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Abstract

In this thesis we analyze a form of non magneto hydrodynamic turbulence which
could be described as disk weather since it forms vortices due to baroclinic effects. We
want to find out if and how these vortices influences planet formation. The focus is on
angular momentum transport and how efficient vortices can trap particles.

We estimate disk properties from observations and derive radial Brunt-V4aisila fre-
quencies as well as cooling time-scales. Then we analyze the baroclinic amplification
of vortices and the particle concentration therein. We use 2D as well as 3D local shear-
ing box simulations with the PENCIL CODE to investigate the problems.

In 2D, we conduct a comprehensive study of a broad range of various entropy
gradients, thermal cooling and thermal relaxation times covering the parameter space
relevant for protoplanetary disks. We measure the Reynolds stresses as a function
of our control parameters and see that there is angular momentum transport even
for entropy gradients as low as p = —dInS/dInr = 1/2. The amplification-rate of
the perturbations appears to be proportional to 2. The saturation level of Reynolds
stresses on the other hand seems to be proportional to !/2. All entropy gradients will
lead to Reynolds stresses of 107> — 1072 which shows that baroclinic vortices are a
feasible mechanism for transporting angular momentum.

The concentration of particles of different sizes in baroclinic vortices is first an-
alyzed in 2 dimensions. Because we expect strong particle accumulations, particle
feedback onto the gas is included. Particles accumulate inside the vortices and the
local dust-to-gas ratios become high enough to trigger the streaming instability even
for initial dust-to-gas ratios as low as g9 = 1074

In 3 dimensional unstratified gas simulations we verify previous result. Once
particles, that feel vertical gravity, with normalized friction times of St = 0.05and
St = 1.0, and g9 = 0.01 are included, the vortex column in the mid-plane is strongly
perturbed. Yet, when the initial dust-to-gas ratio is decreased the vortices remain sta-
ble and function as efficient particle traps. Streaming instability is triggered even for
the lowest eg = 10~% and smallest particle sizes (St = 0.05) we assumed, showing
a path for planetesimal formation in vortex cores from even low global amounts of
cm-sized particles.



Zusammenfassung

In dieser Arbeit untersuchen wir eine Turbulenz nicht magnetischer Natur, die
auch als “Scheibenwetter” bezeichnet werden kann, da sie, auf Grund barokliner Ef-
tfekte, Wirbel erzeugt. Wir wollen herausfinden, welchen Einfluss diese Wirbel auf die
Planetenentstehung haben. Dabei konzentrieren wir uns auf den Drehimpulstrans-
port, sowie die Moglichkeit Teilchen in den Wirblen zu sammeln.

Aus Beobachtungen leiten wir Scheibeneigenschaften wie die radiale Brunt-
Vdisdla Frequenz und Zeitskalen fiir Kiihlprozesse her. Dann untersuchen wir die
barokline Verstarkung von Wirbeln, und die Ansammlung von Teilchen in diesen
Wirbeln. Dazu benutzen wir 2D und 3D Simulationen mit dem PENCIL CODE.

In 2D machen wir eine Parameterstudie, die den fiir protoplanetare Scheiben
relevanten Bereich abdeckt. Dabei variieren wir die Werte des Entropiegradienten
B = —dInS/dInr, sowie die thermischen Kiihl- und Relaxationszeiten. Sogar fiir
so niedrige Entropiegradienten wie p = 0.5 messen wir Reynoldsspannungen, die
zu einem hinreichenden Transport von Drehimpuls fiithren. Die Wachsumsraten der
Wirbel ist proportional zu %, wohingegen die Reynoldsspannungen nur proportional
zu B2 sind. Fiir alle verwendeten Entropiegradienten messen wir Reynoldsspan-
nungen zwischen 1073 und 102, was beweist, dass barokline Wirbel eine Moglichkeit
sind Drehimpuls in protoplanetaren Scheiben zu transportieren.

Wir untersuchen die Konzentration von Teilchen in Wirbeln zu untersuchen in 2D
Simulationen aus. Da wir hohe Teilchenkonzentrationen in den Wirbeln erwarten,
wird der Einfluss der Teilchen auf das Gas beriicksichtigt. Die Teilchen sammeln sich
in Wirbeln an. Sogar fiir solch geringe Anfangswerte des Staub-zu-Gas Verhiltnisses
wie gg = 10~* erreichen wir Konzentrationen, die ausreichen um die Stromungsinsta-
bilitdt auszulosen.

In 3 dimensionalen, ungeschichteten Gassiumlationen kénnen wir vorangegan-
gene Ergebnisse bestédtigen. Sobald Teilchen, die die vertikale Gravitation spiiren und
ein initiales Staub-zu-Gas Verhiltnis von gy = 0.01 haben, hinzugefiigt werden, wird
die Wirbelsdule in der Mittelebene stark gestort. Wird jedoch der Anfangswert des
Staub-zu-Gas Verhiltnises verringert bleibt die Saule stabil. Selbst fiir die kleinsten
getesteten Teilchen und den niedrigsten Anfangswert des Staub-zu-Gas Verhiltnises
wird die Strdmungsinstabilitit ausgeldst. Dies zeigt eine Moglichkeit auf, wie im In-
neren eines Wirbels, aus nur geringen Mengen von cm groflen Staubteilchen, Plan-
etesimale gebildet werden konnen.
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Chapter 1

Introduction

1.1 Historical Overview

The question of how our Earth came into existence is as old as humankind
itself. While the old Greeks pondered on the question whether there were other
worlds besides ours, in the 17th century scientists started to wonder how the
Earth and the other planets were formed.

For example, René Descartes (1644) postulated that the Earth was formed
out of a vortex with the Sun in its center. For him, the entire universe was filled
with aether and full of such vortices. This already suggested that there could
be many more Solar Systems in addition to our own.

In 1755, Immanuel Kant proposed a different idea in his Universal Natural
History and Theory of Heaven. Here, there was a huge nebula in which particles
collide, lose energy, eventually forming the Sun. The left over nebula material
revolves around the Sun. Condensations in this residual nebula then form the
planets. It is interesting that Kant explains the formation of planets such that
small particles merely stick together in a first stage and later on, after they have
reached a certain size, will gravitationally attract larger bodies: this idea is not
too different from today’s standard scenario.

Other exponents of these so called nebular hypotheses were Pierre-Simon
de Laplace and Young (1832). In their theory, the Solar atmosphere spread
out over the entire Solar System. Rings formed in this ellipsoid, from which
planets condensed.

A different scenario was capturing, such as the Chamberlin-Moulton hy-
pothesis (Chamberlin, (1901, 1916; Moulton, [1905; Jeans, 1931a). According to
them, there was a close encounter between the Sun and another star early on in
the Sun’s life. This caused a disruption of the Sun’s surface which lead to the

1



2 CHAPTER 1. INTRODUCTION

eruption of huge flares. Solid bodies, so called planetesimals, condensed out
of these flares, and after several collisions with each other formed the planets.

All theses hypotheses were disproved in part or completely over the years.
Finally, in the 1940s, Carl-Friedrich von Weizsdcker| (1943) took elements of
previous hypotheses and combined them with current state of the art physics.
He proclaimed that planets are a byproduct of star formation. Around the
young central star there is a flat cloud of gas with solar composition, i.e. mostly
gas with some heavy elements. In this disk, angular momentum is transported
outward and matter inwards towards the star. This transport happens via
turbulent eddies which rotate on concentric rings around the planet. On the
concentric rings between an “eddy-ring” solid matter is accumulated, which
eventually forms planets through collisions.

Although not entirely correct in detail, this picture is the foundation of to-
day’s planet formation theory.

1.2 From Star Formation to Protoplanetary Disks
and Planet Formation

Today we know that planets form in disks around young stars. A star is born
out of a large molecular cloud. Initially, this cloud is in thermal equilibrium,
which means that there is a balance between gravitational and pressure forces.
Once there is an imbalance and the gravitational forces outweigh the pressure
forces, collapse occurs. This is the case when a condensation in the cloud has
reached the Jeans mass (Jeans, 1931b). The gas collapses into a disk and a
central object. Most of the mass collapses in the center and forms the star
(Hoyle, [1960; Cameron, [1962; Terebey et al., 1984), whereas about 30% does
not fall directly onto the central object. Since the initial cloud was not static,
but rather in rotation, angular momentum conservation leads to the formation
of a disk out of this 30%. Eventually most of the disk matter will be accreted
onto the star (Hartmann et al., 1998). About 98% of the disk consists of H and
Hy. The remaining 2% are heavy elements both in form of micron sized solid
material (Mathis et al., 1977) or molecular gas.

A comprehensive theory of disk evolution has to meet many different re-
quirements. For example, it has to explain the redistribution of mass and angu-
lar momentum. Most of the mass has to be transported onto the central object,
but a small fraction needs to be saved in form of planets, while the angular mo-
mentum has to be transported outward or be deposited into the said planets.
The process of gas giant formation itself has to be rather fast, since observed
disk-lifetimes are only of the order of a few million years (Calvet et al., 2000;
Haisch et al., 2001} Sicilia-Aguilar et al., 2006a}b). Another difficulty is that the
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observed population of exoplanets, 777 planets on August 5" 201 shows a
huge variety of masses, semi-major axes, eccentricities and inclinations. Up
until 1995, theorists had concentrated on explaining the Solar System. How-
ever, when Mayor and Queloz (1995) found the first exoplanet, it turned out
that is was a planet of several Jupiter masses, but on an orbit much closer to its
star than Mercury is to our Sun. For these objects the expression “hot Jupiters”
was coined.

This shows that planet formation is indeed a complex problem with many
stages and outcomes. It is difficult to cover every element of planet formation
in one huge theory or simulation. The approach nowadays is rather to di-
vide planet formation into substeps, analyze these substeps individually, and
then, in the end, put everything back together in Monte-Carlo simulations and
population synthesis models (Mordasini et al., 2009). Of course, the different
substeps have to be connected with one another, which leads to an active con-
versation in this multidisciplinary field.

We now divide our overview on planet formation into two sections, one
which deals with disk evolution and angular momentum transport, and the
other that focuses on the actual formation of planets.

1.2.1 Disk Evolution

When we talk about disk evolution the questions are how the dynamics work,
and what the thermodynamic structure and chemical composition are. Due to
rotation and angular momentum conservation, the initial cloud will flatten out
and form a thin disk around the star. This disk has a smaller vertical height H
close to the star and a larger one further away. Generally the vertical height
is small compared to the radial extend of the disk, so that the dimensionless
scale-height h = H/r < 1. Radially, the disk can extend up to a few 100 AU
(e.g.|Andrews et al,, 2009). The upper and lower parts which are illuminated
by the star are optically thin, while the inner parts are much colder and op-
tically thick to stellar radiation. A sketch of a vertical cut through a disk is

shown in figure

Dynamically the disk is likely in near geostrophic balance. This means
that the gas does not move on Kepler-orbits with the Keplerian-velocity ux =
(GM.,/7)/2 where G is the gravitational constant, M, the mass of the star and
r the distance to the star.

About 2% of the disk mass consists of solid particles. Initially, these par-
ticles are spread out homogeneously throughout the entire disk. Due to the
vertical component of gravity, they sink down to the mid-plane of the disk.

Thttp:/ /www.exoplanet.org
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Figure 1.1 Sketch of a protoplanetary accretion disk. Shown is the » — z (radial
and vertical) plane. The light blue area indicates the ionized areas of the disk.
Here MRI is possible. The dark shaded area is too dust rich to be ionized.
Since the MRI cannot exist in this area it is called “dead-zone” (Gammie, |[1996;
Turner and Drake| 2009).

The larger particles will settle faster than the smaller ones. Once they are in
the mid-plane, they drift radially inwards towards the star. How exactly this
happens will be described later on in the thesis.

The redistribution of the disk gas happens in a way that matter is locally
transported inwards while angular momentum is transported outwards. Since
angular momentum is bound to matter it needs to be deposited somewhere.
Consequently some of the outer disk gas moves outwards. This is known as
viscous spreading (Weizsacker, 1943} |Liist and Schliiter, 1955; Lynden-Bell and
Pringle, 1974).

The question is now, what causes this angular momentum transport?
Naively one can think that molecular viscosity v can take this role. However,
the mycrophysical viscous time scale is of the order of 10'3yr, which is much
longer than the observed life-times of up to 10”yr and even longer than the
age of the universe itself (Ji et al., 2006; Armitage, 2009). This means that there
has to be another mechanism responsible for the mass transport. Shakura and
Sunyaev| (1973) proposed that the transport mechanism can be attributed to a
turbulent viscosity v; with a yet unknown origin. A simple way to parametrize
the strength of this viscosity is to estimate the typical length scale and velocity
of the system. In a disk this is the scale height of the disk and the local sound
speed c;. This leads to the so called a-prescription

vy = acsH, (1.1)

where « is a dimensionless parameter that describes the strength of the angu-
lar momentum transport. From now on we omit the index t for the turbulent
viscosity. When we talk about viscosity, we always mean the turbulent viscos-

ity.
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One task for astronomers is to find a physical mechanism that can provide
a-values which lead to viscosities that match observed accretion rates and life
times of disks. This is not an easy task at all. Since the linear stability anal-
ysis of the hydrodynamic system leads to the Rayleigh criterium which says
that disks are linearly stable when the specific angular momentum increases
with increasing radius (Goldreich and Lynden-Bell, [1965; Safronov) [1972; Pa-
paloizou and Pringle, 1984, 1985). This condition is fulfilled in all parts of the
disk.

However, once a disk is sufficiently ionized that magnetic fields can cou-
ple to the disk gas we get a different picture (Velikov, 1959). If weak magnetic
tields are present in the disk, the system will be linearly unstable and infinites-
imal perturbations which are applied to the disk will be enough to trigger the
unstable state. This effect is known as the magneto-rotational instability (MRI)
and was applied to planetary accretion disks for the first time by Balbus and
Hawley| (1991, 1998). Yet not all parts of the disks will offer the ionization
degree needed to start MRI. It seems unlikely that the cold dusty region is
adequately ionized for magnetic fields to couple to the gas (see figure [L.1).
Therefore this inner region is called “dead-zone” (Turner and Drake, 2009).

Since the precise ionization structure is still under debate (Turner and
Drake, 2009), as is the interplay between active and dead-zones, there is still
interest in studying purely hydrodynamic turbulence in circumstellar disks.
Klahr and Bodenheimer| (2003) found such a hydrodynamic instability that
creates anti-cyclonic vortices in three-dimensional radiation hydrodynamical
simulations of baroclinic disks, which they interpreted to be a kind of baro-
clinic instability (BI) modified for the Keplerian shear profile. Here, the idea
is that observed protoplanetary disks have a non-zero radial entropy gradient
Bs = —dIns/dInr , where s is the entropy, and are indeed not barotropic but
rather baroclinic, which means that planes of constant pressure and constant
density are misaligned, driving a thermal wind, e.g. vertical shear. In a linear
stability analysis that followed (Klahr, 2004) it was shown that this instability
can only be of non-linear nature (see also Cabot, 1984; Knobloch and Spruit,
1986).

Thermal relaxation turned out to be crucial when [Petersen et al. (2007a,b)
studied baroclinic vortex amplification using an incompressible approxima-
tion. In fact, thermal relaxation or diffusion, alongside the entropy gradient,
are the key ingredients to establishing the baroclinic feedback that strengthens
vortices in baroclinic disks.
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1.2.2 Giant and Terrestrial Planet Formation

For the process of planet formation itself, two paradigms were developed: the
gravitational collapse model and the core accretion model. Whereas the grav-
itational collapse model is applicable only to giant gaseous planets, the core
accretion model can be used to form both gas giants and rocky planets.

Gravitational Collapse Model

The idea of the gravitational-collapse model for planet formation is basically
the same as for gravitational collapse leading to star formation. The only dif-
ference is that the action takes place in a protoplanetary disk instead of a huge
amorphous cloud. The gas in a cloud or disk collapses when self-gravity and
thermal pressure are no longer in equilibrium. This occurs when gravity is
stronger than thermal pressure, which tries to push matter apart. Instability
can be determined through the Toomre-parameter (Ioomre, (1964).

csQ)

= (1.2)

Q=

Here cs is the sound speed, G the gravitational constant, ¥ the gas surface
density in the disk, and () the angular frequency. The Toomre-parameter bal-
ances pressure against gravity. If Q < 1 collapse can occur. But for this to
happen there are several constraints that the disk must meet. It must remain
nearly isothermal by cooling sufficiently fast: the collapse time, controlled by
the cooling time, has to be shorter than the shear time-scale. Otherwise, shear
will tear the collapsing clump apart (Janson et al., 2012). Conditions which al-
low for collapse are only likely to appear in protoplanetary disks at large radii
(e.g. Boss, 1997, 2000, 2007; Rice et al.,2005; Meru and Bate, 2010).

Core Accretion Model

Roughly speaking, the gravitational collapse model works from large scale to
small scale. The core accretion on the other hand starts at the smallest scales
and grows to large ones (Mizuno, 1980; |Pollack et al., 1996). Most of the dust is
initially in um size (Mathis et al.,[1977). When these particles collide they sim-
ply stick together and thus grow to larger bodies (Dominik and Tielens, 1997).
Unfortunately this hit-and-stick mechanism cannot go on to arbitrary sizes.
Eventually dust aggregates will be too large and their collisional velocities too
high to merely stick. Instead, they fragment into small pieces (Dullemond and
Dominik], 2005} [Tanaka et al., 2005; Blum and Wurm), 2008; Brauer et al., 2008).
Recently even more barriers have been found in addition to this fragmentation
barrier. Zsom et al.| (2010) and Gittler et al.| (2010) found the bouncing barrier,
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where particles bounce off of each other and Okuzumi (2009); Okuzumi et al.
(2011ab) found the charging barrier, where particles repel each other due to
the intrinsic electrical charge they bear. Even if particles overcome all these
barriers, their radial drift becomes very fast: they will drift into the star before
growing to bodies massive enough to accrete further matter (Birnstiel et al.,
2010).

A mechanism to circumvent this critical size regime is needed. One pro-
posed by Goldreich and Ward (1973) is the gravitational collapse of particles.
For this a high overdensity of particles needs to be reached. In a disk with-
out turbulence these high density enhancements can be reached via dust sed-
imentation. However, Weidenschilling (1980) found that even in a laminar
disk, dust sedimentation induces a vertical shear which can lead to the Kelvin-
Helmholz instability and thus prevents gravitational collapse. More recently,
however, Johansen et al.| (2006a) found that turbulence can actually help the
concentration process. They showed that sufficiently decoupled dust can ac-
cumulate in high pressure regions induced by the MRI. If these accumulations
reach high enough densities then gravitational collapse can happen, directly
forming planetesimals which are both large enough not to be strongly affected
by radial drift, and also massive enough to gravitationally accrete smaller dust
grains.

Once there are many planetesimals in a disk, they can form planetary cores
or planetary embryos. Eventually gas will also be accreted (e.g.|Wetherill and
Stewart, [1989; Thommes et al., 2003; Armitage, 2009; Ormel et al., 2010). When
the solid core and gaseous envelope have similar mass, contraction happens
and cooling becomes very efficient. Gas runaway accretion starts and will go
on until the planet’s feeding zone is empty (Mizuno)| 1980): a giant gas planet
has formed. Terrestrial planets can also form via this mechanism, although
they do not reach the phase of gas accretion and therefore stay small.

Additional effects like migration (e.g. Papaloizou and Lin, 1984; Ward,
1997; Masset, 2002 Tanaka et al., 2002; Bate et al., 2003} Papaloizou et al.,2007),
the Kozai-mechanism (Kozai, 1962; |Lithwick and Naoz, 2011) or mean motion
resonances among planets (Weidenschilling and Davis) [1985) are responsible
for the final location of the planet.

1.3 About this Thesis

Two of the challenges for protoplanetary disk and planet formation theory
that were mentioned in the introduction are the mechanism by which angular
momentum transport occurs in weakly ionized disks and how planetesimals
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form. These are points that I want to focus on in this thesis, especially how the
baroclinic instability can contribute to the solution of these challenges.

First the disk properties need to be determined, before I can analyze the
properties of baroclinic vortices in accretion disks. This is done in chapter

Once disk parameters like the Brunt-Véisild frequencies and cooling pro-
cesses are constrained, the focus is shifted to the baroclinic instability, or more
exactly, on the baroclinic vortex amplification (BVA). The goal of this chapter is
to show whether baroclinic vortices can exist in accretion disks and, if they do,
to determine the strength of the angular momentum transport. To do this I con-
duct an extensive parameter study using the parameters that were determined
in chapter 2| Special attention is paid to the dependence of growth-times and
a-values on the global entropy gradient f.

In chapters [ and 5| I will analyze the particle accumulation in baroclinic
vortices. Here the goal is to find out how much of a certain particle species
is needed to achieve conditions that may lead to gravoturbulent planetesimal
formation.

