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Zusammenfassung

Die vorliegende Arbeit entwickelt Techniken zur Schätzung des globalen Fehlers, der

bei der näherungsweisen Bestimmung von Lösungen von Anfangswertaufgaben (engl.

Initial Value Problems, kurz IVPs) auf gegebenen Intervallen mit Mehrschrittver-

fahren basierend auf Rückwärtsdifferenzenformeln (engl. Backward Differentiation

Formulas, kurz BDF) entsteht. Es werden dazu diskrete Adjungierte benutzt,

die durch adjungierte Interne Numerische Differentiation (IND) des nominellen

Integrationsschemas gewonnen werden. Zu diesem Zweck wird mit Hilfe einer

neuen funktional-analytischen Formulierung die Brücke zwischen BDF-Verfahren

und Petrov-Galerkin Finite-Elemente (FE)-Verfahren geschlagen. In Analogie zur

Methodik der dual-gewichteten Residuen (engl. Dual Weighted Residuals) bei

Galerkin-Verfahren für partielle Differentialgleichungen werden zielorientierte glo-

bale Fehlerschätzer entwickelt. Ihr asymptotisches Verhalten, ihre Genauigkeit bei

BDF-Verfahren mit variabler Ordnung und Schrittweite sowie ihre Anwendbarkeit

zur globalen Fehlersteuerung werden untersucht.

Die neuen Ergebnisse dieser Arbeit umfassen

• eine funktional-analytische Formulierung von IVPs bei gewöhnlichen Differen-

tialgleichungen (engl. Ordinary Differential Equations, kurz ODEs) im Banach-

raum der stetig differenzierbaren Funktionen. Diese wird benötigt, da die klas-

sische Hilbertraum-Formulierung es nicht erlaubt den Zusammenhang zwis-

chen den diskreten Werten des adjungierten IND-Schemas und der Lösung des

adjungierten IVP zu untersuchen. Die neue Formulierung führt zur Definition

von schwachen Lösungen von adjungierten IVPs.

• eine Petrov-Galerkin FE-Diskretisierung der Funktionenräume, die es erlaubt

die Banachraum-Formulierungen des IVP und seines Adjungierten in endlich-

dimensionale Probleme zu überführen. Es wird die Äquivalenz dieser endlich-

dimensionalen Probleme zu BDF-Verfahren mit variabler, aber vorgegebener

Ordnung und Schrittweite und ihren adjungierten IND-Schemata gezeigt.

Somit wird die FE-Näherung der schwachen Adjungierten aus den diskreten

Werten des adjungierten IND-Schemas bestimmt und Diskretisierung und

Differentiation kommutieren in der entwickelten Formulierung.

• einen Beweis dafür, dass die Werte des adjungierten IND-Schemas eines BDF-

Verfahrens mit konstanter Ordnung und Schrittweite auf dem offenen Intervall

gegen die Lösung des adjungierten IVP konvergieren. Des Weiteren wird ein

Beweis dafür gegeben, dass die adjungierte FE-Näherung auf dem gesamten

Intervall gegen die schwache Lösung des adjungierten IVP konvergiert.

v



Zusammenfassung

• zielorientierte globale Fehlerschätzer für BDF-Verfahren, welche für jeden

Integrationsschritt eine lokale Fehlergröße mit dem entsprechenden Wert des

adjungierten IND-Schemas gewichten und in Summe eine genaue und effiziente

Schätzung des tatsächlichen Fehlers liefern. Als lokale Fehlergröße kommen

Defekt-Integrale und lokale Abschneidefehler zum Einsatz.

• Strategien zur zielorientierten globalen Fehlersteuerung für BDF-Verfahren,

die entweder die lokal wirkende relative Toleranz oder – mit Hilfe der schritt-

weisen Fehlerindikatoren – das vorhandene Integrationsschema anpassen.

• ein ODE-Modell einer exothermen, selbst-beschleunigenden chemischen Reak-

tion mit Stoffübertragung, die in einem diskontinuierlichen Rührkessel

durchgeführt wird. Mit Hilfe dieses Anwendungsbeispieles aus dem

Chemieingenieurwesen werden Verwendbarkeit und Zuverlässigkeit der neuen

Techniken zur näherungsweisen Bestimmung von schwachen Adjungierten und

zur Simulation mit zielorientierter globaler Fehlersteuerung gezeigt.
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Abstract

This thesis develops estimation techniques for the global error that occurs during

the approximation of solutions of Initial Value Problems (IVPs) on given inter-

vals by multistep integration methods based on Backward Differentiation Formulas

(BDF). To this end, discrete adjoints obtained by adjoint Internal Numerical

Differentiation (IND) of the nominal integration scheme are used. For this purpose,

a bridge between BDF methods and Petrov-Galerkin Finite Element (FE) methods

is built by a novel functional-analytic framework. Goal-oriented global error estima-

tors are derived in analogy to the Dual Weighted Residual methodology in Galerkin

methods for Partial Differential Equations. Their asymptotic behavior, their accur-

acy in BDF methods with variable order and stepsize as well as their applicability

for global error control are investigated.

The novel results presented in this thesis include

• a functional-analytic framework for IVPs in Ordinary Differential Equations

(ODEs) in the Banach space of continuously differentiable functions. This

framework is needed since the classical Hilbert space setting is not suitable to

analyze the relation between the discrete values of the adjoint IND scheme and

the solution of the adjoint IVP. The new framework gives rise to the definition

of weak solutions of adjoint IVPs.

• a Petrov-Galerkin FE discretization of the function spaces that allows to trans-

form the variational formulations of the IVP and of its adjoint IVP into finite

dimensional problems. The equivalence of these finite dimensional problems to

BDF methods with variable but prescribed order and stepsize and their adjoint

IND schemes is shown. Thus, the FE approximation of the weak adjoint is

determined by the discrete values of the adjoint IND scheme and discretization

and differentiation commute in the developed framework.

• a proof that the values of the adjoint IND scheme corresponding to a BDF

method with constant order and stepsize converge to the solution of the adjoint

IVP on the open interval. In addition, a proof is given that demonstrates the

convergence of the FE approximation to the weak solution of the adjoint IVP

on the entire interval.

• goal-oriented global error estimators for BDF methods that weight, for each

integration step, a local error quantity with the corresponding value of the

adjoint IND scheme and yields in sum an accurate and efficient estimate for

the actual error. As local error quantity defect integrals and local truncation

errors are employed, respectively.
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Abstract

• strategies for goal-oriented global error control in BDF methods that either

adapt the locally acting relative tolerance or the given integration scheme using

the stepwise error indicators.

• an ODE model of an exothermic, self-accelerating chemical reaction with mass

transfer carried out in a discontinuous Stirred Tank Reactor. With this real-

world example from chemical engineering the applicability and reliability of the

novel techniques for the approximation of weak adjoints and for the simulation

with goal-oriented global error control are shown.
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Introduction

Dynamic processes are of great importance in numerous fields of scientific research

such as engineering, physics, chemistry, biology, medicine, and economics. However,

they appear not only in research but also in our daily life where we are surrounded

by dynamic processes – for example, a flowing river or a bobsled in an ice channel.

Mathematically, we can model dynamic processes by differential equations: The rate

by which the state of a process changes over time is a function of the state itself,

referred to as model function. Time is an independent variable whereas the state is

a dependent variable defined by the differential equation.

To numerically solve a complicated differential equation which models a dynamic

process, the continuous time interval is discretized using a finite number of time

points. The differential equation is then solved at each of these points to give ap-

proximations of the state of the dynamic process. This procedure is called numerical

integration. A typical integration method chooses the distance between the time

points adaptively to keep an error quantity on the computed approximations small

while the computational effort remains limited. However, the same error magnitude

at different time points may have different effects on the evolution of the process

state.

Imagine two situations: While a bobsledder is riding in a straight section of the

channel, he suddenly rides over a small bump in the ice. This has nearly no effect

on his arrival time at the end of the channel. Whereas if he is passing over from a

curve to a straight section and suddenly hits a bump, he swerves and slows down

which significantly influences his arrival time at the end. Mathematically, we can

measure the effect of small intermediate changes – such as the bump which consti-

tutes a change in the properties of the iced surface – on the final state by adjoint

sensitivities. They are given as solution of an auxiliary adjoint differential equation.

In the first situation, the adjoint sensitivity and hence the effect on the arrival time

of the bobsledder is small, whereas in the second situation the adjoint sensitivity is

huge and hence the small change caused by the bump shows a huge effect on the

bobsledder’s arrival time. These effects also occur in numerical integration and lead

to different propagations of small local errors arising from discretization. Numerical

integration methods usually estimate and control local errors, whereas global errors

of computed approximations are the crucial quantities that should be estimated and

controlled.

This doctoral thesis is devoted to the theoretical interpretation of adjoint in-

formation provided by differentiation of multistep integration methods and to the
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Introduction

development of global error estimators that can be used to control efficiency and

accuracy in the solution of differential equations by multistep methods.

In the following we briefly indicate the significance of numerical integration and

sensitivity generation in the field of applied mathematics and point out their current

state of the art.

Simulation by integration methods

Our focus lies on Ordinary Differential Equations (ODEs) with initial conditions

describing the process states at the starting time. They are called Initial Value

Problems (IVPs) in ODEs. If the IVP is stiff and in particular stiff with a model

function that is expensive to evaluate, the linear multistep Backward Differentiation

Formula (BDF) method is the integrator of choice. In each integration step the BDF

method reuses past approximations from former integration steps and evaluates the

model function only once at the end of the current step. This yields an implicit

equation which is then solved by efficient Newton-type methods, see e.g. Eich [53],

Bauer [16], Shampine [109] and Brenan et al. [38].

Generally, IVPs also occur during the solution of Boundary Value Problems

(BVPs) by shooting methods, see Osborne [100], Bulirsch [40] and Ascher and

Petzold [8], and during the solution of instationary Partial Differential Equations

(PDEs) by spatial discretization using a method of lines approach, see e.g. Ern and

Guermond [57] and LeVeque [85]. They also appear as subtasks in the solution

of parameter estimation problems with ODE constraints by multiple shooting, see

Bock [28, 30], and in the solution of Optimal Control Problems (OCPs), see below.

Sensitivity generation

For a sufficiently smooth nominal solution, adjoint sensitivities are given by an

adjoint IVP along the nominal solution. However, solving the adjoint IVP by inte-

gration just like the nominal IVP leads to a tremendous computational effort due

to adaptive stepsize selection as well as to the appearance of non-differentiabilities.

Instead, Bock’s Internal Numerical Differentiation (IND) of the integration scheme

used for the nominal IVP should be employed, see pioneering work of Bock [28, 30]

as well as realizations for BDF methods by Bauer [16] and Albersmeyer [3]. Using

(adjoint) IND means to differentiate (in adjoint mode) the integration scheme while

keeping adaptive components fixed. This procedure gives the exact discrete adjoint

sensitivities of the computed discrete IVP approximation at a computational cost

directly related to the number of steps of the nominal integration scheme. Moreover,

for one-step integration methods these discrete adjoints also approximate the exact

continuous solution of the adjoint problem. Unfortunately, due to the use of past ap-

proximations in multistep integrators their adjoint IND schemes apparently do not

provide approximations to the continuous adjoint solutions as recently discovered

by Albersmeyer [3] and Sandu [106].
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Error estimation in multistep integrators

So far, practical implementations of integration methods for IVPs typically use step-

size and further adaptive components to control only local error quantities for ef-

ficient integration, see Shampine [110]. But actually, the global error describes

the quality of the computed approximation and hence should be controlled during

integration. However, estimation techniques for global errors are still under devel-

opment, see, for example, Johnson [77], Estep [58], Eriksson et al. [55], Böttcher

and Rannacher [36], Moon et al. [96], Cao and Petzold [43], Lang and Verwer [84]

as well as Tran and Berzins [118]. The crucial point is that global error estimation

techniques require adjoint sensitivity information which could either be provided by

solving adjoint IVPs or by applying adjoint IND to nominal integration schemes.

Optimal control

Several numerical approaches to solve OCPs involve the solution of differential equa-

tions as subtasks. In particular, Direct Single Shooting as well as Direct Multi-

ple Shooting, proposed by Bock and Plitt [33], transform the OCP to a Nonlinear

Program (NLP) using a control discretization and employ state-of-the-art integra-

tors to solve IVPs on the shooting subintervals. Furthermore, nominal and adjoint

IVPs have to be solved also in the solution of OCPs by indirect methods based

on Pontryagin’s Maximum Principle. Details can be found, for example, in Bock

[26, 27, 29], Binder et al. [24], Gerdts [64] and Betts [23].

In particular, Direct Multiple Shooting together with IND has been successfully

used to treat various problem classes involving OCPs such as optimum experimental

design (see Bauer et al. [17] and Körkel et al. [80]), robust dynamic optimization (see

Körkel et al. [80] and Diehl et al. [49]), nonlinear model predictive control (see Diehl

[48] and Diehl et al. [50]), multi-level iterations (see Bock et al. [32], Albersmeyer

et al. [4] and Kirches et al. [78]) as well as to treat OCPs in PDEs (see Schäfer

[107] and Potschka [101]). In this solution approach the underlying dynamic process

has to be solved many times on subintervals. Furthermore, the effort for sensitivity

generation by IND is directly related to the number of nominal integration steps.

Hence, an efficient choice of the nominal integration scheme based on global error

control and its reuse in several optimization iterations promise a significant speed

up in the overall solution procedure.

Aims and contributions of this thesis

The first aim of this thesis is to give an interpretation of the oscillating discrete

adjoints of multistep BDF methods as they are observed by applying adjoint IND

to the nominal BDF integration scheme and to relate these discrete adjoints to the

solution of the adjoint IVP. The second aim of the thesis is to develop goal-oriented

global error estimators for BDF methods with variable order and stepsize using

discrete IND adjoints. For the first time, we build a bridge from BDF methods
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and their adjoint IND schemes to Petrov-Galerkin Finite Element (FE) methods

and carry over the Dual Weighted Residual (DWR) methodology for a posteriori

error estimation, going back to Becker and Rannacher [19, 18], from FE methods

for PDEs to BDF methods for ODEs. In the following the novel results of the thesis

are described in detail.

A new variational formulation of IVPs giving rise to weak adjoints

Unfortunately, the special nature of multistep methods caused by the reuse of past

approximations prohibits the analysis of BDF integration schemes and their adjoint

IND schemes using the common variational formulation of IVPs in ODEs in Hilbert

spaces. In this thesis we develop a new functional-analytic framework that is based

on the duality pairing of continuous functions and normalized functions of bounded

variation. This framework provides a well-posed variational formulation of IVPs in

the more general Banach spaces of continuously differentiable functions and normal-

ized functions of bounded variation. The application of this framework gives rise

to the definition of weak adjoint solutions of adjoint IVPs. The weak adjoints are

provided by the normalized integrals of the classical Hilbert space adjoints.

Petrov-Galerkin FE formulation of BDF methods and their adjoint IND schemes

We explicitly specify FE spaces that allow to transform the new formulation into

finite dimensional Petrov-Galerkin equations. We show that they are equivalent to

BDF methods with variable, but prescribed order and stepsize together with their

discrete adjoint IND schemes. Hence, discretization and differentiation commute in

the new framework. Thus, the BDF method represents an efficient formulation of

the Petrov-Galerkin FE method and the oscillating discrete adjoint IND values are

related to the classical solutions of adjoint IVPs via their weak adjoint solutions.

The FE approximations to the weak adjoints are defined for any time point whereas

the adjoint IND values are given only at discretization points. Furthermore, the FE

approximations can be computed automatically by adjoint IND schemes without the

explicit derivation of adjoint equations by the user.

Convergence of discrete adjoint IND values and FE weak adjoints

For BDF methods with constant order and stepsize in all integration steps except

the starting steps, the adjoint IND schemes can be divided into three parts: the

adjoint initialization steps, the adjoint main steps, and the adjoint termination steps

caused by the nominal starting steps. The adjoint main steps are BDF steps that

are consistent with a particular adjoint IVP, whereas the adjoint initialization and

termination steps are always inconsistent. Nevertheless, using the strong stability

of BDF methods we prove that the IND adjoints converge to the classical adjoint

solutions on the main steps, which cover in the limit the open time interval. Then,

we use this result to show the linear convergence of the FE approximations to the

xvi



weak adjoints in the total variation norm, and show that this implies the pointwise

convergence on the entire time interval.

Goal-oriented global error estimation

We derive novel estimators for the global error in a criterion of interest evaluated at

the final state of the IVP solution. These goal-oriented error estimators summate

over all integration steps a nominal local error quantity multiplied by the adjoint

IND value which exactly describes the sensitivity of the discrete final state on in-

termediate perturbations. Using the DWR methodology we derive that the nominal

local error quantities are provided by the defect integrals of the nominal approxima-

tion. Combining the DWR methodology and the classical BDF convergence theory

we additionally propose the local truncation errors as nominal local error quantities.

We investigate both goal-oriented error estimators theoretically for BDF methods

with constant order and stepsize and expose their relation to each other. Then,

we further approximate them to evaluable versions in practical implementations,

demonstrate their performance in terms of accuracy in fully adaptive BDF-type

methods and show their superiority to an existing estimator proposed by Cao and

Petzold [43].

Application of estimators for global error control

We employ the novel goal-oriented error estimates to obtain global error controlled

approximations of IVP solutions. This is achieved by two different adaption strate-

gies. The goal-oriented local tolerance adaption uses successively the goal-oriented

error estimates to adapt the local relative tolerances for subsequent integrations with

the standard selection mechanism for stepsize and order. The goal-oriented scheme

adaption employs the error estimates and their local error indicators to directly

adapt the integration schemes for subsequent integrations and completely replaces

the standard selection mechanism for stepsize and order. It turns out that in this

case the termination tolerances for the numerical solution of the nonlinear BDF

equations are not fixed over all integration steps anymore, but have to be adjusted

according to the local conditions.

Modeling and global error controlled simulation of a real-world example

The hydrolysis of propionic anhydride carried out in a discontinuous Stirred Tank

Reactor (STR) is a representative for a wide class of strongly exothermic, self-

accelerating reactions that are of great importance for the fine chemical industry.

This particular reaction is realized in a laboratory-scale reactor and is used for

research on detection and avoidance of thermal runaways, see e.g. Westerterp and

Molga [125] and Molga and Cherbański [93, 94]. We build up a new ODE model

of this dynamic process using validated subcomponents of previous work by Molga

and Cherbański [93, 94] and Cherbański [44]. The resulting IVPs in ODEs are
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highly nonlinear due to the mass transport term and the reaction rate coefficient

of Arrhenius type. The newly composed model is able to describe experimental

data which we have measured at the Warsaw University of Technology. Moreover,

we show the applicability and reliability of the novel mathematical and numerical

results of this thesis for the simulation of this real-world example with goal-oriented

global error control.

Thesis overview

This thesis is organized in four parts: The status quo of BDF methods and their

discrete adjoints, a novel interpretation for discrete adjoints of BDF methods, novel

goal-oriented global error estimation for BDF methods, and numerical results.

Part I, which presents the status quo of BDF methods and their discrete adjoints,

is divided into four chapters. In Chapter 1 we first introduce IVPs in ODEs and

present the basic IVP theory including uniqueness and differentiability of the solu-

tion. Moreover, we introduce the adjoint IVP of the nominal IVP as adjoint problem

of the forward variational IVP giving the sensitivities (derivatives) of the nominal

solution with respect to the initial values. Conditioning and stiffness of IVPs are

covered as well.

Chapter 2 describes multistep BDF methods to solve IVPs. The different error

types appearing in multistep methods are defined and the convergence theory is

presented. Finally, we sketch those aspects of practical realizations of efficient BDF-

type methods that are of importance for the thesis.

In Chapter 3 the derivative generation for functions is briefly presented before

we focus on the computation of derivatives of IVP solutions. We describe the two

approaches of integrating the variational IVPs on the one hand or applying finite

dimensional differentiation methods like Algorithmic Differentiation (AD) to the

nominal integration scheme, i.e. Bock’s IND approach, on the other hand. The

adjoint versions of both approaches are examined in detail and we start to investigate

the adjoint IND schemes of BDF methods in terms of integration methods applied

to particular adjoint IVPs.

Chapter 4 summarizes basic concepts from real and functional analysis that are

of great importance for Part II of this thesis.

Part II, which deals with a novel interpretation for discrete adjoints of BDF meth-

ods, is divided into three chapters. In Chapter 5 we first review the classical deriva-

tion of the adjoint IVP along the exact nominal solution in Hilbert spaces as part of

the optimality conditions of a particular infinite dimensional Constrained Variational

Problem (CVP). Since the Hilbert space formulation is not suitable to analyze BDF

methods, we embed the CVP into the Banach space of all continuously differentiable

functions and use the duality pairing between continuous functions and normalized

functions of bounded variation. Using the new infinite dimensional optimality con-
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ditions we define weak adjoint solutions, show their relation to the classical Hilbert

space adjoints, and demonstrate the well-posedness of the new optimality condi-

tions. Finally, we extend the setting to capture the space of all functions that are

continuous and piecewise continuously differentiable.

Chapter 6 is devoted to the Petrov-Galerkin FE discretization of the infinite di-

mensional optimality conditions. We choose suitable FE spaces and demonstrate the

equivalence between the discretized optimality conditions and the BDF scheme with

variable, but prescribed order and stepsize together with its adjoint IND scheme. Fi-

nally, the commutativity of differentiation and discretization in the novel functional-

analytic setting is elucidated as well as the so-called adjoint consistency of the adjoint

IND scheme with the adjoint IVP.

We start Chapter 7 by proving the linear convergence of the discrete adjoint IND

values of a BDF method with constant order and stepsize to the solution of the

classical Hilbert space adjoint on the open time interval. Then, we show the conver-

gence of the FE approximation to the weak adjoint solution on the entire interval

using the former result.

Part III, which is about novel goal-oriented global error estimation for BDF meth-

ods, is divided into two chapters. In Chapter 8 we derive novel goal-oriented global

error estimators for multistep BDF methods with variable order and stepsize. With

the DWR methodology and a suitable approximation of the weights involving the

unknown exact weak adjoints, approximations for the global error in a criterion of

interest are developed. These approximations use the discrete adjoints provided by

adjoint IND schemes. This is the first time that values generated by adjoint IND are

used in a posteriori estimators for the goal-oriented global error. We can use defect

integrals, local errors or local truncation errors as nominal local error quantities in

the goal-oriented error approximations. After investigation of these error approx-

imations for BDF methods with constant order and stepsize we derive, by further

approximations, evaluable global error estimators for practical implementation.

With these goal-oriented error estimators at hand, Chapter 9 is dedicated to inte-

grations by BDF methods with goal-oriented global error control. Two goal-oriented

adaption strategies are proposed. The first one adapts the relative tolerance using

the estimated global error and then uses the standard selection mechanism for the

adaptive components. The second strategy adapts the integration scheme itself em-

ploying the local error indicators provided by the global error estimators and thus

replaces the standard selection mechanism except the monitor strategy for matrix

updates.

Part IV on numerical results is divided into three chapters. Chapter 10 starts with

the numerical validation of the theoretical results of Part II. An academic nonlin-

ear test case with analytic solutions is used to confirm numerically the convergence

results of Chapter 7. Additionally, we give numerical evidence that the FE approx-

imation serves as proper quantity to approximate the weak adjoint also in the case
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of fully variable BDF-type methods as used in practice. Secondly, the goal-oriented

global error approximations are investigated for BDF methods with constant order

and stepsize and the error estimators are investigated for BDF-type methods with

variable order and stepsize using IVPs with known analytic solutions. It turns out,

that the estimators based on defect integrals and local truncation errors should be

favored in practice and in fact are superior to an existing estimator.

In Chapter 11 we investigate numerically the goal-oriented global error control

strategies. We use the goal-oriented global error estimator based on local truncation

errors and IVP examples with analytic solutions. Both strategies, the local tolerance

adaption and the scheme adaption, give approximations of the final state up to the

desired accuracy. Depending on the local conditioning of the IVP, we point out the

better of the two strategies.

Chapter 12 treats a real-world example, particularly its modeling and simulation.

We describe the hydrolysis of propionic anhydride carried out in a discontinuous

STR and model it by IVPs in ODEs. The new composed model reflects the real

process which we have conducted at the Warsaw University of Technology. More-

over, using BDF methods with variable order and stepsize to solve this real-world

IVP and determine its sensitivity in a safety function we confirm the reliability of

the FE weak adjoints given via the adjoint IND values. We also use the goal-oriented

global error control strategies to obtain approximations with a desired accuracy in

the safety function.

In the last chapter we briefly summarize the results of this thesis and give some

ideas for future research directions.

Appendix A starts with some frequently used definitions and theorems. Then,

we prove some lemmas that are stated and used in Chapter 3 and 8, respectively.

Furthermore, it contains the IVP test set as well as further data for the real-world

example.

xx
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1 Theory of Initial Value Problems

This section reviews the basic theory of Initial Value Problems (IVPs) in Ordinary

Differential Equations (ODEs). After the formal definition of an IVP, we recall the

sufficient conditions for its well-posedness and the differentiability of its solution

with respect to initial values. The sensitivity of the final state with respect to the

initial values can be found in two different ways: the forward and the adjoint way.

We close the chapter by some words on the stiffness of IVPs.

Definition 1.1 (Initial Value Problem) Let be [ts, tf ] ⊂ R. An Initial Value

Problem (IVP) in Ordinary Differential Equations (ODEs) is defined by a system of

d first-order ODEs and d initial conditions

ẏ(t) = f(t,y(t)), t ∈ [ts, tf ] (1.1a)

y(ts) = ys (1.1b)

where the right hand side f : [ts, tf ] × R
d → R

d and the unknown dynamic state

y : [ts, tf ] → R
d are vector-valued functions, t ∈ [ts, tf ] is the independent variable

and ys ∈ R
d the initial state vector (also called initial value). The componentwise

derivative of y with respect to t is denoted by ẏ.

Definition 1.2 For a matrix-valued function A : [ts, tf ] → R
d×d and a vector-valued

function b : [ts, tf ] → R
d the system

ẏ(t) = A(t)y(t) + b(t)

is called a system of linear ODEs.

For this thesis, a functional output of IVP solutions is of great importance.

Definition 1.3 (Criterion of interest) By a criterion of interest we mean a non-

linear, sufficiently often differentiable functional J that is evaluated in the final state

y(tf) of the solution of IVP (1.1).

Such a criterion is relevant whenever one is not interested in the whole solution

y(t) of (1.1) or even the final state y(tf), but only in a functional output of these

quantities.

The settings of Definition 1.1 and 1.3 also capture the cases of a parameter-

dependent right hand side f(t,y,p) and a criterion of interest of Bolza type

J(y) =

∫ tf

ts

J1(y(t),p)dt + J2(y(tf))

due to standard reformulations, see Hartman [69] and Berkovitz [22].

3



1 Theory of Initial Value Problems

1.1 Well-posedness of Initial Value Problems

This section focuses on the existence of a unique IVP solution and the well-posedness

of the IVP. Due to Hadamard, a problem is well-posed if (i) a solution exists, (ii)

the solution is unique, and (iii) the solution depends continuously on the input data.

To investigate the well-posedness of an IVP we need the following property.

Definition 1.4 The function f(t,y) defined on D ⊂ R×R
d is said to be Lipschitz

continuous on D with respect to y, if a Lipschitz constant L > 0 exists such that

‖f(t,y) − f(t,y∗)‖ ≤ L ‖y − y∗‖ ∀(t,y), (t,y∗) ∈ D.

Theorem 1.5 (Picard-Lindelöf) Let f(t,y) be continuous on the region R =

{(t,y) : ts ≤ t ≤ ts + a, ‖y − ys‖ ≤ b} ⊆ D, Lipschitz continuous with respect to y,

and bounded by ‖f(t,y)‖ ≤M on R. Then,

ẏ(t) = f(t,y(t)), y(ts) = ys (1.2)

has a unique solution y(t) on [ts, ts + α], where α = min{a, b/M}.

Proof See Hartman [69]. �

The proof of Theorem 1.5 also shows that y(t) is continuously differentiable in t.

Remark 1.6 If f(t,y) is differentiable with respect to y, then L can be chosen as

a bound on fy(t,y) using any matrix norm, i.e. L = sup(t,y)∈R ‖fy(t,y)‖.

For Hadamard well-posedness of (1.2) it remains to guarantee the continuous

dependency on the input data. For IVPs, the input data are given by the initial

value ys and the right hand side f(t,y).

Theorem 1.7 Let f(t,y), g(t,y) be continuous on the open set D and f(t,y) Lip-

schitz continuous in y with Lipschitz constant L. Suppose that

‖f(t,y) − g(t,y)‖ ≤ ε ∀(t,y) ∈ D.

If (t,y(t)) defined by the ODE of (1.2) and (t,u(t)) defined by

u̇(t) = g(t,u(t))

lie in D, then

‖y(t) − u(t)‖ ≤ {‖y(ts) − u(ts)‖ + aε} exp (L(t− ts)).

Proof See Shampine and Gordon [111]. �
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1.2 Derivatives of IVP solutions with respect to initial

values

By y(t; ts,ys) we denote explicitly the dependency of the solution y(t) of (1.1) on the

initial condition y(ts) = ys. This section is devoted to the derivatives of the solution

y(t; ts,ys) at the final time t = tf with respect to ys, or some subspace direction,

and the derivatives of a functional output on y(tf ; ts,ys) with respect to ys.

1.2.1 Forward variational Initial Value Problem

Theorem 1.8 Let f(t,y) be continuous on the open set D and exhibit a first-order

partial derivative fy(t,y) that is continuous on D. Then, the unique solution y(t) =

y(t; ts,ys) of (1.1) is continuously differentiable in t and (ts,ys) ∈ D. Furthermore,

the derivative W (t) = ∂y(t; ts,ys)/∂ys of the solution y(t; ts,ys) with respect to the

initial value ys solves the IVP in matrix form

Ẇ (t) = fy(t,y(t))W (t), W (ts) = I (1.3)

where I is the d× d unit matrix.

Proof See Hartman [69]. �

Due to the assumptions of Theorem 1.8 on f(t,y), the right hand side of (1.3)

and its partial derivative with respect to W are continuous in (t,W ). Hence, the

solution W (t) exists uniquely and is continuously differentiable in t, cf. Theorem 1.5.

It describes the dependency of y(t) at any time t ∈ [ts, tf ] on the whole initial state

vector ys. In case that the derivative of y(t) with respect to a subspace direction

v ∈ R
d×1 of the whole initial state vector is of interest, the vector-valued derivative

w(t) = W (t)v solves the so-called forward variational IVP

ẇ(t) = fy(t,y(t))w(t), t ∈ [ts, tf ], w(ts) = v. (1.4)

For a criterion of interest J on y(tf ; ts,ys) (see Definition 1.3), the derivative

∂J(y(tf ; ts,ys))/∂ys of J with respect to the initial value ys is given by

∂J(y(tf ; ts,ys))/∂ys = J ′(y(tf))W (tf) (1.5)

where W (t) solves (1.3). Alternatively, it can be obtained by solving a so-called

adjoint IVP which will be in the focus of the following section.

1.2.2 Adjoint Initial Value Problem

In case that the derivative of a subspace direction r ∈ R
d×1 of the whole solution

y(tf ; ts,ys) with respect to the initial state vector ys is of interest, it is more efficient

to solve the so-called adjoint variational IVP

λ̇(t) = −f⊺
y(t,y(t))λ(t), t ∈ [ts, tf ], λ(tf) = r (1.6)

5



1 Theory of Initial Value Problems

backwards in time. Solving (1.6) for r = ei with i = 1, . . . , d yields the solutions

λi(t) and one obtains (rowwise) the derivative Λ⊺(t) := ∂y(tf ; ts,ys)/∂y(t) of the

whole final state y(tf) with respect to the solution y(t) at any time t ∈ [ts, tf ]. Hence,

Λ(t) solves the IVP in matrix form

Λ̇(t) = −f⊺
y(t,y(t))Λ(t), t ∈ [ts, tf ], Λ(tf) = I (1.7)

and describes the dependency of the final state y(tf) on y(t) at any t ∈ [ts, tf ].

Only in this chapter, Λ(t) denotes the matrix that is composed of the rows λi(t).

Everywhere else in this thesis, Λ(t) will denote a vector-valued function of bounded

variation.

Theorem 1.9 With the assumptions of Theorem 1.8 and the solution y(t) of (1.1),

the solutions W (t) of (1.3) on [ts, tf ] and Λ(t) of (1.7) are related by

Λ⊺(t)W (t) = W (tf), t ∈ [ts, tf ]

and, in particular, by Λ⊺(ts) = W (tf).

Proof From the ODE of (1.3) we obtain for any t ∈ [ts, tf ]

∫ t

ts

Λ⊺(τ)
[
Ẇ (τ) − fy(τ,y(τ))W (τ)

]
dτ = 0.

Integration by parts yields

0 = Λ⊺(t)W (t) − Λ⊺(ts)W (ts) −

∫ t

ts

[
Λ̇(τ) + f⊺

y(τ,y(τ))Λ(τ)
]⊺

W (τ)dτ.

With the ODE of (1.7) and the initial conditions of (1.3) and (1.7) the assertions

follow. �

Aside from (1.5), the derivative ∂J(y(tf ; ts,ys))/∂ys of a criterion J on y(tf ; ts,ys)

is also given by the transposed solution λ⊺(ts) of the so-called adjoint IVP

λ̇(t) = −f⊺
y(t,y(t))λ(t), t ∈ [ts, tf ] (1.8a)

λ(tf) = J ′(y(tf))
⊺ (1.8b)

solved backwards in time. Note that by the adjoint approach, the derivative of a

scalar criterion with respect to the initial state vector is given by solving a single

IVP, whereas by the forward approach a system of d IVPs has to be solved.

From now on, we assume that the right hand side f(t,y) of IVP (1.1) satisfies at

least the assumptions of Theorem 1.5 and that the final time tf is given such that

[ts, tf ] ⊆ R. From Chapter 3 on, we suppose additionally that the assumptions of

Theorem 1.8 are fulfilled.
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1.3 Conditioning of Initial Value Problems

A crucial property of IVPs is their inherent conditioning, or also called stability.

It specifies the sensitivity of the IVP solution with respect to input perturbations,

i.e. it describes how small changes in the input data affect the output of the IVP.

Usually, for mathematical problems the term ‘conditioning’ is used whereas the

term ‘stability’ refers to the corresponding property of numerical algorithms. In the

context of differential equations, ‘stability’ is used for both, the problem and the

numerical method for solving it. The following definition of the problem stability

can be found, for example, in Heath [71] and Strehmel and Weiner [117].

Definition 1.10 A solution y(t) of the ODE (1.1a) is said to be (Liapunov-) stable

if for every ε > 0 there exists a δ > 0 such that

u(t) solves (1.1a) and ‖u(ts) − y(ts)‖ ≤ δ ⇒ ‖u(t) − y(t)‖ ≤ ε ∀t ≥ ts.

If additionally ‖u(t) − y(t)‖ → 0 as t → ∞, then y(t) is said to be asymptotically

stable. The solution y(t) is said to be unstable, if it is not stable.

The stability of an IVP solution is, amongst the stability of the numerical algo-

rithm used to solve the IVP, crucial for the accuracy of the computed approximation.

Introduced errors during the computations are either reduced (asymptotically sta-

ble), maintained (stable) or accumulated (unstable).

The stability of an IVP solution can be determined in first order by the forward

variational IVP (1.4): The solution y(t) of (1.1) is stable if, in Definition 1.10,

‖v‖ ≤ δ implies that ‖w(t)‖ ≤ ε for the solution w(t) of (1.4). For a linear ODE with

constant matrix A, cf. Definition 1.2, the stability of its solution is characterized by

the eigenvalues µi of A, 1 ≤ i ≤ d.

• If Reµi < 0 for all i = 1, . . . , d, then the solution is asymptotically stable.

• If Reµi ≤ 0 for all i = 1, . . . , d and Reµi < 0 for any µi that is not simple,

then the solution is stable.

• If for any i ∈ {1, . . . , d} holds Reµi > 0, then the solution is unstable.

For general ODEs of the form (1.1a) an indication of the stability of a solution y(t)

can be obtained by the time-varying eigenvalues µi(t) of the Jacobian fy(t,y(t)).

But the gained information is valid only locally in (t,y(t)).

To determine the stability of the final solution y(tf) of (1.1) in a criterion of

interest J , i.e. in the output data J(y(tf)), the adjoint IVP (1.8) can be used.

According to Section 1.2 we have

J(u(tf)) − J(y(tf))=̇J
′(y(tf))[u(tf) − y(tf)] = J ′(y(tf))w(tf)

=J ′(y(tf))W (tf)v = J ′(y(tf))Λ
⊺(tf)v = λ⊺(tf)v

7
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such that if, in Definition 1.10, ‖v‖ ≤ δ implies that ‖λ⊺(tf)v‖ = |λ⊺(tf)v| ≤ ε, then

y(tf) is stable in J with respect to perturbations in ys. The effect of intermediate

perturbations is described by λ(t) such that for t ∈ [ts, tf ] also ‖λ(t)‖ ≤ ε should be

satisfied, see description on page 48.

1.3.1 Condition number

The stability (conditioning) of an IVP solution in a criterion can be summarized by

a scalar number limiting the ratio of changes in the output J(y(tf)) and changes in

the input ys and f(t,y). Using the L1-norm we define the condition number by

κ := ‖λ(ts)‖1 + ‖λ‖L1(ts,tf )d =
d∑

i=1

|λi(ts)| +
d∑

i=1

∫ tf

ts

|λi(t)| dt.

The first term reflects the condition number with respect to changes in the initial

values ys and the second with respect to changes in the right hand side f(t,y). Due

to the norm, the condition number κ does not take into account the effects of error

cancellations. Therefore, it is a worst-case quantity. This definition of the condition

number is also used by Cao and Petzold [43] and Lang and Verwer [84].

1.4 Stiffness of Initial Value Problems

In many fields of application, for example in chemical engineering, as well as in the

spatial discretization of instationary Partial Differential Equations (PDEs) using a

method of lines approach ODEs appear that exhibit a certain property which is called

stiffness. This property was first mentioned by Curtiss and Hirschfelder [46] who

described it by the fact that the implicit Backward Differentiation Formula (BDF)

methods work much better on these ODEs than explicit approaches. Unfortunately,

there exists no general definition. Usual characterizations of stiffness along a solution

y(t) of (1.1a) use the eigenvalues µi(t) of fy(t,y(t))

• maxRe µi(t)<0 |Reµi(t)| ≫ minRe µi(t)<0 |Reµi(t)|

• (tf − ts) min1≤i≤d Reµi(t) ≪ −1.

Stiffness is not a property of the ODE right hand side but of the IVP which can

be stiff for certain initial values and/or certain time intervals. Phenomenological, a

stiff IVP has slowly changing solution components and others that, in the transient

phase, approach fastly a decaying steady state. For more aspects on stiff IVPs we

refer to Hairer and Wanner [68], Shampine [109] and Strehmel and Weiner [117].

Due to Remark 1.6 stiff ODEs exhibit a large Lipschitz constant L, since for

any matrix norm it holds that ‖fy(t,y(t))‖ ≥ ̺(fy(t,y(t))) with spectral radius

̺(fy(t,y(t))) := max1≤i≤d |µi(t)| ≥ max1≤i≤d |Reµi(t)|. Hence, explicit integration

methods have to use very small stepsizes in regions of stiffness and are not recom-

mended for practical use. Stiff IVPs call for another stability concept of numerical

methods, the so-called A-stability, see end of Section 2.3.1.
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2 Numerical solution of Initial Value

Problems

This chapter focuses on the numerical solution of Initial Value Problems (IVPs)

in Ordinary Differential Equations (ODEs) by Linear Multistep Methods (LMMs)

based on Backward Differentiation Formulas (BDF). In the first part we state the

BDF method. In the second section we define the different error types appearing in

multistep methods before we come in the third part to the theoretical properties of

BDF methods with constant order and stepsize and of BDF methods with variable

order and stepsize. In the last part of this chapter we focus on practical aspects of

BDF-type methods.

2.1 Backward Differentiation Formula method

The general form of LMMs with variable order and variable stepsize is defined below.

Definition 2.1 (Linear Multistep Method) For a time grid ts = t0 < · · · <

tN = tf , the Linear Multistep Method (LMM) with start values y1, . . . ,ym for fixed

m determines successively aproximations {yn}
N
n=m+1 to the solution y(t) of the IVP

(1.1) by

kn∑

i=0

α
(n)
i yn+1−i = hn

kn∑

i=0

β
(n)
i f(tn+1−i,yn+1−i), n = m, . . . ,N − 1 (2.1)

where α
(n)
0 6= 0 and

∣∣∣α(n)
k

∣∣∣+
∣∣∣β(n)

k

∣∣∣ > 0. The LMM is called explicit if β
(n)
0 = 0 and

implicit if β
(n)
0 6= 0.

The term ‘linear’ refers to the fact that yn and fn := f(tn,yn) enter the in-

tegration formula linearly. Most integration methods are linear, e.g. Runge-Kutta

methods.

The LMMs based on Backward Differentiation Formulas were invented by Curtiss

and Hirschfelder [46] in 1952 and became popular for stiff IVPs with the work of

Gear [61] in 1971. The basic idea is to interpolate past approximations and an

unknown new approximation by a polynomial of a certain order and to require

that the polynomial satisfies the ODE in the new time point. We state here the

BDF method in its general form as presented, for example, in Shampine [109].

This form uses the Lagrange representation of the interpolation polynomial and

allows to use variable stepsizes and variable orders. It is particularly qualified for
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2 Numerical solution of Initial Value Problems

analyzing purposes, whereas the Newton representation of interpolation polynomials

is preferred for practical implementations, see Section 2.4.

Definition 2.2 (Backward Differentiation Formula method) For a time grid

ts = t0 < · · · < tN = tf , the Backward Differentiation Formula (BDF) method

with a self-starting procedure determines successively approximations {yn}
N
n=1 to

the solution y(t) of IVP (1.1) by

y0 = ys (2.2a)

kn∑

i=0

α
(n)
i yn+1−i = hnf(tn+1,yn+1), n = 0, . . . , N − 1 (2.2b)

with stepsizes hn = tn+1 − tn and orders kn. The coefficients α
(n)
i are determined by

α
(n)
i = hnL̇

(n)
i (tn+1) (2.3)

where the fundamental Lagrange polynomials are

L
(n)
i (t) =

kn∏

j=0,j 6=i

t− tn+1−j

tn+1−i − tn+1−j
. (2.4)

In each integration step, the BDF method provides a continuous approximation to

the exact solution y(t) of (1.1) in a natural way using the interpolation polynomials

y(t)
∣∣
t∈[tn,tn+1]

≈ Pn+1(t) :=

kn∑

i=0

L
(n)
i (t) yn+1−i, (2.5)

also known as dense output, see Section 2.4.2.

BDF methods are implicit LMMs since β
(n)
0 = 1 and β

(n)
i = 0 for i = 1, . . . , kn

in Definition 2.1 and normalized with respect to β
(n)
0 . In other presentations, e.g.

Lambert [83], LMMs are normalized by assuming α
(n)
0 = 1.

In the solution of implicit LMMs two difficulties arise: They need appropriate

start values and an approach to solve implicit, nonlinear equations.

During the starting procedure of BDF methods, the start values y1, . . . ,ym (with

m fixed) have to be determined, since the IVP (1.1) only provides y0 = ys. The

self-starting procedure, already mentioned in Definition 2.2, begins with k0 = 1

(implicit Euler) and increases successively the order of the integration steps until the

maximum order is reached. An alternative would be to use Runge-Kutta methods

to determine y1, . . . ,ym. In this thesis only self-starters are considered, for Runge-

Kutta starters we refer to Bauer [16].

Since the BDF method is implicit and the right hand side f(t,y) is nonlinear, in

each integration step (2.2b) a nonlinear system of equations has to be solved. The

BDF equation (2.2b) possesses a unique solution yn+1 if stepsize hn and order kn

are chosen such that
∣∣∣hn/α

(n)
0

∣∣∣ · ‖fy(tn+1,yn+1)‖ < 1 (2.6)
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is satisfied, see e.g. Henrici [72]. The solution yn+1 of the BDF equation is usually

approximated by a Newton-type method, see Section 2.4.3.

To state all crucial assumptions for BDF methods with variable order and variable

stepsize at one place, we already postulate that beside (2.6)

• the stepsize ratios ωi := hi/hi−1 are bounded

• the coefficients α
(n)
i are bounded

due to appropriate choices of the stepsizes hn and orders kn, see also Section 2.3.2.

2.2 Errors in Linear Multistep Methods

The numerical time stepping method (2.1) approximates the solution of the IVP

(1.1) by a finite number of calculations. The difference between the exact solution

y(t) of (1.1) at tn and its approximation yn by the LMM is of great interest to

quantify the reliability of the method. Following the presentation of Shampine and

Gordon [111] we define the global and local error.

Definition 2.3 The global error GE at tn+1 is defined by

GE(tn+1) := y(tn+1) − yn+1

where yn+1 is given by (2.1) and y(t) is the exact solution of (1.1).

Definition 2.4 The local error LE at tn+1 is defined by

LE(tn+1) := un(tn+1) − yn+1 (2.7)

where yn+1 is given by (2.1) and un(t) is the exact solution of the local IVP

u̇n(t) = f(t,un(t)), t ∈ (tn, tn+1]

un(tn) = yn.

