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Multidimensionale Attosekunden-Interferometrie einzelner und zweier korrelierter
Elektronen in Atomen—Innerhalb dieser Arbeit wird die Elektronendynamik in Atomen
auf ihrer natiirlichen Attosekundenzeitskala sowohl experimentell als auch numerisch un-
tersucht. Fir den Zugang zu dieser Dynamik werden ultrakurze Laserpulse moderater
Intensitdt und weniger Zyklen Dauer tiberlagert mit attosekundengepulster Strahlung im
extrem ultravioletten Spektralbereich. Beide Lichtquellen werden in einem von Grund auf
geplanten und neu aufgebauten Vakuumapparat kombiniert, welcher auch zur Erzeugung
der Attosekundenpulse verwendet wird. Neuartige experimentelle Methoden zur zeitlich
und spektral interferometrischen Nutzung beider Lichtquellen werden entwickelt, wobei
verschiedene dynamische Parameter in einem mehrdimensionalen Spektroskopieansatz
Verwendung finden. Diese Parameter beinhalten sowohl die Intensitdt und die Tréager-
zu-Einhiillenden Phase der Laserpulse als auch deren zeitlichen Versatz zu den Attose-
kundenpulsen. Aus wissenschaftlicher Sicht war sowohl die Beobachtung und Kontrolle
der Quantenbewegung gebundener Elektronen als auch die lasergetriebene quasiklassi-
sche Bewegung freier Elektronen ein zentrales Ziel dieser Arbeit. Insbesonders wurde ein
gebundenes Zweielektronenwellenpaket in Helium auf der Attosekundenzeitskala zum
ersten Mal experimentell beobachtet. Ermoglicht wurde dies durch eine bis dato nicht
erreichte zugleich hohe zeitliche und hohe spektrale Auflosung. Weiterhin wird ein neu-
artiger Koppelmechanismus mehrerer zweifach angeregter Zustinde mit einem effekti-
ven Einelektronenkontinuum identifiziert und analysiert. Sowohl diese Zweielektronen-
zustdnde, als auch Einelektronenzustinde werden interferometrisch erfasst, mit Zugang
zur Phase ihrer quantenmechanischen Wellenfunktion. Dies ermdglicht die in dieser Ar-
beit demonstrierte Beobachtung und Kontrolle der Quantendynamik zweier korrelierter
Elektronen in Atomen auf der Attosekundenzeitskala.

Attosecond multidimensional interferometry of single and two correlated electrons
in atoms—Within this work, electron dynamics in atoms are experimentally and numer-
ically investigated on their natural attosecond time scales. To access these dynamics,
ultrashort and moderately-intense few-cycle laser pulses are superposed with attosecond
pulsed radiation in the extreme-ultraviolet spectral region. Both these sources are com-
bined in a new experimental vacuum setup which was designed and built up from scratch,
also in order to generate the attosecond pulses. Novel experimental schemes are devel-
oped which involve the temporal and spectral interferometric utilization of both ultrashort
light sources and include the multidimensional spectroscopy employing different dynam-
ical parameters. These are the intensity and the carrier-envelope phase of the laser pulses,
as well as their temporal delay with respect to the attosecond pulses. Scientifically, the
observation and control of the quantum-motion of bound electrons, as well as the laser-
driven quasi-classical motion of free electrons was a key goal of this work. In particular, a
bound two-electron wave packet in helium on attosecond time scales was experimentally
observed for the first time. This was realized by combining unprecedented high temporal
and spectral resolution. In addition, a new coupling mechanism of several doubly-excited
states to an effective single-electron continuum is identified and analyzed. Both these
two-electron states as well as single-electron states are interferometrically investigated
with access to the phase of their quantum-mechanical wave function. This allows the ob-
servation and control of the quantum dynamics of two correlated electrons in atoms on
the attosecond time scale which was demonstrated within the scope of this work.
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Chapter 1

Introduction

What is a time-resolved measurement? From our experiences with the macroscopic world,
such a measurement can be considered as the detection of any changes in an observed
system. It is always implicitly assumed that the observation time is short compared to
the time-scale of changes in the system. A popular example are snapshots of a galloping
horse taken by Muybridge in the 1870s using triggered short-exposure-time photography.
A long-standing question could be resolved, namely that for a certain instant in time, on
the order of milliseconds, all four legs of a galloping horse are up in the air.

Things are moving faster in the microscopic world. Dynamics for instance in atoms occur
on the order of femtoseconds (1 fs = 10715 s) and below. The time it takes the electron
in the hydrogen atom to circle the proton in the lowest n = 1 orbit in Bohr’s atomic
model is only ~ 150 attoseconds (1 as = 10718 ). In order to get information out of
any microscopic system, particles have to be detected (photons, electrons, ions, ...), just
as in the above macroscopic example where the reflected light off the horse is measured
with a camera. Any modern detector is based on electronics where the intrinsic temporal
resolution is limited to nanoseconds (1 ns = 10~ s) or possibly, with considerably more
effort, to several tens or hundreds of picoseconds (1 ps = 10712 s). This means that the
much faster atomic dynamics cannot be directly resolved.

How does a microscopic system evolve in time? In non-relativistic quantum theory, which
is exclusively discussed in this thesis, time evolution is governed by the time-dependent
Schrodinger equation

L0 -
in = (1)) = FPP(1). (1.1)

As a consequence of this equation, in particular due to the appearance of the com-
plex factor “i” on the left hand side, the temporal evolution of the wave function
|¥(¢))—which describes the microscopic system—is encoded in complex phase factors
“exp|[—i(E/h)t]”. These are oscillatory in time with frequency E /%, where E is the en-
ergy of a quantum state. This could for example be the energy of an electron which is

bound to a nucleus.

Measuring time in quantum mechanics is thus intimately related to measuring phases.
How can time-information be retrieved from a phase changing with time? Within an
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oscillatory motion, time 7, frequency @ and energy E are related by

T= 2z = ﬂ (1.2)
(0] E
Therefore time is the ratio of phase and energy. As only relative changes of time—in com-
parison with a rule—are meaningful, a straightforward definition of temporal changes
would be to evaluate the derivative of the phase ®:
dod
AT = i (1.3)
In quantum mechanics a peculiarity arises alongside the notion of these phases. Phases
characterize the complex amplitudes in a superposition of separate states of a quantum
system, the eigenstates which are labeled by their respective energy. If only one of these
states is present—is populated—such as the above mentioned lowest Bohr orbit of an
atom, no change with time can be seen by any means, because only the absolute value
squared of the wave function |¥|? which describes measurable quantities can be detected.
The time-information encoded in the phase drops out. Only when more than one quantum
state is populated, i.e. the electron wave function populates more than one Bohr orbital,
detectable quantities such as the mean position of the electron relative to the nucleus do
change with time and can be measured. An analogy of this peculiarity can be found in
acoustics. Imagine the sound of two sine waves with slightly different frequencies. If
played separately, a single tone with constant volume will each be heard with no changes
in time. However if played together, these two tones interfere—they beat—and a volume
oscillating with time will be heard.

This direct measurement of time-dependent phases in quantum mechanics on the elec-
tronic attosecond time scale is unfortunately not possible, simply as a detector which
could resolve these fast atomic time-scale changes does not (yet) exist. Instead, only
the energy of particles leaving the quantum system can be determined. However if their
phase as a function of energy can be determined, temporal information is directly gained
as outlined above. In order to extract this phase a powerful tool can be employed: Inter-
ferometry.

If states of different energy are projected onto an equal energy region—e.g. by absorption
of photons—their relative phase can be measured out of which temporal information is
finally gained. In order to create this overlap, a tool is needed which fully conserves the
phase of the quantum states, thus this tool itself needs to have a perfect phase-relationship,
in other words a high coherence. This high degree of coherence is realized in lasers. In
order to be sensitive to ultrafast dynamics on the atomic time scale, a broad coherent
spectrum of different frequencies is needed in order to coherently cover a broad energetic
range of quantum states to support these ultrafast dynamics.

The explanation why a broad spectral range is needed in order to access fast time scales
goes back to the work of Jean Baptiste Josephe Fourier [1]. With the nowadays well
known and further developed mathematical concepts of Fourier analysis, the time and
frequency representation of a signal can be mapped into each other. As a consequence,
the temporal duration and the frequency bandwidth of a signal—or process—are directly
related. In particular their product cannot be smaller than a certain constant. For example,



an infinitely narrow frequency component is only defined when the temporal duration of
the process is infinitely long, i.e. a perfect sine wave. In contrast, when a very fast process
is happening in time, it must be supported by a broad set of different frequencies. This is
closely related to the uncertainty principle of quantum mechanics, where position and mo-
mentum cannot be measured simultaneously with arbitrary precision. It should be noted
that it is not exactly equivalent, because both position and momentum in non-relativistic
quantum mechanics are operators, i.e. observables, which is also true for the energy. In
contrast, time cannot be represented as an operator but only enters as a parameter.

From this correspondence of time and energy, temporal information of a quantum system
is already encoded in the energy spectrum of the observation. If for instance the super-
position of two electronic quantum states is considered, the ground state and an excited
state, radiation is emitted from the system due to the oscillating charge distribution until
the excited state decays within its life time. Detecting the energy spectrum (in particu-
lar its width) of this radiation directly reveals this life time. It is thus important to note
that already from a precise measurement in the energy domain, dynamics about the sys-
tem can be deduced. However this interpretation assumes additional information on the
system: Two quantum states are involved. From such a measurement alone it could not
be distinguished whether only two states are present with a certain life time, or if many
independent states with similar energy positions are present with longer life times where
the spectral lines, by incoherently adding at the detector, appear as a single line falsely
implying a shorter lived state.

In addition, the interferometric capability of laser pulses comes with another benefit: The
degree of control. These pulses can coherently and strongly couple different electronic
quantum states which implies the possibility to control their phase. A motivation for this
control of electron dynamics is drawn from chemical reactions. Electrons are the funda-
mental ingredient of any chemical bond. Being in between atoms they typically form the
covalent bond involving two electrons. It is the dynamics of these pairs of electrons which
are fundamentally responsible for any course of chemical reaction. In addition, these two
electrons are correlated. In their quantum-mechanical description, their evolution has to
be treated as one whole entity, a two-electron wave function. Accessing and controlling
the phase of correlated two-electron states in simpler systems could thus be considered as
a first step towards control schemes of such two-electron orbitals in molecules.

The aim of this thesis is to interferometrically measure ultrafast electronic quantum dy-
namics, its understanding and control by employing the coherence of ultrashort few-cycle
laser pulses. Emphasis is put on the attosecond temporal and the extreme ultraviolet
(XUV) spectral domain, which is the natural domain of closely-bound atomic electrons in
motion. Being the main result of this work, it will be demonstrated how correlated two-
electron dynamics in atomic helium can be directly measured, controlled and understood.

Special emphasis will be placed on exploiting several dynamical parameters. Not only the
time delay between laser pulses, as utilized in conventional pump—probe measurements,
but also the carrier-envelope phase (CEP) and the intensity of ultrashort laser pulses will
be utilized as dynamical parameters which allow the temporal control of the investigated
processes. In addition, the encoding of dynamics in the spectral line shape which is mea-
sured in the energy domain, as outlined above, will be included in the investigation. The
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whole temporal evolution of the system, coherently integrated for the detection is to be
considered (the spectral line shape), while the control on the much faster dynamics is
enabled by the available ultrashort laser sources. In order to analyze the effects of the
above-mentioned dynamical parameters, including the detected spectral line shapes, two-
dimensional representations of the measured data will be investigated. This involves also
concepts from Fourier analysis in order to relate directly comparable domains—temporal
or spectral—of these parameters. The motivation for this originates from multidimen-
sional spectroscopy, nowadays mainly applied in the femtosecond temporal and infrared-
to-visible spectral domain which correspond to longer time scales as considered here.
These spectroscopy techniques are successfully applied to measure and control mainly
vibrational dynamics in molecules and slower electronic transition pathways in molec-
ular systems. A direct copy of these concepts is however not yet directly applicable in
the natural domain of moving electrons deeply bound in small molecules. The reason is
because appropriate and intense enough attosecond laser sources are not yet available in
this range, but may become available in the near future.

The thesis is structured as follows: In the following chapter, fundamental theoretical con-
cepts will be introduced with emphasis on the connection between descriptions in the
temporal and spectral domain, described by the Fourier transformation, but also to es-
tablish a common background of the underlying physical concepts, especially for the
description of two-electron systems. In chapter 3 the experimental apparatus will be de-
scribed in detail as it was designed and built from scratch in order to address the here
outlined scientific topics. In chapter 4 a home-built numerical simulation—a computer
experiment—is performed which investigates a highly non-linear interferometric scheme
solely with intense femtosecond laser pulses to access sub-cycle attosecond dynamics,
with prospects of phase-resolved access to a variety of different electron quantum states.
Chapter 5 outlines a novel two-dimensional spectroscopic method involving the CEP of
one single femtosecond laser pulse to disentangle overlapping temporal contributions of
electron quantum paths in strong laser fields. In chapter 6 the main scientific result of
this work is presented, which is the phase-resolved measurement of a set of different cor-
related two-electron quantum states in helium, where a three-dimensional experimental
data set is acquired, spanned by the spectral line shape, the femtosecond laser intensity
and the temporal delay of this laser pulse to attosecond pulsed light in the extreme ul-
traviolet. Laser-coupling between discrete and fully-correlated two-electron states and
in addition simultaneous coupling to an effective single-electron continuum of states is
observed and controlled. Understanding of this process is established with a home-built
numerical close-coupling simulation. Finally, in section 7 the results of this work will be
summarized and an outlook will be given.



Chapter 2

Theoretical background

2.1 Ultrashort laser pulses

This section is devoted to the mathematical description of ultrashort femtosecond laser
pulses, as they are ideally suited to demonstrate the connection between time and spec-
tral frequency domain, via the Fourier transformation. Properties such as their carrier-
envelope phase will be introduced. Both their generation as well as certain control aspects
will be shortly described, as these pulses are nowadays a key tool in ultrafast science for
measuring ultrafast dynamics on their natural time scales. They also serve as the driver
tool to generate even shorter attosecond pulses which will be described in more detail in
section 2.2.2. Nowadays, many aspects of ultrashort laser pulses can be found in text-
books such as [2] which this chapter is mainly referring to.

In the time domain, ultrashort laser pulses are described by a time-dependent electric
field E(¢). It is a real electromagnetic wave which therefore could in principle be directly
measured with an oscilloscope, provided that the electronics were fast enough. In most
general terms, it is described as a product of a slowly varying envelope function &’(¢), and
an oscillatory part defined by the phase ¢ (¢) as

E(t) = &(t)cos[o (1), @.1)

where linear polarization is assumed. The envelope &(¢) defines the overall temporal
structure of the laser pulse and is mainly characterized by its duration, which is usually
defined as the full width at half maximum (FWHM) of the intensity profile, where the in-
tensity /(¢) is proportional to the square of the real and positive valued envelope function,
I(t) o< &(t)?. The pulse profiles are typically described by a Gaussian envelope

2
t
- (—) ] (2.2)
¢
or a cosine squared cos> envelope function

&) cos? <L> for — L <t <%y
ety =407 \ie == (2.3)
0 otherwise.

&(t) = &pexp
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The corresponding parameters are related to the FWHM pulse duration via

IFWHM

tc = —— ~0.849 -¢ 2.4
G oIy FWHM (2.4)

and
IFWHM

fe= 2arccos (271/4)

~ 0.874 - tpwHM- (2.5)

The temporal phase ¢(¢) can be expanded in a Taylor series and can be written as

O (t) = dcpp + @ct + @(t), (2.6)

where ¢cgp is the carrier to envelope offset phase, @, is the central frequency, and ¢(7) is
the phase which contains only higher-order terms in time (¥ with k > 2). For ¢(¢) =0, a
constant oscillation of frequency @ is imprinted into the envelope, and is thus also called
the carrier frequency. The constant offset phase ¢cgp determines the position of this
oscillation with respect to the envelope. The instantaneous frequency @(¢) is generally
defined as the time derivative of the temporal phase

o) = L6() =0t L ol), @
which is only changing with time if ¢(7) # 0, i.e. terms of order k > 2 have a non-zero
contribution to ¢(¢). In these cases, the pulses will be called up- or down-chirped, de-
pending on whether ®(7) is increasing or decreasing with time. If the change in @(z) is
linear with time, i.e. ¢(¢) contains only terms up to 2" order in time, the chirp is called
linear. Otherwise, the pulse exhibits a non-linear chirp.

For mathematical convenience, the field can also be described in complex form as
E(t) = &(t)explig(1)], (2.8)

however its real part is still the only measurable quantity interacting with the physical
system. Only when approximations are made (such as the rotating wave approximation
as will be shown in section 2.6) its complex representation directly enters the terms which
describe the interaction with the system. This is in contrast to the wavefunction |y(t)),
which is truly a complex quantity and directly enters the description (exact or approxima-
tive) of a system.

In the spectral domain (or frequency domain) the field is obtained via the Fourier trans-
form, defined as

~+o0
ENo)=F{E@n)} = / deE(1)e™ ™™, (2.9)

and the corresponding inverse transform is given by

+o0
£y =7 {EO (@)} = % / doE® (@)e® 2.10)
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The complex electric field in the frequency domain can also be expressed with an envelope
&%) (w) and a phase ¢ (o) as

EV(w) = &Y (o) explio® (o). 2.11)

Related via the Fourier transform, the temporal duration frwym and the spectral band-
width Awpwpw fulfill the uncertainty principle of Fourier analysis [2], which states that
their product cannot be smaller than a pulse-shape dependent constant. That is

tFWHM - AOFWHM > 27CB. (2.12)

The spectral bandwidth (A@wrwrm) 1s defined as the full width at half maximum of the
spectral intensity profile S(®), where S(®) o< &*)(@)?. The constant cg depends on the
exact shape of the envelope &(¢). For a Gaussian pulse as defined in Eq. (2.2), cg =
2In2/7m ~ 0.441, while for a cosine squared envelope as given in Eq. (2.3), cg ~ 0.262.
The inequality in Eq. (2.12) holds for a non-zero higher order (k > 2) spectral (or tempo-
ral) phase, i.e. when the pulses are chirped. If the equality holds, the pulses are typically
unchirped and reach the shortest possible duration (fpwiy) for a given spectral bandwidth
AwprwaMm. In this case, the pulses are also called bandwidth limited.

The spectral phase can also be expanded in a Fourier series and is expressed as

< 190 ( q
o (w) =Y E%T’E)'wk: 08+ 10+ 09 (w). (2.13)
k=0""

where ¢®)(@) now only contains higher-order terms in frequency (w* with k > 2). In
analogy to Eq. (2.7), a frequency-dependent temporal delay, called group delay, can be
defined as

d d
t(0) =~ -0V(0) =~ - 19" (0), (2.14)

where the delay is only changing with frequency when (p(s)(a)) # 0. The minus sign
results from the definition of the spectral phase in Eq. (2.11) and the Fourier transform
performed as given in Eq. (2.10).

According to the shifting theorem of the Fourier transform, linear phase terms, both in
the temporal and spectral domain, merely linearly shift the pulse as a whole in the other
respective domain without changing their shape. Thus, @. and —7; can be interpreted
as a mean frequency and a mean time delay which the pulses are centered around in
the spectral and the temporal domain, respectively. This connection also decouples the
carrier frequency @, from the given spectral distribution within Awpwgm. The carrier
frequency does not necessarily need to be part of the spectrum, e.g. for pulses which
have a centered gap in the spectral distribution. It is typically defined as the mean of the
spectral distribution of frequencies, i.e. the intensity weighted average frequency [2]. For
most common cases however (which are also exclusively discussed in this thesis) @, is
found around frequencies ®, where the spectral amplitude & (®) takes its largest values.

This shifting property also nicely illustrates (though not mathematically exact) how the
effect of the higher order terms are encoded in ¢(¢) and o) (w). If the pulses are defined
in the spectral domain, these higher order terms result in a true frequency-dependent
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Figure 2.1: Gaussian-shaped laser pulses with 7 fs FWHM duration and 750 nm center wavelength
in temporal (left) and spectral (right) representation for ¢cgp = 0 (top) and ¢cgp = 7/2 (bottom).
In the temporal representation, the envelope of the electric field is indicated (dashed line), centered
around time zero which is additionally marked with red dotted lines. In the spectral representation
(right panels), the spectral envelope is shown (black line) together with the spectral phase (black
dashed line) which is flat for the bandwidth limited pulses shown here. Here, the red dotted lines

mark zero spectral phase. The red arrows denote the definition of the CEP in each respective
domain.

delay 7(®). This means that different spectral parts of the pulse are shifted to different
temporal delays. For the case of a linear chirp, higher and lower frequencies are shifted
to opposite times of the pulse, causing 7(®) to become both bigger and smaller than the
mean temporal delay —7y. For non-linearly chirped pulses, 7(®) may be always bigger
(or smaller) than the mean delay —1y. Thus higher and lower frequencies can be shifted
to a single side of the pulse, where they temporally interfere (beat) and consequently
can create separate pulses to one side of the original pulse. This explains, how pre- and
postpulses are usually connected to higher than 2"¢ order dispersion, with the third order
dispersion being the leading term.

With the definition of Egs. (2.6) and (2.13), the constant terms are equal in both repre-

sentations (@cgp = ¢égp), and can be placed outside the integrals in Egs. (2.9) and (2.10).
In general their exact value depends on the choice of reference. In the current mathemat-
ical definition, ¢cgp, in the time domain, is the phase slippage of the carrier wave with
respect to ¢ = 0, which has the same value as the spectral phase (])(S)(a)) when extrapo-
lated to @ = 0. Only changes of the CEP are relevant within experimental observations.
These changes (A¢cgp) are equal to both the temporal and spectral domain and allow for
example their exact measurement in the spectral domain at any arbitrary (but fixed) spec-
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tral component. This implies that the carrier wave in the time domain is shifting by this
measured amount. Methods how to measure the CEP will be discussed along with the
experimental setup in section 3.2. Fig. (2.1) gives an illustration of the CEP both in the
temporal and spectral domain.

The frequency-dependent delay, given by 7(), for the different spectral parts of a laser
pulse is generated by the dispersive character of any medium which the pulse is propagat-
ing through. In terms of the superposition principle, a laser pulse can be thought of as the
coherent sum (or integral) of a range of monochromatic waves. Assuming plane waves,
these are given by

a® (o) - expli(ot — k(®)z)], (2.15)

where a(®) (o) is the spectral amplitude and k() is the wave vector . The sign of the
phase terms is chosen such that the waves travel in the 4z direction in time. The wave
vector is related to the refractive index n(®) of a medium via

(0]

k() =— n(w). (2.16)

c
Only conditions where n(®) = const. will cause the phase to change linear with frequency
as described by Eq. (2.15), resulting in the laser pulse to propagate without distortion.
For optical frequencies this is typically only true for propagation in vacuum. Applying
Eq. (2.14) to the spectral phase defined in Egs. (2.15) and (2.16) yields

n(w) odn(o)
c ¢ do

T,(0) = —t+ (2.17)
which is the frequency-dependent delay that the material imparts to the pulse as it propa-
gates in the z direction. In most common materials, both n(®) and dn(®)/d are positive
and increase as a function of frequency. Thus, according to Eq. (2.17) within the pulse
higher frequencies are delayed to later times. This implies that propagation through nor-
mally dispersive material (such as glass or air) will result in more positively chirped (or
up-chirped) laser pulses. Methods on how to shape the spectral phase of laser pulses
(which directly changes their temporal profile) and especially how to compensate for the
propagation-induced chirp are outlined below, but first the effects of a medium on the
CEP will be considered.

The CEP constantly changes when pulses propagate in dispersive media. This can be seen
by comparing the phase velocity of the carrier wave defined as

Vph = CN = () (2.18)

with the group velocity (v¢) of the wave packet centered around the average frequency .

defined as
—1 -1
1
(@) (1 e w)] Y
o do o Vph € do o

For normal dispersion, vy < vpn, Which means that the carrier wave will shift towards the
leading edge of the envelope (i.e. to earlier times) in the moving frame of the pulse. The
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propagation distance for a phase slippage of one full cycle (i.e. A@cgp = 27) can be
easily calculated and is given by
Ve ¢

—. 2.20
Vph — Vg @O ( )

As an example, for 750 nm light propagating in fused silica this amounts to 2o ~ 74 um,
and zo7 ~ 130 mm for propagation in air. The dispersion formulas used to calculate these
values were taken from [2] for the case of fused silica glass and from [3] for the case of
air. The value for air should be considered as an order of magnitude estimation, since the
exact value depends on other parameters such as the water content, the ambient pressure,
the temperature, etc. [4].

For focused laser beams, the Guoy phase has to be taken into account, which means that
the phase fronts of the beam are advanced with respect to the parallel phase fronts of the
unfocused plane waves and is given by

PGuoy () = arctan <i> : 2.21)
ZR

where zR is the Rayleigh range of a beam with focus position at z = 0. This also means that
the CEP, within a focused pulse, will undergo a total phase change of 7, even without any
further dispersion. 7/2 of this phase change will accumulate across the focus confined
over 2zr. It is necessary to take this into account when accumulating data from different
points within the focal region [5]. Further details on that and other issues on spatially-
profiled Gaussian beams can be found in [6].

For the case of temporal pulse profiles using Gaussian envelopes (cf. Eq. (2.2)) we now
neglect all higher-order (k > 3) phase terms (i.e. considering only linearly chirped pulses)
and can perform further calculations. These allow for first-order estimates on the change
of the pulse duration after propagation through dispersive material. The calculations are
straightforward and can be found in more detail in [2]. The temporal duration after prop-
agating at a distance z is given by

2
t6(2) = toy |1+ (i) (2.22)
Ly

where 1 ¢ is the bandwidth-limited pulse duration and the characteristic length is defined
as P
Lyj=—23% (2.23)
2 d%k(w)
dw?

Oc

To compensate for this pulse stretching, the pulse needs to be negatively chirped, thus
the lower frequencies need to be delayed with respect to the higher frequency com-
ponents. This is achieved for example by using angularly dispersive elements such as
prisms or gratings, where the different spectral parts of the pulse are spatially separated.
It 1s then possible to propagate higher frequencies along shorter optical paths as com-
pared to the lower frequencies, which results in a negative chirp. Usually the pulses are



2.2 STRONG LASER FIELDS 11

overcompensated so that only when they arrive at the interaction region is the shortest
pulse duration achieved. When prisms or gratings are used, only second-order phases
can most efficiently be compensated for. The spectrum therefore has to be sufficiently
narrow that the change of the refractive index can be considered approximated as con-
stant (dn(w)/dw=const.). For shorter pulse durations approaching the few-cycle regime,
thus where a larger spectral bandwidth needs to be compressed, this is no longer easily
possible. A key to enter the few-cycle regime was then the implementation of multilayer
mirrors [7]. Their working principle is still based on delaying lower frequencies with
respect to the higher ones, but now an almost arbitrary group delay can be compensated.
Constructive and destructive interference is caused at different depths below the mirror
surface due to a changing thickness of the layers as a function of depth within the mirror.
Lower frequencies (i.e. longer wavelengths) are reflected deeper inside the mirror and
thus delayed with respect to the higher frequencies, reflected more close to the surface.
The phase function imprinted by these mirrors is typically sinusoidally modulated, which
introduces satellite pulses in the time domain. To compensate for this, these mirrors are
usually fabricated in pairs to induce a 7-phase change in the dispersion function in order
that the sum effect on the dispersion compensation is approximately flat. Within these
constraints, the layer thickness can be designed appropriately so that a certain amount of
glass and air, or other components in the experimental beam path, can be compensated
for.

2.2 Strong laser fields

The femtosecond laser pulses which are used in the here described experiments yield peak
intensities in the 10'* to 10'> W/cm? regime. The corresponding electric field strength
is on the order of 108 to 10° V/cm, thus approaching the atomic unit of field strength,
Eu =5.14 -10° Viem (see appendix A), the electric field which the electron feels in
the first Bohr orbit of the hydrogen atom. Due to this reason, these electric fields (of
the laser pulses) cannot be treated perturbatively anymore when interacting with atomic
systems. This gives rise to new effects such as high-order harmonic generation (HHG),
non-sequential double ionization (NSDI), high-order above threshold ionization (HATT),
and many more. It is not the aim here to present a thorough overview over these ef-
fects, which can be found in review articles and text books. As an example for further
reading, [8] is mentioned, which shall also serve as a reference for related literature.

Here, particular emphasis is placed on HHG because it serves as a tool for the generation
of attosecond pulses which are experimentally used in this work. This will be described
in section 2.2.2. A prerequisite for this process, and also for many other interactions
with strong laser fields, is the strong-field ionization of electrons bound to atoms. Before
describing this in detail in section 2.2.1, some more general aspects of strong laser fields
shall be summarized in the following.

As it was mentioned above, with laser electric field strengths approaching the atomic unit
of field strength, a perturbative approach in order to accurately describe the interaction
with for instance atomic systems will fail. In order to have a reference for the strength
of the laser electric field, the interaction with free electrons is taken, i.e. the extreme case
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where the ionic potential of the atom can be completely neglected.

The motion of a free electron in an oscillating field can be described classically, obeying
Newton’s equations with

e
alt) = = -E(1) (2.24)
t
v(t) = vo— mi / E(')d = vo+ A(r) (2.25)
t
(1) =x0+vo-1 + / A()dr', (2.26)

assuming a linearly-polarized time-dependent electric field E(¢), with x(¢), v(z) and a(z)
being the time-dependent position, velocity and acceleration of the electron with mass m,
and charge —e. The vector potential A(¢) of the electric field is identified as

A(r) = —mie / E(¢)dr, (2.27)

and the initial position and velocity of the electron are xq and v, respectively. Assuming
a monochromatic wave E(t) = &)cos(wt + ¢cgp) these equations can be solved analyti-
cally. The mean kinetic energy of an electron, initially at rest (vo = 0), moving in the laser
field is referred to as ponderomotive energy, and is given by

2 @2
_ e &
4mew?

1
where the average is performed over one laser cycle. Similarly, with Eq. (2.26), the
oscillation amplitude of the electron quiver motion in the monochromatic electric field

can be expressed as

(2.28)

eé&o

Xp = p— (2.29)
which is known as the ponderomotive radius. The here presented scales serve as a ref-
erence in order to estimate the strength of the laser fields in use. It should be mentioned
that these formulas are only valid for non-relativistic field strengths, i.e. when the mag-
netic component of the electromagnetic field of the laser can still be neglected and the
electron moves with velocities well below the speed of light. This is justified for the here
considered field intensities.

An approximation widely used to describe the interaction of strong laser fields with
atomic systems is the single active electron (SAE) approximation. In such treatments,
an atom with more than one electron is treated in a way that only one effective electron—
usually the outermost—is interacting with the laser field, while the remaining electrons
merely screen the ionic potential of the nucleus. In such treatments, an effective orbital
quantum number n* is defined, essentially mapping onto “fractional” Bohr orbits, with

z
n* = : (2.30)
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where the ionization potential I, of the outermost electron is expressed in atomic units and
Z is the charge of the atomic residue when this outermost electron is removed (Z = 1 for
neutral atoms). For the mostly considered neutral rare gas atoms in interaction with strong
laser fields, both the ionization potentials and the respective effective orbital quantum
numbers are listed in Tab. (2.1).

Table 2.1: Ionization potential /, and effective orbital quantum number n* for neutral rare gas
atoms, calculated with values from [9].

I, eV) I, (au.) n*

helium  24.59 0.9036 0.7439
neon 21.56 0.7925 0.7943
argon 1576  0.5792 0.9292
krypton 14.00 0.5145 0.9858
xenon 12.13  0.4458 1.0591

The general treatment of such effective single-electron atoms in strong laser fields is semi-
classical, where the electron bound in the atomic potential is treated quantum mechani-
cally, while the laser electric field is treated classically. This results in the Schrodinger
equation for a single-active electron. In the length gauge it reads

A

a — _’2 Eay A = —

iEH’(r,t)) = <% +V(r)+u-E(t)) |¥(7,1)) (2.31)
where all terms are expressed in atomic units and the interaction with the electric field is
assumed in dipole approximation, with the dipole operator [l = —e¥. The ionic potential
of the atom is expressed in V (F). Alternatively, the electric field can also be expressed via
the vector potential in the velocity gauge which reads

2 212
i%|‘1’(7,t)> _ ([P +;‘(I)] +V(%)> W (7,1)). (2.32)

The choice of gauge is mainly due to numerical convenience and shall not be discussed
here any further. Remarks on this can be found in [8]. When using linearly polarized
laser fields, a one-dimensional treatment often gives reasonable results, where the ionic
potential is expressed with a smoothed Coulomb potential [10] (see also section 4.3) to
avoid divergences across the origin.

If the ionic potential V(f') is completely neglected the Schrédinger equation can be solved
analytically. The solutions are known as Volkov states which are basically expressed as
plane waves in the continuum with kinetic momentum p and including the characteristic

phase factor
t

[ BHAM)?
/ B

exp | —i (2.33)

This phase factor, when the /2 term containing the electron kinetic energy is singled

out, is also known as the Volkov phase and it results from solving Eq. (2.32) in the absence
of the ionic potential V(7).
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A starting point for many processes in strong laser fields is the ionization of electrons
which will be described in more detail in the following section.

2.2.1 Strong field ionization

The mathematical description of ionization in strong electric fields goes back to the 1960s.
In the work of Keldysh [11] the process of ionization in alternating electromagnetic fields

was investigated and the parameter
_ [ (2.34)
’}/ - 2Up ) .

later known as the Keldysh parameter, was introduced. It describes the adiabaticity of the
atomic response in the laser field. In the limit ¥ < 1 the electronic response is fast with
respect to the oscillating character of the laser field. This is the so-called tunneling regime,
where for the instant of ionization the electric field can be assumed static. In the limit
Y > 1, the electric field is oscillating much faster than the time scales of the considered
electron. This is the limit where the multi-photon description holds and an integer number
of photons 7 - are absorbed in order to overcome the ionization potential /,. The
ponderomotive energy U, (see Eq. (2.28)) is a measure for the strength of the electric
field and especially leads to a distinction between the two regimes. The theory has been
generalized in subsequent work [12] where explicit formulas for the ionization rate are
given. All further derived formulas are very closely related to this original work, as can
also be found in a more recent review [13] which may serve as an overview of the Keldysh
theory of strong-field ionization.

In the tunneling regime (Y < 1) a widely recognized description of the ionization rate is
the so-called ADK formula, noted in [14], where the rate of ionization wapk 1s expressed
for arbitrary angular and orbital quantum numbers / and m of the ionized electron, respec-
tively. It is expressed in atomic units and given by

2) SR E Y0 )/

n* ) 2mnt 2 (|m) (1= |m])! " \ 7(21,)3/2

2232\
() e

where n* is the previously introduced effective principal quantum number (see Eq. (2.30)),
e is Euler’s number and &'(¢) is the envelope of the electric field. In deviation from the
original description in [14], where a constant envelope &y was used (i.e. a monochro-
matic wave), the time-dependent envelope &'(¢) results in an explicitly time-dependent
ionization rate wapk (), averaged over one laser cycle. This formula is also frequently
used to express the instantaneous ionization rate of the full electric field E(¢). Doing so,
the factor (3&'(t)/7(21,)3/%)'/2 has to be omitted, as it results from the average over one
modulation period of the electric field [15]. It should be also noted, although the validity
of Eq. (2.35) is explicitly defined in the tunneling regime (y < 1), it also yields relatively
accurate results for Y ~ 1 and is therefore widely used.

WADK (1) = (

2(2Ip)3/2 (2.35)

38(1)
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In a more recent work [16], a generalized formula for the instantaneous ionization rate
is given, valid for arbitrary Keldysh parameters y. It is also known as the Yudin-Ivanov
ionization rate, not explicitly shown here due to its lengthy expression. A comparison
between this formula and the ADK rate is shown in Fig. 2.2, where the time-dependent
ionization rate is calculated for the example of neon and argon both interacting with a 7 fs
FWHM laser pulse of 5 x 10'* W/cm? peak intensity.

Neon, 5-10** W/cm? Argon, 5-10'* W/cm?
1.0 . . . 0.15 1.0 ; 0.15
. Y Y
o8k A v T ADKavg. 4010 _ sk ADK, avg. 1010 __
' ;1% e ADK,inst. = ' ADK, inst. 5
c O S 1005 & 1005 &
S 06 T o 8 06f TS kel
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5 04f DR L 5 041 R 2
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\ el ] <@ / Q@
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\ E;I ) . ]
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Figure 2.2: Comparison of strong-field ionization from the neon (I, = 21.56 eV) or argon (I, =
15.76 eV) ground state with 7 fs FWHM Gaussian laser pulses at 5 - 10'* W/cm? peak intensity
and 760 nm central wavelength. The Yudin-Ivanov (YI) and ADK ionization rates are employed,
the latter both with the instantaneous electric field (ADK, inst.) and cycle averaged (ADK, avg.).

