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Zusammenfassung

Wir betrachten ein 2-dimensionales verdünntes Fermigas Modell mit kurz-

reichweitigen Wechselwirkung. Wir zeigen nicht-störungstheoretisch, dass

die renormierte Störungsentwicklung des Modells bei positiven Tempera-

turen endlichen Konvergenzradius hat. Der Konvergenzradius schrumpft lo-

garithmisch gegen null wenn die Energieskala gegen die Infrarotgrenz geht.

Durch eine detaillierte Analyse des Beitrags der Leitersummen stellen wir

fest, dass der Konvergenzradius auch von dem Vorzeichen der Kopplungs-

konstanten g abhängt. Es wird außerdem gezeigt, dass die Selbstenergie

eine einmal stetig differenzierbare Funktion C1 im analytischen Bereich des

Modells ist. Zur Untersuchung dieses fermionischen Modells wird die mathe-

matische Renormierunggruppe, die in der konstruktiven Quantenfeldtheorie

entwickelt wurde, verwendet. Die Fermifläche wird durch Konterterme fi-

xiert. Die Baumentwicklung wird eingeführt, durch denen Anwendung die

Konvergenz der Störungsentwicklung nachgewiesen werden kann. Diese Be-

weismethode wird angewendet, um ein halbgefülltes Hubbard-Modell auf

einer Doppelschicht Graphen mit lokalen Wechselwirkungen zu konstruktie-

ren.

Abstract

We consider a dilute Fermion system in continuum two spatial dimensions

with short-range interaction. We prove nonperturbatively that at low tem-

perature the renormalized perturbation expansion has non-zero radius of

convergence. The convergence radius shrinks when the energy scale goes to

the infrared cutoff. The shrinking rate of the convergence radius is estab-

lished to be dependent of the sign of the coupling constant g by a detailed

analysis of the so-called ladder contributions. We prove further that the self-

energy of the model is uniformly of C1, but not C2 in the analytic domain

of the theory. The proofs are based on renormalization of the Fermi surface

and multiscale analysis employing mathematical renormalization group tech-

nique. Tree expansion is introduced to reorganize perturbation expansion

nicely. Finally we apply these techniques to construct a half-filled Hubbard

model on honeycomb bilayer lattice with local interaction.
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Chapter 1

Introduction

For many years, Landau Fermi liquid (FL) theory [Lan59] was appeared to

be congenial to explain the interacting many fermions systems, at least for

scenarios where temperatures are not too low or the systems are in their

normal phases. At very low temperature, however, Landau’s Fermi liquid

theory breaks down, and a number of potential instabilities appear. For

example, the BCS instability for the formation of Cooper pairs leads to

superconductivity in two or three dimensions. Here we call dimension the

dimension of space only. But in the past three decades, Landau’s Fermi

liquid theory has been engaged with a range of problems very different from

those it began with, in particular, the discovery of high temperature super-

conductivity in cuprate compounds. Their normal phase shows apparent

discrepancy between theoretical prediction and experimental observation.

This discovery challenges the view of Fermi liquid theory. One began to

doubt the correctness of Fermi liquid theory or the existence of Fermi liquid

in two dimensions. Do interacting Fermi systems in two dimensions resem-

ble more the Fermi liquid in three dimensions, or the Luttinger liquid in

one dimension which has a linear dispersion relation and is exactly solv-

able by bosonization? Anderson [And90a, And90b, And95] suggested that

a two dimensional Fermi gas behaviors similarly to a one dimensional Lut-

tinger liquid. But his answer was not wholly right. Rigorously speaking,

the answer should depend on the shape of the Fermi surface.

We present a brief review of rigorous mathematical studies of interacting

Fermi systems accomplished until now. In dimension one there is no ex-

tended Fermi surface and Fermi systems have been proved to be Luttinger

liquid by Benfatto and Gallaotti [BG95], which exhibits anomalous decay ex-

ponents. In dimension two, in a series of papers [FKT00,FKT04h,FKT04i,

FKT04j,FKT04c,FKT04d,FKT04f,FKT04e,FKT04g,FKT04a,FKT04b] by

3



4 1 INTRODUCTION

Feldman, Knörrer and Trubowitz the construction of two dimensional Fermi

liquid for a class of non-parity invariant Fermi surface has been completed

in great details. In these papers the convergence of perturbation expan-

sion of the connected Green’s functions in term of the coupling constant at

zero temperature has been proved. The Fermi liquid behavior was estab-

lished in a traditional sense, namely the existence of a jump in the particle

number density at the Fermi surface. Systems with non-parity invariant

Fermi surface can be realized by applying a sufficiently high magnetic field,

which breaks the Cooper pairs and prevent superconductivity. The other

approach was based on Salmhofer’s criterion for Fermi liquid behavior at

positive temperature [Sal98a,Sal99]. One has to study whether given mod-

els satisfy Salmhofer’s criterion or not. The criterion are as follows

1. The renormalized perturbation expansion in the coupling constant g

for the Green functions and the counterterm function converges in a

region R = {(g, β) : |g| log β < const}.

2. The self-energy is C2 in k, and its second derivative is uniformly

bounded on compact subsets of R.

3. The counterterm function is Ck0 in k, with k0 > d, and there is a

unique solution to the inverse equation (1.3).

We emphasize that these restrictions are sufficient but not necessary to

ensure Fermi liquid behavior. Condition 1 defines a critical temperature

Tc ∝ e
− C

|g| , above which the perturbation expansion converges. In other

words, temperature plays a role as a cutoff which prevents Cooper pair

formation. Condition 2 requires the regularity of the self-energy. If it holds,

we can do a first order Taylor expansion of the self-energy around the Fermi

surface. We obtain a finite wave function renormalization

Z(k) = 1 + i∂k0Σ(0,Π(k)) (1.1)

and a finite correction to the Fermi velocity. The Taylor reminder term

vanishes quadratically in the distance between (k0,k) and (0,Π(k)), where

Π projects the momentum onto the Fermi surface. In dimension two, above

conditions have been verified for system with Jellium band relation and

on-site interaction by Disertori and Rivasseau in [DR00a,DR00b]. An ex-

tension of this model into three spatial dimensions is completed recently by

the same authors [DRJ01]. For Hubbard model at low filling, the Fermi

surface becomes more and more circular as the filling factor goes away from

the half filling, Fermi liquid was estimated there by Benfatto, Giuliani and
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Mastropietro [BGM06], and independently by Pedra [Ped05], was proved the

result for Hubbard models with parity invariant, more general convex but

not necessarily rotation invariant Fermi surfaces. Models showing non Fermi

liquid behavior, such as Hubbard model at half filling has been confirmed

by Rivasseau, Afchain and Magnen in [Riv02,SA05b,SA05a]. Moreover, by

combining the result of [BGM06] and [Riv02, SA05b, SA05a] we conjecture

that there is a crossover between Fermi liquid and non Fermi liquid behavior

while varying the chemical potential. Remeber that Anderson suggested a

Luttinger liquid behavior, thus this might explain the controversy on the

nature of Fermi systems in their normal phase.

In this dissertation we intend to construct two interacting Fermions sys-

tems. Our rigorous mathematical construction consists of estimating the

regularity properties of the Euclidean Green’s functions and of the self-

energy.

Our first model describes many Fermions in two dimensional continuum

space with short-range interaction under a dilutness assumption. We state

the hypotheses on the free dispersion relation E(k) (shifted by the chemical

potential). We assume that E(k) has the form

E(k) = k2 − ν

β
(1.2)

where ν is a constant of order one, and β is the inverse temperature. At low

temperature, its Fermi surface is a circle with much smaller radius (r � 1)

than the one of Jellium band structure, which is of order one. This distinc-

tion may have very important effects on the low temperature properties of

the system.

Our second model is a lattice model based on bilayer graphene, which is

a material of great interest at present. The experimental realization of ultra-

thin graphitic devices including monolayer structure [NGM+04], known as

graphen, has attached many attentions. In particular, because of its disper-

sion relation, which resembles the one of massless Dirac fermions in two space

dimensions, graphen shows many exciting phenomena, e.g. the anomalous

integer quantum Hall effect. In [GM10] Giuliani and Mastropietro has con-

structed rigorously a low temperature two dimensional Hubbard model on

the monolayer honeycomb lattice with on-site interaction. Bilayer graphene

consists of two graphene monolayers, typically arranged in the Bernal stack-

ing arrangement. Our proposal is to construct a Hubbard model on bilayer

graphene at half filling with on-site interaction. In its simplest case with

nearest neighbour hoping only, it gives rise to a band structure with two

bands touching quadratically at two non-equivalent points in the first Bril-

louin zone. This band structure can be seen as a special case of our dilute
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Fermi gas model with ν = 0. On the other hand, inclusion of a next nearest

neighbor hopping between two layers gives rise to a Liftshiftz transition.

In order to study fundamental issues, such as the existence of non-

perturbative effects, we represent our models in field theory formalism, which

is the best tool to do that. In this formalism the usual second quantized form

of the Hamiltonian with creation and annihilation operators are replaced

by the anti-commuting fermionic fields with spin indices and arguments in

space-time. The strategy of our rigorous mathematical study of interacting

Fermi systems bases on renormalization of the Fermi surface and on multi-

scale analysis employing mathematical renormalization group technique.

It is well known that many coefficients in naive perturbation expansion

of the unrenormalized Green’s function in term of the coupling constant

diverge. The reason for this divergence is the deformation of the Fermi

surface while the interaction turns on. In other words, interacting and non-

interacting Fermi surface do not, in general, agree. Renormalization of the

Fermi surface becomes necessary. To do so, we use counterterm which is

bilinear in fermionic fields, that is, it is of mass type. The counterterm is

used to compensate the shift between the non-interacting and the interact-

ing Fermi surface, and the perturbation expansion will be implemented on

the fixed interacting Fermi surface. There still remains a question how to

justify putting in the counterterm function. We write the dispersion relation

E(k) of the free model in the form E(k) = e(k) + δe(k) and try to choose

the counterterm δe(k), which becomes parts of the interaction, as a suitable

function of the original interaction, so that the Fermi surface of the inter-

acting system is the set Sg = {k ∈ R2 | e(k) = 0}. We should prove that

δe(k, g) and e(k) can be chosen with same differentiability and the equation

E(k) = e(k) + δe(k,g) (1.3)

can be solved with respect to e(k), given E(k) and g. (1.3) is called

the inverse equation. For rotation invariant systems, such as the Jellium

model [DR00a,DR00b] and the models considered in this work, the coun-

terterm is fixed to be a constant or vanishes. Thus (1.3) is easy to solve. But

this is far from straightforward for a non-spherical Fermi surface, such as the

Hubbard model, where the counterterms are functions. The inverse equation

(1.3) becomes a highly nontrivial problem. In [FST96,FST98,FST99,FST00]

by Feldman, Salmhofer and Trubowitz, where they discussed this inversion

problem at the level of perturbation theory, an inversion theorem has been

proved, which shown a unique solution to (1.3), i.e. a one-to-one map be-

tween the interacting and the non interacting Fermi surface. In reality, if the

Fermi surface is fixed, the band structure changes, and vice versa. Hence,
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instead of fixing the Fermi surface by using the counterterm we can alterna-

tively adjust the Fermi surface during the renormalization group flow. This

avoids counterterms and the associated inversion problem. Instead we have

to check that the modified Fermi surface satisfies the same regularity prop-

erties of the free one. This is also not a easy task. A number of constructions

has used this technique, e.g. [BGM03,Ped05,GM10]. A detailed explanation

of Fermi surface flow can be found in [Sal07a].

In addition to the renormalization of the Fermi surface, multiscale anal-

ysis and discrete renormalization group flow technique will be heavily used

in our construction. Multiscale rather than single scale constructive analy-

sis is necessary because of the singularity of the propagator located at the

Fermi surface, which gives rise to an infrared divergence problem. Hence

the generating functional integral defining the Green’s functions can not be

treat in one piece. The basis idea of the multiscale analysis is to slice the

propagator according to the size of its denominator. With these, we write

the propagator as a sum of regular quantities. Integrating out a certain scale

is the implementation of integrating out the fluctuation. The task becomes

to control the limit of this sequence of integration. The discrete renormal-

ization group technique is a tool to control that limit. It is an extention

of the renormalization group of Wilson to long-range behavior governed by

extended singularity. The perturbation expansion of the renormalization

group map at each scale bases on some kind of tree expansion, which keeps

a large fraction of the theory in unexpanded determinants. Tree expansion

is much better than the usual Feynman expansion, which would be simply

diverge at large order because there are two many Feynman graphs at large

order. Tree expansion is the core of any constructive method.

The rest of this dissertation is divided into six parts. In chapter two we

define our dilute Fermi gas and bilayer graphene models explicitly. After-

ward our main results will be stated. Chapter three provides the necessary

mathematical tools for our construction. We will represent the models in

their functional integral forms. The generator of the connected, amputated

Green’s function, which we call effective action, will be defined. Its graphical

representation will be discussed. We prove the convergence of the pertur-

bation expansion of the effective action in the coupling constant in chapter

four. In chapter five we study the regularity properties of the self-energy

and its derivatives with respect to the frequency and momentum, which are

crucial for establishing Fermi liquid behavior. In chapter six we extend our

method to calculate the decay property of the response functions. Chapter

seven contains the construction of Hubbard model for bilayer graphene.
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Chapter 2

The Models and Results

In this chapter we define two models, a dilute Fermi gas model in continuum

two dimensional space and a lattice model, which describe bilayer graphene.

Our main results are presented subsequently.

2.1 Dilute Fermi gas

We consider an interacting fermions system in continuum two spatial di-

mensions without external potential. Given a side length L ∈ R, an inverse

temperature β and a periodic boundary condition, the configuration space

is Λ′ = (R/βR)×Λ, Λ =
(
R2/LR2

)
, whose elements are given by x = (τ,x).

τ = it is imaginary time, x = (x1, x2) is the two dimensional spatial com-

ponent. We introduce a momentum space B′ =Mk0 × Λ∗, Λ∗ =
(
LR2/R2

)
is dual to Λ. The elements are k = (k0,k), with k0 = π

β (2n+ 1) ∈ Mk0 ,

n ∈ Z, k0s are called the Matsubara frequencies. Remark that only odd fre-

quencies appear, because of anti-periodicity due to fermions. ki = 2πn/L,

i = 1, 2, n ∈ Z.
A model for weakly interacting fermions at low temperature is char-

acterized in term of a single free dispersion relation E(k) (shifted by the

chemical potential) on Λ∗, an ultraviolet cutoff smooth function U(k) and

an interaction V . In its second quantized form the Hamiltonian is defined

as

H = −
∑
σ

∫
d2k E(k) c†σ(k)cσ(k) + V (c†, c), (2.1)

where c† and c are fermionic creation or annihilation operator, respectively.

σ = ± denotes the spin of the fermions.

9



10 2 THE MODELS AND RESULTS

We state the hypotheses on the dispersion relation E(k). Under a dilut-

ness assumption the dispersion relation has the form

E(k) = k2 − ν

β
, (2.2)

where ν is a constant of order one. ν is chosen, such that at low temperature,

ν/β � 1 is a very small number. In (2.2) we put the mass m = 1
2 to simplify

the notation. Similar to the Jellium model constructed in [DR00a,DR00b]

the non-interacting Fermi surface, which is by definition

S0 = {k ∈ Λ∗ | E(k) = 0}, (2.3)

is rotational invariant. The main distinction between the Jellium model and

the model discussed in this work situates at the extent of the Fermi surface.

By dilute Fermi gas, we will show that the Fermi surface is so small, so that

some significant properties of the Jellium model will lose, which may change

the behavior of the system drastically at low temperature.

The ultraviolet cutoff function U(k) is defined as a smooth function on

B′, which satisfies 0 ≤ U(k) ≤ 1, for all k ∈ B′. We assume that U(k)

vanishes for k20 + E2(k) > ε2u, where εu is the ultraviolet cutoff energy.

The present of this ultraviolet cutoff function is necessary, it makes the

Fourier transformed kernel of the propagator well defined. In fact, in order

to preserve the physical positivity one needs this ultraviolet cutoff only on

momentum. We restrict the cutoff both on momentum and on Matsubara

frequency only for convenience.

The interaction V between the fermions is assumed to be a two-body

interaction, which is short-range:

V (c†, c) = g
∑
σ,σ′

∫
dx

∫
dy v(x− y) c†σ(x)c

†
σ′(y)cσ(x)cσ′(y) (2.4)

where g is a small coupling constant. It can be either positive or negative.

Due to short-range, the kernel of the interaction has to satisfy∫
dx |x|2|v(x)| < 1. (2.5)

The model is studied in grand canonical ensemble. In a quantum field

theory, the time evolved creation and annihilation operators are

ϕ̄σ(x) = eHτc†σ(x)e
−Hτ , ϕσ(x) = eHτcσ(x)e

−Hτ . (2.6)

Note that ϕ̄σ(x) is neither the complex conjugate, nor adjoint, of ϕσ(x).

The observables O are represented by polynomials of ϕ and ϕ̄. The expected
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value of an observable O is

〈O〉 = 1

Z
Tr(e−βHO), (2.7)

where Z = Tr e−βH . Note that we have shifted the chemical potential into

E(k), hence there is no −µN in the exponential function.

The low temperature properties of the system are described by its cor-

relation functions. The 2n-point Green’s functions are defined as the expec-

tation values of

G2n,L(x1, . . . , xn, y1, . . . , yn) = 〈Tϕ(x1) · · ·ϕ(xn)ϕ̄(yn) · · · ϕ̄(y1)〉, (2.8)

where T designates the time ordering operator, defined for fermion by

Tϕ(x1) · · ·ϕ(xn)ϕ̄(yn) · · · ϕ̄(y1) = ϕ(xπ(1)) · · ·ϕ(xπ(n))ϕ̄(yπ(n+1)) · · · ϕ̄(yπ(2n)),

where π is a permutation that obeys τπ(i) ≥ τπ(i+1) for all 1 ≤ i < 2n.

The question arises now whether these correlation functions (2.8) have

a finite thermodynamic limit and whether a perturbation expansion in the

coupling constant g, which can be used to get asymptotic behavior of the

system, has non-zero radius of convergence. These are the main problems

we want to treat in detail in this work.

Since the interaction modifies the Fermi surface, renormalization is nec-

essary. We realize it by adding a counterterm δe(k). Details will be rep-

resented in the following chapters. The main results on dilute Fermi gas

model are

Theorem 1. Let the spatial dimension d = 2. We assume that the disper-

sion relation is given by (2.2), V is a short-range interaction at a positive

small temperature T . Then, there are positive constants C1, C2, C3, and a

suitable constant counterterm |δe| < C3|g|, such that for all

|g|2 log β < C1, if g > 0 (2.9)

or

|g| log β < C2, if g < 0, (2.10)

the following hold:

1. The renormalized 2n-points Green’s functions G2n,L converge uniformly

in the thermodynamic limit to a translation invariant function G2n that

is analytic in the bare coupling constant g.
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2. The self-energy Σ(k) of the system is uniformly of C1. Moreover, the

second derivative of the self-energy satisfies∣∣∣∣ ∂2

∂ki∂kj
Σ(k)

∣∣∣∣ ≤ C4, C5β ≤
∣∣∣∣ ∂2∂k20Σ(k)

∣∣∣∣ ≤ C6β, (2.11)

where i and j take the values 1, 2, and C4, C5, C6 are some constants.

3. Let Σ(k) =
∑∞

n=1Σn(g
n, k), there are positive constants C7, C8, such

that ∣∣∣∣∣∂2k0Σn≥3(k0,k)

∂2k0Σn=2(k0, 0)

∣∣∣∣∣ ≤
{
C7|g| < 1, if g > 0,

C8|g| log β < 1, if g < 0.
(2.12)

Remark. The Fermi surface of the interacting system is fixed to be a circle

because of the spherical symmetry. The counterterm δe has to be a constant,

and just a correction to the chemical potential. The shift of the Fermi surface

is at most O(|g|) to S0. We don’t have to treat the difficult inverse problem,

which relates to study the differentiability properties of the counterterm.

The sign of the coupling constant g plays a crucial role in our renormal-

ization analysis. The restrictions (2.9) and (2.10) on the coupling constant

are obtained by a detailed analysis of the second order contributions. For

an attractive interaction, the restriction |g| log β < C2 removes possible

physical instabilities, for instance, the Cooper pairing, which leads to BCS

instability. We show that the logarithm is due to the particle-particle ladder

contribution. On the other side, the restriction is replaced by g2 log β < C2

for a repulsive interaction, the coupling constant remains bounded and de-

creases during the renormalization flow. We get an asymptotic free theory

in the infrared limit. In fact for g > 0 a restriction that g < C is actually

sufficient to prove the analytic properties of the Green’s function. (2.9) is

required to guarantee the regularity of the self-energy.

In comparison with [DR00a, DR00b], in which a proof of Fermi liquid

behavior was given for the Jellium model with on-site interaction, we can

not entrench the Fermi liquid behavior for our model in sense of [Sal99].

The reason for this is the β like divergence of the second derivative of the

self-energy with respect to the frequencies. The self-energy is actually not

C2. The geometric reason for this is its small Fermi surface, which leads to

the absent of a volume improvement coming from overlapping graphs.

The last part of the theorem shows that for a choice of the constants,

the higher order contribution to the second derivative of the self-energy with

respect to the frequencies is much smaller in comparison with its second
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order contribution. In this sense, a second order approximation is essential

for studying the properties of the self-energy.

As a corollary of our construction we can show further that in the analysis

domain of g the correlation of the fermionic bilinears B(x) defined in Chapter

6 satisfies

|〈B(x) ;B(y)〉| = |〈B(x)B(y)〉 − 〈B(x)〉〈B(y)〉|

≤ C

|x− y|2
. (2.13)

where C is a suitable constant.

To prove theorem 1 we will rewrite the model in its functional integral

representation by using Grassmann variables. Effective action is introduced,

which is the generator of connected amputated Green’s functions. The the-

orem is proved by showing convergence of a suitable resummation of the

weak coupling expansion for the effective action. Renormalization group

and multiscale techniques are applied.

2.2 Bilayer graphene

In this section we introduce our second model. We consider a graphene lat-

tice Λ = G/LG, where L ∈ N is the side length and G is the hexagonal lattice

with basis a1 = 1
2

(
3,
√
3
)
and a2 = 1

2

(
3,−
√
3
)
. The corresponding basis

vectors in the reciprocal lattice Λ∗ are b1 =
2π
3

(
1,
√
3
)
and b2 =

2π
3

(
1,−
√
3
)
.

Λ is a bipartite lattice including two sublattices A and B that are triangular

Braviais lattices.

A graphite bilayer consists of two graphene monolayers including non-

equivalent sites Al, Bl and Au, Bu in the bottom and top layers, respectively.

They are typically arranged in the Bernel(AB)-stacking arrangement, those

atom sites (top layer Bu sites and bottom layer Al sites) do not have a

neighbor in the opposite layer (Figure 2.1).

The tight-binding Hamiltonian for bilayer graphene at half filling with

interaction in second quantized form can be written as

H = H0 + V, (2.14)
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A u

B u

A u ( B l )

A l

B u

Figure 2.1: Schematic of a graphite bilayer arranged in the Bernel-stacking ar-

rangement. Bonds in the top layer Au, Bu are indicated by solid lines and in the

bottom layer Al, Bl by dashed lines. Top layer Bu and bottom layer Al do not

have their neighbors in the opposite layer.

where

H0 = −γ0
∑

σ=±,ρ=l,u

3∑
i=1

∑
x∈Λ

(
a†ρ,σ(x)bρ,σ(x+ ui) + b†ρ,σ(x+ ui)aρ,σ(x)

)
−γ1

∑
σ=±

∑
x∈Λ

(
a†u,σ(x)bl,σ(x) + b†l,σ(x)au,σ(x)

)
−γ3

∑
σ=±

3∑
i=1

∑
x∈Λ

(
a†l,σ(x)bu,σ(x+ ui) + b†u,σ(x+ ui)al,σ(x)

)
.

(2.15)

represents hopping and

V = g
∑
ρ=l,u

∑
x∈Λρ

[(
a†ρ,↑(x)aρ,↑(x)−

1

2

)(
a†ρ,↓(x)aρ,↓(x)−

1

2

)

+

3∑
i=1

(
b†ρ,↑(x+ ui)bρ,↑(x+ ui)−

1

2

)(
b†ρ,↓(x+ ui)bρ,↓(x+ ui)−

1

2

)]

represents the on-site density density interaction. a†ρ,σ(x) and aρ,σ(x) are

creation or annihilation fermionic operators with spin index σ = ±, layer
index ρ = u, l and site index x = (x1, x2) ∈ Λ on sublattice A, satisfying

periodic boundary conditions in x. An equivalent definition is used for

b†ρ,σ(x) and bρ,σ(x) on sublattice B. The vectors ui are defined as

u1 = (1, 0) , u2 =
(
− 1

2
,

√
3

2

)
, u3 =

(
− 1

2
,−
√
3

2

)
. (2.16)
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We denote γ0 as the intralayer nearest neighbor hopping energy. The strength

of interlayer coupling between Au and Bl lattice sites is parametrized by

γ1. The next-nearest neighbor interlayer couplings are the Al ↔ Bu hops

parametrized by γ3, which is called trigonal warping. A number of exper-

imental measurements give the values of these parameters. γ0 ≈ 0.4 eV,

γ1 ≈ 0.3 eV and γ3 ≈ 0.1 ∼ 0.3 eV.

g is the initial coupling constant of the on-site density density interaction.

It can be either positive or negative. The role of 1
2 ’s subtracted from the

density a†ρ,σ(x)aρ,σ(x) is to keep the bilayer graphene at half filling. A

significant property of the Hamiltonian (2.14) resides in its particle-hole

symmetric. It is invariant under exchange

a†ρ,σ(x)←→ aρ,σ(x), b†ρ,σ(x+ ui)←→ −bρ,σ(x+ ui). (2.17)

A direct consequence of this property is that the Fermi surface stays fixed

as interaction turns on. As a result, renormalization of the Fermi surface

becomes unnecessary.

We now restrict the vectors k ∈ Λ∗ to the first Brillouin zone:

BL = {k =
n1
L
b1 +

n2
L
b2 : 0 ≤ n1, n2 ≤ L− 1}. (2.18)

Given a periodic function f : Λ → R, its Fourier transform f̂ : BL → R is

defined as:

f̂(k) =

∫
x∈Λ

dx e−ik·xf(x), (2.19)

the inverse relation is

f(x) =

∫
k∈BL

dk eik·xf̂(k), (2.20)

where we abbreviate∫
k∈BL

dk f̂(k) =
1

|Λ|
∑
k∈BL

f̂(k),

∫
x∈Λ

dx f(x) =
∑
x∈Λ

f(x), (2.21)

and k·x = k1x1+k2x2. The corresponding creation or annihilation operators

in the momentum space are given by

a(†)ρ,σ(k) =

∫
x∈Λ

dx e∓ik·x â(†)ρ,σ(x), b(†)ρ,σ(k) =

∫
x∈Λ

dx e∓ik·x b̂(†)ρ,σ(x),

(2.22)

they satisfy the anticommutate relations

{a(†)ρ,σ(k), a
(†)
ρ′,σ′(k

′)} = |Λ| δρ,ρ′δσ,σ′δk,k′ , {b(†)ρ,σ(k), b
(†)
ρ′,σ′(k

′)} = |Λ| δρ,ρ′δσ,σ′δk,k′
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and {a†ρ,σ(k), aρ′,σ′(k′)} = 0, {a(†)ρ,σ(k), b(†)ρ′,σ′(k′)} = 0, which are periodic

over Λ∗. With these definitions, we introduce a vector state

Ξ†
σ(k) =

(
a†l,σ(k), b

†
u,σ(k), a

†
u,σ(k), b

†
l,σ(k)

)
(2.23)

to write the non-interacting Hamiltonian (2.15) in momentum space as

H0 =
∑
σ

∫
k∈BL

dk Ξ†
σ(k) H0(k) Ξσ(k), (2.24)

with

H0(k) = −


0 γ3A(k) 0 γ0A

∗(k)

γ3A
∗(k) 0 γ0A(k) 0

0 γ0A
∗(k) 0 γ1

γ0A(k) 0 γ1 0

 (2.25)

and

A(k) = 1 + 2e−i
3
2
k1 cos

√
3

2
k2 (2.26)

is a complex number. The spectrum of this free Hamiltonian consists of four

bands,

E±
α = ±

√
γ21
2

+

(
γ20 +

γ23
2

)
|A(k)|2 + (−1)α

√
F , (2.27)

with

F =
1

4
(γ21 − γ23 |A(k)|2)2 + γ20 |A(k)|2(γ21 + γ23 |A(k)|2) + γ20γ1γ3(A(k)

3 +A∗(k)3).

where ± refers to the conduction and valence band, and α = 1, 2 to the lower

energy associated with A sublattices at the bottom layer and B sublattices

at the top layer and high energy band associated with A sublattices at the

top layer and B sublattices at the bottom layer.

In the simplest case including only the nearest neighbor approximation

γ3 = 0, the low energy bands becomes

E±
1 (k) = ±

γ1
2

(√
1 +

4γ20
γ21
|A(k)|2 − 1

)
(2.28)

which vanish at kF = (2π3 ,±
2π
3
√
3
). These two points are called Fermi points.

Around them we observe that the spectrums is quadratic

E±
1 (k

′ + kF ) = ±c1|k′|2 +R(k′) (2.29)
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with c1 as a constant, and |R(k′)| < c2|k′|3. This makes the model resemble

the dilute Fermi gas model, where the radius of the Fermi surface shrinks

to zero.

If we take into the trigonal warping term (γ3 6= 0), for small energies, a

Lifshitz transition occurs whereby the Fermi surface breaks into four points

with linear spectrum around them. Details will be represented in the fol-

lowing chapters.

We summarize our results based on bilayer graphene in the following

theorem:

Theorem 2. We consider bilayer graphene at half filling with on-site inter-

action. Then there are positive constants C1, C2, C3, such that for all

|g| < C1 and temperature β−1 > e
−C2

|g| , if γ3 = 0,

|g| < C3, if γ3 6= 0,
(2.30)

the renormalized 2n-points Green’s functions G2n,L converge uniformly in the

thermodynamic limit to a function G2n that is analytic in the bare coupling

constant g.

Remark. The theorem implies that without trigonal warping the system is

stable above an exponentially small temperature. When trigonal warping

turns on, the parabolic degeneracy of the Fermi point splits into Dirac points.

This is very similar to the monolayer graphene model with Dirac point

like Fermi surface. Thus the system is expected to be stable provided the

coupling is small enough, depending on the size of the trigonal warping

term. In other words, there are no true symmetry breaking states as the

temperature goes down to zero.

