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Abstract
In this work the dynamical behavior of an internal bosonic Josephson junction

is investigated. The junction is realized using two Zeeman sub states of the ground
state hyperfine manifold in a Bose-Einstein condensate of 87Rb . With several hun-
dreds of atoms, the size of the system is at the crossover where its classical description
breaks down and quantum mechanical effects become important. The system allows
for a high level of control in terms of state preparation, readout and its important
parameters. Thus its classical dynamics, which show a striking bifurcating behav-
ior, can be studied by mapping out the full phase space and revealing its topological
change. Furthermore the dynamics at the unstable classical fixed point arising in
the course of the bifurcation are investigated. The dynamics at this point clearly
show the breakdown of the classical description. The dynamical evolution leads
to spin squeezing and entanglement and subsequently to macroscopic superposition
states. The generation of squeezing is quantitatively analyzed and the generated
states are reconstructed in terms of their Wigner functions by tomography. This
work is an important step for the understanding of highly entangled macroscopic
quantum states.

Zusammenfassung
In dieser Arbeit wird die Dynamik eines internen bosonischen Josephson Kontakts
untersucht. Der Kontakt wird durch zwei Zeeman-Unterzustände der Hyperfein
Grundzustände in einem Bose-Einstein Kondensat aus 87Rb realisiert. Mit mehreren
hundert Atomen ist die Größe des Systems am Übergang, an dem seine klassiche
Beschreibung versagt und quantenmechanische Effekte bedeutsam werden. Das Sys-
tem erlaubt ein hohes Maß an Kontrolle in Bezug auf Zustandspräparation, Zus-
tandsmessung und seiner wichtigen Parameter und ermöglicht so die Untersuchung
der klassischen Dynamik. Durch das Vermessen des gesamten Phasenraumes und
das Aufzeigen der damit verbundenen topologischen Veränderungen zeigt sich ein
bemerkenswertes bifurkierendes Verhalten. Der durch die Bifurkation entstehende
instabile klassische Fixpunkt wird auf seine Quantendynamik hin untersucht. Sie
zeigt deutlich das Versagen der klassischen Beschreibung. In diesem System erzeugt
der dynamische Verlauf spin squeezing und Verschränkung und führt im folgen-
den zu makroskopischen Superpositionszuständen. Der Entstehungsprozess des spin
squeezing wird quantitativ analysiert und die erzeugten Zustände werden in Form
ihrer Wigner Funktionen tomographisch rekonstruiert. Diese Arbeit stellt einen
wichtigen Schritt für das Verständis von hochgradig verschränkten makroskopischen
Quantenzuständen dar.
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Chapter 1

Introduction

Since the advent of quantum mechanics physicists have been puzzled by its inter-
pretation. The most fundamental difference between the classical and the quantum
world is the existence of superposition states in the latter. A physical system which
resides in such a quantum superposition state shows at least in one of its proper-
ties a literally surprising behavior. If one performs a repeated measurement of this
property one gets differing and completely unpredictable results, even if the system
is in the exact same physical state before the individual measurements are carried
out. Perfect knowledge about the quantum state of a system does not necessarily
imply the predictability of measurement results.

While one might find this fact acceptable for very small systems, like qubits,
where the different measurement results differ only slightly in their physical con-
sequence, on a macroscopic scale this effect is completely counterintuitive. This is
most famously illustrated by Schrödinger’s gedankenexperiment on a cat in a box,
where the superposition state of a microscopic system is transferred to the health
status of the cat [1, 2, 3]. Since this experiment is completely valid in the frame-
work of quantum mechanics the question arises why we do not encounter similar
situations in every day life? The answer to this question is surprisingly not found
in the complex mechanism, that kills the cat, but in the box containing the whole
apparatus. The fact that the superposition state of the cat survives until one opens
the box depends crucially on the isolation from the outside world, i.e. the quality
of the box.

The experimental investigation of macroscopic superpositions therefore relies on
systems which are highly isolated against decoherence with their environment. These
properties are found in neutral Bose-Einstein condensed atomic systems. A promis-
ing scheme to generate and investigate macroscopic superposition states in Bose-
Einstein condensates is found in the bosonic Josephson junction.

Bosonic Josephson Junctions

Since the first realization of Bose-Einstein condensation in alkali gases [4] the experi-
mental techniques have grown substantially [5]. Two of these advances are especially
important for this work. The use of purely optical traps for the atoms allows to use
the spin of the atoms as a very well controllable degree of freedom [6]. Further
Feshbach resonances allow to tune the nonlinear interaction among the atoms in the
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condensate [7].
These two techniques are the main ingredients for the realization of an inter-

nal bosonic Josephson junction. The idea to implement Josephson like physics in
a system of two weakly coupled Bose-Einstein condensates dates long before the
experimental realization of Bose-Einstein condensed alkali gases [8]. In an internal
bosonic Josephson junction the distinguishing parameter between the two conden-
sates is found in their internal spin degree of freedom, in contrast to the spatial
difference found for instance in the superconducting analog [9].

The possibility of tight optical confinement of the condensates in the same trap
allows to simplify the description of the system’s dynamics considerably. The exter-
nal degrees of freedom of the two condensate are not involved in the dynamics, and
the system can be described by the formalism of a large spin. This simple description
makes the system an ideal toy model for the investigation of the dynamics of many-
particle systems, which is underlined by the fact that the Hamiltonian describing
the system’s dynamics is equivalent to a special case of the Lipkin-Meshkov-Glick
Hamiltonian. This Hamiltonian was theoretically constructed by Lipkin, Meshkov
and Glick with the purpose of having an in some cases exactly solvable model system
which allows for the test of the validity of many-particle methods [10, 11, 12].

In this work we focus on two main aspects of the dynamics of the internal bosonic
Josephson junction. The first is its classical behavior. Since the number of parti-
cles in our system is on the order of several hundred the dynamics are typically
well described by a mean field approach leading to classical equations of motion
[13, 14]. It turns out that depending on the relative interplay of the different dy-
namical contributions the system undergoes a bifurcation. We investigate the topo-
logical change associated with this bifurcation experimentally, which is special for
the bosonic Josephson junction and not found in its superconducting analog. The
high level of experimental control of the system allows us to investigate all aspects
of the dynamics across the bifurcation.

In the process of this bifurcation an unstable fixed point arises in the classical
dynamics. This raises the question of the quantum mechanical behavior at this
classical fixed point which is the second aspect of this work. It turns out that the
classical mean field description breaks down even on short timescales, when the
system is prepared at the unstable fixed point. We will show that the quantum
dynamics at this classical fixed-point lead to a squeezing of the spin state. This
property is directly related to many-particle entanglement and a possible precision
improvement of an atomic interferometer. The dynamics at the unstable fixed point
further lead to the generation of a macroscopic superposition state of the system
on an experimentally feasible time scale [15]. We investigate this scenario by to-
mographic measurements on the state which allow us to reconstruct the Wigner
function of the many particle state.
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Chapter 2

A Pair of Linearly Coupled
Bose-Einstein Condensates

In this chapter the theoretical description of two weakly linked Bose-Einstein con-
densed atomic systems (BEC) will be given. This description can be in our case
greatly simplified by assuming constant spatial wave functions of the two BECs. It
will be discussed how this assumption breaks down the dynamical description of the
many body system to that of a macroscopic spin built up of many small spin-1/2
systems. The properties of this spin can be visualized via its Husimi distribution on
a sphere in close analogy to the Bloch sphere, which allows for an intuitive interpre-
tation of the system’s dynamics.

2.1 Two Linearly Coupled Interacting BECs
We will start our description by its Hamiltonian given in second quantized form.
Following [16, 17],the Hamiltonian for two linearly coupled interacting BECs takes
the form,

Ĥ = Ĥ1 + Ĥ2 + Ĥint + Ĥcpl, (2.1)

with

Ĥk =

∫
d3x ψ̂†

k(x)

[
− !2

2m
∇2 + Vk(x) +

4π!2akk

2m
ψ̂†

k(x)ψ̂k(x)

]
ψ̂k(x),

Ĥint =
4π!2a12

m

∫
d3x ψ̂†

1(x)ψ̂†
2(x)ψ̂1(x)ψ̂2(x),

Ĥcpl = −!η

2

∫
d3x

[
ψ̂1(x)ψ̂†

2(x)e−iδt + ψ̂†
1(x)ψ̂2(x)eiδt

]
,

where k = 1, 2 denotes the condensate in the potential Vk, m is the mass of the
particles and the field operators ψ̂k(x) annihilate an atom in the respective con-
densate at position x. The field operators fulfill the standard bosonic commutation
relations [ψ̂k(x), ψ̂l(x′)] = δlkδ(x − x′). The parts Ĥ1 and Ĥ2 of the Hamiltonian
describe the two condensates in the absence of the other condensate where the three
terms in the integral correspond to the kinetic energy, potential energy and the
interaction energy arising from elastic collisions within the condensate. The third
part Ĥint of the Hamiltonian describes the interaction among the two condensates

3



2.2 Angular Momentum Operators

due to elastic collisions between the two species. The three interaction terms in the
Hamiltonian are parametrized by the elastic s-wave scattering lengths a11, a22 and
a12. The linear coupling between the two condensates is described by the last part
of the Hamiltonian Ĥcpl. This part leads to an interconversion of atoms between the
two condensates with a Rabi frequency of η and a detuning parameter δ.

This Hamiltonian can be significantly simplified by the assumption that internal
dynamics have no influence on the external degrees of freedom. In the relevant case
where the two condensates are situated in the same trap and have the same wave
function the assumption is often referred to as single mode approximation. The
motivation for its validity will be given later in section 3.6. The assumption implies
that the field operators can be written as

ψ̂1(x) = â1φ1(x) ψ̂2(x) = â2φ2(x) (2.2)

with real normalized wave functions φk and annihilation operators âk which fulfill
the commutation relations [âk, âl] = 0, [âk, â

†
l ] = δkl. This assumption leads to

Ĥ = !ω1â
†
1â1 + !ω2â

†
2â2 + !χ11â

†
1â

†
1â1â1 + !χ22â

†
2â

†
2â2â2

+ 2!χ12â
†
1â1â

†
2â2 + !η

2
(â1â

†
2 + â†1â2) (2.3)

,
with

ωk =

∫
d3xφk(x)[− !

2m
∇2 +

1

!Vk]φk(x), (2.4)

χkk =
4π!akk

2m

∫
d3x|φk(x)|4, (2.5)

χ12 =
4π!a12

2m

∫
d3x|φ1(x)|2|φ2(x)|2, (2.6)

Ω = η

∫
d3xφ1(x)φ2(x). (2.7)

The ωk denote the sum of kinetic and potential energy of the individual BECs.
The nonlinearities χkl correspond to the additional energy from the self and cross
interaction of the two BECs. The effective Rabi frequency Ω is proportional to
the mode overlap of the two condensates. The total atom number N̂ = â†1â1 + â†2â2

commutes with the Hamiltonian and is therefore a conserved quantity of the system.
Regarding a single atom in such a system, the assumption of constant external

modes restricts the dynamics to a two-mode system which can be translated into a
spin-1/2 system. It is therefore natural to describe the system in terms of angular
momentum operators, as will be detailed in the following.

2.2 Angular Momentum Operators
With the assumption of constant external modes the description of a single atom
can be reduced to the two dimensional Hilbert space of a spin-1/2 particle.

Schwinger developed a description of a system of two harmonic oscillators in
terms of angular momentum operators[18, 19]. The excitation of the individual
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2.3 Hilbert Space and Number State Basis

oscillators can be associated with the number of particles in the two modes . The
operator N̂ = â†1â1+â†2â2 corresponds to the total number of excitations respectively
particles in the two modes and Ĵz = 1

2(â
†
2â2 − â†1â1) is proportional to the particle

number difference. The latter can be understood as the z-component of a collective
angular momentum of the N particle system. The corresponding set of angular
momentum operators is given by

Ĵx =
1

2

N∑

j=1

σ(j)
x =

1

2
(â1â

†
2 + â†1â2), (2.8)

Ĵy =
1

2

N∑

j=1

σ(j)
y =

1

2i
(â1â

†
2 − â†1â2), (2.9)

Ĵz =
1

2

N∑

j=1

σ(j)
z =

1

2
(â†2â2 − â†1â1), (2.10)

Ĵ2 = Ĵ2
x + Ĵ2

y + Ĵ2
z . (2.11)

Here the σ(j)
x,y,z denote the Pauli operators associated with the spin of particle j. The

first part of each equation shows the composite character of the system from the
single particle spins, where the latter equation shows the relation to creating and
annihilating particles in the two modes.

With this relation it is possible to express the Hamiltonian for a given total
atom number N in terms of the corresponding angular momentum operators. By
rearranging the terms and neglecting all constant terms one obtains

Ĥ = !χĴ2
z + !ΩĴx + !∆Ĵz, (2.12)

with the effective nonlinearity

χ = χ11 + χ22 − 2χ12, (2.13)

and the effective detuning

∆ = ω1 − ω2 + δ + (2J − 1)(χ22 − χ11). (2.14)

This shows that the external degrees of freedom of the system are completely
absorbed into the parameters of the Hamiltonian and that the dynamics of the
N -particle system can be understood as those of a large spin.

2.3 Hilbert Space and Number State Basis
The system is formally equivalent to a combination of N spin-1/2 systems so the
most general Hilbert space is given by the 2N dimensional product space. However
the bosonic character of the N identical particles restricts the dynamics to the
Hilbert subspace which is totally symmetric. In this subspace the spins of the
individual particles couple to the maximum possible spin J = 1

2N [20, 19]. A
natural basis is therefore given by the eigenstates |N, n〉 of both Ĵ2 and Ĵz where
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2.4 Coherent Spin States

the quantum numbers denote the total atom number and half the atom number
difference n = 1

2(N2 −N1) respectively. These states are called symmetric Dicke or
number states and are the direct analog to Fock states in quantum optics [20]. They
can be defined as

|N, n〉 =
1√

(N/2 + n)!(N/2− n)!
(â†1)

N/2−n(â†2)
N/2+n|0, 0〉,

where |0, 0〉 is the vacuum of the two modes.
This basis is also a natural choice since it forms the basis of the measurements

performed on the system. The total atom number and the individual atom numbers
in the two modes are the main observables of the system.

2.4 Coherent Spin States
Although the number states as defined above give a basis of the Hilbert space of the
system, their properties make them a choice that is often far away from the states
found in the experiment. This is in direct analogy to the Fock states in quantum
optics where the set of coherent states is often more appropriate to describe the
state of the light. In this section we will therefore introduce the coherent spin states
(CSS) as their analog in the spin system. The CSS are states that are built up as
the direct product of single spin-1/2 states. The bosonic symmetry only allows that
these single spin-1/2 states are all the same. This leads to the following definition
of the CSS

|N, ϑ,ϕ〉 =
(
cos ϑ

2 |↑〉+ sin ϑ
2eiϕ|↓〉

)⊗N
, (2.15)

where the states |↑〉 and |↓〉 correspond to the respective spin-1/2 states. It can be
easily verified that all fully symmetric states which are separable can be parametrized
in this way and are therefore CSS.

The CSS can also be written in the number state basis defined before, taking
the form

|N, ϑ,ϕ〉 =
N/2∑

n=−N/2

√(
N

N/2 + n

)
cosN/2−n(ϑ

2 ) sinN/2+n(ϑ
2 )e−inϕ|N, n〉,

where the binomial coefficients
(

N
N/2+n

)
appear in the respective absolute amplitudes

of the number states. This can be understood from another point of view: the spin-
1/2 systems are separable, thus uncorrelated. The projection onto a number state
|N, n〉 gives the probability to find exactly 2n of the spins in the excited |↑〉 state.
For an uncorrelated ensemble of spin-1/2 this can be seen as a repeated coin toss
[21]. The binomial coefficients give the multiplicity while the trigonometric terms
are the probabilities to be excited or not, i.e. heads or tails.

