INAUGURALDISSERTATION

ZUR
ERLANGUNG DER DOKTORWURDE
DER

NATURWISSENSCHAFTLICH-MATHEMATISCHEN
GESAMTFAKULTAT

DER

RUPRECHT - KARLS - UNIVERSITAT
HEIDELBERG

MULTI-MODAL PARTIAL
SURFACE MATCHING
FOR INTRA-OPERATIVE REGISTRATION

VORGELEGT VON

THIAGO RAMOS DOS SANTOS, MSC.COMPSC.
AUS FLORIANOPOLIS - SANTA CATARINA - BRASILIEN

2012






THEMA

MULTI-MODAL PARTIAL
SURFACE MATCHING
FOR INTRA-OPERATIVE REGISTRATION

AUTHOR!: THIAGO RAMOS DOS SANTOS, MSC.COMPSC.

BETREUER!: CHRISTOPH SCHNORR, PROF. DR.
HANS-PETER MEINZER, PROF. DR.






ZUSAMMENFASSUNG

Die Ubertragung prioperativer Daten auf die intraoperative Sit-
uation am Patienten ist ein wichtiger Bestandteil jeder comput-
ergestiitzten Intervention. Diese intraoperative Registrierung wird
gewdhnlich marker- oder bildbasiert durchgefiihrt. Andere Anséitze
nutzen die intraoperative Erfassung der Organoberflache mittels 3D-
Tiefenmessung, welche eine Registrierung zur praoperativ akquiri-
erten Oberfliche ermdglicht. Dieser Ansatz ist jedoch nicht trivial, da
hier Rauschen, Verzerrungen und Verformungen auftreten sowie hdu-
fig nur teilweise tiberlappende, beinahe flache Oberfldchen vorliegen.
Wegen dieser Schwierigkeiten wurde intraoperative Oberfldchenreg-
istrierung bis jetzt nur lokal angewandt, wahrend die globale Reg-
istrierung noch manuell durchgefiihrt wird.

In dieser Arbeit werden zwei verschiedene Ansdtze zur au-
tomatischen, markerlosen Oberflichenregistrierung fiir intraopera-
tive Szenarien vorgestellt, wobei insbesondere o0.g. Probleme bertick-
sichtigt werden. Fiir den ersten Ansatz werden Oberfldchen als Graph
reprasentiert und Korrespondenzen zwischen ihnen mittels Graph-
Matching identifiziert. Da das Graph-Matching Problem bekanntlich
NP-hart ist, wurde ein iteratives Verfahren basierend auf der Bewer-
tung der Knotendhnlichkeiten gewdhlt und dadurch in ein lineares
Zuweisungsproblem tiiberfiihrt. In dem zweiten Ansatz werden Kor-
respondenzen durch die Auswahl von zwei raumlichen Konfiguratio-
nen von Landmarken bestimmt, die in Bezug auf ihre Fehlermetrik
besser zugeordnet werden konnen. Diese Fehlermetrik berticksichtigt
nicht nur den Zuordnungsfehler, sondern auch ein neues Maf fiir die
Verlasslichkeit von rdumlichen Konfigurationen. Die Registrierung
wird dann mit Hilfe eines Greedy Optimisierungsalgorithmus gelost.

Beide Ansdtze wurden in etlichen Experimenten, welche die in-
traoperativen Bedingungen simulierten, evaluiert. Es konnte gezeigt
werden, dass der Graph-Matching-Ansatz ins besondere fiir die Reg-
istrierung von kleinen Teiloberflichen geeignet ist, wiahrend der
punkt-basierte Ansatz bei hohem Rauschen robust und akkurat
war. Neben dem signifikanten Beitrag zur partiellen Oberfldchenreg-
istrierung ist diese Arbeit von besondere Bedeutung zur Erreichung
von vollautomatischer, markerloser und intraoperativer Registrierung
fiir computerassistierte Assistenzsysteme.






ABSTRACT

An important task for computer-assisted surgical interventions is the
alignment of pre- and intra-operative spaces allowing the transfer of
pre-operative information to the current patient situation, known as
intra-operative registration. Registration is usually performed by using
markers or image-based techniques. Another approach is the intra-
operative acquisition of organ surfaces by 3D range scanners, which
are then matched to pre-operatively generated surfaces. However, this
approach is not trivial, as methods for intra-operative surface match-
ing must be able to deal with noise, distortions, deformations, and
the availability of only partially overlapping, nearly flat surfaces. For
these reasons, surface matching for intra-operative registration has
so far only been used to account for displacements that occur in local
scales, while the actual alignment is still performed manually.

The main contributions of this thesis are two different approaches
for automatic surface matching in intra-operative environments. The
focus here is the registration of surfaces acquired by different modal-
ities, dealing with the aforementioned issues and without relying on
unique landmarks. For the first approach, surfaces are converted to
graph representations and correspondences between them are identi-
fied by means of graph matching. Graphs are obtained automatically
by segmenting the surfaces into regions with similar properties. As
the graph matching problem is known to be NP-hard, it was solved
by iteratively computing node similarity scores, and converting it to
a linear assignment problem. In the second approach, correspondences
are identified by the selection of two spatial configurations of land-
marks that can be better fitted to each other, according to an error
metric. This error metric does not only incorporate a fitting error, but
also a new measure for spatial configuration reliability. The optimiza-
tion problem is solved by means of a greedy algorithm.

Evaluation of the two approaches was performed with several ex-
periments, simulating intra-operative conditions. While the graph
matching approach proved to be robust for the registration of small
partial data, the point-based approach proved to be more reliable for
noisy surfaces. Apart from being a significant contribution to the field
of feature-less partial surface matching, this work represents a great
effort towards the achievement of a fully automatic, marker-less, reg-
istration system for computer-assisted surgery guidance.
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INTRODUCTION

Before everything else, getting ready is the secret of success.

— Henry Ford

Due to their complexity and risks involved, many surgical proce-
dures require extremely careful planning. Procedures such as the ab-
lation of liver tumors, where a needle is used, which needs to be
inserted directly in the center of the tumor in order to cauterize it
from the inside to the outside, or liver resection, which describes the
removal of a part of the liver with the potential purpose of elimi-
nating cancerous tissue, require very cautious consideration. In the
case of tumor ablation, the needle must be inserted through several
tissues including the skin of the patient in order to reach the tumor
without harming any crucial organ, such as the lungs, or hitting solid
structures, such as bones, which cannot be punctured. In the case of a
liver resection, a part of the liver must be removed without damaging
any vital arteries or veins and at the same time leaving enough organ
volume behind to guarantee the physiological functions of the liver.

Surgical planning often involves the acquisition of three-
dimensional (3D) medical images, such as computed tomographies
(CT) or magnetic resonance imaging (MRI), which provide the sur-
geon with an overview of the patient’s anatomy and potential
pathologies. Given this information, the surgeon is able to identify
a target structure, such as a tumor, and plan a path towards that tar-
get, along which a needle can safely be inserted. Alternatively, the
surgeon can plan a cut to isolate a certain section of a partially dys-
functional organs, as is done during liver resection.

Unfortunately, a careful surgery plan does not always coincide with
a successful surgery itself. Without assisting techniques, the imple-
mentation of the surgery plan is not trivial, as the patient’s condition
might change significantly from the moment when images used for
planning are acquired to the moment when the surgery is performed:
Among others, organ displacement, breathing, and heart beats, are
some of the issues that must be dealt with during surgery. In this com-
plex setting, the surgeon must still be able to adapt the surgery plan
to the altered situation. Therefore, computer-assisted interventions
are increasingly gaining significance in the surgical routine. Nowa-
days, several computer-based systems exist to assist surgeons in the



real-time localization and visualization of organs, regions of interest
and structures of risk, and to guide them towards target structures
(see [246, 96, 206, 277, 88, 27, 273] for more extensive reviews on those
systems).

Critical for surgery guidance is the computation of an alignment be-
tween the (virtual) space where the surgery planning was performed
and the space where surgery is taking place. This task is called regis-
tration. Most existing commercial systems focus on assisting interven-
tions near rigid structures, like bones, where they can rely on static
anatomical landmarks or attach fiducial markers for the alignment of
the spaces (e.g. BrainLab VectorVision®). In this scenario, the relative
position between guidance landmarks does not change and, assum-
ing that the patient has been immobilized, registration between plan-
ning and surgery must only be performed once. However, researchers,
have drawn their attention to a more complicated problem: computer
guidance for soft-tissue interventions. In contrast to rigid structures,
soft tissues are continuously deformed due to respiratory motion,
heart beats, and external forces (e.g. surgical manipulation). In this
case, anatomical landmarks are usually not clear or not reliable due
to deformations. Even if one resorts to fiducial markers as artificial
landmarks, their position relative to each other is constantly chang-
ing. Computer-assisted guidance in soft-tissue interventions therefore
remains very challenging.

Several authors have proposed the use of optically or magnetically
tracked fiducial markers for the compensation of deformations dur-
ing soft tissue interventions [152, 160, 194, 169, 170, 161, 180, 28, 195].
These fiducials are either placed above the skin or inside the organ
of interest (needles), and are continuously tracked in order to deter-
mine their position. Deformation models are employed in order to
estimate the location of the targets' based on the movement of the
fiducials. The main drawback of the use of fiducial markers as sur-
gical guidance aids is that the spatial configuration of the markers
around the target is crucial for the minimization of target registration
errors [102, 101, 73]. Markers placed above the skin are usually too
far from the targets, being less reliable for target localization. While
needles can be used for a more reliable target localization, they are of
a more invasive nature. After the attachment of the markers, 3D med-
ical image acquisition must be repeated in order to establish the posi-
tion of the anatomical structures in relation to the markers, exposing
the patient to extra radiation, in the case of computed tomographies,
for example. Furthermore, fiducial markers are not particularly suit-

1 We denote as target any pre-defined point or region of interest whose position is to
be found during surgery.



able for open body surgery, as it would require the placement of the
patient in an 3D image acquisition device with the body open and
with the entire surgical apparatus. Nevertheless Weber et al. [266]
and Markert et al. [184] presented some efforts for attaching mark-
ers on the liver surface, but never performed a clinical evaluation.
Maier-Hein et al. [179] investigated the optimal combination of skin
markers and needles in order to maximize accuracy and minimize
invasiveness.

Image-based techniques have also been employed for guidance
[133, 267, 23, 130, 269, 98, 163, 198]. These techniques usually involve
the segmentation of organs, targets and instruments from real-time
imaging modalities (e.g. ultrasound), or the direct image-to-image reg-
istration between pre- and intra-operative data. Image-guided tech-
niques for the robust and accurate compensation of soft-tissue motion
are still subject of ongoing research [177]. Imaging modalities such as
ultrasound require direct body contact with the patient and are usu-
ally very noisy, while intra-operative X-ray and tomography devices
(C-arms) expose the patient to additional radiation and require the
isolation of the operation room during image acquisition. The combi-
nation of image-guided techniques with the use of fiducial markers
has also been investigated [227, 151, 201, 237]. Here, the main task
is the identification and extraction of the markers from the images,
which constitutes a less complex problem than directly identifying
organs, anatomical landmarks, and instruments.

Surface-based intra-operative registration is an attractive alterna-
tive for intra-operative guidance, as common surface scanners (1) Do
not require contact with the patient, thus also being suitable for open
body surgery; (2) Do not expose the patient to radiation; (3) Do not
require isolation of the operation room during acquisition; (4) Have
moderate to high acquisition rates; and (5) Do not require any kind
of markers. Having surface models from segmented pre-operative
data, registration is obtained by matching intra-operatively acquired
surfaces (e.g. surface of an organ or the skin) to pre-operatively
acquired ones. As in the case of the use of fiducial markers, de-
formation models are required in order to correctly estimate the
location of targets inside a particular volume based on the defor-
mation of its surface. The use of surface matching techniques for
intra-operative registration purposes is already being investigated
[128, 21, 52, 65, 111, 51, 212, 31, 66, 91]. These authors have focused
their attention to fine alignment algorithms known to require an
initial alignment in order to converge. They evaluated it for intra-
operative purposes and proposed variations in order to make it more
robust to initial alignments and to surface deformations. However,



initial alignments are still performed manually or with the assistance
of fiducial markers, in some cases requiring two sensors being placed
in the operation room: one for surface acquisition and another for
marker tracking.

So far, the automatic establishment of correspondences between
pre- and intra-operatively acquired surfaces remains elusive, as sur-
face matching in intra-operative settings poses a challenging problem.

1.1 OBJECTIVES

The main objective of this work is to develop and evaluate a sur-
face matching approach for the purpose of intra-operative registra-
tion. This approach should feature the following properties:

* Automatic: To compute a registration between two input sur-
faces, the presented approach is supposed to find a set of cor-
respondences between the input surfaces without making any
assumptions about their initial position in space. The surface
matching approach should work without requiring any manual
interaction by the user for the selection of an initial set of corre-
spondences between the surfaces.

* Robust, accurate and fast performance: It is expected that the pre-
sented approach is able to deal with the different types of sur-
faces, extent of deformations, and noise levels encountered in
intra-operative registration scenarios, being robust to different
parameter settings, accurate enough for initializing fine registra-
tion procedures, and fast enough for intra-operative purposes.

* Generic applicability: The registration approach should be easily
configurable for different intra-operative registration scenarios
and organs of interest.

1.2 STRUCTURE OF THIS WORK

This work is organized as follows: Chap. 2 gives a more detailed
overview of the entire pipeline for surface-based intra-operative reg-
istration, pointing out the challenges and problems that must be
overcome by the registration procedure presented here. Technologies,
techniques, and methods, related to the intra-operative registration
pipeline, are also presented. In this chapter, the reader is informed
about surface acquisition methods and pre- and post-processing
stages required for surface-based registration.



Chap. 3 describes the current state of the art for surface matching.
Its main components and processing stages are presented and their
applicability in intra-operative registration are discussed. As such,
this chapter forms the basis for the work presented in the following
chapters.

Chap. 4 presents an efficient data structure for the representation of
surfaces as polygonal meshes. This data structure allows for fast ad-
jacency queries among surface elements, and is able to track surface
boundaries and other types of surface abnormalities. Efficient repre-
sentation of surfaces is essential for the fast computation of surface
properties, which are used to find correspondences between surfaces.

Chap. 5 presents a framework for the comparison of surfaces of
different modalities based on surface properties, such as curvatures.
As intra-operative registration involves the registration of surfaces
acquired by different equipments, there are intrinsic deformations be-
tween the surfaces due to the different acquisition principles. These
deformations may have a great influence on the matching procedure,
as surface properties on the same anatomical locations may have dif-
ferent values. In addition, the differences between surfaces acquired
by time-of-flight (ToF) cameras and computed tomographies (CT) are
evaluated.

Chap. 6 describes two new surface matching approaches, aiming
to fulfill the requirements of intra-operative registration. These ap-
proaches are evaluated with experiments designed to be as similar as
possible to the real-life challenges that have to be dealt with during
intra-operative registration.

Chap. 7 finishes this work with some concluding remarks, a sum-
mary of the contributions, and an outlook for future work.






OVERVIEW OF SURFACE-BASED
INTRA-OPERATIVE REGISTRATION

I believe that if you show people the problems and you show them the
solutions they will be moved to act.

— Bill Gates

Surface-based intra-operative registration refers to the computation
of a transformation that maps a pre-operative coordinate system, ac-
quired by imaging techniques such as computed tomography (CT)
or magnetic resonance imaging (MRI), to an intra-operative coordi-
nate system, using the patient’s current morphological (shape) infor-
mation during surgery. Intra-operative registration is used to align
and adapt structures, targets, trajectories, and other data previously
generated during surgery planning to the patient’s situation during
surgery, in order to allow for adequate surgery guidance. The term
surgery guidance refers to a way of communicating the current status
of the surgery in relation to what was planned to the surgeon. In other
words this means showing information that helps the surgeon to fol-
low the surgery plan. It may thus involve continuous intra-operative
registration and tracking of surgical instruments. For more details on
the history of surgical guidance and on the role of registration in the
guidance process we kindly refer the reader to [100].

Procedures based on surface-based intra-operative registration are
structured as follows (Fig. 1): First, the patient is submitted to a vol-
ume scan, such as a CT or MRI, which generates a 3D image (volume).
Given this volume, the physician is able to create different models for
the different objects (e.g. organs, vessels, tumors) by means of image
segmentation algorithms (Sec. 2.1). These models are the basis for
the generation of surfaces of interest, which will be used for the sub-
sequent registration, but also for the construction of a surgery plan,
which determines the course and goals of the surgery (e.g. a trajec-
tory for needle insertion that avoids structures of risk, such as the
lungs, or a liver resection that avoids injury of major arteries and ves-
sels). Surgery plans are usually built with specialized software. Once
surgery is about to start, the remaining task is the adaption of pre-
operatively generated information to the patient’s current situation.
This implies a non-trivial problem, as the organ of interest deforms
due to patient movements, breathing, or surgical manipulations. This
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Figure 1: Processing pipeline for surface-based intra-operative registration.

task is accomplished by the acquisition of intra-operative data and
by matching it to pre-operative data, in order to establish a spatial
relation between the two. With regards to this work, the information
used for registration is morphological data represented by surfaces.

Surfaces are acquired intra-operatively by means of 3D range scan-
ners (Sec. 2.2), which generate range images (also known as depth
images) with each pixel representing a distance value. Range images
are converted into surfaces by a sequence of pre-processing stages
(Sec. 2.3), aiming to identify the objects of interest and to compen-
sate for possible image distortions and errors intrinsic to the im-
age acquisition technology. The spatial relation between the pre- and
intra-operative situations is established by means of surface match-
ing, which is the main topic of this work, and is reviewed in detail
in Chap. 3. After a spatial relation is established, the surgery plan
can be adapted to the patient’s current situation for the purpose of
guidance. This is achieved by means of a physics-based deformation
model, which extrapolates the transformation obtained for the sur-
faces to the organ’s entire volume.

When designing a method for the automatic establishment of cor-
respondences between pre- and intra-operatively acquired surfaces,
the following issues must be taken into consideration, which turns
surface matching for intra-operative registration purposes in a chal-
lenging and non-trivial problem, as it imposes several challenges:

1. Partial surfaces: As 3D scanners do not have a complete view of
the region of interest, and there are also many other objects and



structures in the environment, we must deal with a partially
overlapping surfaces matching problem. Furthermore, due to
the different acquisition principles, holes on one surface may
not be present on the other one.

2. Noise: Depending on the acquisition rates, surfaces generated
by 3D scanners can be noisy. The higher the acquisition rate, the
higher the amount of noise on the surfaces.

3. Distortions: Due to the different acquisition principles of intra-
and pre-operatively generated surfaces (multi-modality), and
the different systematic errors that are inherent to these prin-
ciples, distortions on local and global scales can occur.

4. Non-rigidity: As the organ of interest may be undergoing de-
formation due to respiratory motion or from the surgical inter-
vention, the surface is subject to complex deformations. In this
case, the spatial configuration of a set of points on one surface
and the configuration of their corresponding ones on the other
surface might be different.

5. Lack of structure: Usually, surfaces of interest do not present
a clear structure or articulation (e.g. a clear subdivision of the
human body into arms, legs and head) which could be used
as reliable landmarks. Matching of surfaces with a clear sub-
division into several parts poses a less complex problem, as it
resumes to identifying these parts and establishing correspon-
dences between them.

6. Lack of landmarks: Surfaces of interest for intra-operative reg-
istration often do not present prominent regions or locations,
which could be used as reliable landmarks. Surfaces acquired
intra-operatively are mostly nearly flat, such as the partial sur-
face of a liver, for example.

7. Speed: The entire matching process must be completed in rea-
sonable space of time, i.e., ideally within a few seconds, al-
though within a couple of minutes is acceptable.

Due to these issues, surface matching for intra-operative registration
has been used so far only for accounting for displacements that oc-
cur in local scales, by means of variations of the iterative closest point
(ICP) algorithm [128, 21, 52, 65, 111, 51, 212, 31, 66, 91], whereas the
actual registration between the intra- and pre-operative spaces oc-
curs manually. Several surface-based navigation systems for cranio-
maxillo-facial surgery based on ICP already exist, which have been
extensively evaluated in the clinical context [185, 176, 167, 35].



In the following sections, we review the stages involved in surface-
based intra-operative registration, highlighting relevant work on
these topics.

2.1 IMAGE SEGMENTATION

Image segmentation means the partitioning of an image in multiple
segments. These segments should make sense in the context of a par-
ticular application. In medical imaging, segmentation focuses on the
identification of regions and boundaries of organs, tumors, and other
anatomical structures, in order to enable the quantification of an or-
gan’s specific measurements (e.g. volume, blood irrigation, etc). Seg-
mentation allows for the computation of surfaces representing the
objects of interest. These surfaces can be used for the purpose of reg-
istration, which lies at the basis this work.

For more details on medical image segmentation methods, we refer
the reader to [208, 272, 127].

2.2 3D RANGE SCANNERS

Three-dimensional (3D) imaging systems (or range scanners) are de-
vices that measure the distance between the device itself and the ob-
jects in its field-of-view. The result is usually an image, referred to as
range or depth image, in which each pixel represents a distance value
(Fig. 2b). The most widely used 3D imaging systems for surface data
are stereoscopic imaging [229, 108], structured light [225], and laser range
scanning [197]. A very promising new technology for range scanning
are time-of-flight (ToF) cameras [156, 71], which are able to simulta-
neously generate a light intensity image and a range image at high
acquisition frequency rates. The drawback of the ToF cameras are the
potentially high noise levels, however. ToF cameras are employed in
this work for the purpose of evaluation.

For more comprehensive reviews on the topic of 3D range scanning
please refer to [36, 164].

2.3 RANGE IMAGES TO SURFACES

Here, we present the required pre-processing steps for the conver-
sion of a range image into a surface representation (polygonal mesh).
As intra-operative environments are usually filled with different ob-
jects, which may appear in the acquired range images, imposing ex-
tra complexity to the surface matching procedure, we present a brief
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(a) (b) (©) (d)

Figure 2: Acquisition of the surface of an object by a time-of-flight camera.
(a) The object (a mug); (b) The acquired range image, with distance
values mapped to a color palette ranging from green (further) to
red (near); (c) Extraction of the object of interest; (d) Conversion
of the range image into a 3D point cloud; (e) Triangulation of the
point cloud in order to build a surface.

overview of object recognition in range images in Sec. 2.3.1, which
aims to isolate the object of interest (region or organ) from other ob-
jects. In Sec. 2.3.2 we describe the conversion of range data in a sur-
face representation, focusing on triangle meshes, which are one of the
most commonly used discrete representations for surfaces. Finally,
Sec. 2.3.3 presents data structures for the representation of meshes.
These data structures allow the efficient computation of mesh proper-
ties, which are required for surface matching.

2.3.1  Object recognition

Object recognition deals with the problem of identifying a particular
object in an image. It has been subject of research for more than four
decades [276]. Major problems in the field of object recognition, are
the detection of objects from different camera points-of-view, lighting
conditions and partial occlusion by other objects in the scene [193].
The different approaches for object recognition are usually classified
as follows: Geometry-based approaches [193], which employ the geomet-
ric properties of the object of interest, and its projection on 2D planes;
Appearance-based approaches [219], which attempt to capture the ap-
pearance variations of the object; and Feature-based approaches [230],
which focus on finding points-of-interest that are used to character-
ize the desired object. Object recognition is closely related to image
segmentation (see Sec. 2.1), and, in fact, many object recognition ap-
proaches employ certain segmentation techniques.

In the case of range images, the use of appearance-based ap-
proaches is somewhat limited, as the appearance of a particular object
in the image varies according to its distance to the camera. However,
some scanners, such as the time-of-flight camera, can simultaneously
acquire a light intensity image, which can be used for appearance-
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Figure 3: Projection of an object in 3D space to the 2D space of an image
according to the pinhole camera model.

based detection. Several authors have focused on the specific problem
of detecting objects in range images, as can be found in [171, 222, 83].

2.3.2  Surface generation

In order to construct a surface from a range image, the first step is
to convert the image into a spatial representation: each pixel in the
range image space is converted to a 3D point (Fig. 2d). This conver-
sion is performed according to the pinhole camera model (Fig. 3), which
allows the computation of the original 3D position of the object based
on its projection onto the image plane [125]. Furthermore, several im-
age distortions may occur due to lens effects and measurement princi-
ples, which must be compensated for correct geometry computation
[125, 136, 283]. The second step in the conversion process is the estab-
lishment of neighborhoods for each point, representing these neigh-
borhoods by edges, in order to form meshes (Fig. 2e). Triangle meshes
are the most widely employed discrete representation for surfaces, al-
though meshes composed by other polygons are also possible [153].
Kilgus et al. [154] investigated and compared several alternatives for
the generation of triangle meshes from point sets generated by time-
of-flight cameras.

2.3.3 Data structures for mesh representation

The representation of meshes using appropriate data structures is
advantageous for several reasons, including the accelerated retrieval
of adjacency and incidence information, the efficient object traversal,
and the maintenance of topological consistency during manipulation.
The use of efficient data structures may be critical for achieving the
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required performance in the case of surface matching, where the com-
putation of neighborhoods and surface properties (e.g. curvatures) be-
comes necessary. Also desirable for a mesh representation data struc-
ture is the ability to represent the boundaries of the meshes, as objects
scanned by range scanners have open boundaries. The detection and
representation of mesh anomalies, such as non-manifoldness®, is also
crucial. Most widely employed data structures for mesh representa-
tion are the winged-edge [24, 26], the quad-edge [122] and the doubly-
linked face list [58, 3], for the representation of perfect manifolds. The
half-edge representation [183] can also be used for representation of
boundaries. Further details on data structures for mesh representa-
tion can be found in Chap. 4.

2.4 DEFORMATION MODELS

Deformation models are employed to extrapolate deformation infor-
mation on one part of the organ to the rest of its entire volume. These
models are usually based on physically coherent models, such as the
finite element method (FEM) [117], in order to compute extrapolations
that are plausible with the physical reality. Literature on deformation
models can be found, for example, for the kidneys [199], the liver
[52, 72] and the brain [290]. A model for the computation of internal
abdominal motion based on the skin deformation was presented in

[135].

1 A mesh is said to be a manifold if, for every point, the surface is locally equivalent to
an open disk. If this is not the case, the mesh is said to be a non-manifold.
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STATE OF THE ART OF SURFACE MATCHING
APPROACHES

A lot of people in our industry haven't had very diverse experiences. So
they don’t have enough dots to connect, and they end up with very linear
solutions without a broad perspective on the problem.

The broader one’s understanding of the human experience, the better design
we will have.

— Steve Jobs

Surface matching is a large field and it has been studied for several
years. The primary goal of surface matching is to compute a mapping
from one surface onto another, and it can be regarded as an optimiza-
tion problem. Because of the many existing approaches for matching
surfaces, classifying them into meaningful groups is not trivial. Au-
dette et al. [22] addressed this issue by first decomposing the surface
matching procedure into its main stages, followed by classification of
the methods according to how each stage was approached. Similar to
Audette et al. [22], we also consider three different stages: descriptor
representation (Sec. 3.1), optimization (Sec. 3.4) and transformation (Sec.
3.5). However, another component plays a major role in registration,
and it is relevant to analyze it on its own: the error metric (Sec. 3.3),
which is attempted to be minimized during optimization. Another im-
portant stage, commonly used in surface matching for reducing the
search-space and increasing the chances of finding a correct match is
the selection of surface features (Sec. 3.2).

In the descriptor representation stage, global or local surface informa-
tion is extracted, which can be used for surface comparison purposes
during the optimization stage. This information is called a surface de-
scriptor. In order to make comparisons possible, a distance metric be-
tween two descriptor instances must be defined alongside the descrip-
tor itself. The error metric is used to determine how two surfaces fit to
each other in any given stage of the matching process. Optimization
denotes the process of finding a match between the input surfaces,
such that the error metric is minimized. After the establishment of
correspondences, a mapping between the input surfaces is computed
on the transformation stage. Note, however, that the computation of a
transformation does not necessarily occur only after the optimization
stage is finished. In several methods, transformations are computed
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during the optimization process in order to identify correspondence
sets with minimal error.

Generally speaking, given two surfaces represented by point sam-
ples, a source surface S = {si} and a target surface T = {t;}, where s;
and t; denote the surface samples for source and target surfaces, re-
spectively, their descriptors Ds and D, and an error metric E(-), the
goal of surface matching is to find a mapping ® : S — T represented
by a transformation operator A : S — T, so that:

O = arganE(S,T,Ds,DT,A) (3.1)

3.1 DESCRIPTOR REPRESENTATION

Descriptors are pieces of information extracted from surfaces in order
to make the comparison between two surfaces, or two surface parts,
possible. They can be local or global, and can be used to subdivide
the surfaces into regions with similar properties. Descriptors must
be comparable to each other and, along with the descriptor itself, a
distance metric between two descriptor entities has to be defined as
well. For intra-operative registration purposes, the descriptor must
be able to provide robust characterization even in the presence of
noise. Another aspect to be considered is the discriminative power of
the descriptor: If the descriptor is too sensitive, a small variation on
the surfaces will result in a high distance value between the descrip-
tors. As surface-based intra-operative registration must deal with sur-
faces acquired from different sensors and, therefore, different acquisi-
tion principles, variations on the surface representations for the same
anatomical location should be expected (see Chap. 5). In this case, an
over-sensitive descriptor would be inadequate. However, as scanned
surfaces are usually nearly flat, since they have only a partial view
of the object-of-interest, a certain degree of sensitivity is required in
order to effectively discriminate the different regions of the surface.
Since obtaining a perfect balance in discriminative power is very diffi-
cult, the optimization procedure must be able to deal with this issue.
Furthermore, as we deal with partial surfaces, the descriptors should
be able to represent information in local scales, instead of global ones.
In addition, the descriptor should be invariant with respect to the
occurring transformation class (see Sec. 3.5).

The most basic form of a surface descriptor is the surface geom-
etry itself, ie., its points, edges, and faces. Geometry was used to
find the set of four congruent points that, when mapped to each
other, delivers an alignment with the maximal intersection area [2].
This method is robust to noise and very effective for rigid registra-
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tion. Geometry was also used to search for a mapping between two
surfaces, which minimizes some kind of deformation error between
them [285, 281]. Although these approaches are very effective, they
are time-consuming and usually not applicable for surfaces without
prominent features (see Sec. 3.4). Another class of methods that em-
ploys geometry as a descriptor are the variants of the iterative clos-
est point algorithm (ICP) [34], which iteratively finds pairs of closest
points and computes a transformation that maps these points onto
each other (see Sec. 3.4.2.1 for more details). This class of methods
are employed for the fine alignment of surfaces as well as for ac-
counting for displacements that occur in local scales, as an initial
alignment must be provided in order to ensure convergence to the
global minimum distance. Other methods for the fine alignment of
surfaces based on pure geometric information were presented by Eck-
stein et al. [93], Papazov and Burschka [202].

Based on geometry, a global form of shape description is the princi-
pal component analysis (PCA) [234], which computes the principal axes
of shape variation, using the eigenvectors associated with the largest
eigenvalues of the second order moments covariance matrix. Match-
ing two shapes using PCA implies aligning their principal axes. As
mentioned before, PCA can usually only be used for aligning entire
surfaces, as the principal axes extracted from a partial surface are
incompatible to the ones extracted from the whole surface. Further-
more, PCA does not provide directions of the principal axes, thus
matching solely based on PCA can be ambiguous.

Bronstein et al. [44], Eckstein et al. [93], Papazov and Burschka
[202], Sahillioglu and Yemez [223] employed geodesic distances for
matching. A geodesic is defined as a curve which realizes the short-
est distance between any two points lying on a general metric space
Jost [144]. In the case of surfaces (2-dimensional embeddings), the
geodesic distance between two points lying on a surface denotes the
length of the shortest line above the surface that connects these two
points (Fig. 4). Only relying on geodesic distances for matching, can
be inconclusive in the intra-operative case, as surfaces are mostly
nearly planar, and every point has similar geodesic fields (Fig. 4b),
differently from surfaces that have a more complex structure (Fig. 4c¢).
Furthermore, geodesic distances are not robust to noise. Distances
are usually longer on noisy surfaces because of the high frequency
variations on the surface.

