
 
Dissertation 

 
 

Submitted to the  
Combined Faculties for the Natural Sciences and for Mathematics 

of  the Ruperto-Carola University of Heidelberg, Germany 
 

 
for the degree of 

Doctor of Natural Sciences 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Presented by 
 
 

Md. Harun-or Rashid 
born in Sherpur, Bangladesh 

 

Date of oral examination:  



 

Genetic diversity of rhizobia nodulating 

lentils (Lens culinaris Medik.) 

 

 

 

 
                                            
 
 
 

 

 

 

Referees: Prof. Dr. Michael Wink 

                     Prof. Dr. Thomas Rausch 

 



i 

 

Acknowledgements 

This thesis would not have been possible without the help of many people who 

supported me and my work during my study period. 

I express my deepest gratitude to my supervisors Prof. Michael Wink and Prof. Thomas 

Rausch for accepting me as Ph.D. student and for providing all necessary support to 

finish my research project. I owe my deepest gratitude to both of them for their critical 

advice and enormous support during my study period.  

I am grateful to Prof. Michael Wink for freedom in research, scientific guidance, 

confidence and encouragement. It was a g reat pleasure for me to work on r hizobia 

project in his laboratory.  

I am grateful to Prof. Thomas Rausch for his inspirations, critical suggestions for 

research and general administration, and for providing research facility at glasshouse 

condition.   

I am grateful to my wife, Afrid Akter for her limitless inspiration, understanding, sacrifice 

and taking care of my children in Bangladesh during my study at Heidelberg University. 

I am deeply indebted to the EMMA authority for providing a scholarship to me for doing 

my Ph.D. at Heidelberg University. I appreciate the help from the Bangladesh 

Agricultural Research Council, Bangladesh for providing partial funding for the field 

work in Bangladesh and the DAAD-STIBET program authority for providing a t hesis 

completion grant to me. 

 I would like to thank Prof. J.P.W. Young, University of York (UK) for providing 

reference strains and critical suggestions to my work. I am grateful to Dr. Holger 

Schäfer for his nice cooperations regarding collections of primers, chemicals, soil 

samples and fruitfull discussions during my study period. I would like to thank Dr. Javier 

Gonzalez for his critical comments and suggestions regarding phylogenetic 

interpretations and software use. Special thanks to Markus Santhosh Braun for his nice 

cooperation for solving many problems related to German language and g eneral 

administration during laboratory work, summary writing and daily life. 

I would like to show my gratitude to Prof. M. A. Hashem, Bangladesh Agricultural 

University and D r. M. A. Satter, Director General, Bangladesh Institute of Nuclear 



ii 

 

Agriculture for encouraging me to do my research project in Germany. I am grateful to 

my friend Dr. Martin Krehenbrink, Chief technical officer, CYSAL, Germany, for 

improving language and fruitful discussion while writing up my thesis. 

I would like to show my gratitude to  Polash Sarker, Agriculture Officer, Dhaka, Nazim 

Uddin Shakh, Deputy Director, BADC,  E arshad Ali, SSAE, Rajshahi,  Golam Rasul, 

ASO and  Shahin Akther, ASO, BINA, for their help to collect field grown lentil nodules 

from Bangladesh.  

Several people have contributed to collect soil samples from Germany, Turkey and 

Syria. I am grateful to all of you:  Heidi Staudter,  Annika Heinemann,  Vanessa Erbe,  

Johannes Reiner and  Beate Waibel from Germany,  Razan Hamoud,  Shirin Hamoud 

and  Rasha Abou Aleinein from Syria ,and  Dr. Tamer Albayrak from Turkey for your 

important contribution for making a good story about my research project. I am grateful 

to Dr. Sabine Grube, Hoehenheim Unversity, Mr. Woldae Mammel, president 

(Vorsitzender) of the Friends Association (Förderverein), Alblinsen and Mr. Markus 

Santhosh Braun for their help to collect field grown lentil nodules from Germany. 

I am grateful to Heidi Staudter and Hedwig Sauer-Gürth for their lot of help and 

technical assistance to my laboratory work. Thank to Astrid Backhaus and Dieter 

Holzmann for their general help to my laboratory work. Special thank to Michael 

Schilbach at COS for his technical assistance during my work at glasshouse conditions. 

I would like to thank Mr. Philipp Kremer for helping in the mapping of sampling 

localities. I am indebted to my colleagues to support me during my study period. I would 

like to thank our secretary Petra Fellhauer for her lots of help and nice cooperations 

during my study period. 

This work has been performed according to Bangladesh and German law. 

 

 

 

Md. Harun-or Rashid 

 

 



iii 

 

Table of contents 

Acknowledgements………………………………………………………………………. i 
Summary…………………………………………………………………………………... v 
Zusammenfassung………………………………………………………………………. vi 
1. Introduction…………………………………………………………………………….. 1 
1.2 Rhizobia………………………………………………………………………………. 1 
1.2 Legume-Rhizobium symbiosis……………………………………………………… 1 
1.3 Lentil cultivation status in different countries……………………………………… 2 
1.4 Taxonomy of bacteria……………………………………………………………….. 5 
1.5 Rhizobial taxonomy…………………………………………………………………. 6 
1.6 Taxonomy of rhizobia (α-rhizobia)…………………………………………………. 7 
1.7 Revisions in rhizobial taxonomy…………………………………………………… 8 
1.8 Ambiguity in Agrobacterium-Allorhizobium-Rhizobium…………………………. 8 
1.9 Taxonomy of β-rhizobia…………………………………………………………….. 9 
1.10 Molecular Phylogeny……………………………………………………………… 9 
1.10.1 Overview of molecular phylogenetics…………………………………………. 9 
1.10.2 Advantages of molecular data………………………………………………….. 10 
1.11 Phylogeny of bacteria and rhizobia………………………………………………. 10 
1.12 Phylogenetic inference……………………………………………………………. 12 
1.12.1 Steps in phylogenetic analyses………………………………………………… 13 
1.12.2 Selection of phylogenetic markers……………………………………………… 13 
1.12.3 Sequencing of molecules……………………………………………………….. 14 
1.12.4 Multiple sequence alignment and software……………………………………. 14 
1.12.5 Phylogenetic tree reconstruction methods…………………………………….. 15 
1.12.6 Distance matrix method…………………………………………………………. 15 
1.12.7 Maximum parsimony method…………………………………………………… 15 
1.12.8 Maximum likelihood method……………………………………………………. 16 
1.12.9 Bayesian inference……………………………………………………………… 17 
1.13 Reliability of phylogenetic tree……………………………………………………. 17 
1.13.1 Bootstrapping……………………………………………………………………... 17 
1.13.2 Tree rooting……………………………………………………………………….. 18 
1.13.3 Model selection…………………………………………………………………… 19 
1.14 Bacterial speciation and recombination………………………………………….. 19 
1.15 Multi locus sequence analyses…………………………………………………… 20 
1.16 Symbiotic genes for phylogenetic analyses…………………………………….. 20 
1.17 Nodulation mechanism……………………………………………………………. 21 
1.18 Coevolution and dispersion of rhizobia…………………………………………. 22 
1.19 Symbiosis between rhizobia and lentil………………………………………….. 23 
1.20 Benefit of lentil-rhizobia symbiosis……………………………………………….. 23 
1.21 Previous work on lentil nodulating rhizobia……………………………………… 25 
1.22 Research strategy………………………………………………………………….. 25 
1.23 Objectives…………………………………………………………………………… 25 
2. Materials and Methods……………………………………………………………….. 27 
2.1 Sources of nodule samples and their collection localities……………………….. 27 
2.2 Isolation rhizobia from nodules and their preservation…………………………... 27 
2.3 Phenotypic characterization……………………………………………………….. 28 
2.4 Nodulation and cross-inoculation tests……………………………………………. 31 
2.5 Symbiotic effectivity test……………………………………………………………. 32 
2.6 DNA extraction, gene amplification and sequencing……………………………. 33 
2.7 Genomic fingerprinting by ERIC-PCR…………………………………………….. 35 
2.8 Processing of sequence data……………………………………………………… 36 



iv 

 

2.9 Phylogenetic analyses……………………………………………………………… 36 
2.10 Population genetic analyses……………………………………………………… 37 
2.11 Recombination and mutation analyses………………………………………….. 37 
2.12 Apparatus, instruments, chemicals, solutions used in this study……………... 38 
Research projects………………………………………………………………………... 41 
3.1 Project 1: Genetic diversity of rhizobia nodulating lentil (Lens culinaris) in    
      Bangladesh………………………………………………………………………….. 

41 

3.1.1 Abstract…………………………………………………………………………….. 41 
3.1.2 Introduction………………………………………………………………………… 42 
3.1.3 Materials and methods……………………………………………………………. 44 
3.1.4 Results……………………………………………………………………………… 45 
3.1.5 Discussion…………………………………………………………………………. 60 
3.2 Project 2: Rhizobium leguminosarum symbiovar viciae is the symbiont of  
      lentils in the Middle East and Europe but not in Bangladesh…………………… 

74 

3.2.1 Abstract……………………………………………………………………............. 74 
3.2.2 Introduction………………………………………………………………………… 75 
3.2.3 Materials and methods……………………………………………………………. 77 
3.2.4 Results……………………………………………………………………………… 79 
3.2.5 Discussion…………………………………………………………………………. 97 
4. Conclusions and general discussion………………………………………………... 105 
4.1 Genetic diversity of rhizobia  nodulating lentil in Bangladesh………………….. 105 
4.2 Origin of rhizobia nodulating lentil in Bangladesh………………………………... 106 
4.3 Genetic diversity of lentil-nodulating rhizobia from the Middle East and    
      Germany are greatly influenced by recombination………………………………. 

106 

4.4 Species delineation of lentil rhizobia………………………………………………. 107 
4.5 Rhizobium leguminosarum is the original symbiont of lentils…………………… 107 
4.6 Genetic diversity of nodulation genes……………………………………………... 108 
4.7 Specific conclusion………………………………………………………………….. 109 
5. References…………………………………………………………………………….. 110 
6. Appendixes…………………………………………………………………………….. 129 
 



v 

 

Summary 

Lentil is not only the oldest legume crop but also the oldest of the crops that have been 

domesticated in the Fertile Crescent and distributed to other regions during the Bronze 

Age, making it an ideal model to study the evolution of rhizobia associated with crop 

legumes. This study investigates lentil-nodulating rhizobia from the region where lentil 

originated (Turkey and Syria) and from regions to which lentil was introduced later 

(Germany and Bangladesh). There are few studies on lentil-nodulating rhizobia, and no 

phylogenetic studies on lentil rhizobia using multi locus sequence analyses. Therefore, 

rhizobia from lentil nodules were chosen to study 1) the genetic diversity 2) the 

taxonomic position and 3) the transmissible nature of nodulation genes. I have 

sequenced four housekeeping genes (16S rRNA, recA, atpD, glnII) and three 

nodulation genes (nodA, nodC, nodD) and analyzed these using phylogenetic and 

population genetic approaches to achieve these objectives. To supplement these 

approaches I have also used DNA fingerprinting and p henotypic characterization. 

Moreover, the symbiotic performance was assessed by nodulation and cross 

inoculation tests. I identified four different lineages of rhizobia associated with lentil, of 

which three are new and endemic to Bangladesh, and one lineage was found in the 

Mediterranean region and C entral Europe. The new lineages from Bangladesh are 

close to Rhizobium etli and correspond to new species in the genus Rhizobium. The 

endemic lentil grex pilosae may have played a significant role in the origin of these new 

lineages in Bangladesh. The single lineage from the Mediterranean and Central Europe 

belongs to Rhizobium leguminosarum. The association of Rhizobium leguminosarum 

with lentil at the centre of lentil origin and in countries where lentil was introduced later 

suggests that Rhizobium leguminosarum is the original symbiont of lentil. Lentil seeds 

might have played a significant role in the initial dispersal of Rhizobium leguminosarum 

within the Middle East and on to other countries. Analysis of nodulation genes showed 

that they are prone to horizontal transfer between different chromosomal lineages and 

sub-lineages of rhizobia. Nodulation genes showed bias to their geographical origin, 

evidencing that plasmid-borne characters in bacteria rapidly change according to their 

adaptation to particular environment.   

Key words: Rhizobium, Lens culinaris, nodulation, multilocus analysis, fingerprint, 

phylogeny   
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Zusammenfassung 

Die Linse ist die älteste Hülsenfrucht und zugleich die älteste der im Fruchtbaren 

Halbmond domestizierten Kulturpflanzen. Im Bronzezeitalter wurde sie in andere 

Regionen eingeführt, was sie zu einem idealen Studienobjekt der Evolution von mit 

Kulturpflanzen assoziierten Rhizobien macht. Diese Arbeit untersucht knöllchenbildende 

Rhizobien der Linse aus den Ursprungsländern (Türkei und Syrien) und aus Gebieten, in 

die sie erst später eingeführt wurde (Deutschland und Bangladesch). Bislang gibt es nur 

wenige Studien an K nöllchenbakterien von Linsen; Untersuchungen, phylogenetische 

Analysen mit Hilfe des Multi Locus Sequencing existieren nicht. Aus diesem Grund 

wurden aus Linsenknöllchen stammende Rhizobien gewählt, um 1) deren genetische 

Vielfalt, 2) ihre taxonomische Position und 3) die Übertragbarkeit von Nodulationsgenen 

zu untersuchen. Um diese Ziele zu erreichen, habe ich vier Haushaltsgene (16S rRNA, 

recA, atpD, glnII) und drei Nodulationsgene (nodA, nodC, nodD) sequenziert und diese 

mittels phylogenetischer und p opulationsgenetischer Methoden analysiert. Ergänzend 

habe ich DNA-Fingerprints erstellt und die Rhizobien phänotypisch charakterisiert. 

Zusätzlich wurde die symbiotische Effizienz durch Nodulationstests und 

Kreuzbeimpfungen bestimmt. Ich habe vier unterschiedliche Abstammungslinien von 

Linsen-Rhizobien identifiziert. Drei davon waren bislang unbekannt und sind in 

Bangladesch endemisch. Die verbleibende kommt im Mittelmeergebiet und Mitteleuropa 

vor. Die neuen A bstammungslinien aus Bangladesch sind nahe Verwandte von 

Rhizobium etli und bilden innerhalb der Gattung Rhizobium drei neue Arten. Die 

endemische Linsengrex pilosae könnte eine entscheidende Rolle hinsichtlich des 

Ursprungs der neuen A bstammungslinien Bangladeschs gespielt haben. Die 

Abstammungslinie der Mittelmeergebiete und Mitteleuropas gehört zu Rhizobium 

leguminosarum. Das Vorkommen von Rhizobium leguminosarum an Linsen im Kern des 

Ursprungsgebiets der Pflanze und in Ländern, in die die Linse später eingeführt wurde, 

lässt vermuten, dass Rhizobium leguminosarum der ursprüngliche Symbiont dieser 

Kulturpflanze ist. Linsensamen könnten für die Verbreitung von Rhizobium 

leguminosarum in den N ahen Osten und andere Länder entscheidend gewesen sein. 

Die Analyse der Nodulationsgene hat gezeigt, dass leicht ein horizontaler Gentransfer 

zwischen unterschiedlichen chromosomalen- und Sub-Abstammungslinien von 

Rhizobien stattfinden kann. Die Variabilität der Nodulationsgene wies eine Korrelation 

mit deren geographischen Ursprung auf, was zeigt, dass sich durch Plasmide verliehene 

Eigenschaften von Bakterien schnell an ihre spezielle Umgebung anpassen. 
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1. Introduction 

1.1 Rhizobia 
Nitrogen is an essential nutrient for all living organisms and necessary for the production 

of high-yield and high-quality agricultural crops. Although molecular nitrogen (N2) is the 

most abundant gas in the atmosphere, it is unavailable to plants in its elemental form. 

Rhizobia are a group of bacteria that have the capacity to form nodules on legume roots 

(and occasionally on stems) and can fix atmospheric nitrogen to partially or fully meet the 

nitrogen requirements of the host plant. To describe bacteria from root nodules, Frank 

(1889) proposed name “rhizobia”, and after this proposal all nodule-forming bacteria 

have been k nown as rhizobia. Biological nitrogen fixation (BNF: atmospheric nitrogen 

fixation through different members of prokaryotes, specifically by diazotrophs) 

contributes approximately 16% of total nitrogen input in crop land (Ollivier et al., 2011). 

Rhizobia are a major contributor to BNF, and the legume-rhizobium symbiosis can fix up 

to 450 Kg N/ha/year (Unkovich & Pate, 2000). Rhizobia as a group are not monophyletic 

and have been classifed as α and β rhizobia (Moulin et al., 2002). Already 163 species 

from 12 genera (http://edzna.ccg.unam.mx/rhizobial-taxonomy) have been d escribed. 

However, further study of the genetic diversity of rhizobia helps to understand the 

evolutionary histories of the legume-rhizobium symbiosis and helps to devise effective 

planning strategies to achieve the maximum benefit from legume-rhizobium symbiosis. 

1.2 Legume-Rhizobium symbiosis 
Legumes are the third largest flowering plant family, containing 700 genera and about 

20,000 species. It is an extremely diverse plant family with a great number of different 

characters, and a few characters are common to all species. Nodulation is an important 

characteristic of majority legumes but it is absent in the earliest divergent lineages of this 

family. Legume evolved about 65 MYA and nodulation have evolved in legumes after the 

origin of this family approximately 30 MY (Lavin et al., 2005; Bruneau et al., 2008; Doyle, 

2011) later.  

Nodulation is a complex issue and there is no simple explanation for its origin (Doyle, 

1998; 2003; Sprent, 2001). Nodulation takes place in the legume sub-family 

Papilionoideae and Mimosoideae, and in the tribe Caesalpinieae and c ore Cassieae.  

Most of the members of the Papilionoideae and about 90% of the Mimosoid members 

are thought to be nodulated by rhizobia for nitrogen fixation (Doyle, 2011). Nodulating or 
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non-nodulating legumes have a high demand for nitrogen, largely in the leaf where 

photosynthesis or the accumulation of nitrogen-rich defensive compounds occurrs. 

Hence, it has been concluded that legumes owe their evolutionary success to nodulation 

and subsequent access to atmospheric nitrogen (McKey, 1994).  

Rhizobia produce nodulation (nod) factors after a specific interaction with their host plant, 

and thus it has been assumed that rhizobia have coevolved with their host plants (Perret 

et al., 2000). The strong correlation between host plant and nodulation genotypes 

denotes the importance of the host on nodulation genotypes (Young & Wexler, 1988; 

Laguerre et al., 1992; 1993; Black et al., 2012). However, from two model legumes, 

Lotus japonicus and Medicago truncatula, 26 genes have been cloned which are 

involved in recognition of rhizobia, the nodulation signal cascade, infection, the 

nodulation process and the regulation of nitrogen fixation (Kouchi et al., 2010; and 

reference therein). However, host association also is important for shaping the genetic 

divergence of nodulation and h ousekeeping genes in rhizobia (Wernegreen & Riley, 

1999).  

1.3 Lentil cultivation status in different countries  
Root-nodulating bacteria were first described from different members of the legume tribe 

Vicieae. The tribe Vicieae is composed of several closely-related genera with many 

intermediate forms. Therefore, this tribe contains several newly proposed genera. 

However, there are four well-recognized genera such as Vicia, Lathyrus, Pisium and 

Lens in the tribe Vicieae. 

Lentil (Lens culinaris) is an i mportant and popular legume employed for human and 

animal nutrition, and soil fertility management. Lens is a Latin word, which describes the 

shape of cultivated lentil seeds. The word and seed are very distinct from other legumes, 

and it is therefore easy to identify lentil from historical texts and archeological sites 

(Cubero, 1981; and references therein). Lentil were domesticated in the Fertile Crescent 

around 9,000 years ago (Toklu et al., 2009; and reference therein) and remains an 

important seed legume crop cultivated worldwide (Sarker & Erskine, 2006). The region 

for the domestication of lentl  consists of Southeastern Turkey and N orthern Syria, 

including the sources of the Tigris and t he Euphrates rivers (Lev-Yadun et al., 2000). 

Lens culinaris is the putative ancestor of domesticated lentil (Barulina, 1930; Cubero, 

1981).The taxonomy of cultivated lentil subspecies and grex is shown in table 1 (after 

Cubero, 1981): 
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Table 1. Taxonomy of cultivated lentil 

Species Subspecies Race Grex 

Lens culinaris nigricans macrosperma europeae 

microsperma asiaticae 
intermediae 

subspontaneae 
aethiopicae 

pilosae 

orientalis 

culinaris 

 

After domestication in the cradle of agriculture, lentil spread to Cyprus in the Neolithic 

(Erskine et al., 1994). Lentil disseminated from Southeastern Europe to Central Europe 

around the 5,000 years BC via the Danube. From Europe, it dispersed to the Nile Valley 

and from there to Ethiopia. However, in Georgia, lentil was propagated during the 5,000 

and 4,000 years BC and in the Indian sub-continent around 2,500 – 2,000 years BC 

(Sonnante et al., 2009; and references therein). Lentil is now grown all over the world 

(Indian sub-continent, Middle East, North Africa, South Europe, the North and South 

America and Australia, Chahota et al., 2007). 

Lentil cultivation in Bangladesh 
Legumes play an important role in agriculture and daily diet in Bangladesh. Around 5.2% 

of cultivable lands are subject to legume cultivation (Rahman et al., 2009). Because poor 

people cannot afford expensive fish and meat, pulses have been known for a long time 

as the “meat of the poor people” in Bangladesh. Although legumes have been grown in 

Bangladesh for a long time, farmers have largely been cultivating pulse legumes without 

applying major agricultural inputs like fertilizers, irrigation and plant protection. A number 

of pulse crops like vetch (Lathyrus sativus L.), lentil (Lens culinaris, Medic), chickpea 

(Cicer arietinum L.), black gram (Vigna mungo L.), mung bean (Vigna radiata L.), and 

cowpea (Vigna unguiculata L.) are grown in Bangladesh. Among these crops, lentil is the 

most popular and has been cultivated since ancient times. In 2010, lentil was grown on 

9,199 hectares of land and the total production was 71,100 tonnes (FAOSTAT-

Agriculture, 2010). The grex pilosae in the race microsperma of Lens culinaris is the only 
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cultivated lentil in Bangladesh (Dr. A. Sarker, Dr. A. Rahman and Dr. M. A. Samad, 

personal communication).  

Lentil cultivation in Germany 
Germany has a history of cultivation of different pulse crops like dry bean, horse bean, 

lupin, pea and lentil. In 2010, about 103,800 hectares of land were used for different 

pulse crop production in Germany. Of the area cultivated with legumes (0.3% of the total 

cultivated area, http://www.aid.de) about 17,200 hectares were used for pea production 

(FAOSTAT-Agriculture, 2010). In 2012 about 200 hectare of land was under lentil 

cultivation in Germany (Dr. Sabine Gruber; Mr. Woldemar Mammel, personal 

communication). For several decades, little attention was paid to lentil cultivation and 

research in Germany. Nowadays, there is an increasing market for high-priced lentil in 

Germany. Considering the various advantages like nitrogen fixation potential, high 

nutritive values and essentiality for mix cropping, more and more farmers are beginning 

to reintroduce lentil to German organic farming, and scientists are paying more attention 

to lentil research (Wang et al., 2012).  

Lentil cultivation in Syria 
Different pulse legumes like bean, broad bean, chickpea, lentils, lupin, pea and vetch are 

grown in Syria (FAOSTAT-Agriculture, 2010). Lentil is an important pulse crop in Syria. It 

does not only provide cheap dietary protein but also plays significant role for farm land 

and farmers. Moreover, lentil cultivation is an integral part of crop rotation to maintain soil 

fertility and as sures that farmers are getting a higher more economic return from 

cultivation. Among the different provinces, Aleppo, Idlib, Al Hasakah and Hama are the 

main (80%) lentil producers in Syria, though Damascus and As Suwayda also contribute 

(20%) to the national production (www.houseoflentils.com). In 2010, about 242,620 

hectares were used for legume production and 131,100 hectares were used for lentil 

cultivation (FAOSTAT-Agriculture, 2010). 

Lentil cultivation in Turkey 
Since ancient times, pulses have been cultivated and consumed in large quantities in 

Turkey. Turkey is also the third largest lentil producing country in the world after India 

and Canada (FAOSTAT-Agriculture, 2007). Major pulses like lentil, chickpea, white 

bean, red bean, broad bean and vetch have been grown in Turkey 



5 

 

(www.economy.gov.tr; FAOSTAT-Agriculture, 2010), but pulse production is significantly 

influenced by lentil production (http://www.invest.gov.tr/en). About 895,689 hectares of 

land are used for the production of different pulses and 234,378 hectares were used for 

lentil cultivation in 2010 (FAOSTAT-Agriculture, 2010). Although pulse cultivation is 

distributed throughout Turkey, some regions are important for specific pulse crops. For 

example, red lentil is grown in the Southeast Anatolia, green lentil, chickpea and dr y 

bean are grown in central Anatolia, and broad bean and dry pea are cultivated in the 

Aegean and Marmara regions (www.economy.gov.tr). Although macrosperma is the 

dominating race in Turkey, the microsperma race is also available in some regions like 

South Turkey (Toklu et al., 2009).   

1.4 Taxonomy of bacteria 
Systematics is the branch of biology which deals with the classification of living 

organisms by describing their diversity and relationships to one another. Systematics has 

three major divisions; taxonomy, classification and phylogenetics (Wink, 2007).  

A group of organism which is specifically defined on the basis of certain characters is 

known as a taxon, and the description and naming of taxa is known as taxonomy. 

Taxonomy organizes different taxa on t he basis of their similarity and is therefore 

important for the identification of organisms at field level. However, taxa may not always 

reflect the evolutionary relationship of organisms. As for eukaryotes there are different 

levels in bacterial taxonomy, although kingdoms have not been proposed for bacteria. In 

bacterial taxonomy the topmost level is the domain, which is followed by phylum, family, 

genus, species and sub-species (Brenner et al., 2005). However, taxonomy is not fixed, 

but rather always prone to change with the development of new ideas. To implement a 

new idea it is necessary to change the taxonomy, and subsequently changes have 

occurred in classification, nomenclature and identification. 

There are three major concepts for defining species, such as the typological 

/morphological concept, the biological species concept, and the phylogenetic 

/evolutionary species concept. According to the morphological species concept, a 

species combines a group of organisms based on s ufficiently close, shared and fixed 

morphological or anatomical properties. In the biological species concept (Mayr, 1963), a 

species is a group of populations whose members can potentially inbreed and are 

reproductively isolated from others group.  

http://www.economy.gov.tr/�
http://www.economy.gov.tr/�
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The phylogenetic species is the most recent concept. In this concept, a species is a 

group of organisms that share a common ancestor and can be separated from other 

species by distinctive characters. The evolutionary species concept describes that 

maintain integrity from other lineages through both time and space. During evolution, 

members of the lineage can diverge and become an independent species (Wink, 2007 ; 

and references therein).  

Phylogenetics is the field of biology that deals with identifying and understanding the 

evolutionary relationships between different kinds of life on Earth, and is the basis for 

evolutionary systematics. Classification is the organization of information about diversity, 

and arranges organisms into a c onvenient hierarchical system such as the Linnean 

system.    

1.5 Rhizobial taxonomy  
From the very begening of bacterial taxonomy, rhizobial taxonomy was significantly 

influenced by the nodulating host. In the initial classification of bacteria ( Bergey et al., 

1923 ), rhizobia were described as Gram-negative, aerobic, non-spore forming bacteria, 

and the main criterion was their ability to nodulate.  

 

Fig. 1. Distribution of root-nodulating bacterial genera (bold font) in different classes of Proteobacteria in 
an unrooted phylogenetic tree based on 16S rDNA sequences (Masson-Boivin et al., 2009). Root 
nodulating bacteria are distributed mainly in the classes’ α-proteobacteria and β-proteobacteria. A few γ-
proteobacteria have also been isolated from nodules. For example, bacteria belonging to γ-proteobacteria 
have been isolated from the nodules of Arachis hypogea, but these failed Koch’s postulates under 
laboratory conditions (Ibañez et al., 2009).   
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For a long time, it had been assumed that all nodulating bacteria came from the α-

proteobacteria, but recently a number of bacteria from the β-proteobacteria were found 

to also show nodulation capacity, and recently rhizobia have been classified as α-

rhizobia and β-rhizobia (Moulin et al., 2002). 

1.6 Taxonomy of rhizobia (α-rhizobia) 
In Bergey’s original manual, bacteria were included in rhizobia if they showed nodulation 

capacity, while bacteria with the same morphological characters that did not nodulate 

were excluded.  Later, nodulation host range and behavior on growth media were also 

considered (Baldwin & Fred, 1929; Fred et al., 1932) for rhizobial classification. Based 

on growth behavior on media, Fred et al. (1932) classified rhizobia as either fast growing 

and slow growing rhizobia (Young, 1996; and references therein).  

Although the transferable nature of plasmids and plasmid-borne genes were well known 

to scientists (Zurkowski & Lorkiewicz, 1976; and reference therein), plasmid-borne 

character like nodulation capacity was dominant in rhizobial taxonomy for a long time. 

For example, six rhizobial species were included in the genus Rhizobium by Jordan and 

Allan (1974) in the first Bergey manual of determinative bacteriology based on t heir 

nodulation host. In the first published valid list of bacterial species (Skerman et al., 1980) 

four rhizobial species (Rhizobium leguminosarum, Rhizobium phaseoli, Rhizobium trifoli 

and Rhizobium meliloti) were included, and their names were assigned based on the 

nodulated host.  I n 1975, the International Committee of Systematic Bacteriology 

proposed a minimum standard for describing new taxa (species). Following the code of 

nomenclature for bacteria, Jordan (1984) used the idea of numerical taxonomy, DNA GC 

content, serological response, extracellular composition, carbohydrate utilization pattern, 

metabolism type, bacteriophage and antibiotic susceptibility, protein composition and 

bacteroid type to propose the new genus Bradyrhizobium in the family Rhizobiaceae and 

rearrange previously described species. The previously described three species R. 

leguminosarum, R. trifoli, and R. phaseoli were combined together into the single 

species R. leguminosarum. Two other species, R. meliloti and R. loti, remained in the 

genus Rhizobium but all slow-growing rhizobia were transferred to the genus 

Bradyrhizobium (Jordan, 1984).   

The international sub-committee on taxonomy of Rhizobium and Agrobacterium 

(http://edzna.ccg.unam.mx/rhizobial-taxonomy/node/4) is curating information about root 

nodulating rhizobia. According to this, 145 bacterial species that form nodules with 
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different legumes have been described in the genera Agrobacterium (Conn, 1942), 

Allorhizobium (de Lajudie et al., 1998), Azorhizobium (Dreyfus et al., 1988), 

Bradyrhizobium (Jordan, 1982; 1984), Ensifer (Chen et al., 1988; Scholla & Elkan, 1984) 

and Rhizobium (Frank, 1889).  

1.7 Revisions in rhizobial taxonomy 
A valid list of bacterial species was first published in 1980 by Skerman et al. (1980), and 

from this year it became a requirement to publish or validate all newly described bacterial 

species in the IJSEM journal. The proposal of Jordan (1984) for the new genus 

Bradyrhizobium and the rearrangement of the previously described species were 

published in Bergey’s manual, but not validated in the IJSEM journal. Therefore, the 

previously described species remained valid until 2008, when (Ramírez-Bahena et al., 

2008) revised the taxonomic status of R. trifoli, R. phaseoli and R. leguminosarum. They 

merged R. trifoli into R. leguminosarum but retained R. phaseoli as a separate species 

(Rivas et al., 2009; and references therein).   

1.8 Ambiguity in Agrobacterium-Allorhizobium-Rhizobium 
All described species in the genus Agrobacterium are named and included in this genus 

on the basis of plasmid-borne characters like tumorigenesis, pathogenicity, and 

rhizogenicity. Plasmids and plasmid-borne genes are not stable characters but are 

exchangeable among closely-related and even distantly-related bacterial species or even 

with plants (for example Agrobacterium tumafaciens is very useful for transferring DNA 

to plants). There are several studies reporting ambiguity between Rhizobium and 

Agrobacterium (Graham & Parker, 1964; White, 1972; Graham, 1976; Sawada et al., 

1993; Young & Haukka, 1996; Willems, 2006). Nowadays, taxonomists are trying to 

establish a natural classification of microorganisms by describing stable characters that 

avoid ambiguity. Therefore, it has been proposed to merge Agrobacterium and 

Allorhizobium with Rhizobium (Young et al., 2001). After several proposals for the 

revision of the three genera Rhizobium, Allorhizobium and Agrobacterium, the proposal 

of Young et al. (2001) has been accepted and Agrobacterium and Allorhizobium have 

now been included in the genus Rhizobium.   
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1.9 Taxonomy of β-rhizobia  
Rhizobia as a group are not monophyletic but contain diverse species of phylogenetically 

disparate bacteria. In total,  eighteen published species have been validly described as 

β-rhizobia so far under the genera: Aminobacter (Urakami et al., 1992), Burkholderia 

(Yabuuchi et al., 1992), Cupriavialus (Makkar & Casida, 1987), Devosia (Nakagawa et 

al., 1996), Herbaspirilum (Baldani et al., 1986) Mesorhizobium (Jarvis et al., 1997), 

Methylobacterium (Patt et al., 1976), Microvigra (Kanso & Patel, 2003), Ochrobactrum 

(Ngom et al., 2004), Phyllobacterium (Knösel et al., 1984) and Shinella (An et al., 2006).  

