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Zusammenfassung

Die vorliegende Arbeit behandelt einige Probleme aus den Gebieten der
Niederenergie-Supersymmetrie und der Quantengravitation. Das erste Problem bet-
rifft die Präzision der Eichkopplungsvereinigung im Minimalen Supersymmetrischen
Standardmodell. Wir leiten eine sogenannte holomorphe Masterformel her, auf deren
Basis das oben erwähnte Problem auf zwei-Loop-Niveau mit Hilfe von Ein-Loop-
Renormierungsgruppengleichungen analysiert wird. Unsere Lösung basiert auf der An-
wesenheit von zusätzlicher vektorartiger Materie bei mittleren Energien, die an die zwei
Higgs-Doublets durch Yukawa-Wechselwirkungen koppelt. Wir zeigen, dass diese extra
Yukawa-Kopplungen die zwei-Loop-Vereinigung verbessern und dass dieser Effekt in
den Wellenfunktionsrenormierungsfaktoren der Higgs-Superfelder verschlüsselt ist. Als
nächstes lösen wir das sogenannte “µ-Problem”, indem wir zwei wohlbekannte Mecha-
nismen zur Erzeugung des µ-Terms im MSSM-Superpotential kombinieren – wir addieren
einerseits ein Eichsinglet, das einen Vakuumserwartungswert in der Skalarkomponente
entwickelt, und andererseits extra vektorartige Superfelder, die direkt an den Higgs-
Sektor koppeln. Der wichtigste Bestandteil unserer Konstruktion ist die nicht-triviale
Hierarchie zwischen den soften Massen im Higgs-Sektor, die unser Modell in die Klasse
der sogenannten Modelle mit “Lopsided Gauge Mediation” einstuft. Diese invertierte
Hierarchie modifiziert das Renormierungsgruppenlaufen der soften Singletmasse, was zu
einem mit LHC-Phenomenologie verträglichen µ-Term führt, µ > 100 GeV. Als let-
ztes diskutieren wir eine Anwendung von der sogenannten funktionalen Renormierungs-
gruppe in der Quantengravitation. Wir konstruieren eine diffeomorphismus-invariante
und eichfixierungsunabhängige Flussgleichung, die wir zur Analyse des Phasendiagramms
von der Quantengravitation benutzen. Wir lösen diese Flussgleichung in verschiedenen
Näherungen, wobei wir mit der sogenannten Hintergrundfeld-Näherung anfangen. Wir
bestätigen die Anwesenheit eines nicht-trivialen UV-Fixpunktes und finden auch einen
infraroten Fixpunkt, der in Bezug zur klassischen Einstein-Gravitation steht.
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Abstract

This thesis addresses several problems related to low-energy supersymmetry and quan-
tum gravity. The first of those is the gauge coupling unification problem within the
Minimal Supersymmetric Standard Model. We derive a so called holomorphic master
formula which we use in order to analyze the two-loop problem using one-loop renormal-
ization group equations. In terms of model-building our solution relies on the inclusion of
extra vector-like matter at intermediate energies which couples to the two Higgs doublets
through Yukawa interactions. We find that the extra Yukawa couplings can ameliorate
the two-loop discrepancy, an effect which is encoded in the wave-function renormalization
factors of the Higgs superfields. Next we address and solve the so called “µ-problem” by
combining two well-known mechanisms for generating a µ-term in the MSSM superpo-
tential – we add a gauge singlet superfield which acquires a vacuum expectation value
in its scalar component, on the one hand, and extra vector-like messenger superfields
which couple directly to the Higgs sector, on the other. A key ingredient of our construc-
tion is the non-trivial hierarchy between the soft masses in the Higgs sector which puts
our model into the class of models known as lopsided gauge mediation. This so called
inverted hierarchy modifies the RG running of the soft singlet mass ensuring that the
effective µ term can attain sufficiently large values, i.e. µ > 100 GeV, as required by phe-
nomenology. Finally we discuss an application of the so called functional renormalization
group to quantum gravity. We construct a diffeomorphism invariant and gauge-fixing in-
dependent flow equation which we use in order to analyze the phase diagram of quantum
gravity. We solve this equation in several non-trivial approximations, starting with the
usual background field approximation. We confirm the presence of a non-trivial UV fixed
point and also analyze the infrared sector of the theory which exhibits an infrared fixed
point related to classical gravity.
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1 Introduction

With the advent of the LHC it is expected that some of the outstanding fundamental
questions in modern physics will finally be resolved. One of the critical issues in this
context is the question whether supersymmetry exists and how exactly it is realized in
nature. Supersymmetric model building imprints distinct phenomenological features on
the low-energy particle spectrum. Thus the non-observation of supersymmetric parti-
cles, at least up to date, has crucial model-building implications and places stringent
constraints on the low-energy spectrum and the parameter space of most of the super-
symmetric models.

The first hints for new physics come from the signal detected around 125 GeV by the
ATLAS and CMS collaborations [1–12] which is the expected mass scale of the elusive
Higgs boson. The fact that the Higgs appears to be almost 10% heavier than the former
LEP bound of 114 GeV raises serious fine-tuning issues [13]. As a simple example note
that moderately heavy stops at ∼ 1 TeV, which are usually used to raise mh0 above 114
GeV, are not sufficient to push this mass all the way up to 125 GeV. Thus one has to rely
on some additional mechanism in order to explain the new bound which the LHC places
on the Higgs mass. As recently pointed out in [14] this extra contributions can come
from either very heavy stops (around 10 TeV) or from very large soft trilinear terms,
which feed contributions to the Higgs mass squared through loop corrections. Clearly,
a very-heavy-stops scenario would lead to an increased fine-tuning and, in this sense, is
disfavored with respect to other scenarios.

Yet another potential discovery at the LHC may be the existence of the so called
TeV-scale gravity [15, 16]. Recall that in this framework space-time is described by a
product manifold R4 × M , where M is a compact n-dimensional manifold of volume
Rn with R ∼ 10

30
n
−17 cm (1 TeV/mEW)1+n

2 . In this setup the graviton is allowed to
propagate on the entire manifold whereas the gauge and fermionic fields are localized on
a 4-dimensional brane. The Planck scale of the theory is ∼ mEW, in this sense MPl is
not even present in the theory. The suppression of the gravitational interactions comes
from the large radius R of the extra dimensions. Within this framework gravity becomes
as strong as the gauge interactions at energies ∼ TeV and therefore can be probed by
the LHC [17]. We use the scenario described above as a motivation to revisit the topic
of quantum gravity in the context of LHC physics.

This thesis consists of two conceptually distinct parts: In the first part we review
and solve two well-known problems of the Minimal Supersymmetric Standard Model.
Recall that, viewed as an effective theory, the MSSM suffers from several pressing issues.
To name a few we have the µ problem, the problem of the flavor universality of the
soft masses, the two-loop gauge coupling unification problem or the smallness of the CP
violating phases.

We first address the unification of gauge couplings within the MSSM. It is well-known
that at two-loop the three MSSM gauge couplings do not unify precisely at the GUT
scale. The standard way to rephrase this statement is to use the theoretically predicted
value for the strong coupling as a measure for its deviation from the value measured
in experiment. Instead of attributing the resulting discrepancy to large low- or high-
scale threshold corrections, we focus on a different possibility by adding extra matter
at intermediate energies. In order to preserve the almost perfect one-loop unification we
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focus on vector-like pairs filling complete representations of the GUT group. The key part
of our construction is the coupling of these additional matter fields to the MSSM Higgs
doublets through Yukawa interactions. Our analysis shows that it is precisely those extra
Yukawa couplings which ameliorate the aforementioned two-loop discrepancy. However,
it is only in models with very large extra Yukawas in which a perfect agreement between
theoretical and experimental values is achieved at the two-loop level.

What makes our analysis unique is the unusual approach we adopt. Instead of us-
ing two-loop renormalization group equations, we utilize the holomorphic properties of
the superpotential and the gauge couplings. We discuss the issue of holomorphicity in
Chapter 3. In particular we consider a simple SU(3) supersymmetric theory and derive
in great detail a holomorphic version of the so called master formula, which was first
put forward in [18]. At the very end we present a version of this holomorphic master
formula for the case of a minimal SU(5) GUT with an MSSM particle content. In Chap-
ter 4 we utilize this result in order to solve the aforementioned two-loop problem. Our
approach allows us to reduce the complexity of the calculation and analyze the two-loop
discrepancy by using one-loop renormalization group equations for the gauge couplings
and the matter fields wavefunction renormalization factors. Among other things we are
able to unravel some of the hidden structure behind our “miraculous” solution: We show
that the addition of the extra Yukawa interactions leads to an enhancement of the Higgs
wavefunction renormalization factor at low energies which is sufficient to resolve the
two-loop discrepancy.

The next problem we address is the origin of the µ term in the MSSM superpotential.
Recall that if a µ term is present at tree-level, then its natural order of magnitude would
have to be one of the fundamental scales of the theory, i.e. either 0 or the GUT/Planck
scale. However, phenomenology dictates that µ has to be roughly of the order of the
weak scale. Thus one has to come up with a dynamical mechanism which generates
µ ∼ O(mEW). We combine two well-known mechanisms by adding an extra singlet to
the model, on the one hand, and messenger superfields which couple directly to the
Higgs sector, on the other. In this hybrid model the µ term is comprised of two distinct
pieces: The extra singlet superfield N generates a contribution after obtaining a VEV in
its scalar component whereas the extra Higgs-messenger couplings generate a tree-level
contribution after the messengers are integrated out from the fundamental theory. We
embed the entire model into a gauge mediation scenario. The key novelty we introduce is
a non-trivial hierarchy between the soft masses in the Higgs sector, m2

Hd
� m2

Hu
. We are

motivated by a recently proposed class of models labeled lopsided gauge mediation [19].
We introduce this type of models in Chapter 5 and gather some of the technical machinery
which we will need later on. In Chapter 6 we present and discuss our model which we
refer to as lopsided NMSSM. We argue that the “lopsided hierarchy“ m2

Hd
� m2

Hu
is

the crucial ingredient which leads to a phenomenologically viable low-energy spectrum,
by enhancing the one-loop β-function of the singlet soft mass m2

N . We also demonstrate
that our model can easily accommodate large soft trilinear terms and thus a Higgs mass
in the range of 125 GeV. Finally we discuss some typical collider signatures and LHC
phenomenology.

The second part of this thesis is dedicated to quantum gravity. We adopt the func-
tional renormalization group approach in which the dynamics of the theory is studied
through the evolution of the so called effective average action (for reviews see [20] or [21]).
In Chapter 7 we present a brief introduction to the topic and derive the exact renormal-
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ization flow equation in the background field approach [22]. We discuss its solution within
the so called Einstein-Hilbert truncation and establish the existence of a non-trivial UV
fixed point. The major deficiency of this approach is that the respective flow equation
breaks diffeomorphism invariance explicitly. In Chapter 8 we resolve this problem by
introducing the so called geometrical flow equation for quantum gravity which is mani-
festly diffeomorphism-invariant and gauge-fixing independent. The foundations for this
flow equation were laid already in [23]. In this thesis we only sketch the main steps which
underpin the construction. We then solve the flow equation in the usual Einstein-Hilbert
truncation by adopting the so called background field approximation with a dynamical
gauge-fixing term. After comparing our phase diagram with the already existing results
in the literature we improve upon the initial analysis by first introducing a non-dynamical
gauge-fixing term. We refer to this construction as improved background field approx-
imation. Finally we use the so called Nielsen identity in order to resolve the difference
between dynamical and background metric which allows us, for the first time in the
literature, to solve the flow equation for the actual dynamical Newton and cosmological
constants. We confirm the presence of the UV fixed point and also analyze the infrared
regime of the theory. We find a non-trivial infrared fixed point related to classical gravity
and discuss possible implications.

The work on this thesis has led to three main publications:

• I. Donkin and A. Hebecker, “Precision Gauge Unification from Extra Yukawa Cou-
plings,” JHEP 1009, 044 (2010) [arXiv:1007.3990 [hep-ph]]

• I. Donkin and A. K. Knochel, “NMSSM with Lopsided Gauge Mediation,”
[arXiv:1205.5515 [hep-ph]]

• I. Donkin and J. M. Pawlowski, “The phase diagram of quantum gravity from
diffeomorphism-invariant RG-flows,” [arXiv:1203.4207 [hep-th]]
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2 Supersymmetry and Supersymmetry Breaking

Supersymmetry is by far the most popular and widely accepted solution to the hierarchy
problem in the Standard Model. In a nutshell this problem can be stated as follows:
Assume that there is a large desert between the electroweak and the Planck (or GUT)
scale where no new physics appears. These two fundamental scales are separated by
several orders of magnitude. Since there is no symmetry which protects the mass of the
Standard Model Higgs boson, one anticipates the appearance of large quadratic radiative
corrections to this parameter. These corrections would inevitably make this mass huge
unless of course there is an incredible cancellation against the tree-level Higgs mass.
Technically speaking there is no reason why such cancellation should not occur, however,
the degree of fine-tuning involved is usually seen as aesthetically displeasing or in more
scientific terms as “unnatural”. This motivates the search for new physics beyond the
Standard Model which can somehow explain this fine-tuning or remove it altogether.

2.1 The SUSY algebra

The crucial implication of supersymmetric model building is that bosonic and fermionic
degrees of freedom in a given theory are always related to each other. In order to
rephrase this statement in more technical terms, let us look at the representations of
the so called SUSY algebra (which is just the supersymmetric extension of the Poincare
algebra). In order to understand what the SUSY algebra really is, we will need to in-
troduce the concept of a graded Lie superalgebra. This is a non-associative Z2-graded
algebra g = g0 ⊕ g1 in which the Lie bracket fulfills [x, y ] = −(−1)|x||y| [ y, x ] and
(−1)|z||x|[x, [y, z]] + (−1)|y||z|[z, [x, y]] + (−1)|x||y|[y, [z, x]] . Here we make the implicit
assumption that both x and y are pure in the Z2-grading, i.e. each of them lies in either
g0 or g1. The |x| denotes the degree of x, which is either 0 if x lies in the even part g0 of
the Lie superalgebra or 1 provided that x is an element of the odd part g1.

The Poincare superalgebra is an extension of the Poincare algebra which includes
extra spinor generators. The classification of the Poincare superalgebra is given in terms
of an integer N , which is related to the number of additional spinor generators: In an
N -Poincare superalgebra there are 4N extra spinor generators or supercharges Qi

α, Q̄α̇ i

labeled by i = 1, ..., N and α, α̇ = 1, 2. ForN = 1 the Poincare superalgebra is determined
by the following commutation and anticommutation relations:

{Qα, Q̄β̇ } = 2 σµ
αβ̇
Pµ , {Qα, Qβ } = { Q̄α̇, Q̄β̇ } = 0 ,[

Pµ, Qα

]
=
[
Pµ, Q̄α̇

]
=
[
Pµ, Pν

]
= 0 ,[

Mµν ,Mρσ

]
= iηνρMµσ − iηµρMνσ − iηνσMµρ + iηµσMνρ ,[
Mµν , Pρ

]
= −iηρµ Pν + iηρν Pµ . (1)

In the above identities Mµν and Pρ comprise the generators of the Poincare group, with
Mµν being the generators of the Lorentz subgroup and Pρ the generators of transla-
tions. We follow the usual convention in which the Greek indices µ, ν, ρ, σ = 0, 1, 2, 3
label space-time coordinates. The ηµν is just the standard Minkowski space-time metric
whereas σµ are the Pauli matrices. The SUSY generators Qα and Q̄α̇ transform as spinors
under Lorentz transformations and comprise the odd part of the Poincare superalgebra.
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The two distinct types of spinor indices α = 1, 2 and α̇ = 1, 2 label the components of
left-handed and right-handed Weyl spinors respectively.

The two generators Qα and Q̄α̇ interchange bosonic and fermionic states. Specifi-
cally if |B〉 denotes a bosonic and |F 〉 denotes a fermionic state, then

Qα |F 〉 = |B〉 , Q̄α̇ |B〉 = |F 〉 . (2)

In order to discuss the representations of the Poincare superalgebra we will first review
the simpler case of the Poincare algebra. As is well-known the representations of the
Poincare algebra can be labeled by the eigenvalues of the two Casimir operators

P 2 = P µ Pµ , W 2 = W µWµ (3)

where Pµ is the generator of translations and Wµ is the Pauli-Lubanski vector defined
according to

Wµ =
1

2
εµνρσ P

νMρσ (4)

Here ε0123 = − ε0123 = +1 and εµνρσ changes sign under odd permutations of the
indices. Per definition the two Casimir operators commute with all generators. The
non-supersymmetric representations fall into two classes: massive and massless ones.
A massive state can be labeled by |m,ω〉 , where m2 is the eigenvalue of the P 2 oper-
ator whereas ω2 = m2s(s + 1) is the eigenvalue of W 2, with s ∈ Z/2 being the spin
of the particle. Evaluated on massless states both Casimirs assume zero eigenvalues,
P 2 = W 2 = 0 . Still, one can show that in this case Wµ = λPµ (with λ ∈ Z/2 being the
helicity of the particle) and use λ to label the massless representations.

For N = 1 supersymmetry, P 2 = P µ Pµ is still an admissible Casimir operator,
however, W 2 = W µWµ is not. This implies in particular that particles within one
multiplet can have different spin. In order to construct a new Casimir operator which
commutes with all generators and which corresponds to what we shall call a superspin,
we consider:

Tµ = Wµ −
1

4
Q̄α̇(σµ)α̇β Qβ , Cµν := TµPν − Tν Pµ , C2 := Cµν C

µν (5)

The P 2 and C2 comprise the set of Casimir operators in the N = 1 case. The massive
and massless supersymmetric states are labeled by their mass, superspin and helicity.
In the following we refrain from constructing these representations explicitly, instead we
refer the reader to the extensive literature on the subject, see e.g. [24]. Let us, however,
prove the claim that the number nB of bosons and the number nF of fermions in a
supermultiplet should be equal. To this end we shall introduce the so called fermionic
number operator (−1)F = (−)F which is defined according to:

(−)F |B〉 = |B〉 (−)F |F 〉 = − |F 〉 (6)

To show that this operator anticommutes with the Qα we simply evaluate the product
(−)FQα on an arbitrary fermionic state:

(−)FQα |F 〉 = (−)F |B〉 = |B〉 = Qα |F 〉 = −Qα (−)F |F 〉 (7)
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Next we show that the following trace vanishes identically

Tr

{
(−)F

{
Qα, Q̄β̇

}}
= Tr

{
(−)FQαQ̄β̇ + (−)F Q̄β̇Qα

}
=

= Tr

{
−Qα(−)F Q̄β̇ + Qα(−)F Q̄β̇

}
= 0 (8)

There is another way to evaluate the first bracket, namely by using the anticommutation
relations for the Poincare superalgebra:

Tr

{
(−)F

{
Qα, Q̄β̇

}}
= Tr

{
(−)F2 (σµ)αβ̇ Pµ

}
= 2 (σµ)αβ̇ pµ Tr

{
(−)F

}
(9)

where pµ is the eigenvalue of the P µ operator for a specific state. From these two calcu-
lations we conclude that

0 = Tr
{

(−)F
}

=
∑

bosons

〈B|(−)F |B〉 +
∑

fermions

〈F |(−)F |F 〉 =

=
∑

bosons

〈B|B〉 −
∑

fermions

〈F |F 〉 = nB − nF (10)

as claimed.

2.2 Superspace and superfields

Particles in a supersymmetric theory are represented by superfields which are functions
defined on a non-commutative manifold called the superspace. The superspace is obtained
by including one spinor coordinate for each supercharge Qα:

xµ → (xµ, θα ) . (11)

The superspace corresponding to the N = 1 Poincare superalgebra is just (xµ, θα, θ̄α̇),
i.e. it is an extension of the usual Minkowski space which contains the extra Grass-
mann spinor numbers θα and θ̄α̇ as fermionic coordinates. A general superfield can be
expanded in powers of θα and θ̄α̇ as follows:

S(xµ, θα, θ̄α̇) = ϕ(x) + θψ(x) + θ̄ χ̄(x) + θθM(x) + θ̄θ̄ N(x) + (θσµθ̄)Vµ(x) +

+ (θθ) θ̄ λ̄(x) + (θ̄θ̄) θρ(x) + (θθ)(θ̄θ̄)D(x) . (12)

Here we follow the standard convention for multiplying spinors, thus for instance
θψ = θαψα. It should be pointed out, however, that S(xµ, θα, θ̄α̇) does not constitute an
irreducible representation of the SUSY algebra. To make further progress we consider
the representation of the SUSY generators as differential operators on superspace:

Qα = i
∂

∂θα
− (σµ)αβ̇ θ̄

β̇ ∂µ , Q̄α̇ = − i ∂
∂θ̄α̇

+ θβ (σµ)βα̇ ∂µ (13)

It is also customary to define the following covariant derivatives on superspace:

Dα =
∂

∂θα
− i (σµ)αβ̇ θ̄

β̇ ∂µ , D̄α̇ = − ∂

∂θ̄α̇
+ i θβ (σµ)βα̇ ∂µ . (14)
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which satisfy

{Dα, Qβ } = { D̄α̇, Q̄β } = {Dα, Q̄β̇ } = { D̄α̇, Q̄β̇ } = 0 (15)

Using the above operators one can impose constraints on the superfield S(xµ, θα, θ̄α̇) in
order to obtain an irreducible representation of the SUSY algebra. The two most relevant
examples are a chiral superfield Φ with D̄α̇ Φ = 0 (or an antichiral superfield Φ̄ with
Dα Φ̄ = 0 ) and a vector superfield with V = V †. Note that if Φ is a chiral superfield
then its hermitean conjugate is antichiral, Φ† = Φ̄. To get the expansion of a general
chiral superfield introduce the new coordinate variable

yµ = xµ + i θσµ θ̄ (16)

Rewriting the chiral superfield in terms of the new coordinate, we get:

Φ(yµ, θα) = ϕ(yµ) +
√

2 θ ψ(yµ) + θθF (yµ) (17)

In the above expression we have a scalar field ϕ with spin 0, a fermionic component ψ
with spin 1/2 and an auxiliary field F . The last term on the right hand side is usually
referred to as F-term. Accordingly we write

Φ(y, θ) |F = F (y) (18)

For the general vector superfield, which turns out to be a real superfield, we get the
following expansion:

V (xµ, θ, θ̄) = C(x) + θχ(x) + θ̄ χ̄(x) + θθ(M(x) + iN(x) ) +

+ θ̄θ̄(M(x)− iN(x) ) + θ̄σ̄µ θ Vµ(x) + θ̄θ̄θ

(
λ(x) − i

2
σµ ∂µχ̄(x)

)
+

+ θθθ̄

(
λ̄(x) − i

2
σ̄µ ∂µ χ(x)

)
+

1

2
(θθ) (θ̄θ̄)

(
D +

1

2
∂µ∂

µC

)
(19)

We have 8 bosonic degrees of freedom represented by C,M,N,D, Vµ and 8 fermionic
degrees of freedom represented by the two complex Weyl fermions (χα, λα). A supergauge
transformation, i.e. a supersymmetric generalization of a gauge transfomation, can be
introduced according to V + i(Ω∗ − Ω) , where Ω is a chiral superfield and we assumed
for simplicity that V is charged under a U(1) gauge group. In the so called Wess-Zumino
gauge which is usually adopted in the literature C,M,N and χ are zero. In this gauge
the vector superfield reduces to

V (xµ, θ, θ̄) = θ̄σ̄µ θ Vµ(x) + (θθ) (θ̄λ̄(x)) + (θ̄θ̄) (θλ(x)) +
1

2
(θθ) (θ̄θ̄)D(x) (20)

The different components in this expression have the following physical interpretation:
The Vµ correspond to the gauge particles whereas the λ and λ̄ correspond to the gauginos.
We refer to the last (θθ) (θ̄θ̄)D piece in the above expression as a D-term, which is an
auxiliary field.

Next we define the analogue of the gauge field strength in a supersymmetric theory.
For an abelian U(1) theory it is given by:

Wα = −1

4
(D̄ D̄)DαV (21)
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where D̄D̄ = D̄α̇ D̄α̇. The non-abelian generalization of this expression reads:

Wα = −1

4
(D̄ D̄) ( e−V Dα eV ) (22)

With these prerequisites one can construct Lagrangians for general supersymmetric the-
ories. To start off look at a theory which contains only a single chiral superfield Φ. The
most general Lagrangian assumes the form

L = K(Φ,Φ†)︸ ︷︷ ︸
Kähler potential

|D +
(
W (Φ)︸ ︷︷ ︸

Superpotential

|F + h.c.
)

(23)

The K(Φ,Φ†) is a real function which depends both on the superfield Φ and on its
hermitean conjugate Φ† . It is known as the Kähler potential. The W (Φ) on the other
hand depends only on Φ. It is a holomorphic function of its variable and is therefore
a chiral superfield itself. In a renormalizable theory the superpotential is a polynomial
function of Φ of degree three:

W (Φ) = aΦ + mΦ2 + λΦ3 . (24)

We omitted the constant term in the above expression since it can always be eliminated by
a suitable redefinition. Note that W (Φ) is holomorphic both in the Φ superfield and in
the couplings a,m and λ. This simple fact has crucial implications on the properties of the
superpotential: It implies in particular that W (Φ) obeys a powerful non-renormalization
theorem. In a nutshell this theorem states that the tree-level superpotential does not
receive radiative corrections to any order of perturbation theory. The standard proof of
this statement relies on supergraph techniques [25]. A more intuitive approach relying on
the holomorphicity of the superpotential was suggested by N. Seiberg in [26]. To outline
the argument consider the so called Wess-Zumino model specified by the Lagrangian

LWZ = Φ Φ†|D +
(

(mΦ2 + λΦ3)|F + h.c.
)

(25)

Recall that a global Abelian U(1) symmetry under which the Φ superfield has charge qn
acts according to Φ→ eiαqnΦ, where α is an arbitrary angle. A global Abelian symmetry
always commutes with the supersymmetry generators. An R-symmetry on the other hand
is a U(1) symmetry which does not commute with the supersymmetry generators. This
implies in particular that the different components of a chiral superfield carry different
R charge. If the total charge of the Φ superfield under U(1)R is R(Φ) = r, then the
component fields have charges:

R(φ) = r R(ψ) = r − 1 R(F ) = r − 2 (26)

In somewhat more compact notation one can write the R transformation as

Φ→ eiβ r Φ(x, e−iβθ, eiβ θ̄) (27)

where β is an arbitrary angle. To put it differently, this is a transformation which acts
not only on the chiral superfield but on the superspace coordinates as well – it multiplies
the fermionic coordinates by a phase while leaving the bosonic ones invariant. It is not
difficult to show that that the Wess-Zumino model has a global U(1)×U(1)R symmetry
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in the limit m = λ = 0. The charge of the Φ superfield under the aforementioned
symmetry is (1, 1). The superpotential couplings are fixed to have charges (−2, 0) for
m and (−3,−1) for λ. Assigning charges to m and λ is admissible since these couplings
can be viewed as chiral superfields with a constant non-vanishing scalar component. The
most general renormalized superpotential which is invariant under the aforementioned
group is given by:

Weff = mΦ2 f

(
λΦ

m

)
(28)

where f( · ) is some holomorphic function. Assume that we work in the limit of a small
λ coupling. In this case perturbation theory is valid and the effective potential can be
expanded in Taylor series in which the coefficient of the degree n monomial is easily
read off to be proportional to λn−2

mn−3 φ
n. In more detail we get:

Weff =
∞∑
n=0

an
λn

mn−1
Φn+2 (29)

The degree n + 2 monomial in this expansion can only arise from a tree diagram with
n + 2 external legs, n vertices and n − 1 propagators. In the case n ≥ 2 such diagrams
are not 1-particle irreducible and therefore should not be included in the effective action.
Hence we get

Weff = mΦ2 + λΦ3 (30)

which is just the tree-level result as claimed. This proves that the superpotential obeys
the non-renormalization theorem.

Finally we switch on gauge interactions. A gauge invariant kinetic term for the matter
fields is defined according to K = Φ† exp(2g qV ) Φ in the Abelian case, where q is
the U(1) charge of the superfield Φ and g is the gauge coupling. The non-Abelian
generalization of this reads Φ† exp(2ga T

a V a) Φ , where for each Lie algebra generator
T a there is a vector superfield V a. We use Φ† exp(2g V ) Φ as a common notation for
both the Abelian and the non-Abelian case. A kinetic term for V can be introduced by
writing 1

16g2

∫
d2θTrWα,aW a

α + h.c., where as usual W a
α stands for the supersymmetric

gauge field strength and a is the gauge group index. Summation over repeated indices
is implicitly understood. In the simple case of Abelian gauge interactions we have the
possibility for an additional term, the so called Fayet-Illiopoulus term, defined according
to:

SFI = −2 ξ

∫
d2θ d2θ̄ V (x, θ, θ̄) = − ξD(x) (31)

Overall a supersymmetric theory with a single chiral superfield Φ and a gauge group
which contains at least one U(1) factor as a subgroup can be described by the following
Lagrangian:

L =
1

16g2

∫
d2θ
(

TrW a
αW

α,a + h.c.
)

+

∫
d2θd2θ̄Φ† exp(2gV ) Φ +

+

∫
d2θ
(
W (Φ) + h.c.

)
− 2 ξ

∫
d2θ d2θ̄ V (x, θ, θ̄) (32)
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where it is implicitly understood that the Fayet-Illiopoulus term corresponds to the
U(1) factor. In this model the non-renormalization theorem generalizes to the following
statement: The superpotential is not renormalized to any order of perturbation theory
whereas the prefactor of the gauge kinetic term, the so called holomorphic coupling, runs
perturbatively only at one loop.

2.3 The Minimal Supersymmetric Standard Model

The Minimal Supersymmetric Standard Model is, as the name suggests, the minimal
consistent supersymmetric completion of the Standard Model (for a review see e.g. [27,
28]). In the MSSM each of the known fundamental particles is paired with a superpartner
whose spin differs from that of the original particle by a 1/2 unit. We refer to the
superpartners of the usual quarks and leptons as squarks and sleptons, whereas the
fermionic superpartners of the Higgs and gauge bosons are called Higgsinos and gauginos
respectively.

It is a non-trivial fact that in the MSSM one needs two Higgs superfields instead of
one [29]. These two doublets, which we refer to as Higgs up Hu and Higgs down Hd ,
form a vector-like pair with opposite hypercharges Y = 1/2 and Y = −1/2. The need
for a second Higgs supermultiplet can be justified in at least two ways. The first comes
from the requirement of holomorphicity of the superpotential. Assuming that there is
only a single Hu superfield in the theory with Y = 1/2 , then the supersymmetric Yukawa
coupling between Hu and the down quark superfield is forbidden.

Yet another reason for adding a second Higgs doublet is that in the presence of a
single Higgs the theory would suffer from a gauge anomaly. The precise conditions for
anomaly cancellation read:

Tr[T 2
3 Y ] = Tr[Y 3] = Tr[Y ] = 0 (33)

where T3 denotes the third component of the weak isospin and Y is the weak hypercharge.
The traces are taken over all fermions. It is well-known that the above traces vanish
identically when evaluated for the usual Standard Model fermionic content. Clearly, in
a supersymmetric extension of the Standard Model with a single Higgs doublet super-
field one would have an additional contribution to the traces coming from the fermionic
component of the Higgs supermultiplet. The Higgs field has to be a weak isodoublet
with weak hypercharge either Y = 1/2 or Y = −1/2 . Thus in order to compensate
for the extra contribution to the trace one has to add a second isodoublet with opposite
weak hypercharge. In this case eq.(33) would be satisfied identically. We summarize the
particle content of the MSSM for one generation of squarks and sleptons in Table 1.

We use the notation uL and uR in order to distinguish between left and right handed
Weyl spinors. In this thesis we follow the usual convention in which the squark and
slepton superfields and their fermionic components are denoted by the same letter. Note
that for the Higgs superfields the convention is precisely the opposite – the superfield and
its scalar component are denoted by the same letter, whereas the fermionic component,
the so called Higgsino, is distinguished by a tilde above the letter. The gauge superfield
content of the MSSM is given in the Table 2. The gauge supermultiplets consist of spin 1
particles (the usual SM gauge bosons) and their fermionic superpartners with spin 1/2,
(the gauginos).
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Table 1: MSSM matter supermultiplets
Names spin 0 spin 1/2 SU(3)× SU(2)× U(1)Y

Q Q̃ = (ũL, d̃L) Q = (uL, dL)
(
3, 2, 1

6

)
U Ũ = ũ∗R U = u†R

(
3̄, 1, −2

3

)
D D̃ = d̃∗R D = d†R

(
3̄, 1, 1

3

)
L L̃ = (ν̃, ẽL) L = (ν, eL)

(
1, 2, −1

2

)
E Ẽ = ẽ∗R E = e†R

(
1, 1, 1

)
Hu Hu = (h+

u , h
0
u) H̃u = (h̃+

u , h̃
0
u)

(
1, 2, 1

2

)
Hd Hd = (h0

d, h
−
d ) H̃d = (h̃0

d, h̃
−
d )

(
1, 2, −1

2

)
Table 2: MSSM gauge supermultiplets

Names spin 1/2 spin 1 SU(3)× SU(2)× U(1)Y
G g̃ g

(
8, 1, 0

)
W W̃±, W̃ 0 W±,W 0

(
1, 3, 0

)
B B̃ B

(
1, 1, 0

)
The Minimal Supersymmetric Standard Model is defined through the following su-

perpotential:

WMSSM = µHuHd + yuHuQU + ydHdQD + ylHd LE (34)

The dimensionless Yukawa couplings yu, yd and yl are 3 × 3 matrices in family space,
however we suppress the family indices for the sake of brevity. These couplings determine,
after electroweak symmetry breaking, the masses of the quarks and leptons. The first
operator on the right hand side of eq.(34) is the so called µ term. The µ parameter is the
only dimensionful coupling in the MSSM superpotential and as such its natural order of
magnitude should be one of the fundamental mass scales of the theory, in other words it is
either 0 or MPlanck/MGUT . However, correct electroweak symmetry breaking constrains
µ to be of the order of the weak scale, i.e. roughly 100 GeV. Explaining why the µ
parameter attains this “unnatural” value is usually referred to as the ’µ problem’ [30].

Clearly, supersymmetry is not an exact symmetry of nature otherwise all of the known
particles and their superpartners would be degenerate in mass. Within the MSSM super-
symmetry breaking is parametrized through the so called soft supersymmetry breaking
Lagrangian which has the form:

LMSSM,soft = − 1

2

(
M3g̃ g̃ + M2W̃ W̃ + M1B̃ B̃ + h.c.

)
−

−
(
ŨyuAuQ̃Hu + D̃ydAdQ̃Hd + ẼyeAeL̃Hd + h.c.

)
−

− Q̃†m2
Q Q̃ − L̃†m2

L L̃ − Ũ m2
U Ũ

† − D̃m2
D D̃

† − Ẽm2
E Ẽ

† −

− m2
Hu H

∗
uHu − m2

Hd
H∗d Hd − (BµHuHd + h.c. ) (35)

The M3, M2 and M1 are the gluino, wino and bino masses. The Au, Ad and Ae are the
so called soft trilinear terms which correspond to the superpotential Yukawa couplings
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and are therefore 3 × 3 matrices in family space with complex entries. The m2
Q, m2

L,
m2

U, m2
D and m2

E are the soft squark and slepton masses which are once again complex
3× 3 matrices. The m2

Hu
and m2

Hd
are the soft squared masses of the up and down Higgs

doublets, whereas Bµ is the soft mass term corresponding to the µ parameter in the
superpotential. The soft supersymmetry breaking Lagrangian introduces some 105 new
parameters (masses, phases and mixing angles) which are absent in the Standard Model
and which cannot be eliminated by a suitable redefinition of the phases or of the flavor
basis of the quark and lepton supermultiplets. Despite the large number of new param-
eters most of those can be restricted by imposing the experimental constraints on the
respective flavor mixing or CP violating processes. The conceptually most appealing way
of evading the FCNC and CP-violating effects is to somehow ensure that the squared soft
masses of the MSSM matter fields are proportional to the unity matrix in family space,
or in other words that supersymmetry breaking is flavor-blind. As we will explain later
in more detail this condition is automatically satisfied for models with gauge mediated
supersymmetry breaking.

2.4 The Next to Minimal Supersymmetric Standard Model

The Next to Minimal Supersymmetric Standard Model is an extension of the MSSM
which contains an extra gauge singlet superfield N (see e.g. [31–34]). The most general
form of the Lagrangian, including all possible renormalizable couplings, is:

WNMSSM = WMSSM + λN HuHd + ξN N +
1

2
µ′N2 +

κ

3
N3 (36)

The respective soft supersymmetry breaking Lagrangian has the form:

Lsoft = LMSSM,soft − m2
N |N |2 −

−
(
λAλHuHdN +

1

3
κAκN

3 +
1

2
m′2N N

2 + ξS N + h.c.

)
(37)

In the literature one usually considers the simpler version of the NMSSM in which the
dimensionful supersymmetric couplings µ, µ′ and ξN vanish:

WZ3−NMSSM = WMSSM + λN HuHd +
κ

3
N3 . (38)

The corresponding soft parameters Bµ, m′2N and ξS are then automatically equal to zero.
In this case the superpotential is scale-invariant, i.e. it does not contain any mass terms.
An effective µ term is generated once the gauge singlet N acquires a VEV in its scalar
component, µeff = λ〈N〉. We refer to the version of the NMSSM with a scale invariant
superpotential as a Z3-invariant NMSSM. It is precisely this model which is commonly
referred to as NMSSM in the literature.

Note that the NMSSM operator λNHuHd is invariant under a Peccei-Quinn sym-
metry which acts on N , Hu and Hd according to N → Neiφ and HuHd → HuHde

−iφ. In
the Z3-invariant NMSSM this symmetry is broken at tree-level by the cubic term κ

3
N3.

The full superpotential (38) is invariant under a residual Z3-symmetry (the action of the
Z3 group rotates all three superfields N , Hu and Hd by the same phase e2πi/3). After elec-
troweak symmetry breaking this accidental discrete symmetry is spontaneously broken
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which leads to the well-known domain wall problem [35]. As we will discuss in a subse-
quent chapter this problem can be easily avoided by introducing an explicit tree-level µ
term and breaking the Z3-symmetry in this manner.

2.5 Supersymmetry breaking

In this section we touch upon the issue of supersymmetry breaking (for a review see
e.g. [36]). First of all we will discuss the order parameters for SUSY breaking in N = 1
global supersymmetry. The physically most relevant order parameter is the energy of the
system. To show this recall that the Hamiltonian is given by H = P0, where Pµ denotes
the momentum operator. From the anticommutation relation for the SUSY generators
we get:

H =
1

4

(
Q̄1Q1 + Q1Q̄1 + Q2Q̄2 + Q̄2Q2

)
(39)

which implies that in the vacuum 〈0|H|0〉 ≥ 0. If supersymmetry is unbroken then
Qα |0〉 = 0 from which we can immediately deduce the following: The vacuum energy is
zero if and only if supersymmetry is unbroken. Conversely, the vacuum energy is strictly
positive if and only if supersymmetry is broken.