A slightly improved form of point (local) descriptors, which con-
siders the geometry of its neighbors but not the global geometry, are
the principal curvatures and other curvature-based quantities (Fig. 5):
mean curvature, Gaussian curvature [189], shape-index, and curvedness
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Figure 4: Geodesic distance fields for two distinct points on different sur-
faces (red: high, blue: low): (a) A plane. Both points have exactly
the same radial geodesic field. (b) A porcine liver surface acquired
by a time-of-flight camera. As the surfaces are nearly planar, the
geodesic fields of both points are similar. They are also very simi-
lar to the radial fields on the plane surface. (c) A humanoid shape.
As the structure is more complex than the previous surfaces, not
resembling a plane, distinct points on the surface have different
geodesic fields (unless they lie close to each other).

[155]. These measures are related to the way a surface bends in a par-
ticular point, i.e., how the surface differs from a plane at a particular
point. As the computation of curvatures on discrete surfaces is not ro-
bust to noise, Cazals and Pouget [54] proposed a method for the com-
putation of differential properties by fitting a smooth polynomial to
the local neighborhood, followed by computing the curvatures of this
polynomial (Fig. 5c). Curvatures have been used as descriptors for
many years. Kehtarnavaz and Mohan [148] segmented the surfaces
in patches of homogeneous curvature and employed graph matching
to obtain correspondences between them. Other methods employing
curvature as a measure for data likelihood were presented by Zeng
et al. [281, 282], Windheuser et al. [271]. The problem, however, is
there may be many points on one surface that have the same curva-
ture values as another point on the other surface [115]. Curvatures
are also used to select features on the surface, in order to reduce the
search-space for correspondence search and to increases the chance
of finding correct matches by using only more prominent and distin-
guishable points (see Sec. 3.2).

In order to increase the discriminative power and robustness of
the curvature descriptor, Gatzke et al. [113] subdivided the geodesic
circle around a particular point in bins, and computed the average
curvature for each bin. The descriptor itself is represented by a vec-
tor, where a curvature average is stored at each vector’s position,
and each position represents the curvature value of a particular bin.
Two descriptor entities are compared by means of the L, norm. John-
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(a) (b) (©)

Figure 5: Mean curvature plot on a porcine liver surface acquired by a time-
of-flight camera. (a) Curvature computed according to the discrete
approach of Meyer et al. [189] on the original surface (noisy);
(b) Curvature computed according to the same approach on the
smoothed surface; (c) Curvature computed according to the noise-
robust approach of Cazals and Pouget [54] on the original surface.
The curvature values on the smoothed surface (b) and on the orig-
inal surface computed with a more robust approach (c) are highly
similar.

son and Hebert [141, 142] presented the spin-images (Fig. 6), one of
the most well-known descriptor for shape matching. Using the same
idea of binning, they computed a 2D histogram of points that are
contained inside a spherical volume by means of a plane rotating
around the normal of a particular point. The descriptor proposed by
Frome et al. [105], known as 3D shape context, extends the idea of
spin-images for a 3D spherical volume defined around a point, thus
partitioning the sphere in bins by inserting subdivisions in the radial,
azimuth, and elevation directions. However, in order to consistently
index the 3D bins to the 2D vector that represents the descriptor, they
rely on the determination of a local coordinate system for each point,
which must be repeatable across surfaces. The same applies to the
fingerprint-like descriptor presented by Sun and Abidi [249], Sun
et al. [250], which is obtained by the projection of geodesic circles
around a point to its tangent plane. Tombari et al. [257, 258] improved
the robustness of the computation of local coordinate systems, and
presented the signature of histograms descriptor, which computes his-
tograms of angles between normals, instead of computing histograms
of point positions. The MeshHog descriptor [279] also applies an im-
proved computation procedure of the local coordinate system, and
computes histograms of mean curvature gradients. The robustness
and repeatability of several descriptors based on the computation of
local coordinate systems was investigated by Petrelli and Di Stefano
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Figure 6: Spin images for three points on the surface of a duck model (image
found in [142]).

[207], who performed several experiments with meshes of different
point densities and noise levels.

For the global description of closed, articulated surfaces, skele-
tonization methods have been employed (Fig 7) [19, 288, 251, 50].
Skeletons naturally incorporate the notion and the representation of
parts and articulations. They are represented by trees, and matched
by minimizing the differences between properties of branches and
nodes. Global shape representations were also presented by Toldo
et al. [256], Bronstein et al. [46], who computed a geometric vocab-
ulary by clustering the descriptor space, which could be any local
descriptor in this case. Each point descriptor is then represented in
the vocabulary using vector quantization. The global descriptor is
computed as the histogram of quantized local descriptors.

Gelfand et al. [115] computed the volume of the intersection be-
tween a sphere centered on a point and the surface for local shape de-
scription. This descriptor is called integral volume descriptor. Pottmann
et al. [211] performed an analysis of robustness and stability of differ-
ent integral computation methods, focusing on volume descriptors.

In a more elaborate manner of extracting surface information, au-
thors represent surfaces as a series of functions of different frequen-
cies (bands), defined on the sphere, in the same way as a Fourier
series, but in 2D instead of 1D [190]. This technique is called spherical
harmonics, and it can be employed for both the local and the global
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Figure 7: Matching a dog to different four-legged animals with different sur-
face details by means of comparison of their surface skeletons (im-
age found in [20]).

Figure 8: Representation of the cortical surface by spherical harmonic series
of different highest frequency bands (image found in [61]). From
left to right, the highest frequency band in the series decreases.

description of shapes. The global descriptors presented by Kazhdan
et al. [147], Funkhouser et al. [107] store the amplitude of spherical
harmonic coefficients within each frequency for shape retrieval in
databases. Frome et al. [105], Funkhouser and Shilane [106] adapted
this idea for local surface description, by constraining the spherical
harmonics into local support volumes. Spherical harmonics have been
extensively researched for the description of cortical surfaces (Fig. 8)
[61, 62, 150]. An advantage of this representation is its robustness to
noise when using lower frequency bands only, as noise is generally
represented by higher frequencies.

More recently, attention has been drawn to the manifold harmonics
[254, 260, 215, 286, 85], which are a generalization of the spherical har-
monics for arbitrary manifolds. Importantly, the spherical harmonics
are related to the manifold harmonics: the manifold harmonics series
on a sphere is exactly the basis of the spherical harmonics series [260].
The advantage of the manifold harmonics representation is that it is
invariant to isometric deformations’, even very large ones, as the fre-

1 Quoting from Beardon [29, p. 89]:

A map f: R3 — R3 is an isometry if it preserves distances; that is, if
for all x and y, [If(x) — f(y)ll =[x —yll.
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quency series is not defined on a sphere, like the spherical harmonics,
but on the space spanned by the surface itself (Fig. 9a-b). Reuter et al.
[214], Rustamov [221] employed manifold harmonic bands for noise-
robust and isometry-invariant registration and database retrieval of
complete models. However, because manifold harmonics are defined
in the surface space, instead of a common space, it is not applicable
to the registration of partial surfaces, since the manifold harmonic
bands are incompatible and only make sense in the surface space it-
self (Fig. 9c). Furthermore, their computation is very expensive, as
it involves the computation of eigenvalues and eigenvectors of large
Laplacian matrices.

Based on the manifold harmonics, Sun et al. [248] presented the heat
kernel signatures (HKS), which model the amount of heat that is trans-
ferred between two points in a given amount of time, assuming one
of the points as a heat source. As this descriptor is defined between
two particular points, similar to the geodesic distance, and not on a
global scale, like the manifold harmonics, it can be used for the regis-
tration of partial models. Dey et al. [84], Zobel et al. [291] improved
the HKS for better registration and retrieval of partial and incom-
plete models. Although the computation of heat diffusion is robust
noise, in contrast to geodesic distances, the diffusion in time occurs
inversely proportional to the geodesic distance (Fig. 10). This implies
in higher amount of heat transfers occurring in shorter distances in
shorter time. Thus points on nearly planar or planar surfaces have
approximately the same heat diffusion fields, as they have similar
geodesic distance fields. For the same reasons as mentioned for the
geodesic distance fields, heat-based descriptors can be ambiguous for
matching surfaces of interest of intra-operative registration. In addi-
tion, as HKS is based on manifold harmonics, their computation is
also very expensive.

Comparisons and surveys on descriptor representations were pre-
sented by Tangelder and Veltkamp [253], Bustos et al. [49], Iyer et al.
[139], Bronstein et al. [45], Heider et al. [126].

3.2 FEATURE SELECTION

Feature selection is the process of identifying surface points that are
unique on the surfaces, i.e., points that can be used as reliable land-
marks for the matching process. For instance, such points can lie on
the extremities of a surface (Fig. 3.2). Feature selection is performed

Isometric deformations on surfaces means that distances are preserved in a geodesic
sense. In the case of surfaces, being isometry-invariant means being invariant to
initial shape alignment, translation, rotation, scaling, and non-rigid bending [274].
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Figure 9: Manifold harmonic bands of two Armadillo models, and one of
the Armadillo’s arm. The columns show the first, second and third
bands of their manifold harmonics. As the models in rows (a) and
(b) can be nearly mapped to each other by an isometry, the bands
are similar, as the spaces spanned by these surfaces are similar.
However, the partial surface in row (c) spans a different space,
which is not isometric to the other models, thus inducing different
bands, defined in its own space.



(a) (b) (©)

Figure 10: Heat diffusion field of a heat source (blue point) on different sur-
faces (red: high, blue: low), at different time points (125 and 500
seconds): (a) A plane. (b) A porcine liver surface acquired by a
time-of-flight camera. (c) A humanoid shape. The heat diffusion
is inversely proportional to the geodesic distance (Fig. 4).

Figure 11: Features selected from two different dog surfaces (image found
in [285]). Note that features are consistently selected on both sur-
faces, i.e., they are chosen on the same locations.

mainly for two purposes: First, to speed-up the registration by only
using a subset of the data. Second, to increase the probability of find-
ing a correct match between surfaces by using only prominent and
reliable landmarks, and not other more common points, which are
more likely of having many similar ones. It is important to note, how-
ever, that, if feature selection is used, and correspondences shall be
found only among the selected features, points lying on the same lo-
cations on both surfaces must be selected. If points lying on different
locations are selected, finding a correct match between the surfaces is
impossible. Consistent feature selection across surfaces is crucial for
the successful registration of surfaces by methods relying on feature
selection.

Methods for feature selection include: Random selection [191, 105];
Selection based on surface curvature [275, 103, 279]; Saliency [166, 109,
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Figure 12: Comparison between selected feature points on two surfaces of
the same object (porcine liver), as acquired by a computed to-
mography (left) and a time-of-flight camera (right). Features were
selected according to the multi-scale approach of Ho and Gibbins

[131].

53]; Persistence across different scales [204, 115, 196, 131]; Number of
similar points on the other surface [232]; Maximums of heat propaga-
tion [248, 114]; Tangential discontinuity [265]; Analysis of gradients
[116, 238].

The consistent selection of features on surfaces of interest for intra-
operative registration is not trivial. Because of the noise, lack of struc-
ture (no articulations), and lack of prominent and reliable landmarks
(the surfaces are nearly flat), the consistent selection of features across
pre- and intra-operative surfaces is usually not possible (Fig. 12).
Methods for surface matching that rely on feature selection, are likely
to fail in intra-operative registration scenarios.

3.3 ERROR METRIC

Error metrics are used to determine how well two surfaces match
to each other in any given state of the optimization process. Error
metrics can employ, among others, geometric information, descrip-
tor similarities, or distortion measurements, in order to estimate an
error value for the current optimization state. In Sec. 3.3.1 we focus
on error metrics that are used to establish correspondences between
points, while in Sec. 3.3.2 we show some error metrics for establishing
correspondences between other kinds of non-point-based descriptors,
such as regions and skeletons.
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3.3.1  Error metrics for point correspondences

Let us assume two surfaces represented by discrete samples (points):
The source surface S = {si}, and the target surface T = {t;}. The
goal is to find a set of correspondences C C S x T between source
and target surfaces that delivers the best alignment with respect to
an error metric when these correspondences are used to compute a
transformation that aligns both surfaces. The set C is defined by its
characteristic function oc : S — T, which is partial and injective,
i.e., not all points have correspondences, but the ones that do have a
correspondence, have a single one.

The most basic form of error metric is the Euclidean distance
dpua (-, ) between source and target points. Using the closest point
for finding correspondences, the correspondence set can be obtained
as follows:

C = {(si,tj):t; = arg min dgua(si, tk)?
tkET

AVsy € S[(Sk,tj) ¢ C]
AVt € Tl(si, t) ¢ Cl} (3-2)

If the surfaces are aligned closely enough, the closest point is a sim-
ple way of finding correspondences. In practice, however, it is very
unlikely to find cases where the closest point could deliver a correct
correspondence set. Nevertheless, there exists an entire class of itera-
tive algorithms, derived from the iterative closest point (ICP) algorithm
[34] (see Sec. 3.4.2.1), that minimizes the global squared Euclidean
distance:

Eicp(S,T) = ) dpual(si,argmin dgya (si, tj))? (3.3)
siE€S HeT
Note that the error metrics presented so far do not incorporate any
kind of similarity between points, relying only on geometric informa-
tion?.

Let us assume the function q : S x T — R that measures the incom-
patibility between a point on the source surface and one on the target
surface, based on their descriptor distances, for example. A simple er-
ror metric that incorporates these incompatibility values is defined as
the linear assignment problems (LAP) [47], which computes the global
compatibility error of a correspondence set:

Ear(C)= ) dlsity) (3-4)

(si,t5)eC

Note that there are variants of the ICP algorithms that do incorporate other kind of
similarity metrics. See Sec. 3.4.2.1 for more references on this topic.
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The optimization of Epap(-) delivers the correspondence set with min-
imal global incompatibility. In contrast to Eicp(-,-), ELap(-) does not
incorporate any kind of geometric information, solely relying on in-
compatibility measurements between points. A more sophisticated
error metric is defined as the quadratic assignment problem (QAP) [47],
which not only incorporates a first order incompatibility measure
such as q(-), but also includes a second order regularization (smooth-
ing) term, which measures the incompatibility between assignments:

Eoar(C)= ) >  a@lsust,t)+ Y dlsuty) (3.5

(si,tj)€C (skt1)eC (si,tj)€C

where g2 : S xS x T x T — R. Incompatibility between assignments
can be measured, for example, as the difference between the dis-
tances of source points and their corresponding ones (dgyc(si, Sx) —
dgud (tj, t1)). This means if s; is assigned to tj and sy to t;, we expect
the Euclidean distance between s; and sy to be equal to the distance
between t; and ty, in a rigid case. Employing Eqap(-) for registration
problems is a more robust compared to Epap(-), as, like Epap(-), it is
independent of the initial position of the surfaces, but permits the
incorporation of both geometric and descriptor similarities. Unfortu-
nately, Sahni and Gonzalez [224] showed that QAP is NP-hard, and
even finding a nearly optimal solution, within some constant factor,
cannot be performed in polynomial time.

Gelfand et al. [115] showed that a pure second order, Euclidean dis-
tance based error is robust enough to rigidly match partially overlap-
ping surfaces (Fig. 13). They employed the distance root mean squared
(dRMS) error, which is similar to the second order definition pre-
sented above, comparing all internal pairwise distances between cor-
responding points:

Earms(C Z > (dgualsi, sk) — dpaalty, t1))? (3.6)
( t;)eC (s, t1)eC

The solution of the registration problem using this metric is a QAP
and, therefore, NP-hard (see Sec. 3.4 for a discussion on the optimiza-
tion procedures). Funkhouser and Shilane [106] employed a full QAP
error metric for rigid registration, incorporating not only the second
order term based on distances, but also the first order term, based
on point dissimilarity measures. Chang and Zwicker [55] applied the
same QAP error metric, but for the problem of matching shapes un-
dergoing isometric deformations. They identified surface patches that
were subjected to the same rigid transformation, and solved the reg-
istration as a labeling problem.
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Figure 13: Registration of several partial surfaces of a bunny using the
E4qrms(-) (see Eq. 3.6) error metric (bottom left) and after the error
minimization of the initial registration with ICP (bottom right).

For the registration of shapes undergoing isometric deformations,
the adaptation of the QAP error metric can be performed in a
straightforward manner, by replacing the Euclidean distance with
the geodesic distance (Fig. 14). Sahillioglu and Yemez [223] employed
only the second order term, directly replacing the Euclidean distances
in the Egrms(+) formulation with the geodesic distance, while Dubrov-
ina and Kimmel [89], Wang et al. [263] formulated their error metrics
as a full QAP error, as follows:

Eiso(c) = w Z Z (dgeo(si/ Sk) - dgeo(tj/ tl)) +

(sit5)€C (sk,t1)eC

D dlsut) (3.7)

(si,t5)€C

where dgeo (-, -) denotes the geodesic distance between two points on
the same surface, and w a weighting scalar to balance the influence
of the terms. Raviv et al. [213] used the same error metric formu-
lation, but instead of using geodesic distances, they employed heat
diffusion as a distance metric. As explained in Sec. 3.1, heat diffusion
is inversely proportional to the geodesic distance, with the advantage
of being robust to noise.

Lipman and Funkhouser [173], Zeng et al. [281, 282] employed the
deformation error between source and target surfaces, when they are
both conformally flattened onto a common canonical 2D domain, as
their error metric. This flattening can be uniquely determined by fix-
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Figure 14: Correspondences obtained for a pair of hand model using the
Eiso(-) (see Eq. 3.7) error metric for registration under isometric
deformations (image found in [89]).

ing any three points on the surface. Zeng et al. [281, 282] posed this
flattening error as a third order assignment problem, as follows:

Epae(C) = ) > D> 0(si s Sty tuta) +
(si,t;)€C (sk,t1)EC (sm,tn)eC

D dqlsut) (3.8)

(si,t5)€C

where 0 : SxSxSXxTxTxT — R denotes the mutual flattening
deformation error.

Zhang et al. [285] utilized an error metric that measures elastic
distortion and preservation of local differential properties for an as-
rigid-as-possible deformable mapping [174, 159] of the entire surface
S onto surface T, given a set of k correspondences. Windheuser et al.
[271] employed an error metric defined by the elasticity theory as
commonly known in physics, which measures stretch and bending
error [63, 79]. They posed the error as a linear error metric, computing
it for pairs of triangles.

3.3.2  Other error metrics

The measurement of errors not related to point correspondences and
relations between point correspondences can also be found in the
literature. However, they are not as commonly used as the ones pre-
sented in the previous section (Sec. 3.3.1). As in the previous section,
we assume two discretely sampled surfaces S = {s;{} and T = {t;}, the
source and target surfaces, respectively.

29



The most common metric for measuring the global error between
two surfaces is the Hausdorff distance [218], which is based on the
Euclidean distance. This metric computes the maximum of the dis-
tances from a point in any of the surfaces to the nearest point on the
other surface. In its discrete form, the Hausdorff distance is defined
as follows:

EHausd (S, T) = max{rsrilgg g\eerl diua (si, tj), Itrjlggg gnérsl dgua(si )} (3.9)
Note that the Hausdorff distance is symmetric, i.e., Efausa(S, T) =
Enausd(T,S). Charpiat et al. [57], Eckstein et al. [93] proposed the
pseudo-Hausdorff distance, which has the advantage of being differen-
tiable with respect to the position of the points of the two meshes [93].
The pseudo-Hausdorff distance converges to the Hausdorff distance
with increasing sampling of the surfaces [57]. A global distance metric
for isometrically deformed surfaces is the Gromov—Hausdorff distance
[187], which measures how far two surfaces are from being isometric.
The Gromov-Hausdorff distance, in its discrete form, is defined as
follows:

EGro-Hausd(Sr T) = 1fngf EHausd(f(S)/ g(T)) (3-10)

where f : S = Z and g : T — Z are isometric embeddings into the
metric space Z. Note the similarity with the error metric presented by
Lipman and Funkhouser [173], Zeng et al. [281, 282] (see Sec. 3.3.1, Eq.
3.8), where they measure the deformation error of the embeddings of
both surfaces onto a 2D plane.

Aiger et al. [2] used the size of the intersection region between two
surfaces as a similarity metric, measured as the amount of points on
one surface that are close enough (smaller than a given threshold) to a
point on the other. Au et al. [20] adopted the amount of votes casted
by all reasonably possible combinations of fitting two skeletons to
each other as similarity values for skeleton nodes.

3.4 OPTIMIZATION

Two classes of optimization methods are known in surface matching;:
The first aims to find a set of correspondences that roughly aligns
two shapes and is called rough-scale optimization (Sec. 3.4.1). This kind
of optimization is usually automatic, i.e., it makes no assumptions
about the initial position of the surfaces in space. Most rough-scale
optimization methods deliver a sparse set of correspondences. The
second class of optimization contains the methods that account for
small misalignment and for deformations in the local scale. This class
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of optimization is therefore called fine-scale optimization (Sec. 3.4.2). It
contains the popular point-based iterative optimization algorithms (Sec.
3.4.2.1), such as the iterative closest point (ICP) [34] and its variants.
An extended bibliography on correspondences search for surface
matching problems was presented by van Kaick et al. [261].

3.4.1 Rough-scale optimization

One of the simplest solution for obtaining an automatic matching be-
tween two surfaces is to minimize the linear assignment problem (LAP)
error (Eq. 3.4 on page 26) using the distance between descriptors (see
Sec. 3.1) as a measure of dissimilarity between points. Minimizing the
LAP error metric is equivalent to obtaining a set of point correspon-
dences between source and target surfaces, so that every point on
the source surface is assigned to its most similar point on the target
surface, in a way that the sum of the distances between the descrip-
tors of assigned points becomes the minimum. As can be seen in Eq.
3.4, the error metric minimized for the solution of the LAP does not
contain any information about the relative position of the surfaces,
which is irrelevant for this problem. The LAP is one of the oldest and
most studied problems in combinatorial optimization [48] and there
are several algorithms to solve it in polynomial time. Under certain
conditions, it can even be solved in linear time (see [48] for a review
on these algorithms).

However, solving the surface matching problem as a LAP may be
error-prone for two reasons: (1) As LAP only considers descriptor
similarities, and usually there are multiple correspondence configura-
tions with compatible descriptors, finding the correct match may be
difficult, as the problem becomes very ambiguous; (2) As LAP does
not incorporate any regularization term, ensuring that points in a par-
ticular neighborhood on the source surface will be assigned to points
that also belong to a common neighborhood on the target surface, it
may result in a lack of geometric consistency among correspondences.
Furthermore, it is important to note that the formulation of the sur-
face matching problem as a LAP finds a global matching between
the possible correspondences. This means that a correspondence will
be assigned for every point on the source surface, assuming that the
source surface has less points than the target one, and that no feature
selection was performed. If the surfaces represent areas that are only
partially overlapping, solving a global assignment problem cannot,
in any manner, deliver a correct set of correspondences, as the points
that do not belong to the overlapping area should be left unassigned.
For partial surface matching, in the case of LAP, one can resort to the
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k-cardinality assignment problem (CAD) [80]: Given an integer k, one
wants to find k correspondences from source to target surface, so that
the sum of distances between the descriptors of corresponding points
becomes the minimum.

The quadratic assignment problem (QAP) error (Eq. 3.5 on page 27)
incorporates a regularization term for neighborhood consistency of
the correspondences. However, solving a QAP is known to be NP-
hard [224]. Still, there are two common methods for solving QAP
(see [203, 42] for more details): The first class of methods performs
a combinatorial analysis based on search procedures, such as greedy
search or branch-and-bound [165]. Although a full combinatorial analy-
sis of the correspondences space guarantees that the global minimum
is found, it may be untreatable to search the entire space. Therefore,
many authors resort to measures that constrain and reduce the search-
space. The second class of methods is known as probabilistic relaxation
[245], where the constraints of the QAP are relaxed to allow fuzzy
correspondences, casting the problem as a convex continuous mini-
mization problem. Although the problem becomes treatable due to
relaxation, it is prone to follow into a local minimum. In the rest of
this section, we review the solutions found in recent publications on
surface matching.

Branch-and-bound optimization was employed by Gelfand et al.
[115], Dubrovina and Kimmel [89], Raviv et al. [213]. While Gelfand
et al. [115] employed it for the minimization of the Eqrms(-) error
metric (Eq. 3.6 on page 27), based on Euclidean distance, thus only
applicable to rigid registration, Dubrovina and Kimmel [89], Raviv
et al. [213] minimized the Eis(:) error metric (Eq. 3.7 on page 28),
which employs geodesic distance, thus being also applicable to the
registration of isometrically deformed surfaces. Branch-and-bound
is based on the enumeration of all possible solutions while discard-
ing the solutions with an error greater than the current error. In fact,
branch-and-bound optimization can be most efficiently implemented
as a search-tree, where the correspondences are represented as nodes
while a path from a leaf to the root determines a possible solution.
During the construction of the search-tree, every time a new branch
is added to a node, the error of this partial solution is computed: If
the error rises above the current error, the branch is pruned, and the
space is not searched in this direction anymore. Otherwise, the tree
keeps expanding until the solution is complete. The path with the
smallest error is the correspondence set with minimum error. In or-
der to reduce the search-space, the authors employ feature selection,
feature clustering, distance consistency tests during tree construction

[115].

32



Funkhouser and Shilane [106], Zhang et al. [285], Au et al. [19],
Sahillioglu and Yemez [223] used a constrained greedy optimization ap-
proach, or exhaustive search, which enumerates and tests the entire
search-space. For faster computing, they employed several constraints
to reduce the search-space before starting the optimization. Impor-
tantly, a common search-space constraining measure was adopted
by all of them: the selection of very few and trustworthy features.
Funkhouser and Shilane [106] performed a priority-driven search,
which biases the correspondence search towards correspondences be-
tween features with smaller descriptor distances. As their method fo-
cuses on rigid registration, descriptor distances are a highly reliable
measure, as descriptors at the same locations on two different rigid
structures are very close to each other. Zhang et al. [285] presented
a powerful method for matching non-isometric surfaces, where the
set of correspondences that minimizes a deformation error is selected
in a greedy optimization. However, the computation of the deforma-
tion error is very inefficient, as a large overdetermined linear system,
representing the deformation for the entire surface, must be solved,
in a least-squares sense. Au et al. [20] computes votes for plausible
correspondences when aligning skeletons of different surfaces in all
possible ways.

A common optimization technique in surface matching is known
as random sample consensus, or RANSAC [99]. RANSAC follows the
approach of iteratively selecting a given number of random samples
from the correspondence search-space, computing a model (transfor-
mation) that maps these samples, and verifying how many other
samples in the space also fit (consent) in the computed model. As
random samples are selected in every iteration, the algorithm is non-
deterministic, and produces a reasonable result only with a certain
probability, which increases with increasing number of iterations.
RANSAC is also known as a voting technique, as other samples “vote”
for a given model. Aiger et al. [2] select random sets of four congru-
ent points, aligns them rigidly, and counts the number of points that
are also aligned, i.e., whose distance is smaller than a given thresh-
old. Tevs et al. [255] employed a RANSAC loop for minimizing a
QAP error, but biased the randomly sampling towards sample sets
with higher probability of being correct correspondences. Lipman
and Funkhouser [173] projected isometric surfaces onto a 2D canon-
ical domain, and aligned them rigidly in this domain by computing
a transformation between three point correspondences selected in a
RANSAC-loop, and then casted votes for further correspondences
based on the distance of closely aligned points.
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Projecting the surfaces onto a canonical domain, where distances
can be measured as Euclidean distances instead of geodesic distances,
allows the matching between them to be performed rigidly. In this
case, the alignment can be performed by any robust and efficient
method for rigid registration (e.g. [115, 2]). It also profits from a dis-
tance metric that can be efficiently computed - the Euclidean distance
- and from reliable descriptor distances. In surface matching, popular
techniques for embedding surfaces in common spaces are the multidi-
mensional scaling (MDS) [39], which embeds the surfaces in a common
R™ space, and the generalized MDS [44], which embeds one surface
into the space spanned by the other, thus eliminating distortions that
may arise from a R™ embedding. Unfortunately, these methods share
a drawback: They require the repeated computation of geodesic dis-
tances for obtaining the embedding, which is not efficient. In the work
of Lipman and Funkhouser [173], a more efficient technique for flat-
tening was employed, based on the works of Pinkall et al. [209], Polth-
ier [210].

Another common technique for solving QAPs is relaxation. In this
approach, the binary constraints are relaxed to a fuzzy domain, pos-
ing the the problem as a convex optimization problem. In surface
matching, the relaxed QAP problems are usually cast as a graph la-
beling problem, where a label (correspondence) is searched for each
point on the source surface (see [110] for more details on graph label-
ing). Popular algorithms for solving the graph labeling problem are
the maximum-flow/minimum-cut algorithms [43, 157, 259], which poses
the search-space as a system of pipes, with widths given by similar-
ity values. These algorithms search for sub-systems with maximum
flow for determining correct labeling. Zeng et al. [281], Wang et al.
[263] solved the surface matching problem as a graph labeling prob-
lem. Zeng et al. [281] employed a third order error metric (Eq. 3.8
on page 29) for computing a deformation error based on flattening,
as presented by Lipman and Funkhouser [173]. In order to formulate
the problem as a QAPD, they considered the observation that any re-
laxed high-order term can be reduced to quadratic terms [40, 138] and
solved it as a set of QAPs. Zeng et al. [282] presented a more efficient
method for solving the high order error terms, using a Markov random
field optimization algorithm [270], thus casting the problem as a linear
program. Relaxation can also be used to minimize LAPs [94], and has
been employed in surface matching by Windheuser et al. [271]. Here,
the authors minimize an linear error metric based on stretching and
bending energy. The solution of surface matching problems by means
of relaxation and labeling algorithms is usually very computationally
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expensive, and the selection of very few features is therefor mostly a
requirement.

Note that, similar to LAP, the direct minimization of the QAP error
is global, and does not account for partially overlapping data. If the
overlapping region is sufficiently large, maximum-flow /minimum-
cut algorithms for graph labeling solve this problem by incorporating
a label for outliers.

3.4.2 Fine-scale optimization

Fine-scale optimization procedures are used for accounting for small
misalignments and for deformations that occur in local scales. They
usually assume that the surfaces have been roughly aligned or that
an initial set of correspondences is given. An important class of fine-
scale optimization algorithms is the point-based iterative optimization
(Sec. 3.4.2.1), which contains the iterative closest point (ICP) algorithm
[34] and its variants.

One of the most well known classes for optimization of local scale
deformations is known as as-rigid-as-possible (ARAP) [14, 247, 137, 239,
202], which deforms the source surface towards a set of few corre-
spondences (anchors) by computing a fit that preserves, as much as
possible, some surface properties (e.g. normal orientations [174, 159],
or face Laplacians [287]). ARAP registration is usually obtained by
minimizing a large overdetermined linear system of equations in a
least-squares sense.

Given a coarse set of previously known correspondences, Tevs et al.
[255], Wang et al. [263], Sahillioglu and Yemez [223] iteratively solved
local QAPs around the known correspondences, until a correspon-
dence for every point was found, resulting in a dense set of corre-
spondences. Zeng et al. [281] employed the same strategy (Fig. 15
on the next page), but minimized instead a high-order error metric
(Eq. 3.8 on page 29). Raviv et al. [213] incremented the initial sparse
correspondences by a set of isometrically consistent correspondences,
selecting the next correspondence candidates by a farthest point sam-
pling strategy [132]. Sharma et al. [233] increments the initial corre-
spondences set by pairs of points with consistent heat propagation,
using an expectation maximization approach [186].

Eckstein et al. [93] fitted two roughly aligned surfaces by defining
a differentiable global error metric between them (pseudo-Hausdorff
distance, see Sec. 3.3.2), and solved the problem by a gradient descent
approach.
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Figure 15: A set of initial sparse correspondences (a) and its expansion in a
dense correspondence set (b) (image found in [281]).

