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Zusammenfassung

Die vorliegende Arbeit untersucht den Einfluss eines Bosegases aus Natriumatomen auf die Ko-
härenz fermionischer Lithiumatome, die sich in einer Superposition zweier Bewegungszustän-
de befinden. Zu diesem Zweck implementieren und charakterisieren wir ein Lithium-selektives
Gitterpotential. Das Verschieben der Gitterposition koppelt Zustände aus Blochbändern unter-
schiedlicher Parität und führt bei periodischer Modulation zu Rabi-Oszillationen zwischen dem
ersten und zweiten Blochband. Mit Hilfe dieses Kopplungsmechanismus untersuchenwir die zeit-
liche Entwicklung der Lithiumatome in Ramsey- und Spin-Echo-Experimenten. Die Wechselwir-
kung mit den Natriumatomen verursacht einen Kohärenzzerfall der Lithiumatome, dessen Zer-
fallszeit wir durch den Vergleich der Spin-Echo-Signale mit und ohne bosonischem Hintergrund
bestimmen. Wir beobachten, dass der Verlust der Kohärenz auf einer etwas längeren Zeitskala
als die Relaxation zwischen den Blochbändern erfolgt und schließen daraus, dass der Kohärenz-
zerfall durch Relaxationsprozesse getrieben ist. Zudem überprüfen wir diese Schlussfolgerung
anhand einer Mastergleichung, die die zeitliche Entwicklung einzelner Teilchen in einem Bose-
gas beschreibt. Unsere Berechnungen stimmen qualitativ mit unseren Beobachtungen überein
und bestätigen, dass die Dynamik der Lithiumatome durch Relaxationsprozesse dominiert ist.

Abstract

This thesis investigates the motional coherence of fermionic lithium atoms immersed in a Bose
gas of sodium atoms. For this purpose, we implement and characterize a species-selective lattice
potential for lithium. Shifting the lattice position couples Bloch bands of opposite parity and we
observe Rabi oscillations between the first and second band for periodic modulation. We employ
the coherent coupling between the bands to study the evolution of the lithium atoms in Ramsey
and spin echo-type experiments. The interaction between the bosonic bath and the lithium atoms
causes the loss of motional coherence, and we determine the decoherence time by analyzing the
corresponding spin echo signal relative to the signal without Bose gas. We observe that the co-
herence decay occurs on a slightly longer time scale than the relaxation dynamics of motionally
excited lithium atoms, and conclude that the loss of motional coherence is primarily induced by
relaxation processes. Moreover, we test this interpretation by means of a master equation which
governs the evolution of a single particle immersed in a Bose gas. Our calculations agree quali-
tatively with our experimental observations and confirm that the dynamics of the lithium atoms
are dominated by relaxation processes.
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1. Introduction

Since the development of quantum mechanics in the early 20th century, physicists have debated
about its interpretation and the transition from the quantum to the classical world [1, 2, 3]. The
most common approach dates back to 1928 when Niels Bohr and Werner Heisenberg formu-
lated the Copenhagen interpretation which states that a quantum mechanical measurement cor-
responds to an instantaneous collapse of the system's wavefunction to an eigenstate of the mea-
sured observable. In general, this collapse is non-deterministic and the probability to measure a
certain eigenvalue is determined by the projection of the wavefunction onto the corresponding
eigenstate. The Copenhagen interpretation proved to be a powerful tool in order to describe the
observations of many quantum mechanical experiments, but its probabilistic character runs con-
trary to our classical intuition. The most prominent example for this objection originates from
Erwin Schrödinger who indicated that according to quantum mechanics a cat could be simulta-
neously dead and alive [4].
However, this paradox can be resolved phenomenologically as superpositions of quantum states

are only preserved in closed systems, whereas the superpositions decay in open systems due to
coupling to the environment and the corresponding density matrix evolves towards its classical
counterpart. This process is commonly referred to as decoherence [5] and prevents the observa-
tion of quantum superpositions in everyday life. Because of its fundamental importance for the
transition between the classical and quantum mechanical regime, decoherence has been studied
in a variety of experiments which analyzed the decay of superpositions by controlling the inter-
action with the classical environment [6, 7]. More recent measurements aim to understand the
decoherence mechanisms from first principles [8, 9] and are based on the ideas of Richard Feyn-
man, who proposed to use a so-called quantum simulator in order to emulate quantum systems
with large Hilbert spaces [10]. These experiments prepare a single well-controlled particle in a
superposition and investigate its subsequent evolution in a quantum mechanical bath. As these
model systems evolve overall unitary, the initial wavefunction does not instantaneously collapse
and the information about the coherence is preserved. Though, due to the coupling between both
components, the information is transferred to the bath's degrees of freedom. Because of their
large number, the particle does never recover the initial superposition and its coherence is effec-
tively lost.

These experiments directly relate the decoherence of the particle to the bath's large Hilbert space
and present a remarkable demonstration of Feynman's quantum simulator. Indeed, his concept
is not restricted to bridging the gap between the classical and quantum world, but also helped
to address other long standing questions of quantum mechanics. A further famous example for
its realization is the investigation of the Bardeen-Cooper-Schriefer (BCS) pairing mechanism in
ultracold Fermi gases [11, 12, 13]. The high degree of control over this quantum system enabled
to set a two-component Fermi gas into rotation and to tune the interaction between its species by
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1. Introduction

means of a Feshbach resonance [14, 15]. The direct observation of a vortex lattice in the strongly
attractive regime revealed the superfluid character of the Fermi gas and proofed the existence of
a BCS-like pairing mechanism.
Whereas these experiments studied the mechanisms for BCS-type superconductivity in an ul-

tracold quantum gas, similar experiments could also contribute to the comprehension of high-
temperature superconductors. A debated but so far unconfirmed mechanism for their super-
conductivity is the formation of bound polaron pairs [16]. In the context of condensed matter, a
polaron consists of an electron, which polarizes an ion crystal lattice due to its Coulomb potential,
and its self-induced polarization field i. e. the lattice phonons. It has been shown theoretically that
an equivalent quasi-particle exists in the framework of ultracold quantum gases [17, 18]. In this
case, the polaron is composed of an impurity atom immersed in a Bose-Einstein condensate [19,
20] and the self-induced elementary excitations of the Bose gas, which form the counterpart to
the lattice phonons. This polaron manifestation is of special interest as Feshbach resonances pro-
vide the opportunity to tune the coupling between its constituents into the strongly interacting
regime, which could not be accessed yet by solid state experiments. Though, polaron formation
has so far not been clearly verified in ultracold quantum gases. First investigations revealed the
mediation of the boson-boson interaction due to Bose-Fermi interaction [21] and showed evi-
dence for polaronic behavior in a one-dimensional Bose-Fermi mixture [22].

Our experiment aims to test the analogy between the two polaron versions. For this purpose, we
immerse fermionic lithium atoms into a sodium Bose-Einstein condensate and intend to map out
their trapping frequency in a species-selective lattice potential. The formation of quasi-particles
manifests in a lower frequency compared to freely evolving atoms as the polaron's dynamics are
governed by an effective mass which exceeds the pure mass of the lithium atoms.
In order to detect also small frequency shifts, we need to develop appropriate experimental

techniques. Moreover, the precision of the frequency measurements is fundamentally limited
by the probe time and by mechanisms which cause the collapse of the impurity's wavefunction
during the probe time. Hence, the interaction between the lithium atoms and the sodium Bose-
Einstein condensate does not only give rise to the formation of quasi-particles, but also restricts
their investigation due to decoherence processes.
However, these processes do not only limit our measurements, but provide beyond that the

opportunity to investigate decoherence mechanisms in a closed quantum system which is not
governed by spin-spin interactions as previous experiments [8, 9]. Instead, the dynamics of the
lithium atoms in the sodium background are controlled by a density-density-type interaction, and
the coherence of the lithium atoms decays due to coupling to the elementary excitations of the
degenerate Bose gas. Thus, the coherence loss depends on the interaction between the background
atoms, and the characteristics of the loss mechanisms differ from those in spin systems due to the
continuity of the excitation spectrum.

Contents of this Thesis

This thesis is organized as follows. Chapter 2 presents briefly the basic concepts of ultracold
quantum gases and introduces our experimental setup producing a mixture of fermionic lithium
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and bosonic sodium. The following chapters 3, 4 and 5 discuss the species-selective lattice poten-
tial which is our main tool to address the lithium atoms and probe their evolution in the sodium
cloud. Chapter 3 starts with a general discussion of basic lattice theory and is directed to design
the lattice according to our needs. Subsequently, we characterize the lattice potential in chapter 4,
and investigate the coherent control over the lithium atoms with the help of the optical lattice in
chapter 5. In this context, a spin echo technique is developed in order to explore the motional
coherence of the lithium atoms during the immersion in the sodium bath.
The following chapters focus on the dynamics of the lithium atoms in the Bose gas. First,

chapter 6 introduces the corresponding theoretical framework and deduces the master equation
for an impurity immersed in a bosonic bath. Subsequently, the relaxation dynamics of motionally
excited lithium atoms due to interaction with the sodium background are studied in chapter 7,
and we compare the experimental findings to our previous, theoretical considerations. Finally,
we investigate the interaction induced loss of motional coherence in chapter 8 and analyze the
loss mechanisms by means of the relaxation dynamics.
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2. Bose-Fermi Mixture of Sodium and
Lithium

This chapter presents a brief theoretical overview of ultracold Bose and Fermi gases. It is not
meant to provide a complete theoretical description, but rather introduces the basic concepts
which are necessary for the analysis of the experimental data and measurements presented in
the following chapters. Hereby, the chapter focuses mainly on the density distribution of the two
gases as we finally intend to investigate the dynamics of immersed (fermionic) atoms in a bosonic
bath which depend on the density of both components.
The first section starts with a discussion of the Gross-Pitaevskii equation for weakly interacting

bosons in order to obtain their density distribution in a trapping potential. Furthermore, we
introduce the Bogoliubov excitations which approximate the quantummechanical fluctuations of
the Bose gas to first order and are connected to density fluctuations. These fluctuations become
important in the context of the interaction between the bosonic bath and immersed atoms in
chapter 6. The second section investigates the basic properties of a non-interacting Fermi gas with
an emphasis on the density distribution in an external trapping potential. The final part of this
chapter applies the considerations of the previous sections to the Bose-Fermi mixture of fermionic
lithium (6Li) and bosonic sodium (23Na) realized in our experiment. In this context, we provide
a short overview of the experimental setup and extract the quantities which are relevant for the
following chapters, as e. g. the gas temperature and the density profiles, from the experimental
data.

2.1. Weakly Interacting Bosons

2.1.1. The Gross-Pitaevskii Equation

Bose gases realized in ultracold atom gas experiments are prepared and cooled in an external trap-
ping potential 𝑉ext which isolates the atoms from the environment to prevent their heating [23].
Besides the external trapping potential the atoms usually interact weakly with each other via a
Van der Waals potential. Because of the low temperatures in our experiments, the de Broglie
wavelength of the atoms is typically much larger than the effective range of the Van der Waals
potential. Therefore, the details of the potential are not resolved by the interacting atoms and the
interaction can be described by a contact potential [24]

𝑉( ⃗𝑟 − ⃗𝑟′) = 𝑔𝛿( ⃗𝑟 − ⃗𝑟′) (2.1)

with 𝑔 = 4𝜋ℏ2𝑎/𝑚 being the coupling constant, 𝑎 the scattering length and 𝑚 the mass of the
atoms. ⃗𝑟 and ⃗𝑟′ denote the positions of the interacting atoms.
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2. Bose-Fermi Mixture of Sodium and Lithium

As ultracold Bose gases are typically dilute, which means that the inter-particle spacing is much
larger than the range of the interaction potential, two body interactions play the dominant role
and interactions involving higher particle numbers can be neglected. In this case, the Heisenberg
equation of motion for the bosonic field operator Ψ̂( ⃗𝑟, 𝑡) is given by [24]

𝑖ℏ 𝜕
𝜕𝑡

Ψ̂( ⃗𝑟, 𝑡) = [− ℏ2

2𝑚
∇2 + 𝑉ext( ⃗𝑟) + ∫Ψ̂†( ⃗𝑟′, 𝑡)𝑉( ⃗𝑟 − ⃗𝑟′)Ψ̂( ⃗𝑟′, 𝑡) d ⃗𝑟′] Ψ̂( ⃗𝑟, 𝑡). (2.2)

In order to find the approximate ground state of the Bose gas, the bosonic field operator can be
rewritten and split into the condensate wavefunction ⟨Ψ̂( ⃗𝑟, 𝑡)⟩ = Ψ0( ⃗𝑟, 𝑡) which describes the
Bose-Einstein condensate and a term 𝛿Ψ̂( ⃗𝑟, 𝑡) which accounts for thermal and quantum mechan-
ical fluctuations

Ψ̂( ⃗𝑟, 𝑡) = Ψ0( ⃗𝑟, 𝑡) + 𝛿Ψ̂( ⃗𝑟, 𝑡). (2.3)

This approach is particularly useful if the temperature of the Bose gas is well below the critical
temperature which means that thermal fluctuations are suppressed and if the number of parti-
cles in the condensate is large such that quantum mechanical fluctuations can be neglected. In
this case, the field operator can be replaced by the condensate wavefunction which leads to the
time-dependent Gross-Pitaevskii equation (GPE) [25, 26]

𝑖ℏ 𝜕
𝜕𝑡

Ψ0( ⃗𝑟, 𝑡) = [− ℏ2

2𝑚
∇2 + 𝑉ext( ⃗𝑟) + 𝑔⏐⏐⏐Ψ0( ⃗𝑟, 𝑡)⏐⏐⏐

2
] Ψ0( ⃗𝑟, 𝑡). (2.4)

The time-independent GPE can be obtained by factorizing the condensate wavefunction into a
position- and a time-dependent part Ψ0( ⃗𝑟, 𝑡) = Ψ0( ⃗𝑟)𝑒−𭑖𭜇𭑡/ℏ

𝜇Ψ0( ⃗𝑟) = [− ℏ2

2𝑚
∇2 + 𝑉ext( ⃗𝑟) + 𝑔⏐⏐⏐Ψ0( ⃗𝑟)⏐⏐⏐

2
] Ψ0( ⃗𝑟), (2.5)

where 𝜇 = 𝜕𝐸/𝜕𝑁 is the chemical potential.
In general, the exact solution of the stationary GPE has to be calculated numerically. But in

many experimentally relevant cases the interaction energy is much larger than the kinetic energy
and thus the kinetic term in the GPE can be neglected. According to this so-called Thomas-Fermi
approximation, the density distribution of the Bose-Einstein condensate 𝑛( ⃗𝑟) reads as

𝑛( ⃗𝑟) = |Ψ0( ⃗𝑟)|2 = {
𭜇−𭑉ext(𭑟⃗)

𭑔 if 𝜇 − 𝑉ext( ⃗𝑟) ≥ 0
0 otherwise.

(2.6)

Hence, a Bose-Einstein condensate confined in a harmonic potential characterized by the trapping
frequencies 𝜔x,y,z

𝑉ext( ⃗𝑟) = 1
2

𝑚 (𝜔2
x 𝑥2 + 𝜔2

y 𝑦2 + 𝜔2
z 𝑧2) (2.7)

has a parabolically shaped density distribution whose peak density is given by the ratio of the
chemical potential 𝜇 and the coupling constant 𝑔. As the chemical potential is restricted by the
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2.1. Weakly Interacting Bosons

normalization condition 𝑁 = ∫𝑛( ⃗𝑟) d ⃗𝑟, it can be expressed in terms of experimentally accessible
parameters [27]

𝜇 = ℏ𝜔̄
2

(15𝑁𝑎
̄𝑎ho

)
2/5

. (2.8)

Here 𝜔̄ denotes the mean trapping frequency 𝜔̄ = 3
√𝜔x𝜔y𝜔z and ̄𝑎ho the corresponding harmonic

oscillator length ̄𝑎ho = √ℏ/(𝑚𝜔̄).
The Thomas-Fermi approximation requires that the kinetic energy of the bosons is small com-

pared to the interaction energy, but it also assumes that the Bose gas is at zero temperature as the
Gross-Pitaevskii equation does not account for temperature effects.
Despite the fact that the temperature in our experiment is finite, the Thomas-Fermi approxi-

mation provides a helpful tool to describe the observed density profiles. The reason is that the
bosonic gas shows at ultracold temperatures a bimodal density distribution. As the temperature
decreases the bosons start occupying the ground state of the system macroscopically and the
density distribution of this Bose-Einstein condensate is well reflected by the Thomas-Fermi ap-
proximation. In contrast, the density distribution of the atoms which do not occupy the ground
state can be described by the Maxwell-Boltzmann distribution [23]

𝑛th( ⃗𝑟) = 𝑁th

𝜋𝜎x𝜎y𝜎z
𝑒−𭑥2/𭜎2

𭑥𝑒−𭑦2/𭜎2
y 𝑒−𭑧2/𭜎2

z with 𝜎x,y,z = √
2𝑘B𝑇

𝑚𝜔2
x,y,z

(2.9)

with 𝑁th denoting the number of thermal atoms and 𝑘B the Boltzmann constant . The ratio of the
atoms in the Bose-Einstein condensate and the total number of atoms is referred to as condensate
fraction 𝜂 = 𝑁BEC/𝑁total, and is for a harmonic trapping potential given by [28]

𝜂 = 1 − ( 𝑇
𝑇C

)
3

, (2.10)

where the critical temperature 𝑘B𝑇C ≈ 0.94ℏ𝜔̄𝑁1/3 has been introduced.
The observation of the density profile therefore allows two complementary routes to measure

the temperature of the Bose gas. On the one hand, the wings of the thermal cloud reflect the
temperature of the gas and on the other hand the condensate fraction can also be used for a
temperature determination if the trapping potential and therefore the trapping frequencies are
well known.

2.1.2. Elementary Excitations

So far, we treated the Bose gas as a classical field and neglected all fluctuations. We will see
in the last section of this chapter that this approach already yields a good description of our
experimentally observed density profiles.
Nevertheless we will investigate the elementary excitations and fluctuations of the Bose gas in

the following as they give rise to density fluctuations which become important for the interaction
between the bosonic bath and atoms immersed in this bath discussed in chapter 6. The interac-
tion between the two components is a density-density-type interaction. In absence of density
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2. Bose-Fermi Mixture of Sodium and Lithium

fluctuations, the immersed atoms experience a constant bath density if the extent of their wave-
function is small compared to the size of the Bose-Einstein condensate, and the interaction causes
therefore only a constant correction to the energy of the immersed atoms. However, the density
fluctuations of the Bose gas modulate the bath density on smaller length scales and induce the
dynamics of the immersed atoms which we investigate later on.

In order to derive the density fluctuations of the Bose gas, we consider the correction of first
order in 𝛿Ψ̂( ⃗𝑟, 𝑡) by plugging Ψ̂( ⃗𝑟, 𝑡) = Ψ0( ⃗𝑟, 𝑡) + 𝛿Ψ̂( ⃗𝑟, 𝑡) into equation (2.2) and dropping all
terms of higher than linear order in 𝛿Ψ̂( ⃗𝑟, 𝑡). This approach is justified as long as the number of
excitations is much lower than the particle number in the condensate. As Ψ0( ⃗𝑟, 𝑡) is a solution to
the Gross-Pitaevskii equation, this leads to

𝑖ℏ 𝜕
𝜕𝑡

𝛿Ψ̂( ⃗𝑟, 𝑡) = [− ℏ2

2𝑚
∇2 + 𝑉ext( ⃗𝑟) + 2𝑔|Ψ0( ⃗𝑟, 𝑡)|2] 𝛿Ψ̂( ⃗𝑟, 𝑡) + 𝑔Ψ0( ⃗𝑟, 𝑡)2𝛿Ψ̂†( ⃗𝑟, 𝑡) (2.11)

and for the Hermitian adjoint

−𝑖ℏ 𝜕
𝜕𝑡

𝛿Ψ̂†( ⃗𝑟, 𝑡) = [− ℏ2

2𝑚
∇2 + 𝑉ext( ⃗𝑟) + 2𝑔|Ψ0( ⃗𝑟, 𝑡)|2] 𝛿Ψ̂†( ⃗𝑟, 𝑡)+𝑔Ψ*

0 ( ⃗𝑟, 𝑡)2𝛿Ψ̂( ⃗𝑟, 𝑡). (2.12)

Usually, this set of equations is solved by using the ansatz [24]

𝛿Ψ̂( ⃗𝑟, 𝑡) = �
⃗𭑞

[𝑢 ⃗𭑞( ⃗𝑟)𝑏̂ ⃗𭑞𝑒−𭑖𭜔 ⃗𭑞𭑡 + 𝑣*
⃗𭑞( ⃗𝑟)𝑏̂†

⃗𭑞𝑒𭑖𭜔 ⃗𭑞𭑡] 𝑒−𭑖𭜇𭑡/ℏ. (2.13)

Here, 𝑢 ⃗𭑞( ⃗𝑟) and 𝑣 ⃗𭑞( ⃗𝑟) are functions which have to be determined such that the equations for

𝛿Ψ̂( ⃗𝑟, 𝑡) and 𝛿Ψ̂†( ⃗𝑟, 𝑡) are fulfilled. 𝑏̂†
⃗𭑞 and 𝑏̂ ⃗𭑞 denote the creation and annihilation operator for the

elementary excitationwithmomentum ⃗𝑞 and energy 𝜖 ⃗𭑞 = 𝜔 ⃗𭑞ℏ. Inserting this ansatz and selecting
the terms oscillating with the same frequency 𝜔 ⃗𭑞 yields the so-called Bogoliubov equations [29]

[− ℏ2

2𝑚
∇2 + 𝑉ext( ⃗𝑟) + 2𝑔𝑛( ⃗𝑟) − 𝜇 − 𝜖 ⃗𭑞] 𝑢 ⃗𭑞( ⃗𝑟) + 𝑔𝑛( ⃗𝑟)𝑣 ⃗𭑞( ⃗𝑟) = 0 (2.14)

[− ℏ2

2𝑚
∇2 + 𝑉ex𭑡( ⃗𝑟) + 2𝑔𝑛( ⃗𝑟) − 𝜇 + 𝜖 ⃗𭑞] 𝑣 ⃗𭑞( ⃗𝑟) + 𝑔𝑛( ⃗𝑟)𝑢 ⃗𭑞( ⃗𝑟) = 0. (2.15)

In general, the solution to the Bogoliubov equations is non-analytical and has to be calculated
numerically. But in the most trivial case of a uniform repulsive Bose gas (𝑛( ⃗𝑟) = 𝑛0, 𝑉ext( ⃗𝑟) = 0,
𝑔 > 0, 𝜇 = 𝑔𝑛0), the solution has to be translationally invariant and can be found by considering
the functions 𝑢 ⃗𭑞( ⃗𝑟) and 𝑣 ⃗𭑞( ⃗𝑟) as plane waves

𝑢 ⃗𭑞( ⃗𝑟) =
𝑢 ⃗𭑞√

𝑉
𝑒𭑖 ⃗𭑞𭑟⃗ and 𝑣 ⃗𭑞( ⃗𝑟) =

𝑣 ⃗𭑞√
𝑉

𝑒𭑖 ⃗𭑞𭑟⃗ (2.16)

with 𝑉 being the normalization volume. This approach leads to a set of coupled equations for 𝑢 ⃗𭑞
and 𝑣 ⃗𭑞 which can be fulfilled if

𝜖 ⃗𭑞 = √𝑔𝑛0

𝑚
(ℏ ⃗𝑞)2 + (ℏ ⃗𝑞)4

(2𝑚)2 . (2.17)
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Figure 2.1.: Dispersion relation of the Bogoliubov excitations 𝜖 ⃗𭑞 (blue solid line) with its linear,
phonon-like behavior for low momenta (red dashed line) and the free-particle-like
behavior for high momenta (green dashed line).

Figure 2.1 depicts the dispersion relation of the elementary excitations 𝜖 ⃗𭑞 and reveals a linear
behavior for low momenta 𝜔 ⃗𭑞 ≈ 𝑐| ⃗𝑞| with 𝑐 = √𝑔𝑛0/𝑚 being the so-called speed of sound.
This phonon-like energy spectrum turns for higher momenta gradually into a free-particle-like
spectrum as the dispersion relation becomes quadratic in | ⃗𝑞|.
The two coupled equations for 𝑢 ⃗𭑞 and 𝑣 ⃗𭑞 become linearly dependent if 𝜖 ⃗𭑞 is given by equa-

tion (2.17) and therefore there is no unique solution. But both coefficients are restricted up to
a phase factor as the bosonic field operator, the creation and the annihilation operator for the
elementary excitations have to satisfy the bosonic commutator relations. Taking 𝑢 ⃗𭑞 and 𝑣 ⃗𭑞 as
real yields

𝑢 ⃗𭑞 =
√√√
√

(ℏ ⃗𭑞)2

2𭑚 + 𝑔𝑛0

2𝜖 ⃗𭑞
+ 1

2
(2.18)

𝑣 ⃗𭑞 = −
√√√
√

(ℏ ⃗𭑞)2

2𭑚 + 𝑔𝑛0

2𝜖 ⃗𭑞
− 1

2
. (2.19)

As mentioned in the beginning of this section, we are particularly interested in the elementary
excitations of the Bose gas because they are used to describe the interaction process between an
impurity and the bosonic bath. We will see that this process does not only depend on the charac-
teristics of the energy spectrum 𝜖 ⃗𭑞 which determines the possibly involved excitation modes, but
also on the coefficients 𝑢 ⃗𭑞 and 𝑣 ⃗𭑞 which carry information about the bath structure and therefore
determine the likeliness of the interaction process.

2.2. Fermions

After recapturing the basic concepts of weakly interacting bosons, the following section concen-
trates on the characteristics of identical fermions and their density distribution in an external
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2. Bose-Fermi Mixture of Sodium and Lithium

trapping potential. During our discussion, we consider the fermions as an ideal, non-interacting
Fermi gas. This is justified by the fact that our experiments are performed with samples of spin-
polarized and thus identical fermions for which the Pauli exclusion principle forbids s-wave
scattering. Moreover, the temperature of our Fermi gases (𝑇 ∼ 1 µK) is typically much lower
than height of the centrifugal barrier (∼ 1mK for p-wave scattering) and hence the interaction
between the spin-polarized fermions can be neglected.
For an ideal Fermi gas, the occupation number 𝑓( ⃗𝑟, 𝑝⃗) per phase space cell d ⃗𝑟d𝑝⃗/(2𝜋ℏ)3 at

temperature 𝑇 is given by the Fermi-Dirac distribution

𝑓( ⃗𝑟, 𝑝⃗) = 1

exp(( 𭑝⃗2

2𭑚 + 𝑉ext( ⃗𝑟) − 𝜇) / (𝑘B𝑇)) + 1
. (2.20)

As for the bosons, the chemical potential 𝜇 of the fermions is fixed by the normalization condition
for the particle number 𝑁 = ∫𝑓( ⃗𝑟, 𝑝⃗) d ⃗𝑟d𝑝⃗/(2𝜋ℏ)3, and depends on the temperature.
In the special case of a Fermi gas at zero temperature, the chemical potential is also referred

to as the Fermi energy 𝐸F = 𝜇(𝑇 = 0). According to equation (2.20) all states which fulfill
𭑝⃗2

2𭑚 +𝑉ext( ⃗𝑟) < 𝜇, i. e. have an energy lower than the chemical potential, are in this limit occupied
by exactly one fermion and all others are empty. Applying the normalization condition to a Fermi
gas at zero temperature confined in a three-dimensional harmonic trapping potential yields for
the Fermi energy

𝐸F = (6𝑁)1/3ℏ𝜔̄. (2.21)

As the temperature of Fermi gases realized in experiments is finite, the Fermi energy can only
serve as an estimate for the chemical potential. The validity of this estimation can be checked by
comparing the actual temperature with the temperature connected to the Fermi energy, i. e. the
Fermi temperature 𝑇F = 𝐸F/𝑘B. For 𝑇 ≪ 𝑇F, the chemical potential can be expanded in terms of
𝑇/𝑇F

𝜇(𝑇) = 𝐸F [1 − 𝜋2

3
( 𝑇

𝑇F
)

2

] (2.22)

which is known as the Sommerfeld expansion [30].
For the evaluation of our experimental data, particularly the density distribution of the Fermi

gas is of interest. This distribution can be obtained by integrating equation (2.20) over the mo-
mentum space

𝑛( ⃗𝑟) = ∫𝑓( ⃗𝑟, 𝑝⃗) d𝑝⃗
(2𝜋ℏ)3 (2.23)

This integration is non-trivial for finite temperature, but can be related to the polylogarithmic
function1 𝐿𝑖3/2(𝑥) and yields [31]

𝑛( ⃗𝑟) = − (𝑚𝑘B𝑇
2𝜋ℏ2 )

3/2

𝐿𝑖3/2 (−𝑒(𭜇−𭑉ext(𭑟⃗))/(𭑘B𭑇)) . (2.24)

In contrast to the Bose gas, where for a decreasing temperature the appearance of a bimodal den-
sity distribution reveals the onset of degeneracy, the change of the fermionic density distribution

1𭐿𭑖𭑛(𭑥) = 1
Γ(𭑛) ∫∞

0
𭑡𭑛−1

𭑒𭑡/𭑥−1 d𭑡, where Γ(𭑛) is the gamma function.
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Figure 2.2.: Density distribution of a Fermi gas in a three-dimensional harmonic potential with
trapping frequency 𝜔 for different temperatures. At 𝑇 = 𝑇F the density profile of a
Fermi is hardly distinguishable from the Maxwell-Boltzmann distribution of an ideal
gas.

is more subtle. It smoothly changes from a thermal distribution (eq. (2.9)) to a distribution of the
form

𝑛( ⃗𝑟) = 1
6𝜋2 (2𝑚

ℏ2 )
3/2

(𝐸F − 𝑉ext( ⃗𝑟))
3/2

(2.25)

in the limit of zero temperature, which is illustrated in figure 2.2. Due to this fact, thermometry
using fermions is much more difficult than with bosons. Therefore, our temperature determina-
tion for Bose-Fermi mixtures usually relies on the analysis of the Bose gas and assumes that both
gases have the same temperature. This approach is well justified as long as both gases are in
thermal contact and are at least close to thermal equilibrium.

2.3. Sodium-Lithium Mixture in an Optical Dipole Trap

Whereas the previous sections concentrated on the theory of bosons and fermions at ultracold
temperatures, this section deals with the experimental realization of a Bose-Fermi mixture of
sodium and lithium and our data analysis.
We start each experiment with a double-species magneto-optical trap [32] for bosonic sodium

(23Na) and fermionic lithium (6Li). Both species are simultaneously transferred to a cloverleaf
magnetic trap [33]. In order to increase the transfer efficiency, we apply an optical pumping
scheme [34] and purify the sodium cloud by a subsequent microwave sweep. This leads to a sta-
ble, spin-polarized cloud of sodium atoms in the ⏐⏐𝐹 = 2, 𝑚𭑓 = 2⟩ hyperfine state and of lithium
atoms in the ⏐⏐𝐹 = 3/2, 𝑚𭑓 = 3/2⟩ state.2 Subsequently, the sodium atoms are cooled by forced
evaporation using a microwave transition, while the lithium atoms are cooled sympathetically by
the sodium atoms [35]. Both species are finally transferred from the magnetic trap to an optical

2Here, 𭐹 denotes the atom's total angular momentum and 𭑚𭐹 its projection onto the magnetic field.
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2. Bose-Fermi Mixture of Sodium and Lithium

dipole trap in which we perform our experiments and which is discussed in the following. Amore
precise description of the experimental setup, sample preparation and the cooling stages can be
found in [36, 37, 38, 39, 40, 41].

2.3.1. Optical Dipole Trap

In each experimental cycle we prepare a mixture of bosonic sodium and fermionic lithium in the
optical dipole trap. We are particularly interested in the impact of the sodium bath on the dy-
namics of the lithium atoms immersed in the bath. Hence, we usually prepare an imbalanced
Bose-Fermi mixture with lithium being the minority species. Depending on the type of measure-
ment, the lithium atom number typically ranges from 0.3 ⋅ 105 to 2 ⋅ 105 and the sodium atom
number from 3 ⋅ 105 to 10 ⋅ 105.

Figure 2.3 a) shows a schematic of the optical dipole trap setup consisting of two intersecting
laser beams at a wavelength of 1064 nm. The axes of the displayed coordinate system are chosen
such that they coincide with the axes of the magnetic trap and the axes of the optical lattice dis-
cussed in the next chapters. Furthermore, the z-axis points in vertical direction. The horizontal
beam lying in the x-y-plane is elliptically shaped with a minimal waist of 100 µm in vertical and
230 µm in horizontal direction. Its axis encloses a small angle of 8° with the y-axis. The second
beam propagating in the x-z-plane has a symmetric shape with a minimal waist of 80 µm and is
tilted by angle of about 40° with respect to the x-axis.
Atoms exposed to the inhomogeneous light field of a laser beam experience a force as the light

field induces a dipole moment due to the opposite charge of the atom's electrons and protons.

x
y

z

8°
40°

w1 = 80 µm
w2 = 80 µm

w1 = 100 µm
w2 = 230 µm

x
y

z

34°

ω1= 105Hz

ω2= 410Hz

ω3= 315Hz

a) b)

Figure 2.3.: a) Two intersecting laser beams are used to generate an optical dipole trap potential for
sodium and lithium. b) Isosurface of the trapping potential and trapping frequencies
for sodium. The trapping frequencies for lithium are about a factor of 2.10 higher, but
the potential shape and orientation are identical.
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2.3. Sodium-Lithium Mixture in an Optical Dipole Trap

This dipole moment is, depending on its orientation, either attracted or repulsed from the light
field which leads to the optical dipole potential. In case of the optical dipole trap, the sodium and
lithium atoms are both attracted by the laser beams, but experience a different trapping potential
𝑉dipole( ⃗𝑟) due to their different optical properties [42]

𝑉dipole( ⃗𝑟) = 3𝜋𝑐2

2𝜔3
0

( Γ
𝜔 − 𝜔0

+ Γ
𝜔 + 𝜔0

) 𝐼( ⃗𝑟). (2.26)

Here, 𝜔 is the laser frequency and 𝐼( ⃗𝑟) the light field intensity. Γ and 𝜔0 denote the decay rate
and frequency of the involved optical transition. Additionally, the mass of both elements differs
which leads to a factor of 2.10 higher trapping frequencies for lithium. This causes a different
shift of the trap minimum for both species as the optical dipole trap potential competes with the
gravitational potential. For a harmonic trapping potential, this differential gravitational sag is
given by

Δ𝑥 =
𝑔grav
𝜔2
Na

−
𝑔grav
𝜔2
Li

, (2.27)

where 𝑔grav denotes the standard acceleration of gravity and 𝜔Na, 𝜔Li the angular trapping fre-
quencies for sodium and lithium.
In order to increase the effect of the bath on the impurities, it is beneficial to minimize the

differential gravitational sag and therefore maximize the trapping frequencies. Hence, we usually
perform our experiments with the maximal intensity in both dipole trap beams. This leads to
trapping frequencies of 61Hz and 160Hz for sodium trapped in the horizontal beam alone, where
the stronger confinement acts against gravity, and 315Hz and 374Hz for sodium in the second
beam. Here, the slightly weaker axis is parallel to the y-axis. Due to the asymmetry of the
laser beams, the overall trapping potential is elliptically shaped and the weakest semiaxis of the
ellipsoid is tilted by angle of about 34° with respect to the x-axis (see figure 2.3 b). The trapping
frequencies for sodium along the semiaxes are (𝜔1,Na, 𝜔2,Na, 𝜔3,Na) = 2𝜋 (105, 315, 410)Hz and
for lithium (𝜔1,Li, 𝜔2,Li, 𝜔3,Li) = 2𝜋 (221, 662, 860)Hz which corresponds to a shift between the
sodium and lithium cloud of 7.4 µm along the x- and −6.2 µm along the z-axis.

2.3.2. Analysis of Atom Density Distributions

The analysis of the bath's impact on immersed atoms requires the knowledge of the involved den-
sity distributions in order to quantify the interaction between the two components. However, as
we image the atom clouds along the z-axis by absorption imaging [23], the imaging process au-
tomatically integrates the density distributions along the imaging direction and we do not detect
the density profiles of the sodium and lithium clouds. Nevertheless, the atom numbers and the
temperature can be extracted from these pictures which allows for the calculation of the density
distributions if the trapping frequencies are well known.
Usually, we do not analyze the atom distributions on the basis of in-situ images, but release

the atoms from the trapping potential before the imaging process. The subsequent expansion of
the atom clouds during the time-of-flight 𝑡TOF reduces their optical density, and the larger cloud
size makes the data analysis less sensitive to the resolution of the imaging system. In order to
determine the temperature of our Bose-Fermi mixture, we analyze the time-of-flight images of
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Figure 2.4.: a) Absorption image of the sodium cloud after 21ms time-of-flight. b)The atom distri-
bution binned per camera pixel is obtained from the absorption picture via integration
along the horizontal direction which is shown in red. The curve in black depicts the
fit of a bimodal distribution to the data, which can be split into a Gaussian for the
thermal fraction (blue) and a parabola for the Bose-Einstein condensate (green). The
temperature can either be determined from the condensate fraction or the thermal
wings.

sodium as the bimodal density distribution of the bosonic cloud allows a robust temperature de-
termination.

In case of a harmonic potential, the density distribution after time-of-flight 𝑛TOF( ⃗𝑟) is for bosons
as well as fermions directly connected to the in-situ density distribution 𝑛( ⃗𝑟) [43]

𝑛TOF( ⃗𝑟) = 𝑛( ⃗𝑟′)
𝛾x𝛾y𝛾z

with 𝛾x,y,z = √1 + 𝑡2
TOF𝜔2

x,y,z and ⃗𝑟′ = ⎛

⎝

𝑥/𝛾x
𝑦/𝛾y

𝑧/𝛾z

⎞

⎠
. (2.28)

This means that the characteristic shape of the density distribution does not change during the
expansion, but the characteristic length scales do. Figure 2.4 displays a typical sodium absorption
picture after 21ms time-of-flight and the distribution of the integrated atom number along the
y-axis. The profile shows a clear bimodal distribution which can be fitted by a combination of a
Thomas-Fermi profile (eq. (2.6)) and a thermal distribution (eq. (2.9)). The obtained condensate
fraction of 79% translates to a temperature 𝑇 = (558 ± 11) nK (eq. (2.10)),3 where the error is
due to the uncertainty in the trapping frequencies and to a smaller degree to the fit accuracy.

3Throughout this document, errors are denoted in two standard deviations, whereas the error bars displayed in the
figures correspond to one standard deviation.
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Alternatively, the temperature can be determined from the extent of the thermal cloud whose
width is after rescaling of the in-situ width (eq. (2.9)) given by

𝜎x,y,z = √
2𝑘B𝑇

𝑚𝜔2
x,y,z

𝛾x,y,z =
√√√
√

2𝑘B𝑇
𝑚

( 1
𝜔2
x,y,z

+ 𝑡2)
𭑡≫1/𭜔x,y,z

→ √2𝑘B𝑇
𝑚

𝑡. (2.29)

This approach yields a temperature of 𝑇 = (557 ± 47) nK which agrees within the mutual error
bars with the result obtained from the condensate fraction. Here, the error is mainly given by
the fit uncertainty as the thermal wings become dilute for large condensate fractions making the
fitting process less reliable. The uncertainty due the magnification of our imaging system is a
factor of three smaller.
Although, the temperature determination via the thermal wings has a larger error and seems

less reliable than the analysis using the condensate fraction, it still serves as a valuable cross check
of the latter as it does not rely on the trapping geometry.

