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Summary 
 

The functional specialization of sphingolipids (SLs) is determined by their structural 

diversity and their unique expression patterns according to cell type and degree of 

differentiation. Ultra long chain (ULC) SLs characterized by an N-acyl moiety longer 

than 26 carbon atoms in length are primarily expressed in mature male germ cells 

and epidermal keratinocytes. To unveil the functional role of these unconventional 

SLs, it is necessary to define their biosynthetic requirements at the molecular level. 

In mammals, fatty acids are incorporated into SLs at the stage of ceramide 

synthesis by a family of six homologue enzymes, the ceramide synthases (CerS1–6). 

By analyzing the expression levels of the CerS family in skin, as well as in juvenile 

and in “germ cell-free” testis, solely CerS3 mRNA distinctively correlated with the 

presence of ULC-SLs. As found in vitro, the synthesis of ceramides with cerotoyl- 

(26:0) and montanoyl-residues (28:0) required CerS3, as demonstrated by a non-

radioactive and detergent-free enzymatic assay established in living human cells 

expressing CerS3. For this purpose, activated ULC-acyl-CoAs as assay substrates 

and ceramide internal standards for mass spectrometric quantifications were 

specifically synthesized.  

The crucial role of CerS3 in the synthesis of ULC-SLs could be further confirmed 

with CerS3 deficient mice. Mass spectrometric analysis of epidermal extracts 

established acyl-CoAs ranging from 24 to 36 carbon atoms in length as substrates of 

CerS3 in vivo. CerS3 deficiency resulted in a complete loss of ceramides with acyl-

chains longer than 24 carbon atoms, including all ω-hydroxy-ULC-ceramides. 

Consequently, the total epidermal ceramides were drastically reduced by 90% 

leading to a severe impairment of the epidermal permeability barrier and ultimately to 

premature neonatal death. 

The metabolic defect of CerS3 mice gave rise to a multitude of alterations 

associated with the maturation and terminal cornification of keratinocytes. At the 

stratum granulosum (SG), diminished size in filaggrin-containing granules and 

reduced number of loricrin-containing granules were accompanied by aberrant 

processing of filaggrin and decreased levels of loricrin. At the stratum corneum (SC), 

remnants of glycogen, nuclear material and organelle structures were detected at the 
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first corneocyte layers. CerS3d/d mice exhibited a markedly thickened and compact 

SC that could be associated with the persistence of corneodesmosomes, eventually 

resulting from the reduced expression of the protease cathepsin D at the SG and SC. 

Additionally, the defective degradation of corneodesmosomes led to the distinctive 

persistence of the embryonic peridermal layer in newborn mutant epidermis. 

Furthermore, CerS3 deficient mice exhibited disorganized lamellar sheets that yield 

the formation of non-lamellar lipid agglomerates, rather than building up evenly 

distributed lipid unit lamellar structures.  

The compromised skin integrity of mutant mice facilitated the severe invasion of 

pathogens evidenced by the increased microbial growth and the formation of 

pseudohyphae prior to colonization by Candida albicans on cultured skin biopsies. 

In summary, these results demonstrated the prerequisite of a functional CerS3 for 

the generation of ULC-SLs, which play an essential role in skin barrier function and 

male fertility. The phenotypic alterations derived from the in vivo depletion of CerS3 

suggested in addition a crucial regulatory function that could be encoded within the 

homeobox domain. Taken all together, these findings established the basis for the 

identification and diagnosis of potential human skin disorders associated with a 

CerS3 dysfunction. 
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Zusammenfassung 

 

Die funktionelle Spezialisierung von Sphingolipiden (SL) wird durch ihre strukturelle 

Vielfalt und durch die spezifischen Expressionsmuster in Abhängigkeit von Zelltyp 

und Grad der Differenzierung festgelegt. Ultra-langkettige ("Ultra Long Chain", ULC) 

SL, die sich durch einen N-Acylsubstituenten mit einer Kettenlänge vom mehr als 26 

C-Atomen auszeichnen, werden primär in reifen männlichen Keimzellen und 

Keratinozyten der Epidermis exprimiert. Um die funktionelle Rolle dieser 

ungewöhnlichen SL zu verstehen, ist es notwendig, zuerst ihre Biosynthese auf einer 

molekularen Basis zu begreifen. 

Bei Säugetieren werden Fettsäuren von einer Familie von 6 homologen Genen, 

den sog. Ceramidsynthasen (CerS1–6), während der Ceramidsynthese in SL 

eingebaut. Mit der Bestimmung der Expressionslevel dieser CerS-Familie in der 

Haut, sowie im juvenilen und „keimzellenfreien“ Hoden konnte einzig die CerS3-

mRNS mit dem Vorkommen der ULC-SL korreliert werden. Die In vitro-Synthese von 

Ceramiden mit Cerotin- (26:0) oder Montansäureresten (28:0) setzt die CerS3-

Aktivität voraus. Dies konnte anhand eines erstmalig etablierten, nicht-radioaktiven 

und detergenzfreien, enzymatischen Tests, basierend auf vitalen humanen Zellen die 

CerS3 exprimieren, nachgewiesen werden. Zu diesem Zweck wurden ULC-acyl-CoA 

als Substrate sowie Ceramide mit verkürzter Sphingoidbase speziell synthetisiert, 

und die letzteren als interne Standards für massenspektrometrische Quantifizierung 

eingesetzt. 

Die bedeutende Rolle von CerS3 bei der Synthese von ULC-SL konnte durch 

Untersuchungen an CerS3-defizienten Mäusen weiter untermauert werden. 

Differenzielle massenspektrometrische Untersuchungen wiesen Acyl-CoA mit einer 

Kettenlänge von 24 bis 36 Kohlenstoffen als Substrate von CerS3 in vivo aus. 

CerS3-Defizienz führte zu einem kompletten Verlust der Ceramide mit einer 

Kettenlänge von mehr als 24 Kohlenstoffatomen, einschließlich aller ω-Hydroxy-ULC-

Ceramide. Die Gesamtzahl aller Ceramide der Epidermis war um 90% reduziert, was 

zu einer starken Beeinträchtigung  der Wasserpermeabilitätsschranke der Epidermis 

und letztlich zu einem vorzeitigen neonatalen Tod führte. 
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Der metabolische Defekt der CerS3-Mutanten äußerte sich in einer Vielzahl von 

phänotypischen Veränderungen in Reifung und terminaler Verhornung der 

Keratinozyten. Im Stratum granulosum (SG) wurde eine Reduktion in der Größe der 

Filaggringranula als auch der Loricringranula beobachtet, begleitet von einer 

fehlerhaften Prozessierung des Filaggrins und einem Abfall des Loricringehaltes im 

SG. In den ersten Korneozytenschichten des Stratum corneum (SG) konnten Reste 

von Gykogen, Zellkernmaterial und Organellen nachgewiesen werden. CerS3d/d-

Mäuse zeigten ein deutlich verdicktes und kompaktes SC. Ursache hierfür ist wohl 

die Persistenz von Corneodesmosomen, bedingt u.a. durch eine niedrige 

Konzentration der Protease Cathepsin D im SG und SC. Weiterhin führte der 

defiziente Abbau von Corneodesmosomen zum Erhalt des Periderms auf der Haut 

von neugeborenen Knockout-Tieren. Zusätzlich wiesen CerS3-defiziente Mäuse 

ungeordnete lamelläre Lipidschichten auf, die zur Bildung von nichtlamellaren 

Lipidagglomeraten führten und nicht zu den gleichmäßig gespreiteten, lamellär 

strukturierten Lipideinheiten zwischen den Corneozyten.  

Die in ihrer Funktion kompromittierte Haut der Mutanten erleichterte in 

Biopsiekulturen erhöhtes mikrobiologisches Wachstum von Pathogenen/ Candida 

albicans, die Bildung von invasiven Pseudohyphen und anschließende Kolonisierung 

in tiefere Schichten. 

Zusammenfassend zeigen diese Ergebnisse die Notwendigkeit einer intakten 

CerS3 für die Bildung von ULC-SL, die eine essentielle Rolle in der Funktion der 

Hautbarriere und bei der männlichen Fortpflanzung spielen. Die phänotypischen 

Veränderungen, die durch Abwesenheit intakter CerS3 in vivo hervorgerufen werden, 

deuten auf eine zusätzliche regulatorische Funktion dieses Proteins hin, die 

innerhalb der Homeobox-Domäne kodiert sein könnte.  

Die vorliegenden Resultate sind Grundlage für die Identifikation und Diagnose 

potentieller menschlicher Hauterkrankungen, die auf einer CerS3 Fehlfunktion 

beruhen könnten. 
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1.1. Sphingolipids 
 
Sphingolipids (SLs) were first described by Johann L.W. Thudichum as natural 

chemical constituents of the brain (Thudichum, 1884). Today, sphingolipids and their 

glycosylated derivatives are best described by their structural properties. Ceramide is 

the core of most sphingolipids and serves as the anchor of glycosphingolipids (GSLs) 

in the outer leaflet of the cellular plasma membrane. Biochemically, ceramide is an 

amino alcohol composed of a fatty acid linked by an amide bond to a long chain base 

(LCB), most commonly sphingosine (Figure 1). On the other hand, glycosphingolipids 

are amphiphatic molecules composed of the hydrophobic ceramide backbone and a 

hydrophilic oligosaccharide chain. Together with sphingomyelin (SM), a ceramide 

with a phosphorylcholine head group, these are the major type of sphingolipids 

ubiquitously expressed in all eukaryotic cells, as well as some prokaryotic organisms 

and viruses. 

 

 
 
Figure 1. Structure of major sphingolipid classes.  
Ceramides, glycosphingolipids and sphingomyelins are biosynthesized via the 
condensation of an activated fatty acid with a sphingoid base linked by an amide 
bond, and are represented here by a palmitoyl moiety (yellow) and a sphingosine 
base (orange), respectively.  
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The structural diversity of sphingolipids is a prerequisite for their functional 

specialization in different tissues or cell types. The fatty acid moiety differs in chain 

length and various degrees of saturation, hydroxylation, and esterification, which 

contributes significantly to this structural complexity. This remarkable diversity is 

further enhanced by the combination of naturally occurring long chain bases, mainly 

sphingosine, sphinganine (dihydrosphingosine) and phytosphingosine 

(4-hydroxysphinganine). However, more than 60 species of sphingoid bases have 

been reported [(Karlsson, 1970), for review see (Pruett et al., 2008)]. The 

heterogeneity of sphingolipid structures peaks with the great variation of 

carbohydrate moieties, with around 500 structures already characterized. In 

combination, this huge molecular diversity creates thousands of different structures, 

whose functions are just starting to be elucidated.  

Sphingolipids have been shown to be expressed in a unique cell-type specific 

manner. Their expression patterns are determined by cellular differentiation, 

degeneration, development, cell cycle and viral or oncogenic transformations 

(Hakomori, 1981; Majoul et al., 2002; Muramatsu, 2000).  

In the extracellular side of the plasma membrane, sphingolipids have been 

reported to be involved in a wide variety of cellular processes including adhesion, 

proliferation and transport. These are facilitated either by direct lectin binding (Yang 

et al., 1996), direct contact to membrane receptors and transporters (Yamashita et 

al., 2003), or eventually establishing platforms for concentrating these proteins within 

the membrane (Lang, 2007).  

Glycosphingolipids can act as recognition molecules for toxins, viruses and 

bacteria at the cell surface, where their complex oligosaccharide chain serve as a 

binding site for these pathogens (Schnaar, 1991). Furthermore, simple sphingolipids, 

namely ceramide, sphingosine and sphingosine-1-phosphate (S1P), have been 

shown to function as bioactive molecules in a large variety of signaling events (Lahiri 

and Futerman, 2007). Ceramide and S1P appear to have opposite roles in signaling 

transduction pathways. While ceramide has been shown to induce apoptosis by 

regulating the activity of some proteins to which it binds, e.g. kinase suppressor of 

Ras, phospholipase A2 or cathepsin D (Heinrich et al., 1999; Ruvolo, 2003), the latter 
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has been implicated in cell proliferation and differentiation (Spiegel and Milstien, 

2003).  

Sphingolipids also play a role in the pathogenesis of diverse diseases, being the 

most prominent the inherited lysosomal storage diseases caused by the malfunction 

of enzymes involved in sphingolipid catabolism (Kolter and Sandhoff, 1999). 

Furthermore, sphingolipids contribute to the development of a multitude of diseases 

including neurodegenation (Grimm et al., 2005), cancer progression (Hakomori, 

1996), diabetes (Aerts et al., 2007; Stratford et al., 2004) and pathogen invasion 

(Arikawa et al., 2002; Bibel et al., 1992). 

 

1.2. Ultra long chain sphingolipids 
 
In mammalian cells, the most abundant fatty acid (FA) moieties incorporated into 

membrane lipids range between 16 and 24 carbon atoms in length. In sphingolipids, 

they are primarily saturated or monounsaturated, whereas polyunsaturated fatty 

acids are additionally expressed in phosphoglicerolipids and cholesterol esters. 

Generally, fatty acid residues of 14 to 20 carbon atoms in length are denominated as 

long chain fatty acids (LC-FAs), whereas acyl residues with 22 to 26 carbon atoms 

are refered in this study as very long chain fatty acids (VLC-FAs) (Figure 2). 

VLC-FAs have been found in most human tissues, generally bind by an amide 

linkage to sphingolipids, or esterified to cholesterol esters and phospholipids (Poulos, 

1995). Sphingolipids containing VLC-FAs (VLC-SLs) are enriched in certain tissues, 

particularly in myelin sheaths of the brain (O'Brien and Rouser, 1964; Pakkala et al., 

1966) and in kidney (Sandhoff et al., 2002), where they mostly occur as their 

α-hydroxylated derivatives. 

Sphingolipids containing acyl residues with a chain length of 28 to 36 carbon 

atoms have also been found in mammalian cells (Poulos, 1995; Sandhoff, 2009), and 

are denominated here as ultra long chain sphingolipids  (ULC-SLs). Despite the 

constitutive expression of VLC-SLs, the occurrence of ultra long chain SLs is 

restricted to testis/spermatozoa, and the epidermis. In epidermal keratinocytes, ULC-

sphingolipids up to 36 carbon atoms in length are mainly saturated or 

monounsaturated, whereas in the testis ULC-SLs are polyunsaturated (Figure 2). 
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Structurally, ULC-SLs differ greatly from their shorter chain homologues. These 

differences might be required for their functional specialization. The composition and 

function of ULC-SLs in both tissues will be described in detail in the following 

sections, and is the topic discussed throughout this study.   

 

 
 

Figure 2. Comparison of sphingolipid structures differing by the carbon chain 
length and saturation of their fatty acid residues. 
The majority of sphingolipids found in the plasma membrane of mammalian cells 
contains saturated long chain (LC-) and very long chain (VLC-) fatty acid residues 
ranging primarily between 16 to 24 carbon atoms. Ultra long chain (ULC-) 
sphingolipids with a fatty acid moiety of 28 to 36 carbon atoms are exclusively found 
in the epidermis and the testis. Epidermal sphingolipids, mostly ceramides and 
glucosylceramides, contain primarily saturated (or monounsaturated) ULC-acyl 
moieties of 30–36 carbon atoms. Most epidermal ULC-SLs are hydroxylated or 

esterified with linoleic acid or to proteins of the cornified envelope at the Cω position 
of their fatty acid residue. Testicular ULC-acyl residues range from 28 to 32 carbon 
atoms and possess multiple unsaturations (4 to 6). They are mostly incorporated into 
complex GSLs. 
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The rod outer segments (ROS) of the retina have been reported to contain the 

highest levels of ULC-FAs (Poulos, 1995). Aveldaño and co-workers could show that 

these polyunsaturated (4–6 double bonds) fatty acids (PUFAs) ranging from 30 to 36 

carbon atoms were incorporated into phosphoglycerolipids, namely 

phosphatidylcholine (Aveldano and Sprecher, 1987). In 2010, Brush and colleagues 

could demonstrate the expression of ULC-PUFAs in acidic GSLs. However, the 

authors failed to detect ULC-PUFAs incorporated into neutral sphingolipids, including 

sphingomyelin (Brush et al., 2010). The function of ULC-PUFAS glycosphingolipids in 

retina has not yet been clarified, however Brush and colleagues speculated on a 

possible role of ULC-SLs or ULC-PUFA glycosphingolipids in the pathogenesis of the 

retinal Stargardt disease (STDG3). Patients suffering this autosomal dominant 

disease carry mutations in the elongation of very long chain fatty acid 4 gene 

(Elovl4), which have been involved in the synthesis of ULC-FAs (vide infra). Although 

the pathogenesis of STDG3 is more likely to be caused by the lack of ULC-PUFA 

phosphatidylcholines in the membrane of photoreceptor cells (McMahon et al., 

2007b), retinal ULC lipids are beyond the main focus of this study. 

 

1.3. Metabolism of ultra long chain sphingolipids 
 
1.3.1. Sphingolipid metabolism and topology 
De novo synthesis of sphingolipids is initiated in the cytosolic face of the endoplasmic 

reticulum (ER) via the condensation of the amino acid L-serine with an activated fatty 

acid. This first acylation is catalyzed by the pyridoxalphosphate dependent serine 

palmitoyltransferase (SPT) and is the rate-limiting step of the sphingolipid synthetic 

pathway (Figure 3). The mammalian SPT complex is a heterodimer composed of 

three subunits (SPTLC1–3), and exhibits the highest specificity towards 

palmitoyl-CoA (16:0-CoA), thereby generating a long chain base (LCB) of 18 

carbons, 3-ketosphinganine (Hornemann et al., 2007). The ketone moiety of this 

intermediate is subsequently reduced by a NADPH-depending reductase yielding 

sphinganine.  
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Figure 3. De novo sphingolipid biosynthesis.  
The enzymes involved in sphingolipid biosynthesis are integral membrane proteins 
localized within the ER and the Golgi apparatus (here shown in dark red). The 
primary LCB contained in the majority of SLs and GSLs is derived from the 
intermediate (2S,3R)-2-aminooctadecane-1,3-diol, namely sphinganine. 
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N-acylation of sphinganine with an activated fatty acid proceeds leading to the 

formation of dihydroceramide. Likewise, sphingosine generated via the “salvage 

pathway” can be directly acylated to produce ceramide (Figure 4). The condensation 

of these and other endogenous long chain bases with a fatty acid – activated as a 

coenzyme A derivative – is facilitated by the ceramide synthases (CerSs, officially 

Lass). To fulfill the synthesis of the great variety of naturally occurring 

(dihydro)ceramides, which mainly differ in the chain length, hydroxylation and 

number of unsaturations of their fatty acid moieties, a family of six homologue 

enzymes is required in mammals, CerS1–6. This key step in the sphingolipid 

metabolic pathway will be extensively discussed during this study. Finally, 

dihydroceramide synthesized via the de novo pathway is dehydrogenated to 

ceramide by the dihydroceramide desaturase.  

 

 
 

Figure 4. De novo and salvage (dihydro)ceramide synthesis catalyzed by the 
ceramide synthases. 
CerSs facilitate the acylation of D-erythro-sphinganine derived from the de novo 
synthesis, as well as D-erythro-sphingosine from the salvage pathway to generate  
D-erythro-dihydroceramide and D-erythro-ceramide, respectively. 
 
 

Ceramide is a key metabolite required in a huge variety of cellular processes and 

is the common precursor for all complex glycosphingolipids and sphingomyelins. 

Most enzymes involved in the ceramide metabolic pathway have been reported to be 
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membrane-bound proteins localized in the cytosolic side of the ER (Mandon et al., 

1992; Michel and van Echten-Deckert, 1997). However, as the biosynthesis of GSLs 

and SMs takes place in the Golgi apparatus, ceramide must be efficiently transported 

from the ER to the Golgi compartment (Figure 5). This transfer occurs via a vesicular 

and a non-vesicular protein-mediated manner (Perry and Ridgway, 2005).  

 The majority of complex GSLs are derived from the simplest GSL, 

glucosylceramide (GlcCer). The glucosylation of ceramide is catalyzed by 

glucosylceramide synthase (GCS, officially UGCG) and takes place in the cytosolic 

side of the cis-Golgi cisternae (Futerman and Pagano, 1991; Jeckel et al., 1992), or 

potentially in a sub-compartment of the ER (Ardail et al., 2003). A vesicular flow is 

thought to be the major transport mechanism to deliver ceramide to the Golgi 

apparatus for the synthesis of complex GSLs. For further processing, GlcCer must 

translocate to the luminal side of the Golgi compartment. There, it is converted into 

lactosylceramide (LacCer) and maybe further glycosylated to generate all complex 

GSLs (Lannert et al., 1998).  

Instead, the galactosylation of ceramide leading to GSL of the gala series takes 

place in the luminal leaflet of the Golgi apparatus (Sprong et al., 1998). The synthesis 

of galactosylceramide (GalCer) is catalyzed by the ceramide UDP-galactosyl-

transferase (CGT, officially UGT8). GalCer is primarily expressed in the brain and the 

kidney, where it is also sulfated.  

SM synthesis requires the transport of Cer from the cytosolic side of the ER to the 

luminal side of the Golgi. This transfer is thought to be mediated mainly by the 

ceramide transfer protein (CERT) (Hanada et al., 2003). In the Golgi, sphingomyelin 

synthase (SMS) catalyzes the transfer of phosphorylcholine from phosphatidylcholine 

(PC) to ceramide. To date, two SMS isoforms have been described in mammals, 

SMS1 and SMS2, the former being ubiquitously expressed and localized exclusively 

in the Golgi apparatus, and the latter specifically expressed in round spermatids and 

early elongated spermatids of the testis and additionally localized at the plasma 

membrane (Huitema et al., 2004; Igarashi, 2010; Lee et al., 2007; Mitsutake et al., 

2010). 

Ultimately, newly synthesized sphingolipids are delivered to the plasma membrane 

where they influence membrane functions. 
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Figure 5. Schematic representation of sphingolipid metabolism. 
The biosynthesis of GSL and SM occurs in the ER and the Golgi apparatus of 
mammalian cells and involves vesicular and non-vesicular protein-mediated 
transport. Sphingolipid processing and trafficking occurs primarily in the trans-golgi-
network (TGN) previously to be exocytosed to the plasma membrane. Sphingolipid 
catabolism takes place in the lysosomes, where water-soluble hydrolases 
sequentially degrade their carbohydrate residues. Sphingolipids require the endocytic 
pathway involving early and late endosomes prior to reach the catabolic lysosomal 
machinery. Scheme modified from (Sandhoff, 2007). 
 
 

 Sphingolipids are constitutively degraded in the lysosomes by water-soluble 

hydrolases that sequentially cleave off their carbohydrate residues. Simple 

sphingolipids, namely ceramide and sphingomyelin, are degraded by specific 

lysosomal ceramidases and sphingomyelinases. For their degradation, sphingolipids 

at the PM are internalized by endocytosis, sorted in endosomes and delivered into 
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intraendosomal vesicles to the lysosomes. Once degraded, their building blocks 

might serve for the synthesis of newly required metabolites. 

 

1.3.2. Synthesis of ultra long chain sphingolipids 
Unconventional ULC-SLs require an additional synthetic machinery to complete their 

biosynthesis. On one hand, a fatty acid elongation system capable of synthesizing 

activated fatty acids with a chain length up to 36 carbon atoms is required. In 

mammals, the elongation of fatty acids beyond the length of 16 carbon atoms is 

catalyzed by members of the elongation of very long chain fatty acids gene family, 

the Elovl genes. On the other hand, ULC-FAs have to be incorporated into a 

sphingoid base for the generation of ULC-SLs. Therefore, a ceramide synthase with 

a high affinity towards activated ULC-FAs is additionally required. 

 

1.3.2.1. The elongation of very long chain fatty acids family (Elovl) 

Fatty acids up to 16 carbon atoms are sequentially elongated in two carbon atom 

steps by the cytosolic fatty acid synthase (FAS) protein complex. The primary end-

product is palmitate (16:0), which after activation to its coenzyme A derivative is 

translocated to the ER. There, the fatty acid elongation of LC-, VLC- and ULC-FAs is 

achieved during a four-step reaction cycle, where members of the Elovl gene family 

encode for the first regulatory condensing enzyme (Figure 6). Elovl proteins employ 

malonyl-CoA as an acyl donor for the addition of two-carbon units to a fatty acyl-CoA, 

and thereby generating 3-ketoacyl-CoA by means of decarboxylation. The 

3-ketoacyl-CoA reductase catalyzes the reduction of the carbonyl group to alcohol 

yielding 3-hydroxyacyl-CoA. Dehydration follows resulting in the synthesis of trans-2-

enoyl-CoA, which is finally reduced to generate the elongated fatty acyl-CoA (for a 

description of fatty acid nomenclature see supplemental Table A1 and A2). 
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Figure 6. Synthesis of LC-, VLC- and ULC-CoAs. 
Elovl proteins residing in the ER catalyze the rate-limiting step of the fatty acid 
synthesis consisting of the condensation of a precursor fatty acid with malonyl-CoA. 
The formed 3-ketoacyl-CoA derivative is reduced, dehydrated and further reduced 
resulting in the formation of a fatty acyl-CoA with an additional two-carbon unit in its 
chain.  
 
 

In mammals, the Elovl gene family consists of seven members (Elovl1–7), which 

are reported to be localized within the ER membrane. Their tissue expression and 

substrate affinity regulates the specific fatty acid species expressed in each cell type. 

At the beginning of this study, reliable data concerning the distinct distribution and 

substrate specificity of these enzymes in eukaryotic cells was rather limited. To date 

increasing numbers of reports including studies in transgenic mice are available 

(Table 1). In summary, the synthesis of saturated and monosaturated LC-CoAs 

seems to be facilitated by Elovl6, which produces stearoyl-CoA (18:0), and by Elovl1, 

Elovl3, and Elovl7, that take over to generate VLC-CoAs. Polyunsaturated LC- and 

VLC-CoA biosynthesis from essential fatty acid precursors is catalyzed by Elovl2 and 

Elovl5 (Guillou et al., 2009).  
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Enzyme 
Name 

Previous 
Names1 

Tissue mRNA expression 
Fatty acyl-CoA substrate 

Carbon number Unsatura.2 

Elovl1 Ssc1 Brain, ub.3 18-24 S, M 

Elovl2 Ssc2 Testis, liver 20-24 P 

Elovl3 Cig30 BAT4, WAT4, seb.glands4, liver 18-24 S, M 

Elovl4 - Retina, brain, skin 28-30 S, P 

Elovl5 Helo1 Liver, testes, ub. 18-20 P 

Elovl6 - Liver, WAT, ub. 16 S, M 

Elovl7 - Kidney, pancreas, ub. 18-24 S, M 

 
1 Ssc1: sequence similarity to Cig30 1; Ssc2: sequence similarity to Cig30 2; Cig30: cold-
inducible glycoprotein of 30 kDa; Helo1: homolog of yeast long chain polyunsaturated fatty 
acid elongation enzyme 

2 Unsaturations. S: saturated; M: monounsaturated; P: polyunsaturated. 
3 Ubiquitously expressed. 
4 BAT: brown adipose tissue; WAT: white adipose tissue; Seb. glands: sebaceous glands. 
 
Table 1. Tisssue distribution and substrate specificity of the Elovl proteins. 
Tissue expression and substrate preferences of the Elovl proteins described in this 
table were obtained from (Guillou et al., 2009; Leonard et al., 2004). Lipid profile 
changes due to depletion of Elovl3 is associated with triacylglycerides (Westerberg et 
al., 2004). 
 
 

Recent studies indicate that the biosynthesis of ULC-CoAs seems to be restricted 

to Elovl4 expression. The highest transcript levels are found in retina, brain, skin, and 

to a lesser extent in the testis (Mandal et al., 2004). In vivo depletion of Elovl4 

revealed an essential requirement of ULC-CoAs in epidermal sphingolipids. Elovl4 

mutant mice exhibited a depletion of ω-hydroxy-ceramides with fatty acyl residues of 

28 and longer carbon atoms in their chain length. Additionally, an accumulation of 

ceramides with 26 carbon acyl residues suggested cerotoyl-CoA (26:0-CoA) to be a 

bona fide Elovl4 substrate (Li et al., 2007). In 2008, in vitro studies using 

overexpressing cells could show that Elovl4 is required for the synthesis of saturated 

and polyunsaturated ULC-CoAs (Agbaga et al., 2008). To date, no other elongase 

has been reported to have affinity towards both saturated and unsaturated fatty 

acids. 
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1.3.2.2. The ceramide synthase family (CerS) 

Acyl-CoAs are incorporated into sphingolipids at the stage of ceramide sythesis (see 

Figure 3 and 4). This acylation of a spingoid base is catalyzed by the ceramide 

synthase (CerS) family, which operates in the “salvage pathway” to generate 

ceramide, in addition to the de novo synthetic pathway yielding dihydroceramide 

(vide supra).    

Ceramide synthases were originally denominated longevity assurance genes 

(Lass, still their official gene name) for their replication capacity upon its deletion and 

for their role in determining yeast longevity (D'Mello N et al., 1994). Since the yeast 

Lag1 gene was discovered, several of their homologues have been identified in a 

wide variety of eukaryotic organisms, including mammals (supplemental Table A3). 

Whereas one enzyme solely appears to encode for a ceramide synthase in 

D. melanogaster (Bauer et al., 2009), three homologues are required in C. elegans 

(Menuz et al., 2009) and S. cerevisiae (Schorling et al., 2001; Vallee and Riezman, 

2005). In mammals, six homologue genes constitute the ceramide synthase family 

(CerS1–6). CerSs exhibit a tissue specific distribution, in addition to distinct 

preferences towards the chain length and saturation grade of their acyl-CoA 

substrates (Table 2). Thus, their tissue expression pattern determines the distinct 

ceramide composition possible in each cell type. For instance, CerS1 is primarily 

expressed in the brain, where it catalyzes the formation of ceramide preferentially 

containing a stearic acid moiety, the major ceramide species in this organ 

(Venkataraman et al., 2002).   

Currently, the preferences for ULC-CoAs have not been appointed to any of the 

ceramide synthases. However, their substrate affinity was either determined in 

overexpressing cells lacking ULC-CoAs, or in in vitro ceramide synthase assays with 

acyl-CoA substrates ranging from 16 to 26 carbon atoms. Nevertheless, CerS2 and 

CerS3 seem to preferentially incorporate acyl-CoAs with the longest carbon atom 

chains included in those studies. Interestingly, CerS3 is exclusively expressed in 

testis and skin (Laviad et al., 2008), both tissues being the major source of 

ULC-CoAs. Therefore, we hypothesized that CerS3 could be a potential candidate 

responsible for the generation of ceramides containing ULC-CoAs. The investigation 

of the ceramide synthase(s) involved in the biosynthesis of ULC-SLs, as well as the 
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functional role of these unconventional sphingolipids are the major topics to be 

discussed in this study. 

 

Enzyme 
Name 

Previous 
Names1 

Tissue mRNA 
expression 

Acyl-CoA 
substrate 

References for 
substrate affinity 

CerS1 Lass1, Uog1 Brain, skeletal muscle 18 
(Venkataraman et al., 

2002) 

CerS2 Lass2, Trh3 Kidney, liver 22-24 (Laviad et al., 2008) 

CerS3 Lass3, T3L Testes, skin 18-24 (Mizutani et al., 2006) 

CerS4 Lass4, Trh1 Liver, heart, skin 18-22 (Riebeling et al., 2003) 

CerS5 Lass5, Trh4 Ub.2 16-18 (Riebeling et al., 2003) 

CerS6 Lass6, Trh1-like Intestine, kidney, ub. 14-16 (Mizutani et al., 2005) 

 
1 Lass: longevity assurance homolog; Uog1: upstream of GDF1; Trh: translocating chain-
associating membrane protein homolog; T3L: Trh3-like protein. 
2 Ubiquitously expressed. 
 
Table 2. Tisssue distribution and substrate specificity of the CerS proteins. 
Tissue expression was summarized from (Laviad et al., 2008). 

 

1.4. Expression of ultra long chain sphingolipids 
 
1.4.1. The testis 
The testis consists of highly convoluted loops of the seminiferous tubules embedded 

in interstitial tissue. The former functional compartment is required for sperm cell 

formation, whereas the main function of the latter involves hormone production. 

In the coiled loops of the seminiferous tubules, spermatozoa are continuously 

produced from differentiated germ cells after each spermatogenic cycle (Figure 7). 

The supporting Sertoli cells are required during spermatogenesis to deliver nutrients 

to germ cells, as well as for maintenance of the integrity of the seminiferous 

epithelium, regulation of differentiating germ cells, and for the phagocytosis of 

residual bodies left by spermatids upon transformation into spermatozoa. 

Additionally, Sertoli cells are crucial for the establishment of the blood-testis barrier 
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(BTB), a junctional complex that generates the physical barrier separating the 

seminiferous epithelium into an adluminal and a basal compartment.  

 On the other hand, Leydig cells in the insterstitium are the endocrine cells 

responsible for androgen production, mainly testosterone. Additionally, myeloid cells 

are localized in the interstitium enclosed within the lymphatic endothelium.  

 

1.4.1.1. The spermatogenic cycle 

Spermatogenesis is a complex and highly regulated process by which diploid 

spermatogonia differentiate into mature haploid spermatozoa. This transformation 

takes place in the seminiferous tubules and involves three stages known as 

spermatocytogenesis, spermatidogenesis and spermiogenesis. During 

spermatocytogenesis, spermatogonial stem cells (SG) located at the basal lamina 

are subjected to numerous mitotic divisions within a highly proliferative phase. These 

rapid successive divisions generate different type A spermatogonia that can be 

distinguished by the amount of chromatin in the nuclear envelope. Sequentially, 

spermatogonia initiate various differentiation steps leading to type B spermatogonia, 

followed by the formation of primary spermatocytes (SC), i.e. preleptotene and 

leptotene spermatocytes (plSC and lSC). These primary spermatocytes initiate the 

long lasting prophase of the first meiotic division, and thereby entering the stage of 

spermatidogenesis. During this phase, primary spermatocytes migrate through the 

active blood testis barrier to the adluminal compartment, which distinct milieu favors 

the development of meiosis I leading to the formation of the secondary 

spematocytes. There, pachytene spermatocytes (pSC) enter the second meiotic 

division ending in the formation of haploid spermatids with a unique genetic 

rearrangement. Spermiogenesis proceeds with the transformation of round 

spermatids (rST) into elongated spermatids (eST) and finally into fully differentiated 

spermatozoa (Sza). This requires massive morphological changes of the spermatids, 

including the development of the flagellum required for motility, the formation of an 

acrosome membrane containing digestive enzymes necessary for fertilization, 

nuclear transformation, and elimination of excess cytoplasm by the excretion of a 

residual body (rb). 
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Spermatozoa generated with each spermatogenic cycle must be released into the 

lumen of the seminiferous tubules during a process known as spermiation. Following, 

spermatozoa are transported into the epididymis were their maturation is completed.  

The complete spermatogenic cycle requires five mitotic and two meiotic divisions. 

Only the first mitotic division generates two separated daughter cells. All subsequent 

divisions of differentiating germ cells generate sister cells that remain connected by 

intercellular bridges due to an incomplete cytokinesis, and thereby sharing one 

unique cytosol and plasma membrane. 

 

 
 
Figure 7. Schematic representation of the spermatogenic cycle in mice. 
In the seminiferous tubules of the testis, spermatogonial stem cells (SG) adhered at 
the basal lamina (BL) proliferate generating spermatogonia type B that differentiate 
into preleptotene and leptotene spermatocyte (pl/lSC), which are the most 
differentiated germ cells present at post natal day (PN) 10. These primary SCs must 
traverse the blood-testis barrier (BTB) and further differentiate into pachytene 
spermatocytes (pSC), which are present at PN 15 of the first spermogenic cycle. At 
PN 20, the first round spermatids (rST) are formed and 10 days later the tubules 
contain significant amount of elongated spermatids (eST). These must further 
differentiate to generate spermatozoa (Sza), which are released into the lumen of the 
tubules from PN 35 onwards, and transported into the epididymis where they acquire 
full maturation. In the interstitium (IS) between adjacent tubules, androgen producing 
Leydig cells (LC) are located. Scheme modified from (Sandhoff, 2009).  
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1.4.1.2. Testicular polyenoic ultra long chain sphingolipids 

In addition to simple sphingolipids, i.e. ceramides and sphingomyelins, mouse testis 

express complex glycosphingolipids of the ganglio (Gg-) and the globo (Gb-) series. 

In previous work of our department, the comparison of GSL patterns of fertile and 

infertile mouse models led to the finding of a novel class of complex GSLs (Sandhoff 

et al., 2005). Structural analysis of these 8 novel molecules revealed a fucose 

residue attached to their ganglio-series oligosaccharide chains. Interestingly, the 

novelty relied on the fatty acid residue incorporated in these complex GSLs, being 

almost exclusively polyunsaturated (4 to 6 double bonds) and with a chain length of 

28 to 32 carbon atoms (Figure 8). Previously, sphingolipids containing ULC-PUFA 

residues have only been described as minor components incorporated into 

sphingomyelin of various mammals (Robinson et al., 1992). 

 Investigations of the specific GSL expression patterns of fertile GM3/Siat9-/- and 

infertile GM2S/Galgt1-/- mice linked the presence of the neutral subset of fucosylated 

GSL (FGSL) containing the ULC-PUFA moieties to be required for male fertility in 

mice (Sandhoff et al., 2005). Infertile mice lacking this neutral subset due to a genetic 

disruption of the GM2S/Galgt1-/- developed multinucleated giant cells at the stage of 

spermatid formation. The intercellular bridges connecting the sister spermatids were 

lost, leading to an arrest of spermatogenesis in these mutant mice. Whereas lack of 

these unconventional fatty acid residues, and/or lack of the complex fucosylated 

carbohydrate structure of this neutral FGSL are required for male fertility, is still to be 

elucidated.  

 Therefore cell-stage expression patterns of ULC-PUFA sphingolipids, in addition to 

the identification and in vivo depletion of the CerS(s) responsible for their 

biosynthesis, will be required to get insight into the molecular function and specific 

role of ULC-SLs in spermatogenesis. 
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Figure 8. GSL structures expressed in mouse testis. 
Testicular GSL structures are respresented within their synthetic pathways of the 
ganglio- and globo-series. GSLs absent in fertile GM3S/Siat9-/- and infertile 
GM2S/Galgt1-/- mice are enclosed in a blue and red square, respectively.  
  

1.4.2. The epidermis 
The mammalian skin is composed of two morphologically distinct layers: the 

overlying epidermis, which provides the primary barrier against desiccation, 

xenobiotics and pathogens; and the underlying dermis, which provides the strength 

and flexibility of the skin and accounts for the majority of its thickness. The latter is 

mostly constituted of fibroblasts, which secrete the connective tissue matrix mainly 

composed of collagen fibrils and elastin fibres. Instead, the primary cells of the 

epidermis are keratinocytes, which undergo progressive differentiation, maturation 

and cornification from the basal lamina to the outermost superficial cell layer 

(Figure 9).  

  

 



Introduction 
 

  

 20 

1.4.2.1. Epidermal structure and keratinocyte differentiation 

Epidermal differentiation is a highly dynamic process where keratinocytes are 

continuously regenerated from the proliferative stratum basale and shed upon their 

terminal stage of cornification. During this process, keratinocytes must undergo a 

series of profound changes involving their complete cellular structure and 

composition (Figure 9).   

  

 
 
Figure 9. The epidermal structure. 
The epidermis is a self-renewing tissue, where keratinocytes at the stratum basale 
progressively differentiate and migrate through the stratum spinosum and the stratum 
granulosum to terminally differentiate in the stratum corneum, where they finally shed 
during desquamation. Right, PAS-methylene blue-Azur II staining of neonatal mouse 
skin. KG: keratohyalin granules. Scheme (left) modified from (Sandhoff, 2009).  
 
 

 Keratinocytes residing at the stratum basale (SB) are characterized by the 

expression of keratins K5 and K14. These structural proteins, together with 

microtubules and microfilaments, constitute the cytoskeleton of basal epithelial cells. 

Upon leaving the basal lamina, keratinocytes become less proliferative and begin 

their apical migration reaching the stratum spinosum (SS). At the spinous layers, a 

complete new set of structural proteins is synthesized, mainly K1 and K10. At a more 
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advanced stage starts the synthesis of lipids and early structural proteins (involucrin, 

transglutaminases) required for the formation of the cornified envelope (CE). The 

cornified envelope consists of a highly cross-linked protein structure that replaces the 

plasma membrane of terminally differentiated keratinocytes, i.e. corneocytes. These 

structural proteins of the CE are covalently bound to the corneocyte-lipid envelope 

(CLE), and together provide the primary and essential epidermal barrier (Candi et al., 

2005). In parallel to the synthesis of lipids and enzymes required for the 

establishment of the CE and CLE, the formation of the secretory lamellar body 

organelle (LB) occurs at the upper SS layers. The main function of this unique 

multifunctional organelle is to deliver lipids, enzymes, antimicrobial peptides, among 

other metabolites, and secrete them primarily at the interface of the upper epidermal 

layers, i.e. the stratum granulosum (SG) and the stratum corneum (SC) (Elias et al., 

2006).    

 At the SG, the keratinocyte maturation proceeds with the expression of loricrin and 

profilaggrin, main constituents of the keratohyalin granules (KG), which structural 

proteins will be incorporated to the CE. The most profound changes during 

keratinocyte differentiation occur between the maturation of nucleated keratinocytes 

of the SG to enucleated corneocytes of the SC. At this interface, the majority of 

lamellar bodies secrete their contents, transglutaminases (TGs) cross-link proteins 

that generate the CE (involucrin, loricrin) and organelles of the viable epidermal 

layers are progressively degraded.  

 Morphologically, keratinocytes develop a flattened shape concomitantly with their 

differentiation yielding the squamous corneocytes. This terminally differentiated 

keratinocytes are devoid of nuclei, organelles and plasma membrane. Instead, the 

highly cross-linked proteins of the CE serve as a scaffold where lipids of the CLE are 

covalently bound.  

 The terminal keratinocyte differentiation leads to a highly regulated proteolytic 

process of specialized cell-cell junctions, i.e. corneodesmosomes, that concludes in 

the desquamation of the outermost corneocytes. The proteolytic cleaveage of 

corneodesmosomes requires the degradation of secreted extracellular corneosomal 

proteins (i.e. corneodesmosin), as well as of specific cadherins (i.e. desmogleins) by 

various proteases (i.e. kallikreins and cathepsins). The altered expression of 
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proteases, or alteration in the concentration of protease inhibitors, and other factors 

such as calcium concentration, pH and water content, results in a defect in 

corneocyte shedding, thereby altering desquamation leading to various pathologies 

(e.g. ichthyoses). 

 

1.4.2.2. Embryonic epidermis and the periderm 

At the initial embryonic stages of development, a transient epidermal layer known as 

periderm is formed from the embryonic ectoderm. During the early embryonic period, 

the epidermis consists of two cell layers, the inner proliferative basal keratinocytes 

and the outer periderm cells. At the embryonic/fetal transition, the basal keratinocytes 

start to stratify leaving the periderm cell layer at the epidermal surface. Peridermal 

cells cease to divide and increase in surface area, while characteristic blebs are 

being formed. Later in fetal development, complete stratification is reached with the 

formation of a thin stratum corneum underneath the peridermal cell layer. Nuclear 

degradation of peridermal cells proceeds with the subsequent disaggregation of the 

periderm, a process that occurs concomitantly with the barrier formation (Hardman 

and Byrne, 2006). In mice, the epidermal barrier is estimated to develop from 

embryonic day E16.5 to be completed at E18.5 (in mice born at day 19) (Hardman et 

al., 1998). 

 

 
 
Figure 10. Development of embryonic epidermis. 
Epidermis develops from the embryonic ectoderm by subsequent stratification of 
basal keratinocytes. The transient peridermal layer located at the surface might 
serves as a protective layer for the developing epidermis. Present until the late fetal 
stage (P < 16.5), the periderm disaggregates during the prenatal period (P > 18.5). 
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Although the function of the periderm is not completely understood, its role as a 

protective layer for embryonic skin has been suggested. The fact that the periderm is 

sealed with tight junctions supports this hypothesis. Differing from epidermal tight 

junctions, peridermal cells express claudin-6 (Morita et al., 2002). Keratins, namely 

K6, K16 and K17, are additionally expressed in this transient epidermal layer 

(Hardman and Byrne, 2006). 

 

1.4.2.3. Stratum corneum pH 

Along with the keratinocyte terminal differentiation, a remarkable pH gradient is 

established. In humans, the initial neutral pH (∼6.8) at the lower SC decreases with 

cornification reaching an acidic pH (∼4.5–5.3) at the surface of the SC. The 

generation of this “acid mantle” is influenced by exogenous as well as endogenous 

mechanisms. Whereas exogenous sources such as microbial metabolism or lactate 

formation from sweat appear to contribute to a minor extent to the pH gradient, the 

endogenous formation of free fatty acids from phospholipids, in addition to the proton 

secretion from the Na+/H+ antiporter at the keratinocyte PM, and the trans-urocanic 

acid production are the major contributors of the acidic pH. This acidic mantle at the 

surface of the SC is required to modulate SC integrity and cohesion, to provide 

resistance to antimicrobial activity, and to maintain the epidermal permeability barrier 

homeostasis (Fluhr and Elias, 2002). 

 

1.4.2.4. Intercellular junctions of the epidermis 

The epidermis contains various types of cell-cell junctional complexes, that are 

required for maintaining cellular adhesion, controlling transport of solutes and 

foremost, regulate the epidermal barrier function. Epidermal intercellular junctions are 

comprised of communication junctions (gap junctions), mechanical junctions 

(adherens junctions and desmosomes) and tight junctions.  