Although β-rhizobia have only recently been described from different legumes, molecular 

evidence showed that as legume symbionts they have existed for 50 m illion years 

(Gyaneshwar et al., 2011; and references therein). Different species of rhizobia from β-

proteobacteria contain common nodulation genes (nodABC, nodD, nifH) that are very 

similar to ‘traditional’ rhizobial (α-proteobacteria) symbiotic genes. Therefore, it has been 

hypothesized that β-rhizobia recruited symbiotic genes (Rivas et al., 2009) by horizontal 

gene transfer.  

1.10 Molecular Phylogeny  

1.10.1 Overview of molecular phylogenetics 
The study of evolutionary relationships between organisms using molecular data (DNA, 

RNA or protein sequences) is known as molecular phylogenetics. Zuckerkandl & Pauling 

(1965) proposed the concept of theoretical phylogenetic reconstruction, which views 

macromolecules as documents of evolutionary history that may therefore help to 

reconstruct phylogenies. They also introduced the “molecular clock concept”, i.e. the 

idea that random changes in nucleotide or amino acid sequences occur at more or less 

constant rates, so that the number of differences between two molecules with conserved 

function from two organisms should be approximately proportional to the evolutionary 

time that has passed since divergence.  

A phylogenetic tree is a diagram composed of nodes and branches, with the nodes 

connecting any adjacent branches. Branches represent taxonomic units that could be 

species, populations or individuals. Relationships between taxonomic units are defined 

by branches in terms of descent and ancestry; this branching pattern is known as the 

tree topology (Graur & Li, 2000). Following a cladistic approach only monophyletic 

groups derived from a common ancestor, should form taxonomic units such as genera, 
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tribes, families, species or subspecies (Wink, 2007; and reference therein). Monophyly, 

paraphyly or polyphyly may be inferred from phylogenetic analyses (Henning, 1966). 

Monophyletic and paraphyletic groups have a single evolutionary origin. Polyphyletic 

groups are the result of convergent evolution, and the main characteristic used to define 

the group is absent in the most recent common ancestor and consist of a hodgepodge of 

unrelated forms (Henning, 1966).     

1.10.2 Advantages of molecular data 
Molecular data, especially DNA, RNA and amino acid sequences, are much more 

reliable for evolutionary studies than morphological and physiological data. 

Morphological data can be convergent and is adaptive in nature (Wink, 2007), while 

molecular data are strictly heritable and less prone to convergence. DNA sequence is 

relatively resistant to change because of various repair and proofreading systems. 

Description of molecular data is straightforward and defined, while morphological 

descriptions always contain ambiguous modifiers such as ‘thin’, ‘reduced’, ‘slightly 

elongated’, ‘partially enclosed’, or ‘somewhat flattened’. More importantly, molecular 

traits evolve in a much more regular manner than morphological and physiological traits, 

and hence a much clearer relationship can be inferred from DNA, RNA or amino acid 

sequences. Nonetheless, sophisticated mathematical and statistical models have been 

developed to analyze molecular data (Nei & Kumar, 2000). Finally, molecular data are 

abundant in public databases and much more accessible than morphological data. 

Prokaryotes have very little morphological and phy siological variation for use in 

phylogenetic studies (Nei & Kumar, 2000). The aforementioned molecular characters are 

thus particularly important for studying the phylogenetics of microorganisms such as 

Bacteria and Archaea.  

1.11 Phylogeny of bacteria and rhizobia 
In 1930, many famous scientists (Albert Jan Kluyver, Cornelius Van Niel and Roger Yate 

Stanier) initially reconstructed bacterial phylogenies on the basis of morphological 

characters of the cells (Oren, 2010; and references therein), and during the 1940’s the 

use of morphological and phy siological characteristics for bacterial phylogentic 

reconstruction had become common place, scientists started to use.  Soon after, many 

prominent scientists [Stainer (1916 – 1989); Nile (1897 – 1985); Ernst Georg Pringsheim 

(1881 – 1970); Sergei Winogradsky (1856 – 1953)] already realized that morphological 
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and physiological properties were insufficient to construct a natural taxonomy of bacteria, 

but had not yet found a viable alternative (Oren, 2010; and reference therein). Because 

of this difficulty, this period became known as “the Dark age” of bacterial phylogeny ( 

Woese et al., 1984).   

The development of protein and nucleic acid sequencing technology in 1978 

revolutionized all aspects of biological research. Woese and his colleagues obtained 

surprising phylogenetic results using sequencing techniques, which became the ultimate 

starting point for the comparison of 16S and 18S rRNA genes from prokaryotes and 

eukaryotes (Fox et al., 1977). During the 1970’s, Carl Richard Woese (1928 – 2012) 

proposed his famous three domain model of life based on nucleotide sequence of 16S 

rRNA: Archaebacteria, Eubacteria and Eukaryotes (Woese & Fox, 1977). The concept of 

“three domains of life” is now well accepted by the scientific community, with very few 

exceptions.  

Due to a lack of sufficient morphological and physiological variations, and availability of 

sequencing facilities, microbiologists are now depending on molecular data, especially 

chromosomal DNA sequences, for taxonomic and systematic purposes. However, 

phylogenetic analyses of different genes also help to understand the evolutionary history 

of single genes or entire genomes of microorganisms, and hence microbiologists from 

the fields of systematics, taxonomy and epi demiology are using DNA sequences 

substantially. Nowadays, it is clear that any phylogenetic hypothesis has to be accepted 

or rejected on the basis of molecular sequences. 

Although rhizobial characterization, classification and identification began on the basis of 

nodulation capacity and morphological characteristics, analyses of the 16S rRNA gene 

sequences later helped to eliminate plasmid-borne characters (nodulation, pathogenicity 

or hairy root formation) and significantly contributed to the identification of non-traditional 

rhizobia. Therefore, after the proposal of Woese et al. (1984) 16S rRNA gene 

sequencing became a main criterion for rhizobial taxonomy, and nodulation became 

secondary (Rivas et al., 2009).  

Bacterial taxonomists suggest different methods for identifying bacterial species.These 

methods include sequencing of the 16S rRNA gene, restriction fragment length 

polymorphism (RFLP) typing, multilocus sequence analyses of different protein-coding 

housekeeping genes (MLSA), whole-genome sequence analysis, fourier transformed 

infrared spectroscopy (FTIR) and pyrolysis mass spectrometry. However, the 
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sequencing of housekeeping genes, DNA profiling and the application of DNA arrays are 

preferred (Brenner et al., 2005; and references therein). There are also some powerful 

PCR-based techniques like REP- and ERIC-PCR available for bacterial taxonomy, and 

their discriminatory power is higher than serological, RFLP and multi locus enzyme 

electrophoresis (MLEE) techniques (Vinuesa et al., 2005). However, for the description 

of root- and stem-nodulating bacteria, a minimum standard has been pr oposed by 

(Graham et al., 1991) who suggested to use a combination of traditional morphological 

and culture characteristics, symbiotic properties, DNA fingerprinting methods, 16S rRNA 

gene sequencing and DNA hybridization.  

1.12 Phylogenetic inference   
Evolution in different lineages does not accumulate changes at a uniform rate. In other 

words, different branches may evolve at different rates of change. In a realistic evolution 

scenario, variations in divergence rates could arise due to random changes, differences 

in mutation rate and selective pressure. Thus, similarity alone may not be a good 

indicator of the degree of relatedness. Therefore, it is important that reconstruction 

methods consider variation in rates of divergence between lineages (Barton et al., 2007).  

Bifurcation is a major assumption in phylogenetic reconstructions, but is not true in many 

cases and can lead misinterpretations. For example, recombination is essential in the 

sexual reproduction process, and combines and matches genetic variation in different 

lineages. Therefore, the evolutionary histories for such lineages are not perfectly vertical, 

and these histories cannot be r epresented correctly by bifurcating trees. Moreover, 

lineages that have experienced hybridization and lateral gene transfer have exchanged / 

transfered DNA between distinct lineages, and thus a bifurcating tree may show an 

incorrect interpretation. Furthermore, gene duplication, deletion, domain shuffling and 

gene conversion can create complex evolutionary scenarios (Barton et al., 2007).      

Convergent and parallel evolution can cause different lineages to become more similar 

to each other, at least for some features. Convergent evolution implies an independent 

origin of derived characters in two or more lineages and is critical for phylogenetic 

interpretation. Similarities between lineages that are not due to a common ancestor are 

known as homoplasy. A degree of similarity may also be an indication of a common 

ancestry and helps to infer monophyletic groups. Although shared derived character 

states (synapomorphy) accurately indicate common ancestry, derived character states 

restricted to specific lineage (autapomorphies) do not provide evidence for a relationship 
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with other lineages. Homologus character states mean that the character states shared 

by all taxa inherited from a common ancestor to its descendents without change, 

reflecting the real phylogeny (Futuyma, 2009). Therefore, shared derived characters 

states are valid evidence of monophyletic groups only are if they are uniquely derived 

(Barton et al., 2007).  

The abovementioned problems and other complexities encouraged the development of 

new methods for phylogenetic inference. However, none of the methods is perfect, and 

each has its own strengths and weaknesses. Taking all challenges and caveats into 

acconut, phylogenetic inference can be remarkably accurate, successful and useful 

(Barton et al., 2007).  

1.12.1 Steps in phylogenetic analyses 
Four steps are necessary in phylogenetic analyses of molecular sequences. These are: 

the selection of molecular markers, obtaining sequences from selected molecules, a 

multiple sequence alignment and tree reconstruction.  

1.12.2 Selection of phylogenetic markers 
There are different mechanisms such as mutation, gene duplication, genome 

reorganization, genetic exchange through recombination, reassortment and lateral gene 

transfer contributing to molecular evolution in bacteria (Vandamme, 2009; and 

references therein).  

Information from substitutions, insertions, deletions is considered for phylogenetic 

reconstructions. Single-copy orthologus genes are important molecular markers for 

tracing phylogenetic relationships. Gene duplications, loss and acquired events occur 

more frequently in multiple copy and non-essential genes. Hence, phylogenetic analyses 

of multicopy and non-essential genes may give ambiguous relationships. Phylogenetic 

markers with highly conserved regions also do not provide important information due to a 

lack of variation, and highly-variable genes are subject to repeated mutations in the 

same position. Hence, both are ignored for phylogenetic analyses (Chun & Hong, 2010; 

and references therein).  
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1.12.3 Sequencing of molecules 
Sequencing of selected genes, DNA fragments or whole genomes is important and 

generally done by  a Sequencer. DNA and RNA may be sequenced using targeted or 

random approaches.  In the targeted approach, specific genes or genetic elements are 

selected from operational taxonomic units (OTUs) and amplified and sequenced using 

specific primers to obtain nucleotide sequences. In a random approach, genome 

sequencing methods are used to sequence random cDNA or genomic DNA regions, and 

genes or elements of interest are identified from the obtained sequences using 

computational search. For understanding genome evolution, whole genome sequencing 

and metagenomic sequencing have recently introduced. 

1.12.4 Multiple sequence alignment and software 
The quality of the sequencing data and their alignment is very important for the 

phylogenetic reconstruction and interpretation. Besides sequencing quality, the quality of 

the alignment is also crucial, because phylogenetic reconstruction and c onclusions 

depend heavily on correct sequence alignment (Ludwig, 2010). Direct correlations exist 

between alignment errors and inaccurate phylogenetic interpretation (Kumar & Filipski, 

2007).  

In phylogenetic inference from sequence data, each position of the sequence can be 

considered as independent character trait. Alignment is essential to identify homologus 

positions in sequences by assigning each sequence is to a separate row and arranging 

homologus positions in columns. An alignment therefore corresponds to a data matrix. 

Each column in the alignment corresponds to homologus traits, and specific residues 

(amino acid or nucleotide) represent the character states (Barton et al., 2007).  

To obtain a good alignment of homologus protein-coding gene sequences from closely 

related species is not difficult, as the presence of strong positive selective pressure on 

homologus genes hardly permits their sequences to diverge from each other. It is much 

more challenging to get a good alignment from distantly-related protein-coding genes 

and from genes that have many insertions and deletions. Different software packages 

are available to align sequences using different algorithms for inserting gaps. Although 

gaps are introduced to increase sequence similarity, they do not guarantee perfect 

matching. The manual and judicious insertion of gaps by a specialist is therefore 

important for good alignment.  Several algorithms are available for sequence alignment. 
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Among these, Clustal-X (Chenna et al., 2003) is widely used due to its ability to easily 

produce high quality alignments. 

1.12.5 Phylogenetic tree reconstruction methods 
The main objective of phylogenetic analyses is to find the evolutionary relationships of 

the studied organisms, which is generally represented as a phylogenetic tree. There are 

four different methods for reconstructing phylogenetic trees: Distance matrix, Maximum 

parsimony, Maximum likelihood, and Bayesian inference.    

1.12.6 Distance matrix method 
It is generally assumed that organisms having a recent common ancestor are more 

similar than organisms that have a more distant common ancestor. Hence, it is possible 

to deduce evolutionary relationships from the similarity of organisms. The distance 

method uses this general principle for tree reconstruction. It consist of two steps: 

calculation of genetic distances using appropriate substitution models (for example, 

Jukes model (Jukes & Cantor, 1969); Kimura two parameter model (Kimura, 1980); 

general time reversible model (Rodríguez et al., 1990) and tree reconstruction using 

suitable clustering algorithms (UPGMA, Goodfelow, 1971); Neighbor-joining method (NJ, 

Saito & Nei, 1987). Several modifications have been done in the NJ method to improve 

the clustering performance (Gascuel, 1997; Bruno et al., 2000).     

The distance method for tree reconstructions has some advantages, like being easy to 

implement in computer programs and producing phylogenies within the shortest time 

(Chun & Hong, 2010). The distance method always depends on pairwise distances, 

which is not always favorable. The difference-based parameter D is not equivalent with 

the evolutionary distance (d), because D does not consider all available information from 

a sequence in the alignment. Moreover, most measures of D do not follow a linear scale 

of time or number of generations. A true evolutionary distance is more linear, and allows 

a clear phylogenetic inference (Barton et al., 2007).     

1.12.7 Maximum parsimony method 
The maximum parsimony method is also widely used. It uses character-based algorithms 

rather than distances. According to this method, the best tree reconstruction method 

uses the least number of changes to explain the information in an alignment (Hall, 2008). 
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In this method, uninformative sites (conserved sites, sites with apomorphic changes and 

terminal changes) are not used for tree reconstruction.  

To find the best tree, different algorithms, e.g. branch and bound algorithm (Land & Doig, 

1960), are used. Several programs such as PAUP (Swofford et al., 1996); PHYLIP 

(Felsenstein, 1985) or MEGA (Tamura et al., 2011), use the maximum parsimony 

method for tree reconstruction. This method is however sensitive to long-branch 

attraction (Bergsten, 2005), which is easily detectable by other methods.   

1.12.8 Maximum likelihood method 
To reconstruct a tree from DNA or RNA sequences, Felsenstein (1981) developed the 

maximum likelihood (ML) method. This method depends on a purely statistical way of 

constructing phylogenetic trees. It allocates probabilities for generating a particular tree 

to all individual residues in a sequence alignment and hence utilizes information from all 

nucleotides or amino acids. Maximum likelihood analyses depend on a substitution 

model for the estimation of the probability of a given tree.  

Swofford et al., (1996) mentioned that “Maximum likelihood methods of phylogenetic 

inference evaluate a hypothesis about evolutionary history in terms of the probability that 

a proposed model of the evolutionary process and the hypothesized history would give 

rise to the observed data. It is conjectured that a history with a higher probability of giving 

rise to the current state of affairs is a preferable hypothesis to one with a lower 

probability of reaching the observed state. In addition to its consistency properties, 

maximum likelihood is useful because it often yields estimates that have lower variance 

than other methods (i.e., it is frequently the estimation method least affected by sampling 

error). It also tends to be robust to many violations of the assumptions used in its 

models”. Moreover, Harrison & Langdale (2006) noted that “  the analysis starts with a 

specified tree derived from the input dataset (for example a NJ tree) and swaps the 

branches on the starting tree until the tree with the highest likelihood score (i.e. the best 

probability of fitting the data) is gained. This score is a function both of the tree topology 

and the branch lengths (number of character state changes). Likelihood analysis 

therefore allows an explicit examination of the assumptions made about sequence 

evolution”. A maximum likelihood tree can be reconstructed using different software 

packages like PAUP (Swofford et al., 1996); PHYLIP (Felsenstein, 1988) or MEGA 

(Tamura et al., 2011).The ML is the most powerful tree reconstruction method, but it is 



17 

 

time consuming and is hence not used extensively in many laboratories (Chun & Hong, 

2010). 

1.12.9 Bayesian inference 
The Bayesian inference method is interesting and p owerful for phylogenetic tree 

reconstruction. Bayesian inference is based on the notion of posterior probabilities, 

which means that probabilities are estimated based on some model (prior expectations) 

after learning something about the data. It generates a posterior probability distribution 

for a parameter based on prior expectations and the likelihood of the data generated by 

a multiple alignment (Hall, 2008).  Like the MP and ML methods, it deals with each 

character, nucleotide or amino acid residue.  

The MrBayes software package (Ronquist & Huelsenbeck, 2003) implements the 

Bayesian method for phylogenetic inference. MrBayes uses the Metropolis-coupled 

Monte Carlo Markov Chain (MCMC) process, which can be v isualized as a s et of 

independent searches that occasionally exchange information. This program allows a 

search across probability valleys that would otherwise trap the search on a suboptimal 

hill. The final product is a s et of trees that the program has repeatedly visited, which 

constitute the top of the hill. Although this method is also powerful, it takes long time for 

tree reconstruction (Nei & Kumar, 2000). 

Bayesian analysis is similar to the ML method in that the user has to postulate a model 

of evolution (Rannala & Yang et al., 1996; Mau et al., 1999). However, ML analyses 

obtain the tree that maximizes the probability of observing the data that given tree while 

Bayesian analyses seeks the tree that maximize the probability of observing the data 

and model that given the tree. Most importantly, Bayesian analyses rescale likelihoods to 

true probabilities so that the probabilities over all trees is 1.0 (Nei & Kumar, 2000). 

Moreover, ML analyses try to find the single best tree, while Bayesian analyses try to find 

the best set of trees. 

1.13 Reliability of phylogenetic tree 

1.13.1 Bootstrapping  
After the reconstruction of a phylogenetic tree, the reliability and quality of the tree has to 

be assessed to ensure that the tree accurately represents the actual relationships among 

OUTs (operational taxonomic units). Therefore, different methods have developed to 
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determine the reliability and r obustness of tree topologies, such as bootstrapping and 

branch length estimation. The most common method is the bootstrap analysis, which can 

be implemented in different tree reconstruction algorithms. This method was introduced 

by Felsenstein (1985) and i s a w idely and s uccessfully applied procedure. The 

bootstrapping algorithm resamples the columns of a sequence alignment and creates 

many new alignments by random sampling, replacing the original data set. New sets are 

similar to each other or the original alignment, but they are rarely absolutely identical. 

Multiple trees are then generated from the new sets of alignments and t he statistical 

confidence of each branch is calculated. This value is known as the bootstrap value. 

Generally 200 – 2000 resamplings should be used for bootstrapping (Chun & Hong, 

2010), but 1000 resamples are frequently used. A bootstrap support of 70% or higher is 

often considered as indicative of a reliable grouping or clustering in a phylogenetic tree. 

The bootstrapping method can be used in all available tree building methods (Van de 

Peer, 2003; Chun & Hong, 2010).   

1.13.2 Tree rooting  
 Relationships between organisms are visualized by phylogenetic studies. In the 

absence of directly observable relationships between ancestors and descendents, the 

direction of the changes must be inferred by rooting the tree (Nei & Kumar, 2000). From 

an un-rooted tree, it is impossible to determine the directions of changes in traits of 

organisms. Although rooting is not strictly necessary, in most of the cases knowledge of 

the direction of changes is essential to reconstruct the evolutionary process (Graur & Li, 

2000).There are two methods for molecular tree rooting: out-group rooting and duplicate 

gene rooting. Out-group rooting compares character states of the group of interest (in-

group) with a c losely-related but sufficiently distant group (out-group). The differences 

between in-group and out-group help to understand the direction of change in the final 

tree (Maddison et al., 1984). Prior knowledge of the relatedness of the out-group to the 

in-group is required to select the out-group.   

In duplicated gene rooting, sequences from one g ene clade are used to root another 

gene clade (Simmons et al., 2000). Duplicated gene rooting helps to unveil unexpected 

relationships among species or genes in the main clade (Brown & Doolittle, 1995; 

Mathews & Donoghue, 1999). However, a tree can also be rooted using evidence from 

DNA sequences of fossil record (Smith, 1994).  
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1.13.3 Model selection   
Selection of DNA substitution model is crucial for statistical phylogenetic inference. DNA 

substitution model works like language interpreter. It translates the information in a set of 

sequences into phylogenetic information that can be directly interpreted by a biologist. 

Generally two types of error such as systematic error or bias and stochastic error or 

inflated variance could be ar ised from the selection of wrong substitution model during 

analysis. Very simplified model avoid / ignore naturally occurring evolutionary processes 

and hence produce systematic error. On the other hand use of excessively complex 

model in phylogenetic analysis produces stochastic effect. However, DNA substitution 

models are designed to reduce the effect of multiple substitutions at highly variable side 

in a DNA sequences. A proper model make a balance between these two challenging 

error. Therefore, it is important to use a good model for phylogenetic inference (Brown & 

Eidabaje, 2009). 

1.14 Bacterial speciation and recombination 
Speciation is a complex event and is the outcome of a variety of genetic and ecological 

processes and historical contingencies. In other words, it is the result of an interaction 

between forces such as recombination, migration and selective sweeps (Vinuesa et al., 

2005; and references therein). Recombination occurs frequently among bacteria and 

plays an i mportant role in the evolution of most bacterial species, including rhizobia 

(Silva et al., 2005; Vinuesa et al., 2005; Bailly et al., 2006; Maiden, 2006; den Bakker et 

al., 2008; Tian et al., 2012). New genetic material can be rapidly introduced by 

recombination, which can lead to faster evolution than mutation alone (Narra & Ochman, 

2006; Redfield, 2001). 

Bifurcation, a m ajor assumption for most phylogenetic algorithms, is violated by the 

presence of recombination, and it is very hard to predict mutation rates and times to the 

most recent common ancestor in organisms which have histories for recombination 

events. Moreover, the presence of recombination events gives rise to phylogenetic 

incongruence in reconstructed trees (Holmes et al., 1999; Didelot & Falush, 2007; den 

Bakker et al., 2008). Alternatively, network analyses allow recombination for visualizing 

phylogentic ambiguity, and therefore this method also be considered to study microbial 

evolution (Didelot & Falush, 2007; den Bakker et al., 2008; Chun & Hong, 2010). Several 

studies have been carried out on rhizobial population genetics, and the population-

species interface could be e xplored using both population genetics and phy logenetics 

http://dx.doi.org/10.1093/bioinformatics/btn651�
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(Silva et al., 2005; Vinuesa et al., 2005; Bailly et al., 2006; Maiden, 2006; Tian et al., 

2012). 

1.15 Multi locus sequence analyses  
The 16S rRNA gene fulfills most of the requirements for a g ood phylogentic marker 

molecule (Ludwig & Klenk, 2005). However, they have some limitations like being highly 

functionally conserved, their pattern of sequence change, and branching pattern in the 

periphery of the tree, and presence of more than one copy in some bacterial genomes. 

Therefore, it has been suggested that 16S rRNA has a low phylogenetic resolving power 

for separating closely-related organisms (> 97% similarity) and analyses of this gene are 

not suitable for distinguishing prokaryotes at the species level (Ludwig, 2010). 

Considering the limitations of the 16S rRNA gene in bacterial taxonomy, a multi locus 

sequence analysis (MLSA) / multi locus sequence typing (MLST) using different protein 

coding genes has been preferred for studying closely-related species of bacteria, 

including rhizobia (Adekambi & Drancourt, 2004; Mutch & Young, 2004; Ludwig & Klenk, 

2005; Naser et al., 2005; Konstantinidis et al., 2006; Martens et al., 2008). Nowadays, 

MLSA is a w idely accepted approach for the characterization of bacteria. After its 

introduction, it has been applied to the classification of a variety of bacteria and fungi, 

and has helped to develop a uni versally portable and reproducible method. In brief, 

MLST represents a universal approach for bacterial characterization (Maiden, 2006). 

 A small number of protein coding genes could be used as marker genes to evaluate the 

rRNA based phylogenetic conclusions (Ludwig & Klenk, 2005). These are translation 

elongation (IF2, EF-G, and EF-TU) and initiation factors, RNA polymerase sub-units, 

DNA gyrase, recA, atpD, and hsp60 (Adekambi & Drancourt, 2004; Glazunova et al., 

2009). 

1.16 Symbiotic genes for phylogenetic analyses 
The rhizobial genes that are responsible for nodulation and ni trogen fixations are 

commonly known as symbiotic genes. They are also known as auxiliary or accessory 

genes because they are not essential for rhizobial survival and reproduction. In general, 

all symbiotic genes, like nodulation gene clusters, have been found in close proximity to 

nif and fix genes. Specifically, rhizobial plasmids often carry nodulation (nod, nol and 

noe), nif and fix genes, as well as many secretion related genes. In plasmid-less strains 
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or species these genes are often located in laterally transferrable genomic islands, also 

denominated as symbiotic islands (Black et al., 2012; and references therein). 

The evolutionary history of chromosomal genes and symbiotic genes can be different 

(Lane & Reeves, 2001) and different stories may be found from the phylogenetic 

analyses of nodulation genes and the 16S rRNA gene (Mergaert et al., 1997; Haukka et 

al., 1998). Among symbiotic genes, a few symbiotic genes like nodD, nodC, nodA and 

nifH genes are commonly included for the proper description of rhizobial species by 

phylogenetic analyses. Due to the horizontal transfer of symbiotic genes, they do not 

provide useful information for taxonomy, but do provide complementary information on 

host nodulation and nitrogen fixation (Mergaert et al., 1997). The description of symbiotic 

genes is also useful for the proper identification of β-rhizobia and for rhizobial 

biogeography studies (Rivas et al., 2009). For symbiovar identification of α-

rhizobia/traditional rhizobia, descriptions of nodulation genes are essential.  H owever, 

recently some rhizobial strains have been described that lack common nodulation genes, 

especially in Bradyrhizobium sp. (BTAi1, ORS278, Giraud et al., 2007).  

1.17 Nodulation mechanism 
Communication between the plant host and rhizobia starts when the plant secretes 

flavonoids in the rhizosphere (Perret et al., 2000). Different plant species secrete 

different flavonoids to select the appropriate rhizobia for effective symbiosis. The 

specificity is determined by the flavonoid-binding transcriptional regulator nodD, which is 

the master regulator of symbiosis (Fellay et al., 1995).  

Induction of nodulation (nod) genes by NodD is essential for the production and 

secretion of rhizobial signaling molecules known as Nod factors (NFs). Nod factors are 

oligosaccharides consisting of four or five beta 1,4 linked N-acetyl glucosamine residues 

with a f atty acid residue replacing the N-acetyl group at the non-reducing end. Nod 

factors may also be further modified by different molecules (Perret et al., 2000; Cullimore 

et al., 2001).The enzymes involved in the synthesis of the basic Nod factors structure are 

encoded by the nodABC genes, which are conserved in all rhizobia except strains BTAi1 

and ORS278 (Giraud et al., 2007). Nod factors are in turn recognized by the plant and 

trigger root hair curling and induce the formation of nodule primordia.  
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1.18 Coevolution and dispersion of rhizobia 
In coevolution, two species evolve in response to one another. Coevolution has been 

described for plant-pathogenic and symbiotic bacteria. For pathogenic bacteria, it has 

been proposed that any change in a single base, combined with different recombination 

mechanisms like unequal crossing-over, gene conversion and transposition among R 

genes clusters, may lead to the random generation of new sequences in the host and 

pathogen developed new virulence against this new sequences. Consequently, different 

sets of specificities are randomly generated in the host plant and the bacterium in each 

center of diversity.   

 

Fig. 2. Recognition of rhizobial Nod factors by plant Nod factor receptors for nodule formation. Nod factor 
structure determines the strict specificity between rhizobium and h ost legume, which trigger rhizobial 
infection process and initiation of nodule primordial in a compatible host. Five Nod factor receptors (NFR1, 
NFR5, LYK3, NFP, SYM10 and SYM37) have been identified in different legumes and are essential for the 
perception of rhizobial Nod factors for symbiosis (Kouchi et al., 2010; and references therein).    

Following several cycles of generation of new resistance/virulence and frequency-

dependent selection, a different array of specific host-pathogen combinations appears, 

leading to the observed geographic differences in resistance and virulence. Host-

microbe coevolution therefore occurred independently in different centres of 

diversification (Geffroy et al., 1999; and references therein). From several experiments 
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(Lie et al., 1987) concluded that the strong co-adaptation between legumes and 

indigenous rhizobial strains found in different geographical locations is a r esult of 

coevolution. Rhizobial nod factor variants induce a response in specific legume plant nod 

factor receptors, suggesting coevolution of legume and rhizobia (Perret et al., 2000; and 

references therein). Moreover, Aguilar et al. (2004) found distinct nodC genotypes in 

rhizobia in different centres of host origin and c oncluded that they are distinct 

evolutionary lineages.  

 

1.19 Symbiosis between rhizobia and lentil 
To date, 65 valid species have been described in the genus Rhizobium. R. 

leguminosarum symbiovar viciae usually nodulates different members of the legume 

tribe Vicieae and this symbiosis may be very specific (Tian et al., 2010; and references 

therein). In contrast, from the analysis of rhizobia from bean and pea, Santillana et al., 

(2008) concluded that R. leguminosarum symbiovar viciae could be s plit into more 

species and proposed a t axonomic revision of this rhizobial species based on a  

polyphasic approach (a consensus type of taxonomy utilizing all the available data to 

describe consensus groups). However, most of the rhizobial strains isolated so far from 

legumes of the tribe Vicieae clearly belong to the R. leguminosarum species complex (R. 

leguminosarum, Rhizobium fabae and Rhizobium pisi) (Álvarez-Martinez et al., 2009). As 

little work has been done on lentil symbionts, it is interesting to study the genetic 

diversity of lentil nodulating rhizobia from different geographical locations. 

1.20 Benefit of lentil-rhizobia symbiosis 
The benefit of legume cultivation has been known since ancient times. The role of root 

nodulating bacteria on legume growth was also observed by Hellriegel & Wilfarth (1888). 

Based on their own studies, Nobbe & Hiltner (1896) commercialized the effect of rhizobia 

on legume growth and made the first commercial rhizobial inoculum, “nitragin”, for 

agricultural practices (Nautiyal et al., 2008; and references therein). Rhizobial inoculation 

has the potential to increase plant dry matter production, nitrogen yields and r esidual 

nitrogen levels of forage and grain legumes. However, the benefit of legume inoculation 

depends on the legume species and soil nitrogen levels (Vessey, 2004).  

Similar to other legumes, lentils require infective and effective rhizobia to fix atmospheric 

nitrogen. Lentil showed a w ide range of response to rhizobial inoculation. From 

FAOSTAT (2004) data and d ata from other sources it was concluded that the annual 
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fixation by lentil was about 73 kg N/ha/yr by the above-ground plant part or 110 kg 

N/ha/yr including the below-ground parts. The average removal of nitrogen by lentil was 

approximately 65 kg N/ha/yr in the harvested grain, and lentil stored 8 kg N/ha/yr in the 

soil for the following crop (McNeil & Materne, 2007 and references therein). 

Significant responses of inoculation can be expected if lentil is grown in virgin soil. 

Slattery & Pearce (2002) found significant increases in nodule numbers (8-fold more), 

50% more yield and  25% more dry matter yield after inoculation with acid tolerant R. 

leguminosarum strains in acidic soil (4.5 – 5), and found positive correlations between 

these three parameters. On the Indian subcontinent, where rhizobial populations are 

high, yield responses were moderate to high (Khurana & Sharma, 1995; Dhingra et al., 

1988; Satter, 2001; Saha et al., 2008) under field conditions. Moreover, Vessey (2004) 

observed a significant yield response to rhizobial inoculation with lentil using commercial 

inoculants under field conditions. However, Moawad et al. (1998) investigated the 

competitive ability and y ield response of inoculant strains in Egypt and found only 5% 

more yield compared to the control.  

