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Abstract 

Obesity as a cause of diseases like metabolic syndrome, type 2 diabetes and cardiovascular disease is 

increasingly becoming a worldwide health problem. Dysfunctional lipid metabolism is a key catalyst 

for the development of obesity, as impaired triglyceride storage and mobilization (lipolysis) lead to 

lipotoxicity and cellular stress in white adipose tissue (WAT) and other metabolically active organs.  

WAT is central to systemic energy metabolism as it has the potential to adapt to external and internal 

signals by tightly regulated lipid uptake and removal as well as adipocytokine release. Although it is 

widely accepted that lipolysis in adipose tissue critically determines lipid turnover and obesity, the 

molecular mechanisms of WAT lipid handling are largely unknown. 

In this context, the transcriptional co-factors transducin beta like (TBL) 1 and TBL related (TBLR) 1, 

that have previously been described as regulators of lipid handling in liver, were investigated to 

establish co-factor function in adipose tissue triglyceride metabolism. Genetic inactivation of TBLR1, 

but not TBL1, in adipocytes increases triglyceride content of these cells by inhibiting lipolysis at the 

level of gene transcription. Gene expression profiling revealed an involvement of adipocyte TBLR1 in 

peroxisome proliferator-activated receptor (PPAR) and adipocytokine signaling and fatty acid 

metabolism pathways. Indeed, TBLR1 interacts with PPARγ and RXR, and treatment with the PPARγ 

agonist rosiglitazone partly reverses the effects of TBLR1 knockdown on triglyceride hydrolysis. 

Consistent with its role as a transcriptional co-factor TBLR1 regulates gene expression of the key 

lipases involved in lipolysis, hormone sensitive lipase (HSL) and adipocyte triglyceride lipase (ATGL). 

Apart from that, TBLR1 also influences hormone-stimulated activation of lipid breakdown by 

interfering with the activating adrenoceptor-cAMP-PKA axis at the level of receptor expression.  

Adipocyte specific deletion of TBLR1 in mice leads to increased body weight and adiposity, adipocyte 

hypertrophy, as well as impaired lipid mobilization in fasting. Consistent with the finding that 

impaired lipolysis favors the development of obesity, body weight and adiposity increase in the 

adipocyte specific TBLR1 knockout (ATKO) mice with proceeding age. When fed a high fat diet, ATKO 

mice gain more weight and body fat than their wild type littermates, are less glucose tolerant and 

insulin sensitive and show increased signs of adiposity, namely adipocyte hypertrophy and increased 

adipocytokine release. 

Importantly, TBLR1 levels in white adipose tissue increase in states with high lipolytic activity like 

fasting and obesity in both mice and human patients and correlate with serum parameters and 

adrenoceptor expression. In summary, TBLR1 expression is activated in situations with augmented 

lipid mobilization and required for efficient triglyceride breakdown in adipocytes. Thus, manipulating 

TBLR1 levels in adipocytes may represent a future perspective to treat metabolic diseases like obesity 

or metabolic syndrome.  

  



 
II 

Zusammenfassung 

Ein häufiger Grund für die Entstehung von Krankheiten wie Typ 2 Diabetes, Herz-Kreislauf-

Erkrankungen oder Metabolischem Syndrom ist Übergewicht. Dadurch wird es zunehmend zu einem 

weltweiten Gesundheitsproblem. Eine Schlüsselrolle in der Entstehung von Übergewicht spielt der 

Fettstoffwechsel: Ein gestörtes Gleichgewicht aus Triglyzerid-Speicherung und -Bereitstellung 

(Lipolyse) kann zu erhöhten Lipidmengen im Blutkreislauf führen, die gewebespezifische oder 

systemische Toxizität und damit Organschäden oder Zellstress hervorrufen. Weißes Fettgewebe 

beeinflusst den systemischen Energiehaushalt durch Ausschüttung von Adipozytokinen oder 

Anpassung des Fettstoffwechsels an externe und interne Signale. Es ist bekannt, dass dysfunktionale 

Lipolyse im weißen Fettgewebe zu gestörtem Lipidstoffwechsel und Übergewicht führen kann. Die 

molekularen Grundlagen dieses Mechanismus sind jedoch noch weitgehend unklar. 

Die transkriptionellen Kofaktoren Transducin beta like (TBL) 1 und TBL related (TBLR) 1 regulieren 

den Lipidstoffwechsel in der Leber. In der vorliegenden Arbeit wird deren Funktion in Adipozyten 

untersucht. Genetische Inaktivierung von TBLR1 in Adipozyten hemmt die Lipolyse und erhöht so den 

zellulären Triglyzeridspiegel. Die Regulation erfolgt auf transkriptioneller Ebene. Im Gegensatz dazu 

wirkt sich die Inaktivierung von TBL1 nicht auf den Lipidhaushalt der Zellen aus. Mithilfe eines 

Genexpressionsprofils in Adipozyten mit verringerter TBLR1 Menge konnte gezeigt werden, dass 

PPAR (peroxisome proliferator-activated receptor)- und Adipozytokin-Signalwege sowie Fettsäure-

Metabolismus zu den meistregulierten zellulären Vorgängen zählen. TBLR1 interagiert mit PPARγ und 

RXR in Adipozyten. Zudem führt die Stimulation mit dem PPARγ Agonisten Rosiglitazon zur 

Umkehrung der durch Abwesenheit von TBLR1 hervorgerufenen Effekte auf den Lipidstoffwechsel. 

TBLR1 reguliert die Genexpression der Lipolyse-Schlüsselenzyme Hormone Sensitive Lipase (HSL) und 

Adipocyte Triglyceride Lipase (ATGL) auf transkriptioneller Ebene. Außerdem beeinflusst TBLR1 deren 

Aktivierung durch hormonabhängige Signalwege über die Rezeptor-cAMP-PKA Achse durch 

Regulation der adrenergen Rezeptorexpression.  

Adipozyten-spezifische Deletion von TBLR1 in Mäusen führt zu erhöhtem Körpergewicht und 

Adipositas, Hypertrophie von Adipozyten sowie verminderter Hunger-induzierter Lipidmobilisierung. 

Verringerte Lipolyse beim Menschen führt über einen längeren Zeitraum hinweg zur Entstehung von 

Übergewicht. Das gleiche gilt für die ATKO (Adipozyten-spezifische TBLR1 Knockout) Mäuse, die 

ebenfalls eine Verstärkung der Adipositas mit fortschreitendem Alter zeigen. Füttert man diese 

Mäuse mit einer Hochfettdiät, nehmen sie stärker an Körpergewicht und Körperfett zu und zeigen 

typische Anzeichen von  Übergewicht, wie erhöhte Leptin- und Resistinmengen im Blut, Hypertrophie 

von Adipozyten, verminderte Glukosetoleranz und Insulinsensitivität sowie erhöhte Produktion von 

Entzündungsmediatoren im Fettgewebe. 

Die Expression von TBLR1 in humanem und murinem Fettgewebe wird durch Hungern oder 

Übergewicht induziert. Zudem korreliert die TBLR1 Menge in humanem weißem Fettgewebe mit der 

Menge an freien Fettsäuren und Adiponektin im Blut sowie der Expression der beta-adrenergen 

Rezeptoren. Die TBLR1 Expression wird also bei erhöhtem Bedarf an Lipolyse induziert und für eine 

effiziente Lipidmobilisierung benötigt. Daher könnte die fettspezifische Manipulation von TBLR1 

zukünftig eine therapeutische Option zur Bekämpfung von Übergewicht und assoziierten 

Erkrankungen darstellen. 



 
III 

Acknowledgements 

Many people have contributed to the completion of this thesis, and I would like to take this precious 

opportunity to express my gratitude to those who have in many ways supported, challenged or 

enlightened me during this time. 

First of all I would like to thank Stephan Herzig for his constant multifaceted support, starting from 

the inspiration for the project and the opportunity to be part of the A170 lab, for uncounted 

discussions, biochemical pathway coaching, great conferences, and not to forget for his 

indestructible (and often unbelievable) optimism.  

Also, I wish to thank all former and current A170 lab members for an inspiring environment and a 

great time. It’s been fantastic to work with you all! I am very grateful to Anke, who was not only an 

excellent diploma thesis supervisor but stayed interested in the project at all times and contributed 

greatly by invaluable discussions and sharing knowledge. I also very much appreciated the scientific 

discussions with Adam, Alex, Inka and Mauricio, who would always be supportive with new, inspiring 

ideas. I’d like to thank Annika, Oksana, Yvonne and our Hiwis for all the excellent work they’ve put 

into my project. Tjeerd has been a great and irreplaceable help for many experiments. Especially, I 

have to thank Dany for just amazing and invaluable practical support during all the time and in 

particular in the last couple of months - and for brilliant cookies and cupcakes. Without you I’d 

probably still be isolating RNAs, and I would have definitely missed so much fun! Speaking of it, a 

special ‘thank you’ goes to the BB boy and all the BB girls, Anja, Anke, Dany, Julia, Michaela, Yvonne, 

Tjeerd, who have sweetened my life in many different ways - just think of the ‘Frustlade’, but also of 

all the little things in the everyday lab routine and many truly unscientific conversations. Many 

thanks also to Allan for a great time at conferences, seminars, coffee breaks and countless scientific 

and nonscientific discussions. 

I am very grateful to our collaborators in Mannheim, Wien and Zürich, Carsten Sticht, Maria Saile, 

Max Zeyda, Thomas Stulnig and Christian Wolfrum, whose work directly contributed to this project.  

I want to express my gratitude to the members of my thesis advisory committee, Renate Voit and 

Angelika Bierhaus, for very good discussions and suggestions throughout the whole project and to 

Renate Voit, Karin Müller-Decker, who also shared many hours at the microscope with me, and Suat 

Özbek for reading and evaluating my thesis.  

A large credit goes to my parents for always encouraging me and supporting me in so many ways 

that it is impossible to list them. Thank you for everything! Many thanks also to the rest of my great 

family for the constant courage and encouragement in the last years. Finally, I am truly grateful to 

Dennis who more than once had to endure science lessons and is still willing to ask for progress at 

work, for matchless support during the whole time and for always being able to cheer me up. 

 

 

  
Wenn die Neugier sich auf ernsthafte Dinge richtet, 

dann nennt man sie Wissensdrang.  

Marie von Ebner-Eschenbach 
Österreichische Schriftstellerin (1830-1916) 



 
IV 

INDEX 

                     page 

Abstract           I 

Zusammenfassung          II 

Acknowledgements          III 

 

1  INTRODUCTION         1 

1.1  OBESITY AND THE METABOLIC SYNDROME      1 

1.1.1  Obesity as a worldwide pandemic      1 

1.1.2  Obesity is a risk factor for the development of the metabolic syndrome  2 

1.2  ADIPOSE TISSUE AND ITS ROLE IN METABOLISM     3 

1.2.1  Lipolysis is a major function of the adipose tissue    3 

1.2.2  Adipose tissue is central to whole body lipid metabolism   4 

1.2.3  Manipulating adipose tissue function may help fighting the pandemic of  
obesity and the metabolic syndrome      6 

1.3  THE TRANSCRIPTIONAL CO-FACTORS TRANSDUCIN BETA LIKE (TBL) 1  
AND TRANSDUCIN BETA LIKE RELATED (TBLR) 1      7 

1.3.1  TBL1 and TBLR1 are transcriptional co-factors     7 

1.3.2  TBL1 and TBLR1 are implicated in liver lipid metabolism    10 

1.4  AIM OF THE PROJECT         11 

 

2  RESULTS          12 

2.1  ANALYSIS OF TBL1 AND TBLR1 EXPRESSION IN WHITE ADIPOSE TISSUE OF  
MOUSE DISEASE MODELS        12 

2.1.1  TBL1 and TBLR1 are ubiquitously expressed in various mouse tissues  12 

2.1.2  TBL1 and TBLR1 expression in mouse models of obesity    12 

2.1.3  TBLR1 but not TBL1 levels are increased in LPS-induced sepsis   13 

2.1.4  TBLR1 but not TBL1 levels are regulated by fasting and restricted feeding 14 

2.1.5  TBLR1, but not TBL1 levels are increased by β-adrenergic signaling   15 

2.2  IMPACT OF TBL1 AND TBLR1 ON ADIPOCYTE DIFFERENTIATION   17 



 
V 

2.2.1  TBL1 and TBLR1 levels are increased during the course of adipocyte  
differentiation         17 

2.2.2  TBL1 and TBLR1 are not required for adipocyte differentiation   18 

2.3  TBL1 AND TBLR1 PLAY A ROLE IN ADIPOCYTE INFLAMMATION   20 

2.3.1  TBL1 and TBLR1 are regulated by LPS and conditioned macrophage medium  
(CM) in 3T3-L1 adipocytes       20 

2.3.2  TBL1 and TBLR1 are efficiently knocked down in cultured adipocytes using  
adenovirus-mediated shRNA       20 

2.3.3  Knock down of TBLR1 in adipocytes leads to blunted inflammatory response  
to LPS or CM         21 

2.3.4  TBLR1 is an NFκB dependent regulator of interleukin 6 expression  23 

2.4  THE ROLE OF TBLR1 IN ADIPOCYTE LIPID METABOLISM IN VITRO   23 

2.4.1  TBLR1 expression influences adipocyte triglyceride levels   23 

2.4.2  TBLR1 knock down inhibits induction of lipolysis    24 

2.4.3  TBLR1 knock down does not activate glucose metabolism or lipogenesis 25 

2.4.4  TBLR1 does not influence insulin signaling in 3T3-L1 adipocytes   26 

2.4.5  TBLR1 knock down leads to reduced levels of lipases and lipolysis-associated  
proteins         27 

2.4.6  TBLR1 knock down leads to reduced activation (phosphorylation) of hormone  
sensitive lipase and other PKA targets      28 

2.4.7  Inhibition of lipolysis by TBLR1 is independent of time and concentration of  
stimulus         29 

2.4.8  Reduced PKA-mediated phosphorylation upon TBLR1 knock down is due to  
decreased cAMP levels        29 

2.4.9  Reduced cAMP content in adipocytes lacking TBLR1 is not due to increased  
phosphodiesterase levels       30 

2.4.10  Reduced cAMP content in adipocytes lacking TBLR1 is due to decreased levels  
of β-adrenergic receptors       31 

2.4.11  TBLR1 is a transcriptional activator of HSL and ATGL transcription  32 

2.4.12  Gene expression profiling of adipocytes lacking TBLR1 reveals strong  
implication of TBLR1 in PPAR and adipocytokine signaling pathways and lipid 
metabolism          32 

2.4.13  TBLR1 acts in part through PPARγ      36 

2.4.14  TBLR1 knock down in primary adipocytes leads to reduced stimulation of  
lipolysis          37 



 
VI 

2.4.15  Ectopic expression of TBLR1 leads to decreased triglyceride content and  
increased lipolysis in 3T3-L1 adipocytes      38 

2.4.16  Increased lipolysis in adipocytes over expressing TBLR1 is a result of increased  
lipase expression and activity       39 

2.5  TBLR1 GENE MANIPULATION IN VIVO       40 

2.5.1  TBLR1 cannot be efficiently knocked down or over expressed in adipose tissue  
in vivo using adenoviruses, siRNAs or morpholinos    40 

2.6  ADIPOCYTE SPECIFIC TBLR1 KNOCKOUT (ATKO) MICE DISPLAY A LIPID  
METABOLISM PHENOTYPE        42 

2.6.1  Mice heterozygous for TBLR1 in adipose tissue display normal body weight,  
organ weight and lipolytic response      43 

2.6.2  Adipocyte specific knockout of TBLR1 leads to increased body weight and  
body fat content and enlarged adipose tissue depots    46 

2.6.3  Adipose tissue explants isolated from ATKO mice show reduced lipolysis 47 

2.6.4  ATKO animals show a disturbed adipose tissue lipolytic response to fasting 48 

2.6.5  ATKO mice gain more weight during high fat diet feeding and reveal a strong 
increase in body fat content       51 

2.6.6  ATKO mice show impaired glucose tolerance and insulin sensitivity and  
increased subacute inflammation      55 

2.7  TBLR1 IS IMPLICATED IN HUMAN OBESITY      57 

2.7.1  TBLR1 expression is increased in obese patients who underwent a weight  
reduction program        57 

2.7.2  TBLR1 but not TBL1 expression levels in visceral WAT are increased in obese  
patients         58 

2.7.3  TBLR1 expression in WAT correlates with BMI, serum adiponectin, triglyceride  
and free fatty acid content and with expression of β- adrenoceptors  59 

 

3 DISCUSSION           61 

3.1  TBL1 AND TBLR1 REGULATE LIPID METABOLISM THROUGH CELL-TYPE  
SPECIFIC DISTINCT MECHANISMS       61 

3.2  TBLR1 REGULATES MULTIPLE LAYERS OF THE LIPOLYTIC CASCADE   62 

3.3  TBLR1 IS A CRITICAL REGULATOR OF BODY WEIGHT AND ADIPOSITY  64 

3.4  OUTLOOK AND SUMMARY        67 

 

 



 
VII 

4 METHODS           69 

4.1  MOLECULAR BIOLOGY        69 

4.2  CELL BIOLOGY          72 

4.3  ANIMAL EXPERIMENTS        79 

4.4  BIOCHEMISTRY         81 

4.5  HUMAN SUBJECTS         85 

4.6  STATISTICAL ANALYSIS        85 

 

5 MATERIAL           86 

5.1  SOLUTIONS AND BUFFERS        86 

5.2  OLIGONUCLEOTIDES         86 

5.3  ANTIBODIES          89 

5.4  KITS           90 

5.5  SOFTWARE          90 

5.6  CONSUMABLES         91 

5.7  CHEMICALS AND REAGENTS        91 

5.8  INSTRUMENTS         93 

 

6 APPENDIX           95 

6.1  GLOSSARY          95 

6.2  FIGURES AND TABLES         97 

6.3  REFERENCES          101 



 
1 INTRODUCTION 

1 INTRODUCTION 

1.1 Obesity and the metabolic syndrome 

1.1.1 Obesity as a worldwide pandemic 

In the past years, obesity has developed as a major health threat all over the world and numbers are 

increasing. According to the World Health Organization (WHO), the worldwide prevalence of obesity 

has doubled since 1980 and obesity, overweight and their associated diseases now kill more people 

than underweight (WHO fact sheet No 311, 2011). Thus, obesity may be considered as a pandemic 

being defined as something (for example a disease) prevalent throughout an entire country, 

continent, or the whole world (Fig. 1).  

 

Fig. 1: Obesity as a pandemic. Global distribution of obesity as defined by a BMI ≥ 30 kg/m².  From: Global database on 
Body Mass Index, WHO, 2011. 

The reason for the current obesity pandemic is complex, as it cannot be attributed to one single 

reason but rather is a combination of many factors including genetic predisposition, reduced physical 

activity, malnutrition and a global nutrition transition towards more processed food and higher fat 

and sugar contents (Popkin, B.M., 2012). Once thought to be a problem of the Western world, 

obesity has now started to become a major health threat in the developing or newly industrializing 

countries, too, and in many cases overweight and underweight occur as a double burden of diseases 

within the same country or community (WHO fact sheet No 311, 2011).  

The consequences of obesity are even more adverse than the causes. Overweight and obesity, as 

defined by a body mass index (BMI) ≥ 25 kg/m² and ≥ 30 kg/m², respectively, increase the risk for 

non-communicable diseases such as cardiovascular diseases (hypertension, heart disease, stroke), 

type 2 diabetes mellitus, musculoskeletal disorders like osteoarthritis (Kopelman, P.G., 2000), and 

some types of cancer such as endometrial, breast, and colon (Wolin, K.Y., 2010), and are the fifth 

leading cause of death worldwide (WHO fact sheet No 311, 2011). Thus, studying obesity and 

associated diseases is essential for future generations and prevention or treatment of this disease a 

worthwhile aim for increasing health. 
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1.1.2 Obesity is a risk factor for the development of the metabolic syndrome 

Obesity is one of the major risk factors for the development of the metabolic syndrome, a 

multifactorial disease with many causes and faces that - due to its diversity - is very difficult to 

diagnose. Other risk factors for the metabolic syndrome include lifestyle (insufficient activity, 

unbalanced diet) and a certain genetic predisposition (Fig. 2). While the first description of the 

syndrome dates back to the 1920s, where it was described as a ‘syndrome involving hypertension, 

hyperglycaemia and hyperuricaemia’ (Kylin, E., 1923), it was only until 1998 that it was officially 

defined by certain criteria by the World Health Organization (Alberti, K.G. and Zimmet, P.Z., 1998). 

Ever since, there has been much controversy about the formal definition, and the development of a 

consensus definition continues to be a work in progress, further complicating a standardized 

diagnosis (Cornier, M.A., 2008). 

 

Fig. 2: Typical features of the metabolic syndrome. Causes (top), characteristics (middle) and typical consequences of the 
metabolic syndrome as defined by the WHO 1998.  

Nowadays it is generally accepted that the core components of the metabolic syndrome include 

obesity (waist circumference), insulin resistance or impaired glucose tolerance, dyslipidemia (high 

serum triglycerides or HDL-cholesterol), low-grade proinflammatory state and hypertension (Alberti, 

K.G., 2006). The WHO additionally adds microalbuminuria (high albumin secretion or albumin: 

creatinine ratio) to the list of risk factors. Altogether the combination of these anomalies increases 

the cardiovascular risk and the risk to develop type 2 diabetes, which are the major consequences of 

the metabolic syndrome, and is associated with other comorbidities including the prothrombotic 

state, proinflammatory state, nonalcoholic fatty liver disease, and reproductive disorders (Cornier, 

M.A., 2008).  

Both diagnosis and also therapy have proven to be difficult due to the complexity of the syndrome. A 

unifying definition of the syndrome may help with earlier diagnosis in order to intervene earlier in 

the course of disease and eventually prevent the progression into life-threatening conditions (Fulop, 

T., 2006). Apart from alterations in life style, which strongly reduce the risk of developing type 2 

diabetes or cardiovascular disease (Costa, B., 2012), pharmacological treatments so far mostly target 
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the individual components of the syndrome, e.g. controlling blood sugar, cholesterol, lipids, and high 

blood pressure (Fulop, T., 2006). Although many of these symptoms are connected, the 

pharmacological therapies so far failed to treat the metabolic syndrome as a whole (Fulop, T., 2006). 

 

1.2 Adipose tissue and its role in metabolism 

1.2.1 Lipolysis is a major function of the adipose tissue 

Storage and release of triglycerides and fatty acids in adipose tissue are regulated in a way that 

during postprandial periods lipids are stored, and during periods of fasting fatty acids are released in 

order to supply sink organs like liver or muscle with energy (Yu, Y. H. and Ginsberg, H. N., 2005). 

These mechanisms taking place in adipose tissue are critical to whole body energy homeostasis, and 

as such they are under tight hormonal control by catecholamines (promoting release) and insulin 

(promoting storage) (Bhathena, S.J., 2006).  

Lipolysis, the mechanism by which triglycerides are stepwise hydrolyzed to fatty acids and glycerol, 

precedes fatty acid release and is activated by catecholamines like norepinephrine binding to beta-

adrenergic receptors, thereby starting a signaling cascade ultimately leading to activation of a 

number of key lipases (schematic representation of the pathway shown in Fig. 3). In mice, there are 

three beta-adrenergic receptors responsible for induction of lipolysis, the β1, β2 and β3 adrenergic 

receptor. In humans, only two adrenoceptors mediate lipolysis (β1, β2), while the β3 adrenergic 

receptor is hardly expressed in WAT (Zechner, R., 2009 and own observations).  

Catecholamine binding to beta-adrenergic receptors activates adenylate cyclase to produce the 

second messenger cAMP (Zechner, R., 2009). cAMP then binds to the regulatory subunits of the 

cAMP-dependent kinase protein kinase A (PKA) heterotetramer and thereby liberates the PKA 

catalytic subunits (Moorthy, B.S., 2011). Dissociated catalytic subunits ultimately phosphorylate 

target genes like hormone sensitive lipase (HSL), directly activating lipolysis, or translocate to the 

nucleus and activate transcription factors like the cAMP response element binding protein (CREB) 

(Sands, W.A. and, Palmer, T.M., 2008). In addition, PKA phosphorylates the lipid droplet protein 

perilipin A. Without stimulation, perilipin binds to the adipocyte triglyceride lipase (ATGL) co-

activator comparative gene identification 58 (CGI-58) at the lipid droplet surface. Upon 

phosphorylation of perilipin, CGI-58 is released and binds to ATGL, thereby increasing its activity by 

20-fold (Lass, A. et al. 2006).  

ATGL and HSL catalyze the first two steps of lipolysis, the hydrolysis of trigacylglycerol and the 

subsequent hydrolysis of diacylglycerol. The last step of the reaction is catalyzed by the enzyme 

monoacylglycerol lipase (MGL) (Zechner, R., 2009). MGL is constitutively active and has not been 

found to be regulated by beta-adrenergic signaling, indicating that ATGL and HSL are the rate limiting 

enzymes of the lipolytic cascade (Lampidonis, A.D., 2011). The products of the reactions, three 

molecules of free fatty acids and one molecule of glycerol, are then exported out of the cell by 

transporters like fatty acid transport protein (FATP, Schaffer, J.E. and Lodish, H.F. 1994) or aquaporin 

7 (Maeda N., 2008) or recycled inside the cell (Festuccia, W.T., 2006). 

The pathway is negatively regulated by insulin to prevent triglyceride breakdown during times of high 

external energy supply. Insulin binds to the insulin receptor and signals to activate 
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phosphodiesterase 3B (PDE3B) and protein phosphatases (PP), which rapidly degrade cAMP and de-

phosphorylate target proteins, respectively. This negative signaling pathway efficiently blocks the 

lipolytic cascade (Lampidonis, A.D., 2011).  

 

Fig. 3: Schematic representation of adipocyte lipolysis. Fasting or the hormonal catecholamine signals activate β-
adrenergic signaling via β2- or β3-adrenergic receptors (β2-, β3-AR). They in turn activate adenylate cyclase (AC) to produce 
cyclic AMP out of ATP. cAMP activates protein kinase A (PKA), which then phosphorylates target genes like hormone 
sensitive lipase (HSL) or the lipid droplet coating protein perilipin. Phosphorylated HSL in concert with activated adipocyte 
triglyceride lipase (ATGL) mediate triglyceride (TG) hydrolysis into fatty acids (FA) and glycerol. The cascade is negatively 
regulated by insulin, which activates insulin receptor (IR) and over several steps leads to activation of protein phosphatases 
(PP) or phosphodiesterases (PDE) to negatively influence PKA action.  

In obesity, the lipolytic cascade is dysregulated in that basal lipolysis is increased while beta-

adrenergic signaling is almost blunted (Gaidhu, M.P., 2010). The increase in basal lipolysis rates are 

attributed to reduced sensitivity to the lipolysis-lowering actions of insulin and increased function of 

repressive adrenergic receptors like the α2-adrenoceptor (Gaidhu, M.P., 2010). Also, the pro-

inflammatory cytokine TNFα, which is present at higher levels in obese adipose tissue, has potential 

to activate lipolysis (Guilherme, A., 2008). The decreased expression of the α2-adrenoceptor as well 

as decreased expression and activation of HSL and ATGL, accompanied by low cAMP levels, 

additionally decrease the capacity of catecholamine-stimulated lipolysis characteristic in obesity 

(Arner, P., 1999).  

 

1.2.2 Adipose tissue is central to whole body lipid metabolism 

White adipose tissue is the organ where dietary fatty acids are stored until needed, and are 

incorporated into triglycerides depending on energy demand of the body. Triglyceride storage is 

favorable over glucose storage, providing fuel at a high energy density because of its hydrophobic 

nature and high caloric value compared with carbohydrates (39.1 kJ/g vs. 15.4–17.5 kJ/g) (Trayhurn, 
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P., 2007). The balance between fatty acid storage and release determines body fat mass, and a 

disruption or dysfunction in this system may be causal for the development of obesity and associated 

disorders (Arner, P., 2011).  

Under normal conditions, lipid storage and release are well-balanced, favoring one or the other 

depending on the actual energy demand. In obesity, lipid storage is higher than lipid removal, leading 

to adipose tissue expansion by adipocyte hyperplasia and hypertrophy (Jo, J., 2009). While basal 

adipocyte numbers are established early in life, the adipose tissue remains capable of expanding 

throughout life by increased proliferation and differentiation of preadipocytes (Kirkland, J., 1990). 

Adipocyte differentiation is a process that requires an ordered progression of well defined 

transcriptional events ultimately leading to a phenotypic switch from fibroblast-like precursor cells to 

triglyceride-rich adipocytes, which is accompanied by an increase in expression of lipid-metabolizing 

enzymes and adipocyte proteins such as FAPB4 (adipocyte fatty acid binding protein) and 

adiponectin. Key regulators of this process are the transcription factors peroxisome proliferator-

activated receptor-gamma (PPARγ) and CCAAT/enhancer binding protein (C/EBP) (reviewed in Henry, 

S.L., 2012). In obesity, adipocyte hyperplasia is often secondary to hypertrophy due to paracrine 

actions of growth factors or cytokines released from hypertrophied adipocytes (Avram, M.M., 2007).  

An increased number of enlarged adipocytes does not necessarily mean harm – in contrast, a good 

triglyceride storage capacity has proven to be beneficial for glucose tolerance and insulin sensitivity 

since it prevents lipotoxicity in other organs (Samocha-Bonet, D., 2012). High lipid load, however, 

may lead to lipid spillover into the blood flow, where hyperlipidemia can cause lipotoxicity and 

ectopic fat accumulation for example in liver, muscle or heart and clot arteries. This in turn can 

promote the development of serious complications like hepatic steatosis or cardiomyopathy 

(Feldstein, A.E., 2004; Maisch, B., 2011).  

Of note, not only the quantity of adipose tissue accounts for obesity-related disorders, but rather the 

quality of it. Adipose tissue is source of adipocytokines like adiponectin, leptin, or resistin, which 

signal metabolic status throughout the whole body, regulating multiple metabolic and inflammatory 

processes (Wozniak, S.E., 2009). Altered adipocyte function for example in obesity leads to a shift in 

adipocytokine release from these cells: while leptin, resistin and cytokines like interleukin 6 (IL6) are 

produced to a larger extent, adiponectin release is reduced, all together leading to worsened insulin 

sensitivity and the development of metabolic syndrome (Fig. 4) (Iyer, A., Brown, L., 2010; Rasouli, N., 

Kern, P.A. 2008). In obesity, increased production of pro-inflammatory cytokines like macrophage 

chemoattractant protein (MCP) 1 or IL6 by the enlarged adipocytes activates macrophages and 

recruits them to the adipose tissue (Wellen, K.E., 2003). These adipose tissue residing macrophages 

(ATM) in turn produce inflammatory cytokines, especially tumor necrosis factor (TNF) α, eventually 

leading to a potentiation of the low-grade systemic inflammation that is typical for chronic 

pathologies associated with the metabolic syndrome, like atherosclerosis (Nishimura, S. et al., 2009), 

and is correlated with insulin resistance (Hotamisligil, G.S., 2006). Thus, proper adipose tissue 

function is fundamental to maintain a balanced whole body energy metabolism through a wide array 

of metabolic and endocrine functions, and adipose tissue dysfunction in obesity may cause the 

development of diseases like the metabolic syndrome or type 2 diabetes.  
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Fig. 4: Adipocyte dysfunction and local inflammation induce lipotoxicity and insulin resistance and increase the risk for 
developing metabolic syndrome. Adipocyte overload induces cellular stress leading to chronic low-grade inflammation and 
macrophage recruitment, thereby changing adipocyte function. The altered release of lipids and adipocytokines leads to 
lipotoxicity, ectopic lipid accumulation and insulin resistance in non-adipose tissues, favoring the development of the 
metabolic syndrome. Adapted from Iyer, A., Brown, L. (2010). 