Communication junctions are commonly denominated as gap junctions and are 

composed of two transmembrane half-channels, i.e. connexons, each consisting of 

an assembly of six connexins that form a continuous channel between neighboring 

cells thereby directly connecting their cytoplasms (Figure 11). The channel created 

by connexons is about 2 to 4 nm, thus enabling the passage of ions and small 
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molecules up to 1 kDa. By regulating the flow of these molecules, gap junctions are 

directly involved in the chemical communication between neighboring cells forming a 

functional synchronized syncytium (Haftek et al., 2006). 

Mechanical junctions are involved in cellular adhesion by connecting intracellular 

cytoskeletal proteins of adjacent cells. The adherens junctions (zonulae adherentes) 

connect F-actin filaments via the classical cadherin-catenin complexes between two 

neighboring cells. Instead, desmosomes (maculae adherentes) are keratin-

associated protein complexes that are distinctive of epidermal tissues.  
 

 
 
Figure 11. Epidermal intercellular junctions. 
Model describing mechanical junctions (desmosomes and adherens junctions, A and 
C), communication junctions (gap junctions, B) and tight junctions (D), including the 
major proteins associated with each junctional complex. PM: Plasma membrane; 
ZOs: Zonula occludens proteins. Modified from (Lüllmann-Rauch, 2003) 
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The intercellular connections of actin-associated adherens junctions are 

constituted by transmembrane cadherins that form calcium dependent homodimers 

with cadherins of adjacent cells (Figure 11). Epidermal cell cohesion is achieved by 

anchoring the intracellular portion of these cadherins (P-cadherin and E-cadherin) to 

intracellular catenins (α-catenin, β-catenin, γ-catenin/plakoglobin and δ-catenin). The 

intercellular space created by this cell-cell junction is about 15 to 20 nm. Adherens 

junctions are distributed over the entire viable layers of mammalian epidermis 

(Brandner et al., 2010). 

Desmosomes are junctional protein complexes built up by the desmosomal 

cadherins (desmogleins and desmocollins) and the intracellular plaque proteins 

(plakoglobin and desmoplakin) (Figure 11). Intercellular cadherins serve as anchor 

sites for the attachment of adjacent cells. They span across the PM of nucleated 

keratinocytes or through the CE of corneocytes, binding to the intermediate filaments 

(keratins) via the plaque proteins. 

Keratinocyte maturation modulates the number, size and composition of 

desmosomes. At the SB, desmosomes increase upon differentiation to the SS. At the 

interface between SG and SC, desmosomes undergo a series of profound changes 

including the integration of the junctional complexes into the CE. These 

morphological changes lead to the formation of the corneodesmosomes. At the first 

layers of the SC, i.e. stratum compactum, corneodesmosomes are almost evenly 

distributed over the entire surface of the corneocytes. As cornification advances, non-

peripheral corneodesmosomes distributed at basal and apical regions, are first 

degraded by LB-secreted proteases. In the upper SC, i.e. stratum disjunctum, the 

degradation of peripheral corneodesmosomes distributed at the lateral regions is 

initiated, resulting in a weaker cell cohesion that ultimately leads to the shedding of 

the outermost superficial corneocytes (Haftek et al., 2006).  

The process of desquamation involves the proteolytic degradation of 

corneodesmosomal proteins. Several proteases have been implicated in this 

process, mainly proteins of the kallikrein family (KLK7 and KLK5) and the cathepsin 

family (CTSL2, CTSL-like, CTSD and CTSE-like). Protease inhibitors have also been 

implicated in the regulation of corneocyte exfoliation, among them elafin, 

antileukoproteinase and SPINK-5 are the most prominent. Additionally, several other 



Introduction 
 

  

 26 

factors have been shown to influence cell cohesion at the SC, such as water content, 

SC pH and depletion of extracellular calcium (Haftek et al., 2006). Deregulations and 

alterations of the desquamation process can lead to several pathological conditions, 

e.g. Netherton syndrome (Schmuth et al., 2007).  

Whereas adherens junctions and desmosomes mechanically couple the 

intracellular cytoskeleton of neighboring cells and thereby regulate cell adhesion, 

tight junctions are primarily responsible for sealing adjacent cells and controlling the 

paracellular transport. Tight junctions (zonulae occludentes) from two adjacent cells 

form paired strands or fibrils, which contain aqueous pores, thus enabling the 

diffusion of selected ions and small molecules (Figure 11). In addition, tight junctions 

(TJs) separate the apical and the basal plasma membrane domains thereby blocking 

the lateral diffusion of proteins and lipids (Morita et al., 2002).  

The debate regarding the occurrence of typical TJ structures in mammalian 

epidermis has been ongoing for several decades. This controversy reached its end 

with the recent reports from the Tsukita and Franke groups describing TJs and 

TJ-related structures in stratified mammalian epithelia (Langbein et al., 2002; Morita 

et al., 2002). In addition to typical TJ structures (zonulae occludentes), characterized 

by their “kissing points” at the electron microscopical level, they identified “lamellated 

TJs” (coniunctiones laminosae), “sandwhich junctions” (iuncturae structae), extended 

close-contact junctions (occludens junctions), among other structures. These 

junctional complexes were often found interspersed between desmosomal junctions 

(Langbein et al., 2002).  

At the molecular level, tight junctional complexes are comprised of transmembrane 

and plaque proteins. Occludin, claudins and junctional adhesion molecules (JAMs) 

have been reported among the transmembrane proteins found in epidermal tight 

junctions. These intercellular proteins are associated with scaffolding plaque proteins 

such as cingulin, symplekin, zonula occludens proteins (ZO-1, ZO-2, ZO-3), etc. The 

latter zonula occludens-associated proteins have been demonstrated to directly bind 

to the F-actin cytoskeleton (Brandner and Proksch, 2006). The molecular 

composition of the tight junctional transmembrane and plaque proteins is widely 

diverse and varies according to cell types, as well as their degree of differentiation. In 

particular, the expression pattern of the extensive claudin protein family has been 
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reported to be highly tissue specific (Tsukita et al., 2001). Their composition and ratio 

of expression have been shown to modulate TJ permeability and ion selectivity 

(Furuse et al., 2001). However, the essential role of TJ in the epidermal permeability 

barrier was not established until it could be demonstrated that claudin-1 deficiency 

resulted in rapid postnatal lethality due to a tremendous transepidermal water loss 

(TEWL) in mice (Furuse et al., 2002).  

Differing from the wide distribution of adherens junctions within the living layers of 

the epidermis, the expression of zonulae-TJs is restricted to the SG layer. Typical 

zonulae-TJ structures are distributed continuously around the cell-cell borders of 

granular keratinocytes (Furuse et al., 2002). In addition, less developed TJ 

complexes known as maculae occludentes have also been reported at the SG layer. 

Their distribution was focussed in a series of discrete sites around the cell-cell 

borders of granular keratinocytes (Morita et al., 1998). 

In diseased skin, TJ expression exhibits a broadened distribution that included 

keratinocytes of the SS layer. Altered expression of TJ proteins have been 

demonstrated in psoriasis, ichthyosis vulgaris, various eczema, but also in tumors 

and in regenerating skin after wounding (Brandner and Proksch, 2006; Kirschner et 

al., 2010a). 

 

1.4.2.5. Epidermal permeability barrier 

The primary function of the epidermis is to provide a defensive barrier against 

pathogenic microbes, mechanical and chemical insults, and most importantly to 

provide terrestrial vertebrates with a barrier against desiccation. This essential 

permeability barrier primarily resides in the SC, where corneocytes are embedded in 

lipid lamellar sheets that form the corneocyte-lipid envelope. These highly 

hydrophobic lamellae are mostly composed of ceramides (Cer), cholesterol (Chol) 

and free fatty acids (FFA), estimated to contain 50%, 25% and 10% of the total lipid 

mass, respectively (Werzt, 2006). The near equimolar ratio of these major 

components of the CLE is critical for the proper maintenance of the epidermal 

permeability barrier (Holleran and Takagi, 2006). Alterations of this ratio, as well as 

the variation within their species, have been linked to a multitude of skin diseases 

such as atopic dermatitis and psoriasis (Imokawa et al., 1991; Motta et al., 1993). 
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Minor components of the lipid lamellae include cholesterol sulfate, which is required 

for proper desquamation (Elias et al., 1984), and free long chain bases, resulting 

from the degradation of ceramide, which might be necessary for inhibiting pathogenic 

microbial growth (Bibel et al., 1992; Veerman et al., 2010). 

 The formation of the epidermal permeability barrier is initiated with the synthesis of 

lipids required for the formation of the CLE and their precursors, which take place at 

the ER and the Golgi compartments of mostly keratinocytes of the upper SS and SG 

(Figure 12). These secretory lipids and their precursors are packed in disk-like form 

lipid layers, together with hydrolytic enzymes (e.g. glycosidases, proteases), and 

other proteins into lamellar bodies. These stacks of lipids mostly consist of 

cholesterol and the precursor species of glucosylceramides, sphingomyelins, and 

glycerophospholipids, required for the formation of intercellular ceramides and FFAs 

(Freinkel and Traczyk, 1985). Analysis on the composition of these precursor lipid 

species revealed that glucosylceramides are specially enriched of a unique ULC-ω-

hydroxy fatty acid moiety esterified with linoleic acid at the ω-position (Abraham et al., 

1985). In contrast, the acyl moieties of sphingomyelins have non-hydroxy fatty acids 

up to 26 carbon atoms, or α-hydroxy-LC-FA residues (Uchida et al., 2000). 

 Following the synthesis and recruitment of lipids and proteins into LB, these 

organelles translocate apically towards the plasma membrane of the uppermost 

keratinocytes of the SG. A deficiency or malfunction of this multifunctional organelle 

has severe consequences. Mutations in the ATP-binding cassette transporter A12 

protein, ABCA12, required for the proper lipid transport in LB, leads to the fatal 

human disorder of Harlequin ichthyosis causing a defective barrier function and 

neonatal death (Akiyama et al., 2005; Kelsell et al., 2005).  

At the interface, LB fuse with the PM and secrete their content in the extracellular 

space (Madison, 2003). There, LB-derived lamellar sheets are organized parallel to 

the PM, where conventional plasma membrane lipids are successively replaced by 

the lamellar sheets of the CLE. The formation of the mature CLE requires the 

attachment of ω-hydroxy-ULC-glucosylceramides to the carboxy residues of proteins 

in the outer surface of the CE (Holleran and Takagi, 2006). Previous ω-esterification 

to fatty acids like linoleic acid appears to be crucial for this process, as lack of 

sphingolipids containing these ω-esterified FAs in CGI-58 deficient mice also leads to 
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a strong decrease in protein bound sphingolipids (Radner et al., 2009). In vitro, the 

transesterification of ω-hydroxy-ULC-ceramides from their linoleic esters onto 

glutamine residues of involucrin has been demonstrated for transglutaminase 1 

(TG1) (Nemes et al., 1999). However, patients with TG1 deficiency exhibit sporadic 

normal CLE structures, therefore this enzyme might not be solely responsible for the 

attachment of ω-hydroxy-ULC-sphingolipids to the CE (Elias et al., 2002). 

 The CE proteins involved in the covalent attachment of ω-hydroxy-ULC-

sphingolipids in vivo remain elusive. Although involucrin, envoplakin and periplakin 

have been suggested substrates for ceramide attachment, other structural proteins 

have not been discarded as possible substrates (Marekov and Steinert, 1998). In 

mice, the in vivo depletion of involucrin develop normal CE (Djian et al., 2000), 

therefore other additional proteins might be responsible for the linkage to the CLE. 

At the extracellular space, the lipid lamellae are elongated and fuse resulting in the 

formation of uninterrupted lipid sheets. This fusion of short lipid stacks has been 

suggested to occur edge-to-edge (Landmann, 1986), and might be mediated by the 

extracellular processing of precursor polar lipids (mainly glucosylceramide and 

phospholipids) that generate the highly hydrophobic constituents of the CLE 

(Coderch et al., 2003).  

The final step for barrier formation requires the hydrolysis of precursor lipids by 

secreted acid hydrolyses. In particular, glucosylceramides are converted into 

ceramides by β-glucocerebrosidase (Holleran et al., 1994b). The formation and 

processing of glucosylceramide is an imperative for a functional epidermal barrier, as 

has been demonstrated in the keratinocyte specific deletion of glucosylceramide 

synthase (Jennemann et al., 2007) and in a mouse model for Gaucher disease with a 

defective β-glucocerebrosidase (Doering et al., 1999b; Holleran et al., 1994a). The 

hydrolysis of GlcCers appears to require the activation of β-glucocerebrosidase by 

saposins. The in vivo deficiency of prosaposin, common precursor of these small 

glycoproteins, exhibits abnormal lamellar membrane maturation (Doering et al., 

1999a). 

The processing of protein bound ω-hydroxy-ULC-glucosylceramides leads to the 

maturation of the CLE. However, the processing of sphingomyelin by acid 

sphingomyelinase, as well as the breakdown of phospholipids by phospholipase A2 
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to generate FFAs, has been shown to be critical for epidermal barrier homeostasis. 

The hydrolysis of precursor lipids has an optimum acidic pH, exhibiting extremely 

reduced enzymatic activities at neutral pH (Holleran and Takagi, 2006). 

 

 
 
Figure 12. Establishment of the epidermal permeability barrier. 
The epidermal permeability barrier is primarily localized at the SC. The highly 
hydrophobic lipid lamellae together with the CLE are required for the proper function 
of the epidermal barrier against desiccation. The lamellar bodies have an essential 
function involving the transport and secretion of precursor lipids to the interface, 
which are further processed to generate the CLE, i.e. the lipid sheets within the 
interstices. Modified from (Sandhoff, 2009). 
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Although a significant progress has been achieved in the last decades to elucidate 

the metabolic requirements for the formation of the CLE, the precise steps for ULC-

FA elongation, ω-hydroxylation and ω-O-esterification are still unresolved, regarding 

the enzymes and their intracellular localization. The specific regulation of these 

processes, as well as the precise biogenesis, transport and secretion of LB is a 

prerequisite for understanding the pathogenesis of a multitude of skin diseases. 

 

1.4.2.6. Epidermal ultra long chain sphingolipids 

Ceramides are the main class of sphingolipids expressed in the mature CLE, as well 

as in the lipid lamellae of the SC. Although at least twelve major classes of ceramide 

species have been identified (Uchida and Hamanaka, 2006), the characterization of 

human SC ceramides by LC-ESI-MS/MS resulted in the identification of 342 

ceramide species (Masukawa et al., 2008).  

SC ceramides derived from sphingosine can be classified according to their acyl 

residue: NS for non-hydroxy-FA, AS for α-hydroxy-FA, OS for ω-hydroxy-FA, POS for 

ω-hydroxy-FA bound to protein and EOS for ω-hydroxy-FA esterified primarily to 

linoleic acid (Figure 13).  

Sphingosine is not the exclusive LCB expressed in epidermal ceramides. In 

addition, phytosphingosine and 6-hydroxy-sphingosine are common LCBs found in 

human epidermis. The molecular diversity generated by the presence of various 

LCBs is further enhanced by mostly variations within the chain length of the acyl 

moieties and the hydroxylation of the sphingoid base and the acyl residue.  

The ω-hydroxy-ceramides esterified with linoleate (EOS) are the most common SC 

ceramides. They contain primarily saturated or monounsaturated ULC-acyl moieties 

of 30 to 36 carbon atoms. In humans, the linoleate residue (18:2, ω-6) is the major 

FA linked to EOS, which contributes with 95% of total EOS. In contrast, mice 

epidermis contains 45% of linoleate esters linked to the ω-hydroxyl group (Uchida 

and Hamanaka, 2006). In essential fatty acid deficiency (EFAD) oleate (18:1, ω-9) 

residues have been shown to replace linoleate, with a consequent decrease in the 

epidermal permeability barrier (Melton et al., 1987).  
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Figure 13. Major classes of epidermal ceramides.  
Non-hydroxy and α-hydroxy-ceramides mainly contain acyl moieties with a carbon 
chain length up to 26 carbon atoms. The majority of ω-hydroxy-ceramides 
incorporate saturated or monounsaturated ULC-acyl residues ranging from 30 to 36 
carbon atoms. 
 
 

The biosynthesis of ω-hydroxy-ceramides esterified to carboxy residues of CE 

proteins (POS) is essential for epidermal barrier homeostasis. Likewise to EOS, 

these ceramide species mainly contain saturated or monounsaturated ULC-acyl 

moieties (Coderch et al., 2003). The precursor of both ceramide classes has been 

shown to be exclusively glucosylceramide (Uchida and Hamanaka, 2006). In 

contrast, non-hydroxy and α-hydroxy epidermal ceramides appear to be derived from 

SM species (Uchida et al., 2000). The acyl residues incorporated into NS and AS 

ceramides are mostly saturated and contain 16, 18, 24 or 26 carbon atoms in their 

acyl chains (Coderch et al., 2003), however they do not contain ULC-acyl moieties. 

Although hydroxy fatty acids account for about 40% of SC ceramides, the 

enzyme(s) involved in the synthesis of α-hydroxy-Cers are not yet resolved. In vitro 

studies demonstrated that FA2H increased α-hydroxy-Cers levels upon keratinocyte 
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differentiation, however in vivo deletion of this gene did not exhibit obvious alterations 

of the permeability barrier suggesting another enzyme being involved in the 

biosynthesis of α-hydroxy-Cers (Hama, 2009; Meixner, 2009). 

The multiple regulatory functions of ceramides in cell cycle, apoptosis and cellular 

differentiation have been demonstrated for various cell types, including keratinocytes 

(Geilen et al., 1997). In the epidermis, the essential role of ceramides in the formation 

and maintenance of the permeability barrier is currently being established. However, 

whether epidermal ceramides have a functional role in regulating keratinocyte 

differentiation and/or apoptosis is yet undetermined.  

 
1.5. Hypothesis and aims 
 
Complex glycosphingolipids and ceramides containing ULC-PUFA moieties were first 

described in mature mouse testis by Sandhoff et al. Interestingly, the neutral subset 

of this class of GSLs correlates with male fertility in mice. The functional role of these 

unconventional testicular sphingolipids has not been yet elucidated, however 

understanding the biosynthetic requirements of ULC-sphingolipids is a prerequisite in 

order to gain a deeper insight into their role in cellular functions.  

ULC-acyl moieties are incorporated to sphingoid bases by a yet unidentified 

ceramide synthase homologue. Preliminary work demonstrated that CerS3 is 

strongly expressed in testis and skin, both being the only mammalian tissues 

containing ULC-sphingolipids (Sandhoff et al., unpublished data). Hence, we 

hypothesized that CerS3 might be involved in the synthesis of these ULC-ceramides, 

which are the common precursor for all complex ULC-glycosphingolipids.  

To confirm the role of CerS3 or any other CerSs in the biosynthesis of ULC-

sphingolipids, transcriptional analysis of the individual members of the CerS family 

will be performed to determine whether CerS3 or another CerS is coexpressed with 

testicular ULC-PUFA sphingolipids. For these studies, germ cell-stage specific and 

“germ cell-free” mice testes will be analyzed.  

The identified CerS(s) responsible for catalyzing ULC-sphingolipid formation will 

be further characterized regarding their genetic structure, topology and subcellular 

localization. 
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To demonstrate the in vitro capacity for ULC-ceramide biosynthesis, the identified 

CerS(s) will be subjected to enzymatic assays. The substrate specificity of the 

corresponding CerS(s) towards ULC-CoAs in favor of LC- and VLC-CoAs will be 

determined. To carry out these enzymatic assays, living mammalian cells expressing 

CerS(s) with recombinant GFP proteins will be generated and supplemented with 

various acyl-CoAs including ULC-CoAs.  

In parallel, the in vivo depletion of CerS3 is being established in our department. 

Mice carrying a genetic alteration of the CerS3 gene will provide a valuable tool to 

clarify the role of this enzyme in ULC-ceramide biosynthesis. In addition, this 

dysfunctional CerS3 mouse model will unveil new insights into the biological 

functions of its specific ceramide species in the skin and the testis.  
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2.1. Materials 
 
2.1.1. Chemicals 

All reagents used in this study for routine analysis were obtained from the following 

commercial sources: Sigma, Carl Roth, Fluka, AppiChem, Gerbu and Merck. The 

grade of these chemicals were pure for analysis.  

For cloning, restriction enzymes were obtained from Invitrogen and New England 

Biolabs (NEB). For synthesis of organic compounds, solvents and reagents were 

purchased from Fluka, except for coenzyme A obtained from American Radiolabelled 

Chemicals, dimethylketene methyl trimethylsilyl acetal and triethylamine from Sigma, 

and sphingosine (d17:1), which was acquired from Avati Polar Lipids. For ceramide 

synthase assay, activated fatty acids with coenzyme A with an acyl moiety ranging 

from 16 to 26 carbon atoms were also acquired from Avanti Polar Lipids. For cell 

culture, supplements were purchased from Invitrogen. All other chemicals were used 

and purchased as indicated in the corresponding sections. 

 
2.1.2. Basic equipment 
General consumables for molecular biology and cell culture were purchased from 

Eppendorf, Gilson, Greiner and BD Biosciences.  

 

2.1.3. Buffers and solutions 
All stock buffers and solutions were prepared using either Aqua ad injectabilia Braun 

or  double distilled autoclaved water.  

 

Solutions for molecular biology - I 

TAE buffer (50x) 
2 M Tris/AcOH pH 8.0 

0.1 M EDTA 

EB buffer (1x) 
10 mM Tris/HCl pH 8.5 

Xylene cyanol loading buffer  (10x) 
0.001% xylene cyanol (w/v) 

50% glycerol (v/v)  
20mM Tris/HCl pH 7.5 

Crystal violet loading buffer (10x) 
0.02% crystal violet (w/v) 
50% glycerol (v/v) in H2O 
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Solutions for molecular biology - II 

TE buffer (1x) 
10 mM Tris/HCl pH 8.0 

1 mM EDTA 

Restriction digest buffer 1 (1x) 
50 mM Tris-HCl pH 8.0 

10 mM MgCl2 
100 mM NaCl 

Ligation buffer 1 (5x) 
250 mM Tris-HCl pH 7.6 

50 mM MgCl2 
5 mM ATP 
5 mM DTT 

25% polyethylene glycol-8000 (w/v) 

PCR buffer 1 (10x) 
200 mM Tris-HCl pH 8.8 

100 mM KCl 
100 mM (NH4)2SO4 

20 mM MgSO4 
1% Triton X-100 (w/v) 

1 mg/ml nuclease-free BSA 
 

Solutions for Western blot - I 

Hypotonic lysis buffer 1 (1x) 
50 mM HEPES-NaOH 

0.5 mM DTT 
1x protease inhibitors mixture 2 

 Digitonin lysis buffer 1 (1x) 
20 mM HEPES-NaOH pH 7.4 

25 mM KCl 
250 mM sucrose 

2 mM MgCl2 

0.5 mM DTT 
1x protease inhibitors mixture 2 

1% digitonin 2,3 (w/v) 
Resolving gel buffer  (8x) 

3 M Tris-HCl pH 8.8 
0.1% SDS (w/v) 

Stacking gel buffer (4x) 
0.5 M Tris-HCl pH 6.8 

0.1% SDS (w/v) 
Lämmli loading buffer 1 (4x) 

40% glycerol (v/v) 
0.02% bromophenol blue (w/v) 

250 mM Tris pH 6.8 
8% SDS (w/v) 

0.4 M DTT 

Running buffer (10x) 
250 mM Tris 

1.92 M glycine 
1% SDS (w/v) 

Transfer buffer (10x) 
250 mM Tris 

1.92 M glycine 

Transfer-MeOH buffer 4,5 (1x) 
1x transfer buffer 
20% CH3OH (v/v) 
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Solutions for Western blot - II 

PBS buffer (10x) 
1.4 M NaCl 
27 mM KCl 

0.1 M Na2HPO4 
18 mM KH2PO4 

pH 6.8 

PBS-Tween buffer (1x) 
1x PBS 

0.1% Tween 20 (v/v) 

Ponceau red  
0.5% Ponceau red (w/v) 

1% AcOH (v/v) 

Blocking buffer 4,5 (1x) 
5% skimmed milk (w/v) in PBS-T 

 

Solutions for affinity purification of an antibody 

Coupling buffer (1x) 
0.5 M NaCl 

0.2 M NaHCO3 
pH 8.3 

Acetate buffer (1x) 
0.1 M NaOAc  
0.5 M NaCl  

pH 4.0 
20 mM Natrium phoshate buffer (1x) 

0.2 M NaH2PO4 x H2O (stock A) 
0.2 M Na2HPO4 x 7 H2O (stock B) 

28 ml stock A + 72 ml stock B  
+ 900 ml H2O 

pH 7.2 

Eluate solution-1 (1x) 
 70 mM glycine pH 2.7 

0.6 mM phosphate buffer 
pH 2.7 

 

Eluate solution-2 (1x) 
100 mM glycine pH 2.0 

Eluate solution-3 (1x) 
30% glycerol (v/v) in 10x PBS pH 11.7 

 

Other buffers and solutions 

Thermolysin buffer 1 (500 µg/ml) 
10 mM HEPES pH 7.4 

142 mM NaCl 
6.7 mM KCl 

0.43 mM NaOH 
1 mM CaCl2 

 Lowry complex reagent 5  (1x) 
2% Na2CO3 (w/v) in 0.1 M NaOH 

+ 0.01% CuSO4 in H2O 
+ 0.02% Na,K tartrate in H2O 

 Citrate buffer (1x) 
25 mM sodium citrate  

0.5% N-laurylsacrosine (w/v) 
pH 7.5 

Guanidin thiocyanate buffer (10x) 
1x citrate buffer 6 

+ 4.23 M guanidin thiocyanate 
+ 0.2 M 2-mercaptoethanol 
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1 Store at – 20 ºC. 
2 Add freshly. 
3 Digitonin solution (10%) was prepared by dissolving the powder in boiling water and 
keeping the solution at 95 ºC for 10 min. 
4 Store at + 4 ºC. 
5 Freshly prepared. 
6 Freshly sterile filtered. 
 

2.1.4. Plasmids 
 

Name Gene of interest Resistance Size (bp) Source 

pEGFP-N1 EGFP Kanr 4733 Clontech 

hElovl2-EGFP – 

pReceiver-M03 
human Elovl2 Ampr 7190 

Genecopoeia 
(EX-W1503-M03) 

hElovl4-tGFP – 

pCMV6-AC-GFP 
human Elovl4 Ampr 7502 

Origene 

(RG206248) 

hCerS3 – 

pReceiver-M02 
human CerS3 Ampr 6913 Genecopoeia 

(EX-T7111-M02) 

pRevTRE2-EGFP 
MoMuLV-derived 
retroviral vector 
encoding EGFP 

Ampr 7198 
Kindly provided 

by Prof. Dr. 
W. Nickel 

 
2.1.5. Restriction endonucleases 
 

Plasmid 
Restriction endonucleases 

Company 
5’ – prime 3’ – prime 

hCerS2-EGFP HindIII EcoRI Invitrogen 

hElovl2-EGFP EcoRI BamHI Invitrogen 

mCerS3-EGFP EcoRI BamHI Invitrogen 

pRevTRE2-mCerS3-EGFP BamHI AgeI Invitrogen, NEB 

pRevTRE2-hCerS3-EGFP BamHI AgeI Invitrogen, NEB 
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2.1.6. DNA and protein ladders 
 

Type of ladder Range  Comapny 

1 kb DNA ladder 506–12216 bp Invitrogen 

100 bp DNA ladder 100–2072 bp Invitrogen 

PageRuler plus prestained 10–250 kDa Fermentas 

Precision plus protein  
all blue standards 

10–250 kDa Bio-Rad Laboratories 

 
2.1.7. Technical devices 
Basic instrumentation used regularly in this study included incubator, oven, 

centrifuge, microwave, water bath, pH meter, autoclave and horizontal shaker. Other 

technical devices used are summarized in the following table: 

 

Instrument Company 

Instruments used for molecular biology 

2720 Thermal cycler - PCR Applied Biosystems 

Avanti J-25 centrifuge Beckman 

GelDocTM 2000 Gel Documentation System Bio-Rad Laboratories 

SM-30 Control rotary shaker Neolab 

Ultrospec 2000 UV/Visible Spectrophotometer Pharmacia Biotech 

Instruments used for cell biology 

Centrifuge 5417R and 5415C Eppendorf 

FACS Calibur BD Biosciences 

FACS Vantage Diva and FACS Aria I  
cell sorters 

BD Biosciences 

Instruments used for immunoblotting 

Mini-PROTEAN 3 Cell electrophoresis system Bio-Rad 

Sonifier 250 Branson 

Sonorex Super RK 102H - Sonicator Bandelin 
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Instruments used for lipid analysis 

Alpha 1-2 - lyophilizer Christ 

Evaporator Liebisch 

Linomat IV Camag 

Scanning densitometer CS-9301 Shimadzu 

Varifuge 3.0 R Heraeus Sepatech 

VG micromass model Quattro II Waters 

Instruments used for RNA analysis 

2100 Bioanalyzer Agilent Technologies 

Glass-Col grinder Glass-Col 

Light Cycler 2.0 system Roche Diagnostics 

Ultra Turrax T25 basic  IKA Labortechnik 

Instruments used for microscopic analysis 

Biorevo BZ-9000 Keyence 

DTK 1000 DSK Microslicer 

Leica CM 3050S Leica 

Leica DM-RBE microscope Leica 

Leica TCS-SL confocal scanning system, with 
microscope DMRE and Leica 

confocal software, Version 2.61 
Leica 

Leica Ultracut UCT Leica 

Leica Ultracut UCT equipped with a Leica 
EMFCS 

Leica 

Microm HM 340E Thermo Scientific 

Microm HM 355S Microm 

Zeiss EM 906E Zeiss 

Other instruments 

Tewameter TM300 Courage-Khazaka Electronics 

Thermomixer comfort Eppendorf 
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2.1.8.  Cell lines 
2.1.8.1. Bacterial and fungal strains 

E. coli derived DH5α bacterial strain was used for most cloning procedures. 

Subcloning efficiency DH5α competent cells (Invitrogen, 18265-017) were used for 

regular subcloning experiments, whereas library efficiency DH5α competent cells 

(Invitrogen, 18263-012) were used for ligation reactions. Low copy number 

CopyCutter™ EPI400™ E. coli cells (Epicentre, C400CH10) were used exclusively 

to enable the amplification of hElovl4-tGFP plasmid DNA.  

To examine the vulnerability of CerS3d/d skin against microbial infections, Candida 

albicans (ATCC 90028) were used. 

 

2.1.8.2. Eukaryotic cell lines  

The following cell lines and clones were used in this study: 

- HEK-293T: Human embryonic kidney 293 cells expressing SV40 large T-antigen. 

Provided by Prof. Dr. Walter Nickel.  

- HeLa: Human cervix carcinoma derived cell line with epithelial-like morphology. 

- HeLamCAT1-rtTA2-M2: Clone originated from HeLa cells stably transfected with mCAT1 

(murine cationic aminoacid transporter 1), rtTA2-M2 (optimized reverse tetracycline-

controlled transactivator), and a truncated version of CD2 (cluster of differentiation 2). 

This clone was kindly provided by Prof. Dr. Walter Nickel. 

- HeLamCAT1-rtTA2-M2-hCerS3-eGFP: Clone originated from HeLamCAT1-rtTA2-M2 stably 

transfected with hCerS3-eGFP. 

- HeLamCAT1-rtTA2-M2-mCerS3-eGFP: Clone originated from HeLamCAT1-rtTA2-M2 stably 

transfected with mCerS3-eGFP. 

- HeLamCAT1-rtTA2-M2-eGFP: Clone originated from HeLamCAT1-rtTA2-M2 stably transfected 

with eGFP. 

- K9: Immortalized cell line derived from murine primary Leydig cells. 
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2.1.9.  Mouse lines 
 

Mouse strain Tissue analyzed Source 

C57/BL6 
Brain, colon, liver,  

skin, testis 
Charles River 

CerS2gt/gt Skin Kindly provided by K. Willecke 
CerS3d/d Skin Generated by R. Jennemann 
GM2AP-/- Testis Kindly provided by R.L. Proia 

KitW-v/KitW Testis 
The Jackson Laboratory 
 (stock number 100410) 

 
2.1.10. Media  
2.1.10.1. Media for bacterial culture  

 

LB medium 
1% tryptone (w/v) 

0.5% yeast extract (w/v) 
1% NaCl (w/v) 

pH 7.0 

SOC medium 
2% tryptone (w/v) 

0.5% yeast extract (w/v) 
10 mM NaCl 
2.5 mM KCl 

10 mM MgCl2 
10 mM MgSO4 
20 mM glucose 

  

LB-agar medium for plates was prepared by adding 1.5% bacto-agar in LB medium. 

Growth media were autoclaved and supplemented with antibiotics for selective 

growth of bacteria carrying the plasmid with the adequate resistance. Antibiotics used 

in this study were ampicillin (100 µg/ml) or kanamycin (50 µg/ml).  

 

2.1.10.2. Media for cell culture 

 
RPMI growth medium 1,2 

1x RPMI 1640 
+ 10% FCS 3 (v/v) 

+ 2 mM L-glutamine 
+ 10 mM HEPES 

+ 50 U/ml penicillin 
+ 50 µg/ml streptomycin 

DMEM growth medium 1,4 
1x DMEM 

+ 10% FCS 3  (v/v) 
+ 2 mM L-glutamine 
+ 100 U/ml penicillin 

+ 100 µg/ml streptomycin 
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DMEM growth medium 1,5 
1x DMEM 

+ 15% FCS 3  (v/v) 
+ 4 mM L-glutamine 

+ 15 mM HEPES 
+ 100 U/ml penicillin 

+ 100 µg/ml streptomycin 

MBS-medium 1 
DMEM 

+ 7% modified bovine serum (w/v) 
+ 25 µM chloroquine in PBS 

  
1 Stored at 4 ºC. 
2 For culture of HeLa cells. 
3 FCS was heat inactivated for 30 min at 56 ºC prior to be used as a supplement.  
4 For culture of HEK-293T cells. 
5 For culture of K9 Leydig cells. 
 

Additional solutions used for cell culture were: 

RPMI 1640 (1x) Roswell Park Memorial Institute medium (Sigma, R0883) 

DMEM (1x)  Dulbecco’s modified Eagle's minimal essential medium (Lonza, 

BE12-604F) 

D-PBS (1x)   Duldecco’s phosphate buffered saline (Sigma, D8537) 

Trypsin (10x)   0.25% trypsin (Gentaur) + 0.5 mM EDTA 

Trypan blue (1x) 0.4% trypan blue + 0.81% NaCl + 0.06% KH2PO4  

 
2.1.11. Multi-component systems (“Kits”) 
 

Multi-component system Company 

Agilent RNA 6000 nano reagents  Agilent 

ECL Western blotting analysis system Amersham GE Healthcare 

Light Cycler FastStart DNA master SYBR green I Roche Diagnostics 

MBS mammalian transfection kit Stratagene 

pVPack vectors kit Stratagene 

Qiagen plasmid maxi kit Qiagen 

QIAprep spin miniprep kit Qiagen 

QIAquick gel extraction kit Qiagen 

QIAquick PCR purification kit Qiagen 

TURBO DNA-free kit Ambion 
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2.1.12. Primers 
2.1.12.1. Primers used for analytical polymerase chain reaction (PCR) 

The tissue distribution of Cers3 was analyzed with the following primers: 

 

Gene Primer sequence 
Ta 

(ºC) 
Product 
size (bp) 

CerS3 – cDNA 1 
F 5’ – TCT GGG AGG TTT GGA ATG AC – 3’ 

55 687  
R 5’ – CGC CAC ATT GTG CTT CAA – 3’ 

mGapdh 
F 5’ – ACT CCC ACT CTT CCA CCT TC – 3’ 

55 156 
R 5’ – GGT CCA GGG TTT CTT ACT CC – 3’ 

 
1 To analyze Cers3 expression 30 cycles of denaturation-annealing-elongation of the 
cDNA template were used.  
 

2.1.12.2. Primers used for preparative PCR 

The following primers were used to generate mammalian expression plasmids: 

 

Plasmid Primer sequence 
T1, T2 
(ºC) 1 

Product 
size (bp) 

mCerS3-

EGFP 

F 2 5’ – ATG TTT CAG ACG TTT AGA AAA TGG TT – 3’ 
56 1171 

R 2 5’ – CGC CAC ATT GTG CTT CAA – 3’ 

F 
5’ – TAT ATA GAA TTC GCC ACC ATG TTT CAG ACG 

TTT AGA AAA TGG TTC TGG – 3’ 
56, 62 1181 

R 
5’– TAT ATA GGA TCC GTA CGG CCA TGC TGA CCA 

TTG GCA ATG – 3’ 

hCerS2-

EGFP 

F 5' – CAG GAT GCT CCA GAC CTT GT – 3' 
53 1164 

R 5' – GCA GCT GGA ATA ATG GTT CA – 3' 

F 
5' – TAT ATA AAG CTT GCC ACC ATG CTC CAG ACC 

TTG TAT GAT TAC TT – 3' 
54, 62 1171 

R 
5' – TAT ATA GAA TTC GGT CAT TCT TAC GAT GGT 

TGT TAT TGA GGA TG – 3' 

hElovl2-

EGFP 

F 
5' – TAT ATA GAA TTC GCC ACC ATG GAA CAT CTA 

AAG GCC TTT GAT GAT G – 3' 
54, 63 920 

R 
5' – TAT ATA GGA TCC GTT TGT GCT TTC TTG TTC 

ATC ACT CCA TTT – 3' 
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Plasmid Primer sequence 
T1, T2 
(ºC) 1 

Product 
size (bp) 

pRevTRE2-

mCerS3-

EGFP 

F 
5' – TAT ATA GGA TCC GC CAC CAT GTT TCA GAC 

GTT TAG AAA ATG GTT CTG G – 3' 
56, 66 1181 

R 
5' – TAT ATA ACC GGT GTA CGG CCA TGC TGA 

CCA TTG GCA ATG – 3' 

pRevTRE2-

hCerS3-

EGFP 

F 
5' – TAT ATA GGA TCC GCC ACC ATG TTT TGG ACG 

TTT AAA GAA TGG TTC TGG – 3' 
56, 66 1181 

R 
5' – TAT ATA ACC GGT GTA TGG CCA TGC TGG 

CCA TTG GGA ATG – 3' 
 

1 T1 is the annealing temperature used for 10 cycles in order to bind the primer nucleotides 
complementary to the template cDNA. T2 corresponds to the annealing temperature of the 
full-length primers including the overhang nucleotides and was used for an additional 15 
cycles. 
2 F and R stands for forward and reverse primer, respectively.  
Restriction sites are shown underlined. 
 
2.1.12.3. Primers used for quantitative real time PCR (qRT-PCR) 

The expression of ceramide synthase genes in testicular RNA was determined using 

the following primers: 

 

Gene Primer sequence 
Ta 

(ºC) 
Product 
size (bp) 

mCers1 
F 5’ – TGA CTG GTC AGA TGC GTG A – 3’ 

55 93 
R 5’ – TCA GTG GCT TCT CGG CTT T – 3’ 

mCers2 
F 5’ – TCA TCA TCA CTC GGC TGG T – 3’ 

55 90 
R 5’ – AGC CAA AGA AGG CAG GGT A – 3’ 

mCers3 
F 5’ – ATC TCG AGC CCT TCT TCT CC – 3’ 

55 128 
R 5’ – CTG GAC GTT CTG CGT GAA T – 3’ 

mCers4 
F 5’ – TGC GCA TGC TCT ACA GTT TC – 3’ 

55 132 
R 5’ – CTC GAG CCA TCC CAT TCT T – 3’ 

mCers5 
F 5’ – TCC ATG CCA TCT GGT CCT A – 3’ 

55 147 
R 5’ – TGC TGC CAG AGA GGT TGT T – 3’ 

mCers6 
F 5’ – GGG TTG AAC TGC TTC TGG TC – 3’ 

55 138 
R 5’ – TTT CTT CCC TGG AGG CTC T – 3’ 
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To study the mRNA expression levels of the ceramide synthase family in the skin of 

CerS3-/-, the primers detailed above were used, with the exception of CerS3, where 

primers within exon 7 and 8 were used. 

 

Gene Primer sequence 
Ta 

(ºC) 
Product 
size (bp) 

mCers3∆7 
F 5’ – GGT CAC TGG TGT TTA GCC TGA – 3’ 

55 128 
R 5’ – GGT CCC ACT GCG AAT GTA AT – 3’ 

 

For the evaluation of expression levels of enzymes involved in fatty acid elongation 

and desaturation, the primers summarized as follows were used. 

 

Gene Primer sequence 
Ta 

(ºC) 
Product 
size (bp) 

mElovl1 
F 5’ – GGT GGG GGA TAA AAA TTG CT – 3’ 

56 106 
R 5’ – CCA AGG GCA GAC AAT CCA TA – 3’ 

mElovl2 
F 5’ – GAC GCT GGT CAT CCT GTT CT – 3’ 

56 105 
R 5’ – GCT TTG GGG AAA CCA TTC TT – 3’ 

mElovl3 
F 5’ – TTT GCC ATC TAC ACG GAT GA – 3’ 

56 84 
R 5’ – CGT GTC TCC CAG TTC AAC AA – 3’ 

mElovl4 
F 5’ – GGG ATC ATA CAA CGC AGG AT – 3’ 

56 118 
R 5’ – CTC AAC GCC TTT CGA TAC AA – 3’ 

mElovl5 
F 5’ – CTC TCG GGT GGC TGT TCT T – 3’ 

56 98 
R 5’ – AGA GGC CCC TTT CTT GTT GT – 3’ 

mElovl6 1 
F 5’ – ACA ATG GAC CTG TCA GCA AA – 3’ 

60 119 
R 5’ – GTA CCA GTG CAG GAA GAT CAG T – 3’ 

mElovl7 
F 5’ – ATC GAG GAC TGT GCG TTT TT – 3’ 

60 81 
R 5’ – GGC GAG GAC ATG AGG AGA TA – 3’ 

 

1 Primer sequence reported by (Wang et al., 2006). 
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The endogeneous Cers transcript levels of HeLamCAT1-rtTA2-M2 cells were examined 

with the following primers: 

 

Gene Primer sequence 
Ta 

(ºC) 
Product 
size (bp) 

hCers1 
F 5’ – TGC CTG ACA TCC CCT TCT AC – 3’ 

60 90 
R 5’ – ACG CCA CGA TGT ACA GGA AC – 3’ 

hCers2 
F 5’ – ACG CAG TGA CCG GGA AGA AAC AGA – 3’ 

64 150 
R 5’ – TGG GAG GCA GCT GGA GTA ATG GTT – 3’ 

hCers3 
F 5’ – TCT TGC AGG TCC TTC ACC TT – 3’ 

65 102 
R 5’ – CCT CGT CAT CAC TCC TCA CA – 3’ 

hCers4 
F 5’ – TTC AAC GGG CTT CTG ATG TT – 3’ 

60 97 
R 5’ – CCA TCT GGC CCT TCT TCA T – 3’ 

hCers5 
F 5’ – CCT AAT TGC ACG GAT TGC TT – 3’ 

63 109 
R 5’ – TGT GCA GGT GGT CAC ATC TT – 3’  

hCers6 
F 5’ – TCA GCT GAT GCT CTT CTG GA – 3’ 

63 91 
R 5’ – CCA CGG CAA ACA TAA CAA AC – 3’ 

 

Primers used for the expression analysis of antimicrobial peptides: 

 

Gene Primer sequence 
T 

(ºC) 
Product 
size (bp) 

mBD1 / 

Defb1 

F 5’ – GGT GTT GGC ATT CTC ACA AGT C – 3’ 
60 99 

R 5’ – GGT ATT AGA TGG GCA GCT GGA G – 3’ 

mBD2 / 

Defb2  

F 5’ – TGC TGC CTC CTT TTC TCA TAT ACC A – 3’ 
60 78 

R 5’ – GTG GTC AAG TTC TGC TTC GTA TC – 3’ 

mBD3 / 

Defb3 

F 5’ – ATG CTG GAA TCG GTG CAT TGG CA – 3’ 
64 138 

R 5’ – CTT CAT GGA GGA GCA AAT TCT GGT GT – 3’ 

mBD4 1 / 

Defb4 

F 5’ – CAC ATT TCT CCT GGT GCT GCT – 3’ 
64 52 

R 5’ – GAT AAT TTG GGT AAA GGC TGC AA – 3’ 

mCamp 
F 5’ – CTT CAA CCA GCA GTC CCT AGA CA – 3’ 

60 53 
R 5’ – GAT CCA GGT CCA GGA GAC GGT A – 3’ 

 
1 BD4 primer sequence reported by (Dorschner et al., 2003). 
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For all experiments Gapdh was used to normalize the relative values of the target 

genes under the following conditions:  

 

Gene Primer sequence 
T 

(ºC)b 
Product 
size (bp) 

mGapdh 
F 5’ – ACT CCC ACT CTT CCA CCT TC – 3’ 

55 156 
R 5’ – GGT CCA GGG TTT CTT ACT CC – 3’ 

hGapdh 
F 5’ – CAA CTA CAT GGT TTA CAT GTT C – 3’ 

60 181 
R 5’ – GCC AGT GGA CTC CAC GAC – 3’ 

 

2.1.12.4. Primers used for mouse genotyping 

 

Gene Primer sequence 
Ta 

(ºC) 
Product 
size (bp) 

CerS3 – wt 1 
F 5’ – ACA TAT CTC CCT TTG CCC TGA TG – 3’ 

58 315 
R 5’ – ATA ATT GCA AGA GAC GGC AAT GA – 3’ 

CerS3 – ko 1 
F 5’ – ACA TAT CTC CCT TTG CCC TGA TG – 3’ 

58 272 
R 5’ – GAC AGC CCT GAA ATG TAT CAT GC – 3’ 

CerS3 – cDNA 2 
F 5’ – TCT GGG AGG TTT GGA ATG AC – 3’ 

55 687 3, 594 4 
R 5’ – CGC CAC ATT GTG CTT CAA – 3’ 

 
1 Primers used for routine genotyping of CerS3-/- mice.  
2 Primers used for the analysis of CerS3 mutant transcript from skin cDNA.               
3 Product size for wild type CerS3 transcript. 
4 Product size for mutant CerS3 transcript lacking exon 7. 
 