Analogous to one-step methods, the local error of multistep methods describes the

error produced by a single integration step. For details on one-step integration

methods and their errors we refer to Butcher [41], Hairer et al. [67] and Hairer

and Wanner [68]. Unfortunately, there is no unique naming convention for errors

in LMMs. For example, the global error of Definition 2.3 is called discretization

error by Henrici [72, 73], global truncation error or accumulated truncation error

by Lambert [83]. Another important term is that of the local truncation error. Its

definition follows that of Lambert [83].

Definition 2.5 For continuously differentiable functions y(t), the linear difference

operator associated to the n-th step of the LMM (2.1) is defined by

L(n)(y; tn+1, hn+1−kn
, . . . , hn) :=

kn∑

i=0

α
(n)
i y(tn+1−i) − hn

kn∑

i=0

β
(n)
i ẏ(tn+1−i)

with tn+1−i = tn+1 −
∑i

j=1 hn+1−j for i = 0, . . . , kn.

11
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Definition 2.6 The local truncation error LTE at tn+1 is defined by

LTE(tn+1) := L(n)(y; tn+1, hn+1−kn
, . . . , hn) (2.8)

where y(t) is the exact solution of (1.1).

Thus, the local truncation error is given by inserting the exact solution into the

difference equation. It measures how well the integration step of the LMM (2.1)

models the ODE (1.1a) locally.

Definition 2.7 (Localizing Assumption) Assume that the past values of the n-th

step of the LMM (2.1) are exact, i.e. yn+1−i = y(tn+1−i) for i = 1, . . . , kn.

With the uniqueness assumption on the solution of (1.1) and the Localizing As-

sumption (Definition 2.7) the local error definition by Hairer et al. [67] equal with

that of Definition 2.4. The local error and the local truncation error are related in

the following way.

Lemma 2.8 Let f(t,y) be continuous in t and continuously differentiable in y. Let

y(t) be the exact solution of (1.1) and yn+1 determined by the n-th step of (2.1)

under the Localizing Assumption. Then, the local error and the local truncation error

at tn+1 are related by

(
α

(n)
0 I − hnfy(tn+1,η)

)
LE(tn+1) = LTE(tn+1) (2.9)

where η lies in the segment between un(tn+1) = y(tn+1) and yn+1.

Proof Substracting (2.1) from (2.8), using the Localizing Assumption (Definition

2.7), the Mean Value Theorem and the definition of the local error (Definition 2.4),

the assertion is shown. �

So far, we have assumed that the nonlinear equations of the LMM (2.1) are solved

exactly. But in practice that is not the case and so we define another type of error.

Definition 2.9 For an approximation y̌n+1 of the exact solution yn+1 of the n-th

step of the LMM (2.1) the residual of the nonlinear equation is defined by

δn+1 := α
(n)
0 y̌n+1 − hnf (tn+1, y̌n+1) +

kn∑

i=1

{
α

(n)
i yn+1−i − hnβ

(n)
i f (tn+1−i,yn+1−i)

}
.

For time-continuous approximations to the solution of (1.1) we define global error

function and defect. Especially, the latter will play a cruicial role in this thesis.

Definition 2.10 For any approximation z(t) to the solution of (1.1), the global

error function is defined by

e(t) := y(t) − z(t).

12



2.3 Theoretical foundations of BDF methods

Definition 2.11 For any approximation z(t) to the solution of (1.1), the defect is

defined by

r(t) := ż(t) − f(t,z(t)).

This definition of the defect given by Gear [61] is more general than that of

Shampine and Gordon [111]. Both use the term ‘residual’ instead of ‘defect’. But,

to avoid confusions with the residual of Definition 2.9, we will stay with the term

‘defect’ which is also used by Hairer et al. [67]. The defect is available at any point

t ∈ [ts, tf ] and measures to which extent the approximation z(t) does not satisfy the

ODE (1.1a).

If the approximation z(t) passes through {y̌n}
N
n=1 we can include the error due to

the time discretization and that due to the approximate solution of the nonlinear

equation into a single quantity.

2.3 Theoretical foundations of BDF methods

This section recalls the theoretical properties of constant and variable LMMs, inves-

tigates the errors defined in the last section and pays a particular attention to BDF

methods. It is assumed that the nonlinear equations of the LMM (2.1) are solved

exactly, unless otherwise indicated. The term ‘constant’ means to use the same order

and stepsize for all integration steps except for the starting steps, whereas the term

‘variable’ adverts to the use of changing orders and stepsizes during the integration.

In practical implementations of BDF methods, of course, both order and stepsize

are chosen adaptively to improve the performance, see Section 2.4.

2.3.1 Constant BDF methods

In this section, we investigate the asymptotic behavior of the errors defined in the

previous section. To this end, we consider a so-called constant LMM with constant

order k and constant stepsizes h

k∑

i=0

αiyn+1−i = h
k∑

i=0

βif(tn+1−i,yn+1−i), n = m, . . . ,N − 1 (2.10)

where the start values y1, . . . ,ym (with m ≥ k − 1 fixed) are given by a starting

procedure. In this sense, a so-called constant BDF method reads

k∑

i=0

αiyn+1−i = hf(tn+1,yn+1), n = m, . . . ,N − 1. (2.11)

To ease the notion in this section, we consider a scalar IVP.

13
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Convergence of constant BDF methods

We now focus on how the approximations {yn}
N
n=0 generated by a constant LMM

converge to the exact solution y(t) as the stepsize h tends to zero. This convergence

analysis is with respect to the limit as h→ 0 and n→ ∞ while nh = t− ts remains

fixed. We follow mainly the presentation of Lambert [83], but use the coefficient

numbering and corresponding definitions of Shampine [109].

Definition 2.12 The constant LMM (2.10) is said to be convergent, if, for all IVPs

(1.1) where the right hand side f(t, y) is continuous in t and Lipschitz continuous

in y, holds

lim
h→0

nh=t−ts

yn = y(tn)

for all t ∈ [ts, tf ] and all start values y0, . . . , ym with limh→0 yn = ys, n = 0, . . . ,m.

Definition 2.13 The LMM (2.10) is said to be convergent of order q, if, for all

IVPs (1.1) with sufficiently smooth right hand side, there exists a positive ĥ such

that

|y(tn) − yn| ≤ Khq for h ≤ ĥ

whenever the start values satisfy

|y(tn) − yn| ≤ Ksh
q for h ≤ ĥ, n = 0, . . . ,m.

The latter definition can be found e.g. in Hairer et al. [67]. As we will see later (cf.

Theorem 2.20), the necessary and sufficient conditions for LMMs to be convergent

are to be consistent and zero-stable.

Definition 2.14 The characteristic polynomials of the LMM (2.10) are

ρ(ξ) :=

k∑

i=0

αiξ
k−i, σ(ξ) :=

k∑

i=0

βiξ
k−i.

Definition 2.15 The linear difference operator of Definition 2.5 and the associated

LMM (2.10) are said to be of (consistency) order q, if

L(y; tn+1, h) := L(n)(y; tn+1, h, . . . , h) = O(hq+1)

holds for sufficiently smooth functions y(t) and h→ 0.

Definition 2.16 The LMM (2.10) is said to be consistent, if it has order q ≥ 1.

Definition 2.16 justifies that the order q in Definition 2.15 is called consistency

order. For continuously differentiable functions y(t) of sufficiently high order, one

14



2.3 Theoretical foundations of BDF methods

obtains by Taylor series expansions around tn+1 of y(tn+1−i), ẏ(tn+1−i) for i =

1, . . . , k the linear difference operator as

L(y; tn+1, h) = C0y(tn+1) + C1hy
′(tn+1) + · · · + Cqh

qy(q)(tn+1) + . . .

with the following coefficients being independent of h

C0 =
k∑

i=0

αi, C1 = −
k∑

i=1

{iαi + βi} , Cq = (−1)q
k∑

i=1

{
iqαi

q!
+

iq−1βi

(q − 1)!

}
.

Hence, the LMM is consistent if C0 = ρ(1) = 0 and C1 = ρ′(1) − σ(1) = 0 (since

ρ′(1) = kρ(1)−
∑k

i=0 iαi). By construction, constant BDF methods with order k are

of consistency order q = k, since C0 = · · · = Ck = 0 and Ck+1 6= 0. Recalling Defi-

nition 2.6, the consistency of a method limits the magnitude of the local truncation

error perpetrated in each integration step

LTE(tn+1) = L(y; tn+1, h)=̇Cq+1h
q+1y(q+1)(tn+1). (2.12)

Due to Lemma 2.8 the local error is limited to the same order q + 1 in h.

Definition 2.17 For an LMM (2.10) of order q, the error constant C reads

C := Cq+1/σ(1).

This definition of the error constant by Henrici [72] is invariant with respect to

scaling of the formula (2.10).

Consistent multistep methods do not necessarily give good approximations to the

exact solution of (1.1). To limit the error propagation by the multistep method, its

zero-stability plays a crucial role.

Definition 2.18 The LMM (2.10) is said to be zero-stable, if all roots of ρ(ξ) lie

on or inside the unit circle and those on the circle are simple.

Zero-stability ensures that local inaccuracies do not propagate in a disastrous way.

Henrici [73] and Hairer et al. [67] refer to zero-stable methods as stable methods. In

1972, Cryer [45] showed the following theorem.

Theorem 2.19 Constant BDF methods (2.11) are zero-stable for k ≤ 6 and unsta-

ble for k ≥ 7.

In 1956, Dahlquist [47] proved the following fundamental convergence theorem.

Theorem 2.20 The necessary and sufficient conditions for the LMM (2.10) to be

convergent are that it is consistent and zero-stable.
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The proof of the sufficiency gives rise to an a priori bound on the discrepancy of

the approximation yn to the exact solution y(tn). This bound was further improved

by Henrici [72] and does not suppose that the nonlinear equations in (2.10) are solved

exactly. Considering particularly the BDF method (2.11), each yn+1 is assumed to

solve a perturbed equation

k∑

i=0

αiyn+1−i = hβ0f(tn+1, yn+1) + δn+1,

instead of (2.11), see also Definition 2.9 and rename y̌n+1 by yn+1.

Theorem 2.21 Let the exact solution y(t) of (1.1) be (k + 1)-times continuously

differentiable and let the stepsize h satisfy h
∣∣β0α

−1
0

∣∣L < 1. Then, for t = tn ∈ [ts, tf ]

fixed, the a priori bound on the global error GE(tn) = y(tn) − yn reads

|y(tn) − yn| ≤ Υ∗ · exp (LΥ∗ |β0| (tn − ts)) ·

{
Akε+ (tn − ts)

(
δ

h
+ |Ck+1|Y h

k

)}

with maximal error ε := max0≤n≤m |y(tn) − yn| in the start values, maximal residual

δ := maxn=m,...,N−1 |δn+1| of the nonlinear equations and Y := maxt∈[ts,tf ]

∣∣y(k+1)(t)
∣∣,

A :=
∑k

i=0 |αi|, Υ∗ := Υ/(1 − h
∣∣β0α

−1
0

∣∣L) where Υ := supi=0,1,... |υi| <∞ and

υ0 + υ1ξ + υ2ξ
2 + · · · :=

1

ρ(ξ)
.

Proof See Henrici [72], also for the boundedness of Υ. �

Thus, if the nonlinear equations in (2.11) are solved exactly, i.e. δ = 0 holds, the

BDF method (2.11) is convergent of order p = k provided that the error ε in the

start values is bounded by Ksh
k, cf. Definition 2.13. Thus, the convergence order

coincides with the consistency order.

The a priori bound on the global error given by Theorem 2.21 can also be written

in terms of local truncation errors and residuals of the nonlinear equations. For a

system of IVPs the global error GE(tN ) = y(tf) − yN at the final state is bounded

by

‖GE(tN )‖ ≤ K

{
max

0≤n≤m
‖GE(tn)‖ +

1

h

(
max

0≤n≤N
‖δn‖ + max

0≤n≤N
‖LTE(tn)‖

)}

(2.13)

with constant K := Υ∗ · exp (LΥ∗ |β0| (tf − ts)) max {Ak, tf − ts}.

Strong stability of constant BDF methods

Another important property of LMMs is their strong stability.

Definition 2.22 The LMM (2.10) is said to be strongly stable, if all roots of ρ(ξ)

lie inside the unit circle except for the principal root ξ1 = 1.
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2.3 Theoretical foundations of BDF methods

It can be verified by simple calculations that

Lemma 2.23 The BDF method (2.11) is strongly stable.

The following theorem will play an essential role in Section 7.1.

Theorem 2.24 For a linear IVP of the form

ẏ(t) = G(t)y(t) + p(t), y(ts) = ys

let the matrix G(t) and the vector p(t) be continuously differentiable in t ∈ [ts, tf ].

Consider the BDF method as a particular consistent and zero-stable method that is

strongly stable. Furthermore, let the start values y0, . . . ,yk−1 generated by a starting

procedure satisfy

yn − ys = εn + O(h), n = 0, . . . , k − 1 (2.14)

where the vectors εn are arbitrary. Then, for t = tn ∈ [ts, tf ] fixed, as h→ 0,

yn = y(tn) + W (tn)ζ + θ

(
K1 +

K2

tn + h− ts

)
h

where ‖θ‖ < 1 and K1, K2 are certain constants. The vector ζ is

ζ :=
1

ρ′(1)

k−1∑

i=0

γi εk−1−i, where

k−1∑

i=0

γi ξ
k−1−i :=

ρ(ξ)

ξ − 1

and W (t) is the fundemental solution matrix of

Ẇ (t) = G(t)W (t), W (ts) = I.

Proof See Henrici [73]. �

This theorem describes the asymptotic behavior of the global error if the start

values for a constant BDF method are error-prone independently of the stepsize h

and the IVP at hand is linear.

Absolute stability of constant BDF methods

The concept of absolute stability takes care of the error propagation through the

right-hand-side values f(tn+1,yn+1) in (2.2b) which is not treated by the zero-

stability but plays a crucial role for stiff IVPs described in Section 1.4. The ab-

solute stability does not reduce the stepsize h to zero but rather examines the error

propagation for increasing n. Absolute stability leads directly to the concepts of A-

and A(α)-stability which are crucial for stiff IVPs and guarantee moderate stepsizes

also in regions of stiffness. For a general description we refer to Lambert [83] and

Shampine [109].
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2.3.2 Variable BDF methods

In this section we briefly consider so-called variable LMM (2.1). Their variable

stepsizes and orders are the basis for the efficient solution of IVPs in practice. In

the interest of brevity we just mention the most important issues and refer to the

literature for more details, e.g. to Hairer et al. [67]. Firstly, we leave the order

constant, i.e. kn = k in (2.1), and only vary the stepsize.

Definition 2.25 The variable stepsize LMM (2.1) with constant order k is said to

be of (consistency) order q, if

k∑

i=0

α
(n)
i p(tn+1−i) = hn

k∑

i=0

β
(n)
i ṗ(tn+1−i)

holds for all polynomials p(t) of degree ≤ q and for all partitions {tn}
N
n=0.

For variable stepsize BDF methods the coefficients α
(n)
i depend on the stepsizes

hn+1−k, . . . , hn according to (2.3). By construction, also the variable stepsize BDF

methods are of consistency order q = k. If y(t) is sufficiently smooth and the

stepsize ratios ωi := hi/hi−1 as well as the coefficients α
(n)
i are bounded, then the

local truncation error of Definition 2.6 is limited due to the consistency order

LTE(tn+1) = L(n)(y; tn+1, hn+1−k, . . . , hn)

= (−1)k+1 1

(k + 1)!





k∑

i=1




i−1∑

j=0

hn−i




k+1

α
(n)
i





y(k+1)(tn+1) + R = O(hk+1
max)

(2.15)

for hmax := maxn hn and hmax → 0 due to Taylor series expansions. For constant

stepsizes the above leading term coincides with (2.12).

Definition 2.26 The variable stepsize LMM (2.1) with constant order k is said to

be zero-stable, if

‖An+l . . .An‖ ≤M

for all n and l ≥ 0 where

An =




−α̌
(n)
1 −α̌

(n)
2 · · · · −α̌

(n)
k

1 0 · · · · 0

1 · 0
. . .

...
...

1 0




with α̌
(n)
i := α

(n)
i /α

(n)
0 .
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A convergence theorem for variable stepsize LMMs can be found in Hairer et

al. [67]. It assumes, apart from consistency, zero-stability and suitable start values,

that the coefficients α
(n)
i , β

(n)
i and the ratios ωn are bounded. Conditions on the

variable stepsizes that guarantee zero-stability and boundedness have been studied

by various authors, see e.g. Hairer et al. [67] and references therein. The coefficients

α
(n)
i , β

(n)
i are also influenced by the order kn such that order changes may improve

the zero-stability of the variable BDF method. Further aspects and investigations

can be found e.g. in Shampine [109] and references therein as well as in Gear and

Watanabe [63]. The theoretical foundation in this area is still not satisfactory, but

practical experiences provide suitable selection mechanisms for hn and kn.

2.4 Practical aspects of BDF-type methods

In this section, we describe several strategies that are important for practical im-

plementations of BDF-type methods. We will do this by means of the variable

order variable stepsize BDF method DAESOL-II, see Albersmeyer and Bock [5] and

Albersmeyer [3]. This BDF integrator for IVPs in linear-implicit Differential Al-

gebraic Equations (DAEs) of index one is programmed in C++ and part of the

SolvIND integrator suite, see Albersmeyer and Kirches [6]. The strategies concern-

ing the solution of IVPs in ODEs go back to Enke [54], Bleser [25] and Eich [52],

the DAE-extensions to Eich [52, 53] and the derivative generation to Bauer [16] and

Albersmeyer [2, 3]. In this section, we describe only those strategies concerning the

solution of IVPs in ODEs that are important for the thesis at hand. The issues

related to derivative generation will be addressed in Section 3.4.2. The implemen-

tation is based on the Newton representation of the interpolation polynomial and

is designed to guarantee that the local truncation error is smaller than a prescribed

tolerance while the computational effort is as low as possible.

2.4.1 Estimation of the local truncation error

Generally, the local truncation error of a multistep method with consistency order q

can be estimated by approximating the derivative y(q+1) in the leading term of

LTE(tn+1) using divided differences. For BDF methods, the divided differences are

in terms of y.

We spend here some words on the estimation of the local truncation error as re-

alized in DAESOL-II since it will play an important role in Part III of this thesis.

However, the ideas have already been described several times, see e.g. Bleser [25],

Eich [53], Albersmeyer [3] and Brenan et al. [38]. In the realization DAESOL-II of

a variable order variable stepsize BDF method the local truncation error of Defini-
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tion 2.6 is approximated using its two leading terms

LTE(tn+1) = −hn

(
1

ψkn+1(n+ 1)
Φex

kn+2(n + 1)

+

kn+1∏

i=1

ψi(n+ 1)∇kn+2[y(tn+1),y(tn+1),y(tn), . . . ,y(tn−kn
)]

)

(2.16)

with ψi(n+1) := tn+1−tn+1−i = hn+· · ·+hn+1−i = ψi−1(n)+hn, divided differences

∇0y(tn) := y(tn)

∇i+1[y(tn), . . . ,y(tn−i−1)] :=
∇i[y(tn), . . . ,y(tn−i)] −∇i[y(tn−1), . . . ,y(tn−i−1)]

tn − tn−i−1

and additionally ∇1[y(t),y(t)] := ẏ(t) as well as modified divided differences

Φex
1 (n) := y(tn)

Φex
i (n) := ψ1(n) · · · · · ψi−1(n)∇i−1[y(tn), . . . ,y(tn−i+1)]

for i > 1. The equivalence of the leading terms in (2.15) and (2.16) is due to the

standard interpolation theory, see e.g. Bleser [25] or Stoer and Bulirsch [116]. In

practice, the exact solution values y(tn+1−i) for i = 0, . . . , kn − 1 in (2.16) have

to be replaced by their approximations yn+1−i to obtain an estimate L̂TE(tn+1)

of LTE(tn+1). For constant stepsize the estimate Φkn+2(n + 1) of Φex
kn+2(n + 1) is

asymptotically correct as shown by Gear [62].

In each integration step, it is guaranteed by a suitable choice of stepsize hn and

order kn that ∥∥∥L̂TE(tn+1)
∥∥∥ ≤ RelTol (2.17)

for a user given relative tolerance RelTol. The selection of stepsize and order is based

on a sophisticated control strategy that has its origin in Bleser [25] and has been

improved by Eich [52]. This strategy uses the formula of the local truncation error

for variable stepsizes to check if the proposed stepsize after a step acceptance might

result in an acceptable next step. In the case of a step rejection due to a solution

failure of the Newton-type method applied to the nonlinear BDF equation the control

strategy incorporates the convergence behavior of the Newton-type method. Its

superior performance in step numbers, order changes, step rejections, matrix updates

and rebuilds has been demonstrated by Bleser [25] and Eich [52, 53]. A detailed

description can also be found in Bauer [16] and Albersmeyer [3].

Remark 2.27 In practice, a weighted norm is used instead of the Euclidean norm

to regard possibly different orders of magnitude in the solution components. The

weighted norm reads

‖v‖s =

√√√√1

d

d∑

i=1

(
vi

si

)2
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where the scaling vector s ∈ R
d depends on the particular scaling method chosen

by the user. For example, the DASSL scaling (cf. Brenan et al. [38]) realized in

DAESOL-II uses si = |(yn)i|+aToli/RelTol on the subinterval [tn, tn+1] where aTol

is a user given vector of absolute tolerances and yn the last accepted trajectory value.

For further scaling methods of DAESOL-II we refer to Albersmeyer [3].

Controlling the local truncation error also limits the local error of the n-th inte-

gration step since, under the Localizing Assumption, Lemma 2.8 yields

‖LE(tn+1)‖ =̇
1

α
(n)
0

‖LTE(tn+1)‖ (2.18)

based on the Neumann series (see Theorem A.4) which theoretically supposes that

hn/α
(n)
0 ‖fy(tn+1,η)‖ < 1. Moreover, for constant stepsize it is α

(n)
0 =

∑kn

j=1 1/j

which implies α
(n)
0 ∈ [1, 2.45] since kn ≤ 6 due to Theorem 2.19. Hence, we obtain

‖LE(tn+1)‖ ≤ ‖LTE(tn+1)‖ for all orders kn and in particular for kn > 1 we gain

‖LE(tn+1)‖ ≤ 2/3 ‖LTE(tn+1)‖ since α
(n)
0 ≥ 3/2 in this case.

2.4.2 Continuous representation

A continuous representation of the approximate IVP solution is provided by the com-

position of the interpolation polynomials of each BDF integration step. This section

focuses on the error of the interpolation polynomial Pn+1(t) between integration

points t ∈ [tn, tn+1]. They arise from two sources: the interpolation error of the

polynomial through y(tn+1−kn
), . . . ,y(tn+1) and the error due to the approximation

of y(tn+1) by yn+1 generated by the BDF method.

Lemma 2.28 Let f(t,y) be continuous in t and continuously differentiable in y.

Let y(t) be the exact solution of (1.1) and yn+1 determined by the n-th step of (2.2)

under the Localizing Assumption. Then, it holds for t ∈ [tn, tn+1]

‖un(t) − Pn+1(t)‖ ≤

(
α

(n)
0

4
+ 1

)
‖LE(tn+1)‖ =̇

(
1

4
+

1

α
(n)
0

)
‖LTE(tn+1)‖

where un(t) is the exact solution of local IVP of Definition 2.4.

Proof Due to the Localizing Assumption and the uniqueness of the solution of (1.1)

it is un(t) = y(t) on [tn, tn+1], and in particular LE(tn+1) = un(tn+1) − yn+1 =

y(tn+1) − yn+1. This yields

‖un(t) − Pn+1(t)‖ =

∥∥∥∥∥y(t) − L
(n)
0 (t) yn+1 −

kn∑

i=1

L
(n)
i (t) y(tn+1−i)

∥∥∥∥∥

=

∥∥∥∥∥y(t) −
kn∑

i=0

L
(n)
i (t) y(tn+1−i) + L

(n)
0 (t)(y(tn+1) − yn+1)

∥∥∥∥∥

≤

∥∥∥∥∥y(t) −
kn∑

i=0

L
(n)
i (t) y(tn+1−i)

∥∥∥∥∥+
∣∣∣L(n)

0 (t)
∣∣∣ · ‖LE(tn+1)‖
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The interpolation error is given by Theorem A.2 and bounded by

∥∥∥∥∥y(t) −
kn∑

i=0

L
(n)
i (t) y(tn+1−i)

∥∥∥∥∥

=

∥∥∥∥∥
kn∏

i=0

(t− tn+1−i)∇
kn+1[y(t),y(tn+1), . . . ,y(tn+1−kn

)]

∥∥∥∥∥

≤

∥∥∥∥
ψ1(n+ 1)2

4
ψ2(n+ 1) · · · · · ψkn

(n+ 1)∇kn+1[y(t),y(tn+1), . . . ,y(tn+1−kn
)]

∥∥∥∥

≈
1

4
‖LTE(tn+1)‖

where we followed Eich [53]. Thus, the interpolation error is bounded by the lo-

cal truncation error. Furthermore, L
(n)
0 (t) is strictly monotonically increasing on

[tn, tn+1] with maximum L
(n)
0 (tn+1) = 1 at tn+1. Together with (2.18) the assertions

are shown. �

Hence, the BDF polynomials provide a continuous representation of the exact

solution that meets the concept of the natural interpolation as introduced in Bock

and Schlöder [34]. At least for orders kn > 1 and constant stepsize, the error of the

continuous representation within the interval [tn, tn+1] of the n-th integration step

is bounded by ‖LTE(tn+1)‖ since 1/4 + 1/α
(n)
0 < 1, cf. end of Section 2.4.1.

2.4.3 Solution of the nonlinear BDF equations

In each integration step of a BDF method (2.2), the solution yn+1 of the nonlinear

BDF equations (2.2b), i.e.

F
(n)
BDF(yn+1) := α

(n)
0 yn+1−i − hnf(tn+1,yn+1) +

kn∑

i=1

α
(n)
i yn+1−i = 0, (2.19)

has to be found for given past values yn+1−kn
, . . . ,yn. This system of equations

possesses a unique solution yn+1 if stepsize hn and order kn are chosen such that

(2.6) holds. In practical implementations, the nonlinear BDF equation (2.19) is

solved iteratively. Hence, a start value for the iteration has to be predicted and then

corrected to approximate the solution of (2.19). The correction can either be done by

fix point iteration or by a Newton-type method. The fix point iteration imposes less

computational effort per integration step, but may take very small steps especially

for stiff IVPs. Although the computational effort of a Newton-type method is bigger,

its convergence does not directly depend on stepsize hn and stiffness.

To predict a start value y
(0)
n+1 for the Newton-type method the interpolation poly-

nomial PP
n+1 of degree kn through the past values yn−kn

, . . . ,yn is evaluated at

tn+1

y
(0)
n+1 = yP

n+1 := PP
n+1(tn+1).
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2.4 Practical aspects of BDF-type methods

This predicted value yP
n+1 is, for sufficiently small hn, near the exact solution y∗

n+1

of (2.19), hence the start value y
(0)
n+1 = yP

n+1 should lie inside the local convergence

region of the Newton-type method. The iterates then are y
(i+1)
n+1 = y

(i)
n+1 + ∆y

(i)
n+1

with increments

∆y
(i)
n+1 = −J

(n)
BDF

(
y

(i)
n+1

)−1
F

(n)
BDF

(
y

(i)
n+1

)

for i = 0, . . . , sn − 1 where the Jacobian J
(n)
BDF of F

(n)
BDF is given by

J
(n)
BDF(y) = α

(n)
0 I − hnfy(tn+1,y).

In practice, the performance of a few iterations per integration step using an approx-

imation of the inverse of J
(n)
BDF(·) has turned out to be sufficient to get efficiently an

approximation to the solution of IVP (1.1), cf. Gear [61], Enke [54] and Eich [52].

The Newton-type method implemented in DAESOL-II is based on a sophisticated

monitor strategy that guarantees the convergence of the method while the efficiency

is controlled using a hierarchical update procedure for the iteration matrix approx-

imating the BDF Jacobian J
(n)
BDF(·). This monitor strategy is based on the Local

Contraction Theorem of Bock [31] (see Theorem 2.29). It goes back to Enke [54] and

has been improved by Eich [52] who also demonstrated its particular efficiency if the

Jacobian of f varies only slowly and is expensive to evaluate. It is also described

by Eich [53], Bauer [16] and Albersmeyer [3].

In each integration step, the Newton-type method perfoms at most three iter-

ations with constant approximation Mn of J
(n)
BDF(·). The method is considered

as converged if the increment fulfills ||∆y
(sn−1)
n+1 || < NTol for a prescribed Newton

tolerance NTol. If two iterations are performed, the convergence rate δ0 of the

Newton-type method can be estimated with (2.20) by δ̂0 := ||∆y
(1)
n+1||/||∆y

(0)
n+1||. If

δ0 < 0.25, we have gained in the last iterate y
(2)
n+1 more than one digit compared to

the first increment since

∥∥∥y(2)
n+1 − y∗

n+1

∥∥∥ ≤
δ20

1 − δ0

∥∥∆yP
n+1

∥∥ ≤
1

12

∥∥∆yP
n+1

∥∥

due to the a priori estimate of the Local Contraction Theorem. The third iter-

ation is performed if 0.25 ≤ δ0 < 0.3 and also gives one digit more accuracy.

Von Schwerin [121] gave a formula for the bounds on δ0 as a function of desired

digits and iterations. Overall, the final approximation of y∗
n+1 is provided by

y
(sn)
n+1 = y

(sn−1)
n+1 + ∆y

(sn−1)
n+1 with sn ∈ {1, 2, 3}. The Newton tolerance NTol is

chosen to be NTol = 0.08 · RelTol.

If this Newton-type method does not converge, a hierarchical update procedure

for the iteration matrix Mn is used. The cheapest way to improve Mn ≈ α
(n)
0 I −

hnfy(tn+1,y
P
n+1) is to insert α

(n)
0 , hn and to decompose the resulting matrix. If still

no convergence is achieved, then the whole matrix is rebuilt, including the evaluation

of fy(tn+1,y
P
n+1) and the subsequent decomposition. The last option is to reject the
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2 Numerical solution of Initial Value Problems

step and reduce the stepsize to improve the first iterate yP
n+1.

Now, we state the Local Contraction Theorem of Bock [31] that forms the basis

of the monitor strategy described above. Furthermore, it will be used in Section 8.5.

Theorem 2.29 (Local Contraction Theorem) Let be f : D → R
n, D ⊂ R

n

and f ∈ C1(D). The Jacobian of f is denoted by J(y) = fy(y) and A−1 is an

approximation of J−1. A root y∗ of f is in demand.

If for all y′,y ∈ D, τ ∈ [0, 1] and y′ − y = −A−1(y)f(y) = ∆y there exist ω < ∞

and κ < 1 such that

1. The generalized Lipschitz condition on J and A−1 holds

∥∥A−1(y′)
[
J(y + τ(y′ − y)) − J(y)

]
(y′ − y)

∥∥ ≤ ωτ
∥∥y′ − y

∥∥2
.

2. The compatibility condition on A−1 holds

∥∥A−1(y′)
[
I − J(y)A−1(y)

]
f(y)

∥∥ ≤ κ
∥∥y′ − y

∥∥ .

3. The start value y(0) of the iteration fulfills δ0 < 1 where

δi := κ+
ω

2

∥∥∥∆y(i)
∥∥∥ .

4. The closed ball D0 :=
{
y ∈ R

n :
∥∥y − y(0)

∥∥ ≤
∥∥∆y(0)

∥∥ /(1 − δ0)
}

lies in D.

Then, the iterates y(i+1) = y(i) + ∆y(i) with ∆y(i) = −A−1(y(i))f(y(i)) satisfy

1. y(i) are well-defined and y(i) ∈ D0.

2. There exists y∗ ∈ D0 and the sequence {y(i)}∞i=0 converges to y∗ with the rate

∥∥∥∆y(i+1)
∥∥∥ ≤ δi

∥∥∥∆y(i)
∥∥∥ = κ

∥∥∥∆y(i)
∥∥∥+

ω

2

∥∥∥∆y(i)
∥∥∥

2
. (2.20)

3. The a priori error estimate holds

∥∥∥y(i+j) − y∗
∥∥∥ ≤

(δi)
j

1 − δi

∥∥∥∆y(i)
∥∥∥ ≤

(δ0)i+j

1 − δ0

∥∥∥∆y(0)
∥∥∥ .

4. The limit y∗ fulfills A−1(y∗)f(y∗) = 0. Moreover, if A−1(y) is continuous

and nonsingular in y∗, then f(y∗) = 0.

Proof See Bock [31]. �

We refer the reader to Potschka [101] for a detailed presentation of theorem and

proof.
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3 Computing adjoint derivatives of IVP

solutions

This chapter starts with a description of methods to evaluate derivatives of functions.

In the second part we describe two ways to obtain derivatives of Initial Value Problem

(IVP) solutions: Firstly, the variational IVPs are solved, and secondly the Internal

Numerical Differentiation (IND) of integrators as invented by Bock [28] is presented.

The system of equations resulting from adjoint IND of Backward Differentiation

Formula (BDF) methods is derived explicitly before we briefly describe the efficient

realization of adjoint IND in DAESOL-II. Thereafter, we compare the two approaches

from a conceptional point of view before we focus on the discrete adjoint IND values

and their relation to the solution of the adjoint IVP.

3.1 Derivative generation for functions

In this section, we briefly review different ways to obtain derivatives of differentiable

functions. Derivatives are required, e.g., for the solution of the nonlinear BDF equa-

tion (2.2b) where the derivative fy(t,y) of the right hand side with respect to y is

needed, cf. Section 2.4.3. The function itself can be available as a computer-evaluated

function or as analytical expression. Derivatives can be obtained analytically, nu-

merically or algorithmically.

3.1.1 Analytical differentiation

Analytical derivatives can either be determined by hand or by computer algebra sys-

tems. Although this procedure gives derivative values that are exact up to machine

precision, it has several drawbacks. The differentiation by hand is time-consuming

and error-prone. The usage of computer algebra systems like Maple [90] and Math-

ematica [102] may lead to derivatives that are expensive to evaluate since common

subexpressions in different terms are not exploited appropriately.

3.1.2 Approximation using numerical schemes

Derivatives of functions g : R
nin → R

nout in direction d ∈ R
nin with ‖d‖ = 1 can be

approximated by one-sided finite differences

g′(x) d =
g(x + sd) − g(x)

s
+ O(s) (3.1)
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3 Computing adjoint derivatives of IVP solutions

based on Taylor series expansions. Unfortunately, the approximations of the deriva-

tives are subject to truncation errors for large increments s and subject to cancel-

lation errors for tiny increments. And even the optimal increment size leads, under

standard assumptions on g, to derivative approximations that have lost half of the

significant digits of the function evaluation. To overcome the cancellation errors a

complex step approximation of the first-order derivative can be used, see Lyness and

Moler [89]. A short comparison of the numerical schemes can be found, for example,

in Albersmeyer [3].

3.1.3 Algorithmic Differentiation

Another way to evaluate derivatives of computer-evaluated functions is to use Al-

gorithmic Differentiation (AD) techniques. In this section, we brieflly review the

main ideas of AD and refer to the textbook by Griewank [65] for a comprehensive

description of the topic.

The basis of AD is the decomposition of a computer-evaluated function into a

sequence of certain elemental functions like +,−, ∗, /, exp, etc. that are continuously

differentiable. Thus, the function evaluation can be described by a computational

graph of the elemental functions. The edges of the computational graph represent

the elemental functions whereas the nodes represent the intermediate results or

intermediate values. Then, the principle of AD is to systematically apply the Chain

Rule of Calculus to the elemental functions of the computational graph. There exist

two distinct ways of AD: The forward mode traverses the graph from the input

variables towards the output variables whereas the adjoint mode traverses the other

way round. Both modes give the derivative up to machine precision since the exact

derivatives of the elemental functions are known.

Forward mode of AD This mode computes efficiently the forward directional

derivative of the computer-evaluated function g : R
nin → R

nout in forward direction

ẋ ∈ R
nin evaluated at x ∈ R

nin

g′(x) ẋ ∈ R
nout×1

where R
nout×1 denotes that it is a column vector. The numerical effort for evalu-

ating the function and computing pfwd directional derivatives by the forward mode

is theoretically bounded by (1 + 1.5pfwd) times the effort for function evaluation,

see Griewank [65]. Thus, it is recommended particularly when pfwd ≪ nout. In this

mode, each intermediate value describes the derivative of the corresponding inter-

mediate function value with respect to the input variables given by the direction.

Adjoint mode of AD This mode is also called reverse or backward mode. It com-

putes the adjoint directional derivative of g in adjoint direction ȳ ∈ R
nout evaluated

at x ∈ R
nin

ȳ⊺ g′(x) ∈ R
1×nin
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3.2 Solution of variational Initial Value Problems

where R
1×nin denotes that it is a row vector with nin entries. Since the adjoint mode

traverses backwards through the graph it has to be preceded by a function evaluation

with storage of the intermediate results. The overall numerical effort (including the

storage) for evaluating the function and computing pbwd directional derivatives by

the adjoint mode is theoretically bounded by (1.5 + 2.5pbwd) times the effort for

function evaluation, see Griewank [65]. Thus, it is recommended particularly when

pbwd ≪ nin. In this mode, each intermediate value describes the derivative of the

output variables given by the direction with respect to the particular intermediate

function value.

3.2 Solution of variational Initial Value Problems

Let the function ỹ(t) be an approximation to the solution of IVP (1.1). With the

techniques described in Section 3.1 the variational IVPs (1.4) and (1.6) along ỹ(t)

can be set up and solved by any integration method. This gives an approximation

to the solution of the perturbed variational IVP and hence an approximation to the

derivative of the nominal IVP solution y(t). This procedure is called continuous or

differentiate-then-discretize approach. It assumes that a continuous approximation

ỹ(t) to the solution y(t) already exists such that the matrix fy (t, ỹ(t)) is contin-

uous in t. The derivative fy(t,y) is obtained by one of the approaches of Section

3.1. There exist several codes following this procedure of integrating the variational

IVPs, e.g. the multistep integrators IDAS and CVODES of the SUNDIALS suite,

cf. Hindmarsh et al. [74]. In the forward mode the mentioned implementations solve

simultaneously the IVPs (1.1) and (1.4), see Li et al. [86] as well as Serban and

Hindmarsh [108]. In the adjoint mode they first solve (1.1) and then separately

the adjoint IVP (1.6) along a piecewise interpolant through the discrete nominal

approximations, see Cao et al. [42] as well as Serban and Hindmarsh [108].

3.3 Internal Numerical Differentiation

Another way to approximate derivatives of the solution y(t) of IVP (1.1) is based

on the level of integrators. One might think in approximating the derivative of

the solution of (1.1) with respect to initial values by solving (1.1) also for perturbed

initial values using any integrator and finite differences (cf. Section 3.1.2) afterwards.

This approach is known as External Numerical Differentiation (END) and uses the

integrator as a “black box”. It implicitly assumes that both integration outputs are

computed sufficiently accurate such that (3.1) is accurate enough. Hence, either the

integration effort is very high or the derivative is not that accurate. To overcome

these difficulties IND was proposed by Bock [28].

Principle of Internal Numerical Differentiation A more sophisticated way to ap-

proximate the required derivatives is provided by IND that was first presented by

Bock [28]. The basic principle of IND is to differentiate the calculation rule used to
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3 Computing adjoint derivatives of IVP solutions

obtain the approximations y0,y1, . . . ,yN where the calculation rule itself is gener-

ated by any adaptive integrator. Hence, after the nominal integration of (1.1), the

adaptive components of the integrator are kept constant and the fixed discretization

scheme is differentiated.

There exist different variants to realize the IND principle. To describe them

we restrict ourselves to linear integration methods. The first variant, called varied

trajectories, uses the fixed discretization scheme to solve (1.1) for perturbed initial

values. The perturbed solutions are then used in finite differences (3.1) to give first-

order approximations of the derivative, cf. Bock [28]. The (theoretical) performance

of the limit in the perturbation size of the initial values would yield the same output

as one would obtain by using the fixed discretization scheme to solve the forward

variational IVP (1.4) provided that the partial derivative fy(t,y) is available up to

machine precision (Section 3.1.1 and 3.1.3), cf. Section 3.2 and Remark A.5. This is

the so-called analytical limit of IND shown by Bock [30].

IND can also be applied in adjoint mode which was first described by Bock [31] for

Runge-Kutta integrators and later on in Bock et al. [35] for BDF methods. Adjoint

IND differentiates the fixed discretization scheme backwards in time starting at the

final time.

In the case of the implicit BDF method, IND exists in different variants. One

variant is direct IND which neglects the residuals caused by the approximate solu-

tion of the nonlinear BDF equations (2.2b) and makes use of the Implicit Function

Theorem, cf. Section 3.4.2. Hence, it can be understood to assume that (2.2b) are

solved exactly. We describe it in-depth in Section 3.4 for the adjoint IND mode.

Another variant of IND is the following: it also differentiates the iterations of the

Newton-type method and reuses the iteration matrices, cf. Section 2.4.3. This itera-

tive IND applies AD techniques to the fixed discretization scheme and gives the exact

derivatives of the nominal approximations y0,y1, . . . ,yN (up to machine precision).

It is crucial not to apply AD techniques to the control mechanism determining the

adaptive components, see also Eberhard and Bischof [51]. For algorithmical details

and a comparison of the computational effort of the different forward IND variants of

BDF methods we refer to Bauer [16], whereas details and comparisons of the different

adjoint IND variants are given in Albersmeyer and Bock [5] and Albersmeyer [3].

Overall, the concept of IND is to differentiate the discretization scheme that was

used to solve the nominal IVP. Hence, this procedure belongs to the so-called

discrete or discretize-then-differentiate approaches.

3.4 Adjoint IND of BDF methods

3.4.1 Direct adjoint IND of BDF methods

In this section, we specify the direct adjoint IND of BDF methods. For given

adaptive components the direct IND approach can be understood to assume that the
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3.4 Adjoint IND of BDF methods

nonlinear BDF equations (2.2b) are solved exactly. Hence, it coincides with applying

adjoint differentiation to the nominal BDF method (2.2) with prescribed stepsizes

{hn}
N−1
n=0 and orders {kn}

N−1
n=0 . Adjoint IND for BDF methods was first described

by Bock et al. [35] and later by Sandu [106] as reverse automatic differentiation of

BDF methods.

Lemma 3.1 For a variable BDF method (2.2) with self-starting procedure, after

freezing the adaptive components {hn}
N−1
n=0 and {kn}

N−1
n=0 , the discrete adjoint IND

scheme in adjoint direction r = J ′(yN ) is given by

α
(N−1)
0 λN − J ′(yN )⊺ = hN−1f

⊺
y(tN ,yN )λN (3.2a)

∑

0≤i≤N−1−n
i≤kmax

α
(n+i)
i λn+1+i = hnf⊺

y(tn+1,yn+1)λn+1, n = N − 2, . . . , 0 (3.2b)

λ0 + α
(0)
1 λ1 = 0 (3.2c)

with the convention that α
(n)
i = 0 for i > kn and kmax = maxn{kn}.

Proof See Section A.2.1. �

Note that due to Theorem 2.19 it is always kmax ≤ 6. The variables {λn}
N
n=0 are

the derivatives of J(yN ) with respect to each intermediate integration step (2.2b)

due to AD, see also Section 3.1.3. Thus, they describe the sensitivity of the finite

dimensional system of equations (2.2). The entity {λn}
N
n=0 is also called discrete

stability in contrast to the continuous stability λ(t) of the IVP (1.1) explained in

Section 1.3 or on page 48.

3.4.2 Practical aspects of adjoint IND of BDF-type methods

A more efficient version of direct adjoint IND is presented in Albersmeyer and

Bock [5] as well as in Albersmeyer [3]. It can be derived from the following equivalent

domain space formulation of the n-th integration step (2.2b) of the BDF method

yn+1 = θn+1 (yn, . . . ,yn+1−kn
) (3.3a)

where θn+1 is defined implicitly as solution of the nonlinear root finding problem

F (yn+1−kn
, . . . ,yn,θn+1(yn, . . . ,yn+1−kn

))

:= α
(n)
0 θn+1 +

kn∑

i=1

α
(n)
i yn+1−i − hnf(tn+1,θn+1) = 0 (3.3b)

for n = 0, . . . , N − 1. Using the Implict Function Theorem, the associated adjoint

IND scheme reads as follows.
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3 Computing adjoint derivatives of IVP solutions

Lemma 3.2 For a variable BDF method with self-starting procedure written in

the domain space form (3.3), after freezing the adaptive components {hn}
N−1
n=0 and

{kn}
N−1
n=0 , the discrete adjoint IND scheme in adjoint direction r = J ′(yN ) is given

by

ȳN = J ′(yN )⊺ (3.4a)

ȳn+1 = −
∑

1≤i≤N−1−n
i≤kmax

α
(n+i)
i J

(n+i)
BDF (yn+1+i)

−⊺ ȳn+1+i, n = N − 2, . . . , 0 (3.4b)

ȳ0 = −α
(0)
1 J

(0)
BDF(y1)−⊺ȳ1 (3.4c)

with the convention that α
(n)
i = 0 for i > kn and kmax = maxn{kn} ≤ 6.

Proof See Section A.2.1. �

The relation of the adjoint IND values ȳn+1 and λn+1 is described by the following

lemma.