 

1.2.3 Manipulating adipose tissue function may help fighting the pandemic of obesity and 

the metabolic syndrome 

The most obvious means of fighting the obesity and metabolic syndrome pandemic is the transition 

towards a healthier lifestyle with more exercise and a balanced diet. Indeed, recent studies have 

confirmed long term benefits of moderate weight loss and improved glucose homeostasis (Perreault, 

L., 2012; Costa, B., 2012). Lifestyle changes, however, require extensive educational programs and 

present the long-term goal in diabetes prevention.  

In the meantime, it is important to intervene in other elements of the metabolic syndrome (Fig. 5). 

For example, treatment with thiazolidinediones like pioglitazone can improve insulin sensitivity by 

mechanisms including partitioning of lipid stores and the regulation of adipocytokines by activating 

PPARγ transcriptional activity, leading amongst other things to enhanced adipocyte proliferation, 

reducing adipose tissue lipid spill over into other organs (Tontonoz, P. and Spiegelman, B.M., 2008). A 

second means of adipocyte manipulation is activating adipocyte lipolysis. In order to avoid 

lipotoxicity, however, activators of lipolysis are only beneficial if the same molecule also stimulates 

fatty acid oxidation and energy expenditure, like beta3-adrenergic receptor agonists in rodents 

(Langin, D., 2006). Activating beta-adrenergic signaling in rodents activates not only lipolysis but also 

leads to production or activation of brown or brite adipocytes (brown-like adipocytes appearing in 
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white adipose tissue), which burn fat rather than storing it. In brown and brite adipocytes, 

triglycerides are used as fuel for thermogenesis by uncoupled mitochondrial respiration (Mottillo, 

E.P. and Granneman, J.G., 2011). This strategy and others aiming at manipulating adipocyte lipolysis, 

including inhibition of key lipases, have not yet been successful in humans (Langin, D., 2006) due to 

severe side effects like increased heart rate or blood pressure, favoring cardiovascular disease (Hom, 

G.J., 2001).  

 

Many adverse effects of obesity are caused by the low-grade inflammation accompanying adipocyte 

stress. Thus, anti-inflammatory treatment may be beneficial, for example with statins or even aspirin 

(Fulop, T., 2006). TZDs also have anti-inflammatory functions. Lowering the systemic inflammation 

may ameliorate many of the adverse effects caused by the metabolic syndrome, like atherosclerosis 

or liver damage. Both anti-inflammatory drugs as well as TZDs improve adipocytokine profiles 

towards a healthier state and improve the ‘quality’ of the fat (Langin, D., 2006).  

 

Fig. 5: Stages in adipocyte biology where pharmacological intervention may provide strategies against obesity and 
diabetes. (1) Activation of adipocyte differentiation for improved triglyceride storage and reduced lipotoxicity. (2) Activation 
of lipolysis and fatty acid oxidation to reduce adiposity and serum triglyceride levels. (3) Production or activation of brown or 
brite adipocytes to increase fatty acid oxidation. (4) Improvement of adipocytokine profile to improve insulin sensitivity in 
non-adipose tissues.  

 

1.3 The transcriptional co-factors transducin beta like (TBL) 1 and transducin 

beta like related (TBLR) 1  

1.3.1 TBL1 and TBLR1 are transcriptional co-factors 

All metabolic and cellular functions have to be coordinated and regulated in a robust system, starting 

from cell division to maintaining organ homeostasis. Indeed, while the number of genes does not 

necessarily increase with complexity of an organism, the number of regulatory mechanisms raises 

dramatically the more complex an organism is (Barrett, L.W., 2012). Internal or external messages 

have to congregate in a coordinated relay of events, the signal transduction chains. These allow for 
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well-coordinated and fine-tuned responses to all kinds of signals through mechanisms like protein 

complex formation, conformational changes or subcellular localization as well as transcriptional 

activation or repression of target genes (Scott, J.D. and Pawson, T., 2009).  

A well-defined example of proteins converting external signals to cellular responses are nuclear 

receptors. Nuclear receptors are transcription factors that are involved in a wide array of 

physiological processes including homeostasis, reproduction, development, and metabolism 

(Anbalagan, M., 2011). The family of nuclear receptors encompasses more than 40 members in 

humans and includes receptors for steroid hormones, thyroid hormone, various lipids and oxysterols 

(Burris, T.P., 2012). Nuclear receptors can bind directly to DNA and recruit co-activator or co-

repressor complexes to mediate transcription of target genes (Anbalagan, M., 2011). A central 

regulator of lipid and glucose homeostasis is the peroxisome proliferator-activated receptor (PPAR) 

family of nuclear receptors, representing important molecular targets for drugs to treat 

hyperlipidaemia and type 2 diabetes. In adipose tissue, PPARγ is the master regulator of 

differentiation and metabolic function (Christodoulides C., Vidal-Puig, A., 2010).  

There are three classes of nuclear receptors that are distinguished by the ligands they bind: a) the 

group of endocrine receptors, binding high affinity ligands synthesized exclusively from endogenous 

endocrine sources and present in nanomolar concentrations, b) the group of adopted orphan 

receptors, binding ligands from external sources present in the micromolar range, like lipids or 

xenobiotics, and c) the group of orphan receptors, where no physiologic ligands have been identified 

yet (Fig. 6). While primary and tertiary structures are common to all nuclear receptors, they further 

differ in their choice of dimerization partners: endocrine receptors form homodimers, adopted 

orphan receptors form heterodimers with retinoic x receptor (RXR), and orphan receptors can also 

act as monomers (Fig. 6) (Chawla, A., 2001; Glass, C.K. and Ogawa, S., 2006).  
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Fig. 6: The family of nuclear receptors. A) The nuclear receptor family consists of three subgroups, the endocrine receptors, 
adopted orphan receptors, and the orphan receptors. Receptors (white writing) are grouped to one or the other subfamily 
depending on their ligand (black writing). B) Primary and tertiary structure of nuclear receptor or nuclear receptor dimer 
(grey). AF1,2-transactivation domains, DBD-DNA binding domain, LBD-ligand binding domain. Adapted from Chawla, A., 
2001. 

Depending on ligand binding and post-translational modifications, nuclear receptors can mediate 

both repression and activation of transcription. Thus, it is perspicuous that, as most transcription 

factors, nuclear receptors rely on binding of further regulatory units to mediate their full range of 

transcriptional events (Anbalagan, M., 2011).  

Transcriptional co-factors are important regulators of transcriptional events mediated by nuclear 

receptors and other transcription factors. While not binding directly to DNA, co-factors recruit other 

regulatory units by protein interactions, thereby mediating either repression or activation of 

transcription through methods like post-translational modification (phosphorylation, acetylation, 

ubiquitination, SUMOylation) (Anbalagan, M., 2011).  Two of the best studied repressors involved in 

transcriptional repression by unliganded nuclear receptors are nuclear receptor co-repressor (NCoR) 

and silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) (Watson, P.J., 2012), 

which mediate repression by the recruitment of histone deacetylases (HDACs). Transcriptional 

activators include the CBP/p300 family of co-activators, which mediate transcriptional activation by 

their histone acetyl transferase activity (Liu, X., 2008).  

Binding of co-repressors or co-activators happens in a tightly regulated manner involving large 

protein complexes whose composition differs depending on cell-type, function and ligand availability. 

The core components of these regulatory complexes have been shown to consist of the histone 

deacetylase HDAC3, G-protein pathway suppressor-2 (GPS2), and transducin beta like 1/ transducin 

beta like 1 related 1 (TBL1/TBLR1) (Guenther, M.G., 2000; Li, J., 2000; Zhang, J., 2002). TBL1 and 

TBLR1 share a high (~90%) similarity in protein sequence and structure (Fig. 7A) and can form homo- 

and heterodimers (Yoon, H.G., 2003). Both are required for repression mediated by unliganded 

nuclear receptors like TR (thyroid hormone receptor) (Yoon, H.G., 2003).  

Interestingly, TBL1/TBLR1 are also implicated in transcriptional activation. They were shown to 

activate transcription mediated by the nuclear receptors estrogen receptor (ER), retinoic acid 

receptor (RAR), TR, and PPAR and by other transcription factors like nuclear factor kappa B (NFκB) or 

activator protein 1 (AP-1) (Perissi, V., 2004). The term ‘nuclear exchange factors’ was established by 

the same group, meaning that TBL1/TBLR1 can function in both repression and activation of 

transcription by exchanging co-repressors for co-activators. The co-factors recruit ubiquitin/19S 

proteasome units to the transcriptional complex, resulting in dismissal of SMRT-NCoR-HDAC3 

complex and binding of co-activators (Fig. 7B, Perissi, V., 2004). TBL1 and TBLR1 have similar but non-

identical functions in this setting, differing mostly in CK1/GSK3- or PKCδ-mediated phosphorylation at 

five distinct sites (Perissi, V., 2008).  



 
10 INTRODUCTION 

 

Fig. 7: TBL1 and TBLR1 share a high similarity in protein structure and act as part of transcriptional activator or repressor 
complexes. A) TBL1 and TBLR1 consist of three major protein domains. The N-terminal LisH domain is essential for 
dimerization. The F-Box-like domain is necessary for protein interaction with ubiquitin ligases. The WD40 or transducin beta 
repeats are protein interaction domains giving the protein a propeller like tertiary structure and can act as platforms for the 
assembly of multi-protein complexes. B) TBL1 and TBLR1 can act in repressive as well as activating transcriptional complexes 
by interacting with a wide range of transcription factors like nuclear receptors (X, X*) and recruiting transcriptional 
repressors or activators (Y, Y*).   

Apart from acting as nuclear exchange factors, TBL1/TBLR1 have also been shown to be involved in 

wnt/β-catenin signaling in a SUMOylation dependent manner: Recruitment of β-catenin to the wnt 

target gene promoter leads to activation of wnt-β-catenin-induced gene expression and oncogenic 

growth, which can be inhibited by TBL1/TBLR1 depletion (Li, J. and Wang, C.Y., 2008; Choi, H.K., 

2011).  

 

1.3.2 TBL1 and TBLR1 are implicated in liver lipid metabolism 

The regulation of wnt-β-catenin signaling as well as the activation of NFκB transcriptional activity 

leading to increased invasiveness of adenocarcinoma (Ramadoss, S., 2011) are suggestive of the 

implication of TBL1/TBLR1 in important signaling cascades. However, there is not much known about 

the function of TBL1/TBLR1 in metabolism or homeostasis. Whole body TBL1 or TBLR1 knockout mice 

are embryonically lethal (Perissi, V., 2010), further complicating TBL1/TBLR1 research.  

Our group recently identified a novel role for TBL1/TBLR1 in liver lipid metabolism (Kulozik, P., 2011). 

TBL1 levels in the liver negatively correlate with liver triglyceride content in humans, and TBL1 levels 

are decreased in liver of mouse models of obesity and steatosis. Accordingly, adenovirus- or adeno-

associated virus-mediated knock down of TBL1 in mouse livers promotes hepatic steatosis and 

hypertriglyceridemia in both low and high fat diet feeding. The increase in liver and VLDL triglycerides 

is explained by reduced mitochondrial and peroxisomal fatty acid oxidation pathways and increased 

lipogenesis. Consistent with the described role as transcriptional co-factors of nuclear receptors, 

TBL1/TBLR1 mediate their function in hepatic lipid homeostasis through interaction with and 

activation of PPARα. Thus, TBL1/TBLR1 as regulators of liver lipid metabolism provide a first hint of a 
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critical role of these co-factors in energy homeostasis and diseases like obesity or the metabolic 

syndrome, and further investigation will lead towards a better understanding of TBL1/TBLR1-

regulated pathways and tissue-specific functions in health and disease.  

 

1.4 Aim of the project 

The transcriptional co-factors TBL1/TBLR1 have been shown to play a critical role in differentiation, 

oncogenesis and liver lipid metabolism by regulating important signaling networks such as the wnt-β-

catenin, NFκB and PPAR pathways. The aim of this study was to elucidate the role of the 

transcriptional co-factors TBL1 and TBLR1 in adipose tissue biology with a focus on adipocyte 

endocrine function and lipid metabolism. This was to be achieved by comprehensive in vitro 

experiments in 3T3-L1 and primary adipocytes, illuminating cellular functions of TBL1/TBLR1 in 

adipocytes. Knowledge gained in the in vitro system was applied to an in vivo model. To this end, 

adipocyte specific knockout mice were created in order to investigate tissue-specific and systemic 

consequences of co-factor deficiencies in basal and challenged conditions. Knowledge gained during 

in vitro and in vivo experiments was to be used for conductive analysis of patient data in order to 

shed light on co-factor function in humans, ultimately aiming at identifying a novel therapeutic 

approach for the treatment of metabolic diseases. 
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2 RESULTS 

2.1 Analysis of TBL1 and TBLR1 expression in white adipose tissue of mouse 

disease models 

Mouse models have a high potential for studying human diseases. Mice and humans share 99% of 

their genes, and in many cases mouse models mimic the situation in men. Thus, investigating models 

of metabolic disorders, such as obesity, systemic inflammation, or altered lipid metabolism, and 

genetic models improves our understanding of the underlying biology of human disease and may 

thus represent a potent tool to identify genes contributing to the onset of the disease (Rosenthal, N. 

and Brown, S., 2007). 

2.1.1 TBL1 and TBLR1 are ubiquitously expressed in various mouse tissues 

In order to investigate the expression of TBL1 and TBLR1 throughout the body, protein levels of the 

co-factors were analyzed in various mouse tissues by immunoblotting.  

Both TBL1 and TBLR1 could be detected by western blot in the different organs using specific 

antibodies, and while in some tissues both proteins were mutually expressed, in others only one of 

the co-factors could be detected (Fig. 8): In accordance with a role for TBL1 in regulating hepatic lipid 

metabolism (Kulozik, P., 2011), TBL1 protein expression was high in liver. Concerning other 

metabolically important organs, TBL1 was also present in intestine, pancreas and brown adipose 

tissue (BAT), but could not be detected in white adipose tissue (WAT). In contrast, TBLR1 protein was 

readily detectable in inguinal white adipose tissue, but also in spleen, intestine, brain, and stomach. 

The organ-specific protein expression of the highly related co-factors therefore indicates that the two 

genes are not functionally redundant but have tissue specific functions. 

 

Fig. 8: TBL1 and TBLR1 protein expression in different mouse organs. Protein lysates from mouse liver, spleen, intestine, 
heart, lung, pancreas, kidney, brain, testis, brown adipose tissue (BAT), inguinal white adipose tissue, abdominal white 
adipose tissue, gastrocnemius muscle (GC) and stomach were assessed in regard to TBL1 and TBLR1 expression using specific 
antibodies in immunoblotting.  

 

2.1.2 TBL1 and TBLR1 expression in mouse models of obesity  

To investigate adipose tissue TBL1 and TBLR1 regulation in adiposity, mRNA expression of the co-

factors was assessed in abdominal WAT of various mouse models of obesity. Mice fed a high fat diet 

develop obesity and associated disorders and represent a potent model for the human situation 

(Buettner, R., 2007). Here, we used mice fed a high fat diet containing 45% calories from fat (HFD) for 

20 weeks (S. Kersten lab). Mice homozygous for lacking the leptin gene (ob/ob) or the leptin receptor 
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gene (db/db) representing monogenic models of obesity and obesity-associated complications and 

the metabolic syndrome become obese and develop type-2-diabetes mellitus like symptoms like 

hyperinsulinemia or hypertriglyceridemia (Kobayashi, K., 2000; Lindstrom, P., 2007). Lastly, New 

Zealand Obese (NZO) mice represent a polygenic model of obesity (Jürgens, H.S., 2006). The 

background strain of these mice is the New Zealand Black (NZB) strain.  

In the polygenic obesity model, the NZO mice, TBL1 levels were decreased while TBLR1 levels were 

unchanged in the obese state (Fig. 9 G, H). In contrast, in all other investigated obesity models, TBL1 

levels in WAT were unchanged in the obese state (Fig. 9 A, C, E), while TBLR1 mRNA expression was 

significantly increased (Fig. 9 B, D, F), pointing towards a specific role of WAT TBLR1 but not TBL1 in 

hyperphagia or energy imbalance associated obesity.  

 

Fig. 9: Abdominal adipose tissue TBL1 and TBLR1 mRNA expression in mouse models of obesity. (A), (B), Mice were fed a 
low fed control diet (LFD) or a high fat diet containing 45% calories from fat for 20 weeks starting from 11 weeks of age. 
TBL1 and TBLR1 mRNA levels were analyzed by qPCR from abdominal WAT. (C), (D), TBL1 and TBLR1 mRNA levels in 
abdominal WAT of 12 week old random fed ob/ob and control mice. (E), (F), TBL1 and TBLR1 mRNA levels in abdominal WAT 
of 9 week old random fed db/db and control mice. (G), (H), TBL1 and TBLR1 mRNA levels in abdominal WAT of New Zealand 
Black (NZB) or New Zealand Obese (NZO) mice. n=4-7, means ±SEM, *indicates significance. 

 

2.1.3 TBLR1 but not TBL1 levels are increased in LPS-induced sepsis 

Injection of bacterial lipopolysaccharides (LPS) into mice stimulates an acute septic shock and leads 

to systemic inflammation and increased lipolysis (Zu, L., 2009). Here, mice were starved over night 

and subsequently injected intraperitoneally with LPS at a dose of 20 mg/kg body weight or with PBS 

as a control. LPS injected mice are anorexic, so PBS control animals were fasted for the course of the 

experiment. After 8 hours, mice were sacrificed, RNA and protein extracts were isolated from the 

abdominal fat pads and gene expression was analyzed by qPCR or immunoblotting, respectively. As 
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seen in Fig. 10, TBL1 levels were unchanged in LPS injected animals compared to the PBS controls, 

while TBLR1 levels were increased in septic mice both on mRNA and protein levels. 

To investigate which cell type within the adipose tissue was responsible for the increase in TBLR1 

expression upon LPS stimulation, abdominal adipose tissue of LPS injected mice was collagenase 

digested and separated into mature adipocytes (mAd), the stromal vascular fraction (SVF) containing 

precursor cells, fibroblasts and immune cells, and the SVF subfraction of CD11 positive macrophages 

(CD11+). TBLR1 expression in these fractions was analyzed by qPCR. As shown in Fig. 10 C, LPS 

increased TBLR1 expression in the adipose tissue as well as in the mature adipocytes, but not in the 

SVF or CD11 positive macrophages, indicating that adipocyte TBLR1 is responsible for the LPS-

induced increase in WAT gene expression. 

 

Fig. 10: TBLR1 but not TBL1 mRNA expression is increased in adipose tissue of septic mice. Mice were fasted over night 
before they were injected i.p. with 20 mg/kg BW LPS or PBS for 8 hours. mRNA from abdominal WAT was analyzed by qPCR. 
A) TBL1 mRNA expression, B) TBLR1 mRNA expression in abdominal WAT. C) TBLR1 expression in WAT, mature adipocytes, 
stromal vascular fraction and CD11 positive cells of LPS treated mice. n=5, means ±SEM, *indicates significance. D), E) 
Immunoblot of protein extracts isolated from abdominal WAT of the same mice. TBL1, TBLR1 and VCP were detected by 
specific antibodies. 

 

2.1.4 TBLR1 but not TBL1 levels are regulated by fasting and restricted feeding 

To determine if fasting influences TBL1 or TBLR1 mRNA levels, gene expression of the co-factors was 

analyzed in abdominal WAT of 8, 24, or 48 hrs fasted mice or mice that were fasted for the respective 

times and subsequently refed for 24 hrs. As shown in Fig. 11 A, B, WAT TBL1 expression was 

unchanged upon fasting, while TBLR1 levels were significantly increased after 8 hrs fasting and 

decreased after 48 hrs fasting, representing a time-dependent expression curve of the co-factor 

TBLR1 in fasting. 

The Colon26 mouse model shows the typical phenotype of cancer cachexia, with symptoms like loss 

of weight mainly through wasting of adipose and muscle tissue, muscle atrophy and loss of appetite 

(Tanaka Y., 1990). Balb/C mice were injected subcutaneously with Colon26 adenocarcinoma cells and 

as a consequence developed tumors and the cachectic phenotype as measured by body weight loss 
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since tumor implantation. Three groups of mice were tested: a) a control group that was fed ad 

libitum, b) a control group on a restricted diet, getting exactly the amount of food that the Colon26 

animals received (pair fed), and c) the Colon26 cachectic mice. The mice were sacrificed 16 days after 

injection of the Colon26 cells. As seen in Fig. 11 C-D, TBL1 mRNA levels were unchanged in the 

Colon26 cachectic mice and the pair-fed control animals, while TBLR1 levels tended to be higher in 

the Colon26 cachectic animals and were significantly increased in pair-fed mice. This indicates that 

TBLR1 levels in WAT may be influenced by the feeding behavior or nutritional status of the mice 

rather than by tumor development. 

 

Fig. 11: TBLR1 but not TBL1 mRNA expression is changed in a time-dependent manner upon fasting or restricted feeding. 

(A), (B) TBL1 and TBLR1 qPCR from mRNA isolated from abdominal WAT of 8, 24, or 48 hrs fasted mice or 24 hrs refed 

control mice. n=4, means ±SEM, 2-way ANOVA, Bonferroni post test, *p < 0.05. (C), (D) Mice were injected with Colon26 

adenocarcinoma cells and developed cancer cachexia. From the point on when they lost weight, pair-fed (p.f.) control mice 

received equal amounts of food as the cachectic animals for 3 days (approximately 70% less than ad libitum fed mice). TBL1 

and TBLR1 mRNA levels in abdominal WAT of cachectic colon26 or ad libitum or pair-fed control mice were analyzed by 

qPCR. n=5, means ±SEM, *indicates significance. 

 

2.1.5 TBLR1, but not TBL1 levels are increased by β-adrenergic signaling  

Based on the gene expression data of obese, septic and fasted mice and animals on a restricted diet, 

we hypothesized that especially TBLR1 may be regulated in situations with increased lipolysis in WAT, 

which is at least in part dependent on β-adrenergic signaling (Zechner, R. et al., 2009). To test if β-

adrenergic signaling had direct effects on TBLR1 expression, random fed mice were injected 

intraperitoneally with a β3-adrenergic receptor agonist (1 mg/kg BW CL316,243 in 0.9% saline) or 

vehicle for 3 or 8 hours and mRNA was extracted from abdominal WAT to analyze gene expression by 

qPCR.  
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As shown in Fig. 12 A, B, treatment of the mice with CL for 3 or 8 hours did not change TBL1 mRNA 

levels in abdominal WAT, while TBLR1 levels were significantly increased by 2.5- and 4.5- fold, 

respectively. The same was true for injecting mice with a β1/2/3-adrenergic receptor agonist 

(norepinephrine, NE) (Fig. 12 C, D). Thus, TBLR1 levels seem to be acutely regulated in WAT in 

response to β-adrenergic signaling.  

 

Fig. 12: TBLR1, but not TBL1 levels in WAT are increased by treatment of mice with β-adrenergic receptor agonists. Mice 
were injected intraperitoneally with 1 mg/kg BW CL in 0.9% saline or vehicle for 3 or 8 hours (A, B) or 1 mg/kg 
norepinephrine for 3 hrs (C, D). mRNA levels in abdominal WAT were measured by qPCR. A, C) TBL1 and B, D) TBLR1 mRNA 
expression in CL or NE injected animals. n=5, means ±SEM, *indicates significance. 

 

Long term exposure to β-adrenergic receptor signaling leads to constantly increased lipolysis and 

browning of white adipose tissues (Collins, S., 2010). To investigate whether TBLR1 is regulated only 

by short-term adrenergic stimulation or is also involved in long-term signaling events, mice were 

injected intraperitoneally with CL for 2 or 10 consecutive days and TBLR1 mRNA expression was 

measured. As observed upon short-term stimulation, long term CL led to an increase in TBLR1 mRNA 

expression (Fig. 13 A).  

PPARs represent potent regulators of metabolism and are implicated in β-adrenergic signaling 

(Rodriguez-Cuenca, S., 2012a). To investigate whether PPAR signaling was also implicated in the 

regulation of TBLR1 expression, WAT TBLR1 mRNA levels were analyzed in PPARα, PPARβ/δ and 

PPARγ knockout mice injected with CL for 10 consecutive days. As shown in Fig. 13 B-D, the increase 

in TBLR1 expression upon β-adrenergic receptor activation was dependent on PPARα, as it could not 

be observed in PPARα KO mice.  
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Fig. 13: TBLR1 levels are increased by long-term β-adrenergic stimulation, which is dependent on PPARα. Female NMRI 
mice or male PPARα-/-, PPARβ/δ-/- and PPARγ+/- mice and their corresponding wt littermates were injected with 1 mg/kg 
BW CL316,243 in 0.9% saline or vehicle for (A) 2 or 10 consecutive days or (B-D) 10 consecutive days and TBLR1 mRNA levels 
were determined by qPCR. n=4, means ±SEM, *indicates significance. 

 

2.2 Impact of TBL1 and TBLR1 on adipocyte differentiation 

2.2.1 TBL1 and TBLR1 levels are increased during the course of adipocyte differentiation 

Adipocytes are differentiated from precursor cells (3T3-L1 or primary preadipocytes) by the addition 

of a differentiation cocktail consisting of high (4.5 g/l) glucose DMEM, insulin, 3-isobutyl-1-

methylxanthine (IBMX), dexamethasone and ABP (L-ascorbate, d-biotin, pantothenic acid). For this, 

confluent cells are stimulated with the differentiation cocktail for 4 days, followed by a 2-days phase 

of insulin treatment as described in ’Methods ’.  

To analyze the TBL1 and TBLR1 expression profile during the differentiation process, 3T3-L1 or 

primary preadipocytes (PA) isolated from the SVF of inguinal, abdominal or brown adipose tissue 

depots were differentiated and RNA samples were taken every two days for 14 days. cDNA was 

synthesized from mRNA and qPCRs were performed to measure TBL1 and TBLR1 transcript levels in 

these cells.  

 

Fig. 14: TBL1 and TBLR1 mRNA expression are regulated during the course of adipocyte differentiation. Adipocytes were 
differentiated as described in ’Methods’ and mRNA levels were measured by qPCR. A) TBL1 and B) TBLR1 levels during 3T3-
L1 adipocyte differentiation or during differentiation of preadipocytes (PA) isolated from SVF of abdominal and inguinal 
WAT and interscapular BAT depots. n=3, means ±SEM. 
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As seen in Fig. 14, TBL1 and TBLR1 levels were increased 2.5-fold during early phases of 3T3-L1 

adipocyte differentiation and decreased when adding only insulin to the cells. After insulin removal 

TBL1/TBLR1 expression increased again to a final 2-fold higher expression in mature adipocytes 

compared to the 3T3-L1 precursor cells (squares). As in 3T3-L1 cells, TBL1 and TBLR1 expression in 

primary cells was increased after initiation of differentiation but decreased with the addition of 

insulin. The attenuated induction of TBL1 and TBLR1 expression in primary cells (except for BAT) 

compared to 3T3-L1 cells may reflect a reduced differentiation capacity of the primary cells (40-60% 

differentiated primary adipocytes vs. 95% differentiated 3T3-L1 adipocytes), indicating that co-factor 

expression is rather indirectly regulated by events taking place during the differentiation process 

than the direct effects of the stimuli. This notion is further supported by the fact that the 

differentiation stimuli alone did not increase TBL1 or TBLR1 expression in 3T3-L1 adipocytes (Fig. 15). 

Overall, the induction of co-factor expression during adipocyte differentiation points towards a role 

of the co-factors in adipocyte biology.  

 

Fig. 15: TBL1 and TBLR1 mRNA expression is unchanged in 3T3-L1 preadipocytes stimulated with insulin, IBMX or 
dexamethasone. 3T3-L1 cells were treated with 1 µg/ml insulin, 500 µM IBMX or 250 nM dexamethasone or a mixture of all 
three (differentiation cocktail) for 48 hrs, and mRNA levels were measured by qPCR. TBL1 (A) and TBLR1 (B) mRNA levels 
were analyzed by qPCR. n=3, means ±SEM, *indicates significance. 

 

2.2.2 TBL1 and TBLR1 are not required for adipocyte differentiation 

Both TBL1 and TBLR1 levels are increased during the course of adipocyte differentiation, so it is 

tempting to speculate that they are required for proper function of this process. To investigate this, 

TBL1 and TBLR1 were knocked down in 3T3-L1 preadipocytes using adenovirus-mediated shRNA 

delivery, which resulted in an efficient reduction in TBL1 and TBLR1 mRNA expression during the 

course of adipocyte differentiation (Fig. 17 A, B). Ten days after induction of differentiation, cells 

were fixed with formaldehyde and lipids were stained using OilRedO-staining.  

As seen in Fig. 16, 3T3-L1 cells could be differentiated into adipocytes with high triglyceride content 

within the lipid droplet. Comparing cells that were infected with adenoviruses carrying shRNA against 

TBL1, TBLR1, or both, with the negative control, no difference in differentiation capacity or lipid 

droplet number or size could be observed between the groups.  
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Fig. 16: TBL1 or TBLR1 knock down does not influence capacity of 3T3-L1 cells to differentiate into adipocytes. 3T3-L1 cells 
were transduced with adenoviruses carrying shRNAs against TBL1, TBLR1, or both, and differentiated into adipocytes as 
described in ’Methods ’. Lipids were stained with OilRedO, and pictures were taken with 20-fold magnification.  

As shown in Fig. 17 C-F, TBL1, TBLR1, or double knock down did not lead to altered gene expression 

levels of PPARγ, FABP4, adiponectin, or lipoprotein lipase (LPL), again pointing towards a normal 

differentiation capacity of the 3T3-L1 adipocytes despite their lack of TBL1 or TBLR1.  