3.4.2.1 Point-based iterative optimization

Point-based iterative optimization is the most well-known class for
fine optimization. It is based on the iterative closest point (ICP) algo-
rithm [34]. The ICP algorithm works as follows: (1) For each point on
the source surface, the closest point on the target surface is found; (2)
A rigid transformation that maps the pairs of closest points is com-
puted; (3) The algorithm performs the two previous steps iteratively,
until convergence is reached. It was shown that, in rigid settings, the
ICP algorithm converges to at least a local minimum of the sum of
squared Euclidean distances (Eq. 3.3 on page 26).

There are several variants of the ICP algorithm, dealing with: Better
selection of correspondences [146, 124, 16]; Weighting of correspon-
dences [220, 146]; Robustness to the influence of outliers [60, 140];
Adequacy of the error metric [205, 145, 95]; Non-rigid deformations
[15, 68, 192].

Focusing on intra-operative registration, Cash et al. [52] presented
an ICP variant that identifies and aligns minimally deformed regions
of the surfaces. A non-rigid deformation based on a finite element
model formulation is subsequently computed. Clements et al. [65, 66]
presented some efforts to increase the robustness of this ICP variant,
by incorporating measures of saliency.

For more details on variants of the ICP algorithm, we kindly refer
the reader to [220, 200].

3.5 TRANSFORMATION

In surface matching, authors usually consider three classes of trans-
formation: rigid, affine, and non-rigid.
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Rigid transformations are composed of rotations and translations.
The shape of the object cannot be altered by means of rigid transfor-
mations. Given a set of correspondences, the computation of a rigid
transformation that aligns these correspondences, such that the sum
of their squared Euclidean distance is minimal, is usually performed
by solving an overdetermined linear system, in a least-square sense
[134].

Affine transformations are a generalization of the rigid transforma-
tions, removing some of the constraints of the rigid transform op-
erator. Although not all affine transformations are angle preserving,
lines remain parallel [104]. A specific affine transformation of interest
for surface matching is scaling, where the dimensions of the object
change, but angles are preserved. Given a set of correspondences, an
affine transformation between them can be computed according to
the method presented by Feldmar and Ayache [97], which also mini-
mizes the sum of squared distances.

Non-rigid transformations, also known as free-form transformations,
are subdivided in two classes: isometric and non-isometric. Isometric
transformations preserve distances (geodesic distances), while non-
isometric do not. Non-rigid transformations are usually represented
by piecewise polynomials [104], which model transformations for local
surface patches while maintaining first or second order continuity be-
tween patches. This ensures a smooth mapping between the surfaces.
Most well-known piecewise polynomials for transformations are the
thin-plate splines [38] and the B-splines [87].

For more details on transformations, we kindly refer the reader to
[104, 22].

3.6 SUMMARY

Tab. 1 provides an overview of the most recent and influential pub-
lications in surface matching. Despite of the many advances in the
field, we found that most of the rough-scale optimization methods
for non-rigid surface matching rely on the solution of quadratic assign-
ment problems (QAPs). In the context of surface matching for intra-
operative registration, this implies two main drawbacks: First, QAPs
uses the difference of distances between assigned point pairs as a
regularization term. As shown in Sec. 3.1, these geodesic distance
profiles are not sufficiently discriminative for nearly planar surfaces,
such as the ones acquired in intra-operative environments, as they are
for more complex shapes, such as a human form. Second, the direct
solution of a QAP using a minimization technique, such as relaxation
(Sec. 3.4.1), makes the registration of partially overlapping surfaces
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harder, as QAP would provides a global set of correspondences that
minimizes the error.

Authors solved the first problem by the incorporation of higher
order and more complex error metrics (e.g. [285, 281]). The second
drawback was solved by an enumeration of the search space, for the
desired amount of correspondences, and by solving the minimization
problem with constrained greedy optimization procedures or voting
schemes (e.g. [255, 223]). However, in these cases, the computational
cost becomes so expensive that the consistent selection of features
on both surfaces becomes a necessity, i.e., a very few representative
and unambiguous features that can be consistently selected from the
same locations on both surfaces need to be selected. As discussed
in Sec. 3.2, consistent feature selection on pre- and intra-operatively
acquired surfaces is an issue, as these surfaces are nearly flat, and
many distortions and deformations occur between them.

In conclusion, while suitable fine-scale optimization methods for
intra-operative registration already exist [128, 21, 52, 65, 111, 51, 212,
31, 66, 91], the automatic alignment of surfaces of different modali-
ties acquired pre- and intra-operatively by rough-scale optimization
methods remains a challenge.

38



‘SuUOTJeIAdIqQE S} JO pue
spoyiow a3 jo uonduosap e 10 &€ pue € ‘€€ ‘1€ s0ag 0} 199y ‘sayproidde Junyoyewr soe NS 1IE-913-JO-91€1S A} JO MITAIAQ I d[qe],

ON JLI}WOS] 129015 avO uoneZIWIXew uoneadxy aurj SIH [€€2] Te 30 euLTRYG
SOX JLI}dWOS] Teqoro dvO uotjexe[ay yiog SIH [€12] 'Te 13 ATARYy
10119 UOljeULIOJop
BN JLI}WOoS] 1eqoO paseq-so1sAyJ uorexeay[ y3noy - [r4z] ‘Te 30 1@snaypuipy
Sax JLI}WOS] renred avO Apaorn) ulog - [€ez] zowax pue niZoryes
soTuouLIey
SOx JLI}WOoS] 1eqoo avo uonexeay y3noy PIOJTUERIA [6g] Purwry pue euraoiqng
Ayuremurssip
ON JLI}WOSI-UON] 1eqo1O [LOEIEN (Y umop y3noy [MGEIEN(S [oz] Te 18 ny
SoX JLI}aWOS] 1eqoo avo uonexeay yog SH [€92] e 30 Suepy
SOk JLI}OWOSI-UON eqo1H ()W asg uorexe[ay[ yog - [1g2] ‘Te 10 Suaz
JOIId UOT}eULIOJdp [€41]
ON JLI}aWOS] renreq Surppaquug 3umop y3noy - 1Psnoyun pue uewdry
aINjeAInd uesw
SOX JLI}dWOS] [enaed avo DVSNVA ylog O wreI80)sIE] [SS2] Te 32 sa9L,
10119 [€11]
EEIN JLI}WOSI-UON] renteq UuonewIOPp JVIV Apaarn) yog Te 19 YzieD) [6g2] Te 10 Sueyz
ON prSny renred UOT}O9SIdUI JO IZIG Sunop y3noy - [2] Te 30 181y
aoue)ISIp
ON JLI}WOoS] renreq JIopsneH-opnas JUSSaP JUSIpRID) aurg - [€6] Te 19 usPg
soruouLIey [901]
Sox prSny renreq avo Apoaarn) y3noy reorroydg SUE[IYS pue Jesnoyyung
ON JLI}PWOSI-UON [enaed (+)dOI3 paygrpoN SATIRIS) PISeq-JUIo] Qurg - [24] Te 1@ ysed
(&1uo
90BJINS 30INOS 103dr10sap
A} uo) Sax piSny renred (-)sWapy punog-pue-ypuerg y3noy awmjoA rerdaug [S11] e 30 puejED
NOLLOATAS NOLLVINIO4SNVIL ONIHDLVIN HIVOS

TANIVE] aNR-NON/AIdNy  TVIIAV]/IvE01D) ORILAN JOMAY NOILVZINILIQ ANIL /HDNO0Y YOLAMIDSA(] SYOHLAY







SURFACE REPRESENTATION

Without geometry, life is pointless.

— Anonymous

When David Marr at MIT moved into computer vision, he generated a lot
of excitement, but he hit up against the problem of knowledge
representation.

He had no good representations for knowledge in his vision systems.

— Marvin Minsky

The representation of objects using boundary representation data
structures is advantageous for several reasons: Accelerated retrieval
of adjacency and incidence information, efficient object traversal,
maintenance of topological consistency during manipulation, etc. Al-
though very efficient and well-known data structures exist for the
representation of 2-manifold objects [24, 25, 26, 183, 122], most data
structures for non-manifold representation [268, 123, 172, 129, 162, 216,
74, 76, 37, 235] are either verbose and inefficient [75], do not provide
an operator set for topological manipulation or provide operator sets
that are not intuitive.

A 2-manifold object (mesh) is a subset of the Euclidean space, where
the neighborhood of each point is homeomorphic to an open disc.
Every other object that does not fulfill this property is called a non-
manifold [74]. Non-manifold objects are very common in practical ap-
plications because of their superior expressive power. Motivations for
using representations of non-manifold objects have been pointed out
by several authors [268, 217, 123, 82, 56, 216]. For example: Boolean
operators are closed in the non-manifold domain; sweeping or off-
set operations may generate parts of different dimensionalities; non-
manifold topologies are required in different product development
phases, such as conceptual design, analysis or manufacturing [77];
and simplification methods that employ vertex pair contraction gen-
erate non-manifold objects [112].

One approach for the representation of non-manifold objects con-
sists of subdividing the object into simpler 2-manifold parts and in
connecting these parts via 2-pseudomanifold components [75]. A 2-
pseudomanifold is a relaxation of the 2-manifold definition, allowing
a point to be homeomorphic not only to a single open disk, but also
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to pinched open disks, which are topological spaces obtained by the
identification of the centers of multiple open disks [121]. Employing
the 2-pseudomanifold approach, data structures for the representa-
tion of non-manifolds can benefit from many of the advantages of
2-manifold representation data structures.

The Doubly Linked Face List (DLFL) is another data structure
for mesh representation. The DLFL always ensures topological 2-
manifold consistency and uses a minimal amount of computer mem-
ory [58, 3]. It is the implementation of a graph rotation system, which
was shown to give a unique orientable 2-manifold. A graph rotation
system consists of a list of rotations, which are cyclic permutations
of edges incident to a particular vertex. For each vertex, a rotation is
contained in the system.

Besides topological consistency, the DLFL supports efficient topol-
ogy manipulation through its operators. Since the DLFL has a graph-
based concept, its operators are derived from topological graph op-
erations, which are extremely simple, and similar to Euler operators
[183]. In fact, there are only four operators for the manipulation of
its topology, and these are able to create any 2-manifold [9]. These
operators are responsible for the creation and deletion of vertices,
and for the insertion and removal of edges. The applicability of the
DLFL and its operators was demonstrated in the construction of reg-
ular meshes|4, 5], handles [241] and rind [10] modeling, subdivision
schemes [7, 8, 6] and remeshing [11, 12].

Though very intuitive, the DLFL’s operators can easily lead to un-
expected results, modifying the structure in unexpected ways, and
degenerating faces in order to maintain topological consistency. The
problem arises through the use of the INSERTEDGE operator. This op-
erator inserts an edge between two face corners - representations of
edge sides starting at a particular vertex in a particular face - instead
of between two vertices directly. Since vertices are usually found in
more than one face and many edge sides start at it, choosing the
appropriate corners in order to modify the structure in the desired
way may be complicated. In the development of TopMod3D [13], a
software for mesh modeling, the user interface attempts to avoid
this ambiguity by requiring the user to first select a face and then
a corner. This strategy might be successful if the user is familiar with
the DLFL and knows how to choose the appropriate corners. How-
ever, for the automatic generation of meshes, e.g. using the Marching
Cubes algorithm [175], and for software tools in which the interaction
with the data structures should be transparent, e.g. surgery simula-
tion softwares, this ambiguity remains a critical issue. Furthermore,
the DLFL is unable to represent boundaries or 2-pseudomanifolds. In
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order to achieve 2-pseudomanifolds representations, one must recur
to 2-manifold interpretations of non-manifolds [240], thereby degen-
erating the structure of the mesh.

In order to overcome these problems and to expand the representa-
tion capabilities of the DLFL, we present the Extended Doubly Linked
Face List (XDLFL). The XDLFL extends the DLFL for the representa-
tion and manipulation of 2-manifolds with boundaries® (Sec. 4.2.1) and
for 2-pseudomanifolds (Sec. 4.2.2) with minimal modifications to its
internal structure and operators, thus avoiding substantial increases
in memory usage and complexity, while profiting from its efficiency
and simplicity. Some issues related to the implementation of the ex-
tensions in the DLFL and to the memory usage of the XDLFL are
discussed in Sec. 4.2.4.

These extensions allow the representation and manipulation of
meshes with boundaries and the exact representation of certain non-
manifold cases, such as 2-manifold shells connected by single vertices
or edges, or pinched surfaces, without degenerations in the struc-
ture. Proper representation of boundaries is very important in appli-
cations such as surgery simulation softwares, where meshes are cut
and subsequently closed again. Appending two objects to each other
may be performed very efficiently with 2-pseudomanifolds, without
causing modifications to the objects” structure. The proposed exten-
sions also allow the representation (inexactly at the boundaries) of
non-orientable meshes, such as the Mobius band and any other mesh
containing a subset homeomorphic to it.

In order to deal with the ambiguity of the INSERTEDGE operator, two
further operators are introduced: The CREATEFACE (Sec. 4.3.1) and Re-
MOVEFACE (Sec. 4.3.2) operators. The CREATEFACE operator creates a
new face from the specification of its boundary walk. This releases the
user from the obligation of having to insert every edge individually
and having to pick the corners that will lead to the desired modifica-
tions. It ensures that no other face in the mesh will be modified (ex-
cept the boundary faces, which will be introduced later). In addition,
the orientation of the boundary walk is adjusted in order to fit into
the mesh. This operator correctly manipulates the boundaries in order
to append new faces to the mesh and resorts to 2-pseudomanifolds
when the mesh should be expanded in places where there are no
boundaries. The REMOVEFACE operator performs the inverse opera-
tion.

Though the CREATEFACE operator may be used for the initializa-
tion of the XDLFL from an arbitrary polygon set, it may manipulate

A 2-manifold with boundaries is a subset of the Euclidean space where every point is
homeomorphic to an open disk or a half-open disk.
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Figure 16: The internal organization of the DLFL during the representation
of a tetrahedron. The DLFL is composed of a doubly linked face
list, a vertex list and an edge list. As an example, the links of
vertex v; and edge eg are shown. This figure is based on the
illustration found in the work of AKLEMAN AND CHEN [3].

the boundaries in an unexpected way when one tries to create a 2-
manifold mesh using a face creation order that generates 2-manifold
interpretations of non-manifolds (Sec. 4.3.1.4). For the purpose of
avoiding these misinterpretations, a safe procedure for the initializa-
tion of the XDLFL from an arbitrary polygon set is presented (Sec.

4-4).
4.1 THE doubly linked face list

The Doubly Linked Face List (DLFL) is a structure for mesh repre-
sentation, which always ensures 2-manifold topology. It is composed
of a face list, an edge list, and a vertex list (Fig. 16). Their nodes are
referred to as face, edge and vertex, respectively. Each face is a 2-3 tree
containing the vertices form its boundary walk. The nodes in the 2-3
trees are referred to as corners. Each corner represents an edge side
starting at a particular vertex and has a pointer to the edge it is part
of. Using the FACETRACE [3] operator, the boundary walk of a par-
ticular face is obtained. Each vertex is a list of pointers to the edge
sides (corners) that start at it. Using the VERTEXTRACE [3] operator, the
rotation in circular order of the edges incident to a particular vertex
is obtained. Each edge is a pair of pointers to the corners that repre-
sent both its edge sides. Furthermore, the face list is a circular doubly
linked list, while the vertex and edge lists are arrays.

As can be seen, the corners play an important role in the struc-
ture. They act as a bond between the elements in the DLFL. In ad-
dition, they constitute both the vertices’ rotations (representing the
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edge sides incident to the vertices) and the faces” boundary walks
(representing the oriented edge sides of which it consists).

There are four operators for the topological manipulation of the
structure:

¢ CrREATEVERTEX and DELETEVERTEX [9], responsible for creating
and deleting vertices in or from the vertex list. They are also
responsible for creating and deleting new faces, since for ev-
ery new vertex, a new face containing only the new vertex in
its boundary walk is created (a face containing a single corner,
representing a point-sphere);

¢ INSErRTEDGE and DELETEEDGE [9], responsible for inserting and
deleting edges between corners, and for modifying the bound-
ary walk of faces. They also manipulate the vertices’ rotations.

The operation used to insert an edge between two corners will be
described in more details in order to show how the DLFL is manipu-
lated and how the use of the INSERTEDGE operator can be ambiguous.
However, we first need to explain how a corner is represented. In the
work of Akleman and Chen [3], a corner is represented as a tuple
composed of two consecutive edges in a face along with the vertex
between them (which corresponds to two consecutive edges in the
rotation of this vertex), as for example ¢; = (e3,ej,v1). As can be
seen in Fig. 16, it is clear that this corner belongs to face fy, since it
is the face in which both edges e3 and e; have a side. In this work,
we opt for a more explicit and clearer representation. It consists of
a tuple composed of a vertex, the face to which the corner belongs,
and the edge constituted by the side starting at that vertex. In our
scheme, the same corner c; is represented as (v1,f1,e7). Using this
representation, one can easily identify the face to which this corner
belongs and which edge it is part of (as a side).

There are two further considerations regarding the corner repre-
sentation scheme adopted here. Let us suppose the above mentioned
corner, c1, and that the previous edge in the rotation of v; has to be
found. In the scheme adopted by Akleman and Chen, this informa-
tion is explicit in the corner’s representation (in this case, e3). In our
scheme, it is the edge pointed by the previous corner in the face’s
boundary walk (in this case, the face is f; and the previous corner
is c3 = (v3,f1,e3)). The second consideration regards the creation
of a new vertex, which, as said before, forms a point-sphere: A new
face containing a single vertex in its boundary walk (one single cor-
ner). Since there are no edges, the corner is simply represented by the
vertex and the face it belongs to [242].
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InsertEdge((v,, f,, e), (v, f, e,)
P

-

DeleteEdge(e)

Figure 17: The INSERTEDGE and DELETEEDGE operations. An edge is inserted
between the corners represented by vertex vq, in face f; at the
extremity of edge ey, and by vertex v, in face f at the extremity
of edge e4, causing face f; to be divided in two. The removal of
the new edge (e) causes both faces to be merged into a single face
again.

Supposing two corners c; = (vq,f1,e1) and c2 = (v2,f2,es), the
INSERTEDGE(c1, c2) operator inserts a new edge e before e; in the
rotation of v1, and before e4 in the rotation of v,. The consistency of
the faces” boundary walks will be maintained as well, splitting the
boundary walk in two if the corners belong to the same face (f1 = f3),
or joining them otherwise.

Fig. 17 shows the effects of applying the INSERTEDGE opera-
tor (and its inverse, the DELETEEDGE operator) to the previously
defined corners c¢; and c;, supposing they belong to the same
face (f; = f,). The rotations of vertices vi and v, R(vi) =
(ex,.,€1,€2,...,€y) and R(v2) = (e, ..., €3, €4, ..., ey), are modified to
R(vi) = (ex,..,e1,e€e2,..,en) and R(v2) = (e, ..., €3,¢ €4,..., ) Te-
spectively, in order to include the new edge e. In addition, the face’s
boundary walk is divided in two in order to maintain consistency.

Using the INSERTEDGE operator, we will now show how to build
the tetrahedron in Fig. 16. First, all required vertices are created. This
is done using the CREATEVERTEX operator, which creates a new entry
in the vertex list and a new face (a point-sphere) for each vertex. Af-
ter the insertion of all four vertices, the DLFL contains four vertices
in the vertex list and four faces in the face list (the edge list is still
empty). The edges are inserted using the newly created corners as
parameters for the INSERTEDGE operator (Fig. 18). In the special case
where an edge insertion occurs between two point-spheres, they are
both merged into a single face [9].
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Figure 18: Operation sequence for the creation of the tetrahedron shown in
Fig. 16. Here we only show the vertices in the faces instead of the
corners in order to keep the figure simple.
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Figure 19: Step 6 of Fig. 18 using a different corner for the edge insertion.

Two operators, the CREATEVERTEX and the INSERTEDGE, suffice for
the creation of an exact representation of the tetrahedron (four ver-
tices, six edges and four faces). This exact representation, as shown
in Fig. 18, was only possible because we were able to correctly ma-
nipulate the vertices” rotations. This means that the edge insertions
occurred between the corners that led to the desired tetrahedral topol-
ogy.

In the case of the last edge insertion in Fig. 18, if corner (v4, f3, e4)
had been selected instead of corner (vg4, T2, e5), the results would have
been different (Fig. 19). This is the case because these two corners, al-
though representing edge sides starting at the same vertex, represent
different positions in the vertex’s rotation (and belong to different
faces). Inserting the new edge at another position in the rotation of
vertex v4 would result in a face containing three closed loops in its
boundary walk (the boundary walk passes three times over v4).

Such topological degenerations are very likely to occur in meshes
represented by DLFLs, because the user is forced to choose between
corners instead of vertices when inserting new edges. Having to
choose between corners gives the user many options for inserting an
edge between two particular vertices, while the selection of a single
incorrect corner combination will lead to undesired topological mod-
ifications. Furthermore, the greater the number of edges incident to a
particular vertex, the greater the number of corners, making it more
difficult to choose as the mesh grows.

Other degenerations occur when trying to represent non-manifolds
through the DLFL. Since the DLFL is not able to represent such
topologies, a 2-manifold interpretation of the non-manifold takes
place [242]. Such cases are depicted in more detail in Section 4.2.2.

4.2 EXTENSIONS TO THE doubly linked face list

We now show how to extend the DLFL for the representation
of boundaries (Sec. 4.2.1) and 2-pseudomanifolds (Sec. 4.2.2), and
present the definition of the new data structure achieved through
them (Sec. 4.2.3): The Extended Doubly Linked Face List (XDLFL). These
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extensions and the new operators accompanying them will be used
later for the implementation of the CREATEFACE and REMOVEFACE op-
erators. They will be responsible for the correct manipulation of the
extensions, making the handling of the whole DLFL more intuitive
for users.

4.2.1  2-Manifolds with boundaries

Because of the fact that the DLFL always maintains the 2-manifold
property, for any new edge created, there will always be some face
containing the same edge in the opposite direction in order to main-
tain the surface closed and the mesh orientable. For example, in Fig.
18 (step two), a new copy of v, was created in the same face after the
insertion of an edge between v, and v3 in order to have the same edge
in the opposite direction and to maintain the circularity of the face’s
boundary walk. For the same purpose, an entirely new face contain-
ing the edges in the opposite direction was created after the face was
closed through the insertion of an edge between vz and v; (step three).
This new face was automatically created by the INSERTEDGE operator
in order to maintain topological consistency of the surface’s bound-
aries. In step five, one can see how this same face was expanded in
order to include the newly created boundaries.

Since the DLFL automatically adds faces in order to maintain topo-
logical consistency, if one wants to expand the mesh without the in-
tentionally created faces being modified, the correct corners to be
chosen are the ones contained in the automatically created faces. The
DLFL operators only modify the faces containing the operand corners.
In Fig. 18, this rule was followed in order to obtain the tetrahedron,
while in Fig. 19, a corner contained in an intentionally created face
was chosen in the last operation, thus modifying it.

The faces added by the DLFL for topological consistency main-
tenance are called boundary faces because they are inserted in the
boundaries of the mesh. It was also shown that these are the correct
faces to modify if the intentionally added ones are to remain intact.
The problem is that the DLFL does not keep track of those faces in
order to allow the user to directly identify them. We adapted the
DLFL to be able to keep track of the boundary faces. This was done
by labeling those faces and adding them to a separate face list. In the
following we show how the DLFL was modified in order to allow
labeling of faces.

As previously stated, the DLFL is extended to include two distinct
face lists: One for regular faces (simply referred to as “face list”) and
one for boundary faces (referred to as “boundary list”). An operator,
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the IsSBOUNDARY operator (Alg. 4.1), is responsible for labeling and
unlabeling a particular face, moving it from the face list to the bound-
ary list and vice versa.

Algorithm 4.1 The ISBOUNDARY operator.

IsBoundary(Face f, Boolean to_label)

if to_label
if f is not labeled then
Label f
Move f to the boundary list;
else if f is labeled then
Unlabel f;
Move f to the face list;

The INSerRTEDGE and the DELETEEDGE operators also have to be
adapted for the new extension, since they insert and remove faces
to and from the face list. We have adopt the following convention:
Any time one of these operations involves a corner that belongs to
a boundary face, the newly split faces or the resultant merged face
will be labeled a boundary. This means that the old DLFL operators
do not make any assumptions about the needs of a label (Fig. 20) be-
cause they do not have enough contextual information to make such a
decision. They do not know what the final face topology should look
like, because they operate on a single edge at time. It is the responsi-
bility of the CREATEFACE operator (Sec. 4.3.1) to correctly manage the
boundaries and labels.

The tetrahedron in Fig. 18 could be created using the extension
for boundaries in order to ensure that the correct topology would
be achieved. Implicitly, we always chose the corners belonging to the
boundary faces in order to achieve correct representation. Four extra
steps must be added to make use of the boundary representations.
After closing the first face (f1), the back face (f2) should be labeled a
boundary. One can see that only corners belonging to the boundary
face are chosen in the next steps. After step five, the label has to be
removed from f;, leaving it only for f3. At the end, after step six, the
labels from f3 and f4 must be removed.

Additionally, the extension presented here can be used for bound-
ary identification for methods that employ special treatments for the
boundaries of the mesh, as do some subdivision methods [244] for
example (Fig. 21).

It is also important to notice that vertices having a complete edge
rotation will not belong to any boundary, for example vertex vs (Fig.
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Figure 20: Extending the boundaries (shown in gray) with a new face using
the extension for boundary representation. In the end, the bound-
ary label has to be manually removed from the new face, because
the INSERTEDGE operator does not make any assumptions as to
whether a face is a boundary or not. For the sake of simplicity,
only faces f5 and fg are shown explicitly. For the same reasons,
instead of explicitly writing the corners as arguments for the op-
erations, only the vertices are indicated.
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Figure 21: Subdivision scheme where the mesh converges to b-spline sur-
faces, except at the boundaries, where they converge to b-spline
curves.
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(a)

Figure 22: Examples of surfaces which can be represented through 2-
pseudomanifolds: (a) Two cubes connected through a single edge;
(b) A pinched torus; (c) The Mobius band.

20). Using only the INSERTEDGE operator, it is not possible to add a
new edge in the rotation of this vertex without modifying one of the
faces in which it is contained. One way to do this is to extend the
DLFL for the representation of 2-pseudomanifolds.

4.2.2  2-Pseudomanifolds

A 2-pseudomanifold is a relaxation of the 2-manifold definition. A
2-manifold is a topological space in which each vertex has a neigh-
borhood that is homeomorphic to an open disk. This means that a
mesh has a 2-manifold topology when each vertex in the mesh has
an unique rotation of edges. However, one can imagine two distinct
topological vertices placed in the same geometrical coordinate. The
result is a geometric point with two edge rotations, while each topo-
logical vertex still has only one. If those vertices can in some way be
identified to each other, a pinched open disk is obtained, which is
a topological space obtained from the identification of the centers of
multiple open disks [121]. Thus, a 2-pseudomanifold is a topological
space in which each vertex has a neighborhood which is homeomor-
phic to an open disk or to a pinched open disk. The extension for
2-pseudomanifolds allows the DLFL to exactly represent connected
2-manifold shells (Fig. 22a) and pinched surfaces (Fig. 22b), and to
inexactly (at the boundaries) represent non-orientable meshes (Fig.
22¢).

In order to obtain the 2-pseudomanifold extension for the DLFL,
the structure is modified to be capable of representing pinched open
disks. For this purpose, each vertex is no longer considered the center
of a single rotation (open disk), but the center of multiple rotations.
Thus, instead of being a list of corners, which represent the edge
sides in its rotation, each vertex now becomes a list of rotations. Each
rotation represents a topologically distinct open disc, centered on a
particular vertex, and is a list of corners, which represent the edge
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sides. In other words, the rotation assumes the functions of the orig-
inal DLFL’s vertex, while a vertex stands as the identified center of
multiple rotations. This means that the corners will no longer point
to vertices, but to the rotation they belong to, and each rotation will
point to its center.

The behavior of CREATEVERTEX and DELETEVERTEX is modified:
Their unique responsibility in each case is to add a new vertex to
the vertex list and to remove a particular vertex from it (if it does not
have any rotations). In addition, two new operators for creating and
deleting rotations are introduced:

* CreATEROTATION: Creates, for a particular vertex, a new rota-
tion containing a single corner, and a new face containing the
same corner (Alg. 4.2). It returns the newly created corner.

¢ DELETEROTATION: Deletes a particular rotation if it has only one
corner and if the face that contains the same corner is a point-
sphere (Alg. 4.3).

Algorithm 4.2 The CREATEROTATION operator.

;1 CreateRotation(Vertex v)

3 T4 new rotation in v
f < new face in the face list
5 C < new corner into r and f
Return ¢

Algorithm 4.3 The DELETEROTATION operator.

DeleteRotation(Rotation )

if valence(r) = 1 then
4 C<4 corner in r
if valence(c.face) = 1 then
6 Delete c.face, c and r
Return true
8 Return false

Supposing one wants to create two tetrahedrons connected by a sin-
gle vertex, this can be easily done using the 2-pseudomanifold oper-
ators. First, all vertices are created (with the CREATEVERTEX operator)
and, for each vertex, a new rotation is created (with the CREATEROTA-
TION operator). The first tetrahedron is constructed as shown in Fig.
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Figure 23: A two-faced strip with a boundary (in gray).
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Figure 24: A Mobius strip representation (faces in gray represent bound-
aries): (a) With a regular DLFL; (b) With a DLFL extended for
the representation of 2-pseudomanifolds.

18. A new rotation is created for the vertex that is intended to connect
both tetrahedrons. The second tetrahedron is constructed in the same
way as the first one, using the corner created with the new rotation
and the remaining vertices. A similar procedure can be used to create
the pinched torus. For the construction of the cubes connected by an
edge, it is only necessary for one of the edge extremities to receive a
new rotation, since the same edge can be reinserted between an old
extremity and the new corner.

The Mobius strip representation is here exemplified using a three-
faced polygon. A Mobius strip is a non-orientable surface with one
single boundary. In Fig. 22c it can be seen that if one picks any point
on the boundary and follows it in any direction, the point picked will
be reached again. Let us suppose the situation in Fig. 23, and that one
wants to add a new face (vg,Vs,Vv4,v1), which is obtained by adding
the edges (vs,v4) and (v1,ve). Those edges are crossed, forming a
Mobius strip, and the new face is non-orientable since the edge side
(v4,v1) already exists (in face f1). Inserting the edges directly, using
the corners in the boundary face, leads to a single face containing
many loops (Fig. 24a) and no separation between internal faces and
boundaries. If, before inserting the edges, a new rotation for vertex v;
is created and then the edges are inserted (using the corner contained
in the new rotation created for vi), the exact representation of the
desired face is obtained (Fig. 24b). However, the representation of the
boundary is inexact, since two boundary faces are obtained.
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Other non-orientable surfaces, such as the Klein bottle, may be ob-
tained in the same way. In this case, however, a boundary will exist,
whereas the Klein bottle is a non-orientable surface without bound-
aries.

4.2.3 The Extended Doubly Linked Face List

Adapting the definition of the Doubly Linked Face List to include
the extensions to the data structure, in the following we present the
definition of the Extended Doubly Linked Face List (XDLFL).

DEFINITION: An Extended Doubly Linked Face List (XDLFL) is a 4-
tuple L = (JF,B,V,&). The face list I is a doubly linked list
in which each node is referred to as a face and represents the
boundary walk of a particular face. The boundary list B is also a
doubly linked list in which each node is referred to as boundary
and represents the boundary walk of a particular mesh bound-
ary. Each element in the boundary walk of a particular face or
boundary is referred to as a corner and represents an edge side
starting at a particular vertex. The vertex list V is a doubly linked
list of vertices v in which each is a list of rotations. Each rotation,
representing a cyclic permutation of edges incident to a partic-
ular vertex v, is a doubly linked list of pointers to the corners
that represent the edge sides starting at v. The edge list € is a
doubly linked list in which each node points to the two corners
that represent both edge sides of the same edge.