It is important to note that the number states |N, N/2〉 and |N,−N/2〉 are
exactly the coherent spin states |N, 0, 0〉 and |N, π, 0〉 respectively. These extremal
states which correspond to the situations where all atoms are found in the same
mode of the system are the only states that are both CSS and number states in a
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2.5 Bloch Sphere and Husimi Representation

given number state basis. However for a general number state basis defined as the
eigenstates of Ĵ2 and the general angular momentum operator

Ĵϑ,ϕ = sin ϑ cos ϕĴx + sin ϑ sin ϕĴy + cos ϑĴz, (2.16)

the extremal states with eigenvalue N/2 and −N/2 are the CSS |N, ϑ,ϕ〉 and
|N, ϑ + π, ϕ〉 respectively. For all angular momentum operators Ĵ1⊥,Ĵ2⊥ satisfying
[Ĵ1⊥, Ĵ2⊥] = ±iĴϑ,ϕ these coherent spin states are Heisenberg limited. Meaning that
they minimize the uncertainty product in the corresponding Heisenberg uncertainty
relation

∆Ĵ1⊥ · ∆Ĵ2⊥ ≥
1

2

∣∣∣
〈
Ĵϑ,ϕ

〉∣∣∣ =
N

4
(2.17)

This property shows that the CSS are the states which are most localized and
isotropic around their mean. Due to these properties and their separability, the
CSS are regarded as the classical states of the system. From the equation one can
further see that the relative uncertainty of the angular momentum operators shrinks
with growing atom number as 1/

√
N . Therefore one expects that for very high atom

numbers the quantum uncertainties become irrelevant and the many-particle system
can be described in its classical limit which will be discussed in detail in section 4.1.

The CSS are also special in terms of their transformation under unitary rotations.
Two different CSS can be always transformed into each other by a unitary rotation
and CSS stay CSS under every unitary rotation. This property shows that the
separability and the minimality of a state is conserved by rotations. It can be also
used for a definition of the general CSS by

|N, ϑ,ϕ〉 = e−iϕĴze−iϑĴy |N, N/2〉 (2.18)

which is the rotation of the coherent spin state corresponding to all particles in the
second mode by ϑ around the y-axis and subsequently by ϕ around the z-axis. These
transformation properties are important in the experiment to prepare and readout
the state of the system as described in section 4.6. The following discussion of the
Husimi distribution will show a nice visual interpretation of many of the features of
the CSS which have been described here.

2.5 Bloch Sphere and Husimi Representation
As discussed in section 2.2, the assumption of constant spatial wave functions leads
to a description where the Hamiltonian of the system is given by a combination
of collective angular momentum operators. These operators can be understood as
sums of the individual spin-1/2 operators.

The general state vector of a single spin-1/2 particle can be written as

|ϑ, ϕ〉 = cos ϑ
2 |↑〉+ sin ϑ

2eiϕ|↓〉 (2.19)

where |↑〉 and |↓〉 are the corresponding eigenstates along the quantization axis.
This parametrization by two angles suggests the representation of the spin state as
a point on the surface of a unity sphere, the so called Bloch sphere [22].
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2.5 Bloch Sphere and Husimi Representation

The Bloch sphere picture also allows for a very nice interpretation of the dynam-
ics of the system. Since the spin operators in form of the Pauli matrices together
with the identity operator span the full vector space of 2 × 2 Hermitian matrices
every Hamiltonian describing the dynamics of the system can be expressed in terms
of those. These operators are the generators of rotations. Therefore all possible
dynamics of the system correspond to a rotation of the surface of the sphere. This
picture allows for a simple understanding of the dynamical behavior of arbitrary
initial state vectors.

z

y




x

z

y

x

Figure 2.1: Husimi distribution of a coherent spin state |300, ϑ,ϕ〉 (left) and a
number or Dicke state (right). In both cases the total atom number is 300. The
Husimi distribution allows to illustrate many of the physical properties of the many-
particle state.

For the N particle system with its N +1 dimensional Hilbert space a state vector
can no longer be visualized as a point on the sphere. However, the definition of the
coherent spin states, which are the most localized states in a given direction, allows
one to calculate a probability distribution on the sphere that measures the overlap
of the state with a coherent spin state in a given direction. It can be defined in a
more general way for a density operator ρ̂ as

Q(ϑ, ϕ) = 〈N, ϑ,ϕ|ρ̂|N, ϑ,ϕ〉. (2.20)

This probability distribution1 is known as Husimi or Q-representation. Two ex-
amples of the Husimi distributions for a CSS and a number state can be seen in
figure 2.1. The Husimi distribution in these two examples visualizes many of the
properties of the two states. The example of the CSS shows the narrow symmetric
distribution which is peaked at (ϑ, ϕ) on the sphere. The number state shows its
undefined phase in the sense that there is no maximum of the distribution along its
latitude. The projection of the maximum onto the quantization axis indicates the
distribution of the atoms into the two modes of the system.

1To be a probability distribution the Husimi distribution has to be normalized∫ 2π
0

∫ π
0 Q(ϑ, ϕ) sinϑdϑdϕ = 1.
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2.6 Pictorial Interpretation of the Hamiltonian

While a lot of physical properties of the state can be directly seen from its
graphical Husimi representation, many properties are hidden. For example, the
distribution of the number state suggests a finite width in the Ĵz direction while the
true variance is zero. Nevertheless the Husimi distribution Q(ϑ, ϕ) is a complete
representation of the state’s density matrix, one only has to keep in mind that its
graphical illustration should not be taken in all its aspects as a representation of the
physical properties of the state.

However the Husimi representation allows one to develop a picture of the many
body dynamics in the system which will be explained in the following section.

2.6 Pictorial Interpretation of the Hamiltonian
This section will provide a basic understanding of the dynamics induced by the
Hamiltonian 2.12. We will focus on the simplified situation where the detuning ∆
in the Hamiltonian is negligible. This describes the ideal physical evolution, which
is typically achieved to a good approximation in our experiments. This simplifies
the Hamiltonian leaving only the interaction term, which is quadratic in the angular
momentum operator, and the linear coupling term. As discussed in the section
before the states of the system can be associated to a probability distribution on the
sphere. The dynamics of the system correspond to a redistribution of this probability
distribution on the surface of the sphere.
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Figure 2.2: Velocity field associated with the linear coupling. The arrows indicate
the velocity at their origin.

The angular momentum operators are generators of unitary rotations. As dis-
cussed in section 2.4 a rotation transforms a CSS into another CSS. The CSS form
the basis of the Husimi distribution, it is therefore natural that the linear coupling
term leads to a rotation of the distribution on the sphere around the x-axis with
constant angular velocity Ω. The radial velocity field associated with this rotation
is shown in figure 2.2.

While it is easy to prove that linear angular momentum terms in the Hamiltonian
correspond exactly to a rotation of the Husimi representation around the respective
axis, a correspondence for higher order terms is neither obvious nor exact. However,
one can ask what is the differential rotation induced by to the higher order terms
to get a feeling how these redistribute the probability distribution on the sphere.
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2.6 Pictorial Interpretation of the Hamiltonian
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Figure 2.3: Radial velocity field associated with the nonlinear interaction

This can be done by looking at the dynamics of the CSS instead of looking at
the dynamics of the density matrix of the system. It turns out that the nonlinear
interaction which is quadratic in Ĵz leads to

e−iχĴ2
z dt|N, ϑ,ϕ〉 ∼ e−i N

2 cos(ϑ)χĴzdt|N, ϑ,ϕ〉 = |N, ϑ,ϕ + N
2 cos(ϑ)χdt〉 (2.21)

This corresponds to a rotation around the z-axis with an angular velocity pro-
portional to the expectation value in z-direction of the corresponding CSS. This
velocity field is illustrated in figure 2.3. The latitude dependence leads to a shearing
of the state distribution. By this the circular uncertainty distribution of a CSS is
transformed into an elliptical one. This effect is called one-axis twisting and leads
to spin squeezed states. These states offer a reduced quantum uncertainty in a cer-
tain direction and can be used to improve the sensitivity of linear interferometers
[23, 24, 25]. This will be discussed in more detail in section 5.1.2.

The corresponding velocity fields of the two terms in the Hamiltonian can be
understood as the extreme case of the Hamiltonian where one of the terms domi-
nates over the other. This work however focuses on the dynamics initiated by the
interplay between both terms, the linear coupling and the nonlinear interaction. Al-
though the dynamics under the simultaneous influence of both terms are much more
complicated, the velocity fields allow one to deduce the most important features.

Both velocity fields have several fixed points, i.e. points on the sphere where the
velocity is zero. For the linear interaction these are the two points on the x-axis
while for the nonlinear interaction we find the two points on the z-axis corresponding
to the north and south pole of the sphere. In addition, all the points on the equator
of the sphere are fixed for the nonlinear interaction due to the dependence of the
velocity on the latitude. This makes the two polar points on the x-axis common
fixed points of the dynamics.

However, these are not necessarily the only fixed points. A closer look on the back
side of the sphere shows that the velocities of the two terms counteract each other
at some points (see figure 2.4). The velocities of both fields at points with y = 0 are
parallel to the y-axis but anti parallel to each other which leads to a cancellation
of the two fields, which depends on the strength of the two terms relative to each
other. The two fields completely cancel each other if the absolute velocities of both
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Figure 2.4: Radial velocity fields corresponding to the coupling (left) and nonlin-
earity (right) and their combination (middle) as seen from the back side of the sphere.
In the middle panel the velocities at points with phase π are emphasized. Here the
velocities are anti parallel and can cancel each other. Depending on their relative
strength one finds a pair of points symmetrically above and below the equator where
they perfectly cancel, i.e. a fixed point in the combined dynamics. Independent of
the relative strength of the two parts the point on the x-axis is a point with zero
velocity and therefore a fixed point in the dynamics.

fields are the same at a particular point on the sphere. From the considerations
before this is the case if

sin ϑ =
Ω

χN
, (2.22)

which can only be fulfilled for Ω < Nχ. This shows that the ratio of χN and Ω
determines whether there are two or four fixed points in the dynamics of the system.
Due to its important role, this ratio will be defined as

Λ =
χN

Ω
. (2.23)

In a classical system the change of the number of fixed points is described by a
bifurcation. This change happens in our system at the critical parameter Λ =1 .

The view of the velocity fields from the other side (see figure 2.5) shows that,
here the two fields do not counteract each other but add up. This can be directly
understood from the symmetry of the two terms. The velocity field of the nonlinear
interaction is intrinsically symmetric around the z-axis while that of the linear cou-
pling is not, which leads to a counteraction only on one side of the sphere depending
on the signs of Ω and χ. In our experiments Ω and χ are positive, which makes the
hemisphere with x < 0 the part of the phase space where the bifurcation occurs due
to the counteraction of the two terms. We will also refer to this side as the π side
of the sphere.

The interpretation of the Hamiltonian dynamics in terms of the corresponding
velocity fields allows one to make further conclusions about the temporal behavior of
the dynamics. While the dynamics associated with the coupling and the nonlinearity
constructively or destructively add up on the two sides of the sphere we expect
generally a slower dynamical behavior on the π side. This will be further discussed
in section 4.9 and also used to experimentally determine the size of the nonlinearity
by a frequency measurement as discussed in section 3.5.
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Figure 2.5: Radial velocity fields corresponding to the coupling (left) and non-
linearity (right) and their combination (middle) as seen from the front side of the
sphere. Here the velocities at points with y = 0 do not cancel but add up in contrary
to the other side of the sphere (see figure 2.4). This different behavior on the two
sides of the sphere stems from the different symmetry of the linear coupling term
and the quadratic nonlinear term in the Hamiltonian. Again the point on the x-axis
is a fixed point with zero velocity independent on the strength of the two terms.
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Chapter 3

Experimental Realization of the
Internal Bosonic Josephson Junction

In this chapter we present an overview how the system is experimentally realized.
We further discuss general experimental limitations affecting both the experiments
on the classical mean field dynamics as well as the experiments dealing with the
quantum mechanical behavior of the system. Since the experiments have been per-
formed on an apparatus that has been setup over the last ten years, we will focus
our discussion on the experimental details which are most relevant for this work. A
more detailed discussion about the technical aspects of the apparatus can be found
in the references [26, 27, 28].

3.1 The Atomic Two-state System

We begin our discussion on the experimental realization by introducing our physical
system. A two-mode BEC system forming a bosonic Josephson junction can be
either implemented using external degrees of freedom, which allows one to distin-
guish the atoms by their location or spatial mode, or one can use internal degrees
of freedom such as the spin of the atoms as a distinguishing attribute. Of course a
combination of both can also be used as has been demonstrated in [24].

In this work, the two modes of the system are realized by the spin of the atoms,
forming an internal Josephson junction. Figure 3.1 shows the Zeeman levels of the
two hyperfine manifolds of the ground state of 87Rb . The energy difference between
these two manifolds is approximately 6.8 GHz while the energy scale of the linear
Zeeman effect is typically much smaller with a sensitivity of ∼ 700kHz/G. The two
spin states used here are the |F, mf〉 = |1, 1〉 and |2,−1〉 as shown in figure 3.1. These
states are chosen for several reasons. The main reason is that a Feshbach resonance
at relatively small magnetic fields allows one to tune the interspecies scattering
length of the atoms. This is a prerequisite for getting significant nonlinearities χ in
the system as discussed in section 3.5. A second reason is that the linear Zeeman
effect shifts both energy levels equally. The resulting low sensitivity to magnetic
fields is important for having a long coherence time as discussed in section 3.8.2.
A nice property of using ground state Zeeman states is that commercial microwave
and radio frequency sources can be used to realize the coupling between the two
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3.2 Creating a Bose-Einstein Condensate

states as is explained in more detail in section 3.4.
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Figure 3.1: Schematic illustration of the electronic ground state of 87Rb . The two
hyperfine manifolds F = 1 and F = 2 are shown with their Zeeman sublevels. The
two Zeeman states |F, mF 〉 = |1, 1〉 and |2,−1〉 forming our two-level system are
blue and red respectively. The main parameters determining the system’s dynamics
are the linear coupling Ω by a two photon transition via the |2, 0〉 state and the
nonlinear interaction χ originating from inter atomic collisions.

3.2 Creating a Bose-Einstein Condensate
The creation of the 87Rb -BEC we employ standard techniques of cold atom physics
[29]. A three-dimensional magneto-optical trap (3D-MOT) in ultrahigh vacuum is
loaded by a cold beam of atoms. This beam originates from a two- dimensional
magneto-optical trap in a part of the vacuum system with room temperature ru-
bidium vapour pressure. The atoms in the 3D-MOT are then further cooled in an
optical molasses and subsequently trapped in a magnetic trap. This trap uses the
same pair of coils used for the 3D-MOT but with an additional time orbiting field
preventing Majorana spin flips [30]. In this trap the atomic ensemble is evapora-
tively cooled close to the BEC phase transition. For the creation of a spin polarized
BEC in the F = 1 hyperfine manifold, the atoms are optically pumped into the
lower hyperfine state during the molasses and residual atoms in the F = 2 manifold
are heated out of the trap in the beginning of the evaporative cooling by a short
pulse of resonant light. With the |F, mF 〉 = |1,−1〉 state being the only remain-
ing trapable low-field seeking state, one ends up with a spin-polarized ensemble of
atoms. These atoms are then transferred into an optical dipole trap where they are
further cooled below the critical temperature forming a BEC. The optical confining
potential traps atoms in all spin states of the ground state manifold. This allows to
use a chirped magnetic radio frequency pulse for a rapid adiabatic passage to the
|1, +1〉 state. The residual fraction of atoms in the |1,−1〉 and |1, 0〉 states is close
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3.3 Creating many Copies of the same State

to zero and below our detection limit. Regarding the two mode system formed by
the two states |↓〉 = |1, 1〉 and |↑〉 = |2,−1〉, the atoms are now in a coherent spin
state as discussed in 2.4.