 

Fig. 17: mRNA expression levels of adipocyte marker genes during 3T3-L1 differentiation are unchanged upon TBL1 or 
TBLR1 knock down. TBL1 (A) and TBLR1 (B) are efficiently knocked down during 3T3-L1 differentiation. Peroxisome 
proliferator-activated receptor γ (C), fatty acid binding protein 4 (D), lipoprotein lipase (E) and adiponectin (F) mRNA levels 
are shown. n=3, means ±SEM.  
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2.3 TBL1 and TBLR1 play a role in adipocyte inflammation 

2.3.1 TBL1 and TBLR1 are regulated by LPS and conditioned macrophage medium (CM) in 

3T3-L1 adipocytes 

It was shown before that TBLR1 levels were increased in WAT of LPS-injected mice. Here it was 

analyzed if the same was true for cultured adipocytes. For this, 3T3-L1 adipocytes were treated with 

either 100 ng/ml LPS or with medium containing macrophage-secreted cytokines (conditioned 

macrophage medium, CM) for 3 hours. To produce CM, confluent RAW264.7 macrophages were 

treated with normal culture medium with or without 100 ng/ml LPS for 9 hours and medium was 

collected and filtered through a 0.45 µm filter before adding it to the 3T3-L1 adipocytes. mRNA 

expression of TBL1 and TBLR1 was measured by qPCR.  

 

Fig. 18: TBL1 and TBLR1 expression is increased in 3T3-L1 adipocytes treated with LPS or CM. Cells were stimulated with 
100 ng/ml LPS or conditioned macrophage medium for 3 hrs. mRNA levels were analyzed by qPCR. A) TBL1 mRNA 
expression, B) TBLR1 mRNA expression in control and stimulated states. n=4, means ±SEM, *indicates significance. 

As shown in Fig. 18, TBL1 levels were induced by inflammatory stimuli like LPS or conditioned 

macrophage medium, while TBLR1 levels only increased with CM treatment, indicating that 

macrophage secreted factors are required to mediate the inflammation-dependent upregulation of 

this co-factor in adipocytes.  

 

2.3.2 TBL1 and TBLR1 are efficiently knocked down in cultured adipocytes using 

adenovirus-mediated shRNA 

To study the influence of TBL1 and TBLR1 on mature adipocytes, differentiated 3T3-L1 cells or 

primary adipocytes were infected with adenoviruses carrying shRNAs against TBL1, TBLR1, or a 

scrambled control sequence. For this, the differentiated cells were infected with the viruses (MOI 

500 for 3T3-L1 and MOI 1000 for primary cells) for 3 days to allow for an efficient knock down of the 

co-factors. As seen in Fig. 19, TBL1 and TBLR1 were efficiently knocked down in 3T3-L1 and primary 

adipocytes both on mRNA and on protein levels. 



 
21 RESULTS 

 

 

Fig. 19: TBL1 and TBLR1 are efficiently knocked down in 3T3-L1 and primary adipocytes. 3T3-L1 (A, C) or primary (B, D) 
adipocytes were infected with adenoviruses carrying shRNAs against TBL1, TBLR1, or a scrambled control sequence and 
harvested after 3 days. mRNA levels were analyzed by qPCR (A, B), protein levels were analyzed by immunoblotting using 
specific antibodies (C, D). n=2-6, means ±SEM, *indicates significance. 

 

2.3.3 Knock down of TBLR1 in adipocytes leads to blunted inflammatory response to LPS or 

CM 

As TBL1 and TBLR1 are upregulated in inflamed adipocytes, it is tempting to speculate that they may 

play a role in mediating inflammatory responses of these cells. To test this, 3T3-L1 or primary 

inguinal adipocytes were treated with 100 ng/ml LPS or CM for 3 hrs and inflammatory gene 

expression was monitored upon adenovirus-mediated TBL1/TBLR1 knock down.  

Fig. 20 shows that both LPS and CM treatment strongly induced gene expression of the inflammatory 

cytokines IL6 (by 15- and 1000-fold, respectively) and TNFα (by 8- and 150-fold). This was true for the 

control group as well as for cells lacking TBL1. Upon TBLR1 knock down, however, the inflammatory 

response was strongly inhibited by 90% (LPS) or 60% (CM) in case of IL6 or even blunted in case of 

TNFα, suggesting that TBLR1 but not TBL1 is a positive regulator of cytokine expression in adipocytes. 

Double knock down of TBL1 and TBLR1 did not further add to the effect of TBLR1 knock down alone, 

further supporting the notion that TBLR1 is sufficient to regulate inflammatory gene expression in 

these cells.  
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Fig. 20: IL6 and TNFα mRNA expression in 3T3L1 adipocytes treated with LPS or conditioned macrophage medium is 
decreased in cells lacking TBLR1. 3T3-L1 adipocytes with or without TBL1, TBLR1 or control shRNA were treated with 100 
ng/ml LPS (A, C) or 9 hrs CM for 3 hrs and mRNA expression of cytokines was measured by qPCR. A) IL6 expression in 3T3-L1 
treated with or without LPS, B) IL6 expression in 3T3-L1 treated with conditioned macrophage medium (CM) or control 
macrophage medium (M). C) TNFα expression in 3T3-L1 treated with LPS, D) TNFα expression in 3T3-L1 treated with CM or 
M. § indicates that mRNA levels are below detection limits. n=4, means ±SEM, # indicates significance between basal and 
stimulated, *indicates significance between Ctrl and specific shRNA. 

As observed in the 3T3-L1 adipocytes, TBLR1 knock down in primary adipocytes also led to a reduced 

induction of IL6 and TNFα stimulated by 3 hrs of LPS or CM treatment (Fig. 21). 
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Fig. 21: LPS or conditioned macrophage medium-stimulated expression of IL6 and TNFα in primary adipocytes is 
decreased in cells lacking TBLR1. Primary adipocytes with or without TBLR1 or control shRNA were treated with 100 ng/ml 
LPS (A, C) or 9 hrs CM for 3 hrs and mRNA expression of cytokines was measured by qPCR. A) IL6 expression in primary 
adipocytes treated with or without LPS, B) IL6 expression in primary adipocytes treated with conditioned macrophage 
medium (CM) or control macrophage medium (M). C) TNFα expression in primary adipocytes treated with LPS, D) TNFα 
expression in primary adipocytes treated with CM or M. n=4, means ±SEM. # indicates significance between basal and 
stimulated, *indicates significance between Ctrl and specific shRNA. 

 

2.3.4 TBLR1 is an NFκB dependent regulator of interleukin 6 expression 

TBLR1 knock down in adipocytes led to reduced inflammatory response in these cells, so TBLR1 may 

act as an activator of inflammatory gene expression. To test this hypothesis, luciferase assays with 

the interleukin 6 promoter were performed. 3T3-L1 adipocytes were transfected with plasmids 

containing the IL6 promoter or deletion constructs of this promoter lacking the C/EBP, NFκB or AP1 

binding sites in frame with the luciferase coding sequence. A second construct expressing either flag 

peptide as a control or flag-TBLR1 was co-transfected, and a third vector encoding β-galactosidase 

was used to normalize results.  

 

Fig. 22: TBLR1 activates interleukin 6 promoter activity dependent on NFκB. 3T3-L1 adipocytes were transfected with 
plasmids containing the IL6 promoter or deletion constructs of this promoter lacking the C/EBP, NFκB or AP1 binding sites in 
frame with the luciferase coding sequence (C/EBP mut, NFκB mut, AP1 mut) and co-transfected with plasmids mediating 
TBLR1 or flag over expression (OE). Luciferase activity is normalized to β-galactosidase and plotted relative to control OE, full 
length IL6 and expressed in arbitrary units (AU). n=3, means ±SEM. *indicates significance. 

As expected from the reduced activation of interleukin 6 levels upon TBLR1 knock down, TBLR1 over 

expression activated IL6 expression as measured by a higher IL6 promoter activity in the luciferase 

assay. TBLR1 over expression also led to an increase in IL6 promoter activity when the C/EBP or AP1 

transcription factor binding sites were mutated. In contrast, IL6 promoter activity was not activated 

by TBLR1 over expression when the NFκB binding site was mutated. Thus, TBLR1 seems to be an 

NFκB dependent activator of IL6 expression.  

 

2.4 The role of TBLR1 in adipocyte lipid metabolism in vitro 

2.4.1 TBLR1 expression influences adipocyte triglyceride levels 

TBL1 and TBLR1 have been previously shown to influence liver lipid metabolism (Kulozik, P., 2011). 

Since lipid storage and hydrolysis is the main function of the adipose tissue apart from its endocrine 

functions, here we investigated whether TBL1 and TBLR1 also influenced triglyceride levels in the 
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adipocytes. 3T3-L1 adipocytes were transduced with adenoviruses carrying shRNA against TBL1, 

TBLR1 or a scrambled control sequence, and triglyceride levels were measured three days after 

transduction. 

As seen in Fig. 23, 3T3-L1 adipocytes contained approximately 0.22 mg triglycerides per mg protein, 

and virus transduction did not influence triglyceride levels. TBL1 knock down did not have an effect 

on adipocyte TG levels. In contrast, TBLR1 knock down slightly but significantly increased triglyceride 

content of the cells.  

 

Fig. 23: TBLR1 knock down in 3T3-L1 adipocytes leads to increased triglyceride content of the cells. 3T3-L1 adipocytes with 
or without TBL1, TBLR1, or control shRNA were harvested in Tx lysis buffer and triglyceride and protein content were 
measured. Triglyceride levels are calculated relative to protein content. n=6, means ±SEM, *indicates significance. 

 

2.4.2 TBLR1 knock down inhibits induction of lipolysis 

Increased triglyceride content in adipocytes lacking TBLR1 can be due to increased storage or 

impaired release of triglycerides in these cells. To analyze whether TBL1/TBLR1 are implicated in 

adipocyte triglyceride breakdown, the impact of the co-factors on β-adrenergic receptor (β-AR) 

mediated lipolysis was investigated. Isoproterenol, which is structurally similar to epinephrine, 

activates all three β-adrenergic receptors (Lass, A., 2011). Isoproterenol-stimulated adipocytes 

hydrolyze triglycerides into glycerol and fatty acids and secrete them into the surrounding medium.  

 

Fig. 24: TBLR1 knock down leads to reduced isoproterenol-stimulated lipolysis. Lipolysis is stimulated in 3T3-L1 adipocytes 
with TBL1, TBLR1 or control shRNA by 10 µM isoproterenol for 3 hrs. Rate of lipolysis is estimated by NEFA (A) and glycerol 
(B) levels in the medium surrounding the cells. n=4, means ±SEM, # indicates significance between basal and stimulated, 
*indicates significance between Ctrl and specific shRNA. 
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Increased secretion of non-esterified fatty acids (NEFAs) and glycerol was measured in 3T3-L1 

adipocytes treated with 10 µM isoproterenol for 3 hrs after 2 hrs serum deprivation. The same 

degree of stimulation was observed in both control cells and cells lacking TBL1. In contrast, TBLR1 

knock down led to decreased isoproterenol-mediated induction of lipolysis as measured both in 

NEFA and glycerol levels, pointing towards an activating role of TBLR1 in triglyceride breakdown (Fig. 

24).  

To analyze whether the effect of TBLR1 on the stimulation of lipolysis was specific for isoproterenol 

or independent of the stimulus used, 3T3-L1 adipocytes with or without TBLR1 shRNA were 

stimulated with 10 µM isoproterenol, 10 µM norepinephrine, 1 µM procaterol (a β2-AR agonist), 10 

µM CL316,243, or 10 µM forskolin (an adenylate cyclase agonist) for 3 hrs and rate of lipolysis was 

estimated by NEFA levels in the medium. As seen in Fig. 25, TBLR1 knock down led to reduced 

induction of lipolysis independent of the stimulus used. Thus, neither of the β-adrenergic receptors 

alone could be responsible for the reduced lipolysis mediated by TBLR1 knock down, as the effect 

was observed in both isoproterenol and norepinephrine (unspecific β-AR agonists) and the β2-

specific activator procaterol or the β3-specific activator CL316,243 stimulations. Also, TBLR1 does not 

act via adenylate cyclase (AC), since cells stimulated with the AC activator forskolin showed the same 

TBLR1 effects as cells stimulated with the β-AR agonists.  

 

Fig. 25: TBLR1 knock down leads to decreased stimulation of lipolysis independent of lipolytic stimulus. 3T3-L1 adipocytes 
with or without TBLR1 shRNA were treated with 10 µM isoproterenol (iso), 10 µM norepinephrine (NE), 100 nM procaterol 
(pro), 10 µM CL316,243, or 10 µM forskolin (fsk) for 3 hrs and NEFA were measured in the surrounding medium. n=4, means 
±SEM, *indicates significance. 

 

2.4.3 TBLR1 knock down does not activate glucose metabolism or lipogenesis  

Adipocytes are able to take up glucose and metabolize it to form novel triglycerides for long- or 

medium-term storage by the process of lipogenesis, although this is not the major pathway for fat 

deposition (Strawford, A., 2004). This process is stimulated by insulin, which at the same time inhibits 

triglyceride hydrolysis. Glucose uptake and metabolism can be studied in vitro using 14C labeled 

glucose, which is taken up by the cells upon insulin stimulation and metabolized to triglycerides. 

3T3-L1 adipocytes transduced with TBLR1 or control shRNA were stimulated with 10 nM insulin in a 

buffer containing 0.1 µCi D-[14C(U)]-Glucose. After 2 hrs incubation, radioactive signal was measured 

in total cell extracts to estimate glucose uptake and metabolism and in lipid extracts to estimate de 

novo triglyceride formation.  
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Fig. 26: Insulin-stimulated glucose metabolism and lipogenesis in 3T3-L1 adipocytes upon TBLR1 knock down. 3T3-L1 

adipocytes with TBLR1 or control shRNA were treated with 10 nM insulin and 0.1 µCi D-[
14

C(U)]-Glucose for 2 hrs and 

disintegrations per minute (DPM) were measured from total cell or lipid extracts. A) Glucose uptake and metabolism 

measured by DPM in whole cell extracts, B) Lipogenesis measured by DPM in lipid extracts, C) and D) Stimulation of glucose 

metabolism and lipogenesis shown in percent induction by insulin. n=4, means ±SEM, # indicates significance between basal 

and stimulated, *indicates significance between Ctrl and specific shRNA.. 

As shown in Fig. 26 A, insulin efficiently stimulated glucose uptake into 3T3-L1 adipocytes 

independent of TBLR1 levels. Approximately half of the freshly integrated glucose was incorporated 

into lipids (Fig. 26 B), but lipogenesis seemed to be reduced in both basal and insulin-stimulated 

conditions upon TBLR1 knock down. Looking at the percent of induction by insulin (Fig. 26 C-D), both 

glucose uptake and lipogenesis were unchanged in cells lacking TBLR1. Thus, TBLR1 has no influence 

on insulin signaling and increased lipogenesis upon TBLR1 knock down cannot account for the 

increase in triglyceride content of these cells (Fig. 23). 

 

2.4.4 TBLR1 does not influence insulin signaling in 3T3-L1 adipocytes 

Insulin is an important regulator of metabolic functions. In adipocytes, insulin regulates triglyceride 

metabolism by inhibition of lipolysis and activation of lipogenesis. Insulin stimulation of adipocytes 

leads to an activation of Akt (protein kinase B, PKB) by phosphorylation (Yu, Y. H. and Ginsberg, H. N., 

2005), thus investigating phosphorylated Akt levels is a direct measure of insulin action in these cells. 

Here, 3T3-L1 adipocytes with control or TBLR1 shRNA were stimulated with increasing levels of 



 
27 RESULTS 

insulin in serum-free medium for 10 min. Proteins from whole cell extracts were separated by SDS-

PAGE and total and phosphorylated Akt levels were measured by immunoblotting.  

 

Fig. 27: Insulin signaling is not affected by TBLR1 knock down. 3T3-L1 adipocytes were infected with adenoviruses carrying 
shRNAs against TBLR1 or a control sequence and three days later stimulated with 0, 0.1, 1, or 10 nM insulin for 10 min in 
serum-free medium. p-Akt, Akt, TBLR1 and VCP protein levels were detected by immuoblotting using specific antibodies.  

Fig. 27 shows that Akt phosphorylation was efficiently stimulated by increasing doses of insulin (0, 

0.1, 1, 10 nM) for 10 min, while total Akt protein levels were constant. Knock down of TBLR1 did not 

influence Akt protein or phosphorylation levels in these cells. Thus, TBLR1 in 3T3-L1 adipocytes does 

not influence insulin signaling, which is further supported by the unchanged glucose metabolism and 

lipogenesis levels upon TBLR1 knock down.   

 

2.4.5 TBLR1 knock down leads to reduced levels of lipases and lipolysis-associated proteins 

Since TBLR1 knock down leads to reduced lipolysis, here we analyzed how TBLR1 knock down 

influences protein expression of the key proteins involved in lipolysis. For this purpose, adipocytes 

were infected with adenoviruses carrying shRNA against TBLR1 or a scrambled control sequence, and 

after three days cells were stimulated with 10 µM isoproterenol for 3 hrs prior to cell lysis. Proteins 

from whole cell lysates were separated by SDS-PAGE and detected by immunoblot using respective 

antibodies.   
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Fig. 28: Protein expression of lipases and lipolysis-associated proteins is decreased in 3T3-L1 adipocytes lacking TBLR1. 
3T3-L1 adipocytes with TBLR1 or unspecific control shRNA were treated with or without 10 µM isoproterenol for 3 hrs and 
protein levels were analyzed by immunoblot using the respective antibodies. Protein levels were quantified using ImageJ and 
normalized to actin levels. n=2 from three independent experiments. means ±SEM, * indicates significance. 

As shown in Fig. 28, isoproterenol stimulation in control 3T3-L1 adipocytes did not influence protein 

levels of the key lipases HSL and ATGL after 3 hrs. Cells lacking TBLR1 however showed strongly 

reduced protein expression of HSL and ATGL as well as the lipid droplet coating protein perilipin 

irrespective of isoproterenol treatment. In contrast, protein levels of the catalytic subunit of PKA 

(PKAcat) and CGI-58, the co-activator of ATGL, were unchanged by either isoproterenol treatment or 

TBLR1 knock down. 

 

2.4.6 TBLR1 knock down leads to reduced activation (phosphorylation) of hormone 

sensitive lipase and other PKA targets 

To analyze activation of the β-adrenergic signaling cascade, 3T3-L1 adipocytes treated with TBLR1 or 

control shRNAs were stimulated with 10 µM isoproterenol for 3 hrs, proteins were harvested in a 

buffer containing phosphatase inhibitors, and phosphorylated HSL (serine660 or serine565) and PKA 

targets were detected. Phosphorylation was quantified by normalization to actin or HSL protein 

levels.  

 

Fig. 29: Phosphorylation of HSL and other PKA targets including perilipin is decreased in 3T3-L1 adipocytes lacking TBLR1. 
3T3-L1 adipocytes with TBLR1 or unspecific control shRNA were treated with or without 10 µM isoproterenol for 3 hrs and 
protein phosphorylation was analyzed by immunoblot using the respective antibodies. Phosphorylated protein levels were 
quantified using ImageJ and normalized to actin or HSL protein levels. n=2 from four independent experiments. means 
±SEM, # indicates significance between basal and stimulated, *indicates significance between Ctrl and specific shRNA. 

As shown in Fig. 29, serine residue 660 of HSL and other PKA targets, including perilipin, were 

strongly phosphorylated upon isoproterenol stimulation. HSL was not phosphorylated at the AMPK 

phosphorylation site (S565) upon isoproterenol stimulation. In cells lacking TBLR1, isoproterenol-

stimulated HSL/PKA target phosphorylation was significantly reduced by 70% or 30%, respectively, 

while basal as well as AMPK-mediated phosphorylation was largely unchanged. As seen in the 
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quantitation bar graph, in contrast to the AMPK phosphorylation the reduced HSL phosphorylation 

by PKA cannot be fully attributed to the reduction in overall HSL protein levels, so adipocyte TBLR1 

action has to be implicated in events independent of lipase transcription.  

 

2.4.7 Inhibition of lipolysis by TBLR1 is independent of time and concentration of stimulus 

Activation of lipolysis by β-adrenergic receptor signaling is dependent on the duration of stimulation 

and concentration of the stimulus (Lass, A., 2011). The most commonly used condition of 10 µM 

isoproterenol, 3 hrs represents a rather high concentration and duration of stimulus, so in order to 

study submaximal effects of the stimulation time- and concentration curves in 3T3-L1 adipocytes 

transduced with TBLR1 or control shRNA were performed. Stimulation of lipolysis by 10 µM 

isoproterenol for 15 min yielded no measurable increase in NEFAs, but after 60 min stimulation 

NEFAs were readily detectable in the supernatant of the cells and accumulated in the medium over 

time. In cells lacking TBLR1, the increase in NEFAs over time of isoproterenol stimulation was strongly 

reduced at all time points. The same was true for stimulation of the cells with submaximal doses of 

isoproterenol. HSL phosphorylation at serine660 was also strongly dependent on isoproterenol 

concentration, and was attenuated by TBLR1 knock down at all concentrations (Fig. 30). 

 

Fig. 30: TBLR1 knock down inhibits lipolysis independent of the duration of stimulation and the concentration of 
isoproterenol. 3T3-L1 adipocytes treated with TBLR1 or control shRNA were stimulated with 10 µM isoproterenol and media 
was collected after 15, 60, 120, and 180 min for NEFA measurement (A), or the cells were treated with 0.1, 1, or 10 µM 
isoproterenol for 180 min, supernatants were collected for NEFA measurements (B) and proteins were harvested for 
immunoblotting using Actin and p-HSL S660 antibodies (C). (A, B) means ±SEM, n=3.  

 

2.4.8 Reduced PKA-mediated phosphorylation upon TBLR1 knock down is due to 

decreased cAMP levels 

Phosphorylation of HSL at the serine 660 residue is dependent on the action of the cAMP dependent 

kinase PKA (Lampidonis, A.D., 2011). HSL and other PKA targets including perilipin were shown to be 
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less phosphorylated upon TBLR1 knock down. Activation of PKA can be regulated by the amounts of 

available cAMP, which is the most straightforward mechanism. Alternatively it can be regulated by 

the subunit composition of PKA: Mammals have four distinct regulatory PKA subunits (RIα, RIβ, RIIα 

und RIIβ), of which certain subunits have a higher affinity for cAMP than others. Thus, depending on 

the subunit composition of PKA, equal amounts of cAMP may lead to differential activation of the 

enzyme (Aye, T.T., 2009). 

 

Fig. 31: PKA subunit composition is unchanged in 3T3-L1 adipocytes with or without TBLR1. cAMP levels are strongly 
reduced upon TBLR1 knock down both in basal and isoproterenol-stimulated states. A) mRNA levels of protein kinase A 
regulatory subunits (RIα, RIβ, RIIα und RIIβ) were measured by qPCR in 3T3-L1 adipocytes with or without TBLR1 shRNA. 
mRNA levels are expressed relative to TBP and RIβ levels. B) cAMP content of 3T3-L1 adipocytes with or without TBLR1 
shRNA, treated with 10 µM isoproterenol for 3 hrs. n=4, means ±SEM, # indicates significance between basal and stimulated, 
*indicates significance between Ctrl and specific shRNA. 

PKA regulatory subunit composition of 3T3-L1 adipocytes treated with TBLR1 or control shRNA was 

analyzed by qPCR and showed no significant differences between the two groups (Fig. 31 A). 

However, 3T3-L1 adipocytes treated with isoproterenol had significantly increased cAMP content, 

which was strongly decreased in 3T3-L1 adipocytes lacking TBLR1 (Fig. 31 B). Thus, reduced cAMP 

content in adipocytes lacking TBLR1 was responsible for the attenuated phosphorylation of HSL and 

other PKA targets in these cells. 

 

2.4.9 Reduced cAMP content in adipocytes lacking TBLR1 is not due to increased 

phosphodiesterase levels 

Protein kinase A is negatively regulated by phosphodiesterase PDE3B, which hydrolyzes cAMP to 

AMP, thereby reducing cAMP concentration and leading to reduced levels of active, dissociated PKA 

subunits. PDE3B mediates the inhibition of the lipolysis pathway stimulated by insulin (Yu, Y. H. and 

Ginsberg, H. N., 2005). Analysis of PDE3B mRNA levels in 3T3-L1 adipocytes with or without TBLR1 

shRNA revealed that there was no change in PDE3B mRNA expression upon TBLR1 knock down (Fig. 

32 A). Apart from this, the phosphodiesterase inhibitor IBMX stimulated lipolysis with or without 10 

µM isoproterenol independent of TBLR1 expression levels (Fig. 32 B). This excludes PDE3B regulation 

as the mechanism mediating TBLR1 knock down dependent reduction in cAMP levels. 
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Fig. 32: TBLR1 knock down does not change expression or activity of phoshodiesterase. A) 3T3-L1 adipocytes transduced 
with control or TBLR1 specific shRNA were treated with 10 µM isoproterenol for 3 hrs and PDE3B mRNA expression was 
analyzed by qPCR. B) 3T3-L1 adipocytes transduced with control or TBLR1 specific shRNA were stimulated with 10 µM 
isoproterenol, 0.5 mM IBMX, or both for 3 hrs and NEFA levels were measured from the medium. n=4, means ±SEM, # 
indicates significance between basal and stimulated, *indicates significance between Ctrl and specific shRNA. 

 

2.4.10 Reduced cAMP content in adipocytes lacking TBLR1 is due to decreased levels of β-

adrenergic receptors 

Adipocytes lacking TBLR1 show a reduced cAMP content, leading to attenuated activation of PKA and 

thus PKA phosphorylation targets like HSL. Since reduced cAMP levels upon TBLR1 knock down are 

not due to increased levels or activation of phosphodiesterase PDE3B, there has to be a defect in 

signaling events upstream of cAMP production. As lipolysis is stimulated by catecholamines binding 

to β-adrenergic receptors, here we analyzed mRNA and protein expression of the receptors in 3T3-L1 

adipocytes with TBLR1 or control shRNA, treated with or without 10 µM isoproterenol for 3 hrs. 

 

Fig. 33: β-adrenergic receptor levels are decreased in adipocytes lacking TBLR1. 3T3-L1 adipocytes with control or TBLR1 
specific shRNAs were stimulated with or without 10 µM isoproterenol for 3 hrs. β2-adrenergic receptor (Adrb2, A) and β3-
adrenergic receptor (Adrb3, B) mRNA levels were analyzed by qPCR, protein levels (C) were detected using specific 
antibodies. (A, B) n=4, means ±SEM, * indicates significance. 

There are three different β-adrenergic receptors involved in catecholamine signaling, β1, 2 and 3 

adrenergic receptors (Zechner, R., 2012). mRNA or protein expression of the β-adrenergic receptor 1 

could not be detected in 3T3-L1 adipocytes (data not shown). In contrast, β2 and β3 receptors were 

readily detectable in 3T3-L1 adipocytes by qPCR and immunoblotting. As seen in Fig. 33, the β-

adrenergic receptor 2 (Adrb2) expression was increased on mRNA but not protein levels upon 
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isoproterenol treatment. In cells lacking TBLR1, Adrb2 expression was significantly decreased both on 

mRNA and protein levels. The β-adrenergic receptor 3 (Adrb3) expression was slightly reduced after 

isoproterenol treatment on mRNA levels in the control shRNA group, and as observed for Adrb2, 

Adrb3 levels were also decreased upon TBLR1 knock down. Isoproterenol treatment raises receptor 

turnover, which may explain why reduced protein expression of the Adrb3 upon TBLR1 knock down 

was only observed in the isoproterenol treated cells. The decreased receptor levels in cells lacking 

TBLR1 may explain the reduced cAMP levels leading to attenuated activation of phosphorylation 

mediated by PKA, which ultimately results in reduced activation of lipolysis. 

 

2.4.11 TBLR1 is a transcriptional activator of HSL and ATGL transcription 

As shown earlier in this thesis, TBLR1 knock down led to reduced protein levels of HSL and ATGL. 

With TBLR1 being a transcriptional co-factor it is tempting to speculate that TBLR1 influences 

transcription of these genes. To test this hypothesis, we performed luciferase assays and investigated 

if TBLR1 expression influenced HSL and ATGL promoter activity. For this purpose, 3T3-L1 adipocytes 

were transfected with vectors containing HSL or ATGL promoters in front of the luciferase coding 

sequence and co-transfected with plasmids carrying a non-specific control sequence or a sequence 

mediating TBLR1 knock down. β-galactosidase expression vector with the constitutive CMV promoter 

was co-transfected to normalize for transfection efficiency. 

 

Fig. 34: ATGL and HSL promoter activities are reduced upon knock down of TBLR1. 3T3-L1 adipocytes transfected with 
luciferase constructs driven by ATGL and HSL promoters were co-transfected with plasmids mediating TBLR1 knock down 
and luciferase activity was measured; the values were normalized to β-galactosidase activity and expressed in arbitrary units 
(AU). A) ATGL promoter activity, B) HSL promoter activity. n=3, means ±SEM, * indicates significance. 

As seen in Fig. 34, reduced TBLR1 levels led to approximately 50% reduced activity of both ATGL and 

HSL promoters, further supporting the notion that TBLR1 is necessary for the transcription of the 

lipases. 

 

2.4.12 Gene expression profiling of adipocytes lacking TBLR1 reveals strong implication of 

TBLR1 in PPAR and adipocytokine signaling pathways and lipid metabolism 

Global gene expression profiling is a potent tool to analyze genes regulated by a certain transcription 

factor or transcriptional co-factor. Knowing that TBLR1 is implicated in cytokine signaling and lipid 

metabolism, we performed gene expression profiling of 3T3-L1 adipocytes transduced with TBLR1 or 
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a control shRNA and stimulated with or without 10 µM isoproterenol for 3 hrs. We compared four 

groups (Fig. 35 A) with a sample size of three. 

As seen from the hierarchical heat map (Fig. 35 B), the four groups were very homogenous but 

distinct from one another, and the difference in global gene expression between control and TBLR1 

shRNA was much higher than between basal and isoproterenol stimulated groups. In total, more 

than 7000 genes were alternatively regulated, of which 4714 were regulated both in vehicle and 

isoproterenol-treated cells (Fig. 35 C). The volcano plots (Fig. 35 D, E) show all genes on the 

microarray, all significantly altered genes (p < 0.05) are above the threshold.  

 

 

Fig. 35: Gene expression profiling of 3T3-L1 adipocytes transduced with TBLR1 or control shRNA and treated with or 
without 10 µM isoproterenol for 3 hrs. A) Experimental setup, B) Hierarchical heat map cluster of the samples, C) Venn 
diagram of alternatively regulated genes, D) Volcano Plot of control vs. TBLR1 shRNA treated cells without isoproterenol, E) 
Volcano Plot of control vs. TBLR1 shRNA treated cells with isoproterenol. n=3. 
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As expected from immunoblotting, HSL, ATGL and perilipin levels were reduced in cells lacking TBLR1 

both in basal and isoproterenol-stimulated states. Apart from that, performing KEGG pathway 

analysis, we found that the most highly enriched cluster of pathways containing TBLR1 regulated 

genes consisted of the PPAR and adipocytokine signaling pathways and the lipid metabolism pathway 

(Tab. 1). All three pathways in this cluster were highly affected by TBLR1 knock down, indicating that 

TBLR1 regulates genes within these pathways, thereby influencing the whole signaling path.  