In addition to the modifications concerning the extensions previ-
ously shown, the definition of the XDLFL differs from the DLFL inas-
much as doubly linked lists of vertices and edges are used in the
place of arrays. Using doubly linked lists allows constant time in-
sertion and removal of vertex and edge nodes. Furthermore, in the
DLFL definition, the face nodes are 2-3 trees. The XDLFL definition
does not include any specification. Instead of 2-3 trees, lists could be
used, which would allow valence checks and cofacial tests in constant
time. Using lists for the face nodes would make the INSERTEDGE and
DEeLETEEDGE operator to execute in linear time (it is logarithmic us-
ing 2-3 trees), which is usually not a problem, since most meshes are
composed of faces with a maximum of three or four vertices in their
boundary walks.
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4.2.4 Implementation aspects and memory usage

In order to implement the XDLFL, some minor changes must be made
to the original internal structure and operators of the DLFL. Two mod-
ifications must be made to the internal structure, as stated in the def-
inition of the XDLFL:

¢ A fourth doubly-linked list, the boundary list, is added to the
structure for the separation of regular faces and boundary faces;

¢ The vertices are no longer a list of pointers to corners but a list
of pointers to rotations, which are in turn a list of pointers to
corners. In the XDLFL the vertices assume the role of centers of
different edge rotations.

With respect to the operators, the modifications are as follows:

¢ CrREATEVERTEX and DELETEVERTEX: They are no longer respon-
sible for the creation and removal of point-spheres. This role is
assumed by the CREATEROTATION operator. In the XDLFL, these
operators only insert or remove entries in the vertex list;

¢ INSERTEDGE and REMOVEEDGE: As these operators act directly
on corners of which the concept was not modified in the XDLFL,
their implementation is not changed, with the exception of a
few modifications for boundary labeling consistency as men-
tioned in Section 4.2.1. Inserting and removing edges between
boundary components or between boundary and non-boundary
components is not problem either, since the boundaries are rep-
resented by boundary faces, which are regular DLFL faces.

Kettner [149] analyzed the memory usage of mesh representation
data structures by computing the number of pointers required in the
main component of the structures. In the case of the Winged-Edge
[24, 25, 26], Half-Edge [183] and Quad-Edge [122] data structures (the
main component is the edge), the memory usage is 8 pointers, 10
pointers and 8 pointers (plus 12 bits), respectively. In the DLFL, the
main component is the corner, which binds faces, edges and vertices.
For the DLFL’s corner, 6 pointers are required: A double link to the
face containing it, a double link to edge, the half-edge of which is rep-
resented by that corner, and a double link to the vertex it represents.

In the case of the XDLFL, the corner continues to require 6 pointers,
however, it no longer points to the vertex but to the rotation contain-
ing it (see Sec. 4.2.3). Furthermore, the rotation should be doubly
linked to the vertex that represents its center. Even when including
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Figure 25: The boundaries after inserting and removing new faces using the
CrEATEFACE and REMOVEFACE operators: (a) The boundaries are
merged after the insertion of a face in the middle and split after
removal; (b) The boundaries are split in two after inserting a new
face and merged after removal.

the extensions presented here, the XDLFL data structure continues to
have only 6 pointers per corner, thus keeping memory usage smaller
compared to other well-known data structures.

4.3 MANIPULATION BY DIRECT FACE CREATION AND REMOVAL

We present here two operators responsible for the direct insertion
and removal of entire faces into the XDLFL: The CREATEFACE (Sec.
4.3.1) and REMOVEFACE (Sec. 4.3.2) operators. The CREATEFACE opera-
tor uses the extensions presented in the previous sections to expand
the mesh without modifying the previously inserted faces (except for
the boundaries). It correctly manipulates the boundaries by automat-
ically labeling back faces, joining boundaries (Fig. 25a) and splitting
them (Fig. 25b). In cases where the rotation of a particular vertex is
completely contained in the mesh (it does not belong to a boundary),
2-pseudomanifolds are used in order to ensure that there are no mod-
ifications to the other faces. The DELETEFACE operator performs the
inverse operation.

4.3.1 The CREATEFACE operator

This operator takes as arguments, in correct order, the vertices which
will form the new face’s boundary walk. The only precondition is that
the vertices must already exist in the structure (they are created using
the CREATEVERTEX operator). Rotations are automatically created by
this operator, so there is no need for the user to manually create them.
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Figure 26: A face as a connection of edge sides. Face f; is composed of edge
sides vi — vz, v2 — v3, v3 — v4 and v4 — v1. The beginning
of each one is represented by the corners (v, f1,e1), (v2,f1,ez2),
(v3,f1,e3) and (v4, f1, e4), respectively. Each edge is represented
by the beginning of each of its edge sides. For example, e; =
((V1/f1/e1 )/ (\)2,f3, €1 )) and €4 = ((\)],fz, e4)/ (V4,f],€4)).

In addition, the orientation of the boundary walk is automatically
adjusted in order to better fit into the mesh.

In the following we explain how a new face is created. In order
to ensure that the previously existing faces are not modified, only
corners that belong to the boundaries are used. If a particular vertex
does not have any boundary corner (because its rotations are com-
pletely included in the XDLFL or it has no rotations) a new rotation
is created. The possibility of a particular vertex with more than one
boundary corner may also arise. The feasibility of using each available
boundary corner is tested through an operations sequence graph. We
choose to execute the path that applies the fewest modifications to
the XDLFL, which is always the shortest path.

In the next subsections, we will develop a set of operation data struc-
tures that make it possible to evaluate a sequence of XDLFL operators
without actually modifying the XDLFL. These structures will then be
used as nodes in the operations sequence graph. The method for oper-
ations sequence graph creation and identification of the shortest path
is also presented.

4.3.1.1  Operations for face creation

A face is a cyclic connection of oriented edge sides (Fig. 26). One
end of an edge side is connected to the beginning of the next, until
the end of the last one is connected to the beginning of the first one,
forming a cycle. The beginning of each edge side is represented by
a corner: It represents a particular vertex in a particular face and the
edge side starting at it. The end of an edge side is represented by the
subsequent corner in the face’s boundary walk, meaning that the end
of each edge side is also the start of another one and vice versa.
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In order to identify the possible operator combinations during face
creation, we will demonstrate the process of a face creation. Suppose
we have the situation shown in Fig. 27a and want to create a new face
of which the boundary walk is (v1,v2,V3,Vv4,Vs,Vs). Starting with vy,
the procedure is now to look for a boundary corner representing it
that already is or can be connected to v;. Since this edge side already
exists in a boundary (Fig. 27b), nothing needs to be done. Since a first
edge side is already found, we look for the possibility of connecting
its end (the corner representing v, at the boundary) to v3. Because the
fact that vz does not have any rotations, a new one must be created,
making every new connection possible (Fig. 27c). Moving to the next
edge side, v3 — v4, we see that v4 already has a boundary corner,
and since this corner is not connected to v3, we can connect the end
of the previous edge side to it (Fig. 27d). Vertex vs does not have any
rotations, so a new one is created and the edge between v4 and vs is
inserted using the corner representing the end of the last edge side
(Fig. 27e). For the connection of vs to vg, we see that v¢ already has a
boundary corner (Fig. 27f), and since it has no connections to vs yet,
that corner can be used. Closing the cycle, we see that the end of the
previous edge side is already connected to vi (Fig. 27g), so nothing
has to be done. Finally, the boundary flag is removed from the face
containing the last edge side (v¢ — V1), delivering a new face with
the desired boundary walk (Fig. 27h).

In the example shown, we were able to immediately find the correct
operators for the edge insertions: The corners which were already in
the boundaries, or the newly created corners for those vertices which
had no rotations. But it is not always that simple. For example, sup-
pose that vg has a single rotation which contains two boundary cor-
ners: One that is already connected to vy and one that is not. If in step
f we had chosen the corner that is not connected to v; for the creation
of an edge between vs and v, in step g we would have seen that the
rotation already has a connection to vy, but it is not represented by
the end of the last edge side, thus making it impossible to close the
face. In order to avoid such dead ends, an operations sequence graph
will be used in the next section, which will allow us to exploit all
possibilities.

We will explore here a way of representing a sequence of opera-
tions without actually applying it to the XDLFL. If we directly apply
the operations using the first operators we can find, a dead end might
be reached and some operations would have to be undone in order
to test new ones, what may complicate the process and worsen its
performance. We want to test the operations to make sure they will
lead to the desired face, before applying modifications to the XDLFL.
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Figure 27: Creation of a face with a boundary walk equal
(v1,v2,v3,v4,V5,vg); gray areas indicate internal regions of
the mesh. (a) Initial situation, where all vertices have boundary
corners, except for vz and vs, which do not have any rotation;
(b) Edge side vi — v, already exists in a boundary; (c) Creation
of new rotation for vz and edge insertion; (d) Creating edge
side vz — v4 using the previously existing boundary corner; (e)
Creation of a new rotation for vs and edge insertion; (f) Creating
edge side vs — vg using the previously existing boundary
corner; (g) Edge side v¢ — v already exists in a boundary; (h)
Removal of boundary flag.
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For this reason we introduce a set of operation data structures. These
data structures represent one or more operations, and contain part
(or, in some cases, all) of the operands required for their execution.
The other operands are the results of the execution of the previous
data structure. The results of an operation data structure execution are
always an edge side start and end. Each operation has an EXECUTE
operator, which takes another operation as argument (the previously
executed one), and executes the represented operations. The follow-
ing operations were defined for our purposes:

* CreateRotationOperation (CR): Creates a new rotation for a par-
ticular vertex and labels the newly created face a boundary. It
is initialized with a vertex, which will receive the new rotation.
It is used only as the initial operation in cases where a new ro-
tation has to be created for the very first vertex and therefore
does not require the outputs of a previous operation. After exe-
cuting, both edge side start and end outputs are set to the newly
created corner, since it is a point-sphere.

¢ InsertEdgeOperation (IE): Inserts an edge between the previous
operation’s edge side end output and a corner, passed during
the initialization of this operation. If it is initialized with two
corners, it does not require the output of a previous operation
in order to execute. After executing, it sets the edge side start
output to the corner representing the edge side in the direction
of the edge insertion, and the edge side end to its subsequent
in the face’s boundary walk.

* CreateRotationAndInsertEdgeOperation (CRIE): Inserts an edge be-
tween the previous operation’s edge side end output and a ver-
tex, passed during the initialization of this operation, after creat-
ing a new rotation for it. If it is initialized with a corner and a
vertex, it does not require the output of a previous operation in
order to execute. After executing, the outputs are set exactly as
for the InsertEdgeOperation.

e InsertEdgeAndRemoveBoundaryLabel Operation (IERBL): Inserts an
edge between the previous operation’s edge side end output and
the edge side start output of the first operation in the operation
sequence, and takes no initialization parameter. After that, it
removes the boundary label of the face containing the edge side
in the same direction of the edge insertion. It is a final node,
and therefore does not set any outputs.

* RemoveBoundaryLabelOperation (RBL): Removes the boundary la-
bel from the face containing the edge side outputs from the
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previous operation. It is a final node, and therefore does not set
any outputs.

* DoNothingOperation (DN): Its execution method simply sets the
corners passed during its initialization as outputs.

These data structures will be later used as nodes in the operations
sequence graph.

In the example of Fig. 27, supposing that the boundary corners
representing vi, v2, v4 and vg are cj, ¢z, ¢4 and cg respectively, the
whole face creation operation can represented by a sequence of opera-
tion data structures as follow:

DN(cq,c2) — CRIE(v3) — IE(cy) — CRIE(vs) — IE(cg) — DN(cg,c1) — RBL()

After the sequential execution of the previous operation sequence,
the same results are obtained.

4.3.1.2  Operations sequence graph and shortest path

We present here a method that constructs and analyzes the whole
operations sequence graph but stores only the path that is currently
being tested and the shortest path for the face creation. Shortest path,
refers to a sequence of previously presented operation data structures
that will apply the fewest amount of modifications to the XDLFL after
sequential execution.

In order to compute the number of modifications that will have to
be applied, we sum up the number of operations that are going to be
executed. Every time an operation is added to the path, a cost variable
is updated depending on the number of operators it executes. So,
adding a DN or a RBL does not change the cost; a CR, IE or IERBL
increases the cost by one; and finally, a CRIE increases the cost by
two.

Algorithm 4.4 shows the procedure which analyzes all possible
paths for the creation of a new face with boundary walk (vo ... vNn_1)
and finds the shortest one, through a deep-first search. It tests the pos-
sibilities of connecting a particular corner c to every boundary corner
representing a particular vertex vi, which are contained in a corner
set Bi. In addition, the possibility of creating a new rotation for ver-
tex v; is always tested, because if every other path fails, the creation
of the face is ensured by connecting the newly created corners. This
also ensures that if B; is empty, because v; has no rotations or no
boundary corners, a new rotation will still be created.

The procedure executes as follow:
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¢ Every time an edge can be inserted between the two corners
c and ci, the IE operation is added to the path. An edge can
always be inserted if no edge exists that connects the rotations
of ¢ and c;, or if ¢ = 0, which means that a new rotation will be
created for it. In the case where a new rotation will be created,
it is always possible to insert an edge. The procedure is then
recalled to check the possibilities of connecting c; to viy1;

¢ If no edge can be inserted because there is already an edge
connecting the rotations of ¢ and c;, a test is done to determine
whether the desired edge side is represented by c and ends at c;,
what means that c; should be subsequent to c in its face. If this
is the case, the edge side can be used and a DN is added to the
path. The procedure is then recalled to check the possibilities of
connecting c; to vi41;

* The possibility of connecting c to the corner of a new rotation
is also tested, by adding a CRIE to the path and recalling the
procedure with ¢ = 0, signaling that a new rotation was created
and that every edge insertion is possible.

If a particular path manages to get through all vertices in the desired
boundary walk (i = N), the procedure tries to close the face. The face
is closed by connecting the end of the last edge side to the beginning
of the first edge side in the path. If this connection is possible and the
cost is smaller than the minimal cost (the cost of the current shortest
path), then the shortest path becomes the current path.

4.3.1.3 The operator

We present the CREATEFACE operator, which takes a sequence of ver-
tices S = (vp...vNn_1) as an argument and creates a new face with
those vertices in its boundary walk. This operator also tests creation
of the face having S in back to front order (S~'). In doing so, the
user does not have to worry about the correct orientation of the faces
during specification because the operator will automatically adjust it.

Algorithm 4.5 shows the CREATEFACE operator. It finds all bound-
ary corners representing each vertex in S and tries to sequentially
connect them using the FINDSHORTESTPATH procedure. The creation
of new rotations is also tested. This ensures that a face will always
be created even when vy has no boundary corners or no rotations.
After that, the procedure is repeated using S~ instead of S. Finally,
the operations in the shortest path are executed, in order to actually
modify the XDLFL.
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Algorithm 4.4 Procedure for the construction of an operations se-
quence graph and identification of the shortest path.

FindShortestPath(Corner c, Corner set B;, actual cost)

if i=N then
CloseFace(c, actual cost)
else
for each c; € By do
if an edge can be inserted between c and ci then
if actual path is empty then push IE(c, ci) into the actual
path
else push IE(ci) into the actual path
FindShortestPath(ciy, Bii11, actual cost + 1)
else if c¢; follows c¢ in c.face then
Push DN(c, c;) into the actual path
FindShortestPath(c;, Bii+1, actual cost)
Pop last operation from actual path
if actual path is empty then push CRIE(c, vi) into the actual
path
else push CRIE(vi) into the actual path
FindShortestPath(0, Bij, 7, actual cost + 2)
Pop last operation from actual path

CloseFace(Corner ¢, actual cost)

if an edge can be inserted between c¢ and cp and (actual cost + 1)
< minimal cost then
minimal cost ¢ actual cost + 1
shortest path < actual path
Push IERBL(first operation in the shortest path) into the
minimal path
else if cop follows c in c.face and actual cost < minimal cost then
minimal cost < actual cost
shortest path « actual path
Push RBL() into the shortest path
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Algorithm 4.5 The CREATEFACE operator.

CreateFace(Vertex sequence S)

actual path « 0
shortest path < 0
minimal cost <+ 0
for each vi € S, create a set B; containing all boundary corners
representing vj
for each cy € By do FindShortestPath(cy, By, 0)
Add CR(vp) to the actual path and execute FindShortestPath(0, Bq,
1)
actual path < 0
Repeat steps 5 and 6 for S—!
for each operation oy in the shortest path (sequentially) do
if k=0 then oy .Execute()
else oy .Execute(ox_1)
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Figure 28: A 2-manifold interpretation of a non-manifold, where the bound-
ary face binds the individual face loops together.

4.3.1.4 Unexpected behavior caused by 2-manifold interpretations of non-
manifolds

Using the CREATEFACE operator, it is possible to create an arrange-
ment where multiple faces are connected by a single vertex (Fig. 28).
Such an arrangement is non-manifold, but it can be created without
adding new rotations because there will always be a back face that
contains the edge sides in inverse orientation and connects the loops.
In Fig. 28, the boundary face acts as the back face, containing the
loops of all three other faces and, consequently, including vy three
times in its boundary walk, which is the connection point between
the three face loops. Such an arrangement is a 2-manifold interpreta-
tion of a non-manifold.
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Suppose the three faces shown in Fig. 28 were created as fol-
lows: CREATEFACE((vg,V1,V2)), CREATEFACE((vg,V3,v4)) and CREATE-
FACE((vo, Vs, Ve)). Since vy is always present in a boundary face, no
new rotations are created. Now suppose we want to add a fourth
face, which is (vo,v4,vs). Although we clearly see that this face fits
perfectly into the mesh, the CREATEFACE operator will be forced to
create a new rotation for either vs or v4, because both of them are al-
ready connected to v¢ in the boundary, but to different corners. Start-
ing at the edge side vo — v4, which already exists, and moving to the
edge side v4 — vs, which is created using the corners in the bound-
ary, we reach the edge side vs — vy, which also previously exists.
Unfortunately, the end of this edge side is the corner representing
vo — v2, which is different from the first one (vo — v4), making this
face impossible to close without adding a new rotation.

Initializing an entire mesh, by adding the faces in an order which
creates 2-manifold interpretations of non-manifolds, will lead to un-
expected behavior of the CREATEFACE operator and an undesired rep-
resentation. This problem can be overcome by the initialization using
posterior edge list creation, to be shown in Section 4.4.

4.3.2 The REMOVEFACE operator

The REMOVEFACE operator is the inverse of CREATEFACE: It takes a
face as argument, removes it from the XDLFL (or transforms it into a
boundary) and adjusts the boundary to fit the new topology. It also
removes the rotations which are no longer used after the removal of
the specified face.

Removing a particular face, f, consists of deleting any edge of it
that has a boundary edge side. This will cause the face to merge with
the boundary face and, consequently, the previous internal edges (the
ones that had no edge sides in the boundary) to have a boundary
edge side. If after deleting the edges, any rotation is left with a single
corner, it is deleted. Furthermore, when a particular face does not
have any boundary edge, it is labeled a boundary.

Fig. 29 illustrates the removal of two faces from a mesh (Fig. 29a):
The removal of a face completely contained in the mesh (Fig. 29b)
when labeled a boundary and the removal of a face which has bound-
ary edges (Fig. 29c), where only these edges are removed, making the
others join the boundary. The REMOVEFACE operator is presented in
Algorithm 4.6.
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Figure 29: The results of the REMOVEFACE operator: (a) The original mesh;
(b) After removing fy (it becomes a boundary face); (c) After re-
moving f (it is completely removed).

Algorithm 4.6 The REMOVEFACE operator.

RemoveFace(Face f)

for every edge e in the boundary walk of f do
if e has a boundary edge side then push it into a list B

if B is empty then label IsBoundary(f, true)
else

for each e in B do
Let Ry and R, be the rotations containing the corners
representing both edge sides of e
DeleteEdge(e)
if Ry is has only one corner then DeleteRotation(Ry)
if Ry is has only one corner then DeleteRotation(Ry)
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4.4 XDLFL INITIALIZATION BY POSTERIOR EDGE LIST CREATION

We present in the following a method for the initialization of the
XDLFL with an arbitrary polygonal data. This method does not suf-
fer from 2-manifold interpretations of non-manifolds because it does
no use the operators presented. Instead, it directly manipulates the
structure.

This method consists of initializing the face and vertex lists and
then following the rotation of each vertex in order to initialize the
edge list. Afterwards the edge list is searched for the edges that have
only one edge side, and boundary faces are constructed in order to
add the opposite edge sides.

The method works as follow:

1. For each vertex in the polygonal data, create a XDLFL vertex;

2. For each face in the polygonal data, create a XDLFL face, and
for each vertex in the boundary walk, create a corner node. Each
corner node representing a vertex v is added to a temporary list
of corners C,, instead of adding it to a rotation;

3. For each vertex in the XDLFL, create a new rotation R, pick
one corner ¢ in C,, and follow its rotation through the VEr-
TEXTRACE operation [3], until c is reached again, moving each
corner found to the new rotation and creating the edge entries
(if not already created by following previous rotations). Any
time the VERTEXTRACE operation cannot continue, a boundary
is found, so that an edge entry is created if a single edge side
and the rotation is followed in the opposite direction, starting
at ¢ again;

4. If C, still has corners, this signifies that it has more rotations,
and step 3 is repeated;

5. Once all Cys are empty, the edge list is searched for an edge e
with a single edge side. If such an edge exists, a new boundary
face is created and an edge side is created in the opposite direc-
tion. The edges containing a single edge side that are connected
are selected, and edge sides are added in the opposite direction
in the same boundary face until e is reached again;

6. Repeat step 5 until there are no more edges with a single edge
side.
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4.5 DISCUSSION

The Doubly Linked Face List (DLFL) is a very useful data structure for
the representation of 2-manifold meshes. It is compact and can be ma-
nipulated using a set of simple operators. Furthermore, it allows di-
rect iteration over mesh elements (vertices, edges and faces) through
its lists, ensuring good performance for mesh processing algorithms.
However, the use of the DLFL for the implementation of practical ap-
plications is very limited, mainly because of two drawbacks: (1) Its
operators may be very ambiguous in the user level, modifying the
structure in unexpected ways; and (2) the DLFL is only able to repre-
sent 2-manifold objects.

For solving the first drawback, one may argue that the problem
is not the representation but the user interface design. In the Top-
Mod3D [13], a DLFL-based mesh modeler, ambiguities are eliminated
by requiring that the user first selects a face and then a corner inside
it for the edge insertion operation. Although it sounds like a very
simple solution, it also has a major drawback: The user must know
which faces and corners need to be selected in order to achieve the
correct modification of the structure. In other words, the user must
have knowledge about the internal data structure, which is not prac-
tical in many cases, such as with applications for surgery simulation,
for example. In the medical environment, the physician (the user of
the application) is usually not familiar with topological concepts and
data structures, and expects that the operations are performed in a
transparent, intuitive and correct manner.

The representation capabilities of the DLFL may also be a limit-
ing issue. While other data structures allow the representation of
boundaries and other non-manifold components, the DLFL always re-
quires the 2-manifold property, sometimes creating 2-manifold inter-
pretations of non-manifold data. The interpretation of non-manifolds
as 2-manifolds is also ambiguous, as many different interpretations
are possible, and may yield different structures for the same data.
Furthermore, many practical applications take advantage of non-
manifold representation capabilities.

In this work, we extended the DLFL for the representation of 2-
manifolds with boundaries and 2-pseudomanifolds, which allows the rep-
resentation of non-manifold objects by subdividing them into simpler
2-manifold parts. These extensions make use of some observations of
the behavior of DLFL operators, and do not necessitate modifications
to the original concepts. In fact, the practical integration of the exten-
sions is rather trivial. Using these extensions, we also showed how
to avoid ambiguities in the original DLFL operators and presented a
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new set of intuitive operators for the manipulation of the extensions
and for the unambiguous manipulation of the data structure. This
new data structure has been termed the Extended Doubly Linked Face
List (XDLFL).

The XDLFL increases very slightly the memory usage of the DLFL,
maintaining it smaller than the memory usage of other well-known
data structures. Furthermore, in the XDLFL, testing whether an el-
ement belongs to a boundary can be performed in constant time
for vertices and edges, and with linear complexity at most for
faces. Boundaries queries can be performed in constant time. Test-
ing whether a vertex is 2-pseudomanifold can also be performed in
constant time.

We strongly believe that XDLFL expands the application field of
the DLFL by solving some of its internal problems and increasing its
representation capabilities, being suitable for the development of real-
world applications and allowing the user to interact with the structure
in a transparent way.

70



DISTORTIONS BETWEEN MULTI-MODAL
SURFACES

The least initial deviation from the truth is multiplied later a thousandfold.

— Aristotle

As pre- and intra-operative data are usually acquired by different
modalities, the resulting surfaces may be subject to different sources
of error. These might in turn lead to different descriptors in cor-
responding regions. Understanding how descriptors vary between
two surfaces acquired by different modalities is therefore crucial to
achieve an adequate matching. Some methods for comparing two sur-
faces have been proposed [64, 236]. However, they generally assume
that the geometric variations between input data are isotropic, which
may not be the case when they originate from different sources or in
case they are affected by noise (Fig. 30a). Aspert et al. [17] used the
symmetrical Hausdorff distance metric to compare two surfaces. This
method considers the minimal distances both between source and
target and between target and source, in order to identify false cor-
respondences. This metric can potentially compensate for anisotropic
variations. Nevertheless, it can only be used for the establishment
of a global error metric and not for the characterization of local de-
viations. Furthermore, the aforementioned techniques only consider
the distances to the discrete surfaces, by computing the distances to
mesh triangles, instead of the underlying surfaces (Fig. 30b). They
furthermore do not make use of descriptors as a means for surface
comparison, but geometric vertex distances.

We present here: (1) a framework for the local and global compar-
ison between two surfaces taking into account anisotropic variations
and underlying surfaces instead of their discretizations (Sec. 5.1); (2)
This framework is used to analyze the differences between descrip-
tors of time-of-flight (ToF) surfaces and corresponding computed to-
mography (CT) surfaces, acquired in vitro (Sec. 5.2).

5.1 MESH COMPARISON FRAMEWORK
Given two pre-aligned meshes as input, the reference mesh (R) and

the test mesh (T), the proposed framework works as follows: First,
correspondences are established between T and R taking into account
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Figure 30: Correspondence search between a point on the test mesh and the
reference mesh: (a) Due to the anisotropy in the test mesh, the
correct correspondence can not be found with the regular clos-
est point operation; (b) The correct correspondence on the under-
lying surface can not be found if only the mesh is considered,
possibly yielding wrong interpolation of descriptors, such as cur-
vatures.

anisotropies as well as the underlying surface (Sec. 5.1.1); Second,
descriptors are computed per vertex, and local distance metrics are
used for assessing descriptor variations between corresponding ver-
tices (Sec. 5.1.2); Finally, a global distance metric is computed based
on the local distances (Sec. 5.1.3).

An important prerequisite of the proposed framework is the reg-
ularity of the reference mesh (i.e., all vertices have six neighbors).
Mesh regularity is required for the achievement of various interpo-
lation properties during the establishment of correspondences (Sec.
5.1.1). While several methods have been proposed for mesh regular-
ization, in this work the approach presented by Vidal et al. [262] was
applied. This approach does not degrade the fidelity to the initial
mesh and preserves relevant features. These are desired properties
when comparing two meshes representing the same object.

5.1.1 Establishment of correspondences

Initial correspondences are established by the computation of dis-
tances between the vertices of the test and reference surfaces. The
closest point operator (C) is employed for setting these correspon-
dences:
C(pil R) = arg min d(pi/ q)) (51)
q;€R

where d(pi, q;) denotes an arbitrary distance measure between the
vertices p; € T and ¢j € R. In order to account for anisotropies in

72



the data, we have adopted an anisotropic variation of the Euclidean
distance measure, defined as follows:

d(pu CI;) = ||Wp1qj(pl_q])” (52)

where W), ¢, denotes the weighting matrix that represents the aniso-
tropic representation error of p; and q; [182]. The weighting matrix
W), q; is computed as follows:

1

Wy g = —— .
Pidj Zpi‘i'ij (5 3)

where L, and L, are the covariance matrices representing the local-
ization errors of vertices p; and ¢;. Maier-Hein et al. [181] showed
how to define these covariance matrices for points lying on surfaces
acquired by time-of-flight cameras. The positions of these points are
not very precise in the direction of the acquisition beams, but they
show high lateral accuracy.

Although the introduction of anisotropic weighting in the closest
point operator is suitable for finding the correct vertex correspon-
dences, it is not able to deliver the correct correspondences to the
underlying surface (Fig. 30b). In order to compute these correspon-
dences, the underlying surface is interpolated by increasing the mesh
resolution. As we want to compute differences between second or-
der descriptors, such as curvatures, linear interpolation over triangles
yields incorrect results. For the correct estimation of these descriptors,
an interpolation scheme that guarantees continuity of second order
derivatives is required (C? continuity). Assuming that the underly-
ing surface can be locally approximated by cubic equations, the mesh
resolution is increased by applying mesh subdivision schemes. These
include Loop [243] or Butterfly [92], which guarantee C? continuity
for regular meshes (Fig. 31). Note that these subdivision schemes can
be computed locally for the region around a particular vertex.

After locating the closest vertex q; € R to a particular vertex p; € T,
the correct correspondence between p; and the underlying surface
of R can be found by: (1) Iteratively refining the local region around
q;j (L) through the application of a subdivision scheme, and (2) by
searching for the closest vertex to p; in L;. This procedure is repeated
until the geometric distance between the closest vertex and its neigh-
bors is smaller than a pre-defined threshold. Note that, for speed-
up reasons, all regions L; can be pre-computed. After finding the
closest vertex on the underlying surface represented by mesh R, its
descriptors need to be computed. These descriptors may also be pre-
computed.
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Figure 31: Two consecutive refinements of the original surface (a) by the
Loop subdivision scheme, which guarantees C? continuity for reg-
ular meshes. Colors represent the mean curvature for each vertex.
Note that, after surface refinement, curvature values remain ap-
proximately the same.

5.1.2  Descriptors and local distance metrics

Based on the previously established correspondences, distance met-
rics are employed for the comparison of different vertex descriptors.
Such descriptors include geometric position, vertex normal, mean curva-
ture [189], Gaussian curvature [189], and curvedness [155]. The frame-
work is independent of the descriptors chosen. However the local dis-
tance metrics must be chosen in accordance. For example, regarding
the computation of distances between normals, an appropriate metric
would be the angle between them. In case of our our descriptors, we
currently define the local distance metric as the angle for the normals,
and the Euclidean distance for all others.

5.1.3 Global distance metric

Several statistical metrics were computed as means for evaluating the
global deviation between test and reference meshes based on the set
of their local distances. They include mean, root mean square, me-
dian, first and third quantiles, maximal and minimal values, and
the standard deviation. Similarly, descriptor variation statistics can
be computed for particular regions defined above the meshes. In ad-
dition, a visualization of the local distances above the test surface is
generated for a better understanding of the variations. Furthermore,
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box-and-whisker diagrams are presented as means for visualization
of the global variations.

5.2 ASSESSMENT OF THE DISTORTIONS BETWEEN TIME-OF-
FLIGHT AND COMPUTED TOMOGRAPHIES

The evaluation was performed in vitro with ToF surfaces and their
corresponding CT surfaces obtained from three porcine organs (liver,
heart and lungs) [228]. Note, however, that the ToF and CT acquisi-
tions were performed sequentially in order to avoid any kind of defor-
mations caused by external forces. ToF range data is subject to noise
as well as to systematic errors, such as the wiggling error and the
intensity and temperature dependent distance errors [156]. In order
to compensate for these errors, the range images were previously de-
noised [228]. ToF and CT surfaces were pre-aligned using landmarks.