Rhizobial inoculation can significantly increase yield, seed moisture, ash, crude fiber and 

protein content of legumes. Regardless of whether the soil is virgin or contains endemic 

rhizobial populations, legume producers should inoculate their legumes for a better yield 

and soil nitrogen balance using low-cost rhizobial inoculum (Vessey, 2004). However, 

legume inoculation with effective rhizobial strains is necessary to counterbalance and 

reduce the use of chemical fertilizers. Therefore, it is worthwhile to manage lentil crops 

by inoculation to achieve maximum nitrogen fixation rates and thereby maximize total 

productivity and profitability (McNeil & Materne, 2007).  

From the aforementioned experimental results it is clear that potential benefits from lentil 

inoculation with rhizobia can be achieved by using highly infective and effective strains 

with high survival capacity under field conditions. To find effective and infective rhizobial 

strains for lentil inoculation we need to isolate rhizobia from a wide range of 

environmental conditions. Subsequently, we need to evaluate their effect on growth 

under growth chamber conditions, glass house conditions and finally under field 

conditions to find strains suitable for use on farms.  
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1.21 Previous work on lentil nodulating rhizobia 
Although several studies have been carried out to assess the diversity and i dentity of 

rhizobia that nodulate members of the tribe Vicieae, there are few reports that 

investigated rhizobia isolated from lentil. The studies performed on lentil rhizobia so far 

have mainly evaluated their symbiotic performance on plant growth and have described 

their biochemical characteristics and s tress tolerance (salt and temperature). The 

diversity of rhizobia from the tribe Vicieae, especially from pea, faba bean and grass pea, 

has been studied by many scientists around the world (Laguerre et al., 1996; Mutch & 

Young, 2004; Hou et al., 2009; Tian et al., 2010; Risal et al., 2012; and many others), but 

very few studies on the diversity and taxonomy of lentil nodulating rhizobia have been 

carried out (Hynes & O’Connell, 1990; Moawad & Beck, 1991; Laguerre et al., 1992; 

Geniaux & Amargr, 1993; Keatinge et al., 1995). However, by analyzing rhizobia from 

the tribe Vicieae from different countries it has been concluded that R. leguminosarum is 

the main lentil-nodulating species (Tian et al., 2010; and reference therein).  

1.22 Research strategy 
In order to increase our knowledge of the genetic diversity of rhizobial populations 

associated with members of the tribe Vicieae, specifically with lentil, and to determine the 

taxonomic position and identity of lentil symbionts, we isolated rhizobia from field-grown 

lentil nodules which were collected from different localities of Bangladesh and Germany. 

Lentil-nodulating rhizobia were also isolated from the nodules of lentils grown in potted 

soil samples under glass house conditions. These soils were collected from lentil-

growing countries where this crop originated (Turkey & Syria; Lev-Yadun et al., 2000; 

Sonnante et al., 2009) and from Germany, where it introduced later. In this study, we aim 

to (1) explore the genetic diversity and identity of lentil nodulationg rhizobia (2) evaluate 

the levels of genetic diversity and the population structure of these bacteria from different 

geographic locations (3) to know the transmissible nature of nodulation genes. Here, 

concepts from prokaryotic evolutionary theories and population genetics have been used 

to describe our result and interpretations. 

 1.23 Objectives 
The diversity of lentil-nodulating rhizobia has been described on the basis of plasmid 

profiles, RFLP and rep-PCR (repetitive element sequence-based PCR), but no sequence 

information is currently available (Laguerre et al., 1992; Geniaux & Amargr, 1993; 



26 

 

Tegegn, 2006). To our knowledge, phylogenetic analyses have not yet been performed 

on lentil rhizobia using a MLSA approach.  Therefore, it is interesting to study the genetic 

diversity of lentil nodulating rhizobia from different geographical locations using an MLSA 

approach. 

The main aim of this study was to investigate the genetic biodiversity of rhizobia 

associated with lentil (Lens culinaris, Medik.) from different countries. There were several 

questions, e.g. what are the symbionts of Lens culinaris? Are they native to particular 

country/countries? Is same genotype present in different countries? Are they influenced 

by lentil cultivars, greges, races, sub-species, and species?  

To answer these questions, lentil-nodulating rhizobia were isolated from traditional lentil-

growing countries like Bangladesh, Turkey and Syria, and from Germany, where lentil is 

now only grown in scattered localities. A total of 134 rhizobia from lentil nodules were 

isolated from the four different countries. We have determined some morpho-

physiological characteristics of the collected rhizobia, like biochemical properties, 

tolerance to acid or alkaline conditions, salt concentrations and temperature, and 

resistance to different antibiotics. The symbiotic properties were evaluated by conducting 

nodulation tests with lentil and cross-inoculation test with grass pea and pea. We have 

sequenced four chromosomal genes and three plasmid-borne nodulation genes from 94 

isolates, and 406 sequences have deposited in the GenBank from the isolates used in 

this study. Nucleotide sequences have analyzed using phylogenetic and population 

genetic approach.  
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2. Materials and Methods  

2.1 Sources of nodule samples and their collection localities 
All nodule samples were collected from field-grown and glasshouse-grown lentil roots. All 

Bangladeshi isolates were collected from field grown lentil nodules and isolates from 

Germany were collected from both field grown and glasshouse grown lentil nodules. To 

grow lentil under glasshouse condition, soil samples were collected from different 

localities of Germany, Turkey and Syria. Nodule collection and preservation, and 

isolation of rhizobia were carried out following standard protocols (Somasegaran & 

Hoben, 1994). Nodules from lentil roots were collected from 25 localities in Bangladesh, 

10 localities in Germany, two localities in Syria and one locality in Turkey (table 2 and 

table 3). Isolates numbers, localities and their respective geographical positions in 

Bangladesh are listed in the table 2. Details of the isolates from Germany, Turkey and 

Syria are shown in table 3.   

2.2 Isolation rhizobia from nodules and their preservation 
The collected nodulated roots were washed with water, dried with tissue paper and 

preserved on silica gel dessicant until further processing. For the isolation of bacteria 

from nodules, a s ingle nodule was crushed in 50 µL of sterile water using a 

homogenizer. A loop-full of suspension was streaked on yeast-extract mannitol agar 

(YEMA) plates (Vincent, 1970) and incubated at 28°C for 3 – 5 days. Isolated single 

colonies were purified by repeated streaking on Y EMA and C RYEMA plates 

(Somasegaran & Hoben, 1994). A total 134 rhizobial strains (36 from Bangladesh, 78 

from Germany, 12 from Turkey and 8 from Syria) were isolated in this study. Single 

colonies were preserved either on agar slants at 4°C, or frozen in broth with 50% glycerol 

at −80 °C until further analysis. All collected bacterial isolates were preserved at the 

Institute of Pharmacy and Molecular Biotechnology (IPMB, Germany) and at the 

Bangladesh Institute of Nuclear Agriculture (BINA, Bangladesh) for further study. The 

names of isolates and GenBank accession numbers for the different gene sequences 

provided in the table 4 (Bangladeshi isolates) and table 5 (German, Turkish and Syrian 

isolates).   
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Fig. 3. Isolated single colonies of lentil-nodulating rhizobia on CRYEMA plate 

2.3 Phenotypic characterization 
 Different phenotypic characteristics of isolated bacteria such as tolerance to high 

temperature, NaCl, pH, and antibiotics; size and morphology of colonies, acid production 

and growth on LB media were determined following standard procedures (Amarger et al., 

1997; Wang et al., 1998; Valverde et al., 2006; Bromofeld et al., 2010). The tolerance to 

temperature, NaCl, pH and ant ibiotics resistance was determined on T Y medium. 

Overnight cultures (5 µL, circa 1 × 108 cell / mL) were used to inoculate different media. 

The pH was adjusted with NaOH or HCl and media were buffered with 25 mM 

HOMOPIPES (pH 4.5), 40 mM MES (pH 5.5), 30 mM HEPES (pH 6.8 – 8.2) (Moron et 

al., 2005), or CHES (pH 10). Temperature tolerance was assayed by incubating 

inoculated plates at different temperatures (4 – 45°C). Inoculated plates containing 

media with different pH values, concentrations of antibiotics or NaCl, LB medium, or 

YEMA with BTB (bromothymol blue) were incubated at 28°C for 3 – 5 days. However, in 

this study, the strains R. leguminosarum symbiovar viciae 3841, Rhizobium etli CFN42 

and Sinorhizobium meliloti 1021, kindly provided by Prof Dr. J.P.W. Young, University of 

York, England, were used as references. 
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Table 2. Geographical coordinates of sample collection localities in Bangladesh 

Locality 
number 

Isolates Village/ 
union 

Upazila/ 
subdivision 

District/ 
division 

Geographical 
coordinates 

1 9, 12 Jeopara Puthia Rajshahi 24°24′10″ N, 88°50′0″ E 

2 27, 28 Bagatipara Bagatipara Natore 24°21′48″ N, 88°55′42″ E 

3 26 Fatehpur Lalpur Natore 24°12′59″ N, 88°58′30″ E 

4 45, 46 Mooladooli Ishwardi Pabna 24°10′0″ N, 89°4′0″ E 

5 39, 41 Baromile Bheramara Kushtia 24°3′0″ N, 88°58′0″ E 

6 29, 33 Mirpur Mirpur Kushtia 23°58′0″ N, 89°0′0″ E 

7 100 Nangal Jara Kalaroa Satkhira 22°53′15″ N, 89°2′30″ E 

8 99 Labsha Satkhira Sadar Satkhira 22°44′0.12″ N, 89°4′0″ E 

9 105 Nagor Ghata Tala Satkhira 22°46′0″ N, 89°15′0″ E 

10 160, 174 Ghurnia Dumuria Khulna 22°51″ N, 89°25′30″ E 

11 175 Mohammadpur Khulna Sadar Khulna 22°50″ N, 89°33′0″ E 

12 129 Gangni Mollahat Bagerhat 22°57′30″ N, 89°42′0″ E 

13 153,154 Chandra 
Dighalia Gopalganj Sadar Gopalganj 23°2′0″ N, 89°49′0″ E 

14 137,139 Patgati Tungipara Gopalganj 22°55′0″ N, 89°53′0″ E 

15 122 Noapara Fakirhat Bagerhat 22°47′48″ N, 89°42′30″ E 

15 127 Fakirhat Fakirhat Bagerhat 22°47′48″ N, 89°42′30″ E 

16 87, 98 Kulia Debhata Satkhira 22°35′0.12″ N, 88°57′0″ E 

17 235 Osmanpur Mirsharai Chittagong 22°48′0″ N, 91°34′50″ E 

18 228 Mohori project Sonagazi Feni 22°53′0″ N, 91°23′12″ E 

19 195 Sarishadi Feni Sadar Feni 23°3′0″ N, 91°23′45″ E 

20 57, 58 Bhairab Bhairab Kishoregonj 24°4′0″ N, 91°0′ E 

21 62 Morichar Chor Ishwarganj Mymensingh 24°42′0″ N, 90°37′30″ E 

22 59 Boyra Mymensingh 
Sadar Mymensingh 24°46′0″ N, 90°25′0″ E 

23 288 Shankarpur Sadar Dinajpur 25°39′45″ N, 88°35′45″ E 

24 299 Bhandara Biral Dinajpur 25°37′59″ N, 88°31′59″ E 

25 281 Kusha 
Ranigonj Pirganj Thakurgaon 25°52′15″ N, 88°20′45″ E 
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Fig. 4. Sampling localities in Bangladesh (red squares). 

1: Jeopara, 2: Bagatipara, 3: Fatehpur, 4: Mooladooli, 5: Baromile, 6: Mirpur, 7: Nangal Jara, 8: Labsha,  

9: Nagor Ghata, 10: Ghurnia, 11: Mohamadpur, 12: Gangni, 13: Chandra Dighalia, 14: Patgati, 

15: Noapara and Fakirhat, 16: Kulia, 17: Osmanpur, 18: Mohori Project, 19: Sarishadi, 20: Bhairab,  

21: Boyra, 22: Morichar Chor, 23: Shankarpur, 24: Bhandar, 25: Kusha Ranigonj.  
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Table 3. Name of country, isolate numbers, soil pH and rhizobial density in sample 

collection areas    

Country Locality Isolates Soil 
pH 

MPN of rhizobia 
(cells × g−1 soil) 

 
 
 
 
 
Germany 
 
 

Bürstadt,  HG GLR1, GLR2, GLR3,  GLR5 7.14 1.14 × 102 
Rittersheim, RLP GLR6, GLR7, GLR8, 

GLR9, GLR10 
6.92 1.14 × 102 

Plankstadt, BW GLR11, GLR12, GLR13, 
GLR14 

7.10 ND 

Heidelberg, 
Wieblingen, BW 

GLR16, GLR17, GLR19 7.27 ND 

Ziegelhausen, 
Heidebuckelweg, BW 

GLR22  4.85 ND 

Babenhausen, HG GLR23, GLR25, GLR27, 
GLR28, GLR29, 
GLR30,GLR31 

6.81 5.65 × 102 

Hüfingen, BW GLR32, GLR33, GLR34 6.78 ND 
Ostrach, BW GLR40, GLR43, GLR45 7.25 2.18 × 103 
Heidelberg, 
Handschuhsheimer 
Feld, BW 

GLR46, GLR49, GLR50 6.54 ND 

Lauterach, BW 
 

GLR54, GLR59, 
GLR67,GLR69, GLR71, 
GLR74, GLR79 

6.5-7.0 ND 

Turkey Burdur,  
Southwestern Turkey 
 

TLR2,  TLR3, T4, TLR5, 
TLR6, TLR7, TLR8, TLR9, 
TLR10, TLR11, TLR12, 
TLR14 

ND ND 

Syria 
 

Al-Hannadi,  Latakia SLR1, SLR2, SLR3, SLR4 7.58 ND 
Tishreen Suburb, 
Latakia 

SLR5, SLR6, SLR7, SLR8 7.65 ND 

Bangladesh 
 

Rashid et al. (2012) BLR9, BLR27, BLR28, 
BLR153, BLR175, BLR195,  
BLR235 

ND ND 

Abbreviations, ND = not determined; BW = Baden-Württemberg, RLP = Rheinland-Pfalz, HG = Hessen, 
MPN = most probable numbers  

 
2.4 Nodulation and cross-inoculation tests 
All bacterial isolates were tested for nodule formation with lentil. Cross-inoculations were 

performed with Lathyrus sativus and Pisum sativum, two related members of the legume 

tribe Vicieae. Seeds from two lentil varieties [BINA-3 from Bangladesh and Teller Linsen 

from Mullers and Muhle (commercial grade) from Germany], one variety of Lathyrus 

sativa (BINA-1 from Bangladesh) and one of P. sativum (green pea, unshelled, 

commercial grade from Mullers and Muhle, Germany) were surface-sterilized using 70% 

ethanol (1 min) and 3% NaClO (3 – 5 min). After surface sterilization, the seeds were 

washed at least six times with sterile distilled water in order to completely remove the 

disinfectant. After imbibing (4 h in sterile water), seeds were transferred aseptically to 1% 

water agar plates and allowed to germinate for 2 days at room temperature in the dark. 
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Seedlings were later transferred to glass tubes (32 mm × 170 mm) containing Fåhraeus 

(1957) agar medium. Bacterial cultures (2 mL / plant) grown in YEM liquid medium (circa 

1 × 108 cells / mL) were used to inoculate 5 days old seedlings (Somasegaran & Hoben, 

1994). Plants were alternately irrigated with sterile de-ionized water and J enson’s 

nitrogen-free seedling solutions. The same procedure was used for cross-inoculation 

assays with 10 r andomly selected isolates that were able to form nodules under 

laboratory conditions from Bangladeshi isolates and 30 isolates from Germany, Turkey 

and Syria. Plants were grown for 3 – 5 weeks in a plant growth chamber set to 25°C with 

14 h light / 10 h dark cycles. Three replicates were used for each bacterial isolate in the 

nodulation tests. Un-inoculated plants served as negative controls. 

              
A.                                                                     B. 

Fig. 5. Plant infection test sets under growth chamber conditions. A: Plants on agar 
based medium, B: Plant roots with nodules in agar based medium in glass tubes 

2.5 Symbiotic effectivity test 
For the determination of symbiotic effectiveness, an experiment was conducted under 

glasshouse conditions employing sterile sand. In this experiment, 17 i solates from 

Bangladesh, R. leguminosarum symbiovar viciae 3841, and un-inoculated controls with 

or without nitrogen fertilization were evaluated for lentil growth and nodul ation. 

Commercially available lentil seeds (Linsen from Kiepenkerl, Germany) were surface-

sterilized, germinated and t ransferred to sterile sand as described above. Plant 

inoculation was performed as described for plant infection and cross-inoculation assays. 

Sterile water and nitrogen-free seedling solution were used for irrigation. In the nitrogen-

fertilized control, the plants were also irrigated with KNO3 solutions (0.5 g / L) 

(Somasegaran & Hoben, 1994). After four weeks, all plants were harvested and nodules 

were separated from the roots. The plants were dried at 70°C for 72 h, and nodules at 

105°C for 48 h (Laguerre et al., 2007). The data were analyzed using SPSS version 17 

and the means were compared using ANOVA statistical significance tests at the 5% level 

and results are shown in table 10 (A – H). 
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A                                                                        B. 

Fig. 6. Plants with nodules from cross-inoculation test. A: Pea , B. Grass pea 

               
   A                                                                                     B. 
Fig. 7. Symbiotic effectivity test at glasshouse, A: BINA-1, B: Linsen (commercial grade) 

2.6 DNA extraction, gene amplification and sequencing  
Bacterial cultures were grown at 28°C overnight or for 24 h in tryptone-yeast (TY extract) 

medium (Beringer, 1974) and the DNA were isolated following the protocol of Chen and 

Kuo (1993). Extracted DNA was dissolved in TE buffer and the concentration was 

measured by UV spectrophotometry. PCR amplifications were performed with about 50 

ng of template DNA. PCR conditions and primer sequences used for sequencing and 

DNA fingerprinting are shown in table 6. 

For sequencing, PCR products were precipitated following Gonzalez and Wink 

(Gonzalez & Wink, 2010). Sequencing was performed using an ABI 3730 automated 

capillary sequencer (Applied Biosystems) with the ABI Prism Big Dye Terminator Cycle 

Sequencing Ready Reaction Kit version 3.1 by STARSEQ GmbH (Mainz, Germany). To 

confirm the observed sequences quality, both strands were sequenced from most of the 

isolates. In this study, a t otal of 159 sequences from 36 isolates from Bangladeshi 

isolates and 270 sequences from 58 strains from German, Turkish and Syrian isolates 

were generated and deposited in GenBank. Isolates names and accession numbers are 

listed in table 4 and table 5.  
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Table 4. Amplified genes and their accession number from Bangladeshi isolates 

Isolates 16S rRNA atpD recA glnII nodC nodA nodD 
BLR9 JN648902 JN648938 JN649028 JN648974 JN648993 JN648983 JN649014 

BLR12 JN648903 JN648939 JN649029 JN648975    

BLR26 JN648904 JN648940 JN649030  JN648994   

BLR27 JN648905 JN648941 JN649031 JN648976    

BLR28 JN648906 JN648942 JN649032 JN648977  JN648984 JN649015 

BLR29 JN648907 JN648943 JN649033  JN648995   

BLR33 JN648908 JN648944 JN649034  JN648996 JN648985 JN649016 

BLR39 JN648909 JN648945 JN649035     

BLR41 JN648910 JN648946 JN649036  JN648997  JN649017 

BLR45 JN648911 JN648947 JN649037  JN648998  JN649018 

BLR46 JN648912 JN648948 JN649038     

BLR57 JN648913 JN648949 JN649039  JN648999 JN648986 JN649019 

BLR58 JN648914 JN648950 JN649040     

BLR59 JN648915 JN648951 JN649041     

BLR62 JN648916 JN648952 JN649042  JN649000   

BLR87 JN648917 JN648953 JN649043     

BLR98 JN648918 JN648954 JN649044  JN649001  JN649020 

BLR99 JN648919 JN648955 JN649045  JN649002 JN648987 JN649021 

BLR100 JN648920 JN648956 JN649046  JN649003   

BLR105 JN648921 JN648957 JN649047  JN649004   

BLR122 JN648922 JN648958 JN649048     

BLR127 JN648923 JN648959 JN649049  JN649005  JN649022 

BLR129 JN648924 JN648960 JN649050  JN649006 JN648988  

BLR137 JN648925 JN648961 JN649051    JN649023 

BLR139 JN648926 JN648962 JN649052  JN649007   

BLR153 JN648927 JN648963 JN649053 JN648978 JN649008 JN648989  

BLR154 JN648928 JN648964 JN649054     

BLR160 JN648929 JN648965 JN649055  JN649009   

BLR174 JN648930 JN648966 JN649056  JN649010 JN648990 JN649024 

BLR175 JN648931 JN648967 JN649057 JN648979 JN649011 JN648991 JN649025 

BLR195 JN648932 JN648968 JN649058 JN648980 JN649012   

BLR228 JN648933 JN648969 JN649059   JN648992 JN649026 

BLR235 JN648934 JN648970 JN649060 JN648981 JN649013  JN649027 

BLR281 JN648935 JN648971      

BLR288 JN648936 JN648972      

BLR299 JN648937 JN648973  JN648982    
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Table 5. Genes and their accession number from German, Turkish and Syrian isolates 

Isolates 16S rRNA recA atpD gln II nodC nodD 
GLR1 KC679411 KC679449 KC679507 KC679562 KC679619 KC679657 
GLR2 KC679412 KC679450 KC679508 KC679563 KC679620 KC679658 
GLR3 KC679413 KC679451 KC679509 KC679564   
GLR5 KC679414 KC679452 KC679510 KC679565 KC679621  
GLR6 KC679415 KC679453 KC679511 KC679566   
GLR7 KC679416 KC679454 KC679512 KC679567 KC679622 KC679659 
GLR8 KC679417 KC679455 KC679513 KC679568 KC679623  
GLR9 KC679418  KC679514 KC679569   
GLR10 KC679419 KC679456 KC679515 KC679570 KC679624  
GLR11 KC679420 KC679457 KC679516 KC679571 KC679625 KC679660 
GLR12 KC679421 KC679458 KC679517    
GLR13 KC679422 KC679459 KC679518 KC679572 KC679626  
GLR14 KC679423 KC679460   KC679627  
GLR16 KC679424 KC679461 KC679519 KC679573 KC679628  
GLR17 KC679425 KC679462 KC679520 KC679574 KC679629 KC679661 
GLR19 KC679426 KC679463 KC679521 KC679575   
GLR22 KC679427 KC679464 KC679522 KC679576 KC679630  
GLR23 KC679428 KC679465 KC679523 KC679577 KC679631 KC679662 
GLR25 KC679429 KC679466 KC679524 KC679578 KC679632  
GLR27 KC679430 KC679467 KC679525 KC679579 KC679633 KC679663 
GLR28 KC679431 KC679468 KC679526 KC679580   
GLR29 KC679432 KC679469 KC679527 KC679581   
GLR30 KC679433 KC679470  KC679582   
GLR31 KC679434 KC679471 KC679528 KC679583   
GLR32 KC679435 KC679472 KC679529 KC679584   
GLR33 KC679436 KC679473 KC679530 KC679585 KC679634 KC679664 
GLR34 KC679437 KC679474 KC679531 KC679586 KC679635  
GLR40 KC679438 KC679475 KC679532 KC679587 KC679636  
GLR43  KC679476 KC679533 KC679588   
GLR45 KC679439 KC679477 KC679534 KC679589 KC679637 KC679665 
GLR46 KC679440 KC679478 KC679535 KC679590 KC679638 KC679666 
GLR49 KC679441 KC679479 KC679536 KC679591 KC679639  
GLR50 KC679442 KC679480 KC679537 KC679592 KC679640 KC679667 
GLR54  KC679481 KC679538 KC679593   
GLR59  KC679482 KC679539 KC679594   
GLR67  KC679483 KC679540 KC679595   
GLR69  KC679484 KC679541 KC679596   
GLR71  KC679485 KC679542 KC679597   
GLR74  KC679486 KC679543 KC679598   
GLR79  KC679487 KC679544 KC679599   
TLR2 KC679443 KC679488 KC679545 KC679600 KC679641 KC679668 
TLR3  KC679489 KC679546 KC679601 KC679642  
TLR4  KC679490     
TLR5  KC679491  KC679602 KC679643  
TLR6 KC679444 KC679492 KC679547 KC679603   
TLR7 KC679445 KC679493 KC679548 KC679604 KC679644 KC679669 
TLR8    KC679605 KC679645  
TLR9  KC679494 KC679549 KC679606 KC679646 KC679670 

TLR10  KC679495 KC679550 KC679607 KC679647 KC679671 
TLR11  KC679496 KC679551 KC679608 KC679648 KC679672 
TLR12  KC679497 KC679552 KC679609 KC679649 KC679673 
TLR14  KC679498 KC679553 KC679610 KC679650  
SLR1 KC679446 KC679499 KC679554 KC679611  KC679674 
SLR2  KC679500 KC679555 KC679612 KC679651  
SLR3  KC679501 KC679556 KC679613 KC679652 KC679675 
SLR4 KC679447 KC679502 KC679557 KC679614 KC679653 KC679676 
SLR5  KC679503 KC679558 KC679615 KC679654  
SLR6  KC679504 KC679559 KC679616  KC679677 
SLR7 KC679448 KC679505 KC679560 KC679617 KC679655 KC679678 
SLR8  KC679506 KC679560 KC679618 KC679656 KC679679 

BLR195      KC679680 

 

2.7 Genomic fingerprinting by ERIC-PCR 
For high resolution PCR, we used the primers and PCR conditions following (De Bruijn, 

1992) and (Gonzalez & Wink, 2010), respectively (table 6). The 25 µL reaction mixture 

contained 2.5 µL of 10X PCR buffer, 2.5 µL DMSO, 2 µL 45%-dATP nucleotide mixture, 
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40 pmol of each primer, 2 units of Taq polymerase (Pharmacia Biotech), 1 µCi (α-33P)-

dATP (Amersham Biosciences) and approximately 80 ng  of genomic DNA. DNA 

fragments were separated by vertical PAGE (polyacrylamide gel electrophoresis) using a 

Base Acer Sequencer (Stratagene, La Jolla, San Diego, CA, USA) at 65 W for 2 h. The 

denaturing gels (45 × 30 ×  0.025 cm) were prepared with 50 m L of Long Ranger ® 

solution, 35 µ L tetramethylethylenediamine (TEMED) and 2 50 µL o f ammonium 

persulfate (APS). After drying, the gel was exposed to X-ray film for 48 h. 

 Table 6. Primers used for amplification of different genes 

Primer  Sequence (5´ – 3´ ) 
 Gene 

/sequence  PCR conditions  Reference 
 fD1  AGAGTTTGATCCTGGCTCAG 

 16S rRNA 

 5 min 95°C, 30 × (1 min 95°C, 1 min 55°C, Weisburg et al., (1991) 

 rD1  AAGGAGGTGATCCAGC  1.5 min 72°C), 10 min 72°C  

 63F  ATCGAGCGGTCGTTCGGCAAGGG 

 *recA 

 5 min 95°C, 30 × (1 min 94°C, 1 min 65°C *, Gaunt et al.,( 2001) 

 504R  TTGCGCAGCGCCTGGCTCAT  1 min 72°C), 10 min 72°C  

 273F  SCTGGGSCGYATCMTGAACGT 

 *atpD 

 5 min 95°C, 30 × (1 min 94°C, 1 min 65°C *, Gaunt et al.,( 2001) 

 771R  GCCGACACTTCCGAACCNGCCTG  1 min 72°C), 10 min 72°C  

 TsglnIIf  AAGCTCGAGTACATCTGGCTCGACGG 

 glnII 

 5 min 95°C, 30 × (45 s 95°C, 30 s 58°C, 1.5 min Stepkowski et al.,( 2005) 

 TsglnIIr  SGAGCCGTTCCAGTCGGTGTCG  72°C), 7 min 72°C  

 nodCF  AYGTHGTYGAYGACGGTTC 

 nodC 

 5 min 95°C, 30 × (1 min 95°C, 1 min 55°C, Laguerre et al., (2001) 

 nodCI  CGYGACAGCCANTCKCTATTG  1.5 min 72°C), 10 min 72°C  

 NBA12  GGATSGCAATCATCTAYRGMRTGG 

 nodD 

 5 min 95°C, 30 × (1 min 95°C, 1 min 55°C, Laguerre et al., (1996) 

 NBF12_  GGATCRAAAGCATCCRCASTATGG  1.5 min 72°C), 10 min 72°C  

 nod-A1  TGCRGTGGAARNTRNNCTGGGAAA 

 nodA 

 5 min 95°C, 30 × (1 min 95°C, 1 min 60°C, Haukka et al., (1998) 

 nod-A2  GGNCCGTCRTCRAAWGTCARGTA  1 min 72°C), 10 min 72°C  

 ERIC 1R  ATGTAAGCTCCTGGGGAT 

 ERIC-sequence 

 5 min  95°C, 30 × (30 s 94°C, 1 min 52°C, 8 min De Bruijn, (1992) 

 ERIC 2  AAGTAAGTGACTGGGGGTGAGC  65°C), 16 min 65°C  

* Annealing temperature for recA and atpD genes for German, Turkish and Syrian isolates was 60°C  

The bands were scored as 1 (present) or 0 (absent). Similarity matrices, neighbor-joining 

(NJ) bootstrap consensus phylogenetic trees and principal coordinate analysis (PCoA) 

plots were generated using FAMD version 1.25 (Schlüter & Harris, 2006). 

2.8 Processing of sequence data 
Obtained sequences were aligned using Bio-Edit with careful manual curation and 

following the recommended precautions. 

2.9 Phylogenetic Analyses  
The sequences were aligned with BioEdit (Hall, 1999). Phylogenetic trees were 

reconstructed using the neighbor-joining (NJ) algorithm (Saito & Nei, 1987) and 

maximum likelihood methods (ML) in MEGA version 5 (Tamura et al., 2011) using the 
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Kimura two-parameter model K2P (K2P, Kimura, 1980) and GTR model (Tavaré, 1986), 

and Bayesian Inference (BI) in MrBayes version 3.1.2 (Ronquist & Huelsenbeck, 2003). 

Bootstrap support for each node was evaluated with 1000 replicates. In BI analyses, two 

inde-pendent runs of 10,000,000 generations each were performed along with four 

Markov chains. Trees were sampled every 500 generations and the first 5000 samples 

were discarded as ‘burn-in’. Phylogenetic trees were reconstructed based on single as 

well as combined gene data sets. Trees were rooted using Bradyrhizobium japonicum 

and Rhizobium yanglingense as out group except for the nodC (Fig. 27) and nodD (Fig. 

28) trees. Uncorrected genetic distances (p, Nei, 1987) within and between lineages and 

sub-lineages were calculated using MEGA 5 (Tamura et al., 2011). Tree topologies were 

compared using the S-H test (Shimodaira & Hasegawa, 1999).  

2.10 Population genetic analyses 
Parameters such as recombination events were measured with DNASP version 5.10.01 

(Rozas et al., 2010). The population structure was evaluated with STRUCTURE version 

2.3.3 (Pritchard et al., 2000; Falush et al., 2003). The most likely number of clusters (K = 

1 – 10) was determined under an ‘ admixture’ model, 20,000 ‘burn-in’ and 40,000 

sampling iterations and the corresponding (highest) posterior probability value 

associated to the data set for STRUCTURE analyses. With an estimated K = 9, five extra 

long runs of 20,000 ‘burn-in’ and 100, 000 sampling iterations were performed. 

Hierarchical Analysis of Molecular Variance (AMOVA, Excoffier et al., 1992) was 

conducted in ARLEQUIN version 3.5 (Excoffier et al., 2005). 

2.11 Recombination and mutation analyses 
Levels of recombination, mutation rates and 50% majority rule consensus trees (with and 

without recombination) were estimated based on the combined data set using 

CLONALFRAME version 1.1 (Didelot & Falush, 2007). Three independent runs were 

performed with a 100,000 ‘burn-in’ and 300,000 sampling iterations. Satisfactory MCMC 

convergence was judged following the criterion of Gelman & Rubin (1992). We made use 

of three approaches in order to estimate the level of recombination in the isolates from 

Germany, Turkey and Syria: (1) minimal intragenic recombination events (Rm) were 

detected and compared with expected values of coalescence simulations based on 

10,000 genealogy replications at 95% confidence level (Hudson et al., 1992; Rozas et 

al., 2010) analyzing single genes and the combined data set in DNASP version 5.10.1 



38 

 

(Rozas et al., 2010; (2) the Shimodaira-Hasegawa (S-H) test (Shimodaira & Hasegawa, 

1999) was performed to compare ML tree topologies for phylogenetic congruence as 

implemented in TREE-PUZZLE version 5.2 (Schmidt et al., 2003); and (3) recombination 

rates were determined by the relative impact of recombination as compared with point 

mutation in the genetic diversification of the lineages (r/m proportion; (Guttman & 

Dykhuizen, 1994) and the relative frequency of the occurrence of recombination as 

compared with point mutation in the history of the lineage (ρ/θ proportion; Milkman & 

Bridges, 1990); these analyses were carried out in CLONALFRAME version 1.1 as 

described before.  