Analogous to the proof of theorem 1 we prove this theorem by using

renormalization group and multiscale techniques. Moreover, we make the

following statement. The renormalization flow derived from the no trigonal

warping case stops at a energy scale, where either the perturbation expansion

diverges or the dispersion relation deviations from the quadratic form. In

the former case the system enters a symmetry breaking phase. While in the

later case if the coupling constant obtained at this scale is smaller than a

critical value, it can be used as an initial coupling constant for the new flow

associated with the Dirac points. Thus we conclude that for |g| < C3, the

perturbation expansion in g converges, even the temperature goes to zero,

for C3 < |g| < C1, it converges only for temperature β−1 > e
−C2

|g| .
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Chapter 3

Techniques

The purpose of this chapter is to provide the necessary mathematical tools

for the construction of the models. We introduce Grassmann algebra, which

is an algebraically more convenient way to represent the system. The system

will be reexpressed by its functional Grassmann integral obtained from the

standard Lie product formula. Since the Fermi surface of non-interacting

and of interacting system do not agree, renormalization becomes necessary.

Therefore counterterm technique is introduced. We define the renormal-

ized effective action, which is the generator of the connected, amputated

Euclidean Green’s functions. Its regularity shall be proven. The last part

of this chapter is concerned with the graphical representation techniques.

Feynman graph expansion and tree expansion for the effective action are

discussed. This largely reproduces works done in [Sal99,SW00,FKT02].

3.1 The functional integral representation

In this section we introduce some basis definitions about Grassmann inte-

gration. We need them to represent our model as a functional integral.

Let us consider a finite dimensional Grassmann algebra, which is a set of

anti-commuting Grassmann variables ψi, with i an index belonging to some

finite set N . They obey

{ψi, ψj} = ψiψj + ψjψi = 0, (3.1)

for all i, j ∈ N . In particular ψ2
i = 0 for all i ∈ N .

The Grassmann integral is defined to be a unique linear map and∫
dψi = 0,

∫
ψidψi = 1. (3.2)

19
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dψ anticommute also between themselves and with all ψ variables. More

generally, we have∫
ψ1 · · ·ψm dψn · · · dψ1 =

{
1 m = n

0 m 6= n.
(3.3)

A main advantage of the Grassmann representation is that a determinant

of any n by n matrix can be expressed as a Grassmann Gaussian integral

over 2n independent Grassmann variables, named as ψ̄1, . . . , ψ̄n, ψ1, . . . , ψn.

Note that ψ̄ is not the complex conjugate of ψ, it is just another variable

that is totally independent of ψ. The formula

detM =

∫ n∏
i=1

dψ̄idψi e
−

∑
i,j ψ̄iMijψj (3.4)

holds for any matrix M . There is no positivity requirement for M like that

for ordinary Gaussian measure with commuting variables. There are also

normalized Grassmann Gaussian measure which may be expressed formally

as

dµC =

∏n
i=1 dψ̄idψi e

−
∑

i,j ψ̄iC
−1
ij ψj∫ ∏n

i=1 dψ̄idψi e
−

∑
i,j ψ̄iC

−1
ij ψj

, (3.5)

which are characterized by their covariance∫
dµC(ψ) ψ̄iψj = Cij . (3.6)

For the moment this is all we need for the Grassmann formulation of our

model. More algebraic properties of the Grassmann algebra can be found

in [Sal99].

Let us now introduce the functional integral as a Grassmann integral

for dilute Fermi gas model. In order to get a finite dimensional Grassmann

integral, we introduce a spacing in the imaginary time direction ετ , such

that nτ = β
2ετ
∈ N is a large number. Let nτ be even, and T = {τ = nετ :

n ∈ Z,−nτ
2 ≤ n ≤ nτ

2 }, we denote Λ′ = T ×
(
R2/LR2

)
, X = (τ,x, σ) =

(x, σ) ∈ Γ′ = Λ′ × {−1, 1}. Let A be the Grassmann algebra generated by

ψ̄(X), ψ(X), which are labeled by X = (x, σ) ∈ Γ′, we write also ψ(X) =

ψσ(τ,x). We require that the fields ψ and ψ̄ are anti-periodic with respect

to translation of τ by β

ψσ(τ,x) = −ψσ(τ + β,x). (3.7)
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The elements of A are polynomials

V (ψ) =
∑

m,m̄≥0

∫
Γ′
dm̄X ′dmX vm̄,m

(
X ′, X

)
ψ̄m̄

(
X ′)ψm (X) , (3.8)

where we denote∫
Γ′
dXF (X) =

∑
σ

ετ
∑
τ∈T

∫
Λ
d2x F (x, σ), (3.9)

X = (X1, . . . , Xm) and ψm (X) = ψ (X1) · · ·ψ (Xm). The coefficient func-

tion vm̄,m (X ′, X) is chosen to be antisymmetric under permutation of the

X or X ′ variables separately, because any other part of it would cancel out

in (3.8). The sums over m, m̄ are finite sums because of the nilpotency of

the Grassmann variables. We call V (ψ) even, if m + m̄ is even. If V (ψ) is
even, it commutes with all other elements of the Grassmann algebra.

We briefly discuss the norm imposed on V, which is an element of the

even subalgebra of A. For h > 0, we define the seminorm ‖V‖h by

‖V‖h =
∑

m̄,m≥1

|vm̄,m|1,∞ hm̄+m, (3.10)

where |vm̄,m|1,∞ is defined as

|vm̄,m|1,∞ = max
i

sup
Xi

∫ m̄+m∏
j 6=i

dXj |vm̄,m (X1, . . . , Xm̄+m)| . (3.11)

Note that the term with m̄ = m = 0 is left out from (3.10), then the constant

polynomials have zero norm values.

We now turn to the partition function ZΛ′ . The standard Grassmann

integral representation is obtained by applying the Lie product formula

e−β(HΛ−µNΛ) = lim
nτ→∞

(
e−ετ(H0−µNΛ)e−ετV

)nτ
(3.12)

to the trace for ZΛ′ . For a finite space Λ′, all operators are just finite-

dimensional matrices, hence the right hand side of (3.12) converges. The

derivation of the functional integral is discussed in [Sal99], we just state the

result here. (3.12) implies

ZΛ′ = lim
nτ→∞

Znτ ,Λ′ (3.13)

with

Znτ ,Λ′ = NΛ′

∫ ∏
X∈Γ′

dψ̄(X)dψ(X) eSΛ′ (ψ̄,ψ), (3.14)
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where NΛ′ is a normalization factor that depends on ετ , nτ and L, and where

SΛ′(ψ̄, ψ) =
∑
σ

∫
T
dτ

∫
Λ
dx
(
ψ̄σ(τ,x)∂τψσ(τ,x)−HΛ(ψ̄, ψ)

)
. (3.15)

Here we have abbreviated
∫
T dτ F (τ) = ετ

∑
τ∈T F (τ), and ∂τψσ(τ) =

ε−1
τ (ψσ(τ + ετ ) − ψτ (τ)). The sum over τ runs over T , with anti-periodic

boundary condition [Sal99]. For nτ < ∞, L < ∞, (3.14) is a finite dimen-

sional Grassmann integral. Moreover, the action SΛ′ can be rewritten in the

form

SΛ′(ψ̄, ψ) = S2,Λ′(ψ̄, ψ)− V (ψ), (3.16)

with

S2,Λ′(ψ̄, ψ) = −
∫
Γ′
dX

∫
Γ′
dX ′ ψ̄σ′(x′) A(X,X ′) ψσ(x). (3.17)

Assume that Ẽ(x,x′) is the Fourier transform of the dispersion relation

E(k). The operator A(X,X ′) = δσσ′(−∂τδΛ(x − x′) + Ẽ(x,x′)δ(τ − τ ′))

is invertible because of the anti-periodicity condition imposed on the fields,

which removes the zero mode of the discrete time derivative. A(X,X ′) is

estimated by the dispersion relation of the model in the momentum space.

The Fourier transformation of ψ and ψ̄ are

ψσ(k) =

∫
Λ′
dx e−ikxψσ(x), ψ̄σ(k) =

∫
Λ′
dx e−ikxψ̄σ(x) (3.18)

where, for k = (k0,k), kx = k0τ + k · x. The momentum k is in B′ =

Mk0,nτ ×
(
LR2/R2

)
, with

Mk0,nτ = {k0 =
π

β
(2n+ 1) : n ∈ Z,−nτ

2
≤ n ≤ nτ

2
}, (3.19)

is a set of Matsubara frequencies. We denote∫
B′
dkF (k) =

1

β

∑
k0∈Mk0,nτ

∫
d2k F (k0,k) (3.20)

where
∫
d2k = L−2

∫
d2k. Then the inverse Fourier transform is ψσ(x) =∫

B′ dk e
ikx ψσ(k). In the dilute Fermi gas model we assume that the non-

interacting dispersion relation including the chemical potential has the form

E(k) = k2 − ν

β
, (3.21)
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where ν is a constant of order 1. Denoting δk,−k′ = δk,−k′ε−1
τ δk0,−k′0 , and

k̂0 =
1

iετ
(eiετk0 − 1), (3.22)

with this the Fourier transformation of the operator A in S2,Λ′ is given by

A(k, σ, k′, σ′) = δk,−k′δσσ′(ik̂0 − E(k)), (3.23)

since A is invertible, the propagator C(X,X ′) = A−1(X,X ′) exists, it is a

skew symmetric matrix, C(X,X ′) = −C(X ′, X), its Fourier transform is

C(k) = δk,−k′δσσ′
U(k)

ik̂0 − E(k)
, (3.24)

where an ultraviolet cutoff function U(k) has been inserted to preserve the

physical positivity.

For a non-interacting system, where V = 0, the partition function is

Znτ ,Λ′ = NΛ′

∫ ∏
X∈Γ′

dψ̄(X)dψ(X) eS2,Λ′ (ψ̄,ψ)

= NΛ′ detA (3.25)

which is non zero for positive temperature. For an interacting system, the

interaction term V is an element of the even Grassmann subalgebra,

V (ψ) =

∫
dX1dX2dX3dX4 v (X1, X2, X3, X4) ψ̄(X1)ψ(X2)ψ̄(X3)ψ(X4).

In the present work, we consider a two-body interaction, the interaction

kernel is given by

v (X1, X2, X3, X4) = gδ (X1, X2) δ (X3, X4) δ(τ1 − τ3)v(x1 − x3), (3.26)

where δ (X,X ′) = δ (τ − τ ′) δ (x− x′) δσ,σ′ , δ(τ − τ ′) = ε−1
τ δτ,τ ′ . g is the

coupling constant. It can be either positive or negative. Hence

V (ψ) = g
∑
σ,σ′

∫
dxdy v(x− y)ψ̄σ(x)ψσ(x)ψ̄σ′(y)ψσ′(y). (3.27)

Putting (3.16), (3.23) and (3.27) into (3.17), the interacting partition func-

tion becomes

Znτ ,Λ′ = NΛ′ detA

∫
dµC(ψ) e

−V (ψ), (3.28)
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where dµC is a linear functional (Grassmann Gaussian measure) defined by

dµC(ψ) = (detA)−1
∏
X∈Γ′

dψ̄(X)dψ(X)e−
∫
Γ′ dX

∫
Γ′ dX′ ψ̄σ′ (x′) C−1(X,X′) ψσ(x),

the measure is normalized,
∫
dµC(ψ) = 1, and it is characterized by∫

dµC(ψ) ψ̄(X
′)ψ(X) = C(X,X ′). (3.29)

We are interested in the 2n-point Euclidean Green’s functions or Schwinger

function of the system determined by C and V . The constant NΛ′ detA in

Znτ ,Λ′ drops out of all correlation functions and can therefore be omitted.

We can define the Green’s functions by the following Grassman Gaussian

integral

G2n,nτ ,Λ′(X ′
1, . . . , X

′
n, X1, . . . , Xn)

=
1

Znτ ,Λ′

∫
dµC(ψ)

n∏
i=1

ψ̄(X ′
i)

n∏
i=1

ψ(Xi) e
−V (ψ), (3.30)

where Znτ ,Λ′ =
∫
dµC(ψ) e

−V (ψ). Let (φ(X))X∈Γ′ be a family of Grassmann

generators. We define the Grassmann bilinear form as

(ψ̄, φ) =

∫
Γ′
dX ψ̄(X)φ(X), (3.31)

which is antisymmetric: (ψ̄, φ) = −(φ, ψ̄). By doing so, the partition func-

tion with source term is defined as

Snτ ,Λ′(φ) =
1

Znτ ,Λ′

∫
dµC(ψ) e

−V (ψ)+(φ̄,ψ)+(ψ̄,φ). (3.32)

Let δ
δφ(X) = ε−1

τ
∂

∂φ(X) , then

G2n,nτ ,Λ′(X ′
1, . . . , X

′
n, X1, . . . , Xn)

=
1

Snτ ,Λ′(V )(0)

[
n∏
k=1

δ

δφ(Xk)

n∏
k=1

δ

δφ̄(X ′
k)
Snτ ,Λ′(V )(φ)

]
φ=0

. (3.33)

Snτ ,Λ′(V )(φ) is called the generator of the Euclidean Green’s functions.

It is convenient to study the connected correlation functions, which are

the derivatives

Gc,2n,nτ ,Λ′(X ′
1, . . . , X

′
n, X1, . . . , Xn)

=

[
n∏
k=1

δ

δφ(Xk)

n∏
k=1

δ

δφ̄(X ′
k)

logSnτ ,Λ′(V )(φ)

]
φ=0

. (3.34)
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We call Cnτ ,Λ′(V )(φ) = logSnτ ,Λ′(V )(φ) the generator of the connected

Green’s functions. Since Snτ ,Λ′(V )(φ) is the exponential of Cnτ ,Λ′(V )(φ),

one can construct all correlation functions from the connected ones.

Instead of Cnτ ,Λ′(φ) we will study

Wnτ ,Λ′(V )(φ) = log

∫
dµC(ψ) e

−V (ψ+φ). (3.35)

A shift in the measure shows that

Wnτ ,Λ′(V )(φ) = (φ̄, C−1φ) + Cnτ ,Λ′(V )(C−1φ). (3.36)

Comparing this to Cnτ ,Λ′(φ), we see that apart from the explicit prefac-

tor, this is a usual formula for Cnτ ,Λ′(φ), only that the source term is re-

placed by C−1φ, so that the study of Wnτ ,Λ′(V )(φ) is equivalent to that of

Snτ ,Λ′(V )(φ). Wnτ ,Λ′(V )(φ) is called the generator of the connected, ampu-

tated Green’s functions, or the effective action.

We briefly discuss the limit nτ →∞ and the thermodynamic limit L→
∞. In the limit nτ →∞ the time variable becomes continuous, k̂0 → k0, and

the set of Matsubara frequencies becomesMk0 = {πβ (2l + 1) : l ∈ Z}. The

Grassmann integral becomes infinite dimensional, which is a well defined

object. See Appendix A of [FKT02]. Then one proves that the term in the

right side of (3.35) is well defined at finite nτ and L, as elements of a finite

Grassmann integral. One can also prove that it has a well defined limit as

nτ →∞, and afterward L→∞

W (V )(φ) = lim
L→∞

lim
nτ→∞

Wnτ ,Λ′(V )(φ). (3.37)

This is achieved by studying the perturbation expansion of (3.35) and by

showing that it is uniformly convergent in nτ and L. The proof of the

existence of these limits can be found in [Sal99]. In order to simplify the

discussions, we study the model directly in these limits, since the pertur-

bation expansion has nothing to do with the details related with the finite

values of nτ and L.

W (V )(φ) has an important property which will be wildly used in the

following. Let us consider the case where C = C1 + C2, ψ = ψ1 + ψ2, then

eW (V )(φ) =

∫
dµC2(ψ2)

∫
dµC1(ψ1) e

−V (ψ1+ψ2+φ)

=

∫
dµC2(ψ2) e

V1(ψ2+φ), (3.38)

with V1(ψ2 + φ) = log
∫
dµC1(ψ) e

−V (ψ+φ). Thus integrating out ψ1 as-

sociated with the propagator C1 generates an effective action V1(ψ2 + φ)
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for the remaining ψ2 field. Generally, if the propagator is a sum of n

terms, C =
∑n

i=1Ci, with Ci ≥ 0 for all i ∈ {1, . . . , n}, the field is a sum

ψ =
∑n

i=1 ψi of n independent fields. Successive integration over ψ1, . . . , ψn
generates a sequence of n+1 effective actions V0, . . . , Vn+1, where V0 = −V
is the initial interaction and

Vi = log

∫
dµCi(ψi) e

Vi−1(ψi+φ) (3.39)

is obtained from Vi−1 by integrating over the field ψi. (3.39) defines the

renormalization group map. The sequence (V0, V1, . . . , Vn+1) builds the

renormalization group flow.

If the effective action W (V ) is a well-defined object, it is an element of

even Grassmann subalgebra. It has the expansion

W (V )(ψ) =
∑

m,m̄≥0

∫
dm̄X ′dmX wm̄,m(X

′, X) ψ̄m̄(X ′)ψm(X), (3.40)

whose kernel function wm̄,m(X
′, X) is the connected, amputated m + m̄

points Green’s function.

The main task of this work is to prove the analytical properties of the

effective actionW (V )(φ). If the propagator C were really nice,W (V ) would

be very easy to define rigorously. However, life is not so easy, due to the

singularity of the propagator on the Fermi surface, we have to write the

propagator as a sum of really nice propagators, and we control the limits of a

sequence of well defined quantities. This makes the proof more cumbersome

and difficult.

3.2 Renormalization of the Fermi surface

We are interested in whether the thermodynamic limitGc,2n of the connected

Green functions exists and whether in an infinite volume the weak coupling

expansion

Gc,2n =

∞∑
p=0

gpGc,2n,p (3.41)

converges for small g. As is well known, the most singular case is that

of zero temperature, T = 0. At infinite volume, already the coefficients

Gc,2n,p diverge for p ≥ 3 [FT90,FT91]. To remove this divergence one has

to introduce an infrared cutoff ε > 0 to make the infinite volume model

well defined. At positive temperature or at finite volume case the expansion
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obtained by expanding egV in g is convergent, but its radius of convergence

shrinks to zero in the thermodynamic and zero temperature limit.

This divergence can be connected to the singularity of the propagator

C. More precisely, powers of C are in general not locally integrable∫
dk

1

|ik0 − E(k)|α
=∞, (3.42)

for α ≥ 2. By momentum conservation and Feynman rules, (3.42) implies

that graphs, which contain a string of two legged insertions produce arbi-

trarily high powers of C and thus diverges [FT90,FT91].

The physical reason for this divergence of the unrenormalized Green

functions has been well known for a long time [FT90,FST96]. One expects

that the interaction produces a self-energy Σ(g, k) such that the propagator

behaves essentially as

C(k) =
1

ik0 − E(k)− Σ(g, k)
. (3.43)

We expand

1

ik0 − E(k)− Σ(g, k)
=

∞∑
n=0

1

ik0 − E(k)

(
Σ(g, k)

ik0 − E(k)

)n
, (3.44)

by (3.42), no term of the right hand side, except n = 0, is locally integrable.

The problem arises because we are attempting to expand the interacting

propagator, which has a singularity at k0 = 0 on the interacting Fermi

surface Sg = {k ∈ Λ∗ : E(k) + Σ(g, 0,k) = 0} in powers of the free propa-

gator which has a singularity when k0 = 0 and k on the free Fermi surface

S0 = {k ∈ Λ∗ : E(k) = 0}.
The infrared divergence makes renormalization necessary. One way is

to replace the free propagator in terms of the exact interacting propagator,

and two legged insertions disappear in the graphs. But in practice, Σ(g, k)

is not known in advance, and it is expected to have less regularities than

the free dispersion relation.

We do renormalization by using counterterms [Sal98b]. We write E(k) =

e(k)+δe(k), where e(k) has the property that its zero set {k ∈ Λ∗ : e(k) = 0}
coincides with the interacting Fermi surface

Sg = {k ∈ Λ∗ : E(k) + Σ(g, 0,k) = 0}. (3.45)

Note that the condition {k ∈ Λ∗ : e(k) = 0} = Sg does not uniquely

determine the decomposition E(k) = e(k) + δe(k). It only forces

δe(k) + Σ(g, 0,k) = 0, (3.46)
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for all k ∈ Sg. In other words, δe is constructed from the self-energy by

evaluating at k0 = 0 and k ∈ Sg. For a dilute Fermi gas model one can

always find a decomposition E(k) = e(k) + δe(k) satisfying (3.46), because

of the rotational symmetry. So that δe(k) does not depend on k and thus

is just a correction to the chemical potential. It is expected to have more

regularities than the self-energy. Moreover, one can show that δe remains

small for a small enough coupling constant g.

Now denoting the propagator with E by C(E) and the one with e by

C(e), and the partition function ZE and Ze, we have, by shift formulas for

Gaussian measures, the identity

log
1

ZE

∫
dµC(E)(ψ) e

−V (ψ+φ)

= log

(
Ze
ZE

)2 1

Ze

∫
dµC(e)(ψ) e

−V (ψ+φ)e(ψ̄,δeψ)

= log

(
Ze
ZE

)2 1

Ze
e−(φ̄,δeφ)

∫
dµC(e)(ψ) e

−V (ψ+φ)+(ψ̄+φ̄,δeψ+φ) e−(φ̄,δeψ)−(ψ̄,δeφ)

= log

(
Ze
ZE

e−(φ̄,δeφ)

)2 1

Ze

∫
dµC(e)(ψ) e

−V (ψ+φ)+(ψ̄+φ̄,δeψ+φ)

= log

(
Ze
ZE

e−(φ̄,δeφ)

)2

+ log
1

Ze

∫
dµC(e)(ψ) e

−V (ψ+φ)+(ψ̄+φ̄,δeψ+φ). (3.47)

This identity is obtained by moving the δe(k) from the propagator to the in-

teraction, and leaving e in the propagator. The change in the normalization

factor is irrelevant for any correlation function.

Physically, this procedure means that we shift the Fermi surface from

the free surface S0 to the interacting Fermi surface Sg. The deformation of

the surface caused by the interaction is taken into account. δe compensates

for all self-energy corrections that would move the Fermi surface under the

interaction. Then we do the renormalized expansion at the fixed interacting

Fermi surface Sg with a new interaction by putting the counterterm into the

initial interaction,

V(ψ) = −V (ψ) +K(ψ), (3.48)

where K(ψ) has a bilinear form

K(ψ) = δe

∫
dXψ̄(X)ψ(X). (3.49)

Now let us define the renormalized generating functional for the connected

amputated Green functions

W (V)(φ) = log
1

Z

∫
dµC(ψ) e

V(ψ+φ) (3.50)
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with C = C(e), and Z is a constant such that W (V)(0) = 0. In the fol-

lowing sections the regularity of W (V)(φ) will be shown by imposing some

conditions on g.

Remark. We conclude from the discussion that the unrenormalized Green

functions diverge because it is wrong to assume that both the band structure

and the Fermi surface stay fixed when the interaction is turned on. In

reality, if the surface being fixed, the band structure changes, and vice versa.

Hence instead of posing counterterm one can also adjust the Fermi surface

dynamically in the flow. This method was described in detail in [Sal07b,

PS03] and has been used applied in applied studies [HSFR01] and in different

constructions [Ped05,GM10].

3.3 Bounds on propagators

In order to study the perturbation expansion of the effective action we need

to know the asymptotic behavior of the propagator C. In the following we

establish some bounds on the propagator.

We observe that the Gaussian integral of a monomial vanishes unless

there are as many ψ̄ as ψ in it,∫
dµC(ψ)

m∏
k=1

ψ̄(Xk)

n∏
l=1

ψ(Yl) =

{
0 m 6= n,

(−1)
m(m+1)

2 det(C(Xk, Yl))1≤k,l≤m m = n.

To bound this determinant whose entries are C we need

Definition 1 (Gram bound, see [SW00]). We assume that the propagator

can be written as an inner product on some Hilbert spaces H, that is

∀X ∈ Λ,∃fX , gY ∈ H : C(X,Y ) = 〈fX , gY 〉
and ∃γC > 0, |fX | < γC , |gX | < γC (3.51)

then for a n× n matrix C(Xk, Yl)1≤k,l≤n holds

|detC(Xk, Yl)1≤k,l≤n| ≤
n∏
k=1

|fXk
| |gXK

| ≤ γ2nC . (3.52)

Definition 2 (Determinant bound, see [PS08]). Let C be an n × n ma-

trix with matrix elements C(Xk, Xl)k,l. A finite constant δC is called the

determinant bound of C if for all 1 ≤ k, l ≤ n

sup
p1,...,pn,q1,...,qn∈B(n)

∣∣∣det (〈pk, ql〉C(Xk, X
′
l)
)
k,l

∣∣∣ ≤ δ2nC . (3.53)

Here B(n) denotes the closed n-dimensional unit ball.
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Note that if C has a Gram representation with a Gram constant γC
then C also has a determinant bound δC = γC . The main use of Gram

representations is to bound determinants arising in the expansion. The

reason for introducing the determinant bound is that at large Matsubara

frequency the propagator C does not admit a Gram representation with a

finite Gram constant due to the slow decay of the propagator C.

To show the convergence of perturbation series we also need to know the

decay properties of the propagator C. We put C(τ,x) = C(X1, X2), where

τ = τ1 − τ2 and x = x1 − x2, by a translation invariance. The decay bound

ανC is by definition

Definition 3 (Decay bound, see [PS08]). Let n = (n0, n1, n2) be a multi-

index of non-negative integers, and we write |n| =
∑2

i=0 |ni|, then

ανC = max
n:|n|=ν

∫ β/2

−β/2
dτ

∫
Λ
d2x |C (τ,x)| |τ |n0

2∏
i=1

|xi|ni . (3.54)

3.4 Graphical representations

Since we want to implement renormalization group map in a constructive

way, we need a graphical representation to calculate the effective action

non-perturbatively, with good properties for the convergence radius of the

expansion. By a formal expansion series in g, we write

W (V)(φ) =
∑
p≥1

gp

p!
Ep(V)(φ), (3.55)

for elements V1, . . . ,Vp of the even subalgebra,

Ep(V1, . . . ,Vp)(φ)

=

[
∂p

∂g1 · · · ∂gp
log

∫
dµC(ψ) e

g1V1(ψ+φ)+···gpVp(ψ+φ)

]
gi=0,∀i∈{1,...,p}

−
[
∂p

∂gp
logZ

]
g=0

. (3.56)

We may regard g1, . . . , gp as formal variables since they are only used to do

combinatorics. The subtraction of Z removes all φ independent terms from

Ep(φ). Note that Ep(V1, . . . ,Vp)(φ) is linear in every Vi, i = 1, . . . , p. Because

the derivative is evaluated at g = 0, the φ dependent parts of Ep(V1, . . . ,Vp)
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can be replaced by

 ∂p

∂g1 · · · ∂gp
log

∫
dµC(ψ)

p∏
q=1

(1 + gqVq(ψ + φ))


gi=0,∀i∈{1,...,p}

=

 ∂p

∂g1 · · · ∂gp
log(1 +

∑
Q⊂Np

Q6=0

∫
dµC(ψ)

∏
q∈Q
Vq(ψ + φ)

∏
q∈Q

gq)


gi=0,∀i∈{1,...,p}

(3.57)

for any Q ⊂ Np. Similarly, we can replace Z by (3.57) evaluated at φ = 0.

The Gaussian convolutions contained in the right hand side of (3.57) can

be rewritten in term of the action of a Laplacian acting on p independent

copies of the field ψ. The Laplace operator is defined as ∆C

∆C =

p∑
q,q′=1

∆C,qq′ , (3.58)

where

∆C,qq′ = −
∫
dX ′

∫
dX

∂

∂ψ̄q(X ′)
C(X,X ′)

∂

∂ψq′(X)
, (3.59)

We have the identity

Lemma 1. For all Q ⊂ Np and Q 6= 0,

∫
dµC(ψ)

∏
q∈Q
Vq(ψ + φ) = e∆C

∏
q∈Q
V(ψ + φ) (3.60)

holds.

Proof. Using source fields η and η̄, we rewrite

Vq(ψ̄ + φ̄, ψ + φ) =

[
Vq
(
− ∂

∂ηq
,
∂

∂η̄q

)
e(η̄q ,ψ+φ)+(ψ̄+φ̄,ηq)

]
ηq=η̄q=0

, (3.61)
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then ∫
dµC(ψ)

∏
q∈Q
Vq(ψ + φ)

=

∫ dµC(ψ)
∏
q∈Q
Vq
(
− ∂

∂ηq
,
∂

∂η̄q

)
e(η̄q ,ψ+φ)+(ψ̄+φ̄,ηq)


ηq=η̄q=0,∀q∈Q

=

∏
q∈Q
Vq
(
− ∂

∂ηq
,
∂

∂η̄q

)∏
q∈Q

∫
dµC(ψ)e

(η̄q ,ψ+φ)+(ψ̄+φ̄,ηq)


ηq=η̄q=0,∀q∈Q

=

∏
q∈Q
Vq
(
− ∂

∂ηq
,
∂

∂η̄q

)
e
∑

q,q′∈Q(η̄q ,Cηq′ )+
∑

q∈Q(η̄q ,φ)+(φ̄,ηq)


ηq=η̄q=0,∀q∈Q

= e∆C
∏
q∈Q
Vq(ψ + φ). (3.62)

By this identity, we denote α(Q) = e∆C
∏
q∈Q Vq(ψ + φ), then (3.57)

becomes

∂p

∂g1 · · · ∂gp
log(1 +

∑
Q⊂Np

Q6=0

α(Q)
∏
q∈Q

gq). (3.63)

Before evaluating (3.63) we define what is a graph. Let Q ⊂ N be a finite

set and we define

G(Q) = P ({(i, j) ∈ Q×Q : i < j}) , (3.64)

where P(A) denotes the set of all subset of A. A graph G is an element of

G(Q). More precisely, G is a set of ordered pairs of (i, j) ∈ Q × Q with

i < j. Now we see that 1 +
∑

Q⊂Np

Q 6=0

α(Q) takes the form of a polymer par-

tition function, with the nonempty subset Np as polymers and disjointness

as the compatibility relation. Using the standard polymer formula for the

logarithm of the partition function in [Sal99]

log(1 +
∑
Q⊂Np

Q6=0

α(Q)) =
∑
m≥1

1

m!

∑
I1,...,Im⊂Np

Ii 6=∅

U (m)
c (I1, . . . , Im)

m∏
l=1

αc(Il) (3.65)

where U (m)
c is the Ursell function, U (1)

c = 1, for m ≥ 2

U (m)
c (I1, . . . , Im) =

∑
G∈Gc(Nm)

∏
{i,j}∈G

γ(i, j) (3.66)
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with γ(i, j) = −1, if Ii ∩ Ij 6= ∅ and 0 otherwise. Gc(Np) denotes the set

of connected graphs on Np. αC(∅) = 1, αc(Q) is the uniquely map which

satisfies

α(Q) =
∑

Q0⊂Q,minQ∈Q0

αc(Q0)α(Q\Q0), (3.67)

where minQ stands for the smallest number contained in Q (See Lemma 1

in [SW00]). To simplify (3.63) we observe that for all m ≥ 2, some gi remain

after differentiation because of the connectedness condition in U (m)
c , so that

setting gi = 0 picks out the term m = 1 from the sum, ∂p

∂g1 · · · ∂gp
log(1 +

∑
Q⊂Np

Q6=0

α(Q)
∏
q∈Q

gq)


gi=0,∀i∈{1,...,p}

= αc(Np). (3.68)

which implies the final expression for Ep(V), that is

Ep(V)(φ) =
(
e∆C

)
c

 p∏
q=1

Vq(ψ + φ)−
p∏
q=1

Vq(ψ)

 (3.69)

the subscript c means that only connected parts of e∆C have contributions

to Ep(V).