 

Tab. 1: KEGG pathway analysis of genes regulated by TBLR1 knock down in both isoproterenol treated and untreated 
adipocytes. Enrichment score: measure of pathway cluster enrichment over the other clusters; count: number of regulated 
genes within the pathway; pvalue: significance of pathway enrichment; list total: number of genes within the analyzed list of 
target genes having at least one KEGG annotation; pop hits: number of genes available on the entire microarray, annotated 
by the considered KEGG category or annotation cluster; pop total: number of genes available on the entire microarray and 
having at least one KEGG annotation; FDR: false discovery rate.  

Enrichment scores in the microarray are not necessarily comparable with qPCR expression values. In 

order to quantify the changes observed in the array we validated some genes that were found to be 

regulated by TBLR1 in gene expression profiling by quantitative PCR using the same RNA as for the 

microarray. As seen in Fig. 36, many genes involved in PPAR signaling, adipocytokine signaling, and 

lipid metabolism were found to be regulated by TBLR1 also by qPCR, while some other regulated 

genes could not be validated. Clustered to the adipocytokine signaling pathway, adiponectin, nuclear 

factor of κ light polypeptide gene enhancer in B-cells inhibitor α (IkappaB), and glucose transporter 

type 4 (Glut4) were down regulated upon TBLR1 knock down independent of isoproterenol 
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stimulation. Within the same pathway cluster, insulin receptor substrate 2 (Irs2), peroxisome 

proliferator-activated receptor γ coactivator 1-α (PGC-1α), and AMPK activator liver kinase B1 (Lkb1) 

were down regulated upon TBLR1 knock down only in cells stimulated with isoproterenol. Other 

cytokines like monocyte chemoattractant protein 1 (Mcp1) were upregulated upon TBLR1 knock 

down, as was the glucose transporter Glut1.  

Looking at the PPAR signaling pathway, we observed a robust reduction in expression of many 

pathway associated genes including PPARγ itself as well as stearoyl-CoA desaturase-1 (Scd1), the 

transporters cluster of differentiation 36 (CD36) and aquaporin 7 (Aqp 7), lipoprotein lipase (Lpl), 

liver x receptor (Lxr) and fatty acid binding protein 4 (Fabp4). Phosphoenolpyruvate carboxykinase 

(PEPCK) was only regulated in isoproterenol stimulated cells as observed in the microarray. 

In the fatty acid metabolism pathway, acyl-Coenzyme A dehydrogenase, medium chain (Acadm) and 

fatty acid synthase (Fasn) were down regulated upon TBLR1 knock down. In contrast to what was 

observed in the microarray, acyl-Coenzyme A dehydrogenase, long chain (Acadl) was not regulated 

by TBLR1. Apart from the genes that were clustered in pathways, we observed gene regulation of the 

β2- and β3-adrenergic receptors, hormone sensitive lipase and adipocyte triglyceride lipase, which 

was consistent with the regulation observed before on protein levels. Thus, microarray data could be 

validated by qPCR and confirmed a role of TBLR1 in the regulation of adipocytokine, PPAR and fatty 

acid metabolism pathways.  

 

Fig. 36: Validation of microarray data by quantitative PCR reveals involvement of the co-factor in adipocytokine, PPAR 
and fatty acid metabolism pathways. 3T3-L1 adipocytes were transduced with adenoviruses carrying shRNA against TBLR1 
or a control sequence. Adipocytes were stimulated with 10 µM isoproterenol for 3 hrs and induction of lipolysis was 
monitored by measuring NEFAs and glycerol from the supernatant. RNA isolation was performed using RNeasy mini kit. 
qPCRs were performed using the Taqman system. A) TBLR1 mRNA expression and expression of genes clustered to the 
adipocytokine pathway. B) mRNA expression of genes clustered to the PPAR signaling pathway. C) mRNA expression of 
genes clustered to the fatty acid metabolism pathway. D) mRNA expression of genes regulated by TBLR1 but not clustered to 
a pathway by the KEGG pathway analysis tool. n=4, means ±SEM, * indicates significance. 
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2.4.13 TBLR1 acts in part through PPARγ 

Gene expression profiling revealed a large impact of PPARs on TBLR1-mediated regulation of gene 

expression, since the PPAR signaling pathway is most regulated by TBLR1 knock down in adipocytes. 

To investigate whether PPARs are able to compensate for the loss of TBLR1, we stimulated 

adipocytes with the PPAR agonists GW7647 (PPARα), GW0742 (PPARβ/δ) and rosiglitazone (PPARγ), 

and analyzed the effect of TBLR1 knock down on lipolysis as measured by NEFA and glycerol in the 

surrounding media.  

 

Fig. 37: Inhibition of lipolysis by TBLR1 knock down is in part rescued by rosiglitazone stimulation. 3T3-L1 adipocytes 
transduced with control or TBLR1 shRNA were stimulated with 10 µM isoproterenol for 3 hrs in the presence or absence of 1 
µM GW0742, GW7647 or rosiglitazone for 24 hrs. A) NEFAs and B) glycerol measured from the supernatants of the cells and 
normalized to intracellular protein levels. n=4, means ±SEM, # indicates significance between basal and isoproterenol-
stimulated, *indicates significance between Ctrl and specific shRNA. 

As seen in Fig. 37, PPAR agonists alone did not stimulate lipolysis, nor did they influence the 

efficiency of isoproterenol to induce lipolysis. As seen before, TBLR1 knock down partially inhibited 

the isoproterenol-induced stimulation of lipolysis, which was independent on GW7647 or GW0742 

treatment. In cells pretreated with rosiglitazone, however, the inhibitory effect of TBLR1 knock down 

on induction of lipolysis was blunted. Thus, PPARγ activation in part rescues the lipolytic response of 

these cells and renders them insensitive to TBLR1, which means that TBLR1 may normally act via 

activation of PPARγ-dependent genes.  

Looking at protein expression of the main lipases and β-adrenergic receptors, TBLR1 knock down 

decreased protein expression of HSL, ATGL, perilipin, and β2- and β3- adrenergic receptors as it was 

observed before. This was not the case when cells were pre-treated with rosiglitazone for 24 hrs (Fig. 

38), which was in line with the partial rescue of the TBLR1 deficency phenotype by rosiglitazone 

treatment. Constant activation of PPARγ by the agonist rosiglitazone therefore leads to a state where 

TBLR1 is no longer needed for transcriptional activation of the target genes. 
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Fig. 38: Rosiglitazone partially rescues the effects of TBLR1 knock down on lipase and receptor expression. 3T3-L1 
adipocytes were transduced with adenoviruses carrying shRNA against TBLR1 or a control sequence and stimulated with 2.5 
µM rosiglitazone for 24 hrs or with rosiglitazone for 24 hrs plus 10 µM isoproterenol for 3 hrs. Hormone sensitive lipase, 
adipocyte triglyceride lipase, perilipin, β2- and β3- adrenergic receptor and actin protein levels were detected by 
immunoblotting using specific antibodies.  

Indeed, TBLR1 is most likely a regulator of PPARγ, as it interacted both with PPARγ and its obligate 

dimerization partner RXR in mature adipocytes (Fig. 39 A). In addition, over expression of TBLR1 in 

3T3-L1 adipocytes led to an increased activity of the PPAR response element in luciferase assays (Fig. 

39 B), further supporting the idea of TBLR1 as a PPAR co-activator. 

 

Fig. 39: TBLR1 interacts with RXRα and PPARγ and increased PPRE activity. (A) Endogenous immunoprecipitation from 
3T3-L1 adipocytes using monoclonal TBLR1 antibody pulls down RXRα and PPARγ as detected by immunoblotting with the 
respective antibodies in eluates (ETBLR, EGFP). Immunoprecipitation with GFP antibody serves as a negative control. (B) 
Luciferase assay from 3T3-L1 adipocytes transfected with TBLR1 over expression construct. TBLR1 OE increases the activity 
of the PPAR response element (% over pGL3 background). n=4, means ±SEM, *indicates significance. 

 

2.4.14 TBLR1 knock down in primary adipocytes leads to reduced stimulation of lipolysis 

In 3T3-L1 adipocytes, it was shown that reduction of TBLR1 but not TBL1 levels leads to an 

attenuated lipolytic response to isoproterenol and other lipolytic stimuli. To investigate whether the 

same was true in primary adipocytes, we isolated preadipocytes from inguinal fat depots of young 

male mice and differentiated them in vitro. Adipocytes were transduced with adenoviruses carrying 

shRNA against TBL1, TBLR1 or a scrambled control sequence to mediate TBLR1 knock down. Cells 
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were stimulated with 10 µM isoproterenol for 3 hrs and NEFAs and glycerol were measured from the 

medium. As observed in 3T3-L1 adipocytes, isoproterenol potently stimulated lipolysis in control and 

TBL1 shRNA transduced primary adipocytes. In contrast, the isoproterenol-stimulated increase in 

fatty acid breakdown was significantly reduced in cells lacking TBLR1. As in 3T3-L1 adipocytes, this 

effect of TBLR1 knock down was in part mediated by reduced protein levels of perilipin, hormone 

sensitive lipase (HSL) and their phosphorylation by PKA (Fig. 40). 

 

Fig. 40: TBLR1 knock down inhibits stimulation of lipolysis in primary adipocytes. Preadipocytes isolated from inguinal 
WAT of 8-week old male mice were differentiated into adipocytes and transduced with TBL1, TBLR1 or unspecific control 
shRNA carrying adenovirus. Cells were treated with or without 10 µM isoproterenol for 3 hrs and NEFAs and glycerol were 
measured from the supernatant (A, B). n=4, means ±SEM, # indicates significance between basal and stimulated, *indicates 
significance between Ctrl and specific shRNA. Protein levels of HSL, ATGL, perilipin, the catalytic subunit of PKA, TBLR and 
actin as well as HSL and PKA target phosphorylation were measured by immunoblotting using specific antibodies (C, D).  

 

2.4.15 Ectopic expression of TBLR1 leads to decreased triglyceride content and increased 

lipolysis in 3T3-L1 adipocytes  

TBLR1 knock down in adipocytes has been shown to increase intracellular triglyceride levels and 

decrease isoproterenol-induced lipolysis while not affecting glucose metabolism or lipogenesis. Here 

it was investigated whether ectopic expression of TBLR1 in adipocytes led to the opposite effects. For 

this purpose, 3T3-L1 adipocytes were transduced with adenoviruses carrying the TBLR1 cDNA 

sequence or a scrambled control sequence fused to a flag-tag under the control of the CMV 

promoter. This mediated strong over expression of TBLR1 in these cells (Fig. 42 A).  
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Fig. 41: Over expression of TBLR1 leads to decreased triglyceride content and increased lipolysis. 3T3-L1 adipocytes were 
transduced with adenoviruses mediating over expression of TBLR1 or a nonsense control. A) Triglyceride content of the 
adipocytes. B) Lipolysis was stimulated with 10 µM isoproterenol for 3 hrs and NEFAs were measured from the supernatants 
of the cells. n=4, means ±SEM. # indicates significance between basal and stimulated, *indicates significance between Ctrl 
and specific OE. 

As seen in Fig. 41 A, adipocytes contained 0.35 mg triglycerides per mg protein and virus infection did 

not influence triglyceride content. Over expression of TBLR1 significantly reduced triglyceride 

content, which was opposite of what was observed in cells with reduced TBLR1 levels. In line with 

reduced lipolysis upon TBLR1 knock down, 3T3-L1 adipocytes transduced with adenoviruses 

mediating TBLR1 over expression showed increased isoproterenol-stimulated lipolysis (Fig. 41 B) as 

measured by NEFA levels in the supernatants.  

 

2.4.16 Increased lipolysis in adipocytes over expressing TBLR1 is a result of increased lipase 

expression and activity 

Attenuated lipolysis upon TBLR1 knock down was mediated by a reduction in lipase expression and 

activity. Thus, we wanted to investigate next whether the increased lipolysis we observed in 

adipocytes over expressing TBLR1 was due to increased lipase activity.  

Indeed, when 3T3-L1 adipocytes were transduced with adenoviruses mediating over expression of 

TBLR1 or a control sequence, protein levels of HSL and ATGL, the main lipases involved in adipocyte 

lipolysis, were increased in cells with ectopic TBLR1 (Fig. 42 A). Apart from that, activation 

(phosphorylation) of HSL and other PKA targets including perilipin was increased in cells over 

expressing TBLR1 (Fig. 42 B). Thus, increased lipolysis in cells with high TBLR1 levels was due to 

increased lipase expression and activation, which is opposite to the effects observed in TBLR1 knock 

down cells. This further supports the notion that TBLR1 is a regulator of adipocyte triglyceride 

metabolism by regulating key protein expression and activation.  
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Fig. 42: TBLR1 over expression leads to increased protein expression and activation of key lipases. 3T3-L1 adipocytes 
transduced with TBLR1 or control over expression mediating adenoviruses were stimulated with 10 µM isoproterenol and 
total (A) or phosphorylated (B) protein levels of HSL, ATGL, TBLR1, Actin, and p-PKA targets were detected by 
immunoblotting.  

 

2.5 TBLR1 gene manipulation in vivo  

2.5.1 TBLR1 cannot be efficiently knocked down or over expressed in adipose tissue in vivo 

using adenoviruses, siRNAs or morpholinos 

In order to study gene function in vivo, many approaches to transiently over express or knock down 

gene expression have been established in the past, including virus-mediated shRNA or cDNA delivery, 

siRNA or morpholino treatment. These methods have been successfully applied in many organs 

including liver (Kulozik, P., 2011), kidney (Zhu, G., 1996), or brain (Koda, M., 2004), but are not 

commonly used for adipose tissue. Thus, we tried to establish a protocol for efficient knock down or 

over expression of TBLR1 in adipose tissue.  

First, we injected in vivo siRNAs against TBLR1 or a scrambled control sequence intraperitoneally at a 

dose of 1.5 µg/g - 20 µg/g BW using DOTAP or Invivofectamine transfection reagents and analyzed 

knock down after 2, 5, and 8 days. No knock down in any adipose tissue depot on mRNA or protein 

levels was achieved by this method (data not shown). Since siRNAs have been tested in cell culture 

before and mediated knock down of TBLR1 in this setting, we hypothesized that they did not reach 

the adipose tissue depots to mediate knock down.  

Second, we injected mice intraperitoneally with morpholinos, which are antisense oligos or nucleic 

acid analogs commonly used to mediate knock down in zebrafish or xenopus (Draper, B.W., 2001, 

Heasman, J., 2000). For use in mice, special in vivo morpholinos have been designed in order to 

increase stability and decrease toxicity of the antisense oligos (Morcos, P.A., 2008). We injected mice 

with the maximum suggested dose of 12.5 µg/g BW intraperitoneally on two consecutive days and 

analyzed gene expression after 3, 7, and 14 days. Knock down of TBLR1 in abdominal WAT was 

detectable 3 days after the first injection on protein and on mRNA levels (Fig. 43 D-E). In contrast, no 

knock down could be detected after 7 and 14 days or in any other tissue investigated (liver, intestine, 

gastrocnemius muscle, inguinal WAT, BAT, heart; data not shown). We analyzed body weight and 

body composition of mice injected with in vivo morpholinos (Fig. 43 A-C) and found that mice 

showed severely reduced body weight and adipose tissue weight upon injection with control or 
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TBLR1 morpholino but not upon PBS injection, pointing towards a high toxicity of the morpholinos 

independent of the targeted sequence. Thus, in vivo morpholinos could not be used for long-term or 

metabolic studies. 

 

Fig. 43: Intraperitoneal injection of in vivo morpholinos causes transient weight loss and fat mass loss and mediates mild 
reduction of target gene expression. Male C57Bl6 mice were injected intraperitoneally with 12.5 µg/g BW in vivo 
morpholinos directed against TBLR1 or a scrambled control sequence or vehicle (0.9% saline) on two consecutive days. Body 
weight was monitored over 14 days (A). Some of the mice were prepped on day 3 after the first injection. (B) Abdominal and 
(C) inguinal adipose tissue mass was measured 3 days after the first injection. TBLR1 mRNA expression (D) and protein 
expression (E) in abdominal adipose tissue was measured by qPCR and immunoblotting.  

In the past, in vivo knock down techniques using adenoviral systems have been shown to be very 

efficient. Thus, we next tried to knock down or over express TBLR1 in adipose tissue by injecting 

adenoviruses carrying shRNA against TBLR1 or cDNA mediating over expression of TBLR1 directly into 

abdominal fat pads. For this, abdominal adipose tissue depots were exposed and adenoviruses (5 x 

109 -2 x 1010 ifu/ml) were injected in a volume of 50 µl for each fat pad, either by normal injection or 

by microinjection as described in ‘Methods’. Knock down or over expression of TBLR1 was assessed 

one week after injection by qPCR or immunoblotting; changes in TBLR1 expression could not be 

detected in adipose tissue (data not shown). Injection of an adenovirus mediating GFP expression 

and subsequent analysis of tissue slices revealed that adenoviruses were not equally distributed 

throughout the tissue (Fig. 44), which may explain the lack of functionality. 
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Fig. 44: Few cells express GFP after microinjection of GFP-adenovirus into fat pad. GFP overexpression mediating 
adenoviruses (5x10

8
 ifu/fat pad) were injected into abdominal fat pads by microinjection. GFP expression was analysed 1 

week following the injection by immunohistochemistry using a GFP antibody (20x magnification).  

Lastly, the microinjection technique was applied to inject siRNAs and morpholinos into abdominal 

adipose tissue. Injecting the maximal dose of either siRNAs (7 mg/kg BW) or morpholinos (12.5 

mg/kg BW) into abdominal fat pads did not lead to a measurable knock down of TBLR1 in this tissue.  

In conclusion, we did not succeed in establishing a technique to efficiently over express or knock 

down TBLR1 in adipose tissue due to limitations in accessibility of the tissue and distribution of the 

agent. Thus, to alter gene expression in adipose tissue, it is inevitable to generate genetic over 

expression or knock out mouse lines by using floxed mice and adipocyte-specific cre-lines such as the 

adiponectin- or aP2-cre line (Eguchi, J., 2011; He, W., 2003). 

 

2.6 Adipocyte specific TBLR1 knockout (ATKO) mice display a lipid metabolism 

phenotype 

As it is not possible to manipulate TBLR1 gene expression in adipose tissue in vivo using standard 

knock down or over expression techniques, we generated adipocyte specific TBLR1 knockout mice on 

C57Bl6 background (C57BL/6-Tbl1xr1(tm2273Arte) Tg(Fabp4-Cre)1Rev), hereafter referred to as 

ATKO mice (Adipocyte specific TBLR1 KnockOut mice).  

The translational start site of TBLR1 (ENSMUST00000063988) lies within exon 3. Floxed TBLR1 mice 

were created by TaconicArtemis by introducing LoxP sites in a region containing exon 5 (size of LoxP-

flanked region approx. 1 kb).  Positive selection markers flanked by FRT (Neomycin resistance - NeoR) 

and F3 (Puromycin resistance - PuroR) sites were inserted into intron 4 and intron 5, respectively. 

Homologous recombinant clones were isolated using double positive selection (NeoR and PuroR). 

The targeting vector was generated using BAC clones from the C57BL/6J RPCI-23 BAC library and 

transfected into TaconicArtemis C57BL/6N Tac ES cell line. Mice contained the conditional KO allele 

after Flp-mediated removal of the selection markers. The constitutive KO allele was present in 

adipose tissues after Cre-mediated recombination with B6.Cg-Tg(Fabp4-cre)1Rev/J mice purchased 

at The Jackson Laboratory. Deletion of exon 5 resulted in loss of function of the TBLR1 gene by 

deleting part of the F-box-like domain and by generating a frameshift from exon 4 to exons 6 and 7 

(premature stop codon in exon 6) (for targeting strategy, see Fig. 45).  
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Fig. 45: Targeting strategy for the creation of adipose tissue specific TBLR1 KO (ATKO) mice. Exon 5 was flanked by LoxP 
sites in a targeting vector containing double positive selection markers (NeoR, PuroR). Upon Flp recombination the selection 
markers were removed. Exon 5 was removed by Cre recombination, thereby introducing a stop codon in exon 6. AT specific 
TBLR1 KO mice were generated by breeding floxed TBLR1 mice with Fabp4-cre mice.   

Here we show only data of female ATKO mice. Male and female mice were highly similar in all the 

analyzed parameters, but since C57Bl6/N male mice are very prone to developing obesity and 

glucose intolerance at young age even without a certain stimulus, only female mice were analyzed in 

detail. 

 

2.6.1 Mice heterozygous for TBLR1 in adipose tissue display normal body weight, organ 

weight and lipolytic response 

In an initial experiment, mice heterozygous for flox-TBLR1 and carriers of Cre (referred to as 

adipocyte specific TBLR1 heterozygous, ATKO+/- mice) were analyzed to investigate the effects of 

reduced AT TBLR1 levels. Mice were born at a mendelian ratio and with normal birth weight and size. 

By 15 weeks of age, mice showed similar body weight, body composition and food consumption and 

did not significantly differ in blood glucose levels (Fig. 46).  
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Fig. 46: ATKO+/- mice at the age of 15 weeks are indistinguishable from wt mice at the same age. Body weight (A), body 

composition (B), food consumption (C) and blood glucose (D) of 15 week old ATKO+/- mice or wt littermates from 

TaconicArtemis. Fat mass and lean mass were analyzed by ECHO-MRI and plotted relative to body weight. n=10, means 

±SEM. 

Cell sizes of adipocytes from abdominal WAT depots were determined in H&E stained tissue slices. 

Slices were taken from three different layers of the tissue and cell sizes were determined by 

measuring the cell area of 30 cells on every slide using ImageJ. As seen in Fig. 47, abdominal 

adipocyte size was slightly but significantly increased in the ATKO+/- animals.  

 
Fig. 47: Abdominal adipocyte size is slightly increased in ATKO+/- animals compared to wt control mice. H&E staining of 
abdominal WAT slices. Cell size was quantified with ImageJ by measuring cell area of 30 cells each slide, 3 slides of each 
WAT were taken. n=7, means ±SEM, *indicates significance.  

To investigate effects of adipose tissue TBLR1 reduction on fasting, we performed a fasting time 

course experiment where animals were fasted for 3, 8, and 24 hrs. Body composition during that 

time was monitored using ECHO-MRI, and glycerol and free fatty acid levels were measured in the 

serum. During 24 hrs fasting, wt and ATKO+/- mice lost equal amounts of body weight, fat mass and 

lean mass and displayed normal serum glycerol and free fatty acid levels (Fig. 48). The weights of the 

different adipose tissues of 24 hrs fasted animals were equal in both groups. 
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Fig. 48: ATKO+/- mice display normal body weight, body composition and serum FFA and glycerol levels upon fasting. (A) 
Body weight loss during 24 hrs fasting. Proportion of (B) body fat and (C) lean mass on body weight during a 24 hrs fasting 
period. (D), (E) Serum glycerol and FFA levels in 24 hrs fasted mice. (F) Organ weights of abdominal and inguinal WAT and 
BAT after 24 hrs fasting. n=5, means ±SEM. 

Gene expression analysis revealed that TBLR1 mRNA levels were reduced by approx. 30% in 

abdominal, inguinal and brown adipose tissues (Fig. 49 A-C). Protein levels were only slightly reduced 

in AT of ATKO+/- mice as seen in immunoblotting (Fig. 49 D), which may explain why no major 

phenotypic changes were observed between wt and ATKO+/- animals. 

 

Fig. 49: TBLR1 expression is reduced in ATKO+/- mice in abdominal and inguinal white adipose tissue and brown adipose 
tissue. TBLR1 mRNA expression in (A) abd. WAT, (B) ing. WAT and (C) BAT of 24 hrs fasted ATKO+/- animals, measured by 
qPCR. D) TBLR1, actin and VCP protein levels in abdominal, inguinal and brown adipose tissues and liver, measured by 
immunoblotting using TBLR1, actin or VCP antibodies. n=3, means ±SEM, * indicates significance. 
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2.6.2 Adipocyte specific knockout of TBLR1 leads to increased body weight and body fat 

content and enlarged adipose tissue depots  

Homozygous adipocyte specific TBLR1 knockout animals (ATKO mice) were bred by TaconicArtemis 

as described before for the heterozygous animals. To test for specificity of the knockout, we analyzed 

TBLR1 mRNA expression in various tissues including WAT and BAT using qPCR primers targeting exon 

5 (Fig. 50). Reductions in TBLR1 mRNA levels were found in abdominal and inguinal WAT depots and 

isolated adipocyets as well as in BAT, but could not be detected in the stromal vascular fraction (SVF) 

isolated from abdominal or inguinal white adipose depots, spleen, kidney, liver, and GC muscle. 

Opposite of what has been described before (Makowski, L., 2001), we could not observe reduced 

TBLR1 levels in bone marrow derived macrophages.   

 

Fig. 50: TBLR1 mRNA levels are specifically reduced in brown and white adipose tissues of ATKO mice. Indicated tissues or 
cells of wt and ATKO mice aged 16 weeks were isolated and snap-frozen. TBLR1 mRNA levels were determined by qPCR. 
Means ±SEM, n=3, * indicates significance. 

While body weight was equal in ATKO and wt animals in young age, ATKO mice were significantly 

heavier starting from 10 weeks of age onwards. Analysis of body weight composition by ECHO-MRI 

revealed that increased body weight was largely due to a higher body fat content in the ATKO 

animals, while the relative contribution of lean mass to the body weight was decreased (Fig. 51 A, B). 

Similar to the ATKO+/- animals, we could not observe any differences in food intake or blood glucose 

levels (Fig. 51 C, D). 
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 Fig. 51: ATKO mice at the age of 10 weeks have increased body weight due to higher body fat mass. Body weight (A), 

body composition (B), food consumption (C) and blood glucose (D) of 10 week old female ATKO mice or wt littermates from 

TaconicArtemis. Fat mass and lean mass were analyzed by ECHO-MRI and plotted relative to body weight. n=10, means 

±SEM, * indicates significance. 

By 3 months of age, ATKO animals were visibly more obese than wt littermates on a normal chow 

diet and showed extremely enlarged abdominal and inguinal fat pads (by ~50%, Fig. 52). 

 

Fig. 52: 3 months old ATKO mice are heavier that their wt littermates which is due to enlarged fat pad size. A) Female wt 
(left) and ATKO (right) mice aged 3 months. B) Isolated inguinal and abdominal fat pads of female wt (left) and ATKO (right) 
mice aged 3 months. 

 

2.6.3 Adipose tissue explants isolated from ATKO mice show reduced lipolysis 

In order to get a first hint whether the data obtained by in vitro studies could be validated in the in 

vivo situation, explants of abdominal, inguinal and interscapular brown adipose tissues of ATKO and 

wt mice were isolated and lipolysis was stimulated by the addition of 10µM isoproterenol for 3 hrs. 

Measuring FFA and glycerol in the supernatants of the explants revealed a reduced FFA and glycerol 

release in explants isolated from ATKO mice and a diminished lipolytic response to the stimulus in all 

three tissues (Fig. 53 A-F). Other than in the in vitro situation, we could not see reduced ATGL levels 

in the ATKO explants. In contrast, blunted triglyceride breakdown in the explants isolated from ATKO 

animals was due to reduced HSL protein levels as well as PKA-mediated HSL and other target protein 

phosphorylation (Fig. 53 G), eventually caused by reduced beta-adrenergic receptor expression (Fig. 

53 H). Thus, TBLR1 is responsible for efficient lipolytic response also in the ex vivo situation. Next we 

sought to assess the physiological relevance of these findings in vivo. 



 
48 RESULTS 

 

Fig. 53: Adipose tissue explants isolated from ATKO mice show reduced basal and isoproterenol-induced lipolysis due to 
reduced HSL expression and activation. Explants isolated from abdominal, inguinal and brown adipose tissues of 3 months 
old female ATKO or wt mice. Equally sized pieces were treated with or without 10 µM isoproterenol for 4 hrs and FFA (A-C) 
and glycerol (D-F) were measured from the supernatants. G) p-HSL, HSL, ATGL and VCP were detected by immunoblotting 
from protein lysates of abdominal WAT explants. H) Adrb3 mRNA levels were detected by qPCR from abdominal WAT 
explants. n=6, means ±SEM, # indicates significance between basal and stimulated, *indicates significance between wt and 
ATKO. 

 

2.6.4 ATKO animals show a disturbed adipose tissue lipolytic response to fasting 

To investigate effects of adipocyte TBLR1 knockout on fasting, we performed a time course 

experiment with the ATKO mice by fasting the animals for 3, 8, 24 and 48 hrs. Half of the animals 

where subsequently refed for 6 hrs. Body composition during that time was monitored using ECHO-

MRI, and glycerol and free fatty acid levels were measured in the serum. As observed before, ATKO 

mice showed the tendency towards higher body weight and body fat content compared to wt mice 

at the beginning of the experiment. However, there was no significant difference between ATKO and 
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wt animals owed to the young age of the mice (8 weeks). During 48 hrs fasting, wt and ATKO mice 

lost equal amounts of body weight, fat mass and lean mass and displayed normal serum glycerol and 

free fatty acid levels (Fig. 54 A-E). Adipocyte lipolysis as calculated by total serum FFAs divided by 

body fat was reduced in the ATKO mice (Fig. 54 F). 

 

 

Fig. 54: ATKO mice display normal body weight, body composition and serum FFA and glycerol levels upon fasting. (A) 
Body weight loss during 48 hrs fasting and 6 hrs refeeding. Proportion of (B) body fat and (C) lean mass on body weight 
during the same period. (D), (E) Serum glycerol and FFA levels in 48 hrs fasted and 6 hrs refed mice. (F) Lipolysis calculated 
by total serum FFA divided by body fat in the fed state. n=6, means ±SEM, # indicates significance between fed and fasted, 
*indicates significance between wt and ATKO. 

When measuring organ weights, ATKO animals showed enlarged abdominal and inguinal white fat 

pads compared to wt animals in the fasted state while adipose tissue weights were similar in wt and 

ATKO animals in the refed state. BAT weights were unchanged in both the fasted and refed states 

(Fig. 55 A-C). Liver weights were unaltered between wt and ATKO mice and increased by feeding (Fig. 

55 D).  

In agreement with the increase in white adipose tissue weights, ATKO animals in the fasted state in 

average had enlarged adipocytes as well as a shift towards a bigger population of larger cells as 

shown in hematoxylin and eosin (H&E) stained abdominal WAT (Fig. 55 E, F). The reduction in 

abdominal and inguinal WAT mass with total body fat loss during fasting being unaltered points 

towards a depot-specific role of TBLR1 in this setting.  
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Fig. 55: Abdominal and inguinal WAT weights as well as adipocyte diameter are increased in ATKO mice in the fasted 

state. Abdominal WAT (A), inguinal WAT (B), BAT (C) and liver (D) weights of 8 week old ATKO mice and their wt littermates 

that were fasted for 48 hrs or fasted for 48 hrs and subsequently refed for 6 hrs. E) H&E stained abdominal WAT slices of the 

same animals. (F) Adipocyte sizes and size distribution were analyzed in three pictures corresponding to three layers of the 

tissue. n=6, means ±SEM, # indicates significance between fed and fasted, *indicates significance between wt and ATKO. 

