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I

Zusammenfassung

Angeregte oder kurzlebige Kerne zerfallen häufig durch die Emission von Alphateil-
chen. Dabei wird angenommen, dass die Alphateilchen bereits innerhalb des Mutter-
kerns vorgeformt vorkommen und in dessen Potentialtopf eingeschlossen sind. Der
Alphazerfall wird in dieser Vorstellung als das Tunneln des Alphateilchens durch die
Potentialbarriere betrachtet. In dieser Dissertation wird zum ersten Mal der Einfluss
starker Laserfelder auf das Tunneln von Alphateilchen sowie auf die zugehörigen Al-
phazerfallsraten untersucht. Ganz allgemein kann der laser-assistierte Alphazerfall
als laser-assistiertes Tunneln von quasistationären Zuständen betrachtet werden. Un-
sere dafür entwickelte theoretische Methode basiert auf der Komplexen-Trajektorien-
Formulierung der sehr bekannten Strong-Field Approximation, die sonst vor allem
für die Beschreibung der laser-induzierten Ionisation verwendet wird. Eine Erweite-
rung der Methode auf quasistationäre Zustände wird hier implementiert. Die Auswir-
kungen von sowohl statischen als auch monochromatischen Feldern im optischen und
Röntgen Bereich auf die Kernlebensdauer und Emissionsspektren werden für eine
Auswahl von alpha-zerfallenden Kernen untersucht. Unsere Ergebnisse zeigen, dass
selbst für sehr starke Laserintensitäten die Zunahme des Zerfalls vernachlässigbar
ist. Die relative Änderung befindet sich in einer Größenordnung von 10−3 für stati-
sche Felder mit elektrischen Feldstärken von 1015 V/m, von bis zu 10−8 für optische
Felder mit Laserintensitäten von 1022 W/cm2, bzw. von 10−6 für Röntgen Felder mit
Laserintensitäten von 1024 W/cm2. Dennoch hat der Laser einen großen Einfluss auf
das Spektrum der Alphateilchen. Insbesondere kann es für starke Laserfelder mit
optischen Frequenzen und Intensitäten von ca. 6 × 1022 W/cm2 zur Rückstreuung
der getunnelten Teilchen mit Potentialbarriere kommen. Die Dynamik des Alpha-
teilchens in Laserfeldern mit Intensitäten unterhalb des Rückstreu-Grenzfalles wird
untersucht.



II

Abstract

Excited or short-lived nuclei often decay by emitting alpha particles that are as-
sumed to be preformed inside the nucleus and confined in the nuclear potential well.
In this picture, α decay refers to the tunneling of the alpha particle through the
potential barrier. In this thesis we investigate for the first time how strong laser
fields can assist the tunneling of the alpha particle and thus influence the nuclear
decay. Generally speaking, laser-assisted α decay can be described as laser-assisted
tunneling of a quasistationary state, i.e, a slowly decaying state. Our theoretical
treatment is developed starting from the complex trajectory formulation of the well-
known strong-field approximation used to describe laser-induced ionization. We
extend this formulation and develop a method to treat the decay of quasistationary
states. The effect of both static and optical and x-ray monochromatic fields on the
lifetimes and α-particle emission spectra are investigated for a number of α-emitting
nuclei. We find that even at strong intensities, the laser-induced acceleration of the
α decay is negligible, ranging from a relative modification in the decay rate of 10−3

for static fields of electric field strengths of 1015 V/m, to 10−8 for strong optical
fields with intensities of 1022 W/cm2, and to 10−6 for strong x-ray fields with laser
intensities around 1024 W/cm2. However, the effect of the external field is visible
in the spectrum of emitted α particles, leading in the case of optical fields even to
rescattering phenomena for intensities approaching 6 × 1022 W/cm2. The dynam-
ics of the alpha particle in laser fields of intensities below the rescattering limit is
investigated.
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CHAPTER 1

INTRODUCTION

1.1. The theory of α decay

Among the variety of channels in which a nucleus decays, the emission of α particles
by the nucleus has been one of the most studied. The α decay channel in heavy and
super heavy nuclei has provided information on the fundamental properties of nuclei
far from stability, such as their ground state energies, the structure of their nuclear
levels, shell effects, identification of new α emitting nuclei by the observation of the α
decay chain and formation of clusters in the nucleus from microscopic considerations.
Of all the fundamental properties of an α emitting nucleus, the α decay lifetime is one
of the most important and, since the discovery of radioactivity in 1899 by Rutherford
[Rut99], has been the focus of much theoretical modeling.

The model proposed by Gamow [Gam28] and Condon and Gurney [GC29] was the
first successful description of this process by a quantum mechanism, namely the
decay of quasistationary states (QS) via tunneling through a potential barrier. A QS
state is defined as a long-lived state that eventually decays. The authors considered
the parent nucleus as a system composed of a preformed α particle and a daughter
nucleus. Initially, the preformed α cluster oscillates in the potential well formed
by the nuclear interaction. The decay occurs when the particle tunnels through
the potential barrier formed by the Coulomb interaction between the protons and
the α particle and the daughter nucleus. Since the tunneling probability of the α
particle is not zero, the initial state before the decay is considered to be QS. Using
the tunneling mechanism, Gamow, Condon and Gurney calculated the penetrability
of the tunneling α particle through the Coulomb barrier, finding the lifetimes of
some α emitting nuclei. The main success of this model was the reproduction of
the semi-empirical Geiger-Nuttall law that expresses the lifetimes of the α emitters
in terms of the energies of the released α particles [GN11, GN12]. While these
phenomenological models were successful in the reproduction of the experimental
lifetimes, they did not provide a framework in which the formation of the α cluster
in the parent nucleus could be understood. The necessity of finding a theory that
described the microscopic interactions between the nucleons of the α particle and
the daughter nucleus was pointed out by Preston in his work [Pre47].
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The first model that took into account the microscopic features of the α decay came
in 1954 by Thomas [Tho54] using the time-independent R matrix formalism proposed
by Wigner and Eisenbud [WE47]. In the R-matrix formalism, the total configura-
tion space is divided in two by the introduction of a spherical region. Its radius is
the distance between the centers of mass of the α cluster and the daughter nucleus.
The strong nuclear interactions between the nucleons dominate inside the spherical
region, whereas the long-ranged Coulomb force between the protons of both systems
dominates at long distances. Within this approach, the α decay is considered a two-
step process. Firstly, the α particle is formed inside the region where the strong force
dominates. The microscopic interactions between the nucleons of the parent nucleus
play a significant role in the formation of the α cluster. While in the phenomeno-
logical model, the probability of formation of an α cluster in the parent nucleus is
one, the preformation probability can be found from the microscopic considerations
of the physical states before and after the decay. In that sense, the preformation
probability is defined as the projection of the wavefunction of the parent nucleus
upon the antisymmetric product of the wavefunction of the α cluster-daughter nu-
cleus composed system. Subsequently the α particle may tunnel outside the nucleus.
The penetrability through the Coulomb barrier is the tunneling probability of the α
particle. In consequence, the nuclear width is the product of the formation amplitude
and the penetrability.

Since this first microscopic model was proposed, several authors have improved
this picture by including a wavefunction analysis, [Man57, Man60]. In particu-
lar, the model of Varga et al. showed using microscopic arguments, the neces-
sity of a cluster being preformed inside the nucleus before the α decay can oc-
cur [VLL92]. Semiclassical methods like the Wentzel-Krammers-Brillouin (WKB)
[Wen26, Kra26, Jef25, GP90] and the Two Potential Approach (TPA) [GK87] have
also been used to find the lifetimes of unstable nuclei. These techniques have the
advantage that they can be easily applied to more complex nuclei, provided that the
tunneling barrier follows the semiclassical conditions. The WKB and TPA methods
allow the lifetimes of α emitting nuclei to be calculated when the tunneling bar-
rier includes microscopic interactions between the nucleons of the α cluster, and the
daughter nucleus.

For example, in their work, Poenaru et al. used the WKB method to find the pen-
etrability of the α particle and resulting lifetimes of α emitters, [PISG84]. Poenaru
generalized existing fission theories to include α decay and cluster radioactivity, a
development which became known as the Super Asymmetric Fission Model (SAFM)
[PISG84]. In the frame of SFAM, the parent nucleus is formed by two asymmetric
clusters which overlap. The interaction between the two asymmetric clusters follows
a parabolic function in the overlapping region. In order to avoid the overestimation of
the barrier heights and calculate accurately the penetrability through the barrier, a
correction on the energy of the α cluster was introduced by Poenaru et al. [PISG84].
This correction is called the “zero vibration energy”, and is found empirically. For
more details of the validity of the WKB and TPA in the calculation of the lifetimes
of α emitting nuclei and a critical view of the fitted values in SFAM, see [KCn07].

Basu further advanced the semiclassical description of alpha decay by including a
more realistic mean-field nuclear potential. Basu [Bas03] assumed the parent nu-
cleus to contain a preformed α particle that interacts with the spherical daughter
nucleus, in a similar way to Gamow’s phenomenological model [Bas03]. However,
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unlike Gamow, the description of the mean-field nuclear potential takes into account
the microscopic interactions between the nucleons. The nuclear potential is given by
an effective interaction in which the matter densities of the spherical α particle and
daughter nucleus are integrated together with the microscopic Michigan 3 Yukawa
(M3Y) term. The M3Y term takes the form of two Yukawa-like potentials. The
matter density of the α particle is represented by an exponential distribution, deter-
mined from α− α scattering processes [SL79]. The daughter nucleus matter density
is a Fermi distribution, characteristic of the liquid drop model.

Following the SFAM and the calculation of the preformation probability of the α
cluster, Buck et al. [BJMP96, BMP92] proposed the precluster model, in which
the α particle is moving around the daughter nucleus in orbits determined by the
global quantum number. Similarly to the aforementioned phenomenological models,
the α particle tunnels through tunneling barrier formed by the Coulomb and the
nuclear potentials. The α decay lifetimes are calculated via the semiclassical limit of
TPA. This model can be adapted to a wide range of nuclei and a variety of nuclear
potentials, achieving a good agreement with the experimental lifetimes. Even as
simplistic as it seems, the precluster model offers a transparent description of the
α decay mechanism from a phenomenological point of view. Therefore, we adopted
this as our fiducial model in the present work on laser-assisted α decays. A further
description of this model as used in our method will be outlined in Chapter 2.

In summary, there is within the literature a well studied family of semiclassical
methods, which have been effectively used to model α decay. The predicted lifetimes
of these models have been verified by comparison with available experimental data
[BMP91, CL10, Tul05]. Semiclassical techniques are therefore a valid method that
can be used to investigate any potential variations in α decay rates.

1.2. Controlling the lifetimes of nuclear decays

Some long-lived α emitting actinides, such as 241Am and several isotopes of Pu, have
been found in transuranium nuclear waste [EWL04]. It would be of tremendous
benefit if a method could be found to enhance the decay rate of such radioactive
materials, and speed up their transition to less harmful materials. Several proposal
and methods have been discussed in order to control the decay of radioactive isotopes.

One method that has been considered to alter nuclear lifetimes is screening from
the cloud of electrons surrounding the nucleus. One of the first authors who worked
on electronic screening was Salpeter, who found that when the nucleus is much
smaller than the electron cloud, the cloud behaves as a weakly bound plasma [Sal54,
RVB+08]. For electrons described by the Debye-Drude model the screening is shown
to have a strong dependance on the temperature of the weakly bound plasma. As the
plasma of electrons cools down, it contracts, and the dependence on the temperature
becomes weaker. In the limit of a strong bound plasma, the screening is completely
independent of the temperature [RVB+08].

Emery [Eme75] found that induced changes in the electronic cloud by chemical or
environmental effects can alter the tunneling barrier, affecting the α decay lifetimes.
As an example, the change in the decay rate of a stable α emitter, 226Ra, whose
lifetime is around 1600 years was calculated due to screening. However, the results
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show that the calculated change in lifetime due to screening effects was negligible
compared with the measured lifetime. After those disappointing results, the screening
of the electrons was forgotten for a long time. It was brought back by Rolfs et al.
[SRSC01, KBSR06, ALR87] in a slightly different context. Rolfs and his collaborators
proposed that the influence of the screening in the change of the α decay lifetimes is
magnified in a cold metallic environment. Following the work of Salpeter [Sal54], the
quasi-free metallic electron cloud was treated as a Debye gas. The lifetimes of 210Po
and 226Ra seemed to be reduced by several orders of magnitude in the cold metallic
environment, a remarkable and exciting result found by Rolfs and his collaborators
[KBSR06]. However, a huge controversy was generated with different arguments
supporting and dismissing their result.

For instance, Zinner [Zin07] argued that the results obtained by Rolfs et al. in their
work could not be correct, because the screening not only lowers the tunneling barrier,
but also corrects the energy of α particles traversing through the barrier. The cor-
rections to the energy and the tunneling barrier cancel each other and consequently
the penetrability through the barrier remains unchanged. If the screening potential
is not constant rather than changes over the radius scale of the outer turning point,
the calculated change in the α decay lifetimes is considerably small.

Furthermore, Eliezer [EMVP09] found that the results by Rolfs et al. were not
justified in the context of the Debye model. Following the Debye plasma model
suggested by Rolfs et al. for α emitting nuclei in a cold metallic environment, Eliezer
was able to determine some change in the α decay lifetimes of 212Po and 236Ra.
Nevertheless, the results were far from the ones that Rolfs et al. found in his work.
Experimental results by Jeppesen et al. [JBNW+07] on 221Fr, Stone et al. [SSL+07]
on the 224Rn, 225Ra and 227Ac α decay chain, Su et al. [SLZ+10] on 147Sm and
Wauters et al. on 221Fr [WVB+10] confirmed the negligible effect of the screening.

Another potential method of altering nuclear α decay rates is via the interaction with
a strong laser field. For a long time, the possibility of inducing nuclear processes by
the interaction with a laser was considered unthinkable. The experimental intensities
were not strong enough to excite directly the nucleus, and the available photon
energies were small compared to the characteristic energies of the nuclear transitions.
Consequently, the nucleus-laser interaction matrix elements were too small to be
significant [S.98]. In recent years, the possibility of affecting the nuclear reactions
indirectly has been proposed by some authors [SAAH+08], due to the continuous
progress in the development of experimental laser facilities. Phenomena like photo-
transmutation of nuclei were considered as a mechanism to alter nuclear properties
by indirect interaction with a strong laser field.

Experiments of photo-transmutation of elements were performed by the groups of
Magill and Ledingham. In their works, Magill et al. [MSE+03] and Ledingham et
al. [LMM+03] used high energetic γ rays produced by bremmstrahlung of accel-
erated electrons in an ultra intense laser beam as sources to drive nuclear photo-
transmutation of 129I, which has a very long lifetime of million years. The laser field
irradiated gold sample, driving the electrons into relativistic energies. Afterwards,
the electrons were stopped in the gold target, generating γ bremmstrahlung radia-
tion. This additional radiation helped catalyze the transmutation reaction of 129I
into another isotope of iodine with a lifetime of 25 minutes, 128I via the emission of
a neutron [LMM+03].
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With new experimental facilities like the Extreme Light Infrastructure (ELI) [Taj09]
or the European X-Ray Free Electron Laser (XFEL [AP06, Alt97]), the direct in-
teraction between strong lasers and nuclei can open new perspectives to explore
nuclear properties and primarily establish the new field of Nuclear Quantum Optics,
[BEK06, PEK08]. Furthermore, the control of nuclear reactions via direct interac-
tion with strong laser fields would offer an alternative to change fundamental nuclear
properties. Research towards these fields is supported by the recent significant in-
crease in the available intensities and photon energies.

In particular, no theoretical work has described the direct influence of a strong laser
field on spontaneous α decay so far. The interaction of α emitters with a strong
laser field becomes feasible in new experimental laser facilities like ELI or XFEL,
with higher peak power and higher photon energies, reaching regimes that were
unthinkable some years ago. Therefore, the direct interaction with a strong laser is
now an exciting new possibility which may alter α decay lifetimes.

1.3. Aims of this thesis

In the present work, we aim to investigate whether the direct interaction with a
strong laser field can affect the rate of spontaneous α decay and the momentum
distribution of α emitting nuclei. If such an effect were possible, it would have
profound implications both for treatment of transuranic nuclear waste in which long-
lived α emitters are present as well as for our understanding of nuclear processes.

It is well understood that lasers with lower intensities do not have enough power to
modify the dynamics of the α particle during the tunneling through the Coulomb
barrier. However, at large intensities, the laser may assist the α decay by altering
the field-free dynamics of the α particle.

The laser-assisted tunneling (LAT) of the α particle can affect the spontaneous decays
in two different ways, by modifying the field-free dynamics of the α particle in the
classically forbidden region or by altering the dynamics once the α particle has left
the barrier. In the first case, the values of the α decay lifetimes are modified by the
direct interaction with the laser field. In the second case, the dynamics inside the
barrier remain unchanged and there is no modification of the lifetimes. But due to
the interaction with the external field, the momentum distribution of the α particle
measured once the tunneling has taken place can be altered.

In the present work, we develop a general method to study the laser-assisted decay
of a QS state in the multiphoton regime and apply it to the study of laser-assisted α
decay processes. Our method is based on a well known non-perturbative approach
for nonlinear ionization, proposed by Keldysh [Kel65]. This formalism, meanwhile
known in its different realizations as the Keldysh-Faisal-Reiss model [Fai73, Rei80]
or the Strong-Field Approximation (SFA) [Rei80] (for the present status of the SFA
and its implementations see [Pop04, MPBB06]), is a well-established tool in strong-
field atomic physics. The SFA allows to determine in a non-perturbative way the
transition amplitude between an initial bound state and a final state, corresponding
to the interaction between the tunneling particle and an electromagnetic wave. While
the plain formulation of SFA is quite accurate to describe the dynamics of laser-
induced processes in short range potentials, it fails when it comes to study potentials
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with a long range tail, like the Coulomb barrier the α particle tunnels through in α
decay. Plain SFA also fails to describe laser-assisted phenomena involving QS initial
states, rather than bound states.

A formulation of the SFA in terms of complex classical trajectories, known as the
Imaginary Time Method (ITM) brings a deeper understanding of the tunneling pro-
cess in the presence of strong fields, and works very well in the semiclassical regime.
Within the ITM, the tunneling particle follows a trajectory in complex times during
its subbarrier motion, and in real time afterwards. Using the saddle-point method,
the transition amplitude described by the plain SFA formulation can be expressed
in terms of the classical action evaluated on the trajectories of the particle while
is traversing the tunneling barrier and after leaving the classically forbidden region
[Pop04, PP67].

In the dynamics of ionization, the ITM formulation of the SFA was used efficiently to
introduce corrections on the transition amplitude by cause of the long-range interac-
tion. By the introduction of the Coulomb corrections via the ITM on the transition
amplitude, the ionization decay rates [PP67, PMPB08, PMPB09] and the photo-
electron momentum distributions [PPB08, PB08, HRG+11, YPVB10] are calculated
accurately in the multiphoton regime.

Due to the asymptotic behavior of the QS wavefunction at large distances, the defini-
tion of the transition amplitude by the plain SFA and its ITM formulation fail to give
an appropriate description of processes that involve the interaction between strong
laser fields and QS states. Therefore, the ITM version of the transition amplitude
must be modified. In this thesis, we develop a method to include the characteristics
of the QS state and the prefactor of the field-free decay in the ITM formulation of the
transition amplitude to describe the laser-assisted decay of QS states. The formalism
we develop to study LAT of QS states in the presence of strong laser fields is detailed
in the Chapter 3 of this thesis. In the form presented in the present work, restricted
to the nonrelativistic limit, our method should be equally applicable to descriptions
of different physical systems under standard semiclassical conditions.

Since the spontaneous α decay rates can be calculated using semiclassical methods
like WKB or TPA, we can assure that the tunneling barrier the α particle traverses
follows the semiclassical conditions. For an incoming laser field with an optical wave-
length, the number of photons that the α particle absorbs or emits during a pulse is
large and thus the conditions required by SFA are completely fulfilled. Consequently,
the laser-assisted α decay can be studied by the implementation of the method we
develop to study laser-assisted decay of QS states. The laser-assisted α decay life-
times are calculated with our method and compared with the field-free lifetimes.
We find that for static electric fields of high intensities, the laser-assisted α decay
lifetime can decrease by 10−4, while for monochromatic fields the relative change is
much smaller, on the order of 10−8 for intensities close to the recollision threshold.
The spectrum of the emitted α particles, on the other hand, is strongly affected by
a monochromatic laser field, leading to a broad energy distribution at the detector.
Furthermore, for optical fields, with increasing intensities recollisions of the emitted
α particles with the daughter nucleus can occur. We investigate here qualitatively
the recollision threshold for various α emitters and determine the behaviour of the
tunneling exponent.



1.4 1.4. STRUCTURE OF THIS THESIS 7

1.4. Structure of this thesis

In order to achieve our aim of the present work, we start in Chapter 2 by presenting
the framework necessary to understand the α decay mechanism. We review the phe-
nomenological model by Condon and Gamow and Gurney [Gam28, GC29] proposed
to describe the spontaneous α decay. The calculations of the field-free decay rates
from the time-independent Schrödinger equation are presented. In the same Chapter,
an overview of some of the semiclassical methods which have been used by several
authors to obtain the lifetimes of the α emitters is given. Finally, the most impor-
tant aspects of the precluster model, proposed by Buck et al. [BMP90a, BMP91]
are discussed extensively, since this is the model that we consider to characterize the
field-free tunneling barrier in our theoretical study of laser-assisted α decay. The
decay rate found by Buck et al. in [BMP90a] is later used as field-free benchmark,
necessary to calculate the transition amplitude and the laser-assisted α decay rates.

In Chapter 3, we review the most important aspects of the SFA in the case of laser-
induced processes and the modification of SFA implemented for processes that involve
an initial QS state. As a next step, the foundations of ITM are reviewed and the
ITM formulation of SFA is reviewed in detail. Finally, at the end of the Chapter, our
new method is developed based on the ITM formulation of SFA that considers the
characteristics of the initial QS state. With our new method, we are able to describe
several laser-assisted processes, most importantly, the laser-assisted α decay.

In Chapter 4, a test case for our newly developed method is studied, namely the
LAT through a one-dimensional rectangular barrier. As external field we consider
both the case of a static electric field as well as of monochromatic and short-pulse
laser fields. For various barrier parameters, our results reproduce an important
qualitative conclusion of earlier studies [NR64, BMSS83, BSS84a, BSS84b], namely
that depending on the parameters, two different regimes of decay are realized (i)
when the spectrum is strongly affected without a modification of the total decay rate
and (ii) when the rate of decay is also affected. These two regimes are also referred
to as “exclusive” and “inclusive”, respectively. In addition, the LAT probabilities in
the presence of a short pulse are compared with the numerical solution of the time-
dependent Schrödinger equation. We find a remarkable agreement in the qualitative
and quantitative behavior of the momentum distribution.

In Chapter 5, we study the laser-assisted α decay of some medium-mass and heavy
nuclear resonances, applying the method we have developed in Chapter 3. We inves-
tigate the cases of 106Te, 162W, 212Po, 150Dy, 238 U and 244Cm. The parent nucleus
is described in the frame of the precluster model, proposed by Buck et al. [BMP90a]
and discussed in Chapter 2. We compare the results obtained by the implementation
of our method in the limit of low-frequency laser field, i.e. static field, with results
obtained using the WKB method. The calculated lifetime by ITM is in perfect agree-
ment with the theoretical lifetime calculated using semiclassical methods like WKB
in the low-frequency limit, showing the consistency of ITM. Next, we considered the
laser-assisted α decay in the presence of a monochromatic laser field. We study the
dynamics of the α particle during its subbarrier motion and once it leaves the bar-
rier. The laser-assisted decay rates and lifetimes as well as the energy spectra of the
tunneled particles for the case of a monochromatic laser field are calculated. We find
that for the typical α decay parameters, we are deeply within the exclusive regime,
for which the effect of the field on the lifetimes of α emitters is negligible. The spec-
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trum however is strongly affected by the laser field, which modifies the dynamics of
the α particle after the tunneling. With increasing intensities, recollisions with the
daughter nucleus may occur. Although the effects of recollision are not fully taken
into account in the development of our method, the laser-field threshold intensity at
which the recollision effects become significant is found. Qualitatively, the influence
of the recollision in the dynamics of the α particle is demonstrated by determining
the behavior of the imaginary part of the semiclassical action.