Lemma 3.3 Let {λn}
N
n=0 be generated by (3.2) and {ȳn}

N
n=0 by (3.4). Then, they

are related by

J
(n)
BDF(yn+1)⊺ λn+1 = ȳn+1, n = N − 1, . . . , 0

λ0 = ȳ0.

with the Jacobian J
(n)
BDF(yn+1) = α

(n)
0 I − hnfy(tn+1,yn+1) of the nonlinear BDF

equation (2.2b).

Proof See Section A.2.1. �

The iterative adjoint IND scheme as presented in Albersmeyer and Bock [5] and

Albersmeyer [3] uses also the above formulation (3.3) of the BDF integration step.

Hence, it is the iterative analogon to (3.4). The iterative variant is more efficient than

the direct variant since it gets along without building and decomposing the BDF

Jacobian J
(n)
BDF(yn+1) in every integration step. It just needs adjoint directional

derivatives of f(t,yn+1).

The iterative adjoint IND scheme realized in DAESOL-II is based on the univariate

Taylor Coefficient propagation of AD (see Griewank [65]). This propagation is also

used to generate efficiently directional forward and forward/adjoint derivatives of

arbitrary order of IVP solutions. For details we refer to Albersmeyer [3].

Both adjoint IND values λ0 and ȳ0 at ts are the exact adjoint derivatives of J

at the computed final solution yN (up to machine precision). The adjoint value ȳ0

is successfully used in efficient direct methods for the solution of Optimal Control

Problems (OCPs), cf. Albersmeyer [3]. Moreover, both values λ0 and ȳ0 at ts
converge to the exact adjoint solution λ(ts) with the same rate as yN to y(tf) due

to Remark A.6 and Lemma 3.3, or see also Bock [31] for general linear integration

methods.
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3.5 Discretize-then-differentiate approach vs.

Differentiate-then-discretize approach

In this section we focus on the advantages and disadvantages of the continuous and

discrete approaches described in Section 3.2 and 3.3, 3.4 to obtain derivatives of IVP

solutions with respect to initial values. We also highlight the desirable property that

both approaches are in agreement. We concentrate on adjoint differentiation since

the case of forward differentiation is already treated satisfactorily by the analytical

limit of IND in forward mode, cf. Bock [30] or Section 3.3 and Remark A.5.

Discretize-then-differentiate approach The advantages of this approach include

its straightforward and generic applicability to any IVP. Moreover, after the problem

definition, the procedure processes automatically. The generated adjoint derivatives

are the exact derivatives of the nominal approximations, and hence they are the

proper quantities from the discrete point of view. If used in efficient direct methods

for OCPs based on shooting, this is crucial for the convergence of the inexact Sequen-

tial Quadratic Programming (SQP) method to solve the Nonlinear Program (NLP).

If, on the other hand, approximations to the adjoint solutions are required, the dis-

advantage of this approach is that the generated adjoint derivatives may not provide

an adequate approximation to the adjoint IVP in a straightforward manner.

Differentiate-then-discretize approach These methods first differentiate the IVP

at hand, and then discretize the resulting (nominal and adjoint) problems to approx-

imate their solutions. For the numerical solution of the combined unstable problem

(cf. Section 1.3), one needs good initial guesses for quantities that may not have

apparent physical interpretations, i.e. the adjoints. The quality of the initial guess

highly influences the convergence behavior (if there is convergence at all) of the

numerical procedure. These disadvantages are confronted by the advantage that

the numerical procedure approximates the (nominal and adjoint) solutions up to its

inherent order of accuracy.

Commutativity as desirable property In order to benefit from the advantages

of both approaches, it is desirable that they lead to the same discrete systems of

equations. In the case of Runge-Kutta methods with non-zero weights, the discrete

adjoint scheme generated by adjoint IND is itself a Runge-Kutta scheme for the

adjoint IVP (1.8), and thus gives a convergent approximation to the adjoint solution

as shown by Bock [28] and later by Walther [122] and Sandu [104]. In the case of

continuous and discontinuous Galerkin methods applied to (1.1), the discrete adjoint

schemes yield approximations to the solution of (1.8), see e.g. Johnson [77]. The

situation becomes significantly more complex in the case of multistep methods, as

the discrete adjoint IND schemes of Linear Multistep Methods (LMMs) are generally

not consistent with the adjoint IVP (1.8). We will discuss this in the next section.
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3 Computing adjoint derivatives of IVP solutions

3.6 Adjoint IND vs. solution of adjoint IVP

In this section we focus on the adjoint IND values {λn}
N
n=0 generated by the adjoint

IND scheme (3.2) and compare them to the solution λ(t) of the adjoint IVP (1.8).

The discrete adjoint IND value λ0 shows the same convergence behavior towards

its counterpart λ(ts) like the approximate solution yN generated by the nominal

BDF method towards y(ts), cf. Remark A.6 or Bock [31] or Sandu [106] for constant

LMMs. This does not hold for {λn}
N
n=0 compared to λ(t) at intermediate points. It

has been treated phenomenologically by Albersmeyer [3] and to a certain theoretical

extent by Sandu [106].

To investigate not only the adjoint at ts but rather on the whole interval [ts, tf ],

we define a perturbed adjoint IVP along a sufficiently smooth approximation ỹ(t)

of the IVP solution y(t) by

˙̃
λ(t) = −f⊺

y (t, ỹ(t)) λ̃(t), t ∈ [ts, tf ] (3.5a)

λ̃(tf) = J ′ (ỹ(tf))
⊺ . (3.5b)

The exact solutions of (1.8) and (3.5) can be given explicitly since both IVPs are

linear. Hence, it can be shown that their distance in the C0[ts, tf ]
d-norm (see Section

4.2) is

∥∥∥λ(t) − λ̃(t)
∥∥∥

C0[ts,tf ]d
≤ K ‖y(t) − ỹ(t)‖C0[ts,tf ]d

(3.6)

for a constant K. To investigate the relation between λn and λ(tn) for {λn}
N
n=0 gen-

erated by (3.2), we first consider the relation between λn and λ̃(tn) and then make

use of (3.6). To this end, recall the general form of an LMM given in Definition 2.1.

Lemma 3.4 For a variable BDF method with self-starting procedure, the associated

adjoint IND scheme (3.2) is an LMM applied to the perturbed adjoint IVP (3.5)

provided that ỹ(t) satisfies ỹ(tn) = yn for n = 0, . . . , N .

Proof For N − 2 ≥ n ≥ 0, the n-th step of (3.2b) can be written as

∑

0≤i≤N−1−n

i≤kmax

α
(n+i)
i λn+1+i = −hn+1

hn

hn+1

[
−f⊺

y(tn+1,yn+1)λn+1

]
.

It proceeds from tn+2 to tn+1 with stepsize −hn+1 and determines the new approxi-

mation λn+1 using the past values λn+2, · · · ,λn+1+kn
. The right hand side of (3.5a)

is evaluated at (tn+1,λn+1) and multiplied by β
(n)
0 = hn/hn+1, hence β

(n)
i = 0 for

i > 0. Equation (3.2a) proceeds from tN+1 to tN with stepsize −hN−1 and uses

λN+1 := J ′(yN ) and β
(N)
0 = 1. Equation (3.2c) proceeds from t1 to t0 with stepsize

−h1 and β
(−1)
0 = 0 (explicit LMM step). Hence, (3.2) is an implicit LMM applied

to (3.5) with an explicit last step, cf. Definition 2.1. �
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As seen in Section 2.3 consistency and zero-stability of LMMs are the essential

properties for their convergence provided that the start errors are small.

Lemma 3.5 Consider a constant BDF method with order k, stepsize h and suffi-

ciently accurate self-starting procedure for y1, . . . ,ym and m ≥ k fixed. Then, for

the associated adjoint IND scheme (3.2) holds that

1. Adjoint initialization steps: (3.2a) and (3.2b) with n = N − 2, . . . , N − k + 1

are inconsistent.

2. Adjoint main steps: (3.2b) with n = N − k, . . . ,m are consistent of order k

with (3.5), and asymptotically consistent with the adjoint IVP (1.8).

3. Adjoint termination steps: (3.2b) with n = m− 1, . . . , 0 and (3.2c) are incon-

sistent.

Proof Due to the consistency with order k of the nominal constant BDF method,

the coefficients α
(n+1)
i = αi of (3.2b) with n = N − k, . . . ,m satisfy the require-

ments for consistency order k with (3.5), cf. Section 2.3.1. Taking ỹ(t) to be the

continuous representation resulting from (2.5) it is ‖y(t) − ỹ(t)‖C0[ts,tf ]d
≤ chk, cf.

Theorem 2.21 or Shampine and Zhang [112] and additionally Section 2.4.2. Hence,

the solution λ̃(t) of (3.5) converges with order k to the solution λ(t) of (1.8). The

α-coefficients of all other steps do not sum up to zero and hence the formulas are

inconsistent, cf. Section 2.3.1. �

Remark 3.6 If the stepsizes in the self-starting procedure of a constant BDF method

vary, then the adjoint main steps are given by (3.2b) for n = N − k, . . . ,m+ k− 1.

Lemma 3.7 For a variable BDF method the associated adjoint IND scheme (3.2)

is inconsistent with (3.5).

Proof The αi-coefficients of the LMM (3.2) do not sum up to zero and hence (3.2)

is inconsistent with (3.5), cf. Section 2.3.2. �

This consistency behavior of adjoint IND schemes has been observed also by Sandu

[105, 106]. However, zero-stability (see Definition 2.26) of the nominal BDF method

(2.2) with constant order k implies zero-stability of the adjoint IND scheme (3.2) as

shown by Sandu [105, 106].

But note that also for constant BDF methods the inconsistency of the adjoint

IND initialization steps results in start errors that are of order zero in h, see end of

Section 7.1. Hence, the convergence Theorem 2.21 is not applicable. Nevertheless,

in Section 7.1 we will demonstrate convergence on the open interval (ts, tf).

The properties of the discrete adjoint IND scheme (3.2) as highlighted above in

theory can also be observed numerically. We use the Catenary problem as a nonlinear

test case with analytic nominal and adjoint solution, see Section 10.1. Furthermore,

we use the adjoint IND scheme of a constant BDF method with order 2 and that of

the variable BDF method DAESOL-II. The results are depicted in Figure 3.1.
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Figure 3.1: Comparison of the discrete adjoint IND values λh = [λh
1 , λ

h
2 ]⊺ and the

analytic solution λ = [λ1, λ2]⊺ of the adjoint IVP on the Catenary test

case. Stepsize ratio (penultimate row) and BDF order (bottom) of the

variable BDF method.
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4 Elements of real and functional analysis

This chapter reviews some basic concepts of real and functional analysis, respectively,

that are of significance in the progress of this thesis. At this point, we assume that

the reader is familiar with the concepts of Riemann- and Lebesgue-integrals, see, for

example, Rudin [103] and Kolmogorov and Fomin [79].

4.1 Functions of bounded variation and the

Riemann-Stieltjes integral

This section is devoted to the definition of the Riemann-Stieltjes integral. For this,

we first need the notion of a function of bounded variation. We follow the presenta-

tions of Kolmogorov and Fomin [79] and Natanson [97].

4.1.1 Functions of bounded variation

Definition 4.1 A partition of the interval [a, b] is a finite set T of m + 1 points

such that a = τ0 < · · · < τm = b. The size of partition T is defined by |T | := m and

the fineness of T by h(T ) := max1≤j≤m(τj − τj−1). The set of all partitions on [a, b]

is denoted by T ([a, b]).

Definition 4.2 A function Φ defined on [a, b] is said to be of bounded variation if

there exists a constant C > 0 such that

|T |∑

j=1

|Φ(τj) − Φ(τj−1)| ≤ C

for every partition T ∈ T ([a, b]).

For later use, we already define the total variation.

Definition 4.3 The total variation of a function Φ on [a, b] is given by

V b
a (Φ) := sup

T ∈T ([a,b])

|T |∑

j=1

|Φ(τj) − Φ(τj−1)| .

Lemma 4.4 For an integrable function ϕ on [a, b], the indefinite integral

Φ(t) =

∫ t

a
ϕ(τ) dτ

is a function of bounded variation on [a, b].
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Proof The constant C limiting the variation of Φ is given by the total variation

of Φ

V b
a (Φ) = sup

T ∈T ([a,b])

|T |∑

j=1

∣∣∣∣∣

∫ τj

τj−1

ϕ(τ) dτ

∣∣∣∣∣

≤ sup
T ∈T ([a,b])

|T |∑

j=1

{
(τj − τj−1) ess sup

τ∈[τj−1,τj ]
|ϕ(τ)|

}

≤ (b− a) ess sup
τ∈[a,b]

|ϕ(τ)| =: C <∞

since ϕ is integrable on [a, b]. �

We use here the definition of the jump function in such a way that it is continuous

from the right. This will be of importance later on. But generally one could also

assume continuity from the left for the considerations of the current section.

Definition 4.5 Let h1, h2, . . . , hn, . . . be numbers corresponding to at most count-

ably many discontinuity points t1, t2, . . . , tn, . . . in [a, b] that satisfy
∑

n

|hn| <∞.

Then, the function

Φ(t) =
∑

{n : tn≥t}

hn

is called a jump function. Moreover, if t1 < t2 < · · · < tn < · · · , then Φ is called a

step function.

4.1.2 Riemann-Stieltjes integral

Definition 4.6 Let f,Φ be two functions defined on [a, b] with Φ being of bounded

variation. Furthermore, let

T 1 ⊂ T 2 ⊂ · · · ⊂ T k ⊂ · · ·

be a sequence of refined partitions T k ∈ T ([a, b]) such that h(T k) → 0 as k → ∞,

and let θk
j ∈ [τk

j−1, τ
k
j ] be arbitrary, j = 1, . . . ,

∣∣T k
∣∣. If the sum

|T k|∑

j=1

f(θk
j )[Φ(τk

j ) − Φ(τk
j−1)]

approaches for k → ∞ a limit independently of the choice of the partition T k and

the points θk
j , then this limit is called the Riemann-Stieltjes integral of the integrand

f with respect to the generating function Φ and is denoted by
∫ b

a
f(t) dΦ(t).
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Theorem 4.7 If f is continuous on [a, b], then its Riemann-Stieltjes integral exists.

Proof See Kolmogorov and Fomin [79]. �

The Riemann-Stieltjes integral is linear in both, the integrand f = f1 + f2 and the

integrator Φ = Φ1 + Φ2, provided that each integral
∫ b
a fi(t) dΦj(t) exists.

Lemma 4.8 Let be c ∈ (a, b).

1. If the integral
∫ b
a f(t) dΦ(t) exists, then also the integrals

∫ c
a f(t) dΦ(t) and∫ b

c f(t) dΦ(t) exist.

2. If
∫ c
a f(t) dΦ(t),

∫ b
c f(t) dΦ(t) and

∫ b
a f(t) dΦ(t) exist, then it holds

∫ b

a
f(t) dΦ(t) =

∫ c

a
f(t) dΦ(t) +

∫ b

c
f(t) dΦ(t).

Proof See Natanson [97]. �

Note that Assertion 1 of Lemma 4.8 can not be inverted. To overcome this obstacle

we will introduce in Section 5.3.1 an appropriate extension of the Riemann-Stieltjes

integral.

Theorem 4.9 If f is continuous on [a, b], and Φ possesses an integrable and bounded

derivative Φ′(t) in every t ∈ [a, b], then it holds

∫ b

a
f(t) dΦ(t) =

∫ b

a
Φ′(t)f(t) dt.

Proof See Natanson [97]. �

Lemma 4.10 If f is continuous on [a, b] and Φ is a jump function given by Defi-

nition 4.5, then the Riemann-Stieltjes integral reduces to a sum

∫ b

a
f(t) dΦ(t) =

∑

n

hnf(tn).

Proof For Φ having a single jump at t1 of height h1, the Riemann-Stieltjes integral

is

∫ b

a
f(t) dΦ(t) = lim

k→∞

|T k|∑

j=1

f(θk
j )[Φ(τk

j ) − Φ(τk
j−1)]

= f(t1)[Φ(t+1 ) − Φ(t−1 )] = f(t1)h1

since the only remaining addend is f(θk
j )[Φ(τk

j ) − Φ(τk
j−1)] with τk

j−1 < t1 ≤ τk
j . If

Φ exhibits countably many jumps, then the Riemann-Stieltjes integral is the sum of

these jump heights hn multiplied by the corresponding integrand values f(tn). �
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4.2 Function spaces and their properties

This section first defines normed, Banach and Hilbert spaces, respectively, and fo-

cuses subsequently on those function spaces that are of importance for this thesis.

Details concerning the first part of this section can be found, for example, in Wloka

[126], Gajewski et al. [60] and Alt [7].

Definition 4.11 A pair (X, ‖·‖
X

) of a linear space X and a norm ‖·‖
X

on X is called

a normed space.

Definition 4.12 A subset A of a normed space X is said to be dense in X if each

element x ∈ X is the limit of a sequence of elements in A.

Definition 4.13 For normed spaces (X, ‖·‖
X

) and (Y, ‖·‖
Y

) the space L (X,Y) con-

sists of all continuous linear operators A from X to Y. It is a normed space with

‖A‖L(X,Y) := sup
‖x‖

X
=1

‖A(x)‖
Y
.

If A ∈ L (X,Y) is bijective, then A
−1 ∈ L (Y,X) and A is said to be an isomorphism.

If ‖A(x)‖
Y

= ‖x‖
X

for all x ∈ X, then A ∈ L (X,Y) is said to be an isometry.

The spaces X and Y are isometrically isomorphic, in symbols X ∼= Y, if there exists

an isometric isomorphism between X and Y. Such spaces are of great interest since

they have identical structures and only the nature of their elements differs.

If X1, . . . ,Xd are finitely many normed spaces with norms ‖·‖
X1
, . . . , ‖·‖

Xd
, then

the finite Cartesian product space X := X1 × · · · × Xd is a normed space, see Wloka

[126]. We always choose ‖x‖
X

= max1≤i≤d ‖xi‖Xi
as norm except for the definition

of the condition number in Section 1.3.1 where we have taken ‖x‖
X

=
∑d

i=1 ‖xi‖Xi
.

Definition 4.14 A normed space (X, ‖·‖
X

) is called a Banach space, if it is complete

with respect to ‖·‖
X

, i.e. every Cauchy sequence in X has a limit in X.

Definition 4.15 A pair (X, (·, ·)X) of a linear space X and a scalar product (·, ·)X

on X is called a pre-Hilbert space.

In a pre-Hilbert space a norm can be introduced by ‖x‖
X

=
√

(x, x)X such that it

is always a normed space.

Definition 4.16 A pre-Hilbert space (X, (·, ·)X) is called a Hilbert space, if it is

complete with respect to the introduced norm ‖·‖
X

=
√

(·, ·)X.

In the second part of this section we consider some particular function spaces that

are for importance for Part II of this thesis.

The space C0[a, b] of all continuous functions on [a, b] equipped with the norm

‖f‖C0[a,b] = maxt∈[a,b] |f(t)| is a Banach space, cf. Wloka [126]. The space C1[a, b]
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of all continuously differentiable functions on [a, b] is a Banach space with re-

spect to the norm ‖f‖C1[a,b] = maxt∈[a,b] |f(t)| + maxt∈[a,b] |f
′(t)|, cf. Gajewski et

al. [60]. The space C1
b(a, b] of all continuously differentiable and bounded functions

with bounded derivatives is a Banach space with respect to the norm ‖f‖C1
b(a,b] =

supt∈(a,b] |f(t)| + supt∈(a,b] |f
′(t)|, cf. Adams and Fournier [1].

We next consider the spaces of functions of bounded variation. The space of all

functions of bounded variation on [a, b] is denoted by BV[a, b] and can be equipped

with the norm ‖Φ‖BV[a,b] = |Φ(a)| + V b
a (Φ) where V b

a (Φ) is the total variation of

Definition 4.3, cf. Luenberger [88]. But of more importance for this thesis will be

the following space.

Definition 4.17 The normalized space of all functions of bounded variation is de-

noted by NBV[a, b] and consists of all functions of bounded variation on [a, b] that

vanish at the point a and are continuous from the right on (a, b). It is equipped with

the norm ‖Φ‖NBV[a,b] = V b
a (Φ).

Remark 4.18 We have chosen here the normalization of BV[a, b] with respect to

continuity from the right. Generally, continuity from the left could also be assumed.

But for our purpose continuity from the right is more convenient. This will become

clear in Chapter 5 and 6.

The space NBV[a, b] with norm ‖·‖NBV[a,b] is a Banach space, cf. Kolmogorov and

Fomin [79].

Finally, we come to the spaces of Lebesgue-integrable functions. The space L2(a, b)

of all quadratically Lebesgue-integrable functions is a Hilbert space with respect to

the scalar product

(f, g)L2(a,b) =

∫

(a,b)
f(t)g(t) dt.

The Sobolev space H1(a, b) of all L2(a, b)-functions with weak derivative in L2(a, b)

is also a Hilbert space with the appropriate scalar product. For details we refer to

Adams and Fournier [1].

4.3 Dual spaces and linear functionals

This section starts with dual spaces and linear functionals in general and gives

representations for dual spaces of particular function spaces.

Definition 4.19 X
′ := L (X,R) is called the dual space of a normed space X. The

elements L of X
′ are called linear functionals.
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The norm ‖·‖
X′ of the dual space X

′ is given by

‖L‖
X′ = ‖L‖L(X,R) = sup

‖x‖
X
=1

|L(x)| .

For the dual of a finite Cartesian product space the following theorem holds.

Theorem 4.20 Let X = X1×· · ·×Xd be a finite Cartesian product space of normed

spaces (Xi, ‖·‖Xi
) with norm ‖x‖

X
= max1≤i≤d ‖xi‖Xi

. Then, the continuous linear

functionals L on X are given by

L(x) =

d∑

i=1

Li(xi)

where Li are the continuous linear functionals on Xi, i = 1, . . . , d. In other words,

the dual space of X is X
′ = X

′
1 × · · · × X

′
d with norm

‖L‖L(X,R) = max
1≤i≤d

‖Li‖L(Xi,R) .

Proof See Wloka [126]. �

For linear functionals the following important extension theorem holds.

Theorem 4.21 (Hahn-Banach Extension Theorem) Let (X, ‖·‖
X

) be a normed

space and G ⊂ X be a closed linear subspace of X with the same norm ‖·‖
X

. Further-

more, let L ∈ G
′ be a linear functional on G. Then, L can be extended to a linear

functional L̂ on X preserving the norm, i.e. L̂
∣∣
G

= L and ||L̂||X′ = ‖L‖
G′ <∞.

Proof See Wloka [126]. �

On the other hand, functionals can also be restricted to subspaces. Consider two

Banach spaces X and Y with X ⊂ Y, X is dense in Y and ‖x‖
Y

≤ c ‖x‖
X

for all

x ∈ X and c constant. Then, it holds that Y
′ ⊂ X

′ (but not necessarily dense) and

‖L‖
X′ ≤ c ‖L‖

Y′ for all L ∈ Y
′, see Gajewski et al. [60].

Definition 4.22 For a normed space X, the mapping 〈·, ·〉
X′,X : X

′ × X → R given

by

〈
x′, x

〉
X′,X

:= L(x)

is called duality pairing of X
′ and X.

From Chapter 5 on the dual spaces of the continuous and the quadratically

Lebesgue-integrable functions, respectively, are of fundamental importance.
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Theorem 4.23 (Riesz Representation Theorem) Let L be a continuous linear

functional on C0[a, b], i.e. L ∈
(
C0[a, b]

)′
= L

(
C0[a, b],R

)
. Then, there exists a

unique function Φ ∈ NBV[a, b] such that for all f ∈ C0[a, b] holds

L(f) =

∫ b

a
f(t) dΦ(t) (4.1)

and moreover ‖L‖L(C0[a,b],R) = ‖Φ‖NBV[a,b].

Proof See Luenberger [88]. �

Remark 4.24 The uniqueness of Φ in Theorem 4.23 only holds if the normalized

space NBV[a, b] of BV[a, b] is used.

Thus, the dual of C0[a, b] is isometrically isomorphic to the normalized space of all

functions of bounded variation, i.e.
(
C0[a, b]

)′
= L

(
C0[a, b],R

)
∼= NBV[a, b]. The

duality pairing takes the form

〈Φ, f〉NBV[a,b],C0[a,b] =

∫ b

a
f(t) dΦ(t).

The duals of Hilbert spaces exhibit a canonical structure.

Theorem 4.25 Let (X, (·, ·)X) be a Hilbert space. Then, for every continuous linear

functional L ∈ X
′ there exists an element g ∈ X such that for all f ∈ X holds

L(f) = (f, g)X

and moreover ‖L‖
X′ = ‖g‖

X
.

Proof See Wloka [126]. �

Hence, the dual of a Hilbert space is isometrically isomorphic to the Hilbert space

itself and the duality pairing coincides with the scalar product. For the quadratically

Lebesgue-integrable functions on (a, b) we have
(
L2(a, b)

)′ ∼= L2(a, b) and

〈g, f〉L2(a,b),L2(a,b) = (g, f)L2(a,b) =

∫

(a,b)
g(t)f(t) dt.

For the duals of the finite Cartesian products C0[a, b]d and L2(a, b)d we introduce

the following notation

∫ b

a
f(t) dΦ(t) :=

d∑

i=1

∫ b

a
fi(t) dΦi(t),

∫ b

a
g⊺(t)f(t) dt :=

d∑

i=1

∫ b

a
gi(t)fi(t) dt,

which is in accordance with Theorem 4.20.
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4.4 Differentiability in Banach spaces

In this section let X and Y be Banach spaces, U ⊂ X be open and M : U → Y be a

given mapping. Details on this section can be found, for example, in Zeidler [130].

Definition 4.26 If for two elements x ∈ U and δx ∈ X the limit

M
′(x)(δx) := lim

sց0

M(x+ sδx) − M(x)

s
∈ Y

exists, then M
′(x)(δx) is called directional derivative of M at x in direction δx and

the mapping δx 7→ M
′(x)(δx) first variation of M at x. If the limit exists for all

δx ∈ X, then M is called directionally differentiable at x.

Note that the directional derivative, if it exists, is not necessarily linear in the

direction.

Definition 4.27 A directionally differentiable mapping M : U → Y is called Gâteaux

differentiable at x ∈ U, if M
′(x) is a continuous linear mapping from X to Y, i.e.

M
′(x) ∈ L (X,Y).

Thus, the Gâteaux derivative of a functional M : X → R is an element of the dual

space X
′ = L (X,R), i.e.

M
′(x)(δx) =

〈
M

′(x), δx
〉

X′,X
.

Definition 4.28 A Gâteaux differentiable mapping M : U → Y is called Fréchet

differentiable at x ∈ U, if M′(x) satisfies

lim
‖δx‖

X
→0

‖M(x+ δx) − M(x) − M
′(x)(δx)‖

Y

‖δx‖
X

= 0.

Thus, the Fréchet differentiability of M at x ∈ U states that

M(x+ δx) − M(x) = M
′(x)(δx) + o(‖δx‖

X
), δx→ 0,

i.e. it reflects the concept of linear approximations and agrees with the (total) differ-

entiability of functions on finite dimensional spaces. Like in the finite dimensional

case, the Fréchet differentiability of M at x implies continuity of M at x, cf. Zeidler

[130]. Throughout the whole thesis, we consider Fréchet differentiability of map-

pings between Banach spaces. Hence, we restrict the subsequent considerations to

Fréchet derivatives.

Higher-order Fréchet derivatives are constructed successively. For example, the

second Fréchet derivative of a functional M : X → R is constructed as follows: The

mapping x 7→ M
′(x) going from X to L (X,R) is differentiated at x in direction δx

to give the second Fréchet derivative M
′′(x) ∈ L (X,L (X,R)).

The basic theorems of finite dimensional differential calculus can be generalized

to Fréchet differentiable mappings between Banach spaces, see Zeidler [130], as well

as the concept of partial derivatives. For Banach spaces X1,X2,Y let the mapping

M : D ⊂ X1 × X2 → Y be given by (x1, x2) 7→ M(x1, x2).
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4.4 Differentiability in Banach spaces

Definition 4.29 If, for fixed x2, the mapping N(x1) = M(x1, x2) has a Fréchet

derivative at x1 ∈ D, then Mx1(x1, x2) = N
′(x1) is called the partial Fréchet deriva-

tive of M at (x1, x2) with respect to x1.

The Fréchet derivative with respect to x2 is defined similarly such that for the

Fréchet differentiability of M the following lemma holds.

Lemma 4.30 If M : D ⊂ X1 × X2 → Y is Fréchet differentiable at (x1, x2), then

the partial Fréchet derivatives Mx1 and Mx2 exist at (x1, x2) and it holds for all

δx1 ∈ X1 and δx2 ∈ X2 that

M
′(x1, x2)(δx1, δx2) = Mx1(x1, x2)(δx1) + Mx2(x1, x2)(δx2).

Conversely, if Mx1 and Mx2 exist in a neighborhood of (x1, x2) and are continuous

at (x1, x2), then M is Fréchet differentiable and the above equality holds.

Proof See Zeidler [130]. �

Throughout this thesis the mapping g : C1[a, b]d → C0[a, b]d defined by

g(y(·)) := ẏ(·) − f(·,y(·)),

where f(t,y) is the right hand side of (1.1a), plays a central role. Since we generally

require that f(t,y) is continuous in t and continuously differentiable in y (cf. Section

1.2), g is Fréchet differentiable at y(·) in direction v(·) with Fréchet derivative

g′(y(·))(v(·)) = v̇(·) − fy(·,y(·))v(·),

see, for example, Ioffe and Tihomirov [75]. If the mapping g is defined on Lebesgue

spaces, i.e. g : H1(a, b)d → L2(a, b)d, it is also Fréchet differentiable with the above

derivative.
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Part II

A novel interpretation for

discrete adjoints of BDF methods





5 Weak adjoint solutions

In this chapter we derive a novel functional-analytic framework for Initial Value

Problems (IVPs) in Ordinary Differential Equations (ODEs). With this framework

and results of Chapter 6 and Chapter 7 we shed light on the unknown relation be-

tween the discrete adjoint Internal Numerical Differentiation (IND) values of Back-

ward Differentiation Formula (BDF) methods and the solution of the adjoint IVP,

see Section 3.6. For that purpose, we set up a particular Constrained Variational

Problem (CVP), investigate its infinite dimensional optimality conditions in differ-

ent function spaces and introduce the notion of weak adjoint solutions. For our

theoretical investigations, we embed the IVP (1.1) into an artificial optimization

framework and derive the adjoint IVP as part of the first-order necessary optimality

conditions. To this end, we consider the CVP

min
y

J(y(tf)) (5.1a)

s. t. ẏ(t) = f(t,y(t)), t ∈ [ts, tf ] (5.1b)

y(ts) = ys (5.1c)

which is equivalent to evaluating J(y(tf)) in the solution of (1.1). The feasible set

of (5.1) consists of a single element, namely the unique solution of the nominal IVP

(1.1), cf. Section 1.1.

This chapter is organized in three parts, where each part is dedicated to the solu-

tion of the CVP in a particular function space. The first part identifies the adjoint

given by (1.8) with the Lagrange multiplier of the CVP in a functional-analytic

setting in a Hilbert space. This part describes the main ideas of the procedure. Sec-

ondly, we carry over the procedure in a more general way to the solution of CVP (5.1)

in the space of continuously differentiable functions. In this setting, the Lagrange

multiplier is an element of the space of normalized functions with bounded varia-

tion. This setting is still not enough to analyze BDF methods and their discrete

adjoint IND schemes since BDF methods give continuous, piecewise continuously

differentiable approximations to the solution of IVP (1.1). To capture this case we

finally extend the trial space to the continuous, piecewise continuously differentiable

functions. Solving (5.1) on the latter space requires an appropriate extension of the

Riemann-Stieltjes integral.

For reasons of completeness we include here large parts of Beigel et al. [21]. Mod-

ifications are conducted to refer to other parts of this thesis and to keep the unified

structure of the thesis.
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5 Weak adjoint solutions

5.1 Classical adjoint as Lagrange multiplier in L2(ts, tf)
d

The core of this section is the identification of the adjoint as the Lagrange multiplier

of the CVP in a functional-analytic setting. The basic ideas described in this section

are of course not new. However, the setting for the case of ODEs is fundamental

for this contribution. Since we have not found a comprehensive presentation in the

literature, we include here a detailed derivation.

Solving the CVP (5.1) in the space H1(ts, tf)
d, we note that ẏ(·)− f(·,y(·)) is an

element of L2(ts, tf)
d. Thus, the Lagrangian L : H1(ts, tf)

d ×L2(ts, tf)
d → R of (5.1)

in H1(ts, tf)
d using the L2-scalar product (see Section 4.2) is

L(y,λ) := J(y(tf)) −

∫ tf

ts

λ⊺(t) [ẏ(t) − f(t,y(t))] dt− λ⊺(ts) [y(ts) − ys] (5.2)

where λ ∈ L2(ts, tf)
d is the Lagrange multiplier in the dual space of L2(ts, tf)

d, cf.

Section 4.3. The optimality condition of (5.1) is based on the Fréchet derivative

of L at (y,λ) in direction (w,χ) which exists due to Section 4.4 and the Fréchet

differentiability of J

L′(y,λ)(w,χ) = Ly(y,λ)(w) + Lλ(y,λ)(χ)

=

{
J ′(y(tf))w(tf) −

∫ tf

ts

λ⊺(t) [ẇ(t) − fy(t,y(t))w(t)] dt− λ⊺(ts)w(ts)

}

+

{
−

∫ tf

ts

χ⊺(t) [ẏ(t) − f(t,y(t))] dt− χ⊺(ts) [y(ts) − ys]

}
.

The necessary condition for a stationary point (y,λ) ∈ H1(ts, tf)
d×L2(ts, tf)

d of (5.1)

is that L′(y,λ)(w,χ) = 0 holds for all directions (w,χ) ∈ H1(ts, tf)
d × L2(ts, tf)

d,

see e.g. Luenberger [88] or Ioffe and Tihomirov [75]. Choosing w = 0 ∈ H1(ts, tf)
d

and only varying χ ∈ L2(ts, tf)
d the necessary condition reads

∫ tf

ts

χ⊺(t) [ẏ(t) − f(t,y(t))] dt+ χ⊺(ts) [y(ts) − ys] = 0, ∀χ (5.3)

which possesses the same unique solution y ∈ C1[ts, tf ]
d as (1.1). For χ = 0 ∈

L2(ts, tf)
d and variable w ∈ H1(ts, tf)

d one obtains by using integration by parts

[
J ′(y(tf)) − λ⊺(tf)

]
w(tf) −

∫ ts

tf

[
λ̇(t) + f⊺

y(t,y(t))λ(t)
]⊺

w(t)dt = 0, ∀w

which possesses the same solution as (1.8). Under the assumptions of Section 1.2,

the unique solution λ(t) of (1.8) is continuously differentiable on [ts, tf ] and depends

continuously on the input data, cf. Theorem 1.7.

Interpretation of the adjoint If the constraints of (5.1), i.e. the nominal IVP (1.1),

hold exactly, then the Lagrangian defined by (5.2) takes the value L(y,λ) = J(y(tf)).
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5.1 Classical adjoint as Lagrange multiplier in L2(ts, tf)
d

But if, for example, the ODE constraint (5.1b) is perturbed by some function r(t),

then the adjoint solution λ(t) of (1.8) describes the effect of this perturbation on the

value of L. Interpreting L as a function of g(t) := ẏ(t) − f(t,y(t)), i.e. L̃(g,λ) :=

L(y,λ), the differentiation with respect to g in direction r gives

L̃g(g,λ)(r) = −

∫ tf

ts

λ⊺(t)r(t)dt

such that the value of L̃ changes in first order to

L̃(g + r,λ) =L̃(g,λ) + L̃g(g,λ)(r) + O
(
‖r‖2

C0[ts,tf ]d

)

=J(y(tf)) −

∫ tf

ts

λ⊺(t)r(t)dt+ O
(
‖r‖2

C0[ts,tf ]d

)
.

Analogously, the effect of a perturbed initial condition is described by λ(ts). Hence,

the adjoint λ(t) describes the shadow prices in J for violating the initial condition

or the ODE constraint during the solution of the IVP (1.1). Or, in the terminology

of Section 1.3, it describes the (continuous) stability of the IVP solution in J . The

perturbation in J resulting from input perturbations ‖r‖C0[ts,tf ]d
≤ ̺ and ‖rs‖∞ ≤ ̺

is bounded by

|J(y(tf)) − J(ȳ(tf))| ≤

∣∣∣∣
∫ tf

ts

λ⊺(t)r(t)dt

∣∣∣∣+ |λ⊺(ts)rs| ≤ κ̺

where ȳ(t) solves the perturbed IVP ˙̄y(t) = f(t, ȳ(t)) − r(t), ȳ(ts) = ys + rs,

λ(t) solves (1.8) and κ is the condition number of Section 1.3.1. This again clarifies

the worst-case character of the condition number already described in Section 1.3.1.

Here we derived once again the adjoint IVP (1.8) of Section 1.2.2 but with the help

of the standard functional-analytic setting based on Hilbert spaces. This setting is

also the basis for the construction of one-step Finite Element (FE) Galerkin meth-

ods for ODEs, see e.g. Eriksson et al. [55, 56] and Böttcher and Rannacher [36].

Nevertheless, Section 3.6 showed that adjoint IND schemes of variable multistep

BDF methods can not be used to integrate the adjoint IVP.

Formulating the evaluation J(yN ) in the solution of the BDF method (2.2) equiva-

lently as a Nonlinear Program (NLP), analogously as done in the beginning of this

chapter for the infinite dimensional case, the resulting NLP is a discretization of

(5.1). The first-order optimality conditions are then given by the BDF method (2.2)

and its discrete adjoint IND scheme (3.2), for details see Section 6.3. As shown

above, the infinite dimensional optimality conditions of (5.1) in H1(ts, tf)
d are given

by the nominal IVP (1.1) and the adjoint IVP (1.8). Hence, the finite dimensional

optimality conditions are no discretization of the infinite dimensional conditions due

to the adjoints, cf. Section 3.6 and Figure 3.1.

In the remaining of this chapter we will derive infinite dimensional optimality

conditions in a more general functional-analytic setting of particular Banach spaces.

Their discretization using the FE spaces of Chapter 6 will finally yield in the BDF

method together with its adjoint IND scheme.
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5 Weak adjoint solutions

5.2 Weak adjoint as Lagrange multiplier in NBV(ts, tf)
d

In this section we solve the CVP (5.1) on the space C1[ts, tf ]
d of all continuously

differentiable functions. To this end, we need a variational formulation of the ODE

constraint of (5.1). For y ∈ C1[ts, tf ]
d the constraint ẏ(·) − f(·,y(·)) = 0 is an

element of C0[ts, tf ]
d and we have to use the duality pairing of NBV[ts, tf ]

d and

C0[ts, tf ]
d, cf. Section 4.3. Thus, the variational formulation of the IVP (1.1), being

the constraints of (5.1), reads: Find y ∈ C1[ts, tf ]
d with y(ts) = ys such that

∫ tf

ts

ẏ(t) − f(t,y(t)) dΓ(t) = 0 ∀Γ ∈ NBV[ts, tf ]
d. (5.4)

This problem possesses at least one solution which is the classical solution given

by (1.1). The uniqueness follows from the fact that for continuous functions g ∈

C0[ts, tf ] it holds
∫ tf

ts

g(t) dΨ(t) = 0 ∀Ψ ∈ NBV[ts, tf ] ⇒ g = 0.

Thus, both formulations (1.1) and (5.4) give the same solution y(t) and (5.4) is

well-posed according to the well-posedness of (1.1) described in Section 1.1.

Solving the CVP (5.1) on the function space C1[ts, tf ]
d, the Lagrangian L :

C1[ts, tf ]
d × NBV[ts, tf ]

d × R
d → R is given by

L(y,Λ, l) := J(y(tf)) −

∫ tf

ts

ẏ(t) − f(t,y(t)) dΛ(t) − l⊺ [y(ts) − ys] (5.5)

where the Lagrange multipliers l and Λ lie in the corresponding dual spaces R
d and

NBV[ts, tf ]
d, cf. Section 4.3. The Lagrangian is based on the variational formulation

(5.4) and includes the initial condition using an additional Lagrange multiplier. We

first state the central theorem of this section and defer the proof for the end of the

section.

Theorem 5.1 The optimality conditions of the CVP (5.1) on C1[ts, tf ]
d, i.e.

J ′(y(tf))w(tf) −

∫ tf

ts

ẇ(t) − fy(t,y(t))w(t) dΛ(t) − l⊺w(ts) = 0, (5.6a)

−

∫ tf

ts

ẏ(t) − f(t,y(t)) dΓ(t) = 0, (5.6b)

−r⊺ [y(ts) − ys] = 0, (5.6c)

∀(w,Γ, r) ∈ C1[ts, tf ]
d × NBV[ts, tf ]

d × R
d,

possess a unique solution (y,Λ, l) in C1[ts, tf ]
d × NBV[ts, tf ]

d × R
d. Moreover, y(t)

is the solution of (1.1), and l and Λ(t) are given in terms of the adjoint solution

λ(t) of (1.8)

l = λ(ts), Λ(t) =

∫ t

ts

λ(τ)dτ, (5.7)

with componentwise integration.
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5.2 Weak adjoint as Lagrange multiplier in NBV(ts, tf)
d

The necessary optimality condition for a stationary point (y,Λ, l) of the La-

grangian (5.5) is given by




Ly(y,Λ, l)(w)

LΛ(y,Λ, l)(Γ)

Ll(y,Λ, l)(r)


 =




0

0

0


 , ∀w ∈ C1[ts, tf ]

d, Γ ∈ NBV[ts, tf ]
d, r ∈ R

d

which is exactly (5.6). As equations (5.6b)-(5.6c) are already given by (5.4) and

discussed over there, we now focus on equation (5.6a) of the optimality conditions.

Provided that y(t) is known, the adjoint problem in variational formulation reads:

Find (Λ, l) ∈ NBV[ts, tf ]
d × R

d such that (5.6a) holds for all w ∈ C1[ts, tf ]
d.

Lemma 5.2 For the solution y(t) of (5.6b)-(5.6c), a corresponding adjoint solution

(Λ, l) ∈ NBV[ts, tf ]
d × R

d of (5.6a) is provided by (5.7).

Proof Recall that the adjoint IVP (1.8) has a unique solution λ ∈ C1[ts, tf ]
d, cf. Sec-

tion 1.2.2. Multiplying the transposed of (1.8a) from the right by any w ∈ C1[ts, tf ]
d,

integrating over [ts, tf ] and adding the transposed of (1.8b) multiplied by w(tf) yields

∫ tf

ts

[
λ̇(t) + f⊺

y(t,y(t))λ(t)
]⊺

w(t)dt−
[
λ(tf) − J ′(y(tf))

⊺
]⊺

w(tf) = 0. (5.8)

Integration by parts gives for all w ∈ C1[ts, tf ]
d

∫ tf

ts

λ⊺(t) [ẇ(t) − fy(t,y(t))w(t)] dt− λ⊺(ts)w(ts) + J ′(y(tf))w(tf) = 0.

Consequently, (5.7) provides a solution (Λ, l) ∈ NBV[ts, tf ]
d×R

d of (5.6a), since the

indefinite integral Λi(t) =
∫ t
ts
λi(τ)dτ is a normalized function of bounded variation

and it holds
∫ tf
ts
g(t)dΛi(t) =

∫ tf
ts

Λ′
i(t)g(t)dt =

∫ tf
ts
λi(t)g(t)dt, cf. Section 4.1.1 and

4.1.2. �

The next lemma proves the uniqueness of the adjoint solution.

Lemma 5.3 For the solution y(t) of (5.6b)-(5.6c), the corresponding adjoint solu-

tion (Λ, l) ∈ NBV[ts, tf ]
d × R

d of (5.6a) is unique.

Proof Equation (5.6a) is equivalent to

∫ tf

ts

ẇ(t) − fy(t,y(t))w(t) dΛ(t) + l⊺w(ts)

︸ ︷︷ ︸
=:A(Λ,l)(w)

= J ′(y(tf))w(tf)︸ ︷︷ ︸
=:B(w)

∀w ∈ C1[ts, tf ]
d

where B and A(Λ, l) are linear functionals on C1[ts, tf ]
d and A : NBV[ts, tf ]

d×R
d →(

C1[ts, tf ]
d
)′

is linear in (Λ, l). We have to show that N (A) = {(0,0)}, where the

nullspace of A is given by

N (A) =
{

(Λ, l) ∈ NBV[ts, tf ]
d × R

d : A(Λ, l)(w) = 0 ∀w ∈ C1[ts, tf ]
d
}
.
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5 Weak adjoint solutions

Due to Section 1.2, for every initial value w1(ts) ∈ R
d there exists a function w1 ∈

C1[ts, tf ]
d that satisfies the ODE of (1.4). Inserting w1 in A(Λ, l) then gives

A(Λ, l)(w1) =

∫ tf

ts

0dΛ(t) + l⊺w1(ts) = 0 + l⊺w1(ts).

Thus, l has to vanish in order to ensure A(Λ, l)(w) = 0 ∀w ∈ C1[ts, tf ]
d. Now, we

search for functions Λ ∈ NBV[ts, tf ]
d with

A(Λ,0)(w) =

∫ tf

ts

ẇ(t) − fy(t,y(t))w(t) dΛ(t) = 0 ∀w ∈ C1[ts, tf ]
d.