In chapter 4|2 dimensional simulations of a baroclinic disk with particles of
various sizes (St = 0.01, St = 0.05, St = 1.0 and St = 20.0) will be performed.
The particle concentration inside the vortices will be measured. I will not only
perform simulations with an initial dust-to-gas ratio of g = 0.01 but also de-
crease this value to ey = 1073 and ¢y = 10~ to see with how much material is
required to achieve high levels of particle accumulation can be achieved. Addi-
tionally, collisional velocities between particles will be measured, and compare
those results to studies of particle collisions in a different kind of turbulence,
see e.g. Ormel and Cuzzi| (2007).

In chapter 5 the 2 dimensional simulations are extended to 3 dimensional
ones. Here the gas is vertically unstratified but vertical gravity is included for
particles which is appropriate for highly settled particles. We will briefly com-
pare pure gas simulations with the literature (Lesur and Papaloizou, 2010; Lyra
and Klahr, 2011) and then include St = 0.05 and St = 1.0 particles. Again dif-
ferent initial dust-to-gas ratios are tested to see the effects that different particle
concentrations have onto the vortex structure and to analyze the efficiency of
vortex trapping.

Finally, I conclude in chapter|6]



Chapter 2

How Baroclinic are Accretion
Disks?

2.1 Introduction

The linear stability of a barotropic rotating fluid depends on the radial shear
rate (Rayleigh Criterion). More precisely, if the specific angular momentum j
increases radially then the fluid is stable and if it decreases radially, turbulence
is generated (e.g. the Princeton Experiment: Schartman et al. (2006)). This sta-
bility criterion is met in accretion disks, where j « R'/“ as well as in rigidly
rotating planetary atmospheres with j &« R?. One speaks of a barotropic stable
flow. Without applying additional physics to the system, the flow will remain
stable indefinitely and no turbulence can be expected. In accretion disks this
additional physics can be, for instance, self-gravity for sufficiently cold and
massive disks or it can be magnetic fields leading to the magneto-rotational
instability (Balbus and Hawley) 1991) if the disk is sufficiently ionized.

The earth atmosphere on the other hand is little impressed by self gravity
or magnetic fields. Instabilities such as local winds, atmospheric circulation,
cyclonic and anti-cyclonic storms, jet streams and many more exist. This entire
manifold of non-laminar flows is created due to local temperature gradients
or global temperature gradients between equator and poles (Vallis, 2006). In
a non-rotating system these temperature gradients (which also form pressure
and entropy gradients) would lead to large convective cells between the equa-
tor and the arctic regions, yet Coriolis forces do not permit such large scale
flows. Therefore a northward push of warm air leads to a thermal wind in the
easterly direction (in the northern hemisphere of the earth) until the pressure
gradient gets compensated by the additional centrifugal acceleration above the
mean rotation rate of the earth. Likewise the colder equator ward flow gener-
ates a wind in the westerly direction and if both patches of air are on top of
each other (warm over cold) then this will lead to vertical shear between the

9
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westerly blowing colder air and the easterly blowing warmer air on top of it.
This thermal wind phenomenon is the basic state of the baroclinic instability
in planetary atmospheres.

The baroclinic instability occurs in non-axisymmetric modes where the
warm air is sliding in the opposite direction of the colder air below, thus re-
leasing potential energy (for a detailed discussion see the book by Vallis, 2006).
For the baroclinic instability in planetary atmospheres, one can assume a rigid
rotating fluid, in which case the non-axisymmetric perturbations can not be
sheared out. This instability has also been studied in the interior of rotating
stars (Tassoul, 2000) and has been discussed in the context of accretion disks
(Cabot, [1984). Nevertheless Knobloch and Spruit (1986) have shown in their
work that radial buoyancy is too small in comparison to the radial shear, thus
the baroclinic instability as described above is prevented form operating.

Nevertheless, we want to stress that the thermal wind phenomenon occurs
in all accretion disks because they cannot be stricktly barotropic, e.g. have the
same entropy everywhere. In other words, a strictly isentropic disk would be
too special a case to be realized in nature. In general, temperature and density
decrease with distance from the star. The first is partly an effect of lesser stellar
heating at larger distance from the star. In addition, at least for disks which
actively accrete matter onto their central object, the release of potential energy
per accreted mass is also much stronger in the steeper potential well closer to
the star than further away from the center of gravity. The density decreases
radially because of several effects. First, the residual vertical gravity in the
system corotating with the disk at a certain radius falls off with distance, com-
pressing the disk less vertically. Second, dumping angular momentum rich
mass from the molecular cloud onto a disk results in high densities close to
the star and lower densities at larger distances for geometrical reasons. Third,
in order to maintain a constant accretion rate M ~ v ~ prv for a viscous
lifetime of the entire disk, surface density of the disk gas has to scale inversely
to the viscosity in the gas. In protoplanetary accretion disks we typically find
radially increasing kinematic viscosities (see also the a prescription of Shakura
and Sunyaev| (1973) v = aH>Q) ~ r!/2) and therefore densities have to de-
crease radially. The combination of thermal and density gradient may then
create vertical shear, e.g. a thermal wind, which should be common to all these
disks. The subject of this chapter is to discuss the detailed structure of local
radial pressure gradients vs. entropy gradients. We will see that the heat trap-
ping properties of the opacity will strongly determine the direction in which
entropy gradients will point.

While studying thermal convection in global models of protoplanetary ac-
cretion disks, Klahr and Bodenheimer; (2003) found anti-cyclonic vortices form-
ing in their 3D radiation hydrodynamical models. When they simplified the
numerical set up to 2D vertically integrated models, thus removing the vertical



2.1 INTRODUCTION 11

convective motion of the disk, they still found the formation of vortices when
there was a radial entropy gradient. In simulations where this gradient was
set to zero, no vortices formed. Inspired by this finding they proposed that
a baroclinic instability might be responsible for this phenomenon. Yet Klahr
(2004) and others (Johnson and Gammie, 2005) found no linear instability for
typical values of the radial buoyancy in protoplanetary disks. Buoyancy shall
here refer to the radial Brunt-Viisala frequency:

1 /(H\?
2L /rh 2
N* = ; (r) Bx By, (2.1)
with 7 the adiabatic index of the gas, fx = —dInK/dInr the radial en-

tropyﬂ and B, = —dInp/dInr the radial pressure gradient. Even the Brunt-
Vdisald frequency might be imaginary, indicating radial buoyancy, one has to
compare the growth rates to the shear rate in the disk, which is expressed in
the Richardson number

. 2 (H

Positive values larger than a critical threshold, Ri > Ri. indicate that shear
destabilizes the system despite stabilizing radial stratification, typically lead-
ing to a Kelvin-Helmholz instability. If on the other hand Ri < —1 then buoy-
ancy leads to radial convection, as the shear is too weak to suppress it. Yet,
as we will discuss in the following sections in detail, the expected range of
Richardson numbers is negative, but | Ri |< 1. Thus shear stabilizes the ra-
dial buoyancy, or in other words the linear growth rates of perturbations in
vorticity, due to the radial buoyancy, are lower than the shear rates in these
disks. Nevertheless, vorticity indeed grows in baroclinic disks, not in an expo-
nential way, but only linearly (see Klahr, 2004).

The baroclinic instability in its formulation for a planetary system can-
not spontaneously form vortices in disks, as they would immediately be sup-
pressed by shear. Nonetheless, while the initial formation of vortices in proto-
planetary disks from small perturbations is still a poorly understood problemﬂ
there has been progress for the non-linear stage of the perturbation. Recently,

2Actually, K is the potential temperature which is connected to the entropy s via s =
¢y In K/ Ko, where ¢, is the specific heat at constant volume. In the next chapter we will change
our notation and rather use entropy s instead of K.

3Please note that the Papaloizou Pringle Instability (1984) (see [Lovelace et al.| (1999); [Li
et al.| (2000, 2001)) for a more general formulation as Rossby-Wave Instability) can form vortices
from infinitesimal perturbations, but needs a sufficiently strong local extremum in potential
vorticity. Such a local extremum might be produced at interfaces between magnetically active
and dead zones of a disk (see|Varniere and Tagger| (2000); [Lyra and Mac Low|(2012)), but this
must be a local phenomenon and can most likely not be invoked as the source for the majority
of vortices in baroclinic accretion disks. Studies of the dynamics of Rossby Wave generated
vortices in baroclinic disks with thermal relaxation are still missing.
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Petersen et al.| (2007albp) have shown that vortices in baroclinic disks are am-
plified when there is a sufficiently strong thermal relaxation process operat-
ing, turning the vortices into entropy transporting radial convection cells. The
strength of the amplification depends on the strength of the radial buoyancy,
the viscosity of the fluid and the thermal relaxation rate of the dusty gas. In
chapter |3|we perform a parameter study for such systems and find an amplifi-
cation of vortices even for the low radial buoyancy of N> = —1.78 x 1072,

The occurrence of the baroclinic instability, or more precisely the amplifi-
cation and growth of vortices, depends on critical parameters like the entropy
and pressure gradients as well the thermal relaxation of the disk (Petersen et al.
(2007a/b); Klahr{(2004) and chapter . In the past, there have been many mod-
elling studies (Bell et al., 1997; D’ Alessio et al.,[1998; Dullemond et al., 2006) on
the thermodynamic structure of observed disks (Hartmann et al., 1998; Sicilia-
Aguilar et al., 2006a,b; Andrews et al 2009, 2010). We take these models one
step further to derive the parameters controlling the baroclinic state of the
disk for real observed disks from star formation regions, like in the Ophiuchus
cloud.

Andrews et al. (2009} 2010) used observed radial density profiles and mod-
elled them with viscous accretion disk models, e.g. by calculating an « viscosity
value for the measured mass accretion rate. Using their best fits to the radial
surface density profiles

B dlog X -
Br = — dlogr =094+0.2 (2.3)

we can already estimate that the viscosity profile is v « rP* because a steady
state accretion disk has to possess a radially constant accretion rate 9,M =
9,Zv = 0. Using the « ansatz, v = ac?/Q) determines the radial temperature
gradient to be

dlog T

Br = Tlogr ~ 15— B =0.6+02, (2.4)

for a constant «. It might seem as a surprise that the pressure has a constant
slope of

dlo
Bp=— gP:1

Tionr 5, (2.5)

independent of the radial density profile, but this is a consequence of constant
accretion rate and the original hypothesis of Shakura and Sunyaev|(1973) that
viscous stresses are proportional to the local pressure. The entropy gradient
can now be derived from the temperature and surface density gradients (8x =

Br — [y —1]Bx) as
_ dlogK
Pr = _dlogR

= 15— By = 028 +0.27, (2.6)
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with K as a potential temperature like representative for entropy following the
polytropic equation of state p = KX7 with v = 1.353 the 2D adiabatic index.
These values are always positive, indicating the unstable regime of entropy
gradients, violating the radial Schwarzschild criterion as expressed by nega-
tive values for the square of the Brunt-Véisila frequency N? < 0.

Bell et al.| (1997) (see also D’Alessio et al., 1998) have shown that accre-
tion disks even with a radially constant a value can not be modelled by a
single temperature and density slope. The temperature dependence of the
Rosseland mean opacity defines the temperature gradient between the mid-
plane T, and the surface of the disk T, via the optical depth T, thus T* ~

(TR + % + const> Tgff (see Hubeny, (1990, for a detailed discussion) with const

being a constant. While it is easy to investigate the structure of a disk that is al-
ready more or less uniquely defined by these two parameters, it is awkward to
study the stability properties of a disk which by construction must be already
unstable by one mechanism or another in order to have a non-zero accretion
rate and thus a non-vanishing « value. In the best case we can ultimately only
study whether a disk with already acting turbulence is able to maintain a baro-
clinically unstable structure, allowing baroclinicity to be the continuous driver
of the turbulence. If on the other hand we find accreting disks to have typi-
cally a baroclinic stable stratification, i.e. N2 > 0, then we have shown that
the turbulence in these regions is incompatible with driving from baroclinic
effects.

First we summarize what would be expected for the radial entropy gradi-
ents from various disk modeling attempts, where accretion luminosity is ne-
glected. Afterwards we describe our 1+1D modeling of accreting and illumi-
nated accretion disks. Then we summarize our results.

2.2 Thermodynamic Structure of Disks

2.2.1 Non-Accreting Disks

Passively illuminated disks have been widely studied for the interpretation
of observations of passive disks around T Tauri stars (Natta et al., 2000). The
disk geometry and density structure described by |Chiang and Goldreich|(1997,
1999) has a very steep surface density gradient of Bz, = 1.5. Thus in order to
have radial decreasing entropy, the temperature has to drop faster than pr >
0.53, which is not the case in the modelling of spectral energy distributions as
was done in (Chiang and Goldreich| (1999); but note that the surface density
profile fit is biased by the slope at large radii whereas little can be concluded
from this study for the local surface density profiles at distances R < 10 AU,



14 CHAPTER 2. HOW BAROCLINIC ARE ACCRETION DISKS?

especially when accretion luminosity has to be considered. The surface density
distributions assumed in the Pascucci test (2004), on the other hand, assume
such a shallow surface density profile that any temperature gradient g7 > 0
would produce a positive entropy gradient value Bk as well.

2.2.2 Accreting Disks

In the following we will directly use models of disks which include both irra-
diation and accretion luminosity. As pointed out by Dullemond et al. (2007) a
profile as steep as By, = 1.5 would require a completely flat temperature dis-
tribution which is inconsistent with a constant accretion rate and « viscosity.

As was pointed out by Bell et al.| (1997) an accreting disk can not have a
constant surface density profile (Bx = const) for all radii. For a given global ac-
cretion rate M and viscosity parameter a, the local surface density is a function
of the local optical depth of the disk and thus of the temperature dependent
Rosseland mean opacity x of the dust grains. For the opacities we use the table
provided in Bell and Lin| (1994).

D’Alessio et al. (1998, 1999, 2001) have provided data sets for irradiated
accretion disks and we checked our own simulation results against their data.
The D’ Alessio data itself was too coarse to determine smooth local temperature
and surface density gradients, and thus we had to run our own models based
on Bell et al.|(1997), with the inclusion of irradiation.

1+1D disks models

The determining parameters for these models are the accretion rate M and the
viscosity value «. The first parameter sets the local accretion luminosity, while
as the second parameter determines the value of surface density X needed to
achieve M. The accretion (effective) temperature of the disk, if not irradiated,

1S
3MO? /R,

with ¢ the Stefan-Boltzmann constant, R the stellar radius and () the Keple-
rian frequency at disk radius r. To calculate the total effective temperature of
the disks one has to add the irradiated flux Fy, = ¢ T2 thus

irr

Toit = Tace + T (2.8)

e irr-

The irradiation temperature can be calculated from the stellar effective tem-
perature T, and stellar radius under the simplifying but not crucially relevant
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assumption of an impact angle 8 ~ 0.05 ~ H/r between disk surface and
incoming radiation (see Dullemond et al. 2006):

RNV2 U
Tier = Ty - (sinf)"". (2.9)

To solve for the vertical structure of the disk we use a shooting method as
described in Bell et al. (1997) to simultaneously solve 3 equations. The first for
hydrostatic pressure p

0:p = — 920, (2.10)

with ¢, = —0?z the vertical component of stellar gravity and p the gas density.
The second for vertical heat transport via flux limited diffusion of radiation
energy density
kpF(z)
0:1(z) = ———/= 2.11

:T(z) 4arcAT(z)3 (2.11)
with F(z) the radiative flux at z, ag the radiation constant, ¢ the speed of light
and A a Levermore and Pomraning like flux limiter. Finally a third equation
for the local generation of heat flux due to viscous dissipation

_9GM,vp
4 8

d.F(z) (2.12)

As mentioned before, the resulting values for vertically integrated density X
and pressure p agree well with the tabulated values provided by d’Alessio.

As a test case we plot in figure the radial structure for a disk with
M = 1x 1077 Mg /yr, an assumed efficiency of turbulent diffusion of angu-
lar momentum of & = 3 x 102 around a T-Tauri star with T, = 4300 K and
R, = 2 R (model test in table . The dotted line shows in the temperature
plot shows the disk surface temperature if the disk was only heated up by vis-
cous accretion whereas the dashed line shows the temperature of the disk if
it was only heated via irradiation. At inner radii, the surface temperature of
the disk (lower solid line in the plot) is dominated by viscous heating. Since
the surface temperature is a combination of both heating processes, and also
because the optical depth changes with radius and height, the surface temper-
ature no longer has a constant slope. This also reflect in the derived mid-plane
temperature and surface density. These values can be translated into gradients
for vertical integrated pressure (see figure By and entropy Bk as well as an
effective B = |/B,Bk value as controlling parameter for the numerical experi-
ments we conduct in chapter 3| Note that the derived gradients are no longer
constant and include spikes as a result of including irradiation as well as vis-
cous heating and the integration. Also the model is not vertically isothermal,
so the temperature varies vertically. Therefore the gradient of the vertically
integrated pressure is no longer , = 1.5 = const, but varies radially.
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Table 2.1. Models

model M o
(Moyr™)
test 1x1077 3x103

Ophl  1x1077 8x1072
Oph2 1x107% 3x1073
Oph3  3x10° 5x107*
Oph4 3x1071 6x107

Finally we calculate the Richardson number for this model in figure
along with the thermal diffusion time for the model as it follows from opacity,
temperature and density in the mid-plane of the disks, calculated as

H?
Ty = H2/D = —P* (2.13)
diff 3
Mcar Ty

Ophiuchus Models

For the disks in the Ophiuchus star forming region we took the data of four
representative cases from [Andrews et al| (2009, 2010) (see table 2.1). We did
not vary the stellar properties in the derivation of the 1+1D disk structures,
but this could be done in future studies.

As one can see from figures 2.4] - in all of the studies cases one finds
extended regions with radially pointing outward pressure and entropy, which
also reflects in the negative Richardson numbers. Only the inner about 0.2 AU
of three of the disks show positive values (of —Bk), which indicates stability
with respect to baroclinic vortex amplification, e.g. stable radial stratification.
The reason for this inverse entropy gradient lies in the radially increasing op-
tical depth in this region, because of the shape of the inner dust evaporation
front. Regardless, as soon as dust is evaporated the MRI works perfectly, and
the baroclinic effects do not have to be invoked to drive angular momentum
transport. It is also interesting to note that the disks have more strongly neg-
ative Richardson numbers with increasing values &, which would be expected
if radial buoyancy drives the disk evolution. Thermal relaxation is typically
between a tenth and 100 local orbital periods, values that in numerical experi-
ments also lead to the excitation of baroclinic vortices.
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2.3 Discussion and Conclusions

In this chapter we derived disk properties using a 1+1D model. The model is
based upon a constant accretion rate M and constant a value. For the effective
temperature the accretion temperature as well as the irradiation temperture
from the central star were considered. As reference values for M and a we use
disk properties derived by|Andrews et al.| (2009, 2010) from observations of the
Ophiucus star forming region.

The derived disk structures show radially declining entropy for all sample
disks except for the very inner region of some of the disks. The modeling pa-
rameter for our numerical experiments in the next chapter g = |/B,Bx shows
values between 0.2 up to 1.5. The necessary condition for baroclinic instability
—1 < Ri < 0is fulfilled in most parts of the disk. The radii where this con-
dition is not fulfilled coincide with radially increasing entropy. A wide radial
range meets the necessary requirements of the baroclinic instability.

Another important modeling parameter for baroclinic vortex amplification
is the thermal diffusion time. Its values lie between 0.1 orbital periods, in the
outer parts of the disk, and 100 orbital periods. This gives us all relevant pa-
rameters for conducting our numerical experiments in the next chapter.

