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Zusammenfassung

Die vorliegende Arbeit untersucht den Einfluss eines Bosegases aus Natriumatomen auf die Ko-
hirenz fermionischer Lithiumatome, die sich in einer Superposition zweier Bewegungszustin-
de befinden. Zu diesem Zweck implementieren und charakterisieren wir ein Lithium-selektives
Gitterpotential. Das Verschieben der Gitterposition koppelt Zustédnde aus Blochbidndern unter-
schiedlicher Paritat und fithrt bei periodischer Modulation zu Rabi-Oszillationen zwischen dem
ersten und zweiten Blochband. Mit Hilfe dieses Kopplungsmechanismus untersuchen wir die zeit-
liche Entwicklung der Lithiumatome in Ramsey- und Spin-Echo-Experimenten. Die Wechselwir-
kung mit den Natriumatomen verursacht einen Koharenzzerfall der Lithiumatome, dessen Zer-
fallszeit wir durch den Vergleich der Spin-Echo-Signale mit und ohne bosonischem Hintergrund
bestimmen. Wir beobachten, dass der Verlust der Kohdrenz auf einer etwas ldngeren Zeitskala
als die Relaxation zwischen den Blochbéndern erfolgt und schlieffen daraus, dass der Koharenz-
zerfall durch Relaxationsprozesse getrieben ist. Zudem tberpriifen wir diese Schlussfolgerung
anhand einer Mastergleichung, die die zeitliche Entwicklung einzelner Teilchen in einem Bose-
gas beschreibt. Unsere Berechnungen stimmen qualitativ mit unseren Beobachtungen tiberein
und bestétigen, dass die Dynamik der Lithiumatome durch Relaxationsprozesse dominiert ist.

Abstract

This thesis investigates the motional coherence of fermionic lithium atoms immersed in a Bose
gas of sodium atoms. For this purpose, we implement and characterize a species-selective lattice
potential for lithium. Shifting the lattice position couples Bloch bands of opposite parity and we
observe Rabi oscillations between the first and second band for periodic modulation. We employ
the coherent coupling between the bands to study the evolution of the lithium atoms in Ramsey
and spin echo-type experiments. The interaction between the bosonic bath and the lithium atoms
causes the loss of motional coherence, and we determine the decoherence time by analyzing the
corresponding spin echo signal relative to the signal without Bose gas. We observe that the co-
herence decay occurs on a slightly longer time scale than the relaxation dynamics of motionally
excited lithium atoms, and conclude that the loss of motional coherence is primarily induced by
relaxation processes. Moreover, we test this interpretation by means of a master equation which
governs the evolution of a single particle immersed in a Bose gas. Our calculations agree quali-
tatively with our experimental observations and confirm that the dynamics of the lithium atoms
are dominated by relaxation processes.
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1. Introduction

Since the development of quantum mechanics in the early 20 century, physicists have debated
about its interpretation and the transition from the quantum to the classical world [1, 2, 3]. The
most common approach dates back to 1928 when Niels Bohr and Werner Heisenberg formu-
lated the Copenhagen interpretation which states that a quantum mechanical measurement cor-
responds to an instantaneous collapse of the system's wavefunction to an eigenstate of the mea-
sured observable. In general, this collapse is non-deterministic and the probability to measure a
certain eigenvalue is determined by the projection of the wavefunction onto the corresponding
eigenstate. The Copenhagen interpretation proved to be a powerful tool in order to describe the
observations of many quantum mechanical experiments, but its probabilistic character runs con-
trary to our classical intuition. The most prominent example for this objection originates from
Erwin Schrédinger who indicated that according to quantum mechanics a cat could be simulta-
neously dead and alive [4].

However, this paradox can be resolved phenomenologically as superpositions of quantum states
are only preserved in closed systems, whereas the superpositions decay in open systems due to
coupling to the environment and the corresponding density matrix evolves towards its classical
counterpart. This process is commonly referred to as decoherence [5] and prevents the observa-
tion of quantum superpositions in everyday life. Because of its fundamental importance for the
transition between the classical and quantum mechanical regime, decoherence has been studied
in a variety of experiments which analyzed the decay of superpositions by controlling the inter-
action with the classical environment [6, 7]. More recent measurements aim to understand the
decoherence mechanisms from first principles [8, 9] and are based on the ideas of Richard Feyn-
man, who proposed to use a so-called quantum simulator in order to emulate quantum systems
with large Hilbert spaces [10]. These experiments prepare a single well-controlled particle in a
superposition and investigate its subsequent evolution in a quantum mechanical bath. As these
model systems evolve overall unitary, the initial wavefunction does not instantaneously collapse
and the information about the coherence is preserved. Though, due to the coupling between both
components, the information is transferred to the bath's degrees of freedom. Because of their
large number, the particle does never recover the initial superposition and its coherence is effec-
tively lost.

These experiments directly relate the decoherence of the particle to the bath's large Hilbert space
and present a remarkable demonstration of Feynman's quantum simulator. Indeed, his concept
is not restricted to bridging the gap between the classical and quantum world, but also helped
to address other long standing questions of quantum mechanics. A further famous example for
its realization is the investigation of the Bardeen-Cooper-Schriefer (BCS) pairing mechanism in
ultracold Fermi gases [11, 12, 13]. The high degree of control over this quantum system enabled
to set a two-component Fermi gas into rotation and to tune the interaction between its species by



1. Introduction

means of a Feshbach resonance [14, 15]. The direct observation of a vortex lattice in the strongly
attractive regime revealed the superfluid character of the Fermi gas and proofed the existence of
a BCS-like pairing mechanism.

Whereas these experiments studied the mechanisms for BCS-type superconductivity in an ul-
tracold quantum gas, similar experiments could also contribute to the comprehension of high-
temperature superconductors. A debated but so far unconfirmed mechanism for their super-
conductivity is the formation of bound polaron pairs [16]. In the context of condensed matter, a
polaron consists of an electron, which polarizes an ion crystal lattice due to its Coulomb potential,
and its self-induced polarization field i. e. the lattice phonons. It has been shown theoretically that
an equivalent quasi-particle exists in the framework of ultracold quantum gases [17, 18]. In this
case, the polaron is composed of an impurity atom immersed in a Bose-Einstein condensate [19,
20] and the self-induced elementary excitations of the Bose gas, which form the counterpart to
the lattice phonons. This polaron manifestation is of special interest as Feshbach resonances pro-
vide the opportunity to tune the coupling between its constituents into the strongly interacting
regime, which could not be accessed yet by solid state experiments. Though, polaron formation
has so far not been clearly verified in ultracold quantum gases. First investigations revealed the
mediation of the boson-boson interaction due to Bose-Fermi interaction [21] and showed evi-
dence for polaronic behavior in a one-dimensional Bose-Fermi mixture [22].

Our experiment aims to test the analogy between the two polaron versions. For this purpose, we
immerse fermionic lithium atoms into a sodium Bose-Einstein condensate and intend to map out
their trapping frequency in a species-selective lattice potential. The formation of quasi-particles
manifests in a lower frequency compared to freely evolving atoms as the polaron's dynamics are
governed by an effective mass which exceeds the pure mass of the lithium atoms.

In order to detect also small frequency shifts, we need to develop appropriate experimental
techniques. Moreover, the precision of the frequency measurements is fundamentally limited
by the probe time and by mechanisms which cause the collapse of the impurity's wavefunction
during the probe time. Hence, the interaction between the lithium atoms and the sodium Bose-
Einstein condensate does not only give rise to the formation of quasi-particles, but also restricts
their investigation due to decoherence processes.

However, these processes do not only limit our measurements, but provide beyond that the
opportunity to investigate decoherence mechanisms in a closed quantum system which is not
governed by spin-spin interactions as previous experiments [8, 9]. Instead, the dynamics of the
lithium atoms in the sodium background are controlled by a density-density-type interaction, and
the coherence of the lithium atoms decays due to coupling to the elementary excitations of the
degenerate Bose gas. Thus, the coherence loss depends on the interaction between the background
atoms, and the characteristics of the loss mechanisms differ from those in spin systems due to the
continuity of the excitation spectrum.

Contents of this Thesis

This thesis is organized as follows. Chapter 2 presents briefly the basic concepts of ultracold
quantum gases and introduces our experimental setup producing a mixture of fermionic lithium
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and bosonic sodium. The following chapters 3, 4 and 5 discuss the species-selective lattice poten-
tial which is our main tool to address the lithium atoms and probe their evolution in the sodium
cloud. Chapter 3 starts with a general discussion of basic lattice theory and is directed to design
the lattice according to our needs. Subsequently, we characterize the lattice potential in chapter 4,
and investigate the coherent control over the lithium atoms with the help of the optical lattice in
chapter 5. In this context, a spin echo technique is developed in order to explore the motional
coherence of the lithium atoms during the immersion in the sodium bath.

The following chapters focus on the dynamics of the lithium atoms in the Bose gas. First,
chapter 6 introduces the corresponding theoretical framework and deduces the master equation
for an impurity immersed in a bosonic bath. Subsequently, the relaxation dynamics of motionally
excited lithium atoms due to interaction with the sodium background are studied in chapter 7,
and we compare the experimental findings to our previous, theoretical considerations. Finally,
we investigate the interaction induced loss of motional coherence in chapter 8 and analyze the
loss mechanisms by means of the relaxation dynamics.

11






2. Bose-Fermi Mixture of Sodium and
Lithium

This chapter presents a brief theoretical overview of ultracold Bose and Fermi gases. It is not
meant to provide a complete theoretical description, but rather introduces the basic concepts
which are necessary for the analysis of the experimental data and measurements presented in
the following chapters. Hereby, the chapter focuses mainly on the density distribution of the two
gases as we finally intend to investigate the dynamics of immersed (fermionic) atoms in a bosonic
bath which depend on the density of both components.