2.12 Apparatus, instruments, chemicals, solutions used in this study   
Table 7. List of instruments and apparatuses used for this study 

Instruments Company 
Automated sequencer  ABI 3100, Applied Biosystems  
Autoclave, large Webeco, Germany 
Autoclave, small Vienna, Austria  
 DU 640 Photometer  Beckman ,USA  
Centrifuge, 1-15K Sigma, Germany 
Electrophoresis power supply unit-E452  Fröbel , Germany 
Falcon tube (25, 50 mL)  Sarstedt, Germany 
Freezers (-20°C, -70°C) AEG, Santo, Liebherr Revco 
Gel casting chamber/tray  Heidelberg University, Germany  
Gloves  VWR international, USA 
Incubator with shaking New Brunswick Scientific, USA 
Incubators (28°C, 37°C, 65°C)  Heraeus, Germany 
Laminar flow: LF1800 Fröbel labortechnik,  Germany 
Microcentrifuge-biofuge 13R  Heraeus, Germany  
Microcentrifuge: Biofuge Fresco  Heraeus, Germany  
PCR machines: Tgradient thermo cycler Senso Quest,Biometra, Germany 
pH meter: Pipetman  Gilson, France  
Plant growth chamber  Rubarth, Germany 
Reaction tubes (0.2, 0.5, 1.5, 2 mL)  Eppendorf, Germany  
Shaker: schuettler-MT4  IKA, Germany 
Sterile filter ( 0.22, 0.45 μm ) Sartorius, Germany  
SW22 shaking water bath Julabo, Germany 
UVP,Benchtop variable transilluminator NY, USA 
UV-Photometer WPA, Hong Kong 
Vertical gel rig for PA glass Stratagene, La Jolla, San Diego, USA 
Vortex mixer, genie-2  Bender & Hobein AG, Switzerland 
X-ray film Fuji , Japan 
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Table 8. Chemicals, enzymes, and other materials used in this study 

Chemicals, enzymes and other  materials Company / Country 
Acetic acid  Merck, Germany  

Agarose  HYBAID-AGS, Germany  

Ammonium sulfate  Gerbu, Germany  

Ammonium acetate  Merck, Germany  

Antibiotics (ampicillin, kanamycin, tetracyclin,  

nalidixic acid, chloramphenicol, streptomycin)  

Sigma-Aldrich, Serva, AppliChem, 

Germany 

Agar Sigma-Aldrich, Germany 

Big Dye Terminator kit  Applied Biosystems  

Bovine serum albumin  Sigma-Aldrich, Germany  

Bromo thymol blue  Serva, Germany  

Chloroform  Fluka, Switzerland  

DMSO Sigma-Aldrich, Germany 

Ethanol, absolute  Merck and Becker , Germany 

EDTA  Roth, Germany  

Ethidium bromide  Serva, Germany  

Formamide  Applied Biosystems  

Glycerol Sigma-Aldrich, Germany 

Gram staining kit Sigma-Aldrich, Germany 

Isopropanol  Applichem, Germany  

ß-mercaptoethanol  Merck, Germany  

Mannitol Becton, USA 

Mineral oil  Sigma-Aldrich, Germany  

Nucleotides  Eurofins, Germany 

Phenol  Merck, Germany  

Potassium nitrate Merck, Germany 

Proteinase K  Merck , Germany 

Sodium dodecyl sulfate (SDS)  Applichem, Germany  

Sodium acetate  Merck , Germany 

TaqTM DNA polymerase (red taq) Sigma-Aldrich, Germany  

Taq DNA polymerase  Sigma-Aldrich,  Bioron  

Taq DNA polymerase  Bioron, Germany  

Tris-HCl  Roth, Germany  

Ultra pure water  Merck, Germany  

Yeast extract Becton, USA 

 
 



40 

 

Table 9. Buffers, medium and solutions used in this study 

Buffers and stock solutions Components / Company 
Agarose gel solution- 1-1.5% Agarose  in water, contains 1 μg/mL ethidium bromide  
Ammonium acetate- 4M  Amonium acetate (C2H3O2NH4 ) in water  
Ammonium persulfate-10%  Amonium sulphate (NH4)2S2O8 in water  
BTB solution  Bromothymol blue (stock; 0.5 g /100 EtOH); 10 mL per litre 

YEMA medium (concentration: 25 ppm BTB in YEMA) 
Chloroform: isoamyl alcohol  CHCl3/C5H12O in ratio 24:1  
CHES (pH 10)  Sigma-Aldrich, Germany 
CAPS (pH 10) Sigma-Aldrich, Germany 
Congo Red solution Congo Red (stock:0.25 g/100 mL water): 10 mL per litre 

YEMA medium (concentration: 25ppm BTB in YEMA)  
CRYEMA medium Mannitol (C6H8(OH)6) -10 g, yeast extract-1.0 g, KH2PO4-0.5 

g, MgSO4.7H2O - 0.2 g, NaCl - 0.2 g, agar-18 g, congo red-10 
mL, in 1000mL water, pH-7.0 

DNA size marker (100 bp ) Fermentas-Thermo Fisher Scientific, USA 
DNA size marker (50 bp) Fermentas-Thermo Fisher Scientific, USA 
EDTA buffer  10% EDTA, 0.5% NaF, 0.5% thymol, 1% Tris (pH 7.5)  
Ethidium bromide 0.00001% in 1% agarose 
Fahraeus N-free medium CaCl2- 0.1 g,  MgSO4.7H2O- 0.12 g, NaCl- 0.2 g KH2PO4- 0.1 

g, Na2HPO4- 0.15 g, C6H5+4yFexNyO7 - 0.005 g and  trace 
element solution-1mL in 1000 mL water. 

HOMOPIPES (pH 4.5) Sigma-Aldrich, Germany 
HEPES (pH 6.8–8.2) Sigma-Aldrich, Germany 
Jensen N-free solution CaHPO4- 1.0, K2HpO4- 0.2g, MgSO4.7H2O- 0.2 g, NaCl- 0.2 g, 

FeCl3- 0.1 g, trace element solution-1 mL in 1000 mL water  
Lysis buffer  40 mM Tris-acetate, pH 7.8, 20 mM  sodium acetate, 1 mM 

EDTA, 75 mM NaCl, 1% SDS  
 Lysogeny broth  Tryptone- 10 g, Yeast  extract- 5g, NaCL- 10g per litre water 
MES (pH 5.5) Sigma-Aldrich, Germany 
Nucleotide mix  2.5 mM dATP, 2.5 mM dCTP, 2.5 mM dGTP, 2.5 mM dTTP  
PCR buffer (10X)  100 mM Tris-HCl, 500 mM KCl, 5% TritonX-100, 15 mM MgCl2 

(pH 8.5)  
Phenol/chloroform/isoamyl alcohol  C6H5OH/ CHCl3/C5H12O in ratio 25:24:1  
SDS solution- 10% C12H25NaO4S in water  
Sodium chloride solution- 5M NaCl in water (saturated)  
Sodium hypochloride solution-3% NaOCl in water 
TAE buffer  40 mM Tris, 1 mM EDTA, acetic acid (pH 8.0)  
TBA buffer  1 M Tris, 89 mM boric acid, 10 mM EDTA, pH 8.6  
TE buffer  10 mM Tris-HCl, 1 mM EDTA (pH 8.0)  
Trace element solution Bo- 0.05%,Mn- 0.05%, Zn- 0.005%,Cu- 0.002%,pH- 6.5-7.0 
Tryptone agar medium Tryptone- 5 g, yeast extract- 3.0 g, CaCl2- 0.66 g,  agar- 18 g, 

pH-7.0 in 1000 mL water 
λ-PSTI size standard  Fermentas-Thermo Fisher Scientific, USA 
Yeast extract mannitol agar medium Mannitol (C6H8(OH)6)-10 g, yeast extract-1.0 g, K2HPO4-0.5 g, 

MgSO4,7H2O- 0.2 g, NaCl- 0.2 g, agar- 18 g, in 1000 mL 
water, pH-7.0 
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Research projects 

3.1 Project 1: Genetic diversity of rhizobia nodulating lentil (Lens 
culinaris) in   Bangladesh   

3.1.1 Abstract 
In order to determine the bacterial diversity and the identity of rhizobia nodulating lentil in 

Bangladesh, we performed a phylogenetic analysis of housekeeping genes (16S rRNA, 

recA, atpD and glnII) and nodulation genes (nodC, nodD and nodA) of 36 bac terial 

isolates from 25 localities across the country. Maximum likelihood (ML) and Bayesian 

analyses based on 16S rRNA sequences showed that most of the isolates (30 out of 36) 

were related to Rhizobium etli and Rhizobium leguminosarum. Only these thirty isolates 

were able to re-nodulate lentil under laboratory conditions. The protein-coding 

housekeeping genes of the lentil nodulating isolates showed 89.1 – 94.8% genetic 

similarity to the corresponding genes of Rhizobium etli and Rhizobium leguminosarum. 

The same analyses showed that they split into three distinct phylogenetic clades. The 

distinctness of these clades from closely related species was also supported by high 

resolution ERIC-PCR fingerprinting and phenotypic characteristics such as temperature 

tolerance, growth on acid-alkaline media (pH 5.5 – 10.0) and antibiotic sensitivity. Our 

phylogenetic analyses based on three nodulation genes (nodA, nodC and nodD) and 

cross-inoculation assays confirmed that the nodulation genes are related to those of 

Rhizobium leguminosarum symbiovar viciae, but clustered in a distinct group supported 

by high bootstrap values. Thus, our multi-locus phylogenetic analysis, DNA fingerprinting 

and phenotypic characterizations suggest that at least three different clades are 

responsible for lentil nodulation in Bangladesh. These clades differ from the Rhizobium 

etli–Rhizobium leguminosarum group and may correspond to novel species in the genus 

Rhizobium.  

Key words: Rhizobium; Lens culinaris; Nodulation; Multi locus analysis; Fingerprinting; 
Phylogeny 
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3.1.2 Introduction 
Rhizobia are a group of bacteria that have the capacity to form nodules on legume roots 

(and occasionally on stems) and can fix atmospheric nitrogen to partially or fully meet the 

nitrogen requirements of the plant. An effective symbiotic relationship between the 

bacteria and the plant hosts is crucial for the legume to achieve maximum growth 

efficiency. Lentil (Lens culinaris) is an important and popular legume in many countries 

for human and animal nutrition as well as for soil fertility management. Lentil can meet its 

full or partial nitrogen requirement for growth and development from its symbiotic partner. 

The lentil is indigenous to the Near East and Central Asia, and its history in agriculture is 

probably as old as that of agriculture itself. The putative progenitor of modern cultivated 

lentils has been distributed from this region to the other continents (Shandu & Singh, 

2007; and references therein). It is believed that the cultivated lentil originated in the 

Turkey-Cyprus region, and that the centre for diversification is South Asia. The lentil was 

introduced to India by 2,500 years BC and it is commonly known as “Measure” in all 

Indian states (Nene, 2006; Sonnante et al., 2009) including Bangladesh and Pakistan. 

Bangladesh also possesses a long history of lentil cultivation. To our knowledge, there is 

no historical record of the introduction of the lentil to Bangladesh, but it has been 

cultivated in this region for a l ong time. Bangladesh is a s mall South Asian country 

surrounded by various Indian states. These surrounding states share cultural sim-ilarities 

with Bangladesh, including linguistic similarities and a n agricultural history. Linguistic 

comparisons for example show that the Hindi word ‘Masur’ is found to have the same 

meaning (‘lentil’) in India, Bangladesh and Pakistan. These three countries make up the 

Indian subcontinent, and we can assume an early beginning for the cultivation of lentils 

in Bangladesh from around 2,500 years BC. 

R. leguminosarum symbiovar viciae usually nodulates legumes of the tribe Vicieae 

(Laguerre et al., 2003; Santillana et al., 2008; Hou et al., 2009), and this symbiosis may 

be very specific (Tian et al., 2010). From the analysis of several isolates, Santillana et al. 

(2008) concluded that the taxonomic status of R. leguminosarum is not clear, and 

proposed a taxonomic revision of this rhizobial species based on a polyphasic approach 

(a consensus type of taxonomy utilizing all the available data to describe consensus 

groups). However, most of the rhizobial strains isolated so far from legumes of the tribe 

Vicieae belong to the R. leguminosarum species complex (R. leguminosarum, R. fabae 

and R. pisi) (Álvarez-Martinez et al., 2009). It has also been shown that certain rhizobial 

species can only nodulate a single species of legume and that certain legumes can only 
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be nodulated by a s ingle rhizobial species. There are currently six recognized species 

within the genus Rhizobium that form nodules with the common bean (Valverde et al., 

2006; and references therein). 

Nodulation and cross-inoculation assays are necessary to determine the host range of 

rhizobial species, and nucleotide sequences from nodulation genes may be us ed to 

provide complementary information. Gene transfer and rearrangement of symbiotic plas-

mids can occur under natural conditions, depending on t he donor and r ecipient strains 

(Geniaux & Amargr, 1993; Zhang et al., 2001) and therefore different strains of the same 

rhizobial species may carry similar or different nod genes. This incongruence is generally 

explained by lateral gene transfer in rhizobia (Han et al., 2010; and references therein). To 

take account of differences among strains within the same species, different symbiovars 

have been described for same bacterial species. Three symbiovar (viciae, phaseoli, trifolii) 

have been described in R. leguminosarum, and these biovars were later also described in 

other species of rhizobia. The same symbiovar can also occur in different species of 

rhizobia (Perret et al., 2000). Moreover, based on t he description of pathovars in 

pathogenic bacteria, symbiotic variants or symsymbiovars have recently been proposed 

for describing the adaptive behavior of rhizobia with regard to their legume host, and 

different symsymbiovars should be distinguished by host ranges as well as by gene 

sequences (Rogel et al., 2011; and references therein). 

In prokaryotic identification and systematics, the analysis of genes coding for the SSU 

rRNA is one of the most widely used classification techniques. However, for the 

description of new species or higher taxonomic levels of bacteria, phylogenetic analyses 

based on 16S rRNA sequences should be integrated into a p olyphasic approach like 

multilocus sequence analysis (MLSA) with phenotypic characterization and DNA 

fingerprinting (Mutch & Young, 2004; Ludwig & Klenk, 2005; Konstantinidis et al., 2006). 

DNA fingerprints can be useful in determining the stability of dominant members of a 

community in large sampling projects (Hamady & Knight, 2009). 

Although several studies have been carried out to assess the diversity and identity of 

rhizobia that nodulate members of the tribe Vicieae, there are few reports investigating 

rhizobia isolated from lentil. The studies performed on lentil rhizobia so far have mainly 

evaluated their symbiotic performance on plant growth and h ave described their 

biochemical characteristics and stress (salt and temperature) tolerance (Tegegn, 2006). 

The diversity of lentil-nodulating rhizobia has also been described on the basis of 

plasmid profiles, RFLP and rep-PCR (repetitive element sequence-based PCR), but no 
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sequence information is currently available (Laguerre et al., 1992; Geniaux & Amargr, 

1993; Tegegn, 2006). To our knowledge no phylogenetic analyses have yet been 

performed on lentil rhizobia using a MLSA approach. 

In order to increase our knowledge of the genetic diversity of rhizobial populations 

associated with members of the Vicieae, specifically with lentil, and to determine the 

taxonomic position and identity of lentil symbionts, we collected field-grown lentil nodules 

from different localities in Bangladesh and performed polyphasic analyses on the 

isolated bacteria. 

3.1.3 Materials and methods 

Nodule collection, isolation of bacteria  
Detail descriptions of the methods are available in chapter 2 (materials and methods). 

Plant infection and nodule effectiveness assays 
Methods are available in chapter 2.  

 

Phenotypic characterization of isolates 
 Methods used for phenotypic characterization are available in chapter 2. 

DNA isolation, PCR amplifications, gene sequencing and ERIC 
fingerprinting 
Detail descriptions of the methods are available in chapter 2. 

Phylogenetic analyses 
Detail descriptions for phylogenetic analyses are available in chapter 2.  
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3.1.4 Results 

Isolation and purification of rhizobia 
Single colony from isolated rhizobia were purified by repeated streaking on C RYEMA 

medium as described earlier and, colony morphology and cell shape have shown in the 

Fig. 3 and Fig. 8 respectively.  

                
 

Fig. 8. Shape of lentil-nodulating rhizobia 

Nodulation and cross-inoculation  
The nodulation efficiency of all isolates was tested on lentil; out of 36 isolates, 30 were 

able to induce the formation of nodules within 2 – 3 weeks after inoculation (Fig. 5). In 

cross-inoculation tests, all 10 i solates out of a r andomly selected set (BLR9, BLR28, 

BLR45, BLR58, BLR100, BLR105, BLR154, BLR175, BLR195, and BLR235) were able 

to form nodules with both L. sativus and P. sativum (Fig. 6). 

Symbiotic effectiveness assays 
Symbiotic effectivity test were performed using sterile sand under glasshouse conditions 

(Fig. 7) using selected Bangladeshi isolates. Under glasshouse conditions all tested 

isolates [(BLR9, BLR26, BLR28, BLR41, BLR58, BLR87, BLR98, BLR99, BLR100, 

BLR105, BLR122, BLR129, BLR137, BLR139, BLR175, BLR228, BLR235, split into 

three clades (I – III), according to phylogenetic analyses, see below)], R. leguminosarum 

symbiovar viciae 3841 and the un-inoculated nitrogen-fertilized control treatment showed 

a significant effect (ANOVA, P < 0.05) on lentil dry matter weight production compared to 

the un-inoculated, un-fertilized control (table 10B). Moreover, significant differences in 

nodulation and plant growth were observed (ANOVA, P < 0.05) when comparing only the 

three clades (table 10D). When comparing all BLR isolates as one g roup with R. 

leguminosarum symbiovar viciae 3841, significant differences (ANOVA, P < 0.05) were 

A (40X) B (100X) 
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observed in lentil nodulation, but we did not find significant differences for plant dry 

matter weight production (ANOVA, P < 0.071) (table 10F). 

Table 10 (A – H). Symbiotic effectivity of lentil rhizobia on growth of lentil 

A.  Effect of Bangladeshi isolates, R. leguminosarum (Rlv3841) and nitrogen on lentil 

growth (descriptive statistics) 

 
Treatments Number of 

observations 
Plant weight (mg) Nodule weight (mg) 

mean std. 
deviation 

std. 
error 

mean std. 
deviation 

mean 

Clade- I 55 473.96 112.45 15.16 24.49 7.92 1.06 

Clade-II 20 539.50 98.45 22.01 26.68 8.92 1.99 

Clade-III 10 643.90 47.02 14.87 44.86 6.35 2.00 

Rlv 5 413.20 17.76 7.94 16.06 .58 0.26 

nitrogen 5 615.00 9.24 4.13 0.00 0.00 0.00 

control 5 365.80 37.53 16.78 0.00 0.00 0.00 

Total 100 502.67 117.33 11.73 24.09 12.65 1.26 

 

B. Effect of Bangladeshi isolates, R. leguminosarum (Rlv3841) and nitrogen on lentil 

growth (ANOVA) 

Source of 
variation 

Plant weight (mg) Nodule weight (mg) df sig. 
sum of 
square 

mean 
square 

F 
stat. 

sum of 
square 

mean 
square 

F stat. 

Between group 468692.68 93738.53 9.85 10583.21 2116.64 37.72 5 0.00 

Within group 894185.42 9512.61  5273.77 56.10  94  

Total 1362878.11   15856.98   99  

  C. Effect of Bangladeshi isolates on lentil growth (clades-wise, descriptive statistics)  

Treatments Number of 
observations 

Plant weight Nodule weight (mg) 
mean std. 

deviation 
std. error mean std. 

deviation 
std. 
error 

Clade- I 55 473.96 112.45 15.16 24.49 7.92 1.06 

Clade-II 20 539.50 98.45 22.01 26.68 8.92 1.99 

Clade-III 10 643.90 47.02 14.87 44.86 6.35 2.00 

Total 85 509.38 117.26 12.71 27.40 10.23 1.11 
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Table  10 (A – H). Symbiotic effectivity of lentil rhizobia on growth of lentil (cont.) 
 
D. Effect of Bangladeshi isolates on lentil growth (clades-wise, ANOVA) 

Source of variation Plant weight (mg) Nodule weight (mg) df sig. 
sum of 
square 

mean 
square 

F stat. sum of 
square 

mean 
square 

F 
stat. 

Between group 268088.12 134044.06 12.39 3523.61 1761.80 27.40 2 0.00 

Within group 886945.82 10816.41  5272.42 64.29  82  

Total 1155033.95   8796.03   84  

 

E. Effect of Bangladeshi isolates and  R. leguminosarum (descriptive statistics) 

Treatments Number of 
observations 

Plant weight (mg) Nodule weight (mg) 
mean Std. 

deviation 
Std. 
error 

mean std. 
deviation 

std. 
error 

Bangladeshi 

isolates 

85 509.38 117.26 12.71 27.40 10.23 1.11 

Rlv3841 5 413.20 17.76 7.94 16.06 0.58 0.26 

Total 90 504.03 116.11 12.24 26.77 10.28 1.08 

 

F. Effect of Bangladeshi isolates and  R. leguminosarum ( ANOVA) 

Source of 
variation 

Plant weight (mg) Nodule weight (mg) df Sig. 
sum of square mean 

square 
F 

stat. 
sum of 
square 

mean 
square 

F 
stat. 

plant nodule 

Between 
group 

43680.14 43680.14 3.32 607.76 607.76 6.07 1 0.07 0.01 

Within 
group 

1156296.75 13139.73  8797.39 99.97  88   

Total 1199976.90   9405.15      
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Table  10 (A – H). Symbiotic effectivity of lentil rhizobia on growth of lentil (cont.) 
 

G. Effect of  rhizobial inoculation over  control on lentil growth (descriptive statistics) 

Isolates/ 
nitrogen 

Replication Plant weight (mg) Nodule weight (mg) 
mean std. 

deviation 
std. 

error 
mean std. 

deviation 
std. 

error 
BLR-9 5 377.20 38.38 17.16 26.14 2.96 1.32 

BLR-26 5 425.60 25.96 11.61 41.26 4.82 2.15 
BLR-41 5 415.40 34.23 15.30 14.28 1.29 0.58 
BLR-58 5 480.60 54.56 24.40 22.50 3.04 1.36 
BLR-87 5 602.60 24.31 10.87 27.80 3.11 1.39 
BLR-98 5 389.00 11.81 5.28 33.52 3.18 1.42 
BLR-100 5 585.00 47.89 21.41 18.32 2.78 1.24 
BLR-105 5 318.00 21.09 9.43 17.12 2.94 1.31 
BLR-122 5 380.80 35.78 16.00 21.98 2.90 1.30 
BLR-137 5 624.40 25.62 11.46 22.52 2.46 1.10 
BLR-139 5 615.00 22.77 10.18 23.98 4.52 2.02 
BLR-62 5 521.20 47.79 21.37 18.32 4.36 1.95 
BLR-99 5 545.80 57.84 25.86 24.42 4.31 1.93 
BLR-129 5 421.60 25.18 11.26 39.74 2.41 1.08 
BLR-175 5 669.40 28.99 12.96 24.26 4.57 2.04 
BLR-228 5 645.00 645.00 15.70 40.56 4.50 2.01 
BLR-235 5 642.80 642.80 27.34 49.16 4.91 2.20 
Rlv3841 5 413.20 413.20 7.94 16.06 0.58 0.26 
Nitrogen 5 615.00 615.00 4.13 0.00 0.00 0.00 
control 5 365.80 365.80 16.78 0.00 0.00 0.00 
Total 100 502.67 502.60 11.73 24.09 12.65 1.26 

 

H. Effect of rhizobial inoculation over control treatment on lentil growth (ANOVA) 

Source of 
variance 

Plant weight (mg) Nodule weight (mg) df sig. 

sum of 
square 

mean 
square 

F stat. sum of 
square 

mean 
square 

F stat. 

between group 1258438.11 66233.58 50.73 14962.61 787.50 70.44 19 0.00 

within group 104440.00 1305.50  894.37 11.18  80  

Total 1362878.11   15856.98   99  
 

16S rRNA gene 
From 36 isolates, 1040 – 1400 base pairs (bp) were obtained from the 16S rRNA gene. 

The maximum likelihood (ML) phylogenetic tree based on 16S rRNA reveals that most of 

the isolates (approximately 83%) cluster together with, among others, R. etli CFN42, R. 

leguminosarum, R. fabae and R. pisi (Fig. 9). A BLAST search with these sequences 

shows a hi gh similarity (99 – 100%) to R. etli (30 isolates). The genetic similarity (p- 

distance) inferred from the 16S rRNA sequences of lentil-nodulating bacteria was 99.8% 

to R. etli CFN 42 and 98.9% to R. leguminosarum USDA 2370 ( table 11). The non-

nodulating isolates were closely related to Ensifer sp., R. huautlense, R. giardinii, R. 

tumefaciens and R. radiobacter.  



Fig. 9. ML tree based on 16S rRNA gene partial sequences. Bootstrap values indicated
when ≥ 70% (1000 replicates). Abbreviations used: BLR: Bangladeshi lentil rhizobia,
R: Rhizobium, E: Ensifer, B: Bradyrhizobium, M: Mesorhizobium.
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Protein-coding housekeeping genes 
We were able to amplify approximately 500 bp of the partial recA gene from 33 isolates 

with the primers described previously (Gaunt et al., 2001) but were unable to amplify a 

fragment from the three remaining isolates (BLR281, BLR288 and BLR299). Con-

sidering the recA gene, lentil rhizobia showed 91.7 and 92.1% similarity to R. 

leguminosarum and R. etli, respectively. The partial atpD gene (approximately 550 bp) 

showed 89.1% similarity to R. leguminosarum and 94.4% to R. etli CFN42. The partial 

glnII gene sequences (approximately 750 bp)  showed 92.8% similarity to R. 

leguminosarum USDA2370 and 9 4.8% to R. etli CFN42 (table 10). In the ML trees, 

based on the partial recA, atpD and glnII gene sequences, lentil-nodulating Isolates form 

three separate clades (I, II and III, see Figs. 10 – 12). These isolates form monophyletic 

groups that differ from R. etli, R. leguminosarum, R. fabae and R. pisi. The ML trees 

based on concatenated sequences (16S rRNA + recA + atpD and 16S rRNA + recA + 

atpD + glnII) revealed congruent topologies (Fig. 16 and Fig. 17). 

Table 11.  Average genetic similarity among clades and to R etli, R. leguminosarum 

Isolates / clades 16S atpD recA glnII 
R. etli / nodulating isolates  99.8 94.4 92.1 94.8 

R. leguminosarum / nodulating isolates  98.9 89.1 91.7 92.8 

R. etli / Clade I  99.8 94.5 91.4 94.8 

R. etli / Clade II  99.7 94.4 96.4 94.7 

R. etli / Clade III  99.8 93.8 88.8 94.8 

R. leguminosarum / Clade I  98.9 89.3 92.1 92.0 

R. leguminosarum / Clade II  98.8 88.6 90.4 93.1 

R. leguminosarum / Clade III  99.0 88.7 91.1 93.7 

Clade I / Clade II  99.7 93.8 90.8 95.1 

Clade I / Clade III  99.8 94.0 91.7 96.2 

Clade II / Clade III  99.8 93.6 89.1 94.3 

 

 



Fig. 10. ML tree based on recA gene partial sequences. Bootstrap values indicated
when ≥ 70% (1000 replicates). Abbreviations: BLR: Bangladeshi lentil rhizobia,
R: Rhizobium, E: Ensifer, B: Bradyrhizobium, M: Mesorhizobium.
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Fig. 11. ML tree based on atpD  gene partial sequences. Bootstrap values 
indicated when ≥ 70% (1000 replicates). Abbreviations: BLR: Bangladeshi lentil 
rhizobia, R: Rhizobium, E: Ensifer, B: Bradyrhizobium, M: Mesorhizobium. 
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Fig. 12. ML tree based on glnII gene partial sequences. Bootstrap values
indicated when ≥ 70% (1000 replicates). Abbreviations: BLR: Bangladeshi lentil
rhizobia, R: Rhizobium, E: Ensifer, B: Bradyrhizobium, M: Mesorhizobium.
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Nodulation genes 
We amplified three nodulation genes from lentil isolates that were able to form nodules 

under laboratory conditions, namely nodA, nodC and nodD (table 6). The nodulation 

gene sequences showed high similarity to R. leguminosarum symbiovar viciae. Our 

phylogenetic analyses based on nodulation genes (nodA, nodC and nodD) revealed a 

close relationship to R. leguminosarum symbiovar viciae, but most of the isolates form 

distinct clade supported by high bootstrap values (99%, see Figs. 13 – 14 and Fig. 19). 

In general, the phylogenetic analyses based on single gene and concatenated 

sequences of housekeeping genes, resulted in congruent topologies that supported the 

relationship to R. etli but formed three distinct monophyletic groups (Figs. 10 – 12 and 

Figs. 16 – 17). However, the phylogenetic analyses based on the sequences of the three 

nodulation genes showed that these three new clades harbor almost identical nodulation 

genes (Figs. 13 – 14 and Fig. 19) and congruence was absent between chromosomal 

gene and nodulation gene phylogeny.  

DNA fingerprinting 
The DNA fingerprints showed three (I – III) different, well-defined banding patterns (see 

Fig. 15). The NJ analyses based on hi gh resolution ERIC-PCR fingerprints revealed 

three different clusters. These clusters can be distinguished from each other as well as 

from R. etli and R. leguminosarum (Fig. 18a). The principal coordinate analysis (PCoA) 

showed three non-overlapping clusters and also demonstrated the distinctness of R. etli 

and R. leguminosarum with high bootstrap values (Fig. 18b). 

 
 
 
 
 
 
 
 



Fig. 13. ML tree based on nodA gene partial sequences. Bootstrap values indicated
when ≥ 70% (1000 replicates). Abbreviations: BLR: Bangladeshi lentil rhizobia,
R: Rhizobium, E: Ensifer, B: Bradyrhizobium, M: Mesorhizobium.
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Phenotypic characterization 
The brief phenotypic characteristics of the lentil isolates are listed briefly in table 12. 

Cells were aerobic, Gram-negative, and rod-shaped. After 48 h o f inoculation on YMA 

media, the diameter of the creamy-white colonies ranged between 1.5 and 2.0 mm, and 

most of the isolates produced mucilage after 5 days of incubation (table 13). The majority 

of the isolates grew well on alkaline media (pH 10.0) and showed acidic reactions by 

producing a yellow coloration on BTB plates. All isolates grew well at 37°C, at pH values 

of 5.5 – 10, and on media containing both ampicillin (50 g / mL), and kanamycin (10 g / 

mL), while closely related species like R. etli CFN 42 and R. leguminosarum 3841 were 

unable to grow under the same conditions. Like R. etli, all isolates (except two) showed 

resistance to nalidixic acid (up to 40 g / mL) (see table 13).  

However, lentil isolates could not grow on LB medium and were sensitive to NaCl; few 

isolates grew even at 1% NaCl. Out of the different tested antibiotics, tetracycline was 

the most toxic to lentil isolates; none of the isolates grew on media containing 5 g/mL of 

tetracycline. The clade III (phylogenetic clade) was more sensitive to ampicillin than 

clades I and I I. None of the isolatess in clade III was able to grow on T Y medium 

containing 100 g / mL ampicillin, while 50% of the mem-bers of clade II and 90% of the 

members of clade I grew well under the same conditions. Compared to the members of 

clades I and II, the members of clade III were also more sensitive to kanamycin. In 

contrast to antibiotic sensitivity, clade III was more resistant to NaCl (1%) and g rew 

better at pH 10.0 than the members of the other two clades (table 13). 
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Table 12. Brief morpho-physiological characteristics of lentil isolates and their closest 

relatives (clade wise) 

Characteristics 

( conditions at / 
in) 

Clade 
I 

Clade 
II 

Clade 
III 

R. etli 
(CFN42) 

R. 
leguminosarum 

(3841) 

Temperature 
(°C) 

32 + + + + + 

37 + + + ─ ─ 

40 ─ ─ ─ ─ ─ 

45 ─ ─ ─ ─ ─ 

pH 4.5 ─ ─ ─ ─ ─ 

5.5 + + + ± ± 

8.2 + + + ─ ─ 

9.0 + + + ─ ─ 

10.0 +(76%) + (90%) + ─ ─ 

NaCl (%) 0.5 + + + ─ ─ 

1.0 ─ ─ + ─ ─ 

1.5 ─ ─ ─ ─ ─ 

Resistance to antibiotics 

Ampicillin 
(µg / mL) 

50 + + + ─ + 

75 +(95%) + (50%) ─ ─ ± 

100 +(90%) + (50%) ─ ─ ─ 

125 +(73%) + (16%) ─ ─ ─ 

150 +(33%) + (16%) ─ ─ ─ 

Kanamycin 
(µg / mL) 

10 + + + ─ + 

20 +(90%) + (83%) +(66%) ─ ± 

Nalidixic 
acid (µg / 

mL) 

10 +(100%) +(100%) +(100%) + ± 

20 +(85%) +(100%) +(100%) + ─ 

30 +(85%) +(100%) +(100%) + ─ 

40 +(85%) +(100%) +(100%) + ─ 
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3.1.5 Discussion 

Rhizobia nodulating lentil are closely related to Rhizobium 
leguminosarum and Rhizobium etli 
The 16S rRNA gene fulfils all of the requirements for a good phylogenetic marker, such 

as functional conservation, ubiquitous distribution, conserved size and i nformation 

content, and the presence of evolutionary conserved regions alongside highly variable 

structural elements (Ludwig & Klenk, 2005). To date, rhizobial strains isolated from the 

legume tribe Vicieae were all found to be closely related to R. leguminosarum (Laguerre 

et al., 2003; Mutch & Young, 2004; Moschetti et al., 2005;  Santillana et al., 2008; Hou et 

al., 2009;  Tian et al., 2010).  