The above observation leads to several useful criteria for supersymmetry breaking.
Specifically, let us look at the scalar potential of the theory given by a sum of F and D
terms:

V =
∑
i

F ∗i Fi +
1

2

∑
a

DaDa (40)

Since 〈0|H|0〉 = 〈0|V |0〉 we deduce that supersymmetry is spontaneously broken if
〈0|Fi|0〉 6= 0 and/or 〈0|Da|0〉 6= 0. Once supersymmetry is spontaneously broken, a
massless Goldstone fermion called a Goldstino appears in the spectrum. Typically the
Goldstino is the fermionic component of the superfield whose F or D term acquires
non-zero vacuum expectation value.

In realistic models the breaking of supersymmetry is accomplished in a so called
hidden sector. According to the modern model building paradigm the effects of this
breaking are transmitted to the observable sector through gauge or gravity interactions
(as for example in models with gauge or gravity mediation) or by a combination thereof.
This formal setup is illustrated on the figure below:
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In the rest of this section we discuss some of the properties of the hidden sector which
is assumed to have no tree-level couplings to the observable sector. There are several
known mechanisms which break supersymmetry. Among the first attempts to construct
viable models were the so called F - and D-term supersymmetry breaking. First we will
focus on models which break supersymmetry due to the presence of non-zero F -terms
for some of the chiral superfields in the theory. We refer to this type of mechanism as
O’Raifertaigh supersymmetry breaking [37]. To make this idea more precise consider
three chiral superfields Φ1, Φ2 and Φ3 with the following superpotential:

W = mΦ2Φ3 + λΦ1 (Φ2
3 − µ2) (41)

Here all three coupling constants m, λ and µ are real and positive. Denoting the scalar
component of a superfield Φ by a φ, we can compute the F -terms of the three chiral
superfields:

F ∗1 = −λ(φ2
3 − µ2) , F ∗2 = −mφ3 , F ∗3 = −mφ2 − 2λφ1φ3 (42)

Clearly F1 and F2 cannot vanish simultaneously. As a consequence the scalar potential
of the model V =

∑
i |Fi|2 is always positive since the sum of the first two terms is

strictly larger than zero, |F1|2 + |F2|2 > 0. The condition F1 6= 0 and F2 6= 0 implies
that supersymmetry is broken.

The other type of tree-level breaking, the so called D-term or Fayet-Illiopoulus su-
persymmetry breaking [38], is only possible in models whose gauge group contains a U(1)
factor and therefore a Fayet-Illiopoulus term can be added to the superpotential. One
can then easily deduce from the equations of motion for the D-term that it is non-zero
implying that supersymmetry is broken at tree level.

Next we focus on what is known in the literature as dynamical supersymmetry break-
ing or DSB for short (see e.g. [39–42] for original papers on the subject as well as [43,44]
for reviews). The crucial idea underlying this mechanism is that supersymmetry is unbro-
ken at tree-level and its breaking is accomplished through some non-perturbative effects
(such as instantons). Note that this is in fact the only way in which supersymmetry can
be broken in such a setting – as a consequence of the non-renormalization theorem if su-
persymmetry is unbroken at tree-level, it remains unbroken to all orders of perturbation
theory. The crucial advantage of the DSB as opposed to the aforementioned tree-level
mechanisms is that it allows us to naturally generate large hierarchies in the theory. In
more technical terms, we get the following generic relation between the cut-off scale and
the SUSY breaking scale:

ΛSUSY = Λ e−c/g(Λ)2 � Λ (43)

where c is some constant. One can distinguish three types of models with dynamical
supersymmetry breaking:

1. Models in which the potential is unknown and therefore the breaking of super-
symmetry can be deduced only through indirect arguments.

2. Models in which the low-energy effective superpotential can be calculated and
thus the breaking of supersymmetry can be explicitly deduced. In this type of models,
however, the Kähler potential is unknown and thus the properties of the ground state
cannot be determined.
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3. Models in which both the low-energy superpotential and the Kähler potential are
calculable. In this case one can also deduce the properties of the ground state.

We will not discuss specific examples for any of these models, rather we refer the
reader to the extensive literature and the references therein [43,44].

2.6 Transmission of supersymmetry breaking effects to the ob-
servable sector

Next we concentrate on the sector which mediates the effects of supersymmetry break-
ing from the hidden to the observable sector. There are various mechanisms which can
accomplish the aforementioned task, among the most popular are anomaly, gravity and
gauge mediation. For the remainder of this thesis we will only be concerned with models
of gauge mediated supersymmetry breaking (GMSB). Here we give a brief introduction
and overview of the topic, for a detailed review we refer the reader to [45].

It is customary to parametrize the effects of the SUSY breaking sector by introducing
a chiral superfield S which acquires vacuum expectation values in its scalar and F -term
components. We refer to this superfield as a spurion. The sector which is responsible for
transmitting the effects of supersymmetry breaking from the hidden to the observable
sector consists of so called messenger superfields Φi and Φ̄i which transform in a vector-
like representation of the gauge group. In order to preserve the one-loop gauge coupling
unification one usually assumes that Φi and Φ̄i fill a complete representation of the
GUT group, i.e. they transform as a 5+5 or a 10+10 of SU(5). The universal coupling
between the spurion and the messengers is given by:

W ⊃
∑
i

λS Φi Φ̄i (44)

This simple setup is usually referred to as minimal gauge mediation. Substituting the
spurion by its scalar and F -term VEVs, S = 〈S〉 + θθFS, we get a mass λ〈S〉 for the
fermionic components of the messengers and a mass splitting |λ〈S〉|2 ± |λFS| between
the squared masses of the scalar components. Integrating out the messengers from the
theory produces contributions to the soft mass parameters in the low-energy effective
theory. Gauginos get their masses at one loop:

Ma ∼
g2
a

16π2

FS
〈S〉

a = 1, 2, 3 (45)

whereas the sfermions and the up and down Higgs doublets are generated at two loop:

m2
f̃
∼ 2

∑
a

C f̃
a

(
g2
a

16π2

)2 (
FS
〈S〉

)2

. (46)

Here C f̃
a is the Casimir for the representation of the sfermion superfield f̃ with respect

to the gauge group factor Ga. The above identities hold only approximately, e.g. we
neglected terms of the order O(|FS/〈S〉2|2). The contributions to the trilinear soft terms
are zero at two loop and only arise at a higher loop level. Therefore one usually assumes
that

Au = Ad = Ae = 0 (47)
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The four identities (44), (45), (46) and (47) define the so called minimal gauge mediation
(or MGM for short). Note that the aforementioned framework makes no mention of the
origin of the µ and Bµ terms in the Lagrangian. In order to generate those within the
GMSB setup one has to consider extensions of the aforementioned scenario such as direct
couplings between the Higgs and the messenger sector. We will discuss those issues in
more detail in the next chapters of this thesis.

2.7 Basics of SUSY GUTs

In this section we give a brief overview of the basics of supersymmetric grand unified
theories. For simplicity we focus on SU(5) GUT models. To describe the embedding of
SU(3)⊗SU(2)⊗U(1) let us first introduce the generators of the Standard Model gauge
subgroups. For the generators of SU(3) we use the standard notation T a = λa/2, where
λa are the Gell-Mann matrices, whereas the generators of SU(2) are σi/2, i = 1, 2, 3, with
σi being the Pauli matrices. The GUT group SU(5) has 24 generators TA, A = 1, ..., 24.
In order to identify the SU(3)⊗ SU(2)⊗U(1) subgroup of SU(5) we first note that the
SU(3) subgroup can be embedded according to:

TA =

(
1
2
λA 0
0 0

)
, A = 1, ..., 8 (48)

The SU(2) subgroup is given by:

TA =

(
0 0
0 1

2
σA−20

)
, A = 21, 22, 23 (49)

The generator of the hypercharge U(1) subgroup is

T 24 =

√
3

5


−1/3 0 0 0 0

0 −1/3 0 0 0
0 0 −1/3 0 0
0 0 0 1/2 0
0 0 0 0 1/2

 =

√
3

5

Y

2
(50)

There are 12 residual generators of the quotient group SU(5)/SU(3) ⊗ SU(2) ⊗ U(1) .
As a simple example we have:

T 13 =
1

2


0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0

 T 14 =
1

2


0 0 0 −i 0
0 0 0 0 0
0 0 0 0 0
i 0 0 0 0
0 0 0 0 0

 (51)

We choose a normalization convention in which Tr(TA TB) = 1
2
δAB . The fermionic

content of the MSSM can be embedded in the 5̄ and 10 representations of SU(5). The
SU(3)⊗SU(2)⊗U(1) decomposition of these two representations is given by 5̄ = (D,L)
and 10 = (Q,U,E) . The Higgs sector of the theory consists of a chiral supermultiplet
in the adjoint representation 24 of SU(5) which is responsible for breaking the GUT
group down to the gauge group of the Standard Model and which we denote by Φ.
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We also have a vector-like pair of Higgs fields in the fundamental and anti-fundamental
representation of SU(5) which we call 5H and 5̄H. The field content of the Higgs pair
is 5H = (T,Hu) and 5̄H = (T̄ , Hd), where Hu and Hd are the usual MSSM Higgs
doublets whereas T, T̄ is a pair of Higgs triplets which acquires a superheavy mass after
spontaneous symmetry breaking and is therefore integrated out from the low-energy
physics. The SU(5) invariant Yukawa interactions which describe the GUT model read:

10 · Γu · 10 5H , 10 · Γd · 5̄ 5̄H (52)

where Γu and Γd are the Yukawa couplings of the SU(5) theory. With respect to the
Standard Model gauge group the above operators decompose according to:

10 · Γu · 10 5H → yuQUHu + yT1QQT + yT2U E T

10 · Γd · 5̄ 5̄H → ydQDHd + yT̄1
QL T̄ + yT̄2

U D T̄ + ye ĒLHd (53)

After integrating out the T, T̄ pair one induces two dimension five operators

OL =
1

MGUT

(yT1QQ)(yT̄1
QL)

OR =
1

MGUT

(yT1U E)(yT̄2
U D) (54)

which are responsbile for proton decay.
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3 Holomorphicity

In this chapter we discuss an important application of the notion of supersymmetric
holomorphicity to the running of gauge couplings within a SUSY grand unified theory. We
extend the existing results in the literature by showing that holomorphicity arguments
can be used to define a dual picture to the usual gauge coupling unification paradigm.
In this dual description the theory is characterized by holomorphic rather than physical
gauge couplings which unify at a new scale called the holomorphic GUT scale.

3.1 1PI effective action

One of the most important notions in quantum field theory is that of an effective action.
Broadly speaking this is a functional of fields which can be used to access the properties
of a given theory at a specific energy scale.

For historical reasons there are two different objects which are referred to as effective
action in the literature. The first one is the so called 1-particle irreducible (1PI) effective
action, which is just the Legendre transform of the logarithm of the partition function
lnZ in the presence of a source J . To make this definition more precise consider the
simplest case of a scalar field theory with a real-valued field ϕ. In the usual path-integral
formulation the partition function is given by

Z[J ] ≡ eW [J ] =

∫
Dϕ e i S[ϕ] + i

∫
d4x J ϕ (55)

where W [J ] is the generating functional of connected correlators. Assuming that W [J ] is
a convex functional, one can construct its Legendre transform with respect to the source
field J(x). In the first step we compute the functional derivative of W with respect to
J , which gives the expectation value of the field configuration ϕ in the presence of a
non-vanishing source J :

φ ≡ 〈Ω|ϕ |Ω〉J = − δW

δJ(x)
(56)

Here |Ω〉 is the vacuum of the theory and we refer to φ as the classical field. The Legendre
transform of W is now given by

Γ[φ] = −W [J ]−
∫
d4x J(x)φ(x) (57)

The functional Γ[φ] is the generator of 1-particle-irreducible graphs and we refer to it as
the 1PI effective action. In contradistinction to the classical action of the theory, Γ[φ]
takes into account all quantum effects and is sometimes also called the quantum action.
The minima of this functional give the expectation value 〈φ〉 of the classical field in the
stable vacuum states of the theory.

3.2 Wilsonian effective action

We shall now introduce the other type of effective action, the so called Wilsonian effective
action. The departure point for our construction is once again the partition function of
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the theory. However, this time we assume that Z[J ] is supplied with an explicit sharp UV
cutoff Λ. Moreover, in order to ensure that every 4-momentum is cut-off, we perform an
analytic continuation to Euclidean space and work with the respective Euclidean action.
Symbolically we write:

Z[J ] =

∫
[Dϕ]Λ e−SΛ[ϕ] +

∫
d4x J ϕ (58)

where the functional measure is defined according to [Dϕ]Λ =
∏
‖p‖<Λ dϕ(p) . The action

SΛ at the scale Λ is specified by a set of bare couplings λ0
i . It is implicitly understood

that the action admits an expansion in terms of local operators. All Greens functions of
the theory can then be written in terms of the cut-off scale Λ and the set {λ0

i } of bare
couplings.

Assume that we want to lower the cutoff of the theory Λ′ < Λ while keeping the
low-energy physics unchanged. This procedure is also known as integrating out modes
between Λ′ < ‖p‖ < Λ. To this end we split the scalar field according to ϕ = ϕ̃+ ϕ̂. The
two pieces are orthogonal to each other in Fourier space and are defined according to

ϕ̃(p) =

{
ϕ(p), for ‖p‖ < Λ

0 , for Λ′ < ‖p‖ < Λ
ϕ̂(p) =

{
0 , for ‖p‖ < Λ

ϕ(p), for Λ′ < ‖p‖ < Λ
(59)

The action is now a functional of two fields SΛ[ϕ̃ + ϕ̂]. Clearly one can split SΛ into a
piece which reproduces the original action but depends solely on the ϕ̃ field and another
mixed term, which depends on both ϕ̃ and ϕ̂. In other words:

SΛ[ϕ̃+ ϕ̂] = SΛ[ϕ̃] + SΛ[ϕ̃, ϕ̂] (60)

The partition function of the theory assumes the form:

Z =

∫
[D ϕ]Λ e−SΛ[ϕ] =

∫
[Dϕ̃]Λ e−SΛ[ϕ̃]

∫
[Dϕ̂]Λ e−SΛ[ϕ̃,ϕ̂] (61)

Here we omitted the source terms for the sake of brevity. Next we write:

Z =

∫
[Dϕ̃]Λ e−SΛ[ϕ̃]

∫
[Dϕ̂]Λ e−SΛ[ϕ̃,ϕ̂] ≡

∫
[Dϕ̃]Λ′ e

−SΛ′ [ϕ̃] (62)

We use the right hand side of this equation as a definition for the effective Wilsonian
action at the new cut-off scale Λ′. It is obtained by first integrating out the heavy fields,
i.e. performing the second integral on the left hand side, and then lowering the cut-off of
the effective theory for the “light” field ϕ̃ from Λ to Λ′. The requirement that the low-
energy physics should remain unchanged can be used to establish a relation between the
bare couplings at different energy scales. The way in which these couplings change with
the scale in order to ensure that all low-energy scattering amplitudes remain unchanged,
is encoded in the so called Wilsonian renormalization group equations

Λ
dλ0

i

dΛ
= βi(λ

0) . (63)
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3.3 Holomorphic and canonical gauge couplings

In the following we introduce and discuss the notion of a holomorphic gauge coupling.
Holomorphic gauge couplings appear strictly in the context of supersymmetric models
and have no counterpart in the non-supersymmetric world. For the purposes of this
chapter we will work with a supersymmetric gauge theory with a single gauge group G
and matter fields Φi in representations Ri of G. We will define the theory by specifying
the Lagrangian at a cut-off scale Λ. For the sake of simplicity we assume a zero tree-level
superpotential:

LΛ =
1

16

∫
d2θ

1

g2
h

TrW a
αW

α, a + h.c. +
∑
i

Zi(Λ)

∫
d4θΦ†i e

2Vh,i Φi (64)

Here Vh,i is the so called holomorphic vector superfield. The subscript i in Vh,i takes
into account the fact that the Φi’s will in general have different charges under the gauge
group. The prefactors 1/g2

h and Zi(Λ) in front of the gauge and matter field kinetic
terms are both specified at the cut-off scale Λ. We emphasize that the holomorphic
gauge coupling gh is a complex parameter defined according to:

1

g2
h

=
1

g2
+ i

θ

8π2
(65)

For the sake of simplicity we also assume that the matter field Z-factor is normalized to
unity at the cut-off scale, i.e. Zi(Λ) = 1. Next we lower the cut-off of the theory from the
initial scale Λ down to Λ′ and we ask how the bare parameters in the Lagrangian evolve.
As argued in [46,47] the Lagrangian at the new cut-off scale should have the form:

LΛ′ =
1

16

∫
d2θ

(
1

g2
h

+
b0

8π2
ln

Λ

Λ′

)
W a
αW

α,a + h.c.+
∑
i

Zi(Λ,Λ
′)

∫
d4θΦ†i e

2Vh,i Φi (66)

where summation over repeated a and α indices is implicitly understood and we omitted
the respective trace. In the above expression Z(Λ,Λ′) is the wavefunction renormalization
factor which builds up along the RG trajectory from the upper to the lower cut-off scale.
The perturbative running of the holomorphic gauge coupling is exhausted at one loop.
Accordingly b0 stands for the coefficient of the one-loop β-function. We will not reproduce
the argument which shows that the running of the holomorphic gauge coupling is one-loop
exact to all orders of perturbation theory, rather we refer the reader to the literature [46].

In order to derive the NSVZ β-function we impose the additional requirement that
the Lagrangian should be canonically normalized at the new cut-off scale. This statement
entails two things: First of all it means that the matter field wavefunction renormalization
factor should be equal to unity. Hence we need to rescale the superfields according to
Φi → Zi(Λ,Λ

′)−1/2 Φi . Note that the path integral measure is not invariant under this
rescaling, in other words there is an anomalous Jacobian. To be more precise we have

D(Zi(Λ,Λ
′)−1/2 Φi) D(Zi(Λ,Λ

′)−1/2 Φ†i ) =

= DΦiDΦ†i exp

(
1

16

∫
d4y

∫
d2θ

T (Ri)

8π2
lnZi(Λ,Λ

′)W a
αW

α,a + h.c.

)
(67)

which is just the well-known Konishi anomaly. Absorbing this expression into the kinetic
term for the gauge fields, we get the following expression for the low-energy effective
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action at Λ′:

LΛ′ =
1

16

∫
d2θ

(
1

g2
h

+
b0

8π2
ln

Λ

Λ′
+
∑
i

T (Ri)

8π2
lnZi(Λ,Λ

′)

)
W a
αW

α,a + h.c. +

+
∑
i

∫
d4θ Φ†i e

2Vh,i Φi (68)

where T (Ri) is the Dynkin index for the Ri representation of the respective superfield.
Next we also have to bring the vector superfield into canonical normalization. To this
end let us rewrite the previous equation as follows:

LΛ′ =
1

16

∫
d2θ ( ... ) W a

α(Vh)W
α,a(Vh) + h.c. +

∑
i

∫
d4θΦ†i e

2Vh,i Φi . (69)

Here we made explicit the dependence of W a
α on the holomorphic vector superrfield Vh.

The expression W a
α(Vh) is to be interpreted as:

W a
α(Vh)T

a = − 1

4
D̄2 e−VhDα e

Vh (70)

The canonical coupling arises if we chose to work with canonical normalization for the
vector multiplet. The canonically normalized vector superfield Vc is defined through the
relation Vh = gcVc, where gc is the so called canonical gauge coupling. Note that since V
is a real superfield the coupling gc itself must be real. Let us now go over to a canonical
normalization for the gauge kinetic term. Focussing only on this term in the Lagrangian
we obtain:

Lc,Λ =
1

16

∫
d2θ ( ... ) W a

α(gcVc)W
α, a(gcVc) + h.c. (71)

Our goal in the following will be to determine the relationship between the two couplings.
To this end we will first need to evaluate the anomalous Jacobian which arises as a result
of the rescaling of the vector superfield. This has been done explicitly in [46], here we
only state the final result:

D(gcVc) = D(Vc) exp

(
1

16

∫
d4y

∫
d2θ

2T (G)

8π2
ln gcW

a
α(Vc)W

α,a(Vc) + h.c. +

+O(1/M4)

)
(72)

The term O(1/M4) comprises higher-dimensional operators (D-terms) suppressed by
powers of 1/M . With the above result we can now determine the precise relation between
the holomorphic and canonical gauge couplings. To this end we look at the partition
function of the theory:

Z =

∫
DVh exp

(
− 1

16

∫
d4y

∫
d2θ (...)W a

α(Vh)W
α,a(Vh) + h.c.

)
(73)

=

∫
D(gcVc) exp

(
− 1

16

∫
d4y

∫
d2θ (...)W a

α(gcVc)W
α,a(gcVc) + h.c.

)
=

∫
D(Vc) exp

(
− 1

16

∫
d4y

∫
d2θ

(
(...)− 2T (G)

8π2
ln gc

)
W a
α(Vc)W

α,a(Vc) + h.c.

)
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where as usual T (G) is the Dynkin index for the adjoint representation. From this we
deduce that

1

g2
c

=
1

g2
h

+
b0

8π2
ln

Λ

Λ′
+
∑
i

T (Ri)

8π2
lnZi(Λ,Λ

′) − 2T (G)

8π2
ln gc (74)

which is the sought relation. Keeping in mind that gh runs only at one loop to all orders
of perturbation theory, we can deduce the multiloop β-function of gc

Λ
d

dΛ
gc = − g3

c

16π2

3T (G)−
∑

i T (Ri)(1− γi)
1− T (G) g2

8π2

(75)

Here γi = −µ d
dµ

lnZi is the anomalous dimension of the Φi superfield. The above expres-
sion is exact to all orders of perturbation theory and is usually referred to as the NSVZ
β-function.

To close this section let us discuss how particles are integrated out in a supersym-
metric theory. We consider the following simple example: We have a SUSY model with
a SU(N) gauge group and some chiral matter superfields Φi in representations Ri of
the gauge group. Assume that among the Φi there is at least one vector-like pair Q
and Q̄ and introduce a corresponding mass term mQQ̄. Here m is the bare or in other
words holomorphic mass parameter in the Wilsonian action. As usual we assume that
the theory is regularized with an UV cut-off Λ. We consider the following two regimes
of the theory: The high-energy model where all superfields are present and a low-energy
effective theory from which the vector-like pair has been integrated out. As argued in [46]
the holomorphic gauge coupings in the high-energy (g2

h,HE) and low-energy (g2
h,LE) the-

ories are related by the following equation, which is exact to all orders of perturbation
theory:

8π2

g2
h,LE

=
8π2

g2
h,HE

+ (T (RQ) + T (RQ̄) ) ln
Λ

m
=

8π2

g2
h,HE

+ ln
Λ

m
(76)

We emphasize that the holomorphic couplings appearing in this equation are both spec-
ified at the cutoff scale Λ. It is an interesting and non-trivial question how the above
identity changes once we lower the cut-off of both the low-energy and high-energy the-
ories and insist on canonical normalization for the matter field kinetic terms. Under
Λ→ Λ′ the left hand side of the above equation changes according to:

8π2

g
′2
h,LE

=
8π2

g2
h,LE

+ b0,LE ln
Λ

Λ′
−
∑
i 6=Q,Q̄

T (Ri) ln Zi(Λ
′,Λ) (77)

where b0,LE denotes the one-loop β-function in the low-energy theory, i.e. the theory from
which the massive vector-like pair Q, Q̄ has been integrated out. We have an analogous
equation for the holomorphic gauge coupling in the high-energy theory:

8π2

g
′2
h,HE

=
8π2

g2
h,HE

+ b0,HE ln
Λ

Λ′
−
∑
i

T (Ri) ln Zi(Λ
′,Λ) (78)

There is a simple relation between the one-loop β-functions in the low-energy and high-
energy theories given by b0.HE = b0,LE + 1 . This allows us to bring the two equations
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(77) and (78) together:

8π2

g
′2
h,LE

=
8π2

g
′2
h,HE

− ln
Λ

Λ′
+

1

2

(
lnZQ(Λ′,Λ) + lnZQ̄(Λ′,Λ)

)
+ ln

Λ

m
=

=
8π2

g
′2
h,HE

+ ln
Λ′

m′
(79)

where m′ = Z
−1/2
Q (Λ′,Λ)Z

−1/2

Q̄
(Λ′,Λ)m is the canonically rescaled mass parameter in

the low-energy effective theory. The above equation is exact to all orders of perturbation
theory. There is a corresponding matching equation for the canonical gauge couplings
which reads:

8π2

g2
c,LE(µ)

=
8π2

g2
h,HE(µ)

− ln
µ

m
+

1

2

(
lnZQ(µ,Λ) + lnZQ̄(µ,Λ)

)
=

=
8π2

g2
c,HE(µ)

+ ln
µ

m(µ)
(80)

where µ is the scale at which we match the couplings in the low and high energy theories.
If we perform the matching at the renormalized mass m(µ) = Z

−1/2
Q (µ,Λ)Z

−1/2

Q̄
(µ,Λ)m,

then the low- and high-energy couplings coincide.

3.3.1 Holomorphic versus physical GUT scale in a simple model

In this section we derive a holomorphic version of Shifman’s master formula for a non-
Abelian supersymmetric gauge theory with gauge group SU(3). We follow closely the
discussion in [18], although we put the emphasis on somewhat different aspects. The
simplicity of the model allows us to exhibit some of the major steps in the construction
without digressing into unnecessary technical details. The reader should view this section
as a preparation for the more general holomorphic master formula we derive in the case
of a minimal SU(5) GUT model.

To start off let us assume that the SU(3) group is broken down to SU(2) × U(1)
by the vacuum expectation value of a scalar superfield Φ0 in the adjoint representation.
The bare action of the theory at some cut-off scale Λ reads:

L =
1

16g2
0

Tr

∫
d2θW aW a + h.c.+

∫
d4θΦ†0 e

2V Φ0 +

+ m0

∫
d2θΦa

0 Φa
0 + λ0

∫
d2θ dabc Φa

0 Φb
0 Φc

0 + h.c.

where Φa
0, a = 1, ..., 8 are the su(3) components of the chiral superfield Φ0, i.e.

Φ0 =
∑8

a=1 Φa
0 λ

a. The dabc stand for the d symbols of the SU(3) group. In the above
Lagrangian summation over repeated indices is implicitly understood, thus for instance
Φa

0 Φa
0 ≡

∑
a Φa

0 Φa
0. From now on we will use φ0 to denote the scalar component of the

bare field Φ0. The d-symbols of SU(3) are defined through the anticommutator on the
Lie algebra su(3):

{λa, λb} =
4

3
δab + 2 dabc λc (81)
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The non-vanishing d’s are given by:

d118 = d228 = d338 = −d888 = 1/
√

3

d146 = d157 = −d247 = d256 = 1/2

d344 = d355 = −d366 = −d377 = 1/2

d448 = d558 = d668 = d778 = −1/2
√

3 (82)

The classical vacuum manifold of the theory is obtained by minimizing the tree-level
scalar potential:

V = |∂W/∂φd0|2 = | 2m0φ
d
0 + λ0 ddbc φ

b
0 φ

c
0 + λ0 dadc φ

a
0 φ

c
0 + λ0 dabd φ

a
0 φ

b
0 |2 (83)

To get one possible vacuum solution let us assume that the VEVs for the first seven
components of the adjoint scalar field vanish, i.e. 〈φi0〉 = 0, for i=1,..., 7, whereas for the
eight component we take 〈φ8

0〉 6= 0 . Substituting this ansatz on the right hand side of
eq.(83) we get:

V =
∣∣∣ 2m0φ

8
0 +

3λ0√
3

(φ8
0)2
∣∣∣2 ⇒ V = 0 for φ8

0 =
2m0√
3λ0

(84)

Recall that the λ8 generator of SU(3) is given by

λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2

 (85)

A VEV on the λ8-direction ensures that the SU(3) gauge group is broken down to the
product subgroup SU(2)×U(1) in a single step. In the following we distinguish between
two different unification scales – a holomorphic and a canonical one.

Definition: The holomorphic GUT scale Mhol
GUT is defined as the scale at which the

holomorphic gauge couplings in the low-energy (broken phase) theory intersect. It can
be identified with the holomorphic mass of the heavy gauge bosons.

Definition: The physical GUT scale Mphys
GUT is defined as the scale at which the

canonical gauge couplings in the low-energy (broken phase) theory intersect. It can be
identified with the physical mass of the heavy gauge bosons.

In the following we will examine in detail the running of both the holomorphic and
the canonical gauge couplings of our model. Before digressing into a technical discussion
let us outline the general setup. Recall that the high- and low-energy theories are related
according to:

Z =

∫
Λ

[DΦ]light [DΦ]heavy e
−SHE + sources =

∫
Λ

[DΦ]light︸ ︷︷ ︸
Heavy particles integrated out

e−SLE + sources (86)

The evolution of the unified holomorphic coupling above the holomorphic GUT scale
is governed by the one loop β-function of the high-energy theory. Since in this regime
the theory is described by a single gauge group G = SU(3) and one superfield Φ0 in
the adjoint representation, the one-loop β-function coefficient is easily determined to be
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Figure 1: Running of the holomorphic gauge coupling in the high-energy theory

bHE = −3T (G) + T (RΦ) = −6. The evolution in this regime is illustrated (very sketchy)
in Fig. 1

The x-axis is the logarithmic scale and the y-axis is the inverse 1/α coupling. As
the diagram suggests the most relevant mass scales in the theory are the UV cut-off Λ,
the holomorphic GUT scale Mhol

GUT , the physical GUT scale Mphys
GUT and the low scale

µ, at which the evolution terminates. Below Mhol
GUT we have the two SU(2) and U(1)

holomorphic couplings whose perturbative running is once again saturated at one loop
(see the picture below):

Figure 2: Running of the holomorphic gauge couplings in the low-energy theory

How does all of this change if we go over to the dual canonical picture? Above the
physical GUT scale we have a single unified canonical coupling which has a multiloop
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running governed by the respective NSVZ β-function. In more detail we have:

Λ
d

dΛ
gc = − 9

16π2

g3
c

1− 3
8π2 g2

c

(87)

Below Mphys
GUT the running of the canonial SU(2) and U(1) couplings is governed by the

low-energy NSVZ β-functions. The evolution in both regimes is sketched in the diagrams
below.

Figure 3: Running of the canonical gauge coupling in the high-energy theory

Figure 4: Running of the canonical gauge couplings in the low-energy theory

Our discussion suggests two different ways for extracting the values of the low-energy
SU(2) and U(1) canonical gauge couplings: Starting from the top left corner in the com-
mutative diagram given below one can arrive at the bottom right corner either through
the diagram on the bottom left or through the diagram on the top right.
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Figure 5: Canonical vs. holomorphic approach

We refer to the latter choice as a holomorphic approach. To sum up – the holomorphic
approach consists in evolving the holomorphic gauge coupling down to some appropriate
scale µ and then converting this coupling to a canonical one by using the respective
anomaly equation.

Lets see how all of this works in our specific model. First of all we will need to identify
the relevant holomorphic thresholds in the theory. To this end note that for our choice
of VEV the adjoint representation 8 of SU(3) has the following decomposition under
SU(2)× U(1):

8→ 3 ⊕ 1 ⊕ (2, Q)︸ ︷︷ ︸
X,Y

⊕ (2̄, Q̄)︸ ︷︷ ︸
X̄,Ȳ

(88)

where Q , Q̄ are the U(1) charges of the massive gauge bosons. The last two brackets
correspond to the massive gauge bosons which eat up the Φ4

0, Φ5
0, Φ6

0 and Φ7
0 components

of the GUT breaking field. The first three components Φ1
0, Φ2

0, Φ3
0 of Φ0 lie in the

adjoint representation of the SU(2) subgroup and acquire a common mass. The last Φ8
0

component is a massive SU(2) singlet.

Expanding the scalar potential around the classical vacuum configuration we find

M0
X,Y =

√
3φ8

0

2
M0

Φ1,2,3
= m0 (89)

Here M0
X,Y is the bare mass of the two heavy gauge bosons, which we call ’X,Y’ in accord

with the standard terminology in the SU(5) GUT case. M0
Φ1,2,3

is the bare mass of the

Φ1
0, Φ2

0, Φ3
0 components of the GUT breaking field.

Assume that the coupling constants of the model are chosen in such a way that
M0

X,Y > M0
Φ1,2,3

and pick a reference scale much lower than lightest GUT threshold,

µ � M0
Φ1,2,3

. Adopt the holomorphic approach, i.e. evolve the holomorphic gauge cou-
pling from Λ down to µ using its one-loop β-function, decouple heavy particles at their
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holomorphic masses and switch to the canonical (or in other words physical) gauge cou-
pling at the very end of the evolution. At the scale µ the holomorphic SU(2) coupling
of the low-energy effective theory is given by:

1

αh,SU(2)(µ)
=

2π

αh(Λ)
+ bLE ln

Λ

µ
+ bX,Y ln

Λ

M0
X,Y

+ bΦ1,2,3 ln
Λ

M0
Φ1,2,3

=
2π

α0

− 6 ln
Λ

µ
− 2 ln

Λ√
3φ8

0/2
+ 2 ln

Λ

m0

(90)

In the first term on the right hand side α0 = αh(Λ) stands for the unified holomor-
phic coupling at the cut-off scale Λ. The second term is the exact one-loop β-function
in the low-energy theory, which is given by bLE = −6. The third term comprises cor-
rections coming from the superheavy gauge bosons threshold, and the factor in front of
the logarithm is the one-loop β-function coefficient bX,Y = −3T (RX,Y) + T (RΦ4,5,6,7) =
−2T (RX,Y) = −2 of the superheavy bosons. Here we took into account the fact that
the X, Y gauge bosons come in a vector-like pair, therefore the total Dynkin index is
given as a sum T (RX,Y) = 1/2 + 1/2 = 1, where the two 1/2 pieces are the Dynkin
indices of the fundamental and anti-fundamental representations respectively. The last
term is associated with the uneaten components of the adjoint field Φ0. Since they form
an SU(2) triplet, the respective one-loop β-function coefficient is bΦ1,2,3 = T (SU(2)) = 2.
In the next step we switch to the canonical coupling using the anomaly relation within
the low-energy theory:

2π

αh,SU(2)(µ)
=

2π

αc,SU(2)(µ)
+ T (G) lnαc(µ) =

2π

αc,SU(2)(µ)
+ 2 lnαc(µ) (91)

Substituting this into the previous identity we get:

2π

αc,SU(2)(µ)
=

2π

α0

− 6 ln
Λ

µ
(

1
αc,SU(2)(µ)

)1/3
− 2 ln

Λ

(
√

3φ8
0/2)

+ 2 ln
Λ

m0

(92)

We refer to eqs.(90) and (92) as ’holomorphic master formula’. In order to make further
progress we will now use physical thresholds instead of bare ones. As we mentioned earlier
the holomorphic GUT scale is equal to bare mass of the gauge bosons, is Mhol

GUT = M0
X,Y.

Analogously the physical GUT scale is equal to the physical mass of the superheavy
gauge bosons, Mphys

GUT = Mphys
X,Y . We have the following implicit equation for Mphys

GUT:

√
3φ8

0/2 = Mphys
GUT . Z(Λ→Mphys

GUT)−1/2 . α
−1/2
GUT (93)

where Z(Λ → Mphys
GUT) is the wavefunction renormalization factor in front of the∫

d4θΦ†0 e
2V Φ0 kinetic term which builds up along the RG trajectory from the UV cut-off

scale Λ down to the physical unification scale Mphys
GUT. We also adopted the convention

αGUT = αc(M
phys
GUT), where αc is the canonical gauge coupling in the fundamental SU(3)

theory. The physical masses of the uneaten Φ0 components Φ1
0, Φ2

0 and Φ3
0, which we

denote by m1, m2 and m3, are given by:

m0 = Z(Λ→ m) .m (94)
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where m stands for either m1, m2 or m3. Using the two identities (93) and (94) in the
evolution equation leads to:

2π

αc,SU(2)(µ)
=

2π

α0

− 6 ln
Λ

µ
(

1
αc,SU(2)(µ)

)1/3
− 2 ln

Λ

Mphys
GUT . Z(Λ→Mphys

GUT)−1/2
−

− 2 lnα
1/2
GUT + 2 ln

Λ

Z(Λ→ m) .m
(95)

Using the multiplicativity of the Z-factor, Z(Λ→ m) = Z(Λ→Mphys
GUT) . Z(Mphys

GUT → m),
we can rewrite this last equation as follows:

2π

αc,SU(2)(µ)
=

2π

α0

− 6 ln
Λ

Mphys
GUT

− 3 lnαGUT − 6 ln
Mphys

GUT

µ
(

αGUT

αc,SU(2)(µ)

)1/3
−

− 2 ln
Λ

Mphys
GUT . Z(Λ→Mphys

GUT)−1/2
+ 2 ln

Λ

Mphys
GUT . Z(Λ→Mphys

GUT)
+

+ 2 ln
Mphys

GUT

Z(Mphys
GUT → m) .m

(96)

Notice that we have the following equality:

2π

αGUT

=
2π

α0

− 6 ln
Λ

Mphys
GUT

− 3 lnαGUT − 3 lnZ(Λ→Mphys
GUT) (97)

To understand where this comes from look at the holomorphic coupling in the high-energy
theory. According to the one-loop evolution law we have:

2π

αh(Mphys
GUT)

=
2π

α0

− 6 ln
Λ

Mphys
GUT

(98)

Here αh is the holomorphic coupling in the high-energy theory which we evaluate at the
physical GUT scale. The second term on the right hand side comprises the one-loop β-
function in the high energy theory. Next we use the anomaly equation in the high energy
theory to switch from holomorphic to canonical coupling:

2π

αh(Mphys
GUT)

=
2π

αc(M
phys
GUT)

+ T (G) lnαc(M
phys
GUT) + T (RΦ) lnZ(Λ→Mphys

GUT) =

=
2π

αc(M
phys
GUT)

+ 3 lnαc(M
phys
GUT) + 3 lnZ(Λ→Mphys

GUT) (99)

Keeping in mind that αc(M
phys
GUT) = αGUT and substituting this equation into the pre-

vious identity we get the desired eq.(97). It then follows that:

2π

αc,SU(2)(µ)
=

2π

αGUT

− 6 ln
Mphys

GUT

µ
(

αGUT

αc,SU(2)(µ)

)1/3
+ 2 ln

Mphys
GUT

Z(Mphys
GUT → m) .m

(100)

This is Shifman’s master formula for the model we are considering. This simple identity
demonstrates several important points which are worth mentioning. To illustrate those
points let us consider the formula for the running of the holomorphic SU(2) coupling:

2π

αh,SU(2)(µ)
=

2π

α0

− 6 ln
Λ

µ
− 2 ln

Λ√
3φ8

0/2
+ 2 ln

Λ

m0

(101)
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Comparing eqs.(100) and (101) we see a crucial difference: Whereas the holomorphic
master formula contains the heavy gauge boson threshold, the canonical master formula
does not. The point is that when going over to physical mass thresholds the 2 ln Λ√

3φ8
0/2

term completely dissipates by feeding contributions to all other three terms on the right
hand side. The heavy gauge boson threshold is for example responsible for the presence

of αGUT under the logarithm ln
Mphys

GUT

µ

(
αGUT

αc,SU(2)(µ)

)1/3 as well as for the global 2π/αGUT term.