The first section starts with a discussion of the Gross-Pitaevskii equation for weakly interacting
bosons in order to obtain their density distribution in a trapping potential. Furthermore, we
introduce the Bogoliubov excitations which approximate the quantum mechanical fluctuations of
the Bose gas to first order and are connected to density fluctuations. These fluctuations become
important in the context of the interaction between the bosonic bath and immersed atoms in
chapter 6. The second section investigates the basic properties of a non-interacting Fermi gas with
an emphasis on the density distribution in an external trapping potential. The final part of this
chapter applies the considerations of the previous sections to the Bose-Fermi mixture of fermionic
lithium (°Li) and bosonic sodium (**Na) realized in our experiment. In this context, we provide
a short overview of the experimental setup and extract the quantities which are relevant for the
following chapters, as e.g. the gas temperature and the density profiles, from the experimental
data.

2.1. Weakly Interacting Bosons

2.1.1. The Gross-Pitaevskii Equation

Bose gases realized in ultracold atom gas experiments are prepared and cooled in an external trap-
ping potential V_,, which isolates the atoms from the environment to prevent their heating [23].
Besides the external trapping potential the atoms usually interact weakly with each other via a
Van der Waals potential. Because of the low temperatures in our experiments, the de Broglie
wavelength of the atoms is typically much larger than the effective range of the Van der Waals
potential. Therefore, the details of the potential are not resolved by the interacting atoms and the

interaction can be described by a contact potential [24]
V(#—7")=go(F —7) (2.1)

with g = 47h%a/m being the coupling constant, a the scattering length and m the mass of the
atoms. 7 and 7’ denote the positions of the interacting atoms.

13



2. Bose-Fermi Mixture of Sodium and Lithium

As ultracold Bose gases are typically dilute, which means that the inter-particle spacing is much
larger than the range of the interaction potential, two body interactions play the dominant role
and interactions involving higher particle numbers can be neglected. In this case, the Heisenberg
equation of motion for the bosonic field operator \il(?, t) is given by [24]

2
m;@(ﬁw: —?V“Veww / W OV =) ) 4| B, (22)
m

In order to find the approximate ground state of the Bose gas, the bosonic field operator can be
rewritten and split into the condensate wavefunction (V¥ (7,¢)) = U (7, t) which describes the
Bose-Einstein condensate and a term §W (7, t) which accounts for thermal and quantum mechan-

ical fluctuations
(7, t) = U, (7, t) + 60 (7, 1). (2.3)

This approach is particularly useful if the temperature of the Bose gas is well below the critical
temperature which means that thermal fluctuations are suppressed and if the number of parti-
cles in the condensate is large such that quantum mechanical fluctuations can be neglected. In
this case, the field operator can be replaced by the condensate wavefunction which leads to the
time-dependent Gross-Pitaevskii equation (GPE) [25, 26]

i (7, ) =

0 h?
ot

2
T4 V) + o0 | ), @)

The time-independent GPE can be obtained by factorizing the condensate wavefunction into a
position- and a time-dependent part ¥, (7, t) = ¥, (F)e ™ *#t/F

h2 2
() = |~ 5o T 4 Vi) + a8 04, 5)

where 1 = OF/ON is the chemical potential.

In general, the exact solution of the stationary GPE has to be calculated numerically. But in
many experimentally relevant cases the interaction energy is much larger than the kinetic energy
and thus the kinetic term in the GPE can be neglected. According to this so-called Thomas-Fermi
approximation, the density distribution of the Bose-Einstein condensate n(7) reads as

{ /J‘_‘;cxt(?‘) ifpu—V

ext(?> Z 0
0 otherwise.

(2.6)

Hence, a Bose-Einstein condensate confined in a harmonic potential characterized by the trapping

frequencies w, ,

1
Voo (F) = §m (wfmz + wgyz + wsz) (2.7)

has a parabolically shaped density distribution whose peak density is given by the ratio of the
chemical potential ;1 and the coupling constant g. As the chemical potential is restricted by the

14



2.1. Weakly Interacting Bosons

normalization condition N = [n(7) d7, it can be expressed in terms of experimentally accessible
parameters [27]

(2.8)

@ (15Na)2/5
- .

C7Lh0
Here w denotes the mean trapping frequency w = §/w,w,w, and ay, the corresponding harmonic

oscillator length a,, = \/h/(mw).

The Thomas-Fermi approximation requires that the kinetic energy of the bosons is small com-
pared to the interaction energy, but it also assumes that the Bose gas is at zero temperature as the
Gross-Pitaevskii equation does not account for temperature effects.

Despite the fact that the temperature in our experiment is finite, the Thomas-Fermi approxi-
mation provides a helpful tool to describe the observed density profiles. The reason is that the
bosonic gas shows at ultracold temperatures a bimodal density distribution. As the temperature
decreases the bosons start occupying the ground state of the system macroscopically and the
density distribution of this Bose-Einstein condensate is well reflected by the Thomas-Fermi ap-
proximation. In contrast, the density distribution of the atoms which do not occupy the ground
state can be described by the Maxwell-Boltzmann distribution [23]

N N, 2/ 2 2 /.2 2.2 . 2kgT
ng, (7) = ——th —ax?/oie—v /0y —2"/07 ith Oyz = 132 (2.9)
00,0, My

with Ny, denoting the number of thermal atoms and &y the Boltzmann constant . The ratio of the
atoms in the Bose-Einstein condensate and the total number of atoms is referred to as condensate
fraction ) = N/ N, opa> and is for a harmonic trapping potential given by [28]

3
n=1- (;;) , (2.10)

where the critical temperature kT &~ 0.94hwN/3 has been introduced.

The observation of the density profile therefore allows two complementary routes to measure
the temperature of the Bose gas. On the one hand, the wings of the thermal cloud reflect the
temperature of the gas and on the other hand the condensate fraction can also be used for a
temperature determination if the trapping potential and therefore the trapping frequencies are
well known.

2.1.2. Elementary Excitations

So far, we treated the Bose gas as a classical field and neglected all fluctuations. We will see
in the last section of this chapter that this approach already yields a good description of our
experimentally observed density profiles.

Nevertheless we will investigate the elementary excitations and fluctuations of the Bose gas in
the following as they give rise to density fluctuations which become important for the interaction
between the bosonic bath and atoms immersed in this bath discussed in chapter 6. The interac-
tion between the two components is a density-density-type interaction. In absence of density

15



2. Bose-Fermi Mixture of Sodium and Lithium

fluctuations, the immersed atoms experience a constant bath density if the extent of their wave-
function is small compared to the size of the Bose-Einstein condensate, and the interaction causes
therefore only a constant correction to the energy of the immersed atoms. However, the density
fluctuations of the Bose gas modulate the bath density on smaller length scales and induce the
dynamics of the immersed atoms which we investigate later on.

In order to derive the density fluctuations of the Bose gas, we consider the correction of first
order in 00 (7, t) by plugging U (7,t) = U,(7,t) + 0¥ (7,t) into equation (2.2) and dropping all
terms of higher than linear order in 6% (7, t). This approach is justified as long as the number of
excitations is much lower than the particle number in the condensate. As W, (7, t) is a solution to
the Gross-Pitaevskii equation, this leads to

~ k2 ~ ~
mgtéxp(?, t) = [—2V2 + V. (P) + 299, (7, t)|2] SU(P 1) + gW, (7, 1)20WT (7, 1) (2.11)
m
and for the Hermitian adjoint

2
—mgta\iﬁ(?, t) = [—fmw + Voo (7) + 29|, (7, t)|2] SUH (7, 1)+ g0k (7, 1)260 (7, 1). (2.12)

Usually, this set of equations is solved by using the ansatz [24]

NIGESY [uq(ra)@qe*wat + v}(?)@}ew@t} e int/h, (2.13)
Here, u;(7) and v4(7) are functions which have to be determined such that the equations for
5 (7, t) and 6U T (7, t) are fulfilled. 52 and b ;4 denote the creation and annihilation operator for the

elementary excitation with momentum gand energy €; = w;h. Inserting this ansatz and selecting
the terms oscillating with the same frequency w; yields the so-called Bogoliubov equations [29]

2

{—;mVZ + Vo (F) + 29n(7) — pp — eq] ug(7) + gn(F)vg(r) = 0 (2.14)
2

[—fmw + Vit (7) + 2gn(7) — 1 + 64 v4(7) + gn(Fuy(r) = 0. (2.15)

In general, the solution to the Bogoliubov equations is non-analytical and has to be calculated
numerically. But in the most trivial case of a uniform repulsive Bose gas (n(7) = n,, V. (7) =0,
g > 0, u = gny), the solution has to be translationally invariant and can be found by considering
the functions u4(7') and v4(7) as plane waves

Ug o Vg o
ug(f) = —%=e'" and vy(F) = —Le'd" (2.16)

vV vV

with Vbeing the normalization volume. This approach leads to a set of coupled equations for u;
and v; which can be fulfilled if

4
€5 = \/g;;‘)(i@2 + ((271:;))2. (2.17)
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2.2. Fermions
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Figure 2.1.: Dispersion relation of the Bogoliubov excitations € (blue solid line) with its linear,
phonon-like behavior for low momenta (red dashed line) and the free-particle-like
behavior for high momenta (green dashed line).

g and reveals a linear

behavior for low momenta w; ~ ¢|g] with ¢ = \/gn,/m being the so-called speed of sound.
This phonon-like energy spectrum turns for higher momenta gradually into a free-particle-like
spectrum as the dispersion relation becomes quadratic in |q].