Conclusions and Outlook are presented in Chapter 6. Atomic units are used through-
out this thesis in Chapters 3 and 4 as specified. We detail our choice of units in
Appendix A.



CHAPTER 2

α CLUSTERING IN NUCLEI

The α emission from unstable nuclei has allowed us to study interesting prop-
erties of the structure of the light and heavy nucleus. Recently, the experimen-
tal observation of α decay has been used to find exotic nuclei in the superheavy
regime, and extract information about the drip lines of heavy and superheavy
nuclear resonances. The first theoretical model that described the α emission in
nuclei was proposed by Gamow and by Condon and Gurney [Gam28, GC29].
The connection between the tunneling through a potential barrier and the emis-
sion of an α particle has been used used in several approaches after Gamow
and Condon’s work. The lifetimes of the α decay channel have been calcu-
lated using different approaches, using either phenomenological or microscop-
ical models to characterize the nuclear interaction. In this chapter, we review
some phenomenological methods that have been proposed to describe the dy-
namics of the α decay via tunneling through the Coulomb barrier. In addition,
we review two of the most used semiclassical methods for the calculation of
spontaneous α decay rates. Finally, we describe the precluster model proposed
by Buck et al. [BMP90a, BMP91], which is the approach taken in the present
work to characterize the α cluster-daughter nucleus system and the tunneling
barrier in the laser-assisted α decay.

The nuclear α decay process was one of the first nuclear phenomena observed ex-
perimentally. In 1899, Ernest Rutherford discovered that there were three types of
radioactive emission from nuclei, namely, α, β and γ radiation. Rutherford was able
to demonstrate the composition of the emitted α particles, and later on, introduced
the concept of half life to describe the nature of the nuclear decay. The half life is
defined as the time over which the number of radioactive nuclei decays to half of
their original number [Raz03]. Following its discovery, the α emission from nuclear
resonances was actively studied. Most of the nuclear α emitters are medium-mass,
heavy and superheavy nuclei. The medium-mass nuclei are characterized by proton
number between 50 ≤ Z ≤ 82 and mass number A ≥ 100. The heavy nuclei have
proton numbers in the range of 82 < Z ≤ 96 and number of nucleons A ≥ 208. The
superheavy nuclei have a number of protons greater than a hundred. The medium-
mass and heavy α decaying nuclei found in nature are organized in three naturally



10 CHAPTER 2. α CLUSTERING 2.0

radioactive chains of nuclear α emitters, known as the uranium, actinium and tho-
rium series, [PB75]. The three chains start in isotopes of uranium, actinium and
thorium elements (238U, 235U and 232Th). After a limited number of radioactive
transmutations, they become stable isotopes of Pb. However, the medium and heavy
α emitting nuclei are not the only ones that undergo α decay, as there is evidence of
the existence of light α emitter nuclei such as 5Li, 8Be and 12C, [HDWW53, GMN01].

The dynamics of the nucleons of the parent nucleus are well described by the mi-
croscopic models of the nuclear structure [Man57, Tho54], as was mentioned in the
introduction. As the α particle is strongly bound, it is feasible for the protons and
neutrons of the parent nucleus to combine themselves in stable clusters substructures
within the nucleus [Fre07]. As these clusters are stable, they can survive for a long
time. The preformed α clusters propagate unperturbed within the parent nucleus
and interact with the daughter nucleus via the Coulomb interaction. In the first
approximation, they are considered as a separate physical system with no internal
structure neglecting any internal correlation between the paired nucleons. This is
the phenomenological approach that Gamow [Gam28], Condon and Gurney [GC29]
and Preston [Pre47] took in their work.

The formation of α particles at the nuclear surface is favored in the nuclear theory,
due to the stability and large excitation energy (around 20.2 MeV) of the α particle
[TWH92, Moh08]. However, the formation of the α clusters in the nucleus was not
fully understood in phenomenological models, until the microscopic considerations
between the nucleons of the parent nucleus were taken into account. Brink and
Castro found that the formation of nucleon clustering in the parent nucleus is favored
by energetic constrains [BC73]. In their work, the formation of α clusters in nuclear
matter was studied by considering a lattice of α particles, and considering the possible
correlations between the preformed α clusters within the lattice. Comparing the
plane wave model for nuclear matter with the α clustering lattice model, Brink and
Castro found that for the normal density of nuclear matter, the correlation effects
that allow the formation of clusters do not play a role in the interior region of the
parent nucleus, only on its surface. When the nuclear density decreases to one third of
the normal nuclear matter density, there is a phase transition to the lattice structure,
favoring the condensation of α clusters on the parent nucleus surface, as Brink and
Castro concluded in their work [BC73].

The most natural way of describing the rate of α cluster formation in the nuclear
matter is by by introducing the concept of a preformation probability that can be
calculated for every α decaying system [Fre07]. Preformation probabilities are deter-
mined by microscopic interactions between the nucleons in the range where the strong
interaction dominates over the Coulomb force between the protons of the α cluster
and the daughter nucleus. In the first model that included microscopic interactions
between the nucleons of the parent nucleus by Thomas [Tho54], the preformation
probability of the α cluster in the parent nucleus is defined as the projection of the
total wavefunction of the parent nucleus on the final state corresponding to the α
cluster-daughter nucleus system. In some models, the preformation probabilities are
fitted from experimental data of scattering reactions, reproducing the spontaneous
α decay lifetimes [XR05]. In others, the preformation probability is calculated from
microscopic considerations from the definition by Thomas including the definition of
the final state as a superposition of the nuclear single shell model and the state of
the daughter nucleus-α cluster physical system, [VLL92]. The theoretical calculation
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of lifetimes depends on the value of the preformation probabilities. For simplicity
in some models, the preformation probability is taken as unity, but this can lead to
discrepancies with respect to the experimental lifetimes.

In general, the lifetimes of the α emitting nuclei in the three naturally radioactive
chains are many orders of magnitude longer than the typical times of nuclear motion
scale (around 10−21 seconds). In that sense, the state of the nucleus can be considered
stationary. The lifetimes of the α emitters follow a semiempirical rule, which comes
from the dynamics of the α decay. This semi-empirical law, called the Geiger-Nuttall
law, determines the relation between the released α particle energy with the decay
half life [GN11, GN12, ME69],

log Γ = a+ b log
(
Rα
)
. (2.1)

Here, a and b are empirical constants that are found from logarithmic plots of ex-
perimental data. Rα represents the linear range, and it is “a direct measure of the α
energy ” [ME69]. In his work, Geiger was able to find a direct relation between Rα
and the initial velocity of the particle, known as Geiger’s rule,

Rα = c1v
3
α, (2.2)

here c1 is a proportionality constant.

One of the most successful results achieved by the phenomenological model of Gamow
[Gam28], and Condon and Gurney [Gam28] was the reproduction of the Geiger-
Nuttall law, Eq. (2.1). By making the assumption that the α particle is preformed
within the nucleus and then escapes the nucleus entirely, the initial state of the α
particle can be considered quasistationary (QS). In consequence, the α decay is the
perfect example of the decay of a QS state via tunneling.

2.1. Phenomenological Gamow model and the descrip-
tion of the α decay by tunneling

The α decay process is considered to be a two step process. Firstly, the α particle is
preformed on the surface of the parent nucleus. The radius of the parent nucleus is
defined as [PB75]

Rp = c0A
1
3
p . (2.3)

Here c0 is a constant that is fitted from experimental data in order to get the correct
lifetimes. Its value oscillates between 1.2 and 1.5 fm. Ap is the number of nucleons
of the parent nucleus. The α particle is assumed to be a boson, and its inner struc-
ture is neglected. Once the α particle is preformed with a probability given by the
preformation factor1 Pα, the nuclear decay is reduced to a two body problem. The
fundamental properties of the α decay can then be determined from the dynamics of
the α particle as it tunnels through the potential barrier formed from the interaction
between the daughter nucleus and the α preformed cluster.

Initially, the preformed α particle is confined in a spherically symmetric potential
well that describes the mean-field nuclear potential. The α particle has an initial

1The definition of the preformation factor is still a matter of controversy.
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energy E, related with the Qα value of the nuclear process,

Qα = mp−mα −md, (2.4)

with mα,md and mp being the masses of the α particle, the daughter and the parent
nuclei, respectively. The spontaneous α decay cannot occur as long as the mass of
the products of the decay is larger than the mass of the parent nucleus. That means
that the Qα value of the spontaneous decay is greater than zero. Due to the short
range of the nuclear forces, the nuclear interaction is assumed to vanish outside of
the surface of the parent nucleus. Therefore, in this model there is no intermediate
region where the nuclear and Coulomb interaction overlap, and the tunneling barrier
suffers a discontinuity at the Rp. At large distances, the Coulomb force dominates
the interaction between the preformed cluster and the daughter nucleus system.

There are some microscopical models in which the interactions between the nucle-
ons of the α cluster and the daughter nucleus are considered, and the densities
of the nuclear matter need to be defined for the cluster and the daughter nucleus
[BMP92, XR05]. Mean-field potentials can be added to represent the microscopic
properties of the interaction, allowing higher accuracies to be achieved in the calcula-
tions of the lifetimes, [ICLD91, OR07]. This parametrization of the nuclear densities
allows effects like Pauli blocking between the nucleons or deformation of the parent
nucleus to be included, as was introduced by Xu and Ren, [XR06]. If the micro-
scopic interactions between the nucleons of the parent nucleus are included in the
characterization of the mean nuclear potential, the tunneling barrier traversed by
the α particle is smooth, and the discontinuity in the parent radius Rp disappears.
Including such microscopic considerations into phenomenological models leads to im-
provements in the theoretical estimate of the lifetime of the α emitters, as shown by
Xu and Ren [XR05] and Basu [Bas03] amongst others.

In this thesis, we work with the precluster model, a phenomenological model based
on the approach proposed by Gamow and Condon and Gurney. We do not consider
the microscopic features of the interaction between the nucleons of the α particle and
the daughter nucleus for simplicity. If an effect of the laser upon α lifetimes is seen,
the calculation can later be performed including microscopic considerations.

The α particle spends most of the lifetime of the decay process, bouncing back and
forth inside the potential well, with a frequency identified as the “assault frequency”.
The assault frequency is given by,

νassault =
~κwell
2mrRp

, (2.5)

where κwell is the wavenumber of the α particle confined in the nuclear potential well
and mr is the reduced mass of the α cluster-daughter nucleus system,

mr =
mαmd

md +mα
. (2.6)

Here, mα is the mass of the α particle, whereas md is the mass of the daughter
nucleus.

The Coulomb potential forms a barrier that the α particle classically cannot pass,
since it does not have enough energy to overcome it. However, Gamow, Condon and
Gurney used the concept of quantum tunneling in order to explain the release of
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Figure 2.1: Sketch of the phenomenological model of the α decay, proposed by
Gamow in 1928 and Condon and Gurney, [Gam28, GC29]. The α particle is pre-
formed in the surface of the parent nucleus, and eventually tunnels through the
barrier formed by the Coulomb potential.

the α particle. Since the potential barrier has a finite height, the initial state of the
system is a QS state, rather than a bound one. The α particle tunnels through the
barrier when the α decay occurs, and the penetrability through the Coulomb barrier
is proportional to the tunneling probability.

As the parent nucleus is assumed to be spherical, the rotational and vibrational
degrees of freedom are neglected in the phenomenological model, such that the de-
formations of the parent nucleus are not taken into account in the dynamics of the α
decay [PB75]. When the system is assumed to be spherically symmetric, there is an
additional term that appears naturally in the time-independent Schrödinger equa-
tion, which corresponds to the so called “centrifugal barrier”. This additional term
increases the tunneling barrier the particle traverses when the relative angular mo-
mentum L between the components of the physical system is not zero. As Marmier
defined it in his book, the physical meaning of the centrifugal barrier is associated
with “a rotational energy related to the motion of colliding particles about their
common center of mass”, [ME69]. It is written as L(L+1)/2mrr

2. Consequently for
L = 0, the centrifugal barrier vanishes.

Some α emitters are characterized by an even number of protons and neutrons and
decay into the ground state of even-even nuclei. Since the angular momentum of
the α particle is zero in its ground state, the centrifugal barrier is defined in terms
of the relative angular momentum between the α particle and the daughter nucleus.
Therefore, if the relative angular momentum is zero, there is no effective contribution
of the centrifugal barrier and the tunneling barrier is only given by the superposition
of the nuclear interaction and the Coulomb potential.

2.1.1. Solution of the tunneling problem through a Coulomb barrier

According to what Gamow, Condon and Gurney proposed in their model, the α
decay rate is proportional to the tunneling probability of the α particle tunneling
through the Coulomb barrier. The tunneling probability can be found using different
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approaches. Due to the analytical properties of the Coulomb barrier and the range of
energies of the α particle, semiclassical methods like the Wentzel-Krammers-Brillouin
method (WKB) have proved to be accurate in the theoretical calculation of lifetimes
of α emitters, as it will be discussed later in this chapter.

The wavefunction of the physical system is found from the Schrödinger equation. If
the α particle in the potential well is a QS state, then the physical considerations
that must be taken into account in order to determine the total state of the system
are

the wave function of the QS state ψα(x, t) must be regular at the origin,

the QS wave function must represent an outgoing wave at x ≫ x0, in the
asymptotic limit where x→ ∞.

The decay rates can be found using the exact calculation of the tunneling proba-
bility through a Coulomb barrier. We start from the time-independent Schrödinger
equation, as it was written in the book “Nuclear Physics” by Srivastava [Sri06],

− ~2

2mr
∇2ψα(r) +

(
V (r)− E

)
ψα(r) = 0, (2.7)

and using the assumption that the parent nucleus is spherically symmetric, the radial
part of the wave function ψα takes the form

d2ul
dr2

+
2mr

~2
(
E − V (r)− L(L+ 1)~2

2mrr2

)
ul(r) = 0. (2.8)

The total wavefunction of the preformed α cluster-daughter nucleus system takes the
form

ψα(r) =
ul(r)

r
Ylm(θ, φ). (2.9)

The equation of the radial component ul(r), Eq. (2.8) is exactly the one-dimensional

Schrödinger equation for an effective potential given by V (r)+
L
(
L+1
)
~2

2mrr2
. The second

term is the centrifugal barrier described earlier in this chapter. Taking ρ = k0r, with
k20 = 2mrE/~2, Eq. (2.8) can be written as [Sri06]

d2ul
dρ2

+

(
1− η

ρ
−
L
(
L+ 1

)
~2

2mrr2

)
ul = 0. (2.10)

Here, η =
(
2Ze2

~

)√
mr/E. The dynamics of the α particle after leaving the barrier is

determined by the Coulomb interaction. In consequence, the solutions of Eq. (2.10)
are written in terms of the regular and irregular Coulomb functions Fl(ρ) and Gl(ρ).
Asymptotically, at large r, the Coulomb functions have the following behavior [AS64,
Sri06]

FL(ρ) →
r→∞

sin
(
ρ− η log(2ρ)− Lπ

2
+ argΓ

(
L+ 1 + iη

))
, (2.11)

GL(ρ) →
r→∞

cos
(
ρ− η log(2ρ)− Lπ

2
+ argΓ

(
L+ 1 + iη

))
. (2.12)

As mentioned previously, the radial part of the wavefunction at large distances is
expected to take the form of outgoing waves. This corresponds to the Sommerfeld
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radiation condition. The outgoing solution can be expressed without any difficulty
in terms of the Coulomb functions [Sri06]

ul(ρ) = C0

(
GL(ρ) + iFL(ρ)

)
. (2.13)

The regular Coulomb function vanishes at the origin, and, “increases as a function of
the distance inside the Coulomb barrier” as Delion explained in his review [Del10].
On the other hand, the irregular Coulomb function diverges at the origin, but de-
creases with distance, and asymptotically vanishes at large distances. Alternatively,
the wavefunction outside of the barrier can be expressed in terms of the Hankel

functions H
(−)
l (η, ρ) and H

(+)
l (η, ρ) [Del10]

ul(ρ) =
i exp(iδl(E))

2

(
H

(−)
l

(
η,
)
− Sl(E)H

(+)
l

(
η,
))
. (2.14)

In this definition, the function δl(E) is the scattering phaseshift, and the term Sl(E) is
the scattering matrix, which has all the physical information of the physical transition
from the initial to the final state. There is a strict relation between the scattering
phaseshift and the S matrix from quantum scattering theory [BPZ69, Del10]

Sl(E) = exp(2iδl(E)). (2.15)

The S matrix has well defined properties from the behavior of the solutions of the
Schrödinger equation,

Sl(E) =
(
S−1
l (E)

)∗
,

Sl(k0(E)) =
(
S−1
l (−k0(E))

)
.

(2.16)

Using the continuity of the wavefunction and its derivative at r = x0, a condition on
the radial part of the wavefunction inside the well (region I in Fig. 2.1) [Sri06]

x0
ul(x0)

dul(x)

dx

∣∣∣
x=x0

=
k0x0

(
G′
l(x0) + iF ′

l (x0)
)

Gl(x0) + iFl(x0)
. (2.17)

The tunneling barrier determines three different regions, as depicted in Fig. 2.1. The
wavefunction takes a particular analytical form depending on the properties of the
potential V (r) in that region. In [Win54], the author used the fact that when the α
particle is not close to a turning point, the Coulomb functions can be written as,

GL(ρ) = |Φ(ρ)|−
1
4 exp

(
ω(ρ)

)
, (2.18)

FL(ρ) =
1

2
|Φ(ρ)|−

1
4 exp

(
−ω(ρ)

)
. (2.19)

In the expression above, the following quantities have been defined

|Φ(ρ)| = 2η

ρ
+

(
L+ 1

2

)2
ρ2

− 1, (2.20)

ω
(
ρ
)
=

∫ 2k0Z
E

ρ
|Φ(ξ)|

1
2dξ. (2.21)
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The first term 2η/ρ corresponds to the effective potential the α particle tunnels
through. There is a distinction between the usual form of the centrifugal barrier,
and the one that appears in Eq. (2.21). The numerator in the L depending term
corresponds to a modification implemented by Langer [Lan37]. The Langer modifi-
cation to the centrifugal barrier will be explained in detail in the description of the
semiclassical methods, later on in this chapter.

The asymptotic forms of the Coulomb functions, Eq. (2.18) show the exponential
decreasing of the real part of the radial wavefunction ul(r), inside the barrier. The
imaginary part of the radial wavefunction, given by the regular Coulomb function
FL(r) increases with the distance and |Φ(ρ)| becomes negative in the limit where
ρ → ∞. It can be seen that the radial wavefunction has an oscillating behavior,
representing traveling waves. Taking the derivative of the Coulomb functions,

GL(ρ) = −1

4
|Φ(ρ)|−

5
4 exp

(
ω(ρ)

)d|Φ(ρ)|
dρ

+ |Φ(ρ)|
1
4 exp

(
ω(ρ)

)
|d|Φ(ρ)|

dρ
, (2.22)

FL(ρ) = −1

8
|Φ(ρ)|−

5
4 exp

(
−ω(ρ)

)d|Φ(ρ)|
dρ

− 1

2
|Φ(ρ)|

1
4 exp

(
−ω(ρ)

)d|Φ(ρ)|
dρ

, (2.23)

the logarithmic derivative of the wavefunction can be found explicitly, according to
Eq. (2.17). The logarithmic derivative evaluated at x0 takes the form

x0
ul(x0)

dul(x)

dx

∣∣∣
x=x0

= k0x0
d|Φ(ρ)|
dρ

−|Φ(ρ)|−1

4
+

1− i exp
(
−2ω(ρ)

)
2

1 +
i exp
(
−2ω(ρ)

)
2

 . (2.24)

The expression above is exactly the same expression Preston derived in his work on

α decay, [Pre47]. Defining γ = 1
4 |Φ(ρ)|

−3
2
d|Φ(ρ)|
dρ , the logarithmic derivative is given

by

x0
ul(x0)

dul(x)

dx

∣∣∣
x=x0

= −k0x0

 |Φ(ρ)| 12
((

1 + γ
)
− i
(
1−γ
)
exp(−2ω)

2

)
1 + i exp(−2ω)

2

∣∣∣∣∣
x0

. (2.25)

If k0 is real, Eq. (2.24) cannot be satisfied. The condition on the internal wavefunction
in region I demands that this should be regular in the origin. The continuity of the
wavefunction and its derivative at the radius where the Coulomb potential is the
only interaction is only fulfilled by a complex wavenumber, [Del10]. The imaginary
part of the energy is associated with the decay rate of the QS, Γ, such that the total
energy the tunneling particle has is

ET = E − iΓ

2
. (2.26)

Those states with complex energies are called “Gamow states” (GS). Since the QS
states are identified with resonant states, the GS are associated with resonant poles
of the S matrix, located in the second Riemannian or “unphysical” sheet of the
complex energy plane, where Im(ET ) ≤ 0. The time evolution of the GS follows an
exponential decay law, well known in the decay of QS states.

If Γ ≪ E, then the logarithmic derivative of the wavefunction in the region I can be
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expanded as

x0

uIl(x0)

duIl(x)

dx

∣∣∣
x=x0

=(
x0

uIl(x0)

duIl(x)

dx

∣∣∣
x=x0

)∣∣∣∣∣
E=E

− iΓ
2

d

dE

(
x0

uIl(x0)

duIl(x)

dx

∣∣∣
x=x0

)∣∣∣∣∣
E=E

(2.27)

The real part of the Eq. (2.24) must be equal to the real part of Eq. (2.27). Thus,

(
x0

uIl(x0)

duIl(x)

dx

∣∣∣
x=x0

) ∣∣∣∣∣
E=E

= −
k0x0|Φ(ρ)|

1
2

(
1 + γ − exp

(
−4ω(ρ)

)(
1−γ
)

4

)
1 +

exp
(
−4ω(ρ)

)
4

. (2.28)

From the imaginary part of the logarithmic derivative of the wavefunction, we find
that

Γ =

[
d

dE

(
x0

uIl(x0)

duIl(x)

dx

∣∣∣
x=x0

)∣∣∣∣∣
E=E

]−1
2k0x0|Φ(ρ)|

1
2 γ exp

(
−2ω(ρ)

)
1 +

exp
(
−4ω(ρ)

)
4

. (2.29)

If f ′l =
~

mrx20

[
d
dE

(
x0

uIl(x0)

duIl(x)
dx

∣∣∣
x=x0

)∣∣∣∣∣
E=E

]
, Eq. (2.29) takes the form

Γ =
2~k0 exp

(
−2ω(ρ)

)
mrx0

 f ′−1
l |Φ(ρ)|

1
2γ

1 +
exp
(
−4ω(ρ)

)
4

 . (2.30)

The parameter α is introduced such that,

tan2(α) = |Φ(ρ)|. (2.31)

The parameter α in the expression above can be evaluated at ρ = k0x0,

tan2(αR) =
η

k0x0
+

(
L+ 1

2

)2(
k0x0

)2 − 1. (2.32)

Replacing the parametrization (2.31) in Eq. (2.33) we obtain

Γ =
2~k0 exp

(
−2ω(ρ)

)
mrx0

 f ′−1
l tan

(
α
)
γ

1 +
exp
(
−4ω(ρ)

)
4

 . (2.33)

In the case of L = 0, when the centrifugal barrier vanishes and the tunneling barrier is
only given by the Coulomb interaction at large distances, the integral ω in Eq. (2.21)
can be found easily using the parameterization (2.31). In that case, it was found to
be [Pre47, Sri06]

ω(α) = η
(
2α− sin(2α)

)
. (2.34)

The integral ω in the expression above, defined in Eq. (2.21) is known as the reduced
action. The factor 2ω(α) that appears as the argument of the exponential function
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in the width, Eq. (2.33) has been called the “Gamow factor”, G. Each one of the
factors in the definition of the width can be explained physically. If

1

C2
=

f ′−1
l γ

1 +
exp
(
−4ω(ρ)

)
4

,

Eq. (2.33) takes exactly the same form of the α decay rate shown in the Eqs. (11−14)
of the book by Preston and Bhaduri, “Structure of the nucleus”, [PB75]. C2 depends
on the inside wavefunction factor f ′l (x) and the factor 2~k0/mrx0C2 can be assumed
as the assault frequency of the α particle before tunneling through the Coulomb
barrier. The factor C2 is defined by Preston and Bhaduri as [PB75],

C2 =
2

R

∫ x0

0
|ul(r)|2dr

|ul(r)|2
. (2.35)

The exponential factor exp(−G) is evaluated on the tunneling barrier and was in-
troduced from the definition of the asymptotic behavior of the Coulomb functions,
Eq. (2.18). In most text books, the exponential factor is associated with the penetra-
bility through the Coulomb potential and is proportional to the tunneling probability
of the α particle through the barrier. Consequently, the change in the width Γ comes
mainly from the penetrability of the α particle.