For the experiments in this work, two different optical dipole traps have been
used. The one used for the experiments on the classical behavior of the system
used a high numerical aperture of the focusing lens creating a tight focus with a
waist of ∼ 5 µm [31]. This trap provides high transversal trap frequencies up to the
kHz regime combined with a longitudinal trap frequency of typically ∼ 60 Hz. In
this work it will be referred to as the charger trap. The dipole trap used for the
investigation of the quantum mechanical behavior of the system used a much lower
aperture of the focusing lens providing low longitudinal trap frequencies as low as
∼ 1Hz and transversal trap frequencies of only about 130 Hz. The high aspect ratio
of this dipole trap motivates its name, waveguide trap. Absorption images of the
cigar shaped clouds in the two traps are shown in figure 3.3.

Figure 3.2: Schematic illustration of the experimental setup. The atoms are
trapped in the focus of a red detuned laser beam traveling in x direction, i.e. the
optical dipole trap. This trap is overlapped with a one dimensional lattice potential
forming several potential wells where individual condensates are trapped along the
axis of the optical dipole trap with a typical distance of ∼ 5 µm. A magnetic field
in the vertical z-direction (green) allows for the use of a Feshbach resonance. For
imaging the clouds, the atoms are addressed by a resonant laser beam (light red)
perpendicular to their extension along the dipole trap. The transmitted light is
imaged onto a CCD (charge-coupled device) by a large numerical aperture imaging
system, here shown schematically by a single lens.

3.3 Creating many Copies of the same State
To investigate the properties of the system it is necessary to create many copies of
the same state. This can be done by repeating the experimental sequence many
times with the same parameters. Another way is to create several independent
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3.3 Creating many Copies of the same State

realizations in the same experimental sequence simultaneously. In our experiments
this is done due to a necessity concerning the trap geometry and the advantage of
gaining more information about the state in a single run.

The relation between waist and Rayleigh length of the Gaussian beam of the
dipole trap leads to a cigar shaped condensate cloud. While the transversal trapping
frequencies in our case are as high as several hundred Hz the longitudinal trapping
frequencies in the dipole trap can be as low as only a few Hz. This causes the
problem that the ground state wave functions of the two spin states can be very
different due to the different scattering lengths of the species [32]. The assumption
of constant external modes which is essential for our description does not hold in this
situation. It is therefore important to increase the longitudinal trapping frequency
so that the confinement in this direction is high enough that the dynamics in the
external wave function can be neglected. This is done by a one-dimensional optical
lattice potential along the longitudinal axis of the trap (schematically shown in
figure 3.2). This potential is set up by two beams oriented with a relative angle
of approximately eight degrees overlapping at the position of the dipole trap. The
interference pattern created by these beams leads to a sinusoidal potential along the
longitudinal direction of the dipole trap which creates several local potential minima
in this direction. For high lattice intensities the cigar shaped condensate is divided
up into several condensates which sit in the different potential wells. This is shown
in the absorption images in figure 3.3.
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Figure 3.3: Typical absorption images of atom clouds in the charger and waveguide
dipole traps (upper row left and right) and respective split clouds with the one
dimensional lattice turned on (lower images). The red curves illustrate the optical
potential filled by the chemical potential of the atoms along the x- direction. The
total atom numbers on the images of the charger and the waveguide dipole trap are
about 5000 and 40000 respectively, while the total atom number in the maximally
filled wells in the second row of images is about 800.

These condensates can be treated individually when the time scale for tunnel-
ing between neighboring wells is much longer than the duration of an experiment,
which is well fulfilled in our experiments. The two beams originate from the same
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3.4 Coupling of the Two Spin States

Titanium-sapphire laser. The tunable wavelength of this laser was tuned to 840
nm for the experiments in the smaller dipole trap and to 810 nm for the experi-
ments which were performed in the long trap leading to a well spacing of 5.6 µm
and 5.1 µm respectively. This setup allows for longitudinal trapping frequencies as
high or higher than the transversal ones, which justifies the assumption of constant
external modes as discussed in the next section.

The splitting of the initial condensate into several condensates has another nice
side effect. The results obtained in the different condensates give a huge statistical
boost since the number of results gained during one experimental run is, in prin-
ciple, directly given by the number of condensates. In the tightly- focused charger
dipole trap one gets six to eight condensates, however their atom number distri-
bution is still strongly determined by the underlying dipole trap. This limits one
to using only the two or four inner wells for the analysis, where the atom number
is approximately the same. This is one reason why we set up the long waveguide
dipole trap for the quantum state characterization where high statistics are needed.
This trap allows to have up to ∼ 40 condensates on the absorption image. The use
of all the realizations in parallel is of course only possible as long as variations in
the experimental conditions for the different condensates are small or can be well
controlled.

3.4 Coupling of the Two Spin States

The linear coupling between the two states of the Bose Einstein condensate is pro-
vided by a two photon magnetic dipole transition. The energy difference between
the states of approximately 6.8 GHz is overcome by a microwave photon of roughly
6.8 GHz and a photon in the radio frequency range of approximately 6 MHz. The
frequency of the microwave and RF photon are chosen such that the two states are
resonantly coupled and the state |F, mf〉 = |2, 0〉 acts as the intermediate state.
The detuning from this state is chosen for all the experiments in this work as 200
kHz below the intermediate state. This detuning was optimized such that it gives a
good compromise between two-photon Rabi frequency and single-photon transition
probability to other spin states. The achieved Rabi frequencies on the two photon
transition are limited technically by the microwave power which provides a maxi-
mum single photon Rabi frequency on the order of 20 kHz. To minimize the single
photon transition probability during the two photon coupling the power of the radio
frequency is chosen such that it has approximately the same resonant single photon
Rabi frequency as the microwave. This leads to two photon Rabi frequencies up to
1 kHz.

In our situation, where the detuning of the two radiation fields from the inter-
mediate state is high, the transition probability to the intermediate state can be
neglected and the whole transition can be treated like a single photon transition.

Selection rules require a two photon transition for the coupling of the two spin
states, which has the disadvantage of a reduced Rabi frequency, however, the use of
the radio frequency photon has several technical advantages. The radio frequency
field can be easily controlled in phase and amplitude by the use of an arbitrary
waveform generator. It is therefore possible to make fast changes of the coupling
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3.5 Nonlinearity and Feshbach Resonance

phase and amplitude. The coupling term in the Hamiltonian (equation 2.12) can
therefore be written more generally as,

Ω(t) ·
[
(cos ϕc(t) Ĵx + sin ϕc(t)Ĵy

]

where the ϕc(t) is the time dependent phase of the coupling field. This high flexibility
allows us to employ the pulse techniques developed in the field of nuclear magnetic
resonance [33] to prepare and readout the state of the system which will be discussed
in more detail in section 4.6 and 5.4.

3.5 Nonlinearity and Feshbach Resonance
The timescale of the dynamics in the resonant Hamiltonian is given by the strength
of the parameters χ and Ω in the Hamiltonian of the system (see equation (2.12)).
As discussed in 3.4 the Rabi frequency Ω is mainly technically limited while the
nonlinearity is limited by the scattering length and the wave function integral (see
equations (2.5)(2.6)(2.13)). The problem with 87Rb is that the three important
elastic scattering lengths are almost exactly the same at zero magnetic field [34]
giving only a very small effective nonlinearity. However, the use of a Feshbach
resonance allows us to change the scattering properties of ultra cold atomic systems.
This method has proven to be an extremely valuable tool for many experiments with
ultra cold atoms [7, 35].
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Figure 3.4: Measurement of the nonlinearity depending on the magnetic field
close to the Feshbach resonance. (left) The magnetic field determines the scattering
properties close to the Feshbach resonance. The resulting change of the nonlinearity
χ in the Hamiltonian leads to a change of the oscillation frequency of the dynamics
on the two sides of the sphere (blue diamonds and red circles). (right) The nonlinear
interaction χ can be directly deduced from the measured oscillation frequencies. The
typical dispersive shape associated with the lossy Feshbach resonance is here fitted
(dotted line) under the assumption of constant wave functions over the whole range
of magnetic fields). The measurement was performed with roughly 600 atoms in the
charger trap configuration, with trap frequencies of ∼ 420 Hz in all directions.
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3.6 Time Dependence of the Spatial Wave Functions

In our case, we use a Feshbach resonance that modifies the inter-species scatter-
ing length of the atoms in the two spin states while the intra-species scattering is
insignificantly changed [36, 37]. The resulting nonlinearity can be directly measured
by using the theoretical predictions made within the classical mean field theory of
the problem. The oscillation frequency on the two sides of the sphere are changed
under the influence of the nonlinearity (see section 2.6). This change can be used
to experimentally determine the resulting nonlinearity without further knowledge
of the systems external mode. A more detailed discussion of these relations will be
given in chapter 4.1. The results of such a measurement are shown in figure 3.4,
where the left panel shows the change of the oscillation frequency on the two sides of
the sphere and the right panel shows the resulting nonlinearity. From this measure-
ment one might deduce that a magnetic field close to the Feshbach resonance would
be favorable for a high nonlinearity but the proximity to the resonance also leads to
dramatic loss of the atoms as discussed in section 3.8.1. In the experiment we have
therefore chosen a magnetic field where a good trade off between loss and nonlin-
earity was found. The experiments in the charger were performed at 9.13 G with
a typical nonlinearity of χ ∼ 2π × 0.065 Hz while the experiments on the quantum
behavior of the system where done at 9.12 G resulting in an effective nonlinearity
of χ ∼ 2π × 0.09 Hz.

As discussed in section 2.6 the ratio Λ = χN
Ω plays an important role in the dy-

namical behavior of the system. As was already motivated at Λ =1 the dynamics
are expected to be significantly changed. For typical atom numbers in the experi-
ment and our given nonlinearity this corresponds to a linear coupling frequency on
the order of tens of Hz. The overall time scale of the experiments is therefore given
mainly by the size of the nonlinearity.

3.6 Time Dependence of the Spatial Wave Func-
tions

The important simplification in the derivation of the theoretical description is based
on the assumption of constant external modes. It has been shown that this as-
sumption is typically fulfilled for small atom numbers and tight confinement in the
trap. However as long as the interaction between the atoms is spin dependent, the
constant spatial wave function is an approximation. While it is in general possible
to treat the problem in terms of a time-dependent Gross-Pitaevskĭı equation the
numerical simulation gets very complex without further assumptions [38, 39].

To give a theoretical insight into the applicability of the constant mode approx-
imation it is instructive to look at the ground state probability densities without
coupling for different atom number partitions in the two modes. The ground state
modes can be computed relatively simply by numerical methods treating the time-
independent Gross-Pitaevskĭı equation. The left panel in figure 3.5 shows the ground
state distributions in the trapping scenario, which corresponds to the case of the
elongated waveguide trap.

The narrow set of curves shows the distribution in the longitudinal direction
where the high trapping frequency of the lattice potential of ∼ 860 Hz provides a
strong confinement. The wide set of curves shows the distribution in the shallow
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Figure 3.5: (left) Ground state probability densities without linear coupling for 400
atoms distributed equally over the two states (solid lines) and pure densities in either
state of the states (dotted lines). The narrow set of curves are in the tight direction
of the strongly confining lattice potential (860 Hz) while the wide set of curves
shows the probability densities in the direction of the weak transversal confinement
(130 Hz). The difference between the different partition of atoms is hardly visible
here. (right) Relative probability density difference between the mixed and the pure
ground state functions in the weak transversal direction for spin down (blue) and
spin up (red dotted). In the relevant center the probability densities differ by less
than 5% which confirms the usability of the constant spatial mode approximation.

transversal direction (trapping frequency ∼ 130 Hz). Shown are the ground state
distributions for a equal partition of 400 atoms and the ground state distributions
for a pure condensate of the same atom number in either of the two spin states.
The intra species scattering length has been chosen to be 75 Bohr radii which is
a lower estimate on the real value in our experiment. As is clearly visible, the
external modes are indistinguishable for the longitudinal direction and similar in
the transversal direction for all four cases. To give a more quantitative view on
the actual difference the normalized wave function difference between the respective
pure and 50/50 case is shown in the right panel of figure 3.5 for the transversal
direction. In the region with a significant probability density the respective wave
functions only differ by a few percent. The relatively high difference at the outer
regions is not as important due to the low probability density.

The analysis of the ground state modes shows that even in the case of the un-
favorable waveguide trap configuration, the modes do not change appreciably for
different atom number partitions over the two spin states. This justifies the approx-
imation of constant external modes in our experimental configuration.

3.7 Imaging
The observable in the system is the atom number in the individual spin states. The
Bose-Einstein condensed atoms are a system that is only very weakly coupled to
its environment. This is necessary to have the high level of coherence needed for
the experiments but poses difficulties for the detection of the system’s state. Several
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detection methods have been implemented in ultra-cold atom physics experiments so
far [40, 41, 42]. In our experiment, we use high-intensity absorption imaging to detect
the atom number. The atoms are illuminated by a pulse of a resonant laser light,
which is imaged onto a CCD camera by an objective with high numerical aperture
lens, allowing us to spatially resolve adjacent atomic clouds [43]. The resonant light
is scattered by the atoms and casts a shadow on the CCD depending on the column
density of atoms in the cloud as is illustrated in figure 3.2. This negative image
of the atom density can be calculated into an absolute atom number by taking a
reference image of the light field under the same condition but without the atoms
and appropriate calibration of atom number in relation to the measured absorption.
The light absorption follows the Beer-Lambert law and several methods for the
calibration of the parameters of the non linear dependence have been developed
[40].

In our case a precise imaging calibration can also be performed by using the fact
that the variance of a coherent spin state is well known from its binomial character
(see section 2.4). In the following we will try to outline the very basic concept of
this approach.

We assume that one has already linearized the dependence of the presumably
incorrectly inferred atom number Ñk of the two spin states to the real atom number
Nk by other methods and that the linear dependence is the same for the two spins.
This can be expressed by

Ñi = αN1 and Ñ2 = αN2.

For the variance of the inferred atom number difference one finds therefore

Var(Ñ2 − Ñ1) = α2Var(N2 −N1) ∝ α2〈(N1 + N2)〉 = α〈(Ñ1 + Ñ2)〉.

Here the proportionality relation stems from the distribution of the CSS and is
known, while the last equation originates from the assumption. Since the same
proportionality relation between atom number fluctuations and total atom number
applies for the inferred atom numbers the parameter α can be fixed by measuring
both atom number fluctuations and total atom number for a CSS.

One may argue that the method has difficulties when fluctuations in the inferred
atom numbers stem from other sources than the atoms. However this problem can
be overcome as long as the additional variances do not grow linearly with the total
atom number which is typically the case. A more detailed discussion of our imaging
calibration can also be found in [28].

To selectively count the atoms in the different spin states we either use state
selective light or spatial separation of the spin states. For the first method the
atoms in the two spin states are counted by taking two images where the first one
only images the atoms in the F = 2 hyperfine manifold and successive imaging of
the atoms in the F = 1 states by additional light on the repumping transition. The
second method transfers the atoms in the |F, mF 〉 = |2,−1〉 by a microwave pulse
to the |1,−1〉 state. This state has the opposite magnetic moment as the |1, +1〉
state which enables Stern-Gerlach separation of the two spin states in the vertical
direction so that they can be imaged individually on the same absorption image.
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3.7.1 Imaging Noise

The absorption imaging technique used in the experiments suffers from several draw-
backs which are due to the additional fluctuations briefly mentioned above. There
are two main sources for this noise in the imaging process. The first one originates
from the granularity of the light pulses. The finite number of photons in the pulses
leads to shot noise which translates into intensity fluctuations on the images be-
coming noticeable as an effective noise on the determined atom number. This noise
contribution is typically on the order of 8 atoms in our system. Although the rea-
son for the second contribution of noise is not completely resolved it can be mainly
backtracked to differences of the image with atoms and the reference image without
atoms. Between the two images lies a time of approximately 1 ms. In this time
slight changes in the light path change the intensity pattern so that the absorbed
intensity can not be measured perfectly which shows up in a slight fringe pattern on
the calculated images. The noise level of this fringe noise corresponds to an effective
atom noise comparable to the noise stemming from photon shotnoise. The overall
atom number detection noise is therefore approximately 11 atoms.