The two coupled equations for u; and v; become linearly dependent if € is given by equa-
tion (2.17) and therefore there is no unique solution. But both coefficients are restricted up to
a phase factor as the bosonic field operator, the creation and the annihilation operator for the
elementary excitations have to satisfy the bosonic commutator relations. Taking u; and v; as
real yields

Figure 2.1 depicts the dispersion relation of the elementary excitations e

+5 (2.18)

J (222+gn0 1
Vg=—\|—" 5— —

—. 2.19

2e4 2 219)

As mentioned in the beginning of this section, we are particularly interested in the elementary

excitations of the Bose gas because they are used to describe the interaction process between an

impurity and the bosonic bath. We will see that this process does not only depend on the charac-

teristics of the energy spectrum €, which determines the possibly involved excitation modes, but

also on the coefficients u; and v; which carry information about the bath structure and therefore
determine the likeliness of the interaction process.

2.2. Fermions

After recapturing the basic concepts of weakly interacting bosons, the following section concen-
trates on the characteristics of identical fermions and their density distribution in an external
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2. Bose-Fermi Mixture of Sodium and Lithium

trapping potential. During our discussion, we consider the fermions as an ideal, non-interacting
Fermi gas. This is justified by the fact that our experiments are performed with samples of spin-
polarized and thus identical fermions for which the Pauli exclusion principle forbids s-wave
scattering. Moreover, the temperature of our Fermi gases (1" ~ 1pK) is typically much lower
than height of the centrifugal barrier (~ 1mK for p-wave scattering) and hence the interaction
between the spin-polarized fermions can be neglected.
For an ideal Fermi gas, the occupation number f(7,p) per phase space cell d7dp/(27h)3

temperature 7'is given by the Fermi-Dirac distribution

1
exp (£ + Vi) = 1) / (7)) +1

As for the bosons, the chemical potential 1 of the fermions is fixed by the normalization condition
for the particle number N = [ f(7,B) d7dp/(27h)3, and depends on the temperature.

In the special case of a Fermi gas at zero temperature, the chemical potential is also referred
to as the Fermi energy E = (T = 0). According to equation (2.20) all states which fulfill

[, p) =

(2.20)

% + V. (7) < p, 1. e. have an energy lower than the chemical potential, are in this limit occupied
by exactly one fermion and all others are empty. Applying the normalization condition to a Fermi
gas at zero temperature confined in a three-dimensional harmonic trapping potential yields for
the Fermi energy

Ep = (6N)/3ha. (2.21)

As the temperature of Fermi gases realized in experiments is finite, the Fermi energy can only
serve as an estimate for the chemical potential. The validity of this estimation can be checked by
comparing the actual temperature with the temperature connected to the Fermi energy, i. e. the
Fermi temperature Ty = Ey/ky. For T'< T}, the chemical potential can be expanded in terms of

T/T;
T (TN
3 \I;
which is known as the Sommerfeld expansion [30].

For the evaluation of our experimental data, particularly the density distribution of the Fermi
gas is of interest. This distribution can be obtained by integrating equation (2.20) over the mo-

mentum Space
/f T’p 271h ( )

This integration is non-trivial for finite temperature, but can be related to the polylogarithmic
function' Lis,,(x) and yields [31]

w(T) = Ex

(2.22)

R mky T\ >/ 2 . 7
n() = — <27T;;2 > Lis), (_e(u—Vext(r))/(kBT)) . (2.24)

In contrast to the Bose gas, where for a decreasing temperature the appearance of a bimodal den-
sity distribution reveals the onset of degeneracy, the change of the fermionic density distribution

'Li, = F(") foo f;; - 7dt, where I'(n) is the gamma function.
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2.3. Sodium-Lithium Mixture in an Optical Dipole Trap

R N il Fermi distribution at T=0
PR
a ‘,\ = = = Fermi distribution at T=T¢/2
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position /mw2 ]

Figure 2.2.: Density distribution of a Fermi gas in a three-dimensional harmonic potential with
trapping frequency w for different temperatures. At 7'= T} the density profile of a
Fermi is hardly distinguishable from the Maxwell-Boltzmann distribution of an ideal
gas.

is more subtle. It smoothly changes from a thermal distribution (eq. (2.9)) to a distribution of the

form ,
. 1 om\ >/ ? 0\ 3/2
n(r) = 6.2 <h2 > (EF - ‘/;ext(r)) (2.25)

in the limit of zero temperature, which is illustrated in figure 2.2. Due to this fact, thermometry
using fermions is much more difficult than with bosons. Therefore, our temperature determina-
tion for Bose-Fermi mixtures usually relies on the analysis of the Bose gas and assumes that both
gases have the same temperature. This approach is well justified as long as both gases are in
thermal contact and are at least close to thermal equilibrium.

2.3. Sodium-Lithium Mixture in an Optical Dipole Trap

Whereas the previous sections concentrated on the theory of bosons and fermions at ultracold
temperatures, this section deals with the experimental realization of a Bose-Fermi mixture of
sodium and lithium and our data analysis.

We start each experiment with a double-species magneto-optical trap [32] for bosonic sodium
(**Na) and fermionic lithium (°Li). Both species are simultaneously transferred to a cloverleaf
magnetic trap [33]. In order to increase the transfer efficiency, we apply an optical pumping
scheme [34] and purify the sodium cloud by a subsequent microwave sweep. This leads to a sta-
ble, spin-polarized cloud of sodium atoms in the |F' = 2,m = 2> hyperfine state and of lithium
atoms in the |F'=3/2,m F=3/ 2> state.” Subsequently, the sodium atoms are cooled by forced
evaporation using a microwave transition, while the lithium atoms are cooled sympathetically by
the sodium atoms [35]. Both species are finally transferred from the magnetic trap to an optical

“Here, F' denotes the atom's total angular momentum and m . its projection onto the magnetic field.
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2. Bose-Fermi Mixture of Sodium and Lithium

dipole trap in which we perform our experiments and which is discussed in the following. A more
precise description of the experimental setup, sample preparation and the cooling stages can be
found in [36, 37, 38, 39, 40, 41].

2.3.1. Optical Dipole Trap

In each experimental cycle we prepare a mixture of bosonic sodium and fermionic lithium in the
optical dipole trap. We are particularly interested in the impact of the sodium bath on the dy-
namics of the lithium atoms immersed in the bath. Hence, we usually prepare an imbalanced
Bose-Fermi mixture with lithium being the minority species. Depending on the type of measure-
ment, the lithium atom number typically ranges from 0.3 - 105 to 2 - 105 and the sodium atom
number from 3 - 10° to 10 - 10°.

Figure 2.3 a) shows a schematic of the optical dipole trap setup consisting of two intersecting
laser beams at a wavelength of 1064 nm. The axes of the displayed coordinate system are chosen
such that they coincide with the axes of the magnetic trap and the axes of the optical lattice dis-
cussed in the next chapters. Furthermore, the z-axis points in vertical direction. The horizontal
beam lying in the x-y-plane is elliptically shaped with a minimal waist of 100 um in vertical and
230 um in horizontal direction. Its axis encloses a small angle of 8° with the y-axis. The second
beam propagating in the x-z-plane has a symmetric shape with a minimal waist of 80 pym and is
tilted by angle of about 40° with respect to the x-axis.

Atoms exposed to the inhomogeneous light field of a laser beam experience a force as the light
field induces a dipole moment due to the opposite charge of the atom's electrons and protons.

w, =100 um
w, =230 um

w, =80 um
’ w, =80 um

Figure 2.3.: a) Two intersecting laser beams are used to generate an optical dipole trap potential for
sodium and lithium. b) Isosurface of the trapping potential and trapping frequencies
for sodium. The trapping frequencies for lithium are about a factor of 2.10 higher, but
the potential shape and orientation are identical.
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2.3. Sodium-Lithium Mixture in an Optical Dipole Trap

This dipole moment is, depending on its orientation, either attracted or repulsed from the light
field which leads to the optical dipole potential. In case of the optical dipole trap, the sodium and
lithium atoms are both attracted by the laser beams, but experience a different trapping potential
Viipole (7') due to their different optical properties [42]

3mc? r r
Vi 7) = (7). 2.26
dlpole(r) 2&](? (W — W, + W+ w0> (T) ( )

Here, w is the laser frequency and I(7) the light field intensity. I" and w, denote the decay rate
and frequency of the involved optical transition. Additionally, the mass of both elements differs
which leads to a factor of 2.10 higher trapping frequencies for lithium. This causes a different
shift of the trap minimum for both species as the optical dipole trap potential competes with the
gravitational potential. For a harmonic trapping potential, this differential gravitational sag is
given by

g g
Az = j;” — EQV (2.27)
Na Li

where g,,,, denotes the standard acceleration of gravity and wy,, wy; the angular trapping fre-
quencies for sodium and lithium.

In order to increase the effect of the bath on the impurities, it is beneficial to minimize the
differential gravitational sag and therefore maximize the trapping frequencies. Hence, we usually
perform our experiments with the maximal intensity in both dipole trap beams. This leads to
trapping frequencies of 61 Hz and 160 Hz for sodium trapped in the horizontal beam alone, where
the stronger confinement acts against gravity, and 315 Hz and 374 Hz for sodium in the second
beam. Here, the slightly weaker axis is parallel to the y-axis. Due to the asymmetry of the
laser beams, the overall trapping potential is elliptically shaped and the weakest semiaxis of the
ellipsoid is tilted by angle of about 34° with respect to the x-axis (see figure 2.3 b). The trapping
frequencies for sodium along the semiaxes are (w; n,» Wy Na» Wsna) = 27 (105,315,410) Hz and
for lithium (w, 1;, w,1;,wsy;) = 27 (221,662, 860) Hz which corresponds to a shift between the
sodium and lithium cloud of 7.4 pm along the x- and —6.2 pm along the z-axis.