3.4.1 Feynman graphs expansion

The expansion of e∆ can be written in term of a sum over Feynman graphs.

Because all ∆qq′ commute with one another,

e∆ =

p∏
q=1

e∆qq
∏
q<q′

(1 + e∆qq′+∆q′q − 1),

=

p∏
q=1

e∆qq
∑

G∈G(Np)

∏
{q,q′}∈G

(e∆qq′+∆q′q − 1) (3.70)

where from the first to the second line multinomial theorem∏
r∈R

(1 + ar) =
∑
S⊂R

∏
r∈S

ar (3.71)

with R = {(i, j) : i < j}, has been used. G denotes the sum over graphs on

Np. Selecting only connected graphs we get

(e∆)c =

p∏
q=1

e∆qq
∑

G∈Gc(Np)

∏
{q,q′}∈G

(e∆qq′+∆q′q − 1) (3.72)
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with G now summed over connected graphs on Np. Applying (3.72) to∏p
q=1 Vq(ψ + φ) generates a sum over all connected Feynman graphs

Ep(V1, . . . ,Vp)(φ) =
∑

m̄,m≥1

∫
dm̄X ′dmX wm̄,m,p(X

′, X) φ̄m̄(X ′)φm(X)

where

wm̄,m,p(X
′, X) =

∑
G∈Gc(Np)

Val(G), (3.73)

with

ValG = (−1)ap
∫ ∏

i∈I
dXi

p∏
q=1

vq(Xq, X
′
q)

∏
l=(i,i′)∈LI

C(Xi, X
′
i′), (3.74)

where ap = 0, 1, I is set of all internal fields, LI denotes the lines connect-

ing the internal fields. The expansions (3.74) allows to write the functional

integral as a sum of Feynman graphs which can be explicitly computed.

But several problems will be arose in the practical applications. One prob-

lem above mentioned is that some Feynman graphs diverge when the cut

offs introduced to regularize the theory are removed. Second, even if the

Feynman graphs are bounded, the number of Feynman graphs proliferates

at large order as (p!)2, which can not lead to a convergence of the series.

Hence the Feynman graph expansion is not suitable to get non-perturbation

results and other methods must be used.

3.4.2 Tree expansion

Here we describe methods, which are suited to organize expansions such

that analytical statements can be proven. We name the methods as the

tree expansion. The tree expansion ultimately may be considered just as

repacking Feynman graphs in some clever ways according to the underlining

tree. They could also be seen as a kind of polymer expansion. The presented

tree expansion was introduced by Salmhofer and Wieczerkowski in [SW00],

which is actually a variant of the well-known cluster expansion techniques for

fermions. Cluster expansion was found by Brydges and Kennedy [BK87]. It

was redesigned into a more explicit formalism in [AR95]. The tree expansion

is not the only way to prove the convergence. A ring expansion invented by

Feldman, Knörr and Trubowitz in [FKT02] is also very useful.

The motivation for a tree expansion is due to the observation that for

fermionic theories, because of the Pauli principle there are important can-

cellations among the Feynman graphs which make the behavior of the series
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expansion at large order much better than what seems like at first sight.

Mathematically this is because these graphs form a determinant and the

size of a determinant is much less than what its permutation expansion

usually suggests.

The determinant can be bounded by Gram estimates introduced in the

previous section if the Gram representation exists. But in this way we

cannot use the decay properties of the propagators in order to perform the

coordinate integrations appearing in the expansions. What we need is to

extract the minimal number of propagators which are connected with each

other and built a spanning tree, to perform the integrations, leaving all

other fields packed in the determinant. This is the main idea behind the

tree expansion. The advantage of the tree formula is that, the species of trees

does not proliferate at large orders, in contrast with the species of Feynman

graphs. Indeed the number of trees is estimated by Cayley’s theorem:

Theorem 3. The number of labeled unordered trees with p vertices is pp−2.

The number of such trees with fixed coordination numbers di is
(p−2)!∏
i(di−1)! .

The theorem implies that there are only pp−2 ≤ (p−1)!ep−1 labeled trees

on p vertices. (p−1)! gets canceled by the p!. Thus this resummation might

lead to a convergence proof.

We begin to introduce our tree formula. The resumming of a graphical

expansion in term of trees can be realized in different ways. It depends

on the choice of the tree and the interpolation parameters. To discuss the

dependence we introduce some notations. For a p by p matrix H, and

Q ⊂ Np, let ∆Q[H] =
∑

q,q′∈QHqq′∆qq′ . We abbreviate ∆Np [H] = ∆[H].

Hqq′ is a weight factor associated to the line {q, q′}. H is always real and

symmetry. The tree expansion introduced in [SW00] has the form

Theorem 4 (Theorem 3 in [SW00]). Let H be a real symmetric matrix, and

H ≥ 0. Then

(e∆[H])c (Np)

=
∑
T∈Tp

∏
{q,q′}∈T

Hqq′
(
∆qq′ +∆q′q

) ∫
[0,1]p−1

ds
∑

π∈
∏

(T )

ϕ (T, π, s) e∆[H(T,π,s)]

(3.75)

where s = (s1, . . . , sp−1), ds = ds1, . . . , dsp−1, ϕ(π, s) ≥ 0, and H(T, π, s) is

a non-negative symmetric matrix with diagonal entries (H(T, π, s))qq = Hqq.

The sum over π runs over a T -dependent set
∏
(T ) of permutations π of Np
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and ∫
ds

∑
π∈

∏
(T )

ϕ (T, π, s) = 1. (3.76)

(3.75) is a variant of Brydges-Battle-Federbush formula [BF82, BF84,

Bat84, BF78, BK87]. Other variants of the tree formula can be found in

[AR95]. In our caseH is a matrix with all entries equal to one. The positivity

of the interpolation matrix H(T, π, s) is crucial in the constructive theory,

which ensures that there exists a uniform optimal Gram estimate which

does not dependent on the trees for the remaining determinant. Note that

not all tree expansions have a positive matrix H(T, π, s), which ensures the

existence of a Gram representation for the determinant. For example, a

rooted tree expansion [AR95] has no positive H(T, π, s) matrix.

The tree is not yet the usual Gallavotti-Nicolo tree [GN85]. The Gallavotti-

Nicolo tree arises in multiscale analysis, since it shows inclusion relations

of the vertices in different scales. This means that the vertex function

on a scale j can be expressed as a function of the initial coupling func-

tion directly. The Gallavotti-Nicolo tree was used in several constructions

[DR00a,DR00b,Riv02,SA05b,BGM06,GM10].

To get a deep understanding of the tree expansion, we try to motivate

the proof of (3.75). The proof of the present tree expansion theorem can

be found in [SW00]. The idea behind the expansion is to make a Taylor

expansion with integral remainder to interpolate between a coupled one

(with parameter 1) and an uncoupled one (with parameter 0). For 0 6= A ⊂
Np, let

∆̃A,q[H] =
∑
q′∈A

Hq′q

(
∆qq′ +∆q′q

)
. (3.77)

Then, if H = HT ,

∆Q[H
(A,1)] = ∆Q[H]

∆Q[H
(A,0)] = ∆A[H] + ∆Q\A[H]

∆Q[H
(A,s)] = ∆A[H] + ∆Q\A[H] + s

∑
q∈Q\A

∑
q′∈A

Hq′q

(
∆qq′ +∆q′q

)
, (3.78)

s ∈ [0, 1]. A Taylor expansion gives

e∆Q[H] = e∆A[H]+∆Q\A[H] +
∑

q∈Q\A

∑
q′∈A

Hq′q

(
∆qq′ +∆q′q

) ∫ 1

0
ds e∆Q[H(A,s)].
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We have expressed e∆Q[H] as a sum of two terms, in the first term the

elements of A is decoupled from the rest of Q, in the second one a bound

between the elements of A and the elements in Q is exhibited. This bound is

also the tree line connected the two subgraphs. We iterative this procedure

to expand e∆Q[H(A,s)], until all the vertices are connected, as a result we get

the following lemma:

Lemma 2 (Lemma 10 in [SW00]). Let Q ⊂ Np, H = HT . For r ≥ 1 let

Sr = {q = (q1, . . . , qr) : q1 = minQ,∀i : qi ∈ Q, qi 6= qj , if i 6= j}, (3.79)

Then for all R ≥ 1,

e∆Q[H] =

R∑
r=1

∑
q∈Sr(Q)

e∆Q\Ar [H]

∫ r−1∏
w=1

dsw∆̃Aw,qw+1 [Hw]e
∆Ar [Hr] +RR+1

(3.80)

with Aw = {q1, . . . , qw}, the Hr being defined recursively as H1 = H,

Hw+1 = H
(Aw,sw)
w , and a remainder terms

RR+1 =
∑

q∈SR+1(Q)

∫ R

w=1
dsw∆̃Aw,qw+1 [Hw]e

∆Q[HR+1] (3.81)

This lemma can be proven by an induction on R. The statement for

R = 1 is (3.80), with A = {q1}. In the remainder term, the sum over

q ∈ SR+1(Q) includes a sum over qR+1 /∈ AR. Let AR+1 = AR ∪ {qR+1},
and HR+2 = H

AR+1,sR+1

R+1 , the lemma follows.

If R = |Q|, SR+1 = ∅, so the remainder term vanishes, and we get

e∆Q[H] =
∑

J⊂Q,minQ∈J
e∆Q\J [H]K(J), (3.82)

where for |J | = j,

K(J) =
∑

q∈Sj(J)

∫ j−1

i=1
dsi∆̃{q1,...,qi},qi+1

[Hi]e
∆J [Hj ]. (3.83)

By Lemma 1 in [SW00], follows (e∆Q[H])c = K(Q). After some reformations

we get the final expression (3.75).

In the following we show that the tree expansion ensures the the posi-

tivity of the interpolation matrix H(π, T, s).
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Lemma 3 (Lemma 9 in [SW00]). Let H be a positive symmetric p by p

matrix, A ⊂ Np and s ∈ [0, 1]. Then the interpolated matrices H(A,s) with

entries (H(A,s))qq′ = sHqq′, if q /∈ A, and q′ ∈ A, or q ∈ A, and q′ /∈ A, and
(H(A,s))qq′ = Hqq′ otherwise, are positive.

Proof. The diagonal elements of H(A,s) remain unchanged (H(A,s))qq = Hqq,

and the matrix remains symmetric. Since the permutations of the rows

or columns do not change the positivity properties of H(A,s), we denote

Ac = Np\A, we can write

H(A,s) =

(
HAA HAAc

HAAc HAcAc

)
= sH + (1− s)

(
HAA 0

0 HAcAc

)
(3.84)

The block diagonal matrix inherits positivity from H. Thus H(A,s) is posi-

tive.

The positivity property of H(A,s) is crucial, since it allows to apply

Gram’s estimates:

Lemma 4. Let H(A,s) be a positive symmetric matrix, with diagonal ele-

ments (H(A,s))qq = Hqq ≤ 1. Then for a matrix, whose entries are given by

H
(A,s)
qq′ C(X,X ′) has a Gram constant γC .

Proof. Since H(A,s) is a positive symmetric matrix, then it is a Gram matrix

with

0 ≤ detH(A,s) ≤
p∏
q=1

H(A,s)
qq . (3.85)

Its Gram constant is 1. Using the fact that if A and B are Gram matrices

with Gram constant a and b, and Cqq′ = Aqq′Bqq′ , then C is a Gram matrix

with Gram constant ab. The lemma follows directly from this fact.

3.5 Wick ordering

For some purposes we shall expand a polynomial V ∈ A in the basis for the

Grassmann algebra given by theWick ordered monomials : ψ̄m̄(X ′)ψm(X) :C

V (ψ) =
∑

m,m̄≥0

∫
dm̄X ′dmX vm̄,m(X

′, X) : ψ̄m̄(X ′)ψm(X) :C (3.86)

The Wick ordering is defined as
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Definition 4. Let W(η, ψ) = e(η̄,ψ)+(ψ̄,η)−
∫
dX′ ∫ dX η̄(X′)C(X,X′)η(X). Wick

ordering is a map: A → A, that takes the value, : 1 :C= 1, and for m+ m̄ ≥
2,

: ψ̄m̄(X ′)ψm(X) :C=

[
m∏
k=1

∂

∂η̄(X ′
k)

m∏
k=1

∂

∂η(Xl)
W(η, ψ)

]
η̄=η=0

(3.87)

It is easy to see that the Wick ordered monomial is an element of the

even Grassmann algebra, and antisymmetric under permutations of the X

or X ′ variables separately. The Wick ordering map is bijective.

An alternative formula for the Wick ordered monomial is contained in

the following identity [Sal98a]: Let ∆C be defined by (3.59), then

: ψ̄m̄(X ′)ψm(X) :C= e−∆C ψ̄m̄(X ′)ψm(X). (3.88)

This formula will be used in the renormalization group analysis. We remark

that in our tree expansion the Wick ordering does not play an important role.

It simply drops the diagonal terms from our Laplacians. As a consequence,

the norm parameter would be shifted by a constant,

‖µ−C ∗ V‖h ≤ ‖V‖h+γC (3.89)

At this point we have introduced most mathematical backgrounds for

the constructions. In next chapter we can begin our renormalization group

analysis for the effective action W (V).
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Chapter 4

The Renormalization Group

Analysis

In this chapter we consider the effective action of the dilute Fermi gas. The

key task is to prove that in perturbation theory the generating functional

has a finite convergence radius in the coupling constant. We show that the

convergence radius depends on the sign of the initial coupling constant by

a detailed analysis of the so-called ladder contributions. The proof is based

on multiscale expansions and graphical representation for the generating

functional. Instead of replacing the usual Feynman graphs representation

we will use tree formula to evaluate the fermionic expectations, since the

bound obtained by using Feynman graphs would diverge at large order, due

to the large number of the graphs. On the other hand, multiscale rather than

single scale analysis becomes necessary, since the convergence radius shrinks

when the energy scale goes to the infrared cutoff. We establish further that

the shrinking rate of the convergence radius is logarithmic. In order to

complete our program, the existence of counterterm will be estimated by

requiring zero renormalized mass. In dilute Fermi gas model, where one has

rotational symmetry, δe < C|g|, does not depend on k and is a correction

to the chemical potential. In order to simplify the discussion, we study

the model directly in the thermodynamical limit L → ∞. The relevant

estimated properties of the model leave unchanged.

4.1 Multiscale decomposition

We start to evaluate the effective action of the dilute Fermi gas model

W(V)(φ) = log
1

Z

∫
dµC(ψ)e

V(ψ+φ), (4.1)

41
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where V is given by (3.48), which contains the counterterm, and C = C(e),

φ is another set of Grassmann variables. For a model with non empty Fermi

surface a single scale analysis is not possible because there is an infrared

problem due to the singularity of the propagator U(k)
ik0−e(k) on the Fermi sur-

face. This singularity causes the norm of the propagator to be infinite.

Consequently, it would not be easy to define W(V)(φ) rigorously.
To analyze the singularity we begin to illustrate the multiscale integra-

tion of the effective action. The basic idea of the multiscale analysis is to

scale the propagator. One writes C as a limit of regular propagators, and

controls the limit of a sequence of well defined quantities. Our model has an

ultraviolet cutoff U(k), hence it is convenient to decompose the propagator

as

C(k) = C>(k) + C<(k)

=

0∑
j=−∞

fj(k)

ik0 − e(k)
+

f1(k)

ik0 − e(k)
, (4.2)

where C>(k) and C<(k) have supports on the ultraviolet region and the

infrared region, respectively. Correspondingly we decompose the field as

ψ = ψ(1) +
0∑

j=−∞
ψ(j), (4.3)

where ψ(1) and ψ(j) are independent fields with supports on the ultraviolet

and infrared region, respectively.

Let us now define the partition of unity given by the fj . We choose

a scale parameter M which eventually has to be chosen sufficiently large

and a smooth function h ∈ C∞ that takes values in [0, 1], is identically 1,

if x < 1 and 0 if x > 2. The function f may be constructed by setting

f(x) = h(x)− h(Mx), and obeys

0∑
j=−∞

f(M−2jx) = 1 (4.4)

for all 0 < x < 1. Then for j ≤ 0 the j-th scale function is defined as

fj(k) = f(M−2j(k20 + e(k)2)). (4.5)

By construction fj(k) is identically one on

{k ∈ B′ |
√

2

M
M j ≤ |ik0 − e(k)| ≤M j}. (4.6)
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The support of fj(k) is called the jth shell. By construction, it is contained

in

{k ∈ B′ |
√

1

M
M j ≤ |ik0 − e(k)| ≤

√
2M j}. (4.7)

The momentum k is said to be of scale j if k lies in the jth shell. With this

definition of the partition function fj , f1(k) has to be chosen such that it

obeys f1(k) = U(k)−
∑0

j=−∞ fj(k).

At finite temperature |k0| ≥ π/β, ∀k0 ∈ Mk0 , we define the infrared

cutoff scale:

J = max
{
j ≤ 0,M j−1 < π/β

}
, (4.8)

then we have the identity

C(k) =

0∑
j=J

Cj(k) + C1(k) (4.9)

with Cj(k) =
fj(k)

ik0−e(k) , and the Fourier transform of Cj (k) is

Cj
(
X,X ′) = δσ,σ′

∫
dk

eik(x−x
′)

ik0 − e (k)
fj (k) . (4.10)

4.2 Multiscale integration

In this section we implement the multiscale integration of the effective ac-

tion. The treatment of the first renormalization group step i.e. the ultra-

violet regime, is a simple application of the tree expansion. The infrared

integral will be done by using discrete renormalization group flow. The

expansion is written in term of a set of running coupling functions.

4.2.1 The ultraviolet integration

The definition of the Grassmann integration implies the following identity

(additional principle):

W(V)(φ) = log
1

Z

∫
dµC<(ψ

(≤0))

∫
dµC1(ψ

(1))eV(ψ+φ)

= log
1

Z0

∫
dµC<(ψ

(≤0))eV
(0)(ψ(≤0)), (4.11)

where we have abbreviated ψ(≤0) = ψ(≤0) + φ in V(0)(ψ(≤0)), which is the

effective potential at scale 0, given by

V(0)(ψ(≤0)) = log

∫
dµC1(ψ

(1)) eV(ψ+φ). (4.12)
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It is called the ultraviolet part of the integration as well. Z0 is defined by

the condition W (V)(0) = 0.

The analysis of the ultraviolet integration (4.12) is far easier than the

infrared one because the propagator C1 is really nice. It is easy to see

that there is no relevant or marginal term on scale > 0, except those which

are contained by contracting two fields associated with the same space time

point in a vertex, i.e. the tadpoles. The integration can be done by applying

a tree expansion for the effective action. However due to the slow decay of the

Matsubara frequency, it is not easy to find a good Gram representation for

C1 to bound the determinant for this ultraviolet integration. As a possible

circumvent one has to do multiscale expansion. However, an approach via

determinant bound introduced in [PS08] is much simpler to do this integral,

it makes the multiscale analysis unnecessary. The regularity properties of

V(0) are summarized in the following lemma:

Lemma 5. There is a positive constant g̃, such that for |g| < g̃, V(0)(ψ(≤0))

is analytic in V, and it satisfies the following bound

‖V(0)‖h ≤ 2‖V‖h′ , (4.13)

where h is a positive constant. δC1 is the determinant bound of the propa-

gator C1 and h′ = h+ 3δC1.

Proof. According to Theorem 1.3 in [PS08], δC1 is given by

δC1 = 2

(∫
Λ∗
d2k |f1(k)|

) 1
2

, (4.14)

by Corollary 4.2 in [PS08] δC1 can be bounded by

1√
2
‖f1(k)‖1 ≤ δC1 ≤ 2‖f1(k)‖1. (4.15)

Thus we find that δC1 is proportional to ε
1/2
u and is uniform in β. For our

ultraviolet propagator C1, for which e(k) > e0 > 0, its decay bound αC1 is

also uniform in β. By Corollary 4.4 in [PS08] αC1 ≤ cαe
−3
0 , where cα is a

constant, which is proportional to the volume of the support f1(k).

Let us define ωC1 = αC1δ
−2
C1

. We implement the integral (4.12)

V(0)(ψ(≤0)) = µC1 ∗ V +
∑
p≥2

1

p!
Ep(V). (4.16)

By the same procedure as applied below for the infrared problem, which we

postpone doning this until next section, we yield

‖V(0)‖h ≤ ‖V‖h′′ +
∑
p≥2

ωp−1
C1
‖V‖ph′ . (4.17)
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with h′′ = h + δC1 and h′ = h + 3δC1 . Then if ωC1‖V‖h′ < 1
2 , namely for

|g| < g̃, g̃ is a suitable constant,

‖V(0)‖h ≤ ‖V‖h′
(
1 +

ωC1‖V‖h′
1− ωC1‖V‖h′

)
≤ 2‖V‖h′ . (4.18)

We observe that the integrating over ψ(1) only increases the norm parameter

by a constant, which indicates the convergence of the effective potential

obtained from the integration over large momentum. The most important

point here is that all constants are independent of β.

Corollary 1. There is a positive constant g̃, such that for |g| < g̃, V(0) has
an expression as

V(0)(ψ(≤0)) =
∑

m,m̄≥1

∫
dm̄X ′dmX v

(0)
m̄,m(X

′, X) ψ̄
(≤0)m̄(X ′)ψ

(≤0)m(X),

the kernels satisfy the following bounds

|v(0)m̄,m|1,∞ ≤ C|g|max{1,m−1}, (4.19)

where C is a suitable constant.

4.2.2 The infrared integration

Let us now consider the infrared integration, which shall be done in mul-

tiscale steps. Using the addition principle for the Grassmann Gaussian in-

tegral, j = 0,−1,−2, . . . , J , the successive integration over ψ(j) generates

a sequence of effective potential V(0), . . . ,V(J−1), where V(0) is the initial

effective interaction for the flow and for all j,

W(V)(φ) = log
1

Zj

∫
dµC≤j

(ψ(≤j))eV
(j)(ψ(≤j)). (4.20)

Here Zj is a constant such that W(V)(0) = 0, and

V(j)(ψ(≤j)) = log

∫
dµCj+1(ψ

(j+1))eV
(j+1)(ψ(≤j+1)) (4.21)

is obtained from V(j+1), where V(j+1) is called the effective potential by

integrating the fields with scale larger than j+1. The expansion of effective

potential in the fields is a power series, whose convergence needs to be

proven,

V(j)(ψ(≤j)) =
∑

m,m̄≥1

∫
dm̄X ′dmX v

(j)
m̄,m(X

′, X) ψ̄
(≤j)m̄(X ′)ψ

(≤j)m(X),
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the coefficient function v
(j)
m̄,m(X

′, X) can be interpreted as the connected

amputated Green function for the interaction V(0) and the propagator C≥j+1

obtained from integration over field ψ(≥j+1), and they are also the vertex

function for the integration of the field ψ(j). Our main task is to prove that

the integral (4.21) is well defined for all J ≤ j ≤ 0. It will be performed in

perturbation theory through an iterative procedure.

We first consider the asymptotic behaviors of the propagator Cj at each

scale, which is very important in our analysis. We have the following lemma:

Lemma 6. The fermionic propagator Cj (X,X
′), J ≤ j ≤ 0 given in (4.10)

has determinant bound

c′δM
j
2 ≤ δCj ≤ cδM

j
2 , (4.22)

where cδ, c
′
δ > 0.

Proof. According to Theorem 1.3 in [PS08], δCj is given by

δCj = 2

(∫
Λ∗
d2k |fj(k)|

) 1
2

. (4.23)

fj is a smooth functions with support on {
√

1
M M j ≤ |ik0 − e(k)| ≤

√
2M j}.

Hence, we have M j/2 for each spatial dimension after the integration. The

upper and lower bounds follow from Corollary 4.2 in [PS08].

Corollary 2. The fermionic propagator Cj (X,X
′), J ≤ j ≤ 0 given in

(4.10) has Gram bound

c′γM
j
2 ≤ γCj ≤ cγM

j
2 , (4.24)

with cγ, c
′
γ are suitable constants.

Lemma 7. Let n be a multi-index. n = (n0, n1, n2) and |n| = |n0|+ |n1|+
|n2|. The fermionic propagator Cj (X,X

′), J ≤ j ≤ 0 given in (4.10) has a

decay bound

ανCj
≤ cαM

−j
(
n0+

n1+n2
2

+1
)
, (4.25)

where cα > 0.

Proof. By integration by parts |n| times in (4.10), we have∣∣∣∣∣(τM j)n0

2∏
i=1

(xiM
j
2 )niCj(τ,x)

∣∣∣∣∣ ≤ cM2j sup
k0,k

∣∣∣∣∣(M j∂k0)
n0

2∏
i=1

(M
j
2∂ki)

niCj(k0,k)

∣∣∣∣∣ ,
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where c is a constant. We have used the fact that the support of the integral

has a volume of order M2j , namely one M j comes from the frequency, the

other M j comes from the spatial volume. To prove the desired bound it can

be prove that

sup
k0,k

∣∣∣∣∣(M j∂k0
)n0

2∏
i=1

(
M

j
2∂ki

)ni

Cj (k0,k)

∣∣∣∣∣ ≤ cM−j . (4.26)

Then we get ∣∣∣∣∣(τM j
)n0

2∏
i=1

(
xiM

j/2
)ni

Cj (τ,x)

∣∣∣∣∣ ≤ cM j . (4.27)

We introduce a decay factor

ρ (x) =
(
1 +

(
τM j

)2) 2∏
i=1

(
1 + (xiM

j/2)2
)
. (4.28)

Then, by (4.27)

ρ (x)

∣∣∣∣∣τn0

2∏
i=1

xni
i Cj (τ,x)

∣∣∣∣∣ ≤ c M−j(n0+
1
2

∑2
i=1 ni)+j . (4.29)

Dividing ρ (x) and integrating both sides over Λ′ give the decay bound

ανCj
≤ c M−j(n0+

1
2

∑2
i=1 ni)+j

∫
dτ

∫
d2x

1

ρ (x)

≤ cαM
−j(n0+

1
2

∑2
i=1 ni+1). (4.30)

where cα is a constant.

Power counting for vertex functions

As mentioned in previous chapter, when representing the fermionic pertur-

bation series in term of Feynman graphs, one has a combinatorial problem,

associated to the p!, but due to the fermionic antisymmetry there are sign

cancellations that lead to convergence. However, for the dilute Fermi gas we

have another problem, called divergence problem. To see this explicitly let

us first take a look at the power counting of the vertex functions. We write

V(j−1)(ψ(≤j−1))

=
∑
p=1

1

p!

∑
m,m̄≥1

∫
Γ
dm̄X ′dmX v

(j−1)
m̄,m,p(X

′, X)ψ̄(≤j−1)m̄
(
X ′)ψ(≤j−1)m (X) ,
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with

v
(j−1)
m̄,m,p(X

′, X) =
∑
G∈Gc

Val(G), (4.31)

where the sum is over all connected amputated Feynman graphs with m+m̄

external lines and p V(j) vertices. Val(G) is evaluated by using the usual

Feynman rules for a connected graph, which allows us to derive a naive

upper bound on v
(j−1)
m̄,m,p (X

′, X).

Lemma 8. Let G be a connected amputated graph with m+ m̄ external legs

built up from generalized mi + m̄i legged vertices v
(j)
m̄i,mi

, with |v(j)m̄i,mi
|1,∞ <

∞, each line of the graph has a propagator Cj with

γCj ≤ cγM j/2, αCj ≤cαM−j , (4.32)

then

|Val(G)|1,∞ ≤ C

(
p∏
i=1

|v(j)m̄i,mi
|1,∞M

1
2
(mi+m̄i−4)j

)
M− 1

2
(m+m̄−4)j . (4.33)

where C > 0 is a suitable constant.

Proof. To obtain the bound (4.33), we select an arbitrary spanning tree

T ∈ G, i.e. a loop less subset of G that connects all the p vertices. It contains

p− 1 lines. Now the integrals over the space time coordinate of products of

the propagators on the spanning tree can be bounded by αp−1
Cj

, the product of

the remaining propagators can be bounded by γ
∑p

i=1(mi+m̄i)−2(p−1)−(m+m̄)
Cj

,

using (4.32), we get the power counting bound (4.33).

If we iterativly apply the lemma for all scale j < j′ ≤ 0, we yield a similar

bound with M
1
2
(mi+m̄i−4)j replaced by M

1
2
(mi+m̄i−4)(j−j′). This scale must

be summed over, one yields

0∑
j′=j+1

M
1
2
(mi+m̄i−4)(j−j′) ∼


≤ 1, if mi + m̄i ≥ 6.

|j|, if mi + m̄i = 4.

M |j|, if mi + m̄i = 2.

(4.34)

It is obvious that vertices with more than six external fields produce a small

factorM− 1
2
(mi+m̄i−4), which becomes irrelevant in the renormalization flow.

However, vertices with four fields diverge as |j|. The two legged vertices gives

the exponentially growing factor M |j|. In the language of the renormaliza-

tion group these behaviors are called respectively, marginal and relevant,

they are the source of the infrared divergence. This divergence problem can

be cured by renormalizing both the two- and four legged vertices.
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The localization operator

One way to overcome the divergence problem consists in defining a localiza-

tion operator L acting on V(j), in terms of which we write

V(j) = LV(j) + (1− L)V(j). (4.35)

We denote Pm̄,m as a projection operator, which projects on terms with

m+ m̄ fields from V(j)(ψ(≤j)),

Pm̄,m(V(j))(ψ(≤j)) =

∫
dm̄X ′dmX v

(j)
m̄,m(X

′, X)ψ̄(≤j)m̄ (X ′)ψ(≤j)m (X) .

The localization operator is defined in the following way:

1. LPm̄,m(V(j))(ψ(≤j)) = 0, if m̄ > 2,m > 2.

2. If m̄ = 1,m = 1,

LP1,1(V(j))(ψ(≤j)) =

∫
dX ′dX v

(j)
1,1(X

′, X)δσ′σψ̄
(≤j)
σ′

(
τ,x′)ψ(≤j)

σ (τ,x) .

(4.36)

By time-translation invariance, which can be proven under the hy-

potheses of the main theorem, it follows that this definition is inde-

pendent of the choice of the localization point τ .

3. If m̄ = 2,m = 2,

LP2,2(V(j))(ψ(≤j))

=

∫
dX1 dX2 dX3 dX4 v

(j)
2,2 (X1, X2, X3, X4) δσ1σ3δσ2σ4

· ψ̄(≤j)
σ1 (τ4,x1) ψ̄

(≤j)
σ2 (τ4,x2)ψ

(≤j)
σ3 (τ4,x3)ψ

(≤j)
σ4 (τ4,x4) ,

(4.37)

Here we use spin SU(2) invariance to restrict to one coupling. We

choose τ4 as the localization point.