In accordance with the enlarged abdominal fat pads in the fasted state in the ATKO mice, we 

observed reduced levels of p-HSL and p-PKA in these animals when compared to the wt controls (Fig. 

56). The reduced levels of phosphorylated PKA and HSL were probably due to a decrease in beta2-

adrenergic receptor levels (Fig. 56), which interferes with a normal lipolytic response. Total protein 

levels of HSL and ATGL were largely unchanged by either fasting or TBLR1 knockout. The same was 

observed in inguinal adipose tissue (not shown). The reduced adrenergic receptor expression and 

activation of hormone sensitive lipase and other PKA targets including perilipin strengthened the 

notion that TBLR1 is involved in adipocyte lipolysis in response to fasting. 
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Fig. 56: Immunoblot of 48 hrs fasted or 6 hrs refed ATKO and wt animals. 8 week old female ATKO mice and their wt 
littermates were fasted for 48 hrs and subsequently refed for 6 hrs. Proteins were detected from protein lysates of 
abdominal WAT by immunoblotting using beta-2-adrenergic receptor (β2-AR), phospho-HSL, phospho-PKA targets, 
hormone-sensitive lipase (HSL), adipocyte triglyceride lipase (ATGL), and valosin containing protein (VCP) antibodies, 
respectively. n=3-4.  

 

2.6.5 ATKO mice gain more weight during high fat diet feeding and reveal a strong increase 

in body fat content 

So far our data indicate that TBLR1 may play a role in adipose tissue triglyceride homeostasis by 

regulating transcriptional events leading to basal or stimulated lipolysis. As lipolysis is dysregulated in 

obesity (Gaidhu, M.P., 2010), we posed the question whether the lipolytic regulator TBLR1 could 

influence the development of obesity in a mouse model where adiposity is induced by diet.  

To investigate this, ATKO or wt mice were fed a high fat diet (HFD) containing 60% calories from fat 

for 8 weeks to induce obesity, starting at the age of 6 weeks. A low fat diet (LFD) containing 10% 

calories from fat served as control diet. While body weights were undistiguishable between ATKO 

and wt mice at the beginning of the experiment, ATKO mice on a low fat diet were heavier than their 

wt littermates starting from 10 weeks of age onwards. Wild type mice on a high fat diet gained 

significantly more weight than littermates on a LFD. ATKO mice on the same diet gained even more 

weight than their wt littermates (Fig. 57).  

The higher body weight gain in ATKO compared to wt animals was largely attributed to an increase in 

body fat mass, which was higher in ATKO animals than in wt animals in both LFD and HFD feeding, as 

measured by body composition analysis with an ECHO-MRI. Lean mass increased steadily with age in 

all four groups. Thus, both high fat diet and TBLR1 deficiency promote the development of obesity 

and act synergistically (Fig. 57).  
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Fig. 57: ATKO mice on a HFD gain significantly more weight and body fat than their wt littermates. 6-week-old female 
ATKO and wt mice were fed a LFD or HFD for 8 weeks. Body weight (A) was measured weekly. Body weight gain (B) was 
calculated as % starting weight. Body fat (C) and lean mass (D) were measured after 2, 4, 6, and 8 weeks of HFD/LFD feeding 
by ECHO-MRI. n=8, means ±SEM, student’s t: #p < 0.05 LFD, $p < 0.05 HFD. 

Blood glucose levels were higher in HFD fed mice irrespective of genotype (Fig. 58 A). Interestingly, 

even after 4 weeks HFD feeding core body temperature of HFD fed mice was lower than that of LFD 

fed mice in wt animals, whereas ATKO mice showed equally low temperatures in both LFD and HFD 

feeding, indicating that LFD fed ATKO mice displayed typical signs of obesity. Apart from that, ATKO 

mice showed increased serum leptin and resistin levels even after 4 weeks HFD feeding (Fig. 58 C-D), 

which is usually sign of adiposity. This effect was even more prominent after 8 weeks HFD feeding 

(data not shown), further supporting the idea that TBLR1 deficiency worsens obesity and 

accompanying symptoms.  

 

Fig. 58: ATKO mice reveal normal postprandial blood glucose, reduced body temperature and increased serum markers of 
obesity. Female ATKO or wt mice were fed a HFD or LFD beginning at 6 weeks of age. Postprandial blood glucose (random 
fed, 8 am; A), body temperature (B) and serum resistin (C) or leptin (D) levels were measured after 4 weeks LFD/HFD feeding. 
n=8, means ±SEM, # indicates significance between LFD and HFD, *indicates significance between wt and ATKO. 
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After 8 weeks of high fat diet feeding, HFD led to significantly increased body weight in both wt and 

ATKO mice, but the increase in ATKO mice was still significantly larger than that in wt animals. In both 

wt and HFD mice, HFD feeding led to an increased nose-to-anus body length, but it did not differ 

between the genotypes. As expected from the ECHO-MRI data showing increased fat content in the 

ATKO mice we could observe enlarged abdominal, inguinal and brown adipose tissue depots. The 

increased WAT depot size was attributed to adipocyte hypertrophy in ATKO mice in both LFD and 

HFD fed states (Fig. 59 A-G) Cell size distribution revealed a shift towards a larger population of 

enlarged adipocytes in the ATKO mice (Fig. 59 H). 

In accordance to what we observed before, when analyzing abdominal WAT protein expression we 

saw reduced protein levels of phosphorylated HSL and other PKA targets including perilipin under 

both LFD and HFD as well as reduced levels of the key lipases ATGL and HSL. Protein levels of the 

beta2- and beta3-adrenergic receptors were also dysregulated in the ATKO mice, with no clear 

regulation pattern in the beta2-adrenoceptor but a clear reduction of the beta3-adrenoceptor in the 

ATKO mice (Fig. 60). Thus, TBLR1 depletion in adipocytes led to increased susceptibility to HFD and 

increased body fat gain due to decreased triglyceride hydrolysis. 
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Fig. 59: Fat pad weight and adipocyte size is increased in ATKO mice while liver weights and body length are largely 
unaltered. Female ATKO or wt mice were fed a LFD/HFD for 8 weeks starting from the age of 6 weeks onwards. Shown are 
body weight (A), body length (B), liver (C), abdominal WAT (D), inguinal WAT (E) and BAT (F) weights. (G) Lipolysis calculated 
by total FFAs divided by body fat. (H) H&E stained abdominal WAT slices. (I) Quantification of 100-200 cells/picture in 2 
layers of tissue and cell size distribution in the same samples. n=8, means ±SEM, # indicates significance between LFD and 
HFD, *indicates significance between wt and ATKO. 
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Fig. 60: ATKO mice have reduced levels of phosphorylated HSL and PKA targets and decreased protein expression of 

adrenergic receptors, HSL and ATGL compared with wt littermates. ATKO and wt female mice were fed a LFD/HFD for 8 

weeks starting at the age of 6 weeks. Protein lysates were prepared from pulverized abdominal WAT and protein levels were 

detected using the respective antibodies. RNA Polymerase 2 was used as a loading control as both VCP and Actin were 

regulated by HFD feeding. 

 

2.6.6 ATKO mice show impaired glucose tolerance and insulin sensitivity and increased 

subacute inflammation 

Obesity often leads to the development of hyperglycemia and reduced insulin sensitivity. In order to 

investigate glucose homeostasis in LFD and HFD fed ATKO and wt mice, we measured the 

homeostasis model assessment of insulin resistance (HOMA-IR, HOMA-%B) index and performed an 

intraperitoneal glucose tolerance test, measuring both insulin and glucose levels after injection of 2 

mg/kg glucose over a time period of 2 hrs.  

As seen in Fig. 61, HOMA-IR as calculated by fasting glucose and insulin levels (Matthews, D.R., 1985) 

was significantly increased by HFD and even higher in ATKO animals, pointing towards a beginning 

insulin resistance of the ATKO animals on a HFD (typically, HOMA-IR values > 2 indicate insulin 

resistance). HOMA-%B, a measure of beta-cell activity, was unchanged by both feeding and 

genotype. Insulin Sensitivity Index (ISI, Matsuda, M. and DeFronzo, D.R., 1999) was strongly reduced 

by HFD feeding and even worse in the ATKO animals. Accordingly, fasting glucose and insulin levels 

were elevated in HFD fed ATKO mice, and glucose and insulin levels measured during an IPGTT 

(intraperitoneal glucose tolerance test) show impaired glucose tolerance and insulin sensitivity in the 

ATKO animals on a HFD. 
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Fig. 61: ATKO mice show impaired glucose tolerance and insulin sensitivity compared to wt mice, which is worsened by 
HFD feeding. 12 week old female ATKO or wt mice, fed a HFD or LFD for 6 weeks, were starved for 6 hrs beginning at 8am 
and fasting glucose and insulin levels were measured in the serum. HOMA-IR (A) and HOMA-%B (B) were calculated from the 
fasted glucose and insulin levels. Mice were then injected intraperitoneally with 2 mg/kg glucose, and blood glucose and 
serum insulin levels were measured 20, 60, and 120 min after injection. Insulin sensitivity index (ISI, C) was calculated as 
described (Matsuda M. and DeFronzo D.R., 1999) using the 0 and 120 min time points. Glucose (D) and insulin (E) levels were 
plotted over the time course of the experiment. Student’s t test: $p < 0.05 HFD. Areas under the curve for glucose and insulin 
levels were calculated from basal values. n=8, means ±SEM, # indicates significance between LFD and HFD, *indicates 
significance between wt and ATKO. 

Increased triglyceride storage in adipocytes is described to be beneficial to whole body insulin 

sensitivity due to reduced lipotoxicity in other organs (Samocha-Bonet, D., 2012). However, obesity is 

also often accompanied by increased inflammation of the adipose tissue due to hypoxia and 

endoplasmatic reticulum stress of the adipocytes (Iyer, A., Brown, L., 2010). In these stages, 
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adipocytes can secrete cytokines to recruit macrophages to the tissue, which leads to chronic 

subacute inflammation and may cause glucose intolerance and insulin resistance (Iyer, A., Brown, L., 

2010). To analyze adipose tissue inflammation, we measured inflammatory marker gene expression 

in abdominal WAT of LFD and HFD wt and ATKO mice by qPCR. As was described before, we observed 

increased expression of the inflammatory marker genes TNFα, IL6 and monocyte chemoattractant 

protein (MCP)-1 in the obese state. ATKO mice revealed a higher inflammatory marker gene 

expression than their wt littermates in LFD feeding, and TNFα, MCP-1 and F4/80 levels were further 

increased by HFD feeding (Tab. 2). Thus, adipose tissue of ATKO mice shows signs of increased 

macrophage infiltration and inflammation that may account for the reduced glucose tolerance of 

these animals.  

Gene Wt LFD ATKO LFD Wt HFD ATKO HFD 
TNFa 1,00 ± 0,33 2,17 ± 0,61* 1,45 ± 0,40 2,60 ± 0,86* 
IL6 1,00 ± 0,31 1,45 ± 0,50 3,67 ± 0,96 3,04 ± 0,67 
F4/80 1,00 ± 0,11 1,30 ± 0,12* 0,95 ± 0,15 2,49 ± 0,40*** 
MCP1 1,00 ± 0,12 1,37 ± 0,16* 2,55 ± 0,48 6,01 ± 1,21** 
 

Tab.2: ATKO mice show increased expression of the inflammatory markers TNFα, IL6, F4/80 and MCP1. means ± SEM, 
n=8. Student’s t-test * indicates significance between wt LFD and ATKO LFD or between wt HFD and ATKO HFD. 

 

2.7 TBLR1 is implicated in human obesity 

2.7.1 TBLR1 expression is increased in obese patients who underwent a weight reduction 

program 

In mice, adipose tissue TBLR1 is implicated in fasting response and obesity by regulating lipolysis, 

thereby potentially controlling metabolic health and body weight of the animals. In the next step we 

wanted to investigate whether adipose tissue TBLR1 was also involved in human metabolic disorders, 

i.e. obesity and weight reduction by fasting.  

In a first study, we analyzed TBL1 and TBLR1 mRNA levels in visceral WAT of 25 obese nondiabetic 

patients (BMI > 30 kg/ m²) who underwent a weight reduction program for 52 weeks (OPTIFAST®52, 

Rudofsky, G. et al. 2011). This program was divided into three parts: In the first three months, all 

meals were substituted by special ‘Formula’ drinks with a total of 800 calories per day (fasting 

phase). Following this, the drinks were substituted one by one with healthy meals for the next 6 

weeks (adjustment phase). In the last 34 weeks, nutrition changed to normal, healthy meals with 

controlled energy intake (stabilization phase). In average, the subjects lost 22.2 ± 1.5 kg (17.5 %) 

body weight within the first fasting phase and 23.6 ± 3.0 kg (18.6 %) body weight after a total of 52 

weeks. Body weights and serum parameters at the beginning and end point of the study are shown in 

Table 3. 

 before weight loss after weight loss 
Age (years) 41.8 ± 2.6  
Sex 12 f / 11 m  
WAT TBLR1 1.0 ± 0.1 1.29 ± 0.1 
BMI (kg/m²) 42.9 ± 1.6 35.2 ± 1.5 
Glucose (mg/dl) 113.1 ± 8.8 112.8 ± 12.8 
Insulin (mU/l) 31.2 ± 2.1 12.3 ± 1.7 
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Serum Cholesterol (mg/dl) 202.0 ± 8.4 189.3 ± 6.3 
Serum triglycerides (mg/dl) 132.1 ± 15.6 96.7 ± 10.2 
Body fat (%) 45.7 ± 1.9 36.6 ± 2.8 
 

Tab. 3: Characteristics of patients participating in 1-year-weight loss study (Optifast) before the study and after 52 weeks 
of the program. All values are means ± SEM. 

As seen in Fig. 62, TBL1 mRNA expression in visceral WAT was not significantly changed upon 12 or 

52 weeks of fasting. In contrast, TBLR1 expression increased significantly after 52 weeks of fasting 

during the stabilization phase of the program, i.e. when acute fasting lay behind and weight 

reduction was achieved by constantly reduced calorie intake. This fits to the observation that, while 

acute fasting did not strongly alter TBLR1 levels in mice, long term food restriction lead to increased 

TBLR1 expression. 

 

Fig.62: TBLR1 mRNA expression is increased in obese patients after 52 weeks of restricted calorie intake. 25 obese, 
nondiabetic patients (BMI > 30 kg/ m²) underwent a 52 weeks weight reduction program. Visceral WAT samples were taken 
before the start of the study and after 12 and 52 weeks of weight reduction, respectively. TBL1 (A) and TBLR1 (B) mRNA 
levels were measured by qPCR and normalized to 3dg4 expression levels. n=25, 1-way ANOVA, Bonferroni pt, * indicates 
significance.  

 

2.7.2 TBLR1 but not TBL1 expression levels in visceral WAT are increased in obese patients 

In mice, TBLR1 mRNA expression in adipose tissue was found to be increased in several genetic and 

diet-induced mouse models of obesity, while WAT TBL1 levels were largely unchanged. In humans, 

obesity is an increasing health risk with many genetic and environmental causes that in most cases 

cannot be attributed to a single genetic defect (Popkin, B.M., 2012). Here we analyzed whether TBL1 

and TBLR1 mRNA expression in WAT of obese patients was altered in comparison to lean control 

patients, similar to what was observed before in obese and lean mice.  

For this study we analyzed mRNA expression of TBL1 and TBLR1 in visceral WAT of 21 morbidly obese 

(BMI = 46.4 ± 1.5 kg/m²) and 20 age- and sex-matched non-obese (BMI = 25.1 ± 0.75 kg/m²) patients 

(characteristics, see Tab. 4). As expected from the mouse data showing elevated TBLR1 levels in 

obesity models (Fig. 9), TBLR1 levels were significantly increased in visceral WAT of obese patients, 

while TBL1 levels were unchanged (Fig. 63). Thus, TBLR1 but not TBL1 was upregulated in mice and 

humans in various states with increased lipolysis including obesity. 
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 lean obese 
Age (years) 43.5 ± 1.9 42.1 ± 2.3 
Sex 15 f / 5 m 15 f / 6 m 
WAT TBLR1  1.00 ± 0.09 1.2 ± 0.10 
BMI (kg/m²) 25.1 ± 0.75 46.4 ± 1.5 
Glucose (mg/dl) 84.1 ± 2.5 91.6 ± 2.0 
Insulin (mU/l)  17.9 ± 2.2 
Serum cholesterol (mg/dl) 218.7 ± 11.5 214.5 ± 9.6 
Serum triglycerides (mg/dl) 125.2 ± 29.1 177.5 ± 18.8 
Serum free fatty acids (mmol/l)  440.6 ± 40.3 
Serum adiponectin (µg/ml)  7.7 ± 0.5 
 

Tab. 4: Characteristics of lean and obese patients. All values are means ± SEM. Insulin, FFA and adiponectin levels were only 
measured in the obese group.  

 

 

Fig. 63: TBLR1 but not TBL1 mRNA levels are increased in visceral WAT of obese patients. TBL1 and TBLR1 mRNA levels 
were measured by qPCR from visceral WAT biopsies of 21 morbidly obese (BMI = 46.4 ± 1.5 kg/m²) and 20 age- and sex-
matched non-obese (BMI = 25.1 ± 0.75 kg/m²) patients. n=20-21, student’s t-test, * indicates significance. 

 

2.7.3 TBLR1 expression in WAT correlates with BMI, serum adiponectin, triglyceride and 

free fatty acid content and with expression of β- adrenoceptors 

TBLR1 was found to be upregulated in obese patients. In this respect, calculating Pearson’s 

correlation with body mass index revealed a slight but significant correlation between BMI and TBLR1 

expression (Fig. 64 A). As obesity is mostly associated with elevated serum triglycerides and free fatty 

acids, and TBLR1 was found to be a regulator of lipid metabolism, we also analyzed correlation 

between TBLR1 levels and serum TG and FFA and indeed observed significant positive correlation 

(Fig. 64 B-C). Interestingly, TBLR1 expression also correlated with adiponectin levels in this patient 

cohort (Fig. 64 D). Finally, since TBLR1 has indirectly been shown to regulate beta-adrenergic 

receptor levels in mice, we analyzed gene expression of β1-, β2-, and β3-adrenergic receptors in 

visceral WAT of lean and obese patients. mRNA levels of the beta3-receptor yielded very low levels 

and were undetectable in most patients, indicating that in humans, the beta3- receptor plays only a 

minor role in WAT lipolysis (data not shown). However, beta1- and beta2-adrenoceptors were readily 

detectable and correlated with TBLR1 levels (Fig. 64 E, F), giving a further hint that TBLR1 regulates 

adrenoceptor expression also in humans. 
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Fig. 64: Pearson correlation of visceral WAT TBLR1 mRNA expression and BMI, serum TG, FFA, and adiponectin levels and 
visceral WAT beta-adrenergic receptor expression. Pearson correlation coefficients and significance given in each diagram. 
n=40 (A, B, E, F) or 20 (C, D). 
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3 DISCUSSION 

3.1 TBL1 and TBLR1 regulate lipid metabolism through cell-type specific distinct 

mechanisms  

TBLR1 has originally been identified as a TBL1 homolog with redundant functions (Yoon, H.G., 2003). 

Evidence has accumulated, though, that the two 90% identical proteins may have non-redundant or 

even antagonistic functions (Perissi, V., 2004; Zhang, X.M., 2006). While their protein structure is 

largely identical, they differ in phosphorylation sites (Perissi, V., 2008) and tissue-specific expression 

(Fig. 8), which further supports the notion of non-redundancy.  

In accordance with high liver TBL1 levels, previous studies in our lab have showed that TBL1 was a 

critical determinant of hepatic lipid metabolism, as knock down of this protein led to strong 

triglyceride accumulation and liver steatosis (Kulozik, P., 2011). Gene expression profiling revealed an 

implication of TBL1 in PPAR signaling, and TBL1 was shown to mediate beta-oxidation and lipogenesis 

by interaction with the nuclear receptor PPARα. In states with high lipid challenge, like obesity or 

acute lipid infusion, as well as in human liver samples from patients with non-alcoholic fatty liver 

disease (NAFLD), hepatic TBL1 levels were down regulated. Interestingly, while TBLR1 levels were not 

regulated under these conditions, liver TBLR1 knock down produced a phenocopy of the TBL1 knock 

down phenotype, and double knock down of both co-factors potentiated liver lipid accumulation 

(Kulozik, P., 2011). This would point towards a coordinated function of these two proteins eventually 

via heterodimerization, as it has been proposed by Yoon, H.G. et al., 2003. 

Opposite to what has been observed in the liver, TBL1 was not regulated by any metabolic challenge 

in the adipose tissue. We observed no changes in gene expression irrespective of the stimulation in 

mice, be it obesity, fasting, or injection of chemicals like LPS or beta-adrenergic receptor agonists. In 

adipocytes, knock down of TBL1 had no effect on either differentiation or lipid metabolism. This may 

be explained by a less central role of the nuclear receptor PPARα in adipocytes – PPARα is expressed 

to a higher extent in tissues with high rates of fatty acid oxidation and peroxisomal metabolism 

(Lefebvre, P., 2006) like liver. Thus, regulatory mechanisms of lipid metabolism in adipose tissue have 

to be distinct from those in liver concerning TBL1/TBLR1 action. 

In adipose tissue, the co-factor TBLR1 seems to play a more central role to lipid metabolism. Its 

expression in WAT of mice was tightly regulated by obesity, fasting, beta-adrenergic stimulation and 

inflammation, and knock down of the protein in adipocytes led to increased triglyceride levels and 

reduced lipolysis in these cells. When performing gene expression profiling in adipocytes lacking 

TBLR1, we observed that genes annotated to adipocytokine signaling pathways, such as the body 

weight regulator adiponectin or the proinflammatory cytokine monocyte chemoattractant protein 1 

(MCP1), as well as those annotated to fatty acid metabolism, like e.g. fatty acid synthase, were 

enriched in the fraction of TBLR1 regulated genes. These pathways are amongst the most central 

pathways to adipocyte biology (Dahlman, I. and Arner, P., 2010), and their dysregulation in this 

setting leads to the assumption that adipocyte homeostasis is severely impaired by loss of TBLR1 

function.  

Pathway analysis of TBLR1 regulated genes revealed an implication of TBLR1 in the PPAR signaling 

pathway also in adipocytes. Since the KEGG pathway analysis does not discriminate between the 

three subgroups of PPARs, PPARα, γ, and β/δ, this result was congruent with the described function 

of TBLR1 as co-factor of the PPAR family of nuclear receptors (Perissi, V., 2004) and our gene 
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expression profiling results from liver (Kulozik, P., 2011). When we tried to rescue the effects of 

TBLR1 knock down on triglyceride accumulation and lipolysis, we observed that, while PPARα or 

PPARβ/δ agonists fail to rescue the TBLR1 knock down phenotype, the PPARγ agonist rosiglitazone 

restores lipolytic activity of the TBLR1 knock down cells. PPARγ has been shown to be a positive 

regulator of lipolysis at the level of transcriptional activity before (Rodriguez-Cuenca, S., 2012a and 

Festuccia, W.T., 2006), so it is intriguing to speculate that TBLR1 in adipose tissue may exert its 

function by PPARγ activation, or derepression. This is further supported by the finding that TBLR1 

knock down specifically led to a downregulation of most genes annotated to the PPAR signaling 

pathway, arguing for a role of TBLR1 as a co-activator of PPARγ. This fits to the description of TBLR1 

as a co-activator of nuclear receptors (Perissi, V., 2004) and is further supported by the finding of a 

direct interaction of TBLR1 with PPARγ and the obligate PPARγ heterodimerization partner RXR. 

Indeed, a comparison of genes regulated by adipocyte TBLR1 knock down and in adipose tissue of 

PPARγ+/- mice (Anghel, S.I., 2007) showed striking similarities: Genes implicated in fatty acid 

metabolism, like HSL, Aqp7, ACC1, or FAS were down regulated with reduced PPARγ or TBLR1 levels, 

while genes involved in cell stress or inflammation were increased. In contrast to what was described 

for the PPARγ+/- mice, however, we could not observe differences in glucose uptake or lipogenesis 

upon TBLR1 knock down, underlining the notion that mechanisms distinct from PPARγ signaling are 

involved in TBLR1 function. Thus, TBL1 and TBLR1 exert their functions on lipid metabolism in WAT 

and liver by different mechanisms and the involvement of distinct transcriptional networks, 

potentially involving the PPAR family of transcription factors. 

 

3.2 TBLR1 regulates multiple layers of the lipolytic cascade 

In adipocytes, TBLR1 is an important regulator of lipid metabolism by influencing adipocyte lipolysis 

stimulated by hormonal signals. This effect on the cellular level is achieved by the regulation of 

several key factors involved in the well-described lipolytic cascade. Importantly, adipocytes lacking 

TBLR1 showed increased triglyceride content without defects in glucose metabolism, insulin signaling 

or lipogenesis. In cells, TBLR1 knock down led to an impaired expression of beta-adrenoreceptors, 

representing the most upstream element of the lipolytic cascade, which resulted in decreased cAMP 

levels and PKA-mediated phosphorylation of target genes like HSL or perilipin. Of note, cAMP 

signaling efficiency or degradation were unaffected by TBLR1 knock down in these cells, as PKA 

subunit composition (and as such substrate affinity) was unaltered and treatment with the 

phosphodiesterase inhibitor IBMX had no further effect on the phenotype of TBLR1 knock down. If 

the adrenoceptors were the only level at which the lipolytic cascade was regulated by TBLR1, the 

repressive effect on lipolysis by TBLR1 should largely disappear when stimulating the cells with the 

adenylate cyclase (AC) agonist forskolin. This agent stimulates cAMP production directly through AC 

activation and circumvents the beta-adrenoceptors (Garcia-Barrado, M.J., 2011). Interestingly, TBLR1 

knock down inhibited forskolin-mediated lipolysis to the same extent as it inhibited lipolysis 

stimulated by the beta-adrenoceptor agonists isoproterenol, CL316,243 or procaterol. Thus, 

transcriptional regulation of beta-adrenergic receptors cannot be the only mechanism by which 

TBLR1 regulates lipolysis.  

In addition to reduced adrenoceptor levels, TBLR1 knock down also led to reduced ATGL, HSL and 

MGL expression in these cells, representing the major lipases involved in lipolysis. As pointed out by 

HSL and ATGL promoter analysis showing that both lipase promoters were less active without TBLR1, 
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this is a direct transcriptional effect of TBLR1. Thus, regulation of lipolysis by TBLR1 occurs at multiple 

sites within the lipolytic cascade on the transcriptional level (Fig. 65). In proof of this principle, TBLR1 

over expression had opposing effects on triglyceride accumulation, lipolysis and target gene 

expression. 

Fig. 65: Transcriptional regulation of the lipolytic cascade by TBLR1. Under basal conditions, when the lipolytic cascade is 
shut off, TBLR1 is inactive or bound to co-repressor complexes. Upon ligand binding to the adrenoceptors, TBLR1 is induced 
and activates transcription of the target genes ATGL, HSL and MGL and the beta-adrenergic receptors, leading to a feed 
forward mechanism promoting triglyceride breakdown in the adipocyte. 

 

mRNA levels of ATGL and HSL, however, do not always correlate with cellular lipase activity. For 

example, Kralisch et al. have shown that isoproterenol or TNFα signals reduce mRNA levels of these 

lipases, but conversely stimulate lipase activities as measured by FA and glycerol release (Kralisch, S., 

2005). Thus, the modern view of lipolysis takes into account that lipolytic regulation involves protein 

modifications, interactions and subcellular localization (reviewed in Zechner, R., 2012) rather than 

transcriptional regulation. Indeed, HSL is regulated mainly by phosphorylation by PKA, but enzyme 

activity can also be influenced by phosphorylation by other kinases, including AMPK, extracellular 

signal-regulated kinase, or glycogen synthase kinase-4 (Lass, A., 2011). However, TBLR1 knock down 

did not influence HSL phosphorylation on other sites apart from the PKA target residue Serine660. 

AMPK-phosphorylated HSL (Serine565) levels were indeed reduced in TBLR1 knock down cells (Fig. 

29), yet this reduction can be fully attributed to reductions in HSL protein content, further supporting 

the notion of a specific alteration in PKA-mediated signaling. 

In addition to HSL, PKA also phosphorylates the lipid droplet coating protein perilipin 1, which, in its 

phosphorylated form, recruits HSL to the lipid droplet to facilitate access to the lipids (Wang, H., 

2009). Phosphorylated perilipin also undergoes conformational changes and releases CGI-58, so that 

CGI-58 can bind to ATGL as a co-activator necessary for full enzyme activity (Lu, X., 2010). The 

question of subcellular localization was addressed by immunohistochemical approaches showing 

perilipin, ATGL and HSL localization in relation to the lipid droplet with and without adrenergic 

receptor stimulation. Interestingly, we were not able to detect any differences in protein localization 

in cells lacking TBLR1, indicating that TBLR1 is indeed a regulator of transcription rather than acting 

through protein localization (data not shown). In this respect, we did not observe any changes in CGI-



 
64 DISCUSSION 

58 mRNA or protein levels; however, the question if TBLR1 knock down influences CGI-58/ATGL 

interaction still needs to be addressed.  

 

3.3 TBLR1 is a critical regulator of body weight and adiposity  

Mice lacking TBLR1 in adipocytes (adipocyte specific TBLR1 knockout mice (ATKO) mice) showed 

increased body weight due to strongly increased body fat content, already starting at young age and 

developing over time. This cannot be attributed to increased adipocyte differentiation, since (a) aP2-

mediated genetic knockout was largely present in mature adipocytes, and (b) TBLR1 did not influence 

adipocyte differentiation as seen in the cellular model. Instead, as expected from in vitro data, ATKO 

mice showed adipocyte hypertrophy as measure of increased triglyceride stores on both low and 

high fat diet. This was mediated by impaired lipolysis through reduction of adrenoceptor and lipase 

expression in WAT and subsequently of cAMP signaling strength as measured by PKA target 

phosphorylation.  

In fasting, WAT lipolysis is activated through catecholamine signals to beta-adrenergic receptors and 

leads to reductions in WAT lipid levels by triglyceride hydrolysis (Yu, Y. H. and Ginsberg, H. N., 2005). 