2.3.2. Analysis of Atom Density Distributions

The analysis of the bath's impact on immersed atoms requires the knowledge of the involved den-
sity distributions in order to quantify the interaction between the two components. However, as
we image the atom clouds along the z-axis by absorption imaging [23], the imaging process au-
tomatically integrates the density distributions along the imaging direction and we do not detect
the density profiles of the sodium and lithium clouds. Nevertheless, the atom numbers and the
temperature can be extracted from these pictures which allows for the calculation of the density
distributions if the trapping frequencies are well known.

Usually, we do not analyze the atom distributions on the basis of in-situ images, but release
the atoms from the trapping potential before the imaging process. The subsequent expansion of
the atom clouds during the time-of-flight ¢4y reduces their optical density, and the larger cloud
size makes the data analysis less sensitive to the resolution of the imaging system. In order to
determine the temperature of our Bose-Fermi mixture, we analyze the time-of-flight images of
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Figure 2.4.: a) Absorption image of the sodium cloud after 21 ms time-of-flight. b) The atom distri-
bution binned per camera pixel is obtained from the absorption picture via integration
along the horizontal direction which is shown in red. The curve in black depicts the
fit of a bimodal distribution to the data, which can be split into a Gaussian for the
thermal fraction (blue) and a parabola for the Bose-Einstein condensate (green). The
temperature can either be determined from the condensate fraction or the thermal
wings.

sodium as the bimodal density distribution of the bosonic cloud allows a robust temperature de-
termination.

In case of a harmonic potential, the density distribution after time-of-flight nrop(7) is for bosons
as well as fermions directly connected to the in-situ density distribution n(7) [43]

(—V) x/’YX

— n\r . N
Nrop(T) = B with v, ., =/1+ t%OFw)%,y,z and ™ = | y/v, |- (2.28)
xlylz

z/7,

This means that the characteristic shape of the density distribution does not change during the
expansion, but the characteristic length scales do. Figure 2.4 displays a typical sodium absorption
picture after 21 ms time-of-flight and the distribution of the integrated atom number along the
y-axis. The profile shows a clear bimodal distribution which can be fitted by a combination of a
Thomas-Fermi profile (eq. (2.6)) and a thermal distribution (eq. (2.9)). The obtained condensate
fraction of 79 % translates to a temperature 7' = (558 4= 11) nK (eq. (2.10)),> where the error is
due to the uncertainty in the trapping frequencies and to a smaller degree to the fit accuracy.

*Throughout this document, errors are denoted in two standard deviations, whereas the error bars displayed in the
figures correspond to one standard deviation.
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2.3. Sodium-Lithium Mixture in an Optical Dipole Trap

Alternatively, the temperature can be determined from the extent of the thermal cloud whose
width is after rescaling of the in-situ width (eq. (2.9)) given by

2k.T 2k.T 1 t>1/wyy, 2k, T
o= BL o= BE | 42 . B¢, (2.29)
Y mwzy,z Y m wf,y’z m

This approach yields a temperature of 7'= (557 + 47) nK which agrees within the mutual error
bars with the result obtained from the condensate fraction. Here, the error is mainly given by
the fit uncertainty as the thermal wings become dilute for large condensate fractions making the
fitting process less reliable. The uncertainty due the magnification of our imaging system is a
factor of three smaller.

Although, the temperature determination via the thermal wings has a larger error and seems
less reliable than the analysis using the condensate fraction, it still serves as a valuable cross check
of the latter as it does not rely on the trapping geometry.

The temperature, the sodium and lithium atom number obtained from the absorption images al-
low calculating the in-situ density distributions. Exemplarily, figure 2.5 shows the sodium density
distribution (eq. (2.6) and (2.9)) as well as the lithium density distribution (eq. (2.24)) for param-
eters typical for our experiment. The density profiles are depicted along along the x-, y- and
z-direction introduced in figure 2.3.

So far, we only considered the trapping potential and the mutual interaction of the bosons
in order to determine the density distributions, but neglected the interaction between the two
components of the Bose-Fermi mixture. However, we will see in the following that especially the
lithium atoms experience a significant additional potential due to the large density of the Bose

x10™ x10"% x10™ x10"% x10™ x 10"
4 2 4 2 4] 2

Na
—— LiinNa
— — = Lialone

density Na [cm™]
N
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Figure 2.5.: Sodium and lithium density distribution in the optical dipole trap along the x-, y-
and z-axis including the differential gravitational sag (=550 nK, 6 - 10° sodium and
1.5 - 10° lithium atoms). The attractive interaction between sodium and lithium drags
the lithium atoms into the Bose-Einstein condensate and reduces the differential sag
between the two components.
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2. Bose-Fermi Mixture of Sodium and Lithium

gas. The interspecies interaction potential can be derived in analogy to the mean-field interaction
term of the Gross-Pitaevskii equation (2.5). Accordingly, the sodium atoms experience due to the
interaction with the lithium atoms an additional potential which reads as

Viioona () = narini (7) (2.30)

and the interspecies interaction potential for the lithium atoms is given by

Ve 1i(T) = Inavifna (7)- (2.31)

Here, ny; \, (7) denotes the density of the lithium and sodium atoms, respectively. The coupling
constant [27]

2

InaLi = — (2.32)
- Mied

is factor of 2 lower than for identical bosons as the particles are distinguishable. The coupling
constant gy,;; depends on the scattering length between sodium and lithium ay,;; as well as their
reduced mass m,.4 = my;my,/(my; + my,). The exact approach for including the interaction
between the two species demands the calculation of the density distributions in a self-consistent
way which leads to a set of coupled equations for the sodium and lithium density. However, the
lithium density is more than one order of magnitude lower than the density of the sodium atoms,
and the interaction potential is only for the lithium atoms on the order of the external trapping
potential. Thus, the impact of the interaction on the sodium density distribution can be neglected
in first order. Therefore, only the lithium density changes and reads as

R mkgT 5/ : (= Ve (7) — gnaina (7)) / (K T)
n(r) - _ 27rﬁ2 LZ3/2 (_e ext NaLi "¥Na B ) . (233)

Because of the attractive interaction between the two species, the lithium atoms are dragged
into the sodium Bose-Einstein condensate as depicted in figure 2.5. The interspecies interaction
increases the central lithium density and reduces the distance between the maxima of the two
density distributions due to gravitation from 7.4 pm to 1.5 pm in x- and —6.2 um to —1.4 pm z-
direction.* This interaction induced enhancement of the lithium density has already been studied
in the context of sodium-lithium Feshbach resonances [41, 44] and helped to pin the sign of the
scattering length ay,;;.

Concluding Remarks

This chapter introduced the experimental setup used to prepare our Bose-Fermi mixture of sodium
and lithium, and presented the basic theory of ultracold Bose and Fermi gases in order to analyze
the atom distributions after release from the trapping potential. By determining the temperature
of the Bose-Fermi mixture as well as the number of the sodium and lithium atoms, we recon-
structed the density distributions of both components in the trapping potential. In this context,
we found that the extent of the lithium cloud exceeds the size of the Bose-Einstein condensate

*The density profiles are calculated for both species in the lowest hyperfine state which corresponds to ay,, = 552,
and ay,; = —75a,.
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2.3. Sodium-Lithium Mixture in an Optical Dipole Trap

for our typical experimental parameters. Moreover, we also noticed that the interaction between
the sodium and lithium atoms reduces the differential gravitational sag significantly meaning it
becomes negligible compared to the size of the atom clouds. With regard to our investigations of
the dynamics of the lithium atoms immersed in the sodium background, we keep both effects in
mind as the impact of the sodium bath depends on the density experienced by the lithium atoms.
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3. Species-Selective Lattice for Lithium

In order to study the impact of the bosonic bath on the dynamics of the immersed lithium atoms,
we need to prepare the lithium atoms in an out-of-equilibrium state. For this purpose, the prepa-
ration scheme has to address the external degrees of the lithium atoms without any direct impact
on the bath. Thus, we implement a species-selective optical lattice [45, 46] created by interfer-
ing laser beams whose frequency is close to the lithium transition frequency. Because of the
small detuning, already limited beam intensities result in a sufficiently deep potential for lithium,
whereas the impact on sodium stays negligible. A single optical dipole potential fulfills the same
requirements, but a lattice potential offers a larger versatility. For instance, a lattice enables a
confinement on a smaller scale and thus the impurity atoms act as a local bath probe. In addi-
tion, the bath physics can be investigated in different lattice dimensions which e. g. changes the
possible decay channels of motionally excited impurities.

In the following, we investigate the species-selective lattice with which we address and ma-
nipulate the lithium atoms. At first, we concentrate on the basic theory of lattice potentials and
discuss the dispersion relation of single atoms in one- and three-dimensional lattices. We use
these considerations to derive the design criteria for our species-selective lattice at the end of this
chapter. Moreover, we will need this knowledge in the subsequent chapters in order to charac-
terize and analyze the dynamics of the lithium atoms.

3.1. Optical Lattice Potentials

The optical lattice potential employs the same physical principles as the dipole potential realizing
the trapping potential for the Bose-Fermi mixture (eq. (2.26))

3rc? r r 3nc?2 T
V.. r) = I(7) ~ —I(7). 3.1
dlpOle(T) QOJ(:)S (w — W, + W+ wo) (T) 2wg A (T) ( )

On the right hand side we made use of the rotating wave approximation which is valid as long
as the detuning A = w — w, between the laser and the transition frequency fulfills |A| < wj.
According to this formula, a species-selective potential can be achieved by a low intensity light
field combined with a small detuning as long as the detuning for the other species is much larger.
However, the laser frequency cannot be tuned arbitrarily close to the transition frequency as the
photon scattering rate [42]

3rc? [ w)® T r 2 3rc? (T2
T P=—=|— I~ —= ) I(# 3.2
scatter(r) 277/(4}(? <w0> <w o wo + w _|_ w0> (T) 2]‘7,0)(? <A> (T) ( )

increases faster with decreasing detuning than the potential depth. These spontaneous emission
processes restrict the possible laser frequencies as they lead to heating and atom loss. In order to
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3. Species-Selective Lattice for Lithium

avoid complications due to scattering processes, the time scale imposed by light scattering should
be much smaller than the exposure time to the lattice potential.