Figs. 32 (liver) and 33 (lung) show the results of the local differences
for three different descriptors, along with their values plotted over
CT and ToF surfaces. Although the meshes have slightly different
shapes, as the meshes were generated from different modalities, our
framework was able to correctly measure their variations.

Fig. 34 shows a comparison between our framework and a stan-
dard method for mesh difference computation. In the latter the clos-
est point operator does not account for anisotropies (Euclidean closest
point) and distances are computed directly to the mesh instead of the
underlying surface. The maximal differences in all cases are visibly
smaller when using our framework, as it manages to compute the
correct correspondences between the surfaces.

Fig. 35 shows the error for the descriptors computed on the ToF
surface in relative percentual variation from the CT surface, for both
the original (noisy) and smooth ToF surfaces. Regarding the mean
curvature of smooth surfaces, most errors lie between 10% and 30%
of the corresponding CT surface. The Gaussian curvature showed to
be a little more robust, with most errors ranging from 3% to 10%.
Regarding curvedness, most errors lie between 5% and 20%.

5.3 DISCUSSION

The presented framework for surface comparison (Sec. 5) was suc-
cessfully applied to assess the quality of surfaces generated from ToF
range data in relation to CT surfaces. According to our results, com-
putation of differences between surfaces requires not only global mea-
sures, such as the commonly used root-mean-square (RMS) distance,
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Figure 32: Local differences of three different descriptors between surfaces
representing a porcine liver acquired with CT and ToF. The differ-
ences are shown in the bottom row, while the upper rows show
the descriptor values on the CT and ToF surfaces.
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Figure 33: Local differences of three different descriptors between surfaces
representing a porcine lung acquired with CT and ToF. The differ-
ences are shown in the bottom row, while the upper rows show
the descriptor values on the CT and ToF surfaces.
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Figure 34: Comparison between the descriptors” distortions between ToF
and CT surfaces found by our framework (underlying surface)
and by the direct computation of differences between the meshes
using the Euclidean closest point (mesh).
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Figure 35: Descriptors distortions between ToF and CT surfaces shown in
relative percentual variation, for the original (noisy) and the
smoothed ToF surfaces.
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but also assessment of local variations. By the single use of global
measures, the specific characterization of the surface variations can-
not be precisely determined. This likely due to the global value not
indicating where variations occur. On the other hand, by comparing
values or visualizations of descriptors with descriptor differences, the
localization of problematic areas is straightforward.

When dealing with noisy surfaces, our framework did not show
significant improvements compared to common distance measures,
as noise affects the correct computation of descriptors. This issue can
be observed in the “lung” data set, for example. In this case, noise-
robust surface descriptors must be added to the framework for a cor-
rect assessment of differences between such surfaces. Furthermore,
the quality of the initial alignment of the surfaces to be compared
is crucial. Incorrect alignments lead to incorrect correspondences be-
tween the surfaces.

Due to the errors inherent to the ToF technology, many discrepan-
cies are observed between ToF and CT. The relatively low resolution
of ToF range images compared to CT images explains many of these
variations. As the sampling is comparatively low, ToF range images
are not able to capture sharp features and regions with high curva-
ture variation. These are, however, clearly visible in high resolution
CT data. In our experiments, acquiring ToF and CT surfaces sequen-
tially in order to minimize deformations, moderate to high variations
on curvature properties were observed. Surface matching methods
specifically designed for the registration of multi-modal data, such as
ToF to CT, cannot entirely rely on descriptor similarities for finding
corresponding points.
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SURFACE MATCHING

It takes these very simple-minded instructions

- 'Go fetch a number, add it to this number, put the result there, perceive if
it’s greater than this other number’ -

but executes them at a rate of, let’s say, 1,000,000 per second.

At 1,000,000 per second, the results appear to be magic.

— Steve Jobs

As explained in the previous chapters, surface matching in intra-
operative situations is very challenging. Because of noise, deforma-
tions, distortions, and the availability of only partially overlapping,
nearly flat surfaces, most existing methods for surface matching are
inadequate for the use in intra-operative registration. The main conse-
quences of the above issues are different descriptors for points lying
at the same anatomical locations and the absence of features that can
be consistently selected on both source and target surfaces. Further-
more, methods that directly solve quadratic assignment problems (QAP)
employing geodesic distances or heat diffusion metrics as regulariza-
tion terms are both computationally inefficient and error prone, as
most points have similar geodesic or diffusion fields.

In order to overcome the aforementioned issues, we present here
two different approaches for surface matching. In the first approach
(Sec. 6.1), the surfaces are segmented in regions of similar curvature
properties. Employing segmentation eliminates the requirement for
feature selection. These regions are represented by adjacency graphs,
and correspondences are found by means of graph matching. To solve
the graph matching problem, which is also usually formulated as a
QAP, two different techniques were employed: The first technique
does not solve the QAP directly, but iteratively computes similarity
scores for graph nodes based on the similarity of their neighborhoods.
These scores are used to compute a set of correspondences as a linear
assignment problem (LAP). The second technique for solving the graph
matching problem is based on relaxation.

The second approach for surface matching (Sec. 6.2), does not rely
on the consistent selection of features. Features are instead selected
only on the source surface. For each feature, a set of correspondences
candidates on the target surface are computed, based on their de-
scriptor similarities. As the surfaces are nearly planar, a new error
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Figure 36: The region-based approach for surface matching. In order to
match two surfaces, they are segmented and graph representa-
tions are created. These graphs are than matched in order to es-
tablish correspondences between them.

metric for measuring the reliability of a particular spatial landmark
configuration is presented. To more reliable landmark configurations,
a smaller configuration error is assigned, which is used to weight a fit-
ting error. The fitting error provides a means of measuring how well
two surfaces fit to each other given a set of correspondences between
them. We further employ a constrained greedy approach for optimiza-
tion.

Both approaches for surface matching were evaluated in a variety
of experiments, designed to reflect the diverse settings and issues
that may occur in intra-operative registration scenarios. For all exper-
iments, two modalities for surface acquisition were employed: Sur-
faces acquired by a time-of-flight (ToF) camera, representing the intra-
operative surfaces, and surfaces generated from computed tomogra-
phies (CT), representing the pre-operative surfaces. Furthermore, sim-
ulated ToF surfaces were used in some experiments in order to pro-
vide ground truth data for the evaluation of our approaches. All ex-
periments were designed to be as close to reality as possible, but still
allowing an accurate evaluation of the methods in question.

6.1 REGION-BASED APPROACH

According to Audette et al. [22], region-based surface matching con-
sists of three steps (Fig. 36): First, the input meshes are segmented
into regions based on the homogeneity of the local shape character-
istics or some specific boundary circumscription. Second, the surface
is represented as an adjacency graph, as the notion of neighborhood
is natural between regions. Finally, a matching between the graphs is
computed in order to establish correspondences between the surfaces.

One of the first methods to employ a graph matching-based ap-
proach for correspondences search in the context of surface matching
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was introduced by Kehtarnavaz and Mohan [148]. This method uses
region features obtained from segmenting the input surfaces based
on classes of curvature [33]. The graphs are matched by searching a
common clique: A subgraph of a particular graph in which every two
nodes are connected. The common clique search problem is known
to be NP-complete, and thus methods attempting to solve it are very
time-consuming and cannot guarantee an optimal global solution in
polynomial time. Furthermore, the search for common cliques bears
two problems. On the one hand, there may be multiple common
cliques on the target surface for a clique on the source surface. This
is particularly the case when the surfaces are nearly flat, making the
matching ambiguous. On the other hand, a common clique might not
exist in case two non-identical surface instances shall be matched (e.g.
due to noise or distortions).

More recently, it was shown that graph matching is a power-
ful tool for the establishment of correspondences between features
[259, 280, 9o0]. These graph matching techniques utilize both the bi-
nary similarity between features and higher order similarity scores in
order to minimize an error metric. They also consider the feature’s
neighborhoods. Still, the graph matching problem remains difficult,
as due to noise and distortions, isomorphisms usually do not exist,
posing an inexact graph matching problem. This problem is also known
to be NP-complete [1]. Furthermore, as we deal with partially over-
lapping surfaces, we must search for common subgraphs instead of a
direct matching between the given graphs.

As references to 3D surfaces in the graph matching literature are
scarce [281], we applied here methods that iteratively compute sim-
ilarity scores between the graph nodes, in order to evaluate the ap-
plicability of graph matching in intra-operative registration. These
methods provide a similarity matrix, which can be used to compute
correspondences by means of solving a linear assignment problem,
which can be computed in polynomial time [81]. However, the liter-
ature describing graph matching is very vast, even for inexact graph
matching, and we kindly refer the reader to [30, 69] for more infor-
mation on this topic.

In the context of graph matching, we employ two different ap-
proaches for optimization: In the first approach, we iteratively score
the similarity of neighborhoods and propagate it throughout the
graph, resulting in similar neighborhoods having higher scores. This
allows us to cast the problem as a linear assignment problem (see Secs.
3.3 and 3.4) and to solve it in polynomial time. In the second ap-
proach, the graph matching problem is formulated as a quadratic as-
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Figure 37: Examples of a part-type (left; taken from [168]) and surface-
type mesh segmentation (right). The surface-type segmentation
was computed by creating same-sized pentagons above the
parametrized surface.

signment problem (see Secs. 3.3 and 3.4) and solved by means of relax-
ation.

In Sec. 6.1.2 we show how to construct graphs given a mesh seg-
mentation. Sec. 6.1.1 reviews mesh segmentation techniques. The use
of graph matching for the computation of correspondences is pre-
sented in Sec. 6.1.3.

6.1.1  Mesh segmentation

Mesh segmentation can be distinguished in two types: part-type and
surface-type (Fig. 37) [231]. In part-type segmentation, the object is
subdivided in meaningful parts, while in surface-type segmentation,
the object is subdivided in patches according to some specific criteria.
For more information on the topic, we kindly refer the reader to [18,
231, 59].

As most surfaces of interest for intra-operative registration do not
present meaningful parts, the segmentation method of choice should
be part-type. In order to fulfill the requirements of surface matching
for intra-operative registration, a segmentation method must provide
consistent results across surfaces, even in the presence of noise and
distortions, or when only partially overlapping surfaces are available.
Furthermore, the segmentation method must be able to partition the
surfaces into patches of similar size, which should only contain ele-
ments with similar characteristics, in order to ensure relevant graph
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Figure 38: Segmentation results of the total-variation based method [78], on
the mean curvature. (a) The input mesh; (b) The mean curvature;
(c) Results of the segmentation using three different labels; (d)
The respective adjacency graph representing the segmentation.
Figs. (a-c) were taken from [78].

topologies and to allow the computation of descriptors that are coher-
ent with the entire region. Designing a mesh segmentation algorithm
that fulfills all these criteria is not trivial. A consistent mesh segmen-
tation is critical for achieving accurate registration results.

Most mesh segmentation methods had initially been designed for
texture mapping or remeshing (e.g. [67, 289, 284], thus being con-
sistent across similar meshes not of concern. In the case of meth-
ods that employ mesh segmentation for morphing (e.g. [158, 226]),
consistency across similar meshes is crucial. In this case, however,
correspondences between the surfaces are known beforehand, and
this information is incorporated on the segmentation method for the
achievement of consistent segmentations.

Delaunoy et al. [78] presented a method for mesh segmentation
based on the minimization of the total-variation of a function de-
fined on a surface (Fig. 38). This method bears the advantage of being
very robust to noise. However, it requires a set of pre-defined labels,
making it hard to achieve consistent results for the segmentation of
multi-modal surfaces, as the labels would need to be adapted for
each specific case. Furthermore, if the labels are not well distributed
among the function’s image, the segmentation results may generate
graph topologies that are very ambiguous for matching. An example
of such a scenario is shown in Fig. 38c, where the big region in green
is a neighbor of all other regions, thus generating a star-shaped graph,
with a single node in the middle (Fig. 38d). In addition, the computa-
tion of a descriptor that characterizes this entire green region is not
trivial, as the region has an unconventional shape and contains very
distinct components.

In this work, a simple region-growing method based on the vari-
ation of curvature properties is employed. Without any given noise
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Figure 39: The shape-index and the respective shapes (based on the illustra-
tion found in [155])

or distortions (i.e. perfect conditions), this method generates exactly
the same partitioning for meshes and sub-meshes. As measures for
curvature properties, we employ shape-index and the curvedness [155].
The shape index of a particular surface vertex v gives a quantitative
measure of the shape in the range [—1, 1] (Fig. 39) and is computed as
follows:

s(v) = 2 arctan ka(v) + ki (v)
om ka2 (v) — kg (v)

(k1 (v) = k2(v)) (6.1)
where k;(v) and k;(v) are the two principal curvatures of the surface
at v, which measure how the surface bends at this position [189].
Curvedness is a positive measure that indicates the intensity of the
curvature at a particular vertex v and is computed as follows:

c(v) =4/ —k% V) —;k% v) (6.2)

It vanishes (= 0) only at planar vertices (where the shape index is un-
defined because at planar vertices ki (v) = k2(v) = 0) and is inversely
proportional to the size of the object, and therefore not scale invariant
[155].

Given two adjacent vertices vi and v, of a particular mesh, the
variations in shape index (As) and curvedness (Ac) are computed
according to the following equations:

As(v,v2) = Is(v1) —s(v2)| (6.3)
—ﬁ?;(((s((\v):))g((:;)))) —1 min(c(vq),c(v2)) >0
Ac(vi,v2) =10 c(vi) =0Ac(vz)=0 (64)
o0 otherwise

Because of the fact that the curvedness scales inversely with size [155]
and is thus dependent on the actual size of the object, computing its
variation as a difference would deliver different values for the same
vertices in two different object scales. In contrast, applying a quotient
leads to a scale invariant measure of change in curvedness. In the
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Figure 40: The segmentation of a mesh and a sub-mesh, which was extracted
from the marked region. The regions are colored according to a
sequential graph coloring method. Note that the submesh seg-
mentation is equal to the segmentation of its corresponding part
in the reference mesh (except for the boundaries of the submesh).

particular case where one of the vertices is associated with a planar
surface region, there is either no variation, when both vertices are
planar, or it is set to co (maximal variation).

Starting at any vertex v, we use local variations of shape index and
curvedness between it and its neighbors to segment the mesh. Ver-
tices with variations smaller than given threshold values (8shape-index
for shape index and O.yrvedness fOr curvedness) are assigned to the
same region. This procedure is summarized in the following steps:

1. Create a new region R and add v to it;

2. For every vertex v; adjacent to v that is not contained in
any region, compute the shape index and curvedness varia-
tions As(v,vi) and Ac(v,vi). If As(v,vi) < Oshape-index and
Ac(v,vi) < dcurvedness, add vi to R;

3. For every new vertex v, in R, make v < v,, and restart step 2,
until there are no new vertices in R;

4. Find a vertex v that has not yet been assigned to any region and
restart step 1, until all vertices are contained in some region.

Fig. 40 shows an example of the segmentation of a surface and of an
extracted subsurface. Note that as only local curvature changes are
considered for the segmentation, the set of regions on the sub-mesh
is a subset of the set of regions on the original mesh (except at the
boundaries, where curvature, and thus shape index and curvedness,
are not defined).
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6.1.2  Graph construction

Once a surface has been partitioned into regions (Sec. 6.1.1), an at-
tributed graph G = (V, E,D) can be constructed, where V is a set of
nodes, E is a set of arcs’, and D a set of node attributes. Every nodes
n € V represents a surface region and is attributed with a descriptor
that can be used to characterize this region. Every arc e € E repre-
sents a neighborhood relation between two regions on the surface. In
the case where oriented graphs are required, the edges are oriented
from regions with lower descriptor magnitude to regions with higher
descriptor magnitude.

For characterizing the regions, descriptors can be computed by us-
ing the mean of curvature properties, for example. More complex de-
scriptors can also be used, as the computation of normal histograms
for the region in question, as is presented in Sec. 6.2.2. In this work,
we have adopted the mean of two curvature-based measures that de-
scribe the local shape of a particular mesh as region descriptors: the
shape index and curvedness, which are both position and orientation
independent [155] (see Sec. 6.1.1).

6.1.3 Correspondence search

We assume two distinct, weighted graphs Gs = (Vs,Es,Ds) and
Gt = (V1,E7, D7) (see Sec. 6.1.2), which represent source and target
surface, respectively. Our correspondence search approach is based
on the computation of a similarity matrix between their nodes. This
matrix is then used to compute an assignment between the nodes,
so that the global similarity (the sum of the similarities of all as-
signed node pairs) is maximal. Our procedure is comprised of four
stages: descriptor similarity scoring (sec. 6.1.3.1), topological similarity
scoring (sec. 6.1.3.2), correspondence computation (sec. 6.1.3.3) and post-
processing (sec. 6.1.3.4).

Let us define the similarity matrix Mgim = [Pnyn vy |x|vs), Which
holds the node similarity scores, based on which a set of correspon-
dences between the graphs is computed. The similarity matrix Mgjn,
is composed of two parts:

Msim = Mdesc + Mtop (6-5)

where Mgese = [qninJjvy|x|vs| represents the node descriptor simi-
larity scores, which holds the similarity between the descriptors of

In this work we refer to the vertices and edges of the graphs as nodes and arcs,
respectively. This is done in order to distinguish them from the vertices and edges
of the surface meshes.
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each pair of nodes in (V1 x Vs). Miop = [rnn,Jjv;|x|vs| represents
the topological similarity scores, which hold the similarity between
the topology of each pair of node in (V1 x Vs). It is computed accord-
ing to a scoring method that minimizes an error functional. Once,
the similarity scores have been computed, Mg, is used to determine
an optimal global assignment between the graphs (correspondences).
Finally, a post-processing based on the graph adjacency structure is
employed to eliminate probably false correspondences and to identify
potential new ones.

6.1.3.1 Descriptor similarity scoring

In order to assess the similarity between to nodes, we compute the
similarity of their descriptors. The similarity scores between them
are assessed by a Gaussian kernel over a function that computes the
distance between two descriptors, thus delivering a similarity value
in the interval (0,1]. This kernel assigns higher scores to smaller
distances, and vice versa. If the distance between the descriptors of
two nodes is higher than a threshold value, the similarity between
them is set to o (zero), denoting that a match between these nodes
is impossible. Let ws € Dt and w € D7 denote the descriptors of
the nodes ng and ny, respectively. The descriptor similarity matrix
Maese = [dnengdjvyix|vs| is then computed as follows:

dgesc (s, wi)?

oZ 2L6
Gnin, = € 2 ddesc(Ws, W) desc (6.6)

0 otherwise

where dgesc(-) denotes a distance metric between descriptors, o the
width of the Gaussian kernel, and 84cs. a descriptor distance thresh-
old. In the case of the descriptor being represented by combinations
of surface properties that lie in different spaces, multiple Gaussian
kernels can be employed. For example, one can assume that the de-
scriptors are composed of k different metrics, denoted by wt, for
i = 1...k. In this case, the similarity score can be computed as fol-

lows:

i i.,i142
_ ddesc(ws’wt]

Kk
1
Inin, = X § e 207 (6.7)
i=1

where didesc(') denotes the distance metric for component i of the de-
scriptor, and o; the width for the Gaussian kernel of this component.

6.1.3.2 Topological similarity scoring

To score the topological similarity between two weighted graphs, we
consider two distinct methods: A direct scoring method [278] and a
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method based on probabilistic relaxation, known as SoftAssign [118].
These methods consider both the topology of the graphs and the
weights of the nodes to compute the scores. This is very significant, as
the sole consideration of the similarity of topologies by itself would
be insufficient to find corresponding node pairs, because many nodes
are topologically identical.

DIRECT SCORING METHOD The direct scoring method iteratively
computes local scores for each pair of nodes in (V1 x Vs) by a coupled
node-arc scoring method [278]. According to this method, two nodes
are considered similar if their topological neighborhoods are similar
(i.e. their arcs are similar). By the same principle, two arcs are simi-
lar if their respective source and target nodes are considered similar.
Starting with initial node scores, arc scores are computed, which are
in turn used to compute the node scores iteratively. This procedure
is repeated until a convergence limit is reached. In this way, scores
between nodes are propagated to neighboring nodes at each iteration
step. Note that this method requires the graphs to be oriented. As arc
scores are computed in order to compute node scores, an update of
the latter is provided in every second iteration only. In addition, two
matrices are required to store the arc and node scores.

We modified the original method in order to use a single matrix
and to deliver an update of the node scores in every iteration. Let us
assume two nodes ng € Vs and ny € V7, and the functions src(e),
which returns the source node of a particular arc e, and trg(e), which
returns its target node. The scores for each element of the matrix Mqp
are computed iteratively as follows:

k k—1 k—1
Thn, = Z (Tsrc(ej)src(ei) + Ttrg(ej)trg(ei]) +
src(ej)=my,src(ei)=ns
k—1 k—1
Z (Tsrc(ej)src(ei) + Ttrg(ej)trg(ei)) (6~8)

src(ej)=my,src(ei)=mng

until [rk | —rk"! | < ¢ for every ng and ny, where ¢ denotes the

convergence limit, and k the iteration. In order to consider the node
weights, we initialize the topological similarity matrix with the de-

scriptor similarities (Sec. 6.1.3.1), as r?ltns = Qnn,-

SOFTASSIGN  The SoftAssign algorithm [118] enforces a dual assign-
ment constraint and computes a matrix (topological similarity matrix;
Mop) with each element 1, ., denoting the probability of the corre-
spondence between nodes n¢ and ns. The problem is solved by re-
laxing the boolean constraints of the assignment problem to allow
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fuzzy assignments, thus making the error metric treatable (not NP-
hard; see Sec. 3.4). After infinite iterations, Mop becomes a permu-
tation matrix. The algorithm finds the topological similarity matrix
that approximately minimizes the quadratic energy functional, i.e., a
quadratic assignment problem (QAP; see Secs. 3.3 and 3.4) given by:

1
ESoftAssign(Mtop) = _2 Z Z Z Z Tntnsrninjll)(nt/nw Tli,TL)')

nteEVr ngeEVs niEVT anVS
(6-9)

where { : VT x Vs x V1 x Vs — R denotes the dual similarity func-
tion between an arc in Gs and an arc in G, given by:

1 . ‘
w(nt,ns,ni,nj) — z(qmns + Qnmj) ((nt/nl) € ET) /\((ns,n]) c ES)

otherwise
(6.10)
where Myese = [qnynslivy|x|vs| denotes the descriptor similarity ma-
trix (Sec. 6.1.3.1).

6.1.3.3 Correspondences computation

In this stage, correspondences between the nodes of both graphs are
computed, so that the global similarity becomes maximal. Such a
problem is known as linear assignment problem (LAP; see Secs. 3.3 and
3.4) and there are several methods to solve it [81]. Those methods take
a cost matrix and create an assignment between each row element to a
column element, so that the sum of the costs of the assigned elements
is maximal (or minimal, depending on the application).

We use the similarity matrix Mgiy,, which incorporates both topo-
logical and descriptor similarity scores for each pair of nodes
(n¢, ns) € V1 X Vs, as a cost matrix for the assignment problem. How-
ever, as Msim is not square in cases with an unequal number of nodes
in the graphs, the chosen method needs to deal with rectangular ma-
trices. We therefore chose the popular Munkres” algorithm [41].

6.1.3.4 Post-processing

The goal of graph matching post-processing is to optimize the cor-
respondences configuration between the input graphs by exploiting
the information given by the graphs adjacency. We describe here two
ways of performing this post-processing step. First, only probably
false assignments are eliminated, using a simple heuristic. The sec-
ond method applies a greedy optimization method to maximize an
assignment energy.
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ELIMINATION OF FALSE CORRESPONDENCES In order to reduce
false matches among the assigned nodes, we adopt the premise that,
if a particular node ng € Vs was assigned to a node n € Vy, there
must be some other nodes in the neighborhood of n, that were as-
signed to nodes in the neighborhood of n:. If this premise is not
confirmed, the assignment between these nodes is probably incorrect
and thus removed.

Let N(n,d) denote the topological neighborhood of a particular
node n with radius 8, and Ccorresp(N(1s,0s), N(n¢,8¢)) be a func-
tion that returns the number of nodes in the set N(ng, ) that are
assigned to nodes in N(n, d¢). If ng was assigned to ny in the cor-
respondences computation stage, this assignment is eliminated if the
following equation does not hold:

Ccorresp(N(TISz 6S)IN(ntl 6t)) 2 B (6-11)

where (3 denotes the minimal number of node assignments that must
exist between N(ng, d5) and N(ny, d¢) in order to maintain the assign-
ment between ng and ny.

GREEDY OPTIMIZATION The goal of this post-processing method
is to reconfigure the correspondences between the input graphs in
order to maximize an assignment energy. The assignment energy is
based on the similarities of assigned nodes within a neighborhood.
The higher the number of similar nodes assigned to each other within
a particular neighborhood, the higher the probability that these as-
signments are correct.

Let us introduce the set C C Vs x V1, whose elements denote node
correspondences between Gs and Gt, computed in Sec. 6.1.3.3. The
set C is defined by an injective function f : Vs — V71, meaning that
every ng € Vs is mapped to at most one element of V1, and C € U,
with U being the set of all possible correspondences configurations.
We also define the topological neighborhood of a particular node n
with radius 8, N(n, 8). The assignment energy E : U — R of a partic-
ular correspondence configuration between Gs and G is:

E(C) = > U(ns, e, C) (6.12)
ns€Vs,nieVr,(ngny)eC
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l(ns,nt; C) = qnn, T Z qn-ln)-

n;EN(Nng,85) €N (ny,8¢),(nym;)eC

- Z Anin;

n;EN (N, 85) €N (ny,8¢),(nym;)eC

- Z quile (613)

€N (ns,85),niEN(n,0¢),(nynj)eC

where 1 : Vs x VT x U — R denotes the local assignment energy
between two nodes. The local assignment energy between two nodes
ng and n; increases with the increasing number of nodes in their
neighborhoods that are assigned to each other.

Inserting a new assignment between nodes ns and n¢, causes the
assignment energy E(C) to vary according to:

6(“31 My, C) = (nyn; + Z (qntns + qninj)
nyEN(1s,85),nEN (N, 8¢),(nyn;)eC

- Z (qntns + qTLile)
n;EN (ng,85)MigN (1n,8¢),(nyny)eC

- Z (qﬂ.tﬂ.s + qTLile)

n€N (1n,85),MEN (ng,d¢),(nyn;)eC
(6.14)

while the variation caused by an assignment removal is given by
—6(ng, ny, C).

An iterative greedy optimization procedure is employed for the
optimization of an initial correspondences configuration Cy. The in-
sertion or removal of a node correspondence is performed in every
iteration. The operation (node insertion or removal) chosen is the one
that increases E(C) the most in the current correspondence configura-
tion. Let us define the node correspondence operations O ={—1,0, 1},
with -1 denoting a correspondence removal, 1 an insertion, and o a
void operation. We also define the functions cs : Vs x U — {V1,0}
and ct1 : V1 x U — {Vs, 0}, which provide the correspondent of a par-
ticular node in the current correspondence configuration, as follows:

ny  dng € Vr((ng,ny) € C)
Cs (nSI C) =

0  otherwise

ns dng € Vg((ng,ny) € C
CT(TLt,C): s s S(( s t) ) (6.15)

() otherwise

We can now define the function A : O x Vg x V1 x U — R, which
provides the signed energy variation of the insertion or removal of a
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correspondence between a node in Vs and a node in V7, if the opera-
tion is possible in the current correspondences configuration, and —oo
otherwise. The function A(o,ng,n¢, C) also considers the possibility
of an assignment insertion between nodes that are already assigned,
meaning that already existing assignments must be removed prior to
the insertion of the new one. The definition of A(o,ng, n¢, C) is as
follows:

—6(ng,ny, C) (o=-1)

6(“’81“’[/ C) (0 = ])

d(ng,ny, C) (o=1)
—8(ns, cs(ns, C),C)  Ales(ng, C) # 0)
A(o,a,b,C) = Alcr(ng, C) =0) (6.16)
5(ng, ny, C) (o=1)

_6(CT(ntl C)rntl C) /\(CS (nS/C) = Q))

8(ns,ny, C) (0=T)
—6(1’15, CS(nSIC)I C) /\(CS(nS/C) 7& Q))
_S(CT(nt/ C)Intl C) /\(CT(Tlt,C) 7é @)

—00 otherwise

An operation in a particular correspondences configuration that in-
creases E(C) the most (it may not be unique) is found by the function
n:uU—0xVsx Vy:

argmaXeeO,nseVs,nieVy MaXocOngeVsnieVy
n(C) = A(o,ng,ng, C) Ao,ng,n, C) >0 (6.17)
0,0,0) otherwise
We can observe that the sets O, Vs and Vr are finite, and that
A(o,mg, g, C) is a primitive recursive function, since it is composed

of sums, membership tests in finite sets and case decisions, and
therefore /A(o,ns,n¢, C) is total. As a result of these observations,
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we notice that argmaXecon,cvgnevy 2(0,1ng,n¢, C) can be com-
puted in finite time, as can n(C). The time complexity of n(C) is
upper bounded by [Vs| - [V1| computations of l(ng,n¢, C), which is
cubic at most (considering that the neighborhood sets are already
known). This results in a maximal complexity of O(x°), where x =
max(|Vs|, [V1|). However, as shown further on in the text, the local as-
signment energies 1(ns, n¢, C) can be computed iteratively, allowing
the computation of n(C) in O(x?) (with a pre-processing stage upper
bounded by 0(x°)).

After having chosen the operation to execute, the set C must be
modified accordingly. For this purpose, the operation execution func-
tion e : O x Vs x V1 x U — U is defined. It performs the required
assignments considering that the nodes ns and n{ may already have
correspondences. In this case, the existing assignments are previously
removed and the new one is inserted after:

C—{(ns,ne)} (0=—T)

Cu{(ns, ny)} (o=1)

(C—{(ns,cs(ng, C))})  (0=1)

U(ng, ne)} Nles(ng, C) # 0)

e(o,ng,n¢, C) = Aler(ng, C) =0)
(C—{ler(ng, C),ne)})  (0=1T)

U(ng, ne)} Nes(ns, C) = 0)

Aer(ng, C) # 0)
((C—={ng,cs(ng, €)Y (0=1)

—{(ct(ny, C),ne)}) Nes(ns, C) #0)
U{(ns, i)} Ner(ng, C) #0)
C otherwise
(6.18)

The greedy optimization executes until no more operations exist
that increase E(C) by more than a given threshold value t € R™*.
The method for the post-processing of an initial correspondence set
between two graphs is summarized in Alg. 6.1.
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Algorithm 6.1 Post-processing of an initial correspondence set C¢ be-
tween two input graphs Ga and Gg. The method is performed until
the assignment energy variation is smaller than a given threshold
value t.

Input: Gg,GT,Cop,t

(0,ms,nt) < 1(Co)

C+ Co

while A(o,ng,ng, C) >t
C +e(o,ng,ny,C)
(0,1, nt) + n(C)

We now show that the post-processing method will always con-
verge to at least a local maximum of E(C) for every combination of
input graphs Gs and G, and correspondence sets C. As Vs and V1
are finite, so are all C; € U and also U, because there is only a fi-
nite amount of combinations between Vs and V7. It is also possible
to sort all C; in increasing order of E(C;), and to connect each C;
that can be reached with a single operation. In this way we have at
one side of every particular C; the correspondences configurations
that can be reached with negative assignment energy variation, and
on the other side the ones that can be reached with positive energy
variation (Fig. 41). As the optimization algorithm only moves towards
positive energy variation, it will reach a configuration C that can not
be improved by a single operation at some point. This is due to the
fact that the amount of possible C; is finite. However, the final corre-
spondence configuration reached may not be the global maximum of
E(C), as in this case some moves towards negative energy variation
might be necessary.