3.8 Experimental Imperfections

Although ultra-cold neutral atomic systems have proven to be very close to ideal
quantum mechanical testbeds they are still subject to decoherence with their envi-
ronment. Furthermore, technical imperfectly controlled system parameters lead to
difficulties in implementing the desired Hamiltonian, and thus give rise to additional
noise in the experimental results.

In this section an overview of the main technical and physical limitations in
implementing the quantum mechanical system is given.

3.8.1 Atom Loss

The Bose-Einstein condensed clouds in the traps are subject to atom loss. The two
main contributions to atom loss in our system are spin relaxation and three body
collisions close to the Feshbach resonance.

Spin relaxation may occur when two atoms collide. While the total spin magne-
tization of the atoms is conserved the hyperfine spin is not necessarily a conserved
quantity in the process. The typical energy scale of the atoms in the cloud is much
lower than the hyperfine splitting of 87Rb which energetically forbids the excitation
of F = 1 atoms into the F = 2 manifold, but the relaxation in the other direction
is possible. The energy released in this process leads to F = 2 atom loss. The
timescale of this loss is on the order of 200 ms in our experiment.

The second loss mechanism is due to the Feshbach resonance. The Feshbach
resonance is the resonant coupling of two free atoms to a molecular state. The
binding energy of this molecular state can be transferred to kinetic energy of a third
atom. In this case all three atoms gain enough energy to be lost from the trap.
The time scale of this loss process depends strongly on the distance to the Feshbach
resonance. In the experiments discussed here it was typically on the order of 100 ms.
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For the sake of completeness, as in all cold atom experiments atoms can be also
lost due to collisions with the background gas in the vacuum chamber or released
from the trap due to heating. The loss time scale of this process is typically much
longer than 10 s making it insignificant in relation to the other loss processes.

With the overall time scale of the loss of about 100 ms the absolute loss of atoms
during the typical experimental evolution time of 40 ms is significant. This loss has
mainly two effects: decoherence of the system’s state and the change of the system
parameters.

The effect of decoherence is especially important for quantum states that are
entangled since the entanglement is typically lost under the influence of decohering
processes. The squeezed spin states and macroscopic superposition states inves-
tigated in chapter 5 are examples of entangled states in the system. In general
theoretical predictions for the influence of decoherence such as atom loss on such
states are complicated and usually demand assumptions that are experimentally
hard to ensure.

Although the influence of loss on squeezing has been theoretically investigated
[44] and the macroscopic superpositions states have been found to be relatively ro-
bust under the influence of loss [45, 15] the theoretical predictions do not necessarily
cover the experimental situation completely. It is therefore an open question how
the produced entangled states decohere due to atom loss.

The influence on the system parameters will be discussed in more detail in section
5.5.2

3.8.2 Magnetic Field Noise
The energies of the two modes of our system which correspond to ω1 and ω2 in
equation 2.14 are magnetic field dependent due to the Zeeman effect. However the
linear Zeeman effect shifts both levels the same way so that the important energy
difference is not affected by the linear Zeeman effect (see figure 3.1). However, the
quadratic Zeeman effect shifts the two levels relative to each other. At magnetic
field strengths of approximately 9G where the experiments are performed this shift
is approximately 10.6Hz/mG and directly enters in the detuning term of the Hamil-
tonian (see equation 2.14). The magnetic field fluctuations in the lab are typically
on the order of several mG at a frequency of 50 Hz due to the power lines and
slow drifts from day to day. The resulting fluctuations of the detuning have to be
compared to the Rabi frequencies of the linear coupling to give an impression on its
influence on the dynamics. The linear coupling during the time evolution is typically
on the order of less than 30 Hz which makes the detuning term at least comparable
to the others or even the dominant term in the Hamiltonian. A major technical issue
is therefore the reduction of the magnetic field fluctuations such that the detuning
term in the Hamiltonian becomes well-controlled. This has been accomplished by
an active magnetic field stabilization system discussed in the next section.

3.8.3 Magnetic Field Stabilisation
Magnetic field stabilization in the experiment can be either implemented by using
passive methods such as µ-metal shielding or by active stabilization through closed
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loop field control [46]. Although the first generally promises better results, it is
difficult to implement in our experimental setup because of two reasons. The passive
shield shields not only the magnetic fields from the atoms but also significantly
reduces the optical access to them which is a significant disadvantage in an ultra cold
atom experiment. The second reason is the high magnetic fields generated during
the magnetic trapping of the atoms. These fields would magnetize the passive shield
leading to a strong reduction of performance. For these reasons an active magnetic
field stabilization has been set up.

The active stabilization of the magnetic field in the experiment is done by using
a pair of large square coils for producing the relatively high magnetic field of ∼ 9 G
needed for the Feshbach resonance. These coils have a size of ∼ 1m2 and are set
up in approximate Helmholtz configuration with the atomic cloud roughly in their
center. The use of this large coils ensures a uniform field in a region around the
atoms, which enables us to get an accurate field measurement using a fluxgate
magnetometer (Bartington Mag03MS) at a distance of about 8 cm from the atoms.
The magnetometer signal is used in a closed feedback control driving a second set
of coils to actively stabilize the magnetic field at the position of the sensor and
therefore also at the position of the atoms.

With this setup we are able to reduce the magnetic field fluctuations at 50Hz
down to a level of 200µG in amplitude. These field fluctuations due to the power lines
are very stable in phase and amplitude. We therefore synchronize our experiment
to the 50 Hz line frequency to further lower their effect. The residual fluctuations
from realization to realization are below 40µG corresponding to fluctuations of the
effective detuning of about 0.4 Hz.

On a long time scale the effective magnetic field at the position of the atoms still
drifts over some mG from day to day. These drifts are not completely understood but
can be partly explained by the temperature dependence of the magnetic field sensor.
We overcome these drifts by performing magnetic field reference measurements with
the atoms on a regular basis.

3.8.4 Magnetic Field Gradients
As discussed in 3.8.2 magnetic field changes result in a change of the detuning of
the atomic transition relative to the linear coupling. A gradient of the magnetic
field within the spatial extent of the individual condensates, which is typically on
the order of some micrometers, is usually too small to introduce problems. On
the length scale of the whole system with its extension in x direction over several
hundred micrometers, even a rather small gradient may lead to a different detuning
for the individual condensates. The influence of such a gradient on the system can be
easily tested by performing a Ramsey sequence [47]. Such a sequence translates the
accumulated phase resulting from the detuning into a population imbalance of the
condensate which can be directly detected. This population imbalance is given by
the sine of the accumulated phase. A constant gradient of the magnetic field along
the line of condensates therefore shows up as a sinusoidal imbalance distribution
from left to right. In the experiment the magnetic field of approximately 9 G is
oriented along the vertical z-direction. The field components perpendicular to this
field are much smaller, which makes the influence of their gradients negligible. The
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only gradient important for our experiments is therefore that of the field components
in z-direction increasing or decreasing in x-direction. To use all the condensates as
individual realizations of the same system one has to reduce the gradient. This
has been done by installing small permanent magnets with their dipole oriented
along the z-direction on both sides of the condensed atoms anti parallel to each
other. We choose permanent magnets to compensate the gradient instead of coils
since they offer a high stability without active stabilization on long time scales.
By adjusting the distance the gradient could be minimized to less than 2 mG/cm
which corresponds to a maximal magnetic field difference of less than 40 µG on the
extension of the images. This is less than the overall shot-to-shot fluctuations in the
experiment.

3.8.5 Rabi Frequency Gradients
The microwave and radio frequency antennas generating the oscillating linear cou-
pling fields are positioned approximately 4 cm away from the condensed 87Rb atoms.
The complex setup of coils and other metallic material in close proximity to the
atoms leads to very complex field distribution. Although the length scale for the
spread of the condensates in the x-direction is only on the order of several hundred
µm while the wavelength of both the microwave and the radio frequency field is
orders of magnitude larger we find an inhomogeneous power distribution over the
condensates. This leads to different Rabi frequencies along the line of condensates
which can be directly measured.

Individual measurement of the radio frequency and microwave Rabi frequencies
allows us to find the source of this gradient. Surprisingly it is mainly due to a
gradient in the radio frequency field. This gradient can not easily be altered since
it is mainly given by the geometry of the antennas and the metallic parts close
to the vacuum chamber, which leaves little room for alterations. With a maximal
difference between left and right side of our images of approximately 3% it is not too
critical but one has to consider potential effects in the data analysis. The influence
of this gradient on the experiments in the tightly confining charger dipole trap can
be completely neglected due to its small spatial extent.
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Figure 3.6: Measurement of the linear coupling Rabi frequency in the different wells
over the extension of the image. As can be clearly seen the effective two photon Rabi
frequency shows an approximately linear increase in x-direction of about 3% over
the extension of the image of the clouds of about 180µm. The resulting sinusoidal
atom number distribution in the upper and lower spin states after a long Rabi pulse
of ∼ 130 ms can be seen in the lower part. The antennas for the microwave and
radio frequency radiation are situated right of the image in positive x-direction.
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Chapter 4

Classical Bifurcation at the
Transition from Rabi to Josephson
Dynamics

In this section we discuss the investigation of the classical mean field dynamics
of the Hamiltonian. The classical description is motivated by the fact that the
quantum mechanical state of the system is macroscopic enough that it can be well
described by the mean values of its observables. The resulting description is very
similar to the Josephson effect found in superconductors [48, 49, 50] and the weakly
linked reservoirs of super fluid Helium [51, 52]. A unique feature of the bosonic
Josepshon junction is the topological change of the classical phase space under a
smooth parameter change. Such a scenario is described by a bifurcation in the
dynamics which becomes accessible in the internal Josephson junction realized in
this work [53]. The system allows to map out the full phase space of the dynamics
and investigate the topological change.

4.1 The Classical Mean Field Hamiltonian
The system which is initially prepared in a coherent spin state behaves more and
more classical with growing total number of particles. This becomes obvious in
the Husimi distribution of the CSS, which becomes more and more localized with
growing number of atoms (see figure 4.1). This supports the idea that for a large
atom number the system can be characterized as a single point on the sphere and
the dynamics can be described by classical equations of motion.

The expectation values in the three orthogonal directions for a CSS |N, ϑ,ϕ〉 are
given by

〈Ĵx〉 = N
2 sin ϑ cos ϕ, 〈Ĵy〉 = N

2 sin ϑ sin ϕ, 〈Ĵz〉 = N
2 cos ϑ.

This shows that the CSS is completely defined by these expectation values and
motivates the idea that the classical limit of these observables can be used as the
phase space variables of the classical problem. However, the three variables are
over defining the state of the system. The state is fully characterized by taking the
following variables
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Figure 4.1: Husimi representation of coherent spin states with total atom numbers
of 10, 100 and 1000 atoms from left to right. It is clearly visible how the quantum
fluctuations shrink with the growing number of atoms. For high atom numbers it is
therefore self evident that a classical description as a single point in the phase space
is a very good approximation to the full quantum mechanical picture.

z =
2

N
〈Ĵz〉 =

N2 −N1

N2 + N1
(4.1)

ϕ = arctan
(
〈Ĵy〉/〈Ĵx〉

)
(4.2)

These variables correspond to the normalized atom number imbalance and the
relative phase of the two modes.

Replacing the operators in the quantum Hamiltonian (see equation 2.12) by
their mean values directly leads to the classical mean field Hamiltonian. Without
the detuning term one gets

HMF =
Λ

2
z2 −

√
1− z2 cos ϕ, (4.3)

with the corresponding equations of motion

ż(t) = −
√

1− z(t)2 sin ϕ(t), (4.4)

ϕ̇(t) = Λ z(t) +
z(t)√

1− z(t)2
cos ϕ(t). (4.5)

The influence of the detuning on the classical dynamics will be considered in
section 4.4. This Hamiltonian can be solved analytically in terms of Jacobian elliptic
functions [13] or integrated numerically.

4.2 Topologies of the Mean Field Hamiltonian
As already seen in section 2.6 the analysis of the fixed points of the system can be
very instructive for the understanding of the resulting dynamics. The fixed points
found in the approximate considerations in section 2.6 are exact for the classical
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case. There are two fixed points on the equator F0 = (z,ϕ) = (0, 0) and Fπ = (0, π),
while for Λ > 1 two additional fixed points F± =

(
±

√
1− (1/Λ2), π

)
appear. The

appearance or disappearance of fixed points is associated with a bifurcation in the
classical dynamics. Such a bifurcation is accompanied by a topological change of
the phase space.
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Figure 4.2: Illustrations of the phase plane portrait of the classical Hamiltonian
for growing parameter Λ from left to right. The upper part shows the phase space
on the sphere from a viewpoint behind the sphere. Here the topological change of
the phase space and the emergence of the separatrix (black line) is clearly seen.
The lower part shows the same phase portrait projected onto the plane. In this
illustration the stable fixed points are marked by black dots and the direction of the
dynamics is indicated by arrows.

This can be clearly seen in figure 4.2. Typical phase space trajectories are shown
both on the sphere in the upper row of pictures and in a flat projection of the
phase space in the bottom row for different values of Λ. The flat projection has the
advantage that the phase space can be shown as a whole but one has to keep in
mind that in this visualization the top and bottom line correspond to a single point
in the phase space (north and south pole).

For small Λ the dynamics are dominated by the linear Rabi coupling, i.e. a rota-
tion around the x-axis of the sphere. This regime is therefore referred to as the Rabi
regime of the dynamics [9]. In the phase space the trajectories go around the two
fixed points F0 and Fπ. The circular shape of the trajectories corresponds to a oscil-
lating behavior in both the relative imbalance z and the phase ϕ. The oscillations
around F0 are called plasma oscillations in reference to their superconducting analog,
while the oscillations around Fπ which have mean phase π are called π-oscillations
lacking a counterpart in the superconducting Josephson junctions. With increasing
Λ, which corresponds to a relative increase of the nonlinearity, the dynamics on the
two sides of the sphere become considerably different which can be seen in their
deformation from pure circles.

For Λ > 1 the effective strength of the nonlinearity is comparable to the linear
coupling and the two fixed points F+ and F− appear. Now the dynamics in their
proximity enclose these fixed points. Although the fixed point Fπ is unstable there
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are still trajectories which revolve around it. While the dynamics around F0 are
topologically unaffected by the increase of Λ the π-oscillations on the other side of
the sphere can now be classified in those with zero mean imbalance and those with
a mean imbalance either positive or negative. This finite mean imbalance originates
from the interaction of the atoms among themselves. The dynamical behavior is
therefore referred to as macroscopic quantum self trapping [13, 9]. An eight shaped
separatrix (black line) divides the phase space into the topologically different regions.

By increasing Λ further the two fixed points F± move further apart in the direc-
tion of the poles while the separatrix encloses more and more of the phase space. At
Λ =2 the separatrix reaches the north and south pole. For even larger Λ the poles
are enclosed by the separatrix and some self trapped trajectories revolve around the
pole axis. Their dynamics are therefore characterized by a running behavior of the
phase without bound. The regime of Λ > 1 is called Josephson regime, since the
phenomena of plasma oscillations and the macroscopic self trapping behavior can be
found similarly in the Josephson effect known from weakly linked superconductors
[9].

For the sake of completeness we mention that for very large Λ > N where N
is the total atom number a third regime can be defined which is often referred to
as Fock regime [9]. In this regime the coupling is so small that the ground state of
the Hamiltonian becomes a highly entangled number state. Although this regime
can be easily entered in our experiment by switching of the coupling radiation the
interesting ground state properties can not be accessed on a time scale feasible in
our experiment.