With g(t) := ẇ(t) − fy(t,y(t))w(t), it is the same to vary either w ∈ C1[ts, tf ]
d or

g ∈ C0[ts, tf ]
d, since the inhomogeneous ODE possesses a unique solution w(t) for

every g(t). According to the uniqueness of Ψ in (4.1) it holds

∫ tf

ts

g(t) dΛ(t) = 0 ∀g ∈ C0[ts, tf ]
d ⇒ Λ = 0.

Thus, N (A) = {(0,0)} which proves the uniqueness of the solution of (5.6a). �

With this knowledge at hand we can now come to the proof of Theorem 5.1.

Proof (of Theorem 5.1) As seen in the beginning of the section, the equations

(5.6b)-(5.6c) have the same unique solution y(t) as (1.1) which implies their well-

posedness. According to Lemma 5.2, a solution of (5.6a) is provided by (5.7). Fur-

thermore, it is the only solution of (5.6a) according to Lemma 5.3. Since λ(t)

depends continuously on J ′(y(tf))
⊺ (cf. Section 1.2.2) this still holds for Λ(t) and l.

Thus, (5.6a) together with (5.6b)-(5.6c) is well-posed. �

With the concept of weak solutions from Partial Differential Equations (PDEs),

see e.g. Johnson [76], the triple (y,Λ, l) is a weak solution of (1.1) and (1.8) since

it solves the variational formulation (5.6) of (1.1) and (1.8). Thus, we will call Λ

a weak adjoint solution of (1.8) or shortly weak adjoint. Note that for the nominal

solution, the weak solution y defined by (5.6c)-(5.6b) is directly given by the classical

solution of (1.1). Whereas for the adjoint, the weak solution Λ is sufficiently regular

such that a classical solution of (1.8) is provided by Λ′ = λ.

Interpretation of the weak adjoint For the weak adjoint the same interpretation

like for the classical adjoint holds, cf. page 48. Perturbations r(t) of the ODE

constraint affect the value of J(y(tf)) by

L̃g(g,Λ, l)(r) = −

∫ tf

ts

r(t)dΛ(t)

and the effect of a perturbed initial condition is described by l = λs. The weak ad-

joint Λ(t) itself accumulates the classical adjoint from ts to t due to (5.7). Moreover,
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5.3 Weak adjoint as Lagrange multiplier in (Y [ts, tf ]
d)′

the adjoint pair (Λ, l) can be used to get a lower bound on the condition number κ

defined in Section 1.3.1 since

‖l‖1 + ‖Λ(tf)‖1 =

d∑

i=1

|λi(ts)| +

d∑

i=1

∣∣∣∣
∫ tf

ts

λi(τ)dτ

∣∣∣∣

≤
d∑

i=1

|λi(ts)| +
d∑

i=1

∫ tf

ts

|λi(τ)| dτ = κ.

The bound is sharp if for every i = 1, . . . , d either λi(t) ≥ 0 or λi(t) ≤ 0 holds for

all t ∈ [ts, tf ].

5.3 Weak adjoint as Lagrange multiplier in (Y [ts, tf ]
d)′

Most integrators, including the BDF method of Chapter 2, give approximations to

the solution of (1.1) that are not continuously differentiable on the whole interval

[ts, tf ] but rather continuous and piecewise continuously differentiable. To capture

this case, an appropriate extension of the trial space C1[ts, tf ]
d is required. To

this end, we employ a time grid ts = t0 < t1 < · · · < tN = tf and a partition

of [ts, tf ] using subintervals In := (tn, tn+1] of length hn = tn+1 − tn such that

[ts, tf ] = {ts} ∪ I0 ∪ · · · ∪ IN−1. Choosing the trial space as

Y [ts, tf ]
d :=

{
y ∈ C0[ts, tf ]

d : y
∣∣
In

∈ C1
b (In)d

}
, (5.9)

where C1
b (In) is the space of all continuously differentiable and bounded functions

with bounded derivative, cf. Section 4.2.

Solving the CVP (5.1) on Y [ts, tf ]
d, the ODE constraint ẏ(·) − f(·,y(·)) = 0

is piecewise continuous and bounded on [ts, tf ], i.e. continuous on In. Due to the

latter property, it is continuous from the left (see Definition A.3) on [ts, tf ]. In order

to find the appropriate duality pairing, we have to extend the linear functional L

defined by (4.1) from C0[ts, tf ] to
⋃N−1

n=0 C
0
b(In) by generalizing Definition 4.6 of the

Riemann-Stieltjes integral to allow integrands that are continuous from the left.

5.3.1 Extension of the Riemann-Stieltjes integral

As mentioned in Section 4.2 and 4.3, in this thesis we follow the convention that the

functions of bounded variation are continuous from the right. To allow Riemann-

Stieltjes integration of integrands that have discontinuouties at the same points as

the generating function and are continuous from the left we have to extend Definition

4.6 of the Riemann-Stieltjes integral appropriately.

Definition 5.4 Let g,Φ be two functions on [a, b] with Φ being of bounded variation

and g being continuous from the left with a single discontinuity at c ∈ (a, b). Assume

that
∫ c
a f(t)dΦ(t) and

∫
(c,b] f(t)dΦ(t) exist where partitions T k ∈ T ((c, b]) take the
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5 Weak adjoint solutions

form c < τk
0 < τk

1 < · · · < τk
m = b. Then, the extended Riemann-Stieltjes integral is

given by

∮ b

a
g(t)dΦ(t) =

∫ c

a
g(t)dΦ(t) +

∫

(c,b]
g(t)dΦ(t).

In words, the extended Riemann-Stieltjes integral splits the standard Riemann-

Stieltjes integral into a sum of those parts where the integrand is continuous. Hence,

if g ∈ C0[a, b], then both Riemann-Stieltjes integrals coincide, i.e.

∮ b

a
g(t)dΦ(t) =

∫ b

a
g(t)dΦ(t).

If g ∈ C0[a, b], then it also holds that

∫

(a,b]
g(t)dΦ(t) =

∫ b

a
g(t)dΦ(t)

since Φ is continuous from the right. Subsequently, we will always use the notion of

the extended Riemann-Stieltjes integral in terms of the standard Riemann-Stieltjes

integral on half open intervals.

5.3.2 Solution of the Constrained Variational Problem in Y [ts, tf ]
d

The existence of an extension L̂ of the linear functional L defined by (4.1) from

C0[ts, tf ] to Y [ts, tf ] is guaranteed by the Hahn-Banach Extension Theorem (Theorem

4.21). A suitable extension is provided by

L̂(g) =

N−1∑

n=0

∫

In

g(t)dΨ(t)

using the extended Riemann-Stieltjes integral of Section 5.3.1. This extension L̂

restricted to the continuous functions g ∈ C0[ts, tf ] coincides with L defined by (4.1).

Now, solving the CVP (5.1) on Y [ts, tf ]
d, the extended Lagrangian L̂ : Y [ts, tf ]

d ×

NBV[ts, tf ]
d × R

d → R of (5.1) on Y [ts, tf ]
d is given by

L̂(y,Λ, l) := J(y(tf)) −
N−1∑

n=0

∫

In

ẏ(t) − f(t,y(t)) dΛ(t) − l⊺ [y(ts) − ys] . (5.10)

The Lagrangian L̂ is based on the extension L̂, and thus restricted to y ∈ C1[ts, tf ]
d

it coincides with the Lagrangian L defined by (5.5).

With these definitions at hand, we first state the main result of the section.
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5.3 Weak adjoint as Lagrange multiplier in (Y [ts, tf ]
d)′

Theorem 5.5 The optimality conditions of the CVP (5.1) on Y [ts, tf ]
d, i.e.

J ′(y(tf))w(tf) −
N−1∑

n=0

∫

In

ẇ(t) − fy(t,y(t))w(t) dΛ(t) − l⊺w(ts) = 0, (5.11a)

−
N−1∑

n=0

∫

In

ẏ(t) − f(t,y(t)) dΓ(t) = 0, (5.11b)

−r⊺ [y(ts) − ys] = 0, (5.11c)

∀(w,Γ, r) ∈ Y [ts, tf ]
d × NBV[ts, tf ]

d × R
d,

possess a unique solution (y,Λ, l) in Y [ts, tf ]
d×NBV[ts, tf ]

d×R
d that coincides with

the solution of (5.6).

We start with considering the nominal equations (5.11c)-(5.11b).

Lemma 5.6 The solution y(t) of (5.6c)-(5.6b) solves the extended variational for-

mulation (5.11c)-(5.11b).

Proof Let y(t) be the solution of (5.6c)-(5.6b). From C1[ts, tf ]
d ⊂ Y [ts, tf ]

d follows

that y ∈ Y [ts, tf ]
d. Since the integral

∫ tf
ts
gi(t)dΓi(t) for the continuous integrand

gi(t) := ẏi(t) − fi(t, y(t)) exists (Theorem 4.7), Lemma 4.8 states that also the

integrals
∫ tn+1

tn
gi(t)dΓi(t) over the subintervals exist and it holds

∫ tf

ts

gi(t)dΓi(t) =

N−1∑

n=0

∫ tn+1

tn

gi(t)dΓi(t) =

N−1∑

n=0

∫

In

gi(t)dΓi(t)

where the second equality is due to Section 5.3.1 on the extended Riemann-Stieltjes

integral, i = 1, . . . , d. Thus, equation (5.6b) becomes ∀Γ ∈ NBV[ts, tf ]
d

0 =

∫ tf

ts

ẏ(t) − f(t,y(t)) dΓ(t) =

N−1∑

n=0

∫

In

ẏ(t) − f(t,y(t)) dΓ(t)

which coincides with (5.11b). Hence, y(t) also solves (5.11b) and trivially (5.11c).�

Lemma 5.7 The extended variational formulation (5.11b)-(5.11c) possesses a unique

solution y(t).

Proof Let y(t) be a solution of (5.11b)-(5.11c). The space NBV[ts, tf ]
d contains,

in particular, the continuous functions of bounded variation that vanish everywhere

except on (tn, tn+1). Thus, a necessary condition for y(t) being a solution of (5.11b)-

(5.11c) is that each addend has to vanish, i.e.
∫
In

ẏ(t) − f(t,y(t))dΓ(t) = 0 ∀Γ ∈

NBV(In)d with Γ(tn+1) = 0. The Fundamental Theorem of Variational Calculus

yields ẏ(t) − f(t,y(t)) = 0 on (tn, tn+1) for all n = 0, . . . , N − 1. On the other

hand, NBV[ts, tf ]
d contains also the constant functions having a single jump in tn.

They give according to Section 4.1.2 and 5.3.1 the necessary conditions ẏ(tn) −

f(tn,y(tn)) = 0 for n = 1, . . . , N . Since f(t,y) is continuous in both variables and

y ∈ C0[ts, tf ]
d, y(t) is necessarily continuously differentiable on [ts, tf ]. Thus, every

solution of (5.11b)-(5.11c) satisfies (5.6b)-(5.6c) which possesses a unique solution.�
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5 Weak adjoint solutions

As conclusion of this lemma, the extended variational formulation (5.11b)-(5.11c) is

well-posed according to the well-posedness of (5.6b)-(5.6c).

Now, we focus on the adjoint problem in extended variational formulation which

is for a given y(t): Find (Λ, l) ∈ NBV[ts, tf ]
d × R

d such that (5.11a) holds for all

w ∈ Y [ts, tf ]
d.

Lemma 5.8 For the solution y(t) of (5.11b)-(5.11c), the corresponding adjoint so-

lution (Λ, l) ∈ NBV[ts, tf ]
d × R

d of (5.11a) is provided by (5.7).

Proof We proceed in the same way as in the proof of Lemma 5.2, but choose w ∈

Y [ts, tf ]
d for the multiplication and split the integral in (5.8) using the subintervals In

(same arguments as in the proof of Lemma 5.6). Integration by parts of all integrals

yields the equivalent equation

−λ⊺(ts)w(ts) −
N−1∑

n=0

∫

In

λ⊺(t) [ẇ(t) − fy(t,y(t))w(t)] dt+ J ′(y(tf))w(tf) = 0.

Thus, the choice (5.7) provides a solution of (5.11a). �

Lemma 5.9 For the solution y(t) of (5.11b)-(5.11c), the corresponding adjoint so-

lution (Λ, l) ∈ NBV[ts, tf ]
d × R

d of (5.11a) is unique.

Proof We follow mainly the proof of Lemma 5.3. Equation (5.11a) is equivalent to

N−1∑

n=0

∫

In

ẇ(t) − fy(t,y(t))w(t) dΛ(t) + l⊺w(ts)

︸ ︷︷ ︸
=:Â(Λ,l)(w)

= J ′(y(tf))w(tf)︸ ︷︷ ︸
=B(w)

∀w ∈ Y [ts, tf ]
d

where Â(Λ, l) is also a linear functional on Y [ts, tf ]
d and Â : NBV[ts, tf ]

d × R
d →(

Y [ts, tf ]
d
)′

is linear in (Λ, l). We show again that N (Â) = {(0,0)}. Since C1[ts, tf ]
d ⊂

Y [ts, tf ]
d, l has to vanish due to the same arguments as used in the proof of Lemma

5.3. Thus, the following equation

Â(Λ,0)(w) =

N−1∑

n=0

∫

In

ẇ(t) − fy(t,y(t))w(t) dΛ(t) = 0 ∀w ∈ Y [ts, tf ]
d

has to be satisfied also for w ∈ C1[ts, tf ]
d ⊂ Y [ts, tf ]

d, i.e. with g(t) := ẇ(t) −

fy(t,y(t))w(t) it becomes

N−1∑

n=0

∫

In

g(t) dΛ(t) = 0 ∀g ∈ C0[ts, tf ]
d.

Furthermore, as g(t) is continuous the integral
∫ tf
ts

g(t)dΛ(t) exists and coincides

with the sum of the integrals over the subintervals (same arguments as in the proof

of Lemma 5.6) and the proof can be finished in the same way as that of Lemma 5.3.�
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5.3 Weak adjoint as Lagrange multiplier in (Y [ts, tf ]
d)′

With all this at hand we are able to prove Theorem 5.5.

Proof (of Theorem 5.5) Lemma 5.6 and 5.7 prove the existence of a unique so-

lution of (5.11b)-(5.11c) coinciding with the solution of (5.6b)-(5.6c). For this so-

lution, (5.11a) has a unique solution given by (5.7) due to Lemma 5.8 and 5.9. �

The novel functional-analytic framework derived in this chapter holds generally

for IVPs in ODEs. Hence, it is not limited to the analysis of BDF methods and their

adjoint IND schemes but rather allows to analyze integration methods that provide

at least a continuous and piecewise continuously differentiable approximation to the

solution of the nominal IVP (1.1). In the following chapter we propose a FE Petrov-

Galerkin discretization of the infinite dimensional optimality conditions (5.11) that

is particularly suitable to relate the discrete adjoint IND values of BDF methods

and the solution of the adjoint IVP by the help of the weak adjoint solution.
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6 Petrov-Galerkin Finite Element

discretization

In order to solve the infinite dimensional optimality conditions (5.11) derived in

the last chapter numerically, the infinite dimensional function spaces Y [ts, tf ]
d and

NBV[ts, tf ]
d have to be approximated by finite dimensional subspaces, the Finite

Element (FE) spaces. This so-called Petrov-Galerkin approximation transfers the

infinite dimensional conditions into a finite dimensional system of equations. This

chapter follows again our own work Beigel et al. [21] with small modifications. In

the first part we propose particular basis functions to span the finite dimensional

subspaces, and the second part is devoted to the resulting system of equations and its

equivalence to the Backward Differentiation Formula (BDF) method and its discrete

adjoint Internal Numerical Differentiation (IND) scheme. Finally, we focus on the so

obtained commutativity of discretization and differentiation in the case of multistep

BDF methods.

6.1 Finite Element spaces

This section deals with the discretization of the infinite dimensional function spaces

Y [ts, tf ]
d and NBV[ts, tf ]

d by choosing appropriate sets of basis functions. This

is the general procedure of FE methods which are mostly used to solve Partial

Differential Equations (PDEs) and only sometime to solve Ordinary Differential

Equations (ODEs). For more details on FE methods for PDEs, we refer the reader

to Ern and Guermond [57], Brenner and Scott [39] and Braess [37].

6.1.1 Trial space

To discretize the trial space Y [ts, tf ]
d we use piecewise polynomials of order kn on

the subinterval In

YP [ts, tf ]
d :=

{
y ∈ C0[ts, tf ]

d : y
∣∣
In

∈ P(kn)(In)d
}

(6.1)

where P(kn)(In) denotes the space of all polynomials of degree kn on In. We choose

local basis functions ϕn that are composed of the fundamental Lagrangian poly-

nomials (2.4) restricted to the particular subinterval. Figure 6.1 shows the basis

function ϕn ∈ YP [ts, tf ]
d for n ≥ 2 with k0 = 1, km = 2 for m > 0 and hm = h for all

m = 0, . . . , N − 1. The support of a single basis function depends on the orders and
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6 Petrov-Galerkin Finite Element discretization

ϕn(t)

6

-
tn−2 L

(n−1)
0

tn−1

L
(n)
1

tn

L
(n+1)
2

tn+1 tn+2

1

Figure 6.1: Basis function ϕn of YP [ts, tf ]
d for n ≥ 2 with k0 = 1, km = 2 for m > 0

and constant stepsizes hm = h for all m.

Hn(t)

s

6

-
tn−1 tn tn+1

1

Figure 6.2: Basis function Hn of ZH [ts, tf ]
d.

contains at most seven adjacent subintervals as BDF methods are zero-stable up to

order 6, see Theorem 2.19.

The function y ∈ Y [ts, tf ]
d is then approximated by

y(t) ≈ yh(t) := ysϕ0(t) +

N∑

n=1

ynϕn(t)

with (N+1)·d degrees of freedom {yn ∈ R
d}N

n=0. To achieve locally the order kn > 1,

former values yn+1−kn
, . . . ,yn are reused to set up the interpolation polynomial of

order kn which is afterwards restricted to In, cl. Section 2.1.

6.1.2 Test space

We approximate the test space NBV[ts, tf ]
d using Heaviside functions as basis func-

tions. We choose them to be continuous from the right with discontinuity in tn

Hn(t) :=

{
0 t < tn
1 t ≥ tn

as depicted in Figure 6.2. Thus, a function Λ ∈ NBV[ts, tf ]
d is approximated by the

linear combination of these basis functions in the form

Λ(t) ≈ Λh(t) :=
N∑

n=1

hn−1λnHn(t) (6.2)

where the hn−1 appear for reasons which will become clear later. Note that Λh is

a step function with initial value Λh(ts) = 0 and jumps of magnitude hn−1λn at tn
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6.2 Finite dimensional optimality conditions

for n = 1, . . . , N . Thus, it is Λh(tn) = Λh(tn−1) + hn−1λn at the grid points and

Λh(t) = Λh(tn) for inner points t ∈ (tn, tn+1). We denote this space by ZH[ts, tf ]
d.

Regarding the relation (5.7) between the adjoint solutions λ and Λ, the classical

derivative of Λh fails to exist. But Λh is still differentiable in a weak form such

that its weak derivative is given by the Dirac measures at {t1, . . . , tN} with heights

{h0λ1, . . . , hN−1λN}, see e.g. Alt [7].

6.2 Finite dimensional optimality conditions

In this section, we approximate the infinite dimensional optimality conditions (5.11)

by finite dimensional equations that result from approximating the function spaces

Y [ts, tf ]
d and NBV[ts, tf ]

d by the FE spaces YP [ts, tf ]
d and ZH [ts, tf ]

d of Section 6.1.

The resulting system of equations will be discussed in the following.

Theorem 6.1 The discretized optimality conditions, i.e.

J ′(yh(tf))w
h(tf)

−
N−1∑

n=0

∫

In

ẇh(t) − fy(t,yh(t))wh(t) dΛh(t) − [lh]⊺wh(ts) = 0, (6.3a)

−
N−1∑

n=0

∫

In

ẏh(t) − f(t,yh(t)) dΓh(t) = 0, (6.3b)

−[rh]⊺
[
yh(ts) − ys

]
= 0, (6.3c)

∀(wh,Γh, rh) ∈ YP [ts, tf ]
d × ZH [ts, tf ]

d × R
d,

with lh = λ0 are equivalent to the BDF scheme (2.2) with prescribed stepsizes

{hn}
N−1
n=0 and orders {kn}

N−1
n=0 together with its discrete adjoint IND scheme (3.2).

The above theorem is the main result of this section. The proof follows directly from

the two lemmas given below.

Lemma 6.2 The equations (6.3b)-(6.3c) are equivalent to the BDF scheme (2.2)

with prescribed stepsizes {hn}
N−1
n=0 and orders {kn}

N−1
n=0 .

Proof We first consider one addend of (6.3b)

∫

In

ẏh(t) − f(t,yh(t)) dΓh(t)

=
[
Γh(tn+1) − Γh(tn)

]⊺{
ẏh(tn+1) − f(tn+1,y

h(tn+1))
}

=γ
⊺
n+1

{
kn∑

i=0

hnϕ̇n+1−i(tn+1)︸ ︷︷ ︸
=α

(n)
i

yn+1−i − hnf(tn+1,yn+1)

}
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6 Petrov-Galerkin Finite Element discretization

where the first equality holds due to the extended Riemann-Stieltjes integral of Sec-

tion 5.3.1 in vector-valued version with coefficients hnγn+1 of Γh in (6.2). The

second equality uses the properties of the basis functions ϕn. Here the appear-

ance of the hn in the coefficients of Λh given by (6.2) becomes clear. Thus, (6.3b)

can be written as a system of equations that is nonlinear in {yn}
N
n=1 and linear in

γ⊺ :=
[

γ
⊺
1 γ

⊺
2 · · · γ

⊺
N

]
∈
(
R

d
)N

γ⊺


(A ⊗ I)




y1

y2
...

yN


+




α
(0)
1 ys

0
...

0


−




h0f(t1,y1)

h1f(t2,y2)
...

hN−1f(tN ,yN )





 = 0, ∀γ (6.4)

where A ⊗ I denotes the Kronecker tensor product, i.e. the (N · d) × (N · d) matrix

with d × d blocks aijI, and the quadratic matrix A is lower triangular with band

structure

A =




α
(0)
0 0 0 0 · · ·

α
(1)
1 α

(1)
0 0 0 · · ·

...

· · · 0 α
(N−1)
kN−1

· · · α
(N−1)
0



.

Equation (6.4) holds if and only if the term in the squared brackets vanishes. Since

A is lower triangular, each yn+1 is determined directly from ys,y1, . . . ,yn by the

nth equation of the squared brackets term in (6.4) which coincides with the nth step

of (2.2b). So, together with the equivalence between (2.2a) and (6.3c) the lemma is

shown. �

Lemma 6.3 For the solution yh(t) of (6.3b)-(6.3c), the equation (6.3a) with lh =

λ0 is equivalent to the discrete adjoint IND scheme (3.2) of the nominal BDF scheme

(2.2).

Proof Analogously to the beginning of the proof of Lemma 6.2, each integral in

(6.3a) is given by
∫

In

ẇh(t)−fy(t,yh(t))wh(t) dΛh(t)

= λ
⊺
n+1

{
kn∑

i=0

α
(n)
i wn+1−i − hnfy(tn+1,yn+1)wn+1

}
.

Thus, equation (6.3a) can be formulated equivalently in matrix form with w⊺ :=[
w

⊺
1 w

⊺
2 · · · w

⊺
N

]
∈
(
R

d
)N

and λ⊺ :=
[

λ
⊺
1 λ

⊺
2 · · · λ

⊺
N

]

[
0 · · · 0 J ′(yN )

]
w −

[
α

(0)
1 λ1 + lh

]⊺
w0

− λ⊺


A ⊗ I −




h0fy(t1,y1) 0
. . .

0 hN−1fy(tN ,yN )





w = 0, ∀w0,w (6.5)
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6.3 Commutativity of differentiation and discretization

which is linear in both the variations w0, w and the unknown λ. The equivalent

time-stepping scheme goes backwards in time starting with J ′(yN ) − α
(N−1)
0 λ

⊺
N +

hN−1λ
⊺
Nfy(tN ,yN ) = 0. Thus, (6.5) with lh = λ0 is equivalent to (3.2) which

finishes the proof. �

It remains to spend some words on the well-posedness of the Petrov-Galerkin

equations (6.3). The system (6.3b)-(6.3c) admits a unique solution yh via {yn}
N
n=0

if
∣∣∣hn/α

(n)
0 L

∣∣∣ < 1 for n = 0, . . . , N − 1 with Lipschitz constant L of f(t,y), or less

restrictive, if
∣∣∣hn/α

(n)
0

∣∣∣ ‖fy(tn+1,yn+1)‖ < 1 for all n, see Chapter 2. The solution

depends continuously on the input data due to the zero- and A(α)-stability of the

integration scheme, cf. Section 2.3. Since ‖fy(t,y)‖ is bounded by L for all (t,y) and

hn, kn satisfy
∣∣hn/α

(n)
0 L

∣∣ < 1, the matrix in (6.5) is nonsingular and thus (6.3a)

possesses a unique weak adjoint solution Λh via {λn}
N
n=0. The solution depends

continuously on the input data since the zero-stability of the nominal integration

scheme (2.2) is carried over to the discrete adjoint IND scheme (3.2), see Section 3.6.

The well-posedness of (6.3a) is also established by the derivation of the equivalent

scheme (3.2) using Algorithmic Differentiation (AD) of (2.2), cf. Section 3.4.1.

Interpretation of the FE weak adjoint The FE weak adjoint Λh defined by (6.2)

represents the numerical quadrature of the adjoint IND values {λn}
N
n=0, i.e. the

discrete counterpart of the integration in (5.7). The weighting with hn−1 guarantees

that constant functions are integrated exactly which is the fundamental property

of quadrature formulas. An example is provided by the discrete BDF adjoint λh
1 in

Figure 3.1(a) and the resulting FE weak adjoint Λh
1 in Figure 6.4(a). Like in the

infinite dimensional case described on page 52, the FE weak adjoint Λh represents

the accumulation of all adjoint IND values from ts to t for any time t ∈ [ts, tf ] due

to (6.2). Furthermore, Λh describes the discrete stability of the system of equations

given by (6.3c)-(6.3b).

6.3 Commutativity of differentiation and discretization

In Section 3.5 we highlighted the advantages and disadvantages of the discretize-

then-differentiate and the differentiate-then-discretize approach to generate deriva-

tives of solutions of Initial Value Problems (IVPs) with respect to initial values.

Furthermore, we highlighted the desirable property that both approaches lead to the

same discrete system, i.e. that discretization and differentiation commute. Unfortu-

nately, in Section 3.6 we saw that the discrete adjoint IND schemes of BDF methods

are not consistent discretizations of the adjoint IVP in the classical sense. However,

with the novel functional-analytic framework of Chapter 5 and the Petrov-Galerkin

FE discretization of this chapter we now obtain the commutativity of differentiation

and discretization also for the multistep BDF methods. The following considera-

tions can be seen as two separate argumentative ways to show the commutativity of
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6 Petrov-Galerkin Finite Element discretization

discretization and differentiation.

Discretize-then-differentiate approach The BDF method (2.2) with prescribed

orders and stepsizes can be understood as discretization of the constraints of the

infinite dimensional Constrained Variational Problem (CVP) (5.1) to end up with a

finite dimensional Nonlinear Program (NLP)

min
y0,...,yN

J(yN ) (6.6a)

s. t.

kn∑

i=0

α
(n)
i yn+1−i = hnf(tn+1,yn+1), n = 0, . . . , N − 1 (6.6b)

y0 = ys. (6.6c)

By the introduction of Lagrange multipliers {λn}
N
n=0 the Lagrangian of (6.6) reads

L(y0, . . . ,yN ,λ0, . . . ,λN ) :=

J(yN ) −
N−1∑

n=0

λ
⊺
n+1

(
kn∑

i=0

α
(n)
i yn+1−i − hnf(tn+1,yn+1)

)
− λ

⊺
0(y0 − ys). (6.7)

The necessary conditions, i.e. the Karush-Kuhn-Tucker conditions, for a stationary

point (y0, . . . ,yN ,λ0, . . . ,λN ) of the Lagrangian are that the first order derivative of

L vanishes, i.e. L′(y0, . . . ,yN ,λ0, . . . ,λN ) = 0 has to be satisfied, see e.g. Fletcher

[59] and Nocedal and Wright [98]. The conditions on the derivative with respect to

the Lagrange multipliers are the BDF method (2.2) itself with prescribed orders and

stepsizes. The conditions on the derivative with respect to the nominal approxima-

tions are provided by the adjoint IND scheme (3.2) associated to (2.2). In Figure

6.3 this discrete approach is visualized by the upper arrow pointing to the right and

the downward-pointing arrow at the right hand side.

From this point of view, the adjoint IND value λn+1 describe the rate of change

of the optimal value J(yN ) with respect to changes in the n-th constraint, i.e. with

respect to a perturbation δn+1 of the constraint

cn(y0, . . . ,yN ) :=

kn∑

i=0

α
(n)
i yn+1−i − hnf(tn+1,yn+1) = 0.

The perturbation δn+1 affects the future approximations yn+1, . . . ,yN and therefore

also the objective value which becomes, in first order, J(yN )−λ
⊺
n+1δn+1, i.e. {λn}

N
n=0

describes the discrete stability of (2.2).

We obtain the same discrete Lagrangian as defined in (6.7) by inserting the FE

approximations of Section 6.1 into the extended Lagrangian defined by (5.10)

L̂
(
yh,Λh, lh

)
= J(yN ) −

N−1∑

n=0

hnλ
⊺
n+1

{
ẏh(tn+1) − f(tn+1,yn+1)

}
− (lh)⊺[y0 − ys]

= J(yN ) −
N−1∑

n=0

λ
⊺
n+1

{
kn∑

i=0

α
(n)
i yn+1−i − f(tn+1,yn+1)

}
− (lh)⊺[y0 − ys]
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6.3 Commutativity of differentiation and discretization

see the beginning of the proof of Lemma 6.2. Hence, the function space discretization

of C1[ts, tf ]
d and NBV[ts, tf ]

d by YP [ts, tf ]
d and ZH[ts, tf ]

d with a subsequent differ-

entiation also describes the upper arrow pointing to the right and the downward-

pointing arrow at the right hand side of Figure 6.3. The resulting finite dimensional

optimality conditions of this discrete adjoint approach are the BDF method (2.2)

together with its associated adjoint IND scheme (3.2).

Differentiate-then-discretize approach In this approach we first solve the CVP

(5.1) in C1[ts, tf ]
d to obtain the infinite dimensional optimality conditions (5.6),

as done in Section 5.2. Subsequently, the FE spaces of Section 6.1 are used for

discretization to end up in the finite dimensional optimality conditions (6.3). Hence,

we interpret the finite system (6.3) as a non-conformal discretization of (5.6) since

YP [ts, tf ]
d 6⊂ C1[ts, tf ]

d whereas ZH[ts, tf ]
d ⊂ NBV[ts, tf ]

d. For a definition of non-

conformity we refer e.g. to Ern and Guermond [57] and Großmann and Roos [66].

Nevertheless, the approximation setting comprising L̂(·, ·, ·), YP [ts, tf ]
d and ZH[ts, tf ]

d

is consistent since the exact solution y of (5.6c)-(5.6b) fulfills the discrete system

(6.3c)-(6.3b), as we show in the following lemma.

Lemma 6.4 The FE discretization of the nominal infinite dimensional system (5.6c)-

(5.6b) using L̂(Λ,l)(y,Λ, l)(·, ·) and the FE spaces YP [ts, tf ]
d and ZH[ts, tf ]

d is consis-

tent, i.e. the exact solution y ∈ C1[ts, tf ]
d of (5.6c)-(5.6b) also satisfies the nominal

FE discretization (6.3c)-(6.3b)

L̂(Λ,l)(y,Λ, l)(Γ
h, rh) = 0 ∀(Γh, rh) ∈ ZH[ts, tf ]

d × R
d

with arbitrary Λ ∈ NBV[ts, tf ]
d and l ∈ R

d.

Proof It is L̂l(y,Λ, l)(r
h) = −[rh]⊺[y(ts)−ys] = −[rh]⊺0 = 0 since y solves (5.6c).

Furthermore, it holds

L̂Λ(y,Λ, l)(Γh) = −
N−1∑

n=0

∫

In

ẏ(t) − f(t,y(t)) dΓh(t)

= −
N−1∑

n=0

[ẏ(tn+1) − f(tn+1,y(tn+1))] γn+1hn = 0

since y solves (5.6b) and hence (1.1a) due to the beginning of Section 5.2. �

Remark 6.5 The so-called nonlinear Galerkin orthogonality, cf. Bangerth and Ran-

nacher [15], is satisfied, if

L̂(Λ,l)(y,Λ, l)(Γ
h, rh) − L̂(Λ,l)(y

h,Λ, l)(Γh, rh) = 0 ∀(Γh, rh) ∈ ZH[ts, tf ]
d × R

d,

where y ∈ C1[ts, tf ]
d solves (5.6c)-(5.6b) and yh ∈ YP [ts, tf ]

d solves (6.3c)-(6.3b).

The consistency obtained by Lemma 6.4 immediately implies that the nonlinear

Galerkin orthogonality holds.
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6 Petrov-Galerkin Finite Element discretization

The adjoint consistency as defined in Oliver and Darmofal [99] is provided by

the following lemma. Adjoint consistency for discontinuous Galerkin methods has

also been analyzed by Hartmann [70]. It is an important property concerning the

commutativity of differentiation and discretization since it gurarantees that the exact

solution of (5.6) also satisfies the discrete adjoint system (6.3a).

Lemma 6.6 The FE discretization of (5.6c)-(5.6b) using L̂(Λ,l)(y,Λ, l)(·, ·) and the

FE spaces YP [ts, tf ]
d and ZH[ts, tf ]

d is adjoint consistent, i.e. the solution (y,Λ, l) ∈

C1[ts, tf ]
d × NBV[ts, tf ]

d × R
d of (5.6) satisfies the adjoint FE discretization (6.3a)

L̂y(y,Λ, l)(wh) = 0 ∀wh ∈ YP [ts, tf ]
d.

Proof Since (y,Λ, l) solves (5.6), we have Λ(t) =
∫ t
ts

λ(τ)dτ , l = λ(ts) where λ(t)

solves (1.8) and is continuously differentiable, cf. Section 5.2 and 1.2.2. Hence,

for the Fréchet derivative of L̂ defined by (5.10) with respect to y in direction wh

evaluated at the nominal solution y we obtain due to Section 5.3.1 and 4.1.2 as well

as integration by parts

L̂y (y,Λ, l) (wh)

=J ′(y(tf))w
h(tf) −

N−1∑

n=0

∫

In

λ⊺(t)
[
ẇh(t) − fy(t,y(t))wh(t)

]
dt− λ⊺(ts)w

h(ts)

=J ′(y(tf))w
h(tf) − λ⊺(tf)w

h(tf) + λ⊺(ts)w
h(ts)

+

N−1∑

n=0

∫

In

[
λ̇(t) + f⊺

y(t,y(t))λ(t)
]⊺

wh(t)dt− λ⊺(ts)w
h(ts)

=
[
J ′(y(tf)) − λ⊺(tf)

]
wh(tf) +

∫ tf

ts

[
λ̇(t) + f⊺

y(t,y(t))λ(t)
]⊺

wh(t)dt = 0.

The penultimate equality holds due to Section 5.3.1 since the integrand of the ex-

tended Riemann-Stieltjes integral is continuous on the whole interval [ts, tf ]. The

last equality holds since λ solves (1.8). �

In Figure 6.3 the differentiate-then-discretize approach is depicted by the downward-

pointing arrow at the left hand side being followed by the lower arrow pointing to

the right. The resulting finite dimensional optimality conditions of this continuous

adjoint approach are provided by (6.3).

Commutativity Due to Theorem 6.1 the resulting discrete systems of equations of

both adjoint approaches, the discrete and the continuous one, are equivalent. Thus,

discretization and differentiation commute in the novel functional-analytic setting of

Chapter 5 and, in Figure 6.3, both paths from the infinite dimensional CVP (upper

left corner) lead to the same finite dimensional system of equations (lower right

corner) also in the case of multistep BDF methods.

These properties can also be observed numerically. To this end, we recall the ex-

ample of Section 3.6 with analytic solutions: The nonlinear Catenary problem solved
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6.3 Commutativity of differentiation and discretization

Constrained

Variational Problem

discretize - Nonlinear

Program

?

differentiate

infinite dimensional

optimality conditions
-discretize

?

differentiate

finite dimensional

optimality conditions

Figure 6.3: The two ways to transfer the infinite dimensional CVP (upper left corner)

into a finite dimensional optimality system (lower right corner). The

discrete approach first discretizes the CVP to give an NLP that is then

differentiated. The continuous approach first differentiates the CVP to

give infinite dimensional optimality conditions that are then discretized.

by a constant BDF method with order 2 and the variable BDF method DAESOL-II.

We use the discrete adjoint IND values {λn}
N
n=0 generated by the corresponding

adjoint IND schemes (3.2) and depicted in Figure 3.1 to compute by (6.2) the FE

approximation Λh(t) to the weak adjoint Λ(t). The resulting FE weak adjoints are

depicted in Figure 6.4.

Also in areas of varying stepsizes and changing orders, cf. penultimate and last

row of Figure 6.4(b), the FE weak adjoint gives a good approximation to the exact

weak adjoint. Remember that this was not fulfilled for the classical adjoint where

huge oscillations of the adjoint IND values are present, cf. first row of Figure 3.1(b).

At the end of Chapter 5 we emphasized that the novel functional-analytic frame-

work holds generally for IVPs with continuous or piecewise continuous defects. To

utilize the framework for the analysis of different integration methods than BDF

methods the choice of basis functions is cruicial. The basis functions chosen in

Section 6.1 particularly fit to BDF methods and their discrete adjoint IND schemes.
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6 Petrov-Galerkin Finite Element discretization
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(b) Variable BDF method

Figure 6.4: Comparison of the FE weak adjoint Λh = [Λh
1 ,Λ

h
2 ]⊺ and the analytic

weak adjoint solution Λ = [Λ1,Λ2]⊺ of the adjoint IVP on the Catenary

test case. Stepsize ratio (penultimate row) and BDF order (bottom) of

the variable BDF method.

68



7 Convergence analysis for discrete

adjoints

To finish the investigation of the relation between the discrete adjoint Internal Nu-

merical Differentiation (IND) values and the solution of the adjoint Initial Value

Problem (IVP) via the weak adjoints defined in Chapter 5 and Chapter 6 we have

to quantify the approximation quality of Λh ∈ ZH[ts, tf ]
d to Λ ∈ NBV[ts, tf ]

d. To

this end, we demonstrate the convergence of Λh to Λ in the total variation norm

of NBV[ts, tf ]
d which directly implies the convergence of Λh(t) to Λ(t) at any time

t ∈ [ts, tf ]. This will be the subject of the second part of the chapter. As prepara-

tion for the convergence proof in NBV[ts, tf ]
d we first show the convergence of the

discrete IND adjoint values λn to λ(tn) on the open interval (ts, tf). Therefore, we

consider a constant Backward Differentiation Formula (BDF) method with order k

and stepsize h using a self-starting procedure for y1, . . . ,ym with m ≥ k − 1 fixed.

7.1 Convergence of discrete adjoints of BDF methods

The discrete adjoint IND scheme (3.2) of a constant BDF method reads (see Section

3.4.1)

α0λN − J ′(yN )⊺ = hf⊺
y(tN ,yN )λN (7.1a)

N−1−n∑

i=0

αiλn+1+i = hf⊺
y(tn+1,yn+1)λn+1, n = N − 2, . . . , N − k (7.1b)

k∑

i=0

αiλn+1+i = hf⊺
y(tn+1,yn+1)λn+1, n = N − k − 1, . . . ,m (7.1c)

k∑

i=0

α
(n+i)
i λn+1+i = hf⊺

y(tn+1,yn+1)λn+1, n = m− 1, . . . , 0 (7.1d)

λ0 + α
(0)
1 λ1 = 0 (7.1e)

where (7.1d) accounts for the nominal starting procedure. As shown in Lemma 3.4

the scheme (7.1) is a Linear Multistep Method (LMM) applied to the perturbed

adjoint IVP (3.5). According to Lemma 3.5 the main steps (7.1c) are consistent

with (3.5). The adjoint initialization steps (7.1a)-(7.1b) can be now interpreted as

a starting procedure for (7.1c) giving inconsistent start values λN , . . . ,λN−k+1.

In the following, we study the asymptotic behavior for h → 0 and n → ∞ such
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7 Convergence analysis for discrete adjoints

that tn = ts + nh remains fixed. The interval [tm+1, tN−k] of the main part of (7.1)

increases and approaches (ts, tf) for h→ 0.

Lemma 7.1 Let fy(t, ỹ(t)) be continuously differentiable in t ∈ [ts, tf ] and ỹ(tn) =

yn for n = 0, . . . , N where {yn}
N
n=0 is generated by the constant BDF method with

order k and stepsize h. Let λ̃(t) be the exact solution of the perturbed adjoint IVP

(3.5) along ỹ(t) and let {λn}
N
n=1 be generated by (7.1). Then, for tn ∈ (ts, tf) fixed

there exists H > 0 such that
∥∥∥λn − λ̃(tn)

∥∥∥ = O(h)

as the stepsize is reduced with H > h→ 0.

Proof To ease the notion, we consider a scalar IVP. Nevertheless, the proof is

also valid for systems of IVPs. Furthermore, we define some abbreviations B(t) :=

f⊺
y (t, ỹ(t)) and η := J ′(ỹ(tf))

⊺. Thus, the starting procedure (7.1a)-(7.1b) can be

written equivalently using λ⊺ :=
[
λN · · · λN−k+1

]
and the k × 1 unit vector e1

[
Ã − hB(tN , h)

]
λ = e1η

where Ã = Ī [AN−k+1:N,N−k+1:N ]⊺ Ī for the reverse identity matrix Ī and the matrix

A from page 62, and

B(tN , h) :=




B(tN ) 0
. . .

0 B(tN − (k − 1)h)


 = B(tN )I + O(h)




0 0 · · · 0

0 1 0
...

. . .

0 0 1




using the Taylor series expansion of the entries B(tN − ih) around tN . The ma-

trix Ã is nonsingular since α0 6= 0. Furthermore, for h small enough to satisfy∥∥∥hÃ−1B(tN , h)
∥∥∥ < 1 we can express the inverse of I − hÃ−1B(tN , h) by its Neu-

mann series (see Theorem A.4) to obtain

λ =
[
Ã
(
I − hÃ−1B(tN , h)

)]−1
e1η =





∞∑

j=0

(
hÃ−1B(tN , h)

)j



 Ã−1e1η

=
{

I + hÃ−1B(tN , h) + O(h2)
}

Ã−1e1η

= Ã−1e1η + hÃ−1B(tN )Ã−1e1η + O(h2). (7.2)

Due to (7.2) the starting procedure satisfies the assumption (2.14) of Theorem 2.24

applied to the linear IVP (3.5) with continuously differentible coefficient B(t) =

fy(t, ỹ(t)). Thus, Theorem 2.24 yields for certain constants K1 and K2

λn − λ̃(tn) = exp

(∫ tn

tf

−B(τ)dτ

)
ζ + θ

(
K1 +

K2

tn − h− tf

)
h
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7.1 Convergence of discrete adjoints of BDF methods

where |θ| < 1 and

ζ :=
1

ρ′(1)

k−1∑

i=0

γi(λN−i − η).

The coefficients γi sum up to 1, i.e.
∑k−1

i=0 γi = 1, such that together with (7.2) we

obtain for γ⊺ :=
[
γ0 · · · γk−1

]

ζ = γ⊺λ − η = γ⊺
[
Ã−1e1η + hÃ−1B(tN )Ã−1e1η + O(h2)

]
− η

=
[
γ⊺Ã−1e1 − 1

]
η + hγ⊺Ã−1B(tN )Ã−1e1η + O(h2).

The coefficient γ⊺Ã−1e1 − 1 of the first addend vanishes which can be verified easily

for all zero-stable BDF methods (i.e. k ≤ 6 according to Theorem 2.19). Thus, we

obtain

λn − λ̃(tn) = h exp

(∫ tf

tn

B(τ)dτ

)
γ⊺Ã−1B(tN )Ã−1e1η

+h θ

(
K1 +

K2

tn − h− tf

)
+ O(h2) (7.3)

where both coefficients are bounded. �

The main result of this section is the following.

Theorem 7.2 Let fy(t,y) be continuously differentiable with respect to (t,y). Let

λ(t) be the exact solution of the adjoint IVP (1.8) and let {λn}
N
n=1 be generated by

(7.1). Then, for tn ∈ (ts, tf) fixed there exists H > 0 such that

‖λn − λ(tn)‖ = O(h) (7.4)

as the stepsize is reduced with H > h→ 0.

