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Abstract

Mammalian signal transduction pathways are highly integrated within extended net-
works, with crosstalk emerging in space and time. This dynamic circuitry is depen-
dent on changing activity states for proteins and organelles. Network structures
govern specificity of cellular responses to external stimuli, including proliferation
and cell death. Loss of regulation virtually underlies all disease. However, while the
contributions of individual components to phenotype are mostly well understood,
systematic elucidation for the emergence or loss of crosstalk and impact on pheno-
type remains a fundamental challenge in classical biology that can be investigated
by systems biology. To that end, we established a mathematical modeling platform,
at the interface between experimental and theoretical approaches, to integrate prior
literature knowledge with high-content, heterogeneous datasets for the non-intuitive
prediction of adaptive signaling events.

In the first part of this work, we investigated high-content microscopy datasets of
morphological, bio-energetic and functional features of mitochondria in response to
pro-apoptotic treatment in MCF-7 breast cancer cells. Data pretreatment techniques
were used to unify the heterogeneous datasets. Using fuzzy logic, we established a
generalized data-driven modeling formalism to model signaling events solely based
on measurements, capable of high simulation accuracy via non-discrete rule sets.
Employing neural networks, a generalized fuzzy logic system, i.e. its rules and mem-
bership functions, could be parameterized for each potential signaling interaction.
An exhaustive search approach identified models with least error, i.e. the most re-
lated signaling events, and predicted a hierarchy of apoptotic events, in which upon
activation of pro-apoptotic Bax, mitochondrial fragmentation propagates apopto-
sis, which is consistent with reported literature. Hence, we established a predictive
approach for investigation of protein and organelle interactions utilizing cell-to-cell
heterogeneity, a critical source of biologically relevant information.

In the second part of this work, we aimed to identify network evolution in the topol-
ogy of MAPK signaling in the A-375 melanoma cell line. To that end, the modeling
method was extended to incorporate temporal and topological structure from phos-
phorylation profiles of key MAPK intermediates treated with different pharmacolog-
ical inhibitors and acquired over 96 hours. To increase prediction power, a parameter

reduction strategy was developed to identify and fix parameters with lowest contri-



bution to model performance. Therefore, training datasets were bootstrapped and
signatures of deviation in flexibility and accuracy were calculated. This novel strat-
egy achieved an optimal set of free parameters. Finally, a reduced multi-treatment
model encoding the behavior of the full MAPK dataset was systematically trained to
a sequentially increasing subset of time points, enabling time-defined identification
of discrepancies in reported vs. acquired network topology. To that end, an objective
function for fuzzy logic model optimization was implemented, which accounted for
time-defined model training. Analysis led to the identification of emerging discrepan-
cies between model and data at specific time points, thus characterizing a potential
network rearrangement upstream of MAPK kinase MEK]1, consistent with studies
reporting increased resistance to apoptosis exhibited by A-375 melanoma cell line.

Furthermore, this approach was benchmarked against a recently published fuzzy-
logic-based analysis of protein signals in HT-29 human colon carcinoma cells. Our
method showed high accuracy and ability to be readily trained to additional datasets
for the elucidation of signaling evolution.

Taken together, we have developed a data-derived modeling formalism to eluci-
date non-linear signaling from high-content heterogeneous datasets. We report a
hierarchy of morphological and functional features of mitochondrial regulation dur-
ing apoptosis in MCF-7 breast cancer cell line. We further developed the modeling
approach to incorporate temporal and topological structure, thereby enabling eluci-
dation of network evolution and providing a means to facilitate understanding of the
mechanisms that grant melanoma its molecular plasticity. Finally, we identified a
potential signaling rearrangement specific in A-375 melanoma cell line and provided
a quantitative measure of interest as treatment target of each signaling intermediate

over time.
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Zusammenfassung

Signaltransduktionswege in Sdugetieren sind integriert in komplexe Netzwerke mit
Wechselwirkungen in Raum und Zeit. Diese dynamischen Kreisldufe sind abhéngig
von dem sich stindig dndernden Aktivierungsstatus der Proteine und Organellen.
Die Struktur der Netzwerke bestimmt die spezifische Wirkung der Zellantwort auf
externe Signale, einschlieBlich der Signale fiir Wachstum und Apoptose. Ein Verlust
dieser Regulierungsfahigkeit ist der Grund fiir praktisch jede Krankheit. Wahrend
der individuelle Beitrag einzelner Komponenten zum Zellphdnotyp oft gut erforscht
ist, bleibt die systematische Aufklirung von Entstehen und Verschwinden der Si-
gnalwegwechselwirkungen und der Einfluss auf den Zellphdnotyp eine Herausfor-
derung fiir die biologische Forschung, die mit Systembiologie beantwortet werden
kann. Dafiir haben wir eine mathematische Modelling-Plattform an der Schnittstelle
zwischen theoretischen und experimentellen Ansétzen erstellt, Literaturwissen mit
heterogenen, sogenannten high-content-Datensétzen kombiniert, um nicht-intuitive
Vorraussagen iiber adaptive Signalantworten zu treffen.

Im ersten Teil dieser Arbeit wurden high-content-Mikroskopiedaten von morpho-
logischen, bio-energetischen und funktionalen Eigenschaften der Mitochondrien als
Reaktion auf die Behandlung der Brustkrebszelllinie MCF-7 mit einem Apotose-
signal untersucht. Die Daten wurden vorbehandelt, um die Heterogenitiat der Da-
tensétze auszugleichen. Aufbauend auf dem Verfahren der sogenannten fuzzy logic
wurde ein datenfokussierter Modellierungsformalismus erstellt, um den Signalingab-
lauf nur auf Messungen basierend zu simulieren. Dieser Ansatz ermoglicht eine hohe
Simulationsgenauigkeit mit einem nicht-diskreten Regelsatz. Mit neuronalen Netzen
konnte ein generalisiertes Fuzzy-Logic-System, d.h. Regeln und Zugehorigkeitsfunk-
tionen, fiir jede mogliche Signalwechselwirkung parametrisiert werden. Mittels ei-
ner vollstdndigen Durchsuchung aller moglichen Beziehungskombinationen, kénnen
die Modelle mit den kleinsten Fehlern, d.h. den dhnlichsten Signalwechselwirkungen
identifiziert werden und eine Rangfolge der Geschehnisse im Apoptose-Signalweg
vorrausgesagt werden: nach Aktivierung des pro-apoptotischen Bax, verbreitet die
Mitochondrichondrien-Fragmentierung Apoptose, eine Vorraussage die zur bestehen-
den Literatur konform ist. Es wurde also ein Methode etabliert zur Erforschung von
Protein- und Organellen-Wechselwirkungen, mit der Vorraussagen getroffen werden
kénnen und die die Zell-zu-Zell-Variation als entscheidende Quelle fiir biologisch re-

levante Einsichten verwendet.
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Im zweiten Teil dieser Arbeit wurde die Evolution der Topologie des MAPK-
Signalnetzwerkes in der Melanom-Zelllinie A-375 untersucht. Dafiir wurde die Model-
lierungsmethode um die zeitliche und topologische Struktur von Phosphorylierungs-
profilen der Schliissel-Signal-Glieder von MAPK erweitert, und iiber 96 Stunden
nach Behandlung mit verschiedenen pharmakologischen Inhibitoren gemessen. Um
die Vorraussage zu verbessern, wurde eine Strategie zur Reduzierung der Parameter
entwickelt, so dass die Parameter mit geringstem Beitrag zur Modellverdnderung
identifiziert und fixiert werden konnten. Dafiir wurden Training-Datenséitze mit der
statistischen Bootstrap-Methode erstellt und Charakteristika der Verédnderung in
Flexibilitdt und Genauigkeit des Modelles untersucht. Mit dieser neuartigen Strate-
gie wurden optimale Parametersétze von freien Parametern erreicht. Zuletzt wurde
ein Multi-Behandlungs-Modell, das das Verhalten des ganzen MAPK-Datensatzes
beschreibt, systematisch gegen eine Untermenge der Zeitpunkte trainiert, so dass
zeitlich definiert Unterschiede zwischen vorrausgesetzten und gemessenen Netzwerk-
Topologien identifiziert werden konnten. Zu diesem Zweck wurde eine Zielfunktion
fiir die Optimierung des Fuzzy-Logic-Modell implementiert, die das zeitlich definierte
Modelltraining beriicksichtigt. Analyse erlaubte Nichtiibereinstimmungen von Mo-
dell und Daten zu bestimmten Zeitpunktion aufzuzeigen, und damit eine mdogliche
Netzwerk- Reorganisation oberhalb der MAPK-Kinase MEK1, zu charakterisieren.
Dieser Befund stimmt mit Studien iiberein, die erhéhte Resistenz gegen Apoptose
der Zelllinie A-375 beschreiben.

Desweiteren wurde dieser Ansatz gegen eine kiirzlich publizierte fuzzy-logic-basierte
Analyse von Proteinsignalen in der menschlichen Dickdarmkarzinom Zelllinie HT-29
ge-benchmarkt. Unsere Methode zeigte hohe Prézision und die Fahigkeit zur Anpas-
sung an weitere Datensétze zum Erkenntnisgewinn {iber Signalling.

Insgesamt wurde ein datenbezogener Modellierungsformalismus entwickelt, um
nicht-lineare, heterogene Signaling-Datensétze von high-content-Messungen zu er-
klaren. Wir beschreiben eine Rangordnung von morpholoigschen und funktionalen
Eigenschaften der Mitochondrien-Regulierung wéhrend der Apoptose in der Brust-
krebszelllinie MCF-7. Desweiteren haben wir einen Modellierungsansatz entwickelt,
der zeitlich und topologische Strukturen integrieren kann, so dass Erkenntnisse zu
Netzwerk-Evolution bewonnen werden kénnen und eine Messmethode zum Verste-
hen der Mechanismen, die das Wachstum von Melanoma und seine Verformbar-
keit ermoglicht. Schlussendlich wurde mogliche spezifische Netzwerk- Reorganisation
in der Melanoma-Zelllinie A-375 aufgezeigt und ein quantitative Messmethode ent-
wickelt, von Interesse als Angriffspunkt fiir Behandlungen fiir jedes einzelne Signal-

Zwischenglied tber die Zeit.
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Introduction

1.1 Signal Transduction of life and death

pathways and its role in cancer

1.1.1 Programmed cell death & mitochondria

One million cells die every second in the human body [Green, 2011]. They die
for a reason, by a mechanism called apoptosis, which is essential for success-
ful embryonic development and the maintenance of normal tissue homeostasis.
Apoptosis is a form of programmed cell death, i.e. a genetic and biochem-
ical pathway of cell death that does not produce an inflammatory response
and is mediated by an intracellular program. Specifically, to be termed apop-
tosis a program of cell death needs to culminate in cellular shrinkage with
nuclear chromatin condensation and nuclear fragmentation. Disruption to the
homeostasis of the programmed cell death pathways is recognized as a ma-
jor factor in the pathogenesis of many diseases such as cancer, either via loss
of pro-apoptotic or overexpression of anti-apoptotic proteins. Furthermore,
anti-cancer drugs achieve their effect by activating apoptosis [Fadeel et al.,
1999, Spencer and Sorger, 2011]. Apoptosis, however, is not the only type of
programmed cell death. In response to either internal or external stimuli, the
response of the cell is mediated by a cascade of coupled pro-life and pro-death
pathways, such as apoptosis, also known as Type I cell death, autophagy, also
known as Type II Cell death and some recently discovered mechanisms [Green,
2011]. A number of these mechanisms are not yet fully understood [Maiuri
et al., 2007] (see figure 1.1). Two main routes activate apoptosis, which will

be introduced straightaway: the extrinsic (death receptor) mediated pathway
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1.1 Signal Transduction of life and death pathways and its role in cancer

and the intrinsic (mitochondrial) pathway.

Extrinsic pathway of apoptosis The classical view of the Death Receptor
mediated apoptosis is that apoptosis is activated by death receptor ligands
of the so-called CD95 family, also known as FAS. The intracellular death do-
mains of the death receptors then recruit and activate adaptor molecules to
form the Death Inducing Signaling Complex (DISC) . The formation of the
DISC recruits amongst others a group of proteases called caspases. Caspases
are enzymes that naturally occur in an inactive state, and when activated be-
come principal mediators of programmed cell death. The caspases recruited
to the DISC, such as caspase 8, are called initiator caspases and become ac-
tive by undergoing a conformational change when forming the complex [Kober
et al., 2011]. In turn, initiator caspases activate effector caspases (e.g. caspase
3/7), which become active by being cleaved and can thereafter proteolytically
degrade up to 1000 different substrates within a cell [Green, 2011], thereby
performing the cell death program and ultimately killing the cell. Cell death
pathways can also be classified as being dependent or independent of caspases

(see figure 1.1).

Intrinsic pathway of apoptosis Intrinsic sources of stress such as ROS or
Ca2+ overload can cause mitochondrial dysfunction and eventually lead to
apoptosis [Desagher and Martinou, 2000]. In addition, the mitochondrial path-
way can be activated by viral infection, DNA damage and growth-factor depri-
vation [Youle and Strasser, 2008]. To that end, a necessary step is the release of
cytochrome c as a result of the outer mitochondrial membrane becoming perme-
able by triggering Mitochondrial Outer Membrane Permeabilization (MOMP).
Cytochrome ¢ binds to Apaf-1 to form the apoptosome and activate caspase 9,
which then activates effector caspases 3/6/7, resulting in a variety of morpho-
logical changes such as cell shrinkage, nuclear fragmentation and chromatin
condensation [Maiuri et al., 2007] (see figure 1.2).

Mitochondria play a crucial role in extrinsic apoptosis as well, since activa-
tion of effector caspases leads to cleavage of BH3-only protein Bid. The C-
terminal of Bid is then called t-Bid; when activated, tBid is thought to inhibit
anti-apoptotic Bcl-2 family members, including Bcl-2 and Bel-xL, and directly
activate pro-apoptotic Bax and Bak to trigger Mitochondrial Outer Membrane

20



1 Introduction

Cellular stress

(lonizing radiation,
Death-receptor cytokine deprivation,
stimulation chemotherapeutic drugs)

BH3-only proteins

BIM
BID M BAD
— (O " NOXA wfosr: damage
& BMF () puma
o s

Lysosomes BAX/BAK o b
channels o8°
7/

Cathepsin B .
CathepsinD 7

~

. DD
. - RAIDD% :|P‘|ddosome

*.  Caspase-?
APAFT |,
Omi| o —{dA .
EndoG&L"o": 9% ® Cytochrome ¢ A
=< oo [ S — ‘.’
v %% g \ N
. o o A
Generallz‘ed AIF? @ A
proteolysis Nuclear Apoptosome &9
translocation &2 @7 effector

ﬁ Caspdses

Chromatin condensation
ROS production

DNA damage

Proteolysis

L 4

¥
Caspase-independent death Caspase-dependent death

Figure 1.1: Caspase-dependent and caspase-independent cell death pathways.
Two main pathways lead to cell death: the extrinsic and the intrinsic or mitochondrial
pathways. In the extrinsic pathways, an external signal triggers the cascade of reactions
that ultimately lead to cell death, whereas in the intrinsic pathway permeabilization of
the mitochondrial membrane (Mitochondrial Outer Membrane Permeabilization, MOMP)
leads to eflux of proteins, resulting in the assembly of a caspase-activating complex known as
apoptosome. Both pathways converge at the mitochondria. Several factors among the mito-
chondrial proteins that are released as a result of MOMP can promote caspase-independent
cell death, which can also result from stimuli that cause Lysosomal Membrane Permeabiliza-
tion (LMP), resulting in the release of cathepsin proteases into the cytosol. Such cathepsins
can also trigger MOMP, thereby stimulating the mitochondrial pathway of apoptosis. ROS:
Reactive Oxygen Species. Question marks point at mechanisms that are still not fully
understood. Figure adapted from [Maiuri et al., 2007].
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Figure 1.2: Mitochondrial control of programmed cell death. Mitochondria play a
crucial role in programmed cell death as different routes converge on them. In the center,
stimulation of CD95/Fas by its ligand leads to activation of the extrinsic pathway, in which
active caspases catalytically cleave protein Bid . The active, truncated product tBid then
translocates to mitochondria and activates Bax and Bak and further caspase activation. It
has been shown that the relative ratio of pro-apoptotic Bax and anti-apoptic Bcl-2 determine
the susceptibility of the cell to programmed cell death driven by mitochondria [Korsmeyer,
1999]. Whether and how the pore is formed remains a controversial topic in the field of cell
death research [Youle and Strasser, 2008]. The left-hand side shows prevention of apoptosis
by inhibiting pro-apoptotic protein Bad in presence of survival factors. In the intrinsic
pathway (right-hand side), growth factor withdrawal and other sources of stress such as
viral infection leads to activation of JNK [Ley et al., 2005] and pro-apoptotic proteins such
as Bim, in turn leading to inactivation of anti-apoptotic Bcl-2. Cartoon -but not the legend
text- extracted from www.cellsignal.com
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Permeabilization (MOMP) and thus release of pro-apoptotic factors including
cytochrome ¢ [Korsmeyer et al., 2000]. Thus, both pathways can converge at
mitochondria (see the center of figure 1.2). This means that in addition to the
very well established role in generation of adenosine triphosphate to be used by
the cell as chemical energy [McBride et al., 2006, mitochondria play a central
role in programmed cell death. Due to that, the author of "Means to an end:
apoptosis and other cell death mechanisms", a book of highly recommended
reading [Baehrecke, 2011], designates mitochondria "the suicide capsule of the
cell". For an extended review of mitochondria as the central control point of

apoptosis, the reader is referred to [Desagher and Martinou, 2000].

Function and morphology of mitochondria in disease and health Mito-
chondria are known to be the powerhouse of the cell, producing the majority
of the cells biochemical energy via a process termed oxidative phosphoryla-
tion [McBride et al., 2006]. After being degraded from nutrients, electrons
are carried by NADH and FADH2 to the electron transport chain sitting in
the inner mitochondrial membrane. There, electrons are passed along a se-
ries of respiratory enzyme complexes I-V located in the inner mitochondrial
membrane. The energy released by this electron transfer is used to pump
protons across the membrane. The resultant electrochemical gradient is ex-
pressed largely as a negative membrane potential of the order of 150-200 mV
to the cytosol. That potential A, enables another complex, adenosine 5'-
triphosphate (ATP) synthase, to synthesize the energy carrier ATP, which is
then transported to the cytosol [Saraste, 1999].

Channels, pumps and exchangers allow extracellular stimuli to induce increases
in cytoplasmic Ca?" concentration, that in turn induce specific cellular re-
sponses, e.g. contraction, secretion, proliferation or cell death [Rizzuto et al.,
2009]. Mitochondria have also been shown to play a pivotal role in calcium
signaling, as it has been shown that C'a®T accumulation at the mitochondria
contributes to shaping cytosolic C'a®*" fluctuation, which in turn modulates
the above-mentioned cellular functions [Brini, 2003]. It has been shown that
mitochondrial populations within the cell can change in number and morphol-
ogy during development, the cell cycle or when challenged with various toxic
conditions [Karbowski and Youle, 2003]. In addition, mitochondria have been

shown to regulate a number of other metabolic tasks [McBride et al., 2006].
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Damaged mitochondria also cause organ injury by several mechanisms, includ-
ing the diminished cellular energy status (energy stress), production of reactive
oxygen species (oxidative stress), disturbance of ionic balance, cytochrome c
release and induction of apoptosis. In turn, such alterations have been shown
to be linked to cancer, diabetes and myopathies [Kuznetsov and Margreiter,
2009].

Morphology is itself a cornerstone of mitochondrial function. Mitochondria
are dynamic organelles that move. In addition, they fuse and divide, becoming
a complex structure that can be seen as a network of (i) elongated and highly
interconnected filaments, (ii) fragmented units, or (iii) a combination of both.
The number and morphology of mitochondria within a cell are a function of
regulated rates of fusion and fission events [Sesaki and Jensen, 1999]. Further,
mitochondria dimensions change during the cell cycle and vary considerably in
size [Kennady et al., 2004] and interconnectivity. Mitochondrial architecture
and morphology are regulated by a family of GTPases, which induce mito-
chondrial outer membrane permeabilization [Karbowski and Youle, 2003]. As
introduced above, this in turn leads to eflux of pro-apoptotic proteins to the
cytosol and ultimately leads to cell death. In addition, although the exact
mechanism remains unknown, members of the Bcl-2 protein family have been
reported to become active during apoptosis and subsequently prevent mito-
chondrial fusion as shown widely in the literature (see e.g. [Karbowski et al.,
2004]) and reproduced by us (see figure 1.3). The role of Bcl-2 proteins dur-
ing cell death is further described in the following section. For an extended
review on the dynamics of mitochondrial morphology, please see [Karbowski
and Youle, 2003].

BCL2 family members & mitochondrial permeability transition The B-
cell lymphoma-2 (Bcl-2) family of proteins comprises in mammals at least 12
core proteins, which display a number of activities from inhibition to promo-
tion of apoptosis [Youle and Strasser, 2008]. The BH3 motif is common to
all proteins of the family. BH3-only proteins promote apoptosis by interacting
with and regulating the core Bel-2 proteins. In turn, the Bel-2 family strictly
controls the mitochondrial pathway of apoptosis. Although still not fully un-
derstood, the pro-apoptotic Bcl-2 family members BAX and BAK exhibit a

24



1 Introduction

3D-rendering

>

Zoomed-IN

pcDNA

_

tBid

Bnip3

tBid-mCherry Bnip3-mCherry
mito-GFP mitoGFP

Figure 1.3: BH3-only proteins regulate mitochondrial morphology changes. (A)
MCEF-7 cells were cotransfected with mito-mCherry and BH3-only proteins (tBid or Bnip3).
Images show that while control (pcDNA, mCherry alone) exhibited a network-like morpho-
logical state, cells expressing tBid or Bnip3 display a fragmented state. (B) Reprodution of
(A) is shown here, where MCF-7 stably expressing mito-GFP were transiently transfected
with tBid-mCherry or Bnip3-mCherry. The exact mechanism of mitochondrial morphol-
ogy regulation by BH3-only proteins is unknown [Karbowski et al., 2004]. Performance of
experiment and acquisition of high-resolution wide field images by Yara Reis

crucial role for inducing permeabilization of the outer mitochondrial membrane
and the subsequent release of apoptotic molecules e.g. cytochrome ¢ and DIA-
BLO -otherwise known as SMAC-. The above-mentioned anti-apoptotic effect
is then achieved by family members such as Bcl-2 and Bel-XL by inhibiting
BAX and BAK. The exact mechanisms of activation of pro-apoptotic Bax and
Bak is unclear: evidence exists that BH3-only members repress anti-apoptotic
members, which in turn inhibit Bax and Bak [Willis et al., 2007, Youle and
Strasser, 2008], while other models suggest direct activation of Bax and Bak
by BH3-only proteins [Youle, 2007, Youle and Strasser, 2008]. Subsequently,

Bax and Bak are thought to polymerize and form pores in the mitochondrial
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outer membrane, thereby triggering the release of the above-mentioned apop-
totic molecules. Nevertheless, the biochemical nature of such pores is not yet
fully understood; neither it is the induction by Bax and Bak of a change in
mitochondrial morphology to a fragmented state at the same time of, or im-

mediately after, cytochrome c release [Martinou and Youle, 2006].

1.1.2 Survival & the MAPK cascade

On the flip side of the cellular life and death decisions, processes such as cell pro-
liferation, differentiation and migration are regulated by the Mitogen-Activated
Protein Kinase (MAPK) cascade. Here, a signaling cascade is activated by
a broad spectrum of extracellular stimuli and regulates cell response through
transduction of cell-surface signals to the nucleus via phosphorylation of protein
kinases, which ultimately translocates to the nucleus to phosphorylate specifi-

cally targeted transcription factors, thereby directly regulating transcription.

