) = 0 and the linearity of the control
equation with respect to z , i.e., A′′qz(un, qn)(ϕ, δzk, ·) = A′q(un, qn)(ϕ, δzn). Finally, the
equation for the primal correction δun is

−A′u(un, qn)(δun, φ)− A′q(un, qn)(δqn, φ) = A(un, qn)(φ) ∀φ ∈ V. (6.40)

The derivation of the error representation with respect to the cost functional is similar to
Proposition 6.1.1.
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Proposition 6.3.1. Let {ũh, q̃h, z̃h} ∈ Vh × Qh × Vh be an approximation to the
solution {u, q, z} ∈ V ×Q×V ∗ of the KKT system (6.32) - (6.34) obtained by any iterative
process on the mesh Th . Then, there holds the following error representation:

J(u, q)− J(ũh, q̃h) = 1
2ρ
∗(ũh, q̃h, z̃h)(u− ũh) + 1

2ρ
q(q̃h, z̃h)(q − q̃h)

+ 1
2ρ(ũh, q̃h)(z − z̃h)− ρ(ũh, q̃h)(z̃h) +R(3)

h ,
(6.41)

where the residual terms are given by

ρ∗(ũh, q̃h, z̃h)(·) := J ′1(ũh)(·)− A′u(ũh, q̃h)(·, z̃h),
ρq(q̃h, z̃h)(·) := J ′2(q̃h)(·)− A′q(ũh, q̃h)(·, z̃h),
ρ(ũh, q̃h)(·) := −A(ũh, q̃h)(·),

and the remainder term R(3)
h is cubic in the errors eu := u − ũh, eq := q − q̃h, and

ez := z − z̃h.

Proof. Setting e := x− x̃h there holds

L(x)− L(x̃h) =
1∫

0

L′(x̃+ s e)(e) ds.

Using the general error representation for the trapezoidal rule
1∫

0

f(s) ds = 1
2(f(0) + f(1)) + 1

2

1∫
0

f ′′(s) s (s− 1) ds,

and observing that for δy = {δu, δq, δz} ∈ V ×Q× V

L′(x)(y) = L′u(x)(δu) + L′q(x)(δq) + L′z(x)(δz),

we conclude
L(x)− L(x̃h) = 1

2L
′(x̃h)(x− x̃h) +R(3)

h .

Hence, recalling the particular structure of the functional L(·) and observing that u satisfies
the state equation,

J(u, q)− J(ũh, q̃h) = L(x) + A(u, q)(z)− L(x̃h)− A(ũh, q̃h)(z̃h)
= L(x)− L(x̃h)− A(ũh, q̃h)(z̃h)

= 1
2L
′(x̃h)(x− x̃h) +R(3)

h − A(ũh, q̃h)(z̃h).

Then, observing that for y = {ψ, ϕ, φ} ,

L′(x̃h)(y) = J ′1(ũh)(ψ)− A′u(ũh, q̃h)(ψ, z̃h) + J ′2(q̃h)(ϕ)− A′q(ũh, q̃h)(ϕ, z̃h)
− A(ũh, q̃h)(φ),
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the assertion follows.

The separated error representation of the above proposition can be directly used as
stopping criterion for the direct Newton method for optimization problems. The structure
of the Lagrange-Newton method allows to refine the iteration error and to separate it into
contributions from the outer and inner iterations.

Next, we analyze the error caused by solving the correction equations in Lagrange-Newton
method only approximately. Let xnh = {unh, qnh , znh} ∈ Vh × Qh × Vh be the n-th Newton
iterates on the discrete level Th . These are obtained by solving the discrete analogues of the
Newton equations (5.57) only approximately by any linear iteration process, e.g., a multigrid
method. To the corresponding approximate corrections δ̃xnh = {δ̃unh, δ̃q

n

h, δ̃z
n

h} , we associate
the linear iteration residuals

〈dnh, ·〉 := −A′u(unh, qnh)(·, znh) + J ′1,u(unh)(·) + J ′′1,uu(unh)(·, δ̃unh)
− A′′uu(unh, qnh)(·, δ̃unh, znh)− A′′uq(unh, qnh)(·, δ̃qnh, znh)− A′u(unh, qnh)(·, δ̃znh),

〈gnh , ·〉 := −A′q(unh, qnh)(·, znh) + J ′2,q(qnh)(·)− A′′qu(unh, qnh)(·, δ̃unh, znh)
+ J ′′2,qq(qnh)(·, δ̃qnh)− A′q(unh, qnh)(·, δ̃znh)− A′′qq(unh, qnh)(·, δ̃qnh, znh),

〈rnh , ·〉 := −A(unh, qnh)(·)− A′u(unh, qnh)(δ̃unh, ·)− A′q(unh, qnh)(δ̃qnh, ·).

In order to derive an adaptive stopping criterion for the inner linear iteration in the Newton
steps, we consider the difference between two approximate Newton iterates: xn+1

h := xnh+δ̃xnh
and xnh . For the corresponding error in the cost functional, we obtain by Taylor expansion:

J(un+1
h , qn+1

h )− J(unh, qnh) = J(unh + δ̃u
n

h, q
n
h + δ̃q

n

h)− J(unh, qnh)
= J ′1,u(unh)(δ̃unh) + J ′2,q(qnh)(δ̃qnh)

+ 1
2J
′′
1,uu(unh)(δ̃unh, δ̃u

n

h) + 1
2J
′′
2,qq(qnh)(δ̃qnh, δ̃q

n

h)

+O
(
|̃δu

n

h|
3 + |δ̃qnh|3

)
.

By the above definitions of the correction residuals there holds

J ′1,u(unh)(δ̃unh) + J ′2,q(qnh)(δ̃qnh) = 〈dnh, δ̃u
n

h〉+ A′u(unh, qnh)(δ̃unh, znh)
+ 〈gnh , δ̃q

n

h〉+ A′q(unh, qnh)(δ̃qnh, znh) + Rm,

with a second-order remainder Rm = O(|δ̃unh|2 + |δ̃qnh|2 + |δ̃znh) . Further, by definition, there
holds

A′u(unh, qnh)(δ̃unh, znh) + A′q(unh, qnh)(δ̃qnh, znh) = −〈rnh , znh〉 − A(unh, qnh)(znh).

Combining the foregoing equations, we obtain the final result

J(un+1
h , qn+1

h )− J(unh, qnh) = 〈dnh, δ̃u
n

h〉+ 〈gnh , δ̃q
n

h〉 − 〈rnh , znh〉

− A(unh, qnh)(znh) + O
(
|̃δu

n

h|
2 + |δ̃qnh|2

)
.

(6.42)
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If the state equation is linear in both the state as well as the control variables, the remainder
term vanishes.

From the error representation (6.42) we draw the following conclusions: The difference in
the cost functional for two consecutive approximate Newton iterates is essentially bounded
by the linearization residual ρ(unh, qnh)(znh) and the iteration residuals due to inexact solution
of the linear correction equations. These are the leading error terms while the other terms,
which are of higher-order in the corrections δ̃unh and δ̃q

n

h , can be neglected. Following this
philosophy, we propose the following stopping criterion for the linear iteration within the
Newton steps: Set

ηn,out
m := |A(unh, qnh)(znh)|, ηn,inm := max

{
|〈rnh , znh〉|, |〈dnh, δ̃u

n

h〉|, |〈gn, δ̃q
n

h〉|
}
,

and iterate in the linear correction equations until

ηn,inm ≤ κ ηn,out
m , (6.43)

with a small safety factor κ = 10−1 . Combining this with the stopping rule for the outer
nonlinear Newton iteration obtained from Proposition 6.3.1,

ηn,out
m ≤ κηnh , (6.44)

where
ηnh := 1

2

∣∣∣ρ∗(unh, qnh , znh)(Πhu
n
h) + ρq(qnh , znh)(Πhq

n
h) + ρ(unh, qnh)(Πhz

n
h)
∣∣∣,

we obtain a fully adaptive solution process in which the errors due to discretization as well
as outer nonlinear and inner linear iterations are balanced. This strategy has been used in
the numerical test discussed below.