The remaining parts of this threshold cancel against terms arising from the Φ-threshold.
In this manner the heavy boson threshold completely disappears from the final master
formula.

3.3.2 Holomorphic thresholds in a SU(5) GUT model

In this section we discuss a realistic supersymmetric SU(5) GUT model with adjoint
breaking. The particle content of the GUT model is the same as the one discussed in
section 1.7, i.e. besides the usual fermionic fields we have a Higgs vector-like pair 5H

and 5̄H and an adjoint scalar Φ. The potential for the Higgs pair and the adjoint scalar
reads:

V (Φ,5H, 5̄H) = V (Φ) + V (5H, 5̄H) + λ4(Tr Φ2)(5̄H5H) + λ5(5̄HΦ25H)

V (Φ) = −m2
1 (Tr Φ2) + λ1 (Tr Φ2)2 + λ2 (Tr Φ4)

V (5H, 5̄H) = −m2
2 (5H5̄H) + λ3 (5H5̄H)2 (102)

Minimizing this we get a VEV for Φ in the T 24 direction:

〈Φ〉 =
v√
15

Diag(2, 2, 2,−3,−3) (103)

where the constant v is given by:

v =
m1√

4λ1 + 14
15
λ2

(104)

The pattern of symmetry breaking is

24→ (8,1)0 ⊕ (1,3)0 ⊕ (1,1)0 ⊕ (3,2)−5/6︸ ︷︷ ︸
X,Y

⊕ (3̄,2) 5/6︸ ︷︷ ︸
X̄,Ȳ

(105)

where the parenthesis enclose SU(3) and SU(2) quantum numbers, whereas the subscript
is the U(1)Y charge. The masses of the superheavy particles around the GUT scale can
be easily calculated:

M2
X,Y =

5

12
g2 v2 , M2

H3
=

5

24
λ2

2 v
2 ,

M2
(8,1) =

15

32
λ2

1 v
2 , M2

(3,1) = 25M2
(1,1) =

15

32
λ2

1 v
2 (106)

where MH3 is the mass of the Higgs triplets arising from the 5H and 5̄H fields and
M(8,1), M(3,1) and M(1,1) are the masses of the uneaten Φ components. We once again
emphasize that those are holomorphic mass parameters.
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3.3.3 Holomorphic running in a SU(5) GUT model

In this section we generalize the analysis from section 3.3.1 to a SU(5) model GUT model
with adjoint breaking and MSSM particle content. In particular we derive a holomorphic
version of Shifman’s master formula (cf. [18]). This ’holomorphic master formula’ was
first presented in [48] and at least to our knowledge has not appeared anywhere else in
the literature. Let us look at the unified holomorphic gauge coupling whose RG running
commences at some high cut-off scale Λ. Unless otherwise stated we always assume that
Λ � Mhol

GUT, where Mhol
GUT denotes the holomorphic GUT scale. However, one can also

take Λ to be as low as Mhol
GUT without altering the results of the upcoming discussion. At

Mhol
GUT the SU(5) GUT group is broken down to the usual Standard Model gauge group by

the vacuum expectation value of the bare adjoint scalar field Φ. Accordingly the unified
holomorphic gauge coupling splits into the U(1), SU(2) and SU(3) holomorphic couplings
which we evolve down to some low scale µ. In the process we decouple heavy particles at
their holomorphic thresholds using the exact matching equations we presented earlier.
We then have:

2π

αh,i(µ)
=

2π

αh(Λ)
+ bi ln

Λ

µ
+ b

(3)
i ln

Λ

mh
3

+ bX,Yi ln
Λ

mh
X,Y

+ bΦ
i ln

Λ

mh
Φ

(107)

where αh,i(µ), with i = 1, 2, 3, are the holomorphic U(1), SU(2) and SU(3) gauge cou-
plings of the MSSM at the low scale µ and αh(Λ) is the unified holomorphic coupling at
the cut-off scale Λ. This equation is exact to all orders of perturbation theory provided
that µ lies above the supersymmetry breaking scale. While the first logarithm combines
the effects of all fields that remain light below the GUT scale, the last three logarithms
are associated with heavy fields. The various bi’s are the appropriate one-loop β-function
coefficients. They are labeled by ‘(3)’ for Higgs-triplet, ‘X, Y ’ for the massive vector
multiplets of X, Y gauge bosons, and Φ for those components of the GUT-breaking field
Φ that are not ‘eaten’ by the X, Y bosons. We emphasize that mh

3 , mh
X,Y and mh

Φ are
holomorphic rather than physical mass scales. In other words, these are the mass param-
eters of the holomorphic Wilsonian action, in which kinetic terms are not canonically
normalized [46]. Their explicit form was derived in the previous section. Clearly the
choice of Λ in this formula is irrelevant for the final result. However, one should keep in
mind that only for Λ ≥Mphys

GUT the holomorphic formula retains its validity, since only in
this regime the notion of a unified holomorphic gauge coupling makes sense. In the next
chapter we will establish the relation between this identity and the more conventional
master formula.

39



4 Precision gauge unification from extra Yukawa

couplings

In this chapter we investigate the impact of extra vector-like GUT multiplets on the
predicted value of the strong coupling. We find in particular that Yukawa couplings
between such extra multiplets and the MSSM Higgs doublets can resolve the familiar
two-loop discrepancy between the SUSY GUT prediction and the measured value of α3.
Our analysis highlights the advantages of the holomorphic scheme, where the pertur-
bative running of gauge couplings is saturated at one loop and further corrections are
conveniently described in terms of wavefunction renormalization factors. If the gauge
couplings as well as the extra Yukawas are of O(1) at the unification scale, the relevant
two-loop correction can be obtained analytically. However, the effect persists also in the
weakly-coupled domain, where possible non-perturbative corrections at the GUT scale
are under better control. The entire subsequent discussion is based on [48].

4.1 The two-loop problem

The consistency of low-energy data with supersymmetric gauge coupling unification [49]
is one of the strongest reasons to expect the discovery of supersymmetry at the LHC.
Moreover, gauge coupling unification is very well-motivated in heterotic string compact-
ifications (see [50] for some of the recent developments) as well as in F-theory [51].
Thus, if supersymmetry is discovered, the SUSY GUT framework will provide one of
the most direct ways to access the fundamental high-scale theory (see [52] for a recent
phenomenological study).

The SUSY GUT prediction for the strong coupling is, however, not perfect. In fact,
using two-loop β functions and identifying the effective SUSY breaking scale withmZ , the
prediction misses the measured value of α3(mZ) by many standard deviations. Possible
resolutions of this discrepancy include corrections due to an unusual SUSY spectrum
(for a recent analysis see [53]) or unexpectedly large GUT thresholds.

In the present chapter we focus on a different possibility: In addition to the usual
MSSM spectrum, we allow for extra chiral supermultiplets in complete vector-like GUT
representations. Such states appear in many different contexts and are well-motivated
theoretically (e.g. as the “messengers” of gauge mediation). While these extra multiplets
do not affect the one-loop prediction for α3, the induced two-loop effect is significant.
Unfortunately, it further enhances the familiar problems of the MSSM two-loop predic-
tion [54].

However, with extra multiplets naturally come extra Yukawas. We focus on Yukawa
couplings of the extra multiplets with the MSSM Higgs doublets (in line with the general
structure of the MSSM and with the natural extension of R-parity to these multiplets).
As a simple example one may think of a fourth vector-like generation. We also note that,
following [55–57], a similar class of models has recently been considered in [59, 118, 122]
as a possible solution to the little hierarchy problem. Furthermore, extra multiplets may
also improve the little hierarchy problem in the context of [124]. We take all of this as
an important extra motivation for our scenario.

Our results show that the new Yukawa interactions induce a significant shift in the
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strong coupling towards its correct experimental value. Moreover, we find that if the
extra Yukawas are relatively large at the GUT scale, we end up with an almost perfect
prediction for α3.

The chapter is organized as follows: We start in Sect. 4.2 with a two-loop analysis of
MSSM gauge unification in the holomorphic scheme. While gauge couplings run only at
one loop, the Z factors of chiral multiplets receive corrections at all loop orders. However,
to achieve two-loop precision for the α3 prediction, it is sufficient work with one-loop Z
factors. Their effect on the α3 prediction comes from the transition to the canonical
scheme (via the vector and Konishi anomalies), which we perform at the electroweak
scale. In this approach, the two-loop correction to the MSSM prediction for α3 arises
from a sum of terms ∼ lnZf , where f runs over all flavors, including in particular the
two Higgs doublets. It becomes apparent that a significant enhancement of the Higgs Z
factors can provide the desired shift in the α3 prediction.

Extra multiplets are introduced in Sect. 4.3.1. Their Z factors are not important
since these fields are integrated out above the scale where the transition to the canonical
scheme is performed. The detrimental effect of extra multiplets on gauge unification
mentioned earlier arises solely through the increased value of the gauge couplings at
high energies. The gauge couplings lead to decreasing Z factors as one runs from high
to low energy scales, and this effect is enhanced in the presence of extra matter.

In Sect. 4.3.2 we introduce extra Yukawa couplings. We first consider an analytically
calculable example with strong gauge coupling at the GUT scale. This can be realized
introducing extra multiplets in the 10+10 and 5+5 of SU(5) with masses near the TeV
scale. Assuming that the extra Yukawas of type 10 10HU and 10 10HD are also strong
at the GUT scale and neglecting the small effect of the top Yukawa coupling, we solve
this model analytically. The resulting shift in the α3 prediction, which is due to enhanced
Higgs Z factors, leads to nearly perfect agreement with the experimental value.

In Sect. 4.3.3 we extend our analysis to more general scenarios, keeping in particular
the GUT-scale gauge coupling in the perturbative domain. We demonstrate that our
promising initial results retain their validity in this setting as long as the extra Yukawa
couplings at the unification scale are sufficiently large.

Scenarios with a larger number of extra Yukawa couplings are investigated in
Sect. 4.3.4. We focus on two particular types of extension. First we analyze models
in which further 10 + 10 pairs with further extra Yukawas are introduced. We find that
in this case the total effect on the Higgs Z factor can not be increased significantly.
The second type of models we consider possess the same matter content as our minimal
model from Sect. 4.3.3 (i.e. a 10 + 10 plus a 5 + 5 pair). However, we now also allow for
couplings of type 5 10HD and 5 10HU . We find that in this case the two-loop prediction
for the inverse coupling 2π/α3 is increased even further. In particular, we are able to
reproduce the ‘optimal’ results from Sect. 4.3.3 under milder assumptions (i.e. for lower
couplings at the GUT scale).

Low- and high-scale threshold corrections and, in particular, the critical issue of
strong gauge couplings at the GUT scale [62–69] are discussed in Sect. 4.4. We emphasize
that, due to the absence of higher-order perturbative corrections to the holomorphic
couplings, precision unification is not compromised when allowing for relatively large
values of the GUT coupling. However, once one reaches the actual strong-coupling regime,
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non-perturbative corrections can arise and affect the α3 prediction. Thus, it appears to
be safe to stay in a domain where terms that are exponentially suppressed by the inverse
gauge coupling are negligible. This is sufficient for our purposes.

4.2 Conventional unification from a
holomorphic perspective

4.2.1 Basic formulae with holomorphic thresholds

We find it convenient to work in a holomorphic scheme, where the perturbative running
of gauge couplings is saturated at one loop [18,46,47]. Focussing for simplicity on SU(5)
models with adjoint breaking, we have (cf. the discussion in section 3.3.3):

2π

αh,i(µ)
=

2π

αh(Λ)
+ bi ln

Λ

µ
+ b

(3)
i ln

Λ

mh
3

+ bX,Yi ln
Λ

mh
X,Y

+ bΦ
i ln

Λ

mh
Φ

. (108)

At the moment, we may think of a situation where mh
3 ∼ mh

X,Y ∼ mh
Φ ∼ Mh

GUT and
µ � Mh

GUT � M . Furthermore, we identify the SUSY-breaking scale with mZ for now,
postponing a brief discussion of low-scale threshold effects to Sect. 4.4.

Thus, we can set µ = mZ and translate holomorphic to canonical gauge couplings
using the well-known anomaly relation [18,46,47]1:

2π

αh,i
=

2π

αi
+ T (Gi) ln g2

i +
∑
f

T (Rf
i ) lnZf . (109)

Here αi ≡ g2
i /(4π) is the canonical gauge coupling, T (Gi) = C2(Gi) is the Dynkin index

or quadratic Casimir of the adjoint of the gauge group Gi, and T (Rf
i ) is the Dynkin

index of the representation Rf
i of the flavor f (with respect to Gi). This gives rise to the

‘holomorphic master formula’2

2π

αi(mZ)
=

2π

αh(Λ)
+ bi ln

Λ

mZ

+ b
(3)
i ln

Λ

mh
3

+ bX,Yi ln
Λ

mh
X,Y

+ bΦ
i ln

Λ

mh
Φ

(110)

−T (Gi) ln(g2
i (mZ))−

∑
f

T (Rf
i ) lnZf (mZ) .

Obviously, the choice of Λ in this formula is irrelevant for the prediction of α3 from α1

and α2. In particular, we can set Λ = mh
X,Y (irrespective of the actual UV completion

scale) and write

2π

αi(mZ)
=

2π

αh(mh
X,Y )

+ bi ln
mh
X,Y

mZ

− T (Gi) ln(g2
i (mZ))−

∑
f

T (Rf
i ) lnZf (mZ) + ∆h

i,GUT ,(111)

1At our level of accuracy, we can ignore corrections associated with the transition to the scheme-
dependent (e.g. DRED) physical gauge coupling [70].

2i.e. the holomorphic version of what is called the ‘master formula’ in [18,64]
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with (holomorphic) GUT threshold corrections

∆h
i,GUT = b

(3)
i ln

mh
X,Y

mh
3

+ bΦ
i ln

mh
X,Y

mh
Φ

. (112)

The above threshold corrections will be small if the two relevant mass ratios are O(1).
This will be the case if the superpotential contains no parametrically small couplings.
Indeed, staying strictly within the holomorphic scheme, not only mh

Φ and mh
3 , but also

mh
X,Y are determined purely by superpotential terms (in contrast to the physical masses

of the X, Y multiplets, which include a prefactor g coming form the gauge kinetic term).

4.2.2 Compatibility with the conventional master formula

In order to establish the equivalence between Eq. (110) and the more conventional master
formula of [18], we need to replace holomorphic by physical mass parameters:

mp
X,Y = g mh

X,YZ
1/2
Φ , mp

ΦZΦ = mh
Φ , mp

3Z3 = mh
3 , (113)

where g, ZΦ and Z3 are the (GUT-scale) gauge coupling and Z factors3 and the super-
script ‘p’ stands for ‘physical’. Using these relations together with Eq. (109), we rewrite
Eq. (110) in terms of canonical gauge coupling and physical masses. Making also use of
the identity bX,Yi − 2T (Gi) = −2T (SU(5)), which follows from bX,Yi = −2T (RX,Y

i ) and
T (RX,Y

i ) + T (Gi) = T (SU(5)), and choosing M = mp
X,Y , we find

2π

αi(mZ)
=

2π

α(mp
X,Y )

+ bi ln
mp
X,Y

mZ

− T (Gi) ln
αi(mZ)

α(mp
X,Y )

−
∑
f

T (Rf
i ) ln

Zf (mZ)

Zf (m
p
X,Y )

+ ∆p
i,GUT ,(114)

with (physical) GUT threshold corrections

∆p
i,GUT = b

(3)
i ln

mp
X,Y

mp
3

+ bΦ
i ln

mp
X,Y

mp
Φ

. (115)

This is in agreement with [18,54,64]. It simply represents a slightly different param-
eterization of our ignorance of the high-scale input: In the ‘holomorphic master formula’
of the previous subsection, all the relevant non-holomorphic (and in this sense ‘unpro-
tected’) input data were the high-scale boundary values of the Higgs Z factors. (Note
that high-scale Z factors of complete SU(5) multiplets, such as MSSM matter, do not
affect the α3 prediction.) Now, by contrast, the very same ignorance is hidden in the
value of the physical Higgs triplet mass.

4.2.3 Predicting α3

It will be convenient to rewrite Eqs. (111) and (112) as:

2π

αi(mZ)
=

2π

αh(mh
X,Y )

+ bi ln
mh
X,Y

mZ

+ ∆i , (116)

3Since they appear only in logarithms, it does not matter whether we use a holomorphic or a canonical
gauge coupling and at which precise mass scale we evaluate all these quantities.
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collecting all two-loop effects (the logs of gauge couplings and Z-factors as well as GUT
thresholds) in the correction terms ∆i. Multiplying the first of these three equations by
(b2− b3)/(b1− b2) = 5/7, the second by (b3− b1)/(b1− b2) = −12/7, and adding them to
the third equation, one finds

2π

α3

=

[
−5

7

2π

α1

+
12

7

2π

α2

]
︸ ︷︷ ︸

one−loop prediction

+

[
5

7
∆1 −

12

7
∆2 + ∆3

]
︸ ︷︷ ︸

two−loop corrections

. (117)

Here we have suppressed the mass scale, mZ , for brevity. Setting the holomorphic
GUT thresholds to zero, the two-loop correction, i.e. the second bracket in Eq. (117),
explicitly reads

∆2−loop

(
2π

α3

)
=

24

7
ln g2

2 − 3 ln g2
3 +

27

14
lnZL −

9

7
lnZE +

9

2
lnZQ (118)

−45

14
lnZU −

27

14
lnZD +

9

14
lnZHU +

9

14
lnZHD .

Given that we are only aiming at two-loop accuracy, it is consistent to evaluate all
quantities entering the above expression with one-loop precision. In particular, we can
use one-loop Z-factors and the experimental values for the gauge couplings (given by
2π/α1 = 370.7, 2π/α2 = 185.8, 2π/α3 = 53.2). The Z factors can be written as [18]

ZL,HU ,HD = ZSU(2) × ZU(1)

ZQ = ZSU(3) × ZSU(2) × Z1/9
U(1)

ZE = Z4
U(1) (119)

ZU = ZSU(3) × Z16/9
U(1)

ZD = ZSU(3) × Z4/9
U(1) .

Introducing the shorthand notation ZU(1) ≡ Z1, ZSU(2) ≡ Z2, ZSU(3) ≡ Z3, the respec-
tive gauge group contributions read

Zi =

(
αGUT

αi(mZ)

)− 2CF,i
bi

. (120)

Here CF,i are the quadratic Casimir operators of the fundamental representations of
U(1), SU(2) and SU(3), whereas bi are the respective one-loop β-function coefficients (cf.
App. A). Furthermore, αGUT is the one-loop GUT coupling, 2π/αGUT = 153. Equation
(120) is valid under the assumption that all Z-factors are unity at MGUT. With

2CF,i =

(
3

10
,
3

2
,
8

3

)
and bi =

(
33

5
, 1, − 3

)
. (121)

we obtain from the general formula (120) :

ZU(1) =

(
αGUT

α1(mZ)

)− 2CF,1
b1

=

(
αGUT

α1(mZ)

)− 1
22

= 0.96 ⇒ lnZU(1) = − 0.04

ZSU(2) =

(
αGUT

α2(mZ)

)− 2CF,2
b2

=

(
αGUT

α2(mZ)

)− 3
2

= 0.75 ⇒ lnZSU(2) = − 0.29 (122)

ZSU(3) =

(
αGUT

α3(mZ)

)− 2CF,3
b3

=

(
αGUT

α3(mZ)

) 8
9

= 0.39 ⇒ lnZSU(3) = − 0.93 .
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Combining all contributions, we find:

2π

α3(mZ)
= 53.7︸︷︷︸

1−loop

− 4.08︸︷︷︸
vector anomaly

− 0.64︸︷︷︸
ZL

− 5.51︸︷︷︸
ZQ

+ 0.21︸︷︷︸
ZE

+ 3.22︸︷︷︸
ZU

+ 1.83︸︷︷︸
ZD

− 0.42︸︷︷︸
ZHU , ZHD

= 53.7 − 5.4 = 48.3 , (123)

i.e., the two-loop corrections shift the one-loop prediction away from the experimental
value of 53.2. As already advertised in the Introduction, this set of numbers suggests a
simple way to cure the problem: It will be sufficient to introduce a significant enhance-
ment of the Higgs Z factors at low energies. This will be realized in the following using
extra multiplets with extra Yukawa couplings.

For completeness, we record the result which is obtained if the canonical (rather
than the holomorphic) GUT threshold corrections are assumed to vanish. At the technical
level, this corresponds simply to replacing the ‘vector anomaly’ contribution −4.08 above
with

24

7
ln
α2(mZ)

αGUT

− 3 ln
α3(mZ)

αGUT

= − 0.67 − 3.17 = − 3.84 . (124)

The resulting prediction improves insignificantly.

The smallness of this change is due to the weak dependence of the α3 prediction
on the value of αGUT in Eq. (124). This is the result of the approximate cancellation
24/7 − 3 = 3/7. It is equivalent to the statement that the splitting between mX,Y and
mΦ affects the α3 prediction only very weakly, which reflects the similarity of the ratios
of the bΦ

i and the ratios of the corresponding MSSM coefficients bi.

Finally, we comment on the effect of MSSM Yukawa couplings which we have so far
neglected. At moderate tan β, the top Yukawa coupling gives the dominant correction
which we will now analyze. To this end we recall that in the presence of Yukawa couplings
the matter field Z-factors factorize as Z = ZG × ZY , where, as before, the gauge part
is given by Eqs. (12) and (13). In order to obtain the Yukawa sector correction we start
with the one-loop RGEs

2π
d lnZY

HU

dt
= −3αt , 2π

d lnZY
U3

dt
= −2αt , 2π

d lnZY
Q3

dt
= −αt , (125)

where we have defined αt = y2
t /4π, with yt being the canonical top Yukawa coupling.

The subscript ‘3’ in ‘U3’ and ‘Q3’ refers to the third generation quark-antiquark particles.
We also have the following one-loop equation for αt:

2π
d lnαt
dt

= 6αt −
16

3
α3 − 3α2 −

13

15
α1 . (126)

Following [54], we combine Eqs. (125) and (126), finding

2π
d lnZY

HU

dt
= − 8

3
α3 −

3

2
α2 −

13

30
α1 − 2π

1

2

d lnαt
dt

. (127)

If we now express each of the three gauge couplings through their respective one-loop
RGEs,

d lnα−1
i

dt
= − bi

2π
αi , (128)
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we can integrate Eq. (127) analytically:

ZY
HU

(mZ) =

(
αGUT

α1(mZ)

) 13
30 b1

(
αGUT

α2(mZ)

) 3
2 b2

(
αGUT

α3(mZ)

) 8
3 b3

(
αt(MGUT)

αt(mZ)

) 1
2

. (129)

As already mentioned, we focus on the moderately large tan β region, where mt = ytv
with v = 174 GeV. Using the low-scale values mt = 173 GeV and yt(mZ) = 0.99, we solve
Eq. (126) numerically, using the explicit one-loop formulae for αi(t). The resulting high-
scale value yt(MGUT) = 0.57 is then used to obtain lnZY

HU
(mZ) = 0.74. Furthermore,

Eqs. (125) imply ZY
U3

= (ZY
HU

)2/3 and ZY
Q3

= (ZY
HU

)1/3. Thus, we find

∆top

(
2π

α3

)
=

3

2
lnZY

Q3
− 15

14
lnZY

U3
+

9

14
lnZY

HU
=

3

7
lnZY

HU
= 0.32 . (130)

While, as is well known, this helps in lowering the α3 prediction, the effect is far too
small to cure the two-loop problem.

4.3 Extra multiplets

4.3.1 Extra multiplets without Yukawa couplings

To preserve one-loop gauge coupling unification in the most straightforward way 4, we
restrict our attention to complete SU(5) multiplets. More specifically, we focus on models
with n5 pairs of 5 + 5 and n10 pairs of 10 + 10. At one loop, this leads to a modification,
bi → b′i = bi + n, of the MSSM β function coefficients, where n = n5 + 3n10 is known as
the ‘messenger index’. This, of course, does not affect the one-loop α3 prediction.

The two-loop correction, given explicitly in Eq. (118), changes only because of the
modified Z factors of the MSSM matter fields. We emphasize that Eq. (118) does not
need to be supplemented with Z factors of the extra multiplets since these are assumed
to decouple above mZ .

The modified Z factors are obtained from Eqs. (119), as before, but now with the
gauge group contributions (cf. Eq. (120))

Zi(mZ) =

(
α̂GUT

αi(mZ)

)− 2CF,i

b′
i

=

(
2π

αi(mZ)

2π
αGUT

− n ln MGUT

mZ

)− 2CF,i
bi+n

. (131)

Here α̂GUT is the one-loop GUT-coupling in the presence of extra multiplets. Note that
the one-loop GUT scale, MGUT = 2 · 1016 GeV, is unaffected by the presence of the
additional matter. For simplicity, we have at his stage neglected the necessary hierarchy
between mZ and the scale at which the extra multiplets decouple.

The numerical values of the wavefunction renormalization factors associated with
the three gauge groups are listed in Table 3.

Using these results it is then easy to calculate the two-loop corrections to 2π/α3

arising from the different matter field Z-factors (cf. Table 4).

46



Table 3: Gauge group Z-factors

n lnZSU(3) lnZSU(2) lnZU(1)

1 - 1.06 - 0.33 - 0.04
2 - 1.27 - 0.38 - 0.05
3 - 1.63 - 0.46 - 0.06
4 - 2.53 - 0.66 - 0.08

4.45 - 3.87 - 0.93 - 0.11

Table 4: Matter field contributions

n 27
14

lnZL
9
2

lnZQ − 9
7

lnZE −45
14

lnZU −27
14

lnZD
9
14

lnZHU + 9
14

lnZHD
1 -0.72 -6.28 0.21 3.64 2.07 -0.46
2 -0.83 -7.46 0.26 4.37 2.49 -0.54
3 -1.01 -9.44 0.27 5.64 3.19 -0.66
4 -1.42 -14.40 0.41 8.59 4.95 -0.94

4.45 -2.00 -21.67 0.57 13.07 7.56 -1.34

It is now a matter of straightforward calculation to obtain the overall two-loop pre-
diction for 2π/α3 for different values of the n parameter (cf. Table 5).

The value n = 4.45 formally corresponds to α̂GUT = 1. Of course, this has to be
interpreted as n = 5 together with an appropriately raised decoupling scale. We see that
with increasing n the two-loop prediction for α3 becomes systematically worse.

Of course, we could easily repeat the analysis using the assumption of vanishing
canonical GUT-thresholds. In this case, the increased value of the GUT-coupling enters
the result also via the analogue of Eq. (124), with αGUT replaced by α̂GUT. For n = 4.45,
this contribution changes from −3.84 to −5.16, giving 2π/α3 = 44.73.

4.3.2 Extra multiplets with Yukawa couplings - an example with strong
GUT coupling

In the following we extend our analysis of Sect. 4.3.1 by allowing renormalizable couplings
between the SU(5) matter and the MSSM particles. To this end let us assume that there
is at least one pair of 10 + 10 vector-like matter. In analogy to the MSSM, we denote
its field content by 10 = (Qe, Ue, Ee) and 10 = (Qe, U e, Ee), with an index ‘e’ for ‘extra
multiplet’. We can now introduce extra Yukawa couplings of the form:

W ⊃ κQe UeHU + κQeU eHD , (132)

These new interactions modify the prediction for α3 solely through their effect on the
Higgs wavefunction renormalization factor ZH (where ZH stands for either ZHU or ZHD).
We note that the couplings κ, κ can be extended to full 4× 4 Yukawa matrices allowing
for mixing between the three MSSM generations and the additional matter. However,
these mixings have to be small due to FCNC constraints [59] (see also [72, 73]) and we
neglect them.

4See [71] for an alternative point of view
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Table 5: Two-loop prediction for 2π/α3

n Prediction for 2π/α3

1 48.08
2 47.91
3 47.61
4 46.81

4.45 45.81

In order to simplify the analysis in this section let us once again neglect any con-
tributions arising from the MSSM Yukawa sector (based on our results from Sect. 4.2.3
and App. B we expect those contributions to be small). This allows us to treat κ and
κ on an equal footing. In particular we can set κ = κ and effectively deal with a single
Yukawa coupling (say κ) and a single Higgs (calling this field H).

The one-loop RGE for ZH (with t = lnµ) reads

2π
d lnZH
dt

= −3ακ +
3

10
α1 +

3

2
α2 , (133)

where we have defined ακ = κ2
c/(4π), with κ2

c = κ2/(ZHZQeZUe) the canonical Yukawa
coupling. It is clear that a large κ will drive ZH to larger values at the electroweak scale,
improving the α3 prediction.

Equation (133) entails the factorization property

ZH = ZG
H︸︷︷︸

gauge part

× ZY
H︸︷︷︸

Yukawa part

, (134)

where ZG
H and ZY

H represent the contributions from the gauge couplings α1, α2 and the
Yukawa coupling ακ. As before, the gauge part ZG

H is determined by Eqs. (119) and
(131). We thus focus on the one-loop running of ZY

H :

2π
d lnZY

H

dt
= −3ακ . (135)

The corresponding one-loop RGE for ακ reads

2π
d lnακ
dt

= 6ακ −
16

3
α3 − 3α2 −

13

15
α1 . (136)

In the following we will analyze a model in which the value of the low-scale ZY
H -factor

can be obtained in a completely analytical manner. To this end let us assume that both
the extra Yukawa couplings as well as the gauge couplings begin their evolution at the
strong-coupling point at the high scale:

α̂GUT ∼ ακ(MGUT) ∼ 1 . (137)

Formally this corresponds to n = 4.45. In this case the relations

α2 =
b′3
b′2
α3 α1 =

b′3
b′1
α3 (138)
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will be approximately valid at all energies significantly below the GUT scale.5 Equa-
tion (136) now takes the form

2π
d lnακ
dt

= 6ακ − α3

(
16

3
+

3b′3
b′2

+
13b′3
15b′1

)
. (139)

Using the one-loop RGEs for the gauge couplings

d lnα−1
i

dt
= −b′i

αi
2π

, (140)

this can be further rewritten as

2π
d ln(ακ/α3)

dt
= 6ακ − α3

(
16

3
+

3b′3
b′2

+
13b′3
15b′1

+ b′3

)
. (141)

Eq. (141) has an infrared-stable fixed point of the Pendleton-Ross type [74] given by

ακ = 1.37α3 for n = 4.45 . (142)

As a result of fast initial evolution, the ratios of Yukawa and gauge couplings quickly
reach the fixed-point regime, which is then maintained all the way down to the weak
scale. From Eq. (135) we now have

d lnZY
H

dt
= −3 · 1.37

α3

2π
=

4.11

b′3

d lnα−1
3

dt
(143)

and

lnZY
H(mZ) = 2.83 ln(αGUT/α3(mZ)) = 6.05 . (144)

The resulting correction to the α3 prediction is

∆κ

(
2π

α3

)
=

9

7
lnZY

H(mZ) = 7.78 , (145)

which is just sufficient to compensate the negative two-loop effects in the last line of
Table 5. Of course, at this stage our promising results should be taken with caution.
Specifically, when talking about a strongly-coupled unified theory, one faces the danger of
potentially large and incalculable corrections at the GUT scale which could, in principle,
render the entire two-loop analysis obsolete. We postpone the discussion of these issues
to Sect. 4.4. We also note that the influence of extra Yukawas above the GUT scale on
the unified coupling has recently been discussed in [75].

4.3.3 Effect of extra Yukawas in models with perturbative gauge couplings

In this section we extend our previous results to a more general setting by lifting some
of the simplifying ad hoc assumptions that were made so far. This means in particular
that we introduce an explicit decoupling scale M for the extra matter fields. Also, from
now on the messenger index n is allowed to attain only integer values (however, we only

5One writes α−1
i (µ) = O(1) + b′i ln

(
MGUT

µ

)
and neglects the O(1) term.
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allow for n ≥ 3 since we assume at least one 10 + 10 pair). The superpotential in the
extended Yukawa sector is still specified by Eq. (132). In order to improve the accuracy
of our predictions we will also take into account the contributions from the MSSM top
Yukawa coupling. Since this coupling enters the one-loop RGEs of ακ and ακ in a different
manner, this step explicitly breaks the symmetry of our model with respect to κ and κ.
In particular, from now on we will distinguish explicitly between these two couplings.

The most important constraint which we impose on the models in this section is
perturbativity of the gauge couplings. Among other things this implies that the analyt-
ical approach we developed in the previous section is no longer applicable. Instead we
will employ an alternative technique, which will allow us to handle our models semi-
analytically.

To this end we will have to deal with the two different regimes of the theory (the
high-energy regime above M and the low-energy regime below M) separately. Let us
focus on the high-energy theory first. As was mentioned before, any MSSM field obeys
a factorization property analogous to Eq. (134). This means that the gauge and Yukawa
contributions to the matter field Z-factors decouple and can be analyzed independently.
The gauge parts of the Z-factors are obtained from Eq. (131) by simply replacing mZ →
M . In order to get the Yukawa parts we will need the one-loop RGEs for the ZY (above
M):

2π
d lnZY

HU

dt
= −3αt − 3ακ , 2π

d lnZY
HD

dt
= −3ακ ,

2π
d lnZY

U3

dt
= −2αt , 2π

d lnZY
Q3

dt
= −αt . (146)

Since we regard only the κ, κ and yt Yukawas as non-vanishing, all other ZY -factors are
irrelevant for our analysis. In the following we will also need the one-loop equations for
the three aforementioned Yukawa couplings:

2π
d lnαt
dt

= 6αt + 3ακ −
13

15
α1 − 3α2 −

16

3
α3

2π
d lnακ
dt

= 6ακ + 3αt −
13

15
α1 − 3α2 −

16

3
α3 (147)

2π
d lnακ
dt

= 6ακ −
13

15
α1 − 3α2 −

16

3
α3

Note that these identities generalize Eq. (136) to the case of non-vanishing αt. Following
[54] we can combine Eqs. (147) and (146) to get a closed analytic expression for the
Yukawa parts of the relevant Z-factors:

ZY
Q3

(M) =

(
α̂GUT

α1(M)

) 1
9

13
15 b′1

(
α̂GUT

α2(M)

) 1
9

3
b′2
(
α̂GUT

α3(M)

) 1
9

16
3 b′3
(
αt,GUT

αt(M)

) 2
9

×

×
(
ακ,GUT

ακ(M)

)− 1
9

ZY
U3

(M) =

(
α̂GUT

α1(M)

) 2
9

13
15 b′1

(
α̂GUT

α2(M)

) 2
9

3
b′2
(
α̂GUT

α3(M)

) 2
9

16
3 b′3
(
αt,GUT

αt(M)

) 4
9

×

×
(
ακ,GUT

ακ(M)

)− 2
9

(148)

50



ZY
HD

(M) =

(
α̂GUT

α1(M)

) 1
2

13
15 b′1

(
α̂GUT

α2(M)

) 1
2

3
b′2
(
α̂GUT

α3(M)

) 1
2

16
3 b′3 ×

×
(
ακ,GUT

ακ(M)

) 1
2

(149)

ZY
HU

(M) =

(
α̂GUT

α1(M)

) 2
3

13
15 b′1

(
α̂GUT

α2(M)

) 2
3

3
b′2
(
α̂GUT

α3(M)

) 2
3

16
3 b′3
(
αt,GUT

αt(M)

) 1
3

×

×
(
ακ,GUT

ακ(M)

) 1
3

.

The theory below the scale M is the MSSM. Therefore we can apply our formulas
from Sect. 4.2.3. The only modification is that we now integrate from mZ to M rather
than to MGUT. As an illustrative example we record the result for the Yukawa part of
the ZHU factor:

ZY
HU

(mZ)

ZY
HU

(M)
=

(
α1(M)

α1(mZ)

) 13
30 b1

(
α2(M)

α2(mZ)

) 3
2 b2

(
α3(M)

α3(mZ)

) 8
3 b3

(
αt(M)

αt(mZ)

) 1
2

(150)

The calculation of the other Z-factors proceeds in a similar manner. The low-scale values
Z(mZ) are then obtained by multiplying the expressions for Z(M) and Z(mZ)/Z(M).

The brackets in Eqs. (149) and (150) involving gauge couplings can be evaluated
analytically (by using the respective one-loop values). To calculate the Yukawa brack-
ets we have solved the one-loop RGEs in Eq. (147) numerically by evolving them from
the GUT down to the electroweak scale and using a θ-function approximation at the
decoupling scale M . The resulting low-scale values for the three Yukawa couplings were
then substituted in Eqs. (149) and (150). In Tables 6 and 7 we have listed the two-loop
corrections to 2π/α3 for different values of the two parameters M and n. We have also
tested the sensitivity of our results against variations of the initial values ακ(MGUT) and
ακ(MGUT) (we remark that the values ακ(MGUT) = ακ(MGUT) = 0.228, 0.457, 0.913 cor-
respond to 1/6, 1/3, 2/3 times the fixed point value 1.37 of the extra Yukawa couplings).
In each case the initial value for the top Yukawa coupling at MGUT has been adjusted to
reproduce the correct low-energy parameter yt(mZ) = 0.99 (see also App. B).

A quick glance at Tables 6 and 7 reveals that models with n = 4 are favored over
their n = 5 counterparts. Also, we have intentionally omitted the n = 3 case because the
n = 3 models are unable to generate a sufficiently large GUT coupling (say αGUT ≥ 0.2).

It is important to note that the low-energy couplings ακ(mZ) and ακ(mZ) are virtu-
ally insensitive to their input values at the GUT scale. This observation indicates a very
straightforward way of increasing the two-loop prediction for 2π/α3 – namely by taking
the input parameters ακ,GUT and ακ,GUT as large as possible. Note also that (in con-
tradistinction to gauge couplings) the Yukawas do not exhibit any flavor enhancement
(cf. Sect. 4.4). Therefore the actual expansion parameters are ακ/4π and ακ/4π, which
means that the strong coupling condition reads ακ/4π ∼ ακ/4π ∼ 1. Following this line
of thought we have considered models whose input values ακ,GUT and ακ,GUT are as high
as 6.0.