The temperature, the sodium and lithium atom number obtained from the absorption images al-
low calculating the in-situ density distributions. Exemplarily, figure 2.5 shows the sodium density
distribution (eq. (2.6) and (2.9)) as well as the lithium density distribution (eq. (2.24)) for param-
eters typical for our experiment. The density profiles are depicted along along the x-, y- and
z-direction introduced in figure 2.3.
So far, we only considered the trapping potential and the mutual interaction of the bosons

in order to determine the density distributions, but neglected the interaction between the two
components of the Bose-Fermi mixture. However, we will see in the following that especially the
lithium atoms experience a significant additional potential due to the large density of the Bose

-20 0 20

1

2

3

4
x 1014

de
ns

ity
 N

a 
[c

m
-3

]

position x [µm]
-20 0 20
position y [µm]

-20 0 20
position z [µm]

 

 

0

1

2
x 1013

density Li [cm
-3]

Na
Li in Na
Li alone

0

1

2
x 1013

0

1

2
x 1013

0

1

2

3

4
x 1014

0

1

2

4
x 1014

0

Figure 2.5.: Sodium and lithium density distribution in the optical dipole trap along the x-, y-
and z-axis including the differential gravitational sag (𝑇=550 nK, 6 ⋅ 105 sodium and
1.5 ⋅ 105 lithium atoms). The attractive interaction between sodium and lithium drags
the lithium atoms into the Bose-Einstein condensate and reduces the differential sag
between the two components.
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gas. The interspecies interaction potential can be derived in analogy to the mean-field interaction
term of the Gross-Pitaevskii equation (2.5). Accordingly, the sodium atoms experience due to the
interaction with the lithium atoms an additional potential which reads as

𝑉Li→Na( ⃗𝑟) = 𝑔NaLi𝑛Li( ⃗𝑟) (2.30)

and the interspecies interaction potential for the lithium atoms is given by

𝑉Na→Li( ⃗𝑟) = 𝑔NaLi𝑛Na( ⃗𝑟). (2.31)

Here, 𝑛Li,Na( ⃗𝑟) denotes the density of the lithium and sodium atoms, respectively. The coupling
constant [27]

𝑔NaLi = 2𝜋ℏ2𝑎NaLi

𝑚red
(2.32)

is factor of 2 lower than for identical bosons as the particles are distinguishable. The coupling
constant 𝑔NaLi depends on the scattering length between sodium and lithium 𝑎NaLi as well as their
reduced mass 𝑚red = 𝑚Li𝑚Na/(𝑚Li + 𝑚Na). The exact approach for including the interaction
between the two species demands the calculation of the density distributions in a self-consistent
way which leads to a set of coupled equations for the sodium and lithium density. However, the
lithium density is more than one order of magnitude lower than the density of the sodium atoms,
and the interaction potential is only for the lithium atoms on the order of the external trapping
potential. Thus, the impact of the interaction on the sodium density distribution can be neglected
in first order. Therefore, only the lithium density changes and reads as

𝑛( ⃗𝑟) = − (𝑚𝑘B𝑇
2𝜋ℏ2 )

3/2

𝐿𝑖3/2 (−𝑒(𭜇−𭑉ext(𭑟⃗)−𭑔NaLi𭑛Na(𭑟⃗))/(𭑘B𭑇)) . (2.33)

Because of the attractive interaction between the two species, the lithium atoms are dragged
into the sodium Bose-Einstein condensate as depicted in figure 2.5. The interspecies interaction
increases the central lithium density and reduces the distance between the maxima of the two
density distributions due to gravitation from 7.4 µm to 1.5 µm in x- and −6.2 µm to −1.4 µm z-
direction.4 This interaction induced enhancement of the lithium density has already been studied
in the context of sodium-lithium Feshbach resonances [41, 44] and helped to pin the sign of the
scattering length 𝑎NaLi.

Concluding Remarks

This chapter introduced the experimental setup used to prepare our Bose-Fermimixture of sodium
and lithium, and presented the basic theory of ultracold Bose and Fermi gases in order to analyze
the atom distributions after release from the trapping potential. By determining the temperature
of the Bose-Fermi mixture as well as the number of the sodium and lithium atoms, we recon-
structed the density distributions of both components in the trapping potential. In this context,
we found that the extent of the lithium cloud exceeds the size of the Bose-Einstein condensate
4The density profiles are calculated for both species in the lowest hyperfine state which corresponds to 𭑎NaNa = 55 a0
and 𭑎NaLi = −75 a0.
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2.3. Sodium-Lithium Mixture in an Optical Dipole Trap

for our typical experimental parameters. Moreover, we also noticed that the interaction between
the sodium and lithium atoms reduces the differential gravitational sag significantly meaning it
becomes negligible compared to the size of the atom clouds. With regard to our investigations of
the dynamics of the lithium atoms immersed in the sodium background, we keep both effects in
mind as the impact of the sodium bath depends on the density experienced by the lithium atoms.
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3. Species-Selective Lattice for Lithium

In order to study the impact of the bosonic bath on the dynamics of the immersed lithium atoms,
we need to prepare the lithium atoms in an out-of-equilibrium state. For this purpose, the prepa-
ration scheme has to address the external degrees of the lithium atoms without any direct impact
on the bath. Thus, we implement a species-selective optical lattice [45, 46] created by interfer-
ing laser beams whose frequency is close to the lithium transition frequency. Because of the
small detuning, already limited beam intensities result in a sufficiently deep potential for lithium,
whereas the impact on sodium stays negligible. A single optical dipole potential fulfills the same
requirements, but a lattice potential offers a larger versatility. For instance, a lattice enables a
confinement on a smaller scale and thus the impurity atoms act as a local bath probe. In addi-
tion, the bath physics can be investigated in different lattice dimensions which e. g. changes the
possible decay channels of motionally excited impurities.
In the following, we investigate the species-selective lattice with which we address and ma-

nipulate the lithium atoms. At first, we concentrate on the basic theory of lattice potentials and
discuss the dispersion relation of single atoms in one- and three-dimensional lattices. We use
these considerations to derive the design criteria for our species-selective lattice at the end of this
chapter. Moreover, we will need this knowledge in the subsequent chapters in order to charac-
terize and analyze the dynamics of the lithium atoms.

3.1. Optical Lattice Potentials

The optical lattice potential employs the same physical principles as the dipole potential realizing
the trapping potential for the Bose-Fermi mixture (eq. (2.26))

𝑉dipole( ⃗𝑟) = 3𝜋𝑐2

2𝜔3
0

( Γ
𝜔 − 𝜔0

+ Γ
𝜔 + 𝜔0

) 𝐼( ⃗𝑟) ≈ 3𝜋𝑐2

2𝜔3
0

Γ
Δ

𝐼( ⃗𝑟). (3.1)

On the right hand side we made use of the rotating wave approximation which is valid as long
as the detuning Δ = 𝜔 − 𝜔0 between the laser and the transition frequency fulfills |Δ| ≪ 𝜔0.
According to this formula, a species-selective potential can be achieved by a low intensity light
field combined with a small detuning as long as the detuning for the other species is much larger.
However, the laser frequency cannot be tuned arbitrarily close to the transition frequency as the
photon scattering rate [42]

Γscatter( ⃗𝑟) = 3𝜋𝑐2

2ℏ𝜔3
0

( 𝜔
𝜔0

)
3

( Γ
𝜔 − 𝜔0

+ Γ
𝜔 + 𝜔0

)
2

𝐼( ⃗𝑟) ≈ 3𝜋𝑐2

2ℏ𝜔3
0

( Γ
Δ

)
2

𝐼( ⃗𝑟) (3.2)

increases faster with decreasing detuning than the potential depth. These spontaneous emission
processes restrict the possible laser frequencies as they lead to heating and atom loss. In order to
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3. Species-Selective Lattice for Lithium

avoid complications due to scattering processes, the time scale imposed by light scattering should
be much smaller than the exposure time to the lattice potential.

Commonly, lattice potentials are created by the interference pattern of two or more laser beams
intersecting at the position of the atoms. If the intensity of the laser beams remains constant over
the extent of the atom cloud, the optical potential produced by two laser beams takes the form of
a standing wave

𝑉lat(𝑥) = 𝑉0

2
(1 + cos (2𝑘lat𝑥)). (3.3)

The lattice wavevector 𝑘lat = 2𭜋
𭜆 sin (𝛼/2) is determined by the angle 𝛼 between the two beams

as well as their wavelength 𝜆. Furthermore, the lattice vector is connected to the spacing 𝑑lat
between two adjacent lattice sites

𝑑lat = 𝜆
2sin (𝛼/2)

= 𝜋
𝑘lat

. (3.4)

The lattice depth 𝑉0 determined by equation (3.1) is commonly expressed in terms of the recoil
energy 𝐸rec = ℏ2𝑘2

lat/(2𝑚).

3.2. Lattice Theory

In this sectionwe investigate the dispersion relation of a single atom in a lattice potential. Because
of its periodicity, a band structure emerges in the energy spectrum which is similar to the one
of electrons in crystals. We begin our considerations with a one-dimensional and homogeneous
lattice potential. Subsequently, we discuss the limitations of this approach due to the inhomo-
geneity of our lattice potential which is caused by the envelope of the lattice beams as well as the
dipole trap confinement. Finally, we extend our discussion to higher dimensional lattice poten-
tials and illustrate the results on the basis of a two-dimensional lattice with non-perpendicular
lattice axes.

3.2.1. Band Structure of the One-Dimensional Homogeneous Lattice

In order to determine the energy spectrum in a one-dimensional and homogeneous lattice poten-
tial, we are searching the eigenfunctions 𝜓𭑛,𭑞(𝑥) and eigenenergies 𝐸𭑛,𭑞 of the lattice Hamilto-
nian

[−ℏ2

2𝑚
𝜕2

𝜕𝑥2 + 𝑉0

2
(1 + cos (2𝑘lat𝑥))] 𝜓𭑛,𭑞(𝑥) = 𝐸𭑛,𭑞𝜓𭑛,𭑞(𝑥). (3.5)

Here, 𝑛 denotes the band index and 𝑞 the quasimomentum whose origin will become clear in the
following. According to the Bloch theorem, the eigenfunctions of the lattice Hamiltonian can be
written as a product of plane waves and the Bloch functions 𝑢𭑛,𭑞(𝑥) [30]

𝜓𭑛,𭑞(𝑥) = 𝑒𭑖𭑞𭑥/ℏ𝑢𭑛,𭑞(𝑥). (3.6)
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The Bloch functions share the same periodicity as the lattice 𝑢𭑛,𭑞(𝑥 + 𝑑lat) = 𝑢𭑛,𭑞(𝑥) and can
thus be expanded into a Fourier series

𝑢𭑛,𭑞(𝑥) = �
𭜈∈ℤ

𝑐𭑛,𭑞
𭜈 𝑒𭑖2𭜈𭑘lat𭑥. (3.7)

Furthermore, the lattice potential can be expanded in the same set of plane waves as the Bloch
functions

𝑉0

2
(1 + cos (2𝑘lat𝑥)) = 𝑉0

2
+ 𝑉0

4
(𝑒−𭑖2𭑘lat𭑥 + 𝑒𭑖2𭑘lat𭑥) (3.8)

Plugging these two expansions into the Schrödinger equation (3.5) yields

�
𭜈∈ℤ

𝑒𭑖2𭜈𭑘lat𭑥 [((𝑞 + 2ℏ𝜈𝑘lat)
2
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2
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𭜈 + 𝑉0

4
(𝑐𭑛,𭑞

𭜈−1 + 𝑐𭑛,𭑞
𭜈+1)] (3.9)
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As the planewaves 𝑒𭑖2𭜈𭑘lat𭑥 are orthogonal, the set of Fourier coefficients 𝑐𭑛,𭑞
𭜈 fulfills the equation
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. (3.10)

with 𝑇 = (𝑞 + 2ℏ𝜈𝑘lat)
2 /(2𝑚). Thus, we get the eigenenergies 𝐸𭑛,𭑞 and the corresponding set

of Fourier coefficients determining the eigenfunction 𝜓𭑛,𭑞(𝑥) by solving the eigenvalue problem
given in equation (3.10).
Figure 3.1 exemplarily depicts the eigenenergy spectrum obtained for a 𝑉0 = 4 𝐸rec deep lattice

with 𝑑lat = 1.1 µm lattice spacing. For energies much larger than the lattice depth, the dispersion
relation is only slightly affected by the lattice potential and resembles the dispersion relation of
a free particle. However, for smaller energies a band structure emerges whose energy bands are
referred to as Bloch bands and are labeled by the band index 𝑛. In the deep lattice regime, the
lowest energy bands become almost flat, the energy gaps get broader and the energy spectrum
resembles the spectrum of a harmonic oscillator.
A further characteristic feature of the band structure is its periodicity in the quasimomentum of

2ℏ𝑘lat. Thus, the full spectrum can be obtained by restricting the quasimomentum to an interval
of the same size. Conventionally, the quasimomentum is limited to the interval [−ℏ𝑘lat; ℏ𝑘lat]
which is referred to as first Brillouin zone. Accordingly, the 𝑛th Brillouin zone ranges from
[−𝑛ℏ𝑘lat; −(𝑛 − 1)ℏ𝑘lat] and [(𝑛 − 1)ℏ𝑘lat; 𝑛ℏ𝑘lat].

With respect to the design of the optical lattice in the last part of this chapter, we investigate
the band structure more thoroughly. Figure 3.2 depicts the widths of the two lowest Bloch bands
and the band gaps between the first and second band

Δ𝐸1-2 = min(𝐸2,𭑞) − max(𝐸1,𭑞) (3.11)
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Figure 3.1.: Band structure for a 𝑉0 =4 𝐸rec deep lattice. The first, second and third Bloch band are
depicted as blue, red and green line and the color shading indicates the band widths.
The (shifted) dispersion relation of a free particle is displayed as thin black line, and the
vertical dashed lines denote the borders of the different Brillouin zones. The energy
gap Δ𝐸1-2 between the 1st and 2nd as well as the gap Δ𝐸2-3 between the 2nd and 3rd

band are represented by the blue and red arrow.

as well as between second and third band

Δ𝐸2-3 = min(𝐸3,𭑞) − max(𝐸2,𭑞) (3.12)

for various lattice configurations. As expected, the band gaps get larger and the band widths
thinner for deeper lattices. In the deep lattice regime (𝑉0 ≫ 𝐸rec) the lattice potential is more
and more resembled by a set of independent harmonic oscillator potentials and the energy bands
can be approximated by the energy levels of the harmonic oscillator. The Taylor expansion of
the lattice potential (eq. ( 3.3)) at the potential minima yields for the angular frequency of each
harmonic oscillator

𝜔ho = Δ𝐸1-2

ℏ
= √2𝑉0𝑘2

lat

𝑚
= 2𝐸rec

ℏ
√

𝑠 ∝
√

𝑠
𝑑2
lat

with 𝑉0 = 𝑠𝐸rec. (3.13)

Thus, we expect a square root like relation between the band gap and the lattice depth in the deep
lattice regime.
To interpret the dependency of the band structure on the lattice spacing by means of figure 3.2,

we need to take into account that the lattice depth is depicted in terms of the recoil energy, which
depends itself on the lattice spacing (𝐸rec ∝ 1/𝑑2

lat). According to equation (3.13), we anticipate
that the band gap scales in the deep lattice regime as 𝜔ho ∝ 1/𝑑lat for a fixed potential depth and
as 𝜔ho ∝ 1/𝑑2

lat for 𝑉0 = 𝑠𝐸rec. The band gaps increase with smaller lattice spacing gaps as the
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Figure 3.2.: Band gap from the 1st to 2nd Δ𝐸1-2 and 2nd to 3rd Δ𝐸2-3 band as well as band width
of the 1st and 2nd Bloch band for various lattice depths and lattice spacings.

atoms gain kinetic energy due to the stronger confinement, and this effect is more pronounced
for higher energy bands.
The effect of the lattice spacing on the band width is more obvious and can be understood in

terms of tunneling between different lattice sites. In the deep lattice regime the atoms become
more and more localized, but can still tunnel between neighboring sites. In this regime the wave-
functions are often approximated by the Wannier functions 𝑤𭑛(𝑥) [30] 1 which are localized to
a few lattice sites and allow a more intuitive description than the Bloch functions which spread
over the whole lattice. The tunneling rate between two neighboring lattice sites 𝑖 and 𝑗 is deter-
mined by the kinetic energy gain due to the tunneling process. This energy gain is referred to as
the tunneling matrix element [47]

𝐽𭑛 = ∫𝑤𭑛(𝑥 − 𝑥𭑖) [−ℏ2

2𝑚
𝜕2

𝜕𝑥2 + 𝑉0

2
(1 + cos (2𝑘lat𝑥))] 𝑤𭑛(𝑥 − 𝑥𭑗) d𝑥 (3.14)

which is for deep lattices directly related to the band width, and is e. g. for the first Bloch band
given by [48]

𝐽1 ≈
𝐸1,±𭑘lat

− 𝐸1,0

4
. (3.15)

1𭑤𭑛(𭑥 − 𭑥𭑗) = 1√
𭒩 ∑𭑞 𭑒−𭑖𭑞𭑥𭑗𭜓𭑛,𭑞(𭑥), where 𭒩 is a normalization factor.
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The correlation between the band width and the tunneling rate illustrates the impact of lattice
spacing on the band width. In quantum mechanics the tunneling rate through a potential barrier
drops exponentially with the barrier height as well as the barrier width. Thus, the band width
decreases with increasing lattice spacing and the dependency is in the deep lattice regime almost
exponential.

3.2.2. One-Dimensional Inhomogeneous Lattice Potential

So far, we considered the energy spectrum and scales of a homogeneous lattice potential in one
dimension and neglected all inhomogeneities. In the following, we will investigate the limita-
tions of this approach and discuss the impact of the inhomogeneity onto the energy spectrum
and the eigenstates. In our case, there are two major contributions to the inhomogeneity. The
first one stems from the non-uniform intensity distribution of the laser beams which create the
lattice potential. The second contribution originates from the optical dipole trap potential which
is superimposed with the lattice potential.

Inhomogeneity due to the Lattice Beams

In order to quantify the effect of the inhomogeneous lattice beams, we need to consider the re-
sulting variation of the lattice potential with respect to the extent of the atom cloud. If two
counterpropagating laser beams are used to create the lattice potential, the depth of the different
lattice wells varies according to the beams' Rayleigh length. As the latter is typically in the cen-
timeter range, which is large compared to the size of the atom cloud of several micrometers, it
is well justified to neglect the inhomogeneity and consider the lattice potential as homogeneous.
However, if the lattice potential is created by two beams intersecting at a small angle, their waists
and the intersection angle determine the lattice potential along the lattice axis and the lattice
potential reads as

𝑉lat(𝑥) = 𝑉0

2
𝑒−2𭑥2/𭑤2

beam(1 + cos (2𝑘lat𝑥)). (3.16)

Here, 𝑤beam denotes the effective waist of the Gaussian beams along the lattice axis which differs
from their actual waist due to the intersection angle. Hence, the relative potential variation be-
tween the central and an outer populated lattice site scales as 1 − 2𝑥2/𝑤2

beam if the waists of the
lattice beams are much larger than the atom cloud. We can consider the effect of this potential
inhomogeneity on the band structure by means of the deep lattice regime for which 𝜔ho ∝ √𝑉0.
Thus, we expect that the band gaps behave as 1−𝑥2/𝑤2

beam which means that the variation along
the lattice axis is only about 0.25% if the atom cloud is a factor of 20 smaller than the effective
beam waist 𝑤beam.

Inhomogeneity due to the Optical Dipole Trap

The second contribution to the inhomogeneity of lattice potential stems from the superposition
of the optical dipole trap and the lattice potential. The trapping potential does not influence the
depth of the different lattice wells, but leads to an offset potential between the lattice sites. This
offset causes a localization of the wavefunction similar to the one observed for theWannier-Stark
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effect [49] and therefore reduces the tunneling between neighboring lattice sites. In contrast to
the Wannier-Stark effect, for which the potential superimposed to the lattice potential is linear
and all wavefunctions are affected in the same way, the offset caused by the harmonically shaped
trapping potential increases with the distance from the minimum, and atoms further away from
the trap center become more and more localized.2

To investigate the impact of the dipole trap potential, we consider the eigenfunctions and -energies
in the inhomogeneous lattice potential. In case of the homogeneous lattice, the plane waves offer
a convenient basis for the solution of the Schrödinger equation due to the periodicity of the lattice.
In this way, the Schrödinger equation can be reduced to an eigenvalue problem (eq. (3.10)). How-
ever, for the inhomogeneous lattice potential, this basis provides no additional advantage and in
the following we will work with the delta distributions 𝛿(𝑥−𝑥𭑗) as real space basis set. Rewriting
the Schrödinger equation of the inhomogeneous lattice potential

⎡⎢⎢
⎣

−ℏ2

2𝑚
𝜕2

𝜕𝑥2 + 𝑉0

2
𝑒−2𭑥2/𭑤2

beam⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
beam profile

(1 + cos (2𝑘lat𝑥)) + 1
2

𝑚𝜔2
dipole𝑥2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
dipole trap

⎤⎥⎥
⎦

𝜓𭑛(𝑥) = 𝐸𭑛𝜓𭑛(𝑥) (3.17)

with the delta distributions as basis corresponds to a discretization onto a spatial grid, and trans-
forms the Schrödinger equation into a matrix equation

⎛⎜⎜⎜⎜

⎝

−2𝑇 + 𝑉(𝑥1) 𝑇 0
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0 𝑇 ⋰ ⋮
⋮ ⋰
0 ⋯ −2𝑇 + 𝑉(𝑥m)
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⎠
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𝜓𭑛(𝑥3)

⋮
𝜓𭑛(𝑥m)

⎞⎟⎟⎟⎟

⎠

. (3.18)

Here, 𝑇 = − ℏ2

2𭑚Δ𭑥2 and Δ𝑥 = 𝑥𭑗 − 𝑥𭑗−1 is the grid spacing. 𝑉(𝑥𭑗) denotes the total potential
and 𝜓𭑛(𝑥𭑗) the wavefunction at position 𝑥𭑗. The second derivative in the Schrödinger equation
accounting for the kinetic energy leads to a coupling between the 𝜓𭑛(𝑥𭑗) at different positions
as the second derivative can be approximated by

− ℏ2

2𝑚
d2

d𝑥2 𝜓𭑛(𝑥𭑗) ≈ 𝑇 (𝜓𭑛(𝑥𭑗+1) + 𝜓𭑛(𝑥𭑗−1) − 2𝜓𭑛(𝑥𭑗)) . (3.19)

The eigenenergies and the corresponding wavefunctions can be obtained numerically by solving
the eigenvalue problem given in equation (3.18).
In order to quantify the localization of the energy eigenfunctions due to the trapping potential,

we characterize their extent by the root-mean-square size

𝜎 = √⟨𝑥2⟩ − ⟨𝑥⟩2. (3.20)

2The inhomogeneity of the lattice potential has a similar effect as the different lattice well depths cause a shift of the
ground state energy for each harmonic oscillator. However, this shift is for our experimental parameters much
smaller than the one due to the optical dipole trap potential.
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Figure 3.3.: The root-mean-square size 𝜎 of the inhomogeneous lattice eigenfunctions in the first
Bloch band localized at the 10th (blue) and 20th (red) lattice site for various trapping
frequencies (𝑉0 = 12 𝐸rec, 𝑑lat = 1.1 µm). The eigenfunctions become for a stronger
confinement more and more localized and their extent approaches the one of the
corresponding harmonic oscillator ground state (𝜔ho = Δ𝐸1-2/ℏ). The two insets
exemplarily depict the eigenfunction localized at the 10th lattice site for a trapping
frequency of 𝜔dipole =2𝜋 150 and 450Hz.

Figure 3.3 depicts the dependency between the root-mean-square size and the external confine-
ment for the eigenfunctions in the first band centered at the 10th and 20th lattice site. Clearly,
the eigenfunctions become more and more localized for increasing confinement which is con-
sistent with our earlier analogy to the Wannier-Stark effect. The size of the eigenfunctions
reaches quickly the size of the harmonic oscillator ground state for the considered lattice depth
(eq. (3.13)) which demonstrates that the dipole trap confinement decreases the tunneling rates
between neighboring sites significantly. We also observe that the eigenstates further away from
the trap center become localized earlier due to the non-linear trapping potential.

3.2.3. Band Structure of the Three-Dimensional Homogeneous Lattice

So far, we considered the energy spectrum of a periodic potential in one dimension. In the fol-
lowing, we will extend our considerations to three-dimensional homogeneous lattice potentials3

in order to characterize the interplay between our different lattice directions.
Most frequently, a three dimensional lattice potential is created by superimposing three stand-

ing wave potentials whose axes point along different directions. To obtain the energy spectrum
of such a lattice configuration, we have to solve a Schrödinger equation of the form

[−ℏ2

2𝑚
∇2 + 𝑉lat,1( ⃗𝑟) + 𝑉lat,2( ⃗𝑟) + 𝑉lat,3( ⃗𝑟)] 𝜓𭑛, ⃗𭑞( ⃗𝑟) = 𝐸𭑛, ⃗𭑞𝜓𭑛, ⃗𭑞( ⃗𝑟), (3.21)

3We skip the inhomogeneous case as it requires a lot more computational power due to the large number of grid
points necessary for a three-dimensional grid.
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where 𝑉lat,𭑖( ⃗𝑟) denotes the potential of a standing wave in three dimensions

𝑉lat,𭑖( ⃗𝑟) = 𝑉0

2
(1 + cos(2𝑘⃗lat,𭑖 ⃗𝑟)) . (3.22)

In the case of three perpendicular standing wave potentials, we can split the Hamiltonian gov-
erning the equation (3.21) into three separate parts

[ �
𭑖=x,y,z

(−ℏ2

2𝑚
𝜕2

𝜕𝑥2
𭑖

+
𝑉0,𭑖
2

(1 + cos (2𝑘lat,𭑖𝑥𭑖)))] 𝜓𭑛, ⃗𭑞( ⃗𝑟) = 𝐸𭑛, ⃗𭑞𝜓𭑛, ⃗𭑞( ⃗𝑟), (3.23)

where each part corresponds to the Hamiltonian of the one-dimensional lattice potential. Thus,
the solution of the Schrödinger equation is given by 𝜓𭑛, ⃗𭑞( ⃗𝑟) = 𝜓𭑛x,𭑞x

(𝑥)𝜓𭑛y,𭑞y
(𝑦)𝜓𭑛z,𭑞z

(𝑧) and
𝐸𭑛, ⃗𭑞 = 𝐸𭑛x,𭑞x

+ 𝐸𭑛y,𭑞y
+ 𝐸𭑛z,𭑞z

where the 𝐸𭑛𭑖,𭑞𭑖
and 𝜓𭑛𭑖,𭑞𭑖

are the solutions to the one-
dimensional standing wave potentials in x-, y- and z-direction (section 3.2.1).

Though, the situation is different if the lattice axes are not perpendicular to each other. Still,
we do not have to perform a completely new calculation, but can generalize the scheme applied
in the one-dimensional case. The Bloch theorem holds in three dimensions as well as in one
dimension and states that the wavefunctions solving a Hamiltonian with a periodic potential

𝑉lat( ⃗𝑟 + 𝑅⃗) = 𝑉lat( ⃗𝑟) (3.24)

can be written as

𝜓𭑛, ⃗𭑞( ⃗𝑟) = 𝑒𭑖 ⃗𭑞𭑟⃗/ℏ𝑢𭑛, ⃗𭑞( ⃗𝑟) with 𝑢𭑛, ⃗𭑞( ⃗𝑟 + 𝑅⃗) = 𝑢𭑛, ⃗𭑞( ⃗𝑟). (3.25)

Here, 𝑅⃗ = 𝑛1
⃗𝑑lat,1 +𝑛2

⃗𝑑lat,2 +𝑛3
⃗𝑑lat,3, 𝑛i ∈ ℤ is a possible lattice vector composed of the primitive

vectors ⃗𝑑lat,𭑖 which are connected to the wavevectors 𝑘⃗lat,𭑖 of the three single standing wave
potentials

⃗𝑑lat,𭑖𝑘⃗lat,𭑗 = 𝜋𝛿𭑖,𭑗. (3.26)

As for the one-dimensional case, the Bloch functions

𝑢𭑛, ⃗𭑞( ⃗𝑟) = �
𭑘⃗

𝑐𭑛, ⃗𭑞
𭑘⃗

𝑒𭑖2𭑘⃗𭑟⃗ with 𝑘⃗ =
3

�
𭑖=1

𝑚𭑖𝑘⃗lat,𭑖 , 𝑚𭑖 ∈ ℤ (3.27)

and the lattice potential

𝑉lat( ⃗𝑟) = �
𭑘⃗

𝑉𭑘⃗𝑒𭑖2𭑘⃗𭑟⃗ =
3

�
𭑗=1

(
𝑉0,𭑗

2
+

𝑉0,𭑗

4
(𝑒−𭑖2𭑘⃗lat,𭑗𭑟⃗ + 𝑒𭑖2𭑘⃗lat,𭑗𭑟⃗)) (3.28)

can be expanded in plane waves where the sum covers the reciprocal or Bravais lattice. Plugging
the wavefunction (eq. (3.25)) with the expansion of the Bloch function (eq. (3.27)) as well as the
lattice potential (eq. (3.28)) into the Schrödinger equation (3.21) yields

�
𭑘⃗
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2
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𝑐𭑛, ⃗𭑞
𭑘⃗−𭑘⃗′𝑉𭑘⃗′

⎞⎟

⎠

= �
𭑘⃗

𝑒𭑖2𭑘⃗𭑟⃗𝐸𭑛, ⃗𭑞𝑐𭑛, ⃗𭑞
𭑘⃗

. (3.29)
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3. Species-Selective Lattice for Lithium

Because the plane waves are orthogonal, we get again a set of coupled equations for the Fourier
coefficients 𝑐𭑛, ⃗𭑞

𭑘⃗
which corresponds to an eigenvalue problem. As in the one-dimensional case, 𝑛

denotes the band index and ⃗𝑞 the quasimomentum which can be restricted to the first Brillouin
zone due to the periodicity of the solutions of the Schrödinger equation. The energy bands are
sorted in increasing order and labeled by the band index 𝑛.
Figure 3.4 exemplarily depicts the lattice structure of a two-dimensional lattice with perpen-

dicular and slightly tilted lattice axes as well as the corresponding band structure. The displayed
energy spectrum originates from two lattice potentials with different lattice spacing and depth,
but almost identical gaps from the first to the second band.

First, we discuss the lattice configuration with perpendicular lattice axes. In this case, the
shape of the energy bands can be understood in terms of two one-dimensional band structures
as the potential and thus the wavefunctions can be factorized. Along the axis of the first lattice
(figure 3.4 b)), the first and second Bloch band show the characteristic bending known from the
one-dimensional lattice potential. However, the third band has a different bending than in the
one-dimensional case and is flatter than the second band. This is due to the fact that it corresponds
to an excitation along the second lattice direction. The harmonic oscillator potentials between
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Figure 3.4.: a) 2d lattice structures in real and reciprocal space for a lattice with perpendicular
and slightly titled lattice axes. b) and c) Band structure along the first and second
lattice axis, respectively (𝑉0 = 6 and 33 𝐸rec, 𝑑lat = 0.67 and 1.1 µm). For the titled
lattice configuration, the lattice axes deviate 3° from the perpendicular configuration
causing an avoided crossing between the 2nd and 3rd band along the first lattice axis.
The other energy bands coincide due to the small tilting angle almost perfectly for the
two lattice configurations and can be hardly distinguished. The inset in b) displays the
avoided crossing in case of tilted lattice axes more clearly. The harmonic potentials
between b) and c) indicate the origin of the energy bands.
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figure 3.4 b) and c) illustrate this explanation by assigning the analog two-dimensional harmonic
oscillator modes to each energy band.
Next, we consider the band structure of a lattice with tilted lattice directions which is in general

more challenging to understand. But in the depicted case, the lattice axes intersect almost per-
pendicular and thus the band structure can be understood by means of the band structure of the
perpendicular lattice configuration. However, the two lattice directions are not independent and
hence the dynamics along the different lattice directions are coupled. This coupling is manifested
in the avoided crossing between the second and third Bloch band as depicted in figure 3.4 b).
For the subsequent lattice design and our later experiments, we have to keep this coupling in

mind as different lattice directions are due to experimental imperfections never perpendicular
to each other. Hence, if we need to exclude dynamics along certain lattice directions, it is not
sufficient if the gap between the first and second for the corresponding lattice direction is larger
than for the other lattice directions. But we also need to take the widths of the energy bands and
their bending into account in order to eliminate dynamics between different Bloch bands.

3.3. Lattice Design and Implementation

In the following, we turn our attention to the experimental implementation of our lattice setup.
For this purpose, we discuss the design criteria of our lattice and derive the lattice parameters
according to the preceding theoretical considerations. The final part of this section presents the
lattice setup and its implementation into the experiment.

3.3.1. Lattice Design Criteria

Longitudinal Lattice

Our lattice consists of different lattice axes which have different purposes and thus partly different
requirements. The main lattice (in the following also referred to as longitudinal lattice) is used
to prepare the lithium atoms in an out-of-equilibrium situation which is achieved by shaking the
lattice along its lattice axis. As we want to address as many lithium atoms as possible but no
sodium atoms, the longitudinal lattice potential has to be

• homogeneous over the extent of the lithium cloud such that all lithium atoms experience
the same lattice potential and are affected by the shaking in the same way.

• species-selective for lithium which means that the chemical potential of the sodium cloud
is much larger than the lattice potential for sodium.
→ 𝜇Na ≫ 𝑉lat,Na

Both these requirements can be met by large lattice beams whose frequencies are only slightly
detuned from the lithium resonance frequency (eq. (3.1)). However, the maximal beam size is
limited by the available laser power 𝑃 as the lattice potential depth 𝑉0 is proportional to the beam
intensity 𝐼 and scales as 𝑉0 ∝ 𝐼 ∝ 𝑃/𝑤2

beam. The laser power restricts the waist of our lattice
beams 𝑤beam to 550 µm which yields a variation of the lattice potential of about 0.3% over the
40 µm wide lithium cloud. Additionally, we require that
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3. Species-Selective Lattice for Lithium

• the life time of the lithium atoms due to spontaneous emission, characterized by the photon
scattering Γscatter, is much longer than the exposure time to the lattice potential 𝑡lat.
→ 1/Γscatter ≫ 𝑡lat

The latter condition puts a lower bound on the detuning (eq. (3.2)) and restricts the possible lattice
depth for a certain lattice intensity.
As we will see in chapter 5, we prepare and probe the lithium atoms by pulsed lattice shaking

and e. g. perform Ramsey type experiments. For these kind of experiments, we rely on the fact
that all lithium atoms evolve in the same way because all atoms are detected simultaneously and
different evolutions diminish the signal. Thus, beside the homogeneity of the lattice potential

• the width of the involved energy bands (for us the 1st and 2nd band) has to be small such
that the lattice is in the harmonic oscillator regime and tunneling between neighboring
sites occurs on a time scale shorter than the duration of the measurement 𝑡meas.
→ ℎ/𝐽long

1 > 𝑡meas and ℎ/𝐽long
2 > 𝑡meas

4

• all atoms initially need to occupy the same and thus lowest band which means that the gap
between the first and second band Δ𝐸long

1-2 has to be larger than the corresponding energy
scales of the lithium atoms. Depending on the experimental conditions, these energy scales
are the temperature 𝑇 and/or the chemical potential of the lithium atoms 𝜇Li.
→ Δ𝐸long

1-2 > 𝜇Li, 𝑘B𝑇

These last two conditions imply an optimal lattice spacing under the constraint that the lattice
depth and thus the impact on the sodium atoms is minimized as both the band gap and width
decrease with increasing lattice spacing (fig. 3.2). In order to determine the lattice parameters,
we need a lower bound for the band gap from the chemical potential of the lithium atoms. In
each experimental cycle we typically prepare about 1.5 ⋅ 105 lithium atoms in the optical dipole
trap whose mean trapping frequency for lithium is about 𝜔̄Li = 2𝜋 500Hz (section 2.3). From
these numbers, we approximate the chemical potential by the Fermi energy (eq. (2.21)) and get
𝜇Li/ℎ ≈ 𝐸Fermi/ℎ = 48 kHz. On the contrary, the temperature of the lithium atoms is typically
about 𝑇 = 550 nK which corresponds to 11 kHz. Furthermore, we estimate the duration of each
measurement from damped oscillations of the lithium atoms in the dipole trap. These oscillations
damp due to the interaction between the sodium and lithium atoms [41], and we expect that the
time scale for interaction in the lattice experiments is on the same order of magnitude. Then, the
damping time of 3ms yields an upper bound of 300Hz for the width of the first and second band.
For these parameters, a rather large lattice spacing is advantageous due to the small lithium

mass causing high tunneling rates. Thus, our longitudinal lattice potential is created by two laser
beams intersecting at an angle of 35° instead of 180° as for two counterpropagating beams (fig. 3.6),
and we get a lattice spacing of 𝑑long

lat = 1.1 µm. Typically our lattice is about 33 𝐸long
rec deep which

leads to a band gap of Δ𝐸long
1-2 /ℎ = 71.5 kHz, a band width of 8Hz and 280Hz for the first and

second Bloch band, respectively.
Now, as we fixed the lattice spacing and depth, we return to the previous criteria and investigate

the photon scattering rates for the lithium atoms and the impact on sodium. For the latter purpose,

4To distinguish between the different lattice directions, we label the corresponding quantities according to the lattice
direction. But we omit the labeling in the following if we consider one-dimensional lattice potentials.
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Figure 3.5.: Impact of the longitudinal lattice potential for different wavelengths of the lattice
laser. The lattice depth is fixed to 𝑉0 =33 𝐸long

rec for the lithium atoms by compensating
the detuning with the lattice intensity. a) Lattice depth for sodium in terms of the
chemical potential (𝜇Na/ℎ = 6.2 kHz). b) The lithium photon scattering rates deviate
for the first and second Bloch band and different detunings due to the different overlap
with the high intensity regions of the lattice (logarithmic plot).

we have to compare the lattice height for sodium with its typical chemical potential of about
𝜇Na/ℎ = 6.2 kHz (6 ⋅ 105 sodium atoms, 𝜔̄Na = 2𝜋 238Hz). Figure 3.5 a) depicts the lattice
depth for sodium in terms of its chemical potential for various wavelengths of the lattice laser
and the corresponding lattice intensities which are determined by the fixed potential depth for
lithium (𝑉0 = 33 𝐸long

rec ). In contrast to the optical dipole trap, the lattice potential for lithium
can either be repulsive or attractive as long as the anti-confinement due to the curvature of the
lattice beams is smaller than the confinement of the optical dipole trap. Thus, we consider lattice
potentials which are blue and red detuned with respect to the lithium D2-line. The sign of the
detuning barely affects the sodium atoms as the detuning of the lattice laser to the sodium D2-line
differs only slightly for the investigated wavelength range. But close to the lithium D2-line the
impact of the lattice on the sodium atoms vanishes as the intensity in the lattice beams shrinks for
decreasing detuning and fixed lattice height for lithium (eq. (3.1)) which suggests using a rather
small detuning.
However, the photon scattering rate for the lithium atoms diverges in vicinity of the lithium

D2-line and thus their life time vanishes. Figure 3.5 b) depicts the scattering rate for lithium atoms
in the first as well as the second Bloch band and shows a distinct asymmetry between the red and
blue detuned lattice potential. This is due to the different overlap of the wavefunctions 𝜓(𝑥) with
the lattice light Γscatter ∝ ∫𝜓*(𝑥)𝐼(𝑥)𝜓(𝑥) d𝑥 as atoms are for a blue detuned lattice repulsed
from and for a red detuned lattice attracted to the high intensity regions.5 The different overlap
with the laser light also accounts for the difference between the scattering rates for the first and

5A further asymmetry arises from the influence of the lithium D1-line at 𭜆D1,Li = 𭜆D2,Li + 0.002 nm.
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second Bloch band.
In summary, a blue detuned lattice is more suitable than a red detuned lattice but nevertheless

we have to trade off between the impact on the sodium atoms and the photon scattering rates
for the lithium atoms. Most of our experiments are performed with −0.5 nm detuned lattice
light as the lattice potential is due to the loading procedure applied for about 150ms and smaller
detunings already reduce the lithium atom number significantly. This results in a lattice potential
for sodium of about 24% of its chemical potential.