The first step in the activation of the cascade is the binding of a stimulus to the
extracellular region of a receptor tyrosine kinase (RTK). Growth factor binding
has generally been shown to activate RTKs by inducing receptor dimerization,
although some receptors such as the insulin receptor have been shown to be
expressed on the cell surface as dimers [Ward et al., 2007]. Once activated, the
first substrates that RTKs phosphorylate are the receptors themselves and the
resulting phosphotyrosines function as sites for the assembly of downstream
signaling molecules that are then recruited to the receptor [Lemmon and Sch-
lessinger, 2010], such as adaptor protein Grb2, a guanine nucleotide exchange
protein such as Sos and a small GTP binding protein. When activated at the
receptor, such complex is able to phosphorylate the MAPK most upstream of

the cascade.

The cascade of signals was termed "mitogen-activated" because the first mem-
ber discovered, the extracellular signal-regulated kinase 1 (ERK1), is activated
in response to growth factors [Cargnello and Roux, 2011]. However, MAPKs
are involved in functions a priori paradoxical such as inflammation, apoptosis
and the stress response [Zhang and Liu, 2002]. In mammalian cells, the cascade

can be divided in three main routes that have been characterized. Each route
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is composed of at least three sequentially acting kinases: a MAPK, a MAPK
kinase (MAPKK) and a MAPKK kinases (MAPKKK). Currently at least 14
MAPKKKs, 7 MAPKKs and 12 MAPKSs have been identified in mammalian
cells (see table 1.1) [Zhang and Liu, 2002].

Table 1.1: Components of the MAPK pathways in mammalian cells. Table
extracted from [Zhang and Liu, 2002]

MAPKKK MAPKK MAPK
Raf-1, A-Raf, B-Raf, Mos, MEK1(MEKK1), ERK1, ERK2, p28a, p38b,
TAK1, MUK, SPRK, MST, MEK2(MKK?2), MEK5, p38g, p38d, JNKI, JNK2,

MEKK1, MEKK2, MEKK3, MKK3, MKK4, MKK6, JNK3, ERK3, ERK4, ERK 5
MEKK4, Tpl-2, ASK MKK7

Next, we review the routes in which said kinases have been classified, the

stimuli that activates them and the cellular response triggered.

ERK pathway ERK has been the best characterized MAPK. ERK1 and its
isoform ERK2 share 83% amino acid identity and are activated by growth
factors, including platelet-derived growth factor (PDGF), epidermal growth
factor (EFG), nerve growth factor (NGF) and insulin. Additional alternatively
spliced variants of ERK1 have been described which appear to have different
localization and tissue distribution [Cargnello and Roux, 2011].

All components of the ERK module are cytosolic in quiescent cells [Chen
et al., 1992]. Once activated by these ligands, ERK1/2 accumulates in the nu-
cleus and phosphorylates a large number of substrates (see figure 1.4), thereby
playing a crucial role in the control of cell proliferation. For instance, ERK
substrate c-Fos is associated to c-Jun upon phosphorylation to form AP-1
complexes [Whitmarsh and Davis, 1996, Cargnello and Roux, 2011]. AP-1 is
required for the expression of cyclin D1 [Shaulian and Karin, 2001]. In turn,
cyclin D1 is a protein that interacts with cyclin-dependent kinases and enables

(G1/S transition and cell cycle progression [Cargnello and Roux, 2011].

JNK pathway The JNK (also termed stress-activated protein kinase (SAPK))
signal transduction is implicated in several physiological processes (see fig-

ure 1.4) and is activated in response to various cellular stresses such as heat
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Growth Factors Stress, Cytokines Stress, Cytokines
Activators Cytokines Growth Factors, TGF-p  Growth Factors, Ceramides
MAPKKK Raf MEKKI1-4, MLKs MEKK1/4, MLKs
l ASK, TAKI1 ASK, TAKI
MAPKK MEKI1/2(MKK1/2) MKK3/6, MKK4 MKK4/7
MAPK ERK1/2 p38 JNK/SAPK

| | l

Substrates 90", MNK1/2 Hsp27, PLA2, MNK1/2,  c-Jun, ATF2

Ets, EIk1, Myc APKAP2, Myc, MSK-1 Elkl, DPC4
STATI1/3,ER Elk1, ATF-2,STATI p53, NFAT4
Cell Responses  Proliferation Proliferation Proliferation
Differentiation Differentiation Differentiation
Development Development Apoptosis

Inflammation
Apoptosis

Stress Response

Figure 1.4: Major MAPK signaling cascades in mammalian cells. Numerous
points of crosstalk are known that are not shown here to better illustrate the different
routes. Scheme extracted from [Zhang and Liu, 2002]

shock, ionizing radiaion, oxidative stress, DNA-damaging agents, cytokines,
UV irradiation, growth factor deprivation and, to a lesser extent, by growth
factors [Kyriakis and Avruch, 1996]. When activated, a large proportion of
JNK translocates to the nucleus and activates a range of transcription fac-
tors including p53 and ATF-2. The fact that not all active JNK translocates
to the nucleus suggests that there still are cytoplasmic substrates to be dis-
covered [Cargnello and Roux, 2011]. In addition, research on tissue-specific
knockout animals highlights that many tissue-specific roles of JNK have yet to
be elucidated [Bogoyevitch et al., 2010].

p38 The most important member of a third route of the MAPK pathway

is p38. Similar to JNK, p38 is strongly activated by stress stimuli and is

therefore also termed stress-activated protein kinase 2 (SAPK2). These stim-
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uli consist at least of environmental stress, inflammatory cytokines, oxidative
stress interleukin-1 and tumor necrosis factor alpha [Cuadrado and Nebreda,
2010]. At least four isoforms of p38 have been found, which can all be phospho-
rylated by the MAPK kinase MKK6 [Zhang and Liu, 2002|. These isoforms
are present in the nuclei of quiescent cells and have been shown to translocate
to the nucleus of cells subjected to the above-mentioned stresses; However, it
has also been shown that one of the isoforms preferentially accumulates in the
cytosol [Cuadrado and Nebreda, 2010]. The mechanism of translocation to
the nucleus remains elusive [Cargnello and Roux, 2011]. When activated, p38
plays a major role in a number of mechanisms (see figure 1.4), one of them

being production of pro-inflammatory cytokines.

Atypical MAPKs Recent studies have progressed into the function of other
groups of MAPKs, which are classically termed "atypical MAPKs". Amongst
others, the reason for such designation is that atypical kinases are organized
into classical three-tiered cascades [Cargnello and Roux, 2011]. A number of
other characteristics are not shared between atypical and traditional MAPKs.
For further insight along these lines, the reader is referred to [Coulombe and
Meloche, 2007].

Intertwined topology and complex dynamics The three main routes of
MAPK signaling described above are not isolated. In fact, mammalian p38
and JNK kinases have most of their activators shared at the MAP3K level, e.g.
MEKK1, MEKK4, ASK1, TAK1, MLK3 and TAOK1 (see figure 1.5). In ad-
dition, some MAP2K enzymes may activate both p38 and JNK (MKK4), while
others are more specific for either JNK (as it is the case of MKKT) or p38 (e.g.
MKKS3). Due to these interactions that constitute points of crosstalk, there
are very few stimuli that can elicit JNK activation without simultaneously ac-
tivating p38 or viceversa [Cargnello and Roux, 2011]. Although mostly studied
for their role in response to stress, the p38 kinases have also been shown to be
important in regulation of proliferation and survival. For instance, it has been
shown that p38a negatively regulates cell cycle progression at the G1/S and
G /M transitions by downregulation of cyclins [Thornton and Rincon, 2009].
The opposite has also been reported: in [Xia et al., 1995] the authors show that

concurrent inhibition of ERK and activation of JNK-p38 are crucial for induc-
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tion of apoptosis in PC-12 rat pheochromocytoma cells upon withdrawal of
nerve growth factor. Along these lines, and regarding the apoptotic pathways
previously introduced in section 1.1.1, it has also been shown that induction
of apoptosis by activation of the CD95 death receptor leads to activation of
caspase 8, which in turn led to activation of ERK1/2 and p38 MAPK activa-
tion [Kober et al., 2011]. Overall, the number of proteins which interact with
members of other cascades is large. This raises the following question: if one
ligand can activate different cascades through cross-signaling, how is the cell
able to trigger one specific response, instead of all of the responses regulated
by said cascades? We explore the answer to this question and further review

the mechanisms that can grant specificity of signaling in section 1.3.

In addition to its intertwined topology, another challenge hinders our un-
derstanding of the mechanisms regulating the MAPK cascade: its topology
appears to be highly flexible and modifies according to time and context. In-
deed, it has been reported that cell fate decisions are specified by the dynamic
ERK interactome. In [von Kriegsheim et al., 2009] the authors showed that
upon induction of differentiation, a number of proteins change their binding
to ERK, indicating that ERK dynamics and differentiation are regulated by
distributed control mechanisms rather than by a single master switch.

As a matter of fact, the MAPK signaling cascade has often been used as a
prototype to illustrate the lack of evidence as to how emerging networks are
regulated in space and time, specially taking into account the extensive cata-
logues of signaling network components which have been compiled to date [Kiel
and Serrano, 2011, Kholodenko and Kolch, 2008, Lemmon and Schlessinger,
2010, Kholodenko et al., 2010].

For instance, it has been shown that growth factor context determines the
topology of the MAPK signaling network and that the resulting dynamics
govern cell fate [Santos et al., 2007], but the mechanism for such ligand-
specific topological change is yet unknown. In addition, it has been shown
that receptor-activated proteins with inactivation processes that are growth-
factor-dependent but also -independent encode distinct physical properties into
transient and sustained ERK activation [Sasagawa et al., 2005].

Furthermore, depending on the cell type, the same growth factor can give
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rise to either transient or sustained ERK activation kinetics and responses to
perturbations, such as alterations of kinetic constants, could be different [Kiel
and Serrano, 2009]. All of this happens despite the fact that many of the
components of signal transduction pathways are present in the majority of the
cells [Pontén et al., 2009]. To understand the above-mentioned mechanisms
of signaling, the authors of [Kiel and Serrano, 2011] postulate the following

challenges:

o Analyzing the role of spatio-temporal signaling and the role of scaffolds in
RTKs activation potentially improved by the development of new imaging

tools

o Investigating the role of protein concentration and competition for sig-

naling

o Integrating alternative splicing into signaling pathways compiled in liter-

ature

e Improving our understanding of cell-type specific signaling and the dif-

ferences underlying development and differentiation

In conclusion, although our understanding of these mechanisms increases
rapidly, the complex and cell-type-dependent dynamics that regulate mitogenic

signaling have yet to be elucidated.

1.1.3 Cancer signaling

While mitogenic signaling is poorly understood in normal cells as introduced in
the previous section, the mechanisms which grant cancer cells its sustained pro-
liferative signaling are better established [Lemmon and Schlessinger, 2010]. To
date, 8 hallmarks have been described as reviewed in [Hanahan and Weinberg,
2011], which enable tumor growth and metastatic dissemination: sustaining
proliferative signaling, evading growth suppressors, resisting cell death, en-
abling replicative immortality, inducing angiogenesis, activating invasion and
metastasis, reprogramming of energy metabolism and evading immune destruc-
tion. The mechanisms that grant cancer cells the ability to sustain proliferative
signaling and to resist cell death are closely related to the work presented in

this thesis and hence will be further reviewed.
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Figure 1.6: Intracellular signaling networks regulate the operations of the cancer
cell. A complex integrated circuit consisting of four pathways regulates the operations of the
cancer cell. Proliferation and viability circuits have been introduced in section 1.1.1 and
1.1.2. Each of these pathways is connected to signals from the tumor microenvironment.
The figure addresses only a subset of hallmark capabilities of cancer cells and was extracted
from [Hanahan and Weinberg, 2011].

To maintain proliferative signaling, the majority of melanomas have been
shown to harbor somatic mutations in the kinase signal transduction pathways
RAS-RAF-MEK-MAPK and PI3K-AKT, which play a major role in regulation
of proliferation (see figure 1.6), as reviewed in [Davies and Samuels, 2010].
A representative example of prevalent activating mutation is BRAF, which
has been shown to be mutated in 50-70% of melanomas and in 80% of those
cases the specific mutation was V600E [Davies et al., 2002]. Activating muta-
tions affecting the structure of BRAF result in constitutive signaling through
the MAPK pathway [Davies and Samuels, 2010], which has been introduced
in section 1.1.2. Along these lines, mutations in PI3-kinase isoforms have
been detected in several tumor types, thereby hyperactivating the PI3-kinase
and Akt signaling circuitry. We discuss the advantages to tumor cells of ac-
tivating signaling at different intermediates in the context of their position in
the network in section 5.2.2. The prevalence of these mutations makes ki-
nase signal transduction pathways an attractive target for therapy. A strategy
with validated efficacy in preclinical studies relies on targeting BRAF with

small molecule inhibitors such as Sorafenib, which has been shown to inhibit
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the growth and survival of BRAF-mutant human melanoma cells [Karasarides
et al., 2004]. Nevertheless, Sorafenib has exhibited disappointing clinical re-
sults; on the other hand, new mutant-specific BRAF inhibitor PL.X4032, which
targets mutated BRAF V600E selectively, has exhibited clinical efficacy [Hana-
han and Weinberg, 2011]. In spite of that, resistance to treatment appeared
after 8 months by mechanisms not yet understood [Fisher et al., 2010]. As our
understanding of these details becomes increasingly sophisticated, it provides
an important context for therapeutically countering the effects of pathogenic

mutations in cancer [von Kriegsheim et al., 2009].

Another hallmark of cancer as reviewed in [Hanahan and Weinberg, 2011]
is the ability to resist cell death. Here, the authors state that apoptosis is
attenuated in those tumors that succeed in progressing to states of high-grade
malignancy and resistance to therapy. The apoptotic machinery has been in-
troduced in section 1.1.1, including the role of BCL2 family members and
their role in mitochondrial permeability transition. Along these lines, P53
is able to induce apoptosis by upregulating expression of BH3-only proteins,
which are members of the BCL2 family. Tumor cells circumvent apoptosis
through loss of P53, thereby eliminating the critical damage sensor from the
apoptosis-inducing machinery; in addition, a variety of other mechanisms such
as increasing expression of anti-apoptotic regulators -e.g. Bcl-2 and Bel-XL-

have been shown [Hanahan and Weinberg, 2011].

Anti-cancer drugs have been shown to achieve their effect by activating apop-
tosis [Fadeel et al., 1999]. However, it is difficult to anticipate whether a tumor
cell will or will not be sensitive to a pro-apoptotic stimulus or drug because
the importance of specific processes varies dramatically from one cell type to
the next; hence, multi-factorial, context-sensitive computational models will

impact drug discovery [Spencer and Sorger, 2011].
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1.2 Mathematical modeling of signal transduction

networks

1.2.1 Data-driven modeling

A paradox in systems biology is that while current technologies allow gathering
of high-throughput data, these large datasets by themselves often bring more
confusion than understanding [Janes and Yaffe, 2006]. To circumvent this
challenge, data-driven approaches build models based solely on analyzing the
data itself. The majority of these approaches are also termed reductionist, since
they are able to emphasize a reduced number of variables and their difference
in the data while not requiring any prior knowledge. They are also termed
descriptive approaches as opposed to predictive approaches, referring to the fact
that the impossibility to include prior knowledge rules out the possibility to test
hypothesis in the model, thereby limiting the prediction power (figure 1.7).
Such formalisms are e.g. clustering and principal component analysis (PCA).
An exception to that statement would be partial least square regression (PLSr),
a technique based on PCA which enables hypothesis testing at a fundamental
level. We next review the basic concepts of these well-established data-driven

techniques and their application to modeling of signal transduction.

PCA PCA is a mathematical algorithm that reduces the dimensionality of the
data while retaining most of the variation in the data set. In other words, it
summarizes one data set. Given a dataset with n dimensions, new dimensions
are calculated, i.e. the principal components. Once calculated, the principal
components have the key feature that their number is smaller than the number
of original variables, rendering the dataset intuitive to understand. Specifically,
principal components are determined from the eigenvectors of the covariance
matrix, where n eigenvectors can be calculated that represent the whole ma-
trix. Using the corresponding eigenvalues, the eigenvectors that capture the
most co-variation can be selected, in order to achieve a final space with a
reduced number of dimensions. Fach principal component is a combination
of eigenvalue and eigenvector. By projecting the experimental data onto the
principal components, these new dimensions can then be used for visualiza-

tion, clustering or study of the data. For instance, PCA has been used in the
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Figure 1.7: Schematic overview of modeling techniques suitable for study of sig-
nal transduction. A number of approaches have been used in the field of systems biology.
The interpretability, i.e. potential insight gained, is high for mechanistic approaches and
decreases the more fundamental and phenomenological the modeling approach is. Further
details are described in the sections for individual methods.

field of systems biology to qualitatively discriminate apoptotic cell fates based
on measured signaling profiles [Janes et al., 2004] and to explore genome-wide

expression studies as reviewed in [Ringnér, 2008].

PLSr PLSr is multivariate analysis technique similar to PCA in that it sum-
marizes the data by calculating new principal components that best capture
the covariance. The above-mentioned limitation of PCA, i.e. the impossibil-
ity to incorporate and test hypothesis is addressed in PLSr. To that end, a
PLSr analysis consists of two datasets and seeks to identify optimal principal
components-based dimensions from a proposed relationship between the two
datasets. Here, one of the datasets contains the dependent variables that are
hypothesized to be responses to the independent variables on the other dataset.
Therefore, the first dataset forms an independent group of variables X and the
variables that are a response form a dependent group Y for the proposed re-

lationship Y = f(X). Finally, said relationship is quantified by reducing the
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original dataset to a principal-component space and subsequently regressing
the independent and dependent principal components. This is analogous to
extracting the molecular-level evidence in the data that quantitatively sup-
port the hypothesis posed by the model; further, both the efficacy of PLSr
for predicting data and the significance of the prediction are determined by
the validity of the underlying hypothesis [Janes and Yaffe, 2006]. In [Janes,
2005], PLSr was used to calculate principal components that were able to cap-
ture apoptotic response in one principal component and survival response in a
distinct principal component. Subsequently, identification of unsuspected au-
tocrine circuits activated by cytokines revealed new molecular mechanisms of

apoptosis signaling.

1.2.2 Physicochemical modeling

The mechanistic approach Conversely to data-driven approaches, physico-
chemical modeling describes reactions between molecules in terms of equations
derived from physical and chemical theory (figure 1.7). The most common
formalism used in physicochemical modeling to describe signaling pathways are
Ordinary Differential Equations (ODEs), which can be coupled in a system of
equations. ODE systems represent the rate of production and consumption
of individual biomolecular species, e.g. proteins. For a protein X, the rate of
change % is represented in terms of mass action kinetics. The mass action law
states that rates of a reaction are proportional to the concentrations of the re-
acting species, and hence each biochemical transformation is represented by an
elementary reaction with forward and reverse kinetic rate constants [Aldridge

et al., 2006].

In 1913, Leonor Michaelis and Maud Menten employed the above-described
principles to propose a mathematical model to approximate the kinetics of the
reaction between an enzyme and its substrate as translated from their original
article in [Michaelis et al., 2011]. Based on those principles, physicochemical
modeling can be applied to a cascade of reactions, such as the one introduced
in section 1.1.2 for the MAPK signaling pathway. Figure 1.8 illustrates

the steps to construct a model to represent the sequence of events from ligand
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binding to the receptor, activation of the dimeric receptor featuring two phos-

phorylation sites, subsequent activation of a kinase and phosphorylation of its

substrate.
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Figure 1.8: Steps in physicochemical model implementation. A pathway map, as
shown in the pictogram, is an abstracted representation of biomolecules and their interac-
tions. A more formal pathway diagram represents the complexes formed and the sequence
of events from ligand (L) binding to the receptor (R), activation of the dimeric receptor
featuring two phosphorylation sites (P), subsequent activation of a kinase (K) and phospho-
rylation of its substrate (S). These reactions can be formalized as shown in the reaction list.
From the list of reactions, a system of differential equations can be defined using rate laws
as e.g. mass action kinetics to calculate reaction rates. Approximations can be achieved by
taking simplifying assumptions such as the Michaelis-menten approximation, which assumes
a rapid equilibrium of an intermediate complex and thus reduces the number of species in
the model. For further details, see the main text. Figure adapted from [Aldridge et al.,
2006]

38



1 Introduction

When constructing a model, representation of different localization of a
biomolecule is achieved by compartmentalization, i.e. each species is assigned
a cellular space. Two fundamental assumptions for application of compart-
mentalization to ODEs are: (i) the compartment is well-mixed and transport
within is instantaneous and (ii) transport between compartments is slower and
associated with a rate [Aldridge et al., 2006]. For those cases in which these
assumptions are not satisfied, partial differential equations can represent bio-
chemical systems in continuous time and space. After model construction, the
values of the parameters, i.e. the rate constants and the initial conditions,
need to be determined. Parameters can be measured directly, considering
whether the rates in the experiment match those in physiological conditions.
In the cases in which measuring all rate constants and initial conditions is not
the scope of the study, parameters can be used from the literature. This is
a disadvantage with respect to other methods presented in this dissertation,
as it can be troublesome to assume that protein concentrations are equal to
those from other studies; the reason for that is that it has been shown that
even clonal populations display strong cell-to-cell variations of the level of the
same protein with a standard deviation of 20-30% of the mean [Sigal et al.,
2006, Fritsche-Guenther et al., 2011]. Another alternative is to estimate said
parameters using experimentally acquired data for training. Estimation con-
sists then in the computation via regression of the range of parameter values,
in which the model matches the experimental data best. In the noise-free case,
2n + 1 observations are necessary to estimate n parameters [Aldridge et al.,
2006].

Once a model is parameterized, simulation of the model enables derivation of
novel insight e.g. by testing novel hypothesis implemented in the formalism and
analyzing the corresponding prediction as performed for instance in [Fritsche-
Guenther et al., 2011] and [Fey et al., 2012]. An interesting turn was taken
in [Ma et al., 2009], where the authors provide a framework to define the range
of network topologies that can achieve biochemical adaptation, where each
network is represented by a system of ordinary differential equations. This
study provided valuable insight on the motifs that can acquire adaptation in

general.
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1.2 Mathematical modeling of signal transduction networks

Current challenges in physicochemical modeling Overall, physicochemi-
cal models are powerful tools to represent signaling pathways in a physically
realistic manner, thereby aiding its understanding. However, the following
challenges hinder the applicability of mechanistic models to the study of signal

transduction:

o Kinetic models use prior knowledge to represent specific molecular reac-
tions and hence work best in pathways that are relatively well-established,
with its components and specific connections being known; therefore,
when prior knowledge is sparse, data-driven statistical models are more
appropriate [Aldridge et al., 2006].

e In those cases in which sufficient prior knowledge is available it is im-
portant to consider that, in models based on differential equations, each
new protein can give rise to a large number of model species differing
in location, binding state and degree of post-translational modification.
Therefore, differential equation models are currently limited to £ 20 gene

products and 50-100 model species [Spencer and Sorger, 2011].

» Signaling pathways exhibit flexible circuitries, with topologies that are
modified in time and space. For instance, it has been shown that growth
factor context determines the topology of the MAPK signaling network
and that the resulting dynamics govern cell fate [Santos et al., 2007].
In fact, signaling networks emerge depending on the context as widely
reviewed [Kholodenko and Kolch, 2008, Kholodenko et al., 2010, Santos
et al., 2007, Grecco et al., 2011, Kiel and Serrano, 2011] and introduced
in section 1.1.2. In these cases, assuming a topology that has been
reported for other cell lines or circumstances can introduce a bias to the

model.