We once again emphasize that the gauge couplings in this section are only allowed to
attain perturbative values (in contradistinction to their Yukawa counterparts). As will
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Table 6: Numerical results n = 4 (one pair of extra Yukawa couplings)

M(GeV) αGUT ακ,GUT = ακ,GUT ακ(M) ακ(M) yt(MGUT) 2π/α3

500 0.227 0.228 0.102 0.134 0.68 51.10
500 0.227 0.457 0.102 0.134 0.84 51.55
500 0.227 0.913 0.103 0.134 1.01 51.99
500 0.227 2.000 0.103 0.134 1.26 52.50
500 0.227 4.000 0.103 0.134 1.52 52.95
500 0.227 6.000 0.103 0.134 1.70 53.21
300 0.245 0.457 0.105 0.137 0.78 51.67
300 0.245 2.000 0.105 0.137 1.18 52.62
300 0.245 4.000 0.105 0.137 1.42 53.07
300 0.245 6.000 0.105 0.137 1.58 53.33

Table 7: Numerical results n = 5 (one pair of extra Yukawa couplings)

M(GeV) αGUT ακ,GUT = ακ,GUT ακ(M) ακ(M) yt(MGUT) 2π/α3

25 · 104 0.229 0.228 0.097 0.121 0.70 50.34
25 · 104 0.229 0.457 0.097 0.122 0.86 50.79
25 · 104 0.229 0.913 0.098 0.122 1.04 51.24
25 · 104 0.229 2.000 0.098 0.122 1.29 51.74
25 · 104 0.229 4.000 0.098 0.122 1.56 52.19
25 · 104 0.229 6.000 0.098 0.122 1.73 52.45

be argued in Sect. 4.4 the lowering of the unified coupling from αGUT ∼ O(1) down to
∼ 0.2 can potentially have a dramatic impact on the magnitude and calculability of the
high-scale threshold corrections around the GUT scale.

4.3.4 Models with further Yukawa couplings

In the following we will investigate the principal effect of introducing further non-
standard Yukawa couplings. We focus on two extensions: First we consider adding new
10 + 10 pairs which couple to the observable sector through an interaction analogous
to Eq.(132). In particular we increase the messenger index to n ≥ 6. Second, we ex-
plore a different possibility by restricting ourselves to the n = 4 case but allowing for
renormalizable interactions between the 10 + 10 and the 5 + 5 fields.

Following this line of thought let us now increase the number of additional vector-like
multiplets to n = 6 by introducing two 10 + 10 pairs. We postulate a superpotential of
the form:

W ⊃ κQe UeHU + κQeU eHD + κ′Q′e U
′
eHU + κ′Q

′
eU
′
eHD (151)

where the primed fields denote the matter content of the new 10 + 10 pair. In the
following we will treat the two Yukawa pairs (κ, κ) and (κ′, κ′) on an equal footing, i.e.
we assume that κ = κ′ and κ = κ′. Note that by going from a superpotential of the form
(132) to superpotential of the form (151) we only change the running of the Yukawa part
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of the Z-factors above the decoupling scale. The relevant one-loop RGEs are

2π
d lnZY

HU

dt
= −3αt − 6ακ , 2π

d lnZY
HD

dt
= −6ακ ,

2π
d lnZY

U3

dt
= −2αt , 2π

d lnZY
Q3

dt
= −αt (152)

for the ZY and

2π
d lnαt
dt

= 6αt + 6ακ −
13

15
α1 − 3α2 −

16

3
α3

2π
d lnακ
dt

= 9ακ + 3αt −
13

15
α1 − 3α2 −

16

3
α3 (153)

2π
d lnακ
dt

= 9ακ −
13

15
α1 − 3α2 −

16

3
α3

for the Yukawas.

Combining Eqs. (152) and (153) we arrive at the analogue of Eq. (149):

ZY
Q3

(M) =

(
α̂GUT

α1(M)

) 1
12

13
15 b′1

(
α̂GUT
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The results from our numerical analysis are listed in Table 8. The prediction for α3

improves only slightly in comparison to the ‘optimal’ n = 4 models with a single pair of
extra Yukawas.

Table 8: Numerical results n=6 (two pairs of extra Yukawa couplings)

M(GeV) αGUT ακ,GUT = ακ,GUT ακ(M) ακ(M) yt(MGUT) 2π/α3

17 · 106 0.227 0.228 0.064 0.080 1.26 51.08
17 · 106 0.227 0.457 0.065 0.080 1.68 51.66
17 · 106 0.227 0.913 0.065 0.081 2.24 52.25
17 · 106 0.227 2.000 0.065 0.081 3.08 52.92
17 · 106 0.227 4.000 0.065 0.081 4.06 53.52
17 · 106 0.227 6.000 0.065 0.081 4.77 53.86

The next type of models we consider contain one pair of 10 + 10 and one pair of
5 + 5 extra multiplets. Using the standard decomposition 5 = (De, Le) and 5 = (De, Le)
we introduce a superpotential of the form:

W ⊃ κQe UeHU + κQe U eHD + λQeDeHD + λQeDeHU (155)
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Note that this is a direct extension of the n = 4 models from Sect. 4.3.3 – we have simply
added two new interactions to our superpotential. The calculation of the two-loop α3-
correction proceeds exactly as before. Here we only list the relevant one-loop RGEs above
the decoupling scale M :

2π
d lnZY

HU

dt
= −3αt − 3ακ − 3αλ , 2π

d lnZY
HD

dt
= −3ακ − 3αλ ,

2π
d lnZY

U3

dt
= −2αt , 2π

d lnZY
Q3

dt
= −αt (156)

for the matter field ZY -factors and

2π
d lnαt
dt

= 6αt + 3ακ + 3αλ −
13

15
α1 − 3α2 −

16

3
α3

2π
d lnακ
dt

= 6ακ + 3αt + 3αλ −
13

15
α1 − 3α2 −

16

3
α3

2π
d lnακ
dt

= 6ακ + 3αλ −
13

15
α1 − 3α2 −

16

3
α3 (157)

2π
d lnαλ
dt

= 6αλ + 3ακ −
7

15
α1 − 3α2 −

16

3
α3

2π
d lnαλ
dt

= 6αλ + 3αt + 3ακ −
7

15
α1 − 3α2 −

16

3
α3

for the Yukawa couplings. As before we have defined αλ = λ2/(4π) and αλ = λ
2
/(4π) .

The modification of Eq.(149) reads
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We have presented the results from our numerical analysis in Table 9. It is impor-
tant to note that, already for moderate input values of the extra Yukawas at the GUT
scale, we reach the region of the experimentally measured α3. Hence in models of this
type it is no longer necessary to invoke excessively large Yukawa couplings at the high-
scale. For this reason we have restricted ourselves to a region of parameter space where
ακ,GUT, ακ,GUT, αλ,GUT, αλ,GUT < 1.
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Table 9: Numerical results n=4 (two pairs of extra Yukawa couplings)

M(GeV) αGUT ακ,GUT = ακ,GUT = αλ,GUT = αλ,GUT yt(MGUT) 2π/α3

1000 0.206 0.228 2.25 52.39
1000 0.206 0.457 3.38 52.99
1000 0.206 0.913 5.20 53.58

4.4 Threshold corrections and higher-order effects

In this section we discuss issues related to low- and high-energy thresholds and other
higher-order corrections. The effect of the superpartner spectrum on the value of the
strong coupling has been studied in detail in [76–78]. The analysis reveals that the low-
energy thresholds potentially shift the predicted value of α3 by a significant amount. For
instance, it is well-known that certain SUSY spectra with light gluinos can compensate
for the detrimental two-loop effect discussed in Sect. 4.2.3 and therefore bring the α3-
prediction in line with the experimental value (see e.g. [79]). However, gluinos tend to
be heavy in the simplest mediation scenarios and it generally requires a compensation
of several mediation effects to make them light. A detailed study of concrete models
realizing this possibility has recently appeared in [53].

Another potentially important contribution arises from heavy particle thresholds.
For example, from Eqs. (112) or (115) it is clear that in order to shift the prediction for
2π/α3 by several units the logarithms of the mass ratios mh

X,Y /m
h
3 or mp

X,Y /m
p
3 have to

be several units themselves. In other words, the Higgs triplets have to be ∼ 102 lighter
than MGUT and proton decay has to be avoided through some version of the missing
partner mechanism (see [80] for references). Of course, thresholds with larger numerical
prefactors (and hence smaller required mass ratios) can arise in models with large GUT-
scale representations (see, e.g., [76,81–83]). A similar enhancement can come from large
multiplicities of heavy states (this has in particular been argued in the context of certain
string-motivated models [84]).6 All of this clearly makes ‘GUT-scale thresholds’ a viable
explanation of the precise value of α3.

The models considered in this chapter offer an alternative solution to the two-loop
α3-discrepancy. This solution differs conceptually from the aforementioned approaches
as it does not rely on any type of threshold effects. It realizes a lower α3 value at
the expense of relatively large extra Yukawa couplings. The latter do not require any
additional SU(5)-breaking effect (beyond the doublet-triplet splitting, which is anyway
present in the MSSM). Nevertheless, precision at the high scale remains a critical issue
and the rest of this section is devoted to its analysis.

The extra multiplets supporting the extra Yukawas raise the value of the GUT-scale
gauge coupling. It is then tempting to consider the extreme case of such scenarios: Grand
unification at the strong-coupling point. Even more conservatively, one might want to
drop the GUT-assumption altogether and to demand only that all three SM gauge factors
become strongly coupled at the same energy scale [62] (for early related work see [85]).
The resulting high-scale error for the α3 prediction can be estimated using the familiar

6For explicit orbifold constructions where the relevant corrections decouple from the string scale and
their size could be checked straightforwardly see e.g. [86].
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one-loop formula

4π

αi(mZ)
=

4π

αi(MGUT)
+ 2bi ln(MGUT/mZ) . (159)

Naively, ‘strong coupling’ means that the loop-expansion parameter g2/(16π2) is of order
one. This would imply that 4π/αi(MGUT) = 1 ± O(1) in Eq. (159). The resulting error
of the α3 prediction is rather small, around 1%. However, because of the large number of
flavors, the actual expansion parameter is in fact closer to α rather than α/(4π).7 Being
at strong coupling then means that 1/αi(MGUT) = 1 ± O(1), which corresponds to a
∼ 10% error of the α3 prediction. While this easily brings the 2-loop MSSM prediction
for α3 in line with the data, it also makes any discussion of 2-loop effects obsolete: The
error is simply too large.

For the purpose of the present analysis, we adopt a different point of view: We assume
that a model with true, calculable unification exists in principle and that the coupling
strength is controlled by some high-scale holomorphic parameter (e.g. a string theory
modulus). When talking about strongly-coupled unification, we assume that this model
is realized in a region of its parameter space where αGUT ' O(1).

To be more specific, consider the string-theoretic (heterotic) formula [87]

fi(S, T ) = kiS + ∆i(T ) (160)

for the gauge-kinetic functions of the three SM gauge groups. For the conventional embed-
ding of GSM in SU(5) and SU(5) in E8, the ki are unity, corresponding to tree-level uni-
fication. The crucial point is that the modulus governing the tree-level coupling strength
(in this case the dilaton superfield S) does not appear in the loop corrections. They de-
pend on a set of different moduli which we collectively denote by T . The reason for this
is basically the same as in field-theoretic arguments for 1-loop running: holomorphicity
and shift symmetry of Im(S) [46,47]. Now, moving the modulus S from its perturbative
value to the region where the expansion parameter is O(1), we see that the high-scale
non-universal correction ∆i(T ) is not enhanced.8 The only potential danger comes from
non-perturbative extra terms ∼ Ci exp(−aiS) which can appear on the r.h. side of Eq.
(160). To keep such terms under control, we only have to assume that exp(−ReS) � 1
– a much weaker requirement than 1/ReS � 1.

A further important issue is the error which builds up along the RG trajectory from
mZ to MGUT as a result of using the two-loop instead of the full β-function for the gauge
couplings. According to the previously discussed master formulae (cf. Eqs. (110) and
(114)) this error is identical to the error of the lnZ terms. At one loop (and focussing
only on the gauge sector for simplicity) we have d lnZ/dt ∼ α , which upon integration

7There are at least two ways to see this: First, we focus on the contribution of all ‘flavors’ to the
one-loop β-function of the QCD coupling at high scales. The corresponding β-function coefficient is
2bflavor

3 = 2(n + 6) ≈ 20 (n = 4 or 5). This more than compensates for the suppression by 4π, leaving
us with a number close to α as the actual expansion parameter. Alternatively, we consider the one-loop
contribution of the gluons/gluinos, 2bcolor

3 = 18. Once again, this is more than sufficient to cancel the
factor of 4π.

8The dual situation, where the leading-order gauge coupling is governed by the GUT-brane volume
T and corrections (related to a higher-dimension operator) depend on the dilaton S, arises in F-theory
GUTs. These corrections tend to aggravate the two-loop discrepancy for α3 [88], potentially making
‘our’ Yukawa effect the more interesting (see also [89]).
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gives lnZ ∼ ln t. It is clear that this leading order effect receives contributions from
the entire integration range. We will now argue that higher-order corrections are UV
dominated. To this end we recall that at two loops the RGE for a generic Z-factor has
the form:

d lnZ

dt
∼ α + α2 , (161)

where α is the canonical (or physical) gauge coupling. From the anomaly relation
Eq. (109) we obtain schematically

α ∼ αh + α2
h lnαh + α2

h lnZ ∼ 1

t
+

ln t

t2
, (162)

where we have only displayed the leading corrections. Note that we have used the (per-
turbatively exact) one-loop holomorphic gauge coupling αh ∼ 1/t as well as the fact that
(at one loop) lnZ ∼ ln t . Substituting the above relation in the two-loop RGE (161)
gives

lnZ ∼
∫
dt

t
+

∫
ln t

t2
dt , (163)

where terms ∼ 1/t3 or higher were neglected. The first term on the r.h. side gives
the previously discussed leading order ln t effect. The second integral is UV dominated,
i.e., this subleading effect can indeed be neglected at our level of accuracy. To be more
precise, the corresponding correction is not enhanced by the parametrically large quantity
t ∼ ln(MGUT/mZ) or a log thereof. Hence, it corresponds to an O(1) correction to lnZ.
This is equivalent to a multiplicative O(1) uncertainty of the high-scale Z factor, which
we anyway have to accept in the absence of an explicit GUT model. The same argument
goes through for contributions of even higher order.

To summarize, our strongly-coupled unification scenario is defined as follows: The
unified gauge coupling is taken to be relatively large, αGUT ∼ O(1), while non-
perturbative corrections are still under control. This may be the case because there is at
least a (small) hierarchy of the type exp(−4π/αGUT) � 1 or because the coefficients of
such non-perturbative terms happen to be small. In such a setting, our 2-loop analysis
of the strongly coupled model from Sect. 4.3.2 is meaningful and necessary.

We also emphasize that the aforementioned problems related to large and potentially
incalculable GUT-scale corrections are automatically avoided in the models we considered
in Sects. 4.3.3 and 4.3.4: All three gauge couplings remain within the perturbative domain
throughout the entire energy range from mZ to MGUT.

4.5 Conclusions

In this chapter we have shown that models with extra Yukawa couplings have a dramatic
impact on the prediction for α3 at the weak scale. They can bring the two-loop predic-
tion in line with experimental data without appealing to large GUT-scale or weak-scale
threshold corrections. This is an effect which has no analogue in the realm of MSSM
physics – even the top Yukawa coupling is negligible in this context.
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We introduced our main ideas using a simple model with strong GUT coupling. This
model contains an extra 10+10 pair with top-like Yukawa coupling to the MSSM Higgs
doublets, together with further 5+5 pairs making the GUT-scale gauge coupling strong.
In this context, the main features and implications of our construction can be understood
in a completely analytical manner.

We then demonstrated that our promising initial results retain their validity in sit-
uations where the gauge couplings do not leave the perturbative domain. This more
complete and partially numerical analysis revealed, among other things, that large input
values for the extra Yukawa couplings at the GUT scale can lead to an almost perfect
prediction for the electroweak-scale strong coupling.

We also tested the sensitivity of our results to extensions of the minimal setting
described above. In particular, the positive effect of the extra Yukawas on the unifica-
tion prediction for α3 is significantly further enhanced for a complete vector-like extra
generation with both up-type and down-type Yukawa couplings. In such models, perfect
agreement with experiment is achieved without invoking excessively large values for the
extra Yukawa or gauge couplings at the GUT scale. By contrast, introducing several
copies of 10 + 10 with corresponding Yukawa couplings leads to a weaker enhancement
of the Yukawa effect. This can be traced to the increased scale M at which the extra
multiplets decouple. Such a raised decoupling scale, which is necessary to keep the GUT
coupling moderate, partially compensates for the positive effect of further extra Yukawas.

The presence of additional vector-like matter (at comparatively low-energies) and of
extra Yukawa couplings, which have large values in the ultraviolet, can clearly have a
significant impact on the MSSM phenomenology. We expect that the enhanced Higgs Z
factors, which are at the heart of the effect we analyse, would in particular affect the
values of the Higgs mass parameters m2

HU
, m2

HD
, µ2 and Bµ which are expected in any

concrete SUSY breaking model. We note that effects on the Higgs mass bounds in related
non-supersymmetric models have recently been analysed in [90].

Finally, as we have discussed in some detail in this chapter, the increased value of the
GUT gauge coupling does not lead to a precision loss of the unification prediction for α3.
The basic reason is that holomorphicity forbids the dominant higher-loop effects, which
arise only via the non-holomorphic Z factors of MSSM chiral multiplets. However, non-
perturbative GUT scale corrections clearly need to be controlled. This is easily possible
in our setting, since it is not necessary to move to the actual strong-coupling point.

58



5 The µ/Bµ problem and lopsided GM

Gauge mediation constitutes a very predictive framework which describes the trans-
mission of SUSY breaking effects from the hidden to the observable sector [45, 91, 92].
Among other things it guarantees flavor universality of the soft sfermion masses at the
messenger scale and therefore suppresses the potentially dangerous flavor-changing neu-
tral currents [93].

However, in its minimal form gauge mediation has nothing to say about the origin of
the µ and Bµ terms. The problem arises as follows: Recall that in MGM models SUSY
breaking effects are transmitted from the hidden to the observable sector only through
gauge interactions. In the absence of direct coupings between the messenger and the Higgs
sector Peccei-Quinn is an exact symmetry of the fundamental theory. The Higgs bilinear
term µHuHd , on the other hand, breaks this symmetry explicitly [94, 95]. Therefore
this operator cannot be present in the low-energy effective action which arises after
integrating out the heavy messenger fields at one loop. In this sense the MGM scenario
is not considered satisfactory unless one specifies the extra mechanism responsible for
generating µ and Bµ.

There are various proposals in the literature for generating a Higgs bilinear term of
the correct order of magnitude. In the context of the so called Guidice-Masiero solution,
which was initially formulated in models with gravity mediated supersymmetry breaking
(see [96]), a tree-level µ-term is forbidden from the original superpotential and is induced
by the following higher-dimensional effective operators in the Kähler potential:

K ⊃ c1

M

∫
d4θHuHdX

† +
c2

M2

∫
d4θHuHdXX

† + h.c. (164)

The parametrization in eq.(164) applies both to models with gauge and gravity mediated
supersymmetry breaking. In the GMSB context X is a spurion superfield which couples
to the hidden sector, M is the messenger scale and the prefactors c1 and c2 stand for
the product of coupling constants and possible loop factors. The interactions in eq.(164)
can be generated radiatively after introducing direct couplings between the Higgs and
the messenger sector and integrating out the heavy messenger superfields at one loop.
Substituting X by its F -term VEV, we obtain a µ = c1Λ term from the first operator
in eq.(164) and a Bµ = c2Λ2 term from the second operator (with Λ = FX/M being
the effective scale of SUSY breaking). In theories with gravity mediated supersymmetry
breaking one can assume that the prefactors c1 and c2 are of order one, c1 ∼ c2 ∼ O(1),
which leads to the celebrated Guidice-Masiero solution Bµ ∼ µ2. In the gauge mediated
supersymmetry breaking setup, on the other hand, µ and Bµ are generated at one loop
and one anticipates that c1 ∼ c2 ∼ 1/16π2. Therefore the second power µ2 is loop
suppressed with respect to Bµ , i.e. Bµ ∼ 16π2 µ2 . This leads to the relation

Bµ � µ2 (165)

which is incompatible with electroweak symmetry breaking, due to the unacceptably
large Bµ. For this reason eq.(165) is usually referred to as the µ/Bµ problem of gauge-
mediated supersymmetry breaking [30].

Alternative solutions, which avoid eq.(165) and ensure that Bµ ∼ µ2, were formulated
e.g. in the context of the so called dynamical relaxation mechanism [30]. Very recently,
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the authors of [97] have pointed out that successful EWSB can be achieved even if the
problematic relation Bµ � µ2 is kept intact provided that one assumes a non-trivial
hierarchy between the mass terms in the Higgs sector at the electroweak scale:

µ2 ∼ m2
Hu � Bµ � m2

Hd
. (166)

As was argued in [97] the pattern in eq.(166) can be obtained by considering models
with gauge mediated supersymmetry breaking in which the two Higgs doublets couple
directly to messenger superfields (or more generally to superfields in the SUSY breaking
sector).

5.1 A new approach to the µ/Bµ problem

Let us analyze eq.(166) in more detail. To this end we shall look at the tree-level mini-
mization conditions in the Higgs sector:

m2
Z

2
= −|µ|2 −

m2
Hu

tan2 β −m2
Hd

tan2 β − 1
(167)

sin 2β =
2Bµ

2|µ|2 +m2
Hu

+m2
Hd

(168)

We will now argue that the hierarchy (166) leads to a fully natural electroweak symmetry
breaking. Indeed, taking into consideration that sin 2β ≈ 2Bµ/m

2
Hd

, we can rewrite (168)
as a quadratic equation for tan β

tan2 β − 4Bµ

m2
Hd

tan β + 1 = 0 (169)

which leads to

tan β ≈
m2
Hd

Bµ

� 1 . (170)

This shows that the proposed solution is operational only in the large tan β regime. From
eq.(167) we then obtain:

m2
Z

2
= −|µ|2 −m2

Hu −
m2
Hd

tan2 β
(171)

Note that all terms on the right hand side can be made to be roughly of the same
order of magnitude while keeping the hierarchy (166) intact. This is most easily seen by
considering the parametrization from [97]

µ = εΛHiggs Bµ = εΛ2
Higgs m2

Hu = ε2Λ2
Higgs m2

Hd
= Λ2

Higgs (172)

where ε � 1 is some small number and ΛHiggs denotes the effective scale of SUSY
breaking in the Higgs sector. Noting that tan β = 1/ε we deduce that all terms on the
right hand side of eq.(171) are of the order ε2Λ2

Higgs. Thus we expect that in the absence of
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large radiative correction electroweak symmetry breaking should occur naturally, without
the need for significant fine-tuning.

The authors of [97] provide a possible mechanism for generating the pattern in
eq.(166). Specifically, we can envisage a non-minimal gauge-mediated scenario with direct
couplings between the Higgs and the messenger sector of the form

W ⊃ λuHuΦ1Φ̄2 + λdHdΦ̄1Φ2 + h.c . (173)

Here Φ1Φ̄2 and Φ̄1Φ2 are bilinears of messenger fields. After integrating out the the
heavy fields represented by the vector-like pairs Φ1, Φ̄1 and Φ2, Φ̄2 we obtain the
following contributions to the mass parameters in the Higgs sector

µ ≈ λuλd
NHiggs

16π2
ΛHiggs , Bµ ≈ λuλd

NHiggs

16π2
Λ2

Higgs , m2
Hu,d
≈ λ2

u,d

NHiggs

16π2
Λ2

Higgs (174)

where NHiggs parametrizes the number of messenger fields coupled to the Higgs sector
(i.e. NHiggs = n5+5 + 3n10+10 is the “messenger index” in the Higgs sector). Observe
that ΛHiggs could but does not have to coincide with SUSY breaking scale Λ from the
MGM sector. The same statement applies to NHiggs. Imposing the hierarchy λd � λu
and introducing the parameter ε =

NHiggs

16π2
λd
λu

leads to the correct low-energy pattern from
eq.(166).

5.2 Lopsided gauge mediation

The authors of [19] have used the crucial relation (166) as a motivation to introduce
a class of models called lopsided gauge mediation. In this section we follow closely the
approach in [19,98], i.e. we define the lopsided GMSB version of the MSSM using the so
called near criticality condition. To this end we shall denote the running squared Higgs
mass matrix by M2

H(t), where t ≡ ln(Q/msoft) is the logarithmic scale and msoft is the
characteristic scale of the soft mass terms. The matrix M2

H(t), evaluated at vanishing
background (vu = 0 and vd = 0), reads:

M2
H(t) =

(
m2
Hu
− δm2

Hu
+ |µ|2 Bµ

Bµ m2
Hd

+ |µ|2
)

(175)

Here m2
Hu
,m2

Hd
are the Higgs soft mass terms at the input scale and δm2

Hu
comprises

radiative corrections which are dominated by the heavy stop. A necessary condition for
EW symmetry breaking is

detM2
H(Q = msoft) < 0 . (176)

This condition entails that the Higgs mass matrix is indefinite at the origin and conse-
quently the point (vu = 0, vd = 0) cannot be a minimum of the scalar potential (it is a
saddle point). Let us now introduce a ”critical“ scale Qc fixed by the condition:

detM2
H(tc) = 0 , tc = ln(Qc/msoft) , (177)

i.e. Qc is the scale where one of the eigenvalues of M2
H crosses zero. Depending on the

input parameters at the high scale Λ (which can be either the messenger scale M , the
GUT scale MGUT or the Planck scale MPl) we can distinguish two phases of the theory:
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(i) A broken phase defined according to msoft < Qc < MPl

(ii) An unbroken phase where Qc < msoft < MPl

We focus on the first case as the second one is clearly ruled out by experiment. Due
to the large separation between the high and the low scales msoft and MPl we expect
that generically msoft � Qc � MPl. However, this is actually not the case. Rather we
have Qc ' msoft. One way to see this is to examine the minimization conditions in the
Higgs sector in the large tan β limit. Specifically we focus on the equation:

M2
Z

2
= −|µ|2 +

m2
Hd
−m2

Hu
tan2 β

tan2 β − 1
≈ −|µ|2 − m2

Hu ≡ −m
2
2 . (178)

Expanding around tc and keeping in mind that m2
2(tc) = 0, we get:

M2
Z

2
≈ dm2

2

dt

∣∣∣
tc

ln
Qc

msoft

≈ 0.1m2
t̃ ln

Qc

msoft

. (179)

Here we made use of dm2
2/dt ≈ 0.1m2

t̃
, which expresses the fact that the RG evolution

of m2
2 between the Qc and msoft scales is dominated by the large stop masses. Given

the current experimental limit on the lightest Higgs boson we expect that mt̃ ∼ 1 TeV
which translates into Qc ' msoft. This, in essence, comprises the so called near criticality
condition. From

detM2
H(tc) = det

(
m2
Hu
− δm2

Hu
+ |µ|2 Bµ

Bµ m2
Hd

+ |µ|2
)
' 0 (180)

we get

(m2
Hu − δm

2
Hu + |µ|2) (m2

Hd
+ |µ|2) ' B2

µ (181)

where δm2
Hu

is expected to be large due to the heavy stop mass and the low Qc scale.
Recall that Bµ > 0 is a a necessary condition for EWSB (Bµ = 0 would lead to the un-
acceptable sin 2β = 0). Therefore the large negative δm2

Hu
correction in the first bracket

has to be cancelled by an equally large and positive contribution which can come from
either the soft m2

Hu
mass or the µ term. In view of this eq.(181) can be used to define

the following two classes of models with gauge mediated supersymmetry breaking:

(i) A class distinguished by a large µ term, i.e. µ2 ∼ δm2
Hu

and m2
Hu,d
� µ2. This

corresponds to ordinary gauge mediation.

(ii) A class with m2
Hu
∼ δm2

Hu
and hierarchies of the type µ2 � m2

Hu,d
, m2

Hu
� m2

Hd
.

This corresponds to lopsided gauge mediation.

Focussing on the latter case, we will now describe one possible embedding into a
model with gauge mediated supersymmetry breaking. Here we follow closely the discus-
sion in [19]. The main building block of the construction is the following superpotential
considered in [19]:

W ⊃ λuHuDT + λdHdD̄ T̄ +XDDD̄ +
XT

2
(T T̄ )

(
aT aT T̄
aT T̄ aT̄

)(
T
T̄

)
(182)
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Here D, D̄ are messenger superfields in the fundamental representation of SU(2) with
opposite hypercharges: D = (1,2)1, D̄ = (1,2)−1 (where the subscript stands for the
U(1)Y charge). In addition we have two total singlets T and T̄ with quantum numbers
T = (1,1)0 and T̄ = (1,1)0. In order to preserve gauge coupling unification we assume
that the D, D̄ pair is lying in one 5⊕5 copy of SU(5). The operators λuHuDT +
λdHd D̄T̄ are responsible for the extra contributions to m2

Hd
and m2

Hu
in the low-energy

effective Lagrangian. One possible way to ensure the hierarchy m2
Hu
� m2

Hd
is to fix the

relation λu � λd between the extra Yukawa couplings.

Let us focus on the remaining operators in the above superpotential which are es-
sentially just mass terms for the messenger superfields. We will make the standard as-
sumption that the two spurions acquire VEVs in their scalar and F -term components

XD = MD( 1 + ΛDθ
2) XT = MT ( 1 + ΛT θ

2) . (183)

The most important observation is that the superpotential in eq.(182) exhibits a discrete
Z2-symmetry in the limit aT T̄ = 0. The action of the Z2 group is given by:

Hu → −Hu T → −T (184)

Note that this symmetry forbids a µ (and a corresponding Bµ term) in the effective
low-energy action. This means that we can control the magnitude of µ and Bµ by ap-
propriately adjusting the value of the aT T̄ coupling. Following [19] we can diagonalize
the T, T̄ mass matrix with a suitably chosen rotation by an angle Θ. In the following we
shall denote the eigenvalues of the mass matrix by p and ξ p where ξ is a proportional-
ity factor. The contribution to the mass parameters in the Higgs sector coming from the
superpotential (182) have been calculated in [19]. Explicitly they read

m2
Hu =

λ2
u

16π2
Λ2
D

(
cos2 ΘP (x, y) + sin2 ΘP (ξx, y)

)
= au

λ2
u

16π2
Λ2
D (185)

m2
Hd

=
λ2
d

16π2
Λ2
D

(
sin2 ΘP (x, y) + cos2 ΘP (ξx, y)

)
= ad

λ2
d

16π2
Λ2
D (186)

µ =
λuλd
16π2

ΛD sin Θ cos Θ (−Q(x, y) +Q(ξx, y) ) = aµ
λuλd
16π2

ΛD (187)

Bµ =
λuλd
16π2

Λ2
D sin Θ cos Θ (−R(x, y) +R(ξx, y) ) = aBµ

λuλd
16π2

Λ2
D (188)

Au =
λ2
u

16π2
ΛD

(
cos2 ΘS(x, y) + sin2 ΘS(ξx, y)

)
= aAu

λuλd
16π2

ΛD (189)

Ad =
λ2
d

16π2
ΛD

(
sin2 ΘS(x, y) + cos2 ΘS(ξx, y)

)
= aAd

λuλd
16π2

ΛD (190)

where we used the shorthand notation x = MT/MD and y = ΛT/ΛD. The coefficient
functions P (x, y), Q(x, y), R(x, y) and S(x, y) appearing in eqs.(185)–(190) are listed
in Appendix C. We can recover the Z2-symmetric limit for instance by setting Θ = 0.
The crucial feature of the model we are considering is that it allows us to switch off
the contributions to the soft m2

Hu
and m2

Hd
masses and/or to the µ and Bµ terms by an

appropriate choice of the Θ, ξ and y parameters. For example taking Θ = 0 or ξ = 1
leads to µ = Bµ = 0 whereas fixing y = 1 shuts off the extra contributions to the m2

Hu

and m2
Hd

soft masses. In both cases non-zero Au and Ad are generated at the messenger
scale. In the next section we will put all of this machinery to work by constructing a
lopsided version of the NMSSM.
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6 NMSSM with lopsided gauge mediation

In this chapter we study a gauge mediated supersymmetry breaking version of the Next
to Minimal Supersymmetric Standard Model in which the soft m2

Hu
and m2

Hd
masses

assume non-minimal values due to the presence of direct couplings between the Higgs
and the messenger sector. We are motivated by the well-known result that the minimal
gauge mediation scenario is incompatible with the NMSSM due to the small value of
the induced effective µ term. The model considered in the present chapter solves the
aforementioned problem through a modified RG running of the singlet soft mass m2

N .
To be precise it is the dominant m2

Hd
term in the one-loop β-function of m2

N which
shifts this mass towards large negative values at the electroweak scale. This is sufficient
to ensure a large VEV for the scalar component of N which in turn translates into a
sizeable effective µ term. We also describe a mechanism for generating large soft trilinear
terms at the messenger scale. This allows us to make the mass of the lightest Higgs boson
compatible with the current LHC bound without relying on too heavy stops. The results
presented in this chapter have been published in [99].

6.1 Motivation and outline

In order to motivate the lopsided scenario let us briefly sketch the argument which shows
that the minimal version of gauge mediated supersymmetry breaking is incompatible with
the NMSSM. We will come back to this issue in more detail in section 6.4. Consider the
following superpotential

W = WMSSM +XΦΦ̄ + λHuHdN +
κ

3
N3 (191)

where WMSSM denotes the MSSM superpotential without a µ term, the XΦΦ̄ comprises
the MGM sector with couplings between the spurion X and the messenger superfields
Φ, Φ̄ and the last two terms are the typical NMSSM operators. The effective µ term in
this model is generated once the gauge singlet superfield N acquires VEV in its scalar
component, we call this VEV s = 〈N〉. The magnitude of s can be determined from the
following tree-level minimization condition in the Higgs sector:

2
κ2

λ2
(λ2s2 ) = λv2(κ sin 2β − λ)−m2

N + Aλλ v
2 sin 2β

2s
+ κAκ s (192)

One can argue that in minimal gauge mediation all terms on the right hand side remain
relatively small. This applies in particular to the m2

N soft mass which is zero at the
messenger scale and remains small all the way down to mEW due to its small β-function.
As we will see this is the key ingredient that changes within the lopsided setting. For now
let us see what the implications of the aforementioned observation are. We will argue
that eq.(192) imposes an upper bound on the µ term in MGM models (it restricts this
mass term to several GeV). For the sake of contradiction assume that µeff = λs can be
of the order O(100) GeV. In this case the left hand side of (192) will be unacceptably
large unless one imposes λ� κ. However, this relations leads to another problem. More
precisely, one can easily show that for moderately large or large µ and λ � κ the
determinant detM2

CP−even of the CP-even squared mass matrix in the Higgs sector is
negative implying that the point in parameter space we are considering is not a minimum
of the effective scalar potential.
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In the following we will show how the aforementioned problem can be avoided by
introducing a non-trivial hierarchy between the soft mass terms in the Higgs sector.
The rest of this chapter is organized as follows: In section 6.2 we introduce the lopsided
GMSB scenario following closely the approach in [97]. Using this line of reasoning we
define a lopsided NMSSM which is the main object of study in the remainder of the
paper. In section 6.3 we give a detailed description of the field content and superpoten-
tial couplings of our theory, including a full specification of the hidden and messenger
sectors. In section 6.4 we show that the effective µ term is comprised of two pieces –
one arising from the Higgs-messenger mixing and another associated with the NMSSM
part of the superpotential. We describe in detail the mechanism which triggers a large
vacuum expectation value for the NMSSM singlet and therefore generates the latter piece
of the Higgsino mass parameter. In section 6.5 we calculate the low-energy spectrum for
several points in parameter space. Crucially, we describe a new way for generating large
soft trilinear terms at the messenger scale. As pointed out already in [14] the large soft
trilinear terms can lift the Higgs mass to its current LHC bound. We also find that, for
large regions of parameter space, the negative tree-level contribution to mh0 from the
mixing with the singlet is unacceptably large and discuss a possible mechanism which
can suppress this effect. In section 6.6 we discuss collider phenomenology.

6.2 Defining the lopsided NMSSM

In the present section we introduce the lopsided NMSSM as an effective theory, i.e. we
do not care how supersymmetry is broken or transmitted to the observable sector. To
begin the description of our model let us fix the superpotential in the Higgs sector:

W ⊃ (µ+ λN)HuHd +
κ

3
N3 . (193)

Recall that the operator λNHuHd is invariant under a Peccei-Quinn symmetry which
acts on the N,Hu, Hd superfields according to

Hu → Hu e
−iφ Hd → Hd e

−iφ N → Nei2φ . (194)

This symmetry is broken at tree-level in a twofold manner – both by the cubic κ
3
N3

operator and the bilinear mass term for the Hu, Hd Higgs doublets. As a result the
potentially dangerous Peccei-Quinn axion in the Higgs sector is automatically avoided.
There is an additional subtlety – the κ

3
N3 term is invariant under a residual Z3 symmetry

(the action of the Z3 group rotates all three superfields N , Hu and Hd by the same
phase e2πi/3). In the standard Z3-invariant NMSSM this symmetry is responsible for
the appearance of domain walls [31, 35, 108]. Note, however, that in the setup we are
considering the discrete Z3 is not an actual symmetry of the Lagrangian – it is broken at
tree-level by the presence of a µ-term. Therefore the domain wall problem is not present
in our version of the lopsided NMSSM scenario. 9

The soft supersymmetry breaking terms in the Higgs sector read

−Lsoft = m2
N |N |2 + m2

Hu|Hu|2 + m2
Hd
|Hd|2 +

+ (λAλNHuHd +
1

3
κAκN

3 + h.c. ) + (BµHuHd + h.c. ) (195)

9Clearly one can consider a lopsided NMSSM without a tree-level µ term. In this case the domain
wall problem has to be solved through an alternative mechanism.
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Imposing m2
Hd
� m2

Hu
at the electroweak scale completes the description of the

effective Lagrangian. From a low-energy point of view the precise mechanism which
produces the extra contributions to m2

Hd
and m2

Hu
to ensure the non-trivial hierarchy

between the soft mass terms in the Higgs sector is unimportant. The same statement
applies to the origin of the µ and Bµ terms in eqs.(193) and (195). We can simply assume
that they are present in the Lagrangian and then extract their values from the tree-level
minimization conditions in the Higgs sector. In the next section we will construct a
high-energy model which produces the lopsided NMSSM as its low-energy limit.

6.3 High-energy completion in the context of gauge mediation

In the following we present the UV completion of the low-energy effective theory pre-
sented in section 6.2. Our idea is to simply take three copies of the superpotential specified
by eq.(182):

W ⊃ XΦΦ̄ + λNHdHu +
κ

3
N3 + (196)

+ λu,THuDT + λd,THdD̄T̄ + XDDD̄ +
XT

2
(T T̄ )

(
aT aT T̄
aT T̄ aT̄

)(
T
T̄

)
+ λu,PHuFP + λd,PHdF̄ P̄ + XFFF̄ +

XP

2
(P P̄ )

(
aP aPP̄
aPP̄ aP̄

)(
P
P̄

)
+ λu,SHuES + λd,SHdĒS̄ + XEEĒ +

XS

2
(S S̄ )

(
aS aSS̄
aSS̄ aS̄

)(
S
S̄

)
The six SU(2) doublets D, F , E and D̄, F̄ , Ē have the quantum numbers (1,2)1 and
(1,2)−1 respectively. It is implicitly understood that all three pairs D, D̄, F, F̄ and E, Ē
lie in 5⊕5 copies of SU(5). The other three pairs T, T̄ , P, P̄ , S, S̄ are total singlets with
respect to the SM gauge group. The spurions XD, XT , XF , XP , XS and XE acquire
VEVs in their scalar and F -term components:

XD = MD( 1 + ΛDθ
2) XT = MT ( 1 + ΛT θ

2) (197)

XF = MF ( 1 + ΛF θ
2) XP = MP ( 1 + ΛP θ

2) (198)

XE = ME( 1 + ΛEθ
2) XS = MS( 1 + ΛSθ

2) (199)

To complete the description of our model we fix

aT T̄ = aSS̄ = 0 ΛP/ΛF = ΛS/ΛE = 1 . (200)

With this choice of parameters it is then clear that

1. the second line in eq.(196) produces extra contributions only to the m2
Hu

and m2
Hd

masses and the soft trilinear terms AHu , AHd ,

2. the third line in eq.(196) generates non-zero µ, Bµ as well as non-zero AHu , AHd
but does not contribute to either m2

Hu
or m2

Hd
,

3. the last line in eq.(196) does not contribute to any of the µ, Bµ, m2
Hu

, m2
Hd

mass
terms in the Higgs sector – it only generates non-zero soft trilinear terms.