Instead of acting on the fields, L can equivalently be defined by its action

on the kernel of the effective potential in the following way:

1. Lv(j)m̄,m(X ′, X) = 0, if m̄ > 2,m > 2.

2. If m̄ = 1,m = 1,

Lv(j)1,1(X
′, X) = δ(τ ′ − τ)

∫
dτ̃ ′ v

(j)
1,1(X̃

′, X)δσ′σ, (4.38)

where we put X̃ ′ = (τ̃ ′,x′).
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3. If m̄ = 2,m = 2,

Lv(j)2,2(X1, X2, X3, X4)

= δ̃(τ4)

∫
dτ̃1dτ̃2dτ̃3 v

(j)
2,2(X̃1, X̃2, X̃3, X4)δσ1σ3δσ2σ4 , (4.39)

where we put X̃i = (τ̃i,xi), and δ̃(τ4) = δ(τ1 − τ4)δ(τ2 − τ4)δ(τ3 − τ4).

Under this definition we write LV(j)
(
ψ(≤j))

LV(j)(ψ(≤j)) = Kj +Gj , (4.40)

where

Kj =

∫
dX ′dX δ(τ ′ − τ) κj(X ′, X) ψ̄(≤j)(X ′)ψ(≤j)(X) (4.41)

and

Gj =

∫
d2X ′d2X δ̃(τ4) gj(X

′, X) ψ̄(≤j)(X1)ψ̄
(≤j)(X2)ψ

(≤j)(X3)ψ
(≤j)(X4),

(4.42)

with

κj(X
′, X) =

∫
dτ̃ ′ v

(j)
1,1(X̃

′, X)δσ′σ, (4.43)

and

gj(X
′, X) =

∫
dτ̃1dτ̃2dτ̃3 v

(j)
2,2(X̃1, X̃2, X̃3, X4)δσ1σ3δσ2σ4 . (4.44)

These functions (4.43) and (4.44) are called the running coupling functions

of scale j. The L1-norms of the coupling functions are denoted as

|κj | = sup
X

∫
dX ′ δ(τ ′ − τ) |κj(X ′, X)|, (4.45)

and

|gj | = sup
X4

∫
dX1dX2dX3 δ̃(τ4) |gj(X ′, X)| (4.46)

If the localization point is chosen, we define also the renormalization

operator R = 1− L, we have

RP1,1(V(j))

=

∫
dX ′dX v

(j)
1,1

(
X ′, X

) (
ψ̄
(≤j)
σ′

(
τ ′,x′)− ψ̄(≤j)

σ′
(
τ,x′))ψ(≤j)

σ (τ,x) .

(4.47)
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By using the identity

∫ 1

0
dtF ′ (t) = F ′ (0) +

∫ 1

0
dt (1− t)F ′′ (t) , (4.48)

we expand ψ̄
(≤j)
σ′ (τ ′,x′)− ψ̄(≤j)

σ′ (τ,x′) to the second order in τ ′ − τ , to get

ψ̄
(≤j)
σ′

(
τ ′,x′)− ψ̄(≤j)

σ′
(
τ,x′)

=
(
τ ′ − τ

) ∂
∂τ
ψ̄
(≤j)
σ′

(
τ,x′)+ (τ ′ − τ)2 ∫ 1

0
dt (1− t) ∂2

∂τ ′ (t)2
ψ̄
(≤j)
σ′

(
τ ′(t),x′)

where τ ′ (t) = τ + t (τ ′ − τ). Similarly, we have

RP2,2(V(j))

=

∫
dX1 dX2 dX3 dX4 v

(j)
2,2 (X1, X2, X3, X4)

·
[
ψ̄(≤j)
σ1 (τ1,x1) ψ̄

(≤j)
σ2 (τ2,x2)ψ

(≤j)
σ3 (τ3,x3)ψ

(≤j)
σ4 (τ4,x4)

−ψ̄(≤j)
σ1 (τ4,x1) ψ̄

(≤j)
σ2 (τ4,x2)ψσ3 (τ4,x3)ψ

(≤j)
σ4 (τ4,x4)

]
. (4.49)

The term in the square bracket can be written as:

(
ψ̄(≤j)
σ1 (τ1,x1)− ψ̄(≤j)

σ1 (τ4,x1)
)
ψ̄(≤j)
σ2 (τ2,x2)ψ

(≤j)
σ3 (τ3,x3)ψ

(≤j)
σ4 (τ4,x4)

+ ψ̄(≤j)
σ1 (τ4,x1)

(
ψ̄(≤j)
σ2 (τ2,x2)− ψ̄(≤j)

σ2 (τ4,x2)
)
ψ(≤j)
σ3 (τ3,x3)ψ

(≤j)
σ4 (τ4,x4)

+ ψ̄(≤j)
σ1 (τ4,x1) ψ̄

(≤j)
σ2 (τ4,x2)

(
ψ(≤j)
σ3 (τ3,x3)− ψ(≤j)

σ3 (τ4,x3)
)
ψ(≤j)
σ4 (τ4,x4) ,

each term contains exactly one difference which may be written as a Taylor

remainder,

ψ(≤j)
σj (τj ,xj)− ψ(≤j)

σj (τ4,xj) = (τj − τ4)
∫ 1

0
dt

∂

∂τj (t)
ψ(≤j)
σj (τj (t) ,xj) ,

where τj (t) = τ4 + t (τj − τ4). In order to simplify the notations, we denote

the Taylor remainder terms as

∂̂1τF (τ) =

∫ 1

0
dt ∂τF (τ), ∂̂2τF (τ) =

∫ 1

0
dt (1− t)∂2τF (τ). (4.50)
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With these the renormalized part of V(j) becomes

RV(j)
(
ψ(≤j)

)
=

∫
dX ′dX v

(j)
1,1

(
X ′, X

)
·
[(
τ ′ − τ

)
∂̂1τ ψ̄

(≤j)
σ′

(
τ ′,x′)+ (τ ′ − τ)2 ∂̂2τ ψ̄(≤j)

σ′
(
τ ′,x′)]ψ(≤j)

σ (τ,x)

+

∫
dX1 dX2 dX3 dX4 v

(j)
2,2 (X1, X2, X3, X4)

·
[
(τ1 − τ4)∂̂1τ1ψ̄

(≤j)
σ1

(
τ ′1,x1

)
ψ̄(≤j)
σ2 (τ2,x2)ψ

(≤j)
σ3 (τ3,x3)ψ

(≤j)
σ4 (τ4,x4)

+ ψ̄(≤j)
σ1 (τ4,x1) (τ2 − τ4)∂̂1τ2ψ̄

(≤j)
σ2

(
τ ′2,x2

)
ψ(≤j)
σ3 (τ3,x3)ψ

(≤j)
σ4 (τ4,x4)

+ ψ̄(≤j)
σ1 (τ4,x1) ψ̄

(≤j)
σ2 (τ4,x2) (τ3 − τ4)∂̂1τ3ψ

(≤j)
σ3

(
τ ′3,x3

)
ψ(≤j)
σ4 (τ4,x4)

]
+ Pm̄≥3,m≥3(V(j))(ψ(≤j)), (4.51)

where τ ′i = τi + t(τi − τ4), and Pm̄≥3,m≥3 =
∑

m,m̄≥3 Pm,m̄.

Bound for the effective potential

After introducing the localization operator, we treat the perturbation ex-

pansion of V(j−1) in V(j),

V(j−1)(ψ≤j−1) = log

∫
dµCj (ψ

≤j) eV
(j)(ψ≤j) (4.52)

with

V(j)(ψ(≤j)) =
∑

m,m̄≥1

∫
dm̄X ′dmX v

(j)
m̄,m(X

′, X) ψ̄
(≤j)m̄(X ′)ψ

(≤j)m(X).

In order to avoid the tadpole contribution, we will study instead of (4.52)

an equivalent sequence of Wick ordered effective potentials : V(j) :C≤j

V(j−1)(ψ≤j−1) = : log

∫
dµCj (ψ

≤j)e
:V(j)(ψ≤j):C≤j :−C≤j−1

. (4.53)

In perturbation theory, the first order term of (4.53) gives

:

∫
dµCj (ψ

(j)) : V(j)(ψ(≤j)) :C≤j
:−C≤j−1

= V(j)(ψ(≤j−1)), (4.54)

thus we can write

V(j−1)(ψ≤j−1)− V(j)(ψ≤j−1) =
∑
p≥2

W (j−1)
p (V(j)), (4.55)



4.2 MULTISCALE INTEGRATION 53

with

W (j−1)
p (V(j)) = 1

p!
: E(j−1)

p

(
: V(j) :C≤j

, . . . , : V(j) :C≤j

)
(ψ(≤j−1)) :−C≤j−1

.

Since we expect that the convergence radius depends on the sign of the

running coupling functions, we have to express V(j−1) in terms of Gj . We

will evaluate the second order in Kj and Gj as explicitly as possible. Kj

and Gj are defined in (4.42) and (4.43). We decompose V(j−1) as follows.

Denoting

δV(i) = V(i) − V(i+1), (4.56)

for all j − 1 ≤ i ≤ 0, and δV(0) = V(0), we write V(j−1) as a sum over δV(i),

V(j−1) =

0∑
i=j−1

δV(i) =
0∑

i=j−1

(LδV(i) +RδV(i)). (4.57)

By (4.55), (4.57) reduces to

V(j−1) = V(j−1)
2 +

0∑
i=j−1

(Gi −Gi+1) +
0∑

i=j−1

P≥2,≥2

(
RW (i)

≥2(V
(i+1))

)
.

(4.58)

where V(j−1)
2 = P1,1(V(j−1)) is the part of the effective potential at scale

j − 1 that is quadratic in (ψ̄, ψ). Inserting V(i+1) = LV(i+1) +RV(i+1) and

LV(i+1) = Ki+1 +Gi+1, using the fact

P≥2,≥2

(
W

(i)
2 (Ki+1,Ki+1)

)
= P≥3,≥3

(
W

(i)
2 (Ki+1, Gi+1)

)
= 0, (4.59)

the last term of (4.58) can be further decomposed into

P≥2,≥2

(
RW (i)

≥2(V
(i+1))

)
= P2,2

(
RW (i)

≥2(V
(i+1))

)
+ P≥3,≥3

(
W

(i)
≥2(V

(i+1))
)

= P2,2
(
RW (i)

≥2(V
(i+1))

)
+ P3,3

(
W

(i)
2 (Gi+1, Gi+1)

)
+ P≥3,≥3

(
R̃(V(i+1))

)
,

(4.60)

where

R̃(V(i+1)) = 2W
(i)
2 (LV(i+1),RV(i+1)) +W

(i)
2 (RV(i+1),RV(i+1)) +W

(i)
≥3(V

(i+1)).

The bounds of progapators imply the convergence of the perturbation ex-

pansion, as well as analyticity in ‖ · ‖h provided that ωC‖V‖h+3γC < 1/2 is
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satisfied. For this purpose, we define ωCi = αCiγ
−2
Ci

. By Corollary 2 and

Lemma 7, we have ωCi ≤ cωM
−2i, where cω = cα(c

′
γ)

−2 is a constant. We

denote hi = αγCi , where α > 0 is a constant, for all J ≤ i ≤ 0, and consider

the quantity ωCj−1‖V(j−1)‖hj−1
, bounded by (4.58) and (4.60),

ωCj−1‖V(j−1)‖hj−1
≤ ωCj−1‖V

(j−1)
2 ‖hj−1

+ C4

0∑
i=j−1

|gi − gi+1|

+
0∑

i=j−1

ωCj−1‖P2,2
(
RW (i)

≥2(V
(i+1))

)
‖hj−1

+

0∑
i=j−1

ωCj−1‖P3,3
(
W

(i)
2 (Gi+1, Gi+1)

)
‖hj−1

+

0∑
i=j−1

ωCj−1‖P≥3,≥3

(
R̃(V(i+1))

)
‖hj−1

, (4.61)

where

|gi − gi+1| = sup
X4

∫
dX1dX2dX3δ̃(τ4)|gi(X1, X2, X3, X4)− gi+1(X1, X2, X3, X4)|

and C4 = cωc
4
γα

4 is a constant. The first term on the right side of (4.61)

will be bounded below, which relates to the renormalization condition. The

second term associates to the flow of running coupling functions, we post-

pone analyzing this until next section. In this section we bound the other

three terms separately. Their contributions will turns out to be small, and

do not play significant roles in the flow.

ωCj−1‖P≥3,≥3

(
R̃(V(i+1))

)
‖hj−1

term:

We consider first the last term of (4.61). The projection onto effective po-

tential with more than 6 external fields induces a gain factorM j−i−1, which

can be seen in the following way,

ωCj−1‖P≥3,≥3

(
R̃(V(i+1))

)
‖hj−1

= ωCi

(
ωCj−1

ωCi

) ∑
m̄,m≥3

∣∣∣Pm̄,m (R̃(V(i+1))
)∣∣∣

1,∞

(
hj−1

hi

)m̄+m

hm̄+m
i

≤ M j−i−1ωCi

∑
m̄,m≥3

∣∣∣Pm̄,m (R̃(V(i+1))
)∣∣∣

1,∞
hm̄+m
i

≤ M j−i−1ωCi‖R̃(V(i+1))‖hi . (4.62)
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HoweverM j−i−1 alone is not enough to show convergence. Further improve-

ment is expected by bounding ωCi‖R̃(V(i+1))‖hi . We write

ωCi‖R̃(V(i+1))‖hi ≤ R̃1 + R̃2 + R̃3, (4.63)

with

R̃1 = 2ωCi‖W
(i)
2 (LV(i+1),RV(i+1))‖hi , (4.64)

R̃2 = ωCi‖W
(i)
2 (RV(i+1),RV(i+1))‖hi , (4.65)

R̃3 = ωCi‖W
(i)
≥3(V

(i+1))‖hi . (4.66)

To bound these remainder terms we consider first the bound on

: E(i)p
(
: V(i+1) :C≤i+1

, . . . , : V(i+1) :C≤i+1

)
(ψ(≤i)) :−C≤i

. (4.67)

By using the tree expansion formula (3.75), we have

: E(i)p
(
: V(i+1) :C≤i+1

, . . . , : V(i+1) :C≤i+1

)
(ψ(≤i)) :−C≤i

=
∑
T∈Tp

∏
{q,q′}∈T

(
∆Ci+1,qq′ +∆Ci+1,q′q

)
·
∫
[0,1]p−1

ds
∑

π∈
∏

(T )

ϕ (T, π, s) e
∆C≤i,Ci+1

[H′(T,π,s)]
p∏
q=1

V(i+1)(ψ≤i+1),

(4.68)

with ∆C≤i,Ci+1 [H
′(T, π, s)] is the Laplacian to the propagator

DC≤i,Ci+1

(
(q,X), (q′, X ′)

)
=

{
0 if q = q′

C≤i ((q,X), (q′, X ′)) +Hqq′(T, π, s)Ci+1 ((q,X), (q′, X ′)) if q 6= q′

(4.69)

In order to express the dependence of the line on the vertices explicitly, we

write C(X,X ′) = C((q,X), (q,X ′)). Due to the Wick ordering the interpo-

lation matrix H ′(T, π, s) in ∆C≤i,Ci+1 [H
′(T, π, s)] is not positively defined.

The Wick ordering drops the diagonal terms
∑

q∆qq from the Laplacian.

This destroys the positivity of the matrix H ′[T, π, s]. However we can re-

store the positivity by adding and subtracting the diagonal terms,

∆C≤i,Ci+1 [H
′(T, π, s)] = ∆H(T,π,s)Ci+1

+∆C≤i
−∆C≤i+1,qq, (4.70)

where Hqq′(T, π, s)Ci+1 ((q,X), (q′, X ′)), 1 ≤ q, q′ ≤ p is the propagator

to the Laplacian ∆H(T,π,s)Ci+1
. Because the matrix H(T, π, s) is positive
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with diagonal elements bounded by 1, the corresponding Gram constant

γCi+1 is independent of T, s, and π. ∆C≤i
is the Laplacian to the propaga-

tor C≤i ((q,X), (q′, X ′)), with 1 ≤ q, q′ ≤ p, whose Gram constant is γCi .

∆C≤i+1,qq relates to the propagator C≤i+1 ((q,X), (q′, X ′)), if q = q′, 0 oth-

erwise, whose Gram constant is γCi+1 . After applying the three Laplacians

one after the other, the three Gram constants add up, so the Wick ordering

changes the Gram constant from γCi+1 to 3γCi+1 .

Now we can bound ‖ : E(i)p
(
: V(i+1) :C≤i+1

, . . . , : V(i+1) :C≤i+1

)
:−C≤i

‖hi .
We use the representation of L and R based on (4.36), (4.37) and (4.51),

where some field variables in V(i+1)
q (ψ(≤i+1)) have to be substituted with

new ones containing possibly some derivatives. As we shall see, these new

variables allow to get the right bounds. Before evaculating, it is convenient

to introduce a new label ñ to keep track of the localized or renormalized

terms in V(i+1)(ψ(≤i+1)). We write

V(i+1)(ψ(≤i+1)) =
∑
ñ≥1

V(i+1)
ñ (ψ(≤i+1)), (4.71)

where

V(i+1)
ñ=1 (ψ(≤i+1)) =

∫
dX ′dX v

(i+1)
1,1,1 (X ′, X)δσ′σψ̄

(≤i+1)
σ′ (τ,x′)ψ(≤i+1)

σ (τ,x),

is the localized part of V(i+1)(ψ(≤i+1)), that is quadratic in ψ̄ and ψ. The

corresponding renormalized parts are denoted as

V(i+1)
ñ=2 (ψ(≤i+1)) =

∫
dX ′dX v

(i+1)
2,1,1 (X ′, X) (τ ′ − τ)∂̂1τ ψ̄

(≤i+1)
σ′

(
τ ′,x′)ψ(≤i+1)

σ (τ,x),

and

V(i+1)
ñ=3 (ψ(≤i+1)) =

∫
dX ′dX v

(i+1)
3,1,1 (X ′, X) (τ ′ − τ)2∂̂2τ ψ̄

(≤i+1)
σ′ (τ ′,x′)ψ(≤i+1)

σ (τ,x),

with a field carrying one or two derivatives, respectively. Similarly, we denote

V(i+1)
ñ=4 (ψ(≤i+1)) =

∫
dX1 dX2 dX3 dX4 v

(i+1)
4,2,2 (X1, X2, X3, X4) δσ1σ3δσ2σ4

· ψ̄(≤i+1)
σ1 (τ4,x1) ψ̄

(≤i+1)
σ2 (τ4,x2)ψ

(≤i+1)
σ3 (τ4,x3)ψ

(≤i+1)
σ4 (τ4,x4) ,

is the quartic part of LV(i+1), the three renormalized term are denoted as

V(i+1)
ñ=5 (ψ(≤i+1)) =

∫
dX1 dX2 dX3 dX4 v

(i+1)
5,2,2 (X1, X2, X3, X4)(τ1 − τ4)

· ∂̂1τ1ψ̄
(≤i+1)
σ1

(
τ ′1,x1

)
ψ̄(≤i+1)
σ2 (τ2,x2)ψ

(≤i+1)
σ3 (τ3,x3)ψ

(≤i+1)
σ4 (τ4,x4)
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V(i+1)
ñ=6 (ψ(≤i+1)) =

∫
dX1 dX2 dX3 dX4 v

(i+1)
6,2,2 (X1, X2, X3, X4)(τ2 − τ4)

· ψ̄(≤i+1)
σ1 (τ4,x1) ∂̂

1
τ2ψ̄

(≤i+1)
σ2

(
τ ′2,x2

)
ψ(≤i+1)
σ3 (τ3,x3)ψ

(≤i+1)
σ4 (τ4,x4)

V(i+1)
ñ=7 (ψ(≤i+1)) =

∫
dX1 dX2 dX3 dX4 v

(i+1)
7,2,2 (X1, X2, X3, X4)(τ3 − τ4)

· ψ̄(≤i+1)
σ1 (τ4,x1) ψ̄

(≤i+1)
σ2 (τ4,x2) ∂̂

1
τ3ψ

(≤i+1)
σ3

(
τ ′3,x3

)
ψ(≤i+1)
σ4 (τ4,x4) ,

and finally for ñ ≥ 8, V(i+1)
ñ (ψ(≤i+1)) are the usual vertices with m̄ = m =

ñ− 5 external fields

V(i+1)
ñ≥8 (ψ(≤i+1)) =

∫
dm̄X ′dmX v

(i+1)
ñ,m̄,m(X

′, X)ψ̄(≤i+1)m̄
(
X ′)ψ(≤i+1)m (X) .

With these definitions, the ‖ · ‖hi+1
norm on V(i+1) can be rewritten as

‖V(i+1)‖hi+1
=
∑
ñ≥1

|v(i+1)
ñ,m̄,m|1,∞ hm̄+m

i+1 . (4.72)

Let us now consider the action of the Laplacian on the product of polynomial

∏
{q,q′}∈T

(
∆Ci+1,qq′ +∆Ci+1,q′q

) p∏
q=1

V(i+1)
q (ψ(≤i+1)). (4.73)

where V(i+1)
q (ψ(≤i+1)) =

∑
ñ≥1 V

(i+1)
ñq

(ψ(≤i+1)). For a fixed tree T , we define

incidence numbers dq = θ̄q + θq, q = 1, . . . , p. This means that there are

dq derivatives act on the q-th vertex, namely θq derivatives with respect to

ψ
(i+1)
q and θ̄q derivatives with respect to ψ̄

(i+1)
q . Then the Laplacian gives

a sum of monomials of degree mq − θq + m̄q − θ̄q for every vertex V(i+1)
ñq

.

Because the coefficient function v
(i+1)
ñ,m̄,m(X,X

′) is totally antisymmetric, we

have a combinatorial factor(
mq

θq

)
θq!

(
m̄q

θ̄q

)
θ̄q!. (4.74)

In addition to these monomials we obtain further a product of propagators,

which build the spanning tree connecting all vertices∏
{q,q′}∈T

[
(τ − τq0)q̃(v

(i+1)
q,ñ )∂̂

q(X′
q′ )

τ ∂̂
q(Xq)
τ Ci+1

(
(q,X), (q′, X ′)

)]
, (4.75)

where τq0 denotes the localization point, note that we have the freedom to

choose the localization point. q̃(v
(i+1)
q,ñ ), q(X ′

q′) and q(Xq) are constants,
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equal to 0, 1 or 2. The prefactor (τ − τq0)q̃(v
(i+1)
q,ñ ) comes from the vertices

V(i+1)
ñq

with ñq = 2, 3, 5, 6, 7, which has a field carrying derivatives. If this

field ψ(≤i+1) is an internal fields of V(i), carrying derivative, the derivative

will act on the propagator Ci+1 connecting the field with another field. This

is the reason for appearing ∂̂
q(X′

q′ )
τ ∂̂

q(Xq)
τ in (4.75). In principle we are free

to fix the localization points, that is the field containing the derivatives. We

make a choice in a way, which avoids that a field affected by the derivative

remains after acting the Laplacian. In other words, we put all such fields

with derivatives to connect the vertices. It follows from this that the product

of the distance on a scale i + 2 and the derivative of the propagators on a

scale i+ 1 gives a gain factor M−1 with respect to the contraction of fields

without derivative. This extracted factor is called the renormalization gain.

To see this explicitly, we note that the constraints on q(X ′
q′,r′), q(Xq,r) and

q̃(v
(i+1)
q,ñ ) imply that

∑
{q,q′}∈T

(
q(Xq,r) + q′(X ′

q′,r′)
)
=

p∑
q=1

q̃(v
(i+1)
q,ñ ),

such that we get a renormalization gain

p∏
q=1

M−(i+2)q(v
(i+1)
q,ñ )

∏
{q,q′}∈T

M
(i+1)(q(Xq,r)+q′(X′

q′,r′ )),

which can be bounded by
∏p
q=1M

−γq(ñq), with

γq(ñq) =


1, if ñq = 2,

2, if ñq = 3,

1, if ñq = 5, 6, 7,

0, otherwise.

(4.76)

We move this gain factor to the front of the coefficient function v
(i+1)
ñ,m̄,m,

where it comes from. We get finally the expression up to the monomials and

the combinatorial factors

∑
ñ1,...,ñp

p∏
q=1

[
M−γq(ñq)

∫
dm̄qX ′

qd
mqXqv

(i+1)
ñq ,m̄q ,mq

(X ′
q, Xq)

]

·
∑
T∈Tp

 ∏
{q,q′}∈T

Ci+1

(
(q,X), (q′, X ′)

) . (4.77)
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Now we turn our attention to the action of e
∆C≤i,C≤i+1

[H′]
on the remaining

monomial with degree of
∑p

q=1(mq−θq+m̄q−θ̄q). We prove firstly the follow-

ing lemma. We denote ξ = (q,X) and Γ((q,X), (q′, X ′)) = Hqq′C(X,X
′).

Using the notation
∫
dξF (ξ) =

∑p
q=1

∫
dXF (q,X), we denote

∆[H] = −
∫
dξ′
∫
dξ

δ

δψ̄(ξ′)
Γ(ξ, ξ′)

δ

δψ(ξ′)
= ∆Γ. (4.78)

Then

e∆[H]
p∏
q=1

ψ̄m̄q(X ′
q)

p∏
q=1

ψmq(Xq) = e∆Γ
∏
ξ′∈D̄

ψ̄(ξ′)
∏
ξ∈D

ψ(ξ), (4.79)

where D̄,D ⊂ Np × Γ. The lemma is

Lemma 9. We have

e∆Γ
∏
ξ′∈D̄

ψ̄(ξ′)
∏
ξ∈D

ψ(ξ) =
∑

A⊂D,Ā⊂D̄

εDD̄AĀ det ΓA,Ā
∏

ξ′∈D̄\Ā

ψ̄(ξ′)
∏

ξ∈D\A

ψ(ξ).

where εDD̄
AĀ

= ±1.

Proof. We expand

e∆Γ
∏
ξ′∈D̄

ψ̄(ξ′)
∏
ξ∈D

ψ(ξ) =

∞∑
l=0

1

l!
∆l

Γ

∏
ξ′∈D̄

ψ̄(ξ′)
∏
ξ∈D

ψ(ξ), (4.80)

we observe that the terms with l > |D| are zero, thus for subsets A ⊂ D,

Ā ⊂ D̄ and |A| = |Ā| = l, A = {a1, . . . , al} with a1 < · · · < al and

Ā = {ā1, . . . , āl} with ā1 < · · · < āl, the right hand side of (4.80) is given by

=

|D|∑
l=0

∑
A⊂D,Ā⊂D̄
|A|=|Ā|=l

εDD̄AĀ

 1

l!
∆l

Γ

∏
ξ′∈Ā

ψ̄(ξ′)
∏
ξ∈A

ψ(ξ)

 ∏
ξ′∈D̄\Ā

ψ̄(ξ′)
∏

ξ∈D\A

ψ(ξ)

where

1

l!
∆l

Γ

∏
ξ′∈Ā

ψ̄(ξ′)
∏
ξ∈A

ψ(ξ) = ± 1

l!

∫ l∏
i=1

dξ′idξi

l∏
i=1

[
Γ(ξi, ξ

′
i)

δ

δψ̄(ξ′i)

δ

δψ(ξ′i)

]

·
l∏

i=1

ψ̄(āi)

l∏
i=1

ψ(ai).



60 4 THE RENORMALIZATION GROUP ANALYSIS

The derivatives give

= ± 1

l!

l∏
i=1

∫
dξ′idξiΓ(ξi, ξ

′
i)
∑
σ′

l∏
i=1

sgn(σ′)δ(ξ′i, āσ′(i))
∑
σ

sgn(σ)

l∏
i=1

δ(ξi, aσ(i))

= ±
∑
σ′

sgn(σ′)
l∏

i=1

Γ(āi, aσ′(i))

= det ΓĀ,A (4.81)

where ΓĀ,A is the l by l matrix with entries (ΓA,Ā)i,j = Γāi,aj . This com-

pelets the proof.

By above Lemma 9, the action of e
∆C≤i,Ci+1

[H′(T,π,s)]
gives a sum over

subset A and Ā of determinants determined by A and Ā. We denote aq =

|Aq|, and āq = |Āq|. We use (3.76) to do the s-integral and the sum over π,

we are left with

‖ : E(i)p
(
: V(i+1) :C≤i+1

, . . . , : V(i+1) :C≤i+1

)
:−C≤i

‖hi

≤
∑

ñ1,...,ñp

∑
T∈Tp

S(ñq∈Np)

·
∑

θ1,...,θp

∑
θ̄1,...,θ̄p

p∏
q=1

(
mq

θq

)
θq!

(
m̄q

θ̄q

)
θ̄q!

∑
a1,...,ap>0
ā1,...,āp>0

p∏
q=1

(
mq − θq
aq

)(
m̄q − θ̄q
āq

)

·
(
detG

Ci+1

T,θ,aq
+ detG

C≤i

T,θ,aq
+ detG

C≤i+1,qq
T,θ,aq

)
h
m̄q−θ̄q−āq+mq−θq−aq
i , (4.82)

where G
Ci+1

T,θ,aq
, G

C≤i

T,θ,aq
, G

C≤i+1,qq
T,θ,aq

are aq by āq matrices. The elements of

G
Ci+1

T,θ,aq
are of the form Hqq′Ci+1((q,X), (q′, X ′)), similarly, the elements of

G
C≤i

T,θ,aq
are given by C≤i((q,X), (q′, X ′)), and C≤i+1((q,X), (q,X ′)) for the

matrix G
C≤i+1,qq
T,θ,aq

, q and q′ label the vertices. The binomials
(
mq−θq
aq

)
come

from the number of subsets Aq with |Aq| = aq, and

S(ñq∈Np) = sup
T∈Tp

sup
X̃

max
i

p∏
q=1

M−γq(ñq)

∫
dm̄qX ′

q

∫
dmqXq δ(X̃, Zi)

·
∏

{q,q′}∈T

Ci+1((q,X), (q′, X ′))

p∏
q=1

|v(i+1)
ñq ,m̄q ,mq

(X ′
q, Xq)|(4.83)

with

Ci+1(X,X
′) = max{|Ci+1(X,X

′)|, |Ci+1(X
′, X)|}. (4.84)
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The supremum over X̃ is the supremum in the definition of | · |1,∞. Zi
denotes one of the coordinates in

∏p
q=1

∫
dm̄qX ′

q

∫
dmqXq that is fixed to X̃

by the delta function. To perform the integrals in (4.83) we can arrange for

the vertex, which contains X̃ as an argument, to be the root of the tree.