As it can be seen in Fig. 2.2, the step-like increase of the instantaneous ionization rate is
directly linked to the peaks of the electric field. This implies that strong-field ionization is
intrinsically locked to times where the oscillating amplitude exhibits its maximum values.
Almost all strong-field processes, as they were shortly outlined at the beginning of this
chapter (see also [8]), are described via tunnel ionization as the first step. This temporally
well-defined starting point thus explains the underlying sub-cycle nature of many strong-
field processes which is a fundamental prerequisite for the results which will be presented
in chapter 5.

Another scenario of strong field ionization is an extreme case of tunneling ionization: If
the laser field strength is above a critical value &, which in atomic units is defined by

2
IP

C’gacrit = E7

(2.36)

the electric field is so strong that the Coulomb barrier is completely suppressed and the
bound electron is free to move into the continuum.This is also known as barrier suppres-
sion ionization (BSI) [15].

All three mentioned scenarios, multi-photon, tunneling and barrier-suppression ionization
are depicted in Fig. 2.3.
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a)

c)

Figure 2.3: Three different scenarios of strong-field ionization in the single-active electron ap-
proximation. The atomic potential is shown in black while the laser electric field is shown in
red. a) Multi-photon ionization (Y > 1). The electron absorbs many photons (vertical arrows) to
overcome the ionization potential. b) Tunneling-ionization. The Coulomb potential is bent and
a tunnel-barrier is formed through which part of the electronic wave function can tunnel quan-
tum mechanically. ¢) Barrier-suppression ionization. The electric field is suppressed below the
ionization potential. As a consequence, the bound electron is (classically) free to move into the
continuum.

2.2.2 High-order harmonic generation and attosecond pulse produc-
tion

The aim of this section is to convey some fundamental aspects of high-order harmonic
generation (HHG) as it serves as a driver tool for the generation of attosecond pulses
used in some of the here presented experiments. While here only a short summary of
the most important theoretical aspects is given, a more detailed overview can be found
in [8] and also in review articles such as [17,18]. Being closely related to the investigated
experiment in chapter 5, a more detailed overview of attosecond pulse trains will be given
in section 5.1. From a more technical point of view, aspects of their generation are also
mentioned in section 3.3 in connection to the description of the experimental apparatus.

HHG is an example of strong-field laser—matter interaction which can be understood from
a classical perspective [19], where Newton’s equations (see Egs. (2.24)-(2.26)) are able to
describe the electron trajectory after the initial tunnel-ionization as it was introduced in the
previous section. With these classical equations trajectories can be calculated where the
electron is driven away from the ionic core and subsequently may reencounter its parent

ion with a certain kinetic energy Elgr)l At this point the electron may recombine into its
original bound state and the difference energy is transferred into a single high-energy
photon, with its photon energy given by

howue = ED +1,. 2.37)

The kinetic energy of such classically calculated recolliding trajectories is depicted in
Fig. 2.4. For each kinetic energy, two possible trajectories exist with travel times below
one laser cycle. These are known as the short and long trajectories. As this process
repeats every half-cycle of the laser field, these half-cycle spaced events interfere. This
interference gives rise to harmonic photon energies which are spaced by 2A®., where @
is the fundamental frequency of the laser field. More aspects of this interference will be
discussed in chapter 5, where the sub-cycle nature of the harmonic generation process
is used to illustrate our novel CEP-resolved spectral interferometry approach. It is this



2.2 STRONG LASER FIELDS 17

sub-cycle nature also, which gives rise to attosecond pulses being directly locked to the
electric field of the laser pulse. These aspects are also described in section 5.1.

sol 3.17 U b -) 40.10
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Figure 2.4: Classically calculated kinetic energy of the electrons at recombination, when ionized
in a monochromatic electric field (dashed line) of wavelength A = 760 nm and strength &y =
0.12 a.u. (corresponds to 5 - 10'* W/cm?). Both the times of ionization and recombination are
shown for each trajectory. A given energy can be reached at two instants of time, corresponding
to two electron trajectories. These are categorized by the travel time of the freed electron in the
laser field and known as the short (red) and long (blue) trajectories. The highest kinetic energy
which can be reached is related to the ponderomotive energy and is given by ~3.17U,. The
vertically dotted line marks the border between ionization and recombination. The small black
arrows indicate the scales.

Being an intuitive picture, this classical model of HHG can explain the experimental
observation—see e.g. [20] for one of the first experimentally obtained high-harmonic
spectra—that a broad range of harmonic photon energies is accessible with relatively
equal probability, while a sharp cutoff exists for the highest photon energies. Fig. 2.4
illustrates how this is possible: A broad range of recombination energies is covered by a
small window of ionization times (< 0.5 fs). This leads to an extended range of equally
probable recombination energies which is also known as the plateau region. Being ac-
celerated in the laser field, the electrons can only acquire kinetic energies up to a certain
limit. It is this limit which is responsible for the sharp cutoff in the generated high har-
monics, located at ~ 90 eV in Fig. 2.4. As a result, the cutoff law of highest harmonic
energies is given by

hOHHG,max = 3.17Up + I,. (2.38)

HHG is also understood within a quantum-mechanical treatment [21] where the laser field
is treated classically (see Eq. (2.31)). It employs the strong field approximation (SFA)
which also gives name to the model. A detailed description of this quantum-mechanical
treatment can also be found in [8]. In conceptual difference to the above-described clas-
sical model, the generated harmonic radiation is understood as the quantum-mechanical
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interference of different parts of the wave function, i.e. driven by a coherent dipole emis-
sion. As such, the tunnel-ionized and “accelerated” part of the electronic wave function
interferes with its remaining and still bound part at the ionic core. This gives rise to a
rapidly oscillating dipole moment which is the source for the emitted high-harmonic ra-
diation. At this point it shall be mentioned, especially as own work was partly conducted
on this [22], that not only the interference of the bound and the continuum part of a wave
function gives rise to high-harmonic dipole radiation, as it is commonly understood. In
addition, we theoretically demonstrated [22], how the interference of different energetic
parts of the continuum wave function, mediated by the fully depleted ionic core, gives rise
to coherent high-harmonic dipole emission. A detailed description of this process can be
found in [23].

In the quantum-mechanical SFA model the times of ionization and recombination of the
electron can be identified in a way which is closely related to the classical model. These
times are known as the solutions of a saddle-point analysis. They arise as follows: In the
quantum-mechanical model, a highly-oscillating phase term appears, which is given by

exp|—iS(Pean,t,t’)] (2.39)

where S(Pean,,1") is the quasi-classical action of the electron moving with the canonical
momentum P,y in the laser field. This action is given by

! = A (41112
S(Peans1,1') = / (M +1p> de”, (2.40)
t/

where the laser field is expressed via its vector potential X(t) (see Eq. (2.27)). To calcu-
late the dipole emission for a given harmonic frequency @wypg, an integral over all five
components—two temporal variables, the time of birth g and the time of recombina-
tion fr, where the latter saddle point results from the Fourier transform into the energy
domain as parametrized by wppg, and three components of the canonical-momentum
vector—of the phase in Eq. (2.39) has to be performed. The action given in Eq. (2.40)
varies rapidly as a function of all these variables. Therefore a saddle-point approxima-
tion can be performed where the solutions denote configurations of stationary action. The
physical picture of this analysis is to identify the set of parameters for an extremal (and
thus stationary) phase, which is exactly the definition for the classical path the electron
would undergo. Along these lines, the quantum-mechanical treatment of HHG can be
understood within Feynman’s path integral approach [24]. The solutions for these saddle
points are generally complex, which reflects the tunneling nature of the electron path: In
order to leave the atom and propagate in the continuum, it first has to tunnel through a
potential barrier (see section 2.2.1). With elapsed time below one laser cycle between the
ionization and recombination event, also two pairs of saddle points are found for each
photon energy, corresponding to the short and the long trajectory. A thorough description
of this saddle-point analysis and the related electron quantum paths can be found in [25].
There, the emphasis is on the non-adiabatic nature of few-cycle laser pulses, i.e. that each
subsequent half-cycle has to be treated separately.

Fig. 2.5 illustrates these quantum paths for a few-cycle 7 fs FWHM laser pulse of cen-
ter wavelength 760 nm and peak electric field 0.1033 a.u.—the pulse parameters which
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Figure 2.5: The real part of the saddle-point solution which corresponds to the recombination time
is shown both for the short (red) and for the long (blue) trajectory. The few-cycle laser field (see
text for parameters) is shown as the dashed line. The black lines denote the classically obtained
recombination times (compare to Fig. 2.4) both for the short and long trajectory. The solutions of
the quantum-mechanical treatment are systematically above the classically-obtained results.

are thoroughly used in section 5.4. It can be seen that the quantum-mechanically ob-
tained solutions acquire systematically higher energies for a given return time than the
corresponding classically-obtained solutions. This is known as the quantum-mechanical
correction of the cutoff law [21].

2.3 Spectral interferometry and Fourier analysis of spec-
tral patterns

To retrieve the relative amplitude and phase between two laser pulses, the concept of
spectral interferometry can be applied. It shares many properties with white-light inter-
ferometry [2], where two phase-locked copies of a common light source are created. One
copy is sent through a sample from which the linear amplitude and phase response can be
retrieved. When applied in a linear way [26], the measurement cannot be sensitive to the
spectral phase of the pulses (including their time profile, the reason why the technique is
also working with noisy white light), thus only relative quantities can be obtained. Adding
however a nonlinear spectral shear across the two pulses, spectral interferometry can also
be applied for the direct reconstruction of the spectral phase of ultrashort laser pulses
(SPIDER, [27]) up to an arbitrary offset (it is still insensitive to the CEP). In the follow-
ing, some basic concepts of spectral interferometry including the retrieval procedure of
the relative phase will be shortly summarized.

Spectral interferometry can be understood on the basis of a Mach-Zender interferometer
(Fig. 2.6). The two pulses propagating along the different arms with a time delay 7 can
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Figure 2.6: Mach-Zender-type illustration for spectral interferometry. A laser pulse is split into
two parts which are delayed by 7 with respect to each other before being recombined again into
a single path. The recombined pulses are spectrally resolved with a grating and measured with
a photodetector. The temporal delay induces a sinusoidal modulation pattern o< sin(@7) into the
spectrum. Typically a dispersive sample can be put into one arm. The linear response of this
sample can be fully—i.e. its amplitude (e.g. absorption) and phase (dispersion)—characterized
within this scheme.

be described as two time-dependent electric fields Eo(¢) and E; (¢ 7). In the spectral do-
main, they are given by E(()S) (w) and E I(S) (w)e "7, where E,SS) (w) is the Fourier transform

of the time-dependent electric field E,(¢), as defined by Eq. (2.9). The spectral intensity

.2
S(w) is proportional to ‘Eés) () +E1(S) (w)e '“*| , the coherent sum of the two fields. It

is typically detected with the combination of a dispersive element such as a grating and a
photon detector, for example a CCD camera. To analyze the recorded signal S(®) in more

detail, the explicit complex representation |E,(,S) (w)|exp[ig,(w)] of the field is considered.
The spectral intensity is then proportional to

S() = [EY (@) +EX (0) 2 +2/EY (0)||EP (@) cos[go(@)  ¢1(0) + 0], (2.41)

Thus, a modulation which depends on the spectral phase difference, Ag(®w) = ¢p(®)

¢1(w), is imprinted on the recorded signal. In principle, this difference could be resolved
directly from Eq. (2.41) by applying an inverse cosine function and an independent mea-
surement of the power spectrum ]E,(,S) (w)|? of each pulse by blocking the other arm of the
interferometer. The difficulties using this method are mainly due to experimental noise
and divergences of the inverse function. A more elegant method involves the Fourier
transform [28] which is often the preferred way of applying spectral interferometry. The
time delay 7 serves as a carrier “frequency” in the spectral pattern, which contributes to
a defined peak in the Fourier transform of the spectral intensity .7 {S(®)}. As it is a real
function, two peaks appear, both at positive and negative times T and 7. These corre-
spond to exp {iA¢(w)+iwt} and exp{ iAP(®) iwT}, respectively. One of the two
peaks can thus be disregarded without loss of information. The time delay 7 between
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the two pulses has to be large enough so that its Fourier contribution is sufficiently far
away from zero, that is where the contribution of the slower varying amplitude functions

|E,§S> ()| can be found. Filtering out the well separated peak at time 7 and Fourier trans-
forming back into the frequency domain yields the complex function

S) = FHFS(@)}xC)}
= |S(w)|explid(w)]
= EY (0)|EY (0)[exp{i[do(®) — 91 (0)] +iwT}, (2.42)

with an appropiately chosen filter function C(¢). For the work presented here, it is defined
piecewise as

(0 fort < tmin — AT
sinz(wz> for tin — AT <t < ty;
AT > min > min
Ct)=141 for fmin < ¢ < fmax (2.43)
cos? (’X?‘”‘ %) for tmax <t < tmax +AT
(0 for tyax + T < 1.

A similar filter can also be used in the spectral domain, replacing all temporal parameters
t by the frequency @ or energy E. Such a spectral filter is then applied when analyzing
experimental data (in order to avoid discontinuous steps) or when a certain region of in-
terest is selected out of broader spectral range. The phase ® (@) of the complex function
S(w) directly incorporates the desired spectral phase difference Ag (@) plus a linear con-
tribution due to the time delay 7. Any linear component of the phase difference A¢ (@)
can just be considered as an additional time delay and is absorbed in 7. Performing a
linear fit to ®(w) is a way to determine the set time delay and after subtraction from
®(w), the spectral phase difference A¢ (@) is the only remaining quantity. The whole
technique is further illustrated in Fig. 2.7, where an up-chirped laser pulse is referenced
with a bandwidth-limited pulse of equal spectral distribution. At this point it should be
mentioned that the spectral bandwidth of both pulses have to share a common frequency
range. Only within this range is the phase difference A¢(w) retrieved, since the modu-

lation amplitude determined by the product \E(()S) (w)||E l(s) (w)| would otherwise be zero.
Spectral interferometry can also be applied by directly analyzing the temporal phase of
the Fourier-transformed signal in the Fourier-time domain [29, 30], where the temporal
filter and the subsequent back transform into the spectral domain are not employed.

Having introduced the concept of spectral interferometry and especially the Fourier analy-
sis applied to it, it is now possible to discuss the Fourier analysis of more general spectral
patterns which are created for example by more than two successive temporal events.
These events are still defined in the time domain as E, (f —t,) and in the spectral domain
as E” (@)e @ where again EY (w) is the Fourier transform of E,(¢). The measureable
spectral intensity is then given by

(@)« Y ES (@) +2 ¥ 1EX (0)[|ES) (@) cos|Adun (@) + 0], (2.44)
n m>n

where A@y (@) = ¢, (@) — ¢, (@) and T,,, = t,, — 1, is the spectral phase difference and the

€69

relative temporal spacing of the events “n” and “m”, respectively. Unfortunately, the direct
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Figure 2.7: Illustration of spectral interferometry. Top left: Two time-delayed (by 7) laser pulses
with different phase profiles (the latter pulse is slightly up-chirped). Top right: Spectral interfer-
ence pattern S(®) as recorded with a spectrometer. The fringe spacing corresponds to the time
delay 7 between the pulses. Bottom left: Fourier transform of the recorded spectrogram. Besides
the peak formed at time zero, which corresponds to the summed power spectrum of the two pulses,
the separate peak at time T contains the modulated cross term (see also Eq. (2.41)). Selecting the
cross-term contribution with a filter function (red shaded area) and transforming back into the
frequency domain yields both the spectral modulation amplitude (black curve) and relative spec-
tral phase (red curve), shown in the bottom right corner. As the linear offset @7 is subtracted, a
quadratic increase (corresponding to an up-chirped pulse) is apparent.

retrieval of the relative spectral phase A@,,,(®) is in general no longer unambiguously
possible. This is the case whenever temporal spacings 7,,, of different pairs of events are
equal or overlap within their temporal bandwidth. This is due to the amplitude and phase
of the cosine functions in Eq. (2.44) becoming mixed after their summation and cannot
be separated in the measured spectra S(®). Thus, the corresponding peaks at 7, in the
Fourier representation of the spectral intensity .% {S(®) } have some overlap.

We can however consider an additional parameter p which enters the spectral intensity
S(w, p) and influences the relative phases A¢,,, (@, p) of the overlapping contributions
in a different way. Using this parameter as an additional dimension, its influence on
the temporal configuration of the system can be accessed via Fourier analysis and further
insight of the underlying physical processes can be gained. This scenario will be discussed
in more detail in chapter 5, where the carrier-envelope phase (CEP) of the ultrashort laser
pulses plays the role of this additional parameter, by introducing CEP-resolved spectral
interferometry (CEPSI).
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2.4 Quantum-mechanical wave packets

Quantum wave packets are a direct consequence of the coherent superposition of quantum
states. Starting from the time-dependent Schrodinger equation

i () = By [¥(0) (2.45)

the Hamilton operator Hy is generating the time-dependence of the wave function |¥(r))
which describes the evolution of the quantum system. |¥(¢)) can be expanded in the
eigenstates of the system

(1)) = Yealt) 190) + [ 4E e(E.r) ). (246

Here, |¢,) represents the discrete (bound) states and | ) represents the continuous states.
The time-dependence is carried by the complex expansion coefficients ¢, (7) and c(E,1).
Without any external perturbation, Hy is independent of time and its eigenvalues define
the energy E, and E of each discrete and continuous state, respectively. Using Eq. (2.45)
the time-dependent expansion coefficients are given by

E
cn(t) = cnpexp {—17”;] (2.47)

and

¢(E,1) = c(E,0) exp {—i%t} (2.48)

with their initial values ¢, o and c(E,0) at time r = 0, when the evolution is considered to
begin.

Measureable quantities always involve expectation values of the wave function |¥) with
respect to some operator. Taking for example the position operator ¥, the quantity
(W|t|W) is the expectation value for the position of the system. If |¥) is an electronic
wave function, describing several excited states of an electron bound to an atom then this
would be the expectation value of the electron itself. |¥) can however also describe any
other quantum system such as the vibronic motion of a molecule. Then the above quan-
tity is interpreted as the expectation value of the relative position of the nuclei, i.e. the
inter-molecular distance of the two nuclei in a diatomic molecule.

Such an expectation value can be employed to visualize a quantum wave packet, which
is defined as a coherent superposition of states as given by Eq. (2.46). Inserting this
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superposition into the expectation value yields

. e e [ E,—E
(‘P|r|‘P>:Z//dE’dE”{cn’O.cm’o (O |®|0) exp | —i ”h T
7 N - En—E// :
+ eno - c(E",0)" (xpr|#l0n) exp | —i="—
- B E : (2.49)
+ ¢(E',0) o™ (9mfl ) exp | —i———"

/ " * 2 -E/_E”_
+ c(E',0) - ¢(E",0) (xpr |Fl e ) exp | —i———1 | .

From this expansion it can be seen that (‘¥'|#|¥) is only evolving in time when |¥) is a
superposition of at least two energetic eigenstates of Hy. This is an implicit property of
any wave packet, as defined at the beginning of this section. The time evolution is periodic
while the cycling period T, = 27/i/AE is determined by the difference energy AE of the
involved states. The explicit notation of the complex-valued initial expansion coefficients
cn0 and ¢(E,0) emphasizes the coherent superposition of the involved states. An incoher-
ent superposition cannot be explained using this approach and one must use, for example,
the density matrix formalism [31] where dissipative effects (loss of coherence), or in-
coherent initial conditions, as existing in an ensemble of atoms/molecules, are included.
Further theoretical aspects on quantum wave packets, such as the fundamental concepts
of quantum theory which were used here, can be found in many text books [32,33].

2.5 Perturbation theory

The formulation of perturbation theory plays a fundamental role in quantum mechanics
and a detailed discussion of this theory can be found in many textbooks. In what fol-
lows, the main referencing to the interaction of electromagnetic radiation with atomic and
molecular systems was taken from [34]. In general, perturbation theory is useful when-
ever a quantum system can be described by a Hamiltonian such as

H=H,+H (2.50)

where Hy is the Hamiltonian of the unperturbed system and H’ is a small perturbation to
the system. Typically, the unperturbed system can be solved exactly or at least the energy
eigenvalues E, and the eigenstates |¢,) are known to an accurate level. For all relevant
cases presented in this work, A’ (¢) will be time dependent and related to the electric field
E(t). For completeness, the results up to second order of time-independent perturbation
theory (e.g. caused by a weak static field) will first be summarized.

To first order, the energy levels E,(,O) of the unperturbed system Hy will be shifted by the
expectation value of the perturbation with the unperturbed states

E = (ol i

o) 2.51)
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and to second order, the energy levels are shifted by an amount which is related to the
interaction of all unperturbed states of the system

001 |60V
EIEZ)n;nK E,S“))Efn°>> ‘ (222

These results are valid for the non-degenerate case, i.e. E ;A Em , while in the case

0)
of degeneracy, where some E,S ) are equal, the perturbation can lift the degeneracy and
can cause a splitting of otherwise equal energy levels. This for example occurs in atoms,
where the perturbative coupling of the spin magnetic moment with the angular momentum
causes a splitting of energy levels when they have the same principal quantum number n

but different angular quantum number /.

For a weak time-dependent perturbation H’ (t) transitions can occur between different
levels. The natural time evolution of an eigenstate |, (7)), of the unperturbed system, can
be obtained with the time-dependent Schrodinger equation and is given by

10n()) = |@a(t = 0)) exp(—iEn/fit) = |$n) exp(—itnt). (2.53)
The total wave function |¥(¢)) can be expanded in this basis and may be expressed via
=Y caexp(—iont)|¢n) (2.54)
n

where in the absence of any perturbation the expansion coefficients ¢, are constant with
time. If H'(r) # 0 after a time ¢ = 0, the coefficients are time dependent (¢, = ¢,(¢)) and
to first order are given by

/ dr > (0n (1) [0) exp (i@t ), (2.55)

where w,,, = w, — @, is the difference frequency (or energy, divided by 7) between the
states |@,) and |9y,). Eq. (2.55) is very general and can be implemented numerically when
an arbitrary time-dependent transition operator H'(¢) is perturbatively interacting with a
system of states and the time integral cannot be solved analytically.

For a time-dependent electric field E(¢), the perturbative interaction with the system in
the dipole approximation is given by

A t . .

HH)=0-Et)=4- # (/O 4 IO (2.56)
where the pulse here is assumed to be bandwidth limited and &(¢) is the slowly varying
temporal envelope of the pulse, and [l is the electric dipole operator —ef. Assuming that
the system is initially prepared in a state |¢;) at t = 0, the evaluation of the first-order
perturbation is given by

(1)

e (t)= ——um - (expli(@, — @; + @ )t] +exp[i( @, — ©; — @ )t]), (2.57)
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where W, = (@,| — et (z) |¢;) is the dipole matrix element evaluated for the corresponding
states. If the pulse is fully contained within the integration limits then Eq. (2.57) is nothing
else but the Fourier transform of the time-dependent electric field E(¢) to be evaluated at
the transition frequency @ = @, — ®;. When the interaction with the short laser pulse is
over, the first-order expansion coefficients are evaluated to

cy):-—%um-émé“ﬂ(wn—am, (2.58)
where E0) (@) = .7 {E(t)} is the complex Fourier transform of the real electric field
as defined by Eq. (2.9) and is the reason for the appearance of the complex conjugate
E®)*(®w). The explicit notation of the two exponential terms in Eq. (2.57) allows further
interpretation because the carrier frequency @, of the laser field is always larger than
zero. Both the excitation of the system (@, — w; > 0), i.e. taking energy from the laser
field is described (where the second exponential term is close to resonance), as well as the
system’s deexcitation (@, — ®; < 0), which puts energy into the laser field is contained
in Eq. (2.57) and corresponds to the first exponential term then being close to resonance.
Both cases are naturally contained in the Fourier domain representation in Eq. (2.58) as
the Fourier transform of a real function evaluates both at positive and negative frequencies.
The two cases also describe nothing else but the stimulated absorption or emission of
radiation.

With Egs. (2.57) and (2.58) two extreme cases of perturbative electric fields can be dis-
cussed. An infinitely short pulse, represented by a delta function, and an infinitely long
pulse, represented by a monochromatic wave. The first case, an infinitely short excitation
or deexcitation, is already described by Eq. (2.58), where the spectral representation of
the pulse turns into a proportionality constant, as the spectrum of an infinitely short pulse
is equal for all frequencies. It is important to see that the phase factor —i and the dipole
factor u,; still remain, thus the (de-)excited states always evolve with a different phase
with respect to the initial state, also after the interaction with an infinitely short pulse.

For a monochromatic wave of frequency @. and field strength Ej, the time integral in
Eq. (2.57) can be performed analytically. The physical meaning of the result is best
analyzed with |c,(11)(t)]2 which is understood as the probability of finding the system in
the state |¢,) at time ¢. It is finally given by

2
Ey

()2 2T
len (1) 1!

T
for large times #. Division of Eq. (2.59) by the time ¢ then yields the final result of a
constant transition rate

i > =218 (@, — 0 + @) (2.59)

(1) 12 2

Wi = M = 2_72r|.uni|2ﬂ5(wn_wiiwc) (2~60)
t h 4

which is also known as Fermi’s golden rule, except for the missing density of states, as

just one state was considered here. The =+ sign in Eq. (2.59) and (2.60) again corresponds

to cases where the transition energy is put into (stimulated emission) or absorbed from

(stimulated absorption) the electric field. In both cases, the population of the initial state

|¢;) was assumed unity (|c§0) > =1).
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In general, the here presented perturbative treatment is only valid for small changes of the
system. For a time-independent perturbation, the shift of energy levels is only described
accurately within this treatment if the calculated shift is small enough, or rather, small
with respect to the distance to other states which are involved. For a time-dependent
perturbation, only a small amount of population is transferred between the states. In
particular this means, that the initial state |¢;), which is most often the ground state |g) of
the system is not depleted, its population remains constant at all times (d;c,(¢) = 0). The

amount of population |c£,l) (t)|? which is transferred into the states |¢,) is seen proportional
to the intensity Eg of the laser field, which means that the laser intensity needs to be small
enough for the validity of the perturbative treatment.

2.6 Two-level system

So far, the interaction of a system of states with an oscillating electric field was only
described perturbatively. If the intensity of the oscillating field increases, a higher frac-
tion of the population will transfer between the states which then necessitates a treatment
beyond perturbation theory. The new effect which arises from higher field intensities is
a significant population transfer between the involved states. The population can also
be transferred back and forth between the states and is commonly known as Rabi os-
cillations [35]. Furthermore, the energy levels are also observed to shift when they are
strongly coupled with the laser field, which is known as the Autler Townes effect or AC
Stark splitting [36]. All these effects can most easily be described with only two states
|¢,) and |¢,), and the interaction with a monochromatic field whose frequency is close to
the transition frequency between the two states (0. ~ Wy,).

As defined in the previous chapter, the Hamiltonian of the system can be written as
H=Hy+0 E®) (2.61)
which now only acts on the superposition of two states
(1)) = cn(t) [$n) +cm(?) [om) - (2.62)

The Schrodinger equation is then transformed into a set of coupled linear differential
equations for the time-dependent coefficients ¢, (¢#) which can be given in matrix form

i 38 (50 s (50 263

B E, Mnm - E(2)
Haus = (u:m-Ea) E, ) (264

with the coupling matrix

where E, and Ep, are the energies of the field-free system Hy and pnm are the dipole matrix
elements as defined just below Eq. (2.57). The matrix in Eq. (2.64) can also be general-
ized to more than two states. The diagonal elements always contain the energy of the



28 THEORETICAL BACKGROUND

corresponding state, while the off-diagonal elements describe the interaction (coupling)
between the states. The set of equations as given in Eq. (2.63) can also be considered as
the most fundamental starting point for a numerical treatment, whenever a finite number
of states |@,) is relevant for the physical mechanism to be described. Approximate ana-
lytical solutions are only possible for certain specific cases, however they contain further
physical insight such as the discussion and understanding of the above mentioned effects.

To solve the system in Eq. (2.63), the coefficients are rotated in phase such that
cn(t) = En(t) exp[—i(w, — A/2)t] (2.65)

and
cm(t) = ém(t) exp[—i(@n +A/2)t], (2.66)

where A = (@, — Oy) — @ is the detuning of the laser frequency from the transition
frequency between the two levels. Expressing the electric field as

E(t) = &pcos ot = ? lexp(iact) 4 exp(—iwct)] (2.67)

and using the rotating wave approximation, which means that rapidly oscillating phase
terms with frequency (@, — @) + @ are neglected, a new set of equations as given in
Eq. (2.63) is obtained, but now for the coefficients ¢, m(f) with the corresponding matrix

hf A Q
(rot) __ "* R
Hy g = 7 (Ql*{ —A) (2.68)

in the rotating frame which contains the Rabi frequency Qr = Unm&p/h. The eigenvalues

of this matrix are given by
ho/
1172 = :EE A? + ’QRP- (2.69)

These eigenvalues are the new energies of the system which is time-independent and
known as the laser-dressed states. They each appear centered around both energy levels,
which were defined in the rotating frame with Egs. (2.65) and (2.66). Thus the old energy
levels E;, and Ey, are now described in the presence of a monochromatic and detuned laser

field by
hA |
Eni:En—TiT/AZJdQRP (2.70)
hA R
Erﬁ:Eer?iE,/AMmRP. (2.71)

The repulsion of both energy levels, due to near-resonant coupling with an oscillating
field, is commonly known as AC Stark splitting. An illustration of the shifted energy
levels is depicted in Fig. (2.8). In the limit of low field intensities or weak coupling
(|Qr|? < A?) both uncoupled energy levels E, and Ey, are contained in the corresponding
dressed system. Due to laser coupling, the other level respectively appears at energetic
positions which are determined by the detuning A. For high field intensities or strong
coupling, A% can be neglected and the difference between each new pair of energy levels
is just proportional to the Rabi frequency /|Qg|. These are centered around the mean

and
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value of each pair of dressed states in the low field limit. If an additional weak laser is
used to probe the transition from a third level across any of the two coupled states |@nm),
then the two absorption lines can be measured according to Eq. (2.70) or (2.70) when the
coupling laser is on. This set of two measured absorption lines is known as an Autler-
Townes doublet or the observation is often referred as the Autler Townes effect [36].

E .

Figure 2.8: Two states |n) and |m) are coupled with a monochromatic field &cos(@ct). In the
laser field, new states are formed which mutually repel each other with increasing field strength,
corresponding to Egs. (2.70) and (2.71). The dashed lines indicate the limit for high laser intensi-
ties (|Qr|? > A?).

To obtain the shifted energy levels of Egs. (2.70) and (2.71), the diagonalization of the
coupling matrix in Eq. (2.68) is required. As a result, these new levels of the constantly
driven system are stationary in time with constant population. Looking into the dynamics
of the system, the time-dependent solution of the coefficients ¢, m (f) needs to be evaluated
and will lead to a physical interpretation of the Rabi frequency. The solutions are

Q Qf
énl(t) = —iQ—Z sin (TRI) (2.72)
and o A o
ém(t) = cos (TRt) + ig—ﬁ sin <7Rt> (2.73)

with the generalized Rabi frequency given by Qf = +/|Qr|> 4+ A? and the initial condi-
tion of all population in the lower state at time zero (¢,(0) = 0 and ¢y, (0) = 1). From
Egs. (2.72) and (2.73) it can be seen that the population (i.e. |5n,m|2) oscillates back and
forth between the two levels with the Rabi frequency Qg or in case of non-zero detuning
A with the generalized Rabi frequency Qg, completing one full Rabi cycle 27/Qg. The
complex coefficients also show that their phase jumps by a value of 7 every other Rabi
cycle, so full periodicity in the coefficients themselves is obtained every second Rabi cy-
cle or at a rate half the (generalized) Rabi frequency. The Rabi frequency is therefore also
a characteristic measure of the dynamics of the system. When the lifetime of the states
(which thus far has been assumed infinitely long) becomes comparable to the Rabi cycle
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new effects will arise as will be discussed for autoionizing states in strong fields [37] in
chapter 2.7.2.

In most intuitive terms, one can think of changing the line width (i.e. the life time) of a
fastly decaying state |a). If such a state is strongly coupled to another state |b) of longer
life time, and the coupling laser intensity is chosen such that the Rabi cycle approaches
the life time of the fastly decaying state |a), the population can “escape” the fast decay
as it is coupled to the longer living state |b) before its natural decay, which effectively
extends the life time of state |a). Thus, the laser intensity even of a monochromatic wave
can also be considered a dynamical parameter, as it dynamically influences the system in
terms of the Rabi frequency.

For short laser pulses with a changing envelope function &(¢) one could in principle also
define a time-dependent Rabi frequency Qg(7) = Unm (t)/h. However, if the envelope
of the electric field changes rapidly with time compared to the Rabi cycle, the definition
of a time-dependent Rabi frequency does not have an easy interpretation (if at all), and
the underlying equations are then better solved numerically.

As a final remark, the “—i” factor in Eq. (2.72) of the upper state shows the same phase
delay with respect to the lower state as in the case of perturbative excitation given for
example in Eq. (2.57). The phase difference between the states is a direct consequence
of the Schrodinger equation and thus has to appear in both treatments. The same phase
shift is also known from classical mechanics, where the resonantly driven oscillation of a
system is 7/2 out of phase with respect to periodic driving force.

2.7 Autoionization

The theory of autoionization is most easily understood with Fano’s description of configu-
ration interaction and goes back to the early 1960s [38]. The description can be considered
as a rather general formalism which is applicable whenever different pathways are possi-
ble and interfere, in particular when these pathways involve both discrete and continuous
parts. This is exactly the case in helium when both electrons are excited simultaneously
and for which this formalism can be applied.

2.7.1 Fano’s original work

Fano’s theory of configuration interaction [38] describes a bound state |¢) which is em-
bedded within a set of continuum states | ). In other words, the energy E of the bound
state is degenerate with the energetic spectrum E of the continuum states. If both the
continuum states and the bound state interact, neither |@) nor |yg) are eigenstates of the
complete system. However, these states can be chosen as a full basis set which the new
eigenstate |Wg) is expanded into. In Fano’s original treatment, the problem is described
time-independently and completely expressed in the energy domain. Extensions to this
model in order to include strong laser fields and Rabi cycling between autoionizing states
will be presented after first introducing Fano’s time-independent theory.
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First, the system is described in absence of any external field. The Hamiltonian H needs
to be diagonalized, where its interaction with the configuration states is given by

(p|H|p) = E,
(xe'|Hlp) = Vg
(xer|’H|xg) = E'S(E"—E'). (2.74)

The ground state |g) of the system is neglected in this description which is justified as it
can be assumed far away in energy from the states of interest. It will later be introduced
when a transition T into these configuration states is described. The off-diagonal term
Vs 1s the configuration-interaction matrix element which describes the interaction of the
discrete state at energy E, with a continuum state at energy E’, therefore it in general
depends on E’. The eigenstates |Pg) of the system after diagonalization can be expanded
in a complete basis set

We) = ag @) + / AE b 1) 2.75)

and the problem now is shifted to the determination of the energy-dependent expansion
coefficients ag and b/, while the diagonalized eigenstates |¥Pg) are assumed to fulfill
the equation A

(Vg |H|¥g) =E. (2.76)

The solution of ar and bggs involves some algebra which is described in detail in [38].
The first step is to evaluate Eq. (2.76) with the expansion of Eq. (2.75) and using
Egs. (2.74) to evaluate the matrix elements, which results in a set of two equations re-
lating the two coefficients ar and bgg. Then one of these two equations can be solved
for one coefficient and inserted into the other remaining equation which then cancels one
of the two coefficients. The remaining coefficient is then determined by normalization

(V| W) =8(E—E) (2.77)

which solves the complete problem. Exactly this was done by Fano in his paper [38],
where scattering theory was applied to circumvent some peculiarities of the continuous
spectrum like the division by E — E’, which is zero for E = E’ and has to be treated
properly. The final results for the two unknown expansion coefficients are

inA
ap = S=2E (2.78)
7'L'VE
and Vo sinA
r SINAE
b = —= —8(E —E')cosA 2.79
EE = VB E ( ) cosAg, (2.79)
where Ag is given by
7 Vg |
Ap = —arctan (2.80)
E—E,—F(E)

and the energy shift F(E) is

V/
dE’|E . 2.81
£)=2 [a T @3
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The eigenstates are then finally expressed as

sinA
Wp) = ——L |d) — cosAg | ) (2.82)
7Z?VE

with the modified bound state

Ve

& |xE) - (2.83)

)=o)+ 2 [ e’

In the above equations, & denotes the principal value of the integral, i.e. circumventing
the pole at E = E’ via integration in the complex plane. The argument of the arctan in
Eq. (2.80) is a dimensionless number and can be expressed as

_E—(Eg+F(E)) E-Eg
N r/2 T2

(2.84)

with
I =27V, (2.85)

The appearance of a modified bound state |®) means that a set of continuum states | yg)
is directly mixed into the original bound state |¢) due to the configuration interaction
V. The reduced energy variable € causes a rapid change in the expansion of the state
|Wg) around E = Eg within the energy range I'. It is thus straightforward to interpret
Eg as the resonance position of the modified bound state |®) and I being its width, con-
sequently 4 /T its lifetime due to autoionization into the continuum states |xz). As the
sine and cosine functions in Eq. (2.82) are odd and even functions of the reduced energy
variable &, the two configurations |®) and |yg) interfere constructively and destructively
on either side of the resonance energy Eg which gives rise to an asymmetric line shape.
The asymmetry can best be parametrized when the transition T into the state |¥g) is
considered. The transition from an initial state (e.g. the ground state |g)) is described as
(¥£|T|g). The probability of transition into |¥z) with respect to the probability of tran-
sition (yz|T|g) into the undisturbed (usually flat) continuum states |xz) (as if the bound
state |¢@) was not there) can then be parametrized as

2
|(¥e|Tl)_ Jq-+ef’ 056
< 2 2 :
(el TIg) [ 1 TE
The asymmetry parameter g is expressed as
| T
(@|T]g) (2.87)

v (el Tle)

which is the ratio of the transition into the modified bound state |®) divided by 7V}
(corresponding to the first term in Eq. (2.82)) and the undisturbed continuum states | xz)
(corresponding to the second term in Eq. (2.82)). The complex conjugate of V¢ appears
in Eq. (2.87) as the final bra state (¥g| is used to parametrize the transition.