In our study, the 16S rRNA gene analyses showed that out of 36 isolates, 30 isolates 

were closely related to R. etli, R. leguminosarum, R. pisi and R. fabae, and only these 30 

isolates were able to nodulate lentil under laboratory conditions. The phylogenetic 

analyses based on 16S rRNA gene sequences indicated that the main rhizobial isoltes 

nodulating lentil in Bangladesh may be related to R. etli. Other isolates that were not able 

to form nodules under laboratory conditions showed phylogenetic relationships to 

different rhizobial species such as R. huautlense, R. giardini and Ensifer (Sinorhizobium) 

sp. These rhizobia do not form nodules with host plant species within the tribe Vicieae, 

but have the capacity to form nodules with other legumes (Willems, 2006).  

Moreover, we also obtained other bacteria that failed to form nodules under laboratory 

conditions, and these were closely related to R. radiobacter (Agrobacterium sp.). There 

are numerous reports (Anyango et al., 1995; Zakhia et al., 2006; Li et al., 2008; 

Cummings et al., 2009; Ibañez et al., 2009) that this bacterial species is very often 

recovered from nodules of naturally growing legumes from around the world. Thus, 

although bacteria may lose their nodulation genes during storage (Ibañez et al., 2009), 

these results suggest that these non-nodulating isolates may be oppor-tunistic bacteria 

capable of lentil nodulation under field conditions, or bacteria that coexist within the 

nodule alongside nodulating rhizobia. 

 
 
 
 



Fig. 16. ML tree based on concatenated partial sequences of 16S, atpD and recA genes.  
Bootstrap values indicated when ≥ 70% (1000 replicates). Abbreviations: BLR: Bangladeshi 
lentil rhizobia, R: Rhizobium, E: Ensifer, B: Bradyrhizobium, M: Mesorhizobium.
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At least three different rhizobial clades are involved in lentil nodulation 
Multilocus sequence analysis (MLSA) is considered to be a better approach for 

describing the relatedness of different bacterial species by phylogenetic analysis than 

the analysis of a single locus (Konstantinidis et al., 2006; Martens et al., 2008). Although 

in a t ypical MLSA sequences from six to eight genes are used for strain analysis, an 

accurate phylogenetic reconstruction was obtained by using just three of the best-

performing genes (Konstantinidis et al., 2006). MLSA may also uncover horizontal gene 

transfer or recombination events occurring in one or more lineages showing incongruent 

phylogenetic signals (Konstantinidis et al., 2006). The housekeeping genes recA, atpD 

and glnII play vital roles in homologous recombination, ATP synthesis and nitrogen 

assimilation, respectively. For closely related species, these three protein-coding genes 

are more informative for phylogenetic analysis than 16S rRNA. Although they are under 

more stringent functional constraints, they show higher substitution rates than 16S rRNA 

and have been proven to be phylogenetically informative (Bromofeld et al., 2010 and 

references therein). 

In our study, all ML phylogenetic trees based on individual protein-coding housekeeping 

genes (recA, atpD, glnII), a tree based on the concatenated sequences of the 16S rRNA, 

recA and atpD genes, and a tree based on the concatenated 16S rRNA, recA, atpD and 

glnII gene sequences showed similar and congruent topologies (Figs.16 – 17). In 

Bayesian Inference analysis, all housekeeping genes, including 16S rRNA, showed 

similar congruent results (Figs. Appendix: 1 – 9). By analyzing 16S rRNA, recA, atpD 

and ITS nucleotide sequences from several strains isolated from Vicia faba and P. 

sativum, Santillana et al. (2008) suggested that several species may be described within 

the R. leguminosarum–R. etli group. Our analyses of three protein-coding housekeeping 

genes (recA, atpD and glnII) supported three distinct clades separate from R. etli and R. 

leguminosarum (Figs. 10 – 12), which suggests that lentil-nodulating rhizobia are related 

to R. etli and R. leguminosarum, but correspond to species that are genetically distinct 

from the aforementioned species.  
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Out of the three clades, clades I and II were found to be distributed throughout 

Bangladesh, while clade III was confined to the southeast region of the country (see 

localities 1 – 25 in Fig. 4). 

The uncorrected genetic distances (similarity levels) based on nucleotide sequences 

correspond to an important parameter in the description of rhizobial species. Different 

genes are not under the same selection pressures; hence they show different mutation 

rates. For example, along with other bacterial genes, the atpD and recA gene sequences 

have been us ed (Valverde et al., 2006) to describe a new rhizobial species (R. 

lusitanum), and higher similarity values between atpD gene sequences than between 

recA gene sequences have been found within the same strain. Moreover, considering 

both the recA and the atpD genes, similarity values of 94% or less may point to separate 

species status, taking into account homology levels from DNA–DNA hybridization 

experiments (Valverde et al., 2006; Santillana et al., 2008). In our study three protein-

coding genes from lentil rhizobia showed 89.1 – 92.8% of similarity to R. leguminosarum 

and 92.1 – 94.8% similarity to R. etli. Although topological incongruence has been 

detected in some phylogenetic studies carried out on r hizobial species (Eardly et al., 

2005), we did in not detect any topological incongruence in our phylogenetic 

reconstructions when analyzing three protein-coding housekeeping genes and the 16S 

rRNA gene using both ML and Bayesian analyses. Our phylogenetic reconstruction 

based on different protein-coding genes supports three distinct sub-lineages (clades I, II 

and III) in single gene  tree and  tree from concatenated sequences with high bootstrap 

values (see Figs. 10 – 12 and Figs. 16 – 17).  

Moreover, the genetic similarity values among these clusters, based on three different 

protein-coding genes, range between 91 and 92% for recA, 92 and 94% for glnII and 89 

and 94% for the atpD gene (table 11). These genetic similarity levels are comparable to 

those found between R. etli and R. leguminosarum, suggesting species status for these 

clades nodulating lentil in Bangladesh. 

DNA fingerprinting distinguishes the new clusters from closely related 
species 
Repetitive Extragenic Palindromic (REP) elements and Enterobacterial Repetitive 

Intergenic Consensus (ERIC) sequences are widespread in the genome of Gram-

negative soil bacteria. In ERIC-PCR, the amplified ERIC-like elements are useful for 

fingerprinting genera, species, and strains of bacteria. These techniques are con-sidered 
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powerful tools in bacterial taxonomy and may help in the determination of phylogenetic 

relationships (Versalobic et al., 1991; De Bruijn, 1992). 

In our study, the fingerprint patterns distinguish our Bangladeshi isolates from R. etli and 

R. leguminosarum. The NJ bootstrap phylogenetic trees and principal coordinate 

analyses based on high-resolution ERIC-PCR also strongly support the differentiation of 

three clusters among the isolatesfrom Bangladesh (Fig. 18a and 18b). Consequently, 

based on r epetitive intergenic sequences which are distributed across the whole 

genome, these new clusters differ from R. etli and R. leguminosarum. These results are 

congruent with the phylogenetic analyses based on housekeeping gene sequences and 

provide further evidence for the presence of three new clades of rhizobia capable of 

nodulating lentil. 

Collectively, the evidence obtained from phylogenetic trees based on 16S rRNA genes, 

three protein-coding housekeeping genes, concatenated sequences, levels of genetic 

similarity and DNA fingerprinting showed that the new clades described in this study are 

very close to R. etli and R. leguminosarum, but may correspond to new bacterial species 

within the genus Rhizobium. 

Nucleotide sequences of nodulation genes support a symbiovar 
similar to viciae 
The nodulation (Nod) factors determine the legume-rhizobium symbiosis (Laguerre et al., 

2001). These genes are essential for nodulation and nitrogen fixation and are either 

localized on transmissible symbiosis plasmids, e.g. in Rhizobium and Sinorhizobium, or 

on the chromo-some, e.g. in most species of Mesorhizobium and all Bradyrhizobium 

species (Herrera-Cervera et al., 1998; Laguerre et al., 2003). Because of its regulatory 

function on the expression of other nodulation genes, the nodD gene has been used as a 

symbiotic marker in the analyses of specificity between rhizobia and host plants such  
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as faba bean (Tian et al., 2010; and references therein). Similarly, the nodC gene from 

rhizobia has been widely used to determine the host range of isolates and the degree of 

host promiscuity (Perret et al., 2000; Laguerre et al., 2001; Iglesias et al., 2007). In this 

study, three nodulation genes (nodA, nodC and nodD) were analyzed in order to 

determine the nature of the symbiotic interaction and the diversity of lentil isolates. Phy-

logenetic analyses based on three nodulation genes from the lentil isolates revealed high 

similarities to those of R. leguminosarum symbiovar viciae, but they still formed a 

separate clade supported by high bootstrap values (99 – 100%). The symbiovar term 

has been proposed for rhizobia to describe the adaptive behavior of Rhizobium in 

legumes, and it should be distinguishable by host ranges as well as by gene sequences 

(Rogel et al., 2011). 

Symbiotic host range and nitrogen fixation ability with various host plants are two 

important parameters for describing symbiovars (Rogel et al., 2011). However, 

symbiovars reflect a c omplex phenomenon in rhizobia. For instance, strains of R. 

leguminosarum symbiovar viciae may show different host ranges (Rogel et al., 2011 and 

references therein), and rhizobial strains differ significantly regarding symbiotic 

effectiveness (Wielbo et al., 2011). R. leguminosarum symbiovar viciae nodulates lentil 

effectively (Moawad & Beck, 1991; Tegegn, 2006) and produced effective nodules (pink 

color) with lentil in our nodulation test. In symbiotic effectiveness test, isolates from three 

clades (phylogenetic clades) and R. leguminosarum symbiovar viciae 3841 produced 

effective nodules and showed higher symbiotic effectiveness than the control treatment. 

When comparing all BLR isolates versus R. leguminosarum symbiovar viciae 3841 we 

found significantly higher nodule dry weights with BLR isolates than with R. 

leguminosarum symbiovar viciae 3841, but we did not find the same effect on plant dry 

weight. We employed only one strain of R. leguminosarum symbiovar viciae; therefore 

we can only speculate that the symbiotic performance of the BLR isolates lies within the 

variability of R. leguminosarum symbiovar viciae. However, these data should be 

considered with caution and further research is needed. For example, many more strains 

of R. leguminosarum symbiovar viciae and more lentil varieties should be included in 

order to better understand the symbiovar status of lentil rhizobia. 

 

 

 



Fig. 19. ML tree based on nodD gene partial sequences. Bootstrap values indicated when
≥ 70% (1000 replicates). Abbreviations: BLR: Bangladeshi lentil rhizobia, R: Rhizobium,
E: Ensifer, B: Bradyrhizobium, M: Mesorhizobium.
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In bacteria, the chromosomal genetic background and t he plasmid-borne genetic 

background are often not correlated due to horizontal transfer of plasmid-borne genes 

(Ochman et al., 2000). Moreover, different rhizobial species can share similar symbiotic 

genes, and different symbiosis genes can be harbored by similar genomic backgrounds 

(Laguerre et al., 1996; 2001; Han et al., 2010; Degefu et al., 2011). Thus, discordance 

may exist between genealogies based on nod an d housekeeping genes, and t his 

phenomenon may determine the levels of diversification and structure of natural 

populations of rhizobia (Young, 1996; Laguerre et al., 2001; Vinuesa et al., 2005). 

Because of the phylogenetic incongruence between housekeeping genes and symbiotic 

genes, our results indicate that the symbiotic genes in lentil rhizobial isolates may have 

evolved independently (Zhang et al., 2001) or evolved from other lineages, probably from 

R. leguminosarum symbiovar viciae. Our nodulation and cross-inoculation assays also 

showed that all isolates behaved similarly to R. leguminosarum and were able to 

nodulate different cultivars of lentil as well as L. sativus and P. sativum. However, our 

bacterial isolates related to R. huautlense, R. giardini and Ensifer sp. were unable to 

form nodules under laboratory conditions, and w e were not able to amplify the 

corresponding nodulation genes using the same primers. 

Lentil symbionts are phenotypically different from closely related 
species 
Phenotypic characteristics such as growth at different temperatures, pH values, and 

sensitivity to different antibiotics allow the distinction between different species of 

rhizobia. For instance, R. etli and R. leguminosarum are closely related species, but they 

differ in terms of phenotypic characteristics (Eardly et al., 2005). Similarly, species of 

bean-nodulating rhizobia (R. giardinii and R. gallicum) are phenotypically different from 

previously described Rhizobium species (Eardly et al., 2005). We performed several 

phenotypic analyses on lentil isolates that showed that lentil isolates were different from 

closely related species (R. etli and R. leguminosarum). The isolates grew well on YEMA 

and TY media at temperatures up to 37°C, at pH 5.5 – 10.0, and at 0.5% NaCl, and 

hence are more stress-tolerant than closely related species. The colonies showed acidic 

reactions by producing a y ellow coloration on YEMA medium containing BTB, which 

identified them as fast-growing rhizobia. All isolates showed resistance to ampicillin (50 g 

/ mL), kanamycin (10 g / mL), nalidixic acid (up to 40 g  / mL) and sensitivity to 

tetracycline (5 g / mL). Like R. etli, all BLR isolates are nalidixic acid resistant (Segovia et 

al., 1993). Among the three clades (phylogenetic clades), clade III is more salt tolerant 
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(1%), but less resistant to ampicillin and kanamycin than the other two clades. Although 

lentil-nodulating rhizobia could be di stinguished from the closely related R. etli and R. 

leguminosarum by various phenotypic characteristics, we did not detect clear phenotypic 

differences between the three clades, except for salt tolerance. 

Origin of rhizobia nodulating lentil in Bangladesh 
The members of the legume tribe Vicieae (Vicia, Pisum, Lens and Lathyrus) are 

commonly nodulated by R. leguminosarum symbiovar viciae, and t his symbiosis has 

been found in different geographical areas (Laguerre et al., 2003; Santillana et al., 2008; 

Hou et al., 2009; Tian et al., 2010). The dissemination of nodulating bacteria may be 

enhanced by the export of plants and seeds (Aguilar et al., 2004). Phylogenetic evidence 

shows a common origin of R. leguminosarum strains that nodulate Vicia sp., which might 

have been dispersed from Europe to several other continents (Álvarez-Martinez et al., 

2009). 

R. etli symbiovar phaseoli was originally described as exclusively nodulating and fixing 

nitrogen with Phaseolus vulgaris (Segovia et al., 1993). In Europe, other species such as 

R. gallicum and R. giardinii have been also reported to nodulate P. vulgaris (Amarger et 

al., 1997). Based on the high similarity between symbiotic genes and their co-existence 

in Europe, R. etli symbiovar phaseoli strains probably donated symbiotic plasmids to R. 

leguminosarum symbiovar phaseoli, and these strains may also have transferred 

symbiotic plasmids to R. gallicum and R. giardinii (Laguerre et al., 2001; and references 

therein). 
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Seeds are known carriers of bacteria. For example, the testa of the seeds of P. vulgaris 

has been shown to carry rhizobia and play an important role in the dispersal of R. etli in 

different geographical regions (Perez-Ramírez et al., 1998). The host plant of R. etli is 

P. vulgaris. The P. vulgaris is neither a w ell-known crop nor widely cultivated in 

Bangladesh, leaving a l ow probability of transferring R. etli or close relatives from 

Europe to Bangladesh via P. vulgaris. In contrast, the lentil has been cultivated in 

Bangladesh since antiquity, and t he isolates collected in this study were from field-

grown lentil plants from all over the country. The center of origin for lentil is located in 

the Near East and Central Asia (Shandu & Singh, 2007; and reference therein) and this 

crop is not being cultivated on a v ery large scale in Europe. Among rhizobia, parallel 

and independent evolution may occur in different locations (Wolde-Meskel et al., 2005) 

leaving these new lineages as potential endemic species in Bangladesh soil. 

We have characterized 30 rhizobial isolates, isolated from lentil grown in Bangladesh, 

using a p olyphasic approach. Our analyses revealed that these lentil isolates are 

related to R. etli and R. leguminosarum but differs considerably from the 

aforementioned species in terms of genetic and phenotypic characteristics. This 

conclusion is underpinned by phenotypic characterization, DNA fingerprinting using 

high resolution ERIC-PCR, and multilocus sequence analyses (MLSA). Therefore, there 

are tentatively three clades involved in lentil nodulation in Bangladesh, and they may 

correspond to novel species within the genus Rhizobium. 
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3.2 Project 2: Rhizobium leguminosarum symbiovar viciae is the 
symbiont of lentils in the Middle East and Europe but not in 
Bangladesh 

3.2.1 Abstract 
Lentil is the oldest of the crops that have been domesticated in the Fertile Crescent and 

distributed to other regions during the Bronze Age, making it an ideal model to study 

the evolution of rhizobia associated with crop legumes. Housekeeping and nodulation 

genes of lentil nodulating rhizobia from the region where lentil originated (Turkey and 

Syria) and regions to which lentil was introduced later (Germany and Bangladesh) were 

analyzed to determine their genetic diversity, population structure and t axonomic 

position. There are four different lineages of rhizobia associated with lentil nodulation, 

of which three are new and endemic to Bangladesh, and one lineage is found to be in 

Mediterranean and Central Europe that belongs to Rhizobium leguminosarum. The 

endemic lentil grex pilosae may have played a significant role in the origin of these new 

lineages in Bangladesh. The availability of Rhizobium leguminosarum with lentil at the 

centre of origin and at countries where lentil was introduced later suggests that 

Rhizobium leguminosarum is the original symbiont of lentil. Lentil seeds might have 

played a significant role in the initial dispersal of this species within middle-East and on 

to other countries. Nodulation gene sequences revealed a high similarity to those of 

symbiovar viciae.  

Keywords: Rhizobia; legume; lentil greges; speciation; recombination 
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3.2.2 Introduction 
Nitrogen is an es sential nutrient for all living organisms and necessary for high crop 

yield and pl ant quality in agriculture, but only prokaryotes can convert atmospheric 

molecular nitrogen into forms that are available to plants. Rhizobia are nitrogen-fixing 

soil bacteria that are able to enter a mutual symbiosis with leguminous plants in the 

form of root nodules that fully or partially satisfy the nitrogen demand of the plant. So 

far, over 90 rhizobial species from 12 genera of α- and β-proteobacteria have been 

described that can form nitrogen-fixing nodules with legumes (Masson-Boivin et al., 

2009; and references therein). The legume-rhizobium symbiosis is a hi ghly specific 

mutual interrelationship between the two partners. During the infection process, 

rhizobia produce a number of host-specific factors, and thus it has been assumed that 

rhizobia have coevolved with their host plants (Perret et al., 2000) and that host 

association is important for shaping the genetic divergence of nodulation and 

housekeeping genes in rhizobia (Wernegreen et al., 1997 ).  

R. leguminosarum is a cosmopolitan and well-studied species in the genus Rhizobium. 

The name R. leguminosarum was first proposed by Frank (1889) for all nodule-forming 

bacteria infecting legumes, but many other species were later described. The current 

species R. leguminosarum has three symbiovars that differ in the selectively plant hosts  

(Jordan, 1984).  The host specificity is conferred by a c luster of Nod genes that is 

usually plasmid-encoded (Perret et al., 2000). Commonly, strains in the symbiovar 

viciae nodulate Lathyrus, Pisum, Vicia, and Lens in the legume tribe Vicieae. Probably 

due to its saprophytic nature, R. leguminosarum symbiovar viciae (Rlv) can maintain 

high population densities (104–105) in soil, even if the host plant has been absent for a 

long time (Hirsch, 1996). Like other species of rhizobia, R. leguminosarum can be 

carried on the testa of seeds (Perez-Ramírez et al., 1998), allowing it to disperse to 

different geographical regions along with the seeds. 

Lentil (Lens culinaris) is the oldest crop that was domesticated in the Fertile Crescent 

around 9,000 years ago (Zohary & Hopf, 2000; Toklu et al., 2009; and references 

therein) and remains an important and popular legume employed worldwide for human 

and animal nutrition and for soil fertility management (Sonnante et al., 2009; and 

references therein; Sarker & Erskine, 2006). The region of origin encompasses 

Southeastern Turkey and Northern Syria, including the sources of the rivers Tigris and 

Euphratec (Lev-Yadun et al., 2000). After domestication, lentil spread to Cyprus in the 

Neolithic period (Erskine et al., 1994) and disseminated from Southeastern Europe to 
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Central Europe around the 5,000 years BC via the Danube. From Europe, it was 

transported to the Nile Valley and from there to Ethiopia. In Georgia, lentil was 

propagated during the 5,000 to 4,000 years BC and transported to the Indian sub-

continent around 2,500 – 2,000 years BC (Sonnante et al., 2009; and references 

therein).  

Nucleotide sequences of the 16S rRNA genes are  w idely used genetic markers for 

bacterial identification  and c lassification (Martens et al., 2008), but suffer from a 

number of known drawbacks. For a m ore precise identification and des cription of 

closely related bacterial species, including rhizobia, multi-locus sequence analysis 

(MLSA) using different protein-coding genes has become the preferred method (Ludwig 

& Klenk, 2005; Konstantinidis et al., 2006; Martens et al., 2008). Furthermore, 

phylogenies inferred from chromosomal and plasmid-encoded symbiotic genes of 

rhizobia are frequently found to be incongruent due to the existence of horizontal / 

lateral transfer of plasmids and plasmid-borne genes (Sprent, 1994; Laguerre et al., 

1996; Young & Haukka, 1996). Recombination occurs frequently in bacteria and plays 

an important role in the evolution of most bacterial species, including rhizobia (Silva et 

al., 2005; Vinuesa et al., 2005; Maiden, 2006; Bailly et al., 2006; den Bakker et al., 

2008; Tian et al., 2012). New genetic material can be rapidly introduced by 

recombination, allowing faster evolution than simple point mutations (Narra & Ochman, 

2006; Redfield, 2001). 

The diversity of rhizobia from the tribe Vicieae, especially from pea, faba bean and 

grass pea has been studied previously (Laguerre et al., 1996; Mutch & Young, 2004; 

Hou et al., 2009; Tian et al., 2010; Risal et al., 2012; and many others). In contrast, 

there have been r elatively few studies on rhizobia that nodulate lentil (Hynes & 

O’Connell, 1990; Moawad & Beck, 1991; Laguerre et al., 1992; Geniaux & Amargr, 

1993; Keatinge et al., 1995; Rashid et al., 2009; 2012). By analyzing the nodulating 

rhizobia of Vicieae from different countries it has been concluded that R. 

leguminosarum is the main nodulating species (Tian et al., 2010; and references 

therein), although a distinct but related species has also been described and named R. 

pisi (Ramírez-Bahena et al., 2008) and, almost simultaneously, R. fabae (Tian, et al., 

2008). Although, found more than once R. pisi has not been seen as the sole or main 

symbiont in wild peas.  By contrast, we found that lentils in Bangladesh were nodulated 

by three distinct species-level lineages related to R. etli, while R. leguminosarum was 

absent (Rashid et al., 2012).  It is therefore important to examine lentil symbionts from 
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other geographic regions in order to establish whether lentils are exceptional in having 

different symbionts from other legumes of the tribe Vicieae.  

In this study, lentil-nodulating rhizobia were collected from traditional lentil-growing 

countries Turkey and Syria, representing the region of original domestication, and from 

Germany, where lentil have been grown sporadically. We compared DNA sequences of 

rhizobial isolated from three countries where  g rex pilosae is absent (Barulina, 1930;  

Sarker & Erskine, 2006) with those of isolated previously (Rashid et al., 2012) from 

field-grown  pilosae (Dr. A. R. Sarker; Dr. M. Rahman and Dr. M. A. Samad, personal 

communication) lentils in Bangladesh. The aim of this study was (1) to explore the 

genetic diversity and identity of lentil-nodulating rhizobia, (2) to evaluate the levels of 

genetic diversity and population structure of these bacteria from different geographical 

locations. 

3.2.3 Materials and methods 

Soil samples, plant growth and nodule separation 
Rhizobia were isolated from nodules of lentils (variety BINA-3, grex pilosae) grown in 

potted soil under glasshouse conditions and from field-grown lentils [variety Anicia, 

small green lentil, originally imported from France, Mr. Woldemar Mammel, president 

(Vorsitzender) of the Friends Association (Förderverein), Alblinsen- Förderverein für 

alte Kulturpflanzen auf der Schwäbischen Alb, personal communication]. Nodules from 

foeld-grown lentils were collected from Lauterach, Baden-Württemberg, Germany. Soil 

samples were collected from nine locations in Germany, one in Turkey and t wo 

locations in Syria (table 3). All soil samples were collected from cultivated soils, except 

for one that had collected from a forest in Germany.  S oil samples were kept well 

separated and processed for growing plants under glass house conditions within 3 – 12 

days of collection. About 2.5 – 3.0 kg of soil was transferred to a s urface-sterilized 

plastic pot in order to grow lentils. One pot per locality was used to grow 2 – 3 lentil 

plants for five weeks.  

Surface-sterilized (one min in 70% ethanol and 3 – 5 min in 3% NaOCl) and pre-

germinated (48 h on 1% water agar) lentil seeds were then placed on potted soil. After 

germination, a maximum of three plants were grown for five weeks. Plants were 

irrigated alternately (i.e., water, then N-free seedlings solutions, then water, then N-free 

seedlings solutions, etc) with sterile water and ni trogen-free seedling solutions when 
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needed. After five weeks, plants were uprooted carefully, the roots washed with water, 

dried with tissue paper and then preserved on s ilica gel desicent until further 

processing. 

Bacteria isolation 
Methods are available in chapter 2 (materials and methods). 

Determination of rhizobial population from collected soil 
The number of rhizobial cells in one g of collected soil sample was determined following 

standard protocols described by Brockwell (1963). Five-fold serial dilution with three 

replicates for each soil sample and four replicates for each dilution were used for plant 

inoculation. Seeds were surface-sterilized and germinated on agar plates, and the 

seedlings were transferred to growth medium as described in chapter 2. Harvested 

plants were scored for the presence or absence of nodules. The population density of 

soil samples was determined following the MPN table (Brockwell, 1963; and references 

therein). 

Determination of soil pH 
Air-dried samples (200 g soil) were first ground and then sieved (2 mm) to remove large 

particles. From the sieved sample, 10 g were used to determine the pH. From each 

locality, the soil pH was measured using 0.01 mM CaCl2 following the protocol ISO 

2006 (International standard organization, www.iso.org) with a HANNA pH meter (HI 

98150). 

Nodulation and cross-inoculation tests 
Methods are available in chapter 2 (materials and methods). 

DNA isolation, PCR and nucleotide sequencing 
Standard methods were followed and descriptions are available in chapter 2. 
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Phylogenetic analyses 
Methods are available in chapter 2. 

Population genetic analyses 
Details of the methods are available in chapter 2.  

Recombination and mutation analyses 
Methods are available in chapter 2.  

3.2.4 Results 

Bacterial isolation, soil pH and rhizobial population density 
A total of 98 rhizobial colonies were isolated from lentil nodules representing 12 

localities in three countries: Germany (N = 78), Turkey (N = 12) and Syria (N = 8), and 

different genes were sequenced from 58 isolates (table 1). A single colony was isolated 

from each of the selected nodules. Each colony was purified by repeated streaking on 

CRYEMA medium and preserved at −80ºC with 25% glycerol and at 4ºC on agar slants 

for further study. In addition, we included seven isolates from Bangladesh (Rashid et 

al., 2012) in the analyses for species delineation and comparison. Isolates numbers 

and the corresponding localities are documented in table 3. 

Soil pH ranged between neutral values of pH 6.5 – 7.4, with the exception of one forest 

soil sample from Heidebuckelweg, Heidelberg that presented an acidic pH of 4.8 (table 

3. Rhizobial population density varied across different localities in Germany, from 114 

cells/g soil in Bürstadt (Hessen) to 2.18× 103 cells / g soil in Ostrach (Baden-

Württemberg, table 3).  

Nodulation, cross-inoculation and symbiotic effectivity test 
The nodulation efficiency test showed that all 98 isolates were able to form nodules with 

lentil within 3 – 4 weeks after inoculation under growth chamber conditions. In a cross-

inoculation test, a set of 30 randomly-selected isolates were able to form nodules with 

both Lathyrus sativus and Pisum sativum under the same growth conditions. All isolates 

produced dark pink nodules and plant leaves were darker green compared to the 

uninoculated controls, demonstrating that all isolates were symbiotically effective. 
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Phylogenetic analyses based on nucleotide sequences 
We amplified the 16S rRNA gene (about 1.5 kbp length) and obtained sequences of 

about 1,100 – 1,350 bp from 38 rhizobial isolates originating from three different 

countries. BLAST searches indicated high similarities (99 – 100%) to R. leguminosarum 

symbiobar viciae. Phylogenetic analyses based on 16S rRNA sequences revealed that 

all isolates from the three different geographical origins were closely related to R. 

leguminosarum and separate from the Bangladeshi isolates (Fig. 20). 

Phylogenetic analyses based on concatenated sequence of three housekeeping genes 

(Fig. 21) and  individual housekeeping genes, recA (415 bp from 58 isolates), atpD (472 

bp from 55 isolates) and glnII (598 bp from 57 isolates) (Fig. 22 – 24) recovered six 

sub-lineages (IVa – IVf) with high bootstrap support (70 – 90%). However, the 

recovered tree topologies differed in phylogenetic analyses, i.e. some isolates changed 

their positions between different sub-lineages depending on the analyzed gene, 

revealing phylogenetic incongruence among the loci (table 14 and table 15). Defined by 

high bootstrap support, two new sub-lineages (IVb and IVd) differ from sub-lineages of 

R. leguminosarum described previously from various hosts and geographic regions 

(Tian et al., 2010). Phylogenetic analyses and genetic distances of three protein-coding 

genes (Valverde et al., 2006) with respect to the type strain of R. leguminosarum (Fig. 

21, Fig. S22 – 24 and table 16) suggest that all isolates belong to R. leguminosarum. 

However, we recovered very similar topologies using different tree reconstruction 

methods, i.e. NJ, ML and BI (appendix 9 – 16). 