We note that the proposed adaptive algorithm can be applied directly to the iterated
stationary and nonstationary Tikhonov regularization methods.

6.4. Numerical example

In this section, we show the efficiency of the adaptive algorithm and the reliability of
the developed discretization and iteration error estimators. We consider a radiative transfer
model, where we aim at the identification of the unknown concentration profile in the case
of a single trace gas. We treat the case without scattering. In order to guarantee a unique
solvability of the regularized problem, we impose the inequality constraints on the state
variable. For handling of these constraints, we use the barrier method. The corresponding
optimal control problem is solved by the Newton-Lagrange method.

We consider a simplified model of the radiative transfer equation. We assume a clear
sky environment and set the scattering coefficient equals to zero, σs,ν = 0. Furthermore,
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we assume that only one trace gas contributes to absorption or emission. Under these
assumptions the system under consideration is given by

∇I(x, ν) + (q(x) + 1)I(x, ν) = f in Ω,
I = I in on Γ−,

(6.45)

where f ∈ L2(Ω) is supposed to be known. As the solution space for the state I ∈ V , we
set V = Z and for the unknown parameter Q = L2(Ω), where Z is given by (4.5). Here, for
the sake of brevity, we consider a two-dimensional domain Ω := (0, 1)2 with the boundary
Γ , and the inflow part of the boundary given by

ΓI = {x ∈ Γ ; n · nΓ < 0}.

Here, nΓ denotes the outward point unit vector and n = (1, 1)T .

The aim of the computations is to reconstruct the intensity I and to identify the absorption
coefficient q(x) from given distributed measurements g ∈ Y . Thus, the observation operator
C : V → Y is given as C = id and the measurement space as Y = L2(Ω). We regularize the
inverse problem by introducing the Tikhonov functional and consider the resulting optimal
control problem

min J(I, q) = 1
2‖I − g‖

2 + α

2 ‖q − q
∗‖, (6.46)

such that the state equation (6.45) is fulfilled. Since the problem admits a unique solution
provided I does not vanish, we impose an one-sided state constraint and claim

I(x) > Ia in Ω. (6.47)

The target is given by g(x) = 1.01− sin(πx1) sin(πx2). For the right-hand side, we prescribe

f(x) = 10√
2πσ2 exp

(
− 1

2σ2 ((x1 − s0)2 + (x2 − s1)2)
)
,

with σ = 0.49, s0 = 1
2 , and s1 = 1

2 . Furthermore, we set Ia = 0.

In order to solve this state-constrained optimal control problem, we employ an interior
point method. Here, the inequality constraint is handled by a penalty/barrier approach, i.e.,
by adding certain penalty/barrier terms to the cost functional. We use the logarithmic or
rational barrier functions

lγ(u) := −γ log(u− ua), lγ(u) := γκ

(κ− 1)(u− ua)κ−1 , for κ > 1.

The barrier functional of order κ is constructed by integrating lγ(u) over Ω ,

bγ(u) :=
∫
Ω

lγ(u(x)) dx.
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With this notation the augmented cost functional is given by

Jγ(I, q) = J(I, q) + bγ(I). (6.48)

For any optimal solution {I, q} ∈ V ×Q there exists an adjoint solution z ∈ V , such that
the triplet {u, q, z} ∈ V ×Q× V solves the following saddle point system:

(∇ψ,∇z) + ((q(x) + 1)z, ψ)− (I − g, ψ) = b′γ(ψ, z) ∀ψ ∈ V,
α(ϕ, q)− (ϕ, Iz) = 0 ∀ϕ ∈ Q,

(∇I,∇φ) + ((q + 1)I, φ) = (f, φ) ∀φ ∈ V.
(6.49)

Using conforming bilinear Q1 elements for discretizing of all three variables {u, q, z} in
associated finite element subspaces Vh ⊂ V and Qh ⊂ Q leads to the discrete saddle point
problems

(∇ψh,∇zh) + ((qh + 1)zh, ψh)− (Ih, ψh) = b′γ(ψh, zh)− (g, ψh) ∀ψh ∈ Vh,
α(ϕh, qh)− (ϕh, Ihzh) = 0 ∀ϕh ∈ Qh,

(∇Ih,∇φh) + ((qh + 1)Ih, φh) = (f, φh) ∀φh ∈ Vh.

Since the state equation and, consequently, the adjoint equation are hyperbolic, standard
finite element techniques produce spurious oscillations. In order to cope with this instability,
we stabilize both equations by applying the streamline diffusion modification as explained
in Chapter 3, Section 3.3.

On the continuous level the barrier method is designed in such a way that the iterates
remain feasible. However, this does not necessary hold on the discrete level. One of the
possibilities to cope with this difficulty is to perform a pointwise modification of the computed
Newton corrections as described in Schiela [105]. Here, we use a simple line search method
ensuring that the computed Newton iterates lie in the feasible region. In this numerical
test, we use the barrier functional of fourth-order, κ = 4, and set the parameter γ = 10−7.
Since we assume to be given exact measurements, we set α = 10−7. We solve the correction
equations again by the multigrid method in V -cycle form with one step of block-ILU pre-
and post-smoothing on each mesh level. For the “algebraic“ stopping criterion, we require
that the initial nonlinear and linear residuals are reduced by the factor 10−11. In order to
access the “exact“ algebraic errors, we solve the discrete equations on each mesh additionally
by the full Newton method.

In this case, boundary layers occur, and the “optimized“ meshes obtained by this adaptive
solution process are strongly refined near the boundary as shown in Figure 6.10. The
corresponding solution reaching the value 0.01 in the middle of the domain and the calculated
parameter are shown in Figure 6.11.

First, we examine the sharpness of the developed error estimators. Tables 6.11 and 6.12
show the convergence history on a coarse mesh with only 181 nodes and on a fine mesh with
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Figure 6.10: Example 3, locally refined meshes from the solution process

Figure 6.11: Example 3, reconstructed intensity with boundary layer (left) and optimal
parameter (right).

Table 6.11: Example 3, effectivity of the error estimators for
discretization and “exact” Newton iteration on a
coarse mesh with 181 nodes.

It Eh ηh Iheff Em ηm Imeff
1 1.76e-02 9.59e-03 0.55 1.53e-03 9.97e-07 0.00
2 1.76e-02 8.99e-03 0.51 6.58e-07 6.00e-07 0.91
3 1.76e-02 8.99e-03 0.51 6.98e-11 6.96e-11 1.00
4 1.76e-02 8.99e-03 0.51 3.47e-18 7.59e-18 2.19
5 1.76e-02 8.99e-03 0.51 1.04e-17 4.09e-19 0.04

29 157 nodes, respectively. These results demonstrate that the developed error estimators
are efficient and reliable.

Then, in Tables 6.13, 6.14, and 6.15, we report the full history of the solution process for
all three algorithms S I, S II, and S III. Finally, Fig. 6.12 shows the number of iterations
needed by the multigrid solver in the inner linear iteration in each Newton step in order
to fulfill the stopping criterions in the algorithms S II and S III. Again a substantial work
saving is achieved by the adaptive stopping criterions.
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Table 6.12: Example 3, effectivity of the error estimators for
discretization and “exact” Newton iteration on a
fine mesh with 29 157 nodes.