We next review other modeling approaches that can constitute a solution to
the problems mentioned above. Nevertheless, it is crucial to note that a trade-
off exists: the more qualitative and phenomenological the modeling framework,

the less mechanistic the insight [Spencer and Sorger, 2011].
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1.2.3 Logic modeling

Scope of different logic formalisms To circumvent the challenges in terms
of prior physicochemical knowledge required by mechanistic approaches as de-
scribed in section 1.2.2; logic-based models can be used. Logic models are
based on logic rules that can be implemented to relate two species using only
the measurements of these two species and the information that they are re-
lated. To that end, logic models enable mapping of input data into output
data by using logic implications, i.e. IF-THEN logic rules such as IF phos-
phorylation of protein P is on THEN activity of transcription factor TF' is
on. Such statements are based on the principles of aristotelian logic. Hence,
it applies that the first part of the sentence spanning until THEN is called the
premise or the antecedent of the rule, and from THEN onwards the conclusion
or consequent is stated. When solely two states are defined as possible for the
species at study i.e. on and off, the formalism is then two-state discrete logic,
also known as Boolean logic. Two-state discrete (Boolean) logic is the simplest
logical representation and offers a useful characteristic: it has no free param-
eters, meaning that logical models covering the same set of nodes differ only
in topology as exploited in [Saez-Rodriguez et al., 2009]. Here, the authors
used multi-state logic for functional analysis of extensive signal transduction
networks. Increasing the number of states that the species can reach increases
accuracy, but it is limited to discrete classification. As a solution, fuzzy logic
(FL) offers intermediate states (see figure 1.9).

In the specific case of fuzzy logic, sets such as high, medium, or low are fuzzy
sets to which the continuous experimental data belongs. This is a difference
of key importance with respects to Boolean logic, as fuzzy sets have unsharp
boundaries, i.e. measurements do not either belong to them or not. Instead,
measurements can belong to the fuzzy sets to a certain degree, requiring a
transformation known as fuzzification performed by the so-called membership
functions [Zadeh, 1968]. In the next paragraph, we further describe fuzzy logic
modeling as a means to study signal transduction networks. For a review on
different logic formalism and their application to highly detailed case studies

of signal transduction, the reader is referred to [Morris et al., 2010].
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Figure 1.9: Accuracy comparison for different logic formalisms. The relationship
between two biological species, in which the input has an effect on the output is shown
here with the black line representing the experimental data. Approximations of the same
relationship are represented using logic formalisms of 2,3 and 4 levels or states. Fuzzy
logic and mixed discrete-continuous enable achieving the best accuracy. Figure adapted
from [Morris et al., 2010].

Fuzzy logic in modeling of signal transduction networks To characterize
the relationship between input and output membership functions, two types of
fuzzy logic systems have been widely used for inference. In Mamdani or lin-
guistic models [Mamdani and Assilian, 1999], the output membership functions
are fuzzy sets, and hence a model can be represented as shown in figure 1.10.

In 1985 Takagi and Sugeno proposed an extension of the fuzzy logic formal-
ism with ¢ rules of the form IF w, = Ay AND ... AND w, = Aip THEN
y = fi(u1, us, ...,u,), where u; are the inputs and A; are the fuzzy sets as de-
scribed in [Takagi and Sugeno, 1985, Nelles, 2002]. Hence, in takagi-sugeno
systems (TKS) the output is not a fuzzy set but a weighted combination of the
input sets:

Y = Wio + Wituq + Wioug + ... + WipUyp (11)

This formalism renders the output less interpretable, since it not linguistic;
conversely, the output of a mamdani system is a fuzzy set, and hence linguis-
tic. However, this restriction of the output is a simplification that enables
learning methods to estimate the weights w of the combination. Using both
formalisms of fuzzy logic, a number of approaches have been implemented to

encode signaling networks. These approaches can be grouped in two major
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Figure 1.10: Representation of a dynamic linguistic fuzzy logic model. The model
approximates the state of a protein xz(k + 1) at time k + 1 from its state at the previous
time point (k) and depending on the value of the input u(k) at time k. A membership
function -not shown- transforms the experimental measurements of the inputs z(k) and
u(k) into the fuzzy sets very small (vs), small (s), medium (m), large (1) and very large
(vl). Layer 3 represents the rules, which specify which sets are related: rule 1 would be
expressed as if (k) is medium and w(k) is very small, then z(k + 1) is very small. Note
that this is termed linguistic model because the output membership functions (layer 4) are
fuzzy sets. An alternative, non linguist, model is possible (see text). Figure -but not the
text- extracted from [Huang and Hahn, 2009)].

frameworks. In the first framework, models are constructed manually based on
prior knowledge of topology and data. In [Aldridge et al., 2009], the authors
established an approach to encode responses of colon cancer cells treated with
combinations of pro-death and pro-survival cytokines successfully incorporat-
ing the role of time to model slow processes. In the same framework, FL was
combined with other algorithms in order to represent hedgehog regulation of
the cell cycle [Bosl, 2007]. This framework, however, has the limitation that
one must manually implement the FL. models, which is not only tedious but
introduces the bias of own prior knowledge. To prevent this, we next review

training strategies that enable fitting fuzzy logic models to experimental data.
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1.2 Mathematical modeling of signal transduction networks

1.2.4 Neuro-fuzzy modeling

Different strategies to parameterize a fuzzy logic model according to ex-
perimental data Another framework consists of studies, in which the param-
eters of the FL system are learned from the data by means of neural network
training algorithms. Hence, need of extensive prior knowledge on the molecular
interactions of the modeled network is circumvented by estimating the model
parameters from the data.! A list of model qualities can be learned from the
data, namely variables and the corresponding membership functions related in
each rule [Chiu, 1994], number of rules [Wang and Palade, 2011] and type of
membership functions with its corresponding parameters for both the premise
and the consequent of the logic rule. Due to this broad spectrum of model
qualities, the number of free parameters that need to be parameterized can
range orders of magnitude.

In linguistic fuzzy logic models, a classical training approach includes learn-
ing the system rules including the number of rules and specific sets involved
in each rule. In addition, the parameters of the membership function that are
required to transform each data point into a fuzzy set -membership functions
perform the so called fuzzification, see above- need to be estimated. To that
end, approaches such as subtractive clustering can be used. Subtractive clus-
tering is used to estimate the number of clusters in which a dataset can be
grouped. To do so, each data point is considered a potential cluster center.
Based on its distance to the neighboring data points, a potential is calculated,
such that a data point with a high number of data points nearby has a high
potential. The procedure of determining a new cluster center is repeated until
the potential of all data points falls below a threshold [Chiu, 1994]. In terms of
a linguist model such as the one described above, the resulting number of clus-
ters of related data points determines the number of rules necessary to relate
those data points, and the center of the cluster can be used to parameterize
the membership functions. Adding to the number of free model qualities, once
the number of rules and sets involved are learned, the membership functions
representing all inputs and outputs need to be parameterized as well. To pa-

rameterize the dynamic model shown in figure 1.10, the authors of [Huang

IFitting algorithms other than those in the framework of neural-networks are currently
applied to fit FL systems. However, for historical reasons, such approaches are still
termed neuro-fuzzy [Nelles, 2002].
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and Hahn, 2009] analyze the sensitivity of the model to changes in the width
of the premise membership functions, thereby determining which parameters
need to be estimated from data in order to reduce the complexity of the model.
Circumventing training of certain parameters was here crucial, as this approach
rendered a highly accurate dynamic model model with 49 rules with inputs that
were fuzzified by 5 membership functions into the sets very small (vs), small
(s), medium (m), large (1) and very large (vl).

As described in the previous paragraph, a simplification of linguistic models
termed Takagi-Sugeno exists, where the output is not a fuzzy set but a weighted
combination of the input sets as shown in equation 1.1. Thereby, training of
the number of rules, rule components and parameters of the consequent mem-
bership functions is avoided. Instead, only the weights w and the parameters
of the premise membership functions need to be learned. For instance, a stan-
dard hybrid method was used to train a neuro-fuzzy Takagi-Sugeno model,
which then enabled classification of electrocardiogram signals [Ubeyli, 2009].
In this hybrid method, the least squares method is combined with the back-
propagation gradient descent method. Firstly, in a forward pass the least
squares method optimizes the consequent parameters with the premise param-
eters fixed. Subsequently, the backward pass uses the gradient descent method
to adjust optimally the premise parameters corresponding to the fuzzy sets in

the input domain.

Scope of neuro-fuzzy models When using FL-based methods in combina-
tion with training algorithms for modeling of signal transduction, the challenge
lies in a definition of the system that renders the learned knowledge insightful.
Specifically, data-trained systems, i.e. trained from the data rather than man-
ually implemented, require a high number of parameters. While these param-
eters grant the system its flexibility, they also increase the risk of over-fitting,
thereby lowering the expectation of meaningful new insight concerning the in-
teractions regulating the network. To minimize the number of free parameters,
in [Morris et al., 2011] rather than training a system with measurements at
a range of time points, the authors successfully developed a constrained FL
system that focus on specific states and employed it to elucidate interactions
that were a priori possible but not present in actuality in the experimental

data as well as interactions that were not described in the prior knowledge
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network. An alternative is to explore different model setups in order to reduce

the number of free parameters.

1.3 Properties of experimental data and their

impact in modeling

In previous sections we discussed classical pathways of cell death and prolif-
eration, together with a number of related mechanisms that are not yet un-
derstood. We continued to present methods based on mathematical modeling,
which can be used to facilitate elucidation of such mechanisms. However, to
apply a modeling formalism the intrinsic nature of the data needs to be taken
into account. Challenges are e.g. the cell-to-cell variability acquired when
measuring population data and the heterogeneity of the different events be-
ing experimentally measured such as morphological and functional features.
Additionally, the complexity inherent to signaling described in section 1.1.2
plays an important role when studying the response regulated by signaling
networks. We next review concepts such as data treatment techniques, ex-
perimental methods and signaling mechanisms that are of critical importance

when modeling analysis is employed to address these challenges.

1.3.1 Heterogeneity of measurements and cell-to-cell

variability in experimental data

Understanding complex mechanisms requires a multi-factorial analysis. Neo-
plastic diseases constitute the prototype of problem, which requires study of
several mechanisms at the same time, as it has been proposed that they are
caused not by a single event, but by the intricate interplay of 8 hallmarks [Hana-
han and Weinberg, 2011]. Systems biology seeks understanding of such biologi-
cal processes by analyzing high-content, multivariate datasets that characterize
how signaling pathways change in space and time to regulate different cell re-
sponses. To collect such datasets, the authors of [Albeck et al., 2006] describe
some technologies that are currently employed in the field: Mass spectrometry,
immunoblots, ELISA (and as an extension bead-based arrays), microarrays,

flow cytometry and live-cell imaging (see figure 1.11). The authors further
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enumerate the advantages and disadvantages of said methods, in which sci-
entists ultimately need to choose between breadth and depth, low and high
throughput, small versus large sample size, difficulty, fixed versus live cell and
last, single-cell versus population measurements. We proceed to focus on the

trade-off between single-cell and population measurements.
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Figure 1.11: Schematic overview of experimental techniques suitable for study
of multivariate signal transduction. Orange bars indicate the strength of each assay
with regard to each criterion. Figure extracted from [Albeck et al., 2006].

When using population data, the comparison of measurements acquired us-
ing different assays, or heterogenous measurements via the same assay of vari-
ables of different nature e.g. protein concentration over time and morphology
of a certain organelle, represents a challenge in terms of how to integrate the
data. Traditionally, one could rely on comparison to the control measurement.
However, several-fold differences can appear between variables or assays that
are not proportional to the biological relevance of the changes measured. Along
these lines, data pretreatment methods can correct for aspects that hinder the
interpretation of the relationships existing in the experimental data. Well-
established data pretreatment techniques are e.g. centering and unit variance

scaling, which are calculated as shown in equations 1.2 and 1.3 respectively:

i = Lig — Ti (1.3)

g;

J
where the mean 7; is calculated as T; = % > x;j and the standard deviation
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J

> (wij—7)?
=1

J—1

ments as fluctuations around zero by removing the offset and focuses therefore

o; is calculated as o; = . Hence, centering expresses all measure-
in the differences and not the similarities; on the other hand, unit variance
scaling uses the standard deviation as the scaling factor, which is different for
every variable as described in [van den Berg et al., 2006]. In this study of high
interest, the authors test different pretreatment methods in a metabolomics
dataset and show how they have different impact on the interpretation of the
results. Nevertheless, a disadvantage of population methods is that they ne-

glect information underlying cell-to-cell variability.

Recently, it has been proposed that using cell-to-cell variability will define
a new era in molecular biology [Pelkmans, 2012]. The reason for that is that
research has focused on processes that are common between cells because of
the technical difficulties in measuring the differences. Thereby, a rich source
of information to understand cellular processes has been neglected. Contrary
to population methods, current single-cell methods such as live-cell imaging
enable study of the sources of cell-to-cell variability. Using a combination of
mathematical modeling and live-cell microscopy, it has been elucidated that
that naturally occurring differences in the states of proteins regulating extrin-
sic apoptosis are the primary causes of cell-to-cell variability in the timing and
probability of death in human cell lines [Spencer et al., 2009]. This is of key
importance, as it has been reported that even clonal populations display strong
cell-to-cell variations of the level of the same protein with a standard devia-
tion of 20-30% of the mean [Sigal et al., 2006, Fritsche-Guenther et al., 2011].
The topic of cell-to-cell variability is connected to the apparent complexity of
signaling: indeed, it is possible that by studying signal transduction at the
single-cell level it becomes clear that not all parts of a a priori complex path-
way act together in a cell, but rather in a subpopulation of cells [Pelkmans,
2012]. It is however also possible that signaling pathways are highly complex,
with topologies that are modified in time and space depending of the context
as widely review [Kholodenko and Kolch, 2008, Kholodenko et al., 2010, San-
tos et al., 2007, Grecco et al., 2011, Kiel and Serrano, 2011] and presented in
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section 1.1.2. Along these lines, we next review signaling mechanisms that
can be incorporated into modeling approaches to facilitate understanding how

topological flexibility is achieved in signal transduction of mammalian cells.

1.3.2 Sources of topological complexity
Maintaining tumor proliferation

Signaling networks are compiled in literature by including reported interac-
tions between proteins. However, reported interactions may not be present in
the particular cell line being studied, or may be present only at specific time-
points [Dumont et al., 2001]. Additionally, the pathway of interest may be reg-
ulated by other interactions than the ones reported. It is well-established that
tumors can rearrange their signaling pathways in order to acquire resistance to
the treatment, both via genetic mutations or epigenetic changes [Di Nicolanto-
nio et al., 2005]. This resistance is achieved in melanoma through its molecular
plasticity, which also has been shown to feature neovascularisation, migration,
rearranging signaling through switching and enhancing certain pathways and
containing multi-subpopulations of cancer cells that may contain stem cell-like
properties [Ramgolam et al., 2011, Hendrix et al., 2003], reviewed in [Hanahan
and Weinberg, 2011]. Specifically, resistance to treatment has been reported
to be developed through switching among the serine threonine kinase BRAF
isoforms to activate the MAPK pathway [Villanueva et al., 2010], a signaling
network which plays a major role in proliferation and is a very attractive tar-
get for therapy due to the fact that in the majority of melanomas it has been
shown to harbor somatic mutations [Davies et al., 2002, Davies and Samuels,
2010]. Alternative splicing can also be used by tumors to establish crosstalk be-
tween apoptotic and survival pathways, thereby rearranging signaling in order
to develop protection against apoptosis. In [Kurada et al., 2009], the authors
show that MADD, a splice variant of 1G20, is overexpressed in cancer cells
and tissues and can specifically activate MAPKs through Grb2 and Sosl/2
recruitment to grant protection against apoptosis upon tumor necrosis factora
treatment (table 1.2, maintaining tumor proliferation). In summary, to iden-
tify resistance mechanisms activated by the cell line at study by mathematical

modeling implies evaluating changes in topology of signaling networks.
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Table 1.2: Certain signaling events can render reported interactions dysfunc-
tional in own experiments.

Mechanism

Description

References

Maintaining tumor proliferation

Alternative splic-
ing

When B-Raf is inhibited,
MAPK-mediated tumor pro-
liferation can be maintained
by activating splice variants.
Apoptosis triggered by TNF-a
can be escaped by expressing
MADD, a splice variant of
G20, which activates MAPKs.

[Villanueva et al., 2010], [Kurada
et al., 2009],reviewed in [Kiel and
Serrano, 2011]

Specificity of signaling

Temporal dynam-
ics _
O==0

Protein
tration

concen-

Cross-signaling is prevented
when an interacting protein is
recruited to e.g. the membrane
or scaffold proteins

A number of biological net-
works, e.g. p53 or ERK trigger
a different response depending
on stimulus being continuous
or a pulse

Different protein concentra-
tions enable same pathways to
vary input-output response and
trigger a cell-type specific re-
sponse

[Rocks et al., 2005], [Kholodenko
et al., 2010], reviewed in [Kiel and
Serrano, 2011]

[Batchelor et al., 2011], [Marshall,
1995], [Kholodenko et al., 2010], re-
viewed in [Kiel and Serrano, 2011]

[O'Shaughnessy et al., 2011], [Pon-
tén et al.,, 2009], reviewed in [Kiel
and Serrano, 2011]

Robustness

Negative feedback

:

Incoherent feed-

forward loop

The functionality of crucial
pathways is maintained against
changes in concentrations of
protein e.g. ERK or BMP by
having the output correct the
upstream regulator

To provide robustness, a signal-
ing intermediate activates its
target by one route and de-
activates the target by another

Effect of increase of expression
of a gene can be canceled out
by an opposed signal if it is ex-
pressed from the same operon
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[Paulsen et al., 2011], [Fritsche-
Guenther et al., 2011], reviewed in
[Bliithgen and Legewie, 2012]

[Bleris et al., 2011] , reviewed in
[Bliithgen and Legewie, 2012]

[Kollmann et al., 2005], reviewed
in [Bluthgen and Legewie, 2012]
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Specificity of signaling

Adaptation to treatment by cancer cells is not the only topological change,
which can lead to a discrepancy between signaling pathways established in lit-
erature and own experimental observations. Indeed, it has been established
that in order to trigger specifically a cellular response, the activation initiated
by a ligand is not stably propagated through the full range of reported inter-
actions in the corresponding cascade, since so many points of crosstalk exist
that a specific response would be hard to achieve. In particular, it has been
shown that only four cascades of five steps can render 760 possible positive and
negative interactions [Dumont et al., 2001]. Conversely, a range of mechanisms
have been shown to regulate the known specificity of action of signals. For
instance, tight spatial control has been shown to play a role in regulation as
reviewed in [Kiel and Serrano, 2011] and [Kholodenko et al., 2010]. In fact, it
has been reported that an acetylation cycle is responsible for the differential
location at the plasma membrane and Golgi of different RAS isoforms, thereby
triggering different amplitude and duration of MAPK signaling [Rocks et al.,
2005] (table 1.2, specificity of signaling). Additionally, temporal properties in
signaling can alter cell response, e.g. transient ERK activation in PC12 cells
upon EGF stimulation induced proliferation, whereas sustained ERK activa-
tion by NGF induced differentiation [Marshall, 1995].

Robustness mechanisms

In line with the above-mentioned mechanisms, which can alter signaling thereby
enabling a specific response, it has been shown that alteration of protein
abundance, which may arise due to cell-type specificity or cell-to-cell varia-
tion, can modify the strength of the response triggered by the MAPK path-
way [O’Shaughnessy et al., 2011]. The fact that different levels of regulatory
proteins can lead to different responses raises the question of the effect of ex-
pression noise, i.e. how does cell-to-cell variation of protein levels affect the
function regulated by those proteins? To answer this question, it has been
shown that a number of mechanisms can provide robustness to pathways gov-
erning cell fate and negative feedback is a prominent example (table 1.2,
robustness). Specifically, negative feedback from Erk to Raf has been re-

ported to confer robustness to MAPK signaling against variations in ERK
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levels [Fritsche-Guenther et al., 2011] and negative feedback in the bone mor-
phogenetic protein 4 has been shown to canalize embryogenesis [Paulsen et al.,
2011]. Robustness can also be achieved by an incoherent feed-forward loop, a
network motif that has been implemented using a synthetic biology approach
to enable adaptive gene expression in mammalian cells [Bleris et al., 2011]; in
bacteria, this signal transduction system is considered to be optimized by using
bi-functional enzymes or enzymes that perform opposing biochemical functions
expressed from the same operon [Kollmann et al., 2005] and reviewed in [Bliith-
gen and Legewie, 2012]. Although the spectrum of mechanisms compiled in
table 1.2 is not exhaustive, it justifies the need of studying, rather than as-
suming, which amongst the reported interactions are active in the cell line of

experimental observations.
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Motivation and aims

The overall goal of this work is to establish a data-driven mathematical mod-
eling platform for integration of prior literature knowledge with high-content,
heterogeneous datasets, capable of predicting non-intuitive adaptive signaling

events. To that end, the following three aims are set:

1. Development of a generalized model implementation method to
encode non-linear sub-cellular behavior using fuzzy logic and
neural networks. In collaboration with experimentalists, high-content
microscopy datasets of mitochondrial morphological, pathway and bio-
energetic features will be integrated to investigate relationships between
morphology and onset of apoptosis. To that end, a data pretreatment
pipeline will be established to unify and scale the heterogeneous measure-
ments. Subsequently, data subsets for all mutual combinations of signal-
ing events will be selected for model training. Neural network training
algorithms will be used to fit heterogeneous datasets for each generalized
fuzzy logic system representing potential signaling interaction. Thereby,
parameterization of each fuzzy logic model, i.e. its rules and membership
functions, will be derived from data. Qwerall, a modeling platform will
be developed to derive causal interactions between signaling events from

high-content imaging data at the single cell level.

2. Development of a scalable search approach to quantify potential
causality relations from heterogeneous datasets. The root-mean-
squared error will be calculated for all models representing all potentially
related events as a signature of accuracy. An exhaustive search approach

will be employed to identify models with least error, thereby determining
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most related signaling events. The model implementation strategy devel-
oped for aim 1 combined with the exhaustive search undertaken during
aim 2 should be scalable, i.e. enable search of direct and distributed
contributions to any single measured signature of mitochondrial dynam-
ics. Owerall, we aim to provide a tool for identification of a hierarchy of

events in population and sub-cellular responses.

3. Extension of the integrative fuzzy logic modeling platform from
aim 1 to incorporate topological and temporal structure to in-
vestigate network evolution. In collaboration with experimental-
ists, we aim to extend the above-mentioned approach to identify time-
defined signaling rearrangements of the topology in the MAPK signaling
pathway. To that end, we seek to utilize phosphorylation profiles of
key MAPK intermediates as a signature of signal transduction over 96
hours upon treatment with different pharmacological inhibitors in A-375
melanoma cell line. To optimize prediction power, a parameter reduction
strategy will be developed to allow for incorporation of time and topology
as inputs to traditional fuzzy logic models. To this end free parameters
with low contribution to model performance will be identified and fixed in
order to achieve optimal model reduction. To maintain the data-derived
approach of this work, training datasets will be bootstrapped and impact
on model output will be calculated by establishing tailored signatures of
deviation in flexibility and accuracy. Finally, a model encoding the be-
havior of the full MAPK network acquired will systematically be trained
at different time points, to identify temporal discrepancies in reported vs.
acquired network topology. To that end, an objective function for fuzzy
logic model optimization will be implemented, which accounts for time-
defined model training. Owerall, this aim achieves a data-derived mod-
eling platform to analyze signaling topology in large datasets integrated
with prior knowledge, and enables identification of biologically relevant

temporal relationships within cancer cell signaling networks.

Once aims 1 and 2 are accomplished, we seek to suggest a hierarchy of non-
linear interactions in MCF-7 breast cancer cell line supported by related liter-
ature, thereby contributing to elucidate the role of mitochondrial morphology

in control of apoptosis signaling. Finally, we intend to apply the method de-
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veloped for aim 3 to identify time-specific topological changes in the MAPK
pathway of A-375 melanoma cell line, thereby contributing to understand the

mechanisms that grant melanoma its plasticity.
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Methods

3.1 Experimental acquisition of apoptotic

signatures

3.1.1 Cell culture and apoptotic stimuli

Human breast carcinoma MCF-7 cells (Cell Line Services; Heidelberg Ger-
many) were cultured in DMEM (Invitrogen) supplemented with 10 FBS (In-
vitrogen), 1% penicillin/strepto- mycin (Invitrogen), 1% Glutamax (Invitro-
gen) and 1% nonessential amino acids (PAA laboratories) in a 37uC, 5% CO2
incubator.