Proof Let the continuously differentiable spline ỹ(t) be composed of quadratic poly-

nomials on In such that ỹ(tn) = yn, ỹ(tn+1) = yn+1 and ˙̃y(tn+1) = f(tn+1,yn+1)

for n = 0, . . . , N − 1. Furthermore, we define the interpolation operator I that

maps a continuously differentiable function g(t) to a continuously differentiable

spline Ig(t) that is composed of quadratic polynomials on In with Ig(tn) = g(tn),

Ig(tn+1) = g(tn+1) and İg(tn+1) = ġ(tn+1) for n = 0, . . . , N − 1. Then, the

difference of ỹ(t) and Iy(t) in the C0-norm is

‖ỹ(t) − Iy(t)‖C0[ts,tf ]d
= O(h)

using Taylor series expansions and the at least linear convergence of the nominal

constant BDF method with self-starter (cf. Theorem 2.21 or Shampine and Zhang
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7 Convergence analysis for discrete adjoints

[112]). Due to the assumption on f(t,y), the exact nominal solution y(t) of (1.1)

is twice continuously differentiable such that

‖y(t) − Iy(t)‖C0[ts,tf ]d
= O(h2)

due to the approximation property of quadratic splines. Thus, it is

‖ỹ(t) − y(t)‖C0[ts,tf ]d
≤ ‖ỹ(t) − Iy(t)‖C0 + ‖Iy(t) − y(t)‖C0 = O(h). (7.5)

Hence, due to (3.6) the perturbed adjoint solution λ̃(t) converges to λ(t) in the same

manner

∥∥∥λ̃(t) − λ(t)
∥∥∥

C0[ts,tf ]d
= O(h) (7.6)

which implies directly the pointwise convergence for every t ∈ [ts, tf ]. Since fy(t, ỹ(t))

is continuously differentiable in t, Lemma 7.1 yields

‖λn − λ(tn)‖ ≤
∥∥∥λn − λ̃(tn)

∥∥∥+
∥∥∥λ̃(tn) − λ(tn)

∥∥∥ = O(h)

for tn ∈ (ts, tf). �

Remark 7.3 If f(t,y) is k-times continuously differentiable in (t,y), the start er-

rors of the nominal BDF method with order k are small enough (i.e. such that the

convergence of order k is guaranteed, see Theorem 2.21 or Shampine and Zhang

[112]), and the spline ỹ is of corresponding order, then (7.6) holds with order k in

h. However, this is not necessary for Theorem 7.2 since the limiting factor in the

convergence order is Lemma 7.1.

So far, we have considered the approximation properties of λn generated by (7.1)

for n = m+1, · · · , N−k, i.e. of those values defined on [tm+1, tN−k] ⊂ [ts, tf ]. In the

following we investigate the discrete adjoint IND values λn for n = N, . . . ,N −k+ 1

and n = m, . . . , 0 resulting from the adjoint initialization and termination steps of

(7.1).

Lemma 7.4 If the same assumptions like in Theorem 7.2 hold, then, for n =

N, . . . ,N − k + 1 fixed, there exists a positive, bounded constant cn such that

‖λn − λ(tn)‖ ≤ cn
∥∥J ′(y(tf))

∥∥ + O(h)

with λ(tf) = J ′(y(tf))
⊺.

Proof Due to the Taylor series expansion of λ̃(tn) around tN = tf it is

λ̃(tn) = λ̃(tf) − (N − n)h · ˙̃
λ(tf) + O(h2) = J ′(ỹ(tf))

⊺ + O(h) = J ′(yN )⊺ + O(h).
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7.1 Convergence of discrete adjoints of BDF methods

Solving (7.1a) and (7.1c) for λn with n = N, . . . ,N − k+ 1 and using the Neumann

series of (I − h/α0fy(tn,yn))−1 we obtain

λN = (α0I − hfy(tN ,yN ))−⊺ J ′(yN )⊺ =
1

α0
J ′(yN )⊺ + O(h)

λn = − (α0I − hfy(tn,yn))−⊺
N−n∑

i=1

αiλn+i = −
1

α0

N−n∑

i=1

αiλn+i + O(h)

such that λn can be successively expressed in terms of J ′(yN )⊺. Since J ′(yN ) =

J ′(y(tf))+O(‖yN − y(tf)‖) = J ′(y(tf))+O(h) due to the convergence of the nominal

BDF method we exemplarily obtain for n = N and n = N − 1 that

∥∥∥λ̃(tN ) − λN

∥∥∥ =

∣∣∣∣1 −
1

α0

∣∣∣∣ ·
∥∥J ′(yN )

∥∥+ O(h) =

∣∣∣∣1 −
1

α0

∣∣∣∣ ·
∥∥J ′(y(tf))

∥∥ + O(h)

∥∥∥λ̃(tN−1) − λN−1

∥∥∥ = J ′(yN ) +
α1

α0
λN + O(h) =

∣∣∣∣1 +
α1

α2
0

∣∣∣∣ ·
∥∥J ′(y(tf))

∥∥+ O(h).

To complete the proof we again use that

‖λn − λ(tn)‖ ≤
∥∥∥λn − λ̃(tn)

∥∥∥+
∥∥∥λ̃(tn) − λ(tn)

∥∥∥ =
∥∥∥λn − λ̃(tn)

∥∥∥+ O(h)

due to the triangle inequality and (7.6). �

For the discrete adjoint IND values from the adjoint termination steps (7.1d), the

procedure is nearly the same.

Lemma 7.5 If the same assumptions like in Theorem 7.2 hold, then, for n =

m, . . . , 0 fixed, there exists a positive, bounded constant cn such that

‖λn − λ(tn)‖ ≤ cn ‖λ(ts)‖ + O(h).

Proof For n = m, . . . , 1 the new approximation λm determined by (7.1d) depends

on the past values coming from the main part. Due to (7.3) in the proof of Lemma

7.1 with n ≥ m + 1 and the Taylor series expansion of λ̃(tn) around t0 = ts we

obtain

λn = λ̃(tn) + Cnh = λ̃(ts) + O(h).

Solving (7.1d) for λn (n = m, . . . , 1) and using the above relation, λn can be ex-

pressed in terms of λ̃(ts). Furthermore, we use again the Taylor series expansion of

λ̃(tn) around t0 = ts to obtain
∥∥∥λ̃(tn) − λn

∥∥∥ =
∥∥∥λ̃(ts) − λn

∥∥∥ = cn

∥∥∥λ̃(ts)
∥∥∥

and finish in the same way like in the proof of Lemma 7.4. �

Since λ(ts) and J ′(y(tf)) keep bounded by the assumptions on f(t,y) and J (cf.

Chapter 1), the difference ‖λn − λ(tn)‖ remains bounded for h→ 0.

73



7 Convergence analysis for discrete adjoints

Remark 7.6 If the stepsizes in the nominal self-starting procedure vary and are less

than the constant setpsize, then the assertions of this section remain true but the

adjoint main steps are those on [tm+k, tN−k] and for the adjoint termination holds

n ≤ m+ k − 1, cf. Remark 3.6.

Without modifications of the adjoint initialization steps (7.1a)-(7.1b), we have

demonstrated that the discrete adjoint IND values of the main part converge linearly

to the exact adjoint solution λ(t) of (1.8). Nevertheless, we still have to consider

the oscillations of the discrete adjoint IND values at the interval ends of [ts, tf ] which

are due to the inconsistency of the adjoint initialization and termination steps, cf.

Section 3.6. We will concentrate on this in the next section.

7.2 Convergence of FE weak adjoints

In this section we focus on the Finite Element (FE) approximation Λh of the weak

adjoint and its convergence to the exact weak adjoint Λ of (1.8) resulting from

(5.6a). We show the strong convergence, i.e. convergence in the total variation

norm of NBV[ts, tf ]
d (see Definition 4.17). Nevertheless, the proof is based on the

distance of Λh and Λ measured in the dual norm of C0[ts, tf ]
d (see Section 4.3) which

yields together with the Riesz Representation Theorem (Theorem 4.23) the strong

convergence.

Theorem 7.7 The FE approximation Λh(t) =
∑N

n=1 hn−1λnHn(t) given by the

discrete adjoint IND scheme (7.1) of a constant BDF method with order k and

stepsize h converges to the exact weak adjoint solution Λ(t) =
∫ t
ts

λ(τ)dτ where

λ(τ) solves (1.8). The convergence is with respect to the total variation norm on

NBV[ts, tf ]
d.

Proof Let h := tf−ts
N be the stepsize of the equidistant grid. Thus, the nodes are

tn = ts + nh for n = 0, . . . , N . We consider firstly the i-th component, 1 ≤ i ≤ d.

To ease the notion, we set Λ := Λi, Λh := Λh
i , g := gi such that the dual norm (see

Section 4.3) reads

∥∥∥Λ − Λh
∥∥∥

NBV[ts,tf ]
= sup

‖g‖
C0[ts,tf ]

=1

∣∣∣∣
∫ tf

ts

g(t)d
(

Λ − Λh
)

(t)

∣∣∣∣ .

As Λ is given by Λ(t) =
∫ t
ts
λ(τ)dτ and Λh is a jump function it holds, cf. Section

4.1.2,

∫ tf

ts

g(t)d
(

Λ − Λh
)

(t) =

∫ tf

ts

λ(t)g(t)dt−
N∑

n=1

hλng(tn).
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7.2 Convergence of FE weak adjoints

Approximating the integral by the composite trapezoidal rule for equidistant grids

yields

h

{
1

2
λ(t0)g(t0) +

N−1∑

n=1

λ(tn)g(tn) +
1

2
λ(tN )g(tN )

}
+ O(h2) −

N∑

n=1

hλng(tn)

= h

{
1

2
λ(t0)g(t0) +

N∑

n=1

[λ(tn) − λn] g(tn) −
1

2
λ(tN )g(tN )

}
+ O(h2).

We obtain a bound for the NBV[ts, tf ]
d-dual norm of Λ−Λh by taking the absolute

value, using the triangle inequality and the fact that ‖g‖C0[ts,tf ]
= 1, i.e.

∥∥∥Λ − Λh
∥∥∥

NBV[ts,tf ]
≤ h

{
|λ(t0)| +

N∑

n=1

|λ(tn) − λn| + |λ(tN )|

}
+ O(h2).

With Theorem 7.2 the sum over the main part becomes

N−k∑

n=m+1

|λ(tn) − λn| =
N−k∑

n=m+1

O(h) = O(1)

such that the norm is bounded by
∥∥∥Λ − Λh

∥∥∥
NBV[ts,tf ]

≤ h

{
|λ(t0)| +

m∑

n=1

|λ(tn) − λn| + O(1) +

k−1∑

n=1

|λ(tN−n) − λN−n| + |λ(tN )|

}
+ O(h2).

Since the magnitude of all remaining addends is bounded according to Lemma 7.4 and

7.5 and their number is independent of the step number N , it is
∥∥Λ − Λh

∥∥
NBV[ts,tf ]

=

O(h). Since this holds for all i = 1, . . . , d and the value of the dual norm coincides

with that of the total variation norm due to the Riesz Representation Theorem (The-

orem 4.23), the assertion is shown. �

Remark 7.8 By small modifications in the proof of Theorem 7.7, the assertion

can be widened to variable stepsizes in the self-starting procedure provided that the

variable stepsizes are less than the constant stepsize, cf. Remark 7.6.

The uniform convergence of Λh to Λ in the total variation norm of NBV[ts, tf ]
d, as

demonstrated in the above theorem, implies the pointwise convergence on the entire

time interval [ts, tf ]. In general, for Φ ∈ NBV[ts, tf ]
d and the particular partition

{ts, θ, tf} of [ts, tf ] with arbitrary time point θ ∈ [ts, tf ] holds

|Φ(θ)| ≤ |Φ(θ)| + |Φ(tf) − Φ(θ)| = |Φ(θ) − Φ(ts)| + |Φ(tf) − Φ(θ)| ≤ V tf
ts (Φ)

due to Definition 4.3. Thus, Theorem 7.7 implies the pointwise convergence of Λh(t)

to Λ(t) on the entire time interval t ∈ [ts, tf ] at least with the same linear convergence

rate.

75





Part III

Novel goal-oriented global error

estimation for BDF methods





8 Goal-oriented global error estimation

With the novel interpretation for the discrete adjoints of multistep Backward Differ-

entiation Formula (BDF) methods presented in the previous Part II we now derive

novel goal-oriented global error estimators for BDF methods. The derivation is

based on concepts developed for a posteriori error estimation in Galerkin-type Fi-

nite Element (FE) methods.

In this chapter we derive for the first time a posteriori global error estimators

that use information computed by adjoint Internal Numerical Differentiation (IND)

of multistep BDF method. For a criterion of interest J they estimate the difference

J(y(tf)) − J(yh(tf)) (8.1)

where y is the unknown exact Initial Value Problem (IVP) solution and yh the com-

puted BDF approximation. We call this difference in J the goal-oriented global error

of yh. Throughout this chapter we suppose that J is sufficiently often differentiable.

Generally, we distinguish between error approximations and error estimators. The

former still include unknown exact quantities whereas the latter only depend on

computed approximations that are available in practical implementations. Thus, the

error approximations are useful for theoretical investigations, for example, of their

asymptotic behavior for constant BDF methods and decreasing stepsizes. However,

for practical use error estimators are required that perform good for variable BDF

methods which choose the stepsizes as large as possible.

The novel goal-oriented error estimators are inspired by the well-established coun-

terpart in Galerkin-type FE methods for Partial Differential Equations (PDEs). Af-

ter a literature review we start with the derivation of an error representation for (8.1)

that includes the unknown exact adjoint solution. Then we derive two approxima-

tions for the goal-oriented error representation and propose another goal-oriented

error approximation motivated additionally by the classical theory of BDF methods

described in Section 2.3. Subsequently, we examine the asymptotic behavior of all

three novel goal-oriented error approximations. Finally, we develop efficient goal-

oriented error estimators that we have incorporated as well into the variable BDF

method DAESOL-II. The main computational cost for each estimator is that of a

single adjoint IND sweep.

8.1 Literature review of global error estimation in ODEs

In the 1960s and 1970s the field of global error estimation in numerical integration

of IVPs in Ordinary Differential Equations (ODEs) was a center of researcher’s in-
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8 Goal-oriented global error estimation

terest. Zadunaisky [127] proposed to use a continuous approximation obtained by

integration of the IVP solution to set up a neighboring IVP with known solution

and to solve the neighboring problem with the same integration scheme to obtain an

estimate for the global error by subtracting the solutions. Some years before, Henrici

[72] proposed to solve another related IVP, which unfortunately involved the un-

known local truncation error, cf. Zadunaisky [128]. Stetter [115] used Zadunaisky’s

technique for iterative improvement of the nominal approximation by addition of

the estimated global error. An overview of global error estimation in that period

is given by Skeel [113]. Later on, these approaches have been investigated also

for BDF methods, see Skeel [114]. However, these approaches suffer from several

aspects, amongst others they are costly, not stringent and assume small constant

stepsizes.

In the subsequent years, local techniques for error control in numerical integration

of ODEs were in the focus of research. Stepsize and order selection strategies based

on estimates of local error quantities were developed, see e.g. Hairer et al. [67, 68] or

Shampine [109] for a comprehensive presentation of adaptive integration methods.

A summary of common local error estimates and stepsize selection techniques for

error control can also be found in Shampine [110]. Although, these approaches work

satisfactorily and allow an efficient integration promising benefits can be expected

from incorporation of the IVP’s conditioning by adjoint information.

In the 2000s, a posteriori global error estimation for ODE integration became an

active research field again. To estimate the global error in a criterion of interest the

solution of the adjoint variational IVP is used as weight for local error quantities, see

Moon et al. [96], Cao and Petzold [43], Lang and Verwer [84] and Tran and Berzins

[118]. For these global error estimates the adjoint IVP along an approximation of

the nominal solution is solved by an additional adaptive integration. This includes

the difficult choice of integrator options by the user and the expensive choice of

adaptive components by the integrator also for the numerical solution of the adjoint

IVP, cf. Section 3.2 and 3.5.

Residual-based a posteriori error estimation in FE methods for PDEs goes back

to Babuška and Rheinboldt [13, 12] at the end of the 1970s. The term ‘residual’

refers to the error given by inserting the approximate solution into the ODE, which

in our notion is the defect given in Definition 2.11. In the 1980s, Babuška and

Miller [9, 10, 11] introduced the idea to use adjoint information within a posteri-

ori error estimation. Residual-based a posteriori estimates have been investigated

also by Estep, Johnson and co-workers, see e.g. Eriksson et al. [55, 56]. The er-

ror estimators of FE methods for PDEs have been considered for ODEs as well,

see Johnson [77], Estep [58] and Eriksson et al. [55]. These authors summarized

the stability of the nominal problem, described by the solution of the adjoint (also

called dual) problem according to Section 1.3, in a single (global) stability constant.

In the 1990s, Becker and Rannacher [19, 18] refined the latter approach by using

distributed stability factors provided by the adjoint solution. This gave rise to the

Dual Weighted Residual (DWR) a posteriori error estimates. The approach was
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8.2 Goal-oriented error representation

also used in discontinuous Galerkin methods for ODEs, see Böttcher and Rannacher

[36]. Moreover, it has been generalized to estimate the error in a given functional,

the so-called DWR method for goal-oriented error estimation. More on the wide

field of a posteriori error estimation in PDE numerics can be found, e.g. in Verfürth

[120] and Babuška and Strouboulis [14]. For details on the DWR method we refer to

Becker and Rannacher [20] as well as to the book of Bangerth and Rannacher [15].

We choose the DWR approach as starting point to derive novel global error esti-

mators for BDF-type methods. This approach promises to give efficient and accurate

estimators that are also suitable for global error control.

8.2 Goal-oriented error representation

In this section we derive an error representation for the particular Petrov-Galerkin

FE discretization developed in Chapter 5 and 6. We carry over some concepts de-

scribed in Bangerth and Rannacher [15] and Meidner [91] to the particular setting

of IVPs in ODEs and BDF methods. Throughout this section we suppose that all

systems of equations are solved exactly, notably the BDF equations (2.2b) and hence

(6.3b).

Theorem 8.1 Let (y,Λ, l) ∈ C1[ts, tf ]
d × NBV[ts, tf ]

d × R
d be the solution of (5.6)

and yh ∈ YP [ts, tf ]
d the solution of the nominal Petrov-Galerkin FE discretization

(6.3c)-(6.3b). Then, the global error in the criterion of interest J : R
d → R takes

the following form

J(y(tf)) − J(yh(tf)) = −
N−1∑

n=0

∫

In

ẏh(t) − f(t,yh(t)) d [Λ − ihΛ] (t)

− [l − ihl]⊺
[
yh(ts) − ys

]
+ Rh (8.2)

for an interpolation operator ih : NBV[ts, tf ]
d×R

d → ZH[ts, tf ]
d×R

d. The remainder

Rh is quadratic in the global error function e(t) := y(t)−yh(t) (cf. Definition 2.10)

Rh := −

∫ 1

0
e⊺(tf)J

′′
(
yh(tf) + se(tf)

)
e(tf) · s ds

−

∫ 1

0

{
N−1∑

n=0

∫

In

d

ds

{
fy

(
t,yh(t) + se(t)

)
e(t)

}
dΛ(t)

}
· s ds. (8.3)

Proof With integration by parts and the Fundamental Theorem of Calculus the first
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8 Goal-oriented global error estimation

term in Rh becomes

∫ 1

0
e⊺(tf)J

′′
(
yh(tf) + se(tf)

)
e(tf) · s ds

= J ′
(
yh(tf) + se(tf)

)
e(tf) · s

∣∣1
0
−

∫ 1

0
J ′
(
yh(tf) + se(tf)

)
e(tf) ds

= J ′ (y(tf)) e(tf) −
[
J (y(tf)) − J(yh(tf))

]
.

In the same way the second term in Rh becomes

∫ 1

0

{
N−1∑

n=0

∫

In

d

ds

{
fy

(
t,yh(t) + se(t)

)
e(t)

}
dΛ(t)

}
· s ds

=

{
N−1∑

n=0

∫

In

fy

(
t,yh(t) + se(t)

)
e(t) dΛ(t)

}
· s
∣∣1
0

−

∫ 1

0

{
N−1∑

n=0

∫

In

fy

(
t,yh(t) + se(t)

)
e(t) dΛ(t)

}
ds

=

N−1∑

n=0

∫

In

fy (t,y(t)) e(t) dΛ(t) −
N−1∑

n=0

∫

In

f (t,y(t)) − f(t,yh(t)) dΛ(t)

Thus, the remainder becomes

Rh = − J ′ (y(tf)) e(tf) + J (y(tf)) − J(yh(tf)) −
N−1∑

n=0

∫

In

fy (t,y(t)) e(t) dΛ(t)

+

N−1∑

n=0

∫

In

f (t,y(t)) − f(t,yh(t)) dΛ(t).

We focus on the terms containing e(t) and replace e(t) by its expression and start

with those terms containing y. Due to the extended Riemann-Stieltjes integral (Sec-

tion 5.3.1) and due to (5.6a) we obtain

−J ′(y(tf))y(tf) −
N−1∑

n=0

∫

In

fy(t,y(t))y(t) dΛ(t)

= −J ′(y(tf))y(tf) −

∫ tf

ts

fy(t,y(t))y(t) dΛ(t) = −

∫ tf

ts

ẏ(t) dΛ(t) − l⊺y(ts)

= −
N−1∑

n=0

∫

In

ẏ(t) dΛ(t) − l⊺y(ts).

With Lemma 6.6 the terms containing yh become

J ′ (y(tf)) yh(tf) +

N−1∑

n=0

∫

In

fy (t,y(t)) yh(t) dΛ(t) =

N−1∑

n=0

∫

In

ẏh(t) dΛ(t) + l⊺yh(ts).
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8.2 Goal-oriented error representation

With these two expressions, the remainder further transfers to

Rh =J(y(tf)) − J(yh(tf)) −
N−1∑

n=0

∫

In

ẏ(t) dΛ(t) − l⊺y(ts) +
N−1∑

n=0

∫

In

ẏh(t) dΛ(t)

+ l⊺yh(ts) +

N−1∑

n=0

∫

In

f(t,y(t)) − f(t,yh(t)) dΛ(t)

=J(y(tf)) − J(yh(tf)) − l⊺ [y(ts) − ys] + l⊺
[
yh(ts) − ys

]

−
N−1∑

n=0

∫

In

ẏ(t) − f(t,y(t)) dΛ(t) +

N−1∑

n=0

∫

In

ẏh(t) − f(t,yh(t)) dΛ(t)

=J(y(tf)) − J(yh(tf)) + l⊺
[
yh(ts) − ys

]
+

N−1∑

n=0

∫

In

ẏh(t) − f(t,yh(t)) dΛ(t)

where the last equality holds since y solves (5.6b)-(5.6c). Hence, we now have

J(y(tf))−J(yh(tf))

= −l⊺
[
yh(ts) − ys

]
−

N−1∑

n=0

∫

In

ẏh(t) − f(t,yh(t)) dΛ(t) + Rh (8.4)

and since yh solves (6.3b)-(6.3c) and ihΛ ∈ ZH[ts, tf ]
d the assertion is shown. �

The error representation (8.2) contains the stability of the continuous IVP via the

weak adjoint solution Λ and not that of the BDF discretization (2.2) given by the FE

weak adjoint Λh. Moreover, the weights Λ− ihΛ in (8.2) include the local interpo-

lation error of the exact weak adjoint in NBV[ts, tf ]
d by its interpolant in ZH[ts, tf ]

d.

For the evaluation of the error representation (8.2), guesses for the unknown exact

solutions Λ and l are required. We will address this issue in Section 8.3.1.

Most other a posteriori error estimates for ODE approximations like those of Cao

and Petzold [43], Lang and Verwer [84] and Tran and Berzins [118] are based on a

similar error representation as (8.4) in the classical sense. Such an error represen-

tation using the defect and the classical adjoint can also be derived in another way,

see e.g. Cao and Petzold [43], and is generally valid for any integration method. All

these authors approximate the exact adjoint via the expensive numerical integration

of the adjoint IVP (1.8) along the nominal approximation. We might think of using

the same representation in conjunction with our weak adjoint approximation Λh:

Nevertheless, if we would approximate Λ by the Petrov-Galerkin FE weak adjoint

Λh within the error representation (8.4) this would result in a useless estimate be-

ing zero since yh solves (6.3c)-(6.3b). Another a posteriori error estimate related to

(8.4) is based on local errors and has been derived by Moon et al. [96].

So far, the error representation (8.2) is not computable since it involves the un-

known exact weak adjoint solution Λ and the unknown exact solution l of (5.6a).
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8 Goal-oriented global error estimation

8.3 Approximation of the error representation

In this section we derive approximations for the error representation (8.2). We do

this within three steps. Firstly, the remainder Rh of (8.2) is neglected since it is

quadratic in the global error function e(t) = y(t) − yh(t). We get

J(y(tf)) − J(yh(tf)) ≈ E(yh) := −
N−1∑

n=0

∫

In

ẏh(t) − f(t,yh(t)) d [Λ− ihΛ] (t)

− [l − ihl]⊺
[
yh(ts) − ys

]
. (8.5)

Secondly, we will approximate the local interpolation errors Λ − ihΛ and l − ihl

using the computed adjoint solutions Λh and lh of (6.3a), respectively. This gives

us the error approximation based on defect integrals. Thirdly, we will approximate

the defect in (8.5). In accordance with Definition 2.11, we use the abbreviation

rn(t) = ẏh(t) − f(t,yh(t)) on In. This leads us to the error approximation using

local errors. Finally, we will combine these new concepts with the classical ODE

theory of BDF methods to propose a third error approximation that uses the local

truncation errors.

8.3.1 Approximation of the weights

To approximate the weights Λ − ihΛ in (8.5) we use higher order interpolation of

the computed weak adjoint solution Λh. There exist also several other approaches

to estimate the weights. However, the trade-off between accuracy and effort of

higher order interpolation is well-balanced, cf. Becker and Rannacher [20] as well as

Bangerth and Rannacher [15]. Since Λh is piecewise constant, cf. Section 6.1.2, we

use piecewise linear interpolation of Λh.

Let I(1) be the piecewise linear interpolation operator of the form

I(1)g(t) = g(tn) +
g(tn+1) − g(tn)

hn
(t− tn), t ∈ [tn, tn+1]

for n = 0, . . . , N −1. Then, the local interpolation error of the exact weak adjoint Λ

is approximated by the local interpolation error of the computed FE weak adjoint

Λh, i.e.

Λ− ihΛ ≈ I(1)Λh − Λh.
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Figure 8.1: FE weak adjoint Λh, its linear interpolation I(1)Λh and the resulting

weights I(1)Λh −Λh used for the approximations of the error represen-

tation (8.2).

On the closed subinterval Īn = {tn} ∪ In of [ts, tf ] the function I(1)Λh − Λh reads

(
I

(1)Λh − Λh
)

(t) =Λh(tn) +
Λh(tn+1) − Λh(tn)

hn
(t− tn) −Λh(t)

=Λh(tn) +
hnλn+1

hn
(t− tn) − Λh(t)

=Λh(tn) + λn+1(t− tn) − Λh(t)

=





0 t = tn
λn+1(t− tn) t ∈ (tn, tn+1)

0 t = tn+1

(8.6)

where the definition (6.2) of Λh is used. Hence, I(1)Λh −Λh as generating function

in (8.5) has a jump at the right endpoint tn+1 of Īn and is continuous from the right

as visualized in the lower part of Figure 8.1.

Since the local defect rn(t) on In can be extended continuously to the left endpoint

tn we obtain due to Section 5.3.1 that each integral term in E(yh) is approximated

by
∫

In

rn(t) d
(
I

(1)Λh − Λh
)

(t) =

∫ tn+1

tn

rn(t) d
(
I

(1)Λh − Λh
)

(t)

=λ
⊺
n+1

∫ tn+1

tn

rn(t) dt− hnλ
⊺
n+1rn(tn+1)

=λ
⊺
n+1

∫ tn+1

tn

rn(t) dt− λ
⊺
n+1δn+1

where hnrn(tn+1) = hnẏh(tn+1) − hnf(tn+1,y
h(tn+1)) = δn+1 is the residual of the

nonlinear BDF equation (2.2b), cf. Definition 2.9. Although we assumed in Section
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8.2 that the BDF equations are solved exactly, we include here the residuals δn+1

explicitly.

We do not need to approximate the point weight l − ihl since the residual δ0 =

yh(ts) − ys = y0 − ys = 0 always vanishes.

8.3.2 Error approximation with defect integrals

Using the above approximation of the weights the error approximation E(yh) defined

by (8.5) is further approximated by the novel goal-oriented error approximation

Ē(yh) := −
N−1∑

n=0

{
λ

⊺
n+1

∫ tn+1

tn

rn(t) dt− λ
⊺
n+1δn+1

}
. (8.7)

This error approximation uses only quantities that are available in practical imple-

mentations. These are the nominal approximation yh, which is given by the discrete

approximations {yn}
N
n=0 computed by the BDF method, and the discrete adjoints

{λn}
N
n=0 computed by the adjoint IND scheme. This error approximation weights

the sum of a nominal local error quantity, the defect integral, and the residual of

the nonlinear BDF equation with the discrete stability of the BDF scheme provided

by the adjoint IND values. For each integration step, the defect integrals can be

evaluated as exactly as desired by numerical quadrature.

8.3.3 Approximation of the defect integrals

In this section we relate the integrals of the defects used in (8.7)
∫ tn+1

tn

rn(t) dt =

∫ tn+1

tn

ẏh(t) − f(t,yh(t)) dt

to the local errors given by Definition 2.4.

Lemma 8.2 The local error LE(tn+1) and the local defect rn(t) of the approxima-

tion yh given by (6.3c)-(6.3b) are related by
∫ tn+1

tn

rn(t) dt = −LE(tn+1) + Rn

where the remainder is ‖Rn‖ = O (hn · ‖LE(tn+1)‖).

Proof We substract a zero from the defect rn(t) using the ODE of the local IVP

given in Definition 2.4 to obtain

rn(t) = ẏh(t) − u̇n(t) + f(t,un(t)) − f(t,yh(t)).

Integration over [tn, tn+1] yields
∫ tn+1

tn

rn(t) dt =

∫ tn+1

tn

ẏh(t) − u̇n(t) dt+

∫ tn+1

tn

f(t,un(t)) − f(t,yh(t)) dt

= yh(tn+1) − un(tn+1) − yh(tn) + un(tn) + Rn

= yn+1 − un(tn+1) − yn + yn + Rn = −LE(tn+1) + Rn
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with Rn :=
∫ tn+1

tn
f(t,un(t)) − f(t,yh(t)) dt. This remainder is bounded by

‖Rn‖ ≤

∫ tn+1

tn

L
∥∥∥un(t) − yh(t)

∥∥∥ dt ≤ hnL max
t∈[tn,tn+1]

∥∥∥un(t) − yh(t)
∥∥∥

where L is the Lipschitz constant of f(t,y). Since yh on [tn, tn+1] is the continuous

representation provided by the n-th BDF integration step we obtain by Lemma 2.28

that

max
t∈[tn,tn+1]

∥∥∥un(t) − yh(t)
∥∥∥ ≤

(
α

(n)
0

4
+ 1

)
‖LE(tn+1)‖ .

Due to the boundedness assumption on α
(n)
0 of Section 2.1 the assertion is shown.�

8.3.4 Error approximation with local errors

With the above result we obtain from (8.7) the following goal-oriented global error

approximation

Ê(yh) :=
N−1∑

n=0

{
λ

⊺
n+1LE(tn+1) + λ

⊺
n+1δn+1

}
(8.8)

for the global error (8.2) in the criterion of interest. This error approximation uses

the local error as nominal local error quantity. By this procedure we have introduced

the theoretical local solutions un(tn+1) given in Definition 2.4. Generally, they are

not given in practical implementations. Nevertheless, this error approximation gives

us theoretical insights within subsequent sections.

8.3.5 Error approximation with local truncation errors

The classical theory of BDF methods, described in Chapter 2, provides an a priori

bound on the global error GE(tf) = y(tf) − yh(tf) by

‖GE(tN )‖ ≤ K

{
max

0≤n≤m
‖GE(tn)‖ +

1

h

(
max

0≤n≤N
‖δn‖ + max

0≤n≤N
‖LTE(tn)‖

)}
,

see (2.13). In this formula the constant K describes, in a worst-case scenario, the

stability of the IVP. Hence, to obtain a more rigorous approximation we might re-

place K by the local stability factors {λn}
N
n=0 computed by the adjoint IND scheme.

In the goal-oriented error approximation (8.7) the defect integrals are used as nom-

inal local error quantities. This indicates that the nominal error quantities are at

the y-level instead of the ẏ-level. Accordingly, we might integrate 1/h ‖LTE(tn)‖

on [tn, tn+1], i.e. multiply by h = tn+1 − tn, to end up at the y-level. Altogether we

propose a third goal-oriented global error approximation by

Ẽ(yh) :=

N−1∑

n=0

{
λ

⊺
n+1LTE(tn+1) + λ

⊺
n+1δn+1

}
(8.9)
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8 Goal-oriented global error estimation

which is motivated by the classical theory of BDF methods. Unfortunately, the

local truncation errors LTE(tn+1) given by (2.15) use time-derivatives of the un-

known nominal solution y(t) which is not available in practical implementations.

Nevertheless, they can be estimated as described in Section 2.4.1.

8.4 Asymptotic behavior of the error approximations

In this section we address the asymptotic correctness of the three goal-oriented er-

ror approximations Ē(yh) given by (8.7), Ê(yh) given by (8.8) and Ẽ(yh) given by

(8.9) to measure the true goal-oriented global error J(y(tf)) − J(yh(tf)). We con-

sider again a constant BDF method with appropriate self-starter and sufficiently ac-

curate solved nonlinear BDF equations such that the global error satisfies ‖e(tf)‖ =∥∥y(tf) − yh(tf)
∥∥ = ‖y(tf) − yN‖ = O(hk), cf. Theorem 2.21 or Shampine and Zhang

[112].

8.4.1 Notation

We start with some definitions that are important to measure the quality of an error

approximation. However, they can be directly transfered to error estimators.

Definition 8.3 Let yh(tf) be a numerical approximation of the exact solution y(tf)

of IVP (1.1) that converges at order k and let the criterion of interest J be con-

tinuously differentiable. Then, an a posteriori error approximation Ě(yh) is called

asympotically correct for J(y(tf)) − J(yh(tf)) if

J(y(tf)) − J(yh(tf)) − Ě(yh) = O(hk+1) (8.10)

holds.

Thus, asymptotical correctness means that the error in the error approximation

is of higher order in h than the true error.

Definition 8.4 The signed effectivity index Is
eff of an a posteriori error approxi-

mation Ě(yh) for J(y(tf)) − J(yh(tf)) is given by

Is
eff =:

Ě(yh)

J(y(tf)) − J(yh(tf))
. (8.11)

In FE methods for PDEs the notion of asymptotic correctness of a posteriori

error approximations is slightly different. In the PDE community the quality of

an a posteriori error approximation Ě(yh) is usually measured by the ratio of its

absolute value and the absolute value of the true error, cf. Babuška and Strouboulis

[14] and Verfürth [120]. This so-called effectivity index of Ě(yh) given by

Ieff =:

∣∣Ě(yh)
∣∣

|J(y(tf)) − J(yh(tf))|
.
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should be near one to have an accurate error approximation. In this context, an

approximation is called asymptotically correct if the effectivity index tends to one if

the stepsizes converge to zero. If J(y(tf))−J(yh(tf)) 6= 0 for all discretization grids,

we may divide (8.10) by J(y(tf)) − J(yh(tf)) to obtain

1 − Is
eff = O(h) (8.12)

due to
∣∣J(y(tf)) − J(yh(tf))

∣∣ = O(hk). Thus, both concepts for the definition of

asymptotic correctness coincide.

We base the theoretical investigations on the asymptotic correctness of Definition

8.3 and use the signed effectivity index for the numerical investigations. In practice,

we are already satisfied if the absolute value of the effectivity index and its reciprocal

remain reasonable bounded for all grids, e.g. if |Is
eff | ∈ [0.5, 2] holds. The sign of Is

eff

describes whether the error approximation is able to give information about sign

and magnitude of the true error or only about magnitude.

8.4.2 Theoretical investigations of the asymptotic behavior

In this section we investigate theoretically the asymptotic behavior of the goal-

oriented global error approximations Ē(yh) given by (8.7) and Ê(yh) given by (8.8).

Theorem 8.5 Let (y,Λ, l) ∈ C1[ts, tf ]
d × NBV[ts, tf ]

d × R
d be the solution of (5.6)

and
(
yh,Λh, lh

)
∈ YP [ts, tf ]

d×ZH[ts, tf ]
d×R

d the solution of the Petrov-Galerkin FE

discretization (6.3) where the nominal BDF method (6.3c)-(6.3b) converges at order

k. Then, the error approximation Ē(yh) given by (8.7) for J(y(tf)) − J(yh(tf)) is

asymptotically correct, i.e. it holds

∣∣∣J(y(tf)) − J(yh(tf)) − Ē(yh)
∣∣∣ = O(hk+1). (8.13)

Proof With the approximation defined in (8.5) we obtain by the triangle inequality

∣∣∣J(y(tf)) − J(yh(tf)) − Ē(yh)
∣∣∣≤
∣∣∣J(y(tf)) − J(yh(tf)) − E(yh)

∣∣∣+
∣∣∣E(yh) − Ē(yh)

∣∣∣ .

According to Theorem 8.1 the approximation E(yh) differs from J(y(tf))−J(yh(tf))

by the remainder term Rh which is quadratic in e and hence |Rh| = O(h2k) due to

Theorem 2.21. For the second summand we substract (8.7) from (8.5) to obtain

∣∣∣E(yh) − Ē(yh)
∣∣∣ =

∣∣∣∣∣−
N−1∑

n=0

∫

In

rn(t) d [Λ − ihΛ] (t) − [l − ihl]⊺
[
yh(ts) − ys

]

+

N−1∑

n=0

{
λ

⊺
n+1

∫

In

rn(t) dt− λ
⊺
n+1δn+1

}∣∣∣∣∣ .

With the initial condition (6.3c), the weak adjoint Λ fulfilling (5.7), the interpolation

ihΛ(t) =
∑N−1

n=0 hnλ(tn+1)Hn+1(t) and the extended Riemann-Stieltjes integral of
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8 Goal-oriented global error estimation

Section 5.3.1 the above difference becomes

∣∣∣∣∣
N−1∑

n=0

{∫

In

λ⊺(t)rn(t) dt− hnλ⊺(tn+1)rn(tn+1) − λ
⊺
n+1

∫

In

rn(t) dt+ λ
⊺
n+1δn+1

}∣∣∣∣∣ .

(8.14)

Now we make use of the triangle inequality to find an upper bound. We start with

the non-integral terms of (8.14) and use the fact that hnrn(tn+1) = δn+1

∣∣∣∣∣
N−1∑

n=0

[λ(tn+1) − λn+1]⊺δn+1

∣∣∣∣∣ ≤
N−1∑

n=0

‖λ(tn+1) − λn+1‖ · ‖δn+1‖ .

For n = m, . . . ,N − k it is ‖λ(tn+1) − λn+1‖ = O(h) due to Theorem 7.2 whereas

all others are ‖λ(tn+1) − λn+1‖ = O(1) due to Lemma 7.4 and 7.5. And hence,

by the assumption that ‖δn+1‖ = O(hk+1), O(N) summands are O(hk+2) and only

O(1) are O(hk+1). Since h = (tf − ts)/N the sum becomes O(hk+1). Secondly, using

the Taylor series λ(t) = λ(tn+1) + O(h) on [tn, tn+1] the sum of the integral terms

in (8.14) becomes

∣∣∣∣∣
N−1∑

n=0

{
λ⊺(tn+1)

∫

In

rn(t)dt+ O(h)

∫

In

rn(t)dt− λ
⊺
n+1

∫

In

rn(t)dt

}∣∣∣∣∣

=

∣∣∣∣∣
N−1∑

n=0

{
λ⊺(tn+1) − λ

⊺
n+1 + O(h)

} ∫

In

rn(t)dt

∣∣∣∣∣

≤
N−1∑

n=0

‖λ(tn+1) − λn+1 + O(h)‖ ·

∥∥∥∥
∫

In

rn(t)dt

∥∥∥∥ .

The norm of the defect integral is
∥∥∥
∫
In

rn(t)dt
∥∥∥ = O(hk+1) due to Lemma 8.2 and

2.8 as well as the consistency order k of the constant BDF method, cf. Section 2.3.1.

Hence, again O(N) summands are O(hk+2) and only O(1) are O(hk+1) such that

the assertion is shown. �

The convergence of the defect integrals at order k+ 1 to zero is confirmed numer-

ically in Section 10.2.1, more precisely in the top row of Figure 10.4. The result of

Theorem 8.5 can be further used to describe the asymptotic behavior of the error

approximation Ê(yh) obtained by approximating the defect integral by the local

error as described in Section 8.3.3.

Corollary 8.6 Let the assumptions of Theorem 8.5 hold. Then, for the error ap-

proximation Ê(yh) given by (8.8) also holds

∣∣∣J(y(tf)) − J(yh(tf)) − Ê(yh)
∣∣∣ = O(hk+1).
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8.4 Asymptotic behavior of the error approximations

Proof The first summand of

∣∣∣J(y(tf)) − J(yh(tf)) − Ê(yh)
∣∣∣≤
∣∣∣J(y(tf)) − J(yh(tf)) − Ē(yh)

∣∣∣+
∣∣∣Ē(yh) − Ê(yh)

∣∣∣

behaves like O(hk+1) according to Theorem 8.5. Substracting (8.8) from (8.7) yields

∣∣∣Ē(yh) − Ê(yh)
∣∣∣ =

∣∣∣∣∣−
N−1∑

n=0

λ
⊺
n+1

{∫ tn+1

tn

rh(t) dt+ LE(tn+1)

}∣∣∣∣∣

=

∣∣∣∣∣
N−1∑

n=0

λ
⊺
n+1Rn

∣∣∣∣∣ ≤
N−1∑

n=0

∣∣λ⊺
n+1Rn

∣∣ ≤
N−1∑

n=0

‖λn+1‖ ‖Rn‖

due to Lemma 8.2. For all n = 0, . . . , N − 1 the value ‖λn‖ remains bounded

since ‖λn − λ(tn)‖ = O(1) due to Theorem 7.2, Lemma 7.4 and 7.5 and λ(t) is

bounded on [ts, tf ] due to its continuity, cf. Section 5.1. Due to Lemma 8.2 it is

‖Rn‖ = O(h ‖LE(tn+1)‖) = O(hk+2) where the last equality is due to Lemma 2.8

and the BDF consistency order k. �

8.4.3 First numerical experiments

We investigate the asymptotic behavior of the three goal-oriented error approxima-

tions Ē(yh), Ê(yh) and Ẽ(yh) numerically using constant BDF methods and IVP

examples that provide all analytic solutions, i.e. exact global and local solutions

as well as exact time-derivatives of the solutions. In Section 10.2.2 we present the

numerical results in all details.

For a constant BDF method of order k = 1 the signed effectivity indices defined

in (8.11) of the error approximations Ē(yh) given by (8.7) and Ê(yh) given by (8.8)

converge linearly to the desired value one for decreasing stepsizes. Thus, the results

of Theorem 8.5 and Corollary 8.6 are confirmed numerically for the one-step BDF

method.

Surprisingly, for multistep BDF methods the linear convergence of the effectivity

indices to one is not affirmed numerically. The signed effectivity indices of Ē(yh)

and Ê(yh) for a constant BDF method of order k = 2 with two first-order steps

of size h/2 as self-starter show a problem-dependent offset from the desired value

one. These numerical observations raise the question which assumptions used by

Theorem 8.5 are not fulfilled in practice. We illuminate this in the next section.

However, the signed effectivity indices of the error approximation Ẽ(yh) given by

(8.9) show a linear convergence to one for both BDF methods, the one-step method

with k = 1 and the multistep method with order k = 2.

In summary, from the numerical point of view the goal-oriented error approxima-

tion Ẽ(yh) seems to be the approximation of choice. However, from the theoretical

derivation in function spaces the error approximations Ē(yh) and Ê(yh) seem to be

the appropriate ones.
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8 Goal-oriented global error estimation

8.4.4 Further investigations concerning the asymptotic behavior

In this section we focus on the relation of the error approximations Ē(yh) and Ê(yh)

compared to the error approximation Ẽ(yh). We have seen that their asymptotic

behaviors are different and in particular for multistep methods other than described

by Theorem 8.5 and Corollary 8.6.

With the linear Dahlquist equation and the linear criterion of interest J(y(tf)) =

y(tf) of Section 10.2.2 we can eliminate the term Rh defined in (8.3) as reason for

the offset since Rh is zero in this case while the offset is observed, cf. first row of

Figure 10.7(a). Furthermore, the convergence of the defect integrals
∫ tn+1

tn
rn(t)dt

at order k+1 can also be confirmed numerically, see upper left corner of Figure 10.4

of Section 10.2.1. Thus, we have to search for other reasons.

If we suppose that the Localizing Assumption of Definition 2.7 holds in every in-

tegration step, i.e. that yn+1−i = y(tn+1−i) holds for all past values used to compute

yn+1, then the local truncation error LTE(tn+1) in Ẽ(yh) can be written as

LTE(tn+1) = α
(n)
0 LE(tn+1) −O(hn)LE(tn+1) (8.15)

which follows directly from Lemma 2.8. Thus, under the artificial Localizing As-

sumption the relation between Ẽ(yh) and Ê(yh) is the following.