Its | · |1,∞ norm is obtained by fixing X̃. For other vertices in T , its | · |1,∞
norms are obtained by holding fixed a coordinate XqT in Xq and X

′
q, where

XqT is to be the tree line connecting the vertex with its ancester vertex

(see [Bry86]). Using the summability of the propagator

αCi+1 = max{sup
X

∫
|Ci+1(X,Y )|dY, sup

X

∫
|Ci+1(Y,X)|dY } (4.85)

and the Gram bounds for the determinant, denoting ωCi+1 = αCi+1γ
−2
Ci+1

,

recall hi = αγCi , we have

‖ : E(i)p
(
: V(i+1) :C≤i+1

, . . . , : V(i+1) :C≤i+1

)
:−C≤i

‖hi

≤ ωp−1
Ci+1

γ
2(p−1)
Ci+1

∑
ñ1,...,ñp

p∏
q=1

[
M−γq(ñq)|v(i+1)

ñq ,m̄q ,mq
|1,∞

]

·
∑
T∈Tp

∑
θ1,...,θp

∑
θ̄1,...,θ̄p

p∏
q=1

(
mq

θq

)
θq!

(
m̄q

θ̄q

)
θ̄q!

∑
a1,...,ap>0
ā1,...,āp>0

p∏
q=1

(
mq − θq
aq

)(
m̄q − θ̄q
āq

)

·(3γCi+1)
āq+aq(αγCi)

m̄q−θ̄q−āq+mq−θq−aq . (4.86)

The sum over aq and āq gives
∏p
q=1

(
3γCi+1 + αγCi

)m̄q−θ̄q+mq−θq . According

to Cayley’s theorem on the number of trees with fixed incidence numbers

d1, . . . , dp, we have the tree number

∑
d1,...,dp

=
(p− 2)!

(d1 − 1)! · · · (dp − 1)!
, (4.87)

and the constraint

p∑
q=1

dq =

p∑
q=1

(
θq + θ̄q

)
= 2 (p− 1) . (4.88)

Because
θq !θ̄q !
(dq−1)! ≤ max

{
θ̄q, θq

}
≤ 2max{θ̄q ,θq}, by using this bound, we sum

over the d and the θ sums without the constraints. This gives

∑
θq

(
mq

θq

)(
3γCi+1 + αγCi

)mq−θq 2θqγ
θq
Ci+1

=
(
5γCi+1 + αγCi

)mq . (4.89)
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The sum over ñq gives

‖ : E(i)p
(
: V(i+1) :C≤i+1

, . . . , : V(i+1) :C≤i+1

)
:−C≤i

‖hi

≤ (p− 2)! ωp−1
Ci+1
‖V(i+1)

R ‖p
h′i+1

, (4.90)

with h′i+1 =
(
5 + α√

M

)
γCi+1 , and

‖V(i+1)
R ‖h′i+1

=
∣∣∣v(i+1)

1,1

∣∣∣
1,∞

h′2i+1 +
1

M

∣∣∣v(i+1)
1,1

∣∣∣
1,∞

h′2i+1 +
1

M2

∣∣∣v(i+1)
1,1

∣∣∣
1,∞

h′2i+1

+
∣∣∣v(i+1)

2,2

∣∣∣
1,∞

h′4i+1 +
3

M

∣∣∣v(i+1)
2,2

∣∣∣
1,∞

h′4i+1

+
∑

m̄+m≥6

∣∣∣v(i+1)
m̄,m

∣∣∣
1,∞

h′m̄+m
i+1 . (4.91)

Now we assume that there exist suitable constants M and α such that

h′i+1

hi+1
=

5

α
+

1√
M

= Ã < 1 (4.92)

holds. With this the following inequalities hold,

|v(i+1)
1,1 |1,∞h

′2
i+1 ≤ Ã2|v(i+1)

1,1 |1,∞h
2
i+1,

|v(i+1)
2,2 |1,∞h

′4
i+1 ≤ Ã4|v(i+1)

2,2 |1,∞h
4
i+1,∑

m,m̄≥3

|v(i+1)
m̄,m |1,∞h′m̄+m

i+1 ≤ Ã6
∑

m,m̄≥3

|v(i+1)
m̄,m |1,∞hm̄+m

i+1 . (4.93)

Putting (4.93) into (4.91) and noting that 1/M < Ã2 < 1, we have

‖V(i+1)
R ‖h′i+1

≤ (Ã2 + Ã4 + Ã6)|v(i+1)
1,1 |1,∞h

2
i+1 + (Ã4 + 3Ã6)|v(i+1)

2,2 |1,∞h
4
i+1

+Ã6
∑

m,m̄≥3

|v(i+1)
m̄,m |1,∞hm̄+m

i+1

≤ (Ã2 + Ã4)|v(i+1)
1,1 |1,∞h

2
i+1 + (Ã4 + 2Ã6)|v(i+1)

2,2 |1,∞h
4
i+1

+Ã6‖V(i+1)‖hi+1

≤ (Ã2 + 2Ã4 + 3Ã6)‖V(i+1)‖hi+1

≤ 6Ã2‖V(i+1)‖hi+1
, (4.94)

and consequently we have

‖W (i)
p (V(i+1))‖hi =

1

p!
‖ : E(i)p (: V(i+1) :C≤i+1

) :−C≤i
‖hi

≤ (6Ã2)pωp−1
Ci+1
‖V(i+1)‖phi+1

. (4.95)
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For our further analysis we have to require that 6Ã2 < 1 holds.

Now everything is prepared for bounding R̃i, using (4.95), R̃3 can be

bounded by

R̃3 = ωCi‖W
(i)
≥3(V

(i+1))‖hi ≤
Kc3

M

∑
p≥3

(ωCi+1‖V(i+1)‖hi+1
)p, (4.96)

where Kc3 = 63M3Ã6. ωCi/ωCi+1 ≤M2 has been used.

We turn to the terms R̃1, R̃2, which are bounded in a similarly way. We

observe that

‖LV(i+1)‖h′i+1
≤ Ã2|v(i+1)

1,1 |1,∞h
2
i+1 + Ã4|v(i+1)

2,2 |1,∞h
4
i+1

≤ 2Ã2‖V(i+1)‖hi+1
(4.97)

and

‖RV(i+1)‖h′i+1
≤ (Ã4 + Ã6)|v(i+1)

1,1 |1,∞h
2
i+1 + 3Ã6|v(i+1)

2,2 |1,∞h
4
i+1

+Ã6
∑

m,m̄≥3

|v(i+1)
m̄,m |1,∞hm̄+m

i+1

≤ (Ã4 + 3Ã6)‖V(i+1)‖hi+1

≤ 4Ã4‖V(i+1)‖hi+1
. (4.98)

Then using the tree expansion we get

R̃1 = 2ωCi‖W
(i)
2 (LV(i+1),RV(i+1))‖hi ≤

Kc1

M
(ωCi+1‖V(i+1)‖hi+1

)2, (4.99)

where Kc1 = 16M3Ã6, and

R̃2 = ωCi‖W
(i)
2 (RV(i+1),RV(i+1))‖hi ≤

Kc2

M
(ωCi+1‖V(i+1)‖hi+1

)2 (4.100)

where Kc2 = 16M3Ã8. Putting all together we obtain finally

ωCj−1‖P≥3,≥3

(
R̃(V(i+1))

)
‖hj−1

≤ M j−i−1

Kc1 +Kc2

M
(ωCi+1‖V(i+1)‖hi+1

)2 +
Kc3

M

∑
p≥3

(ωCi+1‖V(i+1)‖hi+1
)p

 .

(4.101)
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ωCj−1‖P3,3
(
W

(i)
2 (Gi+1, Gi+1)

)
‖hj−1

term:

The tree expansion gives

ωCj−1

∣∣∣P3,3 (W (i)
2 (Gi+1, Gi+1)

)∣∣∣
1,∞

h6j−1 ≤ 8 ωCj−1αCi+1 |gi+1|2h6j−1

≤ 8

α2

(
ωCj−1

ωCi+1

)(
hj−1

hi+1

)6

ω2
Ci+1
|gi+1|2h8i+1

≤ M j−i−1Kc4

M
(ωCi+1‖V(i+1)‖hi+1

)2, (4.102)

whereKc4 =
8
α2 , 8 is the combinatorial factor counting the number of second

order graphs.

ωCj−1‖P2,2
(
RW (i)

≥2(V(i+1))
)
‖hj−1

term:

The renormalization transfer improves the power counting. We consider

P2,2
(
RW (i)

≥2(V
(i+1))

)
= µ−Cj−1 ∗ µCj−1 ∗ P2,2

(
RW (i)

≥2(V
(i+1))

)
.

(4.51) shows that gradients created by the renormalization subtraction apply

to fields. When this object is evaluated by Gaussian integration, it leads

to the same effect as a gradient on a propagator. Hence we can extract

an improvement M j−i−2 by consecutively using Gaussian convolution with

Cj−1 and −Cj−1, together with (4.95) we get

ωCj−1‖P2,2
(
RW (i)

≥2(V
(i+1))

)
‖hj−1

≤M j−i−1 3

M
ωCi‖W

(i)
≥2(V

(i+1))‖hi

≤ M j−i−1Kc5

M

∑
p≥2

(ωCi+1‖V(i+1)‖hi+1
)p (4.103)

with Kc5 = 3 · 62Ã4.

Putting (4.61), (4.101), (4.102) and (4.103) all together, we get an ex-

pression of V(j−1) in term of the running coupling functions gi and V(i) with
j ≤ i ≤ 0:

ωCj−1‖V(j−1)‖hj−1

≤ ωCj−1‖V
(j−1)
2 ‖hj−1

+ C4

0∑
i=j−1

|gi − gi+1|

+
Kc1 +Kc2 +Kc4 +Kc5

M

0∑
i=j−1

M j−i−1(ωCi+1‖V(i+1)‖hi+1
)2

+
Kc3 +Kc5

M

0∑
i=j−1

M j−i−1
∑
p≥3

(ωCi+1‖V(i+1)‖hi+1
)p. (4.104)
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4.3 The flow of the running coupling functions

In order to estimate the role of the sign of the initial coupling constant play-

ing in this convergence problem we study the flow of the running coupling

functions gj in detail. Applying localization operator on both side of (4.55),

and projecting out the four fields part, we have

Gj−1 = Gj + βj(V(j)), (4.105)

where the Beta function is given by

βj(V(j)) = P2,2
(
2LW (j−1)

2 (Gj ,Kj) + LW (j−1)
2 (Gj , Gj)

)
+ P2,2

(
LR̃(V(j))

)
,

whose convergence follows directly from ωCj‖V(j)‖hj ≤ 1/2. In this section

we want to find the right behaviors of Gj as j → J . Now we pay our atten-

Figure 4.1: Connected four point graphs with two vertices.

tion to the second order contributions. The possible graph in the recursion

relation (4.105) is the bubble Q1 in Fig. (4.3); other possible connected four

point graphs with two vertices are Q2 and Q3. The graph Q2 contains a two

point function, which according to Lemma 12 below produces a small factor

M j , thus the graph Q2 becomes irrelevant in the flow. The graph Q3 has an

exponential small contribute to the running coupling flow, since it contains

a tadpole, namely a local propagator Cj(X,X), which is exponential small.

To see this, we consider the Fourier transform of Cj(X,X),

Cj (X,X) =
1

β

∑
k0

∫
d2k

fj(k)

ik0 − e (k)
=

1

β

∑
k0

∫
d2k

f(M−2j(k20 + (k2 − ν
β )

2)

ik0 − k2 + ν/β
.

Introducing polar coordinate in k, and substitute t = −k2 + ν
β , we get

− 1

2β

∑
k0

∫ ∞

ν/β
dt

∫ 2π

0
dθ

f(M−2j(k20 + t2))

ik0 + t
. (4.106)

Substituting further t = ρ cosφ, k0 = ρ sinφ,

Cj (X,X) = − 1

2β

∑
k0

∫ 2π

0
dθ

∫
dρ ρf(M−2jρ2)

∫
dφ e−iφ. (4.107)
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Then at zero temperature the integral vanishes. However for positive tem-

perature, k0, t are integrated over a finite region, above integral turns out to

be exponential small. P2,2
(
LR̃(V(j))

)
contains a gain factor M−1 coming

from the renormalized part of the effective potential. See (4.99), (4.100) and

(4.96). By assuming ωCj‖V(j)‖hj ≤ C|gj | (Lemma 11), this term is of order

M−1|gj |2.

Analysis above implies that the flow of gj has the approximated form

gj−1 = gj + βjg
2
j +O(g2j ), (4.108)

where βj = B
(j)
pp +B

(j)
ph denotes the bubble contributions, and power counting

indicates that it is of order one. The remainder term is M−1 smaller than

the bubble graph, thus the bubble terms establish the relevant properties of

the running coupling functions.

The particle-particle bubble:

Now we begin to calculate the bubble terms explicitly. We calculate them

by setting q0 = 0 first, and let the spatial parts q tend to zero. For q = 0,

by the symmetry e(k) = e(−k),

B(j)
pp (0) = − 1

β

∑
k0

∫
k∈j−shell

d2k
1

ik0 − e(k)
1

−ik0 − e(−k)

=

∫
k∈j−shell

d2k
1

β

∑
k0

1

k20 + e2(k)

= −
∫
k∈j−shell

d2k
1

2e(k)
tanh

(
βe(k)

2

)
. (4.109)

We substitute u = k2 − ν
β , since tanh

(
βe(k)

2

)
≈ 1, we have

B(j)
pp (0) ≈ −π

2

∫
√
M−1Mj<u<

√
2Mj

du
1

u

≈ −π
2
log
√
2M. (4.110)
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The particle-hole bubble:

We denote K = {k : k ∈ j-shell ∩ j-th shell shifted by q}, then

B
(j)
ph (q) = − 1

β

∑
k0

∫
k∈K

d2k
1

ik0 − e(k)
1

i(k0 + q0)− e(k+ q)

= −
∫
k∈K

d2k
fβ(e(k))− fβ(e(k+ q))

iq0 + e(k)− e(k+ q)

= −
∫
k∈K

d2k
e(k)− e(k+ q)

iq0 + e(k)− e(k+ q)

∫ 1

0
dt
∂fβ(e(k,q, t))

∂e

=

∫
k∈K

d2k
e(k)− e(k+ q)

iq0 + e(k)− e(k+ q)

∫ 1

0
dtδβ(e(k,q, t)))

where

e(k,q, t)) = te(k) + (1− t)e(k+ q), (4.111)

and

δβ(e(k,q, t))) = −
∂fβ(e(k,q, t))

∂e
. (4.112)

Note that

δβ(x) =
β

4 cosh2 βx2
. (4.113)

Then for q0 6= 0, B
(j)
ph (q0,q)→ 0 as q→ 0. For q0 = 0, consider

B
(j)
ph (0) = lim

q→0
Bph(0.q)

=

∫
√
M−1Mj<|e(k)|<

√
2Mj

d2k δβ(e(k))

=

∫
√
M−1Mj<|e(k)|<

√
2Mj

d2k
β

4 cosh2 βe(k)2

=
π

2

[
tanh

βu

2

]√2Mj

√
M−1Mj

=
cπ

2
(4.114)

with 0 < c < 1.

By (4.110) and (4.114), we conclude that by chosing M large enough,

in other words, for a small enough energy shell, the explicit calculations

of the particle-particle and particle-hole bubbles induce that βj < 0. We

denote the scale invariant part of βj as β̃, thus the flow relation becomes

approximately

gj−1 ≈ gj + β̃gjgj−1, (4.115)



68 4 THE RENORMALIZATION GROUP ANALYSIS

with β̃ < 0, dividing by gjgj−1,

1

gj
=

1

gj−1
+ β̃, (4.116)

with solution

gj ≈
g0

1− β̃|j|g0
, (4.117)

the behavior of gj can be summarized:

1. For a repulsive interaction g0 > 0, gj remains bounded and decreases

to zero as β → ∞, gj < g0 for all J < j < 0. Such a theory is called

asymptotically free in the infrared limit. Physically, the interaction is

screened at large distances.

2. For an attractive interaction g0 < 0, |gj | grows as the energy scale

is lowered, and becomes singular if β gets large. However, gj remains

finite and analytic in g0 as long as β̃|j|g0 < 1. We find an approximated

behavior of gj , i.e. there exists a constant C, such that |gj | ≈ C|j||g0|
holds.

4.4 Analyticity of the effective action

In the last section, we have expressed the effective potential V(j−1) in term

of the running coupling functions gi and V(i). In this section we will prove

the following result:

Lemma 10. Suppose that there is a positive constant C2c, such that for

J ≤ j ≤ 0,

|v(j)1,1|1,∞ ≤

{
C2cM

j |g0|2, if g0 > 0,

C2cM
j |g0|, if g0 < 0

(4.118)

holds. Then there exist two positive constants C0> and C0< and suitable M

and α, which satisfy inequality (4.121), such that, for all g0 > 0, g20 log β <

C0>, or g0 < 0, |g0| log β < C0<, hj = αγCj , the inequality

ωCj‖V(j)‖hj <
1

2
(4.119)

holds for all J ≤ j ≤ 0.
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Proof. We prove the lemma by induction in j, with the statement of the

lemma as the inductive hypothesis. The case with j = 0 is trivial. Let

j ≤ −1 and we assume that the statement holds, i.e. ωCi‖V(i)‖hi < 1
2 , for

all j ≤ i ≤ 0, (4.104) becomes

ωCj−1‖V(j−1)‖hj−1
≤ ωCj−1‖V

(j−1)
2 ‖hj−1

+ C4

0∑
i=j−1

|gi − gi+1|+
K̃

M

1

2
,

(4.120)

where K̃ = 1
2(Kc1 + Kc2 + Kc3 + Kc4 + 2Kc5)

∑0
i=J−1M

J−i−1. It can be

shown that there exist M and α, such that

K̃

M
< 1 (4.121)

holds. Moreover, (4.121) implies 6Ã2 < 1 holds.

1. For a repulsive interaction g0 > 0: The first term of (4.120) can be

easily bounded under the assumptions on (4.118) v
(j)
1,1,

ωCj−1‖V
(j−1)
2 ‖hj−1

= ωCj−1 |v
(j−1)
1,1 |1,∞h2j−1 ≤ C2cC2|g0|2, (4.122)

with C2 = cωc
2
γα

2. Since gj remains bounded and decreases as j → J ,

the flow equation (4.105) implies that the second summand in (4.120)

gives

0∑
i=j−1

|gi − gi+1| ≤ C4c(|j|+ 2)|g0|2, (4.123)

with C4c as a suitable constant. Thus there exists a constant C>0, for

|g0| < C>0/(log β)
1/2, ωCj−1‖V(j−1)‖hj−1

≤ 1/2 holds.

2. For an attractive interaction g0 < 0, |gi − gi+1| ≤ C|g0|, then the

second summand in (4.104) gives

0∑
i=j−1

|gi − gi+1| ≤ C4c(|j|+ 2)|g0|, (4.124)

(4.120) can be bounded by

ωCj−1‖V(j−1)‖hj−1
≤ C2cC2|g0|+ C4C4c(|j|+ 2)|g0|+

K̃

M

1

2
, (4.125)

thus there exists M , α and C<0, such that for |g0| ≤ C<0/ log β,

ωCj−1‖V(j−1)‖hj−1
≤ 1/2 holds.
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Remark. There is a weaker condition on the coupling constant for a repulsive

interaction, which is temperature independent, namely g0 < C0>, C0> is a

constant. This can be shown in the following way: we write

V(j−1) = V(j−1)
2 + V(j−1)

a + V(j−1)
b + V(j−1)

c , (4.126)

where

V(j−1)
a = Gj + P2,2

(
2W

(j−1)
2 (Gj ,Kj) +W

(j−1)
2 (Gj , Gj)

)
+ P2,2

(
LR̃(V(j))

)
,

V(j−1)
b = P2,2(RV(j)) + P≥3,≥3(V(j)),

and

V(j−1)
c = P3,3

(
W

(j−1)
2 (Gj , Gj)

)
+ P2,2

(
RR̃(V(j))

)
+ P≥3,≥3

(
R̃(V(j))

)
.

with

R̃(V(j)) = 2W
(j−1)
2 (LV(j),RV(j)) +W

(j−1)
2 (RV(j),RV(j)) +W

(j−1)
≥3 (V(j)).

ωCj−1‖V
(j−1)
a ‖hj−1

term:

Applying the localization operator on the both side of V(j−1)
a we have

Gj−1 = Gj + P2,2
(
2LW (j−1)

2 (Gj ,Kj) + LW (j−1)
2 (Gj , Gj)

)
+ P2,2

(
LR̃(V(j))

)
,

inserting this equation into V(j−1)
a , we get

V(j−1)
a = Gj−1 − P2,2R

(
2W

(j−1)
2 (Gj ,Kj) +W

(j−1)
2 (Gj , Gj)

)
,

= Gj−1 − µ−Cj−1 ∗ µCj−1 ∗ P2,2R
(
2W

(j−1)
2 (Gj ,Kj) +W

(j−1)
2 (Gj , Gj)

)
= Gj−1 −

3

M
P2,2

(
2W

(j−1)
2 (Gj ,Kj) +W

(j−1)
2 (Gj , Gj)

)
. (4.127)

the gain factor 3
M comes from Wick ordering. The last term has the bound

ωCj−1

∣∣∣P2,2 (2W (j−1)
2 (Gj ,Kj) +W

(j−1)
2 (Gj , Gj)

)∣∣∣
1,∞

h4j−1

≤ ωCj−1αCj

(
2|gj ||κj |+ 18|gj |2h2j

)
h4j−1

≤
(
ωCj−1

ωCj

)(
hj−1

hj

)4

ω2
Cj

(
2

α2
|gj ||κj |h6j +

18

α4
|gj |2h8j

)
≤

(
2

α2
+

18

α4

)
(ωCj‖V(j)‖hj )

2. (4.128)
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where the constants 2 and 18 are the combinatorial factors counting the

number of graphs. Combining both contributions we obtain a final expres-

sion

ωCj−1‖V(j−1)
a ‖hj−1

≤ C4|gj−1|+
Ka

M
(ωCj‖V(j)‖hj )

2. (4.129)

where C4 = cωcγα
4 and Ka = 3

(
2
α2 + 18

α4

)
.

ωCj−1‖V
(j−1)
b ‖hj−1

term:

Using the trick of Wick ordering it is easy to get the bound

ωCj−1‖V
(j−1)
b ‖hj−1

≤ 3

M
ωCj‖P2,2(V(j))‖hj +M2

(
hj−1

hj

)6

ωCj‖P≥3,≥3(V(j))‖hj

≤ 3

M
ωCj‖V(j)‖hj . (4.130)

ωCj−1‖V
(j−1)
c ‖hj−1

term:

This last term can be bounded by

ωCj−1‖V(j−1)
c ‖hj−1

≤ ωCj−1

∣∣∣P3,3 (W (j−1)
2 (Gj , Gj)

)∣∣∣
1,∞

h6j−1 + ωCj−1‖R̃(V(j))‖hj−1

≤ K1c +K2c +K3c

M
(ωCj‖V(j)‖hj )

2 +
K4c

M

∑
p≥3

(ωCj‖V(j)‖hj )
p.(4.131)

where K1c = 8/α2, K2c = 16M3Ã6, K3c = 16M3Ã8 and K4c = 216M3Ã6.

Putting all together we obtain

ωCj−1‖V(j−1)‖hj−1
≤ ωCj−1‖V

(j−1)
2 ‖hj−1

+ C4|gj−1|+
K̃ ′

M

1

2
, (4.132)

where K̃ ′ = 1
2(Ka +K1c +K2c +K3c +K4c +6) is a constant. It is possible

to choice M and α, such that

K̃ ′

M
< 1 (4.133)

holds. For g0 > 0, gj is finite and obeys gj < g0, for all j < 0. Then the

condition g0 < C0>, with C0> as a constant, is sufficient for the convergence

of the perturbation series. This result implies that for a sufficient small g0 >

0, there might be no instability as the temperature goes to zero. However
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the temperature independent condition on the initial coupling constant is

not sufficient to guarantee the regularity properties of the self-energy. This

will be shown in the next chapter. By (4.132) we have further

Lemma 11. Suppose that there is a positive constant C2c, such that for J ≤
j ≤ 0,

|v(j)1,1|1,∞ ≤

{
C2cM

j |g0|2, if g0 > 0,

C2cM
j |g0|, if g0 < 0.

(4.134)

holds. There exist two positive constants Cg> and Cg< and suitable M and

α, which satisfy inequality (4.133), such that for all g0 > 0, g20 log β < C0>,

or g0 < 0, |g0| log β < C0<, the inequality

ωCj‖V(j)‖hj ≤

{
Cg>|g0| if g0 > 0,

Cg<|gj | if g0 < 0.
(4.135)

holds, for all J ≤ j ≤ 0.

Proof. The lemma is proved by induction in j, with the statement of the

lemma as the inductive hypothesis. The case with j = 0 is trivial. Let

j ≤ −1 and we assume that the statement holds, i.e. ωCj‖V(j)‖hj ≤ Cg>|g0|,
if g0 > 0, or ωCj‖V(j)‖hj ≤ Cg<|gj |, if g0 < 0 and ωCj‖V(j)‖hj ≤ 1

2 , for all

j ≤ i ≤ 0, we have

ωCj−1‖V(j−1)‖hj−1
≤ ωCj−1‖V

(j−1)
2 ‖hj−1

+ C4|gj−1|+
K̃ ′

M
ωCj‖V(j)‖hj(4.136)

1. For a repulsive interaction g0 > 0: (4.136) reduced to

ωCj−1‖V(j−1)‖hj−1
≤ C2cC2|g0|2 + C4|gj−1|+

K̃ ′

M
Cg>|g0|

≤

(
C2cC2 + C4

Cg>
+
K̃ ′

M

)
Cg>|g0|, (4.137)

where we have used the fact |gj−1|/g0 < 1. We find that there exists

a constant Cg>, so that

Cg> >
C2cC2 + C4

1− K̃′

M

(4.138)

holds, which implies the prefactor in (4.137) smaller than one. It

follows that ωCj−1‖V(j−1)‖hj−1
≤ Cg>|g0| holds.
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2. For an attractive interaction g0 < 0, (4.136) reduced to

ωCj−1‖V(j−1)‖hj−1
≤ C2cC2|g0|+ C4|gj−1|+

K̃ ′

M
Cg<|gj |

≤

(
C2cC2 + C4

Cg<
+
K̃ ′

M

)
Cg<|gj−1|, (4.139)

where we have used the fact |g0|/|gj−1| < 1 and |gj |/|gj−1| < 1. We

find that there exists a constant Cg<, so that

Cg< >
C2cC2 + C4

1− K̃′

M

(4.140)

holds. It follows that ωCj−1‖V(j−1)‖hj−1
≤ Cg>|gj−1| holds.

The result about the analytical of the effective potential of scale j in

the running coupling gj shown above bases on the assumption on the two

point vertex functions. We have to verify this. The assumption on |v(j)1,1|1,∞
corresponds to the problem of fixing the counterterm. We consider at first

the flow of the two point functions. By using the tree formula we have for

v
(j)
1,1, ∣∣∣v(j−1)

1,1 − v(j)1,1

∣∣∣
1,∞

≤
∑
p≥2

1

p!
ωp−1
Cj

γ
2(p−1)
Cj

∑
m1,...,mp

∑
m̄1,...,m̄p

p∏
q=1

|v(j)m̄q ,mq
|1,∞

·
∑
T∈Tp

∑
θ1,...,θp

∑
θ̄1,...,θ̄p

p∏
q=1

(
mq

θq

)
θq!

(
m̄q

θ̄q

)
θ̄q!

∑
a1,...,ap>0
ā1,...,āp>0

p∏
q=1

(
mq − θq
aq

)(
m̄q − θ̄q
āq

)

·
p∏
q=1

(
3γCj

)āq+aq δ∑p
q=1 m̄q−θ̄q−āq+mq−θq−aq=2. (4.141)

The delta function at the last line ensures that only terms with two external

fields are picked out. Taking into account the delta function and summing

over aq, āq,

∑
a1,...,ap>0
ā1,...,āp>0

p∏
q=1

[(
mq − θq
aq

)(
m̄q − θ̄q
āq

)(
3γCj

)āq+aq] δ∑p
q=1 m̄q−θ̄q−āq+mq−θq−aq=2
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gives (3γCj )
∑p

q=1 m̄q−θ̄q+mq−θq−2 times a combinatorial factor(∑p
q=1(mq − θq)

1

)(∑p
q=1(m̄q − θ̄q)

1

)
=

p∏
q=1

[
(mq − θq)(m̄q − θ̄q)

]
,(4.142)

using the fact mq − θq ≤ 2mq−θq , the combinatorial factor can be bounded

by 2
∑p

q=1 m̄q−θ̄q+mq−θq . It turns out that∣∣∣v(j−1)
1,1 − v(j)1,1

∣∣∣
1,∞
≤ ω−1

Cj
(3γCj )

−2
∑
p≥2

(ωCj‖V(j)‖h′′j )
p (4.143)

with h′′j = 6γCj +2γCj = 8γCj , Choosing α > 8, so that ‖V(j)‖h′′j ≤ ‖V
(j)‖hj ,

we arrive at∣∣∣v(j−1)
1,1 − v(j)1,1

∣∣∣
1,∞
≤ ω−1

Cj
(3γCj )

−2
∑
p≥2

(ωCj‖V(j)‖hj )
p. (4.144)

Lemma 12. It is possible to choose the counterterm, such that

|v(j)1,1|1,∞ ≤

{
C2cM

j |g0|2 if g0 > 0, g0 <
C0>√
log β

.

C2cM
j |g0| if g0 < 0, |g0| < C0<

log β .
(4.145)

for all J − 1 ≤ j ≤ 0, where C2c is a suitable constant.

Proof. We have to show that there is a suitable counterterm κ, which should

be a constant, so that the lemma holds. We consider the counterterm flow

of κj(X
′, X). See (4.43). Since the effective actions are constructed by

modifying the interaction such that the Fermi surface of the interaction

system stays fixed, this requires a special choice of the counterterm κ, so

that we require, as a condition on κ that

κJ−1(X
′, X) = κ+

0∑
i=J−1

(κi(X
′, X)− κi+1(X

′, X)) = 0, (4.146)

where we denote κ1 = κ. (4.146) means that the “renormalized mass has to

be zero ”. This is not a definition, but only an equation to be solved. From

(4.146) we have further

κj(X
′, X) = κ+

0∑
i=j

(κi(X
′, X)− κi+1(X

′, X))

= −
j−1∑
i=J−1

(κi(X
′, X)− κi+1(X

′, X)), (4.147)
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which can be rewritten as∫
dτ̃ ′v

(j)
1,1(X̃

′, X) = −
j−1∑
i=J−1

∫
dτ̃ ′
(
v
(i)
1,1(X̃

′, X)− v(i+1)
1,1 (X̃ ′, X)

)
. (4.148)

By using (4.144), (4.148) induces that

|v(j)1,1|1,∞ ≤
j−1∑
i=J−1

|v(i)1,1 − v
(i+1)
1,1 |1,∞

≤
j−1∑
i=J−1

ω−1
Ci+1

(3γCi+1)
−2
∑
p≥2

(
ωCi+1‖V(i+1)‖hi+1

)p
.