Commonly, lattice potentials are created by the interference pattern of two or more laser beams
intersecting at the position of the atoms. If the intensity of the laser beams remains constant over
the extent of the atom cloud, the optical potential produced by two laser beams takes the form of
a standing wave

V() = % (1+ cos (k) ). (3.3)

The lattice wavevector k;,, = 27’“sin (cr/2) is determined by the angle a between the two beams
as well as their wavelength A. Furthermore, the lattice vector is connected to the spacing d,,,
between two adjacent lattice sites

A 0
dpy=—— = —. 3.4
Bt 9sin (/2) Ky G4
The lattice depth V determined by equation (3.1) is commonly expressed in terms of the recoil
energy E,.. = h?kZ,/(2m).

3.2. Lattice Theory

In this section we investigate the dispersion relation of a single atom in a lattice potential. Because
of its periodicity, a band structure emerges in the energy spectrum which is similar to the one
of electrons in crystals. We begin our considerations with a one-dimensional and homogeneous
lattice potential. Subsequently, we discuss the limitations of this approach due to the inhomo-
geneity of our lattice potential which is caused by the envelope of the lattice beams as well as the
dipole trap confinement. Finally, we extend our discussion to higher dimensional lattice poten-
tials and illustrate the results on the basis of a two-dimensional lattice with non-perpendicular
lattice axes.

3.2.1. Band Structure of the One-Dimensional Homogeneous Lattice

In order to determine the energy spectrum in a one-dimensional and homogeneous lattice poten-
tial, we are searching the eigenfunctions v,, ,(z) and eigenenergies E,, , of the lattice Hamilto-
nian
—h? 92V

[QmaxQ + 50 (1 + cos (2k1at$)>:| lbn)q(x) = En,qwn,q(l'). (3.5)
Here, n denotes the band index and ¢ the quasimomentum whose origin will become clear in the
following. According to the Bloch theorem, the eigenfunctions of the lattice Hamiltonian can be
written as a product of plane waves and the Bloch functions w,, ,(z) [30]

Y g(T) = etar/fy, (). (3.6)

n,q(
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The Bloch functions share the same periodicity as the lattice w,, ,(* + d),;) = u,, ,(z) and can
thus be expanded into a Fourier series

Uy, o(7) = Z cdei2vkia®, (3.7)
ve”Z

Furthermore, the lattice potential can be expanded in the same set of plane waves as the Bloch
functions

Vi Vo V . .
30 (1 + cos (2klatac)> = ?0 + ZO (ce_l%lat:U + eszlat:”) (3.8)
Plugging these two expansions into the Schrédinger equation (3.5) yields
: 2hvk,) |V, v,
> eizvhue <(Q+ 272 la) + 2°> e 4 ZO (cﬁfl + cﬁf1>] (3.9)
veZ
— Z En,ch’qeiQVklatm
veZ

i2vk,x

Asthe plane waves e are orthogonal, the set of Fourier coefficients ¢]»¢ fulfills the equation

above if and only if

V, V,
T+5 7 6~ 0 e e
Vi Vi Vi ) ,
T v 4 e e
. ng | _ n.q
0 e T+ 3 : | e =FE,,| ¢ . (3.10)
Vi uz n,
0 T+ % crd e

with T = (¢ + 2hvk,,)? /(2m). Thus, we get the eigenenergies FE,, , and the corresponding set
of Fourier coefficients determining the eigenfunction ¢,, , () by solving the eigenvalue problem
given in equation (3.10).

Figure 3.1 exemplarily depicts the eigenenergy spectrum obtained for a V, = 4 E,, deep lattice
with dj,, = 1.1 um lattice spacing. For energies much larger than the lattice depth, the dispersion
relation is only slightly affected by the lattice potential and resembles the dispersion relation of
a free particle. However, for smaller energies a band structure emerges whose energy bands are
referred to as Bloch bands and are labeled by the band index n. In the deep lattice regime, the
lowest energy bands become almost flat, the energy gaps get broader and the energy spectrum
resembles the spectrum of a harmonic oscillator.

A further characteristic feature of the band structure is its periodicity in the quasimomentum of
2hk,,,. Thus, the full spectrum can be obtained by restricting the quasimomentum to an interval
of the same size. Conventionally, the quasimomentum is limited to the interval [—hk,,; hk),,]
which is referred to as first Brillouin zone. Accordingly, the n'" Brillouin zone ranges from
[=nhkyy; —(n = 1)hky,] and [(n — D)fiky; nhiky,].

With respect to the design of the optical lattice in the last part of this chapter, we investigate
the band structure more thoroughly. Figure 3.2 depicts the widths of the two lowest Bloch bands
and the band gaps between the first and second band

AE,, = min(E, ;) — max(E, ,) (3.11)
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Figure 3.1.: Band structure fora Vj =4 E,_ deep lattice. The first, second and third Bloch band are
depicted as blue, red and green line and the color shading indicates the band widths.
The (shifted) dispersion relation of a free particle is displayed as thin black line, and the
vertical dashed lines denote the borders of the different Brillouin zones. The energy
gap AE, , between the 1% and 2™ as well as the gap AF, , between the 2" and 3™
band are represented by the blue and red arrow.

as well as between second and third band
AE,; = min(E, ;) — max(FE, ) (3.12)

for various lattice configurations. As expected, the band gaps get larger and the band widths
thinner for deeper lattices. In the deep lattice regime (V, > E...) the lattice potential is more
and more resembled by a set of independent harmonic oscillator potentials and the energy bands
can be approximated by the energy levels of the harmonic oscillator. The Taylor expansion of
the lattice potential (eq. ( 3.3)) at the potential minima yields for the angular frequency of each

harmonic oscillator

AFE,. [2V k2, 2E.. NZE
W = % = OT“ = T\/g x o with V, = sE,,.. (3.13)

lat

Thus, we expect a square root like relation between the band gap and the lattice depth in the deep
lattice regime.

To interpret the dependency of the band structure on the lattice spacing by means of figure 3.2,
we need to take into account that the lattice depth is depicted in terms of the recoil energy, which
depends itself on the lattice spacing (E,,. o 1/dZ,). According to equation (3.13), we anticipate
that the band gap scales in the deep lattice regime as wy, o 1/d,,, for a fixed potential depth and
as wp, < 1/d2, for V, = sE,,.. The band gaps increase with smaller lattice spacing gaps as the
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Figure 3.2.: Band gap from the 1! to 2" AE, , and 2" to 3" AF, , band as well as band width
of the 1 and 2" Bloch band for various lattice depths and lattice spacings.

atoms gain kinetic energy due to the stronger confinement, and this effect is more pronounced
for higher energy bands.

The effect of the lattice spacing on the band width is more obvious and can be understood in
terms of tunneling between different lattice sites. In the deep lattice regime the atoms become
more and more localized, but can still tunnel between neighboring sites. In this regime the wave-
functions are often approximated by the Wannier functions w,, (z) [30] ! which are localized to
a few lattice sites and allow a more intuitive description than the Bloch functions which spread
over the whole lattice. The tunneling rate between two neighboring lattice sites ¢ and j is deter-
mined by the kinetic energy gain due to the tunneling process. This energy gain is referred to as
the tunneling matrix element [47]

e A A
J, = [ w,(x—=x;) S 922 + 5 (1 + cos (2kp)) | wy, (z — ;) dx (3.14)

which is for deep lattices directly related to the band width, and is e. g. for the first Bloch band
given by [48]
Ey 11, — Eio

J, ~
! 4

(3.15)

1

'w, (z —z;) = 7 Zq e '9%iq), (x), where NV is a normalization factor.
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The correlation between the band width and the tunneling rate illustrates the impact of lattice
spacing on the band width. In quantum mechanics the tunneling rate through a potential barrier
drops exponentially with the barrier height as well as the barrier width. Thus, the band width
decreases with increasing lattice spacing and the dependency is in the deep lattice regime almost
exponential.

3.2.2. One-Dimensional Inhomogeneous Lattice Potential

So far, we considered the energy spectrum and scales of a homogeneous lattice potential in one
dimension and neglected all inhomogeneities. In the following, we will investigate the limita-
tions of this approach and discuss the impact of the inhomogeneity onto the energy spectrum
and the eigenstates. In our case, there are two major contributions to the inhomogeneity. The
first one stems from the non-uniform intensity distribution of the laser beams which create the
lattice potential. The second contribution originates from the optical dipole trap potential which
is superimposed with the lattice potential.