There is an additional subtlety related to the value of the Bµ term in models with
lopsided gauge mediation. As pointed out in [19] Bµ transforms under U(1)R phase
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rotations while the other mass terms in the Lagrangian do not. In particular we can use
the U(1)R symmetry to forbid a Bµ term altogether. To put it differently – the overall size
of Bµ must be a free parameter which should depend on the value of some appropriately
chosen coupling in the high-energy model.

In the following we do not insist on the extra condition λd � λu (this would en-
sure that m2

Hd
� m2

Hu
holds already at the scale where the messenger superfields are

integrated out). As we will see one can also construct models in which the extra Yukawa
couplings λd and λu are comparable in size. In those models both m2

Hd
and m2

Hu
attain

large values at the messenger scale and the non-trivial hierarchy m2
Hd
� m2

Hu
at mEW is

realized through the RG running of the soft masses.

What we get after integrating out the messenger superfields from eq.(196) is
an NMSSM model with non-minimal soft terms in the Higgs sector. We view this
as an effective theory whose UV cutoff is the lowest decoupling scale among the
M,MD,MT ,MF ,MP ,ME and MS. For the rest of this paper we assume that this is
M , i.e. the RG running always commences at this scale. After choosing the input, we
run all parameters down to the EW scale using one-loop RGEs. The relevant threshold
effect comes from the heavy pseudoscalar in the Higgs sector with mass mA. At this
scale the heavy SU(2) Higgs doublet Hd is integrated out. After minimizing the scalar
Higgs potential once, we iterate the procedure, each time adjusting the values of the
input parameters in order to correctly reproduce the top mass as well as the mass of the
Z-boson. To be exact we impose the following two constraints at the weak scale:

1. We need to have v =
√
v2
d + v2

u = 174 GeV in order to reproduce the correct
value of the Z-boson mass mZ (where as usual vu = 〈H0

u〉 and vd = 〈H0
d〉 denote the

vacuum expectation values of the neutral components of the two Higgs doublets).

2. The low-energy value of the top Yukawa coupling yt should correctly reproduce
the top quark mass, i.e. mt = yt(MEW)vu

1

6.4 Origin and composition of the effective µ term

It has been known for quite some time that the minimal GMSB extension of the NMSSM
does not lead to phenomenologically viable spectra due to the small value of the induced
µ term. As noted already in [117] and as discussed in section 6.1 this problem can be
restated in terms of detM2

CP−even, the determinant of the CP-even squared mass matrix
in the Higgs sector. Specifically one can show that large values of the effective SUSY
breaking scale, which are necessary in order to satisfy the current LHC bound on the
gluino, lead to a negative detM2

CP−even < 0.

The origin of this result can be understood analytically if one examines in more detail
the following minimization condition in the Higgs sector:

2
κ2

λ2
(λ2s2 ) = λv2(κ sin 2β − λ)−m2

N + Aλλ v
2 sin 2β

2s
+ κAκ s (201)

It is not difficult to show that the large SUSY breaking scale imposes a stringent lower
bound on the effective µ parameter. Typically λs has to be at least several GeV [117]

1Here mt stands for the running top mass which differs from the pole mass mpole
t . To order αs the

relation between the two is given by mpole
t = mt(mt)

(
1 + 4αs

3π

)
.
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which implies a very large value for the bracket on the left hand side of eq.(201). A quick
numerical calculation reveals that none of the terms on the right hand side can compete
in magnitude with λ2s2 (at least not in the minimal GMSB version of the NMSSM).
Hence the only way to satisfy this equation is to enforce λ� κ. In order to see why this
relation is problematic, let us use the following approximation for detM2

CP−even which
retains only the terms with the highest power of µ (see [117]):

detM2
CP−even ' const. µ4

(
−4kλ4 + 2κ3g2 + 2κ3g2 cos(4β) + 8κ2λ3 sin(2β)

)
(202)

Given that λ � κ, it is clear that the first term dominates, leading to a negative
detM2

CP−even < 0. To make things worse, the small value of the κ coupling implies a
nearly massless ”Goldstone“ mode in the low-energy spectrum (recall that in the MGM
version of the NMSSM κ

3
N3 is the only coupling which breaks Peccei-Quinn explicitly;

thus PQ becomes an approximate symmetry in the limit of a very small κ ).

In the lopsided NMSSM the aforementioned problem is no longer present because
one generically expects that the values of κ and λ will be of the same order of magni-
tude. Accordingly, contributions from the last three positive terms in eq.(202) become
comparable to and can cancel out the negative contribution from the first term. In this
case the determinant of the Higgs mass matrix becomes positive.

Let us now try to understand the theoretical underpinning behind the statement
that the λ and κ coupings are expected to be of the same order of magnitude. To this
end we shall once again take a look at the minimization condition (201). Previously we
argued that all terms on the right hand side are very small compared to λs. This applies
in particular to the singlet soft mass m2

N which is practically zero at the messenger scale
and remains very small all the way down to the EW scale due to the small β-function. In
the lopsided NMSSM this picture changes due to the non-typical RG running of m2

N , an
effect which is similar to the one we encountered in the slepton and the squark sectors.
To make this last statement more precise, lets take a look at the one-loop RGE for the
singlet soft mass m2

N :

16π2 d

dt
m2
N = 4λ2

(
m2
Hu +m2

Hd
+m2

N + A2
λ

)
+ 4κ2

(
3m2

N + A2
κ

)
(203)

Note that the dominant m2
Hd

term generates a large negative m2
N along the RG tra-

jectory. In particular eq.(201) can be satisfied with λ ≈ κ which leads to a positive
detM2

CP−even > 0. Additionally, the large m2
N triggers a large VEV for the scalar com-

ponent of N which translates into a sizeable contribution to the effective µ term. Last
but not least, the moderately large value of κ implies that PQ is no longer an approxi-
mate symmetry of the Lagrangian. Hence the quasi-Goldstone mode in the Higgs sector
is avoided in a completely natural manner.
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6.5 Low-energy spectrum

6.5.1 Higgs sector

The crucial issue in this section is the mass of the lightest CP-even neutral Higgs boson.
Our discussion is based on the approximate one-loop formula [31]

m2
h0 = m2

Z cos2(2β) + λ2v2 sin2(2β) − λ2

κ2
v2 (λ− κ sin(2β) )2 +

+
3m4

t

4π2v2

(
ln

(
m2
SUSY

m2
t

)
+

X2
t

m2
SUSY

(
1− X2

t

12m2
SUSY

))
. (204)

where Xt = At − µ cot β is the stop mixing parameter and mSUSY ≡
√
m1̃m2̃ stands

for the SUSY scale. Here we use eq.(204) only for illustrative purposes, the actual calcu-
lation is done using NMSSMTools [102,103]. Let us first analyze the radiative correction
specified by the second line in (204). To this end we plot the magnitude of this correc-
tion as a function of At and mSUSY in Fig.6. The symmetric ridges on the left and right
hand sides denote the phenomenologically preferred region where the one-loop radiative
correction is maximized.

Figure 6: One-loop correction to the Higgs mass as a function of At and mSUSY

Very recently the authors of [14] have performed a similar analysis for the MSSM
using FeynHiggs. It was argued that in order to lift the Higgs mass up to 125 GeV one
needs a large soft trilinear term At > 1 TeV, unless of course one is prepared to tolerate
superheavy stops (∼ 5−10 TeV) in the theory. This is in agreement with our plot which
shows that the radiative correction is maximized for large values of the soft trilinear
term. For the remainder of the paper we focus on those regions of parameter space with
|At| > 1 TeV and identify Xt ≈ At.

Next we discuss the NMSSM specific contributions to the tree-level m2
h0 . Since

tan β � 1 we infer that λ2v2 sin2(2β) ≈ 0. The negative tree-level contribution due
to the mixing with the singlet requires more detailed analysis. In the following we will
look at several points in parameter space with |At| > 1 TeV and we will evaluate its
magnitude. In order to fix the notation we introduce the three rotation angles ΘT , ΘP ,
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ΘS as well as the proportionality factors ξT , ξP , ξS corresponding to the last three lines
in eq.(196):

ξT = 1.0 ξS = 1.0 tan ΘP = 1.0 (205)

We refrain from specifying tan ΘT and tan ΘS since their values will not affect any of the
mass terms in the Higgs sector. Next we fix the following mass scales:

MT/MD = 1.1 MP/MF = 1.1 MS/ME = 1.1 (206)

MD = 500 TeV MF = 500 TeV ME = 500 TeV (207)

ΛP = 24 TeV ΛS = 80 TeV (208)

ΛF = 24 TeV ΛE = 80 TeV (209)

The three models (or more precisely the three points in parameter space) we consider
are specified by varying the residual input parameters:

Table 10: Input parameters at the messenger scale M
Point 1 Point 2 Point 3

M 105 GeV 105 GeV 105 GeV
ξP 6.75 6.75 6.75
Λ 50.0 TeV 50.0 TeV 50.0 TeV
ΛT 63.7 TeV 63.7 TeV 63.7 TeV
ΛD 10.4 TeV 10.4 TeV 10.4 TeV
κ 0.18 0.16 0.19
λ 0.21 0.20 0.20
λu,T 0.53 0.55 0.48
λd,T 2.29 2.24 2.51
λu,P 0.28 1.24 1.03
λd,P 0.28 1.24 1.03
λu,S 2.00 2.00 2.00
λd,S 0.00 0.00 0.00

The values of all Yukawa couplings are given at the messenger scale M . In Table 11
we evaluate the mixing effect for the three points given above:

Table 11: Mixing effect due to the presence of a gauge singlet N
Point 1 Point 2 Point 3

−λ2/κ2 × v2 (λ− κ sin(2β) )2 -6892 GeV2 -7593 GeV2 -5269 GeV2

m2
Z cos2(2β) + λ2v2 sin2(2β) 8190 GeV2 8188 GeV2 8188 GeV2

Clearly, the mixing effect is unacceptably large for every single one of the points in
parameter space we have investigated. The problem can be traced back to the fact that
κ < λ and tan β � 1. From these we can deduce that

λ

κ
v (λ− κ sin(2β) ) ≈ λ2

κ
v (λ� κ sin 2β) (210)
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i.e. the negative tree-level contribution is significant. In the following we will discuss a
mechanism which will allow us to largely suppress the λ2

κ2 v
2 (λ−κ sin(2β) )2 term. The

argument is based on the three minimization conditions in the Higgs sector:

µ2
eff ≡ (µ+ λs)2 = − M2

Z

2
+

m2
Hd
−m2

Hu
tan2 β

tan2 β−1
(211)

Bµ,eff ≡ (µ+ λs)(Aλ + κs) +Bµ =
(
m2
Hu

+m2
Hd

+ 2λ2s2 + 2λ2v2
)

sin 2β
2

(212)

2 κ2

λ2 (λ2s2 ) = λv2(κ sin 2β − λ)−m2
N + Aλλ v

2 sin 2β
2s

+ κAκ s (213)

Assume that we start in a region of parameter space where λ > κ. This would be the
case if, for example, we picked one of the points listed in Table 10. In the following we
will specify a procedure which will allow us to push our model into a region of parameter
space where κ � λ. In this case the two terms λ and κ sin(2β) will be comparable in
size and will cancel each other out leading to a highly suppressed or altogether vanishing
mixing effect.

The idea of our construction is very simple – we hold the effective µeff = µ + λs
term constant, while simultaneously increasing the tree-level µ piece (note that µeff is
comprised of two pieces, with λs being the dynamically generated one). This can be
done for instance by increasing the ξP parameter. Note that this procedure does not
affect the m2

Hu
and m2

Hd
soft masses meaning that the first minimization condition (211)

remains identically satisfied at every step of our construction. The third minimization
condition given by eq.(213) is somewhat more problematic. Note that by increasing µ
we automatically decrease the λs contribution to µeff . In particular the left hand side of
eq.(213) becomes smaller in size while the right hand side remains more or less unaffected.
This is easily deduced by observing that the main contribution to the r.h.s. comes from
the m2

N soft mass term whose value is insensitive to variations of µ or λs. Thus in order
to preserve the validity of eq.(213) we need to increase the κ coupling. We can then
iterate this procedure until we get κ� λ.

The only open issue that remains is the validity of eq.(212). Clearly the procedure
we just described affects both the left and the right hand side of this equation and there
is no a priori reason why this identity should remain valid after the model parameters
have been modified. Here we make use of the fact that Bµ transforms under U(1)R
phase rotations while the other mass terms in the Lagrangian do not (see also [19]). In
particular we can use the U(1)R symmetry to forbid a Bµ term altogether. To put it
differently – the overall size of Bµ must be a free parameter which should depend on the
value of some appropriately chosen coupling in the high-energy model (cf. the discussion
in section 6.3). Hence we can always assume that Bµ is chosen in such a manner that
eq.(212) is identically satisfied.

In the following we list several points in parameter space with κ� λ or κ > λ, see
Table 12 below.

For all points in this table we have chosen a large tan β = 15. The mass of the
lightest Higgs boson as well as the value and composition of the effective µeff term are
given in Table 13. Point 4 is an example of a model in which the effective µeff term
arises predominantly through the NMSSM mechanism. Conversely, for points 6 and 8
the tree-level contribution µ dominates. In fact the models represented by 6 and 8 can
be viewed as the MSSM limit of the lopsided NMSSM since the effective mass term
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Table 12: Five points in parameter space with a large κ coupling
Point 4 Point 5 Point 6 Point 7 Point 8

M 105 GeV 105 GeV 105 GeV 105 GeV 105 GeV
ξP 6.75 6.75 5.45 6.75 5.45
Λ 60.0 TeV 50.0 TeV 50.0 TeV 50.0 TeV 50.0 TeV
ΛT 67.9 TeV 63.7 TeV 57.6 TeV 67.2 TeV 58.8 TeV
ΛD 11.0 TeV 10.4 GeV 9.4 GeV 10.9 GeV 9.55 GeV
κ 0.58 0.58 0.56 0.58 0.56
λ 0.32 0.32 0.12 0.32 0.12
λu,T 0.66 0.58 0.65 0.57 0.59
λd,T 2.91 2.22 2.38 2.18 2.83
λu,P 1.20 1.30 1.45 1.27 2.05
λd,P 1.28 1.30 1.45 1.27 2.05
λu,S 2.15 2.00 2.00 1.97 1.75
λd,S 0.00 0.00 0.00 0.00 0.00

for the Higgsinos is almost entirely composed of the tree level µ term generated by the
Higgs-messenger couplings.

Table 13: Higgs mass and composition of the effective µeff term
Point 4 Point 5 Point 6 Point 7 Point 8

mh0 124 GeV 124 GeV 124 GeV 124 GeV 124 GeV
µeff 314 GeV 262 GeV 140 GeV 268 GeV 262 GeV
µ 100 GeV 111 GeV 118 GeV 105 GeV 236 GeV
λs 214 GeV 151 GeV 22 GeV 163 GeV 26 GeV

6.5.2 Slepton and squark sector

The slepton sector of the lopsided NMSSM exhibits some peculiar features which can be
traced back to the large value of the soft m2

Hd
mass parameter. To be more precise, m2

Hd

can have a significant impact on the running of the right and left handed soft slepton
masses due to the presence of the 6

5
Yf̃ g

2
1S term in the β-function (see Appendix A).

The aforementioned contribution is related to the induced hypercharge Fayet-Illiopoulus
term in the effective action. Note that in the MSSM the impact of this term on the RG
running is comparatively small. However, its significance increases dramatically once the
m2
Hd

is allowed to attain very large values. It is also important to note that 6
5
Yf̃ g

2
1S

contributes with opposite signs to the β-functions of the right handed and left handed
sleptons. Specifically, it produces a negative contribution to soft masses m2

L̃L
of the left-

handed sleptons along the RG trajectory and a positive one to the masses m2
L̃R

of their

right handed counterparts. As we will see shortly, this effect often leads to an atypical
hierarchy m2

L̃R
> m2

L̃L
at the electroweak scale and can therefore reverse the ordering of

the right and left handed slepton masses.

In table 14 we list the low-energy spectrum for the same points in parameter space
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Table 14: Low-energy spectrum in the slepton sector
Point 4 Point 5 Point 6 Point 7 Point 8

mẽR 499 GeV 361 GeV 371 GeV 383 GeV 414 GeV
mẽL 327 GeV 307 GeV 305 GeV 297 GeV 273 GeV
mν̃e 318 GeV 297 GeV 295 GeV 287 GeV 261 GeV
mµ̃R 499 GeV 361 GeV 371 GeV 383 GeV 414 GeV
mµ̃L 327 GeV 307 GeV 305 GeV 297 GeV 273 GeV
mν̃µ 318 GeV 297 GeV 295 GeV 287 GeV 261 GeV
mτ̃1 260 GeV 270 GeV 263 GeV 256 GeV 205 GeV
mτ̃2 419 GeV 315 GeV 308 GeV 328 GeV 334 GeV
mν̃τ 251 GeV 267 GeV 254 GeV 249 GeV 194 GeV

Table 15: Low-energy spectrum in the squark sector
Point 4 Point 5 Point 6 Point 7 Point 8

mũR 1552 GeV 1278 GeV 1278 GeV 1303 GeV 1264 GeV
mũL 1661 GeV 1356 GeV 1254 GeV 1385 GeV 1356 GeV
md̃R

1613 GeV 1313 GeV 1310 GeV 1343 GeV 1316 GeV

md̃L
1663 GeV 1358 GeV 1356 GeV 1387 GeV 1358 GeV

ms̃R 1613 GeV 1313 GeV 1310 GeV 1343 GeV 1316 GeV
ms̃L 1663 GeV 1358 GeV 1356 GeV 1387 GeV 1358 GeV
mc̃R 1552 GeV 1278 GeV 1278 GeV 1303 GeV 1264 GeV
mc̃L 1661 GeV 1356 GeV 1354 GeV 1387 GeV 1356 GeV
mt̃1 1033 GeV 804 GeV 777 GeV 819 GeV 814 GeV
mt̃2 1491 GeV 1241 GeV 1232 GeV 1254 GeV 1239 GeV
mb̃1

1435 GeV 1168 GeV 1158 GeV 1188 GeV 1169 GeV
mb̃2

1541 GeV 1266 GeV 1263 GeV 1292 GeV 1254 GeV

that we discussed at the end of section 6.5.1. The effect, which reverses the ordering of
the left-handed and right-handed sleptons, is clearly visible in all five cases.

In the following we will argue that the m2
Hd

soft mass and the corresponding λd
coupling cannot attain arbitrarily large values. One constraint arises from the require-
ment that the slepton masses should remain positive. Since the slepton particles are not
charged under the SU(3), their soft masses at the messenger scale are relatively small.
Therefore the negative contribution arising from the 6

5
Yf̃ g

2
1S Fayet-Illiopoulus term can,

at least in principle, make some of the slepton masses negative. Clearly, the tau sneu-
trinos are the lightest particles in the slepton sector. Imposing the condition m2

L3
> 0

at the weak scale for the third generation sleptons is sufficient to guarantee positivity of
mν̃τ (and, therefore, of all slepton masses). For the models under consideration this does
not introduce an upper bound on λd – even for non-perturbative values of λd at the
messenger scale, the m2

L3
soft mass term remains positive at the weak scale. An actual

bound on λd can be obtained by requiring that this coupling remains perturbative up
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to the GUT scale. From the one-loop RG equation for λd

dλ2
d

dt
=

λ2
d

8π2

(
4λ2

d −
3

5
g2

1 − 3g2
2

)
, t = logQ (214)

one can deduce e.g. λd . 1.0 for the models with M = 105 GeV. This is clearly incom-
patible with the values we have picked. As pointed out in [97] larger values for the λd
coupling can be obtained by assuming that the SUSY breaking sector is strongly coupled.

There are two important effects which characterize the squark sector of the lopsided
NMSSM. The first is related to the hypercharge Fayet-Illiopoulus contribution to the
β-functions of the left and right handed squarks. Note that the FI term contributes with
opposite signs to the β-functions of m2

U and m2
D. Since squarks are charged under the

SU(3) group, their RGEs are dominated by the gluino contribution ∝ g2
3 |M3|2 and the

FI effect is not that prominent so as to reverse the ordering of the up and down squark
masses. The other important effect is related to the large value of the At soft trilinear
term. Looking at the tree-level stop mass matrix

m2
t̃ =

(
m2
Q3

+m2
t −

(
1
2 + 2

3 sin2 θW
)
m2
Z cos 2β mt (At − µ cotβ)

mt (At − µ cotβ) m2
U3

+m2
t + 2

3 sin2 θW m2
Z cos 2β

)
(215)

it is immediately clear that the off-diagonal terms are large, leading to a significant
splitting between the two mass eigenstates mt̃1 and mt̃2 . For the sbottom mass eigen-
states mb̃1

and mb̃2
the splitting is negligible. This is most easily seen by considering

the respective mass matrix

m2
b̃

=

(
m2
Q3

+m2
b −

(
1
2 −

1
3 sin2 θW

)
m2
Z cos 2β mb (Ab − µ cotβ)

mb (Ab − µ cotβ) m2
D3

+m2
b −

1
3 sin2 θW m2

Z cos 2β

)
(216)

and noting that mbAb � mtAt. The full spectra are listed in Table 15.

6.5.3 Charginos, neutralinos, gluino

The gauge singlet N adds one extra degree of freedom in the neutralino sector. To make
this more precise let us introduce the fermionic component ψN of the superfield N . Since
N is a gauge singlet, the ψN Weyl spinor is itself uncharged under the SM gauge group
and we will refer to it as a singlino. The 5× 5 neutralino mass matrix reads in the basis
(B̃0, W̃ 0

3 , H̃
0
d , H̃

0
u, ψN) (cf. [31]):

Mχ̃0 =


M1 0 −mZ sin θW cosβ mZ sin θW sinβ 0
0 M2 mZ cos θW cosβ −mZ cos θW sinβ 0

−mZ sin θW cosβ mZ cos θW cosβ 0 −µeff −λvu
mZ sin θW sinβ −mZ cos θW sinβ −µeff 0 −λvd

0 0 −λvu −λvd 2κ s


The 4× 4 mass matrix in the chargino sector is identical to its MSSM counterpart. The
resulting spectra are listed in Table 16. For all five points the gluino is ∼ 1.5 TeV.

The neutralino χ0
1 which arises from the mixing with the singlet is the lightest particle

in the chargino/neutralino sector. A quick glance at the values in Table 16 reveals that
the size of mχ0

1
depends on the value of the effective µ term: In models with larger µeff
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Table 16: Charginos and neutralinos
Sparticle Point 4 Point 5 Point 6 Point 7 Point 8
mχ0

1
288 230 123 234 232

mχ0
2

- 320 - 269 - 147 - 274 257

mχ0
3

373 309 206 309 - 267

mχ0
4

686 551 298 563 368

mχ0
5

779 567 560 594 685

mχ±1
308 253 135 259 257

mχ±2
686 565 560 564 685

the respective mass mχ0
1

is larger and conversely – for smaller values of µeff within the

range of ∼ 100 GeV the respective neutralino mass is small leading to models with χ0
1

as NLSP.

However, the lightest neutralino is not always NLSP. Depending on the input pa-
rameters the stau sneutrino may become lighter. An important effect, which determines
the mass mν̃τ , is the size of the induced FI term in the effective action, or in other words
the size of the m2

Hd
soft mass. The m2

Hd
parameter affects the size of mν̃τ indirectly

through the β-funcion of m2
L3

, by decreasing the value of m2
L3

along the RG trajectory.

Overall we deduce that models with a large effective µeff term favour mν̃τ as the
NLSP whereas in models with a small µeff there is a tension between the mν̃τ and mχ0

1

masses. Point 8 is an example of a model with stau sneutrino NLSP, whereas Point 6
has χ0

1 as NLSP.

6.6 Collider phenomenology

In theories with gauge mediated supersymmetry breaking the lightest supersymmetric
particle (LSP) is the gravitino. The lopsided NMSSM makes no exception to this rule. In
the lopsided NMSSM the next to lightest supersymmetric particle (NLSP) can be either
the lightest neutralino χ0

1 or the stau sneutrino ν̃, depending on how large the effective µ
term is. The crucial difference between the lopsided NMSSM and its MSSM counterpart
is the fact that in the former case the effective µ term is not bounded from above.

After its production any supersymmetric state decays until the NLSP state is reached.
The decay length of the NLSP is given by

L ≈ 10−2 cm

(
100 GeV

mNLSP

)5
( √

F

100 TeV

)4

(217)

where F is the F -term component of the spurion superfield X associated with the MGM
sector of the model. For the case mNLSP ∼ 200 GeV and assuming that Λ ∼ 50 TeV we
get

L ∼ 0.008 cm for models with low-scale gauge mediation, M = 105 GeV

L ∼ 0.8 m for models with intermediate-scale gauge mediation, M = 108 GeV

L ∼ 78125 km for models with high-scale gauge mediation, M = 1012 GeV
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Hence, depending on the scale of supersymmetry breaking
√
F , the NLSP can be short-

or long-lived. For the models considered in this chapter the NLSP always decays in
the detector. As far as the LHC is concerned the most relevant decay chains are those
involving the gluino and the squarks. If the gluino is heavier than the squarks (mg̃ > mq̃),
which is always the case for the points in parameter space we have chosen, the two-body
decay of the gluino into a squark and an antiquark g̃ → q̃q̄ is kinematically possible.
The squark then decays further into a quark and a chargino or neutralino. In the table
below we have summarized the most relevant decay chains for gluinos and squarks for
one specific point in parameter space:

Table 17: Decays for the gluino, total width Γ = 115.6 GeV

g̃ → jj jj + l jj + 2l jj + 3l jjjj jjjj + l
Percentage 16.72 % 71.55 % 2.48 % 0.48 % 0.59 % 8.16 %

Table 18: Decays for the squarks, total width Γ = 79.1 GeV

q̃ → j j+l j+2l j+3l jjj jjj+l
Percentage 18.21 % 76.56 % 1.06 % 0.24 % 0.26 % 3.67 %

As of April 2012, the strongest experimental lower bounds on the masses of super-
partners come from searches for events with jets and missing transverse momentum at
the ATLAS detector [9–11]. This signature typically arises in cascade decays of squarks
and gluinos from strong pair production

pp −→ g̃g̃, g̃q̃, q̃q̃ .

Limits are given in terms of MSUGRA/CMSSM parameters and within a simplified
squark-gluino-neutralino model. The latter does not include gluino decays to third gener-
ation squarks which results in an enhanced branching ratio to first and second generation
quarks. Furthermore, the neutralino is assumed massless, giving maximal phase space.
These two simplifications lead to an enhanced exclusion range compared to more generic
models, with mq̃ & 1.8 TeV for mg̃ ∼ 1 TeV and mq̃ & 1.3 TeV for mg̃ & 2 TeV [10].
However, these large exclusion bounds must be taken with a grain of salt if they are
to be applied to any particular SUSY model. In the MSUGRA model for example, the
exclusion limit for the average squark mass is reduced to mq̃ > 1.3 TeV for mg̃ ∼ 1
TeV. The limits are reduced even further for the model studied in this work, where
decays to jets and missing transverse momentum are not the dominant decay mode of
the strongly pair-produced superpartners. The situation is illustrated in Tables 17 and
18 for parameter point 4. Less than 20% of squarks and gluinos decay to jets and an
invisible NLSP, giving us less than 5% of the q̃q̃, q̃g̃, g̃g̃ pairs decaying purely to jets and
missing transverse momentum. This is due to the fact that in our NMSSM-like model,
the heavy neutralinos and charginos which predominantly occur in squark and gluino
decays, generically decay to leptons and sleptons. For the parameter point 4 this means
that roughly 3/4 of decays are to jets, one or more leptons, and missing energy. Con-
sequently, roughly 80% of pair produced superpartners yield a final state with jets, at
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least one lepton, and missing energy. There is a number of relevant LHC searches for this
type of signature [2, 3, 5, 7, 12]. One can get a rough estimate of the expected exclusion
power. In the case of MSUGRA/CMSSM, the search for jets, one isolated lepton and
missing energy gives roughly the same bounds as the 0-lepton channel for gluino masses
mg̃ < 1.2 TeV, but considerably weaker constraints on mq̃ for mg̃ > 1.2 TeV (see for
example Figure 10 in [12]). However, we expect an enhancement of the exclusion from
n-lepton final states in our model due to the suppression of 0-lepton decays. This requires
a careful analysis of the various final states with leptons in the context of lopsided gauge
mediation in the NMSSM, and is beyond the scope of this work. Furthermore, there are
bounds on weak production of electroweak gauginos decaying to leptons [1].

6.7 Conclusions

In the present chapter we investigated a version of the Next to Minimal Supersymmetric
Standard Model in which the soft masses in the Higgs sector obey the non-trivial hierar-
chy m2

Hd
� m2

Hu
at the weak scale. As argued in Chapter 5 this relation can be obtained

by a suitable embedding of the low-energy model into a gauge-mediated scenario. Our
investigation is prompted by a well-known result due to H. Murayama, A. de Gouvea
and A. Friedland [117] which states that the Z3-invariant NMSSM is incompatible with
the minimal version of gauge-mediated supersymmetry breaking.

We described three important effects which occur within the framework of our model.
The first effect is related to the size of the VEV of the gauge singlet superfield N . Recall
that in the MGM version of the NMSSM the small value of s = 〈N〉 is the very reason
why the model fails to produce phenomenologically viable spectra. The lopsided extension
of this scenario solves that problem by utilizing the non-standard running of the gauge
singlet soft mass m2

N . To make this statement more precise we note that the one-loop
β-function of m2

N is comparatively large due to the presence of the dominant m2
Hd

term.
As a consequence the m2

N mass is shifted towards large negative values along its RG
trajectory which eventually triggers a sizeable VEV for the scalar component of N .

The second effect is related to the mass mh0 of the lightest CP-even Higgs boson.
We showed that within the lopsided NMSSM one can easily generate large soft trilinear
couplings at the messenger scale and therefore increase the one-loop radiative correction
associated with top/stop loops, leading to a Higgs mass in the range of 125 GeV.

The third effect is the inverted mass hierarchy in the slepton sector. As we argued
this effect can be traced back to the atypical RG running of the soft masses of the
left-handed and right-handed sleptons. To be more precise, the m2

Hd
term enhances the

6
5
Yf̃ g

2
1 Tr [Yf̃ m

2
f̃

] contribution to the one-loop β-function of the slepton masses leading

to the relation m2
L̃R

> m2
L̃L

at the electroweak scale. Something similar happens in the

squark sector although the effect is much less prominent since the RG running of the
colour charged sparticles is dominated by the gluino contribution.

As we showed in section 6.3 the UV completion of the lopsided NMSSM can look
quite complicated. In particular we had to rely on three completely different sets of
operators in order to induce the necessary extra contributions to the mass terms in the
Higgs sector. It would be interesting to investigate whether a simpler realization of the
lopsided NMSSM is possible.
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Part II



7 The FRG approach to quantum gravity

In this section we discuss the functional renormalization group approach to quantum field
theory, and its application to quantum gravity. The RG approach was pioneered by K.
Wilson in the 70’s and since then has become one of the most powerful tools in modern
physics. In the past decade an exact renormalization group equation, based on the so
called ”effective average action“ Γk , has led to an impressive plethora of results within
scalar and gauge theories as well as in gravity. Schematically the functional differential
equation satisfied by Γk reads:

∂tΓk[ϕ] =
1

2
Tr

{(
Γ

(2)
k [ϕ] + Rk

)−1

∂tRk

}
(218)

where ϕ denotes the set of dynamical fields, Rk(p
2) is an infrared cutoff regulator, k

stands for the mass scale and ∂t denotes the so called logarithmic derivative, defined
according to ∂t := k ∂

∂k
. The Γ

(2)
k on the right hand side is the second derivative of the

effective average action with respect to ϕ.

Let us illustrate how this equation is obtained in the simplest case of a scalar field
theory. The advantage of this setup is that we avoid most of the technical complications
which plague gauge theories and gravity. Hence we consider real valued scalar fields on
Euclidean space χ : Rd → R, whose dynamics is governed by some action of the form
S[χ] =

∫
ddx

{
1
2
∂µχ∂

µ χ + 1
2
m2χ2 + interaction terms

}
. The construction begins with

the partition function of the theory given by a formal path integral:

Z[J ] ≡ eW [J ] =

∫
Dχ e−S[χ] +

∫
ddx J(x)χ(x) (219)

where W [J ] is the generator of connected correlators and J(x) is a source term. We
consider a modified form Wk[J ], of the functional W , which depends on a variable mass
scale k. This scale is used to separate Fourier modes of χ into short wavelength modes
with p2 > k2 and long wavelength modes with p2 < k2 . The idea is that the modes
with p2 < k2 should contribute without any suppression to the functional integral while
those with p2 > k2 should contribute with a reduced weight or should be suppressed
altogether. The practical implementation of this idea is achieved by adding a cutoff action
∆Sk[χ] to the bare action S[χ]:

eWk[J ] =

∫
Dχ e−S[χ]−∆Sk[χ] +

∫
ddx J(x)χ(x) (220)

In momentum space the cutoff action is assumed to have the form:

∆Sk[χ] =
1

2

∫
ddp

(2π)d
Rk(p

2) |(Fχ)(p)|2 (221)

where (Fχ)(p) :=
∫
ddxχ(x) e−i(p.x) is the Fourier transform of χ(x). In order to ensure

the desired suppression of low-momentum modes, we impose the following condition
upon the limiting behaviour of Rk(p

2):

Rk(p
2) ≈

{
k2 for p2 � k2

0 for p2 � k2
(222)

79



The position space representation of the cutoff action ∆Sk is obtained by applying the
inverse Fourier transform to the right hand side of the defining equation (221):

∆Sk[χ] =
1

2

∫
ddxχ(x)(F−1Rk)(−∆)χ(x) (223)

and we usually write Rk(−∆) instead of (F−1Rk)(−∆). Here the ∆ in the argument of
Rk(−∆) is the d-dimensional Laplace operator.

The effective average action is defined as the following modified Legendre transform
of Wk[J ]:

Γk[φ] := sup
J

(∫
ddx J(x)φ(x) − Wk[J ]

)
− ∆Sk[φ] (224)

Here φ(x) = 〈χ(x)〉, i.e. φ is the expectation value of χ in the presence of a source term
J . In order to arrive at the flow equation (218) itself, one considers the derivative of Γk
with respect to k. Using several well-known identities from quantum field theory, e.g.

δ2Wk

δJ(x)δJ(x)
= 〈χ(x)χ(x)〉 − 〈χ(x)〉〈χ(x)〉, we arrive at

dΓk[φ]

dk
=

1

2

∫
ddx

dRk(−∆)

dk

δ2Wk

δJ(x)δJ(x)
(225)

In the final step we use the fact that δ2Wk

δJ(x)δJ(y)
and δ2(Γk+∆Sk)

δφ(x) δφ(y)
are inverse to each other

which leads straightforward to eq.(218). It is well-known that this functional differential
equation has excellent stability properties which make it very well-suited for numerical
implementations. However, we will not discuss those issues in this chapter, rather we
refer the reader to the extensive literature on the subject (see e.g. [133] and references
therein).

The implementation of eq.(218) in quantum gravity is not a straightforward task.
The most obvious difficulty stems form the fact that in a theory of quantum gravity
the underlying diffeomorphism invariance is broken in the presence of an explicit UV
cut-off. To resolve this problem one usually resorts to the so called background gauge
fixing technique. This amounts to a decomposition of the integration variable gµν in the
path-integral measure according to gµν = ḡµν + hµν . In this identity ḡµν is a fixed
background metric. Since we use a linear split it is clear that the integration over gµν
in the path integral measure can be replaced by an integration over hµν . The defining
equation for the generator of connected correlators reads:

eWk[ḡ;J ] =

∫
Dhµν DCµDC̄µ e−S[ḡ+h]−Sgf [ḡ;h]−Sgh[ḡ;h,C,C̄]−∆Sk[ḡ;h,C,C̄]−Ssources (226)

Here we briefly comment on the meaning of the separate terms in the above identity. The
J on the left hand sides is a generalized source term, i.e. it comprises the sources for
both the metric and the ghost fields. On the right hand side we have the standard action
functional S[g] = S[ḡ+h] which depends on the combination ḡ+h of background metric
and fluctuation field. It is implicitly understood that S[g] is diffeomorphism-invariant.
The next term is the gauge-fixing action Sgf [ḡ;h] which breaks diffeomorphism invariance
and eliminates the unphysical degrees of freedom from the theory. The most common
choice is that of a linear gauge-fixing

Fµ[ḡ;h] =
√

2κFαβ
µ [ḡ]hαβ =

√
2κ

(
δβµ ḡ

αγ ∇̄γ −
1

2
ḡαβ ∇̄µ

)
hαβ (227)
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where the expression in the bracket is a first order differential operator constructed
from the background metric (thus ∇̄ is the covariant derivative with respect to ḡ). The
prefactor κ is defined according to κ = (32πGN)−1/2 , with GN being the (bare) Newton
constant. For this choice of the gauge-fixing condition the ghost action Sgh reads:

Sgh[ḡ; g, C, C̄] = −
√

2

∫
ddx
√
ḡ C̄µMµ

ν [ḡ; g]Cν (228)

where the Fadeev-Popov operator M is given by:

Mµ
ν [ḡ; g] = ḡµρḡσλ ∇̄λ (gρν∇σ + gσν∇ρ)− ḡρσḡµλ ∇̄λ gσν∇ρ (229)

The last crucial piece of information is the infrared cut-off regulator term ∆Sk, given by:

∆Sk[ḡ;h,C, C̄] =
1

2
κ2

∫
ddx
√
ḡ hµν R

grav
k [ḡ]µνρσ hρσ + (230)

+
√

2

∫
ddx
√
ḡ C̄µR

ghost
k [ḡ]Cµ (231)

The theory is regularized both in the pure gravitational and in the ghost sector, and
both regulators have the generic structure Rk[ḡ] = Zkk2 r(−∆̄/k2) , where r(x) is the
so called shape function which is assumed to satisfy r(0) = 1 and limx→∞ r(x) = 0. The
prefactors Zk are different for the gravitational and the ghost sector. In both cases they
contain the wavefunction renormalization factor for the respective fluctuating modes,
however, whereas in the ghost sector Zk is just a number, in the gravitational sector it
possesses an additional tensorial structure.