4.3 A Classical Analog

Figure 4.3: Pendulum performing plasma oscillations

The use of a classical Hamiltonian to describe the system has not only the ad-
vantage of simplification but also allows to compare the dynamics with other well
known classical systems. As has been pointed out the classical Hamiltonian is very
similar to that of a mathematical pendulum [13].The Hamiltonian of a mathematical
pendulum can be written as

HPendulum = Λ
2 z2 − cos ϕ (4.6)

Here z is the angular momentum variable of the pendulum and ϕ is the angular
displacement. The first part of the Hamiltonian is the kinetic energy while the second
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one corresponds to its potential energy. The mass, length and the gravitational
constant of the pendulum are absorbed into Λ by an appropriately chosen time
scale.

Figure 4.4: Macroscopic quantum self trapped pendulum

The comparison between the Hamiltonian of the pendulum and the classical
Hamiltonian of our system (see equation 4.3) shows that the only difference is the
additional factor

√
1− z2 in the latter one. If one interprets this Hamiltonian also as

a pendulum this factor leads to a momentum dependent shortening of the pendulum.
However for small |z| this term is close to one and we expect a very similar behavior
of the two systems. For large Λ this condition is satisfied for a large region of the
phase space.

Considering a classical pendulum one finds two different types of motion: oscilla-
tions around the minimum and rotations around the pivot of the pendulum. These
two types of motion have a direct analog in our system. The oscillations around
the minimum correspond to the plasma oscillations. Both the angular momentum
and the phase of the pendulum oscillate around the fixed point which corresponds
to F0. This is illustrated in figure 4.3. The full rotations around the pivot corre-
spond to the macroscopic self trapped trajectories with running phase. The latter
ones have a finite positive or negative mean angular momentum corresponding to
a rotation either clockwise or counter clockwise (see figure 4.4). The shortening of
the pendulum can be small as long as Λ is very large. The unstable fixed point Fπ

corresponds to a situation where the pendulum is perfectly pointing upward.

Figure 4.5: Self-trapped π-oscillations

Since the mathematical pendulum has only two fixed points the two stable fixed
points F± of the system have to have their origin in the shortening of the pendulum.
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If the angular momentum of the pendulum is high enough the shortening can lead to
a motion where the pendulum bob does not revolve around the pivot any more but
orbits around a point above the pivot. The mean angular displacement is therefore
found to be π while there is still some finite positive or negative mean angular
momentum. This behavior is shown in figure 4.5 and corresponds to the macroscopic
self trapping with mean phase π.

Figure 4.6: π-oscillations around the stable upper fixed point.

For small Λ Fπ is a stable fixed point which also originates from the shortening
of the pendulum. This shortening is found in the potential energy part of the
Hamiltonian and has a local minimum even for a phase ϕ ≈ π. It therefore stabilizes
the pendulum in its upward position. This behavior is illustrated in figure 4.6. The
oscillation back and forth leads to a zero mean of the momentum.

Topological Considerations

As was shown above the two systems behave very similar in the case of large Λ and
small values of the momentum z but there is also a major difference where these
conditions are not fulfilled. This is especially apparent by comparing the topolo-
gies of the two phase spaces. While the momentum of the normal pendulum is not
bounded at all the momentum shortened pendulum only allows a maximum mo-
mentum of ±1. In this situation the length of the pendulum shrinks to zero and the
angular displacement ϕ gets undefined. This is just another way of understanding
the spherical nature of its phase space. For the normal pendulum this can never
happen, the topology of the phase space is cylindrical as is illustrated in figure 4.7.

From this illustration it becomes also obvious why the behavior is so similar for
small |z| in the region around the equator, the sphere can be well approximated by
a cylinder.

The comparison of the momentum shortened pendulum with the rigid mathemat-
ical pendulum corresponds directly to the comparison of Josephson physics found
in superconductors and the bosonic Josephson junction. This illustrates that the
analogy of the two phenomena breaks down when one leaves the cylindrical part of
the phase space in the direction of the poles of the sphere.
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Figure 4.7: Topological difference between bosonic Josephsen junctions and their
superconducting analogs. Phase spaces of the momentum shortened pendulum left
and of the mathematical pendulum on the right for the same parameter Λ > 2.
The topological difference of the spherical phase space of the momentum shortened
pendulum and the cylindrical phase space of the mathematical rigid pendulum illus-
trates the absence of the dynamics with mean phase π in the case of the mathematical
pendulum.

4.4 Influence of the Detuning on the Classical Dy-
namics

Up to now the detuning term in the quantum Hamiltonian has been left out in the
discussion of the classical mean field dynamics of the system. Although the exper-
iments discussed in this work aspire zero detuning one is limited by experimental
imperfections as discussed in section 3.8. In this section we will therefore treat the
influence of a finite detuning on the classical behavior. The detuning term in the
quantum Hamiltonian ∆Ĵz translates into ∆

Ω z in the classical mean field Hamilto-
nian. In the spirit of the discussion in section 2.6 this term corresponds to a rotation
on the sphere around the z-direction. This leads to a break of the symmetry of the
northern and southern hemisphere of the phase space. While the phase of the fixed
points turns out to be unaffected at either zero or π their longitude or imbalance z
is changed. For large detuning this can even lead to a complete topological change
of the phase space meaning that even for Λ > 1 the fixed point Fπ is not unstable
and the two fixed points F± do not exist. This is illustrated in figure 4.8 in the left
panel where the number of fixed points is given depending on the parameters Λ and
∆/Ω. It can be clearly seen that the detuning leads to an increase of the critical Λ
where the bifurcation happens. The typical imperfection in ∆/Ω in the experiment
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Figure 4.8: (left) Dependence of the number of fixed points on Λ and the effec-
tive detuning ∆/Ω. The onset of the orange region with 4 fixed points marks the
bifurcation point. (right) Position of the fixed points for zero detuning (solid lines)
and a finite effective detuning of ∆/Ω=0.05 (dotted line). In the second case the
bifurcation happens out of blue sky and for a larger critical Λ.

is less than 0.03 so that the change of the critical Λ can be considered negligible.
In the right panel of figure 4.8 the position of the fixed points on the π-side of

the sphere is shown depending on the parameter Λ for zero detuning (solid line) and
a finite detuning (dashed line). As can be seen in the case of finite detuning the
assignment of the fixed points is not any more clear. Here the stable fixed point
does not undergo a transition into an unstable fixed point any more. Instead the
unstable fixed point appears together with a stable fixed point out of blue sky.

4.5 External vs. Internal Bosonic Josephson Junc-
tions

The first realizations of bosonic Josephson junctions with ultra cold atoms have been
implemented by using external degrees of freedom to realize the two mode system
[54, 55, 56]. In this work we have implemented the system by taking solely the spin
of the atoms as discriminating property of the two modes. These two ways offer
different advantages and disadvantages which will be discussed in the following.

External degrees of freedom allow one to optically distinguish between the two
states. By designing optical potentials which separate the two BEC by a large
amount one can further easily reach quite large nonlinearities even if the scatter-
ing lengths are not favorable. However the coupling frequency is typically reduced
because the mode overlap decreases (see (2.7)). This allows one to access regimes
where the nonlinearity dominates the dynamics, i.e. large Λ. On the other hand the
regime of small Λ is hard to reach. The aspired high linear coupling corresponds to
a high mode overlap which typically leads to a breakdown of the two mode theory.
The smallest Λ which was reachable in the work of Albiez et al. was on the order
of 70 [55] and therefore far above the bifurcation point.

The biggest drawback of external systems is that it is usually hard to prepare
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an arbitrary initial coherent spin state. To get a well defined phase between the two
condensates they have to either originate from the same condensate or they have
to be at least strongly coupled for some time [57]. After the following separation
one has to employ energy shifts to the condensates so that a specific desired phase
difference between them builds up which is technically challenging. Another disad-
vantage of such systems is that the readout of the phase is typically done via spatial
interference of the two condensates which raises the technical difficulty of detecting
the interference pattern with high resolution.

The use of the internal spin degree of freedom allows one to circumvent most of
these issues. By optically trapping the two condensates in the same trap one gets
close to perfect mode overlap leaving the spin as the only distinguishing parameter of
the two subsystems. The coupling of the internal degrees of freedom can be achieved
by using electromagnetic fields either by using optical two photon stimulated Raman
transitions or by employing microwave and radio-frequency magnetic fields directly
coupling to the magnetic moment of the atoms. For both methods commercial
radio frequency or microwave sources allow one to couple the two states with a
very high level of control. The possibility to switch the phase and amplitude of
the coupling field on a nanosecond time scale allows to implement almost arbitrary
unitary transformations on the Bloch sphere, which help to readout and characterize
the state. The drawback of the internal Josephson junction, at least in the case
of 87Rb , is that the nonlinearities are small compared to the external case and
accompanied by significant atom loss. Nevertheless internal degrees of freedom allow
for the investigation of the regime of Λ at the transition from Rabi to Josephson
dynamics where the bifurcation occurs.

4.6 Experimental Sequence and State Readout

In this section we want to briefly discuss how the measurements on the classical
mean field dynamics are performed.

In general the variation of Λ is experimentally performed by varying the coupling
strength Ω. This means that the nonlinearity is kept constant over the actual mea-
surement by ramping the magnetic field to the constant value of 9.13 G close above
the Feshbach resonance where a good trade-off between atom loss and nonlinearity
is found (see section 3.5).

The preparation and the phase readout of the state of the system is done with a
maximum coupling strength of about 2π × 600 Hz which corresponds to a minimal
Λ < 0.05. This means that the influence of the nonlinearity during these pulses can
be neglected in good approximation. The experimental sequence starts by such a
pulse where the pulse length determines the initial imbalance. The following evolu-
tion happens with the appropriate attenuation of Ω leading to the aspired Λ. The
coupling during the evolution can have a relative phase difference to the preparation
pulse which determines the initial phase of the dynamics. Since the state readout
is performed via destructive absorption imaging the process has to be repeated fre-
quently with varying length of the evolution time to obtain the dynamical behavior
of the system in a stroboscopic way.

The readout of the population imbalance z can be performed by simply counting
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the atom numbers in the different internal spin on the absorption images as discussed
in section 3.7. To read out the phase ϕ we apply another strong coupling pulse to
the atoms which performs a rotation of 90◦. This pulse can be chosen in its relative
phase to the evolution pulse so that it rotates either the x or the y coordinate into
the z direction which can be measured as a relative atom number difference. In this
way one obtains a full set of coordinates which can be used to get the variables z
and ϕ in an unambiguous way.

4.7 Observation of the Topological Change
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Figure 4.9: Direct observation of the topological change in the dynamics due to
the bifurcation. Two initial states symmetric in the upper and lower hemisphere
(see the inset) lead to qualitatively different dynamics in the Rabi and Josephson
regime, respectively. In the Rabi regime both initial states share the same trajectory
around the stable fixed point Fπ, and the temporal mean imbalance vanishes in
both cases. By increasing Λ over the critical value a separatrix is formed. If the
initial preparation lies within this separatrix the trajectories are distinct showing a
nonvanishing mean. The solid lines are the theoretical prediction.

For a quantitative experimental study of the bifurcation phenomenon and the
associated topological change in the phase space, we study the temporal mean im-
balance of two fixed initial preparations for different Λ. These initial preparation
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points are chosen symmetrically on the northern and southern hemisphere and both
with an initial phase of π. By analyzing the temporal mean of the subsequent evo-
lution over a full oscillation one expects to observe a different behavior in the Rabi
regime in contrast to the Josephson regime. This can be seen in figure 4.9. For
Λ < 1, i. e. the Rabi regime one finds the temporal mean imbalance for the two
preparations to be equal and zero within the measured precision. This can be easily
understood from a symmetry argument. In the case of zero detuning the Hamil-
tonian is symmetric with respect to the equator of the phase space implying also
symmetric trajectories. In the Rabi regime the two initial preparations lie on the
same trajectory which is a π oscillation around the stable fixed point Fπ (see Bloch
spheres in figure 4.9). Their temporal mean imbalance 〈z〉 is therefore expected to
be zero. In the Josephson regime however the two different preparations do not share
the same trajectory any more, but the system is macroscopically self trapped above
or below the equator, which is in good agreement with the experimental findings.

Although this method allows to demonstrate the topological change occurring in
the phase space at the critical Λ it must not be confused with a direct measurement
of the fixed points in the system. The theoretical dependence plotted in figure 4.9
is the theoretically expected behavior of the temporal mean which is different to
the position of the fixed points. This behavior depends also on the exact initial
preparation condition which was in our case (z,ϕ) = (±0.45, π) indicated as dashed
lines in the figure. For Λ =1 the bifurcation happens and the separatrix starts to
grow by increasing Λ, while the fixed points F± move in the direction of the poles.
However the actual change in the temporal mean can only be detected if the initial
preparation falls onto a trajectory enclosed by the separatrix. This means that the
initial imbalance determines at which Λ the change happens in the measurement.
However the difference from the critical Λ =1 is very small even for relatively large
initial imbalances.

4.8 Measurement of the Phase Portrait

As described in section 4.6 the experiment allows us to prepare the system in an
arbitrary coherent spin state and to read out both the imbalance z and the phase ϕ
of the system’s final state it has evolved to. This enables us to map out the phase
portrait of the different types of trajectories. The results are shown in figure 4.10
for different Λ.

In panel (a) we are in the Rabi regime (Λ =0 .78). Both plasma oscillations (blue
symbols) and π-oscillations (red symbols) are experimentally observed. The solid
lines correspond to the theoretical predication which has no adjusted parameters.
The Λ is fixed by an individual measurement of the Rabi frequency Ω and the nonlin-
earity χ. The only remaining parameter is the initial preparation of the trajectory.
This is determined by calculating the corresponding energy of the measured points
in the phase portrait. One therefore gets to the trajectory which is energetically
closest to the measured points. The trajectories nicely show how the interaction of
the atoms deforms the dynamics on the two sides of the sphere which is most clearly
seen in the three dimensional picture of the Bloch sphere in the second row of the
figure.
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Figure 4.10: Experimentally observed phase portraits of the classical dynamics
showing all possible kinds of trajectories. The experimental data for three different
Λ are compared to the theoretical prediction without free parameter (solid lines). (a)
Phase portrait in the Rabi regime for at Λ =0 .78. Plasma (blue) and π-oscillations
(red) can be clearly identified. The corresponding Bloch sphere in the lower part
shows the theoretical lines which clearly illustrates how the trajectories are deformed
from pure circles due to the interaction. (b) The Josephson regime is entered by
reducing the linear coupling Ω (Λ =1 .55). Here the bifurcation leads to topologically
new trajectories around the emerged stable fixed points above and below the equator.
This macroscopic quantum self trapping with mean phase π is demonstrated by the
green crosses and squares. (c) The phase portrait at Λ =3 .1 shows trajectories
with running phase (orange squares and circles). These trajectories appear in the
phase space for Λ > 2 and are the analog to the ac-Josephson effect found in
superconducting Josephson junctions.

Panel (b) shows a typical phase portrait observed in the Josephson regime of the
dynamics slightly above the bifurcation (Λ =1 .55). Here additionally macroscopi-
cally self trapped trajectories appear (green symbols). These trajectories illustrate
how the interaction now dominates the dynamical behavior. The coupling is not
strong enough to allow a transition of the majority of the atoms from one spin
state to the other. The macroscopic self trapped trajectories show a mean phase of
〈ϕ〉 = π.

For Λ > 2 we expect self trapped trajectories showing a running behavior of
their phase. This is experimentally demonstrated in the panel (c) of figure 4.10.
Here the orange symbols are spread over all phases. However this characteristic is
better visible in their temporal behavior discussed in the next section. Although
the trajectory of the blue symbols also shows self trapped running phase behavior
the theoretical description is that of a plasma oscillation with large amplitude. This
discrepancy can be explained by a small error in the actual Λ or a small detuning.
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4.9 The Temporal Behavior of the Dynamics

4.9 The Temporal Behavior of the Dynamics
While the mapping out of the phase portrait shows in a clear way the topological
change in the phase space the actual temporal behavior is hidden. Here we discuss
this important aspect of the dynamics.