Table 14. Phylogenetic incongruence using Shimodaira-Hasegawa (S-H) test 

Input data set Inferred tree topology data set 

recA atpD glnII 
recA NS + + 

atpD + NS + 

glnII + + NS 

NS= not significant 

 

 

 



Fig. 20. ML tree from 16S rRNA gene partail sequences. Bootstrap values indicated
when ≥ 70% (1000 replicates). Abbreviations: GLR = German lentil rhizobia, TLR =
Turkish lentil rhizobia, SLR = Syrian lentil rhizobia, R = Rhizobium, Rl = R.
leguminosarum, E = Ensifer, M = Mesorhizobium .
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Table 15. Isolates under different lineages and sub-lineages in different analyses 

 

Isolates Phylogenetic analyses Split 
analyses 
(concaten

ated) 

Structure 
(concaten

ated) 

Recombination  
(concatenated) 

Nodulation 
genes 

nodC nodD 
recA atpD gln II concatenat

ed (recA-
atpD-glnII) 

with 
recombin-

ation 

no 
recombin-

ation 
TLR2  a a a a a a a a A C 
TLR3 a* a* a a a a a a C  
TLR4 a - - - - - - - -  
TLR5 a - e a - - - - C  
TLR6 a* a a a a a a a -  
TLR7 a a a a a a** a a A C 
TLR8 - f a* - - - - - C  
TLR9 a* a a a a a a a C C 
TLR10 a a e a unique e** unique unique C C 
TLR11 a a a a a a a a C C 
TLR12 a a a a a a a a A C 
TLR14 a* a a* unique unique e** unique unique C  
SLR1 d d* d d d d d d - B 
SLR2 a* a a a a a a a unique - 
SLR3 a* a a a a a a a E E 
SLR4 a* a* a a a a a a E E 
SLR5 a* a* a a a a a a E - 
SLR6 a a* a a a a a a - E 
SLR7 a* a* a a a a a a E E 
SLR8 d d* d d d d d d A A 
GLR1 a* a* a a a a a a B B 
GLR2 d d d d d d d d unique  
GLR3 a* a* a a a a a a -  
GLR5 a* a* a a a a a a B  
GLR6 unique f f f f f f f -  
GLR7 f f a* f unique a,f** unique b A A 
GLR8 f f f f f f f f D  
GLR9 - f f - - - - - -  
GLR10 f f f f f f f f unique  
GLR11 d unique d d d d d d A A 
GLR12 unique e - - - - - - -  
GLR13 a* a a a a a a a A  
GLR14 a - - - - - - - B  
GLR16 e a e* e e e e e D  
GLR17 d d d d d d d d B unique 
GLR19 e e e e e e e e -  
GLR22 f f f f f f f f D  
GLR23 b b b b b f** b b D D 
GLR25 e e e e e e e e A  
GLR27 a a* a a a a a a B B 
GLR28 e e e e e e e e -  
GLR29 e e e* e e e e e -  
GLR30 e - e* - - - - - -  
GLR31 e e unique unique b e** b e -  
GLR32 e unique e e e e e e -  
GLR33 e e b b b b b e A A 
GLR34 d d* unique d d d d d A  
GLR40 b unique b b b b** b e D  
GLR43 f f f f f f f f -  
GLR45 b b a unique unique a** b b D D 
GLR46 a* a* a a a a a a B B 
GLR49 unique a* a a a f** a a A  
GLR50 a a* a a a a a a A A 
GLR54 f f f f f f f f -  
GLR59 f f f f f f f f -  
GLR67 f f e f f f** unique unique -  
GLR69 a e e e c e c c -  
GLR71 c c e c c e c c -  
GLR74 c c f c c e** c c -  
GLR79 f f f f f f f f -  
BLR9 I I I I I I I I I  
BLR27 I I I I I I I I -  
BLR28 I I I I I I I I -  
BLR153 II II II II II II II II I I 
BLR175 II II II II II II II II I I 
BLR195 III III III III III III III III A A 
BLR235 III III III III III III III III -  

Abbreviations: I–III = lineages,  a–f = sub-lineages of lineage IV, * = split sub-lineage, **= mixed isolates,  - = not sequenced 
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Species delineation and recombination visualization using neighbor-
network analyses 
Neighbor-network analyses based on t he concatenated data set (recA-atpD-glnII) 

showed a reticulate structure, in which we identified six sub-lineages (Fig. 25a). Two 

sub-lineages (IVb and IVd) are distinguishable from other described R. leguminosarum 

sub-lineages and strains (Tian et al., 2010), and the sub-lineage IVc was not 

consistently recovered in all analyses. For example, IVc was recovered in phylogenetic 

analyses including recA and atpD genes (Figs: 21 – 22, 23) and TMRCA analyses 

(Figs. 29a, 29b), but it was not identified in network and STRUCTURE analyses (Figs. 

25a, 25b, 26A, 26B). In neighbor-network analysis, by a long edge, lentil isolates from 

Bangladesh (lineages I, II and III) differed significantly from German, Turkish and Syrian 

isolates and they did not form any reticulate structure among themselves (Fig. 25a and 

25b). The isolates GLR7, GLR45, TLR14 and TLR10, which lay outside the main 

phylogenetic clusters (Fig. 21), had unique positions in the network with a high level of 

reticulation, indicating that they are potentially recombinant for one or more genes. 

Table 16. Genetic distances among different sub-lineages  

Sub-lineages* Genes and similarity (%) 

recA atpD gln II Concatenated (recA-
atpD-glnII) 

**Rlv  type   vs    IVa  97 93 94 95 

Rlv type    vs    IVb 98 93 94 95 

Rlv type     vs   IVc 97 93 - 96 

Rlv  type    vs   IVd  97 93 94 95 

Rlv  type    vs   IVe 98 93 98 96 

Rlv  type    vs   IVf 99 99 99 99 

*All sub-lineages were selected from phylogenetic analyses,  
**Rlv = Rhizobium leguminosarum symbiovar viciae USDA2370T 
 

 

 

 



Fig. 21. ML tree from concatenated partial sequences of recA-atpD-glnII genes. Bootstrap
values indicated when ≥ 70% (1000 replicates). Abbreviations: GLR = German lentil
rhizobia, TLR = Turkish lentil rhizobia, SLR = Syrian lentil rhizobia, R = Rhizobium, Rl=
Rhizobium leguminosarum, Rlv = R. leguminosarum symbiovar viciae, I, II, III, IV =
lineages , a – f = sub-lineages within lineage IV.
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Fig. 22. ML tree from recA gene partail sequences. Bootstrap values indicated when ≥ 
70% (1000 replicates). Abbreviations: GLR = German lentil rhizobia, TLR = Turkish lentil 
rhizobia, SLR = Syrian lentil rhizobia, R =  Rhizobium, Rl= Rhizobium leguminosarum,
Rlv = R. leguminosarum symbiovar viciae, I – IV = lineages, a – f = sub-lineages  within 
the lineage IV.
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Fig. 23. ML tree from atpD gene partial sequences. Bootstrap values indicated when ≥ 70%
(1000 replicates). Abbreviations : GLR = Germany lentil rhizobia, TLR = Turkish lentil rhizobia,
SLR = Syrian lentil rhizobia, R = Rhizobium, Rl = Rhizobium leguminosarum,Rlv = R.
leguminosarum symbiovar viciae, I – IV = lineage, a – f = sub-lineages within lineage IV.
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Fig. 24. ML tree from gln II gene partial sequences. Bootstrap values indicated when ≥
70% (1000 replicates). Abbreviations : GLR = German lentil rhizobia, TLR = Turkish
lentil rhizobia, SLR = Syrian lentil rhizobia, R = Rhizobium, Rl = Rhizobium
leguminosarum, Rlv = R. leguminosarum symbiovar viciae, I – IV = lineages, a – f =
sub-lineages within lineage IV.
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Genetic diversity analyses using STRUCTURE 
With five long runs in STRUCTURE, we determined the optimal number of clusters K to 

be 9 and found admixture among populations (Fig. 26A and Fig. 26B). However, we 

obtained admixed structures in Isolates GLR7, GLR23, GLR31, GLR33, GLR40, 

GLR45, GLR67, GLR74, TLR7, TLR10 and TLR14. In contrast, the new lineages from 

Bangladesh did not show any admixture (Fig. 26A and Fig. 26B).  

Detection of minimum recombination events and gene flow using 
DnaSP 
Minimum recombination events found in single gene sequences and concatenated 

sequences of three genes are shown in table 17. Among three housekeeping genes, 

recA, atpD and glnII reveal 12, 14 and 16 recombination events, respectively, and 

concatenated data showed 43 recombination events. 

Table 17. Minimum recombination events on different genes 

Gene N Gene 
size (bp) 

Rm Coalescence simulation 

Rm 
average 

Confidence 
interval 

P< observed 
Rm 

recA 58 415 12 8.65 [5 – 13] 0.945 

atpD 55 472 14 3.65 [1 – 6] 1.00 

glnII 57 598 16 5.83 [2 – 10] 1.00 

concatenated 53 1485 43 17.02 [10 – 24] 1.00 

Abbreviations, Rm = minimal intragenic recombination events, N = number of isolates, bp = base pair 

High values (Nm = 4.34) of gene flow were found between Turkish and Syrian isolates, 

along with non-significant KST values (0.039), while low values (Nm = 1.91) for the 

same parameters were found between Germany versus Turkey and Syria (table 18). 

Differentiation between geographical groups 
AMOVA analyses of the concatenated sequence of protein coding genes from isolates 

from Germany, Turkey and S yria indicated the existence of significant differences 

between geographical regions (table 18), although the percentage of variation  
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Fig. 25a. Split graph from neighbor-network analyses based on concatenated
sequences of recA-atpD-glnII genes. Three lineages and six different sub-lineages
within the lineage IV were recovered like in ML phylogenetic analyses. Six sub-
lineages under the lineages IV are showing clear reticulate structure among
themselves indicating the effect of recombination on their genetic structure. Three
lineages (I – III) are clearly distinct from the lineage IV recovered from Bangladesh.

B = Bangladeshi lentil rhizobia
G = German lentil rhizobia
T = Turkish lentil rhizobia
S = Syrian lentil rhizobia
I – III = lineages
a – f = sub-lineages within lineage IV
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9 = Rlv J1
10 = Rlv WSM1325
11 = Rlv WSM2304
12 = Rlv 3841
13 =  Rlv VF39
14 =  Rlv CCBAU23125 
15 =  Rlv CCBAU23131
16 =  Rlv CCBAU03317

B = Bangladeshi lentil rhizobia 
G = German lentil rhizobia
T = Turkish lentil rhizobia
S = Syrian lentil rhizobia
Rlv = Rhizobium  leguminosarum   

symbiovr viciae 
I – III = lineages
a – f = sub-lineages within lineage IV

1 =  Rlv USDA2370 
2 =  Rlv USDA2489 
3 = Rlv USDA2499
4 = Rlv USDA2500
5 = Rlv USDA2502
6 = Rlv USDA2503
7 = Rlv Nvf1
8 =  Rlv Nvf3

17 =  Rlv CCBAU03322
18 =  Rlv CCBAU43229
19 = Rlv CCBAU81100
20 =  Rlv CCBAU81107
21 = Rlv CCBAU85004
22 =  R. pisi DSM30132
23 = R. fabae CCBAU33202
24 = R. etli CFN42
25 =  R. etli CIAT652
26 = R. yanglingense SH22623

Fig. 25b. Split graph from neighbor-network analyses based on concatenated
sequences of recA-atpD-glnII genes of the studied rhizobial isolates and sequences
available in GenBank. Three lineages and six sub-lineages under the lineage IV were
recovered like ML phylogenetic analyses. The figure shows relationship of recovered
lineages and sub-lineages with previously described R. leguminosarum, R. etli and
other related species. The existence of three new lineages in Bangladesh and two new
sub-lineages in Germany, Turkey and Syria are clear in this picture.
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Table 18. Hierarchical AMOVA of the genetic structure and gene flow of sub-lineages  

Groups 

AMOVA Gene flow 

Source of 
variance d.f. 

Sum of 
squares 

Variance 
component 

Variance 
(%) 

Average 
FST 

Nm KST* 
 

(Syria+ 
Turkey) 
vs. 
Germany 

among 

populations 

1 156.22 5.70 18.82 0.18*** 1.87 0.04

** 

 within 

populations 

51 1253.85 24.58 81.18    

 total 52 1410.07 30.28     

Turkey vs. 
Germany 

among 

populations 

1 

 

116.31 6.30 19.86 0.19*** 1.50 0.03

** 

 within 

populations 

43 

44 

991.44 

1107.76 

25.46 80.14    

 total   30.77     

Syria vs. 
Germany 

among 

populations 

1 96.43 5.36 17.01 0.17*** 1.91 0.02

** 

 within 

populations 

42 1099.65 26.18 82.99    

 total 43 1196.09 29.85     

Syria vs. 
Turkey 

among 

populations 

1 33.18 1.95 10.50 0.10 ns 4.14 0.04

* 

 within 

populations 

15 249.63 16.65 89.50    

 total 16 282.82 18.59     

Abbreviations: Nm = gene flow, ns = not significant; *, 0.01<P<0.05; **, 0.001<P<0.01; ***, P<0.001 

remained low among populations (11 – 20%) compared to the variation found within 

populations (80 – 90%). However, there were no s ignificant differences between 

Turkish and Syrian isolates (P > 0.05; table 18). Overall, AMOVA analyses showed that 

German isolates significantly differed from Turkish and Syrian isolates, with Turkish 

samples differ most (table 18).  



A

B

Fig. 26. Ancestry of different lineages and sub-lineages as inferred by
STRUCTURE assuming K = 9 ancestral populations. Individual isolate is marked at
horizontal axis and their corresponding column is filled with color according to the
inferred proportion which was inferred from one of the ancestry. Bar plot (A) showing
clustering of different group ordered by different countries and bar plot (B) showing
clustering of different group arranged by different lineages and sub-lineages.
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Relative impact of recombination and point mutation   
Using concatenated sequences, we determined the relative effect of recombination 

versus point mutations. The r/m was 1.52 and the ρ/θ was 0.269, suggesting a greater 

importance of recombination over mutation for explaining the observed genetic diversity 

(table 19). Reconstructed phylograms from CLONALFRAME analyses revealed much 

shorter times to the most recent common ancestor (TMRCA) when considering 

recombination [TMRCA = 0.220 (0.130 – 0.352), Fig. 29a, table 19] than when 

assuming no recombination [TMRCA = 1.110 (0.342 – 3.073) Fig. 29b]. Tree topologies 

also differed between these phylograms.  

Table 19. Recombination effect inferred by CLONALFRAME (confidence intervals are 

shown in parentheses) 

Run R r/m ρ/θ θ 
1 26  (12 – 47) 1.479  (0.833 – 2.330) 0.252  (0.112 – 0.471) 109  (71 – 160) 

2 31  (14 – 57) 1.611  (0.908 – 2.544) 0.294  (0.125 – 0.550) 109  (72 – 160) 

3 26  (12 – 46) 1.490  (0.855 – 2.408) 0.262  (0.121 – 0.502) 101  (67 – 146) 

Average 28  (13 – 50) 1.520  (0.865 – 2.428) 0.269  (0.119 – 0.507) 106  (70 – 155) 

Abbreviations, R = recombination rate, r/m = relative impact of recombination as compared with point 
mutation, ρ/ θ = relative frequency of the occurrence of recombination as compared with point mutation, θ 
= mutational rate 

For example, the position of the sub-lineages e and f, and the polytomy including sub-

lineages a and f is well resolved assuming no recombination (Fig. 29b). However, we 

obtained more polytomies in the dendrogram when considering recombination (Fig. 

29a).  

Symbiotic gene analyses 
ML analyses based on nodulation gene sequences recovered five groups (nodC from 

38 isolates and nodD from 24 isolates) from Germany, Turkey and Syria (Fig. 27 and 

Fig. 28). In nodC gene analysis, group A contained isolates from Germany, Turkey and 

Syria. This group clusters with previously described strains isolated from Peru, Spain, 

and United Kingdom from different members of the legume tribe Vicieae. This group 

includes the isolate BLR195, which was isolated from lentils in Bangladesh and belongs 

to lineage III, suggesting a c lear case of horizontal transfer of nodulation genes 

between lineage III and IV. In same tree (nodC) group B and G contained isolates from 

Germany only, while groups C and E contained isolates from Turkey and Syria, 
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respectively. Among seven groups (A – E from Germany, Turkey and Syria, and groups 

I – II from Bangladesh), the group C from Turkey and t he group II from Bangladesh 

differed considerably from existing nodC sequences of R. leguminosarum symbiovar 

viciae strains. Moreover, two isolates GLR2 and SLR2 showed significant differences 

from existing strains. In terms of congruence, the nodulation gene trees differed from 

trees based on chromosomal genes, suggesting horizontal / lateral gene transfer of 

nodulation genes.  

We sequenced nodD gene from 24 isolates (11 from Germany, 6 from Turkey, 6 from 

Syria and one from Bangladesh) to compare with the nodC gene analyses to determine 

whether they were congruent or not. The reconstructed ML tree from the nodD gene 

sequences showed similar tree topologies (except for the isolates GLR17 and SLR 4) to 

the one based on nodC gene sequences (Fig. 28). The exception of GLR17 and SLR4 

isolates may arise from internal rearrangement of nod region by recombination. Group 

A corresponds to the previously described nodD type II / nodD type g (Laguerre et al., 

2003; Mutch & Young, 2004; Tian et al., 2010; and reference therein) from faba bean 

rhizobia from different geographical locations (Jordan, Spain, Canada and UK). Group 

B showed similarity with previously described nodD type III from faba bean rhizobia and 

from Europe (France and UK) and China (Tian et al., 2010).  

Although Turkish isolates form a separate group (group C) in the nodC gene tree, this 

group showed similarity with a previously described nodD type I from the Middle East 

and China, suggesting rearrangement within the nod region by recombination. Although 

the nodC group from Syria (E) was close to previously described strains, in the nodD 

gene tree this group formed a strong separate group from existing nodD groups. The 

isolate GLR17 had an identical sequence to a distinct strain previously found in France 

from pea rhizobia. However, Bangladeshi isolates formed a di stinct group from the 

isolates from Germany, Turkey and Syria or previously described nodC gene 

sequences from different geographical regions. Although Bangladeshi isolates formed a 

strongly separate group in nodC gene, it was close to previously described nodD type 

IV (Tian et al., 2010) from China and the Middle East in nodD gene.  



Fig. 27. ML tree from nodC gene partial sequences. Bootstrap values indicated when
≥ 70% (1000 replicates). Abbreviation: GLR = German lentil rhizobia, TLR = Turkish
lentil rhizobia, SLR = Syrian lentil rhizobia, BLR = Bangladeshi lentil rhizobia, Rlv = R.
leguminosarum symbiovar viciae, Rl = R. leguminosarum, A – E = nodulation gene
group from German, Turkish and Syrian strains, I – II = nodulation gene group from
previous study.
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Fig. 28. ML tree from nodD gene partial sequences. Bootstrap values indicated when ≥
70% (1000 replicates). Abbreviations: GLR = German lentil rhizobia, TLR = Turkish lentil
rhizobia, SLR = Syrian lentil rhizobia, BLR = Bangladeshi lentil rhizobia, Rlv =R.
leguminosarum symbiovar viciae, Rl = R. leguminosarum, A – E = nodulation gene
group from present study, I – II = nodulation group from previous study.
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3.2.5 Discussion 

Rhizobial populations in collected soil and their symbiotic effectivity 
Low to moderate lentil-nodulating rhizobial population densities (MPN / g of soil) were 

found in different localities of Germany (table 3). Although there is no detailed 

information on the cultivation of lentil in Germany, in 2009 about 0.7% (83,000 ha) of 

the cultivable land was used for the cultivation of other legumes like pea 

(http://www.aid.de). In addition to their saprophytic nature (Hirsch, 1996; and reference 

therein), cultivation of alternative hosts like pea can certainly assist the survival of lentil 

rhizobia in these soils. This fact may explain our findings regarding moderate density of 

lentil-nodulating rhizobia in German soil (102 – 103, cells / g of soil, approximately). 

Moreover, the  variations in terms of rhizobial density found across German localities 

may be du e to differences in soil fertility and l and use strategies employed in these 

collection areas (Mwangi et al., 2011). In nodulation tests, all isolates produced pink 

nodules with lentil, indicating that they are effective symbionts of this crop. However, in 

cross inoculation tests all selected isolates formed nodules with others members of the 

legume tribe Vicieae. 

Genetic diversity of chromosomal genes and species delineation of 
lentil rhizobia 
We sequenced three protein-coding housekeeping genes (recA, atpD and glnII) that 

contain valuable information for determining biogeographic processes (Palys et al., 

1997; Lan & Reeves, 2001; Vinuesa et al., 2005) and identified six sub-lineages (IVa – 

IVf) among the 58 isolates from three countries (Turkey, Syria and Germany). All sub-

lineages belong to R. leguminosarum symbiovr viciae and two sub-lineages (IVb and 

IVd) did not show any great similarity to the sub-lineages that were described earlier 

within  R. leguminosarum symbiovr viciae (Tian et al., 2012), evidencing that they are 

new sub-lineages within R. leguminosarum symbiovr viciae. We found phylogenetic 

incongruence in reconstructed trees from chromosomal genes. Consequently, result 

from different analyses (S-H test, recombination analyses, estimation of TMRCA ) 

showed substantial level of recombination among sub-lineages (Fitch, 1997; 

Shimodaira & Hasegawa, 1999; Bryant & Moulton, 2004; Tian et al., 2010). 
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 Network analyses  allow conflicting or alternative phylogenetic histories to account for 

ambiguities caused by recombination, hybridization, gene conversion and gene transfer 

(Fitch, 1997). From this analysis we obtained a c lear reticulate structure among 

different sub-lineages from three different countries, but a long edge between 

Bangladeshi isolates, and isolates from other three countries. In other words, network 

analyses showed a clear difference between  l ineage IV and the rest by a long edge, 

suggesting that  lineage IV belongs to separate  species (Aguilar et al., 2004; Bailly et 

al., 2006). Lentil-nodulating rhizobia from Bangladesh were well-separated by long 

edges from R. leguminosarum (those nodulating lentils in different countries of the 

Mediterranean region) and always formed three distinct lineages without any 

incongruence in phylogenetic analyses; evidencing that Bangladeshi isolates belong to 

separate species. Based on pr otein coding genes (recA and glnII), lineage IV is 

genetically similar to the R. leguminosarum type strain (> 94%) and form a reticulate 

structure with R. leguminosarum  in network analysis suggesting that these sub-

lineages belong to this species (Bailly et al., 2006; Valverde et al., 2006; Santillana et 

al., 2008).   

Recombination history in lentil-nodulating rhizobia 
The interpretation of population structure for a particular species of bacteria collected 

from diverse ecological niches heavily depends on the proper interpretation of different 

evolutionary processes acting on c hromosomal and plasmid-borne genes (Lan & 

Reeves, 2001; Vinuesa et al., 2005). Hence, we used phylogenetic and population 

genetic approaches to explore the the evolutionary history of lentil rhizobia.   

In this study, we found phylogenetic incongruence in reconstructed trees from 

chromosomal genes, and their topology showed significant differences in S-H tests. 

Using concatenated sequences, a clear reticulate structure was found in network 

analyses, coupled with high values of r/m statistics (r/m = 1.52) in recombination 

analyses. Supporting this pattern, a high number of recombination events (43) was 

found in three loci. Moreover, relative rates of recombination (ρ/θ) were high (0.269). 

Furthermore, the estimation of TMRCA with and w ithout recombination differs 

significantly and reveals different consensus tree topologies. These results indicate the 

presence of recombination (Fitch, 1997; Shimodaira & Hasegawa, 1999;  



Fig. 29a. Dendogram, a majority rule consensus tree (50%) inferred from concatenated
partial sequence of recA-atpD-glnII genes using CLONALFRAME allowing recombination.
The scale indicate the time in coalescent units. Abbreviations: GLR = German lentil
rhizobia, TLR = Turkish lentil rhizobia, SLR = Syrian lentil rhizobia, a – f = sub-lineages
within lineage IV.
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Fig. 29b. Dendogram, a majority role consensus tree (50%), inferred from
concatenated partial sequence of recA-atpD-glnII genes using CLONALFRAME
without recombination. The scale indicates the time in coalescent units.
Abbreviations: GLR = German lentil rhizobia, TLR = Turkish lentil rhizobia, SLR =
Syrian lentil rhizobia, a – f = sub-lineages within lineage IV.
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Bryant & Moulton, 2004; Tian et al., 2010) among the different sub-lineages. The 

influence of recombination might explain why we did not recover same sub-lineages 

with equal resolution from phylogenetic and network analyses (Holmes et al., 1999; 

Didelot & Falush, 2007; den Bakker et al., 2008). Moreover, in the presence of 

recombination, phylogenetic approaches used for  bacterial taxa and species 

delineation may not shown correct interpretations (Rosselló-Mora & Amann, 2001). 

Alternatively, by allowing conflicting or alternative phylogenetic histories, network 

analyses represent valuable tools for resolving ambiguities caused by recombination, 

hybridization, gene conversion and gene transfer (Fitch, 1997). 

Successful horizontal gene transfer in bacteria is assume to provide a s elective 

advantage to either the host or the gene itself (Gogarten & Townsend, 2005). 

Therefore, it could be assumed that to cope with diverse conditions, R. leguminosarum 

from the Europe and the Middle East may allow recombination at loci. In contrast, we 

did not see any phylogenetic incongruence in single gene and concatenated sequence 

analyses in Bangladeshi isolates under present study and in our previous study (Rashid 

et al., 2012) which may be due to soil conditions or crop cultivations histories.  

Geographic structure of lentil-nodulating rhizobia 
Both gene flow and founder effect act differentially at small or large scales to shape the 

genetic structure of bacteria (Strain et al., 1995; Hagen & Hamrick, 1996; Silva et al., 

2005; Vinuesa et al., 2005). The estimation of these parameters in the three different 

countries reveals high levels of migration within the center of origin of lentil (Turkey-

Syria), but low gene flow between this center of origin and Europe (Germany). This 

result is in contrast to previous study (Silva et al., 2005) where large distances (more 

than 10,000 km) represented an important barrier for gene flow, while populations 

separated by 1,000 – 2,000 km did not show geographical sub-division. About 3,500 

and 4,000 km separate Germany from Turkey and from Syria, respectively. These 

distances represent almost one third of the distance proposed by Silva et al. (2005).  

Direct dispersal (inoculation of legumes) or indirect dispersal (with seed) of rhizobia 

may occur in legumes (Perez-Ramírez et al., 1998). Moreover, geographical distance 

and environmental conditions may have a minor effect on bacterial diversity when high 

levels of recombination are present (Fraser et al., 2009), which may be t he case for 

lentil-nodulating rhizobia.  
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Origin and distribution of new lineages in Bangladesh are influenced 
by symbiosis with lentil grex pilosae   
For cultivated lentils, Barulina (1930) proposed six geographical groups, or greges, viz. 

europeae, asiaticae, intermediae, subspontanea, aethiopicae and pilosae (Cubero, 

1981; 2009; and references therein).  Interestingly, among the six greges of cultivated 

lentil, three groups are restricted to very specific areas. For instance, pilosae is 

endemic to the Indian sub-continent, aethiopicae to Ethiopia and Yemen, and 

subspontanea to Afghanistan. This study and others on lentil rhizobia show clearly that 

R. leguminosarum is the main symbiont of all lentil greges except pilosae in the Indian 

sub-continent.  

 Although Eastern Turkey and N orthern Syria are the area of lentil domestication  

(Ladizinsky, 1979; Lev-Yadun et al., 2000; Zohary & Hopf, 2000; Cubero et al., 2009), 

Barulina (1930) stated that the Himalaya-Hindu Kush corresponds to the centre of 

origin for small seeded microsperma lentils because of the presence of a higher 

proportion of endemic varieties.  Pilosae has a s trong pubescence which is absent in 

other lentils (Cubero et al., 2009) and a flowering asynchrony, and has not overlapped 

with any other greges of lentil during the history of domestication and cultivation 

(Barulina, 1930). This grex may also have specific genetic characteristics like nod factor 

receptors that allow for a s uccessful symbiosis with the new Rhizobium species or 

lineages found in Bangladesh. Thus, pilosae and their symbionts may have coevolved 

in the Indian sub-continent (Perret et al., 2000; Aguilar et al., 2004). It is therefore 

possible that we found new lineages (Rashid et al., 2012) of rhizobia from Bangladesh 

due to the significant influence of the pilosae grex on their symbiotic partners. 

Rhizobium leguminosarum is the original symbiont of lentils  
In agreements with other studies (Moawad & Beck, 1991; 1998; Laguerre et al., 1992; 

Geniaux & Amargr, 1993; Tegegn, 2006), we found R. leguminosarum in the centre of 

origin of lentil and in countries where lentil had been introduced (e.g. Germany). We not 

only found the same R. leguminosarum species but also the same chromosomal 

genotype (e.g. sub-lineage IVa) in three different countries.  

Hence, it could be assumed that R. leguminosarum is the original symbiont of lentils.   

The dispersal of rhizobia with legume seeds is a w ell-accepted hypothesis (Perez-

Ramírez et al., 1998; Aguilar et al., 2004; Álvarez-Martinez et al., 2009). This mode is 

considered to be the most important among the indirect ways of rhizobium dispersal 
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(Hirsch 1996; and references therein).  L entil is the oldest crop and h as remained 

popular from ancient times until to date, and found all over the world. Thus it could be 

assumed that lentils seed might played a significant role for initial dispersion of R. 

leguminosarum symbiovar viciae in different countries.  

Phylogenetic incongruence between chromosomal and nodulation 
genes 
Rhizobial species diversity should be described not only based on genetic markers 

located on chromosomes but also on plasmid-borne nodulation genes (Graham et al., 

1991; Amarger et al., 1997; Wang et al., 1999; Laguerre et al., 2001; Silva et al., 2005). 

The nodC and nodD genes determine host range, host promiscuity and the 

relationships between host plants and rhizobia (Laguerre et al., 2001; Zeze et al., 2001; 

Iglesias et al., 2007). In our study, phylogenetic analyses based on nodulation genes 

confirm that these isolates belong to symbiovar viciae and they have nodC and nodD 

genotypes which have previously been described from Europe, Middle East and China. 

We also detected new groups within this symbiovar.  

There was no c ongruence between chromosomal and nodulation genotypes, which 

may be due to frequent lateral transfer of nodulation genes between different rhizobial 

chromosomal genotypes (Sprent, 1994; Young & Haukka, 1996). However, 

phylogenetic analyses based on nodulation genes (nodC and nodD) revealed similar 

tree topologies correlated mostly with ecological regions. Probably as a consequence of 

both host and soil microhabitats (Sprent, 1994), we detected new nodulation genotypes 

(or groups) that were supported by both nodulation genes. These results support the 

hypothesis that plasmid-borne characters in bacteria change rapidly according to their 

adaptation to particular environments. Nonetheless, nodulation genes from Europe and 

the Middle East did not show great similarities to the isolates from Bangladesh, 

suggesting that the latter have an independent origin on t he Indian subcontinent. A 

similar hypothesis has been proposed for the origin of R. etli (Aguilar et al., 2004). Out 

of the three distinct lineages, one lineage (lineage I) is found all over Bangladesh 

(Rashid et al., 2012), suggesting that it may have been distributed with pilosae seeds.  



104 

 

Conclusions 
By analyzing lentil-nodulating rhizobia from four countries in two different continents we 

found four different lineages of rhizobia, of which three are new. These three new 

lineages of rhizobia are endemic to Bangladesh and have been coevolved with grex 

pilosae of lentil. The presence of common genotypes of R. leguminosarum with lentil in 

different countries, suggest that R. leguminosarum is the original symbiont of lentil. 

Further research is needed in order to further examine the genetic diversity and 

population structure of lentil-nodulating rhizobia in different geographical regions. 
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4. Conclusions and general discussion 

In this study lentil-nodulating rhizobia were isolated from countries at the centre of the 

origin of lentil (Turkey and Syria) and from countries where lentil was introduced later 

(Germany and Bangladesh). The collected rhizobial isolates were analyzed based on 

multilocus sequence analyses, DNA fingerprinting, and phenotypic characteristics. 

Phylogenetic and population genetic approaches have been used to interpret the data 

in terms of rhizobial diversity and taxonomic status of rhizobia associated with lentil. To 

our knowledge this is the first detailed study of lentil-nodulating rhizobia. This study 

found four different lineages, three of which are novel. Moreover, the study also found 

that evolutionary forces such as recombination played a greater role in the 

diversification of R. leguminosarum than mutation. The results presented in this 

dissertation highlight two major findings: the presence of three new endemic lineages in 

Bangladesh (Indian sub-continent) that are close to R. etli but distinct from the R. 

leguminosarum-R etli complex, and the origin and distribution of a cosmopolitan lineage 

of lentil symbiont (R. leguminosarum) to different countries. 

4.1 Genetic diversity of rhizobia  nodulating lentil in Bangladesh  
 Multilocus sequence analysis (MLSA) is considered to be an effective approach for 

describing bacterial species diversity and speciation events. It is also a key approach 

for describing closely-related bacterial species (Konstantinidis et al., 2006; and 

references therein; Martens et al., 2008; and r eferences therein). Besides their 

functional importance, some housekeeping genes like recA, atpD and glnII also provide 

useful information for describing closely-related bacterial species that cannot be 

resolved using 16S rRNA gene sequences (Bromofeld et al., 2010; and references 

therein). Using a MLSA approach, our study revealed that three distinct lineages are 

associated with lentil nodulation in Bangladesh. Lineages I and II were distributed 

throughout Bangladesh, whereas lineage III was confined to the South East part of the 

country. Three protein-coding genes from the isolates taken from Bangladesh showed 

similarity values of 89.1 – 92.8% and 92.1 – 94.8% to R. leguminosarum and R.etli, 

respectively. Moreover, the genetic similarity values between these new lineages were 

91 – 92% for recA, 92 – 94% for glnII and 89 – 94% for atpD. The genetic similarity 

levels between the new lineages are comparable to those found between R. etli and R. 

leguminosarum, suggesting species status for these lineages from Bangladesh. These 

lineages are close to R. etli but significantly different from this species based on DNA 
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sequence information from the four housekeeping genes. This conclusion is also highly 

supported by DNA fingerprinting and phenotypic data. Different phylogenetic analyses 

like neighbor-joining, maximum likelihood and Bayesian inference methods showed 

similar tree topologies. Therefore, from this study it is clear that at least three different 

rhizobial lineages are involved in lentil nodulation in Bangladesh that belong to new 

species within the genus Rhizobium. 