Lemma 8.7 For a constant BDF method of order k with m variable starting steps

and supposing that the Localizing Assumption holds in every integration step the

goal-oriented error approximations Ẽ(yh) and Ê(yh) are related by

Ẽ(yh) = α
(l)
0 Ê(yh) +

l−1∑

n=0

(α
(n)
0 − α

(l)
0 )λ⊺

n+1LE(tn+1) + (1 − α
(l)
0 )

N−1∑

n=0

λ
⊺
n+1δn+1

+ O(hk+1). (8.16)

Proof See Section A.2.2. �

Moving all terms except O(hk+1) to one side of the equality sign in (8.16) and

dividing by the true error J(y(tf)) − J(yh(tf)) 6= 0 we would expect linear conver-

gence in this relation value to zero also numerically. However, this is not the case.

Thus, we drop the artificial Localizing Assumption and express the local truncation

error in terms of the local error as follows.

Lemma 8.8 Without the Localizing Assumption the local truncation error LTE(tn+1)

can be written as

LTE(tn+1) =α
(n)
0 LE(tn+1) −O(hn)LE(tn+1)

+ J
(n)
BDF(yn+1)[y(tn+1) − un(tn+1)] +

kn∑

i=1

α
(n)
i GE(tn+1−i) (8.17)

where un(tn+1) is the local exact solution of u̇n(t) = f(t,un(t)), un(tn) = yn, cf.

Definition 2.4.
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Proof See Section A.2.2. �

With this expression for the local truncation errors, the goal-oriented error ap-

proximations Ẽ(yh) and Ê(yh) are related as follows.

Lemma 8.9 For a constant BDF method of order k with m variable starting steps

the goal-oriented error approximations Ẽ(yh) and Ê(yh) are related by

Ẽ(yh) = α
(l)
0 Ê(yh) +

l−1∑

n=0

(α
(n)
0 − α

(l)
0 )λ⊺

n+1LE(tn+1) + (1 − α
(l)
0 )

N−1∑

n=0

λ
⊺
n+1δn+1

+

N−1∑

n=0

λ
⊺
n+1

[
J

(n)
BDF(yn+1)[y(tn+1) − un(tn+1)] +

kn∑

i=1

α
(n)
i GE(tn+1−i)

]

+ O(hk+1). (8.18)

Proof The proof follows that of Lemma 8.7 given in Section A.2.2 but uses the

expression (8.17) for the local truncation errors instead of (8.15). �

Numerical experiments indicate that the relation between Ẽ(yh) and Ê(yh) is

actually described by Lemma 8.9. Using this relation we are able to derive the

following implicit correction term

∆Ē(yh) :=(α
(l)
0 − 1)Ē(yh) +

l−1∑

n=0

(α
(n)
0 − α

(l)
0 )λ⊺

n+1LE(tn+1) + (1 − α
(l)
0 )

N−1∑

n=0

λ
⊺
n+1δn+1

+
N−1∑

n=0

λ
⊺
n+1

[
J

(n)
BDF(yn+1)[y(tn+1) − un(tn+1)] +

kn∑

i=1

α
(n)
i GE(tn+1−i)

]

(8.19)

for the goal-oriented error approximation Ē(yh) and similarly for Ê(yh). In fact,

the signed effectivity indices of the corrected error approximations Ē(yh) + ∆Ē(yh)

and Ê(yh) + ∆Ê(yh) approach the desired value one like depicted, see third row of

Figure 10.7 in Section 10.2.2.

Furthermore, for a constant BDF method of order k = 1 we are able to show that

the correction term coverges quadratically to zero which means that the leading

terms of Ẽ(yh) and Ê(yh) coincide as observed numerically.

Lemma 8.10 For a constant BDF method of order k = 1 the correction terms

converge quadratically for decreasing stepsize h, i.e.

∆Ē(yh) = ∆Ê(yh) = O(h2).

Proof For a BDF method of order k = 1 it is α
(n)
0 = α

(l)
0 = 1 such that the

correction terms (8.19) of Ē(yh) and Ê(yh) become

∆Ē(yh) = ∆Ê(yh) =

N−1∑

n=0

λ
⊺
n+1

[
J

(n)
BDF(yn+1)[y(tn+1) − un(tn+1)] + α

(n)
1 GE(tn)

]
.
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Each term in brackets becomes

J
(n)
BDF(yn+1)[y(tn+1) − un(tn+1)] + α

(n)
1 GE(tn)

= y(tn+1) − un(tn+1) − y(tn) + yn − hfy(tn+1,yn+1)[y(tn+1) − un(tn+1)]

=hẏ(tn+1) −
h2

2
ÿ(tn+1) − hu̇n(tn+1) +

h2

2
ün(tn+1) + O(h3)

− hfy(tn+1,yn+1)[y(tn+1) − un(tn+1)] (8.20)

using the Taylor series expansions of y(tn) and yn = un(tn) around tn+1. A central

point of the proof is that due to Theorem 1.7 and the power series of the exponential

function it holds

‖y(tn+1) − un(tn+1)‖ ≤‖GE(tn)‖ exp(Lh)

= ‖GE(tn)‖
∞∑

i=0

(Lh)i

i!
= O(‖GE(tn)‖) = O(h). (8.21)

The first order derivatives of (8.20) sum up in the following way using the Taylor

series expansions of fy(tn+1,y(tn+1)) around un(tn+1) and of fy(tn+1,un(tn+1))

around yn+1, respectively,

h {ẏ(tn+1) − u̇n(tn+1) − fy(tn+1,yn+1)[y(tn+1) − un(tn+1)]}

=h {f(tn+1,y(tn+1)) − f(tn+1,un(tn+1)) − fy(tn+1,yn+1)[y(tn+1) − un(tn+1)]}

=h {fy(tn+1,un(tn+1)) − fy(tn+1,yn+1)} [y(tn+1) − un(tn+1)]

+ O(h ‖y(tn+1) − un(tn+1)‖2)

=hO(‖LE(tn+1)‖)[y(tn+1) − un(tn+1)] + O(h ‖y(tn+1) − un(tn+1)‖2)

with LE(tn+1) = un(tn+1) − yn+1. Using 8.21 the above sum behaves like O(h3).

Furthermore, the sum of the second order derivatives in (8.20) becomes

h2

2
{ün(tn+1) − ÿ(tn+1)}

=
h2

2
{ft(tn+1,un(tn+1)) + fy(tn+1,un(tn+1))f(tn+1,un(tn+1))

− ft(tn+1,y(tn+1)) − fy(tn+1,y(tn+1))f(tn+1,y(tn+1))}

=
h2

2
O(‖y(tn+1) − un(tn+1)‖)

using the Taylor series expansions around un(tn+1) of fy(tn+1,y(tn+1))f(tn+1,y(tn+1))

and ft(tn+1,y(tn+1)) and hence also behaves like O(h3). With the boundedness of

all λn+1, as shown in the proof of Corollary 8.6, and
∑N−1

n=0 λn+1O(h3) = O(h2)

since h = (tf − ts)/N the proof is finished. �

In the proof of Lemma 8.10 it is shown that for BDF methods of order one those

terms of the correction term caused by the removal of the Localizing Assumption
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are negligible. Hence, for the goal-oriented error approximation of one-step BDF

methods the Localizing Assumption does not cause any negative effect. In fact, the

whole correction term is negligible due to Lemma 8.10. However, for BDF methods

of higher order than one, i.e. for true multistep methods, the goal-oriented error

approximations Ē(yh) and Ê(yh) which are based on function space arguments have

to be corrected by (8.19) to give effectivity indices that approach one for decreasing

stepsizes, see Section 10.2.2. The interpretation of these additional correction terms

in the function space derivation is still an open issue.

8.5 Goal-oriented global error estimators

However, for practical usage in variable order variable stepsize BDF-type methods

like the realization DAESOL-II the asymptotic behavior of an error approximation is

not as important as its efficient and accurate evaluation for possibly large stepsizes

hn. For an efficient realization of the goal-oriented global error approximations

Ē(yh) given by (8.7), Ê(yh) given by (8.8) and Ẽ(yh) given by (8.9) we have to

regard further aspects. These include for all three error approximations the efficient

computation of the discrete adjoints λn+1 and for each one either the quadrature of

the defects, the estimation of the exact local errors LE(tn+1) or of the exact local

truncation errors LTE(tn+1). Furthermore, the residuals δn+1 of the nonlinear BDF

equations are needed for all three goal-oriented error approximations.

8.5.1 Discrete adjoints

The adjoint IND values {λn}
N
n=0 used in all three error approximations of Section

8.3 are given by the adjoint IND scheme (3.2) of the nominal BDF method. Never-

theless, it is more efficient to compute the adjoint values {ȳn}
N
n=0 as solution of the

adjoint IND scheme (3.4) corresponding to the domain space formulation (3.3) of a

BDF step. In fact, the computation of {ȳn}
N
n=0 saves N builts and decompositions

of the BDF Jacobians and transposed solutions. Furthermore, in DAESOL-II this

adjoint IND is realized in the more efficient iterative version. Since λn+1 and ȳn+1

are related by the inverse J
(n)
BDF(yn+1)−⊺ of the transposed Jacobians according to

Lemma 3.3 we approximate λn+1 by

λ̂n+1 :=
1

α
(n)
0

ȳn+1

for n = 0, . . . , N − 1. These approximations are asymptotically correct due to the

following reasons: The inverse J
(n)
BDF(yn+1)−⊺ can be expressed by its Neumann se-

ries (see Theorem A.4) assuming that hn/α
(n)
0 ‖fy(tn+1,yn+1)‖ < 1 holds and hence

approximated up to first order by the first summand of the series. The saving of

computational costs by using {λ̂n}
N
n=1 instead of {λn}

N
n=1 is significant, particularly

if the Jacobian fy(t,y) of the ODE right hand side is expensive to evaluate.
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8 Goal-oriented global error estimation

8.5.2 Nominal local error quantities

Now we consider the nominal local error quantities used in Ē(yh), Ê(yh) and Ẽ(yh),

respectively. We start with the local truncation errors LTE(tn+1) required for Ẽ(yh)

given by (8.9). They are also the fundament for the classical strategies of variable

BDF methods to control the integration accuracy locally by stepsize and order adap-

tion in each integration step. For variable BDF methods the local truncation error

is given by (2.15) and includes the derivative y(kn+1)(tn+1). As described in Sec-

tion 2.4.1 practical implementations use finite differences of the past approximations

yn−kn
, . . . ,yn and yn+1 to estimate the aforementioned derivative and hence to give

the estimated local truncation error L̂TE(tn+1). The asymptotic correctness of this

estimator was shown by Gear [62]. Hence, Ẽ(yh) is estimated efficiently by the

following goal-oriented global error estimator

η̃ :=

N−1∑

n=0

λ̂
⊺
n+1L̂TE(tn+1) + ηδ (8.22)

where the weighted sum of the residuals of the nonlinear BDF equations is summa-

rized by

ηδ :=
N−1∑

n=0

λ̂
⊺
n+1δn+1. (8.23)

This residual term appears in all goal-oriented error approximations of Section 8.3

and hence in all goal-oriented estimators developed here. It will be treated in more

detail in Section 8.5.3 below.

The goal-oriented error approximation Ê(yh) defined by (8.8) makes use of the lo-

cal errors LE(tn+1). They might be estimated by solving the local IVP of Definition

2.4 using a higher order integration method. Nevertheless, this is computation-

ally very expensive and hence not recommendable for practical use. Therefore, we

rather suppose that the Localizing Assumption (Definition 2.7) holds such that us-

ing Lemma 2.8 and the above approximation of J
(n)
BDF(yn+1)−1 the local error can

be approximated by

LE(tn+1)=̇
1

α
(n)
0

LTE(tn+1). (8.24)

Thus, we use the estimator L̂TE(tn+1) of the local truncation error to obtain an es-

timator L̂E(tn+1) := L̂TE(tn+1)/α
(n)
0 for the local error. This estimation is not very

accurate since by using the Localizing Assumption the term y(tn+1) − un(tn+1) +

J
(n)
BDF(yn+1)−1

∑kn

i=1 α
(n)
i GE(tn+1−i) is completely neglected in (8.24). Neverthe-

less, with the estimator L̂E(tn+1) we have, at least, a reasonable and efficiently

computed value at hand. Hence, we estimate Ê(yh) by the following goal-oriented

96



8.5 Goal-oriented global error estimators

global error estimator

η̂ :=

N−1∑

n=0

λ̂
⊺
n+1L̂E(tn+1) + ηδ. (8.25)

Finally, to realize the goal-oriented error approximation Ē(yh) defined by (8.7) we

use numerical quadrature of the exact defects rn(t) = ẏh(t)−f(t,yh(t)) on [tn, tn+1]

for n = 0, . . . , N − 1. The computational cost depends on the quadrature formula

and the required tolerance. The resulting goal-oriented global error estimator to

estimate Ē(yh) reads

η̄ := −
N−1∑

n=0

λ̂
⊺
n+1

∫ tn+1

tn

rn(t) dt+ ηδ. (8.26)

Note that the derived error estimators η̃ and η̄ are asymptotically correct to estimate

the error approximations Ẽ(yh) and Ē(yh), respectively. The estimator η̂ is not

asymptotically correct for Ê(yh) since the estimation L̂E(tn+1) is not asymptotically

correct for the exact local error LE(tn+1).

8.5.3 Residuals of the nonlinear BDF equations

In all three goal-oriented error approximations Ē(yh), Ê(yh) and Ẽ(yh) of Section

8.3, and hence in the estimators η̄, η̂ and η̃ of Section 8.5.2, the residuals {δn}
N
n=1 of

the nonlinear BDF equations (2.2b) build a weighted sum. The residuals δn+1 them-

selves can be computed exactly by inserting the nominal approximation yn+1, i.e.

the last iterate of the iterative procedure used to solve (2.2b), into the corresponding

BDF equation. Nevertheless, if the ODE right hand side f(t,y) is expensive to eval-

uate, also the evaluation of the residuals is computationally expensive. Generally,

in the implementation of implicit integration methods the accuracy achieved by the

time discretization has to be the dominant one, particularly the implicit, nonlinear

equations have to be solved to a higher accuracy. If so, the residuals are comparably

small in contrast to the local error quantities utilized in Ē(yh), Ê(yh) and Ẽ(yh),

respectively, and might be neglected therefore.

The stepsize and order selection rule together with the monitor strategy of Sec-

tion 2.4 guarantee that the residuals δn+1 are heuristically smaller than the local

truncation errors according to the following lemma and the appropriate choice of

the Newton tolerance. We use the notion of Section 2.4.3.

Lemma 8.11 Assume hn/α
(n)
0

∥∥fy(tn+1,y
∗
n+1)

∥∥ < 1, such that the nonlinear BDF

equation (2.2b) has a unique solution y∗
n+1. Suppose that Mn and y

(0)
n+1 = yP

n+1

satisfy the requirements of the Local Contraction Theorem (Theorem 2.29) and∥∥∥∆y
(sn−1)
n+1

∥∥∥ < NTol is the termination criterion of the Newton-type method. If

the method terminates with

1. sn = 3 and 0.25 ≤ δ0 < 0.3
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2. sn = 2 and δ0 < 0.25

3. sn = 1 and
∥∥∥F (n)

BDF

(
y

(sn)
n+1

)∥∥∥ ≤ α
(n)
0 NTol

then the approximation y
(sn)
n+1 to y∗

n+1 leads to a residual bounded by

∥∥∥δ(sn)
n+1

∥∥∥ =
∥∥∥F (n)

BDF

(
y

(sn)
n+1

)∥∥∥ ≤ α
(n)
0 NTol.

Proof The residual δ
(sn)
n+1 of the last iterate y

(sn)
n+1 is given by

δ
(sn)
n+1 = F

(n)
BDF

(
y

(sn)
n+1

)
= F

(n)
BDF

(
y∗

n+1 +
(
y

(sn)
n+1 − y∗

n+1

))

= J
(n)
BDF(y∗)

(
y

(sn)
n+1 − y∗

n+1

)
+ O

(∥∥∥y(sn)
n+1 − y∗

n+1

∥∥∥
2
)

and hence it is bounded by
∥∥∥δ(sn)

n+1

∥∥∥ ≤
∥∥∥α(n)

0 I − hnfy(tn+1,y
∗
n+1)

∥∥∥ ·
∥∥∥y(sn)

n+1 − y∗
n+1

∥∥∥ < 2α
(n)
0

∥∥∥y(sn)
n+1 − y∗

n+1

∥∥∥ .

For sn ∈ {2, 3}, the a priori estimate of the Local Contraction Theorem and the

decrease of the sequence (δi) yield that

∥∥∥y(sn)
n+1 − y∗

n+1

∥∥∥ ≤
δsn−1

1 − δsn−1

∥∥∥∆y
(sn−1)
n+1

∥∥∥ ≤
δ0

1 − δ0

∥∥∥∆y
(sn−1)
n+1

∥∥∥ < 1

2
NTol

since δ0 < 1/3 by assumption. Hence, the assertion is shown. �

At least for constant stepsizes we have 1 ≤ α
(n)
0 ≤ 2.45 < 5/2, see Section 2.4.1, and

together with the choice NTol = 0.08 · RelTol of Section 2.4.3 we obtain
∥∥∥δ(sn)

n+1

∥∥∥ < 5/2 · 0.08 · RelTol = 0.2 · RelTol.

On the other hand, the estimated local truncation error is bounded by RelTol due to

Section 2.4.1. In this way, the residuals δn+1 are negligible compared to L̂TE(tn+1)

in the goal-oriented error estimator η̃ given by (8.22). This also holds for η̂ given

by (8.25) since at least for constant stepsize we have ||L̂E(tn+1)|| ≤ ||L̂TE(tn+1)||

according to (8.24) and α
(n)
0 ≥ 1.

For fully variable BDF methods we will examine numerically the impact of the

residual term ηδ on the accuracy of the goal-oriented estimators in Section 10.3.2.

8.5.4 Computational complexity and vector-valued criterions of interest

The novel goal-oriented global error estimators η̄, η̂ and η̃ are available at different

computational costs. All of them need the approximations λ̂n+1 = ȳn+1/α
(n)
0 of

the discrete adjoints λn+1. Hence, one adjoint IND sweep of the domain space

formulation of the BDF method is necessary to compute {ȳn}
N
n=0. For this, the

more efficient iterative version should be preferred to the direct version, cf. Section
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3.4.2 or Albersmeyer and Bock [5]. Using λ̂n+1 instead of λn+1 for n = 0, . . . , N

requires only N scalar-vector multiplications with vector length d instead of N builts

and decompositions of the d× d BDF Jacobian and transposed solutions.

For η̃ the local truncation errors have to be estimated. With the BDF method

based on Newton interpolation polynomials the estimation of LTE(tn+1) is com-

putationally very efficient, cf. Bleser [25], and also used for the local stepsize and

order selection described in Section 2.4. Apart from the cost for the estimation of

the local truncation errors, the goal-oriented error estimator η̂ needs N additional

scalar-vector multiplications. For η̄, the computational effort depends directly on

the quadrature formula used to obtain the defect integrals and the cost for the

evaluation of the ODE right hand side f(t,y).

If the error estimator also includes the residual term ηδ, N residuals have to be

evaluated at a cost depending on the evaluation cost for the ODE right hand side

f(t,y).

Apart from the memory requirements of the adjoint IND sweep (cf. Albersmeyer

and Bock [5]), additional memory is required during the nominal integration to store

the vector-valued estimates of the nominal local error quantities and possibly the

vector-valued defects in each integration step.

If the global error in a vector-valued criterion of interest J = [J1, · · · , JM ]⊺ is

required, this can be computed as well with the goal-oriented error estimators derived

above. To this end, the error in each component Ji is estimated like in the case of a

scalar criterion of interest. Altogether, this gives a vector-valued estimator η̌ for the

vector-valued error J(y(tf))−J(yh(tf)). It is available at the cost of M adjoint IND

sweeps, each in direction J ′
i(y

h(tf)) for i = 1, . . . ,M . The nominal error quantities

have to be computed only once.
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9 Application of the novel estimators for

goal-oriented error control

So far, most adaptive integrators determine the integration accurcacy by means of

a given relative tolerance. But, the relative tolerance applies to the local accuracy

only and does not guarantee any global error bound for the approximation of the

Initial Value Problem (IVP) solution. Furthermore, the appropriate choice of the

relative tolerance in terms of accuracy and efficiency is still a challenge. If the IVP

at hand is asymptotically stable, local inaccuracies are damped out and a loose

tolerance already yields a good approximation. On the other hand, if the IVP to be

solved is highly unstable, already small errors amplify in a disastrous manner and

the approximation might become useless at all.

With the novel goal-oriented global error estimators for Backward Differentiation

Formula (BDF) methods derived in Chapter 8 we hold a suitable tool to resolve

such ambivalent situations. We now examine how the estimated information can

be used to control the nominal integration such that the goal-oriented global error

of the nominal approximation is influenced appropriately. ‘Appropriately’ in this

context has two tendencies. It may mean to reduce the error of the nominal integra-

tion or to loose it since the nominal integration needs not to be that accurate and

computational effort can be saved.

In this chapter we will not treat the choice of the required tolerance GTol for the

goal-oriented global error that should be met by the nominal approximation. We

rather assume to be given a global tolerance GTol. In the simulation context the

choice of GTol is due to the user and his/her particular aims. In the optimal control

context the choice of GTol should be done by the optimization procedure itself based

on its progress towards the optimum and its convergence behavior, see Bock [31].

Nevertheless, this topic itself is a field of research and hence is beyond the scope of

this thesis.

However, in this chapter we will use our novel goal-oriented error estimators within

algorithmic frameworks to drive the approximation in such a way that its goal-

oriented global error is below a given global tolerance GTol. In the whole chapter we

assume that the nonlinear BDF equations are solved until the residuals are negligible

compared to the nominal local error quantities, cf. Section 8.5.3, and hence that

the residual term ηδ in the goal-oriented estimators of Section 8.5.2 is negligible.

Exemplarily, we focus here on the goal-oriented estimator η̃ defined by (8.22) using

estimated local truncation errors. Nevertheless, the estimators η̄ and η̂ could be used

as well. We start in Section 9.1 with an approach that uses the error estimator η̃ to
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adjust the relative tolerances for subsequent integrations with the standard stepsize

and order selection, cf. Section 2.4. In Section 9.2, we continue with a strategy that

adapts the discretization scheme directly using each addend of the sum in (8.22)

separately. The termination criterion of both strategies is satisfied if the estimator

η fulfilles

|η| ≤ c · GTol (9.1)

where c is a positive constant that accounts for the over- or underestimation tendency

of the estimator η.

9.1 Goal-oriented local tolerance adaption

Here we use the information obtained, for example, by the novel goal-oriented global

error estimator η̃ to influence the local integration tolerance in the so-called goal-

oriented local tolerance adaption. Based on the error estimate η̃ the relative tol-

erance RelTol is reduced such that the local truncation errors in the subsequent

integration are decreased in the hope for a corresponding reduction in the goal-

oriented global error. After the first nominal integration with RelTol0 = RelTol for

a user given relative tolerance RelTol, the goal-oriented error is estimated by η̃0.

As long as
∣∣η̃j
∣∣ ≤ c · GTol is not fulfilled, the nominal integration is repeated with

RelTolj+1 = RelTolj · min

{
cred,

c · GTol

|η̃j|

}
(9.2)

where cred < 1 is a positive factor assuring reduction. In this approach all inte-

grations are performed with the stepsize and order selection as well as the monitor

strategy described in Section 2.4.

The choice c · GTol/
∣∣η̃j
∣∣ in (9.2) is based on the following assumption: If the

integration with RelTolj as upper bound on the local truncation errors yields an

approximation with estimated global error
∣∣η̃j
∣∣ > c · GTol, then a subsequent inte-

gration with a relative tolerance reduced by the factor c · GTol/
∣∣η̃j
∣∣ < 1 is supposed

to reduce the global error by the same factor such that the global error of the new

approximation approaches the termination criterion (9.1).

The algorithmic procedure is summarized in Algorithm 1. It extends an idea

described by Lang and Verwer [84]. The number of iterations (integrations) in

Algorithm 1 is limited by J . If after J integrations the tolerance GTol is still not

met, the algorithm terminates with a failure.

However, the goal-oriented local tolerance adaption has its limitations. It relies

on the assumption that a reduction of the relative tolerance results in a reduction

of the goal-oriented global error. But, the choice of the adaptive components does

not guarantee that the estimated local truncation errors meet the upper bound of

||L̂TE(tn+1)|| ≤ RelTol in (2.17), cf. Section 2.4.1, and hence it is not guaranteed

that the estimated local truncation errors for the more restrictive tolerance are al-

ways smaller than that of the less restrictive one. Furthermore, the conditioning
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Algorithm 1: Goal-oriented local tolerance adaption

Input : Desired GTol, loose RelTol.

Output: Approximate solution yN with estimated goal-oriented error η̃.

RelTol0 = RelTol, j = 0;1

Integration with RelTol0;2

Estimation of goal-oriented error η̃0;3

while
∣∣η̃j
∣∣ > c · GTol and RelTolj > 10−14 and j < J do4

RelTolj+1 = RelTolj · min{cred, c · GTol/
∣∣η̃j
∣∣};5

Integration with RelTolj+1;6

Estimation of goal-oriented error η̃j+1;7

j = j + 1;8

N = N j , η̃ = η̃j ;9

of the IVP to be solved has a crucial impact on the propagation of local inaccura-

cies, see Section 1.3. Local inaccuracies in different areas of the time interval may

be propagated differently. Hence, the relative tolerance might be unnecessarily re-

strictive for the local truncation errors on parts of asymptotic stability whereas on

parts of IVP instability they should be smaller than the relative tolerance. These

limitations of the goal-oriented local tolerance adaption call for a more flexible strat-

egy that accounts not only for nominal local error quantities but also for the local

stability.

However, in situations where an IVP has to be solved many times and the de-

sired global accuracies are known, the goal-oriented error estimate η̃ can be used

analogously to (9.2) to obtain an educated guess for a suitable relative tolerance.

This also includes an increase of the relative tolerance if the previous one has been

unnecessarily restrictive.

9.2 Goal-oriented scheme adaption

In this section we examine how to include not only the estimated nominal local

error quantities but also the estimated stability of the IVP, which determines the

propagation of local errors, into a goal-oriented global error control mechanism. We

do this again exemplarily with the help of the goal-oriented estimator η̃ based on

estimated local truncation errors. The estimator η̃ given by (8.22) with negligible

residual term ηδ is the sum of so-called local error indicators η̃n

η̃ =

N−1∑

n=0

η̃n with η̃n = λ̂
⊺
n+1L̂TE(tn+1). (9.3)

Based on these indicators we can adapt the integration scheme of the BDF method

for a subsequent integration with prescribed scheme. This goal-oriented scheme

adaption replaces the standard stepsize and order selection mechanism described in

Section 2.4 completely and is summarized in Algorithm 2.
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Algorithm 2: Goal-oriented scheme adaption

Input : Desired GTol, loose RelTol.

Output: Approximate solution yN with estimated goal-oriented error η̃.

j = 0;1

Integration with RelTol;2

Estimation of local error indicators {η̃0
n} and goal-oriented error η̃0;3

while
∣∣η̃j
∣∣ > c · GTol and j < J do4

Indicator-based scheme adaption (Algorithm 3);5

Integration with prescribed integration scheme;6

Estimation of local error indicators {η̃j+1
n } and goal-oriented error η̃j+1 ;7

j = j + 1;8

N = N j , η̃ = η̃j ;9

The total number of iterations in Algorithm 2 is again limited by J . The indicator-

based scheme adaption for BDF methods and the integration with prescribed schemes,

i.e. line 2 and 1 of Algorithm 1, are addressed in Section 9.2.1 and 9.2.2, respectively.

Moon et al. [95] used a similar approach for one-step methods to reduce the global

error by dividing those integration steps with the largest error contributions into

uniform substeps. Due to the simultaneous stepsize adaptation for all integration

steps Bangerth and Rannacher [15] suggested to call this approach implicit stepsize

control. This separate adjustment step has its origin in adaptive Finite Element (FE)

methods for Partial Differential Equations (PDEs) where the space discretization is

chosen adaptively. Similar adaptation procedures are applied to IVPs in Ordinary

Differential Equations (ODEs) by Böttcher and Rannacher [36], Eriksson et al. [55]

and Logg [87] using continuous and discontinuous Galerkin methods.

9.2.1 Indicator-based scheme adaption for BDF methods

We now focus on the indicator-based adaption of the integration scheme of BDF-type

methods using the local error indicators of the novel goal-oriented error estimator η̃.

There exist several implicit adaption strategies. For example, Logg [87] and Moon

et al. [95] used error balancing over all integration steps. Beside this, Becker and

Rannacher [20] also used strategies that refine a particular number of integration

steps. One is to reduce the local error indicators of a fixed percentage of integration

steps. Another one is to reduce those indicators that yield a fixed percentage of

the estimated error. For the moment we focus on the reduction of the local error

indicators of p · 100 percent of the integration steps and develop an approach to

achieve this in the case of BDF methods.

Originally, BDF-type methods as realized in DAESOL-II are based on the relative

tolerance RelTol provided by the user and strategies to control the local accuracy,

cf. Section 2.4. However, the goal-oriented scheme adaption of Algorithm 2 totally

replaces the standard selection rules for stepsize and order. Only a first integration
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with a loose relative tolerance RelTol and the standard stepsize and order selection

mechanism is performed. This yields the first integration scheme {hn}
N−1
n=0 , {kn}

N−1
n=0

and {NToln}
N−1
n=0 with NToln = 0.08 · RelTol (cf. Section 2.4.3). After estimating

the goal-oriented global error, the local error indicators of p · 100 percent of the

integration steps are reduced.

Generally, the estimated local truncation error L̂TE(tn+1) of the n-th integration

step, included in η̃n according to (9.3), can be influenced directly by the choice of

stepsize hn and order kn. As a first attempt we try to reduce the error indicator

of the n-th integration step by bisecting the subinterval In and performing two

integration steps with stepsize hn/2 and order kn. To maintain the assumption that

the residuals of the nonlinear BDF equations and hence the residual term ηδ are

negligible we have to adjust also the Newton tolerance NToln, cf. Section 8.5.3.

In Section 2.4.3 the Newton tolerance was given via the relative tolerance as

NToln = 0.08 · RelTol. For the particular Newton-type method fulfilling the as-

sumptions of Lemma 8.11 this Newton tolerance yields a residual δn+1 with norm

bounded by α
(n)
0 · 0.08 · RelTol. On the other hand, for the estimated local trun-

cation error holds ||L̂TE(tn+1)|| ≤ RelTol which is guaranteed by the standard

stepsize and order selection. If we assume constant stepsize and take (2.12), i.e.

LTE(tn+1)=̇Ckn+1h
kn+1y(kn+1)(tn+1), into account, then a bisection of the stepsize

reduces the local truncation error by a factor of 1/2(kn+1). Hence, we have to re-

duce the Newton tolerance by this factor as well, such that the residual δn+1 of the

nonlinear BDF equation remain negligible compared to L̂TE(tn+1).

The whole indicator-based scheme adaption is summarized in Algorithm 3.

Algorithm 3: Indicator-based scheme adaption

Input : p, {ηn}, {hn}, {kn}, {NToln} for n = 0, . . . , N − 1.

Output: Adjusted {h′n}, {k
′
n}, {NTol

′
n} for n = 0, . . . , N ′ − 1.

Sort |ηn1 | ≥ · · · ≥ |ηnN
|;1

for i = 1 : pN do2

Bisect subinterval Ini
;3

Use order kni
for both steps;4

Use Newton tolerance NTolni
/2(kni

+1) for both steps;5

Note that the termination tolerances for the numerical solution of the nonlinear

BDF equations by Newton-type methods are not fixed anymore over all integration

steps, but rather they are adjusted according to the local conditions, cf. line 3 in

Algorithm 3.

9.2.2 Integration with prescribed integration scheme

After the indicator-based adaption of the integration scheme the next step of the

goal-oriented scheme adaption is to integrate the IVP with prescribed adaptive com-

ponents, cf. line 2 in Algorithm 2. For each integration step, stepsize hn and order
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kn are already given and the nonlinear BDF equation has to be solved with given

tolerance NToln+1. To retain the efficiency of the overall integration the hierarchical

update procedure for the iteration matrices in the Newton-type method of Section

2.4.3 is not changed. Particularly, the monitor strategy is still used and limits the

computational effort by keeping the iteration matrix fixed as long as convergence is

observed. Furthermore, this integration is much cheaper compared to the standard

integration (as e.g. used in line 2 of Algorithm 1) since the selection of stepsize and

order is omitted.

The goal-oriented scheme adaption of Algorithm 2 and 3 is already good as the

numerical results in Section 11.2 will demonstrate. Nevertheless, the indicator-based

scheme adaption of Algorithm 3 provides potential for improvements and should be

seen as a starting point. For example, it is an open question how to adapt the orders

of the integration scheme and the described adaption of the Newton tolerance seems

to be quite restrictive. Additionally, Algorithm 3 only allows a refinement but no

coarsing of the integration grid.

In addition to the above goal-oriented global error control strategies a third strat-

egy is of great interest: The stability described by the adjoints should be incorpo-

rated into the standard selection of stepsize, order and Newton tolerance and hence

utilized in a subsequent integration with time stepping goal-oriented adaption. Cao

and Petzold [43] investigated such an approach for their a posteriori error estimator

using a costly integration of the adjoint IVP, a constant order BDF method and

a stepsize adaption formula based on equidistant grids. They indicated a gain in

accuracy and efficiency compared to their standard stepsize adaption for unstable

and stiff IVPs, respectively. An interesting issue for future research would be the

development of such a global error control strategy based on our novel goal-oriented

error estimators, which are superior compared to that of Cao and Petzold due to

Section 10.3, and our standard stepsize and order selection, which uses the local

truncation error formula for variable grids, cf. Section 2.4.1 or Bleser [25] and Eich

[52, 53].
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In this chapter we give numerical evidence to the theoretical results derived in Part

II and Chapter 8. To this end, we use Initial Value Problems (IVPs) with known an-

alytic solutions and investigate the results computed with a constant Backward Dif-

ferentiation Formula (BDF) method and the variable BDF-type method DAESOL-II.

In the first part of this chapter we focus on the Finite Element (FE) approximations

of the weak adjoints computed by adjoint Internal Numerical Differentiation (IND).

We will confirm numerically the convergence results of Chapter 7 and demonstrate

numerically the smooth behavior of the FE weak adjoints also for variable BDF-

type methods. Secondly, we examine the goal-oriented global error approximations

of Section 8.3 and their asymptotic behavior examined in Section 8.4. Finally, we

investigate the accuracy of the novel goal-oriented global error estimators derived

in Chapter 8, and in particular in Section 8.5, and compare our estimators to a

corresponding one proposed by Cao and Petzold [43].

10.1 Weak adjoint solutions

We illustrate the theoretical results of Part II with the help of a nonlinear test case

with known analytic nominal and adjoint solutions. The Catenary, see e.g. Hairer

et al. [67], is given by a second order Ordinary Differential Equation (ODE)

ÿ(t) = p
√

1 + ẏ(t)2, p > 0.

We reformulate the ODE as system of first order equations

ẏ1(t) = y2(t)

ẏ2(t) = p
√

1 + y2(t)2

and solve it on the interval [ts, tf ] = [0, 2] for the parameter choice p = 3 and the

initial conditions y(0) = ys = [1/3 cosh(−3), sinh(−3)]⊺. As criterion of interest

we choose J(y(2)) = y1(2). The analytic nominal solution and the analytic classical

adjoint solution are

y(t) =

(
B + 1

p cosh(pt+A)

sinh(pt+A)

)
, λ(t) =

(
1

− sinh(pt+A)−sinh(ptf+A)
p cosh(pt+A)

)
(10.1)

and the analytic weak adjoint solution in the space NBV[ts, tf ]
2 is

Λ(t) =

(
t

− 1
p2 ln(cosh(pt+A)) + 2

p2 sinh(ptf +A) arctan
(
ept+A

)
)

(10.2)
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Figure 10.1: Results for the constant BDF method. Comparison of the FE weak

adjoints Λh to the analytic weak adjoints Λ (top) as well as the dis-

crete adjoint IND values λh compared to analytic classical adjoints λ

(bottom) for three different stepsizes.

where A = −p and B = 0. The results presented in this section are also contained

in Beigel et al. [21].

10.1.1 Constant BDF method

We use a constant BDF method with order 2 and stepsize h implemented in Matlab R©.

The self-starting procedure consists of two first-order BDF steps with stepsize h/2.

The nonlinear BDF equations are solved up to a given small accuracy. Furthermore,

the direct adjoint IND scheme (3.2) is realized.

The lower row of Figure 10.1 compares the discrete adjoint IND values λh =

{λn}
N
n=0 for the three different stepsizes h = 2−4, 2−5 and 2−6 to the analytic

solution λ given by (10.1) of the adjoint IVP along the analytic nominal solution.

The peaks of the discrete adjoints at the interval ends are due to the inconsistency of

the adjoint initialization and termination steps of the discrete adjoint IND scheme

with the adjoint IVP, cf. Section 3.6 and 7.1. Nevertheless, the discrete adjoints

converge on the open interval (0, 2) towards the analytic adjoint solution as we have

demonstrated in Theorem 7.2. In the upper row of Figure 10.1 the FE approximation

Λh is compared to the analytic weak adjoint Λ given by (10.2). It converges on the

whole time interval as we have shown in Theorem 7.7.
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Figure 10.2: Convergence of the FE weak adjoints to the analytic weak adjoints.

Error evaluated at the final time tf = 2 and at the interior time point

t = 1.25.

Figure 10.2 shows the Euclidean norm of the difference between the analytic weak

adjoint (10.2) and the FE approximation, i.e.

Error =
∥∥∥Λ(t) − Λh(t)

∥∥∥
2
,

evaluated at the final time t = tf = 2 and at some interior time point t = 1.25,

respectively, for decreasing stepsizes. The error evaluated at the final time decreases

at second order rate, a somewhat better behavior than predicted by the convergence

theory of Section 7.2 (Theorem 7.7 and the subsequent comment). This might be

due to the second order convergence of the discrete adjoint λ0 at the initial time

together with a possible cancellation of discrepancies of the discrete adjoints at the

interval ends during the scaled summation of all {λn}
N
n=0 to give Λh, see Chapter

6. Overall, this observation calls for a closer theoretical investigation. The error at

the interior time point t = 1.25 shows the expected linear convergence, cf. Theorem

7.7 and the subsequent comment on the pointwise convergence.

10.1.2 Variable BDF method

We use the variable BDF-type method DAESOL-II, see Section 2.4 or Albersmeyer

[3], to solve the Catenary for three different relative tolerances RelTol = 10−4, 10−7

and 10−9. We allow the method to use all strategies for an efficient integration

and derivative generation, i.e. the stepsize and order selection rule, the monitor

strategy (see Section 2.4) and iterative adjoint IND (see Section 3.4.2). Afterwards,

we multiply the computed discrete adjoint IND values {ȳn}
N
n=0 by the inverse of

the Jacobians J
(n)
BDF(tn+1,yn+1) to obtain {λn}

N
n=0, see Lemma 3.3. The results are

depicted in Figure 10.3.

In areas of constant BDF order (fourth row of Figure 10.3) and constant stepsizes

(third row; depicting the stepsize ratio defined on page 11), the discrete adjoints
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Figure 10.3: Results for the variable BDF-type method DAESOL-II. Comparison of

the FE weak adjoints Λh to the analytic weak adjoints Λ (top) as well

as the discrete adjoints λh compared to the analytic classical adjoints

λ (second row). Stepsize ratio (third row) and BDF order (bottom) of

the integration scheme are also depicted.
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λh converge to the analytic adjoint solution λ (second row) as seen in the right

column on the interval (1, 1.7) approximately. In the other areas, i.e. where the order

is varying and stepsize is changing, the discrete adjoints λh are highly oscillating

(second row). Nevertheless, also in these cases, the FE approximations Λh converge

to the analytic weak adjoint solution (10.2) on the entire time interval (first row of

Figure 10.3).

These examples give numerical evidence that the FE approximation serves as

proper quantity to approximate the weak adjoint solution also for variable BDF-

type methods with iterative adjoint IND as described in Section 2.4 and 3.4.2, i.e.

also in areas of variable order and variable stepsize as well as in conjunction with

efficient Newton-type methods and iterative adjoint IND.

10.2 Goal-oriented global error approximation for constant

BDF methods

We use again our Matlab R© implementation of constant BDF methods. To investigate

the goal-oriented error approximations Ē(yh), Ê(yh) and Ẽ(yh) derived in Section

8.3 as well as their behavior and relations described in Section 8.4 we augmented the

program to evaluate the local errors LE(tn+1), the local truncation errors LTE(tn+1)

and the defect integrals
∫ tn+1

tn
rn(t) dt. For LE(tn+1) and LTE(tn+1) we used (2.7)

and (2.15) with analytic expressions, respectively, and for
∫ tn+1

tn
rn(t) dt we used

numerical quadrature. Although, the nonlinear BDF equations are solved up to a

given small accuracy we keep the residual terms
∑N−1

n=0 λ
⊺
n+1δn+1 in the goal-oriented

error approximations.

10.2.1 Behavior of the defect integrals

Exemplarily, we use a constant BDF method of order k = 2 and stepsize h with

two first-order BDF steps of size h/2 as self-starter to solve the Dahlquist equation

(Example 1 in Section A.3.1) with a = 0.5, ys = 1, [ts, tf ] = [0, 1] and the Catenary

described in Section 10.1 (see also Example 7 in Section A.3.1). We verify that

the defect integrals converge with order k + 1 to zero as demonstrated and utilized

in the proof of Theorem 8.5 and furthermore that the relation between the defect

integrals and the local error given by Lemma 8.2 holds. Therefore, we compute

both quantities
∫ tn+1

tn
rn(t) dt and

∫ tn+1

tn
rn(t) dt + LE(tn+1) at two different inner

time points, for the Dahlquist equation t = 0.5, t = 0.25 and for the Catenary

t = 1.25, t = 0.5, take the norms and decrease the stepsize successively. The results

are visualized in Figure 10.4 and the theoretical findings, i.e. convergence of order

k + 1 = 3 and k + 2 = 4, respectively, are confirmed also numerically.
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Figure 10.4: Norm of the defect integral
∫ tn+1

tn
rn(t) dt (top) and the relation∫ tn+1

tn
rn(t) dt+LE(tn+1) of Lemma 8.2 (bottom) evaluated at two inner

reference time points for BDF order k = 2.

10.2.2 Accuracy of the goal-oriented error approximations

We investigate numerically the results of Section 8.4 on the asymptotic behavior of

the three error approximations Ē(yh), Ê(yh) and Ẽ(yh). We use again the linear

Dahlquist equation with a = 0.5, ys = 1, [ts, tf ] = [0, 1], the nonlinear Catenary and

furthermore the nonlinear Example 2 described in Section A.3.1 as IVP test cases.

The criterions of interest are J(y(tf)) = y(tf) and J(y(tf)) = y1(tf), respectively.

Firstly, we focus on the one-step BDF method with order k = 1 and secondly we use

the constant BDF method with order k = 2 as example for multistep BDF methods.

One-step method: BDF method of order k = 1

For a constant BDF method of order one the signed effectivity indices Is
eff defined

by (8.11) of the three goal-oriented error approximations Ē(yh), Ê(yh) and Ẽ(yh)

to the true error J(y) − J(yh) are displayed in Figure 10.5. The indices of all

three error approximations converge linearly to the desired value one, also for the

nonlinear test cases. Hence, the numerical results confirm the theoretical findings

given by Theorem 8.5 for Ē(yh), Corollary 8.6 for Ê(yh) and implicitly by Lemma

8.10 for Ẽ(yh).

We also investigate the correction term defined by (8.19). According to Lemma

8.10 the correction terms ∆Ē(yh) of Ē(yh) and ∆Ê(yh) of Ê(yh) coincide for BDF

order one and converge quadratically to zero. This is confirmed numerically as

depicted in Figure 10.6.
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Figure 10.5: |Is
eff − 1| of Ē(yh), Ê(yh) and Ẽ(yh) for BDF order k = 1 and stepsize

h.
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Figure 10.6:
∣∣∆Ē(yh)

∣∣ for BDF order k = 1 and stepsize h.

Multistep method: BDF method of order k = 2

For a constant BDF method of order two with two first-order steps of size h/2

the signed effectivity indices of the three goal-oriented error approximations Ē(yh),

Ê(yh) and Ẽ(yh) are visualized in the top row of Figure 10.7 for the three IVP

examples. The effectivity indices of Ẽ(yh) approach the desired value one whereas

the other two error approximations Ē(yh) and Ê(yh) have effectivity indices that

approach values different than one. In fact, they approach problem-dependent off-

set values. However, if Ē(yh) is corrected using ∆Ē(yh) the effectivity indices of

Ē(yh) + ∆Ē(yh) also approach one, cf. top row of Figure 10.7.

In the bottom row of Figure 10.7 the convergence of the signed effectivity indices

of the error approximation Ẽ(yh) and the corrected approximations Ē(yh)+∆Ē(yh)

and Ê(yh) + ∆Ê(yh) to the desired value one is depicted. In fact, the convergence

to one is linear in all these error approximations and for all IVP examples.

For another BDF method of order k = 2 that uses only one first-order step of

size h0 = h as self-starter, and hence has all steps of the same size h, the signed

effectivity indices of the three error approximations Ē(yh), Ê(yh) and Ẽ(yh) are

depicted in Figure 10.8.