2.1.13. Antibodies 
 

Primary Antibodies – I 

Antibody 
Host/ligand 
- Clonality1  

Application2 Dilution 
Supplier 
(Clone) 

Order num. 

β-Actin rabbit – p WB 1:1000 Santa Cruz sc-1616-R 

F-Actin 
TRITC-

Phalloidin 
Cryo SM 1:600 Sigma P1951 

Filaggrin rabbit – p 
WB 1:1000 

Covance PRB-417P 
Unfix. cryo 1:10 
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Primary Antibodies – II 

Cathepsin D rabbit – p 
WB 1:500 

DakoCytomation A0561 Cryo SM 1:100  
Paraffin 1:100-200 

CerS3 rabbit – p 
Cryo SM 1:500 PickCell 

Laboratories 
Custom-
made3 Paraffin 1:1000 

Cholesterol Filipin 
Cryo SM 10 µg/ml 

Sigma F9765 
Unfix. cryo 10 µg/ml 

Cingulin 
Guinea  
pig  – p  

Unfix. cryo 1:2000 
Provided by 
L.Langbein 

- 

Claudin-1 rabbit – p 

WB 1:100 
Thermo 

Scientific 
RB-9209 

Cryo SM 1:20 
Unfix. cryo 1:10 

Paraffin 1:20 
Dansyl4 rabbit – p Unfix. cryo 1:100 Invitrogen A6398 

Desmoglein 
1/2 

mouse – m 
WB 1:100 

Progen 
(DG3.10) 

61002 Cryo SM 1:5 
Paraffin 1:10 

Desmoplakin 
1/2 

mouse – m 
WB 1:50 

Progen (DP447) 651155 Cryo SM 
Undil. 

Paraffin 
GFP rabbit – p WB 1:1000 Genetex GTX26556 

Golgin-97 mouse – m  ICC 1:200 
Molecular 

Probes 
A-21270 

Involucrin rabbit – p 
WB 1:100 

Thermo 
Scientific 

RB-10288 

Cryo SM 1:150 
Covance PRB-140C 

Paraffin 1:100 
Kalilkrein 5 rabbit – p WB 1:100 Abgent AP6324b 

Ki67 rat – m   Paraffin 1:200 Dako (TEC-3) M7249 
Lamp1 rabbit – p ICC 1:200 Acris SP5446P 

Loricrin rabbit – p 
WB 1:1000 

Covance PRB-145P Cryo SM 1:150 
Paraffin 1:100 

Lipids nile red Unfix. cryo 5 µg/ml MP Biomedicals 151744 
Ox-Phos 

Complex IV 
Subunit I 

mouse – m  ICC 1:400 
Molecular 

Probes 
A6403 
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Primary Antibodies – III 

PDI mouse – m  ICC 1:400 Acris SM5075 
Plakoglobin mouse – m WB 1:200 Progen (PG 5.1) 65105 
Transgluta-
minase 1 

rabbit – p WB 1:4000 Abcam ab86589 

 

1 m: monoclonal, p: polyclonal                                                                                                   
2 Cryo SM: cryo-semithin sections; ICC: immunocytochemistry; Unfix. cryo: unfixed cryo-
sections; WB: Western Blot. 
3: Custom-made against a peptide located at the C-terminus of the mouse CerS3. 
4: Against monodansylcadaverine for in situ transglutaminase 1 assay. 
 

 

Secondary Antibodies 

Antibody Host/ligand  Application1 Dilution Supplier Order num. 

Alexa 
Fluor 546 
anti-rabbit 

goat ICC 1:400 Molecular Pobes A11035 

Alexa Fluor 
488 anti-

guinea pig 
goat IHC 1:200 Molecular Pobes A11073 

Biotinylated 
anti-rat 

Rabbit Paraffin 1:200 
Vector 

Laboratories 
BA-4001 

Cy3- anti-
mouse 

donkey ICC / IHC 
1:200 / 
1:1000 

Jackson 
Dianova 

715-165-150 

Cy3- anti-
rabbit 

donkey IHC 1:1000 
Jackson 
Dianova 

711-165-152 

Mouse-HRP goat WB 1:1000 Santa Cruz sc-2005 
Rabbit-HRP goat WB 1:1000 Santa Cruz sc-2004 

 
1 ICC: immunocytochemistry; IHC: immunohistochemistry; WB: Western Blot 
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2.2. Methods 
 
2.2.1. Cloning and molecular biology 
2.2.1.1. Directional cloning 

For the generation of mammalian expression plasmids, cDNA from mouse or 

human biopsies (e.g. testis for CerS3 or kidney for CerS2) provided the DNA 

template used for the amplification of the gene of interest by means of PCR. Primers 

used for enhancing the target gene coincided with the beginning of the 5’ prime 

cDNA sequence (including the starting codon) as the forward primer, and the 3’ 

prime cDNA sequence (without terminal codon) as the reverse primer. Directional 

cloning of the amplified fragment DNA containing the gene of interest was achieved 

by inserting overhangs via a second PCR amplification that will be able to create 

cohesive ends upon restriction endonuclease digestion (Figure 14).  

 

 

 
 
Figure 14. Strategy design for cloning in frame.  
Forward primer included an additional overhang sequence, an adequate restriction 
site for the insertion into the target vector, the Kozak sequence, and the beginning of 
the 5’ prime cDNA sequence of the gene of interest. Contrarily, reverse primer lacked 
the Kozak consensus, and instead two additional nucleotides were inserted. These 
nucleotides were required for having the protein product in frame with its C-terminal 
tag. CerS3 overhang primers serve as an example for cloning in frame into an EGFP 
encoding vector. 
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Oligonucleotide linkers used for the generation of overhang termini primarily 

contained the specific recognition sites for endonucleases with some additional 

overhang nucleotides required for many restriction enzymes to efficiently cleave 

DNA. The Kozak consensus sequence was additionally inserted prior to the starting 

codon to favour translation of the engineered protein. For generating fusion proteins 

with tagged vectors (e.g. EGFP and HA), care was taken that the C-terminus of the 

protein of interest was in frame with the following tagged encoding sequence. 

Once the PCR product containing the restriction sites was generated and purified, 

enzymatic digestion with endonucleases was performed in parallel with vector DNA, 

thus generating unpaired nucleotide termini of both insert and vector DNA. The 

cohesive end termini of insert and vector DNA could then be ligated, and 

subsequently transformed into competent bacteria for DNA amplification. 

Afterwards, plasmid DNA was isolated and analyzed by agarose electrophoresis 

and nucleotide sequencing. One single clone carrying the gene of interest was then 

retransformed in bacteria, which was grown in a large volume of culture medium to 

obtain stocks of plasmid DNA. The complete cloning strategy is detailed in Figure 15.  

 

 

 

 

 

 

 

 

 

 

 

 



Materials and methods 
 
   

 54 

 
 

Figure 15. Directional cloning of a DNA fragment into vector DNA. 
Generation of mCerS3-EGFP serves as an example for directional cloning. Mouse 
CerS3 flanked with EcoRI and BamHI sites was inserted into pEGFP-N1 vector, and 
transformed into competent bacteria. 
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Following this procedure, mCerS3-EGFP and hCerS2-EGFP were generated by 

inserting the corresponding cDNAs into the N-terminus of the pEGFP-N1 vector. For 

CerS3, EcoRI and BamHI sites were introduced to the amplified 1.2 kbp DNA 

template using overhang primers with these unique restriction sites. Similarly, full-

length CerS2 cDNA was cloned into pEGFP-N1 by HindIII/EcoRI sites. Additionally, 

hElovl2 encoding plasmid was subcloned into pEGFP-N1 via the EcoRI and BamHI 

sites. 

For retroviral transduction, mCerS3-EGFP and hCerS3 plasmids were further 

subcloned into pRevTRE2-EGFP. Both genes were inserted using primers flanked 

with BamHI and AgeI sites.  

The sequences of all constructs were verified by nucleotide sequencing. DNA 

sequencing was performed by the sequencing laboratory of the DKFZ.  

 
Figure 16. Plasmid map from generated mCerS3-EGFP. 
CerS3 was inserted at the N-terminus of an enhanced GFP tag plasmid via the 
EcoRI-BamHI restriction sites.  
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2.2.1.2. Polymerase chain reaction (PCR) 

PCR were performed to amplify specific DNA fragments containing the gene of 

interest from cDNA templates, as well as to introduce overhangs containing specific 

restriction sites that will generate “sticky ends” via endonuclease digestion, as 

described above. 

For cloning, four PCR reactions performed in a final volume of 50 µl were 

combined in order to obtain larger amounts of DNA. All PCR products were 

generated using proofreading Pfu DNA polymerase (Promega). The general protocol 

used for preparative PCR was the following: 

 
PCR reaction (50 µl):           PCR program     T (ºC)        time 

Buffer with 20 mM Mg2+(10x)  5 µl      1. Denaturation      95    2 min 
MgCl2 (25 mM)      0–3 µl     2. Denaturation      95      15–30 s 
dNTP mix (10 mM each)   1 µl      3. Annealing        T1,T2    30 s 
Forward primer (15 µM)   1 µl      4. Elongation       72   2min/1kbp 
Reverse primer (15 µM)   1 µl      (Steps 2 to 4 are repeated for 10  
cDNA template     10 pg–1 µg     cycles with T1 and 15 cycles with T2) 
Pfu DNA polymerase (3u/µl)  0.25 µl     5. Final elongation     72    5 min 
H2O         up to 50 µl     6. Cooling        4      ∞ 
 

The annealing temperature (Ta) was determined by the primer pair of each 

reaction, according to the length and the guanine/cytosine content of the 

oligonucleotides. For preparative PCR using overhang primers, two different 

annealing temperatures were used. The Ta used for the first 10 cycles (T1) allowed 

the binding of the nucleotides complementary to the template cDNA. T2 was used for 

an additional 15 cycles and corresponded to the annealing temperature of the full-

length primers including the overhang nucleotides. For analytical PCR using primers 

complementary to the DNA template, 35 cycles were run with an adequate Ta. 

The primer sequence and annealing temperatures used to generate DNA 

fragments by analytical and preparative PCRs are detailed in section 2.1.12.1. and 

2.1.12.2, respectively. 
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2.2.1.3. Purification of PCR products 

DNA fragments generated by PCR were purified using the QIAquick PCR purification 

kit following the manufacturer’s recommendations. This purification method is based 

on the adsorption of DNA to a silica membrane, which takes place in the presence of 

high salt concentrations, achieved by mixing the DNA with a binding buffer. 

Oligonucleotides (up to 40 bp), enzymes and other impurities do not bind to the 

membrane allowing the decontamination of the DNA. An additional washing step with 

an ethanol-based buffer is able to remove the additional salts. For all applications, 

DNA was eluted from the silica-based columns with 50 µl of provided EB buffer.  

 

2.2.1.4. Electrophoretic separation of DNA fragments by agarose gels 

DNA fragments were separated in agarose gels by electrophoresis using TAE buffer 

(1x). For small fragments (50 to 500 bp) agarose gels of 2% were used, while for the 

separation of larger fragments (0.5 to 10 kbp) lower percentage gels were preferred 

(0.8–1.5%). Gels were prepared by dissolving the agarose in TAE buffer with the help 

of a microwave oven. To visualize DNA fragments, ethidium bromide (final 

concentration 1 µg/ml) was added to the cooled solution, before being poured into 

the gel chamber. Xylene cyanol loading buffer (10x) with glycerol was added to the 

DNA samples before being electrophoresed at 80–120 V. In order to estimate the 

size of the DNA fragments, DNA ladder of either 100 bp or 1000 bp were loaded in 

parallel with DNA samples. Bands corresponding to the DNA fragments were 

visualized and documented with GelDocTM 2000 Gel Documentation System. 

 

2.2.1.5 Digestion of DNA by restriction endonucleases  

Plasmid DNA and fragment DNA containing the gene of interest (insert) were 

digested in parallel with sequence specific endonucleases in order to create “sticky 

ends”. The enzymatic reaction was performed overnight at 37 ºC (optimal 

temperature for all enzymes used) to assure the complete cleavage of the DNA. A 

control digestion with plasmid DNA lacking restriction enzyme was performed in 

order to distinguish between linearized and circular plasmid DNA, and to confirm the 

complete linearization of the digested plasmid in further analysis with agarose gels.  
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The restriction digest was performed as follows: 

 
Restriction digest (70 µl): 
Assay buffer (10x)       7 µl 
Plasmid DNA / Insert DNA    ~ 3–5 µg / whole purified PCR product   
Restriction enzyme (5–10 U/µl)   5 µl 
H2O            up to 70 µl 

 

The cloning strategy was designed to insert the DNA encoding for the gene of 

interest into the plasmid with two different restriction sites, in order to have the 

insertion of the fragment in the correct direction. Therefore, two restriction enzymatic 

reactions were necessary. After the first digest, an aliquot was analyzed by agarose 

electrophoresis to assure the complete linearization of the plasmid DNA, and 

subsequently the DNA was purified with QIAquick PCR purification kit. Following, the 

second restriction digest was performed, and the plasmid and insert DNA containing 

the “sticky ends” were purified by extracting the bands from agarose gels (described 

below). Thus, traces of circular plasmid DNA that could still be present were removed 

due to the different mobility with the linear conformation during gel electrophoresis. 

The restriction endonucleases used for the generation of each expression plasmid 

are summarized in section 2.1.5.  

 

2.2.1.6. Extraction of DNA fragments from agarose gels 

For purification of DNA fragments carrying “sticky ends”, extraction of the DNA from 

agarose gels with crystal violet dye were preferred. Crystal violet  (final concentration 

1.5 µg/ml) in TAE buffer (1x) was used instead of ethidium bromide, thus DNA bands 

could be visualized without being exposed to ultraviolet light, which might produce 

DNA damage or release of the single stranded nucleotides of the “sticky ends”. After 

electrophoresis, DNA fragments were excised from the gels, and extraction was 

performed using QIAquick gel extraction kit according to the instructions of the 

manufacturer. This purification method shares the same principle as the QIAquick 

PCR purification kit (see section 2.2.1.3.). DNA was eluted with 50 µl EB buffer. 
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2.2.1.7. Ligation of DNA fragments 

Plasmid and insert DNA with complementary “sticky ends” were enzymatically ligated 

with T4 DNA ligase, which binds the 5’-phosphate end of one nucleotide (or DNA 

fragment) with the 3’-hydroxyl end of the other nucleotide (or the other DNA 

fragment) by a phosphodiester linkage. All ligation reactions were performed 

overnight at 16 ºC with a final volume of 20 µl and using 5 units of ligase. In general, 

the following protocol was used: 

 
Ligation reaction (20 µl): 
Ligation buffer (5x)       4 µl 
Plasmid DNA          3–30 fmol 
Insert DNA          9–90 fmol    
T4 DNA ligase (5 U/µl)      1 µl 
H2O            up to 20 µl 
 

For a successful ligation, a molar ratio of 3:1 insert to plasmid was used. Two 

control ligations were performed in parallel, one lacking DNA ligase and a second 

lacking insert DNA. The amount of bacterial colonies after transformation with these 

negative controls indicated the success of the cloning procedure. 

 

2.2.1.8. Bacteria culture and storage 

E. coli-DH5α competent bacteria (either subcloning or library efficiency) were used 

for cloning procedures. Transformed bacteria were grown in LB medium (Luria-

Bertani broth or Lysogeny broth) with constant shaking (225 rpm) or in LB plates, at 

37 ºC with the required antibiotics.  

Competent bacterial cells were frozen with a mixture of dry ice/ethanol and stored 

at – 80 ºC.  

 

2.2.1.9. Bacterial transformation with plasmid DNA 

For the transformation of E. coli with DNA from ligation reactions, library efficient 

DH5α competent cells were used. Cells were thawed on ice and a 100 µl aliquot of 

bacteria for each ligation was transferred into 14 ml snap-cap polypropylene tubes 

(Falcon 2059). Following manufacturer’s recommendations, ligated DNA was diluted 

1:5 with TE buffer, and 1 µl of the dilution was homogeneously dispensed in the 
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bacteria. Gentle tapping proceeded, and subsequently bacteria were incubated on 

ice for 30 min. Bacterial transformation was achieved by heat-shock for 45 s in a 

water bath kept at 42 ºC. After 2 min on ice, transformed bacteria were allowed to 

grow in 900 µl of SOC medium with a constant shaking of 225 rpm at 37 ºC for 1 h. 

Various dilutions (non, 1:10 and 1:100) of the bacterial culture were plated onto 

selective LB-agar plates and incubated overnight at 37 ºC.  

For subcloning of plasmid DNA, generally subcloning efficiency DH5α were used. 

However, the amplification of hElov4-tGFP plasmid DNA required the usage of low 

copy number CopyCutter™ EPI400™ E. coli due to DNA instability in DH5α cells. A 

slightly modified protocol was followed according to the instructions of the 

manufacturer. 

 

2.2.1.10. Extraction of plasmid DNA from bacteria – “Mini-preparation” 

To analyze which bacterial colonies grown in LB plates were successfully 

transformed with the plasmid encoding the gene of interest, DNA from ten colonies 

was extracted. Plasmid DNA was isolated using the QIAprep spin miniprep kit 

following the instructions of the manufacturer. Briefly, a single bacterial colony after 

overnight growth in selective LB-agar plates was inoculated in LB medium (4 ml) with 

the adequate antibiotic: ampicillin (100 µg/ml) or kanamycin (50 µg/ml). E. coli-DH5α 

cells were grown overnight at 37 ºC and 225 rpm in a rotary-shaker (SM-30 Control). 

Snap-cap polypropylene tubes (Falcon 2059) were used for the bacterial culture, 

allowing exchange of oxygen during the incubation time. Cells were harvested by 

centrifugation at 8000 rpm for 3 min using a table-top microcentrifuge. Subsequently, 

bacterial cells were resuspended and lysed using a modified alkaline lysis method. 

After neutralization with a high salt concentration buffer, plasmid DNA was cleared of 

genomic DNA, proteins, cell debris and others by centrifugation at 13,000 rpm. The 

lysate containing the plasmid DNA was then ready to bind to a silica-based 

membrane. Several washing steps proceeded to remove salts and other 

contaminants. Finally, purified plasmid DNA was eluted from the silica membrane 

column with 50 µl of EB buffer. All steps required for the extraction were performed at 

room temperature. 
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To evaluate which of the colonies carried the plasmid with the correct insertion of 

the DNA fragment, analytical restriction digestions (1h, 37 ºC) were performed and 

analyzed by agarose gel electrophoresis. Plasmid DNA with the correct size of 

cleaved fragments after analytical restriction digest was analyzed by nucleotide 

sequencing in order to assure that no mutation occurred during the cloning process.  

 

2.2.1.11. Extraction of plasmid DNA from bacteria – “Maxi-preparation” 

For purification of larger amounts of plasmid DNA, the Qiagen plasmid maxi kit was 

used. This DNA preparation was performed once the accuracy of the plasmid 

sequence was confirmed. Generally, 1 µl of plasmid DNA (from mini-preparation) 

was retransformed into E. coli-DH5α cells, as described in section 2.2.1.9. After 

transformation, the approximately 1 ml SOC medium containing the transformed 

bacteria was diluted 1:200 with selective LB medium, and incubated overnight at 

37 ºC under constant shaking. Bacterial cells were then harvested by centrifugation 

at 6000 × g using an Avanti J-25 centrifuge (Beckman). DNA extraction proceeded 

following the instructions provided. In general, cells were resuspended, lysed 

according to a modified alkaline lysis method, and finally neutralized. Proteins, 

genomic DNA and other impurities were cleared by centrifugation at 20,000 × g. 

Differing from mini-preparation, plasmid DNA in low salt conditions was allowed to 

bind to an anion-exchange resin column. Sequentially, DNA was washed and eluted 

from the columns using a high-salt concentration buffer. Isopropanol precipitation of 

the DNA allowed the removal of the salts and concentration of DNA into a pellet, 

which was further washed and finally dissolved in a suitable volume of water or EB 

buffer. 

 

2.2.1.12. Determination of nucleic acid concentration (DNA and RNA) 

Nucleic acid concentration was determined according to the amount of light absorbed 

when exposed to ultraviolet light at a wavelength of 260 nm. The absorbance (A) of 

analyzed samples was measured with Ultrospec 2000 photometer (Pharmacia 

Biotech). Concentration could be calculated according to the Lambert-Beer’s law, 

taking into account that the extinction coefficients for double-stranded DNA and 

single-stranded DNA/RNA are 0.020 and 0.027 (µg/ml)-1cm-1, respectively. Integrity 
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assessment of analyzed samples was determined by the ratio of absorbance at 

A260nm vs A280nm, the latter corresponding to the wavelength at which proteins absorb 

light. The optimal A260/280 ratio for pure DNA is approximately 1.8, while for pure RNA 

is  ~ 2. 

 

2.2.2. Cell culture and transfection 
2.2.2.1. Culture of eukaryotic cells 

HeLa cells were grown in RPMI-1640 medium (Sigma, R0883) supplemented with 

10% inactivated fetal calf serum, 2 mM L-glutamine, 10 mM HEPES, with or without 

50 U/ml pencillin and 50 µg/ml streptomycin. Instead, HEK-293T and K9 Leydig cells 

were cultured in DMEM growth culture media with supplements (see 2.1.10.2.). Cells 

were maintained in monolayer cultures in a humidified atmosphere of 5% CO2 at 

37 °C, and were subcultured twice a week with trypsin-EDTA (0.25% in PBS). 

 

2.2.2.2. Freezing and thawing of eukaryotic cells 

To create stocks, cells in growth phase were trypsinized and harvested at 1000 × g 

for 5 min. Cells were then resuspended in freezing media consisting of 90% FCS and 

10% DMSO, transferred into cryotubes (Nalgene) and kept for long time storage at   

– 80 ºC.  

For the repropagation of frozen cellular stocks, cryotubes were placed in a water 

bath at 37 ºC until cells were thawed. Cells in freezing media were directly diluted 

1:12 with prewarmed growth medium in a 75 cm2 tissue culture flask. After cellular 

attachment, medium was exchanged to remove residual DMSO. Cells were 

passaged at least once before being used for experiments. 

 

2.2.2.3. Transfection of eukaryotic cells 

Transient transfection of plasmid DNA into HeLa cells was achieved by means of 

lipofection. HeLa cells were seeded in 6-well plates either 24 or 48 h prior to 

transfection. Highly confluent cells (90–95%) were then transfected with the optimal 

amount of plasmid DNA (previously tested for each plasmid) using Lipofectamine 

2000 reagent (Invitrogen) according to manufacturer’s recommendations. Thus, 

plasmid DNA (4 µg) was complexed with transfection reagent with a ratio optimized 
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for each transfection in order to minimize cytotoxicity. DNA-cationic lipid complexes 

in serum-free RPMI medium were administered drop-wise to the cells, which were 

then incubated at 37 ºC for 4 h. Subsequently, medium was exchanged by growth 

medium with FCS. Analyses were performed genrally after 24 h of overexpression. 

Transfection efficiencies were determined by flow cytometric analysis according to 

the fluorescence signals generated from the overexpression of EGFP fusion proteins. 

For subcellular localization studies, HeLa cells (2.5×105) were transfected 24 h 

after seeding with mCerS3-EGFP and control pEGFP-N1 using Lipofectamine at a 

1:2.5 ratio (µg DNA/µl Lipofectamine). Double transfections with mCerS3-EGFP 

and either hEovl2-EGFP or hElovl4-tGFP were performed with 3:0.75 and 4:2 ratios, 

respectively. For ceramide synthase assays, HeLamCAT1-rtTA2-M2 cells (1×105) were 

seeded 48 h prior to transfection with hCerS2-EGFP and control EGFP with a ratio of 

1:2. 

 

2.2.2.4. Generation of stable cell lines 

Stable cell lines expressing CerS3-EGFP (mouse and human), as well as EGFP 

(control), were generated by retroviral transduction using genetically modified HeLa 

cells (HeLamCAT1-rtTA2-M2). The infection of these cells in order to achieve inducible 

transgene expression of CerS3 required the production of viral particles in a 

packaging cell line, HEK-293T. These virions were generated via the triple 

transfection with 1) a MoMLV (Moloney murine leukemia virus) derived retroviral 

vector encoding the gene of interest from the doxycycline/transactivator responsive 

element (pRevTRE2-EGFP), together with 2) gag-pol (pVPack-GP) and 3) envelope 

(pVPack-Eco), the latter vectors are both responsible for the formation of the viral 

proteins. While the former encodes the gag and pol genes required for the synthesis 

of proteins of the core capsid and for the reverse transcriptase and integrase, the 

latter encodes the ecotropic viral envelope protein (limited to infection of murine 

hosts), which facilitates infection of the target HeLamCAT1-rtTA2-M2 cells by direct 

interaction with cell-type specific receptors (mCAT1). On the other hand, the non-

replicating retroviral vector contains all the cis regulatory elements necessary for the 

transcription of CerS3, as well as an extended version of the viral packaging signal 

required for the viral CerS3 RNA transcript to be packaged into infectious virions. 
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Previous integration of mCAT1 (murine cationic aminoacid transporter 1) and the 

doxycycline-sensitive transactivator rtTA2-M2 (optimized reverse tetracycline-

controlled transactivator) allowed the generation of inducible HeLa cells expressing 

the gene of interest, as already described (Engling et al., 2002). Thus, viral particles 

produced by HEK-293T cells enabled the infection of the modified HeLa cells 

expressing the murine receptor protein (mCAT1) required for the infection of the 

murine leukemia virus, and consequently enabled the stable integration of CerS3.  

The expression of the gene of interest takes place under induction with 

doxycycline (dox), making use of the Tet-On inducible expression system. In this 

system, doxycycline is required for binding to the tetracycline-controlled 

transactivator (rtTA2-M2), expressed by the modified HeLa cells. This transcription 

factor binds to the tetracycline-responsive element (TRE), encoded in the MLV-

retroviral vector and thereby activates the transcription of the downstream gene of 

interest, CerS3-EGFP. 

CerS3-EGFP expressing cells were isolated by fluorescence-activated cell sorting 

(FACS) selecting for the EGFP-derived fluorescence. These populations were 

cultured for 7 days in the absence of doxycycline and then selected for negative 

fluorescence signals. Following an additional 7 days induction with doxycyline, single 

cell clones were sorted by EGFP-derived fluorescence. Three stable cell lines were 

generated following this procedure: mCerS3 regarding HeLamCAT1-rtTA2-M2-mCerS3-eGFP, 

hCerS3 for HeLamCAT1-rtTA2-M2-hCerS3-eGFP, and control for HeLamCAT1-rtTA2-M2-eGFP 

expressing cells. 

 These cell lines were produced using the pVPack vectors and the transfection 

MBS mammalian transfection kit (Stratagene), following the instructions of the 

manufacturer.  

 

2.2.2.4.1. Production of viral particles 

Viral particles were produced by cotransfection of the plasmids encoding viral 

proteins together with the plasmid encoding the gene of interest. HEK-293T cells 

were used as a packaging cell line for producing the virions after transfection via the 

calcium phosphate method. 
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Plasmid DNA was prepared for transfection by mixing 1.5 µg of each of the 

required plasmids: the MLV plasmid encoding the gene of interest (pRevTRE2-

mCerS3-EGFP, pRevTRE2-hCerS3-EGFP, or control pRevTRE2-EGFP), the 

pVPack-GP and pVPack-Eco. To this mixture, 1 ml ethanol (100%) and 100 µl 

NaOAc (3 M) were added, following 30 min incubation at – 80 ºC. Vector DNA was 

pelleted at 13,000 rpm in a cooled table-top centrifuge for 10 min, the supernatant 

was discarded and the DNA was washed once more with ethanol (70%). The DNA 

was collected at 13,000 rpm for 5 min, and the pellets were kept overnight at 4 ºC. 

HEK-293T cells (~ 40% confluent) were seeded in growth medium 24 h prior to 

transfection. Shortly before transfection, growth medium was exchanged by MBS 

(modified bovine serum) containing DMEM medium. DNA was prepared for 

Ca3(PO4)2 transfection by resuspending the air-dried pellet in 225 µl water 

supplemented with 25 µl solution I and 250 µl solution II of the MBS transfection kit. 

After 10 min incubation at room temperature, the DNA solution was added drop-wise 

to the cells and homogeneously distributed. Cells were incubated for 3 h at 37 ºC 

until transfection medium was exchanged by growth medium supplemented with 

25 µM chloroquine. The use of chloroquine leads to reduced degradation of the DNA 

and thereby increasing the efficiency of the gene transfer. After an additional 

incubation for 6 h, medium was exchanged by growth medium without chloroquine 

and cells were incubated overnight. This medium was once more exchanged after 

24 h by 2 ml of fresh growth medium and cells were then incubated at 37 ºC and 5% 

CO2 for additional 48 h.  

 

2.2.2.4.2. Retroviral transduction 

HeLamCAT1-rtTA2-M2 cells expressing the murine surface receptor and the reverse 

tetracycline transactivator were seeded in 6-well plates 24 h before transduction. 

Viral particles produced by HEK-293T cells and released into the medium for 48 h 

were collected with a syringe. About 50% of the supernatants (1 ml) were directly 

added to the target HeLa cells (~ 40% confluent) through a sterile 0.45 µm filter. 

Sequentially, DEAE-dextran solution (final concentration 10 µg/ml) was added and 

the cells were then transferred into an incubator at 37 ºC for 3 h. Subsequently, the 

medium was exchanged by growth medium and cells were incubated for 72 h. 
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Reagents and buffers required for retroviral transduction were provided by 

Prof. Dr. Walter Nickel of the Biochemie Zentrum der Universität Heidelberg (BZH) of 

University of Heidelberg. 

 

2.2.2.4.2. Selection of clones by fluorescence-activated cell sorting (FACS) 

HeLamCAT1-rtTA2-M2 cells transduced with CerS3 encoding retroviral particles were 

splitted and induced with 2 µg/ml doxycycline. Following 40 h incubation at 37 ºC, 

fluorescence positive cells were isolated using FACSVantage Diva cell sorter.  

For sorting, cells were detached from the culture plates using a mild dissociation 

buffer consisting of PBS with 0.5 mM EDTA. Cells were then harvested, washed with 

chilled PBS, and resuspended in FACS buffer (PBS with 0.5 mM EDTA and 1.5% 

FCS). Prior to cell sorting, cell suspensions were directly filtered with a cell strainer 

placed in the cap of sterile polystyrene tubes (BD Falcon 352235). 

Three cell lines expressing mCerS3-EGFP, hCerS3-EGFP and EGFP were 

obtained. These populations were cultured for an additional 7 days in the absence of 

doxycycline to turn off the transcription of the transgene. Sequentially, populations 

were selected for negative fluorescence signals. Following an additional 7 days 

induction with doxycycline, single cell clones were sorted by EGFP-derived 

fluorescence with FACSAria I cell sorter. Single clones were propagated and 

analyzed according to doxycycline response by flow cytometry. 

Sorted cells were directly placed in growth medium containing antibiotics (50 U/mL 

penicillin, 50 µg/mL streptomycin and 50 µg/ml gentamycin), and immediately 

transferred into culture plates.  

Sorting of the cells was performed by Dr. Steffen Schmitt and Klaus Hexel from 

the Flow Cytometry Core Facility of DKFZ. 

 

2.2.2.5. Analysis of transfection rates by flow cytometry 

Transient expression rates of transfected cells, as well as induced transgene 

expression of stable cell lines were analyzed by flow cytometry using FACSCalibur. 

Taking advantage of the expression of the gene of interest as a fusion protein with 

EGFP tags, transfection rates could be measured according to the fluorescence 

signal.  
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For analysis, cells were harvested and pelleted at 1000 × g in facs tubes (BD 

Falcon 352054). Supernatant was discarded and cell pellets were resuspended in 

chilled PBS. Cell suspensions were kept from light at 4 ºC until transfection rates 

were determined. Acquisition and analysis were performed using BD CellQuest Pro 

software.   

 

2.2.3. Western blot  
2.2.3.1. Preparation of total protein lysates 

2.2.3.1.1. Eukaryotic cell culture lysates 

Cells in culture were trypsinized and harvested at 106 × g for 5 min at 4 ºC. Cell 

pellets were then washed with chilled PBS and resuspended in hypotonic lysis buffer. 

After 30 min incubation on ice, cells were lysed by sonication (Sonorex Super RK 

102H) at 35 Hz for 5 intervals of 30 s. Total protein lysates were cleared of both 

nuclei and cell debris by centrifugation at ∼ 21,000 × g for 15 min. Supernatants were 

then transferred into a clean tube, and kept at – 80 ºC until further use.  

 

2.2.3.1.2. Tissue biopsy lysates 

Skin biopsies were incubated at 58 ºC for 6 min in PBS containing 10 mM EDTA in 

order to separate dermis from epidermis. Skin was then transferred into ice cold 

PBS-EDTA solution and epidermis was obtained by peeling off the dermis. Epidermis 

in digitonin lysis buffer was homogenized by sonication (Branson sonifier 250) using 

5 pulses every 30 s for 5 min. Lysates containing epidermal proteins were cleared by 

centrifugation at ∼ 21,000 × g for 15 min. 

 

2.2.3.2. Determination of protein concentration by BRADFORD assay 

Protein concentration in total lysates were determined according to the Bradford 

method (Bradford, 1976). This method is based on the shift of absorption of 

coomassie brilliant blue G-250 upon binding to proteins. 

Briefly, protein-dye solutions were prepared by mixing either 2.5 or 5 µl of lysate 

with Bradford reagent up to 1 ml. To determine the protein concentration, a dilution 

series of BSA standards ranging from 0 to 10 µg/µl dissolved in Bradford reagent 

was prepared in parallel. The absorbance of protein-dye mixtures was measured at 
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the absorption maximum (595 nm), and the protein content was calculated by 

interpolating the absorbance measured from the BSA standard curve.  

 

2.2.3.3. SDS-polyacrylamide gel electrophoresis (SDS-PAGE)         

 Proteins were separated according to their molecular weight in 7–10% SDS-

polyacrylamide gels. To cast the discontinuous gels, the solutions for the resolving 

and the stacking gel were prepared as indicated below. The resolving gel was then 

poured between glass plates separated by 1.5 mm and was allowed to polymerize for 

about 30 min. On top a stacking gel of 3.45% polyacrylamide was poured, and a 

comb was placed to create wells. Polymerization of the stacking gel was terminated 

at 4 ºC. The composition of the stacking and resolving gels used in this study was the 

following: 

 

 

 

 

 

 
 

1 Rotiferase gel 30, 37.5:1 (Carl Roth)  

2 Ammonium persulfate (APS) is a radical initiator that triggers the polymerization of the gels, 
therefore it is added shortly before the gels are poured.  
 

Protein samples were denatured prior to electrophoresis by the addition of 4x 

Lämmli buffer containing 8% SDS and sequentially incubated at 95 ºC for 5 min. 

Equal amounts of protein (50 µg) were electrophoresed at ~ 35 mA during the 

separation in the stacking gel and at ~ 45 mA in the resolving gel. 

 

 

 

Stacking gel 

 3.45% 

4x Stacking gel buffer 1.875 ml 

30% Acrylamide/ 

bisacrylamide1 

862.5 µl 

10% APS2 56.25 µl 

TEMED 15 µl 

H2O 4.76 ml 

Resolving gel 

 7% 10% 

8x Resolving gel buffer 1.875 ml 1.875 ml 

30% Acrylamide/ 

bisacrylamide  

3.5 ml 5.0 ml 

10% APS 150 µl 150 µl 

TEMED 9.9 µl 9.9 µl 

H2O 9.47 ml 8.0 ml 
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2.2.3.4. Immunoblotting                               

After electrophoresis, proteins were transferred onto nitrocellulose membranes. For 

transfer, 0.45 µm membranes were placed on gels and covered with 3 pieces of 

Whatmann paper and a sponge on each side. These stacks were assembled in a 

bath of chilled transfer buffer (1x) containing methanol. Electrotransfer of proteins to 

the membranes were carried out at ~ 170 mA for 4 h on ice. Subsequently, 

membranes were stained with Ponceau red to assess the quality of the transfer, the 

equality of the loading of the SDS-PAGE and to indicate the position of the lanes in 

case that cutting the membranes was required. Following the transfer, membranes 

were blocked generally with 5% skimmed milk in PBS-Tween. Blocking was 

performed at room temperature for 1 h. Afterwards, membranes were incubated with 

primary antibodies in 3% skimmed milk-PBS-Tween. Binding of primary antibodies 

was carried out under constant rotation overnight at 4 ºC. On the following day, 

unbound antibodies were washed from the membranes 3 times with PBS-Tween for 

10 min. Coupling of HRP-conjugated secondary antibodies was performed at r.t. for 

45–60 min. Then, membranes were washed 3 more times for 10 min each with PBS-

Tween. The working dilutions of primary and secondary antibodies used in this 

study are listed in the table of section 2.1.13. Finally, proteins were detected by 

enhanced chemiluminescence using an ECL-detection kit (Amersham GE 

Healthcare) following the instructions of the manufacturer.  

 

2.2.3.5. Purification of antibodies by affinity column chromatography 

Polyclonal CerS3 antibody against the mouse protein was generated by PickCell 

Laboratories. Thus, a synthethic peptide against our self-designed epitope 

(CGGKETEYLKNGLGTNRHLIANGQHGR) located at the C-terminus was used to 

immunize rabbits. Serum containing the polyclonal antibody was purified by affinity 

chromatography using the peptide coupled to N-hydroxysuccinimide (NHS)-activated 

sepharose. 

 For the coupling, 500 µl of sepharose beads preactivated with NHS were loaded 

into a polypropylene column (Thermo Scientific, 29922), where solvent was drained 

and beads were washed with 10 ml of 1 mM HCl. Subsequently, sepharose beads 

were preconditioned with 5 ml coupling buffer (0.2 M NaHCO3, 0.5 M NaCl, pH 8.3), 
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prior to be transferred with 1 ml of coupling buffer into an eppendorf tube. Beads 

were then pelleted and mixed with the peptide (3.7 mg) freshly dissolved in 500 µl 

coupling buffer. The coupling reaction was performed overnight at 4 ºC with constant 

rotation. After completion of the coupling, non-reacted groups were blocked with 

0.2 M glycine pH 8.0 for 2–3 h at 4 ºC. Afterwards, the sepharose beads were 

transferred back into the column and washed first with 3 ml of 0.1 M Tris-HCl buffer 

(pH 9.0), followed by washing with 3 ml of 0.1 M NaOAc with 0.5 M NaCl buffer 

(pH 4.0). These buffers were alternated to wash two more times the sepharose 

beads. The column containing the peptide-sepharose beads was stored at 4 ºC until 

further used in 2 ml PBS containing 0.05% NaN3 to prevent microbial contamination. 

 To affinity purify the serum containing polyclonal antibodies, serum was diluted 1:2 

with PBS and pelleted down to remove unsoluble particles. Subsequently, peptide-

sepharose beads were incubated with the serum in a 50 ml Falcon tube maintaining 

constant rotation overnight at 4 ºC. Afterwards, the beads were transferred into a 

polypropyene column where the solvent was eluted. Sepharose beads were washed 

with 20 mM natrium phosphate buffer (10 ml), and the purified antibody was eluted 

with a low pH glycine buffer in phosphate buffer (pH 2.7) directly into 175 µl of 1.5 M 

Tris-HCl (pH 8.8). Sequentially, the beads were washed with another 10 ml of 

phosphate buffer. The “washing-eluates” were collected, pooled and incubated 

overnight at 4 ºC with the peptide-sepharose beads. Afterwards, beads were 

transferred once more into the column, washed with phosphate buffer and eluted with 

glycine buffer. Both glycine eluates were collected, pooled and concentrated using an 

Amicon Ultra 15 centrifugal device (Millipore, UFC 9 030 08) at 4000 × g for 20 min.  

 In addition, CerS3 antibody was eluted from the column with a pH 2.0 glycine 

buffer directly into 700 µl of 1.5 M Tris-HCl pH 8.8. Following the washing of the 

column with 10 ml of phosphate buffer, the rest of the CerS3 antibody was eluted 

with 30% glycerol in 10x PBS into 700 µl of 1.5 M Tris-HCl pH 6.8. 

 Each of the three eluates were concentrated and washed twice with PBS. The 

purified antibody concentration was determined by absorbance at 320 nm. If the 

concentration was lower than 1 mg/ml, BSA was used to stabilize the solution. The 

eluate corresponding to the glycine buffer pH 2.7 exhibited the highest 
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concentrations. Aliquots were prepared from the purified CerS3 antibody solutions 

and stored at – 20 ºC and at 4 ºC. The latter aliquots contained 0.05% NaN3.  

 All solutions used during this procedure were used chilled at 0–4 ºC and were 

sterile filtered. 

 

2.2.4. Chemical synthesis of organic compounds 
2.2.4.1. Synthesis of ultra long chain acyl-CoAs (ULC-Acyl-CoAs) 

For the synthesis of montanoyl-CoA (28:0) and melissoyl-CoA (30:0), fatty acids 

(100 µmol) were dissolved in dry tetrahydrofuran (THF, 4 ml). Equimolar amounts of 

N-hydroxysuccinimide and dicyclohexylcarbodiimide were added at room 

temperature and the reaction was kept under nitrogen for 12 h. 

The activated fatty acids were coupled to the polysilylated form of coenzyme A, 

which was generated in situ as described (Lucet-Levannier et al., 1995). Thus, the 

trilithium salt of coenzyme A was passed through a Dowex-50 ion exchange column 

acidified with 1 M HCl and subsequently lyophilized. The resulting free CoA (26 µmol) 

was dissolved in dry acetonitrile (2 ml). Dimethylketene methyl trimethylsilyl acetal 

(650 µmol) was added and the resulting solution was stirred for 16 h under nitrogen. 

After removal of all volatiles using a nitrogen stream, the polysilylated coenzyme A 

was dissolved in 1 ml dry THF.  

To a stirred solution of activated fatty acid (39 µmol) in THF containing CsF 

(1.3 mmol) and dicyclohexano-18-crown-6 (0.13 mmol), the coenzyme A solution 

was added dropwise and the reaction mixture was stirred for 4 h at room 

temperature. The crude mixture was acidified with an equal volume of 10 mM 

KH2PO4 (pH 5.5), and the organic solvent was removed using a nitrogen stream. 

Afterwards, the aqueous phase was desalted using a reverse phase C18 column 

(see 2.2.6.4.) and the final product was eluted with methanol. For quantification, 

mass spectrometric analyses with acyl-CoAs of known concentrations were 

performed (see 2.2.6.8.).    
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2.2.4.2. Synthesis of internal standards for ESI-MS/MS 

2.2.4.2.1. Synthesis of ceramides(d17:1) standards 

Fatty acids were activated by converting them into their respective 

N-hydroxysuccinimide esters as described above (see 2.2.4.1.). The activated fatty 

acids (40 µmol) were then condensed with d17:1-sphingosine (10.5 mmol) in a final 

volume of 4 ml dry THF. The reaction was catalyzed by triethylamine (4 µl) for         

1–2 days at r.t. under an inert atmosphere.  

 

2.2.4.2.2. Purification of internal standards by flash-column chromatography 

The crude ceramide products were purified by silica gel flash-column 

chromatography using mixtures of hexane/isopropanol/water of increasing polarity as 

a solvent system.  

For preparative chromatography, a column of 20 mm in diameter with a fritted 

glass filter was used. A layer of sea sand was placed on top of the glass filter, 

following by 12 g of silica gel (LiChroprep Si 60, 40–43 µm, Merck) used as a 

stationary phase. The column was tightly packed by the application of vacuum, and a 

second layer of sea sand and glass wool were mounted on top of the stationary 

phase. Afterwards, the column was flushed with elution solvent using vacuum to 

force the solvent through the silica, and therefore solvate the column. Subsequently, 

the crude products dissolved in the minimum amount of elution buffer were loaded 

onto the column. Hexane/isopropanol/water (90/9.5/0.5 or 93/7/0.1) mixture was 

used as starting elution solvent system. Fractions of ~ 4–6 ml of eluate were 

sequentially collected into separate glass tubes until 100 ml for each of the 4 solvents 

mixtures with increasing polarity were used. The final elution mixture was 

hexane/isopropanol/water 83/15/1. 

In order to locate the fractions containing the purified products, an aliquot of every 

third fraction were loaded onto a thin layer chromatography (TLC) plate (see 

2.2.6.9.). Fractions containing the purified ceramides were pooled and dried under a 

nitrogen stream. To quantify the synthesized ceramides, a dilution series of the 

purified products were separated on a TLC plate and bands were analyzed by 

densitometry as described below. 
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2.2.5. Ceramide synthase enzymatic assay 
A non-radioactive enzymatic assay in living mammalian cells was established in 

order to evaluate the substrate specificity of CerS3 (and CerS2) towards acyl-CoAs. 