The products of this reaction, free fatty acids and glycerol, are then exported from the adipocyte into 

the blood stream to be used by ‘sink’ organs like liver or muscle. Defective lipolysis in ATKO mice 

should therefore result in decreased FFA and glycerol levels in the blood. Interestingly, despite 

increased adipocyte triglyceride levels we did not observe an effect of TBLR1 knockout on either FFA 

or glycerol, which seems contradictory at the first glance. However, the ATKO mice are not the only 

mouse model describing this phenomenon. Mice lacking all three subtypes of activating 

adrenoceptors (β1/β2/β3 triple KO mice) develop progressive obesity as would be anticipated from 

mice with defects in lipolysis. Opposite to what would be expected, β1/β2/β3 triple KO mice display 

increased serum levels of FFA and glycerol in both fasted and fed states, probably due to over-

compensation by other hormones activating lipolysis, like glucocorticoids and adrenocorticotropin 

hormone or by decreased antilipolytic effects through insulin (Jimenez, M., 2002). TBLR1 inactivation 

in adipocytes did not lead to alterations in glucose metabolism or insulin signaling, so in case of the 

adipocyte specific TBLR1 knockout mice decreased insulin action cannot be causal for the unchanged 

FFA and glycerol levels in the blood. Also, liver lipid levels and serum ketone bodies (as measure of 

liver TG breakdown) were largely unchanged between ATKO and wt mice (data not shown). Thus, 

compensation for altered FFA or glycerol excretion from the adipose tissue by insulin action or 

hepatic lipid metabolism is not causal for unchanged FFA/glycerol levels in ATKO mice. One 

explanation for this phenomenon could be that the reduced FFA/glycerol excretion observed in WAT 

explants of ATKO mice is not measurable in vivo in serum because the excretion occurs from a bigger 

population of enlarged adipocytes, leading to an equalization of the net effect. Calculating lipolysis 

relative to adipose tissue content, ATKO mice indeed displayed 2-fold reduced lipolysis when 

compared to wt animals in both LFD/HFD as well as fasting conditions. In this respect, although 

obesity has been reported to associate with decreased lipolysis, serum FFA levels are unchanged in 

this state, indicating that serum free fatty acid levels do not directly mirror lipolysis (McQuaid, S.E., 

2011). However, further investigation is required to rule out the involvement of other lipolytic 

activators compensating for reduced beta-adrenergic receptor expression explaining the unchanged 

blood FFA and glycerol levels in the ATKO mice.  
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The best characterized mouse models in the field of lipolysis are the ATGL and HSL knockout mice 

(summarized in Zechner, R., 2012). Although one could expect a similar phenotype in these two 

mouse strains – ATGL and HSL represent the key enzymes of the lipolytic cascade – ATGL and HSL KO 

mice vary in quite a number of physiologic aspects. For decades, HSL was considered to be the only 

enzyme catalyzing adipocyte triglyceride hydrolysis, so several labs created whole body knockout 

mice expecting to see a striking fat phenotype (Haemmerle, G., 2002a; Osuga, J., 2000; Wang, S.P., 

2001). Surprisingly for that time, these mice had normal lipid and energy metabolism and did not 

develop adiposity; in contrast they were protected against diet-induced obesity. HSL knockout mice 

accumulated large amounts of diacylglycerol in adipose- and non-adipose tissues (Haemmerle, G., 

2002b), which supported the role of HSL as more important DG hydrolase than TG hydrolase. The 

creation of ATGL knockout mice has largely helped to improve our picture of the lipolytic processes in 

WAT. The phenotype of the ATGL knockout mice is in striking contrast to that of the HSL knockout 

mice. They show severely impaired lipolysis and subsequent accumulation of triglycerides not only in 

WAT but in all tissues. They develop obesity and – due to severe BAT and heart TG accumulation – 

impaired thermogenesis and cardiomyopathy (Haemmerle, G., 2006). In this respect, mutations 

impairing the function of ATGL or its activator CGI-58 have recently been linked to neutral lipid 

storage disease (NLSD) in humans. NLSD is characterized by systemic triglyceride accumulation in all 

tissues, leading to skeletal and cardiac myopathies and hepatic steatosis (Pena-Penabad, C., 2001). 

Adipocyte specific ATGL deletion leads to blunted lipolysis and severe fasting defects leading to 

proteolysis in other organs including skeletal muscle and heart (Wu, J.W., 2012). 

Although we observed stronger reductions in HSL than ATGL protein levels in the ATKO mice, the 

ATKO phenotype compares more to that of the ATGL KO mice. ATKO and ATGL KO mice parallel in 

increased body weight and adiposity, enlarged adipocytes, and impaired lipolysis, although the 

question why we could not observe altered FFA or glycerol levels remains to be elucidated as 

explained above. In contrast to the whole body ATGL KO mice, we did not see massive triglyceride 

accumulation in non-adipose tissues, though, which may be explained by the tissue-specific knockout 

in case of the ATKO mice.  

In respect to the described role of TBLR1 as co-factor regulating nuclear receptors, another very 

interesting mouse model is that of adipocyte specific NCoR knockout mice. The nuclear receptor co-

repressor (NCoR) as part of multiprotein complexes has been described to be a negative regulator of 

PPARγ, one of the key factors in adipose tissue biology (Chen, J.D. and Evans, R.M., 1995). When fed 

a high fat diet, these mice developed increased adiposity due to increased lipogenesis. Despite the 

increased fat mass, adipocyte specific NCoR mice showed decreased adipose tissue inflammation, 

reduced macrophage infiltration, smaller adipocytes, increased adiponectin and reduced leptin and 

resistin levels. In addition, they exhibited improved glucose tolerance and enhanced systemic insulin 

sensitivity. The phenotype was explained by enhanced PPARγ activity in these mice (Li, P., 2011). 

Except for the increased adiposity, this mouse model represents the exact opposite to the adipocyte 

specific TBLR1 knockout mice with enlarged adipocytes, increased inflammation, increased 

leptin/resistin levels and impaired glucose tolerance. It is interesting that knockout of a PPARγ co-

repressor, leading to increased activity of the nuclear receptor, has the opposite phenotype than the 

knockout of TBLR1, potentially acting as a co-activator, leading to decreased PPARγ activity. This 

finding provides another hint for the involvement of PPARγ in TBLR1 specific regulation of adipocyte 

biology. In this respect, it is noteworthy that PPARγ2 knockout mice show severe defects in lipolysis 

(Rodriguez-Cuenca, S., 2012b). 
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We cannot exclude that TBLR1 knockout in brown adipose tissue has influence on the obese 

phenotype of the ATKO mice. Indeed, aP2-cre mice mediate recombinase expression to the same 

extent or even stronger in BAT than in WAT (qPCR data and He, W., 2003). We observe reduced beta-

adrenergic signaling as measured by FFA and glycerol release also in BAT explants of ATKO mice, and 

adrenoceptor expression was reduced in this tissue. Accordingly, gene expression of uncoupling 

protein 1 (UCP1) and PPARγ-coactivaor 1 alpha (PGC1α) was reduced in BAT of ATKO mice (data not 

shown), which is suggestive of reduced thermogenesis. This in turn may explain increased adiposity 

due to diminished energy burning (Liang, H. and Ward, W.F., 2006). Indeed, rectal body temperature 

was lower in ATKO mice on a low fat diet, to the same extent as high fat diet feeding reduces body 

temperature in wt animals. However, high fat diet fed ATKO mice did not show a further reduction in 

body temperature despite strongly increased adiposity, which excludes reduced BAT thermogenesis 

as sole reason for the ATKO phenotype. Experiments involving housing of the ATKO animals under 

thermoneutrality may help separating between BAT- and WAT-specific effects of adipocyte TBLR1 

deletion. Future studies will focus on TBLR1 function in BAT homeostasis and possible implications in 

the ATKO phenotype.  

It has been described that enhanced triglyceride storage in adipose tissue prevents lipotoxicity and is 

beneficial for glucose tolerance and insulin sensitivity (Samocha-Bonet, D., 2012). This was also 

observed in the NCoR and ATGL knockout mice. In contrast, TBLR1 knockout in the adipose tissue 

lead to increased adipocyte triglyceride storage and impaired glucose tolerance and insulin 

sensitivity. This is a situation typical for the metabolic syndrome, where obesity and impaired glucose 

homeostasis act in concert to promote the development of serious diseases like type 2 diabetes or 

cardiovascular disease. This is caused by lipotoxicity through lipid spillover from adipose tissues and a 

systemic low-grade inflammatory condition and altered adipocytokine profile (Iyer, A. and Brown, L., 

2010). While we did not observe changes in lipid or FFA levels, we indeed observed increased 

inflammatory marker gene expression and altered adipocytokine profile in WAT of ATKO mice. 

Interestingly, interleukin-6 is not among the genes that were expressed to a higher extent in ATKO 

adipose tissue, which fits to the in vitro data showing reduced IL6 expression upon TBLR1 knock 

down. In contrast, TNFα expression was increased in WAT of ATKO mice, which at the first glance 

may contradict the in vitro gained data. However, macrophage markers F4/80 and MCP-1 were 

increased in ATKO adipose tissue, arguing for a higher content of cytokine- especially TNFα- 

producing adipose tissue macrophages (ATM). By separating ATM from adipocytes and analyzing 

cytokine expression we will gain deeper insights into the ATM-adipocyte crosstalk and the 

implication of TBLR1 in the pro-inflammatory condition of obesity. 

Impaired glucose tolerance and insulin sensitivity may further be consequence of impaired metabolic 

flexibility of the ATKO mice. Metabolic flexibility describes the potential of adapting to the nutritional 

status by switching between different metabolic programs, especially between lipid and 

carbohydrate oxidation. The inability to do so has been implicated in the development of insulin 

resistance (Galgani, J.E., 2008). In case of the ATKO mice, the metabolic inflexibility disrupts the 

equilibrium between lipogenesis and lipolysis, resulting in a net increase in triglycerides in the 

adipocytes and subsequent glucose intolerance. Thus, lack of TBLR1 in WAT, although enhancing 

WAT triglyceride storage, leads to glucose intolerance by disturbing the metabolic flexibility of the 

tissue. 
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3.4 Outlook and Summary 

In summary, these data show that TBLR1 is involved in the regulation of adipocyte lipid metabolism. 

While TBL1 regulates liver lipid metabolism, TBLR1 is responsible for metabolic flexibility of the 

adipose tissue. Conditions favoring lipolysis increase TBLR1 levels in WAT. It may be that PPARα is 

involved in this regulation, as CL injection in PPARα-/- mice failed to induce TBLR1 expression (Fig. 

13); however, the detailed mechanism by which TBLR1 expression is regulated remains to be 

elucidated. We hypothesize that TBLR1 interacts with PPARγ and by this regulates expression of 

target genes. A direct proof of TBLR1 regulation, e.g. by showing TBLR1 binding to PPRE elements on 

target promoters, is still pending and is limited by the availability of good antibodies. ChIP-Seq 

analyses will give first hints on TBLR1 target promoters. TBLR1 is described to function as a nuclear 

exchange factor. In this respect, the ultimate goal will be to show co-repressor or co-activator 

binding on target promoters upon ligand binding, e.g. upon beta-adrenergic stimulation.  

Apart from the mechanistic details, it will also be of interest to focus more on TBLR1 action in brown 

adipose tissue. We have evidence that TBLR1 regulates beta-adrenergic signaling also in BAT and 

influences UCP1 and PGC1α levels. TBLR1 knockout in BAT can be achieved by breeding the floxed 

TBLR1 mice with a mouse line expressing Cre recombinase under the control of the BAT specific UCP1 

promoter and will shed light on BAT specific TBLR1 actions. It is tempting to speculate that BAT 

specific TBLR1 knockout leads to an obesity phenotype similar to that of the ATKO mice due to 

reduced lipolysis and thermogenesis in BAT. 

Knock down of TBLR1 in adipocytes does not inhibit differentiation but leads to increased triglyceride 

accumulation due to reduced lipolysis, which is mediated by reduced expression and activation of 

beta-adrenergic receptors and the key lipases ATGL and HSL. ATGL and HSL are direct target genes of 

TBLR1. Evidence exists that the regulation of the lipolytic cascade is probably dependent on the 

interaction partner PPARγ, since stimulation with the PPARγ agonist rosiglitazone partially rescues 

the effect of TBLR1 knock down on lipolysis. Adipocyte specific TBLR1 knockout mice show increased 

adiposity that worsens with age, enlarged adipocytes, reduced lipolytic fasting response, and are 

more susceptible to high fat diet feeding than wt mice. As in cells, TBLR1 knockout reduces beta-

adrenergic receptor expression and expression and activation of ATGL and HSL. Thus, increased 

TBLR1 levels in fasting or obesity lead to increased adrenergic receptor and lipase expression, 

mediating sufficient energy supply and mirroring energy surplus, respectively, by shifting lipid 

balance towards lipolysis.   

Being upregulated by conditions favoring lipolysis, like obesity, fasting, adrenergic receptor 

stimulation or LPS injection, TBLR1 plays a critical role in energy handling in WAT in mice and 

humans. During fasting or different means of adrenoceptor activation, TBLR1 expression is increased 

to activate the lipolytic program, ensuring sufficient energy supply. In obesity, energy surplus leads to 

enlargement of adipocytes, which is also seen in the higher amount of β2-adrenoceptors that we and 

others observe in obesity (e.g. Rasmussen, M., 2003). To compensate for increased adipocyte lipid 

load, TBLR1 is upregulated to increase lipolysis and counteract obesity (Fig. 66). Thus, high WAT 

TBLR1 levels are beneficial for fighting obesity and metabolic syndrome and manipulating adipocyte 

TBLR1 action may represent a future goal in fighting this modern pandemic. 
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Fig. 66: Situations requiring augmented lipolysis upregulate TBLR1 to allow for efficient triglyceride breakdown. Energy 
demand in fasting situations as well as energy surplus in obesity require enhanced TG hydrolysis, in the first case in order to 
supply the sink organs with enough fuel, in the second case in order to deal with excess fat. Requirement for enhanced 
lipolysis increases TBLR1 levels, thereby enhancing expression and activation of the key lipolytic players adrenoceptors (β-
AR), HSL, and ATGL. 
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4 METHODS 

4.1 Molecular Biology 

Transformation of E.coli 

TOP10 and XL-1 blue chemically competent (cc) E.coli strains were transformed by chemical 

transformation. 50 µl of cell suspension were thawed on ice and mixed with 0.1-1 µg of plasmid DNA 

or 2-5 µl of a ligation reaction. After 30 min incubation on ice, a heat shock at 42°C was applied for 30 

s. Following addition of 250 µl SOC medium cells were incubated at 37°C under vigorous shaking and 

subsequently plated onto LB agar plates containing the appropriate antibiotic. 

Bacterial liquid cultures 

Single colonies were inoculated into LB medium supplemented with the appropriate antibiotic. 

Depending on the amount of DNA needed, 2-200 ml cultures were inoculated. The cultures were 

incubated over night at 37°C under vigorous shaking (~160 rpm). 

Preparation of plasmid DNA from E.coli 

Plasmid DNA was isolated from E.coli bacterial cultures using commercially available kits, following 

the manufacturer’s instructions (QIAprep Plasmid Miniprep Kit, Qiagen for small scale plasmid 

preparation; PureLink HiPure Plasmid Maxiprep Kit, Invitrogen for large scale plasmid preparation). 

Preparation of genomic DNA from tissues 

Tissues were digested in 500 µl proteinase K lysis buffer containing 0.5 mg/ml proteinase K for 3 hrs 

at 60°C and overnight at 56°C, shaking. Genomic DNA was extracted by phenol chloroform extraction 

adding 500 µl phenol/chlorophorm/isoamylalcohol (25:24:1), vortexing and centrifugation at 13.000 

rpm, 4°C, 10 min. The upper phase was transferred to a new tube and the extraction step was 

repeated. The upper phase was transferred to a new tube again and 500 µl chloroform were added 

to it. After spinning, DNA was pelleted by adding the upper phase to 500 µl isopropanol, vortexing, 

and spinning at 13.000 rpm, 4°C, 45 min. Pellet was washed with 75% ethanol, dried, and 

resuspended in 100 µl TE buffer. Genomic DNA was stored at 4°C until use.   

Determination of DNA concentration 

DNA concentration and the degree of contamination were determined by using the NanoDrop ND-

1000 spectrophotometer. The concentration was determined by measuring the absorption at 260 nm 

wavelength, contamination with salts or proteins was assessed by measuring the absorbance 

spectrum between 220 and 300 nm.  A 1.5 µl DNA sample was used for each measurement. 

DNA Sequencing 

For sequencing DNA was diluted to 800 ng in 10 µl H2O. Primers at 5 pmol/µl were added either 

directly or by the company. The samples were sequenced by LGC genomics. The sequencing primers 

are listed in the material section. 

PCR 
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DNA from plasmids, cDNA or a genomic DNA was amplified by polymerase chain reactions using a 

thermocycler (PTC 200) and Phusion polymerase (Finnzymes). The primers used are listed in the 

material section. PCR reactions were set up following the manufacturer’s instructions and were 

programmed according the Tm of each individual primer pair and the length of the PCR product. 

Purification of PCR fragments  

DNA from PCR reactions was purified applying the QIAquick PCR purification kit provided by Qiagen 

following the manufacturer’s instructions. DNA was eluted in 30 µl H2O. Alternatively, fragments 

were purified by gel extraction as described. 

Agarose gel electrophoresis 

DNA fragments were separated by agarose gel electrophoresis using 1% or 2% agarose and 1 µg/ml 

ethidium bromide in TBE. DNA samples were mixed with 1x Orange G loading dye and separated at 

80-150 V. Gel pictures were taken under UV light (254 nm) with the Gel imager (Intas). 

Gel extraction of DNA 

DNA extraction following separation by agarose gel electrophoresis was performed using the 

QIAquick gel extraction kit (Qiagen) following the manufacturer’s instructions. 

DNA restriction 

DNA restriction was performed using restriction enzymes (10-20 U) and corresponding buffers 

provided by New England Biolabs. Restriction reactions were incubated at 37°C for 1-2 hrs. 

DNA dephosphorylation 

Self-ligation of plasmid DNA in ligation reactions was avoided by adding 10 U CIP (Calf Intestinal 

Phosphatase) to restriction reactions after 1 h of restriction. Dephosphorylation occurred in 60 min 

at 37°C. CIP could be added to every customary restriction enzyme buffer without a loss of activity. 

DNA Ligation 

Ligation of insert and vector DNA was performed using a T4 DNA ligase (NEB or Fermentas). The 

molar ratio of insert to vector was adjusted to 3:1 applying the following formula: 

ng insert = (100 ng vector x bp insert / bp vector) x 3 

1 U enzyme was used in 1x ligase buffer for the ligation reactions according to the manufacturer’s 

instructions. The reactions were performed in 20 µl total volume and incubated for 2-6 h at room 

temperature. After the ligation reaction, the enzyme was heat inactivated (10 min 65°C). A reaction 

containing the vector without insert was used as a negative control to determine the degree of 

vector self-ligation. 

Southern Blot 

For southern blot, genomic DNA was extracted and digested with EcoRI as described. The restriction 

enzyme was heat inactivated by incubation at 65°C, 10 min. DNA fragments were separated on a 

large 0.9% agarose gel in TAE buffer and fixated to the gel by washing in 0.25 M HCl for 15 min 

followed by two washing steps in 0.4 M NaOH for 20 min. The gel was pre-incubated in 20 x SSC 
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buffer and the DNA subsequently blotted on a nitrocellulose membrane by capillary force. The DNA 

was fixated to the membrane by UV crosslinker (600 µJx100) and dried until use. Probes were 

created by PCR and labelled using ³²P-dCTP and hybridized to the membrane during overnight 

incubation. 

RNA isolation 

A) From 3T3-L1 adipocytes 

Cells were harvested in 1 ml QIAzol (Qiagen) and transferred to RNase free tubes. Lysates were 

incubated at room temperature for 5 min to release nucleoprotein complexes before adding 200 μl 

of chloroform. Mixtures were vortexed for 15 sec and then centrifuged for 30 min at 13,000 rpm, 

4°C. The upper aqueous solution containing the RNA was transferred into a fresh reaction tube. The 

RNA phase was then mixed with 1 volume of isopropanol and incubated at room temperature for 10 

min, followed by a 10 min centrifugation step at 13,000 rpm, 4°C. The supernatant was aspirated and 

the pellet was washed once with 1 ml of 75% ethanol. The pellet was dried at 55°C (approx. 10 min) 

and re-solubilised in 30 µl water. To increase solubilisation, the RNA solution was incubated at 55°C 

for 10 min. The samples were stored at -80°C until further use. 

B) From primary adipocytes 

Cells were harvested in 500 µl QIAzol (Qiagen) and transferred to RNase free tubes. Phase separation 

was performed as described in A). The upper phase was then transferred to a new tube containing 1 

volume 100 % ethanol to precipitate nucleic acids. RNA was then purified using the RNeasy micro kit 

(Qiagen), following the manufacturer’s instructions. RNA was eluted in 30 µl H2O and stored at -80°C 

until further use.  

C) From tissue  

Frozen tissue samples were transferred into a 2 ml RNase/DNase-free reaction tube containing 1 

ml QIAzol (Qiagen) and a pre-cooled stainless steel bead. The samples were lysed using the 

TissueLyser for 90 sec at a frequency of 30 Hz. Lysates were incubated at room temperature for 5 

min to release nucleoprotein complexes before adding 200 μl of chloroform. Phase separation was 

performed as described in A). The upper phase was then transferred to a new tube containing 1 

volume 100 % ethanol to precipitate nucleic acids. RNA was then purified using the RNeasy micro kit 

(Qiagen), following the manufacturer’s instructions. RNA was eluted in 50 µl H2O and stored at -80°C 

until further use. 

Determination of RNA concentration 

The RNA concentration was determined spectrophotometrically at 260 nm using the NanoDrop ND-

1000 spectrophotometer. In parallel, the ratio 260 nm/280 nm was detected in order to measure 

protein impurities in the samples. 

Assessment of RNA quality 

RNA quality way assessed using agarose gel electrophoresis. 1% agarose gels were poured with 

RNase free agarose in 1x TBE buffer. The RNA samples were denatured in RNA denaturing buffer. 1 µl 

per RNA sample were added to 10 µl RNA denaturing buffer and incubated for 10 min at 65°C. After 
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running the gel, quality of the RNA was determined visually by examination of the ratio between 28S 

to 18S ribosomal RNA, which was 2:1 for intact RNA. 

cDNA synthesis 

For synthesis of complementary DNA, 200-1000 ng of RNA was used. cDNA synthesis was performed 

using the cDNA synthesis kit (Fermentas) following the manufacturer’s instructions. After 

completion, cDNA samples were diluted 10 fold in RNase free water and stored at -20°C. 

Quantitative PCR 

5 µl of the diluted cDNA samples obtained from reverse transcription were used for quantitative PCR. 

A master mix was prepared containing 10 µl TaqMan Gene Expression Assay Supermix, 4.5 µl 

DNase/RNase free water and 0.5 µl TaqMan probe per individual reaction. Technical duplicates of all 

samples were performed. The TaqMan probes used were obtained from Applied Biosystems or MWG 

and are listed in the material section. Water was used as a negative control and samples 

containing no reverse transcriptase served as controls for genomic DNA contamination. 20 µl PCR 

reactions were transferred per well onto a MicroAmp Optical 96 well reaction plate and quantitative 

PCR was performed using the StepOnePlus Real Time PCR System (Applied Biosystems). 

Gene expression profiling 

Gene expression profiling was performed in 3T3-L1 adipocytes transduced with TBLR1 or control 

shRNA carrying adenoviruses. RNA isolation, cRNA synthesis and hybridization to Mouse Genome 

430 2.0 arrays (Affymetrix, Freiburg) were performed according to the manufacturer’s 

recommendations. Three arrays per virus were hybridized. CustomCDF by Brainarray with Entrez 

based gene definitions (Entrez basic version 13) was used to annotate the arrays (Sandberg R., 2007). 

The raw fluorescence intensity values were normalized applying quantile normalization. Differential 

gene expression was analyzed based on ANOVA using a commercial software package (SAS JMP8 

Genomics, version 4, SAS Institute, Cary, NC). A false positive rate of a=0.05 with FDR correction was 

taken as the level of significance. Pathways belonging to various cell functions were obtained from 

public external databases (KEGG, http://www.genome.jp/kegg/). A Fisher's exact test was performed 

to detect the significantly regulated pathways. 

 

4.2 Cell Biology 

All experiments with eukaryotic cells were performed under sterile conditions. Cells were cultivated 

at 37°C, 5% CO2 and 95% humidity. All media and additives were warmed to 37°C prior to use. A list 

of the media used for cell culture experiments is shown in Tab. 5. 

Name Medium  Serum Antibiotic Further 

additives 

3T3-L1 culture DMEM (1 g/l glucose) 10% FCS 1% P/S - 

3T3-L1 differentiation DMEM 10% FCS 1% P/S See Tab. 6 

3T3-L1 starve 1 DMEM (1 g/l glucose) 1% FCS - - 

3T3-L1 starve 2 DMEM (1 g/l glucose) 0.1% FCS - - 
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3T3-L1 transfection DMEM - - - 

3T3-L1 virus infection DMEM (1 g/l glucose) - - - 

Freeze medium DMEM 20% FCS - 10%DMSO 

HEK293 culture DMEM 10% FCS 1% P/S - 

HEK293A culture DMEM 10% FCS 1% P/S 1% NAA 

Primary adipocyte culture DMEM 10% FCS 1% P/S - 

Primary adipocyte 

differentation 

DMEM 5% FCS 1% P/S See Tab. 6 

RAW264.7 culture DMEM 10% FCS 1% P/S - 

Virus titration DMEM 2% FCS 1% P/S 1% NAA 

Tab. 5: Media used for cell culture and virus experiments.  

Thawing cells 

Eukaryotic cells were stored in liquid nitrogen tanks in 1 ml aliquots containing 5*105 cells in freeze 

medium. Following thawing at 37°C cells were distributed equally to two 15 cm tissue culture plates 

containing 25 ml culture medium. 24 h after seeding medium was changed to remove remaining 

DMSO. 

Cultivation of 3T3-L1 fibroblasts 

3T3-L1 cells were cultivated on 15 cm tissue culture plates in 20 ml 3T3-L1 culture medium.  

A confluency of 70% as well as a passage of 15 was never exceeded to avoid diminished 

differentiation capacity.  

For passaging, the cells were first washed in 1x PBS and trypsinized, then the detached cells were 

resuspended in 10 ml of fresh medium. Cells were pelleted by centrifugation at 2000 rpm for 3 min 

and subsequently resuspended in 10 ml fresh medium. After counting in a Neubauer counting 

chamber, 4x 104 cells were plated onto a 15 cm tissue culture dish containing 20 ml medium. Cells 

were passaged every 3-4 days. 

Differentiation of 3T3-L1 fibroblasts into adipocytes 

3T3-L1 fibroblasts can be differentiated into adipocytes by the addition of insulin, 3-isobutyl-1-

methylxanthine (IBMX), dexamethasone and ABP (L-ascorbate, d-biotin, pantothenic acid). Cells were 

cultivated on 10 cm plates until they reached confluency and then induced to undergo differentiation 

by adding 3T3-L1 differentiation media as shown in Tab. 6. 

Differentiation Medium Additives 

Day 1 3T3-L1 differentiation 1 µg/ml Insulin 

0.25 µM Dexamethasone 

0.5 mM IBMX 

1/1000 ABP stock solution 

Day 3 3T3-L1 differentiation 1 µg/ml Insulin 

0.25 µM Dexamethasone 
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0.5 mM IBMX 

1/1000 ABP stock solution 

Day 5 3T3-L1 differentiation 1 µg/ml Insulin 

1/1000 ABP stock solution 

Day 8 3T3-L1 culture none 

Tab. 6. Media and additives for differentiation of 3T3-L1 adipocytes. 

Experiments could be performed 8-12 days after initiation of differentiation.  

OilRedO staining of 3T3-L1 adipocytes 

Differentiated 3T3-L1 adipocytes were washed in 1x PBS followed by 10% formalin in PBS for 5 min. 

Then cells were fixated by the addition of 10% formalin in PBS for 1 h at RT. After washing with 60% 

isopropanol the wells were dried and subsequently stained with Oil Red O working solution for 10 

min. Unbound dye was removed by washing with water and pictures of the stained cells were taken 

under the microscope. 

Transfection of 3T3-L1 adipocytes 

3T3-L1 adipocytes were transfected by electroporation using the NEON transfection device 

(Invitrogen). Cells were trypsinized, washed with PBS and counted. A total of 4x105 cells/well were 

resuspended in 10 µl buffer R (Invitrogen). After adding DNA, cells were transfected by 

electroporation in 10 µl NEON tips (Invitrogen) with the settings 1400 V/ 20 ms/ 2 pulses. 

Experiments were performed 24-48 hrs post transfection. 

Luciferase Assays 

Transiently transfected cells (12well plates) were washed with cold PBS 48 hrs after transfection and 

harvested in 150 µl harvest buffer/well. Insoluble cell debris was removed by centrifugation for 3 min 

at 13,000 rpm. To determine luciferase activity in lysates, 30 μl of lysate were transferred into a well 

on a black 96-well-plate. Lysates were complemented with 100 μl assay buffer and plates were 

measured using a luminometer (Mithras 940 Luminescence). Automatic injection of 100 μl luciferin 

buffer started the reaction. Light emission was measured at a wavelength of 560 nm and harvest 

buffer alone was used to determine a blank value. All results were normalized to the activity resulting 

from a co-transfected β-galactosidase expression plasmid harboring a CMV promoter (CMV β-Gal). 

For the β-Galactosidase assay 50 μl cell lysate/well were transferred into a clear 96-well plate and 50 

μl ONPG buffer were added to each well. Harvest buffer was used to obtain a blank value. The plates 

were incubated at 37°C for 3-60 min until a clear yellow color was visible and the absorption was 

measured at 405 nm.  

Lipolysis Assays 

Lipolysis assays were performed in mature adipocytes 8-12 days after induction of differentiation. 

After preincubation in Krebs Ringer buffer for 2 hrs, cells were stimulated with 0.1-10 µM 

isoproterenol (Calbiochem, Merck), 0.1-10 µM forskolin (Sigma, Munich), 0.5 mM IBMX (Sigma, 

Munich) or 1 µM procaterol (Biozol, Heidelberg) for 3 hrs in Krebs Ringer buffer supplemented with 

5% BSA, 5 mM glucose, 25 mM HEPES/KOH pH 7.5. Supernatants were harvested for measurement 
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of NEFAs or glycerol. Cells were harvested in QIAzol (Qiagen) and Tx lysis buffer for RNA and protein 

extraction, respectively.  