Transversal Lattices

As mentioned in the beginning of this section, our lattice setup consists of different lattice axes
with different purposes. So far, we discussed the design of the main lattice axis which is used
to manipulate the lithium atoms via a lattice shaking procedure. The other lattice directions (or
transversal lattices) have to fulfill less strict criteria as we use them to tune the dimensionality
for the lithium atoms in order to manipulate their dynamics in the sodium bath. Hence, we do
not require that their first and second Bloch band are essentially flat. The lithium atoms are
kinematically reduced in a lattice dimension if the following criteria are fulfilled [50, 51]

• their chemical potential 𝜇Li is below the energy gap to the next excited state.
→ Δ𝐸trans

1-2 > 𝜇Li

• the atoms cannot be thermally excited from the ground state to the next excited state.
→ Δ𝐸trans

1-2 > 𝑘B𝑇

Additionally, we want to suppress excitations in the transversal directions if we shake the lattice
along the longitudinal direction, and thus we require that

• the energy gap along the transversal lattice directions is larger than along the longitudinal
direction.
→ Δ𝐸trans

1-2 > Δ𝐸long
1-2

However, we know from the previous discussion of the two-dimensional lattice potential that
fulfilling the last condition is not completely sufficient in order to suppress excitations along the
transversal lattice directions. For this purpose, we also have to account for the band widths of the
longitudinal and transversal lattices. Though, in our case the restriction for the band gap of the
transversal lattice is not much stronger because the widths of the first and second Bloch band of
the longitudinal lattice direction are small compared to the corresponding band gap.
In order to fulfill the conditions above while keeping the required laser intensity small, the

lattice spacing of the transversal lattice directions is chosen smaller than for the longitudinal
direction (eq. (3.13)). Smaller intensities provide longer lithium life times due to less photon
scattering processes and reduce the impact of the transversal lattice directions on the sodium
atoms. Additionally, a tighter lattice spacing allows more lithium atoms in a three-dimensional
lattice without occupying lattices sites multiply.
The transversal lattice directions are derived from the same laser source as the longitudinal

lattice that means the wavelength of the lattice light is fixed to 𝜆laser ≈ 670.5 nm. The hori-
zontally oriented transversal lattice (fig. 3.6) is created by a retro-reflected laser beam and has
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therefore a lattice spacing of 𝑑hor
lat = 0.335 µm. The vertically oriented transversal lattice results

from two lattice beams intersecting at an angle of 60° which yields a spacing of 𝑑ver
lat = 0.67 µm.

The asymmetry between the two transversal lattice directions is not intended and arises from the
restricted optical access in our experiment, but does not constrain their purpose.
Furthermore, the homogeneity of the transversal lattice potentials is not as crucial as for the

longitudinal potential as long as the potential height at each lattice sites is large enough to freeze
the dynamics along the transversal directions.

3.3.2. Lattice Setup

In the following, we briefly introduce the setup of the optical lattice (fig. 3.6 a)). For each lattice
direction, we monitor the beam intensity on a photodiode and regulate the beam power via a
feedback loop driving an acousto-optic modulator (not depicted). As all lattice axes are derived
from the same laser, the acousto-optic modulators run on different frequencies in order to avoid
lattice potentials due to the interference between lattice beams from different lattice axes.6 To
provide a well defined polarization, each lattice beam passes a polarizing beam splitter cube before
entering the glass cell.

Longitudinal Lattice

The longitudinal lattice direction is our main tool to manipulate the lithium atoms and requires
most care. For this reason, we derive the two lattice beams from a polarization cleaned beam
with a non-polarizing beam splitter cube. This beam splitter delivers two beams with almost the
same power and is less sensitive to temperature drifts than the combination of a polarizing beam
splitter and a wave plate. Nevertheless, we monitor both lattice beams on photo diodes in order
to detect any power drifts. An electro-optical modulator (EOM) placed in one of the two beam
lines allows shifting the relative phase between the two lattice beams which leads to a spatial shift
of the lattice potential.
Both lattice beams pass the atoms' position with a waist of 550 µm and intersect at an angle

of 35° which yields a lattice spacing of of 𝑑long
lat = 1.1 µm. Because of the intersection angle, the

beam polarization needs to be linear along the y-axis to allow for maximal interference between
the two lattice beams. A more detailed description of the longitudinal lattice and particularly the
electro-optical modulator can be found in [52].

Transversal Vertical Lattice

For the same reason as for the longitudinal lattice direction, the polarization of the transversal
vertical lattice beams points linearly along the y-axis. The initial lattice beam is recycled and
interferes with itself to spare laser power. However, due to its polarization only about 50% of the
initial light passes the glass cell. Thus, the intensity of the back reflected beam is enhanced by a

6Despite their different frequencies, beams from different lattice direction still interfere and the interference pattern
oscillates with their frequency difference (which is in our case larger than 20MHz). However, the atoms do not
follow the oscillating lattice potential as long as their trapping frequencies are well below the oscillation frequency.
Thus, the atoms experience only a constant offset potential.
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Figure 3.6.: a) Lattice setup for the different lattice directions. The frequencies in the captions
denote the relative shift of the lattice beams to the laser frequency. A coordinate
system displays the orientation of each lattice axis. b) Sketch of the three-dimensional
(top) and longitudinal lattice potential (bottom) together with an isosurface of the
optical dipole trap potential. The lattice spacings are depicted to scale, and the size of
the lithium cloud in the dipole trap is about a factor of 10 larger than the displayed
isosurface.

lens with a focal length of 500mm. In order to compensate the power loss, the 500 µm waist of
the initial beam has to be decreased to about 350 µm which is achieved by positioning the lens
35 cm from the atom cloud. The resulting difference between the intensity distributions of both
beams is only about 1% over the extent of the atom cloud and thus negligible.
The lattice beams intersect at an angle of about 60° which yields a lattice spacing of 𝑑ver

lat =
0.67 µm.

Transversal Horizontal Lattice

The third lattice direction consists of a retro-reflected laser beam and thus has a lattice spacing of
𝑑hor
lat = 0.335 µm. To avoid interference patterns between the lattice beams and their reflections

from the glass cell, the lattice beams are tilted 8° with respect to the perpendicular of the glass
cell and focused to 200 µm at the position of the atoms.7 The latter is achieved by a telescope con-
sisting of two lenses with a focal length of 500mm and 250mm. The polarization of the lattice
beams points linearly along the x-axis.

Figure 3.6 b) illustrates the lattice structure arising from the three lattice directions and their
different spacings as well as an isosurface of the optical dipole trap potential. The latter is espe-

7The atoms are located 2 cm from the wall of the glass cell which yields a 5.6mm spacing between a 8° tilted lattice
beam and its reflection.
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cially relevant if we perform experiments with the longitudinal lattice only as the optical dipole
trap provides in this case the confinement along the transversal directions.

After the discussion of the lattice theory and our lattice design criteria, we turn our focus in
the following chapter onto its practical implementation and characterize the lattice setup exper-
imentally.
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4. Lattice Characterization

Before we investigate the dynamics of the lithium atoms in the Bose-Einstein condensate, we need
to understand the evolution of the lithium atoms in the lattice potential in absence of the bosonic
background. In order to provide a well-defined starting point for our investigations, this chapter
characterizes the corresponding lattice potentials. As the lattice spacing is sufficiently well deter-
mined from the intersection angle and the wavelength of the lattice light, we can infer the band
structure from the lattice depth alone. Hence, we focus in the following on the determination of
the lattice depth and start with the discussion of our lattice loading procedure.

4.1. Lattice Loading and Brillouin Zone Mapping

Lattice Loading

After the last evaporative cooling step in the dipole trap, we apply the species-selective lattice
for the lithium atoms. In order to avoid heating of the lithium atoms, we try to keep the loading
procedure as adiabatic as possible and increase the intensity in the lattice beams exponentially
𝑒𭑡/𭜏 with the time constant 𝜏 = 25ms to its final value.
However, even if the lattice potential is increased adiabatically, some lithium atoms occupy

states in excited Bloch bands after the loading procedure, whereas the first Bloch band is not
completely filled. The underlying mechanism for this behavior is illustrated in figure 4.1 which
depicts the eigenenergies for different lattice depths and a fixed dipole trap potential in one di-
mension. Without the lattice potential the energy spectrum resembles the equally spaced energy
states of a harmonic oscillator, whereas we observe a band structure for deep lattice potentials.
The exact transition between the harmonic oscillator spectrum and the lattice spectrum is rather
complicated, but the important point is that only harmonic oscillator states with an energy lower
than the recoil energy 𝐸rec evolve definitively into states of the first Bloch band if the lattice depth
is increased [53]. The final state for lithium atoms which initially occupy an energy above the
recoil energy depends on the exact initial state and can either be located in the first or in higher
Bloch bands.
Because of the fermionic nature of the lithium atoms, we can load only a limited amount of

atoms into the lattice if we want to ensure that only the lowest Bloch band is occupied. We get
an upper bound for the maximal number of atoms by considering the lattice loading in the limit
of zero temperature. In this case, the lowest energy levels are occupied by exactly one fermion.
In order to occupy only the first Bloch band, the chemical potential of the lithium atoms, or
equivalently the Fermi energy, has to be lower than the recoil energy of the corresponding lattice
direction. If we consider the longitudinal lattice with its rather large lattice spacing and thus
low recoil energy (𝐸rec/ℎ = 6.9 kHz), we get a maximal number of 5 ⋅ 102 atoms (eq. (2.21)). To
circumvent this limitation in the lithium atom number, we load the lattice with a background
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Figure 4.1.: Evolution of the energy spectrum in a harmonic trapping potential (𝜔 = 2𝜋 800Hz)
for increasing lattice depth (𝑑lat = 1.1 µm, calculated according to section 3.2.2). The
initially equally spaced energy spectrum of the harmonic oscillator develops for in-
creasing lattice depth into a band structure. The vertical arrows at the right of the
main graph indicate in which energy bands the energy levels evolve. The graphs on
the right hand side display three characteristic eigenfunctions at a lattice depth of
5 𝐸rec whose corresponding energy levels are indicated by the color-coded arrows.

of sodium atoms. Because of the interaction between the sodium and the lithium atoms, the
latter relax during the lattice loading from excited states, e. g. in the second Bloch band, to lower
states in the first Bloch band. If the gap between the first and second Bloch band is larger than
the temperature of the sodium atoms, all lithium atoms will finally occupy the first Bloch band
as long as the number of background atoms is sufficiently large and the first Bloch band is not
completely occupied.
As a consequence of this loading procedure, we prepare for a 𝑉0 = 33 𝐸rec deep longitudinal

lattice about 85% of 1 ⋅ 105 lithium atoms (𝐸F ≈ 6 𝐸rec) in the first Bloch band if we add a sodium
background at 𝑇 = 550 nK ( =̂ 1.6 𝐸rec). We are always left with a finite number of lithium atoms
in higher Bloch bands as the extent of the lithium cloud is, for our trapping geometry, larger than
the sodium cloud (see section 2.3.2) which prevents the relaxation of lithium atoms located outside
of the sodium cloud. If the sodium background is removed before the lattice loading procedure,
the relative occupation of the first Bloch band reduces to about 60%.
So far, our considerations did not include the location of the lithium atoms transferred to higher

Bloch bands during the lattice loading. As indicated on the right hand side of figure 4.1, these
states are prominently located in the central trapping region, whereas the unoccupied states in
the first Bloch band are located in the outer regions. Thus, the relaxation process should be
slow in a one-dimensional trapping geometry as the lithium atoms have to be redistributed be-
tween different lattice wells. We observe that the relaxation during the lattice loading is on the
same time scale as the relaxation from the second to an empty first band (see chapter 7). We
attribute this discrepancy to the dimensions transversal to the lattice potential. For a deep one-

46



4.1. Lattice Loading and Brillouin Zone Mapping

dimensional lattice, thousands of empty transversal mode exist whose energy is lower than the
band gap. Hence, the lithium atoms can decay from higher Bloch bands to the first Bloch band if
they simultaneously change their transversal mode.
In a three-dimensional lattice geometry, the situation is more complicated as the lattice loading

can lead to occupation of exited Bloch bands in all lattice directions, and the atoms cannot as easily
be redistributed in the transversal directions as for a one-dimensional lattice potential. Thus, we
find for a three-dimensional lattice potential a slightly lower occupation of the first Bloch band
(≈ 75%) in the longitudinal lattice than for a one-dimensional lattice potential.
If we intend to perform experiments with lithium only, we remove the sodium atoms by a

resonant light pulse after the lattice loading procedure. We do not observe heating of the lithium
atoms or a population change in the different Bloch bands due to the sodium removal. In order
to ensure a clean preparation of the lithium atoms in the first Bloch band, we extract the sodium
atom number from the shadow on the resonant light pulse as for common absorption imaging,
and discard the data for which low sodium atom numbers did potentially not provide a clean
preparation of the lithium atoms in the first Bloch band.

Brillouin Zone Mapping

For the detection of the band population, we apply a band mapping technique [54, 55] whose
working principle is illustrated in the main graph of figure 4.2. The detection scheme relies on
the fact that the quasimomenta of particles exposed to a lattice potential and the band population
do not change if the lattice potential is decreased as long as the change is slow with respect to
the time scale imposed by the band gaps. Additionally, the reduction of the lattice potential has
to be fast compared to collision and redistribution processes.1 If these requirements are fulfilled
while the lattice potential is turned off, the quasimomentum 𝑞 ∈ [−ℏ𝑘lat; ℏ𝑘lat] of a particle which
occupies the 𝑛th Bloch band is adiabatically transferred to the real space momentum

𝑝 = 𝑞 − sgn (𝑞) (−1)𭑛2ℏ𝑘lat(𝑛 − 1). (4.1)

Because the momentum distribution can be detected via a time-of-flight measurement, this pro-
cedure allows determining the band population as well as the quasimomentum distribution.
The graphs on the right hand side of figure 4.2 exemplarily depict two spatial distributions of

the lithium atoms after 4ms time-of-flight and a typical exponential lattice decrease 𝑒−𭑡/𭜏 with
𝜏 = 125 µs. The distributions show the integrated atom numbers for a sample mainly occupying
the first and a sample mainly occupying the second band. We infer the population in the Bloch
bands from counting the atom numbers in the different Brillouin zones (color-coded areas).
In case of filled Brillouin zones, we can alternatively fit the atom distribution by a function

which resembles their almost rectangular shape. This fitting approach is appropriate for deep
one-dimensional lattice potentials with sufficiently high atom numbers. In this case, the chemical
potential of the lithium atoms is much larger than the dipole trap frequencies. Thus, the lattice
loading procedure populates each quasimomentum with multiple lithium atoms as the atoms
occupy the same quasimomentum but differentmodes of the dipole trap potential. Moreover, each

1These requirements can be fulfilled if the particles are not strongly interacting and if the trapping frequencies of the
dipole trap are smaller than the band gaps.
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Figure 4.2.: The main graph illustrates the Brillouin zone or band mapping technique. For each
Bloch band, the quasimomenta are uniquely mapped onto real momenta if the lattice
potential is turned off with the appropriate timing. The smaller graphs depict band
mapped atom distributions after time-of-flight with color-coded Brillouin zones.

quasimomentum is in average populated by the same amount of lithium atoms because the width
of the first band is for a deep lattice potential small compared to the chemical potential. Thus,
the atom distributions integrated along the transversal directions show the characteristic shape
of a filled Brillouin zone as all quasimomenta with 𝑞 ∈ [−ℏ𝑘lat; ℏ𝑘lat] are equally occupied (see
figure 4.2). We will see later on that we populate higher Bloch bands with an excitation scheme
which is in the deep lattice regime not quasimomentum-selective and hence the population in the
higher Bloch bands also reveals a sharp momentum distribution.
We empirically found that a sum of error functions matches the shape of the observed Brillouin

zones, and we fit the distributions by

�
𭑖

𝑓𭑖(𝑥) + 𝑐offset, (4.2)

where 𝑓𭑖 is the fit to the 𝑖th Brillouin zone and 𝑐offset the overall offset. Each 𝑓𭑖 is composed of
error functions

𝑓𭑖(𝑥) = 𝑎𭑖 (erf(𝑥 − 𝑥0 + 𝑖𝑤BZ

𝑏𭑖
) − erf(𝑥 − 𝑥0 + (𝑖 − 1)𝑤BZ

𝑏𭑖
)) } 𝑞 < 0 (4.3)

+ 𝑎𭑖 (erf(𝑥 − 𝑥0 − (𝑖 − 1)𝑤BZ

𝑏𭑖
) − erf(𝑥 − 𝑥0 − 𝑖𝑤BZ

𝑏𭑖
)) } 𝑞 > 0.

Here, the parameter 𝑏𭑖 determines the steepness of the 𝑖th Brillouin zone edge, 𝑥0 denotes the
central position of the atom cloud, 𝑎𭑖 the amplitude for the 𝑖th Brillouin zone and 𝑤BZ the half
width of the Brillouin zones. If we leave the 𝑎𭑖's, 𝑏𭑖's, 𝑐offset and 𝑥0 as free parameters but fix
𝑤BZ = ℏ𝑘lat𝑡TOF, the data is well fitted and we find good agreement between the population
determination by the fitting and by the counting algorithm. Whereas the latter one is the more
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robust approach, the fitting procedure offers the opportunity to determine the band populations
for smaller expansion times for which the Brillouin zones have not split up yet.

4.2. Lattice Oscillations

4.2.1. Calibration of the Lattice Displacement

As mentioned in the previous chapter, the electro-optical modulator (EOM) placed in one of the
longitudinal lattice beams allows controlling the relative phase between the two beams. An abrupt
change of the voltage applied to the EOM results in a sudden phase shift and displacement of the
longitudinal lattice potential. This displacement induces dynamics of the lithium atoms as long
as the change in the lattice position is fast compared to the trapping frequencies of the lattice.
However, if the lattice is instantaneously shifted by multiples of the lattice spacing, the lithium
atoms stay at rest.
Figure 4.3 a) depicts the impact of sudden lattice displacements on the lithium atoms.2 Before

each displacement, about 85% of all atoms occupy the first Bloch band. The atoms are excited to
higher energy bands if the lattice is displaced via a phase jump resulting from the changed EOM
voltage. We observe a decreasing amount of atoms in the first band and an increasing number
of excited atoms for increasing phase jumps. However, at some point the atom number in the
lowest band rises again an reaches a first maximum, which is shown in figure 4.3 a). We interpret
the location of the first maximum as a lattice displacement by one lattice site (𝑑lat = 1.1 µm) or a
relative phase shift of 2𝜋 between the lattice beams, respectively. Because of the finite speed of
the EOM and the supplying amplifier, the lattice position does not change instantaneously which
causes excitations to higher Bloch bands even if the lattice is displaced by multiples of the lattice
spacing. Thus, the occupation of the first Bloch band is at the first maximum lower than the initial
occupation of 85%. By fitting a cosine to the fraction in the first band, we get the EOM voltage
jump corresponding to a displacement by one lattice site and thus the lattice displacement per
voltage

Δ𝑥dis

Δ𝑈
= (95.5 ± 0.3)nm

V
. (4.4)

4.2.2. Oscillations in the Lattice Potential

The lattice displacement can also be employed for a determination of the lattice depth. The lattice
kick leads for each atom to a coherent occupation of different Bloch bands and induces an oscil-
lation in position and momentum space whose frequency is given by the energy difference of the
involved Bloch bands [56]. We usually investigate the oscillations in momentum space by time-
of-flight measurements which yields larger oscillation amplitudes than in position space and is
thus experimentally easier to detect. We extract the central position of the lithium atoms by a
Gaussian fit to their density distribution. Figure 4.3 b) depicts a characteristic oscillation in the
deep lattice regime with a frequency of 𝜔 = 2𝜋 (68.95 ± 0.34) kHz corresponding to a lattice
depth of 𝑉0 = (30.8 ± 0.3) 𝐸rec.

2Themeasurements presented in this section are performed with only the longitudinal lattice and our previous dipole
trap setup corresponding to trapping frequencies of (𭜔1,Li, 𭜔2,Li, 𭜔3,Li) = 2𭜋 (155, 158, 323)Hz.
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Figure 4.3.: a) An abrupt change of the EOM voltage causes a sudden lattice displacement and
excitations from the first to higher Bloch bands. The number of unexcited atoms (blue
dots) reaches a first maximum for a displacement by one lattice site and is fitted by
a cosine (red line). b) Oscillations of lithium atoms in the species-selective lattice
induced by a lattice displacement. The position of the atoms (blue dots) is detected
for different oscillation times after 4ms time-of-flight. Thus, the observed oscillation
corresponds to an oscillation in momentum space which is fitted by a sine (red line).

We can use the oscillation amplitude to check if our understanding of the lattice kicks is correct.
For this purpose, we extract the maximal velocity during an oscillation from the oscillation am-
plitude and the time-of-flight 𝑣max = 𝑥max/𝑡TOF = (153 ± 15) µm/4ms. Assuming a harmonic
potential relates the initial lattice displacement to the maximal velocity 𝑥ini = 𝑣max/𝜔 and yields
𝑥ini = (88.3 ± 8.6) nm. Because of the EOM kick amplitude of 1V which induced the oscillation,
we naively expect a value of 𝑥ini = (95.5 ± 0.3) nm which is slightly higher than the measured
one but agrees within the error bars. Moreover, we also anticipate to some extent a higher the-
oretical value as we observed that a displacement by one lattice site induces some excitations.
Hence, the lattice displacement is only approximately instantaneous which effectively leads to
smaller lattice displacements.

So far, we discussed the oscillations of the lithium atoms in the longitudinal lattice and the deep
lattice regime. In this regime, each lattice site can be considered as an independent harmonic oscil-
lator, and one observes distinct oscillations as long as the different harmonic oscillator frequencies
do not deviate. As the inhomogeneity of our lattice is on the order of 1% (see section 3.3.1), we ex-
pect for a 70 kHz lattice a dephasing of the different oscillations on the scale of some milliseconds
which is much longer than the period depicted in figure 4.3 b).

However, for lower lattice potentials, we observe a damping of the lattice oscillations as dis-
played in figure 4.4 a) which cannot be attributed to the lattice inhomogeneity as the dephasing
mechanism for lower lattice depths is even slower. But due to the lower lattice depth, the lattice
oscillations cannot be interpreted in the frame of independent harmonic oscillators as the atoms
start tunneling between neighboring lattice sites on time scales on the order of the observed
period. Additionally, the energy gaps between the Bloch bands populated by the lattice displace-
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4.2. Lattice Oscillations

ment vary as the lattice potential at each lattice site cannot be approximated by a parabola, and
the deviation due to the sine shaped potential has to be taken into account. To test our inter-
pretation of the damping mechanisms, we perform in the following numerical simulations of the
lattice oscillations.
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Figure 4.4.: a) Lattice oscillations (blue dots) after 2ms time-of-flight in a 𝑉0 = (9.7 ± 0.3) 𝐸rec
deep lattice. The oscillations are fitted by a damped sine (red line) and compared to
a one-dimensional simulation of the lattice oscillations (blue line) shown in c). The
simulated data depicts the oscillation of the averaged momentum of the lithium cloud,
which corresponds to the position after time-of-flight, and is also fitted by a damped
sine (red line). Both data sets show the same damping behavior and their damping
constants 𝜏 agree within the error bars. b) and d) show the data sets corresponding to
a) and c) but in a deeper lattice potential (𝑉0 =(27.9 ± 0.2) 𝐸rec). Here, no damping is
observed. The oscillations in the deeper lattice show a larger amplitude for the same
lattice displacement due to the stronger confinement.
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4.3. Simulating the Dynamics in the One-Dimensional
Inhomogeneous Lattice Potential

To calculate the oscillations of the lithium atoms in the lattice potential, we start our considera-
tions for feasibility with the time evolution of a single lithium atom. However, experimentally we
do not observe the dynamics of single lithium atoms, but detect all atoms at once. We account for
this fact by averaging over multiple single atom dynamics with different initial conditions. For
this purpose, we select the energy eigenstates of the lattice potential as initial states and weight
the corresponding time evolutions according to the occupation probability for a Fermi gas.
In the following, we do not restrict the calculations to the lattice oscillations, but consider the

time evolution more generally in a time-dependent potential as we intend to return to the numer-
ical simulations in the context of Rabi- and Ramsey-type experiments in the subsequent chapter.

The time evolution of a state |𝜓, 𝑡⟩ is governed by the time-dependent Schrödinger equation

𝑖ℏ 𝜕
𝜕𝑡

|𝜓, 𝑡⟩ = 𝐻̂ |𝜓, 𝑡⟩ = ( 𝑝̂2

2𝑚
+ ̂𝑉(𝑥, 𝑡)) |𝜓, 𝑡⟩ . (4.5)

Here, 𝑉(𝑥, 𝑡) is an arbitrary potential which depends on time and position. This equation is
fulfilled by [57]

|𝜓, 𝑡⟩ = 𝑒−𭑖𭐻̂(𭑡−𭑡0)/ℏ |𝜓, 𝑡0⟩ , (4.6)

where |𝜓, 𝑡0⟩ is the state at an earlier time 𝑡0. In order to calculate the time evolution of |𝜓, 𝑡0⟩,
we apply the split-step Fourier method [58] and split the time evolution operator 𝑒−𭑖𭐻̂(𭑡−𭑡0)/ℏ

into a part diagonal in the momentum basis |𝑝⟩ and a part diagonal in the position basis |𝑥⟩. This
can be achieved using the Baker-Campbell-Hausdorff identity [57]

𝑒𭐴̂𝑒𭐵̂ = 𝑒 ̂𭐶 with ̂𝐶 = ̂𝐴 + 𝐵̂ + 1
2

[ ̂𝐴, 𝐵̂] + 1
12

[ ̂𝐴, [ ̂𝐴, 𝐵̂]] − 1
12

[𝐵̂, [ ̂𝐴, 𝐵̂]] + ... . (4.7)

Thus, the time evolution operator can be approximately replaced by

𝑒−𭑖 ̂𭑉(𭑥,𭑡)
2

𭜏
ℏ 𝑒−𭑖 𭑝̂2

2𭑚
𭜏
ℏ 𝑒−𭑖 ̂𭑉(𭑥,𭑡)

2
𭜏
ℏ = 𝑒−𭑖( 𭑝̂2

2𭑚 + ̂𭑉(𭑥,𭑡)) 𭜏
ℏ +𭒪(𭜏3) ≈ 𝑒−𭑖𭐻̂ 𭜏

ℏ (4.8)

as long as the time evolution interval 𝜏 = 𝑡 − 𝑡0 is small compared to the eigenfrequencies of
𝐻̂.3 To compute the evolution for long time scales, the evolution can be split into small steps
and for each step the evolution is performed with the operator given in equation (4.8). Due to
the splitting of the time evolution operator into a momentum and a position dependent part, it
is convenient to apply these operators in the corresponding basis. For this purpose, we use the
identity 𝟙 = ∫d𝑥 |𝑥⟩ ⟨𝑥| and 𝟙 = ∫d𝑝 |𝑝⟩ ⟨𝑝| to compute the wavefunction 𝜓(𝑥, 𝑡) = ⟨𝑥|𝜓, 𝑡⟩

𝜓(𝑥, 𝑡) = ⟨𝑥| 𝑒−𭑖𭐻̂ 𭜏
ℏ |𝜓, 𝑡0⟩ = ∫d𝑥′ ⟨𝑥| 𝑒−𭑖𭐻̂ 𭜏

ℏ |𝑥′⟩ ⟨𝑥′|𝜓, 𝑡0⟩

3The operator on the left hand side of equation (4.8) is symmetrized to reduce the error from 𭒪(𭜏2) to 𭒪(𭜏3).
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≈ ∫d𝑥′ ∫d𝑝′ ⟨𝑥| 𝑒−𭑖 ̂𭑉(𭑥,𭑡)
2

𭜏
ℏ |𝑝′⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𭑒−𭑖 𭑉(𭑥,𭑡)
2

𭜏
ℏ ⟨𭑥|𭑝′⟩

⟨𝑝′| 𝑒−𭑖 𭑝̂2
2𭑚

𭜏
ℏ 𝑒−𭑖 ̂𭑉(𭑥,𭑡)

2
𭜏
ℏ |𝑥′⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𭑒−𭑖 𭑝′2
2𭑚

𭜏
ℏ 𭑒−𭑖 𭑉(𭑥′,𭑡)

2
𭜏
ℏ ⟨𭑝′|𭑥′⟩

⟨𝑥′|𝜓, 𝑡0⟩

= 𝑒−𭑖 𭑉(𭑥,𭑡)
2

𭜏
ℏ ∫d𝑝′𝑒−𭑖 𭑝′2

2𭑚
𭜏
ℏ ⟨𝑥|𝑝′⟩ ∫d𝑥′𝑒−𭑖 𭑉(𭑥′,𭑡)

2
𭜏
ℏ ⟨𝑝′|𝑥′⟩ 𝜓(𝑥′, 𝑡0). (4.9)

Thus, the time evolution of the wavefunction can be calculated by two basis transformations,
from the position to the momentum ⟨𝑝′|𝑥′⟩ and back to the position basis ⟨𝑥|𝑝′⟩. These transfor-
mations are numerically easy to handle as the wavefunctions of the momentum eigenstates |𝑝′⟩
are the plane waves ⟨𝑥|𝑝⟩ = 1√

2𭜋ℏ𝑒𭑖𭑝𭑥/ℏ and hence the integrals correspond to a Fourier and
an inverse Fourier transformation.

The presented split-step Fourier method calculates the time evolution of a single wavefunction.
However, we usually prepare several thousands of lithium atoms in each experiment which oc-
cupy due to their fermionic nature different states and detect all atoms at once. In order to com-
pare the experimentally observed dynamics to the one-dimensional time-dependent calculations,
we assume that the lithium atoms evolve independently and neglect many-body effects. Fur-
thermore, we ignore dynamics in directions transversal to the time-dependent lattice potential
as the dynamics separate in case of perpendicular potential axes. In this case, we can calculate
the outcome of the measurement in one dimension for each atom separately and average over all
results.
In the experiment, the lithium atoms are initially prepared in the first Bloch band and thus we

can restrict the calculation to the time evolution of the energy eigenfunctions 𝜓1,𭑗(𝑥) of the first
Bloch band as initial wavefunctions.4 To include the occupation probability of the initial wave-
functions, we compute a weighting factor 𝑤𭑗 for each 𝜓1,𭑗(𝑥) with energy 𝐸1

𭑗. For this purpose,
we take the Fermi-Dirac statistics into account and sum over all excitation modes perpendicular
to the lattice axis

𝑤𭑗 = �
𭑘

1
𝑒(𭐸1

𭑗+𭐸exc
𭑘 −𭜇)/(𭑘B𭑇) + 1

. (4.10)

Here, 𝐸exc
𭑘 is the energy corresponding to the 𝑘th excitation mode transversal to the lattice axis.

E. g. in case of a one-dimensional lattice potential, 𝐸exc
𭑘 is a sum of optical dipole trap modes in

y- and z-direction 𝐸exc
𭑘 = (𝑚 + 1/2)ℏ𝜔y + (𝑛 + 1/2)ℏ𝜔z. Furthermore, the chemical potential is

fixed by the normalization condition for the particle number of the lithium atoms ∑𭑗 𝑤𭑗 = 𝑁Li.

According to these considerations, we obtain the expectation value 𝑜(𝑡) for an observable 𝑂(𝑥)
(denoted in the position basis) after a perturbation of the lattice potential by calculation of

𝑜(𝑡) =
∑𭑗 𝑤𭑗 ∫𝜓*

1,𭑗(𝑥, 𝑡)𝑂(𝑥)𝜓1,𭑗(𝑥, 𝑡)d𝑥
∑𭑗 𝑤𭑗

. (4.11)

4Instead of 𭜓1,𭑞(𭑥), the energy eigenfunctions are denoted by 𭜓1,𭑗(𭑥) as there is no clear attribution of the quasi-
momentum due to potential inhomogeneity. The initial energy eigenfunctions evolve in time as they are no eigen-
functions of the time-dependent Hamiltonian of the perturbed lattice potential.
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At this point, we return to lattice oscillations discussed earlier and test our interpretation of the
dampingmechanismwith the help of the split-step Fourier method. For this purpose, we calculate
the time evolution of the position and momentum expectation values according to equation (4.11)
for the atom number and temperature determined from the experiment. The simulations are per-
formed for the inhomogeneous lattice potential which includes the underlying optical dipole trap
potential as well as inhomogeneity of the lattice beams.
The results are presented next to the experimental data in figure 4.4 c). The lattice depth used

for the simulations is adjusted to 𝑉0 = 10 𝐸rec such that the frequency of the calculated lattice
oscillations matches the frequency of the experimental data. The simulated data shows the same
damping behavior as the observed oscillations. For a more quantitative comparison, the experi-
mental and simulated data are fitted by a damped sine. The damping times obtained from these fits
agree within their error bars and support the interpretation of the lattice oscillations on the basis
of the one-dimensional simulations. This observation is consistent with the fact that the experi-
mental conditions for the lattice oscillation measurements are close to the assumption made for
the simulations. Particularly, the short time scales of the lattice oscillations allow neglecting the
dynamics in directions transverse to the lattice axis as those evolve due to the lower transversal
confinement on time scales two orders of magnitude slower than the lattice oscillations. Hence,
the dynamics can be well described by a one-dimensional approach.
Additionally, figure 4.4 b) and d) depict a lattice oscillation and the corresponding simulations

in a deeper lattice potential where no damping is detected during the observation time. Also in
this regime, the simulation and the experimental data are consistent and support the interpreta-
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tion of the experimental data by means of the simulations.

To illustrate that the damping of the oscillations in the weak lattice potential 𝑉0 = 10 𝐸rec is
caused by single particle properties as the tunneling between different lattice sites and not by
the averaging over the different evolutions of the lithium atoms, figure 4.5 depicts the time evo-
lution of the initial energy eigenfunction centered at the 20th lattice site after a sudden lattice
displacement. The graphs depict the damped oscillation of the position expectation value for a
single wavefunction. The damping of the oscillation is accompanied by a simultaneous spread-
ing of the wavefunction. This fact demonstrates that the damping is associated with tunneling
processes and appears on a single particle level, i. e. it does not originate from averaging over
atoms oscillating at different frequencies. At this point, we skip a more rigorous investigation of
the underlying mechanisms causing the damping of the oscillations due to tunneling as we will
discuss these processes later in the context of Ramsey-type experiments (section 5.3), and we turn
to an alternative calibration of the lattice depth.

4.4. Lattice Spectroscopy

Longitudinal Lattice

In the previous section, we used the EOM to induce oscillations of the lithium atoms by a sudden
displacement of the lattice potential in order to calibrate its depth. Complementary, the EOM
can also be utilized for spectroscopy measurements by periodically modulating the relative phase
between the two lattice beams [59]. Thereby, the position of the lattice potential minima changes
and atoms are transferred to higher Bloch bands if the shaking frequency 𝜔exc matches the band
gap.
The Hamiltonian governing the evolution in the sinusoidally shaken lattice potential reads as

𝐻lat(𝑡) = 𝑝2

2𝑚
+ 𝑉lat(𝑥, 𝑡) with 𝑉lat(𝑥, 𝑡) = 𝑉0

2
+ 𝑉0

2
cos (2𝑘lat (𝑥 + 𝑥0sin (𝜔exc𝑡))) . (4.12)

As long as the shaking amplitude 𝑥0 is small compared to the lattice spacing, the time-dependent
lattice potential 𝑉lat(𝑥, 𝑡) can be expanded to first order in 𝑥0𝑘lat which splits the Hamiltonian
into the original lattice Hamiltonian and a time-dependent perturbation 𝑉exc(𝑥, 𝑡)

𝐻lat(𝑡) = 𝐻lat(𝑡 = 0) + 𝑉exc(𝑥, 𝑡) with 𝑉exc(𝑥, 𝑡) = −𝑉0𝑥0𝑘latsin (2𝑘lat𝑥) sin (𝜔exc𝑡) . (4.13)

As 𝑉exc(−𝑥, 𝑡) = −𝑉exc(𝑥, 𝑡), the lattice shaking couples states of opposite parity and transfers
atoms from the first to the second Bloch band, whereas the transfer from the first to third Bloch
band is suppressed.
In order to determine the lattice depth, we shake the lattice with different frequencies and de-

tect the resulting excitation to the second Bloch band. Especially, for low lattice potentials, the
observed resonance peak can be very broad due to the bending of the Bloch bands, and a pre-
cise determination of the lattice depth requires an analysis of the quasimomentum of the excited
atoms [60]. However, for the longitudinal lattice, the gap between the first and the second Bloch
band is usually much larger than their width and hence already a non-quasimomentum-selective
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Figure 4.6.: Spectroscopy of the lattice potential by periodic modulation of the phase between the
two lattice beams. a) Longitudinal lattice b) Transversal vertical lattice. Both data
sets are fitted by a Lorentz distribution. The larger width of the resonance peak for
the transversal direction compared to the longitudinal direction originates from the
smaller lattice spacing causing a larger width of the second Bloch band.

detection of the resonance frequency suffices to infer the lattice depth. Figure 4.6 a) depicts such
a spectroscopy measurement which is performed for the same lattice parameters as the oscilla-
tions in figure 4.4 b) and a shaking amplitude of about 𝑥0 = 10−3𝑑lat. The resonance frequency
determined by a fitted Lorentz distribution yields, within the uncertainties, the same value as the
oscillation frequency. Thus, we can determine the depth of the longitudinal lattice potential to
𝑉0 = (27.7 ± 0.2) 𝐸rec. The corresponding width of the first and second Bloch band is 17Hz and
525Hz which is on the order of the full width half maximum of the observed resonance peak.

Transversal Lattice

So far, we discussed only the characterization of the longitudinal lattice. Now, we turn our view
to the transversal vertical lattice for which we can also infer the lattice depth by modulation of
the lattice potential. Due to the lack of an EOM, we induce a motion of the lattice potential by a
periodic alternation of the radio frequency driving the acousto-optic modulator which regulates
the power in the lattice beams. Because of the longer traveling range 𝐿 = 90 cm of the back
reflected lattice beam, the two lattice beams have a phase difference of 𝑘lat𝐿 at the position of
the atoms. If the frequency of the lattice beams is altered by 𝛿𝜈, the phase between the lattice
beams changes by 2𝜋𝐿𝛿𝜈/𝑐, where 𝑐 is the speed of light. For instance, a radio frequency change
of 10MHz leads to a phase shift of 2𝜋 ⋅ 0.06 (𝛿𝜈 = 20MHz) and shifts the lattice position almost
instantaneously (𝛿𝑡 = 𝐿/𝑐 = 3 ns) by 0.06 𝑑lat.
However, the modulation of the radio frequency causes also an alternating diffraction angle

of the lattice beam from the modulator. Hence, we place the acousto-optical modulator before
an optical fiber in order to avoid drifts of the lattice position. Moreover, the modulator is imple-
mented in a double pass configuration which circumvents large variations of the fiber coupling
efficiency and hence the lattice beam intensity. Nevertheless, the beam intensity changes dur-
ing the spectroscopy measurement by about 3% as the double pass configuration does not fully
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compensate the drifts of the beam position and as the diffraction efficiency of the acousto-optic
modulator depends on the applied radio frequency. We cannot compensate for this effect because
these modulations occur on the time scale of the excitation frequency (≈ 100 kHz) which is be-
yond the speed of our regulation circuit for the lattice beam intensity. Though, as the band gap
scales approximately with the square root of the lattice depth and hence the lattice beam inten-
sity, we do not expect that the small variation of the beam intensity prevents the determination
of the lattice depth by the modulation of the radio frequency.
Figure 4.6 b) shows a spectroscopy measurement for which we modulated the radio frequency

between 95 and 105MHz with various frequencies. We observe a clear resonance feature at
𝜈0 = (102.6 ± 0.2) kHz which corresponds to a lattice depth of 𝑉0 = (11.5 ± 0.1) 𝐸rec and
is consistent with a complementary oscillation measurement.5 The spectroscopy peak for the
transversal vertical lattice looks much broader than for the longitudinal lattice and shows devi-
ations from a Lorentz distribution. The larger extent and probably also the different resonance
shape is caused by the larger width of the second Bloch band due to the smaller lattice spacing
which is for the displayed measurement 14 kHz wide.