2.2. Semiclassical methods

In the α decay, the usual energies of the α particle are not close to the top or
the bottom of the barrier. At these energies, the rate of change of the de Broglie
wavelength λDB,

λDB =
~2√

2mr

(
ZαZde2

x − E
) , (2.36)

with respect to the distance dλDB/dx is extremely small, as is depicted in Fig. 2.2.
For distances closer to the outer turning point, however, the rate of change of the
de Broglie wavelength increases dramatically. The almost negligible change in dλDB

dx
far away from the turning points for the tunneling barrier allows us to express the
wavefunction of the α cluster-daughter nucleus system via semiclassical methods,
such as the WKB method [Wen26, Kra26, Bri26, Jef25, Raz03, GP90] or the Two
Potential Approach method (TPA) [GK87] in its semiclassical limit. We now describe
the generalities of two of the semiclassical methods most commonly used to find the
spontaneous α decay lifetimes.

2.2.1. WKB method and tunneling

The WKB method was proposed by Wentzel and Brillouin separately [Wen26, Bri26]
in order to find the solution of the Schrödinger equation, using the approximations
introduced by Jeffreys [Jef25]. The authors considered at first the one-dimensional
time-independent Schrödinger equation, although later on, several works have ex-
tended the application of the WKB method for multidimensional systems [Ran77].
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Figure 2.2: Change in the de Broglie wavelength as a function of the distance, for
the tunneling barrier of some α emitters.

The wavefunction Ψ(x) is initially defined in terms of the phase S(x), such that

Ψ(x) =
(
dS(x;~)
dx

)− 1
2
exp
(
− i

~S(x; ~)
)
, [GP90]. As the phase of the wave function de-

pends on the ~ parameter, an expansion of the phase in terms of ~ can be performed,
in the limit where ~ → 0,

S(x; ~) =
∞∑
n=0

~2nSn(x). (2.37)

Replacing the wave function in the one-dimensional time-independent Schrödinger
equation, we find a system of differential equations for Sn(x). The first two terms of
the expansion can be found by solving the set of differential equations,[

S′
0(x)

]2
= 2m [V (x)− E] , (2.38)

2
[
S′
0(x)S

′
1(x)

]
−
[
S′
0(x)

] 1
2
d2 [S′

0(x)]
− 1

2

dx2
= 0. (2.39)

The first term of the expansion of the phase S(x; ~) can be identified with the
Hamilton-Jacobi generating function, as the first expression in Eq. (2.38) is the clas-
sical Hamilton-Jacobi equation

H(q, p) +
∂SHJ

∂t
= 0. (2.40)

In the context of the Hamilton-Jacobi theory, the generating function SHJ is associ-
ated with the classical action. The conjugated momentum is expressed in terms of
SHJ by

p =
∂SHJ

∂x
. (2.41)

In the limit of ~ → 0, only the first terms of the expansion Eq. (2.37) are significant.
In consequence, it is enough to consider the first two terms of the expansion, in
order to find the wavefunction, according to the chosen ansatz. In this limit, the
wavefunction takes the following form

Ψ±WKB(x) =
1√
k(x)

exp
(
± i

~

∫
x

dx′k(x′)
)
, k(x) =

√
2m

~2
(
V (x)− E

)
. (2.42)
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After some quantum mechanics operations [GP90], the wavefunction can be found
for the three different regions: before(I in Fig. 2.1), inside(II in Fig. 2.1) and after
the barrier(III in Fig. 2.1), [Raz03]

ΨWKB(x) =



N sin(Kx) 0 ≤ x ≤ x0,

N√
k(x)

(
Ae

∫ x

x0

|k(x′)|dx′
+Be

−

∫ x

x0

|k(x′)|dx′)
x0 ≤ x ≤ xTP,

NC√
k(x)

e
i

∫ x

xTP

k(x′)dx′ − iπ

4 xTP ≤ x <∞.

(2.43)

Here, K =

√
2mr
~2

(
E + U0

)
and k(x) =

√
2mr
~2

(
V (x)− E

)
.

Looking at the expression above, we can distinguish some features depending on
the region where the wavefunction is defined. Inside the barrier, the wavefunction
decreases exponentially. Outside of the barrier, following the Sommerfeld radiating
condition, the wavefunction describes an outgoing wave. The additional phase in the
wavefunction outside the barrier comes from the connection formulas that are used
in the WKB method to find the analytic form of the wavefunctions in each one of the
regions. N is found from the normalization condition imposed on the wavefunction,
assuming that there is only one α particle confined in the potential well,

N2

∫ x0

0

∣∣ΨWKB(x)
∣∣2dx = 1. (2.44)

The continuity of the wavefunction and its derivative allows us to express the constant
coefficients A,B and C in terms of the barrier parameters. The penetrability in the

semiclassical theory is defined as σ =

∫ xTP

x0

k(x′)dx′. In the limit where exp
(
−2σ

)
≪

1, a condition on K can be found from the continuity of the wavefunction, Eq. (2.43),
[Raz03]

tan
(
Kx0

)
+

K√
2mr
~2

(
E − ηα

x0

) = 0. (2.45)

However, as was mentioned in the last section of this chapter, the only possibility to
fulfill the continuity conditions of the wavefunction is by assuming an initial complex
eigenenergy of the tunneling particle, E = Er− iΓ

2 . Taking the complex wavenumber
in the potential well region, K = Kr − i∆Ki, and expanding the right half side of
Eq. (2.45), a condition on the imaginary part of the wave number ∆Ki can be found
in terms of Kr [Raz03]

∆Ki =
Kr

x0

√
2mr
~2

(
E − η

x0

) . (2.46)

We replace the last expression, Eq. (2.46) in the complex energy that characterizes

the QS state E =

(
Kr−i∆Ki

)2

2mr
− U0, finding the width of the nuclear resonance,

[Raz03, Elt65]

Γ =
2K2

r

mrx0
∣∣√2mr

~2

(
E − η

x0

)∣∣ exp
(
−2σ

)
. (2.47)
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The exponential factor determined by the continuity of the wavefunction in the outer
turning point xTP is exactly the same one that was found in Eq. (2.33). The exponent
of the exponential function −2σ is the Gamow factor, defined in the last subsection.

2.2.1.1. Langer modification and the centrifugal barrier

The WKB wavefunction brings some problems of convergence near the origin. In
the vicinity of the turning points, the semiclassical expansion of the wavefunction in
terms of the classical action is not accurate, as the change in de Broglie wavefunction
is not negligible any more, see Fig. 2.2. Langer introduced a transformation to modify
the spherically symmetric radial wavefunction [Lan37] in the presence of a Coulomb
attractive potential. The purpose of this transformation is to describe a spherically
symmetric system in terms of a one-dimensional wavefunction. It does not only
reduce the degrees of freedom of the physical system, but it also solves the problem
of the convergence of the wavefunction in the origin.

When the physical system is interacting with a central potential, there is an addi-
tional term in the radial Schrödinger equation, which is proportional to the angular
momentum L, as it was explained earlier in this chapter. The centrifugal barrier
increases the tunneling barrier in the case of quantum tunneling, as long as the rel-
ative angular momentum is not zero. However, with the centrifugal barrier taking
the form of L(L + 1)/r2, the WKB wavefunction does not vanishes asymptotically
in the origin, as is expected, but it becomes singular in that limit. While Krammers
was historically the first one to introduce a modification in the centrifugal barrier, in
order to solve the asymptotic behavior of the semiclassical wavefunction, [Kra26], the
explanation of the modification in the centrifugal barrier comes by Langer [Lan37].
Langer proposed a transformation in order to get rid of the singularity of the semi-
classical wavefunction. Since there is a singularity in the origin, the wavefunction
calculated with the usual effective potential was not the physical wavefunction. A
new variable x and a new wavefunction Ψ were introduced such that [Lan37, CnC07]

r

r0
= exp

( x
x0

)
, ul(r) =

r

r0
Ψ(x). (2.48)

Here, Ψ is the radial wavefunction, solution of the radial Schrödinger equation,
Eq. (2.10). Doing the corresponding substitutions in the radial Schrödinger equation,
Eq. (2.10), an equivalent differential equation is found for the new wavefunction as
a function of the new coordinate [Lan37, CnC07]

d2Ψ(x)

dx2
+ (Q1(x))

2Ψ(x) = 0, with

Q1(x) =

√√√√√[2mr

~2
(E − V (x))

(
r0
x0

)2

exp

(
2x

x0

)]
−

(
L+ 1

2

)2
x20

.

(2.49)

Rewriting the last expression in the original radial coordinates, the wave number
Q1(x) takes a familiar form, [Lan37, CnC07]

Q2(r) =
r

r0
exp

(
− x

x0

)
=

√
2mr

~2
(
E − η

r

)
−
(
L+ 1

2

)2
r2

. (2.50)
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The new wavenumber is essentially the same as the old wave number k(x), with the

substitution of the numerator of the centrifugal number term by
(
L + 1

2

)2
. The

radial dependence of the centrifugal barrier is exactly the same as the one in the
radial Schrödinger equation, Eq. (2.10).

The transformation (2.48) does not change the Gamow factor defined earlier. Thus,
the reduced action and the penetrability remains unchanged, [CnC07]∫ xTP

x0

k(x)dx =

∫ rTP

r0

Q2(r)dr. (2.51)

The exponential factor of the width depends highly on the turning points, but the fact
that the Gamow factor remains unchanged under the transformation of coordinates
implies that the difference between the turning points of the two wavenumbers is
negligible. This statement is especially true in the s wave tunneling, L = 0. In that
case, there is no centrifugal barrier, but the new turning point calculated using the
modified centrifugal barrier by the Langer transformation is slightly different from
the one of the Coulomb barrier. However, the difference between the outer turning
points is negligible compared with the dimensions of the Coulomb barrier. Hence,
the outer turning point is the same as in the case when there is no centrifugal barrier
at all.

In this thesis, we work with nuclear resonances whose ground states have zero angular
momentum. In consequence, the Langer modification in the centrifugal barrier is not
considered in the wavenumber k(x).

2.2.2. Quasiclassical limit of the Two Potential approach

U1(x)

W(x)

x

U(x)

U0

E

0

-U0

x2  x1  x0  R

Figure 2.3: Two Potential Approach (TPA).

In 1987, Gurvitz and Kalbermann proposed a approach to the problem of the decay
of a QS state [GK87]. Initially, the QS state is confined by the potential U(x)
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between the turning points x0 and x1. Eventually it tunnels through the barrier, as
the potential U(x) has a finite height U0 at x = R. The outer classical turning point
is x2, so the wavefunction in the region x1 ≤ x ≤ x2 is exponentially suppressed.
After the barrier, the physical system goes into the continuum, and the wavefunction
takes the form of an outgoing wave.

Gurvitz and Kalbermann took initially a quasibound rather than a QS state. In the
limit, the energy of a quasibound state E0 is close to the energy of the decaying QS
state E. Accordingly, the wavefunction of the quasibound state was assumed to have
almost the same form of the wavefunction of the QS state, if its decay rate is smaller
than its energy Γ ≪ E. In order to express the quasibound behavior of the physical
system, the total potential U(x) is split in two potential functions U1(x) and W (x)
(see Fig. 2.3). The potential U1(x) is a binding potential, given by

U1(x) =

{
U(x), for x0 ≤ x ≤ x1,

U0 for x ≥ x1.
(2.52)

The other potential W (x) corresponds to the transition to the continuum and is
defined as [Del10, GK87, Gur88]

W (x) =

{
0, for 0 ≤ x ≤ R,

U(x)− U0 for r ≥ R.
(2.53)

The initial quasibound state
∣∣Ψ0⟩ is an eigenstate of the HamiltonianH0 = p̂2/(2m)+

U1(x), with the corresponding energy of the quasibound state E0. At the initial time
t = 0, the initial state is perturbed as the transition to the continuum W (x) is
considered. Since the new Hamiltonian is H = H0 +W (x), the initial state is no
longer an eigenstate of the total Hamiltonian. The new eigenstate is expanded in
terms of the bound eigenfunctions {Φk(x)} of the Hamiltonian H0 [GK87]

Ψ1(x, t) = b0(t) exp

(
− iE0t

~

)
Ψ0(x)+

1

(2π)3

∫
d3kbk(t) exp

(
− iEkt

~

)
Φk(x). (2.54)

The wavefunction Ψ1(x, t) is replaced in the time-dependent Schrödinger equation.
A set of coupled differential equations are found for the set of coefficients {bk(t)},
k = 0, 1, . . . As the total wavefunction at t = 0 is Ψ0(x), the initial conditions of
the coefficients are exactly b0(0) = 1 and bk(0) = 0, for all k = 1, 2, . . . In order to
recover the description of the QS state, Gurvitz and Kalberman imposed that the
coefficient b0(t) must drop as exp

(
−Γt

)
for large times, [GK87]. In this way, the

evolution of the physical state follows the exponential decay law, according to the
theory of QS states. The set of differential equations that represents the evolution
of the wavefunction Ψ1(x, t) in Eq. (2.54) is

i
db0
dt

= b0(t)⟨Ψ1|W (x)|Ψ1⟩

+
1(

2π
)3 ∫ d3kb̃k(t) exp

[
i
(
E0 + U0 − Ek

)
~

]
⟨Ψ1|W (x)|Φk⟩,

i
db̃k
dt

= b0(t)⟨Φk|W (x)|Ψ1⟩ exp

[
i
(
Ek − E0 − U0

)
t

~

]

+
1

(2π)3

∫
d3k′b̃′k(t) exp

[
i
(
Ek − Ek′

)
~

]
⟨Φk| ˜W (x)|Φk′⟩.

(2.55)
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Here, bk(t) = b̃k(t) exp
(
−iE0/~

)
.

As it can be seen in Fig. 2.3, the perturbationW (x) does not vanish at large distances.
Instead, it takes a constant value −U0. Gurvitz and Kalbermann argued that the
perturbationW (x) should be shifted in order to avoid any singularity in the transition
matrix elements describing transitions between continuum and continuum [GK87].
The shifted perturbation ˜W (x) is defined as

W̃ (x) =W (x) + U0. (2.56)

From the expression above, it can be seen that the new defined perturbation W̃ (x)
vanishes asymptotically as x→ ∞. Using this method, Gurvitz and Kalberman were
able to reproduce the Fermi Golden rule, by neglecting the first term that corresponds
to transition between the eigenstates of the total Hamiltonian, [GK87]. In order to
obtain the width of the QS state, a Laplace transformation of the b0 differential
equation in Eq. (2.55) is done, expressing the coefficient b0(t) in the energy domain
b0(ϵ). The coefficient b0(ϵ) is found in terms of the operator G̃ as

b0(ϵ) = i
1(

ϵ− ⟨Ψ1|W (x)|Ψ1⟩ − ⟨Ψ1|W (x)G̃W (x)|Ψ1⟩
) . (2.57)

Here, G̃ in Eq. (2.57) follows the expression [GK87]

G̃ =

(
1 + W̃ (x)G̃

)
(1− |Ψ1⟩⟨Ψ1|)

ϵ+ E0 + U0 −H0
. (2.58)

Eq. (2.57) shows that the coefficient b0 has a pole at some energy ϵ = ϵ0. Gurvitz and
Kalbermann demonstrated in their work that this pole ϵ0 is located in the second
Riemannian sheet in the complex energy plane, where Im(ϵ) ≤ 0. Their result
confirmed the resonant behavior of the wavefunction Ψ0. Accordingly, the width of
the QS state is defined as usual,

Γ = 2Im
(
ϵ0
)
. (2.59)

Gurvitz and Kalbermann performed an expansion of the radial part of the wavefunc-
tion Ψ1(x, t) in partial waves, finding the following expression for the complex pole
of b0

ϵ0 =

∫ ∞

R
|φ1(x)|2W (x)dx+

∫ ∞

R
dx

∫ ∞

R
φ1(x)W (x)G̃(E, x, x′)W (x′)φ(x′), (2.60)

where E = E0 + ϵ0, [GK87].

The operator G̃ is approximated in terms of the Green’s function GW̃ =
(
E +

∇2/(2m) − W̃
)−1

. The main difference between the operator G̃ in Eq. 2.58 and

the Green function GW̃ comes in the projection operator on the wavefunction Ψ1,
|Ψ1⟩⟨Ψ1|. However, when the integration is performed to calculate ϵ0, the integrat-
ing domain starts at R, where the contribution given by the projection operator is
not significant. As the shifted perturbation W̃ (x) takes the value of U(x), for every
x ≥ R, the substitution of G̃ by GW̃ is justified.
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The Green’s function GW̃ is defined in terms of the regular and irregular wavefunc-

tions of the Hamiltonian HW̃ = −∇2/(2m) + W̃ (x),

GW̃ (E0, r, r
′) = − 2m

rr′k
ξ
(+)
k (r>)ξk(r<). (2.61)

Here, ξk is the regular eigenstate of the Hamiltonian HW̃ and ξ
(+)
k represents the

outgoing eigenstate. Furthermore, k =
√
2mE0 is the wavenumber of the quasibound

state.

The width in Eq. (2.59) is found by replacing Eq. (2.61) in Eq. (2.60). The total
decay rate Γ, calculated by the TPA, is

ΓTPA =
4m

~2k

∣∣∣∫ ∞

R
φ1(x)W (x)ξk(x)dx

∣∣∣2. (2.62)

2.2.2.1. Quasiclassical limit of the Two Potential Approach

Although the exact solution of the decay rate is expressed by Eq. (2.62), in many
works the calculation of the widths of the α emitters is taken in the semiclassical
limit. In the quasiclassical limit, the width (2.62) can be expressed in a similar form
to the WKB result, in terms of the penetrability of the α particle through the barrier.
In the semiclassical limit, the radial part of the quasibound wavefunction φ1(x) is
given by [GK87]

φ1(x) =

√
N

2
√
α
exp
(
−
∫ R

x1

∣∣k(x)∣∣dx). (2.63)

Here, k(x) =

√
2m
~2

(
E0 − U(x)

)
is the wavenumber of the tunneling particle and N

is a factor that can be obtained from the normalization [GK87]

N

∫ x1

x0

1

k(x)
cos2

(∫ x1

x0

k(x′)dx′ − π

4

)
= 1. (2.64)

The regular wavefunction ξk(x) was defined by the authors [GK87] in Eq. (2.62)
in the quasiclassical limit similarly to the way φ1(x) was defined. Replacing the
wavefunctions to calculate the decay rate Γ we obtain

ΓTPA = N
~2

4m
exp
(
−2

∫ x2

x1

k(x)dx
)
. (2.65)

The exponential term in Eq. (2.65) is the penetrability through the classically for-
bidden region between the classical turning points x1 and x2, as it is shown in
Fig. 2.3. The definition of the decay rate (2.65) has been used in several works in or-
der to calculate the decay rates and lifetimes of α emitting nuclei, [BMP92, BCM92,
BJMP96, BM89, KCn07, XR05]. The agreement between the decay rates calculated
by Eq. (2.65) and the experimental results is determined by the characteristics of the
considered tunneling barrier in each one of the approaches that have been proposed
to obtain the theoretical lifetimes.
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2.3. The precluster model

Here we describe the characteristics of the phenomenological model proposed by
Buck et al. [BMP91] based on the one introduced by Gamow [Gam28] and Condon
and Gurney [GC29].

In the precluster model, the preformed α particle follows two different orbits around
the daughter nucleus. The orbits are characterized by different values of the so called
“global quantum number”, G. Macroscopically, G can be understood as a large
quantum number corresponding to the macroscopic situation where the nucleons
of the α particle occupy states above the Fermi surface of the daughter nucleus
[BMP91, BMP90b, BM89]. Taking into account the Pauli exclusion of the nucleons
in the α cluster-daughter nucleus system, G is chosen in such a way that they obey
the Wildermuth condition [BMP91, TWP62], G ≤ 2n + L. Here, n is the quantum
number of relative motion, associated with the number of internal nodes of the radial
wavefunction. L is the relative angular momentum between the α particle and the
daughter nucleus.

In order to study the correlations between G and the lifetimes of even-even nuclei
with 76 ≤ Z ≤ 100, being Z the proton number of the parent nucleus, Buck et al. use
the phenomenological model proposed by Gamow [Gam28] and Condon and Gurney
[GC29]. The tunneling barrier that the α particle tunnels through is given by

V (x1) =

{
−U0 for 0 ≤ x1 ≤ x0,
ZαZe2

x1
for x1 ≥ x0.

(2.66)

Here, Zα = 2 is the proton number of the α particle. The values of x0 and U0 are
fitted such that they reproduce the experimental lifetimes of even-even α emitters.
Furthermore, x0 is expressed in terms of the mass number of the parent nucleus A
as

x0 = c1A
1
3 . (2.67)

The orbits of the α decay must follow the well known Bohr-Sommerfeld quantization
condition, ∫ x0

0

√
2mr

~2
(
E + U0 −

ZαZe2

x

)
dx =

(
G + 1

)π
2
. (2.68)

Buck et al. [BMP91, BJMP96] suggested a value of G = 22 for nuclei with proton
number Z in the studied region. The change in the global number corresponding to
different orbits is ∆G = 2. The value of U0 is fixed and c1 can be found using the
Bohr-Sommerfeld condition, Eq. (2.68) for a single value of G. In the semiclassical
approximation, the width, or the field-free decay rate is

Γ =
P~2K
2mrx0

exp
(
−2Wred

)
. (2.69)

where P is the α particle formation probability. The reduced action from the WKB
method in the exponential term of Eq. (2.69) is

Wred =

∫ ZαZe
2

x0

x0

k(x)dx. (2.70)
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K and k(r) in Eq. (2.69) and Eq. (2.70) are the wavenumbers in the internal and
barrier regions, respectively,

K =

√
2mr

~2
(
E + U0 −

ZαZe2

x0

)
/~2 and k(x1) =

√
2mr

~2
(ZαZe2

x1
− E

)
/~2.

(2.71)
In their calculations, Buck et al. [BMP91, BMP90b] took the preformation factor P
as 1, in order to adjust the minimum set of parameters. In order to find the value of
the depth of the nuclear potential well, Buck et al. minimized the square deviations
of the logarithms of the calculated lifetimes using Eq. (2.69) from the experimental
values. In that sense, the parameters of the model are chosen in order to fit the
experimental data. Buck et al. kept the depth of the nuclear potential well U0 in all
cases as 135.6 MeV.