Glucose metabolism and lipogenesis Assays 

Glucose uptake and lipogenesis assays were performed in 3T3-L1 adipocytes transduced with 

control or TBLR1 shRNA carrying adenoviruses. Cells were washed with Krebs Ringer buffer and 

glucose uptake was stimulated by 10 nM insulin in Krebs Ringer buffer supplemented with 3% BSA, 

25 mM HEPES/KOH pH 7.5 and 1mM glucose spiked with 0.1 µCi D-[14C(U)]-Glucose (Perkin Elmer, 

Waltham) for 2 hrs. Cells were lysed using 0.5 M NaOH and defined amounts were used to 

measure overall glucose uptake or to isolate triglycerides and measure lipogenesis by counting 
14C lipid incorporation as disintegrations per minute (DPM) in a scintillation counter. Glucose 

uptake and lipogenesis were calculated as % induction by insulin. 

cAMP Assays 

cAMP Assays were performed in mature 3T3-L1 adipocytes using the Cyclic AMP EIA Kit (Cayman 

Chemicals) following  the manufacturer’s instructions. 

Cultivation of Raw264.7 Macrophages 

Raw264.7 cells were cultivated in Raw264.7 culture medium on 10 cm and 15 cm tissue culture 

plates, respectively, and passaged at a confluency of 70-90 % by trypsinization as described for 3T3-

L1 cells.  

Stimulation of Raw264.7 Macrophages with LPS 

Raw264.7 cells can be stimulated to inflammatory cytokine secretion by addition of LPS to the 

culture medium. For this purpose 3x 106 cells were seeded onto 15 cm tissue culture plates. 100 

ng/ml LPS in fresh RAW264.7 culture medium was added 3 days after seeding. As a control, fresh 

culture medium without LPS was added to the cells. The medium was collected 9 hrs after the 

addition of LPS and sterile filtered with a 0.45 µm filter. The conditioned macrophage medium (CM) 

or control macrophage medium (M) was stored at -20°C until use for no longer than 2 weeks. 

Cultivation of human embryonic kidney (HEK) cells  

HEK293 and HEK293A cells were cultured in HEK293 and HEK293A culture medium, respectively. The 

cells were cultivated either in 10 cm tissue culture plates containing 10 ml medium or in 15 cm plates 

with 25 ml medium. Cells were passaged at 70-90% confluency by resuspension in 10 ml fresh 

medium, centrifugation (3 min, 2000 rpm), resuspension of the pelleted cells in 10 ml medium and 

subsequent addition of the twentieth part of the cells to a new tissue culture plate. Cell number 

could be determined by using the Neubauer counting chamber. 

Transient transfection of HEK cells 

Transfection with calcium phosphate 

Cells were seeded 24 h prior to transfection and transfected at 70-80% confluency. DNA was mixed 

with 0.25 M CaCl2 and the same volume of 2x BBS, the amounts used are listed in Tab. 7. After 
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incubation for 15-20 min at RT, the mixture was added to the cells in fresh medium. Medium was 

changed 6-12 h after transfection. Experiments were performed 48-72 hrs after transfection.  

Format Cell number DNA CaCl2 2x BBS 

15 cm plate 2-8x 10
6 6.25 µg 1.25 ml 1.25 ml 

6well plate 2x 10
5 100 ng -1 µg 80 µl 80 µl 

Tab. 7: Reagents used for calcium phosphate transfection.  

Transfection with Lipofectamine 2000 

For higher transfection efficiency HEK293 cells were transfected with Lipofectamine 2000 

transfection reagent (Invitrogen). 3 µl of the reagent were added to 250 µl of serum free Opti-MEM 

medium. The mixture was combined with DNA which was diluted in the same medium, and the 

mixture was incubated at RT for 20 min to allow complex formation. The DNA/Lipofectamine 

complexes were added dropwise to the cells in antibiotic-free medium. Medium change to the 

normal culture medium was performed the following day. 

Isolation of preadipocytes from adipose tissue 

Preadipocytes were isolated from the stromal vascular fraction (SVF) of abdominal or inguinal white 

adipose tissue or from interscapular brown adipose tissue depots of male C57Bl6/N mice aged 6-9 

weeks. Mice were sacrificed by cervical dislocation, sterilized with 70% ethanol and adipose tissue 

depots were dissected. After cleaning the fat pads, the pads were chopped until no pieces could be 

observed anymore and subsequently digested in 7 ml collagenase medium (DMEM containing 1.5 

mg/ml type II collagenase and 0.5% BSA) for 1 h at 37°C and 180 rpm. To stop the reaction, 6 ml 

culture medium was added and adipocytes floated to the top of the tube, where they could be 

removed. If needed, 1 ml QIAzol reagent (Qiagen) was added to 200 µl mature adipocytes to isolate 

RNA as described. The SVF was harvested by centrifugation at 1000 rpm, 10 min. The cell pellet was 

resuspended in culture medium, filtered through a 70 µm falcon strainer, and cells were plated to 12 

well plates. One mouse harvested one 12 well plate abdominal preadipocytes, one 12 well plate 

inguinal preadipocytes, and half a 12 well plate brown preadipocytes. Cells were washed every day 

with warm culture medium until they reached confluency. 

Differentiation of primary preadipocytes into adipocytes 

Primary preadipocytes are differentiated into adipocytes by the addition of insulin, 3-isobutyl-1-

methylxanthine (IBMX), dexamethasone and ABP (L-ascorbate, d-biotin, pantothenic acid). In case of 

preadipocytes harvested from brown adipose tissue, in addition triiodothyronine (T3) is added. 

Preadipocytes were cultivated until they reached confluency (approximately 1 week) and then 

induced to undergo differentiation by adding primary cell differentiation media as shown in Tab. 8. 

Differentiation Medium Additives 

Day 1 Primary adipocyte differentiation 1 µg/ml Insulin 

0.25 µM Dexamethasone 

0.5 mM IBMX 

1/1000 ABP stock solution 

(3 nM T3) 
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Day 3 Primary adipocyte differentiation 1 µg/ml Insulin 

0.25 µM Dexamethasone 

0.5 mM IBMX 

1/1000 ABP stock solution 

(3 nM T3) 

Day 5 Primary adipocyte differentiation 1 µg/ml Insulin 

1/1000 ABP stock solution 

Day 8 Primary adipocyte culture none 

Tab. 8: Media and additives for differentiation of primary adipocytes. 

Experiments could be performed 8-12 days after initiation of differentiation. 

Cloning of adenoviruses 

The BLOCKiT™ Adenoviral RNAi Expression System was used to generate adenoviruses expressing 

shRNAs against murine TBL1 and TBLR1 or a non-specific control. Oligonucleotide sequences were 

chosen using Invitrogen’s RNAi Designer tool. Forward and reverse oligonucleotides against the 

target gene sequence were annealed and cloned into the pENTR™/U6 vector according to the 

manufacturer’s instructions. The resulting constructs were recombined with the pAd/BLOCK-iT™ 

DEST vector, which contains the adenovirus serotype 5 DNA, but lacks the E1 and E3 genes that are 

required for viral replication. The viral vector containing the shRNA sequence was linearized by 

restriction digest using the enzyme PacI and transfected into HEK 239A cells using Lipofectamine 

2000 according to the manufacturer’s instructions. HEK293A cells express the viral E1 and E3 genes 

necessary for viral outbreak, allowing the virus to expand in this cell line. Viral plaques appeared 6 to 

10 days after transfection and cells started to detach from the cell culture dish. Once about 70% of 

cells were floating, they were harvested. The same procedure was used to generate viruses 

overexpressing TBL1 and TBLR1. The cDNAs were cloned into a pENTR vector harboring the CMV 

promoter and subsequently recombined with the pAd/BLOCK-iT™ DEST vector. An empty adenovirus 

was used as a negative control in over expression experiments. 

Adenovirus harvest 

Adenoviruses were harvested when 70-80% of the HEK293A cells were rounded and lost adhesion. 

For that purpose the remaining adherent cells were rinsed off the tissue culture plate with a pipette 

and transferred to a centrifuge tube together with the non-adherent cells. Cells were pelleted by 

centrifugation (2000 rpm, 10 min, RT) and resuspended in 0.5-3 ml PBS-TOSH. The cell suspension 

was stored at -80°C. For cell disruption and virus release, 3 freeze-and-thaw cycles were performed. 

To this end the suspension was frozen in liquid nitrogen, thawed at 37°C and vortexed vigorously. 

Cell debris was removed by centrifugation at 3000 rpm for 5 min and the resulting crude virus lysate 

could be purified by CsCl gradient or used for further infection of HEK293A cells. 

Adenovirus purification using cesium chloride gradient 

Cesium chloride (CsCl) gradient centrifugation is a type of density gradient centrifugation for the 

purification of viral particles (Green et al. 2006). Confluent HEK293A on twenty 15 cm cell culture 

dishes were infected with crude virus lysate or purified adenovirus (1 µl per plate) and grown until 

70-80% of the cells were rounded and lost adhesion, then they were harvested and lysed as 
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described. PBS-TOSH was added to the crude lysate to a final volume of 20 ml. All solutions were 

adjusted to pH 7.2. The first gradient was layered with 9 ml 4.4 M CsCl, 9 ml 2.2 M CsCl and 20 ml 

virus in PBS-TOSH. After ultracentrifugation (2 hrs, 4 °C, 24,000 rpm, SW28 rotor) the virus band was 

removed and added to the same volume saturated CsCl. The second gradient was layered with 8 ml 

virus in CsCl, 1.5 ml 4.4 M CsCl und 1.5 ml 2.2 M CsCl. Following the second ultracentrifugation (3 hrs, 

4 °C, 35,000 rpm, SW40Ti rotor) the virus band was removed in the smallest possible volume and 

dialysed against PBS-glycerol over night at 4°C. 10% glycerol was added to the purified virus and 

aliquots were stored at -80°C. 

Virus Titration using the Tissue Culture Infectious Dose 50 (TCID50) method 

The virus titer (plaque forming units, pfu) could be determined by TCID50. For that purpose, 104 

HEK293A cells were seeded in 100 µl virus titration medium in each well of a 96 well plate and 

infected with decreasing amounts of virus after 2 hrs of adhesion. Serial dilutions of the virus up to 

10-14 were prepared in titration medium and added to the cells. Double measurements were 

performed for each virus. 10-12 days after infection and incubation at 37°C the plaques were 

counted and the titer was calculated using the following formula: 

T = 10 1+(s-0.5) x 10 pfu / ml 

(s = sum of positive wells starting from the 10-1 dilution; 10 positive wells per dilution = 1) 

Titration of virus particles using the OD260nm method 

Measurement of the optical density of the virus suspension at 260 nm results in a good estimation of 

the virus titer. With this method, non-infectious as well as infectious particles are included in the 

measurement. The virus suspension was diluted 1/10 or 1/20 in 0.1% SDS and heated to 56°C for 10 

min, which liberates the DNA of the viral capsid. Following 30 sec centrifugation at 13,000 rpm the 

OD260nm was determined using a spectrophotometer (NanoDrop ND-1000). The titer was calculated 

by OD 1 = dilution x 1.1 x 1012 particles / ml. 

Transduction of 3T3-L1 fibroblasts with adenoviruses 

2x 104 3T3-L1 cells were seeded on 6 well plates and transduced with different amounts of 

adenovirus 72 hrs after plating. MOIs of 100 to 100,000 were tested, with MOI 1000 being ideal for 

efficient transduction of the fibroblasts. The desired amounts of virus were diluted in low glucose 

DMEM without FCS and 0.5 µg/ml poly-L-lysin were added (Orlicky et al. 2001). After incubation at RT 

for 60-100 min the mixture was added to PBS-washed cells. After 90 min incubation at 37°C, 3T3-L1 

culture medium was added and cells were incubated 72-96 hrs until harvest. In case of subsequent 

differentiation the differentiation process was started 24 hrs after virus transduction. 

Transduction of 3T3-L1 adipocytes with adenoviruses 

Differentiated 3T3-L1 adipocytes on day 10 of differentiation were washed with PBS and trypsinized.  

The pelleted cells were then resuspended in 3T3-L1 culture medium and filtered through a 70 µM 

falcon strainer. Cells were counted, and 4 x 105 cells were plated to each well of a 12 well plate. For 

larger scale transductions, 4.8 x 106 cells were plated on 10 cm plates. 24 hrs later, floating cells were 

removed by washing with PBS and 3T3-L1 starve 1 medium was added. After 12 hrs incubation, cells 

were again washed in PBS and 3T3-L1 starve 2 medium was added for 12 hrs. Adenoviruses at an 
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MOI of 500 were diluted in 3T3-L1 virus infection medium containing 0.5 µg/ml poly-L-lysin (250 µl 

medium per well or 2.5 ml per 10 cm plate). After incubation at RT for 60-100 min the mixture was 

added to PBS-washed cells. After 90 min incubation at 37°C, 3 volumes 3T3-L1 culture medium were 

added and cells were incubated 72-96 hrs until harvest. 

Transduction of primary adipocytes with adenoviruses 

Primary adipocytes were differentiated on 12well plates and transduced with adenoviruses 10 days 

after induction of differentiation. Adenoviruses with an MOI of 1000 were diluted in 250 µl DMEM 

medium without any supplements, containing 0.5 µg/ml poly-L-lysin. After incubation at RT for 60-

100 min the mixture was added to PBS-washed cells. After 90 min incubation at 37°C, 750 µl primary 

adipocyte culture medium was added and cells were incubated 72-96 hrs until harvest. 

 

4.3 Animal experiments 

The animals were housed according to international standard conditions with a 12 hrs dark, 12 hrs 

light cycle and regular unrestricted diet if not stated otherwise. Animal handling and experimentation 

was performed in accordance with NIH guidelines and approved by local authorities 

(Regierungspräsidium Karlsruhe). Blood was taken after cervical dislocation. Organs including liver, 

kidney, fat pads, and gastrocnemius muscles were collected, weighed, snap-frozen in liquid nitrogen 

and used for further analysis. 

Obesity models 

8-12 week old ob/ob, db/db or New Zealand Obese and New Zealand Black (NZO/NZB) mice were 

obtained from Charles River Laboratories (Brussels, BEL) and maintained on a 12 hrs light-dark cycle 

with regular unrestricted diet. In high-fat diet experiments, C57Bl6 mice were fed a high-fat diet (45% 

or 60% energy from fat, New Brunswick, USA) or low-fat control diet (10% energy from fat, New 

Brunswick, USA) for a period of 12-20 weeks. 

Colon26 murine cachexia model 

For tumor induction in cachexia models, 1.5x 106 Colon 26 cells in PBS were injected subcutaneously 

into 10 week old Balb/c mice (Charles River Laboratories, Brussels). Control mice were injected with 

PBS. Mice were sacrificed approximately 2 weeks after injection. 

Sepsis model 

10 week old male wild type C57Bl6 mice were fasted for 12 hrs and subsequently injected with 20 mg 

LPS / kg body weight (E. Chichelnitskiy). As a control, mice were injected with PBS and kept at fasting 

conditions for the same time. 8 hrs after LPS or PBS injection, mice were sacrificed. 

Fasting and Refeeding 

For an extensive fasting and refeeding study, male C57Bl6 mice at the age of 13 weeks were used. 

Different groups of mice were fasted for 8 hrs, 24 hrs and 48 hrs, respectively, and subsequently 

refed for 1 hr, 6 hrs or 24 hrs before the sacrifice. 

CL and NE injections 
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For CL and NE treatments, 8-week-old female NMRI mice or PPARα-/-, PPARβ/δ-/- or PPARγ+/- mice 

(obtained from W. Wahli) were injected intraperitoneally with 1 mg/kg CL316,243 (Tocris Bioscience) 

in 0.9% NaCl, 1 mg/kg Norepinephrine bitartrate (Sigma) in 0.9% NaCl or vehicle and sacrificed 3 or 8 

hrs later.  

Mice for isolation of primary preadipocytes  

Male wt C57Bl6/J purchased from Charles River or C57Bl6/N mice from Barrier 2 within DKFZ at the 

age of 6-9 weeks were used for the isolation of primary preadipocytes. 

siRNA injection 

siRNAs obtained from MWG or Applied Biosystems were diluted in Invivofectamine transfection 

reagent according to the manufacturer’s instructions and diluted with 0.9% NaCl. 7 µg/g body weight 

were injected either intravenously or intraperitoneally in volumes of 100 µl (i.v.) or 200 µl (i.p.). Mice 

were prepped after 2-10 days. Alternatively, 1.5 µg/g BW siRNAs were mixed with 150 µl DOTAP 

transfection reagent per mouse and injected i.v. or i.p. for 10 days every 72 hrs. 

Morpholino injection 

In vivo morpholinos are artificial siRNA like oligos especially for use in mice and were obtained from 

Gene Tools, LLC. Morpholinos were diluted in PBS pH 7.2 and a maximum of 12.5 µg/g body weight 

were injected either intravenously or intraperitoneally in volumes of 100 µl (i.v.) or 200 µl (i.p.) on 

two consecutive days. Mice were prepped 3 days, 1 week or 2 weeks after the first injection. 

Fat pad injection 

To place injections exclusively into the epididymal fat pad, the intra-abdominal cavity was opened 

and the epididymal fat pads were exposed. Adenoviruses (5 x 109 -2 x 1010 ifu/ml), siRNAs or 

morpholinos were injected into the fat pad at a maximum volume of 50 µl for each fat pad. A 

microinjector was used in some experiments for stepwise injection of 2 µl volumes. Anesthesia was 

performed by isofluorane (induction: 3-4 % isofluorane, maintainance: 1-1.5 % isofluorane).  

Adipocyte specific TBLR1 knockout mice 

Adipocyte specific TBLR1 knockout mice were generated on C57Bl6 background (C57BL/6-

Tbl1xr1(tm2273Arte) Tg(Fabp4-Cre)1Rev) by TaconicArtemis as described in ‘Results’. Adipocyte 

specific knockout was assessed by Southern Blot in various tissues with probes created by primers 

shown in ‘Materials’.  

Adipose tissue explants 

Adipose tissue explants were isolated by excising inguinal and abdominal WAT or BAT, washing it in 

PBS and cutting it into equally sized pieces of 20-40 mg. One explant was transferred to one well of a 

24-well plate and cultured in 300 µl Krebs-Ringer buffer supplemented with 5% BSA, 5 mM glucose, 

25 mM HEPES/KOH pH 7.5 with or without 10 µM isoproterenol for 4 hrs. Supernatants were 

harvested for measurement of FFA and glycerol and explants were frozen in liquid nitrogen and used 

for RNA or protein extraction as described.  

Body composition analysis using EchoMRI 
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Mice were weighed and body composition was determined using magnetic resonance (EchoMRI, 

Echo Medical Systems, Houston).  

Blood serum 

Blood serum was obtained by incubation of blood samples at room temperature for 30 min and 

subsequent centrifugation for 1 hr at 3,000 rpm, 4°C. The serum (upper phase) was transferred to a 

new tube and stored at -80°C. 

Glucose tolerance test 

In a glucose tolerance test, glucose is injected in the peritoneum of fasted mice and blood samples 

are taken to determine how quickly the sugar can be cleared from the blood. Improved insulin 

signaling results in lower glucose levels as the sugar load induces a better clearance from the blood 

stream. Mice were fasted for 16 hrs prior to the experiment. The animals were transferred into fresh 

cages equipped with fresh water but no food. The following morning, the body weight and the initial 

blood glucose levels were determined by nicking the tail with a razor blade. Blood glucose was 

measured using a glucometer strip. 10 μl/g body weight of a 20% glucose solution were then injected 

intraperitoneally. Blood glucose was measured before injection and 20, 60, and 120 min after 

injection. 

Insulin tolerance test 

An insulin tolerance test (ITT) is a procedure in which insulin is injected into a mouse to assess if it 

can still induce its full function. If mice are insulin resistant, blood glucose levels are elevated over 

time. For the insulin tolerance test a stock solution of 0.75 U insulin/ml was prepared using 0.9% 

sodium chloride. The body weight of all animals was determined and the blood glucose levels were 

measured by nicking the tail with a razor blade. The blood drop was put onto a glucometer strip and 

measured. 1 U insulin/kg body weight was injected intraperitoneally. The blood glucose levels were 

monitored before injection and 20, 60, and 120 min after injection. 

 

4.4 Biochemistry 

Preparation of protein extracts 

Cell lysis using 2 x SDS sample buffer 

3T3-L1 and primary preadipocytes or adipocytes were washed once with PBS and lysed by the 

addition of an appropriate volume of 2 x SDS sample buffer. Samples were boiled for 10 min at 95°C 

and stored at -20°C until further use.  

Cell lysis using Tx lysis buffer 

3T3-L1 and primary preadipocytes or adipocytes were washed once with PBS and lysed by the 

addition of an appropriate volume of Tx lysis buffer containing protease and phosphatase inhibitors. 

Still on the plates, cells were frozen to -80°C for at least one hour, thawed, and transferred to a tube 

on ice. Cell debris was removed by centrifugation (10 min, 13,000 rpm, 4°C) and supernatants were 
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transferred to new tubes. Protein concentration was determined using the BCA kit (Pierce) and 

samples were diluted in 5x SDS sample buffer and boiled for 10 min at 95°C. 

Protein extracts from tissue samples 

Protein extracts from tissue samples were prepared using the Tissue Lyzer. Frozen tissue pieces or 

powder were transferred to 2 ml safe lock tubes containing ice-cold protein lysis buffer A containing 

protease and phosphatase inhibitors and a pre-cooled steel bead. The samples were immediately 

homogenized using the Tissue Lyser for 2 min at 30 Hz. The extracts were incubated on a rotating 

wheel for 1 hour and then transferred to fresh tubes (if using adipose tissues, the fat remains in the 

old tube). Then, extracts were supplemented with high salt supplement buffer and incubated for an 

additional hour on the wheel at 4°C. The protein concentration was determined using the BCA kit 

(Pierce) and samples were diluted in 5x SDS sample buffer and boiled for 10 min at 95°C. 

Isolation of Nuclear Extracts 

For preparation of nuclear extracts from 3T3-L1 adipocytes, cells on 10 cm plates were first washed 

in PBS and then lysed in 500 µl hypotonic buffer including protease and phosphatase inhibitors / 

plate. After 15 min incubation on ice, cells were homogenized by 20 strokes in a dounce 

homogenizer. Samples were transferred to 1.5 ml tubes and centrifuged at 4°C, 10 min, 4,000 rpm. 

The supernatant (=cytoplasmic extract) was removed, centrifuged 10 min at 4°C, 13,000 rpm, and 

boiled with SDS sample buffer. The pellet (=nuclei containing fraction) was resuspended in 150 µl 

high salt buffer. Nuclei were extracted by incubation for 30 min at 4°C on a rotating wheel. Samples 

were centrifuged 30 min at 4°C and 13,000 rpm and the supernatant (=nuclear extracts) was mixed 

with SDS sample buffer and boiled for use in immunoblot. For IPs, nuclear extracts were diluted 1:10 

in dilution buffer and used as input for the immunoprecipitation. 

Determination of Protein Concentration 

Protein concentrations were determined using the BCA kit (Pierce) following the manufacturer’s 

instructions. If SDS concentration of the samples was higher than 0.1 %, protein concentration had to 

be determined using the 2D-Quant kit (Amersham Biosciences) following the manufacturer’s 

instructions. All measurements were performed in duplicates within the linear range of the BSA 

standard curves (0.1-2 mg/ml).  

SDS Polyacrylamide Gel Electrophoresis (SDS-PAGE) and Immunoblotting 

Protein samples in SDS sample buffer were loaded onto 6-12 % SDS-polyacrylamide gels and blotted 

onto nitrocellulose membranes using a wet blot system. Blotting was performed at 80 V for 70 

minutes or 30 V overnight in transfer buffer. Membranes were subsequently blocked by incubation in 

5% milk or 5% BSA dissolved in PBS-T for 1 hour. Specific primary antibodies diluted in milk or BSA, 

according to the manufacturer’s recommendations, were incubated with the membranes overnight 

at 4°C. The membranes were washed with PBS-T the next day and incubated with the secondary 

antibody conjugated to horse radish peroxidase (HRP) at a dilution of 1:5,000 for 1 hour. To detect 

specific bands the enhanced chemiluminescence system (ECL) Western Blotting Detection Reagent 

was applied. The chemiluminescent signal produced by the blots was detected with the ChemiDoc 

detector (BioRad). Exposure times differed based on the quality of specific antibodies and protein 

concentrations. 
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Endogenous IP 

3T3-L1 cells were lysed in Co-IP lysis buffer containing protease and phosphatase inhibitors and 

centrifuged at 13,000 rpm, 4°C, 15 min. The supernatant was incubated with protein A/G agarose 

beads and 4 µg of the respective antibody over night at 4°C on a rotating wheel. Beads were washed 

in Co-IP buffer and proteins were eluted by the addition of 50 µl 2 x SDS sample buffer. Protein 

samples were boiled for 10 min at 95°C prior to immunoblotting. 

Flag-IP 

3T3-L1 cells on 10 cm plates were transduced with Flag-TBLR1 or an empty Flag plasmid. 

Subsequently, cells were lysed with Co-IP lysis buffer containing protease and phosphatase inhibitors 

and centrifuged at 13,000 rpm, 4°C, 15 min. The supernatant was incubated with anti-FLAG M2 

Agarose beads for 2 hours at 4°C and washed vigorously to remove unspecific binding. Precipitated 

proteins were eluted using excess Flag peptide. The immunoprecipitates were subsequently analyzed 

by immunoblotting as described. 

Chromatin-IP 

3T3-L1 adipocytes on 10 cm plates were transduced with Flag-TBLR1 or an empty Flag plasmid and 

incubated for 3 days. For ChIP, cells were washed once in 1 x PBS, then 4.5 ml PBS were added to 

each plate and 37% formaldehyde was added to a final concentration of 1% (135 µl). Cells were fixed 

on a shaker for 15 min and the reaction was stopped by adding 663 µl of 1 M glycine. After 5 min 

incubation, supernatant was removed and cells were harvested in ice-cold 1 x PBS. Cells were 

washed twice in cold PBS and then lysed in 1.5 ml/plate simple tissue fractionation buffer with 20 

strokes of a dounce homogenizer. Lysates were centrifuged at 8,000 g for 10 min at 4°C, 

supernatants were discarded and the pelleted nuclei were re-suspended in 500 µl ChIP lysis buffer 

using a micropestle. Following  30 min incubation at 4°C on a rotating wheel, samples were aliquoted 

in 250 µl aliquots and sonicated in a BioRuptor (Diagenode) with 12 cycles 30 sec on, 45 sec off and a 

maximum of two tubes at a time. Samples were centrifuged at 3,000 g, 4°C, 10 min and supernatants 

were pooled. Protein concentrations were measured of 1:10 dilutions using the BCA kit (Pierce). 500 

µg protein containing extracts were diluted 1:10 in ChIP dilution buffer and pre-cleared with 50 µl 

salmon-sperm agarose beads for 30 min on a rotating wheel. Beads were removed by centrifugation 

and the pre-cleared input was added to anti-FLAG M2 Agarose beads or salmon sperm agarose beads 

and 4 µg of the respective antibodies. IP was performed over night at 4°C on a rotating wheel. Beads 

were then washed vigorously (1 x wash buffer A, 1 x wash buffer B, 1 x wash buffer C, 1 x wash buffer 

A) and protein complexes were eluted from the beads by adding 300 µl elution buffer. Elution took 

place at 30°C and 750 rpm and was repeated using 200 µl elution buffer, so the final volume was 500 

µl. Reversal of the crosslinks was achieved by incubating the samples for 2 hrs at 65°C, 750 rpm. 

Then, 100 µg Proteinase K were added followed by an overnight incubation at 56°C. DNA was 

extracted by phenol/chloroform extraction. 100 µg protein inputs were used as controls. DNA was 

used for SYBR-PCR or ChIP-Sequencing. 

Isolation of Hepatic Triglycerides 

Lipids were extracted from frozen liver tissue using chloroform/methanol (2:1 v/v). About 100 mg 

(the exact weight was noted) of frozen, pulverized liver were transferred into a 2 ml tube containing 

1.5 ml chloroform/methanol and a steel bead. The tissue was homogenized using a tissue lyzer for 1 
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min at a frequency of 30 Hz. For the lipid extraction, samples were incubated on a rotating wheel at 

room temperature for 20 min. Reactions were centrifuged at 4,000 rpm for 10 min and supernatants 

were transferred to fresh tubes. The organic layer was mixed with 0.9% sodium chloride and the 

aqueous solution was carefully discarded. 50 μl of the organic layer were transferred to a fresh tube 

and 10 μl of triton-X 100/chloroform (1:1 v/v) were added. The reagents were mixed and the solvent 

was evaporated. The residue containing the hydrophobic contents of the liver was resuspended in 50 

μl water and stored at -20°C until further use. 

Determination of Free Fatty Acid Levels 

Free Fatty Acids were determined in serum samples or cell supernatants using a colorimetric assay 

from WAKO (NEFA kit) following the manufacturer’s instructions. 4 µl of serum samples or 20 µl of 

cell supernatants were measured in duplicates. A standard curve was determined using a dilution 

series of oleic acid. OD-values were determined at 540 nm. 

Determination of Glycerol Levels 

Glycerol content of serum or cell supernatants was measured using a calorimetric assay. The Free 

Glycerol component of the serum TG determination kit from Sigma was used for this assay. 4 µl of 

serum or 20 µl of supernatants were transferred to a 96well plate, 100 µl Free Glycerol Reagent were 

added and glycerol levels were measured at 540 nm against a glycerol standard. 

Determination of Triglyceride Levels 

TG levels were determined by separating TGs into one glycerol and three fatty acid molecules and 

measuring the glycerol using a colorimetric assay. The serum TG determination kit from Sigma was 

used for this assay. 4 μl of isolated hepatic TG, 4 μl of serum or 20 µl of cell supernatants were 

transferred to a 96well plate. In order to determine a blank value, 100 μl Free Glycerol Reagent were 

added to each well and the plate was incubated at 37°C for 5 min. Free glycerol levels were 

measured at 540 nm. In a second reaction (assay), 100 μl TG Reagent were added. This mixture 

contains the enzyme lipase, which catalyses the release of fatty acids from TGs. Plates were 

incubated at 37°C for 5 min and measured at 540 nm. TG content (TG-bound glycerol) was 

determined by subtracting the free glycerol (blank) from the second measurement of total glycerol 

(assay). 

Determination of Cholesterol Levels  

Liver or serum cholesterol concentrations were determined using a total cholesterol determination 

kit (Randox Laboratories) following the manufacturer’s instructions. 4 μl of each sample were mixed 

with 100μl assay reagent and incubated at 37°C for 5 min. The optical density was measured at 492 

nm and the sample concentration was determined using a standard curve resulting from a serial 

dilution of cholesterol (200 mg/dl; provided with the kit). 

Determination of Blood Glucose Levels 

Blood glucose levels were determined using a drop of blood obtained from the tail vein and an 

automatic glucose monitor (One Touch, Lifescan). 