For the modeling in this chapter we kept the stellar parameters (R, and M,)
constant. For future studies these properties should also be varied.
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Figure 2.1 Temperature and surface density structure of a protoplanetary accre-
tion disk with an accretion rate of M = 1 x 1077 Mg, /yr, an assumed efficiency
of turbulent diffusion of angular momentum of « = 3 x 1073 around a T-Tauri
star with T = 4300K and R, = 2R (model test in table 2.1). The dashed
line is the surface temperature if the disk was only heated by stellar radiation
and the dashed line shows the surface temperature if the disk was only heated
up via viscous heating. these two processes make up the effective surface tem-
perature (lower solid line). The upper solid line shows the derived mid-plane
temperature.
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Figure 2.2 Radial gradients in a protoplanetary accretion disk with an accretion
rate of M = 1 x 1077 M, /yr, an assumed efficiency of turbulent diffusion of
angular momentum of & = 3 x 1073 around a T-Tauri star with T = 4300K
and R, = 2R (model test in table[2.T)).
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Figure 2.3 Richardson number and thermal diffusivity in a protoplanetary ac-
cretion disk with an accretion rate of M = 1 x 107" Mg, /yr, an assumed effi-
ciency of turbulent diffusion of angular momentum of a = 3 x 10~ around a
T-Tauri star with Tog = 4300K and R, = 2R (model test in table2.T).
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Figure 2.4 Radial gradients in a protoplanetary accretion disk with an accretion
rate of M = 1 x 1077 My, /yr, an assumed efficiency of turbulent diffusion of
angular momentum of « = 8 x 102 around a T-Tauri star with T, = 4300K
and R, = 2R (model Ophl in table2.1)).
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Figure 2.5 Richardson number and thermal diffusivity in a protoplanetary ac-
cretion disk with an accretion rate of M = 1 x 107" M,/ yr, an assumed effi-
ciency of turbulent diffusion of angular momentum of « = 8 x 10~2 around a
T-Tauri star with Ty = 4300K and R, = 2R, (model Ophl in table 2.1).
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Figure 2.6 Radial gradients in a protoplanetary accretion disk with an accretion
rate of M = 1 x 1078M, /yr, an assumed efficiency of turbulent diffusion of
angular momentum of & = 3 x 1073 around a T-Tauri star with T = 4300K
and R, = 2R (model Oph?2 in table2.1)).
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Figure 2.7 Richardson number and thermal diffusivity in a protoplanetary ac-
cretion disk with an accretion rate of M = 1 x 1078M,/yr, an assumed effi-
ciency of turbulent diffusion of angular momentum of « = 3 x 10~ around a
T-Tauri star with Tg = 4300K and R, = 2R (model Oph2 in table 2.1).
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Figure 2.8 Radial gradients in a protoplanetary accretion disk with an accretion
rate of M = 3 x 10~?M, /yr, an assumed efficiency of turbulent diffusion of
angular momentum of x = 5 x 10~* around a T-Tauri star with T, = 4300K
and R, = 2R (model Oph3 in table[2.1)).
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Figure 2.9 Richardson number and thermal diffusivity in a protoplanetary ac-
cretion disk with an accretion rate of M = 3 x 107?M,/yr, an assumed effi-
ciency of turbulent diffusion of angular momentum of « = 5 x 10~* around a
T-Tauri star with Ty = 4300K and R, = 2R, (model Oph3 in table 2.1).
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Figure 2.10 Radial gradients in a protoplanetary accretion disk with an accre-
tion rate of M = 3 x 10~ 1°M, /yr, an assumed efficiency of turbulent diffusion
of angular momentum of « = 6 x 10~* around a T-Tauri star with T,¢ = 4300K

and R, = 2R (model Oph4 in table2.1)).
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Figure 2.11 Richardson number and thermal diffusivity in a protoplanetary
accretion disk with an accretion rate of M = 3 x 10~ M, /yr, an assumed
efficiency of turbulent diffusion of angular momentum of « = 6 x 10~* around
a T-Tauri star with Tegs = 4300K and R, = 2R (model Oph4 in table[2.T).
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CHAPTER 2. HOW BAROCLINIC ARE ACCRETION DISKS?




Chapter 3

A Parameter Study for the
Baroclinic Disk Instability

3.1 Introduction

As mentioned in the introduction the preferred method to transport angular
momentum in a disk, the MRI, needs adequately ionized gas that the mag-
netic field couples to the gas. Yet, it is unclear that every disk possesses a high
enough ionization fraction (Gammie, 1996; Turner and Drake, 2009). Therefore
there remains interest in hydrodynamical instabilities. Klahr and Bodenheimer
(2003) found a hydrodynamical instability creating anti-cyclonic vortices in
3 dimensional radiation hydrodynamical simulations of baroclinic disks, e.g.
with a radial entropy gradient and thus vertical shear, which they assumed to
be a kind of baroclinic instability (BI) modified for the Keplerian shear profile.
As was shown in the last chapter, observed protoplanetary disks have a non-
zero radial entropy gradient B = —dIns/dInr , where s is the entropy and r
the radial distance to the star, and are indeed not barotropic but rather baro-
clinic, which means that the planes of constant pressure and constant density
are misaligned, driving a thermal wind, e.g. vertical shear.

Thermal relaxation turned out to be crucial when [Petersen et al. (2007a,b)
studied baroclinic vortex amplification using an incompressible approxima-
tion. In fact thermal relaxation or heat diffusion is a key ingredient to estab-
lishing the baroclinic feedback that keeps vortices growing in baroclinic disks.

While both effects, i.e. the baroclinic instability (BI) and baroclinic vortex
amplification (BVA), are a result of the superadiabatic radial stratification of
a disk, they are not to be confused. An operating linear baroclinic instabil-
ity (compare Cabot, 1984; Knobloch and Spruit, 1986) would be able to create
vortices in disks from infinitesimal perturbations, whereas the baroclinic vor-
tex amplification deals with the growth of existing vortical perturbations, for
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which |Lesur and Papaloizou, (2010) used the term “subcritical baroclinic insta-
bility”.

The occurrence of a classical Bl in the disk in its geophysical definition is
still under debate and shall be discussed elsewhere. There are three possibili-
ties: 1.) there is a classical BI working in protoplanetary disks creating the ini-
tial vortices, 2.) there is another instability (see the discussion in Klahr, [2004)
for example Kelvin-Helmholz instability creating vortices from vorticity max-
ima in sheared waves or 3.) small vortical perturbations are triggered from
other effects, e.g. waves from the MHD active region of the disks or maybe
from the waves emitted by vortices at other radii. In any case the finite ampli-
tude vortices then grow as described by the BVA until they reach a sufficient
size to influence the evolution of the disk. This physics is the subject of this
chapter.

Recently, Lyra and Klahr (2011) examined the interplay of BVA and MHD.
They found that as soon as magnetic fields are coupled to the gas, the MRI
takes over and thus supercedes vortices which were previously amplified by
BVA. This implies that the BVA is a phenomenon restricted to the MRI dead-
zone.

All the above mentioned (lower resolution) studies had to apply entropy
gradients 2-4 times stronger than expected in protoplanetary disks (see |[An-
drews et al., 2009, and chapter [2) to successfully drive BVA. This chapter, us-
ing results from high resolution runs, shall now display that the likely entropy
gradients in protoplanetary disks are in fact sufficient for BVA.

Lately, Paardekooper et al.|(2010) investigated the effect of radial vortex mi-
gration. They discovered that vortices migrate quickly radially inward once a
vortex has grown to its full size, which is limited by the scale-height. While
this effect will be of major importance in understanding the life-cycle of a vor-
tex, it plays only a minor role for the typically very weak/still growing vortices
studied in this thesis. We shall return to vortex migration once we study the
BVA in global simulations.

In this chapter we carry out local, fully compressible shearing sheet simula-
tions at various resolutions. We show that as we go to higher resolutions, one
can excite the nonlinear instability and achieve Reynolds stresses with the low
entropy gradients deduced for observed accretion disks. We conduct an exten-
sive parameter study for entropy gradients g, thermal cooling 7., and diffu-
sion times Tg;¢r, and resolution respectively. Section gives a brief overview
of the physical background of the instability. In section 3.3| we present the nu-
merical setup of our simulations. In section 3.3 we examine the amplification
and decay-times of values such as enstrophy w? = (V x u)2 and a-stresses.
Here,

o = Pxty)y 61
qpo
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with p being the gas density, u the gas velocity and pg the initial mean pressure
and g = 1.5 is the shear parameter for a Keplerian disk. The mean is taken
over the x and y domain. We also analyze the saturation values, e.g. how
quantities like the entropy gradient, cooling processes in the disk or the size of
the simulated domain influence the strength of angular momentum transport.
Finally we summarize our results and give a conclusion in section 3.5

3.2 Physical Background

Vorticity is conserved in barotropic simulations, but in flows with density and
pressure treated as independent quantities, vorticity is produced via the so
called baroclinic term

V x (—%Vp) = %Vp X Vp ﬁsayp (3.2)

Here p is the gas density, p the gas pressure, and s is the global radial en-
tropy gradient. The ground state of a disk is geostrophic, i.e. all centrifugal
forces and gravity are in balance with the strictly radial pressure gradient. If
an entropy perturbation is introduced without perturbing the pressure, then
this entropy perturbation will efficiently create vorticity in the presence of the
global entropy and pressure gradients. This effect is basically radial buoy-
ancy because of superadiabatic radial stratificationﬂ Indeed the radial Brunt-
Viiséla frequency (Tassoul, 2000)

N2 = —ia—r’im(”) (3.3)

is imaginary, which would lead to radial convection. However, shear stabilizes
non-axisymmetric modes and for the dynamic stability of the axisymmetric
system the Solberg-Hoiland criterium (Tassoul, 2000; Riidiger et al., 2002)
19/ 1
S VpVs>0 (3.4)
r3or  cpp
dp (9j20s 09j20
(oo oy,

9z \ ar 0z 9z or

where j is the specific angular momentum, has to be considered. If one re-
writes equation 3.4] in the local approximation (see e.g. Balbus and Hawley,

4 As our flows are strongly subsonic we consider them incompressible. Otherwise the equa-
tion has to be rewritten for potential vorticity

S5Please note that similar situations can be found in subadiabatic configurations. In fact,
in any non-barotropic disk, an entropy perturbation will lead to a vorticity fluctuation. But
without the global pressure and entropy gradient pointing in the same direction these pertur-
bations will quickly decay (shear away) as they lack a mechanism for vortex amplification.
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1998), the stabilizing action of the specific angular momentum shows up as
the value of Oorts constant in the Coriolis term. If the vertical stratification
in velocity is also considered, as it must be in real 3 dimensional accretion
disks (Fromang et al., 2011), then the combined action of radial buoyancy and
Coriolis forces lead to a thermal wind, i.e. a vertical shear in rotational velocity.
This is precisely the initial state of the baroclinic instability in rotating stars
and planetary atmospheres. Yet, instability in these systems is not obstructed
by radial shear, whereas in a Keplerian disk radial scales would have to be on
the order of H (Knobloch and Spruit, 1986) to be linearly unstable with respect
to baroclinic instability.

Before we explain the motion of a gas parcel in a vortex, we want to ex-
plain the cooling and heating processes in an disk as they proved in be crucial
to maintaining the baroclinic feedback (Petersen et al., 2007a,b). Dust particles
absorb photons, which heats them up. To cool, they radiate in the infrared.
This radiation can be reabsorbed by other particles. This happens on a typ-
ical length-scale. A convenient parametrization for the diffusion time in our
vortex system is Tgi¢ = a2/ D where a is the radius of the vortex and D the ra-
diative diffusion constant. D can be determined using a flux limited diffusion
approach as in Kley et al.[(2009). There, D = Ac4agT® (pK)_1 where A is the
flux limiter, c the speed of light, ar the radiation constant, T and p the gas tem-
perature and density respectively and x the opacity. Since D is constant and
the vortex grows, T4 will increase over time. Thermal relaxation is the other
process by which dust can deposit heat into the gas. When a dust particle is
not at the local equilibrium temperature, it will exchange heat with the ambi-
ent medium on a time-scale 7.,,. This time-scale affects vortices of all sizes
equally.

The baroclinic feedback is explained in detail by Petersen et al.| (2007b).
Here, we follow the description of the mechanism by [Lesur and Papaloizou
(2010). The left panel of figure |3.1| shows the vorticity profile of a baroclinic
vortex. Just before position 1, a gas parcel is in thermal equilibrium. As it
moves along a streamline to position 1 is becomes slightly warmer than the
ambient gas. Due to buoyancy effects it rises (moves to larger radii) to position
2. This track happens adiabatically. As the gas parcel is advected to position
3 it equalizes with its surroundings so that it adopts the background tempera-
ture. This heat exchange requires thermal diffusion or relaxation on appropri-
ate time-scales. Once the gas parcel has reached position 3 it is slightly colder
than the ambient gas. It will sink towards warmer regions to position 4. From
position 4 to 1 thermal equilibration happens again. However, this time the
fluid element heats up to the ambient temperature.

Since there is no heat exchange from step 1 to 2 and 3 to 4, an azimuthal
temperature, and thus also entropy, gradient is established around the vortex.
In a baroclinic flow, entropy is a function of pressure and density: s (p, p). Since
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Figure 3.1 This plot shows (left) the vorticity profile w, and (right) deviation
from the background entropy s for a baroclinic vortex with § = 1.0 after 700 lo-
cal orbits (simulation C in table[3.I). The white ellipse shows the anti-cyclonic
flow direction. Fluid parcels move along streamlines from 1 to 2 to 3 to 4 and
back to 1. Within the vortex the entropy is lower than the background entropy
(middle panel).
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the pressure variations, especially from weak vortices, are negligible in com-
parison to the global radial pressure gradient and much smaller than the az-
imuthal entropy gradient, pressure can approximated as constant (Klahr and
Bodenheimer, 2003; Klahr, 2004; Petersen et al., 2007a). This requires an az-
imuthal density gradient which enforces the baroclinic feedback.

If cooling is too fast (short time-scales) then the fluid parcel adapts the back-
ground temperature slope too quickly. The vortex becomes locally isother-
mal and no entropy transport is possible. Conversely, if cooling is too slow
(long time-scales) then gas will not equilibriate fast enough. The vortex gas
becomes adiabatic with constant entropy across the vortex. In both extreme
cases, isothermal or adiabatic, the azimuthal entropy gradient across the vor-
tex vanishes. As shown in equation (3.2), the vorticity source ceases to amplify
the vortex, or at most stabilizes it against losses from numerical viscosity from
radiating vorticity perturbations, e.g. Rossby waves. Therefore it is important
that the thermal cooling and diffusion times are in the right regime.

We model both thermal relaxation and thermal diffusion separately be-
cause, dependent on the vortex size, either one or the other dominates. The
process with the shorter time-scale sets the heat exchange between the vortex
and ambient gas.

3.3 Numerical Setup

Our simulations were conducted with the PENCIL CODH| a finite differ-
ence code which uses 3"*-order Runge-Kutta time derivatives according to
Williamson! (1980) and 6'"-order spacial derivatives. We use a 2 dimensional,
local shearing sheet approach. This scheme is illustrated in figure A sheet
(in 3 dimensional simulations, a box) is cut out of the disk in the mid-plane
and co-rotates with the co-rotational radius Rg. The spherical coordinate sys-
tem has to be transformed into a cartesian coordinate system via the ansatz
r = Rg+xand y = @Ry. Then the equations are linearized and 2™ order
or higher terms are neglected. This restricts us to x < R and y < Ry, which
means that the extent of the sheet (box) is small compared to the radial location
of the box. This is a 2D version of the model used in [Lyra and Klahr| (2011).
To include the baroclinic term, they defined a global entropy gradient 5. Note
that in our approximation the gradients for entropy s and pressure p are the
same. Therefore we do not distinguish them in our notation and call both .
However, in real disks both may easily differ.

5See http:/ /www.nordita.org/software/pencil-code/
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T TR

X

Figure 3.2 Schematic of the shearing sheet/box formalism. A sheet/box is
taken out of the disk around the mid-plane at a certain radius Ry. The
sheet/box is corotating with Ry.

The total pressure piot = P + p consist of a local fluctuation p and a time-
independent part that follows a large scale radial pressure gradient

p = po(r/Ro) P, (3.5)

where 7 is the cylindrical radius. The full set of linearized equations used in
our simulations are as follows

Dp

B T (@ V)p=—pV-u+tfo(p) (36)
%’: i (u.v)u:—:—)vp—zﬂo(ﬁxu)
+ gaoungrﬁR—’?(%—pio)Hfu(u,p) (3.7)
o Vs= v v e, L0
R} e o

Here, p is the gas density, u is the deviation of the gas velocity from the Kep-
lerian value, T the temperature, ¢, the specific heat at constant volume, 7. is
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Table 3.1. Simulation setups and results

run  Bp Toool Taise w? a Urms  Orms X-res x-domain
@r0y™H  @r0y™H (Q0?) (cs) (gridcells H™1) (H)
A0 20 10 10 0.055 122x1072 032 012 72 4
A 2.0 10 10 0.056 1.05x1072 033 022 144 4
A2 20 10 10 215x1072  3.09x107% 019 0.19 144 8
B 2.0 10 10 0.060 121x1072 033 022 288 4
Co 1.0 10 10 631x107> 416x1075 0.001 0.002 72 4
C 1.0 10 10 0.051 867x107% 031 022 144 4
C2 1.0 10 10 463 x 1073 8.2 x 10* 0.08  0.06 144 8
D 1.0 10 10 0.059 963x107% 031 021 288 4
E 1.0 30 10 0.022 433x107® 023 0.15 144 4
F 1.0 30 30 0.022 372x107% 023 015 144 4
G 1.0 100 10 0.017 261x107% 014  0.08 144 4
H 1.0 100 30 0.013 222x107% 015  0.08 144 4
I 1.0 100 100 0.010 136 x107% 014  0.08 144 4
JO 0.5 10 10 1.61 x 107 422 x107° 0.001 0.002 72 4
J 0.5 10 10 525x107%  638x107%* 035 0.04 144 4
12 0.5 10 10 177 x 1073 891x10™5 003  0.03 144 8
K 0.5 10 10 430x 1073 430x10"* 057  0.05 288 4
L 0.5 30 10 0.021 380x107% 023 015 144 4
M 0.5 30 30 0.021 301x1073 023 015 144 4
N 0.5 100 10 600x 1073 1.38x1073 014  0.10 144 4
0] 0.5 100 30 6.00x 1073 1.38x1073 014  0.10 144 4
P 0.5 100 100 863x1073 118x10°% 015 0.10 144 4

the thermal diffusion time scale, and K the heat conductivity. The symbol

D o (0) O
ﬁ = g + Uy @ (3.9)
represents the Keplerian derivative where uéo) = —3/20)x.

For a more thorough derivation of these equations and the linearization
of the global pressure gradient we refer to |Lyra and Klahr (2011) and the ap-
pendix therein.

In order to keep the numerical scheme stable we add sixth-order hyperdif-
fusion fp(p), hyperviscosity f,(u, p), and hyperconductivity fx(s) (Lyra et al.,
2008, 2009; |Oishi and Mac Low, 2009).

The radiation processes in the disk are implemented through the first (ther-
mal diffusion as an approximation for flux limited diffusion of radiation en-
ergy density) and second (thermal relaxation to mimic heat exchange with the
surface of the disk and thermal equilibration through the irradiation from the
central object) terms on the right hand side of the entropy equation. As men-
tioned in the last section we keep the diffusion coefficient D, which is defined
as in (Kley et al., [2009), constant in time and space and define its value via
Tqie = H?/D. So if the vortex has a radius of H, the pressure scale-height of
the disk, the diffusion time 74;¢ has the value quoted in table
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To clarify that it is indeed the global entropy gradient that produces the
vorticity we take the curl of the Navier-Stokes equation and assume an
equilibrium state, u, = 0, dy = 0, and VP = 0 so that

Dw,  Bpo

Here we see that the negative azimuthal density gradient across the vortex is
the source for vorticity production proportional to the global entropy gradient.

With the PENCIL CODE we do not see a numerical instability which appear
in Zeusﬂ like finite volume codes without explicit viscosity. During tests we
conducted we saw that the dissipation that we have to apply to stabilize our
code suppresses such a numerical instability and thus does not play a role in
our simulations.

Initially we apply a finite perturbation to the density so that

p(x,y) =po+p (3.11)

with pg the constant background density and p’ the actual perturbation of the
form

kx ky
P/ — pOCe*(X/Z(T)Z % Z Zsin {27T {li +]l + ¢ijk}} . (3.12)
i=—ky j=0 Ly "Ly

where C describes the strength of the perturbation, Ly and L, are the length of
the physical domain in x and y direction respectively, and ¢;; is an arbitrary
phase between 0 and 1. We perturb the density in a way that prms = 5% for
B = 1.0,2.0 (runs A-I) and prms = 10% for B = 0.5 (runs J-P) and kx = k, = 10.
The initial state is non-vortical. This is the initial condition used by Lyra &
Klahr (2011), the same amplitude C for simulations with g = 2.0.

Note that with this initial perturbation we do not perturb the pressure but
the entropy. Thus it is only the term in Eq. (3.10) that drives the developement
of non-laminar flows.

All our simulations are done in dimensionless code-units. We have Ry =
Qg =1, v = 14, and ¢ = 0.1, which means that H = ¢;/Q = 0.1. All
time-quantities are given in terms of 2770}, ! the local orbital period at the co-
rotational radius Ry.

The standard physical domains of our setup are +2 H in radial and [0 —
16] H in azimuthal direction. Later, we also perform simulations with twice
the standard physical domain. The resolution varies between 288 and 1152
gridcells for each dimension. Note that the resolution in radial direction is
four times as high as in azimuthal direction.

http:/ /www.astro.princeton.edu/ jstone/zeus.html



CHAPTER 3. A PARAMETER STUDY FOR THE BAROCLINIC DISK
34 INSTABILITY

The individual setups are given in table The thermal cooling times and
thermal diffusion times are derived from standard disk models as in chapter
and in Bell et al. (1997).

3.4 Results

3.4.1 Convergence of Saturation Values

We explored different resolutions in our simulations, 2882, 5762 and 11522. The
unusual non power of 2 resolution comes from our computational platform
with 6 core processors. Typically we used up to 24 CPUs totaling 144 cores for
our largest grids. We required about 1200 core hours per run for our largest
resolutions. The used grid leads to an effective resolution of 72 (288?), 144
(576%) and 288 (11522) grid-points per scale-height H in radial direction and 18
(2882), 36 (576%) and 72 (11522) grid-points per H in azimuthal direction. The
radial resolution is 4 times higher than the azimuthal resolution. It is always
necessary to compromise between resolution and computational time. Lower
resolution simulations are computationally less expensive but might not re-
solve the necessary scales.