Comparing Figure 10.8 to the first row of Figure 10.7 one observes that the
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Figure 10.7: Is
eff of Ē(yh), Ê(yh), Ẽ(yh) and Ē(yh)+∆Ē(yh) (top) and |Is

eff − 1| of

Ẽ(yh), Ē(yh) + ∆Ē(yh) and Ê(yh) + ∆Ê(yh) (bottom) for BDF order

k = 2 and stepsize h with two first-order steps.
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Figure 10.8: Is
eff of Ē(yh), Ê(yh), Ẽ(yh) and Ē(yh) + ∆Ē(yh) for BDF order k = 2

and stepsize h with one first-order step.
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problem-dependent offset values actually also depend on the used nominal inte-

gration scheme. The convergence behavior of the error approximations and their

corrected versions for this BDF method of order two are similar to the behavior for

the method with two starting steps.

10.3 Goal-oriented global error estimation for variable BDF

methods

In this section we investigate the accuracy of the error estimators η̄, η̂ and η̃ for

variable order variable stepsize BDF methods. The nominal integration is done

by the fully adaptive BDF-type method DAESOL-II with local stepsize and order

strategies and the discrete adjoints are computed by iterative adjoint IND realized

in DAESOL-II, cf. Section 2.4 and 3.4.2 or Albersmeyer [3]. We again use IVPs with

analytic solutions as test cases. They are listed in Section A.3.1. To increase the

number of tests we use different relative tolerance RelTol for the integration.

For each integration and each error estimator η̌ we compute the signed effectivity

index Is
eff defined by (8.11). If the signed index is positive, the estimator reflects the

right sign of the true error. If it is negative, the estimator was not able to reflect the

right sign of the error. The closer the absolute value of the effectivity index is to one,

the higher the accuracy of the estimator is. However, the estimator overestimates

the true error if the index is greater than one and underestimates it if the index is less

than one. Due to the fully-adaptive nominal integration with changing stepsizes and

varying orders a reasonably bounded absolute value of the effectivity index is already

satisfactory in practice. However, the quality of the estimator is considered to be the

same regardless whether the effectivity index is e.g. 0.5 or 2. In the whole thesis we

round the absolute value of the effectivity index of our goal-oriented error estimators

to our disadvantage, i.e. an index of 0.367 becomes 0.36 and 3.451 becomes 3.46. We

also compare our estimators to a corresponding a posteriori global error estimator

proposed by Cao and Petzold [43] and denoted by ηCP for scalar criterions of interest

and by ηCP for vector-valued criterions. The error indices

Ierr :=
‖ηCP‖

‖J(y(tf)) − J(yN )‖
(10.3)

of the estimator ηCP by Cao and Petzold are provided by Tran and Berzins [118].

For scalar criterions of interest J both the effectivity and the error indices coincide

(except sign). Unfortunately, for vector-valued criterions J the error index is not

as precise as the effectivity indices of the single components of J to measure the

accuracy of the estimator.

10.3.1 Accuracy of the goal-oriented error estimators

In contrast to the asymptotic investigations of Section 8.4.3 and 8.4 for the error

approximations we examine here the accuracy of all three goal-oriented error esti-

mators in practical use with variable BDF methods and possibly large stepsizes. As
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Example RelTol

Estimator 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10

3

η̄
0.62 0.87 0.97 1.02 1.03 1.03 1.01 1.02

1.51 2.19 -17.27 -0.03 0.58 0.79 0.88 0.92

η̂
0.37 0.43 0.40 0.47 0.45 0.46 0.47 0.45

0.61 0.74 -10.50 -0.12 0.20 0.33 0.43 0.41

η̃
0.90 1.05 0.99 1.14 1.13 1.15 1.20 1.13

1.48 1.76 -23.42 -0.29 0.53 0.82 1.05 1.01

η̄ 0.96 1.01 1.01 1.01 0.99 0.99 0.98 0.99

η̂ 0.45 0.45 0.42 0.46 0.44 0.45 0.46 0.44

η̃ 1.11 1.11 1.05 1.16 1.09 1.12 1.17 1.11

ηCP 13.58 13.02 13.66 13.00 11.59 10.92 10.77 11.35

Cat.

η̄ 0.53 0.47 0.76 1.02 1.02 0.99 0.98 0.99

η̂ 0.33 0.34 0.24 0.45 0.47 0.42 0.55 0.41

η̃ 0.84 -0.07 0.83 1.20 1.13 1.06 1.36 1.02

Table 10.1: Signed effectivity indices Is
eff and error indices Ierr (fourth and fifth part

of Example 3) of η̄, η̂ and η̃ for variable BDF methods with decreasing

relative tolerances RelTol. Error indices of goal-oriented estimator ηCP

proposed by Cao and Petzold [43] are provided by Tran and Berzins

[118].

test cases we use the linear IVP system of Example 3 with vector-valued criterion

of interest J(y(tf)) = y(tf) and the nonlinear Catenary with nonlinear criterion of

interest J3(y(tf)) = y1(tf) · y2(tf). The signed effectivity indices are given in Table

10.1 for both IVPs and criterions of interest including each component of the vector-

valued criterion. For the first example we also list in Table 10.1 the error indices

given by Tran and Berzins [118] of the estimator ηCP by Cao and Petzold [43]. Since

effectivity index and error index only coincide for scalar criterions we also give the

error indices of our estimators for the vector-valued criterion.

All effectivity indices of our novel goal-oriented estimators derived in Section 8.5

remain bounded according to Table 10.1 also for fully adaptive BDF-type methods

and a wide span of relative tolerances. Actually, the effectivity indices of η̄ and η̃ are

mostly near the desired value one and there are only very few that are outside the

interval [0.5, 2]. The effectivity indices of η̂ are not that good but remain bounded as

well. Due to the fact that neither stepsize nor order are constant one can not expect

that the effectivity indices approach one for increasing accuracy requirements, i.e.

for decreasing relative tolerances RelTol. One should rather understand the variety

of relative tolerances as augmentation of the test set.

We start the detailed examination of the results in Table 10.1 with Example 3.
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10.3 Goal-oriented global error estimation for variable BDF methods

Comparing the accuracy of our three estimators one recognizes that the estimator

η̄ based on the defect integrals and the estimator η̃ based on the estimated local

truncation errors are better in componentwise absolute values than η̂ based on the

local error estimates of Section 8.5.2. The local error based estimator η̂ exhibits an

underestimation tendency since its effectivity indices are always less than one. The

other two estimators η̄ and η̃ neither show an underestimation nor an overestimation

tendency. However, all three estimators give the correct sign of the true goal-oriented

global error in most of the integrations. In order to compare our estimators to the

corresponding estimator ηCP by Cao and Petzold [43] Table 10.1 also contains the

error indices defined by (10.3) of η̄, η̂ and η̃. Overall, the error indices of our

estimators are closer to one than those of ηCP. Hence, all our goal-oriented error

estimators behave superior to that by Cao and Petzold.

Secondly, we have a look at the global error in a nonlinear criterion of interest

evaluated in the final state of the Catenary. Again for this example the error esti-

mators η̄ and η̃ behave significantly better in absolute values than η̂. However, all

estimators give the correct error sign in nearly all cases.

Conclusions

Overall, the numerical experiments of this section indicate that the goal-oriented

estimators η̄ and η̃ are generally more accurate in estimating the true global error

in J than the estimator η̂. We recapitulate now all insights we have gained on the

different goal-oriented error estimators so far. In Section 8.2 and 8.3 we have seen the

derivation of the goal-oriented error approximations Ē(yh) and Ê(yh) in function

spaces whereas a function space interpretation of Ẽ(yh) is an open issue so far. In

Section 10.2.2 we have learned that for constant multistep BDF methods the signed

effectivity indices of Ẽ(yh) converge to the desired value one whereas those of Ē(yh)

and Ê(yh) converge to a problem- and method-dependent value 6= 1. Furthermore,

the corresponding goal-oriented error estimators η̄, η̂ and η̃ derived in Section 8.5

have different computational costs. The most efficient one is η̃, directly followed

by η̂ whereas η̄ can be more expensive, cf. Section 8.5.4. The cost for η̄ depends

directly on the quadrature formula, the required tolerance and the evaluation cost

for f(t,y). All these insights are summarized in Table 10.2.

In fact, the estimator η̂ is not that good due to the rough approximation of

the local errors by L̂E(tn+1), cf. Section 8.5.2. The local errors could be approx-

imated more accurately using an integration method of higher order for the local

IVPs of Definition 2.4. Unfortunately, this would increase the computational effort

tremendously. Nevertheless, we recommend to use η̄ instead since it provides good

accuracy and numerical quadrature is significantly more efficient than integration.

For all these reasons we discard the goal-oriented error estimator η̂ at this point

from further numerical testing.
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10 Numerical validation

Estimator Derivation

in function

spaces

Is
eff → 1 for con-

stant multistep BDF

methods

Computation

at low cost

|Is
eff | close to

one for practical

computations

Ē(yh), η̄ yes no

(yes with correction)

depends on

quadrature

yes

Ê(yh), η̂ yes no

(yes with correction)

yes no

Ẽ(yh), η̃ no yes yes yes

Table 10.2: Summary of all investigated properties of the novel goal-oriented global

error estimators derived in Chapter 8.

10.3.2 Impact of residuals

For the remaining goal-oriented estimators from the practicable point of view, i.e. for

η̄ based on defect integrals and η̃ based on estimated local truncation errors, we now

investigate the impact of the weighted sum ηδ of the residuals of the nonlinear BDF

equations given by (8.23). The residuals result from the iterative solution of the

nonlinear BDF equations by a Newton-type method, cf. Section 2.4.3 and 8.5.3. As

test cases we use the scalar Dahlquist equation of Example 1, the linear Harmonic

Oscillator of Example 4 with vector-valued criterion of interest J(y(tf)) = y(tf),

the nonlinear IVP system of Example 5 with J(y(tf)) = y(tf) and Example 2 with

nonlinear criterion J2(y(tf)) = 1/y(tf) · exp(y(tf)). We integrate again with different

relative tolerances and compute the signed effectivity indices of η̄ and η̃ including

ηδ and neglecting ηδ. The results are given in Table 10.3 for the scalar criterions

of interest and some components of the vector-valued criterions. For the first three

test cases the error indices given by Tran and Berzins [118] of the estimator ηCP by

Cao and Petzold [43] are listed as well.

Having a look at Example 1 in Table 10.3, the effectivity indices of the defect

based estimator η̄ with and without the residual term ηδ differ for RelTol < 10−3

only in the second decimal place. The same holds for the local truncation error

based estimator η̃. Furthermore, all our goal-oriented estimators are much better

than the estimator ηCP by Cao and Petzold. For Example 4 the discrepancy in the

estimators with and without ηδ are at most in the second decimal places for both

η̄ and η̃. Moreover, the error indices of all our estimators are closer to one than

those of ηCP. For Example 5 with vector-valued criterion J(y(tf)) = y(tf), Table

10.3 only shows the effectivity indices of the global errors in the second and the fifth

component of J . In all components of J the discrepancy in the effectivity indices of

η̄ with and without ηδ is at most in the second decimal place, expect in five of the

twenty cases (five criterions, four relative tolerances) where it is in the first decimal

place. The same holds true for η̃. Comparing the error indices of our estimators to

that of Cao and Petzold again our estimators are more accurate. For the nonlinear

Example 2 with nonlinear criterion the discrepancy caused by ηδ is once more in the
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10.3 Goal-oriented global error estimation for variable BDF methods

RelTol

Example 10−3 10−5 10−7 10−9

Estimator w ηδ w/o ηδ w ηδ w/o ηδ w ηδ w/o ηδ w ηδ w/o ηδ

1

η̄ 1.083 0.877 1.002 0.966 1.105 1.071 1.120 1.072

η̃ 1.422 1.217 0.595 0.560 1.007 0.972 0.761 0.713

ηCP 7.13 7.09 8.95 16.72

4

η̄
-6.211 -6.204 0.706 0.680 0.914 0.909 0.968 0.967

0.943 0.909 1.157 1.157 1.166 1.171 1.125 1.134

η̃
-7.336 -7.329 0.887 0.861 1.027 1.022 1.069 1.068

1.247 1.213 1.337 1.338 1.282 1.287 1.249 1.258

η̄ 1.016 0.984 1.011 1.004 1.001 0.999 0.997 0.999

η̃ 1.324 1.292 1.188 1.181 1.114 1.113 1.103 1.105

ηCP 4.13 15.04 1.45 8.64

5

η̄2 1.283 1.254 1.390 1.279 1.301 1.223 1.494 1.342

η̄5 1.028 1.022 0.997 0.954 0.974 0.968 1.002 0.990

η̃2 0.404 0.374 0.740 0.628 1.188 1.111 2.110 1.957

η̃5 0.560 0.554 0.926 0.883 1.047 1.041 1.156 1.146

η̄ 1.044 1.037 1.007 0.961 0.977 0.970 1.004 0.993

η̃ 0.551 0.544 0.924 0.880 1.048 1.041 1.161 1.150

ηCP 6.14 14.31 12.94 8.35

2
η̄ 1.214 1.183 0.907 0.858 1.118 1.174 0.858 0.909

η̃ 0.918 0.887 -0.590 -0.639 0.859 0.916 1.165 1.217

Table 10.3: Signed effectivity indices Is
eff and error indices Ierr (third and fourth

part of Example 4 and 5) of η̄ and η̃ with and without ηδ for variable

BDF methods with decreasing relative tolerances RelTol. Error indices

of goal-oriented estimator ηCP proposed by Cao and Petzold [43] are

provided by Tran and Berzins [118].
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10 Numerical validation

second decimal place for both estimators η̄ and η̃. To sum up, the numerical results

confirm that the impact of ηδ on the goal-oriented error estimators η̄ and η̃ is quite

small and there is no plain tendency that including ηδ would yield a more accurate

estimator. Hence, the computational cost for the evaluation of the goal-oriented

error estimators η̄ and η̃ can be further reduced by neglecting the residual term ηδ

which might be expensive to evaluate if the evaluation of the ODE right hand side

f(t,y) is computationally expensive.

10.4 Summary

In the first part of this chapter we confirmed numerically the results on the FE

approximations of weak adjoints using discrete adjoint IND values of multistep BDF

methods derived in Part II. Firstly, the convergence results have been observed

numerically using a constant multistep BDF method to solve the nonlinear Catenary.

Secondly, we have given numerical evidence that the FE approximation serves as

proper quantity to approximate the weak adjoints also in the case of fully adaptive

BDF-type methods, i.e. also in areas of variable order and variable stepsize.

In Section 10.2 we demonstrated numerically that for constant multistep BDF

methods the signed effectivity indices of the goal-oriented global error approxima-

tions Ē(yh), Ê(yh) and Ẽ(yh) derived in Section 8.2 and 8.3 converge to different

limit values. The indices of the approximation Ẽ(yh) based on local truncation errors

converge to the desired value one whereas the indices of Ē(yh) based on defect inte-

grals and Ê(yh) based on local errors converge to problem- and method-dependent

value 6= 1, respectively.

Finally, we sum up the results of the last part on goal-oriented global error esti-

mation for fully variable BDF-type methods. The numerical experiments indicated

the superiority of our novel goal-oriented error estimators η̄, η̂ and η̃ derived in

Chapter 8 compared to the corresponding, existing estimator ηCP developed by Cao

and Petzold [43] and investigated by Tran and Berzins [118]. Comparing our three

estimators with each other we have learned that the estimator η̄ based on defect

integrals and η̃ based on estimated local truncation errors are more accurate than η̂

in estimating the true error J(y(tf)) − J(yh(tf)). For this reason and some others,

cf. Table 10.2, we have discarded the estimator η̂ and remain with η̄ and η̃. Further-

more, we observed that the residual term ηδ is negligible in practical calculations,

hence we may approximate it by zero. Overall, the signed effectivity indices of both

estimators η̄ and η̃ demonstrate that they give the correct sign of the true error

in J in nearly all test cases. Furthermore, the indices show that both estimators

exhibit neither an overestimation tendency nor an underestimation tendency. Thus,

the constant c in the termination criterion (9.1) of goal-oriented adaption algorithms

developed in Chapter 9 should be chosen to be one.
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11 Integration with goal-oriented global

error control

In this chapter we will examine the goal-oriented global error control strategies pro-

posed in Chapter 9. They aim to give an approximation to the solution of an Initial

Value Problem (IVP) with a goal-oriented global error that satisfies a user given

tolerance GTol. To this end, the control strategies require that the goal-oriented

error estimate η̌ fulfills (9.1), i.e. |η̌| ≤ c · GTol, for a prescribed positive constant

c depending on the used estimator η̌. We utilize exemplarily the goal-oriented er-

ror estimator η̃ defined by (8.22) using estimated local truncation errors due to its

favorable balancing of accuracy and computational efficiency, cf. Section 10.3. Fur-

thermore, we suppose, as justified by Section 8.5.3 and 10.3.2, that the residual term

ηδ in η̃ is insignificant. The numerical examples of Section 10.3 have shown that

our novel goal-oriented error estimator η̃ neither inclines to underestimate nor to

overestimate the true goal-oriented error J(y(tf)) − J(yh(tf)). Hence, we always

take c = 1 in the termination criterion (9.1) as suggested in Section 10.4.

To get an impression of the Backward Differentiation Formula (BDF) method used

to obtain the approximate solutions, we will state for every integration the number

N of (successful) integration steps, the overall Newton iterations
∑N−1

n=0 sn as well

as the matrix rebuilds and decompositions needed by the Newton-type method to

solve the nonlinear BDF equations, cf. Section 2.4. Note that one rebuild is always

caused by the initial setup of the iteration matrix.

11.1 Goal-oriented local tolerance adaption

In this section we examine the goal-oriented local tolerance adaption of Algorithm 1

proposed in Section 9.1. We take cred = 0.2 as factor to ensure reduction in the

relative tolerance.

11.1.1 Linear IVP with time-varying coefficient matrix

We start with Example 3

ẏ(t) =

(
1

2(1+t) −2t

2t 1
2(1+t)

)
y(t), t ∈ (0, 10], y(0) =

(
1

0

)
.

It should be solved with low accuracy such that the error in J(y(tf)) = y1(tf) is

less than the global tolerance GTol = 4 · 10−4. As relative tolerance for the first
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11 Integration with goal-oriented global error control

j RelTol η̃ J(y(tf))−J(yN) Is
eff N

∑
sn reb/dec

0 2.000000e-04 7.287345e-02 7.028072e-02 1.037 313 687 2 / 4

1 1.097793e-06 7.928640e-04 7.075118e-04 1.121 663 1923 2 / 2

2 2.195587e-07 1.825734e-04 1.807485e-04 1.011 830 2233 2 / 2

Table 11.1: Results of the goal-oriented local tolerance adaption applied to Exam-

ple 3 with J(y(tf)) = y1(tf), RelTol = 2 · 10−4 and GTol = 4 · 10−4.

integration we choose RelTol = 2 · 10−4. Since c = 1 due to Section 10.4 the

termination criterion on the goal-oriented error estimate η̃ is |η̃| < c ·GTol = 4 ·10−4.

The results are given in Table 11.1.

Even for the simple IVP of Example 3 limiting the local truncation errors does not

limit the global error to the same magnitude. As seen in the first row of Table 11.1,

an integration with a relative tolerance of 2 · 10−4 yields an approximation with an

exact global error in y1(tf) of magnitude 7.03 · 10−2, that is an error accumulation

factor of around 350. The error accumulation is caused by the instability of the IVP.

The real parts of the eigenvalues of fy(t,y(t)) are 0.5/(1+t) and hence positive such

that the IVP is unstable, cf. Section 1.3. Nevertheless, within three iterations, i.e.

after three integrations with successively reduced relative tolerances, the estimated

global error has been reduced below c · GTol = 4 · 10−4, see Table 11.1. The true

global errors J(y(tf)) − J(yN ) stated in the fourth column confirm the suitability

of the goal-oriented local tolerance adaption to reduce global error. To meet the

global accuracy requirement a relative tolerance of 2.2 · 10−7 has been necessary.

The signed effectivity indices Is
eff of η̃ defined by (8.11) again show the suitability of

η̃ in estimating the true global error in J in both magnitude and sign.

Already this small IVP example shows the difficulty in choosing the relative tol-

erance appropriately to meet a desired global integration accuracy.

11.1.2 Inhomogeneous linear IVP

Secondly, we consider Example 6

ẏ(t) = −L [y(t) − sin(πt)] + π cos(πt), t ∈ (0, 1], y(0) = 0

with L = 50. We solve this IVP very accurately such that the global error in

J(y(tf)) = y(tf) is less than GTol = 2 · 10−10. As relative tolerance for the first

integration we choose RelTol = 10−3 and might expect that many iterations are

necessary. The results are stated in Table 11.2.

Already in the first integration with RelTol0 = 10−3 the local truncation errors

are damped out such that a nominal approximation with exact global error 1.2 ·10−4

has been computed, cf. Table 11.2. This damping of local inaccuracies is due to the

asymptotic stability of the IVP since the eigenvalue of fy(t, y(t)) = −L has a nega-

tive real part, cf. Section 1.3. Although the second integration with adjusted relative
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11.2 Goal-oriented scheme adaption

j RelTol η̃ J(y(tf))−J(yN) Is
eff N

∑
sn reb/dec

0 1.000000e-03 4.791418e-04 1.151663e-04 4.161 23 41 2 / 6

1 4.174130e-10 -3.657937e-10 -1.567932e-10 2.333 103 206 5 / 4

2 8.348260e-11 -5.776368e-11 -4.281387e-11 1.350 118 257 6 / 4

Table 11.2: Results of the goal-oriented local tolerance adaption applied to Exam-

ple 6 with J(y(tf)) = y(tf), RelTol = 10−3 and GTol = 2 · 10−10.

tolerance yields an approximation with required exact global accuracy (fourth col-

umn in second row of Table 11.2), the goal-oriented local tolerance adaption has not

terminated because the error estimator η̃ does not yet satisfy the termination cri-

terion (9.1). The estimator slightly overestimates the true error. Nevertheless, the

next adaption of the relative tolerance gives an approximation with desired accur-

acy. Furthermore, for decreasing relative tolerances the estimator η̃ becomes better

in estimating the true error J(y(tf))− J(yN ) again in both magnitude and sign, see

fifth column of Table 11.2. This is caused by the smaller integration steps chosen

in the nominal integrations since these smaller steps also imply an improvement in

the approximation of the solution of the adjoint IVP.

11.2 Goal-oriented scheme adaption

To incorporate the conditioning of the IVP locally we do not only use the goal-

oriented error estimator η̃ itself but also its local error indicators {η̃n}
N
n=1. Hence, we

examine the goal-oriented scheme adaption given by Algorithm 2 in conjunction with

the indicator-based adaption of the integration scheme described by Algorithm 3,

see Section 9.2. We consider the same test cases as in Section 11.1.

11.2.1 Linear IVP with time-varying coefficient matrix

We again compute an approximation to the solution of Example 3 with a global

accuracy of GTol = 4 · 10−4 in J(y(tf)) = y1(tf) and use RelTol = 2 · 10−4 for the

first integration, cf. Section 11.1.1. For the indicator-based adaption of Algorithm 3

we choose p = 0.3. The results are summarized in Table 11.3.

In each iteration of the goal-oriented scheme adaption the error estimate of the

approximation is successfully reduced, see second column of Table 11.3. After five

iterations we are done since the estimated error η̃ satisfies the termination criterion

|η̃| ≤ c ·GTol = 4 ·10−4. The true errors J(y(tf))−J(yN ) stated in the third column

demonstrate the capability of the global error control strategy using indicator-based

scheme adaption to reduce the true goal-oriented error. The overall number of

iterations and the number of integration steps of each iteration depend directly on

the choice of the refinement rate p. If p is small, more iterations with less integration

steps are needed. If p is big, less iterations with more integration steps are necessary.
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11 Integration with goal-oriented global error control

j η̃ J(y(tf)) − J(yN ) Is
eff N

∑
sn reb/dec

0 7.287345e-02 7.028072e-02 1.037 313 687 2 / 4

1 2.925130e-02 3.085997e-02 0.947 416 1047 4 / 104

2 4.248216e-03 4.118479e-03 1.032 545 1522 3 / 85

3 6.939722e-04 7.408250e-04 0.936 727 1917 3 / 214

4 1.790707e-04 1.877929e-04 0.953 955 2490 2 / 298

Table 11.3: Results of the goal-oriented scheme adaption with the indicator-based

scheme adaption applied to Example 3 with J(y(tf)) = y1(tf), RelTol =

2 · 10−4, GTol = 4 · 10−4 and p = 0.3.

However, p should not be chosen too big to guarantee that the local error indicators

are good approximtions to the true error contribution of each integration step.

Comparing results of both goal-oriented adaption strategies

A comparison of the last iterations of both goal-oriented error control strategies

shows that the goal-oriented scheme adaption (see Table 11.3) yields a slighly more

expensive final integration in terms of integration steps and Newton iterations, and a

much more expensive one in terms of matrix decompositions than the goal-oriented

local tolerance adaption (see Table 11.1). The iteration matrix had to be decomposed

that often since the stepsizes vary enormously as visualized in the second row of

Figure 11.1(b) by the stepsize ratio defined on page 11.

Figure 11.1 displays the integration schemes and estimated quantities of the last

iterations of both goal-oriented global error control strategies. The first row visual-

izes the stepsizes of the first integration with standard stepsize and order selection

mechanism using RelTol0 and those of the last integrations, respectively. In the

second and the third row of Figure 11.1 the stepsize ratios and the BDF orders of

the last integrations are depicted. In the penultimate row the norm of the estimated

local truncation errors are depicted and in the last row the absolute values of the

local error indicators of the goal-oriented global error estimator are given. The step-

size and order selection for the integration scheme of Figure 11.1(a) is based on the

local truncation errors whereas the adaption for the integration scheme of Figure

11.1(b) relies on the local error indicators.

In fact, all estimated local truncation errors depicted in the fourth row of Figure

11.1(a), i.e. those on which the stepsize and order selection of Algorithm 1 is based,

are bounded by the adapted relative tolerance RelTol2 = 2.195587 ·10−7 . Although,

the estimated local truncation errors of Algorithm 2 are considerably greater accord-

ing to the fourth row of Figure 11.1(b), the approximation fulfills the goal-oriented

error bound as well. In this case the integration scheme is chosen by the indicator-

based adaption using the local error indicators of η̃3 depicted in gray in the last row

of Figure 11.1(b).

The stepsizes of the last integration of the scheme adaption strategy are generally
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Figure 11.1: Comparison of the last iterations of both goal-oriented error control

strategies applied to Example 3 with J(y(tf)) = y1(tf), RelTol = 2 ·

10−4, GTol = 4 · 10−4 and p = 0.3. Stepsizes (first row) and BDF

orders (third row) of first (in gray) and last (in black) integration as

well as stepsize ratios of last integration (second row) are given. The

penultimate row shows the norm of the estimated local truncation errors

and the last row the absolute value of the local error indicators.
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11 Integration with goal-oriented global error control
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Figure 11.2: FE weak adjoints Λh (first row), adjoint IND values λh = {λn}
N
n=0 (mid

row) and approximated discrete adjoints λ̂h = {λ̂n}
N
n=0 (bottom row)

of last iterations of both goal-oriented error control strategies applied

to Example 3.

smaller at the left end of the interval [0, 10] than those of the local tolerance adaption.

The smaller steps seem to compensate on the one hand the slower increase of the

BDF order, cf. third row of Figure 11.1. On the other hand, the adjoints indicate a

worse conditioning of the IVP at the left interval end than on the orther parts of the

interval. The adjoint Internal Numerical Differentiation (IND) values λh = {λn}
N
n=0,

their approximations λ̂h = {λ̂n}
N
n=0 as well as their weak adjoints Λh are depicted

in Figure 11.2 for both last integrations.

The huge fluctuation of the discrete adjoints of the scheme adaption strategy, see

Figure 11.2(b), reflects the oscillations of the stepsizes. Nevertheless, as derived

in Part II of this thesis, the approximated weak adjoints of both last integrations

exhibit a smooth behavior on the entire time interval, see first row of Figure 11.2.

Furthermore, they exhibit a remarkable gradient at the left interval end and a nearly

zero gradient towards the right end which describes unstability with respect to errors

at the beginning and an increasing stability towards the right end. Thus, in a huge
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11.2 Goal-oriented scheme adaption

j η̃ J(y(tf)) − J(yN ) Is
eff N

∑
sn reb/dec

0 4.791418e-04 1.151663e-04 4.161 23 41 2 / 6

1 1.887049e-05 7.612226e-06 2.479 30 57 1 / 8

2 4.389466e-07 2.561674e-07 1.714 36 74 1 / 7

3 3.012417e-08 1.886764e-08 1.597 43 89 1 / 13

4 3.703062e-09 2.612997e-09 1.418 51 110 1 / 14

5 9.928802e-10 7.962516e-10 1.247 61 138 1 / 15

6 1.939192e-10 1.564972e-10 1.240 72 167 1 / 18

Table 11.4: Results of the goal-oriented scheme adaption with the indicator-based

scheme adaption applied to Example 6 with J(y(tf)) = y(tf), RelTol =

10−3, GTol = 2 · 10−10 and p = 0.18.

area of the interval the local conditioning of the IVP has a rather small impact

on the stepsize selection of the goal-oriented scheme adaption such that the latter

strategy does not yield a better integration scheme than the standard strategies with

adapted relative tolerance.

As already mentioned above, the oscillations in the stepsize sequence of integra-

tions of Algorithm 2, depicted in the second row of Figure 11.1(b), are problematic

in BDF methods since they cause a huge number of updates for the iteration matrix,

cf. Table 11.3, and hence slow down the overall integration procedure.

11.2.2 Inhomogeneous linear IVP

We again compute an approximation to the solution of Example 6 with a global

accuracy of GTol = 2 · 10−10 in J(y(tf)) = y(tf), cf. Section 11.1.2. For the first

integration we use again RelTol = 10−3. For the indicator-based scheme adaption

of Algorithm 3 we choose p = 0.18. The results are depicted in Table 11.4.

In each iteration the estimated goal-oriented global error of the approximation is

successfully reduced until it is below the required bound c·GTol, cf. second column of

Table 11.4. The same holds for the true goal-oriented error given in the third column.

Due to the successive, implicit scheme adaption of only 18% of the integration steps,

the scheme adaption needed quite a number of iterations, particularly in contrast

to the goal-oriented local tolerance adaption, cf. Table 11.2. Nevertheless, in the

last iteration the number of integration steps is reduced by more than one third

compared to the last iteration of the local tolerance adaption strategy.

Comparing results of both goal-oriented adaption strategies

Comparing the last iterations of both goal-oriented error control strategies one no-

tices that the goal-oriented scheme adaption (see Table 11.4) yields a more economic

integration in contrast to the goal-oriented local tolerance adaption (see Table 11.2)

in terms of integration steps and Newton iterations. But the iteration matrix of the
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11 Integration with goal-oriented global error control

Newton-type method to solve the nonlinear BDF equations had to be decomposed

more often. Nevertheless, only one rebuild which comprises the evaluation of the

Jacobian of the Ordinary Differential Equation (ODE) right hand side f(t, y) was

necessary compared to six rebuilds in the local tolerance adaption. In Figure 11.3

the integration schemes and the estimated quantities of the last iterations of both

goal-oriented error control strategies are visualized.

Comparing the stepsizes of the last iterations of both goal-oriented error control

strategies, see first row of Figure 11.3, we notice that making tiny steps at the right

interval end is more important for the reduction of the error in y(tf) than small

steps at the left end and in the middle of the interval. In the solution of this IVP

example the stepsize of the scheme adaption strategy is not used to compensate

the BDF order depicted in the third row of Figure 11.3. The stepsize sequence is

rather influenced by the conditioning of the IVP described by the adjoints. The

approximated adjoints λ̂h = {λ̂n}
N
n=0 used for the last error estimation and the local

error indicators are depicted at the bottom of Figure 11.4. In huge parts of the

time interval [0, 1] they are zero or at least extremely small and only at a small part

towards the right interval end they increase rapidly. Hence, local inaccuracies at

the beginning are insignificant whereas local inaccuracies towards the right interval

end are weighted heavily. This behavior can not be detected by local tolerance

adaption since within this strategy stepsizes and orders are chosen by the standard

mechanism based on estimated local truncation errors, penultimate row of Figure

11.3(a). The estimated local truncation errors are all below the relative tolerance

RelTol2 = 8.348260 · 10−11. In contrast, the last estimated local truncation errors

of the scheme adaption strategy are comparably huge at the left end of [0, 1], see

penultimate row of Figure 11.3(b). Due to the lack of a strategy for order adaption

in the indicator-based scheme adaption, the orders of the scheme adaption strategy

are still that of the first integration, third row of Figure 11.3(b), whereas in the

tolerance adaption strategy the order is chosen adaptively in each integration, cf.

third row of Figure 11.3(a). Nevertheless, the integration with goal-oriented scheme

adaption yields a more economic integration scheme due to the incorporation of

adjoint information.

Having a look at the weak adjoints Λh from the last iterations of both error control

strategies, see top row of Figure 11.4, indicates the ability of the indicator-based

scheme adaption to improve also the approximation of the weak adjoint solutions.

However, further investigations in this direction are left for future research.

11.3 Summary

In this chapter we have investigated the usefulness of our novel goal-oriented er-

ror estimator η̃ given by (8.22) to control the nominal integration such that the

goal-oriented global error of the nominal approximation is controlled. In fact, we

successfully used the estimator to reduce the goal-oriented error of the approxima-

tion by adapting the local relative tolerance. This simple strategy of Algorithm 1 is

130



11.3 Summary

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

 

 
stepsize first int
stepsize last int

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0 0.2 0.4 0.6 0.8 1
0

1

2

 

 
stepsize ratio

0 0.2 0.4 0.6 0.8 1
0

1

2

0 0.2 0.4 0.6 0.8 1
0

2

4

6

 

 

BDF order first int
BDF order last int

0 0.2 0.4 0.6 0.8 1
0

2

4

6

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8
x 10

−4

 

 
||LTE(t

n
)||

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8
x 10

−4

0 0.2 0.4 0.6 0.8 1
0

0.5

1

x 10
−11

t

 

 
|η

n
| last int

(a) Goal-oriented local tolerance adaption

0 0.2 0.4 0.6 0.8 1
0

0.5

1

x 10
−11

t

(b) Goal-oriented scheme adaption

Figure 11.3: Comparison of the last iterations of both goal-oriented error control

strategies applied to Example 6 with J(y(tf)) = y(tf), RelTol = 10−3,

GTol = 2 · 10−10 and p = 0.18. Stepsizes (first row) and BDF orders

(third row) of first (in gray) and last (in black) integration as well as

stepsize ratios of last integration (second row) are given. The penulti-

mate row shows the norm of the estimated local truncation errors and

the last row the absolute value of the local error indicators.
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Figure 11.4: FE weak adjoints Λh (top) and approximated discrete adjoints λ̂h =

{λ̂n}
N
n=0 (bottom) of last iterations of both goal-oriented error control

strategies applied to Example 6.

able to determine an appropriate local relative tolerance. Usually, there is no a priori

knowledge for a suitable choice of the relative tolerance in order to obtain an approx-

imation with bounded global error of desired size, see e.g. first integration in Section

11.1.1. Nevertheless, for subsequent integrations the relative tolerance could be ad-

justed appropriately. Furthermore, the local error indicators of estimator η̃ have

been successfully used in indicator-based adaption of the integration scheme to give

a nominal approximation with required global error bound. Although the scheme

adaption of Algorithm 3 is quite simple so far, the numerical experiments already

indicate the suitability of the information carried by the local error indicators and

the applicability of the goal-oriented scheme adaption of Algorithm 2, see in partic-

ular Section 11.2.2. Concerning the goal-oriented error estimator η̃ itself the signed

effectivity indices confirm again its good accuracy in magnitude and sign.
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12 Hydrolysis of propionic anhydride in a

Stirred Tank Reactor

In this chapter we focus on a real-world example from chemical engineering, a

laboratory-scale discontinuous Stirred Tank Reactor (STR) carrying out the exother-

mic, self-accelerating hydrolysis of propionic anhydride. Firstly, we describe the

chemical process, develop a new model in Ordinary Differential Equations (ODEs)

using validated subcomponents and compare the simulation results to measurement

data. Secondly, we investigate the weak adjoint solutions corresponding to a non-

linear criterion of interest and confirm numerically the results of Part II. Finally,

we apply the goal-oriented global error control strategies developed in Chapter 9 to

compute nominal approximations with guaranteed global error bounds.

12.1 General description

The operation of STRs in batch and semibatch mode is commonly used in the

production of fine chemicals where only small amounts of one of numerous, highly

specialized substances are produced. It allows not only the production of small

amounts but also a rapid change from one reaction process to another. Unfor-

tunately, these discontinuous reactors are prone to loss of thermal control and are

more often involved in accidents than continuous reactors operating at steady states.

The terms ‘discontinuous’ and ‘continuous’ refer to the operation mode of the STR:

In discontinuous mode the products are completely removed from the tank after the

reaction has finished whereas in continuous mode reactants are added and products

are removed simultaneously. Many reaction processes for fine chemicals are hetero-

geneous liquid-liquid systems initiated by a catalyst. An example is the hydrolysis

of propionic anhydride catalyzed by sulfuric acid. This self-accelerting reaction is

strongly exothermic and can easily lead to thermal runaways. Nevertheless, it is

allowed to be studied in a laboratory. For details on safety aspects of STRs we refer

to Westerterp and Molga [124, 125].

Reaction

The hydrolysis of propionic anhydride (CH3CH2CO)2O (Ah) with water H2O (w)

to form propionic acid C2H5COOH (Ac) is described by the following stoichiometric

equation

Ah + H2O
H+

−→ 2 Ac
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12 Hydrolysis of propionic anhydride in a Stirred Tank Reactor

catalyzed by hydrons H+ that are provided in our case by sulfuric acid H2SO4 (S).

This reaction has been studied by Molga and Cherbański [93, 94] and Cherbański

[44]. It takes place in the aqueous phase although the solubility of propionic an-

hydride in water is limited. This limitation provokes that the mixture is heteroge-

neous with the propionic anhydride as organic phase, i.e. like oil droplets in water

but the droplets outweighing the water. Generally, in such systems reaction and

mass transfer occur simultaneously and the overall reaction rate is affected by the

mass transfer. The reaction product propionic acid remains in the aqueous phase

and increases, like sulfuric acid, the solubility of propionic anhydride. Therefore,

the mixture fades to a homogeneous status. Due to the increasing mass transfer

the reaction is self-accelerating. The reaction mixture is heterogeneous (‘milky’) as

long as the propionic anhydride is not completely soluble in the aqueous phase and

becomes homogeneous (‘transparent’) once all propionic anhydride is solved and the

organic phase has disappeared.

Reactor

The reaction is carried out in a STR with cooling jacket, baffles and downward pro-

peller stirrer. For semibatch operation, the vessel is charged with water and sulfuric

acid whereas propionic anhydride is fed to the reactor for a certain time span. This

discontinuous process operates far away from steady states and is characterized by

strongly nonlinear dynamics with time varying coefficients. During the experiment

the temperature of the cooling jacket is kept constant, called isoperibolic operation

mode, and the temperature inside the reactor changes due to the heat generated by

the reaction.

Concerning the optimal operation of semibatch reactors performance and safety

are of great importance. Performance may mean to run the process at a minimal

time or such that the products exhibit particular properties. Safety aims to reduce

the risk for thermal runaways. Runaways may occur due to an accumulation of

non-reacted substance or a malfunction of cooling or stirring system. A terrible

experience of these effects has been the accident of 1976 in Seveso, Italy. Hence,

for a safe operation the temperature rise due to a sudden reaction of unreacted

substances inside the tank has to be kept bounded all the time. To achieve this

usually the dosing rate of the added substance serves as control, see e.g. Kühl et

al. [82, 81] and Ubrich et al. [119]. Most laboratory as well as industrial facilities of

STRs allow only addition of substances at constant rates.

12.2 Modeling and simulation

In this section we develop a new mathematical model to describe the hydrolysis of

propionic anhydride carried out in a semibatch STR. It is an empirical model with-

out taking into account the reaction mechanism in all its details. We use validated
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expressions for mass transport and reaction kinetics which have been investigated

by Molga and Cherbański [93, 94] and Cherbański [44]. Finally, we observe that the

newly composed model is able to describe experimental measurements taken during

research stays at the Faculty of Chemical and Process Engineering of the Warsaw

University of Technology. To perform the experiments an RC1 Mettler Toledo Re-

action Calorimeter has been used. The reactants are of purity better than 97% in

the case of propionic anhydride and 95% in that of sulfuric acid.

12.2.1 Mathematical modeling

Due to the stirring and the presence of the baffles the mixing can be assumed to

be ideal and the mixture to be gradientfree in space. Based on this ‘ideal mixing

assumption’ we model the process by a system of ODEs. Furthermore, we presume

that the heat transfer between the phases is instanteneous. The dynamic states

are the temperature of the reaction mixture and the mole numbers of each species

where the propionic anhydride in the organic phase and in the aqueous phase are

interpreted as different species. Thus, the resulting ODE system in five states reads

ṅw(t) = −r(t) · V aq(t) + [1 − pAh] · u(t)/Mw (12.1a)

Ṫ (t) = [∆HAh · r(t) · V aq(t) − qflow(t) − qloss(t) − qdos(t)] /(mCp)R(t) (12.1b)

ṅaq
Ah(t) = −r(t) · V aq(t) +Q(t) (12.1c)

ṅorg
Ah(t) = pAh · u(t)/MAh −Q(t) (12.1d)

ṅAc(t) = 2 · r(t) · V aq(t) (12.1e)

where u(t) [kg/s] describes the dosing rate of propionic anhydride (with purity pAh),

Q(t) [mol/s] the flow rate of propionic anhydride from the organic to the aqueous

phase, r(t) [mol/(m3 s)] the reaction rate and qflow(t), qloss(t), qdos(t) [J/s] the heat

exchange with cooling jacket, surroundings and added substance, respectively. The

molar mass M [kg/mol] of each substance is given in Table A.1. For simplification,

we suppose that the heat capacity Cp [J/(kg K)] of each substance is constant, see

Table A.1, and that the mixture has a uniform constant density ρ = 991.014896

[kg/m3], i.e. that of water at a reference temperature of 313.15K. Furthermore, we

assign the following purities pAh = 0.97 and pS = 0.95.

Mass transport of propionic anhydride

The transport of propionic anhydride from the organic to the aqueous phase, i.e. from

the droplets to the bulk of water containing also sulfuric acid, propionic acid and

some propionic anhydride, has been investigated by Molga and Cherbański [93, 94]

as well as Cherbański [44] and is modeled by

Q(t) = Kaq · a(t) ·
{
C̃aq

Ah(t) − Caq
Ah(t)

}
· V aq(t).
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12 Hydrolysis of propionic anhydride in a Stirred Tank Reactor

The solubility of propionic anhydride in the aqueous phase depends on the concentra-

tion of propionic acid expressed as mass ratio to water as well as on the temperature

of the mixture

C̃aq
Ah(t) =

ρ

MAh

(
U + V [T (t) − 273.15K] +W

[
nAc(t)MAc

nw(t)Mw

]χ)
.

The parameter values listed at the left of Table 12.1 have been estimated for T (t) ∈

[293.15K, 313.15K] and a mass ratio of propionic acid to water less than 0.25. The

concentration C̃aq
Ah(t) [mol/m3] describes how many moles of propionic anhydride are

soluble in the aqueous phase with volume V aq(t) until it is saturated. Hence, the

transport term Q(t) is proportional to the difference of the concentration C̃aq
Ah(t) of

propionic anhydride that is soluble in aqueous phase and the concentration Caq
Ah(t) =

naq
Ah(t)/V aq(t) [mol/m3] of propionic anhydride that is available in the aqueous phase.

The proportionality coefficient is composed of the overall mass transfer coefficient

Kaq [m/s] reduced to the aqueous phase and the interfacial area a(t) [m2/m3] per

volume approximated as function in the volume fraction of the organic phase

a(t) =
6

d32

V org(t)

V aq(t) + V org(t)

with Sauter mean diameter d32 [m] of the droplets. We take Kaq = 5 · 10−4 and

d32 = 2 · 10−4. The volume [m3] of the aqueous and the organic phase are given by

V aq(t) =
{
MAh · naq

Ah(t) +Mw · nw(t) +MS · nS +MAc · nAc(t)
}
/ρ

V org(t) = MAh · norg
Ah(t)/ρ

respectively, with constant number of moles nS of sulfuric acid.

Reaction kinetics

The hydrolysis of propionic anhydride is a second-order reaction that takes place in

the aqueous phase. Hence, its reaction rate reads

r(t) = keff(t) · Caq
Ah(t) · Cw(t)

where Caq
Ah(t) and Cw(t) = nw(t)/V aq(t) are the concentrations of propionic anhy-

dride and water in the aqueous phase, respectively. The kinetic expression for the

effective reaction rate coefficient keff (t) has been studied by Cherbański [44]. The

rate coefficient is of Arrhenius type

keff(t) = A · exp

(
−

Ea

RT (t)
−HR(t)

)

where R = 8.314472 [J/(mol K)] is the universal gas constant and Ea the activation

energy. The acidity function

HR(t) = {BCAc(t) +DCS(t)} /T (t)

measures the acidity of the mixture caused by propionic acid and sulfuric acid and

describes the catalyst transformation. The parameter values are listed at the right

of Table 12.1.
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Symbol Value Unit Symbol Value Unit

U 0.00367 - A 498670.82 m3/(mol s)

V 5.5 · 10−4 1/K Ea 78406.86 J/mol

W 0.3406 - B -0.934 m3 K/mol

χ 1.751 - D 0.0364 m3 K/mol

Table 12.1: Model parameters for solubility (left part) and reaction kinetics (right

part) of propionic anhydride.