It Eh ηh Iheff Em ηm Imeff
1 3.94e-05 9.61e-05 2.43 3.31e-05 5.68e-05 1.72
2 3.94e-05 4.31e-05 1.08 2.51e-07 2.44e-07 0.97
3 3.94e-05 4.27e-05 1.08 8.00e-09 7.98e-09 1.00
4 3.94e-05 4.27e-05 1.08 6.45e-13 6.44e-13 1.00
5 3.94e-05 4.27e-05 1.08 4.05e-17 4.06e-17 1.00

Table 6.13: Example 3, fully converged “exact” Newton iteration
(S I ).

N #It E ηh + ηm ηh ηm Itoteff
181 5 1.77e-02 9.00e-03 9.00e-03 4.09e-19 0.51
393 5 8.77e-03 4.53e-03 4.53e-03 1.61e-19 0.52
877 5 4.29e-03 2.26e-03 2.26e-03 1.19e-18 0.53

1 785 5 2.05e-03 1.13e-03 1.13e-03 8.71e-19 0.55
3 589 5 9.26e-04 5.60e-04 5.60e-04 1.10e-18 0.60
7 333 5 3.72e-04 2.72e-04 2.72e-04 1.26e-17 0.73
14 721 5 1.09e-04 1.20e-04 1.20e-04 1.54e-18 1.11
29 157 5 3.94e-05 4.27e-05 4.27e-05 4.06e-17 1.08

Table 6.14: Example 3, “exact” Newton iteration with adaptive stop-
ping criterion (S II ).

N #It E ηh + ηm ηh ηm Itoteff
181 2 1.77e-02 9.00e-03 9.00e-03 6.05e-07 0.51
393 2 8.77e-03 4.53e-03 4.53e-03 1.35e-07 0.52
877 2 4.29e-03 2.26e-03 2.26e-03 1.87e-07 0.53

1 785 2 2.05e-03 1.13e-03 1.13e-03 2.36e-07 0.55
3 589 1 9.34e-04 5.84e-04 5.67e-04 1.71e-05 0.63
7 333 1 3.78e-04 2.75e-04 2.71e-04 3.18e-05 0.72
14 721 2 1.08e-04 1.26e-04 1.27e-04 7.19e-07 1.18
29 157 2 3.95e-05 4.31e-05 4.29e-05 2.43e-07 1.09
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Table 6.15: Example 3, “inexact” Newton iteration with adaptive
stopping criterion (S III ).

N #It E ηh + ηm ηh ηm Itoteff
181 2 1.77e-02 9.00e-03 9.00e-03 6.06e-07 0.51
393 2 8.77e-03 4.53e-03 4.53e-03 1.35e-07 0.52
877 2 4.29e-03 2.26e-03 2.26e-03 1.87e-07 0.53

1 785 2 2.05e-03 1.13e-03 1.13e-03 2.36e-07 0.55
3 589 1 9.34e-04 5.84e-04 5.67e-04 1.71e-05 0.63
7 333 1 3.78e-04 2.75e-04 2.72e-04 3.18e-05 0.72

14 721 2 1.08e-04 1.27e-04 1.28e-04 7.25e-07 1.19
29 157 2 3.97e-05 4.32e-05 4.30e-05 2.50e-07 1.09
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Figure 6.12: Example 3, number of linear iterations in dependence of refinement number

6.5. Error estimation for unsteady problems

In this section, we extend the concept of the adaptivity presented for the stationary
problems to the nonstationary atmospheric inverse problems regularized by Tikhonov-type
methods. For the discretization in time, we first consider the cG(s)dG(r) scheme whereas
the extension to the continuous temporal discretization follows by the same arguments. The
atmospheric inverse problem (5.72) regularized by the ordinary Tikhonov method is given
by the following optimal control problem:

min
(u,q)∈X×Q

J(u, q) := J1(u) + J2(q), (6.50)

subject to
(∂tu, φ)I + a(u, q)(φ) + (u(0), φ(0)) = (χ, φ(0)) ∀φ ∈ X, (6.51)
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with the semilinear form a(·, ·)(·) defined in (5.71) and q = (µ, β, χ). Here, we keep the
Tikhonov functional rather general allowing for different forms of available observations. We
associate with problem (6.50, 6.51) the Lagrangian L : X ×Q×X → IR defined by

L(u, q, z) := J(u, q)− (∂tu, z)I − a(u, q)(z) + (χ− u(0), z(0)), (6.52)

where z ∈ X denotes the associated adjoint state corresponding to the dual variable in the
DWR method.

We aim at the separation of the total error into contributions due to the discretization
and the iterative solution of the algebraic systems. To this end, we consider the different
levels of the discretization of problem (6.50, 6.51). So the pure time discretized problem is
given by

min
(uk,qk)∈X̃r

k×Q
J(uk, qk), subject to the state equation (3.1). (6.53)

The corresponding Lagrangian L̃ : X̃r
k ×Q× X̃r

k → IR is defined as

L̃(uk, qk, zk) := J(uk, qk)−
M∑
m=1

(∂tuk, zk)Im − a(uk, qk)(zk)

−
M−1∑
m=0

([uk]m, z+
k,m) + (χk − u−k,0, z−k,0).

(6.54)

The space-time discretized problem with parameter q kept not discretized reads as follows:

min
(ukh,qkh)∈X̃r,s

k,h×Q
J(ukh, qkh), subject to the state equation (3.4). (6.55)

Finally, the fully discrete problem is given by

min
(uσ,qσ)∈X̃r,s

k,h×Qd
J(uσ, qσ), subject to the state equation (3.4). (6.56)

The Lagrange functionals associated with problems (6.55) and (6.56) are given analogously
to (6.54) by adding the index h or replacing the index k by σ respectively. Then, we split
the total error as follows:

J(u, q)− J(ũσ, q̃σ) = J(u, q)− J(uk, qk)
+ J(uk, qk)− J(ukh, qkh)
+ J(ukh, qkh)− J(ũσ, q̃σ),

where (ũσ, q̃σ) denotes the approximative solution of problem (6.56). We cite the following
abstract result from Meidner [81] (see also Becker & Rannacher [17]).

Lemma 6.5.1. Let Y be a function space and L a three times Gâteaux differentiable
functional on Y . Let y1 be a stationary point of L on a subspace Y1 ⊆ Y

L′(y1)(δy1) = 0 ∀δy1 ∈ Y1. (6.57)
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The Galerkin approximation of the above equation y2 ∈ Y2 ⊆ Y satisfies

L′(y2)(δy2) = 0 ∀δy2 ∈ Y2. (6.58)

If the continuous solution y1 satisfies additionally

L′(y1)(y2) = 0, (6.59)

then, we have for arbitrary ŷ2 ∈ Y2 the error representation

L(y1)− L(y2) = 1
2L
′(y2)(y1 − ŷ2) +R, (6.60)

where the remainder term R is given by the means of the error e := y1 − y2

R = 1
2

1∫
0

L′′′(y2 + se)(e, e, e) s (s− 1) ds. (6.61)

In order to apply the result of the above lemma, we consider the stationary points of L
and L̃ on different levels of discretization:

L′(u, q, z)(φ, ϕ, ψ) = 0 ∀(φ, ϕ, ψ) ∈ X ×Q×X, (6.62)
L̃′(uk, qk, zk)(φk, ϕk, ψk) = 0 ∀(φk, ϕk, ψk) ∈ X̃r

k ×Q× X̃r
k , (6.63)

L̃′(ukh, qkh, zkh)(φkh, ϕkh, ψkh) = 0 ∀(φkh, ϕkh, ψkh) ∈ X̃r,s
k,h ×Q× X̃

r,s
k,h, (6.64)

L̃′(uσ, qσ, zσ)(φσ, ϕσ, ψσ) = 0 ∀(φσ, ϕσ, ψσ) ∈ X̃r,s
k,h ×Qd × X̃r,s

k,h. (6.65)

We observe that L(u, q, z) = L̃(u, q, z) due to the continuity of u ∈ X because the space
W (0, T ) is continuously embedded into C(I;L2(Ω)). In order to remain consistency with a
posteriori error estimates for stationary problems, we introduce the following notation:

ρ̃(u, q)(φ) := L̃′z(u, q, z)(φ),
ρ̃∗(u, q, z)(ψ) := L̃′u(u, q, z)(ψ),
ρ̃q(u, q, z)(ϕ) := L̃′q(u, q, z)(ϕ).