For most of the medium-mass and heavy α emitters considered by Buck et al. , the
theoretical calculated lifetimes have a difference of a factor of 2 σ or better compared
to the experimental values. Some of the lightest nuclei have theoretical values with
a difference of a factor of 3 σ, compared with the experimental lifetimes. The dis-
crepancy has been explained by the preformation probability of the α particle in the
parent nucleus. In some works, for instance Xu and Ren [XR05], the preformation
factor P takes a different value, between 0 and 1, depending on the value of the global
quantum number G. The value of the preformation factor in that work is fitted in or-
der to reproduce the experimental results of the medium-mass lifetimes, with proton
numbers between 52 and 82. The global quantum number was also modified by Buck
et al. in their calculations, in order to obtain an adequate description of the lifetimes
of the lightest nuclei, compared with the value that G takes for some heavier nucleus
like Po or Rn. The success of the precluster model is attributed by the authors to the
values of the nuclear potential well radius x0 and the behavior of the α-core wave-
function. In the case of the radius x0, the chosen values correspond to the formation
of a quasibound state at the exact energy that the α particle must have in order to
be released by the parent nucleus, for a fixed depth of the nuclear potential well.
Besides, the spherically symmetric α-core wavefunction contains many nodes, such
that the values that the global quantum number G takes are large. The large number
of nodes in the wavefunction agrees with the expectations of the preformation of the
α cluster from valence nucleons, according to the authors of Ref. [BMP91]. The
simplicity of the precluster model allows us to understand the dynamics of the α de-
cay in a transparent way, and the quantitative results show a satisfactory agreement
with the experimental lifetimes of the medium-mass α emitting nuclei.

2.4. Barrier parameterization for laser-assisted α decay

In the present Chapter, we have reviewed some of the simplest phenomenological
models that describe in a transparent way the physical concepts behind the sponta-
neous emission of an α particle by an unstable nucleus. Among the models presented
in this Chapter, we put an emphasis in the precluster model proposed by Buck et
al. [BMP90a, BMP91]. Despite the simple assumptions assumed in the development
of the precluster model by Buck et al. , the α decay lifetimes calculated using this
formalism are close to the experimental results within a factor of 2 or 3 σ. The
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agreement with the experimental lifetimes is remarkable, given the phenomenologi-
cal character of the model and the lack of consideration of microscopic interactions
in the α particle-daughter nucleus physical system.

From the spontaneous α decay rate calculated by the precluster model (2.69), we can
see that the α decay lifetimes depend on the parameters that define the tunneling
barrier and the nuclear potential well, U0 and x0. For the calculations of the lifetimes,
Buck et al. in their work [BMP91] fitted the values of those parameters from available
experimental α decay data in order to reproduce some of the fundamental properties
of the parent nuclei. We take the same set of parameters, U0, x0 and E, that Buck
et al. listed in their work to define the tunneling barrier and the energy of the α
particle for every medium-mass α emitter we study in the present thesis.

Once we have defined the tunneling barrier that the α particle traverses in the spon-
taneous α decay, our purpose is to study the dynamics of the tunneling α particle
in the presence of a laser field. Starting from the field-free decay rate calculated in
the precluster model, Eq. (2.69) and considering that the initial state of the pre-
formed α cluster is QS, we develop a method that allows us to study in depth the
process of emission of α particle in the presence of a strong laser field. Although the
laser-assisted tunneling (LAT) of QS states has been studied in other fields, such as
the photon-assisted transport in semiconductor nanostructures [PA04], to the best
of our knowledge no one has developed a method to describe the dynamics of the
LAT of an α particle through the Coulomb barrier. In the next chapters, starting
from a well known approach in strong-field laser-matter interaction, the Strong-Field
Approximation, and the definition of the field-free decay rate for a QS state, we de-
velop a general method to study the laser-assisted decay of QS states by studying the
dynamics of a tunneling particle in the presence of a strong laser field. Our goal is
to apply our formalism to the particular case of the laser-assisted α decay of several
α emitting nuclei.



CHAPTER 3

LASER-ASSISTED DECAY OF QUASISTATIONARY
STATES

In this Chapter we develop a novel approach to study the laser-assisted de-
cay of quasistationary (QS) states, by extending well known methods used to
study the physics of strong laser field-matter interactions. The physics of the
spontaneous emission of an α particle has been well studied using the phe-
nomenological methods reviewed in the last Chapter. However, the influence
of a direct interaction with a strong laser field during the α decay of medium-
mass and heavy nuclei is still an open question that has not been studied. To
develop an approach that allows us to study the laser-assisted α decay, we start
by reviewing the fundamental features of one of the most successful methods
in the description of laser-induced processes in the multiphoton regime, the
Strong-Field Approximation (SFA). Since the tunneling mechanism plays a
significant role in the description of the field-free α decay, a formulation of
SFA that involves the dynamics of the tunneling particle in terms of complex
classical trajectories, known as the imaginary time method (ITM), is used to
study the transition between the initial QS state and the continuum in the pres-
ence of a strong laser field. To describe the laser-assisted decay of an initial QS
state, we implement a modification of the ITM formulation of SFA that takes
into account the properties of the wavefunction of the QS state, the prefactor
of the field-free decay rate of the QS state and the dynamics of the decaying
system in the presence of the strong laser field. The method described here
allows us to study any laser-assisted decay process whose initial state is QS.
In particular, it is a suitable formalism to describe the laser-assisted tunneling
(LAT) of the α particle through the Coulomb barrier.

Among the proposals to modify the α decay rates, the direct interaction between the
α emitter and a strong laser field has been overlooked over the past years, as available
experimental facilities did not have the strong enough lasers to affect the systematics
of the spontaneous α decay. However, in recent years, due to the development of new
experimental facilities aiming at higher intensities and photon energies, the scenario
of direct interaction between nucleus and laser beams cannot be ruled out anymore.
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To the best of our knowledge, until now, no theoretical model has been developed to
address laser-assisted α decay. However, other laser-assisted phenomena, such as the
bremsstrahlung in external electromagnetic fields [BF66, V.97], the photon-assisted
transport (PAT) or laser-assisted β decay [NR64] have been studied in other fields
of physics. In particular, theoretical tools such as the Floquet method have been
applied to the description of PAT, which can be described as a LAT of an initial QS
state [PA04]. The laser-assisted decay of QS states can be understood as an example
of LAT of an initial QS state, due to the close relation between tunneling and decay.

The Floquet method has been applied extensively in strong-field atomic physics and
can be used to study the LAT of a QS state. The Floquet approach is known
to be efficient when the characteristic number of absorbed or emitted photons is
not very large. However, when a large number of photons is involved, it becomes
more cumbersome numerically. Another successful method developed in strong-field
atomic physics and relevant in the semiclassical domain (where a typical number
of photons is at least of the order of ten and can easily reach hundreds and even
thousands) is the SFA. SFA has been extensively used to determine the laser-induced
ionization rates, providing a simple and natural description of strong-field laser-atom
interactions that in many cases is fully analytical. In particular, there is a formulation
of SFA in terms of complex classical trajectories, which characterizes in a transparent
way the physics of tunneling in the presence of a strong laser field for laser-induced
processes. This formulation is known as ITM. This method was introduced in the
early days of strong-field physics [PP67, PKP68] to give a physically transparent
formulation of SFA. In addition, the ITM also provides an efficient way to consider
significant effects that the plain SFA misses in its original formulation.

However, if SFA is directly applied on the LAT of an initial QS state, some fun-
damental problems in the definition of the transition amplitude appear due to the
behavior of the initial state. For a QS state, the transition amplitude defined by the
plain formulation of SFA does not converge due to the asymptotic behavior of the
initial wavefunction. This is due to the fact that for a QS state, the initial state
is described in terms of a Gamow wavefunction with an associated complex energy.
The QS wavefunction takes the asymptotic form of the wavefunction of a free particle
at large distances and it is not normalizable. Thus, the transition amplitude defined
in terms of the initial and the final wavefunction in the SFA diverges in consideration
of the asymptotic behavior of the initial QS state.

In order to solve this problem, we develop here a general and accessible theoretical
description of the laser-assisted decay of QS in the presence of intense electromagnetic
fields. The general idea of SFA is adopted and modified using ITM for the description
of the LAT of an initial QS state. Our approach recovers specific results of Ivlev et
al. in Ref. [IM85], who were the first authors to propose the ITM for the description
of the tunneling of free particles through a potential barrier in the presence of an
oscillating electric field. Furthermore, our formalism provides not only qualitative but
also quantitative tunneling probabilities that agree with exact numerical calculations,
compared with the results by Ivlev et al. [IM85]. In particular, the laser-assisted
α decay can be studied in depth using our extended SFA formalism to investigate
laser-assisted decay of QS states, calculating the spectrum of the tunneling α particle
and the laser-assisted lifetimes for medium-mass and heavy nuclei.

In this Chapter, we start by describing in detail the extensions of SFA for the laser-
assisted decay of QS states. Firstly, we introduce SFA in general form (to see a
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further discussion of methods in strong fields, see [Rei92]). Later on, we discuss the
formulation of the SFA in terms of subbarrier trajectories in complex times, known
as the Imaginary Time Method (ITM). Using the ITM formulation, an extension
of the method to take into account LAT of QS states is developed. Atomic units
me = ~ = 1 are used throughout this Chapter.

3.1. Strong-field approximation matrix element for qua-
sistationary states

3.1.1. Strong-Field Approximation

We start from a short summary of the SFA that describes ionization from true bound
states. Within the SFA, the transition amplitude between an atomic bound state
|Ψ0⟩ of binding energy E0 ≡ −I and a continuum state |Ψp⃗⟩ with an asymptotic
momentum p⃗ is given by

MSFA(p⃗) = −i
+∞∫

−∞

⟨Ψp|V̂ (t)|Ψ0⟩dt , (3.1)

where the final state is approximated by the Volkov function,

Ψp(r, t) =
1

(2π)3/2
exp

ivp(t) · r− i

t∫
−∞

εp(t
′)dt′

 (3.2)

and

εp(t) = v2
p(t)/2, with vp(t) = p+A(t)/c

are the electron time-dependent kinetic energy and velocity in the electromagnetic
field, respectively, described by the vector potential A(t). V̂ (t) is the interaction
operator of the electron with the field of the electromagnetic wave and c the speed of
light. In the dipole approximation, the electric field E(t) = −∂tA/c and the vector
potential depend only on time. It is convenient to simplify the notation by using the
field-induced momentum rather than the vector potential, pF (t) = A(t)/c.

Amplitude in Eq. (3.1) is relevant under the semiclassical conditions:

K0 =
I

ω
≫ 1 , F =

E0
Ech

≪ 1 , (3.3)

where E0 is the electric field amplitude, Ech = (2I)3/2 is the characteristic atomic
field (for the ground state of hydrogen Ech = m2

ee
5/~4 = 5.14 × 109V/cm) and ω is

the laser frequency. The first strong inequality in Eq. (3.3) shows that the minimal
number of photons required for ionization is large, hence the coupling is essentially
nonlinear. The second inequality guarantees that the spatial scale on which the
ionization amplitude forms is large in comparison with the atomic size (see a detailed
discussion in Refs. [Pop04, PPB08, PB08]). Another frequently used dimensionless
combination known as the Reiss parameter [Rei80] is proportional to the ratio of
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the ponderomotive energy Up = ⟨p2
F (t)⟩T /2 (where T is the optical period) to the

photon energy. For the linearly polarized monochromatic field this reads

zF =
4Up
ω

=
E2
0

ω3
= 8F 2K3

0 . (3.4)

For ionization of atoms and positive ions by intense infrared and optical lasers, the
conditions Eq. (3.3) are usually well satisfied and zF ≫ 1. The integrand in Eq. (3.1)
is then a rapidly oscillating function of time, so we use the saddle-point method in
order to calculate the integral in Eq. (3.1). We expand the time-oscillating integrand
in the vicinity of the solution of the saddle-point equation, given by

∂tS0(p, t0) = v2
p(t0)/2 + I = 0 . (3.5)

Here, the function S0 is the argument of the time-oscillating function in the integrand.
It is the defined as the classical action

S0(p, t) =

+∞∫
t

{
v2
p(t

′)/2 + I
}
dt′. (3.6)

The amplitude can be written as a sum of contributions from all relevant stationary
points t0(p),

MSFA(p) =
√
−2πi

∑
α

P(p, t0α)
exp (−iS0(p, t0α))√

∂2t S0(p, t0α)
, (3.7)

and the pre-exponential factor P is the spatial matrix element of the interaction
operator V̂ . The differential ionization rate is given by the squared modulus of
Eq. (3.7).

In the case of nonlinear ionization, all roots of the saddle point equation, Eq. (3.5)
are complex due to the initial bound state of the electron. Consequently, the phase
S0(p, t0) in Eq. (3.7) is a complex quantity with a numerically large and negative
imaginary part. That guarantees that the saddle point method can be used. The
ionization rate under conditions Eq. (3.3) appear to be a highly nonlinear function
of the laser field strength.

In the case of ionization, the form of this nonlinear dependence is quantified by the
value of the Keldysh parameter [Kel65]

γ =

√
2Iω

E0
≡ 1

2K0F
(3.8)

which is the ratio of the characteristic atomic momentum κ0 =
√
2I to the field

momentum pF = E0/ω. Since the final state is approximated by the plane wave
Eq. (3.2), the prefactor P in Eq. (3.7) can be expressed via the Fourier transform of
the bound state atomic wave function ϕ0(r). For practical calculations, this means
that the prefactor is a weak function of the final momentum and the field and atomic
parameters compared with the highly nonlinear exponential, so that one may safely
replace it by a constant as long as photoelectron momentum distributions and not the
total ionization rates, are considered. Moreover, in the above formulation of the SFA,
the so-called plain SFA, the expression of the prefactor is anyway incorrect, except for
the case of ionization from a short-range well. The simplest form of the SFA transition
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amplitude is therefore given by Eq. (3.7) with P = const. On the qualitative level this
rough approximation is in many cases sufficient. Strictly speaking, the SFA provides
a quantitatively correct description of nonlinear ionization only for the exceptional
case of a particle bound by a zero-range potential. For short-range potentials, it is
still a good approximation if the interaction operator V̂ (t) is taken in the length gauge
[BMB05]. For atoms, where the electron-core interaction potential always presents a
long-range Coulomb tail, the SFA prefactor P is essentially wrong in any gauge. In
this case, to calculate it correctly and bring the SFA back to the quantitative level of
description, the technique of Coulomb corrections was developed. For further details
we refer the reader to Refs. [PMPB08, PMPB09, PPB08, PB08, SSI08].

3.1.2. Modified SFA for quasistationary states

Let us now turn to the case when not a bound but a QS state is subject to an intense
laser pulse. One would then expect the appearance of an above-threshold ionization
(ATI)-like photoelectron spectrum with the significant difference that now the initial
state energy E0 ≡ p0

2/2 > 0 so that there is no gap between the initial state and
the continuum. As a result, laser photons can also be emitted, not only absorbed,
and the net number of absorbed photons can also be zero. Figure 4.1 sketches this
qualitative difference between photoelectron spectra for stationary and QS states.
Nevertheless, in strong fields we expect that the typical number of photons involved
in the interaction is anyway large, hence SFA-like approaches should be suitable
also for the description of ionization from QS states. With this assumption, we
can introduce the amplitude of laser-assisted decay replacing the bound state wave
function |Ψ0⟩ in Eq. (3.1) by the QS state (Gamow’s wave function)

Ψ0(r, t) = ϕ0(r)e
−iEt, E ≡ E0 + iE′

0 = E0 − iΓ/2 =
p0

2

2
− ip0p

′
0 .

Here E0 is the real part of the complex energy and Γ is the width that determines
the decay rate. Following a common width limitation in the theory of QS states, we
consider Γ ≪ E0. If an even stronger limitation is satisfied and the width is small
compared with all other characteristic frequencies of the problem, we may disregard
the factor exp(−Γt/2) in the integrand. Then the SFA ionization amplitude differs
from the one for the true bound state in the spatial wave function of the initial state
ϕ0(r) and by the fact that the initial state energy E0 lies in the continuum.

This straightforward application of the SFA leads, however, to some difficulties,
namely:

1. The spatial matrix element is divergent due to the exponential divergence of
the spatial wave function of the QS state,

ϕ0(r) ∼ eip0r+p
′
0r → ∞, r → ∞, p′0 ≈ Γ/2p0 .

This asymptotic exponential divergence at large distances well known in the
theory of QS [BPZ69, R.91], originates from the approximate treatment of the
decaying state as a stationary state and was noted in the pioneering work of
Gamow [Gam28].
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2. Even if the phase is large and the saddle point method is applicable, the saddle-
points are real (since E0 > 0 and we omit Γ ≪ E0 in the saddle-point equation)
and the stationary phase is also real. The field parameters then enter the
tunneling probability only via the pre-exponential factor. In other words, the
transition amplitude does not demonstrate the nonlinear dependence on the
laser field strength and frequency typical for strong field phenomena. This
means that even in a very weak field the probability of detecting the outgoing
particle with an energy considerably different from E0 is not small, i.e. the
field-free tunneling exponent does not emerge in the limit E0 → 0. Obviously,
such a conclusion cannot be correct.

Although the exponential divergence of QS state wavefunctions is itself not surprising
and follows from the definition of a QS state, for the calculation of norms and matrix
elements containing these divergent factors a regularization method is needed. Such
a method was first proposed by Zeldovich [Zel61]. However, for our purposes we will
not use any regularization but apply instead another method for reconstruction of
the correct prefactor, as explained in the following.

The origin of the second difficulty becomes clear if we consider the structure of the
continuum for the system shown in Figure 4.1. For simplicity, in the following we
refer to a 1D system. At large distances the eigenfunctions are superpositions of the
incoming and the outgoing plane waves:

ϕp(x) = e−ipx + F (p)eipx, x→ ∞, E = p2/2

while inside the well, x ≤ a,

ϕp(x) ∼ A(p) sin

 x∫
0

v(p, x′)dx′

 , v(p, x) =
√
p2 − 2U(x) .

For the momenta in the narrow vicinity of the QS state, p ≃ p0, the absolute value
of the coefficient A(p) depends strongly on p having a sharp maximum at p = p0.
For eigenstates whose energy is sufficiently different from E0,

|E − E0| ≫ Γ , 0 < E < U0 , (3.9)

the wave function inside the well is exponentially small,

A(p) ≃ eiW0(p) , W0(p) =

b(p)∫
a(p)

v(p, x)dx . (3.10)

Here a(p) and b(p) are the turning points of classical motion, hence the action W0

taken over the classically forbidden region is a purely imaginary value and iW0 <
0. The coefficient A(p) is the semiclassical probability amplitude (calculated with
exponential accuracy) of the particle to tunnel through the barrier formed by the
potential U(x). Thus, for continuum states satisfying Eq. (3.9) the correct spatial
matrix element should contain an exponentially small factor Eq. (3.10), whereas the
SFA matrix element calculated with a plane wave final state function does not present
this feature. We come to the conclusion that the problem with the SFA applied to
QS states is that its plane wave final state Volkov function differs from the correct



3.1 3.1. SFA MATRIX ELEMENT FOR QUASISTATIONARY STATES. 35

continuum wave function exponentially, exactly in that part of the position space
that contributes most to the spatial matrix element.

Taking this into account we may formulate how one should modify the SFA matrix
element to make it appropriate also for the description of LAT from QS states; the
spatial matrix element should be replaced according to

√
−2πi ⟨ϕp|V (x, t)|ϕ0⟩/

√
∂2t S0(p, t0α) → A(vp)P(vp, t) , (3.11)

where A(vp) is given by Eq. (3.10), vp is the instant velocity vp(t) = p+pF (t) and the
new prefactor P(vp, t) will be defined below. Then, instead of Eq. (3.7) we obtain

MSFA(p) =
∑
α

P(vp, t0α) exp [iW0(vp)− iS0(p, t0α)] . (3.12)

The action W0(vp) is complex and describes the field-free tunneling through the
potential barrier U(x). The action S0(p, t0) is real (just as the saddle point t0) and
therefore accounts for the effect of the laser field on the particle after the tunneling.
Thus, in this approximation the laser field only changes the particle’s energy on
its way from the tunneling exit to a detector. In other words, S0 accounts for the
kinematic effect of the laser field that redistributes the particles in the energy space
not affecting the total decay probability. This corresponds to the “exclusive” regime
of interaction, addressed in the introduction of the present thesis [NR64, BMSS83,
BSS84a, BSS84b]. At first sight, the tunneling exponent is affected by the laser field
via the fact that the field-free actionW0 is now taken at the instant velocity vp at the
saddle point. However, according to the saddle point equation Eq. (3.5) vp(t0) = p0,
so that W0(vp) =W0(p0) and the laser field dependence vanishes.

We can now translate this formal description of the matrix element Eq. (3.12) into
a simple physical picture which would allow us to determine the correct prefactor
P(p, t). The particle tunnels through the potential barrier the same way as it would
without the laser field. At some time instant t0, it emerges in the classically allowed
domain having the initial velocity v(t0) = p0 and starts its motion in the laser field1.
Then its final energy is given by

E = p2/2 = (p0 − pF (t0))
2/2, (3.13)

so that each initial time t0 corresponds to a certain final energy. The inverse function
t0(E) is not necessarily single-valued. In the linearly polarized monochromatic field
with

E(t) = E0 cosωt , pF (t) = −pF sinωt , pF = E0/ω (3.14)

we have Emax = (p0+pF )
2/2 and Emin = (p0−pF )2/2 or zero; the spectrum consists

of ATI-like peaks between the classical boundaries (CB) Emin ≤ E ≤ Emax. The
magnitudes of the ATI-like peaks vary slowly with the energy via the prefactor in
Eq. (3.12). Outside the CB, the spectrum vanishes abruptly.

Within the picture described by Eq. (3.12), penetration of the particle through the
well and its subsequent evolution are independent. Then the probability to tunnel
out during the time interval dt0 is given by

dw(t0) = R0dt0 = R0

∣∣∣∣dt0dp
∣∣∣∣dp , (3.15)

1Here we assume that the potential well is a short-range one.
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where R0 = P2
0 exp(−2ImW0) is the field-free tunneling rate and the derivative

dp/dt0 = −ṗF (t) is calculated from Eq. (3.13). Note that we assume here that
the tunneling probability can be written as a continuous function of the particle
asymptotic momentum p. In reality, the spectrum consists of a discrete comb of
peaks corresponding to absorption or emission of an integer number of laser pho-
tons. Our assumption thus implies that the characteristic number of peaks L in the
spectrum is large, L ≫ 1. According to Eq. (3.13), there are two limiting cases de-
fined by the ratio between the field-free electron asymptotic momentum p0 and the
field momentum pF . If pF ≪ p0 then the classical boundaries of the spectrum are
approximately E0 ± p0pF so that the number of peaks is L ≃ p0pF /ω. For stronger
fields where pF ≫ p0 the energy scale is determined by the ponderomotive energy
and the number of peaks is of the order of the Reiss parameter Eq. (3.4). As will be
discussed in the next section, for field values for which L is not much greater than
unity, the approximation of the continuous spectrum contradicts energy conservation
requirements. As a result, the total rate can only be calculated with some numerical
error.

The distribution Eq. (3.15) is divergent at the CBs p = pmax/min where we have
dp/dt0 = 0. Such an integrable divergence near the CBs is typical for SFA-based
descriptions, occurring at the final momenta for which the saddle-point method does
not work due to cancelation of the second derivative of the action. This does not
affect the total probability but renders the momentum distribution incorrect in the
vicinity of CBs. To avoid this problem, the term that is proportional to the third
derivative of the action has to be accounted for in the phase decomposition near the
saddle point. The divergence is then replaced by a local maximum of the spectrum

at the CB [GP99, FSB02] with a relative height of the order of z
1/3
F , where zF is the

Reiss parameter Eq. (3.4).