The term on the right-hand side in Eq. (2.86) is the well known Fano line shape, which
can be measured in an experiment. It is proportional to the cross section o appearing
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Figure 2.9: The Fano line shape of Eq. (2.86) is shown for different asymmetry parameters as
a function of the reduced energy € = (E — Eg)/(I'/2). Due to the intrinsic interference among
the configuration states, values below 1 are obtained, which is the continuum absorption in the
absence of the bound state.

both in the absorption spectrum of the transition <T> - for instance photoabsorption as
described in this work, as well as it can appear in the emission spectrum of particles
leaving the system and hitting a detector. The above cross section og then denotes the
microscopic probability of the process, when an energy E with respect to the ground state
|g) is put into the system. For several values of ¢, Eq. (2.86) is plotted as a function
of the reduced energy variable € in Fig. (2.9). The Fano cross section is taking zero
values at different energetic positions (depending on the value of ¢), which is a direct
consequence of the destructive interference of the configuration states. The probability
of exciting the state |¥g) around these energy values is lower as if the bound state |@)
was not present, thus enhanced transparency is an intrinsic feature of the here presented
case of configuration interaction due to destructive interference. In the extreme case of
g = 0, which means that the direct transition pathway to the state |®) is suppressed, while
it is still there and finite configuration interaction Vg with the continuum |yg) occurs,
the destructive interference causes the relative transition probability to be always smaller
than unity. These cases are thus also termed window resonances. Far from resonance
(le] > 1), the relative transition probability is approaching unity, therefore the bound
state |@) can only significantly influence the surrounding continuum states |yg) within
the autoionization width I".

For fitting the Fano resonance profile to experimentally obtained data, a line profile
g+el
1+ €2
is commonly used, where a scales the relative strength of the asymmetric profile (also
including experimental parameters like the detector efficiency or the target density) with
respect to the non-resonant background part ong which describes the interaction with

Or =a -+ ONR (2.88)
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other continua |Eg) not taking part in the configuration interaction with the bound state
(which are either microscopically suppressed or could also be attributed to a different
target species present in the experiment).

2.7.2 Autoionizing states in strong fields

In the previous section, autoionizing states were only considered to be weakly excited
within a fully time-independent picture. When stronger fields are used, non-perturbative
effects such as Rabi cycling are expected to occur, which however will be different as
compared to usual bound states due to the autoionizing nature of the states. This was ana-
lyzed in detail by Lambropoulos and Zoller [37] who introduced an analytical framework
to describe the interaction of autoionizing states with strong laser fields. In the following,
the basic ideas and main results of this work will be summarized in brief.

The basic idea is to use the diagonalized states |¥g) of Eq. (2.82) which Fano obtained
and then non-perturbatively describe the coupling between these states and another state
|g) which could for example be the ground state. The system is then described as a
superposition of these states

(1)) = (1) [g) + / dE cp (1) W) (2.89)
which is subjected to the full Hamiltonian in dipole approximation
H=H,+0 E®) (2.90)

Both states |g) and |¥x) are eigenstates of Hy where the configuration interaction was
already considered. The time evolution of the coefficients c,(f) and cg/(t) is therefore
determined by the coupling [l - E(¢) which is caused by a time-dependent electric field.
The coupling can then be solved along the same lines as described for the two level system
in section 2.6, which means that the electric field is taken as a monochromatic wave and
the rotating wave approximation is applied. Doing so is however far more complicated
due to the continuous nature of the autoionizing states |¥g) which involves an energy
integration for the expansion coefficient cg/(t).

The main results of [37] are the identification of an effective Rabi frequency
Qp = (Pe|ft]g) /R (2.91)

which directly incorporates autoionization because the modified bound state |®g) is used.
Interference effects due to the mixing with the continuum |xg) are therefore directly en-
coded into the Rabi frequency. Furthermore, due to the strong coupling of the bound state
|g) directly with the continuum |x), a so-called radiation-induced shift S, and width 7,
of the bound state is also present. Finally, the formalism also revealed an additional factor
(1 —i/q) appearing together with the effective Rabi frequency. The exact definitions of
the above quantities can be found in [37] or also in follow-up papers [39—43] which apply
the developed formalism in a related context. It is explicitly stated that strong coupling of
autoionizing states as described in [37] is not just the coupling of discrete states with finite
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lifetime //I". Tt is important to note that the continuum and especially the accompanying
interference effects otherwise would not be present.

Finally, the strong coupling of more than one autoionizing state was also considered and

discussed, i.e. adding more autoionizing states Y [ dE’ cg) (1) “I’é",)> into the expansion
n

of the wave function in Eq. (2.89). In this case, the basic processes can also be cast into
parameters such as effective Rabi frequencies and radiation-induced shifts and widths

similar to the ones introduced above. The laser-induced coupling of different continua
(n,m (n,m

’XE E'
This complication was mentioned in [37] and can be neglected for not too high laser
intensities. Significant contributions of this channel where the whole developed model
may become unreliable were expected at intensities above maybe 10'* W/ecm? [37]. It
can thus be safely neglected in the 10'> W/cm? intensity regime discussed in this thesis.

)> (belonging to different autoionizing states “P )>) is now possible in principle.

Within the developed framework, the line shape of autoionizing resonances coupled by a
strong laser field can be described. For example, a weak (perturbative) field is inducing the
transition from the ground state to an autoionizing resonance, which in turn is strongly
coupled to another autoionizing state. This scenario is also realized in helium where
own measurements will be presented in chapter 6. As for the strong coupling of usual
bound states, an Autler-Townes doublet is formed. Due to the interference effects of
configuration interaction, it is possible that the line shape and especially the width of
the two lines appearing within the doublet are changing differently as a function of the
coupling laser electric field strength. This would not be the case for strongly coupled
incoherently decaying bound states, where the shape of the splitted lines is equal, even
for unequal (incoherent) life times.

A summarizing review for two-electron atoms in strong laser fields can be found in [44].

2.8 The theory of linear absorption

Absorption of classical electric fields after transmission through macroscopic media is
most straightforwardly described via the dielectric susceptibility x (@) which connects
the electric field E® (@) to the macroscopic polarization P®)(®) of the medium:

PO(0) = gy (0)-E® (), (2.92)

where only the linear response is considered. A detailed description of absorption and
coherence effects also connected to nonlinear orders ) (’)(a)) can be found in [45, 46],
which shall serve as references for the linear case discussed here.

The refractive index n(®) = /14 x(®) connects the wave vector

k(w)zg-\/lﬂ(w)z% <1+x/(2w)+i-%”§w)) (2.93)

with the real and imaginary part of the dielectric susceptibility which is assumed to be
small. Otherwise the full propagation obeying Maxwell’s equations would need to be
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solved as then dispersion and absorption can no longer be decoupled which is the essence
of the approximation in Eq. (2.93). The imaginary part of Eq. (2.93) is identified as the
absorption coefficient

(0]
alw) = = %" () (2.94)
which according to Beer—Lambert’s law
I(w,7z) = I(w)exp[—a(w) - Z] (2.95)

describes the attenuation of the incident light intensity Iy(®) after propagating a dis-
tance /. The connection to microscopic quantities is found with the atomic number density
pn which yields

o(w)=pn-o(o). (2.96)

and
PO (@) = pv - u(o), (2.97)

where () is the dipole expectation value of the system. With these relations, the mi-
croscopic cross section is found to be

o () = piNglm (x) = %Im <E‘(‘S()—E‘2>> . (2.98)

In the following, the microscopic calculation of the susceptibility of a bound state |¢)
with finite lifetime 1/T" (e.g. due to spontaneous decay) is shortly outlined. After the
perturbative excitation from the initial state |0) at = 0, the time evolution of the state
with energy position E; (Ej of the initial state |0) is set to zero) is given by
i E; r
t)=—— —i—t ——t 2.99

co(t) = =7 Ho oexp[—i—~t] exp[— ] (2.99)
for times ¢ > 0, and g o = (¢|[1]0) is the dipole matrix element connection both states.
In the energy domain (connected via the Fourier transform) the expansion coefficient of
the bound state is then given by

. ity.0
Cop(E) oc ——TF——. 2.100
¢( ) %—i(E—Er) ( )

With this expansion coefficient, the dipole expectation value of the superposition of both
|¢) and |0) finally leads to the dielectric susceptibility

. hr
ity o E—E , 8
X(E) = 75 . : :

: —~ +i (2.101)
BoiE-E)  PRL(E-EpP FCy(E-E)

where the real and imaginary part respectively describe dispersion and absorption across
the resonant transition at energy E; and width I'. The last term in Eq. (2.101) corresponds
to the well-known Breit-Wigner absorption line shape and both terms are illustrated in
Fig. (2.10).
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Figure 2.10: Real (black line) and imaginary part (red line) of the dielectric susceptibility for a
incoherently decaying (Lorentzian) bound state using Eq. (2.101).

2.9 Two-electron states and electron correlation in he-
lium

In this work, doubly excited states (DES) in helium are investigated which involve two
electrons. Electrons are indistinguishable particles which means that their total wave func-
tion W(ey,e;) has to obey certain symmetry properties which is already a manifestation
of correlation. The wave function can be written as (see e.g. [34])

w2, %) 2(51,52) (2.102)

where the first term describes the spatial degrees of freedom with the particle coordinates
T, and the second term describes the spin of both particles. The spin degree of freedom
is decoupled and will play no role for the discussion of this work.

The spectroscopic notation for such two electron states is

2+l (2.103)

where L is the total angular momentum quantum number and S is the quantum number
for the total spin. The greek letter & takes values “0” (odd) and “e” (even) which are
added for convenience to clarify the parity of L. The considered DES in helium are spin
singlet states (S = 0) with an antisymmetric spin wave function ) (1,2). The spatial wave
function thus must be symmetric obeying Pauli’s principle for fermions. The L quantum
number is usually given in letter notation with L =S, P, D, F, ... denoting the sum angular
momentum of the single-electron orbitals. With laser interaction in dipole approximation,
only transitions among different-parity states are allowed. With this classification, the
ground state of helium is a !S® state from which 'P° states can be reached with single-
photon (or perturbative) excitation.

The spatial wavefunction W) (¥|,¥,) can in general not be written as a product of two
single-electron wavefunctions

W (), F,) # PO (F) - P (F). (2.104)
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which is due to the interaction between the two particles, the Coulomb force

2
Fo=— L @ (2.105)
471780 ‘I‘ 1— 1‘2‘

This notion can most generally be understood as electron correlation mediated by the
Coulomb repulsion, i.e. the particles interact with each other. Taking the Coulomb inter-
action into account is the starting point for many approximate theories [34] when describ-
ing the correlated interaction of these two particles with a third partner such as a nucleus
(e.g. the helium atom) but also within covalent bonding orbitals in molecules. Approxi-
mation methods have to be applied as the full Coulomb interaction between three particles
cannot be solved analytically, neither in a classical nor in a quantum treatment.

For the case of autoionizing states in a helium atom, the concept of configuration inter-
action (see section 2.7) is an approach to describe such correlations (see e.g. [47] as a
review), as different single-electron configuration states are allowed to mix due to their
interaction. In this treatment, the interaction matrix element Vg essentially is the Coulomb
repulsion.

The DES in helium can be intuitively classified along their inner and outer quantum num-
ber N and n, respectively, resembling the uncorrelated product of single-electron orbitals.
The excitation of the first DES series in helium with N = 2 and 'P° symmetry would
mean that three series (2snp, 2pns and 2pnd) should be allowed [48], all converging to
the N = 2 ionization threshold (see also Fig. 2.11). Excitation of the first two series in-
volving the s orbital should be more probable than the latter one, involving no s orbital.
This distinction is explained as only one electron has to absorb angular momentum from
the radiation field for the first two cases, while both electrons have to exchange angular
momentum with the radiation field in the third case, with excitation from the 1s* ground
state. However only one strong and one weak series was initially detected [49]. This lead
to the description of superposition states [S0] where the linear combination

1
E (2snp =+ 2pns) (2.106)
is considered to describe the observed strong “+” and wea series, while the third
“pd” series being even weaker in strength was not yet detected. The identification of
these superposition states is thus an early indication for the correlated (entangled) nature
of these two-electron states. The two series are abbreviated throughout as

({34

SPypy and  spy (2.107)

where the 2s2p configuration trivially belongs to the “+” series [50]. The weakest “pd” se-
ries was experimentally found more than 30 years later within high-resolution synchrotron
studies [51,52], where these measurements also serve as a reference for the position and
line shape of the here considered sp; , series (see Fig. 2.11). The N = 2 ionization
threshold at 65.40 eV denotes the energy above which one electron is ionized and the
other electron is remaining in an excited N = 2 Bohr orbit. Slightly above this ionization
threshold, the ionized electron is moving with relatively low kinetic energy (the differ-
ence to the 65.40 eV threshold energy), in contrast to the degenerate N = 1 continuum
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where the (auto-)ionized electron is moving with much higher kinetic energy (the differ-
ence to the single-electron ionization threshold at 24.59 eV). The autoionization life times
range between 17 fs for the lowest 2s2p state up to several 100 fs for the higher sp; ,,+
states, 1.e. having energetic widths between 38 meV down to few meV. Table 2.2 shows
parameters for the three lowest states.
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Figure 2.11: Energy level scheme of doubly-excited states in helium with 'P° symmetry converg-
ing to the N = 2 threshold at 65.40 eV. These states can be reached via single-photon excitation
from the 1s? (!S°) ground state. The level positions are obtained from [51,52]. Only the strongest
Sp2,»+ series is shown. The mixing of these states with the energetically degenerate N = 1 contin-
uum is the essence of Fano-type autoionization and quantum interference apparent in absorption
spectra.

Table 2.2: Line shape parameters (cf. Eq. (2.88) in section 2.7) for the three lowest doubly excited
states belonging to the spj ,1 ('P°) series. Values are taken from [51]. See [51, 52] for more
parameters of other 'P° states.

E. (eV) I' (meV) q

2s2p  60.1503£0.0040 37.6+0.2 -2.74£0.04
sp23+ 63.65754+0.0030 8.3+0.5 -2.53+0.04
sp24+ 64.46551+0.0020 3.4+0.7 -2.58+0.05

Within a group-theoretical approach, symmetry properties of these states could be identi-
fied which yielded a more rigorous classification system [53,54] (see e.g. [55,56] for re-
views) along the hyperspherical coordinate approach. This approach is basically treating
the distance ri, between the two electrons as a parameter, similar to the nuclear distance R
in molecules. The interpretation of the helium atom as a “molecule” with two light nuclei
(the electrons) and one surrounding particle (the nucleus) shall however be nothing more
than an intuitive picture of this scheme. The hyperspherical coordinate approach becomes



40 THEORETICAL BACKGROUND

increasingly important for higher DES (high N Bohr orbitals of the inner electron). In the
here considered work, the older but more intuitive (at first sight) sp; ,4 classification is
used throughout.

The classification (or symmetry properties) of two-electron states become more and more
complex with higher quantum number N. This can be understood intuitively as 1) an
increasing number of overlapping two-electron Rydberg series are possible, and 2) more
than one degenerate continuum is open for the autoionization channel. An overview over
more recent studies on two-electron atoms can be found in [57] which may serve as a
review. Nowadays it is possible to approach the Coulombic three-body problem with ab
initio models [58, 59], taking correlation effects from the lowest to the highest excited
states into account.

From an experimental point of view, these highly excited autoionizing Rydberg states are
more easily accessible, as their dynamics (due to a closer level spacing) happen on longer
time scales (on the order of picoseconds and beyond), where doubly excited Rydberg
wave packets are more easily accessed. Typically alkaline earth atoms are investigated
as helium-like systems (two electrons in the outermost S shell). As an example, the non-
exponential decay of an autoionizing shock wave packet [60] was measured, which is
evolving after the Rydberg wave packet is suddenly excited into a different ionic potential
(shake up). A manifestation of the classical dynamics across these highly excited states
was the experimental observation [61] that autoionization can be understood as a single
collision event between the two excited electrons.

All this mentioned theoretical and experimental work are examples for the investigation of
electron correlation and their dynamics. In parallel, with the advent of strong laser fields,
a different category of electron correlation was and is investigated, such as the interaction
of two electrons with strong laser fields. Traditionally, the single active electron (SAE)
approximation was and is widely applied for theoretical models because the interaction
even of single-electron atoms with strong laser fields is a field of extensive research (see
section 2.2). Thus electron correlation can be identified as the breakdown of the SAE ap-
proximation. As such, an increased double-ionization yield was found in helium [62, 63],
the well-known ‘knee structure’ which was higher than expected from sequential ioniza-
tion of both electrons. It can be understood in terms of the rescattering model [19] (see
also section 2.2.2) and is termed non-sequential double ionization [64]. Non-sequential
in that sense that the electrons are not ionized independently in a sequential way. This
interpretation was experimentally confirmed in [65] where the angular-resolved detection
of neon ions in strong fields could be explained with this model. In a sense, this “non-
sequential” process can still be understood “sequentially” with the first electron ionized
and recolliding shortly later to kick out the second electron in a correlated manner.

It was also proposed in [66] how two electrons are cooperatively tunnel-ionized in strong
laser fields, being an example for strong-field-induced electron correlation without rescat-
tering. In a recent experiment [67] where circularly polarized light was used which ef-
fectively rules out rescattering, data was obtained which could not be explained with the
assumption of the sequential ionization of single active electrons. These observations are
thus in favour of such and other models (e.g. [62]).

Finally to close this overview and introduction into electron-correlation effects, approx-
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imation methods to describe more than two electrons are shortly outlined. Tradition-
ally the Hartree-Fock (HF) method is often used [34], which involves the antisymmet-
ric linear combination of all involved single-electron orbitals including their spin, the
so-called Slater determinant. In that sense, electron correlation (exchange correlation,
but not Coulomb correlation) is taken into account with regard to the mixing of differ-
ent single-electron orbital product wave functions. Extensions of this approach involv-
ing time-dependent treatments (TDHF) and further mixing of multi-configuration states
(MCTDH, MCTDHEF) to account for inclusion of electron-electron interaction are just
a few examples how electron correlation can be systematically (but still in an approxi-
mate way) be taken into account. For a recent review on these methods, see e.g. [68].
Also density functional theories (DFT) and its time-dependent variant (TDDFT) are used
to approximatively describe and calculate many-electron effects and to some extent also
electron correlation, where e.g. [69] may serve as a review.
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Chapter 3

Design and construction of the
experimental apparatus

For the interferometric experiments as they are described in this work, a whole new beam-
line was designed and set up. This shall be described in the following, also highlighting
some typical challenges accompanying these kind of experiments. It shall also serve as a
reference for future experiments performed with this setup.

3.1 The femtosecond laser system

Writing about LASERs (Light Amplification by Stimulated Emission of Radiation), it
is very easy to summarize its fundamental working principle in just one sentence: “An
energetically pumped and population inverted gain medium is enclosed in a resonator
to repetitively amplify propagating radiation via stimulated emission.” Of course there
1s much more to say since the early developments in the 1960s [70, 71], both from a
physics as well as from a technological point of view. Details on lasers in general can
nowadays be found in many textbooks such as [6]. Emphasis on ultrashort laser pulses
and the techniques for creating them (such as mode locking, dispersion control, self phase
modulation, etc.) can be found in newer textbooks such as [2,46].

We use a commercially available amplified laser system, the Femtopower compact Pro
CEP by Femtolasers [72] which delivers CEP-stabilized sub-30 fs laser pulses with high
pulse energies in the 1 mJ range at 4 kHz repetion rate. When focused down to typical
spot sizes around 50 pm as in our experiments, peak intensities in the 10'* to 10'> W/cm?
regime can be accessed. These intensities are needed for the experiments performed in
this work. The laser system basically consists of the laser oscillator itself which delivers
sub-10 fs CEP-stabilized laser pulses at high repetition rates (typically 80 MHz) however
with low pulse energies of only a few nJ. These pulses are subsequently amplified up to
~ 0.8 mJ using chirped pulse amplification (CPA) [73] in a multipass configuration.

To describe CPA in simple words, the sub-10 fs pulses from the oscillator are stretched
(chirped) in time up to the order of picoseconds. This is done to avoid any damage during
amplification due to the high peak powers (at 10 fs duration even nJ pulses yield peak
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powers in the MW range). Then they are propagated several times (9 times in our setup)
through an amplifying gain medium which is strongly pumped using a high power Q-
switched pump laser (DM-30, Photoncis Industries). After that, the amplified and chirped
pulses are recompressed down to their bandwidth limit with sub-30 fs duration, after gain
narrowing has occurred in the amplifier. This means that only the centermost spectral
parts of the laser pulses are most efficiently amplified, thus the spectral bandwidth of the
amplified laser pulses has decreased. At the cost of a lower repetition rate (from 80 MHz
down to 4 kHz, mainly limited due to the average heat consumption at higher repetition
rates, i.e. there is a limited availability of high pulse energy and high rep. rate pump lasers)
the pulse energy is increased from the nJ to the mJ regime.

The gain medium both of the oscillator as well as the amplifier system is a titanium-doped
sapphire crystal (Ti:Al,O3, or Ti:Sa) which exhibits a spectrally broad amplification band
(almost octave-spanning, centered around 800 nm, the typical center wavelength of these
lasers, thus having photon energies around 1.55 eV), being a prerequisite for the genera-
tion of ultrashort-duration laser pulses. Dispersion in these laser systems is a severe issue
and has to be compensated for. It is mainly caused by propagation through the optical el-
ements (fused silica glass) or the laser crystal itself but also through air. Compensation is
achieved with negative dispersive elements where multilayer mirrors (such as third-order-
dispersion (TOD) mirrors and chirped mirrors (CMs)) are used to efficiently compensate
especially for the higher-order dispersion terms which would otherwise prevent pulse
compression down to the bandwidth limit of few-cycle pulses. These elements (TOD
mirrors and CMs) are both parts of the laser oscillator itself (intra cavity) as well as at
the various stages during stretching, amplification and recompression of the pulses (extra
cavity). The high chirps necessary for CPA are realized via propagation through a thick
sample of fused silica glass while recompression is achieved using prisms to introduce
negative dispersion, in addition to TOD mirrors and CMs which are mainly responsible
for efficient compensation of the higher-order terms.

All these optical elements need to be perfectly aligned as even small deviations may have
tremendous effects on the overall performance. Due to environmental conditions (thermal
or humidity drifts, as well as dust particles), these systems typically have to be maintained
and aligned on a daily basis, i.e. far from turn-key operation. An efficient monitoring and
control system was set up in order to measure and keep track of salient performance
parameters such as the pump laser power along with its focal spot profile, the spectrum
of the oscillator pulses, environmental conditions (temperature and humidity) around the
laser, etc..

To shorten the pulse duration from sub-30 fs down to the few-cycle regime, their spectral
profile again has to be broadened. This is achieved using the hollow-core-fiber compres-
sion technique [74], where the laser pulses are focused into the center hole of a glass capil-
lary in order to propagate high peak powers in the focal spot over a long distance (roughly
70 cm for our system). The fiber is filled with rare gas at high pressure (we use neon at
1.5 bar absolute stagnation pressure). Exhibiting high peak intensities (~ 10'* W/cm?)
throughout the propagation in the fiber, the laser pulses interact nonlinearly with the gas
atoms. Due to the intensity-change across the temporal pulse envelope, more frequencies
are coherently added to either side of the pulse spectrum. A more detailed description of
this process, also called self-phase modulation (SPM), can be found in [2]. Subsequently
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Figure 3.1: Interferometric autocorrelation of the laser pulses after transmission through the
hollow-core fiber filled with 1.5 bar neon and subsequent compression with chirped mirrors. This
measurement yields a pulse duration of 6.2 fs FWHM where the laser spectrum is centered around
756 nm. The wings at 15 fs hint on a weak pre-/post-pulse.

this broadened spectrum (almost octave spanning) is compressed again by using chirped
mirrors which are specifically designed for such broad spectra. Finally, ~ 7 fs duration
laser pulses at typical energies around 0.3 mJ (mainly due to losses during propagation
in the hollow-core fiber and the subsequent CM compressor as well as reflection losses
from the silver mirrors) are available and ready for use in following experiments. Due
to the high density of free electrons in the ionized gas medium, plasma-induced spectral
blue-shifting occurs [75] which means that the laser pulse spectrum is shifted to smaller
wavelengths. This is the reason for the typical center wavelengths around 750 nm or lower
of few-cycle laser pulses.

The duration of these pulses was measured using second-order interferometric autocor-
relation [2] where a typical trace is shown in Fig. 3.1 and yielded a FWHM duration of
6.2 fs. The side-peaks accompanying the center-most main peak hint on the presence of
additional pre- or post-pulses which are typical for chirped mirror compressors as used
in our setup. However, most of the energy is still contained in one short pulse. The pos-
sibility of pre-/post-pulses are explained by residual spectral-phase modulations in the
dispersion curves of chirped mirrors. The main limitation for obtaining shorter pulses
is the limited spectral bandwidth for which phase compensation is achieved by a set of
chirped mirrors. Just recently it was demonstrated how even shorter so-called “sub-cycle”
optical pulses with a measured FWHM duration ~ 2.1 fs could be achieved [76]. The key
idea there was to compress different parts of the octave-spanning spectrum (after SPM)
with different and specifically customized chirped mirrors and beam splitters.

3.2 Carrier-envelope-phase stabilization

In this section, some general aspects on CEP stabilization will be discussed with emphasis
on how it is implemented in our experimental setup. Our commercial laser system was
delivered and installed fully equipped with CEP control [72]. It was then custom enhanced
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Figure 3.2: Taken from [78]. Within the gain bandwidth, the laser spectrum consists of frequen-
cies spaced exactly by the MHz repetition rate f;. The offset frequency fcgo (fo in the figure) as
defined by Eq. (3.1) corresponds to the CEP slippage from pulse to pulse. It can be identified as
the offset of the frequency comb when extended down to zero.

by ourselves with additional equipment where more details are presented in [77]. A good
general reference for CEP control and the closely connected field of frequency metrology
can be found in [78].

CEP control in the laser oscillator is based on the fact that mode-locked laser cavities de-
liver identical pulses (except their CEP) spaced by the round-trip time in the cavity. This
yields frequency combs in the near-infrared (NIR) to visible spectral range [79, 80] con-
sisting of optical frequencies (the amplified laser modes) which are spaced evenly, exactly
by the repetition rate of the laser oscillator (experimentally confirmed with accuracy bet-
ter than 10~ [79]). As this scheme connects radio frequencies (i.e. the MHz repetition
rate) to the optical domain it has also many applications in frequency metrology [78] for
high-precision measurements.

In the time domain, the CEP shift of propagating laser pulses is explained due to mis-
matching group and phase velocities (see Eq. (2.20) in section 2.1). Connecting this to
one round trip of a propagating pulse in the mode-locked laser cavity, it is straightforward
to define the carrier-envelope offset (CEO) frequency [78]

Adcep

g P (3.1)

fcro =

where A@cgp is the accumulated phase mismatch according to Eq. (2.20) and f; is the
MHz repetition rate of the oscillator. Both frequencies fcgo and f; are illustrated in
Fig. 3.2, where fcgo is identified as the offset of the frequency comb when extrapolated
down to zero frequency. Running freely without any stabilization and in the presence
of any source of noise (typically present in the pump laser light), fcgo jitters arbitrarily
between zero and f; as a function of time, i.e. the CEP changes randomly from shot to
shot coming out of the laser oscillator. If however fcgo can be kept fixed at an integer
multiple of the repetition rate (i.e. fcgo = fi/n) then every n™ shot coming out of the
laser cavity shows the same CEP.

Being in the radio frequency range, both f; and fcgo can in principle be measured elec-
tronically, however both have to be deduced from the optical pulses. By measuring the
train of pulses with a fastly responding (ns time scale) photo diode, the repetition rate f;
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can be determined directly. The trick for directly measuring fcgo is based on nonlinearly
mixing frequencies of an octave-spanning frequency comb, either by second harmonic
generation (SHG) or difference frequency generation (DFG). Either of these mixing pro-
cess will project frequency components from one end of the spectrum onto the other one,
interfere with the fundamental frequency there, and cause a beating in time where the
beating frequency can be identified as fcgo. The beating can then also be measured di-
rectly with a fastly responding photo diode.

In our setup, both DFG and SPM (to create an octave spanning spectrum) are realized in
one single element, a periodically poled lithium niobate crystal (pp:LiNbO3 or ppLN) [72]
which is making use of an in sifu implementation of CEP control within the emitted
laser pulses from the oscillator, yielding phase stabilities on the order of 100 mrad [81].
The beat note is then measured with a photo diode after selecting the relevant spectral
range around 1300 nm (where fundamental and DFG light spectrally overlap) with an
interference filter [72].

The main mechanism behind fluctuations of frgo are changes of the refractive index
especially in the Ti:Sa crystal, where due to the optical Kerr effect changes in the laser
intensity may also have a severe effect on fcgo [78]. For CEP stabilization, the pump laser
intensity can be finely tuned with an acousto-optic modulator (AOM), closing the loop in
order to keep fcgo at a fixed fractional integer of f;. In our setup with enabled phase
lock fcgo = fi/4, and thus every 4™ pulse leaving the oscillator is equal in CEP. Picking
out only one of these pulses for amplification, which is realized with an electro-optical
Pockel’s cell, only pulses of equal CEP leave the amplifier.

In order to both compensate for slow CEP drifts within the CPA stage, which are mainly
caused by thermal effects, and to experimentally use the CEP as a control knob, a sec-
ond nonlinear measurement of the CEP has to be realized. The measurement needs to
determine the CEP within one and the same pulse (i.e. single shot). This is achieved in
an f-2f-interferometer based on SHG. The working principle is to let interfere the high-
est frequencies of the fundamental spectral profile (the “blue” part) with the frequency-
doubled region of the lower side of the fundamental spectrum (the “red” part). The pulse
spectrum then of course has to span at least one octave. In the spectral overlap region, a
sinusoidal modulation appears whose period corresponds to the inverse temporal spacing
between the blue and red spectral parts of the pulse. This means the pulses have to be
chirped. The phase of this modulation pattern then corresponds to the relative phase be-
tween the blue and red spectral parts of the pulse. Due to the involved frequency doubling,
that in fact not only doubles the frequency but the entire phase (including the CEP) of the
pulse, this relative phase exactly corresponds to ¢cgp of the pulse. Performing a Fourier
analysis on the modulation pattern (cf. section 2.3) the CEP can be retrieved on a single
shot basis.

In our setup this is realized with the commercial f-2 f-interferometer APS800 from Menlo
Systems [82], where the spectrum is octave-broadened in a sapphire plate and SHG is
realized with a nonlinear beta barium borate crystal (f-Ba(BO;), or BBO). The pulses
are spectrally detected with a compact Czerny-Turner spectrometer (Thorlabs SP1-USB),
triggered by the amplifier and set to exposure times ~ 250 us (corresponding to the 4
kHz repetion rate) thus measuring single shots. The CEP is retrieved by software and a
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feedback control signal is generated. This signal controls the CEP by piezo-translating the
amount of glass (a prism) which is used for pulse stretching. Within this configuration,
a CEP stabilization on the order of 100 to 200 mrad phase noise is realized. It should be
noted that the feedback response time of the piezo control is on the order of 10 to 100 ms.
Therefore, even though the CEP is measured with single shots, it cannot be controlled on
a shot-to-shot basis. Only slower thermal drifts can therefore be compensated for. Shot-
to-shot based measurements of the CEP can be realized for example with so-called stereo
ATI setups [83,84]. In this case, the laser oscillator can even be set to freely run (no CEP
stabilization), as every single shot is measured (CEP tagged) and can be connected to
experimentally measured data. However this scheme is not feasible for the here presented
experiments, as XUV high-harmonic spectra typically have to be integrated over several
shots (on the order of 1000 to 10000) to get a reasonable signal with good signal-to-noise
ratio (SNR).

Along the experimental design, a second f-2f-interferometer was set up [77] after the
SPM hollow-core fiber in order to check for CEP fluctuations of the pulses on the way to
the experiment (predominantly induced by the nonlinear refractive index change during
SPM). A whole new measurement and feedback software was also developed, especially
as the commercial software turned out to be incompatible with the LabVIEW-based data
acquisition system for the main experiment. Indeed it turned out that the SPM spectral-
broadening stage introduced both a higher phase noise (on the order of 500 mrad) as
well as additional fluctuations on longer time scales which were not present before the
SPM stage (see [77] for further details). Unfortunately, the higher phase noise (mainly
shot-to-shot noise) after the SPM spectral broadening stage could not be compensated
for with the relatively slow piezo-based system. Besides, random (of course within a
certain range) shot-to-shot fluctuations can never be compensated for with such kind of
measurement, as the feedback loop can at best influence the subsequently generated laser
shot. In this case, in situ measurements such as [84] should be the method of choice. In
order to avoid introducing the higher phase noise into the feedback loop, we decided to
stabilize the CEP before the SPM stage with lower noise contributions. In order to rule
out additionally introduced CEP fluctuations of the pulses on their way to the experiment,
experimental data was always acquired for several CEP cycles. This way, via comparison
of the different cycles, real microscopic effects in the experiment can be disentangled
from unwanted CEP fluctuations (see also section 5.3).

3.3 Generation of attosecond pulses

In order to perform the aforementioned experiments, a new source for the generation of
attosecond pulses, or in general, coherent broad-band radiation in the extreme ultraviolet
(XUV) spectral range (from below 20 eV up to as high as 150 eV photon energies) had to
be designed and set up. Conceptually, this is very simple: Just focus intense laser pulses
into some gaseous medium. However, as presented in the introductory overview of high-
harmonic generation and attosecond pulse production given in section 2.2.2, and as it will
be presented in the following, it is much more than that and still challenging, both from a
theoretical as well as from a technological point of view.
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Figure 3.3: Schematic overview over the complete vacuum setup for attosecond pulse generation
and interferometric experiments. The different parts are further described in this and the following
sections. HHG cell and target cell: see Fig. 3.4 in section 3.3, interferometric mirror setup: see
Figs. 3.5 and 3.6 in section 3.4, metal filter & polymer membrane: see Fig. 3.9 in section 3.4, metal
filters, VLS grating, mechanical bearing and XUV camera: see Figs. 3.12 and 3.11 in section 3.5.

Parts of the experimental setup and design are also described in [85], where a more de-
tailed and specific description of the setup can be found. Here, the main goal is to present
the fully established beamline as a whole while putting emphasis on the technical and
physical parameters in order to understand the design and operation of such a beamline.
A schematic overview of the complete vacuum setup for attosecond pulse generation and
subsequent experiments can be seen in Fig. 3.3.