Cells were seeded overnight (56105 cells per well) and treated with the follow-
ing compounds: C-6 ceramide (300 mM; Biozol), CCCP (20 mM; Calbiochem),
TNFa (43 ng/mL; BASF), TRAIL (20 ng/ mL; R&D Systems), thapsigargin (1
mM; Calbiochem), campto- thecin (2 mM; BioVision), and oligomycin (10 mM;
Sigma). Drug stocks were prepared according to manufacturer instructions.
Drugs were diluted in balanced salt solution (BSS; Krebs-Henseleit Solution,

pH 7.4) before application and incubated for 6 hours prior to all measurements.

3.1.2 Imaging and classification of mitochondria morphology

MCF-7 cells stably expressing Mito-GFP were seeded overnight (52x10° cells per
well) in an 8-well imaging p — slide (ibidi) and treated with apoptotic drugs.
Nuclei were stained with Hoechst (100 ng/mL; Sigma) for 1 minute prior to
imaging. Live cells were imaged using a 63x oil objective (NA 1.40) and Z-

stacks with 0.22 mm step sizes were collected and subsequently deconvolved
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3.1 Experimental acquisition of apoptotic signatures

using the bundled soft WoRx software. Plasmid encoding Mito-GFP (fusion of
the localization tag of cytochrome c oxidase IV and GFP) [Rizzuto et al., 1990]
was transfected into MCF-7 cells using Effectene (Qiagen) and positive clones
were selected using neomycin (G418, 1 mg/mL; Carl Roth GmbH). Stable cell
lines were generated from single colonies in order to minimize genetic back-
ground. All images were acquired using a wide-field Delta Vsision RT (DVRT)
deconvolution microscope.! For feature extraction of mitochondrial morphol-
ogy, analysis was performed with CellProfiler software by combining available
modules and submodules (www.cellprofiler.org), and configured to automati-
cally (i) perform image preprocessing, (ii) segment and identify objects within
the image (iii) and measure a selection of mitochondria and cell features. A
detailed description of the CellProfiler pipeline and extracted features is avail-
able in [Reis et al., 2012].> Finally, the exported features which character-
ized mitochondrial morphological states were analyzed using a Random Forest
(RF) classification algorithm [Liaw and Wiener, 2002|, which performed mul-
tidimensional data exploration and supervised machine-learning-based image
classification. The RF method is an ensemble classifier that consists of a family
of decision trees, and enabled calculation of mean value of each classs assigned
per cell (Networked/Fragmented/Swollen) to reflect mitochondrial population

distributions under specific treatments.?

3.1.3 Reporters of apoptotic events

Data is given as mean + standard error of the mean (s.e.m). Statistical sig-
nificance of differences was determined using a two-tailed Student’s t-test. P

values<0.05 were considered to be statistically significant.*

Bax activation Plasmid encoding GFP-Bax [Wolter et al., 1997] was trans-
fected into MCF-7 cells using Effectene (Qiagen) and positive clones were se-
lected using neomycin (G418, 1 mg/mL; Carl Roth GmbH). Stable cell lines

were generated from single colonies in order to minimize genetic background.

!Experiments to measure mitochondrial morphology were performed by Yara Reis.

2The CellProfiler imaging pipeline was established by Yara Reis and Daniela Richter.

3The random forest classifier was implemented by Thomas Wolf. Further details can be
found in [Reis et al., 2012].

4Experimental data acquisition of signatures of Bax activation and A, was performed by
Yara Reis.

58



3 Methods

MCEF-7 cells stably expressing GFP-Bax were incubated for 6 hours with the re-
spective compounds and nuclei were stained with Hoechst (100 ng/mL; Sigma)
before imaging (406 air objective, NA 1.20). 10 Z-stacks were acquired per con-
dition and Z-projections (max) were preformed prior to analysis. 3D rendering

was performed for representative image.

Mitochondrial membrane potential (Av),,) After respective drug treatments,
MCF-7 wild-type (wt) cells were incubated with tetramethyl rhodamine methyl-
ester (TMRM, 25 nM; Invitrogen) for 25 minutes at 37°C. Imaging was per-
formed using a 406 air objective (NA 1.20). Sequential images of a single
focal plane were acquired every second, over a period of 5 minutes. Exposure
times were identical for each condition. For inhibition of the mitochondrial
permeability transition pore (MPTP), MCF-7 wt cells were incubated in cy-
closporine A (CsA, 5 mM; Calbiochem) for 30 minutes at 37°C or pre-treated
with Bongkrekic acid (BA, 50 mM; Santa Cruz Biotechnology) for 1 hour at
37°C. The release kinetics of the TMRM dye is here reported by the standard
deviation of the signal intensity from individual cells. Under normal condi-
tions, mitochondrial TMRM is highly localized (high standard deviation) and
upon A, loss, redistribution of the dye throughout the cell occurs and both
total signal intensity and standard deviation decreases per cell [Toescu and
Verkhratsky, 2000]. From the standard deviation i.e. signal dissipation curves

plotted for each condition, three parameters were extracted:

e tijodecay: time for the signal dissipation curve to reach half of its initial

value.
o Yspread: total standard deviation signal decrease over time.

e MAX: initial maximum value of standard deviation. The median of the
first and last 10 points of each data set were used to calculate the maxi-
mum and minimum intensity. The ¢, /sdecay is defined as the time point
at which the signal dissipation curve reaches half of its initial starting

value.

For more details on the measurement of mitochondrial membrane potential,
the reader is referred to [Reis et al., 2012].
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3.2 Experimental acquisition of proliferation

signatures

3.2.1 Cell culture and pharmacological inhibition of MAPK

MEK1/2 specific inhibitor U0126 was solved in DMSO (stock solution, 10mM),
and used at a final concentration of 10uM. One pill of Sorafenib was solved
in 31,4ml DMSO (stock solution, 10mM) and used at a final concentration of
5uM. MEK1 /2 specific inhibitor AZD6244 was solved in DMSO (stock solution,
10mM) and used at a final concentration of 3uM. Measurements were acquired
at 0 min, 30 min, 6h, 12h, 24h, 36h, 48h, 72h and 96h. 0.1x106 cells per sample
were seeded in 6-well plates, one 6-well plate for each time point. Medium was
discarded and cells washed with 2ml PBS per well, prior to addition of medium
containing drug. Cell supernatants were harvested for subsequent luminex

analysis and stored at -80°C until the measurement.

3.2.2 Luminex analysis of total and phosphorylated protein

level

We used the cell lysis kit from Bio-Rad for the preparation of tumor cell lysates.
After treatment and lysis, the Pierce BCA Protein Assay Kit (Thermo Scien-
tific) was used. 10ul of each sample was pipetted into a 96-microplate well.
2001 of the working reagent were added to each well, and mixed with the
sample on a plate shaker for about 30 seconds. The plate was covered and
incubated at 37°C for 30 minutes. After the incubation period, the absorption
was measured at 562nm with an Elisa reader. The use of a standard dilution
series and the calculation of standard curves, allowed for the exact determi-
nation of protein concentrations in each sample. Protein concentrations were
set to the lowest necessary concentration amongst all lysates within one group,
diluted with assay buffer. To allow for the comparison of drug perturbations as
well as comparison between cell lines, we detected the lowest protein concen-
tration within this set of samples, and adjusted all other sample concentrations
accordingly. 50ul of lysates were incubated on a plate shaker at RT in the dark
with bead mixtures over night. The following day biotinylated detection anti-

bodies were added after three washing steps, and plates were incubated at RT

60



3 Methods

for 30 minutes. For quantification SAPE was added, and after three further
washing steps plates were measured and analyzed in 125ul assay buffer with the
Luminex machine and the Bio-Rad Manager 5.0 and 6.0. For phosphoprotein
detection, at least 50 beads for each analyte region were collected. Reported
median fluorescence intensity values for each analyte were used as a measure

for the total or phosphorylated protein content in the samples.’

3.3 Fuzzy Logic based exhaustive search of

regulatory interactions

In the first part of the work presented here (see section 4.1), we established a
modeling pipeline based on fuzzy logic (FL) to perform an exhaustive search for
highly-related combinations of heterogeneous events measured during apopto-
sis. To that end, the FL toolbox was used (MATLAB R2009a). In fuzzy logic,
membership functions allow transformation of the experimental data thereby
enabling the use of logic rules. To parameterize input and output member-
ship functions, two types of fuzzy logic systems have been widely used for
inference, namely Takagi-Sugeno models [Takagi and Sugeno, 1985] and Mam-
dani models [Mamdani and Assilian, 1999]. While the output membership
functions are constant or linear in a Takagi-Sugeno model, the output mem-
bership functions in a Mamdani model are fuzzy sets. To ease the process of
parameter estimation, the Takagi-Sugeno framework was used in this work to
implement every Single input-single output (SISO) FL model. An exhaustive
search results in a classification of those models which suggest most likely in-
teractions. Because this is a relative metric, the main aim was to use the same
setup for all models and no method was established to reduce the number of
free parameters. Instead, as a first attempt to reduce the number of free pa-
rameters, input membership functions (MF) were fixed to Gaussian functions,
and thereby the number of input parameters was excluded from the model
training. The number of rules constitutes a free parameter as well, which we

eliminated by using a fix number of rules. This number was the total of pos-

5Experimental measurements of total and phosphrylated protein levels were performed by
Stefan Maflen. Cell culture and luminex analysis are described in detail in the doctoral
dissertation of Stefan Maflen, www.ub.uni-heidelberg.de/archiv/11169.
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sible combinations of input MFs. As output, linear MFs were chosen, and
thus their stepwise combination allowed for the approximation of nonlinearity
upon simulation. We further developed the parameter reduction strategy to
enable the method investigation of a different question posed in section 4.2
and further described in section 3.4.1 Parameter fitting extracted from the
data the degree to which this was happening in the specific measurement.
Again, because the focus of this first approach was the exhaustive search of
heterogenous datasets, model training was achieved via standard MATLAB
algorithms. Training of the model was performed using a hybrid algorithm
combining back propagation and iterative least-squares procedure [Reis et al.,
2012]. Conversely, an extension of the method to use an objective function
tailored to our specific aim was established as shown in section 3.4.1. Simu-
lations of the SISO FL models were run using Simulink and root-mean-square
errors (RMSE) were calculated. For the final step of the exhaustive search we
selected the models with least error.

The detailed workflow for model implementation and exhaustive search of
relationship between morphological and functional mitchondrial events during

apoptosis was performed in MATLAB R2009a according to the following:

1. Data Processing. Raw data from the various experimental procedures
was scaled to each maximal observed value in order to make datasets

comparable.

2. Assembly of a Sugeno FLS. The fuzzy logic Toolbox was used to gen-
erate a fuzzy logic system (FLS) automatically with the existing function
genfisl, thereby creating a grid of rules to relate one input MF to exclu-
sively one output membership Function (MF). 2 gaussian functions were
used to fuzzify one input. In genfisl, the number of rules is m to the
power of n, where m is the number of input MFs and n is the num-
ber of inputs; hence in our single-input case the number of rules was 2
per model. Upon exploration of the MF parameter space we observed
slightly better performance using other non-linear functions. However,
the above-mentioned setting was used due to its smaller number of param-
eters. Linear MFs were chosen as output with standard settings previous
to training. Genfisl requires the experimental data as a matrix. In the

case of multiple events and a single functional feature, all columns in the
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matrix except the last one are considered causative events and the last

column is accepted as functional feature.

3. Training of the FLS. Once generated, the FLS was trained using adap-
tative neuro-fuzzy inference systems (ANFIS). As a learning algorithm,

a hybrid of backpropagation coupled to least-squares was employed.

4. Simulation of the FLS. Simulink, the simulation platform coupled to
Matlab, was used to create a simulink model to simulate the trained FLS.
This model was then run for each experimental datapoint to estimate the
value of the desired phenotype. The resulting estimated values were saved
in an excel sheet together with the experimental dataset, which were used

to calculate the root mean squared error (RMSE).

5. Exhaustive search. The process stated in steps 1, 2 and 3 was then
iterated to create the FLS for a total of 30 models representing all poten-
tial interactions: Each morphology class influencing a MPT parameter (9
models), the mirror models (9 models), Bax activation influencing each
one of the three morphological classes (3 models) and the mirror models
(3 models) as well as Bax influencing each MPT parameter (3 models)

and the mirror models (3 models).

6. Model selection. For follow-up analysis of the least-error models, please

see results.

3.4 Time-defined training and evaluation of

topological fuzzy logic modeling

3.4.1 Parameter reduction strategy and model

implementation
In the second part of the work presented here (see section 4.2), the modeling
approach presented previously was further developed to enable study of evolu-

tion of the MAPK signaling network. In doing so, the computational challenge

was at including the role of time, evaluate a prior knowledge network in an
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absolute manner and determine its evolution through time. To that end, a

series of methods were developed that are presented below.

Fixing number of rules and value of premise membership function

parameters.

As previously described (section 3.3), to ease the process of parameter estima-
tion, the Takagi-Sugeno framework was used in this work [Takagi and Sugeno,
1985]. The number of rules was fixed by considering only the combinations of
low sets with themselves and analogously for high sets. The degree to which
each input contributes to the output was later extracted during the fitting
process. Because output parameters cannot be shared in TKS fuzzy inference
systems, the parameters of all input membership functions were fixed to a gen-
eralized gauss function (equation 4.1). In the case of low sets, the function
was centered at a=0 and in the case of high datasets to 1. For both cases,
we took 0.4247 for o, as this is the default MATLAB standard. The effect of
fixing said parameters was assessed by resampling the training dataset in fixed

versus free setups (see section 4.2.2).

Model implementation

In the second part of this work (section 4.2), MATLAB version R2011b was
used for model implementation, fitting and simulation. Equation 4.2 and its
extension shown in section 4.2.2, i.e. a gF'IS for single and another for double
regulated intermediates, were implemented as a MATLAB function. Another
function was implemented to fit them using an unconstrained nonlinear op-
timization process. Due to the flexibility of the fuzzy inference system, the
solver converged to solutions which where very accurate at the data points
but out of range between them. In turn, poor interpolation power led to large
error propagation when the signal of upstream models was propagated to sim-
ulate downstream models. To correct for this by selecting those fits with the
best interpolating power, 20 equidistant points were synthesized to evaluate
the model between the data points and a Euclidean penalty was calculated by
taking all distances for those simulations over 1 and below 0, which we respec-
tively termed PositiveOf fset and NegativeO f fset. This penalty was then

used to punish the root-mean-square error calculated in the objective function
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¢(P) as shown in equation 3.1 for a given vector P containing the parameters

calculated by the optimization algorithm:

" PositiveOf fset; — NegativeOf f set;

— (3.1)

n =
where n is the number of data points, m is the number of synthetic i.e. in-
terpolated points j, ¥ is the simulation calculated by the model at a given
data point ¢ and y is the experimental measurement at the same data point.
The use of the number of data points for the root mean squared calculation
of the model error served as simple means to account for the number of train-
ing data points when comparing models during network evolution. To prevent
the fitting process being trapped in local optima, all values for initial param-
eters were randomized following a uniform distribution. Finally, a MATLAB
structure formatted as a Sugeno fuzzy inference system (e.g. p53.fis) was cre-
ated with rules and input membership functions parameterized as mentioned
above and the different parameters resulting of the fitting process as output
membership function parameters for each rule. All other FIS qualities were
implemented as default in MATLABS’s Fuzzy Logic Toolbox.

3.4.2 Data-derived sensitivity analysis

The reference model for the fixed-linear setup (figure 4.12A, left) was imple-
mented as previously shown. The adaptive-constant setup (figure 4.12A cen-
ter) was implemented by creating a structure consisting of a zero-order Takagi-
Sugeno FIS, i.e. the input membership functions were Gaussian and parame-
terized as mentioned above and the output membership functions were set as
constant. Fitting was performed via a combination of the least-squares method
and the backpropagation gradient descent method for training FIS in the Fuzzy
Logic Toolbox. Analogously, the adaptive-linear setup (figure 4.12A, right)
was implemented by creating a structure consisting of first-order Takagi-Sugeno
system and using same fitting process. The bootstrapped predictions were cal-
culated by submitting the three above-mentioned “create system and fit it”
functions to bootstrapping for 100x resampling with repetition, a method in-
troduced in [Efron, 1979]. All models are shown in figure 4.12B, and standard
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3.4 Time-defined training and evaluation of topological fuzzy logic modeling

deviation was calculated for the prediction at each data point. As a signature
of model flexibility in terms of impact of training dataset in the simulation at
each data point, the mean of the standard deviation across models is displayed.
As a signature of accuracy, the error € was calculated as root-mean-squared
error for all models and deviation o(e) was calculated across errors. The result

was displayed as histogram (figure 4.12C).

3.4.3 Benchmarking approach

In our experimental setup, inhibitors were used at single concentrations and
were therefore either present or absent. Conversely, the dataset presented
in [Gaudet et al., 2005] was acquired in 10 combinations of different concen-
trations of TNF/EGF /Insulin. To enable comparison in same conditions, 4
datasets were selected: measurements acquired in control conditions and max-
imum conditions of each single treatment, i.e. (i) 100 ng/mL TNF, no EGF
and no Insulin, (ii) no TNF, 100 ng/mL EGF and no Insulin and (iii) no TNF,
no EGF and 500 ng/mL Insulin. For the selected datasets, we calculated the
RMSE corresponding to the simulations presented in [Aldridge et al., 2009]
(see figure 4.15). In the benchmark method, a SIMULINK model was im-
plemented to represent and simulate the logic gates (see supplementary data
in [Aldridge et al., 2009]. Here, the inputs implemented to account for dif-
ferent concentrations of treatment in the SIMULINK model were removed,
since only maximum concentration datasets were selected. Additionally, some
changes needed to be implemented in the topology of the SIMULINK model.
IRS(Y), IRS(S), Akt, ERK, MK2, JNK, FKHR and IKK were implemented
analogously to the benchmark model. The modeling of feedback loops is not
addressed in the method presented here, hence the feedback ERK-MEK was re-
moved. Consequently, no delay and max gates were required, and hence casp8
and proc3 had to be removed. See below for more details on model simula-
tion. Following this topology, a gFIS for each node in the network was trained
to the corresponding data by using the model implementation and training
process described above. Subsequently, the SIMULINK model was simulated
and RMSE was calculated. Figure 4.14 shows the experimental data and the
simulation for each node in the network performed with both methods. For a

detailed description on how models were implemented to account for multiple
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treatments using naive condition switches, please see section Implementation

of multiple perturbation models.

3.4.4 Implementation of multiple perturbation models

The free parameters for a gFIS corresponding to each species in the signaling
network were fitted to the experimental data separately for each condition. To
compile all parameters in a multi-treatment trained FIS at no increased pa-
rameter cost, two Boolean functions were introduced to represent absence a/(d)
and presence p(d) of each drug d, which we together termed naive condition

switch as shown in equation 3.2 and equation 3.3:

1 0<x<05

a(d) = for O<z (3.2)
0 for 0b<z<1
0 for 0<x<0.5

p(d) = (3.3)
1 for 0b<zx<1

Automation of the model building process was achieved by modifying the
above-mentioned MATLAB function to “create system and fit it” to include
the naive drug switches. Loosely speaking the 4 naive condition switches are
simple Boolean functions added to all rules of each FIS, so that upon simula-
tion they are evaluated at a value with the sole purpose of outputting either 1
or 0, thereby neglecting the parameters learned in the conditions that are not
currently simulated. Equation 3.2 and equation 3.3 were included in the
code by adding 1 input with 2 trapezoidal membership functions parameter-
ized as Boolean functions for each one of the 4 conditions. Formally, as shown
in figure 4.11D, the parameter reduction strategy yielded 2 rules per system
per dataset. Hence, to include all parameters trained for the 4 datasets, the
multi-treatment model for each species in the signaling network consisted of 8
rules. Consider for illustration the model f(x) encoding the transcription factor
c¢JUN, which according to figure 4.13A is regulated by one only intermediate
i.e. JNK. Following equation 4.2, the model including the 3 naive condition

switches f(z,dy,ds, d3) for a value x of JNK is shown in equation 3.4:
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f(l',dhdz,d?,) =

(pix;r i )wi (3.4)

D Wi
i=1

, where wy = fyow(z)a(dr)a(d2)a(ds), wa = ppign()a(dy)a(ds)a(ds),

wy = puow () p(dr)a(dz)a(ds), wa = pnign () p(di)o(ds)a(ds),

ws = piow(w)a(dr)p(de)(ds), we = pnign(x)a(di)p(dz)a(ds),

wr = iow(T)a(dr)a(dz)p(ds), ws = pinign(z)a(dr)a(dz)p(ds),

p and ¢ are the fitted parameters and d is a discrete value that will let the
switches output the combination of zeroes and ones that will neglect all but the
parameters learned in the conditions being simulated. Hence, when no inhibitor
was indicated to be present, the parameters used were the ones estimated in
control conditions. For more details on the simulation process, the reader is

referred to the next section.

3.4.5 Full network simulation

For model simulation, values were defined for each naive condition switch cor-
responding to the current simulation. Simulation was performed by automat-
ically assigning to each upstream node the experimental value measured at a
given time point. No model was implemented for the upstream models because
no experimental measurement was acquired upstream of them. An exception
to this was the benchmark simulation, where the upstream nodes were a model
was implemented to encode their behavior as a function of time, analogously
to the benchmark method. Subsequently, models downstream were evaluated,
thereby propagating the signal via the SIMULINK model. The network states
in a logic model can be updated in a synchronous and deterministic manner
or asynchronously [Wynn et al., 2012]. Here, the state of each node in the
network was synchronously determined by the state of the nodes upstream at

a specific time point.
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4.1 Modeling interactions of heterogeneous data

in apoptosis

4.1.1 Integration of mitochondrial and apoptotic

measurements in response to diverse stimuli
Detection and classification of mitochondrial morphology states

To investigate the relationship between mitochondrial morphology and apop-
totic events, a pipeline was established to detect different morphological states
by high resolution imaging as presented in [Reis et al., 2012]. Human MCF-7
breast cancer cells stably expressing mitochondrial targeted GFP (Mito-GFP)
were imaged by high-resolution, wide field fluorescence microscopy. To trigger
different morphological states, three conditions were initially considered with
enriched networked, fragmented and swollen phenotypes (figure 4.1).
Networked states were obtained under full medium (FM) conditions. Frag-
mentation was induced by the pro-apoptotic lipid second messenger ceramide
[Parra et al., 2007] and swelling was induced using the mitochondrial uncoupler
CCCP (carbonyl cyanide mchlorophenylhydrazone) [Ganote and Armstrong,
2003]. In order to analyze a significant amount of cells and measure mitochon-
drial morphology states, the above-mentioned imaging pipeline included the use
of CellProfiler image analysis software, which enabled feature extraction [Car-
penter et al., 2006]. Feature sets extracted included mitochondrial area and
volume, average number per cell and distribution within the cell to a total of

69 features per cell. These extracted features were the basis for building an

69



4.1 Modeling interactions of heterogeneous data in apoptosis

€

3 £ €
py 3 3
) oy =
o~ n o
+I o o
O\ al +I
< ™~ o,
= o <

Perimeter
Perimeter:
Perimeter

Networked Fragmented Swollen

Figure 4.1: Differential morphological states of mitochondria were imaged by
high resolution fluorescence microscopy. MCF-7 cells stably expressing Mito-GFP
were incubated 6 hours under conditions known to induce networked (FM), fragmented
(ceramide, 300uM) and swollen (CCCP, 20 M) mitochondria. Average perimeter values (in
red) were measured from 10 mitochondria present in the zoomed region. Images correspond
to the middle slice from 3D stacks. Adapted from [Reis et al., 2012]

automated classifier algorithm.! Subsequently, a supervised learning approach
was developed using an image set of cells,? which were individually cropped
and manually classified as networked, fragmented or swollen. These images
were obtained under the above-mentioned control conditions and submitted to
the imaging pipeline for feature extraction. The features were used to build
a Random Forest classifier, which is a standard method in machine learning
techniques and consists of a collection of classification trees [Breiman, 2001].
Two training sets of manually classified cells were used to build the classifier.
In order to compare manual classification with the random forest classifica-
tion, one class was assigned per cell, as it was impossible to clearly define
intermediate classes within a single cell manually. Training sets were crossed-

validated and resulted in 92% overall accuracy. Inspection of the features used

IExperiments to acquire differential states of mitochondrial morphology were performed by
Yara Reis. The imaging pipeline was established by Yara Reis and Daniela Richter.
2The random forest classification algorithm was developed by Thomas Wolf.
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for classification led to the observation that Zernicke and mitochondrial area
and shape were the most relevant for class distinction. For further details on
the random forest classification algorithm, the reader is referred to [Reis et al.,
2012]. Once the imaging and classification pipeline was established, we next
sought to quantify redistributions of morphology subpopulations in response to
various pro-apoptotic stimuli. Cells were treated with compounds known to im-
pact mitochondrial bioenergetics and induce mitochondrial apoptosis. Drugs
were selected which initiate mitochondrial apoptosis in a spatially heteroge-
neous manner. Death receptor (DR) ligands TNFa (43 ng/mL) and TRAIL
(20 ng/mL) activate the mitochondrial death pathway via caspase 8-mediated
cleavage of Bid [Li et al., 1998]. The ER calcium pump inhibitor thapsigar-
gin (1 mM) induces ER stress, cytosolic calcium, and subsequent activation
of BH3- only proteins [Puthalakath et al., 2007]. Camptothecin (2 mM), a
DNA topoisomerase I inhibitor induces mitochondrial apoptosis [Shimizu and
Pommier, 1997]. Bioenergetic perturbations were induced with oligomycin (10
mM), which inhibits oxidative phosphorylation at the mitochondrial ATP syn-
thase [Penefsky, 1985] (figure 4.2).