Insulin measurement 
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Insulin levels were determined using an ELISA kit (Mercodia). Plates containing the insulin antibody 

were provided and were activated using a buffer contained in the kit. 5 μl of each sample or standard 

(provided in the kit) were added to each well. Plates were then incubated at 4°C for 2 hours. Plates 

were washed five times in the provided buffer and 100 μl of anti-insulin conjugate were added to 

each well. Reactions were incubated at room temperature for a further 30 min and then washed 

several times. 100 μl of enzyme substrate solution were added to each well and the plates were 

incubated at room temperature for 40 min. Reactions were stopped by adding 100 μl of stop solution 

to each well and measuring the absorbance at 450 nm. Insulin concentrations were determined using 

a standard curve resulting from a serial dilution of insulin. 

Serum ALT measurement 

Serum levels of Alanine Aminotransferase (ALT) were determined by a calorimetric assay in order to 

estimate liver damage. Serum ALT levels were determined using the Infinity ALT Liquid Stable 

Reagent (Thermo Electron, Melbourne) following the manufacturer’s instructions, measuring 

absorbance at 340 nm.  

Serum adipocytokine measurement 

Serum levels of adipocytokines were determined in duplicates from 10 µl mouse serum using the 

Magpix Luminex machine and the mouse metablic hormone magnetic bead multiplex assay kit 

(Millipore) following the manufaturer’s instructions.  

 

4.5 Human subjects 

For the fasting study, 23 obese subjects underwent a weight reduction program (OPTIFAST®52, 

Rudofsky, G., 2011) for 52 weeks (BMI = 42.9 ±1.6 kg/ m² before, 35.2 ±1.5 kg/ m² after) and WAT 

TBLR1 mRNA expression was measured before and after the weight reduction. This study has been 

approved by the ethics committee at the Heidelberg University, and all patients gave written 

informed consent. For the obesity study, TBLR1 mRNA expression in subcutaneous and visceral WAT 

of 21 morbidly obese (BMI > 35 kg/m²) and 20 age- matched non-obese (BMI < 30 kg/m²) subjects 

was measured. Expression levels were correlated to BMI, serum parameters or gene expression using 

Pearson correlation. This study was conducted by M. Zeyda, Medical University of Vienna 

(unpublished data) and has been approved by the ethics committee of the Medical University of 

Vienna and the General Hospital Vienna, and all patients gave written informed consent. 

 

4.6 Statistical Analysis 

Statistical analyses were performed using a 1- or 2-way analysis of variance (ANOVA) with 

Bonferroni-adjusted post-tests, or t-test in one-factorial designs, respectively. Correlation was 

determined using Pearson’s correlation coefficient. p < 0.05 was considered statistically significant. 

*p < 0.05, **p < 0.01, ***p < 0.001. 
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5 MATERIAL 

5.1 Solutions and Buffers 

All buffers were diluted in H20, unless otherwise stated. 

10x MOPS 200 mM MOPS 
50 mM NaAc 
10 mM EDTA 
pH 7 

10x PBS  1.4 M NaCl  
27 mM KCl  
100 mM Na2HPO4 
8 mM KH2PO4 
pH 6.8 

    

2x BBS 280 mM NaCl 
50 mM BES 
1.5 mM Na2HPO4 pH 6.95 

2x SDS sample 
buffer 

120 mM Tris /HCl pH 
6.8 
4% SDS 
20% glycerol 
200 mM DTT 
0.01% bromphenol 
blue 

    

5x SDS sample 
buffer 

250 mM Tris/HCl pH 6.8 
0.5 M DTT 
10 % SDS 
50 % glycerol 
0.01% bromphenol blue 

ABP stock 
solution 

50 mg/ml L-Ascorbate 
1 mM d-Biotin 
17 mM Pantothenic 
acid 

    

Block buffer  1x PBS  
0.1% Tween 20  
5% milk powder  

ChIP Dilution 
buffer 

As ChIP Wash buffer A 

    

ChIP Lysis buffer 50 mM Tris pH 6.8 
150 mM Nacl 
1 mM EDTA 
1 % SDS 
1 x PIC 
Adjust pH to 7.2 

ChIP Wash 
buffer A 

50 mM Tris pH 6.8 
150 mM NaCl 
1 mM EDTA 
1 % NP40 

    

ChIP Wash buffer 
B 

50 mM Tris pH 6.8 
500 mM NaCl 
1 mM EDTA 
1 % NP40 
0.1 % SDS 

ChIP Wash 
buffer C 

50 mM Tris pH 6.8 
250 mM LiCl 
1 % NP40 

    

ChIP Elution 
buffer 

1 % SDS 
100 mM NaHCO3 

CoIP Lysis buffer 20 mM HEPES/KOH pH 
7.4 
125 mM NaCl 
0.5 mM EDTA 
0.1% NP-40 
10% Glycerol 

    

Coomassie stain 4 parts Coomassie  
Colloidal Blue 
1 part Methanol 

Destain for 
Coomassie 
stained gels 

25% Isopropanol  
10% Acetic acid  

    

Gly-Gly buffer 25 mM Gly-Gly pH 7.8 High Salt Buffer 20 mM HEPES/KOH pH 
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15 mM MgSO4 
4 mM EGTA 

7.9 
1.5 mM MgCl2 
380 mM KCL 
25% glycerol 
0.2 mM EDTA 
1 mM DTT 
1x PIC 

    

Hypotonic Buffer 10 mM HEPES/KOH pH 7.9 
10 mM KCl 
1.5 mM MgCl2 
0.2 mM EDTA 
0.5 mM DTT 
1x PIC 

Krebs-Ringer 
Buffer 

115 mM NaCl 
5.9 mM KCl 
1.2 mM MgCl2 
1.2 mM NaH2PO4 
1.2 mM Na2SO4 
2.5 mM CaCl2 
25 mM NaHCO3 
Adjust pH to 7.4 

    

LB medium 10 g/l Trypton 
5 g/l Yeast extract 
10 g/l NaCl 
pH 7.0 

Oil Red O stock 
solution 

0.7 g Oil Red O 
200 ml Isopropanol 
Stirred overnight, 
sterile filtrated 

    

Luciferase 
Harvest Buffer 

100% Gly-Gly buffer; 
1% Triton X-100 
1 mM DTT 

Luciferase Assay 
Buffer 

20 mM K3PO4 pH 7.8 
80% (v/v) Gly-Gly 
buffer 
1.6 mM DTT 
2mM ATP 

    

Luciferase 
Luciferin Buffer 

1 mM Luciferin 
10 mM DTT in Gly-Gly buffer 

Oil Red O 
working solution 

6 parts Oil Red O stock 
solution 
4 parts H2O 

    

ONPG buffer 0.1 M NaP pH 7.5 
1 mM MgCl2 
10 mM KCl 
1 mg/ml ONPG 
100 mM ß-mercaptoethanol 
(added freshly) 

Orange G 
loading dye (6x)  

10 mM EDTA  
70% Glycerol  
A pinch Orange G  

    

PBS-Glycerol 1x PBS 
10% Glycerol 
pH 7.2, sterile 

PBS-T 1x PBS with 0.1 % 
Tween-20 

    

PBS-TOSH 30.8 mM NaCl 
120.7 mM KCl 
8.1 mM Na2HPO4  
1.46 mM KH2PO4  
10 mM MgCl2  
pH 7.2, sterile filtrated 

Protease 
Inhibitor (50x) 

50 mM PMSF  
50 mM NaF  
0.5 mg/ml Leupeptin  
0.5 mg/ml Aprotinin  
0.5 mg/ml Pepstatin A  
Dissolved in ethanol 

    

Proteinase K lysis 
buffer 

10 mM Tris pH 8.0 
100 mM NaCl 
15 mM EDTA 
1 % SDS 

Protein lysis 
buffer A 

50 mM Tris/HCl pH 6.8 
1 mM EDTA 
10 mM NaF 
2 mM Na3VO4 
1 mM DTT 
1 x PIC 
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1 x PPI 
    

RNA denaturing 
buffer 

0.5 µl 1/10 Ethidium bromide 
0.5 µl 10x MOPS 
5 µl Formamide 
1.75 µl Formaldehyde 
1.7 µl 6x loading dye 
0.55 µl RNase free H2O 

SDS gel fixation 
buffer 

25% Isopropanol 
10% Acetic acid 

    

SDS running 
buffer (10x) 

0.25 M Tris  
1.92 M Glycin 
1% SDS  

Simple tissue 
fractionation 
buffer 

50 mM Tris/HCl pH 7.2 
1 mM EDTA 
10 mM NaF 
2 mM Na3VO4 
1 x PIC 

    

Supplement 
buffer 

1.5 M NaCl 
10 % NP-40 

TBE buffer (10x) 100 mM Tris  
1 mM EDTA  
90 mM Boric acid 
pH 8.0 

    

TE buffer (10x)  1 mM EDTA  
10 mM Tris HCl  
pH 8.0 

TENS buffer 1x TE pH 8.0 
0.1 M NaOH  
0.5% SDS 

    

Transfer buffer   25 mM Tris  
192 mM Glycin 
20% Methanol  
0.01% SDS 

Tx Lysis buffer 150 mM NaCl 
0.05 % Triton X 100 
10 mM Tris/HCl pH 8.0 
1 x PIC 
1 x PPI 

    

Western Blot 
membrane 
stripping buffer 

62.5 mM Tris/HCl pH 6.8 
2% SDS 
100 mM β-Mercaptoethanol 

  

 

 

5.2 Oligonucleotides 

All oligonucleotides possessed a G/C content between 40% and 60% and were approximately 20-30 

bp in length. 

Restriction sites for specific enzymes were added to the cloning primers in 5’→3’ orientation, 

allowing directed insertion into a specific target vector. Six thymidine residues were added to the 5’ 

ends of the restriction sites in order to facilitate cleavage. The primers were designed to hybridize at 

temperatures of approximately 60°C. 

 

Oligonucleotide name Sequence 5’ 3’ 

TBL1 shRNA GCGAGGATATGGAACCTTAAT 
TBLR1 shRNA GGATGTCACGTCTCTAGATTG 
Control shRNA GATCTGATCGACACTGTAATG 
TBLR1 qPCR for AATGGTGCCCTGGTTCCA 
TBLR1 qPCR rev AGGTGCCATCCTCATTTATGCTA 
TBLR1 qPCR probe CCGCTGCACTCATCTCTATCATCCAGAAA 
TBL1 qPCR for ACGAGGTGAACTTTCTGGTATATCG 
TBL1 qPCR rev GGACTGGCTAATGTGACTTTCGA 
TBL1 probe ATCAGGTTTTTCCCACTCTGCCTTCACG 
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TBLR1 Exon5 qPCR for TGCTGCCGCCACTAACCAGC 
TBLR1 Exon5 qPCR rev TGTGCTCCATTCTCCTCCCC 
Flag-TBLR1 for TTTTTGGTACCATGGATTACAAGGATGACGACGATAAG 
Flag-TBLR1 rev TTTTTTCTCGAGCTATTTCCGAAGGTCTAAGA 
Flag-TBL1 for TTTTTGGTACCATGGATTACAAGGATGACGACGATAAG 
Flag-TBL1 rev TTTTTTCTCGAGTTACTTTCGGAGATCTAAAACACAGACG 
Genotyping TBLXR1-CRE 3552_31 CCAGTTCCCTTTTGGTATCC 
Genotyping TBLXR1-CRE 3552_34 CTCACCATCAGAGCCTTGC 
Genotyping TBLXR1 1260_1 GAGACTCTGGCTACTCATCC 
Genotyping TBLXR1 1260_2 CCTTCAGCAAGAGCTGGGGAC 
TBLR Southern Blot Probe 2 for TCATTCTGCGTTTACCTTTGG 
TBLR Southern Blot Probe 2 rev CACACGCAGAGGAATAGTCTACA 
ATGL promoter for GACGGCTAGCACAGCAGAGGAGAAGAAAGA 
ATGL promoter rev GCGAAAGCTTCGGCGGAGGCGGAGACGCTGTGC 
HSL promoter for CCCCACGCGTGTCATTATGATCAGCCCA 
HSL promoter rev TTTTAGATCTCAAGCTGGCACAGCAGGTCTG 
 

 

5.3 Antibodies 
 

Primary Antibodies Final Dilution Isotype Distributor, # 

Abhd5 (CGI-58) 1:500 Mouse Santa Cruz, # sc-100468 
Actin 1:1000 Mouse Santa Cruz, # A5441 
AKT 1:1000 Rabbit  Cell Signalling, # 9272 
acetyl-Histone H4 Only for  IP Rabbit Millipore 
ATGL 1:1000 Rabbit Cell Signalling, # 4126 
Beta 2 adrenergic receptor 1:200 Rabbit Santa Cruz, # sc-570 
Beta 3 adrenergic receptor 1:200 Rabbit Santa Cruz, #sc-50436 
CREB (128-262) 1:1000 Rabbit Salk PBL 244 
CREB phosphorylated (Ser133)  1:1000 Rabbit Salk Montminy 
FLAG M2 1:1000 Mouse Sigma, #A 8592 
GFP Only for  IP Rabbit Invitrogen, # A11122 
GPS2 1:500 Mouse Abcam, # ab53406 
HDAC3 1:200 Mouse Santa Cruz, # sc-17795 
HSL 1:1000 Chicken Chemicon, # AB3525 
NCoR (C-20) 1:200 Goat Santa Cruz, # sc-1609 
p44/42 MAP Kinase (137F5) 1:500 Rabbit Cell Signalling, # 4695 
Perilipin 1:1000 Rabbit Abcam, # ab3526 
phospho-Akt (Ser473) 1:1000 Rabbit Cell Signalling, # 9271 
phospho-CREB (Ser133) clone 
634-2 

1:1000 Mouse Upstate, # 05-807 

phospho-HSL (Ser660) 1:1000 Rabbit Cell Signalling, # 4126 
phospho-HSL (Ser565) 1:1000 Rabbit Cell Signalling 
phospho-p44/42 MAP Kinase 
(Thr202/Tyr204) 

1:1000 Rabbit Cell Signalling, # 9101 

phospho-PKA substrate 
(RRXS/T) 

1:1000 Rabbit Cell signalling, #9624 

PKA regulatory SU 1:500 Rabbit Abcam, #ab38222 
PKA catalytic SU 1:500 Rabbit Abcam, #ab71764 
PPARγ 1:1000 Rabbit Abcam, #ab27649 
PPARγ (phospho S112) 1:1000 Rabbit Abcam, #ab60953 
RXR (C-20) 1:200 Rabbit Santa Cruz, #sc-831 
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TBL1 1:1000 Rabbit Abcam, #ab24548 
TBLR1 1:1000 Rabbit Novus, #NB600-270 
TBLR1 1:1000 Mouse Abnova 
VCP 
 

1:10000 Mouse  Abcam, #ab11433 

Secondary Antibodies    

Anti-mouse IgG-HRP 1:5000 Goat BioRad, Munich 
Anti-rabbit IgG-HRP 1:3000-1:5000 Goat BioRad, Munich 
Anti-chicken IgG-HRP 1:5000 Rabbit Chemicon, #AP162P 
Anti-goat IgG-HRP 1:5000 Donkey Sigma, #sc-2020 
 

5.4 Kits 

Kit Distributor 

20x MOPS running buffer Invitrogen, Karlsruhe 
BLOCK-iT Adenoviral RNAi Expression System Invitrogen, Karlsruhe 
Cholesterol determination Kit Randox, Crumlin, UK 
Cyclic AMP EIA Kit Cayman, Talinn 
Enhanced Chemiluminescence (ECL) Kit  Amersham Biosciences, Freiburg 
First Strand cDNA Synthesis Kit  Fermentas, St. Leon-Rot 
Infinity ALT kit Thermo Electron, Melbourne 
NEFA – C Determination Kit  Wako, Neuss 
NEON 10 µl transfection Kit Invitrogen, Karlsruhe 
Phusion Polymerase Kit Finnzymes, Vantaa 
PureLink HiPure Plasmid Filter Midiprep Kit Invitrogen, Karlsruhe 
PureLink HiPure Plasmid FP Maxiprep Kit Invitrogen, Karlsruhe 
Qiaprep Plasmid Miniprep Kit Qiagen, Hilden 
Qiaquick Gel Extraction Kit Qiagen, Hilden 
Qiaquick PCR Purification Kit  Qiagen, Hilden 
Triglycerides Determination Kit  Sigma-Aldich Chemicals GmbH, Steinheim 
Triglycerides Liquicolour  Human GmbH Wiesbaden 
 

5.5 Software 

Software Distributor 

BLAST http://www.ncbi.nlm.nih.gov 
Endnote 
Geneious 

Thomson, Carlsbad, USA 
Auckland, New Zealand 

GraphPad  GraphPad Software Inc., La Jolla, USA 
Illustrator Adobe, San Jose, USA 
Microsoft Office Microsoft, Unterschleißheim 
MultAlin bioinfo.genotoul.fr/multalin/multalin. html 
Photoshop Adobe, San Jose, USA 
Pubmed http://www.pubmedcentral.nih.gov 
Quantity One Bio-Rad, Munich 
StepOne Plus System Software Applied Biosystems, Darmstadt 
Vector NTI Advance™ Software Invitrogen, Karlsruhe 
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5.6 Consumables 

Consumable Distributor 

6 well tissue culture dishes Falcon, Gräfeling-Lochham 
96 well MicroAmp plates Applied Biosystems, Darmstadt 
Cell scrapers (Costar) Corning Inc., NY, USA 
Centrifuge tubes (35 ml) Beckmann, Munich 
Cover slips Carl Roth GmbH, Karlsruhe 
Dialysis tubing Carl Roth GmbH, Karlsruhe 
Disposable scalpels Feather, Cuome, JP 
DNase / RNase free water Invitrogen, Karlsruhe 
Electroporation cuvettes Steinbrenner, Wiesenbach 
Filters (0.22 µm) Millipore, Eschborn 
Filters (0.45 µm) Millipore, Eschborn 
Gel staining boxes (Mini) Carl Roth GmbH, Karlsruhe 
Gloves (Gentle Skin) Meditrade, Kiefersfelden 
Gloves (Safe Skin Purple Nitrile) Kimberly Clark, BE 
Gradient gels 4-12% (NuPAGE) Invitrogen, Karlsruhe 
Hyperfilm ECL Amersham, Freiburg 
Immobilized streptavidin beads (UltraLink) Pierce Biotech., Rockford, USA 
Micro test tubes (1.5 ml, 2 ml) Steinbrenner, Wiesenbach 
Mouth protection Meditrade, Kiefersfelden 
Nitrocellulose membrane Schleicher and Schüll, Dassel 
Parafilm Pechinery Inc., Wisconsin, USA 
Pasteur pipettes  Brand, Wertheim 
PCR tubes (200 µl) Eppendorf, Hamburg 
Petri dishes Greiner, Kremsmünster, AU 
Pipette tips (0.1 – 1000 µl) Starlab, Helsinki, FI 
Pipette tips (0.1 – 1000 µl) (Tip One Filter Tips) Starlab, Helsinki, FI 
Pipette tips (Electrophoresis / Protein)  BioRad, Munich 
Rabbit IgG-agarose Sigma, Munich 
Safelock micro test tubes (1.5 ml and 2 ml) Eppendorf, Hamburg 
Saran cling film Dow Chem. Co., Schwalbenbach 
Serological pipettes (5 ml, 10 ml, 25 ml, 50 ml) BD Biosciences, San Jose, USA 
Syringes (10 ml Luer Lock) Terumo, Leuven 
Test tubes (15 ml and 50 ml) Falcon, Gräfeling-Lochham 
Tissue culture dishes (10 cm and 15 cm) Falcon, Gräfeling-Lochham 
Whatman paper Whatman Int., UK 
 

5.7 Chemicals and Reagents 

Chemical Distributor 

(+)-Sodium L-ascorbate Sigma, Munich 
3-(N-morpholino)propanesulfonic acid (MOPS) Carl Roth GmbH, Karlsruhe 
Acetic acid (99%) Sigma, Munich 
Adenosine triphosphate (ATP) Sigma, Munich 
Agarose Sigma, Munich 
Antibiotics Sigma, Munich 
Aprotinin Sigma, Munich 
Boric acid Sigma, Munich 
Bovine serum albumin (BSA) Sigma, Munich 
Bromophenol blue Sigma, Munich 
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Chloroform DKFZ 
Collagenase Type ll Sigma, Munich 
CL316243 Tocris Bioscience, Bristol 
d-Biotin Sigma, Munich 
D-[14C(U)]-Glucose Perkin Elmer, Waltham 
dCTP (alpha-32-P) 250microCi Perkin Elmer, Waltham 
Desoxynucleotides (dATP, dCTP, dGTP, dTTP) Roche, Mannheim 
Dexamethasone Sigma, Munich 
DMSO (Dimethyl sulfoxide) Sigma, Munich 
DOTAP Liposomal Transfection Reagent Roche, Mannheim 
D-Pantothenic acid hemicalcium salt Sigma, Munich 
DTT (Dithiothreitol)  Sigma, Munich 
Dulbecco’s modified Eagle’s medium (DMEM) Invitrogen, Karlsruhe 
EDTA (Ethylenediaminetetraacetic acid) Sigma, Munich 
Ethanol (99%) DKFZ 
Ethidium bromide Carl Roth GmbH, Karlsruhe 
Fetal calf serum (FCS) Invitrogen, Karlsruhe 
Formaldehyde DKFZ 
Forskolin Sigma, Munich 
Gene Ruler 1kb DNA Ladder  Fermentas, St. Leon Rot 
Glycerol Baker, Deventer, NL 
Hydrochloric acid (HCl) 37% Acros Organics, New Jersey, USA 
Hyperfilm ECL Western Blotting Detection 
Reagents 

Amersham, Freiburg 

IBMX Sigma, Munich 
Insulin human (recombinant yeast) Sigma, Munich 
Isopropanol Sigma, Munich 
Isoproterenol Hydrochloride Calbiochem, Darmstadt 
Lipofectamine2000 Reagent Invitrogen, Karlsruhe 
Lipopolysaccharides E.coli  Sigma, Munich 
Loading dye solution (6x) Fermentas, St. Leon Rot 
Norepinephrine Sigma, Munich 
Magnesium chloride (MgCl2) Merck, Darmstadt 
Magnesium sulfate (MgSO4) Sigma, Munich 
Oil Red O Sigma, Munich 
optiMEM Invitrogen, Karlsruhe 
Orange G Sigma, Munich 
Page Ruler Prestained Protein Ladder  Fermentas, St. Leon Rot 
Penicillin / Streptomycin (P/S) Invitrogen, Karlsruhe 
Phosphatase Inhibitor Cocktail Sigma, Munich 
Platinum qPCR SuperMix Invitrogen, Karlsruhe 
Potassium chloride (KCl) Sigma, Munich 
Poly-L-lysin Sigma, Munich 
Procaterol Biozol, Heidelberg 
Qiazol Lysis Reagent Qiagen, Hilden 
RiboLock Ribonuclease Inhibitor Fermentas, St. Leon Rot 
ROX Reference Dye Invitrogen, Karlsruhe 
Sodium chloride (NaCl) Fluka, Munich 
Sodium hydroxide (NaOH) Sigma, Munich 
Sodium orthovandate Sigma, Munich 
Trichloroacetic acid (TCA) Sigma, Munich 
Tripotassium phosphate (K3PO4) Merck, Darmstadt 
Tris base Sigma, Munich 
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Triton X-100 Sigma, Munich 
Trypsin-EDTA solution Invitrogen, Karlsruhe 
Tween-20 Sigma, Munich 
β-Mercaptoethanol (98%) Sigma, Munich 

 

All other routinely used chemicals were purchased from Roth, Karlsruhe. 

 

5.8 Instruments 

Instrument Distributor 

Analytical scales Satorius, Göttingen 
Bacterial shaker  Infors AG, Böttmingen, CH 
Camera (Power Shot G6)  Canon, Krefeld  
Cell counter  Neolab, Heidelberg 
Centrifuge (2K15)  Sigma, Munich 
Centrifuge (Biofuge fresco)  Heraeus, Hanau 
Centrifuge (Biofuge pico)  Heraeus, Hanau 
Centrifuge (Function Line)  Heraeus, Hanau 
Centrifuge (Micro 22R)  Hettich GmbH & Co, Tuttlingen 
Centrifuge (Super T21)  Heraeus Sorvall, Langenselbold 
ChemiDoc BioRad, Munich 
CO2-incubator  Sanyo, Munich 
CO2-incubator (Forma Scientific)  Labotect, Göttingen 
Electrophoresis chamber Steinbrenner, Wiesenbach 
Electrophoresis power supply (Power Pack Basic)  BioRad, Munich 
Electrophoresis power supply (Power Pack HC)  BioRad, Munich 
Electroporator (Gene PulserII)  BioRad, Munich 
Film cassette  Amersham, Freiburg 
Film developer Amersham, Freiburg 
Freezer, -20°C  Liebherr, Biberach 
Freezer, -80°C (Hera Freeze)  Heraeus, Heilbronn 
Fridge, 4°C  Liebherr, Biberach 
Gas stove (GASI)  Schütt, Göttingen 
Gel imager Intas, Göttingen 
Heat block  VWR, Darmstadt 
Heat block (Thermostat Plus)  Eppendorf, Hamburg 
Horizontal shaker (Duomax 1030)  Heidolph, Kehlheim 
Hotplate / stirrer VWR, Darmstadt 
Incubator (Function Line)  Heraeus, Hanau 
Luminex Magpix Luminex, Austin, USA 
Microscope (Axiovert 40 CFL)  Carl Zeiss, Jena 
Microwave  Bosch, Stuttgart 
Multistep pipette  Eppendorf, Hamburg 
NEON transfection device Invitrogen, Karlsruhe 
Neubauer counting chamber  Carl Roth GmbH, Karlsruhe 
Nitrogen tank Thermo Electron corp., Erlangen 
pH-meter  VWR, Darmstadt 
Photometer (NanoDrop ND-1000)  Peqlab Biotechnology, Erlangen 
Pipettes (2 µl, 10 µl, 20 µl, 100 µl, 200 µl, 1000 µl)  Gilson, Middleton, USA 
Pipettes (20 µl, 200 µl, 1000 µl) Eppendorf, Hamburg 
Real time PCR System StepOne Plus Applied Biosystems, Darmstadt 
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Rotating wheel  Neolab, Heidelberg 
Scale  Kern und Sohn GmbH, Balingen 
Scale (BL 1500 S)  Satorius, Göttingen 
Scanner  Epson, Meerbusch 
SDS electrophoresis chambers  BioRad, Munich 
Sonicator BioruptorTM Diagenode, Liège, Belgium 
Stand  Carl Roth GmbH, Karlsruhe 
Sterile benches (Class II type A/B3)  Sterilgard, Sanford, USA 
Tabletop centrifuges (Mini Spin Plus)  Eppendorf, Hamburg 
Thermocycler (PTC-200)  Biozym, Oldendorf 
Tissue Lyser  Qiagen, Hilden 
Ultracentrifuge XL 70  Beckmann, Munich 
Vacuum pump Neolab, Heidelberg 
Vortex mixer (REAX 2000)  Heidolph, Kehlheim 
Water bath  Neolab, Heidelberg 
Water bath (WBS)  Fried Electric, Haifa, IL 
Western Blot Chamber  BioRad, Munich 
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6 APPENDIX 

6.1 Glossary 

AC Adenylate cyclase 
Adrb Beta-adrenergic receptor 
AKT Protein kinase B (PKB) 
ANOVA Analysis of variance 
AP-1 Activating protein 1 
ATGL Adipocyte triglyceride lipase 
ATKO Adipocyte specific TBLR1 knockout 
AU Arbitrary units 
AUC Area under curve 
BAT Brown adipose tissue 
BMI Body mass index 
bp Base pairs 
BSA Bovine serum albumin 
BW Body weight 
C/EBP CCAAT/enhancer binding protein 
cAMP Cyclic adenosine monophosphate 
cDNA Complementary DNA 
CGI-58 Comparative gene identification 58 
CM Conditioned macrophage medium 
CMV Cytomegalovirus 
Ctrl Control 
DBD DNA binding domain 
Dex Dexamethasone 
DNA Desoxyribonucleic acid 
DTT Dithiothreitol 
ER Estrogen receptor 
FA Fatty acid 
FABP Fatty acid binding protein 
Fasn Fatty acid synthase 
FATP Fatty acid transport protein 
FCS Fetal calf serum 
FDR False discovery rate 
FFA Free fatty acid 
FSK Forskolin 
GC Gastrocnemius muscle 
GC Gastrocnemius muscle 
GFP Green fluorescent protein 
GPS2 G-protein pathway suppressor 2 
GTT Glucose tolerance test 
HDAC Histone deacetlyate 
HDL High density lipoprotein 
HEK Human embryonic kidney 
HFD High fat diet 
HOMA Homeostatic model assessment 
HSL Hormone sensitive lipase 
IBMX 3-isobutyl-1-methylxanthine 
ifu Infectious units 
IL6 Interleukin 6 
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IP Immunoprecipitation 
IR Insulin receptor 
IRS2 Insulin receptor substrate 
ISI Insulin sensitivity index 
Iso Isoproterenol 
LBD Ligand binding domain 
LFD Low fat diet 
LKB1 AMPK activator liver kinase B 
LPL Lipoprotein lipase 
LPS Lipopolysaccharide 
MCP1 Monocyte chemoattractant protein 
MGL Monoacylglycerol lipase 
MOI Multiplicity of infection 
mRNA Messenger RNA 
NAA Non-essential amino acid 
NAFLD Non-alcoholic fatty liver disease 
NCoR Nuclear co-repressor 
NE Norepinephrine 
NEFA Non esterified fatty acids 
NLSD Neural lipid storage disease 
NZO/NZB New Zealand Obese/ Black 
OE Over expression 
p- Phospho- 
P/S Penicillin / Streptomycin 
PBS Phosphate buffered saline 
PCR Polymerase chain reaction 
PDE3B Phosphodiesterase 3 B 
PEPCK Phosphoenolpyruvate carboxykinase 
PGC1 PPAR gamma co-activator 1 
PIC Protease inhibitor cocktail 
PKA Protein kinase A 
PP Protein phosphatase 
PPAR Peroxisome proliferator activated receptor 
PPI Phosphatase inhibitor cocktail 
PPRE PPAR response element 
qPCR Quantitative polymerase chain reaction 
RAR Retinoic acid receptor 
RNA Ribonucleic acid 
RXR Retinoic x receptor 
SEM Standard error of the means 
shRNA Short hairpin RNA 
siRNA Small interfering RNA 
SMRT Silencing mediator of retinoic acid and thyroid hormone receptor 
SUMO Small ubiquitin-like modifier 
SVF Stromal vascular fraction 
TBL1 Transducin beta like 1, x-linked 
TBLR1 Transducin beta like 1 related 1 
TBP TATA binding protein 
TG Triglyceride  
TNFα Tumor necrosis factor alpha 
TR Thyroid hormone receptor 
TZD Thiazolidinediones 
UCP1 Uncoupling protein 1 
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VCP Valosin containing protein 
VLDL Very low density lipoproteins 
WAT White adipose tissue 
WHO World Health Association 
β-AR Beta adrenergic receptor 
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