4.5. Life Time of Lithium in the Optical Lattice

Besides the lattice depth, the life time of the atoms in the lattice potential is of interest as it im-
pacts the maximal measurement duration and the data analysis. Because of the much smaller
detuning for the lithium atoms, the lattice light mostly limits the life time of the lithium atoms,
whereas the corresponding sodium atom loss is for our experiments negligible.

Figure 4.7 a) displays the number of lithium atoms in the first Bloch band and without sodium
atoms versus the time for which the atoms are confined in a blue detuned one-dimensional longi-
tudinal lattice potential (𝜆laser = 670.5 nm). We observe a clear decay of the atom number which
we attribute to the scattering of lattice light, and an exponential fit to the data yields a life time
of 𝜏 = (511 ± 61)ms.
To verify our interpretation, we calculate the photon scattering rate from the intensity in the

lattice beams which we infer from the lattice depth (𝑉0 = 33 𝐸long
rec ). Moreover, we account for the

overlap with the lattice light by approximating the lattice potential as a set of harmonic oscillator
potentials (see section 3.3.1). From the calculated scattering rate, we get an estimate for the life
time of the lithium atoms of 465ms under the assumption that each photon absorbed by a lithium
atom leads to its loss. This assumption seems reasonable as the atoms gain about 4 µK in kinetic
energy due to the photon kick which is on the order of the optical dipole trap height confining the
atoms in the transversal directions. Furthermore, the redistribution of the kinetic energy to other
lithium atoms can be neglected as the kinetic energy is still far below the height of the centrifugal
barrier (∼ 1mK for p-wave collisions). Thus, the observed life time agrees remarkably well with
the theoretical estimate.

Figure 4.7 c) depicts the same measurement performed in a three-dimensional lattice potential.

5The oscillation is induced by a sudden jump of the radio frequency.
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Figure 4.7.: a) Lithium life time in the first Bloch band of the longitudinal lattice (𝑉0 = 33 𝐸long
rec ).

b) Evolution of the ratio between the lithium population in the second and first Bloch
band for the same lattice as in a). c) Lithium life time in the first Bloch band of a
three-dimensional lattice formed by a 33 𝐸long

rec longitudinal, a 13 𝐸ver
rec transversal ver-

tical and a 8 𝐸hor
rec transversal horizontal lattice. The red lines depict exponential fits

to the data.

The shown data is gathered for lattice depths of 33 𝐸long
rec , 13 𝐸ver

rec and 8 𝐸hor
rec for the longitudi-

nal, transversal vertical and transversal horizontal lattice potential. The intensity in the lattice
beams leads to a theoretical life time of 𝜏 = 225ms due to photon scattering. This value is fairly
consistent with the observed life time of 𝜏 = (169 ± 35)ms.

However, the situation is more complicated as before. First of all, the lattice potential is in
each direction deeper than the different recoil energies. Hence, the photon absorption should not
directly lead to atom loss but to heating of the lithium atoms which we do not observe. A pos-
sible explanation for the lack of hot lithium atoms are the enhanced scattering rates in higher
Bloch bands. Thus, an atom which already absorbed a photon and occupies a higher Bloch band
has a higher probability to scatter a second photon and finally gains enough energy to leave the
trapping potential. Secondly, the overlap of the wavefunction with the high intensity regions is
more complex for the three-dimensional lattice. Especially, the wavefunctions of the transversal
horizontal lattice extend over several lattice sites due to the smaller lattice spacing. Hence, their
overlap with the lattice light is larger than the one obtained by the harmonic oscillator approxi-
mation, and we expect a life time being shorter than the calculated one.

Finally, we discuss the life time in the second Bloch band of the one-dimensional longitudinal
lattice. We will see later on that the different life times in the Bloch bands affect our data anal-
ysis, whereas the total life time limits the maximal duration of our experiments. Figure 4.7 b)
depicts the evolution of the ratio between the atom numbers in the second and the first Bloch
band while the atoms are trapped in the same lattice potential as for figure 4.7 a). We inves-
tigate the ratio instead of the atom number as it is a more robust observable and less sensitive
to fluctuations of the atom number. Due to the fermionic nature of the lithium atoms and the
absence of sodium atoms, the lithium atoms cannot redistribute their energy and hence we do
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4.5. Life Time of Lithium in the Optical Lattice

not observe transitions between different Bloch bands. Thus, we can infer the life time in the
second Bloch band 𝜏2nd from the life time in the first Bloch band 𝜏1st if we investigate their rela-
tive evolution. We obtain 𝜏rel = (210 ± 28)ms from the exponential fit to the data which yields
𝜏2nd = 𝜏1st𝜏rel/(𝜏1st + 𝜏rel) = (149 ± 15)ms 6 agreeing perfectly with our theoretical expectations
of 155ms.

6Because the atom number in the first and second Bloch band evolve as 𭑒−𭑡/𭜏1 and 𭑒−𭑡/𭜏2 , the ratio between the
two decays as 𭑒−𭑡/𭜏2/𭑒−𭑡/𭜏1 = 𭑒−𭑡(𭜏1−𭜏2)/𭜏1𭜏2 = 𭑒−𭑡/𭜏rel .
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5. Coherent Control of Motional Degrees of
Freedom

After the characterization of the species-selective lattice, we study the dynamics of the lithium
atoms in the optical lattice. In order to isolate the impact of the Bose-Einstein condensate on the
dynamics of the lithium atoms, we investigate in this chapter solely the evolution of the lithium
atoms and remove the sodium atoms after the lattice loading.
At first, we inspect Rabi oscillations between the first and the second Bloch band induced by pe-

riodic shaking of the longitudinal lattice. The coherent coupling between different energy bands
allows the controlled preparation and manipulation of superposition of states from the first and
second Bloch band. We utilize this feature for Ramsey-type experiments which can be used to
study the impact of a bath on motional coherences. Subsequently, we extend this technique by
a spin echo pulse which compensates the dephasing between the evolutions of different lithium
atoms due to the inhomogeneity of the lattice potential. This type of experiment allows us to
probe the motional coherence of the lithium atoms for time scales one order of magnitude longer
than for pure Ramsey experiments, and will enable us to investigate the impact of the bath on
coherences in chapter 8.

5.1. Rabi Oscillations

In the previous chapter, we presented spectroscopy measurements of the longitudinal lattice by
periodic lattice shaking. If wemodify these experiments by extending the shaking duration and/or
enhancing the shaking amplitude, we observe Rabi oscillations [32] between the first and the sec-
ond Bloch band which have the maximal amplitude for resonant shaking (fig. 5.1). The Rabi os-
cillations can be intuitively understood in the deep lattice regime where the different lattice wells
can be considered as independent harmonic oscillators and the lattice shaking couples the en-
ergy states of each harmonic oscillator. However, the lattice potential is at each site not perfectly
harmonic which leads to different splittings between the energy levels. This difference becomes
more pronounced for higher states and allows tuning the lattice potential in a regime in which
the lattice shaking couples only the two lowest energy levels of each harmonic oscillator, whereas
the coupling to higher levels is suppressed as they are off-resonant. In this simplified picture, the
dynamics of the lithium atoms in a periodically shaken lattice are described by multiple driven
two-level systems.
The Rabi oscillation depicted in figure 5.1 are performed in a one-dimensional longitudinal

lattice with a depth of 𝑉0 = 20 𝐸rec shaken at 𝜔exc/2𝜋 = 53 kHz. This frequency corresponds to
the gap between the first and second bandΔ𝐸1-2/ℎ, whereas the frequency of the gap between the
second and third band is given by Δ𝐸2-3/ℎ = 37 kHz. As the resulting detuning 𝛿/2𝜋 = 16 kHz
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Figure 5.1.: Rabi oscillations between the first and second Bloch band in a 𝑉0 =20 𝐸rec deep lattice
potential. The Rabi frequency Ω and the decay time 𝜏 are obtained by fitting a damped
sine (solid lines) to the experimental data (dots).

is large compared to the observed Rabi frequency Ω/2𝜋 = 4.2 kHz, we do not transfer lithium
atoms to the third band. Hence, we only observe oscillations between the first and second Bloch
band, and our observations are well described by Rabi oscillations of multiple two-level systems.

Damping of the Rabi Oscillations

However, we also notice that the Rabi oscillations damp out on a time scale of milliseconds. The
damping can either be caused by the loss of coherence or by dephasing of the different lithium
atoms. The latter leads to vanishing Rabi oscillations as we detect the averaged evolution of
all atoms. The loss of coherence could e. g. arise from light scattering (dominantly lattice light)
or from p-wave interactions between the lithium atoms.1 Though, we expect both time scales
to be two orders of magnitude slower than the decay observed in the experiment (section 4.5).
Dephasing on the other hand can occur on a faster time scale. We mentioned earlier that the in-
homogeneity of the lattice potential over the lithium cloud is on the percent level which results in
a detuning of about 𝛿/2𝜋 = 0.5 kHz between the different lattice wells. Because of this detuning,
the shaking frequency does not match the resonance frequency for each two-level system which
leads to Rabi oscillations at different effective Rabi frequencies Ωeff =

√
Ω2 + 𝛿2 . As our detec-

tion scheme integrates over all Rabi oscillations, we expect a damping of the Rabi oscillations on
the time scale 𝑡damp

𝑡damp = 𝜋√
Ω2 + 𝛿2 − Ω

≈ 2𝜋 Ω
𝛿2 , (5.1)

for Ω > 𝛿. From this equation, we get for our parameters a damping time of 𝑡damp ≈ 17ms which
is already close to the observed decay time but cannot solely account for the damping.

1s-wave interactions are suppressed by the fermionic nature of the lithium atoms.
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It turns out that we have to reverse the simple picture of independent two-level systems. The
decay of the presented Rabi oscillations is also caused by a different mechanism, more specifically
tunneling between neighboring lattice sites. Whereas the first Bloch band is for a 𝑉0 = 20 𝐸rec
deep lattice essentially flat (𝐽1/ℎ = 18Hz) and tunneling processes occur slowly, tunneling in the
second Bloch band is more likely as the potential barrier is smaller. The corresponding tunneling
rates are on the order of milliseconds (𝐽2/ℎ = 420Hz) and suggest that the decay of the Rabi
oscillations is mostly due to tunneling processes.
We checked this interpretation by one-dimensional simulations of the Rabi oscillations (sec-

tion 4.3).2 The simulations show a damping on the same time scale as the experiment and reveal
that both tunneling and detuning are responsible for the damping. The reason for our overesti-
mation of the tunneling effects is that we considered the tunneling processes in a homogeneous
lattice potential without external confinement. However, the lithium atoms also experience the
potential of the optical dipole trap leading to an energy offset between neighboring lattice wells.
This energy offset leads to the localization of the atoms' wavefunctions and thus to slower tun-
neling (fig. 3.3).

For conclusion, figure 5.2 a) summarizes the discussion of the Rabi oscillations graphically. Be-
cause of the different energy splittings between the Bloch bands, resonant lattice shaking couples
only the two lowest bands. This approximation is valid as long as the shaking amplitude and the
resulting Rabi frequency is smaller than the detuning to the third band which implies a lower
and upper bound to the lattice depth. For very deep lattices (for which tunneling is completely
suppressed), each lattice site can be considered as independent two-level system whose evolution
can be visualized on a Bloch sphere as to be seen in figure 5.2 b). Because of the inhomogeneity
of the lattice potential, each two-level system has a different resonance frequency (not shown in
figure 5.2 a)). Thus, the states represented on the same Bloch sphere do not only rotate around the
y- but also the z-axis which leads to vanishing Rabi oscillations as each state rotates around the
z-axis at a different frequency. For lower lattice potentials, the detuning effect becomes less im-
portant, but the atoms start tunneling between neighboring lattice sites. The tunneling processes
also cause a decay of the Rabi oscillations and dominantly occur in the second Bloch band.

Rabi Frequency

After discussing the damping mechanism, we turn now to the Rabi frequency. In order to check
if our experimental observations match the theoretical expectations, we study the Rabi frequency
for different shaking amplitudes. According to equation (4.13), we expect a linear dependence of
the Rabi frequency on the shaking amplitude 𝑥0

ℏΩ = 𝑉0𝑥0𝑘lat ∫𝜓*
2 (𝑥)sin (2𝑘lat𝑥) 𝜓1(𝑥) d𝑥, (5.2)

2For this purpose, we compute the evolution of the energy eigenfunctions of the first band 𭜓1,𭑗(𭑥, 𭑡) and the cor-
responding probability 𭑝2nd

𭑘,𭑗(𭑡) = | ∫𭜓*
2,𭑘(𭑥)𭜓1,𭑗(𭑥, 𭑡)d𭑥|2 for occupying the energy eigenfunction 𭜓2,𭑘(𭑥)

of the second band. The total probability for the occupation of the second Bloch band 𭑝2nd(𭑡) is then given by
summation over the single probabilities 𭑝2nd

𭑘,𭑗(𭑡) with respect to their weighting factor 𭑤𭑗 (eq. (4.10)) 𭑝2nd(𭑡) =
∑𭑗,𭑘 𭑤𭑗𭑝2nd

𭑘,𭑗(𭑡)/ ∑𭑗 𭑤𭑗.
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Figure 5.2.: a) Illustration of the Rabi oscillations in the deep lattice regime. The ground state (1st

band or spin down) of each lattice site couples due to the lattice shaking to the first
excited state (2nd band or spin up). b) The evolution of the corresponding two-level
system can be represented on a Bloch sphere. This simple picture is modified due to
tunneling between neighboring lattice sites (indicated by the tunneling matrix ele-
ments 𝐽𭑖 in a)) and the energy offset due to the dipole trap potential. c) Comparison
of the theoretical (lines) and experimental (dots) Rabi frequencies in a 𝑉0 = 28 𝐸rec
deep lattice for varying excitation amplitudes. The error bars of the experimental data
are smaller than the depicted point size.

where the 𝜓𭑖(𝑥)'s are the wavefunctions of the coupled states. Figure 5.2 c) displays the Rabi
frequencies obtained by fitting a damped sine to the Rabi oscillations in a 𝑉0 = 28 𝐸rec deep lattice
for different amplitudes. We observe, as expected, a linear dependency between the shaking
amplitude and the Rabi frequency.
Furthermore, the experimental data agrees well with the theoretical frequencies calculated for

the energy eigenstates of a sinusoidal potential with a single well (eq. (5.2)). The calculations
differ only for small shaking amplitudes for which they yield smaller Rabi frequencies. This dis-
crepancy is probably due to off-resonant shaking for detuned lattice sites which thereby oscillate
at higher effective Rabi frequencies. This effect becomes less pronounced for larger shaking am-
plitudes and Rabi frequencies as the detuning becomes comparatively smaller. Interestingly, the
agreement between theory and experiment is worse if the Rabi frequencies are computed for a
harmonic potential. In this case, the discrepancy grows for larger shaking amplitudes as the atoms
probe more and more the anharmonicity of the lattice potential which leads to larger deviations.

In total, our theoretical considerations reproduce the shape of the Rabi oscillations. The agree-
ment between the calculated and measured Rabi frequencies is almost perfect, and the damping
occurs on the expected time scale. However, with the above considerations, we cannot make
precise predictions about the decay time of the Rabi oscillations and also the simulations do not
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agree as good as the for the lattice oscillations (see fig. 4.4). The simulated Rabi oscillations decay
about 50% slower than the observed oscillations. This is probably due to two reasons which will
reappear in the context of the spin echo spectroscopy (section 5.3).
First of all, the simulations only include the inhomogeneity along the lattice direction, but

the experimental setup is also inhomogeneous in the transversal directions. This effect could
be compensated by averaging over many simulations with slightly different parameters which
account for these inhomogeneities. Though, the more important issue cannot be tackled by the
one-dimensional simulations. As the lattice axes are not perfectly perpendicular to each other and
also not to the semiaxes of the optical dipole trap, the lattice shaking also induces dynamics along
the transversal directions which affect our measurements. This issue has not been a problem for
the simulations of the lattice oscillations as these occur on a time scale much shorter than the one
given by the trapping frequencies of the optical dipole trap. But the Rabi oscillations last longer
and thus this coupling mechanism becomes more important.

5.2. Ramsey Spectroscopy

In this section, we utilize the coherent coupling between the Bloch bands to perform Ramsey
interferometry [61, 62]. Common applications of Ramsey interferometry are atomic interferom-
eters based upon the atoms' internal states. The probably most prominent examples are atomic
clocks [63] which provide the definition of the time standard. In our case, however, the motional
states along the lattice direction, namely the states of the first and second Bloch band, take the
role of the internal states.
We mentioned earlier that the atoms' evolutions in a deep lattice potential can be approximated

by the dynamics of multiple two-level systems. Following this interpretation, figure 5.3 a) illus-
trates the evolution steps of a single lithium atom on a Bloch sphere during a Ramsey sequence.

• Initially, the atom populates the first Bloch band and we can e. g. consider it to be in a spin
down state which is represented on the south pole of the sphere.
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Figure 5.3.: a) Illustration of a Ramsey sequence on the Bloch sphere. A description of the se-
quence is given in the main text. b) Representation of multiple two-level systems on
the same Bloch sphere after the free evolution time. Different energy splittings lead
to the dephasing around the equator and cause a reduced Ramsey signal.
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• The application of a 𝜋/2-pulse by shaking the lattice for 𝑡 = 𝜋/(2Ω) (≈ 70 µs) prepares
the atom in an equal superposition of a state in the first and the corresponding state in the
second Bloch band or equivalently into an equal superposition of spin down and spin up.

• After this pulse, the superposition evolves freely and the fraction in the spin up state accu-
mulates a phase relative to the fraction in the spin down state due to the energy difference
between the first and the second Bloch band. The free evolution corresponds therefore to
a rotation around the equator of the Bloch sphere whose frequency is given by the energy
difference.

• Finally, a second 𝜋/2-pulse translates the accumulated phase into a detection probability
for spin up and down.

As we perform the Ramsey sequence with multiple lithium atoms at once, the detection prob-
ability is intrinsically converted into a population difference between the first and the second
Bloch band. The rotation frequency and the corresponding energy difference can be measured by
variation of the evolution time 𝑡ev which leads to band populations oscillating with the rotation
frequency. Figure 5.4 a) displays two so-called Ramsey fringes in a 𝑉0 = 32.9 𝐸rec deep longitu-
dinal lattice. By fitting a damped sine to the data, we obtain the rotation frequency and thereby
the lattice depth. The uncertainty in the frequency of 101Hz is about half the width of the second
Bloch band and corresponds to a relative uncertainty of only 0.14%.

Damping of the Ramsey Signal

So far, the Ramsey spectroscopy is our most precise method to determine the depth of the longi-
tudinal lattice. However, we are not interested in more precise lattice depth measurements, but
intend to study the impact of a bath on the dynamics of the lithium atoms. Ramsey spectroscopy
offers the opportunity to investigate the loss of motional coherence due to interaction with the
background.
The first 𝜋/2-pulse prepares the lithium atoms in coherent superpositions which can decay

due to interaction with the sodium bath. After the free evolution time, the second 𝜋/2-pulse
determines how much of the initial coherences is left. As the experiment can be carried out with
and without background, the impact of the interaction on the motional coherences can be isolated
from other sources causing a decay of the Ramsey signal. Though, we notice from figure 5.4 a)
and b) that the Ramsey signal vanishes even without background in less than 1ms which is faster
than the time scale for the loss of coherence on the order of 5ms (see chapter 8).
The reasons are the same as for the Rabi oscillations, namely the finite width of the Bloch

bands and the inhomogeneity of the lattice potential. The lattice inhomogeneity leads to different
rotation frequencies around the z-axis of the Bloch sphere which causes dephasing rotations of
the lithium atoms and hence a vanishing Ramsey signal (fig. 5.3 b)). In comparison to the Rabi
oscillations (eq. (5.1)), the decay occurs faster as the system evolves freely, and the effect of the
detuning is more pronounced

𝑡damp = 𝜋
𝛿

< 𝜋√
Ω2 + 𝛿2 − Ω

≈ 2𝜋 Ω
𝛿2 (5.3)
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Figure 5.4.: a) Ramsey signal for a 𝑉0 =(32.9 ± 0.1) 𝐸rec deep longitudinal lattice. The dots repre-
sent the experimental data and the solid line a fit of a damped sine. The red and blue
dots mark the position of the fringe maxima and minima which are displayed in b) for
longer evolution times. The envelope of the Ramsey signal decays in less than 1ms,
and we do not observe a revival of the signal due to rephasing of the lithium atoms'
evolutions. The inset illustrates the Ramsey sequence.

as Ω > 𝛿. Thus, for the presented Ramsey measurement, a lattice inhomogeneity of one percent
already sets an upper bound of 1.4ms for the decay time of the Ramsey signal and limits the
suitability of the Ramsey interferometry for loss of coherence measurements.
Though, the investigation of the coherence loss on the basis of the Rabi oscillations is more in-

volved as the system does not evolve freely, but is constantly driven. For this reason, we introduce
and study an improved Ramsey sequence, a so-called spin echo sequence, in order to compensate
the effect of the detuning which will enable the investigation of the coherence loss in a freely
evolving system in chapter 8.

5.3. Spin Echo Spectroscopy

The previous discussion showed that the damping of the Rabi oscillations and of the Ramsey
signal ismainly governed by tunneling processes between different lattice sites aswell as detuning
effects. Depending on the lattice depth, one of the two effects plays the major role. Our strategy
to overcome this limitation and observe motional coherences for longer evolution times bases on
a modification of the Ramsey sequence, namely the spin echo technique [64, 65]. This technique
is insensitive to the dephasing between different lithium atoms and consists of three instead of

67



5. Coherent Control of Motional Degrees of Freedom

two pulses.
The initial procedure is identical to the Ramsey technique meaning that a coherent superposi-

tion of spin up and down is prepared by a 𝜋/2-pulse followed by a first free evolution of the atoms
for a time 𝑡1stev . Because of the energy difference between spin up and spin down, the spin up com-
ponent accumulates during this evolution a phase 𝜙 with respect to the spin down component.
Instead of probing the atoms by a second 𝜋/2-pulse, the spin echo technique utilizes a 𝜋-pulse to
invert the population of spin up and down. Thereby, the relative phase between the components
swaps and the spin down component carries a phase 𝜙 with respect to the spin up component.
A second free evolution time 𝑡2ndev reduces the differential phase between the spin down and up
component as the latter evolves faster. The phase difference finally becomes zero when the two
evolution times are equal, and the detuning effect is fully canceled.

In case of dephasing being the only source for the decay of the Ramsey signal, we ideally ex-
pect all atoms in the first Bloch band after a spin echo sequence with symmetric evolution times
as the sum of all pulses equals 2𝜋. Oscillations between the first and second Bloch band can be
achieved by asymmetric evolution times or by imposing a phase shift between the 𝜋- and the sec-
ond 𝜋/2-pulse. Figure 5.5 a) shows the atom fraction in the second Bloch band obtained for the
first procedure meaning a fixed first and a variable second evolution time. The displayed fringe
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Figure 5.5.: a) Fraction of lithium atoms in the second Bloch band (green dots) for a spin echo
sequence with fixed first evolution time (𝑡1stev = 2.3ms) and variable second evolution
time 𝑡2ndev . The black solid line depicts a fitted damped sine whose frequency corre-
sponds to a longitudinal lattice depth of 𝑉0 = (34.0 ± 0.1) 𝐸rec. The inset illustrates
the spin echo sequence and the definition of the evolution times. The red and blue dot
mark the first maximum and minimum which reflect the envelope of the spin echo
signal and are displayed in b) for several total evolution times. The green dotted line
labels the position of the measurement shown in a).
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amplitude is smaller than for the Ramsey measurement depicted in figure 5.4 a). Though, the data
is gathered for a total free evolution time of 𝑡ev = 𝑡1stev + 𝑡2ndev = 4.6ms and hence a duration for
which the fringes for a pure Ramsey sequence have completely vanished. As before, the oscilla-
tion frequency corresponds to the energy difference between the first and the second Bloch band,
and determines the depth of the longitudinal lattice to 𝑉0 = (34.0 ± 0.1) 𝐸rec.
The lower part of figure 5.5 displays the envelope of the spin echo signal. The graph depicts the

fraction in the second Bloch band obtained for symmetric evolution (𝑡1stev = 𝑡2ndev ) which yields a
minimal fraction in the second band. Additionally, it shows the fraction in the second Bloch band
obtained for a second evolution time which is half an oscillation period longer than the first one
resulting in a maximal number of the atoms in the second band. Altogether, we observe a decay
of the spin echo signal on the order of 15-20ms which is non-monotonic and whose envelope
shows characteristic maxima and minima.

5.3.1. Envelope of the Spin Echo Signal

In the following, we study the spin echo signal more closely as it provides our main tool for the
investigation of the loss of motional coherence in the sodium bath in chapter 8.

Spin Echo Sequence for a Single Lithium Atom

In order to understand the origin of the signal decay and the modulation of the envelope, we
consider, at first, the evolution of a single lithium atom during the spin echo sequence. Figure 5.6
illustrates the dynamics of an atom which is initially located at the central lattice site:

• The first 𝜋/2-pulse ideally creates a 50:50 superposition of states in the first and second
Bloch band.

• Because of the different tunneling rates, the fraction in the second band spreads much faster
than the one in the first band, and we neglect for simplicity the tunneling processes in the
first band. During the free evolution, the fractions at the different lattice sites of the second
band accumulate a phase due to the energy offset (we consider the phases with respect to
an atom resting at the central site of the first Bloch band).

• The subsequent 𝜋-pulse inverts the band populations and the fraction in the second band
starts spreading, whereas the fractions in the first band do not.

• After the second free evolution, the fractions at the central site rephase, but the fractions
at the outer lattice sites do not as their counterpart in the lower band accumulated an ad-
ditional phase during the second free evolution.

Hence, one can think of the second 𝜋/2-pulse as a probe for several two-level systems with differ-
ent relative phases as well as different spin lengths (determined by the expectation value for the
corresponding lattice site). The fractions of these two-level systems do in general not rephase at
once but for different durations of the second evolution as their energy offset differs. Though, if
the tunneling rates in the first and second band were identical (in sign and magnitude), all lattice
sites would rephase at once as the two evolution phases were symmetric. As this condition is not
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Figure 5.6.: Illustration of the decay mechanism of the spin echo signal in a one-dimensional
lattice potential and for a single atom. The different tunneling matrix elements of the
first and second Bloch band cause, for all but the initial lattice site, different phases 𝜙𭑖
between the amplitudes in the first and second Bloch bandwhich leads to a diminished
spin echo signal.

fulfilled in the experiment, we already expect a non-trivial behavior of the spin echo signal for a
single atom. Moreover, we experimentally probe multiple atoms simultaneously and each atom
evolves differently as the atoms are initially located at different lattice sites. As a result, we get a
complex spin echo signal as shown in figure 5.5 b) which decays due to tunneling processes and
whose structure originates from the phase accumulation due to the optical dipole trap potential.

Spin Echo Signal for Different Dipole Trap Confinements

In the following, we test the above interpretation of the decay mechanism by investigating the
spin echo signal and its dependence on the optical dipole trap potential systematically. The impact
of the dipole trap confinement on the evolution of the lithium atoms is ambiguous.

• On the one hand, a weaker confinement causes a slower phase accumulation between
neighboring lattice sites due to the lower offset potential which scales quadratically with
the trapping frequency.

• On the other hand, the tunneling rates increase for a weaker dipole trap potential as the
lithium atoms become less localized. This effect is more pronounced than the slower phase
accumulation because the localization of the atoms and hence the tunneling processes de-
pend almost exponentially on the trapping frequency (see figure 3.3).

In order to isolate the effect of the dipole trap potential on the atoms' evolutions during the
spin echo sequence, we need to eliminate its impact on the lattice loading procedure. As the
extent of the lithium cloud depends on the trapping geometry, the dipole trap depth determines
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the number of occupied lattice sites and their occupation number. Thus, we load the lattice for
each measurement with the same parameter set. Afterwards, we decrease the intensity in one
dipole trap beam and within 10ms to its final value before starting the spin echo sequence. To
avoid excitations of the lithium atoms due to this ramp down, the experiment is performed in
a two-dimensional lattice potential (longitudinal and transversal vertical lattice) which freezes
the atoms' motions along the lattice directions.3 We set the depth of the longitudinal lattice to
𝑉0 = 34 𝐸long

rec (Δ𝐸1-2/ℎ = 73 kHz, 𝐽1/ℎ = 1.8Hz, 𝐽2/ℎ = 63Hz) and of the transversal vertical
lattice to 𝑉0 = 11 𝐸ver

rec (Δ𝐸1-2/ℎ = 92 kHz, 𝐽1/ℎ = 285Hz) such that the lattice shaking is
off-resonant for the transversal direction.
The data obtained for the spin echo experiments is shown on the left hand side of figure 5.7.

The frequencies next to the graphs denote the overall trapping frequency along the longitudinal
lattice direction including the relative alignment of the dipole trap and the lattice as well as the
anti-confinement due to the blue detuned lattice potential. First of all, we clearly observe a faster
decay of the spin echo signal for lower trapping potentials. This behavior is consistent with our
earlier developed picture as a stronger confinement predominately leads to a higher localization
of the atoms and to a smaller extent to a faster phase accumulation. Because of the higher lo-
calization, a larger fraction of the atoms' wavefunctions remains at their initial lattice sites for
which the spin echo sequence cancels the dephasing effect, and the spin echo signal increases.
We would have expected a similar effect if we changed the tunneling rate instead of the trapping
potential.
Secondly, we observe a change in the structure of the spin echo signal. This effect is more

subtle, but we notice a faster modulation of the signal for higher trapping frequencies. Though,
it is hard to assign a precise frequency to the structure. Only the second measurement (351Hz)
shows a clear peak at about 240Hz in its Fourier spectrum, whereas the other measurements do
not. However, from our previous discussion, we would also not expect a clear relation between
the structure and the offset potential as the energy offsets between the lattice sites differ. In the
following, we compare our measurements with simulations in order to test if our observations
are consistent with theory.

5.3.2. Comparison between Experiment and Simulations

To interpret the spin echo signal, we compare the experimental data with the one-dimensional
simulations which were introduced in section 4.3. Additionally, we perform simulations of a
simpler discrete model Hamiltonian which recovers the explanation for the decay of the spin
echo signal displayed in figure 5.6. This approach offers a more intuitive interpretation of the
computed dynamics than the complex simulations on the basis of the split-step Fourier method.

Simulations of the Discretized Lattice Hamiltonian

TheHamiltonian for the system depicted in figure 5.6 consists of several coupled two-level Hamil-
tonians. In the rotating frame and for resonant coupling, each of these Hamiltonians can be
written as

3A three-dimensional lattice potential would have been superior, but we did not have one at that time.
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Figure 5.7.: Left side: Spin echo measurements in a two-dimensional lattice potential for various
optical dipole potential depths and evolution times. The frequencies at the left hand
side denote the overall trapping frequencies along the longitudinal lattice direction.
Right side: Comparison between the experimentally observed visibility (left scale) and
visibility obtained from the one-dimensional simulations involving the full lattice and
dipole trap potential as well as the discrete model (both on the right scale).

𝐻̂2-level(𝑡) = ℏΩ(𝑡)
2

|↑⟩ ⟨↓| + ℏΩ*(𝑡)
2

|↓⟩ ⟨↑| . (5.4)

The coupling between the ground state (↓) and excited state (↑) is characterized by the Rabi fre-
quency Ω(𝑡). The time dependency of Ω(𝑡) indicates that the ground and excited state are only
coupled during the 𝜋- and 𝜋/2-pulses of the spin echo sequence and evolve freely during the
mean time. In case of identical two-level systems whose neighboring ground and excited states
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are coupled by 𝐽1 and 𝐽2, the total Hamiltonian reads as

𝐻̂dis(𝑡) = �
𭑖

(ℏΩ(𝑡)
2

|↑⟩𭑖 ⟨↓|𭑖 + ℏΩ*(𝑡)
2

|↓⟩𭑖 ⟨↑|𭑖 + 𝐸off,𭑖 (|↓⟩𭑖 ⟨↓|𭑖 + |↑⟩𭑖 ⟨↑|𭑖))

+ �
<𭑖,𭑗>

(𝐽1 |↓⟩𭑖 ⟨↓|𭑗 + 𝐽2 |↑⟩𭑖 ⟨↑|𭑗) . (5.5)

Here, the indices denote the lattice sites and 𝐸off,𭑖 the offset potential at site 𝑖 . The first sum runs
over all lattice sites, whereas the second one includes all neighboring sites (indicated by < 𝑖, 𝑗 >).
In order to obtain the evolution of a single atomwhich initially occupies the ground state of site 𝑖,
we need to calculate the effect of the time evolution operator 𝑒−𭑖𭐻̂dis(𭑡)𭑡/ℏ on the initial state

𝑒−𭑖𭐻̂dis(𭑡)𭑡/ℏ |↓⟩𭑖 . (5.6)

This calculation can be performed by splitting the time evolution into parts of free evolution (Ω =
0) and in parts during which the 𝜋 and 𝜋/2-pulses are applied (Ω =constant). The Hamiltonian
for each step is then time-independent and we can transform equation (5.6) into successive matrix
multiplications by selecting the |↓⟩𭑖's and |↑⟩𭑖's as basis [57]. Moreover, we need to choose an
appropriate lattice size such that the finite system size does not affect our results. To compare
the simulation with the experiment, we compute the time evolution for the ground state of each
lattice site, and average all results multiplied by a weighting factor accounting for the occupation
of the lattice sites (eq. (4.10)).

Experiment vs. Simulation

The right hand side of figure 5.7 compares the two simulation methods and the experimental data
on the basis of the visibility 𝒱

𝒱 = fringe amplitude
fringe offset

(5.7)

which offers a better comparability of the different data sets.4 Overall, the agreement between
the simulations and the experiment is rather poor. However, the simulations and the experiment
agree at the most important point qualitatively. All curves show a reduction of the spin echo
signal for weaker dipole trap confinements and support therefore our previous interpretation of
the decaymechanism. But the simulated curves show a slower decay as well as twice the visibility
and do not reflect the structure of the experimental data.
Though, the simulation by means of the discretized Hamiltonian (eq. (5.5)) and the split-step

Fourier algorithm (section 4.3) show a similar spin echo signal. Considering the fact that the
discretized model assumes perfectly coupled two-level systems and does not include any inho-
mogeneity or detuning effects, the two models agree well. This observation indicates that the

4The parameters for simulating the single particle evolutions correspond to the experimental parameters (𭜔ODT =
variable, lattice: 𭑉0 = 34 𭐸rec or 𭐽1/ℎ = 1.8Hz, 𭐽2/ℎ = 63Hz, Ω/2𭜋 = 3.6 kHz) . The parameters for
averaging the different evolutions are obtained from the density profiles (𭑇 ≈ 550 nK, NLi ≈ 1 ⋅ 105) and the
trap geometry during the lattice loading (see section 2.3.1) .
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tunneling processes and the optical dipole potential are the most relevant parameters for describ-
ing the evolution of a single atom in one dimension.
As both simulations show a similar behavior, we suppose that the difference between the ex-

periment and the simulations arises from effects which are not captured by the simulations and
are discussed below.

• Most of the initial difference between the experimental and simulated visibility can be ex-
plained by the non-perfect sample preparation, i. e. the finite occupation of the second band
after the lattice loading. E. g. an initial fraction of 15% in the second Bloch band reduces the
achievable visibility to 70%. This is due to the fact that atoms starting in the second Bloch
band perform the opposite evolution than atoms starting in the first Bloch band. Hence,
our sample preparation accounts for the different initial visibilities. But this effect does not
depend on the duration of the free evolution and is thus not responsible for the different
decay times.

• The simulations account for the different lattice site occupations by averaging over the
weighted evolutions of the single atoms. However, this approach is limited by e. g. the
knowledge of the density distributions after the lattice loading as well as the relative align-
ment of the optical dipole trap and the lattice potential. We can calculate the lithium density
distribution in the optical dipole potential, but we know that the lattice loading procedure
alters the density distribution as we rely on the sodium background to transfer the lithium
atoms to the first band. In order to determine the sensitivity of the simulations on the
lithium density distribution and the lattice alignment, we performed the simulations with
modified density distributions but did not observe a high sensitivity of the result. Thus, we
expect that the mentioned issues modify the structure of the spin echo signal, but do not
explain the difference in the decay times.

• It turns out that the deviation between the simulations and the experiment is mostly due
to the fact that the simulations only cover one dimension. At first sight, we expect that
the dynamics during the spin echo sequence can be described in one dimension as the
lattice shaking couples only motional states of the corresponding lattice direction due to
the perpendicularity of the different potential axes.
However, we do observe different spin echo signals if we perform identical measurements
(without any dipole potential ramps) in one- and two-dimensional lattice potentials (see
figure 5.8 a)). In the case of the one-dimensional lattice, the initial visibility of the spin
echo signal is higher which is due to a better preparation in the first Bloch band. But the
spin echo signal is also stronger modulated in one dimension for which we lack a good
explanation. We expect, even for non-perpendicular potential axes, only a small coupling
to the transversal directions as the lattice shaking amplitude (≈ 0.01 µm) is small compared
to the lengths scales of the optical dipole potential (on the order of some micrometer). In
spite of a conclusive explanation for the observed effect, we can still attribute the difference
between the two spin echo signals to dynamics along the transversal directions as the two
measurements are otherwise identical. Hence, the impact of the transversal directions on
the dynamics during the spin echo sequence accounts at least partly for the discrepancy
between the simulations and the experiment.
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Figure 5.8.: a) Visibility of the spin echo signals in a one- and two-dimensional lattice potential
with otherwise identical settings. b) Band fractions after a spin echo sequence at the
fringe maximum and for a fixed evolution time. A Gaussian fit (solid red line) to the
fraction in the second band shows that the fringe height is maximal for a lattice shak-
ing frequency of (76.2 ± 0.3) kHz, whereas the independently determined resonance
frequency is at (73.8 ± 0.4) kHz (blue shaded area). This discrepancy is due to the
suppressed coupling to the third band for detuned lattice shaking. This interpreta-
tion is supported by the lower atom fraction in the third band at the position of the
maximum.

In summary, we have seen that the spin echo signal vanishes faster for weaker dipole trap poten-
tials. We attribute this behavior to the weaker localization of the atoms due to the smaller energy
offset between neighboring lattice sites. The one-dimensional simulations support this interpre-
tation but their decay is slower than the experimentally observed one. A possible explanation for
this discrepancy are the transversal directions which are hard to simulate because of the large
computational effort.

5.3.3. Optimal Lattice Parameters for Long Lasting Spin Echo Signals

The previous discussion revealed that the decay of the presented spin echo signals is strongly
affected by tunneling between neighboring lattice sites. As our experiment offers various pos-
sibilities to tune the tunneling rates, the question arises if it is possible to slow down the decay
even further or if the presented measurements are already taken for the optimal parameter set.
In principle, we have two knobs to turn in order to reduce the tunneling rates, namely the optical
dipole trap potential and the lattice potential.
In our case, however, it is unfavorable to further decrease the tunneling rates by increasing

the trap frequencies of the optical dipole trap. This follows from the fact that we are interested
in the evolution of the lithium atoms in a sodium bath, and we have observed that a further
reinforcement of the optical dipole trap confinement significantly reduces the number of sodium
atoms due to three-body losses [66].
Alternatively, we can change the parameters of the lattice potential. Lower tunneling rates
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can either be achieved by a larger lattice spacing or by deeper lattice potentials. Increasing the
lattice spacing requires for our experiment a major modification of the lattice setup due to the
restricted optical access. Additionally, a larger lattice spacing has the drawback of increasing the
atom number per lattice site and decreasing the gap from the first to the second band. Both effects
cause a higher initial occupation of the second Bloch band and lead to a lower visibility of the
spin echo signal.
The final possibility is to perform our experiments in deeper lattice potentials. Though, it turns

out that the depth of the longitudinal lattice used for the presented measurements is already close
to the optimal lattice depth. This fact is illustrated in figure 5.8 b) which displays a spin echo
measurement in a 𝑉0 = 35 𝐸rec deep lattice for a fixed total evolution time (𝑡ev = 300 µs). The
graph shows the lattice shaking frequencies versus the fraction of atoms in the second band at the
fringe maximum as a measure for the fringe height. We observe that the fringe height is maximal
for an excitation frequency which is about 2 kHz higher than the resonance frequency (indicated
by the dashed blue line and determined from lattice oscillations). This discrepancy is caused by
the finite coupling between states in the second and third Bloch band as the gaps between the
three lowest Bloch bands become equally spaced for deep lattice potentials. Hence, the spin echo
sequence has to be interpreted in a three- instead of a two-level system and does not compensate
the dephasing as well as in a two-level system. The measurement depicted in figure 5.8 b) is taken
in a regime in which the coupling between the second and third band becomes important, but the
energy gaps are still different (Δ𝐸1-2/ℎ = 74 kHz, Δ𝐸2-3/ℎ = 63 kHz). In this regime, a positive
detuning to the resonance frequency enhances the spin echo signal as the reduced efficiency of
the lattice pulses is overcompensated by the weaker coupling to the third band. This is due to
the fact that the impact of the detuning on the coupling efficiency scales quadratically.5 This
interpretation is supported by our measurement which reveals that the increase in the fringe
height is accompanied by a smaller atom fraction in the third Bloch band.
However, this also means that a further increase in the lattice height will suppress the tunneling

processes, but also diminishes the efficiency of the spin echo sequence. This effect cannot be
compensated by detuning the shaking frequency as the energy gaps between the Bloch bands
approach each other for deeper lattice potentials. Overall, we observe the slowest decaying spin
echo signals for lattice depths between 30-40 𝐸rec combined with slightly detuned lattice pulses.