Images were acquired following 6 hours treatment and approximately 300
cells per condition were classified (figure 4.3). Plotted results reflect the drug
impact on mitochondrial subpopulations, as (N/F/S) percentages are all taken
into account and averaged through whole cell population. In addition to the
apoptotic conditions, cells were incubated with two control conditions, i.e. FM
and BSS.

To sum up, the imaging and classification pipeline was able to quantify
the mitochondrial morphology response as a function of shifts of networked,
fragmented and swollen subpopulations in images containing multiple cells. To
investigate the relationship between changes in mitochondrial morphology and
apoptosis, the impact of the above-mentioned drugs was subsequently measured

in certain apoptotic events.

Mitochondrial permeability transition as a measure of apoptosis

Tetra-methyl rhodamine methyl-ester (TMRM), a fluorescent lipophilic cation
that electrophoretically accumulates in mitochondria [Métivier et al., 1998],

can be photoactivated to generate reactive oxygen species (ROS) levels within
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Figure 4.2: Apoptotic drugs for population analysis of mitochondrial morphol-
ogy. The cartoon scheme shown here represents the tested apoptotic drugs and its targets.
MCEF-7 stably expressing Mito-GFP were incubated for 6 hours at 37uC with 7 different
apoptotic drugs inducing a variety of cellular stress: calcium overload (thapsigargin, 1 mM);
DNA synthesis inhibition (camptothecin, 2 mM); ATP synthesis inhibition (oligomycin, 10

M); death receptor (DR) pathway activation (TNFa, 43 ng/mL and TRAIL, 20 ng/mL);
mitochondrial fragmentation (ceramide, 300 mM); as well as a mitochondrial uncoupler
(CCCP, 20 mM). The scheme summarizes the subcellular impact of our drug selection and
depicts the three possible morphologic states of mitochondria: networked, fragmented and
swollen. For example, DR activation activates pro-apoptotic tBid, which leads to Bax acti-
vation at the mitochondria. Mitochondria are shown in a fragmented state during cytosolic
release of pro-apoptotic signaling factors and related to a swollen stated upon loss of A,
(gradient arrow). Cartoon by Daniela Richter.

the mitochondrial matrix that are sufficient to trigger Mitochondrial Perme-
ability Transition (MPT) [Bradham et al., 1998]. Analogous to the acquisition
of morphological states of mitochondria, cells were loaded with TMRM (25
nM) and continuos fluorescence imaging was performed following to 6 hours
incubation with pro-apoptotic compounds. The use of continuos fluorescence
imaging induced ROS-dependent MPT [Brady et al., 2004], hence we could
measure the corresponding change in membrane potential, i.e. Aw),,. The time

of A, loss reports the threshold for MPT induction, and can be used as an
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Figure 4.3: Population analysis of mitochondrial morphology. Mitochondrial mor-
phologic classes were quantified in response to apoptotic stimuli. Bar plot shows the random
forest classification into networked, fragmented and swollen for the different conditions. Val-
ues are given as mean percentage + s.e.m. per cell for each N (N=3, approx. 300 cells per
condition. *, P<0.05, ** P<0.01, t-test against BSS). Adapted from [Reis et al., 2012].

indicator for mitochondrial sensitivity to specific stress [Neuspiel et al., 2005].3
Quantification of TMRM kinetics was undertaken by considering the whole cell
area and extracting a standard deviation value [Toescu and Verkhratsky, 2000]
per cell. Approximately 400 cells per condition were analyzed per condition
and the mean value was plotted. Signal dissipation curves were represented as
heatmaps to ease comparison between drugs (figure 4.4A). Expectedly, signal
dissipation occurred at the latest time point under FM (negative control), i.e.
approximately 232 seconds. Next, the signal dissipation curves for the two con-
trols and the 7 pro-apoptotic stimuli were submitted to euclidean clustering,
which suggested 3 main groups: (i) conditions not impacting initial 1,,, drugs
sensitizing mitochondria to depolarization and drugs that depolarized mito-
chondria (figure 4.4B). To establish the role of mitochondrial morphology in

apoptosis, an additional data set was acquired.

3Experiments to measure mitochondrial permeability transition were performed by Yara
Reis.
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Figure 4.4: Dataset acquired for A, loss. (A) Standard deviation of TMRM signal
as a heatmap. Mean values of standard deviation were translated into a heatmap (color
scaled from 0 to 50 in arbitrary units, a.u.). (B) Heatmap of standard deviation values
over time for all conditions. Conditions were clustered using euclidean clustering, which
revealed three main groups of similar patterns in signal dissipation. Adapted from [Reis
et al., 2012].
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Apoptotic compounds result in different levels of Bax activation

Bax, a pro-apototic member of the Bcl-2 family of proteins is thought to be cru-
cial for inducing permeabilization of the outer mitochondrial membrane [Youle
and Strasser, 2008]. Importantly, Bax has been shown to participate in frag-
mentation events [Desagher and Martinou, 2000] and promote mitochondrial
fusion [Conradt, 2006]. Here, we measured Bax activity in response to the
above-mentioned panel of pro-apoptotic conditions and control conditions.?.
To that end, MCF-7 cells were stably transfected with GFP-Bax, which forms
clusters of high molecular weight when activated [Nechushtan et al., 2001] In
BSS control conditions, GFP-Bax was homogeneously distributed within the
cytosol, with low basal activation of 5% (figure 4.5). In response to apoptotic
perturbations, GFP-Bax exhibited a punctuated pattern and clustered at the
mitochondria (figure 4.5). Taken together, the described datasets of states
of mitochondrial morphology, MPT over time and Bax activation were used
for modeling of heterogeneous datasets to infer potential relationships during
activation of apoptosis under matched conditions. For further measurements,
the reader is referred to [Reis et al., 2012], where we show further analysis of
Bax activation pattern, measurements of cell death and loss of cytochrome ¢

under matched conditions.

Data normalization and scaling enables integration of heterogenous

datasets for data-derived modeling

We next sought to use mathematical modeling to infer relationships between
the morphological and the functional features of mitochondria from the datasets
acquired. Because of their high accuracy and prediction power, physicochem-
ical models such as ordinary differential equations are well suited to encode
chemical reactions over time. However, two reasons hindered the use of such
approaches in this study, namely (i) the heterogeneous nature of the described
datasets, which did not measure protein concentration but morphological and
functional features of mitochondria and (ii) the fact that there are no under-
lying interactions at the molecular level known between said evets. Hence,
we aimed at establishing an approach which was based on Fuzzy Logic (FL),

a rule-based approximate reasoning method suitable for investigating hetero-

4Experiments to assess level of Bax activation were performed by Yara Reis
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Figure 4.5: Dataset acquired to capture Bax clustering under apoptotic stress.
(A) Bax clustering. MCF-7 cells stably expressing GFP-Bax were incubated 6 hours with
the different conditions and nuclei were stained with Hoechst (100 ng/mL). Here is shown
a representative example of basal levels of Bax activation (BSS) and an example of Bax
activation under camptothecin (2 mM). (B) Active Bax translocates to the mitochondria.
MCEF-7 cells stably expressing GFP-Bax were transiently transfected with mito-mCherry
and incubated 6 hours with camptothecin (2 mM) (Hoechst for nuclei). The 3D rendering
(ImageJ) image shows GFP-Bax (green) translocated to mitochondria (in red). (C) Bax
clustering. Representative microscope region for each pro-apoptotic condition is shown.
(D) Bax levels. Cells with GFP-Bax clusters were scored as “positive” for Bax activation.
Values are presented as mean percentage + s.e.m. (N = 5, approx. 500 cells/condition;

*. P<0.05, * *: P<0.01, t-test). Images were acquired with a DVRT scope and a 406

Objective. Figure from [Reis et al., 2012].
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geneous datasets of signal transduction pathways [Aldridge et al., 2009]. To
enable the analysis described below, the TMRM dissipation curves shown in
(figure 4.4B) were described by extracting three secondary metrics which rep-
resented the dynamic response: (i) the half time for the decay of the signal,
i.e. t1/adecay, (ii) the spread of the signal (Yspread) and the maximum initial
signal (MAX) (figure 4.6). This transformation enabled use of a modeling

approach, which did not incorporate the role of time as an explicit component.
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Figure 4.6: Secondary dataset derived from acquired data Three parameters were
extracted per each signal dissipation curve: (i) t; s2decay: time that takes for the signal to
reach half of its initial value, (ii) Yspread: Total decrease of the signal over time and (iii)
MAX: The initial maximum value. For better illustration, the box shows one representative
curve example for the standard deviation curve of FM over time (301 seconds), and the
extraction of secondary metrics was performed for all conditions. Mean values + s.e.m. per
drug are shown; experiments N = 4, approx. 400 cells per condition were followed. Modified
from [Reis et al., 2012].

Finally, raw data from the various experimental procedures was scaled. The
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4.1 Modeling interactions of heterogeneous data in apoptosis

reasons for that are two: (i) as introduced in section 1.3, the aim of scaling
is to adjust for dissimilarities in fold differences in each variable measured;
(ii) furthermore, the measurement of model performance used here-forth i.e.
the root-mean-squared error is scale-dependent, as it measures the distance
between model simulation and data point. Here, scaling of each dataset was
performed by normalizing to the maximum value measured per variable and
condition. It is noteworthy that different data pretreatment methods have
different impact on the data and each pretreatment method has advantages
and disadvantages such as as inflation of small values, sensitivity to large fold

changes or focus on the differences instead of the similarities.

4.1.2 Single interaction modeling encodes nonlinear

regulation

In section 4.1.1 we have described the reasons to base the modeling approach
presented here on a neuro-fuzzy framework. A neuro-fuzzy model is a fuzzy
logic model which can be trained using optimization algorithms common in neu-
ral networks. As such, the qualities of a FL. model that can be trained are the
premise and consequent membership function parameters [Ubeyli, 2009], the
variables related in each logic rule [Chiu, 1994] and the number of rules [Wang
and Palade, 2011]. Here, we established an exhaustive search for all possible
interactions between morphological and functional features of mitochondria
by constructing 30 single input-single output (SISO) fuzzy logic (FL) models.
Each interaction represents a potential cause and consequence relationship, and
amongst those the best models indicated events that were likely to be related.
This initial approach has the characteristic that such a metric is not absolute
but relative to other models, which was enabled by using the same setup for all
models. In further work we investigated different modeling setups, a strategy
to reduce the number of free parameters and the contribution of the model
qualities to the sensitivity of the model to establish an absolute measure of
performance (see section 4.2). In order to implement a SISO FL model, logic
rules need to be determined that relate input to outputs e.g. IF concentration
of protein X is high, THEN protein Y is highly inhibited. However, said
rules do not relate directly the experimental data but the so-called fuzzy sets
such as high. To establish the degree of membership (DOM) of the data points
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to said fuzzy sets, we used two membership functions [Zadeh, 1968] of gaussian

shape as shown in equation 4.1.

_@=a?
Hiow(T) = €7 277 (4.1)
, where o is the width of the membership function centered at a. Several types
of fuzzy inference systems are possible [Takagi and Sugeno, 1985, Mamdani
and Assilian, 1999]. To enable the use of neuro-fuzzy training algorithms, we
chose a first order Takagi-Sugeno system [Ubeyli, 2009] and distributed the

parameters as a neural network (see figure 4.7).
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Figure 4.7: Representative Single input-single output (SISO) model. Example of
one model built upon the hypothesis that Bax activation caused fragmented mitochondria.
The parameters of the model are distributed following a neural network structure. In the
first layer are shown the parameters of the membership functions (MFs) that fuzzified Bax
activation, mapping the degree of membership (DOM) of its measurements into 2 fuzzy sets.
These fuzzy sets represent “low” and “high” levels of Bax activation. The second layer has
scalability purposes: it would contain the rules to combine all the inputs if the model had
more than 1 input. The third layer contains parameters (c¢) to linearly combine the i input
MFs. Input and output MF parameters were fitted to the data. The forth layer aggregates
the values from layer 3 to finally model the behavior of “fragmented” mitochondria as a
function of “Bax”. Figure from [Reis et al., 2012].

The SISO model was then fit to the data via standard algorithms [Ubeyli,
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4.1 Modeling interactions of heterogeneous data in apoptosis

2009]. Importantly, estimating the parameters of the system from the data
eliminated the bias inherent to manually implementing the systems. An ad-
vantage of this method is that it is straight-forward to extend the approach to
a multiple input-single output model. For more details on the implementation
of a single model for this first approach, the reader is referred to section 3.3.
For more details on how to extend and evaluate this approach, the reader is re-
ferred to section 4.2, in which we further extended the approach and applied

it analyze the evolution of signaling networks.

4.1.3 Modeling suggests a hierarchy for mitochondrial

apoptotic events
Exhaustive search of potential interactions

To determine directionality of all interactions, i.e. relationships between mor-
phological and functional events of mitochondrial regulation, we analyzed each
model in a pair-wise manner as shown in figure 4.8A. The two analogous
models encoding the two potential senses were termed mirror-models, e.g.
the models which considered Bax influence on mitochondrial morphology were
compared against the models in which mitochondrial morphology classes in-
fluenced Bax activity. From each pair of mirror-models, the one with a root-
mean-squared error (RMSE) higher than a threshold value of 15 were excluded
(threshold in figure 4.8 A). Thereby we obtained a set of models with a defined
directionality of input-output. From the remaining models, those with the least
error within each mirror-model were selected and its direction represented in
figure 4.8B and C (black arrows for the smaller RMSE).

Potential hierarchy of mitochondrial apoptotic events

Our exhaustive search results suggest that Bax activation was strongly related
to both A1), and mitochondrial fragmentation, which in turn strongly influ-
enced A, dynamics together with the swollen mitochondrial morphologic
state figure 4.8B. In summary, Bax is suggested to be upstream of mitochon-
drial depolarization and mitochondrial fragmentation figure 4.8C. In turn,
mitochondrial morphology and A, are closely related in both directions, al-

though with different intensities revealed by a smaller error on the direction
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Figure 4.8: Hierarchy of apoptotic events suggested by exhaustive search. (A)
Root-mean-square error (RMSE) of all 30 models. A Single Input-Single Output (SISO)
model was trained with the data for each corresponding interaction, thereby parameterizing
30 different models. Model accuracy was measured and expressed as RMSE. Here are plot-
ted the RMSE for all possible hypothesis (H): H1. "Individual mitochondrial morphology
classes cause Bax"; H2. "Bax is responsible for morphology classes'; H3. "Bax causes each
of mitochondrial membrane potential (A,,) subset'; H4. ""Axb,, subset induces Bax"";
H5. "Mitochondrial morphology induces A, subset"; H6. "Each of the A, subset is
responsible for the morphologic classes". First selection was made by discarding all models
with a RMSE>15 (threshold in red). Next, the least errors between “mirror-models” were
chosen (black bars). For clarity, Hl-model is the “mirror-model” of the H2- model as H3-
model is the opposite of H4-model and as H5-model is for H6-model. (B) Detailed causality
predictions between datasets. Scheme representing the final 6 most relevant predictions out
of the 30 models. To assign these directional arrows, associated RMSE errors of the indi-
vidual “mirror-models” were compared, e.g. HI-RMSE against H2-RMSE. Arrow direction
was chosen based on the smaller error between “mirror-models” per dataset: Morphology,
Bax and At,,. The numeric values associated with the arrows correspond to the actual
RMSE value resultant for the directional model prediction. (C) Simplified scheme summa-
rizing main interactions and causality suggested by our modeling results. Figure adapted
from [Reis et al., 2012]
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4.1 Modeling interactions of heterogeneous data in apoptosis

from mitochondrial fragmented states, i.e. fragmented and swollen to A,,.

4.1.4 Literature validation of hierarchy suggested by model

The results presented above suggested that Bax is actively involved in causing
mitochondria fragmentation, consistent with reports that its interaction with
mitochondrial fission protein Drpl regulates fragmented states (see table 4.1).
Additionally, it was suggested by modeling that mitochondrial morphological
states are tightly linked to MPT dynamics. In fact, the model proposed a strong
connection between A1, and non-networked states of mitochondrial morphol-
ogy, fragmentation in particular. Studies in the literature showed that by in-
hibiting mitochondrial fragmentation, a delay in MPT is observed (table 4.1).
Finally, the model indicated that Bax activation is upstream of MPT, which
is also supported by literature as shown in the studies compiled in the center
row of table 4.1.

Here we have presented exclusively the results of this study, which were
directly involved in or derived from the modeling process. For further results
on the experimental branch of this work, the reader is referred to [Reis et al.,
2012]. The modeling method presented here was designed and established for
the specific experimental question described. Next, this approach was further

developed to study the question presented in section 4.2.
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Table 4.1: Studies in literature supporting hierarchy of morphological and func-
tional features of mitochondria suggested by the model.

Causality Last error parame- Reported interactions
ters (RMSE?)

Bax — Mitochondrial Fragmented (13.83)  Active Bax redistributes to the mi-

morphology tochondria and stimulates Drpl-
mediated fission during apoptosis,
leading to fragmentation. [Karbowski
and Youle, 2003, Frank et al., 2001,
Desagher and Martinou, 2000, Kar-
bowski et al., 2002, Bossy-Wetzel
et al., 2003, Arnoult, 2007]

Bax — AV,,° Max (8.46); Bax  undergoes  conformational
ty/odecay (8.49) changes and oligomerization resulting
in loss of AW,, and subsequent
MOMP<. [Wolter et al., 1997, Wasiak
et al, 2007, Pastorino et al,
1998, Nechushtan et al., 2001, Wa-
terhouse et al., 2001, Kuwana et al.,
2002, Kim et al., 2009]

Bax = AU, (Yipread) Fragmented (6.69), Inhibition of fragmentation has been
Swollen (6.56) shown to delay MOMP. Disruption
of the mitochondrial outer membrane
and consequent loss of AW,, can
result from intensive swelling. [Van-
der Heiden et al., 1997, Petit et al.,
1998, Minamikawa et al., 1999, Scar-
lett et al., 2000]

“RMSE: root mean square error
YAW,,: mitochondrial membrane potential
*MOMP: mitochondrial outer membrane permeability
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4.2 Modeling evolution of MAPK signaling

4.2.1 Study of signal transduction to identify signaling

rearrangements
Phosphoplex study of MAPK signaling

A-375, a melanoma cell line featuring constitutive activation of the MAPK
pathway due to the activating mutation V600OE [Polzien et al., 2011] was sub-
mitted to treatment using 3 pharmacological kinase inhibitors®. The transduc-
tion of the signal through the pathway was measured as level of phosphorylated
protein for 10 signaling intermediates and transcription factors involved in the
MAPK pathway at 8 time points spanning over 4 days. These signaling inter-
mediates and transcription factors include mitogen-activated protein kinase 1
(MEK1), extracellular signal-regulated kinase 1/2 (ERK1/2), cAMP response
element-binding protein (CREB), protein kinase B/Akt (Akt), c-jun n-terminal
kinase (JNK), the JNK substrate cJUN, IKK, p38, p53 and ATF2. In such a
long time scale, expression and degradation events play an important role in the
dynamics of the system [Terfve and Saez-Rodriguez, 2012|, hence abundance
of the proteins was also measured. As a representative example, figure 4.9A
shows measurements of total levels of ERK 1/2 in control conditions and the
level of the phosphorylated protein measured in the same sample is shown in
figure 4.9B.

Idea behind developed method

Using the acquired phosporylation profiles as a signature of signal transduction,
we sought to develop a method based on mathematical modeling to test the
canonical pathway and, in the event of finding it invalid, to identify potential
signaling rearrangements. Along these lines, we expected that if the experimen-
tal data disagreed with the reported interactions after a certain point in time
and onwards, a model based solely on a prior knowledge network and trained
to the relevant data would exhibit an increase of error that would suggest such

rearrangement. This idea is described in figure 4.10.

5Experimental measurements of total and phosphorylated protein levels were performed by
Stefan Maflen
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Figure 4.9: Study of phosphorylation profiles to enable identification of signal-
ing rearrangements. (A) At the indicated times, A-375 melanoma cell line was measured
to acquire total protein level of 10 signaling intermediates and transcription factors involved
in MAPK signaling. Here, ERK is depicted for representation. (B) As a signature of signal
transduction, phosphorylated levels were measured at same time points. (C) Phospho-
rylated protein levels were normalized to total for all measurements, to account for total
protein loss. (D) To enable model fitting and comparison amongst species, measurements
were scaled to maximum protein value for each condition.

Data scaling and normalization

Data scaling was performed as mentioned in section 4.1.1. To that end, phos-
phorylated protein levels were normalized to total in order to remove apparent
loss of activation due to loss of total protein (figure 4.9C). In the last step of
our data processing pipeline, normalized values were scaled to the maximum
value across all measurements in the same condition to free the data-driven
model from artifacts in which higher intensity values could dominate the mod-
eling process (figure 4.9D). Due to the V600E mutation, the pathway was
expected to exhibit a high phosphorylation profile, potentially with oscillatory
behavior as it has been shown in silico that the combination of a negative
feedback loop and ultrasensitivity can bring about sustained biochemical os-
cillations [Kholodenko, 2000].
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Figure 4.10: Phosphorylation profiles suggest signaling plasticity. Cartoon illus-
trating the aim of the method presented here to identify a rearrangement in the expected
behavior of the phosphorylation profile (black curve, upper panel) exhibited by a mem-
ber of the MAPK pathway in A-375, a melanoma cell line with a constitutive activation
driven by V600E mutation. When treated with a specific inhibitor, the phosphorylation
of a regulatory kinase should be completely inhibited. The regulated downstream target
(black curve, lower panel) should be analogously down-modulated. In the case of a signaling
rearrangement, the regulated protein should stop responding to regulatory behavior, and
a mathematical model (grey curve) assuming the original situation should exhibit a high
error (increased red area under the curve).

4.2.2 Data-derived single model implementation and

parameter reduction

We next aimed at developing a method to mine the acquired data set, thereby
enabling identification and understanding of dynamical changes and differences
between the established topology and the regulatory network of interactions in
the specific cell line of interest. To illustrate the modeling process established
in this work to encode a single intermediate and its behavior as a component
of a signaling network, consider the interaction between cJUN and JNK. The
reason for this specific choice is that JNK is a member of the MAPK pathway
that has been shown to be tyrosine and threonine phosphorylated as part of the
stress and inflammatory response. Phosphorylated JNK can translocate to the
nucleus to activate a number of transcription factors including ¢cJUN [Liu et al.,
2007]. Thereby, the aim to express the behavior of ¢cJUN as a function of JNK
was justified. To enable mapping of input data into output data, IF-THEN
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logic rules lay at the core of logic models such as if phosphorylation of JNK
is high then activity of ¢JUN is high. Here, sets such as high, medium, or low
are fuzzy sets to which the continuous experimental data belongs. Conversely
to Boolean logic, fuzzy sets have unsharp boundaries; that is, measurements
do not either belong to them or not. Instead, measurements can belong to the
fuzzy sets to a certain degree, requiring a transformation known as fuzzification

performed by the so-called membership function [Zadeh, 1968].