With these preparations, we obtain the following result:

Proposition 6.5.1. Let {u, q, z} ∈ X × Q × X, {uk, qk, zk} ∈ X̃r
k × Q × X̃r

k , and
{ukh, qkh, zkh} ∈ X̃r,s

k,h×Q×X̃
r,s
k,h be approximations of (6.62), (6.63), and (6.64), respectively.

Furthermore, let {ũσ, q̃σ, z̃σ} ∈ X̃r,s
k,h × Qd × X̃r,s

k,h be an approximative solution of (6.65)
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obtained by any iterative solver. Then, there hold the following error representations:

J(u, q)− J(uk, qk) = 1
2 ρ̃(uk, qk)(z − ψk) + 1

2 ρ̃
∗(uk, qk, zk)(u− φk)

+ 1
2 ρ̃

q(uk, qk, zk)(q − ϕk) +Rk,
(6.66)

J(uk, qk)− J(ukh, qkh) = 1
2 ρ̃(ukh, qkh)(zk − ψkh) + 1

2 ρ̃
∗(ukh, qkh, zkh)(uk − φkh)

+ 1
2 ρ̃

q(ukh, qkh, zkh)(qk − ϕkh) +Rh,
(6.67)

J(ukh, qkh)− J(ũσ, q̃σ) = 1
2 ρ̃(ũσ, q̃σ)(zkh − z̃σ) + 1

2 ρ̃
∗(ũσ, q̃σ, z̃σ)(ukh − ũσ)

+ 1
2 ρ̃

q(ũσ, q̃σ, z̃σ)(qkh − q̃σ) + ρ̃(ũσ, q̃σ)(z̃σ) +Rd,
(6.68)

with arbitrary (φk, ϕk, ψk) ∈ X̃r
k ×Q× X̃r

k and (φkh, ϕkh, ψkh) ∈ X̃r,s
k,h×Q× X̃

r,s
k,h. Here, the

error due to the approximative solution of (6.65) is given by ρ̃(ũσ, q̃σ)(z̃σ). The remainder
terms Rk,Rh, and Rd have the same form as in Lemma 6.5.1.

Proof. There holds

J(u, q)− J(uk, qk) = L̃(u, q, z)− L̃(uk, qk, zk), (6.69)
J(uk, qk)− J(ukh, qkh) = L̃(uk, qk, zk)− L̃(ukh, qkh, zkh). (6.70)

Thus, the first two identities (6.66) and (6.67) can be shown by applying result (6.60) from
Lemma 6.5.1 and using a compactness argument. The details can be found in Meidner [81].
For the error representation involving the approximative solution, we observe

J(ukh, qkh)− J(ũσ, q̃σ) = L̃(ukh, qkh, zkh)− L̃(ũσ, q̃σ, z̃σ) + L̃′z(ũσ, q̃σ, z̃σ)(z̃σ), (6.71)

where the last term occurs due to the perturbed Galerkin orthogonality. The assertion
follows using the same arguments as in Proposition 6.3.1.

Since (φk, ϕk, ψk) ∈ X̃r
k ×Q× X̃r

k and (φkh, ϕkh, ψkh) ∈ X̃r,s
k,h×Q× X̃

r,s
k,h can be arbitrarily

chosen, we follow Meidner [81] and set

q̂k = q ∈ Q and q̂qh = qk ∈ Q.

By these means, we obtain for the error representations:

J(u, q)− J(uk, qk) ≈
1
2ρ

u(uk, qk)(z − ẑk) + 1
2ρ

z(uk, qk, zk)(u− ûk),

J(uk, qk)− J(ukh, qkh) ≈ 1
2ρ

u(ukh, qkh)(zk − ẑkh) + 1
2ρ

z(ukh, qkh, zkh)(uk − ûkh),

J(ukh, qkh)− J(ũσ, q̃σ) ≈ 1
2ρ

u(ũσ q̃σ)(qkh − q̃kh) + ρz(ũσ, q̃σ, z̃σ)(ukh − ũσ)

+ 1
2ρ

q(ũσ, q̃σ, z̃σ) + ρu(ũσ, q̃σ)(z̃σ),
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where we have neglected the remainder terms Rk, Rh, and Rd.

It is also possible to show the error identity (6.68) with ũσ and z̃σ replaced by arbitrary
φσ ∈ X̃r,s

k,h and ψσ ∈ X̃r,s
k,h, respectively. However, this would change the form of the iteration

error estimator and make its evaluation more involved.

Finally, we state the form of the a posteriori error estimates for the cG(r) discretization
in time. To this end, we consider the stationary points of the Lagrangian L(·, ·, ·) given
in (6.52) on different levels of discretization:

L′(u, q, z)(φ, ϕ, ψ) = 0 ∀(φ, ϕ, ψ) ∈ X ×Q×X, (6.72)
L′(uk, qk, zk)(φk, ϕk, ψk) = 0 ∀(φk, ϕk, ψk) ∈ Xr

k ×Q× X̃r
k , (6.73)

L′(ukh, qkh, zkh(φkh, ϕkh, ψkh) = 0 ∀(φkh, ϕkh, ψkh) ∈ Xr,s
k,h ×Q× X̃

r,s
k,h, (6.74)

L′(uσ, qσ, zσ)(φσ, qσ, zσ) = 0 ∀(φσ, ϕσ, ψσ) ∈ Xr,s
k,h ×Qd × X̃r,s

k,h. (6.75)

As previously, we introduce the following notation:

ρ(u, q)(φ) := L′z(u, q, z)(φ),
ρ∗(u, q, z)(ψ) := L′u(u, q, z)(ψ),
ρq(u, q, z)(ϕ) := L′q(u, q, z)(ϕ).

With these preparations, we obtain the following result.

Proposition 6.5.2. Let {u, q, z} ∈ X × Q × X, {uk, qk, zk} ∈ Xr
k × Q × X̃r

k , and
{ukh, qkh, zkh} ∈ Xr,s

k,h×Q×X̃
r,s
k,h be approximations of (6.72), (6.73), and (6.74), respectively.

Furthermore, let {ũσ, q̃σ, z̃σ} ∈ Xr,s
k,h × Qd × X̃r,s

k,h be an approximative solution of (6.75)
obtained by any iterative solver. Then, there hold the following error representations:

J(u, q)− J(uk, qk) = 1
2ρ(uk, qk)(z − ψk) + 1

2ρ
∗(uk, qk, zk)(u− φk)

+ 1
2ρ

q(uk, qk, zk)(q − ϕk) +Rk,
(6.76)

J(uk, qk)− J(ukh, qkh) = 1
2ρ(ukh, qkh)(zk − ψkh) + 1

2ρ
∗(ukh, qkh, zkh)(uk − φkh)

+ 1
2ρ

q(ukh, qkh, zkh)(qk − ϕkh) +Rh,
(6.77)

J(ukh, qkh)− J(ũσ, q̃σ) = 1
2ρ(ũσ, q̃σ)(zkh − z̃σ) + 1

2ρ
∗(ũσ, q̃σ, z̃σ)(ukh − ũσ)

+ 1
2ρ

q(ũσ, q̃σ, z̃σ)(qkh − q̃σ) + ρ(ũσ, q̃σ)(z̃σ) +Rd,
(6.78)

with arbitrary (φk, ϕk, ψk) ∈ Xr
k ×Q× X̃r

k and (φkh, ϕkh, ψkh) ∈ Xr,s
k,h×Q× X̃

r,s
k,h. Here, the

error due to the approximative solution of (6.65) is given by ρ̃(ũσ, q̃σ)(z̃σ). The remainder
terms Rk,Rh, and Rd have the same form as in Lemma 6.5.1.
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Proof. The proof of the result is obtained using the same arguments as in Proposi-
tion 6.5.2.