HHG and attosecond pulse production has to take place under vacuum conditions, sim-
ply as the generated XUV photons would knock out valence electrons from any atom or
molecule along their propagation and thus be absorbed. The generated XUV radiation
is well above any ionization potential, where the highest values (i.e. for rare gas atoms)
are on the order of 10 to 20 eV [9]. As an example, the absorption length through air at
atmospheric pressures for radiation between 20 and 150 eV is just 1 mm or less [86]. Un-
der vacuum conditions, already for vacuum pressures around 10 ' mbar the absorption
length is on the order of 1 m and more. Requirements on the vacuum design are therefore
relatively loose for HHG. As a rule of thumb, if a vacuum pressure around 10 3 mbar in
the generation chamber is maintained, reabsorption of the generated XUV radiation can
be completely neglected.

In the herein described setup, rare gas atoms are used as the conversion medium. They are
favourable for attosecond pulse production simply due to their high ionization potential
as then ionization/depletion on the leading edge is suppressed and HHG can occur across
the centermost part of the driving laser pulses with the highest field strengths (see also
Fig. 2.2 in section 2.2.1). We used neon with ionization potential /, = 21.6 eV [9].

Optimizing the conditions for neon, a f = 500 mm silver-coated! spherical mirror is used

IThe preferred coating-material for steering few-cycle laser pulses is protected silver. It supports high
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to focus the ~ 0.3 mJ laser pulses into the gas target. With this geometry, peak intensities
in the mid 10'* W/cm? range can be expected with focal spot sizes ~ 50 pm. A mirror
is used in favor of a lens primarily to avoid unnecessary dispersion for the 7 fs duration
laser pulses during propagation through the lens material, but also to avoid chromatic
aberrations of the broad band spectrum [2]. To avoid astigmatism, the mirror has to be
used under as normal angle of incidence as geometrically possible. In the setup, an ap-
parent astigmatism across the spatial beam profile before the spherical mirror could be
compensated for by increasing the angle of incidence to ~ 15°. The reason for this appar-
ent astigmatism might be a deformed output window of the vacuum tubing containing the
SPM hollow-core fiber. This rather technical issue was however not further pursued.

. |

100 um

Figure 3.4: Schematic illustration of the HHG source cell which is used for the generation of
attosecond pulses. A magnified view of the interaction volume is shown, where the coherent
buildup of XUV radiation (blue) is cartooned. The target cell is an exact copy of this HHG source
cell.

The neon generation medium inside the first vacuum chamber is contained in a 2 mm
inner diameter (3 mm outer diameter) stainless-steel tube with machine-drilled 100 ym
diameter holes in the cladding in order to let the focused laser beam pass through. For
technical convenience, the cladding was reduced to about 200 pm thickness around the
machine-drilled holes. A schematic picture of the generation cell is depicted in Fig. 3.4.
This yields a conversion length of about 2.5 to 3 mm, taking into account the cladding
and higher gas densities in the exit flow along the laser beam. For efficient generation
in neon, relatively high gas densities in the interaction volume are needed, translating
into backing pressures around 100 mbar and above within the neon-filled gas cell. This
corresponds to at least ~ (.2 mbar 1/s of neon leaking into the generation chamber un-
der full operation [89], where the leak rate was calculated assuming two 100 um holes
and 100 mbar backing pressure. In order to maintain an overall pressure of 10 * mbar
inside the vacuum chamber, a pumping speed >200 I/s is needed. In the current setup, a
2000 I/s turbomolecular pump is used to allow for safe operation also under non-optimal
conditions (e.g. enlarged aperture due to laser ablation). To carefully optimize for phase-
matching conditions, the conversion cell is mounted on an XYZ linear-positioning stage
equipped with picomotors [90] to allow for steering under vacuum conditions during op-
eration.

reflectivity over a broad spectral range and introduces minimal group delay distortions which would other-
wise influence the temporal pulse structure (see e.g. [87, 88]).
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3.4 The interferometric mirror setup

Inner Mirror
W =10 mm RMS < 0.5 nm
H=2mm coating: gold

Toroidal Mirror
W=100 mm RMS<0.5nm
H=26 mm  coating: gold
f =350 mm
9 =15°

Outer Mirror

W =100 mm coating: silver
H =26 mm inner hole:
12 x 2.5 mm

Figure 3.5: Schematic illustration of the all-grazing-incidence interferometric mirror setup. The
beams reflect off both mirrors with grazing angle 6 = 15°. The incoming and exiting beams
propagate parallely offset. Technical details such as the width (W), the height (H) or the focal
length (f) of the optics are given in the figure.

In combination with the high-resolution flat-field spectrometer which is described in the
next section, the interferometric mirror setup can be considered the heart of the newly
designed and built beamline. It consists of two grazing-incidence mirror arrays: One pair
of flat mirrors to spatially and temporally separate the attosecond-pulsed XUV radiation
from the driving laser pulses, and another toroidal-shaped mirror to refocus both spectral
parts into the experimental target. A schematic image of the mirror system is depicted in
Fig. 3.5. More details on the mirror setup with emphasis on the toroidal mirror and its
alignment procedure can be found in [91] and also in [85] for a more general overview.
Utilizing a toroidal mirror was also part of own prior work for a similar setup [92] which
may also serve as a reference.

The idea of the grazing-incidence split-mirror setup was to use both the broad spectral-
range reflectivity of grazing-incidence optics together with the highest possible interfer-
ometric stabilities within a monolithic setup, where both interferometric parts propagate
along the same path. So far, the monolithic design was only used with (close to) nor-
mal incidence optics (see e.g. [93]) where multilayer coatings are incorporated in order
to have reasonable reflectivity of the XUV radiation. Multilayer coatings have the disad-
vantage (in terms of flexibility) that they need to be designed for a specific spectral range.
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This of course can also be an advantage if a certain spectral region is of exceptional in-
terest. Typically, a spectral range of 30 eV can be realized at best (see e.g. [94]), which
is then of course fixed for each specific mirror. In contrast, using metallic surfaces in
grazing incidence geometry, high reflectivities over the whole XUV spectral range can be
achieved [95]. Due to increased aberrations of conventional spherical optics operated in
grazing-incidence geometry [6], where the astigmatism is the leading order, mirrors with
a toroidal surface are usually incorporated [96]. They can be designed for imaging with
zero astigmatism for a specific (grazing) angle of incidence. The 1:1 imaging geometry
then introduces the least additional aberrations, while using (de-)magnifying geometries,
a substantial coma aberration will be unavoidable [91, 95]. In the latter case, when for
example demagnification is needed in order to achieve higher XUV intensities in the fo-
cus, ellipsoidal mirrors [97] have to be used. The choice of the grazing angle of incidence
(measured with respect to the surface) is in any case a trade-off between higher reflectiv-
ities [86] (for smaller angles) and higher tolerances for possible misalignment [95] (for
larger angles). In general, imaging aberrations within an attosecond-pulsed beam of light
should be avoided as much as possible as these aberrations also influence their temporal
structure [98].

Figure 3.6: Alignment of toroidal mirror. The arrows on the mirror assembly denote the crucial
degrees of freedom for the alignment of a toroidal mirror, where any misalignment results in
astigmatic beam profiles when measuring across the focal spot. The tip/tilt in the sagittal plane
and the rotation in the mirror plane compensate a vertical displacement from the optical axis and a
tilted astigmatism (lower set of images), respectively. Both degrees of freedom are usually coupled
including also the absolute height positioning of the mirror. The tip/tilt in the tangential plane
of the mirror compensate purely horizontal astigmatism (upper set of images). When perfectly
aligned, the beam profile is symmetric across the focal spot (middle set of images), yielding the
smallest spot sizes and highest peak intensities. A detailed description of the alignment procedure
can be found in [91].

In the setup, a gold-coated toroidal mirror with 8 = 15° grazing angle of incidence and
350 mm focal length operated in 1:1 imaging geometry is used. The angle of incidence
was chosen rather high in order to allow for reasonable imaging also for the driving NIR
laser pulses. Due to their higher wavelength, they posses intrinsically higher divergences
(~ 15 mrad in the current focusing geometry). In addition, the demands on mirror align-
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ment for the lower divergent (~ 1 mrad) attosecond pulses are more relaxed. The reflec-
tivity for the XUV radiation (between 30 and 130 eV) is expected to be above 40% [86].
The focal length was chosen large enough in order to have geometrical space for intensity
control of the laser pulses (as will be described below). In addition it was chosen to allow
for differential pumping [89] to stepwise decrease the vacuum pressure from 10~ mbar
in the generation chamber down to below 10~ mbar in the experimental interaction
region to optionally operate the beamline with coincidence electron/ion detection tech-
niques [99], where these low pressures are prerequisites. The toroidal mirror is equipped
with a picomotor-controlled 4-axis tilt-aligner stage in addition to a picomotor-controlled
two-axis mirror mount (details can be found in [91]) in order to allow for precision align-
ment of the toroidal mirror under vacuum conditions. To shortly summarize, the degrees
of freedom which are substantial for aligning a toroidal mirror are depicted in Fig. 3.6.

In order to decouple the precise alignment demands of a toroidal mirror from the split-
mirror setup, we decided to use an additional plane-mirror assembly to achieve the tem-
poral separation of the attosecond pulses from the driving laser pulse. The arrangement
is similar to normal-incidence split-mirror configurations [93], where the inner mirror
can be moved with respect to the outer one with a high-precision (nanometer position-
ing) piezoelectric stage. These setups make use of the intrinsically lower divergence (see
above) of the attosecond pulses. Therefore both spectral parts are spatially separated and
can be accessed independently with the two mirrors. In our setup, both mirrors are flat and
are coated with gold and silver for optimized reflection of the attosecond pulses and the
driver laser pulses, respectively. Full separation is achieved when in addition appropri-
ate spectral filters are used as described below. Further details on the geometrical mirror
dimensions and their assembly are depicted in Fig. 3.5 and can be found in [85,91].

The reflectivity of gold decreases for optical wavelengths below ~ 600 nm [100], thus
the toroidal mirror might also affect the temporal structure of the driving laser pulses
as it is used to focus both spectral parts. This implicates only minor limitations for the
current setup, as the spectral bandwidth for 7-fs-duration laser pulses falls just within this
restriction. Besides, the currently used set of chirped mirrors for pulse compression after
the SPM fiber only support spectra above this limit [72]. These issues should however be
considered when shorter pulses with broader spectra are to be used in the future.

The interferometric stability was experimentally determined to be on the order of 10 as
rms-noise during operation of all vacuum pumps connected to the setup. The value was
obtained via measuring the intensity-modulation of a HeNe laser reflected off the split-
mirror assembly (see [91] for a similar measurement). This value is close to the minimal
“theoretical” value as the typical 1 nm accuracy of the piezo-positioning device [101]
translates into 2 as accuracy when taking into account the 6 = 15° grazing angle of in-
cidence. Along this measurement, the mirror movement could also be calibrated to the
temporal delay which yielded

I yum=1.7115fs (3.2)

A minor drawback of the grazing-incidence split-mirror setup shall finally be given.
As the time-delay is realized along the geometrical displacement of the inner mirror
(Eq. (3.2)), a slight walk-off is induced on the XUV beam which can be deduced from
geometrical considerations (see Fig. 3.7). The displacement Aw is related to the mirror
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of ; of

Figure 3.7: Walk-off induced by the grazing-incidence split-mirror setup. The toroidal mirror
(TM) can be illustrated as a lens with 1:1 imaging geometry. A parallel shift Aw is induced on
the XUV beam by the geometrical movement of the inner mirror. This shift corresponds to a
displacement of the focal spot in the imaging plane of the setup. In addition, the wave front of
the beam is tilted by the angle a = arctan(Aw/ f) with respect to no displacement (upper panel)
which corresponds to the IR beam path of the outer mirror. f is the focal length.

movement d via )
sin26

sin 0
where 0 is the grazing angle of incidence. For the given setup, changing the time delay
by Ar =1 fs implies a transverse displacement Aw = 1.13 um and wave-front tilt @ =
3.22 urad of the XUV beam with respect to the IR beam. The tilted wave front implies
a temporal averaging over 2.15-10~* as (assuming an XUV focal spot size on the order
of 20 um) which is thus completely negligible. The displacement Aw however implies
that the geometrical overlap between the XUV and IR foci is lost with increasing time
delay. For this reason, the accessible time-delay region is limited to ~ 50 fs in total in the
current setup. To compensate for this walk-off, a two-point piezo stage with translation
and tilt properties could be used. A small wave-front tilt however would still remain (o¢/2
under optimal conditions) which is unavoidable in grazing-incidence geometry but can be
safely neglected as argued above.

Aw=d-

(3.3)

To fully separate the attosecond pulses from the driving laser pulses after reflection off
the split-mirror assembly, additional spectral filters were inserted into the combined beam
path. An uncoated 2 pum-thin nitrocellulose membrane is transparent for visible light and
due to its minimal thickness introduces only minor dispersion on the laser pulses. In con-
trast, it is thick enough to completely absorb (with transmission on the order of 1073 [86])
the XUV spectral range of the attosecond pulses. For the latter spectral range, 200 nm thin
metal foils show reasonable transmission above 50% ( [86], see also Fig. 3.8) where both
aluminium (for transmission between ~ 20 to 70 eV) and zirconium (for transmission
between ~ 60 to 200 eV) is installed and can be interchanged during vacuum operation.
In turn, these metals show almost zero transmission for the NIR spectral range with pen-
etration depths on the order of 10 nm [3]. Remaining transmission is then only caused
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Figure 3.8: XUV photon transmission for 200 nm thin metal filters, for aluminium (Al) and
zirconium (Zr). Data from [86].

by microholes in the foil surface with diameters on the order of 1 um or less which is
unavoidable during the fabrication process [102]. Both polymer membrane and metal fil-
ters are geometrically arranged in order to filter out only the attosecond pulses from the
inner mirror, and the laser pulses from the outer mirror. Precise in-situ-positioning un-
der vacuum operation is achieved with a mechanical feedthrough (selection of aluminium
or zirconium and coarse adjustment along the vertical direction) in combination with a
picomotor-controlled translation stage for fine adjustments along the horizontal. Further
details on the technical realization are depicted in Fig. 3.9 and can be found in [85].

~ @ 2 mm hole

polymer membrane

Figure 3.9: Separation of the XUV (blue) and IR (red) spectral parts using a metal filter and a
polymer membrane. Both aluminium (Al) and zirconium (Zr) can be selected without opening the
vacuum chamber.

To control the intensity of the NIR laser pulses for interferometric experiments, a mo-
torized zero-aperture iris is concentrically mounted along the combined beam path after
the attosecond pulses were generated. The opening of the aperture can be finely con-
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trolled during vacuum operation with a picomotor-equipped rotation mount. With this
arrangement, the amount of NIR light impinging on the outer mirror can be flexibly cho-
sen, thus also the intensity of the laser pulses in the experimental interaction region is
finely controlled. The set laser intensity in the interaction region is a monotonic function
of the opening of the aperture. The calibration can then be yielded in sifu and is further
discussed in section 6.4. A photographic picture of the arrangement is shown in Fig. 3.10.

Figure 3.10: Photographic picture of the iris aperture mounted on the motorized translation stage
to finely control the transmitted laser intensity.

3.5 The high-resolution flat-field XUV spectrometer

An integral part of the newly constructed beamline for interferometric experiments is a
high-resolution spectrometer for the XUV spectral range. This is realized with a so-called
flat-field spectrograph [103] which is operated in grazing-incidence geometry. The key
element of such a spectrograph is an aberration-corrected concave grating with a variable
groove density (variable line spacing, VLS) [104]. This grazing-incidence reflection grat-
ing disperses the entrance slit onto a flat spectral plane. In other words, the entrance slit
is spectrally resolved and imaged onto a flat exit plane. The imaging geometry of such
gratings is depicted in Fig. 3.12 with specifications added for the grating in use. It is due
to the VLS properties of the grating that spectral imaging is now realized in a single plane,
as opposed to conventional concave gratings with fixed line spacing, where the exit slit
is imaged onto the so-called Rowland circle [105, 106]. With these conventional spectro-
graphs, a high spectral resolution can only be achieved when the exit slit is scanned over
the Rowland circle (or more commonly the grating is rotated, keeping the position of the
exit slit fixed) and the transmitted light intensity is measured as a function of the slit posi-
tion (or the grating position). By replacing the exit slit with a CCD camera it is possible to
detect a broad spectral range at high spectral resolution within a single measurement. The
flat-field imaging of the VLS grating then guarantees an equally high spectral resolution
as with a conventionally scanned exit slit, now without moving any mechanical parts.
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Figure 3.11: Schematic assembly of the customized flat-field high-resolution spectrometer. (1)
Metal filters to shield against visible stray light, (2) VLS grating, (3) flexible membrane bellow,
(4) set screws for coarse and fine positioning, (5) bearing for precise positioning along spectral
plane, (6) CCD chip of XUV camera.

o = 85.3° L=110.16 mm

B =79.56°
y=67.26°

Figure 3.12: Imaging geometry of the used VLS grating which spectrally disperses the entrance
slit (e) onto the flat imaging plane across the distance L. Technical details are taken from [107].

The VLS grating in use disperses the wavelength range between ~ 11 and 62 nm (corre-
sponding to ~ 20 to 110 eV) onto a flat ~ 110 mm wide image plane. The average groove
density is 1200 mm . Further specification details are indicated in Fig. 3.12 and can also
be found in [107]. For the detection, a back-illuminated thermo-electrically cooled CCD
camera is used [108], which is sensitive for the XUV spectral region of interest. Both low
thermal and readout noise and high dynamic range allows for efficient and fast (typically
hundreds of milliseconds up to a few seconds) detection also of a low XUV photon flux.

The CCD chip contains 1340 x 400 pixels, each of size 20 x 20 um?. In the spectral di-
rection, a region of 26.8 mm can thus be covered with the chip. The camera therefore has
to be moved along the flat spectral plane in order to cover the whole energetic range. This
is realized with a home-built (machine shop at MPIK) mechanical bearing including a
flexible membrane bellow and set screws. The flexible design allows for fine adjustments
in order to exactly position the camera chip into the imaged spectral plane. During oper-
ation, the camera can be freely moved along the spectral plane while its relative position
can be read out with ~ 0.1 mm precision. Further technical details on the mechanical
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bearing and the spectrometer design in general are depicted in Fig. 3.11. The entrance slit
of the spectrometer is defined by the focal spot of the XUV light which is created by the
toroidal focusing mirror (see section 3.4) inside the target cell. Its size can be estimated
from the focused laser spot and is expected to be on the same order as the size of a single
CCD pixel.

Assuming an evenly spaced dispersion of the specified wavelength range along the full
spectral plane, a mapping of ~9.3-1072 A per CCD pixel can be expected. With this first
estimation, for 60 eV XUV energy, a theoretically achievable resolution of ~ 27 meV
can be expected, assuming the size of the camera pixel as the limiting element. The
convolution of an experimentally measured spectral line shape (see section 6.2) with a
Gaussian point spread function yielded a resolution of ~ 47 meV FWHM at 60 eV which
is very close to the theoretically estimated value and was sufficient for the first performed
experiments as presented in chapter 6. Further improvements are still possible within the
capabilities of the spectrometer design and subject of future alignment work.



Chapter 4

Sub-cycle strong field interferometry

This chapter is devoted to the sub-fs motion of an electron bound to an atom — an attosec-
ond electron wave packet. The processes that occur when atoms are interferometrically
exposed both to strong (on the order of 10'* W/cm?) and ultrashort few-cycle laser pulses
were analyzed. It is numerically shown, by utilizing a computer experiment, how char-
acteristic time scales can be accessed that are much shorter than the duration of the laser
pulses which are used. The observed time period is also shorter than the cycle duration
of the laser pulses. In addition, the energy spacing AE which corresponds to the observed
wave-packet motion (cf. section 2.4) is not contained within the bandwidth of the laser
pulses. While these results may seem unexpected at first glance, it is a natural conse-
quence of the well-defined coherence of the laser pulses and it shows that the time scale
of their duration (both envelope and cycle) is not imposing any fundamental limit to the
time-scale of observation in such fully coherent interferometric experiments. The pre-
sented scheme is very similar to Fourier transform spectroscopy, where limitations are
only of technical nature (detector resolution, stability, etc.) as they are a result of Fourier
analysis (Nyquist’s criterion).

The strong-field interferometric scheme is possible with the availability of CEP-stable
laser pulses [109], which perfectly define the electric field evolution of the pulses with
sub-fs precision. This means that not just the envelope of a laser pulse, but more precisely
its well-defined electric field interacts with a system. More aspects of the CEP within this
scheme can be found in section 4.5. The remainder of this chapter is based on our already
published work [110], where the scheme was already introduced and the key findings
were described.

The introduced strong-field interferometric scheme creates and measures an electron wave
packet. In the following, a short overview of similar experimental configurations will be
given where also wave packets (both electronic and vibronic) were interferometrically
observed directly in the time domain.
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4.1 Quantum wave-packet interferometry

As introduced in section 2.4, quantum wave packets evolve on time scales which cor-
respond to the inverse spacing of the involved energy levels. Rotational wave packets
in molecules were observed earliest (see e.g. [111] and references therein) as their char-
acteristic time scale is on the order of picoseconds (the typical energy level spacing is
on the order of few to sub-meV) which was most easily accessible along the develop-
ment of ultrafast tools. Employing pairs of femtosecond laser pulses in an interferomet-
ric configuration, vibrational wave packets could be directly observed in the time do-
main [111,112], where the vibrational period of an electronically excited iodine molecule
was determined to about 300 fs, and the vibrational level structure could be retrieved
from the time-resolved measurement via Fourier analysis [112]. Moving to shorter time
scales, the vibrational level structure of the D;r molecular deuterium ion was experimen-
tally analyzed more recently [113, 114] and opened a route towards the full determination
of the combined rotational and vibrational motion of small molecules [115]. In these
latest experiments, intense (5 - 10 W/cm?) few-cycle (7 fs) laser pulses were used to
tunnel-ionize neutral D, into D2+ and coherently prepare a vibrational wave packet. This
excitation step was later replaced by an isolated attosecond pulse [116] where a vibrational
wave packet was prepared and measured in an H;“ molecular ion. Within this scheme, the
authors could also demonstrate a measurement of the combined nuclear and electronic
motion [117], pointing towards dynamics beyond the Born-Oppenheimer approximation,
in which electronic rearrangement is assumed instantaneous on the time scale of nuclear
motion.

For the electronic degree of freedom only, bound wave packets were observed in Rydberg
states of a potassium atom [118] on time scales of few hundred femtoseconds. About
ten years later it was shown [119] that free electron wave packets (on their way to the
detector) interfere in response to two time-delayed non-linear two-photon interactions
again with a potassium atom. As a consequence of the involved two-photon interfero-
metric scheme, a modulation frequency of twice the laser central frequency 2@, i.e. a
modulation period corresponding to half the laser cycle) was imprinted into the measured
photoelectron spectra. This finding already points out how sub-cycle dynamics can be ac-
cessed, namely via nonlinear interferometric interaction of the involved laser pulses. Very
recently, an interferometric experiment was performed in singly excited helium using an
isolated attosecond pulse and a time-delayed few-cycle femtosecond pulse [120]. The
experimentally measured photoelectron spectrum contained a signature of both bound
and continuum electron wave packets beating on an sub-femtosecond time scale. The
broad energy spectrum of the attosecond pulse allowed the simultaneous excitation of
several bound (and continuum) electronic states which formed an attosecond electron
wave packet. Finally, we could recently realize the excitation and measurement of a two-
electron wave packet evolving on attosecond time scales which involves doubly-excited
states in an helium atom. This will be described in more detail in chapter 6.

All these experiments show that the direct time-resolved measurement of quantum wave
packets is a very active field. Based on the nonlinear interferometric approach in [119]
we now further investigate this approach for the case of both strong and ultrashort laser
pulses, involving higher nonlinearities with spectrally broader few-cycle pulses. Within
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Figure 4.1: Basic experimental scheme of the nonlinear pump—probe scenario. a) Model elec-
tronic level scheme of an atom, where for simplicity only the principle quantum levels of hydrogen
are shown. The typical energy spacing extends over the order of 10 eV, with photon energies on
the order of 1.6 eV. Due to the large spectral width of the few-cycle laser pulses (indicated by the
rainbow colors) the excited states (n > 2) can be reached via combination of different numbers
of photons with increasing nonlinearity. The multi-photon picture is used for illustration while
the whole process is better understood in the tunneling regime (see text). The indicated spectral
width is used only for illustrative purposes and may not reflect the actual broadness, however this
does not affect the argument of overlapping orders for the highest excited states (as also justified
by our simulation). After a time delay 7 all bound states are projected into common continuum
states with a second strong laser pulse (vertical red bars). The nonlinear steps there are not shown
for simplicity. b) Schematic of the experiment. Two time-delayed laser pulses are focused into an
atomic gas jet. The released electrons encode the interferometric signal and are energy resolved
e.g. with a time-of-flight (TOF) detector.

this scheme we can access both bound and continuum electron wave packets on attosec-
ond time scales where neither attosecond pulses nor ultraviolet or shorter-wavelength
fields are required for excitation, and in addition a vast range of energy levels, both
dipole-allowed and non-dipole allowed, can be reached, going beyond linear two-pulse
interferometry.

4.2 The basic experimental scheme

The basic scheme of our numerical experiment is depicted in Fig. (4.1). An atom is
exposed to an intense laser pulse which partly excites an electron from the ground state
both into higher lying electronic states as well as into continuum states (i.e. ionization).
Due to the fully coherent interaction of the laser pulse with the atom, an electronic wave
packet is formed which evolves freely after the atom-laser interaction. After the time
delay 7, a second laser pulse, an exact copy of the first pulse, again interacts with the
atom and can project different spectral parts of the excited wave packet onto each other
in the continuum where an energy-dependent interference pattern is formed. This scheme
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can also be understood in the traditional pump (first laser pulse) and probe (second laser
pulse) scenario which will subsequently be used for simplified reading.

A crucial prerequisite of this scheme to work is of course the first step, that it is possible
to excite various electronic energy levels of an atom after the interaction with an intense
laser pulse. For strong fields in the tunneling regime this was recently demonstrated in an
experiment [121]. It can be understood in terms of frustrated tunneling ionization, where
a part of the electron is initially tunnel-ionized within a fraction of the laser field (see
also section 2.2.1). If the ionic Coulomb potential is fully considered for the subsequent
laser-driven electron motion (which is usually neglected in SFA), it was shown [121]
that the electron can be recaptured into higher-lying excited states. We also considered
this scenario for different pulse durations down to the few-cycle regime, where more
details can be found in [122]. The name “frustrated tunneling ionization” thus stems
from the fact that the electron, though tunnel-ionized at first, never really leaves the atom
which means that the ionization channel is partly suppressed. This effect has also been
theoretically discussed earlier in the multi-photon picture [123, 124], where due to the
resonant coupling of many Rydberg states with the continuum a destructive interference
sufficiently suppresses the ionization channel in favour of excitation.

The basic selection rules known from single photon excitation [34] can be considered bro-
ken which means that electronic states of any parity can in principle be excited. This is ex-
plained with the broad-band multi-photon excitation scheme as illustrated in Fig. (4.1). In
our scheme we consider single-electron excitations only i.e. using intensities only slightly
above the onset of strong-field single ionization.

4.3 Analytical and numerical framework

After the first pump pulse a coherent wave packet is formed similar to Eq. (2.49) in sec-
tion 2.4, where the position expectation value evidences the wave packet. The excitation
step with the pump pulse from the ground state |g) can be formally expressed as

(W(r=0)|Lpulg), (4.1)

where f,pu describes the full coupling with the pump laser pulse Epu(t) (e.g. by means of
frustrated tunneling ionization). The excited final state |¥(r = 0)) is a superposition of

-

both bound states |¢),) and continuum (momentum) states |k). The excitation step can be
expressed by the complex expansion coefficients b, and c(k) of the bound and continuum
states, respectively. After the pump-pulse excitation, the electronic wave function of the

atom can therefore be written in most general terms as
(0 = Y e 5 gn) + [ &k (e @2
k
n

where atomic units i = e = m, = 1 are used throughout. The now following derivation of
the final continuum states after the probe-pulse interaction, which eventually leads to the

detectable photoelectron momentum spectrum S(k), follows our work which we already
described in [110]. The superposition state as given in Eq. (4.2) evolves freely for a time
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T given by the delay between the pump and the probe pulses. After the probe laser pulse,
the evolved initial superposition state is modified and its continuum portion can be written
as

Pe(t)) = /d3k I3 k|Lprylp( ))e~ 2K (=)

= / Pk &(k)e =D ) (4.3)

where ipr describes the full coupling of the atom with the intense probe laser pulse Epr(t).

The E(%) represent the amplitudes of the continuum wave function after the probe laser
pulse:

Zc —iE, ‘L' //(k)efész (44)

with

in which LK = (k|Ly|¢,) stands for the matrix element of Ly connecting bound state

|¢,) with the momentum state |7€> due to the probe pulse. Times #; and t, are chosen
such that the probe laser pulse is fully contained in the interval [¢1,#;] before and after the
pulse, respectively, and the vector potential A (t) is defined in the Coulomb gauge with
lim_, 1« |A()] = 0. For the formulation of ¢”(k) we consider only the Volkov phase,
which is justified for the probe pulse arriving after some time when the pump-ionized
electron is already far away from its parent ion. The photoelectron momentum spectrum
obtained for the combined interaction of both pulses thus reads:

Sk = & «Zyc (K)> + | " (k)| (4.5)
b | et
n.m<n
+ Zc;(%)c"*(z)e_i(E”_%kz)T+c.c. :

The terms in brackets are responsible for 7-dependent oscillations of the photoemission
probability with frequencies E, — E,, and E, — %kz. Note that these interference terms
appear regardless of the nature or complexity of the pump and probe interaction. For
few-cycle pulse excitation as considered here, the CEP enters the complex-valued wave-
function coefficients ¢, (k) and ¢’ (k) such that for non-CEP stable pulses the interference
patterns are generally washed out. This will be discussed in more detail in section 4.5.
Even though both the pump and the probe step are nonlinear and can be complex, the
evolution of the states proceeds in the field-free temporal window between the two pulses.
Signatures of the field-free electron wave packet during this time window are thus encoded
in the detectable photoelectron spectrum.
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Figure 4.2: The black line shows the 1D soft-core potential for the model argon atom along the
simulated spatial grid. The imaginary boundary potential in order to absorb the ionized electron
wave packet is shown in red. Recolliding trajectories of the electron in the laser field are fully
contained because @, = 0.057 a.u. and & = 0.08 a.u. correspond to a ponderomotive radius 7, ~
25 a.u. (see Eq. (2.29) in section 2.2.2).

The numerical framework of the computer experiment is now described in detail, which
was performed in order to confirm above theoretical considerations. We assume linear
polarization of both laser fields pointing into the same direction. This is most of the times
also realized in experiments. In order to enhance the computation time (the system has to
be evaluated for a large set of different temporal delays 7), a one-dimensional solution of
the time-dependent Schrodinger equation (1dTDSE) is implemented.

An atom with a single active electron is considered here, using the soft-core binding
potential V (x) = — (x> +a?) /2 introduced in [10] which has since then become a routine
approach to study the interaction of atoms with strong laser fields. The parameter a is
chosen to match the ground state energy Eg = —15.7596 eV (a ~ 1.154) of argon [9] as
an example target. The non-relativistic, dipole-approximation Hamiltonian with the laser
field present thus reads

H 5 N (4.6)
with the vector potential A(¢) defined in the Coulomb gauge. The split-operator technique
(see for instance [125-127]) is employed for the numerical evolution of the 1dTDSE. It
employs the separate evolution of the wave function in real space (“t”) and in momentum
space (“p”) for each single time step Az, where the two domains are connected via Fourier
transform. The advantage of this technique is that the temporal evolution of the wave
function |W(r)) within each time step Ar is merely the multiplication of a phase factor
exp [—iHy ,At], where the split Hamiltonian H, , in each domain is just a function of x or p
rather than an operator. The ground state of the system is obtained by field-free evolution
in imaginary time (Ar — —iAr) starting from a completely random wave function. In
that case, the phase factor turns into an exponentially decaying function which, when
renormalizing |\P(7)) after every imaginary time step, eventually leads to the ground state
|@o) with the smallest (least decaying) energy E.

Gaussian laser pulses with a FWHM duration of 6 fs, a carrier wavelength of 800 nm
(o, = 1.55 eV) and @cgp = 7/2 are used in the simulation. The peak of the electric-
field envelope is & = 0.08 a.u., corresponding to a peak intensity of 2.2 - 10'* W/cm?.
Two equal pulses of this kind are temporally delayed for a range of 7 between 1000
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and 2998 atomic units of time. For each delay, the wave function is evolved for a total
time 7 = 4000 a.u. with a step size At = 0.1 a.u.. The parameters of the space grid
(N =512, Ax =0.5 a.u., which yields +-128 a.u. spatial extension) are chosen such that
recolliding electron trajectories (propagating in the strong laser field) are fully contained
(see also Fig. (4.2)). An imaginary absorbing potential is used to collect the outgoing
electrons in order to obtain the photoelectron spectra.

When entering the imaginary boundary region at positive x, the absorbed electron wave
function is transferred to a new “detector grid” of 8192 sampling points and spatial res-
olution Ax’ = 1.5 a.u.. This resampling is done for several reasons. The maximum Ki-
netic energy of interest is the first ATI cutoff at 2U, = 0.7553 a.u. in our case. This
corresponds to a momentum pmax = 1.23 a.u. which is still well below the Nyquist limit
PNy = 2.09 a.u. of the detector grid. Furthermore, this grid has a momentum resolution
Ap =5.11 x 10~* a.u.. To resolve the modulation AE ~ 27/t at the maximum time de-
lay T = 2998 a.u., Ap = AE /pmax = 1.7 x 1073 a.u. is needed, which is also fulfilled by
the parameters of the detector grid. Finally, the spatial dimension of the grid are large
enough to avoid unphysical interferences due to periodicity, as the time it takes for the
fastest electrons to cross half the grid is about 5000 a.u., which is still larger than the total
simulation time 7.

The interferometric step size A7 to sample the pump—probe delay is directly connected to
the maximum resolvable energy E,,,, via Nyquist’s theorem reading AT = /AEpx. As
an example, to probe the beating between the ground and highest bound electronic states
of argon, separated by ~ 15.8 eV, the time resolution should be at least set to AT = 130 as.
We chose an interferometric step size AT = 2 a.u. corresponding to about 50 as. In turn, the
total interferometric time span which is scanned directly influences the energy resolution
of the simulated level scheme. We scanned in total over 2000 a.u. (i.e. 50 fs) which yields
an energy resolution 8E = 1.6- 1073 a.u. (i.e. 40 meV). These considerations show that
within this interferometric scheme, there is no fundamental limit in resolution. Limits are
only of a technical nature (stability, time of data acquisition, statistics, detector resolution)
which of course most of the times are quite challenging. An ultimate resolution limit is
then of course given by the life time of the excited states just as in any other spectroscopic
approach [34,46], including line-shape broadening and related effects. The travel time to
the detector (on the order of nanoseconds) is usually not an issue for the here considered
time scales.

4.4 Demonstration of the strong-field-interferometry
scheme

In order to demonstrate the excitation of the wave packet after the interaction of the
atom with the pump pulse, both the dipole (¥|&|¥) and quadrupole (¥|#*|¥) expectation
values are shown in Fig. (4.3). These correspond to an electronic wave-packet beating
among odd and even parity states, respectively. For three dimensions this implicates that
both dipole-allowed and dipole-forbidden states were excited and are coherently beat-
ing. This proofs that within our strong-field excitation scheme more than single-photon
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Figure 4.3: Coherent wave-function beating after the interaction with the first pump pulse which
arrives at t ~ 14 fs. Both the position a) and position squared b) expectation values are evaluated
where c,d) are magnified views. A sub-fs-timescale oscillation occurs after the pump pulse which
indicates the coherently excited wave packet. Both odd (a,c) and even (b,d) parity states are excited
which corresponds in 3D to the excitation of both dipole-allowed and dipole-forbidden states.

dipole-allowed states can be accessed. A Fourier transform of this modulation is shown in
Fig. (4.7) and will be discussed at the end of this section. Before that, the experimentally
accessible photoelectron spectra are now presented and discussed.