Figure 4.11 shows the dynamical behavior of the imbalance z and the phase ϕ.
The data shown are a selection from the data presented in figure 4.10, with a one to
one correspondence of the three panels. Colors and symbols are chosen accordingly.
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Figure 4.11: Exemplary time dynamics for of the population imbalance z and the
phase ϕ. The shaded areas correspond to the theoretical predictions including a rel-
ative error of 5% in Λ. (a) Plasma (blue) and π-oscillations (red) in the Rabi regime
(Λ =0 .78). Although the dynamics are qualitatively similar the two oscillations dif-
fer in their frequency. This can be understood by the amplification or cancellation
of the linear coupling and the nonlinearity on the two sides of the sphere. (b) Time
trace of the macroscopic self trapping in the Josephson regime (Λ =1 .55). The
phase varies about its mean value of π.(c) Example of macroscopic self trapping at
Λ =3 .1. The time trace has a very similar behavior in its imbalance z, however the
phase shows running behavior. This is similar to the ac-Josephson effect found in
superconductors.

The panel (a) shows plasma (blue) and π-oscillations (red). Although the ampli-
tude of the two oscillation types is almost the same their temporal behavior reveals
the slow-down of the π-oscillations compared to their counterpart. As briefly dis-
cussed already in section 2.6 and 3.5 this can be understood from the adding or
canceling of the two terms in the Hamiltonian corresponding to the linear coupling
and the nonlinearity.

For small amplitude oscillations the oscillation frequency of the plasma and π-
oscillations is given by
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4.9 The Temporal Behavior of the Dynamics

ωPlasma,π = Ω
√

1 ± Λ,

where the plus sign corresponds to the higher frequency plasma oscillations.
The panel (b) shows the temporal behavior of self trapped π-oscillations. Here

the phase behavior (lower part of panel (b)) oscillates in proximity to the temporal
mean phase of π. This is different for the running phase behavior shown in the right
panel of the figure. Here the phase runs without bound over the full span. The time
scale in the middle and the right panel is the same. It is interesting to note that the
temporal behavior of both dynamical processes is very similar in the imbalance z,
although the linear coupling is only the half for the right panel. This demonstrates
the strong effect of the nonlinearity on the temporal behavior of the dynamics.
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Chapter 5

Quantum Behavior at the Unstable
Classical Fixed Point

In the previous chapter the experimental investigation of the classical behavior of
the two-mode system has been discussed. The classicality of the spin system is
determined by its size, i.e. the total number of particles. In our experiments this
particle number ranges typically between 100 and 1000 atoms. Although the pre-
ceding findings were in good agreement with the classical description this regime is
at the boundary where quantum mechanical effects become important. Here quan-
tum mechanical effects refers to all properties which are not covered by the classical
description of the system’s state in terms of a single point in the phase space.

As already discussed in section 2.4 the initial state of the system, a coherent
spin state, has a finite isotropic uncertainty around its mean value. The nonlinear
term in the dynamics redistributes this uncertainty in the phase space relative to its
mean. The quantumness of the system can therefore be understood as the difference
of the uncertainty region to that of a coherent spin state.

Figure 5.1: The quantum mechanical inverted pendulum

In this terminology we expect quantum mechanical behavior in every dynamical
evolution of the system since it is given by the interplay of the nonlinearity and the
linear coupling. However the effects of this quantum mechanical behavior are typi-
cally small and hard to verify in the experiment. To observe considerable quantum
mechanical effects one has to choose an appropriate initial preparation which reveals
the effects during its time evolution on an experimentally feasible timescale [58].
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To study the quantum mechanical behavior the most interesting point in the
phase space is the unstable classical fixed point Fπ in the Josephson regime, which is
clearly illustrated by the pendulum analogy. The point corresponds to a preparation
of an inverted pendulum resting in its unstable upward position. The quantum case
implies an uncertainty of position and momentum of the pendulum around the stable
fixed point, given by the quantum mechanical wave function. We therefore expect
that the left and right part of the wave function will start to move in their respective
directions. The pendulum will not stay in the upwards position but a superposition
of left and right will swing down on either side. When the two coherent pendulums
reach the lower turning point we expect interference between the two parts of the
wave function similar to Young’s double slit experiment. This analogy is illustrated
in figure 5.1.
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Figure 5.2: Quantum mechanical evolution of a coherent spin state prepared on the
unstable fixed point in the Josephson regime in snapshots. The upper part shows the
calculated Husimi distributions of several time steps. The state gets stretched along
the separatrix. In the beginning of the time evolution the uncertainty region has an
elliptical shape, for longer times a mirrored S-shape builds up. After a certain time
the state distribution shows two maxima on the northern and southern hemisphere
corresponding to a macroscopic quantum superposition state. For even longer times
these maxima return to the initial preparation point. The lower part shows the
corresponding distributions for the relative imbalance, i.e. the projection onto the
z-axis. When the macroscopic superposition is reached the two maxima show up
as narrow peaks in the probability distribution which are accompanied by several
interference fringes.

The preparation at the unstable fixed point has been extensively studied theo-
retically [15, 45, 59, 60, 61, 62]. The upper part in figure 5.2 shows the quantum
mechanical dynamics in form of snapshots of the Husimi distribution for typical ex-
perimental parameters. The initial coherent spin state is prepared on the unstable
fixed point, i.e. the crossing of the separatrix. The dynamics stretch its uncertainty
distribution along the separatrix. For short times this leads to an elliptical Husimi
distribution, for longer times the uncertainty evolves into a mirrored S-shape. After
a certain time the maximum of the probability distribution is not any more located
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5.1 Spin Squeezing

at the unstable fixed point, but simultaneously at two symmetric points on the
northern and southern hemisphere, i.e. a macroscopic superposition is reached. In
contrast to the scheme of Yurke and Stoler [63] this macroscopic superposition is
reached in an experimentally feasible time. For even longer times not shown in the
figure the two maxima move back in the direction of the unstable fixed point. For
all times, the expectation values 〈Ĵz〉 and 〈Ĵy〉 remain zero due to the symmetric
evolution, corresponding to the rest of the classical pendulum at its unstable fixed
point as expected.

Although the Husimi distribution gives a nice impression of the dynamics in
the quantum mechanical Hilbert space, its connection to actual measurements is
typically less obvious. More insight is given by the probability distribution of the
imbalance1 which is shown in the second row of plots in figure 5.2. For short times
this function spreads but keeps its approximately Gaussian shape. When the macro-
scopic superposition has built up the probability distribution not only shows two
pronounced peaks at the maxima but also shows interference fringes in between the
maxima, a signature of the coherent character of the superposition.

In a repeated measurement of the imbalance of the macroscopic superposition
state this distribution means that it is very likely that one randomly finds almost
all atoms in one of the spin states. The macroscopic number of atoms decides in the
instant of the measurement in which of the two states they mainly show up, i.e. the
atoms are entangled. This entanglement is produced by the inter atom interaction.

In this work we focus on the dynamical time evolution until a macroscopic su-
perposition is reached. The longer time scales are experimentally less feasible since
the effect of many experimental imperfections (see sec 3.8) grows with the evolution
time.

5.1 Spin Squeezing

As shown in figure 5.2 the time evolution to a macroscopic superposition state begins
with a redistribution of the circular uncertainty of the initial coherent spin state into
an elliptically shaped uncertainty region. A closer look at the associated variances of
the state reveals that while the variance along the separatrix of the state is increased,
the perpendicular variance is decreased relative to the variance of a coherent spin
state. Such a scenario is called spin squeezing in reference to the squeezing of light
in quantum optics [64]. In both cases the variance is redistributed between two non
commuting observables. This redistribution can be used to improve interferometric
measurements as will be discussed in the following.

1The probability distribution for a state |ψ〉 is given by p(z = 2n
N ) = |〈N, n|ψ〉2|. Although the

distribution is discrete the atom number of several hundred atoms motivates the treatment as a
continuous function here and in the following
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5.1.1 Number Squeezing and the Standard Quantum Limit
The reduction of the variance, i.e. squeezing of a spin state is usually measured by
the so called number squeezing factor

ξ2
N =

(∆Ĵ)2

∆2
CSS

=
2(∆Ĵ)2

J(1− 〈Ĵ〉2/J2)
, (5.1)

which relates the variance of a general angular momentum operator Ĵ to the variance
of the coherent spin state with the same mean value 〈Ĵ〉 [23, 65]. The variance of
the CSS is often referred to as the standard quantum limit. This limit originates
from the separability of the CSS as explained in section 2.4. The term 〈Ĵ〉2/J2 in
equation 5.1 accounts for the reduced fluctuations expected for a coherent spin state
with finite mean. Typically the direction of Ĵ is chosen such that this mean vanishes,
which means Ĵ is lying in a plane perpendicular to the mean spin direction of the
state. For non-isotropic states such as squeezed spin states ξ2

N shows a sinusoidal
behavior depending on the particular direction of Ĵ in that plane, which can be
parametrized by an angle α. This sinusoidal behavior stems from the elliptical
nature of the variance.

5.1.2 Improvement of Interferometry using Spin Squeezed
States

The idea of using squeezed states for interferometry is motivated by the hope that
the reduced uncertainty of these states in a certain direction can be used to improve
the signal to noise ratio and therefore the sensitivity of such devices. In atomic
systems such an interferometer is typically of the Ramsey type [47, 66]. The basic
idea of the Ramsey interferometer can be reduced to the following sequence. A two
mode system is brought into a superposition state by coupling of the two modes. The
coherent superposition accumulates a differential phase shift during a free evolution
time. This phase shift is translated into a population difference between the two
modes by a final coupling. The population difference which is measured in the end
of the sequence is directly dependent on the accumulated phase shift.

When the system is composed of many independent two mode systems the final
state is given by a coherent spin state. The fluctuation of the relative populations
given by the coherent spin state are therefore a fundamental lower limit on the
measurement noise in such a system. This noise is referred to as projection noise
or shot noise and is limiting many state of the art atom interferometers [67, 68].
However, if the interferometer is performed using a squeezed spin state as the input
state, which has reduced fluctuations this fundamental limit can be overcome.

The precision of the phase measurement ∆φ of an interferometer is not only
given by the noise of its output ∆Ĵ , but depends also on its sensitivity ∂〈Ĵ〉

∂φ :

∆φ =
(

∂〈Ĵ〉
∂φ

)−1

∆Ĵ . (5.2)

Wineland et al. pointed out that the spin squeezed states employed in a Ramsey
interferometer have a reduced sensitivity compared to coherent spin states [65]. This
can be understood by the fact that the uncertainty of the spin squeezed states is
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more spread along the long axis of the states compared to a coherent spin state. This
leads to an effective reduction of the mean spin length 〈Ĵ〉2 = 〈Ĵx〉2 + 〈Ĵy〉2 + 〈Ĵz〉2,
which appears as reduced visibility of the Ramsey fringe.

However, the gain through reduction of the noise can exceed the loss of sensitivity,
implying the usefulness of spin squeezed states for Ramsey interferometry. The
improvement in precision of such an interferometer over a standard one using a
coherent spin state of the same number of particles is given by the so called coherent
spin squeezing parameter

ξ2
R =

J2

〈Ĵ〉2
ξ2
N , (5.3)

as
∆φ = ξR∆φCSS, (5.4)

where ξR < 1 is directly connected to an improvement of precision.

5.1.3 Entanglement and Squeezing
A multi particle state described by the density operator ρ̂ is entangled if it can not
be written in the following form,

ρ̂ =
∑

k

pkρ̂
(1)
k ⊗ ρ̂(2)

k ⊗ · · ·⊗ ρ̂(N)
k , (5.5)

where all ρ̂(j)
k are single particle density operators, and pk are probabilities allowing

all mixtures. Sørensen et al. pointed out that the coherent squeezing parameter
ξR < 1 not only states the improvement of an interferometer but is also directly
related to entanglement [69]. The entanglement associated with spin states which
differ from coherent spin states is expected from the considerations in section 2.4,
however for a general spin state it is not easy to show the underlying entanglement.
The entanglement criterion of Sørenson et al. is a so called entanglement witness,
meaning that a state is not necessary separable if ξR ≥ 1. However, it can be applied
for the detection of entanglement in the beginning of the time evolution as will be
discussed below. A general overview of entanglement witnesses for squeezed spin
systems is found in the references [70, 71].

5.2 Systematic Measurements of the Dynamical Spin
Squeezing

In this section we discuss the temporal evolution of the squeezing parameters for
the initial preparation of the coherent spin state at the unstable fixed point.

Figure 5.3 shows the measured number squeezing parameter ξ2
N for different times

of the dynamical evolution and different measurement axis in the z−y plane which is
approximately perpendicular to the mean spin direction. The angle α parametrizes
the measurement axis with respect to the z axis. The number squeezing parameter is
shown with (lower points with two standard deviation errorbars) and without (upper
points) the subtraction of the photon shot noise originating from the imaging process
(see section 3.7). This subtraction is especially important for the small variances.
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Figure 5.3: Number squeezing versus measurement axis angle (defined in the inset)
for different times of the evolution. The final total atom number is post selected
between 315 and 365 atoms. Solid lines are a numerical simulation without free
parameters. Upper and lower points correspond to the data with and without the
subtraction of photon shot noise in the imaging process respectively. The errorbars
indicate two standard deviations for the respective lower points. Number squeezing
below the shot noise limit is found for evolution times shorter than 35 ms.

For short times the measurement demonstrates number squeezing at angles
around 60◦with and without the subtraction of the photon shot noise. This an-
gle corresponds to the angle of the separatrix with respect to the y axis. For times
longer than 30 ms no variance below the shot noise limit is found any more. The lines
correspond to a theoretical simulation of the dynamical evolution which is detailed
in section 5.6 with no free parameters. It captures the most important features of
the dynamical evolution. The sinusoidal dependence of ξ2

N with the angle, that was
mentioned in section 5.1.1 is hard to recognize in the logarithmic scale.

As was detailed in section 5.1.2 a possible interferometric improvement of the
state is detected by the coherent spin squeezing factor ξR. While for high visibilities
its reduction is typically hard to estimate experimentally, knowledge of the long and
the short axis of the number squeezing factor is sufficient to deduce the coherent
spin squeezing. To accurately measure the two axis one needs to measure exactly
along the right angles. To circumvent this one can also fit a sine to the measured
number squeezing and deduce the maximum and minimum. The fitted curves are in
very good agreement with the measured data in our case. The deduced quantities
are shown in figure 5.4. The minimum of the sine fit, and the deduced coherent spin
squeezing are shown (red circles and red crosses). We find coherent spin squeezing
(ξ2

R < 1) for evolution times up to 30 ms which can be directly related to entan-
glement in the system. The coherent spin squeezing and number squeezing differ
only very slightly for short evolution times where the state is still relatively well
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Figure 5.4: Time dependence of the minimal number squeezing and coherent spin
squeezing. The coherent spin squeezing (red crosses) is deduced from a sine fit to
the measured variance data with photon shot noise subtracted. For small evolution
times the difference to the fitted number squeezing (red circles) is very small, since
the state is still very localized on the sphere. The actual measured number squeezing
is shown as green circles where the error bars indicate the two standard deviations.
Blue squares indicate the coherent spin squeezing found in the numerical simulation
of the time evolution. The deviation to the measured quantity is especially apparent
for the small variances where detection noise limits the measured squeezing. The
Wigner distributions in the upper part are deduced from theoretical simulations
and give an impression of the shape of the state at different stages of the evolution.
The dotted lines indicate the measurement direction in which the minimal number
squeezing is found experimentally.

localized. The fitted minimum is also in good agreement with the corresponding
measured minimum value of the squeezing (green circles with 2 s.d. errorbars).
The blue squares show the theoretically expected coherent spin squeezing from the
numerical simulation. These values lie systematically below the measured values,
which is expected because of the additional excess noise in the experiment. This
deviation is especially apparent for short evolution times where the squeezing is
maximal.