We show the time developement of a-stresses (see equation (3.1)) in figure
The green line shows the resolution of 2882, black of 5762 and red 11522 for
B = 2.0 (top), B = 1.0 (middle) and B = 0.5 (lower panel). In all simulations
Tdiff = Teool = 10 local orbits.

We see that for = 1.0 and B = 0.5 and a resolution of 2882 the perturbation
decays rapidly. Higher resolution is required to increase the Reynolds-number
of the system and have less dissipation on the smaller scales and thus excite
the instability again. We impose a stronger initial perturbation for § = 0.5
than for the higher B. The perturbation in entropy results in a perturbation in
vorticity. This perturbation grows proportional to . For small B we have to
apply a stronger perturbation to get the same effect on the vorticity. However,
we expect that if we go to even higher resolution it is possible to keep the initial
density perturbation at prms = 5% (Petersen et al. 2007).

If we compare the saturation values of runs with different resolution but
the same 8, we see that, they differ by only 10 % from one another (see table

3.1).

It is important to note that the instability is excited and we measure reason-
able a-values of up to 4 x 1073 in the converged runs for entropy gradients as
low as B = 0.5. In fact, in section we show that &« depends weakly on B
as & « B/2. Figure [3.3[shows that the saturation values of # do not depend
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Figure 3.3 Time evolution of a-stresses for the three different resolutions of
2882 (green), 5767 (black) and 11522 (red) with an entropy gradient of g = 2.0
(top panel), B = 1.0 (middle panel) and f = 0.5 (bottom panel). We have
T4iff = Teool = 1027/ ()g. For all resolutions vortex amplification and there-
fore angular momentum transport can be seen for strong entropy gradients
(B = 2.0). For lower entropy gradients higher resolution is needed to see
the development of vortices. The dashed lines show the saturations values
(B = 2.0 and B = 1.0) and value at the end of the simulation (8 = 0.5) respec-
tively.
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Figure 3.4 Time evolution of « for § = 1.0 and a resolution of 5762 (run C).
The red slope marks exponential amplification with a amplification-time 7 =
7027 /). For larger entropy gradients (smaller entropy gradients) we find
faster (slower) amplification-times.

strongly on B, but as we will see in the next section that the amplification rates
do.

3.4.2 Amplification- and Decay Rates

We want to analyze the amplification timescales of the vortices. Here, ampli-
tication means how fast a vortex grows due to the baroclinic feedback. Thus
it is independent of the initial condition. The initial strong kick needed to get
the vortex going decays rather quickly as can be seen in e.g. figure There,
the a-values start out in the order of 10> then drop to around 10~° as the
initial perturbation decays. As soon as the baroclinic feedback sets in, the val-
ues rise again. The timespan that follows is the one in which we measure the
amplification time.

Analyzing the amplification-rates of the instability, we find that the initial
amplification-rate of the a-stress (I' (a)) can be fitted as exponential amplifi-
cation @ = agexp (t/T) with T ~ 70872, as seen in figure 3.4 for run C. The
proportionality to 872 is not what one would naively expect from a linear con-
vective or buoyancy driven turbulence.
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Figure 3.5 In this run with 8 = 1.0 a resolution of 576 (run C, upper panel)
and 11522 (run D, lower panel). We turn off the entropy gradient after 800 local
orbits (indicated by the black dashed line) to see how the instability decays.
Enstrophy is shown with the black line and the a-stresses with the blue line.
Our fits are given through the red and green dashed lines respectively. We fit
a decay time of 7, = 1000 for the enstrophy and 7, = 400 for a.

For linear buoyancy driven turbulence one would expect an amplification
rate proportional to the Brunt-Viisalad frequency N

N2 190, (ﬁ) , (3.13)
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which in our parameters is

2
N? = —/3,75% (%) 0% o« —p2. (3.14)

Here we explicitly wrote B, and Bs to make clear that the Brunt-Viisild fre-
quency depends on the product of entropy and pressure gradient which can
be different in global simulations.

All quantities in equation are positive. Thus the Brunt-Viiséla fre-
quency is imaginary and therefore a linear buoyancy driven turbulence would
have a amplification-rate T « iN « B. However, we found that I' « B2 pro-
vides a better fit. This reflects the non-linearity of the baroclinic disk instability.
In linear convective instability a displaced parcel of gas feels a buoyancy force
and thus accelerates propotionally to B. But in the disk baroclinic instability a
vortex has to form with an azimuthal entropy gradient proportional to B (and
Teool) before it feels a baroclinic torque proportional to B. Therefore the ampli-
fication is proportional to 2.

The amplification behavior in figure |3.3| already displays convergence for
576 grid cells resolution, e.g. 144/ H in the radial direction.

If we compare our amplification timescales for the lowest entropy gradi-
ents with the migration times obtained by Paardekooper et al. (2010) we see
that they are of the same order of magnitude. This means that the vortex could
have drifted into the central star before reaching strong a-values. However,
Paardekooper et al| (2010) also say that their timescales refer to fully grown
vortices of size H. Smaller vortices drift significantly more slowly. This gives
our vortices time to grow large enough to generate significant angular momen-
tum transport before drifting into the star.

To study the numerical dissipation effects further we investigate how the
vortices decay when baroclinic driving is switched off (figure 3.5). To do this
we first evolve runs C and D with B = 1.0 and the two resolutions of 5767
and 11522 for 800 orbits and then turn off the entropy gradient by setting
B = 0.0. We see vortices shrink and all relevant quantities like enstrophy, w?
or a-stresses decaying exponentially. (Godon and Livio| (1999) saw the same ex-
ponential decay of vorticity when they analyzed the longevity of anti-cyclonic
vortices in protoplanetary disks. Their dissipation was proportional to the ef-
fective viscosity applied in their numerical experiment. Here we find the same
decay-rate for both resolutions, highlighting that the decay of vortices is no
longer through numerical effects, but due to the radiation of waves as in Ko-
rotaev|(1997).
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3.4.3 Saturation Values

In section 3.4.T|we established that even shallow entropy gradients lead to vor-
tices, but we still have to show that sufficient angular momentum transport can
be reached with these shallow gradients that are expected in protoplanetary ac-
cretion disks. The saturation values of enstrophy w% and u,ms are of interest as
well. In the next sections we discuss the measured saturation values and an-
alyze how the different controlling parameters influence amplification-phase
and final values.

Influence of the Entropy Gradient

In figure 3.6 we compare runs A, C and ] (at a resolution of 576> and with
T4iff = Teool = 10), which differ only through B. There is an initial exponential
amplification-phase of &, Ey;, and w? that is shorter for higher g, followed by
a saturated state. We also see that for lower p the saturation values are lower.
We want to stress that we did not reach saturation for simulations J and K (at a
resolution of 5762 and 11522 and Tyt = Teoo] = 10). Even after 3000 local orbits
vortex amplification was still ongoing. Here the 745 = 10 is much shorter
than the amplification-rate we estimated in the previous section (7 ~ 300).
As we will see in the next section, the amplification-phase is shortest when
those time-scales are comparable because Tgi¢ also defines how fast pressure
perturbations are damped. Although we expect the final saturation values of
simulations ] and K to be higher than those reached, it is possible that they will
still stay below the saturation values obtained in simulations with g = 2.0.

The vorticity can be seen as a measure of the strength of the vortex. The
higher the absolute value of the vorticity the stronger the vortex. Baroclinic
vortices are anti-cyclonic vortices and therefore the vorticity has negative val-
ues. So the minimum value of vorticity, (w; min) shows how strong a vortex is.
To explain the behavior of w; min (3rd panel in Fig. , cooling processes have
to be taken into account. During the early phases, thermal transport is domi-
nated by diffusion (Petersen et al., 2007b). As mentioned before this time-scale
is shorter for smaller vortices. Therefore heat-exchange between the vortex gas
and the ambient gas is more efficient than in later stages. Once the vortex has
grown to its final size, thermal relaxation takes over. However heat-exchange
in the center of the vortex is less efficient than in the earlier stages. The baro-
clinic feedback, e.g. the azimuthal entropy gradient across the vortex, is less
efficient, the vortex grows weaker, and | w, min | falls again, creating a flat (as
far as the vorticity profile is concerned) yet extended vortex.
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Figure 3.6 Time evolution of kinetic energy Ey;, (top), a-value (middle) and
minimum vorticity w, min (bottom) for a resolution of 5767 and Tyt = Teool =
10, but different entropy gradients: § = 2.0 (green), B = 1.0 (black) and B = 0.5
(red) (runs A, C, J). Saturation is first reached for high p after 300 orbits, then
for = 1.0. For B = 0.5, no saturation is reached even after 3000 orbits.
The decrease in | w,min | after saturation can be explained through the heat
transport across the vortex. Since the vortex has reached its final, largest size,
heat transport takes longer due to the larger size of the vortex.
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Figure 3.7 Comparison of different 7y (right numbers) and 7., (left num-
bers) for same f = 1.0 (Runs C-I). The top panel shows the a-value and the
bottom one ums. One can see that the early amplification-phase is determined
by the diffusion time since the heating across the vortex is more important
then vertical heat transport. We find faster amplification for higher 74;¢. Once
the vortex grows larger heat transport gets more difficult and the thermal re-
laxation dominates. Therefore the saturation values are determined through
Teool- Saturation values are higher for smaller 7 .

Influence of Thermal Diffusion and Cooling Times

We examine simulations with B = 1 and different combinations of 7g;¢ and
Teool t0 see how thermal diffusion and relaxation influence the saturation val-
ues and the amplification-phases. As long as Ty (;) = a2 /K < Teool, Taife(a) Will
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dominate the heat exchange from the inside of the vortex to the ambient disk.
As the vortex grows, Tyig(,) Will increase and eventually only contributing to
the heat exchange at the outskirts of the vortex. 7., will then dominate the
interior of the vortex.

For the simulations where we set Tgiff = Teool, Teool Will take over when the
vortex grows past the size 2 = H. This is fulfilled by the time the vortex has
grown to its final size which is limited by H.

This is consistent with what we see in figure During the early
amplification-phase, simulations with equal 74;¢ behave exactly the same.
Eventually 7, takes over so that the saturation values are determined by
Teool- FOr longer 7., saturation values are lower than for shorter ..

Influence of the Physical Domain

A problem with local shearing sheet simulations is that eventually vortices
grow to the box-size. We cannot say whether they have reached their final size
or just do not have any more room to grow. Another problem that arises with
the periodic boundary conditions is that the vortices potentially interact with
themselves and thus forcing (shaking) them to shed more waves and therefore
increase the a-values. To deal with that, we re-did simulations A, C and |
with a doubled physical domain (simulations A2, C2, ]2 in Table 3.1). The
resolution is the same. Instead of x = [—0.2,0.2] and y = [0.0,1.6] we switch
to x = [—0.4,04] and y = [0.0,3.2]. We did not adjust the initial perturbation
in any way. Therefore the initial state is perturbed at smaller wave numbers
than in the smaller domain. If we go to even larger boxes the initial condition
has to be adjusted so the the effective perturbation in the density is of the same
strength as in the smaller physical domain.

If we compare the time development of runs with a different physical do-
main (see figures [3.8|and 3.9), we see that vortices in fact do not merge as fast
in the large domain because there now is more space between them in radial
direction, and they pass each other other less frequently due to the extended
azimuthal domain. Eventually they will merge as Godon and Livio|(1999) saw,
but the larger the box, the longer it takes. The precise mechanism of vortex
merging is beyond the scope of this work. It has been studied extensively in
the field of fluid dynamics (see e.g. Cerretelli and Williamson, 2003). The de-
tails of merging are not important for our study, only that it exists.

An unphysical process that can occur in local periodic simulations is that
when the vortex approaches the box scale it interacts with itself: the outer
edges of the one side of the vortex almost touches the other side of the same
vortex. We do not see this for the runs with the larger physical domain. Since
the vortices in the larger domain do not interact with themselves, the satura-
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Figure 3.8 Snapshots of the z-component of the vorticity, w;, after 100 and 500
local orbits for the two different physical domains with g = 0.5. Initially both
runs have vortices of equal size. Since there is less space between vortices, they
can merge sooner in runs with the small physical domain. The vortices in the
large physical domain take longer to grow.

tion values are lower. However, they are still in the same order of magnitude

(see table [3.1)).

In figures 3.8/and 3.9 we show snapshots of the vorticity for § = 0.5 (simu-
lations ] and J2). Initially there are several vortices. The larger ones sweep up
the smaller vortices and thus grow further. At 1500 local orbits there is only
one vortex left for the small physical domain, whereas in the larger physical
domain there are still three vortices.

If we look at the a-value and enstrophy for these two simulations (see figure
3.10), we see that the value seems to decay in the larger box at the end of
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Figure 3.9 Snapshots of the z-component of the vorticity, w,, after 1000 and
1500 local orbits for the two different physical domains with g = 0.5. Initially
both runs have vortices of equal size. Since there is less space between vortices,
they can merge sooner in runs with the small physical domain. The vortices in
the large physical domain take longer to grow.

the run. However this does not mean that the vortices die out. Instead it
reflects fluctuations in the vortex interaction, modulating «, as also can be seen
in the small domain case at high frequency. We calculate the values as a mean
over the entire box but the angular momentum transport is a very localized
process as can be seen in figure (this time for B = 1.0 after 1000 orbits).
Here we show the product uyu, at each location in the box. Most areas of
the box have an u xuy-value close to zero. However, one can clearly see bands
excited by the vortex with positive uyu,-values. It is these bands that lead to
angular momentum transport (Klahr and Bodenheimer, 2003). If we had an
ideal vortex with a smooth surface we would expect that u,u, sums up to zero
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Figure 3.10 Time development of a and w? with g = 0.5 for small (black) and
large (red) physical domain (runs J and J2). Saturation values are lower in the
large box than in the smaller box.

within the vortex. However the vortex has a more complex structure as can be
seen in the lower right plot of figure This leads to an negative net a-value
across the vortex.

To properly compare the values of a for both physical domains, a box aver-
age has to be taken. If the average is taken over an equal physical size centered
around a vortex is taken, as indicated by the white dashed lines in figure
then the « values agree again. The a values are generated only in the vicinity
of vortices.
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Figure 3.11 Vorticity profile (left) and a-stress (middle) for § = 1.0 and the
large physical domain (run C2). Yellow and red areas denote positive a-vaues
whereas blue areas show negative a-stresses. In green areas & = 0. One can
see the waves excited by the vortex. Those waves are responsible for the an-
gular momentum transport. It is a localized process. Since the vortex and the
vorticity-waves fill out a smaller area of the box in the large box (large green
areas where there is no angular momentum transport) and our calculation of
the saturation values averages over the entire area of the box, the saturation
values seem to be lower. The plot in the right upper panel shows an azimuthal
average over the u,1,. Inside an ideal vortex, a-stresses would sum up to zero.
However, as indicated in the lower right plot, the vortex has a complex struc-
ture which leads to deviations from the idealized shape.

3.4.4 Correlations

A feature of baroclinic instability is that the saturation values of s, wg-, Qrms
correlate with each other. Figure shows the dependencies of these on «
for all our simulations. The colors represent the different entropy gradients:
B = 2.0 (black), B = 1.0 (red) and B = 0.5 (green). The different combinations
of diffusion and cooling times are represented through the different symbols.
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We find that the following relations are good fits to our simulation results

Urms = 3\/ECS (315)
Prms = 2\/E,00 (3.16)
w? = 5a03. (3.17)

We can derive the typical length-scale of angular momentum transport L, of
the system if equation (3.15) is inserted into the general a formalisms (Shakura
and Sunyaev, (1973) v = acsH = urmsL so that

Lo Vit

(3.18)

indicating smaller structures than the vortices in our simulations and also
smaller than the vorticity in standard a-models where w o /a with a different
coefficient (Cuzzi et al., 1994).

We do not perform a more exact analysis of these dependencies (varying
initial conditions) before we do 3 dimensional vertically stratified simulations.

3.4.5 Dependence on

In section we have shown that amplification of vortices for low entropy
gradients is computationally demanding in terms of evolution time. Thus it is
difficult to extract saturation values for entropy gradients even shallower than
B = 0.5 with the computational resources at hand.

In figure we plot the a-stresses as a function of the entropy gradient.
Note that we choose a different color-coding than in figure Here symbols
represent the thermal cooling times whereas colors represent thermal diffu-
sion times. The dashed black lines illustrates slopes o 3'/2 which is a reason-
able fit for the set of points with 7.,, = 30, Tqir = 10 (black triangles) and
Teool = 100, T4 = 30 (orange x). We cannot predict a-values for specific en-
tropy gradients and thermal cooling and relaxation times.

The key issue is less a strong correlation between « and 8 but rather the lack
thereof. The strength of the a-stresses reflects the size and the amplitude of the
largest vortex. Its size is defined by H only and not by any of the other T and
B parameters. As long as Tyt / Teool and B are sufficient to replenish vorticity at
the loss-rate, the a-stresses should be independent of g/ Tcoo1 and B. The loss
time-scale via generation of waves and Reynolds stresses is rather long, see
section and figure Thus as long as the amplification-rates are faster
than decay-rates, one should always obtain roughly the same a values.
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Figure 3.12 Saturation values of wg, Prms and urms as a function of saturated
(value at the end of the simulation for B = 0.5) a-value for all our runs with
the small physical domain (runs A-P). The symbols show the different combi-

nations of T ] (left numbers) and 7y (right numbers). Here red are runs with

B = 1.0, black B = 2.0 and green B = 0.5. The black dashed lines shows our fit.

3.5 Summary and Conclusion

In this chapter we have conducted an extensive parameter analysis for the
baroclinic vortex amplification. In particular, we analyzed the global entropy
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Figure 3.13 Saturation values of « for all our runs with the smaller box depend-
ing on B. Runs with parentheses around them were not saturated at the end of
the simulations. Therefore we do not take them into account when we fit the
a — B-relation.The symbols show the different combinations of 7., (left num-
bers) and Ty (right numbers). Orange are runs with f = 1.0, black g = 2.0
and green B = 0.5. The dashed line has a slope m = 1/2.

gradient, thermal relaxation and cooling, as well as numerical parameters such
as resolution, and box size influence the amplification-rates for vortices and
saturation values of «.

The most important result of our study is that even for entropy gradients as
low as B = 0.5 there is vortex growth. However, the amplification rate is of the
order of several 100s of local orbits, which makes it difficult to extract reliable
saturation values for the strength of the angular momentum transport.

Recently, Paardekooper et al.|(2010) studied the migration behavior of vor-
tices in global accretion disks. They found significant radial drift for fully
grown vortices with drift times shorter than the vortex amplification times we
measured in this chapter. Nevertheless, this is not a contradiction, because as
also shown in |Paardekooper et al|(2010), drift rates strongly depend on vor-
tex size. Thus the typical life cycle of a growing vortex would be starting as
a small but growing vortex without relevant radial drift, which starts drifting
as soon as it reaches its saturated state. Therefore radial drift need not affect
the study of of vortex amplification discussed here. Nevertheless, future work
will have to investigate radial drift of growing vortices in global simulations.
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Note here that |Paardekooper et al.| (2010) studied the migration in barotropic
disks, in which no vortex amplification occurs.

The amplification-phase of the vortices can be measured in terms of the
strength of the overall velocity fluctuation, which seem to grow exponential
on a certain time-scale T « B~2. Therefore amplification is faster for steeper
entropy gradients, e.g. T = 16 for f = 2.0 and T = 70 for B = 1.0. With
these short amplification-times we do reach saturation. Whereas the g = 0.5
simulation was still growing at the final time of 3000 orbital periods, when we
stopped the simulation.

Other parameters that influence the evolution of a-stresses are the ther-
mal cooling and relaxation times. The diffusion times define the amplification
phase of the vortices because diffusion dominates small scales, i.e. small vor-
tices. We see faster amplification for longer diffusion times. Cooling time on
the other hand determines the saturation values. Here, longer time-scales pro-
duce lower saturation values.

We find a-values up to 102 for B = 2.0 and 1073 for = 1.0 and B = 0.5.
These values are not so different from the values found with MRI in active
layers (Flock et al., 2011), and stronger than the 10~* found in dead zones
(Dzyurkevich et al., 2010), which shows that entropy gradients can be an im-
portant mechanism for transporting angular momentum in a dead-zone. Real-
istic entropy gradients in protoplanetary disks are around g = 0.5and g = 1.0
which can be derived out of the data obtained by |Andrews et al. (2009) as
discussed in Klahr (2012 submitted to Ap]J). Although we could not reach sat-
uration in all our simulations for these entropy gradients, we do see reason-
able a-stresses of the order of 1072 to 1072, We expect the final values to be
in this range which provides sufficient angular momentum transport in a disk
to achieve observed mass accretion rates. Also, the saturation value of « only
depends weakly on § like a o B1/2

Since local simulations are always limited by the box size we also con-
duct simulations in larger boxes. We do not see a difference in the initial
amplification-phase. At later stages the amplification last longer for larger
boxes and also is slower. Since part of the vortex evolution happens through
merging of smaller vortices, growth takes longer in larger boxes simply be-
cause the radial distance between vortices is bigger and thus mergers are less
frequent.