(4.149)

1. For g0 > 0: we have ωCj‖V(j)‖hj ≤ Cg>g0 and ωCj‖V(j)‖hj < 1
2 , for

all J ≤ j ≤ 0. Then (4.149) gives

|v(j)1,1|1,∞ ≤ 2C2
g>|g0|2

j−1∑
i=J−1

ω−1
Ci+1

(3γCi+1)
−2 ≤ C2cM

j |g0|2. (4.150)

with a suitable constant C2c.

2. For g0 < 0: we have ωCj‖V(j)‖hj ≤ Cg<|gj | and ωCj‖V(j)‖hj < 1
2 ,

|gj | ≈ C|j|g0 and |gj−1 − gj | ≤ C ′
g|g0|, for all J ≤ j ≤ 0. Then (4.149)

gives

|v(j)1,1|1,∞ ≤ 2

j−1∑
i=J−1

ω−1
Ci+1

(3γCi+1)
−2(Cg<|gj |)2

≤ C2cM
j |g0|. (4.151)

This completes the proof.

According to Lemma 12 one can choose a constant counterterm κ = δe,

which obeys δe < C|g|. The first part of the Theorem 1, namely the analysity

of the renormalized 2n-points Green’s function is a direct consequence of the

Lemma 5 and the Lemma 10.
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Chapter 5

The Regularity Analysis of

the Self-energy

In this chapter we turn to the regularity properties of the self-energy of

the dilute Fermi gas model. One expects that the interaction produces a

self-energy Σ(g, k) of the fermions such that the propagator becomes

C(k) =
1

ik0 − E(k)− Σ(g, k)
. (5.1)

The problem is now to verify that Σ(g, k) is a regular function, such that the

interacting propagator indeed has the same integrability properties as that

of the free one, but the singularity is at a different place, namely E(k) +

Σ(g, k) = 0.

This regularity problem turns out to be nontrivial. We will prove the

regularity properties of the self-energy by using the renormalization group

techniques. The results are summarized in the following theorem:

Theorem 5. With the constraints on g, |g|2 log β < C0>, for g > 0, or

|g| log β < C0<, for g < 0, there exists a constant c > 0, such that

1. |Σ(k)| ≤ c|g|,

2. |∂kαΣ(k)| ≤ c|g|, α = 1, 2.

3. |∂kαΣ(k)| ≤ c, α = 0.

4. |∂kα∂kβΣ(k)| ≤ c, α, β = 1, 2.

5. |∂2k0Σ(k)| ≤ cβ.

77
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We make some remarks. For a repulsive interaction g > 0, the |g| depen-
dence of the self-energy and its first derivative with respect to the spatial

momentum can be replaced by |g|2.
The theorem proves that the self-energy is uniform of C1 in the domain

analytic of the theory. However, the bound for the second derivative with

respect to the frequency grows with β, which strongly suggests that the self

energy is not uniform of C2 in the analytic domain. More precisely we will

prove a lower bound for the amplitude of the sunset graph (see Figure 5)

| ∂
2

∂k20
Σp=2(k0, 0)| ≥ Cβ, (5.2)

in a special case of incoming momentum (k = 0). This has an important

consequence. In [Sal99] sufficient conditions for Fermi liquid behavior were

given, the self-energy should be C2, but this is not the situation in the dilute

Fermi gas model, so that a hypotheses that the dilute Fermi gas with short-

range interaction at low temperature is Fermi liquid can not be verified. But

the Fermi liquid behavior has not been definitively ruled out. Since in fact

only divergence in the first derivative will change the asymptotic behavior

of the propagator at small frequency or momentum, and rules out the Fermi

liquid behavior. The second spatial derivative enters the curvature of the

Fermi surface, and plays no significant role here, because the shift of the

Fermi surface is small. More precisely, we do a first order Taylor expansion

in k −Π(k), to get

Σ(k) = k0∂k0Σ(0,Π(k)) + (k−Π(k))∇Σ(0,Π(k)) + Σ̃(k) (5.3)

Σ̃(k) is the Taylor remainder term. Since the first derivative still remains

small in the analytic domain, so that we obtain a finite wave function renor-

malization

Z(k) = 1 + i∂k0Σ(0,Π(k)), (5.4)

which stays close to 1, and a finite correction to the Fermi velocity.

We observe that from the claim of Theorem 1 the counterterm which

essentially restricts to the self-energy to the Fermi surface has more regu-

larities than the self-energy itself. Therefore, it is more convenient to do

renormalization using counterterms instead of putting the self-energy into

the denominator of the propagator. Indeed we found that for any ε > 0, the

1 + ε derivative of the self-energy with respect to the frequency grows with

βε, even after the renormalization.

Let us now discuss the divergence of the second derivative with respect

to the frequency. The lack of a bound for the second frequency derivative
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which diverges when the temperature goes to zero, is due to the geometric

form of the Fermi surface. As proven in [FST96, FST99], if a graph G is

two-legged, 1-PI, and has two external vertices, then G is a overlapping

graph. A definition of overlapping graph can be found in [FST96]. Let T

be a spanning tree for G, and l be a line not in T . Denotes the vertices

at the ends of l by v and w. If v = w, the loop generated by l contains

only the line l. If v 6= w, there is a unique path Pl in T from v to w. A

graph is overlapping if for some choice of the spanning tree T , there are lines

lT ∈ T and l1 6= l2 /∈ T such that the loops generated by li both contain

lT . This property of G is independent of the choice of the spanning tree.

It is straightforward to verify that the sunset graph shown in Figure 5 is

overlapping. The significance of the notion of overlapping graphs is that the

p

qk

k + p + q

k

Figure 5.1: Example for overlapping graph: the sunset graph.

value of any overlapping graph, for |e(k)| < ε, contains a subintegral

Q(ε) = sup
q

max
vi=±1

∫
dθ1dθ2 1(|e(v1p(0, θ1) + v2p(0, θ2) + q)| ≤ ε), (5.5)

where 1(·) equals one if the condition holds, zero otherwise, p(ρ, θ) denotes

a parametrization of a neighborhood of the Fermi surface, with ρ = 0 cor-

responds to the Fermi surface itself. Then there is a constant QV > 0

dependent on the curvature of the Fermi surface, such that

Q(ε) ≤ QV |ε|| log ε|. (5.6)

If G is overlapping, a volume improvement factor which depends on the

inverse of the curvature of the Fermi surface can be extracted to compen-

sate for the bad factor from the derivative. But for dilute Fermi gas the

Fermi surface is so small, hence all the volume improvement effects from

overlapping are absent.
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5.1 Arch expansion

We start to study the self-energy. The self-energy is defined through its

Feynman graph expansion. In this approach, Σ (x, y) is restricted to the

contributions to the two-point connected subgraphs which are 1-particle-

irreducible in the channel x− y, that is, in which x and y cannot be discon-

nected by the deletion of a single line. Note that, for convenience, we shall

simply write in the following 1-PI to mean “1-particle-irreducibility in the

channel x− y”.
From the previous chapter we see that the tree expansion ensures only

the connectivity of the graphs but not the 1-point-irreducibility. In principle

we would have to expand out all the remaining determinant to know which

contributions are 1-PI or not. This seems not constructive, since the number

of terms after expanding the complete determinant proliferates, which gives

a factorial p!. In this section we will introduce the arch expansion [DR00b],

which allows us to select 1-PI graphs from the tree expansion by expanding

out explicitly some additional lines from the determinant. It shows that 1-PI

can be extracted by expanding some loops out of the determinant without

generating any factorials in the bound.

We explain in detail the arch expansion for an expression of a tree ex-

pansion which has a expression of the type,

AT =
∏
l∈T

C(Yl, Y
′
l ) detGT . (5.7)

We consider a graph with p vertices, equipped with its spanning tree T .

We distinguish in T the unique path connecting the two external vertices

x and y through T , denoted by P(x, y). If P(x, y) has length zero, namely

the two external lines are hooked to the same vertex x = y, we have a

generalized tadpole, which is automatically 1-PI. No additional expansion

is needed. Otherwise there are n − 2 ≤ p − 2 vertices in the path P(x, y)
joining x = x1 and y = xn. The intermediate n−2 vertices are numbered by

x2, . . . , xn−1. The remaining vertices are divided into n disjoint subsets Vi,

i = 1, . . . , n. By definition, a vertex belongs to Vi if and only if the unique

path in T joining the vertex to the external vertex x1 met xi but not pass

though xi+1. See Figure 5.2.

A complete expansion of the determinant detGT costs p!. We just want

to select 1-PI graphs with respect to the path P(x, y). To do this, among

all the possible contraction schemes contained in the determinant, we select

the contractions which have a contraction between an element of V1 and

some vertex between Vk1 =
⋃k1
i=2 Vi, with k1 > 1. This is done by a Taylor
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l1

x1 x2 x3 x4 x5 x6 x7 x8 xn

Figure 5.2: Example for a spanning tree. The path P(x, y) joining x = x1
and y = xn is drawn in bold line. The external fields are represented by thin

lines, the fields in the determinant by dotted half-lines. We have added to

this tree an explicit line l1 joining the subset V1 to Vk1 , with k1 = 5. Thus

this graph is 1-particle-irreducible in the channel x1 − x5.

expansion step with an interpolation parameter 0 ≤ s1 ≤ 1. Defining

Cij(s1) =

{
s1Cij if i ∈ V1, j /∈ V1,
Cij otherwise.

(5.8)

the expansion of the determinant gives

detGT = detGT (s1) |s1=0 +

∫ 1

0
ds1

d

ds1
detGT (s1). (5.9)

The first term s1 = 0 means that the graph is 1-PR (by cutting the line

joining x1 and x2 as no further line connects V1 to its complement). Other-

wise one loop connecting a vertex of V1 to a vertex in Vk1 is extracted from

the determinant. At this stage, the graph obtained is 1-PI in the channel

x1−xk1 . If k1 = n we obtain a 1-PI graph in the channel x1−xn. Otherwise

we repeat this procedure between
⋃k1
i=1 Vi and its non-empty complements

by expanding detGT (s1) with a new interpolation parameter 0 ≤ s2 ≤ 1,

we set

Cij(s1, s2) =

{
s2Cij(s1) if i ∈

⋃k1
i=1 Vi, j /∈

⋃k1
i=1 Vi,

Cij(s1) otherwise.
(5.10)

we have

detGT (s1) = detGT (s1, s2) |s2=0 +

∫ 1

0
ds2

d

ds2
detGT (s1, s2). (5.11)
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l1

x1 x2 x3 x4 x5 x6 x7 x8 xn

l2

Figure 5.3: The tree by two line from the arch expansion.

The first term means that the graph is 1-PR by cutting the line joining xk1
and xk1+1. The second term extracts a loop line to link

⋃k1
i=1 Vi with its

complement. See Figure 5.3. Note that∫ 1

0
ds2

d

ds2
detGT (s1, s2)

=

∫ 1

0
ds2

∂

∂s2
Ci2j2(s1, s2)

∂

∂Ci2j2(s1, s2)
detGT (s1, s2), (5.12)

with i2 ∈
⋃k1
i=1 Vi, j2 ∈ Vk2 , k2 > k1 and

∂

∂s2
Ci2j2(s1, s2) =

{
Ci2j2 , if i2 ∈

⋃k1
i=2 Vi,

s1Ci2j2 , if i2 ∈ V1.
(5.13)

In most n steps we shall reach the end vertex y and we have a 1-PI graph

in the channel x − y. If the procedure stops at q-th step, we call any final

set of q archs derived in this way as a q-arch system. We can express the

1-PI part of the determinant as

detGT,1PI

=
∑

q−arch,q≤n

(
q∏
r=1

∫ 1

0
dsr

)(
q∏
r=1

C(s1, . . . , sr−1)

)
∂q∏q

r=1 ∂Cr
detGT (s),

where∑
q−arch,q≤n

=
∑

1<k1<···<kq=n

∑
i1∈V1,j1∈Vk1

∑
i2∈

⋃k1
i=1 Vi,j2∈Vk2

· · ·
∑

iq∈
⋃kq−1

i=1 Vi,jq∈Vkq=Vn
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and

∂q∏q
r=1 ∂Cr

detGT (s) =
∂q detGT (s1, . . . , sq)

∂Ci1j1 · · · ∂Ciqjq
. (5.14)

For the derived propagators we have an expression as(
q∏
r=1

C(s1, . . . , sr−1)

)
=

q∏
l=1

Ciljl(s1, . . . , sl)

q∏
l=1

sqll , (5.15)

with the integer ql ≥ 0. This expansion ensures that the presence of the

si parameters does not destroy the positivity of the remaining determinant.

The Gram’s bound is the same, with all these parameters being set to 1.

Now we want to prove that the sum over all possible arch systems are

bounded by (constant)p. Before stating the lemma we introduce some new

notations. We call l(V ) the number of loop fields hooked to the vertices in

V , Wi the set of vertices from where the line li may start from, so that

Wi = V1 ∪ V2 ∪ · · · ∪ Vki−1
, (5.16)

and ri the number of loop fields where li may contract without crossing more

than one arch, in other words, it is the number of fields in Wi but not in

Wi−1,

ri = l(Wi\Wi−1). (5.17)

Note that r1 = l(V1) and r2 = l(V1 ∩ V2 ∩ · · · ∩ Vk1 \ V1). The following

lemma counts the number of 1-PI graphs.

Lemma 13 (Lemma 9 in [DR00b]). The sum over all possible arch systems

that connect p points in a such way to obtain a 1-PI block is bounded by

p∑
n=0

n∑
q=1

∑
1<k1<k2<kq=n

r=1,...,q∑
jr∈Vr

∫ 1

0

q∏
r=1

dsr

r=1,...,q∑
ir∈Wr

a(s1, . . . , sq)

≤ 8p6
∑p

i=1(mi+m̄i)

where a(s1, . . . , sq) =
∏q
r=1 s

qr
r , with qr = 0 or 1.

Proof. The proof is analogous to the one in [DR00b], but we generalize the

number of fields hooked to a vertex by mi + m̄i. We reproduce the proof

here for completeness. We have

∑
ir∈Wr,r=1,...,q

a(s1, . . . , sq) ≤
q∏
r=1

ar(s1, . . . , sr−1), (5.18)
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where ar is defined inductively by a1 = r1 and

ar(s1, . . . , sr−1) = rr + sr−1ar−1(s1, . . . , sr−2). (5.19)

To see this we remark that we have ri choices to choose ii if it does not hook

to Wi−1. If it does hook to Wi−1, we have ai−1 choices, but we have a factor

si−1. The s-integrals implies the following inequality,∫ 1

0

q∏
r=1

dsr
∑

ir∈Wr,r=1,...,q

a(s1, . . . , sq) ≤ e
∑q

i=1 ri . (5.20)

(5.20) can be shown inductively in the following way∫ 1

0

q∏
r=1

dsr
∑

ir∈Wr,r=1,...,q

a(s1, . . . , sq) ≤
∫ 1

0

q∏
r=1

dsr

q∏
i=1

ai(s1, . . . , si−1)

≤
∫ 1

0

q−2∏
r=1

dsr

q−1∏
i=1

ai(s1, . . . , si−1)

∫ 1

0
dsq−1 aq(s1, . . . , sq−1)

≤
∫ 1

0

q−3∏
r=1

dsr

q−2∏
i=1

ai(s1, . . . , si−1)

∫ 1

0
dsq−2 e

aq−1+rq

≤
∫ 1

0

q−3∏
r=1

dsr

q−3∏
i=1

ai(s1, . . . , si−1) e
aq−2+rq−1+rq

≤ e
∑q

i=1 ri . (5.21)

where we have inductively used the inequality∫ 1

0
(as+ b)ds ≤

∫ 1

0
eas+bds ≤ 1

a
ea+b, for a > 0, b > 0. (5.22)

Now, as ri = l(Wi\Wi−1),

q∑
i=1

ri ≤
n∑
i=1

l(Vi) <

p∑
i=1

(mi + m̄i), (5.23)

since
∑p

i=1(mi+m̄i) is the total number of fields in the amputated two-point

function. Moreover,

∑
jr∈Vr,r=1,...,q

1 =

n∑
i=1

l(Vki) <

p∑
i=1

(mi + m̄i) < 2
∑p

i=1(mi+m̄i), (5.24)

the summation
∑

1<k1<k2<kq=n
1 corresponds to the number of partitions of

{1, . . . , n} into q intervals, hence can be bounded by 2n ≤ 2p. Putting all
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together it is easy to check that

p∑
n=0

n∑
q=1

∑
1<k1<k2<kq=n

∑
jr∈Vr,r=1,...,q

e
∑q

i=1 ri ≤ p(p+ 1)

2
2p(2e)

∑p
i=1(mi+m̄i)

≤ 8p6
∑p

i=1(mi+m̄i). (5.25)

This completes the proof.

5.2 Upper bounds on the self-energy

Everything is now prepared for estimating the bounds. In this section we

evaluate the upper bounds on the self-energy and its derivatives by combin-

ing the tree with the arch formula for the two-point vertex function. We do

not repeat all details but concentrate on what is new with respect to the

usual tree expansion. We consider the flow of the self-energy, which has the

following expression:

∣∣∣Σ(j−1) − Σ(j)
∣∣∣

≤
∑
p≥2

1

p!

∑
m1,...,mp

∑
m̄1,...,m̄p

p∏
q=1

[∫
dm̄qX ′

qd
mqXqv

(j)
m̄q ,mq

(X ′
q, Xq)

]

·
∑
T∈Tp

 ∏
{q,q′}∈T

∣∣Cj ((q,X), (q′, X ′)
)∣∣ ∑

θ1,...,θp

∑
θ̄1,...,θ̄p

p∏
q=1

(
mq

θq

)
θq!

(
m̄q

θ̄q

)
θ̄q!

·
∑

a1,...,ap>0
ā1,...,āp>0

p∏
q=1

(
mq − θq
aq

)(
m̄q − θ̄q
āq

)
δ∑p

q=1(mq−θq−aq+m̄q−θ̄q−āq)=2

·
p∑

n=0

n∑
q=1

∑
q−arch,q≤n

(
q∏
r=1

∫ 1

0
dsr

)(
q∏
r=1

C(s1, . . . , sr−1)

)

· ∂q∏q
r=1 ∂Cr

(
detGDT,θ,aq + detG

C≤j−1

T,θ,aq
+ detG

C≤j ,qq
T,θ,aq

)
, (5.26)

where the arch expansions have been performed for all two-point functions

which appeared in the tree expansion. Applying the Lemma 13, which

counts the number of 1-PI graphs, and using the technique used to show the
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analytic properties of the effective action, we obtain∣∣∣Σ(j−1) − Σ(j)
∣∣∣
1,∞

≤
∑
p≥2

1

p!
ωp−1
Cj

γ
2(p−1)
Cj

∑
m1,...,mp

∑
m̄1,...,m̄p

p∏
q=1

|v(j)m̄q ,mq
|1,∞

·
∑
T∈Tp

∑
θ1,...,θp

∑
θ̄1,...,θ̄p

p∏
q=1

(
mq

θq

)
θq!

(
m̄q

θ̄q

)
θ̄q!

∑
a1,...,ap>0
ā1,...,āp>0

p∏
q=1

(
mq − θq
aq

)(
m̄q − θ̄q
āq

)

· 8p
p∏
q=1

(6 · 3γCj )
āq+aqδ∑p

q=1 m̄q−θ̄q−āq+mq−θq−aq=2

≤ ω−1
Cj

(18γCj )
−2
∑
p≥2

(
8 ωCj‖V(j)‖h′′j

)p
(5.27)

with h′′j = (2 + 2 · 3 · 6)γCj = 38γCj . We can chose suitable α, such that

8 ωCj‖V(j)‖h′′j ≤ ωCj‖V(j)‖hj (5.28)

with hj = αγCj , (5.27) reduces to∣∣∣Σ(j−1) − Σ(j)
∣∣∣
1,∞

≤ ω−1
Cj

(18γCj )
−2
∑
p≥2

(
ωCj‖V(j)‖hj

)p
. (5.29)

According to the Lemma 12 the right hand side of (5.29) reduces to∣∣∣Σ(j−1) − Σ(j)
∣∣∣
1,∞
≤

{
Cs>M

j |g0|2 if g0 > 0,

Cs<M
j |gj | if g0 < 0.

(5.30)

with two positive constants Cs> and Cs<. Using (5.30), due to the decay

factor M j , the total self-energy can be bounded by∣∣∣Σ(J−1)
∣∣∣
1,∞

≤
0∑

i=J−1

∣∣∣Σ(i) − Σ(i+1)
∣∣∣
1,∞
≤

{
C ′
s>|g0|2 if g0 > 0,

C ′
s<|g0| if g0 < 0.

with two positive constants C ′
s> and C ′

s<.

The derivatives correspond to the multiplication by a factor xα − yα in

position space, for α = 0, 1, 2, therefore∣∣∣∂n0
k0
∂n1
k1
∂n2
k2
Σ(k)

∣∣∣ ≤ ∣∣∣∣∣
2∏

α=0

(xα − yα)nαΣ(x, y)

∣∣∣∣∣
1,∞

. (5.31)

we denote n = n0 + n1 + n2. We perform the calculation as usual, the only

difference is the change of the decay bound, where we put the multiplication

of the distance. By using

ανCi
≤ cαM−i(1+n0+

n1+n2
2

), (5.32)
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the derivatives of the self-energy have the bounds

|∂n0
k0
∂n1
k1
∂n2
k2
Σ(k)| ≤

0∑
i=J−1

M (1−n0−n1+n2
2

)i

{
C ′
s>|g0|2 if g0 > 0,

C ′
s<|gj | if g0 < 0.

(5.33)

Theorem 5 follows directly from (5.33).

5.3 Lower bounds on the self-energy

In this section we prove that a certain second derivative of the self-energy

at a particular value of the external momentum is not uniformly bounded

in the analytic domain of the initial coupling constant.

Let us consider, in Fourier space, the amplitude of the graph represented

in Figure 5, with an incoming momentum k = (k0,k), denoted as Σ2(k0,k),

can be written as

Σ2 (k0,k) =

∫ β/2

−β/2
dτ

∫
Λ
dx e−ik0τ−ik·xC (τ,x)2C(−τ,−x). (5.34)

More precisely, we shall consider the second frequency derivative of this

quantity, which up to a global inessential minus sign is

∂2k0Σ2 (k0,k) =

∫ β/2

−β/2
dτ τ2

∫
Λ
dx e−ik0τ−ik·x C (τ,x)2C(−τ,−x). (5.35)

We state now our lemma:

Lemma 14. There exits some positive constant C, such that for a temper-

ature small enough,

|∂2k0Σ2 (k0, 0) | ≥ Cβ (5.36)

Proof. Let fβ (e) be the Fermi-distribution, The propagator C (τ, x) is

C (τ,x) =

∫
Λ∗
d2k eik·x C (τ, ek) (5.37)

with

C(τ, e) = −1τ>0e
−τefβ (−e) + 1τ≤0e

−τefβ (e) (5.38)

then the quantity we are going to study is explicitly written as

∂2k0Σ2 (k0, 0) =

∫ β/2

−β/2
dτ τ2e−ik0τF (τ) (5.39)
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with

F (τ) =

∫
Λ∗
d2p

∫
Λ∗
d2q

(
e−τepe−τeqeτep+qfβ(−ep)fβ(−eq)fβ(ep+q)1τ>0

−e−τepe−τeqeτep+qfβ(ep)fβ(eq)fβ(−ep+q)1τ≤0

)
=

∫
Λ∗
d2p

∫
Λ∗
d2q fβ(−ep)fβ(−eq)fβ(−ep+q)

·
(
e−τepe−τeqe−(β−τ)ep+q1τ>0 − e−(τ+β)epe−(τ+β)eqeτep+q1τ≤0

)
Inserting e(p) = p2 − ν

β , we have

F (τ) =

∫
Λ∗
d2p

∫
Λ∗
d2q

(
G+e

−2(β−τ)(p·q)1τ>0 −G−e
2τ(p·q)1τ≤0

)
, (5.40)

where

G+ = e
(β+τ) ν

β fβ(−ep)fβ(−eq)fβ(−ep+q), (5.41)

for 0 < τ ≤ β/2, and

G− = e
(2β+τ) ν

β fβ(−ep)fβ(−eq)fβ(−ep+q), (5.42)

for −β/2 ≤ τ ≤ 0. We observe that both G+ and G− have constant upper

and lower bounds, which are of order one for 0 < ν ≤ 1. Thus we have

F (τ) ≥ CL
∫
Λ∗
d2p

∫
Λ∗
d2q

(
e−2(β−τ)(p·q)1τ>0 − e2τ(p·q)1τ≤0

)
(5.43)

where CL is a suitable constant. Let us now consider the momentum integral.

In polar coordinates the τ > 0 part of F (τ) can be rewritten as∫
drp

∫
drq rprq e

−β(r2p+r2q)
∫ 2π

0
dφ e−2(β−τ)rprq cosφ1τ>0, (5.44)

we do the φ integral∫ 2π

0
dφ e−2(β−τ)rprq cosφ =

∑
n=0

(−2(β − τ)rprq)n

n!

∫ 2π

0
dφ cosn φ, (5.45)

using the identities∫ 2π

0
dφ cos2n φ =

2π

22n

(
2n

n

)
,

∫ 2π

0
dφ cos2n+1 φ = 0, (5.46)

(5.44) becomes

∞∑
n=0

2π

2n!

(
2n

n

)∫
drp

∫
drq r

2n+1
p r2n+1

q e−β(r
2
p+r

2
q)(β − τ)2n1τ>0. (5.47)
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To integrate out rp and rq, we rename Ep = r2p, Eq = r2q ,

π

2

∞∑
n=0

1

2n!

(
2n

n

)(∫ E0

0
dEp E

n
p e

−βEp

)2

(β − τ)2n1τ>0, (5.48)

since ∫
dx xneax = eax

(
n∑
k=0

(−1)kk!
(
n
k

)
ak+1

xn−k

)
, (5.49)

the energy integration gives∫ E0

0
dEp E

n
p e

−βEp = e−βE0

(
n∑
k=0

−k!
(
n
k

)
βk+1

En−k0

)
+

n!

βn+1
, (5.50)

then the momentum integral gives

π

2β2

∞∑
n=0

1

β2n

(
1− e−βE0

n∑
k=0

(βE0)
k

k!

)2

(β − τ)2n1τ>0. (5.51)

Similarly, the τ < 0 part of F (τ) gives

π

2β2

∞∑
n=0

1

β2n

(
1− e−βE0

n∑
k=0

(βE0)
k

k!

)2

τ2n1τ>0. (5.52)

By estimating upper and lower bounds on the term in the bracket, we have(
1− e−βE0

n∑
k=0

(βE0)
k

k!

)2

≈ c2n, (5.53)

with c < 1. Putting all together we obtain

F (τ) ≥ CLπ

2β2

∞∑
n=0

c2n

β2n
(
(β − τ)2n1τ>0 − τ2n1τ>0

)
. (5.54)

Denoting x = τ
β , k0 =

π
β , the second derivative of the self energy is given by∣∣∂2k0Σ2 (π/β, 0)

∣∣ ≥ CLπ

2
|H|β (5.55)

with

|H| =

∣∣∣∣∣
∫ 1/2

−1/2
dx x2e−iπx

(
1

1− c21(1− x)2
1x>0 −

1

1− c21x2
1x≤0

)∣∣∣∣∣ (5.56)

a numerical calculation shows that |H| is given by a constant. The prefactor

CL is of order one, so that
∣∣∂2k0Σ2 (k0, 0)

∣∣ > Cβ.

In general we have the lower bound for the n-th derivatives of the self-

energy with respect to the frequency,∣∣∣∂(n)k0
Σ2(k0, 0)

∣∣∣ ≥ Cβn−1. (5.57)
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5.4 The large order behavior

In this last section of the self-energy we consider the problem of the large

order behavior of the second frequency derivatives. We denote Σ≥3(k) as

the perturbation series starting with contributions of order three in |g|. We

study the ratio ∣∣∣∣∣∂2k0Σ≥3(k0,k)

∂2k0Σ2(k0, 0)

∣∣∣∣∣ . (5.58)

The previous analysis shows that

|∂2k0Σ≥3(k)| ≤

{
Cβ|g|3, if g > 0,

Cβ(log β)3|g|3, if g < 0,
(5.59)

where C is a constant. Together with the lower bound (5.36) the ratio (5.58)

diverges as (log β)2 for g < 0. The bound (5.59) is not optimal. A more

careful analysis would spare these two additional logarithms and prove that

(5.58) can be bounded indeed by a small constant.

Let us now consider the flow of the four-point vertex function, the tree

expansion gives

|v(j−1)
2,2 − v(j)2,2|1,∞ ≤ C

′
4

∑
p≥2

(ωCj‖V(j)‖hj )
p, (5.60)

where C ′
4 = c−1

ω (3cγ)
−4. Now we define inductively a sequence of new vari-

ables {λ1, λ0, . . . , λJ−1}, with λ1 = |g|, and

λj−1 − λj =
∑
p≥2

(ωCj‖V(j)‖hj )
p, (5.61)

for all J ≤ j ≤ 0. It is obvious that λj−1 is well defined only if ωCj‖V(j)‖hj <
1/2 holds. With this definition, (5.60) and (5.29), the flow of four-point

function and the self-energy can be expressed in term of λj as

|v(j−1)
2,2 − v(j)2,2|1,∞ ≤ C

′
4(λj−1 − λj), (5.62)

and

|Σ(j−1) − Σ(j)|1,∞ ≤ CσM j(λj−1 − λj) (5.63)

with Cσ = c−1
ω (18cγ)

−2. The analytic properties of λj are proved in the

following lemma:
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Lemma 15. There exist positive constants C ′
λ and F > 1, such that for

λ1 <
C′

λ
log β ,

ωCj‖Vj‖hj ≤ Fλj . (5.64)

holds for all J ≤ j ≤ 0,

Proof. The proof is very similar to the one for the convergence problem. It

will be done by induction. The case j = 0 is trivial. We assume the lemma

holds for j < 0, then for scale j − 1, (5.61) implies that λj−1 is well defined,

we decompose V(j−1) in the following way:

V(j−1) = V(j−1)
2 +

0∑
i=j−1

P2,2(V(i) − V(i+1)) + R̃(V(j)) (5.65)

where the rest term is given by

R̃(V(j)) =
0∑

i=j−1

P≥3,≥3

(
W

(i)
≥2(V

(i+1))
)
. (5.66)

The second term in (5.65) can be bounded by

ωCj−1h
4
j−1

0∑
i=j−1

|P2,2(V(i) − V(i+1))|1,∞ ≤ Cλ
0∑

i=j−1

(λi − λi+1) ≤ Cλλj−1.

with Cλ = (α/3)4. The rest term R̃ has a bound K̃
2M as usual. Under an

assumption that |v(j)1,1|1,∞ ≤ C2λM
jλ1, which could be shown like Lemma

12, we obtain

ωCj−1‖Vj−1‖hj−1
≤ C2λC2λ1 + Cλλj−1 +

K̃

M

1

2
. (5.67)

Since λj > λj+1 for all J − 1 ≤ j ≤ 0, hence it is possible to find a constant

F > 1, such that ωCj−1‖Vj−1‖hj−1
≤ Fλj−1 holds.