Concluding Remarks

In the beginning of this chapter, we presented the coherent coupling between states in the first
and second Bloch band. We used this ability to perform Ramsey spectroscopy, but noticed that
the Ramsey signal vanishes faster than the time scale on which the sodium background influ-
ences the evolution of the lithium atoms. For this reason, we developed a spin echo technique
which increases the observation time for motional coherences by more than a factor of 20. In this
context, we exploited the fact that the spin echo technique is not restricted by dephasing mecha-
nisms. Therefore, we could suppress the decay of the spin echo signal due to tunneling processes
by deep lattice potentials which are for the Ramsey spectroscopy accompanied by a fast signal

5E. g. in a two level system, the occupation of the excited state does not exceedΩ2/(Ω2+𭛿2) if the system is initially
in the ground state.
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decay due to dephasing effects.
We will apply the spin echo technique in chapter 8 in order to investigate the impact of the

bath on the lithium atoms. But beforehand, we introduce the bath theory which will allow us to
interpret the influence of the sodium atoms on the dynamics of the lithium atoms.
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6. Independent Impurities Immersed in a
Bosonic Bath

In this chapter, we theoretically investigate the impact of the sodium bath on the dynamics of the
lithium atoms confined in a harmonic potential. For this purpose, we derive a master equation
in Lindblad form [67, 68] in analogy to the derivation given in [69, 70], but we extend their
calculations from one to three dimensions. Furthermore, we do not restrict our considerations
to the population decay of motional states, but study also the loss of motional coherence of the
lithium atoms due to interaction with the sodium atoms. Related calculations, which examine
the evolution of motional coherences in a Bose-Einstein condensate, can be found in [71, 72,
73]. Though, these publications concentrate on the coherence of a two-level system, whereas our
computations involve more than two states.
With the master equation at hand, we study the dynamics of the lithium atoms in the sodium

bath by approximating each lattice site as harmonic oscillator potential. In this context, we con-
sider the population decay or equivalently the relaxation of motionally excited lithium atoms in
the one-dimensional lattice potential, and we investigate the impact of the transversal directions.
Subsequently, we turn our focus to the evolution of lithium atoms prepared in a superposition of
states belonging to the first and second Bloch band. We analyze the decay of the coherence due
to the interaction with the sodium atoms by means of relaxation and heating processes.

6.1. Derivation of the Master Equation

6.1.1. The Hamiltonian

To theoretically investigate the dynamics of the lithium atoms in the bosonic bath, we start our
considerations for simplicity with the evolution of a single atom and adapt our considerations in
the subsequent chapters to larger atom numbers. First, we split the Hamilton operator of the total
system 𝐻̂tot into three operators

𝐻̂tot = 𝐻̂bath + 𝐻̂atom + 𝐻̂int. (6.1)

Here, 𝐻̂bath is the Hamiltonian for the bath or reservoir, 𝐻̂atom the Hamiltonian for a single lithium
atom and 𝐻̂int the Hamiltonian which accounts for the interactions between the two. As we
consider a bath of weakly interacting bosons, the corresponding Hamiltonian is given by [24]

𝐻̂bath = 𝐸0 + �
⃗𭑞≠0

𝜖 ⃗𭑞𝑏̂†
⃗𭑞𝑏̂ ⃗𭑞. (6.2)

Where, 𝑏̂†
⃗𭑞 and 𝑏̂ ⃗𭑞 are the creation and annihilation operator for the elementary excitations (Bo-

goliubov excitations) with momentum ℏ ⃗𝑞 and energy 𝜖 ⃗𭑞, which were introduced in section 2.1.2,
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and 𝐸0 is the ground state energy of the Bose gas in absence of fluctuations.
As we investigate the impact of the bath on external (or motional) dynamics of the lithium atom,
the Hamilton operator 𝐻̂atom accounts only for the motional part of the atom's Hamiltonian and
not for the internal one. In the following, we approximate the lattice potential as independent set
of harmonic oscillator potentials as it is computational much less demanding. Hence, the lithium
atom's Hamilton operator is given by [57]

𝐻̂atom = �
𭑖=x,y,z

(𝑛̂𭑖 + 1
2

) ℏ𝜔𭑖, (6.3)

where the 𝜔𭑖's are the harmonic oscillator frequencies and the 𝑛̂𭑖's denote the number operators
for the x-, y- and z-direction. The energy eigenstates of the harmonic oscillator Hamiltonian are
the Fock states

|𝑛⟩ ∶= ⏐⏐⏐𝑛x, 𝑛y, 𝑛z⟩ (6.4)

with the eigenenergies

𝐸n ∶= 𝐸nx,ny,nz
= (𝑛x + 1

2
) ℏ𝜔𭑥 + (𝑛y + 1

2
) ℏ𝜔𭑦 + (𝑛z + 1

2
) ℏ𝜔𭑧. (6.5)

The interactionHamiltonian 𝐻̂int accounts for the density-density interaction between the lithium
atom and the Bose gas. For s-wave interactions characterized by the coupling constant 𝑔NaLi
(eq. (2.32)), the interaction Hamiltonian reads as [69]

𝐻̂int = 𝑔NaLi ∫ ̂𝜌Bose( ⃗𝑟) ̂𝜌Li( ⃗𝑟) d ⃗𝑟. (6.6)

In order to simplify our calculations, we consider the density of the single lithium atom ̂𝜌Li( ⃗𝑟) as
point-like ( ̂𝜌Li( ⃗𝑟) = 𝛿( ⃗𝑟 − ̂⃗𝑟)) which is well justified for a homogeneous Bose gas or a Bose gas
whose density ̂𝜌Bose( ⃗𝑟) is constant over the extent of the lithium atom's wavefunction. Hence,
this assumption is in case of a three-dimensional species-selective lattice potential well fulfilled
but can only serve as approximation for lower dimensional lattice potentials. For a point-like
lithium density, the interaction Hamiltonian becomes

𝐻̂int = 𝑔NaLi ̂𝜌Bose( ̂⃗𝑟). (6.7)

And the density of the Bose gas is according to equation (2.3) given by

̂𝜌Bose( ⃗𝑟) = Ψ̂†( ⃗𝑟)Ψ̂( ⃗𝑟) = (Ψ*
0 ( ⃗𝑟) + 𝛿Ψ̂†( ⃗𝑟)) (Ψ0( ⃗𝑟) + 𝛿Ψ̂( ⃗𝑟))

≈ 𝜌0 + √𝜌0 (𝛿Ψ̂( ⃗𝑟) + 𝛿Ψ̂†( ⃗𝑟)) . (6.8)

In the last step, we neglected density fluctuations in second order as they are small for large
condensate fractions, and we introduced the mean condensate density 𝜌0 = |Ψ0|

2 = |Ψ0( ⃗𝑟)|2

assuming a homogeneous condensate and Ψ0 as real. This yields for the interaction Hamiltonian

𝐻̂int = 𝑔NaLi (𝜌0 + √𝜌0 (𝛿Ψ̂( ̂⃗𝑟) + 𝛿Ψ̂†( ̂⃗𝑟))) . (6.9)
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In the following, we omit the first term of the interaction Hamiltonian as it is constant and leads
only to an energy shift for the lithium atom, and we write the fluctuation terms in form of the
creation and annihilation operators for Bogoliubov excitations (see section 2.1.2). As 𝑢 ⃗𭑞 and 𝑣 ⃗𭑞
are real, we get

𝐻̂int = 𝑔NaLi√
𝜌0

𝑉
�

⃗𭑞
(𝑢 ⃗𭑞 + 𝑣 ⃗𭑞) (𝑒𭑖 ⃗𭑞 ̂𭑟⃗𝑏̂ ⃗𭑞 + 𝑒−𭑖 ⃗𭑞 ̂𭑟⃗𝑏̂†

⃗𭑞) . (6.10)

As we will see later on, it is convenient to rewrite the interaction Hamiltonian as

𝐻̂int = 𝑔NaLi√
𝜌0

𝑉
�

⃗𭑞
(𝑢 ⃗𭑞 + 𝑣 ⃗𭑞)

2
�
𭑖=1

̂𝑠𭑖, ⃗𭑞Γ̂𭑖, ⃗𭑞 (6.11)

with
̂𝑠1, ⃗𭑞 = 𝑒𭑖 ⃗𭑞 ̂𭑟⃗, ̂𝑠2, ⃗𭑞 = 𝑒−𭑖 ⃗𭑞 ̂𭑟⃗, Γ̂1, ⃗𭑞 = 𝑏̂ ⃗𭑞 and Γ̂2, ⃗𭑞 = 𝑏̂†

⃗𭑞.

6.1.2. General Master Equation

To compute the dynamics of the lithium atom within the sodium bath, we start our calculations
with the time evolution of the complete density operator accounting for the bath and the lithium
atom. Subsequently, we trace over the bath modes and end up with the time evolution of the
reduced density matrix covering the evolution of the lithium atom only.
At first, we split the Hamiltonian into two parts 𝐻̂tot = 𝐻̂0 + 𝐻̂int where 𝐻̂0 = 𝐻̂bath + 𝐻̂atom

governs the evolution of the bath and the lithium atom without interaction and 𝐻̂int covers the
interaction between the two. We calculate the evolution of the total density operator 𝑤̂(𝑡) in the
interaction or Dirac picture [57]

𝑑
𝑑𝑡

𝑤̂I(𝑡) = − 𝑖
ℏ

[𝐻̂I
int(𝑡), 𝑤̂I(𝑡)] (6.12)

with 𝑤̂I(𝑡) = 𝑒𭑖𭐻̂0𭑡/ℏ𝑤̂𝑒−𭑖𭐻̂0𭑡/ℏ and 𝐻̂I
int(𝑡) similarly. We formally integrate this equation

𝑤̂I(𝑡) = 𝑤̂I(0) − 𝑖
ℏ

∫
𭑡

0
[𝐻̂I

int(𝜉), 𝑤̂I(𝜉)] d𝜉, (6.13)

and by inserting the solution into equation (6.12), we get

𝑑
𝑑𝑡

𝑤̂I(𝑡) = − 𝑖
ℏ

[𝐻̂I
int(𝑡), 𝑤̂I(0)] − 1

ℏ2 ∫
𭑡

0
[𝐻̂I

int(𝑡), [𝐻̂I
int(𝜉), 𝑤̂I(𝜉)]] d𝜉. (6.14)

We could iteratively repeat this procedure for 𝑤̂I(𝜉), but we compute the time evolution only
up to second order in 𝐻̂I

int as the lithium atom and the sodium atoms interact weakly (Born
approximation). So far, we considered the time evolution of the bath as well as the lithium atom.
To reduce our considerations to the evolution of the lithium atom only, we take the trace over the
bath's degrees of freedom Trbath. Additionally, we assume that the bath and the atom are initially
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6. Independent Impurities Immersed in a Bosonic Bath

uncorrelated 𝑤̂I(0) = 𝑤̂I
atom(0) ⊗ 𝑤̂I

bath(0) and that the impact of the interaction on the bath can
be neglected.1 In this case, the density operator for the bath becomes time-independent

𝑤̂I(𝑡) ≈ 𝑤̂I
atom(𝑡) ⊗ 𝑤̂bath. (6.15)

With these assumptions, we get for the reduced density operator 𝑤̂I
atom(𝑡)

𝑑
𝑑𝑡

𝑤̂I
atom(𝑡) = − 1

ℏ2 ∫
𭑡

0
Trbath {[𝐻̂I

int(𝑡), [𝐻̂I
int(𝜉), 𝑤̂I

atom(𝜉) ⊗ 𝑤̂bath]]} d𝜉 (6.16)

as Trbath{[𝐻̂I
int(𝑡), 𝑤̂I

atom(0) ⊗ 𝑤̂bath]} = 0 (for details see appendix A.1).
Finally, we assume that the correlation time of the bath 𝜏C is short compared to the evolution

time scale of 𝑤̂I
atom(𝑡) and apply the Markov approximation.2 As Trbath{𝐻̂I

int(𝑡)𝐻̂I
int(𝜉) 𝑤̂bath}

vanishes for 𝑡 − 𝜉 > 𝜏C and 𝑤̂I
atom(𝜉) does not significantly change on this time scale, we can

replace 𝑤̂I
atom(𝜉) by 𝑤̂I

atom(𝑡) and get the master equation for the evolution of the reduced density
matrix [69, 74]

𝑑
𝑑𝑡

𝑤̂I
atom(𝑡) = − 1

ℏ2 ∫
𭑡

0
Trbath {[𝐻̂I

int(𝑡), [𝐻̂I
int(𝜉), 𝑤̂I

atom(𝑡) ⊗ 𝑤̂bath]]} d𝜉. (6.17)

Because of the Markov approximation, the change of 𝑤̂I
atom(𝑡) does not depend anymore on its

former evolution, but only on its current state as the fast bath dynamics smear out the history of
𝑤̂I

atom(𝑡).

6.1.3. Master Equation for the Bosonic Bath

Equation (6.17) is the master equation in the Born-Markov approximation in its general form.
Now, we will specify the master equation to the bosonic bath from which we derive a set of
differential equations in order to calculate the time evolution of the lithium atom in the bath. The
derivation turns out to be lengthy and is thus only partly covered in the main part of this thesis.
However, the omitted calculations are presented in appendix A.2.

After inserting the interaction Hamiltonian (eq. (6.11)) into the general master equation (6.17),
we already get the master equation for the bosonic bath

𝑑
𝑑𝑡

𝑤̂I
atom(𝑡) = − 𝑔2

NaLi𝜌0

ℏ2𝑉
�

⃗𭑞,𭑝⃗
((𝑢 ⃗𭑞 + 𝑣 ⃗𭑞) (𝑢𭑝⃗ + 𝑣𭑝⃗) (6.18)

2
�

𭑖,𭑗=1
∫

𭑡

0
Trbath {[ ̂𝑠I𭑖, ⃗𭑞(𝑡)Γ̂I

𭑖, ⃗𭑞(𝑡), [ ̂𝑠I𭑗,𭑝⃗(𝜉)Γ̂I
𭑗,𭑝⃗(𝜉), 𝑤̂I

atom(𝑡) ⊗ 𝑤̂bath]]} d𝜉).

From here on, we calculate the time evolution of the lithium atom in two steps. First, we perform
the trace over the bath variables resulting in a simplified differential equation for the reduced

1This condition is not perfectly fulfilled in the experiment as we investigate more than one lithium atom and the
number of sodium atoms is at most one order of magnitude larger than the number of lithium atoms.

2The correlation time is due to our bath temperature (𭑇 ≈ 500 nK) on the order of 1 µs [70] which is more than
three orders of magnitude faster than the dynamics induced by the bosonic bath (see chapter 7 and 8).
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6.1. Derivation of the Master Equation

density operator which does not contain any bath operators. Secondly, we choose the energy
eigenstates of the lithium atom as basis and represent the master equation as a set of coupled
equations for the elements of the reduced density matrix.

Trace over the Bath Variables

After expanding the commutators in equation (6.18), we can factorize each summand of themaster
equation into a bath and an atom part. The first termwe need to calculate is Trbath{Γ̂I

𭑖, ⃗𭑞(𝑡)Γ̂I
𭑗,𭑝⃗(𝜉)

𝑤̂bath} which turns out to be only non zero for 𝑖 ≠ 𝑗 and 𝑝⃗ = ⃗𝑞 (see appendix A.2). Thus, we
either have

• Trbath{Γ̂I
𭑖, ⃗𭑞(𝑡)Γ̂I

𭑗,𭑝⃗(𝜉)𝑤̂bath} = Trbath{𝑏̂𭐼†
⃗𭑞 (𝑡)𝑏̂𭐼

⃗𭑞(𝜉)𝑤̂bath} which corresponds to the absorp-
tion of a Bogoliubov excitation with momentum ⃗𝑞 and energy 𝜖 ⃗𭑞 by the lithium atom and
hence to heating of the atom. The absorption probability is proportional to the occupation
probability of the corresponding Bogoliubov mode 𝑁( ⃗𝑞) which is governed by the Bose dis-
tribution 𝑁( ⃗𝑞) = 1/(𝑒𭜖 ⃗𭑞/(𭑘B𭑇) − 1) [27]. Hence, we get Trbath{𝑏̂𭐼†

⃗𭑞 (𝑡)𝑏̂𭐼
⃗𭑞(𝜉)𝑤̂bath} ∝ 𝑁( ⃗𝑞).

or

• Trbath{Γ̂I
𭑖, ⃗𭑞(𝑡)Γ̂I

𭑗,𭑝⃗(𝜉)𝑤̂bath} = Trbath{𝑏̂𭐼
⃗𭑞(𝑡)𝑏̂𭐼†

⃗𭑞 (𝜉)𝑤̂bath} which is related to the opposite
process, namely the creation of a Bogoliubov excitation with momentum ⃗𝑞 by the lithium
atom. This process corresponds to the dissipation of energy to the bosonic bath, and one
gets Trbath{𝑏̂𭐼

⃗𭑞(𝑡)𝑏̂𭐼†
⃗𭑞 (𝜉)𝑤̂bath} ∝ 1 + 𝑁( ⃗𝑞) where 𝑁( ⃗𝑞) accounts for the bosonic stimulation

of the creation process.

As the derivation of the interaction Hamiltonian neglects terms of second order in 𝛿Ψ̂( ⃗𝑟) (see
section 6.1.1), the master equation does not contain terms of fourth order in Γ̂. Hence, there are
no interaction processes which involve two Bogoliubov excitations as e. g. inelastic scattering of
thermal excitations.
For our experiment, this assumption is justified in the central region of the bosonic gas where

the density of the Bose-Einstein condensate is much larger than the density of the thermal com-
ponent (see figure 2.5). However, the thermal component dominates in the outer regions of the
sodium cloud. Though, we will see later on that the excitations governing the dynamics of the
lithium atoms have larger momenta than the momenta which are occupied in a thermal gas. Thus,
the finite momentum of the elementary excitations has no significant impact on the scattering
process, and the momenta of the thermal component can in first approximation be considered as
zero as for the Bose-Einstein condensate.
At this point, we omit a rigorous evaluation of the traces from equation (6.18) and just denote

the result. The evaluation yields (eq. (A.10))

𝑑
𝑑𝑡

𝑤̂I
atom(𝑡) = −𝑔2

NaLi𝜌0

ℏ2𝑉
�

⃗𭑞
∫

𭑡

0
(𝑢 ⃗𭑞 + 𝑣 ⃗𭑞)2 ( (6.19)

̂𝑠I1, ⃗𭑞(𝑡) ̂𝑠I2, ⃗𭑞(𝜉)𝑤̂I
atom(𝑡)𝑒𭑖𭜖 ⃗𭑞(𭜉−𭑡)/ℏ (1 + 𝑁( ⃗𝑞)) + ̂𝑠I2, ⃗𭑞(𝑡) ̂𝑠I1, ⃗𭑞(𝜉)𝑤̂I

atom(𝑡)𝑒𭑖𭜖 ⃗𭑞(𭑡−𭜉)/ℏ𝑁( ⃗𝑞)
− ̂𝑠I2, ⃗𭑞(𝑡)𝑤̂I

atom(𝑡) ̂𝑠I1, ⃗𭑞(𝜉)𝑒𭑖𭜖 ⃗𭑞(𭑡−𭜉)/ℏ (1 + 𝑁( ⃗𝑞)) − ̂𝑠I1, ⃗𭑞(𝑡)𝑤̂I
atom(𝑡) ̂𝑠I2, ⃗𭑞(𝜉)𝑒𭑖𭜖 ⃗𭑞(𭜉−𭑡)/ℏ𝑁( ⃗𝑞)
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− ̂𝑠I2, ⃗𭑞(𝜉)𝑤̂I
atom(𝑡) ̂𝑠I1, ⃗𭑞(𝑡)𝑒𭑖𭜖 ⃗𭑞(𭜉−𭑡)/ℏ (1 + 𝑁( ⃗𝑞)) − ̂𝑠I1, ⃗𭑞(𝜉)𝑤̂I

atom(𝑡) ̂𝑠I2, ⃗𭑞(𝑡)𝑒𭑖𭜖 ⃗𭑞(𭑡−𭜉)/ℏ𝑁( ⃗𝑞)

+ 𝑤̂I
atom(𝑡) ̂𝑠I1, ⃗𭑞(𝜉) ̂𝑠I2, ⃗𭑞(𝑡)𝑒𭑖𭜖 ⃗𭑞(𭑡−𭜉)/ℏ (1 + 𝑁( ⃗𝑞)) + 𝑤̂I

atom(𝑡) ̂𝑠I2, ⃗𭑞(𝜉) ̂𝑠I1, ⃗𭑞(𝑡)𝑒𭑖𭜖 ⃗𭑞(𭜉−𭑡)/ℏ𝑁( ⃗𝑞)) d𝜉.

The terms in the left column denote the processes which include the creation of a Bogoliubov
excitation, whereas the terms in the right column correspond to the absorption of thermal exci-
tations.

Conversion into a Set of Coupled Differential Equations

As mentioned before, we intend to convert equation (6.19) into a set of differential equations
which can be solved numerically. For this purpose, we consider the reduced density operator in
the basis of the energy eigenstates of the lithium atom

𝑤̂I
atom(𝑡) = �

𭑘,𭑙
𝑤𭑘,𭑙(𝑡) |𝑘⟩ ⟨𝑙| . (6.20)

As the lithium atom is confined in a three-dimensional harmonic potential, 𝑘 and 𝑙 denote triples
specifying the different harmonic oscillator modes (eq. (6.4)). It is convenient to choose the en-
ergy eigenstates as basis because they offer a straightforward evaluation of the time integral in
equation (6.19). The integration restricts the energy difference of the coupled modes and leads to
the conservation of energy, i. e. two modes are only coupled if their energy difference matches the
energy 𝜖 ⃗𭑞 of the involved Bogoliubov excitation. As result, we get a set of differential equations
for the 𝑤𭑘,𭑙(𝑡) (eq.(A.27))

𝑑
𝑑𝑡

𝑤𭑘,𭑙(𝑡) = − 𝜋𝑔2
NaLi𝜌0

ℏ𝑉
�
𭑗1,𭑗2

�
⃗𭑞
[(𝑢 ⃗𭑞 + 𝑣 ⃗𭑞)2 (1 + 𝑁( ⃗𝑞)) ( (6.21)

𝑆𭑘,𭑗1
1, ⃗𭑞 𝑆𭑗1,𭑗2

2, ⃗𭑞 𝑤𭑗2,𭑙(𝑡)𝑒𭑖(𭐸𭑘−𭐸𭑗2)𭑡/ℏ𝛿(𝐸𭑗2
− 𝐸𭑗1

− 𝜖 ⃗𭑞)

− 𝑆𭑘,𭑗1
2, ⃗𭑞 𝑤𭑗1,𭑗2

(𝑡)𝑆𭑗2,𭑙
1, ⃗𭑞 𝑒𭑖(𭐸𭑘+𭐸𭑗2−𭐸𭑗1−𭐸𭑙)𭑡/ℏ𝛿(𝐸𭑗2

− 𝐸𭑙 − 𝜖 ⃗𭑞)

− 𝑆𭑘,𭑗1
2, ⃗𭑞 𝑤𭑗1,𭑗2

(𝑡)𝑆𭑗2,𭑙
1, ⃗𭑞 𝑒𭑖(𭐸𭑘+𭐸𭑗2−𭐸𭑗1−𭐸𭑙)𭑡/ℏ𝛿(𝐸𭑗1

− 𝐸𭑘 − 𝜖 ⃗𭑞)

+ 𝑤𭑘,𭑗1
(𝑡)𝑆𭑗1,𭑗2

1, ⃗𭑞 𝑆𭑗2,𭑙
2, ⃗𭑞 𝑒𭑖(𭐸𭑗1−𭐸𭑙)𭑡/ℏ𝛿(𝐸𭑗1

− 𝐸𭑗2
− 𝜖 ⃗𭑞))]

− 𝜋𝑔2
NaLi𝜌0

ℏ𝑉
�
𭑗1,𭑗2

�
⃗𭑞
[(𝑢 ⃗𭑞 + 𝑣 ⃗𭑞)2 𝑁( ⃗𝑞)(

𝑆𭑘,𭑗1
2, ⃗𭑞 𝑆𭑗1,𭑗2

1, ⃗𭑞 𝑤𭑗2,𭑙(𝑡)𝑒𭑖(𭐸𭑘−𭐸𭑗2)𭑡/ℏ𝛿(𝐸𭑗1
− 𝐸𭑗2

− 𝜖 ⃗𭑞)

− 𝑆𭑘,𭑗1
1, ⃗𭑞 𝑤𭑗1,𭑗2

(𝑡)𝑆𭑗2,𭑙
2, ⃗𭑞 𝑒𭑖(𭐸𭑘+𭐸𭑗2−𭐸𭑗1−𭐸𭑙)𭑡/ℏ𝛿(𝐸𭑙 − 𝐸𭑗2

− 𝜖 ⃗𭑞)

− 𝑆𭑘,𭑗1
1, ⃗𭑞 𝑤𭑗1,𭑗2

(𝑡)𝑆𭑗2,𭑙
2, ⃗𭑞 𝑒𭑖(𭐸𭑘+𭐸𭑗2−𭐸𭑗1−𭐸𭑙)𭑡/ℏ𝛿(𝐸𭑘 − 𝐸𭑗1

− 𝜖 ⃗𭑞)

+ 𝑤𭑘,𭑗1
(𝑡)𝑆𭑗1,𭑗2

2, ⃗𭑞 𝑆𭑗2,𭑙
1, ⃗𭑞 𝑒𭑖(𭐸𭑗1−𭐸𭑙)𭑡/ℏ𝛿(𝐸𭑗2

− 𝐸𭑗1
− 𝜖 ⃗𭑞))]

with
𝑆𭑗1,𭑗2

𭑖, ⃗𭑞 = ⟨𝑗1| ̂𝑠𭑖, ⃗𭑞 |𝑗2⟩ . (6.22)
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6.2. Relaxation of Motionally Excited Lithium Atoms

Equation (6.21) governs the time evolution of the lithium atom in the most general case. How-
ever, if the lithium atom is initially prepared in an energy eigenstate and not in a superposition of
eigenstates, equation (6.21) can be further simplified. In this case, only one diagonal element of
the density matrix 𝑤𭑘,𭑘 is initially populated, whereas the off-diagonal elements characterizing
the coherences are all zero. As coherences are not expected to build up due to the interaction
with the bosonic bath, the off-diagonal elements are never occupied (𝑤𭑘,𭑙(𝑡) = 0 for 𝑘 ≠ 𝑙), and
the time evolution of the diagonal elements is governed by (eq. (A.29), [69])

𝑑
𝑑𝑡

𝑤𭑘,𭑘(𝑡) = �
𭑗

(𝑅𭑗→𭑘𝑤𭑗,𭑗(𝑡) − 𝑅𭑘→𭑗𝑤𭑘,𭑘(𝑡) + 𝐻𭑗→𭑘𝑤𭑗,𭑗(𝑡) − 𝐻𭑘→𭑗𝑤𭑘,𭑘(𝑡)) (6.23)

with

𝑅𭑚→𭑛 = 2𝜋𝑔2
NaLi𝜌0

ℏ𝑉
�

⃗𭑞
(𝑢 ⃗𭑞 + 𝑣 ⃗𭑞)2 (1 + 𝑁( ⃗𝑞)) ⏐⏐⏐𝑆

𭑛,𭑚
2, ⃗𭑞

⏐⏐⏐
2 𝛿(𝐸𭑚 − 𝐸𭑛 − 𝜖 ⃗𭑞) (6.24)

and

𝐻𭑚→𭑛 = 2𝜋𝑔2
NaLi𝜌0

ℏ𝑉
�

⃗𭑞
(𝑢 ⃗𭑞 + 𝑣 ⃗𭑞)2 𝑁( ⃗𝑞) ⏐⏐⏐𝑆

𭑛,𭑚
2, ⃗𭑞

⏐⏐⏐
2 𝛿(𝐸𭑛 − 𝐸𭑚 − 𝜖 ⃗𭑞). (6.25)

Here, 𝑅𭑚→𭑛 denotes the transition or relaxation rate from state |𝑚⟩ to state |𝑛⟩ caused by the
interaction with the bosonic bath which is identical to the transition rate obtained from Fermi's
golden rule [75]. The heating rate 𝐻𭑚→𭑛 accounts for the finite temperature of the bath and
allows transitions to energetically higher states. As both the relaxation and the heating rate are
time-independent, the matrix elements 𝑤𭑘,𭑘(𝑡) evolve exponentially. In the long term limit and
for zero temperature, the lithium atom will relax to the ground state of the harmonic oscillator
potential, whereas for finite temperature higher energy states are populated according to the Bose
distribution.

6.2. Relaxation of Motionally Excited Lithium Atoms

This section investigates the characteristics of the relaxation of a motionally excited lithium atom
as the understanding of the relaxation mechanics becomes important for interpreting the decay
of coherences in the following section. For this purpose, the relaxation or equivalently the popu-
lation decay is considered on the basis of the two system components. At first, we investigate the
dependency of the relaxation rate on the external confinement of the lithium atom and secondly
the dependency on the bath structure.

6.2.1. Decay Channels

To illustrate the impact of the trapping geometry on the population decay, we consider the re-
laxation process of a lithium atom which initially populates the first excited state |𝑚x =0, 𝑚y =
0, 𝑚z = 1> along the z-direction (longitudinal direction). Because of the interaction with the
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6. Independent Impurities Immersed in a Bosonic Bath

bosonic bath, the lithium atom can decay to any state |𝑛x, 𝑛y, 0 > with lower energy than the
initial state and can thereby change its excitation along the x- and y-direction (transversal direc-
tions). Hence, the decay to the ground state along the z-direction is characterized by the total
relaxation rate 𝑅 = ∑𭑛 𝑅𭑚→𭑛 which takes the relaxation processes into all possible modes 𝑛
into account. Figure 6.1 a) depicts the total relaxation rate 𝑅 depending on the confinement in
the transversal directions for a parameter set which is similar to those realized in the experiment
(the 𝑅𭑚→𭑛's are evaluated in the appendix A.3).
Starting from weak transversal confinements, the total relaxation rate changes slowly for in-

creasing confinement as long as the transversal trapping frequencies are weak compared to the
one in the longitudinal direction (𝜔x,y/𝜔z ≲ 0.25). This behavior originates from the small spac-
ing of the energy levels in the transversal directions which provides an almost continuous phase
space for the relaxation process.
As soon as the transversal and the longitudinal confinement are on the same order of magni-

tude (0.25≲𝜔x,y/𝜔z <1), the relaxation rate changes faster which is mainly caused by the discrete
changes in the number of energetically allowed decay channels. However, an additional reason is
the dependency of the coupling strength on the transversal confinement. If the Bogoliubov exci-
tation which is induced by the relaxation process propagates in z-direction, there is no coupling
between different modes in the x- and y-direction

𝑆𭑚,𭑛
2, ⃗𭑞 = ⟨𝑚| 𝑒−𭑖 ⃗𭑞 ̂𭑟⃗ |𝑛⟩ = ⟨𝑚x| 𝑒−𭑖𭑞x𭑥̂⏟⏟⏟⏟⏟

=1

|𝑛x⟩ ⟨𝑚y
⏐⏐⏐ 𝑒−𭑖𭑞y ̂𭑦⏟⏟⏟⏟⏟

=1

⏐⏐⏐𝑛y⟩ ⟨𝑚z| 𝑒−𭑖𭑞z ̂𭑧 |𝑛z⟩ (6.26)

and they remain unchanged during the relaxation. Hence, the coupling strength and the relax-
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Figure 6.1.: a) Total relaxation rate from mode |0, 0, 1⟩ into energetically lower modes depend-
ing on the confinement in x- and y-direction (𝜔z = 2𝜋 70 kHz, 𝜌0 = 1 ⋅ 1013 cm−3,
𝑇 = 0K). The blue line displays the calculations for an equal confinement in the
transversal directions (𝜔x = 𝜔y). The inset compares our calculations for strong
transversal confinements to the one-dimensional (analytic) solution from [76] de-
picted as green dashed line. b) Relaxation rate resolved for the different transversal
modes ⏐⏐⏐𝑛x, 𝑛y, 0⟩ for 𝜔x =𝜔y =2𝜋 2 kHz.
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6.2. Relaxation of Motionally Excited Lithium Atoms

ation rate are unaffected by the confinement in x- and y-direction. Though, it turns out that these
processes are in the minority and most relaxations induce a Bogoliubov excitation which does not
propagate in z-direction. Thus, also the modes in x- and y-direction are coupled during the relax-
ation process. This fact is illustrated in figure 6.1 b) which displays the relaxation rates 𝑅𭑚→𭑛
for the different transversal modes. The red colored areas indicate that it is most likely to relax
into modes which are either excited along the x- or the y-direction (but not anymore along the
z-direction). As the relaxation rates for these decay channels depend on the confinement in x- and
y-direction, the confinement affects the total relaxation rate not only by the number of possible
decay channels, but also by its impact on the corresponding coupling strengths. This leads to the
non-trivial oscillatory behavior of the total relaxation rate for similar confinements in x-, y- and
z-direction.
As soon as the trapping frequencies in the transversal directions exceed the one in z-direction

(𝜔x,y/𝜔z > 1), there is only the decay channel |0, 0, 0⟩ left and the total relaxation rate evolves
monotonically. However, the impact of the transversal confinement on the relaxation rate remains
until the wavelength of the involved Bogoliubov excitation becomes large compared to the extent
of the wavefunction in the transversal directions (𝑎x,y

ho 𝑞 ≪ 1). In this case, the lithium atom does
not resolve the corresponding density modulation of the Bose gas in the transversal directions
and their contribution to the matrix element 𝑆𭑚,𭑛

2, ⃗𭑞 becomes unity (𝑒−𭑖𭑞x𭑥̂ ≈ 1, 𝑒−𭑖𭑞y ̂𭑦 ≈ 1) .
As shown in the inset of figure 6.1 a), the total relaxation rate is only for 𝜔z ≪ 𝜔x,y completely
independent from the transversal confinement and our results reproduce the one-dimensional
calculations presented in [69, 76].

6.2.2. Bath Structure

The relaxation processes depend on several bath properties as e. g. its temperature and density.
However, the probably most interesting feature is the bath's bosonic nature which is manifested
in its dispersion relation (eq. (2.17)). To investigate the impact of this dispersion relation on the
relaxation process, we study the relaxation rate from the first excited state to the ground state of a
one-dimensional harmonic oscillator potential, i. e. 𝜔z ≪𝜔x,y.

3 By tuning the trapping frequency
𝜔z for the lithium atom, we change the energy which is dissipated to the bosonic bath. This results
in coupling to phonon-like Bogoliubov excitations for trapping frequencies below the chemical
potential of the Bose gas (𝜔z <𝜇Na/ℏ) and in coupling to free-particle-like excitations for higher
trapping frequencies (𝜔z >𝜇Na/ℏ).
Figure 6.2 depicts the relaxation rates for parameters which are experimentally realized in the

center of our bosonic bath. The relaxation rate decreases monotonically with decreasing confine-
ment (dissipated energy) and drops to zero for low energies. The graph depicts the result for zero
as well as for finite temperature (𝑇 = 550 nK). In the latter case, the relaxation rates are for small
trapping frequencies enhanced as the low energetic Bogoliubov modes are thermally populated
which increases the relaxation rates due to bosonic stimulation.
Because of the phonon-like dispersion relation for low energetic excitations, the relaxation rate

drops quickly for small dissipated energies [77]. However, in contrast to an atom in free space,
the dissipation processes do not vanish if the atom's energy is below the chemical potential, and

3The bath is still considered three-dimensional.
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Figure 6.2.: Relaxation and heating rates for an atom populating the first excited state of a one-
dimensional harmonic oscillator potential immersed in a three-dimensional bosonic
bath (𝜌0 = 4 ⋅ 1014 cm−3). The relaxation and heating rates are plotted versus the
trapping frequency 𝜔z of the harmonic oscillator, which corresponds to the energy
dissipated during the relaxation process. The vertical dashed lines indicate the tem-
perature 𝑇 and the chemical potential of the bosonic bath 𝜇Na. The inset displays
the relaxation rate for the interacting Bose gas at zero temperature normalized to a
non-interacting Bose gas which has a free-particle-like dispersion relation.

the relaxation rate stays finite. In order to point out the fast decrease of the relaxation rate due to
the bath's bosonic nature, the inset of figure 6.2 displays the relaxation rate at zero temperature
normalized to the relaxation rate of a non-interacting Bose gas which has for all excitation en-
ergies a free-particle-like dispersion relation. Clearly, the relaxation process for the interacting
bath is for small dissipated energies much slower which stems from the linear behavior of the
dispersion relation. For larger energies, which correspond to free-particle-like excitations, the
relaxation rate for the interacting gas approaches the one for the non-interacting Bose gas.

Overall, figure 6.2 shows that neither the bath temperature nor its bosonic nature are impor-
tant in order to describe the relaxation processes if the dissipated energy exceeds 40 kHz. We will
come back to this point during the discussion of the relaxation dynamics in chapter 7.

In the following section, we will investigate the loss of motional coherence due to interaction
with the bosonic bath. In this context, the relaxation rate turns out to be helpful for interpreting
the calculations at zero temperature, but do not suffice to explain the loss of coherence at finite
temperature. In this case, we also need to include heating processes into our considerations. For
this reason, figure 6.2 compares the total heating rate 𝐻 = ∑𭑛 𝐻𭑚→𭑛 at 𝑇 = 550 nK to the
relaxation rates. As expected, the heating processes become important if the energy gap between
the harmonic oscillator levels is on the order of the bath temperature, and the heating rates exceed

88



6.3. Loss of Motional Coherence

for small energy gaps the relaxation rates.

6.3. Loss of Motional Coherence

The probably most prominent example for the loss of coherence due to interaction with a bath is
the two-level atom coupling to the vacuum modes. In this case, the interaction causes the well-
known phenomena of spontaneous emission [78] which corresponds according to our previous
terminology to the relaxation from the excited to the ground state. Besides this population decay,
the vacuum modes also induce the loss of coherence for an atom starting in a superposition of
ground and excited state. For the two-level atom, it turns out that the coherence decays at half
the spontaneous emission rate [74]. The intuitive explanation for this factor of two is the fact
that only the atom fraction in the excited state decays, whereas the fraction in the ground state is
unaffected by the vacuum modes. In the following, we try to adapt this interpretation approach
and check if the loss of motional coherence due to the bosonic bath originates from relaxation
processes.
For this purpose, we evaluate the evolution of a lithium atomwithin the bosonic bath according

to equation (6.21). The loss of coherence can then be extracted from the decay of the off-diagonal
densitymatrix elements. As the functional evolution of the densitymatrix is a priori unknown, we
characterize the coherence loss by the decoherence time 𝜏decoh for which the off-diagonal matrix
element decays to 1/e of its initial value.4 Simultaneously, the relaxation time 𝜏relax is determined
by the same approach using the diagonal elements of the density matrix in order to compare the
two time scales imposed by the bosonic bath.