6.5.1. Practical realization

The derived error representations involve the unknown errors on different discretization
levels. For their approximation, we use the postprocessing of the computed solutions by
local higher-order interpolation. Thereby, we proceed as in Meidner & Vexler [83].

We consider the dG(0)-discretization in time. To this end, we introduce the linear op-
erator Πk := I

(1)
k − id with I

(1)
k : X̃0

k → X1
k , which maps the computed solution to the

approximations of the corresponding errors,

Πkuk := I
(1)
k uk − uk, Πkzk := I

(1)
k zk − zk.

For the interpolation errors in space, we use again as in Section 6.1 the linear operator
Πh = I

(2)
2h −id, where I(2)

2h is the operator of patchwise biquadratic (triquadratic) interpolation.
In this way, we approximate

Πhukh := I
(2)
2h ukh − ukh, Πhzkh := I

(2)
2h zkh − zkh, Πhqkh := I

(2)
2h qkh − qkh,

where we have assumed the discretization of the unknown parameter q ∈ Q by piecewise
bilinear (trilinear) functions. For the piecewise constant polynomial discretization, we use
the operator Πd = I

(1)
d − id leading to the approximation

Πdqkh := I
(1)
d qkh − qkh.

In all these approximations, we replace the unknown solutions by their fully discrete analogs.
This is substantiated by the fact that the caused errors are of a higher order, see Meidner [81].

Finally, we obtain the following computable a posteriori error estimators for the temporal
dG(0) discretization:

ηk := 1
2 ρ̃(ũσ, q̃σ)(Πkz̃σ) + 1

2 ρ̃
∗(ũσ, q̃σ, z̃σ)(Πkũσ), (6.79)

ηh := 1
2 ρ̃(ũσ, q̃σ)(Πhz̃σ) + 1

2 ρ̃
∗(ũσ, q̃σ, z̃σ)(Πhũσ), (6.80)

ηd := 1
2 ρ̃(ũσ, q̃σ)(Πhz̃σ) + 1

2 ρ̃
∗(ũσ, q̃σ, z̃σ)(Πhũσ) + 1

2 ρ̃
q(ũσ, q̃σ, z̃σ)(Πhq̃σ), (6.81)

ηm := 1
2 ρ̃(ũσ, q̃σ)(z̃σ). (6.82)

For a detailed description of the computational procedure of the above residuals, we refer
to Meidner & Vexler [83]. We show only the explicit form of the iteration error estimator
and the residual term ρq(·, ·, ·)(·). We stabilize the discrete equations by the local projection
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method (LPS). Approximating the arising temporal integrals by the box rule and using the
abbreviations Ũm := ũ−σ,m and Z̃m := z̃−σ,m the error estimators are given by

ρq(ũσ, q̃σ, z̃σ)(Πhq̃σ) = 2α(µ̃σ − µ∗, I(2)
2h µ̃h − µ̃h) + 2α(β̃σ − β∗, I(2)

2h β̃h − β̃h)ΓG

+ 2α(χ̃σ − χ∗, I(2)
2h χ̃h − χ̃h)

)
−

M∑
m=1

km(Z̃mE(tm), I(2)
2h µ̃h − µ̃h)

−
M∑
m=1

km(Z̃mEs(tm), I(2)
2h λ̃h − λ̃h)ΓG − (Z̃0, I

(2)
2h χ̃h − χ̃h),

ρ(ũσ, q̃σ)(z̃σ) =
M∑
m=1

(
−kmā(Ũm, q̃σ)(Z̃m)− smh (Ũm, Z̃m)− (Ũm − Ũm−1, Z̃m)

)
− (U0 − χ̃σ, Z̃0),

where the term smh (·, ·) is defined accordingly to (3.10).

The approximation of the a posteriori error estimators for the continuous Galerkin dis-
cretization in time with piecewise linear polynomials can be treated in a similar manner.
However, in this case for the approximation of the semidiscrete temporal weights, we use
the operator Πk := I

(2)
2k − id with I(2)

2k : X̃1
k → X2

2k, which maps the computed solution to
the approximations of the corresponding errors.

For the adaptive refinement the derived a posteriori error estimates must be localized. To
this end, the error estimates are first split into their contributions on each subinterval Im.
For the spatial refinement the localization on each of these subintervals procedure is the
same as in elliptic case described in Section 6.1. Thus, we obtain the cellwise error indicators
for all time steps

ηh =
M∑
m=0

∑
K∈Th

ηh,K .

The localization of the error estimator due to the discretization of the parameter q ∈ Q is
treated analogously. The temporal indicators from the representation

ηk =
M∑
m=1

ηmk ,

can be used directly for the refinement of time intervals. Details on the localization procedure
can be found in Meidner [81].

We note that the derived representation of the iteration error is valid for any fixed-
point iteration and, consequently, we can employ the Newton-type methods as described in
Chapter 5, Section 5.4. Based on the derived error estimators (6.79), (6.80), (6.81), and (6.82),
we propose the following adaptive algorithm balancing different error contributions:
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Adaptive nonstationary solution algorithm

(1) Choose initial discretizations Tσ0 , σ0 = (k0, h0, d0) and set l = 0.
(2) Apply one step of the Newton-type method (qnσl , u

n
σl

)→ (qn+1
σl

, un+1
σl

).
(3) Evaluate the estimators ηn+1

kl
, ηn+1
hl

, ηn+1
dl

, and ηn+1
ml

.
(4) If ηn+1

kl
+ ηn+1

hl
+ ηn+1

dl
+ ηn+1

ml
≤ TOL quit.

(5) If ηn+1
ml
≥ κmin{ηn+1

kl
, ηn+1
hl

, ηn+1
dl
} increment n and goto (3).

(6) Determine the discretizations to be refined.
(7) Refine the selected discretizations using error indicators from

ηn+1
kl

, ηn+1
hl

, and ηn+1
dl

.
(8) Increment l and go to (2).

In the proposed method, we use again an equilibration factor κ = 0.1. This ensures that the
local refinement results from the values of the discretization error estimators. On the next
finer mesh, we evaluate the discretization error estimators if for the iteration estimator there
holds ηn+1

ml+1
≥ κmin{ηn+1

kl+1
, ηn+1
hl+1

, ηn+1
dl+1
}. In step (6) of the algorithm a strategy proposed

in Meidner [81] can be used. Here, the error estimators are first sorted in an ascending
order. Then, we compute their quotients. If the obtained values exceed some fixed number,
the corresponding discretization with a bigger error is refined. We note that for solving
problem (6.50,6.51) by the Newton-type methods described in Chapter 5, Section 5.3, the
state variable ũσ is needed in the whole time interval I. This may be prohibitive with
respect to the storage space. The reduction of the required amount of memory can be
achieved by applying checkpointing techniques storing the state solution only on selected
time points (so-called checkpoints). In this case the storage grows only logarithmic with
respect to the number of time intervals. For more details on checkpointing, we refer, e.g., to
Griewank [46] or Berggren et al. [18]. Nevertheless, we store the state solution over the whole
time interval in all presented nonstationary numerical computations. For two-dimensional
applications this can often be done by using the operating memory (RAM). In three spatial
dimensions the data must be stored on the hard drive. However, even in this case the time
to access the data can be neglected: In order to write a vector with 106 ”double precision“
entries to a solid-state-drive (SSD), we need approximately 0.01632 sec (490 MB/s). For the
corresponding read access 0.01568 sec (510 MB/s) are required. This can be assumed to be
still much faster than solving several time steps of a possibly nonlinear problem more than
once. A further discussion of this topic can be found in Becker et al. [15].