In Fig. (4.4) the obtained photoelectron momentum spectra are plotted both for a single
pump pulse (which was also used to show the beating in Fig. (4.3)) as well as for two
pump—probe cases at different time delays 7 » which are indicated in the figure. Spectral
modulations that are enveloped by the single pulse spectrum are observed. This modu-
lation is time-delay dependent as predicted by Eq. (4.5). The entire set of photoelectron
spectra between 7; and 7, are shown in Fig. (4.5). Even though both pump and probe
pulses are significantly longer than 1 fs, as is the optical cycle of 2.7 fs, pronounced
non-trivially structured sub-femtosecond beating patterns are observable as a function of
time delay. This sub-cycle beating is due to the time-dependent complex electronic wave
packet as shown in Fig. (4.3). As motivated in the introductory section of this chapter, it
is created by and synchronized to the CEP-stable strong electric field of the pump pulse
that gets projected into the continuum by the probe field. Importantly, this is in contrast
to the temporally less well-defined excitation and probing by the longer pulse envelope as
for single-photon excitation or schemes using non-CEP-stabilized strong-field excitation
that tend to wash out such sub-cycle beating patterns. More considerations on CEP- and
intensity-effects will be discussed in the following (section 4.5).

To reveal the beating frequencies within the time-delay modulations in Fig. (4.5b), the
photoelectron momentum spectra are Fourier transformed with respect to the time de-
lay 7. The result is shown in Fig. (4.6), exhibiting the entire set of beating frequen-
cies predicted by Eq. (4.5). The modulation |E, — %k2| (with negative binding energies
E,) is given by the parabola-shaped features which start at the corresponding energy
level |E,| at zero photoelectron momentum. The strongest contribution to the modula-
tion is observed in the parabola starting at the ground-state ionization potential energy
I, =0.58 a.u. (Ep = —15.76 eV for argon). This corresponds to an interference of free
electron wave packets ionized by the pump pulse and the probe pulse out of the ground
state, as first measured in [119] for a two-photon step. The momentum-independent ver-
tical lines can be assigned to E,, — E,, (see Eq. (4.5)) and therefore refer to the attosecond
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Figure 4.4: Taken from [110]. Photoelectron momentum spectra a) for one single pump pulse,
b) and c) for two identical pump—probe pulses at two different time delays 71> as indicated in
the figure (solid lines). In b) and c), the rescaled (times four) single-pulse spectrum of a) is also
shown (dashed line). A vertical dashed line at an electron momentum p, = 0.415 a.u. is drawn to
highlight the time-delay-dependent modulation.

quantum beating between different bound electronic states of the atom which recently
has been measured in helium [120] but with a single-photon excitation scheme using an
attosecond pulse for the pump.

In our situation, for strong driving fields slightly above the onset of single-electron ioniza-
tion, the ground state remains the most populated bound state in the system (= 93% of the
bound electron wave packet) after the interaction with both laser pulses. Therefore, the
strongest vertical lines refer to electron wave-function beating between the ground state
and the higher excited states. The ground state population thus plays a role similar to a
strong local oscillator in a heterodyne detection scheme, leading to large observable beat-
ing amplitudes of weak signals (the small populations of the excited states in this case).
Wave-function beating among the higher excited states themselves results in the weaker
vertical lines at low energies up to E = 0.24 a.u. (the energy for ionization out of the first
excited state). As can be seen from the two single-momentum and integrated-momentum
lineouts in Fig. (4.6a,d), it is necessary to observe the time-dependent modulation resolved
for a certain range of electron momenta or at least for two separated electron momenta in
order to distinguish between bound and continuum electron wave packets.
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Figure 4.5: Taken from [110]. Time-delay dependent photoelectron spectrum a) at the selected
photoelectron momentum p, = 0.415 a.u. (dotted line in Fig. (4.4)), b) for a broad range of
photoelectron momenta. The single-pulse spectrum from Fig. (4.4a) is additionally shown in
¢). Attosecond time-scale beatings are clearly observable as a function of time delay. Note the
momentum-dependent visibility of the modulation in b) is corresponding to the peaks and dips of
the single-pulse photoelectron spectrum in c).

Fig. (4.7) finally shows the dipole and quadrupole beating spectra obtained via Fourier
transform of the expectation values presented earlier in Fig. (4.3). For comparison, the
momentum-integrated pump—probe spectrum from Fig. (4.6d) is also shown. The posi-
tion of the spectral lines obtained from the pump—probe data in Fig. (4.7a) agrees per-
fectly with the electron wave-function beating in Fig. (4.7b,c), proving that both dipole-
allowed and dipole-forbidden transition energies among states are accessible within this
approach, a qualitative augmentation compared to the single-photon pumping schemes
such as [120].

As mentioned at the end of section 4.3, the spectral resolution of this method is lim-
ited solely by the inverse of the pump—probe scanning period as in earlier interferometry
approaches [112, 118]. The spectral resolution 8E = 40 meV is much less than the band-
width of the individual femtosecond pulses (~ 0.3eV) and certainly much less than the
entire spectral range of accessible beating frequencies (> 16 eV). This proves that the
spectral and temporal structure of the pulses in such schemes are decoupled from the
accessible spectral and temporal resolution in experiments.
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Figure 4.6: Taken from [110]. Beating frequencies of electronic bound and continuum states after
Fourier transformation of the data in Fig. (4.5b), a) for a lineout at momentum p, = 0.415 a.u.,
b) for all photoelectron momenta. Each Fourier-transformed spectrum is normalized to its zero-
frequency component, thus numerical noise along the minima in the photoelectron spectrum is
artificially enhanced (the horizontal features). c) The single-pulse photoelectron spectrum from
Fig. (4.4a). d) Momentum-integrated frequency spectrum. See also text for further explanations
and interpretation of the features. When comparing the single-momentum lineout in a) with the
integrated-momentum lineout in d), the contribution from the bound states (the vertical lines in
b)) are present in both lineouts, while the contributions from free wave-packet interferences (the
parabolas in b)) are only present in the single lineout and are washed out in the integration.
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Figure 4.7: Taken from [110]. a) Momentum-integrated frequency spectrum of the electron beat-
ing signal (from Fig. 4.6d). The dashed red line shows the laser-pulse spectrum. b,c) Fourier
transform of the position (b) and position-squared (c) expectation value of the electronic wave
function as shown in Fig. (4.3) after the interaction with the pump pulse. The agreement of the
spectral positions of the wave-packet beatings in b) and c) with the experimentally observable data
from a) is excellent and predicts that both dipole-allowed and dipole-forbidden excitations can
be experimentally measured. The laser pulse spectrum (dashed red line in a)) illustrates that the
accessed levels are well outside the linear-excitation spectrum.

4.5 Effects of the intensity and the carrier-envelope
phase

Fig. (4.8) shows the time-delay-dependent modulation pattern across the photoelectron
momentum spectrum as a function of the electric field strength and the CEP. Especially
for the variation of the electric field strength, a strong shift of the modulation peaks is ap-
parent. Using Fourier analysis, the modulation repeats roughly 12 times across the shown
range A& = 0.02 a.u., which can also be confirmed by counting the interference maxima
along a fixed momentum value (e.g. p. = 0.415 a.u.). This is also the case for higher elec-
tron momenta (not shown). An absolute change 0& ~ 2 - 1073 a.u. of the electric field
strength would therefore shift subsequent fringes into each other, corresponding to 2.5%
relative change at &y = 0.08 a.u., which corresponds to an intensity variation of 5%. The
laser intensity has to be kept fixed below this value in order to reveal the interferometric
modulation pattern. This might be technically challenging but is within reach of currently
available intense laser sources in the few-cycle regime, which typically can be kept stable
with shot-to-shot noise on the order of 1% rms.
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Figure 4.8: Pump-probe-induced modulation pattern across the photoelectron momentum spec-
trum as a function of the electric field strength (a) and the CEP (b). The time delay was set to
7 = 1000 a.u.. The CEP was fixed at §cgp = 7/2 in (a), and the electric field strength was set to
éo = 0.08 a.u. in (b). The remaining pulse parameters are unchanged and defined in section 4.3.
The dashed white lines outline the electron momentum p. = 0.415 a.u..

The impact of the CEP on the interference pattern can be quantified to a shift of modula-
tion maxima into their neighbouring minima within A¢cgp ~ 7. Currently available shot-
to-shot stabilities of the CEP are on the order of 500 mrad and better. These stabilities are
therefore sufficient in order to resolve the pump—probe-induced modulation pattern. Be-
sides, measuring the photoelectron spectra separately for every single shot, much higher
laser stabilities can be reached as nowadays few-cycle laser pulses can be characterized
on a shot-to-shot basis [83]. Appropriate focusing conditions have to be used in an exper-
imental realization, both to avoid focal volume averaging and rapid changes of the Gouy
phase along the focused beam [5]. This has to be done in order to avoid further intensity
and CEP averaging.

Fig. (4.8) also shows that additional changes in the photoelectron spectra are induced by
a variation of the electric field strength or the CEP which originate from each single laser
pulse. They can be explained with quantum orbits [128, 129] where electron emission is
timed with attosecond sub-cycle resolution also within one laser field. It is based on the
interpretation of the electron emission as a temporal-slit-interference experiment [130],
which can be influenced both by the laser intensity and the CEP. These parameters thus
also encode changes in the emission dynamics in strong-field ionization which can be
experimentally resolved when exploring these parameters in multidimensional data sets.
In the remaining chapters this is realized for different experimental configurations.
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4.6 Concluding remarks on sub-cycle strong field inter-
ferometry

In conclusion for this chapter, a new interferometric scheme was proposed and demon-
strated with a computer experiment. It involves a highly nonlinear interferometric detec-
tion scheme inducing sub-cycle attosecond wave-packet beating. The highly nonlinear
interaction of few-cycle laser pulses with a medium (which itself also generates attosec-
ond pulses, see section 2.2.2) can be utilized directly in order to access these sub-fs time
scales, or equivalently for a description in the energy domain to coherently excite and
probe a multitude of quantum states, spanning over several eV.

A crucial point of this work was to demonstrate that using the interferometric approach the
only limitations in temporal or spectral resolution are of technical nature. Besides the sta-
bility issues, the achievable resolution can be determined from considerations of Fourier
analysis as described at the end of section 4.3. It should however also be mentioned that
a high-resolution electron-detection (on the order of 40 meV or better, depending on the
investigated process) is needed to resolve the interferometric modulation in the photoelec-
tron momentum spectra.

In principle, using linear polarization only as it was considered here, certain electronic
orbitals might not be accessible or be suppressed as compared to others (obeying a non-
accessible symmetry). One could therefore think of replacing at least the first pump pulse
with arbitrary elliptical polarization, or using polarization-shaped laser fields [131] to se-
lectively excite a certain range of states. This might especially prove advantageous when
using molecules as target species. However, the key point of the here described scheme
is that no matter how complex the excitation step might be, after the interaction, the sys-
tem evolves in a field-free environment. As the second laser pulse is interferometrically
phase-locked to the first pulse, this evolution can subsequently be measured. In order
to fully reconstruct the three-dimensional wave packet, coincidence measurement tech-
niques [99] can be applied, especially when more than one electron is involved, or other
electron/ion-imaging techniques like velocity map imaging [132] could be used. Both
techniques allow to access the electron momentum differentially across the full 47 solid
angle.

Usually spatial interferometers are applied to precisely measure small changes along the
interferometric paths. Applying this idea to the time domain as it was presented in this
chapter (and as it was already applied in [112, 118] and certainly in many more related
work which is not mentioned here), it is possible to use a third laser pulse to disturb the
field-free system. This way, the coupling among various excited states can be analyzed.
Transferring the scheme to molecules, the excitation might also involve metastable tran-
sition states which influence the outcome of chemical reactions. In that case, it is finally
crucial that the duration of the coupling laser pulse is on the time scale of the transition
process, where the temporal structure of the pulses is ultimately needed. However, as it
should have become clear from this chapter, there is no fundamental limitation for the in-
terferometric detection and only broad-band excitation spectra (which here are achieved
in a nonlinear way) are needed to reach the states of interest. A realization might for
example involve the tracking of an ultrafast charge migration in glycine molecules [133].
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When using a weak attosecond pulse for a perturbative coupling of the excited states, it
needs to be further investigated if this is sufficient for such a scheme. On the other hand,
also stronger few-cycle femtosecond pulses could be used to couple the excited states,
already yielding a temporal resolution of few femtoseconds, which is most of the times
sufficient even for many ultrafast electronical rearrangements in chemistry.

It turns out that this proposed scheme is very similar to the experiment which we per-
formed for doubly-excited autoionizing states in helium, where we could measure how
metastable states can be disturbed from their field-free evolution. This is described in
more detail in chapter 6, where the interferometric detection scheme is realized with at-
tosecond pulses and the interferometric nature of the spectral line shape itself, while the
coupling is achieved with a few-cycle femtosecond laser pulse.

Finally, with the intra-pulse CEP and intensity effects mentioned in section 4.5, a highly
multidimensional interferometric scheme can be constructed, involving not only the time
delay but also both the CEP and the pulse intensity as dynamical parameters. All this is
possible with the ultimate control over the electric field of the pulses itself. It is needless
to say that much further effort is needed in order to fully analyze all these parameters and
their influence on possible experimental realizations, while even more parameters could
be constructed like the chirp of the laser pulses, their duration or even other more complex
degrees of freedom of shaped laser fields. The topmost questions which further concep-
tual work should address are (i) how linearly independent are all these parameters in the
constructed multi-dimensional space and (ii) what is the structure of this space and how is
it changing across specific time-dependent problems which are under investigation. The
answers should then finally lead to optimally constructed schemes for experimental real-
izations and to extracting a maximum amount of information about the physical processes
at work.

For the remainder of this thesis, two further experimental approaches are investigated,
where in both cases the multidimensionality in terms of the dynamical parameters is par-
ticularly emphasized. In the following chapter 5, the role of the CEP is particularly ad-
dressed with the concept of spectral interferometry, while in the last chapter 6, the laser
intensity will play a major role.
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Chapter 5

CEP-resolved spectral interferometry

In conventional multi-dimensional (mainly two-dimensional) spectroscopy, more than
one spectral parameter is used in order to reveal couplings between different energy
states. The basic idea is to use multiple-pulse configurations in time which create spec-
tral interference patterns. These patterns can be analyzed with Fourier techniques em-
ploying spectral interferometry (SI) which reveals both amplitude and phase response of
the system. This complex information can be represented along an additional spectral
axis to result in an effective emission vs. excitation spectrum where characteristic diago-
nal and off-diagonal contributions reveal the couplings between different quantum states
of the system (see e.g. [134, 135] for reviews). The field originated from multidimen-
sional NMR spectroscopy [136], where a sequence of radio-frequency pulses are applied
and couplings of nuclear spins can be analyzed with temporal resolution (typically mi-
croseconds). Moving to the infrared spectral domain, these principles were theoretically
described (e.g. [137, 138]) and experimentally realized (e.g. [139, 140]), where vibra-
tional excitation dynamics in molecules could be traced at femtosecond to picosecond
time scales. It was further applied in the optical domain [141] where couplings of elec-
tronic (excitonic) excitations were followed in photosynthetic systems with femtosecond
time resolutions, which also revealed quantum coherence in the energy transfer of these
systems [142]. A realization in the x-ray domain was proposed [143] but is not yet ex-
perimentally realized due to the historic lack of intense coherent pulses in this frequency
range, because nonlinear excitations are needed. This situation is about to change with
the intense free-electron laser (FEL) pulses that have now been demonstrated at several
large-scale facilities around the world. In all these examples, SI is a key tool to create a
link between the temporal and spectral domain and to access both amplitude and phase
information of the system. The interacting laser fields are typically considered in the
perturbative regime.

By contrast, when infense laser pulses interact with an electronic system, the highly non-
linear response leads to non-perturbative effects, typically resulting in repetitive events
in time spaced by the laser half-cycle (in the case of inversion symmetry). In a most
simplified manner this can be classically understood because strong-field ionization is
intrinsically locked to regions where the electric field is near its maximum values (see
section 2.2.1). It was early realized, that high-harmonic generation interpreted in this
way must lead to trains of attosecond pulses [144], which was subsequently also demon-
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strated in an experiment [145]. The quantum-mechanical interpretation of these processes
is based on the identification of few quantum orbits (typically two, the so-called short
and long trajectory) per laser cycle which dominantly contribute to the observable sig-
nals [24]. Directly applying spectral interferometry to attosecond pulse trains generated
from multiple-cycle laser fields most likely would not lead to substantially more informa-
tion, simply as many equally-spaced contributions overlap in time. It could only yield an
estimate on how many attosecond pulses are in the train [146, 147].

For few-cycle laser pulses, CEP effects are now frequently observed in interaction with
all kinds of media. Attosecond timed electron emission from atoms can be interpreted
as a temporal double slit experiment [130]. Asymmetric electron emission from simple
diatomic molecules [148] in few-cycle laser pulses reveal interference patterns originat-
ing from few quantum paths. Few-cycle laser interaction with nano-scale metal tips [149]
yielded collective electron emission which also encodes interference signatures originat-
ing from one or two emission events. Just recently, collective electron emission was also
gained from plasmas in interaction with few-cycle extreme intense (~ 10'® W/cm?) laser
pulses [150], where temporally interfering signatures were observed in the XUV high-
harmonic emission from this process. All these experimental schemes incorporated CEP-
stable laser pulses where strong dependencies on the CEP were observed in the recorded
data. Even for a multiple-cycle (20 fs duration) laser field in interaction with an argon gas
target [151], CEP effects could be observed in the generated high-harmonic signal, which
is due to the different impact of the CEP on the involved long and short quantum paths.

As CEP dependence is present in so many different scenarios, we can now introduce the
idea of CEP-resolved spectral interferometry (CEPSI). It uses the power of SI to access
relative amplitudes and phases of the interfering contributions within one and the same
few-cycle pulse on attosecond time scales. For few-cycle pulses, naturally only few con-
tributions are expected which makes data obtained from SI more easy to interpret, but this
does not represent a strict limitation of the method. In addition, we can make use of the
CEP as an additional parameter which sensitively influences these different interfering
contributions. Therefore, the CEP will also influence the additional phase-information
which SI can convey. As the CEP is directly related to the temporal domain—it is a pa-
rameter which shifts the laser cycles along the time axis, which is defined/fixed by the
envelope peak of the pulse—it is more straightforward to directly interpret the phase sig-
nature obtained from SI in the Fourier-time domain, i.e. skipping the temporal filtering
and subsequent back-transformation (see section 2.3). Already the direct Fourier trans-
form then yields both relative amplitude and phase information as it was for example
employed in [29,30]. Conceptually this scheme is of course different from conventional
two-dimensional spectroscopy methods as introduced above. In the same manner, how-
ever, multi-dimensionality again allows to disentangle otherwise inseparable interfering
contributions. While in the latter case, typically spectral vs. spectral data is shown and
individual quantum state contributions are separated, here the data is analyzed in two
quasi-temporal domains—the CEP and the Fourier time—and temporal quantum path-
way information is separated. In both schemes, spectral interferometry (based on Fourier
analysis) is employed to access the phase contributions.

Before further introducing the CEPSI framework in section 5.2, the generation and char-
acterization of attosecond pulse trains will be shortly introduced in the following section,
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as our scheme is exemplary applied to the observed interference of few attosecond pulses
which is then finally presented in section 5.3.

5.1 Attosecond pulse trains

Attosecond pulse trains (APTs) were theoretically described in [144] shortly after the
experimental demonstration of high-harmonic generation (HHG, see also section 2.2.2).
Actually APTs were even considered before [152, 153], however at that time, the high-
harmonic generation process was not yet fully understood and confusion was caused
by rapid “unpredictable” phase changes across the harmonics obtained from a numer-
ical solution of the time-dependent Schrodinger equation [153, 154]. This confusion
was resolved when later a fully quantum-mechanical description of the process was
achieved [21], employing the strong-field approximation (SFA) and based on the classical
three-step model [19]. Within this quantum-picture of HHG, the interference of different
quantum paths per laser half-cycle is responsible for the seemingly “unpredictable” phase
changes which was resolved in [144].

The first direct experimental demonstration of APTs [145] also involved a new charac-
terization technique using a two-colour cross-correlation of the generated APTs with its
driving near-infrared (NIR) laser pulse. The method of data analysis was subsequently
termed RABBITT (resolution of attosecond beating by interference of two-photon tran-
sitions) [155]. Its basic working principle is the absorption or emission of one additional
NIR photon during photoionization of atoms with high harmonics. This NIR interaction
appears in between two neighbouring high harmonics (sidebands) which modulate as a
function of the time-delay between the generated APT and the NIR pulse. With this, the
relative phase of adjacent harmonics can be retrieved. This allowed the temporal charac-
terization of APTs and was applied in many subsequent experiments.

A simplified train of attosecond pulses generated from a monochromatic laser field is il-
lustrated in Fig. (5.1). The different recombination times and kinetic energy of the tunnel-
ionized electron explains why the generated attosecond pulses are chirped, resulting from
the classical three step model [19]. This is the so-called attochirp [157] which was ex-
perimentally confirmed with RABBITT [158]. In [157] it was also shown how the slow
variation of the APT across the femtosecond envelope can be determined, making use of
the laser-intensity dependence of the harmonic phase [159], by varying the intensity of
the whole laser pulse and still assuming that the attosecond pulses within the train only
change slowly from pulse to pulse, i.e. the adiabatic assumption of infinitely long driver
pulses is still valid.

With shorter driver-pulse durations approaching the few-cycle regime, non-adiabatic ef-
fects have to be taken into account [160], where the trajectories (or quantum orbits) be-
longing to every subsequent laser half-cycle have to be treated separately [25]. In this
regime, the CEP also strongly influences the generation of APTs from few-cylce laser
pulses [161].

For the few-cycle domain, an iterative algorithm based on frequency-resolved optical gat-
ing (FROG), the complete reconstruction of attosecond bursts (CRAB) [162] is applied to
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WA

optical cycle

Figure 5.1: Schematic illustration of an APT, shown for long driver pulses (approximated as a
monochromatic wave, solid red line). Two attosecond pulses are generated per laser cycle. The
blue and red shaded areas denote the birth time of the tunnel-ionized electron within the three
step model [19] which eventually will reencounter the ionic core (see also section 2.2.2), where
the colour encodes long (blue) and short (red) travel times with equal kinetic energy at recom-
bination. Considering only short trajectories (red, experimentally selected e.g. via phase match-
ing [144,156]), the energy depends on their time of birth and is converted into the instantaneous
frequency of the attosecond pulses (illustrated by the arrows and with rainbow-coloured pulses).
This explains why the attosecond pulses are chirped.

the obtained photoelectron spectra from cross-correlation XUV/NIR measurements. This
algorithm allows both the reconstruction of the attosecond-pulse structure as well as the
electric field of the driving femtosecond pulse. As it is not assuming infinitely long driver
pulses as opposed to RABBITT, it is explicitly non-adiabatic and more suited for the
few-cycle regime. It is most easily applied to the temporal reconstruction of isolated at-
tosecond pulses [163,164], where the experimental scheme can be more easily understood
as attosecond streaking [165-167]. Recently the CRAB algorithm was also successfully
applied to the reconstruction of an APT [168] from 30-fs-duration multiple-cycle laser
pulses.

Signatures of few interfering attosecond pulses were also directly identified in the high-
harmonic spectrum [146, 147], generated from CEP-stabilized laser fields. Such spectra
are perfectly suited for applying spectral interferometry techniques in order to addition-
ally access the relative phase of the interfering pulses, thus gaining comprehensive access
to the individual quantum paths directly from the optical response. This is where our gen-
eral two-dimensional CEPSI analysis method will now be described and demonstrated,
namely for the example of few interfering attosecond pulses. It allows the experimen-
tal separation of the phase contributions of individual pulses in a few-cycle APT only by
measuring its optical spectrum, which directly connects to its temporal profile when phase
information is included.
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5.2 Illustration of the CEPSI framework for three at-
tosecond pulses

Time Domain Energy Domain
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Figure 5.2: Illustration of an asymmetrically-spaced temporal triple slit. The three pulses are
non-equally spaced by 712 and Tp3. Their spectral bandwidth is contained within A® where the
spectral phase of all three pulses is assumed equal (®; (@) = ®,(®) = ®3(w)). In the energy
(Fourier) domain, an interference pattern S(®) is formed with major and minor peaks, resembling
the pattern of a spatial triple slit. The pattern encodes the different temporal spacings as marked.
A slow spectral beating is formed due to a small non-zero difference 7,3 — 7|5 in the asymmetric
pulse spacing. A characteristic of this beating is a transition from major to minor diffraction
maxima.

To illustrate the CEPSI framework for interfering attosecond pulses, we add one more
degree of complexity as to the two-pulse case introduced in section 2.3. Thus, three tem-
poral events (pulse 1,2,3) are interfering (with overlapping spectral components), which
have close, but not necessarily equal temporal spacing 71> and 7>3. Following Eq. (2.44)
from section 2.3, their spectral intensity modulation can generally be described as

S((D) °<A| (CO)AQ(CO) COS[@] ((1)) - (i)z((l)) + (L)T]Q]—i—
A~2((D)A3((x)) COS[CTDQ((D) —CI~)3(CO) —}-(1.)723]—}- (5.1
A1 (0)A3(®)cos[@ (w) — D3(w) + o113,

where here A,(®) and ®,(®) respectively denote the spectral envelope and the spectral
phase of pulse n. Fig. 5.3 illustrates the spectral interference which can be expected from
such a configuration which can essentially be interpreted as an asymmetric temporal triple
slit. In the spectral (energy) domain, every signature can be attributed to the different pulse
spacings T,,,;. Especially a slow spectral beating occurs due to the close temporal spacings
T2 &~ Tr3, with a w-phase jump of consecutive major interference peaks identified as a
significant spectral feature.

The small spectral features (minor peaks) might be harder to detect experimentally due
to their smallness and a limited spectral resolution, in contrast to the more easily visible
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Figure 5.3: Spectral interference pattern for three asymmetrically spaced pulses where the ob-
served spectral bandwidth is smaller than the beating period (2/[723 — T12] 2 A®/27). The spectral
phases of the three pulses are defined as @ (@) = ®»(w) = ®3(w) + @. Depending on ¢, the char-
acteristic -phase jump (where all interference peaks are equally high and thus swapping between
minor and main peaks occurs) of the temporally asymmetric configuration is rapidly sweeping
through the observed spectra as a function of ¢, indicated by the small arrows.

7-phase jumps which could be identified as an anomaly. In particular when the separation-
difference A = 73 — 712 approaches a fraction of the pulse duration, the beating frequency
can become larger than the (detected) spectral bandwidth (2/[t23 — 712] 2 A®w/27), which
would move these 7-phase jumps out of the detected range. This case is illustrated in
Fig. 5.3. In addition however, consider the spectral phase ®3 () of the third pulse can be
changed by a constant offset ¢ relative to the phases of pulse 1&2. An intrinsic feature
of such a change in ¢ can be identified as the rapid movement of the beating-induced
7-phase jump across the detected spectral range.

As it is clear from the previous two sections on attosecond pulse generation, the CEP in-
fluences the individual attosecond pulses produced in each half cycle differently, when the
driving pulse is few-cycle in nature. Thus, ¢ can later be identified as the CEP. In order to
show how the different phase contributions &, (®) can be directly retrieved from the spec-
tral intensity modulation S(), the phase ¢ is continuously scanned between 0 and 27,
creating a two-dimensional data set which is subsequently Fourier analyzed both in ampli-
tude and phase (Fig. 5.4). In this analysis, the previously defined relative pulse character-
istics can be separated by recording a ¢-dependent amplitude and phase structure, which
would not have been possible for a single value of ¢ or a ¢-averaged one-dimensional
spectrum. The amplitude peak appearing at 713 (which corresponds to the interference of
pulse 1&3) exhibits the linear phase difference of ¢ between the two pulses. The ampli-
tude peaks at 7, and 7p3 (which corresponds to the interference of pulse 1&2 and pulse
2&3, respectively) appear very close to each other within their temporal bandwidth where
T3 ~ 1.1 x 712 was chosen. For a single value of @, e.g. at ¢ =~ n-2m, where n is an
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Figure 5.4: Spectral interference generated by all three pulses with phases ®;(®) = () =
&33(0)) 4+ ¢ and T3 = 1.1 X T12. a) Two-dimensional spectroscopic data as a continuous function
of energy and the relative phase ¢, b) Fourier analysis of a) both in amplitude (left) and phase
(right) where the correspondence to the different temporal components 7j2, 723 and T13 = T12 + 123
is indicated. c) averaged Fourier phase as a function of ¢ for each temporal contribution shown in
b). In analogy to the experimentally obtained data four equal cycles of ¢ are shown.

integer number, the superposition of these two contributions exhibits one single peak in
the Fourier amplitude while the phase is equal across this peak. However due to their dif-
ferent @-dependence which is perfectly revealed in the two-dimensional plot, a minimum
appears in the temporal overlap region at ¢ = (2n+ 1) - m. The two-dimensional represen-
tation of the Fourier phase thus directly reveals the relative phase contributions from all
three pulses. This is further illustrated in Fig. 5.4c where the Fourier phase is temporally
averaged in order to create Fourier-phase lineouts, separately for each interfering contri-
bution. While both 7j3 and 7,3 contributions clearly show a nearly-linear ¢-dependence
with slope 1, the contribution averaged over 7y, is only slightly changing with ¢ and is,
most importantly, not changing from one into the next cycle. Deviations from a “per-
fectly” linear (which is only realized for the separated 7;3 contribution) and “perfectly”
flat ¢-dependence across the overlapping 7j2 and 7,3 contributions are of course due a
continuous transition between the two partly overlapping contributions. Nevertheless, the
here presented Fourier analysis shows how the initially chosen phase behaviour for the
three pulses can clearly and straightforwardly be disentangled.

For the here presented simplified and well-behaved toy model the above-defined relative-
phase dependence could in principle also be read out directly from the spectral interfer-
ence pattern which is shown in Fig. 5.4a. This of course then necessitates the under-
standing of the rapidly sweeping beating-signature which was presented along the discus-
sion of the asymmetric triple slit. In contrast, the Fourier analysis directly reveals this
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phase behaviour, thus a direct access to the relative pulse configurations can be gained.
This motivates the power of the two-dimensional CEPSI method: First being “blind” to
any measured (and potentially complicated) CEP-dependent spectral pattern, the com-
plex Fourier analysis directly reveals and disentangles the different relative contributions,
which are well localized in time, whereas delocalized in the spectral domain (broad har-
monic spectrum). This will become even more clear after presenting the experimentally
obtained data and the comparison to numerical simulations based on the non-adiabatic
saddle-point approximation, both analyzed within the CEPSI framework.

5.3 Experimentally observed interference of few attosec-

ond pulses
spherical neon-filled train of few pair of x-ray CCD
focusing gas tube attosecond pulses  Zr filters camera

mirror

CEP-stable transmission
few-cycle NIR pulses grating
~1m
<+ >

Figure 5.5: Schematic illustration of the experimental setup for the measurement of interference
spectra generated from a train of few attosecond pulses. The individual setup components are
described in the text.

The experiment was carried out at the beam line which is described in detail in sec-
tion 3. Deviating from this beam line, the refocusing interferometric mirror setup and
the high-resolution VLS grating were not yet implemented. Further details on the differ-
ing setup can be found in [85]. It should also be noted that a broad range of different
high-harmonic generation parameters were used along these CEP-resolved experiments:
Spatially resolved spectra in the far field were recorded for various gas pressures ranging
between 0 and 150 mbar and cell positions varying by ~ 8 mm around the laser focus.
All these macroscopic parameters are known to influence the relative-phase dynamics of
the generated attosecond pulses [8, 169]. In order to illustrate the power of the CEPSI
framework as it is applied to experimentally obtained data, only a single set of experi-
mental parameters will be presented. A more detailed overview can also be found in [85],
with emphasis on the observation of isolated half-cycle cutoffs [170]. In the following,
the most important parameters of the setup are shortly summarized.

Few-cycle (~ 7 fs) laser pulses at ~ 760 nm central wavelength with stable CEP down
to ~ 200 mrad are focused, with an f = 500 mm spherical mirror, into a ~ 3 mm long
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Figure 5.6: Spatially integrated high-harmonic spectra measured with ~ 7 fs CEP-stable laser
pulses focused in ~ 100 mbar neon. The vertical dotted lines mark positions of constant photon
energy in order to compare the different spectra. For the lowest energies the harmonic peaks
stay close to these reference lines across the different CEP values. For the highest energies the
harmonic peaks linearly shift into the neighbouring higher order as the CEP is varied from O to &
(indicated with the tilted dashed lines). See also text for further discussions.

cell filled with neon gas at ~ 100 mbar backing pressure. To preferentially phase match
short trajectories, the gas cell was placed just after the laser focus [144], on the order
of 5 mm. The generated attosecond pulses are transmitted through a pair of 200 nm
thin zirconium metal foils to remove direct and indirect fundamental stray light. Spectral
dispersion is achieved with a 100 nm period free-standing Si3Ny transmission grating,
and the separated spectrum is detected with a back-illuminated x-ray CCD camera. The
setup scheme is also illustrated in Fig. 5.5. The spectrometer was calibrated with the
identification of the Al Ly absorption edge at 72.7 eV [86] of an optionally inserted
Al filter, and the Si Ly 1 absorption edge at 99.7 eV [86] imprinted by the transmission
grating. The spectrometer resolution is estimated to ~ 0.8 eV FWHM of a Gaussian point
spread function at ~ 70 eV. With this resolution, interference signatures from up to two
full-cycle spaced (i.e. 5.4 fs) attosecond pulses can be resolved, which correspond to a
fringe spacing ~ 0.75 eV.

Fig. 5.6 shows experimentally-obtained high-harmonic spectra for five different CEP val-
ues between 0 and 7. The interference fringes are spaced by ~ 3 eV, the well-known odd-
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harmonic spacing, which corresponds to half-cycle spaced emission times of attosecond
pulses. A region of low fringe visibility between 70 and 90 eV can be seen at interme-
diate CEP values. With the observed cutoff around 90 to 100 eV, a peak electric field
strength on the order of 0.10 a.u. can be estimated (~ 3.5 - 10" W/cm?). The interference
peaks at the highest energies above ~ 90 eV appear to linearly shift as a function of the
CEP, in agreement with earlier findings in the harmonic cutoff region [161]. It can be ex-
plained by the non-adiabatic saddle point approximation [25], identifying few interfering
quantum paths.
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Figure 5.7: CEPSI analysis of experimentally obtained interference spectra from few attosecond
pulses. a) Spectral interference pattern recorded as a function of the CEP. At energies below
~ 90 eV a splitting of the interference structures (harmonics) occurs as discussed in the previous
section introducing the toy model of an asymmetric triple slit (compare to Fig. 5.4). b) Fourier
analysis of a) with spectral filter parameters Enyiy, = 71 eV, Enax = 116 eV, AE =4 eV (see text).
A splitting of the amplitude peak as well as a bimodal phase behaviour is observed as the CEP is
varied, as in the toy-model presented before (Fig. 5.4). c¢) The phase averaged over the marked
temporal regions for 75 (red triangle up), 7»3 (blue triangle down) and 73 = 712 4 T»3 (circle,
green) is shown to clarify the qualitatively different CEP dependences.

To further analyze the CEP-dependent changes in preparation for the CEPSI method, the
spectra are again represented two-dimensionally as a continuous function of the photon
energy and the CEP in Fig. 5.7a. The experimental data is shown in a range of AQcgp =47
which corresponds to 4 periodic cycles in order to distinguish experimental noise from
true CEP-dependent behaviour. Any real effect must therefore repeat periodically. For
photon energies above 90 eV the harmonic interference structures shift linearly from one
order to the next within one CEP as discussed along Fig. 5.6. Interestingly, in the energy
region just below the cutoff (< 90 eV), a switching between different harmonic peaks
occurs with a change in CEP. Repeating the previously illustrated Fourier analysis on
these experimental data (Fig. 5.7b) results in a close agreement to the previous asymmetric
three-pulse toy model. For the analysis, a spectral filter C(E) along Eq. (2.43) was applied
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where the parameters are noted in the figure caption. The CEP now takes the role of the
general phase ¢ as introduced before, with A¢@ = 2A@cgp which is due to half-cycle
periodic harmonic emission in the inversion-symmetric atomic conversion medium. Both
for the full-cycle Fourier peak at 713 as well as for the upper temporal part of the half-cycle
Fourier peak at 7,3, the Fourier phase shows a linear CEP-dependence with slope 2. This
slope corresponds to a completed full cycle (27) every AQcgp = 7. In contrast, the lower
temporal part of the half-cycle peak at 71, shows a constant Fourier phase as a function
of the CEP. This observation also corresponds to the AQcgp = 7-periodic occurence of a
local minimum within the Fourier amplitude of the half-cycle peak. To better compare the
different phase evolutions, the Fourier phase is integrated for the different 7,,,, components
and shown in Fig. 5.7c.