Inhomogeneity due to the Lattice Beams

In order to quantify the effect of the inhomogeneous lattice beams, we need to consider the re-
sulting variation of the lattice potential with respect to the extent of the atom cloud. If two
counterpropagating laser beams are used to create the lattice potential, the depth of the different
lattice wells varies according to the beams' Rayleigh length. As the latter is typically in the cen-
timeter range, which is large compared to the size of the atom cloud of several micrometers, it
is well justified to neglect the inhomogeneity and consider the lattice potential as homogeneous.
However, if the lattice potential is created by two beams intersecting at a small angle, their waists
and the intersection angle determine the lattice potential along the lattice axis and the lattice
potential reads as

V 2 2
V() = Eoe_% / Wheam (1 + cos (2k:latx)). (3.16)

Here, wy,.,,, denotes the effective waist of the Gaussian beams along the lattice axis which differs
from their actual waist due to the intersection angle. Hence, the relative potential variation be-
tween the central and an outer populated lattice site scales as 1 — 222 /w2, if the waists of the
lattice beams are much larger than the atom cloud. We can consider the effect of this potential
inhomogeneity on the band structure by means of the deep lattice regime for which wy,, o \/‘70
Thus, we expect that the band gaps behave as 1 — 22 /w2, which means that the variation along
the lattice axis is only about 0.25 % if the atom cloud is a factor of 20 smaller than the effective
beam waist Wy,

Inhomogeneity due to the Optical Dipole Trap

The second contribution to the inhomogeneity of lattice potential stems from the superposition
of the optical dipole trap and the lattice potential. The trapping potential does not influence the
depth of the different lattice wells, but leads to an offset potential between the lattice sites. This
offset causes a localization of the wavefunction similar to the one observed for the Wannier-Stark
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effect [49] and therefore reduces the tunneling between neighboring lattice sites. In contrast to
the Wannier-Stark effect, for which the potential superimposed to the lattice potential is linear
and all wavefunctions are affected in the same way, the offset caused by the harmonically shaped
trapping potential increases with the distance from the minimum, and atoms further away from
the trap center become more and more localized.?

To investigate the impact of the dipole trap potential, we consider the eigenfunctions and -energies
in the inhomogeneous lattice potential. In case of the homogeneous lattice, the plane waves offer
a convenient basis for the solution of the Schrédinger equation due to the periodicity of the lattice.
In this way, the Schrédinger equation can be reduced to an eigenvalue problem (eq. (3.10)). How-
ever, for the inhomogeneous lattice potential, this basis provides no additional advantage and in
the following we will work with the delta distributions §(z — ;) as real space basis set. Rewriting
the Schrédinger equation of the inhomogeneous lattice potential

—h? 0* |V, 1
DT + 50 e =227/ Wiy (1 + cos (2klatx)) + §mw§ipolex2 v, (x) =E, ¥, (x) (3.17)
beam profile ——
dipole trap

with the delta distributions as basis corresponds to a discretization onto a spatial grid, and trans-
forms the Schrodinger equation into a matrix equation

—2T + V(z,) T 0 by (1) P (21)
T —2T+ Wz,) - U, (2) ¥y, (22)
0 T " : wn (‘TS) = E'n, 1/}77, (‘,1’,3) . (318)
0 2T+ V(I'm) 1/171 ('rm) T/Jn (xm)
Here, T'= —#Azxz and Az = x; — x;_ is the grid spacing. V(z;) denotes the total potential

and 9, (7 ;) the wavefunction at position x ;. The second derivative in the Schrédinger equation
accounting for the kinetic energy leads to a coupling between the 1,, () at different positions
as the second derivative can be approximated by

h? d?
© 2mda?

Vo (75) %T(¢n($j+1)+wn(xj—l)_2¢n(‘,rj))' (3.19)

The eigenenergies and the corresponding wavefunctions can be obtained numerically by solving
the eigenvalue problem given in equation (3.18).

In order to quantify the localization of the energy eigenfunctions due to the trapping potential,
we characterize their extent by the root-mean-square size

o=/ (x2) — (z)°. (3.20)

The inhomogeneity of the lattice potential has a similar effect as the different lattice well depths cause a shift of the
ground state energy for each harmonic oscillator. However, this shift is for our experimental parameters much
smaller than the one due to the optical dipole trap potential.
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Figure 3.3.: The root-mean-square size o of the inhomogeneous lattice eigenfunctions in the first

Bloch band localized at the 10" (blue) and 20™ (red) lattice site for various trapping
frequencies (V, = 12 E,., dj,, = 1.1 um). The eigenfunctions become for a stronger
confinement more and more localized and their extent approaches the one of the
corresponding harmonic oscillator ground state (w,, = AFE,,/h). The two insets
exemplarily depict the eigenfunction localized at the 10'" lattice site for a trapping

frequency of w1 =27 150 and 450 Hz.

Figure 3.3 depicts the dependency between the root-mean-square size and the external confine-
ment for the eigenfunctions in the first band centered at the 10" and 20" lattice site. Clearly,
the eigenfunctions become more and more localized for increasing confinement which is con-
sistent with our earlier analogy to the Wannier-Stark effect. The size of the eigenfunctions
reaches quickly the size of the harmonic oscillator ground state for the considered lattice depth
(eq. (3.13)) which demonstrates that the dipole trap confinement decreases the tunneling rates
between neighboring sites significantly. We also observe that the eigenstates further away from
the trap center become localized earlier due to the non-linear trapping potential.

3.2.3. Band Structure of the Three-Dimensional Homogeneous Lattice

So far, we considered the energy spectrum of a periodic potential in one dimension. In the fol-
lowing, we will extend our considerations to three-dimensional homogeneous lattice potentials®
in order to characterize the interplay between our different lattice directions.

Most frequently, a three dimensional lattice potential is created by superimposing three stand-
ing wave potentials whose axes point along different directions. To obtain the energy spectrum
of such a lattice configuration, we have to solve a Schrédinger equation of the form

—h2
5 V2 A+ Vs (7) + Vi o (7) + Vi3 (7) | 3, 4(F) = B, g0, (7). (3:21)

2m

*We skip the inhomogeneous case as it requires a lot more computational power due to the large number of grid
points necessary for a three-dimensional grid.
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where V}, ; (7) denotes the potential of a standing wave in three dimensions

Viars (F) = % (1 + cos (274:1%1-?)) . (3.22)

In the case of three perpendicular standing wave potentials, we can split the Hamiltonian gov-
erning the equation (3.21) into three separate parts

h? 92 Vo
[ Z < om aCC 2 <1 + cos (2klat,ixi)>>] Q,Z)nq(?) = En,cﬂbn,cj(?)a (3~23)
1=X,Y,2

where each part corresponds to the Hamiltonian of the one-dimensional lattice potential. Thus,
the solution of the Schrédinger equation is given by v,, +(7) = v, _ qx(ac)wny’ a, '(y)z/}np q,(#) and
E.q=E, ¢+t Eny)qy + E,, , where the E/,, . and ¢, are the solutions to the one-
dimensional standing wave potentials in x-, y- and z-direction (section 3.2.1).

Though, the situation is different if the lattice axes are not perpendicular to each other. Still,
we do not have to perform a completely new calculation, but can generalize the scheme applied
in the one-dimensional case. The Bloch theorem holds in three dimensions as well as in one
dimension and states that the wavefunctions solving a Hamiltonian with a periodic potential

Vit (P + R) = Vi (7) (3.24)
can be written as
o _ P/ R - 2Py — -
¢n,(j(r) = ¢tdm/ unﬁ(r) with un’q(r +R) = un’q(r). (3.25)

Here, R = nlcziat,l + nzjlat,z + n3tflat’3, n; € Z is a possible lattice vector composed of the primitive
vectors c?;at,i which are connected to the wavevectors %lam‘ of the three single standing wave
potentials

jiat,i%lat,j =m0, ;- (3.26)
As for the one-dimensional case, the Bloch functions
= - N 3 N
=Y e with k=Y mky,; , m; €Z (3.27)
7 i=1

and the lattice potential

3.V V. 0h  m oh 2
b= S = 3 (14 (ot b))

can be expanded in plane waves where the sum covers the reciprocal or Bravais lattice. Plugging
the wavefunction (eq. (3.25)) with the expansion of the Bloch function (eq. (3.27)) as well as the
lattice potential (eq. (3.28)) into the Schrédinger equation (3.21) yields

Q

(3.29)

Z eiZTcF cvd ( + 2kﬁ> + Z " Vv, Z eszrE 11
_ E k
E
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3. Species-Selective Lattice for Lithium

Because the plane waves are orthogonal, we get again a set of coupled equations for the Fourier
coefficients ¢’*¢ which corresponds to an eigenvalue problem. As in the one-dimensional case, n
denotes the band index and ¢ the quasimomentum which can be restricted to the first Brillouin
zone due to the periodicity of the solutions of the Schrodinger equation. The energy bands are
sorted in increasing order and labeled by the band index n.

Figure 3.4 exemplarily depicts the lattice structure of a two-dimensional lattice with perpen-
dicular and slightly tilted lattice axes as well as the corresponding band structure. The displayed
energy spectrum originates from two lattice potentials with different lattice spacing and depth,
but almost identical gaps from the first to the second band.