Implementation As the computation of the local assignment ener-
gies l(ng, ny, C) is the most expensive part in our method, we avoid
executing it repeatedly by computing it once for all nodes with re-
spect to the initial correspondence configuration. After that we just
update it iteratively as new node correspondences are inserted or
removed. We start our implementation with a pre-processing stage,
where all neighborhood sets N(n,d) are computed, and the sets
C% ={ns € Vsles(ns, Co) # 0} and CT = {ny € Vyler(ng, Co) # 0} are
initialized. A matrix L = [ln nJjvg|x vy, With Ly n, = 8(ng, ny, Co),
is also computed for every node pair (ng,n¢) € Vs x V1. The pre-
processing stage has maximal time complexity of O(x®), and must be
computed only once.
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-A E(C) +A

Figure 41: Graphical representation of the correspondences configuration
between two graphs. Every node represents a correspondences
configuration C;, while the arrows represent configurations that
are related by a single node correspondence operation. The nodes
are sorted in increasing order of assignment energy (E(C)). As
our optimization algorithm only moves towards maximal positive
energy variation, convergence is guaranteed. Starting at configu-
ration Cy, configuration C¢ will be the final one. However, the
global maximum (Cg), may only be reached with moves towards
negative energy variation.

The operation with highest AA(o, ng, n¢, C) can be found by iterating
through L, with a time complexity of O(x?). If the chosen operation
involves a first removal of assignments before inserting a new one,
each step of this operation is considered as a separate step. In every
iteration of the optimization algorithm, after inserting or removing
an assignment between (ng, n¢), the sets C S and CT must be updated
accordingly. Also, the local assignment energies of the nodes in the
neighborhoods of ng and ny must be updated:

* In the case of an insertion operation: Vn; € N(ng, ds),ny €

N(ng, 6t)(lninj = Lninj + qnn, + qnjni)/ vni € N(ns, 55)/nj ¢
N(ntrét)rn]’ 7& nt(lninj = lninj — (nyn, _qn]-ni)/ VT'Li ¢
N(

ns,és)/nj € N(ntzét);ni 75 ns(lninj = 1ninj —Onng —
qnjni)}

* In the case of a removal operation: Vn; € N(ng,0s),nj €
N(ng, 6t)(lninj = Lninj —Onng — qnjni)/ vni € N(ng, 63)1“]' ¢
N(ntlét)ln]. # nt(lnin,- = lnin)- + qnin, +qn]-n-l)r Vny ¢
N(“Slés)/n]' € N(ntzét)zni 7é ns(lninj = 1ninj +qntns +
Qnyng)-

At the end, a clean-up procedure can be performed, eliminating all
assignments with l(ns, n¢, C) smaller than a given threshold value.
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6.1.4 Evaluation and results

For the evaluation of the region-based approach, we have performed
experiments to assess the following:

¢ The applicability of the graph matching algorithm for the regis-
tration of real data (Sec. 6.1.4.1). As we have already established
that mesh segmentation is crucial to obtain correct registration
results (Sec. 6.1), the applicability of the graph matching algo-
rithm to the registration of real data is performed using struc-
tures whose representation by graphs is already implicit: These
are the anatomical trees, such as the bronchial or vessel systems.
This allows us to evaluate the robustness of graph matching
without being influenced by the quality of the segmentation.

¢ The specificity of the graph matching algorithm for the regis-
tration of meshes and sub-meshes of different sizes and noise
levels (Sec. 6.1.4.2).

* The improvement of results that are provided by graph match-
ing post-processing (Sec. 6.1.4.3).

6.1.4.1 Matching of anatomical trees

Finding correspondences between anatomical trees may be challeng-
ing due to noisy data, motion, artifacts, or problems associated with
the extraction method, such as missing or false branches. Several
tree matching approaches have been investigated in the literature,
which has been reviewed by Metzen et al. [188]. Graham and Hig-
gins [119, 120] presented an extensive theoretic framework for find-
ing correspondences in anatomical trees and explicitly addressed the
above mentioned distortions. They applied a dynamic programming
algorithm to map both trees onto a common one using similarity
scores between the nodes and two kinds of deformation models to
capture distortions. Unfortunately, a comprehensive evaluation of the
method does not exist. Furthermore, the authors use parallelism be-
tween edges as a similarity measure, which makes the method depen-
dent on the position of the trees, i.e., the pose of the patient during
image acquisitions must be identical (rotations are not allowed).
Here, tree matching is performed in a similar manner as for surface
matching (Sec. 6.1), with two main differences: (1) No segmentation
is required to construct the graphs, as trees can be naturally repre-
sented by them (each fork represents a node, while branches repre-
sent edges); (2) Node attributes are computed based on tree proper-
ties, such as branch diameter, for example. A schematic representa-
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tion of the proposed method is shown in Fig. 42. Topological similar-
ity scoring was performed using the direct scoring method. Only the
elimination of false correspondences is performed was carried out as
a post-processing step.

TREE PROPERTIES Six properties were chosen, which do not re-
quire knowledge about the absolute position of a particular node,
making the matching independent of position: Diameter (in mm; Fig.
43a), internal distance to the root (in mm; Fig. 43b), node level in the
tree (Fig. 43¢), maximum and minimum angle between the edges that
connect the children (Fig. 43d), and the angle between the (virtual)
line connecting the root node with the node under consideration and
the first branch (Fig. 43e).

ASSESSMENT OF THE ACCURACY OF THE GRAPH MATCHING AL-
GORITHM BY ANATOMICAL TREE MATCHING For the evaluation
of our method, we used 15 CT data sets of porcine lungs. Each data
set was composed of an expiration and an inspiration tree. The vol-
umes were segmented and the trees were pruned. Correspondences
between both trees of all data sets were set manually and used as
ground truth.

Five data sets were used for the estimation of the Gaussian kernel
widths and descriptor distance thresholds. These values were used
to evaluate the method based on the other 10 data sets. The results
obtained are shown in table 2. A total of 60% of all nodes that could
be matched, according to the ground truth, were matched correctly
(assignable, correct) while 3% were matched incorrectly (assignable,
wrong), 37% were not matched (assignable, not matched). Within the set
of nodes that could not be matched according to ground truth data,
16% were incorrectly matched (unassignable, wrong) while 84% were
correctly left unmatched (unassignable, correct). The time required for
the creation of both trees, including the computation of properties,
was smaller than 1073 milliseconds for all data sets on a 2.4 GHz
Intel machine. The matching stage, including topological and prop-
erties similarity scoring, assignment and reduction of false matches,
took less than one second on average.

6.1.4.2 Graph matching for surface registration

In order to evaluate the proposed correspondence search method we
performed three evaluation studies on meshes with different surface
characteristics (Fig. 44). In the first study, we evaluated the perfor-
mance of our algorithm with respect to the size of the submesh. In
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Figure 42: Matching of anatomical trees.
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Figure 43: Tree properties: (a) diameter; (b) internal distance to the root; (c)
node level in the tree; (d) maximum and minimum angle between
the edges that connect the children; (e) angle between the (virtual)
line connecting the root node with the node under consideration
and the first branch.

101



Test data set 1 2 3 4 5 6 7 8 9 10 Avg. (%)
Nodes 28&28 23&20 25&16 44&29 52&45 54&35 25&24 50&k44 22&17 56&43
Assignable 24 19 15 27 42 35 19 36 15 41 9147
CORRECT 20 11 9 13 30 22 9 19 9 22 60=£11
WRoONG 0 2 0 2 1 0 0 2 0 2 3+4
NoOT MATCHED 4 6 6 12 11 13 10 15 6 17 37+10
Unassignable 4 1 1 2 3 0 5 8 2 2 97
CORRECT 4 1 0 2 2 - 5 7 2 2 84433
WRoONG 0 0 1 0 1 - 0 1 0 0 16+33
Time (ms) 20 > 1073 100 330 170 1810 20 8o 20 210

Table 2: Results for the anatomical tree matching evaluation. Nodes show the number of nodes in the two corresponding trees starting
with bigger ones. Assignable refers to the number of nodes in the smaller tree that have a corresponding node in the bigger tree
(according to the ground truth assignment). Unassignable refers to the number of nodes in the smaller trees that do not have a
corresponding one. In this case, correct shows the number of nodes that were correctly left unassigned, while wrong shows the
total of nodes that were assigned to any other one. The times shown are the durations of topological and properties similarity
scoring, assignment and reduction of false matches. The averages are given in percentages of the total in their categories (assignable
or unassignable), except for the totals in the categories themselves, which are given in percentages of the smaller tree.
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Figure 44: The six reference surfaces used for the evaluation of the pro-
posed method. All meshes (with exception of the liver), are
available at the AIM@SHAPE Shape Repository (http://shapes.
aim-at-shape.net) and were decimated to approximately 10000
faces.

a second study, we assessed the influence of the shape descriptor
on our method, by repeating the first experiment with an alterna-
tive mesh segmentation approach. In this other approach, surfaces
are partitioned based on curvature classes as described in [33], in-
stead of using continuous curvature measures such as the shape in-
dex and curvedness. Finally, we tested the method on noisy data in
order to evaluate the noise tolerance of the novel algorithm,. In all
studies, topological similarity scoring was performed with the direct
scoring method, and only the elimination of false correspondences
was performed in the post-processing stage. An alignment between
the shapes was obtained by the computation of a transformation that
matched the centroids of the assigned regions in a least squares sense
according to the algorithm of Horn [134].

sTupY 1 To evaluate the performance of the proposed correspon-
dence search algorithm, the following experiment was performed for
each reference surface shown in Fig. 44: For each integer i in [1,50],
500 random submeshes (samples) with an area making up 1% of the
area of the reference mesh were generated using a region growing
method. Each of the samples was translated and rotated with a ran-
dom rigid transformation. The proposed correspondence search algo-
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Figure 45: Number of nodes in the graphs of the reference meshes as a func-
tion of the submesh size.

rithm was applied to initially realign the submesh with the reference
mesh. Subsequently, ICP was performed to adjust the positioning. To
assess the accuracy of the alignment, the percentage of correctly clas-
sified regions and the percentage of incorrectly classified regions was
determined. Furthermore, the quality of the final match (after ICP)
was evaluated by calculating all distances between the transformed
submesh vertices and their corresponding vertices in the reference
mesh. The match was considered correct, if all distances were smaller
than 10~° (note that all meshes were scaled to fit into the unit box).
The parameters of the proposed method were chosen empirically
on a set of liver meshes as follows: Shape index and curvedness ker-
nel widths were set to 0.1, and shape index and curvedness kernel
thresholds to o.5. For the elimination of false positives, the neighbor-
hood radii were set to 2 for both graphs, while the minimal number
of node assignments was set to 8. The curvedness threshold was set
according to the submesh size to be matched: The smaller the sub-
mesh size, the smaller the threshold. This way, a reduction of graph
size and thus a reduction of processing time could be achieved for
relatively big submeshes. By default, the curvedness threshold was
linearly increased from o.1 (corresponding to a submesh size of 1%)
to 2 (corresponding to 50%). In the case of Laurana, the interval was
set to [0.1, 3] because this surface showed more curvature variations
than the others. The resulting sizes of the graphs are shown in Fig.

45.

sTupY 2 To evaluate the influence of the shape descriptor on the
presented correspondence search method, we repeated the first ex-
periment with an alternative mesh segmentation method. As initially
proposed by Besl and Jain [33], the surfaces were partitioned based
on curvature classes, identified by the sign of the Gaussian and mean
curvatures. As this segmentation method does not depend on any
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Figure 46: Results of the surface matching experiment described in study 1.
For each reference mesh, the mean percentage of correct matches
and incorrect matches after the initial alignment averaged over
500 samples is shown as a function of the submesh size. Correct
ICP represents the quality of the final match (after ICP).
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parameters, the reference mesh graph size was the same for all exper-
iments (230, 217, 132, 275, 131 and 142 nodes for the shapes Block,
Bunny, Duck, Laurana, Liver and Terrain, respectively).

sTUuDY 3 In the case of noisy data, the parameters of the segmen-
tation algorithm must be chosen carefully and in an application-
specific manner. To illustrate this procedure, we acquired medical
image data from seven different patients and extracted the corre-
sponding liver meshes. Two livers were used to empirically opti-
mize the mesh segmentation parameters for each submesh size i €
{10%, 20%, 30%, 40%, 50%}. The smaller the submesh, the smaller the
tolerance in the mesh segmentation, thus yielding bigger graphs. Big-
ger graphs increase the number of nodes that are common to both
meshes and helps identifying correct correspondences.

The Gaussian kernel parameters where set to 0.05 for the width
and o.15 for the threshold, both for shape index and curvedness. The
shape index thresholds for both, submesh and reference mesh, were
set to 0.15, 0.15, 0.12, 0.12 and 0.1 for submesh sizes of 50%, 40%,
30%, 20% and 10%, respectively. The curvedness thresholds were set
in the same way to 0.15, 0.13, 0.12, 0.1, and 0.03 respectively. For the
elimination of false positives, the neighborhood radii were set to 2 for
both graphs, while the minimal number of node assignments was set
to 4.

For each submesh size, a set of 50 random submeshes was ex-
tracted. A random vector with direction and magnitude drawn ran-
domly from the interval [0, (30%d)], where d is the mean edge length
of the reference mesh, was added to each vertex to simulate noise in
the data. The submeshes were then smoothed through the method
proposed in [143].

Unlike the previous experiments, the segmentation of the submesh
was potentially different from the segmentation of the correspond-
ing area in the reference mesh due to the noise in the data. Hence,
there was generally no isomorphism in the graphs, making an eval-
uation of the correctly assigned nodes impossible. However, vertex
correspondences were known, and we thus assessed the quality of
the alignment by computing the percentage of submesh vertices that
were assigned to their corresponding vertices in the reference mesh
after the final iteration of the ICP.

SUMMARY OF THE RESULTS The results of our evaluation are
shown in Figs. 46, 47 and 48. Whenever a common clique between
the graphs existed (fig. 46), i.e., there was no noise added to the data,
the percentage of correct and incorrect node assignments averaged
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Figure 47: Results of the surface matching experiment described in study 2.
The mesh segmentation was performed using curvature classes as
opposed to shape index and curvedness. For each reference mesh,
the mean percentage of correct matches and incorrect matches
after the initial alignment averaged over 500 samples is shown as
a function of the submesh size. Correct ICP represents the quality
of the final match (after ICP).
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Figure 48: Results of the experiment described in study 3, where the pro-
posed correspondence search method was evaluated with noisy
data. The mean percentage (averaged over 50 samples) of sub-
mesh vertices that were assigned to their corresponding vertices
in the reference mesh after the final iteration of the ICP is shown
for all liver meshes as a function the submesh size.

over all six objects ranged from 83.5% 4 6.1% and 0.3% =+ 0.3% respec-
tively (submesh size: 1%) to 97.9% =+ 3.1% and 0.1% =+ 0.1% respec-
tively (submesh size: 50%). The correct transformation was found in
almost all cases (94.9% £ 11.9% for submesh size: 1%, 100.0% % 0.0%
for submesh size: 50%). Depending on the object and the submesh
size, processing times for the correspondence search including mesh
segmentation and graph generation ranged from 30 ms to 12 s. All
processing times were measured using a non-threaded 2.4 GHz Intel
machine.

According to Figs. 46 and 47, the segmentation based on curvature
classes yields significantly worse results than the segmentation based
on shape index and curvedness. In the earlier case, we obtained a
percentage of correct and incorrect node assignments ranging from
7.0% £ 6.7% and 0.1% £ 0.2%, respectively (submesh size: 1%), to
94.9% £+ 1.9% and 0.3% =+ 0.3%, respectively (submesh size: 50%). For
small submeshes (< 10%) the ICP did not converge into the global
optimum. The correspondences search processing time ranged from
1 millisecond to 2.6 seconds.

Regarding noisy data (fig. 48), the mean percentage averaged over
5 livers of submesh vertices that were assigned to their correspond-
ing vertices in the reference mesh, after the final iteration of the ICP,
ranged from 32.5% % 21.7% (submesh size: 1%) to 82.9% =+ 7.5% (sub-
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mesh size: 50%). Processing times for the correspondences search
ranged from 29 to 100 seconds.

6.1.4.3 Post-processing using greedy optimization

In order to assess the accuracy of the proposed method for post-
processing using greedy optimization (Sec. 6.1.3.4), we performed
a quantitative evaluation using randomly generated graphs in addi-
tion to a qualitative evaluation with real scanned surfaces. To score
topological similarities, the SoftAssign algorithm (Sec. 6.1.3.2) was em-
ployed.

QUANTITATIVE EVALUATION In the quantitative evaluation, 100
attributed small-world graphs with 200 nodes were randomly gener-
ated. Attributes were drawn randomly from the interval [0, 1]. From
each of them, 50 subgraphs for each size in {100%, 90%, ..., 10%} of
the original graph were arbitrarily extracted. The performed experi-
ment consisted of: (1) Applying structural and attribute errors to the
subgraphs; (2) Randomly generating a new attributed small-world
graph with the modified subgraph in it, so that both original and new
graphs had approximately the same size; (3) Matching the newly gen-
erated graph with the original one using SoftAssign followed by the
post-processing algorithm.

Attribute errors are randomly drawn numbers which were added
to the original attributed graph. In this experiment, three classes of at-
tribute errors were used, with maximal errors in {0, 0.2, 0.4}. Structural
errors are the probability of each node and edge in the subgraph to
be removed. Three classes of structural errors were employed in this
experiment, with probabilities in {0%, 20%, 40%}.

Once matching was complete, the results obtained with the Soft-
Assign algorithm and the ones obtained after application of the post-
processing algorithm were compared with the ground truth. Nodes
contained in the extracted subgraph must be correctly assigned to
their corresponding nodes in the original graph, while the other
nodes must be left unassigned.

The results of the evaluation are shown in Fig. 49. As both input
graphs have approximately the same size, we denote the number of
nodes that are common to both graphs as intersection size, i.e., the size
of the extracted subgraph in percent of the original graph. By using
post-processing, the percentage of correct assignments increased from
0% (Intersection size: 100%; Attribute error: 0%; Structural error: 0%)
to 77.3% (Intersection size: 80%; Attribute error: 40%; Structural error:
0%) of the graph size. Processing times ranged from 2 to 3.9 s for the
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Figure 49: Results for the evaluation of the post-processing algorithm us-
ing greedy optimization with simulated data. In this evalua-
tion, 100 attributed small-world graphs with 200 nodes were
randomly generated. From these graphs, 50 submeshes were ex-
tracted. These submeshes were included into other randomly gen-
erated graph, so that both graphs have approximately the same
size. Additionally, structural and attribute errors were applied.
Both graphs were matched and the results before and after post-
processing were compared with the ground truth. Intersection size
denote the size of the intersection between the graphs, i.e., the
size of the extracted subgraph. The results were averaged for each
intersection size. Correct assignments are given by the percentage
of nodes in the second graph that were correctly assigned to its
corresponding one in the original graph, or were correctly left
unassigned if there were no corresponding node.
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Figure 50: Results of the evaluation of post-processing using greedy opti-
mization with real scanned data. Shown in the images are the
correspondences found with SoftAssign (top row) and after post-
processing (bottom row). Also the assignment energy (E(C)) be-
fore and after post-processing is shown. Ops denotes the amount
of assignment operations (insertion or removal) that were per-
formed during post-processing.

SoftAssign, and from 24 to 125 ms for the post-processing, in a non-
threaded 2.4 GHz Intel machine.

QUALITATIVE EVALUATION A qualitative evaluation with real
scanned data was performed using freely available models from
the Stanford 3D Scanning Repository (http://graphics.stanford.edu/
data/3Dscanrep/). The meshes were segmented using mean curva-
ture as surface descriptor. Shape index and curvedness [155] were em-
ployed as surface descriptors for the matching phase. Post-processing
was performed with the vertices of the 2-ring neighborhoods and
threshold value set to o0.1. The results for this evaluation are shown
in Fig. 50. In average, the assignment energy increased about 240%
with the application of the post-processing algorithm, taking about
63 assignment operations (insertions or removals).
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6.1.5 Discussion

We show that the region-based approach proved to be a viable alter-
native for surface matching. The graph matching algorithm showed
to be highly accurate for matching incomplete and noisy data. In
the case of surface matching however, with the graph representation
not being implicit to the data, thus requiring a previous segmenta-
tion of the meshes in order to make the computation of an adja-
cency graph possible, the results are tied to the consistency of this
segmentation. As expected, the more noise and distortions between
the surfaces, the more inconsistent the segmentations. As high noise
and distortions occur in intra-operative environments, the successful
application of the region-based approach crucially depends on the
robustness of the segmentation algorithm. The design of a segmen-
tation algorithm that fulfills all criteria of intra-operative registration
is not trivial. This might prevent the successful application of the
proposed region-based approach in the intra-operative environment.
Even though post-processing showed to increase the robustness of the
matching algorithm, it does not perform well given very degenerated
graph structures (structural errors).

Note, however, that, in the case of the direct scoring method for
graph topology scoring (Sec. 6.1.3.2), as neighborhoods similarities
are scored and propagated throughout the graph, i.e., each node sim-
ilarity score includes not only direct similarity, but also the neighbor-
hood similarity, we are able to compute a set of correspondences by
means of minimization of the linear assignment problem (LAP) error
(see Sec. 3.3). When using the SoftAssign method, the graph match-
ing problem is directly cast as a quadratic assignment problem (QAP),
and is solved by means of relaxation of the assignment boolean con-
straints (See Sec. 3.4). In this case, the correspondence computation
stage (Sec. 6.1.3.3) only has the effect of projecting the fuzzy (relaxed)
assignment back to the boolean domain.

6.1.5.1 Matching of anatomical trees

According to our results (Sec. 6.1.4.1), the graph matching approach
showed to be highly accurate and fast when registering noise and
irregular data. Despite its simplicity, the proposed method for elim-
ination of false matches has proven to be very efficient, keeping the
rate of incorrect matches very low. However, after eliminating false
matches, many nodes were left unassigned and thus did not con-
tribute to the computation of a transformation. We put the results
obtained with the presented method with the ones presented in other
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state-of-the-art works. The matching rate and run-time of the proposed
method are comparable to the results presented by Graham and Hig-
gins [119, 120]. Unfortunately, the authors only presented the number
of assigned nodes for four data sets, without discriminating correct
and wrong ones. The run-time was only given for a single data set
(5 seconds to match two trees with 341 and 131 branches respectively,
using a 3.4 GHz Pentium). Compared to the work of Metzen et al.
[188], our method yields a higher rate of correct matches (53% versus
19%?) while the rate of incorrect matches is comparable (4% vs. 2%).
No time measurements were provided by the authors.

6.1.5.2 Surface registration

According to the evaluation presented (Sec. 6.1.4.2), the graph match-
ing based method for surface registration is highly accurate, yielding
a correct match in almost all cases for submeshes without noise that
made up at least 5% of the size of the reference meshes used in the
study. This held independently of the shape of the object and the
initial position of the submesh. Even in the presence of noise, good
matches were obtained for submeshes larger than 30% of the mesh
size.

We are aware of the fact that we used a relatively simple method
for mesh segmentation by combining a classical region growing ap-
proach with a surface descriptor that is rather unstable in the pres-
ence of noise. However, the good performance of our algorithm de-
spite these conditions demonstrates the huge potential of the graph-
based registration approach. On the other hand, the results obtained
with curvature classes indicate that the performance significantly de-
pends on the descriptor and segmentation technique chosen.

When mesh segmentation was based on curvature classes, the ICP
did not converge to the correct solution, in general. This can be at-
tributed to the fact that segmentation using curvature classes tends to
create bigger regions. Hence, the regions at the boundaries of the sub-
meshes can be considerably smaller than the corresponding regions
in the reference mesh. As a consequence, the centroid of a subregion
may have a relatively large geometrical distance to the centroid of the
corresponding region in the reference mesh. Furthermore, the initial
alignment may not be close enough to the reference solution in order
to guarantee ICP convergence. To overcome this problem, a weighted
least square approach could be applied to rigidly align the centroids

2 Both correct and incorrect rates were calculated based on the results found in the
paper. The rates represent the mean of the percentages of the smaller tree.

113



of corresponding regions in a way that the regions at the boundaries
of the submesh are given less weight.

In the presence of noise, the parameters for the mesh segmenta-
tion play an important role. We obtained reliable ICP convergence for
submeshes with sizes of 50% of the reference mesh. As expected, the
accuracy decreased, with decreasing submesh sizes. However, when
matching submeshes of size of 10%, the accuracy increased compared
to the previous sizes. In this case, the curvedness threshold was set
very low, thus decreasing the tolerance of the mesh segmentation and
generating bigger graphs. Having bigger graphs, also increases the
number of common nodes in both graphs, and reduces the amount
of geometrical information in the regions. This allowed the region
representatives to get closer to the represented data. Increasing the
number of common nodes and bringing the representatives closer to
the represented data increases the possibility of unique identification
of regions. Unfortunately, if the same parameters had been used for
the other submesh sizes, the processing times would have been signif-
icantly higher. Aggregating a lot of geometric information into single
regions, as when segmenting the meshes in region classes or using
higher thresholds, degraded the alignment for smaller submeshes.

Several issues remain to be addressed: Firstly, processing times var-
ied considerably with the shape of the object and the submesh size.
This can be attributed to the fact that the duration of the assignment
computation depends crucially on the percentage of entries in the
similarity matrix with values equal to —co , i.e., on the count of possi-
ble assignments. In general, computation times could potentially be
significantly decreased by a concurrent implementation (e.g. on the
GPU).

The accuracy of the proposed correspondence search method in the
presence of noise is very encouraging. Yet, several measures need to
be taken to make the matching more robust. In general, matched re-
gions will not be of the same size if the subsurface does not represent
an exact instance of a part of the reference mesh. As our method only
creates one-to-one assignments, several regions might be left unas-
signed, if two or more regions in one mesh correspond to the same
one in the other. For this reason, the method should be further ex-
tended for multiple-to-one assignments.

6.1.5.3 DPost-processing using greedy optimization

The post-processing method was evaluated with both simulated and
real data (Sec. 6.1.4.3). With simulated data a significant increase in
the percentage of correctly assigned nodes was observed. This in-
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crease was particularly higher with higher attribute errors and lower
structural errors. In the case of higher structural errors, we can ob-
serve that the percentage of correct assignments increases with de-
creasing intersection size. This is a rather non-intuitive behavior. An
explanation for this behavior lies on the fact that the number of nodes
with no correspondence is higher with smaller intersection sizes. As
shown in a previous evaluation (Secs. 6.1.4.2 and 6.1.4.1), the elimi-
nation of incorrect assignments can be performed very effectively. As
it is very unlikely that nodes with no correspondents have similar
neighborhoods in the opposite graph, they get mostly negative local
assignment energies, and their assignments are removed during the
optimization.

In the evaluation using real scanned data, the increase of the assign-
ment energy before and after the employment of the post-processing
algorithm can be confirmed by a visual inspection of the correspon-
dences. Using simulated data, we showed that our algorithm per-
forms better with lower structural error. Better results can thus be
achieved if the graphs representing both surfaces are structurally sim-
ilar. The structure of the graphs directly depends on the employed
mesh segmentation algorithm. Obtaining similar segmentations can
be very challenging, especially when dealing with scanned data ac-
quired from different angles. The choice for a particular segmentation
algorithm must therefore be made very carefully and in an applica-
tion specific manner.

As our post-processing method only requires graphs, the initial
correspondence set and a node similarity matrix between both input
graphs, the initial correspondence search stage may easily be adapted
for different mesh segmentation and matching algorithms. Further-
more, our method is generic enough to be applied for the optimiza-
tion of the assignment energy in other areas than surface registration
(e.g. image registration), as long as the input data can be represented
by graphs.

The initial correspondence search stage is also very important for
the correct convergence of the post-processing algorithm. The prob-
ability that the global maximum is achieved increases with increas-
ing quality of the initial correspondences. Without initial correspon-
dences, the chances for our method to hit a local maximum, which
may be very far from the global one, are very high. For our method
to perform correctly, a reliable initial correspondence configuration
must be supplied, so that the incorrect assignments can be properly
identified and manipulated, and new assignments can be accurately
inserted. Without a initial correspondences, the first operations would
be the insertion of assignments between the nodes with higher sim-
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ilarity. If these assignments are wrong, the future operations will be
based on a wrong initial correspondence configuration, and a im-
proper local maximum will be reached.

Although a simple optimization method was employed, significant
increases in the assignment energy were achieved. However, as no
decreases in the assignment energy are allowed during optimization,
it may occur that the global maximum is not reached. More elabo-
rate optimization schemes, allowing some degree of energy reduc-
tion, can be employed in order to increase the chances of reaching the
global maximum. An example for these optimization methods are ge-
netic algorithms. Furthermore, in order to increase the accuracy of
the method, the local energy computation can be supplemented by
including not only the direct (unary) similarity between nodes, but
also neighborhood similarities and higher order similarities.

6.2 POINT-BASED APPROACH

In this approach, we directly use points of the meshes for finding cor-
respondences, instead of trying to group them in common regions.
An overview of the entire processing pipeline of our surface matching
method is shown in Fig. 51. For the purposes of this work, we con-
sider that the required surfaces are already available: Pre-operative
volumes have already been segmented, and intra-operative range im-
ages have already been preprocessed to compensate for lens distor-
tions and other systematic errors (refer to [125] for more information
on the topic). We also consider that the surfaces are represented by tri-
angle meshes. Throughout this section, we refer to the intra-operative
surface as source and to the pre-operative one as target. We aim to
establish correspondences between the input surfaces, which can be
used to compute a mapping between them.

The first step in our method is to select a set of feature points.
As we cannot assume that feature points are consistently selected on
both source and target surfaces, i.e., that selected feature points are
located in the same positions on both surfaces, we perform feature
selection only on the source surface. Assuming that the similarity be-
tween descriptors of corresponding points lies within a certain toler-
ance, we select a set of candidate correspondences based on descrip-
tor similarity for each source feature. Correspondences are searched
by a constrained greedy optimization, implemented as a combinato-
rial tree search: For each combination of correspondences that satis-
fies a given set of constraints, and passes a validation stage, an error
value is computed according to an error metric. The combination of
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Figure 51: Processing pipeline for our surface-based intra-operative registra-
tion method.

correspondences with smallest error is taken as the final correspon-
dence set.

As the error metrics and the consistent selection of features play
critical roles in surface matching, we elaborate on their importance
in Sec. 6.2.1. Sec. 6.2.3 shows how we reduce the search-space by
selecting features and candidate correspondences. In Sec. 6.2.4 we
present the new error metric for feature-less surfaces employed in this
work. Finally, in Sec. 6.2.5 we present the method used for searching
for correspondences and error optimization.

6.2.1  Error metrics and feature selection in surface matching

The error metric is an important part of surface matching. As surface
matching is an optimization procedure, which searches for the corre-
spondence set that minimizes an error value given by a specific error
metric, the metric must be robust enough to differentiate a possibly
correct match, assigning a lower error to it, from a probably incorrect
one, which should receive a higher error. Let us assume two discrete
surfaces S = {si} and T = {t;}, the source and the target surfaces, re-
spectively. Let us also assume that each point s; € S and t; € T has
a descriptor, which characterizes its neighborhood, and that the func-
tion q : S x T — R measures the incompatibility between a point on
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S and one on T based on their descriptor dissimilarity, assuming that
a distance metric between two descriptor entities has been defined
along with the descriptor itself. Finally, let us assume the set of cor-
respondences C C S x T between source and target surfaces, which
is defined by its characteristic function oc : S — T. This function
is partial and injective, i.e., not all points have correspondences, but
the ones that have a correspondence, have a single one. Wang et al.
[263] and Raviv et al. [213] stated their error metrics as a quadratic
assignment problem (QAP), as follows:

Eoar(C) = w ) Y (dgeolsi,sk) — dgeoltj, t1) +
(si,t5)€C (s, t1)EC

D> alsut) (6.19)
(sity)eC

where dgeo(-,-) denotes the geodesic distance between two points
on the same surface, and w a weighting scalar to balance the influ-
ence of both equation terms. They minimize descriptor dissimilar-
ity, maintaining geometric consistency at the same time, as distances
between source points must be equivalent to the distances between
corresponding target points, i.e., ensuring that points belonging to a
particular neighborhood on the source surface are assigned to points
in a similar neighborhood on the target surface.