In direct comparison with the previously introduced toy model we can conclude that three
attosecond pulses are most dominantly present, where the CEP only affects the phase
of one of these pulses (pulse 3), while it has no influence on the remaining two pulses
(pulse 1&2). In addition, the three attosecond pulses appear to be unevenly spaced. To
confirm these findings revealed by the CEPSI analysis, a quasi-classical strong-field ap-
proximation of HHG [21] based on the three-step model [19] was carried out by using the
non-adiabatic saddle point approximation [25] (see also section 2.2.2). This is the stan-
dard theoretical approach for calculating such CEP-dependent harmonic spectra. A direct
comparison with the experimental observations can be performed by again analyzing the
so calculated interference spectra with CEPSI. In addition, more physical insight is gained
as the non-adiabatic treatment of every single quantum path allows to separately study the
contribution of each attosecond pulse directly in the real-time (rather than Fourier time)
domain and thus to confirm the validity of the CEPSI approach.

5.4 Quantum path analysis

The non-adiabatic saddle point calculations were performed for neon (/, = 0.7416 a.u.)
with a 7 fs FWHM cos? laser pulse (cf. Eq. (2.3)) centered around 760 nm and peak elec-
tric field strength 0.1033 a.u.. Only the short trajectories were considered. The quantum
paths were calculated for 8 evenly spaced CEP values ranging between 0 and 77/8 in
steps of /8. These calculations were performed by [171]. A careful analysis of this data
is performed within the CEPSI framework and presented in the following.

The resulting harmonic spectra are shown in Fig. 5.8a, where the same spectral filter
C(E) was applied as for the experimentally obtained data in Fig. 5.7. A first explana-
tion for the asymmetric temporal spacing can be found in Fig. 5.8c. In the here discussed
non-adiabatic case the cutoffs of each subsequent attosecond pulse (i.e. the half-cycle cut-
offs) are located at different energies from pulse to pulse, spanning over ~ 20 eV which is
much more than the harmonic spacing. In addition, the attosecond pulses posses an intrin-
sic chirp which is encoded in the electron recombination times (the red lines). These two
effects give rise to an asymmetric pulse spacing within a fixed energy window: Different
characteristic regions (i.e. half-cycle-plateau and half-cycle-cutoff regions) of neighbour-
ing attosecond pulses may interfere. The exact recombination dynamics of neighbouring
electron quantum paths thus give rise to the asymmetric temporal spacing of subsequent
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Figure 5.8: Simulation results from the non-adiabatic saddle-point approximation. The laser pulse
parameters are fpwpm = 7 s, Ac = 760 nm, &y = 0.1033 a.u., cos? envelope function as defined in
Eq. (2.3), bandwidth limited, with /, = 0.7416 a.u. for neon. The CEP was ranging between 0 and
77 /8 in /8 steps. a) spectral intensity for all simulated CEP values, repeated over four cycles to
allow an easier comparison with the experiment. A spectral filter C(E) (cf. Eq. (2.43)) was applied
with Epin =71 eV, Enax = 116 eV, AE = 4 eV. b) Fourier analysis of a) both in amplitude and
phase. c¢) time-domain representation of the attosecond pulses for ¢cgp = 0. Both the amplitude
(grey shaded areas) as well as the recombination times (red solid lines) are shown, together with
the absolute value of the electric field (black dashed line). The amplitude envelopes were obtained
after applying the C(E) spectral filter function. The black circles denote the beginning of the
half-cycle-cutoff region of each pulse (where the slope of the red curves bend to infinity). Below
this region, each pulse smoothly transits into its half-cycle-plateau region. See text for further
discussion.

attosecond pulses.

The Fourier analysis in Fig. 5.8b reveals a more complicated structure as for the analyzed
experimental data in Fig. 5.7b. Contributions of a 3" Fourier peak (around 4 fs) which
corresponds to a temporal spacing of three half-cycles can be seen. One further peak
(above 5 fs, not shown in scale) is also present for certain CEP values. A comparison
with Fig. 5.8c explains this observation, as mainly four attosecond pulses have non-zero
amplitude, and for certain CEP values (e.g. ¢cgp = 7 /4, not shown), even five attosecond
pulses significantly contribute. The Fourier phase (right panel in Fig. 5.8b) also shows
a seemingly complicated structure as many contributions are overlapping. A rapid phase
slope of a least 2 along the CEP (see discussion of experimental results for a definition
of this slope) is apparent across all Fourier peaks. In addition, the phase fronts are nearly
flat (vertical) across the half-cycle Fourier peak, but they are more tilted in time across
the full-cycle Fourier peak. Recalling that a linear phase slope in the Fourier (time) do-
main is caused by a shift/translation in the original (energy) domain (see section 2.1) this
indicates that the contributions for the different Fourier peaks originate from different en-
ergy regions. With the previously identified relevance of the half-cycle-cutoff region for
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the asymmetric temporal spacing, these regions may also cause the energetically shifted
contributions to the different Fourier peaks. Indeed, within the analyzed energy region
(between 71 and 116 eV), more than one attosecond pulse shows contributions from its
own half-cycle-cutoff region. Especially around 70 eV and around 90 eV groups of dif-
ferent half-cycle cutoffs are located as can be seen in Fig. 5.8c. The analyzed region
of interest thus contains many overlapping contributions from different energy regions,
while this is most interestingly not the case for the experimental data shown in Fig. 5.7,
which however spans over the same energetic range.

To analyze the different contributions in more detail, it appears useful to employ separate
and smaller spectral filters within the analysis of the calculated data. This is shown in
Fig. 5.9 for the higher energy region between 80 and 100 eV, and in Fig. 5.10 for the
lower energy region between 60 and 80 eV.
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Figure 5.9: Same parameters as in Fig. 5.8 a) spectral intensity, b) Fourier analysis of a), c) at-
tosecond pulses in time-domain representation. See Fig. 5.8 for further explanations. In deviation,
C(E) was applied with Enin = 80 eV, Epax = 100 eV, AE = 5 eV for the calculation of b) and
¢). In the highest energy part, only three attosecond pulses are mainly dominating. The relevant
contributions are further discussed in the text.

For the higher energy region in Fig. 5.9, only three attosecond pulses are significantly
contributing as can be seen in ¢). However, the bimodal phase behaviour is absent from
the Fourier analysis in b). Instead, the Fourier phase shows a CEP-dependent slope 2 for
the half-cycle peak and a slope 4 for the full-cycle peak. The reason for the absence of
the bimodal phase behaviour can be found in the more regular temporal distribution of the
attosecond pulses in c¢): The half-cycle-cutoff regions of the three pulses are distributed
within a relatively small energy region within < 8 eV. Therefore, the subsequent electron
trajectories appear similar to each other, meaning that similarly chirped attosecond pulses
interfere. The different CEP-dependent slopes of the Fourier phase (2 and 4) will be
explained below, after first discussing the lower energetic region between 60 and 80 eV
in Fig. 5.10.
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Figure 5.10: Same parameters as in Fig. 5.8 a) spectral intensity, b) Fourier analysis of a), c) at-
tosecond pulses in time-domain representation. See Fig. 5.8 for further explanations. In deviation,
C(E) was applied with Epin = 60 eV, Enax = 80 eV, AE =5 eV for the calculation of b) and ¢). In
the lower energetic region, more than four pulses are contributing. See text for further discussion.

Despite the fact that now more than four attosecond pulses are contributing to the data
shown in Fig. 5.10, the Fourier analysis in b) also shows a more regular CEP-dependent
Fourier phase which is due to the lower spectral bandwidth used for the analysis. Even a
first hint for a bimodal structure across the half-cycle Fourier peak can be identified: The
contribution at the lowest Fourier time slightly above 1 fs shows a nearly constant Fourier
phase, while the contribution at a higher Fourier time ~ 1.5 fs clearly shows a CEP-
dependent Fourier phase with slope 2. These two contributions are separated with local
minima in the Fourier amplitude appearing around ¢cgp = 7/8 and Fourier time ~ 1.3 fs.
In addition, the most intense contribution across the full-cycle Fourier peak clearly shows
a CEP-dependent slope 2 across the Fourier phase. This behaviour closely resembles the
experimental observation and the toy model of an asymmetric triple slit as discussed in the
previous sections. Comparing with the temporal distribution shown in c), only one half-
cycle-cutoff region can be identified with the most intense pulses. One could therefore
attribute the above discussed bimodal-phase behaviour to the three most intense pulses
in the 60 to 80 eV energy region. All other contributions to the Fourier analysis (e.g. a
splitting of the full-cycle peak, a complicated structure across a further Fourier peak at
~4 fs...) can then be attributed an interference with the remaining pulses in this energy
region. In order to prove this assumption, we can make use of the separately calculated
quantum paths and eliminate all but the three most intense pulses before calculating the
spectrum which is shown in Fig. 5.11.

The Fourier analysis in Fig. 5.11b confirms the above assumption. Indeed the outermost
three attosecond pulses with only pulse 3 being in its half-cycle cutoff region seem to
be responsible for the bimodal phase behaviour as observed in the experiment and as
modeled with an asymmetric triple slit. While the lower temporal region of the half-cycle
Fourier peak at 7, now shows nearly no change in the Fourier phase as a function of the
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Figure 5.11: Same parameters as in Fig. 5.10, including the spectral filter from 60 to 80 eV.
a) spectral intensity, b) Fourier analysis of a), ¢) attosecond pulses in time-domain representation.
See Fig. 5.8 for further explanations. In this spectral region, only the three most intense attosecond
pulses are selected and used (to mimic additional temporal filtering e.g. by phase matching) for
the Fourier analysis in b). The different temporal contributions are marked both in the Fourier
analysis in b) and they are denoted by the arrows in ¢). The dotted line in b) marks the separation
across the half-cycle Fourier peak. See text for further discussion.

CEP, both the upper part of the half-cycle peak at 7,3 as well as the full-cycle Fourier peak
at 713 change with slope 2 as a function of @cgp.

The explanation why the half-cycle-cutoff region of pulse 3 seems to imprint this CEP-
dependent phase with respect to the remaining two pulses, being more in their half-cycle-
plateau region is as follows: From Eq. (2.39) in section 2.2.2 it is known that the phase
accumulated by the electron during propagation in the continuum is proportional to the
quasi-classical action accumulated along its path times the time 7, spent in the contin-
uum [24, 159]. Therefore, due to the shorter excursion times of the electron for the
half-cycle plateau regions, an intensity change of the laser field during its path in the
continuum has a smaller effect on the phase. In contrast, a changing laser intensity is
more affecting the phase for the half-cycle cutoff regions with longer excursion times.
These considerations yield a roughly intensity-independent phase for the plateau region,
while the intensity-dependence is roughly linear for the cutoff region [25]. We now can
attribute these effects to every single generated attosecond pulse, thus identifying half-
cycle-plateaus and half-cycle-cutoff regions as thoroughly done above. The connection
between the intensity and the CEP can be argued as follows: The CEP shifts the half-
cycles up and down the envelope of the driver pulse, thus also the instantaneous laser
intensity acting during the continuum propagation of the electrons is changed as a func-
tion of the CEP which in consequence, by the intensity-dependence or independence of
dipole phases for the different trajectories, explains the observed effects.

In order to demonstrate that the retrieved relative phase from the Fourier analysis in
Fig. 5.11 is caused by the above-mentioned three-pulse behaviour, each pulse pair is con-
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Figure 5.12: Selection of the different pulse pairs from the three-pulse scenario in Fig. 5.11 with
the two half-cycle-plateau pulses 1&2 and the half-cycle-cutoff pulse 3. Both the spectral intensity
(a) and the Fourier analysis (b) is shown for pulse pair 1&2 corresponding to ;. The contributions
of pulse pair 2&3 (7»3) and pulse pair 1&3 (713) is shown in c,d) and e,f), respectively. The above
considered configuration is clearly identified with nearly constant CEP-dependence of the Fourier
phase at 715, and a linear CEP-dependence of the Fourier phase with slope 2 at 7,3 and 7;3. The
phase slope is also reflected in the shift of the harmonic interference patterns in a,c and e.

sidered separately which is shown in Fig. 5.12. The disentangled contributions clearly
show the behavior as it was discussed above. The pulse pair 1&2, which corresponds
to both pulses in the half-cycle-plateau region shows a nearly constant CEP dependence.
This is reflected in almost horizontal harmonic interference fringes when only the two
half-cycle-plateau pulses are selected as seen in a). It is confirmed in the Fourier analysis
as the relative phase is only slightly modulated and is not shifting into subsequent cycles
which is seen in b). In contrast, the other configurations in c) - f) always involve the
half-cycle-cutoff pulse 3. As a consequence a clear CEP dependence is observed. The
harmonic fringes shift into the next order as a function of the CEP as well as the relative
phase is fully modulated by 27 per 7 phase change in the CEP.

The CEPSI analysis also reveals that the temporal modulation in the Fourier amplitude
is directly connected to the modulation of the relative phase (or Fourier phase). This
emphasizes the sensitivity to the non-adiabatic sub-cycle dynamics of the process: As
pulse 3, the half-cycle-cutoff-dominated pulse, moves up the envelope of the driver pulse
as a function of increasing CEP, the half-cycle-cutoff energies naturally increase in photon
energy. This in turn means that within the analyzed range of photon energies, which of
course always remains fixed, pulse 3 is beginning to cross over into its own half-cycle-
plateau region which naturally needs to be a smooth transition. It is this cross-over which
finally leads to a decreasing pulse spacing with increasing CEP. This is also visible in
the entangled spectra (all pulses are present) as the contribution of the Fourier amplitude
modulates in time as a function of the CEP, both in the calculations (see e.g. the full-
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cycle Fourier peak in Fig 5.11b) as well as in the experiment (seen as a modulation of the
full-cycle peak in Fig. 5.7b). The experimentally observed feature of splitting harmonic
interference structure which rapidly sweeps through the spectral range is thus very closely
connected to the observation of isolated half-cycle cutoffs [170].

With this understanding of the sub-cycle dynamics, the Fourier phase behaviour in
Fig. 5.9b for the highest energy region between 80 and 100 eV can finally be explained.
The slope 2 of the relative phase for both half-cycle contributions is caused by the half-
cycle cutoff region of both outermost pulses: While the latest attosecond pulse experi-
ences an increasing intensity as a function of the CEP as it is situated on the trailing edge
of the laser pulse, the earliest attosecond pulse feels a decreasing intensity for an equal
CEP change as it situated on the leading edge of the pulse. The center pulse instead
has the highest half-cycle-cutoff region, thus it is contributing more with its half-cycle
plateau region when interfering with the two adjacent pulses. The relative phase between
the outermost pulses shows the sum of both half-cycle contributions to the phase, i.e. the
phase-contribution of the full-cycle Fourier peak is modulated with slope 4. This obser-
vation can be identified as an intrinsic feature of the highest energetic region when mainly
three attosecond pulses are interfering in the observed spectral region.

In the experimentally obtained spectra (Fig. 5.7) this feature is absent. The retrieved phase
behaviour better fits to the case of attosecond pulses which are generated exclusively on
the trailing edge of the laser pulse as illustrated in Fig. 5.11. The reason for this must be
attributed to the exact pulse shape of the driving laser, which most likely is not perfectly
Gaussian as assumed in the calculations. In addition, macroscopic phase-matching effects
were not accounted for in the calculations, which might be responsible for the selective
enhancement or suppression of different quantum paths on a sub-cycle basis [169].

Leaving this discrepancy open, it especially illustrates the power of the CEPSI analysis.
It allows to carefully distinguish between different cases when comparing experimentally
obtained spectra with theoretical calculations. While a direct comparison of the CEP-
resolved spectral patterns for instance across Figs. 5.8 to 5.11 shows only little change,
a presentation in the Fourier domain leads to the identification of characteristic changes
which can be attributed to their respective origin as presented above. This is enabled as
two similar domains (Fourier time vs. “CEP-time”) are jointly presented in a fully two-
dimensional way.

5.5 Experimental reconstruction of relative phases

In the previous sections, the CEPSI analysis was introduced and applied, resulting in
a deeper qualitative understanding of the sub-cycle-emission dynamics of the here dis-
cussed example of few attosecond pulses. Based on this understanding, we can now go
one step further and retrieve quantitative temporal information from the experiment. In
addition the final step of spectral interferometry will be performed and the relative phase
of two attosecond pulses for different CEPs can be experimentally retrieved.

The full-cycle Fourier peak corresponding to 713 = 712 + 723 in Fig. 5.7b is fitted with a
Gaussian function to determine its central position at each value of the CEP. The result is
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Figure 5.13: Experimentally retrieved mean time delay 7i3 = 712 + T»3 of the two outermost pulses
in the attosecond-pulse triplet as a function of @cgp, extracted from the experimental results in
Fig. 5.7b. The error bars denote the standard deviation of the Gaussian fits to the 7w-periodic data
sets. A fit to the systematic variation in time delay results in (54 4 16) attoseconds (horizontal
dashed lines) as the third pulse moves into and out of its half-cycle-cutoff region in the spectral
range considered here (70-90 eV).

shown in Fig. 5.13, where a periodic modulation in time delay of (54 + 16) attoseconds
can be observed. The minima appear at CEP values where all three pulses are approxi-
mately equal in phase, whereas the maxima correspond to CEP values where phase-jumps
occur across the half-cycle Fourier peak (compare to Fig. 5.7b). An explanation for this
modulation is as follows: For minimal group delays, the corresponding CEP values be-
long to situations where all three pulses contribute with their half-cycle-plateau regions.
In contrast, when the group delay is at its maximum, the corresponding attosecond pulse
configurations consist of only two pulses (1&2) within their plateau region, while the
third pulse on the trailing edge contributes with its own cutoff region as discussed along

Fig. 5.12 in the previous section. This results in a larger spacing 713 between pulses 1 and
3.

A Gaussian fit to the full-cycle Fourier peak only results in an averaged group delay
over the analyzed spectral region because the phase information is not used in such a fit.
Using instead the full spectral-interferometry toolkit, the full-cycle Fourier peak can be
temporally filtered both in amplitude and phase and back-transformed into the spectral
domain (cf. section 2.3). This is done in Fig. 5.14 where two different characteristic CEP
values were considered. The parameters for the filter function are denoted in the caption.
Now the energy-dependent group delay between the corresponding attosecond pulses is
fully revealed.

The determined group delay was averaged over similar CEP values corresponding to
¢cep = n- 7 (left panel), where the splitting of the half-cycle Fourier peak is absent, and
to @cegp = (n+1/2) - w (right panel), where the splitting of the half-cycle Fourier peak is
observed. Averaging over several spectra (12 each) yielded an error estimation by means
of the standard deviation. A clear difference between the two CEP values can be observed.
The ¢cgp ~ 7 case (left panel) shows one maximum in the amplitude and a flat but slightly
decreasing group delay. A linear fit to this decrease yields Am = —(2.62 +0.05) as/eV



5.5 EXPERIMENTAL RECONSTRUCTION OF RELATIVE PHASES 93

1.0 L] L] L] 3-0
@ w Pgp ~ W2
5 % 5 | 12°
£ > 2 A 128
W] O @©
jf/ 3 \:—;’ 05 k I N H{\ °
o a © 127 o
= 3 2 3
3 > g | {26 &
@ 5
0.0 L L L 25 0.0 L L L 25
70 75 80 85 90 70 75 80 85 90
photon energy (eV) photon energy (eV)

Figure 5.14: Reconstructed group delay for two different ¢cgp of the full-cycle Fourier peak at
713, extracted from the experimental spectra in Fig. 5.7. The temporal filter C(¢) (cf. Eq. (2.43)
in section 2.3) was set to fpin = 2.41 1S, ftmax = 3.10 fs and AT = 0.34 fs. Each curve was re-
trieved from 12 different experimental spectra, where the error bars denote the standard deviation.
The black curves show the spectral-amplitude product of the interfering pulses 1&3. The red
curves show the derivative of their relative phase, i.e. the group delay between the two pulses
(cf. Eq. (2.14) in section 2.1). See text for further discussion.

where the error denotes the standard error of the fit. Taking the error bars of Fig. 5.14 into
account the error would of course be higher, being on the same order as the fitted value for
the decreasing slope Am. Therefore the value should only be considered a first estimate.
An explanation of the decrease in group delay could be as follows: With all three pulses
contributing with their half-cycle-plateau region, a decrease in group delay means that
pulse 1 is closer to its half-cycle-cutoff region than pulse 3. This implicates that pulse 1
should be situated on the leading edge of the driver pulse, while pulse 3 is on the trail-
ing edge. This however seems to be in contradiction to the qualitative observation of the
Fourier phase as discussed in the previous section. A clear answer to this question can
not be found at the moment and has to be left for further investigations (e.g. to check if it
is possible whether certain phase-matching conditions can inhibit the formation of a half-
cycle-cutoff on the leading edge of the pulse, while its lower-energy half-cycle-plateau
region still remains [169]).

The @cgp ~ /2 case (right panel) shows a different behaviour with a peak in the group
delay at ~ 74 eV photon energy, while also the amplitude shows a two-peaked behaviour.
In this case, the half-cycle-cutoff region of pulse 3 is within the analyzed energy range.
The peak in the group delay can be roughly connected to the location of the half-cycle-
cutoff region of pulse 3. This explains the rapid increase in group delay (by ~ 150 as)
below ~ 74 eV. For higher photon energies, the group delay is again decreasing. This can
only be explained if another pulse prior to pulse 1 now more dominantly takes over the
role of pulse 3, as above its half-cycle-cutoff region, pulse 3 is decreasing in amplitude.
Indeed in the Fourier analysis of Fig. 5.7, a small indication of a 3" Fourier peak is
present (not clearly visible on shown scale), which periodically appears for ¢cgp ~ /2.
This additional attosecond pulse is then also located on the leading edge of the laser
pulse as the group delay in the right panel of Fig. 5.14 is systematically decreasing. A
more detailed analysis should however also include the 3™ Fourier peak which is left for
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further investigations.

5.6 Conclusion on CEP-resolved spectral interferometry

In conclusion, the combination of CEP sweeping and spectral interferometry methods
(CEPSI) was introduced. The interpretation of the data was mainly performed in Fourier
space, plotting the Fourier time vs. the CEP in a fully two-dimensional way both in ampli-
tude and phase. This combined plot yields an intuitive access to the temporally localized
sub-cycle dynamics of the analyzed strong-field process, resulting in a better qualita-
tive understanding. The method is related to conventional two-dimensional spectroscopy
methods, where typically two energy domains (also retrieved via Fourier techniques) are
jointly shown with the full complex information (real and imaginary part) which reveals
energy-level couplings and excitation pathways. In analogy, for the case discussed here,
the complex plot of two related temporal domains (Fourier-time-delay and “CEP time”)
gives direct access to the underlying temporal dynamics.

Along the application on few (mainly three) interfering attosecond pulses it was applied
to experimentally measured data. It was shown in detail how the CEPSI method is able
to gain access to the sub-cycle emission dynamics of the attosecond pulses. With the
asymmetric temporal triple slit an intuitive model was found to qualitatively explain the
experimental data. This model showed how CEPSI is applied in a fully two-dimensional
way in order to directly access the relative phase. Connecting the model to other few-
cycle strong-field processes, access to the phase in similar ways is typically feasible as
the CEP directly enters the relative phase of subsequent temporal events.

A thorough analysis of the calculated quantum paths with the non-adiabatic saddle point
approximation allowed to connect the observed effects to known sub-cycle dynamics,
identifying interfering half-cycle-plateau and half-cycle-cutoff regions of subsequent at-
tosecond pulses as being responsible for the observed effects. In particular it could be
demonstrated how the CEPSI analysis applied on these calculated spectra allowed to
disentangle these different contributions. By means of the CEP-resolved Fourier anal-
ysis similar spectral modulation patterns can be distinguished, making the method very
powerful in order to discriminate between different theoretical models and/or different
experimental configurations. In both cases, the influence of different experimental or
numerical parameters can be carefully categorized. As such, the effect of different phase-
matching parameters on the sub-cycle emission dynamics could be further investigated.
Especially in such cases the method may be preferred against conventional characteri-
zation techniques on attosecond pulses, as the time for data acquisition can be very fast
with the involved all-optical detection. This allows a faster access to a vast range of
other (phase-matching) parameters, ensuring the laser stays consistently stable during the
required acquisition time while varying the parameters.

It was also shown how a full application of spectral interferometry finally yielded quanti-
tative information on the group delay between interfering (in our case full-cycle spaced)
attosecond pulses. The temporal information could be quantified with precision of few
tens of attoseconds. A systematic deviation might still remain which however can be
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resolved either by a direct comparison with theoretical models or by a simultaneous mea-
surement of the pulses with conventional photoelectron characterization techniques.

The ability of disentangling overlapping contributions on a sub-cycle basis can finally be
applied to all kinds of CEP-dependent strong-field processes as mentioned in the intro-
ductory part of this chapter. To point out a few examples, ATI electron emission from
atoms, molecules and solids or few-cycle harmonic generation from plasma all generate
CEP dependent spectra [130,148—150] which exhibit spectral interference structures from
few emission events. A careful analysis along the here proposed scheme can thus create
a deeper insight into the sub-cycle (attosecond) dynamics at work in these processes.

Finally, the concept of CEP-resolved Fourier analysis and spectral interferometry can
also be transferred to transient-absorption measurements, creating a transient-dispersion-
spectroscopy scheme [172]. Upon transmission of such interfering attosecond pulses
through macroscopic media, not only the absorption but also (due to the interferomet-
ric access to both real and imaginary part) the dispersion properties of the medium can
be accessed. With the combined nonlinear action of another ultrashort event (such as a
time-delayed moderately intense few-cycle laser pulse) these properties can be mapped
with high temporal resolution. Considerations on the group delay as presented at the end
of this chapter would then be the starting point of the analysis. In such experimental
schemes the above mentioned systematic errors are expected to play only a minor role.
This is because the underlying dynamics of interest are encoded in the relative change
of the group delay as a function of another dynamical parameter (e.g. the time delay of
another few-cycle pulse), which cancels such systematic deviations. This indicates that
within such techniques a temporal resolution of few attoseconds can be achieved. The
duration of the interfering attosecond pules would then not limit the temporal resolution,
which is only determined by the CEP stability. From the standard deviation error bars
in the preceding section it was experimentally confirmed that ~ 200 mrad CEP stabilities
already lead to a temporal resolution on the order of few tens of attoseconds.

In the following final chapter of this work, a transient-absorption measurement on atomic
helium with attosecond temporal resolution will be presented. It does not yet employ
the here proposed analysis of interfering attosecond pulses. However by using the natural
interference of different quantum channels at work in the process of autoionization, access
to the coupling dynamics of the metastable autoionizing states can be gained.
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Chapter 6

Quantum interferometry and correlated
wave-packet observation in helium

In the preceding two chapters the concept of interferometry was considered in time-
resolved measurements, both with regard to the interference of free electron wave packets
(chapter 4) as well as for the interference of strong-field-induced quantum state popula-
tions (chapter 5). In the following, the concept of interferometry is identified and instru-
mentalized in a very natural way within the process of autoionization, considering only
one single quantum state naturally interfering with a continuum of states. The concept
could thus be termed quantum-state interferometry. In particular, the considered autoion-
izing states are correlated two-electron states in helium (see sections 2.7 and 2.9) which
means that this natural and fundamental process is described by the intrinsic interference
of a correlated two-particle quantum state.

Figure 6.1: Illustrating the interferometric nature of the process of autoionization in helium. Upon
interaction with a single photon, the helium ground state (initial state, left) is ionized into a singly-
charged helium ion with an electron in the continuum leaving the ion (final state, right). The final
state can be reached via two quantum-mechanically interfering pathways: along the direct path
(lower) and via an intermediate doubly-excited state (upper path).

The interferometric aspect of autoionization is illustrated in Fig. 6.1 for the case of helium
as it will be studied here experimentally, the most simple natural two-electron system.
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The final state is a helium ion with one electron in the ground state (N = 1) and the other
electron leaving the ion with non-zero kinetic energy (see section 2.9). The final state can
be reached via two quantum-mechanically interfering pathways. The direct ionization is
an effective single-electron process, where only one of the two electrons is ionized while
the other electron remains untouched. In contrast, the other pathway involves the fully
correlated two-electron state (excitation of both electrons into a doubly excited state),
which has a finite life time and eventually “decays” into the same final state (see also
sections 2.7 and 2.9).

The crucial idea behind this time-domain interpretation is the possibility to initiate the
process with a short pulse, where the duration of the pulse has to be a fraction of the
life time of the doubly excited state. Based on the considerations given in section 2.8,
the time evolution of the whole process is encoded in the absorption line shape and im-
printed onto the spectral profile of this excitation pulse. In the case of autoionization,
the asymmetric line shape (see section 2.7) encodes both interferometric pathways, thus
also the relative phase is encoded. The excitation with broad-band attosecond pulses and
subsequent energy-resolved detection of the absorption line-shape thus serves as a natural
pump—probe scenario in analogy to the two-pulse scheme discussed in chapter 4, giving
access to the phase of transiently bound two-electron states.

This interferometric pump—probe scheme is possible solely by using the broad-band ex-
citation of attosecond pulses (see section 3.3) together with their detection in high resolu-
tion (see section 3.5). The not yet used interferometrically-linked few-cycle femtosecond
pulse (see section 3.4) can then be used in addition to couple the transiently bound states
and influence their temporal evolution. From a technical point of view, the implementa-
tion and demonstration of this measurement scheme can be considered one of the main
results of this work. Its feasibility will be demonstrated and discussed in more detail in
the remainder of this chapter, leading to the most important physical results, the phase-
resolved coupling of different correlated two-electron states.

The motivation behind the time-resolved study of such two-electron states can be drawn
from chemical reactions. The covalent bond [173] which is formed in between neutral
atoms involves two interacting electrons. The formation or breaking of such bonds, or
in general also the nuclear rearrangement in more complex molecules is fundamentally
connected to (or initiated by) the correlated motion of at least two electrons. Having a pro-
found understanding of such motion from fundamental principles could then finally serve
as an input for the more complex study of ultrafast electronic rearrangement in intermedi-
ate transition states [174] and the investigation of electron correlation in molecules [175].

Such ultrafast effects in molecules which happen on or are influenced by the electronic
time-scale are deeply connected with the Born-Oppenheimer approximation [176] or bet-
ter said its breakdown, when nuclear and electronic motion cannot be decoupled. Such
effects become apparent for example through conical intersections [177], where different
electronic potential-energy surfaces cross or intersect. A recent experiment [178] also
showed, how non-Born-Oppenheimer dynamics are at play in highly-excited molecular
ions.

In the following section a short overview of closely related earlier experiments and the-
oretical treatments is given. They are outlined in order to establish a basic background
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knowledge prior to the presentation of own results.

6.1 Related experimental and theoretical work

The earliest related experiment is [179] which was done in transient absorption geometry.
There, electromagnetically induced transparency (EIT, see e.g. [180] for a review) was in-
vestigated across the 2s2p autoionizing resonance due to laser-coupling to another doubly-
excited state. This additional state is termed 2p2 (1S®) and found at 62.06 eV [181, 182]
(see also Fig. 6.11 in section 6.4.1, as it will also play an important role for the explanation
of the own results). In that work [179], the formation of an Autler-Townes doublet was
described, which was explained using the theory of autoionizing states in strong fields
as presented in section 2.7.2. Notably the experimental data could only be explained if
single-electron tunnel ionization (see section 2.2) of the doubly excited states into the
N =2 continuum (see Fig. 2.11 in section 2.9) was taken into account. Very recently, a
direct solution of the time-dependent Schrodinger equation [183] yielded a confirmation
of the experimental observation of EIT and the formation of an Autler-Townes doublet
between the 2s2p and the 2p> doubly excited states.

Recently, an experiment on the same doubly-excited states in helium was performed with
attosecond streaking [184], where the autoionization decay life time of the 2s2p state
was directly measured in the time domain and confirmed to 17 fs as it can be deduced
from line width measurements [52]. The experiment roots on earlier developed theory on
laser-assisted autoionization [185], describing these doubly-excited states in the presence
of strong laser fields, within the strong field approximation (SFA, see section 2.2). Such
a scheme was also described in [186, 187], investigating the theoretical aspects of time-
resolved autoionization. A model was also presented [188] which involved the solution of
the time-dependent Schrodinger equation in hyperspherical coordinates (see section 2.9)
of doubly-excited states in strong laser fields. All these time-resolved descriptions of ion-
ization dynamics in strong fields were motivated by the first time-resolved measurement
with attosecond pulses, the direct life-time measurement of an Auger electron emitted
from a krypton atom [189] which was explained within the streaking model [190]. A di-
rect description of the formation and time-evolution of an autoionizing state excited with
a short attosecond pulse was also developed in [191, 192]. All these theoretical descrip-
tions however are focusing on the calculation of photoelectron spectra. More recently, the
detailed experimental results of [184] were also discussed in [193], where in addition the
strong coupling of autoionizing states similar to the experiment in [179] was taken into
account.

For all-optical gas-phase experiments in transient absorption geometry, the first demon-
stration of XUV transient absorption with femtosecond time-resolution was presented
in [194], where quantum-state resolved access to core-hole spin-orbit dynamics was mea-
sured in strong-field ionized xenon atoms. This was subsequently done with attosecond
resolution [195] in strong-field ionized krypton atoms. There, the induced spin-orbit wave
packet was explained in detail with a density-matrix approach [196]. As a result, the de-
gree of coherence of this wave packet could be traced in time with a period of 6.3 fs.
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For autoionizing states, attosecond transient absorption was also applied in argon [197]
where control over the autoionization dynamics was demonstrated with state life times
between 10 to 20 fs. Very recently, this experiment and the above discussed transient-
absorption experiment on doubly-excited states in helium [179] was jointly described in
theory [198] where the time-resolved formation and coupling of different autoionizing
states was taken into account.

For singly-excited states in helium, a transient absorption experiment employing an at-
tosecond pulse train [199] was performed, where a sub-fs modulation was observed on
different harmonics. This indicated a coupling between different singly-excited states,
i.e. a bound electron wave-packet evolving on an attosecond time scale. On the theoretical
site, transient absorption was considered across these singly-excited states in helium [200]
in the presence of a laser field. It was pointed out, how the dispersion characteristics of
the transmitted XUV light can be transiently shaped.

A wave packet across doubly-excited states in helium was recently also described theo-
retically [201], especially between the two lowest-lying 2s2p and sp; 34 states. Within
this analysis, the breathing of this excited wave packet was analyzed in detail and it was
found, that the leaving electron (after autoionization) is periodically released in correla-
tion with the breathing, in particular when the breathing wave packet is mostly contracted.
These findings are in analogy to [61] with autoionization as a result of an electron-electron
collision (see section 2.9), but now described deeply in the quantum regime. A coherent
coupling, i.e. the observation of a wave packet formed by the coherent superposition of the
same two described states is observed in own measurements as described in section 6.7.

In the following, own measurements will be presented on doubly-excited states in helium
ranging between the 2s2p up to the sp; 74 states which were measured in transient ab-
sorption geometry. However the measurement can be more intuitively understood as a
transient coupling scheme as it will be introduced in the following section and as it was
already motivated along the concept of quantum interferometry at the beginning of this
chapter.

6.2 Fano interferometry with autoionizing states

As it was introduced in the beginning of this chapter, attosecond (XUV) excitation and
subsequent detection with a high-resolution spectrometer is exploited as an interferomet-
ric pump—probe scenario. In addition, a time-delayed moderately intense (on the order of
10'2 W/cm? or lower) few-cycle laser pulse (duration ~ 7 fs) (NIR) is used to influence
and couple the transiently excited states after their excitation by the attosecond pulses.
The experimental setup can thus be rather understood as a transient-coupling scheme
in contrast to the conventional transient-absorption interpretation, even though the basic
pulse arrangement and detection is equal. The traditional scenario of transient absorption
spectroscopy is more applicable in cases such as [195] (see previous section) when the
intense NIR laser pulse initiates some dynamics, which are subsequently probed by the
absorption of the transmitted XUV pulse. It is a configuration where the spectral part
which carries the absorption information (the XUV) is interacting with the target at later
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times.

The transient-coupling scheme instead is interpreted vice versa, where the XUV pulse
initiates temporal dynamics first, while the induced coherent dipole emission (see sec-
tion 2.8) is imprinted on the collected absorption signal. The dipole emission is present
until all induced dynamics have naturally decayed (natural life-time limited). If the sys-
tem is weakly or strongly perturbed during this decay (e.g. by the time-delayed NIR pulse)
this influence is then also imprinted on the measured absorption signal. This is the case
even though the absorbed pulse was coming first, being counterintuitive at first glance
when not thinking of the coherent dipole emission. This “peculiarity” must of course
also happen in the conventional transient-absorption arrangement. Otherwise no sharp
features (spectral lines) could be detected in the absorption signal if it was only generated
during the short interaction of the attosecond pulse with the system (which is due to the
time-bandwidth uncertainty, see section 2.1).
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Figure 6.2: Illustration of the transient-coupling scheme as it is experimentally implemented. The
different parts are also described in chapter 3 in conjunction with Fig. 3.3. The intensity- and
time-delay-controlled NIR pulses are interacting with the transiently-excited helium target. The
induced dynamics are imprinted on the transmitted XUV signal by means of the coherent dipole
response of the helium atoms.