The upper part of the figure shows the theoretically expected Wigner distribu-
tions which give an impression of the shape of the spin state at the different time
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steps. The Wigner distribution allows to understand the increase of the fluctua-
tions for long times, the variances along all axes of the distribution are much higher
than for a coherent spin state (Wigner distribution at time t = 0). The Wigner
distribution for the spin system will be explained in more detail in section 5.4.1.

0 10 20 30 40 50
40

50

60

70

80

90

100

evolution time [ms]

an
gl

e 
of

 m
in

im
um

 [°
]

sine fit
theory

0 10 20 30 40 50
10−1

100

101

102

evolution time [ms]

un
ce

rta
in

ty
 p

ro
du

ct
 ξ

N
,m

in
×ξ

N
,m

ax

sine fit
theory

Figure 5.5: (left) Uncertainty product of the state deduced from the sinusoidal fit
to the data (red circles). After 10 ms of evolution the state is still at the Heisen-
berg limit (dashed line) but shows a raising behavior for longer times. The error
bars correspond to a 5% confidence level of the fitted parameters. The theoretical
prediction (squares) shows good agreement with the measurement.(right) Angle of
measurement axis where the minimal squeezing parameter is found. The increase
of the angle is mainly due to the decay of the system parameter Λ as explained in
section 5.5.2. The optimal angles deduced from the numerical simulation are shown
as blue squares.

As was described in section 2.4 the coherent spin states are states with minimal
uncertainty. This is not the case for the states generated by the dynamics for longer
times. The left panel in figure 5.5 shows the product of the minimum and the
maximum number squeezing factor ξ2

N . After 10 ms of evolution the state is still at
the limit allowed by the Heisenberg uncertainty relation (dashed line). For longer
evolution times the uncertainty increases up to 25 times the Heisenberg limit. This
behavior is in good agreement with the theoretical prediction (blue squares).

The right panel of figure 5.5 shows the time dependence of the angle where the
minimal uncertainty is found. This angle increases during the whole time evolution
which is not expected in the ideal time evolution for short times. The uncertainty
region of the quantum state is stretched along the separatrix which is well described
by a line in proximity to the initial preparation point. This suggests that the minimal
variance should be found perpendicular to this line at a constant angle. However,
the loss of atoms changes the effective nonlinearity during the time evolution causing
a change of the separatrix. This is reflected by the increase of the angle which is
also found in the theoretical prediction.
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5.3 Quantum Fisher Information

As was shown in the section before, for long evolution times the variance of the state
increases in all directions above that of the corresponding coherent spin state and
the usability of the state in an interferometer decreases below the standard quantum
limit. This behavior originates not from the experimental noise, but is intrinsic to
very dislocated states on the Bloch sphere. The measurement precision of these
states in a normal Ramsey type interferometer is therefore reduced.
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Figure 5.6: Comparison between coherent spin squeezing ξ2
R (solid lines) and the

possible precision gain in terms of the quantum Fisher information NF−1
Q (dotted

lines). The different colors correspond to different Λ originating from a fixed non-
linearity χ but different coupling strength Ω. This is similar to the situation found
in the experiment where one is typically limited by the strength of the nonlinear-
ity. The possible gain in interferometry given by the quantum Fisher information
exceeds the gain found by ξ2

R by far for evolution times longer than about 20 ms.
Λ = ∞ corresponds to the single axis twisting scheme as proposed by Kitagawa and
Ueda [23] used in the experiments in references [25, 24]. For a given nonlinearity
this method is slowest in terms of possible interferometric gain, but allows for a
simple readout since the coherent squeezing factor is still good measure for its phase
sensitivity at long evolution times. The dash- dotted line corresponds to the Heisen-
berg limit 1/N2 for the 300 atoms in the simulation. The dynamical generation of
entanglement in principle allows to approach this limit on a short time scale.
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However, it can be shown that the gain in interferometric precision for a quantum
state is not necessarily given by its coherent squeezing parameter ξ2

R. The usefulness
of many states can be drastically increased by a more general state readout. In
a normal Ramsey interferometer the interferometric signal is given as the mean
position of the final state. Generalizing the readout to all possible positive-operator
valued measures a much higher sensitivity can be reached for some quantum states.

Generally it can be shown that the phase estimation by an interferometer is
limited by the so called quantum Cramer-Rao bound [72, 73]. This bound places a
lower limit on the achievable precision in an interferometer and is given by

∆φ ≥ 1√
FQ(ρ̂, Ĵ)

, (5.6)

Here FQ(ρ̂, Ĵ) denotes the quantum Fisher information of the state.
Ronald Fisher introduced a measure in classical statistics for the information

carried by a probability distribution about an unknown parameter [74]. This concept
was successfully transfered to quantum measurement theory leading to the above
analog of the classical Cramer-Rao bound. The quantum Fisher information for a
given density operator ρ̂ is given as

FQ(ρ̂, Ĵ) = 2
∑

l,k

(pj − pk)2

pj + pk
|〈j|Ĵ |k〉|2 (5.7)

Here |j〉 is a set of orthonormal states diagonalizing the density operator, and pj

the corresponding diagonal entries2. The general angular momentum operator Ĵ
is the generator of the unitary rotation of the interferometer. It is clear from the
definition that not all choices of Ĵ assure optimal interferometric precision. Further
the measurements have to be analyzed in an optimal way. The quantum Fisher in-
formation can be obtained from the classical Fisher information maximized over all
possible measurement protocols [75], where the classical Fisher information can be
retrieved by maximum likelihood estimation [76]. In general it is possible to reach
the quantum Cramer-Rao bound in an experiment [73], which has been experimen-
tally demonstrated by means of a maximum likelihood and a Bayesian estimation
protocol[77]. However, especially for large quantum systems, the optimal measure-
ment and estimation protocol can be very complicated and difficult to find. Once a
Fisher information larger than the number of particles is detected, it allows to make
a statement about the entanglement present in the system similar to the case of the
coherent spin squeezing factor [78].

Figure 5.6 shows the expected coherent spin squeezing ξ2
R and the normalized

gain expected from the optimal quantum Fisher information NF−1
Q,max, for different

parameters Λ. The coherent spin squeezing is lost after some time similar to the
experimental results presented in section 5.2 and [79]. However, the principal gain
in an interferometer which is measured by the quantum Fisher information still
increases. The dash-dotted line in the figure shows the Heisenberg limit 1/N2,
which corresponds to the highest precision attainable in the framework of quantum
mechanics, is theoretically approached.

2ρ̂ =
∑
j

pj |j〉〈j|
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5.4 State Tomography

For comparison also the case of Λ = ∞ is shown. Since the nonlinearity is
fixed in this simulation, this case corresponds to a evolution with pure nonlinear
interactions, i.e. the one axis twisting scheme proposed by Kitagawa and Ueda[23].
This method of spin squeezing has been demonstrated experimentally [25, 24]. The
comparison of the dynamical generation of squeezing at the unstable fixed point to
this method reveals that the generation of squeezing is faster for the first case, which
is an important advantage since the generation time in the experiments is typically
limited by other processes such as decoherence. On the other hand the comparison
of the coherent spin squeezing factor to the Cramer-Rao bound in the case of the one
axis twisting (Λ = ∞) shows, that it is possible to reach strong squeezing without
complicated analysis of the output state even for long evolution times. However,
the Fisher information reveals that the dynamical generation of squeezing realized
in this work has the ability to produce highly entangled states which approach the
Heisenberg limit on an experimentally feasible timescale.

5.4 State Tomography
Analog to the classical case where the state of the system was characterized by the
imbalance z and the phase φ, the state of the quantum mechanical case can not be
characterized by a measurement of the imbalance z distribution alone, but depends
also on its distribution in the other directions of the phase space. To characterize
the state of the system one has to measure in different measurement directions
as was already shown in the squeezing measurements discussed before (see section
5.1). Here we will explain in more detail how this tomographic method works in the
experiment.
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Figure 5.7: Histograms of the imbalance measured along different directions in
the z − y plane. The Bloch sphere in the center shows the theoretically expected
Wigner function of the state. The different measurement directions are shown as
colored arrows in the histograms and on the sphere. The angle between the z-axis
and the measurement axis is indicated above the histograms. The red solid lines in
the histograms correspond to the theoretical expectations.

The principle is very similar to the classical case where the phase was obtained
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5.4 State Tomography

by applying a unitary rotation of 90◦ before the readout. In the quantum mechanical
case we use a unitary rotation to translate an arbitrary axis into the direction
of the z axis. With this method repeated measurements allow us to measure a
histogram corresponding to the empirical probability distribution in an arbitrary
measurement axis. However the gain in information about a specific state is not
equally distributed over all different measurement directions. At least for localized
states the gain in information is highest for measurements performed in directions
perpendicular to the mean of the state, i.e. the histograms are centered with respect
to the imbalance. For our case where the mean of the state is found approximately
in the negative x-direction tomographic measurements are favorably performed by
measurements in the z − y plane. An example of such measurements is shown
in figure 5.7. In the following we will describe how these types of measurements
allow for the reconstruction of the Wigner function and an estimation of the density
operator of the state.

5.4.1 Wigner Distribution on the Bloch Sphere
The Wigner distribution was introduced by Eugene Wigner as a quantum mechani-
cal analog to the classical phase space density [80]. In contrast to its classical analog
it is not a probability distribution due to its possible negativity. The negativity of
the Wigner distribution is considered as a sign of the quantum mechanical character
of the system and is typically associated to interference of the quantum mechanical
wave function. In textbooks the Wigner distribution is typically defined for conju-
gate variables like position and momentum or the quadratures of the light field in a
planar phase space.
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Figure 5.8: Wigner distributions for a coherent spin state (left) and exemplary final
macroscopic superposition state (right). The Fringes in the probability distribution
of the superposition state can be identified with the negative regions present in its
Wigner distribution. In contrast the classical coherent spin state shows no negativity
in its Wigner representation as expected.

Scully and Cohen introduced the Wigner function for spin-1/2 particles [81, 82],
while Agarwal found a definition for arbitrary angular momentum in spherical phase
space using spherical tensors [83] . This method can be directly applied to get the
Wigner function of a collection of two mode systems [84]. The Wigner function
W (ϑ, ϕ) of a j-spin system is given by
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5.4 State Tomography

W (ϑ, ϕ) =
2j∑

k=0

k∑

q=−k

ρkqYkq(ϑ, ϕ), (5.8)

where the coefficients ρkq, determining the contribution of the usual spherical har-
monics Ykq, are given by

ρkq = Tr(ρ̂ T̂ †
kq). (5.9)

Here the state’s density operator ρ̂ enters, and T̂kq are the spherical tensors [85]. The
matrix elements of the spherical tensors are given by the Wigner-Eckart theorem in
terms of Clebsch-Gordan coefficients3[19]. An example of a Wigner function of the
initial coherent spin state and a final superposition state after a perfect evolution is
shown in figure 5.8.

5.4.2 Reconstruction of the Wigner Function by a Filtered
Back Projection Algorithm

The data gained by a tomographic measurement of the state can be used to recon-
struct the Wigner function of the state by a filtered back projection algorithm [87].
This algorithm works similar to the inverse radon transformation, which is used to
reconstruct planar Wigner distributions found in nonlinear optics [88, 89] as well as
X-ray computed tomography images in medicine [90].

The used algorithm has the advantage that it is insensitive to experimental
fluctuations in the total atom number. This comes from the fact that the Wigner
distributions of a similar state for slightly different total atom numbers are very
similar. The algorithm provides the ρkq coefficients appearing in the definition of
the Wigner function. In principle all (2j + 1)2 coefficients can be extracted that
way as long as it is possible to get enough data. However, experimental noise in
the final state detection reduces the usefulness of the higher order terms which are
responsible for the small scale variations of the Wigner distribution. This problem
can be circumvented by introducing a damping of the higher order terms which
accounts for the uncertainties in the detected atom number and the angle of the
tomography axis in the state detection as suggested in [87]. This leads effectively
to a damping of high spatial frequency contributions.

Figure 5.9 compares the Wigner distributions gained by the back projection al-
gorithm (center column) to simulated Wigner distributions with (right column) and
without including noise contributions (left column). The upper and lower row corre-
spond to different coupling strengths Ω. The negativity of the Wigner distribution
present in the perfect evolution without noise is neither found in the reconstructed
data nor in the simulation including noise. A possible explanation for this is found
in section 5.5.2. The negativity found in the measured Wigner distribution all over
the sphere is due to noise and the finite data set used for the reconstruction.

This shows also a major drawback of the filtered back projection algorithm. Valid
quantum mechanical density operators are positive semi-definite. This requirement

3In practice the analytical Racah formula for calculating the appearing Wigner 3j symbols is
hard to evaluate for large angular momentum. A numerical method by Schulten et al. has proven
to be extremely useful for us, for a practicable calculation of the Wigner distribution[86].
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Figure 5.9: Wigner distribution obtained from the filtered backprojection algo-
rithm (middle) compared to the numerical simulations for the evolution without
noise (left) and with simulated noise in the detuning and the nonlinearity (right).
The two rows correspond to two different coupling strength Ω =2 π × 21 Hz for
the upper row and Ω = 2π × 16.7Hz for the lower row. The large negative values
found in the simulation without noise (see left color scale) which correspond to the
interference fringes is neither found in the back projected Wigner distribution nor
in the simulation including noise contributions (color scale for both on the right).
Although the back projected distribution includes a smooth decay of the higher or-
der terms accounting for the detection noise (see [87]), negative noise appear in the
Wigner distribution. The data obtained after an evolution time of 45 ms was post
selected with respect to the final total atom number from 310-340. Both data sets
include a total of ∼ 13000 realizations distributed over 25 different measurement
directions in the x − y plane. The full set of data is shown in the histograms in
appendix B.

is not ensured by the filtered back projection algorithm for finite data sets. However,
as the comparison with the simulated Wigner function shows the reconstructed
Wigner functions allow to illustrate the qualitative shape of the quantum state very
well.

5.4.3 Maximum Likelihood Estimation of the Density Matrix

The quantum state of the system is fully characterized by its density matrix ρ̂. It
is therefore desirable to retrieve this quantity from repeated measurements on the
system. This can be done by a maximum likelihood estimation of the real density
matrix [91, 92], which has been shown in experiments on light [88], molecules [93],
ions [94] and an atomic beam [95]. The size of these systems was typically on the
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order of several quanta. The number of free real parameters in a density matrix
is given by (n + 1)2 − 1 where n denotes the number of quanta. The small size of
the system allowed to give an accurate estimation of the density matrix within a
accessible number of measurements.

For a typical atom number of 300 atoms as in our experiment the density matrix
has 90600 independent real parameters. It is therefore not possible to gain enough
information of such a large quantum system to give a very accurate estimation of
the density matrix in the current state of the art experiments. Nevertheless, the
method of maximum likelihood estimation does not loose its validity if the number
of measurements is lower than the free parameters of the density operator. One only
has to expect a higher uncertainty in the physical properties derived from the density
operator. As we will see in the following the number of measurements performed on
our system is sufficient to use the obtained density operator to get an alternative
access to the state’s Wigner distribution.
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Figure 5.10: Comparison of the Wigner distributions obtained via filtered back
projection (left column) and maximum likelihood estimation of the density operator
(middle column) for the measurement data sets shown in appendix B. The maximum
likelihood method produces a physical density operator which is not ensured by the
back projection algorithm. This is apparent in the distribution shown by the total
lack of negative noise for the case of the likelihood method. For comparison the
theoretical expected Wigner distributions are shown in the right column.