Therefore, HeLa cells stably transfected with mouse and human CerS3, EGFP-

control, as well as untreated cells (HeLamCAT1-rtTA2-M2) were seeded onto 6-well plates 

with a density of 1×105 cells/well with or without induction with 2 µg/ml doxycycline. 

These inducible cell lines were generated by retroviral transduction as described in 

section 2.2.2.4.  

Forty-eight hours after seeding, untreated cells were transfected with hCerS2-

EGFP and incubated for 4 h at 37 ºC (for transfection see 2.2.2.3.). The assay was 

started by exposing the cells to media containing a mixture of saturated acyl-CoAs, 

namely 16:0, 18:0, 24:0, 26:0 and 28:0 (10 µM each) and d17:1-sphingosine (6 µM).  

The latter was stored in an organic solvent mixture of CHCl3/CH3OH/H2O 

(10/10/1) at – 20 ºC, therefore the solvent had to be removed prior addition to the 

cells. To assure the complete solution of the relative lipophilic reagents in the 

aqueous medium, the dried solvents were dissolved in growth medium and 

sonication was applied for 5 min at r.t. (Sonorex Super RK 102H, Bandelin). 

The assay was finalized upon 20 h of reaction by harvesting the cells. Afterwards, 

lipids were extracted and quantified as described in section 2.2.6. 

 

2.2.6. Lipid analysis 
2.2.6.1. Sample preparation 

Cells grown in tissue culture plates were trypsinized and harvested at 106 × g for 

5 min at 4 ºC. Cell pellets were then washed with chilled PBS and dried with 

1-propanol under nitrogen flow. 

For the extraction of epidermal lipids, skin biopsies from the back of CerS3 

deficient mice and control littermates were rapidly dissected and snap-frozen in liquid 

nitrogen before being stored at – 80 ºC. Skins were thawed and epidermis were 

isolated by treating the biopsies with 500 µg/ml thermolysin buffer for 2 h at 37 °C 

(Germain et al., 1993). Afterwards, epidermis was separated from dermis, cut into 

small pieces, and lyophilized (Alpha 1-2, Christ). 
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2.2.6.2. Lipid extraction by modified BLIGH and DYER method  

Sphingolipids were extracted according to Doering et al. with slight modifications 

(Doering et al., 1999a; Jennemann et al., 2007). In general, lipids were isolated using 

mixtures of CHCl3/CH3OH/H2O. 

 In particular, dried pellets from cultured cells were extracted with 2 ml 

10/10/1 (v/v/v) solvent mixture at 37 ºC for 15 min with occasional sonication. After 

centrifugation at ~ 2000 × g for 10 min, supernatants were collected and pellets were 

then reextracted once more with 10/10/1 solvent mixture, and finally with a 

30/60/8 (v/v/v) solvent mixture.  

For the extraction of epidermal free lipids, ~ 3 mg of dried weight epidermis cut in 

small pieces was extracted once with CHCl3/CH3OH/H2O 30/60/8, then with 10/10/1 

and finally with CHCl3/CH3OH 2/1 (v/v/v) as described. Each extraction step was 

performed at 50 ºC for 15 min under sonication. 

Supernatants were combined and dried under a nitrogen flow at 37 ºC. In parallel, 

pellets were dried and kept at 4 ºC for further analysis.  

 

2.2.6.3. Removal of phospholipids by mild alkaline methanolysis 

Combined lipid extracts were subjected to methanolic mild alkaline hydrolysis (0.1 M 

KOH in CH3OH) for the removal of phospholipids. The saponification of cell culture 

extracts was performed at 37 ºC for 2 h, while epidermal extracts required 4 h at 

50 ºC for complete hydrolysis. Sequentially, saponified lipid extracts were neutralized 

with glacial AcOH and solvent was removed under a mild nitrogen flow.  

 

2.2.6.4. Desalinization by reverse-phase chromatography (RP-18) 

Saponified lipid extracts were desalted by reverse phase chromatography prior to 

being analyzed either by TLC or ESI-MS/MS. Thus, columns packed with C18 

material (Porasil silica 125Å 55–105 µm) were preconditioned consecutively with 

3 times CH3OH and 2 times with 0.1 M KCl. Salt-containing samples were dissolved 

in ddH2O to a final concentration of 0.1–0.2 M KCl by brief sonication before being 

loaded into the columns. Following the loading of the samples, vials were washed 

twice with 0.1 M KCl, sonicated and loaded as well into the columns. Lipids bound to 

the column were then washed 3 times with ddH2O. Finally, sphingolipids were eluted 
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with CH3OH and dried under a nitrogen flow. In case of desalinization of epidermal 

ceramides, an additional washing step with ddH2O was performed prior to elute the 

lipids with CH3OH into the original sample tubes, and subsequently dried under a 

nitrogen flow. 

 Desalting of saponified lipids from cultured cells was performed using freshly 

prepared Pasteur pipettes. For tissue extracts, 100 mg of packing material was 

loaded into 5 ml polypropylene reusable columns. To assure complete removal of 

previous lipid extracts, polypropylene columns were carefully washed with 2 x 4 ml 

CHCl3, 1 x 4 ml CHCl3/CH3OH 1:1, 1 x 4 ml CH3OH, 1 x 4 ml CH3OH /H2O 1:1, and 

finally equilibrated with 2 ml 0.1 M KCl.  

 

2.2.6.5. Extraction of protein-bound sphingolipids  

Protein-bound sphingolipids from epidermal biopsies were extracted from the pellets 

obtained after extraction of free lipids. Pellets were “washed” 3 times with 2 ml of 

100% CH3OH for 5 min and 2 times with 2 ml of 95% CH3OH at 60 °C for 2 h to 

remove residual free lipids. Treatment of the residual pellets with 1 ml of 1 M KOH in 

95% methanol at 60 °C for 2 h cleaved ester linkages and released protein-bound 

sphingolipids. Supernatants were neutralized with AcOH and desalted using RP-18 

columns as described above.  

 

2.2.6.6. Extraction of fatty acids 

Fatty acids rich in ULC-acyl moieties were isolated from GM2AP-/- mice testes by 

acid hydrolysis, as previously described (Valianpour et al., 2003). Following 

homogenization and lyophilization of the biopsies, fatty acids were hydrolyzed at 

90 ºC for 2 h with 10 ml of CH3CN/HClconc. 4/1 (v/v). Testicular fatty acids were then 

extracted with the double amount of n-hexane. The upper organic phase was 

separated and dried under a nitrogen flow. For cell culture experiments, isolated fatty 

acids corresponding to 2 mg of wet weight were dissolved first in ethanol (1 mg wet 

weight / 1 µl ethanol), following intensive vortexing and finally dissolved in 2 ml of 

culture media.  

 

 



Materials and methods 
 
   

 76 

2.2.6.7. Protein determination according to LOWRY 

Pellets obtained after lipid extraction were used for determination of their protein 

content according to the method of Lowry (Lowry et al., 1951).  

This colorimetric assay is based on the redox-reaction of peptide bonds with 

CuSO4 under basic conditions and the subsequent reduction of Folin-Ciocalteu 

reagent by Cu+. First, proteins dissolved in alkaline conditions react with Cu2+ forming 

a tetradentate Cu2+ complex with the amino groups of peptide bonds. Subsequently, 

Cu2+ is reduced by certain peptide side chains. This reaction is stabilized by tartrate. 

Upon addition of the Folin-Ciocalteu reagent containing a mixture of 

phosphomolybdate and phosphotungstate (Mo6+/W6+), reduction to 

heteropolymolybdenum blue (Mo5+ and Mo6+) takes place, which is detectable at a 

maximum of 750 nm. 

Therefore, pellets were dissolved in 1 M NaOH at 50 ºC for 4 h with occasional 

sonication. To determine the protein concentration, a standard curve was prepared 

with BSA (0–20 µg) in 0.1 M NaOH. Sample aliquots and BSA standards were 

dissolved in 0.1 M NaOH to a final volume of 300 µl. Complex reagent (1.5 ml) 

containing Na2CO3, CuSO4, and tartrate was added to each sample. Copper 

complexes were allowed to form by incubating the samples 10 min at room 

temperature. Subsequently, 150 µl of Folin-Ciocalteu reagent were added, followed 

by a brief vortexing. Protein complexes were then incubated 45 min at r.t. in the dark, 

and protein content was measured by spectrophotometry at 750 nm. 

 

2.2.6.8. Quantification by electrospray ionization tandem mass spectrometry 

(ESI-MS/MS) 

Sphingolipid quantification was performed by tandem mass spectrometry using a 

triple quadrupole instrument (VG micromass model Quattro II, Waters) equipped with 

a nano electrospray source, as previously described (Jennemann et al., 2007; 

Sandhoff et al., 2005). Equivalent lipid samples regarding the protein content were 

dissolved in 5 mM NH4OAc in CH3OH. Prior to being analyzed, internal standards 

were added to the aliquots. 

Synthesized montanoyl- and melissoyl-CoA were also quantified by mass 

spectrometry. An equimolar mixture of 16:0, 18:0, 20:0, 24:0 and 26:0-CoA of known 
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concentration were used as internal standards to determine the concentration of the 

acyl-CoAs. 

Sphingolipids, as well as fatty acids and acyl-CoAs were detected with precursor 

ion scans and neutral loss modus, respectively. The acquisition parameters and the 

internal standards used for quantification are compiled in the following table: 

 

Lipid 
Scan 

modus 
m/z 

Specific  
scan for 

Collision  
energy (eV) 

Internal standards 

Acyl-CoA 
Neutral 

loss 
507 

Phosphato-
ADP 

37 
16:0-CoA,18:0-CoA 
20:0-CoA,24:0-CoA 

26:0-CoA 

Cer (d17:1) 
Precursor 

ion 
250 

Sphingoid 
base (d17:1) 

44 
Cer (d17:1,19:0) 
Cer (d17:1,25:0) 

Cer (d18:1) 
Precursor 

ion 
264 

Sphingoid 
base (d18:1) 

50 

Cer (d18:1,14:0) 
Cer (d18:1,19:0) 
Cer (d18:1,25:0) 
Cer (d18:1,31:0) 

GlcCer (d18:1) 
Precursor 

ion 
264 

Sphingoid 
base (d18:1) 

50 

GlcCer (d18:1,14:0) 
GlcCer (d18:1,19:0) 
GlcCer (d18:1,25:0) 
GlcCer (d18:1,31:0) 

α-Hydroxy-fatty 
acids 

Neutral 
loss 

46 Carbonyl 30 Not quantified 

SM 
Precursor 

ion 
184 

Phosphoryl-
choline 

35 

SM (d18:1,14:0) 
SM (d18:1,19:0) 
SM (d18:1,25:0) 
SM (d18:1,31:0) 

 

All ESI-MS/MS measurements were performed by Prof. Dr. Roger Sandhoff from 

DKFZ in Heidelberg.  

 

2.2.6.9. Thin layer chromatography (TLC) 

Ceramide internal standards were analyzed and quantified by thin layer 

chromatography. After purification of internal standards with column chromatography, 

20 µl of every third fraction of the eluate were spotted on double-sided HP-TLC silica 

plates (Silicagel 60 F254, Merck) using a Linomat IV (Camag). Separation was carried 
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out by running the TLC from both sides with CHCl3/CH3OH/glacial AcOH (188/11/1) 

in a horizontal chamber. Bands were then made visible by developing the TLC plate 

in 10% CuSO4 in 8% H3PO4 (10 min at 180 ºC). The fractions containing the purified 

ceramides were pooled and dried under a nitrogen stream. 

For quantification, a dilution series of the purified products were spotted on a 

HP-TLC together with standards of known concentration and separated with 

CHCl3/CH3OH/glacial AcOH (188/11/1). After development with CuSO4 reagent, 

quantification of the bands was performed by densitometric scanning using a TLC 

scanner (Shimadzu CS-9301).  

For epidermal extracts, lipids corresponding to 0.5 mg dry weight were spotted on 

a TLC plate and separated using a complex solvent system that included four 

different solvent mixtures. First, CHCl3/(CH3)2CO (1/1) was used to run the plate up 

to 4 cm of a 20 cm TLC plate, followed by CHCl3/CH3OH/glacial AcOH (60/35/8) run 

up to 7 cm, CHCl3/CH3OH/glacial AcOH (190/9/1) to 12 cm and finally 

n-hexane/methyl t-buthyl ether/glacial AcOH (90/10/1) up to the top. Lipids were then 

visualized using CuSO4 reagent. 

 

 Total mRNA expression analysis 
2.2.7.1. Isolation of total RNA from tissue and eukaryotic cells 

Total RNA was extracted with phenol, guanidinium thiocynate and chloroform 

according to Chomczynski and Sacchi, either with the ready-to-use Tryzol reagent 

or with a modified Chomczynski and Sacchi method (Chomczynski and Sacchi, 

1987).  

 

2.2.7.1.1. RNA isolation by modified CHOMCZYNSKI and SACCHI method 

Juvenile mice testes (PN 5–25) were homogenized on ice in 3 ml of freshly prepared 

guanidinium thiocyanate buffer. Total RNA was then extracted with 300 µl of NaOAc 

(2 M, pH 4), 3 ml of Roti-Aqua-Phenol (Carl Roth), and 600 µl of CHCl3/isoamyl 

alcohol 24/1 (Sigma), with thorough mixing by inversion after the addition of every 

reagent. The suspension was incubated 15 min on ice, following by a centrifugation 

step at 15,000 × g for 30 min at 4 ºC. The upper aqueous phase containing the RNA 

was then transferred into a fresh tube, separated from the DNA and proteins present 
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in the lower phenol phase. Subsequently, 3 ml of isopropanol (100%) were added 

and RNA was precipitated overnight at – 20 ºC. A second precipitation step was 

performed by collecting the RNA pellet at 15,000 × g for 20 min, following the 

addition of 2 ml guanidinium thiocyanate buffer and 2 ml isopropanol, and overnight 

precipitation at – 20 ºC. After collection of RNA at 15,000 × g for 20 min, a washing 

step with 600 µl of 70% ethanol (– 20 ºC) was performed. Finally RNA was collected 

once more with 20 min centrifugation at 18,000 × g, and the pellet was then 

solubilized in ddH2O. Isolated RNA was flash frozen in liquid nitrogen and kept at      

– 80 ºC.  

 

2.2.7.1.2. RNA isolation by Tryzol reagent 

Tryzol reagent (Invitrogen), a ready-to-use monophasic solution of phenol and 

guanidinium thiocyanate, was used to isolate total RNA from cultured cells as well as 

from tissue biopsies (e.g. testes, skin), according to manufacturer’s instructions.  

 Cultured cells grown in monolayer in a 6-well plate were directly lysed with 1 ml of 

Tryzol reagent. For the isolation of RNA from tissue, biopsies were homogenized in 

1 ml Tryzol per 50–100 mg of tissue. Skin biopsies were disrupted using a glass-

teflon grinder (Glass-Cool), while disruption of testes was performed using a power 

homogenizer (Ultra Turrax T25 basic).  Sequentially, homogenates were incubated 

for 5 min at r.t. to enable complete cell lysis. RNA was extracted with the addition of 

0.2 ml CHCl3 (per 1 ml of Tryzol), followed by a thorough mixing, and an incubation 

step of 3 min at r.t. Following, phase separation was performed at 12,000 × g for 

15 min, and the upper aqueous phase containing RNA was collected into a fresh 

tube. RNA precipitation was performed with 0.5 ml isopropanol, and RNA was 

pelleted at 12,000 × g for 10 min. To wash the RNA pellet, 1 ml ethanol (75%) was 

used, and RNA was finally collected at 7,500 × g for 5 min, and solubilized in DEPC 

or Braun water. All centrifugation steps were performed at 4 ºC. 

 

2.2.7.2. DNAse digestion 

Contaminating DNA was removed from RNA isolates using TURBO DNA-free Kit 

(Ambion). Thus, 10 µg of RNA dissolved in 15 µl of ddH2O were incubated for 30 min 



Materials and methods 
 
   

 80 

at 37 ºC with 1 µl of DNase I and 1x DNase buffer. Following enzymatic treatment, 

2 µl of DNase inactivation reagent were added, and after 2 min incubation at r.t., 

contaminants were pelleted at 10,000 × g for 2 min. Finally, purified RNA was 

transferred into a fresh tube. 

 

2.2.7.3. RNA integrity assessment with RNA6000 nanochip 

RNA integrity was analyzed by electrophoresis using an Agilent RNA 6000 nanochip 

according to the description of the manufacturer. The nanochip was evaluated with 

2100 Bioanalyzer (Agilent Technologies) using the eukaryote total RNA assay. The 

RNA integrity number (RIN) was used to determine the quality of the isolated RNA. 

RIN is an algorithm calculated by the software according to the complete 

electrophoretic trace of the RNA sample. Maximum RNA quality is defined by RIN 

values equal to 10, and ratios between 28S/18S of rRNA equal to 2. 

 

2.2.7.4. Synthesis of double stranded cDNA 

Reverse transcription of RNA into single stranded (ss) cDNA was performed with 

Superscript II. Briefly, 3 µg of isolated RNA diluted in 14 µl of ddH2O were mixed 

with 1 µl of oligo-dT12-18 primer (0.5 µg/µl) and 1 µl of dNTP mixture (10 mM). The 

samples were heated to 65 ºC for 5 min prior the addition of 4 µl of first strand buffer 

(5x) and 2 µl of DTT (100 mM). After incubating the samples for 2 min at 42 ºC, 

1 µl of Superscript II (200 u/µl) was added, and reverse transcription was performed 

for 1 h at 42 ºC. 

Sequentially, double stranded (ds) cDNA was synthesized from freshly prepared 

single stranded cDNA. To the ss cDNA was added 30 µl of second strand buffer (5x), 

3 µl of dNTP mixture (10 mM), 4 µl DNA Polymerase I (10 u/µl), 1 µl of DNA ligase 

(10 u/µl), and 1 µl of RNAse H (2 u/µl) to a final volume of 153 µl with ddH2O. The 

reaction mixture was incubated for 2 h at 16 ºC. To assure blunt end of the ds cDNA 

termini, 2 µl of T4 DNA polymerase were added to the newly synthesized ds cDNA. 

Afterwards, samples were incubated for 10 more min at 16 ºC in order to allow the 

enzymatic reaction of the polymerase. Finally, ds cDNA was purified using the 

QIAquick PCR purification kit (see 2.2.1.3) and eluted from the silica-based 

membrane with 50 µl of ddH2O.  
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All enzymes used for reverse transcription were purchased from Invitrogen. 

2.2.7.5. Quantitative real time PCR (qRT-PCR)  

Quantification of gene expression by real time PCR was performed using the 

LightCycler 2.0 system (Roche Diagnostics). For the amplification and detection of 

the gene of interest, the LightCycler FastStart DNA Master SYBR Green I was used 

in combination with specific primers for the target genes and 1:10 dilution of the 

synthesized cDNA. Generally, optimal amplification of target genes required divalent 

cations in a final concentration of 2.5 mM. The real time PCR reactions were set as 

follows: 
 
Real time PCR reaction (20 µl):       Program       T (ºC)     time 

H2O         12.8 µl     1. Denaturation     95   10 min 
MgCl2 (25 mM)     1.2 µl      2. Denaturation  95      15 s 
Primers (5 µM each)   2 µl      3. Annealing       Ta   5 s 
cDNA template (1:10)   2 µl      4. Elongation   72   10 s 
LightCycler SYBR Green  2 µl      (Steps 2 to 4 are repeated for 45 cycles) 
                 5. Denaturation  95   0 s 
                 6. Annealing   65   15 s    
                 7. Melting    95   0 s 
                 8. Cooling     40   30 s 

 
The PCR reaction mixtures were loaded in LightCycler glass capillaries, and the 

qRT-PCR was performed immediately. A negative control was loaded in each PCR to 

assure no contamination of the samples. Amplicons of the target gene were 

generated during the 45 denaturation-annealing-elongation cycles (programs 2–4). 

Following, melting curves of the amplified fragments were generated (programs 5–8) 

in order to evaluate the integrity of the products. Reactions were performed with 

biological triplicates and technical duplicates. 

Primers were designed exon-spanning and localized at the 3’-prime region using 

Primer3 (v 0.4.0). Generally, amplicon size was between 50 and 200 bp, and the GC 

content was set to 45–55%. To exclusively enhance the target homologue gene, 

blast analysis and multiple sequence alignment (ClustalW, v 1.83) were performed to 

evaluate the homology of the primer with the other homologue family members. The 

sequence and annealing temperatures of the primers used in this study are listed in 
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section 2.1.12.3. Amplicons were further analyzed by agarose electrophoresis to 

assure the amplification of the appropriate products. 

Quantification of the gene expression was calculated using the ∆∆CT method 

(Livak and Schmittgen, 2001), normalizing relative CT values to the expression of the 

housekeeping gene, Gapdh. 

 

2.2.8. Animal experiments 
2.2.8.1. Animal care 

Animals were kept under specific pathogen-free conditions in barrier facilities, where 

a 12 h light / 12 h dark cycle was maintained. Mice were housed in groups up to five 

animals at a controlled temperature of 22 ºC. They were fed regular laboratory chow 

diet and water, supplied ad libitum.  

 

2.2.8.2. Genotyping  

CerS3-/- mice were genotyped by PCR using genomic DNA isolated from tail 

biopsies. For routine extraction of genomic DNA, about 0.3 cm tails were digested 

overnight at 56 ºC with 100 µl of DirectPCR Lysis Reagent (PeqLab) supplemented 

with 2.5 µl of proteinase K (Sigma). Heat inactivation of the enzyme was performed 

at 85 ºC for 45 min prior to the PCR. Reactions were performed using 1 µl of DNA 

from tail digestion in a final volume of 50 µl, as described in section 2.2.1.2. 

Amplification of specific products corresponding to wild type and mutant allele were 

performed with primers listed in section 2.1.12.4., and using Taq DNA polymerase (5 

Prime). Agarose gel electrophoresis was performed to analyze the fragments 

obtained from PCR, as described in section 2.2.1.4. 

To corroborate the generation of a truncated CerS3 transcript lacking exon 7, 

isolated cDNA from skin of mutant and wild type animals (for methods see 2.2.7.1-4.) 

was used to specifically amplify a PCR product between exon 6 and the immediate 

3’UTR (primers listed in 2.1.12.4.).  

 

2.2.8.3. Skin permeability assay 

Permeability of skin was tested by hematoxylin diffusion essentially as described 

(Vasireddy et al., 2007). In brief, euthanized embryos and newborn animals were 
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fixed in CH3OH for 5 min, washed with PBS and incubated in hemalaun solution 

(Roth, T865.3, according to Mayer) for 40 min at room temperature. Excess 

hemalaun was removed by several thorough washes with PBS. After hematoxylin 

staining, images of the animals were taken using a digital camera. 

 

2.2.8.4. Determination of transepidermal water loss (TEWL) 

Transepidermal water loss was measured using a Tewameter TM300 (Courage-

Khazaka Electronics) as described (Herrmann et al., 2003).  

 

2.2.8.5. Epidermal pH 

Epidermal pH was determined by direct contact of humidified pH-indicator strips (pH 

5.2–7.2, Merck) to the skin of mice. 

 

2.2.9. Pathogenic infection experiments 
2.2.9.1. Culture of mouse skin 

Skin biopsies from the back of newborn animals were maintained viable on collagen 

gels partially submerged in DMEM medium (Lonza, BE12-604F) supplemented with 

50 U/ml penicillin and 50 µg/ml streptomycin (Gibco). Collagen gels were prepared 

as previously described (Stark et al., 2006). Thus, type I collagen was isolated from 

tail tendons of young rats and lyophilised. To a 4 mg/ml solution of collagen in 0.1% 

AcOH was added 10% of 10x Hank’s balanced salt solution (Gibco) titrated with 5 M 

NaOH and 10% of DMEM medium. The mixture was allowed to jellify in 

PET-membrane filter inserts (Falcon) for 1 h at 37 ºC, following the addition of 12 ml 

DMEM medium in each of the deep-wells (BD Biosciences, BD 355467).  

 

2.2.9.2. Pathogenic infection 

Candida albicans (ATCC 90028) was grown overnight in LB medium. Prior to 

infection, yeast concentration was determined by cell counting using a Neubauer 

chamber. Afterwards, cells were pelleted by centrifugation and resuspended in PBS 

to a concentration of 109 cells/ml. C. albicans (1 µl, 1×106 cells) was inoculated to the 

center of the skin biopsy and incubated at 30 ºC for the specified time.  
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2.2.9.3. Determination of pathogenic growth 

Infected skin biopsies were flushed with 10 ml PBS. An aliquot of these suspensions 

(100 µl) were plated in two different dilutions on Sabouroud agar plates (BioMérieux). 

Multiple serial dilutions had been previously performed to determine optimal 

conditions. After 24 h incubation at 37 °C, colonies were counted and concentrations 

were determined as CFU/ml. Technical triplicates from biopsies of four mice were 

analyzed.  

 Pathogenic infection and growth studies were performed by Rene Karayilan and 

Prof. Dr. Alexander Dalpke at the department of Medical Microbiology and Hygiene of 

University of Heidelberg. 

 

2.2.10. Microscopy 
2.2.10.1. Light and electron microscopy  

Specimens for ultrastructural analyses were prepared as previously described with 

slight modifications (Komljenovic et al., 2009). Embryonic and neonatal CerS3d/d and 

control mice were anesthetized and transcardially perfused for 15–30 min at r.t. The 

freshly prepared fixative solution contained 2.5–4% glutaraldehyde in 0.1 M sodium 

cacodylate buffer (pH 7.6) and saturated picric acid (300 µl per 100 ml fixative 

solution), in addition to 2% polyvinylpyrrolidone (PVP, Polyvidon 25, MW 25,000, 

Merck) and 0.05% CaCl2. Fixed skin from the interscapular region of the back was 

dissected and embedded in agar (extrapure, Merck) in order to preserve the 

periderm and the entire layers of the stratum corneum. Following, sections of 80 to 

150 µm thickness were prepared using a microslicer (DTK 1000).  

One series of samples were incubated in alkaline diaminobenzidine (DAB) for   

30–60 min for enhancement of membrane staining, and postfixed with 1% buffered 

OsO4 in sodium cacodylate buffer (pH 7.6) containing 1.5% potassium ferrocyanide 

for 20–30 min, followed by osmification without ferrocyanide for an additional         

40–60 min. 

A second series of specimens were treated, after one osmification step with 1% 

buffered OsO4 for 90 min, with 1% tannic acid (low molecular galloyl glucose, LMGG, 
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Mallinckrodt laboratories) in 0.1 M sodium cacodylate buffer (pH 7.0), as described 

(Simionescu and Simionescu, 1976).  

Fixed on superfrost, slides were immersed in freshly prepared HIO4 (5% aq. sol.) 

for oxidation at 60 ºC (2x 30 min), rinsed with ddH2O for 30 min and dried at 85 ºC. 

En-block staining with 1% uranyl actetate proceeded for 20–30 min prior to 

dehydration in graded ethanol and embedding in Epon 812. Subsequently, serial 

semithin Epon sections of 0.5–1 µm thickness were prepared (Leica Ultracut UCT).  

For light microscopical analysis, semithin sections were stained with periodic acid-

Schiff (PAS) (Schroeder et al., 1980) without counterstaining or followed by a 

modified Richardson solution containing methylene blue-Azur II. Briefly, Epon 

sections were immersed in a freshly prepared HIO4 solution (5% aq. sol.) at 60 ºC for 

2 × 30 min, rinsed in ddH2O for 30 min and dryed at 85 ºC. Sections were then 

incubated with Schiff solution for 90 min at 60 ºC, with an additional rinsing and 

drying step. Subsequently, samples were counterstained with 0.5% methylene 

blau/Azur II (1:1) in 0.5% aqueous borax solution for 3–5 min at r.t. Specimens were 

finally rinsed with ddH2O and dryed at 85 ºC. To visualize epidermal glycogen, 

specimens were exclusively stained with PAS without counter-staining. 

For ultrastructural analysis, series of ultrathin Epon sections were prepared and 

stained with lead citrate prior to be analyzed with an electron microscope (Zeiss EM 

906E).  

For pathogenic studies, infected skin biopsies from CerS3 deficient mice and 

controls were fixed together with collagen gels with 4% formalin for 24 h at r.t. and 

subsequently embedded in paraffin. Sections (Microm, HM 355S) of 1 µm thickness 

were prepared and deparaffinized by short sequential immersions in xylene, ethanol 

solutions (100%, 96%, 80% and 70%) and water. Sections were then immersed in 

0.75% HIO4 for 10 min, carefully rinsed with water and incubated in Schiff solution for 

5 min. Following rinsing and drying steps, biopsies were then counterstained with 

hemalaun solution (Roth, according to Mayer). Sections were dehydrated by 

subsequent immersions in ethanol solutions of increasing concentrations (70–100%), 

followed by immersion in xylene. Sections were then mounted with Vitro-Clud 

(Langenbrink) and analyzed using a Leica DMLB microscope. 
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Specimen preparation and ultrastructural analyses were performed in cooperation 

with Ingrid Kuhn-Krause and Prof. Dr. Karin Gorgas at the department of Anatomy 

and Cell Biology of University of Heidelberg. The PAS staining of infected skin 

biopsies was performed with the technical assistance of Gabriele Schmidt from DKFZ 

in Heidelberg. 

 

2.2.10.2. Immunohistochemistry of mouse newborn skin  

Neonatal mice were transcardially perfused with 3–4% paraformaldehyde (PFA) 

solution in 0.1 M PBS (pH 7) containing 2% PVP for 15–30 min at r.t. Skin samples 

were dissected, postfixed with fixative solution for additional 30–60 min at 4 ºC and 

rinsed with PBS containing 2% PVP. Sections were prepared as follows.  

 Ultracryosemithin sections. Microslicer sections of 600 µm thickness were cryo-

protected in sequential sucrose solutions (0.1 M PBS, pH 7.6 with 10% PVP) of 

increasing concentrations (10%, 20%, 30% and 2.3 M) prior to be frozen in precooled 

isopentane with liquid nitrogen. Subsequently, ultracryosemithin sections of          

0.6–0.8 µm thickness were prepared with a Leica Ultracut UCT equipped with a Leica 

EMFCS. F-actin, loricrin and involucrin were localized following this protocol. 

 Cryosections. After anesthesia, unfixed skin biopsies from the back of newborn 

animals were quickly placed onto an aluminium foil and frozen in pre-cooled 

isopentane with liquid nitrogen and embedded in tissue block. Cryosections of         

3–5 µm thickness were obtained with a Leica CM 3050S and subsequently fixed with 

acetone for 10 min at r.t. For the detection of claudin 1, sections were subjected to an 

antigen retrieval with 10 mM sodium citrate and 0.5% Tween-20 (pH 6.0) for 20 min 

at 96 ºC. Instead, cingulin and filaggrin were permeabilized with 1% Triton X-100 in 

PBS (v/v) for 5 min and then blocked for 30 min with 10% FCS. For nile red, filipin 

and transglutaminase detection of unfixed cryosections a modified protocol was used 

(vide infra).  

 Paraffin. Fixed specimens were dehydrated in a graded ethanol series and 

embedded in Paraplast Plus. Paraffin sections of 3–5 µm thickness were obtained 

with a Microm HM 340E, then deparaffinized and subjected to antigen retrieval as 

described (vide supra). Cathepsin D, desmoglein 1/2, desmoplakin, Ki67 (vide infra), 

loricrin, and CerS3 were detected with this protocol. 
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 In situ extraction of protein-bound sphingolipids on paraffin sections was 

performed to detect desmoglein, loricrin and involucrin antigens. Thus, sections were 

deparaffinized with xylene (2 x 30 min) and immersed in 100% ethanol (2 x              

10–15 min). Protein-bound epidermal sphingolipids were then extracted with mild 

alkaline methanolysis (0.1–1M KOH in 100% CH3OH) for 1–2 h at r.t., slightly 

modified as described in section 2.2.6.5. Afterwards, sections were washed in 

CH3OH (3 x 2 min) and finally immersed in 100% ethanol for 10 min. Subsequently, 

sections were dehydrated by immersion in sequential ethanol solutions of decreasing 

concentrations and water, prior to be subjected to an antigen retrieval. 

 

For detection of antigens, sections were incubated with primary antibodies for     

1–16h at 4 ºC or at r.t. Subsequently, sections were washed and incubated with 

secondary antibodies for 1 h at r.t. Following another washing step, nuclear staining 

was performed with DAPI (20 ng/ml, Sigma). Sections were then mounted in 

DakoCytomation fluorescent mounting medium.  

The in situ detection of transglutaminase activity in skin biopsies was performed as 

described with slight modifications (Yanagi et al., 2010). Shortly, unfixed cryosections 

of 3–5 µm thickness were air-dried for 30 min at r.t and washed with PBS (2 x 5 min) 

to remove the tissue block. Sections were blocked with 1% BSA in 100 mM Tris-HCl 

(pH 7.4) for 30 min, following 1 h incubation with 12 µM monodansylcadaverine 

(Sigma) in 100 mM Tris-HCl (pH 7.4) containing 5 mM CaCl2. For negative controls, 

EDTA was added into the substrate buffer to a final concentration of 20 mM. The 

enzymatic reaction was stopped by incubation of PBS containing 10 mM EDTA for 

5 min. Two additional washing steps were performed with PBS for 5 min, prior to 

incubation for 3 h with the primary antibody dissolved in 12% BSA-PBS. Sections 

were then washed with PBS (3 x 5 min) and incubated for 45 min with the secondary 

antibody in 12% BSA-PBS. Following nuclear staining, specimens were mounted in 

Fluoromount-G. All steps were performed at r.t.  

Lipids were detected with nile red and filipin using unfixed cryosections, as 

previously reported with slight modifications (Goritz et al., 2007; Greenspan et al., 

1985). For cholesterol staining using filipin, sections were left to air-dry and washed 

prior to be immersion-fixed in 4% phosphate-buffered formalin. Sections were then 
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washed with ddH2O and PBS, and subsequently incubated with freshly prepared 

filipin solution (10 µg/ml in PBS with 1% DMSO) for 2 h at r.t. Substrate was then 

washed with PBS and ddH2O, and finally mounted in Fluoromount-G. To visualize 

neutral and polar lipids using nile red, sections were air-dried and sequentially 

incubated with a freshly prepared solution containing 5 µg/ml of nile red in 75% 

glycerol. This solution was prepared from a 500 µg/ml stock solution of nile red 

dissolved in acetone. After 5 min incubation, sections were mounted and directly 

visualized. 

For immunofluorescence studies, sections were analyzed with the fluorescence 

microscope Biorevo BZ-9000 (Keyence). For negative controls, PBS was used 

instead of primary antibodies. 

Keratinocyte proliferation was assessed in paraffin sections with detection of Ki67 

antigen using a DakoAutostainer. Following permeabilisation, blocking and binding 

with primary antibody, sections were incubated with a biotinylated anti-rat antibody 

and detected with alkaline phosphatase-labelled streptavidin (1:200, Vector 

Laboratories, SA-5100).  

Terminal dUTP nick-end labeling (TUNEL) was performed on unfixed skin biopsies 

embedded in paraffin wax using the in situ cell death detection kit (Roche, 11 684 

817 910), following the recommendations provided by the manufacturer. Afterwards, 

biopsies were counter-stained with hematoxylin prior to being analyzed using a Leica 

DM-RBE microscope. 

Sample preparation and immunohistochemical stainings were performed with 

major help of Ingrid Kuhn-Krause, Claudia Schmidt and Prof. Dr. Karin Gorgas. 

 

2.2.10.3. Immunohistochemistry of cell cultures 

For subcellular localization of CerS3, HeLa cells were seeded and transfected on 

sterile 12 mm glass coverslips placed in 6-well plates. Following 24 h after 

transfection, cells were washed 3 times with chilled PBS. Cells were then fixed with 

3.5% PFA for 5 min on ice, following 10 min at r.t. Afterwards, cells were washed with 

chilled PBS (3x for 5 min), following permeabilization with CH3OH (– 20 ºC) for 6 min 

(Brock et al., 1999). Subsequently, cells were washed once more with PBS (3x for 

5 min), before blocking for 1 h with 3% BSA-PBS. Binding of primary antibodies was 
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performed for 1.5 h at r.t. After three washing steps, incubation of secondary 

antibodies for 45 min followed. Primary and secondary antibodies were diluted in 

1.5% BSA-PBS. Afterwards cells were washed once more and nuclear staining was 

performed with Draq5 (Biostatus) in PBS for 10 min. Finally, cells were washed 

with PBS (4x for 5 min) and mounted with Fluoromount-G. Immunofluorescence 

images were acquired with Leica TCS-SL microscope and analyzed with Leica 

Confocal software (version 2.61) by Tjeerd Sijmonsma from DKFZ in Heidelberg. 

 

2.2.11. Statistical analysis 
All data concerning animal experiments included a minimum of 3 mice per group. In 

vitro experiments were performed at least in 3 independent experiments. All 

statistical analyses were performed using Student t test, and differences among 

groups were considered significant for p < 0.5 (*), p < 0.1 (**) and p < 0.01 (***).
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3.1. Transcriptional analysis of the ceramide synthases in murine 
testis and skin 
 
Previous studies with fertile and infertile mouse models led to the finding of a novel 

class of fucosylated GSLs, whose expression of the neutral subset strictly correlates 

with fertility in mice. The acyl moieties of this main class of testicular GSLs are 

almost exclusively comprised of ultra long chain polyunsaturated fatty acids 

(ULC-PUFAs) (Sandhoff et al., 2005). To gain deeper insight into the function of 

these unusual GSLs, we aimed first to identify the ceramide synthase homologue/s 

responsible for the incorporation of these ULC-acyl residues into the ceramide 

backbone. 

 
3.1.1. Cers3 is exclusively expressed in tissues containing ULC-sphingolipids 

The mammalian ceramide synthase family is composed of six homologue genes 

(Cers1–6). Currently, five of these enzymes have been reported to incorporate 

specifically a subset of acyl-CoAs, which differ in the length of their hydrocarbon 

chain. The affinity for ULC-FAs has not been appointed to any of the investigated 

ceramide synthases. Yet neither the tissue, nor substrate specificity of CerS3 had 

been determined at the starting point of this study. However, it is CerS3 that was 

found in our department to be strongly expressed in mature mouse testis (Sandhoff 

et al., unpublished results). To confirm these preliminary results, and to investigate 

the Cers3 expression in other tissues, PCR analyses from mouse cDNA were 

performed (Figure 17). 

The highest Cers3 expression was found in testis, confirming previous results and 

succeeding studies (Laviad et al., 2008; Mizutani et al., 2006). To a lesser extent, 

Cers3 was additionally expressed in mouse skin. Interestingly, both testes and skin 

are the only mammalian tissues reported to contain major concentrations of ULC-

sphingolipids. Otherwise, Cers3 cDNA could not be amplified from either brain, liver 

or colon. 
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Figure 17. Tissue distribution of Cers3 cDNA. 
Agarose gel electrophoresis of Cers3 DNA products obtained by PCR analyses from 
diverse mouse tissues. The expression of Gapdh was used as a loading control. 
 
 

The substrate specificity of the ceramide synthase homologues has been already 

characterized in several studies, including a recent study on the substrate preference 

of CerS3 (Mizutani et al., 2006). However the length of acyl-CoAs included in all 

previous studies ranged between 14 and 26 carbon atoms without including ULC-

acyl-CoAs. Nevertheless, the longer acyl-CoAs included in these studies, 24- and 26-

CoA, were best incorporated by CerS2 and CerS3. To elucidate whether CerS2 and 

CerS3 or any other CerS homologue plays the leading role in the synthesis of ULC-

sphingolipids, mRNA analyses of the ceramide synthase family in mice testis and 

skin were performed. 

In the testis, Cers3 was the ceramide synthase member with highest transcript 

levels (Figure 18A). The expression of Cers5 was the most abundant following Cers3 

with about 40% decrease in its transcript levels. Murine testicular mRNA additionally 

expressed Cers2 and Cers6, however their mRNA levels were about 7 and 10 fold 

downregulated in relation to Cers3, respectively. The mRNA expression of Cers1 and 

Cers4 could not be detected in mouse testis.   
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In murine neonatal skin, Cers2 and Cers3 mRNA transcripts were the most 

prominent, although the expression of Cers5 and Cers4 were fairly abundant (Figure 

18B). Here the relative gene expression levels of the ceramide synthases were 

determined in the combined endothelial and epithelial layers, and thus Cers levels 

reflect an average of their mRNA transcripts in the different cell types present in the 

skin.   

Sphingolipids with ULC-FA moieties are exclusively found in the epidermis, where 

they play an essential role in the formation and maintenance of the epidermal 

permeability barrier. Determining whether Cers3 or Cers2 is the major Cers mRNA 

expressed in the epidermis would still require further investigations. However, both 

enzymes could potentially be responsible for the transfer of ULC-acyl-CoAs to 

ceramides. 

Cers5 and Cers4 were additionally expressed in murine neonatal skin. Their 

relative expression levels were found over 2 and 3 fold times downreagulated, 

respectively, in relation to the mRNA concentration of Cers2. The transcript levels of 

Cers6 and Cers1 were barely detectable.   

 

 
 
Figure 18. Cers3 is highly expressed in murine testis and skin. 
Quantitative RT-PCR was performed to evaluate Cers transcript expression profile in 
mice testes (A) and skin (B). Isolated mRNA from juvenile (PN 25) testes and 
newborn (PN 0) skin were transcribed into cDNA and subsequently evaluated for 
relative gene expression using specific primers for each homologue. Cers expression 
levels were calculated according to the ∆∆Ct method normalizing values relative to 
the expression of a housekeeping gene, here Gapdh. Normalized ∆Ct values were 
compared to normalized ∆Ct of Cers5-mRNA of each tissue.  
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 Taking into account the expression levels of the ceramide synthase members in 

the primary tissues containing ULC-sphingolipids, and their reported preferences for 

acyl-CoA species, it was deducted that Cers2 and Cers3 are the only possible 

candidates that might be responsible for the biochemical transfer of ULC-acyl-CoAs 

into sphingoid bases (for detailed discussion see section 4.1). 

 

3.1.2. Cers3 and ULC-PUFA sphingolipid expression simultaneously increase 
during testicular maturation 

Detailed mass spectrometric analyses of testicular sphingolipids according to their 

acyl residues revealed the lack of ULC-PUFA during the earlier stages of the first 

spermatogenic cycle. ULC-PUFA moieties were first incorporated into sphingolipids 

at PN 15, with their levels increasing during the progress of spermatogenesis 

(Rabionet et al., 2008).  

To further investigate whether CerS2, CerS3 or any other CerS member could be 

responsible for the synthesis of ULC-sphingolipids in testis, stage specific mRNA 

analysis of the ceramide synthase family was performed. The aim was to correlate 

the expression of any of the Cers genes to the expression of ULC-sphingolipids 

during the progress of the first spermatogenic cycle in mice. Therefore, mRNA from 

mice testes of different stages of juvenile development were isolated, subsequently 

transcribed into cDNA and subjected to quantitative RT-PCR. 

The expression profile of the ceramide synthase gene family revealed Cers2, 

Cers3, Cers5 and Cers6 to be present in murine juvenile testes, whereas the levels 

of Cers4 and Cers1 were extremely low and almost undetectable, respectively. At the 

earlier stages of testicular development mRNA of Cers5, followed by Cers2 and 

Cers6, exhibit the most abundant transcript levels. Despite an initial increase from 

PN 5 to 10, their expression levels were kept roughly constant with no significant 

changes throughout testicular maturation. 

On the contrary, Cers3 exhibited a distinctive mRNA expression pattern during the 

progression of the first spermatogenic cycle. Whereas transcript levels prior to PN 10 

were low, mRNA was strongly and continuously upregulated from PN 14 onward. 

Cers3 mRNA analyses revealed a noteworthy 700 fold change increase during the 

first wave of spermatogenesis in mice. 
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Figure 19. Testicular Cers3 mRNA is strongly upregulated during the first wave 
of spermatogenesis in mice. 
Cers mRNA expression of isolated cDNA from mice testes at PN 5 to 25 was 
determined by quantitative RT-PCR. Relative fold expression was calculated using 
the ∆∆CT method. ∆CT represents the normalized threshold cycle (CT) value 
corresponding to the difference between CT of each Cers and the CT of the 
housekeeping gene, here Gapdh. Normalized ∆CT values were compared to 
normalized ∆CT of Cers5-mRNA at PN 5. Data represents isolated mRNA of 
minimum 3 animals per group with technical duplicates. Error bars represent the 
SEM. 
 
 

 Cers3 mRNA exhibited a tremendous upregulation of over 4.5-fold change during 

PN 14 to 15, which coincided shortly afterwards with the onset of ULC-sphingolipid 

expression. Subsequently, the levels of sphingolipids containing ULC-PUFA moieties 

remarkably increase simultaneously with the mRNA levels of Cers3. Contrarily, 

Cers2, Cers5 and Cers6 mRNA concentrations exhibited a moderate downregulation. 

 Collectively, these findings evidence a correlation between Cers3 transcriptional 

levels and the biosynthesis of ULC-sphingolipids. 
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3.1.3. Cers3 and ULC-PUFA sphingolipid expression are restricted to 
differentiated male germ cells 
Previous immunohistological studies by Sandhoff et al. localized fucosylated GSLs 

solely in testicular germ cells, excluding their localization in both Sertoli and 

interstitial cells (Sandhoff et al., 2005). Taking into consideration that FGSLs mainly 

contain ULC-PUFA residues, the enzyme responsible for the incorporation of these 

residues must be likewise localized in germ cells.  