4.2 Origin of rhizobia nodulating lentil in Bangladesh 
The host has a s ignificant effect on its symbiont, and the dispersion of legume-

nodulating bacteria may have been facilitated by the export of plants and seeds (Perez-

Ramírez et al., 1998; Aguilar et al., 2004). It is assumed that R. etli originated in the 

Americas with its host Phaseolus vulgaris and was distributed with its seed to other 

countries around the world (Aguilar et al., 2004). Although the lineages from 

Bangladesh were close to R. etli, its host Phaseolus vulgaris is neither  widely known 

nor cultivated in Bangladesh, suggesting a low probability for the distribution of these 

new lineages to Bangladesh with Phaseolus vulgaris seeds. However, Bangladesh has 

a long history for lentil cultivation. Among the six cultivated greges of lentil, pilosae is 

the only cultivated grex widely available throughout Bangladesh and other parts of the 

Indian sub-continent. We obtained new lineages of rhizobia from endemic pilosae lentils 

that were absent from other parts of the world. Parallel and independent evolution may 

occur in different locations in strains of pathogenic and symbiotic bacteria, (Schuster & 

Coyne, 1974; Geffroy et al., 1999; Aguilar et al., 2004; Wolde-Meskel et al., 2005) 

suggesting that these new lineages may potentially be endemic to Bangladeshi soil and 

may have coevolved with locally grown pilosae lentils.  

4.3 Genetic diversity of lentil-nodulating rhizobia from the Middle East 
and Germany are greatly influenced by recombination  
Although the 16S rRNA gene sequences from the 58 isolates from Germany, Turkey 

and Syria were 99 – 100% similar to R. leguminosarum, we identified six sub-lineages 

(Iva – IVf) by analyzing three housekeeping genes. Out of these, two sub-lineages (IVb 

and IVd) showed substantial differences to other sub-lineages and s trains of R. 

leguminosarum that had been described earlier (Tian et al., 2010). Hence, they might 

represent new sub-lineages within R. leguminosarum. However, all sub-lineages were 

not equally well-resolved in phylogenetic and population analyses. Therefore, our study 
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further supports the view that the interface between populations and species should be 

explored using both population genetics and phylogenetic approaches (Lan & Reeves, 

2001; Vinuesa et al., 2005).  

Different analyses (recombination, mutation, tree topologies, structure) of three protein-

coding genes showed phylogenetic incongruence among the reconstructed trees and 

significant differences in their topologies, and a substantial influence of recombination 

(Fitch, 1997; Shimodaira & Hasegawa, 1999; Bryant & Moulton, 2004; Tian et al., 2010) 

in different sub-lineages. We identified a maximum of six sub-lineages in ML analyses 

that were not found in other analyses; this might be due to a v iolation of the 

phylogenetic assumption of bifurcation by the presence of recombination (Holmes et al., 

1999; Didelot & Falush, 2007; den Bakker et al., 2008) in the different sub-lineages. By 

allowing conflicting or alternative phylogenetic histories, like recombination, network 

analyses represent valuable tools for resolving ambiguities (Fitch, 1997; Vinuesa et al., 

2005; and references therein). This analysis produced a reticulate structure among sub-

lineages; suggesting a great influence of recombination on R. leguminosarum. In 

contrast, recombination was apparently absent in three new lineages found in 

Bangladesh, and we did not see any phylogenetic incongruence and reticulate structure 

in single-gene and c oncatenated sequence analyses. This might be due t o the 

influence of soil conditions or crop cultivation histories in Bangladesh.  

4.4 Species delineation of lentil rhizobia 
The ML analysis and genetic similarity showed that lentil rhizobia from Bangladesh 

belong to three new lineages, and found a cosmopolitan lineage in the Middle East and 

central Europe. Similar result were also observed in network analysis, which showed a 

long edge between the German-Turkish-Syrian isolatesand Bangladeshi isolates and a 

reticulate structure among six sub-lineages within R. leguminosarum, suggesting that 

the Bangladeshi isolates belong to separate species (Aguilar et al., 2004; Bailly et al., 

2006). Although ML analysis found six sub-lineages in the Middle Eastern and German 

isolates, they form a reticulate structure with R. leguminosarum; evidencing that all sub-

lineages belong to this species. 

4.5 Rhizobium leguminosarum is the original symbiont of lentils 
Most studies on the origin and distribution of cultivated lentil indicated that the center of 

origin of lentil is located in the Near East and Central Asia (Shandu & Singh, 2007; and 
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references therein). We found R. leguminosarum in the center of origin (Syria and 

Turkey) and in a country where lentil had been introduced later (Germany). Previous 

studies also found R. leguminosarum in the Mediterranean region, European countries, 

different African countries and in the Americas (Moawad & Beck, 1991; Laguerre et al., 

1992; Geniaux & Amargr, 1993; Moawad et al., 1998; Tegegn, 2006). Moreover, both 

macrosperma and microsperma lentils, with the exception of the grex pilosae, are 

present in Turkey (www.economy.gov.tr), but we did not find any rhizobial strains that 

are similar to the ones isolated from Bangladesh. In contrast, we not only found R. 

leguminosarum in the center of origin but also in central Europe, including common 

chromosomal genotypes such as sub-lineage IVa. Hence, it could be assumed that R. 

leguminosarum is the original symbiont of lentil. 

Legume seed is a major carrier of rhizobia (Perez-Ramírez et al., 1998; Aguilar et al., 

2004), and lentils seed therefore might also carry rhizobia on their testa. Lentil is one of 

the oldest cultivated crops and has remained popular until now. Due to its popularity 

and ancient origin, it can be assumed that after its domestication in the cradle of 

agriculture lentil symbionts quickly dispersed to Europe and Africa with its host (Zohary 

& Hopf, 1993; Shandu & Singh, 2007; Sonnante et al., 2009). The presence of common 

chromosomal genotypes in both the center of lentil origin and in countries to which lentil 

was introduced later suggest a c ommon phylogenetic origin of R. leguminosarum. 

Therefore, the spread of lentils may have helped the initial dispersion of R. 

leguminosarum from the cradle of agriculture to other countries.  

4.6 Genetic diversity of nodulation genes  
Nodulation factors (Nod) help to establish legume-rhizobium symbiosis (Laguerre et al., 

2001), and Nod factor synthesis depends on di fferent nodulation genes. Nodulation 

genes like nodA, nodC and nodD are widely used as symbiotic marker  for  describing 

rhizobial diversity (Perret et al., 2000; Laguerre et al., 2001; Iglesias et al., 2007; Tian et 

al., 2010; and references therein). Although an analysis of chromosomal genes found 

three distinct lineages in Bangladesh, phylogenetic analyses of three nodulation genes 

(nodA, nodC and nodD) detected two genotypes / groups among these three lineages. 

Nodulation gene sequences showed high similarities to those of R. leguminosarum 

symbiovar viciae, but they still formed a separate genotypes supported by high 

bootstrap values (79 – 99%). Phylogenetic analyses of nodulation genes from the 

Middle Eastern and the central European isolates also support a similarity between the 

http://www.economy.gov.tr/�
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isolates and R. leguminosarum symbiovar viciae. We also detected new groups within 

this symbiovar that were biased to their geographical origin. There was no congruence 

between nodulation gene and chromosomal gene phylogeny, which may be du e to 

horizontal / lateral nodulation gene transfer between different chromosomal lineages 

and sub-lineages (Ochman et al., 2000; Laguerre et al., 2001; Han et al., 2010; Degefu 

et al., 2011). In most of the cases, the phylogeny of nodulation genes showed a positive 

correlation with their ecological origin, which may be a c onsequence of both the host 

and the soil microhabitats (Sprent, 1994). 

Like the lentil-nodulating rhizobia from different countries (Bangladesh, Germany, 

Turkey and Syria), R. leguminosarum symbiovar viciae 3841 also nodulates lentil 

effectively and produces effective nodules with lentil in our nodulation test. Therefore, 

we can predict that the symbiotic performance of lentil isolates lies within the variability 

of R. leguminosarum symbiovar viciae. 

4.7 Specific conclusion 
Our present study found four different lineages of rhizobia associated with lentil 

nodulation in different countries, of which three are new. These three new lineages are 

closely related to R. etli but phylogentically distinct enough to warrant new species 

status within the genus Rhizobium. Phylogenetic conclusions are highly supported by 

DNA fingerprinting data and phenotypic data. Therefore, our study found three species-

level new lineages in Bangladesh. The pilosae lentil is endemic to Bangladesh and the 

Indian sub-continent, and we isolated new lineages of rhizobia from pilosae root 

nodules. Both the new rhizobial lineages and the lentil grex are absent from other parts 

of the world, suggesting that these new rhizobial lineages are endemic to Bangladesh 

or the Indian sub-continent and co-evolved with pilosae lentil. This study showed a 

common R. leguminosarum genotype present in Turkey and Syria, which are  at the 

origin of all macrosperma and microsperma lentil greges with the exception of pilosae, 

and in central Europe (Germany), suggesting that R. leguminosarum is the original 

symbiont of lentil. The presence of a common lineage and sub-lineage at centre of 

origin and in other countries suggested that lentil seed might have played a major role 

in the initial distribution of this symbiont to different countries from the Middle East on to 

other countries. Further research with more isolates from more geographical locations 

and analyses of genetic markers from different lentil greges are needed to examine the 

genetic diversity and population structure of lentil-nodulating rhizobia. 
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selʹsko khozi︠a ︡ǐstvennyk, Lenina, Russia. 



111 

 

Bergey DH, Harrison FC, Breed RS, Hammer BW & Huntoon FM (1923) Bergey’s 

Manual of Determinative Bacteriology. The Williams & Wilkins, Baltimore. 

Beringer J (1974) R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84: 

88 – 198. 

Black M, Moolhuijzen P, Chapman B, Barrero R, Howieson J, Hungria M & Bellgard M 

(2012) The Genetics of symbiotic nitrogen fixation: comparative genomics of 14 

rhizobia strains by resolution of protein clusters. Genes 3: 138 – 166. 

Brenner DJ, Staley JT & Krieg NR (2005) Classification of prokaryotic organism and 

concept of bacterial speciation. Bergey’s manual of systematic bacteriology Vol. 2 

(Brenner DJ, Krieg NR & Staley JT, eds), pp. 27 – 32.  Springer, New York. 

Brockwell J (1963) Accuracy of a plant-Infection technique for counting populations of 

Rhizobium trifolii. Appl Microbiol 11: 377 – 383. 

Bromofeld ESP, Tambong JT, Cloutier S, Prevost D, Laguerre G, van Berkum P, Thi 

PV, Assabgui R & B arran LR (2010) Ensifer, Phyllobacterium and Rhizobium 

species occupy nodules of Medicago sativa (alfalfa) and Medicago alba (sweet 

clover) grown at a Canadian site without a history of cultivation. Microbiology 156: 

505 – 520. 

Brown JR & Doolittle WF (1995) Root of the universal tree of life based on ancient 

amino-acyl-tRNA synthesize gene duplications. P Natl Acad Sci USA 92: 2441 – 

2445. 

Brown JM & ElDabaje R (2009) PuMA: Bayesian analysis of partitioned (and 

unpartitioned) model adequacy. Bioinformatics 25: 537 – 538. 

Bruneau A, Mercure M, Lewis GP & Herendeen PS (2008) Phylogenetic patterns and 

diversification in the Caesalpinioid legumes. Botany 86: 697 – 718. 

Bruno WJ, Socci ND & Halpern AL (2000) Weighted neighbor joining: a l ikelihood-

based approach to distance-based phylogeny reconstruction. Mol Biol Evol 17: 

189 – 197. 

Bryant D & Moulton V (2004) Neighbor-net: an ag glomerative method for the 

construction of phylogenetic networks. Mol Biol Evol 21: 255 – 265. 

Chahota RK, Kishore N, Dhiman KC, Sharma TR & Sharma SK (2007) Predicting 

transgressive segregants in early generation using single seed descent method-

derived micromacrosperma genepool of lentil (Lens culinaris Medikus). Euphytica 

156: 305-310. 

Chen WP & Kuo TT (1993) A simple and rapid method for the preparation of gram 

negative bacterial genomic DNA. Nucleic Acids Res 21: 2260. 

http://dx.doi.org/10.1093/bioinformatics/btn651�


112 

 

Chen WX, Yan GH & Li JL (1988) Numerical taxonomic study of fast-growing soybean 

rhizobia and a pr oposal that Rhizobium fredii be assigned to Sinorhizobium gen. 

nov. Int J Syst Evol Micr 38: 392 – 397. 

Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG & Thompson JD 

(2003) Multiple sequence alignment with the Clustal series of programs Nucl Acids 

Res 31: 3497 – 3500. 

Chun J & Hong SG (2010) Methods and programs for calculation of phylogenetic 

relationships from molecular sequences. Molecular Phylogeny of Microorganisms 

(Oren A & Papke RT, eds.),  Caister Academic Press, Norfolk, UK. 

Conn HJ (1942) Validity of the genus Alcaligenes. J Bacteriol 44: 353 – 360. 

Cubero JI (1981) Taxonomy, distribution and evolution of the lentil and its wild relatives. 

Lentils (Witcombe J & Erskine W, eds), pp. 15 – 38. Nijhoff and  Junk Publishers, 

Boston. 

Cubero JI, de la Vega MP & Fratini R (2009) Origin, taxonomy and domestication. The 

lentil: Botany, production and uses (Erskine W, Muehlbauer F, Sarker A & Sharma 

B, eds.), pp. 13 – 33. CAB International, Oxfordshire. 

Cullimore JV, Ranjeva R & Bono JJ (2001) Perception of lipo-chitooligosaccharidic Nod 

factors in legumes. Trends Plant Sci 6: 24 – 30  

Cummings SP, Gyaneshwar P, Vinuesa P et al., (2009) Nodulation of Sesbania species 

by Rhizobium (Agrobacterium) strain IRBG74 and other rhizobia. Environ 

Microbiol 11: 2510 – 2525. 

De Bruijn FJ (1992) Use of repetitive (repetitive extragenic palindromic and 

enterobacterial repetitive intergeneric consensus) sequences and the polymerase 

chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other 

soil bacteria. Appl Environ Microb 58: 2180 – 2187. 

de Lajudie P, Laurent-Fulele E, Willems A, Torck U, Coopman R, Collins MD, Kersters 

K, Dreyfus B & Gillis M (1998) Allorhizobium undicola gen. nov., sp. nov., nitrogen-

fixing bacteria that efficiently nodulate Neptunia natans in Senegal. Int J Syst 

Bacteriol 48: 1277 – 1290. 

Degefu T, Wolde-Meskel E & Frostegård A (2011) Multilocus sequence analyses reveal 

several un nam ed Mesorhizobium genospecies nodulating Acacia species and 

Sesbania sesban trees in Southern regions of Ethiopia. Syst Appl Microbiol 34: 

216 – 226. 



113 

 

den Bakker HC, Didelot X, Fortes ED, Nightingale KK & Wiedmann M (2008) Lineage 

specific recombination rates and microevolution in Listeria monocytogenes. BMC 

Evol Biol 8: 277 – 289. 

Dhingra KK, Sekhon HS, Sandhu PS & Bhandari SC (1988) Phosphorus-Rhizobium 

interaction studies on biological nitrogen fixation and yield of lentil. J Agr Sci 110: 

141 – 144. 

Didelot X & Falush D (2007) Inference of bacterial microevolution using multilocus 

sequence data. Genetics 175: 1251 – 1266. 

Doyle JJ (1998) Phylogenetic perspectives on no dulation: an evolving view of plants 

and symbiotic bacteria. Trends Plant Sci 3: 473 – 478. 

Doyle JJ (2011) Phylogenetic perspectives on t he origins of nodulation. Mol Plant 

Microbe Interact 24: 1289 – 1295. 

Doyle JJ & Luckow MA (2003) The rest of the iceberg: legume diversity and evolution in 

a phylogenetic context. Plant Physiology 131: 900 – 910. 

Dreyfus B, Garcia JL & Gillis M (1988) Characterization of Azorhizobium caulinodans 

gen. nov., sp. nov., a s tem-nodulating nitrogen-fixing bacterium isolated from 

Sesbania rostrata. Int J Syst Bacteriol 38: 89 – 98. 

Eardly BD, Nour SM, van Berkum P & Selander RK (2005) Rhizobial 16S rRNA and 

dnaK mosaicism and the uncertain phylogenetic placement of Rhizobium galegae. 

Appl Environ Microb 71: 1328 – 1335. 

Erskine W (1997) Lessons for breeders from land races of lentil. Euphytica 93: 107 – 

112. 

Erskine W, Smartt J & Muehlbauer FJ (1994) Mimicry of lentil and the domestication of 

common vetch and grass pea. Econ Bot 48: 326 – 332. 

Excoffier L, Laval G & Schneider S (2005) Arlequin ver. 3.5: an integrated software 

package for population genetics data analysis. Evol Bioinform 1: 47 – 50. 

Excoffier L, Somouse P & Quattro J (1992) Analysis of molecular variance inferred from 

metric distances among DNA haplotypes: application to human mitochondrial DNA 

restriction data. Genetics 131: 479 – 491. 

Falush D, Stephens M & Pritchard J (2003) Inference of population structure using 

multilocus genotype data: linked loci and correlated allele frequencies. Genetics 

164: 1567 – 1587. 

Fåhreus G (1957) The infection of clover root hairs by nodule bacteria studied by a 

simple glass slide technique J Gen Microbiol 16: 374 – 381. 

 



114 

 

FAOSTAT-Agriculture (2004) Food and agricultural commodities production.  Food and 

agricultural organization. Rome. 

FAOSTAT-Agriculture (2007) Food and agricultural commodities production. Food and 

agricultural organization. Rome. 

FAOSTAT-Agriculture (2010) Food and agricultural commodities production. Food and 

agriculture organization. Rome.  

Fellay R, Perret X, Viprey V, Broughton WJ & Brenner S (1995) Organization of host-

inducible transcripts on the symbiotic plasmid of Rhizobium sp. NGR234. Mol 

Microbiol 16: 657 – 667. 

Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood 

approach. J Mol Evol 17: 368 – 376. 

Felsenstein J (1985) Confidence limits on phylogenies: an approach using the 

bootstrap. Evolution 39: 783 – 791. 

Felsenstein J (1988) Phylogenies and quantitative characters. Ann Rev Ecol Syst 19: 

445 – 471. 

Fitch W (1997) Networks and viral evolution. J Mol Evol 44: 65 – 75. 

Fox GE, Magrum LJ, Balch WE, Wolfe RS & Woese CR (1977) Classification of 

methanogenic bacteria by 16s ribosomal RNA characterization. Proc Natl Acad 

Sci USA 74: 4537 – 4541. 

Frank B (1889) Über die Pilzsymbiose der Leguminosen.Vol.19, Verlog von Paul Parey 

Berlin. 

Fraser C, Alm EJ, Polz MF, Spratt BJ & Hanage WP (2009) The bacterial species 

challenge: making sense of genetic and ecological diversity. Science 323: 741 – 

746. 

Fred EB, Baldani JI & McCoy E (1932) Root nodule bacteria and legume plants 

University of Wisconsin,  USA. 

Futuyma DJ (2009) Evolution. Sinauer Associates Sunderland, Massachusetts. 

Gascuel O (1997) Concerning the NJ algorithm and its unweighted version, UNJ. 

Mathematical hierarchies and biology (Mirkin B, McMorris FR, Roberts FS & 

Rzhetsky A, eds), pp. 149 – 170. American Mathematical Society, Washington, 

DC. 

Gaunt MW, Turner SL, Rigottier-Gois L, Lloyd-Macgilp SA & Young JPW (2001) 

Phylogenies of atpD and recA support the small subunit rRNA-based classification 

of rhizobia. Int J Syst Evol Micr 51: 2037 – 2048. 



115 

 

Geffroy V, Sicard D, de Oliveira JCF, Sévignac M, Cohen S, Gepts P, Neema C, Langin 

T & Dron M (1999) Identification of an ancestral resistance gene cluster involved 

in the coevolution process between Phaseolus vulgaris and its fungal pathogen 

Colletotrichum lindemuthianum. Mol Plant Microbe Interact 12: 774 – 784. 

Gelman A & Rubin DB (1992) Inference from iterative simulation using multiple 

sequences. Stat Sci 7: 457 – 511. 

Geniaux E & Amarger N (1993) Diversity and stability of plasmid transfer in isolates 

from a s ingle field population of Rhizobium leguminosarum bv. viciae. FEMS 

Microbiol Ecol 102: 251 – 260. 

Giraud E, Moulin L, Vallenet D et al., (2007) Legumes symbioses: Absence of Nod 

genes in photosynthetic bradyrhizobia. Science 316: 1307 – 1312. 

Glazunova, Raoult D & Roux V (2009) Partial sequence comparison of the rpoB, sodA, 

groEL and gyrB genes within the genus Streptococcus. Int J Syst Evol Micr 59: 

2317 – 2322. 

Goodfelow M (1971) Numerical taxonomy of some noncardioform bacteria. J Gen 

Microbiol 69: 33 – 80  

Gogarten JP & Townsend JP (2005) Horizontal gene transfer, genome innovation and 

evolution. Nat Rev Microbiol 3: 679 – 687. 

Gonzalez J & Wink M (2010) Genetic differentiation of the Thorn-tailed Rayadito 

(Aphrastura spinicauda) revealed by ISSR profiles suggest multiple paleorefugia 

and high recurrent gene flow. IBIS 152: 761 – 774. 

Graham PH (1976) Identifcation and classifcation of root nodule bacteria. Symbiotic 

Nitrogen Fixation in Plants (Nutman PS, ed), Cambridge University Press, London. 

Graham PH & Parker CA (1964) Diagnostic features in the characterization of the root-

nodule bacteria of legumes. Plant Soil 20: 383 – 396. 

Graham PH, Sadowsky MJ & Keyser HH (1991) Proposed minimal standards for the 

description of new genera and species of root- and stem-nodulating bacteria. Int J 

Syst Evol Micr 41: 582 – 587. 

Graur D & Li WH (2000) Fundamentals of molecular evolution. Massachusetts, Sinauer 

Associates, Sunderland. 

Guttman DS & Dykhuizen DE (1994) Clonal divergence in Escherichia coli as a result of 

recombination, not mutation Science 266: 1380 – 1383. 

Gyaneshwar P, Hirsch, AM, Moulin L. et al., (2011) Legume-nodulating 

Betaproteobacteria: diversity, host range and future prospects. Mol Plant Microbe 

Interact 24: 1276 – 1288. 



116 

 

Hagen MJ & Hamrick JL (1996) A hierarchical analysis of population genetic structure 

in Rhizobium leguminosarum bv. trifolii. Mol ecol 5: 177 – 186. 

Hall BG (2008) Phylogenetic Trees Made Easy: A how to manual. Sinauer Associates. 

Hall TA (1999) BioEdit: a us er friendly biological sequence alignment editor and 

analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41: 95 – 98. 

Hamady M & Knight R (2009) Microbial community profiling for human microbiome 

projects: tools, techniques, and challenges. Genome Res 19: 1141 – 1152. 

Han TX, Tian CF, Wang ET & Chen WX (2010) Associations among rhizobial 

chromosomal background, nod genes and host plants based on the analysis of 

symbiosis of indigenous rhizobia and w ild legumes native to Xinjiang. Microbial 

Ecol 59: 311 – 323. 

Harrison, CJ & Langdale JA (2006) A step by step guide to phylogeny reconstruction. 

Plant J 45: 561 – 572 

Haukka K, Lindstrom K & Young JP (1998) Three phylogenetic groups of nodA and nifH 

genes in Sinorhizobium and Mesorhizobium isolates from leguminous trees 

growing in Africa and Latin America. Appl Environ Microb 64: 419 – 426. 

Hellriegel H &  Wilfarth H (1888) Untersuchungen über die Stickstoffnahrung der 

Gramineon und Leguminosen. Beilageheft zu der Ztschr. Ver. Rübenzucker-

Industrie Deutschen Reichs. 

Hennig W (1966); Davis D & Zangerl R (translator) Phylogenetic Systematics ( Reissue 

I, ed.), pp. 72 – 77, Board of Trustees of the University of Illinois, USA.  

Herrera-Cervera JA, Sanjuan-Pinilla JM, Oliveres J & Sanjuan J (1998) Cloning and 

identification of conjugative transfer origins in the Rhizobium meliloti genome. J 

Bacteriol 180: 4583 – 4590. 

Hirsch PR (1996) Population dynamics of indigenous and genetically modified rhizobia 

in the field. New Phytol 133: 159 – 171. 

Holmes EC, Urwin R & Maiden MC (1999) The influence of recombination on the 

population structure and evolution of the human pathogen Neisseria meningitidis. 

Mol Biol Evol 16: 741 – 749. 

Hou BC, Wang ET, Li Y, Jia RZ, Chen WF, Man CX, Sui XH & Chen WX (2009) 

Rhizobial resource associated with epidemic legumes in Tibet. Microbial Ecol 57: 

69 – 81. 

Hudson RR, Slatkin M & Maddison WP (1992) Estimation of levels of gene flow from 

DNA sequence data. Genetics 132: 583 – 589. 



117 

 

Hynes MF & O’Connell MP (1990) Host plant effect on competition among strains of 

Rhizobium leguminosarum. Can J Microbiol 36: 864 – 869. 

Ibañez F, Angelini J, Taurian T, Tonelli ML & Fabra A (2009) Endophytic occupation of 

peanut root nodules by opportunistic Gammaproteobacteria. Syst Appl Microbiol 

32: 49 – 55. 

Iglesias O, Rivas R, García-Fraile P, Abril A, Mateos PF, Martinez-Molina E & 

Velázquez E (2007) Genetic characterization of fast growing rhizobia able to 

nodulate Prosopis alba in North Spain. FEMS Microbiol Lett 277: 210 – 216. 

Jarvis BDW, van Berkum P, Chen WX, Nour SM, Fernandez MP, Cleyet-Marel JC & 

Gillis M (1997) Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, 

Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. 

nov. Int J Syst Bacteriol 47: 895 – 898. 

Jordan DC & Allen ON (1974) Family III. Rhizobiaceae (Conn, 1938), Bergey’s manual 

of determinative bacteriology (8th edn) (Buchanan RE & Gibbons NE, eds), pp. 

261-264. The Williams & Wilkins, Baltimore. 

Jordan DC (1982) Transfer of Rhizobium japonicum (Buchanan 1980) to 

Bradyrhizobium gen. nov., a g enus of slow-growing, root nodule bacteria from 

leguminous plants. Int J Syst Bacteriol 32: 136 – 139. 

Jordan DC (1984) Family III. Rhizobiaceae. Bergey's manual of systematic 

bacteriology, Vol. 1 (Krieg NR & Holt JG, eds), pp. 234 – 242. The Williams and 

Wilkins, Baltimore. 

Jukes TH & Cantor CR (1969) Evolution of protein molecules. (Munro HN, ed), 

Academic Press, New York. 

Kanso S & Patel BKC (2003) Microvirga subterranea gen. nov., sp. nov., a moderate 

thermophile from a d eep subsurface Australian thermal aquifer. Int J Syst Evol 

Micr 53: 401 – 406. 

Keatinge JDH, Materon LA, Beck DP, Yurtsever N, Karuc K & Altuntas S (1995) The 

role of rhizobial biodiversity in legume crop productivity in the West Asian 

highlands. Exp Agr 31: 485 – 491. 

 

Khurana AS & Sharma P (1995) Variety and Rhizobium strain interactions in lentil. Lens 

Newsletter 22: 34 – 36. 

Kimura M (1980) A simple method for estimating evolutionary rates of base 

substitutions through comparative studies of nucleotide sequences. Mol Biol Evol 

16: 111 – 120. 



118 

 

Kitching IJ, Forey PL, Humphries CJ & Williams DM (1998) Cladistics (2nd edn): The 

theory and practice of parsimony analysis. Oxford University Press. 

Knösel DH (1984) Genus: Phyllobacterium. (Krieg NR & Holt, JG, eds) Bergey's manual 

of systematic bacteriology, Vol. 1, pp. 254 – 256. The Williams & Wilkins, 

Baltimore. 

Konstantinidis KT, Ramette A & Tiedje JM (2006) Toward a more robust assessment of 

intraspecies diversity, using fewer genetic markers. Appl Environ Microb 72: 7286 

– 7293. 

Kouchi H, Imaizumi-Anraku H, Hayashi M, Hakoyama T, Nakagawa T, Umehara Y, 

Suganuma N & Kawaguchi M (2010) How many peas in a pod? legume genes 

responsible for mutualistic symbioses underground. Plant Cell Physiol 51: 1381 – 

1397. 

Kumar S & Filipski A (2007) Multiple sequence alignment: in pursuit of homologous 

DNA positions. Genome Res 17: 127 – 132. 

Ladizinsky G (1979) The origin of lentil and its wild genepool. Euphytica 28: 179 – 187. 

Laguerre G, Bardin M & Amarger N (1993) Isolation from soil of symbiotic and 

nonsymbiotic Rhizobium leguminosarum by DNA hybridization. Can J Microbiol 

39: 1142 – 1149. 

Laguerre G, Depret G, Bourion V & Duc G (2007) Rhizobium leguminosarum bv. viciae 

genotypes interact with pea plants in developmental responses of nodules, roots 

and shoots. New Phytol 176: 680 – 690. 

Laguerre G, Geniaux E, Marzurier S, Casartelii R & Amarger N (1992) Conformity and 

diversity among field isolates of R. leguminosarum bv. viceae, bv. trifolii, and bv. 

phaseoli revealed by DNA hybridization using chromosome and plasmid probes 

Can J Microbiol 39: 412 – 419. 

Laguerre G, Louvrier P, Allard MR & Amarger N (2003) Compatibility of rhizobial 

genotypes within natural populations of Rhizobium leguminosarum biovar viciae 

for nodulation of host legumes. Appl Environ Microb 69: 2276 – 2283. 

Laguerre G, Mavingui P, Allard MR, Charnay MP, Louvrier P, Mazurier SI, Ligottier-

Gois L &  Amarger N (1996) Typing of rhizobia by PCR DNA fingerprinting and 

PCR-restriction fragment length polymorphism analysis of chromosomal and 

symbiotic gene regions: application to Rhizobium leguminosarum and its different 

biovars. Appl Environ Microb 62: 2029 – 2036. 



119 

 

Laguerre G, Mazurier SI & Amarger N (1992) Plasmid profiles and restriction fragment 

length polymorphism of Rhizobium leguminosarum bv. viciae in field populations. 

FEMS Microbiol Ecol 101: 17 – 26. 

Laguerre G, Nour SM, Macheret V, Sanjuan J, Drouin P & Amarger N (2001) 

Classification of rhizobia based on nodC and nifH gene analysis reveals a c lose 

phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology 147: 

981 – 993. 

Lan R & Reeves P (2001) When does a clone deserve a n ame? A perspective on 

bacterial species based on population genetics. Trends Microbiol 9: 419 – 424. 

Land AH & Doig AG (1960). An automatic method of solving discrete programming 

problems". Econometrica 28: 497 – 520 

Lavin M, Herendeen PS & Wojciechowski MF (2005) Evolutionary rates analysis of 

Leguminosae implicates a rapid diversification of lineages during the tertiary. Syst 

Biol 54: 575 – 594. 

Lev-Yadun S, Gopher A & Abbo S (2000) The cradle of agriculture. Science 288: 1602 

– 1603. 

Li JH, Wang ET, Chen WF & Chen WX (2008) Genetic diversity and pot ential for 

promotion of plant growth detected in nodule endophytic bacteria of soybean 

grown in Heilongjiang province of China. Soil Biol Biochem 40: 238 – 246. 

Lie TA, Goktan M, Engin M, Pijnenborg J & Anlarsal E (1987) Co-evolution of the 

legume – rhizobium association. Plant Soil 100: 171 – 181. 

Ludwig W (2010) Molecular phylogeny of microorganisms: Is rRNA still a us eful 

marker? Molecular phylogeny of microorganisms (Oren A & Papke RT, eds), pp. 

65 – 83. Caister Academic Press, Norfolk. 

Ludwig W & Klenk HP (2005) Overview: a phylogenetic backbone and taxonomic 

framework for prokaryotic systematic. Bergey’s manual of systematic bacteriology 

Vol. 2 (Brenner DJ, Krieg NR & Staley JT, eds), pp. 49 – 65. Springer, New York. 

Maddison WP, Donoghue MJ & Maddison DR (1984) Outgroup analyses and 

parsimony. Syst Zool 33: 83 – 103. 

Maiden MC (2006) Multilocus sequence typing of bacteria. Ann Rev Microbiol 60: 561 – 

588. 

Makkar NS & Casida LE (1987) Cupriavidus necator gen. nov., sp. nov.: a non obligate 

bacterial predator of bacteria in soil. Int J Syst Bacteriol 37: 323 – 326. 

Martens M, Dawyndt P, Coopman R, Gillis M, Vos PD & Willems A (2008) Advantages 

of multilocus sequence analysis for taxonomic studies: a case study using 



120 

 

housekeeping genes in the genus Ensifer (including former Sinorhizobium). Int J 

Syst Evol Micr 58: 200 – 214. 

Masson-Boivin C, Giraud E, Perret X & Batut J (2009) Establishing nitrogen-fixing 

symbiosis with legumes: how many rhizobium recipes? Trends Microbiol 17: 458 – 

466. 

Mathews S & Donoghue MJ (1999) The root of angiosperm phylogeny inferred from 

duplicate phytochrome genes. Science 286: 947 – 950. 