6.6. Numerical example

The example demonstrates the efficiency of the proposed adaptive algorithm for an non-
stationary inverse problem. We consider a reaction chain leading to ozone loss discussed in
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Chapter 2, Example 1. The aim of the computations is the reconstruction of the unknown ini-
tial condition of the system. The inverse problem is regularized using the ordinary Tikhonov
regularization with a fixed parameter α. We solve the resulting optimal control problem by
the direct Newton method for optimization problems. The equations are discretized using
the cG(1)dG(0) method. For the stabilization of the discrete problems, we employ the local
projection stabilization (LPS) scheme.

For the convenience of the reader, we state the underlying chemical reaction mechanism
again. As before, we denote by hν the photolysis, i.e., a process by which molecules are
broken down into smaller units through the absorption of light. The chemical reactions are
given by:

O2 + hν
k1−→ 2O (6.83)

O +O2 +M
k2−→ O3 +M (6.84)

O3 + hν
k3−→ O +O2 (6.85)

O +O3
k4−→ 2O2 (6.86)

Here, ki, i = 1, . . . , 4, are reaction constants, and M is any nonreactive species stabilizing
O3. Due to the high concentration of oxygen in comparison to the concentrations of the
other species, we assume it to be constant over the time. Consequently, we set the respective
concentrations to be qual to [O2] = [M] = 1. The unknowns are then denoted by u1 = [O]
and u2 = [O3].

Using the Arrhenius law, we drop the dependency of the reaction rates on the temperature
and assign fix values k1 = 10−4, k2 = 10−3, k3 = 10−4, and k4 = 10−5. For the numerical
computations, we choose the domain Ω ⊂ IR2 to be (0, 1)× (0, 1), fix values for the diffusion
coefficients D11 = D22 = 10−5 and for the convection velocity β = (1, 1)T . The temporal
domain is given by I = [0, 1]. The resulting system of equations reads as follows:

∂tu1 −∇ · (D1∇u1) + v∇u1 + f1(u) = E1(t, x) in ΩT ,
∂tu2 −∇ · (D1∇u2) + v∇u2 + f2(u) = E2(t, x) in ΩT ,

D1∂nu1 = Es,1(t, x) on Σ,
D2∂nu2 = Es,2(t, x) on Σ,
u1(t0, x) = χ1(x) in Ω,
u2(t0, x) = χ2(x) in Ω,

(6.87)

where we have imposed Neumann boundary conditions for the both components of the
system. The nonlinear reaction terms fi, i = 1, 2, are modeled according to the mass kinetics
described in Chapter 2 and are given in (2.44) and (2.45), respectively. The source terms
on the right-hand side Ei(t, x), i = 1, 2, are defined in such a way that the exact solution is
given by

ui(t, x) = 1
1 + γi((x1 − r(t))2 + (x2 − s(t))2) , i = 1, 2,
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with the functions

r(t) = 1
2 + 1

4 cos(2πt),

s(t) = 1
2 + 1

4 sin(2πt).

We prescribe the following values for the parameters of the system, γ0 = 50, γ1 = 200. The
initial concentrations q(x) := (χ1(x), χ2(x)) ∈ Q := L2(Ω) × L2(Ω) are supposed to be
unknown. The overdetermination condition is given by transient measurements integrated
over the space. Thus, the corresponding observation operator C and the measurement space
Y are given by

C(ui) =
∫
Ω

ui(t, x) dx ∈ Yi, Yi := L2(I), i = 1, 2.

The solution space for the states is given by X := W (I)×W (I).

The inverse problem is stabilized by the ordinary Tikhonov regularization. Hence, the
resulting problem reads as follows:

min
(u,q)∈X×Q

J(u, q) :=
2∑
i=1
‖C(ui)− gi‖2Yi + α‖q − q∗‖2Q,

subject to system (6.87) formulated in a weak sense. We denote the components of the
measurement vector by gi = C(ui). As prior knowledge, we set q∗ = (χ∗1, χ∗2) = (0, 0).

The unknown initial concentration q ∈ Q is discretized by the continuous Galerkin finite
element method. In order to access a reference value, we solve the problem on finer temporal
and spatial meshes. Table 6.16 shows the development of the discretization error and a
posteriori error estimators during an adaptive run with local refinement of all types of the
discretization. As the stopping criterion for the Newton iteration, we use the first order
optimality condition (5.65) with TOL = 10−10.

Table 6.16: Example 4, iteration with Alg. S I (algebraic stopping criterion).
Ntot Nmax M It ηtot ηh ηk ηm
2 673 243 20 17 5.41e-04 2.78e-04 2.63e-04 1.21e-10
9 447 623 20 16 1.55e-04 1.23e-05 1.43e-04 3.49e-09
9 780 623 24 17 1.29e-04 1.24e-05 1.17e-04 6.09e-10

10 086 623 33 19 5.61e-05 1.24e-05 4.38e-05 7.02e-10
47 340 1505 36 19 3.77e-05 8.11e-06 2.96e-05 2.33e-11
158 484 3659 47 19 2.94e-05 6.23e-06 2.33e-05 8.87e-12
349 704 9329 68 18 5.78e-06 1.22e-06 4.56e-06 6.23e-11

Table 6.17 shows the corresponding values using an adaptive stopping criterion for the
Newton method. As we can see, we obtain almost identical values for the discretization
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Table 6.17: Example 4, iteration with Alg. S II (adaptive stopping criterion).
Ntot Nmax M It ηtot ηh ηk ηm
2 673 243 20 9 5.41e-04 2.85e-04 2.63e-04 7.13e-06
9 447 623 20 9 1.55e-04 1.26e-05 1.44e-04 4.56e-07
9 780 623 24 9 1.29e-04 1.29e-05 1.17e-04 5.79e-07
10 086 623 33 10 5.61e-05 1.30e-05 4.40e-05 6.45e-07
47 340 1505 36 10 3.77e-05 8.25e-06 2.93e-05 1.67e-07

158 484 3659 47 9 2.94e-05 6.33e-06 2.33e-05 9.90e-08
349 704 9329 68 9 5.78e-06 1.29e-06 4.57e-06 8.11e-08

errors. However, we observe approximately double work saving by using the adaptive stopping
criterion for the Newton method. This shows the reliability and the efficiency of the adaptive
algorithm.

In Figure 6.13, we can see the sequence of locally refined meshes from the solution process.
The computed initial concentrations χ1(x) and χ2(x) and the concentrations of O3 and O
at different discrete time points are depicted in Figures 6.14 and 6.15, respectively. We can
observe that the meshes are strongly locally refined in regions of high concentrations.

Figure 6.13: Example 4, locally refined meshes from solution process at time point
t = 0 (left), t = 0.5 (middle) and t = 1 (right).
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6.6. NUMERICAL EXAMPLE

Figure 6.14: Example 4, calculated initial condition χ1(x) (left) and concentrations of
O3 at time points t = 0.5 (middle) and t = 1 (right).