The saturation values of velocity fluctuations reached for the larger box
sizes are slightly lower than for the smaller box sizes. This is due to two rea-
sons. One is that we see some artificial enhancement in vortex strength in the
smaller box. Once the vortex has reached box-size it can no longer grow. It is
forced to interact with itself thus emitting more waves. This does not happen
in larger boxes.
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The other reason is that the number of vortices per radial distance is in-
dependent of box size because their typical maximum size is in the order of
a pressure scale-height. In the azimuthal direction, the number of vortices is
limited to 1 per radius, because otherwise merging will occur on short time-
scales. Therefore the overall density of vortices per simulation volume (area)
is lower in simulations with a larger azimuthal extent. Here we want to note
that our larger boxes with H/r = 0.1 and L, = 32 H are only a factor of about
two shy of the equivalent 27t global simulation.

Overall, we conclude that the baroclinic vortex amplification works rea-
sonably well for entropy gradients as low as p = 0.5. This  corresponds to a
Richardson-number of Ri = —1.5 x 1073. This makes BVA a feasible mecha-
nism for angular momentum transport in the dead-zone.

An exploration of lower entropy values will have to be postponed due to
the long evolution time required. In the future we will study stratified 3D
boxes and the interaction of dust with the vortices.
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Chapter 4

Particle Trapping and Streaming
Instability

4.1 Introduction

Planetesimal growth is one of the key issues of planet formation. The standard
model of collisional sticking poses several difficulties. Whether small dust
grains stick to one another or fragment depends on their size and their relative
velocities. In general, theory predicts that collisional velocities rise as parti-
cles grow. Fragmentation occurs at velocities of only a few ms™~!, which limits
particles sizes (Wurm and Blum, 2000; Brauer et al., 2008; Birnstiel et al., 2010).
Giittler et al.| (2010) and Zsom et al.| (2010) introduced another boundary, the
so called bouncing barrier where particles hit one another and bounce without
mass transfer. At even smaller size scales, Okuzumi et al. (2011a,b) found the
charging barrier, where small particles are prevented from approaching one
another due to the electric charges built up through collisions with free elec-
trons.

To form large planetesimals these difficulties need to be circumvented. One
proposed method is gravitational instability (Goldreich and Ward, 1973; |Jo-
hansen et al., 2006a). When enough particles are close enough together, their
mutual attraction can trigger gravitational collapse, instantaneously forming
large planetesimals that then sweep up small particles. Different methods to
capture dust have been studied by various groups, such as zonal flows by ]Jo-
hansen et al. (2011), rings around stars (Klahr and Lin, 2001} 2005), convective
cells (Klahr and Henning), 1997) or vortices either numerically (Barge and Som-
meria, (1995} Johansen et al., 2004; Klahr and Bodenheimer, 2003) or analytically
(Chavanis, 2000; Chang and Oishi, 2010).

It has become clear that dust can concentrate in anti-cyclonic vortices.
However the studies do not choose a particular formation mechanism for these

53
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vortices. In our studies, vortices are produced by baroclinic effects (Klahr and
Bodenheimer, [2003; Petersen et al.,2007a,b; Lyra and Klahr, 2011).

In this chapter we want to find out how efficiently dust can be captured
by vortices created by the baroclinic instability. We do this via 2 dimensional,
local simulations. Back-reaction of the particles onto the gas is included for
some simulations because we expect to reach high particle concentration in
the vortices.

The chapter is structured as follows. We first explain the underlying
physics of dust-motion in a gas disc, specifically in a vortex including dust-gas
interactions. Then we describe the changes in the numerical setup compared
to the pure gas simulations from the previous chapter in section The re-
sults of our simulations are given in section 4.4, Here we especially look at the
reached dust-to-gas ratios depending in initial dust-to-gas ratio. Finally we
summarize and conclude in section 4.5

4.2 Physical Background

To understand how particles move in a vortex we first have to understand how
they move in a protoplanetary disk and how they interact with gas. In general
the gas and dust feel the same forces except the pressure force f, = —pg IVp

ﬂ This term only affects the gas. with the global pressure gradient leading to a
sub-Keplerian orbital gas velocity u. The corresponding term f, s = —p5 ' Vp,
where ps is the material density of the solid material, can be neglected because
ps > pg. Since the particles do not feel this global pressure, they orbit at Ke-
plerian velocities. The resulting velocity difference between gas and particles,
acts as a headwind. Large particles are less affected by this headwind than
small particles which are dragged along with the gas.

The time on which the dust particles adjust to the gas velocity is the fric-
tion time 7; = pss(pgcs)_1 which depends on particle size s, particle material
density ps, gas density pg and local sound speed c;. This particle gas coupling
is usually expressed on terms of the dimensionless Stokes-number St = (7.
Particles of different size, but with the same St will behave the same as far as
aerodynamics is concerned.

Since our simulations are only 2 dimensional we do not consider vertical
settling of particles.

A simplified version of the equations of motion for gas and dust is

8we now added the index g to the gas density to avoid confusion with the dust density pg,

and dust material density ps
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u = forces — le _ fd (u—v) (4.1)
Pg PgTs
v = forces— lV 1 (v—u) (4.2)
B Os P Ts '

where v is the particle velocity and “forces” collects the terms that are the same
for both dust and gas, such as the gravitational force from the central star and
the Coriolis force. The second term of the equations describe the pressure force,
and the third term in the equations is the friction force between gas and dust
particles. If now we assume a steady state and that the back-reaction from the
dust in the gas is neglected and equation is subtracted from equation
we get

v = u+Tsin. (4.3)
Pg

This shows that particles tend to move up pressure gradient.

Baroclinic vortices are high pressure regions, so they should concentrate
particles. The vortex itself is geostrophicly stable which means that pressure
forces and Coriolis forces balance each other

QA xu= —le. (4.4)
Pg

It is also the Coriolis force that cause particles to move on epicycles around the
vortex. Yet the particles do not feel the pressure support, which means that
they are faster than the gas. However, small dust couples well to the gas, and
therefore adopts the gas velocity. Since these particles now are too slow for
force balance they migrate towards the center of the vortex. The large particles
on the other hand do not couple well to the gas, but they feel a head wind and
thus lose angular momentum and also spiral towards the center to compen-
sate the angular momentum loss. In principle the accumulation towards the
center of a vortex works the same way as radial particle drift in an accretion
disk. Barge and Sommeria (1995) also analyzed all forces acting inside a vortex
and found that all particles captured by an anti-cyclonic vortex experience an
inward driving force. In cyclonic vortices these forces act outwards.

If the dust density becomes comparable to the gas density the drag forces
that particles have onto the gas can no longer be neglected. This back-reaction
can alter the motion of the gas and also lead to even higher dust concentrations
through the streaming instability (Youdin and Goodman, 2005). The last term
of equation represents the back-reaction and the local dust-to-gas ration
is expressed as

£d
€ ="— (4.5)
Pg
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4.3 Numerical setup

We perform 2 dimensional shearing sheet simulations with the PENCIL CODE.
The linearized Euler-equations for the gas are solved on a cartesian grid. For
the exact form of the gas equations, see equations [3.6| through 3.8/ in chapter
When back-reaction on the gas is included we add the last term of equation
to equation (3.7). The dust grains are modeled with a particle approach.
For each individual particle we solve the equation of motion including gas
drag. We do not allow for self-gravity so far. In principle, for an individual
particle it does not matter if there are other particles in the simulation or not.
However, in the simulations where we allow for back-reactionof the particles
on the gas, there is an indirect influence of one particle on the other particles
due to the altered gas velocity.

In chapter 3.3 we set our disk co-rotating with Keplerian velocity at the co-
rotational radius Ry. But for simulations involving both dust and gas we need
to include a velocity offset due to the pressure gradient. The pressure gradient
is balanced by the Coriolis force

ZQuy:la_P: HolnP

ogor 7 olnr (46)

The deviation by which the gas velocity is lower than the Keplerian velocity
ug = Qris (Nakagawa et al., [1986)

H\%9Inp

which leads to a sub-Keplerian gas velocity of

2
uy =05 (E) Blanr = UK. (4.8)

r dinr

This velocity deviation 7 is added to the simulations artificially. For our 2D
simulations we choose 7 = —0.01 which corresponds to a pressure gradient of
B = 2.0 and a disk aspect ratio of h = 0.1. The particle velocities in terms of 7
are now (Weidenschilling|, 1977a)

ZnuK
0 = —_— 4.9
* St+ St~ *9)
MUK

Our physical domain spans 4 disk scale-heights, £2H, around the co-
rotational radius in radial-direction (x-axis) and 16H in azimuthal-direction
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Table 4.1. Simulation setup and emax

run St Xg0/Xgo feed-back  emax

NF1 0.01 1:100 no 5.35
NF2 0.05 1:100 no 416.67
NF3 1.0 1:100 no 416.67
NF4 200 1:100 no 1.67
F1 0.01 1:100 yes 1,07
F2 0.05 1:100 yes 3.86
F3 1.0 1:100 yes 77.33
F4 200 1:100 yes 0.73
DG1 0.05 1:1000 yes 1.15
DG2 0.05 1:10000 yes 0.70
DG3 1.0 1:1000 yes 11.53
DG4 1.0 1:10000 yes 4.17

(y-axis). The grid itself consists of 2882 gridcells. We choose g = 2 for the
entropy gradient and pressure gradients. This is a relatively strong gradient.
Gradients we expect in protoplanetary accretion disks are closer to f = 0.5.
However, in chapter |3 we saw that the general behavior of the vortices is the
same for weak and strong entropy gradients. The development of the vor-
tices is merely faster with stronger gradients. For a first estimation this strong
gradient is reasonable.

We first evolve the disk for 200 local orbits without particles. This way we
make sure that a fully grown, long lived vortex has developed before we put
in particles. Physically, this corresponds to a vortex developing in the outer
parts of the disk and then migrating inwards through regions with particles.

After these 200 orbits, we distribute 400 000 particles randomly in the disk.
This corresponds to 4-5 particles per gridcell initially. That way we avoid nu-
merical effects that can arise if there are not enough particles in the computa-
tional domain, e.g. the effect a single particle has can be extremely overesti-
mated if not enough particles are considered. Whenever we refer to times in
this chapter, we mean time elapsed since particles were put into the simulation.

Each of the 400000 particles represents one super-particle, a collection of
several particles, all of the same size, and a given mass according to the initial
dust-to-gas ratio.

Generally we have an initial dust-to-gas ratio ¢y of 1:100 which means that
the disk consists out of 1% solid material and 99% gas. Please note that in
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2 dimensions the PENCIL CODE assumes surface densities instead of volume
densities. Therefore the dust-to-gas-ratios we talk about in this chapter refer
to ¢ = X4/%g rather than to ¢ = p4/pg. To simulate different particle sizes we
use different Stokes-numbers of St = 0.01, St = 0.05, St = 1 and St = 20. At
5 AU this corresponds to particles between 3mm and 6ém for £, = 300 gcm 2
and ps = 2gcm ™3 . The parameters for all our simulations can be seen in table
A separate simulation is carried out for each St.

4.4 Results

4.4.1 No Particle Feedback

First we do not include back-reaction from the particles, effectively setting
pq = 0in equation (4.1I). That means that gas drags particles along, but even
high dust densities do not affect the gas velocity in any way. We see two dif-
ferent scenarios. For St = 0.05 and St = 1.0 particles, all particles are collected
within the vortex while for St = 0.01 and St = 20.0 there is no high concentra-
tion inside of vortex.

This can be explained through the gas coupling. Particles with St = 0.01
are perfectly coupled to the gas. This means they “glue” to one fluid element.
Since it is not always the same fluid element within the vortex, the dust par-
ticles can leave the vortex again. The St = 20 particles are the other extreme:
they are hardly coupled to the gas, and therefore are not affected by the vortical
motion of the gas.

Only the intermediately coupled particles can be swept up entirely by the
vortex as they drift through it. They are not so well coupled to the gas that
they can leave the vortex again, and other forces acting on the particles, like
the Coriolis force lead to a concentration in the center of the vortex.

Figure [4.1 shows the maximum dust-to-gas ratio for these simulations. It
is clear from the constant lines that all of the available solid material in the
St = 0.05 and St = 1.0 particle simulations accumulates in the vortex. This
corresponds to a particle concentration ¢ = X3/%30 ~ 45000 and ¢ ~ 540.
Even for St = 0.01 particles the dust-to-gas ratio increases to ¢ ~ 1.

The maximum particle concentration is reached sooner for St = 1 particles
than for St = 0.05 particles. This can be attributed to the radial drift veloc-
ity. St = 1 particles have the highest radial drift velocities (Weidenschilling,
1977a). Therefore they drift into the vortex faster than all other particles they
are then kept trapped.
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Figure 4.1 Maximum dust-to-gas ratio, emax, for simulations without particles
feedback. The different lines represent the different particle sizes: solid (black)
line: St = 20, dashed-dotted (green) line: St = 1, dashed (blue) line: St = 0.05,
and dotted (red) line: St = 0.01. All particles of intermediate size (St = 1.0
and St = 0.05) are accumulating in the vortex. Perfectly coupled particles
(5t = 0.01) only partly accumulate inside the vortex, because they also couple
to the gas outside of the vortex. Large particles (St = 20) hardly couple to the
gas at all. Therefore these particles are not affected by the vortical gas-motion.

4.4.2 Including Particle Feedback

In the last section we showed that there are enormous particle overdensities
within the vortex. This means that we cannot neglect the effect that dust has
on gas. Because of this we now include dust back-reaction on the gas, using

the full equation {#.I).

For the St = 20.0 particles there is no change to the simulations without
particle feedback (compare the left and right side of the to panel in figure 4.2).
All other tested particles still accumulate in the vortex, yet differently:

Particles with higher Stokes number (St = 1.0) concentrate more locally (in
a smaller area) than smaller particles (bottom panel of figure[d.2and figure[.3).
For those particles, the pressure gradient across the vortex combined with the
Coriolis forces inside the vortex, both of which act to concentrate particles in
the center, outweigh the drag force of the gas which acts to separate dust over
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Figure 4.2 Vorticity w, and dust-to-gas ratio without particle feedback (left)
and including back-reaction (right) for St = 20.0 (top) and St = 1.0 (bottom)
particles.
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Figure 4.3 Vorticity w, and dust-to-gas ratio without particle feedback (left)
and including back-reaction (right) for St = 0.05 (top) and St = 0.01 (bottom)

particles.
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X =300 X

Figure 4.4 Vorticity of the gas flow (left panel) and dust-to-gas ratio (right
panel) for a simulation with St = 0.01 particles and back-reaction onto the gas.
The elliptical vortical gas flow is distinguishable in the vorticity plot. There are
strong accumulations of particles within the vortex. Although many particles
spread out over the entire vortex, most particles concentrate in the center of
the vortex. The positive vorticity values in the vortex (light areas in the left
plot) show the effect the particles have on the gas. Where the gas encounters
obstacles, namely high particle concentrations, steep vorticity gradients are
developed.
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Figure 4.5 Vorticity of the dust particles (left panel) and particle rms velocity
(right panel) for the same snapshot as in figure The particle vorticity agrees
well with that of the gas, which confirms that the particles follow gas. Note
that the particle velocity peaks coincide with the particle concentration peaks.
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Figure 4.6 Vorticity (1st and 3rd column) and dust-to-gas ration (2nd and 4th
column) for St = 1.0 particles for different points in time. At the first snapshot,
the vortex is still clearly distinguishable. In the second snapshot, it has been
disrupted strongly by the particle accumulation. As this particle accumulation
spreads out, it can slowly regain its shape (3rd snapshot) and form a large, yet
still perturbed, vortex again (4th snapshot).
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Figure 4.7 Maximum dust-to-gas ratio, eémay, for simulations with particle feed-
back. The different lines represent the different particle sizes: solid (black) line:
St = 20, dashed-dotted (green) line: St = 1, dashed (blue) line: St = 0.05, and
dotted (red) line: St = 0.01. Particles of St = 1.0 reach the highest dust en-
hancements and concentrate in a very local area in the vortex, while smaller
particles spread out over the entire vortex.Therefore the overdensities reached
are lower. The high dust-to-gas ratio for large particles (St = 20.0) is attributed
to initial conditions. The black dashed line shows the same simulation for
St = 20.0, but the location of the particles was kept constant until the particle
velocity has adopted an equilibrium velocity.

the vortex. Smaller particles spread out over the vortex because their coupling
to the gas is stronger.

An effect visible in the behavior of small particles is the streaming instabil-
ity (Youdin and Goodman, 2005} |[Youdin and Johansen, 2007). Once particles
concentrate, their locally increased dust-to-gas ratio leads to a slower radial
drift (Nakagawa et al., 1986). This leads to further enhancement of solids since
faster particles from slightly larger radii bump into the accumulation, like a
traffic jam. This leads to streaming dust structures.

Figures and show the vertical gas vorticity w,, dust-to-gas ratio
e = X4/X4, the vertical vorticity component of the particles w; , and the rms
velocity of the particles vyms for a simulation with St = 0.01 particles after 300
local orbits (run F1). It is clear that the particles accumulate inside of the vor-
tex and follow the vortical motion. Where the concentration is highest they
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Figure 4.8 Highest dust-to-gas-ratios obtained during the simulations. St = 1
particles reach the highest ¢ whereas smaller and larger particles reach lower
€.

create steep gradients in both the gas’s vorticity and their own. Due to the
back-reaction of the dust on the gas, the initially elliptical gas streamlines are
bent into more complicated motions.

Similar effects are known as Karman vortex street. If a flow meets a cylin-
der or other obstacle, in our case the particle accumulation, then the flow will
interact with the obstacle surface resulting in turbulent vortices once it has
passed the obstacle (Davidson, 2004).

In case of the St = 1.0 particles where the local particle concentration, and
therefore the back-reaction, are strongest, the vortex structure is disrupted,
and begins to fall apart. Because of this, the particle trapping mechanisms
lose strength: pressure gradients across the vortex become shallower, Coriolis
force in the vortex grows weaker, and the particles begin to escape the vortex.
Because the local particles concentrations decreases the large vorticity gradi-
ents flatten out again. This eventually leads to a re-establishment of the vortex
and the process repeats itself (see series of snapshots in figure [4.6).

For large particles there is no longterm concentration within the vortex. The
initial large accumulation (see figure4.7) can be traced back to the initial parti-
cle velocity, which is zero. When the gas profile is imprinted onto the particles,
there is a large velocity difference between particles and gas. Therefore drag-
force on the particles is larger than one would normally expect. After several
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Table 4.2. Fraction of dust mass with specific e

St fraction of M fraction of M
with ¢ > 0.01(%) withe > 1.0(%)

0.01 70.40 0.00
0.05 95.24 2.13
1.0 98.73 83.74
20.0 79.82 8.09

orbits the particle velocity adopts an equilibrium velocity and the drag-force
has the expected influence. We tested this assumption with a test run where
we initially updated the particle velocity but not the location. After several or-
bits, when the particle velocity had reached equilibrium, we started to update
the particle location. In this run we did not see the initial high accumulation
(see black dashed line in figure [4.7).

Figure 4.7 shows the maximum dust-to-gas ratio of our different simula-
tions with different St. We clearly see that St = 1.0 particles (green line) have
the highest concentration. As the particle size decreases, the concentration also
decreases. It is important to note that St = 20.0 particles do not accumulate
inside the vortex. Figure 4.8 shows the maximum dust-to-gas ratio obtained
during the simulations. The highest dust-to gas ratio is reached for St = 1.0
particles. Larger and lower St reach lower dust-to-gas ratios. As explained, the
initial high particle concentration if the St = 20.0 particles can be attributed to
the initial condition. Therefore, we use the run with the altered initial condi-
tion, for this analysis.

The values we discussed so far were maximum values. They do not tell us
if all of the dust is concentrated that highly or if only a small fraction of the
dust is concentrated and the remaining amount of dust is spread equally over
the simulation domain. Clustering has to be considered to figure out what
fraction of the dust takes part in the high overdensities. In figure 4.9|we show
what fraction of the entire dust content M, has a specific dust-to-gas ratio. The
dashed lines indicate the initial dust-to-gas ratio ¢y = 0.01 and ¢ = 1.0. For
e.g. St = 1.0 particles 83.74% have accumulated in regions with ¢ > 1.0 where
as for St = 0.05 particles only 2.13% of the entire dust mass is concentrated in
areas with e > 1.0. The remaining dust is spread our thinner. All values can
be see in table A dust-to-gas ratio of ¢ = 1.0 is significant, because that
is when dust back-reaction on the gas becomes important. This means that
for St = 1.0 back-reaction is a requirement if we want to model particle be-
havior realistically. However, for the other St it seems that back-reaction, and
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Figure 4.9 Fraction of the entire dust mass in a specific dust-to-gas ratio or
higher. ¢ > 1.0 are reached for all particle sizes. For St = 1.0 particles more
than 80% of all particles have concentrated in areas with larger e than 1.0

with that the streaming instability, contributes little to the overall dynamical
behavior of particles. Yet, we already saw that there is a significant differ-
ence between the simulations with and without particle feedback for St = 0.05
particles (see figures and [.7). Without feedback all particles were accu-
mulated in the vortex whereas the maximum dust-to-gas ratio with feedback
was around 2 — 8, two orders of magnitude lower. Also for St = 0.01 particles
that only reach emax &~ 1.0 we already saw that there an effect onto the gas (see

figures 4.4 and [4.5).