In the simplest form, this regularization procedure reduces to the replacement∣∣∣∣dt0dp
∣∣∣∣→ 1√

(dp/dt0)2 + β2
. (3.16)

The ratio between the value of the spectrum at the local maximum of the spectrum
and the corresponding value at the CB is

wCB

wmax
= z

1
3
F . (3.17)

At the CB, the derivative of the final momentum respect to the initial time of motion
outside the barrier t0 is zero So, in accordance to Eq. (3.16), the value of the spectrum
in the CB is proportional to

wCB ∝
∣∣∣β∣∣∣2. (3.18)

Since |β| ≪ dp
dt0

∣∣∣
max

, the spectrum at the local maximum is proportional to

wmax =

∣∣∣∣∣
√
dp

dt0

∣∣∣
max

∣∣∣∣∣
−2

. (3.19)

Replacing Eqs. (3.18) and (3.19) in Eq. (3.17), we find the value of the regularization
constant β, which is

β = z
− 1

3
F

∣∣∣∣∣
√
dp

dt0

∣∣∣
max

∣∣∣∣∣
2

. (3.20)
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Next, we take into account that usually there is more than one solution to the saddle-
point equation, so that several t0α, α = 1, 2, ... correspond to the same final energy.
This leads to a coherent sum over all saddle-point solutions.

The momentum distribution takes then the form:

dw(p) = |M(p)|2 dp ,

M(p) =
∑
α

P0 exp [iW0(vp)− iS0(p, t0α)]√
dp/dt0 + iβ

∣∣∣∣
t=t0α

.
(3.21)

Clearly, this result misses two effects: (i) the influence of the laser field on the
subbarrier motion is not accounted for and (ii) in the classically allowed domain,
the effect of the potential U(x) is disregarded. The former effect becomes more and
more significant when the laser intensity grows, whereas the latter is particularly
important for potentials with a long-range tail, e.g. for the Coulomb potential. In a
latter subsection of this Chapter, we reformulate the amplitude Eq. (3.21) using the
ITM and show that this new formulation provides a straightforward way to account
for the two missing effects.

3.2. Imaginary Time Method

The ITM is a modification of the method of complex classical trajectories by Landau
[Lan32, LL77]. In his work, Landau used the method complex classical trajecto-
ries in order to find the quasi-classical matrix element of an operator f̂ , defined as∫ ∞

−∞
ψ∗
f (x)f̂(x)ψi(x)dx. The initial and final states, ψi(x) and ψf (x) take the form of

semiclassical wavefunctions, which are quickly oscillating in the quasi-classical limit.
Consequently, the matrix representation of the operator f̂ is a quickly oscillating
exponential integral. In his calculations, Landau assumed that the x variable is com-
plex, displacing the path of integration off the real axis where the matrix element is
evaluated into the upper half-plane. The choice of the path of integration depends
on the form of the potential U(x), which defines the wavefunctions of the initial and
final state, via the Schrödinger equation [LL77]. The classical trajectories are found
by solving the classical equations of motion. There is only one path that describes
the transition, which is characterized by an intermediate point “q0”. This point was
called by Landau the “transition point”. The path of the transition between the
initial and the final state is chosen such that it crosses the “transition point”. The
classical action, S(q1, q2), from the initial position q1 to the final one q2 is evaluated
on this path. If there are more than one transition points, the trajectory must be
chosen such that the classical action takes its smallest absolute value. The transition
probability is calculated with exponential accuracy as [LL77]

w ≈ exp
(
−2Im

(
S(q1, q0) + S(q0, q2)

))
. (3.22)

As the potential U(x, t) depends explicitly on time, the energy is no longer conserved.
For a slowly changing potential, described by a broad and smooth tunneling barrier,
the semiclassical approximation is valid. In the semiclassical limit, the main contri-
bution to the transition probability comes from the extremal trajectory, the path that
minimizes the classical action S(q0, q1, t), [Pop05, Pop04]. It was suggested by Popov
that it is necessary to consider a narrow bundle of classical trajectories, described in
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imaginary time, close to the extremal trajectory, and find the second order correction
to the classical action [Pop04]. This can be done by starting from the definition of
the definition of the semiclassical time-dependent wavefunction, [Pop04],

ψ(p, t) = −i
∫ t

−∞
dt1 exp

(
−iEt1

) ∫
drG(p, t; r⃗1, t1)U(r1)φ0(r1), (3.23)

where p⃗ is the final momentum that characterizes the final state and φ0(r) is the radial
component of the initial bound state wavefunction. Furthermore, G(p, t; r⃗1, t1) is the
semiclassical Green function, defined by Feynman as [Fey48, FH65]

G(r, t; r⃗1, t1) =
θ
(
t− t1

)
2πi
(
t− t1

) 3
2

exp [iS (r, t; r1, t1)] . (3.24)

Here θ
(
t− t1

)
is the Heaviside step function.

A Fourier transform is performed on the semiclassical operator in Eq. (3.24), ex-
pressing the propagator in the mixed representation, position-momentum, [Pop04]

G(r, t; r⃗1, t1) ≈
1(

2π
) 3

2

exp {i [S (p, t; r1, t1)− p · r]} . (3.25)

The classical action S(p, t; r1, t1) in Eq. (3.25) is evaluated on the calculated subbar-
rier trajectories, determined by the initial conditions, r(t1) = r1 and p(t) = p. The
time-dependent wavefunction can be expressed by replacing the semiclassical Green
function, Eq. (3.25) in the integral definition of the wavefunction, Eq. (3.23). As a
consequence, the exponential integral oscillates quickly, due to the large values that
the action takes on the complex trajectories [Pop05]

ψ(p, t) =
exp
(
−iEt

)
(
2πi
) 3

2

∫ t

−∞
dt1dr1 exp

(
iW (p, t; r1, t1)

)
U(r1)φ0(r1). (3.26)

Here W (p, t; r1, t1) is the classical action, which takes the form [Pop04]

W (p, t; r1, t1) =

∫ t

t1

[
L(t′) + E

]
dt′ − p · r. (3.27)

The function L(t′) is the classical Lagrangian of the tunneling particle, interacting
with a external field,

L(t′) = meṙ
2

2
+ er · E(t). (3.28)

The integral in Eq. (3.26) is calculated using the saddle-point method. In order to
find the points whose contribution is larger in the calculation of the integral, we solve
the following differential equation [Pop05]

dW

dt
= −L(t1α)− E. (3.29)

The initial conditions at the instant when the subbarrier motion starts are [Pop05]

p2(t0) = −2E, r(t0) = 0, (3.30)
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assuming that the tunneling particle, i.e. an electron, is located at the origin. To
obtain the final velocity and position of the particle after leaving the barrier, Popov
calculated the variation of the action W in the vicinity of the extremal trajectory.
From the variational formalism, two boundary conditions that are the key elements
in the ITM are found

Im(r(0)) = Im(ṙ(0)) = 0. (3.31)

By convenience, the instant when the particle leaves the barrier is taken as zero. But
in general, the initial time when the particle starts its motion after the barrier ϕ0 can
take any positive real value, ϕ0 ∈ R+. The conditions in Eq. (3.31) together with the
classical equations of motion in complex time specify the extremal trajectory that
the particle follows during its subbarrier motion.

The evaluation of the action W in Eq. (3.27) gives a complex quantity, whose imagi-
nary part is related with the dynamics of the tunneling particle traversing the barrier.
If there is only one saddle-point solution of the Eq. (3.29), the tunneling probability
is [Pop05]

w ∝ exp
(
−2Im(W )

)
. (3.32)

For photo-ionization, Popov showed that the tunneling probability depends sharply
on the electric field strength [Pop05]. Eq. (3.32) shows the qualitative behavior of
the rate. For some atomic systems in which the prefactor in front of the exponential
function in Eq. (3.32) depends strongly on the final momentum of the tunneling par-
ticle, the behavior of the rate is also strongly influenced by the momentum-dependent
prefactor, the missing proportionality constant in the Eq. (3.32). Following the ITM,
a new version of the transition amplitude in Eq. (3.7) can be reformulated in terms
of the trajectories in complex times.

3.2.1. Imaginary time method for quasistationary states

We have introduced the ITM following the method developed by Popov, [Pop05,
Pop04], in the last subsection. With this formalism, we are able to describe the
dynamics of the tunneling particle, e.g. electron, while it is traversing the barrier.
If we do not have an initial bound state, but QS, the transition amplitude must be
modified, in order to take into account continuum-continuum transitions. With that
goal in mind, we reformulate the transition amplitude in the plain SFA formalism,
Eq. (3.21) in terms of classical complex trajectories in this subsection.

In accordance to the Eq. (3.31), a trajectory x0(t) can be found along which the
particle starts its motion at the complex time instant t = ts inside the well, x(ts) = 0,
having the energy E = v2(ts)/2 = E0 and arrives at x = b when t = t0. Here
b = b(E0) is the outer classical turning point, U(b) = E0. The trajectory satisfies
the Newton equation

ẍ = v̇ = −∂U/∂x . (3.33)

The exit point x = b is separated from the well by the classically forbidden region.
Thus, the solution of Eq. (3.33) satisfying the assigned initial conditions only exists
in complex time, t = t0 + iτ . The action W0 in Eq. (3.10) and Eq. (3.21) can be
represented as

W0(p0) =

t0∫
ts

(L+ E0)dt− p0b , (3.34)
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where L = v2/2− U(x) is the field-free Lagrange function. Since the particle moves
in complex time, t ∈ [ts, t0], its velocity is imaginary, whereas the coordinate is real.
At the exit x(t0) = b all quantities become real. To solve Eq. (3.33), one has to
consider t0 as an external parameter and τ0 can be found from the initial condition
x0(ts = t0 + iτ0) = 0.

After the exit, when time becomes real t ≥ t0, the particle moves under the action
of the laser field. The respective trajectory satisfies another Newton equation

ẍ = v̇ = ṗF (t) , v(t0) = p0 , x(t0) = b (3.35)

with the solution

x(t) = b+ p(t− t0) +G(t)−G(t0) , G(t) =

t∫
0

pF (t
′)dt′ . (3.36)

The condition ẋ(t0) = p0 then specifies t0 to be a function of the final momentum,
p. The following algebra

− S0 = −
+∞∫
t0

(
v2/2− E0 +

d

dt
vx− d

dt
vx

)
dt =

=

+∞∫
t0

(
v2/2 + v̇x+E0

)
dt− vx|t→+∞ + vx|t=t0 ,

allows to represent the action S0 in a form identical to that of Eq. (3.34). Thus, the
exponential in Eq. (3.12) can be rewritten as exp(iW ) where

W =

+∞∫
ts

(L+ E0)dt− vx|t→+∞ (3.37)

is the classical action calculated along the complex trajectory selected described
above. This is the basic result of the ITM [Pop05].

The focal point of this subsection is using ITM to generalize the transition amplitude
given in plain SFA, Eq. (3.21). Indeed, one can calculate the function Eq. (3.37)
accounting for both the binding potential and the field of the electromagnetic wave,
i.e. evaluating the trajectory x(t) from the equation

ẍ = v̇ = −∂U/∂x+ ṗF (t) (3.38)

with initial and boundary conditions

x(ts) = 0 , v2(ts)/2 = E0 , v(t→ ∞) = p . (3.39)

Except for the simplest model systems, a solution to Eqs. (3.38) and (3.39) can only
be found numerically or by iteration with respect to one of the two fields. However,
even in first-order perturbation theory, it is possible to account for the nonlinear effect
of an intense laser field on tunneling. Indeed, if in some part of the position space
the laser field is small compared with the binding force (or vice versa), corrections to
trajectory δx and to the action δW can be derived perturbatively. These corrections
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must remain small compared to the respective unperturbed values, |δW | ≪ |W |, to
justify the application of perturbation theory. However, since under semiclassical
conditions Eq. (3.3) the action is numerically large, the condition

1 ≪ |δW | ≪ |W | (3.40)

is typically fulfilled. This means that even a perturbative correction due to the
presence of another (e.g. laser) field can cause a substantial modification of the
spectra. The regime where such a semiclassical perturbation theory for the action
is relevant fulfills for a variety of strong field problems [PP67, PMPB08, PMPB09,
PPB08, PB08].

The correction δW consists of two parts: one due to the functionally different action
that accounts for the additional interactions, and the other related to the modification
of the trajectory. In the literature the first correction has been better studied than
the second. In particular, in the work of Ivlev and Melnikov [IM85] presenting the
first ITM treatment of LAT, only the first correction was accounted for.

To summarize, by taking into account both potential and laser fields, the differential
probability of observing the electron with the asymptotic momentum p takes the
form Eq. (3.21) with the amplitude

M(p) =
∑
α

P0(v(t0α)) exp(iW (p, tsα))√
dp/dt0α + iβ

, (3.41)

with W (p, tsα) calculated along Eqs. (3.37) and (3.39). This distribution is the key
part of our modified method to describe laser-assisted decay of QS states. It is the
main result of the present Chapter. The transition amplitude M(p) in Eq. (3.41)
includes both the field-free and the LAT and accounts for the redistribution of the
particle momenta due to the laser field after exiting the barrier. It is relevant under
conditions Eq. (3.3) with the additional requirement that the number of ATI-like
peaks in the spectrum should be large to keep Eqs. (3.15) and (3.16) valid, i.e.
p0pF ≫ ω or zF ≫ 1. Integration over the final momenta of the particle at the
detector provides the total tunneling probability. In Appendix C, it is shown that
the field-free decay rate follows from Eq. (3.41) in the weak field limit E0 → 0, in
the case of a monochromatic field. In the next Chapter, we present a test case for
the method developed here that can be treated analytically, namely LAT through a
rectangular barrier.

A remaining important question is what happens to the spectrum for increasingly
thick barriers up to the limit of a true bound state. For an infinitely thick barrier, the
field-free decay vanishes and only ATI is possible. An examination of the equations of
motion and the action considered above shows that those trajectories that correspond
to the final energy p2/2 > U0 survive for the infinite barrier and the respective
ionization probability is nonzero. This will result in a common ATI spectrum. We
can therefore state that the present formulation contains contributions from both the
laser-assisted and laser-induced processes. These contributions can be distinguished
according to the type of trajectories: trajectories that vanish for an infinitely thick
barrier are responsible for LAT. One should note, however, that this classification
is only qualitative, since both families of trajectories depend continuously on the
barrier width.





CHAPTER 4

LASER-ASSISTED TUNNELING THROUGH A
RECTANGULAR BARRIER

As a test case, in this Chapter the method developed in Chapter 3 is used
to determine the spectra and total decay rates for the laser-assisted tunneling
(LAT) through a one-dimensional rectangular barrier. We start by consid-
ering the tunneling rate of a QS state in the presence of a static laser field,
using ITM. The subbarrier trajectories and the classical action are calculated
and the total decay rate is determined. In order to show the consistency of
the ITM, we compare the analytic results obtained by ITM with the WKB
method. A monochromatic laser pulse is considered and we calculate the fi-
nal momentum distribution and the laser-assisted decay rate for two different
sets of parameters of rectangular barriers. We show that depending on the
parameters, two regimes of decay can be realized in the laser-assisted decay
of QS states. These two regimes, referred as “inclusive” and “exclusive”,
were described qualitatively in several works of laser-assisted decay of particles
[NR64, BMSS83, BSS84a, BSS84b]. Finally, the LAT in the presence of a
short laser pulse is considered and the tunneling spectrum is determined. In
order to prove the accuracy of our method, we compare our results with exact
numerical solutions of the time-dependent Schrödinger equation (TDSE). The
outcome of this comparison is an excellent quantitative agreement. The results
presented in this Chapter have been published in [CnPBP11].

In this Chapter, we consider a test case of LAT through a one-dimensional barrier
that admits an analytical solution. Due to its simplicity, we cosider the problem of
the LAT through a one-dimensional rectangular barrier. Initially, the state of the
particle is described as QS in a one-dimensional rectangular well of extension a, as
the one depicted in Fig. 4.1. For the simplicity of the calculations, a is taken as zero.
Our initial QS state has the an energy E0 and a width Γ, with Γ ≪ E0. In the case
of spontaneous decay of the QS state, the spectrum of the tunneling particle has the
form of a single narrow line centered at the real part of the QS state energy, E0. If
the barrier is infinite, the initial state is then bound rather than QS. The spectrum
in the presence of a monochromatic laser field when the barrier is infinite is an ATI
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Figure 4.1: Sketch of 1D short range potential U(x) including the potential well
(0 ≤ x ≤ a) and rectangular barrier (I). A smooth boundary to the rectangular
barrier, including the triangular barrier of width ∆ (II), is shown by the dashed-
dotted line. Qualitative photoelectron spectra for strong-field ionization from a true
bound state (B) and a QS state (QS) are presented. Dashed line: the infinite barrier
used to obtain numerically with the help of the Schrödinger equation the ground-
state wavefunction of the particle inside the well. For such a barrier with b = ∞,
only the ATI spectrum (B) is present [CnPBP11].

spectrum, consisting of several discrete maxima separated by the photon energy of
the incoming laser (see Fig. 4.1).

The rectangular barrier has the thickness b, as depicted in Fig. 4.1. In order to
study the LAT through the rectangular barrier, we introduce an additional triangular
barrier with a negligible width ∆ after the rectangular barrier (region II in Fig. 4.1),
smoothing the tunneling barrier traversed by the particle. By the introduction of
the triangular barrier, we are able to avoid the discontinuity in the tunneling barrier
that affects the velocity of the tunneling particle at x = b, where the potential U(x)
vanishes.

We start by studying the LAT in the presence of a static field E0, following ITM.
Next, the LAT of the QS state in the presence of a time-dependent monochromatic
laser pulse given by E(t) = E0 cos

(
ωt
)
is studied, using the method we developed

in Chapter 3. And finally, we investigate the LAT in the presence of a short pulse,
of the form E(t) = E0 sin2

(
ωt/(2np)

)
cos
(
ωt
)
. The spectrum and the laser-assisted

decay rates are calculated for the LAT in the presence of the monochromatic and
the short pulse laser fields, in order to see qualitatively and quantitatively the role of
the laser in the LAT of a QS state. The test case of the LAT through a rectangular
barrier studied in this Chapter helps us to explore the systematics of our method
developed in Chapter 3 when applied to the laser-assisted decay of QS states. We will
use our formalism to investigate laser-assisted α decay, the main aim of the present
thesis, in the next Chapter. Atomic units are used throughout this Chapter, so that
me = ~ = 1.
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4.1. Field-free tunneling rate via ITM

Initially, we consider the field-free tunneling of a particle through a rectangular bar-
rier by the ITM formalism. In this particular case the solution is trivial, since there
is no force acting on the tunneling particle: for arbitrary ϕ0 (time when the particle
leaves the classically forbidden region), there is a single trajectory

x0(φ) = i(κ0/ω)(φ− φs) , ψ ∈ [ψ0, 0] , ψ0 = bω/κ0 ,

x0(φ) = b+ (p′0/ω)(φ− ϕ0) , φ ∈ [ϕ0,+∞) . (4.1)

Here and below we use dimensionless time φ = ωt′ = ϕ0 + iψ(t′). Correspondingly,
φs = ϕ0 + iψ0 and ωt0 = ϕ0.

For a time-independent tunneling barrier, there is only one solution of the saddle-
point equation, Eq. (3.29). The field free action can be found via the classical action
defined Eq. (3.34). Correspondingly, we find that the field-free action is

W0 = ib(κ0 − p′0) , (4.2)

with κ20 = 2(U0 − E0) and p
′
0 =

√
2E0. The field-free action via ITM coincides with

the reduced action calculated by the semiclassical WKB method. This result shows
the consistency of the method for the field-free tunneling through the rectangular
barrier. Now, we come to investigate the field-assisted tunneling in the presence of
a static electric field.

4.2. Laser-assisted tunneling for a static electric field

We consider the tunneling of a particle through a rectangular barrier, interacting with
a constant electric field E0. Since the barrier is static, the WKB method explained
in Chapter 2 can be used to find the tunneling probability.

Firstly, we use the WKB method to find the penetrability through the modified tun-
neling barrier including the interaction with the static electric field E0. Then, we
use the ITM to find the tunneling probability by calculating the subbarrier trajecto-
ries in complex times and determining the classical action. We eventually show the
equivalence between the two methods, as the reduced action in the argument of the
exponential factor in the WKB method corresponds to the classical action calculated
on the subbarrier trajectories in ITM, Eq (3.34). In that sense, we are able to show
the validity of ITM in the semiclassical regime.

4.2.1. Tunneling calculated via WKB method

In the WKB method, the penetrability through the tunneling barrier is calculated
in terms of the reduced action, as was outlined in Chapter 2,

|T |2 = exp
(
−2

∫ b

0

√
2
(
U(x)− E0

)
dx
)
. (4.3)

For a static electric field, the potential is given by U(x) = U0 − xE0. Replacing
the potential U(x) in Eq. (4.3), and performing a substitution of variables, it is
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straightforward to find the penetrability in terms of the electric field E0, the energy
of the tunneling particle E0, the height of the rectangular barrier U0 and its length
b. The obtained penetrability is∫ b

0

√
2m
(
U(x)− E0

)
=

2
√
2

3E0

((
U0 −E0

) 3
2 −

(
U0 − E0 − E0b

) 3
2

)
. (4.4)

This expression should be compared to the ITM result.

4.2.2. Calculation of the tunneling decay rate using ITM

Now, we use ITM in order to calculate the penetrability. The subbarrier trajectories
are determined by solving the Newton equation in complex time. Then, the classical
action is found along the calculated trajectories.

According to ITM, we start with the Newton equation in complex time that describes
the dynamics of the tunneling particle in the subbarrier region,

d2x

dφ
=
pF
ω
, (4.5)

with pF = E0/ω. Initially, the particle is found at x(ts) = a. The initial conditions
when the particle starts its motion in the subbarrier region are

dx/dt′(φs) = iκ0, with κ20 = 2
(
U0 − E0

)
, and x(φs) = 0. (4.6)

Integrating Eq. (4.5), we find the complex velocity of the tunneling particle through
the rectangular barrier,

dx

dt′
(φ) = iκ0 + pF (φ− φs), φ ∈ C. (4.7)

Afterwards, we find the position of the particle by integrating the velocity in the
expression above. The position x(φ) is given by

x(ω) = i
κ0
ω

(
φ− φs

)
+
pF
2

(
φ− φs

)2
. (4.8)

At x = b, there is a discontinuity in the tunneling barrier that affects the dynamics
of the tunneling particle. In order to avoid the discontinuity, we smooth out the
tunneling potential by introducing an additional potential in the form of a triangular
barrier, as depicted in Fig. 4.1. The additional triangular barrier, U1(x) is defined as

U1(x) =

{
0 for x ≤ b,

U0 − U0
∆ (x− b) for b ≤ x ≤ b+∆.

(4.9)

At φ = φ′
s = ϕ0 + iψ′

0, the particle leaves the rectangular barrier, and enters in the
region II inside the triangular barrier, as shown in Fig. 4.1, defined in Eq. (4.9). If we
evaluate the position of the particle in Eq. (4.8) at φ = φ′

s, we obtain the following
relation,

b = −κ0
ω

(
ψ′
0 − ψ0

)
− pF

2ω

(
ψ′
0 − ψ0

)2
. (4.10)
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The velocity of the particle at the end of the subbarrier motion is found from
Eq. (4.7), at φ = φ′

s. This is the initial velocity of the particle when it starts to
move inside the triangular barrier (4.9), and is given by

dx

dt′
∣∣
φ=φ′

s
= iκ0 + ipF

(
ψ′
0 − ψ0

)
. (4.11)

Now that we have connected the motion between the region I and II (see Fig. 4.1),
we can find the trajectories that the particle follows inside the triangular barrier.
The Newton equation has an additional term, which comes from the definition of the
additional potential, Eq. (4.9). The equation of motion is written as

d2xII
φ2

=
pF
ω

+
U0

ω2∆
. (4.12)

Integrating the expression above we can find the position and the velocity of the
particle traversing the triangular barrier, which are

dxII
dt′

(φ) = iκ0 + ipF
(
ψ′
0 − ψ0

)
+ pF (φ− φ′

s) +
U0

ω2∆

(
φ− φ′

s

)
,

xII(t
′) = b+

pF
2ω

(
φ− φ′

s

)2
+

U0

2ω2∆

(
φ− φ′

s

)2
+

1

ω

((
iκ0 + ipF

(
ψ′
0 − ψ0

))(
φ− φ′

s

))
.