Figure 6.15: Example 4, calculated initial condition χ2(x) (left) and concentrations of
O at time points t = 0.5 (middle) and t = 1 (right).
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CHAPTER 7

Applications

The aim of this chapter is to provide a more detailed description of the parameters of
system (2.22) and to present a real world problem for identification of unknown source term
in atmospheric transport of bromine oxide (BrO) in a Polar region. Here, we are faced with
the situation in which the mechanisms responsible for release or destruction of bromine
oxide are not precisely known. However, due to the heavy impact of this trace gas to the
ozone loss during the spring time (see, e.g., Simpson et al. [108]) the quantification of the
sources is of special importance. Thus, we consider a simplified model given by the following
scalar convection-diffusion-reaction equation

∂tu−∇ · (D∇u) +∇ · (vu) = q(t, x) in ΩT ,
u = uin on ΣI ,

D∂nu = 0 on ΣO,
D∂nu− wu = Es(u, t, x) on ΣG,

u(t0) = u0 in Ω,

(7.1)

where u represent the unknown concentration of BrO, and q = q(t, x) denotes the unknown
source term. As overspecification condition, we use integrated observations of bromine oxide.
Thus, the observation operator C : X → Y and the measurement space Y are given as
follows:

Ci(u) =
∫
Ω

u(ti, x) dx ∈ Yi, Yi := L2(0, T ), i = 1, . . . ,M, (7.2)

where M stands for the number of discrete time points. Since the given data have a lower
dimensionality as the unknown parameters, we further assume distributed observations to
be given at a specific time point

C∗(u) = u(t∗, x), (t∗, x) ∈ ΩT , Y ∗ := L2(Ω). (7.3)

Nevertheless, the approach still remains heuristic since we cannot show the unique identi-
fiability of the unknown source term. This can be justified if, e.g., the source term can be
separated in temporal and spatial parts, see, e.g., Savateev [103] and Young et al. [122]. The
numerical results at the end of the chapter show that the obtained recovered concentrations,
which are of its own importance, agree with the assimilated observations very well. The
computational results and the settings of the problem are taken from Garbe & Vihharev [44].

Equation (7.1) is given in units of the so-called ”number density” (mol/m3). Since the
observation are given in units of mole fractions (mol/mol), we rewrite the first equation of
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7.1. PARAMETRIZATION OF THE KINEMATIC TURBULENT FLUXES

system (7.1) accordingly. To this end, we denote by ρa the density of the air and consider
the corresponding continuity equation for air

∂tρa +∇ · (vρa) = 0. (7.4)

In this case the chemical transformations are neglected. We note that air is incompressible.
We multiply the continuity equation for the trace gas (7.1) by the air density, combine with
the above equation, and obtain after some algebraic transformations the modified continuity
equation

∂tu−
1
ρa
∇ · (ρaD∇u) + v∇u = q(t, x) in ΩT ,

u = uin on ΣI ,
D∂nu = 0 on ΣO,

D∂nu− w u = Es(u, t, x) on ΣG,
u(t0) = u0 in Ω,

(7.5)

where u(t, x) now stands for the concentration of bromine oxide expressed in mole fraction.

In the following, we describe the computation of the eddy diffusivity tensor. After that, we
rewrite the continuity equation in horizontal spherical coordinates accordingly to the given
observations. For the vertical coordinate, we employ the terrain-following sigma-pressure
coordinates. We close the chapter by the presentation of the computational results.

7.1. Parametrization of the kinematic turbulent fluxes

In this section, we shortly describe one of the possible parameterizations for the diffusivity
tensor introduced in Chapter 2, Section 2.1. The most common approach to parametrizing
the diffusion bases on the similarity theory. The form of the diffusion depends on the stability
properties of the regions of the atmosphere. Thus, the most turbulent part of the atmosphere
is the region between the Earth’s surface and 500− 3000 m height called the atmospheric
boundary layer. The bottom ten percent of the boundary layer is the surface layer. The
presented parametrization will be used in the numerical calculations.

In order to parameterize the unknown kinematic fluxes, we use the Monin-Obukhov
similarity theory. To this end, we introduce the so-called Monin-Obukhov length L, which
describes the stability properties of the atmosphere, and the boundary layer height H.
Following the approach of Troen & Marth [117] the vertical diffusion coefficient in boundary
layer is modeled by

D33 = κ v∗ x3

Ψ(1− x̃3) ,

where x̃3 is the scaled vertical coordinate x̃3 = x3
H , κ von Karman’s constant taken to be

0.4, v∗ the surface friction velocity, and Φ the non-dimensional shear. The friction velocity
can be calculated using the surface stress τ0 and air density ρa,

v∗ =
(
τ0

ρa

)1/2
.
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For stable conditions L > 0 the shear for the whole boundary layer is given by

Φm = 1 + 4.7L−1.

We set the vertical diffusion coefficient to be constant above the boundary layer

D33(x3) = 0.0013.

We use the approach presented in Hess [55] for the modeling of the horizontal diffusion
coefficients and set for stable atmospheric conditions

D11 = D22 = 0.143H u∗ x̃
1/2
3 (1− x̃3)1/2.

For unstable conditions L < 0, for the surface layer (0 ≤ x3 ≤ 0.1 ·H) there holds

Φm =
(

1− 7x3

L

)−1/3
.

Above the surface layer the vertical diffusion coefficient is given by

D33(x3) = wsH κ x̃3 (1− x̃3)p,

where ws denotes the velocity scale. The velocity scale can be calculated in terms of convec-
tive velocity w∗,

w∗ = v∗
(
−H κ−1 L−1

)1/3
, ws = 0.65w∗.

The value of the exponent p varies in the literature, see, e.g., Højstrup [58], however, p = 2
is a typical choice in many computations. We use again the approach of Hess [55] for the
horizontal diffusion under these atmospheric conditions

D11 = D22 = 0.1w∗H.

For neutral conditions, L = 0, the vertical diffusivity coefficient is expressed as

K3(x3) = κ v∗ x3 exp(−4x3H
−1).

As we can see, the parameters L and H play the central role in calculations of the diffusion
coefficients. They are either supplied with the meteorological data or are computed from
other quantities. The Monin-Obukhov length can be calculated by the help of the friction
velocity v∗, potential temperature Θv, and temperature at the surface,

L = v2
∗Θv
k g Θ

. (7.6)

The height of the atmospheric boundary layer can be computed using the definition of the
bulk Richardson number. For more details on this issue, we refer to Jacobson [63].
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7.2. The continuity equation in spherical terrain-following coordinates

In view of the form of the given observations and meteorological parameters such as wind
fields and air density, we rewrite the continuity equation from system (7.5) in spherical
horizontal coordinates. So as to account for uneven terrain, we introduce the pressure-sigma
coordinates. Finally, we derive the weak form of the continuity equation in new coordinates.

The horizontal spherical coordinates are given by the following transformation

T (x1, x2) =
(
Re cos(φ)λ

Reφ

)
,

where λ denotes the longitude, φ the latitude, and Re ≈ 6371 km is the Earth’s radius.

For the vertical coordinate, we use the terrain-following sigma-pressure coordinates as
originally proposed in Phillips [91],

σ = p− ptop
ps − ptop

,

where p denotes the air pressure, ps and ptop stand for the surface and top pressure of the
model domain, respectively. Thus, at the surface, we obtain σ = 1 while at the top of the
domain there holds σ = 0. Then, the species continuity equation in new coordinates is given
by

∂(psu)
∂t

+ ∂(psvλu)
∂λ

+ 1
cosφ

∂(psvφ cosφu)
∂φ

+ ps
∂(vσu)
∂σ

= ∂

∂λ

(
psDλλ

∂u

∂λ

)
+ 1

cosφ
∂

∂φ

(
psDφφ cosφ∂u

∂φ

)
+ G2

ps

∂

∂σ

(
ρ2
aD33

∂ξ

∂σ

)
− psq,

(7.7)

with the gravitational constant G. Here, the components of the wind in the new coordinates
vλ, vφ, and vσ are calculated from the cartesian components as follows:

vλ = vx
Re cosφ, vφ = vy

Re
, and vσ = − σ

ps

(
∂ps
∂t

+ ∂ps
∂x

vx + ∂ps
∂y

vy

)
− ρaG

ps
vz

The diffusion is calculated accordingly to

Dλλ = D11

R2
e cos2 φ

and Dφφ = D22

R2
e

.

In order to rewrite the boundary conditions, we note that for the gradient there holds in
the new coordinates

∇u = 1
Re cosφ

∂u

∂λ
+ 1
Re

∂u

∂φ
+ −ρa g
ps − ptop

∂u

∂σ
.