The construction of the effective average action proceeds in the same manner as in
the case of a scalar field theory, the difference being that that one has to construct the
Legendre transform with respect to both gravitational and ghost degrees of freedom.
Overall one obtains an effective action Γk[ḡ; ĥ, v̄, v] which depends both on the back-

ground ḡ as well as on the fluctuating degrees of freedom ĥµν = 〈hµν〉, v̄µ = 〈C̄µ〉 and

vµ = 〈Cµ〉. It is common to substitute the fluctuating ĥ field through a variable defined

according to g = ḡ + ĥ. Note that even though we are using the same notation for g as
we used for the integration variable in the path-integral measure, they are not one and
the same object. It should be clear from the context which one is meant in each specific
case. In this notation we have Γk[ḡ; g, v̄, v].

The conventionally defined effective action is obtained by setting the ghosts to zero
and identifying the background and the fluctuating metrics, ḡ ≡ g:

Γ[gµν ] = lim
k→0

Γk[gµν ; gµν , 0, 0] (232)

The above functional is invariant with respect to general coordinate transformations of
the gµν metric, in other words it is diffeomorphism invariant.

In order to derive the functional renormalization equation for quantum gravity we
make an ansatz of the form:

Γk[ḡ; g, v̄, v] = Γ[g] + Γ̂[ḡ; g] + Sgf [ḡ; g] + Sgh[ḡ; g, v, v̄] (233)

where Γ[g] is defined as in eq.(232), Sgf [ḡ; g] and Sgh[ḡ; g, v, v̄] are the classical gauge-

fixing and ghost actions and Γ̂[ḡ; g] contains the residual deviations. From this definition

it is immediately clear that Γ̂[ḡ = g; g] = 0.
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With this ansatz one can show that the exact renormalization flow equation for
quantum gravity reads

∂tΓk[ḡ; g] =
1

2
Tr

[(
κ−2 Γ

(2)
k [ḡ; g] +Rgrav

k [ḡ]
)−1

∂tR
grav
k [ḡ]

]
−

−Tr

[(
−M[ḡ; g] + Rghost

k [ḡ]
)−1

∂tR
ghost
k [ḡ]

]
(234)

where the derivative Γ
(2)
k [ḡ; g] is taken with respect to g at fixed ḡ. We refrain from

repeating the steps which lead to (234), rather we refer the reader to [22] for the
detailed construction. The above equation is written down in terms of the functional
Γk[ḡ; g, 0, 0] = Γ[g] + Γ̂[ḡ; g] + Sgf [ḡ; g], for which the ghost fluctuating degrees of free-
dom are set to zero. The solution of this functional differential equation relies on choosing
a specific truncation for Γk , i.e. projecting Γk onto an appropriate subspace (spanned
by a finite set of operators) of the infinite-dimensional space of all action functionals.

Here we discuss the so called Einstein-Hilbert truncation, which will be the founda-
tion for our subsequent analysis in Chapter 8. In the context of background field approach
which we are employing here, the Einstein-Hilbert truncation amounts to

Γk[g] = SEH[g] = (16πGk)
−1
∫
ddx
√
g {−R(g) + 2Λk}

Sgf [ḡ; g] = κ2ZN,k
∫
ddx
√
ḡ ḡµνFαβ

µ [ḡ] gαβ F
ρσ
ν [ḡ] gρσ (235)

Γ̂[ḡ; g] = 0 .

where Gk and Λk are the running Newton and cosmological constants respectively. With
this ansatz the flow equation is solved by using standard heat kernel techniques. We
postpone the discussion of the technicalities to the next section. Here we only remark
that the resulting coupled system of differential equations for the dimensionless Newton
and cosmological constants leads to a non-trivial UV fixed point.

Of course, the stability of the fixed point scenario has been tested far beyond the orig-
inal Einstein-Hilbert truncation. These extensions include effects generated by the Weyl
tensor as well by general terms in the curvature scalar, e.g. [138,139], higher order deriva-
tive terms, e.g. [140,141], ghost fluctuations, e.g. [142–144], first attempts on Lorentzian
gravity, e.g. [145], as well as the coupling to matter and gauge fields, e.g. [146–150].

The impressive plethora of results, including those obtained in other approaches,
[126, 127, 129–132], give us a firm grip on the asymptotic safety scenario in quantum
gravity. This allows us to study interesting physics related to cosmology and the dynam-
ics of the full matter-gravity system. Still, all approaches to quantum gravity have to face
the non-trivial task of implementing full diffeomorphism invariance and reparametriza-
tion invariance of the theory. This task is closely linked to the question of background
independence of quantum gravity which is also not fully resolved yet. In the next chapter
we will address both of those issues.
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8 An application of the functional RG to Quantum

Gravity

In this chapter we evaluate the phase diagram of quantum gravity within a fully
diffeomorphism-invariant renormalization group approach. The construction is based
on the geometrical or Vilkovisky-DeWitt effective action. We also resolve the differ-
ence between the fluctuation metric and the background metric. This allows for fully
background-independent flows in gravity.

The results provide further evidence for the ultraviolet fixed point scenario in quan-
tum gravity with quantitative changes for the fixed point physics. We also find a stable
infrared fixed point related to classical Einstein gravity. Implications and possible exten-
sions are discussed. The entire chapter is based on [151].

8.1 Introduction

The standard RG approach to quantum gravity, introduced in the previous chapter,
is based on the background field construction, in which the theory is expanded about
a specific background field configuration. As we previously discussed this is realized
within a linear splitting of the full metric g in a background metric ḡ and a fluctuation
h = g − ḡ. Finally, the background is identified with the dynamical metric by setting
h = 0, which removes the background field dependence, see e.g. [152]. In this approach
the effective action is invariant under symmetry transformations of the background field
configuration. At its root this is only an auxiliary symmetry whereas the dynamical
symmetry transformations of the fluctuations are non-trivially realized. Note, however,
that the fluctuation field h in such an approach has no geometrical meaning, i.e. in
gravity h is no metric, and in the simpler example of a Yang-Mills theory the fluctuation
field is no connection.

Moreover, the symmetry identities of the fluctuation fields lead to non-linear rela-
tions between fluctuation field Green functions. It is also possible to derive identities that
link background field Green functions and fluctuation field Green functions, the Nielsen
identities [153]. The Nielsen identity in combination with the gauge/diffeomorphism co-
variance of the background field Green functions provide the non-trivial symmetry iden-
tities of the fluctuation field. In summary these relations are chiefly important for the
discussion of diffeomorphism invariance as well as background independence in quantum
gravity, and are at the root of the interpretation of the background correlation functions
as S-matrix elements.

In the present chapter we put forward a fully diffeomorphism-invariant FRG approach
to quantum gravity by using the so called geometrical (or Vilkovisky-DeWitt) effective
action, e.g. [156–161]. Our construction can be understood as a non-linear upgrade of the
standard background field approach, its linear order giving precisely the background field
relations in the Landau-DeWitt gauge. The gain of such a non-linear approach is that the
fluctuation fields have a geometrical meaning and can be utilized to compute an effective
action which only depends on the diffeomorphism-invariant part of the fluctuation fields.
Consequently, the geometrical effective action is trivially diffeomorphism-invariant, and
any cutoff procedure applied to these fluctuation fields maintains diffeomorphism invari-
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ance. Still, fluctuation field Green functions and background metric Green functions are
related to each other by means of a regulator-dependent Nielsen identity [133,155].

Within this framework, we provide the first fully diffeomorphism-invariant evaluation
of the phase diagram of quantum gravity including the infrared sector of the theory. Our
approach also allows for a more direct access to the question of background independence.
In a first non-trivial approximation the present work provides further evidence for the
asymptotic safety scenario of quantum gravity. We also unravel an interesting infrared
fixed point structure.

In Section 8.2 we briefly recapitulate the geometrical approach to quantum gravity.
Its FRG version as formulated in [154, 155] is introduced in Section 8.3. In Section 8.4
we define the approximation which captures the difference between background metric
dependence and fluctuation metric dependence. In Section 8.5 the Nielsen identity for
the regularized geometrical effective action, [133,155], is used to derive relations between
different terms in the effective action. In Section 8.6 we compute the UV fixed point
within the geometrical approach in the Einstein-Hilbert truncation without the Nielsen
identity. In Section 8.7 we utilize the Nielsen identity to derive both the flow of the back-
ground couplings as well as that of the dynamical couplings. Results on the UV fixed
point scenario within the geometrical approach in the standard background approxi-
mation are presented in Section 8.8. In four space-time dimensions they agree with that
obtained in the standard background field approach within the same background approx-
imation, and in Landau-DeWitt gauge. In Section 8.9 we present the results for the phase
diagram of quantum gravity within the fully dynamical approach. The UV-fixed point
scenario agrees qualitatively with that found in the background field approximation, and
compares well with that found in the bi-metric background field approach put forward
in [162], see Section 8.9.1. We also find a stable infrared fixed point, see Section 8.9.2,
and show that the theory tends towards classical Einstein gravity in the infrared, see
Section 8.9.3. We close with a brief summary and discussion in Section 8.10.

8.2 Geometrical effective action

In this section we briefly review the geometrical approach to quantum field theory using
the notation from [23,133,155,159]. The geometrical approach hinges on the observation
that the standard path integral has no manifest parametrization invariance. Put differ-
ently, its standard formulation assumes a flat path integral measure dϕ for a given field
theory with field ϕ. Neither such a measure nor the related source term

∫
x
Jϕ is invariant

under field parametrization. This apparent non-invariance can be cured by enhancing the
flat measure by an appropriately defined determinant

√
det γ of the metric in field space,

γ, and using a parametrization invariant source term
∫
x
Jφ(ϕ̄, ϕ). Here, φ is chosen to

be a geodesic normal field, i.e. it is the Gaussian normal coordinate representation of
the fluctuating field ϕ with respect to a chosen background ϕ̄. In linear approximation,
φ = ϕ− ϕ̄, this reduces to the standard background field approach.

In gravity the field ϕ is the metric g and the classical action is the Einstein-Hilbert
action S,

S[g] = 2κ2

∫
ddx
√
g
(
−R(g) + 2Λ

)
, (236)

84



with curvature scalar R and cosmological constant Λ. The prefactor κ2 is given by

κ2 =
1

32πGN

. (237)

where GN is the Newton constant. The basic object in the geometrical approach to
gravity is the configuration space of the theory, Φ = {gµν}, equipped with the natural
action of the diffeomorphism group G. There is a one-parameter family of ultralocal
group-invariant supermetrics on Φ

γµνρ
′σ′(x, x′) =

[
1
2
gµρ

′
(x)gνσ

′
(x) + 1

2
gµσ

′
(x)gνρ

′
(x)

−θ gµν(x)gρ
′σ′(x)

]√
g(x)

√
g(x′) δ(x, x′) (238)

labeled by a continuous real parameter θ (which should not be confused with the
fermionic coordinate from Part 1). For the remainder of the paper we fix θ = −1.

In the standard background field approach one expands the metric g about a given
background metric ḡ within a linear split, g = ḡ + h with fluctuation field h. Such a
parametrization entails that the fluctuation h is neither a metric nor a vector, i.e. it
has no geometrical meaning. In turn, within the geometrical approach we define h as
a tangent vector at ḡ and σa[ḡ; g] = −ha as the geodesic normal coordinate of g with
respect to ḡ, see e.g. [159],

σa[ḡ; g] = (s̄− s)dλ
a

ds
(s̄) (239)

This construction is illustrated in Figure 8.2. The geodesics λ(s) are taken with respect to

ḡ

g
λ

hhα

hA

Figure 7: Geodesic w.r.t. the Vilkovisky connection from ḡ to g. σ is the the tangent
vector at ḡ on this geodesic, hA is the diffeomorphism-invariant projection, and hα the
projection on the diffeomorphism fibre.

Vilkovisky’s connection and satisfy λ(s̄) = ḡ and λ(s) = g, and s is the affine parameter
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of the geodesic. Heuristically speaking, Vilkovisky’s connection is designed to maximally
disentangle the fibre from the base space. It is defined through its Christoffel symbols

ΓV
i
jk = Γγ

i
jk −Qi

α·(j ω
α
k) + 1

2ω
α

(jQ
i
α·lQ

l
β ω

β
k) (240)

where Γγ are the Christoffel symbols of the Riemannian connection induced by the
supermetric γ and Qα are the generators of the diffeomorphism group. The ωαi are the
components of the unique connection one-form ωα determined by γ and Qα, i.e.

ωα = Gαβ γ(Qβ, · ) (241)

where Gαβ stands for the inverse operator of − γ(Qα, Qβ). With DeWitt’s condensed
notation the index i = (x, µ) labels space-time x and Lorentz indices µ. Additionally, the
subscripts ·j denote covariant derivatives with respect to Γγ and the parenthesis in the
subscripts indicate symmetrization of the indices embraced. More details in the context
of functional RG flows in the geometrical approach can be found in [23,133,154,155].

The above geometrical construction allows us to define the path integral of the theory
in a manifestly reparameterisation invariant way

e−Γ̂[ḡ;h] =

∫
Dg
√

det γ δ(F) detM [ḡ; g]

× exp

{
−S[g] −

∫
δΓ̂

δh
· (σ[ḡ; g] + h)

}
. (242)

Here Dg
√

det γ stands for the volume form on Φ, F = 0 is the gauge fixing condition and
detM is the determinant of the ghost operator which depends both on the background
ḡ and the fluctuating field. We emphasize that the gauge fixing is only introduce for
the sake of convenience: the effective action Γ̂ does not depend on it. This goes hand in
hand with the fact that the geometrical effective action Γ̂ in (242) only depends on the
diffeomorphism-invariant part hA of the field h with coordinates ha = (hA, hα),

ha = −σa[ḡ; g] , hA = (Πh)A , hα = ((1l− Π)h)α . (243)

Here we have introduced the horizontal projection operator Π = Π(ḡ) on the
diffeomorphism-invariant part of h, see e.g. [133, 155, 159]. The part of the geodesic
normal field tangential to the fibre, hα, drops out. Note also, that in the linear approxi-
mation, h is equivalent with the metric fluctuation g−ḡ in the background field approach,
h = g − ḡ +O(h2). With these prerequisites it is possible to rewrite the path integral in
(242) in terms of the field h

e−Γ[ḡ;h] =

∫
DĥA

√
det γAB e−S[ḡ;ĥ]

∫
Dĥα

√
det γαβ

× e−Sgf [ḡ;h] det1/2F2 detM e
∫
δΓ
δh
·(ĥ−h) , (244)

where F2 is the distribution kernel of the gauge fixing term Sgf ,

Sgf [ḡ;h] =
κ2

α

∫
ddx
√
ḡ ḡµνFµFν , (245)

86



with κ defined as in (237). We emphasize that the Gaussian integration over the fibre
field ĥα in (244) is only kept for the sake of convenience. Performing it would make
explicit that the effective action Γ[ḡ;h] defined in (244) only depends on hA up to the
gauge fixing term,

Γ[ḡ;h] = Γ̂[ḡ;hA] + Sgf [ḡ;h] . (246)

In the following we impose a linear gauge fixing condition

Fτ = F µν
τ [ḡ] ĥµν = 0 . (247)

with a linear operator F µν
τ [ḡ] which depends on the background ḡ. In this case the ghost

operator M in (244) depends solely on the background field configuration ḡ but not
on the fluctuating field ĥ. Put intuitively, detM accounts for the fact that the gauge
fixing surface specified by F intersects each gauge orbit at a different angle. In general
the intersection angle will depend on the dynamical field configuration g parametrizing
the orbit, see (242). Note, however, that the path integral in (244) is taken over a linear
manifold and the gauge orbits are linear hypersurfaces – the vertical subspaces spanned
by the hα coordinates. Then, with (247) it is clear that the gauge fixing surface will
intersect each orbit at the same angle leading to a constant M .

It is convenient though not necessary to choose the gauge fixing such that hA satisfies
(247), see e.g. [155]. With (243) this amounts to F · Π = 0. Then it is evident that the
Gaussian integration over hα drops out, leading to purely background field dependent
terms multiplied by det γαβ. Nonetheless it turns out to be convenient to keep the gauge
fixing term and use it in order to facilitate computations. Specifically we choose

F µν
τ [ḡ] = γµνρ

′σ′ [ḡ]Qρ′σ′, τ [ḡ] (248)

Using the well-known expression for the generators of the diffeomorphism group

Qi
α[ḡ] = Qρ′σ′

τ [ḡ] = − δρ′τ ∇̄σ′ − δσ′τ ∇̄ρ′ (249)

we obtain

F µν
τ [ḡ] = −2

(
δ(µ
τ ∇̄ν) +

1

2
θ ḡµν∇̄τ

)
. (250)

Here, ∇̄ is the covariant derivative with respect to the background metric connection.
It is now straightforward to show that

Sgf = −κ
2

α

∫
ddx
√
ḡ ĥµν

(
ḡµσ

′∇̄ν∇̄ρ′

+θ ḡµν∇̄ρ′∇̄σ′ +
1

4
θ2 ḡµν ḡρ

′σ′∆̄

)
ĥρ′σ′ , (251)

with α being the gauge-fixing parameter and ∆̄ ≡ ∆ḡ the Laplace operator constructed
from the background metric. Finally we discuss the

√
det γ-terms in (244), for details see

e.g. [159]. First of all we note that the full metric γ does not depend on the hα due to
the vanishing Lie-derivative LQαγ = 0. The horizontal part γAB does not depend on the
hA either which leaves γαβ as the only dynamical object. Explicitly it reads

γαβ =
(

2δµν∆ + 2Rµ
ν + 2(1 + θ)∇µ∇ν

)
δ(x, x′) (252)
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with α = (µ, x) and β = (ν, x′) . The determinant of γαβ can be rewritten in terms of a
Grassmann integral,

det γαβ[ ḡ, hA] (253)

=

∫
Dc̄Dc e

∫
ddx
√
g c̄µ

(
2δµν∆+2Rµν+2(1+θ)∇µ∇ν

)
cν

.

Here c(x) and c̄(x) are anti-commuting Grassmann fields and g is a metric with
−σA[ḡ, g] = hA. Eq.(253) can most easily be understood as the geometric analogue
of the usual ghost action. This leaves us with the final expression for the geometrical
effective action,

e−Γ[ḡ;h] =

∫
DĥA

√
det γAB

∫
Dĥα

∫
Dc̄Dc

× e−S[ḡ;ĥ,c,c̄] det1/2F2 detM e
∫
δΓ
δh
·(ĥ−h) , (254)

where the remaining measure factors of the path integral only lead to background-
dependent terms and S[ḡ; ĥ, c, c̄] is the full gauge-fixed action,

S[ḡ; ĥ, c, c̄] = 2κ2

∫
ddx
√
g
(
−R(g) + 2Λ̄k

)
+ Sgf

+2

∫
ddx
√
g C̄µ

(
δµν∆ +Rµ

ν + (1 + θ)∇µ∇ν

)
Cν . (255)

We emphasize again that even though the path integral (254) is defined similarly to the
standard gauge-fixed approach, the effective action Γ−Sgf does not depend on the gauge
fixing.

8.3 Geometrical RG-flows

The geometrical approach put forward in the last section allows for a diffeomorphism-
invariant infrared regularization as the dynamical field hA is diffeomorphism-invariant.
Flow equations for the geometrical effective action have first been put forward in [154] for
the sharp-cutoff and in [155] for general regulators. The approach has been put to work
in the Einstein-Hilbert approximation in [23]. In [155] it has been shown that, despite
manifest diffeomorphism or gauge invariance, the approach is subject to non-trivial,
regulator-dependent Nielsen identities. Heuristically speaking, these identities carry the
information about the unitarity of the theory. This interesting and important relation
will be discussed elsewhere.

A diffeomorphism-invariant infrared regularization can now be applied to the the-
ory by modifying the propagation of the fluctuation fields through the substitution
S[ḡ; ĥ, c, c̄]→ S[ḡ; ĥ, c, c̄] + ∆Sk[ḡ; ĥ, c, c̄] with the cut-off term

∆Sk[ḡ; ĥ, c̄, c] =
1

2

∫
ddx
√
ḡ ĥµνRµνρσ

k [ḡ] ĥρσ

+

∫
d4x
√
ḡ c̄µRµν

k [ḡ] cν . (256)
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Note that the regulators Rµνρσ
k and Rµν

k only depend on the background field configura-
tion. For convenience, we further demand that Rµνρσ

k should satisfy Rk,αA = Rk,Aα = 0,
see [155]. This disentangles the trivial flow of the hα-part of the action from the dynam-
ical flow of the hA-part. Inserting the regulator terms into the path integral (254) we are
led to the Wetterich equation for quantum gravity within the geometrical approach,

∂tΓk[ḡ;φ] =
1

2
Tr

1

Γ
(2)
k [ḡ;φ] +Rk[ḡ]

∂tRk[ḡ] , (257)

where the trace sums over momenta, internal indices and all field species with a relative
minus sign for Grassmann fields. The super-field φ = (h,C, C̄) contains all fluctuation
fields. The components are the expectation values of the dynamical fields, i.e.

h = 〈ĥ〉 Cµ = 〈cµ〉 , C̄µ = 〈c̄µ〉 . (258)

and the two-point function Γ
(2)
k [ḡ;φ] is the second derivative of the effective action Γ

w.r.t. the field φ,

Γ
(2)
k [ḡ;φ] =

δ2Γk
δφiδφj

. (259)

The regulator Rk is diagonal in superfield space with diagonal components

Rk,hh = (Rµνρσ
k ) , Rk,CC̄ = (Rµν

k ) = −(Rνµ
k ) . (260)

As can be immediately inferred from the construction of the geometrical effective action,
we also have in general

δ∂tΓk[ḡ;φ]

δφ
=
δ∂tΓ̂k[ḡ;φ]

δφ
, (261)

i.e. the flows of Γ̂k and Γk agree up to normalization factors that might depend on the
background metric. In particular this entails that the gauge fixing term does not flow.
Ultimately we are interested in the evolution of Γk[ḡ; 0] with the cut-off scale k. In this
case the propagator on the right hand side of (257) can be rewritten as

Γ
(2)
k [ḡ;h = 0] = ∇2Γ̂k[ḡ, g = ḡ] + S

(2)
gf . (262)

In (262) we have used that h = −σ[ḡ; g]. The second covariant derivative ∇2, taken with
respect to ΓV , acts on the full dynamical metric field g. For notational convenience we
omitted the ghost fields. Note that within the standard background field approach (262)
simply reads

Γ
(2)
k [ḡ;h = 0] =

δ2Γk[ḡ; g = ḡ]

δg2
. (263)

The symmetric tensor h can be further decomposed with the York transverse-traceless
decomposition valid for spherical background geometries. This decomposition together
with that of the ghosts is detailed in Appendix D. In the present work all diagonal modes
φi are regularized with regulators

Rk,i = Ti k2r(x) , with x = −∆ḡ

k2
. (264)

where r(x) is a dimensional shape function and the prefactor Ti accounts for the ten-
sorial structure of the respective mode. The complete list of regulators can be found in
Appendix G.
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We close this section with a discussion of the practical implementation of the flow
(257) in the graviton sector in a given approximation. This repeats the discussion con-
cerning the trivial difference between the diffeomorphism-invariant effective action, here
Γ̂k, and the trivially gauge-fixed effective action, here Γk = Γ̂k + Sgf , in the context of
the flow equation. The general derivations are done in detail in [155].

Approximations or parameterisations of the effective action Γk contain a
diffeomorphism-invariant functional of g such as the Einstein-Hilbert action. This func-
tional has to be accompanied by terms which preserve symmetry constraints such as
the Nielsen identities. The flow depends on the second derivative of Γk w.r.t. h which
has to be extracted from the action. For functionals of g this amounts to taking second
derivatives w.r.t. Vilkovisky’s connection. Here we discuss how this task can be reduced
to computing Riemannian covariant derivatives at g = ḡ. Separating the graviton and
ghost contributions and identifying g = ḡ, the flow reads with (246)

∂tΓk =
1

2
Tr

1

∇2 Γ̂k + S
(2)
gf +Rgrav

k

∂tRgrav
k

+ ghost− contr. (265)

Since Γ̂k is a diffeomorphism-invariant functional, the covariant derivative Γ̂
(2)
k = ∇2 Γk

has only a transversal part. If we choose a purely transversal regulator Rgrav
k [ḡ], i.e.

Rgrav
k [ḡ] =

(
Rgrav
k,⊥ [ḡ] 0

0 0

)
, (266)

the term S
(2)
gf drops out from the flow. This entails that the geometrical flow cannot

depend on the gauge fixing, for the general argument see [155]. Thus, we could as well
work solely with Γ̂k and its propagator. However, for practical computations it turns out
to be more convenient to invert the propagator on the full transversal + longitudinal
space, hence using Γk instead of Γ̂k. It is also here where we make use of the crucial
identity (282). Schematically we have at g = ḡ,

∇2Γ̂k = Π[ḡ] · ∇2
γ Γ̂k[ḡ] · Π[ḡ] (267)

see (243). With F · Π[ḡ] = 0 and (247) the gauge-fixing term has the form

S
(2)
gf [ḡ] = −κ

2

α

(
0 0
0 F · F

)
, (268)

It is proportional to 1/α and diverges for α → 0. We also introduce a corresponding
longitudinal part to the regulator

Rgrav
k [ḡ] =

(
Rgrav
k,⊥ [ḡ] 0

0 Rgrav
k,L [ḡ]

)
. (269)

This modification adds a trivial ḡ-dependent part to the flow, see also (261). Note also
that even though Γk is a diffeomorphism-invariant functional, its covariant derivative
with respect to the metric connection is not. This is taken into account by writing
schematically

∇2
γ Γ̂k =

(
∇2 Γ̂k B
C D

)
(270)
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where the subscript γ indicates that the covariant derivative is taken with respect to
the metric rather than the Vilkovisky connection. Now we consider

∇2
γ Γ̂k + S

(2)
gf +Rgrav

k (271)

=

 ∇2 Γ̂k +Rgrav
k,⊥ [ḡ] B

C D +Rgrav
k,L + S

(2)
gf

 ,

in a slight abuse of notation, where T is completely longitudinal. This applies to the
gauge fixing term, S

(2)
gf in (268), and to a sum of gauge fixing term and longitudinal

regulator as introduced in (269). In these cases we have

lim
α→0

∇2Γ̂k +Rgrav
k,⊥ B

C D +Rgrav
k,L + S

(2)
gf

−1

=

 Π · 1

∇2 Γ̂k +Rgrav
k,⊥
· Π 0

0 0

 (272)

where, as before, the π’s indicate that we are inverting on the transversal subspace. In
summary we can rewrite the right hand side of eq.(257) at g = ḡ in the form

lim
α→0

1

2
Tr

1

∇2
γ Γ̂k[ḡ] + S

(2)
gf [ḡ] +Rgrav

k [ḡ]
∂tRgrav

k [ḡ] −

−Tr
1

−Q[ḡ] +Rgh
k [ḡ]

∂tRgh
k [ḡ] . (273)

Eq. (273) entails the reduction of the propagator in terms of covariant derivatives w.r.t.
Vilkovisky’s connection to an expression which depends on Riemannian covariant deriva-
tives. The price to pay is the intermediate introduction of a gauge fixing, which, however,
does not play a role in the final expression.

8.4 Approximation

The standard Einstein-Hilbert truncation in the background field approach to quantum
gravity amounts to introducing a flowing cosmological constant and Newton constant
into the full, gauge-fixed Einstein-Hilbert action, (255), that is

ΓEH[ḡ;φ] = 2κ2Z̄N,k

∫
ddx
√
g
(
−R(g) + 2Λ̄k

)
+ Sgf

+2

∫
ddx
√
g C̄µ

(
δµν∆ +Rµ

ν + (1 + θ)∇µ∇ν

)
Cν , (274)

where κ2 is defined in (237), and ΓEH = Γ̂EH + Sgf . As before h = −σ[ḡ; g] and all geo-
metric quantities such as ∆, Rµ

ν and ∇µ are constructed with respect to the full metric
g. The cut-off dependent quantities Z̄N,k and Λ̄k stand for the scale-dependent wavefunc-
tion renormalization factor and the scale-dependent cosmological constant respectively.
At vanishing fluctuation field h = 0 (274) solely depends on the full metric g = ḡ and
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is diffeomorphism-invariant. At h 6= 0 it is still diffeomorphism-invariant w.r.t. a com-
bined transformation of ḡ and h. However, the approximation (274) does not respect the
Nielsen identity, [133,155]. This is discussed in detail in the next Section 8.5.

Here we simply anticipate the occurrence of further terms due to the Nielsen identity
and introduce an extended Einstein-Hilbert truncation,

Γk[ḡ;h, C̄, C] = ΓEH[g; C̄, C] + ∆Γ[ḡ;h] + higher order . (275)

with
∆Γ[ḡ; 0] = 0 , (276)

The higher order terms stand for additional diffeomorphism-invariant terms in the full
metric g, and the ghost part of the action is the same as in eq.(274). The Einstein-Hilbert
term depends on the full metric g whereas ∆Γ[ḡ;h] stands for quantum fluctuations
that depend on the fluctuations h and the background ḡ separately. In the minimally
consistent completion of the Einstein-Hilbert truncation ∆Γ contains a ’mass’ term for
the fluctuation field h and a contribution to the kinetic term for h. In DeWitt’s condensed
notation the decomposition has the form

∆Γ[ḡ;h] = ∆Γ1 + ∆Γ2 = ∆Γaha +
1

2
∆Γabhahb , (277)

with symmetric coefficients ∆Γab = ∆Γba. The term ∆Γ1 is linear in h and reads

∆Γ1[ḡ;h] =

∫
ddx
√
g∆Γµν [g]hµν . (278)

whereas ∆Γ2 is quadratic in h with

∆Γ2 =
1

2

∫
dd
√
g hµν∆Γµνρσ[g]hρσ . (279)

Here we dropped terms of order higher than h2 with g-dependent expansion coefficients
∆Γa1···an . Due to diffeomorphism invariance the expansion coefficients can only couple to
the hA , the fibre variables hα have to drop out. Consequently ∆Γa and ∆Γab have to be
proportional to Π. The input in the flow equation is the second h- derivative of ∆Γ. For
h = 0, that is g = ḡ, it reads schematically

∆Γ(2)[g] = ∆Γa,b + ∆Γb,a + ∆Γab , (280)

where the first two terms on the rhs arise from ∆Γ1, and the last term on the rhs comes
from ∆Γ2. The distribution kernel of the second order term is specified with

∆Γ(2)[g] = 4κ2(ZNΛk − Z̄N Λ̄k)TΛ + 2κ2(ZN − Z̄N)TN . (281)

The TΛ and TN stand for the tensor structures arising from the second variation w.r.t. g
of the cosmological constant term and the curvature term in the Einstein-Hilbert action
in (275). The term (281) involves two new flowing coefficients ZN,k and Λk. Due to (280),
∆Γ(2)[g] has contributions both from ∆Γ1 and ∆Γ2. With the tensor structure defined by
TΛ and TN , (281) projects onto the diffeomorphism-invariant variables hA as demanded
by diffeomorphism invariance.
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Note also that the above approximation includes an Einstein-Hilbert term ΓEH[ḡ] =
ΓEH[ḡ; 0]. Such a term can be expanded about the full metric, ḡ = g − h + O(h2) and is
absorbed in the Einstein Hilbert term as well as in ∆Γ. Schematically the expansion of
ΓEH[ḡ] reads

ΓEH[g − h+O(h2)] = ΓEH[g] + ΓEH,a[g]ha +O(h2)

= ΓEH[ḡ] + ΓEH,a[g]ha +O(h2) .

In the same spirit it was possible to introduce a single metric dependence in
√
g∆Γµνρσ[g]

in (277). Differences in ḡ and g are absorbed in terms of order higher than two in h. The
latter are not taken into account in the present approximation.

In summary, the minimally consistent Einstein-Hilbert approximation leads to the
following identity for the second derivative of the effective action w.r.t. h,

Γk,ab[ḡ, 0] =
(

Γ̂EH

)
·cd

[ḡ] Πc
a Πd

b

∣∣∣
Λ̄→Λ,Z̄N→ZN

+ S
(2)
gf , (282)

see (243), (275) and (277). This leaves us with the task to compute ∇2
γΓ̂EH +S

(2)
gf at g = ḡ.

The results are listed in Appendix E. The propagator on the right hand side of the flow
equation (257) depends on Γk,ab and hence only on (Λ, ZN). The standard background
field approximation in the geometrical approach amounts to

(Λ, ZN) = (Λ̄, Z̄N) , (283)

in (282). In other words, the additional term ∆Γ simply compensates for the fact that
the propagator of the fluctuation field does not depend on the background parameters
Z̄N , Λ̄ but on the fluctuation parameters ZN ,Λ.

We summarize the flow equation in the approximation introduced above as follows:
we have a coupled set of differential equations for the dimensionless pair (gN , λ) of dy-
namical couplings with

gN =
kd−2GN

ZN,k
, λ = k−2Λk , ηN = −∂tZN,k

ZN,k
, (284)

leading to

ηN =
∂tgN + (2− d)gN

gN
. (285)

With the definitions in (284) we have

∂tgN + (2− d)gN = Fg(gN , λ) , (286a)

∂tλ+ (2− ηN)λ = Fλ(gN , λ) . (286b)

The set of flow equations (285) does not depend on the background couplings (ḡN , λ̄)
defined analogously to (284)

ḡN =
kd−2ḠN

ZN,k
, λ̄ = k−2Λ̄k , η̄N = −∂tZ̄N,k

Z̄N,k
. (287)
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This fact reflects the background independence of the approach. In turn, the flows (286)
induce flows for the dimensionless pair (ḡN , λ̄)

gN
ḡN

(∂tḡN + (2− d)ḡN) = F̄g(gN , λ) , (288a)

gN
ḡN

(
∂tλ̄+ (2− η̄N)λ̄

)
= F̄λ(gN , λ) . (288b)

Note that the right-hand sides in (288) do not depend on ḡN , λ̄, and thus the flow of
the background couplings (Z̄N , Λ̄) only depends on the dynamical couplings (ZN ,Λ).
The ratios gN/ḡN on the lhs of (288) simply originate from using the Newton constants
gN , ḡN instead of ZN , Z̄N .

In the background field approximation, (282), the system of flows (286),(288) is
substituted by (288) with gN = ḡN and λ = λ̄. In this case the ratio is unity and we
arrive at a coupled set of two flow equations for gN and λ very similar to the standard
background flows, see Section 8.6. The only difference is the appearance of the covariant
derivatives in the propagator. In the present work we shall also solve the full system
(286),(288). This is done in the Sections 8.8, 8.9.

We close this section with a discussion of observables. In the background field ap-
proach only the correlation functions of the background metric are diffeomorphism-
covariant and can be directly used to construct observables such as cross-sections. In
the present approach the corresponding correlation functions depend on to the running
Newton constant ḡN and the running cosmological constant λ̄N . In the geometrical ap-
proach also the dynamical couplings gN and λ are coefficients of diffeomorphism-invariant
terms. However, the background couplings comprise local information about the theory
whereas the dynamical couplings do not. A direct physics interpretation has to be taken
with caution. Note, however, that the fixed points of the theory are signaled by vanishing
β-functions of the dynamical couplings.

8.5 Nielsen identities

For the computation of ∆Γ we shall resolve the difference between the background metric
and the full metric in a leading order approximation. To that end we first discuss the usual
background field approach, where g = ḡ + h. This relates to the linear approximation in
the geometrical approach. Note, however, that the effective action is not a function of g
but of ḡ and h separately. The standard approximation used in background field flows is
done by evaluating the flow (257) at vanishing h = 0. Then, the flow is a flow for Γk[ḡ; 0].

It is not closed as the right hand side of (257) depends on Γ
(2)
k , the second derivative of

the scale-dependent effective action w.r.t. the fluctuation field h. The approximation

δ2Γk
δh2

[ḡ; 0] =
δ2Γk
δḡ2

[ḡ; 0] , (289)

closes the flow (257) in the linear approximation. The identity (289) is violated by the
fact that the effective action is not a function of ḡ+h, but of both fields separately. The
truncation (289) fails already at one loop in the standard background field approach.
Hence a computation of the flow of Γk[ḡ, 0] with (289) deviates from the full flow already
at two loop [163–166], for infrared diverging regulators it even fails at one loop [165].
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In [163] the difference to the correct one loop result for Γ
(2)
k was used for deriving the two

loop β-function in Yang-Mills theory. Using the fluctuating propagators in the flow is also
crucial for deriving confinement within Landau gauge QCD, see [167]. Indeed, generally
derivatives w.r.t. g (or h) and that w.r.t. ḡ are related by Nielsen identities [133, 155].
Within the geometrical approach used in the present work they read

Γk,i + Γk,a〈ĥa;i〉 = 1
2G

abRba,i +RabG
bc δ
δh̄c
〈ĥa;i〉 . (290)

The subscript , i stands for the usual derivative and ; i for the ΓV -covariant derivative
acting on the background metric ḡ. The index a indicates differentiation with respect
to the Gaussian normal coordinate ha and G stands for the full propagator. Eq. (290)
entails that, up to regulator effects, derivatives w.r.t. the background metric are indeed
proportional to those w.r.t. geodesic normal fields h as opposed to the corresponding
identities in the standard background field approach, see [133,163,165].

The proportionality factor 〈ĥa;i〉 is sensitive to quantum effects and encodes the
quantum deformation of diffeomorphism invariance in a similar way as the BRST mas-
ter equation encodes the quantum deformation of classical BRST invariance [133, 155].
Inserting the Einstein-Hilbert truncation (275) in the Nielsen identity (290) we are led
to

ΓEH,a

(
〈ĥa;i〉 − ha;i

)
+
(

∆Γk,i + ∆Γk,a〈ĥa;i〉
)

= 1
2G

abRba,i +RabG
bc δ
δh̄c
〈ĥa;i〉 . (291)

In (291) we have used that the Einstein-Hilbert action ΓEH satisfies the classical Nielsen
identity, that is (290) with vanishing right hand side and 〈ĥa;i〉 → ha;i. This en-
tails that (291) is valid for the general effective action within the parameterisation
Γk = Γdiff [g, C̄, C] + ∆Γ[ḡ;h, C̄, C] with diffeomorphism-invariant Γdiff . The present ap-
proximation is the simplest case of such a splitting. In the full quantum case, the re-
placement 〈ĥa;i〉 → ha;i is a mean field approximation,

〈ĥa;i〉
∣∣∣
mean field

= ha;i . (292)

Using this approximation in (291), the first term on the left hand side vanishes and we
arrive at

∆Γk,i + ∆Γk,a h
a

;i = 1
2G

abRba,i +RabG
bc δ
δh̄c

ha;i . (293)

Note that implicitly the mean field approximation is behind both, the Einstein-Hilbert
approximation as well as the identity (289). The quantum deformation of diffeomorphism
invariance encoded in 〈ĥa;i〉 − ha;i can be taken into account successively by the flow of

〈ĥa;i〉, see [155]. This is postponed to future publications.