Although the minimization of Egap(-) works sufficiently well sur-
faces with complex shapes, such as a human shape, for exam-
ple, where neighborhoods are very well characterized by different
geodesic fields, in the case of intra-operative registration, where the
surfaces are nearly flat, and points have similar geodesic fields, this
minimization is error-prone. Minimizing Eqap(-) implicitly means
that if a spatial configuration of source landmarks fits to the spatial
configuration of target landmarks, these probably correspond to each
other. For surfaces representing a human shape, for example, having
a landmark on each hand and one on the head, there is probably
only a single matching configuration on the target surface. However,
for nearly planar surfaces, there are several configuration alternatives
that would match.

For example, let us consider the cases depicted in Fig. 52. In these
examples we want to match a set of source landmarks to a set of
target landmarks, which were previously selected in order to reduce
the search-space in the correspondence search stage. In configuration
1, landmarks are located close to each other, where points have simi-
lar inter-point distances. In configuration 2, landmarks are located in
more unique positions, where inter-point distances differ from each
other, forming a more widespread and non-planar spatial landmark
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configuration. Because of the poor landmark configuration chosen in
configuration 1, registration becomes ambiguous: Several registration
alternatives deliver small errors. However, because of the more elab-
orate landmark selection in configuration 2, the correct registration
becomes easily distinguishable.

While consistent feature selection could solve the problem of hav-
ing poor landmark configurations, for the surfaces of interest for intra-
operative registration, no consistent selection is possible, i.e., features
vary greatly in number and position between the surfaces. This fact
is due to the inter-modal aspect of the surfaces. As pre-operative sur-
faces are usually generated by the segmentation of medical images,
while intra-operative surfaces are generated by 3D range scanners,
the following issues occur: Different noise levels, distortions due to
different acquisition principles, deformations due to breathing and
surgical manipulation, lack of prominent landmarks.

Zhang et al. [285] presented a very powerful method for the regis-
tration of surfaces undergoing very large non-isometric deformations.
Their error metric is not based on distance differences and descrip-
tor similarities, but on the surface deformation required to register
one surface to the other. They search for the set of correspondences
that requires the minimum amount of deformation to match the sur-
faces. While this error metric can solve some of the previous method’s
problems, consistent feature selection still plays a major role in their
method: Because of the fact that the computation of deformations
is very time-consuming, they require consistent features in order to
provide a solution in a reasonable space of time.

Without the advantages provided by consistent feature selection,
preventing us from directly employing a simpler error metric, as it
becomes error-prone, and a more complex one, due to the fact that
it becomes computationally untreatable, we focus our attention in
the incorporation of a measure of reliability of a particular spatial
configuration of landmarks in the error metric. This would allow us
to employ an easier and faster method to compute the error metric,
losing the dependency on consistent feature selection.

Given a set of correspondences C, we can generalize the error met-
rics for surface registration as follows:

F—reg(c) = wEg(C) + Ecorresp(c) (6.20)

where Eg;(-) is an error measure of how well two surfaces fit geomet-
rically to each other, and Ecorresp(C) is an error metric of how alike
the source landmarks are to their corresponding ones on the target
surface. Supposing we have a metric for spatial configuration reliabil-
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Figure 52: Comparison of the registration of a set of source and target landmarks, selected close to each other (configuration 1) and from
more unique locations (configuration 2), thus forming a more widespread and non-planar spatial landmark configuration. In
cases (a) and (b), both right and wrong registrations deliver small registration errors, while in cases (c) and (d), only the correct
one delivers a small error.
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Figure 53: Spherical support volume structure used for the descriptor pre-
sented in [257].

ity of landmarks, E.on¢(-), we incorporate it as a weighting term of the
error metric, as follows:

Ereg(c) = (WEﬁt(C) + Ecorresp(c))Econf(C) (6-21)

In Sec. 6.2.4, we present a new error metric for matching feature-
less surfaces, with the incorporation of a measure for configuration
error.

6.2.2  Descriptor

Our descriptor is based on the descriptor structure presented in [257],
where a so-called spherical support volume around a vertex is subdi-
vided into smaller volumes, which are indexed in local spherical co-
ordinates (Fig. 53). For each smaller volume subdivision, histograms
of angles between vertices’ normals and the local coordinate system
are computed. The reasoning behind is that the use of a descriptor
structure, where the location inside the support volume plays a role,
helps increasing the descriptor’s discriminative power, while the his-
tograms reduce the influence of the different triangulations and of the
noise [257]. Key, however, for a volume subdivision that is effective
in increasing the discriminative power, is the computation of a local
coordinate system that is repeatable across surfaces, independently
of the different triangulations or noise levels of the meshes.

In [257] the three eigenvectors of a distance weighted approxima-
tion of the covariance matrix of the points within the support volume
is used as an orthonormal basis for the local coordinate system. The
direction of the vectors (positive or negative) is disambiguated by ma-
jority voting, i.e., the more points in the positive (or negative) direc-
tion of a vector, the more votes for this particular direction. One prob-
lem with this scheme, however, is that, if the meshes are not evenly
sampled, or not sampled in the same way, both the matrix compu-
tation as well as the disambiguation of the vector directions will be
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affected. This problem reduces the descriptor’s repeatability. Noise
will affect them as well, by introducing statistical outliers, which can
become significant for smaller support volumes or not densely sam-
pled meshes.

To reduce the influence of uneven sampling and of noise, instead
of using the points within the support volume for the computation
of the local coordinate system, we employ their normals, which, as
shown by Petrelli and Di Stefano [207], are more robust and repeat-
able across surfaces. The normals are weighted by the influence area
(Voronoi area [189]) of their respective points, which helps account-
ing for uneven distributions of the mesh vertices, as vertices in low
density regions have bigger Voronoi areas. We compute the approxi-
mation of the covariance matrix C; for the spherical support volume
S; around vertex v; as follows:

1

Wi = e (6.22)
! ZV)' e€S; A(V] )

Ci = Wj Z A(V])ﬁ)ﬁj (623)

VjESi

where A(-) denotes the Voronoi area of a vertex, i; the unit normal of
vertex vj, ﬁjT the transposed normal vector, and r is the radius of S;.
As Cj is symmetric, its eigenvectors form an orthonormal basis for the
region around v;. It is important to notice that C; is not a covariance
matrix, but it features the properties that we seek for the computation
of the basis for the local coordinate system: It is invariant to transla-
tion and scale, since the normals are invariant to these operations. We
can also show that, if we rotate the data set, the eigenvectors of the
matrix C; rotate the same amount as the data (see appendix A).
Although the eigenvectors of C; form an orthonormal basis, their
directions must still be disambiguated. In order to account for uneven
vertex distributions, instead of orienting the vectors in the direction of
higher point concentration, we orient them in the direction of higher
influence area. Let %;r, g f and Zf denote the eigenvectors of C; in in-

creasing order of their eigenvalues, while X, , j; and z;” denote their
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opposite directions. The disambiguated basis vector X; is computed
as follows:

wy = > A(vy) (6.24)
(v; €S)A(R;-%f=0)
wy, = Z Alvs) (6.25)
(v; €S )A(R-R; >0)
+ >
g, = ¢ Wk Z W (6.26)

X.  otherwise

The z; axis is disambiguated by the same procedure, while the v
axis is obtained as §; = Z; x X;. Our local orthonormal coordinated
system for vertex v; is given by (¥i, Ui, Zi).

Having a repeatable and disambiguated local coordinate system,
we are now able to subdivide the support volume into smaller sub-
volumes by creating boundaries in the elevation, azimuth and radial
dimensions. Let R = {ro, ..., "(N4u—1)1 © = {00, -+, O(Nuwaion—1) 17
and ® = {do,..., P(N,,,..—1)} denote the radial, elevation and az-
imuth subdivisions, respectively. As subdivisions closer to the center
of the sphere are smaller than the others and may not contain sig-
nificantly enough points for computing a repeatable histogram, we
define a minimum radius ryinin order to avoid this problem. The sub-
division S;(ry, 01, ¢ ), in which lies a point p = (xp,Yp, zp) within
the support volume of a particular vertex vi = (xi,Yi, zi), can be iden-
tified by first converting p to vi’s local coordinate system, as follows:

Plocal = gi (p — Vi) (6'27)

where Piocal = (Xiocals Ulocals Zlocal) denotes the point p in local coor-
dinates. After computing pjoca;, We are able to compute it in local
spherical coordinate systems, as follows:

r= \/Xlzocal + ylzocal + Z’lzocal (628)
0 = cos! (@) (6.29)
— Ylocal
= tan ! (2 6.
d) o <Xlocal ) ( 30)

where pspherical = (1,0, ¢). Note that the inverse of tangent in equa-
tion 6.30 must take the correct quadrant of the plane defined by x
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and y into account. We assign pgpherical t0 its respective subdivision
Si(T, 01, m) in the support volume as follows:

\\ — NradiusJ T < Tmax

k = e Tmin (6.31)
Nradius —1 otherwise
LiNelevationJ 0 <27
L= (6.32)
Nelevation — 1 otherwise
QN zimi J <T
m = \ft azimuth d) (633)

Nazimuth — 1 otherwise

where Tmax denotes the radius of the support volume S;.

Within each subdivision Si(ry, 01, dm ) of the support volume of
a vertex vj, vertex counts are accumulated in bins of a histogram ac-
cording to the cosine of the angle between 15 and Z; (i; - Z;), for every
vj € Si(Tx, 01, ¢m). Let Hir o,,¢n) = {bo,---, b(ny,.—1)} denote the
bins of the histogram of the vertices within subdivision S;(rx, 01, $m).
We identify the bin b in which a vertex v; will be added to the count
as follows:

q= mes (Tl] Zl) <1 (634)

Npins — 1 otherwise
In order to compensate for uneven vertex distributions, instead of
adding 1 to the vertex count of a particular bin, we add the Voronoi
area of vertex vj, A(v;). Also, in order to compensate for small shifts
of the local coordinate system, we accumulate A(v;) to the neighbor-
ing subdivisions and bins, weighted by the inverse of the distance of
v; to the center of each subdivision or bin. Finally, each histogram
is normalized in order to account for different point densities within
the subdivisions.

The descriptor for a point v; is given by the vector D; composed
of the different histograms of each support volume’s subdivision. In
order to account for variations in point densities, vertex distributions
and shifts of the local coordinate system, D; is normalized.

6.2.3 Selection of features and candidate correspondences

Feature selection is usually employed to detect points that are most
unique on the surfaces. As mentioned above, the consistent detection
of these points, i.e., the selection of points that are in the same posi-
tions on both surfaces, has two main advantages for surface match-
ing: Firstly, as feature points are most unique, their corresponding
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ones are usually easier to identify, i.e., their descriptors are very dif-
ferent from the other descriptors on the surface. Secondly, the search-
space for possible correspondences is reduced, as only correspon-
dences among feature points need to be searched. However, as we
have shown before, surfaces of interest for intra-operative registration
are mostly feature-less and feature selection across these surfaces is
inconsistent. We therefore adopt the strategy employed by Gelfand
et al. [115], selecting features only on the source surface and com-
puting sets of candidate correspondences for each one of them. Can-
didate correspondences are selected under the assumption that the
similarity between descriptors of corresponding points lies within a
certain tolerance. In contrast to [115], we cannot assume rigidity be-
tween surfaces and also need to consider the previously mentioned
noise and distortions, allowing higher descriptor similarity tolerances
and having to work with bigger candidate correspondence sets. This
issue is dealt with in Sec. 6.2.5 and 6.2.4.

For the selection of feature points on the source surface, we employ
the multi-scale approach presented by Ho and Gibbins [131]. Accord-
ing to this approach, a point is considered a feature if it corresponds
to the maximum or minimum curvedness (a measure of curvature
intensity [155]) in the local neighborhoods of growing scales. One
advantage of this approach is that it delivers a measure of feature con-
fidence. We use this measure to separate the features into two different
sets: The basis set (B), containing the N highest confidence features,
which are at least a certain geodesic distance apart from each other,
for a better distribution above the surface (we use the clustering ra-
dius Tguster as the minimum distance; see below); and the validation
set (V), containing all of the others. Features in V that are close to each
other, within a distance §,,), are merged into the highest confidence
feature. The purpose of these sets is explained in Sec. 6.2.5.

For each landmark s; € B UV on the source surface, a set of can-
didate correspondences on the target surface is selected, based on
descriptor similarity. We employ here the descriptor presented in Sec.
6.2.2. It is important to note, however, that the method for surface
matching presented here is independent of the descriptor chosen, re-
quiring only the definition of a distance metric between two instances
of the same descriptor.

Together with descriptor similarity, we also use the shape-index [155]
to better identify potential correspondences. The shape-index is a
scale-, rotation-, and translation-invariant measure, which continu-
ously describes a local surface shape in the interval [—1, 1] (Fig. 39 on
page 86). Points with very divergent local shapes are discarded as po-
tential candidate correspondences. Having a function q : S x T — R
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that measures the incompatibility between a point on S and one on T
based on their descriptor dissimilarity, the candidate correspondence
set T; of landmark s; on the source surface is defined as follows:

T = {t; € T:(qlsi,t)% < Sdesc) A\
(Isi(si) —si(t;)] < &)} (6.35)

where T denotes the target surface, t; € T a point on the target sur-
face, dgesc the dissimilarity tolerance, si(-) the shape-index of a par-
ticular point, and 9 the shape deviation tolerance. Here, q(-,-) is
taken as the Euclidean distance between the descriptors of the input
points. Because of the fact that the descriptors used here are normal-
ized vectors, the maximum distance between two descriptors is 2. As
for the normals, the shape-index is also computed according to [54].
Both source and target landmarks lying close to the boundaries of
the mesh, within a distance smaller than the spherical volume of the
descriptor, are discarded, as the descriptors in these cases are incom-
plete, and therefore unreliable.

After selecting the candidate correspondences, the points inside
each set are clustered in order to reduce their sizes. The clustering
is performed around the candidate points that have most similar de-
scriptors to s;, within a geodesic radius given by 7¢jyster- For the clus-
tering, the candidate correspondences of s; are sorted according to
their descriptor similarity. Starting from the most similar candidate,
all other points within the defined radius are removed from the can-
didate correspondence set. Note that by clustering the candidate cor-
respondences for a particular source landmark, we are introducing
a localization error into the correct correspondence position equal to
Tcluster af MOst.

6.2.4 A new error metric for the registration of feature-less surfaces

As shown in Sec. 6.2.1, the spatial configuration of landmarks plays
a crucial role in surface matching. As the consistent identification
of unique landmarks by means of feature selection is not possible for
surfaces of interest of intra-operative registration, a measure of spatial
configuration reliability is desirable in the error metric. Following
the formulation of the surface registration error metric presented in
Eq. 6.21, we show here how the composing terms are estimated. In
Secs. 6.2.4.1 and 6.2.4.2, we present the error measures for geometric
fitting (Eg¢(-)) and correspondence likelihood (Ecorresp (), respectively.
In Sec. 6.2.4.3, we revisit the work of Fitzpatrick et al. [102] on error
estimation for point-based registration, and derive an expression for
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the reliability of the spatial configuration of landmarks, which we
denote configuration error (Econe(+)).

6.2.4.1 Fitting error

For the computation of the fitting error, we employ the pseudo-
Hausdorff distance, which, as shown by Eckstein et al. [93], is able
to deal with non-rigid deformations of similar shapes. The pseudo-
Hausdorff distance is a global metric that allows one to measure how
far two subsets of a metric space are from each other. The fitting error
for a is computed as follows:

—1
1
B0 = 5 X A(sn( > . A(“)mﬂ) ¥
eC (

(si,t5) sk,t1)eC

-1
1 Alsik)
= > A D (6.36)
|C‘ (sit;)eC ((Sk,tl)GC dEucl(tj/(p(Sk))+£)

where A(-) denotes the influence area of a particular point [189],
dgual(-, -) the Euclidean distance, € a small number for ensuring that
the denominators are not zero, and ¢ : S — T a mapping from the
source to the target surface spanned by the correspondence set C.

6.2.4.2 Correspondence error

Like Wang et al. [263] and Raviv et al. [213], we compute the corre-
spondence error as follows:

1
Ecorresp(c) = @ Z q(Si, tj)z (637)

(si,t;)eC

where g : S x T — R measures the incompatibility between a point on
S and one on T based on their descriptor dissimilarity, as introduced
in Sec. 6.2.3.

6.2.4.3 Configuration error

In their work on rigid point-based registration, Fitzpatrick et al. [102]
came to the conclusion that the use of a fitting error by itself is an un-
reliable indicator of registration accuracy. The same conclusion can
be intuitively extended to other point-based registration errors, as
even a complex deformation error would deliver similar values for
cases (a) and (b) (Fig. 52), making the distinction between a right
and wrong registration nearly impossible. For this reason, Fitzpatrick
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et al. [102] derived an approximate expression for measuring the reg-
istration error at a spatial position x, which can be any point in the
space, based on a spatial configuration of landmarks and their local-
ization errors. This error is known as the target registration error (TRE),
and it is widely used to guide the placement of markers around a
particular target (e.g. a tumor) in marker-based surgery guidance sys-
tems. Although variations of the TRE expression were proposed for
anisotropic, inhomogeneous noise [73], they do not have closed-form
solutions for their computation. The expected value for the TRE at a
spatial position x, under the assumption of isotropic, homogeneous,
independent, zero-mean Gaussian noise, is given by:

) (FLE(L) (, 1 ¢ di
(TRE?(x, L)) T (1 +3 ]; fﬁ) (6.38)
where L denotes the landmarks, di the distance from the target to
the principal axis Vi of L, and fyx the root-mean-square distance of
the landmarks to their principal axis V. The fiducial localization error
(FLE) denotes the imprecision in locating a landmark. In the context
of marker-based guidance, FLE denotes the error of the tracking sys-
tem in locating the markers. The TRE expression states that the more
widespread and non-planar the landmark set, the more reliable it is.
In the context of surface matching, a set of widespread correspon-
dences is also beneficial because it reduces the likelihood of ambigu-
ities: The larger the area spanned by the fiducials (in all directions)
the fewer potential matches with a good fitting value can be found.

In our case, a correspondence set (C C Cs x Ct) is composed of
a set of landmarks on the source surface (Cs) and a set of corre-
sponding points on the target surface (Ct), one for each landmark.
Let us also assume that we have a target point defined beneath the
target surface. In this context, we can define the purpose of intra-
operative registration to be the search for a transformation that estab-
lishes a relation between the current patient situation, represented by
the intra-operative surface, to the pre-operatively planned target (Fig.
54a). Having a pre-defined target, one could propose the use of the
TRE expression in order to find a set of correspondences that mini-
mizes the error to the target point. Unfortunately, the TRE expression
assumes that the correct correspondences are previously known (i.e.,
the spatial relation between target point and intra-operative data) and
measures the error to the target point based on the localization error
of these known correspondences. Minimizing the TRE expression for
surface matching based on a real target point would misguide the
registration towards the location of the target point, as the distances
to the principal axes (di) are smaller there (Fig. 54b).
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Figure 54: The computation of target registration error (TRE) [102] for surface
matching may be misleading, as the TRE assumes that the correct
correspondences are previously known. In (a), the correct regis-
tration returns a large TRE, as the distance to the target point
(red dot) to the source landmarks is large. Minimizing the target
registration error misguides the registration towards the target
point, as shown in (b), where the distances between target point
and source landmarks are smaller.

In order to constrain the TRE as a local measure for the spatial con-
figuration error of a set of landmarks, we compute a sphere around
the landmarks, centered on their centroid, and average the TRE for
all possible targets inside this sphere. The advantage of this approach
is that the error values of different spatial configurations are directly
comparable, as the target points are defined locally for each particular
landmark configuration. Furthermore, as all target points are defined
locally for the landmarks, inside their bounding sphere, the result is
only dependent on their spatial configuration, which is what we want
to quantify, and not on the distance to the targets. The expression for
the estimation of the average TRE is as follows:

(TRE*(L)) = |l1| /u (TRE?(u, L)) du

_ (FLE?(L)) e
= — * (H_S;f%j (6.39)

where U denotes the space within the bounding sphere, and [U]| the
volume of the bounding sphere. The FLE is set to the correspondences
localization error introduced by the clustering of the potential corre-
spondences (Sec. 6.2.3), i.e., (FLE*(L)) = Tczluster‘ For a particular cor-
respondence set C, we compute the configuration error as follows:

Econf(C) = max((TRE?(Cs)), (TRE?(C1))) (6.40)
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where Cs and Ct denote the source and target landmarks in C, re-
spectively.

6.2.5 Correspondences search

The purpose here is to find the set of at least N correspondences
with minimal registration error Ereg(-) (Eq. 6.21). A correspondence
between the source surface S and the target surface T is given by a
tuple of points ¢ = (sy, t}), where s; € S and t} € T, C T, where
T; denotes the set of candidate correspondences for point s; (see Sec.
6.2.3). A set of correspondences C = {cy,...,Cn} is a finite enumera-
tion of correspondences, such that each point s; and t; appears only
once in the enumeration, i.e., there are no multiple correspondence
assignments to a single point (see Sec. 6.2.1).

A greedy optimization is employed to find the minimum of the er-
ror metric. The optimization enumerates all possible initial correspon-
dence sets of Njujt correspondences. In order to speed-up the search,
we utilize, in this initial stage, only the landmarks in the basis set B,
which are the most confident landmarks on the surfaces, according to
a confidence measure (see Sec. 6.2.3). During this enumeration, every
time a correspondence is added to a potential initial correspondence
set, a set of constraints is applied, declaring an initial correspondence
set invalid if any of the constraints is not fulfilled (Sec. 6.2.5.1). These
constraints enforce the reduction of the search-space even more. If
an initial correspondence set passes all of the constraints, these cor-
respondences are validated by a voting strategy (Sec. 6.2.5.2). Any
other correspondence that “votes” in favor of a particular initial cor-
respondence set is also added to it. If a correspondence set receives at
least Nyotes Votes, such that N = Nipit + Nyotes, its error is computed
according to the error metric presented in Sec. 6.2.4. The set with the
smallest error is taken as the final correspondence set (Cginal), and is
used for mapping the source surface onto the target surface. Note
that if no correspondence set manages to pass the constraints check
and voting stage without being declared invalid, no correspondences
are returned by this method. This optimization is implemented as the
traversal of a search-tree (Sec. 6.2.5.3), similar to [115, 285].

6.2.5.1 Constraints

In order to reduce the search-space, a set of constraints is applied to
the correspondence set every time a new correspondence is added
to it. If the set, with the new correspondence, does not fulfill any of
these constraints, the set is said to be invalid, and is discarded. For
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a new correspondence (s, t]:l) inserted in the correspondence set, the
following constraints apply:

* Uniqueness constraint: Each point on the source surface is only
allowed to have a single corresponding point on the target sur-
face. Inversely, every point on the target surface can only corre-
spond to a single point on the source surface. Following these
premises, neither s; nor the point represented by t} may be
found in any other correspondence in the set.

* Geodesic distortion constraint: For every pair of correspondences
in the set, the geodesic distance between the points on the
source surface must be similar to the distance between their
corresponding points, within some distortion and deformation
tolerance dgeo, plus the uncertainty introduced by the clustering
radius Tgyster- This means, for every correspondence (sy, t{‘) in
the set, the assertion [dgeo (i, Sk ) — dgeo (t)?, t‘f)l < (8geo + 2Tcluster)
must hold, where dgeo(+,-) gives the geodesic distance be-
tween two points (we compute geodesic distances on triangular
meshes according to [252]).

* Gauss map orientation constraint: The Gauss map is a mapping
of a surface to the unit sphere. In order to ensure that both
the source points and the corresponding target points have the
same orientation, the orientation of their Gauss maps is consid-
ered for each triplet of correspondences in the set. Two Gauss
maps have the same orientation if, and only if, the determinant
of their normals have the same sign [281]. This means, for ev-
ery correspondence triplet (s, t}), (sx,t¥) and (sm,tT), in the
set, the assertion det(f;, i, iy ) det(ﬁ}, ﬁ]f, nnt) > 0 must hold,
where 1l denotes the unit normal of point sy.

6.2.5.2 Voting

Every initial correspondence set, of size Ninit, that fulfills all of the
above constraints, is submitted to a voting strategy, which aims to
evaluate the adequacy of the mapping spanned by these correspon-
dences to other possible correspondences. For this reason, a mapping
® : S — T is computed. For every source point in the set BUV that
does not yet have a correspondence, its closest correspondence candi-
date is searched for as follows:

t} = arg miﬂ dEucl(q)(Si)/tt) (641)

theT;
where dgy(-) denotes the Euclidean distance. A vote is cast in favor

of the correspondence set if the addition of the correspondence (s;, t]-i)
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to it still allows all of the constraints in Sec. 6.2.5.1 to be fulfilled.
If a correspondence set achieves at least Nyowes votes, it is said to
be validated, and all correspondences that cast votes in its favor are
added to it.

6.2.5.3 Implementation

The optimization strategy is implemented as a search-tree, whose root
is the empty set, each node represents a correspondence, and a path
from a tree-leaf to the root represents a correspondence set. During
the construction of the tree, the constraints are applied with the inser-
tion of every new branch. If any of the constraints is not fulfilled, the
branch is pruned. Every path that reaches a length of Njuit nodes is
submitted to the voting procedure. The path with the smallest error
is declared as the final set of correspondences.

6.2.6 Evaluation and results

For the evaluation of the point-based approach, we performed here
experiments for assessing:

¢ The robustness of the presented descriptor in the characteriza-
tion of surfaces with high noise levels (Sec. 6.2.6.1);

* The robustness and accuracy of the point-based surface match-
ing method for the registration of surfaces acquired from ob-
jects under intra-operative conditions. For these experiments, a
respiratory motion simulator was employed for applying de-
formation to the models. Acquisitions were conducted using a
time-of-flight (ToF) camera and a computed tomography (CT)
(Sec. 6.2.6.2).

6.2.6.1 Descriptor

In order to evaluate the robustness of the presented descriptor (Sec.
6.2.2) in the presence of noise, we compared it to the descriptor pre-
sented by Tombari et al. [257], using time-of-flight (ToF) data sim-
ulated from computed tomography (CT) data, according to [181].
The data set was composed of a head, a knee and a liver (Fig. 55).
One characteristic of this data set is the low occurrence of prominent
points. A set of virtual markers were generated throughout the entire
organs’ volumes, which were used as ground-truth reference.

The experiment consisted of computing a registration between the
surfaces and evaluating the average of the distance between corre-
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Figure 55: Simulated ToF data (blue) and its corresponding CT surface
(green) used in the evaluation. Top-left: Human head; Top-right:
Human liver; Bottom: Human knee.

sponding markers after registration. For surface registration, we em-
ployed in this experiment the method presented by Gelfand et al.
[115], which can be used for finding a rigid registration between the
surfaces. Though this method was not designed for matching surfaces
from different modalities or in the presence of high noise levels, it is
enough to illustrate the robustness of the presented descriptor. A min-
imum of 20 correspondences were searched, using a clustering radius
of 20 mm (see [115] for more details on the parameters). The radius of
the descriptor (rmax) was set to 30 mm. For each data set, the descrip-
tor similarity threshold varied incrementally in the interval [0.4, 1] (e;
see [115]), with 0.1 step size. The results are shown in Fig. 56. In all
cases, the correspondences search method was able to find an param-
eter interval where the mean distance between ground-truth markers
lie close to 5 mm, using the descriptor presented here. However, the
descriptor presented by Tombeari et al. [257] is not descriptive enough
to ensure correct correspondences.

6.2.6.2  Surface registration

The objective of our experiments was to evaluate the accuracy, com-
putation time, and robustness to parameter variation of the surface
matching method presented here for the registration of data scanned
by a ToF camera to surfaces extracted from CT images. We also eval-
uated the influence of the newly introduced configuration error, and
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Figure 56: Comparison between the descriptor presented here (blue) and
the one presented by Tombari et al. [257] (green). Shown are the
mean distances between corresponding ground-truth markers for
different descriptor similarity thresholds.

the robustness of our method for the registration of surfaces under-
going deformation. The validation data sets consisted of real scanned
data, including a physical phantom of the human liver and a real
porcine liver (ex vivo).

The physical phantom data set was composed of a previously seg-
mented CT scan of a human liver phantom, and of real ToF acqui-
sitions of this phantom. For the ToF acquisitions, the phantom was
placed in a respiratory motion simulator [178] (Fig. 57a). Two acqui-
sitions were made, one for the full expiration state (Fig. 57c), another
for the inspiration state (2.4 cm; Fig. 57d). Before the CT and ToF
acquisitions took place, a set of small nearly flat (< 1 mm) markers
was spread over the surface, to serve as a ground-truth reference. The
physical phantom allows us to evaluate our method on an object that
actually resembles the shape of a liver, as a real liver loses its original
shape when extracted from the body, due to the lack of blood flow
and to the loss of fluids.

The porcine liver data set was acquired in the same way as the
physical phantom data set. Though the shape of the explanted organ
does not resemble the original shape of the liver anymore, due to
loss of fluids, this data set allows us to assess the performance of our
method for the registration of surfaces acquired from real tissue, with
its particular coefficients of light reflection and absorption.
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Figure 57: Evaluation setting using a physical phantom of the human liver.
In (a), the phantom is positioned in a respiratory motion simula-
tor [178]. In (b), a rectangular region of interest is selected on the
ToF scan. The respiratory simulation is shown in (c) (expiration)
and (d) (inspiration). The green lines next to the top right corners
indicate the expiration position of the device, while the red one
indicates the inspiration position. The distance between the green
and red lines is 2.4 cm. Note that the original motion simulator
was modified with polystyrene in order to fill empty spaces and
increase the robustness of the setting.

In all acquisitions of real ToF data, the integration time parame-
ter of the ToF camera was adjusted so as to minimize the influence
of the markers on the final surface (phantom: 500 ps; porcine: 200
us; human: 700 us). ToF range images were calibrated, in order to
compensate for lens distortions, and were roughly smoothed using a
bilateral filter (kernel widths: 04omain = 1.7; Orange = 21), in order to
reduce noise. Also, for each ToF acquisition, a rectangular region of
interest was manually defined (Fig. 57b), as well as a distance range
of interest. All CT meshes were decimated to about 10k points.

The experiments conducted for this evaluation consisted of apply-
ing the presented method for surface matching to register ToF data
to corresponding CT data, and assessing the matching performance.
All ToF to CT registrations were evaluated with three clustering radii
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(10, 20 and 30 mm), in order to assess their influence on the registra-
tion. For every radius, the descriptor distance tolerance dgesc, Which
directly influences the sizes of the potential correspondence sets, was
chosen in the interval [0.4, 1], with a step size of o.1. This interval
was found in previous experiments with ToF and CT to be tolerant
enough, to allow points on the source surface to have a reasonable
number of correspondence candidates, but not too tolerant, so that
every point on the target surface is a candidate. The correspondence
search was performed twice, for a minimum of 10 correspondences
(Ninit = 5, Nyotes = 5, Ng = 10) and for a minimum of 15 corre-
spondences (Ninit = 5, Nyotes = 10, Ng = 15), in order to evaluate
the robustness of the method with more or less correspondences. The
shape-index tolerance, &g (Sec. 6.2.3), was fixed at 0.25, which cor-
responds approximately to the eight curvature classes presented by
Besl and Jain [33]. The descriptor was computed with a spherical vol-
ume with a radius of 30 mm, with two subdivisions on the radial
dimension, 5 on the elevation, and 10 on the azimuth (see Sec. 6.2.3).
The histograms were computed with 20 bins. This descriptor was the
most adequate in a set of tests, considering the decimation levels of
the meshes. As we do not have any a priori information about the
noise on the surfaces and on the precision of the surface triangulation,
we set the fiducial localization error (FLE; see Sec. 6.2.4.3) to 1. Both
surface mappings required in our method (¢ and ®; Secs. 6.2.4.1 and
6.2.5.2, respectively), as well as the registration between the surfaces
using the final correspondence set (Cina1), were computed rigidly ac-
cording to [134]. All of the experiments were performed twice: In the
first run the configuration error was incorporated in the error metric,
while in the second run, the error was computed without it. The com-
putations were performed with a single core 2.9 GHz Intel processor.