Energy balance

The energy balance for reactor and reaction mixture yields the differential equation

(12.1b) for the temperature inside the reactor. A detailed description of all heat

transfers in STRs can be found e.g. in Zaldivar et al. [129]. The total heat capacity

(mCp)R(t) [J/K] of the mixture is approximated by

(mCp)R(t) =
{
naq

Ah(t) + norg
Ah(t)

}
·MAh · Cp,Ah + nw(t) ·Mw · Cp,w

+ nS ·MS · Cp,S + nAc(t) ·MAc · Cp,Ac

(12.2)

and describes how much heat [J] is required to change the temperature. The heat

exchange qflow(t) with the heat transfer fluid of the cooling jacket is

qflow(t) = UA(t) {T (t) − Tj}

where Tj [K] is the temperature of the fluid and UA(t) [W/K] the heat transfer

coefficient multiplied by the exchange area. A calibration before and after the re-

action is performed to estimate UA(t) at those times. During the reaction a linear

interpolation is used

UA(t) = (UA2 − UA1)/(V2 − V1)(V (t) − V1) + UA1

as approximation where the volume of the whole mixture is V (t) = V aq(t)+V org(t).

The heat loss towards the surroundings (with ambient temperature Tamb [K])

qloss(t) = UA0 {T (t) − Tamb}

depends on the transfer coefficient UA0 [W/K] for heat losses through the top of

the reactor estimated during calibration. The used values are given in Table A.2.

More on the calibration procedure for the reaction calorimeter RC1 can be found in

Milewska [92]. The heat absorbed by the added substance is given by

qdos(t) = (pAh · Cp,Ah + [1 − pAh] · Cp,w) u(t) {T (t) − Tdos}

where Tdos [K] is the temperature of the dosed propionic anhydride which coincides

in our experimental setup with the ambient temperature Tamb. The heat release due

to the reaction depends on the overall conversion rate r(t) · V aq(t) and the reaction

enthalpy ∆HAh = 54885.7254 [J/mol], cf. Cherbański [44].
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Figure 12.1: Comparison of measured temperature and simulated temperature of

the IVP with ODE (12.1) and setup of Table A.3 on the time interval

[0, 2000] using RelTol = 10−6.

Safety function

The temperature rise due to a sudden reaction of unreacted substance accumulated

in the reactor is of great importance for safe operation of the process. In our case the

amount of unreacted propionic anhydride naq
Ah(t) + norg

Ah(t) at time t is the limiting

factor for the reaction. In the case of a sudden cooling failure, the process becomes

adiabetic, i.e. there is nearly no heat exchange with the exterior, and the reaction

of the accumulated substances accelerates quickly which may lead to dangerous

situations. To avoid them, the following safety function

S(t) = T (t) +
{
naq

Ah(t) + norg
Ah(t)

}
· ∆HAh/(mCp)R(t) (12.3)

should remain bounded below a maximal temperature Tmax during the whole re-

action. Often in process optimization the safety function is added, apart from a

bound on the reactor temperature T (t) itself, as constraint to the Optimal Con-

trol Problem (OCP) formulation in order to run the process safely, see e.g. Kühl

et al. [82, 81] and Ubrich et al. [119]. The safety function S(t) = S(t,y(t)) itself

is nonlinear in the states y(t) = [nw(t), T (t), naq
Ah(t), norg

Ah(t), nAc(t)]
⊺ of the Initial

Value Problem (IVP) system due to the division by (mCp)R(t) given by (12.2).

12.2.2 Simulation of experiments

The setup of a particular experiment defines the initial values and the experimen-

tal parameters for the ODE (12.1). Our model is capable to describe the batch

experiment of Table A.3 where the propionic anhydride is added all at once. The

measured and simulated temperature profiles are depicted in Figure 12.1. This is

a typical temperature profile of a thermal runaway: Suddenly the temperature in-

side the reactor rises drastically which is at the one hand caused by an increasing

reaction rate of accumulated substances and on the other hand accelerates the reac-

tion as well, cf. Westerterp and Molga [124]. The temperature only declines if most

of the substances has reacted. One can imagine the dangerous situation if such a

temperature explosion would take place in a huge industrial STR.
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12.2 Modeling and simulation

Symbol Value Unit Symbol Value Unit

nw(ts) (1.02 + (1 − pS)0.071)/MAh mol Tj 313.15 K

T (ts) 313.15 K Tamb 296.15 K

naq
Ah(ts) 0 mol ud 0.4/1000 kg/s

norg
Ah(ts) 0 mol td 1000 s

nAc(ts) 0 mol nS pS · 0.071/MS mol

Table 12.2: Initial values and experimental parameters of the semibatch experiment

with a dosing time of 1000s and a propionic anhydride amount of 0.4kg.
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Figure 12.2: Simulation results of the IVP with ODE (12.1) and setup of Table 12.2

on the time interval [0, 3500] using RelTol = 10−6. Comparison of

measured and simulated temperature at the upper right corner.

We furthermore perform a semibatch experiment where the propionic anhydride

is fed within 1000s. After all substance is added, the system can be understood

to operate in batch mode until the reaction is finished. The experimental setup is

described in Table 12.2. The simulation results and the experimental measurements

of this semibatch process are depicted in Figure 12.2. The maximal temperature

inside the reactor is reduced compared to the batch experiment and the temperature

profile is smooth which indicates a safe operation, cf. Westerterp and Molga [124].

Nevertheless, for four-fifth of the product amount much more time was needed.

We also used the derived model to plan an experiment where the amount of

product should be doubled while the reaction should be fast and the operation

safe. Performing some simulations we agreed on using a dosing time of 2000s. The

proposed experimental setup is given in Table A.4. The simulated and measured

temperature profiles are displayed in Figure 12.3. In fact, the overall progress of

the reaction exhibits the desired properties of a quick onset, a fair conversion and
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Figure 12.3: Comparison of measured temperature and simulated temperature of

the IVP with ODE (12.1) and setup of Table A.4 on the time interval

[0, 5500] using RelTol = 10−6.

a smooth temperature profile, i.e. it is a so-called QFS reaction, cf. Westerterp and

Molga [124].

We now focus again on the achievements of Part II and III of this thesis. To this

end, the IVP model of the semibatch experiment with 1000s as dosing time serves

as highly nonlinear real-world test case. Hence, subsequently we focus on the IVP

with ODE (12.1) and setup of Table 12.2 and use the safety function S(t) defined

by (12.3) and (12.2) as nonlinear criterion of interest J(y(tf)) = S(tf).

12.3 Computation of weak adjoints

In semibatch STRs usually the addition of substances is done at a constant rate due

to the available facilities, cf. Section 12.1. The resulting piecewise constant dosing

rates cause discontinuities, also called switches, in the right hand side of the ODE.

For the particular semibatch process modeled by (12.1) and the setup of Table 12.2

the switching time td = 1000s is explicitly known. In our setting, the solution

trajectories as well as the (forward and adjoint) sensitivities with respect to initial

values are continuous at td but not differentiable with respect to time, cf. Bock [31].

Since a polynomial of higher order, like the Backward Differentiation Formula (BDF)

polynomials of Chapter 2, cannot be used across a kink in the trajectories, the BDF

integration has to be stopped and re-started at td. We compute the Finite Element

(FE) weak adjoints of the semibatch IVP and the safety function given by (12.3)

as criterion of interest, i.e. J(y(tf)) = S(tf). Exemplarily, the first and the third

adjoints, i.e. the derivatives of J with respect to the discrete approximations of the

reactants nw(t) and naq
Ah(t), are depicted in Figure 12.4 for nominal integrations with

the three decreasing relative tolerances RelTol = 10−4, 10−6, 10−8. As reference

weak adjoints Λref(t) we use those of a more accurate nominal integration with

RelTol = 10−9. The derivatives of J(y(tf)) with respect to the reaction product

nAc(t) exhibit the same shape as that with respect to nw(t) whereas those with

respect to T (t) and norg
Ah(t) are similar to that of naq

Ah(t).

Again the discrete adjoint Internal Numerical Differentiation (IND) values λh =

{λn}
N
n=0 show huge oscillations, see second and fourth row of Figure 12.4. This
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Figure 12.4: Results for the variable BDF-type method DAESOL-II applied to the

IVP with ODE (12.1), setup of Table 12.2, time interval [0, 3500] and

J(y(tf)) = S(tf). First and the third FE weak adjoints Λh compared to

the reference weak adjoints Λref (first and third row) and corresponding

discrete adjoints λh (second and fourth row). Stepsize ratio (penulti-

mate row) and BDF order (last row) of the integration scheme are also

depicted.
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is due to the inconsistency of the adjoint IND schemes with the adjoint IVP, cf.

Section 3.6. Nevertheless, using them in (6.2) to obtain FE approximations Λh of

the unknown exact weak adjoints Λ, a smooth behavior is observed once again, see

first and third row of Figure 12.4. The smoothness of Λh also appears in areas

of variable stepsize and variable order, see last two rows of Figure 12.4, as well

as in conjunction with efficient Newton-type methods and iterative adjoint IND as

used to full capacity by DAESOL-II. Moreover, for decreasing relative tolerances

the FE approximations Λh approach the reference weak adjoints Λref on the whole

time interval. These observations for a real-world example coincide with the results

of Section 10.1.2 for an academic test case. Furthermore, the suitability of the

novel functional-analytic framework and the Petrov-Galerkin FE interpretation of

BDF methods and their adjoint IND schemes developed in Part II of this thesis

are confirmed again numerically with the help of a challenging real-world IVP from

chemical engineering.

From the nominal integrations above and further integrations with RelTol =

10−3, 10−5, 10−7 we have been able to obtain reference solutions for the trajectory

values at td and tf , see Section A.3.3. They will be used in the next section to

quantify the results from goal-oriented global error control.

12.4 Goal-oriented global error control

In this section we consider the global error of (12.1) with setup from Table 12.2 in

the safety function defined by (12.3), i.e. in J(y(tf)) = S(tf). We aim to reduce the

goal-oriented error below GTol = 10−6 using the goal-oriented global error control

strategies proposed in Chapter 9. As goal-oriented global error estimator we use

exemplarily the estimator η̃ given in (8.22) which is based on the estimated local

truncation errors as nominal error quantities. Furthermore, we suppose again that

the residual term ηδ is insignificant. For the first integration of both strategies,

i.e. the goal-oriented local tolerance adaption of Algorithm 1 and the goal-oriented

scheme adaption of Algorithm 2 together with the indicator-based scheme adaption

of Algorithm 3, we use the relative tolerance RelTol = 5 · 10−4. For Algorithm 1

we set cred = 0.5 and for Algorithm 3 we use p = 0.08. According to Section 10.4

we set again c = 1 for the termination criterion (9.1) since η̃ neither inclines to

underestimate nor to overestimate the true goal-oriented global error. Hence, the

goal-oriented error estimate has to satisfy |η̃| ≤ c · GTol = 10−6. To investigate also

the goal-oriented global error estimator η̃ itself we compare the estimated value to

the goal-oriented difference J(yr(tf)) − J(yN ) where yr(tf) is the reference solution

explained in Section 12.3 and written down in Section A.3.3. In the first subsection

we consider the simulation of the whole reaction whereas in the second subsection we

simulate only the semibatch part of the experiment, i.e. the time interval on which

propionic anhydride is dosed through the reactor.
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12.4 Goal-oriented global error control

j RelTol η̃ J(yr(tf))−J(yN) Is
eff N

∑
sn reb/dec

0 5.000000e-04 6.647517e-05 6.200526e-05 1.073 247 489 17 / 36

1 7.521605e-06 -6.573493e-07 -7.781984e-07 0.844 381 800 18 / 39

0 5.000000e-04 6.647517e-05 6.200526e-05 1.073 247 489 17 / 36

1 4.429414e-06 4.497608e-06 0.984 261 525 10 / 39

2 7.619366e-07 2.552993e-07 2.985 277 544 11 / 42

Table 12.3: Results of the goal-oriented local tolerance adaption (first part) and the

goal-oriented scheme adaption with the indicator-based scheme adaption

(second part) applied to the IVP with ODE (12.1), setup of Table 12.2,

time interval [0, 3500], J(y(tf)) = S(tf), RelTol = 5 · 10−4, GTol = 10−6

and p = 0.08.

12.4.1 Global error controlled simulation of the whole reaction

The results obtained by the goal-oriented local tolerance adaption are listed in the

upper part of Table 12.3. The first integration with RelTol0 = 5 · 10−4 yields an

approximation with 6.2 · 10−5 as goal-oriented error computed using the reference

solution yr(tf) = yr(3500) of Section A.3.3. Hence, local inaccuracies are damped

out during the integration at least in the nonlinear safety function used here as

criterion of interest. For subsequent integrations the relative tolerance is adapted

based on the error estimate and the termination criterion c · GTol, cf. Section 9.1.

After two iterations the estimated global error is below the required tolerance c·GTol.

The goal-oriented errors computed with the reference solution, see fourth column

of Table 12.3, confirm the suitability of the tolerance adaption strategy. The last

three columns of Table 12.3 give an impression of the computational effort caused

by the standard stepsize and order selection with monitor strategy, cf. Section 2.4.

Furthermore, the signed effectivity indices Is
eff computed with reference solution and

listed in the fifth column of Table 12.3 indicate once again the good accuracy in sign

and magnitude of our novel estimator η̃ also for variable BDF-type methods applied

to a real-world IVP with nonlinear criterion of interest.

The second part of Table 12.3 displays the results obtained by goal-oriented scheme

adaption together with indicator-based adaption of the scheme. Within three itera-

tions also this strategy has been successful in reducing the goal-oriented error esti-

mate below c · GTol = 10−6. Its suitability is again confirmed by the goal-oriented

errors computed with the reference solution. Overall, the last integration of the

scheme adaption strategy is more efficient than that of the local tolerance adaption

strategy. The former required only three-fourths of the integration steps of the lat-

ter, around two-thirds of the Newton iterations and nearly half of the costly matrix

rebuilds while the number of matrix decompositions increased slightly.

In Figure 12.5 the integration schemes and the estimated error quantities of the

last iterations of both goal-oriented error control strategies are depicted, respectively.
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Figure 12.5: Comparison of the last iterations of both goal-oriented error control

strategies applied to the IVP with ODE (12.1), setup of Table 12.2,

time interval [0, 3500], J(y(tf)) = S(tf), RelTol = 5·10−4, GTol = 10−6

and p = 0.08. Stepsizes (first row) of first (in gray) and last (in black)

integration, stepsize ratios (second row) and BDF orders (third row) of

last integration are given. The penultimate row shows the norm of the

estimated local truncation errors and the last row the absolute value of

the local error indicators.
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12.4 Goal-oriented global error control

The last integration of the local tolerance adaption uses smaller stepsizes on the

whole time interval than its first integration, see first row of Figure 12.5. In the

last integration of the scheme adaption strategy only the steps at the second half of

the time interval [0, 3500] are downsized. The reduction of these integration steps

is caused by the local error indicators which incorporate adjoint information. The

indicators of both last integrations are depicted at the bottom of Figure 12.5. Ac-

cording to the left plot also for the integration with adapted relative tolerance the

biggest contributions to the error in J come from the last integration steps. The

approximated weak adjoints look similar, but not identical, to the FE weak adjoints

Λh displayed in Figure 12.4 for other integration schemes. Since the gradients of the

weak adjoints are very small at the first part of the time interval, the contribution

of the comparably big estimated local truncation errors (penultimate row of Figure

12.5(b)) of that part on the goal-oriented error is small and a reduction of these

integration steps is not necessary. However, this behavior could not be detected by

the tolerance adaption strategy using the standard selection mechanism for stepsize

and order based only on the estimated local truncation errors depicted in the penul-

timate row of Figure 12.5(a). In fact, all these estimated local truncation errors are

below the required tolerance RelTol1 = 7.521605 · 10−6.

In summary, the error controlled simulations of the whole hydrolysis reaction on

[0, 3500] with a dosing time of 1000s exhibit an analogous behavior as observed for

the academic test case with analytic solutions provided by Example 6, see Section

11.2.2.

12.4.2 Global error controlled simulation of the semibatch part

In this section we have a look at the global error controlled simulation with the

same accuracy requirements as in Section 12.4.1 but only of the first part of the

reaction, i.e. of that part until the switch in the ODE right hand side occurs due to

the termination of dosing, cf. Section 12.3. The results of the goal-oriented tolerance

adaption and the goal-oriented scheme adaption together with the indicator-based

scheme adaption are listed in the first and the second part of Table 12.4, respectively.

On the integration interval [0, 1000] of the dosing time the last integrations of

both goal-oriented adaption strategies do not differ much in terms of computational

effort, see Table 12.4. The last integration of the scheme adaption strategy is only

slightly more efficient than that of the local tolerance adaption. The integration

schemes and the estimated error quantities of both last iterations are depicted in

Figure 12.6, respectively.

Compared to the stepsize sequence of the first integration which is the same for

both adaption strategies, displayed in gray at the top of Figure 12.6, both strategies

refine the stepsizes over the whole time interval, depicted in black. The stepsizes

of the last iteration of the tolerance adaption strategy are slightly smaller at the

beginning and some coarser at the end of [0, 1000] compared to those of the scheme

adaption strategy. In this case, the local conditioning of the IVP is not crucial for

145



12 Hydrolysis of propionic anhydride in a Stirred Tank Reactor

0 200 400 600 800 1000
0

20

40

60

 

 
stepsize first int
stepsize last int

0 200 400 600 800 1000
0

20

40

60

0 200 400 600 800 1000
0

1

2

 

 
stepsize ratio

0 200 400 600 800 1000
0

1

2

0 200 400 600 800 1000
0

2

4

6

 

 

BDF order

0 200 400 600 800 1000
0

2

4

6

0 200 400 600 800 1000
0

2

4
x 10

−4

 

 
||LTE(t

n
)||

0 200 400 600 800 1000
0

2

4
x 10

−4

0 200 400 600 800 1000
0

1

2

x 10
−7

t

 

 
|η

n
|

(a) Goal-oriented local tolerance adaption
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Figure 12.6: Comparison of the last iterations of both goal-oriented error control

strategies applied to the IVP with ODE (12.1), setup of Table 12.2,

time interval [0, 1000], J(y(tf)) = S(tf), RelTol = 5·10−4, GTol = 10−6

and p = 0.08. Stepsizes (first row) of first (in gray) and last (in black)

integration, stepsize ratios (second row) and BDF orders (third row) of

last integration are given. The penultimate row shows the norm of the

estimated local truncation errors and the last row the absolute value of

the local error indicators.
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12.5 Summary

j RelTol η̃ J(yr(tf))−J(yN) Is
eff N

∑
sn reb/dec

0 5.000000e-04 -3.722629e-05 -3.546574e-05 1.050 104 187 12 / 22

1 1.343137e-05 1.581686e-06 8.809566e-07 1.796 137 267 12 / 16

2 6.715684e-06 5.559073e-07 4.866295e-07 1.143 156 294 13 / 23

0 5.000000e-04 -3.722629e-05 -3.546574e-05 1.050 104 187 12 / 22

1 -5.413436e-06 -2.400686e-06 2.255 115 216 7 / 28

2 -3.344130e-06 -2.547972e-06 1.313 132 263 7 / 25

3 -3.936634e-07 -2.016050e-07 1.953 145 290 5 / 25

Table 12.4: Results of the goal-oriented local tolerance adaption (first part) and the

goal-oriented scheme adaption with the indicator-based scheme adaption

(second part) applied to the IVP with ODE (12.1), setup of Table 12.2,

time interval [0, 1000], J(y(tf)) = S(tf), RelTol = 5 · 10−4, GTol = 10−6

and p = 0.08.

an efficient integration and the goal-oriented local tolerance adaption already yields

a good result as in the academic test case provided by Example 3, see Section 11.2.1.

12.5 Summary

In the first part of this chapter we have constituted a dynamic model for the hy-

drolysis of propionic anhydride in a tank reactor. This is a representative for a

wide class of fine chemical reactions mostly carried out in STRs due to their high

specializations and small production amounts. A phenomenological comparison to

experimental measurements indicate the ability of the model to describe real labo-

ratory experiments.

In the second part we confirmed again that the FE approximations based on

the discrete adjoint IND values serve as proper quantities to approximate the weak

adjoints also in the case of fully variable BDF-type methods applied to a challenging

real-world IVP. This furthers the results of Section 10.1.2 on academic IVP test

cases.

In the last part of this chapter we have been able to confirm the results of Chapter

11 obtained with academic test cases also in the context of a real-world IVP example.

It turned out that for the error controlled integration of the semibatch IVP on the

time interval where propionic anhydride is fed to the reactor the goal-oriented local

tolerance adaption already gave an efficient integration scheme. For the integration

of the whole reaction the goal-oriented scheme adaption gave a more efficient scheme.

Furthermore, investigating the accuracy of our novel goal-oriented error estimator

η̃ with the help of the signed effectivity index and the reference solution indicates

the good accuracy of η̃ in magnitude and sign for variable BDF-type methods and

real-world IVPs. All effectivity indices lie in [0.844, 2.985] which is a good result

147



12 Hydrolysis of propionic anhydride in a Stirred Tank Reactor

in the context of fully variable BDF-type methods. Due to the correctness in sign

the estimator η̃ could be used within the context of OCPs to decide whether an

inequality constraint in the unknown true IVP solution y(tf) is fulfilled or not.

Considering, for example, the safety constraint c(t,y(t)) := S(t,y(t)) − Tmax ≤ 0

of Section 12.2.1 and estimating the global error in c(tf ,y(tf)) by η̃, then one may

decide by evaluating c(tf ,y(tf)) = c(tf ,y
h(tf))+η̃ whether the unknown true solution

y(tf) is inside or outside the feasible region of the OCP.
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Conclusions and perspectives

In this thesis we have developed a novel functional-analytic framework for Initial

Value Problems (IVPs) in Ordinary Differential Equations (ODEs) in Banach spaces.

With the proposed Petrov-Galerkin Finite Element (FE) discretization the discrete

adjoints computed by adjoint Internal Numerical Differentiation (IND) of multistep

Backward Differentiation Formula (BDF) methods have been related to the solution

of the classical adjoint IVP via weak adjoint solutions. Using this bridge between

BDF methods and Petrov-Galerkin FE methods together with the well-established

Dual Weighted Residual (DWR) methodology we have derived novel goal-oriented

global error estimators for BDF methods using adjoint IND. In fact, our novel

error estimators are superior to a corresponding existing one and have been success-

fully used to compute global error controlled approximations to IVP solutions, also

for a real-world example from chemical engineering which we have modeled during

research stays in Warsaw.

The achievements of this thesis give inspirations for future research directions.

Concerning the goal-oriented global error estimators, the most evident of them are

• the functional-analytic interpretation of the implicit correction term (8.19) for

the goal-oriented error approximations Ē(yh) and Ê(yh).

• the numerical and theoretical investigation if the adaption of the integration

scheme based on local error indicators also improves the FE approximation of

the weak adjoints.

• the reduction of the computational cost for the approximation of the defect in-

tegrals in the goal-oriented estimator η̄ by specially tailored numerical quadra-

ture formulas.

• a strategy for the indicator-based scheme adaption to adapt also the orders of

the BDF scheme according to the local error indicators.

• a strategy to utilize the residual term ηδ and its indicators to suitably choose

the termination tolerance for the Newton-type method used to solve the non-

linear BDF equations.

• an approach to make the novel goal-oriented global error estimators and in par-

ticular their weights based on adjoints accessible within the standard stepsize

and order selection of a subsequent integration.

Concerning the practical application of the goal-oriented global error information,

the most evident future research directions include
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• the utilization of the information gain by the global error estimators in the

solution of Optimal Control Problems (OCPs) by integrator-based methods.

During optimization the integration accuracy should be chosen adaptively ac-

cording to the distance to the optimum in order to increase the overall accur-

acy while the computational effort is reduced. Moreover, having an efficient

and accurate integration scheme it should be reused for several optimization

iterations to increase, for example, the accuracy of low rank updates in quasi-

Newton methods.

• the choice of suitable criterions of interest specific to the particular applications

of the novel goal-oriented error estimators.

Concerning the real-world example, the most evident issue for future research is

• the usage of the ODE model in the context of optimal control and nonlinear

model predictive control to optimize the hydrolysis of propionic anhydride with

regard to performance and safety.
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A Appendix

A.1 Useful definitions and theorems

For the reader’s convenience we recall here some frequently used definitions and

theorems.

Definition A.1 (Landau symbol O) If there exists c > 0 such that for two func-

tions f and g holds

lim
h→0

∣∣∣∣
f(h)

g(h)

∣∣∣∣ < c,

we write f(h) = O(g(h)).

Occasionally, we use the symbol “ =̇ ” to indicate that a function f is approximated

by a function g up to first order in x− x0, i.e. f(x)=̇g(x) means

f(x) = g(x) + O(|x− x0|) for x→ x0.

Theorem A.2 (Interpolation/Extrapolation error) Let P(t; t0, . . . , tk) be the

interpolation polynomial through g(t0), . . . , g(tk) evaluated at t with tj 6= ti for

i, j = 0, . . . , k. If the function g is (k + 1)-times differentiable, then the error of

the polynomial at t is

g(t) − P(t; t0, . . . , tk) =
k∏

j=0

(t− tj)∇
k+1[g(t), g(tk), . . . , g(t0)].

Proof See Stoer and Bulirsch [116]. �

Definition A.3 A function f is called to be continuous from the left at t if

lim
εց0

f(t− ε) = f(t)

and continuous from the right at t if

lim
εց0

f(t+ ε) = f(t).

Theorem A.4 (Neumann series) If ‖T ‖ < 1, then the matrix A := I − T is

nonsingular and its inverse A−1 is given by the Neumann series

A−1 = (I − T )−1 =
∞∑

j=0

T j = I + T +
∞∑

j=2

T j.

Proof See Werner [123]. �
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A Appendix

A.2 Additional proofs

A.2.1 Proofs of Lemma 3.1, 3.2 and 3.3

This section contains the technical details corresponding to Section 3.4. As described

there, the form of the adjoint Internal Numerical Differentiation (IND) scheme de-

pends on the representation of the Backward Differentiation Formula (BDF) method

itself. We first consider the BDF method in its standard formulation (2.2).

Proof (of Lemma 3.1) First, all terms in the BDF method (2.2) are written on

the left hand side to give root finding formulations. Then, each equation is multiplied

by an arbitrary prefactor λ
⊺
n and added to result in a variational formulation of the

BDF method

0 = −λ
⊺
0 (y0 − ys) −

N−1∑

n=0

λ
⊺
n+1

(
kn∑

i=0

α
(n)
i yn+1−i − hnf(tn+1,yn+1)

)
. (A.1)

A variation ws in the initial value, i.e. a differentiation with respect to ys in direction

ws, gives

0 = −λ
⊺
0 (w0 − ws) −

N−1∑

n=0

λ
⊺
n+1

(
kn∑

i=0

α
(n)
i wn+1−i − hnfy(tn+1,yn+1)wn+1

)
.

(A.2)

This equation is now rearranged according to the variations wn in the discrete so-

lutions yn. We use the convention that α
(n)
i = 0 for i > kn and kmax = maxn{kn}.

Note that kmax ≤ 6 due to Theorem 2.19. Due to the self-starter it is in particular

α
(i−1)
i = 0 for i = 2, . . . , kmax. We start with the double sum and use m := n− i to

obtain

N−1∑

n=0

kmax∑

i=0

α
(n)
i λ

⊺
n+1wn+1−i =

kmax∑

i=0

N−1−i∑

m=−i

α
(m+i)
i λ

⊺
m+1+iwm+1

=
N−1∑

m=0

α
(m)
0 λ

⊺
m+1wm+1 +

kmax∑

i=1

N−1−i∑

m=−i

α
(m+i)
i λ

⊺
m+1+iwm+1. (A.3)

For steps beyond the integration interval [ts, tf ] = [t0, tN ] we set α
(n)
i := 0 for n ≥ N

and i = 0, . . . , kmax. To ease the notion we omit the scalars λ
⊺
m+1+iwm+1, use the

convention that the empty sum is zero, and consider for i = 1, . . . , kmax

N−1−i∑

m=−i

α
(m+i)
i =

−2∑

m=−i

α
(m+i)
i +

N−2∑

m=−1

α
(m+i)
i −

N−2∑

m=N−i

α
(m+i)
i =

N−2∑

m=−1

α
(m+i)
i .
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Using the above relation we interchange the sums in (A.3) to obtain

N−1∑

m=0

α
(m)
0 λ

⊺
m+1wm+1 +

N−2∑

m=−1

kmax∑

i=1

α
(m+i)
i λ

⊺
m+1+iwm+1

= α
(N−1)
0 λ

⊺
NwN +

kmax∑

i=1

α
(−1+i)
i︸ ︷︷ ︸

=0, i≥2

λ
⊺
i w0 +

N−2∑

m=0

kmax∑

i=0

α
(m+i)
i λ

⊺
m+1+iwm+1.

Altogether, the system becomes

0 = λ
⊺
0ws−λ

⊺
0w0 − α

(N−1)
0 λ

⊺
NwN − α

(0)
1 λ

⊺
1w0

−
N−2∑

n=0

kmax∑

i=0

α
(n+i)
i λ

⊺
n+1+iwn+1 +

N−1∑

n=0

λ
⊺
n+1hnfy(tn+1,yn+1)wn+1

⇔ 0 = λ
⊺
0ws−λ

⊺
0w0 − α

(N−1)
0 λ

⊺
NwN − α

(0)
1 λ

⊺
1w0 + λ

⊺
NhN−1fy(tN ,yN )wN

−
N−2∑

n=0

{
kmax∑

i=0

α
(n+i)
i λ

⊺
n+1+i − λ

⊺
n+1hnfy(tn+1,yn+1)

}
wn+1

⇔ 0 = λ
⊺
0ws−

[
λ0 + α

(0)
1 λ1

]⊺
w0 −

[
α

(N−1)
0 λN − hN−1f

⊺
y(tN ,yN )λN

]⊺
wN

−
N−2∑

n=0

[
kmax∑

i=0

α
(n+i)
i λn+1+i − hnf⊺

y(tn+1,yn+1)λn+1

]⊺

wn+1

Now, requiring that {λn}
N
n=0 solve (3.2) we obtain for the adjoint direction r =

J ′(yN ) that

0 = λ
⊺
0ws − r⊺wN (A.4)

which describes the relation between the forward and the adjoint IND scheme (for

the forward IND scheme see Remark A.5). �

Remark A.5 If we would vary all λn in (A.2) to define wn, this would yield the

forward IND scheme

w0 = ws (A.5a)

kn∑

i=0

α
(n)
i wn+1−i = hnfy(tn+1,yn+1)wn+1, n = 0, . . . , N − 1. (A.5b)

This scheme together with the nominal BDF method is again a BDF method applied

to the augmented system (1.1) and (1.4). Hence, the convergence behavior of the

forward IND scheme (A.5) is the same as that of the nominal BDF method.

Remark A.6 The results wN and λ0 of the forward and adjoint IND scheme, re-

spectively, are related by (A.4). This relation also proves their (transposed) similarity

if initialized with ws = I and r = I and the convergence behavior of λ0 towards λ(ts)

to be the same as that of the nominal BDF method, cf. Theorem 1.9 and Remark

A.5.
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We now focus on the fomulation (3.3) of the BDF method where each new ap-

proximation is given as solution of an implicit function. For the adjoint IND values

we use the same notation ȳn+1 like in Albersmeyer and Bock [5] and Albersmeyer

[3].

Proof (of Lemma 3.2) The proof follows mainly that of Lemme 3.1. Starting with

0 = −ȳ
⊺
0 (y0 − ys) −

N−1∑

n=0

ȳ
⊺
n+1 (yn+1 − θn+1(yn, . . . ,yn+1−kn

))

a variation ws in the initial value leads to

0 = −ȳ
⊺
0 (w0 − ws) −

N−1∑

n=0

ȳ
⊺
n+1

(
wn+1 −

kn∑

i=1

∂θn+1

∂yn+1−i
(yn, . . . ,yn+1−kn

) · wn+1−i

)
.

According to the Implicit Function Theorem and (3.3a) it is

∂θn+1

∂yn+1−i
(yn, . . . ,yn+1−kn

) = −
(
α

(n)
0 I − hnfy(tn+1,θn+1)

)−1
α

(n)
i

= −α
(n)
i J

(n)
BDF(yn+1)−1

for i = 0, . . . , kn. Inserting in the above system yields

0 = −ȳ
⊺
0 (w0 − ws) −

N−1∑

n=1

ȳ
⊺
n+1

(
wn+1 + J

(n)
BDF(yn+1)−1

kn∑

i=1

α
(n)
i wn+1−i

)
. (A.6)

With the same transformations and assumptions like in the proof of Lemma 3.1 we

end up with

0 =ȳ
⊺
0ws −

[
ȳ0 + α

(0)
1 J

(0)
BDF(y1)−⊺ȳ1

]⊺
w0 − ȳ

⊺
NwN

−
N−2∑

n=0

[
ȳn+1 +

kmax∑

i=1

α
(n+i)
i J

(n+i)
BDF (yn+1+i)

−⊺ȳn+1+i

]⊺

wn+1.

Now, requiring that {ȳn}
N
n=0 solve (3.4) we again obtain for the adjoint direction

r = J ′(yN ) that 0 = ȳ
⊺
0ws − r⊺wN . �

The adjoint IND scheme (3.4) is the same as the direct adjoint IND scheme presented

in Algorithm 6 of Albersmeyer and Bock [5] and Algorithm 6.6 of Albersmeyer [3].

Remark A.7 Varying all ȳn in (A.6) would yield the same forward IND scheme

(A.5) since the equations are linear in wn.

Finally, we prove Lemma 3.3 of Section 3.4.
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Proof (of Lemma 3.3) Expressing (3.2a) in terms of λN is

(
α

(N−1)
0 I − hN−1fy(tN ,yN )

)⊺
λN = J ′(yN )⊺ ⇔ J

(N−1)
BDF (yN )⊺λN = J ′(yN )⊺.

Furthermore, by (3.4a) we have ȳN = J ′(yN )⊺ such that the assertion is shown for

n = N − 1. For n = N − 2 (3.2b) expressed in terms of λN−1 reads

J
(N−2)
BDF (yN−1)⊺λN−1 = −α

(N−1)
1 λN = −α

(N−1)
1 J

(N−1)
BDF (yN )−⊺ȳN

where the relation between λN and ȳN is used. The above right hand side is exactly

the right hand side of (3.4b) for n = N − 2 such that J
(N−2)
BDF (yN−1)⊺λN−1 = ȳN−1

and the assertion is shown for n = N − 2. Continuing in this way the asser-

tion is shown for all n = N − 3, . . . , 0. Finally, (3.2c) gives λ0 = −α
(0)
1 λ1 =

−α
(0)
1 J

(0)
BDF(y1)−⊺ȳ1 where the relation between λ1 and ȳ1 is used. With (3.4c) the

last assertion is shown. �

A.2.2 Proofs of Lemma 8.7 and 8.8

This section contains the technical details corresponding to two lemmas stated in

Section 8.4.4.

Proof (of Lemma 8.7) For a constant BDF method of order k with m variable

starting steps the first integration step with constant BDF coefficients is the l-th

step with l = m + k − 1. We start with Ẽ(yh) given by (8.9) and replace all local

truncation errors using (8.15)

Ẽ(yh) =

N−1∑

n=0

λ
⊺
n+1LTE(tn+1) +

N−1∑

n=0

λ
⊺
n+1δn+1

=
N−1∑

n=0

λ
⊺
n+1

[
α

(n)
0 LE(tn+1) −O(hn)LE(tn+1)

]
+

N−1∑

n=0

λ
⊺
n+1δn+1

=
l−1∑

n=0

α
(n)
0 λ

⊺
n+1LE(tn+1) + α

(l)
0

N−1∑

n=l

λ
⊺
n+1LE(tn+1) +

N−1∑

n=0

λ
⊺
n+1δn+1

−
l−1∑

n=0

λ
⊺
n+1O(hn)LE(tn+1) −O(hk+1)

since LE(tn+1) = O(hk+1) for n ≥ l due to Lemma 2.8 and the consistency order k

of the constant BDF method, cf. Section 2.3.1. On the other hand, Ê(yh) given by

(8.8) is equivalent to

N−1∑

n=l

λ
⊺
n+1LE(tn+1) = Ê(yh) −

l−1∑

n=0

λ
⊺
n+1LE(tn+1) −

N−1∑

n=0

λ
⊺
n+1δn+1.
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Both together give

Ẽ(yh) =

l−1∑

n=0

α
(n)
0 λ

⊺
n+1LE(tn+1) + α

(l)
0

[
Ê(yh) −

l−1∑

n=0

λ
⊺
n+1LE(tn+1) −

N−1∑

n=0

λ
⊺
n+1δn+1

]

+

N−1∑

n=0

λ
⊺
n+1δn+1 −

l−1∑

n=0

λ
⊺
n+1O(hn)LE(tn+1) −O(hk+1)

=α
(l)
0 Ê(yh) +

l−1∑

n=0

(α
(n)
0 − α

(l)
0 )λ⊺

n+1LE(tn+1) + (1 − α
(l)
0 )

N−1∑

n=0

λ
⊺
n+1δn+1

−
l−1∑

n=0

λ
⊺
n+1O(hn)LE(tn+1) −O(hk+1)

and the assertion is shown. �

In Lemma 2.8 the relation between the local error and the local truncation error

is described provided that the Localizing Assumption holds. If it does not hold, the

relation is described by Lemma 8.8.

Proof (of Lemma 8.8) Substracting (2.1) from (2.8) with the non-zero global er-

rors GE(tn+1−i) = y(tn+1−i) − yn+1−i 6= 0, since the Localizing Assumption of

Definition 2.7 is not satisfied here, yields

LTE(tn+1) =

kn∑

i=0

α
(n)
i GE(tn+1−i) − hn[f(tn+1,y(tn+1)) − f(tn+1,yn+1)]

=J
(n)
BDF(yn+1)GE(tn+1) +

kn∑

i=1

α
(n)
i GE(tn+1−i) − hnO(‖GE(tn+1)‖2)

by the Taylor series expansion of f(tn+1,y(tn+1)) around yn+1. With the BDF

Jacobian and the relation GE(tn+1) = y(tn+1) − un(tn+1) + LE(tn+1) we obtain

LTE(tn+1) =α
(n)
0 LE(tn+1) −O(hn)LE(tn+1) + J

(n)
BDF(yn+1)[y(tn+1) − un(tn+1)]

+

kn∑

i=1

α
(n)
i GE(tn+1−i) − hnO(‖GE(tn+1)‖2).

Finally, by the observation that O(hn ‖LE(tn+1)‖) dominates O(hn ‖GE(tn+1)‖2)

the assertion is shown. �

A.3 Supplementary material for Part IV

A.3.1 Test set

The first three examples are originally chosen by Cao and Petzold [43] and the

subsequent three examples by Tran and Berzins [118]. Finally, we also state here

the Catenary of Section 10.1.
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Example 1 (Dahlquist equation)

ẏ(t) = ay(t), t ∈ (0, 10], y(0) = 10−4, a = 1.

The analytic solution is given by y(t) = yse
at and the locally analytic solution for

y(ts) = ys by y(t) = yse
a(t−ts).

Example 2

ẏ(t) = − [0.25 + sin(πt)] y(t)2, t ∈ (0, 1], y(0) = 1.

The analytic solution is given by y(t) = π/(π + 1 + 0.25πt− cos(πt)) and the locally

analytic solution for y(ts) = ys by y(t) = ysπ/(π + ys cos(πts) − 0.25πys(ts − t) −

ys cos(πt)).

Example 3

ẏ(t) =

(
1

2(1+t) −2t

2t 1
2(1+t)

)
y(t), t ∈ (0, 10], y(0) =

(
1

0

)
.

The analytic solution is given by y(t) = [(1 + t)1/2 cos(t2), (1 + t)1/2 sin(t2)]⊺.

Example 4 (Harmonic oscillator)

ẏ(t) =

(
0 1

−1 0

)
y(t), t ∈ (0, 50], y(0) =

(
0

1

)
.

The analytic solution is given by y(t) = [sin(t), cos(t)]⊺.

Example 5





ẏ1 = y1

ẏ2 = y2 + y1y1

ẏ3 = y3 + y1y2

ẏ4 = y4 + y1y3 + y2y2

ẏ5 = y5 + y1y4 + y2y3

, t ∈ (0, 1], y(0) =




1

1

0.5

0.5

0.25



.

The analytic solution is given by y(t) = [et, e2t, 0.5e3t, 0.5e4t, 0.25e5t]⊺.

Example 6

ẏ(t) = −L [y(t) − sin(πt)] + π cos(πt), t ∈ (0, 1], y(0) = 0.

The analytic solution is given by y(t) = sin(πt) and L is positive and may be large.

Exemplarily we take L = 50.
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Example 7 (Catenary)

ẏ(t) =

(
y2(t)

p
√

1 + y2(t)2

)
, t ∈ (0, 2], p = 3, y(0) =

(
1/3 cos (−3)

sin (−3)

)
.

The analytic solution is given by y(t) = [B + 1/p cosh(pt + A), sinh(pt + A)]⊺ with

A = −p and B = 0, cf. Section 10.1. The locally analytic solution for y(ts) = ys

is given by y(t) = [B + 1/p cosh(p(t − ts) + A), sinh(p(t − ts) + A)]⊺ where A =

ln

(
(ys)2 +

√
1 + [(ys)2]2

)
and B = (ys)1 − 1/p · cosh(A).

A.3.2 Additional data for the IVP model of the hydrolysis

For the mathematical model of the hydrolysis of propionic anhydride carried out in

a discontinuous Stirred Tank Reactor (STR) further chemical quantities and equip-

ment parameters are required. The modeling Initial Value Problem (IVP) in Ordi-

nary Differential Equations (ODEs) is developed in Section 12.2.1.

Symbol Value Unit Symbol Value Unit

MAh 0.130150 kg/mol Cp,Ah 1822.316117 J/(kg K)

Mw 0.0180150 kg/mol Cp,w 4176.665782 J/(kg K)

MAc 0.0740790 kg/mol Cp,Ac 2111.839763 J/(kg K)

MS 0.098080 kg/mol Cp,S 1480.0 J/(kg K)

Table A.1: Molar mass M and heat capacity Cp of the chemical substances. Cp is

given at a reference temperature of 313.15K.

Symbol Value Unit Symbol Value Unit

UA1 6.712368215195024 W/(m2 K) V1 0.001100891625830 m3

UA2 7.852551350287481 W/(m2 K) V2 0.001496613831028 m3

UA0 0.207160211598949 W/(m2 K)

Table A.2: Values used for the heat transfer coefficients of the heat flow qflow(t)

and the heat loss qloss(t) and obtained by calibration of the semibatch

experiment with a dosing time of 1000s.

The setups of two more experiments are given below.

160



A.3 Supplementary material for Part IV

Symbol Value Unit Symbol Value Unit

nw(ts) (1.016+[1−pAh]0.49+

[1−pS]0.072)/MAh

mol Tj 313.15 K

T (ts) 313.15 K Tamb 296.15 K

naq
Ah(ts) 0 mol ud 0 kg/s

norg
Ah(ts) pAh · 0.49/MAh mol td 0 s

nAc(ts) 0 mol nS pS · 0.072/MS mol

Table A.3: Initial values and experimental parameters of the batch experiment with

a propionic anhydride amount of 0.49kg.

Symbol Value Unit Symbol Value Unit

nw(ts) (0.76257+[1−pS]0.0571)/MAh mol Tj 313.15 K

T (ts) 313.15 K Tamb 293.65 K

naq
Ah(ts) 0 mol ud 0.95/2000 kg/s

norg
Ah(ts) 0 mol td 2000 s

nAc(ts) 0 mol nS pS · 0.0571/MS mol

Table A.4: Initial values and experimental parameters of the semibatch experiment

with a dosing time of 2000s and a propionic anhydride amount of 0.95kg.

A.3.3 Reference solution for the hydrolysis IVP

By the computations for the weak adjoints of Section 12.3 with nominal integrations

using RelTol = 10−3, . . . , 10−9 we obtain the following reference solutions for the

trajectory values y(td) at td = 1000

yr(td) =




54.7198483238

326.93545950

0.216095521

0.0022750243

5.5256100411




and for y(tf) at tf = 3500

yr(tf) =




54.5014779465

313.04440465

0.00000016877

0.0000000000000000

5.96235079575



.

The criterion of interest at these reference solutions takes the values J(yr(td)) =

S(td) = 329.0855962924183586 and J(yr(tf)) = S(tf) = 313.0444063117229234.
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List of acronyms

AD Algorithmic Differentiation

BDF Backward Differentiation Formula

BVP Boundary Value Problem

CVP Constrained Variational Problem

DAE Differential Algebraic Equation

DWR Dual Weighted Residual

END External Numerical Differentiation

FE Finite Element

IND Internal Numerical Differentiation

IVP Initial Value Problem

LMM Linear Multistep Method

NLP Nonlinear Program

OCP Optimal Control Problem

ODE Ordinary Differential Equation

PDE Partial Differential Equation

SQP Sequential Quadratic Programming

STR Stirred Tank Reactor
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