In order to provide additional evidence supporting the requirement of CerS3 for the 

synthesis of ULC-sphingolipids, the ceramide synthase expression levels were 

determined in germ cells. In this regard, a mouse model lacking intact differentiated 

germ cells, i.e. preleptotene and leptotene spermatocytes, was used for these 

studies. KitW-v/KitW mutant mice lack the c-kit receptor, which is necessary for the 

stem cell factor ligand in order to regulate the proliferation and differentiation of stem 

cells. Consequently, Sertoli cells and only a few undifferentiated spermatogonia 

reside at the basal lamina, while further differentiated germ cells undergo apoptosis. 

Besides Sertoli cells, other cell types localized in the interstitium, e.g. Leydig cells, 

were unaffected by the lack of the c-kit receptor, as histological analysis of mutant 

seminiferous tubules revealed (Rabionet et al., 2008).  

Cers expression levels were determined in mRNA isolated from testes of             

KitW-v/KitW mutant and control mice, and further subjected to quantitative RT-PCR for 

transcriptional analysis. 

The mRNA profile of control murine testes revealed the expression of Cers2, 

Cers3, Cers5 and Cers6, corroborating previous findings. The transcripts of all four 

ceramide synthases were decreased in mutant testes, however significant amounts 

of Cers2, Cers5 and Cers6 could still be detected in KitW-v/KitW mutant testes. These 

results indicate that Cers2, Cers5 and Cers6 are not exclusively expressed in 

differentiated germ cells. Particularly, Cers5 mRNA was barely decreased in mutant 

testicular mRNA, which might indicate a major expression of this ceramide synthase 

homologue in testicular somatic cells. On the other hand, Cers2 and Cers6 were 

decreased to 20% and 45% of control values, respectively, suggesting their 

expression in either somatic cells and/or residual spermatogonia in addition to 

differentiated germ cells. 
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Figure 20. “Germ-cell free” testes of KitW-v/KitW mice are devoid of Cers3 mRNA 
expression.  
Quantitative RT-PCR analysis of Cers mRNA of isolated cDNA from mutant mice 
testes that lack differentiated germ cells. Relative fold expression was calculated 
using the comparative CT method. Normalized ∆CT values were compared to 
normalized ∆CT of control Cers5-mRNA. 
 
  

In contrast, mutant KitW-v/KitW testes were completely depleted of Cers3 mRNA, 

implying that Cers3 expression is restricted to differentiated germ cells. 

The testicular sphingolipid pattern of mutant mice determined by ESI-MS/MS 

revealed the complete lack of sphingolipids containing ULC-PUFA moieties, thus 

indicating their localization in differentiated germ cells (Rabionet et al., 2008). Hence, 

the complete loss of Cers3 mRNA expression correlates with the absence of ULC-

sphingolipids in testis. Taking all these results into account and the overall decrease 

of Cers mRNA in infertile mutant mice, the only significant decrease that could be 

responsible for the loss of ULC-sphingolipids is that of Cers3 transcript.   

 In summary, the transcriptional analysis of the ceramide synthases in combination 

with the ULC-SL expression in juvenile and mutant KitW-v/KitW mice testes strongly 

suggested a leading role of CerS3 in the synthesis of these unconventional 

sphingolipids. 



Results 
 

    

 98 

3.2. Characterization of ceramide synthase 3 
 
Understanding the biosynthetic requirements of these unusual ULC-sphingolipids is a 

sine qua non condition to gain deeper insight into their functional role in 

spermatogenesis and the epidermal permeability barrier. In this regard, genetic, 

topological and enzymatic localization analyses, in conjunction with enzymatic 

assays were performed.  

 

3.2.1. The ceramide synthase 3 gene 
Ceramide synthase 3 (Cers3, officially denominated Lass3) mRNA was first isolated 

from mouse testis in our department (Sandhoff et al., unpublished results). The 

identified amino acid sequence could be corroborated by a succeeding study, which 

in addition identified 36 amino acid residues at the N-terminus (Mizutani et al., 2006).  

Phylogenetically, Cers3 is highly conserved in all vertebrates, exhibiting a 78% 

homology between the mouse and the human protein, as determined by sequence 

alignment (ClustalW v 1.83, Figure A1). The mouse Cers3 gene encodes for 

419 amino acids in 11 coding exons, with a predicted molecular weight of 50.0 kDa. 

The additional 5’-prime coding exon of the mouse genome is lacking in the 

homologous human protein. Therefore, the human Cers3 gene encodes for 

383 amino acids with a predicted molecular weight of 46.1 kDa.  

The ceramide synthase genes are characterized by the lag1 motif, a highly 

conserved stretch of 52 amino acids required for the catalytic activity of these 

enzymes (Spassieva et al., 2006). The lag domain in mouse is comprised of the 

totality of exon 8, spanning to the last 2 amino acids of exon 7 and the first seven of 

exon 9 (exons 6 to 8 in humans). In a broader manner, the lag1 motif has been 

described to reside in the Tram-Lag-CLN8 (TLC) domain, a region of 201 amino 

acids contained in 16 additional proteins besides Cers3 (Winter and Ponting, 2002). 

The TLC domain is flanked by exon 4 to 10 in the mouse protein, and exon 3 to 9 in 

the human Cers3. 

A shortened homeobox (or hox) domain is present in all ceramide synthases 

except for Cers1. In Cers3, the hox domain is composed of 44 residues (according to 

Prosite database) located between exon 3 and 4 (exon 2 and 3 for humans). 
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Figure 21. Genomic organization of mouse Cers3. 
Cers3 (Gene ID mouse: 545975 and human 204219) is composed of 11 exons in 
mice and 10 exons in humans. Likewise its family homologues, Cers3 is 
characterized by the lag1 domain included in the broader Tram-Lag-CLN8 (TLC) 
domain. Topology analysis predicted 6 transmembrane (TM) domains, with about 
half of the lag1 motif residing in TM4. Additionally, the homeobox domain is predicted 
to face the cytosolic side between TM1 and TM2. 
 

3.2.2. The transmembrane topology of ceramide synthase 3  
Hydrophobicity profile analysis was performed in order to predict the membrane-

spanning segments of CerS3. The topology of CerS3 as predicted by TopPred II 

(Claros and von Heijne, 1994) revealed 6 transmembrane spanning (TM) domains, 

as shown in the upper cutoff (red) of the following graph: 

 

 
 
Figure 22. Topology analysis and proposed model for CerS3.  
A) Hydrophobicity plot of murine Cers3 as predicted by TopPred. B) Membrane 
topology model of CerS3 indicating the predicted localization of the transmembrane 
domains, as well as the HOX and the LAG domain. The first and last amino acid 
positions are indicated for each domain. 
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Less restringent algorithms have suggested up to 8 TM for the yeast ceramide 

synthases and 7 TM for all mammalian CerSs (Kageyama-Yahara and Riezman, 

2006; Teufel et al., 2009). Accordingly, the hox domain might reside in the cytosolic 

loop between TM1 and TM2, and both N- and the C-termini are predicted to face the 

luminal side of the endoplasmic reticulum (ER).  

Presumably, the lag1 domain may be located in the entire TM4, and additionally 

exposed to both cytosolic and luminal sides of the ER. This model is partially in 

agreement with the model suggested by Mizutani and coworkers, however they 

proposed 5 transmembrane spanning domains to be present in CerS3 (Mizutani et 

al., 2006). 

 

3.2.3. CerS3 is an ER-resident protein 
The subcellular localization of CerS3 has not yet been reported. To address this 

issue, overexpression of CerS3 with a C-terminal EGFP tag was conducted in HeLa 

cells by means of lipofection. The fluorescence signals of mCerS3-EGFP were 

compared to those generated by the lysosomal, the golgi compartment and the ER 

protein-specific markers. 

CerS3-EGFP exhibited no colocalization with neither Lamp1 nor Golgin-97 

markers, the distribution of whose indicates the location of lysosomes and the Golgi 

apparatus, respectively. In contrast, CerS3-EGFP was found to colocalize with the 

protein disulfide isomerase (PDI), demonstrating that CerS3 is an ER-resident 

protein. Additionally, CerS3-EGFP fluoresecence signals appeared to be distributed 

in the nuclear envelope.  

These findings are in agreement with previous studies indicating the intracellular 

localization of the remaining ceramide synthases within the ER (Mizutani et al., 2005; 

Riebeling et al., 2003; Venkataraman et al., 2002) and the nuclear envelope 

(Mizutani et al., 2005). 

Despite the lack of an ER retrieval motif as determined by SignalIP, CerS3 resides 

at the site of the elongation of fatty acids and ceramide synthesis (Jakobsson et al., 

2006; Teufel et al., 2009).  
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Figure 23. mCerS3-EGFP colocalizes with the ER marker, anti-PDI. 
The fluorescence signals detected from the overproduction of CerS3-EGFP in HeLa 
cells were compared to those generated by the lysosomal marker (anti-Lamp1), the 
Golgi (anti-Golgin-97) and the ER marker (anti-PDI), shown in red. Nuclear staining 
with Draq5™dye is shown in blue, while GFP derived fluorescence is shown in 
green. 
 
3.2.4. CerS3 synthesizes ULC-sphingolipids in living mammalian cells 
In the past few years, significant efforts have been made to define the biosynthetic 

requirements of the ceramide synthases in vitro, in order to provide the basis for 

elucidating the role of specific ceramide species in vivo. As described above, each of 

the six mammalian ceramide synthases have been shown to have affinity for a 

restricted subset of acyl-CoAs, with the exception of CerS3. Mizutani and colleagues 

reported a relative broad substrate specificity of CerS3, with certain preference 

towards long and very long chain acyl-CoAs, namely 18:0-CoA and 24:0-CoA 

(Mizutani et al., 2006). However, the affinity of CerS3 for ultra long chain acyl 

residues, as those mainly expressed in skin and testis were not included in those 

studies. 



Results 
 

    

 102 

 To address this issue, the in vitro specificity of CerS3 towards a wide range of 

acyl-CoAs including ULC-acyl-CoAs (16:0 to 28:0-CoA) was examined. From the 

remaining five CerS homologues, CerS2 has been described to best incorporate acyl 

residues with the longer carbon chain length (22:0 to 26:0-CoA) for the synthesis of 

the corresponding ceramides (Laviad et al., 2008). All other CerS homologues have 

been reported to produce ceramides with shorter acyl moieties (Lahiri et al., 2007). 

Additionally, CerS2 has the highest homology with CerS3, and likewise its mRNA 

was expressed in skin and testis. However, mRNA and sphingolipid expression 

analysis performed in testes lacking differentiated germ cells, as well as juvenile mice 

testes during the first wave of spermatogenesis suggested that CerS3 is the unique 

enzyme capable of producing ULC-ceramides. 

In order to corroborate these findings and to establish whether solely CerS3 

incorporates ULC-acyl-CoAs to sphingoid bases, the preference of CerS3 and CerS2 

towards acyl-CoAs was tested by means of ceramide synthase assays. 

 
3.2.4.1. CerS3 does not modify the ceramide profile in the absence of ULC-acyl-

CoAs 

The first approach to demonstrate that CerS3 is the enzyme responsible for the 

formation of ULC-(PU)FA sphingolipids included an activity study of the enzyme in 

transient transfected cells. As it has been shown for other ceramide synthase 

homologues, overexpression of a given CerS in either HEK-293T or HeLa cells 

produced a change in the ceramide pattern reflecting the specificity of the enzyme 

towards the fatty acid substrates (Riebeling et al., 2003). In this regard, HeLa cells 

were transfected with a plasmid encoding for mCers3 gene in the N-terminus of an 

EGFP tag. However, the sphingolipid profile upon 24 h post transfection exhibited no 

change in the fatty acid pattern for neither ceramide nor any of its direct metabolites, 

albeit the expression of the fusion protein in transfected cells was confirmed by 

immunoblot analysis (Figure 24A). We reasoned that overexpression of CerS3 had 

no effect in the sphingolipid pattern due to the lack of its fatty acid substrates in these 

cells, and not due to a lack of activity of the fusion protein. In order to circumvent this 

issue, we tried to expose the cells with the adequate substrates using different 

approaches.  
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First, we attempted to introduce the ULC-FA substrates by performing double 

transfections with CerS3 together with genes belonging to the elongation of very long 

chain fatty acid (Elovl) gene family. The Elovl genes are responsible for the synthesis 

of activated fatty acids with more than 16 carbons in length via the addition of 

2 carbon units from malonyl-CoA to a long chain acyl-CoA substrate. At the starting 

point of this work, reliable data on the substrate specificity of the seven elongases 

was limited, therefore we attempted to determine the potential elongase responsible 

for the synthesis of ULC-acyl-CoAs by means of transcriptional analysis (Figure 

24C). Elovl2 and Elovl5 mRNA were found to be the most prominent in testis, 

however Elovl5 transcript was linked by gene array data (available 

at www.germonline.org) to be localized in spermatogonia and somatic Sertoli cells 

(Chalmel et al., 2007). Taking into account that these cells do not contain ULC-

sphingolipids, and that its transcript levels were decreased at the onset of ULC-

sphingolipid expression (Shima et al., 2004), Elovl5 was rejected as a potential 

candidate, leaving Elovl2 as the most promising candidate. 

On the other hand, Elovl4 was additionally included as a possible enzyme for 

generating ULC-acyl-CoAs, despite the fact that its mRNA levels were not prominent 

in juvenile murine testes. The rationale behind relies on several studies on Elovl4 

deficient mice, where it was shown a complete depletion of epidermal ceramides with 

FA residues longer than 28 carbon atoms, as well as an accumulation of cerotoyl-

ceramide (26:0-Cer) (Li et al., 2007; McMahon et al., 2007b; Vasireddy et al., 2007). 

Taken together, these results point out Elovl4 as an additional candidate enzyme for 

the synthesis of ULC-acyl-CoAs, which we hypothesized to be the substrates for 

CerS3.  

 However, neither Elovl2 nor Elovl4 double transfections with CerS3 exhibited 

increased levels of montanoyl-ceramides (28:0-Cer) or any other sphingolipid 

species containing ULC-acyl moieties. Although overexpression of both fusion 

proteins could be confirmed by Western blot, as shown with Elovl2 and CerS3 co-

transfections (Figure 24B), the sphingolipid pattern of these cells did not exhibit any 

significant changes. In particular, no increase for m/z 692.7 or 854.7 corresponding 

to Cer(d17:1, 28:0) and GlcCer(d17:1, 28:0) could be detected.  

 

http://www.germonline.org/
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Figure 24. Coexpression of Elovl2/4 and CerS3 does not produce ULC-SLs. 
(A) Immunoblot analyses demonstrating overexpression of CerS3-EGFP and control 
EGFP, and (B) cotransfections with Elovl2-EGFP in HeLa cells. (C) Transcript 
analyses of the Elovl genes during murine testicular development, as determined by 
qRT-PCR. (D) Mass spectrometric analyses of ceramide, glucosylceramide and 
lactosylceramide species in HeLa overexpressing Elovl2/4 and CerS3. 
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These results provide evidence for the requirement of additional 

metabolites/enzymes being involved in the production and/or transport of ULC-acyl-

CoAs that might be necessary for the complete biosynthesis of ULC-sphingolipids, 

besides of Elovl2/4 and CerS3. Taking into consideration that with the current stage 

of knowledge many of the processes regarding the activation and transport of fatty 

acids, particularly of ULC-FA, are still elusive, we decided to establish the ceramide 

activity assay by a different approach. 

The major difficulty in establishing an adequate assay for CerS3 was the lack of 

availability of the fatty acid substrates. As stated above, ULC-FAs are restricted to 

testis, epidermis, and in lesser extent are expressed in the rod outer segments of the 

retina. The latter have been reported to be incorporated into membrane 

phospholipids, mainly phosphatidylcholine (Aveldano and Sprecher, 1987).  

Therefore, we attempted to overexpress CerS3 in an immortalized cell culture system 

originated from these tissues, expecting that their fatty acid pattern might contain the 

suitable substrates for CerS3. The immortalized testicular cell types TM4 (Sertoli 

cells) and K9 (Leydig cells) were studied upon transfection with a CerS3 encoding 

plasmid. In neither cell lines the concentration of ULC-FAs reached 1%, and thus this 

minimal amount of substrate was obviously not sufficient to detect an increment of 

montanoyl- and longer acyl chain ceramides due to the activity of CerS3 

overexpression. Retinoblastoma Y79 suspension cells were also subjected to 

transfection by means of magnetofection or liposome-based transfection, however 

the gene delivery rates achieved were not sufficient for a quantitative production of 

the enzyme. 

Additional efforts were made to obtain the ULC-FA substrates by means of fatty 

acid isolation from GM2 activator protein (GM2AP) deficient mice testis. This cofactor 

is required in conjunction with the lysosomal β-hexosaminidase isoenzymes for the 

degradation of GM2 and Gg3Cer, which are intermediate products of FGSL 

degradation in testis (Liu et al., 1997). Correspondingly, the testes from these mutant 

mice accumulate both GM2 and Gg3Cer containing mainly ULC-FA residues. 

Therefore, fatty acids were extracted from GM2AP-/- mice testes by acid hydrolysis, 

and subsequently exposed to K9 or HeLa cells overexpressing CerS3. However, the 

sphingolipid analysis from these cells revealed no incorporation of fatty acids longer 
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than 26 carbon atoms into ceramide or sphingomyelin (Figure 25). Presumably, the 

insolubility of these highly hydrophobic compounds in the aqueous culture medium, 

and/or the deficiency of an effective fatty acid transporter across the plasma 

membrane, caused the failure of this CerS3 transfection assay.  

Considering that ULC-acyl-CoAs are not commercially available, and that all 

attempts to obtain these substrates via biochemical methods led to failure, we aimed 

to synthesize ULC-acyl-CoAs chemically. 

 

 
Figure 25. CerS3 overexpressing K9/HeLa cells with media supplementation 
rich in ULC-FAs do not produce ULC-ceramides.  
(A) Mass spectrometric analyses of fatty acids isolated from GM2AP-/- mice testes. 
The base peak corresponded to hydroxylated fatty acid with 30 carbon atoms in 
length with 5 olefinic residues. Media supplementation of GM2AP-/- derived FAs into 
K9 (C) and HeLa cells (E) transfected with CerS3-EGFP did not alter the sphingolipid 
pattern in relation to control K9 (B) and HeLa (D) endogeneous sphingolipids. For 
MS, sphingomyelin was detected with parent scan at m/z +184 and fatty acids with 
neutral loss of m/z +46. 
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3.2.4.2. Synthesis of ULC-acyl-CoAs 

Epidermal and testicular ULC-sphingolipids exhibit a structural diversity, which might 

reflect their functional specialization. The majority of epidermal ceramides 

incorporate ω-hydroxylated ULC-acyl-CoAs, which are mainly saturated. Contrary, in 

testis, ceramide incorporates mostly polyenoic ULC-acyl resiudes, which to a great 

extent are α-hydroxylated. Regardless of this existent heterogeneity within testicular 

and epidermal ULC-sphingolipids, we assumed that the enzymatic specificity of the 

ceramide synthases relies primarily on the hydrocarbon length of the acyl donor, 

subjugating modifications by hydroxylation or saturation to negligible levels. The 

basis for this assumption is that: i) CerS2 have been reported to incorporate 

saturated and monosaturated acyl-CoA substrates with comparable CerS activities 

(Laviad et al., 2008), and that ii) all CerS homologues could produce α-hydroxy-

ceramides with similar chain length preferences as their respective non-hydroxy 

substrates (Mizutani et al., 2008). Taking this into consideration, saturated acyl-CoAs 

longer than 26 carbon atoms in length should be adequate substrates for CerS3.  

The synthesis of ULC-acyl-CoAs involved a three-step reaction. First, fatty acids 

were activated with N-hydroxysuccinimide in the presence of 

dicyclohexylcarbodiimide (DCC) to generate the N-hydroxysuccinimide esters of the 

fatty acids, which will be used as the acylating reagent. Subsequently, the activated 

fatty acids were coupled to coenzyme A (CoA) in two consecutive one-pot reactions 

to yield the acyl-CoAs. 

The coupling of CoA was performed via the in situ transformation of coenzyme A 

into its polysilylated form, which is non polar and thus especially suitable for the 

formation of highly lipophilic long chain acyl-CoAs, such as the ULC-acyl-CoAs. This 

method developed by Lucet-Levannier and coworkers (Lucet-Levannier et al., 1995) 

avoids the use of a water-organic solvent binary mixture that had been previously 

used as the classical synthetic methodology (Al-Arif and Blecher, 1969). The 

cosolubilization of the highly hydrophophic acylating reagent containing the ULC-acyl 

residue in the binary mixture is the limiting factor, which could be bypassed by the 

use of the lipophilic derivative of coenzyme A under anhydrous conditions. Fluoro-

desilylation of the polysilylated CoA under phase-transfer conditions with cesium 
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fluoride yielded the polyanionic form of CoA, which was subsequently coupled with 

the N-hydroxysuccinimide ester of the fatty acid to give the final acyl-CoAs.  

The synthetic strategy of the non-aqueous in comparison with the classical 

aqueous method is illustrated in the following scheme:   
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Figure 26. Synthetic scheme comparing classical aqueous and non-aqueous 
methods for the generation of acyl-CoAs.  
ULC-acyl-CoAs were synthesized according to the non-aqueous procedure. This 
scheme has been modified from (Lucet-Levannier et al., 1995).  
 
 
 
 The crude product was partially purified by reverse-phase column 

chromatography, prior to quantification by mass spectrometry analyses with an 

acyl-CoA mixture of known concentration. 
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Figure 27. Mass spectrometric characterization of montanoyl-CoA. 
Acyl-CoAs were detected with neutral loss of m/z +507. 
 

3.2.4.3. Synthesis of ceramide internal standards 

The substrate preference of CerS3 and CerS2 towards a wide range of acyl-CoAs, 

was established by means of a non-radioactive enzymatic assay in mammalian cells. 

Thus, the addition of a non-endogeneous sphingoid base (d17:1) enabled to 

distinguish the various ceramide species generated by CerS overexpression from 

those ceramides produced by the CerSs conventionally expressed in HeLa cells.   

For quantification of de novo ceramides by electrospray ionization tandem mass 

spectrometry (ESI-MS/MS), ceramide internal standards with an appropriate d17:1-

sphingoid base and appropriate acyl composition were synthesized. These internal 

standards were designed in a way that their m/z values could not interfere with those 

of the ceramide species to be analyzed.  

 Specifically, Cer(d17:1; 19:0) and Cer(d17:1; 25:0) were prepared via a two-step 

reaction. First, fatty acids were derivatized with N-hydroxysuccinimide (NHS) in order 

to activate the carboxylic acid by transforming into an ester with a good leaving 

group. Subsequently, sphingosine(d17:1) was coupled to the activated fatty acids, 

generating an amide bond through nucleophilic displacement of NHS.  
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Figure 28. Synthetic scheme describing the preparation of ceramide internal 
standards.  
Syntheses were performed as previously described with slight modifications 
(Sandhoff et al., 2002).  
 
 
 

Crude ceramide products required purification by flash-column chromatography in 

order to remove excess of fatty acids and other unreactive species (supplemental 

Figure A2A). Subsequently, final products were characterized by ESI-MS/MS with 

precursor ion scan corresponding to the d17:1 shingoid base, and their quantification 

was performed by densitometric analyses via thin layer chromatography 

(supplemental Figure A2B). For that, a series of dilutions of the synthesized 

standards were spotted in parallel with ceramide standards with a conventional 

sphingoid base (d18:1).  

For quantification of ceramide species produced by overexpression of specific 

CerSs, a 14 pmol mixture of each d17:1-ceramide internal standard was added into 

equivalent lipid aliquots corresponding to 80–100 mg of protein.  
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Figure 29. Mass spectrometric characterization of internal standards.  
Ceramides were detected with precursor ion scan of m/z +250 corresponding to the 
sphingoid base (d17:1). 
 
3.2.4.4. The ceramide synthase assay 

To definitely establish the role of CerS3 in the biosynthesis of ULC-ceramides, a non-

radioactive enzymatic assay in living mammalian cells was established. To 

accomplish this, stable HeLa cells expressing either the mouse or the human CerS3 

with a C-terminal EGFP tag were generated by retroviral transduction.  

Thus, virions were produced in the packaging cell line HEK-293T following a triple 

transfection with a vector encoding for the gene of interest (CerS3-EGFP or control 

EGFP), in addition to two vectors responsible for the formation of the viral proteins 

(pVPack-GP and pVPack-Eco). To enable the infection of HeLa cells, CerS3 or 

control EGFP cDNA were inserted into a murine leukemia derived retroviral vector. 

The assembled retroviral particles in the packaging cell line were collected and used 

for infecting genetically modified HeLaMCAT1-rtTA2-M2 cells. These HeLa cells were 
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previously modified to stably express the murine receptor protein (mCAT1), which is 

required to achieve the infection by the murine leukemia derived retroviral particles.  

In addition, HeLaMCAT1-rtTA2-M2 cells expressed the doxycycline-sensitive 

transactivator (rtTA2-M2). This transcription factor binds to the 

tetracycline-responsive element, which is encoded upstream of CerS3 (or control), 

and thereby enabling the expression of the gene of interest exclusively under 

doxycyline induction. HeLa cell lines expressing mCerS3-EGFP, hCerS3-EGFP and 

control EGFP were generated according to this procedure. For more details refer to 

the corresponding section in the material and methods (2.2.2.4.). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30. Schematic representation of the generation of stable cell lines by 
retroviral transduction.  
pRevTRE plasmid map was acquired from Clonetech, whereas pVPackgag-pol and 
pVPackEco were obtained from Stratagene. 
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The inducible transgene expression of the recombinant mCerS3, hCerS3, and 

control EGFP, as well as hCerS2 were confirmed by flow cytometric analyses and 

immunoblotting (supplemental Figure A3 and Figure 31). Using Western blot 

analyses, fusion proteins were detected using an anti-GFP antibody. Although, both 

mouse and human CerS3 homologues were detected as one single band at about 

63 kDa (Figure 31A), the recombinantly expressed human CerS2 cells exhibited four 

specific bands that very likely arise from N-glycosylation heterogeneities (Figure 

31B). 

 

 
 

Figure 31. Confirmation of CerS3 and CerS2 recombinant protein expression in 
HeLa cells by immunoblotting. 
Total cell lysates of overexpressing HeLa cells were separated on a 10% 
SDS-PAGE, and transferred onto nitrocellulose membranes. Fusion proteins were 
detected using an anti-GFP antibody. 
 
 
 

The ceramide synthase activities of the CerS2 and CerS3 homologues were 

tested in living HeLa cells (Figure 32A). Following 52 h of transgene induction with 

doxycycline, HeLa cells expressing CerS2 or CerS3 were exposed to a mixture of a 

wide range of saturated acyl-CoAs, which included the ULC-acyl-CoA, montanoyl-

CoA (28:0-CoA). Simultaneously, the non-endogeneous d17:1-sphingosine substrate 

was supplemented into the culture medium for the duration of the assay in order to 

monitor newly synthesized ceramides (see above). 
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Figure 32. The ceramide synthase assay in living HeLa cells.  
 (A) Schematic respresentation of the experimental setup. Stable HeLa cell lines 
were induced for CerS3 (human and mouse) and EGFP expression by incubation 
with doxycycline, which binds to the tetracycline-controlled transactivator (rtTA2-M2), 
and ultimately activates transgene expression of the gene of interest downstream of 
the tetracycline-responsive element. Forty-eight hours after seeding untreated 
HeLamCAT1-rtTA2-M2 cells were transfected with an hCerS2-EGFP encoding plasmid. 
Ceramide synthase activity towards acyl-coA substrates was tested by addition of a 
saturated acyl-CoA mixture (16 to 28-CoA). Simultaneously, the addition of 
sphingosine (d17:1) enabled to monitor newly synthesized ceramides, which were 
extracted after 20 h of assay and quantified by ESI-MS/MS. (B) Transcript expression 
and (C) Cer/GlcCer profile of HeLamCAT1-rtTA2-M2 cells exposed to the acyl-CoA mixture 
and d17:1-sphingosine substrate.  
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 Uninduced HeLa cells expressed all Cers-mRNA except of Cers3, which 

expression levels were barely detectable. The major transcript levels corresponded 

to those of Cers2 (Figure 32B). Correspondingly, the main ceramide species 

expressed in HeLa cells were lignoceroyl- (24:0) and nervonyl-ceramide (24:1). 

Despite relatively low expression levels of Cers5 and Cers6, the amount of palmitoyl-

ceramide (16:0) was fairly high (Figure 32C). The levels of 18:0-Cer, 20:0-Cer, 22:0-

Cer and 26:0-Cer were below the 7% of the total ceramide concentration.    

Quantification of de novo ceramides produced by either the recombinantly 

expressed human or murine CerS3 upon incubation of the acyl-CoA mixture 

(16,18,20,24,26,28-CoA) to the cell culture media, demonstrated that both enzymes 

were able to synthesize ceramides using cerotoyl- (26:0) and montanoyl-CoA (28:0) 

as acyl donors (Figure 33B and 33D). Expression of CerS3 strongly induced the 

synthesis of ultra long chain acyl ceramides. Together the concentration of newly 

synthesized 26- and 28-ceramides accounted for over 25% of the total ceramides 

produced by the transgenic CerS3 (Figure 33A and 33C). Mass spectrometric 

analyses revealed that the absolute cerotoyl-ceramide concentration was increased 

by 5 fold, while montanoyl-ceramide was over 16 fold increased for the hCerS3 

(Figure 33B and 33D). These results indicate that CerS3 has a higher affinity for 

28:0- than for 26:0-acyl donors.  

Although stearoyl-ceramide (18:0-Cer) and lignoceroyl-ceramide (24:0-Cer) were 

reported to be the substrates with the highest CerS3 affinity in studies lacking of 

ULC-CoAs, neither of them exhibited a significant increase in their concentrations 

upon CerS3 expression with the current conditions. Our results provide evidences 

that the cell-specific ceramide pattern not only depends on the expression levels of 

the ceramide synthases, but importantly is also based on the availability of the 

corresponding substrates. In the presence of ULC-acyl donors, solely cerotoyl-CoA 

and montanoyl-CoA were preferentially incorporated, demonstrating that they are 

bona fide substrates of CerS3. 

In contrast, CerS2 or EGFP-control overexpressing cells generated significant  

amounts of ULC-ceramides upon induction of these proteins. The levels of 

lignoceroyl and cerotoyl-ceramides were neither significantly increased with CerS2 

expression. However, the relative Cers2 transcript levels account for over 90% of the 
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Cers-mRNA, and therefore an increased expression level did not differ significantly 

the concentration of its reported substrates. 

In conclusion, our findings indicate that CerS3 acylates sphingoid bases with acyl-

CoAs of 26 or longer carbon atom chains, exhibiting a preferential specificity for the 

longer acyl substrates in living mammalian cells.  

 

 
 

Figure 33. CerS3 synthesizes ULC-ceramides in living HeLa cells.  
(A) Relative de novo acyl-ceramide (d17:1) concentrations in non expressing (-), as 
well as expressing (+) human CerS2 and CerS3 HeLa cells, and (C) mouse CerS3 
and EGFP-control HeLa cells. Lipid isolation was performed after cells were 
incubated for 20 h with a saturated acyl-CoA mixture (16–28-CoA). Mass 
spectrometric quantification was performed using d17:1 long chain base internal 
standards. (B) Absolute cerotoyl-ceramide (d17:1, 26:0) and (D) montanoyl-ceramide 
(d17:1, 28:0) concentrations in CerS2, CerS3 and control cells. 
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3.3. Disturbed epidermal permeability barrier and keratinocyte 
differentiation facilitates microbial invasion in CerS3 deficient mice 
 
3.3.1. Characterization of CerS3 deficient mice with a targeted disruption of 
Cers3-exon 7. 
In order to confirm the in vitro findings and to elucidate the functional role of CerS3 

and ULC-sphingolipids in vivo, characterization of CerS3d/d mice were conducted. 

The constitutive depletion of Cers3 was achieved via the Cre-loxP-mediated 

recombination. In this regard, germline transmission CerS3-floxed mice with loxP 

sites flanking exon 7 were mated with Cre-deleter mice to generate a systemic 

deletion of exon 7 of the Cers3 gene.  

 To verify the appropriate homologous recombination of mutant Cers3, PCR 

analyses with mouse genomic DNA were performed. Wild type and mutant bands 

were detected at 315 and 272 bp, respectively, corroborating the deletion of exon 7 

in mutant mice (Figure 34A, bands 1 and 2).  

In skin, CerS3 deficient mice exhibited expression of Cers3 mRNA lacking exon 7, 

as analyzed by PCR. The targeted disruption of Cers3 was confirmed with the control 

and mutant bands at 686 and 593 bp, respectively, corresponding to the lack of 

93 bp of exon 7 in mutants (Figure 34B, bands 3 and 4). Consequently, the gene 

rearrangement led to complete loss of expression exclusively when amplifications 

were performed using primers within exon 7 (Figure 34C). The truncated CerS3 

transcript was finally confirmed by nucleotide sequencing. 

 

 
 
Figure 34. Targeted disruption of Cers3-exon 7 in CerS3 deficient mice.  
(A) PCR analysis from genomic tail DNA of newborn mice confirming the 
amplification of the corresponding allelic products of CerS3+/+ and CerS3d/d. (B) Skin 
cDNA analysis demonstrating the synthesis of a truncated CerS3 transcript lacking 
93 bp due to the targeted deletion of exon 7 in CerS3 deficient mice, as 
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demonstrated by PCR. (C) Quantitative RT-PCR verifying the complete loss of CerS3 
mRNA expression when amplifying a product within exon 7. Error bars represent the 
SEM. ** indicate p value < 0.01. 
 
3.3.2. Defective epidermal barrier function of CerS3d/d mice leads to premature 
neonatal death  
The offspring of CerS3+/d mice were born with Mendelian distribution, indicating that 

CerS3 might not be essential for embryonic development. Phenotypically, CerS3+/d 

could not be distinguished from wild type mice, however the skin of CerS3d/d 

appeared unwrinkled, shiny, sticky and intensively red colored (Figure 35A). Mutant 

offsprings were not accepted and fed by their progenitors. Loss of CerS3 caused 

universal neonatal lethality within 3 to 4 hours after birth.   

In order to examine the epidermal barrier function, skin permeability assays were 

carried out. Staining of control and mutant mice with hemalaun revealed a clear 

impairment of the skin barrier formation at birth (Figure 35B) and at embryonic stage 

E19 (Figure 35C). Whereas control mice could effectively exclude the dye after 

several throughout washes, mutant skin exhibited a strong penetration of the dye, 

indicating a defective epidermal permeability function. 

 To determine whether an additional outward permeability defect existed, 

transepidermal water loss (TEWL) rates were measured. Skin of newborn CerS3d/d 

mice exhibited an over two fold increase in transepidermal fluid evaporation, 

confirming the compromised skin barrier of mutant mice (Figure 35D). Correlating 

with the fluid loss, the body weight of newborn CerS3d/d mice was reduced by 30% 

(Figure 35E). As diminished body weight very likely is a result of dehydration, CerS3 

embryos of one litter were collected at E18.5 ± 0.5, sacrificed and freeze dried after 

determination of wet body weight. With these mice, no differences in body wet or dry 

weight were observed, supporting that differences in wet body weight of newborns 

were exclusively due to water loss (Figure 35F and 35G).  
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Figure 35. Defective epidermal barrier function of CerS3d/d mice. 
(A) Epidermis of newborn CerS3d/d appears intensively red and shiny compared to 
control littermates. (B) Defective epidermal permeability barrier of CerS3-deficient 
mice shown with the persistence of hematoxylin dye of newborns, and (C) of 
embryonic stage E19 ± 0.5 CerS3d/d mice. (D) Significant increase of TEWL and (E) 
reduced wet body weight of mutant CerS3 mice measured within 3 hours postnatally. 
(F) No significant difference was observed in wet or (G) dry body weight of 
E18.5 ± 0.5 mutant CerS3 embryos compared with control littermates. (H) Increased 
surface pH of mutant CerS3 mice as determined by pH-indicator strips. (I) 
Quantification of epidermal surface pH revealed a 0.6 pH units increase of mutant 
epidermis. Immunofluorescence of paraffin sections of skin from the back of control 
(J) and mutant CerS3d/d (K) mice with anti-CerS3 polyclonal antibody. CerS3 is 
concentrated as distinct dots within the cytoplasm of keratinocytes of the upper SS 
and SG, whereas no signal could be detected in the mutant epidermis. 
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The epidermal permeability barrier is directly regulated by pH, therefore skin 

surface pH of newborn mutant and control littermates was determined by direct 

contact with humidified pH-indicator strips. Control mice exhibited an acidic pH of 

about 5.2, whereas mutant epidermal pH was increased by roughly 0.6 pH units 

(Figure 35H and 35I). 

The lack of a functional CerS3 protein appeared to have direct implications at the 

epidermal barrier function. Although CerS3 expression in the skin have been 

demonstrated at the mRNA level, its exact distribution within the epidermal cell layers 

have not yet been described. Therefore, specific antibodies against the carboxy 

terminus of the CerS3 protein were generated and used for immunofluorescence 

labelling of control and CerS3d/d skin biopsies. In control epidermis, CerS3 was 

distributed in the SS and the SG, concentrated as distinct dots within keratinocytes of 

the upper epidermal layers (Figure 35J). On the contrary, CerS3 expression was not 

detected in any strata of mutant epidermis (Figure 35K), thereby corroborating that 

the lack of exon 7 renders the synthesis of CerS3 dysfunctional. In summary, these 

results demonstrate the pivotal role of CerS3 for a proper epidermal barrier function.  

 
3.3.3. Epidermal “hyper”keratosis and delayed keratinocyte differentiation of 
CerS3 deficient mice 
Light microscopical analyses of semithin sections of mutant CerS3d/d skin revealed a 

strikingly thick and compact stratum corneum, as observed postnatally (Figure 36A 

and 36B) as well as at embryonic stage E18.5 ± 0.5 (supplemental Figure A4A and 

A4B). Thus, the corneocyte layers exhibited a hyperkeratotic phenotype and lacked 

the “basket-weave” appearance typically observed in control skin. Mutant stratum 

corneum exhibited solely stratum compactum, lacking the less cohesive upper layers 

of the stratum disjunctum, which were prominent in control skin. The nucleated 

epidermal layers appeared relatively normal both prenatally and at birth. However, 

large keratohyalin granules (KG) of the uppermost stratum granulosum cells, which 

predominantly contain profilaggrin aggregates, were significantly smaller in CerS3 

deficient mice, both at birth (Figure 36A and 36B, yellow arrows) and at E18.5 

(supplemental Figure A4A and A4B). 
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Figure 36. Alterations of keratinocyte differentiation in CerS3d/d mice. 
(A) Semithin sections of neonatal skin of control and (B) CerS3d/d mice stained with 
PAS and methylene blue-Azur II demonstrating “hyper”keratotic mutant SC. Yellow 
arrows indicate keratohyalin granules reduced in size in CerS3d/d skin. Electron 
micrographs treated with tannic acid of (C) control and (D) mutant upper epidermal 
layers exhibiting the persistence of periderm in mutant skin (green arrows), adjacent 
to the uppermost layer of corneocytes marked by electron-lucent inclusion bodies 
(red arrows). (E) Quantification of SC layers and (F) SC thickness. (G) Quantification 
of Ki67-positive keratinocytes according to the staining intensity. (H) Control and (I) 
CerS3d/d proliferation of basal keratinocytes assessed with Ki67 labelling on paraffin 
embedded sections. No significant increase in proliferation could be observed in 
mutant epidermis. 
 
 

To investigate in detail the anomalies observed in the mutant epidermis, 

ultrastructural analyses were performed (Figure 36C and 36D). The increased 

number of corneocyte layers upon CerS3 deficiency could be confirmed and 

quantified. At birth, no corneocyte layer in either control or mutant mice was shed. 

This could be determined by the presence of the uppermost corneocytes decorated 

by electron-lucent inclusion bodies in both mutant and control skin (Figure 36C and 

36D, red arrows and supplemental Figure A5). Furthermore, the most stricking 

feature of mutant epidermis was the persistence of a continuous periderm (Figure 

36D and supplemental Figure A5, green arrows). The presence of the most 

superficial corneocyte layer in both control and mutant SC, and of the periderm in 

mutant skin indicated that desquamation did not yet occurred in neither both SCs. 

Control mice exhibited about 13 corneocyte layers, whereas mutant SC had over 

40% more of these cell layers (Figure 36E). Additionally, quantification of CerS3d/d 

SC thickness was found to be almost double to its respective control (Figure 36F). 

To address whether mutant epidermis exhibited an enhanced proliferation rate of 

basal keratinocytes that could result in a thickened SC, the expression of the 

proliferative marker Ki67 was examined. No significant alteration of the cellular 

proliferation rates was found associated with CerS3 deficient skin (Figure 36H and 

36I), as quantification of Ki67 immunostaining did not reveal a significant overall 

increase of proliferation in mutant neonatal epidermis (Figure 36G).  
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Epidermal ultrastructural confirmed the reduced size of profilaggrin-containing 

keratohyalin granules in CerS3 deficient epidermis (Figure 36C and 36D). 

The transition of SG keratinocytes to enucleated corneocytes requires drastic 

morphological changes, including the degradation of nuclei, organelles and the 

plasma membrane. However, CerS3 deficiency resulted in a delay of the terminal 

differentiation program of keratinocytes. Mutant epidermis exhibited an incomplete 

degradation of organelle structures within the first and up to the third corneocyte 

layers (supplemental Figure A4C and A4D). Some of these immature corneocytes 

exhibited a TUNEL-positive staining, which indicate the presence of residual DNA in 

the progress to its complete degradation (supplemental Figure A4E and A4F). These 

observations were confirmed by DAPI-postive DNA-containing remmants in the lower 

SC of mutant skin (compare with Figure 41F, yellow arrows). In addition, glycogen 

could be observed in CerS3d/d SC, whereas glycogen in control skin was restricted to 

the viable layers of the epidermis (supplemental Figure A4G and A4H). 

The defective cornification process in dysfunctional CerS3 skin was additionally 

obvious by the presence of the peridermal cell layer overlaying mutant SC (Figure 

36D, supplemental A4B and A5, green arrows). Some of these cells even contained 

nuclear remmants (compare with Figure 39D, 41D and 41J). Although skin of control 

mice displayed a few remnants of these peridermal cells, mutant skin exhibited a 

continuous intact periderm. 

 
3.3.4. Defective corneodesmosomal degradation causes elevated intercellular 
cohesion and persistence of the periderm in CerS3 deficient stratum corneum 
To further investigate the defects in the terminal keratinocyte differentiation induced 

by the lack of CerS3, a detailed analysis of SC ultrastructure was performed. While 

no intact peridermal cell layer could be observed in control epidermis (Figure 37A), 

the presence of this transitional layer was confirmed in neonatal CerS3 depleted 

epidermis (Figure 37B-F, P). A closer look at the peridermal architecture revealed the 

presence of desmosomes (Figure 37D and 37F, red arrows), as well as tight 

junctions (Figure 37F, red star). Therefore, no degradation, disaggregation or 

shedding of periderm cells was initiated neither at E18.5, nor at birth of CerS3 mutant 
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mice. Together with the hyperkeratotic phenotype of CerS3d/d, these findings might 

suggest a defect in the proper desquamation of mutant epidermis. 

Consistent with this hypothesis, corneodesmosomes were found to persist in 

defective CerS3 epidermis. In mutant mice, corneodesmosomes remained abundant 

at all cell layers of the SC (supplemental Figure A5, red arrows), including the most 

superficial corneocyte layer (Figure 37B, black arrow), and were observed along the 

whole corneocyte surface. In contrast, corneodesmosomes were restricted to 

immature, inner corneocytes adjacent to the SG (stratum compactum) in control 

epidermis, and they were lacking at the uppermost SC layers (Figure 37A). As 

expected, the corneodesmosomal degradation as an important step of desquamation 

was initiated at the non-peripheral (basal and apical) surface of inner corneocytes 

and progressed also at the peripheral/lateral intercellular spaces concomitantly with 

cornification in control SC (data not shown).   

The SC of mutant CerS3 mice occasionally exhibited a pair of thin electron-dense 

bands located within the intercellular space (ICS) parallel to the surface of the CE 

(Figure 37C, yellow arrows). In CerS3d/d mice, the space between the limits of the CE 

was much less than 13 nm, which would correspond to the typical ICS occupied by 

lipid lamellae (White et al., 1988). Instead these thin bands, which were visible to the 

uppermost corneocyte layer, seem to correspond to a phospholipid bilayer.  