To assess the performance of our method, we measured: (1) The
computation time; and (2) The accuracy of the registration. The ac-
curacy was assessed by the mean distance between corresponding
surface markers.

The results of our experiments are shown in Tab. 3. In this table,
the average error for the entire descriptor distance interval is shown
for each experiment.

With incorporation of the configuration error in the error metric,
the error remained under 10 mm for the experiments using cluster-
ing radii of 10 and 20 mm, with exception for the phantom model in
the inspiration state, with a clustering radius of 20 mm and search-
ing for a minimum of 10 correspondences (this case is depicted in
Fig. 58). Only very small differences could be observed between the
searches for a minimum of 10 or 15 correspondences. With a cluster-
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ing radius of 30 mm, errors below 10 mm could only be found for
the registration in the expiration stage. Note that it was not possible
to find correspondences over the whole descriptor distance tolerance
interval, as shown in Fig. 58, for the experiment with porcine liver
when searching for a minimum of 15 correspondences.

Without the incorporation of the configuration error, low errors
could be only found in a very few cases, mostly when searching for at
least 15 correspondences. For the expiration state, better results were
obtained with a clustering radius of 30 mm, while for the inspiration
state, the results are more optimal with a clustering radius of 20 mm.

Computation times ranged from less than one minute, for a de-
scriptor distance tolerance of 0.4 searching for a minimum of 10 cor-
respondences, up to 5.5 hours, for a descriptor distance tolerance of
1.0 searching for a minimum of 15 correspondences (Fig. 58). Search-
ing for 15 correspondences results in significantly longer computation
times.

Fig. 59 shows the correspondences found between both phantom
and porcine liver surfaces, in the inspiration state, when searching
for a minimum of 10 correspondences, with a clustering radius of 10
mm and a descriptor distance tolerance of 0.4. Note that the surfaces
are nearly flat and noisy, and that there are also other objects in the
environment that do not belong to the objects of interest. In the case of
the porcine liver (Fig. 59b), a reflection spot can be observed directly
in the middle of the surface (elongated peak), generated by the light
reflection properties of real tissue. Despite these issues, the presented
method was able to identify a set of correctly corresponding points.

A few qualitative results for the registration of surfaces with rela-
tively small partial surfaces and high noise levels are shown in Figs.
60 and 61, respectively. Also, the method was employed for obtaining
correspondences between the faces of different persons, as shown in
Fig. 62. Observe that, even though the models have one face side al-
most symmetric to the other, the method was able to correctly match
them.

6.2.7 Discussion
In the following sections, the results obtained for the descriptor eval-

uation (Sec. 6.2.7.1) and for the evaluation of the presented surface
registration method (Sec. 6.2.7.2) are discussed.
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Data Cluster. rad. 10 20 30
Corresp. 10 15 10 15 10 15

Exe. | Phantom 31£05 34404 | 54415 60426 | 89+38 104476
With Porcine 53+2.0 52+22 | 23407 23+£10 | 3.6+£11 31423
conf. Insp. | Phantom 41420 38416 | 1384211 59+£29 |933+£51.8 6524342
error Porcine 53+19 54422 | 55443 30417 |37.1+383 196492

Exe. | Phantom 10354169 89.6+£585 | 223+425 98+£97 |206+246 120+64
Without Porcine 2754257 72+62 |256+350 67+£11.0 | 52426 35+24
conf. Insp. | Phantom 105.6+25.6 88.6+59.2 | 59.44+53.6 3624541 |99.94+56.1 8644367
error Porcine 64.6+37.0 3074363 (2554379 83450 |41.6+451 203+89

Table 3: Results of the experiments. The table shows the errors between ground-truth markers for each experiment, averaged for the entire
descriptor tolerance interval. All values are given in mm. We show the errors for both the computation of the registration with
and without the incorporation of the configuration error (Sec. 6.2.4.3) in the error metric. Exp. indicates that the surfaces were in

the expiration state (not deformed), while INsP. denotes the inspiration state.
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Figure 58: Error and computation times for the registration experiment with
phantom and porcine liver surfaces in the inspiration state (de-
formed), using a clustering radius of 20 mm. Note that the com-
putation time axes have a logarithmic scale.

(b)

Figure 59: Correspondences found between the surfaces acquired by a time-
of-flight (ToF) camera and a computed tomography (CT) of a liver
phantom (a) and a porcine liver (b). The ToF surfaces are in the

inspiration state (deformed).
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Figure 61: Correspondences  be-
tween simulated ToF
surface, with low res-
olution and therefore
higher noise, and its
originating one. Mean
error after registration
based on ground truth
information: 9.49 mm.

Figure 60: Correspondences between sim-
ulated ToF surface and its orig-
inating one. Mean error after
registration based on ground
truth information: 4.29 mm.

6.2.7.1  Descriptor

The descriptor presented here (Sec. 6.2.2) makes use of the robustness
and repeatability of the vertices normals [207] for enhancing a previ-
ously existing descriptor, from Tombari et al. [257]. Furthermore, our
descriptor also compensates for uneven and unbalanced vertex dis-
tributions, by introducing the usage of vertex influence areas, repre-
sented by their Voronoi areas [189].

In a study on descriptor repeatability [207], the descriptor pre-
sented by Tombari et al. [257] showed to be relatively stable, but per-
formed poorly in the presence of noise and different point densities.
Similar results could be observed in our experiments, where the data
sets present high level of noise, different densities and the meshes are
feature-less. With exception of the “head” data set, which is visually
the one that presents most prominent surface features for matching,
no consistent registration was possible for the other data sets. Impor-
tant to notice, however, that the registration method employed for
the experiments was designed for rigid registration of intra-modal
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Figure 62: Correspondences between the surfaces of the faces of three differ-
ent persons.

surfaces, thus considering that descriptors in approximate same lo-
cations on the two surfaces to be matched are almost similar. Also
important is the fact that the results presented are the average of
the distance of all corresponding virtual markers, which were evenly
spaced throughout the entire CT volume, which means that a small
error on the surface alignments accumulates to bigger errors on the
markers that are farther away from the surface.

On the other hand, our descriptor showed to be more stable and
have more discriminative power, even for surfaces with no prominent
features, such as the “knee” data set, for example. In all cases, param-
eter intervals could be found, where the registration was very close.
Although the experiments could be improved, the results obtained
confirm the observation from Petrelli and Di Stefano [207], related
to the higher repeatability and robustness of normals, even in noisy
situations.

6.2.7.2  Surface registration

A method for automatic surface matching that directly addresses the
registration challenges imposed by intra-operative environments was
presented. The most critical consequences of these challenges are: (1)
No consistent selection of feature points is possible; and (2) Descrip-
tors of surface points at the same anatomical locations are not similar.
Having to deal with those two issues, methods for automatic surface
matching presented so far are, to the best of our knowledge, inad-
equate for intra-operative registration, as the consistent selection of
very few feature points and reliable descriptor similarities for points
at the same locations are basic assumptions that most methods rely
on. In order to overcome these issues, we presented a method that
finds surface correspondences by the selection of two spatial configu-
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ration of landmarks on the source and on the target surfaces that can
be better fitted to each other, according to an error metric. This error
metric not only incorporates a fitting error, but also a new measure
for spatial configuration reliability.

The main advantage of the presented method, in comparison to re-
lated work on surface matching, is its independence from consistent
feature selection, i.e., the selection of points on both source and tar-
get surfaces that correspond to the same locations. This characteristic
allows for robust registration of feature-less surfaces and for cases
where the consistent selection of features is not normally possible,
such as for intra-operative registration. The implicit assumption in
surface matching that, if a set of source landmarks fits to a set of tar-
get landmarks, they probably correspond to each other, is relaxed in
this work. Instead, we balance the registration error with a measure
of spatial configuration reliability, which we call the configuration er-
ror. The configuration error is based on a metric for the estimation
of registration error in any given spatial position based on the lo-
calization error of a set of landmarks, called target registration error.
Although widely applied in the context of point-based registration,
this metric is not directly applicable to our surface matching task for
two reasons: Firstly, neither the landmarks nor the correspondences
are known a-priori. In contrast, the metric is used to actually find ap-
propriate features and correspondences. Secondly, the position of the
target relative to the ToF surface is not known. On the other hand, the
formula has important properties relevant to our task: It prefers fea-
tures, that have a large mean squared distance to their principal axes
and a small fiducial localization error. In the case of feature-based sur-
face matching, widespread landmarks are extremely advantageous
because they reduce the possibility of ambiguous assignments.

Overall, the proposed method proved to be very accurate. As most
methods for intra-operative registration presented so far focus only
on the fine alignment of the surfaces, assuming that an initial regis-
tration is already provided, the robustness of the initial alignment is
an issue for them. Because of the importance of the initial alignment,
these methods took several measures in order to reduce the sensitiv-
ity to it. The results presented here are definitely in the acceptable
range, as after employing our method for registration, the surfaces
are already very closely aligned (see [52, 66, 91] for more details on
fine alignment of surfaces for intra-operative registration).

The evaluation experiments were performed in as realistic intra-
operative conditions as possible, and were carefully planned for the
evaluation of our method. These experiments required a complex set-
ting, involving motion simulators, ToF and CT acquisitions, and re-
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liable identification of ground-truth landmarks. Although the num-
ber of data sets was relatively small, they successfully reflect several
issues that may occur when dealing with surfaces acquired intra-
operatively. Furthermore, the acquired data sets allowed for very elab-
orate evaluation of the registration algorithm and the parameters that
influence its behavior. The proposed method was also successfully ap-
plied to the registration of a large set of simulated data.

Searching for a minimum of 10 or 15 correspondences did not have
a great impact on the accuracy, as one might guess, since the search
for 15 correspondences requires more validation points, reducing the
probability of finding an incorrect match. The impact on the compu-
tation time, however, was significant, as searching for 15 correspon-
dences introduces more correspondence combinations that need to be
analyzed.

Much credit for the stability of the method must be given to the
incorporation of the configuration error in the error metric. Picking
feature configurations that are somehow unique (lower configuration
error) increases the probability of having a correct match, if the regis-
tration error is also small. In other words, if a set of correspondences
that fits an unique set of landmarks can be found, there is a good
chance that these correspondences are correct. As the location of fea-
ture points is not reliable, disregarding the configuration error in the
error metric causes instability in the method. Even though searching
for a minimum of 15 correspondences showed to be better in this
case, failing to consider the configuration error in the registration
makes the method unreliable. The incorporation of the configuration
error allows us to search for fewer correspondences in less computa-
tion time, while still maintaining accuracy. In order to improve the
efficacy of the configuration error even more, measures of curvature
intensity (e.g. curvedness [155]) could be incorporated in the equa-
tion as a measure of localization confidence, as points in locations
with higher curvature are probably more accurate than points lying
in flat regions.

Throughout the experiments, the choice of parameters did not have
any major influence on the accuracy, but did have a greater impact
on the computation times. To optimize the computation time, a lower
descriptor distance tolerance would be recommended. However, by
setting the tolerance to a very low value, many correspondence can-
didates are eliminated, and the possibility that none or false corre-
spondences are found is higher. As we have already shown that the
descriptor representing the same locations on ToF or CT may differ,
a moderate tolerance must be allowed in order to make sure that
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the correct corresponding location is also listed among the candidate
correspondences.

For the registration experiments in the inspiration stage (deforma-
tion), a loss of accuracy was observed when using a larger clustering
radius (30 mm). Because of the large clustering and the lack of fea-
tures, registration in this case becomes ambiguous. The size of the
clusters has a direct impact on the level-of-details of the representa-
tion of the target surface (number of candidate correspondences). The
smaller the cluster, the more details (higher number of candidate cor-
respondences) are considered. For nearly-flat surfaces, a large cluster-
ing radius has the same effect as aggressive smoothing, eliminating
the small differences between surface parts that could be decisive for
successful matching.

Both the required surface mappings, in the correspondences valida-
tion stage and in the computation of the registration error, were com-
puted rigidly. Although the use of a rigid transform was sufficient for
our purposes, it is evidently not enough when dealing with higher de-
grees of deformation. The choice of a more adequate class of deforma-
tion for the computation of the mappings might improve the robust-
ness of the method and requires further investigation. However, as
mentioned above, there are already methods for surface-based intra-
operative registration that, given an initial alignment, compute the
local scale deformation of the surfaces.

Future developments of our surface matching method include the
use of non-rigid mappings for the error metric, making the method
more robust to higher degrees of deformation. Also, to speed it up
and for the generation of a denser set of correspondences, we are con-
sidering the development a hierarchical approach, such as presented
in [281, 213]. Methods such as the one presented in [233] allow for the
computation of a dense set of correspondences, given a set of sparse
ones. Having a dense set of correspondences allows for more robust
and accurate registration. Further measures to optimize the compu-
tation time could also be considered, such as a concurrent version of
the algorithm. As we rely here on a constrained greedy combinatorial
analysis to search for the minimum of the error metric, the evaluation
of each possible correspondence set can be performed independently,
and can be distributed across several processors or even across the
cores of modern graphic cards (e.g. GPU, CUDA).

In conclusion, the presented method for automatic surface match-
ing overcomes the challenges imposed by intra-operative environ-
ments and is ready for integration in clinical trials. We have shown
that the incorporation of a configuration error in the error metric is
very significant for the robustness and accuracy of surface matching
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methods, and makes an important contribution to the field of partial
surface matching. Overall, our method showed to be accurate enough
to initialize fine registration procedures that account for local scale
displacements.
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CONCLUSIONS

Stay hungry, stay foolish.

— Steve Jobs
Commencement speech, Stanford Univ., 2005

Surface matching for intra-operative registration is not trivial. This
is mainly due to the nature of the surfaces involved in the process:
They are multi-modal, partially overlapping, noisy, nearly-flat sur-
faces without any prominent landmarks. However, performing intra-
operative registration based on surface acquisitions bears several ad-
vantages over current approaches. The main advantage is the inde-
pendence of artificial fiducial markers, which are attached to the pa-
tient.

Current approaches for surface-based intra-operative registration
only deal with deformations and distortions at local scales, while
the rough alignment between the surfaces must be performed man-
ually. Current approaches for automatic surface matching focus on
the registration of shapes with high degrees of isotropic deformation.
However, these techniques mostly rely on the existence of prominent
landmarks or spatial landmark configurations that are uniquely iden-
tifiable.

In this work, two approaches for automatic registration of surfaces
in intra-operative conditions were presented. In the first approach,
the surfaces were segmented into regions of similar surface charac-
teristics, such as curvature. This segmentation was used to build an
adjacency graph representing these regions and their neighborhood
relations. Graph matching was then employed to solve the registra-
tion problem. Having graph representations of the surfaces at hand
also allowed for post-processing of the correspondences after opti-
mization, with wrong correspondences being identified based on the
consistency of correspondences among neighborhoods. Although the
graph matching optimization procedures proved to be reliable even
for the matching of very small sub-surfaces to the complete surfaces,
the quality of the registration deteriorated very fast with the inclusion
of structural errors between the graphs. Structural errors between
graphs occurred due to differences between surface segmentations.
The ideal segmentation method for surface-based intra-operative reg-
istration should thus be able to maximize intra-region similarities and
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minimize inter-region similarities, while creating enough neighbor-
hood relations in order to avoid ambiguous graph topologies'. Fur-
thermore, the segmentation method must be able to generate similar
segmentations even when only partial surfaces are given. It must also
be robust across surfaces, even in the presence of noise, distortions
or deformations. The design of such a segmentation method is not
trivial. Although graph-based surface registration showed to be very
robust for the registration of feature-less, partial surfaces, the prob-
lem of encountering reliable features shifts to encountering reliable
regions, which was shown to be hard under the given intra-operative
conditions. Nevertheless, this approach seems promising, and should
be further investigated. Its adaptation to the registration of isometri-
cally deformed surfaces is trivial, and good results are expected. In
these cases most regions remain unchanged and the neighborhoods
remain constant. Graph matching thus shows very high potential.
Regarding the second surface matching approach, the influence of
the error metric to be optimized and the consistent selection of fea-
tures across surfaces® was investigated for point-based approaches.
As most methods cast the surface matching problem as a quadratic
assignment problem (QAP), having a second order term that ensures
that distances between pairs of landmarks on the source surface are
similar to the distances between their corresponding points on the
target surface, consistent feature selection across surfaces becomes es-
sential for two reasons: First, to avoid correspondence ambiguities, as
there are several spatial configurations of landmarks that would fit to
each other in nearly flat regions, but very few configurations would
fit to each other when dealing only with prominent points. Second,
to reduce the search-space and computation times, as the solution of
a QAP is NP-hard. The consistent selection of features is difficult for
surfaces of interest in intra-operative registration, due to noise, dis-
tortions, and the fact that they are nearly flat. As a consequence, the
search for a set of correspondences between surface becomes error-
prone. In order to overcome these issues, we incorporated a measure
of landmark spatial configuration reliability in the error metric, along
with several measures for a faster optimization, thus making the con-
sistent selection of features across surfaces irrelevant. The incorpora-
tion of the configuration error in the error metric showed a signifi-

For example, a very large region incorporates a lot of geometric information within
itself, and it has many neighbors composed by smaller regions within itself, thus
forming a star topology. In this case, as neighborhood information is scarce, only
the node representing the center of the star can be uniquely identified, while other
correspondences become very ambiguous.

Consistent feature selection across surfaces refers to the ability of selecting promi-
nent and unique points on the same locations for two different surfaces.
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cant increase in the accuracy of the registration and the robustness to
variations of the method’s parameters. Although registrations were
obtained within one minute, computation times can potentially be
further improved.

In summary, this thesis presents two different approaches for auto-
matic surface matching, i.e., without making any assumptions about
the initial positioning of the surfaces. Throughout several experi-
ments, which aimed to simulate intra-operative conditions, the pre-
sented approaches proved to be robust, accurate, and fulfilled the com-
putation time requirements of intra-operative registration. Finally, as no
assumptions were made about the surfaces or the object they repre-
sent, the presented approaches for surface matching are generic and
may thus be employed in diverse situations requiring the registra-
tion of nearly flat, feature-less surfaces. The applicability to various
types of objects was demonstrated throughout the experimental eval-
uations, by using several models from different sources. Regarding
the mentioned achievements, all objectives initially stated in the in-
troduction of this work have been met.

Nevertheless, there is still a long way between the methods pre-
sented here and a fully automatic, surface-based surgery guidance
system. As shown in Chap. 2, several components are required to
cover the entire pipeline. The methods presented here have been de-
signed to deal with several central issues that occur in intra-operative
environments. However, these environments are generally very dy-
namic and a prediction of all potential problems is impossible.

Regarding the field of partial surface matching, the methods de-
scribed in these thesis represent an important effort towards the regis-
tration of partially overlapping, nearly flat, feature-less surfaces. This
problem has hardly been investigated in the literature, as most meth-
ods always assume that a set of unique landmarks can always be
identified. Furthermore, several fields, such as object reconstruction
and shape retrieval from databases, can profit from the achievements
presented here.

7.1 SUMMARY OF CONTRIBUTIONS

The specific contributions of this work are:

1. Two different approaches for automatic surface matching in
intra-operative conditions, i.e., for the registration of multi-
modal, partially overlapping, nearly flat, noisy, feature-less sur-
faces.
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a) A region-based approach, where registration is cast as a
graph matching problem. Graph matching is solved by an
iterative scoring of neighborhood similarities and the com-
putation of correspondences as a linear assignment problem
(LAP), thus allowing the registration to be solved in poly-
nomial time. Taking advantage of the graph representa-
tions, post-processing methods were employed to identify
false assignments and to increase the number of correspon-
dences.

b) A point-based approach that does not rely on the consis-
tent selection of features across surfaces. It incorporates a
metric for the computation of a landmark spatial configu-
ration reliability (configuration error), in order to compen-
sate for the lack of prominent and unique locations.

A surface descriptor for the representation of noisy point neigh-
borhoods, which is robust to distortions and deformations.

A data structure for the representation of surfaces as polyg-
onal meshes ensuring topological consistency. The data struc-
ture provides an efficient representation of regular surfaces (2-
manifolds) and non-regular surfaces (2-manifolds with bound-
aries and 2-pseudomanifolds), allowing the retrieval of adja-
cency information between mesh components in linear time,
identification of boundaries and anomalies in constant time,
and iteration through mesh components in linear time. Fur-
thermore, several manipulation operators are presented, which
guarantee topological consistency after modification.

A framework for the assessment of differences between multi-
modal surfaces, not only focusing on geometrical differences,
but also on differences between surface properties, such as
normals and curvatures. In contrast to other frameworks, this
framework does not consider the Euclidean closest point as an
indication of surface correspondences. Instead it assumes that
the correct correspondences might lie further way due to dis-
tortions and deformations. An anisotropic metric of distance
computation is employed in order to overcome this issue.

An assessment of differences between surfaces representing real
organs generated by a time-of-flight (ToF) range scanner and
by a computed tomography (CT), which represent the main
surface generation modalities employed in the experiments de-
scribed in this thesis. High degrees of distortions were observed,
even in the statical setting employed for this assessment.



6. A comprehensive survey of methods for automatic surface
matching, and a classification according to the descriptor, er-
ror metric, optimization approach and the scale of registration
(rough or fine) used. The applicability of the surface registration
under intra-operative conditions was also considered.

7.2 FUTURE WORK

This thesis goes to great lengths regarding surface registration. The
work presented here further provides ideas for future work, arising
from the observations made throughout the development of this re-
search:

e Speed-up: In order to decrease computation times, several
authors have proposed hierarchical approaches to compute
correspondences. Although hierarchy is already exploited to
some extent in this work, new concepts of multi-scale/multi-
resolution surface analysis [32] might assist the achievement
of an hierarchical algorithm not only based on feature confi-
dence measures, but also on the representation of surface infor-
mation in multiple levels-of-details. Furthermore, as correspon-
dence search is performed in a greedy manner, parallelization is
applicable to this minimization problem. Technologies such as
graphic processing units (GPUs) can be employed for significantly
faster optimization.

* Non-rigidity: Throughout this work, even in experiments that
include surface deformations, rigid mappings were employed
in order to compute fitting errors and final registrations. The
introduction of non-rigid mappings in the presented work is
straightforward. Non-rigid mappings might also increase the
robustness and accuracy of fitting errors if the correct class of
mapping is chosen. However, for the computation of a non-rigid
transformation as final registration, a sparse set of correspon-
dences, as provided by the methods presented here, is not suf-
ficient, as interpolations and extrapolation would be required
for several parts of the surfaces. In this case, non-rigidity can be
solved by fine alignment procedures or by the computation of
dense correspondence sets.

* Dense correspondences: Several works focus on the computation
of dense correspondence sets given a set of sparse correspon-
dences. Apart from the computation of an initial alignment,
dense correspondences further allow the computation of non-
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rigid mappings that model local scale deformations and distor-
tions. As for many methods dealing with the computation of
dense correspondences, only the set of initial correspondences
is required as input, the incorporation of such a method in the
registration approaches presented here is straightforward. See
Sec. 3.4.2 for more details on these methods.

Robustness: Most surface matching algorithms only consider de-
scriptor similarity and difference between geodesic distances
among pairs of corresponding points in their error metric in
order to identify fitting landmark spatial configurations. Here
we show that the incorporation of a spatial configuration reli-
ability measure can significantly improve the robustness and
accuracy of the registration. Although the configuration error
did provide significant improvements, it considers spatial con-
tigurations only. Two aspects can be further regarded:

— Instead of computing the configuration error in the geo-
metrical space only, further types of configuration errors
may be incorporated in the error metric. For example, the
application of the presented expression for the computa-
tion of configuration error in geometric space may be di-
rectly employed for the computation of such an error in the
descriptor space. In this case, the selected correspondence
configurations are not only geometrically widespread and
non-planar, but so are their descriptors as well, ensuring
higher variability in the descriptor space and better overall
reliability.

— The shape information between two landmarks may be in-
corporated, which is neglected in error metrics. In order
to illustrate this idea, let us assume two landmarks on the
source surface and their corresponding points on the tar-
get surface. In order for this correspondences to be cor-
rect, not only the geodesic distance between source land-
marks must be similar to the distance between their cor-
responding points, but also the shape between the source
landmarks must be similar to the shape between their cor-
responding points. One alternative for the incorporation
of this shape information is to draw a direct geodesic line
above the surface connecting the two landmarks. This line
can be viewed as a 2D curve. The 2D curves spanned
by two source landmarks and their corresponding points
must be similar. Computation of curve similarities can be



performed, for example, by the maximization of Pearson
correlation [86], among other approaches [264, 70].
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ROTATION INVARIANCE OF THE LOCAL
COORDINATE SYSTEM

We show here that, if a rotation is applied to the vertices” unit normals
within the spherical support volume of a particular vertex, the eigen-
vectors of the approximation of the covariance matrix (as presented
in Sec. 6.2.2) rotate by the same amount.

Proof. The approximation of the covariance matrix of the unit nor-
mals set {11y, ..., N}, which we denote C, is similar to the approxima-
tion of the covariance matrix of this normals set rotated by a rotation
matrix R, which we denote Cg, thus having the same eigenvalues.

Let {my,..., MmN} represent the set {1, ..., N} rotated by a rota-
tion matrix R. Two matrices C and Cg are similar if C = S~'Cg$, for
an invertible matrix S. Matrices C and Cg are obtained as follows:

N

C = ) Alv{ (A.1)
i=0
N

Ck = ZA(W)TﬁiﬁiT (A.2)
i=0

where A(v;) denotes the Voronoi area of the vertex to which the nor-
mal 1; (and also 1) belongs to. For the purpose of showing the
rotation property of the approximation of the covariance matrix, we
can consider all Voronoi areas equal to 1. As the {7y, ..., 1IN} can be
obtained by the inverse rotation R~ of the set {Mi, . .., TN}, we know
that:

N N
Yy aal =) RMmm{(RTDT (A.3)
i=0 i=0

Because of the fact that the rotation matrix is orthogonal, and thus
R~ = RT, we obtain (R™")T = (RT)T = R. This allows us to rewrite
equation A.3 as:

N N
Yy Al = ) RTmm{R (A.g)
i=0 i=0
N
= R (Z nﬁinﬁiT) R (A.5)
i=0
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and therefore:
C=R'CgR (A.6)

thus showing that C and Cy are similar and have the same eigenval-

ues.
O

Proof. The eigenvectors of Cg are equal to the eigenvectors of C ro-
tated by R, i.e., if V is an eigenvector from C with eigenvalue A, then
RV is an eigenvector from Cg with same eigenvalue:

Cv=Av = CrRv =ARv (Ay)

We have shown before that C and Cy are similar and therefore
have the same eigenvalues. In the following equations, we show how
to obtain the implication shown in equation A.7:

Cv=»Av (A.8)
By the application of equation A.6:

RTCrRRv = Av (A.9)
CrRv = ARv (A.10)

thus showing that the implication in equation A.7 is true.
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DERIVATION OF THE AVERAGE TARGET
REGISTRATION ERROR

An expression for the estimation of the target registration error (TRE)
at a spatial position x, given the approximately known position of a
set of landmarks L, was presented by Fitzpatrick et al. [102], and is as
follows:

2
(TRE?(x, L)) = <FL1|E(< 3Z ) (B.1)

where dy denotes the distance from the target to the principal axis Vi
of L, and fy the root-mean-square distance of the landmarks to their
principal axis Vi.. The fiducial localization error (FLE) denotes the error
of locating the landmarks.

The average target registration error is defined as the average of the
TRE for every location within a bounding sphere around the land-
marks, centered on their centroid. To obtain an expression for the
target registration error, we first describe the expression for the TRE
with a target given in spherical coordinates (r,0, ¢), assuming, with-
out any loss of generality, that the centroid of the landmarks lie at the
origin:

2 3
< TRE2(v,0, ¢, L) > <FLI|3L|(( Z red’v‘<>(}3.z)

L W xx?

d(T, 9/ d),\)) - W (B3)
where X is a vector in Cartesian coordinates from the position (v, 0, ¢)
to the origin (centroid of the landmarks). The average TRE is esti-
mated by the integration of the TRE expression within a sphere of
radius R and dividing it by the volume V of these sphere, as follows:

- T 27
<TRE?(L) > = %/// < TRE?(1,0,¢,L) > drdo dé

27 FLE2 (L 13 drexb\‘z'k)
= v/// I <+3Z drdodé

k=1

1<FL}‘3; <// /zndrdedchr // /zw3 Te(bvk)drdadd))

1 <FLE*(L) > 47(R3 i ST 3T A(r,0,d, Vi )dr dO dd
Vo 2
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We have the expression [ foﬂ 02 ™ d(r,0, b, Vi )dr d6 d¢ left to solve,
which is carried out as follows:

/R/on /OZW d(r,0,$,v)drdo dd

U P27 | =12
// / %drdedd)
rRJo Jo [V

7T 27
/ | x X|2dr do d

-

T P27
/ (VyR, —V,%y)2drdo do +
Jo 0

7T 27
/ (V2R — VxX2)2dr d6 d) (B.5)
0 0

Three terms in the form [, fg 02 T(ViX; — ViXi)2dr dO d¢ are left,

which expand to:

T 27T
/ / / (Vi%; — VjX;)2dr d0 dd
JRJO JO

T 27T
/R /0 /0 VIRT — 29V XX + ViR dr dO do

T 27T
v%// / X7 drdo do —
R JO 0

T P27
2\71\7] /R /O /0 )?172'] drdodd +

> T 27 >
V3 / / / XZdrdo dd
RJO JO

(B.6)

We must then solve the integrals for 723(, %ﬁ, %ﬁ, XxXy, XxX; and XyX,.
By converting the vector coordinates back to spherical coordinates,

we get:
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By solving the different terms we obtain:

T 27 T P27
/ / / 7?,% drddded = / / / 2 sin? 0 cos® pdr do dd
RJo Jo RJo Jo

R3 T 27
= 3 / / sin? 0 cos? $do d¢
0 Jo

R37'[2
= —— B.8
3 (B.8)
T 27 T P27
// / Xpdrdodd = // / R? sin? @ sin? ¢pdr dO dd
rRJo Jo RJo Jo
R3 2
= —— B.
3 (B.9)
U 27t s 27t
/// X2drdodd = /// R% cos® 8dr d0 dd
RJO Jo RJO Jo
R3
= ?7'[2 (B.10)
T 27 T 27
/ / / XxXydrdodd = / / / R? sin? 0 sin ¢ cos ¢pdr dO dd
rRJO Jo rRJo Jo
R3 27
= 7[2/ sin ¢ cos pdd
3 0
=0 (B.11)
T 27 s 27t
/// XX, drdodd = /// R? sin 6 cos 6 cos pdr do dd
RJO Jo RJO Jo
=0 (B.12)
T 27 T P27
// / XyX.drdodp = // / R sin 0 cos 0 sin pdr d6 do
RJO Jo RJO Jo
=0 (B.13)

We can now substitute these equations back in Eq. B.5. Before that,
let us make an observation: The sum of the distances of all points
within a sphere to any axis that passes through the center of the
sphere is constant. Therefore, we only have to solve the equation for a
single axis, with any direction vector. We assume the direction vector
of this axis to be (1,0, 0). This leaves us with:
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1 ) 7T 27 5 ) T 27 )
W(VX/R/O~/O xydrdeddﬂ-vx/r/o/o Xzdrdo do)

We now substitute these result in the average TRE expression (Eq. B.4):

2 3
— 1 < FLE2(L) > 47rR3 > mR
TREZ(L = —
< TRE*(L) > VA g
3 < FLEZ (471]23 2R3 & 1 )
_ . x
47tr = fﬁ
< FLE2(L) e 1
== ( P (B.15)
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