Model definition

In section 4.1 we used Gaussian functions to fuzzify measurements of mito-
chondrial morphology and apoptotic signaling in order to explore their non-
linear relationships in human breast carcinoma. Analogously, input member-
ship functions were defined here as shown in equation 4.1 and used to estab-
lish the degree of membership of the JNK measurements —here represented as
z- to the sets low and high (figure 4.11B).

Output membership functions were defined as a first order polynomial, as es-
tablished in first order Takagi-Sugeno systems (see methods for further detail).
In this framework, logic rules establish which combination of input and output
membership functions are connected. Hence, the two-rules FL. model or fuzzy
inference system (FIS) f(x) illustrated in figure 4.11C can be expressed as
the summation of the products of the normalized outputs from the rule premise
and a first-order polynomial for each rule as shown in equation 4.2.

flo) =Y = IR TRTER) ()
i=1

e 202 + e 202

, where ¢ is the width of the membership function centered at 0 or 1 and p and
q are parameters of the polynomial. In section 4.1.2, we established our first
modeling approach, in which premise and consequent membership function
parameters of a FL model were learned from the data as shown in [Ubeyli,
2009]. In said approach, the focus was at exhaustively searching amongst all
measured events the best model, as a relative metric indicating events that
were likely to be related. Conversely, in this work we sought to evaluate the
accuracy of the models in a more absolute manner.

Additionally, in the model shown in equation 4.2, it would be necessary
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to fit 8 parameters exclusively for the definition of the membership functions.
Additionally, a list of model qualities can be learned from the data, namely
variables related in each rule [Chiu, 1994], number of rules [Wang and Palade,
2011] and type of membership functions, increasing the number of parameters
even orders of magnitude [Huang and Hahn, 2009]. Importantly, such a high
complexity of the model becomes a problem when one wants to gain insight
on the data based on its reproducibility by the model. Hence, it was crucial in

this work to establish a strategy to reduce the number of parameters.

Figure 4.11 (following page): Parameter reduction strategy and data-derived
model implementation. As an example, the strategy for model implementation is illus-
trated using JNK regulation of ¢cJUN. (A) A fuzzy inference system was built to model the
JNK-cJUN relationship. To enable fuzzy inference, as a first step experimental data needs
to be fuzzified into the logic sets used in logic rules. Here, JNK data was transformed into
fuzzy sets via 2 Gaussian input membership functions. (B) A logic rule such as IF phos-
phorylation of JNK is low, THEN activity of cJUN is low is in practical terms a placeholder
here represented as a horizontal line, that maps certain values of JNK -e.g. those classified
as low by the membership functions- to those values of cJUN classified as e.g. low. In
a simple FL system with two rules, even when the number of rules has been determined,
10 free parameters are required. Displayed as blue circles, 8 free parameters are required
for the membership functions. The input membership functions could require even more
parameters, depending on the type of function. In turn, the number of parameters in the
output membership functions depends on the number of model inputs. Another step to im-
plement such a system is to determine the input functions involved in each logic rule, here
depicted as an additional parameter in the center of each rule. (C) Implementation of a FL
model encoding the regulation of p53 by p38 and JNK to illustrate the parameter reduction
strategy. A traditional fuzzy logic features many qualities that are usually trained. In the
Takagi-Sugeno framework, the number of consequent parameters depends on the number
of rules, which in turn depend on the number of inputs. The setup described in (C) would
yield 4 rules (see left panel), which would require 20 parameters altogether. To reduce
the number of free parameters, we fixed the number of input-output combinations (left,
in bold), which yielded a reduced system of 2 rules and 14 parameters (right). By fixing
the premise parameters, the number of parameters to be estimated was reduced to 6, i.e.
below the number of experimental time points. (D) The minimal set of parameters free for
training proved to be sufficient to capture the trend in the data (blue dots, RMSE=0.181)
upon simulation (green dots), here illustrated in control conditions. The black curve shows
the simulation of the model at 100 interpolated data points distributed uniformly. The
same reduced model was later readily fitted to the measurements of JNK and cJun in all
inhibition conditions (see Results). (E) To illustrate modeling of a transcription factor
regulated by two upstream intermediates, p53 model is depicted here as a mesh showing
high accuracy as well (RMSE=0.223). To better display the deviation of the model, training
data points are depicted in blue and the simulation at the same data point is depicted in
green, while the black curve shows the simulation of the model at 100 interpolated data
points distributed uniformly.
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4.2 Modeling evolution of MAPK signaling

Parameter reduction strategy

We fixed the number of fuzzy sets — and thereby the number of input mem-
bership functions - to 2, i.e. measurements were separated into being low and
high to a certain degree. Next, the number of rules was fixed: as the number of
rules depends on the number of inputs, consider for illustration of the reduction
strategy an upgrade to a FL system with two inputs, implemented to model the
behavior of p53. p53 has been shown to be activated by p38 kinase [Bulavin
et al., 1999] and via JNK signaling [Fuchs et al., 1998]. Given that two fuzzy
sets are defined for each input, the number of input membership function com-
binations is 2" = 4 , where n is the number of inputs, i.e. 4 rules were necessary
to accommodate the 4 combinations. Importantly, in Takagi-Sugeno systems,
parameters of output MFs cannot be shared. Instead, in classical training dif-
ferent parameters are learned for each output MF [Jang, 1993]. Therefore,
the above-mentioned system of rules would yield 3 consequent parameters for
the linear combination of 2 inputs for each rule, i.e. 2"(n + 1) = 12 output
parameters. Together with the 8 parameters for the input membership func-
tions, such a rule setup yields a total of 20 parameters. Therefore, as part of
the reduction strategy only those combinations for the extreme cases low-low
and high-high were taken into account (figure 4.11D), yielding a system of 2
rules, 8 parameters of the input membership functions and 6 parameters for
the different output membership functions to a total of 14 parameters. In the
last step of the parameter reduction strategy, we aimed at fixing the parame-
ters themselves, as opposed to the above-mentioned steps to fix the number of
parameters. Because the consequent parameters of each rule cannot be shared,
we fixed the premise parameters. Hence, the final number of parameters fitted
is 2(n + 1) = 6 where n is the number of inputs. The system following the

example shown in figure 4.11D is expressed as f(x,y):

2
i=1

_ z2 _ .1/2 (373—1)2 _ (?!*1)2
€ 2%0.42472 @ 2%0.42472 (plaj + q1 —+ 7’1) —+ e 2+0.4247 ¢  2x0.42472 (p2aj + P —+ 7’2)
- 22 V2 (@-1)? (y—1)2

€ 2042472 @ 2+0.42472 - @ 2+0.42472 |} @ 2x0.42472

(4.3)
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Subsequently, we sought to assess whether the free parameters sufficed to
capture the patterns in the data. Upon training, the JNK-cJUN system
(equation 4.2, illustrated in figure 4.11C) showed a noteworthy accuracy,
RMSE= 0.181 (figure 4.11E). For the JNK-p38-p53 system illustrated in fig-
ure 4.11D), high accuracy was achieved as well (0.223, figure 4.11F). Due
to the high flexibility of the fuzzy inference system, several solutions could be
found during the fitting process. The reader is referred to the methods section
for a detailed description on the objective function defined to select fits with
best interpolation power. Hence, the method established enabled to satisfac-
torily fit exclusively 2(n + 1) premise parameters, where n is the number of
inputs, thereby avoiding estimating (i) the number of rules, (ii) 4n premise pa-
rameters and (iii) up to 2"(n + 1) consequent parameters. For further details
on the strategy followed to fix the number of free parameters, the reader is

referred to the methods.

Data-derived sensitivity analysis

In spite of the number of free parameters being greatly reduced, we expected
the system to keep its flexibility, a key feature in a data-derived model. To
validate this, the effect on parameter changes was studied here to determine
its impact on the system implemented via the presented reduction strategy.
Sensitivity of a systems output to certain parameters can be used to deter-
mine which parameters of a model should be estimated when modeling signal
transduction [Zi et al., 2005, Huang and Hahn, 2009]. In general, during sensi-
tivity analysis the parameters of the model are directly modified. Instead, to
continue with the data-derived nature of this approach, here the training data
was resampled, which in turn led to a modification of the fitted parameters.
To study the effect of the presented reduction strategy on the flexibility of the
system, the analysis was performed on the established setup (represented in fig-
ure 4.12A, left) and two comparisons where the model’s complexity was only
partially reduced by fixing the number of rules and MFs but not the premise
parameters: (i) the equivalent 0-order Takagi-Sugeno system (figure 4.12A,
center), featuring free parameters for the premise and free constant parameters
instead of linear for the consequence clause [Takagi and Sugeno, 1985] and (ii)

the system shown in equation 4.2, which features free premise and consequent
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4.2 Modeling evolution of MAPK signaling

parameters (figure 4.12A right).

Consequently, the fixed-linear setup rendered 4 free parameters, as opposed
to 6 in the adaptive-constant and 8 in the adaptive-linear. The three sys-
tems were trained using the JNK-cJUN measurements in control conditions
—the reference model- and 100 resampled versions of the same dataset —the
resample models- (figure 4.12B). Resampling was performed following the
method introduced in [Efron, 1979]. Dependency on the data was calculated
by simulating the resampled models and computing the standard deviation at
the datapoints across models (figure 4.12B). Fixed-linear and adaptive-linear
setups varied greatly (mean, (fixed-linear) = 0.188 and mean, (adaptive-linear)

= 0.186), while adaptive-constant setup showed a smaller dependency on the

Figure 4.12 (following page): Data-derived sensitivity analysis validates accu-
racy and flexibility of approach. The training dataset was resampled and the impact
in the proposed setup was compared to two alternative setups in order to test whether
the parameter reduction strategy hindered flexibility or accuracy of the model. (A) Three
approaches were compared. The schematic left represents the above-proposed approach,
with the corresponding fixed premise parameters (black circles) and free linear consequent
parameters. A simpler, established 0 order Takagi-Sugeno fuzzy logic system is represented
in the center schematic. Such a system features the same input MFs —with free param-
eters here for comparison- and simpler consequent MFs with a free single parameter, i.e.
a constant. The right-hand schematic shows the same setup as the left schematic, with
the difference that no parameter was fixed, i.e. both premise and consequent parameters
were adaptive. (B) Models implemented via the 3 setups were trained with 100 boot-
strapped datasets, i.e. resampled with repetition. Thereby, 100 models per setup were
created, here shown as grey curves. The reference model was trained to the full original
dataset (black curves for the model, blue dots for the experimental data). As a signature
of flexibility, the standard deviation o for the model simulation at each data point was
calculated across the 100 bootstrapped models. The mean of the deviation mean for all
data points was next calculated. While both the adaptive-linear and fixed-linear show an
ability to adapt to the different datasets (mean(fixed-linear)=0.188 and mean(adaptive-
linear)=0.186), the adaptive-constant setup exhibited a less flexible performance (center,
mean(adaptive-constant)=0.156) confirming that the consequent parameters outweigh the
premise parameters in impact on performance. (C) As a signature of accuracy, the RMSE
for the fully-trained i.e. reference model was calculated for each setup. While the fixed-
linear and adaptive-linear setups exhibit similar accuracy (0.122 and 0.121 RMSE error
respectively), the loss of accuracy is more important in the adaptive-constant setup (RMSE
error 0.167). Additionally, the RMSE for each bootstrapped model was calculated and de-
picted here as a histogram against the error of the model fitted to the full dataset (blue bars
and red line respectively). The standard deviation of the error was calculated to be similar
in all setups, indicating that the RMSE error did not change differently for each method.
These findings in performance and ranking of the 3 approaches were reproduced across
the measurements upon the 3 inhibitors (see table 4.2). Taken together, these analyses
indicate that the parameter reduction strategy renders a system that is not importantly
compromised neither in flexibility nor in accuracy.
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4.2 Modeling evolution of MAPK signaling

data (mean,(adaptive-linear) = 0.156). To study the evolution of accuracy
across resampled models, the RMSE error ¢ for the reference model in each
setup was calculated, and contrasted to the frequency of resample errors oqgpe
(figure 4.12C). No important loss of accuracy was observed when comparing
the fixed-linear model (e(reference model) = 0.122, (o100e(resample model) =
0.079) to the adaptive-linear model (e(reference model) = 0.121, o0& (resample
model) = 0.077). On the contrary, the adaptive-constant setup showed a note-
worthy loss of accuracy (e(reference model) = 0.167, gyg0e(resample model) =
0.078), indicating that most of the information on the data is captured by the
consequent parameters.

These results were reproduced when performing the analysis on the 3 addi-
tional datasets acquired upon treatment with MAPK inhibitors (table 4.2).
To that end, the analysis resampling the data to evaluate flexibility and accu-
racy of the approach, as described in figure 4.12 for control conditions, was
performed for all conditions. The model implementation and training setup
featuring fixed premise parameters and adaptive linear consequent parameters
was contrasted to two established setups: (i) A system with adaptive premise
parameters and adaptive zero-order consequent parameters and (ii) a system
with adaptive premise parameters and adaptive linear consequent parameters,
i.e. the same setup as the fixed-linear system with the difference that here the
premise parameters were not fixed. For each condition, a reference system was
created which was trained to all data points acquired in said condition. The
RMSE € was calculated for the reference model as a metric of accuracy. The
training data set was resampled 100 times via bootstrapping and the standard
deviation of the simulations &jpo(¢;) at each data point t; was calculated as a
metric of flexibility. The error of every bootstrapped model was calculated,
and the deviation for all 100 models o9o(€) is shown. Ranking the calculations
for the metrics of the setups for each condition shows that the first in accuracy,
i.e. the setup with least references error, is the adaptive-linear closely followed
by the fixed-linear. The most robust setup is the adaptive-constant, and the
fixed-linear and adaptive-linear perform similarly, indicating that neither ac-
curacy nor flexibility are greatly compromised by using the parameter-reduced

setup.

Because neither flexibility nor accuracy seemed to be compromised, we con-
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cluded that the parameter reduction strategy rendered a valid system. There-
fore, the approach here presented enabled implementation and training of a
model to encode the nonlinear behavior of a signaling intermediate or tran-
scription factor as a function of the upstream activity. Next, this method
was used as the cornerstone of our pipeline to model the dynamic behavior
of the full network containing the 10 above-mentioned measurements upon 4

experimental scenarios.

Table 4.2: Results of sensitivity analysis were reproduced upon inhibition con-
ditions.

metric | control rank | U0126 rank | AZD6244 rank | Sorafenib rank
E00(t;) | 0188 3 | 0193 3 0.165 2 0.249 3
Fixed oi0(e) | 0079 3 | 0076 3 0.073 2 0.084 3
linear
¢ 0122 2 | 0197 2 0.212 2 0.191 2
Ei0(t:) | 0156 1 | 0126 1 0.112 1 0.191 1
Adaptive
b owe(e) | 0078 2 | 005 1 0.060 1 0.065 1
€ 0167 3 | 0223 3 0.230 2 0.211 3
Ei00(t:) | 0186 2 | 0169 2 0.174 3 0.234 2
I’?:::rt"’e owo(e) | 0077 1 | 0057 2 0.073 3 0.075 2
¢ 0121 1 | 0194 1 0.208 1 0.188 1

4.2.3 Prior knowledge and literature-based definition of
initial topology

In order to use the described approach to implement a model for each ex-
perimental measurement, it was necessary to determine the subset of data to
use for model training. Therefore, a signaling network containing all measure-
ments was implemented as first step for simulation (figure 4.13). Table 4.3
references the sources used for each interaction included. For a global view
of the pathway map, the reader is referred to [Johnson and Lapadat, 2002]
and the corresponding entry of the KEGG database (http://www.genome.jp).
Once implemented, the topology shown became the hypothesis to be either
confirmed or to reveal dynamic mismatches between prior knowledge and ex-

perimental data.
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4.2 Modeling evolution of MAPK signaling

Consider for clarification a transcription factor TF.

Specifically, as stated in the previous section, implementation into the initial
topology of transcription factor TF as being regulated by MAPK1 and MAPK?2
implied linking data for measurements of MAPK1 and MAPK2 to measure-
ments of TF under the same conditions. Subsequently, this data subset was
used to fit the corresponding generalized FIS, thereby determining the specific

parameter set for model TF under a single condition (figure 4.13).

Multi-scenario simulation

The process to fit a single model under one condition was iterated using the
generalized sFIS as initial function for all conditions (figure 4.13), and each
parameter set was used to create a multi-scenario model (here termed msFIS).
In order to allow evaluation of the model upon a chosen condition, a “naive con-
dition switch” was introduced a posteriori in the FIS equation (figure 4.13),
thereby avoiding an increase in the number of parameters required for training.
See materials and methods for the mathematical definition, which features the
requirements of a TKS fuzzy logic system and enables the use of said new

variable in the msFIS. Finally, once all multi-scenario models in our signaling

Figure 4.13 (following page): Workflow for network definition, fitting and sim-
ulation. Definition of starting topology. The initial step was the implementation of
a network topology. Grey nodes are measured in our experimental assay, here connected
by vertexes representing interactions reported in literature. Blue nodes are not modeled
due to not being measured and are depicted here solely to enable understanding of network
as a whole. FIS implementation. Schematic representation of a 2-rule fuzzy inference
system. Each horizontal line represents a rule and its elements (see figure 4.11). The
method presented here enabled generalization: Following a parameter reduction strategy
(figure 4.11 and 4.12), all parameters were fixed to the same value for all models and
conditions with the exception of the consequent parameters here represented by question
marks. Condition-dependent FIS training. A generalized FIS was trained using each
condition-dependent dataset to determine the parameter set specific for each condition.
Multi-treatment FIS implementation. The condition-dependent parameters were then
used to create a multi-scenario model, including a naive condition switch to enable choice
of corresponding parameters in the simulation of each specific treatment scenario. Net-
work simulation. Upstream species could not be fitted to further upstream regulators.
Hence, to reduce propagation of unnecessary error, upstream species were not simulated.
Instead, an input node consisting of a simple mapping function specified the measured value
of the upstream species at the simulated time point. Thereby, the propagation of time as
a signal was enabled. In turn, the fitted models were evaluated at the upstream-simulated
value. The discontinuous arrow represents the possibility, that signaling intermediates and
transcription factors can be modeled as a function of multiple regulators upstream of them.
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Definition of starting topology
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4.2 Modeling evolution of MAPK signaling

Table 4.3: References used to determine interactions used for model fitting

Regulation Reference

MEK — ERK1/2 [Roberts and Der, 2007]
ERK1/2 — CREB  [Park and Cho, 2006]
p38 — CREB [lordanov et al., 1997]
Akt — JNK [Aikin, 2004]

Akt — IKK [Vivanco and Sawyers, 2002]
JNK — cJUN [Liu et al., 2007]

JNK — ATF2 [Liu et al., 2007]

JNK — p53 [Fuchs et al., 1998]

p38 — pb3 [Bulavin et al., 1999]
p38 — ATF2 [Liu et al., 2007]

PTEN — JNK [Vivanco et al., 2007]

network were defined, simulation of full network behavior was performed. For
those measurements being most upstream of the network, i.e. with no mea-
surements upstream in the defined topology such as Akt, a mapping function
was used to establish its value at each time point. Subsequently, propagation
of the signal at each time point was achieved by evaluating each downstream
model at the simulated output of those models defined as being upstream of it
(figure 4.13). Reproducibility as RMSE below 0.2 could be considered very
high taking into the account that the behavior of the network is derived from

data and did not require mechanistic information.

4.2.4 Benchmarking approach

To further evaluate goodness of network behavior and benchmark the accuracy
of the propagated signal, we compared the performance of our method with
the one of the method successfully established in [Aldridge et al., 2009]. To
that end, the method described here was used to implement each model in
the benchmark network and subsequently the data presented in [Gaudet et al.,
2005] was used for parameter estimation (see figure 4.14).

Figure 4.15 shows that high accuracy, i.e. up to 10 fold increase, was

achieved with the method presented here. Additionally, this comparison em-

98



4 Results

phasizes the reusability of the modeling approach, which can readily be used
in different datasets. Interestingly, the comparison also revealed limitations of
the method in terms of data-density requirements. For further insight learned

from benchmarking, the reader is referred to the discussion.
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Figure 4.14: Benchmarking our method shows high reproducibility, reduced bias
and increased reusability at the cost of drastic increase of data requirements.
Model simulation (grey line) shows up to 10 fold increase of accuracy with respects to
benchmarking method (blue line) presented by Aldridge et al in [Aldridge et al., 2009] and an
improvement in capturing the trend over the 24 hours of measurement in the benchmarking
data (black line). This improvement was enabled by the described modeling approach over
the 4 conditions out of 10 in the benchmark dataset (columns) selected to enable comparison.
The application of the approach presented here to an additional dataset revealed that
parameters can be readily estimated, thereby easing the process of model implementation
and simulation to encode the behavior of a signaling network. This is an advantage over
methods that require manual model implementation. Challenges revealed by benchmarking
in terms of data density requirements are extensively described in the discussion.

99



4.2 Modeling evolution of MAPK signaling

RMSE in own and benchmark simulation
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Figure 4.15: Own method error against benchmark method error. Comparing
the performance of our method (root-mean-squared error in grey) against the benchmark
method (root-mean-squared error in blue) shows that high accuracy i.e. up to 10 fold
increase was achieved with the method presented here. Both models were trained to the
same dataset, presented in [Gaudet et al., 2005].

4.2.5 Analysis of model evolution

Having established and tested a method to encode the behavior of the given sig-
naling network, we next sought to identify potential signaling rearrangements.
Therefore, we created new training data subsets by removing late time points
in a stepwise manner, i.e. new datasets contained only measurements from 0
to 72h and analogously for 0 to 48h. The full training process was repeated
and the newly trained network was simulated and evaluated (see figure 4.16
and 4.17).

We expected that if a signaling rearrangement occurred at a certain time
point, the agreement between the involved intermediate and its substrate or
substrates should greatly decrease after said time point. Such disagreement
should be revealed by an increase of the RMSE calculated for the model down-
stream of the rearrangement. For those models fitted to control conditions
with a high error already at the period 0-48 hours, this indicated that the
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Figure 4.16: Experimental data and model simulations for time-defined training
subsets according to initial prior knowledge network. Each species in the network
is shown as rows for each treatment used (columns). Simulations are shown in grey upon
training to data subsets containing measurements from 0 to 96h, up to 72h (indicated with
a star) and 48h (indicated with a square). Experimental measurements are shown as black
lines.

topology was wrongly assumed from the beginning. This was the case of JNK
(error 96h=0.18921 vs error 72h=0.20094) and c¢JUN (error 96h=0.28357 vs
error 72h=0.30519), which was emphasized when displaying the 96h error ver-
sus the 48h error (figure 4.18A). Plotting the trajectories for said models and
data as implemented in the context of the prior knowledge network confirms
that the reason for the JNK-cJUN misbehavior is that in our measurements
Akt seems not to be driving their behavior (figure 4.18B), contrary to the

topology introduced in the prior knowledge network.

101



4.2 Modeling evolution of MAPK signaling

=96n =96h
72h 72h
m48h ] m48h

CREB| Akt | ATF2 | IKK | JNK | p38 | ERK | pS3 |MEK1|cJUN CREB| Akt | ATF2 | IKK | JNK | p38 | ERK | p53 |MEK1 cJUN

DMSO uUo0126

0.45 4
04 -
035
03 -
0.25 -
02 1
0.15 4
0.1
0.05 1

CREB| Akt | ATF2 | IKK | JNK | p38 | ERK | pS3 |MEK1 cJUN CREB| Akt | ATF2 | IKK | JNK | p38 | ERK | p53 |MEK1 cJUN

AZD6244 Sorafenib

Figure 4.17: Root-mean-squared error for time-defined model simulations ac-
cording to initial prior knowledge network. Root-mean-squared error was calculated
for each simulation for all treatments. Control conditions show a high error for the Akt-
JNK-cJUN pathway implemented in the prior knowledge network. This observation led to
literature-based reimplementation of the network topology.