A schematic picture of the setup which employs the transient-coupling scheme is illus-
trated in Fig. 6.2, where the previously described (see Fig. 3.3 in chapter 3) home-built
vacuum system is used. Both the time-delay and the laser intensity of the NIR pulse can
be changed, collecting the interferometric absorption line shape two-dimensionally as a
function of dynamical parameters. The polarization of both NIR and XUV spectral parts
is linear and pointing into the same direction. XUV spectra are obtained via integration
over the full spatial beam profile in the far field.

Fig. 6.3 shows measured absorption spectra with maximally closed iris aperture (no NIR)
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Figure 6.3: Raw XUV-only spectra as measured with our home-built high-resolution flat-field
spectrometer. Black line: no helium in target cell. Red line: ~ 100 mbar helium in target cell.
Each spectrum was averaged over ~ 3200 single laser shots. The statistical noise is visible and
on the order of the line thickness. The intensity fluctuation of successively acquired such spectra
is on the order of 10%. The odd-harmonic modulation (~ 3 eV) is imprinted on both continuous
spectra.

in order to obtain XUV-only spectra. Asymmetric features of several absorption lines
are clearly visible and correspond to the spy 4 ('P°) series in helium (see sections 2.7
and 2.9). The energy calibration was performed via comparison with benchmark syn-
chrotron data [51,52]. The parameters of the 2s2p absorption line (see Table 2.2 in sec-
tion 2.9) were used to obtain the spectrometer resolution (see section 3.5).

The parameters for attosecond pulse generation (see section 3.3) were optimized for con-
tinuous XUV spectra in the considered energy region (between 59 and 66 eV), with neon
backing pressure ~ 100 mbar and the cell position close to the NIR laser focus. The CEP
was not stabilized but averaged over to reduce the fluctuations in the XUV spectra. Both
CEP averaging and the excitation with more than one attosecond pulse (apparent from
the residual harmonic modulation in Fig. 6.3) do not wash out the observed attosecond
dynamics which is due to the intrinsic phase-lock of each attosecond pulse to the laser
half-cycle (see section 2.2.2). This is also confirmed in the simulations which are shown
in section 6.4. From a technical point of view this makes the interferometric pump—probe
scheme also very robust and relatively easy to implement. Both a high temporal resolu-
tion of 10 as (see section 3.4) and high spectral resolution of 47 meV (see section 3.5)
are available for the interferometric transient-coupling scheme as it is introduced here.
This enables us to access the state-selective coupling dynamics with high temporal and
spectral resolution.

In the following section the processing of the absorption profiles from the measured data
is described in detail. The reconstruction involves a Fourier filtering technique to compen-
sate for the 10% intensity fluctuations between successive spectrum acquisitions mostly
due to laser beam pointing instabilities and the highly nonlinear harmonic generation pro-
cess.
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Figure 6.4: Calculated optical density (see Eq. (6.1)) from the measured spectra shown in Fig. 6.3
in section 6.2 (black line). The cross section Opcs(®@) of the non-resonant background [202] is
scaled with the fitted path-length-density product (red line).

6.3 Data analysis

The standard procedure of data analysis in transient-absorption spectroscopy is the calcu-
lation of the optical density (OD) from the signal (SIG, XUV-spectra with helium target
gas) and the reference (REF, XUV-spectra without helium target gas) spectral intensity
Isig and Irgp. According to Beer—Lambert’s law (cf. Eq. (2.95) in section 2.8) it is given

by
OD(®) = —logy, {ISIG(C‘))} _pl-o() 6.1)

IREF((D) In10

which is directly proportional to the photo-absorption cross section ¢(®) as given in
Eq. (2.88) in section 2.7. The path-length-density product p -/ is a measure for the optical
thickness of the target gas. OD = 2 thus corresponds to 1% transmission. The global
maximum of the OD, governed by the helium backing pressure, was experimentally fixed
below this value to avoid significant dispersion effects in too dense materials ( [196], see
also section 2.8).

Eq. (6.1) is applied to the measured spectra in Fig. 6.3 in the previous section and the re-
sulting OD is shown in Fig. 6.4. A residual harmonic modulation is apparent which is due
to the intrinsic intensity fluctuations of the recorded spectra, as they cannot be measured
simultaneously. This is also apparent from Fig. 6.5 where the OD is shown for differ-
ent time delays, not affecting the absorption properties in the “no-NIR” configuration.
The residual fluctuations on the order of 15% are due to the two independently measured
Isig(®) and Irpp(®) spectra.

The asymmetric absorption line shapes and their changes as a function of time delay and
NIR intensity are of exclusive interest in this analysis. Making use of them being sharp
and imprinted onto a more slowly modulating harmonic background, reference spectra
can be reconstructed in situ from each obtained Isig(®) spectrum. Using a low-pass
Fourier filter, the harmonic modulation /¢(®) can be directly retrieved from each measured
signal without the sharp asymmetric absorption features (see Fig. 6.6). This in-situ filtered
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Figure 6.5: OD spectra as a function of time delay (showing no expected changes with delay as the
iris aperture was maximally closed, so NIR light was absent). Each single spectrum is determined
from measured reference spectra (see Fig. 6.3 in section 6.2). The irregularities are due intensity
fluctuations of two independently recorded spectra (on the order of 15%).
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Figure 6.6: In-situ calculation of the harmonic modulation spectrum /t(®) employing a low-pass
Fourier filter (red line) from the measured absorption spectrum Isig(®) (black line).
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Figure 6.7: OD spectra as a function of time delay (showing no changes as the iris aperture was
maximally closed). Each single spectrum is calculated with its in-situ reconstructed reference
spectrum. As a result, only the much lower statistical noise is remaining.

spectrum I¢(®) is scaled to obtain a reconstructed reference spectrum

IREFc(®) = If(®) - exp[opcs (@) - p - 1] (6.2)

with the known non-resonant photo-absorption cross-section opcs(®) of helium [202].
The path-length-density product p -/ was fitted to match the non-resonant OD as calcu-
lated with Eq. (6.1) (see Fig. 6.4) with

p-1=(0.52+0.08)-10""% cm~2. (6.3)

The value was obtained from the different OD spectra shown in Fig. 6.5, therefore the
error reflects the ~ 15% intensity fluctuations. As a result of this reference-reconstruction
method, the noise of the two-dimensional OD plot is significantly reduced as can be seen
in Fig. 6.7. These processed plots are then used throughout as they accurately reproduce
the sharp absorption features which are of interest. As the plots are insensitive to the
non-resonant background absorption, AOD is shown instead of the absolute OD.

With these processed spectra, an overview of the accessed absorption features is given
in Fig. 6.8 which reveals sp, ,, states up to n = 8 and sp; ,_ states up to n = 5. The
state-resolved access to a wide range of strong but also weak contributions is demon-
strated with this approach. The spectral resolution does not compete with state-of-the-art
synchrotron sources [51,52]. However now, a fully time-resolved access (with 10 attosec-
onds resolution) to these states is guaranteed within the presented scheme, in contrast to
time-independent synchrotron studies.

A comparison between Figs. 6.9 and 6.10 illustrates the here presented reconstruction
method for an open iris aperture with non-zero NIR-pulse interaction. It is important to
note that all significant features which are discussed and interpreted in the remainder of
this chapter are present in both data sets. This confirms the Fourier-filtering technique
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Figure 6.8: The average over all spectra as shown in Fig. 6.7. A magnified vertical scale is
employed between 62 and 66 eV. Absorption lines corresponding to sp; , states up to n = 8 and
Sp2,»— states up to n = 5 are visible from the reconstructed AOD spectra.

in order to decrease the noise contributions to be valid. The low-pass filter works be-
cause all resonance line shapes exhibit finer spectral structures than the ~ 3 eV harmonic
background.

6.4 The numerical framework for the coupling of au-
toionizing states

From Fig. 6.10 it is apparent that especially the two strongest absorption lines which cor-
respond to the 2s2p and the sp; 3. states are strongly modulated as a function of time de-
lay. The observed features are due to a coherent coupling between these two states which
also evidences a two-electron wave packet. The details will be discussed in section 6.7.
In order to understand the weak and strong coupling of these two states a numerical sim-
ulation was performed. As it was explained in section 6.1, especially from [179] it is
evident that the 2p2 (1S¢) state has to be considered as it is close to resonant to the 2s2p
('P°) state with NIR laser coupling present. The parameters of the three considered states
which were used in the simulation are summarized in Tab. 6.1.

Table 6.1: Parameters of the 2s2p and spp 34 ('P°) and 2p? (1S°) states as they were considered
for the simulation. The values are obtained from [52] for the 'P° states and from [181, 182] for the
IS¢ state.

E. (eV) I (meV) q

282p  60.15 37 275
2p2  62.06 6
spra.  63.66 10 -2.53

The basic theory for autoionizing states coupled to strong laser fields is introduced in
section 2.7.2 with an overview over existing theoretical approaches. A direct application
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Figure 6.9: OD spectra as a function of time delay for open iris aperture (NIR pulse present).

The NIR peak intensity is 3.3 - 10'> W/cm? (see section 6.6). The spectra were obtained from
independently measured Isig(®) and Irgr(®).
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Figure 6.10: AOD spectra as a function of time delay for an opend iris aperture (NIR pulse

present). The NIR peak intensity is 3.3 - 10'> W/cm? (see section 6.6). The spectra were obtained
from the measured Isig(®) and the in-situ reconstructed IRggc(®).
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Figure 6.11: Level scheme of the simulated subsystem. The ground state |g) = |1s?), the autoion-
izing bound states |a) = [2s2p), [b) = [2p*) and |c) = |sp, 3, ), and the continua |1s,ep) and | Is,€s)
are coupled via the dipole matrix elements d,,,, as depicted. The configuration-interaction matrix
elements V¢ , couple the excited states with their corresponding (symmetry 'P° or 'S°) continua.
A single-photon transition in a 730 nm (1.7 eV) field is depicted in red.

of these theories to the case considered here seemed problematic due to the very short
(~7 fs) duration of the NIR laser pulses used in our experiments. This means that the
instantaneously-defined Rabi frequency (see remarks at the end of section 2.6) changes
rapidly on the order of its own time scale, i.e. the whole time-independent concept may
become unsuitable. In addition, the introduced interferometric pump—probe scheme sug-
gests that all parameters should be described in the time domain (including the autoioniza-
tion process). In order to circumvent these difficulties, a time-dependent close-coupling
simulation for autoionizing states was numerically implemented. The treatment thus also
contains the explicit numerical description of autoionization, expressed by off-diagonal
elements in the Hamiltonian which describe the coupling Vg to the continuum (see sec-
tion 2.7). The scheme is in part also described in [203]. Some details which are presented
in the following are also contained in [204].

6.4.1 General considerations

The simulation is based on the coupling of few discrete states as introduced in section 2.6
where the Schrodinger equation is solved (see Eq. (2.63)). The involved continua due to
autoionization will be discretized as shown below. The system of interest (see Fig. 6.11)
consists of four discrete states (the ground state |g) and the three autoionizing bound states
|a) = [252p), [b) = [2p?) and |c) = sp,.3)) and two separate continua |1s,ep) and |1s,é€s),
into which the two 'P° bound states and the one !S® bound state autoionize, respectively.
All other states including ionization or coupling to the N = 2 continuum are neglected
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in this treatment in order keep the degree of complexity at the lowest possible level. As
it will be shown below, these states are sufficient to generate absorption spectra which
closely resemble the experimentally measured spectra.

The states are coupled via the dipole matrix elements d,,, and the configuration inter-
action matrix elements V¢ ,. The laser (NIR)-induced couplings between each discrete
state and the other respective continuum is neglected. This is motivated by a similar sys-
tem [43], from which the corresponding couplings can be deduced small. Also the laser
coupling between the two continua can be safely neglected in our intensity regime [37]
(see also section 2.7). The full time-dependent Hamiltonian H(z) of the system in dipole
approximation then reads

Eg 0 0 0 0 0
d;;a ’ F;UV (t) E, dap - FNIR (t) 0 Vea 0
0 d;kb . FNIR(I) Eb dbc . FNIR(t) 0 Vg./b
H(t) = d. Fuy (@) 0 di. - Far(t)  Ee Ve 0
dye - Fxuy(t)  Via 0 ve, |lerawmOfoic
0 0 b 0 0 lptAworoix

(6.4)

which couples the states of interest via Schrodinger’s equation (see Eq. (2.63) in sec-
tion 2.6)

cgEt; cggt;
Calt Calt
io Cb(t) — H(l) Cb(t) (6.5)
1 oc(®) ce(t) |’ ’
Cgp t) Cgp(t)
CSS(I) Ces(t)

with the complex expansion coefficients c,(z). Atomic units (a.u.) are used through-
out this section. The broad-band XUV field Fxyy(t) is treated perturbatively, thus only
the resonant part leading to excitation with the XUV field in its complex representation
(Fxuv) is kept in the Hamiltonian (cf. Eq. (2.58) in section 2.5). This leads to a constant
ground-state population (d;c,(¢) = 0, with E; = 0). The coupling between the bound states
is realized in the full time-dependent representation of the real-valued NIR field Fnir ()
(cf. Eq. (2.64) in section 2.6). The continua are treated in strong-field approximation
as Volkov states (see section 2.2) with the vector potential ANr(f) = — [*_, Fir(t')dt’
and are parameterized with their kinetic momentum p. A one-dimensional treatment
is justified due to the linear polarization of the electric fields. The continuum states
are described as quasi-discrete non-interacting states with spacing Ap. Each of these
quasi-discrete states can thus be treated separately. To suppress continuum revivals which
are an artifact of discretization, a constant decay rate k is added which broadens the
quasi-discrete states to a mutual overlap. The configuration-interaction matrix elements
Ve n = (18,ep/s|H |n) =V}, which describe autoionization, are taken to be constant (i.e. en-
ergy independent) in the vicinity of each configuration state, in accordance with Fano’s
original theory [38] (see also section 2.7.1).
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6.4.2 Numerical calculation of the absorption parameters

Direct numerical integration of the time-dependent complex expansion coefficients ¢, (r)
is performed with a split-step-like approach, where for each time step Az, different sub-
systems of H(z) are evaluated separately. The corresponding steps are:

1. The perturbative excitation of states |a), |c), and the set of |1s,ep) continuum states
in the XUV laser field.

2. The coupling of the three bound states |a), |b) and |c) in the NIR laser field.

3. The coupling of the three bound states |n) with their corresponding continuum states
|1s,ep/s) due to configuration interaction.

4. The field-free evolution of the three bound states with eigenenergies E,,.

5. The NIR laser-dressed evolution of the quasi-discrete continuum states.

For each step, the corresponding sub-system is diagonalized, thus temporal evolution
corresponds to the multiplication of a complex phase factor “exp(—iA;-Ar)” with A; being
the eigenvalues of the diagonalized sub-system after a unitary transformation.

Finally, for each time step, the time-dependent dipole moment D(¢) between the ground
state and the dipole-allowed |a/c) states as well as the |1s,ep) continuum states is evalu-
ated:

D(t) = dga - ca(t) +dge - (1) +dg Y_cep(t), (6.6)

where the ground-continuum dipole matrix element dy = dg¢ is assumed independent of
energy. With Eq. (2.98) from section 2.8 the ratio of the frequency-dependent dipole
moment D%(®) and the XUV laser spectrum £%(®) is directly proportional to the exper-
imentally obtained optical density as discussed previously, in our limit of low absorption
and thus negligible propagation/dispersion effects. The Fourier transform is applied to
obtain the corresponding values .# {D(r)} = D*(®) and .7 {Fxuv } = E%(o).

6.4.3 Simulation parameters

The free parameters of the simulation are:

the time step size Ar and the total time of simulation 7',

* the momentum density Ap of the discretized continuum, its range between p,i, and
Pmax and its decay constant K,

the configuration-interaction matrix elements V,,

the dipole matrix elements coupling the ground state to the excited states dg, and to
the continuum states dge = dy,
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* and the dipole matrix elements d,, and dy for the allowed optical transitions be-
tween the excited states with the VIS laser field.

We used Ar = 1 a.u. (0.0242 fs) and T = 32000 a.u. (774 fs) to accurately sample all the
involved dynamics (compare with the NIR laser cycle, typically ~ 2.5 fs) and to cover the
full natural autoionizing decay of the states (I'y, = 6 meV corresponds to an exponential
decay time ~ 220 fs), maintaining a reasonable amount of computation time.

The continuum was sampled with Ap = 0.0145 a.u. in 100 steps from ppi, = 1.35 a.u.
(i.e. Enin = 24.8 €V) to pmax = 2.80 a.u. (i.e. Enax = 106.7 eV), while both positive and
negative momenta (in a one-dimensional treatment) were considered. In total this leads to
400 discrete quasi-continuum states, 100 positive and negative momentum states for each
|1s,ep) and |1s,es) set of states, respectively. The decay rate k¥ = 0.2 a.u. broadens these
discrete states to a mutual overlap, thus approximating a continuous spectrum. Within the
exponential decay time 2/x of the population amplitude, the corresponding continuum
electrons travel ~ 16 Bohr radii ag, thus they are maintained in the simulation long enough
to interact with the bound states close to the nucleus.

The remaining parameters of configuration-interaction matrix elements V;, and dipole ma-
trix elements dg, and d, were then chosen for the simulated absorption lines to match
known experimental and theoretical line-shape parameters (see Tab. 6.1). The dipole
matrix elements between the 2s2p and the 2p? autoionizing states is taken from litera-
ture [179] with dy, = 2.17 a.u., whereas the dipole matrix element between the 2p” and
the sp; 3 autoionizing states was calculated to dp. = 0.81 a.u. [205].

The electric fields are defined with Gaussian envelopes (cf. Eq. (2.2) in section 2.1) and
bandwith-limited phase.

6.5 Simulation results of coupled autoionizing states

In the preceding section the numerical framework of coupled discrete and quasi-
continuum states was introduced in detail. It can be used to calculate time-delay-
dependent absorption spectra containing the 2s2p and sp; 3. states in order to compare
them with experimental results. In the following, simulated absorption spectra are shown
for various pulse parameters (both XUV and NIR). They are shown in order to illustrate
the numerical framework and to connect it to the measured absorption line shapes.

6.5.1 The evolution of the bound states

As aresult of the above described numerical treatment, the full time evolution of the com-
plex state amplitude is accessible, separately for each of the three considered states. For
different XUV/NIR pulse configurations this is shown in Fig. 6.12. In the absence of the
NIR laser field, both XUV-populated 2s2p and sp; 34 ('P°) states decay exponentially due
to autoionization into the 1s,ep continuum, while the 2p? (' S¢) state remains unpopulated
(dipole forbidden from the He 1s? ground state). This is also the case for the NIR laser
pulse interacting with the system sufficiently early (compared to its duration) before the
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Figure 6.12: Time evolution of the state amplitude for the three simulated 2s2p ('P°), 2p2 (1S%)
and spp 3+ (!P°) autoionizing resonances for different XUV/NIR temporal configurations. Both
PO states (2s2p: black lines, sp2,3+: red lines) are perturbatively populated by an XUV attosecond
pulse (duration 250 as FWHM, centered around 64 eV) at time O fs. The NIR field couples
these states to the 'S¢ 2p? state (blue lines). The NIR pulse duration is 7 fs FWHM with 3.3 x
10'> W/ecm? peak intensity and 730 nm central wavelength. The center of NIR pulse appears at
times -12 fs (a), O fs (b), and +12 fs (c). The dashed curves show the state evolution in the absence
of the NIR field.

XUV attosecond pulse arrives, as shown in Fig. 6.12a. If the NIR laser pulse arrives to-
gether (b) or shortly after (c) the populating XUV attosecond pulse, but still within the
decay time of the states, it can significantly rearrange the population among all three states
(i.e. Rabi cycling occurs, see section 2.6). This rearrangement occurs on a time scale on
the order of the NIR pulse duration, which justifies the numerical treatment. The faster
(1-fs time scale) modulation on both 'P° decaying amplitudes even in the absence of the
NIR pulse is due to their coherent coupling with the same 1s,€p continuum via autoion-
ization. This period exactly corresponds to the energy difference AE between the two
2s2p and sp; 34 states (see also section 6.7) and is due to their coherent excitation, i.e. a
wave packet is formed (see section 2.4). In any case, after the NIR laser pulse is over, all
three states decay exponentially according to their width I as given in Tab. 6.1, where the
simulation parameters were set accordingly (see section 6.4.3).

Comparing all three panels illustrates the significant influence that the XUV/NIR time-
delay configuration has on the induced repopulation of the states (also on a sub-cycle
basis, not shown). It is this repopulation of states which significantly changes the coher-
ent dipole emission D(¢) with respect to the ground state and which is measured in the
absorption signal (see above). This explains how the 1-fs time-scale beating, evidencing
the wave-packet motion, finds its way into the measured absorption line shape.

Fig. 6.13 shows a comparision between the experimentally obtained absorption profile
(as described in Fig. 6.4) and the calculated profile (as described in section 6.4.2). The
pulse parameters for the calculated absorption are that of Fig. 6.12a. The numerical simu-
lation can reproduce the experimentally obtained asymmetric absorption profiles in good
agreement.
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Figure 6.13: Comparison between experimentally measured (black line, see Fig. 6.4) and numer-
ically calculated (red line) absorption spectra showing good agreement. The calculated spectra
are convoluted with the experimental detector resolution (47 meV FWHM Gaussian point spread
function). The simulated pulse configurations correspond to Fig. 6.12a.
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Figure 6.14: Simulated two-dimensional absorption spectra of the three-level system as a function
of the photon energy and the NIR field intensity in a monochromatic field (730 nm). The absorp-
tion spectra were averaged over one NIR laser cycle of time delay. The spectra are convoluted
with the experimental detector resolution (47 meV FWHM). An Autler-Townes splitting of the
three mutually repelling states is observed.
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6.5.2 Autler-Townes splitting of autoionizing states

To check the performance of the numerical simulation, the XUV-excited autoionizing
states were dressed with a monochromatic NIR field (730 nm). The simulated absorption
spectra are shown in Fig. 6.14 for a continuous range of different field strengths. In
total three states are involved and coupled in the NIR field (730 nm, i.e. 1.7 eV photon
energy). The mutually repelling absorption lines are labeled according to their origin,
where ¥ here denotes an NIR photon. The appearance of the additional absorption lines
next to the main lines for smallest field strength corresponds to their detuning (see also
Fig. 6.11 in section 6.4.1, where the general scheme is depicted in Fig. 2.8 of section 2.6).
The 730 nm center wavelength in the experiment was deduced from the experimentally
observed detuning (see Fig. 6.17 in section 6.6). The “2s2p+27y” absorption line is weakest
and not visible in the shown scale. According to section 2.6, the Rabi frequency at for
instance 4 x 10'2 W/cm? field intensity evaluates to Qg = 0.63 eV /7 for the two coupled
2s2p-2p° states (dy, = 2.17 a.u.). This is in agreement with the observed splitting at this
field intensity, with the detuning A = 0.21 eV. The sp, 3 state is only slightly shifting
which is 1) due to a weaker coupling to the 2p2 state (dp. = 0.81 a.u.) and ii) due to an
additional 2y-coupling with the 2s2p state which counteracts the 2p2—sp273+—repulsion.
This qualitative description shall suffice at this stage and it is only pointed out that the
exact energy shifts of all three absorption lines could be computed via diagonalization
of the 3 x 3 coupling matrix, in analogy to the diagonalization procedure of Eq. (2.68)
carried out for the two level system in section 2.6. A change in the absorption line shape
as a function of the field intensity is not observed (see remarks in section 2.7.2). This is
explained as the NIR-induced coupling of the bound states with the autoionizing continua
are neglected in this simulation.

The results in this and the preceding section confirm the validity of the simulation frame-
work which can further be applied to simulate and reproduce the experimentally observed
absorption spectra. Fig. 6.15 shows calculated absorption spectra as a function of time
delay 7 between the XUV excitation and the NIR laser pulse of duration 7 fs FWHM.
Further pulse parameters are noted in the caption. The definition of time delay zero is
also depicted. This definition is motivated with the intrinsic phase-lock of the generated
attosecond pulses with the NIR driver field (see also section 2.2.2). It is set to a con-
figuration where the most intense XUV pulse coincides with the first zero-crossing after
the most intense half-cycle of the NIR pulse. A fast modulation on a 1 fs time scale is
observed across both absorption lines. This and also the overall structure is in good agree-
ment with the experimentally obtained data (compare with Fig. 6.10 in section 6.3). A
more detailed comparison and discussion of these features will be given in section 6.7.

An indication of an Autler-Townes splitting and a coupling of all three involved states
can also be deduced from the calculated absorption spectra in Fig. 6.15. Between 7 =0
and T = 5 fs, the absorption maximum of the 2s2p line shifts to lower energies, while
at photon energy E ~ 60.4 eV (which corresponds to the detuning), a second absorption
maximum appears (i.e. “2p>-y”) which shifts to higher energies in this considered region
of time delay. In addition, a third absorption peak (i.e. “sp2 3.-2¥”) appears in between
these two shifted peaks. This is in agreement with the observation in Fig. 6.14 for a
monochromatic NIR field. Deviations for a 7 fs NIR pulse are obvious, as the electric
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Figure 6.15: Simulated absorption spectra as a function of time delay 7. The NIR pulse was
centered around 730 nm with 7 fs FWHM duration and peak intensity 3.3 - 10'> W/cm?. The CEP
was set to zero. For the excitation, two subsequent attosecond XUV pulses were used to resemble
the experimentally observed harmonic modulation (see Fig. 6.3 in section 6.2). The parameters
are tgvlil‘{v)[ = 250 as for each pulse, with relative strength 0.187 and relative phase 5 rad. Both
XUV and NIR pulses are shown in the right panel which depicts the definition of time delay zero.

The spectra are convoluted with the experimental detector resolution.

field now only couples the three states for a fraction of their life time (see also Fig. 6.12
in section 6.5.1) and in addition the envelope of the electric field is changing on the order
of the Rabi frequency. In other words, the larger bandwidth of the 7 fs pulse precludes
the observation of spectrally well-defined dressed absorption lines. It should be noted that
maximum Autler-Townes splitting is observed for a positive time delay and not for time
delay zero. For a positive time delay, the initially excited states are subject to the full NIR
pulse and not only to a fraction of it as is the case when attosecond pulse and NIR pulse
arrive on top of each other and only the trailing edge of the NIR pulse leads to population
transfer among the strongly-coupled states.

6.5.3 Effects of multiple-pulse configuration and the CEP

In order to confirm that neither the CEP nor the excitation with more than one attosecond
pulse significantly influences the experimental observation, different configurations were
simulated and are shown in Fig. 6.16. As the horizontal line indicates, the 1 fs time-scale
modulation is not shifted in phase across the three considered cases. Only the slowly-
changing structure below this fast modulation is slightly shifted (almost not notably) on
a sub-cycle time scale. This is insignificant as all other dynamics occur on a longer time
scale, according to the NIR pulse duration and the life time of the excited states.

These findings illustrate that i) the absorption spectra are not significantly influenced by
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Figure 6.16: Simulated absorption spectra as a function of time delay and energy for different
pulse configurations. The general pulse parameters are that of Fig. 6.15, except a) two attosecond
pulses of equal strength are used with @cgp = O for the NIR laser pulse, b) one attosecond pulse
with @cgp = 0 for the NIR laser pulse, and c) one attosecond pulse with @cgp = 7/2 for the NIR
laser pulse is used. The lower panels (d,e,f) illustrate the respective definition of zero time delay.
The dashed line connects the three cases to compare the 1 fs time-scale modulation.

multiple-pulse contributions and ii) averaging over the CEP does not wash out the 1 fs
modulation. The only necessary ingredients are i) a continuous broad-band XUV excita-
tion spectrum with light across the observed states and ii) a high interferometric stability
of the relative timing between the attosecond pulses and the time-delayed NIR pulse. Both
requirements are fulfilled in the performed experiment. These observations also explain
how such fast modulations can be observed even when using an attosecond pulse train
for the excitation [199], in that case of one-electron excited states in helium. Thus, any
attosecond-pulsed configuration can be used for such experiments as long as the total tem-
poral window of excitation (be it in form of a single attosecond pulse or a pulse train) is
shorter than the life time of the considered states.

6.6 In-situ calibration of the NIR intensity

In the previous section, the results of the numerical simulation were presented in detail
and, in the case of the Autler-Townes splitting, also compared with experimentally mea-
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Figure 6.17: Intensity calibration of the experimental data. a) Simulated absorption spectra for a
7 fs FWHM Gaussian NIR laser pulse at varying intensities, centered around 730 nm. b) Experi-
mentally measured OD for different openings of the iris aperture, leading to a systematic increase
in the NIR laser intensity. For a) and b), the time delay was set to where the Autler-Townes
splitting is at maximum, averaged over two modulation periods. c) The comparison of maximum
absorption of the left-shifting 2s2p line (starting from 60.15 eV, marked by the dotted line in a)
and b) between numerical and experimental results yields an in-situ mapping between the NIR
laser peak intensity and the iris opening in the experiment (black line). The grey-shaded area de-
notes a systematic error, taking into account different simulated pulse durations and an additional
comparison near 0 fs time delay (see text for details).

sured data. In particular, the observed splitting of the coupled 2s2p and 2p? states is exper-
imentally confirmed, where the dipole matrix element d,, = 2.17 a.u. yielded calculated
spectra which could explain the experimental observation [179]!. This well-understood
feature appears both in the simulated as well as in the measured spectra, where the level
splitting is directly proportional to the laser intensity and the dipole matrix element. It can
therefore be used to perform an in-sifu calibration of the NIR intensity which was present
in the experiment.

Fig. 6.17 shows a comparison of the 2s2p—2p? Autler-Townes splitting for the simulated
absorption spectra in a) (pulse configuration as in Fig. 6.15, convoluted with the exper-

! As a side remark, in a very recent theoretical treatment considering this observed coupling, the dipole
matrix element was evaluated to dpp, = 2.11 a.u. [183], and another independent calculation yielded d,, =
2.16 a.u. [205]. Future measurements with a more precise and independent intensity calibration in our setup
could thus even be used to provide benchmarks for testing atomic structure theories.
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imental detector resolution) and the experimentally observed splitting in b). The data
is shown for a continuous range of peak intensities (simulated spectra) and for various
iris-aperture openings which were recorded experimentally. As discussed in the previous
section, (see Fig. 6.15 in section 6.5.2 and Fig. 6.10 in section 6.3), the Autler-Townes
splitting is a function of the XUV/NIR time-delay. The data shown in Fig. 6.17 is aver-
aged over two modulation periods (~ 2.5 fs) centered around a temporal region, where
the splitting is strongest. This was ~ 5 fs for the experimental results, and ~ 3 fs for
the numerical results. The deviation between these two values can be explained with the
exact NIR pulse shape in the experiment, which may be not exactly Gaussian with 7 fs
FWHM duration. In addition, the position of the generated attosecond pulses with respect
to the NIR driver pulse may deviate from the configuration which was assumed for the
simulation (see Fig. 6.15 in section 6.5.2).

For both data sets, the shifting of the 2s2p absorption maximum was followed as indicated
by the dotted lines in Fig. 6.17a) and b). The comparison between these two positions
then yields a mapping of peak intensity vs. iris-aperture opening. In order to estimate
the systematic uncertainty due to differently set temporal delays as outlined above, the
shift of the absorption maximum was also quantified for zero time delay in both cases. In
addition, to account for the effect of a >7 fs pedestal in the NIR pulse (which is typical
of the hollow-fiber/chirped-mirror pulse compression method employed, see e.g. Fig. 3.1
in section 3.1) various simulated NIR pulse durations (ranging from 5 to 30 fs) were
also considered. The mean value of the peak-intensity/iris-opening mapping for all these
configurations is shown in Fig. 6.17c), where the grey-shaded area denotes the standard
deviation, giving an estimate of the systematic uncertainty.

It should be noted that the relatively large systematic error in the in-situ intensity calibra-
tion is only due to uncertainties in the exact pulse configuration as outlined above. In any
case, the experimental data was recorded as a function of systematically increasing NIR
intensity (as the iris aperture was opened stepwise). This means that the intrinsic statisti-
cal fluctations of the intensity are much lower. This is confirmed in Fig. 6.17b), where the
absorption maxima are clearly observed shifting monotonically. Larger deviations might
only occur above an iris opening ~ 25, where the absorption line disappears due to ion-
ization. All these considerations however confirm, that the discussed experimental data
was taken as a function of increasing NIR peak intensity in the 10! W/cm? regime.

6.7 Experimental observation of a two-electron wave
packet in helium

The general aspects of quantum wave packets were introduced in section 2.4. Typically, a
wave packet is formed whenever more than one state quantum state is coherently excited.
Thus also for the case considered here, where several correlated two-electron states are
coherently excited, a wave packet which is beating on the time scale of the respective
energy difference AE of the levels is formed. This well-defined excitation can be observed
experimentally by means of an interference signal between the considered states.

In a recent theoretical treatment [201], the coherent excitation of the sp; ,4 series in he-



6.7 EXPERIMENTAL OBSERVATION OF A TWO-ELECTRON WAVE PACKET 119

lium with a single XUV attosecond pulse was considered. Tracing the autoionized elec-
trons in time, it was shown that they appear periodically in the continuum, in bursts sep-
arated by ~ 1.2 fs, which exactly corresponds to the energy level spacing AE = 3.51 eV
between the two most dominantly populated states 2s2p and sp> 3. It was proposed that
this beating in time can be observed with a time-delayed NIR pulse (similar to the one
used in our absorption measurement), where the yield of excited (N = 2) ions is measured.

Within our measured absorption spectra (shown e.g. in Fig. 6.10 in section 6.3) it is ev-
ident that across both the 2s2p as well as the spy 34 states a fast ~ 1.2 fs modulation
appears as a function of the NIR time delay. This observation suggest that also in our
case, a well-defined coherent wave packet is formed after the XUV excitation.

One could argue that the excitation with more than one attosecond pulse, as well as an
averaging over the CEP would smear out the excitation and observation of such well-
defined wave packets as they are theoretically described in [201]. This is however not the
case as discussed previously for the multiple-pulse and CEP effects in section 6.5.3. More
intuitively said, the attosecond-pulsed excitation is also appearing in bursts (in form of an
attosecond pulse train, see section 5.1). The temporal spacing between the attosecond
pulses is very close (within their temporal bandwidth even exactly in resonance) to the
time period of the considered wave packet (the half-cycle period of 730 nm corresponds
to AT = 1.2 fs). Thus, exciting the above mentioned wave packet is just like resonantly
driving a pendulum by periodically applying a force at the right instant of time. The
phase-locked interaction with a time-delayed NIR pulse then fixes the “ruler” in order
to observe the “excited pendulum”. Within this analogy of a mechanical pendulum, the
relative phase between two attosecond pulses corresponds to the relative direction of the
applied force. This is further illustrated in Fig. 6.18, where the connection between the
temporal and spectral domain is stressed. Whenever the excitation bandwidth includes
both states, and this is the case in our experimental data, a “net force” remains and a
periodic motion is initiated.

In the following, the interfering pathways within the experimentally observed spectra are
analyzed in more detail. This allows for an interpretation of the observed features across
the absorption line shape as a function of the XUV/NIR time delay. Motivated from
the previous discussion of the wave packet and its periodic motion corresponding to the
energy difference AT = h/AE, it is straightforward to transform the time delay into the
Fourier energy domain. This is shown in Fig. 6.19 both for the experimentally obtained
absorption spectra (which are also shown in Fig. 6.10 in section 6.3) and the numerically
simulated spectra (also shown in Fig. 6.15 in section 6.5.2).