By the definition of λj (5.61) and the Lemma 15 we have following flow

equation of λj ,

λj−1 − λj ≤
∑
p≥2

(Fλj)
p , (5.68)

with F > 1, which implies
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Lemma 16. If λj are well defined, and satisfy (5.68), for all J ≤ j ≤ 0.

Then for λ1 < (F 2(|J | + 2))−1, λj can be represented as a formal power

series in terms of λ1 ,

λj ≤ λ1 +
∑
p≥2

ap,jλ
p
1. (5.69)

with ap,j ≥ 0 are the expansion coefficients, which have upper bounds given

by

|ap,j | ≤
(
F 2(|j|+ 1)

)p−1
. (5.70)

Proof. The proof is induction on the scale j. The case j = 0 is trivial, since

F > 1. We assume that (5.70) holds for j < 0, inserting

λj ≤ λ1 +
∑
p≥2

ap,jλ
p
1 (5.71)

into (5.68) we have

λj−1 ≤ λ1 +
∑
p≥2

(F 2(|j|+ 1)
)p−1

λp1 +

F∑
l≥1

(
F 2(|j|+ 1)

)l−1
λl1

p
≤ λ1 +

∑
p≥2

[(
F 2(|j|+ 1)

)p−1
λp1

+ (F (|j|+ 1))−p
∞∑
k=p

(
k − 1

k − p

)(
F 2(|j|+ 1)λ1

)k , (5.72)

where the identity ( ∞∑
l=1

xl

)p
=

∞∑
k=p

(
k − 1

k − p

)
xk, (5.73)

with |x| < 1 has been used. We prove (5.73):( ∞∑
l=1

xl

)p
= xp(1− x)−p

= xp
(
1 + px+ · · ·+ (−p)(−p− 1) · · · (−p− n+ 1)

n!
(−1)nxn + · · ·

)
=

∞∑
n=0

p(p+ 1) · · · (p+ n− 1)

n!
xp+n, (5.74)
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setting k = p+ n,( ∞∑
l=1

xl

)p
=

∞∑
k=p

p(p+ 1) · · · (k − 1)

n!
xk =

∞∑
k=p

(k − 1)!

(k − p)!(p− 1)!
xk

=

∞∑
k=p

(
k − 1

k − p

)
xk. (5.75)

From (5.72) the expansion coefficient for λj−1 is given by

ap,j−1 =
(
F 2(|j|+ 1)

)p−1
+

p∑
l=2

(F (|j|+ 1))−l
(
p− 1

p− l

)(
F 2(|j|+ 1)

)p
= F 2(p−1)

(
(|j|+ 1)p−1 +

p∑
l=2

(
p− 1

p− l

)
F 2−l(|j|+ 1)p−l

)
(5.76)

for F > 1, it follows

ap,j−1 ≤ F 2(p−1)

(
(|j|+ 1)p−1 +

p∑
l=2

(
p− 1

p− l

)
(|j|+ 1)p−l

)
≤ (F 2 (|j|+ 2))p−1. (5.77)

this completes the proof.

Inserting (5.70) into (5.68), the flow equation for λj can be written in

terms of λ1 as

λj−1 − λj ≤
∞∑
p≥2

(Fλj)
p ≤

∞∑
p≥2

F ∞∑
k≥1

(
F 2(|j|+ 1)

)k−1
λk1

p

≤
∞∑
p≥2

(F |j|)−p
∞∑
k=p

(
k − 1

k − p

)(
F 2(|j|+ 1)λ1

)k
≤

∞∑
p≥2

F 2(p−1)
p∑

k=2

(
p− 1

p− k

)
F 2−k(|j|+ 1)p−kλp1

≤
∞∑
p≥2

F 2(p−1)
(
(|j|+ 2)p−1 − (|j|+ 1)p−1

)
λp1, (5.78)

since

(|j|+ 2)p−1 − (|j|+ 1)p−1

= (|j|+ 2)p−2

(
1 +

(
(|j|+ 1)− (|j|+ 1)

(
|j|+ 1

|j|+ 2

)p−2
))

≤ 2(|j|+ 2)p−2, (5.79)
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we arrive at

λj−1 − λj ≤ 2F 2λ21 + 2

∞∑
p≥3

F 2(p−1)(|j|+ 2)p−2λp1. (5.80)

Combining (5.63) and (5.80), we get

∣∣∂2k0Σ≥3(k)
∣∣ ≤ 2

1∑
i=J−1

M (1−n)i
∞∑
p≥3

F 2(p−1)(|j|+ 2)p−2λp1

≤ Cβ log β|g|3 (5.81)

where C is a constant. Finally together with the lower bound estimated on

the second order contribution (5.58) becomes∣∣∣∣∣∂2k0Σ≥3(k0,k)

∂2k0Σ2(k0, 0)

∣∣∣∣∣ ≤ C ′ log β|g|. (5.82)

Thus it is possible to choose a constant C, for |g| log β < C, (5.58) can be

bounded by a small number.



Chapter 6

Response Functions

Observables of a fermionic system are given by polynomials in the fields,

which can be calculated from the connected Green’s functions. In this chap-

ter we turn to an important class of observables that are the correlations

of fermionic bilinears. It is convenient to calculate the correlation decay by

using the tree expansion developed in the previous chapter. We derive and

discuss them now.

We first make some discussions on the fermionic bilinear. The spatial

and spin structure of bilnears is determined by the functions b(x, Y, Y ′). A

charge invariant bilinear is of the form

B(x) =
∫
dY ′

∫
dY ψ̄(Y ′) b(x, Y ′, Y ) ψ(Y ). (6.1)

For instance, b(x, Y ′, Y ) = δ(y, y′)δσ,σ′ corresponds to the charge density.

Similarly, a charge non-invariant bilinear is of the form

B(x) =
∫
dY ′

∫
dY
(
ψ(Y ′)b(x, Y ′, Y )ψ(Y ) + ψ̄(Y ′)b(x, Y ′, Y )ψ̄(Y )

)
. (6.2)

For translation invariant systems, we can consider a momentum represen-

tation. The most well-known example involving the charge non-invariant

bilinear is the Cooper pairs

B(k) =
∫
dp
[
ψ̄σ(p)∆σ,σ′(p, k)ψ̄σ′(−p+ k) + ψσ(p)∆σ,σ′(p, k)ψσ′(−p+ k)

]
for k = 0, ∆σ,σ′(p, k) = ∆(p)δσ,−σ′ is the gap function, this is the singlet

Cooper pairing.

Now let us introduce an external scale field J , which is not the integration

variable, so it can be regarded as a functional parameter. We couple B(x)
to this source field J , and define

(J,B) =
∫
dx J(x)B(x). (6.3)

95
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To generate response functions of the bilinears, it is convenient to add the

term (6.3) to the action, we define

S(J) = log

∫
dµC(ψ) e

V(ψ)+(J,B). (6.4)

with V(ψ) given by −V (ψ) +K(ψ). Using S(J), the response function of B
is defined as

R(x, y) = 〈B(x) ;B(y)〉 =
[

∂

∂J(x)

∂

∂J(y)
S(J)

]
J=0

, (6.5)

where the semicolon in 〈·; ·〉 indicates truncated expectation:

〈A ;B〉 = 〈AB〉 − 〈A〉〈B〉. (6.6)

(6.5) can be calculated by using the techniques introduced to show the reg-

ularity of the effective action and the self-energy in the previous chapters.

As the first step we decompose the propagators and fields as usual,

C(k) = C<(k) + C>(k) =

0∑
j=J

Cj(k) + C>(k) (6.7)

and ψ =
∑0

j=J ψ
(j) + ψ(1). The Grassmann integral implies

S(J) = log

∫
dµC<(ψ

(<))

∫
dµC>(ψ

(1)) eV(ψ)+(J,B). (6.8)

Performing the integration over ψ(1) fields, we get up to an inessential con-

stant

S(J) = S(0)(J) + log

∫
dµC≤0

(ψ(≤0)) eV
(0)(ψ(≤0))+B(0)(ψ(≤0),J), (6.9)

where V(0)(ψ(≤0)) is the effective potential on scale 0, B(0)(ψ(≤0), J) collects

the terms depending both on ψ(≤0) and J , S(0)(J) depends only on J gen-

erated by the ultraviolet integration. It is not difficult to verify that V(0)

has the form

V(0)(ψ(≤0)) =
∑

m,m̄≥1

∫
dm̄X ′dmX v

(0)
m̄,m(X

′, X)ψ̄(≤0)m̄(X ′)ψ(≤0)m(X),

and the integral kernels satisfy

sup
j∈m̄+m

∫ m̄+m∏
i6=j

dXi |v(0)m̄,m

(
X ′, X

)
| ≤ C|g|max{1,m−1} (6.10)
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with some constant C > 0. The function B(0)(ψ(≤0), J) has a very similar

bound and representation, i.e.

B(0)(ψ(≤0), J) =
∑

m,m̄≥1

∑
n≥1

∫
dm̄X ′dmX

∫
dny b

(0)
m̄,m,n,(X

′, X, y)

·ψ̄(≤0)m̄(X ′)ψ(≤0)m(X)Jn(y), (6.11)

The kernels b
(0)
m̄,m,n(X

′, X, y) are analytic in g ,they admit bounds analogous

to (6.10).

Now we proceed to compute the infrared contribution to the response

function. The integration over infrared modes is performed in an itera-

tive way as usual. After integrating out the degrees of freedom on scales

0,−1, . . . , j + 1, j < 0,

S(J) = S(≥j)(J) + log

∫
dµCj (ψ

(≤j)) eV
(j)(ψ(≤j))+B(≤j)(ψ(≤j),J), (6.12)

where S(≥j)(J) =
∑

i≥j S
(i)(J), with

S(i)(J) = log

∫
dµCi+1(ψ

(i+1)) eV
(i+1)(ψ(i+1))+B(i+1)(ψ(i+1),J). (6.13)

is the contribution coming from the ith scale. In previous chapters we have

shown that the polynomials V(i)(ψ(i)) and B(i)(ψ(i), J) are well defined, if

the constraints on g, |g|2 log β < C or |g| log β < C are satisfied. Moreover,

they can be written as

V(i)(ψ(i)) =
∑

m,m̄≥1

∫
dm̄X ′dmX v

(i)
m̄,m

(
X ′, X

)
ψ̄(i)m̄

(
X ′)ψ(i)m (X) ,

and

B(i)(ψ(i), J) =
∑

m,m̄≥1

∑
n≥1

∫
dm̄X ′dmX

∫
dny b

(j)
m̄,m,n

(
X ′, X, y

)
· ψ̄(j)m̄

(
X ′)ψ(j)m (X) Jn(y).

By (6.12) and (6.13), the response function can be reexpressed by a sum

over the derivatives of Si(J) with respect to J fields

R(x, y) =
0∑

i=J−1

[
∂

∂J(x)

∂

∂J(y)
S(i)(J)

]
J=0

. (6.14)

Let us now consider the contribution to R(x, y) coming from the ith scale

explicitly. Because the derivative is evaluated at J = 0, we observe that
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only terms with one or two J fields contribute to (6.14), we have[
∂

∂J(x)

∂

∂J(y)
S(i)(J)

]
J=0

=

[
∂

∂J(x)

∂

∂J(y)
log

∫
dµCi+1(ψ

(i+1)) eQ
(i+1)

]
J=0

, (6.15)

where

Q(i+1) = V(i+1)(ψ(i+1)) + B(i+1)
1 (ψ(i+1), J) + B(i+1)

2 (ψ(i+1), J) (6.16)

with

B(i+1)
l (ψ(i+1), J) =

∑
m,m̄≥1

∫
dm̄X ′dmX

∫ l∏
q=1

dyq b
(i+1)
m̄,m,l(X

′, X, y)

· ψ̄(i+1)m̄
(
X ′)ψ(i+1)m (X) J l(y).

l = 1, 2. Before we continue, it is useful to estimate the bound on B(i+1)
l (ψ(i+1), J).

We define the norm on B(i+1)
l (ψ(i+1), J) as

‖B(i+1)
l (ψ(i+1), J)‖hi+1

=
∑

m̄,m≥1

|b(i+1)
m̄,m,l|1,∞h

m̄+m
i+1 (6.17)

with hi+1 = αγCi+1 . |b
(i+1)
m̄,m,l|1,∞ is defined as

|b(i+1)
m̄,m,l|1,∞ = max

j
sup

Xj or yj

∫ m̄+m∏
q=1,q 6=j

dXq

∫ m̄+m+l∏
q=m̄+m,q 6=j

dyq |b(i+1)
m̄,m,l(X

′, X, y)|.

According to the results of previous chapters we have shown that for |g| log β <
C, ωCi+1‖B(i+1)‖hi+1

≤ C|gi+1|, and |gi| ≤ c|i||g|, then we have

‖B(i+1)
l (ψ(i+1), J)‖hi+1

≤ cM i+1|g| ≤ cM i+1 (6.18)

with c as a constant.

We turn back to calculate (6.15). We expand the exponential function

and select terms with one or two J fields, we have[
∂

∂J(x)

∂

∂J(y)
S(i)(J)

]
J=0

= R
(i)
1 (x, y) +R

(i)
2 (x, y) (6.19)

with

R
(i)
1 (x, y) =

∞∑
p=0

1

2p!

 ∂

∂J(x)

∂

∂J(y)
log

∫
dµCi+1(ψ

(i+1))

p∏
q=1

V(i+1)
q

2∏
q=1

B(i+1)
1,q


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and

R
(i)
2 (x, y) =

∞∑
p=0

1

p!

 ∂

∂J(x)

∂

∂J(y)
log

∫
dµCi+1(ψ

(i+1))

p∏
q=1

V(i+1)
q · B(i+1)

2

 .
Let us first consider R

(i)
1 (x, y). In the perturbation theory the Grassmann

Gaussian integral reduces to

R
(i)
1 (x, y)

=
∑
p≥0

(−1)ap
2p!

∑
m1,...,mp

∑
m̄1,...,m̄p

∑
n1,n2

∑
n̄1,n̄2

p∏
q=1

∫
dm̄qU ′

qd
mqU q

·
2∏
q=1

∫
dn̄qV ′

qd
nqV q

∫
dw1

∫
dw2 δ(w1, x)δ(w2, y)

·
p∏
q=1

v
(i+1)
m̄q ,mq

(U ′
q, U q)

2∏
q=1

b
(i+1)
n̄q ,nq ,1

(V ′
q, V q, wq)

·
〈
ψ̄(i+1)m̄1

(
U ′

1

)
ψ(i+1)m1 (U1) ; · · · ; ψ̄(i+1)m̄p

(
U ′
p

)
ψ(i+1)mp

(
Up
)
;

ψ̄(i+1)n̄1
(
V ′

1

)
ψ(i+1)n1 (V 1) ; ψ̄

(i+1)n̄2
(
V ′

2

)
ψ(i+1)n2 (V 2)

〉
c

(6.20)

where ap = 0, 1, U ′, U, V ′, V ∈ Γ and w′, w ∈ Λ′. We denote also Z = U ∪V
and Z ′ = U ′ ∪ V ′. The fermionic expectation 〈·〉c is defined as〈

ψ̄(i+1)m̄1
(
U ′

1

)
ψ(i+1)m1 (U1) ; · · · ; ψ̄(i+1)m̄p

(
U ′
p

)
ψ(i+1)mp

(
Up
)
;

ψ̄(i+1)n̄1
(
V ′

1

)
ψ(i+1)n1 (V 1) ; ψ̄

(i+1)n̄2
(
V ′

2

)
ψ(i+1)n2 (V 2)

〉
c

=

∫
dµCi+1(ψ

(i+1))

p∏
q=1

ψ̄(i+1)m̄q
(
U ′
q

)
ψ(i+1)mq

(
U q
) 2∏
q=1

ψ̄(i+1)n̄q
(
V ′
q

)
ψ(i+1)nq

(
V q

)
which can be evaluated by using the tree formula,

∑
T∈Tp+2

 ∏
{q,q′}∈T

∣∣Ci+1(Zq, Z
′
q′)
∣∣ ∑

θ1,...,θp

∑
θ̄1,...,θ̄p

 p∏
q=1

(
mq

θq

)
θq!

(
m̄q

θ̄q

)
θ̄q!


·
∑
θ′1,θ

′
2

∑
θ̄′1,θ̄

′
2

 p∏
q=1

(
nq
θ′q

)
θ′q!

(
n̄q

θ̄′q

)
θ̄′q!

 · detGCi+1

T,θ,H(T,θ,s). (6.21)

The trees consist of p + 2 vertices. G
Ci+1

T,θ,H(T,θ,s) is a
∑p

q=1(m̄q + mq) +∑2
q=1(n̄q + nq) by

∑p
q=1(m̄q +mq) +

∑2
q=1(n̄q + nq) matrix, whose entries

are Ci+1. Applying the Gram estimate for the determinant and summing
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over the trees and θs as in previous chapters the fermionic expectation is

bounded by

≤ p! γ
−2(p+1)
Ci+!

∏
{q,q′}∈T

∣∣Ci+1(Zq, Z
′
q′)
∣∣ (3γCi+1

)∑p
q=1 m̄q+mq+

∑2
q=1 n̄q+nq

In order to take into account the decay between x and y, we can extract a

decay factor

ρi+1(x, y) =
CN

1 + (M i+1|τx − τy|+M
i+1
2 |x1 − y1|+M

i+1
2 |x2 − y2|)N

(6.22)

with CN as a constant and N > 1, from the product of the propagators in

the spanning tree. Summing over m̄,m and n̄, n, we obtain finally

|R(i)
1 (x, y)| ≤ 1

2
|ρi+1(x, y)| ‖B(i+1)

1 ‖2hi+1

∑
p≥0

(ωCi+1‖V(i+1)‖hi+1
)p. (6.23)

By (6.18), and ωCi+1‖V(i+1)‖hi+1
≤ 1/2, (6.23) reduces to

|R(i)
1 (x, y)| ≤ |ρi+1(x, y)|‖B(i+1)

1 ‖2hi+1
≤ c1|ρi+1(x, y)|M2(i+1), (6.24)

with c1 as a constant.

Now we turn our attention to R
(i)
2 (x, y). By an expansion in the effective

potential V i+1, we write

R
(i)
2 (x, y)

=
∑
p≥0

(−1)ap
p!

∑
m1,...,mp

∑
m̄1,...,m̄p

∑
n,n̄

p∏
q=1

∫
dm̄qU ′

qd
mqU q

p∏
q=1

v
(i+1)
m̄q ,mq

(U ′
q, U q)

·
∫
dn̄V ′dnV

∫
dw1

∫
dw2 δ(w1, x)δ(w2, y) b

(i+1)
n̄,n,2 (V

′
q, V q, w1, w2)

·
〈
ψ̄(i+1)m̄1

(
U ′

1

)
ψ(i+1)m1 (U1) ; · · · ; ψ̄(i+1)m̄p

(
U ′
p

)
ψ(i+1)mp

(
Up
)
;

ψ̄(i+1)n̄
(
V ′)ψ(i+1)n (V )

〉
c

The fermionic expectation is bounded by

≤ (p− 1)! γ−2p
Ci+1

∏
{q,q′}∈T

∣∣Ci+1(Zq, Z
′
q′)
∣∣ (3γCi+1

)∑p
q=1 m̄q+mq+n̄+n (6.25)

|R(i)
2 (x, y)| can be bounded in a way analogous to (6.23), but with the dif-

ference that we get a gain factor cVM
2(i+1), with cV as a constant. This is

because the two J fields hook to the same vertex, since two derivatives cost

two volume integral, but the norm excludes only one volume integrals, we
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has one more factor cVM
2(i+1) from the remaining volume integrals. Due

to the same reason, the decay factor is extracted from the determinant, not

from the spanning tree. We have

|R(i)
2 (x, y)| ≤ cV |ρi+1(x, y)|M2(i+1) ‖B(i+1)

2 ‖hi+1

∑
p≥0

(ωCi+1‖V(i+1)‖hi+1
)p

≤ 2cV |ρi+1(x, y)|M2(i+1) ‖B(i+1)
2 ‖hi+1

. (6.26)

By (6.18), ‖B(i+1)
2 ‖hi+1

≤ cM i+1|g|, but this bound is not good enough. A

better bound should be found. We consider the integral

B(i)2 (ψ(≤i), J) = P2,J
(∫

dµCi+1(ψ
(i+1))eV

(i+1)(ψ(i+1))+B(i+1)(ψ(i+1),J)

)
where P2,J is a project operator, which selects terms with two J fields.

Expanding in the effective potential we have

B(i)2 (ψ(≤i), J) = B(i)2,1(ψ
(≤i), J) + B(i)2,2(ψ

(≤i), J) (6.27)

with

B(i)2,1(ψ
(≤i), J) =

∞∑
p=0

1

2p!
log

∫
dµCi+1(ψ

(≤i+1))

p∏
q=1

V(i+1)
q

2∏
q=1

B(i+1)
1,q (6.28)

and

B(i)2,2(ψ
(≤i), J) =

∞∑
p=0

1

p!
log

∫
dµCi+1(ψ

(≤i+1))

p∏
q=1

V(i+1)
q · B(i+1)

2 . (6.29)

We see that these can be bounded as

‖B(i)2,1(ψ
(≤i), J)‖hi ≤ ωCi+1‖B

(i+1)
1 ‖2h′i+1

∑
p≥0

(ωCi+1‖V(i+1)‖h′i+1
)p (6.30)

and

‖B(i)2,2(ψ
(≤i), J)‖hi ≤ ‖B

(i+1)
2 ‖h′i+1

∑
p≥0

(ωCi+1‖V(i+1)‖h′i+1
)p. (6.31)

with hi = αγCi , h
′
i+1 =

(
5 + α√

M

)
γCi+1 . Since we have shown that

‖B(i+1)
2 ‖h′i+1

≤ Ã2‖B(i+1)
2 ‖hi+1

, (6.32)

recall that Ã =
(

1√
M

+ 5
α

)2
and Ã2 < 1. By (6.18), (6.27), (6.31) and

ωCi+1‖V(i+1)‖hi+1
< 1

2 , we have

‖B(i)2 ‖hi ≤ Ã
4ωCi+1‖B

(i+1)
1 ‖2hi+1

+ Ã2‖B(i+1)
2 ‖hi+1

. (6.33)
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Iterating this procedure till the initial scale, we get

‖B(i)2 ‖hi ≤
∑
l=i+1

(Ã2)l−i+1ωCl
‖B(l)1 ‖

2
hl

≤ c|g|2 (6.34)

with c as a constant. With this, we have

|R(i)
2 (x, y)| ≤ c2|ρi+1(x, y)|M2(i+1), (6.35)

where c2 is a constant. Putting (6.18) and (6.35) together we have

|R(i)(x, y)| ≤ c3|ρi+1(x, y)|M2(i+1) (6.36)

with c3 = c1 + c2 is a suitable constant. Now we can bound the response

function,

R(x, y) =
0∑

i=J−1

R(i)(x, y) ≤ c3
0∑

i=J−1

|ρi+1(x, y)|M2(i+1)

≤ c3
|x− y|2

∑
i=J

(M i|x− y|)2

1 + (M i|τx − τy|+M
i
2 |x1 − y1|+M

i
2 |x2 − y2|)N

≤ c3
|x− y|2

1

1 + (MJ |x− y|)N−2

0∑
i=J

M (J−i)(N−2), (6.37)

for N > 2, the summation over i converges. We obtain finally

|R(x, y)| ≤ C

|x− y|2
(6.38)

with C as a suitable constant.



Chapter 7

Bilayer Graphene

In this chapter we consider the Hubbard model on the Bernal stacked hon-

eycomb bilayer at half filling and weak coupling. In the simplest form with

the nearest neighbor hoping only, the tight-binding approximation gives rise

to a band structure with two bands touching quadratically at the Fermi level

near two non-equivalent points in the Brillouin zone. This can be regarded

as the limit case of the dilute Fermi gas model with a zero radius Fermi

circle, except that they are two branches. Therefore similar regularity prop-

erties of the effective action like the one of dilute Fermi gas are expected.

When the next nearest hoping is take into account, the low energy spectrum

becomes anisotropic. The Fermi surface breaks into four Dirac points, close

to which, the dispersion relation vanishes linearly. Using the same method

in manifesting the convergence series we prove that for a small enough initial

coupling, the convergence radius is temperature independent, which implies

that the noninteracting system is stable toward infinitesimal coupling, and

there are no truly weak coupling instabilities when this trigonal warping is

presented. In the last part of this chapter, we will discuss possible physical

instabilities and some presented theoretical and experimental results will be

introduced.

7.1 Functional integral representation

As for dilute Fermi gas, let us now rewrite the bilayer graphene model in

a Grassmann integral representation. We introduce a time spacing ετ > 0,

the inverse temperature β, such that nτ = β
2ετ

is a large number. Let nτ be

even, and T = {τ = nετ : n ∈ Z,−nτ
2 ≤ n ≤ nτ

2 }, we denote Λ′ = T × Λ,

X = (τ,x, σ, ε, ρ) = (x, σ, ε, ρ) ∈ Γ′ = Λ′ × {−1, 1} × {a, b} × {u, l}, where
ε = a, b labels the sublattices, ρ = u, l labels the top and bottom layer,

103
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respectively. Let A be the Grassmann algebra generated by ψ(X) and ψ̄(X),

we denote also ψ(X) = ψσ,ε,ρ(x). The elements of A are polynomials in

Grassmann even subalgebra

V(ψ) =
∑

m,m̄≥0

∫
Γ′
dm̄X ′dmX vm̄,m(X

′, X)ψ̄m̄(X)ψm(X), (7.1)

where we abbreviated∫
Γ′
dXF (X) =

∑
σ=±1

∑
ε=a,b

∑
ρ=u,l

ετ
∑
τ∈T

∫
Λ
d2x F (τ,x, σ, ε, ρ). (7.2)

The Fourier transformation of ψ(X) and ψ̄(X) are

ψσ,ε,ρ(k) =

∫
Λ′
dx e−ikxψσ,ε,ρ(x), ψ̄σ,ε,ρ(k) =

∫
Λ′
dx e−ikxψ̄σ,ε,ρ(x) (7.3)

for k = (k0,k), kx = k0τ + k · x. The momentum k is in B′L =Mk0,nτ ×
BL, with BL being the first Brillouin zone. The inverse transformation is

ψσ,ε,ρ(x) =
∫
B′
L
dk eikxψσ,ε,ρ(x), where we abbreviated∫

B′
L

dk F (k) =
1

β

∑
k0∈Mk0,nτ

∫
k∈BL

d2k F (k0,k). (7.4)

To simplify our analysis we consider the model in the limit nτ → ∞,

where the time variable becomes continuous, and we treat infinite dimen-

sional Grassmann integrals. The thermodynamical limits L → ∞ will be

taken at the end of the analysis.

We are interested in the generator of the connected, amputated Green’s

functions,

W (V)(φ) = log

∫
dµC(ψ) e

−V(ψ+φ), (7.5)

where φ is another set of Grassmann fields. The Grassmann Gaussian mea-

sure dµC(ψ) is defined as

dµC(ψ) = N
∏

σ,ε,ρ,k∈Λ′

dψ̄σ,ε,ρ(k)dψσ,ε,ρ(k)e
−

∑
σ

∫
B′
L
dk Ψ̄σ(k)C−1(k)Ψσ(k)

with N as a normalization constant, such that
∫
dµC(ψ) = 1. Ψ̄σ(k) =(

ψ̄σ,a,l(k), ψ̄σ,b,u(k), ψ̄σ,a,u(k), ψ̄σ,b,l(k)
)
. The matrix C(k)−1 = (ik0−H0(k))

is invertible, thus the propagator C(k) = (ik0 −H0(k))
−1 exists. Moreover,

dµC(ψ) is characterized by its covariance∫
dµC(ψ) ψ̄σ′,ε′,ρ′(k

′) ψσ,ε,ρ(k) = δσ′σ

[
(ik0 −H0(k))

−1
]
ε′ρ′,ερ

. (7.6)
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Due to the particle-hole symmetry at half filling the Fermi surface stays fixed

as interactions being turned on, so that renormalization of the Fermi surface

becomes unnecessary. In other words, the counterterm vanishes. Hence the

initial effective potential V(ψ) is easily given by the on-site interaction

V(ψ) = g
∑
ε=a,b

∑
ρ=u,l

∫
x∈Λ

dx ψ̄↑,ε,ρ(x)ψ̄↓,ε,ρ(x)ψ↑,ε,ρ(x)ψ↓,ε,ρ(x). (7.7)

with g being the coupling constant, which can be either positive or negative.

By (2.2), we have two high energy bands with |E(k)| > 0 for all k ∈ BL
and two degenerate low energy bands touching at E(k) = 0. In the weak

coupling limit, since only low energy modes are important to determine the

behavior of the system at low temperature, a formulation of an effective low

energy model that contains only the relevant bands near the Fermi level is

required. For this purpose we need to project out the bands which originate

from the two high energy bands associated with the fermionic fields ψσ,a,u
and ψσ,b,l.

We start from the Hamiltonian H0(k), four 2×2 blocks can be identified:

H11 = −

(
0 γ3A(k)

γ3A
∗(k) 0

)
, H22 = −

(
0 γ1
γ1 0

)
(7.8)

and

H12 = H21 = −

(
0 γ0A

∗(k)

γ3A
∗(k) 0

)
. (7.9)

To simplify our notations we define a bilinear form

(ψ̄, Fψ) =
∑
σ

∫
B′
L

dk ψ̄(k)F (k)ψ(k). (7.10)

Moreover, we denote CH = (ik0−H22)
−1 , which is well defined and without

singular points. Let ΨH,σ = (ψσ,a,u(k), ψσ,b,l(k)), ΨL,σ = (ψσ,a,l(k), ψσ,b,u(k)),

DΨ̄HDΨH =
∏
σ,k dψ̄σ,a,u(k)dψσ,a,u(k)dψ̄σ,b,l(k)dψσ,b,l(k), and

VH(ΨH) = −g
[∫

x∈Λ
dx ψ̄↑,a,u(x)ψ̄↓,a,u(x)ψ↑,a,u(x)ψ↓,a,u(x)

+

∫
x∈Λ

dx ψ̄↑,b,l(x)ψ̄↓,b,l(x)ψ↑,b,l(x)ψ↓,b,l(x)

]
(7.11)

is the interaction relates to the fields ψa,u and ψb,l. The integration over
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high energy modes gives∫
DΨ̄HDΨH e−(Ψ̄H ,C

−1
H ΨH)+(Ψ̄LH12,ΨH〉+(Ψ̄H ,H21ΨL)+VH(ΨH+φ)

= e(Ψ̄L,H12CHH21ΨL)

·
∫
DΨ̄HDΨH e−(Ψ̄H−CT

HH12Ψ̄L,C
−1
H (ΨH−CHH21ΨL))+VH(ΨH+φ).