Eq. (293) can be used to compute the differences between the background parameters
(Λ̄, Z̄N) and the fluctuation parameters (Λ, ZN) in the given Einstein-Hilbert approxi-
mation (275). We shall do this in an expansion about vanishing geodesic field h = 0 as
well as in an expansion of the ḡ-dependence of the regulator that induce the right hand
side of (293). At h = 0 we have

hc;a = −δca , hd;ca = 0 ,

hd;c(ab) = 1
6
(Rd

V acb +Rd
V bca + 2Rd

V c(ab)) , (294)
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the third derivative of h is proportional to the affine part of the curvature tensor RV

of Vilkovisky’s connection. The RV -terms would contribute to a further h-derivative of
∆Γa[ḡ]. In the present work we drop them as sub-leading. Then, the last term in (293)
vanishes and we conclude that

∆Γa[ḡ] = −1
2G

cdRdc,a[ḡ] . (295)

This fixes the first two terms on the rhs of (280) which are computed with a further
(covariant) derivative of εthe first term on the rhs derives from ∆Γ2, (295) w.r.t.

√
g.

Now we take a hb-derivative of (293) at fixed g. Evaluated at h = 0 this reads

∆Γab[ḡ] = −∆Γb,a[ḡ]− 1

2

δ

δhb
(
GcdRdc,a

)
[ḡ] , (296)

where the hb-derivative of the flow term at fixed g only hits the cut-off terms and the
ḡ-dependence of ∆Γ(2) in the propagator G, evaluated at h = 0. In combination this
leads to a ḡ-derivative of −∆Γa[ḡ] at fixed regulator. In terms of the regulator-induced
ḡ-dependences this is the leading term in the Nielsen-identity. Hence, within leading
order we arrive at

∆Γab[ḡ] = −∆Γ(b,a)[ḡ] ≡ −1

2
∆Γb,a[ḡ]− 1

2
∆Γa,b[ḡ] . (297)

The results (297) and (295) allow us to compute ∆Γ(2) defined in (280),

∆Γ
(2)
ab = −1

2(GcdRdc,(a ),b) (298)

= −1
2(GcdRdc ),ab + 1

2(Gcd
,(aRdc),b) ,

where as usual the parenthesis indicate symmetrization. For the flow of the propagator
of the dynamical fields h on the right hand side of (259) we sum-up the t-derivative of
(259) and ∂tΓk[g],ab. The latter expression is the second derivative w.r.t. ḡ of the flow
(257), evaluated at h = 0. Finally we need the covariant derivatives with the Vilkovisky
connection of ΓEH at vanishing fluctuation field h = 0. For the second derivative of ∆Γ
at h = 0 this does not make a difference and we arrive at

∂tΓk;ab|h=0 = −1
2(Rdc∂tG

cd );ab + 1
2∂t(RdcG

cd
(;a);b) . (299)

The first term on the right hand side is a total second derivative w.r.t. ḡ, and can
be computed with heat kernel techniques analogously to the standard flow. In turn, the
second term is not that easily accessible. However, it can be minimized by an appropriate
regulator choice and will be discussed in the next Section. In summary the minimal
consistent Einstein-Hilbert truncation (275) together with the flow of the fluctuation
two-point function (299) allows us to compute the flow of all parameters, (gN , λ) and
(ḡN , λ̄), in the given approximation.

8.6 Phase diagram in the standard background field approxi-
mation

We are now in the position to compute the flow of the couplings in the extended Einstein-
Hilbert approximation put forward in Section 8.4. Given the close relation between the
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geometrical effective action and the background effective action in the Landau-DeWitt
gauge, it is also worth discussing the similarities and the differences to the latter, see e.g.
the reviews [128,129,132] and the literature therein. Hence, for illustrative purposes and
for the sake of comparison with results in the literature we first solve the geometrical
flow equation in the background field approximation. This also allows us to disentangle
the effects of this approximation from those arising from symmetry constraints. The
background field approximation is implemented by identifying gN ≡ ḡN and λ ≡ λ̄,
see [23]. This is achieved by taking ∆Γ[ḡ, h] = 0 in eq.(277) and evaluating the Einstein-
Hilbert action ΓEH[g;C, C̄] at the background geometry g = ḡ and vanishing ghosts. Then
the flow equation reduces to

∂tΓEH,k[ḡ] = −Tr
1

−Q[ḡ] +Rgh
k [ḡ]

∂tRgh
k [ḡ] (300)

+
1

2
Tr

1

∇2
γ ΓEH,k[ḡ] + S

(2)
gf [ḡ] +Rgrav

k [ḡ]
∂tRgrav

k [ḡ] ,

where Q is the ghost operator and the limit α → 0 is implied. The traces in (300) only
sum over momenta and internal indices. Following the common philosophy within the
background field approach, we make the extra assumption that the gauge-fixing term
has a Z-dependence, i.e:

Sgf =
Z̄N,kκ

2

4α

∫
ddx
√
ḡ ḡτλ F ρ′σ′

τ [ḡ] ĥρ′σ′ F
µν
λ [ḡ] ĥµν . (301)

This additional approximation (301) is resolved in the next Section 8.7. The rest of
the present calculation proceeds by employing the standard York transverse-traceless
decomposition detailed in Appendix D and choosing regulators whose tensor structure
is adapted to this decomposition. The full set of regulators is listed in Appendix D. Here
we explicitly provide the results for the optimized shape function, [168],

r(x) = (1− x) θ(1− x) . (302)

With (302) the computations are much simplified. We use the York decomposition de-
tailed in the Appendices D, E and the corresponding regulators in Appendix G with the
optimized shape function (302). The relevant threshold functions for the optimized regu-
lator are evaluated in Appendix I. The resulting flow equations read in four dimensions,
d=4,

∂tgN − 2gN = (303)

−g
2
N

π

5
3

+ 2
3

(1− 2λ) + 25
24

(1− 2λ)2

(1− 2λ)2 − gN
2π

[
5
9

+ 1
3
(1− 2λ)− 5

12
(1− 2λ)2

] ,
and

∂tλ+ 2λ = (304)

ηN

(
λ− gN

4π

(
2

3
+

1

1− 2λ

))
− gN

4π

(
4− 6

1− 2λ

)
,

with ηN defined in (284), (285). The two flow equations (304) and (305) define F̄g and
F̄λ in (288a) and (288b) respectively in the standard background field approximation.
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Figure 8: Phase diagram in the background field approximation, (304), (305), with the
UV fixed point (gN ∗, λ∗) = (0.893, 0.164).

The respective flow diagram is given in Fig. 8. The flow equations (304),(305) admit an
attractive UV fixed point at

(gN ∗, λ∗) = (0.893, 0.164) , (305)

and a repulsive Gaussian fixed point at the origin, (gN ∗, λ∗) = (0, 0), see also Fig. 8. We
emphasize that (304) and (305) are completely independent of the gauge-fixing parameter
α. This is to be expected as the geometrical flow itself, by definition, does not depend on
the gauge-fixing condition. This is in clear contradistinction to α-dependence observed
in the usual background field approach, see [169,170] and the reviews [128,129,132].

Note also that the geometrical effective action at vanishing fluctuation field h = 0
can be linked to the background effective action in the Landau-DeWitt gauge. In the
present approach this matter is complicated due to the presence of the regulator and the
approximation involved. We observe that in four dimensions, d = 4, the flow equations
(304) and (305) indeed agree with the background flows [169,170]; however in dimensions
d 6= 4 the flows do not agree. The parameter a2 reads in the background field approach

a2 = −d
3 − 4d2 + 7d− 8

2(d− 1)
, (306)

and differs from a2 in the geometrical approach, see (404). This is not unexpected as
the fluctuation fields in the present approach are non-polynomially related to the linear
fluctuation fields in the standard background field approach.

8.7 Dynamical Flows

In this section we set-up the full dynamical flow for the fluctuation field coefficients gN
and λ. The results apply to general background flows including the standard background
approach. The latter can be obtained within the approximation discussed in the previous
section, as well as in approximations going beyond (301). For the dynamical flow we
have to evaluate (299). This can be done for general regulators with off-shell heat kernel
techniques, see e.g. [171]. Here, however, we shall employ a specific choice of the regulator
which removes the second term on the rhs, and also further facilitates the computations.
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To that end we choose the (partially) optimized regulator [133, 168] in (264) with the
shape function in (302). This regulator renders all propagators constant for spectral
values below the cut-off scale. Above the cut-off scale the regulator vanishes and hence
R∂tG;a ≡ 0. Then (299) reduces to a total (covariant) derivative,

∂tΓk;ab|h=0 = −1
2(Rdc∂tG

cd );ab . (307)

Eq. (307) can be computed with standard heat kernel techniques. Note that the optimiza-
tion in (264) serves a twofold purpose. First, it is the regulator choice partially adapted
to the approximation specified in Section 8.4 and hence maximizes the physical content
of the approximation. It only is a partial optimization as the present choice does not
fully resolve the issue of relative cut-off scales discussed in [133]. This entails that only
the choice θ ≈ −1 is optimized. Second, the choice (302) allows us to relate fluctuation
flows and background flows with simple algebraic identities as will be shown below.

As a showcase for the full computation we shall evaluate the flow for Λk on a flat
background ḡ = η. This amounts to evaluating (307) on that background. However, as
the rhs is explicitly a total second derivative it can be easily integrated. This leads us to

∂t (ZN,k Λk) = − 1

4κ2Vol
TrRk[η] ∂t

1

Γ
(2)
k [η; 0] +Rk[η]

, (308)

where Vol stands for the volume factor
∫
d4x
√
ḡ. It also occurs in the trace on the right

hand side and hence drops out. With (308) we also get a simple relation between the
flow of ZN,k Λk and that of Z̄N,k Λ̄k,

∂t
(
Z̄N,k Λ̄k

)
= ∂t (ZN,k Λk) (309)

+
1

4κ2Vol
∂t

(
TrRk[η]

1

Γ
(2)
k [η; 0] +Rk[η]

)
.

For the regulator (302) the integrands in the traces in (308) and (309) agree up to
prefactors. For the integrands in (308) we have a simple relation. For later purpose we
already write it in its general form in the presence of a non-vanishing curvature,

Rmode
k ∂t

(
1

k2Z

1

1 + bmodeρ+ cmodeλ

)
= −

(
2− ηZ +

cmodeλ̇− 2bmodeρ

1 + bmodeρ+ cmodeλ

)
×Rmode

k

1

k2Z

1

1 + bmodeρ+ cmodeλ
, (310)

The quadratic part of the action is detailed in the Appendices E,F and the regulator
Rmode
k of a given mode is a function of ∆ḡ, see Appendix G. This leads to the denominator

in (310). We also have used the notation λ̇ = ∂tλ, and have introduced the dimensionless
curvature ρ

ρ = R/k2 , (311)

with ∂tρ = −2ρ. In (310) the coefficient cmode = 0, −d/(d− 2) takes into account the λ-
dependence of the different modes. In turn, the coefficients bmode are more complicated.
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However, their specific value drops out for the computations done here. The different
wave function renormalizations lead to anomalous dimensions

ηZ = −∂t lnZ , λ̇ = ∂tλ . (312)

Evidently the rhs of (310) is that of the integrand of the trace in (309) up to the prefactor
in parenthesis. In (310) we have used the fact that the propagators are flat for ∆ḡ < k2.
The anomalous dimension ηZ is vanishing for ghosts in the present approximation due to
Zgh ≡ 1. Moreover, we have ηZ = ηN with Z = ZN for the transversal graviton modes.
For the gauge mode we have Zα = 1. It is only introduced for convenience and it flow
vanishes due to diffeomorphism invariance. Then, with (310) we compute (308) as

(∂t + (2− ηN))λ = 2(Iλ,0 + Iλ,gh) (313)

+

(
2− ηN −

d
d−2

λ̇

1− d
d−2

λ

)
Iλ,−2 ,

with

Iλ,cmode
=

8π gN
kdVol

TrRmode
k (∆ḡ)

1

k2Z

1

1 + cmodeλ
, (314)

and similarly for Iλ,gh. The term 2Iλ,0 in (314) only comes from the gauge mode. The I’s
defined in (314) also allow us to compute the second line in (309). This term depends on
covariant momenta, the cut-off scale k, the normalized cosmological constant λ = Λk/k

2,
and its canonical dimension is d. Therefore the trace in the second line in (309) leads to
an explicit factor kd multiplied by a function of λ. The t-derivative reproduces the term
as well as a λ̇∂λ-term. Hence we conclude that

8πgN
kdVol

∂t

(
TrRk[η]

1

Γ
(2)
k [η; 0] +Rk[η]

)
(315)

= d (Iλ,0 + Iλ,gh) +

(
d+

d
d−2

λ̇

1− d
d−2

λ

)
Iλ,−2 .

Adding (315) to (313) gives the rhs of (309). Resolving this for the flow of λ̄ yields

gN
ḡN

(∂t + (2− η̄N)) λ̄ = (d+ 2) (Iλ,0 + Iλ,gh)

+ (d+ 2− ηN) Iλ,−2 . (316)

Eq. (316) is the standard background flow if we apply (gN , λ) → (ḡN , λ̄) on the right
hand side. This allows us to determine the coefficient functions Iλ from the standard
background field approximation to the flow. The coefficient functions Iλ are then inserted
in the flow of κ2Λk in (313).

Note that even though (316) was derived in a flat background we have only used
general properties and relations for the flow, and hence (313),(316) are valid for arbitrary
backgrounds. Indeed we can even extend (316) to the full flow of the effective action in
the Einstein-Hilbert approximation (275), (277) for general backgrounds with constant
curvature R. In order to access the curvature term we first have to discuss (310) if we
want to take derivatives w.r.t. R.
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For the curvature term (315) has dimension d−2 and hence we have d→ d−2. This
leads to

−gN
ρ

8πgN
kdVol

∂t

(
TrRk[η]

1

Γ
(2)
k [η; 0] +Rk[η]

)
ρ

= (317)

(d− 2) (IN,0 + IN,gh) +
(
d− 2 + λ̇∂λ

)
IN,−2 ,

where the subscript ρ in the first line stands for the projection on the term linear in
the curvature R, and ρ is the dimensionless curvature, see (311). Note that (317) is
insensitive to the explicit occurrence of ρ in the propagator. Combining (317) with (310)
we see, that the dimensional counting for the term linear in ρ gives a factor d − 2 for
the modes without explicit curvature-dependence, bmode = 0, and a factor d as for the
cosmological constant for the terms with bmode 6= 0. The dimensional prefactor does not
depend on bmode, whereas the coefficient I does. Hence we finally arrive at

8π gN
kdVol

∂tΓk[ḡ; 0] = (d+ 2)Iλ − ηNIλ,−2

− (d IN − ηN IN,−2)
ρ

gN
− 2 IN,1

ρ

gN
, (318)

with

Iλ = Iλ,0 + Iλ,gh + Iλ,−2 ,

IN = IN,0,0 + IN,gh,0 + Iλ,−2,0

+IN,0,1 + IN,gh,1 + Iλ,−2,1 . (319)

In (319) the last subscript for the coefficients IN with the values 0, 1 labels vanishing and
non-vanishing bmode, and IN,0, IN,1 stand for the respective terms. Eq. (318) allows us to
read-off the coefficients IN and Iλ from the corresponding background field flows of ḡN
and λ̄ respectively. With these coefficients we can derive the flow of gN and λ similarly
to (313). These flows can be summarized conveniently in

8π gN
kdVol

∂tΓEH[g; 0]

∣∣∣∣
λ,gN

= 2 I − 2IN,1
ρ

gN
(320)

−
(
ηN + λ̇∂λ

)
I−2 ,

where I−2 = Iλ,−2 − IN,−2ρ/gN and IN,1 stands for the second line in (319). The total
coefficient I is given by

I(λ, gN) = Iλ(λ, gN)− IN(λ, gN)
ρ

gN
. (321)

The lhs of (320) is the flow of (274) with (Z̄N , Λ̄)→ (ZN ,Λ), and the rhs is projected on
the respective terms proportional to r0 and r1. Eq. (318) and (320) allow us to compute
the flow of gN and λ from a given background flow computed in the approximation (289),
where λ̄ → λ on the right hand side of the background flow: the coefficient functions
I are determined from (318) with Z̄N → ZN , Λ̄ → Λ on the left-hand side and then
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identifying the terms proportional to ηN , ∂tλ and the rest in the flows for gN and λ. The
coefficient functions I are then used in (320) which gives us the flow equations for the
fluctuation parameters gN , λ in (286). The physical observables ḡN , λ̄ derive from (318)
with the results for the fluctuation parameters gN , λ inserted on the right-hand side. This
gives us the flow equations (288).

Eq. (320) and the above relations complete our truncation: we use the flow of the
effective action at vanishing fluctuation fields h = 0 within the standard approximation
Γk,ah

a
;i + Γk,i = 0. Furthermore we account for the full Nielsen identity with (320)

and (318) being sensitive of the background field dependence in the regulator term.
If we apply (320) and (318) for general regulators one has to bear in mind that this
implies neglecting those terms in the Nielsen that are proportional to derivatives of the
regulator Rk(x) w.r.t the covariant momentum x. As has been argued, they are sub-
leading, and indeed they can be minimized by using regulators that are sufficiently flat.
In summary the geometrical approach provides us with a fully diffeomorphism-invariant
flow for quantum gravity where we have also good qualitative control over the difference
between fluctuation fields and background metric. The latter distinction is particularly
important for the background independence of the results.

8.8 Phase diagram in the geometrical background field approx-
imation

The present diffeomorphism-invariant setting leads to a further simplification of the re-
sults in the previous Section 8.7. Due to the projection on transversal metric fluctuations
the coefficient I0 vanishes identically, I0 ≡ 0. With standard heat-kernel techniques and
the York transverse-traceless decomposition we arrive after some algebra at the flows for
the background Newton constant,

gN
ḡN

(∂t + (2− d)) ḡN = F̄ (1)
g − ηN F̄ (2)

g , (322)

and the background cosmological constant

gN
ḡN

(∂t + (2− η̄N)) λ̄ = F̄
(1)
λ − ηN F̄

(2)
λ , (323)

The F̄ (1)g(λ, g) and F̄ (2)g(λ, g) originate in terms in the flows proportional to ∂t k
2r and

∂tZN respectively, and only depend on the dynamical couplings λ, g. They are given in
terms of the coefficient functions Iλ and IN which are detailed in Appendix H.

Note that we have chosen canonical dimensional factors d in the flow of the Newton
constant ḡN in (322). Within the split in curvature-dependent and curvature-independent
modes this implies

F̄ (1)
g = d IN + 2IN,1 ,
F̄ (2)
g = IN,−2 ,

F
(1)
λ = (d+ 2)Iλ ,
F

(2)
λ = Iλ,−2 , (324)

with IN , Iλ defined in (319) and the related coefficient functions F (1), F (2) are given in
Appendix I, (410),(412). The relations (324) are derived within the optimized regulator,
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Figure 9: Improved phase diagram for the background couplings, eqs.(325) and (326),
with an UV fixed point (gN ∗, λ∗) = (0.966, 0.132).

(302), and the I’s in Appendix I satisfy the relations implied in (324). The system of flow
equations (322), (323) constitutes one of the main results of the present work. It is a fully
diffeomorphism-invariant flow for the pair of background couplings (ḡN , λ̄) beyond the
background field approximation. There is no dependence on the gauge fixing parameter
α and the rhs in (322),(323) only depend on the dynamical couplings (gN , λ). Hence, the
solution of (322),(323) requires that one solves the flows of the dynamical couplings first.
Moreover, vanishing β-functions ∂tḡN = 0 = ∂tλ̄ determine fixed point pairs (ĝN , λ̂).
Note, however, that the β-functions of the background couplings signal a fixed point
only if the pair (ĝN , λ̂) is a fixed point of the dynamical flow.

Before we discuss the respective dynamical flows we first implement once more the
background field approximation (gN , λ) = (ḡN , λ̄). Again we use the York decomposition
detailed in the Appendices D, E and the corresponding regulators from Appendix G with
the optimized shape function (302). The coefficient functions Iλ,N (with d = 4) as well
as the right hand sides of eqs.(286a) and (288a) can also be found in Appendix I. With
the results of Appendix I we are finally led to the flow equations for the Newton constant
and the cosmological constant,

∂tgN − 2gN = −g
2
N

π

5
3

+ 2
3

(1− 2λ) + 25
24

(1− 2λ)2

(1− 2λ)2 − gN
2π

(
5
9

+ 1
3

(1− 2λ)
) , (325)

and

∂tλ+ 2λ = ηN

(
λ− gN

4π

1

1− 2λ

)
− gN

4π

(
4− 6

1− 2λ

)
, (326)

with ηN defined in (284), (285). The respective flow diagram is given in Fig. 9. The flow
equations (325),(326) admit an attractive UV fixed point at

(gN ∗, λ∗) = (0.966, 0.132) , (327)

and a repulsive Gaussian fixed point at the origin, (gN ∗, λ∗) = (0, 0), see also Fig. 9.

Interestingly, the flows (322), (323) do not agree with those in Section 8.6, equations
(304), (305). This leads to a different phase diagram, see Fig. 10, and different fixed point
values, (305) and (327). We emphasize that the position of the fixed points are not phys-
ical observables and depend on the parameterisation of the theory. Indeed the differences
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Figure 10: Phase diagrams in the background field approximation from the flows (305),
(327) in Section 8.6 with FP (0.893, 0.164), and from the flows (325) and (326) with FP
(0.966, 0.132).

depicted in Fig. 10 are small and are comparable to differences obtained by varying the
regulators. The latter variation tests the stability of the approximation at hand as well as
the reparameterisation independence. Moreover, the differences are fully explained by an
additional approximation made in the standard background field approximation which
is not present in the flows (322), (323). In turn, the flows in Section 8.6 were constructed
within the same approximation commonly used in the background field approach, see
e.g. the reviews [128,129,132] and literature therein. The only difference to the standard
approximation in the background field approach in Section 8.6 is the use of the covariant
derivatives in the two point functions. As discussed in Section 8.6 the two flows agreed
in four dimensions. The difference to the present flows occurs in I

(2)
λ,N , the coefficients of

ηN in the flow. It has but nothing to do with the difference between geometrical flow
and background flow but relates to an additional approximation usually applied in the
latter. For computational simplicity the wave function renormalization ZN has also been
applied to all terms in the effective action, also to the gauge fixing term with Zα = ZN .
The latter term, however, does not run with ZN . Indeed, any flow of the gauge fixing
term only signals the breaking of diffeomorphism invariance. In the standard background
field approach such a flow in induced by the cut-off term but does not agree with the
flow of ZN . In turn, in the present diffeomorphism-invariant setting Zα does not flow.
This singles out the flows (322), (323) as the correct implementation of the background
field approximation in the present setting. Due to the formal equivalence of both ap-
proaches in Landau-DeWitt gauge it is suggestive that one also should set Zα = 1 in the
standard background field flow. In conclusion the geometrical flow in the background
field approximation agrees in four dimensions with the standard background field flow
in the standard background field approximation within the Einstein-Hilbert truncation
together with the above treatment of the gauge fixing term.

8.9 Dynamical Phase diagram & Fixed points

Now we proceed to the full system including also the flow of fluctuation couplings (gN , λ).
First we remark that for general regulators the flows (322), (323) do neither have the
form (318), nor does the flow for (gN , λ) have the form (320). This is only achieved for
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Figure 11: Phase portrait of the dynamical flow in terms of the vector field (∂tgN , ∂tλ)

regulators leading to threshold functions Φ and Φ̃, see Appendix H, (401), that satisfy

Φ1
d−2

2

/Φ̃1
d−2

2

=
d

2
, Φ2

d
2

/Φ̃2
d
2

=
d+ 2

2
, (328)

Eq. (328) holds for the optimized regulator, see (408). Note that the latter was used to
derive (318), (320) in the first place. Evidently, (328) holds for a larger class of regulators
as it comprises only two integral constraints on a given regulator. However, if one im-
proves the current approximation, further constraints arise, leading to (407) for n = d/2
and (d− 2)/2. This uniquely singles-out the optimized regulator. For general regulators
one might compute all the necessary coefficient functions. However, it is more convenient
to use the approximation (328) on the basis of explicitly computing F (2). Within this
approximation it is easily possible to map the known background results in the litera-
ture to the full flow where one distinguishes between dynamical fluctuation fields and
background fields.

We continue with our analysis of the optimized flow. The flow equations of the
dynamical fluctuation couplings (gN , λ) follow from (320) as

(∂t + (2− d)) gN = 2IN + 2IN,1 −
(
ηN + λ̇∂λ

)
IN,−2 , (329)

with IN defined in (319) and

(∂t + (2− ηN))λ = 2Iλ −
(
ηN + λ̇∂λ

)
Iλ,−2 , (330)

and (328) holds. The coefficient functions Iλ,N (with d = 4) have been already used for
the flows in the background couplings, (325), (326). Together with the right hand sides
of (286a) and (288a) they can be found in Appendix I. With the results of Appendix I
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Figure 12: Phase diagram for the dynamical couplings, (331) and (332), with an UV fixed
point (gN ∗, λ∗) = (1.692, 0.144), and the repulsive perturbative fixed point FPrep = (0, 0).

we arrive at the flow equations for the dynamical couplings gN , λ,

∂tgN = 2gN −
g2
N

π

5
9

+ 1
3

(1− 2λ) + 5
9

25
24

(1− 2λ)2

(1− 2λ)2 − gN
2π

(
5
9

+ 1
3
(1− 2λ)

)
+

2∂tλ

1− 2λ

g2
N

2π

10
9

+ 1
3

(1− 2λ)

(1− 2λ)2 − gN
2π

(
5
9

+ 1
3
(1− 2λ)

) , (331)

and

∂tλ =
−(2− ηN)λ+ (2− ηN)gN

4π
1

1−2λ
− gN

3π

1 + gN
2π

1
(1−2λ)2

, (332)

with ηN defined in (284), (285). The flow equations (331) and (332) describe the phase
diagram of quantum gravity in the extended Einstein-Hilbert truncation in terms of
the dynamical couplings gN , λ. The vector fields of the corresponding β-functions are
depicted in Fig. 11. In comparison to the standard background flows (304), (305) and
the geometrical background flows (325), (326) they contain a further resummation. The
related terms are given with the second line in (331) and the non-trivial denominator
in (332). They are related to scale derivatives ∂tλ and can be understood in terms of
standard 2PI and hard thermal loop resummations of the self energy or mass in quantum
field theory, see [172] for the FRG implementation. This new, additional resummation
removes the infrared singularity in the flows at λ = 1/2 present in the background field
flows but introduces new repulsive singularities in the flow of the Newton constant gN .
This is very reminiscent of the screening of the infrared singularity in thermal theories
and is discussed in Section 8.9.2.

The phase portrait in Fig. 11 shows an attractive UV fixed point as well as a repulsive
Gaussian fixed point at the origin in analogy to the background field approximations. It
also shows an attractive IR fixed point at gN = 0 and λ = 1/2 as well as repulsive lines
emanating from the IR fixed point.
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Figure 13: Phase diagrams in the background field approximation from the flows (325)
and (326) with the UV fixed point (0.966, 0.132), and from the dynamical flows (331)
and (332) with the UV fixed point (1.692, 0.144).

8.9.1 UV fixed point

The second line in (331) drops out at a fixed point. The flow equations (331),(332) admit
an attractive UV fixed point at

FPUV = (gN∗, λ∗) = (1.692, 0.144) , (333)

and a repulsive Gaussian fixed point at the origin, FPrep = (gN ∗, λ∗) = (0, 0), see also
Fig. 12. The flow diagram and the fixed point differs from that in the background field
approximation depicted in Fig. 9. A comparison of the respective phase diagrams is
depicted in Fig. 13. The difference of the two phase diagrams in Fig. 13 is qualitatively
different from that between the two background field approximations discussed before. It
is not comparable to differences obtained by varying the regulator. This is best seen by
studying the product of Newton constant and cosmological constant which is significantly
reduced for the dynamical flow in comparison to the background field approximation,
see Table 19. We have also included a comparison to fixed points derived within the
bimetric flows studied in [162]. While the positions of the fixed points for the dynamical
and bimetric flows are quite different, the invariant product gN ∗λ∗ only deviated by a
few percent.

The stability matrices are displayed in Table 20, the bending around the fixed point,
which is introduced by the imaginary part of the eigenvalues, is reduced from the stan-
dard background field approximation to the improved one. For the dynamical flows, the
bending is stronger which comes from the ∂tλ-terms in the flows. Without these terms
the bending is even reduced further in comparison to the improved background flows.
This leads to a far smaller bending of the phase diagram about the fixed points, see

Table 19: Fixed Points
Type of flow gN ∗ λ∗ gN ∗ × λ∗
Background 0.893 0.164 0.146

Improved background 0.966 0.132 0.128
Dynamical 1.692 0.144 0.244
Bimetric 1.055 0.222 0.234
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Table 20: Stability matrices
Flows Stability matrix Eigenvalues

Background

(
−2.46 −10.52
0.71 −1.61

)
−2.03 + 2.69i
−2.03− 2.69i

Improved backgr.

(
−2.59 −9.99
0.47 −2.01

)
−2.30− 2.16i
−2.30− 2.16i

Dynamical

(
−1.94 −27.9
0.26 −0.74

)
−1.34 + 2.61i
−1.34− 2.61i
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Figure 14: Singular lines for the infrared-directed flow (−∂tgN ,−∂tλ). The dashed, dot-
dashed and full lines are the singular lines for the standard background, the improved
background and the dynamical flow respectively.

Fig. 13.

8.9.2 IR fixed points & phase diagram

Finally, we would like to discuss the infrared behaviour of the full dynamical flows
(331),(332). The resummation due to the ∂tλ-terms screens the singularity in the prop-
agators at 1 − 2λ = 0 similarly to the screening of thermal infrared singularities via
thermal resummations. However, the resummations related to ηN on the right hand side
of the flow lead to singular lines in the flow diagram, where both flows, ∂tgN and ∂tλ,
exhibit poles at

g±N =
1

5
π
[
(−(1− 2λ) + 22λ(1− 2λ)

±
√
λ(1− 2λ)2(179− 676λ+ 236λ2)

]
. (334)

The singular lines terminate at (gN , λ) = (1.414, 0.295), and (gN , λ) = (0, 1/2). Such
singular lines are as well present in the background field flows as they also include re-
summations related to ηN . Here we concentrate on positive cosmological constant where
the background flows exhibit singular lines that terminates at λ = 4/3 (improved back-
ground flow) or at λ = 1/30(9±4

√
21) (standard background flow) and extend to λ = 0.

The singular lines are displayed in Fig. 14.
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All flows go through the point (λ, gN) = (1/2, 0), for the background flows, however,
the λ axis is tangential to the singular lines at (1/2, 0). For the dynamical flow the area
under the singular line is restricted by g− in (334). All flows in this area hit the singular
line at some point: let us assume that there are flows that go to (1/2, 0) without hitting
the singular line. Then, in the vicinity of (1/2, 0) we expand g−N about λ = 1/2, leading
to

g−N =
9

5
π(1− 2λ)3 +O[(1− 2λ)4] . (335)

This entails that the dynamical flows, (331) and (332), reduce to

∂tgN = 2gN(1 + ∂tλ) , ∂tλ = −(2− ηN)λ , (336)

which implies that ∂tgN = −4gN/(1 − 2λ) < 0 in leading order. Hence, with (336) we
conclude that all trajectories in the vicinity of λ = 1/2 hit the singular lines. On the
lower singular line given by g−N the infrared-directed flows diverge but point towards the
singular line. Hence this line is infrared stable. Moreover, there is a finite net flow on
this singular line which comes from the sum of the (singular) flows taken at both sides
of the singular line: we define unit infrared-directed tangential vectors ê(λ, gN) to given
trajectories with

ê(λ, gN) =
~β

‖~β‖
, ~β(λ, gN) = −(∂tλ , ∂tgN) , (337)

and the tangential vector on the singular line as a function of λ is given by

ê±(λ) =
1√

1 + (∂λg
±
N)2

(1 , ∂λg
±
N) . (338)

The e± point towards (1/2, 0) along the respective singular line given by g±N . The cor-
responding orthogonal boundary vectors ê⊥±, directed away from the region bounded by
the singular line, are given by

ê⊥±(λ) = ± 1√
1 + (∂λg

±
N)2

(−∂λg±N , 1) . (339)

The above definitions allow us to define the finite net flow vector ~βnet on the singular
line and the corresponding unit flow vector β̂net are given by

~β±net = lim
ε→0

1

2

[
~β
(
(λ, g±N) + εê±(λ)

)
+~β
(
(λ, g±N)− εê±(λ)

)]
,

β̂net =
~βnet

‖~βnet‖
. (340)

In case of the infrared stable part of the singular line there is a flow along the singular
line with the strength |~βnet · ê|. The direction is given by the sign of cos θ = β̂net · ê where θ

is the angle between ~βnet and ê. This is plotted in Figs. 15, 16 and 17. In these figures we
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Figure 15: Coefficients of the unit net flow on the singular line given by g−N , (334), directed
towards (1/2, 0).
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⊥
+

λ

Figure 16: Coefficients of the unit net flow on the singular line given by g+
N , (334), directed

towards (1/2, 0).

also plot cos θ⊥ = β̂ · ê⊥ which encodes the information, whether the net flow is directed
into the region bounded by the singular line or away from it. The full phase portrait is
depicted in Fig. 18 and Fig. 19.

Most importantly, the projected net flow β̂−net · ê− on g−N is directed towards (1/2, 0).
Hence the lower singular line is fully infrared stable, see Fig.15. The infrared attractive
point (1/2, 0) is reached after a finite flow time at the cut-off scale k0. For k < k0 the
flows are trivial,

∂tgN = 0 , ∂tλ = −2λ → gN = 0 , λ =
k2

0

2k2
. (341)

Eq. (341) reflects a trivial fixed point of a free massive theory. Note that this interpre-
tation should be taken with caution due to the singularities. This concerns in particular
the quantitative results, such as gNλ = 0 in the infrared. In summary we are led to the
UV-IR stable region Ia with the UV-attractive fixed point FPUV = (1.692, 0.144) and
the IR-attractive fixed point FPIR,1 = (0, 1/2), see Fig. 18. In turn, at the turning point
of the singular line, g+ = g− with vertical tangential vector,

λ =
(169− 60

√
5)

118
, g+

N = g−N =
120π(301

√
5− 660)

3481
, (342)

the sign of cos θ⊥ turns positive and the net flow is directed away from the singular
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Figure 17: Coefficients of the unit net flow on the singular line given by g+
N , (334), directed

towards (1/2, 0) in the vicinity of the turning point.

line. As this is also true for the full β functions, the singular line gets infrared unstable
(and ultraviolet stable), see Fig. 17. In any case, no flow from the UV fixed point can
reach this part of the singular line. This defines a separatrix from the UV fixed point
to the turning point (0.295, 1.414) of the singular line with g+ = g−, see (342). Flows
below this separatrix are driven towards the attractive infrared fixed point (1/2, 0), flows
above the separatrix are driven towards the attractive infrared fixed point (−∞, 0).
In summary this leads the UV-IR stable region I with the UV attractive fixed point
FPUV = (1.692, 0.144), the repulsive fixed point FPrep = (0, 0) and the two IR attractive
fixed points FPIR,1 = (1/2, 0) and FPIR,2 = (−∞, 0).

The region II in Fig. 19 can be accessed from the infrared fixed point FPIR,2. UV flows
in this region hit the singular line between 0.295 < λ < 0.327, depicted by the upper
light blue and left dark blue dots in Fig. 18. We remark that this part of g+

N is ultraviolet
attractive and UV flows are driven towards λ = 0.298 on the singular line. Accordingly
there is a potential further UV attractive fixed point at FPUV,2 = (0.298, 1.738), depicted
with a violet dot in Fig. 18. This singles out the second IR-UV attractive region II. Note
that this may very likely be an artefact of the approximation. Still it is worth further
consideration.

The regions III and IV cannot be accessed from the UV fixed points nor do flows in
the regions III and IV reach the infrared fixed points FPIR,1 or FPIR,2. Infrared flows in
this region are driven towards (∞, 0) or (∞,∞).

The same analysis can be made for the standard background and improved back-
ground approximation. We only mention that there exists regions similar to region Ia, and
flows are directed towards the endpoint (1/2, 0) for λ > 0.4635 (improved background)
and for λ > 0.4637 (standard background). Interestingly for both flows the scalar product
~βnet · ê− is also positive for λ < 0.341 (improved background) and for λ > 0.335 (standard
background). This leads to a further infrared stable point at (λ, gN) = (0.341, 0.966) and
(λ, gN) = (0.335, 1.108) respectively.

In summary all flows exhibit a region which is ultraviolet and infrared stable. This is
depicted for the dynamical flows in Figs. 18,19. At the IR fixed point FPIR,2 = (1/2, 0)
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Figure 18: Full phase diagram for the dynamical couplings including the repulsive per-
turbative fixed point FPrep = (0, 0) and FPIR,1 = (1/2, 0). The red boundary lines show
the separatrices.

the product gNλ = 0. Hence, λ vanishes in terms of gN in the infrared. Note however, that
λ is simply a parameter in the propagator of the fluctuation field h and its interpretation
as the cosmological constant is not straightforward.

8.9.3 Matrix elements & observables

It is left to determine physics observables such as the strength of the gravitational inter-
action measure in experiments. Here we only present the flow equations for the physical
Newton coupling and cosmological constant and discuss the consistency of the results
with the analysis made so far. Note first, that the dynamical couplings gN , λ are only
indirectly related to physics observables. This is a property the geometrical approach
shares with the standard background field approach to quantum field theory. However,
we have also seen, that the background couplings are sensitive to the regulator. This
holds in particular in the scaling regions: the regulators have been chosen such that they
show the same (singular) scaling as the corresponding two-point functions Γ(2). Such
regulators are called RG-adapted, [133, 163] or spectrally adjusted, [173]. The effective
action satisfies the RG and scaling equations of the underlying full theory at vanishing
cut-off, see [133, 163]. This property facilitates the access to scaling regions and relates
to a partial optimisation of the flow, [133], but complicates the extraction of the physical
part of the background field correlation functions. It has been shown in the standard
background field approach that the regulator-induced terms can even change the sign of
the β-functions, see [165], in the context of gravity this has been discussed in [150].