(4.13)

When φ = ϕ0, the particle leaves the barrier and starts its motion in real time (region
III in Fig. 4.1). Evaluating the Eqs. (4.13), we are able to determine the velocity
and the position of the particle at the end of the classically forbidden region. We
find that

dxII
dt′

∣∣
φ=ϕ0

= iκ0 − i
U0ψ

′
0

∆ω2
− ipFψ0, (4.14)

xII
∣∣
φ=ϕ0

= b− pF (ψ
′
0)

2

2ω
− U0(ψ

′
0)

2

∆ω2
+
ψ′
0

ω

(
κ0 +

E0
ω

(
ψ′
0 − ψ0

))
. (4.15)

In accordance to ITM, the velocity of the particle once it leaves the tunneling barrier
must be real. Thus, the imaginary part of the velocity in region II, given by the first
expression in Eq. (4.14) is zero. This condition allows us to find an expression for the
time of flight of the particle inside the triangular barrier ψ′

0/ω in terms of the time
of flight inside the rectangular barrier, ψ0, the electric field E0 and κ0. The time of
flight inside the triangular barrier is

ψ′
0 =

ω∆

U0
(κ0 − pFψ0) . (4.16)

It can be seen in the equation above that in the limit where ∆ → 0, the time of
flight inside the triangular barrier ψ′

0/ω vanishes and the original rectangular barrier
is recovered.

Replacing Eq. (4.16) in the final position of the particle after leaving the barrier,
Eq. (4.14), we find that the particle leaves the barrier at

xII
∣∣
φ=ϕ0

= b+
pFω∆

2

2U2
0

(
κ0 − pFψ0

)
. (4.17)
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In consequence, in the limit where ∆ → 0, the final position of the particle coincides
with the position where the rectangular barrier comes to an end, as expected.

Now, once the particle leaves the barrier, its velocity is zero, in accordance to
Eq. (4.14), and its dynamics are described in real time. Outside the barrier, the
particle interacts with the static electric field and the force related with the triangu-
lar barrier U1. The dynamics of the particle are determined by these two forces in
the time interval [ϕ0/ω, ϕ1/ω]. Afterwards, the particle is affected only by the inter-
action with the static field. The equation of motion in the interval [ϕ0, ϕ1] takes the
same form as Eq. (4.12). The velocity and the position for t ∈ [ϕ0, ϕ1] are expressed
as

dx△
dt′

= pF (φ− ϕ0) +
U0

ω2∆
(φ− ϕ0), φ ∈ [ϕ0, ϕ1], (4.18)

x△ = b+
pFω∆

2

2U2
0

(
κ0 − pFψ0

)
+
pF
2ω

(φ− ϕ0)
2 +

U0

2∆ω2
(φ− ϕ0)

2. (4.19)

At φ = ϕ1, the position of the particle is b +∆. Evaluating the equations above at
φ = ϕ1, we can find an expression for ϕ1

(ϕ1 − ϕ0) = ω

√√√√(∆− E0∆2

2U2
0

(
κ0 − ωpFψ0

))(ωpF
2

+
U0

2∆

)−1

. (4.20)

As expected, in the limit ∆ → 0, ϕ1 goes to ϕ0.

Now, we calculate the classical action defined by Popov in [Pop05], Eq. (3.27), on
the classical trajectories, Eqs. (4.7), (4.8) . The particle position, Eq. (4.8), and the
velocity, Eq. (4.7), are complex inside the barrier. As Popov explained in [Pop05],
for a static case, there is only one solution to the saddle-point equation, Eq. (3.29).
So, there is no interference between the trajectories described by the particle for a
single saddle-point solution.

In the case of the static field, the tunneling rate is expressed as the exponential
function of the imaginary part of the action, Eq. (3.32), taking the same form that
Popov found in [Pop05]. In consequence, to find the tunneling rate, it is enough
to evaluate the classical action on the trajectories inside the barrier, Eqs. (4.7) and
(4.8).

Replacing the trajectories Eqs. (4.8) and (4.7) in the definition of the classical action
in Eq. (3.27), we find that the imaginary part of the classical action W takes the
form

Im(W ) =
p2Fψ

3
0

6ω
− κ0pFψ

2
0

2ω
− 2κ20ψ0

ω
. (4.21)

The imaginary part of the classical action W is expressed in terms of the time of
flight of the particle through the rectangular barrier ψ0/ω. In order to compare the
result in Eq. (4.21) with Eq. (4.4), we need to express ψ0 in terms of the parameters
of the rectangular barrier, b, U0 and the electric field E0. We recall the definition
of the traversal time, by Büttiker and Landauer [BL82], which is associated with
the time that the tunneling particle spends inside the barrier. The traversal time
through a rectangular barrier like the one in Fig. 4.1 was defined by Büttiker and
Landauer as

τt =

∫ b

0

dx√
2
(
U(x)− E0

) . (4.22)
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In the case of the tunneling through a rectangular barrier in the presence of a static
electric field, the traversal time in Eq. (4.22) takes the form

τt =

√
2

E0

(√
U0 − E0 −

√
U0 − E0 − bE0

)
. (4.23)

We identify the traversal time in Eq. (4.22) with the time of flight through the
rectangular barrier, ψ0/ω.

Replacing the definition of ψ0/ω given by Eq. (4.22) in our result, Eq. (4.21), we find
that the imaginary part of the action W takes the following form

Im(W ) =
2
√
2

3E0

((
U0 − E0

) 3
2 −

(
U0 − E0 − bE0

) 3
2

)
. (4.24)

This is exactly the same result that we obtained using the WKB method, Eq. (4.4).
The equivalence between our ITM result and the WKB reduced action shows the
consistency of the ITM for a time-independent barrier.

4.3. Laser-assisted tunneling for a monochromatic pulse

Following the calculation of the decay rate of a particle tunneling through a rectan-
gular barrier shown in the last section of this Chapter, we consider now the LAT of
the particle in the case of an external monochromatic laser field.

According to the ITM, one has to find trajectories which start at t′ = ts from inside
the well, x(ts) = 0, its kinetic energy is v2(ts)/2 = E0 − U0 ≡ −κ20/2 so that
v(ts) = iκ0. The velocity is imaginary in complex time and becomes real since the
evolution of the dynamics of the tunneling barrier is described in real time when the
particle leaves the barrier. Afterwards, the particle only interacts with the laser field,
E(t′) = E0 cos (ωt′) and the trajectory followed by the particle is real. At a final time,
the laser field is switched off adiabatically, such that particle arrives at the detector
having a final momentum p.

We start showing the calculations of the subbarrier trajectories and the dynamics
outside of the rectangular barrier in the case of the monochromatic laser field. Next,
the total classical action W is determined on the trajectories previously calculated.
From the classical action, defined in Eq. (3.34), the transition amplitude M(p) is
found by Eq. (3.41), in accordance to the method we have developed in Chapter 3.
Finally, the laser-assisted differential decay rate and the total decay rate are calcu-
lated.

Now we should find the trajectories in the presence of the monochromatic laser
field. As it was discussed in Section 4.2, the tunneling barrier has a discontinuity at
x = b. In order to calculate the trajectories, we introduce an additional potential
that smooths the total tunneling barrier, see Fig. 4.1. This additional potential is a
triangular barrier with a negligible width ∆, defined in Eq. (4.9). Thus, the subbar-
rier trajectories are calculated for both the rectangular and the triangular barrier.
When the particle leaves the classically forbidden region at the time ϕ0/ω, the dy-
namics of the tunneling particle are described in real time, in accordance to ITM.
The particle initially interacts with the force due to the triangular barrier and the
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monochromatic field up to a time ϕ1/ω. At that time, the triangular barrier vanishes
and consequently, the only force acting on the particle is due to the monochromatic
laser field. Finally, at φ = ωtF , the electric field is switched off adiabatically and
the particle with final momentum p, is measured in a detector far away from the
rectangular barrier.

We start with the calculation of the trajectories inside the rectangular barrier, region
I in Fig. 4.1. Inside the rectangular barrier, the dynamics of the particle are studied
in complex times, in accordance to ITM. The equation of motion in region I takes
the form

d2xI

dφ2
=
pF
ω

cos(φ), with φ = ϕ0 + iψ, ψ ∈ [ψ′
0, ψ0]. (4.25)

We find the subbarrier trajectories by solving the equation above. Under the rect-
angular barrier, the trajectory is given by

vI(φ) = κ0(i− γ−1(sin(φ)− sin(φs))) , (4.26)

and
xI(φ) = b{µ(iγ + sin(φs))(φ− φs) + µ(cos(φ)− cos(φs))} . (4.27)

Here two dimensionless parameters are introduced

γ = κ0ω/E0, µ = E0/ω2b, (4.28)

which determine the relative strength and frequency of the external field. Note that
γ in (4.28) has the same physical meaning as the Keldysh parameter [Kel65], i.e. the
ratio of the “atomic” momentum κ0 to the field induced momentum pF .

In the region II, as is shown in Fig. 4.1, we replace the discontinuous potential by a
smooth one, namely, the dashed line where the potential drops down to zero on the
width ∆, defined in Eq. (4.9). The tunneling particle enters the triangular barrier
at φ′

s, the time when RexI [φ′
s] = b, and leaves the tunneling region at φ = ϕ0. In

region II, the equation of motion is given by

dxII

dφ
=
U0

∆
+ pF cos(φ), with φ = ϕ0 + iψ, ψ ∈

[
ψ′
0, 0
]

(4.29)

In the intermediate region II the solution is

vII(φ) = vI(φ′
s)− pF (sin(φ)− sin(φ′

s)) + (F0/ω)(φ− φ′
s) , F0 = U0/∆ ,

xII(φ) = xI(φ′
s) + (pF /ω)(cos(φ)− cos(φ′

s)) + (F0/2ω
2)(φ− φ′

s)
2 . (4.30)

The dynamics of the particle outside of the barrier is determined by the Newton
equations in real time. Between φ = ϕ0 and φ = ϕ1, the tunneling particle dynamics
are described in real time and the particle feels the forces by the triangular bar-
rier and the time-dependent monochromatic field. We detail the calculations of the
trajectories in this time interval in Appendix B. Later on, as φ ≥ ϕ1, the particle
only interacts with the laser field, since there is no other time-independent potential
U(x) = 0. The calculated trajectories in that region take the form

vIII(φ) = v0 − pF (sin(φ)− sin(ϕ0)) , → p = v0 + pF sin(ϕ0), (4.31)

xIII(φ) = xI(ϕ0) + p/ω(φ− ϕ0) + (pF /ω)(cos(φ)− cos(ϕ0)) . (4.32)
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Here v0 is the velocity of the particle after leaving the triangular barrier. As the par-
ticle only interacts with the electric field, the equation of motion has exactly the same
functional form as the ones inside the rectangular barrier. The main difference comes
with the initial time of the motion, which is t = ϕ0 in region III. In consequence,
the subbarrier trajectories follow Eq. (4.26) and Eqs. (4.27). The time interval when
the motion of the particle after the barrier takes place starts at t′ = ϕ0/ω up to the
final time tF , when the particle reaches the detector. At t′ = tF , when the final
momentum p is measured, the electric field has been switched off adiabatically.

For a time-dependent field, there is more than a single solution of the saddle-point
equation, Eq. (3.29). Accordingly, for every value of final energy EF = p2/2 there are
two different initial times of the motion in real time, ϕ01/ω and ϕ02/ω. The associated
trajectories that the particle follows after the barrier are completely different. Yet,
the final energy measured at tF , when the particle reaches the detector, is exactly
the same.

Matching the solutions in the domains I, II and III, we can find the constant v0 as a
function of the other parameters. We show in the Appendix B that the sharper the
slope is, ∆ → 0 the closer the time instant φ′

s = ϕ0 + iψ′
0 to ϕ0. Consequently, the

time of flight of the particle inside the triangular barrier ψ′
0 goes to 0, as well as the

time spent by the particle outside of the triangular ϕ1 − ϕ0.

Decomposing the equations with respect to ψ′
0 ≪ 1 we obtain:

v0 =
{(
p′0
)2

+ 2κ0pF cos(ϕ0) sinh(ψ0) + p2F [(cosh(ψ0)− 1)2 sin2(ϕ0)

− cos2(ϕ0) sinh
2(ψ0)]

} 1
2 .

(4.33)

Then the two equations determining the initial time φs are:

b = (κ0/ω)ψ0 − (pF /ω) cos(ϕ0)(cosh(ψ0)− 1− ψ0 sinh(ψ0)) , (4.34)

p = v0(φs) + pF sin(ϕ0) . (4.35)

The first equation arises from the requirement that the particle escapes from the
barrier when time arrives on the real axis, φ = ϕ0. At the same time, the imaginary
part of the trajectory becomes a nonzero constant, in the general case

Im [x (φ ≥ ϕ0)] ≡ X0 = (E0/ω2) sin(ϕ0) [sinh(ψ0)− ψ0 cosh(ψ0)] .

For the most probable trajectories corresponding to ϕ0 = 0, π, X0 = 0. Eqs. (4.35)
can be solved analytically in the limit of weak field, µ ≪ 1, or low-frequency field
γ ≪ 1, while in general case numerical solution is required. We detail the calculation
in the weak field in Appendix C. The low frequency limit approaches the case of a
static electric field, see the results detailed in Section 4.2.

Note that solutions do not exist for all values of the final momentum and for arbitrary
parameters µ and γ. Indeed, from the second equation of Eq. (4.35) it is clear that
the final momentum is determined by the time instant ϕ0/ω when the particle is
released from the barrier and its initial velocity v0. Thus, it cannot have an arbitrary
value, since the width of the momentum space available is determined roughly by the
field momentum, pmax,min ≈ p′0 ± pF . Another restriction comes from the fact that
Eqs. (4.27) and (4.30) assume that the instant kinetic energy at the exit is below
the instant barrier height, v20 < 2(U0 − E0b cos(ϕ0)). This imposes a condition on
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the electric field, E0b < κ20/2. In the opposite case, Eqs. (4.27) and (4.30) for the
trajectories and Eqs. (4.35) for the initial time should be generalized.

In the limit of the rectangular barrier, ∆ → 0, the domain II vanishes and the action
is determined by trajectories Eq. (4.27) and (4.32) and the Lagrange function

L = ẋ2/2 + E0x cos(φ)− U0θ(b− x) . (4.36)

Here, θ(x) is the step function.

Initially, we find the action evaluated on the classical trajectories during the subbar-
rier motion, i.e., from φs = ϕ0 + iψ0 to φf = ϕ0. From the definition of the classical
action inside the barrier, Eq. (3.34), we can identify the three main contributions to
the action: the kinetic energy, the stationary tunneling barrier and the interaction
with the monochromatic laser field. The final time of integration in Eq. (4.37) is
only the real part of φ, ϕ0, which is the time when the particle leaves the rectangular
barrier. We show in depth the calculations of the three contributions to the action
in Appendix D. Since we have expressed the subbarrier trajectories in terms of the
dimensionless parameter φ, we use the Leibniz rule to perform a simple substitution
of variables,

W0 =
1

ω

∫ ϕ0

ϕ0+iψ0

[
1

2

(
ω
dx

dφ
(φ)
)2

− (U0 − E0) + ωpFx(φ) cos(φ)

]
dφ. (4.37)

With the trajectories outside the barrier given by Eq. (4.32), we can find the action
on the trajectories in real time as

Wout =
1

ω

∫ tF

ϕ0

[
1

2

(
ω
dx

dφ
(φ)
)2

+ E0 + ωpFx(φ) cos(φ)

]
dφ. (4.38)

Now that the action outside the barrier has been found, Eq. (4.38), the total action
is defined by ITM, Eq. (3.37) as

W =W0 +Wout −
(
xp
)∣∣
t′=tF

. (4.39)

This is the classical action that enters in the definition of the transition amplitude
M(p), Eq. (3.41).

In the weak field regime, µ ≪ 1 or ν = E0b/κ20 ≪ 1, the result in Eq. (4.39) can be
simplified by keeping only terms linear to E0. Then, the action has the form

Wα(p) = iκ0b

(
1 +

E0b cos(ϕ0α)
2κ20

+
p0E0ψ3

00 sin(ϕ0α)

3κ0bω2

)
+
p0(p− p0)

ω
ϕ0α

+ ψ00
E0b2 sin(ϕ0α)

2κ0
− pb+ pF b sin(ϕ0α) +

κpF
ω

cos(ϕ0α) , (4.40)

with ψ0 ≈ ψ00 = bω/κ0 ≪ 1.

We show schematically the dynamics of the tunneling particle during its subbarrier
motion and after leaving the barrier in Fig. (4.2). Now that we have calculated the
total action, we can determine the differential decay rate.
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Figure 4.2: Qualitative picture of the motion inside (above) and outside the barrier
(below) for different solutions of the saddle-point equation. The electric field outside
of the barrier (thin black line) is switched off adiabatically. Each subbarrier trajectory
corresponding to the same final energy EF is related to a solution of the saddle-point
equation, ϕ0α1 and ϕ0α2 . The associated trajectories are shown (blue and red, for the
subbarrier motion and red and green lines, for the motion outside the barrier). If
we are in the “inclusive” regime, the laser does affect the dynamics of the subbarrier
motion of the tunneling particle. On the other hand, in the “exclusive” regime, the
laser only affects the dynamics of the particle outside of the barrier. On its way
to the detector, the tunneling particle only interacts with the laser field. The two
trajectories for a single EF are added coherently in accordance to Eq. (3.41).
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4.2.2.1. Differential decay rate

We can obtain the differential decay rate from the transition amplitude in Eq. (3.41).
First of all, we need to calculate the regularization constant β in the denominator of
the transition amplitude for the rectangular barrier. We can find the exact value of
β by replacing the definition of p, given in Eq. (4.31) and the Reiss parameter zF in
Eq. (3.4), in Eq. (3.20). For the rectangular barrier, β takes the form

βrb = ωE
1
3
0 . (4.41)

For the monochromatic field (3.14) all periods are equivalent, so that there are only
two essentially different solutions, all the others being obtained by a 2πk translation,
for all k ∈ Z. The distinction between the solutions of the two saddle-point equation
for a final energy comes in the two possible values of the action W . A schematic
picture of the dynamics of the particle on its way to the detector is shown in Fig. 4.2.
The sum of the action W (pk) over all laser periods is expressed as [PP10]

∞∑
k=−∞

exp
[
−iW (pk)

]
=

∞∑
k=−∞

exp
[
i
2πk

ω

(p2
2

+ Up − E0 − k
)]

= ω

k∑
k=−∞

δ
(p2
2

+ Up − E0 − kω
)
.

(4.42)

Here we have used the fact that

∞∑
k=−∞

δ(x− k) =
k∑

k=−∞
exp
(
2πikx

)
. (4.43)

As it can be seen in Eq. (4.42), the summation over all periods gives the factor
ω δ(p2/2− E0 + UP − jω), which expresses energy conservation.

Replacing the value of βrb, Eq. (4.41) and the Eq. (4.42), in the modified transition
amplitude (3.41), we find the transition amplitude M(p) for the tunneling through
a rectangular barrier in the presence of a monochromatic laser field,

M(p) = ω
∞∑

k=−∞

∑
α

P0 [v(t0α)] exp [iW (p, tsα)]√
dp/dt0α + iβrb

δ

(
p2

2
+ Up − E0 − kω

)
. (4.44)

In Eq.(3.21) we have shown that the differential rate dw/dp is given by the modu-
lus squared of the transition amplitude |M(p)|2. From Eq. (4.44), we see that the

transition amplitude has a quadratic Dirac delta distribution δ
(
p2

2 +Up−E0− lω
)2

.

The quadratic Dirac delta term can be expressed in terms of the observation time
T = t′F ≫ ϕ0/ω as follows

δ

(
p2

2
+ Up − E0 − kω

)2

=
T

2π
δ

(
p2

2
+ Up − E0 − kω

)
.

In consequence, the differential decay rate R over the whole observation time T = tF
for the LAT through the rectangular barrier in the presence of a monochromatic laser
field is given by

dR =
dw(p)

T
=
∑
k

ω2 δ(p− pk)

2πpk

8κ30p0
κ20 + p20

∣∣∣∣∣∣
∑
α=1,2

exp (iW (p, t′sα))√
dp/dt0α + iβrb

∣∣∣∣∣∣
2

dp , (4.45)
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where pk =
√
p20 − p2F /2 + 2kω are the momenta corresponding to the ATI-like peaks.

Here we have taken into account that the prefactor P0 corresponding to the field-free
rate R0 = P2

0exp(−2κ0b) is given (in the narrow well limit κ0a≪ 1) by

P2
0 =

8κ30p0
κ20 + p20

. (4.46)

For the action (4.40), the probability vanishes in the limit b → ∞. This, however
cannot be consistent with the existence of ATI for an infinitely thick barrier. The
apparent paradox can be solved if we take into account that the results of this
subsection are found by assuming that the particle escapes from under the barrier
at its right edge, x = b. This is, however, true only when E0b ≤ U0 − E0 . Clearly,
with increasing barrier thickness b, this condition will be violated for any given field
amplitude and trajectories that escape through the tilted part of the barrier will come
into play. Along such trajectories, the action becomes b-independent and virtually
identical to the case of common ATI.