The two-dimensional representation in the Fourier domain yields characteristic diago-
nal lines with slope +1 which originate from the energy position E; = 60.15 eV and
E> = 63.66 eV of the 2s2p and sp 3 states, respectively. These lines indicate a coherent
coupling between the two states along different transition pathways which are further il-
lustrated in Fig. 6.20. Each contribution in the two-dimensional Fourier representation can
be connected to a two-photon coupling as outline by the numbers. The two contributions
close to 3.5 eV Fourier energy (1,2) both involve a two-photon up- or downward transi-
tion connecting both 2s2p and sp, 3. states. These transitions therefore experimentally
evidence the two-electron wave packet as the two involved states interfere. As a conse-
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Figure 6.18: Illustrative analogy of a driven pendulum for excitation with more than one attosec-
ond pulse: The pulses are spaced by Ar = h/AE and are represented by a sinusoidal modulation of
the spectral intensity (top panels). This energy difference also corresponds to the eigenfrequency
v = AE /h of an oscillating pendulum in the time domain (bottom panels). If the relative phase A¢
is such (¢, top left) that the spectral intensity is non-zero across both considered levels at energies
E| and E», both states are coherently excited and a periodic motion remains. In the time domain,
the pendulum is kicked twice with a force F, thus a periodic motion remains, decaying with the
natural life time of the pendulum (bottom left). If by contrast the two pulses are 7 out of phase, no
spectral intensity is available across the states (top right). The pendulum picture in that case is a
driving force with opposite direction for the subsequent times #; and f,, resulting a zero net force,
i.e. the periodic motion stops after one round-trip as if it never had happened (bottom right). The
two cases can thus be interpreted as the constructive or destructive interference of both excitation
pathways (note that this is not a two-photon process). If the pulse arrangement is such that there is
spectral intensity across both states, a net force remains and the pendulum oscillates periodically
after the excitation.
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Figure 6.19: Comparison of experimentally measured (a,c) and numerically simulated (b,d) ab-
sorption spectra. The peak intensity of the NIR pulse was 3.3 - 10'> W/cm? in both cases. Further
parameters are discussed in the previous sections describing Figs. 6.10 and 6.15. The visualization
in the Fourier domain (c,d) reveals the coherent coupling between the two considered two-electron
states 2s2p and sp> 34 which is discussed in more detail in the text and in Fig. 6.20.

quence, the 1.2 fs modulation as a function of time-delay arises, as seen in Fig. 6.19a,b).

The remaining two contributions close to 0 eV Fourier energy (3,4) involve a Raman-
like transition of each 2s2p and sp> 3. state separately. Both these “single-state” cases
involve the simultaneous absorption and emission of one NIR photon, i.e. a net interaction
with zero NIR photons. The corresponding illustration as a function of time-delay in
Fig. 6.19a,b) is the appearance of a slow hyperbolic modulation which converges to the
energy position of each state, respectively, for increasing time delay.

All transitions (1-4) are resonantly enhanced by the intermediate 2p state. It is the spec-
tral broadness of the 7 fs NIR photons (bandwidth ZA® ~ 0.7 eV) which fully explains
the diagonal structures, as different “coulored” photons can interact in all four above-
mentioned two-photon transition steps.

It is interesting to note that within pathway 3, a difference occurs in comparison between
the experimental and simulated data. Along the Fourier analysis of the experimental data
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Figure 6.20: Illustration of the different transition pathways—qualitatively very similar to two-
dimensional spectroscopy methods—which are revealed by the Fourier analysis of the time-delay
dependent spectra shown in Fig. 6.19. The Fourier contributions of both the experimentally
recorded and numerically simulated absorption spectra are schematically shown below, indicating
the diagonal lines of slope 1. Four different transition pathways can be identified as illustrated
on top, all resonantly enhanced via the nearby intermediate 2p? state. The NIR photons are de-
picted as zig-zag lines. The NIR spectral bandwidth A® of the ~ 7 fs pulses is indicated by the
horizontal arrows and the cigar-shaped structures in the coupling illustration on top.
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in Fig. 6.19¢), no diagonal line seems to originate from the 2s2p state towards lower
energies, in contrast to its appearance in the simulated data in d). This is also reflected in
Fig. 6.19a), as no hyperbolic structures are apparent to the left of the 2s2p absorption line
as opposed to the simulated data in b). The reason for this is not yet fully understood. It
is possible that other 'S¢ or ' D€ states influence the Raman-like transition across the 2s2p
state. Candidates for such states might be the 2s> (1S¢) at 57.82 eV, or the 2p? (!D°) at
59.89 eV [181]. However these states are further off resonance as compared to the 1.7 eV
NIR photon energy. An inclusion of both states within a full theoretical analysis is needed
in order to further clarify this issue.

In Fig. 6.19c¢), the Fourier amplitude also reveals a contribution close to 2 eV especially
across the 2s2p state. Its position in Fourier energy corresponds to the energy difference
between the 2s2p (!P°) and 2p? (1S°) states (which is 1.91 eV), thus it belongs to a “di-
agonal transition” emitting one photon into the NIR field, with the 2p state as the origin.
This state, however, is dipole forbidden to the helium 1s2 (1S%) ground state and cannot
be directly excited with the XUV pulse. It can, however, be accessed with an NIR pho-
ton present during the initial XUV excitation. This is an experimental artifact and due to
a small leakage of NIR light transmitted through the thin metal foils which are used to
separate the XUV from the NIR beam (see Fig. 3.9 in section 3.4).

All these considerations nicely illustrate, how the Fourier analysis of the time-delayed
configuration reveals the different couplings among the involved states. The detailed
and seemingly complicated structures across the absorption line shape get disentangled
and can be attributed to their different origin. This approach can also explain so far not
interpreted hyperbolic features which appear in a very recent theoretical analysis of a
similar measurement [198].

Looking closely at the higher-excited states spy n+ (n > 4) in Fig. 6.19a), intrinsic features
within each asymmetric line shape are present. In addition, Fig. 6.19c) also reveals diag-
onal contributions for these states near zero Fourier energy which indicate a Raman-like
coupling mediated by a different state. This state is the N = 2 continuum above 65.40 eV.
A closer analysis of this coupling finally reveals the Fano quantum-interferometry scheme
as mentioned in the introduction of this chapter. This is subject of the subsequent section.

6.8 Quantum interferometry with autoionizing states

It was mentioned in the introductory part of this chapter how the asymmetric line shape
itself serves as a phase-sensitive interferometric probe for the induced dynamics (see also
section 6.2). This scheme is now first exploited for the coupling of the 2s2p and the sp; 34
states, which was explained in detail in the previous section. In the second part of this
section, the additional coupling of the sp, 3, and all higher states to the N = 2 continuum
will be discussed.

The two states (2s2p and sp; 3.) are coupled by the NIR field at a controlled time delay
T after their initial XUV excitation. As a function of 7, the two states acquire a relative
phase

AD =AE -t/h (6.7)
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Figure 6.21: Absorption spectra for various time delays 7 (top numbers) for both the 2s2p state
(top row) and the sp, 3 state (bottom row). The NIR intensity was 3.3 - 102 W/em? (see also
Fig. 6.19 in the previous section). A significant change of the sp; 3 absorption line shape is
observed.

according to their energy difference AE (see section 2.4). It is this phase difference which
gives rise to the fast ~ 1.2 fs modulation in the absorption spectra (Fig. 6.19), as discussed
in the previous section. In addition, this phase difference is also reflected in the modified
asymmetric line shape of the absorption spectra.

In order to demonstrate this, Fig. 6.21 shows the measured absorption line shape across
both the 2s2p and the sp, 3 state for a series of time delays 7, spaced by ~ 170 as. Es-
pecially across the sp; 3, state, a dramatic change of the line shape is observed. The
initially asymmetric line shape turns over into a Lorentzian shape close to 7 ~ 550 as,
reverses its shape close to T ~ 890 as and even resembles a window resonance (see sec-
tion 2.7.1) close to T ~ 1070 as. Within the parameterization of the Fano formalism (see
section 2.7.1), a continuous range of g-asymmetry parameter could be attributed to these
line shapes.

This asymmtery parameter is given by (see Eq. 2.87)

(spy3¢ [TI15%)

- I 6.8
1 v (Lsep|T152) (08)

where T now denotes the perturbative coupling with the XUV. In the following, a quali-
tative discussion is given how a change in the absorption line shape (i.e. the asymmetry
parameter) can be connected to the above mentioned relative phase A®.

The considered coupling with the NIR in Fig. 6.21 occurs simultaneously or right after
the excitation of the sp, 3 state. The absorption line in contrast retains its sharp features
across all shown cases (variation of 7). Thus it can be deduced that the natural life time
of the state is not significantly altered, which is ~ 80 fs (deduced from its width I" =
8.3 meV [51]). Therefore, the laser pulse with duration 7 fs (< 80 fs) cannot influence the
entire coarse of autoionization which is expressed by Vg. The direct continuum pathway,
expressed by (1sep|T|1s2), is happening on the time scale of the XUV excitation. Having
~ 40 eV kinetic energy (the N = 1 threshold is located at 24.6 eV) the direct electron is
leaving the atom with relatively high momentum (crossing the ~ 2-3? = 18 Bohr diameter
of the n = 3 shell in ~ 250 as) and can thus also not effectively influence the whole
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coarse of autoionization which is expressed in Eq. (2.87). The only remaining matrix
element involves the decaying bound state sp> 3. It can thus be deduced that a time-delay
dependent NIR-induced modification of the population amplitude or phase of this state
does affect the asymmetry of the absorption line shape. It is the coherent dipole emission
(characterized by its amplitude, phase and life time) of the bound state with respect to the
ground state which gives rise to the sharp feature in the absorption spectrum—in analogy
to the Lorentzian line shape of a decaying bound state without a continuum as discussed
in section 2.8.

Now how can the bound state sp, 34 acquire this phase A®? For the cases shown in
Fig. 6.21, the NIR laser pulse couples the two 2s2p and sp 3 states right after their
excitation. Originating from the strongest 2s2p, a significant amount of population is
transfered into the sp; 34 due to strong coupling (evidenced by the Autler-Townes split-
ting, i.e. Rabi cycling occurs). Being more weakly excited, it is now assumed that this
transferred population dominates the dynamics of the sp, 3 state. The phase of the state
is changed by A® as compared to its initial excitation with the XUV, which is imprinted
into the interfering dipole emission during the whole natural decay within ~ 80 fs.

With these considerations, for instance a relative phase A® = m would negate g in
Eq. 6.8. Considering the parametrization of the absorption line shape (see Eq. 2.86 in
section 2.7.1)

2
E-E,
‘q+ /2

2
1+ (8)

a negation of ¢ would mirror the line shape with respect to the resonance energy E;. This
is however not exactly the case in Fig. 6.7, where a mirrored line shape can be connected
to a relative phase A® > 7. Note that the shown progression of equidistant At ~ 170 as
in delay is directly proportional to the relative phase AP (see Eq. 6.7). The reason for
this is rooted in the inapplicability of the g-parameter as given in Eq. 6.8, because it was
derived within a completely time-independent treatment (see section 2.7.1) which does

not distinguish between the excitation step and the subsequent dipole emission, as it is
however the case in the here presented experiments.

; (6.9)

A rigorous treatment of the time-dependent evolution of such a resonance can unfortu-
nately not be given at the moment. Available time-dependent theories (see section 6.1)
so far only employ the process of autoionization to calculate photo-electron spectra [192]
or give scattering amplitudes [185]. Theories on absorption [198] appeared very recently,
however could not yet be applied within the scope of this work. At the current stage, the
experimental observation of significant changes across the absorption profile alone shall
serve as a motivation to interpret the process of autoionization as an intrinsic quantum
interferometer, while it is left for future work to present an analytical connection between
the imprinted phase A® on the state, and the corresponding change in the absorption line
shape.

Looking closely at Fig. 6.21 another peculiarity can be found. The periodicity in the
changing sp; 34 absorption line shape seems to be in between 1.20 and 1.37 fs. The
energy difference AE = 3.51 eV between the two states exactly corresponds to 1.18 fs.
Indeed, also in Fig. 6.19¢) in the previous section, the Fourier amplitude of the two-photon
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coupling appears slightly but observably below the diagonal contribution. This is not ob-
served in the simulated spectra in subfigure d), where the maximum is appearing exactly
on the diagonal. In contrast, the two-photon contribution across the 2s2p state is appear-
ing exactly on the diagonal of slope —1, both in the experiment and in the simulation.
Also in Fig. 6.21, the periodicity of the changing 2s2p profile can be more closely related
to 1.18 fs, in deviation to the sp; 3 periodicity below. A Gaussian fit to the two-photon
contributions in the Fourier amplitude in Fig. 6.19¢) yields

hA®, = (3.51 £0.18) eV (6.10)

for the 2s2p, and
hAw:. = (3.36+£0.18) eV (6.11)

for the sp 3 state. The error denotes the standard deviation. Only iAw, perfectly agrees
with the energy difference AE between the two states. A, still agrees within the Gaus-
sian standard deviation but appears systematically lower. The value of ZA®, corresponds
to a periodicity of 1.23 fs.

The reason for this deviation can be found in Fig. 6.19a) in the previous section. In addi-
tion to the fast two-photon modulation, the line shape of the sp, 3 state seems inverted.
This is also the case for the higher excited states sp; ,+ (n > 4). Also in Fig. 6.21 the
asymmetry profile of the sp, 3, seems reversed when e.g. comparing the 7 ~ 210 as to
the undisturbed profile of Fig. 6.8 in section 6.3. The closest agreement with the natural
profile occurs at T ~ 900 as, which is however strongly suppressed.

To further investigate this phenomenon, the NIR intensity, which thus far was fixed at
3.3-10'2 W/cm?, is now continuously changed using the iris aperture (see section 6.2).
In total 33 different NIR intensities were set, where also the time-delay was scanned each
over the full range, thus creating a full three-dimensional data set. The in situ calibration
of the NIR intensity was discussed in section 6.6.

Fig. 6.22 shows a selection of different absorption spectra for NIR peak intensities ranging
between 0.0 and 4.5-10'2 W/cm?. A significant change in the absorption line shape for all
states can be observed. The structure across the lowest 2s2p state is the formation of an
Autler-Townes doublet (involving the 2s2p and the “2p? — ") and even the appearance
of the “spy 3 — 27" for higher intensities 2 3.0 - 10'2 W/cm?. This has been explained
previously (see sections 6.3 and 6.6). In [179], the formation of the 2s2p—2p? Autler-
Townes doublet alone was discussed along with the effect of electromagnetically induced
transparency (EIT, see e.g. [180] for a review, where reduced absorption is achieved due to
destructive interference of different transitions). A small hint for this effect is also present
in the here observed spectra, as the absorption minimum, which is formed between the
Autler-Townes doublet, is clearly decreasing between intensities 1.0 and 2.0-10'> W/cm?.
A more detailed investigation on the systematics of the low-pass Fourier data analysis (see
section 6.3) are however needed in order to justify this observation. This is the reason why
AOD is shown rather than OD.

The absorption line shape across the higher excited sp, ,+ (n > 3) states also changes as
the NIR intensity is varied. They do not move in energy position as in the case of an
Autler-Townes effect. Instead, their asymmetry parameter g changes as discussed above
for the sub-cycle time-delay dependent absorption profiles in Fig. 6.21. Between NIR
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Figure 6.22: Experimentally measured absorption spectra for different NIR peak intensities. The
measured spectra were averaged over two modulation periods ~ 2.4 fs, centered around T ~ +5 fs,
where the Autler-Townes splitting as a function of time-delay is maximum (see Fig. 6.19 in sec-
tion 6.7. The two topmost rows show the absorption line shape across the 2s2p state, where the
formation of the Autler-Townes doublet can be followed. The calibrated NIR intensity is noted in
each plot. The two lower sets of panels show measured absorption spectra across all higher states.
A significant change in the line shape for the different NIR intensities can be observed from which
state-resolved phase information can be extracted.
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Figure 6.23: Absorption line shape across all observed doubly-excited states plotted vs. the NIR
intensity. The time-delay configuration is as noted in Fig. 6.22. In total, absorption spectra for
33 different NIR intensities were experimentally recorded, calibrated as described in section 6.6,
where a spline interpolation between these values is shown. A continuous transition from the
perturbative (close to zero NIR field strength) to the strong-coupling regime is shown. The critical
field strength for barrier-suppression ionization into the N = 2 continuum is indicated for various
states. All states resist ionization but do change their line shape. All sp; 4 (n > 3) states disappear
almost simultaneously for NIR intensity > 4.0 - 10'> W/cm?.

intensity 2.5 and 3.5-10'> W/cm?, the profile of all states reverses in shape as compared
with the zero intensity case. For 2.0-10'2 W/cm? Lorentzian absorption peaks are apparent
while for 4.0-10'2 W/cm?, window resonances can be attributed, just before disappearing
at 4.5-10'> W/cm?. This behaviour is also revealed in a continuous two-dimensional plot
in Fig. 6.23.

Fig. 6.23 shows the continuous transition from the perturbative (close to zero) to the
strong-coupling regime (as confirmed by the observed Autler-Townes splitting). All states
are observed to resist barrier suppression ionization (BSI, see section 2.2.1) into the N =2
continuum, as they are clearly observed as stable and sharp resonance lines significantly
above the corresponding critical field strengths. These were calculated using Eq. (2.36) of
section 2.2.1. For the ionization potential, the respective energy distance of the states to
the N = 2 continuum at 65.40 eV was considered. In addition, all states seem to abruptly
disappear for NIR intensities > 4.0 - 10'> W/cm?. This resistance to laser-induced ioniza-
tion seems particularly counterintuitive considering the autoionizing nature of all states.
In [179], the experimental data could only be explained after taking the tunnel ionization
of the 2p? into the N = 2 continuum into account. This was also confirmed in subsequent
theoretical analysis [183, 198] (see also section 6.1). At first glance this seems in contra-
diction to the results presented here, as tunneling-ionization (or multi-photon ionization
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which would be more suitable for the here described scenario) even happens for field
strengths below the BSI limits (see section 2.2.1). An explanation for this discrepancy
is most likely the pulse duration, as in [179] a much longer 42 fs FWHM duration NIR
pulse was used. The longer interaction thus has a more severe influence on the states in
terms of ionization.

In addition to this resilience against ionization the asymmetric absorption line shape is
again observed to change as previously discussed in Fig. 6.22. The explanation for this
behaviour must again be a change in the phase of the decaying states, as the NIR is
interacting just for a brief time, shortly after their excitation (7 ~ +5 fs). It is postulated
here that this phase results from the coherent coupling of all these states with the N =2
continuum. This can be explained as follows: Within single electron models, states close
to the ionization threshold can be treated as quasi-free particles. A free electron does not
absorb energy from an interacting laser field. However, it interacts with the electric field
and transiently acquires additional kinetic energy, the so-called ponderomotive energy (or
potential) U, (see Eq. (2.28) in section 2.2). After the laser pulse is over, the electron
again is at rest (no energy is absorbed from the laser field), however, due to the transient
interaction, the electron undergoes a phase-shift A@, the so-called ponderomotive phase
which is given by

+oc0
171,
A= / Smev? (1)t (6.12)

t
withv(t) =—= [ E (') dr’, the velocity of the electrons. Now it should be recalled that

all spy ,4 (n > 3) are of course two-electron states, classified with an inner electron in
N =2 and an outer electron occupying the state n (see section 2.9). It is thus assumed
that only one, the outer electron, is experiencing this ponderomotive phase-shift A¢ given
by Eq. (6.12). However, as the line shape is still resolved, the correlation between the
two electrons is not destroyed during this interaction, the phase is then imprinted onto the
whole entangled (in a superposition of s and p orbitals) two-electron state.

Considering a 7 fs FWHM Gaussian pulse duration, Eq. (6.12) yields A¢ = 7 for a peak
intensity ~5-10'> W/cm?. This is in agreement with the experimental observation, as
above ~ 3-10'> W/cm? a characteristic inversion of the line shape can be observed. A
more detailed comparison however also here is in need of a direct analytical connection
of the absorption line shape and the imprinted phase as discussed above for the sub-cycle
time-delay-dependent variation of the line shape in Fig. 6.21. Nevertheless, the model
of an imprinted ponderomotive phase predicts the observed characteristic phase-(i.e. line
shape)-changes in the observed intensity regime.

It can be seen in Figs. 6.22 and 6.23 that the line shape of the different states changes
differently as a function of intensity. The state-resolved access can therefore be uti-
lized to test different (and also more advanced) theoretical descriptions. Such theories
will involve the careful investigation of the transition between effective single-electron to
fully-correlated two-electron dynamics. Different approaches can be analyzed and tested,
involving quasi-classical descriptions for the highest states, where a large phase-space of
different states is available, as well as fully-correlated quantum-mechanical descriptions
for the lowest states. With simultaneous access to both such types of states, and espe-
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cially a mixing of both scenarios across the spy 3 state, the very interesting transition
regime between these two theoretical approaches is accessible. From Fig. 6.23 it can even
be noted that the very faintly visible sp 3_ of the weaker series at 62.76 eV is also ob-
served changing its shape. Thus a whole set of even different (correlated) series of excited
two-electron states can be accessed in comparison for this scheme.

To finally give a numerical evidence that the above considered model of a ponderomotive
phase is a reasonable assumption, the numerical simulation (see section 6.4) was em-
ployed, where, by contrast, only one of the three autoionizing states, the sp> 3 state, was
considered. To mimic the ponderomotive coupling to the N = 2 continuum, the instan-
taneous ponderomotive phase A¢ - df was multiplied onto the state coefficient for each
time step. As a result, the simulated absorption line shape (shown in the middle panels
of Fig. 6.24) can be compared to the experimental data for a similar intensity (shown in
the left panels of Fig. 6.24). The agreement is remarkable, as now the slower dynamical
modifications underlying the ~ 1.2 fs modulation in the experimental data are in good
agreement to the simulated data. With this simulated coupling, also the Raman-like con-
tributions can be reproduced, which are additionally observed for all higher (n > 4) states.
This provides further evidence that coherent coupling to the N = 2 continuum indeed oc-
curs.

Coming back to the above mentioned discrepancy in the average modulation energy A @,
of the spy 3. it can finally be argued that the additional coupling to the N = 2 continuum
imprints an additional phase A¢ which effectively delays the response which is induced
by A® (see Eq. (6.7)) where the latter is proportional to 7. In other words, the pondero-
motively shifted spy 3, state appears closer in energy to the 2s2p state, which effectively
lowers the modulation frequency. This is indeed confirmed for measured data at lower
NIR intensities (e.g. 1.5- 10! W/cm?, shown in the right panel Fig. 6.24). A weaker con-
tribution of the ponderomotive phase A¢ (or alternatively a weaker ponderomotive shift
in energy) of the spo3, state is expected for a lower NIR intensity. As a consequence, the
corresponding modulation peak in the Fourier spectrum moves up in energy, closer to the
diagonal of slope 1. This is quantified to

hA@- = (3.47+0.09) eV (6.13)

for the NIR intensity 1.5- 102 W/cm?. The error again denotes the standard deviation
of the Gaussian fit. Comparing this result with the above result (Eq. (6.11)) for a higher
NIR intensity (3.3 -10'> W/cm?), a systematic increase towards the theoretical AE =
3.51 eV value is observed. This corresponds to a systematic decrease of the modulation
from Ty 1. = 1.23 fs for higher intensities down to i o = 1.19 fs for lower intensities,
i.e. a wave-packet cycle-period change corresponding to only 40 attoseconds could be
quantified. The direct quantification of the induced quantum-state-phase modification for
all measured NIR intensities is subject of ongoing analysis.

6.9 Conclusion on time-resolved autoionization

In this work, the experimental access to intrinsically correlated—as opposed to induced
correlations e.g. by laser-driven recollision [63]—two-electron dynamics was demon-
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Figure 6.24: Comparison of the experimental absorption spectra as a function of time delay (for
NIR intensity 3.3-10'> W/cm?) for the higher Sp2,n+ (n > 3) states (left panels) with a numerical
simulation of a single state ponderomotively coupled to the N = 2 continuum. (middle panels,
the NIR intensity was 3.5 - 10'> W/cm?, see text for details). A qualitatively good agreement can
be observed in comparison with the experimental data for a similar intensity. For a lower NIR
intensity (1.5 - 10'> W/cm?, right panels), the ponderomotive coupling is less pronounced. As a
consequence, the Fourier analyzed modulation peak (shown in the bottom panels) moves up in
energy as compared for higher intensities. See text for further details.

strated. A range of doubly excited states was observed below the N = 2 ionization thresh-
old in helium. The availability of high spectral resolution (47 meV FWHM), realized with
a home-built flat-field spectrograph based on a variable-line-space grating, allowed to dis-
tinguish between several excited states in the measured photo-absorption spectra. With
observed sp2 ,+ (2<n<8)andspy, (3 <n<5)states, in total 10 different correlated
and entangled (consisting of s and p orbitals) two-electron states could be experimentally
detected. These bound states (but of autoionizing nature) were accessed with XUV at-
tosecond pulses. The NIR laser-induced coupling of these states to another bound state—
the 2p>—as well as to a continuum of states with effectively one single electron—the
N = 2 continuum—was experimentally observed, quantified and discussed.

To investigate the couplings of these short-lived two-electron states (with life times rang-
ing between 17 and = 100 fs), a fully time-resolved transient-coupling scheme was de-
veloped and employed. Both the excitation with attosecond-pulsed XUV light and the
coupling with a few-cycle ~ 7 fs duration NIR laser pulse is (much) shorter than the natu-
ral life time of the states. With a detector resolution on the order of their natural life-time
width, state-resolved changes in their dynamics (initiated by the time-resolved coupling)
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could be quantified in the transiently generated absorption spectra. Both the time-delayed
position and the intensity of the NIR pulse was continuously changed, exploiting two
dynamical parameters, to create a fully correlated three-dimensional spectroscopic data
set.

To reveal the couplings, motivated by two-dimensional spectroscopy approaches previ-
ously developed in nonlinear optics, a Fourier analysis was employed which transfers the
time-delay parameter into the energy domain. Doing so allowed to carefully distinguish
and interpret different features in the transiently coupled absorption line shapes. As a
result, so far unexplained features, which appeared in a recent theoretical treatment on a
similar system [198], could be explained as Raman-like transition pathways. The analysis
of the experimental data lead to the following main scientific results:

1. The experimental observation of a fully-correlated two-electron wave packet.

2. The coherent ponderomotive coupling of doubly-excited states to a single-
ionization continuum was postulated and supported by experimental data.

3. The experimental observation of the strong coupling of three autoionizing states.

The two-electron wave packet was observed with a resonantly-enhanced (via the 2p? state)
coherent two-photon coupling between the lowest states of the sp2 ('P°) series, namely
the 2s2p and the sp; 34. The modulation period of 1.18 fs was experimentally confirmed
and observed as periodic changes (as a function of the NIR time delay) of the absorption
signal across the 2s2p line shape. An Autler-Townes splitting between the 2s2p and the
2p2 states was observed, in agreement with earlier experiments [179]. In addition, the
coupling of all three states (involving the sp; 3. ) could be verified. Thus, a strong cou-
pling of in total three autoionizing states is experimentally observed. In contradiction to
earlier findings [179, 183,193, 198], ionization into the N = 2 continuum is not found to
be significant for most of the considered NIR intensities, allowing to observe coupling up
to relatively high intensities. An answer to this contradiction possibly includes the much
shorter NIR pulse duration used in the presented experiments. A small hint for electro-
magnetically induced transparency in connection to the 2s2p—2p> Autler-Townes doublet
was also given, as observed in [179].

The relevance of the single-electron N = 2 continuum in terms of a coherent coupling was
not yet fully recognized in theory before. Only ionization was thus far considered, i.e. an
incoherent loss mechanism. Within this work it could be demonstrated that coherent cou-
pling with the N = 2 continuum plays a key role in order to explain the experimental data.
The identification of this mechanism was possible with the spectrally-resolved and state-
resolved detection of asymmetric Fano absorption profiles, which change both in depen-
dence of time-delay and NIR intensity. The coupling, for the highest-excited sp, ,,; states,
was explained with a relatively simple model of a quasi-free single active electron: The
outermost electron of the correlated two-electron state acquires a ponderomotive phase
in the NIR laser field. This selective (only one electron) coupling interestingly does not
destroy the correlation of the entangled two-electron states.

A very interesting mixture of couplings both to bound (autoionizing) states as well as to a
single-electron continuum (of excited N = 2 ions) was observed for the sp; 3, state. As a
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result, the continuum coupling imposes an additional phase A¢ on the sp> 3 state, on top
of the phase A® which is due to the coupling with the bound 2s2p state. Being observed as
a function of the NIR time delay, this resulted in a slightly longer periodicity in the change
of the absorption line shape of this state (by 50 attoseconds, 1.23 fs relative to the “theo-
retically expected” 1.18 fs). It was further demonstrated, that a lower NIR intensity, with
less significant coupling to the N = 2 continuum, implies a retardation of only 10 attosec-
onds in periodicity (1.19 fs relative to the theoretical 1.18 fs wave-packet beating period),
confirming the high interferometric stability in the built experimental apparatus. The two-
dimensional analysis leading to this result is very similar (though qualitatively different)
to the analysis of different energy pathways within two-dimensional spectroscopy tech-
niques. These above obtained numbers also imply a high sensitivity on the detection of
the ponderomotively induced phase, i.e. 27 x 0.01/1.18 ~ 50 mrad.

All experimental findings were confirmed with simultaneously performed home-built nu-
merical simulations. Fully implemented in the time domain, including the autoionization
process, they allow an intuitive access to the temporal evolution of the states.

To sum up, the demonstrated experimental observation of coherently-coupled two-
electron states with access to their relative phases allows to carefully investigate their
instantaneous response to laser electric fields, with tunably controlled peak field strengths
all the way from the perturbative to the strong-coupling regime. This is realized most im-
portantly within a fraction of the natural life time of the states, implying a deeper insight
into correlated two-electron dynamics, which also play a key role in covalent bonds of
molecular orbitals. In addition, the simultaneous access to a broad range of states was
demonstrated, ranging from deeply-bound, to be treated fully quantum-mechanical, up to
closely-lying higher-excited states, which are better understood from a quasi-classical
perspective. Combined theoretical treatments which especially involve the transition
regime between these two scenarios, to describe fully-correlated two-electron dynam-
ics for the lower-lying states and single active electrons for the high-lying states, can be
tested against the experimentally obtained data.
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Chapter 7

Conclusion

The general theme throughout this thesis is the interferometric observation, understanding
and control of ultrafast electron quantum dynamics. It was proposed how the sub-cycle
nature of strong laser fields can be used to investigate the couplings between different
electron quantum states, not being limited in access by selection rules. Electron quantum
paths driven by strong laser fields were directly retrieved and understood from experi-
mentally obtained data on a sub-cycle attosecond time scale. Coupling dynamics across
correlated two-electron states in helium were experimentally measured and modeled, en-
abled by phase-resolved interferometric access.

From a technical point of view, it was the multi-dimensional interferometric measurement
and data analysis in the temporal (attosecond) and spectral (meV) domain which enabled
this experimental advance, made possible with a home-built apparatus of both high in-
terferometric stability (10 as) and high spectral resolution (47 meV FWHM). The inter-
ferometric approach was motivated from successfully applied multi-dimensional spec-
troscopy techniques in the femtosecond domain, involving the Fourier analysis to create
two-dimensional maps of corresponding energy or time domains. It was shown how these
interferometric measurement schemes are understood as time-resolved experiments tak-
ing data as a function of several dynamical parameters of ultrashort laser pulses. These are
their temporal delay to an interferometrically linked additional pulse, the carrier-envelope
phase and the intensity. Driven by the success of the demonstrated techniques, further
combinations of these parameters are conceivable in the future.

Across all investigated topics, the phase-resolved interference of electron quantum states
of different nature was analyzed. This thesis involved the intrinsic interference of quasi-
bound states, i.e. with degenerate bound and continuum parts, the process of autoion-
ization, here fully accessed in the time-domain. It also covered the laser-induced inter-
ference between the bound parts of different such autoionizing states. Coupling these
states to a single-electron continuum yielded an interference of two-electron states with
single-electron continua. Finally also the interference of solely free electron states was
investigated, driven with sub-cycle resolution in strong laser fields. This involved both
the numerical simulation of their direct interference in the photoelectron spectra, as well
as the experimentally-obtained indirect interference encoded in HHG spectra. All these
processes naturally give access to the relative phase between the interfering states, thus
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directly encoding the dynamics which are involved in a superposition of these states.

Scientifically, the results in chapter 4 propose how phase-resolved access to different elec-
tron quantum states can be gained in strong fields. Without influencing the observation
by the strong fields, their field-free evolution can be accessed. In principle any state can
be optically accessed, both dipole-allowed and non dipole-allowed from the ground state,
and the excitation is not limited to the bandwidth of the laser pulses, both owing to the
highly-nonlinear interaction. The results in chapter 5 demonstrate how experimentally
observed and understood sub-cycle dynamics of free single-electron trajectories can be
controlled with sub-100-as temporal resolution due to CEP stable (200 mrad) few-cycle
laser pulses. The analysis was performed in the spirit of two-dimensional spectroscopy
which allowed to disentangle temporally overlapping contributions and yielded an intu-
itive model of a temporal-triple-slit experiment. Across two-electron states in helium in
chapter 6, qualitatively different couplings—both to another two-electron bound state, as
well as to an effective single-electron continuum of states—could be disentangled. Both
the multi-dimensional analysis technique as well as the home-built numerical simulation
helped in this understanding.

All these examples, both numerical and experimental, involved different aspects of strong-
field physics. Limits of weak perturbative and strong laser fields were involved, ranging
between below 10'> W/cm? to above 10'* W/cm? of peak intensities. The underlying
observed electron dynamics ranged from a deeply-correlated fully quantum-mechanical
regime (coupling of discrete states), involving two electrons, up to a quasi-classical de-
scription of effectively one electron (involving quasi-classical phase shifts). For instance
it was the transition from weak to strong laser fields which allowed the identification of
a mixture of couplings across the sps 3 state in helium in chapter 6. All these differ-
ent regimes (laser fields and electron dynamics) were combined in home-built numerical
simulations to uncover the mechanisms.

Looking out into the future, these results can be considered a starting point for the inves-
tigation and control of covalent bonds in molecular orbitals on an electronic level. These
bonds also consist of two correlated electrons. Within the course of any chemical reaction,
the correlated motion of these electrons is the most fundamental ingredient which even-
tually may determine the respective outcome. In such cases, the process can be described
with—possibly short lived—transition states. Using the results from above, if such states
are interrogated with a very short laser pulse (much shorter than their respective life time),
a precise phase-control, governing the orbital shape of superpositions of these states could
be achieved, with negligible destructive influence such as ionization. This may steer the
subsequent—possibly much longer—natural time evolution, which eventually would de-
termine the outcome of a chemical reaction at + — +oo. These would be decisive steps to
fundamentally control chemistry from the bottom up, by spatio-temporally directing the
electrons in molecules.

To sum up, using ultrashort laser pulses and fully employing their respective control
knobs, such as the CEP, the intensity or an interferometrically stable temporal delay to
another pulse in a multidimensional manner, and combining all this with the intrinsic
(natural) spectral or temporal features of the investigated system, a deeper insight into
small yet complex quantum systems has been and will continue to be gained along with
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demonstrated and promising schemes of their control.
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Appendix A

Atomic units

Atomic units are used in this thesis. Especially when numerical simulations are per-
formed, these units are very useful to decrease the amount of complexity within the nu-
merical treatment and reduce the involved formulas to only relevant quantities. In ad-
dition, these units allow for an easy comparison of different quantities. Using atomic
units, Planck’s reduced constant 7, the electron mass m, the elementary charge e, and
Coulomb’s constant (47€)~! of the electric force are all set to unity! (i =m. = e =
(4mey)~! = 1). With this convention, for instance the energy and frequency of a photon
are related via E = ®, or the energy and momentum of an electron are connected via
E = p?/2. A selected list of conversion factors between atomic units and conventional SI
units is given in the table below.

Table A.1: Physical quantities expressed in atomic units, with data taken from [206] which was
updated in 2010.

atomic unit of SI value

energy (27.211 385 05 +0.000 000 60) eV

time (24.188 843 265 024 0.000 000 000 12)- 1018 5
length (0.529 177 210 92 +0.000 000 000 17) A
electric field strength (5.142 206 5240.000 000 11) - 10° V/cm
intensity (3.509 445 21 +0.000 000 15) - 10'® W/cm?

It should be noted here, that the atomic unit of intensity is not defined as the atomic
unit of energy per unit time and area, but is more straightforwardly related to the atomic
unit of the electric field strength via I, = 1/2 - €c&?,. This allows for an easy con-
version between atomic units of the electric field strength naturally used in computa-
tional treatments and SI units of the laser intensity which is more straightforwardly
connected to experimental measurements. For example & = 0.1 a.u. then leads to
[=0.12 X I, =3.509...- 10" W/cm2. The speed of light in atomic units is just the
inverse of the fine structure constant ¢ = a~!, where

o' = 137.035999074 + 0.000000044.

1t should be noted that not the electron charge but the elementary charge is set to unity. Thus in atomic
units the electron charge is —1.
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