The defective corneodesmosomal degradation was further analyzed by 

immunolocalization of junctional proteins together with their total quantification by 

immunoblotting. To address whether the loss of CerS3 lead to an aberrant 

expression of desmosomal proteins, the transmembrane cadherin desmoglein 1/2, as 

well as the plaque proteins desmoplakin and plakoglobin were examined. Among 

these studies, the immunolocalization of desmoglein 1/2 exhibited a striking 

difference between mutant and control epidermis. Whereas the expression of this 

cadherin was restricted to desmosomes of keratinocytes within the SS and the SG in 

control mice (Figure 38A), mutant skin expressed desmoglein 1/2 at all the epidermal 

layers including the complete SC and the periderm (Figure 38B). Although the overall 

protein levels were found to be decreased in CerS3d/d mice (Figure 38G), its 

distribution decorating the complete periphery of corneocytes suggests a defective or 

delayed degradation of mutant corneodesmosomes.  
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Figure 37. Persistence of periderm and corneodesmosomes in newborn CerS3 
depleted mice.  
(A) Superficial corneocytes decorated with inclusion body of control mice lacking 
adjacent peridermal remmants or non-peripheral corneodesmosomes. A persistant 
peridermal layer (P) was observed in mutant CerS3 mice (B-F). Non-peripheral 
corneodesmosomes (black arrows) were present between peridermal cells and the 
most superficial corneocytes (B), as well as between the most superficial 
corneocytes and lower adjacent layers (C) of CerS3 depleted mice. Typical 
phospholipid bilayers appeared to be present in the intercellular space between 
corneocytes of mutant SC (C, yellow arrows). Intact periderm in mutant epidermis 
exhibited desmosomes (D and F, red arrows), as well as tight junctions (F, red star). 
Epoxy-embedded sections were treated with tannic acid. 
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In contrast, the expression and concentration of the desmosomal plaque proteins, 

desmoplakin and plakoglobin, were found to be not significantly altered (Figure 38G). 

As expected, desmoplakin expression was found to be restricted to the nucleated 

layers of the epidermis (Figure 38C-D). In addition, the epidermal localization of 

plakoglobin and the cytoskeletal keratins associated with desmosomal complexes, 

K1 and K10, were found similarly expressed in control and mutant CerS3 mice (data 

not shown). 

Regarding the defective degradation of non-peripheral/central corneodesmosomes 

in mutants, our results indicate desmoglein 1/2 to be essential for corneocyte 

cohesions and responsible for persistent cohesions of periderm cells. In addition, 

these findings suggested an impaired proteolysis of the corneocyte plasma 

membrane and consequently a defective formation of a mature cornified cell 

envelope. 

To examine whether the defective degradation of corneodesmosomes in mutant 

SC was caused by the reduced expression of proteolytic enzymes, levels of 

epidermal proteases of the kallikrein and the cathepsin family were analyzed. The 

total protein levels of either cathepsin D and KLK5 were found not significantly 

altered (Figure 38G). However, the epidermal distribution of cathepsin D in 

CerS3d/d mice remarkably differed from their control littermates. Whereas cathepsin D 

was found expressed in all the epidermal layers of control mice including the SC 

(Figure 38E), its expression was markedly decreased at the upper cell layers of the 

SG and the SC of mutant epidermis (Figure 38F). The reduced expression of this 

protease, which has been involved in the degradation of desmosomes during 

desquamation may account for the persistence of corneodesmosome remmants in 

mutant epidermis. 
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Figure 38. Impaired corneodesmosomal degradation in CerS3d/d epidermis.  
(A) Desmoglein 1/2 is strongly expressed in the SS and SG of control mice. (B) In 
addition, the SC of mutant mice had a prominent staining at the periphery of all 
corneocyte layers. To assure that the lipid lamellae do not mask the epitope in 
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control mice, both preparations were subjected to mild alkaline treatment prior to 
immunolabelling. (C-D) No differences in desmoplakin distribution could be observed 
in control and mutant epidermis. (E) Cathepsin D distribution was localized at all 
epidermal cell layers. The uppermost granular keratinocytes displayed the strongest 
immunofluorescence. (F) In CerS3d/d mice, the strongest cathepsin D signal intensity 
was in the SS fading towards the SC. (G) Immunoblot analyses of desmosomal and 
tight junction associated proteins, as well as epidermal proteases. Blots are 
representative of at least 3 animals per group. β-actin was used to normalize protein 
levels. 
 
 

Immunohistochemical analyses of tight junctional proteins were additionally 

performed in order to determine whether in addition to impaired degradation of the 

corneodesmosomal protein desmoglein 1/2, a defect in other types of cell junctional 

complexes existed. The immunolocalization of the tight junctional transmembrane 

protein claudin 1 and the cytoplasmic associated plaque protein cingulin was found 

within keratinocytes of the SS and the SG in both control and mutant epidermis 

(Figure 39A-B and 39C-D). Neither junctional proteins did show a significant 

difference in their signal intensity and main distribution pattern between control and 

mutant epidermis, however claudin 1 expression was distinctively and additionally 

observed in the periderm at the skin surface of mutant mice (Figure 39B, white stars) 

confirming the ultrstructural observations about the presence of intact tight junctions 

between peridermal cells (Figure 37F, red star).  

Regarding the organization of TJs, cingulin expression in CerS3d/d mice exhibited 

conspicuous differences. Whereas typical zonulae occludentes were established in 

control epidermis appearing as continuous fluorescent linear structures at the plasma 

membrane of the upper cell layers of the SG, mutant epidermis displayed weaker 

fluorescent punctuated signals within the uppermost granular keratinocytes. 
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Figure 39. Distribution of tight junctions and associated proteins. 
TJs were visualized with claudin 1 (A-B) and cingulin (C-D). No significant differences 
were observed in their distribution, however claudin 1 exhibited staining on the 
surface of mutant epidermis marking the periderm (white star). Cingulin expression 
exhibited a punctated distribution around keratinocytes of the SS and SG of CerS3d/d 
skin (D), whereas control skin exhibited linear distribution around the cell borders. A 
residual nuclear staining within some peridermal cells could also be detected on the 
surface of CerS3d/d skin (yellow star). (E) F-actin was mainly expressed in the 
nucleated layers of the epidermis in control mice CerS3d/d. (F) F-actin distribution 
differed to control by being also strongly expressed in the lower layers of the SC and 
progressively fading towards the upper corneocytes. Both control and mutant 
epidermis exhibited distinct punctated staining in the outer most corneocyte layer 
(yellow arrows). 
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The distribution pattern of the cytoskeletal protein F-actin, which is associated with 

TJs and adherens junctions, was additionally examined by immunolabeling. Besides 

the intense expression of F-actin at the cell-cell borders of all viable layers of the 

control epidermis (Figure 39E), its distribution in CerS3d/d mice additionally included 

the lower layers of the SC (Figure 39F) indicating a delay or a defect in the final 

cornification process. Furthermore, a pearl-like staining at the surface of both control 

and CerS3 deficient skin was observed. This distinct punctated expression of F-actin 

corresponds to the inclusion bodies observed at the ultrastructural level marking the 

uppermost corneocyte layer (Figure 36C-D and 37A-C). 

Considered together, the findings obtained by the ultrastructural and the 

immunohistochemical analyses indicate an alteration of terminal keratinocyte 

differentiation particularly of the corneodesmosomal degradation upon deficiency of 

CerS3. The reduced expression of specific proteolytic enzymes might account totally 

or partially for the lack of processing of corneodesmosomes, and thereby conserving 

the intercellular cohesion leading to “hyper”keratosis and persistence of the periderm. 

 
3.3.5. Impaired maturation of granular keratinocytes correlates with altered 
expression of cornified envelope proteins 
Previous light microscopical and low magnification ultrastructural analyses revealed 

distinct morphological differences between control and mutant CerS3 epidermis with 

regard to the size of keratohyalin granules both at birth (Figure 36A-D) and at E18.5 

(Figure A4A and A4B). To gain deeper insight into these anomalies, higher 

magnification electronmicrographs were performed. These analyses evidenced the 

pronounced size reduction of keratohyalin granules (KG) in the neonatal mutant 

epidermis as compared to epidermis of control littermates (Figure 40, red arrows).  

 The main constituents of KGs are structural proteins required for the formation of 

the CE, namely profilaggrin, which is associated with the large KGs (or F-granules) 

and loricrin, associated with the small KGs (or L-granules). F-granules displayed a 

fine granular structure of medium electron density (Figure 40A-B, red arrows), 

whereas L-granules appeared as electron-dense granules found often at the 

periphery of F-granules, as well as in the nucleoplasm (Figure 40A-B, yellow arrows). 

CerS3 deficiency resulted in both a significant decrease in the size of F-granules and 
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in the number of L-granules particularly at the periphery of F-granules (Figure 

40A-B). 

To examine whether the expression and processing of these proteins was altered 

upon CerS3 deficiency, immunoblot analyses were performed (Figure 40C). 

Profilaggrin was processed from its high molecular weight polyprotein to the 

monomeric filaggrin (∼ 28 kDa) in control skin. In contrast, an aberrant processing of 

profilaggrin was detected in CerS3d/d mice. The expression of the trimeric form and 

especially the filaggrin dimer (∼ 55 kDa) were increased, whereas the expression 

levels of the monomeric form appeared significantly reduced. The expression levels 

of loricrin were additionally altered. Loricrin is the most prominent structural protein of 

the CE accounting for about 65 to 85% of the total protein mass of the cornified layer 

(Steven and Steinert, 1994). Correspondingly, control mice exhibited high expression 

levels of loricrin (∼ 55 kDa), which were greatly diminished in CerS3 deficient skin. 

 These anomalies in correlation with the morphological data of profilaggrin and 

loricrin-containing KGs suggested a defective/delayed maturation of keratinocytes of 

the upper SG layer due to CerS3 deficiency. 

To evaluate whether the defective formation of KGs affected the distribution of 

structural proteins of the cornified layer, immunolabeling of the key players involved 

in the formation of the CE were performed. As expected, profilaggrin/filaggrin was 

primarily localized to the entire SG layer, where it filled the F-granules of the 

uppermost granular keratinocytes of control epidermis (Figure 41A, white arrows). At 

the SC, filaggrin levels faded along with cornification leaving a residual staining in 

mature corneocytes indicative of the proteolytically cleaved filaggrin molecules. In 

contrast, profilaggrin/filaggrin expression was equally distributed at the uppermost 

granular keratinocytes, as well as within the entire SC of CerS3 deficient skin. At the 

cornified layer, profilaggrin/filaggrin expression did not exhibit a decreased 

expression towards the most superficial corneocytes, as seen in control skin (Figure 

41B). Taken together these morphological findings confirmed a defective or delayed 

profilaggrin processing, which might be a consequence of a delayed maturation of 

granular keratinocytes. 
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Figure 40. Diminished size of F-granules and reduced number of L-granules 
correlates with impaired expression of CE proteins. 
Higher magnification electron micrographs treated with tannic acid of control (A) and 
mutant (B) CerS3d/d keratinocytes of the uppermost SG layer demonstrating altered 
development of KGs. First corneocyte layer is indicated (yellow star). F-granules (red 
arrows) were pronouncedly reduced in size, whereas L-granules (yellow arrows) 
were strongly decreased in number in mutant epidermis. L-granules were also 
localized within the nucleus (N). (C) Defective development of KGs accompanied 
diminished expression levels of monomeric filaggrin, loricrin and transglutaminase 1 
in CerS3 deficient mice. Equal loading of immunoblots was assessed by β-actin 
expression. Blots shown are representative of at least 3 animals per group. 
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 In control epidermis, loricrin expression was identified at the granular layer with 

increased concentration in keratinocytes residing at the border between SG and SC 

(Figure 41C). Ultracryosemithin sections enabled to detect its distribution distinctively 

around the periphery of F-granules (white arrows), as well as within the nuclear 

compartment (white arrowheads). Despite that loricrin has been identified as the 

major component of the CE, most current literature exhibits its expression exclusively 

at the SG. We also failed to detect immunolabeling of loricrin at the cornified layer of 

control skin. However, we assumed that the protein-lipid matrix in the corneocyte 

interstices might mask the epitope recognized by the antibody. Therefore, we applied 

an in situ methanolic mild alkaline treatment on paraffin sections to cleave protein-

bound ceramides and thereby release the antigen. This kind of antigen retrieval 

unveiled the loricrin at all cornified layers of control epidermis (Figure 41E), as 

compared with paraffin sections without methanolic treatment (Figure 41E, inset).  

In addition to loricrin expression in the SG, CerS3 deficient epidermis exhibited 

loricrin immunolabeling decorating the cornified cell envelope without requiring 

antigen retrieval (Figure 41D). As a control, paraffin-embedded sections of mutant 

epidermis were subjected to methanolic alkaline treatment (Figure 41F) or without 

this treatment (Figure 41F, inset), resulting in no alteration of loricrin distribution with 

neither of these procedures. Similar to control, loricrin contained in L-granules was 

localized at the rim of large F-granules of the SG and within nuclei of granular 

keratinocytes (Figure 41D, white arrows and arrowheads). 

In addition, our data demonstrated the necessity of alkaline hydrolysis to visualize 

loricrin within the nuclear compartment. A weak nuclear signal was already observed 

in the lower granular cell layers compared to the strong signal of the uppermost SG 

in control epidermis. However, only a comparably weak nuclear immunofluorescence 

was found in CerS3 deficient skin (Figure 41F). 
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Figure 41. Epidermal distribution of CE proteins.  
Control epidermis exhibited the highest profilaggrin/filaggrin intensity at the SG layer 
(A), whereas in mutant epidermis in addition a strong expression was found in the SC 
(B). F-granules are indicated with white arrows. Semithin sections indicating loricrin 
expression of control (C) and CerS3 dysfunctional epidermis (D) without alkaline 
treatment. Loricrin nuclear localization is indicated with white arrowheads, whereas 
residual nuclei at the SC (F) and periderm (D) are indicated with yellow arrows. 
Paraffin-embedded sections stained with loricrin antibody with prior methanolic 
alkaline hydrolysis to expose antigens residing at the SC of control (E) and mutant 
(F) epidermis. Control paraffin sections without alkaline antigen retrieval (E and F 
insets). Involucrin distribution did not differ pronouncedly between control (G) and 
CerS3d/d (H) skin. In situ transglutaminase activity assay with monodansylcadaverine 
exhibited no pronounced alterations of control (I) and deficient (J) skin. Note residual 
nuclei at the periderm layer are indicated with yellow arrows. 
 
 

In agreement with ultrastructural analyses of mutant keratohyalin granules, loricrin 

distribution confirmed the reduced dimensions of F-granules.  

Together these results indicate that although the expression levels of loricrin were 

reduced with CerS3 deficiency, its general epidermal distribution was not altered. 

Nevertheless, the altered maturation of granular keratinocytes was evidenced by the 

reduced dimensions of KGs, which might be associated with a delayed differentiation 

of keratinocytes as suggested by the presence of residual nuclear contents at the 

first corneocytes and the peridermal layer.  

To further investigate the phenotypic alterations exhibited in a dysfunctional CerS3 

epidermis, focus was shifted towards analyzing the expression and distribution of 

another key CE protein, involucrin. Although no alteration at the total protein level 

was detected by immonoblotting (Figure 40C), a slight delay in expression at the SG 

was observed at the immunofluorescence level in mutant skin (Figure 41G and 41H). 

Our in situ methanolic mild alkaline treatment was additionally performed to visualize 

involucrin in the CE, considering the published covalent interactions of ceramides 

with involucrin. However, involucrin immunolabeling did not exhibit any change in 

their distribution neither with control or mutant epidermis (data not shown). 
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The total protein content of transglutaminase 1 was moderately decreased in 

CerS3d/d epidermis. In vitro, transglutaminase 1 has demonstrated its capability for 

catalyzing the crosslinkage of CE proteins, in addition to potentially catalyze the 

transesterification of ω-hydroxy-ceramides with the carboxy residue of CE proteins. 

To examine whether alterations in transglutaminase 1 activity existed in mutant 

epidermis, an in situ activity assay with monodansylcadaverine as a substrate were 

performed on freshly prepared epidermal cryosections. Although the fluorescence 

intensity associated with the monodansylcadaverine antibody was slightly diminished 

in mutant epidermis, its distribution at the viable layers of the skin did not differ from 

controls (Figure 41I and 41J). 

 
3.3.6. Drastic reduction of epidermal ceramides is associated with altered lipid 
lamellar structures upon CerS3 deficiency  
Cholesterol, as well as polar and neutral lipids, were examined on skin sections of 

CerS3d/d by fluorescence labeling with filipin and nile red, respectively. Both probes 

revealed a pearl-like distribution of lipids in the SC of mutant epidermis, while their 

distribution in the lower epidermal layers did not seem to be altered (Figure 42A and 

42B). In control epidermis, the transition of the polar lipids present at the SG to the 

golden lamellae of neutral lipids at the SC could be clearly seen with nile red staining. 

On the contrary, punctual concentration of lipid species was nicely observed 

predominantly at the upper layers of the SC of CerS3 deficient mice (Figure 42B 

inset, red arrow). 

 The non-lamellar lipid agglomerates correlated at the ultrastructural level with 

electron-light intercellular lentil-like structures in mutant SC. Absence of lamellar unit 

structures that are required for the establishment of a mature lipid barrier was 

obvious between these lipid agglomerates (Figure 42C, red arrow), as the 

intercellular space between corneocytes was maximally reduced. The length 

between the limits of the electron dense CE of two adjacent corneocytes was 

estimated to be about 3 to 4 nm in CerS3d/d mice (Figure 42C, yellow arrow), which is 

less than a third of the determined 13 nm occupied by the intercellular unit lamellar 

structures (White et al., 1988). 
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Figure 42. Altered epidermal lipid content and secretion of CerS3d/d mice. 
Labelling of cholesterol with filipin and polar and netral lipids with nile red (inset) 
revealed the proper linear formation of lipid lamellae on skin sections of control mice 
(A), while exhibiting a dot-like pattern on CerS3d/d skin (B). Ultrastructure of focalized 
lipid agglomerates located within the intercellular space of CerS3d/d SC (C, red 
arrow), as seen at the electron microscopical level in skin sections treated with tannic 
acid. The intercellular space (yellow arrow) was estimated to be about 3–4 nm, 
where mature lamellar membrane unit structures were absent. The presence of 
clearly visible corneodesmosomes (red stars) in mutant SC is also indicated. Mass 
spectrometric quantification of epidermal ceramides (D), glucosyl-ceramides (E) and 
sphingomyelins (F) of wild type, heterozygous and homozygous CerS3 mice. 
Sphingolipids were analysed as non-hydroxy fatty acids (NS), α-hydroxy fatty acids 
(AS), ω-hydroxy fatty acids (OS), linoleic acid esterified ω-hydroxy fatty acids (EOS) 
and protein bound ω-hydroxylated fatty acids (POS). Error bars indicate the SEM 
from 3 animals analyzed per group. Low magnification electron micrograph of CerS3 
mutant interface (G) and corresponding higher magnification mutant interface from 
white-marked rectangle (I). Lipid agglomerates were present in mutant epidermis 
particularly at tri-cellular contact sites or previous contact sites at the SG (red 
arrows). Abundant lamellar material packed in small stacks composed of short 
lamellar discs (I and J) were observed in mutant SC, whereas the interface of control 
mice (H) displayed stacks consisting of lamellar discs with a larger diameter and 
showing initial transformation into lamellar unit structures. 
 
 

To evaluate which lipid species were altered due to the lack of CerS3, thin layer 

chromatography of free extractable lipids was performed (Figure A6A). Most TLC 

bands derived from ceramide (Cer) and glucosylceramide (GlcCer) species were 

extremely reduced or abolished in mutant mice, whereas no stricking differences 

could be observed for heterozygous mice. The structural differences within the Cer or 

GlcCer species resulted in several bands, which differences in the length of their acyl 

chains and hydroxylation produced an unequal mobility through the silica plate. 

Taking into account the different retention of the lipid species, we could distinguish 

between low migrating bands containing hydroxylated lipid species, and upper 

migrating bands with no hydroxylation and increasing mobility with increasing acyl 

chain length. Furthermore, the most fast migrating bands appeared with Cer and 

GlcCer being ω-esterified with another acyl chain, mainly linoleic acid. Both lower 



Results 
 

    

 139 

migrating bands of Cer and GlcCer appear to be the only ones to be increased with 

CerS3 deficiency. These bands could be associated with α-hydroxylated LC-Cers 

and GlcCers. No major differences of other lipid species were evident. 

To obtain a detailed lipid profile of epidermal extracts, quantitative mass 

spectrometric analyses were performed. CerS3 deficient mice exhibited a general 

drastic reduction of Cers, GlcCers and SMs (Figure 42D-F). Free extractable 

ceramides with no hydroxylation (NS) or with hydroxylation at the α-position (AS)  

were strongly reduced but still present in deficient skin. The majority of epidermal 

ceramides are a special class containing ultra long chain ω-hydroxylated acyl 

moieties (OS). Most of these OS-ceramides are esterified at the ω-position with 

another fatty acid (EOS), predominantly linoleic acid. The second major group is 

ω-esterified to CE-proteins (POS). All three forms of OS-sphingolipid species were 

absent in mutant epidermis. Similar changes were observed for SM and GlcCer 

species in CerS3d/d mice. Wild type and heterozygous mice did not differ significantly 

for any class of sphingolipid analyzed.  

Mass spectrometry enabled us to determine quantitatively the profile of acyl 

moieties linked by an amide bond to the LCB of Cers, GlcCers and SMs (Figure 

A6B). In agreement with TLC analyses, LC-Cer and GlcCer primarily containing 

palmitate (16:0) or hydroxylated palmitic acid (h16:0) residue were slightly elevated in 

CerS3d/d mice. Acyl residues containing lignoceroyl (24:0) were significantly 

diminished, whereas Cers, GlcCers and SMs containing cerotoyl (26:0) or ULC-FA 

residues were completely absent in homozygote CerS3 mutants. The latter ULC-acyl 

moieties are the only source of ω derived sphingolipids. In composite, mass 

spectrometric analyses revealed that CerS3 depleted mice lacked about 90% of all 

epidermal ceramides. 

Continuous lamellar sheets oriented in parallel and filling the intercellular spaces 

of the intermediate and upper SC are built up by fusion from nascent lamellar stacks 

secreted by lamellar bodies (LB) at the SG-SC interface (see section 1.4.2.5.). In 

control mice, these stacks were composed of large discs (Figure 42H), which were 

progressively transformed into the typical lamellar basic structures organized in 

parallel to the PM. In contrast, LB-derived stacks of CerS3 deficient epidermis were 

smaller and lamellar discs displayed a shortened diameter (Figure 42I and 42J). 
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Furthermore, in the upper SC layers non-lamellar material clustered forming 

agglomerates particularly at the tri-cellular contact sites (Figure 42G, red arrow), and 

the intercellular spaces between corneodesmosomes were maximally reduced 

lacking mature lamellar unit structures.  

 

3.3.7. Loss of CerS3 but not of CerS2 function results in a drastic reduction of 
epidermal ceramides/sphingolipids. 
In vitro ceramide synthase assays demonstrate the requirement of CerS3 activity for 

the biosynthesis of ULC-ceramides/sphingolipids, while excluding the role of CerS2 

for their biosynthesis. However, CerS2 transcript levels were significantly expressed 

in murine skin, as observed by quantitative RT-PCR (Figure 43A). To assure our in 

vitro findings and thereby rule out the involvement of CerS2 in the formation of 

essential epidermal sphingolipids in vivo, the epidermal lipid composition of 

CerS2gt/gt mice were analyzed and compared with CerS3d/d. In CerS2gt/gt mice, no 

decrease was observed for any kind of epidermal ceramide species, not even for 

ceramide containing a lignoceroyl residue (24:0), the preferred product of CerS2 

activity (Figure 43B). In contrast, epidermal ceramides with an acyl chain of 24–28 

carbon atoms in length were moderately increased by 15 and 35% in heterozygote 

and homozygote mutant CerS2 mice, respectively (Figure 43C), thus demonstrating 

that CerS2 is not required for the biosynthesis of ω-hydroxy-ceramides with ultra long 

chain acyl residues.  
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Figure 43. Loss of CerS2 activity does not account for reduction in epidermal 
ULC-ceramides.  
(A) Quantitative RT-PCR of Cers transcripts in wild type and mutant CerS3 mice. (B) 
Ceramide profile of CerS2 and CerS3 mutants as compared with their respective wild 
type and heterozygous littermates. No reduction of any ceramide species was 
observed in CerS2gt/gt mice. (C) Mass spectrometry of ceramides and 
glucosylceramides in neonatal wild type and CerS2 deficient epidermis indicating no 
alterations for EOS-ceramides. Error bars indicate SEM with *** for p<0.001 and * for 
p<0.05. 
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3.3.8. Severe pathogenic infection on cultured skin biopsies of CerS3 deficient 
mice 
A specific ratio of SC lipids is critical for proper epidermal barrier function. Alterations 

within this ratio, as well as differences between their lipid species have been 

implicated in multitude of diseases, particularly in atopic dermatitis and psoriasis 

(Coderch et al., 2003). Besides, certain SC have been suggested to have 

antimicrobial activity (Arikawa et al., 2002; Bibel et al., 1992). Among them, 

decreased sphingosine levels have been suggested to play a significant role in the 

vulnerability of microbial infections in patients suffering atopic dermatitis. This 

reduction in sphingosine concentration in diseased SC is probably a consequence of 

diminished ceramide levels. In order to establish whether the lack of major ceramides 

had an influence on the susceptibility of pathogenic infections, skin biopsies of CerS3 

deficient mice were infected with Candida albicans, which is a common opportunistic 

pathogen infecting epidermis of patients with compromised skin integrity. 

 Control skin infected with 1×106 cells of C.albicans exhibited only sporadically and 

in low concentration these pathogens attached to the surface of the skin biopsies 

independently from the incubation time (Figure 44A). In contrast, an extensive growth 

could be already observed as early as 6 h after inoculation of the pathogen in CerS3 

deficient skin (Figure 44B). Histological examinations with increasing incubation 

times with the fungi, demonstrated a prominent increase of C.albicans after 24 h in 

mutant skin (Figure 44C-D), which was more pronounced after 66 h (Figure 44E-F). 

In addition, skin biopsies from mutant embryos at stage of E18.5 ± 0.5 exhibited 

increased pathogenic growth after 24 h post inoculation, as compared with control 

littermates. Pathogenic growth was determined by quantification of the colony 

forming units (CFU) generated from the yeast that infected the skin biopsies (Figure 

A7A). Addition of pathogens onto the SC of cultured skin resulted in a 3.5 fold 

increase of CFU in CerS3 deficient skin.  
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Figure 44. Severe pathogenic infection on cultured skin of CerS3 deficient 
mice.  
Cultured skin from neonatal control and CerS3d/d mice were inoculated with 
C. albicans and incubated for 6 h (A and B), 24 h (C and D) and 66 h (E and F) at 
30 ºC. Paraffin sections of 1 µm thickness were stained with periodic acid-Schiff 
(PAS). Localization of the basement membrane in mutant skin is indicated (black 
arrows).  
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With increasing incubation time, Candida albicans developed pseudohyphae, 

which penetrated the SC and invaded the living epidermal layers down into the 

dermis only in mutant skin. Upon 24 h incubation, deficient CerS3 skin exhibited 

extensive invasive pathogen infiltration into the suprabasal layers (Figure 44D), 

which could not be observed in cultured control skin (Figure 44C). Following the 

invasion phase, increased bud morphology and colony formation could be observed 

within the nucleated epidermal layers (Figure 44F). At 66 h, mutant epidermis 

exhibited pseudohyphae that crossed the basement membrane migrating into the 

dermis, which was marked by the abundance of infiltrated immune cells (Figure 44F).  

In addition to the lipid barrier, microbial growth is greatly inhibited by specialized 

peptides and proteins that serve as an additional defense mechanism. These 

antimicrobials peptides are generally packed and extruded by LB in the intercellular 

space of the SC. Upon recognition of the pathogens by the innate immune response, 

antimicrobial peptides are activated and secreted in order to combat pathogenic 

invasion primarily by disrupting the microbial membrane (Yamasaki and Gallo, 2008). 

To examine whether the increased microbial growth in mutant skin was a 

consequence of an alteration in the expression of these antimicrobial peptides, 

quantification of their transcript levels was determined (Figure A7B). However, 

murine β-defensins, as well as the unique murine cathelicidin expression levels were 

comparable in CerS3 deficient skin and control. Therefore, antimicrobial peptides 

could not account for the differences in microbial growth between control and mutant 

CerS3 skin. 
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4.1. Coexpression of Cers3 and ULC-sphingolipids in mature male 
germs cells and skin  
 
Sphingolipids containing a fatty acid moiety ranging between 16 and 24 carbon 

atoms in length have been found constitutively expressed in the plasma membrane 

of all mammalian cells. However, testicular and epidermal cells additionally express 

high concentrations of sphingolipids with ultra long chain acyl moieties. In testis, 

polyenoic (4 to 6 double bonds) ULC-CoAs of 28 to 32 carbon atoms are 

incorporated into ceramides, which can be further modified generating 

sphingomyelins or complex glycosphingolipids. Sphingolipids containing ULC-PUFA 

residues might be exclusively expressed in maturing male germ cells, since the 

depletion of ULC-PUFA complex GSLs causes azoospermia due to an arrest of the 

spermatogenic cycle at the stage of spermatid formation in GM2S/Galgt1-/- mice 

(Sandhoff et al., 2005). On the other hand, mainly saturated and monounsaturated  

ω-hydroxylated ULC-CoAs of 26 to 36 carbon atoms in length are expressed in highly 

abundant ceramides of the stratum corneum (Sandhoff, 2009). There, ULC-

sphingolipids are required from the late embryonic stage on (E16.5-18.5 in mice) for 

the formation and maintenance of the epidermal permeability barrier, as 

demonstrated with the specific deletion of the glucosylceramide synthase under the 

promoter of keratin 14 (Jennemann et al., 2007). However, the functional role of 

polyenoic ULC-sphingolipids in testicular cells is still elusive. To unveil the molecular 

mechanism by which ULC-sphingolipids enable the progress of spermatogenesis, it 

is a prerequisite to fully understand their biosynthetic requirements. Therefore 

identifying the ceramide synthase/s responsible for their biosynthesis is mandatory.   

 Currently the six members of the ceramide synthase family have been 

characterized regarding their substrate affinity towards a range of acyl-CoAs whose 

length varied from 14 to 26 carbon atoms. From these studies, CerS2 and CerS3 

were reported to best incorporate the longest subset of acyl-CoAs (Laviad et al., 

2008; Mizutani et al., 2006).  

 Analysis of the tissue distribution of CerS3 demonstrated its high expression in 

murine testis and skin, the only tissues reported to contain major concentrations of 

ULC-ceramides. On the other hand, CerS3 could not be detected in brain, liver and 
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colon. These organs express sphingolipids exclusively with conventional acyl 

moieties ranging from 16 to 24 carbon atoms. These results were further confirmed 

by two independent studies (Laviad et al., 2008; Mizutani et al., 2006). In contrast, 

CerS2 has been reported to be ubiquitously expressed, with its highest transcript 

levels found in kidney and liver (Laviad et al., 2008).  

In order to correlate the expression of ULC-sphingolipids with the ceramide 

synthase/s responsible for their biosynthesis, detailed transcript analyses of the Cers 

family were performed in mature mouse testes and neonatal skin. With the exception 

of Cers1, the expression levels of the remaining Cers homologues could be detected 

in either one or both tissues to various extents.  

 Cers3 was the most prominent Cers expressed in testis and the second most 

abundant in skin, only overtaken by 1.5-fold upregulation of Cers2.  In addition to 

ULC-acyl moieties, epidermal sphingolipids contain large quantities of VLC-acyl 

residues with 26 carbon atoms, which have been shown to be acylated to produce 

ceramides by CerS2 in vitro (Laviad et al., 2008). Therefore, it would be expected to 

have abundant Cers2 levels in the epidermis. Whether exclusively CerS2 or in 

addition CerS3 are able to synthesize sphingolipids with cerotoyl moieties will require 

further studies. Nevertheless, it seemed plausible that CerS3 might be the enzyme 

required for the biosynthesis of ULC-sphingolipids, since its mRNA and tissue 

expression correlates with the presence of sphingolipids containing ULC-acyl 

moieties. 

On the other hand, Cers2 mRNA was also expressed in testis, although its 

transcript levels only accounted for 15% of those of Cers3. Since recent studies have 

demonstrated that CerS2 can incorporate acyl-CoAs of 20 to 26 carbon atoms in 

length (Laviad et al., 2008), CerS2 still was a potential candidate capable of 

producing ceramides with unconventional ULC-acyl residues.  

 Both testis and skin expressed fairly abundant levels of Cers5, whereas the 

relative Cers6 expression levels were rather low. Nevertheless, CerS5 and CerS6 

have been reported to incorporate acyl-CoAs with a chain length ranging from 14 to 

18 but not more carbon atoms (Mizutani et al., 2005; Riebeling et al., 2003). Hence, it 

seems unlikely that neither of these two enzymes could catalyze the synthesis of 

sphingolipids using acyl-CoAs with 28 and longer carbon atom chains as substrates. 
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Cers4 exhibited a moderate expression in mouse skin, however its mRNA 

concentration was barely detectable in testis. In skin, Cers4 has been reported to be 

mainly expressed in acinar cells of the sebaceous glands (Meixner, 2009). Besides, 

the highest ceramide synthase activity of CerS4 was achieved with acyl-CoA 

substrates ranging from 18 to 22 carbon atoms, with negligible activities for longer 

fatty acid substrates (Riebeling et al., 2003). Likewise CerS5 and CerS6, it would be 

rather unexpected that CerS4 could catalyze the condensation of ULC-acyl-CoAs 

with a sphingoid base to produce ULC-ceramides.  

Consistent with the correlation of mRNA and tissue expression of the Cers 

homologues in the major tissues expressing ULC-sphingolipids, it was concluded that 

CerS2 and CerS3 are the only potential candidates that might be involved in the 

synthesis of ULC-ceramides. In order to confirm or reject their role in this pathway, 

their transcript expression levels were compared to the concentration of ULC-

sphingolipids during the progress of the first spermatogenic cycle. 

Levels of testicular sphingolipids containing ULC-PUFA moieties were found to be 

increased during juvenile maturation. In particular, mass spectrometric analyses of all 

types of sphingolipids according to their fatty acid residues revealed the presence of 

exclusively conventional fatty acid moieties (of 16 to 24 carbon atoms) during the 

earlier stages of postnatal testicular development (Rabionet et al., 2008). LC- and 

VLC-sphingolipid expression correlated with the elevated mRNA content of Cers5 

and Cers6, as well as of Cers2, whose highest substrate specificities have been 

reported to be precisely acyl-CoAs of 16 and 24 carbon atoms, respectively (Lahiri 

and Futerman, 2005; Laviad et al., 2008). In contrast, Cers3 mRNA levels prior to 

PN 14 were barely detectable.  

From PN 14 to PN 15, Cers3 mRNA was exceptionally upregulated, coinciding 

shortly afterwards with the detection of the first ceramides, sphingomyelins and 

glycosphingolipids containing ULC-PUFA residues. To the contrary, the transcript 

levels of all Cers expressed in murine testis were simultaneously downregulated. 

 The concentration of polyenoic ULC-sphingolipids increased progressively until 

steady state levels were reached between PN 25 and PN 30. In addition, detailed 

analyses of complex fucosylated GSLs demonstrated the concomitantly increase of 

the neutral subset, which exclusively incorporate ULC-PUFAs. On the other hand, 
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fucosylated ganglioside GM1 (FucGM1) was already present from the early stages of 

the first spermatogenic cycle and its concentration increased moderately from PN 14. 

FucGM1 was composed of ULC-PUFAs and a major portion of LC-FAs (h16:0) 

(Rabionet et al., 2008). 

Whereas the overall levels of Cers2, Cers5 and Cers6 remained relatively 

constant from PN 14 to PN 25, Cers3 transcript expression prominently increased 

correlating with the elevated levels of ULC-sphingolipids. The total increase of Cers3 

mRNA from PN 5 to PN 25 was calculated to be more than 700 fold. 

Additionally, Cers3 mRNA was unique among Cers transcript levels to be 

completely depleted in mutant KitW-v/KitW mice testes that lacked ceramides, 

sphingomyelins, and GSLs including FGSLs with ULC-PUFA residues. Infertile 

KitW-v/KitW mice testes are devoid of intact differentiated germ cells, by that 

underpinning that the latter are the source of polyenoic ULC-sphingolipids. Moreover, 

neutral FGSL – which are extremely rich in ULC-PUFAs – were localized by 

immunohistochemistry to differentiated germ cells, i.e. pachytene spermatocytes, 

spermatids and spermatozoa (Sandhoff et al., 2005). Thus, the lack of fertility-

essential neutral FGSL carrying ULC-PUFA residues in conjunction with the absence 

of Cers3 mRNA in infertile KitW-v/KitW mice provided evidence of their requirement in 

differentiating male germ cells and to be crucial for the proper development of 

complete spermatogenesis. 

Furthermore, the acidic subset of FGSL was reduced in mutant mice (Rabionet et 

al., 2008). Previously, its major component FucGM1 was mainly localized in 

spermatogonia stem cells. As a result, FucGM1 additionally was composed of 

significant amounts of palmitic acid (16:0 and h16:0) besides of ULC-PUFA residues 

(Sandhoff et al., 2005). The incorporation of the palmitic acid moiety might be 

catalyzed primarily by Cers6 and/or Cers5 (Mizutani et al., 2005; Riebeling et al., 

2003). In KitW-v/KitW mice, significant transcript levels of both Cers5 and Cers6 were 

detected, thus suggesting their localization in either somatic cells and/or residual 

spermatogonia. Taking into consideration that all Cers expression levels were 

decreased in infertile KitW-v/KitW mice, we additionally determined the percentatge of 

Cers mRNA relative to the total Cers mRNA levels per mice (data not shown). 

Neither Cers5 nor Cers6 relative transcript levels were reduced in mutant testicular 
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mRNA, which might indicate a major role of these ceramide synthase homologues in 

the synthesis of LC-sphingolipids in testicular somatic cells or type A spermatogonia. 

Relative transcript levels of Cers2 were decreased in sterile KitW-v/KitW mice testes. 

This suggests an expression in basal and eventually adluminal differentiated germ 

cells, although its residual mRNA levels suggest in addition a somatic and/or 

spermatogonial origin. In the latter, CerS2 accounts for the synthesis of non-

fucosylated VLC-sphingolipids.  

In summary, Cers3 mRNA concentration strongly correlates with the expression of 

ULC-sphingolipids in murine skin and differentiated male germ cells, suggesting its 

unique role in the synthesis of these unconventional sphingolipids. During the first 

spermatogenic cycle in mice, their onset of expression coincided beyond PN 14–15, 

simultaneously with the migration of the first primary spermatocytes through the 

blood testis barrier (BTB) and the formation of early pachytene spermatocytes at the 

adluminal compartment of the seminiferous epithelium.   

 

 
Figure 45. Murine spermatogenesis and associated sphingolipid expression. 
Intersticial cells, Sertoli cells and germ cells of the basal compartment express 
sphingolipids with LC- and VLC-FAs, mainly palmitic acid, whereas adluminal germ 
cells and spermatozoa express primarily sphingolipids with ULC-PUFA moieties. PN: 
post natal; SG: spermatogonia; pl/l SC: preleptotene/leptotene spermatocytes; rST: 
round spermatids; eST: elongated spermatids; Sza: spermatozoa; BL: basal lamina; 
IS: intersticial cells; LC: Leydig cells. Scheme modified from (Rabionet et al., 2008).  
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The physiological role of ULC-sphingolipids in spermatogenesis and male fertility 

is currently unknown. However, some indications might suggest their requirement for 

the proper maintenance of the BTB dynamics. The BTB is constituted by an array of 

specialized junctional complexes established by polarized Sertoli cells. Lack of 

polyenoic LC-FAs due to the specific disruption of the ∆6-fatty acid desaturase 

(Fads2) leads to a disruption of the BTB and loss of Sertoli cell polarity, resulting in 

spermatogenesis arrest at the stage of round spermatid formation and ultimately to 

azoospermia (Stoffel et al., 2008). Fads2 blocks the rate-limiting step in the 

desaturation of linoleic (ω6-18:2) to γ-linoleic (ω6-18:3) and of α-linoleic (ω3-18:3) to 

stearidonic acid (ω3-18:4), precursors required for the subsequent elongation and 

further desaturation steps yielding ULC-PUFA synthesis. Although ULC-PUFAs and 

corresponding sphingolipids were not investigated by the authors, in the context of 

their findings, it could be derived that depletion of polyenoic ULC-sphingolipids might 

also alter the structural plasma membrane tight junctional complexes leading to an 

impaired assembly and disassembly of the BTB.  

Besides tight junction and gap junction complexes, the BTB is additionally 

constituted of actin-based adherens junctions, and intermediate filament-based 

desmosome-like junctions. These two latter types of cell-cell adhesion junctions are 

crucial for maintaining the close association between nourishing Sertoli cells and 

developing meiotic germ cells and spermatids. Throughout spermatogenesis, a great 

restructuring of these junctional complexes is required. Their defective 

remodeling/disassembly might lead to the formation of the multinucleated giant cells 

observed upon disruption of the GM2S/Galgt1 gene, wich lack all FGSLs containing 

ULC-PUFA moieties (Rabionet et al., 2008; Sandhoff et al., 2005).  

The functional role of ULC-PUFA sphingolipids might as well be interpreted by 

alternative hypotheses. During the progress of spermatogenesis, developing germ 

cell clones at different stages of differentiation must remain connected by intercellular 

bridges sharing one unique cytosol and plasma membrane. These intercellular 

bridges are lost and multinucleated giant cells are formed in GM2S/Galgt1 deficient 

mice (Sandhoff et al., 2005). Hence, the stability, maintenance and regulation of this 

incomplete cytokinesis, as well as the complex membrane processes during 
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proliferation and elongation of spermatids, could be modulated by this 

unconventional lipid class.  

Structurally, the multiple cis-olefinic moieties might reduce the intercellular Van der 

Waals forces probably driving the local deformation of the lipid bilayer, thus reducing 

the lipid packaging, which might ultimately lead to an increase in membrane 

flexibility. In addition to be relevant for membrane fusion events, the elevated 

membrane fluidity in mature germ cells is believed to be required for motility (Nolan 

and Hammerstedt, 1997; Stoffel et al., 2008). In this regard, polyenoic fucosylated 

GA1 could be localized at the tail of developing spermatozoa by immunolabeling with 

anti-Fuc-GA1 (Sandhoff et al., 2005). In a further study, Furland and coworkers 

linked polyenoic ULC-sphingomyelins and ceramides to the head of spermatozoa. 

The authors reported high levels of sphingomyelin degradation favoring ceramide 

formation upon spermatozoa capacitation. This hydrolysis could play a role in 

prefertilization events required for the correct consummation of the following 

acrosomal reaction (Furland et al., 2007).  

Alternatively, the homeobox domain encoded within the Cers3 gene might have a 

key role in regulating germ cell differentiation, as have been already observed for 

other homeobox-containing genes (Wolgemuth et al., 1987).  

To unveil the functional role of CerS3 and polyenoic ULC-sphingolipids, novel in 

vivo models with germ cell specific depletion of these unconventional lipids will be 

necessary. In this regard, our efforts are currently focused on the conditional 

depletion of CerS3 in premeiotic male germ cells in vivo. 

Future perspectives regarding the modulation of ULC-sphingolipids might have an 

impact in male contraception. In this context, the newly identified CerS3 as a key 

enzyme for the biosynthesis of fertility-essential ULC-ceramides could be targeted to 

induce reversible infertility.  

 

4.2. ULC-sphingolipids are bona fide substrates of CerS3 in living 
mammalian cells 
 
To confirm the role of CerS3 in the biosynthesis of testicular and epidermal ULC-

sphingolipids, enzymatic assays with recombinantly expressed CerS3 in mammalian 



Discussion 
 

    

 153 

cells were performed with acyl-CoAs ranging from 16 to 28 carbon atoms in length. In 

contrast to previous CerS assays where either cellular lysates or microsomes were 

used to assess CerS activity, we have established for the first time a CerS assay in 

living mammalian cells. Former in vitro enzymatic assays made extensive use of 

detergents to solubilize cellular membranes (Mandon et al., 1992; Mizutani et al., 

2005; Mizutani et al., 2006; Shimeno et al., 1998). However, it is well established that 

use of detergents might induce artifacts due to aggregation or even inactivation of 

membrane-bound enzymes (Zhou et al., 2001). By establishing a detergent-free 

assay we have been able to preserve the biochemical environment of the enzyme 

with minimal alterations of its in vivo conditions.   

Due to the lack of commercial availability of activated fatty acids longer than 26 

carbon atoms, ULC-acyl-CoAs had to be chemically synthesized. For this synthesis, 

the elegant approach of Lucet-Levannier and coworkers, which is especially 

designed for the preparation of highly lipophilic acyl-CoAs was employed (Lucet-

Levannier et al., 1995). By derivatizing the hydrophilic CoA to the polysilylated CoA, 

the coupling with the extremely hydrophobic ULC-FAs could take place under 

anhydrous organic conditions. This type of preparation differed conspicuously from 

the classical methods, which required the use of a binary mixture of water-organic 

solvent in order to solubilize both the CoA and the activated fatty acids with 

N-hydroxysuccinimide (Al-Arif and Blecher, 1969). The employment of binary 

mixtures leads either to a biphasic system in which the contact of reactants is not 

optimal, or to a homogeneous solution in which the solubilities of both reactants are 

diminished. In either case, the reaction proceeds in an inefficient manner thereby 

drastically reducing its chemical yield. Although the classical methods have been 

employed for the preparation of activated fatty acids in the range of 16 carbon atoms, 

we assumed that the synthesis of ULC-CoAs with an additional 12 carbon atoms and 

its increased accompanying hydrophobicity would render the conventional synthethic 

approach virtually impossible. Additionally, the usage of water results in undesired 

competing reactions due to the hydrolysis of the NHS-activated fatty acids by water. 