We conclude that as soon as only a fraction of particles approaches ¢ ~ 1.0,
even if it is only a few %, back-reaction from the particles onto the gas needs
to be included to accurately model their behavior.

Mass Collected in the Vortices

The goal of collecting particles in a vortex was to achieve particle accumula-
tions that will eventually lead to gravitational collapse. To give an estimate
of how heavy the planetesimals could be if gravitational collapse would be
allowed, we calculate the mass of solid material trapped within the vortex.
Therefore, we first have to calculate the mass of each of the super-particles to
maintain ¢y = 0.01. We assume two scenarios. One where the vortex is located
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Figure 4.10 Vorticity of the gas flow. Each white dot represents one individual
superparticle of St = 0.01. They accumulate within the vortex marked by
the white ellipse.Depending on disk model there is between 8.56 x 10%°g and
3.11 x 10%g of solid material caught within the vortex.
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Table 4.3. Mass in computational domain

case X (ro) pg(r0) r o (r) Mg M My
(gem™2) (gem™?) (AU)  (gem?) (8) (8) (8)
1 150 7.67 x 10712 5.2 150 584 x 102 584 x 107  1.46 x 102
2 150 1.76 x 10710 1.0 661 9.51 x 102 951 x 10%  2.38 x 10%
3 800 409 x 10711 5.2 800 311x10%  3.11x10% 7.78 x 102
4 800 9.39 x 1010 1.0 3528 508 x 102  5.08 x 107  1.27 x 102

at 1 AU and one where it is located at 5.2 AU. To derive the mass of each indi-
vidual super-particle, we first have do estimate the total gas mass within the
simulation domain. According to Weidenschilling| (1977b) the disks surface-
density profile follows the law:

~ps
Zg (r) = Zo (1> , (4.11)

o

where X is the surface density at a certain radius g, fixed to 5.2AU in our
calculations, and By is the slope with which ¢ declines. Through analyzing
observed disk profiles |Andrews et al. (2009) found By = 0.9. If we consider
Yo = 150gcm™2 at rg = 5.2 AU which agrees with the Minimum Mass So-
lar Nebula (Weidenschilling, 1977b), we get a mass of each superparticle of
M, = 7.78 x 10% g at 5.2 AU, and a mass of Mp = 2.38 x 10*! g at 1 AU. Since
the MMSN only gives a lower mass threshold to form our Solar System, it is
generally considered not massive enough we also consider a heavy disk with
Yo = 800gcm™? at rg. See Table for values of the entire amount of gas Mg
and solids M;s in the computational domain for the different cases. We also
calculate the corresponding gas density according to

_ Zg
Pe = JanH

(4.12)

To calculate the actual mass of solid material within a vortex, we visually
define an ellipse around the vortex and then count the super-particles within
the vortex, as is shown in Figure Although the vortex itself is not a well
defined ellipse anymore but rather has irregular shape, an ellipse still is a good
approximation since most of the particles are concentrated in the central re-
gion.

Depending on disk-model and St, the mass within the vortex M, varies
from 0.09 Mg 4, for St = 0.01 at 1 AU for the MMSN model up to 8.16 Mgy
for St = 1.0 particles at 5.2 AU and £y = 800gcm~2. All masses for the
different cases can be seen in table[4.4. The calculation was done after 300 local
orbits.
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Table 4.4. Mass inside of the vortex

case M, (St=0.01) M, (S5t=0.05) M, (St=1)
(8) (8) (8)

1 5.25 x 10% 5.76 x 10% 5.82 x 10%”

2 8.56 x 1026 9.38 x 10%° 9.49 x 10%

3 2.80 x 1028 3.07 x 10?8 3.11 x 10?8

4 457 x 10% 5.01 x 10% 5.07 x 10%”

The amount of particles that are caught within the vortex for St = 1.0 fluc-
tuates rapidly. When the concentration is very high it disturbs the vortex, caus-
ing he concentration to drop. The particle accumulation for St = 0.05 and
St = 0.01 is relatively constant over time.

We did not conduct this analysis for St = 20 particles because they were
not accumulating in the vortex.

Possible Gravitational Collapse of Particles

While all simulations accumulate a substantial amount of particles, this does
not mean that the entire amount of particles would collapse into a planetesimal
if self-gravity was turned on. Gravitational particle collapse, like any other
self gravitating process, requires a critical density. The trapped small particles
are spread out over the entire vortex and therefore might not pass this critical
density.

A good estimate for whether a clump of matter is held together by its own
gravity against tides and thus can undergo collapse, is to compare its density
with the Roche density pr. It can be derived by equating the the gravitational
force on the surface of a clump

GM.

ag,c = R% 7 (413)

where M. and R, are the clumps mass and radius respectively, with the tidal
acceleration a; on the clumps surface. The tidal acceleration is the difference
between the gravitational pull of the central star at the clumps surface and its
center of mass. To first order we get

a; ~ :FZRC%, (4.14)

where M, is the mass of the central object and r is the distance between star
and particle clump. If we now equate these two accelerations, exchange the
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Table 4.5. Dust density compared to Roche density

run €max PR/Pg pR/Pg pR/Pg pR/Pg
casel (5.2 AU) case2 (1 AU) case3 (5.2 AU) case4 (1 AU)
F1 1.01 262 1607 49 301
F2 3.86 262 1607 49 301
F3 77.33 262 1607 49 301
DG1 1.15 262 1607 49 301
DG2 0.70 262 1607 49 301
DG3 11.53 262 1607 49 301
DG4 4.17 262 1607 49 301

masses by their respective densities and solve for the clump density we get

M
Pcrit > PR = 24_71;3' (4.15)
3

If the density of the the particle clump is higher than this critical density it
will be held together by its own gravity. If this is not the case then the particle
clump will be torn apart by tidal forces.

If we take the mass of the Sun for the mass of the central object then we
get or(1AU) = 2.83 x 1077 gcm 2 and pg(5.2 AU) = 2.01 x 1077 gecm 3. The
highest particle densities we reached for St = 1.0 particles were pq =~ 80pg. To
surpass the critical density, pq has to be larger than pr, or emax > pr/ Qg (see
table [.5). Considering the density profiles from the last section, this means
in only one case, pq reaches pr (indicated in bold in table §.5). All other cases
are 1 to 2 orders of magnitude below pr. Yet, these are 2D simulations. If
all three dimensions are considered, then sedimentation of dust grains will

further enhance particle densities, then triggering gravitational collapse.

4.4.3 Different Dust-to-Gas ratio

In the previous sections we always considered only one species of dust parti-
cles, e.g. the entire amount of solid material consiting of St = 1 particles. In
reality there is a mix of different dust species of various sizes. To explore this,
we also considered lower dust-to-gas ratios like 1 : 1000 and 1 : 10000. The
number of super-particles we put into the domain stays the same, while each
super-particle represents less mass than in cases with higher dust-to-gas ratio.

Figure shows the particle accumulation and resulting dust-to-gas ra-
tios for St = 0.05 (simulations F2, DG1, DG2) and St = 1 (simulations F3,
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Figure 4.11 Particle concentration (solid lines) and maximum dust-to-gas ratios
for St = 0.05 (top) and St = 1.0 (bottom) particles. The color represent the
different initial dust-to-gas ratios: 1 : 100 (black), 1 : 1000 (red), and 1 : 10000
(green). More individual super-particles are captured in the vortices for a low
initial ¢, because their back-reaction is less efficient. Since each of these super-
particles is less massive than with higher ¢, the overall dust-to-gas ratio for low
initial € is lower than that of larger initial e.

DG3, DG4). Here the dashed lines show the obtained particle concentration
¢ = Xq/2q40 and the solid line the obtained dust-to-gas ratios. The colors rep-
resent the original dust-to-gas ratios: ¢y = 1 : 100, (black); e = 1 : 1000 (red);
and gp = 1 : 10000 (green).

In cases with low ratios more super-particles concentrate in one location.
Since each of these super-particles has less mass than in simulations with
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Figure 4.12 Sketch for determining whether two particles collide with one an-
other or not. Particles 1 and 2 are represented by the blue and red dot re-
spectively. Their velocities v; and v are indicated through the blue and red
arrows. Their relative position and velocity are given through r; — r; in pink
and v; — vy in purple. The light blue line represents a plane perpendicular
to the relative velocity vector. This plane is the impact plane. The green line
shows the shortest distance between particle 1 and the impact plane. dx is the
maximum distance two particles are allowed to have to be considered for a
collision. The actual impact parameter a is always smaller than dx Particles are
considered to collide if their distance to each other is shorter than the impact
parameter and if they approach each other.

higher dust-to-gas ratio, the back-reaction is less effective. The gas is not af-
fected as much by the dust particles as in previous simulations. Thus the vor-
tices, although still disrupted slightly by the back-reaction, are no longer torn
apart. The particles are trapped more tightly and cannot leave the vortex.

Yet when we correct for the initial dust-to-gas ratio (solid lines in Figure
4.11)) it becomes apparent that there is actually less mass captured in the vortex.

4.4.4 Collisional Velocities

In our simulations collisions are not modeled directly. In fact, because we have
point particles whose size is set by our numerical accuracy, “real” collisions,
where the trajectories of two particles cross each other at the same time, occur
rarely, if at all. So when we talk about collisional velocities we rather mean
relative velocities adapted to the gas friction. In the following we will discuss
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Figure 4.13 Number of collision per velocity bin (number of bins 100) normal-
ized to total number of collisions. In total 10° were considered. The maximum
impact parameter is dx = 1 gridcell.

how we determine a collision between two particles and how we calculate
their collisional velocities.

Figure shows a sketch of our algorithm. First we determine whether
particle 1 and particle 2 are close enough to hit each other. This is done via com-
paring their distance | r{ — 1, | to the maximum impact parameter dx which
we set to the length of one radial gridcell. If this is the case we calculate the
relative velocity of the two particles. The next step is to determine a plane of
impact where v; — v, = Avj; is a normal vector and one of the particles (par-
ticle 2 in our sketch) is located on the plane. This is indicated by the light blue
line in the figure. We now go into the rest frame of one of the particles (particle
2 our sketch) and say that the other particle (particle 1) is moving with the rel-
ative velocity v; — v, towards the impact plane. The normal distance r,, to the
impact plane is the length a particle has to travel to collision and is determined
via

o= 1= 0) (n—n) (4.16)

| v1 — 2 |

As a last step we check if the two particles approach each other which is the
case if r, is positive. This last step is different from most studies of particle
collisions like Carballido et al. (2010) for example. They consider all parti-
cle pairs within a certain impact parameter independent on whether they ap-
proach each other or not.
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log(St,)

Figure 4.14 Parameter space of collisional velocities of particles with different
St according to |(Ormel and Cuzzi| (2007). The velocities derive are based on
Kolmogorov turbulence which might not apply to baroclinic turbulence.

Another factor that is not often considered when talking about collisional
velocities is that particles will slow down due to their friction with the gas. So
instead of merely taking the relative velocity of the two particles as collision
velocity, we correct for the velocity that a particle with velocity | Avyp |=| v1 —
vy | looses while traveling the distance r,, due to gas friction. This correction is

n

cory = ———, 4.17
| 012 | T (417
and the final collisional velocity is
’
Vcol =| Av1z | (1 - m) : (4.18)
S

We calculate the collisional velocities for 100 000 particles which is 25% of
all particles and gives a representative sample. The pairs are sorted into 100
logarithmically spaced velocity bins, so that resololution is finer at low veloc-
ities. A histogram is shown in figure The velocities show the expected
trend. St = 1.0 particles have the highest collisional velocities whereas smaller
particles peak at lower velocities.

Ormel and Cuzzi (2007) derived analytical collision velocities based on tur-
bulence with a Kolmogorv spectrum, and where the strength of the turbulence
is determined via the Shakura-Sunyaev a. The assumed relation between «
and uyms 1S Urms = v/acs. The parameter space of collisional velocities is shown
in figure for collisions of particles of various sizes. Since our simulation
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Figure 4.15 The solid line shows the analytically derived collision velocities
by Ormel and Cuzzi (2007). The turbulence in this approach follows a Kol-
mogorov spectrum and the strength is based on a = 10~2. The dashed red line
assumes the relation u;ms = 3+/acs, which we derived in chapter 3, instead of
Urms = V/acs as in Ormel and Cuzzi (2007). The red crosses mark the rms col-
lision velocities we calculate out of our simulations. Although they follow the
general trend, they are at least one order of magnitude below the analytically
derived velocities.

only consider one particle species at a time we can only compare velocities for
collisions of equal size.

Figure now only shows collisional velocities for equal sized particles.
The solid line shows the results by Ormel and Cuzzi (2007). The red dashed
line is a modified version of their model. Instead of the relation uyms = /&cs
we use Urms = 3v/acs which we deducted in chapter |3 The red crosses show
the rms velocities we get from our simulations. The are more than one order
of magnitude below the analytical prediction. The reason for this discrepancy
might be that the Ormel and Cuzzi (2007) model is based on Kolmogorov tur-
bulence, which might not apply for turbulent flow.
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4.5 Summary and Conclusion

In this chapter we have analyzed how particles and vortices created via the
baroclinic instability affect each other. In particular, we investigated whether
particles of different size can be trapped inside and thus concentrated in vor-
tices and whether the vortices remain a long lived phenomenon under the in-
fluence of particles.

We have conducted two sets of simulations for a set of Stokes-numbers
(St =20.0,St = 1.0, St = 0.05 and St = 0.01). One where there is only gas drag
on the particles and one where particles also exert drag on gas. This becomes
important if the initial dust-to-gas ratio is enhanced from 0.01 to about 1.0.

We see that without back-reaction, St = 0.05, and St = 1.0 particles are
swept up entirely by the vortices and concentrate all in one single gridcell,
whereas smaller and larger particles can escape of the vortex again.

If we include particle feedback, then we get a different picture, except for
St = 20.0 particles. Those large particles are hardly affected by the vortex
structure and no mentionable particle concentration is reached. Therefore the
gas and with that the vortex is not affected by the large particles.

For all the other particle sizes we see a high concentration of particles in-
side the vortex. St = 1.0 particles concentrate very locally in the center of the
vortex, which leads to steep vorticity gradients that disrupt the vortex. This
weakens the localizing effect the vortices have on the particles. With decreas-
ing particle density the vortex can be re-established and the cycle repeats. The
dust-to-gas ratio can be locally increased up to ¢ ~ 80. More than 80% of the
dust is concentrated to more than ¢ = 1.0.

Smaller particles are not concentrated locally that strongly inside of the
vortex. Instead they are spread out over the entire vortex and take part in
the streaming instability (Youdin and Goodman, 2005; [Youdin and Johansen,
2007). This instability only shows up when particle feedback is important, i.e.
when ¢ > 1.0. However we see a significant change especially for St = 0.05
particles even when only 2.13% of the entire mass has reached ¢ > 1.0. The
maximum dust-to-gas ratio reached are ¢ ~ 3.0 for St = 0.05 and ¢ ~ 1.0
St = 0.01.

Although the particle concentrations achieved are very different for the dif-
ferent particle sizes, the overall mass of particles accumulated in a vortex is
roughly the same. Around 90% of the entire dust content is swept up by the
vortex.

Since not all particles will be of the same size as assumed in the first simu-
lations we also conducted simulations with lower initial dust-to-gas ratios. We
see that although the initial dust-to-gas ratio ¢ is a factor 10 or 100 lower, the
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locally reached dust-to-gas ratio is still of the same order of magnitude. The
particle concentration is much stronger.

The collisional velocities of the particles show the expected trend, with
highest velocities for St = 1.0 particles and lower velocities for larger and
smaller particles. Compared to analytical models based on Kolmogorov turbu-
lence, the collisional velocities we measure are one order of magnitude lower.

We conclude that baroclinic vortices are a feasible mechanism for accumu-
lating particles. The concentrations achieved are, depending on particle size, a
tactor 100 to 10000 higher than the initial value. Even if there is only very lit-
tle dust present these high overdensities can be reached. Streaming instability
additionally enhances the dust concentration. Yet, depending on disk model,
the achieved dust densities remain 1 to 2 orders of magnitude lower than the
Roche density. Still, to make reliable predictions on whether these effects really
occur in protoplanetary accretion disks 3 dimensional studies have to be con-
ducted. Then, sedimentation can produce even larger particle densities, which
may finally be large enough to trigger gravitational collapse.
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Chapter 5

3D Simulations

5.1 Introduction

In chapters 3] and ] we only conducted 2 dimensional simulations. To bet-
ter cover the physics in a protoplanetary accretion disk we now move to 3
dimensions. 3D unstratified studies for the baroclinic instability without par-
ticles have already been conducted by [Lyra and Klahr (2011) and |[Lesur and
Papaloizou| (2010). Naturally, we should extend these studies in form of 3 di-
mensional vertically stratified simulations. However, the conversion from an
unstratified to stratified model require some changes in the PENCIL CODE, like
including vertical pressure stratification and vertical shear. Therefore we re-
strict ourselves to the unstratified model for the gas.

We will only briefly address the points of the stability of vortices, strength
of angular momentum transport and amplification rate of the vortices. Our
results will then be compared to the models of Lesur and Papaloizou (2010)
and Lyra and Klahr (2011).

The main focus of this chapter will be on particle concentration, for which
we do include vertical stratification. The fact that we use stratification for
the particles but not for the gas can be justified posteriori because the ob-
served particle scale-height is much smaller than the theoretical gas scale-
height (Hq < Hy), so the vertical gas gravity has hardly any effect on the dust
particles. As we will see, stratification dramatically changes the result of our 2
dimensional models, since particles undergo vertical motion and are subject to
vertical stirring. Another important factor is how the particles affect the vor-
tex structure, which we already saw in our 2D simulations, most strongly for
St = 1.0. Here, three different outcomes are possible:

1. The vortex column is stable and particles accumulate inside the column.

81
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2. The entire vortex column is destroyed by the particles. Particles settle to
the mid-plane with no mentionable difference to non-turbulent runs. No
baroclinic vortex can be established anymore, because it will be disrupted
by the particles.

3. The particles destroy the vortex column in a small area around the mid-
plane, but do not affect the the upper and lower parts of the vortex. The
question is then how the remaining vortex will affect the particles in the
mid-plane, and if the remaining vortex is strong enough to re-establish
itself in the mid-plane.

Of course the results strongly depend on the particle size.

First we will introduce the new physics that are needed for 3 dimensional
estimates. The numerical setup will be discussed afterwards. In section 5.4 we
will analyze simulations without particles. We add particles in section[5.5, and
discuss our results.

5.2 Physical Background

Besides the possibility of vertical gas motion, there are no new physical effects
that occur. We already know from |Lesur and Papaloizou (2010) and [Lyra and
Klahr| (2011)) that the elliptical instability occurs in 3 dimensional vortices. We
will discuss this in the results section of this chapter.

For the particles however, there are additional accelerations acting on the
particles in vertical direction: vertical gravity ¢, = —0?z and vertical drag-
acceleration a5, = 7, ! (u; — v;). Combined these cause the particles to settle
to the mid-plane. Since small particles couple more tightly to the gas than large
particles, they will take longer to settle. Whereas larger particles are damped
less by the gas due to the smaller coupling and therefore settle much faster.

We birefly discuss the reduced equation of motion for particles, where we
have assumed that u, ~ 0.0 for different particle size regimes. For small
particles we can assume that particles settle with a constant velocity so that
0:v, =~ 0. This leads to

0z = —1, 0%z (5.1)

and )
z = zge Y, (5.2)

Here particles will approach the mid-plane exponentially but never reach
them. For particles with St >> 1.0 the term 7, v, is negligible and the equation
of motion reduces to

00, = —(%z (5.3)
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where
z = cos (O) (5.4)

is one solution. Very heavy particles will oscillate around the mid-plane, never
settling permanently. In a real protoplanetary disk there are additional effects
acting on the particles that will change this pure mathematical picture.

The sedimentation time-scale ts for small particles can be deduced from
equation (5.2). After a time t; = (QSt‘)f1 a particle will have sedimented by
a factor e of its original height. For our two particles sizes this corresponds to
ts = 0.16 orbital periods for St = 1.0 particles and t; = 3.18 orbital periods for
St = 0.05 particles.

It is possible for particles to grow through coagulation while they settle.
Since this is not relevant for our studies, because the growth times are too long,
and also was not included in our models we just want to refer to the literature,
e.g. Dullemond and Dominik| (2005).

The vertical settling is opposed by turbulent diffusive motions, which
spreads particles vertically. A steady state advective-diffusion equation can
be derived (Dubrulle et al,, [1995; |[Fromang and Papaloizou, [2006), under the
assumption of a vertically constant

%d _p9 |, 9 (Pa)| L2 (2
T [pgaz (pg)} oz (Q TSPdZ) ’ (55)

where D is the diffusion constant. Integrating this, we arrive at a Gaussian
particle distribution with particle scale-height

| D
Hy = . 5.6

Furthermore, if we assume that D ~ v and that this is the same viscosity as in
the a-prescription we get

M
St’

which is equation is only valid when o < St.