6.3.1. One-Dimensional Harmonic Oscillator Potential

At first, we investigate the dynamics of a lithium atom in one dimension and for zero temperature.
Initially, the atom is prepared in an equal superposition of two harmonic oscillator modes

1√
2

(|𝑚⟩ + |𝑛⟩) with 𝑚 < 𝑛, (6.27)

and we determine 𝜏relax and 𝜏decoh from the evolution of the density matrix elements 𝑤𭑛,𭑛(𝑡) and
𝑤𭑛,𭑚(𝑡), respectively. For this scenario, figure 6.3 a) shows the ratio 𝜏decoh/𝜏relax for superposi-
tions between different modes and for the same bath parameters as for figure 6.2. If the ground
state is selected as one of the superposition modes, the calculation yields 𝜏decoh/𝜏relax ≈ 2 as for
the two-level atom. This observation is consistent with the interpretation of the coherence loss
by means of relaxation processes. If both superposition modes are excited modes, the ratio drops
below 2 and approaches 1 for modes having similar relaxation times (see figure 6.2). This result
agrees at least qualitatively with our expectations as both modes relax in this case to energetically
lower modes.
For a more quantitative check, we have to adapt the interpretation approach of the two-level

atom and account for the fact that the bosonic bath couples both superposition modes to lower
modes. The corresponding total relaxation rate for mode 𝑚 and 𝑛 is given by ∑𭑘 𝑅𭑚→𭑘 and

4Actually, we find for most calculation parameters an almost (but not perfect) exponential coherence decay.
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Figure 6.3.: Ratio of the decoherence time 𝜏decoh and the relaxation time 𝜏relax according to equa-
tion (6.21) and the corresponding approximation on the basis of the relaxation and
heating rates. a) For different superpositions of two one-dimensional harmonic os-
cillator modes (𝜔 = 2𝜋 2.5 kHz). The lower superposition mode is alternated and the
higher mode fixed to the 28th mode as indicated by the insets. b) For different su-
perpositions of two modes of a two-dimensional harmonic oscillator potential. Each
superposition consists of a variable mode along one direction (𝜔trans = 2𝜋 5 kHz) and
ground and first excited state along the other direction (𝜔long =2𝜋 70 kHz).

∑𭑘 𝑅𭑛→𭑘, respectively. As we expect that both modes contribute equally to the coherence loss,
we approximate the characteristic time scale for the coherence decay 𝜏decoh at zero temperature
by

𝜏decoh(𝑇=0) = 2
∑𭑘 𝑅𭑚→𭑘 + ∑𭑘 𝑅𭑛→𭑘

. (6.28)

Hence, the corresponding ratio of 𝜏decoh/𝜏relax reads as

𝜏decoh(𝑇=0)
𝜏relax(𝑇=0)

=
2 ∑𭑘 𝑅𭑛→𭑘

∑𭑘 𝑅𭑚→𭑘 + ∑𭑘 𝑅𭑛→𭑘
. (6.29)

Figure 6.3 a) compares the approximated ratio 𝜏decoh/𝜏relax with the result from equation (6.21).
Both calculations show good agreement which demonstrates that the loss of coherence stems
mostly from relaxation processes.
Next, we include the bath temperature into our considerations. Figure 6.3 a) shows that in this

case the ratio 𝜏decoh/𝜏relax decreases compared to the one for zero temperature and that the impact
of the temperature is most severe if the lower superpositionmode has a small energy. If we remain
in the picture in which the coherence decay is related to relaxation processes, we now have to
take the heating processes into account. For instance, the superposition between the ground and

90



6.3. Loss of Motional Coherence

excited state decays for zero temperature only because of relaxation processes of the excited state.
Though, for finite temperature, also the ground state is affected by the bath and can be heated
to higher modes. These heating processes cause a coherence loss and hence 𝜏decoh/𝜏relax < 2. In
general, the finite temperature becomes important for the coherence decay if the heating rate is
for one of the two modes on the order of the relaxation rates. This condition also explains the
convergence of the zero and finite temperature calculations if both superposition modes have
high energies. In this case, the corresponding relaxation rates exceed the heating rates (fig. 6.2)
and thus the relaxation processes dominate the dynamics of the lithium atom .
To check the validity of this interpretation, figure 6.3 a) depicts the approximation for the ratio

𝜏decoh/𝜏relax which is adapted to the heating processes

𝜏decoh(𝑇>0)
𝜏relax(𝑇>0)

=
2 ∑𭑘 𝑅𭑛→𭑘 + 2 ∑𭑘 𝐻𭑛→𭑘

∑𭑘 𝑅𭑚→𭑘 + ∑𭑘 𝑅𭑛→𭑘 + ∑𭑘 𝐻𭑚→𭑘 + ∑𭑘 𝐻𭑛→𭑘
. (6.30)

Here, we also accounted for the decay of the diagonal density matrix elements due to heating
effects and the corresponding impact on the relaxation time. The agreement between the approx-
imation and the more complex calculation is almost as good as for the zero temperature case and
shows that the coherence decay can be understood in terms of heating and relaxation processes.

6.3.2. Two-Dimensional Harmonic Oscillator Potential

So far, we considered the evolution of motional coherences for different superpositions in one
dimension which allows the easiest access and interpretation of the coherence decay. However,
experimentally we investigate a different system. Because of our preparation scheme, the lithium
atom ideally starts its evolution in a superposition of ground and first excited state of the longi-
tudinal lattice potential. Depending on the potential along the transversal lattice directions, the
lithium atom occupies the lowest transversal mode (deep transversal lattice potentials) or one of
the excited modes (e. g. no transversal lattice at all). To reflect this situation, we study the coher-
ence decay in two dimensions and start the calculations with a superposition of ground and first
excited state along one direction (longitudinal) and alternate the occupied mode along the other
direction (transversal)

1√
2

( |0, 𝑙⟩⏟
∶=|𭑚⟩

+ |1, 𝑙⟩⏟
∶=|𭑛⟩

). (6.31)

As previously, we analyze the evolution of the density matrix elements 𝑤𭑛,𭑛(𝑡) and 𝑤𭑛,𭑚(𝑡) in
order to determine 𝜏relax and 𝜏decoh. Figure 6.3 b) depicts the calculated ratios 𝜏decoh/𝜏relax for var-
ious superpositions and compares the results to the approximations by means of equation (6.29)
and (6.30).5 The calculations do not reveal a qualitative difference between the coherence loss in
one and two dimensions. As before, the evolution of 𝜏decoh/𝜏relax can be (at least qualitatively)
explained in terms of relaxation and heating processes.
Moreover, the agreement is remarkably good at zero temperature. This is due to the fact that the

time-dependent coupling terms in equation (6.21) oscillate for the two-dimensional calculations

5The calculations in two dimensions include less modes along each direction than in one dimension as the computa-
tional effort of equation (6.21) scales as (total number of modes)4.
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Figure 6.4.: a) Representation of 1√
2(|0, 4⟩ + |1, 4⟩) as density matrix 𝑤. The blue shaded area

corresponds to the transversal modes in the longitudinal ground state and the red
shaded area to the modes in the first excited state. The density matrix is asymmetric
as it contains all modes up to 140 kHz (𝜔trans = 2𝜋 5 kHz, 𝜔long = 2𝜋 70 kHz). The
red-blue shaded regions represent the matrix elements accounting for the coherence
between the longitudinal ground and excited state. b) and c) Density matrix at later
evolution times (𝜌0 = 4 ⋅ 1014 cm−3, 𝑇 = 550 nK). b) The initial coherence decays,
but is for transversal relaxation and heating processes partly preserved. c) After long
evolution times, no coherences are left. Because of the finite temperature, the lithium
atom does not completely relax to the transversal ground state.

due to the larger energy splitting between the harmonic oscillator modes faster than the time
scale of the relaxation and decoherence processes. Hence, their contribution to the dynamics of
the lithium atom averages to zero and we get effectively a rotating wave approximation. The only
remaining coupling terms are those which are responsible for the relaxation rates. Thus, we get a
perfect agreement between the numerical calculation and the approximation on the basis of the
relaxation rates. For finite temperature, the agreement is not as good because the heating pro-
cesses counteract the relaxation processes and vice versa. This leads to a slightly non-exponential
evolution of the density matrix elements, whereas the derivation of equation (6.30) assumes an
exponential coherence and population decay.

Dynamics in the Longitudinal Direction

Up to now, our analysis of the dynamics in the two-dimensional harmonic oscillator potential
based on the evolution of the single density matrix elements 𝑤𭑚,𭑛(𝑡) and was consistent with
our interpretation by means of the relaxation and heating processes. Experimentally we do not
resolve the evolution along the transversal directions, but only detect the evolution along the
longitudinal direction. Hence, we observe the dynamics of multiple 𝑤𭑚,𭑛(𝑡)'s at once.
Figure 6.4 a) illustrates this fact by coloring the elements of the density matrix 𝑤 of the state

1√
2(|0, 4⟩ + |1, 4⟩) with respect to the longitudinal modes. The evolution of this density matrix

is displayed in figure 6.4 b) and c) and shows an interesting feature concerning the decay of mo-
tional coherences. According to figure 6.4 b), the initial off-diagonal element, which accounts for
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the coherence between the ground and first excited state along the longitudinal direction, decays
but the occupation of other off-diagonal elements increases. Thus, the relaxation and heating
processes along the transversal directions do not necessarily imply a loss of coherence. This be-
havior stems from the fact that both superpositionmodes interact mutually with the bosonic bath,
i. e. the matrix elements which couple the involved transversal modes agree for the longitudinal
ground and excited state in sign and magnitude.
The preservation of the coherence in presence of interaction processes is not an exclusive char-

acteristic of the bosonic bath, but has also been shown for ions exposed to a light field [79] and
molecules immersed in a solvent [80, 81]. The common feature of all these systems is that the en-
ergy scale of the interaction processes is either larger (ion) or lower (molecule, bosonic bath) than
the energy gap between the superposition modes. In case of the bosonic bath, most relaxation or
heating processes along the transversal direction involve a Bogoliubov excitation whose wave-
length is larger than the extent of the longitudinal wavefunctions. Thus, the excitation cannot
resolve the difference between the longitudinal ground and excited state, and the corresponding
matrix elements are almost identical.
In terms of a measurement process, the elementary excitation does not carry any information

about the occupied longitudinal modes and their coherence is preserved. In contrast, excitations
with shorter wavelengths correspond to an effective measurement of the longitudinal superposi-
tion which causes the loss of coherence.

In the following, we investigate the impact of the transversal on the longitudinal dynamics more
systematically and determine the decoherence time 𝜏decoh with respect to the coherence between
the longitudinal ground and excited state. For this purpose, we analyze the evolution of all off-
diagonal density matrix elements

�
𭑙0,𭑙1

𝑤𭑙0,𭑙1(𝑡) with |𝑙𭑖⟩ = |𝑖, 𝑙⟩ (6.32)

which leave the longitudinal mode unchanged (red-blue shaded area in figure 6.4 a)). In analogy,
we get the relaxation time 𝜏relax from the population of the excited longitudinal mode (diagonal
of the red shaded area in figure 6.4 a))

�
𭑙1

𝑤𭑙1,𭑙1(𝑡). (6.33)

Figure 6.5 depicts the corresponding ratios of the decoherence and relaxation time 𝜏decoh/𝜏relax for
the same scenarios as displayed in figure 6.3 b). As before, the ratio yields in case of zero temper-
ature and for the occupation of the transversal ground state a factor of 2. But 𝜏decoh/𝜏relax drops
for occupation of higher transversal modes much slower as previously. This behavior is consis-
tent with our earlier interpretation which stated that the dynamics in transversal directions do
not necessarily imply a coherence loss if low energetic Bogoliubov excitations are involved. Our
explanation is further supported by the fact that the ratio decreases for higher transversal modes
whose relaxation induces elementary excitations with higher energies. Because of the corre-
sponding smaller wavelength, these excitations start resolving the wavefunction in longitudinal
direction and cause a loss of coherence. Overall, the results reveal that the coherence decay is
mostly governed by longitudinal dynamics as the ratio of 𝜏decoh/𝜏relax stays close to 2.
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Figure 6.5.: Ratio of decoherence time 𝜏decoh and relaxation time 𝜏relax for a two-dimensional har-
monic potential (𝜔trans =2𝜋 5 kHz, 𝜔long =2𝜋 70 kHz, 𝜌0 =4 ⋅ 1014 cm−3). The graph
compares the results for the evolution of the single matrix elements (circles) with the
analysis which considers the dynamics in longitudinal direction (dots). In the latter
case, 𝜏decoh/𝜏relax is larger as the transversal dynamics do not necessarily imply a loss
of coherence in the longitudinal direction.

Moreover, our considerations also hold for the finite temperature calculations which are also
displayed in figure 6.5. The corresponding ratios of the decoherence and relaxation time 𝜏decoh/𝜏relax
are slightly lower but follow qualitatively the zero temperature results. Compared to the calcula-
tions considering the single density matrix elements, the impact of the heating processes is much
less severe. This is due to the fact that the involved elementary excitations have rather small
energies (𝑘B𝑇/ℎ = 11 kHz).

Concluding Remarks

In this chapter, we theoretically investigated the impact of a bosonic bath on the evolution of a
single impurity confined in a harmonic potential. In this context, we studied the relaxation pro-
cesses of a motionally excited lithium atom by means of Fermi's golden rule. Our considerations
showed that the population decay depends on the transversal confinement as it affects both the
available relaxation channels and the corresponding coupling strengths. Moreover, we explored
the loss of motional coherence due to interaction between the impurity and the bosonic bath on
the basis of the master equation. For the one-dimensional harmonic potential, our results agreed
well with the approximations according to the relaxation and heating processes. Though, for the
two-dimensional potential, the interpretation of our calculations was more involved. In this case,
the coherence in the longitudinal direction is much less affected by the transversal dynamics. This
feature originates from the separation of the involved energy scales and leads to an overestima-
tion of the decoherence mechanisms by means of the heating and relaxation processes. Hence,
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the relaxation and heating rates can only serve as a pessimistic estimate for the decoherence time.
In the following chapters, we apply our theoretical considerations in order to analyze our mea-

surements of the population decay and the loss of motional coherence of lithium atoms immersed
in a sodium background.
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7. Relaxation Dynamics of Lithium

After the theoretical discussion in the last chapter, we investigate the impact of the sodium bath
on the dynamics of the lithium atoms in the following experimentally. In analogy to our previous
considerations, the investigation is divided into two parts. This chapter considers the relaxation
process of motionally excited lithium atoms, whereas the subsequent chapter studies the loss of
motional coherence due to the interaction between the lithium and sodium atoms.
First, we introduce the experimental procedure which is used in order to induce and investi-

gate the relaxation between the first and second band of the longitudinal lattice potential. Subse-
quently, we analyze the relaxation dynamics or respectively the population decay bymeans of the
band populations and band fractions. In this context, we develop a model which accounts for the
inhomogeneities of the bosonic background and compare it to the observed relaxation dynamics.
At the end of the chapter, we test our understanding of the population decay and the theory de-
veloped in the previous chapter, and explore the relaxation dynamics for different depths of the
longitudinal lattice potential. The data which is presented throughout this chapter is obtained for
experiments in the one-dimensional longitudinal lattice potential. However, the developed data
analysis also applies to relaxation measurements in higher dimensional lattice potentials.

7.1. Experimental Procedure

In order to study the relaxation of motionally excited lithium atoms due to the interaction with
the bosonic bath, we excite the lithium atoms to the second Bloch band of the longitudinal lattice
potential and investigate the subsequent evolution of the band populations. The excitation of
the lithium atoms is achieved by periodic modulation of the lattice position, more precisely by a
𝜋-pulse discussed in the context of the Rabi oscillations and the spin echo spectroscopy (chapter 5).
If the sodium atoms are removed before the excitation pulse, we do not observe an increasing
atom number in any of the Bloch bands and thus no dynamics between the different bands. This
is due to the fermionic nature of the lithium atoms which suppresses the redistribution of energy
between the lithium atoms at ultracold temperatures and hence the transition to energetically
lower states.
Figure 7.1 depicts the typical evolution of the band populations in the sodium background and

a one-dimensional lattice potential (𝑉0 = 33 𝐸rec). We observe a decay of the atom number in the
second band, whereas the atom number in the first band rises. This is a clear signature of a relax-
ation process from the second to first the band. We also notice that the number of atoms in the
third band is small compared to the total atom number and that the corresponding atom fraction
decreases from 6% (1 ⋅ 104 atoms) to 3% (3 ⋅ 103 atoms) during the relaxation measurement. We
attribute the finite population of the third band to imprecisions of our excitation scheme as the
fraction of atoms in the third band amounts to 3% prior to the excitation pulse. However, in the
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Figure 7.1.: Band populations of the lithium atoms evolving in a sodium bath (𝑁̄Na = 6.9 ⋅ 105,
𝑁̄Li = 1.3 ⋅ 105). The increasing lithium atom number in the first and the decreasing
atom number in the second band document the relaxation process. The solid lines
are the solution of the rate equations (eq. (7.1), (7.2)) fitted to the data and yield a
relaxation time of 𝜏=(3.86 ± 0.59)ms.

following analysis of the relaxation dynamics, we do not account for the atoms in the third band
as the corresponding population is below the statistical uncertainties for the populations in the
first and second band.

7.2. Analysis of the Relaxation Dynamics

In the previous chapter, we discussed the relaxation dynamics from the theoretical point of view
and found a constant decay rate and hence an exponential decay of the band populations in the
limit of vanishing temperature and constant bath density. Though, we need to modify this model
in order to describe our experiments correctly. In this context, we have to account for the inho-
mogeneity of our system and the finite life time of the lithium atoms due to spontaneous emission.
As the temperature of the sodium atoms (𝑇 = 550 nK =̂ 11 kHz) is well below the energy gap
between the first and second band (Δ𝐸1-2/ℎ = 70 kHz), we do not expect thermal excitations to
the second band and neglect heating effects (see fig. 6.2).

7.2.1. Rate Equations for the Band Populations

In the following, we adjust our theoretical model stepwise to our experimental conditions. First,
we take the finite life time of the lithium atoms in the optical lattice into account but neglect
the experimental inhomogeneities. According to this simplification, the relaxation rate 𝛾 is for
all excited lithium atoms identical and the band populations can be described by a set of rate
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equations. The lithium atom number in the first Bloch band 𝑁1(𝑡) rises at each point in time by
the number of atoms relaxing from the second to the first band and decreases due to spontaneous
emission processes

𝑑𝑁1(𝑡)
𝑑𝑡

= 𝛾𝑁2(𝑡)⏟⏟⏟⏟⏟
relaxation

−𝛾1𝑁1(𝑡)⏟⏟⏟⏟⏟⏟⏟⏟⏟
spontaneous
emission

. (7.1)

Here, 𝑁2(𝑡) denotes the population in the second band and 𝛾1 the loss rate due to spontaneous
emission. Accordingly, the atom number in the second Bloch band 𝑁2(𝑡) changes by

𝑑𝑁2(𝑡)
𝑑𝑡

= −𝛾𝑁2(𝑡)⏟⏟⏟⏟⏟⏟⏟
relaxation

−𝛾2𝑁2(𝑡)⏟⏟⏟⏟⏟⏟⏟⏟⏟
spontaneous
emission

. (7.2)

with 𝛾2 being the loss rate due to photon scattering for the second band. If we solve the coupled
differential equations (7.1) and (7.2) with the boundary conditions 𝑁1(0) = 𝑁1,0 and 𝑁2(0) =
𝑁2,0, we get for the evolution of the band populations

𝑁1(𝑡) = 𝑁1,0𝑒−𭑡𭛾1 +
𝛾𝑁2,0

𝛾 + 𝛾2 − 𝛾1
𝑒−𭑡𭛾1 (1 − 𝑒−𭑡(𭛾+𭛾2−𭛾1)) (7.3)

and
𝑁2(𝑡) = 𝑁2,0𝑒−𭑡(𭛾+𭛾2). (7.4)

Figure 7.1 depicts the corresponding fit of these two equations to our experimental data. The fit
is performed with 𝑁1,0, 𝑁2,0, 𝛾 and an additional offset for 𝑁2(𝑡) as free parameters, whereas 𝛾1
and 𝛾2 are determined by independent life time measurements without the sodium background
(section 4.5).
We expect that the life time of the lithium atoms in the lattice potential is identical with and

without bosonic bath as the photon scattering does not depend on the type of the background.
Moreover, the lithium atoms leave the sodium cloud within 200 µs due to the photon kick which
is ten times faster than the time scale for the relaxation process. Hence, we can neglect the redis-
tribution of the kinetic energy and the recapturing of lithium atoms by the sodium background.
The additional offset parameter for the atom number in the second Bloch band is justified by the
larger extent of the lithium atoms compared to the sodium cloud which prevents the relaxation
of lithium atoms located outside of the sodium background.
The fit of equation (7.3) and (7.4) shows good agreement with the experimentally determined

band populations and we get a relaxation rate of 𝛾 = (259 ± 36) s−1, which corresponds to a
decay time of 𝜏 = (3.86 ± 0.59)ms. However, we also notice that the agreement becomes worse
for long evolution times and that the shot to shot fluctuations of the band populations prevent a
more accurate analysis of the relaxation dynamics.

7.2.2. Analysis of the Relative Band Populations

Identical Relaxation Processes

In the following, we investigate the relaxation on the basis of the relative instead of the absolute
band populations. This approach allows a better analysis of our data as it is less sensitive to the
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7. Relaxation Dynamics of Lithium

shot to shot variations of the lithium atom number. Moreover, the band fractions offer a more in-
tuitive interpretation of our experimental results as the analogy to a spin system is more evident.
Figure 7.2 depicts the decay of the atom fractions for the same data set as shown in figure 7.1. The
error bars are in case of the band fractions much smaller than for the band populations which
shows that the varying band populations are mostly due to fluctuations of the lithium atom num-
ber and not due to different bath preparations or other experimental imprecisions. Nevertheless,
it is important to analyze the evolution of the band populations prior to the evolution of band
fractions as the latter can also change due to loss processes as caused by spontaneous emission.
In order to determine the relaxation rate, we calculate the fraction of lithium atoms in the

second band 𝑓2nd(𝑡) from equation (7.3) and (7.4)

𝑓2nd(𝑡) = 𝑁2(𝑡)
𝑁1(𝑡) + 𝑁2(𝑡)

=
𝑁2,0𝑒−𭑡(𭛾+𭛾rel)

𝑁1,0 + 𭛾𭑁2,0

𭛾+𭛾rel
(1 − 𝑒−𭑡(𭛾+𭛾rel)) + 𝑁2,0𝑒−𭑡(𭛾+𭛾rel)

. (7.5)

Here, 𝛾rel = 𝛾2 − 𝛾1 denotes the relative loss rate between the second and first band because
of spontaneous emission. Figure 7.2 b) displays the corresponding fit which yields the almost
identical relaxation time 𝜏 = (3.81 ± 0.35)ms as for the fit to the band populations. As in the
latter case, the fit is performed for a fixed relative loss rate 𝛾rel and an additional offset param-
eter. Moreover, 𝑁1,0 and 𝑁2,0 cannot be fitted independently as we have to fulfill the boundary
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Figure 7.2.: a) Band fractions for the lithium atoms evolving in a sodium bath (𝑁̄Na = 6.9 ⋅ 105,
𝑁̄Li = 1.3 ⋅ 105). b) Fits to the atom fraction in the second band assuming identical
relaxation rates for all lithium atoms (dashed line, eq. (7.5)) and individual relaxation
rates (solid line, eq. (7.10)). The latter model matches the data especially in the long
term limit better and the corresponding𝜒2

red =1.8 is lower than for identical relaxation
rates 𝜒2

red = 2.9. In case of identical relaxation processes, the fit yields a relaxation
time of 𝜏 = (3.81 ± 0.35)ms. The inset displays the relaxation dynamics for short
evolution times.
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condition 𝑁1,0 + 𝑁2,0 = 𝑁total with 𝑁total being the total number of lithium atoms. Thus, we set
𝑁1,0 = 𝜂𝑁total and 𝑁2,0 = (1 − 𝜂)𝑁total, and we are left with 𝜂 as fit parameter.
Beyond the agreement between the relaxation times determined by means of the band popula-

tions and band fractions, figure 7.2 b) also shows a second feature which is not as obvious from the
band population data. Especially for long evolution times, the fit deviates from the experimental
data and our simple model cannot account correctly for the decay in the long term limit. This
deviation is due to the fact that our model involves only two time scales, namely the one given
by the relative loss rate 1/𝛾rel and the relaxation time 1/𝛾. As the relaxation time is determined
by the fast initial decay and the relative loss rate causes only a very slow decay, our model does
not capture the decay for long evolution times correctly. This observation demonstrates that we
need to include more than these two time scales in order to describe our data which means that
not all lithium atoms relax with identical relaxation rates.

Individual Relaxation Processes

In the following, we discuss the most important reasons which cause non-identical relaxation
rates for the lithium atoms and adapt our model to the most dominant effects. First of all, we
regarded the lithium atoms during our previous considerations as single atoms and did not include
their fermionic nature into our considerations. This approach is well justified in case of a deep
three-dimensional lattice potential for which each single occupied lattice site can be considered
independently. However, for the relaxation in a one-dimensional lattice potential, neglecting the
fermionic properties of the lithium atoms seems to be a rather crude assumption as each lattice
site is occupied by a few hundred fermions. Pauli blocking offers a plausible explanation for
the slow-down of the relaxation dynamics because the lithium atoms gradually fill the first band
which reduces the number of decay channels for the subsequent relaxation processes.
To determine if Pauli blocking is the relevant mechanism for the relaxation slow-down, we

consider the central lattice for which the impact of the fermionic nature is most pronounced
because of the large lithium atom number (≈ 3 ⋅ 103 atoms). Pauli blocking has the strongest
effect if all but one lithium atom relaxed to the first band and if these atoms occupy the decay
channels with the highest relaxation rates. For this scenario, we obtain from equation (6.24) that
the transition rate for the last atom is reduced by a factor of 4 compared to the relaxation rate
without Pauli blocking.1

Weobserve that the relaxation processes in figure 7.2 slows down bymore than a factor of 20 for
long evolution times from which we conclude that the Pauli principle does not explain our obser-
vations. Moreover, our considerations set only a pessimistic upper bound for reduction of the re-
laxation rate as we discussed the central lattice site. Additionally, a more detailed investigation of
the population decay shows that the lithium atoms do not permanently occupy the decay channels
with the highest transition rates. Instead, the lithium atoms perform a cascading relaxation pro-
cess which is illustrated in figure 7.3. During the first relaxation step, the lithium atoms dissipate
on average an energy of 𝐸̄dis/ℎ ≈ 40 kHz and occupy subsequently excited transversal modes.2

1For this calculation, the last lithium atom occupies the 10th excited mode in each transversal direction which corre-
sponds to a transversal excitation energy of 15 kHz.

2The average of the dissipated energy is obtained by weighting the dissipated energy for all possible decay channels
according to the corresponding relaxation rates (eq. (6.24), fig. 6.1 b)).
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Figure 7.3.: Illustration of the energy scales during the relaxation process in two dimensions. The
blue and red lines denote the transversal modes in the first and second band, respec-
tively. The blue shading indicates the transversally occupied modes prior to the exci-
tation pulse, whereas the red shading represents the occupation after the excitation.
Depending on the initial mode, the lithium atoms dissipate during their first relax-
ation step different amounts of energy to the sodium bath and perform subsequently
a second relaxation process.

As the energy of these modes is larger than the bath temperature ((Δ𝐸1-2 − 𝐸̄dis)/ℎ = 30 kHz,
𝑇 𝑘B/ℎ = 11 kHz), the atoms perform a second relaxation step to less excited transversal modes.
Since the second step occurs on the same time scale as the first one (figure 6.2), the atoms quickly
leave the modes which have the highest rates for the transition from the second to the first band.

Thus, the impact of Pauli blocking on the relaxation dynamics is less severe than the estimated
factor of 4, and the slow-down of the relaxation process is mainly caused by single particle effects.
The most prominent reason for non-identical relaxation rates is the inhomogeneity of the bath
density over the extent of the lithium cloud. For our experimental parameters, the lithium atoms
probe a bath density which ranges from almost zero in the outer wings of the sodium cloud to
the large densities in the center of the Bose-Einstein condensate. Thus, we observe an averaged
relaxation process which depends on the location of the lithium atoms in the bosonic bath.
In contrast, the impact of the different initial conditions of the lithium atoms which populate

different transversal modes is much less severe. The variation of the relaxation rates for the
occupied transversal modes is well below 5% (eq. (6.24)) and does not explain the slow decay of
the band populations for long evolution times.

7.2.3. Relaxation Dynamics in the Inhomogeneous Bath

Subsequently, we include the density distributions of the lithium and sodium atoms into our
considerations and test if the inhomogeneity of the bosonic bath explains the observed relax-
ation dynamics. For this purpose, we start from equation (7.5) and perform a further approx-
imation in order to reduce the complexity of our calculations. As the relative loss rate 𝛾rel
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(𝛾rel = 1/𝜏rel ≈ 5 s−1) is for our experiments much lower than the relaxation rate 𝛾 (≈ 250 s−1),
we can approximate 𭛾

𭛾+𭛾rel
≈ 1 and get

𝑓2nd(𝑡) = 𝑁2(𝑡)
𝑁1(𝑡) + 𝑁2(𝑡)

=
𝑁2,0𝑒−𭑡(𭛾+𭛾rel)

𝑁1,0 + 𝑁2,0
. (7.6)

To calculate the relaxation process in an inhomogeneous bath, we sum over the dynamics of the
single lithium atoms [41]. For this purpose, we suppose that the relaxation rate is for each atom 𝑖
time-independent, and we obtain for the atom fraction in the second band 𝑓inh2nd(𝑡) with individual
relaxation rates

𝑓inh2nd(𝑡) =
∑𭑖 𝑒−𭑡(𭛾𭑖+𭛾rel)

𝑁1,0 + 𝑁2,0
. (7.7)

Here, the sum includes all lithium atoms which initially occupy the second band and the 𝛾𭑖's de-
note the individual relaxation rates. As the energy which is dissipated during the relaxation
process (𝐸̄dis/ℎ ≈ 40 kHz) is much larger than the chemical potential of the sodium atoms
(𝜇Na/ℎ ≈ 6 kHz), the relaxation rate is according to equation (6.24) proportional to the bath
density 𝑛Na,𭑖 at the position of the lithium atoms

𝛾𭑖 = 𝑟𝑛Na,𭑖 (7.8)

with 𝑟 being the relaxation constant. Because the lattice spacing is one order of magnitude smaller
than the extent of the sodium cloud, we can approximate the sum in equation (7.7) by an integral.
Moreover, we expect that the excitation to the second band is independent from the position of
the lithium atoms as the detuning 𝛿 of the excitation pulse due to the inhomogeneity of the lattice
potential is small compared to the Rabi frequency Ω (𝛿/Ω < 0.25). Hence, we can write the
fraction in the second band in terms of the sodium 𝑛Na( ⃗𝑟) and lithium density 𝑛Li( ⃗𝑟)

𝑓inh2nd(𝑡) = 𝑓inh2nd(0)
∫𝑛Li( ⃗𝑟)𝑒−𭑡(𭑟𭑛Na(𭑟⃗)+𭛾rel) d ⃗𝑟

∫𝑛Li( ⃗𝑟) d ⃗𝑟
. (7.9)

Though, for the one-dimensional lattice potential, equation (7.9) only holds for short evolution
times as the lithium atoms probe for longer evolution times different bath densities in the transver-
sal directions which means that the relaxation rates become time-dependent.
In the long term limit, the lithium atoms average over the bath density along the transversal

directions since the relaxation time is a factor of two smaller than the time scale given by the
transversal trapping frequencies. In this limit, we can modify equation (7.7) to

𝑓inh2nd(𝑡) = 𝑓inh2nd(0)
∑𭑗 𝑁Li,𭑗𝑒−𭑡(𭑟𭑛2d

eff,𭑗+𭛾rel)

∑𭑗 𝑁Li,𭑗
. (7.10)

Here, the sum includes the lattice sites of the one-dimensional lattice and𝑁Li,𭑗 denotes the lithium
atom number at site 𝑗. If the lattice axis points in x-direction, we get

𝑁Li,𭑗 = ∫
𭑥𭑗+1

𭑥𭑗

d𝑥 ∫d𝑦 ∫d𝑧 𝑛Li( ⃗𝑟) with 𝑥𭑗 = 𝑑lat(𝑗 − 1/2). (7.11)
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Figure 7.4.: a) Lithium atom number per lattice site in a one-dimensional lattice potential for
1.3 ⋅ 105 lithium, 6.9 ⋅ 105 sodium atoms and a condensate fraction of 66%. The ver-
tical dashed lines indicate the lithium atoms probing the Bose-Einstein condensate,
which are about 55% of all atoms. The asymmetry and the displacement arise from
the different gravitational sag for sodium and lithium as well as the mean field poten-
tial created by the sodium atoms. b) Effective sodium density per lattice site.

Furthermore, 𝑛2d
eff,𭑗 denotes the effective sodium density at site 𝑗 which is probed by the lithium

atoms

𝑛2d
eff,𭑗 = ∫

𭑥𭑗+1

𭑥𭑗

d𝑥 ∫d𝑦 ∫d𝑧 𝑛Li( ⃗𝑟)
𝑁Li,𭑗

𝑛Na( ⃗𝑟). (7.12)

Figure 7.4 displays the calculated lithium atom number and the effective sodium density per lattice
site (section 2.3.2) corresponding to the experimental conditions during the relaxation measure-
ment shown in figure 7.1 and 7.2. These profiles exhibit the underlying mechanisms for the indi-
vidual relaxation rates and for the different time scales of the relaxation process.
Shortly after the excitation to the second band, the lithium atoms which are centered in the

Bose-Einstein condensate relax to the first band as they experience the largest sodium density.
Hence, we observe a fast initial decay of the atom fraction in the second band. However, at
some point, all of these atoms already relaxed to the first band, and the lithium atoms which are
located in the wings of the Bose-Einstein condensate contribute most to the observed relaxation
dynamics. Though, their band population changes slower due to the lower sodium density. Thus,
we observe a relaxation process which gradually slows down. Moreover, the large difference
between the relaxation rates in the beginning and the end of the dynamics stems from the large
range of sodium densities probed by the lithium atoms.
In order to test our interpretation, we fit equation (7.10) with the calculated lithium atom num-

ber and the effective sodium density per lattice site to our experimental data. As for the identical
relaxation rates, we are left with three fitting parameters, namely 𝑟, 𝑓inh2nd(0) and an additional
offset parameter. The result is displayed in figure 7.2 and matches the relaxation dynamics better
than the fit for a homogeneous bath. Especially for long evolution times, the fit captures the
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gradual slow-down of relaxation process more precisely which shows that the non-identical re-
laxation rates for the lithium atoms are caused by the inhomogeneities of the bosonic bath. But
we also notice that the fit deviates from the experimental data for short evolution times as the
assumptions leading to the effective density (eq. (7.12)) do not hold for short time scales.

7.3. Characterization of the Relaxation Dynamics

In the following, we employ our previous considerations in order to characterize the population
decay and test our understanding of the relaxation process. For this purpose, we analyze the
initial relaxation process instead of its whole evolution. The main reasoning for this approach is
that we need to take the dynamics of the lithium in the transversal directions into account if we
investigate the relaxation process for long time scales. For the derivation of equation (7.10), we
argued that the dynamics in the transversal directions are about a factor of two faster than the
relaxation process and we considered this fact by introducing the effective sodium density per
lattice site. However, this concept is not properly valid for small evolution times as the lithium
atoms do not have enough time to probe the whole sodium density distribution. This leads to
systematic errors in our data evaluation. Though, if we restrict our investigations to the initial
relaxation process, we can analyze the data on the basis of equation (7.9) as the lithium atoms
experience for short evolution times only the local sodium density at their initial position.
Moreover, the impact of the relaxation dynamics on the sodium bath is for short evolution times

smaller as less lithium atoms dissipate energy to the bath. We do not observe significant heating
of the bosonic bath or loss of sodium atoms during the relaxation process, but we notice that the
condensate fraction decreases after the relaxation dynamics, i. e. for times longer than 100ms,
from 0.7 to 0.6. We attribute the delay between the dissipation of energy and the heating of the
Bose gas to the slower thermalization processes of the sodium background. By restricting our
investigations to the initial relaxation process, the effect on the bath is less pronounced and thus
the back-action on the relaxation dynamics is smaller.
For short evolution times, we can expand equation (7.9) which yields

𝑓inh2nd(𝑡) ≈
𝑓inh2nd(0)

𝑁Li
∫𝑛Li( ⃗𝑟) (1 − 𝑡(𝑟𝑛Na( ⃗𝑟) + 𝛾rel)) d ⃗𝑟 (7.13)

= 𝑓inh2nd(0)(1 − 𝑡𝛾rel − 𝑡𝑟 ∫ 𝑛Li( ⃗𝑟)
𝑁Li

𝑛Na( ⃗𝑟) d ⃗𝑟
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

∶=𭑛eff

).

According to this equation, we expect that the initial relaxation of the population in the second
band depends linearly on the density and hence the effective density 𝑛eff of the bosonic bath. In
case of a bosonic bath, this relation only holds if the excitations of the Bose gas which are induced
during the relaxation process belong to the free-particle-like branch of the dispersion relation and
not to the phonon-like part. This assumption is for our experimental parameters well justified as
the energy dissipated during the relaxation process is much larger than the chemical potential
of the bosonic bath. Thus, the induced Bogoliubov excitations belong to the free-particle regime
of the dispersion relation. Figure 7.5 a) displays the atom fraction in the second band for a fixed
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Figure 7.5.: a) Fraction of lithium atoms in the second band after 2ms and for different effective
sodium densities. The solid line depicts a linear fit to the data. b) The relaxation
constant 𝑟 is determined from a linear fit to the atom fraction in the second band,
which is corrected for losses due to spontaneous emission, plotted versus the evolution
time multiplied by the effective sodium density. The inset displays a zoom into the
initial relaxation dynamics.

evolution time and for the same data set as before. The atom fraction is plotted versus the effec-
tive sodium density and shows the expected linear relationship which justifies the assumption
experimentally.

Next, we study the relaxation dynamics for different lattice depths and change thereby the amount
of dissipated energy. We extract for each lattice configuration the relaxation constant 𝑟 and com-
pare it to theory. In order to increase the accuracy of our evaluation, we rescale the data and ana-
lyze the dependency of the atom fraction in the second band on the timemultiplied by the effective
sodium density. For this purpose, we correct the atom fraction in the second band for spontaneous
emission losses, which yields 𝑓inh2nd(𝑡)𝑒𭑡𭛾rel or 𝑓inh2nd(𝑡)(1+𝑡𝛾rel) for the linear approximation, andwe
compute the effective sodium density for each data point. Figure 7.5 b) depicts the corresponding
data for the one-dimensional lattice potential with 𝑉0 = 33 𝐸rec (Δ𝐸1-2/ℎ = 70 kHz). We get the
relaxation constant from a linear fit to the initial decay which yields 𝑟 = (99±12) ⋅10−13 cm3/s.
Figure 7.6 displays the relaxation constants for various lattice depths and compares them to

theory (eq. (6.24)).3 The graph documents that our calculations reproduce the observed relax-
ation rates for deep lattice potentials within the experimental accuracies and without any fit
parameters. But we also notice a discrepancy for lower potentials. Moreover, we see that the
theory depends for low lattice potentials on the bath density. This behavior indicates that our
assumption considering the relaxation constant 𝑟 as density-independent breaks down for small
dissipated energies. But the deviation is not strong enough to account for the observed discrep-

3The relaxation constant is computed for the lowest transversal mode.
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Figure 7.6.: Relaxation constant 𝑟 for different one-dimensional lattice potentials characterized by
the gap between first and second band Δ𝐸1-2. The experimental values (red points)
are for deep lattice potentials consistent with the theoretical calculations (gray lines,
eq. (6.24)).

ancy for the data point at Δ𝐸1-2/ℎ = 23 kHz. Hence, the deviation has to originate from other
parameters which we discuss below.