4.4. Laser-assisted tunneling for a few-cycles pulse

Considering instead of the monochromatic field a few-cycle laser pulse, we calculate
the trajectories inside and outside the rectangular barrier. We calculate the total
decay rate and the spectra using a six-cycle pulse of the form

E(t) = E0 sin2
(
ωt

2np

)
cos(ωt) , np = 6. (4.47)

The initial conditions of the subbarrier motion are given in Eq. (4.6). The equation
of motion in the classically forbidden region takes the form

d2xI

dφ2
=
pF
ω

sin2
(
φ

2np

)
cos(φ), φ = ϕ0 + ψ ∈ C and ψ ∈ [0, ψ0]. (4.48)

Using trigonometric functions properties, the last expression can be written as

d2xI

dφ2
=
pF
2ω

cos(φ)− pF
4ω

cos

[(
1 +

1

np

)
φ

]
− pF

4ω
cos

[(
1− 1

np

)
φ

]
. (4.49)

The equation above shows that the short pulse in Eq. (4.47) can be taken as a
superposition of three monochromatic pulses with different frequencies. Accordingly,
the total subbarrier trajectory is the superposition of the trajectories calculated
for the three monochromatic pulses. Solving Eq. (4.49), the trajectories under the
rectangular barrier are found in terms of the dimensionless parameter φ and take



56 CHAPTER 4. LAT THROUGH A RECTANGULAR BARRIER 4.4

the form

dx

dt′

I

= iκ0 −
pF
2

[sin(φ)− sin(φs)] +
pFnp

4
(
np + 2

){sin[φ(np + 2
)

np

]

− sin

[
φs
(
np + 2

)
np

]}
+

pFnp

4
(
np − 2

) {sin[φ(np − 2
)

np

]
− sin

[
φs
(
np − 2

)
np

]}
,

(4.50)

xI =
(
φ− φs

){
i
κ0
ω

+
pF sin(φs)

2ω
− pFnp

4ω
(
np + 2

) sin [φs(np + 2)

np

]
− pFnp

4ω
(
np − 2

) sin [φs(np − 2)

np

]}
− pF

2ω
[cos(φ)− cos(φs)]

+
pFn

2
p

4ω
(
np + 2

)2
{
cos

[
φ
(
np + 2

)
np

]
− cos

[
φs
(
np + 2

)
np

]}

+
pFn

2
p

4ω
(
np − 2

)2
{
cos

[
φ
(
np − 2

)
np

]
− cos

[
φs
(
np − 2

)
np

]}
. (4.51)

Similarly to the case of the monochromatic laser field in Section 4.3, we introduce an
additional potential to smooth the rectangular barrier and avoid the discontinuity at
x = b. The trajectories inside the region II take the form

vII(φ) = vI(φ′
s)−

pF
2

[
sin(φ)− sin(φ′

s)
]
+

pFnp

4
(
np + 2

){sin[φ(np + 2
)

np

]

− sin

[
φ′
s

(
np + 2

)
np

]}
+

pFnp

4
(
np − 2

) {sin[φ(np − 2
)

np

]
− sin

[
φ′
s

(
np − 2

)
np

]}

+
F0

ω

(
φ− φ′

s

)
, F0 = U0/∆ ,

(4.52)

xII(φ) = xI(φ′
s) +

{
vI(φ′

s)

ω
+
pF
2ω

sin(φ′
s)−

pFnp

4ω
(
np + 2

) sin[φ′
s

(
np + 2

)
np

]

− pFnp

4ω
(
np − 2

) sin [φ′
s(np − 2)

np

]}(
φ− φ′

s

)
− pF

2ω

[
cos(φ)− cos(φ′

s)
]

+
pFn

2
p

4ω
(
np + 2

)2{cos
[
φ
(
np + 2

)
np

]
− cos

[
φ′
s

(
np + 2

)
np

]}

+
pFn

2
p

4ω
(
np − 2

)2{cos
[
φ
(
np − 2

)
np

]
− cos

[
φ′
s

(
np − 2

)
np

]}
+

F0

2ω2

(
φ− φ′

s

)2
.

(4.53)

Here, φ′
s = ϕ0 + iψ′

0.

In the limit where the triangular barrier in Eq. (4.9) disappears and since Re
[
xIφs

]
=

b, we can find an expression for ψ0 in terms of ϕ0, the barrier parameters b, κ0 and
the field momentum pF , similar to the one we found for the monochromatic case,
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Eq. (4.34),

b =
pF
2ω

[cosh(ψ0)− 1− ψ0 sinh(ψ0)]

− pFnp
4ω(np − 2)

cos

(
ϕ0np
np − 2

){
np

np − 2

[
cosh

(
ψ0np
np − 2

)
− 1

]
− ψ0 sinh

(
ψ0np
np − 2

)}
− pFnp

4ω(np + 2)
cos

(
ϕ0np
np + 2

){
np

np + 2

[
cosh

(
ψ0np
np + 2

)
− 1

]
− ψ0 sinh

(
ψ0np
np + 2

)}
+
κ0ψ0

ω
.

(4.54)

At φ = ϕ0, the motion in real time starts. In accordance to ITM, the imaginary
part of the velocity evaluated at that time is zero. Evaluating Eq. (4.52) at φ = ϕ0,
we find an expression for the time of flight of the tunneling particle through the
triangular barrier, ψ′

0, region II in Fig. 4.1. The time of flight ψ′
0 is

ψ′
0 =

ω∆

U0

{
κ0 −

pF
2

cos(ϕ0) sinh(ψ0) +

[
pFnp

4
(
np − 2

) cos( ϕ0np
np − 2

)
sinh

(
ψ0np
np − 2

)]

+

[
pFnp

4
(
np + 2

) cos( ϕ0np
np + 2

)
sinh

(
ψ0np
np + 2

)]}
.

(4.55)

As expected, in the limit ∆ → 0, the time of flight of the tunneling particle through
the triangular barrier vanishes. The imaginary part of the position of the particle at
φ = ϕ0 is

Im
[
xII(φ = ϕ0)

]
=
pF
2ω

sin(ϕ0) [sinh(ψ0)− ψ0 cosh(ψ0)]

−
pFn

2
p

4ω
(
np − 2

)2 sin( ϕ0np
np − 2

)[
sinh

(
ψ0np
np − 2

)
− (np − 2)ψ0

np
cosh

(
ψ0np
np − 2

)]
−

pFn
2
p

4ω
(
np + 2

)2 sin( ϕ0np
np + 2

)[
sinh

(
ψ0np
np + 2

)
− (np + 2)ψ0

np
cosh

(
ψ0np
np + 2

)]
.

(4.56)

The trajectories that the particle follows outside the barrier are determined by solving
the Newton equation, for φ ≥ ϕ1,

vIII(φ) = v0 −
pF
2

[sin(φ)− sin(ϕ0)] +
pFnp

4(np − 2)

[
sin

(
npφ

np − 2

)
− sin

(
npϕ0
np − 2

)]
+

pFnp
4(np + 2)

[
sin

(
npφ

np + 2

)
− sin

(
npϕ0
np + 2

)]
,

(4.57)
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xIII(φ) = b+ Im
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]
+
(
φ− ϕ0

)[v0
ω

+
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2
p

4ω
(
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(4.58)

Here, v0 is the velocity of the particle after leaving the triangular barrier.

For a short pulse there are several solutions of the saddle-point equation, Eq. (3.29).
The number of solutions of the saddle-point equation is related by the number of
cycles np. In our calculations, we consider np = 6. We have twelve saddle-points in
this particular case. Accordingly, for every value of final energy EF = p2/2 there
are twelve different initial times of the motion in real time, which is a significant
difference with respect to the monochromatic laser field, with only two solutions of
the saddle-point equation.

As it was shown for the monochromatic field, the trajectories in the domains I, II and
III are connected at φ = φs and φs = φ′

s. The constant v0 is found as a function of
the other parameters. In the case of the short pulse, when the time of flight through
the triangular barrier ψ′

0 ≪ 1, the velocity v0 is:

v0 =

{
2U0 +

{pF
2

[cosh(ψ0)− 1] sin(ϕ0)

− pFnp

4
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) sin( npϕ0
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)]2} 1
2

.

(4.59)

The final momentum after the electric field has been switched off is written in terms
of v0 as

p = v0(φs)−
pF
2

sin(ϕ0)+
pFnp

4 (np − 2)
sin

(
npϕ0
np − 2

)
+

pFnp
4 (np + 2)

sin

(
npϕ0
np + 2

)
. (4.60)

The classical action is calculated on the subbarrier trajectories, Eq. (4.51), and the
trajectories outside the barrier, Eqs. (4.57) and (4.58) in an identical way as it was
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calculated for the monochromatic laser field, i.e.,

W0 =
1

ω

∫ ϕ0

ϕ0+iψ0

{
1

2

[
dxI

dt′
(φ)

]2
− (U0 − E0) + ωpFx

I(φ) sin2
(
φ

2np

)
cos(φ)

}
dφ,

(4.61)

Wout =
1

ω

∫ ωtF

ϕ0

{
1

2

[
dxIII

dt′
(φ)

]2
+ E0 + ωpFx

III(φ) sin2
(
φ

2np

)
cos(φ)

}
dφ. (4.62)

The total action is found using Eq. (4.39). From the calculated total action along
the trajectories that the particle follows, we can determine the transition amplitude
via Eq. (3.41).

For the short pulse, the transition amplitude M(p) consists of up to 2np coherent
contributions, corresponding to the 2np saddle-point solutions. The spectrum of
Dirac-delta functions in Eq. (4.45) is replaced by a comb of broadened ATI-like
maxima between Emin and Emax. In consequence, the differencial decay rate per
pulse takes the form

dw(p)

dp
=

8κ30p0
κ20 + p20

∣∣∣∣∣∣
2np∑
α=1

exp (iW (p, tsα))√
dp/dt0α + iβrb

∣∣∣∣∣∣
2

. (4.63)

4.5. Numerical results

As numerical examples we first consider tunneling through two rectangular barriers
of parameters U0 = 3.0, b = 3.0 and U0 = 4.0, b = 10.0 assisted by a monochromatic
laser field with frequency ω = 0.1. The action W and the rate R are obtained
using the expressions given in Eq. (4.45) and Appendix D. We first calculate the
trajectories that the particle follows inside and outside the barrier according to ITM.
For each energy between the classical boundaries (CB), Emin and Emax, we have
two different solutions of the saddle-point equation. The solutions are associated
with trajectories starting inside the well at times φsα with α = 1, 2. We present the
results of the initial time of the motion outside of the barrier ϕ0, as a function of
the final energy EF , for three different field intensities, E0 = 0.02, 0.05 and 0.12 a.u.
in Fig. 4.3. We can distinguish a local maximum and a local minimum in Fig. 5.9,
associated with the CB. As it was mentioned earlier in this chapter, the range of
final energies EF is restricted between the CB. The time of flight of the tunneling
particle inside the rectangular barrier is calculated from Eq. (B.4). The deformed
ellipse-like shape that the imaginary part of the initial dimensionless parameter ψ0

takes as a function of the final energy EF in Fig. 4.4 shows the distinction between
the solutions of the saddle-point solutions for a final energy of the tunneling particle
EF . For a single final energy, there are two associated values of the imaginary part of
the initial complex dimensionless “time”, ψ0. This parameter is related to the time
of flight of the tunneling particle traversing the rectangular barrier. In consequence,
for a single value of EF there are two possible trajectories that the tunneling particle
follows in the subbarrier region. In addition, we can see in Figs. 5.9 and Fig. 4.4
that for higher laser field intensities, the range of values that the time of flight ψ0

takes increases and the ellipse-like shape increases its size. When the final energies
take closer values to the CB, the difference between the solutions of the saddle-point
equation is smaller.
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Figure 4.3: Real part of the initial complex dimensionless parameter Re (φs) = ϕ0
as a function of the final energy EF for three electric fields E = 0.02, 0.05 and 0.12
of frequency ω = 0.1 for the thin rectangular barrier (U0 = 3.0, b = 3.0, E0 = 1.217,
ω = 0.10) above and thick rectangular barrier (U0 = 4.0, b = 10.0, E0 = 1.302)
below.

In Fig. 4.5 we present the imaginary part of the action Im(W) and the spectrum of the
LAT as a function of the final energy EF for three different field amplitudes E0. As
a consequence of the difference between the values of the time of flight ψ0/ω and ϕ0,
the imaginary part of the action has two values for a single final energy, determining
two different branches. The spectrum consists of several ATI-like maxima whose
positions are dictated by the energy conservation conditions in Eq. (4.45). In the
case of the thin barrier with b = 3, the LAT occurs mostly field-free, and the main
effect of the laser is to change the particle momentum after the barrier exit. By
comparing the results for different field intensities in Figure 4.5b, we observe that the
spectra become narrower with the decrease of E0, approaching the Lorenzian shape
of the field-free decay rate. Furthermore, the ratios between the field-free and LAT
probabilities do not vary much for the considered field amplitudes R0.02/R0 = 0.41,
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Figure 4.4: Imaginary part of the initial complex dimensionless parameter Im (φs) =
ψ0 as a function of the final energy EF for three electric fields E = 0.02, 0.05 and 0.12
of frequency ω = 0.1 for the thin rectangular barrier (U0 = 3.0, b = 3.0, E0 = 1.217,
ω = 0.10) above and thick rectangular barrier (U0 = 4.0, b = 10.0, E0 = 1.302)
below.

R0.05/R0 = 0.62 and R0.12/R0 = 0.89. Note that for these parameters, the large
number of ATI-like maxima condition p0pF ≫ ω, necessary to justify the momentum
distribution along Eq. (3.15) is not fulfilled. As a consequence, our distribution loses
a part of the tunneled particles, and the laser-assisted to field-free decay ratios are
less than unity. Due to this effect, it is more informative to consider as reference
the laser-assisted rate at the lowest field intensity. This gives us R0.12/R0.02 ≈ 2,
showing that the laser field of the amplitude E0 = 0.12 only enhances the total decay
rate by the factor of 2 for this barrier width.

In contrast, for the thick barrier of width b = 10, corresponding to a very small
field-free decay rate, the “inclusive” regime is achieved, in which the laser has a
substantial effect also on the tunneling rate itself. Here, the ratios of the field-free
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Figure 4.5: Imaginary part of the action Im(W ) (a), (c) and the spectra (b), (d) as
a function of the the final energy E = p2/2 for two sets of parameters: U0 = 3.0,
b = 3.0, E0 = 1.217, ω = 0.10, (a)-(b) and U0 = 4.0, b = 10.0, E0 = 1.302, ω = 0.10,
(c)-(d). Each panel shows three curves for E0 = 0.02 (black double-dashed line),
E0 = 0.05 (dashed green line) and E0 = 0.12 (solid red line).
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and LAT probabilities are R0.02/R0 = 0.72, R0.05/R0 = 1.94 and R0.12/R0 = 58.17,
extending over almost two orders of magnitude with the increasing field.

Thus, our method described in Chapter 3 reproduces important qualitative con-
clusions of the earlier studies on laser-assisted decay of elementary particles which
holds also for the laser-assisted decay of QS states[NR64, BSS84b, BSS84a, BMSS83].
Namely that depending on the parameters, there are two different regimes of decay:
“exclusive”, when the spectrum is strongly affected without a modification of the total
decay rate (the thin barrier) and “inclusive”, when the rate of decay and the spectrum
are strongly modified by the laser field (the thick barrier). The physical difference
between the two regimes becomes clear if we notice that for a strong modification
of the spectrum no high-field intensity is actually needed, but only a large quiver
(ponderomotive) energy. The latter can be achieved at low laser frequencies. A
relatively weak but low-frequency laser field strongly affects the kinematics of the
charged particle, accelerating or decelerating it after decay. This changes the final
energy at the detector with almost no effect on the total decay probability.

In contrast, in the “inclusive” regime, the particle’s dynamics on the short-time
scale corresponding to the subbarrier motion is also influenced, modifying the total
probability. This indeed requires high laser field strengths. The particular expression
of the critical field that delimits the “inclusive” regime depends on the investigated
system.

In the case of the monochromatic case, we find a true criterion in the weak-field
limit corresponding to the “exclusive” regime, from Eq. (4.40). We introduce the
parameter µext defined such that in the “inclusive” regime (thick barrier)

µext = κ0b
E0b
κ20

≫ 1 . (4.64)

On the other hand, the “exclusive” regime requires µext ≪ 1 and holds for the first
set of parameters.

Under the further simplification that only the most probable trajectory is considered
(i.e. ϕ0 = 0 or π) and the real part of the action is disregarded (no interference), the
result of Ivlev and Melnikov is recovered [IM85]. It should be noted however that the
result of Ivlev and Melnikov in [IM85] is more general than the one of this section,
since the former does not assume the potential to be a rectangular barrier.

In Figs. 4.6 and 4.7, we have considered the case of the thin barrier with b = 3
for different laser field amplitudes and frequencies such that the field momenta are
pF = 1. We calculate the dimensionless parameter ψ0 as a function of the final energy
and the initial dimensionless parameter ϕ0 related to the instant when the particle
leaves the barrier. The ratio of the different field frequencies can be identified from
the spectra. The total tunneling rate is increasing with increasing the field, with
R0.1/R0 = 0.74, R0.2/R0 = 0.91 and R0.3/R0 = 1.56.

4.5.1. Few-cycle laser pulse

For the few-cycle laser pulse, defined by Eq. (4.47) the spectrum of Dirac-delta
functions will be replaced by a comb of broadened ATI-like maxima between Emin

and Emax. Spectra obtained using the extended ITM for a six-cycle pulse for the
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Figure 4.6: Real and imaginary part of the initial dimensionless parameter φs, ϕ0
(above) and ψ0 (below) calculated for monochromatic fields with various frequencies
and field momenta pF = 1 for the thin barrier considered in Figure 4.5. The field
amplitudes and frequencies are E0 = 0.1 and ω = 0.1 (black double-dashed line),
E0 = 0.2 and ω = 0.2 (green dashed line) and E0 = 0.3 and ω = 0.3 (red solid line),
respectively.

parameters previously addressed in the text are presented in Fig. 4.8. Here the
amplitude consists of up to 2np coherent contributions that produce the interference
pattern of the spectra.

The broad ATI-like maxima can be observed best for the thick barrier case in
Fig. 4.8d, where the absolute values of the two contributions from a given laser
period differ substantially and smear out the interference. Unlike the case of tunnel-
ing assisted by a monochromatic field where the differential rate dR(p) is calculated,
the spectra in Fig. 4.8 present the differential probability dw(p)/dp. The differential
decay rate w(p)/dp per pulse duration delivers approximately the decay rate.
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Figure 4.8: Imaginary part of the action (a), (c) and laser assisted decay spectra (b),
(d) calculated for a finite pulse of the form (4.47) for the two barrier parameter sets
of Figure 4.5 and fields of frequency ω = 0.1 and amplitudes E0 = 0.02, 0.05, 0.12.
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4.5.2. Comparison with numerical results of the time-dependent
Schrödinger equation

In order to check the accuracy of our approach, we compared the obtained spectra
with accurate numerical results of the TDSE. For the test case of the rectangular
barrier, we have calculated exact numerical spectra using a one-dimensional version
of the QPROP Schrödinger solver [BK06], which propagates the wavefunction in real
time on a spatial grid. For the numerical simulations, the width of the potential well
(in which U = 0) needed to be specified and was chosen as a = π/2. We first obtained
the ground state wavefunction for the particle inside the well of height U0=3 and
b → ∞, i.e., a barrier of infinite width, as depicted by the dashed line in Fig. 4.1.
The ground state energy on the numerical grid of spacing ∆x = 0.1 was E0 = 1.24.
At time t = 0, the infinite barrier was replaced by a barrier of finite width b− a = 4,
keeping the height constant. As a consequence, tunneling occurs for t > 0. The
sudden switch from the infinite to the finite barrier disturbs the trapped electron
and leads to a short time interval of transient tunneling dynamics before a constant
free-tunneling rate is established. However, this time interval of a few atomic units
is much shorter than the pulse duration so that it did not make a difference whether
the six-cycle laser pulse of the form (4.47) and frequency ω = 0.057 (Ti:Sa laser)
was switched on at t = 0 or with a delay. In any case, the numerical grid was
big enough to support the entire wavefunction during the propagation time without
reflections off the grid boundary. The electron spectra were calculated using the
window operator technique (see, e.g., [BK06]) and normalized to the field-free decay.

In Fig. 4.9, we compare the obtained tunneling probabilities for a barrier of thickness
b − a = 4, height U0 = 3 and initial particle energy E0 = 1.24 under the action of
fields of amplitudes E0=0.02 (Fig. 4.9a) and E0=0.005 (Fig. 4.9b). The spectra agree
well both qualitatively and quantitatively for final energies within the CB, with the
ITM results slightly higher than the TDSE ones. From a comparison of the two field-
free decay rates, we observe that the fitted from the TDSE results are always smaller
than the calculated R0. This behavior is related to TDSE numerics requirements,
which cannot handle the very thin potential well limit a→ 0.

The ITM approach delivers spectra that vanish abruptly beyond the CB and cannot
reproduce the shoulders visible in the TDSE results. As already discussed in Chap-
ter 3, the saddle-point method is actually not applicable in the form described here
outside the CB. The correct approach requires us to include the term proportional to
the third derivative of the action in the phase decomposition near the saddle-point
[FSB02, GP99]. For broad spectra, the contribution of the shoulders outside the CB
is not significant and our approach provides reliable results. The contribution of the
shoulders increases for narrow spectra, as one can see comparing Figs. 4.9a and 4.9b.

We further compare the ITM and TDSE results for a thicker barrier with b− a = 6
and field amplitude E0=0.05 in Fig. 4.9c. Here the agreement is less accurate at small
energies E < 0.8, where the ITM results are about one order of magnitude higher
than the TDSE ones. Since ITM delivers a momentum spectrum, the variable trans-
formation dE = pdp introduces a divergence for asymptotic momenta approaching
the origin. However, for energies close to the initial particle energy and larger, the
ITM agrees well with the TDSE. We conclude that the ITM provides not only qual-
itative but also quantitative results for LAT of QS states within the semiclassical
parameter regime.
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Figure 4.9: (a),(b),(c) Tunneling probabilities dw(E)/dE for rectangular barriers of
widths b − a = 4 (a), (b), and b − a = 6 (c) as a function of the final energy: the
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dashed line). The laser field parameters are ω = 0.057 and (a) E0=0.02, (b) E0=0.005
and (c) E0=0.05. (d) Comparison between LAT through the finite barrier considered
in (a) under the action of a field of amplitude E0=0.075 (solid red line) and ATI for
b = ∞ in the same field (green dashed line).
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Note that in all numerical examples considered in this Chapter, two effects were
disregarded in the ITM. Firstly, in our analytical formulae trajectories that escape
through the tilted barrier are not accounted for, so that the contribution that turns
in the limit b → ∞ into ATI is missing. For the parameters we have chosen, this
contribution can be safely neglected. For demonstration, we show in Fig. 4.9d the
LAT spectrum calculated numerically using the TDSE for the barrier parameters of
panel (a) under the action of a laser field of amplitude E0 = 0.075 and compare it
with ATI through an infinite barrier (b = ∞) of the same height. We can see that
for the chosen parameters, the ATI probability is many orders of magnitude smaller
than LAT one. Secondly, the theory does not take into account that the electron
can be driven back to the barrier and rescatter absorbing or emitting additional pho-
tons. As is known from the literature, rescattering leads to the formation of one or
more plateaus in the spectrum, with the characteristic number of peaks given by the
Reiss parameter Eq. (3.4). The same effect can also be interpreted as multiphoton
stimulated bremsstrahlung [BF66]. For our calculations, we have selected the param-
eters such that in all cases p0 > pF and rescattering plays no significant role. The
rescattering plateau can be reproduced by TDSE calculations covering the higher
field amplitude domain pF > p0, which was, however, not considered in this thesis.



CHAPTER 5

LASER-ASSISTED α DECAY

With the help of the method developed in Chapter 3 for the laser-assisted
decay of QS states, we study the effect of an incoming laser field on the decay
of some medium-mass and heavy α emitting nuclei. In particular, we focus
on changes in the lifetimes and the final momentum distribution of the α
particle. Following the precluster model in one-dimension proposed by Buck
et al. [BMP90a, BMP91], we assume that the parent nucleus is described
by a spherical preformed α cluster, initially confined in a nuclear potential
well. The emission of the α particle corresponds to its tunneling through the
Coulomb potential barrier. The interaction with the external laser field is
taken as a perturbation compared with the Coulomb force between the protons
of the parent nucleus and introduces a correction on the field-free trajectories
that the α particle follows inside the barrier. In the low-frequency limit, the
monochromatic laser field can be taken as static. Using ITM, the correction
on the trajectories are determined by solving the classical equations in complex
time and the penetrability of the α particle through the Coulomb barrier in the
presence of a static field is calculated. A comparison with the results obtained
via the WKB method shows complete agreement. For the more general case of
a monochromatic laser field, the total decay rates and numerical values of the
laser-assisted lifetimes for several laser intensities are calculated. We compare
our theoretical results with the available experimental field-free lifetime and
determine the recollision threshold for the laser field.

In the precluster model, the parent nucleus is taken as a preformed α cluster-daughter
nucleus system. The preformed α cluster is initially confined in a potential well with
depth −U0, which is taken as the mean field nuclear potential that the nucleons of the
parent nucleus experience. The nuclear interaction is short-ranged, so the potential
well has a finite length x0. For distances larger than x0, the total interaction is the
Coulomb force between the protons of the components of the physical system. In
consequence, the tunneling barrier that the α particle traverses during the decay
process is the Coulomb potential, exactly as the phenomenological model proposed
by Gamow, Condon and Gurney (see Fig. 2.1). The α particle is moving around
the daughter nucleus in an orbit characterized by the global quantum number G,
expressed in terms of the principal quantum number n, which corresponds to the
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number of nodes of the radial wavefunction of the α cluster-daughter nucleus system
and the relative angular momentum of the α cluster-daughter nucleus system L as
G = 2n+ L.