Hy=H (5.7)

However the assumption that D ~ v is not necessarily justified. There is
no a priori reason why the vertical diffusive particle transport should happen
with the same strength as the radial turbulent angular momentum transport.
Yet, since both are a form of diffusive transport, we can take the same approach
for the diffusion coefficient as for the a-prescription (Johansen et al., 2006b)

D=2 (5.8)
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Table 5.1. Simulation setup

run St pao/pgo feed-back B

3DG - - - 2.0
3DFO5nt  0.056 1:100 yes 0.0
3DNF05 0.05 1:100 no 2.0
3DFO05 0.05 1:100 yes 2.0

3DFO5E-3 0.05 1:1000 yes 2.0
3DFO5E-4 0.05 1:10000 yes 2.0
3DNF1 1.0 1:100 no 2.0
3DF1 1.0 1:100 yes 2.0
3DF1E-3 1.0 1:1000 yes 2.0
3DF1E-4 1.0 1:10000 yes 2.0

where ¢ is an equivalent to the a parameter. The ratio of D and v is expressed
via the dimensionless vertical Schmidt number
Voo

SCZ = B = 5_ (5.9)

A proper deviation for the particle scale height then yields

o

Hy;=H .
d St Sc,

(5.10)

Equation (5.7) is the special case for Sc, = 1.0, i.e. so if radial turbulent angular
momentum transport and vertical particle diffusion are of the same strength.

5.3 Numerical Setup

5.3.1 Gas Setup

Since we do not include vertical gravity for the gas simulations, there is lit-
tle change in the numerical setup. The z-component of the velocity is now
calculated and the initial perturbation in density is extended to include the
excitation of vertical modes. It now looks like

2 kx ky kz X y z
p/ :poCe’(x/z‘T) X Z Z Z sin {Zﬂ{iL— +]L——|—kL— :(Pijk}}-
i=—ky j=0k=—k, x y z
(5.11)
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However, we choose k, = 0 which means that no vertical modes are excited,
but radial and azimuthal modes are excited in all layers of the box. Addition-
ally we add noise to the density.

The physical size of our box is the same in radial (&2 H) and azimuthal
[0 H — 16 H] direction as in the the 2D runs in chapters [3|and d] We extend to
+1 H in the vertical direction. This is a compromise between adequately large
physical domain to see the elliptical instability, but not high enough resolution
to resolve all modes that contribute to the streaming instability. The vertical
resolution is the same as in radial direction. We restrict ourselves to an entropy
gradient of § = 2.0, since we saw in chapter 3|that the main difference between
B = 2.0 and lower entropy gradients was the evolution time. The size of the
vortices and strength of relevant parameters such as a-stresses only depends
weakly on B. For B = 2.0 a resolution of 256 x 256 x 128 is still feasible. This
gives us the advantage of fast evolution time combined with lower resolution.
Of course as more time becomes available, comparison studies with higher
resolution and lower 8 should be conducted.

5.3.2 Particle Setup

For the particles, we add the vertical equation of motion. We also include linear
vertical gravity g, = —Q%z.

As in the 2D simulations we first evolve the gas alone for 200 local orbits
before we put in particles. In these simulations, the particles are randomly
distributed in the x — y plane as before, but follow a Gaussian profile in the
vertical direction

pd(z) = Cde_O'S(é> , (5.12)

where pg is the dust density, C; a normalization constant and oy gives the
height of the initial distribution. We set o4 = 0.01, which gives a well settled
profile. This choice speeds up the initial relaxation.

Like in the 2D flat simulations we want to have about 4-5 super-particles
per gridcell initially to avoid numerical effects. Most of the particles will set-
tle into the mid-plane anyways, so we do not consider all vertical gridcells.
Therefore we only need to take into account +10 gridcells around the mid-
plane, leading to a particle count of 7 000 000.

For our setup, we will see that « = 1073. If we assume for now that
the Schmidt number for our system is 1.0 then the particle scale height is
Hg4 (St =0.05) = 0.01 and Hq (St = 1.0) = 0.003, thus it is only resolved by
6 or 2 gridcells respectively. We will test this assumption later in this chapter.
While a higher resolution would be better, it is beyond our curruent computa-
tional resources.
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Figure 5.1 The maximum number of particles per processor at a certain time
with Particle Block Domain Decomposition as described in Johansen et al. (2011)
(PBDD, black solid line) and without PBDD (red solid line). The black dashed
line indicates perfect load balance. There is still a deviation from perfect load
balance even with the PBDD, which grows over time; but this algorithm is less
time consuming than without the PBDD. The speed-up is roughly a factor of
6.

Particle feedback onto the gas is included for all simulations except for
comparison simulations. The entropy gradient is set to f = 2.0. We restrict
ourself to two particle sizes, St = 1.0 for intermediately coupled particles and
St = 0.05 for strongly coupled particles. We set the initial dust-to-gas ratio to
go = 0.01. Additionally, we perform runs with ¢y = 0.001 and ¢y = 0.0001. We
also perform one simulation with B = 0.0 for St = 0.05. This run serves as a
comparison run without turbulence. All setups are listed in table

The standard parallel computing scheme provides bad load balancing for
this kind of problem. Since most of the particles settle into the mid-plane, the
processors responsible for the mid-plane have to do all the particle calcula-
tions, while processors responsible for the upper and lower parts of the disk
will be idle as long as the particle calculation is conducted. For this reason |Jo-
hansen et al. (2011) have developed a new scheme called Particle Block Domain
Decomposition and implemented it into the PENCIL CODE. Here the processor
structure is sub-devided into smaller boxes called bricks. These bricks contain
particles. At every time-step the bricks are redistributed to other processors
which now take over the particle calculation. All necessary informations, e.g.
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gas velocities, are communicated to the receiving processor at every time-step.
For a more detailed discussion of the algorithm see Johansen et al.|(2011). As
long as there is no extreme clumping, so that there are many particles in one
brick, this will lead to a significant speed up compared to simulations without
block decomposition (see figure 5.T).

5.4 Results: Gas Simulations

The evolution of the vortex in a 3D unstratified box is very similar to the 2
dimensional case. First, a number of small vortices emerge. These vortices are
then amplified by the mechanism described in section [3.2|and also merge. See
tigure 5.2| for snapshots of the vorticity of our simulation.

At some point the vertical gas motion sets in and creates turbulent features
in the vorticity structure (compare top and bottom panel of figure[5.3). After
about 100 local orbits there is a steep increase in vertical gas velocity, yet it re-
mains 3 — 2 orders of magnitude lower than the radial and azimuthal velocity
components (see figure . This is the same feature that Lyra and Klahr|(2011)
and also Lesur and Papaloizou| (2009, 2010) identify as the elliptical instabil-
ity. This parasitic instability affects 3D elliptical flows and tends to regulate
them through a vortex stretching term. In principle 3D unstratified vortices
are made up of many 2D vortices stacked on top of each other. If small vertical
velocity perturbations appear then they can be amplified by the elliptical in-
stability. |Lesur and Papaloizou|(2009) showed that the elliptical instability can
lead to the disruption of 3 dimensional elliptical flows, but when they turned
on baroclinic driving they saw that while the vortex does get slightly smaller,
at some point a balance between the disruptive elliptical instability and driv-
ing baroclinc effects sets in. For a comprehensive review of this instability see
Kerswell| (2002). We come to the same conclusion as|Lyra and Klahr|(2011) and
Lesur and Papaloizou| (2010): the elliptical instability is present in the vortex
core. However, due to the continuous vorticity production by the baroclinic
vortex amplification the vortex is not destroyed.

The angular momentum transport we find in 3D is slightly lower than the
values for B = 2.0 in 2 dimensional simulations but still in the same range
(figure[5.5). Again this agrees with [Lyra and Klahr| (2011).

We want to stress here that this still can not be taken as face value for the
angular momentum transport in a physical accretion disk. For that our studies
would need to be stratified, and have higher resolution and physical parame-
ters for the Brunt-Viisald frequency and the cooling processes.
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Figure 5.2 Vertical vorticity of unstratified gas in a 3 dimensional box at dif-
ferent times. The many initial small vortices merge over time and become

amplified.
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Figure 5.3 Shown are the vertical component of the vorticity (w,) in the mid-
plane (left panel) and a vertical cut through the disk at the azimuthal location
of maximum negative vorticity (indicated by the dashed line). Also shown is
the vertical velocity component. There still is a smooth vortical structure after
100 local orbits (top panel). After 275 local orbits (bottom panel) there now is
turbulent motion inside the vortex, which is also visible in the vertical velocity.
This is an indication for the elliptical instability.
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Figure 5.4 Gas velocity components averaged over the entire box. As the ellip-
tical instability sets in, the vertical velocity component (green line) increases
steeply, yet stays well below the azimuthal and radial components.
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Figure 5.5 a-values averaged over the entire box. The strength of the angu-
lar momentum transport in 3D unstratified simulations agrees with our 2D
results.
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Table 5.2. Diffusion coefficient and Schmidt number
run St Hy D ) o Sc,
3DFO5nt 0.05 1.20x 1073 721x10°% 721x10°°% 1.00x10"% 13.87
3DNF05 0.05 257 x10°°% 331 x107 331 x10° 1.12x103 33.83
3DF05 0.05 223x10°3 249x107 249x10° 6.65x10~% 267
3DNF1 1.0 992x10% 984 x107 984x10° 936x10% 951
3DF1 1.0 849x10°% 720x107 720x10°° 264 x10°% 3.72

5.5 Results: Particles Simulations

5.5.1 Particle Scale Height and Diffusion Coefficient

In our first estimate of Hy we assumed Sc; = 1.0, but in the last section we
saw that the gas vertical velocity, which affects the particle vertical diffusion,
is much smaller than its radial and azimuthal component (see figure[5.4). This
indicates that the assumption Sc, = 1.0 is clearly wrong. To test this we fit
a Gaussian profile to our vertical particle density distribution. This is shown
in figure 5.6/ for St = 0.05 and St = 1.0 particles with feedback on the gas
(simulations 3DF05 and 3DF1). The solid lines show the radial and azimuthal
average of pq for different orbital times. The dashed line shows the Gaussian
tit and Hy, the fitted particle scale height.

We fit the scale-height for all individual time steps after 10 orbital periods
and take the average. For St = 1.0 enough sedimentation times have passed.
However, for St = 0.05 particles t; is 3.2 orbital periods and only about 3 ¢;
have passed. Which means that sedimentation is not finished when we start
our average. Another problem is that the gaussian only fits the peak values of
our distribution but not the flanks. We tried different fitting routines such as
the Moffat-fit (Moftat, |1969) which is often used to fit point-spread-functions
but it did not improve our results.

Therefore the derived Sc, have to be viewed with care. The derived scale-
heights also for other simulations can be seen in table Using equation
we can now derive the diffusion coefficient and with measured a-values’| we
can also calculate the Schmidt numbers of the individual systems.

9Since for simulation 3DF05nt no turbulent angular momentum transport happens we set
& = 10~* which according to [Johansen et al. (2006b) corresponds to the a—values due to the
streaming instability.
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Figure 5.6 The solid lines show the initial azimuthally averaged vertical den-
sity profile and after 1, 3, 5 and 10 local orbits. The dotted line shows a Gaus-
sian fit averaged over many orbits. Due to the low vertical resolution, only the
central part of our density distribution is fitted well by a Gaussian profile. We
lack a sufficient amount of data points on the flanks of the profile. Therefore
our derived dust scale-height and with that diffusion constant and Schmidt
numbers have to be viewed with care.
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We see a range of Sc, between 3 and more than 30. This clearly shows that
the assumption D ~ v is not applicable for baroclinic turbulence. For St = 1.0
particles, which have a smaller scale height than smaller particles, the Schmidt
number is smaller. Johansen et al. (2006b) looked at turbulent diffusion in
protoplanetary disks with vertical magnetic fields imposed. The Sc, they find
also differ from 1.0. Their average values are around 18.0, which is of the same
order of magnitude as our values. With the data they obtained they were able
to fit an empirical relation between « and Sc,. The limited amount of data we
have does not allow for a similar study.

5.5.2 Particle Accumulation

We first discuss the run without baroclinic driving. Here we did not put the
particles into a developed gas simulation, but rather started with the initial
perturbation as described in section As expected the particles settle to
the mid-plane, instantaneously triggering the streaming instability. Although
we assumed an overall initial dust-to-gas ratio of g = 0.01, the initial dust-
to-gas ratio in the mid-plane is already ¢ = 1.0 and increases even further as
the sedimentation progresses. This early high concentration has two reasons.
We initially assume ¢y = 0.01 for the entire box so that the amount of dust in
the simulations is 1/100 of the entire gas mass. Because we use unstratified
gas simulations we overestimate the amount of dust in the box. The amount
of dust in a box is derived out of the gas density pg which in a stratified case
with a Gaussian gas density profile looks like

Zg
Pg = :
vV2mtH

Yet, for our unstratified approach the gas density has the form

(5.13)

)3
pg = Eg (5.14)

Therefore the dust content is overestimated by a factor /27t which rather cor-
responds to an an initial g = 0.025. As a result the dust-to-gas ratio in the
mid-plane is already as high as ¢ ~ 1.0. This factor /27 has to be taken into
account when we compare our results to results of e.g|Johansen et al.|(2007) or
Johansen et al.|(2009). Our results for ¢y = 0.01 correspond to their results with
&0 = 0.02.

The maximum dust-to-gas ratio of the simulation with St = 0.05 particles
and without baroclinic driving can be seen in (red line). The other two
lines in the plot show the maximum dust-to-gas ratios for the simulation with
B = 2.0 and St = 0.05 (green line) and St = 1.0 particles (black line). We
can already see that the maximum concentration for St = 0.05 is only a factor
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of two higher than in the case without baroclinic driving. Although the dust-
to-gas ratios are quite high, we expected much higher values when baroclinic
teedback was included, compared to simulations without baroclinic driving.

Looking closer at the development of the dust density in these simulations,
we see that, as expected, the particles settle to the mid-plane. During the first
couple of orbits we see that the particles follow the vortex motion if any. There
is a slight overdensity compared to the initial particle density in the vortex.
But after only 3 orbits the particles start to perturb the vortices in the mid-
plane via the streaming instability. Like in the 2D simulations, high particle
densities create local perturbations of the velocity field visible as steep vortic-
ity gradients. In the 2D simulations, the vorticity minima and maxima were
between —1.0 and 1.0. Rarely and only for short times did lower/higher vor-
ticity values occurr (see e.g. figure where the high particle concentrations
cause steep vorticity gradient in the center of the vortex). Here, with the vortex
column at the mid-plane being completely disrupted, it is not as useful to talk
about vorticity. See figures and [5.8/for w; at the top of the box (left panel),
in the mid-plane (middle panel) and the dust-to-gas ratio in the mid-plane for
St = 0.05 particles.

The streaming instability is triggered in all our runs . Yet, we cannot be sure
that we always resolve the fastest growing modes. The growth rates are a func-
tion of particle size and local dust-to-gas ratio. We can say that we reach an ¢
where the growth rate of the streaming instability is larger than the dynamical
timescale, yet deeper investigations such as those performed by |Youdin and
Goodman (2005); [Youdin and Johansen! (2007) and [Johansen and Youdin| (2007)
required higher resolution. It will be computationally expensive to properly
simulate streaming at small scales while simultaneously generating large scale
vortices. Since the aim of this thesis was to study the behavior of vortices we
had to accept low resolution for the streaming instability.

Although the vortices in the mid-plane are heavily disrupted, the vortex
column above and below the mid-plane is still present. Since there are no
particles in the upper and lower areas of the box, there is no disruption. We
expect these vortex columns to stay stable over a long time (see figure
left panel of figure 5.8). As we will discuss later in this chapter these vortex
columns still have a minor influence on the particles.

The explanation for why we do not see a high increase of dust-to-gas ra-
tio for simulations with baroclinic vortices compared to simulations without
baroclinic driving lies in the disruption of vortices in the mid-plane. To test
whether there is a strong dust concentration when vortices are stable, and also
to account for the fact that not all particles will be of the same size we perform
simulations with lower initial dust-to-gas ratios, ¢y = 1073 and ¢g = 104
Again, when these values are compared to other works that use stratified gas
simulations the have to be transferred to gy = 2.5 x 1073 and gy = 2.5 x 1074,
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Table 5.3. Maximum dust-to-gas ratio at end of simulation

run St pgao/ Pg0  tend Emax

3DFO5nt  0.05 1:100 434 416
3DNF05 0.05 1:100 40.7 3540.0
3DF05 005 1:100 382 111.2
3DFO5E-3 0.05 1:1000 25.3 8.7
3DFO5E-4 0.05 1:10000 20.0 2.1
3DNF1 1.0 1:100 224 15630.0
3DF1 1.0 1:100 228 9454
3DF1E-3 10 1:1000 7.7 2277
3DF1E-4 10 1:10000 9.7 34.2

i — St=1.0,B=2
—— St=0.05, B=2 _
— St=0.05, p=0 -

“““““““““

0 10 20 30 40 50
time [270/€,]

Figure 5.7 Maximum dust-to-gas ratio for simulations with St = 1.0 (black
line) and St = 0.05 (green and red line) particles. f = 0 indicates that no
baroclinic feedback was included in the simulation. Although the high par-
ticle concentration in the simulations with baroclinic effects destroys the vor-
tices where particles are located the maximum dust-to-gas ratio is higher than
without baroclinic effects.
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Figure 5.8 Vertical vorticity component w, at the top of the box (left) and in
the mid-plane (middle) and dust-to-gas ratio ¢ (right) in the mid-plane for

10~2. There are no more large scale vortices

in the mid-plane and the particles spread are out over the entire mid-plane.

St = 0.05 particles and an ¢g

Since there was an initial particle accumulation inside the vortex before it was
destroyed, there is a residual accumulation at the original vortex position. The

maximum dust-to-gas-ratio in this snapshot is ¢ = 31.7.

1073 we see a different picture. The particles settle to the

mid-plane, but the vortices there are no longer destroyed: the entire vortex

column is a stable feature. Particles accumulate inside of the vortex, as we saw
in the 2D simulations, and then migrate slowly with the vortices. Figures

and [5.9/show the different simulation outcomes for St = 0.05 particle with g

10~

Already for g9

and gy = 10~* after 15 local orbits. It is still too early to say something
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Figure 5.9 Vertical vorticity component w, and dust-to-gas ratio ¢ in the mid-
plane for St = 0.05 particles and an ¢y = 10~%. In contrast to simulations with
g0 = 1072 the vortices in the mid-plane are not destroyed and the particles
accumulate inside of the two vortices. The maximum dust-to-gas-ratio reached
in this snapshot is ¢ = 2.2 which is one order of magnitude lower than for
gg = 1072,

definitive about the final maximum dust-to-gas ratio of these simulations, but
they appear to stay below the the ones reached with ¢y = 0.01. table 5.3 figure
show the maximum values of . We see that in all simulations ¢ > 1.0 is
reached and that streaming is triggered. The baroclinic vortices prove to be an
efficient particle trap. When Johansen et al.| (2009) studied particle clumping,




98 CHAPTER 5. 3D SIMULATIONS

0, pd/pg
I ] 5005 ¢~10° ]
0.001 0.1 1.0
‘ / : 0.05 a ]
’ i ,

. -. ’ ‘0 WAt \ S
N b } N .‘O‘i"\','- /‘\ :’-‘V)‘.‘, e N O'OOWWWMW
FTNNAL r

: g\, -0.05F ]
0.1 0.0 0.1
X X
(1),_ pd/pg
T | St=0.05&,~10"
-15 05 05 0.001 0.1 1.0
0.05 005 .
[ 9 ]
N 0.00 N 0.00 %W A el
-0.05 ~0.05 .
0.1 0.0 0.1
X X

Figure 5.10 Vertical cut through the vortex after 15 local orbits for St = 0.05
particles and ey = 1072 (top) and g9 = 10~* (bottom). Shown are the vertical
component of vorticity w; (left) and the dust-to-gas ratio pq/pg (right). For
g9 = 1072 the vortex located around x ~ —1H is strongly perturbed around
the mid-plane. For lower ¢ the vortex column remains stable.

they needed to increase their ¢ to trigger streaming. Also the particle sizes
they used to trigger streaming were larger than our smallest particles. With
baroclinic vortices we can reach the same concentrations they reached with
much smaller particle sizes, which according to Birnstiel et al.| (2010| 2012),
are the dominant particle species in protoplanetary disk. Also we find that an
initial dust-to-gas ratio of 10~* is sufficient to trigger the streaming instability.