(7.12)

Using the identity∫ L∏
k=1

dψ̄kψk f(ψ̄ +Aη̄, ψ +Bη) =

∫ L∏
k=1

dψ̄kψk f(ψ̄, ψ), (7.13)

the integral over ΨH fields in (7.12) gives

eVh(CHH21ΨL+φ) =

∫
DΨ̄HDΨH e−(Ψ̄H ,C

−1
H ΨH)+VH(ΨH+CHH21ΨL+φ).(7.14)

The integral above is up to the normalization the exponential of the effective

action coming from the high energy levels for the theory. It can be seen as

the correction to the initial interaction for the low energy fields. Using the

method introduced in the previous chapters, and due to the well defined

propagator CH , it is easy to check that Vh(CHH21ΨL + φ) is a well defined

object, and has the form

Vh(ψ) =
∑

m,m̄≥1

∫
dm̄X ′dmX vh,m̄,m

(
X ′, X

)
ψ̄m̄

(
X ′)ψm (X) , (7.15)

and it satisfies that for a small enough |g|, ‖Vh‖h ≤ 2|g|, with h > 0.

On the next step we move the the exponential prefactor e(Ψ̄L,H12CHH21ΨL)

in (7.12) into the new propagator for the low energy fields

C(k) = (ik0 −H11 −H12CHH21)
−1, (7.16)

where

H12CHH21 =

(
0 γ0A

∗(k)

γ0A(k) 0

)(
ik0 γ1
γ1 ik0

)−1(
0 γ0A

∗(k)

γ0A(k) 0

)

= − 1

k20 + γ21

(
ik0γ

2
0 |A(k)|

2 −γ1γ20A∗2(k)

−γ1γ20A2(k) ik0γ
2
0 |A(k)|

2

)
. (7.17)

Since we want to get an effective low energy model, and we are interested

in the modes near the Fermi surface, so we can set k0 = 0 in (7.17). The
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term arising from the corrections are irrelevant in a perturbation sense. An

elementary calculation shows that

C(k) =

(
Cs(k) −Ct(k)e−i2ϕA(k)

−Ct(k)ei2ϕA(k) Cs(k)

)
, (7.18)

with

Cs,t(k) =
1

2

(
1

ik0 − e(k)
± 1

ik0 + e(k)

)
, (7.19)

where e(k) = −γ3|A(k)|+
γ20
γ1
|A(k)|2, and ϕA(k) is the phase factor of A(k).

Before we continue, we note that the lattice model has an intrinsic ul-

traviolet cutoff in the k variables, which scales similarly to a lattice spacing.

Now let us redefine the linear functional dµC(ψ) and the effective action

W (V) after integrating out the high energy modes. To simplify our notation

we rename ψσ,1(k) = ψσ,a,l(k) and ψσ,2(k) = ψσ,b,u(k). We define the linear

functional

dµC(ψ) = NL
∏

σ,ρ,k∈Λ′

dψ̄σ,ρ(k)dψσ,ρ(k) e
−

∑
σ

∑
ρ,ρ′

∫
B′
L
dk ψ̄σ,ρ(k)C

−1
k0c

(k)ρρ′ψσ,ρ′ (k),

(7.20)

where NL is a normalization constant,
∫
dµC(ψ) = 1. The reduced effective

action for the low energy modes is

W (V)(φ) = log
1

Z

∫
dµC(ψ) e

V(ψ+φ) (7.21)

where Z is a constant such that W (V)(0) = 0, with the initial effective

potential V(ψ)

V(ψ) = −g
∑
ρ=1,2

∫
x∈Λ

dx ψ̄↑,ρ(x)ψ̄↓,ρ(x)ψ↑,ρ(x)ψ↓,ρ(x) + Vh(ψ). (7.22)

The regularity of (7.21) will be studied in perturbation theory for two

cases, depending on whether the trigonal warping vanishes or not.

If the trigonal warping vanishes, γ3 = 0, e(k) =
γ20
γ1
|A(k)|2. By (7.18)

the propagator Ck0c(k) becomes singular at k0 = 0 and k = k±
F , with

k±
F =

(
2π

3
,± 2π

3
√
3

)
. (7.23)

These two points are called Fermi points, and denoted as K(+) and K(−),

respectively. approaching to these Fermi points, the dispersion relation van-

ishes quadratically,

e(k′ + k±
F ) = c1|k′|2 +R(k′) (7.24)
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with c1 =
9γ20
4γ1

, and k′ = k − k±
F . Since the second derivatives of e(k) with

respect to k is bounded for all k ∈ BL, so that the rest term can be bounded

by

|R(k′)| ≤ 9
√
2γ20

2γ1
|k′|3. (7.25)

In this sense, in the low energy limit, the model resembles the two dimen-

sional dilute Fermi gas model.

When we take into account the trigonal warping term γ3 6= 0, the Fermi

point K(+) or K(−) point splits into four equivalent points. Thus instead of

two Fermi points we have now eight ones. Around these points, due to the

linear term in A(k) of e(k), within the low energy regime the system has a

linear spectrum,

e(k′ + k) = c′1|k′|+R(k′), (7.26)

with c′1 =
3γ0
γ1

and R(k′) ≤ c|k′|2. For the valley K(+), we denote tanφ =
k′1
k′2
,

then one of the Fermi points stays at K(+) with |k′| = 0, the other three

stay at |k′| = γ3γ1
γ20

, and φ = 0, 2π3 ,
4π
3 , whereas for K(−), one stays at K(−)

with |k′| = 0, the other three stay at |k′| = γ3γ1
γ20

, and φ = π
3 , π,

5π
3 .

7.2 Renormalization group analysis

In this section we illustrate the multiscale integration of the fermionic func-

tional integral of interest. The analysis is very similar to the dilute Fermi

gas case, hence we do not repeat all details but give only what is new with

respect to the dilute Fermi gas.

7.2.1 Without trigonal warping

Let us first consider the situation with γ3 = 0. The first step in the cal-

culation of the effective action is to integrate out the ultraviolet degrees of

freedom corresponding to the large value of k. To do this, we decompose

the propagator C(k) into a sum of two propagators supported in the ul-

traviolet and infrared regions, respectively. The regions of large or small

k0 are defined in term of the smooth support functions h(x). We define

h(x) ∈ C∞ (R, [0, 1]),

h(x) =

{
1, for x < ε0,

0, for x ≥ 2ε0,
(7.27)
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h′(x) < 0 for all x ∈ (ε0, 2ε0). The constant ε0 is chosen so that the supports

of h
(∣∣∣ik0 − c1|k− k

(+)
F |2

∣∣∣) and h
(∣∣∣ik0 − c1|k− k

(−)
F |2

∣∣∣) are disjoint. To

satisfy this condition, it is enough that 2ε0 < c1
4π2

27 . We define

f>(k) = 1− h
(∣∣∣ik0 − c1|k− k

(+)
F |

2
∣∣∣)− h(∣∣∣ik0 − c1|k− k

(−)
F |

2
∣∣∣) (7.28)

and f<(k) = 1− f>(k), so that we can rewrite C(k) as:

C(k) = f<(k)C(k) + f>(k)C(k) = C<(k) + C>(k). (7.29)

With these decomposition we introduce two independent sets of Grassmann

fields ψ
(<)
σ,ρ (k) and ψ

(>)
σ,ρ (k), with σ = ±, ρ = 1, 2, and the Grassmann inte-

gration defined by∫
dµC>(ψ

(>)) ψ̄(>)
σ,ρ (k)ψ

(>)
σ′,ρ′(k

′) = δσσ′δkk′C>(k)ρρ′ , (7.30)∫
dµC<(ψ

(<)) ψ̄(<)
σ,ρ (k)ψ

(<)
σ′,ρ′(k

′) = δσσ′δkk′C<(k)ρρ′ . (7.31)

where dµC>(ψ
(>)) and dµC<(ψ

(<)) admit an explicit representation analo-

gous to (7.20), with C(k) replaced by C< or C>, ψ(k) replaced by ψ(<)(k)

or ψ(>)(k), and the sum over k are restricted to the values in the supports

of f<(k) and f>(k), respectively. The additional property of the Grassmann

integration implies

W (V)(φ) = log
1

Z

∫
dµC<(ψ

(<))

∫
dµC>(ψ

(>)) eV(ψ+φ)

= log
1

Z0

∫
dµC<(ψ

(<)) eV
(<)(ψ(<)+φ) (7.32)

where

V(<)(ψ(<) + φ) = log

∫
dµC>(ψ

(>)) eV(ψ+φ) (7.33)

is the ultraviolet part of the integration. To do this integral, we have to

know the asymptotic properties of the ultraviolet propagator. Let us first

redefine X = (x, σ, ρ), with ρ = 1, 2 labeling two fields, and the following

lemma holds:

Lemma 17. There is a constant g̃, such that for |g| < g̃, V(<)(ψ) is analytic

in g, and it satisfies the following bound

‖V(<)‖h ≤ ch|g|, (7.34)

where h and ch are positive constants.
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The proof of this lemma is the same as the Lemma 10. We do not repeat

it here. With this lemma, V(<)(ψ) has the form

V(<)(ψ(<)) =
∑

m,m̄≥1

∫
dm̄X ′dmX v

(<)
m̄,m(X

′, X)ψ̄(<)m̄
(
X ′)ψ(<)m (X) .

and its kernel functions satisfy

|v(<)
m̄,m(X

′, X)|1,∞ ≤ C|g|max{1,m−1}, (7.35)

with C as a constant. We note that the bound is independent of the tem-

perature.

We are now left with dealing the infrared integration. We proceed in

an iterative fashion. Because of the two non-equivalent Fermi points, it is

convenient to decompose the infrared propagator as

C<(X,X
′) =

∑
α=±

eik
(α)
F (x−x′)C(<)

α (X,X ′), (7.36)

where k
(α)
F = (0,k

(α)
F ), α = ± refers to the two Fermi points and

C(<)
α (X,X ′) = δσσ′

∫
k′∈B

′(α)
L

dk′ eik
′(x−x′)h

(∣∣ik0 − c1|k′|2
∣∣)C(k′ + k

(α)
F )

(7.37)

where k′ = k − k(α)F = (k0,k
′) ∈ B

′(α)
L = M(<)

k0
× B(α)L , with B(α)L = {k′ =

n1
L b1+

n2
L b2−k

(α)
F , 0 ≤ n1, n2 ≤ L−1}. Correspondingly we express ψ(<)(X)

as a sum of independent Grassmann fields:

ψ(<)(X) =
∑
α=±

eik
(α)
F xψ(<)

α (X). (7.38)

The Fourier transform of ψ
(<)
σ,ρ,α(x) is

ψ(<)
σ,α,ρ(k) =

∫
dx e−i(k−k

(α)
F )xψ(<)

σ,α,ρ(x). (7.39)

where ρ labels the two fields, α labels the two valleys, respectively. We

redefine X = (x, σ, ρ, α) ∈ Λ′ × {−1, 1} × {1, 2} × {+,−}, and∫
dXF (X) =

∑
σ

∑
ρ=1,2

∑
α=±

∫
dτ

∫
d2x F (τ,x, σ, ρ, α). (7.40)

By (7.37) and (7.38), we rename ψ(≤0) = ψ(<)+φ, V(0)(ψ(≤0)) = V(<)(ψ(<)+

φ), thus the effective action can be rewritten in the form

W (V)(φ) = log
1

Z0

∫
dµC<(ψ

(<))eV
(0)(ψ(≤0)), (7.41)
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where V(0)(ψ(≤0)) is

V(0)(ψ(≤0)) =
∑

m,m̄≥1

∫
dm̄X ′dmX v

(0)
m̄,m(X

′, X) ψ̄(≤0)m̄(X′)ψ(≤0)m(X).

The kernel v
(0)
m̄,m(X

′, X) has a representation in term of its Fourier transform,

v
(0)
m̄,m(X

′, X) =

∫ m+m̄∏
i=1

dk′j e
i
∑m+m̄

j=1 (−1)jkjxjδ

m+m̄∑
j=1

(−1)j(k(αj)
F + k′j)


· v̂(0)m̄,m(k

′
1, . . . , k

′
m, k

′
m+1, . . . , k

′
m+m̄), (7.42)

with

v̂
(0)
m̄,m(k

′
1, . . . , k

′
m+m̄) = v̂

(0)
m̄,m(k

′
1 + k

(α1)
F , . . . , k′m+m̄ + k

(αm̄+m)
F ). (7.43)

Moreover, the Grassmann Gaussian measure dµC<(ψ
(<)) is defined as

dµC<(ψ
(<)) = N

∫ ∏
k

∏
σ,ρ,α

dψ̄
(<)
σ,ρ,ᾱ(k)dψ

(<)
σ,ρ,α(k) e

A(ψ̄
(<)
σ,ρ̄,ᾱ,ψ

(<)
σ,ρ,ᾱ) (7.44)

with

A(ψ̄(<)
σ,ρ̄,ᾱ, ψ

(<)
σ,ρ,ᾱ) = −

∑
α,ρ̄,ρ

∑
σ

∫
k′∈B′(α)

dk′ψ̄
(<)
σ,ρ̄,α(k

′)C(<)
α (k′)−1ψ(<)

σ,ρ,α(k
′)

(7.45)

N is a constant, so that
∫
dµC<(ψ

(<)) = 1. The propagator in (7.45) is

given by

C(<)
α (k′) = h(

∣∣ik0 − c1|k′|2
∣∣)C(k′ + k

(α)
F ). (7.46)

Note that in (7.45) the α index of the ψ fields is the same, since the terms

with different α’s vanish, which can be easily checked. As a consequence

there are no umklapp processes contributing to the infrared effective poten-

tial.

To do the infrared integration we have to scale C
(<)
α (k′) by introducing

the scales j = 0,−1,−2, . . . . Then for all j ≤ 0 the jth scale function is

defined as

f
(α)
j (k′) = h(M−j ∣∣ik0 − c1|k′|2

∣∣)− h(M−j+1
∣∣ik0 − c1|k′|2

∣∣),
and obeys

h(
∣∣ik0 − c1|k′|2

∣∣) = 0∑
j=−∞

f
(α)
j (k′). (7.47)
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By construction the support of f
(α)
j (k′) is contained in

{k′ ∈ B′(α)|M j−1ε0 ≤ |ik0 − c1|k′|2| ≤ 2M jε0} (7.48)

and is identically one on

{k′ ∈ B′(α)| 2M j−1ε0 ≤ |ik0 − c1|k′|2| ≤M jε0}. (7.49)

At finite temperature |k0| > π
β , ∀k0 ∈ Mk0 , we define the infrared cutoff

scales

J = max{j ≤ 0,M j−1ε0 <
π

β
}. (7.50)

Now by (7.47), (7.50), we have the identity

C(<)
α (k′) =

0∑
j=J

C(j)
α (k′) (7.51)

with C
(j)
α (k′) = f

(α)
j (k′)C(k′ + k

(α)
F ), and the Fourier transform of C

(j)
α (k′)

is

C(j)
α (X,X ′) = δσσ′

∫
k′∈B

′(α)
L

dk′ eik
′(x−x′)C(j)

α (k′). (7.52)

Correspondingly, by (7.36) we have

Cj(X,X
′) =

∑
α=±

eik
(α)
F (x−x′)C(j)

α (X,X ′). (7.53)

Similarly we decompose the Grassmann fields as ψ(<) =
∑0

j=J ψ
(j). Subse-

quently we will successively integrate out ψ(j), which generates a sequence of

effective potential V(0) . . .V(J−1). We prove inductively in the perturbation

theory that for all j < 0, the integration

V(j−1)(ψ(≤j−1)) =: log

∫
dµCj (ψ

(j))e
:V(j)(ψ(≤j)):C≤j :−C≤j−1

. (7.54)

is well defined, if V(j)(ψ(≤j) being well defined effective potential at scale j,

and has the form

V(j)(ψ(≤j)) =
∑

m,m̄≥1

∫
dm̄X ′dmX v

(j)
m̄,m

(
X ′, X

)
ψ̄(≤j)m̄ (X ′)ψ(≤j)m (X) .

Proceeding as in the previous chapter we have to estimate the Gram and

decay bound of the propagator at first. It is easy to verify that the single

scale propagator has a Gram bound

c′γM
j/2 ≤ γCj ≤ cγM j/2 (7.55)
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with c′γ , cγ two suitable constants, and a decay bound

αCj ≤ cαM−j . (7.56)

cα is a constant. Both bounds are same as the bounds of the propagator

in dilute Fermi gas. Similar results like the Lemma 10 are expected. By

(7.55) and (7.56), using the tree expansion, we summarize our result in the

following lemma:

Lemma 18. Suppose that there exist positive constants g̃, C2, Cg and suit-

able M and α, such that the conditions

|v(j)1,1|1,∞ ≤ C2M
j |g| (7.57)

for J ≤ j ≤ 0, |g| < g̃, |g| ≤ Cg

log β are satisfied, hj = αγCj , then for all

J ≤ j ≤ 0,

ωCj‖V(j)‖hj <
1

2
(7.58)

holds.

The proofs of this lemma and the assumption on the two-point function

are similar as the proof for dilute Fermi gas (Lemma 10 and Lemma 12).

We do not repeat them here.

Theorem 2 follows directly from this Lemma. We conclude that the

perturbation expansion in g forW (V) converges if g is small enough and the

temperature is higher than an exponential small one.

7.2.2 With trigonal warping

Let us now consider the case with trigonal warping, γ3 6= 0. This next

nearest neighbor coupling may have important effects in the low energy

limit. It splits the parabolic degeneracy into four Dirac points, close to

which the dispersion relation vanishes linearly.

The integration of W (V) will be implemented in an analogous way as

the previous section by replacing the smooth support function by

fj(k) = h(M−j |ik0 − c′1|k′||)− h(M−j+1|ik0 − c′1|k′||). (7.59)

Due to the linear dispersion relation it can be shown that the scaled

infrared propagator has a better Gram bound

cγM
j ≤ γCj ≤ c′γM j , (7.60)
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where cγ and c′γ are positive constants. However the decay bound remains

the same

αCj ≤ cαM−j (7.61)

with cα > 0. With these bounds, we first consider a naive power counting

for the Green’s functions. We found that only the two legged vertices are

relevant in the renormalization flow. All others are irrelevant. This makes

the further analysis much easier than the previous one. We consider the

integral

V(j−1)(ψ(≤j−1)) =: log

∫
dµCj (ψ

(j))e
:V(j)(ψ(≤j)):C≤j :−C≤j−1

. (7.62)

In perturbation theory, we decompose V(j−1) in the following way:

V(j−1) = V(j−1)
2 + P≥2,≥2(V(j−1) − V(j)) + P≥2,≥2(V(j)) (7.63)

where V(j−1)
2 = P1,1(V(j−1)) is the two fields parts of the effective potential

at scale j − 1. We try to bound

ωCj−1‖V(j−1)‖hj−1
≤ ωCj−1‖V

(j−1)
2 ‖hj−1

+ ωCj−1‖P≥2,≥,2(V(j))‖hj−1

+ωCj−1‖P≥2,≥,2(V(j−1) − V(j−1))‖hj−1
. (7.64)

The second term on the right hand side of (7.64) has a trivial bound

ωCj−1‖P≥2,≥2(V(j))‖hj−1

≤ ωCj

(
ωCj−1

ωCj

) ∑
m̄,m≥2

|v(j)m̄,m|1,∞hm̄+m
j

(
hj−1

hj

)m̄+m

≤ 1

M
ωCj‖V(j)‖hj . (7.65)

The last term in (7.64) can be bounded by using the usual tree expansion

‖P≥2,≥2(V(j−1) − V(j))‖hj−1
≤
∑
p≥2

ωp−1
Cj
‖V(j)‖p

h′j
, (7.66)

with h′j =
(
5 + α

M

)
γCj . Denoting Ã =

(
1
M + 5

α

)
, and assuming Ã < 1,

following inequalities hold,∑
m,m̄≥1

|v(j)m̄,m|1,∞h′m̄+m
j ≤ Ã2

∑
m,m̄≥1

|v(j)m̄,m|1,∞hm̄+m
j . (7.67)

Putting (7.67) into (7.66),

ωCj−1‖V(j−1) − V(j)‖hj−1
≤ K

M

∑
p≥2

(ωCj‖V(j)‖hj )
p. (7.68)
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where K = M4Ã4. We will choose M and α, so that K/M < 1 holds.

Putting all together, we get

ωCj−1‖V(j−1)‖hj−1

≤ ωCj−1‖V
(j−1)
2 ‖hj−1

+
K

M

∑
p≥2

(ωCj‖V(j)‖hj )
p +

1

M
ωCj‖V(j)‖hj .

(7.69)

We show the following lemma:

Lemma 19. Suppose that there exist positive constants g̃, C2, Cg and suit-

able M and α, such that the condition

|v(j)1,1|1,∞ ≤ C2M
j |g| (7.70)

for J ≤ j ≤ 0, |g| < g̃ holds, hj = αγCj , then for all J ≤ j ≤ 0,

ωCj‖V(j)‖hj <
1

2
(7.71)

holds.

Proof. The proof is easy by induction on j. When j = 0, it is trivial. Let

j ≤ −1 and the statement holds for all j′ ≥ j, we have

ωCj−1‖V(j−1)‖hj−1
≤
(
K + 1

M

)
ωCj‖V(j)‖hj + C ′

2|g0|, (7.72)

thus for |g0| ≤ 1
2
M−K−1
C′

2M
≤ g̃, we have ωCj−1‖V(j−1)‖hj−1

≤ 1
2 . This proves

the lemma.

As a corollary of above Lemma we find that

ωCj‖V(j)‖hj ≤ Cg0|g|. (7.73)

for a suitable constant Cg0. The assumption on the two points function in

the lemma can be shown by imposing a zero renormalization mass condi-

tion. Thus the perturbation expansion of the generating functional W(V)
converges for |g| ≤ g̃, which is temperature independent.

7.3 Symmetry breaking states

In this section we would like to discuss the possible physical instability in

short. Fixing an initial coupling constant we let the temperature be a scale

for the energy and let the temperature go down, the renormalization group
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analysis used in this work brings out three energy regimes. In the first regime

the running coupling functions remain small and the perturbation expansion

of the generating functional in g converges. This is the normal order phase,

where the symmetry breaking gaps remain small. The symmetry breaking

takes place in the second regime. The symmetry breaking gaps rapidly start

to grow and finally saturate at a scale. The running coupling function is no

longer small. In the third regime the system can be described by Goldstone

Bosons.

Actually we would like to construct a model which shows a spontaneous

symmetry breaking and a phase transition as the running coupling constant

grows. An idea to do this is to use the source term which can be written as∑
µ,ν,ω

∆µνω Ψ̄(x)QµνωΨ(x) (7.74)

where Ψ̄(x) is an eight-component ferimonic fields,

Ψ̄ =
(
ψ̄↑,1,+, ψ̄↑,2,+, ψ̄↓,1,+, ψ̄l,↓,2,+, ψ̄u,↑,1,−, ψ̄↑,2,−, ψ̄↓,1,−, ψ̄↓,2,−

)
. (7.75)

The order parameter is given by

Qµνω = τµ ⊗ σν ⊗ ηω, (7.76)

where µ, ν, ω = 0, 1, 2, 3, and τµ, σν , ηω are Pauli matrices and zero denotes

the unit matrices, acting on layer, spin, valley induces, respectively. ∆µνω

are the gap functions. For bilayer graphene in low energy regime, we consider

C∆(φ, φ̄) = log
1

Z∆

∫
dµC(ψ, ψ̄) e

−V∆+(φ̄,ψ)+(ψ̄,φ) (7.77)

with

V∆(ψ, ψ̄) = V(ψ, ψ̄) +
∫
dk Ψ̄(k)δekΨ(k)−

∫
dx
∑
µ,ν,ω

∆µνω Ψ̄(x)QµνωΨ(x)

at half filling δe(k) = 0. In order to get a constructive model we have to

show the existence of the limit

C(φ, φ̄) = lim
∆→0

C∆(φ, φ̄) (7.78)

If this limit can be proven nonpertubatively, we are success to construct a

model which shows a spontaneous symmetry breaking. This is a difficult

task. We will not cover this problem in this work.

Instead we would like to discuss the properties of some instabilities. The

symmetry breaking states can be divided into two classes, based on whether
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a gap emergent between the two low energy bands. A gapped state breaks

generally the inversion symmetry, the order parameter has a form τ3 ⊗ R,
where R = σν⊗ηω, with an arbitrary choice of the spin and valley matrices.

The most important breaking symmetry states in this class are ferroelectric

state (FE), layer-antiferromagnetic state (AF), anomalous quantum Hall

insulator (AQH) and spin quantum Hall insulator (SQH). Their properties

are summarized in table 7.1.

τ3 ⊗R Broken symmetry Properties

FE 1⊗ 1 inversion (Z2) layer pesudospin po-

larized, spontaneous

charge transform be-

tween layers,

AF σ3 ⊗ 1 inversion (Z2), time reversal

(T ), spin rotation (SU(2))

opposite spin polariza-

tion on top and bottom

layers, zero Hall con-

ductivity.

AQH 1⊗ η3 inversion (Z2), time reversal

(T ), valley (Z2)

Hall conductivity σ =
4e2

h , persists to zero

magnetic field.

SQH σ3 ⊗ η3 inversion (Z2), spin rotation

(SU(2)), valley (Z2)

zero Hall conductivity,

finite Hall conductivity

for each spin.

Table 7.1: Gapped breaking symmetry states.

In contrast with the gapped states there are instabilities which lead to

gapless states. e.g. the nematic states. The order parameters have the form

τ1,2⊗R. The two Fermi points K± split to two non-equivalent Dirac points.

There have been a number of theoretical investigations for the symmetry

breaking states of bilayer graphene by using both mean field and renormal-

ization group approaches. At first sight the results were controversial.

We first introduce the results coming from the mean field approach.

There is a result about the instability of a quadratic band crossing point two

dimensional fermionic system in [SYFK09]. Using a variational wave func-

tion technique [NNPG06] argued for a ferromagnetic phase for long-range

interactions and for short-range interactions layer-antiferromagnetic phase

was argued by susceptibility calculations. [MBPM08] predicted a layer pe-

sudospin magnet states (AF, QAH) by calculating a chiral two-dimensional

electron system (C2DES) Hartree-Fock Hamiltonian. Similar results fol-
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lowed by [JZM11], where a lattice Hartree-Fock model was investigated, they

found that states with a quantized valley Hall effect were lowest in energy

(FE). Both papers considered a Coulomb interaction. In [NL10] a mean field

in combination with random phase approximation to second order was used,

they showed that by a dynamically screened Coulombs interaction gapped

states were favored. e.g. FE, AF, AQH. All had the same energy because

of the SU(4) invariant of the Hamiltonian under spin-valley rotation.

There are also a number of papers that employ the renormalization group

approach introduced in [Sha94] to investigate the symmetry breaking phases.

In [VY10,Vaf10] they introduced a symmetry breaking source term in the

action, and calculated numerically how the symmetry breaking term di-

verged, as they approach the energy scale where the running coupling func-

tion diverges. They argue for an existence of a nematic state for extremely

long-range Coulomb interaction and a layer-antiferromagnetic state for an

on-site interaction. A similar paper [LATF10] came to the same result that

a nematic state is favored by Coulomb interactions. In [ZMPM10] an inver-

sion symmetry breaking state with short-range interactions was estimated

by a perturbation renormalization group calculation.

All the results indicated that the dominant instability may depend on

the profile of the interaction. In [TV12] they extended the renormalization

group analysis of bilayer graphene with different, but finite interactions from

extremely short to extremely long ranges. They found that the system enters

a gapped antiferromagnetic phase for short-range interactions and a gapless

nematic phase for long-range interactions. The application of functional

renormalization group technique [SUH11] presented a phase diagram of the

possible ground states.

It should be note that in [MKAF11] it was shown that the mechanical

deformations of the crystal may lead to a Lifshitz transition, the parabolic

bands splits into two Dirac cores. Thus strain has the same effect as the

presence of a nematic order.

Experimentally, [MFW+10,WAF+10] found evidence for an anomalous

quantum Hall phase by a compressibility measurement. A recent experi-

ment [MEMK+11] estimated a nematic phase by measuring a temperature

dependence of the width and the amplitude of the conductivity minimum,

and the cyclotron gaps as a function of the applied magnetic field for dif-

ferent filling factors. They found that the lowest Landau level is eight-fold

degenerate, which implies a nematic state. The controversial results are due

to the different experimental setup.



Chapter 8

Conclusion

In the present thesis we described constructive renormalization group ap-

proach to study systematically the properties of interacting non-relativistic

Fermi systems in two or three dimensions. In particular we focused on

rigorous mathematical constructions of two models for Fermions: A dilute

Fermi gas model in continuum two dimensions with short-range interaction

and a Hubbard model for bilayer graphene at half-filling with on-site in-

teraction. The constructions were based on checking whether given models

satisfy Salmhofer’s criterion for Fermi liquid behavior or not.

For dilute Fermi gas model, to prove that renormalized perturbation

theory in the coupling constant g converges, we employed multiscale analysis

and discrete renormalization group techniques. The renormalization group

map was implemented by using a tree expansion, which allowed to package

the perturbation expansion in terms of trees rather than Feynman graphs,

and give right scaling properties for the convergence radius of the expansion.

The convergence radius was proved to depend on the sign of g. By a detailed

analysis of the flow equation of the running coupling constant, we found that

for an attractive interaction the Green’s functions converge to an analytic

function if g satisfies {(g, β) : |g| log β < const}. On the other sides, for a

repulsive interaction the analytic region was replaced by {(g, β) : g2 log β <
const}. In this case the running coupling constant decreased during the

renormalization flow, and the theory was infrared asymptotically free. The

restrictions on g removed possible instabilities and drove the systems from

their normal phases into symmetry breaking phases.

The regularity of the self-energy was used to distinguish Fermi liquids

from other possible states of the fermion system. Verifying its regularity we

supplemented the same procedure but with a number of modifications to get

the desired bounds. We followed the arch-expansion to generate 1-PI graphs

119
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from the fermion determinants in the tree expansion for the self-energy. This

additional expansion ensures that not too many terms were generated and

the expansion could be controlled constructively. The self-energy was proved

to be C1 uniformly in β, but not C2 uniformly. By estimating a lower and

an upper bound on the second derivatives of the self-energy with respect to

the frequency, it grew like β for large β. However, we found that the high

order corrections to this quantity were much smaller than its second order

contribution.

We extended our method to evaluate the correlation decay of fermionic

bilinears. We don’t found anomalous decay exponents in the analytic domain

of the theory.

The Hubbard model for bilayer graphene was constructed in the similar

way. We have seen that the next nearest interlayer hopping γ3, which called

trigonal warping played a role in our constructions. We conclude that for

|g| < C3, the perturbation expansion in g converges, even the temperature

goes to zero, in other words, the system was stable under weak interaction.

For C3 < |g| < C1, it converges only for temperature β−1 > e
−C2

|g| .
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