There are many different solutions for the numerical problem of maximum likeli-
hood estimation of the density operator of a large size quantum mechanical system.
The method applied here is an algorithm which maximizes the likelihood in an itera-
tive way [96]. The basic idea of this algorithm can be understood from the iteration
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5.5 Relevance of the Experimental Imperfections

formula
ρ̂(k+1) = N

[
R̂(ρ̂(k))ρ̂(k)R̂(ρ̂(k))

]
, (5.10)

with the state dependent operator

R̂(ρ̂(k)) =
∑

j

fj/n

Tr(|φj〉〈φj|ρ̂(k))
|φj〉〈φj|. (5.11)

Here N denotes normalization, k is the iteration step and n the total number of
measurements performed on the system. The different measurement outcomes are
described by the projection operators |φj〉〈φj| and the frequency of the measurement
result j is given by fj.

The basic idea behind this iteration formula is that R̂(ρ(k)) leads to a relative
increase of the contribution of |φj〉〈φj| in the step k + 1 density operator ρ(k) if the
relative empirical probability fj

n exceeds the expected probability Tr(|φj〉〈φj|ρ̂) for
the step k density operator. The convergence of the algorithm is motivated by the
identity

R̂(ρ̂0)ρ̂0R̂(ρ̂0) = ρ̂0, (5.12)

which holds for large numbers of measurements and the real density operator ρ̂0,
and the fact that the likelihood is increased in every iteration step [97].

The results of the application of this algorithm after 300 iteration steps starting
from a totally mixed density operator ρ̂(0) ∝ with our measurement data can be
seen in figure 5.10 in form of the Wigner distributions. Although stemming from
the same data sets as the Wigner distributions from the filtered back projection
algorithm (left column) the Wigner distributions obtained via maximum likelihood
estimation (center column) look much closer to the distributions expected from the
simulations (right column). They further lack the negative noise found in the back
projection algorithm and correspond to a physical density operator.

5.5 Relevance of the Experimental Imperfections

The picture of the quantum pendulum given in the beginning of the chapter illus-
trates many of the important properties of the dynamical creation of a macroscopic
superposition state in the system. To create a perfect equal superposition of left
and right of the pendulum one has to prepare exactly at the unstable fixed point.
However, a slight variation of this preparation still leads to superposition, though
unequal. The typical size of the variation allowed to still prepare a sizable superpo-
sition is thereby given by the initial uncertainty in the wave function.

In our system this uncertainty is given by the size of the initial coherent spin state
which one has to compare to the experimental imperfections discussed in section 3.8.
These imperfections will degrade the final superposition state to a mixed state. As
has been discussed before some of the effects such as decoherence due to atom loss
are theoretically challenging to treat. In the following we will therefore restrict the
discussion to the effects which can be estimated more easily.
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Figure 5.11: (left) Numerically simulated probability distribution of the imbalance
in z-direction for 300 atoms. The blue dotted line shows the distribution expected
after a perfect evolution. The other two lines correspond to the experimentally
relevant case where the detuning is subject to noise on the order of 0.4 Hz from
realization to realization. The green dotted line shows the total loss of the interfer-
ence fringes due to this noise in the case where no echo pulse is applied. The red
solid line shows how the application of an echo pulse restores the interference fringes
although the evolution is subject to the same noise. (right) This is also shown by the
fidelity of the final density operator and pure state after a perfect evolution. With
increasing detuning noise the evolution with echo pulse (red) and without echo pulse
(green dotted) deviate from a perfect overlap. However the decrease is much slower
in the case of the echo pulse. At the typical scale of the detuning noise found in
the experiment (circles) the fidelity is about twice as high as without the use of the
echo technique. For simplicity this simulation neglects the nonlinearity during the
echo pulse. However, the effect of this nonlinearity is very small compared to the
effect of the detuning noise.

5.5.1 Detuning Noise and Spin Echo

Every offset in the initial preparation or the detuning breaks the symmetry of the
dynamics with respect to the equator of the sphere and therefore to the imbalance.
The generated superposition state will be more or less imbalanced up or down.

While the preparation is very accurate the effect of the detuning on the time
evolution is significant. As discussed in section 3.8.2 the noise in the detuning
stems from the fluctuations in the magnetic field and is approximately 0.4 Hz from
realization to realization. because of this detuning noise the interference fringes in
the probability distribution vanish as can be seen in figure 5.11. However, since the
fluctuation affects mainly the low frequency magnetic fields causing fluctuations of
the detuning from shot to shot the technique of spin echo can be used to reduce this
effect significantly.

The spin echo technique is based on the application of a fast coupling pulse,
causing a rotation by π, in the middle of the time evolution [98, 99]. This π-pulse
or echo-pulse leads to an inversion of the state at the rotation axis of the pulse. A
phase offset caused by a constant detuning during the first half of the evolution is
inverted by the pulse and compensated during the second half of the evolution by
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the detuning itself. This leads to the state ending up exactly at the phase of the
coupling pulse independent of the constant detuning. The technique is used in many
nuclear magnetic resonance experiments [33] and finds application in many forms of
Ramsey type interferometry [100].

In our case where the dynamics during the evolution is determined by a com-
bination of linear and nonlinear terms the usefulness of the echo sequence is not
obvious. Here the phase of the echo pulse is the same as for the coupling during the
time evolution. During the pulse the system is switched to the Rabi regime. Al-
though a small nonlinear interaction is still present its influence during the short π-
pulse is very small. The result is shown in figure 5.11. The left panel compares the
probability distribution of an exemplary superposition state after a perfect evolution
without noise to the experimental results, including the noise found in the experi-
ment, with and without the use of the echo technique. Due to this noise the fringes
in the atom number distribution disappear completely in the case where no echo
pulse is applied. In contrast, the application of the echo pulse almost completely
recovers the structure of the probability distribution found in the ideal case.

This recovery of the properties of the ideal evolution can be quantified by the
fidelity F between the state in the ideal case |ideal〉 and the density matrix ρ̂noise
including the experimental noise, that is defined as

F = 〈ideal|ρ̂noise|ideal〉. (5.13)

The right panel in figure 5.11 shows the fidelity for different detuning noise in the
case with and without the application of the echo pulse during the evolution. The
echo case shows overall a much higher fidelity to the aspired superposition state as
expected from the results shown in the right panel. This result is the reason for
using the echo technique throughout the measurements on the quantum mechanical
behavior of the system presented in this work.

5.5.2 The Influence of Atom Loss
As discussed in section 3.8.1 atoms are lost during the time evolution. Besides the
decoherence effects associated with this loss, it has several effects on the dynamics
of the system. The system parameter Λ is directly related to the number of atoms
in the systems (equation 2.23). The parameter Λ determines the strength of the
nonlinear term in the Hamiltonian relative to the linear coupling. The dependence
of Λ on the total atom number N in the system can be understood from the fact that
the eigenvalues of the nonlinear term grow quadratically in contrast to the linear
grow of the eigenvalues of the coupling term. However the number dependence of Λ
is complicated by the atom number dependence of the nonlinear parameter χ. As
given in equation 2.13 χ depends on the spatial modes. Although the relative atom
number in the two modes has only a small effect on the wave function (see section
3.6) their shape depends on the total atom number. Gross-Pitaevskĭı simulations
show that the dependency of χ on the total atom number N is for our experimental
parameters roughly given by χ ∝ 1√

N
leading to a dependence of Λ ∝

√
N .

While the decay of of Λ with the total atom number is generally not a problem
for the dynamical generation of a macroscopic superposition state, the statistical
nature of the loss process and the strong dependence of the dynamics on the atom
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Figure 5.12: Examples of Monte Carlo simulations of the atom number decay
during the typical time scale of 45 ms leading all to the same final atom number
of 300 (blue). The expectation value of the atom number is shown in red revealing
the significant deviation of the simulated traces. These fluctuations in the atom
number during the time evolution lead to noise in the effective nonlinearity. (right)
Fluctuations in the temporal mean of the atom number due to the statistical nature
of the atom loss process. The different histograms show the temporal mean atom
number of 21000 Monte Carlo simulations for different ranges of post selected atom
numbers. Up to range a of ±10 atoms the statistical effects dominate over the effect
of the choice of the post selection range translating into an effective nonlinearity
noise of about 2%.

number pose some difficulties. While the expectation value of the atom number in an
ensemble of atoms that is affected by loss typically decreases with a given functional
dependence the true atom number at a given time can be significantly different.
This is shown in the left panel of figure 5.12. The decay of the expectation value
of atoms, that is considered to be exponential, is shown in red. The blue lines are
examples of Monte Carlo simulations of a decay processes leading to the same final
atom number4 of 300. The lines show a significant deviation from the expectation
value. The restriction to end up at the same atom number is very close to our
experimental situation where we post select the data depending on the final atom
number. To gain enough statistics the range of selected atom numbers is typically on
the order of ±10 atoms around the aspired value. The right panel of the figure shows
how the temporal mean of the atom number is distributed due to the fluctuation
and due to the post selection range. The histograms show the distribution of Monte
Carlo simulation results. For small ranges of the post selected atom numbers the
fluctuation dominate the spread of the temporal mean. For our post selection the
expected relative fluctuations are in the order of 2-3%.

The effect of the fluctuations of the nonlinearity are shown in figure 5.13. The
theoretical probability distributions expected after a time evolution of 45 ms are
shown with and without including noise. In the case of the experimentally realis-
tic noise of 2%, the interference fringes have completely vanished. This simulation
shows that, in order to detect the macroscopic interference which is expected for

4The simulation is actually performed in reversed time.
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Figure 5.13: Smearing of the interference pattern due to fluctuations in the nonlin-
earity χ caused by atom loss. The simulated curves show the expected probability
distribution after an evolution time of 45 ms for typical parameters found in the
experiment. Plotted are the distributions for the case of a perfect evolution with
no noise in the nonlinearity χ (red solid line) and with including relative noise in χ
of 1% (green dotted line) and 2% (blue dash-dotted line). The interference fringes
completely disappear in the case of the high relative noise.

the superposition state, one has to reduce the noise in the nonlinearity originating
from atom loss. A possible way of reducing this noise is a better initial preparation
of the BEC in terms of atom number fluctuation. If one would have a more de-
terministic atom number in the beginning of the time evolution, the effective noise
could be eventually reduced so that the interference becomes visible in the measured
histograms.

5.6 Numerical Simulation
In this section we will briefly discuss how the numerical simulations found through-
out the discussion of the quantum mechanical aspect were performed and how the
experimental imperfections are included. In general the Hamiltonian of the system
(see equation 2.12), can be solved by numerical diagonalization of the Hamiltonian
in the number state basis. This method is very fast even for relatively large atom
numbers, since the Hamiltonian is tridiagonal. Once the Hamiltonian is diagonalized
the method allows to calculate the state at an arbitrary time, by simple integration
of the Schrödinger equation. However, this method does not easily allow to imple-
ment the time dependence of the system parameters. This time dependence has
turned out to be crucial to get a good agreement between the measured results and
the simulations. The time dependence in the parameters has two origins. The loss of
atoms leads to a decay of the effective nonlinearity Nχ and a change in the detuning
due to the atom number dependent last term in equation 2.14. Furthermore, the
magnetic field at the position of the atoms is time dependent due to the residual
50 Hz signal from the mains supply, causing an additional time dependence of the
detuning.

To implement these time dependent terms in the simulations we numerically
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5.6 Numerical Simulation

integrate the time dependent Schrödinger equation. This is computationally much
more time-consuming than the single diagonalization method. However, for our
particle numbers the results can still be gained within a feasible time on a normal
personal computer. It is important to mention that this method does not allow
to include the real effects of the atom loss, which would imply the use of all the
different sized Hilbert spaces. Our simulations are performed in a Hilbert space
with fixed size5, but include only the effective mechanisms of the atom loss on the
system parameters.

The time dependence of the parameters in the simulation is chosen according
to the results gained in independent measurements. This allows us to simulate our
findings without free parameters or any fitting.

To include the noise contributions due to magnetic field fluctuations and fluctu-
ations of the effective atom number (see section 5.5) we perform simulations for a
whole set of parameters. The gained results are afterwards incoherently added to
a density matrix, according to the size of the respective fluctuations found in the
experiment.

5The size of the Hilbert space is typically chosen according to the final atom number in the
experiment
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Chapter 6

Summary of the Results and Outlook

In the course of this work we have realized an internal bosonic Josephson junction
and investigated its dynamical behavior.

We were able to characterize the theoretically predicted classical mean field be-
havior in all its dynamical aspects. The realization with internal spin degrees of
freedom allows a much higher level of control of the initial preparation as compared
to previous work [55, 56]. Furthermore the readout of the phase, which is done by
adapted coupling pulses, can be performed with higher precision. This allows us to
map out the dynamical behavior in the full phase space with high accuracy, reveal-
ing previously inaccessible dynamical behavior such as π-oscillations. The internal
bosonic Josephson junction further allows to investigate a parameter regime where
the classical dynamics undergo a bifurcation. This allows to experimentally reveal
the underlying topological change in the dynamics. Furthermore, this investigation
shows the fundamentally different topology of the dynamics found in the bosonic
Josephson junction compared to the common Josephson effect found in supercon-
ductors. The results on the classical behavior of the internal Josephson junction
have been published in [53].

The quantum dynamics of the internal Josephson junction were studied at the
particularly interesting unstable fixed point in the Josephson regime. We have sys-
tematically investigated how the many-body dynamics lead to spin squeezing and
entanglement in the system on short time scales. Compared to the one-axis twisting
scheme [23], this novel dynamical generation of squeezing has the advantage that
very high possible gain in interferometric measurements is reached on shot time
scales, indicated by the quantum Fisher information.

Furthermore, we demonstrate that the squeezing disappears on longer timescales.
Our theoretical simulations show that this effect can be assigned to the expected
quantum mechanical behavior and is not due to decoherence or noise in the prepa-
ration or dynamical evolution. The good qualitative agreement of the theoretical
simulations with the measured data for longer times further suggests that a macro-
scopic superposition is generated in the course of the dynamics, although we are not
yet able to quantify the degree of coherence present in the system. The possibility
to perform tomographic analysis of the many particle state allows us to reconstruct
its Wigner function. We have demonstrated this reconstruction via filtered back
projection and with the use of a iterative maximum likelihood estimation algorithm
of the state’s density matrix. The large number of measurements performed on the
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system indicates that an accurate estimation of the macroscopic many particle state
is within reach. Future improvement in terms of the discussed experimental limita-
tions will likely allow to show the macroscopic superposition character of the state
either by the expected interference or by its quantum Fisher information. The re-
sults gained on the squeezing and the tomographic reconstruction will be published
in the near future.

We have demonstrated that the realization of the internal bosonic Josephson
junction, provides a testbed for the study of quantum classical correspondence and
many-particle quantum dynamics.

The high degree of controllability of the system opens up a route to study the
system under the influence of an additional driving. It is expected that the classical
phase space in this case exhibits chaotic regions which lack a quantum counterpart.
Quantum dynamics in the presence of chaos in the classical system give rise to chaos
assisted tunneling [101] and related phenomena [102], which become accessible in the
bosonic Josephson junction. The possibility to change the system size and hereby
the classicality of the system further enables the investigation of the transition from
classical chaos to quantum mechanical entanglement [103].

The quantum mechanical behavior at the classical unstable fixed point allows
for the generation of strongly entangled many-particle states. The results gained in
this direction in this work suggest that experimental evidence of the superposition
character of the generated states is within reach. This may allow to use the high
possible gain in interferometric precision of these states in atom interferometers such
as atomic clocks which are currently limited to the standard quantum limit [104].

The possibility to analyze the quantum states by means of tomography in arbi-
trary directions allows to reconstruct the density matrix of the state. This might
allow to study microscopic decoherence effects in highly entangled macroscopic quan-
tum states. Furthermore, the scalability of the system might show how far the size
of the quantum world can be pushed.
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Appendix A

Histograms of the Squeezing
Measurements
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Appendix B

Full Data Entering the Measured
Wigner Functions
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