Next we discuss the time evolution of our different simulations briefly. For
this, we plot the particle surface density averaged over the azimuthal domain
relative to its initial value as a function of time (bottom panel of figures -
and also the vertical particle density relative to the gas density (top panel
of figures - at a cut through the simulation domain at the location of
the maximum particle density. Note that the colors on the plots are scaled in
a way that features are distinguishable. The peak values are off the colorscale.
We refer to table |5.3| for the maximum values of e. In all simulations (except
for the one without baroclinic driving) we see that there are bands of high par-
ticle concentrations that are slowly propagating radially inwards. The radial
migration corresponds to the migration of the vortices. The wiggles in these
bands show the epicyclic motion of the particles. This features are even visi-
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Figure 5.11 Maximum dust-to-gas ratio for simulations with St = 0.05 (to
panel) and St = 1.0 (bottom panel) particles and different initial dust-to-gas
ratios eg. While the concentration ¢ = p4/p, 0 is the same for all ¢y the achieved
maximum dust-to-gas ratios for small ey will remain below those of high .

ble in the simulations with eg = 0.01, although we said that there is no more
vortex in the mid-plane. It seems like the remaining vortex column still has an
effect onto the particles.

As in the 2D simulations, the highest particle concentration are reached in
simulations without feedback onto the gas (right column of figures and
5.15). There is another interesting feature in the simulation without feedback
for St = 1.0 particles. A band of high particle concentration radially drifts
inwards much faster than the vortex migration (left column of figure [5.15).
This dust concentration is not captured in a vortex and thus can move with the
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Figure 5.12 The top row shows the dust-to-gas ratio at an azimuthal cut
through the box at the location of the highest dust-density. The bottom row
shows the time development of the dust surface density X4 relative to its ini-
tial value X4 g and averaged over the entire azimuthal domain. On the left side
we show the simulation of St = 1.0 particles with an ¢y = 1072 and on the
right side St = 1.0 particles with an ¢y = 1073. The location of the particle
concentration agrees with the location of the vortices. Although the vortex is
destroyed for ¢y = 1072, there remains a residual concentration at the vortex
location. The particle concentration migrates inwards with the vortex (even in
the case where the vortex in the mid-plane is destroyed). The small wiggles
in the particle concentration correspond to epicyclic motion of the particles
within the vortex.
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Figure 5.13 The top row shows the dust-to-gas ratio at an azimuthal cut
through the box at the location of the highest dust-density. The bottom row
shows the time development of the dust surface density X4 relative to its ini-
tial value X4 g and averaged over the entire azimuthal domain. On the left side
we show the simulation of St = 1.0 particles with an g = 10~* with feedback,
while on the right side we show St = 1.0 particles with an gy = 10~2 but with-
out feedback onto the gas. The location of the particle concentration agrees
with the location of the vortices. The small wiggles in the particle concentra-
tion correspond to epicyclic motion of the particles within the vortex.
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Figure 5.14 The top row shows the dust-to-gas ratio at an azimuthal cut
through the box at the location of the highest dust-density. The bottom row
shows the time development of the dust surface density ¥4 relative to its ini-
tial value X4 and averaged over the entire azimuthal domain. On the left
side we show the simulation of St = 0.05 particles with an ¢y = 1072, and
on the right side St = 0.05 particles with an gy = 10~2. The location of the
particle concentration agrees with the location of the vortices. Although the
vortex is destroyed for ¢y = 102 there there remains a residual concentration
at the vortex location. The particle concentration migrates inwards with the
vortex (even in the case where the vortex in the mid-plane is destroyed). The
small wiggles in the particle concentration correspond to epicyclic motion of
the particles within the vortex.



5.5 RESULTS: PARTICLES SIMULATIONS 103

St=0.05 €=10"" Py,nul/P. St=0.05 €,=10" nf Py,_./P,
| L
0.0 0.1 0.2 0.0 10.0 20.0

0.02 0.02

-0.02 -0.02
-0.2 . -0.2
X
<X > J<Ly0>,
[
0.0 1.0 2.0
40
30

time [270/Q,]
time [270/Q,]

-02 -01 00 0.1 0.2

Figure 5.15 The top row shows the dust-to-gas ratio at an azimuthal cut
through the box at the location of the highest dust-density. The bottom row
shows the time development of the dust surface density X4 relative to its ini-
tial value X4 g and averaged over the entire azimuthal domain. On the left side
we show the simulation of St = 0.05 particles with an g = 10~* with feed-
back, while on the right side we show St = 0.05 particles with an g9 = 102
but without feedback onto the gas. The location of the particle concentration
agrees with the location of the vortices. The small wiggles in the particle con-
centration correspond to epicyclic motion of the particles within the vortex.
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Figure 5.16 The top row shows the dust-to-gas ratio at an azimuthal cut
through the box at the location of the highest dust-density. The bottom row
shows the time development of the dust surface density X4 relative to its ini-
tial value X4y and averaged over the entire azimuthal domain for St = 0.05
particles and baroclinic driving turned off. Since there are no vortices present
and the strong localized concentrations seen in the previous figures do not ap-

pear here.
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Table 5.4. Fraction of dust mass with ¢ > 1.0

run fraction of M
with ¢ > 1.0 (%)

3DF05 98.44
3DF05E-3 25.67
3DFO5E-4 1.12

3DF1 98.73
3DF1E-3 26.41
3DF1E-4 14.46

normal particle drift velocity (see equation (4.9))which is much faster than the
radial drift of vortices.

The vertical slices through the box also show the concentration of the par-
ticles at the location of the vortices. The reason why not all particle enhance-
ments in the time development reappear in the vertical slices, e.g. right column
of figure at x ~ 0.1, is because the time-development is averaged over the
azimuthal domain whereas the vertical cuts are not. It is quite possible that
the maximum of the dust density is in one vortex, while the other vortex is at a
different azimuthal position in the simulation with a lower, but still high, dust
density. It would not be visible in the vertical cut.

The simulation without baroclinic driving (figure shows different be-
havior than the simulations discussed above. Here particles are distributed
more homogeneously, without a localized concentration. The radial drift of
particles is faster than vortex migration in the other figures.

As in the 2D simulations we looked at how much dust accumulates at cer-
tain dust-to-gas ratios. The result is shown in figure for our two particle
sizes and three different ¢y. As expected, simulations with higher ¢( also have
more mass in large ¢ bins. Yet, even simulations with ey = 10~* pass the limit
of ¢ > 1.0, where the streaming instability sets in. While only 1% of St = 0.05
particles accumulate in regions with ¢ > 1.0 for ¢y = 10~ this is an important
step towards higher concentrations and may eventually lead to gravitational
collapse. In Table |5.4) we show what mass fraction participates in the stream-

mg.
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Figure 5.17 Fraction of total dust mass with an dust-to-gas ratio higher than
a certain value for St = 0.05 and St = 1.0 particles and different initial dust-
to-gas ratios. For all setups the limit for streaming instability (04/p0g > 1.0) is
passed.

5.5.3 Possible Gravitational Collapse

In chapter 4f we saw that the particle densities we reached were lower than
the Roche density. But due to sedimentation, in 3D runs the particle density
is higher. We want to compare the achieved particle densities with the Roche
density to see if now gravitational collapse would happen if we allowed for
self-gravity. We use the same two disk models as in chapter @] One with the
MMSN with X (5.2 AU) = 150 g cm 3 (casel and 2) and a model with a heavy
disk with %4(5.2AU) = 800gcm > (case 3 and 4). The Roche density at the
two radii that we consider is pgr (1 AU) = 2.83 x 1077 gcm 3 (case 1 and 3) and
pr(5.2AU) =2.01 x 107? gcm 3 (case 2 and 4).
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Table 5.5. Dust density compared to Roche density

run Emax PR/ Pg PR/ Pg PR/ Pg PR/ Pg
casel (5.2 AU) case2 (1 AU) case3 (5.2 AU) case4 (1 AU)
3DF05 111.2 262 1607 49 301
3DF05E-3 8.7 262 1607 49 301
3DF05E-4 2.1 262 1607 49 301
3DF1 945.4 262 1607 49 301
3DF1E-3 227.7 262 1607 49 301
3DF1E-4 34.2 262 1607 49 301

In table 5.5/we show the maximum dust-to-gas ratios that were reached at
the end of the computational time. The last four columns show the ratio of pr
and the gas density for the two disk profiles and the two radii. If emax exceeds
this ratio, it means that the local dust-to-gas ration exceeds pr at that radius,
and the particle accumulation will collapse (indicated through bold number in
table[5.5).

We see that at 1 AU the maximum dust densities are lower than the Roche
density for all runs except for St = 1.0 particles with g = 0.01. Yet if we go
to 5.2AU there are three more runs for the heavy disk model that exceed the
critical pr. This means that the clumps with these high overdensities should
collapse and form bodies that are held together by their own gravity.

It is easier to form planetesimals at larger radii, because pr falls off steeper
than p,. Therefore, the ratio pr /pg decreases radially, making it easier for dust
densities to pass the critical density.

5.6 Conclusion

In this chapter we have performed 3 dimensional simulations of baroclinic
vortices and particles in these vortices. The gas simulations were unstratified
whereas we included vertical gravity for St = 0.05 and St = 1.0 particles.

In the pure gas simulations we saw that a stable baroclinic vortex develops.
The strength of the angular momentum transport is only slightly the 2 dimen-
sional values. After several orbits, the elliptical instability develops inside the
vortex. Yet, due to continuos baroclinic vorticity production a stady state is es-
tablished and the elliptical instability does not destroy the vortex. These result
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agree with the findings of Lesur and Papaloizou (2010) and Lyra and Klahr
(2011).

When we include particles with an initial dust-to-gas ratio of ¢ = 0.01
and back-reaction we see that the vortex column in the mid-plane is destroyed
after a very short time of concentration inside the vortex. We saw a similar
picture in the 2 dimensional simulations for St = 1.0 particles when the lo-
cal dust-to-gas ratio exceeded a value of ~ 10. Due to the sedimentation of
dust, this dust-to-gas ratio is reached after only a few orbital periods for both
particle sizes. Unlike in the 2 dimensional simulations the vortex cannot be re-
established since the dust densities remain constant and do not sink below the
critical value. The vortex columns above and below the mid-plane still have
an effect on the particle. The initial concentration in the vortex grows as time
progresses. This particle overdensity will not drift at the standard radial drift
rate, but rather with the slower migration rate of the vortex.

Because we use unstratified gas simulations we overestimate the amount
of particles by a factor v/27t. Compared to studies for streaming instability
and gravo-turbulent planetesimal formation like ]Johansen et al.| (2009) our
gg = 0.01 rather corresponds to g = 0.02. g9 = 0.02 is the dust-to-gas ratio
Johansen et al. (2009) needed to trigger the streaming instability. We also see
the streaming instability for this dust-to-gas ratio. However, we wanted to test
whether streaming can still be triggered for lower ¢y and smaller particle sizes
than the ones used by Johansen et al.|(2009).

The vortices are no longer destroyed when ¢g = 1073 or eg = 10~*. Instead
they remain stable over the simulation period, and accumulate particles. Al-
though the concentration remains below the high concentrations of ¢y = 0.01
they still reach local ¢ > 1.0 and with that, triggering the streaming instability.

To determine whether the local particle density enhancements can cause
gravitational collapse were we to turn on particle self-gravity, we compare
their density with the Roche density. Depending on disk model and radial
position in the disk we see that even St = 0.05 particles with a high initial
dust-to-gas ratio or St = 1.0 particles with ¢y = 107 can exceed the Roche
density and thus can form a gravitationally bound object.

We conclude that baroclinic vortices in 3D are an efficient mechanism for
trapping and concentrating particles. We can trigger streaming instability for
smaller particle sizes and lower initial dust-to-gas ratios than in previous stud-
ies (e.g. Johansen et al., 2006bj, 2009). This is an important step towards gravi-
tational collapse.



Chapter 6

Conclusion

In this thesis we started by calculating disk properties for baroclinic disks
around young stars. Our 1+1D model uses the assumption of a constant mass
accretion rate and constant x. The temperature profile considers both, accre-
tion luminosity and irradiation, and varies radially due to radially changing
opacities. As input for M and « we used data from the Ophiuchus star form-
ing region obtained by |Andrews et al.| (2009, 2010). We derived Richardson
numbers that are negative, yet | Ri |< 1.0, heat diffusivities based on flux lim-
ited diffusion between t4;¢ = 0.1 and 7g4;¢ = 100 local orbits, as well as radial
entropy gradient up to f = /Bxpp = 1.0. These results provide the parameter
range for our numerical experiments.

After that we conducted a comprehensive parameter study of the baroclinic
instability / baroclinic vortex amplification with varying entropy gradients S,
thermal cooling 7., and diffusion times 7q;;. We found that the vortex am-
plification mechanism works well for all tested values of g (8 = 2.0, 1.0, 0.5).
The amplification rate is proportional to f2, which emphasizes that baroclinic
vortex amplification is indeed a nonlinear process. This proportionality also
means that it takes much longer until vortices with a more realistic value of
B ~ 0.5 reach a fully grown saturated state compared to high g = 2.0 configu-
rations. The values of 7., and T4 have only a minor effect on the saturation
values, e.g. enstrophy or a. The value of 7., affects the amplification rate
and Ty;¢ the saturation values. We measure values of the angular momentum
transport of up to & ~ 1072, but mostly around & ~ 10~2. These values are
comparable to values from MRI simulations and only depend weakly on the
entropy gradient like & o< f—1/2.

An open question for planetesimal formation is still the local enhancement
of dust densities above the solar dust-to-gas ratio of 1072, As [Johansen et al.
(2009) showed, simple vertical sedimentation is not sufficient to increase the
dust-to-gas ratio ¢ enough to trigger streaming instability and gravitational

109
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collapse. Other methods to further increase local dust concentration are zonal
flows (Johansen et al., 2011) or, in our case, vortex trapping.

In our 2 dimensional models of the baroclinic instability we looked for the
particle concentration of particles with sizes St = 0.01, St = 0.05, St = 1.0 and
St = 20.0. If we do not include particle feedback onto the gas, we see that there
are high concentrations of particles in the vortices, except for St = 20.0 parti-
cles. For St = 0.05 and St = 1.0 particles all particle were eventually trapped
in the vortex. The high concentrations mean that back-reaction onto the gas is
not negligible. With the feedback mechanism included, we still see high dust
concentrations inside the vortex. The limit of ¢ ~ 1.0 for streaming instabil-
ity is passed for all particle sizes, except for St = 20.0 particles which do not
accumulate in vortices. As the particle concentration rises, the growth times
for streaming get faster. For St = 1.0 particles, the concentration of dust parti-
cles gets so high that the vortex structure is strongly perturbed. With the dust
concentrating forces dropping, the high particle concentration decreases. This
cycle constantly repeats itself. Smaller particles also concentrate high enough
to trigger the streaming instability. They spread out over the entire vortex
with strong density fluctuations. Even if we decrease the initial dust-to-gas
ratio down to g9 = 1073 or gy = 10~* we still get the same overdensities, even
for our smallest particle sizes, which shows that baroclinic vortices are efficient
particle traps.

When we compare our collisional velocities to analytical studies that use
Kolmogorov turbulence, such as Ormel and Cuzzi (2007), we see that our ve-
locities are about one order of magnitude lower than expected based on «.
This means that, despite the strength of angular momentum transport which
is comparable to other instabilities, baroclinic vortices provide a gentler envi-
ronment for particles.

Our 3 dimensional unstratified gas simulations lead to the same conclu-
sions as previous studies by Lesur and Papaloizou (2010) and |[Lyra and Klahr
(2011). A vortex column develops and at some point the elliptical instability
sets in. Eventually, a stable balance between vortex perturbation due to ellip-
tical instability and vortex driving due to baroclinic effects is reached.

When we included particles feeling vertical gravity with an g = 0.01 we
saw that, due to the sedimentation and the resulting high dust densities in
the mid-plane, the streaming instability is triggered and that the vortex is de-
stroyed at the mid-plane. Yet in the upper and lower parts of the simulation
box the vortex column remains stable. The particle overdensities in the mid-
plane still follow the radial motion of the remaining vortex column.

As in the 2D simulations we decreased the initial dust-to-gas ratio to
gp = 1073 and ¢g = 10~%. There we saw that the vortex column is no longer de-
stroyed, and the particle trapping mechanism of the vortex sets in. Although
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the overdensities reached are lower than for ¢y = 0.01, we still reach dust-to-
gas ratios of ¢ > 1.0 and thus trigger the streaming instability.

To estimate if the reached overdensities can be held together solely by their
own gravity we estimate the Roche density at different radii. Depending on
disk model and radial location of the particle clump we do reach dust densities
higher than the Roche density. If self-gravity was included for the dust then
gravitational collapse would occur.

Overall, we conclude that baroclinic vortices are a feasible mechanism for
transporting angular momentum in the dead zone of a protoplanetary accre-
tion disk, here we define dead zone as the region of the disk where the mag-
netic diffusive time is smaller than the dynamical time and therefore no MRI
can operate. When particles are included, they are efficiently captured by the
vortices in 2D as well as in 3D simulations. Even for low initial dust-to-gas
ratios and small particle sizes we can reach dust accumulations that trigger
the streaming instability and with that fulfill a necessary condition for gravi-
tational collapse. Previous studies of particle concentration had to use higher
initial dust-to-gas ratios and/or larger particles.

Yet our high-resolution studies are limited to 2 dimensions without parti-
cles. Especially our 3D studies lack proper resolution and realistic entropy gra-
dients. In the future additional studies with higher resolution and self gravity
have to be conducted. Also global simulations will be helpful to better study
effects such as vortex migration.
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Table A.1. Variables and Symbols

Variables and Symbols Description
h dimensionless pressure scale-height
H pressure scale-height
Hy particle scale-height
Hg particle scale-height
r distance to star
Ry co-rotational radius
a vortex radius
s particle radius
70 reference radius
dx impact parameter
n normal distance to impact plane
r; vectorial position of particle i
R, stelar radius
Re Solar radius
R radius od particle clump
u gas velocity

shear velocity
shear parameter

ug Keplerian velocity

v particle velocity

(7 vectorial velocity of particle i

Veoll collision velocity

Avjj relative velocity of particles i and j
Cs sound speed

cCh.2&3 speed of light

t time

ts vertical settling time

Ts particle friction time

Q) orbital frequency

O orbital frequency at co-rotaional radius
0, Pg gas density

g0 initial gas density

00 background density

o’ applied density perturbation

04 dust density

initial dust density
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Table A.1 (cont’d)

Variables and Symbols Description
0Os material density of solids
PR Roche density
QOcrit critical density
Bo gas/dust density gradient
2,2 gas surface density
2o 0 gas surface density
24 dust surface density
24,0 dust surface density
20 gas surface density at reference radius
Bx surface density gradient
M, mass of central object
Mp mass of one super-particle
Mg total mass of gas in simulation domain
My total mass of dust in simulation domain
My total mass of dust captured in vortex
M. mass of particle clump
Mg Solar mass
MeEgarth mass of the earth
M mass accretion rate
pCh2 vertically integrated pressure
p deviation from background pressure
Po initial mean pressure
p time independent pressure
Pot =P+ P total pressure
By pressure gradient
S entropy
Bs entropy gradient
B entropy /pressure gradient
K potential temperature
Bk gradient of potential temperature
Wz vertical component of vorticty
Wz,min minimum vorticity
w? enstrophy
Teool thermal cooling time
Tdiff thermal diffusion time
Ty decay time of «
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Table A.1 (cont’d)

Variables and Symbols Description
T2 decay time of vorticity
T vortex amplification-time
I vortex amplification-time
St Stokes-number

£ = pg/pg =(2D)Zq/Lg
0 = 04,0/ Pg0 =(2D)Ly,0/ g0

dust-to-gas-ratio
initial dust-to-gas-ratio

Emax maximum dust-to-gas ratio

¢ = p4q/pd0 = Lq/Zq0 Ch. 4 & concentration

5

n velocity offset between dust and gas ve-
locities

T temperature

To reference temperature

Tace accretion temperature

Tipr irradiation temperature

Tots effective temperature

Tc mid-plane emperature

T, stelar temperature

Br temperature gradient

Facc accretion flux

Firr irradiative flux

Fogt effective flux

1% viscosity

o Shakura-Sunyaev a-parameter

DCh.2&3 diffusion constant

DCh.5 vertical diffusion coefficient

o « analogon for vertical diffusion

Eyin kinetic energy

fpr fos pressure force per unit mass

9z vertical gravitational acceleration

s,z vertical component of drag acceleration

a tangential acceleration

g, gravitational acceleration on particle
clump

Cp specific heat at constant pressure

Co specific heat at constant volume

v =cp/cy adiabatic index

j specific angular momentum

N Brunt-Viisald frequency
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Table A.1 (cont’d)

Variables and Symbols Description
Sc, vertical Schmidt-number
G gravitational constant
K oppacity
TR Rosseland mean oppacity
Q Toomre-parameter
A flux limitter
ag radiation constant
o Ch. 2 Stefan-Boltzmann constant
cCh.3&5 width of initial density perturbation
0q width of initial particle distribution
fo 6th order hyper-diffusivity
fu 6th order hyper-viscosity
fx 6th order hyper-conductivity
Ly, Ly, Ly box dimension in x, y, z direction
My, Ny, Nz amount of grid-cells in x, y, z direction

kXI kyl kZ

number of modes in x, y, z direction
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