• The impact of the species-selective lattice potential on the density of the sodium atoms
cannot explain our observations as the reduction of the sodium density at each lattice site
is for the deep lattices below 10% [41]. This effect is barely on the order of our accuracy and
is for low lattice depths, for whichwe observe the largest discrepancies between experiment
and theory, even less severe.

• Also the uncertainties in the trapping frequencies and in the temperature determination
cannot account for the observed discrepancies. Both parameters affect the precision of the
density determination, but do not depend on the lattice depth.

• According to our previous discussion (section 7.2.2), the Fermi character of the lithium
atoms has for lower lattice depths a larger impact on the relaxation dynamics. For the deep
lattice potentials, we estimated that the relaxation rate could be reduced at most to 25%
of the single particle value due to Pauli blocking. Though, for low lattice depths, Pauli
blocking becomes more important as the number of the possible decay channels decreases
which provides an explanation for the deviation between the theoretical and experimental
relaxation constant for the lowest investigated lattice depth.

Concluding Remarks

This chapter presented the relaxation of motionally excited lithium atoms due to interaction with
the sodium atoms. In this context, we developed an understanding of the dynamics within the
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7. Relaxation Dynamics of Lithium

bosonic bath and discussed the experimental parameters which are relevant for the data evalu-
ation. We observed a non-exponential decay of the band populations for long evolution times
which originates from the inhomogeneity of the bosonic bath. Moreover, we characterized the
relaxation by means of the initial dynamics and demonstrated that the corresponding decay rates
are, for deep lattice potentials, consistent with the theory presented in the previous chapter. In the
subsequent chapter, we will make use of this knowledge in order to analyze the loss of motional
coherence which is also induced by the interaction between the sodium and lithium atoms.
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8. Interaction Induced Loss of Motional
Coherence

In the following, we study the motional coherence of the lithium atoms during their evolution
in the bosonic bath. For this purpose, we proceed in close analogy to the previous chapter and
introduce at first the experimental procedure. In order to investigate the coherence loss, we
apply the spin echo technique and analyze the impact of the sodium background on the dynamics
of the lithium atoms by comparing the spin echo signal with and without bath. Subsequently,
we adapt the relaxation model for the inhomogeneous bath to the loss of motional coherence,
and determine the corresponding decay rate. The chapter concludes with the comparison of the
characteristic time scales for the relaxation and decoherence processes. Both dynamics originate
from the interaction between the bath and the immersed atoms as well as the large number of
degrees of freedom of the bath [82], andwewill investigate if the coherence loss and the relaxation
dynamics are induced by the same underlying mechanics.

8.1. Experimental Procedure

To investigate the motional coherence of the lithium atoms in the bosonic bath, we prepare the
lithium atoms in superpositions of states belonging to the first and second band, and probe the
final states after different evolution times. For this purpose, we apply the spin echo technique
which was introduced in section 5.3.
The corresponding measurement for a one-dimensional longitudinal lattice potential (𝑉0 =

33 𝐸rec) is shown in figure 8.1 a). The graph depicts the maxima and minima of the Ramsey
fringes with and without bath for different evolution times. In contrast to the relaxation dynamics
presented in the previous chapter, we cannot attribute the decay of the fringe amplitudes solely to
the interaction between the sodium and lithium atoms as the Ramsey signal vanishes after long
evolution times evenwithout the sodium background. Hence, we compare the Ramsey signal with
and without bosonic bath, and we observe a clear relative decay of the fringe amplitudes. For long
evolution times, it is instructive to analyze the ratio between the amplitudes. The corresponding
graph is shown in figure 8.1 b), and reveals that the ratio decreases monotonically. We assign the
relative decay between the fringe amplitudes to the interaction between the lithium atoms and
the bosonic bath and hence to the interaction induced loss of motional coherence.
In analogy to the relaxation, we consider the loss of motional coherence at first assuming iden-

tical dynamics for all lithium atoms. From our theoretical investigations, we expect that the
coherence of the lithium atoms and hence the Ramsey fringe amplitude 𝑎bath(𝑡) decays in the
bosonic bath exponentially

𝑎bath(𝑡) = 𝑎(𝑡)𝑒−𭑡𭛾decoh . (8.1)
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Figure 8.1.: a) Spin echo signal in the one-dimensional lattice (𝑉0 = 33 𝐸rec) for different evolu-
tion times. The presence of the bosonic bath reduces the Ramsey fringe amplitudes
(𝑁̄Na = 5.2 ⋅ 105, 𝑁̄Li = 2.1 ⋅ 105). The dashed lines indicate the initial decay of
the fringe amplitudes and yield a decay rate of Γ0 = (115 ± 31) s−1 without and of
Γbath = (235 ± 21) s−1 with bath which corresponds to an effective coherence loss
rate of Γdecoh = (120 ± 37) s−1. b) Ratio between the fringe amplitudes with and
without bath 𝑎bath(𝑡)/𝑎(𝑡). The solid line displays an exponential fit which yields
for the decoherence time 𝜏decoh = (6.8 ± 0.8)ms and for the coherence decay rate
𝛾decoh =1/𝜏decoh =(148 ± 18) s−1.

Here, 𝑎(𝑡) denotes the fringe amplitude in absence of the bath and 𝛾decoh the decay rate of the mo-
tional coherence. Figure 8.1 b) depicts an exponential fit to the ratio of the amplitudes 𝑎bath(𝑡)/𝑎(𝑡)
which yields a coherence decay rate of 𝛾decoh = (148 ± 18) s−1.1

Moreover, we note that we do not expect a significant impact of the bath on the efficiency of
the spin echo technique as the lithium atoms in the first and second Bloch band probe for a deep
lattice, i. e. low tunneling rates, the same bath density. Experimentally, we verified this assump-
tion by performing Rabi oscillations and spectroscopy measurements with and without bosonic
bath, but we do not observe different Rabi or resonance frequencies within our experimental pre-
cision. Thus, we can clearly attribute the relative decay of the spin echo signals to the interaction
between the sodium and lithium atoms.

In contrast to the relaxation experiments, we do not have to include the different life times in
the first and second band into our analysis as we automatically take care of this effect by compar-
ing the evolution with and without bosonic bath. Furthermore, we do not observe a discrepancy
between the coherence decay and the exponential fit. Though, this is due to the fact that the error
bars of the amplitude ratio are larger than for the band fraction in the context of the relaxation

1Alternatively, we could also analyze the ratio of the visibilities. This approach yields the same coherence decay as
we do not observe a different fringe offset for the measurements with and without bath.
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dynamics. Additionally, we are not able to study the loss of motional coherence for evolution
times beyond 20ms, for which the deviation from an exponential decay was for the relaxation
most evident, as the spin echo signal vanishes evenwithout sodium background. However, we are
aware that the inhomogeneities of the bosonic bath impact the relaxation dynamics of the lithium
atoms. Hence, we adapt our analysis in the following to the inhomogeneities of our experiment
in order to avoid systematic errors in the data evaluation.

8.2. Loss Rate of the Motional Coherence

We can analyze the loss of motional coherence in close analogy to the population decay in the
inhomogeneous bath. The motional coherence of a certain lithium atom can be preserved, but the
atom does not need to contribute to or it can even decrease the observed fringe amplitude due
to dephasing mechanisms. We know from our investigation of the spin echo technique that high
trapping frequencies are essential for long lasting spin echo signals (section 5.3.1). We explain
this effect by reduced tunneling rates between neighboring lattice sites because of different offset
potentials. In contrast to the related Wannier-Stark effect, the offset potential is for our dipole
trap potential not identical for different lattice sites. Hence, we have to take into account that the
contribution of the lithium atoms to the spin echo signal depends on their position in the trapping
potential.
For this reason, we split the evolution of the fringe amplitude 𝑎(𝑡) in absence of the bath into

the contributions 𝑎𭑖(𝑡) of the single lithium atoms

𝑎(𝑡) = �
𭑖

𝑎𭑖(𝑡) with 𝑎𭑖(𝑡) ∈ [−1/𝑁Li, 1/𝑁Li]. (8.2)

Hence, the amplitude in presence of the bosonic bath 𝑎bath(𝑡) can be written as

𝑎bath(𝑡) = �
𭑖

𝑎𭑖(𝑡)𝑒−𭑡𭛾decoh,𭑖 , (8.3)

where the 𝛾decoh,𭑖's are the coherence loss rates of the different lithium atoms. Experimentally
we do not resolve the dynamics of the single atoms 𝑎𭑖(𝑡) as we detect the evolution of all atoms
at once. However, for evolution times which are short compared to the time scales given by the
tunneling rates and trapping frequencies, we expect that the lithium atoms evolve similarly, i. e.

𝑎𭑖(𝑡) ≈ 𝑎𭑗(𝑡) (8.4)

for sufficiently small 𝑡. Thus, we investigate the loss of coherence for short evolution times, for
which 𝑎′

𭑖(0) ≈ 𝑎′
𭑗(0), and expand equation (8.3) up to first order

𝑎bath(𝑡) = �
𭑖

𝑎𭑖(0) + 𝑡 �
𭑖

(𝑎′
𭑖(0) − 𝑎𭑖(0)𝛾decoh,𭑖) + 𝒪(𝑡2) (8.5)

≈ 𝑎(0) + 𝑡𝑎′(0) − 𝑡𝑎(0)
𝑁Li

�
𭑖

𝛾decoh,𭑖.
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In analogy to the relaxation dynamics, the lithium atoms probe during the early evolution only
the sodium density at their initial position, and we get

𝑎bath(𝑡) ≈ 𝑎(0)(1 + 𝑡 𝑎′(0)
𝑎(0)⏟⏟⏟

∶=−Γ0

−𝑡 ∫ 𝑛Li( ⃗𝑟)
𝑁Li

𝛾decoh( ⃗𝑟) d ⃗𝑟
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

∶=Γdecoh

) (8.6)

= 𝑎(0) (1 − 𝑡Γ0 − 𝑡Γdecoh) .

Here, Γ0 denotes the decay rate of the spin echo signal in absence of the sodium background and
Γdecoh the effective coherence loss rate which is induced by the interaction between the sodium
and lithium atoms.
In contrast to the population decay, we can in principle not assume that the coherence loss rate

𝛾decoh( ⃗𝑟) scales linearly with the bath density. This is due to the fact that the motional coherence
can also be lost by relaxation and heating processes in the transversal directions which do not
change the band population. These processes include low-energetic, phonon-like excitations of
the Bose gas for which the coupling between the lithium and sodium atoms depends on the bath
density. We have already noticed this effect in the context of the relaxation constant 𝑟 which
becomes for low-energetic excitations density dependent (see figure 7.6).
Hence, we do not characterize the loss of motional coherence by a density-independent decay

constant, but introduce the effective coherence loss rate Γdecoh. To obtain Γdecoh, we analyze the
envelope of the Ramsey fringes for small evolution times, and determine the decay rate with and
without bath, Γbath = Γ0 + Γdecoh and Γ0, respectively . For this purpose, we fit the linear decay

± 𝑎0 (1 − Γ𝑡) + 𝑏0 (8.7)

simultaneously to the fringe maxima (+) and minima (-). Here, 𝑎0 refers to the initial fringe ampli-
tude and 𝑏0 to the fringe offset. As we do not observe a drift of the offset for the investigated time
scales, we determine 𝑏0 prior to the fitting procedure from the Ramsey fringes after long evolution
times. Figure 8.1 a) depicts the initial decay of the fringe amplitudes.2 We obtain a decay rate of
Γ0 = (115 ± 31) s−1 in absence of sodium atoms and Γbath = (235 ± 21) s−1 with bosonic bath.
Hence, the interaction between the sodium and the lithium atoms leads to the loss of motional
coherence at a rate of Γdecoh = (120 ± 37) s−1.

This result agrees with the decay rate 𝛾decoh = (148 ± 18) s−1 which we determined by means
of an exponential fit to the ratio of the amplitudes 𝑎bath(𝑡)/𝑎(𝑡), and suggests that it is irrelevant
if we analyze the coherence loss on the basis of the initial decay or the ratio of the amplitudes.
Though, in the following, we compare the time scales of the coherence loss and the population
decay to investigate the decoherence mechanisms. As we noticed for the relaxation dynamics a
(small) discrepancy between our observations and an exponential decay, we stick to the evalua-
tion of the coherence loss by means of the initial decay in order to analyze both dynamics on the
same footing.

2We are aware of the fact that our fit does not provide a test for the linearity of the initial decay as it takes only two
different evolution times into account. Though, the two parameters 𭑎0 and Γ are not under-determined because
we fit 4 independent data points at once (2 for the maxima and the minima).
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8.3. Loss Mechanisms for the Motional Coherence

In this section, we investigate the mechanisms which cause the loss of motional coherence in the
bosonic bath more closely and develop a microscopic picture of the decoherence processes. In this
context, we adapt the considerations from our theoretical discussion in chapter 6 to our experi-
mental conditions and interpret the coherence loss in terms of relaxation and heating processes.
For this purpose, we compare the characteristic time scales of the population decay and of the co-
herence loss, and consider the dynamics in the one- and three-dimensional lattice potential. The
latter offers a more intuitive interpretation of our observations as the dynamics in the transversal
directions can be neglected. Though, spontaneous emission processes reduce the life time in the
three-dimensional potential significantly and restrict thereby our experimental accuracy.

8.3.1. One-Dimensional Lattice Potential

In the following discussion, we distinguish between decoherence processes which originate from
the population decay and processes which do not imply a population change as e. g. relaxation
and heating processes in the transversal directions. As the lithium atoms are prepared in an equal
superposition of states belonging to the first and second band, the population decay contributes
onlywith half the relaxation rate to the loss of coherence, andwe canwrite the effective coherence
loss rate as

Γdecoh = Γrelax

2
+ Γ*

decoh. (8.8)

Here, Γ*
decoh denotes the pure coherence loss rate which originates from population conserving

processes, and Γrelax = 𝑟𝑛eff (eq. (7.13)) is the effective relaxation rate in analogy to the effective
coherence loss rate Γdecoh.
As previously, we characterize the dynamics of the lithium atoms bymeans of the ratio between

the relaxation and decoherence time 𝜏decoh/𝜏relax = Γrelax/Γdecoh. According to equation (8.8), the
relaxation processes dominate the loss of coherence if 𝜏decoh/𝜏relax > 1 and the dynamics are
governed by pure decoherence processes if 𝜏decoh/𝜏relax < 1.
To determine the characteristics of the coherence loss in the bosonic bath, we investigate the

relaxation and the decoherence dynamics for the same experimental conditions. For this pur-
pose, we post-select our data with respect to the number of sodium atoms as we extract Γdecoh
and Γrelax from two independent measurements. Figure 8.2 a) displays the measurement of the
effective coherence loss rate Γdecoh = (120 ± 37) s−1, which we analyzed in the previous sec-
tion, and figure 8.2 b) the corresponding relaxation dynamics for identical post-selection con-
ditions which yield Γrelax = (168 ± 26) s−1. Hence, we get for the pure coherence loss rate
Γ*
decoh = (36 ± 39) s−1 or respectively for the ratio between the relaxation and decoherence

time 𝜏decoh/𝜏relax = 1.4 ± 0.5. Hence, the relaxation processes are the most dominant mechanism
for the loss of motional coherence.
This behavior is qualitatively different from the observations in many spin systems. E. g. in

nuclear magnetic resonance experiments3 [84] or experiments investigating the dynamics of an
ion immersed in a Bose-Einstein condensate [9], the ratio 𝜏decoh/𝜏relax is below 1 as population

3In NMR experiments, 𭜏relax is usually referred to as the longitudinal coherence time 𭑇1 and 𭜏decoh as the transverse
coherence time 𭑇2 [83].
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Figure 8.2.: Dynamics in a one-dimensional longitudinal lattice potential (𝑉0 =33 𝐸rec). a) Loss of
motional coherence in a bosonic bath with 𝑁Na =(5.2 ± 0.4) ⋅ 105 sodium atoms and
a condensate fraction of 𝜂 = 0.59 ± 0.06 (𝑁Li = (2.1 ± 0.5) ⋅ 105). The dashed lines
indicate the initial decay of the spin echo signals. b) Relaxation in a background of
𝑁Na = (5.3 ± 0.4) ⋅ 105 sodium atoms and a condensate fraction of 𝜂 = 0.58 ± 0.09
(𝑁Li =(1.8 ± 0.4) ⋅ 105). The initial, linear decay is depicted as dashed line.

conserving spin-spin interactions dominate the loss of coherence. In contrast, the decoherence
time is in case of spontaneous emission twice the relaxation time as both time scales are governed
by the same mechanism [74].

Population Conserving Loss of Coherence

Our previous analysis showed that the population decay or respectively the relaxation processes
are the dominant mechanism for the loss of motional coherence. But we also noticed that pop-
ulation conserving processes induce an additional coherence loss as 𝜏decoh/𝜏relax < 2. According
to the theoretical considerations in section 6.3, we attribute these processes to heating and relax-
ation processes in the transversal directions. Though, we cannot rigorously calculate 𝜏decoh/𝜏relax
bymeans of equation (6.21) as the computational effort is for the one-dimensional lattice potential
tremendous. For this reason, we estimate 𝜏decoh/𝜏relax on the basis of the relaxation and heating
rates, and test if the result is consistent with our interpretation.

In the following, we adapt our previous discussion from section 6.3 to the more complex ex-
perimental situation which is illustrated in figure 8.3. We consider the dynamics of a single atom
prepared in an equal superposition of the state |𝑚1 > belonging to the first band and the state
|𝑚2 > belonging to the second band. Moreover, both states have the same transversal modes. In
analogy to the derivation of equation (6.30), the effective relaxation rate is given by the sum over
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Figure 8.3.: Coherence loss and energy scales in two dimensions. The blue and red lines repre-
sent the transversal modes in the first and second band, and the shading indicates the
occupied modes. The vertical arrows denote relaxation processes in the longitudinal
direction, whereas the wiggled arrows mark transversal heating and relaxation pro-
cesses. The superposition of two modes from the first and second band is indicated
by the dashed ellipses.

the relaxation rates from state |𝑚2 > into the transversal modes |𝑛> of the first band (eq. (6.24))

Γrelax = �
𭑛∈1. band

𝑅𭑚2→𭑛. (8.9)

Correspondingly, the pure coherence loss rate originates from the heating and relaxation pro-
cesses which preserve the band population (eq. (6.24) and eq. (6.25))

Γ*
decoh = 1

2
�

𭑛∈1. band

(𝑅𭑚1→𭑛 + 𝐻𭑚1→𭑛) + 1
2

�
𭑛∈2. band

(𝑅𭑚2→𭑛 + 𝐻𭑚2→𭑛) . (8.10)

Here, the factor 1/2 takes care of the fact that the atom is prepared in a superposition of states
belonging to the first and second band.
In order to calculate the ratio 𝜏decoh/𝜏relax by means of Γrelax, Γ*

decoh and equation (8.8)

𝜏decoh
𝜏relax

= Γrelax

Γdecoh
= 2

1 + 2Γ*
decoh

Γrelax

, (8.11)

we have to take into account that the lithium atoms occupy different transversal modes and that
the bath density varies over the extent of the lithium cloud. For this reason, we make several
approximations.

• To reduce the complexity of the calculation, we approximate the occupation of the differ-
ent transversal modes assuming zero temperature and according to the population of the
different lattice sites (see figure 7.4). We calculate 𝜏decoh/𝜏relax for each occupied transversal
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mode and compute the corresponding average. To test the sensitivity of the computed av-
erage on the occupied transversal modes, we manually divide the population of the lattice
sites by 2. The result differs by 2% from our former computation which indicates that our
calculation is insensitive to the exact occupation of the transversal modes, and is hence not
severely limited by the zero temperature approximation.

• We do not account for the inhomogeneity of the bosonic bath, but consider its peak density
(𝜌0 = 4 ⋅ 1014 cm−3, 𝑇 = 550 nK). This approach corresponds to an underestimation of
the low-energetic processes, which involve phonon-like excitations of the Bose gas, rela-
tive to the high-energetic processes (see inset of figure 6.2). Hence, we overestimate Γrelax
compared to Γ*

decoh and get thereby an upper bound for 𝜏decoh/𝜏relax.
According to these approximations, we obtain for the ratio between the decoherence and the
relaxation time 𝜏decoh/𝜏relax = 0.5 which is below our experimental observations and is not con-
sistent within the statistical errors.
Our discussion in section 6.3 already showed that the calculation of the decoherence rate on the

basis of the transversal heating and relaxation rates can only serve as a pessimistic estimate for
𝜏decoh/𝜏relax. This follows from the fact that the low-energetic excitations of the Bose gas cannot
resolve the wavefunctions in the longitudinal direction which preserves the motional coherence.
In this context, we noticed that the impact of the temperature on the motional coherence is rather
small as the ratio of 𝜏decoh/𝜏relax decreases from the zero temperature to the finite temperature
calculations by less than 10% (see figure 6.5). This observation suggests that the transversal
heating and relaxation processes which involve a Bogoliubov excitation with an energy below
𝑘B𝑇 have a negligible impact on the motional coherence in the longitudinal direction. Hence,
we introduce this energy scale as a lower cut-off into our estimation for 𝜏decoh/𝜏relax, and account
only for transversal processes with higher energies.
In this case, we get 𝜏decoh/𝜏relax = 1.0 which is consistent with our observations. Because of our

approximations, the agreement does not identify the transversal relaxation and heating processes
as only source for the population conserving loss of coherence. But the analysis shows that not
each transversal process induces a coherence loss in longitudinal direction as the estimation with-
out cut-off yields an upper bound for 𝜏decoh/𝜏relax which is well below our observations. According
to our discussion in section 6.3, we attribute this behavior to the preservation of coherence by
low-energetic transversal processes which imply amutual interaction of the superpositionmodes.

Systematic Errors and Pauli Blocking

Our interpretation of the decoherence processes which conserve the population relies on the large
discrepancy between the experimentally observed value 𝜏decoh/𝜏relax = 1.4 ± 0.5 and the theoret-
ical estimate without energy cut-off 𝜏decoh/𝜏relax = 0.5. We do not expect that our experimental
precision or systematic errors can account for the discrepancy between theory and experiment.
This is due to the fact that

• the determination of 𝜏decoh/𝜏relax is experimentally a robust approach as we compare two
time scales relatively. Hence, we are not sensitive to the systematic errors in the determi-
nation of the atom numbers, bath temperature or trapping frequencies as these errors affect
the relaxation and coherence loss measurement similarly.
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• the determination of the relaxation and heating rates is insensitive to the different analysis
approaches that means the rates determined by an exponential fit agree within the error
bars with those obtained from a linear fit to the initial dynamics. Moreover, the effective
relaxation rate (figure 8.2 b)) changes only by 12% to Γrelax = (188 ± 62) s−1 if we reduce
the range of the linear fit by a factor of 2. This value is consistent with the former result,
and indicates that the impact of the exact fit range on our analysis is negligible.

Our theoretical estimate is more uncertain than our experimental observations. We accounted for
this fact by calculating an upper bound for 𝜏decoh/𝜏relax. However, we considered the transversal
relaxation and heating processes on the basis of single particles. This approach led in case of the
relaxation dynamics to good agreement between the calculations and the experiment. For the
motional coherence measurements, this procedure is not as plausible as for the relaxation mea-
surements because of the different energy scales (see figure 8.3). More specifically, the transversal
heating and relaxation processes involve the coupling to final states which are already populated
by lithium atoms. This argument indicates that we overestimate the pure coherence loss rate
Γ*
decoh as Pauli blocking partly suppresses the transversal processes.
To quantify the impact of this effect on the ratio 𝜏decoh/𝜏relax, we insert Pauli blocking empiri-

cally into the calculation of Γ*
decoh [85]. For this purpose, we assume that all lithium atoms are in

superpositions of states belonging to the first and second band. As each atom can be considered
as a particle-hole-pair in the first and second band superimposed with a particle-hole-pair in the
second and first band, the occupation probability of mode |𝑛 > is governed by the Fermi-Dirac
distribution 𝑓(𝐸𭑛) (eq. (2.20)) divided by 2. Here, 𝐸𭑛 denotes the energy of |𝑛> according to the
occupied transversal modes. Hence, the coupling to state |𝑛> is due to Pauli blocking suppressed
by the factor 1 − 𝑓(𝐸𭑛)/2, and we get for the pure coherence loss rate (eq. (8.10))

Γ*
decoh = 1

2
�

𭑛∈1. band

(1 − 𝑓(𝐸𭑛)
2

) (𝑅𭑚1→𭑛 + 𝐻𭑚1→𭑛) (8.12)

+ 1
2

�
𭑛∈2. band

(1 − 𝑓(𝐸𭑛)
2

) (𝑅𭑚2→𭑛 + 𝐻𭑚2→𭑛) .

The impact of Pauli blocking on the dynamics of the lithium atoms varies between the lattice
sites due to their different occupations, and is most severe for the sites in the lattice center which
are populated by the most lithium atoms. Thus, we consider the ratio between the decoherence
and relaxation time with respect to the central site (3 ⋅ 103 lithium atoms) as it provides an up-
per estimate for the effect of Pauli blocking and our calculations become less demanding. If we
apply our previous approximations and estimate the corresponding mean ratio of 𝜏decoh/𝜏relax by
means of equation (8.12) without energy cut-off, 𝜏decoh/𝜏relax increases for the central site from 0.5
without to 0.7 with Pauli blocking. This value is only slightly larger than our previous estimate
and shows that we cannot resolve the discrepancy between our observations and the theoretical
estimate without energy cut-off by means of Pauli blocking.

8.3.2. Three-Dimensional Lattice Potential

So far, we attributed the population conserving loss of coherence solely to the transversal heat-
ing and relaxation processes. To test our assignment, we investigate the evolution of the lithium
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Figure 8.4.: Band gaps and tunneling rates of the three-dimensional lattice potential

atoms in a deep three-dimensional lattice potential as illustrated in figure 8.4. The lattice geome-
try is chosen such that the band gaps in the transversal directions exceed the gap in longitudinal
direction. Moreover, the tunneling rates in the transversal directions are slow compared to the
investigated evolution times, and the temperature of the Bose gas is more than a factor of five
smaller than the band gap in the longitudinal direction (Δ𝐸long

1-2 /ℎ = 70 kHz, 𝑘B𝑇/ℎ = 11 kHz).
Hence, we can neglect transversal relaxation and heating processes, and we expect that the re-
laxation processes along the longitudinal direction dominate the evolution of the lithium atoms.

Additionally, only lattice sites which are initially populated by exactly one lithium atom con-
tribute to the observed dynamics. This follows from the fact that the first excited mode of each
lattice site corresponds to an excitation along the longitudinal lattice direction. As the sodium
background prepares the lithium atoms during the lattice loading in the energetically lowest
modes, higher occupation numbers automatically imply an occupation of the first and second
band of the longitudinal lattice. Hence, Pauli blocking prohibits for multiply occupied sites dy-
namics between the first and second band, and we do not have to account for many body effects
between the lithium atoms.

Overall, we can interpret the three-dimensional lattice as a set of two-level systems whose dy-
namics are governed by the relaxation processes from the excited to the ground states. In this case,
our theory (eq. (6.21)) predicts that the ratio between the decoherence and relaxation time is given
by 𝜏decoh/𝜏relax = Γrelax/Γdecoh = 2 as for the two-level atom which couples to the vacuummodes.

Figure 8.5 a) depicts a measurement for the loss of motional coherence in the three-dimensional
lattice potential. As for the one-dimensional case, we observe a decay of the Ramsey fringe am-
plitudes due to the bosonic background. The decay rates of the spin echo signal with and without
sodium background yield an effective coherence loss rate of Γdecoh = (102 ± 90) s−1.

The statistical uncertainties for the coherence loss are about three times as larger as for the
one-dimensional lattice which is mainly caused by two factors. The first contribution stems from
the shorter lithium life time due to spontaneous emission which leads to lower atom numbers
and hence to higher inaccuracies in the determination of the band populations. The second factor
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Figure 8.5.: Dynamics in a three-dimensional lattice potential a) Coherence loss in the sodium
background (𝑁Na = (3.0 ± 0.4) ⋅ 105, 𝑁Li = (8.3 ± 2.1) ⋅ 104). The dashed lines
denote the initial decay of the spin echo signals. b) Relaxation with the same number
of sodium atoms (𝑁Na = (3.0 ± 0.5) ⋅ 105, 𝑁Li = (9.8 ± 1.9) ⋅ 104). The initial decay
is depicted as dashed line.

originates from lattice sites which are occupied by more than one lithium atom. After the lattice
loading, we observe an atom fraction of about 0.26 in the second bandwhich cannot be transferred
to the first band because of Pauli blocking. Because of the increase of 0.16 compared to the
experiments in the one-dimensional lattice, we expect that the initial fringe amplitude decreases
by 0.32 as the lithium atoms in doubly occupied lattice sites do not contribute to the spin echo
signal. This value is consistent with the observed fringe amplitudes and corresponds to a lower
visibility which leads to larger uncertainties in the determination of the coherence loss rate.

We compare the effective coherence loss rate to the corresponding effective relaxation rate
whose measurement is displayed in figure 8.5 b). In analogy to the one-dimensional lattice po-
tential, the presented data is post-selected with respect to the atom numbers. The initial decay of
the atom fraction in the second band yields an effective relaxation rate ofΓrelax = (196 ± 32) s−1.

Hence, we get for the ratio of decoherence and relaxation time 𝜏decoh/𝜏relax = Γrelax/Γdecoh =
1.9 ± 1.7. This results is consistent with our calculations but does not provide a stringent test
as the time scale for the loss of motional coherence is within the uncertainties as fast as the
relaxation dynamics. Moreover, we cannot make a more precise statement about the mechanisms
for the coherence loss than in the case of the one-dimensional lattice potential. Nevertheless, the
result reveals that the relaxation processes also dominate the loss of motional coherence in the
three-dimensional lattice since the coherence loss does not occur on a faster time scale than the
population decay (Γdecoh ≲ Γrelax) .
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Concluding Remarks

In this chapter, we studied the loss of motional coherence due to the sodium background in the
one- and three-dimensional lattice, and determined the characteristic time scale from the initial
coherence decay. To investigate the underlying mechanisms, we compared the dynamics of the
coherence loss with the population decay which showed that the relaxation processes are the
dominant loss mechanism. For the one-dimensional lattice, our analysis revealed that the popu-
lation decay is not the only relevant processes. For this reason, we estimated the ratio between the
decoherence and relaxation time by means of Fermi's golden rule, and tested if transversal relax-
ation and heating processes explain our observations. In this context, we found that the motional
coherence decays slower than estimated which we attributed to the conservation of coherence by
low-energetic transversal processes.
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9. Conclusion and Outlook

In the course of this thesis, we investigated the dynamics of fermionic impurities immersed in a
Bose gas and set the foundations for future polaron experiments. For this purpose, we designed
and implemented a species-selective lattice potential for the lithium atoms. The control of the
lattice position enables us to address the atoms' motional degrees of freedom and periodic dis-
placement of the lattice potential induces Rabi oscillations between the first and second Bloch
band.

We utilized this coherent coupling in order to prepare the lithium atoms in a superposition of
states belonging to the two lowest Bloch bands and probed their subsequent evolution by a Ram-
sey technique. This approach allowed us to determine the band gap Δ𝐸1-2 in the deep lattice
regime within 0.2% which sets the detection limit for future polaron experiments on the basis of
the effective mass 𝑚eff to 0.4% (Δ𝐸1-2 ∝ 1/√𝑚eff, eq. (3.13)).

1 The Ramsey signal decays on the
order of 0.5ms because of the lattice potential inhomogeneity originating from the envelope of
the lattice beams.
To circumvent this limitation, a spin echo sequence compensates the impact of the potential

inhomogeneity and extends the probe time for the motional coherence to more than 10ms. We
attributed the remaining decay to dynamics in the directions transverse to the lattice axis and to
tunneling processes between neighboring lattice sites, and tested the latter explanation by modi-
fying the tunneling rates bymeans of the dipole trap confinement. The observed spin echo signals
last longer for stronger confinements which is consistent with our expectations and agrees qual-
itatively with the one-dimensional simulations of the spin echo experiments.

In order to analyze the impact of the Bose gas on the motional coherence of the lithium atoms,
we introduced a master equation within the Born-Markov approximation. Because of the large
computational effort, our calculations were restricted to dynamics of single impurities in a har-
monic trapping potential and to smaller model systems. These computations demonstrated that
the loss of motional coherence in the bosonic bath originates from heating and relaxation pro-
cesses which indicates that these mechanisms dominate the dynamics of the lithium atoms in our
experiments. But our analysis also showed that these processes preserve the motional coherence
if they imply a mutual interaction of the superposition modes with the bosonic background.
We tested our calculations on the basis of relaxation measurements in deep one-dimensional

lattice potentials and found good agreement between the predicted andmeasured relaxation rates.
In this context, we observed a non-exponential decay of the lithium population in the second

1Previous analysis showed that theory predicts a mass increase of 0.7% for the lithium atoms which probe the center
of our Bose-Einstein condensate [41]. However, the sodium background is inhomogeneous and it turns out that
the averaged mass increase amounts to 0.1-0.2% if we calculate the average in analogy to the effective density
(eq. (7.13)).
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Bloch band which we attributed to the inhomogeneity of the sodium bath. Indeed, our measure-
ments are reproduced more accurately by a model which accounts for the sodium density at each
lattice site and averages over the corresponding relaxation dynamics.
For the investigation of the motional coherence, we treated the inhomogeneous bath density by

characterizing the coherence loss of the lithium atoms based on their initial dynamics. Our mea-
surements showed that the interaction between the bosonic bath and the lithium atoms induces
a loss of motional coherence, and we determined the corresponding coherence loss rate Γdecoh.
In case of the one-dimensional lattice potential, the relaxation rate Γrelax exceeds the observed
coherence loss rate Γdecoh by a factor 1.4 ± 0.5 which demonstrates that relaxation processes are
the dominant mechanism for the coherence loss. We compared this observation to the corre-
sponding estimate by means of relaxation and heating rates which yields Γrelax/Γdecoh = 0.5, and
attributed the discrepancy to relaxation and heating processes transversal to the lattice direction.
These processes do not inevitably induce a coherence loss as they affect the superposition modes
mutually if the absorbed or emitted energy is small compared to the band gap.
Moreover, we performed identical measurements in a deep three-dimensional lattice poten-

tial for which transversal dynamics and heating effects can be neglect to first order. These ex-
periments confirm the relaxation processes as the leading mechanism for the coherence loss
(Γdecoh ≲ Γrelax) and yield Γrelax/Γdecoh = 1.9 ± 1.7 for the ratio between the relaxation and
heating rate which agrees with the theoretical prediction of 2.

Outlook

According to our previous discussion, the dissipative processes in the Bose gas restrict the co-
herent evolution of the lithium atoms to a few milliseconds. Hence, the precision of our Ramsey
technique is not limited by the coherence loss but by the faster dephasing mechanisms. However,
due to the quick signal decay, the Ramsey technique does not provide the appropriate tool in or-
der to study the quasi-particle formation in the Bose gas as the predicted effective mass induces
for our experimental conditions a trap frequency shift on the order of 0.1% [41] which is barely
on the order of our experimental accuracy.
For this reason, we intend to apply a modified spin echo sequence which removes the sodium

atoms simultaneous with the 𝜋-pulse by resonant light. If the interaction between the Bose gas
and the lithium atoms induces the formation of a quasi-particle, the lithium atoms evolve before
and after the 𝜋-pulse differently (Δ𝐸1-2 ∝ 1/√𝑚eff), and we observe a phase shifted Ramsey
fringe for symmetric evolution times. This approach is ultimately limited by the loss of motional
coherence which restricts the maximal probe time to about 10ms. Based on this observation, we
can estimate the detection sensitivity for the frequency shift bymeans of the expected precision of
the phase determination (Δ𝜙 ≈ 0.05 2𝜋) and the typical band gap (Δ𝐸1-2/ℎ = 70 kHz) to 0.01%.
This precision surpasses the accuracy of the Ramsey technique by one order of magnitude and
allows testing for quasi-particle formation.
So far, we referred to quasi-particles in general as the polaron terminology is usually employed

for impurities with small momenta which does not apply to our current experiments as the ve-
locity of the lithium atoms exceeds the critical velocity of the Bose gas due to the strong lattice
confinement. We can extend our detection scheme to weaker confinements by implementing a
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lattice geometry with larger spacing and test for the formation of quasi-particles in the polaronic
regime [17, 18].

Recently, we have developed a novel band mapping technique which builds on the different
Landau-Zener tunneling rates for the different Bloch bands and separates the band populations
by a potential gradient along the lattice axis. This procedure reduces the number of lithium atoms
which is necessary for an accurate determination of the band fractions by one order of magni-
tude, and creates new opportunities for our experiment. The larger ratio between the bath and
the impurity atoms enables the implementation of a new cooling scheme which relies on multi-
ple excitation and relaxation cycles [86]. In weak lattice potentials with strongly bended Bloch
bands, the excitation from the first to the second band can be restricted to lithium atoms with
large quasimomenta and energies [60]. The subsequent relaxation processes is not quasimomen-
tum selective and transfers the lithium atoms in average to states with smaller quasimomenta
and energies than before the excitation. This cooling mechanism is finally limited by the width
of the first Bloch band and thus provides a promising route to lower temperatures which are
e. g. required for quantum magnetism [87].
Moreover, the smaller number of impurity atoms reduces their impact on the Bose gas and

offers the possibility to use them as local probe for the Bose-Einstein condensate. Because of the
spatial control over the lattice potential, the lithium atoms can be dragged through the Bose gas
at a well defined speed which allows testing for finite viscosity in the superfluid regime [88] or
investigating the drag force in the normal fluid regime for which semi-classical and perturbative
calculations predict a different velocity dependence [89, 90].

The previously outlined experiments study a Bose-Fermi mixture with a bosonic majority. How-
ever, we can as well address the sodium atoms by a species-selective lattice and reverse the role of
the two components. Such a systemwould then provide the opportunity to investigate the impact
of a few impurities on the dynamics of the Fermi gas and to study e. g. Anderson's orthogonality
catastrophe in an ultracold quantum gas [91, 92].
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A. Auxiliary Calculations for Chapter 6

This chapter presents the auxiliary calculations to chapter 6.

A.1. General Master Equation

For the derivation of the general master equation (6.17), we performed the trace over the bath
variables, and omitted the term of first order in the interaction Hamiltonian

Trbath {[𝐻̂I
int(𝑡), 𝑤̂I

atom(0) ⊗ 𝑤̂bath]} (A.1)

which we justify in the following. As the interaction Hamiltonian between the lithium atom and
the bosonic bath is given by (eq. (6.10))

𝐻̂int = 𝑔NaLi√
𝜌0

𝑉
�

⃗𭑞
(𝑢 ⃗𭑞 + 𝑣 ⃗𭑞) (𝑒𭑖 ⃗𭑞 ̂𭑟⃗𝑏̂ ⃗𭑞 + 𝑒−𭑖 ⃗𭑞 ̂𭑟⃗𝑏̂†

⃗𭑞) , (A.2)

we need to evaluate Trbath{𝑏̂I ⃗𭑞(𝑡)𝑤̂bath} and Trbath{𝑏̂𭐼†
⃗𭑞 (𝑡)𝑤̂bath}. It is convenient to carry out these

traces on the basis of the multi-mode Fock states

⏐⏐⏐𝑛q
0
, 𝑛q

1
, ..., 𝑛q

k
, ...⟩ = ⏐⏐⏐{𝑛q}⟩ (A.3)

which are the eigenstates to the Hamiltonian of the bosonic bath (eq.(6.1))

𝐻̂bath = 𝐸0 + �
⃗𭑞≠0

𝜖 ⃗𭑞𝑏̂†
⃗𭑞.𝑏̂ ⃗𭑞. (A.4)

In the following, we exemplarily consider Trbath{𝑏̂I ⃗𭑞(𝑡)𝑤̂bath} as Trbath{𝑏̂I†⃗𭑞 (𝑡)𝑤̂bath} can be ob-
tained analogously
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⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=0

= 0. (A.5)

Here, we used the fact that the Fock states are eigenstates of 𝑤̂bath (indicated by the eigenvalue
𝑤bath,{𭑛p}) as they are energy eigenstates of the bathHamiltonian, and that 𝑏̂I ⃗𭑞(𝑡) = 𝑒−𭑖𭜖 ⃗𭑞𭑡/ℏ𝑏̂ ⃗𭑞.