First, we discuss the lattice configuration with perpendicular lattice axes. In this case, the
shape of the energy bands can be understood in terms of two one-dimensional band structures
as the potential and thus the wavefunctions can be factorized. Along the axis of the first lattice
(figure 3.4 b)), the first and second Bloch band show the characteristic bending known from the
one-dimensional lattice potential. However, the third band has a different bending than in the
one-dimensional case and is flatter than the second band. This is due to the fact that it corresponds
to an excitation along the second lattice direction. The harmonic oscillator potentials between

a) b) first lattice axis c) second lattice axis
perpendicular tilted 100 \ ‘ ‘ | | ; ; ‘
lattice axes lattice axes Q=0 Qi =0 3" band
o 00 06 oo e o, | 3“band \gx\g/
§ o0 g e o0 ° e o : 80 | 2" band
a ‘?'zI_,, . dzL ce —
wv o o @ —> e o e 5
— d p— ® o |
G roe e cead g ® L @X@/
6 0o 00 6 oo Ceea., . é .’r_ 2" band
v T 40} “
g o e o o o : .° h : . w”
Qoo o o e 0 — perp. lattice d »
= ° °° o = o o . . 1stdir. 2" dir.
T . katT. NS 20t = -tilted lattice " "
S S ¥ o
oot 1¥band | 15 band
o ol o —— | |
-1 -0.5 0 0.5 1 -1 0.5 0 0.5 1
qlat1 [h klat1] qlatzn;.I klatz]

Figure 3.4.: a) 2d lattice structures in real and reciprocal space for a lattice with perpendicular
and slightly titled lattice axes. b) and c) Band structure along the first and second
lattice axis, respectively (V, = 6 and 33 £, dj,, = 0.67 and 1.1 um). For the titled
lattice configuration, the lattice axes deviate 3° from the perpendicular configuration
causing an avoided crossing between the 2" and 3™ band along the first lattice axis.
The other energy bands coincide due to the small tilting angle almost perfectly for the
two lattice configurations and can be hardly distinguished. The inset in b) displays the
avoided crossing in case of tilted lattice axes more clearly. The harmonic potentials
between b) and c) indicate the origin of the energy bands.
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figure 3.4 b) and c) illustrate this explanation by assigning the analog two-dimensional harmonic
oscillator modes to each energy band.

Next, we consider the band structure of a lattice with tilted lattice directions which is in general
more challenging to understand. But in the depicted case, the lattice axes intersect almost per-
pendicular and thus the band structure can be understood by means of the band structure of the
perpendicular lattice configuration. However, the two lattice directions are not independent and
hence the dynamics along the different lattice directions are coupled. This coupling is manifested
in the avoided crossing between the second and third Bloch band as depicted in figure 3.4 b).

For the subsequent lattice design and our later experiments, we have to keep this coupling in
mind as different lattice directions are due to experimental imperfections never perpendicular
to each other. Hence, if we need to exclude dynamics along certain lattice directions, it is not
sufficient if the gap between the first and second for the corresponding lattice direction is larger
than for the other lattice directions. But we also need to take the widths of the energy bands and
their bending into account in order to eliminate dynamics between different Bloch bands.

3.3. Lattice Design and Implementation

In the following, we turn our attention to the experimental implementation of our lattice setup.
For this purpose, we discuss the design criteria of our lattice and derive the lattice parameters
according to the preceding theoretical considerations. The final part of this section presents the
lattice setup and its implementation into the experiment.

3.3.1. Lattice Design Criteria
Longitudinal Lattice

Our lattice consists of different lattice axes which have different purposes and thus partly different
requirements. The main lattice (in the following also referred to as longitudinal lattice) is used
to prepare the lithium atoms in an out-of-equilibrium situation which is achieved by shaking the
lattice along its lattice axis. As we want to address as many lithium atoms as possible but no
sodium atoms, the longitudinal lattice potential has to be

« homogeneous over the extent of the lithium cloud such that all lithium atoms experience
the same lattice potential and are affected by the shaking in the same way.

« species-selective for lithium which means that the chemical potential of the sodium cloud
is much larger than the lattice potential for sodium.
— HNa > Viat,Na

Both these requirements can be met by large lattice beams whose frequencies are only slightly
detuned from the lithium resonance frequency (eq. (3.1)). However, the maximal beam size is
limited by the available laser power Pas the lattice potential depth V/, is proportional to the beam
intensity I and scales as V, oc I oc P/wg. . The laser power restricts the waist of our lattice
beams wy,.,,, to 550 pm which yields a variation of the lattice potential of about 0.3 % over the
40 pm wide lithium cloud. Additionally, we require that
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3. Species-Selective Lattice for Lithium

« the life time of the lithium atoms due to spontaneous emission, characterized by the photon
scattering Iy .., is much longer than the exposure time to the lattice potential ¢,.
- 1/Fscatter > tlat

The latter condition puts a lower bound on the detuning (eq. (3.2)) and restricts the possible lattice
depth for a certain lattice intensity.

As we will see in chapter 5, we prepare and probe the lithium atoms by pulsed lattice shaking
and e. g. perform Ramsey type experiments. For these kind of experiments, we rely on the fact
that all lithium atoms evolve in the same way because all atoms are detected simultaneously and
different evolutions diminish the signal. Thus, beside the homogeneity of the lattice potential

. the width of the involved energy bands (for us the 1** and 2" band) has to be small such
that the lattice is in the harmonic oscillator regime and tunneling between neighboring
sites occurs on a time scale shorter than the duration of the measurement ¢

—h/J >t and h/JSE >t

meas

meas*

meas

« all atoms initially need to occupy the same and thus lowest band which means that the gap
between the first and second band AElﬁgg has to be larger than the corresponding energy
scales of the lithium atoms. Depending on the experimental conditions, these energy scales
are the temperature 7"and/or the chemical potential of the lithium atoms ;.

— AESE >y, by T

These last two conditions imply an optimal lattice spacing under the constraint that the lattice
depth and thus the impact on the sodium atoms is minimized as both the band gap and width
decrease with increasing lattice spacing (fig. 3.2). In order to determine the lattice parameters,
we need a lower bound for the band gap from the chemical potential of the lithium atoms. In
each experimental cycle we typically prepare about 1.5 - 10° lithium atoms in the optical dipole
trap whose mean trapping frequency for lithium is about w;; = 27500 Hz (section 2.3). From
these numbers, we approximate the chemical potential by the Fermi energy (eq. (2.21)) and get
tri/h = Epymi/h = 48kHz. On the contrary, the temperature of the lithium atoms is typically
about 7'= 550 nK which corresponds to 11 kHz. Furthermore, we estimate the duration of each
measurement from damped oscillations of the lithium atoms in the dipole trap. These oscillations
damp due to the interaction between the sodium and lithium atoms [41], and we expect that the
time scale for interaction in the lattice experiments is on the same order of magnitude. Then, the
damping time of 3 ms yields an upper bound of 300 Hz for the width of the first and second band.

For these parameters, a rather large lattice spacing is advantageous due to the small lithium
mass causing high tunneling rates. Thus, our longitudinal lattice potential is created by two laser
beams intersecting at an angle of 35° instead of 180° as for two counterpropagating beams (fig. 3.6),

and we get a lattice spacing o = 1.1um. ically our lattice is about rec d€EP whic
d we get a lattice spacing of d""® = 1.1 um. Typically our lattice is about 33 Eiee® deep which

leads to a band gap of AElﬁrzlg /h = 71.5kHz, a band width of 8 Hz and 280 Hz for the first and
second Bloch band, respectively.

Now, as we fixed the lattice spacing and depth, we return to the previous criteria and investigate
the photon scattering rates for the lithium atoms and the impact on sodium. For the latter purpose,

*To distinguish between the different lattice directions, we label the corresponding quantities according to the lattice
direction. But we omit the labeling in the following if we consider one-dimensional lattice potentials.
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Figure 3.5.: Impact of the longitudinal lattice potential for different wavelengths of the lattice
laser. The lattice depth is fixed to V, =33 EA2% for the lithium atoms by compensating
the detuning with the lattice intensity. a) Lattice depth for sodium in terms of the
chemical potential (uy,/h = 6.2 kHz). b) The lithium photon scattering rates deviate
for the first and second Bloch band and different detunings due to the different overlap
with the high intensity regions of the lattice (logarithmic plot).

we have to compare the lattice height for sodium with its typical chemical potential of about
pna/h = 6.2kHz (6 - 10° sodium atoms, &y, = 27238 Hz). Figure 3.5 a) depicts the lattice
depth for sodium in terms of its chemical potential for various wavelengths of the lattice laser
and the corresponding lattice intensities which are determined by the fixed potential depth for
lithium (V, = 33 Elr(égg) In contrast to the optical dipole trap, the lattice potential for lithium
can either be repulsive or attractive as long as the anti-confinement due to the curvature of the
lattice beams is smaller than the confinement of the optical dipole trap. Thus, we consider lattice
potentials which are blue and red detuned with respect to the lithium D2-line. The sign of the
detuning barely affects the sodium atoms as the detuning of the lattice laser to the sodium D2-line
differs only slightly for the investigated wavelength range. But close to the lithium D2-line the
impact of the lattice on the sodium atoms vanishes as the intensity in the lattice beams shrinks for
decreasing detuning and fixed lattice height for lithium (eq. (3.1)) which suggests using a rather
small detuning.

However, the photon scattering rate for the lithium atoms diverges in vicinity of the lithium
D2-line and thus their life time vanishes. Figure 3.5 b) depicts the scattering rate for lithium atoms
in the first as well as the second Bloch band and shows a distinct asymmetry between the red and
blue detuned lattice potential. This is due to the different overlap of the wavefunctions ¢)(z) with
the lattice light I’ e, < [¢*(2)I(z)1(x) dz as atoms are for a blue detuned lattice repulsed
from and for a red detuned lattice attracted to the high intensity regions.’ The different overlap
with the laser light also accounts for the difference between the scattering rates for the first and

°A further asymmetry arises from the influence of the lithium D1-line at Ay, ;; = Ap,;; + 0.002 nm.
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second Bloch band.

In summary, a blue detuned lattice is more suitable than a red detuned lattice but nevertheless
we have to trade off between the impact on the sodium atoms and the photon scattering rates
for the lithium atoms. Most of our experiments are performed with —0.5nm detuned lattice
light as the lattice potential is due to the loading procedure applied for about 150 ms and smaller
detunings already reduce the lithium atom number significantly. This results in a lattice potential
for sodium of about 24 % of its chemical potential.