Previous to the ceramide synthase assay, overexpression of recombinantly 

expressed proteins was confirmed by flow cytometric analyses, as well as by 

immunoblotting.  Although CerS3 could be detected by Western blot as one single 
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band corresponding to the expression of the fusion EGFP protein, CerS2 exhibited 

four specific bands. These various protein products very likely arise from diverse 

post-translational modifications. A similar finding was observed with the detection of 

mCerS2-HA in overexpressed HEK-293T cells by Mizutani et al., who linked this to 

various N-glycosilation microheterogenities (Mizutani et al., 2005). In addition, the 

authors reported that CerS5 and CerS6 are also N-glycosylated proteins, whereas 

CerS1 and CerS4 are not. Here, we reported that CerS3 produced in overexpressing 

HeLa cells exhibited one unique band, likely indicating the absence of post-

translational glycosilations.  

The ceramide synthase activity was examined by exposing CerS3, as well as 

CerS2 and control EGFP expressing HeLa cells to an acyl-CoA mixture 

(16:0,18:0,20:0,24:0,26:0,28:0), simultaneously with d17:1-sphingosine for 20 h. To 

determine the de novo synthesized ceramides, we took advantage of the lack of 

sphingosine (d17:1) in our mammalian cell culture system. Although sphingosine 

(d18:1) is predominant in most mammalian tissues due to the preference of serine 

palmitoyl transferase towards palmitoyl-CoA (Hanada, 2003), minor amounts of 

various long chain bases including d17:1 have been detected in several tissues, e.g. 

skin (Farwanah et al., 2007). Using this non-endogeneous sphingoid base as a 

substrate, we were able to quantify ceramides with a d17:1 backbone that 

corresponded to newly synthesized metabolites. Quantification of d17:1-ceramides 

could only be carried out with suitable internal standards that were synthesized 

specifically for this purpose in this thesis. 

Upon availability of an equimolar mixture of acyl-CoAs that included an ULC-acyl-

CoA, CerS3 exclusively produced cerotoyl- (26:0-Cer) and montanoyl-ceramides 

(28:0-Cer) in a significant manner, thereby demonstrating its capability for ULC-

ceramide synthesis. Formerly, in vitro CerS3 activity assays performed with 

overexpressed cell lysates indicated that CerS3 has very broad substrate specificity. 

With acyl-CoAs ranging from 16 to 26 carbon atoms, CerS3 exhibited the highest 

activity towards stearoyl-CoA (18:0), with an additional affinity towards behenoyl-CoA 

(20:0) and lignoceroyl-CoA (24:0) (Mizutani et al., 2006). 

In our living cell model, besides the observed affinity of CerS3 towards 26- and 

28-CoAs, no other acyl-CoA substrate did exhibit a significant increase upon CerS3 
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expression. However, preliminary results of our own in vitro CerS3 activity assays 

using cell lysates indicated increased production of lignoceroyl-ceramide (Rabionet 

and Sandhoff, unpublished results), thus partially supporting the findings obtained by 

Mizutani and coworkers. The CerS3 affinity towards shorter chain substrates might 

be overruled in our model by the high levels of endogenously expressed CerS2, 

which has been demonstrated to catalyze primarily the formation of 22- and 

24-ceramides (Laviad et al., 2008). Nevertheless, the present CerS assay 

demonstrated that CerS3 in contrast to CerS2 could catalyze the acylation of 

sphingosine using ULC-CoAs as substrates in living human cells.  

These findings could successfully be confirmed in a yeast model in collaboration 

with Prof. Dr. Howard Riezmann from the University of Geneva (Epstein and 

Riezmann, personal communication). In their model, the ceramide synthase 

specificity of CerS2 and CerS3 was assayed in a mutated yeast strain capable of 

synthesizing montanoyl-CoA. In particular, the mammalian mCerS2 or hCerS3 

proteins were introduced in a S. cerevisiae strain, which was previously depleted of 

the yeast ceramide synthases Lag1p and Lac1p. These strains were further 

transformed with a plasmid encoding a mutated version of the yeast fatty acid 

elongase protein, Sur4p. In this context, the major ceramide species generated by 

expression of CerS2 contained VLC-acyl moieties ranging from 22 to 26 carbon 

atoms in length, as previously reported. However, availability of 28:0-CoA did not 

produce any effect on the relative inositolphosphorylceramide (IPC) concentration, 

and thus supporting our findings that CerS2 is not capable of synthesizing 

sphingolipids with acyl moieties longer than 26 carbon atoms. 

In contrast, CerS3 produced ceramides with stearoyl and cerotoyl moieties in the 

absence of ULC-CoAs, again partially confirming the results of Mizutani and 

coworkers. However, the presence of montanoyl-CoA in the fatty acid pool lead to a 

strong increase of ULC-ceramides, hence corroborating the capability of CerS3 for 

synthesizing ceramides with ultra long chain acyl moieties.  

The specific depletion of CerS3 in vivo definitely established the role of CerS3 in 

the biosynthesis of ULC-ceramides. Quantitative mass spectrometric analyses of 

epidermal extracts revealed the complete lack of sphingolipids containing acyl 

moieties ranging from 26 to 36 carbon atoms in length. Additionally, the 
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concentration of lignoceroyl-sphingolipids was significantly decreased, thus indicating 

CerS3 to have certain affinity towards 24-CoA. Shorter chain acyl residues did not 

show any significant decrease upon CerS3 deficiency. 

Besides, the epidermal sphingolipid profile of CerS2 depleted mice was 

additionally investigated. These investigations lead to the conclusion that CerS2 does 

not play a role in the biosynthesis of ULC-sphingolipids, evidenced by the lack of 

reduction of ULC-ceramides.  

In summary, the in vitro and in vivo findings demonstrated that in the presence of 

ULC-acyl-CoAs, CerS3 preferentially incorporates acyl residues of 24 to 36 carbon 

atoms in length. In contrast, CerS2 is unable to produce ceramides using ULC-CoAs 

as acyl donors. The reported specificities of the remaning ceramide synthase 

homologues that were not included in the present study have all been reported to 

incorporate shorter acyl-CoA substrates. CerS5 and CerS6 primarily incorporate 

palmitic acid, whereas CerS1 incorporates stearic acid, and CerS4 produces 

ceramides ranging from 18 to 22 carbon atoms in length. Taken all together, we 

provide evidence that CerS3 is the only mammalian ceramide synthase capable of 

synthesizing ULC-sphingolipids. With these findings at hand, we are finally able to 

attribute the complete spectrum of acyl chain residue specificities to their respective 

members of the ceramide synthase family (Figure 46). 
 

 
 
Figure 46. Substrate affinity of the ceramide synthases. 
Proposed correlation of the ceramide synthases with their respective substrates, 
according to previous reported affinities and the current study. 
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4.3. CerS3 is essential for epidermal barrier function and survival 
 

To unveil the physiological role of CerS3 and ULC-sphingolipids in vivo, we 

investigated the impact of CerS3 deficiency in mice with a targeted disruption of 

exon 7. This exon includes highly conserved amino acids of the lag1 motif, which has 

been shown to be required for the enzymatic activity of the ceramide synthase 

proteins (Spassieva et al., 2006). Furthermore, the majority of amino acids that 

constitute the floxed exon 7 are predicted to localize within a transmembrane domain 

(Figure 22, TM3), therefore its deletion most probably invers the topology of the 

subsequent protein sequence including the residual part of the lag1 domain 

containing the catalytic activity. In addition and in contrast to control mice, CerS3 

could not be detected in skin biopsies of mutant mice. CerS3 immunolocalization 

analysis performed with a self-designed polyclonal antibody against the last 25 amino 

acids of the C-terminus revealed CerS3 expression within keratinocytes of the upper 

SS and SG of control epidermis. However, CerS3 immunolabeling failed to detect the 

epitope in the skin of mutant mice, thus suggesting a misfolding and/or degradation 

of the truncated protein of which the mRNA is expressed. Together with the 

confirmed deletion of exon 7 by means of PCR, transcript sequencing and Southern 

blot analyses, these results indicate that exon 7 deletion renders CerS3 

dysfunctional. 

CerS3d/d mice exhibited universal premature death within 3 hours postnatally. 

Severe defects of the epidermal barrier function were associated with the neonatal 

mortality in CerS3 deficient mice, evidenced by the rapid body weight loss 

concomitantly with transepidermal water loss, and increased skin permeability. 

According to the current stage of knowledge, the epidermal permeability barrier 

primarily resides in the enucleated layers of the SC, as well as within the typical TJs 

(zonulae occludentes) localized within the SG of the epidermis (Brandner, 2009; 

Kirschner et al., 2010b). The lipid lamellar sheets and the cornified lipid envelope, 

which surround each corneocyte, play a crucial role in maintaining the epidermal 

barrier homeostasis. In particular, abundant and epidermis-unique ceramides with 

hydrophobic ω-hydroxylated-ULC-acyl residues, which to a great extent are esterified 

with linoleic acid (EOS) or with proteins of the CE (POS), have been implicated as 
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critical regulators of the epidermal integrity and barrier function. For instance, 

decreased levels of epidermal ceramides with acyl moieties longer than 26 carbon 

atoms in mice with a targeted disruption of the fatty acid transport protein (Fatp4) 

resulted in severe impairment of the epidermal barrier (Herrmann et al., 2003). In 

Elovl4 deficient mice, lack of ω-hydroxylated-ULC-ceramides, due to the requirement 

of the enzyme for generating fatty acids longer than 28 carbon atoms, lead to early 

postnatal lethality, abnormally compact SC and defective permeability barrier (Li et 

al., 2007; McMahon et al., 2007a; Vasireddy et al., 2007). Furthermore, a harlequin 

ichthyosis mouse model bearing a non functional member of the ABCA family of 

transporters, Abca12, exhibited a thickened epidermis presumably due to lack of 

desquamation caused by a profound reduction of EOS-ceramides, consistent with a 

deficiency for the transport of EOS-ceramide precursors (Zuo et al., 2008). Finally, 

CGI-58 deficient mice lacking EOS- and to great extent also POS-ceramides, 

revealed this enzyme to be critical in the esterification process of OS-(Glc)Cer, with 

the consequent lethal defect of the epidermal permeability barrier (Radner et al., 

2009). 

In concert with the previous mouse models, drastic reduction of major epidermal 

ceramide species led to an impairment of the permeability barrier function in CerS3 

deficient mice. In our CerS3d/d mice, all ceramide classes containing ω-hydroxylated-

ULC-acyl residues, i.e. EOS-Cer, POS-Cer and OS-Cer were lacking in mutant 

epidermis. Consequently, the corresponding sphingomyelin and GlcCer species, 

which serve as precursors for the extracellularly secreted ceramides, were 

accordingly diminished. On the other hand, non-hydroxylated and α-hydroxylated-

ceramides that contain acyl residues up to 26 carbon atoms in length with cerotoyl-

ceramide (26:0 and h26:0) as the dominating species, were profoundly decreased in 

CerS3d/d epidermis. Detailed mass spectrometric analysis of the ceramide species 

according to their acyl residue revealed the completely lack of cerotoyl-ceramides 

(26:0 and h26:0) and the strong reduction of lignoceroyl-ceramides (24:0 and h24:0) 

in mutant epidermis, besides the mentioned depletion of ULC-ceramides. Therefore, 

these findings definitely evidenced the broad substrate affinity of CerS3, which 

primarily acylates sphingoid bases with fatty acids ranging from 26 to 36 carbon 

atoms in length, and to a lesser extent additionally with 24 carbon atoms. The 
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substrate specificity of CerS3 according to this in vivo model perfectly correlates with 

the increased cerotoyl- (26:0) and montanoyl-ceramide (28:0) levels observed upon 

induction of CerS3 in our living cell model, as well as the higher levels of lignoceroyl-

ceramide (24:0) detected using in vitro CerS activity assays with overexpressed 

CerS3 cell lysates. From these results, we concluded that CerS3 is essential for the 

synthesis of ULC-ceramides as they are found in testis and skin. 

The inability to maintain the epidermal barrier homeostasis upon CerS3 deficiency 

could be additionally contributed by the increased or altered paracellular permeability 

due to the presence of immature tight junctions. Instead of typical zonulae 

occludentes with a continuous distribution at the cell-cell borders, the intracellular 

plaque protein cingulin exhibited a discrete and focal distribution at the PM of SG 

keratinocytes of mutant epidermis. The presence of these maculae occludentes 

presumably maintains local but not zonular intercellular sealing at the SG, and thus 

combined with the lack of ω-hydroxylated-ULC-ceramides lead to a severe 

impairment of the epidermal permeability barrier.  

Loss of functional CerS3 resulted in a markedly thick and compact SC that lacked 

the less cohesive layers of the stratum disjunctum. This increased intercellular 

adhesion in mutant SC was associated with the persistence of non-peripheral/central 

corneodesmosomes that abundantly decorate the cell-cell borders of corneocytes at 

all the layers of the SC, and also between the uppermost superficial corneocyte layer 

and the periderm. Immunofluorescence analysis of desmosomal associated proteins 

indicated an impaired degradation of the intercellular cadherin desmoglein 1/2, the 

distribution of which appeared at all layers of mutant epidermis, including a distinctive 

expression at the entire cornified layer and between peridermal cells. In contrast, its 

distribution was restricted to the viable layers in control epidermis. Whereas 

desmosomal cadherins provide the anchoring sites for cell adhesion, intracellular 

plaque proteins are required for proper binding to the intermediate filaments. The 

distribution of the plaque proteins, e.g. desmoplakin and plakoglobin, were not 

significantly altered in mutant epidermis as compared to control. Therefore, the 

persistence of corneodesmosomes appeared to be linked to the defective 

degradation of the transmembrane corneodesmosomal cadherins. Taking into 

consideration that the epitope recognized by the desmoglein 1/2 antibody is localized 
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at the cytoplasmic C-terminal region, it could be assumed that not only the 

extracellular domain, but also the cytoplasmic C-terminal portion of these cadherins 

are still intact. In this regard, the lack of degradation of the phospholipid bilayer in the 

mutant SC might interfere with the proteolytic degradation of the transmembrane 

cadherins. The aberrant persistence of the conventional PM in the intercellular space 

between corneocytes could be occasionally detected at the ultrastructural level. This 

findings were supported by the diminished intercellular space within mutant 

corneocytes that could be estimated around 3 to 4 nm, which might corresponds to 

the hydrophobic core of a phospholipid bilayer.    

The highly regulated terminal cornification leading to desquamation of the 

uppermost corneocytes requires the proteolytic cleavage of these 

corneodesmosomal-associated proteins. From the epidermal proteases investigated, 

specifically the limited distribution of cathepsin D appeared to be involved in the 

thickening of the stratum compactum and the lack of formation of the stratum 

disjunctum of CerS3 deficient epidermis. Besides its constitutive role in the 

proteolytic degradation of intracellular proteins within the lysosomal compartment 

(Zaidi et al., 2008), epidermal cathepsin D has been localized in the intercellular 

space within adjacent corneocytes and has been implicated in the degradation of 

corneodesmosomes (Igarashi et al., 2004). Our findings were further confirmed by 

recent results showing a remarkable increase in the number of corneocyte layers 

resulting from the disruption of the cathepsin D gene in mice (Egberts et al., 2004). At 

the SG, nascent lamellar bodies carrying cathepsin D among other enzymes and 

lipids are predominantly delivered to the apical side of keratinocytes where they 

secrete their contents at the upper SG layers and between the SG-SC interface 

(Ishida-Yamamoto et al., 2004; Raymond et al., 2008). Consistent with the reported 

expression of cathepsin D, its immunolocalization in control skin was found in all the 

epidermal cell layers with the strongest expression at the SG. Contrarily, cathepsin D 

expression remarkably decreased at the SG and was absent in the SC of mutant 

epidermis. Therefore, a reduction in cathepsin D activity at the SG and SC layers of 

CerS3 deficient skin might lead to the impaired degradation of corneodesmosomal 

associated cadherins, and ultimately to a defective formation of the stratum 

disjunctum and persistence of the periderm.  
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At the extracellular space, LB secreted GlcCer and SM species are hydrolyzed to 

generate SC ceramides (Holleran and Takagi, 2006). This final lipid processing takes 

place at the optimum acidic pH of the SG-SC interface. Simultaneously with the 

extrusion of lipids, cathepsin D is secreted to the extracellular space, where the 

acidic pH is additionally required for its proteolytic activity. Previously, it has been 

demonstrated that ceramide directly interacts with cathepsin D resulting in the 

activation of the latter in vitro (Heinrich et al., 1999). Hence, it is reasonable to 

assume that extracellular ceramides might as well activate LB-derived cathepsin D. 

Taking this into consideration, the major lack of ceramide species upon the in vivo 

deficiency of CerS3 might result in the inactivation of the epidermal protease, which 

in turn leads to the persistence and defective degradation of the corneodesmosomes. 

Following this hypothesis further, the major deficiency of epidermal ceramides in 

Elovl4, Fatp4, CGI-58 and Abca12 deficient mice, besides our CerS3d/d mice, could 

explain the thickened and compact SC via the inactivation of the protease 

cathepsin D. However, no survey of the activities of the epidermal proteases in 

particular of cathepsin D, has been conducted yet in the specified mouse models. To 

further develop this hypothesis, the analysis of epidermal proteases should be the 

topic of future investigations.  

The loss of function of cathepsin D could in addition be partially or totally 

contributed by the increased epidermal pH in CerS3 mutant mice. This reduced SC 

acidity might result from a reduced concentration of extracellular free fatty acids, 

which might be derived from the lack of hydrolysis of phospholipids and eventually of 

ceramides. In order to provide more insight into the augmented SC pH in CerS3 

deficient mice, detailed mass spectrometric analysis of isolated SC free fatty acids 

would be required. 

As a consequence of the defective degradation of corneodesmosomes, the 

transient embryonic peridermal layer was found to persist in CerS3 mutant mice. The 

inmmunolocalization of the TJ associated claudin 1 and the demonstration of TJ 

structures at the ultrastructural level, directly proved the presence of the periderm in 

mutant epidermis. In addition, the periderm-specific TJ-associated claudin 6 was 

exclusively detected at the mutant SC (data not shown). These findings were 

additionally supported by the residual nuclear remnants detected within peridermal 
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cells, which could be visualized with the immunolocalization using DAPI as a nuclear 

marker. 

 In Abca12-/- mouse skin, the characteristic features of the lack of desquamation 

in corneocytes and the expanded thicknening of the SC, in correlation with no signs 

of enhanced keratinocyte proliferation, are entirely consistent with our observations in 

CerS3 deficient epidermis (Zuo et al., 2008). However, the lack of desquamation in 

CerS3 deficient mice could not explain the increased number of SC layers, 

considering that corneocyte shedding has not yet been initiated at birth, not even in 

control epidermis. This could be proven by the presence of inclusion bodies 

decorating the outermost corneocyte layer in both control and mutant mice. Taking 

into account that the proliferation rate of basal keratinocytes was not increased in 

mutant epidermis, the origin of the augmented corneocyte layers has to be differently 

reasoned. Currently, we hypothesize that the increase in adhesion at the SC due to 

the persistence of non-peripheral/central, as well as the peripheral/lateral 

corneodesmosomes results in an increased lateral interdigitation surface between 

corneocytes. Therefore, the count of corneocytes in mutant epidermis yields a higher 

virtual number of cell layers than actually are present. 

The in vivo disruption of CerS3 in addition led to defects in the regulation of 

keratinocyte differentiation within the nucleated layers of the epidermis. Impaired 

maturation of SG keratinocytes could be identified by the reduced size of filaggrin-

containing F-granules and by the reduced number of loricrin-containing L-granules. 

These alterations within keratohyalin granules were accompanied by decreased 

levels of loricrin and the aberrant processing of profilaggrin to monomeric filaggrin in 

CerS3d/d mice. In combination with the presence of immature zonulae occludentes 

indicated by the immunolocalization of cingulin, these phenotypic alterations 

evidenced a delayed or defective keratinocyte differentiation at the granular layers of 

mutant epidermis.  

The terminal cornification of keratinocytes is a remarkably coherent process 

involving pronounced morphological changes. Thus, the impaired maturation of 

granular keratinocytes presumably has severe repercussions on their transformation 

to enucleated corneocytes. CerS3 deficient epidermis exhibited various alterations 

that indicate a disturbed or delayed terminal differentiation of corneocytes. At mutant 
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SC, remnants of nuclear material and organelle structures could be detected up to 

the third corneocyte layer. In addition, F-actin expression and residual PAS-positive 

glycogen were also found within the first corneocyte layers. The molecular nature 

leading to these phenotypic alterations might underlie in the presence of the 

homeobox domain encoded in the Cers3 gene. In general, homeobox-containing 

genes regulate embryonic development and cell differentiation by encoding 

transcription factors capable of modulating gene expression (Mark et al., 1997). 

Although reports regarding the regulation of epidermal development and keratinocyte 

differentiation are scarce, several genes of the hox family have been identified to 

influence normal mammalian skin development, i.e. Hoxb13, Hoxa7 and Hoxc4 (La 

Celle and Polakowska, 2001; Mack et al., 2005; Rieger et al., 1994). Considering the 

outstanding alterations due to its dysfunctionality, we suggest that CerS3 could also 

transcriptionally regulate keratinocyte differentiation by targeting proteins required for 

the adequate maturation of granular keratinocytes. In this regard, subcellular 

immunolocalization studies of CerS3 possibly indicate the expression of its 

EGFP-recombinant protein in both the endoplasmic reticulum (ER) and the nuclear 

envelope. Previously, Mizutani and coworkers additionally detected CerS2 and 

CerS6 to the nuclear envelope and the perinuclear region, besides of the ER 

(Mizutani et al., 2005). Whether CerS3 could behave as a master regulator for proper 

development in the skin and may be in other tissues were it could be expressed in 

minor amounts will be the focus of our future investigations. Currently, no ceramide 

synthase homologue containing the homeobox domain, i.e. CerS2–6, has been 

described to influence gene expression. In order to provide insight into the 

biochemical mechanism by which CerS3 could modulate the activity of its target 

genes, specific mutations at the Cers3-homeobox domain, that do not affect 

ceramide synthase activity, should definitely clarify the functional role of CerS3 in 

mammalian epidermis.  

In addition to the defective development of keratinocytes at the SG and SC, 

various abnormalities could also be identified within the corneal layer. The 

extracellular lipid lamellae as well as the CE and the CLE were altered in mutant 

CerS3 mice. Regarding the CE, loricrin and transglutaminase 1 concentrations were 

diminished as determined by immunoblot analysis, whereas involucrin levels remain 
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unaltered upon CerS3 deficiency. The decreased levels of transglutaminase 1 might 

be justified considering that its activation could depend on the activity of the 

epidermal protease cathepsin D (Egberts et al., 2004).  Assuming that extracellular 

ceramides alter the activation of cathepsin D, this could sequentially lead to 

transglutaminase 1 inactivity. Although the covalent attachment of ω-hydroxy-ULC-

ceramides to involucrin has been demonstrated in vitro via transglutaminase 1 

transesterification (Nemes et al., 1999), involucrin expression could not be detected 

at the SC of neither mutant or control CerS3 mice even after a harsh in situ alkaline 

hydrolysis on paraffin sections (2 h, 1 M KOH, data not shown). Therefore, it is at 

least questionable whether involucrin is involved in the linkage of these specific 

epidermal ceramides to the CE in vivo. Furthermore, mice lacking involucrin did not 

reveal alterations of the CE integrity, neither showing a significant compromised 

epidermal barrier function (Djian et al., 2000). On the other hand, loricrin distribution 

at the cornified layer could be detected after mild alkaline hydrolysis in paraffin 

sections (1 h, 0.1 M KOH) in both control and mutant CerS3 mice, and its total 

concentration was reduced accordingly with transglutaminase 1 in deficient 

epidermis. However, neither absence of loricrin or the CE proteins envoplakin and 

periplakin resulted in severe alterations of the CLE (Jarnik et al., 2002; Sevilla et al., 

2007). All together these findings suggest a compensatory redundancy of the CE 

components. Whether transglutaminase 1 is capable to attach epidermal ceramides 

to either involucrin, loricrin, envoplakin, periplakin or other CE proteins in vivo 

remains elusive.  

The metabolic defect of CerS3 mice resulted in a critical reduction of secreted LB-

derived sphingolipids that gave rise to shorter discs, smaller stacks and disorganized 

lamellar sheets, which failed to align in parallel to the PM and to transform into the 

lamellar basic unit structures. At the upper SC interstices, focal and non-lamellar lipid 

agglomerates were sporadically localized within the cornified layers, predominantly at 

the tricellular contact sites. The complete lack of lamellar basic unit structures in 

mutant SC could be associated with the increased cohesion between corneocytes 

established by both central and lateral corneodesmosomes, that may inhibit the 

homogeneous distribution and the establishment of a continuous lipid layer.  
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 Likewise, loss of transglutaminase 1 function in mice also leads to incomplete and 

irregularly deformed lipid lamellae that were sparsely distributed within the 

extracellular space (Kuramoto et al., 2002). Both lack of EOS-ceramides and 

transglutaminase 1 presumably results in an abnormal formation of the CLE due to 

the impaired attachment of ceramides to proteins of the CE, thus leading to the 

absence of POS-ceramides. Therefore, one might speculate that POS-ceramides 

confer stability to the lipid lamellae providing the adequate membrane fluidity, which 

might be required for lamellar fusion events in order to form the continuous lamellar 

sheets. Otherwise, disorganized lamellar sheets yielding severe dysregulations of the 

permeability barrier might take place. 

Similarly to CerS3 deficiency, mice devoid of transglutaminase 1 exhibited 

reduced desquamation (Kuramoto et al., 2002). Whether this pseudohyperkeratosis 

is a “physical compensation for the defective cutaneous permeability barrier” as 

suggested by Kuramoto and colleagues remains elusive. However, if the defective 

corneocyte shedding in transglutaminase 1 deficient mice is as well due to the 

persistence of corneodesmosomes spread over the entire corneocyte surface, these 

could in addition contribute to the altered distribution of the lamellae giving rise to 

lipidic aggregates.  

In conjunction, the epidermal abnormalities described here for CerS3 deficient 

mice evidenced a severe impairment of the epidermal barrier function. Alterations 

within the cornification process leading to loss of barrier function have been 

described in the pathogenesis of various skin disorders, e.g. ichthyosis and atopic 

dermatitis (Jungersted et al., ; Schmuth et al., 2007). Several of these pathologies 

exhibiting an imbalance of extracellular lipid species at the cornified layer have been 

associated with an increased vulnerability towards microbial infections (Arikawa et 

al., 2002). As shown here, dysfunctional CerS3 skin exhibited a drastic increase in 

pathogenic growth upon infection of biopsies with Candida albicans. Pathogens 

appear to adhere eagerly on the surface of mutant mice, which apparently exert no 

resistance to invasion. Following surface attachment, yeast cells developed polarized 

pseudohyphae and infected the living layers down to the dermis, where they initiated 

colonization of the tissue. Considering that expression levels of murine antimicrobial 

peptides, i.e. defensins and cathelicidin, were not altered in CerS3 mutant mice, we 
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therefore assumed that lack of epidermal ceramides or its direct metabolites might 

primarily instigate the pathogenic microbial activity. In this regard, sphingosine levels 

have been distinguished from SC lipids with respect to provide a barrier against 

pathogens at the skin surface. Extracellular sphingosines concentrate in the SC 

towards the stratum disjunctum, arising from the permanent degradation of lamellar 

ceramide. Sphingosine, as well as phytoshingosine and sphinganine, efficiently 

inhibited the growth of various bacteria and yeast strains – namely Staphylococcus 

aureus, Streptococcus pyogenes, Micrococcus luteus, Propionibacterium acnes, 

Brevibacterium epidermidids and Candida albicans, but not Escherichia coli and 

Serratia marcescens –, whereas various phospholipids and sphingolipids, among 

them ceramide(d18:1,18:0) and mixed galactocerebrosides, demonstrated to be 

ineffective in vitro (Bibel et al., 1992). Furthermore, decreased levels of sphingosine 

were associated with increased acquired vulnerability to colonization by S. aureus in 

patients suffering from atopic dermatitis (Arikawa et al., 2002). In these patients, 

reduced levels of protein-bound ω-hydroxy-ULC-ceramides (POS) have been 

demonstrated (Macheleidt et al., 2002). In CerS3 deficient mice, 90% reduction of 

epidermal ceramides, including POS-ceramides, presumably results in extremely 

reduced levels of sphingosine. In order to corroborate this hypothesis, future 

investigations should include the determination of sphingosine concentration in 

mutant SC as compared with controls. Additionally, an increased SC pH might 

contribute to the severe pathogenic infection exhibited by CerS3 deficient mice (Fluhr 

and Elias, 2002).  

In summary, the present study provides conclusive evidences regarding the 

essential role of CerS3 for the biosynthesis of epidermal ULC-ceramides and the 

epidermal barrier function. 
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Despite the remarkable progress of the last two decades in defining the enzymatic 

requirements of the major sphingolipid biosynthethic pathways, few metabolic key 

steps still remain elusive at the molecular level. To ensure our full understanding of 

how sphingolipids modulate cellular functions, it is necessary to completely resolve 

their metabolism. In this context, the present thesis aimed to elucidate the 

biosynthethic requirements of ULC-sphingolipids in order to gain insight into their 

functional roles. 

 Within the ceramide synthase family, CerS3 expression levels distinctively 

correlated with the presence of ULC-sphingolipids in skin and testis. Using in vitro 

CerS3 overexpression studies in living human cells, combined with in vivo deficiency 

studies in mice, we demonstrated CerS3 substrate specificity towards acyl-CoAs 

ranging from 24 to 36 carbon atoms. Hence, we concluded that the biosynthesis of 

ULC-sphingolipids exclusively requires a functional CerS3 with no redundancy 

provided by any other ceramide synthase member. 

 The physiological role of CerS3 in the formation and maintenance of the epidermal 

permeability barrier was conclusive. Although ULC-sphingolipids were first described 

in human epidermis in 1975 (Gray and Yardley, 1975), interest in their functionality 

did not arise until recent reports associated skin pathologies with imbalances in 

epidermal lipids. In particular, decreased levels of ceramides have been 

demonstrated to contribute to the pathology of atopic dermatitis, psoriasis, ichthyosis, 

and xerosis (Coderch et al., 2003). Despite that no human epidermal disorder has yet 

been associated with alterations of the Cers3 gene, the present thesis revealed 

several important findings that should contribute to its prognosis. This unidentified 

skin disorder might be characterized by a drastic increase of transepidermal water 

loss, a markedly thick and compact stratum corneum with eventually reduced levels 

of epidermal proteases, altered expression of cornified envelope proteins and 

reduced levels of ω-hydroxy-ULC-ceramides as the symptomatic hallmark. Various 

pathologies classified within the heterogeneous family of ichthyoses share several of 

these features, for instance harlequin ichthyosis and lamellar ichthyosis. Currently, 

the genetic factor of some of these ichthyoses has not yet been identified (Oji et al., 

2010). In order to correlate a skin disorder to alterations within the Cers3 gene, future 
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investigations should focus on analyzing epidermal human biopsies from patients 

with symptomatic similarities as here described for CerS3.  

 The complex molecular events presumably altered upon CerS3 deficiency might 

as well contribute to the pathogenesis of other skin diseases. In this regard, the 

homeobox domain encoded in the CerS3 gene might transcriptionally regulate the 

expression of crucial genes involved in the maturation and terminal differentiation of 

keratinocytes. Furthermore, mutations within the homeobox domain not affecting 

enzymatic activity could contribute to developmental abnormalities in other organs 

where CerS3 is expressed only in traces. 

 In addition, the homeobox domain might as well play a crucial role in modulating 

the expression of genes associated with male germ cell differentiation. Although we 

previously reported the essential role of complex ULC-sphingolipids for proper 

development of the spermatogenic cycle (Rabionet et al., 2008; Sandhoff et al., 

2005), the premature death of CerS3d/d mice prevented the characterization and 

specific identification of its functional role in mature male germ cells. Future studies 

with germ cell specific depletion of CerS3 might clarify the physiological role of this 

enzyme in male fertility and thus could provide new perspectives on human disorders 

characterized by male sterility. 

 

 

 
 



  

 

 
 
 
 
 
 



   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6. References 
 
 
 
 
 
 
 
 

 
 



References 
 
  

 171 

Abraham, W., Wertz, P.W., and Downing, D.T. (1985). Linoleate-rich 
acylglucosylceramides of pig epidermis: structure determination by proton magnetic 
resonance. Journal of lipid research 26, 761-766. 

Aerts, J.M., Ottenhoff, R., Powlson, A.S., Grefhorst, A., van Eijk, M., Dubbelhuis, 
P.F., Aten, J., Kuipers, F., Serlie, M.J., Wennekes, T., et al. (2007). Pharmacological 
inhibition of glucosylceramide synthase enhances insulin sensitivity. Diabetes 56, 
1341-1349. 

Agbaga, M.P., Brush, R.S., Mandal, M.N., Henry, K., Elliott, M.H., and Anderson, 
R.E. (2008). Role of Stargardt-3 macular dystrophy protein (ELOVL4) in the 
biosynthesis of very long chain fatty acids. Proceedings of the National Academy of 
Sciences of the United States of America 105, 12843-12848. 

Akiyama, M., Sugiyama-Nakagiri, Y., Sakai, K., McMillan, J.R., Goto, M., Arita, K., 
Tsuji-Abe, Y., Tabata, N., Matsuoka, K., Sasaki, R., et al. (2005). Mutations in lipid 
transporter ABCA12 in harlequin ichthyosis and functional recovery by corrective 
gene transfer. The Journal of clinical investigation 115, 1777-1784. 

Al-Arif, A., and Blecher, M. (1969). Synthesis of fatty acyl CoA and other thiol esters 
using N-hydroxysuccinimide esters of fatty acids. Journal of lipid research 10, 344-
345. 

Ardail, D., Popa, I., Bodennec, J., Louisot, P., Schmitt, D., and Portoukalian, J. 
(2003). The mitochondria-associated endoplasmic-reticulum subcompartment (MAM 
fraction) of rat liver contains highly active sphingolipid-specific glycosyltransferases. 
The Biochemical journal 371, 1013-1019. 

Arikawa, J., Ishibashi, M., Kawashima, M., Takagi, Y., Ichikawa, Y., and Imokawa, G. 
(2002). Decreased levels of sphingosine, a natural antimicrobial agent, may be 
associated with vulnerability of the stratum corneum from patients with atopic 
dermatitis to colonization by Staphylococcus aureus. The Journal of investigative 
dermatology 119, 433-439. 

Aveldano, M.I., and Sprecher, H. (1987). Very long chain (C24 to C36) polyenoic 
fatty acids of the n-3 and n-6 series in dipolyunsaturated phosphatidylcholines from 
bovine retina. The Journal of biological chemistry 262, 1180-1186. 

Bauer, R., Voelzmann, A., Breiden, B., Schepers, U., Farwanah, H., Hahn, I., 
Eckardt, F., Sandhoff, K., and Hoch, M. (2009). Schlank, a member of the ceramide 
synthase family controls growth and body fat in Drosophila. The EMBO journal 28, 
3706-3716. 

Bibel, D.J., Aly, R., and Shinefield, H.R. (1992). Antimicrobial activity of 
sphingosines. The Journal of investigative dermatology 98, 269-273. 

Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of 
microgram quantities of protein utilizing the principle of protein-dye binding. Analytical 
biochemistry 72, 248-254. 



References 
 
  

 172 

Brandner, J.M. (2009). Tight junctions and tight junction proteins in mammalian 
epidermis. Eur J Pharm Biopharm 72, 289-294. 

Brandner, J.M., Haftek, M., and Niessen, C.M. (2010). Adherens Junctions, 
Desmosomes and Tight Junctions in Epidermal Barrier Function. The Open 
Dermatology Journal 4, 14-20. 

Brandner, J.M., and Proksch, E. (2006). Epidermal Barrier Function: Role of Tight 
Junctions. Skin Barrier, 191-210. 

Brock, R., Hamelers, I.H., and Jovin, T.M. (1999). Comparison of fixation protocols 
for adherent cultured cells applied to a GFP fusion protein of the epidermal growth 
factor receptor. Cytometry 35, 353-362. 

Brush, R.S., Tran, J.T., Henry, K.R., McClellan, M.E., Elliott, M.H., and Mandal, M.N. 
(2010). Retinal Sphingolipids and their Very Long Chain Fatty Acid Containing 
Species. Investigative ophthalmology & visual science 51, 4422-4431. 

Candi, E., Schmidt, R., and Melino, G. (2005). The cornified envelope: a model of cell 
death in the skin. Nature reviews 6, 328-340. 

Chalmel, F., Rolland, A.D., Niederhauser-Wiederkehr, C., Chung, S.S., Demougin, 
P., Gattiker, A., Moore, J., Patard, J.J., Wolgemuth, D.J., Jegou, B., et al. (2007). The 
conserved transcriptome in human and rodent male gametogenesis. Proceedings of 
the National Academy of Sciences of the United States of America 104, 8346-8351. 

Chomczynski, P., and Sacchi, N. (1987). Single-step method of RNA isolation by acid 
guanidinium thiocyanate-phenol-chloroform extraction. Analytical biochemistry 162, 
156-159. 

Claros, M.G., and von Heijne, G. (1994). TopPred II: an improved software for 
membrane protein structure predictions. Comput Appl Biosci 10, 685-686. 

Coderch, L., Lopez, O., de la Maza, A., and Parra, J.L. (2003). Ceramides and skin 
function. American journal of clinical dermatology 4, 107-129. 

D'Mello N, P., Childress, A.M., Franklin, D.S., Kale, S.P., Pinswasdi, C., and 
Jazwinski, S.M. (1994). Cloning and characterization of LAG1, a longevity-assurance 
gene in yeast. The Journal of biological chemistry 269, 15451-15459. 

Djian, P., Easley, K., and Green, H. (2000). Targeted ablation of the murine 
involucrin gene. The Journal of cell biology 151, 381-388. 

Doering, T., Holleran, W.M., Potratz, A., Vielhaber, G., Elias, P.M., Suzuki, K., and 
Sandhoff, K. (1999a). Sphingolipid activator proteins are required for epidermal 
permeability barrier formation. The Journal of biological chemistry 274, 11038-11045. 

Doering, T., Proia, R.L., and Sandhoff, K. (1999b). Accumulation of protein-bound 
epidermal glucosylceramides in beta-glucocerebrosidase deficient type 2 Gaucher 
mice. FEBS Lett 447, 167-170. 



References 
 
  

 173 

Dorschner, R.A., Lin, K.H., Murakami, M., and Gallo, R.L. (2003). Neonatal skin in 
mice and humans expresses increased levels of antimicrobial peptides: innate 
immunity during development of the adaptive response. Pediatric research 53, 566-
572. 

Egberts, F., Heinrich, M., Jensen, J.M., Winoto-Morbach, S., Pfeiffer, S., Wickel, M., 
Schunck, M., Steude, J., Saftig, P., Proksch, E., et al. (2004). Cathepsin D is involved 
in the regulation of transglutaminase 1 and epidermal differentiation. Journal of cell 
science 117, 2295-2307. 

Elias, P.M., Feingold, K.R., and Fartasch, M. (2006). The Epidermal Lamelar Body as 
a Multifunctional Secretory Organelle. Skin Barrier, 261-272. 

Elias, P.M., Schmuth, M., Uchida, Y., Rice, R.H., Behne, M., Crumrine, D., Feingold, 
K.R., Holleran, W.M., and Pharm, D. (2002). Basis for the permeability barrier 
abnormality in lamellar ichthyosis. Experimental dermatology 11, 248-256. 

Elias, P.M., Williams, M.L., Maloney, M.E., Bonifas, J.A., Brown, B.E., Grayson, S., 
and Epstein, E.H., Jr. (1984). Stratum corneum lipids in disorders of cornification. 
Steroid sulfatase and cholesterol sulfate in normal desquamation and the 
pathogenesis of recessive X-linked ichthyosis. The Journal of clinical investigation 
74, 1414-1421. 

Engling, A., Backhaus, R., Stegmayer, C., Zehe, C., Seelenmeyer, C., Kehlenbach, 
A., Schwappach, B., Wegehingel, S., and Nickel, W. (2002). Biosynthetic FGF-2 is 
targeted to non-lipid raft microdomains following translocation to the extracellular 
surface of CHO cells. Journal of cell science 115, 3619-3631. 

Farwanah, H., Pierstorff, B., Schmelzer, C.E., Raith, K., Neubert, R.H., Kolter, T., and 
Sandhoff, K. (2007). Separation and mass spectrometric characterization of 
covalently bound skin ceramides using LC/APCI-MS and Nano-ESI-MS/MS. Journal 
of chromatography 852, 562-570. 

Fluhr, J.W., and Elias, P.M. (2002). Stratum corneum pH: Formation and Function of 
the 'Acid Mantle'. Exog Dermatol 1, 163-175. 

Freinkel, R.K., and Traczyk, T.N. (1985). Lipid composition and acid hydrolase 
content of lamellar granules of fetal rat epidermis. The Journal of investigative 
dermatology 85, 295-298. 

Furland, N.E., Oresti, G.M., Antollini, S.S., Venturino, A., Maldonado, E.N., and 
Aveldano, M.I. (2007). Very long-chain polyunsaturated fatty acids are the major acyl 
groups of sphingomyelins and ceramides in the head of mammalian spermatozoa. 
The Journal of biological chemistry 282, 18151-18161. 

Furuse, M., Furuse, K., Sasaki, H., and Tsukita, S. (2001). Conversion of zonulae 
occludentes from tight to leaky strand type by introducing claudin-2 into Madin-Darby 
canine kidney I cells. The Journal of cell biology 153, 263-272. 



References 
 
  

 174 

Furuse, M., Hata, M., Furuse, K., Yoshida, Y., Haratake, A., Sugitani, Y., Noda, T., 
Kubo, A., and Tsukita, S. (2002). Claudin-based tight junctions are crucial for the 
mammalian epidermal barrier: a lesson from claudin-1-deficient mice. The Journal of 
cell biology 156, 1099-1111. 

Futerman, A.H., and Pagano, R.E. (1991). Determination of the intracellular sites and 
topology of glucosylceramide synthesis in rat liver. The Biochemical journal 280 ( Pt 
2), 295-302. 

Geilen, C.C., Wieder, T., and Orfanos, C.E. (1997). Ceramide signalling: regulatory 
role in cell proliferation, differentiation and apoptosis in human epidermis. Archives of 
dermatological research 289, 559-566. 

Germain, L., Rouabhia, M., Guignard, R., Carrier, L., Bouvard, V., and Auger, F.A. 
(1993). Improvement of human keratinocyte isolation and culture using thermolysin. 
Burns 19, 99-104. 

Goritz, C., Thiebaut, R., Tessier, L.H., Nieweg, K., Moehle, C., Buard, I., Dupont, 
J.L., Schurgers, L.J., Schmitz, G., and Pfrieger, F.W. (2007). Glia-induced neuronal 
differentiation by transcriptional regulation. Glia 55, 1108-1122. 

Gray, G.M., and Yardley, H.J. (1975). Lipid compositions of cells isolated from pig, 
human, and rat epidermis. Journal of lipid research 16, 434-440. 

Greenspan, P., Mayer, E.P., and Fowler, S.D. (1985). Nile red: a selective 
fluorescent stain for intracellular lipid droplets. The Journal of cell biology 100, 965-
973. 

Grimm, M.O., Grimm, H.S., Patzold, A.J., Zinser, E.G., Halonen, R., Duering, M., 
Tschape, J.A., De Strooper, B., Muller, U., Shen, J., et al. (2005). Regulation of 
cholesterol and sphingomyelin metabolism by amyloid-beta and presenilin. Nature 
cell biology 7, 1118-1123. 

Guillou, H., Zadravec, D., Martin, P.G., and Jacobsson, A. (2009). The key roles of 
elongases and desaturases in mammalian fatty acid metabolism: Insights from 
transgenic mice. Progress in lipid research. 

Haftek, M., Simon, M., and Serre, G. (2006). Corneodesmosomes: Pivotal Actors in 
the Stratum Corneum Cohesion and Desquamation. Skin Barrier, 171-189. 

Hakomori, S. (1981). Glycosphingolipids in cellular interaction, differentiation, and 
oncogenesis. Annual review of biochemistry 50, 733-764. 

Hakomori, S. (1996). Tumor malignancy defined by aberrant glycosylation and 
sphingo(glyco)lipid metabolism. Cancer research 56, 5309-5318. 

Hama, H. (2009). Fatty acid 2-Hydroxylation in mammalian sphingolipid biology. 
Biochimica et biophysica acta. 



References 
 
  

 175 

Hanada, K. (2003). Serine palmitoyltransferase, a key enzyme of sphingolipid 
metabolism. Biochimica et biophysica acta 1632, 16-30. 

Hanada, K., Kumagai, K., Yasuda, S., Miura, Y., Kawano, M., Fukasawa, M., and 
Nishijima, M. (2003). Molecular machinery for non-vesicular trafficking of ceramide. 
Nature 426, 803-809. 

Hardman, M.J., and Byrne, C. (2006). Skin Structural Development. Skin Barrier, 
273-288. 

Hardman, M.J., Sisi, P., Banbury, D.N., and Byrne, C. (1998). Patterned acquisition 
of skin barrier function during development. Development (Cambridge, England) 125, 
1541-1552. 

Heinrich, M., Wickel, M., Schneider-Brachert, W., Sandberg, C., Gahr, J., 
Schwandner, R., Weber, T., Saftig, P., Peters, C., Brunner, J., et al. (1999). 
Cathepsin D targeted by acid sphingomyelinase-derived ceramide. The EMBO 
journal 18, 5252-5263. 