4.2.6 Reimplementation of starting topology to account for

emerging behavior

To take into account the Akt-JNK mismatch that emerged in control condi-
tions, we modified our starting topology. In [Vivanco et al., 2007], the authors
show that the JNK signaling pathway is itself a functional target of PTEN
in prostate cancer cells, meaning that Akt and JNK can be activated inde-
pendently from each other. Hence, we implemented JNK as being regulated
independently from Akt by turning it into an input node (figure 4.18C). The
behavior of ¢cJUN was then strongly associated to JNK (new cJUN error at
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Figure 4.18: Model-suggested reimplementation of topology addresses emerging
behavior. Using the described method, the behavior of all the species in the model was
simulated in the context of the prior knowledge network specified. (A) Upon whole-network
simulation, RMSE was calculated for models fitted to corresponding training measurements
up to 48, 72 and 96 hours. The input nodes Akt, p38 and MEK1 were not simulated and
are shown here as a reminder. The model cJUN shows a high error already at 48h and
no improvement over time in control conditions (see figure 4.16 and 4.17 for all models).
(B) Plotting cJUN simulation in the context of the signaling network (trajectory of input
species in smaller time course) for the models trained to measurements up to 48, 72 and
96h (grey curves, for better differentiation of models a star and a square indicate the last
training data point used in 72 and 48 hour models respectively) shows that the reason for
failed simulation is the error propagated from JNK, which in turn could not be modeled as
regulated by Akt because the experimental data (black line) are indeed not related. On a
neighbor branch of the prior knowledge network, ATF2 successfully reproduces the behavior
of p38 but is also suffering from error propagation from Akt to JNK. (C) As a solution,
literature search suggested an alternative topology in which Akt signaling is parallel to JNK.
This alternative topology is depicted here, and was introduced in the model to account for
this emerging behavior by turning JNK into an input node independent from Akt. (D)
The reimplemented topology corrected JNK-regulated cJUN simulation (see figure 4.19
and 4.20 for all models) and as there was no error propagation from JNK, simulation of
ATF2 (grey lines) was then able to correctly follow p38 signaling.
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96h=0.12241, see figure 4.19 and 4.20), and the misbehavior of ATF2 at early
time points shown in (figure 4.18B) was corrected as well (figure 4.18D).

DMSO U0126 AZDB244 Sorafenib

cJUN MEK1 p53 ERK1/2 p38 JNK IKK ATF2 Ak CREB

TIME (0-96H) TIME (0-96h) TIME (0-96h) TIME (0-96h)

e Sinulation
—— gxperimental

Figure 4.19: Simulation after reimplementation of the initial prior knowledge
network to account for emerging behavior. Each species in the network is shown as
rows for each treatment used (columns). Simulations are shown in grey upon training to
data subsets containing measurements from 0 to 96h, up to 72h (indicated with a star) and
48h (indicated with a square). Experimental measurements are shown as black lines.

4.2.7 Identification of signaling rearrangement and

literature validation

Different mechanism of action of two specific MEK1 inhibitors The study
of network evolution using the newly implemented topology revealed poor
model behavior in ERK regulation upon treatment with MEK inhibitor AZD6244
-ERK1/2 error at 96h=0.30386- but not U0126 -ERK1/2 error at 96h=0.013945-
(see figure 4.21). This error then propagated to CREB. Taken together, this
indicated that the invalid regulation of ERK1/2 by MEK1 suggested by the
model was due to the presence of AZD6244. This was noticeable by plotting the
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Figure 4.20: Root-mean-squared error for simulation after reimplementation of
the initial prior knowledge network. Root-mean-squared error was calculated for each
time-defined simulation for all treatments, enabling analysis of network evolution. This
analysis revealed a potential rearrangement upstream of ERK1/2, which could be specific
for A-375 melanoma cell line. Additionally, high error in ERK1/2 simulation upon AZD6244
but no U0126 suggested differential mechanism of action of the two specific MEK1 inhibitors

trajectories of ERK1/2 as implemented in the context of the prior knowledge
network for U0126 (figure 4.22A) and AZD6244 (see figure 4.22B). Indeed,
literature search showed that U0126 is a specific MEK1 inhibitor [Wilhelm
et al., 2004], which prevents its phosphorylation, while AZD6244 was presented
in [Yeh et al., 2007] and reported as an inhibitor of ERK1/2 phosphorylation
by selectively inhibiting enzymatic activity of MEK1. Its mechanism of action

is documented in [Davies et al., 2007].

Signaling rearrangement in classic MAPK pathway in A-375 melanoma
cell line. Analysis of the error evolution led to the identification of ERK upon
Sorafenib treatment (error 96h=0.2141 vs error 48h=0.17851) as a potential
rearrangement in the region of confidence (figure 4.21). Closer observation
of ERK1/2 upon Sorafenib treatment showed that the reason for this model
prediction was the late activation of ERK1/2 at 96h in spite of the decreasing
trend of its regulator MEK1 (figure 4.21 and upper 4.22C). A disagree-
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Figure 4.21: Analysis of error evolution with upgraded topology reveals A-
375-specific signaling rearrangement. Error evolution displayed as errors for models
trained with 0-96h dataset (abscissas) against errors for models trained with 0-48h dataset
(ordinates). The condition in which the data for model training was acquired is represented
by a triangle (DMSO), a square (U0126), a circle (AZD6244) and a diamond (Sorafenib).
All models with errors at 96h and 48h below 0.1 RMSE capture the trend in the data
accurately (see 4.19 and 4.20 for simulations and error calculations). Hence, models above
0.1 RMSE suggest a topological disagreement to a certain degree. The diagonal shows
the models, whose errors exhibited no change upon retraining and simulation. CREB and
ERK upon treatment with specific MEK1 inhibitor AZD6244 show a high error both at 48h
and 96h, indicating that a disagreement in MEK1-ERK1/2 regulation is present from the
first acquirement onwards. This disagreement is not present with specific MEK1 inhibitor
U0126. The region of confidence constrains the models that have simultaneously a low error
at 48h and a high error at 96h. This is the case of ERK both in control conditions and
Sorafenib, thereby suggesting a potential rearrangement in the canonical MAPK pathway.

ment was also shown to arise at 72h in control conditions (figure 4.22C, lower
panel) and was also noticeable at 6h in both control and Sorafenib (figure 4.21
and 4.22A). Sorafenib is a RAF kinase and VEGFR-2 inhibitor and thereby
prevents phosphorylation of MEK1/2 (Wilhelm et al., 2004). Because RAF
is upstream of MEK1 and ERK1/2 as shown in [Roberts and Der, 2007]
and [Fukuda et al., 1997], the MEK1-independent increase of ERK1/2 activity
at 6h and 96h upon Sorafenib treatment was unexpected. However, the A-375
melanoma cell line used in this study has been shown to be more resistant than
other melanomas to apoptosis. For instance, it has been shown that Sorafenib
down-modulates the levels of Bel-2 and Bel-XL, and such down-modulation
was shown to be MAPK-independent in A2058 and SKMEL5 melanoma cells
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Figure 4.22: Model analysis provides rationale for hits identified. (A) Based on
the disagreement suggested by the model, plotting of ERK1/2 trajectory for retrained simu-
lations and experimental data supports the finding that MEK1 regulation follows canonical
pathway implemented in the prior knowledge network upon treatment with specific in-
hibitor U0126, but (B) not upon specific MEK1 inhibitor AZD6244, suggesting differential
mechanisms of action of both inhibitors. (C) Trajectory plot for ERK1/2 confirms lack of
regulation by MEK1 throughout early and late time points upon treatment with both So-
rafenib inhibitor (upper panel) and control conditions (lower panel). The observation that
canonical MEK1-ERK1/2 regulation is present upon U0126 suggests that he rearrange-
ment is upstream of ERK1/2, and as supported by literature it could be specific in A-375
melanoma cell line.
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but not in A-375 cells [Panka, 2006]. From this we conclude that the model pre-
diction is suggestive of an A-375-specific rearrangement. This rearrangement

could potentially be upstream of MEK1, consistent with the above-mentioned
ERK1/2 response upon MEK1 specific inhibition with U0126 and AZD6244.
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Discussion

5.1 On the biological findings

5.1.1 Modeling suggests a hierarchy of morphological and

functional features of mitochondria

In the first part of this work, we sought to elucidate the role of mitochondrial
morphology during apoptosis. To that end, high resolution imaging was used to
access signatures of apoptosis not only at the sub-cellular but also at the pop-
ulation level during stress induced with a panel of pro-apoptotic stimuli. The
heterogeneous response of mitochondria to stress allowed for identification of
three mitochondrial morphologies. To directly assess the apoptotic mitochon-
drial state, we measured the activation of the pro-apoptoic protein Bax, which
has been reported in the literature as a clear apoptotic marker [Wolter et al.,
1997]. Furthermore, mitochondrial permeability transition was measured.

Direct analysis of the three datasets revealed no existing linear relationship
between the measured events [Reis et al., 2012]. Here, we established an ex-
haustive search to identify non-linear relationships by fitting non-linear FL
models to the data and determining those with best performance. The re-
sulting models suggest a hierarchy of apoptotic events: upon Bax activation,
mitochondria become fragmented; in turn, different states of mitochondrial
morphology closely relate to mitochondrial permeability transition. These re-
sults are in accordance with published studies, and taken together, demon-
strate that the integrated response of mitochondria to stimuli is rarely linear.
In fact, cell-to-cell variability constitutes a rich source of information, in which

the challenge lies in detection and quantification. Here, we used high-content
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biosensors to extract and quantify spatio-temporal sub-cellular mitochondrial
features, thereby identifying single cell dynamics and phenotype distributions
in cell populations. Along these lines, the exhaustive search presented here
is scalable and can be readily extended to include further datasets to investi-
gate the possibility of multiple simultaneous events causing single phenotypes.
We acknowledge that the exhaustive search established here determines the
most related events as a metric solely relative to all other measurements ac-
quired. The further development of the method to attempt to establish an
absolute measure of performance was undertaken in the second part of this
work: therefore, we incorporated temporal and topological structure and in-
vestigated different modeling setups, a strategy to reduce the number of free
parameters and the contribution of the model qualities to the sensitivity of the

model.

5.1.2 MAPK signaling is rearranged in A-375 melanoma cell
line

In the second part of this work, we described the establishment and evalua-
tion of a data-derived method to identify discrepancies in signaling networks
and pathway rearrangements that grant tumors their plasticity in order to pre-
dict putative targets for personalized therapy. The pipeline discussed above
rendered a generalized system that we termed gFIS. Based on literature, we
defined a signaling network containing our experimental measurements, and
subsequently a gFIS could be trained to the data corresponding to each model
in the network. Next, a multi-scenario model (msFIS) was created for each
single experimental measurement that could reproduce its nonlinear behavior
upon the 4 conditions of our experimental setup. We showed that evaluation of
the network’s performance revealed a mismatch in the MAPK stress response
pathway, i.e. Akt-JNK-cJUN as reported in [Vivanco and Sawyers, 2002, Aikin,
2004] with the experimental data in control conditions, indicating alternative
regulation to the canonical pathway implemented in the topology expected. By
introducing an alternative topology reported in the literature [Vivanco et al.,
2007], we could take this emerging behavior into account thereby improving
the simulation. However, this manual literature search and implementation of

modified network motifs can introduce a bias and be tedious when upscaled.
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We anticipate that methods that can identify potential signaling rearrange-
ments in a prior knowledge network and then use automated optimization to
identify new interactions that improve the fit to data will be a key advance. In
principle, this might be achieved via a combination of the objective function
used here with the one presented in [Saez-Rodriguez et al., 2009], which was
developed to assemble Boolean logic models from a prior knowledge network
and determine the optimal topology by quantifying the difference between data

and global simulation while penalizing model size.

We acknowledge that there should be more rigorous definitions of the op-
timization process to account for models fitted to different number of time
points to analyze network evolution. Hence, we propose that the exploration
of the objective function mentioned above would be highly interesting. Once
the topology was modified according to the model performance, analysis of the
evolution of the resulting model revealed a potential signaling rearrangement:
while Sorafenib is a RAF kinase and VEGFR-2 inhibitor and thereby prevents
phosphorylation of MEK1/2 [Wilhelm et al., 2004], the observed phorphoryla-
tion profile of ERK was not consistently inhibited. This lack of regulation of
ERK1/2 by MEK1 was also present in the model in control conditions, suggest-
ing non-canonical MAPK signaling in the cell line used in this study. Indeed,
it has been reported that A-375 melanoma cell lines show higher resistance
to apoptosis than other melanoma cell lines, where anti-apoptotic proteins are
down-modulated in a MAPK-independent manner [Panka, 2006]. Additionally,
the analysis of model evolution described here led to observation of different
mechanisms of action of the two specific MEK1 inhibitors used in this work.
Such differential mechanisms were consistent with literature. Taken together,
the fact that specific targeting of MEK1 led to consistent inhibition of ERK1/2
indicated that the above-mentioned potential signaling rearrangement devel-
oped in A-375 melanoma cell line should be upstream of MEK1. The confirma-
tion of said rearrangement requires further experimentation and would thereby
close the interplay between experiments and theory in the classic circle of sys-
tems biology, in which modeling is supposed to suggest experiments, which in

turn improve the understanding of the phenomena at study.
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5.2 Advantages and shortcomings of the methods

presented

5.2.1 Benchmarking
High accuracy and reusability

To further evaluate the method presented here, the dataset presented in [Gaudet
et al., 2005] was used to benchmark it against the method described in [Aldridge
et al., 2009]. Thereby, it was possible to show that our method achieved high
accuracy -up to 10 fold increase- and, due to the establishment of the general
process for automation of model building, the model can readily be adapted
to different datasets, importantly without the bias of manual implementation.
This comparison also served as proof of principle for the parameter reduction
strategy presented here. In turn, increased high accuracy was a crucial property
of the model which then led to identification of differences in model simulation

arising at specific time points, therefore enabling study of network evolution.

Data requirements to predict optimal treatment combination in cancer

treatment and resistance

Additionally, benchmarking revealed that high accuracy and reusability came
at the cost of increased number of parameters. While the method by Aldridge
et al. could successfully encode experimental data measured upon 10 combi-
nations of TNF/EGF /Insulin at different concentrations, no direct comparison
to our method was possible. The reason for that is that to account for different
treatment concentrations, the treatment themselves should be implemented in
the model as a regulatory event. While in a manual approach one can include
the treatment as an input to only its a priori targets, we instead aimed at
inferring regulatory behavior from training. Thus, in our approach one should
include all treatments as inputs to all FIS models thereby enabling quantifica-
tion of its contribution. This immediately increases the density of the dataset
required: each individual species implemented in the model contains 2(n + 1)
free parameters, where n is the number of upstream regulatory intermediates
for this specific species defined in the prior knowledge network. For instance,

this implies that if a species regulated by e.g. 3 upstream signaling intermedi-

112



5 Discussion

ates was to be included in a network measured upon 3 treatments, more than
2(6+1)=14 data points should be acquired in order to maintain the number of
free parameters below it. Here only those measurements in control conditions
and maximum concentrations of treatment were selected from the dataset pre-
sented in [Gaudet et al., 2005] in order to perform the benchmarking, thereby
preventing the need of including treatments as inputs in the model. Hence, to
enable use of the method presented here to elucidate network evolution upon
combinatorial treatment, high-density datasets should be acquired. Although
costly, such an extension should be feasible, as there currently is a wealth of
experimental methods in the field of proteomics that enable high-throughput
measurement of signal transduction signatures [Saez-Rodriguez et al., 2011].
An additional obvious challenge to use the modeling approach presented here
to identify signaling rearrangements in the context of acquired resistance and
subsequently predict optimal treatment is the following: while processes exist
which are faster than genetic mechanisms such as mutation to acquire resis-
tance [Di Nicolantonio et al., 2005], the later are the common, most important
mechanisms. Hence, to investigate them, chronic treatment experiments span-

ning over months are required [Villanueva et al., 2010].

5.2.2 Network structure

In [Hanahan and Weinberg, 2011], the authors of this highly instructive review
article state that the advantages to tumor cells of activating signaling at the
receptor level versus downstream level remain obscure, as does the functional
impact of crosstalk between the multiple pathways radiating from growth fac-
tor receptors. Regarding the second part of this statement and the role of
crosstalk, it has been proposed that combinatorial assemblies and spatiotem-
poral dynamics are the cell’s strategy to achieve a number of functions higher
than the number of genes responsible of performing them [Kholodenko et al.,
2010]. Here, the authors state that the next question is to explain why evolu-
tion chose combinatorial assemblies over single pathway deterministic solutions;
an answer being that successful designs can be recycled and adapted for new
purposes. Along these lines, in sections 1.1.2 and 1.3.2 we review mecha-
nisms that have been reported to grant specificity of signaling when crosstalk

is present between pathways regulating different responses; a number of this
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mechanisms rely on network structure, such as negative feedback loops. We
therefore argue that methods to identify signaling rearrangements from data
such as the one presented here could be used as a first line of analysis in studies

that seek to understand spatio-temporal dynamics of crosstalk regulation.

The first question raised above, why do cancers preferentially activate pro-
liferative signaling at the receptor level, is potentially related to the network
structure, i.e. the topology of signaling networks regulating proliferation such
as the MAPK signaling cascade. In a letter titled "Why do protein kinase
cascades have more than one level", the authors show that the property of hav-
ing multiple levels in a cascade can itself cause high sensitivity [Brown et al.,
1997], i.e. by having multiple levels the sensitivity of the target to the signal
is increased. Therefore, it is possible that the higher upstream an activat-
ing mutation occurs, the more the proliferative response could be increased.
Conversely, one could argue that there are also advantages to activating pro-
liferative signaling downstream, which are also related to network structure.
Indeed, in section 1.3.2 we review mechanisms that are used by the cell to
provide a robust response in pathways regulated by proteins with fluctuating
levels, due to e.g. cell-to-cell variability. In [Fritsche-Guenther et al., 2011], the
authors perturb the protein levels of the effector MAPK ERK and find that
activation, i.e. phosphorylation of ERK is very robust against fluctuating pro-
tein levels; they also show that one single strong feedback from Erk to Raf-1
accounts for the observed robustness. Other motifs exist that can differen-
tially shape network structure to provide robustness to the pathway [Bliithgen
and Legewie, 2012]. It is therefore also possible that an activating mutation
downstream could be harder to compensate via robustness mechanisms, or
crosstalk to other pathways, due to the more direct proximity -in number of
signaling levels- to the effector signaling intermediate that will translocate to
the nucleus and up- or down-regulate the transcription of the gene that will
ultimately cause increase in proliferation. Along these lines, an advantage of
the methods presented here is that evaluation of the signaling structure present
at the experimental cell line is possible. The limitation is then, that identi-
fication of discrepancies in reported vs. experimental cellular signaling does
not directly imply understanding how this rearrangement has been achieved.

We argue that to better understand said rearrangement, an improvement of
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the objective function used here as discussed in section 5.1.2 would enable
prediction of novel crosstalk interactions. Again, this would not imply under-
standing which mechanism was the cause of the modification in the network
structure identified by the modeling -for a list of potential causal mechanisms,
the reader is referred to table 1.2-. We expect that in the future, elucidation
of the mechanisms that regulate emergence or impairing of crosstalk between
pathways and thereby shape network structure will aid to quantify the interest
as treatment targets of individual signaling intermediates depending on the
specific network motif of their location. We further discuss this concept in the

outlook.

5.2.3 Use of literature data

Evidence on interactions amongst signaling intermediates across cell lines ac-
cumulates vastly [Kiel and Serrano, 2011]. Theoretical systems biology ap-
proaches exist that use experimental data reported in the literature in three

different ways:

1. Model relationships in own experimental data in an unsupervised manner,

i.e. with no assumption or use of literature data whatsoever.

2. Use only topological information from the literature, i.e. without assum-
ing that the spatio-temporal and kinetic regulation in the particular cell
line at study coincides with those of literature. Subsequently analyze its

validity or evolution in own experimental data.

3. Use topological information and physicochemical detail in the literature
regarding the chemical reaction underlying said interactions, e.g. using
protein concentration or kinetic constants in addition to the link itself

between the species at study.
Novel mechanistic insight comes at the prize of assuming prior
knowledge

The stated in point 3 is the basis for physicochemical modeling approaches such
as ordinary and partial differential equations. Ordinary differential equations

are based on mass action kinetics and able to describe the concentration of

115



5.2 Advantages and shortcomings of the methods presented

reactants in continuous time, thereby aiding to achieve insight at a mechanistic
level. The spatial component can be added to the model by using partial
differential equations, thereby enabling to represent the system in time and
space. However, it might be invalid to assume that the interactions between
said reactants are regulating the pathway of study in own experimental systems
analogously as they do in the literature. The reason for that is that the presence
of said interactions is generally cell type specific and dynamically modified both
in disease and physiological conditions. In disease, it has been shown that
cancers can preferentially express alternate transcripts to maintain abnormal
proliferation [Kurada et al., 2009] or escape specific drug targeting [Villanueva
et al., 2010]. In physiological conditions, it has been shown that network
structures are spatially and temporally regulated in order to enable cells to
integrate information to determine specific biological functions [Kholodenko
et al., 2010] and grant robustness to systems regulating key processes [Bliithgen
and Legewie, 2012]. For example, in [Kiel and Serrano, 2009] the authors show

that kinetic rates can be cell-type specific.

Data-derived modeling: less bias from prior knowledge at the cost of less

mechanistic insight

Modeling approaches exist that prevent the bias in point 3. However, the
more qualitative and phenomenological the approach, the less mechanistic the
insight achieved by employing it [Spencer and Sorger, 2011]. An example of for-
malism, which complies with point 1 are data-driven approaches. Data-driven
approaches build models based solely on analyzing the data itself; examples of
such formalisms are clustering, principal component analysis and partial least
squares. For a comprehensive review on said techniques, the reader is referred
to [Janes and Yaffe, 2006]. The limitation in such analysis techniques is that
they are reductionist approaches, able to emphasize variables and their differ-
ence in the data. In the first part of this work, we employed a non-reductionist
approach, which also followed point 1. In the second part of this work, we
aimed at using available information and analyzing its validity in own exper-
imental measurements, in an attempt to benefit from available information
without introducing a bias. This approach then followed point 2. To describe

both approaches we coined the term data-derived, i.e. the models are to a
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great extent derived from data. This term then applies for the two formalisms
presented in this work, although the first one is also data-driven, i.e. solely
based on the data.

The results presented in the first and second part of this work are discussed
below in detail (see Section 5.1.1 and 5.1.2). Overall, from the results de-
scribed in the first part of this work we can conclude that mutual relationships
can be derived from heterogeneous measurements of high-content e.g. bioener-
getic, morphological and functional signatures of signal transduction using an
approach based on data-derived logic models. Further, the results presented
in the second part of this work show that by incorporating temporal and topo-
logical structure to the approach, changes in network topology can be inferred
from the training and simulation of time-defined fuzzy logic models, thus pro-
viding a tool to facilitate understanding of the dynamic signaling mechanisms
that grant melanoma its molecular plasticity. In addition, we argue that in the
future the method presented here could be combined with ODE-based model-
ing approaches for increased mechanistic insight. Thereby, a physicochemical
model could be prevented to rely on kinetic rates, initial conditions or interac-
tions shown in literature but identified as not valid by data-derived fuzzy logic
model, due to e.g. different stimuli, signaling rewiring or cell-type-specific

signaling.