Transversal Lattices

As mentioned in the beginning of this section, our lattice setup consists of different lattice axes
with different purposes. So far, we discussed the design of the main lattice axis which is used
to manipulate the lithium atoms via a lattice shaking procedure. The other lattice directions (or
transversal lattices) have to fulfill less strict criteria as we use them to tune the dimensionality
for the lithium atoms in order to manipulate their dynamics in the sodium bath. Hence, we do
not require that their first and second Bloch band are essentially flat. The lithium atoms are
kinematically reduced in a lattice dimension if the following criteria are fulfilled [50, 51]

« their chemical potential 1; is below the energy gap to the next excited state.
— AEYSS >

« the atoms cannot be thermally excited from the ground state to the next excited state.

— AEYS > T

Additionally, we want to suppress excitations in the transversal directions if we shake the lattice
along the longitudinal direction, and thus we require that

« the energy gap along the transversal lattice directions is larger than along the longitudinal
direction.

— AETYS > AE®

However, we know from the previous discussion of the two-dimensional lattice potential that
fulfilling the last condition is not completely sufficient in order to suppress excitations along the
transversal lattice directions. For this purpose, we also have to account for the band widths of the
longitudinal and transversal lattices. Though, in our case the restriction for the band gap of the
transversal lattice is not much stronger because the widths of the first and second Bloch band of
the longitudinal lattice direction are small compared to the corresponding band gap.

In order to fulfill the conditions above while keeping the required laser intensity small, the
lattice spacing of the transversal lattice directions is chosen smaller than for the longitudinal
direction (eq. (3.13)). Smaller intensities provide longer lithium life times due to less photon
scattering processes and reduce the impact of the transversal lattice directions on the sodium
atoms. Additionally, a tighter lattice spacing allows more lithium atoms in a three-dimensional
lattice without occupying lattices sites multiply.

The transversal lattice directions are derived from the same laser source as the longitudinal
lattice that means the wavelength of the lattice light is fixed to A, ~ 670.5nm. The hori-
zontally oriented transversal lattice (fig. 3.6) is created by a retro-reflected laser beam and has
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hor

therefore a lattice spacing of d;{" = 0.335 um. The vertically oriented transversal lattice results

from two lattice beams intersecting at an angle of 60° which yields a spacing of d)Y = 0.67 um.
The asymmetry between the two transversal lattice directions is not intended and arises from the
restricted optical access in our experiment, but does not constrain their purpose.

Furthermore, the homogeneity of the transversal lattice potentials is not as crucial as for the
longitudinal potential as long as the potential height at each lattice sites is large enough to freeze

the dynamics along the transversal directions.

3.3.2. Lattice Setup

In the following, we briefly introduce the setup of the optical lattice (fig. 3.6 a)). For each lattice
direction, we monitor the beam intensity on a photodiode and regulate the beam power via a
feedback loop driving an acousto-optic modulator (not depicted). As all lattice axes are derived
from the same laser, the acousto-optic modulators run on different frequencies in order to avoid
lattice potentials due to the interference between lattice beams from different lattice axes.® To
provide a well defined polarization, each lattice beam passes a polarizing beam splitter cube before
entering the glass cell.

Longitudinal Lattice

The longitudinal lattice direction is our main tool to manipulate the lithium atoms and requires
most care. For this reason, we derive the two lattice beams from a polarization cleaned beam
with a non-polarizing beam splitter cube. This beam splitter delivers two beams with almost the
same power and is less sensitive to temperature drifts than the combination of a polarizing beam
splitter and a wave plate. Nevertheless, we monitor both lattice beams on photo diodes in order
to detect any power drifts. An electro-optical modulator (EOM) placed in one of the two beam
lines allows shifting the relative phase between the two lattice beams which leads to a spatial shift
of the lattice potential.

Both lattice beams pass the atoms' position with a waist of 550 pm and intersect at an angle
of 35° which yields a lattice spacing of of diztng = 1.1 pm. Because of the intersection angle, the
beam polarization needs to be linear along the y-axis to allow for maximal interference between
the two lattice beams. A more detailed description of the longitudinal lattice and particularly the
electro-optical modulator can be found in [52].

Transversal Vertical Lattice

For the same reason as for the longitudinal lattice direction, the polarization of the transversal
vertical lattice beams points linearly along the y-axis. The initial lattice beam is recycled and
interferes with itself to spare laser power. However, due to its polarization only about 50 % of the
initial light passes the glass cell. Thus, the intensity of the back reflected beam is enhanced by a

Despite their different frequencies, beams from different lattice direction still interfere and the interference pattern
oscillates with their frequency difference (which is in our case larger than 20 MHz). However, the atoms do not
follow the oscillating lattice potential as long as their trapping frequencies are well below the oscillation frequency.
Thus, the atoms experience only a constant offset potential.
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a) longitudinal transversal vertical transversal horizontal b)
lattice (+80MHz) lattice (-80MHz) lattice (-100MHz)

S fiber PBSC: polarizing beam splitter cube
Ocoupler NPBSC: non-polarizing beam splitter cube

Figure 3.6.: a) Lattice setup for the different lattice directions. The frequencies in the captions
denote the relative shift of the lattice beams to the laser frequency. A coordinate
system displays the orientation of each lattice axis. b) Sketch of the three-dimensional
(top) and longitudinal lattice potential (bottom) together with an isosurface of the
optical dipole trap potential. The lattice spacings are depicted to scale, and the size of
the lithium cloud in the dipole trap is about a factor of 10 larger than the displayed
isosurface.

lens with a focal length of 500 mm. In order to compensate the power loss, the 500 pm waist of
the initial beam has to be decreased to about 350 pm which is achieved by positioning the lens
35 cm from the atom cloud. The resulting difference between the intensity distributions of both
beams is only about 1 % over the extent of the atom cloud and thus negligible.

The lattice beams intersect at an angle of about 60° which yields a lattice spacing of d\f =
0.67 pm.

Transversal Horizontal Lattice

The third lattice direction consists of a retro-reflected laser beam and thus has a lattice spacing of
dhor = 0.335 um. To avoid interference patterns between the lattice beams and their reflections
from the glass cell, the lattice beams are tilted 8° with respect to the perpendicular of the glass
cell and focused to 200 pm at the position of the atoms.” The latter is achieved by a telescope con-
sisting of two lenses with a focal length of 500 mm and 250 mm. The polarization of the lattice

beams points linearly along the x-axis.

Figure 3.6 b) illustrates the lattice structure arising from the three lattice directions and their
different spacings as well as an isosurface of the optical dipole trap potential. The latter is espe-

"The atoms are located 2 cm from the wall of the glass cell which yields a 5.6 mm spacing between a 8° tilted lattice
beam and its reflection.
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cially relevant if we perform experiments with the longitudinal lattice only as the optical dipole
trap provides in this case the confinement along the transversal directions.

After the discussion of the lattice theory and our lattice design criteria, we turn our focus in

the following chapter onto its practical implementation and characterize the lattice setup exper-
imentally.
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4. Lattice Characterization

Before we investigate the dynamics of the lithium atoms in the Bose-Einstein condensate, we need
to understand the evolution of the lithium atoms in the lattice potential in absence of the bosonic
background. In order to provide a well-defined starting point for our investigations, this chapter
characterizes the corresponding lattice potentials. As the lattice spacing is sufficiently well deter-
mined from the intersection angle and the wavelength of the lattice light, we can infer the band
structure from the lattice depth alone. Hence, we focus in the following on the determination of
the lattice depth and start with the discussion of our lattice loading procedure.

4.1. Lattice Loading and Brillouin Zone Mapping

Lattice Loading

After the last evaporative cooling step in the dipole trap, we apply the species-selective lattice
for the lithium atoms. In order to avoid heating of the lithium atoms, we try to keep the loading
procedure as adiabatic as possible and increase the intensity in the lattice beams exponentially
e/ T with the time constant 7 = 25 ms to its final value.

However, even if the lattice potential is increased adiabatically, some lithium atoms occupy
states in excited Bloch bands after the loading procedure, whereas the first Bloch band is not
completely filled. The underlying mechanism for this behavior is illustrated in figure 4.1 which
depicts the eigenenergies for different lattice depths and a fixed dipole trap potential in one di-
mension. Without the lattice potential the energy spectrum resembles the equally spaced energy
states of a harmonic oscillator, whereas we observe a band structure for deep lattice potentials.
The exact transition between the harmonic oscillator spectrum and the lattice spectrum is rather
complicated, but the important point is that only harmonic oscillator states with an energy lower
than the recoil energy E, . evolve definitively into states of the first Bloch band if the lattice depth
is increased [53]. The final state for lithium atoms which initially occupy an energy above the
recoil energy depends on the exact initial state and can either be located in the first or in higher
Bloch bands.

Because of the fermionic nature of the lithium atoms, we can load only a limited amount of
atoms into the lattice if we want to ensure that only the lowest Bloch band is occupied. We get
an upper bound for the maximal number of atoms by considering the lattice loading in the limit
of zero temperature. In this case, the lowest energy levels are occupied by exactly one fermion.
In order to occupy only the first Bloch band, the chemical potential of the lithium atoms, or
equivalently the Fermi energy, has to be lower than the recoil energy of the corresponding lattice
direction. If we consider the longitudinal lattice with its rather large lattice spacing and thus
low recoil energy (E,../h = 6.9kHz), we get a maximal number of 5 - 102 atoms (eq. (2.21)). To
circumvent this limitation in the lithium atom number, we load the lattice with a background
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Figure 4.1.: Evolution of the energy spectrum in a harmonic trapping potential (w = 27 800 Hz)
for increasing lattice depth (d,, = 1.1 um, calculated according to section 3.2.2). The
initially equally spaced energy spectrum of the harmonic oscillator develops for in-
creasing lattice depth into a band structure. The vertical arrows at the right of the
main graph indicate in which energy bands the energy levels evolve. The graphs on
the right hand side display three characteristic eigenfunctions at a lattice depth of
5 E,.. w