For details on the derivation, we refer, e.g., to Seinfeld & Pandis [107] or Jacobson [63].
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7.3. Numerical results

In this section, we present the computational results for the identification of unknown
source term and reconstruction of distributed concentrations of bromine oxide. The over-
specification is given in terms of integral and terminal conditions given by (7.2) and (7.3),
respectively. The parametrization of the turbulent diffusion is performed accordingly to Sec-
tion 7.1. The wind fields, the initial and boundary conditions are supposed to be provided.

We use the weak form of equation (7.7). The functional spaces used are set accordingly
to X := W (0, T ) for the state variable u and Q := L2(ΩT ) for the unknown source term
q. The resulting equations are discretized using the cG(1)dG(0) method as described in
Chapter 3. The stabilization of the problem is done by the LPS method introduced in
Chapter 3, Section 3.3.

As computational domain Ω, we consider a region in Arctic. The simulation interval
I := [t0, T ] is from 4am CET on January 1, 2000 to 4am CET on January 11, 2000. The
initial time point is then set as t0 = 0. We use 45 layers for the vertical discretization. The
calculation of the corresponding vertical coordinates is done by the procedure described in
White [120].

The resulting inverse problem is regularized by the nonstationary iterated Tikhonov
method. The Tikhonov functional is given by

J(u, q) :=
M∑
i=1
‖Ci(u)− gδi ‖2Yi + ‖C∗(u)− g∗,δ‖2Y ∗ + α‖q − q∗‖2Q. (7.8)

Since we lack the prior knowledge of the parameter q, we set q∗ = 0. As stopping criterion
for the Tikhonov method, we use the Morozov’s discrepancy principle with the noise level of
two percent. The initial regularization parameter is set to be equal α = 10−1. The resulting
optimization problem is solved using the direct Newton method for optimization problems
as explained in Chapter 5, Section 5.3.

The qualitative behavior of the calculated solution and the reference values at different
time points can be studied in Figure 7.1. Here, we can see that the computed concentrations
of bromine oxide resemble the reference values very well. In this case, we require 8 iterations
with the last regularization parameter α = 3.9 · 10−3 in order to fulfill the discrepancy
principle. The corresponding computed source term at different time points is depicted in
Figure 7.2. We can observe high BrO production near the surface. The active areas of the
source term correspond to the regions of high concentrations of bromine oxide. The obtained
results can be further used for parametrization of processes responsible for the release of
bromine oxide and analysis of ozone depletion events due to halogen chemistry in Arctic
springtime.

Although the presented scalar inverse problem is rather simple from numerical point
of view, we need approximately 23 hours for the solution process. In most atmospheric
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applications the underlying chemical mechanisms consist of more than one reaction. Thus,
e.g., tropospheric ozone depletion events in Arctic surface air associated with elevated
bromine are described by 7 chemical reactions involving 10 species (Martinez et al. [80]).
The corresponding reaction mechanism with chlorine, which corresponds to an extended
reaction chain presented in Chapter 2, Example 1, consists of 8 chemical reactions between
11 species, see, e.g., Solomon [109]. Moreover, applications concerned with the gas exchange
between the ocean and the atmosphere require a very fine resolution of source regions, which
constitute the goal of the computations, see, e.g., Garbe et al. [42, 43]. Additionally, we have a
large amount of data, such as cloud observations and spectral information obtained by remote
sensing instruments, needed to be processed. Achieving high accuracy in discretization of
the problems is expensive. Hence, the efficient numerical solution requires work reduction,
which can be achieved by adaptive discretization and estimation of the algebraic errors as
described in Chapter 6. The application of the developed techniques to such large-scale
parameter identification problems is a subject of a future work.

Figure 7.1: Assimilated concentrations of bromine oxide at different time points (z-
layer) (left column) and the calculated concentrations (right column)
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Figure 7.2: Computed source term q at different time points (z-layer)
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CHAPTER 8

Conclusion and Future Work

This thesis is devoted to analysis and systematic approach for adaptivity for the problems
related to the transport of chemical species in the Earth’s atmosphere. The problems under
consideration involve nonlinear systems of nonstationary parabolic equations, hyperbolic
equations given by radiative transfer models, and Euler equations resulting from image
segmentation techniques. The arising problems are discretized by the Galerkin finite element
method. We provide also the stability analysis for a class of general atmospheric inverse
problems including reconstruction of unknown initial concentrations and calibration or
identification of parameters.

The main issue of this work is the development of adaptive techniques based on the
determination of adaptive discretizations and the control of the algebraic solvers for numerical
solution of problems related to the atmospheric transport. However, the presented concept
of the adaptivity is rather general and can be applied to a broad class of partial differential
equations. Our approach bases on a posteriori error estimation for direct simulations and
inverse problems. The presented adaptive methods produce a sequence of locally refined
meshes with balanced error contributions due to the discretization and the inexact solution of
algebraic systems. The efficiency and reliability of the proposed techniques are confirmed by
several example problems involving the cloud segmentation from satellite observations, the
calculation of radiative transfer model, and nonlinear parabolic system of partial differential
equations. For the problems considered in this thesis the application of the developed
adaptive techniques leads to a significant saving of computational time. In numerical tests,
we can observe that the use of goal-oriented meshes makes the solution process at least three
times faster compared to the method based on uniformly refined meshes. The use of the
adaptive stopping criterion for the algebraic solver further reduces the number of iterations
and, consequently, the computational time approximately by a factor of two. Balancing
of the algebraic errors from the inner and outer iterations in the Newton method leads
additionally to double work reduction. In the particular application of cloud segmentation
the proposed fully adaptive algorithm outperforms the method based on a heuristic error
estimator by a factor of eight in terms of the computational time.

As shown in the thesis, calibration problems describing the transport of atmospheric con-
stituents are generally ill-posed. In this sense, we consider different regularization techniques
and put a particular emphasis on Tikhonov-type methods. For this type of regularization, we
consider general perturbations of functional using the Morozov’s discrepancy principle as a
stopping rule. Furthermore, we combine the techniques stemming from the image processing
with the numerical methods for analyzing the cloud maps from satellite observations.
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All numerical computations are done by the finite element toolkit Gascoigne, see Becker
& Braack [12], and the optimization toolbox RoDoBo, created by Roland Becker, Dominik
Meidner, and Boris Vexler [16], both developed in our research group. Therefore, I would
like to express my deepest gratitude to everyone involved in the development of the software
packages. The visualization of all results is made by the data visualizer MayaVi offering a
bride spectrum of capabilities for the representation of the scientific data, see Ramachandran
& Varoquaux [94].

In the following, we discuss the possible extensions of the presented work. In this work
Newton-types methods are applied to the Tikhonov regularization of inverse problems. The
structure of the Lagrange-Newton and DWR methods allows a further refinement and bal-
ancing of the error contributions due to the linearization and the iterative solution in the
inner iteration. We intent to continue the analysis of the direct Newton method for opti-
mization problems in order to assess the error due to inexact solution of auxiliary equations.
Special interest represent nonstationary partial differential equations. Furthermore, we wish
to extend the presented adaptivity concepts to the problems with constraints posed on the
control variables.

Since chemical species are characterized by their lifetimes, it would be of benefit to con-
sider the change of concentrations of chemical species at different scales. This leads to the
construction of tailored discretizations for individual atmospheric constituents and promises
a significant reduction of computational effort.

The application of the developed techniques to the parameter identification problems for
the real atmospheric transport of chemical species with overspecification given by satellite
observations is a subject of a future work. This requires the development of new modules
of code for processing of the meteorological data and the grid handling. Especially, the
implementation of locally refined meshes for problems posed in terrain-following coordinates
consistent with the given measurements represents a technical challenge.
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