5.2.4 Number of free parameters

In the second part of this work, we established a training setup to fit the
parameters of a Fuzzy Inference System (FIS) to experimental time-defined
measurements. In training fuzzy inference systems, a number of model quali-
ties and parameters can be learned that can vary orders of magnitude [Huang
and Hahn, 2009]. Using a parameter reduction strategy, the number of quali-
ties that are traditionally trained in a fuzzy inference system was importantly
reduced to increase interpretability. In doing so, the contribution of the model
features to the flexibility and accuracy of the output was calculated, and we
could conclude that circumventing training of a number of model qualities with-
out greatly compromising accuracy is possible. Thereby, the number of free
parameters was reduced to below the threshold of our 8 data points acquired in

our dataset per kinase or transcription factor measured. As previously intro-
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duced, in FL the parameters can be abstract, unrelated to or not representing
kinetic rates. The conclusions presented here raise the possibility that sen-
sitivity analysis derived from data -e.g. resampling the training set- aids to
elucidate the meaning and impact of the model parameters, thereby improving

its interpretability.

5.2.5 Temporal activation
Time rules... and there are rules to time

To include the role of time in network topology, we based our method on the
assumption that the behavior of each single model trained was the consequence
of the behavior upstream of it. Therefore, to simulate the behavior of the whole
network, only the upstream models were simulated and its predicted value was
used to propagate the signal throughout each level of the signaling cascade.
For in-depth review of the role of time in logic models, the reader is referred
to [Wynn et al., 2012, Morris et al., 2010]. Along the line of the role of time in
the approach presented here, it has been shown that transient ERK activation
in PC12 cells upon EGF stimulation induced proliferation, whereas sustained
ERK activation by NGF induced differentiation [Marshall, 1995]. In the future,
data-derived logic models should be a key step forward to facilitate identifying
the events in which duration of activation i.e. transient versus sustained is
critical for cell signaling decisions. In principle this should be straightforward
to achieve by including time as input analogously to the inclusion of signaling
intermediates as inputs shown in this work, with same constraints regarding
dataset density. Thereby, direct quantification of the contribution of time as
a signal would be enabled. Thus, bringing together high-density datasets and
data-derived modeling would create a framework to directly investigate events
in which duration of activation is critical for cell signaling decisions. In other
-loose-: such combination of experimental and theoretical approaches would
be a rule to elucidate the specific role of time... in those events in which time

rules.
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5.3 Outlook

In this chapter we have discussed the advantages and limitations of the methods
presented in the course of this work. Looking forward, it seems likely that the
above-proposed solutions to the limitations discussed will aid these methods to
prove even more effective in the analysis of cell-type specific network evolution
from heterogeneous datasets. In short, we have discussed the use of the pre-
sented data-derived modeling formalism to elucidate non-linear signaling from
high-content heterogeneous datasets. We reported a hierarchy of morphological
and functional features of mitochondrial regulation during apoptosis in MCF-
7 breast cancer cell line, and reviewed the limitations of doing so by means
of an algorithm lacking temporal and topological structure. We further dis-
cussed how this specific aim was solved in the second part of this work, thereby
enabling elucidation of network evolution and providing a means to facilitate
understanding of the mechanisms that grant melanoma its molecular plastic-
ity. We anticipate that once identified, these rearrangements might be better
characterized by combining the approach presented here with physicochemical
modeling such as ordinary differential equations. In addition, we anticipated
strategies to validate the potential signaling rearrangement specific in A-375
melanoma cell line. We also have discussed the important advantages of our
method learned from benchmarking, and we suggested experimental strategies
to enable use of the method in order to provide a quantitative measure of inter-
est as treatment target of each signaling intermediate over time. Along these
lines, we anticipate that exploration of the objective function landscape should
enable the method presented here to better characterize signaling rearrange-
ments; this might be achieved by analyzing evolution of not only discrepancies
in interactions present, but also novel interactions added which could decrease
the objective function, resulting in improved model behavior.

Nevertheless, the exploration of network evolution as discussed above im-
mediately raises several possibilities as to what mechanism originates the re-
arrangement, ranging from genetic mechanisms such as mutations to tight
spatio-temporal pathway regulation (see table 1.2). In the future, hetero-
geneous datasets combining measurements of post-translational modifications
with other data should provide a stronger basis to elucidate the mechanisms of

topological complexity. To that end, the current major advance in sequencing
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technologies could be exploited, to the point that patient-specific next genera-
tion sequencing data could be acquired [Desai and Jere, 2012] and combined to
elucidate impact of specific mutations in signaling. While statistical approaches
such as dynamic Bayesian networks can be used to infer signaling networks from
time series of genetic data [Markowetz and Spang, 2007], application of data-
derived logic modeling should enable combination with post-translational mod-
ification and single-cell imaging data; in turn, single-cell imaging data might
facilitate understanding of spatio-temporal pathway regulation [Grecco et al.,
2011]. In the event of integrating such a dataset, when using data-derived
logic modeling an added computational challenge would be arising from the
heterogeneity of the experimental data. In the first part of this work (see sec-
tion 4.1), we have used an exhaustive search of data-derived fuzzy models to
identify nonlinear relationships in heterogeneous measurements of mitochon-
drial morphological, apoptotic, and energetic states by high-resolution imaging
of human breast carcinoma MCF-7 cells [Reis et al., 2012]. This raises the pos-
sibility that, in the future, further exploration of data-derived logic and other
modeling approaches fitted to heterogeneous datasets should yield valuable in-
sights into the sources of the mechanisms granting specific tumors its plasticity,

thereby contributing to facilitate personalized therapy.
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Appendix 1

Example of Matlab functions for model

implementation and fitting

1%*>I<>I<>l<>/<>/<>/<>I<>I<>l<>/<>/<>/<>I<>I<>l<>/<>/<>/<>I<>k>l<>/<>/<>/<>I<>/<>l<************************

2 %maxtime :number of datapoints to temporally define training

s%varlist :measurements used to train model

a%h: figure for cumulative plotting

s%(for more details, see methods)

6 TBH o o 5 K KA K KA A KA KA KKK A KA A FEAAF KA F KA A AN KK

7

sfunction [zpred] =FitAndEuclideanlkGauss (maxtime, varlist ,h)

9

10

11 TG Ko o Kk KA KA AT KA AT A AT AAFFFAAF KA AT AN KA

12% General variables

13 Nodes={’CREB’ , ’Akt’, ’ATF2’ | "IKK’ ,"JNK’ , 'p38°’ , ’ERK’ , "p53’ , 'MEK1’
, ’¢JUN" };

14 %NodesBenchmarck={'MK2’, ’JNK’, ’FKHR’, "IRS_S’, ’IRS_Y’, '"MEK’, 'ERK
7, Akt IKK Y, Cclv—c8 7, ‘pro—c8 ’};

15 %conditionsBenchmark=struct ('name’,{ control ’, "TNF’, ’"EGF’,’
Insulin '}, 'position ', {’1:137,727:8397,740:527,°79:91°}) ;

16 conditions=struct ( 'name’ ,{’dmso’, ’U0’, ’AZ’, ’Sor’});

17 output=char (Nodes(varlist (end)));

1s NumInputs=1; %this is the function for the case: only 1 kinase
upstream , or only time as input

19

20 NumInputMFs=2;

21 mfType=str2mat ( ’gaussmf’) ;

22 NumOutputMFs=power (NumInputMFs, NumInputs) ;

23 OutputMFs=struct ( 'name’ ,{}, 'params’ ,{});

24anumConditions=4;

25

26 TG 3o o o Ak K A KK KK K KOk KK KO R KKK K KK K KO K K KK K

27 %model—specific variables

28
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20 nparams = 4;

3o condIndex=1;

31 OutputMFindex=1;

2 %p0=(rand (1,nparams)*200)—100;

ssdp0 = [-1 —1 —1 —1]5

sa options=optimset ( 'Display ’, 'Iter ’,’MaxFunEvals’ ,3000) ;

35 Boptions=optimset (’Display ’, "Iter ’, "PlotFens ’,{ Qoptimplotz ,
@optimplotfval }, MazFunEvals’,3000) ;

36 Jok K KA KK A KK AA KA A KA KKK AFEAAF KK A I K KA KA A KA A KA KA A A

37

3s while condIndex<=numConditions

39

40 data=orgaDataFullMelanoma ( varlist ,condIndex ,maxtime) ;
41 nruns = 100;

42 p = zeros(nruns, nparams);

43 offsetList = zeros(nruns,l);

44

45 %

46 %loop to randomize initial parameters

a7 indexParams=1;

48 for indexParams=1:nruns

49 p0=(rand (1 ,nparams)*200) —100;

50

51 %[p(indexParams,1:4), pen(indexParams)] = lsqnonlin(

Q@QevaluateFIS ,p0,[],[], options);
52
53 [p(indexParams ,:) , pen(indexParams)] = fminunc(

@evaluateFIS ;p0,options);

54 offsetList (indexParams) = offset ;
55 %indexParams=inderParams+1;

56

57 end

58 [valParam , positionParam]=min(pen) ;

59 %

60
e1%plot relevant models, here MEKI (9) and ¢JUN (10), see above
62

63

64 if varlist==[0 9]

65

66 figure (h);

67 xForPrediction = linspace (min(data (:,1)) ,max(data(:,1))
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68

69

70

71

72

73

74

75

76

v

78

79

80

81

82

83

84

85

86

87

89

90

91

92

93

94

95

96

97

98

end

,100) 5
prediction=FuzzyLogicSystemlk (p(positionParam ,1:4) ,
xForPrediction) ;

zpred = FuzzyLogicSystemlk (p(positionParam ;1:4) ,data

(+,1));

subplot (3,4, condIndex)

plot (xForPrediction , prediction , =)

hold on;

plot (data (:,1) ,data(:,2),’bo’, MarkerFaceColor’,’b’); %
plot data

plot(data (:,1) ,zpred, ’go’, MarkerFaceColor’,’g’); %plot
prediction for datapoints

box off;

if varlist (1)==0
xlabel (char ("TIME’) ) ;

else xlabel(char(Nodes(varlist(1))));

end

ylabel (char (Nodes(varlist (2))));

ResVector=num2str(residuals (:));

title ([char(conditions (condIndex).name),’ offset:’,
num2str( offsetList (positionParam))]);

text (0.7,0.7 ,[ResVector])

if varlist==[5 10]

figure (h);

xForPrediction = linspace (min(data (:,1)) ,max(data(:,1))
1100) ;

prediction=FuzzyLogicSystem1lk (p(positionParam ,1:4) |
xForPrediction);

zpred = FuzzyLogicSystemlk (p(positionParam ,1:4) ,data

(:51));

plot (xForPrediction , prediction , ’k—", ’LineWidth’ ,2)

hold on;

plot(data (:,1) ,data(:,2),’bo’, MarkerFaceColor’,’b’); %
plot data

plot(data (:,1) ,zpred, ’go’, MarkerFaceColor’,’g’); %plot
prediction for datapoints

box off;
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99 if varlist(1)==

100 xlabel (char ("TIME’) ) ;

101 else xlabel(char(Nodes(varlist(1))));

102 end

103 ylabel (char (Nodes(varlist (2))));

104

105 ResVector=num2str(residuals (:));

106 title ([char(conditions (condIndex) .name),’ offset:’,

num?2str(offsetList (positionParam))]) ;

107 text (0.7,0.7 ,[ResVector])

108 end

109

110

111

112 OutputMF (OutputMFindex) .name=strcat (char (conditions (
condIndex) .name) ,num2str (OutputMFindex) ) ;

113 OutputMF (OutputMFindex) . params (1)=p(positionParam ,1) ;

114 OutputMF (OutputMFindex) . params (2)=p (positionParam ,2) ;

115 OutputMFindex=0OutputMFindex+1;

116 OutputMF (OutputMFindex) .name=strcat (char (conditions (
condIndex) .name) ,num2str (OutputMFindex) ) ;

117 OutputMF (OutputMFindex) . params (1)=p(positionParam ,3) ;

118 OutputMF (OutputMFindex) . params (2)=p(positionParam ,4) ;

119 OutputMFindex=0OutputMFindex+1;

120

121 condIndex=condIndex+1;

122

123 end

124 %defining the final FIS with all estimated parameters

125 %general

126

127 %e=genfisl (data , NumInputMFs, mfType);%the default for outputmf
is linear

128

120 e .name=strcat (output ,char(’final 7)) ;

130 e . type=’sugeno ’;

131 € .andMethod="prod ’;

132 € .orMethod="probor ’;

133 €. defuzzMethod="wtaver ’;

134 € .impMethod="prod ’;

135 € . aggMethod="sum ’;
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136

137

s if (varlist (

139

140 else e.input

141 end

142 € . input

143 € . input

145 € . input

146 € . input

147

14g € . input
149 € . input
150 € . input

151 €. input

152

€.

(1)

(1)
1aae.input (1) .mf(1

(1)

(1)

1)==0)
input (1) .name="TIME’ ;
(1) .name=char (Nodes(varlist (1)));

.range=[0 1];

.name="1";
.type=mfType;
.params (1) =0.4247;
.params (2)=0;

.name="mL’ ;
.type=mfType;
.params (2)=1;
.params (1) =0.4247;

153%create FIS inputs for dummy wvars

154

155 condIndex=2; %control is already default, hence not

implementing a dummy var for control

156 while condIndex<=numConditions

157

158

159
160
161
162
163
164
165
166
167
168 end
169
170
171

172

%e . input (condIndex).name=char (conditionsBenchmark (condIndex

® ®© o @® @® o® o @

).name) ;

.input (condIndex) .
.input (condIndex) .
.input (condIndex) .
.input (condIndex ) . mf
.input (condIndex) .
.input (condIndex) .

( ).

.input (condIndex

.input (condIndex) . mf

range=[0 1];

.type="trapmf’;

.name="’yes ’;

.type="trapmf’;

condIndex=condIndex+1;

173 Boutput

)
)
) .params=[—1 0 0.5 0.51];
)
)
)

.params=[0.5 0.51 1 1.5];

name=char (conditions (condIndex) .name) ;

1ma%defining output MFS to be wused by rules under each condition

175 e .output (1) .name=output;
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176 e.output (1) .range=[0 1];

177 condIndex=1;

178

179 OutputMFindex=1;

150 while OutputMFindex <= times (NumOutputMFs, numConditions)

181 e.output (1) .mf(OutputMFindex) .name=strcat (char(conditions (
condIndex) .name) ,num2str (OutputMFindex) ) ;

182 e.output (1) .mf(OutputMFindex) .name=strcat (char(conditions (
condIndex) .name) ,num2str (OutputMFindex) ) ;

183

184 e.output (1) .mf(OutputMFindex) .type=’linear ’;

185 e.output (1) .mf(OutputMFindex) . params= [OutputMF (
OutputMFindex) .params(1) 0 0 0 OutputMF (OutputMFindex) .
params (2) |;

186

187 if (mod(OutputMFindex , NumOutputMFs)==0) && condIndex<
numConditions

188 condIndex=condIndex+1;

189 end

190 OutputMFindex=0OutputMFindex+1;

191

192 end

193
194
195
196
w7 %rules

108 Bexpanding rules

199 %rules for dmso

200e.rule (1) .antecedent=[1 1 1 1];
1) .consequent =[1];

1) .weight=1;
1)

.connection=1;

202e.rule
203¢.1rule
204

205 ¢.rule (2).antecedent=[2 1 1 1];
) . consequent =[2];
207e.rule (2).weight=1;

)

(
206 ¢ . rule (
(
20se.rule (

.connection=1;
209
210

o1 %defining rules to be used by rules upon U0
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212 €.

213 €.

214 € .

215 € .

216

217 €.

218 € .

219 € .

220 € .

221

222

.antecedent=[1 2 1 1];
.consequent =[3];
.weight=1;

.connection=1;

rule (4).antecedent=[2 2 1 1];
rule (4) . consequent =[4];

rule (4) . weight=1;

rule (4).connection=1;

23 %defining rules to be used by rules upon AZ

224

225 € .

226 € .

227 €.

228 €.

229

230 € .

231 €.

232 €.

233 €.

234

235

) .antecedent=[1 1 2 1];
) .consequent =[5];

). weight=1;

)

.connection=1;

rule (6).antecedent=[2 1 2 1];
rule (6).consequent =[6];

rule (6) . weight=1;

rule (6).connection=1;

236 %defining rules to be used by rules upon Sorafenib

ss7e.rule (7).antecedent=[1 1 1 2];

23se.rule (7).consequent =[7];

239e.rule (7). weight=1;

220e.1ule (7). connection=1;

241

212 e.1ule (8).antecedent=[2 1 1 2];

243e.r1rule (8).consequent =[8];

2aae.1rule (8) . weight=1;

use.rule (8).connection=1;

246

27 fprintf (" \n——— \nthe FIS %s was created\n
output ,char(’final’)));

248

220 writefis (e, strcat (output,char(’final’)));

250

251

252

function objective = evaluateFIS (params)
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253 nlnterpPoints = 100;

254 x = data(:,1);

255 offset = 0;

256 Z%weight = x; weight (1) = le—¥5;

257 Z%minPenalty=0.1;

258 Z%mazPenalty=0.1;

259 %

260 % pl = params(1);

261 % ql = params(2);

262 % p2 = params(3);

263 % q2 = params(4);

264

265 zpred = FuzzyLogicSystemlk (params,x);

266 residuals = sqrt ((sum((zpred — data(:,2)).72))./maxtime
);% compute the differences to penalize bad fits

267 %calcualte offset to later penalize for out of range
simluation

268 % To that end, first calculate solution for a larger
number of data points

269 xExtended = linspace (min(x) ,max(x),nInterpPoints);

270 zforRange = FuzzyLogicSystemlk (params,xExtended) ;

271 zforRange=zforRange (:) ;

272

273 offset = sqrt(sum(([zforRange (zforRange <0); zforRange (
zforRange >1)]).72)./numel (zforRange));

274

275

276 objective=residuals + offset;

277

278 end

279

2s0 end
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Example of Matlab functions for generalized

model

I I T T I

2%F: simulation of the reduced single input FIS

3%p: parameters estimated

4%z : experimental data

s%(for more details, see methods)

6 TBH % o 5 K KA K KA A KKK AAF KA AT A FFAAFFFAAFFKFAAF KA

7

8

o function F = FuzzyLogicSystemlk (p,x)

10 F = (exp(—(x.72)./(2.%(0.4247) .72) ) .x(p(1l) .xx+p(2) )+exp
(—((x=1).72)./(2.%(0.4247).72) ) .x(p(3) .xx+p(4)))./(
exp(—(x.72)./(2.%(0.4247).72) )+exp(—((x—1).72)
/(2.%(0.4247).72)));

11

12 end
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Example of Matlab function for temporally defined

network simulation

1

2

s%rdataset—specific variables defined xxx**sx

sclear;

s maxtime=8; %number of datapoints used for training, which will
be used for simulation

6 %XNodesBenchmarck={'MK2’, ’JNK’, 'FKHR’, 'IRS(S) ’, 'IRS(Y) ’, '"MEK’ ,’
ERK’, Akt ’, "IKK’, clv—c8’, 'pro—c3’};

7 Nodes={'CREB’ , Akt ’, ’ATF2’ , "IKK’ , ’JNK’ , ’p38° , "ERK’ , "p53 ", '"MEK1’
, '¢JUN’ };

s NumNodes=10;

oF%conditionsBenchmark=struct ( 'name’,{ ’control ’, "'TNF’, "EGF’,’
Insulin '}, 'position ', {’1:137,727:8397,°40:527,°79:91°}) ;

10 conditions=struct ( 'name’,{ ’control’,’U0126°, AZD6244° ,’
Sorafenib ’});

11

12%**xdefinition of network model

13 numCond =4;

14

15 CREBfinal=readfis ('CREBfinal ) ;

w6 % Aktfinal=readfis ( Aktfinal ’);

17 ATF2final=readfis (’ ATF2final ) ;

18 IKKfinal=readfis (’IKKfinal ") ;

1w %JNKfinal=readfis ("JNKfinal ’) ;

20%p38final=readfis ('p38final ’);

21 ERKfinal=readfis ( ’ERKfinal ’) ;

22 pb3final=readfis(’p53final ’);

23 IMEKIfinal=readfis ("MEKI1final ’) ;

24 cJUNfinal=readfis (’cJUNfinal ’);

25

26 %modelfile="mapktopologylOPenalty ’
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27 modelfile="mapkAlternativeTopologyLookUp2’'; %simulink model,
see appendix 2

8% modelfile="mapktopologyl0LookUp2 ’;

2w%modelfile="mapktopologylOrangeDecay2’

so%modelfile="mapktopologylODecayPenalty’

si%modelfile="model2benchAllcond ’;

s2%modelfile="model2benchlcondFeedback ’;

33% modelfile="mapkmodelfeedback ’;

34

35% %drug input values

ssyes=[0 1; 0 1]; %I

sTno=[0 0; 0 0;]; %0

38

30 expoDecay=[];% it is 1, the input used will be real time. If it
is 0, exponential decay.

10 %UpstreamChoice=[]; % This switch is implemented in the simulink
model.

a1 %Range=[0 0; 0 0];

42

43

44 timepoints=[0 30 360 720 1440 2880 4320 5760]; %for own dataset

ssFtimepoints=[0 &5 15 30 60 90 120 240 480 700 960 1200 1440]/;%
for benchmarcking

46 endtime=timepoints (maxtime) ;

a7 normatime=timepoints (:) /endtime;

43

w%declare output vars

50 totalactivity=zeros(maxtime ,40) ;

51% activitydmso =[];

52% activityUO0 =[];

53% activityAZ =[];

sa% activitySor =[];

55 Tp s 5 5 5k 3 3k 3k Sk kK KK K KKK KKK K KKK KKK KKK

56

57

ss condIndex=1; %drug index

59

60 while condIndex<=numCond

61 if condIndex==
62 UO=no

63 AZ=no

64 Sorafenib=no
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65

67

68

69

70

71

72

73

74

75

76

v

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

UpstreamChoice=[0 0; 0 0]

%if UpstreamChoice is >0.5, upstream FIS models
specified in simulink model will be simulated for
exponential decay of time and otherwise for time

elseif condIndex==

Ul=yes

AZ=no

Sorafenib=no

UpstreamChoice=[0 1; 0 1]

elseif condIndex==

UO=no

AZ=yes

Sorafenib=no

UpstreamChoice=[0 0; 0 0]

elseif condIndex==

UO=no

AZ=no

Sorafenib=yes

UpstreamChoice=[0 1; 0 1]

end
i=1; %timepoint index
j=1; %index for global simulation
while i<=maxtime
if condIndex==1
k=1; %index for separation of results in array

according to drug simulation

elseif condIndex==

k=11;
elseif condIndex==
k=21;
elseif condIndex==4
k=31;
end
% TIME=[0 normatime(i); 0 normatime(i)];
% expoDecay=[0 exp (times (normatime(i),—50)); 0

exp (times (normatime (i),—50))];
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103

104

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136 end

137

MEKI1Data = MEK1DataLoader (i ,condIndex , maxtime) ;
AktData = AktDataLoader(i,condIndex ,maxtime);
p38Data = p38DataLoader(i,condIndex ,maxtime);
JNKData = JNKDataLoader(i,condIndex ,maxtime);
YMEK1Data= [0 1; 0 1]

%AktData=[0 1; 0 1]

%p38Data=[0 1; 0 1]

[t,x,y]=sim(modelfile);
%activitydmso=[activitydmso; simout.signals.values];

while j<=NumNodes
totalactivity (i,k)=simout.signals.values(j);
Jmame=char (NodesBenchmarck(j));

name=char (Nodes(j));

Tfprintf ( xxxxsstssxnxxxxsssssxxxxxx the simulation
is %s upon %s\n’ ,name, conditionsBenchmark (
condIndez).name) ;

fprintf (7 sk okokokokokokkokokokxox ok the ysimulation
is %s,upon %s\n’ ,name,conditions (condIndex).

name) ;

j=i+L
k=k+1;

end

fprintf(’ sxs«x*xxthe timepoint,is %g \n’ ,normatime(i) )
i=i+1;

i=L

end

condIndex=condIndex+1;

138 totalactivity %#ok<NOPRT>
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Example of Simulink network

Trained Fuzzy Inference System

0}

/M

[] Preloaded data

Condition switch
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