In the geometrical approach it is the Nielsen identity (290) that controls the difference
between background field dependence and fluctuation field dependence, the right hand
side being the term stemming from the regulator, see [133, 155]. Hence, at vanishing
fluctuation field h = 0 the physical background field dependence is comprised in the
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Figure 19: Full phase diagram for the dynamical couplings including the repulsive per-
turbative fixed point FPIR,0 = (0, 0), and the attractive IR fixed points FPIR,1 = (1/2, 0)
and FPIR,2 = (−∞, 0).

standard Nielsen identity

Γk,i|phys [h = 0] = −Γk,a〈ĥa;i〉[h = 0] . (343)

Eq. (343) entails that at h = 0 we can identity the h-derivatives with the ḡ-derivatives
up to sub-leading order. In other words, the physical part of the background couplings,
ḡN,phys, λ̄phys have β-functions similar to that of the dynamical couplings. Note that this
argument fully works the infrared where the regulator tends to zero and the sub-leading
terms are small. It has to be taken with caution for large regulators. Thus we shall only
discuss the infrared region with λ > 1/2: neglecting the sub-leading terms we arrive at
the flow for the physical part of the background Newton constant,

1

ḡN,phys

(∂t + (2− d)) ḡN,phys =
1

gN
Fg(gN , λ) , (344)

and the physical part of the background cosmological constant

1

ḡN,phys

(∂t + (2− η̄N)) λ̄phys =
1

gN
Fλ(gN , λ) . (345)

For the optimized flows the right hand sides Fg and Fλ are given in (414) and (415)
respectively. If identifying the physical part of the background couplings with the dy-
namical ones, (ḡN,phys, λ̄phys) = (gN , λ), we are led to the full flow of the dynamical
couplings, (331), (332). We also remark that with (344),(345) we can derive finite net
flows of gN,phys, λphys on the singular lines. There, however, the sub-leading terms might
not be negligible.

Here we only consider explicitly λ > 1/2 with k > k0. Then the flows (344),(345)
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have to be evaluated for gN = 0. This leads to

∂tḡN,phys = 2ḡN,phys ,

∂tλ̄phys = −2λ̄phys +
ḡN,phys

6π

1 + 8λ(1− λ)

(1− 2λ)2
. (346)

Eq. (346) implies that ḡN,phys ∝ k2 for k → 0. We also have λ ∝ 1/k2 due to (341) and
we arrive at

∂tḡN,phys = 2ḡN,phys , λphys = −2λ̄phys , (347)

for k → 0. Eq. (347) simply provides the dimensional running of Newton constant and
cosmological constant. It implies a finite product gN,physλphys, the value of which depends
on the initial conditions. We conclude that the phase diagram of quantum gravity in
the current approximation shows UV-IR stability. In the infrared region we are driven
towards classical Einstein gravity.

8.10 Summary

We close with a brief survey of our results, more detailed discussions can be found in
the respective sections. In the present work we have established a fully diffeomorphism-
invariant flow for gravity. This flow has also been shown to be gauge independent in [155].
In Section 8.6 we have shown that the flow agrees in the linear approximation with the
standard background approximation for the background field flow in Landau-DeWitt
gauge. The latter approximation also implies an artificial scale-dependence (on the wave
function renormalization ZN) of the longitudinal degrees of freedom. Note however, that
the scaling of the longitudinal (gauge) degrees of freedom indeed vanishes identically
in the geometrical approach, whereas it only reflects the deformation of diffeomorphism
invariance in the standard background field approach. We are hence lead to the same flow
diagrams and fixed points, and the UV fixed point is given by in Table 19. Beyond the
linear approximation the two flows differ in dimensions others than four but still agree for
four dimensions. We have also introduced an improved background field approximation
where care is taken of the fact that the longitudinal gauge direction do not flow. The
related fixed point does not differ significantly from the standard background field result,
see Table 19.

Furthermore, we have introduced the difference between the background metric and
the fluctuation metric. This difference has been evaluated by means of the Nielsen identity
derived in [155], for the background approach analogue see [150,163–165]. While the fixed
point values of the couplings (gN , λ) have no direct physical meaning, their dimensionless
product gNλ = GNΛ differs considerably from that in the background approximation. It
agrees very well with that in the bimetric background field approach, e.g. [162,174], see
Table 19.

We have also discussed the infrared behaviour of quantum gravity in the present
approach. Within the present approximation the flows run into a singularity at 2λ = 1
which signals a pole in the propagator. We emphasize that λ = Λ/k2 is the cosmological
constant measured in the cut-off scale. The physical information is stored in gNλ, that
is, one measures the cosmological constant in units of the Newton coupling. There are
further singularities in the β-functions which related to the (incomplete) resummations
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put forward in the present paper. Still one can define finite net flows on these singular
lines, and hence discuss the resulting phase diagram. A detailed analysis of the phase
diagram reveals a very rich and interesting structure which is discussed in detail in
Section 8.9.2. Note that the respective results have to be taken with a grain of salt. Taking
this into account we find an infrared stable fixed point at FPIR = (gN ∗, λ∗)IR = (0, 1/2)
for the dynamical couplings. Similarly to the standard background field approach these
dynamical parameters have to be mapped to the physical couplings. This has been done
in the last Section 8.9.3 where it has been shown that in the infrared the theory tends
towards classical Einstein gravity.

In summary the present analysis provides the first results within the fully
diffeomorphism-invariant framework introduced in [154,155]. Additionally it resolves the
difference between fluctuating field and background metric via the Nielsen identity [155].
The results of the present work further solidify the asymptotic safety scenario for quan-
tum gravity. A more detailed qualitative analysis also reveals a rich phase structure
of quantum gravity including attractive infrared fixed points. In the infrared the theory
tends towards classical Einstein gravity. The quantitative understanding of the full phase
diagram of quantum gravity has to be furthered in more elaborated approximations.
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9 Conclusions and Outlook

The unification of all known forces in nature has been the goal of many generations of
theoretical physicists. The quest for an ultimate theory has led to many beautiful ideas
such as supersymmetry, string theory etc. In this thesis we focussed on two conceptually
distinct areas of current research: N = 1 supersymmetry and quantum gravity.

In the first part of the thesis we addressed several problems from the realm of low-
energy supersymmetry. The first of those is the so called gauge-coupling unification
problem within the Minimal Supersymmetric Standard Model. It is a well-established
fact that at two-loop the three gauge couplings do not unify precisely at the GUT scale.
One way to explain this is to attribute the discrepancy to some high-energy threshold
corrections which arise as a result of integrating out all superheavy particles around the
unification scale. However, as we argued in Chapter 3 this explanation is not entirely
satisfactory, at least not in the setting of a minimal SU(5) GUT model. We demonstrated
that one can solve the two-loop problem in a different manner, namely by introducing
extra matter fields at intermediate energies and extra Yukawa interactions between these
matter fields and the MSSM Higgs doublets.

The crucial property of supersymmetric theories which we utilized in our analysis
is holomorphicity. In the context of supersymmetric model building holomorphicity en-
compasses not only the non-renormalization theorem for the superpotential but also the
one-loop running of the so called holomorphic gauge couplings. Both of these properties
of the supersymmetric Lagrangian are reflected in the so called master formula. For the
purposes of our analysis we derived a holomorphic version of this formula in Chapter 3
which was the first original result presented in this thesis. We began our discussion by
looking at a SU(3) model with adjoint breaking which exemplified the main steps and
ingredients of our construction in a simple setting. For this specific model we derived
both the holomorphic version and the standard form of the master formula. Following
this analysis we derived a holomorphic master formula for a realistic SU(5) GUT model.

In Chapter 4 we applied our result to a model with extra vector-like matter and
Yukawa couplings between the extra matter fields and the two MSSM Higgs doublets.
Our analysis revealed that the extra Yukawa couplings can ameliorate the two-loop prob-
lem by shifting the two-loop prediction for the strong coupling towards the correct ex-
perimental value. This effect is encoded in the running of the matter field wavefunction
renormalization factors which enter the holomorphic master formula through the anoma-
lous rescaling of the functional path integral measure. Specifically, we argued that the
extra Yukawa couplings in our model introduce significant enhancement to the Higgs
fields’ Z-factors which is the reason why the strong coupling is shifted towards lower
values.

In Chapters 5 and 6 we focussed on a different problem related to the origin of the µ
term in the low-energy MSSM Lagrangian. As is well-known one of the possible ways to
generate a mass term for the Higgsinos is through the inclusion of an extra gauge singlet
superfield which acquires vacuum expectation value in its scalar component. This leads
to the so called Next to Minimal Supersymmetric Standard Model or more generally
to the class of singlet extensions of the MSSM. Yet another way to generate a µ term,
within the framework of gauge mediation, is to introduce direct couplings between the
MSSM Higgs doublets and the messenger superfields. We utilized both approaches in our
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construction by looking at an NMSSM type of model with non-minimal gauge media-
tion. The departure point and motivation for our model was the well-known result that
the minimal form of gauge mediated supersymmetry breaking is incompatible with the
NMSSM due to the small value of the generated µ term. We showed that a phenomeno-
logically viable theory can be obtained by extending the aforementioned construction
to a class of models with direct couplings between the Higgs and the messenger sector.
To be precise we concentrated on the so called lopsided scenario in which the masses
in the Higgs sector fulfil the non-trivial identity m2

Hd
� m2

Hu
. As we argued the crucial

implication of our construction is that it alters the composition of the effective µ term,
and it does so in a twofold manner: On the one hand it adds an extra tree-level piece
coming from the couplings between Higgs and messenger sector while on the other it
also increases the value of the dynamically generated piece, i.e. the one associated with
the singlet’s VEV. The latter effect is induced indirectly through the RG running of the
soft singlet mass squared whose RG equation is enhanced by the dominant m2

Hd
term.

The model, which we refer to as lopsided NMSSM, exhibits distinct phenomenological
features such as e.g. reversed hierarchy in the slepton sector.

In the second part of this thesis we analyzed the phase diagram of quantum gravity
by employing a diffemorphism-invariant version of Wetterich’s functional renormaliza-
tion flow equation. Our construction is based on the so called geometrical or Vilkovisky-
DeWitt approach to quantum field theory and in this respect differs conceptually from
the standard background field construction which underpins Wetterich’s flow equation.
The foundations for this part of the thesis were layed already in [23] where a fully
diffeomorphism-invariant renormalization group equation for quantum gravity was de-
rived. In this work we reproduced only the main steps of the aforementioned construc-
tion. The key ingredient which leads to the geometrical flow equation is the so called
Vilkovisky connection ΓV , which enters the right hand side of the equation through the
substitution:

1

2
Tr

1

Γ(2) + Rk

∂tRk → 1

2
Tr

1

∇2Γ + Rk

∂tRk (348)

In this identity ∇2 stands for the second covariant derivative with respect to ΓV . The
resulting flow equation, which we presented in Chapter 8 of this thesis, is the first fully-
diffeomorphism invariant and gauge-fixing independent renormalization flow equation for
quantum gravity. In a first step towards a full solution we solved the flow equation in
the background-field approximation using the Einstein-Hilbert truncation. This allowed
us to compare the resulting phase diagram to the existing results in the literature.

We then improved upon our initial approximation by utilizing the so called Nielsen
identity. This identity allowed us to resolve the difference between background and fluc-
tuation metric. In particular we were able to solve the full dynamical system for the
fluctuating Newton and cosmological constants within the Einstein-Hilbert truncation.
At least to our knowledge this is the first solution of the full dynamical flow for ∂tgN
and ∂tλ. Our results provided further evidence for the ultraviolet fixed point scenario in
quantum gravity. We were also able to find a stable infrared fixed point related to clas-
sical Einstein gravity. At the very end we performed a detailed analysis of the infrared
fixed point physics.
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A One-loop RGEs in the NMSSM

In this appendix we list the one-loop RGEs for the general NMSSM in the presence of
a tree-level µ-term (see [31] and [106]). This is the low-energy model which is obtained
after integrating out all messenger superfields in eq.(196) at their respective decoupling
scales.

A.1 Gauge couplings

16π2dg1

dt
=

33

5
g3

1 (349)

16π2dg2

dt
= g3

2 (350)

16π2dg3

dt
= − 3g3

3 (351)

where g1 is the hypercharge U(1)Y gauge coupling in the GUT normalization, i.e.

g1 =

√
5

3
g′ with g′ = e/ cos θW . (352)

A.2 Yukawa couplings

16π2dyt
dt

= yt

(
6y2

t + y2
b + λ2 − 13

15
g2

1 − 3g2
2 −

16

3
g2

3

)
(353)

16π2dyb
dt

= yb

(
6y2

b + y2
t + y2

τ + λ2 − 7

15
g2

1 − 3g2
2 −

16

3
g2

3

)
(354)

16π2dyτ
dt

= yτ

(
4y2

τ + 3y2
b + λ2 − 9

5
g2

1 − 3g2
2

)
(355)

16π2dλ

dt
= λ

(
3y2

t + 3y2
b + y2

τ + 4λ2 + 2κ2 − 3

5
g2

1 − 3g2
2

)
(356)

16π2dκ

dt
= κ

(
6λ2 + 6κ2

)
(357)

A.3 Gaugino masses

8π2 dM1

dt
=

33

5
g2

1 M1 (358)

8π2 dM2

dt
= g2

2 M2 (359)

8π2 dM3

dt
= −3 g2

3 M3 (360)
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A.4 Trilinear couplings

In the following we only consider third generation trilinear couplings:

16π2dat
dt

= at

(
18y2

t + y2
b + λ2 − 13

15
g2

1 − 3 g2
2 −

16

3
g2

3

)
+ 2ab yb yt +

+ 2aλ λ yt + yt

(
32

3
g2

3 M3 + 6g2
2 M2 +

26

15
g2

1 M1

)
(361)

16π2dab
dt

= ab

(
18y2

b + y2
t + y2

τ + λ2 − 7

15
g2

1 − 3 g2
2 −

16

3
g2

3

)
+ 2at yt yb +

+ 2aτ yτ yb + 2aλ λ yb + yb

(
32

3
g2

3 M3 + 6g2
2 M2 +

14

15
g2

1 M1

)
(362)

16π2daτ
dt

= aτ

(
12y2

τ + 3y2
b + λ2 − 9

5
g2

1 − 3 g2
2

)
+ 6ab yb yτ +

+ 2aλ λ yτ + yτ

(
6g2

2 M2 +
18

5
g2

1 M1

)
(363)

16π2daλ
dt

= aλ

(
3y2

t + 3y2
b + y2

τ + 12λ2 + 2κ2 − 3

5
g2

1 − 3 g2
2

)
+ 6at yt λ +

+ 6ab yb λ + 2aτ yτ λ − 4aκ κλ + λ

(
6

5
g2

1 M1 + 6g2
2 M2

)
(364)

16π2daκ
dt

= aκ
(

6λ2 + 18κ2
)
− 12aλ λκ

(365)

A.5 Soft masses in the squark and slepton sector

It will be useful to introduce the following quantities:

Xt = m2
Q3

+m2
U3

+m2
Hu + A2

t (366)

Xb = m2
Q3

+m2
D3

+m2
Hd

+ A2
b (367)

Xτ = m2
L3

+m2
E3

+m2
Hd

+ A2
τ (368)

Xλ = m2
Hu +m2

Hd
+m2

N + A2
λ (369)

Xκ = 3m2
N + A2

κ (370)

S ≡ Tr[Yf̃ m
2
f̃
] = m2

Hu −m
2
Hd

+ Tr[m2
Q −m2

L − 2m2
U + m2

D + m2
E ] (371)

where the boldface m’s are mass matrices in family space and Yf̃ denotes the hyper-

charge of the sfermion field f̃ .

16π2 d

dt
m2
Qi

= 2δi3 y
2
tXt + 2δi3 y

2
bXb −

32

3
g2

3 |M3|2 − 6g2
2 |M2|2 −

2

15
g2

1 |M1|2 +
1

3
g2

1S

16π2 d

dt
m2
Ui

= 2δi3 y
2
tXt −

32

3
g2

3 |M3|2 −
32

15
g2

1 |M1|2 −
4

3
g2

1S

(372)
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16π2 d

dt
m2
Di

= 2δi3 y
2
bXb −

32

3
g2

3 |M3|2 −
8

15
g2

1 |M1|2 +
2

3
g2

1S

16π2 d

dt
m2
Li

= 2δi3 y
2
τXτ − 6g2

2 |M2|2 −
6

5
g2

1 |M1|2 − g2
1S

16π2 d

dt
m2
Ei

= 2δi3 y
2
τXτ −

24

5
g2

1 |M1|2 + 2 g2
1S (373)

A.6 Soft masses in the Higgs sector

16π2 d

dt
m2
Hu = 2 y2

tXt + 2λ2Xλ − 6g2
2 |M2|2 − 2g2

1 |M1|2 + g2
1S

16π2 d

dt
m2
Hd

= 6 y2
bXb + 2 y2

τXτ + 2λ2Xλ − 6g2
2 |M2|2 − 2g2

1 |M1|2 − g2
1S

16π2 d

dt
m2
N = 2λ2Xλ + 2κ2Xκ (374)

A.7 The µ and B parameters

16π2dµ

dt
= µ

(
3y2

t + 3y2
b + y2

τ + 2λ2 − 3

5
g2

1 − 3g2
2

)
(375)

16π2dB

dt
= B

(
3y2

t + 3y2
b + y2

τ −
3

5
g2

1 − 3g2
2

)
+

+ µ

(
6at yt + 6ab yb + 2aτ yτ +

6

5
g2

1 M1 + 6g2
2 M2

)
(376)
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B Tree-level scalar potential and mass matrices in

the Higgs sector

In this appendix we analyze the tree-level Higgs scalar potential for the NMSSM in
the presence of a tree-level µ term (see e.g. [31]). After minimizing with respect to the
three scalar VEVs 〈H0

u〉 = vu, 〈H0
d〉 = vd and 〈N〉 = s, we discuss the conditions for

electroweak symmetry breaking. Finally we list the tree-level CP-even and CP-odd Higgs
mass matrices.

The model we are considering is specified by eqs.(193) and (195). The tree-level scalar
potential is the sum of F -term, D-term and soft term contributions:

VHiggs = |λ(H+
u H

−
d −H

0
uH

0
d) + κN2|2 +

(
m2
Hu + |µ+ λN |2

) (
|H0

u|2 + |H+
u |2
)

+

+
(
m2
Hd

+ |µ+ λN |2
) (
|H0

d |2 + |H−d |
2
)

+
g2

2

2
|H+

u H
0∗
d +H0

uH
−∗
d |

2 +

+
g2

1 + g2
2

8

(
|H0

u|2 + |H+
u |2 − |H0

d |2 − |H−d |
2
)2

+m2
N |N |2 +

+ λAλ(H
+
u H

−
d −H

0
uH

0
d)N +

1

3
κAκN

3 +Bµ

(
H+
u H

−
d −H

0
uH

0
d

)
+ h.c. (377)

In the following we assume that there are no U(1) breaking minima and expand around
the real neutral VEVs 〈H0

u〉 = vu, 〈H0
d〉 = vd and 〈N〉 = s:

VHiggs =
(
−λvuvd + κs2

)2
+
g2

1 + g2
2

8
( v2

u − v2
d )2 +

(
m2
Hu + (µ+ λs)2

)
v2
u +

+
(
m2
Hd

+ (µ+ λs)2
)
v2
d + m2

Ns
2 − 2λAλ vuvds+

2

3
κAκs

3 − 2Bµvuvd

Looking for local minima of the potential leads to the following three minimization
equations:

∂VHiggs

∂vu
= vu

(
m2
Hu + µ2

eff + λ2v2
d +

g2
1 + g2

2

4
(v2
u − v2

d)

)
− vd(µeffBeff +Bµ) = 0

∂VHiggs

∂vd
= vd

(
m2
Hd

+ µ2
eff + λ2v2

u +
g2

1 + g2
2

4
(v2
d − v2

u)

)
− vu(µeffBeff +Bµ) = 0

∂VHiggs

∂s
= s

(
m2
N + κAκs+ 2κ2s2 + λ2(v2

u + v2
d)− 2κλvuvd

)
− λAλvuvd = 0

with µeff = µ + λs and Beff = Aλ + κs . A point (vu, vd, s) which solves the three
equations is a local minimum if the Hessian of the scalar potential VHiggs , or in other
words the scalar Higgs squared matrix, is positive definite:

Hess VHiggs(vu, vd, s) ≡M2
scalar =

∂2VHiggs

∂vi∂vj
> 0 (378)
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The entries of M2
scalar are given by:

M2
scalar,11 =

(g2
1 + g2

2)

2
v2
u +

(g2
1 + g2

2)

4
(v2
u − v2

d) + λ2 v2
d + (m2

Hu + (µ+ λs)2 )

M2
scalar,22 =

(g2
1 + g2

2)

2
v2
d −

(g2
1 + g2

2)

4
(v2
u − v2

d) + λ2 v2
u + (m2

Hd
+ (µ+ λs)2 )

M2
scalar,33 = 4κ2s2 + 2κ(κs2 − λvuvd) + 2κAκ s+m2

N

M2
scalar,12 = − (g2

1 + g2
2)

2
vu vd + λ2vu vd − λ (κs2 − λ vuvd) − λAλs−Bµ

M2
scalar,13 = − 2κλs vd − λAλ vd

M2
scalar,23 = − 2κλs vu − λAλ vu (379)

Using the three minimization conditions in the Higgs sector, we can rewrite the entries
in terms of tan β = vu/vd:

M2
scalar,11 = g2 v2

u + (µeffBeff +Bµ) tan β

M2
scalar,22 = g2 v2

d + (µeffBeff +Bµ) cot β

M2
scalar,33 = λAλ

vuvd
s

+ κs(Aκ + 4κs)

M2
scalar,12 = (2λ2 − g2)vuvd − µeffBeff −Bµ

M2
scalar,13 = λ (2µeff vd − (Beff + κs) vu)

M2
scalar,23 = λ (2µeff vu − (Beff + κs) vd) (380)

The tree level mass matrices in the Higgs sector are obtained by expanding eq.(377)
around the real neutral VEVs

H0
u = vu +

H0
u,Re + iH0

u,Im√
2

, H0
d = vd +

H0
d,Re + iH0

d,Im√
2

, N = s+
NRe + iNIm√

2
(381)

The 3×3 CP-even mass matrixM2
CP−even in the basis (H0

u,Re, H
0
d,Re, NRe) coincides with

M2
scalar . The 3×3 CP-odd mass matrixM2

CP−odd in the basis (H0
u,Im, H

0
d,Im, NIm) reads:

M2
CP−odd,11 = (µeffBeff +Bµ) tan β

M2
CP−odd,22 = (µeffBeff +Bµ) cot β

M2
CP−odd,33 = λ(Beff + 3κs)

vuvd
s

+ 3κAκs

M2
CP−odd,12 = µeffBeff +Bµ

M2
CP−odd,13 = λ vu (Aλ − 2κs)

M2
CP−odd,23 = λ vu (Aλ − 2κs) (382)
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C Coefficient functions for the induced mass terms

in the Higgs sector

In this appendix we list the coefficient functions appearing in the formula for the induced
mass terms in the Higgs sector:

P (x, y) =
x2(1− y)2

(x2 − 1)3

(
2(1− x2) + (1 + x2) log x2

)
Q(x, y) =

x

(x2 − 1)2

(
(x2 − 1)(1− y) + (y − x2) log x2

)
R(x, y) =

x

(x2 − 1)3

(
(1− x4)(1− y)2 + [ 2x2(1 + y2)− y(1 + x2)2 ] log x2

)
S(x, y) =

1

(x2 − 1)2

(
(x2 − 1)(1− x2y) − x2(1− y) log x2

)
(383)

All four functions have the property |P (x, y)|, |Q(x, y)|, |R(x, y)|, |S(x, y)| ≤ 1. Addi-
tionally we have P (x, y = 1) = 0 and Q(x, y = 1) = R(x, y = 1).
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D York decomposition

In the present work we use the York transverse-traceless decomposition, first introduced
in Section 8.3 below (263). For more details in the context of FRG-flows see e.g. the
reviews [128, 129, 132] and literature therein, as well as [23]. The York decomposition
amounts to the decomposition of h,

hµν = hTµν + hLTµν + hLLµν + hTrµν . (384)

Here hTrµν is the trace part of hµν and the first three terms hTµν +hLTµν +hLLµν comprise its
traceless component. We have the following well-known identities

hTµν = ∇̄µξν + ∇̄νξµ ,

hLTµν =
(
∇̄µ∇̄ν −

1

d
ḡµν∆̄

)
σ ,

hLLµν =
1

d
ḡµνϕ , (385)

where ξµ is a transverse vector field and σ and ϕ are scalar fields. The tensor fields,
appearing in this decomposition, obey the following relations,

ḡµνhTµν = 0 , ∇̄µhTµν = 0 , ∇̄µξµ = 0 , ϕ = ḡµνhµν . (386)

The scalar field can be further split into two parts ϕ = ϕ0 +ϕ1 with ϕ0 being orthogonal
to ϕ1 and σ̂, for the details we refer the reader to the literature.

Additionally we decompose the ghost as follows

Cµ = CT,µ + ∇̄µρ C̄µ = C̄T
µ + ∇̄µρ̄ , (387)

where C̄T
µ and CT,µ are the transverse components of C̄µ and Cµ, i.e. ∇̄µC̄T

µ = 0 and
∇̄µC

T,µ = 0, and ρ̄, ρ are scalar fields.
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E Graviton two-point function

For the computation of the geometrical flows we need the second covariant derivative of
the diffeomorphism-invariant effective action in combination with the second derivative
of the gauge fixing term, ∇2

γΓ̂EH +S
(2)
gf , see (282). For this purpose we need the correction

to the second derivative related to the Riemannian connection Γγ, see e.g. [159]. It is
given by∫

ddx′′

(
Γµνγ

ρ′σ′

λ′′τ ′′(x, x
′, x′′)

Γ̂EH[ḡ]

δḡλ′′τ ′′(x′′)

)
(388)

= 2κ2ZN,k δ(x− x′)
√
ḡ(x)

√
ḡ(x′)×

[(
ḡµρ

′
ḡσ
′ν + ḡµσ

′
ḡρ
′ν − ḡµν ḡρ′σ′

)(2 + d+ 2θd

8(2 + θd)
R̄ −

− 4 + d+ 2θd

4(2 + θd)
Λk

)
+

1

4

(
ḡµνR̄ρ′σ′ + ḡρ

′σ′R̄µν
)
− 1

4

(
ḡνρ

′
R̄σ′µ + ḡνσ

′
R̄ρ′µ + ḡµρ

′
R̄σ′ν + ḡµσ

′
R̄ρ′ν

)]
,

computed at vanishing ghost fields. With (389) we arrive at∫
ddx ddx′ h(x) ·

(
∇2
γΓ̂EH[ḡ] + S

(2)
gf [ḡ]

)
(x, x′) · h(x′) = (389)

= 2κ2ZN,k

∫
ddx
√
ḡ hµν

[
−

(
1

2
δµρ′δ

ν
σ′ +

θ2 − 2α

4α
ḡµν ḡρ′σ′

)
∆̄ +

+
2− d

8(2 + θd)

(
2δµρ′δ

ν
σ′ − ḡµν ḡρ′σ′

)
R̄−

(
1

2
− 4 + d+ 2θd

4(2 + θd)

)(
2δµρ′δ

ν
σ′ − ḡµν ḡρ′σ′

)
Λk

+
1

2
ḡµν R̄ρ′σ′ − R̄ν

ρ′
µ
σ′ −

θ + α

α

(
ḡµν∇̄ρ′∇̄σ′

)
+

1− α
α

(
− δµσ′∇̄

ν∇̄ρ′
)]
hρ
′σ′ ,

where ∆̄ = ∆ḡ. Inserting the York decomposition detailed in Appendix D in (390) finally
leads to∫
ddx ddx′ h(x) ·

(
∇2
γΓ̂EH[ḡ] + S

(2)
gf [ḡ]

)
(x, x′) · h(x′) = κ2ZN,k

∫
ddx
√
ḡ (390)

×

[
hTµν

[
−∆̄ + AT (d, θ)R̄ +HT (d, θ)Λk

]
hT,µν

+
2

α
ξ̂µ

[(
−∆̄− R̄

d

)(
−∆̄ + AV (d, α, θ)R̄ +HV (d, α, θ)Λk

)]
ξ̂µ

+ CS2(d, α)σ̂

[(
−∆̄ + AS2(d, α, θ)R̄ +BS2(d, α, θ)Λk

)
∆̄

(
∆̄ +

R̄

d− 1

)]
σ̂

+ 2CS2(d, α)CS3(d, α, θ)ϕ

[
∆̄

(
∆̄ +

R̄

d− 1

)]
σ̂

+ CS2(d, α)CS1(d, α, θ)ϕ
[
− ∆̄ + AS1(d, α, θ)R̄ +BS1(d, α, θ)Λk

]
ϕ

]
,
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where each line in (391) contains the kinetic operator of the respective field modes. Note
in this context that ϕ = ϕ0 + ϕ1 with ϕ0 being orthogonal to ϕ1 and σ̂.

The coefficients of the transversal hT -mode are

AT (d, α) =
d(d− 1)(2− d) + 4(2 + θd)

2d(d− 1)(2 + θd)
,

HT (d, θ) =
d

2 + θd
, (391)

that of the longitudinal mode ξ̂ are

AV (d, α, θ) =
αd(2− d)− 2(2 + θd)

2d(2 + θd)
,

HV (α) = −2α .

The scalar σ̂, ϕ-modes have the curvature-coefficients

AS1(d, α, θ) = − α(d− 2)(d2 − 2d+ 8 + 4θd)

2(2 + θd) [2α(d− 1)(d− 2)− (θ2d2 − 4d− 4θ) ]

AS2(d, α, θ) =
αd(2− d)− 4(2 + θd)

2(2 + θd) [ 2(d− 1)− α(d− 2) ]
,

and the coefficients of the cosmological constant terms

BS1(d, α, θ) = − αd2(2− d)

(2 + θd) [ 2α(d− 1)(d− 2)− (θ2d2 − 4d− 4θ) ]
,

BS2(d, α, θ) =
αd2

(2 + θd) [ 2(d− 1)− α(d− 2) ]
.

The scalar terms also have the overall prefactors

CS1(d, α, θ) =
2α(d− 1)(2− d) + (θ2d2 − 4d− 4θ)

2(d− 1) [ 2(d− 1)− α(d− 2) ]
,

CS2(d, α) =
d− 1

d2

2(d− 1)− α(d− 2)

α
,

CS3(d, α, θ) =
d(−θ − α)− 2(1− α)

2(d− 1)− α(d− 2)
. (392)

Particularly interesting for the regulators are the coefficients and prefactor of the kinetic
operator ∆ḡ, see Appendix G.
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F Ghost two-point function

As for the graviton we split the ghost into its transverse and longitudinal components
and put g = ḡ. In a slight abuse of notation we write

Cµ = CT,µ + ∇̄µ 1√
−∆̄

η , C̄µ = C̄T
µ + ∇̄µ

1√
−∆̄

η̄ , (393)

neglecting the subtleties concerning the inversion of ∆̄. In (393) C̄T
µ and CT,µ are the

transverse components of C̄µ and Cµ, i.e. ∇̄µC̄T
µ = 0 and ∇̄µC

T,µ = 0, and η, η̄ are
scalar Grassmann fields. Inserting the parameterisation (393) in the ghost action, (255),
we finally arrive at

Sgh = 2

∫
ddx
√
ḡ C̄T

µ

(
−∆̄− R̄

d

)
CT,µ

+ 2

∫
ddx
√
ḡ η̄

(
−∆̄− 2R̄

d

)
η . (394)
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G Regulators

The following appendix contains the full set of regulators for the flow within the back-
ground field approximation, see Section 8.6. Our choice is adapted to the York transverse-
traceless decomposition of the kinetic term as detailed in the last Appendix E. The full
regulator is chosen diagonal in the basis in field space provided by the York decomposi-
tion. Below we provide the scalar parts of the regulators, the lower indices refer to the
modes in field space. With

x̄ = −∆ḡ

k2
, (395)

the regulator for a general mode of the York decomposition simply amounts to

−∆̄→ −∆̄ + k2 r(x̄) , (396)

for the terms proportional to ∆̄ in (391). This choice respects the diagonality of the York
decomposition. For example, the kinetic operator on the hT -subspace reads −ZN,kκ2∆̄
and hence we choose the regulator

(Rk[ḡ])hT hT = ZN,kκ
2k2r(x̄) , (397)

where we have dropped the projection operator on the hT -subspace. The regulators on
the hTL subspace are given by(

Rk[ḡ]
)
ϕ1σ

= ZN,k CS2(d, α)CS3(d, α)κ2

× k2

(
−

√
x̄

(
x̄− R̄/k2

d− 1

)
+

√
x̄− R̄/k2

d− 1
+ r(x̄)

√
x̄+ r(x̄)

)
, (398)

with (Rk)ϕ1σ = (Rk[ḡ)†σϕ1
, as well as

(Rk[ḡ])σσ = ZN,k CS2(d, α)κ2k2r(x̄) ,

and for i = 0, 1,

(Rk[ḡ])ϕiϕi = ZN,k CS2(d, α)CS1(d, α)κ2k2r(x̄) .

The regulator on the hTµν × hTµν-subspace is given by

(
Rk[ḡ]

)
ξξ

= ZN,k
2

α
κ2k2r(x̄) , (399)

where again we dropped the projection operator. Finally, the regulators of the ghost
modes are given by

(Rk[ḡ])C̄TCT = 2 k2r(x̄)

(Rgh
k [ḡ])η̄η = 2k2r(x̄) , (400)

where we have (Rk)C̄TCT = −(Rk)CT C̄T and (Rk)η̄η = −(Rk)ηη̄.
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H Threshold functions and coefficient functions F̄λ
and F̄g

The loop integrals in the flow equations for the couplings are represented by the coefficient
functions I, which are, up to prefactors, the standard threshold functions. In the present
case these threshold functions only depend on the constant part cλλ of the two-point
functions. For general regulators (264) with shape function r the threshold functions
read

Φp
n(ω) =

1

Γ(n)

∫ ∞
0

dx xn−1 r(x)− xr′(x)

(x+ r(x) + d
d−2

ω)p
,

Φ̃p
n(ω) =

1

Γ(n)

∫ ∞
0

dx xn−1 r(x)

(x+ r(x) + d
d−2

ω)p
, (401)

where ω is 0 or −λ, depending on the mode considered. The threshold function Φp
n

appears in terms proportional to ∂tr(x) leading to the coefficient functions I(1) in the
flow equations. The threshold function Φ̃p

n appears in terms proportional to ∂tZ or ∂tλ,
leading to the coefficient functions I(2).

For the flow of the cosmological constants λ̄ and λ, (323) and (330) respectively, the
coefficient functions read

F̄
(1)
λ =

4πgN
(4π)d/2

[
d(d− 1)Φ1

d
2

(−λ)− dΦ1
d
2

(0)
]
,

F̄
(2)
λ =

1

2

4πgN
(4π)d/2

d(d− 1)Φ̃1
d
2

(−λ) . (402)

The last coefficient function is that of the ghost loop, I
(1)
λ,gh = Iλ,gh, there is no term

proportional to the wave function renormalization of the ghost which we dropped in the
present analysis.

The coefficient functions in the flow of the Newton constant ∂tḡN and ∂tgN , (322)
and (329) respectively, read

F̄ (1)
g = 4

4πgN
(4π)d/2

[
a1Φ1

d−2
2

(−λ) + a2Φ2
d
2

(−λ)
]

−4
4πgN

(4π)d/2

[
a3Φ1

d−2
2

(0) + a4Φ2
d
2

(0)
]
,

F̄ (2)
g = 2

4πgN
(4π)d/2

[
a1Φ̃1

d−2
2

(−λ) + a2Φ̃2
d
2

(−λ)
]
, (403)

with the parameters ai,

a1 =
d3 − 2d2 − 11d− 12

12(d− 1)
,

a2 = −d
3 − 2d2 + 5d− 12

4(d− 1)
, (404)
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and

a3 =
d2 − 6

6d
, a4 =

d+ 1

d
, (405)

Note that parts of F̄g in (403) stemming from modes without and with explicit curvature-
dependence are those proportional to Φ1

d−2
2

, Φ̃1
d−2

2

, and Φ2
d
2

, Φ̃2
d
2

, respectively. Hence, it is

the index p − 1 = 0, 1 of Φp, Φ̃p which labels the modes without, p − 1 = 0, and with,
p− 1 = 1, curvature-dependence.
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I Threshold functions and coefficient functions Fλ
and Fg for the optimized regulator

For the optimized regulator the threshold functions (401) in Appendix A read,

Φp
n(ω) =

1

nΓ(n)

1

(1 + d
d−2

ω)p
, (406)

Φ̃p
n(ω) =

1

n+ 1
Φp
n(ω) . (407)

Eq. (406) implies that

Φ̃p
d−2

2

(ω) =
2

d
Φp
d−2

2

(ω) , Φ̃p
d
2

(ω) =
2

d+ 2
Φp
d
2

(ω) . (408)

Inserting these relations into (402), (403), leads to (328) with the subscript p− 1 = 0, 1
labels the curvature-dependence. Then the F̄λ’s, (402), used in Section 8.7 for the flow
of the background dynamical cosmological constant, are given by

F̄
(1)
λ = 6

gN
4π

(
−2

3
+

1

1− 2λ

)
,

F̄
(2)
λ =

gN
4π

1

1− 2λ
. (409)

Eq. (410) leads to the coefficients Iλ,

Iλ,−2 =
gN
4π

1

1− 2λ

Iλ,gh = −gN
4π

4

3
, (410)

with Iλ,gh = −2Iλ,0. The F̄g’s, (403), used in Section 8.7 for the flow of the background
cosmological constant, (325), are given by

F̄ (1)
g = −4

g2
N

4π

(
25

24
+

2

3

1

1− 2λ
+

5

3

1

(1− 2λ)2

)
,

F̄ (2)
g = −g

2
N

6π

(
1

1− 2λ
+

5

3

1

(1− 2λ)2

)
. (411)

Eq. (412) leads to the coefficients IN ,

IN,−2 = −g
2
N

6π

(
1

1− 2λ
+

5

3

1

(1− 2λ)2

)
,

IN,gh = −4

3

gN
3π

25

24
,

IN,gh,1 = −1

3

gN
3π

25

24
, (412)

with IN,gh = −2IN,0. For the ghost coefficients we have used that the term independent
of λ in first line of (411) stems from the sum of ghost IN,gh + IN,0 = 1/2IN,gh. We get
with (324) and (408) with d = 4 that

−4
g2
N

4π

25

24
= 2IN,gh,0 + 3IN,gh,1 , IN,gh,1 =

1

3
IN,gh,0 . (413)
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This leads to the Ighost in (412). The coefficients IN,−2,0 and IN,−2,1 are given by the terms
in the first line of (412) which are proportional to (1−2λ)−1 and (1−2λ)−2 respectively.

For the computation of the flow of the dynamical couplings we simply have to insert
the coefficients Iλ and IN in (410),(412),(319) in (329),(330). This leads us to the following
expressions for the right hand sides Fg, Fλ of the dynamical flows (286),

Fg(gN , λ) = −g
2
N

3π

(
5

3

25

24
+

1

1− 2λ
+

5

3

1

(1− 2λ)2

)
+
(
ηN + λ̇∂λ

) g2
N

6π

(
1

1− 2λ
+

5

3

1

(1− 2λ)2

)
, (414)

and

Fλ(gN , λ) = − gN
2π

(
2

3
− 1

1− 2λ

)
−
(
ηN +

2∂tλ

1− 2λ

)
gN
4π

1

1− 2λ
. (415)
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