Herrmann, T., van der Hoeven, F., Grone, H.J., Stewart, A.F., Langbein, L., Kaiser, 
I., Liebisch, G., Gosch, I., Buchkremer, F., Drobnik, W., et al. (2003). Mice with 
targeted disruption of the fatty acid transport protein 4 (Fatp 4, Slc27a4) gene show 
features of lethal restrictive dermopathy. The Journal of cell biology 161, 1105-1115. 

Holleran, W.H., and Takagi, Y. (2006). Stratum Corneum Lipid Processing: The Final 
Steps in Barrier Formation. Skin Barrier, 231-259. 

Holleran, W.M., Ginns, E.I., Menon, G.K., Grundmann, J.U., Fartasch, M., McKinney, 
C.E., Elias, P.M., and Sidransky, E. (1994a). Consequences of beta-
glucocerebrosidase deficiency in epidermis. Ultrastructure and permeability barrier 
alterations in Gaucher disease. The Journal of clinical investigation 93, 1756-1764. 

Holleran, W.M., Takagi, Y., Menon, G.K., Jackson, S.M., Lee, J.M., Feingold, K.R., 
and Elias, P.M. (1994b). Permeability barrier requirements regulate epidermal beta-
glucocerebrosidase. Journal of lipid research 35, 905-912. 

Hornemann, T., Wei, Y., and von Eckardstein, A. (2007). Is the mammalian serine 
palmitoyltransferase a high-molecular-mass complex? The Biochemical journal 405, 
157-164. 

Huitema, K., van den Dikkenberg, J., Brouwers, J.F., and Holthuis, J.C. (2004). 
Identification of a family of animal sphingomyelin synthases. The EMBO journal 23, 
33-44. 

Igarashi, S., Takizawa, T., Takizawa, T., Yasuda, Y., Uchiwa, H., Hayashi, S., Brysk, 
H., Robinson, J.M., Yamamoto, K., Brysk, M.M., et al. (2004). Cathepsin D, but not 
cathepsin E, degrades desmosomes during epidermal desquamation. The British 
journal of dermatology 151, 355-361. 



References 
 
  

 176 

Igarashi, Y. (2010). Studies of SMS2 or CerK defiency mice and their relations to 
diet-induced obesity and mast cell activation. personal communication ICBL 
Conference. 

Imokawa, G., Abe, A., Jin, K., Higaki, Y., Kawashima, M., and Hidano, A. (1991). 
Decreased level of ceramides in stratum corneum of atopic dermatitis: an etiologic 
factor in atopic dry skin? The Journal of investigative dermatology 96, 523-526. 

Ishida-Yamamoto, A., Simon, M., Kishibe, M., Miyauchi, Y., Takahashi, H., Yoshida, 
S., O'Brien, T.J., Serre, G., and Iizuka, H. (2004). Epidermal lamellar granules 
transport different cargoes as distinct aggregates. The Journal of investigative 
dermatology 122, 1137-1144. 

Jakobsson, A., Westerberg, R., and Jacobsson, A. (2006). Fatty acid elongases in 
mammals: their regulation and roles in metabolism. Progress in lipid research 45, 
237-249. 

Jarnik, M., de Viragh, P.A., Scharer, E., Bundman, D., Simon, M.N., Roop, D.R., and 
Steven, A.C. (2002). Quasi-normal cornified cell envelopes in loricrin knockout mice 
imply the existence of a loricrin backup system. The Journal of investigative 
dermatology 118, 102-109. 

Jeckel, D., Karrenbauer, A., Burger, K.N., van Meer, G., and Wieland, F. (1992). 
Glucosylceramide is synthesized at the cytosolic surface of various Golgi 
subfractions. The Journal of cell biology 117, 259-267. 

Jennemann, R., Sandhoff, R., Langbein, L., Kaden, S., Rothermel, U., Gallala, H., 
Sandhoff, K., Wiegandt, H., and Grone, H.J. (2007). Integrity and barrier function of 
the epidermis critically depend on glucosylceramide synthesis. The Journal of 
biological chemistry 282, 3083-3094. 

Jungersted, J.M., Scheer, H., Mempel, M., Baurecht, H., Cifuentes, L., Hogh, J.K., 
Hellgren, L.I., Jemec, G.B., Agner, T., and Weidinger, S. (2001). Stratum corneum 
lipids, skin barrier function and filaggrin mutations in patients with atopic eczema. 
Allergy. 

Kageyama-Yahara, N., and Riezman, H. (2006). Transmembrane topology of 
ceramide synthase in yeast. The Biochemical journal 398, 585-593. 

Karlsson, K.A. (1970). On the chemistry and occurrence of sphingolipid long-chain 
bases. Chemistry and physics of lipids 5, 6-43. 

Kelsell, D.P., Norgett, E.E., Unsworth, H., Teh, M.T., Cullup, T., Mein, C.A., Dopping-
Hepenstal, P.J., Dale, B.A., Tadini, G., Fleckman, P., et al. (2005). Mutations in 
ABCA12 underlie the severe congenital skin disease harlequin ichthyosis. American 
journal of human genetics 76, 794-803. 

Kirschner, N., Bohner, C., Rachow, S., and Brandner, J.M. (2010a). Tight junctions: 
is there a role in dermatology? Archives of dermatological research 302, 483-493. 



References 
 
  

 177 

Kirschner, N., Houdek, P., Fromm, M., Moll, I., and Brandner, J.M. (2010b). Tight 
junctions form a barrier in human epidermis. European journal of cell biology 89, 839-
842. 

Kolter, T., and Sandhoff, K. (1999). SphingolipidsÐTheir Metabolic Pathways and the 
Pathobiochemistry of Neurodegenerative Diseases. Angew Chem Int Ed 38, 1532-
1568. 

Komljenovic, D., Sandhoff, R., Teigler, A., Heid, H., Just, W.W., and Gorgas, K. 
(2009). Disruption of blood-testis barrier dynamics in ether-lipid-deficient mice. Cell 
and tissue research 337, 281-299. 

Kuramoto, N., Takizawa, T., Takizawa, T., Matsuki, M., Morioka, H., Robinson, J.M., 
and Yamanishi, K. (2002). Development of ichthyosiform skin compensates for 
defective permeability barrier function in mice lacking transglutaminase 1. The 
Journal of clinical investigation 109, 243-250. 

La Celle, P.T., and Polakowska, R.R. (2001). Human homeobox HOXA7 regulates 
keratinocyte transglutaminase type 1 and inhibits differentiation. The Journal of 
biological chemistry 276, 32844-32853. 

Lahiri, S., and Futerman, A.H. (2005). LASS5 is a bona fide dihydroceramide 
synthase that selectively utilizes palmitoyl-CoA as acyl donor. The Journal of 
biological chemistry 280, 33735-33738. 

Lahiri, S., and Futerman, A.H. (2007). The metabolism and function of sphingolipids 
and glycosphingolipids. Cell Mol Life Sci 64, 2270-2284. 

Lahiri, S., Lee, H., Mesicek, J., Fuks, Z., Haimovitz-Friedman, A., Kolesnick, R.N., 
and Futerman, A.H. (2007). Kinetic characterization of mammalian ceramide 
synthases: determination of K(m) values towards sphinganine. FEBS Lett 581, 5289-
5294. 

Landmann, L. (1986). Epidermal permeability barrier: transformation of lamellar 
granule-disks into intercellular sheets by a membrane-fusion process, a freeze-
fracture study. The Journal of investigative dermatology 87, 202-209. 

Lang, T. (2007). SNARE proteins and 'membrane rafts'. The Journal of physiology 
585, 693-698. 

Langbein, L., Grund, C., Kuhn, C., Praetzel, S., Kartenbeck, J., Brandner, J.M., Moll, 
I., and Franke, W.W. (2002). Tight junctions and compositionally related junctional 
structures in mammalian stratified epithelia and cell cultures derived therefrom. 
European journal of cell biology 81, 419-435. 

Lannert, H., Gorgas, K., Meissner, I., Wieland, F.T., and Jeckel, D. (1998). Functional 
organization of the Golgi apparatus in glycosphingolipid biosynthesis. 
Lactosylceramide and subsequent glycosphingolipids are formed in the lumen of the 
late Golgi. The Journal of biological chemistry 273, 2939-2946. 



References 
 
  

 178 

Laviad, E.L., Albee, L., Pankova-Kholmyansky, I., Epstein, S., Park, H., Merrill, A.H., 
Jr., and Futerman, A.H. (2008). Characterization of ceramide synthase 2: tissue 
distribution, substrate specificity, and inhibition by sphingosine 1-phosphate. The 
Journal of biological chemistry 283, 5677-5684. 

Lee, N.P., Mruk, D.D., Xia, W., and Cheng, C.Y. (2007). Cellular localization of 
sphingomyelin synthase 2 in the seminiferous epithelium of adult rat testes. The 
Journal of endocrinology 192, 17-32. 

Leonard, A.E., Pereira, S.L., Sprecher, H., and Huang, Y.S. (2004). Elongation of 
long-chain fatty acids. Progress in lipid research 43, 36-54. 

Li, W., Sandhoff, R., Kono, M., Zerfas, P., Hoffmann, V., Ding, B.C., Proia, R.L., and 
Deng, C.X. (2007). Depletion of ceramides with very long chain fatty acids causes 
defective skin permeability barrier function, and neonatal lethality in ELOVL4 
deficient mice. International journal of biological sciences 3, 120-128. 

Liu, Y., Hoffmann, A., Grinberg, A., Westphal, H., McDonald, M.P., Miller, K.M., 
Crawley, J.N., Sandhoff, K., Suzuki, K., and Proia, R.L. (1997). Mouse model of GM2 
activator deficiency manifests cerebellar pathology and motor impairment. 
Proceedings of the National Academy of Sciences of the United States of America 
94, 8138-8143. 

Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data 
using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San 
Diego, Calif 25, 402-408. 

Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951). Protein 
measurement with the Folin phenol reagent. The Journal of biological chemistry 193, 
265-275. 

Lucet-Levannier, K., Lellouche, J., and Mioskowski, C. (1995). Polysilylated 
Coenzyme A for a High-Yielding. Preparation of Very Lipophilic Acyl Coenzymes A in 
Anhydrous Organic Solvents. J Am Chem Soc 117, 7546-7547. 

Lüllmann-Rauch, R. (2003). Histologie. 

Macheleidt, O., Kaiser, H.W., and Sandhoff, K. (2002). Deficiency of epidermal 
protein-bound omega-hydroxyceramides in atopic dermatitis. The Journal of 
investigative dermatology 119, 166-173. 

Mack, J.A., Li, L., Sato, N., Hascall, V.C., and Maytin, E.V. (2005). Hoxb13 up-
regulates transglutaminase activity and drives terminal differentiation in an epidermal 
organotypic model. The Journal of biological chemistry 280, 29904-29911. 

Madison, K.C. (2003). Barrier function of the skin: "la raison d'etre" of the epidermis. 
The Journal of investigative dermatology 121, 231-241. 



References 
 
  

 179 

Majoul, I., Schmidt, T., Pomasanova, M., Boutkevich, E., Kozlov, Y., and Soling, H.D. 
(2002). Differential expression of receptors for Shiga and Cholera toxin is regulated 
by the cell cycle. Journal of cell science 115, 817-826. 

Mandal, M.N., Ambasudhan, R., Wong, P.W., Gage, P.J., Sieving, P.A., and 
Ayyagari, R. (2004). Characterization of mouse orthologue of ELOVL4: genomic 
organization and spatial and temporal expression. Genomics 83, 626-635. 

Mandon, E.C., Ehses, I., Rother, J., van Echten, G., and Sandhoff, K. (1992). 
Subcellular localization and membrane topology of serine palmitoyltransferase, 3-
dehydrosphinganine reductase, and sphinganine N-acyltransferase in mouse liver. 
The Journal of biological chemistry 267, 11144-11148. 

Marekov, L.N., and Steinert, P.M. (1998). Ceramides are bound to structural proteins 
of the human foreskin epidermal cornified cell envelope. The Journal of biological 
chemistry 273, 17763-17770. 

Mark, M., Rijli, F.M., and Chambon, P. (1997). Homeobox genes in embryogenesis 
and pathogenesis. Pediatric research 42, 421-429. 

Masukawa, Y., Narita, H., Shimizu, E., Kondo, N., Sugai, Y., Oba, T., Homma, R., 
Ishikawa, J., Takagi, Y., Kitahara, T., et al. (2008). Characterization of overall 
ceramide species in human stratum corneum. Journal of lipid research 49, 1466-
1476. 

McMahon, A., Butovich, I.A., Mata, N.L., Klein, M., Ritter, R., 3rd, Richardson, J., 
Birch, D.G., Edwards, A.O., and Kedzierski, W. (2007a). Retinal pathology and skin 
barrier defect in mice carrying a Stargardt disease-3 mutation in elongase of very 
long chain fatty acids-4. Molecular vision 13, 258-272. 

McMahon, A., Jackson, S.N., Woods, A.S., and Kedzierski, W. (2007b). A Stargardt 
disease-3 mutation in the mouse Elovl4 gene causes retinal deficiency of C32-C36 
acyl phosphatidylcholines. FEBS Lett 581, 5459-5463. 

Meixner, M. (2009). Untersuchungen zur Funktion der alpha-hydroxylierten 
Sphingolipide im Nervensystem und in der Haut. Dissertation. 

Melton, J.L., Wertz, P.W., Swartzendruber, D.C., and Downing, D.T. (1987). Effects 
of essential fatty acid deficiency on epidermal O-acylsphingolipids and 
transepidermal water loss in young pigs. Biochimica et biophysica acta 921, 191-197. 

Menuz, V., Howell, K.S., Gentina, S., Epstein, S., Riezman, I., Fornallaz-Mulhauser, 
M., Hengartner, M.O., Gomez, M., Riezman, H., and Martinou, J.C. (2009). 
Protection of C. elegans from anoxia by HYL-2 ceramide synthase. Science (New 
York, NY 324, 381-384. 

Michel, C., and van Echten-Deckert, G. (1997). Conversion of dihydroceramide to 
ceramide occurs at the cytosolic face of the endoplasmic reticulum. FEBS Lett 416, 
153-155. 



References 
 
  

 180 

Mitsutake, S., Yokota, H., Zama, K., Yamashita, T., Okazaki, T., Watanabe, K., and 
Igarashi, Y. (2010). SMS2 deficiency prevents diet-induced obesity. ICBL Conference 
Poster presentation. 

Mizutani, Y., Kihara, A., Chiba, H., Tojo, H., and Igarashi, Y. (2008). Synthesis of 2-
hydroxy-ceramide by ceramide synthase family members: enzymatic basis for the 
preference of fatty acid chain length in cultured cell models. Journal of lipid research 
49, 2356-2364. 

Mizutani, Y., Kihara, A., and Igarashi, Y. (2005). Mammalian Lass6 and its related 
family members regulate synthesis of specific ceramides. J Biochem 390, 263-271. 

Mizutani, Y., Kihara, A., and Igarashi, Y. (2006). LASS3 (longevity assurance 
homologue 3) is a mainly testis-specific (dihydro)ceramide synthase with relatively 
broad substrate specificity. J Biochem 398, 531-538. 

Morita, K., Furuse, M., Yoshida, Y., Itoh, M., Sasaki, H., Tsukita, S., and Miyachi, Y. 
(2002). Molecular architecture of tight junctions of periderm differs from that of the 
maculae occludentes of epidermis. The Journal of investigative dermatology 118, 
1073-1079. 

Morita, K., Itoh, M., Saitou, M., Ando-Akatsuka, Y., Furuse, M., Yoneda, K., Imamura, 
S., Fujimoto, K., and Tsukita, S. (1998). Subcellular distribution of tight junction-
associated proteins (occludin, ZO-1, ZO-2) in rodent skin. The Journal of 
investigative dermatology 110, 862-866. 

Motta, S., Monti, M., Sesana, S., Caputo, R., Carelli, S., and Ghidoni, R. (1993). 
Ceramide composition of the psoriatic scale. Biochimica et biophysica acta 1182, 
147-151. 

Muramatsu, T. (2000). Essential roles of carbohydrate signals in development, 
immune response and tissue functions, as revealed by gene targeting. Journal of 
biochemistry 127, 171-176. 

Nemes, Z., Marekov, L.N., Fesus, L., and Steinert, P.M. (1999). A novel function for 
transglutaminase 1: attachment of long-chain omega-hydroxyceramides to involucrin 
by ester bond formation. Proceedings of the National Academy of Sciences of the 
United States of America 96, 8402-8407. 

Nolan, J.P., and Hammerstedt, R.H. (1997). Regulation of membrane stability and 
the acrosome reaction in mammalian sperm. Faseb J 11, 670-682. 

O'Brien, J.S., and Rouser, G. (1964). The fatty acid composition of brain 
sphingolipids: sphingomyelin, ceramide, cerebroside, and cerebroside sulfate. 
Journal of lipid research 5, 339-342. 

Oji, V., Tadini, G., Akiyama, M., Blanchet Bardon, C., Bodemer, C., Bourrat, E., 
Coudiere, P., DiGiovanna, J.J., Elias, P., Fischer, J., et al. (2010). Revised 
nomenclature and classification of inherited ichthyoses: results of the First Ichthyosis 



References 
 
  

 181 

Consensus Conference in Soreze 2009. Journal of the American Academy of 
Dermatology 63, 607-641. 

Pakkala, S.G., Fillerup, D.L., and Mead, J.F. (1966). The very long chain fatty acids 
of human brain sphingolipids. Lipids 1, 449-450. 

Perry, R.J., and Ridgway, N.D. (2005). Molecular mechanisms and regulation of 
ceramide transport. Biochimica et biophysica acta 1734, 220-234. 

Poulos, A. (1995). Very long chain fatty acids in higher animals--a review. Lipids 30, 
1-14. 

Pruett, S.T., Bushnev, A., Hagedorn, K., Adiga, M., Haynes, C.A., Sullards, M.C., 
Liotta, D.C., and Merrill, A.H., Jr. (2008). Biodiversity of sphingoid bases 
("sphingosines") and related amino alcohols. Journal of lipid research 49, 1621-1639. 

Rabionet, M., van der Spoel, A.C., Chuang, C.C., von Tumpling-Radosta, B., Litjens, 
M., Bouwmeester, D., Hellbusch, C.C., Korner, C., Wiegandt, H., Gorgas, K., et al. 
(2008). Male germ cells require polyenoic sphingolipids with complex glycosylation 
for completion of meiosis: A link to ceramide synthase-3. The Journal of biological 
chemistry 283, 13357-13369. 

Radner, F.P., Streith, I.E., Schoiswohl, G., Schweiger, M., Kumari, M., Eichmann, 
T.O., Rechberger, G., Koefeler, H.C., Eder, S., Schauer, S., et al. (2009). Growth 
retardation, impaired triacylglycerol catabolism, hepatic steatosis, and lethal skin 
barrier defect in mice lacking comparative gene identification-58 (CGI-58). The 
Journal of biological chemistry 285, 7300-7311. 

Raymond, A.A., Gonzalez de Peredo, A., Stella, A., Ishida-Yamamoto, A., Bouyssie, 
D., Serre, G., Monsarrat, B., and Simon, M. (2008). Lamellar bodies of human 
epidermis: proteomics characterization by high throughput mass spectrometry and 
possible involvement of CLIP-170 in their trafficking/secretion. Mol Cell Proteomics 7, 
2151-2175. 

Riebeling, C., Allegood, J.C., Wang, E., Merrill, J., A.H., and Futerman, A.H. (2003). 
Two Mammalian Longevity Assurance Gene (LAG1) Family Members, trh1 and trh4, 
Regulate Dihydroceramide Synthesis Using Different Fatty Acyl-CoA Donors. The 
Journal of biological chemistry 278, 43452-43459. 

Rieger, E., Bijl, J.J., van Oostveen, J.W., Soyer, H.P., Oudejans, C.B., Jiwa, N.M., 
Walboomers, J.M., and Meijer, C.J. (1994). Expression of the homeobox gene 
HOXC4 in keratinocytes of normal skin and epithelial skin tumors is correlated with 
differentiation. The Journal of investigative dermatology 103, 341-346. 

Robinson, B.S., Johnson, D.W., and Poulos, A. (1992). Novel molecular species of 
sphingomyelin containing 2-hydroxylated polyenoic very-long-chain fatty acids in 
mammalian testes and spermatozoa. The Journal of biological chemistry 267, 1746-
1751. 



References 
 
  

 182 

Ruvolo, P.P. (2003). Intracellular signal transduction pathways activated by ceramide 
and its metabolites. Pharmacol Res 47, 383-392. 

Sandhoff, R. (2007). Struktur-funktionsbeziehung von Glycosphingolipiden 
Habilitationsschrift. 

Sandhoff, R. (2009). Very long chain sphingolipids: Tissue expression, function and 
synthesis. FEBS Lett. 

Sandhoff, R., Geyer, R., Jennemann, R., Paret, C., Kiss, E., Yamashita, T., Gorgas, 
K., Sijmonsma, T.P., Iwamori, M., Finaz, C., et al. (2005). Novel class of 
glycosphingolipids involved in male fertility. The Journal of biological chemistry 280, 
27310-27318. 

Sandhoff, R., Hepbildikler, S.T., Jennemann, R., Geyer, R., Gieselmann, V., Proia, 
R.L., Wiegandt, H., and Grone, H.J. (2002). Kidney sulfatides in mouse models of 
inherited glycosphingolipid disorders: determination by nano-electrospray ionization 
tandem mass spectrometry. The Journal of biological chemistry 277, 20386-20398. 

Schmuth, M., Gruber, R., Elias, P.M., and Williams, M.L. (2007). Ichthyosis update: 
towards a function-driven model of pathogenesis of the disorders of cornification and 
the role of corneocyte proteins in these disorders. Advances in dermatology 23, 231-
256. 

Schnaar, R.L. (1991). Glycosphingolipids in cell surface recognition. Glycobiology 1, 
477-485. 

Schorling, S., Vallee, B., Barz, W.P., Riezman, H., and Oesterhelt, D. (2001). Lag1p 
and Lac1p are essential for the Acyl-CoA-dependent ceramide synthase reaction in 
Saccharomyces cerevisae. Molecular biology of the cell 12, 3417-3427. 

Schroeder, H.E., Rossinsky, K., and Muller, W. (1980). An established routine 
method for differential staining of epoxy-embedded tissue sections. Microscopica 
acta 83, 111-116. 

Sevilla, L.M., Nachat, R., Groot, K.R., Klement, J.F., Uitto, J., Djian, P., Maatta, A., 
and Watt, F.M. (2007). Mice deficient in involucrin, envoplakin, and periplakin have a 
defective epidermal barrier. The Journal of cell biology 179, 1599-1612. 

Shima, J.E., McLean, D.J., McCarrey, J.R., and Griswold, M.D. (2004). The murine 
testicular transcriptome: characterizing gene expression in the testis during the 
progression of spermatogenesis. Biology of reproduction 71, 319-330. 

Shimeno, H., Soeda, S., Sakamoto, M., Kouchi, T., Kowakame, T., and Kihara, T. 
(1998). Partial purification and characterization of sphingosine N-acyltransferase 
(ceramide synthase) from bovine liver mitochondrion-rich fraction. Lipids 33, 601-
605. 



References 
 
  

 183 

Simionescu, N., and Simionescu, M. (1976). Galloylglucoses of low molecular weight 
as mordant in electron microscopy. II. The moiety and functional groups possibly 
involved in the mordanting effect. The Journal of cell biology 70, 622-633. 

Spassieva, S., Seo, J.G., Jiang, J.C., Bielawski, J., Alvarez-Vasquez, F., Jazwinski, 
S.M., Hannun, Y.A., and Obeid, L.M. (2006). Necessary role for the Lag1p motif in 
(dihydro)ceramide synthase activity. The Journal of biological chemistry 281, 33931-
33938. 

Spiegel, S., and Milstien, S. (2003). Sphingosine-1-phosphate: an enigmatic 
signalling lipid. Nature reviews 4, 397-407. 

Sprong, H., Kruithof, B., Leijendekker, R., Slot, J.W., van Meer, G., and van der 
Sluijs, P. (1998). UDP-galactose:ceramide galactosyltransferase is a class I integral 
membrane protein of the endoplasmic reticulum. The Journal of biological chemistry 
273, 25880-25888. 

Stark, H.J., Boehnke, K., Mirancea, N., Willhauck, M.J., Pavesio, A., Fusenig, N.E., 
and Boukamp, P. (2006). Epidermal homeostasis in long-term scaffold-enforced skin 
equivalents. The journal of investigative dermatology Symposium proceedings / the 
Society for Investigative Dermatology, Inc 11, 93-105. 

Steven, A.C., and Steinert, P.M. (1994). Protein composition of cornified cell 
envelopes of epidermal keratinocytes. Journal of cell science 107 ( Pt 2), 693-700. 

Stoffel, W., Holz, B., Jenke, B., Binczek, E., Gunter, R.H., Kiss, C., Karakesisoglou, 
I., Thevis, M., Weber, A.A., Arnhold, S., et al. (2008). Delta6-Desaturase (FADS2) 
deficiency unveils the role of omega3- and omega6-polyunsaturated fatty acids. The 
EMBO journal. 

Stratford, S., Hoehn, K.L., Liu, F., and Summers, S.A. (2004). Regulation of insulin 
action by ceramide: dual mechanisms linking ceramide accumulation to the inhibition 
of Akt/protein kinase B. The Journal of biological chemistry 279, 36608-36615. 

Teufel, A., Maass, T., Galle, P.R., and Malik, N. (2009). The longevity assurance 
homologue of yeast lag1 (Lass) gene family (Review). International journal of 
molecular medicine 23, 135-140. 

Thudichum, J.L.W. (1884). A treatise on the chemical constitution of the brain. 

Tsukita, S., Furuse, M., and Itoh, M. (2001). Multifunctional strands in tight junctions. 
Nature reviews 2, 285-293. 

Uchida, Y., and Hamanaka, S. (2006). Stratum Corneum Ceramides: Function, 
Origins, and Therapeutic Applications. Skin Barrier, 43-64. 

Uchida, Y., Hara, M., Nishio, H., Sidransky, E., Inoue, S., Otsuka, F., Suzuki, A., 
Elias, P.M., Holleran, W.M., and Hamanaka, S. (2000). Epidermal sphingomyelins 
are precursors for selected stratum corneum ceramides. Journal of lipid research 41, 
2071-2082. 



References 
 
  

 184 

Valianpour, F., Selhorst, J.J., van Lint, L.E., van Gennip, A.H., Wanders, R.J., and 
Kemp, S. (2003). Analysis of very long-chain fatty acids using electrospray ionization 
mass spectrometry. Molecular genetics and metabolism 79, 189-196. 

Vallee, B., and Riezman, H. (2005). Lip1p: a novel subunit of acyl-CoA ceramide 
synthase. The EMBO journal 24, 730-741. 

Vasireddy, V., Uchida, Y., Salem, N., Jr., Kim, S.Y., Mandal, M.N., Reddy, G.B., 
Bodepudi, R., Alderson, N.L., Brown, J.C., Hama, H., et al. (2007). Loss of functional 
ELOVL4 depletes very long-chain fatty acids (> or =C28) and the unique omega-O-
acylceramides in skin leading to neonatal death. Human molecular genetics 16, 471-
482. 

Veerman, E.C., Valentijn-Benz, M., van't Hof, W., Nazmi, K., van Marle, J., and 
Amerongen, A.V. (2010). Phytosphingosine kills Candida albicans by disrupting its 
cell membrane. Biological chemistry 391, 65-71. 

Venkataraman, K., Riebeling, C., Bodennec, J., Riezman�, H., Allegood, J.C., 
Sullards, M.C., Merrill, J., A.H., and Futerman, A.H. (2002). Upstream of Growth and 
Differentiation Factor 1 (uog1), a Mammalian Homolog of the Yeast Longevity 
Assurance Gene 1(LAG1), Regulates N-Stearoyl-sphinganine (C18-
(Dihydro)ceramide) Synthesis in a Fumonisin B1-independent Manner in 
Mammalian Cells. The Journal of biological chemistry 277, 35642-35649. 

Wang, Y., Botolin, D., Xu, J., Christian, B., Mitchell, E., Jayaprakasam, B., Nair, 
M.G., Peters, J.M., Busik, J.V., Olson, L.K., et al. (2006). Regulation of hepatic fatty 
acid elongase and desaturase expression in diabetes and obesity. Journal of lipid 
research 47, 2028-2041. 

Weinmann, A., Galle, P.R., and Teufel, A. (2005). LASS6, an additional member of 
the longevity assurance gene family. Int J Mol Med 16, 905-910. 

Werzt, P.W. (2006). Biochemistry of Human Stratum Corneum Lipids. Skin Barrier, 
33-43. 

Westerberg, R., Tvrdik, P., Unden, A.B., Mansson, J.E., Norlen, L., Jakobsson, A., 
Holleran, W.H., Elias, P.M., Asadi, A., Flodby, P., et al. (2004). Role for ELOVL3 and 
fatty acid chain length in development of hair and skin function. The Journal of 
biological chemistry 279, 5621-5629. 

White, S.H., Mirejovsky, D., and King, G.I. (1988). Structure of lamellar lipid domains 
and corneocyte envelopes of murine stratum corneum. An X-ray diffraction study. 
Biochemistry 27, 3725-3732. 

Winter, E., and Ponting, C.P. (2002). TRAM, LAG1 and CLN8: members of a novel 
family of lipid-sensing domains? Trends in biochemical sciences 27, 381-383. 

Wolgemuth, D.J., Viviano, C.M., Gizang-Ginsberg, E., Frohman, M.A., Joyner, A.L., 
and Martin, G.R. (1987). Differential expression of the mouse homeobox-containing 
gene Hox-1.4 during male germ cell differentiation and embryonic development. 



References 
 
  

 185 

Proceedings of the National Academy of Sciences of the United States of America 
84, 5813-5817. 

Yamasaki, K., and Gallo, R.L. (2008). Antimicrobial peptides in human skin disease. 
Eur J Dermatol 18, 11-21. 

Yamashita, T., Hashiramoto, A., Haluzik, M., Mizukami, H., Beck, S., Norton, A., 
Kono, M., Tsuji, S., Daniotti, J.L., Werth, N., et al. (2003). Enhanced insulin sensitivity 
in mice lacking ganglioside GM3. Proceedings of the National Academy of Sciences 
of the United States of America 100, 3445-3449. 

Yanagi, T., Akiyama, M., Nishihara, H., Ishikawa, J., Sakai, K., Miyamura, Y., Naoe, 
A., Kitahara, T., Tanaka, S., and Shimizu, H. (2010). Self-improvement of 
keratinocyte differentiation defects during skin maturation in ABCA12-deficient 
harlequin ichthyosis model mice. The American journal of pathology 177, 106-118. 

Yang, L.J., Zeller, C.B., Shaper, N.L., Kiso, M., Hasegawa, A., Shapiro, R.E., and 
Schnaar, R.L. (1996). Gangliosides are neuronal ligands for myelin-associated 
glycoprotein. Proceedings of the National Academy of Sciences of the United States 
of America 93, 814-818. 

Zaidi, N., Maurer, A., Nieke, S., and Kalbacher, H. (2008). Cathepsin D: a cellular 
roadmap. Biochemical and biophysical research communications 376, 5-9. 

Zhou, Y., Lau, F.W., Nauli, S., Yang, D., and Bowie, J.U. (2001). Inactivation 
mechanism of the membrane protein diacylglycerol kinase in detergent solution. 
Protein Sci 10, 378-383. 

Zuo, Y., Zhuang, D.Z., Han, R., Isaac, G., Tobin, J.J., McKee, M., Welti, R., Brissette, 
J.L., Fitzgerald, M.L., and Freeman, M.W. (2008). ABCA12 maintains the epidermal 
lipid permeability barrier by facilitating formation of ceramide linoleic esters. The 
Journal of biological chemistry 283, 36624-36635. 
 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7. Appendix 
 
 
 
 
 
 
 
 



Appendix 
 

  

 187 

 
Carbon chain length of 

saturated fatty acids 
IUPAC nomenclature Trivial name 

C14 Tetradecanoic Myristic 
C16 Hexadecanoic Palmitic 
C18 Octadecanoic Stearic 
C20 Eicosanoic Arachidic 
C22 Docosanoic Behenic 
C24 Tetracosanoic Lignoceric 
C26 Hexacosanoic Cerotic 
C28 Octacosanoic Montanic 
C30 Triacontanoic Melissic 
C32 Dotriacontanoic Lacceroic 
C34 Tetratriacontanoic Geddic 
C36 Hexatriacontanoic Henxatriacontylic 

 
Table A1. Nomenclature of saturated fatty acids. 
The nomenclature of fatty acids commonly specified in this study are described with 
their trivial name and according to IUPAC rules. 
 

Carbon chain length of 
saturated fatty acids 

IUPAC nomenclature Trivial name 

C18:1, ω-9 cis-9-octadecenoic Oleic 

C18:2, ω-6 cis-9,12-octadecadienoic Linoleic 

C18:3, ω-6 cis-6,9,12-octadecatrienoic γ-Linolenic 
C20:3, ω-6 cis-8,11,14-eicosatrienoic Dihomo γ-Linolenic 
C20:4, ω-6 cis-5,8,11,14-eicosatretraenoic Arachidonic 

C22:4, ω-6 cis-7,10,13,15-docosatetraenoic  

C24:1, ω-9 cis-15-tetracosaenoic Nervonic 

C24:4, ω-6 cis-9,12,15,18- tetracosaenoic  

C18:3, ω-3 cis-9,12,15-octadecatrienoic Linolenic 

C18:4, ω-3 cis-6,9,12,15-octadecatetraenoic  

C20:4, ω-3 cis-8,11,13,17-eicosatetraenoic  

 
Table A2. Nomenclature of unsaturated fatty acids. 
The nomenclature of fatty acids commonly specified in this study are described with 
their trivial name and according to IUPAC rules. 
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Species Enzyme name 
Fatty acyl-CoA 

substrate 

Homo sapiens /  
Mus musculus 

CerS1 18 
CerS2 22-24 
CerS3 18-24 ? 
CerS4 18-22 
CerS5 16 
CerS6 14-16 

Caenorhabditis elegans 
Hyl-1 24-26 
Hyl-2 20-22 
Lagr-1 ? 

Saccharomyces cerevisiae 
Lag1 26 
Lac1 26 
Lip1 26 

Drosophila melanogaster Schlank 14-18 
 
Table A3. The ceramide synthases in various eukaryotic organisms. 
Substrate preferences of H. sapiens and M. musculus (Laviad et al., 2008; Mizutani 
et al., 2006; Riebeling et al., 2003; Venkataraman et al., 2002; Weinmann et al., 
2005), C. elegans (Menuz et al., 2009), S. cerevisiae (Schorling et al., 2001; Vallee 
and Riezman, 2005), and D. melanogaster (Bauer et al., 2009), as reported 
according to the current literature. 
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Mouse           MFQTFRKWFWSERYWLPPTIKWSDLEDHDGLVFVKASHLYITIPYAFLLMVVRYFFEKFV 60 
Human           MFWTFKEWFWLERFWLPPTIKWSDLEDHDGLVFVKPSHLYVTIPYAFLLLIIRRVFEKFV 60 
                ** **::*** **:*********************.****:********:::* .***** 
 
Mouse           ATPLANALGIKKTQHKIKPNAILENFFKHSTSKPSHTDIYGLAKKCNLTERQVERWLRIR 120 
Human           ASPLAKSFGIKETVRKVTPNTVLENFFKHSTRQPLQTDIYGLAKKCNLTERQVERWFRSR 120 
                *:***:::***:* :*:.**::********* :* :********************:* * 
 
Mouse           QKQNKPCRLQKFQESCWRFTFYLLITMAGAVFLYDKPWAYDLWEVWNDYPRQPLLPSQYW 180 
Human           RNQERPSRLKKFQEACWRFAFYLMITVAGIAFLYDKPWLYDLWEVWNGYPKQPLLPSQYW 180 
                ::*::*.**:****:****:***:**:** .******* ********.**:********* 
 
Mouse           YYILEMSFYWSLVFSLSTDIKRKDFLAHVIHHLAAISLMSFSWCANYIRSGTLVMFIHDI 240 
Human           YYILEMSFYWSLLFRLGFDVKRKDFLAHIIHHLAAISLMSFSWCANYIRSGTLVMIVHDV 240 
                ************:* *. *:********:**************************::**: 
 
Mouse           SDIWLESAKMFSYAGWKQTCNTLFFIFTVVFFISRFIIFPFWILYCTLILPLHYLEPFFS 300 
Human           ADIWLESAKMFSYAGWTQTCNTLFFIFSTIFFISRLIVFPFWILYCTLILPMYHLEPFFS 300 
                :***************.**********:.:*****:*:*************:::****** 
 
Mouse           YIFLNLQLMILQGLHVYWGYFILKMLNRCIFTQNVQDVRSDNEEEEEEEEEEEAESTKGK 360 
Human           YIFLNLQLMILQVLHLYWGYYILKMLNRCIFMKSIQDVRSDDEDYEEEEEEEEEEATKGK 360 
                ************ **:****:********** :.:******:*: ******** *:**** 
 
Mouse           ETEYLKNGLGTNRHLIANGQHGR 383 
Human           EMDCLKNGLRAERHLIPNGQHGH 383 
                * : ***** ::****.*****: 

 
Figure A1. Mouse amino acid sequence of CerS3 compared to human 
homologue. 
CerS3 mRNA isolated from mouse testis was subjected to reverse transcription and 
subsequently sequenced. The mouse and human protein sequences are compared 
here together in a blast. Conserved amino acid are annotated (*), as well as 
observed conserved substitutions (:) and semi-conserved substitutions (.).  
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Figure A2. Thin layer chromatography of synthesized internal standard 
ceramides. 
(A) TLC of a crude ceramide product separated with CHCl3/CH3OH/glacial AcOH 
(188/11/1) as a solvent system. Residual reactants and side-products are indicated. 
Bands were visualized by staining with copper reagent. (B) For quantification of 
purified ceramide standards, a dilution series of ceramide in a known concentration, 
here Cer(d18:1, 14:0), were spotted next to the ceramide of unknown concentration. 
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Figure A3. Flow cytometric analyses according to GFP fluorescence of stable 
cell lines expressing CerS3 and transiently transfected cells expressing CerS2. 
HeLa cells expressing CerS2 or CerS3 were subjected to flow cytometric analyses 
prior to being used for ceramide synthase assays. Transfection efficiency (%) was 
determined according to relative fluorescence intensity of 1 × 104 cells, considering 
fluorescence positive cells those with signal intensity over ≳101. 
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Figure A4. “Hyper”keratosis and delayed keratinocyte maturation in CerS3d/d 
mice. 
Light micrographs of semithin Epon sections of neonatal (A-B) and embryonic (A’-B’) 
skin of control (A) and CerS3d/d (B) mice stained with PAS-methylene blue-Azur II. 
Mutant SC is distinctively compact and thicker at birth and at embryonic stage E18.5 
± 0.5, as compared to controls. Periderm persisted in mutant skin at E18.5, as well 
as after birth (green arrows). (C-D) Electron micrographs revealed delayed 
cornification/degradation of organellar structures (yellow stars) in the first corneocyte 
layer of CerS3d/d mice. (E-F) TUNEL staining performed on paraffin sections of 
control and mutant epidermis. TUNEL-positive corneocytes and superficial 
peridermal layer indicated remnants of nuclear structures in mutant epidermis (red 
arrows), as compared to control mice (E). PAS staining of semithin Epon sections of 
control (G) and mutant CerS3d/d (H) skin for detection of glycogen. Residual glycogen 
was exclusively detected in the superficial layers of mutant SC (black arrows). 
Comparable staining for both control and mutant was observed predominantly within 
the SS and SG. 
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Figure A5. Persistence of corneodesmosomes in the entire SC of CerS3 
deficient skin. 
Electron micrograph of the upper layers of the neonatal CerS3d/d skin exhibiting the 
persistant periderm (green arrow) and corneodesmosomes within the enitre SC (red 
arrows).  
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Figure A6. Epidermal sphingolipid profile of CerS3d/d mice. 
(A) TLC of epidermal sphingolipids stained with copper sulfate/phosphoric acid and 
developed at 180 ºC for 8 and 16 min. Each lane corresponds to 0.5 mg dry weight of 
epidermis. Lipid standards are annotated in black, and epidermal lipids in red. (B) 
Mass spectromtric quantification of ceramide, glucosylceramide and sphingomyelin 
species. Lipid species with a fatty acid moiety longer than 24 carbon atoms were 
strongly reduced or completely missing in CerS3d/d epidermis (red arrows). Error bars 
represent the SEM of 3 analysed extracts. 
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Figure A7. Increased pathogenic growth is not associated with decreased 
expression rates of antimicrobial peptides in CerS3 mutant mice.  
(A) Quantification of C. albicans growth after 24 h infection of cultured skin biopsies 
of embryonic E18.5 ± 0.5 control and mutant mice. Growth was determined by colony 
forming units of yeast cultured on Sabouroud agar plates for 48 h at 37 ºC. (B) 
Transcript expression levels of murine defensins (mBD1–4) and cathelicidin 
(mCamp) in skin of newborn CerS3+/+ and CerS3d/d, as determined by qRT-PCR. No 
significant changes in the expression levels of any of the examined antimicrobial 
peptides was detected in mutant mice. Relative fold expression was calculated using 
the ∆∆CT mtehod. Normalized ∆CT values were compared to normalized ∆CT of 
control wild type mCamp-mRNA. 
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List of abbreviations 
 
AcOH  Acetate 

Amp       Ampicillin 

APS  Ammonium persulfate 

BL       Basal lamina 

BSA       Bovine serum albumin 

BTB  Blood-testis barrier 

cDNA      Complementary DNA 

CE  Cornified envelope 

CFU  Colony forming units 

CLE  Corneocyte-lipid envelope 

Cer  Ceramide 

CerS       Ceramide synthase 

CoA  Coenzyme A 

CTS  Cathepsin 

DCC  Dicyclohexylcarbodiimide    

DCU  Dicyclohexylurea 

DMEM      Dulbecco’s modified Eagle's medium 

DMSO      Dimethyl sulfoxide 

dNTP  Deoxyribo nucleotide triphosphate 

Dox       Doxycycline 

dT  deoxyribo thymine 

DTT  Dithiothreitol 

e.g.       Exempli gratia 

EB       Eluation buffer 

ECL  Enhanced chemiluminescence 

EGFP      Enhanced green fluorescent protein 

Elovl       Elongation of very long chain fatty acids 

EOS       ω-hydroxy-FA esterified to primarily linoleic acid 

ER  Endoplasmic reticulum 

ESI-MS/MS  Electrospray ionization tandem mass spectrometry 
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eST       Elongated spermatid 

Etc.       Et cetera 

FA       Fatty acid 

FFA       Free fatty acid 

FACS      Fluorescence-activated cell sorting 

FCS       Fetal calf serum 

F-granules    Filaggrin/profilaggrin containing granules 

FGSL  Fucosylated glycosphingolipids 

GAPDH  Glyceraldehyde 3-phosphate dehydrogenase 

Gb  Globo 

Gg  Ganglio 

GlcCer  Glucosylceramide 

GSL  Glycosphingolipid 

HP-TLC  High performance TLC 

HRP  Horseradish peroxidase 

ICS       Intercellular space 

i.e.       Id est 

IS  Interstitium 

IS  Internal standard 

Kan       Kanamycin  

Kbp       Kilo base pair 

KG       Keratohyalin granule 

KLK       Kallikrein 

LacCer      Lactosylceramide 

Lass       Longevity assurance  

LB       Lamellar body 

LB       Lysogeni broth or Luria-Bertani broth 

LC  Leydig Cell 

LC  Long chain 

LCB  Long chain base 

L-granules  Loricrin containing granules 

lSC  Leptotene spermatocyte 
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MBS       Modified bovine serum 

mCAT1      Murine cationic aminoacid transporter 1 

MoMLV      Moloney murine leukemia virus 

NHS       N-hydroxysuccinimide 

NS       Non-hydroxy-FA 

OS       ω-hydroxy-FA  

PAS       Periodic acid Schiff 

PBS       Phosphate buffered saline 

PC       Phosphatidylcholine 

PCR       Polymerase chain reaction 

PDI  Protein disulfide isomerase 

PFA  Paraformaldehyde 

PGK  Phosphoglycerate kinase 

plSC  Preleptotene spermatocyte  

PM  Plasma membrane 

PN  Postnatal 

POS       ω-hydroxy-FA esterified to proteins 

PUFA  Polyunsaturated fatty acids 

rb  Residual body 

rST  Round spermatid 

r.t.  Room temperature 

RPMI      Roswell park memorial institute medium 

rtTA2-M2     Optimized reverse tetracycline-controlled transactivator 

SB  Stratum basale 

SC  Stratum corneum 

SC  Short chain 

SC  Spermatocyte 

SDS-PAGE  Sodium dodecyl sulphate polyacrylamide gel electrophoresis 

SG  Stratum granulosum 

SG  Spermatogonia  

SL  Sphingolipid 

SM  Sphingomyelin 
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SMS       Sphingomyelin synthase 

SOC       Super optimal broth with catabolite repression 

ST  Spermatid 

Sza  Spermatozoa 

Ta        Annealing temperature         

TAE        Tris-acetate-EDTA 

TE       Tris base-EDTA 

TEWL  Transepidermal water loss 

THF  Tetrahydrofuran 

TLC  Thin layer chromatography 

TLC  Tram-Lag-CLN8 domain 

TM  Transmembrane 

TRE       Tetracycline-responsive element  

TUNEL  Terminal dUTP nick-end labeling 

ULC  Ultra long chain 

VLC  Very long chain 

ZO       Zonulae occludentes 
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