1

The calculation of Trbath{𝑏̂I†⃗𭑞 (𝑡)𝑤̂bath} works analogously and yields also zero. Hence, we get

Trbath {[𝐻̂I
int(𝑡), 𝑤̂I

atom(0) ⊗ 𝑤̂bath]} = 0. (A.6)

1𭑖ℏ 𭑑
𭑑𭑡 𭑏̂I

⃗𭑞(𭑡) = [𭑏̂I
⃗𭑞(𭑡), 𭐻̂bath] = 𭑒𭑖𭐻̂bath𭑡/ℏ [𭑏̂ ⃗𭑞, 𭐻̂bath] 𭑒−𭑖𭐻̂bath𭑡/ℏ = 𭜖 ⃗𭑞𭑏̂I

⃗𭑞(𭑡) ⇒ 𭑏̂I
⃗𭑞(𭑡) = 𭑒−𭑖𭜖 ⃗𭑞𭑡/ℏ𭑏̂ ⃗𭑞
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A.2. Master Equation for the Bosonic Bath

In order to obtain the master equation for the lithium atom immersed in a bosonic bath from the
general master equation (6.17)

𝑑
𝑑𝑡

𝑤̂I
atom(𝑡) = − 1

ℏ2 ∫
𭑡

0
Trbath {[𝐻̂I

int(𝑡), [𝐻̂I
int(𝜉), 𝑤̂I

atom(𝑡) ⊗ 𝑤̂bath]]} d𝜉, (A.7)

we need to insert the corresponding interaction Hamiltonian (eq. (6.11))

𝐻̂int = 𝑔NaLi√
𝜌0

𝑉
�

⃗𭑞
(𝑢 ⃗𭑞 + 𝑣 ⃗𭑞)

2
�
𭑖=1

̂𝑠𭑖, ⃗𭑞Γ̂𭑖, ⃗𭑞 (A.8)

with
̂𝑠1, ⃗𭑞 = 𝑒𭑖 ⃗𭑞 ̂𭑟⃗, ̂𝑠2, ⃗𭑞 = 𝑒−𭑖 ⃗𭑞 ̂𭑟⃗, Γ̂1, ⃗𭑞 = 𝑏̂ ⃗𭑞 and Γ̂2, ⃗𭑞 = 𝑏̂†

⃗𭑞.

And we get the master equation for the bosonic bath in Lindblad form

𝑑
𝑑𝑡

𝑤̂I
atom(𝑡) = − 𝑔2

NaLi𝜌0

ℏ2𝑉
�

⃗𭑞,𭑝⃗
((𝑢 ⃗𭑞 + 𝑣 ⃗𭑞) (𝑢𭑝⃗ + 𝑣𭑝⃗) (A.9)

2
�

𭑖,𭑗=1
∫

𭑡

0
Trbath {[ ̂𝑠I𭑖, ⃗𭑞(𝑡)Γ̂I

𭑖, ⃗𭑞(𝑡), [ ̂𝑠I𭑗,𭑝⃗(𝜉)Γ̂I
𭑗,𭑝⃗(𝜉), 𝑤̂I

atom(𝑡) ⊗ 𝑤̂bath]]} d𝜉).

A.2.1. Trace over the Bath Variables

Next, we have to perform the trace Trbath{[𝐻̂I
int(𝑡), [𝐻̂I

int(𝜉), 𝑤̂I
atom(𝑡)⊗𝑤̂bath]]} over the bath vari-

ables. For this purpose, it is sufficient to consider the trace

Trbath {[ ̂𝑠I𭑖, ⃗𭑞(𝑡)Γ̂I
𭑖, ⃗𭑞(𝑡), [ ̂𝑠I𭑗,𭑝⃗(𝜉)Γ̂I

𭑗,𭑝⃗(𝜉), 𝑤̂I
atom(𝑡) ⊗ 𝑤̂bath]]}

= ̂𝑠I𭑖, ⃗𭑞(𝑡) ̂𝑠I𭑗,𭑝⃗(𝜉)𝑤̂I
atom(𝑡) 𝑇𝑟bath {Γ̂I

𭑖, ⃗𭑞(𝑡)Γ̂I
𭑗,𭑝⃗(𝜉)𝑤̂bath}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

I

− ̂𝑠I𭑖, ⃗𭑞(𝑡)𝑤̂I
atom(𝑡) ̂𝑠I𭑗,𭑝⃗(𝜉) 𝑇𝑟bath {Γ̂I

𭑖, ⃗𭑞(𝑡)𝑤̂bathΓ̂I
𭑗,𭑝⃗(𝜉)}

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
II

− ̂𝑠I𭑗,𭑝⃗(𝜉)𝑤̂I
atom(𝑡) ̂𝑠I𭑖, ⃗𭑞(𝑡) 𝑇𝑟bath {Γ̂I

𭑗,𭑝⃗(𝜉)𝑤̂bathΓ̂I
𭑖, ⃗𭑞(𝑡)}

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
III

+ 𝑤̂I
atom(𝑡) ̂𝑠I𭑗,𭑝⃗(𝜉) ̂𝑠I𭑖, ⃗𭑞(𝑡) 𝑇𝑟bath {𝑤̂bathΓ̂I

𭑗,𭑝⃗(𝜉)Γ̂I
𭑖, ⃗𭑞(𝑡)}

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
IV

.

In the following, we evaluate I, I, II, III and IV independently. For the calculation, we take into
account that

• the trace is cyclic.
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• Γ̂1, ⃗𭑞 = 𝑏̂ ⃗𭑞 and Γ̂2, ⃗𭑞 = 𝑏̂†
⃗𭑞 are bosonic field operators which obey the bosonic commutation

relation [𝑏̂ ⃗𭑞, 𝑏̂†
𭑝⃗] = 𝛿 ⃗𭑞,𭑝⃗.

• Γ̂I
1, ⃗𭑞(𝑡) = 𝑏̂I ⃗𭑞(𝑡) = 𝑒−𭑖𭜖 ⃗𭑞𭑡/ℏ𝑏̂ ⃗𭑞 and Γ̂I

2, ⃗𭑞(𝑡) = 𝑒𭑖𭜖 ⃗𭑞𭑡/ℏ𝑏̂†
⃗𭑞.

• Trbath {Γ̂𭑖, ⃗𭑞Γ̂𭑗,𭑝⃗𝑤̂bath} is only nonzero for 𝑖 ≠ 𝑗 and 𝑝⃗ = ⃗𝑞. 2

• Trbath {𝑏̂†
⃗𭑞𝑏̂𭑝⃗𝑤̂bath} = 𝛿 ⃗𭑞,𭑝⃗𝑁( ⃗𝑞) with 𝑁( ⃗𝑞) = 1/(𝑒𭜖 ⃗𭑞/(𭑘B𭑇) − 1) being the occupation

probability of the Bogoliubov excitation with momentum ⃗𝑞 according to the Bose distribu-
tion [27].

• Trbath {𝑏̂ ⃗𭑞𝑏̂†
𭑝⃗𝑤̂bath} = Trbath {([𝑏̂ ⃗𭑞, 𝑏̂†

𭑝⃗] + 𝑏̂†
𭑝⃗𝑏̂ ⃗𭑞) 𝑤̂bath} = 𝛿 ⃗𭑞,𭑝⃗ (1 + 𝑁( ⃗𝑞))

Hence, we get for the first trace (I)

Trbath {Γ̂I
𭑖, ⃗𭑞(𝑡)Γ̂I

𭑗,𭑝⃗(𝜉)𝑤̂bath} = 𝛿 ⃗𭑞,𭑝⃗𝛿𭑖,1𝛿𭑗,2𝑒𭑖𭜖 ⃗𭑞(𭜉−𭑡)/ℏTrbath {𝑏̂ ⃗𭑞𝑏̂†
⃗𭑞𝑤̂bath}

+ 𝛿 ⃗𭑞,𭑝⃗𝛿𭑖,2𝛿𭑗,1𝑒𭑖𭜖 ⃗𭑞(𭑡−𭜉)/ℏTrbath {𝑏̂†
⃗𭑞𝑏̂ ⃗𭑞𝑤̂bath}

= 𝛿 ⃗𭑞,𭑝⃗𝛿𭑖,1𝛿𭑗,2𝑒𭑖𭜖 ⃗𭑞(𭜉−𭑡)/ℏ (1 + 𝑁( ⃗𝑞))
+ 𝛿 ⃗𭑞,𭑝⃗𝛿𭑖,2𝛿𭑗,1𝑒𭑖𭜖 ⃗𭑞(𭑡−𭜉)/ℏ𝑁( ⃗𝑞)

and similarly for the second trace (II)

Trbath {Γ̂I
𭑖, ⃗𭑞(𝑡)𝑤̂bathΓ̂I

𭑗,𭑝⃗(𝜉)} = Trbath {Γ̂I
𭑗,𭑝⃗(𝜉)Γ̂I

𭑖, ⃗𭑞(𝑡)𝑤̂bath}

= 𝛿 ⃗𭑞,𭑝⃗𝛿𭑗,1𝛿𭑖,2𝑒𭑖𭜖 ⃗𭑞(𭑡−𭜉)/ℏ (1 + 𝑁( ⃗𝑞))
+ 𝛿 ⃗𭑞,𭑝⃗𝛿𭑗,2𝛿𭑖,1𝑒𭑖𭜖 ⃗𭑞(𭜉−𭑡)/ℏ𝑁( ⃗𝑞).

As the trace is cyclic, the third trace (III) is identical to the first one (I) and the fourth trace (IV)
identical to the second one (II). We can now plug all traces into the master equation (A.9) and we
end up with

𝑑
𝑑𝑡

𝑤̂I
atom(𝑡) = −𝑔2

NaLi𝜌0

ℏ2𝑉
�

⃗𭑞
∫

𭑡

0
(𝑢 ⃗𭑞 + 𝑣 ⃗𭑞)2 ( (A.10)

̂𝑠I1, ⃗𭑞(𝑡) ̂𝑠I2, ⃗𭑞(𝜉)𝑤̂I
atom(𝑡)𝑒𭑖𭜖 ⃗𭑞(𭜉−𭑡)/ℏ (1 + 𝑁( ⃗𝑞))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Ia

+ ̂𝑠I2, ⃗𭑞(𝑡) ̂𝑠I1, ⃗𭑞(𝜉)𝑤̂I
atom(𝑡)𝑒𭑖𭜖 ⃗𭑞(𭑡−𭜉)/ℏ𝑁( ⃗𝑞)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Ib

− ̂𝑠I2, ⃗𭑞(𝑡)𝑤̂I
atom(𝑡) ̂𝑠I1, ⃗𭑞(𝜉)𝑒𭑖𭜖 ⃗𭑞(𭑡−𭜉)/ℏ (1 + 𝑁( ⃗𝑞))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

IIa

− ̂𝑠I1, ⃗𭑞(𝑡)𝑤̂I
atom(𝑡) ̂𝑠I2, ⃗𭑞(𝜉)𝑒𭑖𭜖 ⃗𭑞(𭜉−𭑡)/ℏ𝑁( ⃗𝑞)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

IIb

− ̂𝑠I2, ⃗𭑞(𝜉)𝑤̂I
atom(𝑡) ̂𝑠I1, ⃗𭑞(𝑡)𝑒𭑖𭜖 ⃗𭑞(𭜉−𭑡)/ℏ (1 + 𝑁( ⃗𝑞))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

IIIa

− ̂𝑠I1, ⃗𭑞(𝜉)𝑤̂I
atom(𝑡) ̂𝑠I2, ⃗𭑞(𝑡)𝑒𭑖𭜖 ⃗𭑞(𭑡−𭜉)/ℏ𝑁( ⃗𝑞)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

IIIb

2 This is due to the fact that the Fock states |{𭑛q}⟩ are eigenstates of 𭑤̂bath and thus ⟨{𭑛q}| Γ̂𭑖, ⃗𭑞Γ̂𭑗,𭑝⃗𭑤̂bath |{𭑛q}⟩ ∝
⟨{𭑛q}| Γ̂𭑖, ⃗𭑞Γ̂𭑗,𭑝⃗ |{𭑛q}⟩ which is only nonzero if |{𭑛q}⟩ is an eigenstate of Γ̂𭑖, ⃗𭑞Γ̂𭑗,𭑝⃗.
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+ 𝑤̂I
atom(𝑡) ̂𝑠I1, ⃗𭑞(𝜉) ̂𝑠I2, ⃗𭑞(𝑡)𝑒𭑖𭜖 ⃗𭑞(𭑡−𭜉)/ℏ (1 + 𝑁( ⃗𝑞))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

IVa

+ 𝑤̂I
atom(𝑡) ̂𝑠I2, ⃗𭑞(𝜉) ̂𝑠I1, ⃗𭑞(𝑡)𝑒𭑖𭜖 ⃗𭑞(𭜉−𭑡)/ℏ𝑁( ⃗𝑞)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

IVb

) d𝜉.

A.2.2. Conversion into a Set of Coupled Differential Equations

In order to calculate the time evolution of the lithium atom confined in a harmonic potential, we
consider the reduced density operator in the corresponding basis

𝑤̂I
atom(𝑡) = �

𭑘,𭑙
𝑤𭑘,𭑙(𝑡) |𝑘⟩ ⟨𝑙| , (A.11)

where 𝑘 and 𝑙 denote triples specifying the mode of the three-dimensional harmonic oscillator
(eq. (6.4)). We plug this ansatz into equation (A.10) which will lead to a set of coupled differential
equations for the 𝑤𭑘,𭑙(𝑡). In the following, we concentrate on the term Ia from equation (A.10)
as all other terms can be computed analogously. Its contribution to the time derivative 𭑑

𭑑𭑡𝑤𭑘,𭑙(𝑡)
is given by

𝑑
𝑑𝑡

𝑤Ia
𭑘,𭑙(𝑡) = −𝑔2

NaLi𝜌0

ℏ2𝑉
�

⃗𭑞
∫

𭑡

0
( (𝑢 ⃗𭑞 + 𝑣 ⃗𭑞)2 𝑒𭑖𭜖 ⃗𭑞(𭜉−𭑡)/ℏ (1 + 𝑁( ⃗𝑞)) (A.12)

⟨𝑘| ̂𝑠I1, ⃗𭑞(𝑡) ̂𝑠I2, ⃗𭑞(𝜉)𝑤̂I
atom(𝑡) |𝑙⟩) d𝜉.

At first, we consider the operator-part of the above equation and denote the eigenenergy of state
|𝑗⟩ with 𝐸𭑗 (eq. (6.5))

⟨𝑘| ̂𝑠I1, ⃗𭑞(𝑡) ̂𝑠I2, ⃗𭑞(𝜉)𝑤̂I
atom(𝑡) |𝑙⟩ = �

𭑗1,𭑗2

⟨𝑘| ̂𝑠I1, ⃗𭑞(𝑡) |𝑗1⟩ ⟨𝑗1| ̂𝑠I2, ⃗𭑞(𝜉) |𝑗2⟩ ⟨𝑗2| 𝑤̂I
atom(𝑡) |𝑙⟩ (A.13)

= �
𭑗1,𭑗2

⟨𝑘| 𝑒𭑖𭐻̂atom𭑡/ℏ ̂𝑠1, ⃗𭑞𝑒−𭑖𭐻̂atom𭑡/ℏ |𝑗1⟩ ⟨𝑗1| 𝑒𭑖𭐻̂atom𭜉/ℏ ̂𝑠2, ⃗𭑞𝑒−𭑖𭐻̂atom𭜉/ℏ |𝑗2⟩ ⟨𝑗2| 𝑤̂I
atom(𝑡) |𝑙⟩

= �
𭑗1,𭑗2

⟨𝑘| 𝑒𭑖(𭐸𭑘−𭐸𭑗1)𭑡/ℏ ̂𝑠1, ⃗𭑞 |𝑗1⟩ ⟨𝑗1| 𝑒𭑖(𭐸𭑗1−𭐸𭑗2)𭜉/ℏ ̂𝑠2, ⃗𭑞 |𝑗2⟩ ⟨𝑗2| �
𭑚,𭑛

𝑤𭑚,𭑛(𝑡) |𝑚⟩ ⟨𝑛| |𝑙⟩

= �
𭑗1,𭑗2

⟨𝑘| ̂𝑠1, ⃗𭑞 |𝑗1⟩ ⟨𝑗1| ̂𝑠2, ⃗𭑞 |𝑗2⟩ 𝑤𭑗2,𭑙(𝑡)𝑒𭑖(𭐸𭑘−𭐸𭑗1)𭑡/ℏ𝑒𭑖(𭐸𭑗1−𭐸𭑗2)𭜉/ℏ.

With
𝑆𭑗1,𭑗2

𭑖, ⃗𭑞 = ⟨𝑗1| ̂𝑠𭑖, ⃗𭑞 |𝑗2⟩ (A.14)

we get

𝑑
𝑑𝑡

𝑤Ia
𭑘,𭑙(𝑡) = − 𝑔2

NaLi𝜌0

ℏ2𝑉
�
𭑗1,𭑗2

�
⃗𭑞

(𝑢 ⃗𭑞 + 𝑣 ⃗𭑞)2 (1 + 𝑁( ⃗𝑞)) 𝑆𭑘,𭑗1
1, ⃗𭑞 𝑆𭑗1,𭑗2

2, ⃗𭑞 𝑤𭑗2,𭑙(𝑡)𝑒𭑖(𭐸𭑘−𭐸𭑗1−𭜖 ⃗𭑞)𭑡/ℏ

(A.15)

∫
𭑡

0
𝑒𭑖(𭜖 ⃗𭑞+𭐸𭑗1−𭐸𭑗2)𭜉/ℏ d𝜉.
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A.2. Master Equation for the Bosonic Bath

Next, the time integration is evaluated. For this purpose, we can extend the integration range from
[0, 𝑡] to [0, ∞] as the correlation time is much shorter than the integration range (see section 6.1.2)

∫
∞

0
𝑒𭑖(𭜖 ⃗𭑞+𭐸𭑗1−𭐸𭑗2)𭜉/ℏ d𝜉 = lim

Δ→0
∫

∞

0
𝑒𭑖(𭜖 ⃗𭑞+𭐸𭑗1−𭐸𭑗2+𭑖Δ)𭜉/ℏ d𝜉 (A.16)

= lim
Δ→0

−ℏ
𝑖(𝜖 ⃗𭑞 + 𝐸𭑗1

− 𝐸𭑗2
) − Δ

(A.17)

= ℏ lim
Δ→0

Δ
(𝐸𭑗2

− 𝐸𭑗1
− 𝜖 ⃗𭑞)2 + Δ2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=𭜋𭛿(𭐸𭑗2−𭐸𭑗1−𭜖 ⃗𭑞)

−ℏ lim
Δ→0

𝑖(𝐸𭑗2
− 𝐸𭑗1

− 𝜖 ⃗𭑞)
(𝐸𭑗2

− 𝐸𭑗1
− 𝜖 ⃗𭑞)2 + Δ2 . (A.18)

Here, we used the definition of the delta distribution by means of the Lorentz distribution [93]. In
the following, we drop the imaginary part which corresponds to an energy shift of the harmonic
oscillator levels as it is usually small compared to the eigenenergies and obtain

𝑑
𝑑𝑡

𝑤Ia
𭑘,𭑙(𝑡) = −𝜋𝑔2

NaLi𝜌0

ℏ𝑉
�
𭑗1,𭑗2

�
⃗𭑞
( (𝑢 ⃗𭑞 + 𝑣 ⃗𭑞)2 (1 + 𝑁( ⃗𝑞)) 𝑆𭑘,𭑗1

1, ⃗𭑞 𝑆𭑗1,𭑗2
2, ⃗𭑞 𝑤𭑗2,𭑙(𝑡) (A.19)

𝑒𭑖(𭐸𭑘−𭐸𭑗2)𭑡/ℏ𝛿(𝐸𭑗2
− 𝐸𭑗1

− 𝜖 ⃗𭑞)).

Similarly, one gets for the other contributions to the time derivative 𭑑
𭑑𭑡𝑤𭑘,𭑙(𝑡)

𝑑
𝑑𝑡

𝑤Ib
𭑘,𭑙(𝑡) = −𝜋𝑔2

NaLi𝜌0

ℏ𝑉
�
𭑗1,𭑗2

�
⃗𭑞
( (𝑢 ⃗𭑞 + 𝑣 ⃗𭑞)2 𝑁( ⃗𝑞)𝑆𭑘,𭑗1

2, ⃗𭑞 𝑆𭑗1,𭑗2
1, ⃗𭑞 𝑤𭑗2,𭑙(𝑡) (A.20)

𝑒𭑖(𭐸𭑘−𭐸𭑗2)𭑡/ℏ𝛿(𝐸𭑗1
− 𝐸𭑗2

− 𝜖 ⃗𭑞)),

𝑑
𝑑𝑡

𝑤IIa
𭑘,𭑙(𝑡) = 𝜋𝑔2

NaLi𝜌0

ℏ𝑉
�
𭑗1,𭑗2

�
⃗𭑞
( (𝑢 ⃗𭑞 + 𝑣 ⃗𭑞)2 (1 + 𝑁( ⃗𝑞)) 𝑆𭑘,𭑗1

2, ⃗𭑞 𝑤𭑗1,𭑗2
(𝑡)𝑆𭑗2,𭑙

1, ⃗𭑞 (A.21)

𝑒𭑖(𭐸𭑘+𭐸𭑗2−𭐸𭑗1−𭐸𭑙)𭑡/ℏ𝛿(𝐸𭑗2
− 𝐸𭑙 − 𝜖 ⃗𭑞)),

𝑑
𝑑𝑡

𝑤IIb
𭑘,𭑙(𝑡) = 𝜋𝑔2

NaLi𝜌0

ℏ𝑉
�
𭑗1,𭑗2

�
⃗𭑞
( (𝑢 ⃗𭑞 + 𝑣 ⃗𭑞)2 𝑁( ⃗𝑞)𝑆𭑘,𭑗1

1, ⃗𭑞 𝑤𭑗1,𭑗2
(𝑡)𝑆𭑗2,𭑙

2, ⃗𭑞 (A.22)

𝑒𭑖(𭐸𭑘+𭐸𭑗2−𭐸𭑗1−𭐸𭑙)𭑡/ℏ𝛿(𝐸𭑙 − 𝐸𭑗2
− 𝜖 ⃗𭑞)),

𝑑
𝑑𝑡

𝑤IIIa
𭑘,𭑙(𝑡) = 𝜋𝑔2

NaLi𝜌0

ℏ𝑉
�
𭑗1,𭑗2

�
⃗𭑞
( (𝑢 ⃗𭑞 + 𝑣 ⃗𭑞)2 (1 + 𝑁( ⃗𝑞)) 𝑆𭑘,𭑗1

2, ⃗𭑞 𝑤𭑗1,𭑗2
(𝑡)𝑆𭑗2,𭑙

1, ⃗𭑞 (A.23)

𝑒𭑖(𭐸𭑘+𭐸𭑗2−𭐸𭑗1−𭐸𭑙)𭑡/ℏ𝛿(𝐸𭑗1
− 𝐸𭑘 − 𝜖 ⃗𭑞)),
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A. Auxiliary Calculations for Chapter 6

𝑑
𝑑𝑡

𝑤IIIb
𭑘,𭑙(𝑡) = 𝜋𝑔2

NaLi𝜌0

ℏ𝑉
�
𭑗1,𭑗2

�
⃗𭑞
( (𝑢 ⃗𭑞 + 𝑣 ⃗𭑞)2 𝑁( ⃗𝑞)𝑆𭑘,𭑗1

1, ⃗𭑞 𝑤𭑗1,𭑗2
(𝑡)𝑆𭑗2,𭑙

2, ⃗𭑞 (A.24)

𝑒𭑖(𭐸𭑘+𭐸𭑗2−𭐸𭑗1−𭐸𭑙)𭑡/ℏ𝛿(𝐸𭑘 − 𝐸𭑗1
− 𝜖 ⃗𭑞)),

𝑑
𝑑𝑡

𝑤IVa
𭑘,𭑙(𝑡) = −𝜋𝑔2

NaLi𝜌0

ℏ𝑉
�
𭑗1,𭑗2

�
⃗𭑞
( (𝑢 ⃗𭑞 + 𝑣 ⃗𭑞)2 (1 + 𝑁( ⃗𝑞)) 𝑤𭑘,𭑗1

(𝑡)𝑆𭑗1,𭑗2
1, ⃗𭑞 𝑆𭑗2,𭑙

2, ⃗𭑞 (A.25)

𝑒𭑖(𭐸𭑗1−𭐸𭑙)𭑡/ℏ𝛿(𝐸𭑗1
− 𝐸𭑗2

− 𝜖 ⃗𭑞)),

and

𝑑
𝑑𝑡

𝑤IVb
𭑘,𭑙(𝑡) = −𝜋𝑔2

NaLi𝜌0

ℏ𝑉
�
𭑗1,𭑗2

�
⃗𭑞
( (𝑢 ⃗𭑞 + 𝑣 ⃗𭑞)2 𝑁( ⃗𝑞)𝑤𭑘,𭑗1

(𝑡)𝑆𭑗1,𭑗2
2, ⃗𭑞 𝑆𭑗2,𭑙

1, ⃗𭑞 (A.26)

𝑒𭑖(𭐸𭑗1−𭐸𭑙)𭑡/ℏ𝛿(𝐸𭑗2
− 𝐸𭑗1

− 𝜖 ⃗𭑞)).

Thus, the set of differential equations for the 𝑤𭑘,𭑙(𝑡)'s is finally given by

𝑑
𝑑𝑡

𝑤𭑘,𭑙(𝑡) = − 𝜋𝑔2
NaLi𝜌0

ℏ𝑉
�
𭑗1,𭑗2

�
⃗𭑞
[(𝑢 ⃗𭑞 + 𝑣 ⃗𭑞)2 (1 + 𝑁( ⃗𝑞)) ( (A.27)

𝑆𭑘,𭑗1
1, ⃗𭑞 𝑆𭑗1,𭑗2

2, ⃗𭑞 𝑤𭑗2,𭑙(𝑡)𝑒𭑖(𭐸𭑘−𭐸𭑗2)𭑡/ℏ𝛿(𝐸𭑗2
− 𝐸𭑗1

− 𝜖 ⃗𭑞)

− 𝑆𭑘,𭑗1
2, ⃗𭑞 𝑤𭑗1,𭑗2

(𝑡)𝑆𭑗2,𭑙
1, ⃗𭑞 𝑒𭑖(𭐸𭑘+𭐸𭑗2−𭐸𭑗1−𭐸𭑙)𭑡/ℏ𝛿(𝐸𭑗2

− 𝐸𭑙 − 𝜖 ⃗𭑞)

− 𝑆𭑘,𭑗1
2, ⃗𭑞 𝑤𭑗1,𭑗2

(𝑡)𝑆𭑗2,𭑙
1, ⃗𭑞 𝑒𭑖(𭐸𭑘+𭐸𭑗2−𭐸𭑗1−𭐸𭑙)𭑡/ℏ𝛿(𝐸𭑗1

− 𝐸𭑘 − 𝜖 ⃗𭑞)

+ 𝑤𭑘,𭑗1
(𝑡)𝑆𭑗1,𭑗2

1, ⃗𭑞 𝑆𭑗2,𭑙
2, ⃗𭑞 𝑒𭑖(𭐸𭑗1−𭐸𭑙)𭑡/ℏ𝛿(𝐸𭑗1

− 𝐸𭑗2
− 𝜖 ⃗𭑞))]

− 𝜋𝑔2
NaLi𝜌0

ℏ𝑉
�
𭑗1,𭑗2

�
⃗𭑞
[(𝑢 ⃗𭑞 + 𝑣 ⃗𭑞)2 𝑁( ⃗𝑞)(

𝑆𭑘,𭑗1
2, ⃗𭑞 𝑆𭑗1,𭑗2

1, ⃗𭑞 𝑤𭑗2,𭑙(𝑡)𝑒𭑖(𭐸𭑘−𭐸𭑗2)𭑡/ℏ𝛿(𝐸𭑗1
− 𝐸𭑗2

− 𝜖 ⃗𭑞)

− 𝑆𭑘,𭑗1
1, ⃗𭑞 𝑤𭑗1,𭑗2

(𝑡)𝑆𭑗2,𭑙
2, ⃗𭑞 𝑒𭑖(𭐸𭑘+𭐸𭑗2−𭐸𭑗1−𭐸𭑙)𭑡/ℏ𝛿(𝐸𭑙 − 𝐸𭑗2

− 𝜖 ⃗𭑞)

− 𝑆𭑘,𭑗1
1, ⃗𭑞 𝑤𭑗1,𭑗2

(𝑡)𝑆𭑗2,𭑙
2, ⃗𭑞 𝑒𭑖(𭐸𭑘+𭐸𭑗2−𭐸𭑗1−𭐸𭑙)𭑡/ℏ𝛿(𝐸𭑘 − 𝐸𭑗1

− 𝜖 ⃗𭑞)

+ 𝑤𭑘,𭑗1
(𝑡)𝑆𭑗1,𭑗2

2, ⃗𭑞 𝑆𭑗2,𭑙
1, ⃗𭑞 𝑒𭑖(𭐸𭑗1−𭐸𭑙)𭑡/ℏ𝛿(𝐸𭑗2

− 𝐸𭑗1
− 𝜖 ⃗𭑞))].

This equation covers the time evolution of the lithium atom in the most general case. However,
for a lithium atom which initially occupies an energy eigenstate the differential equation be-
comes more simple. In this case, the off-diagonal elements of the density matrix are always zero
(𝑤𭑘,𭑙(𝑡) = 0 for 𝑘 ≠ 𝑙) as the bath does not induce coherences, and one gets [69]

𝑑
𝑑𝑡

𝑤𭑘,𭑘(𝑡) = − 2𝜋𝑔2
NaLi𝜌0

ℏ𝑉
�

𭑗
�

⃗𭑞
(𝑢 ⃗𭑞 + 𝑣 ⃗𭑞)2 [ (A.28)

(1 + 𝑁( ⃗𝑞)) (⏐⏐⏐𝑆
𭑗,𭑘
2, ⃗𭑞

⏐⏐⏐
2

𝑤𭑘,𭑘(𝑡)𝛿(𝐸𭑘 − 𝐸𭑗 − 𝜖 ⃗𭑞) − ⏐⏐⏐𝑆
𭑘,𭑗
2, ⃗𭑞

⏐⏐⏐
2

𝑤𭑗,𭑗(𝑡)𝛿(𝐸𭑗 − 𝐸𭑘 − 𝜖 ⃗𭑞))

+ 𝑁( ⃗𝑞)(⏐⏐⏐𝑆
𭑗,𭑘
2, ⃗𭑞

⏐⏐⏐
2

𝑤𭑘,𭑘(𝑡)𝛿(𝐸𭑗 − 𝐸𭑘 − 𝜖 ⃗𭑞) − ⏐⏐⏐𝑆
𭑘,𭑗
2, ⃗𭑞

⏐⏐⏐
2

𝑤𭑗,𭑗(𝑡)𝛿(𝐸𭑘 − 𝐸𭑗 − 𝜖 ⃗𭑞))].
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A.3. Numerical Evaluation

It is instructive to rewrite equation (A.28) as rate equation

𝑑
𝑑𝑡

𝑤𭑘,𭑘(𝑡) = �
𭑗

(𝑅𭑗→𭑘𝑤𭑗,𭑗(𝑡) − 𝑅𭑘→𭑗𝑤𭑘,𭑘(𝑡) + 𝐻𭑗→𭑘𝑤𭑗,𭑗(𝑡) − 𝐻𭑘→𭑗𝑤𭑘,𭑘(𝑡)). (A.29)

Where

𝑅𭑚→𭑛 = 2𝜋𝑔2
NaLi𝜌0

ℏ𝑉
�

⃗𭑞
(𝑢 ⃗𭑞 + 𝑣 ⃗𭑞)2 (1 + 𝑁( ⃗𝑞)) ⏐⏐⏐𝑆

𭑛,𭑚
2, ⃗𭑞

⏐⏐⏐
2 𝛿(𝐸𭑚 − 𝐸𭑛 − 𝜖 ⃗𭑞) (A.30)

corresponds to the relaxation rate from state |𝑚⟩ to state |𝑛⟩ according to Fermi's golden rule [75]
and

𝐻𭑚→𭑛 = 2𝜋𝑔2
NaLi𝜌0

ℏ𝑉
�

⃗𭑞
(𝑢 ⃗𭑞 + 𝑣 ⃗𭑞)2 𝑁( ⃗𝑞) ⏐⏐⏐𝑆

𭑛,𭑚
2, ⃗𭑞

⏐⏐⏐
2 𝛿(𝐸𭑛 − 𝐸𭑚 − 𝜖 ⃗𭑞) (A.31)

to the heating rate from state |𝑚⟩ to state |𝑛⟩ because of the bath's finite temperature.

A.3. Numerical Evaluation

This section shortly introduces the numerics used for calculating the relaxation rates in section 6.2
and the time evolution of the density matrix in section 6.3.

A.3.1. Matrix Elements

In order to calculate the matrix element

𝑆𭑚,𭑛
2, ⃗𭑞 = ⟨𝑚| 𝑒−𭑖 ⃗𭑞 ̂𭑟⃗ |𝑛⟩ , (A.32)

the element is split into three matrix elements one for each spatial direction

𝑆𭑚,𭑛
2, ⃗𭑞 = ⟨𝑚x| 𝑒−𭑖𭑞x𭑥̂ |𝑛x⟩ ⟨𝑚y

⏐⏐⏐ 𝑒−𭑖𭑞y ̂𭑦 ⏐⏐⏐𝑛y⟩ ⟨𝑚z| 𝑒−𭑖𭑞z ̂𭑧 |𝑛z⟩ . (A.33)

According to [69], each of these elements is for a harmonic potential and for 𝑚𭑗 ≤ 𝑛𭑗 given by

⟨𝑚𭑗⏐⏐ 𝑒−𭑖𭑞𭑗 ̂𭑥𭑗 ⏐⏐𝑛𭑗⟩ = ∫
∞

−∞
𝜓*

𭑚𭑗
(𝑥𭑗)𝑒−𭑖𭑞𭑗𭑥𭑗𝜓𭑛𭑗

(𝑥𭑗) d𝑥𭑗 (A.34)

= √
𝑚𭑗!
𝑛𭑗!

𝑒−𭑎2
ho𭑞2

𭑗/4 (
−𝑖𝑎ho𝑞𭑗√

2
)

𭑛𭑗-𭑚𭑗

L
𭑛𭑗-𭑚𭑗
𭑚𭑗 (

𝑎2
ho𝑞2

𭑗

2
) ,

where 𝑎ho is the harmonic oscillator length along the 𝑗-th direction and L
𭑛𭑗-𭑚𭑗
𭑚𭑗 the associated

Laguerre polynomial. To obtain the matrix element ⟨𝑚𭑗⏐⏐ 𝑒−𭑖𭑞𭑗 ̂𭑥𭑗 ⏐⏐𝑛𭑗⟩ for 𝑛𭑗 ≤ 𝑚𭑗, we make
use of the fact that the eigenfunctions of the harmonic oscillator 𝜓𭑛(𝑥) are real. Hence, one gets
⟨𝑚𭑗⏐⏐ 𝑒−𭑖𭑞𭑗 ̂𭑥𭑗 ⏐⏐𝑛𭑗⟩ = ⟨𝑛𭑗⏐⏐ 𝑒−𭑖𭑞𭑗 ̂𭑥𭑗 ⏐⏐𝑚𭑗⟩ which can be calculated by the above formula.
Moreover, the calculation of

𝑆𭑚,𭑛
1, ⃗𭑞 = ⟨𝑚| 𝑒𭑖 ⃗𭑞 ̂𭑟⃗ |𝑛⟩ (A.35)

also reduces to the calculation of 𝑆𭑚,𭑛
2, ⃗𭑞 as 𝑆𭑚,𭑛

1, ⃗𭑞 = (𝑆𭑛,𭑚
2, ⃗𭑞 )

*
.
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A. Auxiliary Calculations for Chapter 6

A.3.2. Sum over the Excitation Modes

As the excitation modes of a homogeneous Bose gas are continuous, the sum over the excitation
modes in equation (A.27) and (A.28) can be replaced by an integral

�
⃗𭑞

→ 𝑉
(2𝜋)3 ∫d3𝑝. (A.36)

If we e. g. insert this approach into the first summand of equation (A.27) and consider that the dis-
persion relation of the Bogoliubov excitations is monotonically increasing, the three-dimensional
integral turns into a two-dimensional integral

𝜋𝑔2
NaLi𝜌0

ℏ𝑉
�

⃗𭑞
(𝑢 ⃗𭑞 + 𝑣 ⃗𭑞)2 (1 + 𝑁( ⃗𝑞)) 𝑆𭑘,𭑗1

1, ⃗𭑞 𝑆𭑗1,𭑗2
2, ⃗𭑞 𝑒𭑖(𭐸𭑘−𭐸𭑗2)𭑡/ℏ𝛿(𝐸𭑗2

− 𝐸𭑗1
− 𝜖 ⃗𭑞) (A.37)

= 𝑔2
NaLi𝜌0

23𝜋2ℏ
∫d3𝑝 (𝑢 ⃗𭑞 + 𝑣 ⃗𭑞)2 (1 + 𝑁( ⃗𝑞)) 𝑆𭑘,𭑗1

1, ⃗𭑞 𝑆𭑗1,𭑗2
2, ⃗𭑞 𝑒𭑖(𭐸𭑘−𭐸𭑗2)𭑡/ℏ𝛿(𝐸𭑗2

− 𝐸𭑗1
− 𝜖 ⃗𭑞)

= 𝑔2
NaLi𝜌0

23𝜋2ℏ
(𝑢𭑞0

+ 𝑣𭑞0
)

2
(1 + 𝑁(𝑞0))

⏐⏐⏐⏐
𝑑
𝑑𝑞

𝜖𭑞
⏐⏐⏐⏐

−1

𭑞=𭑞0

𝑞2
0 ∫sin (𝜃) 𝑆𭑘,𭑗1

1, ⃗𭑞0
𝑆𭑗1,𭑗2
2, ⃗𭑞0

d𝜃d𝜙 𝑒𭑖(𭐸𭑘−𭐸𭑗2)𭑡/ℏ

with 𝐸𭑗2
−𝐸𭑗1

= 𝜖 ⃗𭑞0
. In general, this integral is not analytically solvable and has to be computed

numerically.
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B. List of Constants

The following table lists the constants and their abbreviations used in this thesis and the presented
calculations.

natural constants [94] symbol value

Planck constant ℏ 1.05457 ⋅ 10−34 Js
ℎ ℏ ⋅ 2𝜋

Boltzmann constant 𝑘B 1.38065 ⋅ 10−23 J/K
speed of light 𝑐 299,792,458m/s
standard acceleration of gravity 𝑔grav 9.80665m/s2

Bohr radius 𝑎0 5.29177 ⋅ 10−11 m

sodium constants [95]

mass 𝑚Na 3.81754 ⋅ 10−26 kg
D2- transition frequency 𝜔Na,D2

2𝜋 ⋅ 508.84872THz
natural line width D2-line ΓNa,D2

2𝜋 ⋅ 9.7946MHz

lithium constants [96]

mass 𝑚Li 9.98834 ⋅ 10−27 kg
D1- transition frequency 𝜔Li,D1

2𝜋 ⋅ 446.78963THz
natural line width D1-line ΓLi,D1

2𝜋 ⋅ 5.8724MHz
D2- transition frequency 𝜔Li,D2

2𝜋 ⋅ 446.79968THz
natural line width D2-line ΓLi,D2

2𝜋 ⋅ 5.8724MHz

scattering lengths for the lowest hyperfine states

sodium-sodium [97] 𝑎Na,Na 54.54 𝑎0
sodium-lithium [41] 𝑎Na,Li −75 𝑎0
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