Mau B, Newton M & Larget B (1999) Bayesian phylogenetic inference via Markov chain 

Mont Carlo methods. Biometrics 55: 1 – 12 

Mayr E (1963) Animal species and evolution. Harvard University Press; London: Oxford 

University Press. 

McKey D (1994) Legumes and nitrogen: The evolutionary ecology of a nitrogen-

demanding lifestyle. Advances in legume systematics (Sprent JI & McKey D, eds), 

Royal Botanic Gardens, Kew, UK. 

McNeil DL & Materne M (2007) Rhizobium management and nitrogen fixation Lentil: an 

ancient crop for Modern times (Yadav SS, McNeil DL & Stevenson PC, eds), pp. 

127 – 143. Springer, Dordrecht, The Netherlands. 

Mergaert P, Van Montagu M & Holsters M (1997) Molecular mechanisms of Nod factor 

diversity. Mol Microbiol 25: 811 – 817. 

Milkman R & Bridges MM (1990) Molecular evolution of the E. coli chromosome III 

Clonal frames. Genetics 126: 505 – 517. 

Moawad H, Badr El-Din SMS & Abdel-Aziz RA (1998) Improvement of biological 

nitrogen fixation in Egyptian winter legumes through better management of 

Rhizobium. Plant Soil 204: 95 – 106. 

Moawad H & Beck DP (1991) Some characteristics of Rhizobium leguminosarum 

isolates from un-inoculated field-grown lentil. Soil Biol Biochem 23: 933 – 937. 

Moron B, Soria-Diaz ME, Ault J, Verrios G, Noreen S, Rodriguez-Navarro D, Gil-

Serrano A, Thomas-Oates J, Megias M & Sousa C (2005) Low pH changes the 

profile of nodulation factors produced by Rhizobium tropici CIAT899. Chem Biol 

12: 1029 – 1040. 

Moschetti G, Peluso A, Protopapa A, Anastasio M, Pepe O & Defez R (2005) Use of 

nodulation pattern, stress tolerance, nodC gene amplification, RAPD-PCR and 

RFLP-16S rDNA to discriminate genotypes of Rhizobium leguminosarum biovar 

viciae. Syst Appl Microbiol 28: 619 – 631. 



121 

 

Moulin L, Chen W-M, Béna G, Dreyfus B & Boivin-Masson C (2002) Rhizobia: The 

family is expanding. Nitrogen fixation: global perspectives (Finan T, O’Brian M, 

Layzell D, Vessey K & Newton W, eds), pp. 61 – 65. CAB International, 

Wallingford . 

Mutch LA & Young JPW (2004) Diversity and specificity of Rhizobium leguminosarum 

biovar viciae on wild and cultivated legumes. Mol Ecol 13: 2435 – 2444. 

Mwangi SN, Karanja NK,  Boga H,  Kahindi JHP, Muigai A, Odee D & Mwenda GM 

(2011) Genetic diversity and s ymbiotic efficiency of legume nodulating bacteria 

from different land use system in Taita Taveta, Kenya. Trop subtrop Agro-

ecosystems 13: 109 – 118. 

Nakagawa Y, Sakane T & Yokota A (1996) Transfer of "Pseudomonas riboflavina" 

(Foster 1944), a gram-negative, motile rod with long-chain 3-hydroxy fatty acids, to 

Devosia riboflavina gen. nov., sp. nov., nom. rev. Int J Syst Bacteriol 46: 16 – 22. 

Naser SM, Thompson FL, Hoste B, Gevers, D, Dawyndt P, Vancanneyt M & Swings J 

(2005) Application of multilocus sequence analysis (MLSA) for rapid identification 

of Enterococcus species based on rpoA and pheS genes. Microbiology 151: 2141 

– 2150. 

Narra H & Ochman H (2006) Of what use is sex to bacteria? Curr Biol 16: 705 – 710. 

Nautiyal CS, Srivastava S & Chauhan PS (2008) Rhizosphere colonization: molecular 

determinant from plant-microbe coexistence perspective. Molecular mechanisms 

of plant and microbe coexistence (Nautiyal CS & Dion P, eds), pp. 99 – 123 . 

Springer-Verlag, Heidelberg. 

Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York. 

Nei M & Kumar S (2000) Molecular evolution and phylogenetics Oxford University 

Press, New York. 

Nene YL (2006) Indian pulse through the millennia. Asian Agri-History 10: 179 – 202  

Ngom A, Nakagawa, Y, Sawada, H, et al. (2004). A novel symbiotic nitrogen-fixing 

member of the Ochrobactrum clade isolated from root nodules of Acacia mangium. 

J Gen Appl Microbiol 50:17 – 27. 

Nobbe F & Hiltner L (1896) Inoculation of the soil for cultivating leguminous plants. US 

Patent 570813.  

Ochman H, Lawrence JG & Groisman EA (2000) Lateral gene transfer and the nature 

of bacterial innovation. Nature 405: 299 – 304. 

 



122 

 

Ollivier J, We ST, Bannert A, Hai B, Kastl EM, Meyer A, Su MX, Kleineidam K & 

Schloter M (2011) Nitrogen turnover in soil and g lobal change. FEMS Microbiol 

Ecol 78: 3 – 16. 

Oren A (2010) Concepts about phylogeny of microorganisms - an historical overview 

Molecular Phylogeny of Microorganisms (Oren A & Papke RT, eds), pp. 1 – 21. 

Caister Academic Press, Norfolk. 

Palys T, Nakamura LK & Cohan FM (1997) Discovery and c lassification of ecological 

diversity in the bacterial world: the role of DNA sequence data. Int J Syst Bacteriol 

47: 1145 – 1156. 

Patt TE, Cole GC & Hanson RS (1976) Methylobacterium, a new genus of facultatively 

methylotrophic bacteria. Int J Syst Bacteriol 26: 226 – 229. 

Perez-Ramírez ON, Rogel MA, Wang E, Castellanos ZJ & Martínez-Romero E (1998) 

Seeds of Phaseolus vulgaris bean carry Rhizobium etli. FEMS Microbiol Ecol 26: 

289 – 296. 

Perret X, Staehelin C & Broughton WJ (2000) Molecular basis of symbiotic promiscuity. 

Microbiol Mol Biol R 64: 180 – 201. 

Pritchard J, Stephens M & Donnelly P (2000) Inference of population structure using 

multilocus genotype data Genetics 155: 945 – 959. 

Rahman MM, Bakr MA, Mia MF, Idris KM, Gowda CLL, Kumar J, Deb UK, Malek MA & 

Sobhan A (2009) Legumes in Bangladesh. ICARDA, Patancheru, Andhra 

Pradesh, India.  

Ramírez-Bahena M, García-Fraile P, Peix A, Valverde A, Rivas R, Igual, J.M. , Mateos 

PF, Martínez-Molina E & Velázquez E (2008) Revision of the taxonomic status of 

the species Rhizobium leguminosarum (Frank 1879) Frank 1889AL, Rhizobium 

phaseoli Dangeard 1926AL and Rhizobium trifolii Dangeard 1926AL. R. trifolii is a 

later synonym of R. leguminosarum. Reclassification of the strain R. 

leguminosarum DSM 30132 (=NCIMB 11478) as Rhizobium pisi sp. nov. Int J Syst 

Evol Microbiol 58: 2484-2490. 

Rannala B & Yang ZH (1996) Probability distribution of molecular evolutionary trees: a 

new method of phylogenetic inference. J Mol Evol 43: 304 – 311 

 

Rashid MH, Satter MA, Uddin MI & Young JPW (2009) Molecular characterization of 

symbiotic root nodulating rhizobia isolated from lentil (Lens culinaris). EJEAFChe 

8: 602 – 612. 



123 

 

Rashid MH, Schäfer H, Gonzalez J & Wink M (2012) Genetic diversity of rhizobia 

nodulating lentil (Lens culinaris) in Bangladesh. Syst Appl Microbiol 35: 98 – 109. 

Redfield R (2001) Do bacteria have sex? Nat Rev Genet 2: 634 – 639. 

Risal CP, Djedidi S, Dhaka D, Ohkama-Ohtsu N, Sekimoto H & Yokoyama T (2012) 

Phylogenetic diversity and s ymbiotic functioning in mungbean (Vigna radiata) 

bradyrhizobia from contrast argo-ecological region of Nepal. Syst Appl Microbiol 

35: 45 – 53. 

Rivas R, García-Fraile P & Velázquez E (2009) Taxonomy of bacteria nodulating 

legumes. Microbiol Insights 2: 51 – 69. 

Rodríguez F, Oliver JF, Marín A & Medina JR (1990) The general stochastic model of 

nucleotide substitution. J Theor Biol 142: 485 – 501. 

Rogel MA, Ormeno-Orrillo E & Martinez Romero E (2011) Symbiovars in rhizobia 

reflect bacterial adaptation to legumes. Syst Appl Microbiol 34: 96 – 104. 

Ronquist F & Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference 

under mixed models. Bioinformatics 19: 1572 – 1574. 

Rosselló-Mora R & Amann R (2001) The species concept for prokaryotes. FEMS 

Microbiol Rev 25: 39 – 67. 

Rozas J, Sanchez-DelBarrio JC, Messeguer X & Rozas R (2010) DnaSP: DNA 

polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 

2496 – 2497. 

Saha BK, Chowdhury MAH & Rashid MH (2008) Effect of rhizobia and host cultivar on 

some biochemical constituents and yield of lentil. Int J Biores 4: 100 – 107. 

Saito N & Nei M (1987) The neighbor-joining method: a new method for reconstructing 

phylogenetic trees. Mol Biol Evol 4: 406 – 425. 

Santillana N, Ramírez-Bahena MH, García-Fraile P, Velázquez E & Zuniga D (2008) 

Phylogenetic diversity based on rrs, atpD, recA genes and 16S – 23S intergenic 

sequence analyses of rhizobial strains isolated from Vicia faba and Pisum sativum 

in Peru. Arch Microbiol 189: 239 – 247. 

Sarker A & Erskine W (2006) Recent progress in the ancient lentil. J Agr Sci 144: 19 – 

29. 

Satter MA (2001) Soil Microbiology. Agricultural research in Bangladesh in the 20th 

centtury (Mian MAW, Maniruzzaman FM, Satter MA, Miah MAA, Paul SK & Haque 

KR, eds), pp. 117 – 123. Bangladeh agricultural research council & Bangladesh 

academy of agriculture, Dhaka. 



124 

 

Sawada H, Ieki H, Oyaizu H & Matsumoto S (1993) Proposal for rejection of 

Agrobacterium tumefaciens and revised descriptions for the genus Agrobacterium 

and for Agrobacterium radiobacter and Agrobacterium rhizogenes. Int J Syst 

Bacteriol 43: 694 – 702. 

Schlüter PM & Harris SA (2006) Analysis of multilocus fingerprinting data sets 

containing missing data. Mol Ecol notes 6: 569 – 572. 

Schmidt HA, Petzold E, Vingron M & von Haeseler A (2003) Molecular phylogenetics: 

parallelized parameter estimation and quartet puzzling. J Parallel Distr Com 63: 

719 – 727. 

Scholla MH & Elkan GH (1984) Rhizobium fredii sp.nov., a f ast-growing species that 

effectively nodulates soybeans. Int J Syst Bacteriol 34: 484 – 486. 

Schuster ML & Coyne DP (1974) Survival mechanisms of phytopathogenic bacteria 

Ann Rev  phytopathol 12: 199 – 221. 

Segovia L, Young JPW & Martínez-Romero E (1993) Reclassification of American 

Rhizobium leguminosarum biovar phaseoli type I strains as Rhizobium etli sp. nov. 

Int J Syst Bacteriol 43: 374 – 377. 

Shandu JS & Singh S (2007) History and origin. Lentil: an ancient crop for modern 

times.   ( Shyam SY, David MN & Stevenson PC, eds), pp. 1 – 9. Springer, 

Dordrecht. 

Shimodaira H & Hasegawa M (1999) Multiple comparisons of log-likelihoods with 

applications to phylogenetic inference.  Mol Biol Evol 16: 1114 – 1116. 

Silva C, Vinuesa P, Eguiarte L, Souza V & Martínez-Romero E (2005) Evolutionary 

genetics and biogeographic structure of Rhizobium gallicum sensu lato, a widely 

distributed bacterial symbiont of diverse legumes.  Mol  Ecol 14: 4033 – 4050. 

Simmons MP, Bailey DC & Nixon KC (2000) Phylogeny reconstruction using duplicate 

genes.  Mol Biol Evol 17: 469 – 473. 

Skerman VBD, Mcgowan V & Sneath PHA (1980) Approved lists of bacterial names.  

Int J Syst Bacteriol 30: 225 – 420. 

Slattery JF & Pearce D (2002) Development of elite inoculant Rhizobium strains in 

southeastern Australia.  (Herridge D, ed), pp. 86 – 94. ACIAR, Australia. 

Smith AB (1994) Rooting molecular trees: problem and strategies.  Biol J Linn Soc 51: 

279 – 292. 

Somasegaran P & Hoben HJ (1994) Handbook for rhizobia: methods in legume-

rhizobium technology.  Springer, Heidelberg. 



125 

 

Sonnante G, Hammer K & Pignone D (2009) From the cradle of agriculture a handful of 

lentils:history of domestication.  Rendiconti Lincei 20: 21 – 37. 

Sprent JI (1994) Evolution and diversity in the legume-rhizobium symbiosis: chaos 

theory?  Plant Soil 161: 1 – 10. 

Sprent JI (2001) Nodulation in Legumes.  Royal Botanic Gardens, UK. 

Stepkowski T, Moulin L, Krzyzanska A, McInnes A, Law IJ & Howieson J (2005) 

European origin of Bradyrhizobium populations infecting lupins and serradella in 

soils of Western Australia and South Africa.  Appl Environ Microb 71: 7041 – 7052. 

Strain SR, Whittam TS & Bottomley PJ (1995) Analysis of genetic structure in soil 

populations of Rhizobium leguminosarum recovered from the USA and t he UK.  

Mol Ecol 4: 105 – 114. 

Swofford DL, Olsen GJ, Waddell P & HilliS DM (1996) Phylogenetic inference.  (Hillis 

DM, Moritz C & Mable BK, eds), pp. 407 – 514. Sinauer Associates, Sunderland, 

Massachusetts. 

Tamura K, Peterson D, Peterson N, Stecher G, Nei M & Kumar S (2011) MEGA5: 

molecular evolutionary genetics analysis using maximum likelihood, evolutionary 

distance, and maximum parsimony methods.  Mol Biol Evol 28: 2731 – 2739. 

Tavaré S (1986) Some probabilistic and statistical problems in the analysis of DNA 

sequences. Lectures on Mathematics in the Life Sciences (American 

Mathematical Society) 17: 57 – 86. 

Tegegn ND (2006) Genetic diversity and c haracterization of indigenous Rhizobium 

leguminosarum biovar viciae isolates of cool-season food legumes growth in the 

highlands of Ethiopia.  Thesis University of Putra,  Malaysia. 

Tian CF, Young JPW, Wang ET, Tamimi SM & Chen WX (2010) Population mixing of 

Rhizobium leguminosarum bv. viciae nodulating Vicia faba: the role of 

recombination and lateral gene transfer.  FEMS Microbiol Ecol 73: 563 – 576. 

Tian CF, Zhoub YJ, Zhanga YM et al., (2012) Comparative genomics of rhizobia 

nodulating soybean suggests extensive recruitment of lineage-specific genes in 

adaptations.  P Natl Acad Sci USA. 

Toklu F, Karakoy T, Hakli E, Bicer T, Brandolini A, Kilian B & Özkan H (2009) Genetic 

variation among lentil (Lens culinaris Medik) land races from Southeast Turkey.  

Plant Breeding 128: 178 – 186. 

Unkovich MJ & Pate JS (2000) An appraisal of recent field measurements of symbiotic 

N2 fixation by annual legumes.  Field Crops Res 65: 211 – 228. 

http://www.cmb.usc.edu/people/stavare/STpapers-pdf/T86.pdf�
http://www.cmb.usc.edu/people/stavare/STpapers-pdf/T86.pdf�


126 

 

Urakami T, Araki H, Oyanagi H, Suzuki KI & Komagata K (1992) Transfer of 

Pseudomonas aminovorans (den Dooren de Jong 1926) to Aminobacter gen. nov. 

as Aminobacter aminovorans comb. nov. and description of Aminobacter 

aganoensis sp. nov. and Aminobacter niigataensis sp. nov. Int J Syst Bacteriol 42: 

84 – 92. 

Valverde A, Igual JM, Peix A, Cervantes E & Velazquez E (2006) Rhizobium lusitanum 

sp. nov. a bacterium that nodulates Phaseolus vulgaris.  Int J Syst Evol Micr 56: 

2631 – 2637. 

Van de Peer Y (2003) Phylogeny inference based on distance methods.  (Salemi M & 

Vandamme AM, eds), pp. 101 – 119. Cambridge University Press, Cambridge. 

Vandamme AM (2009) Basic concept of molecular evolution. The phylogenetic 

handbook: A practical approach to the analysis and hypothesis testing (Lamey P, 

Salemi M & Vandamme AM, eds), pp. 3 – 29. Cambridge University press, 

Cambridge. 

Versalobic J, Koeuth T & Lupski JR (1991) Distribution of repetitive DNA sequences in 

eubacteria and application to fingerprinting of bacterial genome.  Nucleic Acids 

Research 19: 6823 – 6831. 

Vessey JK (2004) Benefits of inoculating legume crops with rhizobia in the Northern 

Great Plains.  Crop Management, doi: 10.1094 / CM-2004-0301-04-RV.   

Vincent JM (1970) A Manual for the Practical Study of Root-Nodule Bacteria, Blackwell, 

Oxford. 

Vinuesa P, Silvaa C, Wernerb D & Martı´nez-Romero E (2005) Population genetics and 

phylogenetic inference in bacterial molecular systematics: the roles of migration 

and recombination in Bradyrhizobium species cohesion and delineation. Mol Phylo 

Evol 34: 29 – 54. 

Wang ET, Rogel MA & García-de los Santos A (1999) Rhizobium etli bv. mimosae, a 

novel biovar isolated from Mimosa affinis. Int J Syst Evol Micr 49: 1479 – 1491. 

Wang ET, van Berkum P, Beyene D, Sui XH, Dorado O, Chen WX & Martinez-Romero 

E (1998) Rhizobium huautlense sp. nov., a symbiont of Sesbania herbacea that 

has a close phylogenetic relationship with Rhizobium galegae.  Int J Syst Evol 

Micr 48: 687 – 699. 

Wang L, Gruber S & Claupein W (2012) Effect of sowing date and variety on yield and 

weed populations in a lentil-barley mixture.  J Agril Sci In press: 1 – 10. 

Weisburg WG, Barns SM, Pelletier DA & Lane D J (1991) 16S ribosomal DNA 

amplification for phylogenetic study.  J Bacteriol 173: 697 – 703. 



127 

 

Wernegreen JJ, Harding EE & Riley MA (1997) Rhizobium gone native: unexpected 

plasmid stability of indigenous R. leguminosarum.  P  Natl  Acad  Sci  USA 94: 

5483 – 5488. 

Wernegreen JJ & Riley MA (1999) Comparison of the evolutionary dynamics of 

symbiotic and housekeeping loci: a c ase for the genetic coherence of rhizobial 

lineages.  Mol Biol Evol. 16: 98 – 113. 

White LO (1972) The taxonomy of the crown-gall organism Agrobacterium tumefaciens 

and its relationship to rhizobia and other agrobacteria. J Gen Microbiol 72: 565 – 

574. 

Wielbo J, Marek-Kozaczuk M, Kidaj D & Skorupska A (2011) Competitiveness of 

Rhizobium leguminosarum bv. trifolii Strains in mixed inoculation of clover 

(Trifolium pratense).  Pol J  Microbiol 60: 43 – 49. 

Willems A (2006) The taxonomy of rhizobia: an overview.  Plant Soil 287: 3 – 14. 

Wink M (2007) Systematics.  Raptor Research and Management Technique (Bird DM & 

Bildstein KL, eds), pp. 57 – 72.  Hancock House Publishers, Surrey. 

Woese CR & Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the 

primary kingdoms.  Proc Natl Acad Sci USA 74: 5088 – 5090. 

Woese CR, Stackebrandt E, Weisburg WG et al., (1984) The phylogeny of purple 

bacteria: The alpha subdivision.  System Appl Microbiol 5: 315 – 326. 

Wolde-Meskel E, Terefework Z, Frostegård A & Lindstrom K (2005) Genetic diversity 

and phylogeny of rhizobia isolated from agro-forestry legume species in southern 

Ethiopia Int J Syst Evol Micr 55: 1439 – 1452. 

Yabuuchi E, Kosako Y, Oyaizu H, Yana I, Hotta H, Hashimoto Y, Ezaki T & Arakawa M 

(1992) Proposal of Burkholderia gen. nov. and transfer of seven species of the 

genus Pseudomonas homology group II to the new genus, with the type species 

Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol. 

Immunology 36: 1251 – 1275. 

Young JM, Kuykendall LD, Martinenez-Romero E, Kerr A & Sawada H (2001) A 

revission of Rhizobium  (Frank 1889), with an emended description of the genus , 

and the inclussion of all species of Agrobacterium (Conn 1942) and Allorhizobium 

undicola (de Lajudie et al.1998) as new combinations: Rhizobium radiobacter, R. 

rhizogenes, R. rubi, R. undicola and R. vitis.  Int J Syst Evol Micr 51: 89 – 103. 

Young JPW (1996) Phylogeny and taxonomy of rhizobia. Plant Soil 186: 45 – 52. 

Young JPW & Haukka K (1996) Diversity and phylogeny of rhizobia.  New Phytol 133: 

87 – 94. 



128 

 

Young JPW & Wexler M (1988) Sym plasmid and chromosomal genotypes are 

correlated in field populations of Rhizobium leguminosarum.  J Gen Microbiol 134: 

2731 – 2739. 

Zakhia F, Jeers H, Willems A, Gillis M, Dreyfus B & de Laj udie P (2006) Diverse 

bacteria associated with root nodules of spontaneous legumes in Tunisia and first 

report for nifH-like gene within the genera Microbacterium and Starkeya.  Microbial 

Ecol 51: 375 – 393. 

Zeze A, Mutch LA & Young JPW (2001) Direct amplification of nodD from community 

DNA reveals the genetic diversity of Rhizobium leguminosarum in soil.  Environ 

Microbiol 3: 363 – 370. 

Zhang XX, Kosier B & Priefer UB (2001) Genetic diversity of indigenous Rhizobium 

leguminosarum bv. viciae isolates nodulating two different host plant during soil 

restoration with alfalfa.  Mol Ecol 10: 2297 – 2305. 

Zohary D & Hopf M (1993) Domestications of plants in the Old World: the origin and 

spread of cultivated plants in West Africa, Europe and the Nile Valley. Clarendon 

Press, Oxford. 

Zohary D & Hopf M (2000) The domestication of plants in the Old World. Oxford 

University Press. 

Zuckerkandl E & Pauling L (1965) Molecules as documents of evolutionary history.  J 

Theor Biol 8: 357-366. 

Zurkowski W & Lorkiewicz Z (1976) Plasmid deoxyribonucleic acid in Rhizobium trifolii.  

J Bacteriol 128: 481 – 484. 

 

 

 
 
 
 
 
 
 
 
 
 
 



129 

 

6. Appendixes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



0.1

BLR 105
BLR 29
BLR 450.93
BLR 122
BLR 160
BLR 33
BLR 127
BLR 260.97
BLR 139
BLR 100
BLR 174
BLR 27
BLR 59
BLR 87
BLR 28
BLR 41
BLR 137
BLR 9

R. etli 12a3 (FN433083)
R. etli SCAU18 (FJ785221)

R. etli SCAU46 (FJ785220)
BLR 98
Rhizobium etli CFN42T (U28916)
R. etli symbiovar mimosae Mim7 (DQ648575)
BLR 57
BLR 58
R. etli CIAT613 (AF313905)

BLR 153
BLR 154

BLR 99
BLR 175
BLR 2280.90

BLR 129
BLR 195
BLR 235
R. etli CCBAU65830 (EU618034)

BLR 62
R. etli PEPSM15 (DQ196417)
R. etli RP368 DQ406706

0.94

R. leguminosarum ICMP14642 (AY491062)
R. leguminosarum symbiovar  viciae ATCC1004T(U29386)

R. leguminosarum RPVF18 (GQ863496)
R. leguminosarum symbiovar trifolii Len 4 (FJ593639)
R. leguminosarum CCBAU65761 EU618030
R. leguminosarum CCNWXJ0177 (FJ449680)

R. leguminosarum V6 (GU306144)
0.90

R. hainanense I66T (U71078)
R. miluonense CCBAU41251T (EF061096)1
R. Rhizogenes IFO13257T(D14501)

1
1

R. etli CIAT 652 (NC 010994)
R. pisi DSM30132T(AY509899)
R. fabae CCBAU33202 (DQ835306)

1

BLR 281
R. huautlense SO2T(AF025852)
BLR 288
BLR 299

R. cellulosilyticum ALA10B2T(DQ855276)
R. galegae LMG6214 T (X67226)  
R. vignae CCBAU05176T(GU128881)1

0.94

M. loti LMG6125 (X67229)
R. ciceri  (U07934)

1

M. huakuii IAM14158 (D12797)
1

R. giardinii H152T (U86344)
R. herbae CCBAU01209 (GU565531)

R. giardinii CCBAU45226 (GU565533)
BLR 12

1

BLR 46
R. radiobacter LMG 196 (X67223)0.99

R. Rubi IFO13261T (D14503)1

0.93

E. fredii LMG6217T(X67231)
E. meliloti LMG6133T(X67222)

1
BLR 39

Ensifer sp T173T (EU928871)
1

0.93

R. mesosinicum CCBAU25010T(DQ100063)
R. mesosinicum CCBAU41044 (AY395697)

1

B. japonicum ATCC10324T (U69638)
B. yuanmingense B071 (AF193818)

Appendix 1. Bayesian tree based on 16S rRNA gene partial sequences. Posterior
probability values shown when ≥ 0.90. Abbreviations used: BLR: Bangladeshi lentil
rhizobia., R: Rhizobium, E: Ensifer, B: Bradyrhizobium, M: Mesorhizobium
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Appendix 2. Bayesian tree based on recA gene partial sequences. Posterior
probability values shown when ≥ 0.90. Abbreviations used: BLR: Bangladeshi lentil
rhizobia., R: Rhizobium, E: Ensifer, B: Bradyrhizobium, M: Mesorhizobium
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Appendix 3. Bayesian tree based on atpD gene partial sequences. Posterior
probability values shown when ≥ 0.90. Abbreviations used: BLR: Bangladeshi lentil
rhizobia., R: Rhizobium, E: Ensifer, B: Bradyrhizobium, M: Mesorhizobium
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Appendix 4. Bayesian tree based on glnII gene partial sequences. Posterior
probability values shown when ≥ 0.90. Abbreviations used: BLR: Bangladeshi lentil
rhizobia., R: Rhizobium, E: Ensifer, B: Bradyrhizobium, M: Mesorhizobium
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Appendix 5. Bayesian tree based on the concatenated partial sequences of 16S-atpD-
recA genes. Posterior probability values shown when ≥ 0.90. Abbreviations used: BLR:
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Appendix 6. Bayesian tree based on the concatenated partial sequences of
16S-atpD-recA-glnII genes. Posterior probability values shown when ≥ 0.90.
Abbreviations used: BLR: Bangladeshi lentil rhizobia., R: Rhizobium, E: Ensifer,
B: Bradyrhizobium, M: Mesorhizobium
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Appendix 7. Bayesian tree based on nodA gene partial sequences. Posterior
probability values shown when ≥ 0.90. Abbreviations used: BLR: Bangladeshi lentil
rhizobia., R: Rhizobium, E: Ensifer, B: Bradyrhizobium, M: Mesorhizobium
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Appendix 8. Bayesian tree based on nodC gene partial sequences. Posterior
probability values shown when ≥ 0.90. Abbreviations used: BLR: Bangladeshi lentil
rhizobia., R: Rhizobium, E: Ensifer, B: Bradyrhizobium, M: Mesorhizobium
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Appendix 9. Bayesian tree based on nodD gene partial sequences. Posterior
probability values shown when ≥ 0.90. Abbreviations used: BLR: Bangladeshi
lentil rhizobia., Rhizobium, E: Ensifer, B: Bradyrhizobium, M: Mesorhizobium
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Appendix 10. Bayesian tree from partial sequences of 16S rRNA genes. Posterior
probability values shown when ≥ 0.90. Abbreviations: GLR = German lentil
rhizobia, TLR = Turkish lentil rhizobia, SLR = Syrian lentil rhizobia, R = Rhizobium,
Rlv = R. leguminosarum symbiovar viciae.
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Appendix 11. Bayesian tree from partial sequences of recA gene. Posterior
probability values shown when ≥ 0.90. Abbreviations: GLR = German lentil
rhizobia, TLR = Turkish lentil rhizobia, SLR = Syrian lentil rhizobia, R = Rhizobium,
Rlv = R. leguminosarum symbiovar viciae, I, II, III, IV = lineages , a – f = sub-
lineages within lineage IV.
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Appendix 12. Bayesian tree from partial sequences of atpD gene. Posterior
probability values shown when ≥ 0.90. Abbreviations: GLR = German lentil rhizobia,
TLR = Turkish lentil rhizobia, SLR = Syrian lentil rhizobia, R = Rhizobium, Rlv = R.
leguminosarum symbiovar viciae, I, II, III, IV = lineages , a – f = sub-lineages within
lineage IV.
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Appendix 13. Bayesian tree from partial sequences of glnII gene. Posterior
probability values shown when ≥ 0.90. Abbreviations: GLR = German lentil rhizobia,
TLR = Turkish lentil rhizobia, SLR = Syrian lentil rhizobia, R = Rhizobium, Rlv = R.
leguminosarum symbiovar viciae, I, II, III, IV = lineages , a – f = sub-lineages within
lineage IV.
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Appendix 14. Bayesian tree from concatenated partial sequences of recA-atpD-glnII
genes. Posterior probability values shown when ≥ 0.90. Abbreviations: GLR = German
lentil rhizobia, TLR = Turkish lentil rhizobia, SLR = Syrian lentil rhizobia, R =
Rhizobium, Rlv = R. leguminosarum symbiovar viciae, I, II, III, IV = lineages , a – f =
sub-lineages within lineage IV.
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Appendix 15. Bayesian tree from partial nodC gene sequences. Posterior
probability values shown when ≥ 0.90. Abbreviation: GLR = German lentil
rhizobia, TLR = Turkish lentil rhizobia, SLR = Syrian lentil rhizobia, BLR =
Bangladeshi lentil rhizobia, Rlv = R. leguminosarum symbiovar viciae, Rl = R.
leguminosarum, A – E = nodulation gene group from German, Turkish and
Syrian isolates, I – II = nodulation gene group from Bangladeshi isolates.

0.2

R. leguminosarum RVS03

GLR14

TLR8

GLR2

TLR7

Rhizobium sp BLR175

TLR2

GLR49

Rlv CCBAU71124

Rlv PEVF08

TLR3

Rlv VF253

Rhizobium sp BLR26

Rlv CCBAU83401

TLR14

GLR45

Rhizobium sp BLR235

Rhizobium sp BLR62

SLR4

Rhizobium sp BLR139

Rlv 3841

GLR11

Rhizobium sp BLR9

Rhizobium sp BLR127

GLR17

Rlv RMVP07

R. leguminosarum PEVF10

TLR10

GLR10

GLR8

TLR5

GLR5

SLR2

GLR16

SLR8

GLR23

Rlv LEN4

GLR50

GLR25

Rhizobium sp BLR195

SLR7

Rlv CVIII14

GLR22

Rlv CCBAU71205

Rlv viciae

GLR46

GLR13

Rhizobium sp BLR174

PEVF03
GLR40

Rlv BIHB1164

GLR33
GLR34

Rlv PEVF01

TLR11

Rhizobium sp BLR153

SLR3

GLR27

GLR7

Rhizobium sp BLR98

SLR5

Rlv BIHB1160

GLR1

Rlv PEVF05

Rlv BIHB1157

TLR12

TLR9

0.99

0.96

1
0.99

0.99

1

1

0.98

0.98

0.98

1

0.98

1

0.99

1

0.97

1

1

0.99

0.99

0.95

1

1

0.91

0.98

0.98

0.98

0.96

I

II

A

B

D

E

C

D

144



Appendix 16. Bayesian tree from partial nodD gene sequences. Posterior
probability values shown when ≥ 0.90. Abbreviation: GLR = German lentil
rhizobia, TLR = Turkish lentil rhizobia, SLR = Syrian lentil rhizobia, BLR =
Bangladeshi lentil rhizobia, Rlv = R. leguminosarum symbiovar viciae, Rl = R.
leguminosarum, A – E = nodulation gene group from German, Turkish and
Syrian isolates, I – II = nodulation gene group from Bangladeshi isolates.
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