Buck et al. calculated the lifetimes of medium-mass and heavy α emitting nuclei
with 50 ≥ Z ≥ 82 using the semiclassical version of the TPA, Eq. (2.65) and consid-
ering a constant value of the depth of the nuclear potential U0 = 135.6 MeV. Then,
the radius x0 can be obtained from the well known Bohr-Sommerfeld quantization
condition, Eq. (2.68) in order to reproduce the experimental lifetimes for each one
of the nucleus they study. With those values, the theoretical lifetimes for α emitters
are calculated, showing a difference of a factor of 2 or 3 σ with respect to the ex-
perimental results. Later on, Buck et al. used the same precluster model to find the
lifetimes of other α emitting nucleus, considering different nuclear potentials, such as
more realistic analytic potentials with parameters, fitted in order to reproduce the
experimental lifetimes [BMP92, BJMP96]. They showed that the difference between
the lifetimes calculated with the new analytic nuclear potential and the phenomeno-
logical model including the nuclear potential well was not significant. Assuming the
phenomenological model, it is not possible to obtain more information about the
nuclear properties that depend on the correlation between the nucleons of the parent
nucleus. Although the nuclear potential well is not the most realistic model to de-
scribe the interaction between the nucleons, the results obtained by considering the
tunneling barrier with the nuclear potential well are not far from the experimental
lifetimes.

We choose the precluster model with a nuclear potential well to represent the α
emitter since it gives an insightful and comprehensive phenomenological description
of the mechanism of the α decay. Due to the spherical symmetry of the α cluster-
daughter nucleus physical system, we treat the laser-assisted α decay as the LAT of
the α particle through the one-dimensional Coulomb barrier. We did not consider
any deformation on the parent or the daughter nuclei. Hence, the tunneling barrier
is only described in the radial coordinate. The calculation of the lifetimes in the
precluster model are done in the semiclassical limit, by using the definition of the
width from the TPA, Eq. (2.65). The parameters that define the Coulomb barrier
for specific medium-mass and heavy α emitters can be found in Ref. [BMP91]. This
gives us a complete description of the Coulomb barrier for the nuclei we study in this
Chapter in the field-free case.

We start by studying the spontaneous α decay in the frame of ITM. Initially, we
use the Hamilton-Jacobi theory, in order to find a parametrization of the subbarrier
trajectories that the α particle follows. Once we find the subbarrier trajectories,
the classical action on the parameterized trajectories is calculated, obtaining the
penetrability of the α particle through the Coulomb barrier. We compare the classical
action obtained using ITM with the reduced action that can be calculated from the
WKB method. The complete agreement shows the consistency of the ITM.

Next, we focus on the problem of laser-assisted α decay. We initially consider tun-
neling assisted by a static laser field. The interaction with the laser field is taken as
a perturbation, so it only introduces a correction on the field-free trajectories. We
find the correction introduced by the static laser field, and then, determine the clas-
sical action based on the total trajectories including the corrections, in accordance
to ITM. Since the barrier is static, there is only one solution to the saddle-point
equation, Eq. (3.29). In consequence, there is no interference between the different
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trajectories that the α particle follows through the modified tunneling barrier. We
are able to find the laser-assisted lifetimes by calculating the penetrability through
the modified tunneling barrier including the dipole interaction with the static laser
field in Eq. (2.69). The laser-assisted lifetimes are compared with the lifetimes ob-
tained using the WKB method with perfect agreement for several medium-mass and
heavy parent nuclei. The static field case is the low-frequency limit of the monochro-
matic laser field. In that sense, our results with the static electric field serves as
a benchmark to the calculation of the laser-assisted lifetimes in the presence of a
monochromatic field.

As a further step, we consider tunneling assisted by a monochromatic laser field. In
this case, the tunneling barrier is time-dependent, and we use the method we pro-
posed in Chapter 3 to study the dynamics of the laser-assisted decay of QS states.
Analogously to the static field case, we find the correction to the subbarrier tra-
jectories that are calculated by ITM. After leaving the classically forbidden region,
the α particle interacts with the incoming electric field on its way to the detector,
where the final momentum is measured. The monochromatic laser field is switched
off by introducing an exponentially decaying electric field amplitude, which eventu-
ally makes the field vanish at a distance far away from the outer turning point of
the Coulomb barrier. Following our method, we calculate the trajectories outside
the barrier, and determine the transition amplitude as it was done in the case of the
LAT through the rectangular barrier in Chapter 4.

In the case of the monochromatic laser field, there are two solutions of the saddle
point equation. Therefore, the trajectories corresponding to a same final energy
must be added coherently and the transition amplitude M(p) can be calculated by
Eq. (3.41). The main difference with respect to the tunneling through the rectangular
barrier comes from the prefactor P0 in Eq. (3.41), which we take from the definition
of the field-free decay rate by Buck et al. [BMP91], Eq. (2.69), and the regularization
constant β in Eq. (3.41). In order to find the correct form of β, we use the definition
we have introduced in Chapter 3, Eq. (3.20), from the works of Popruzhenko and
Goreslavskii on the behavior of the angular distribution near the CB, [GP99, FSB02].
Then, the laser-assisted decay rate is calculated from the definition of the differential
decay rate in terms of the transition probability, dw/dp = |M(p)|2. We show the
behavior of the imaginary part of the action, which describes the dynamics of the α
particle during its subbarrier motion and find the laser-assisted lifetimes for several
nuclei, comparing our results with the field-free lifetimes calculated by Buck et al. in
Ref. [BMP91]. At high-intensity fields, recollision with the Coulomb barrier occurs.
While this case is not the main topic of this thesis, we do find the recollision threshold
intensities and study the behavior of the semiclassical action with increasing fields.
We show qualitatively that, when the intensities of the laser field are close to the
recollision limit, there are more than two solutions of the saddle-point equation for
a range of energies between the CB. The calculation of the recollision spectrum is
however not included at the present stage of the developed formalism.

5.1. Field-free parametrization

Here, we discuss the field-free α tunneling through the barrier in the spontaneous α
decay. In accordance to the precluster model, the nuclear potential is a potential well
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of depth U0 and length x0 (see Fig. 2.1). The nuclear interaction is a short-ranged
one, which dominates at distances shorter than the radius of the parent nucleus
x0. Meanwhile, the main contribution to the tunneling barrier at large distances
compared with x0 comes from the Coulomb barrier. Since the angular momenta of
the parent and the daughter nuclei are zero, the relative angular momentum L of
the α cluster-daughter nucleus system is also zero. In consequence, the centrifugal
barrier L(L + 1)/mrx

2 does not contribute to the effective tunneling barrier the α
particle traverses. As it was mentioned in Chapter 2, mr is the reduced mass of the
α cluster-daughter nucleus system, Eq. (2.6).

Initially, the position and velocity of the α particle are

x1(φs) = x0,
dx1
dt′

(φs) = i

√
2

mr

(ZαZe2
x0

− E
)
. (5.1)

We introduce the dimensionless time parameter φ = ϕ0 + iψ(ξ) = ωt′. Here φs =
ϕ0+iψ0 = ωt′s is the initial complex and dimensionless parameter when the α particle
starts its motion under the Coulomb barrier. Z and Zα are the proton numbers of
the daughter nucleus and the α particle, respectively.

As the Coulomb potential dominates at long distances, the outer classical turning
point of the tunneling barrier is the same outer turning point in the case of a Coulomb
barrier, namely xTP = ZαZe

2/E. In order to find the subbarrier trajectories, we
can use the Hamilton-Jacobi theory. Knowing that the Hamiltonian of the α cluster-
daughter particle system is time-independent, the total energy is conserved

H =
p2

2mr
+
ZαZe

2

x1
= E. (5.2)

From the Hamilton-Jacobi theory, the characteristic function is related to the canon-
ical momentum as

p =
dWHJ

dx1
. (5.3)

The time-dependent characteristic Hamilton-Jacobi function SHJ(x1, t
′) is defined as

SHJ(x1, t
′) =WHJ(x1)− E(t′ − t′s).

Using the energy conservation, we are able to find the one-dimensional Hamilton-
Jacobi function, which is

WHJ(x1) = i

∫ x0

x1

√
2mr

(ZαZe2
x

− E
)
dx. (5.4)

A property of the total characteristic Hamilton-Jacobi function in the case of sta-
tionary potentials is used in order to find the subbarrier trajectories. Taking into
account that

∂SHJ(x1, t
′)

∂E
= 0, (5.5)

we can find a relation that expresses the time spent by the particle inside the barrier
in terms of the position of the α particle,

t′ = t′s − i

√
mr

2

∫ x1

x0

dx√
ZαZe2

x − E
. (5.6)
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In order to solve the integral equation above, we can define a parameterized form of
the subbarrier trajectories. The parameterized position x1(ξ) and time t′(ξ)

x1(ξ) =
ZαZe

2

E
sin2

(
ξ

2

)
, for ξ0 ≤ ξ ≤ ξF ,

t′(ξ) =
1

ω

(
ϕ0 + iψ0

)
− i

2E

√
mrZ2

αZ
2e4

2E
[ξ − ξ0 − sin(ξ) + sin(ξ0)] , (5.7)

follow the field-free trajectory found from the Hamilton-Jacobi theory, Eq. (5.6).

Using the initial conditions in Eq. (5.1) and the parametrization (5.7), we find the
initial value of ξ, ξ0 when the α particle starts its tunneling through the barrier. We
also find its final value ξF when the particle leaves the barrier and starts its motion
in real time,

ξ0 = 2arcsin

(√
x0

ZZαe2

)
, ξF = π. (5.8)

Evaluating Eq. (5.7) at the instant when the particle leaves the Coulomb potential,
we find the time of flight spent by the α particle traversing the tunneling barrier,

ψ0

ω
=

1

2E

√
mrZ2

αZ
2e4

2E

(
ξF − ξ0 + sin(ξ0)

)
. (5.9)

From the field-free parameterizations in Eq. (5.7), we calculate the subbarrier velocity
of the α particle in terms of the parameter ξ,

dx1
dt′

(ξ) = i

√
2E

mr
cot
(ξ
2

)
. (5.10)

Evaluating the Eq. above at ξ = ξF , we can see that the velocity of the α particle
after leaving the barrier is zero.

In accordance to ITM, the classical action in Eq. (3.34) is calculated on the field-free
parameterized trajectories in Eq. (5.7). We find that the classical action takes the
form

W0 = i

√
mrZ2

αZ
2e4

2E

[
ξF − ξ0 − sin

(
ξF
)
+ sin

(
ξ0
)]
. (5.11)

The action calculated by the ITM, Eq. (5.11) can be compared with the reduced
actionWred found via the WKB method, Eq. (2.70). We replace the parametrization
of the spatial coordinate x1(ξ) as it was defined in Eq. (5.7) in Eq. (2.70). After a
simple change of variables, and the integral Eq. (2.70) takes the form

Wred = i

√
mrZ2

αZ
2e4

2E

(
ξF − ξ0 − sin

(
ξF
)
+ sin

(
ξ0
))
, (5.12)

which is exactly the same result obtained by the ITM in the field-free case, Eq. (5.11).
This shows the consistency of the ITM in the semiclassical limit for the spontaneous
α decay.
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5.2. Laser-assisted tunneling for a static electric field

After studying the spontaneous α decay via ITM and finding the parameterized field-
free subbarrier trajectories x1(ξ), Eq. (5.7), we focus on the study of the laser-assisted
α decay. Initially, we consider the case of a constant electric field interacting with
the α emitter. A static electric field can be taken as the low-frequency limit of the
monochromatic laser field. Thus, the study of the assistance of the α decay by a
static field can give us a benchmark to understand the laser-assisted α decay in the
presence of the monochromatic laser field. With the introduction of the interaction
of the static electric field, the total tunneling barrier is written as

Vst(x) =
ZαZe

2

x
− ZαxeE0. (5.13)

Here E0 is the static electric field.

With the tunneling barrier given by Eq. (5.13), the outer turning point is found
by the condition Vst(xTP) = E. Solving the quadratic equation, the outer classical
turning point in the case of the electric static field E0 is

xTP =
E

ZαeE0

(√
1 +

4ZZαe3E0
E2

− 1
)
. (5.14)

The interaction with the static laser field can be taken as a perturbation to the
Coulomb force between the protons of the α cluster and the daughter nucleus. In
consequence, the external electric field introduces a small correction x2s on the field-
free subbarrier trajectories, Eq. (5.7). The position of the α particle inside the barrier
in terms of the parameter ξ is given by

xst(ξ) = x1(ξ) + x2s(ξ), ξ0 ≤ ξ ≤ ξF . (5.15)

Due to the perturbative character of the interaction with the external field, x2s ≪ x1
during the subbarrier motion.

The initial conditions of the corrections on the trajectories x2s(t
′(ξ)) must follow

x2s(ξ0) = 0,
dx2s
dt′

(ξ0) = 0. (5.16)

In accordance to the ITM, the dynamics of the α particle is defined by the classical
equations of motion in complex time,

mr

(
d2x1
dt′2

+
d2x2s
dt′2

)
=

ZZαe
2

(x1 + x2s)2
+ ZαeE0. (5.17)

The correction on the field-free trajectories follows x2s(ξ) ≪ x1(ξ), for all ξ0 ≤ ξ ≤
ξF . We expand the interaction force between the α cluster and the daughter nucleus
around the field-free trajectory x1(ξ) up to the first leading order in x2s(ξ), neglecting
the other higher order contributions,

mr
d2x2s
dt′2

≈ −2
ZZαe

2x2s(ξ)

x31(ξ)
+ ZαeE0. (5.18)
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Using the field-free parametrization of the complex time in terms of ξ in Eq. (5.7),
we can find a set of coupled differential equations that determines the correction on
the subbarrier trajectories x2s(ξ) as a function of the parameter ξ,

dx2s
dξ

= −i
√
mrZ2

αZ
2e4

2E3
sin2

(
ξ

2

)
dx2s
dt′

(ξ),
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(x1(ξ))3
− ZαeE0

]
.

(5.19)

The set of differential equations (5.19) is solved numerically, with the initial condi-
tions Eq. (5.16). As the dynamics of the α particle under the barrier is described in
complex times, the set of equations Eq. (5.19) shows a complex value of the correc-
tion to the final velocity, dx2s/dt

′(ξF ). Since the final velocity in the field-free case
is zero, the total velocity of the particle after leaving the barrier is complex.

This however contradicts the ITM requirement that the initial velocity of the tun-
neling particle after the barrier must be real. In order to obtain a real initial velocity
outside of the barrier, a correction in the time of flight of the α particle in the field-
free case due to the presence of the electric field, ψ0/ω → ψ0/ω + ∆ψ/ω has to be
accounted for. This correction corresponds to a similar correction in the final value
of the parameter ξF → ξF +∆ξ. We can write the relation between ∆ψ0 and ∆ξ as

∆ψ0 = −ψ0 +
1

2

√
mrZ2

αZ
2e4

2E3
[ξF +∆ξF − ξ0 − sin(ξF +∆ξF ) + sin(ξ0)] . (5.20)

Taking into account that ξF = π and the definition of the time of flight through the
Coulomb barrier, Eq. (5.9), we obtain for the imaginary part of the initial complex
dimensionless parameter ψ0

∆ψ0 =
ω

2

√
mrZ2

αZ
2e4

2E3

(
∆ξ + sin(∆ξ)

)
. (5.21)

We can find explicitly ∆ξ using the fact that Im [dx1/dt
′(ξF +∆ξ) + dx2s/dt

′(ξF )] =
0. The field-free velocity, Eq. (5.10), has to be evaluated accordingly at the corrected
parameter ξ = ξF +∆ξ

dx1
dt′

(ξF +∆ξ) = −i
√

2E

mr
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∆ξ

2
. (5.22)

Replacing the expression above in the final velocity of the α particle, we can find the
expression of the correction

∆ξ = 2arctan

[
1√

2mrE
Im
(dx2s
dt′

(
ξ
)∣∣
ξ=ξF

)]
. (5.23)

The total classical action is calculated on the subbarrier field-free trajectories (5.7)
and the corrections introduced by the static field from the Newton equations in
Eq. (5.19). We can separate the action inside the barrier in three different con-
tributions: the analytic field-free action evaluated on the corrected final parameter
ξF +∆ξ, Eq. (5.11), the action depending on the corrections on the trajectories due
to the external field (x2s and dx2s/dt

′) and a mixed term. We consider the per-
turbations introduced by the static field up to linear terms in E0. Any other terms
proportional to higher orders of E0 are neglected.
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In the first contribution, the field-free classical action Eq. (5.11) is evaluated on the
final value of the parameter, ξF +∆ξ, as

W0 = iµ1
[
ξF +∆ξ − ξ0 + sin(ξF +∆ξ)− sin(ξ0)

]
, (5.24)

with µ1 =

√
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With the modification of the field-free action given in the equation above, the classical
action Wst takes the form
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(5.25)

The width of the nuclear resonance can be found in the semiclassical limit by TPA,
Eq. (2.65), replacing the reduced action Wred in Eq. (2.69) by the classical action
Wst in Eq. (5.25). Since the tunneling barrier is stationary, there is only one solution
to the saddle-point equation. Thus, there is no interference between the subbarrier
trajectories that the α particle follows, and the momentum distribution corresponds
to the spectrum of the QS state, i.e., a single narrow line centered at the energy E
of the α particle.

5.3. Laser-assisted α decay for a monochromatic laser
field

Once we have studied the α decay in the presence of an external constant electric
field, we investigate the laser-assisted α decay, considering a monochromatic laser
field of the form

E(φ) = E0 cos
(
φ
)
. (5.26)

Following ITM, the dynamics of the α particle in the classically forbidden region is
described in complex times, starting at φs = ωt′s = ϕ0 + iψ0. In the absence of an
external electric field, the α particle follows the trajectories in Eq. (5.7) and leaves
the Coulomb barrier at φ = ωt′ = ϕ0. The field-free trajectories must be corrected
because of the interaction with the monochromatic laser field as in the case of the
static field in Section 5.2.

Once the α particle moves in real time outside the barrier, the α particle inter-
acts with the daughter nucleus via the Coulomb force between the protons and the
monochromatic laser field. We eventually switch off the monochromatic electric field
adiabatically, so that the final momentum p can be measured at a detector at a time
t′F large compared with the pulse duration T = 2π

ω , and a distance far away from the
outer turning point of the Coulomb barrier.

Initially, we study the dynamics of the subbarrier motion in complex times. We
calculate the corrections to the trajectories introduced by the monochromatic laser
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field. The classical action is calculated on the field-free trajectories, Eq. (5.7) and
the corrections by the laser field. Next, the trajectories of the α particle outside the
barrier are calculated in accordance to the ITM. We determine the classical action
outside the barrier and finally the laser-assisted differential decay rate is found from
the transition amplitudeM(p) in Eq. (3.41) using the prefactor of the field-free decay
rate in Eq. (2.65).

5.3.1. Inside the barrier

Here, we study the tunneling of the α particle inside the barrier. We use the field-
free parameterized trajectories in Eq. (5.7) and find the correction on the field-free
trajectories due to the interaction with the monochromatic laser field. In order to
fulfill the requirements imposed by ITM, a correction on the final parameter ξF must
be introduced, following the calculations in the static field case, Section 5.2.

Next, the classical action is evaluated on the total subbarrier trajectories in accor-
dance to ITM. We see that there are three main contributions to the classical action,
and the calculations of each one of them are detailed. Finally, we find an expression
for the classical action inside the barrier that can be solved partly analytically and
partly numerically.

5.3.1.1. Correction on the field-free trajectories

In the presence of the laser field, the position of the α particle is expressed as the sum
of the field-free parameterized coordinate x1(t

′(ξ)), Eq. (5.7) and a small correction
to the trajectories x2(t

′(ξ)) as we have shown in Eq. (5.15) for the static field case,

x = x1(t
′(ξ)) + x2(t

′(ξ)). (5.27)

The initial conditions of the corrections on the trajectories x2(t
′(ξ)) are defined

exactly as the ones for the static field case, Eq. (5.16)

x2(ξ0) = 0,
dx2
dt′

(ξ0) = 0, for ξ0 ≤ ξ ≤ ξF . (5.28)

In accordance to ITM, the dynamics of the α particle is defined by classical equations
of motion in complex time,
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(
d2x1
dt′2

+
d2x2
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)
=
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2

(x1 + x2)2
+ ZαeE0 cos(ωt′). (5.29)

As the correction introduced by the laser field is assume to act only as a small per-
turbation, x2(ξ) ≪ x1(ξ), we expand the interaction around the field-free trajectory
x1(ξ), as we did in the case of the static field, Eq. (5.18)

mrẍ2 ≈ −2
ZZαe

2x2(ξ)

x31(ξ)
+ ZαeE0 cos(ωt). (5.30)

In accordance to Eq. (5.7), x2(ξ) can also be expressed in terms of the parameter ξ,
as dt′/dξ = −i

√
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4/2E3 sin2 (ξ/2). The last expression can be written as a
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set of two coupled first-order differential equations
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(5.31)

While the correction to the field-free velocity, calculated using Eqs. (5.31), takes a
complex value at ξ = ξF , the field-free velocity of the α particle is zero at the end of
the barrier. In consequence, the total velocity of the α particle in the presence of the
monochromatic laser field is complex, contradicting the requirements of ITM. For
the imaginary part of the total velocity of the α particle at the end of the subbarrier
motion to be zero, we introduce a correction to the field-free time of flight of the
α particle through the Coulomb barrier ψ0/ω → ψ0/ω + ∆ψ0/ω. This correction
corresponds to a correction to the final value of the parameter ξF → ξF + ∆ξ.
We find the connection between the corrections on the time of flight ψ0 and the
parameter ξF in Eq. (5.20). If we evaluate the field-free velocity dx1/dt

′ on the
modified final parameter ξ = ξF +∆ξ, we can guarantee that the field-free velocity
becomes complex. That gives us the condition determining the correction ∆ξ, such
that Im [dx1/dt

′(ξF +∆ξ) + dx2/dt
′] = 0, see Eq. (5.23).

The action is calculated along the modified trajectories in Eqs. (5.7), (5.27) and
(5.31). The classical action inside the barrier is defined as

Wins =

∫ ϕ0
ω

ϕ0+iψ0
ω

dt′
{
(mr(ẋ1(t

′) + ẋ2(t
′))2)

2
− ZαZe

2

(x1(t′) + x2(t′))

+ZαeE0
[
x1(t

′) + x2(t
′)
]
cos(ωt′) + E

}
.

(5.32)

We can separate the action inside the barrier into three different contributions as
we show in the static field case: the analytic field-free action evaluated from ξ =
ξ0 to ξ = ξF + ∆ξ, Eq. (5.11), the action depending on the corrections on the
trajectories due to the external field (x2 and dx2/dt

′) and a mixed term. We consider
the perturbations introduced by the laser field up to linear terms in E0, neglecting
higher order contributions.

The first contribution to the classical action comes from the field-free parameterized
trajectories (5.7). The field-free classical action W0 in Eq. (5.11) is evaluated on the
corrected final parameter, ξF +∆ξ, as

W0 = iµ1 [ξF +∆ξ − ξ0 + sin(ξF +∆ξ)− sin(ξ0)] , (5.33)

with µ1 =
√
mrZ2

αZ
2e4/2E.

The action term in Eq. (5.32) that stands for the interaction with the laser field and
depends on the field-free trajectory x1(ξ) takes the form

W1 = −2iµ1E0
E

∫ ξF

ξ0

x1
(
ξ
)
cos
[
ωt′(ξ′)

]
sin2

(ξ
2

)
dξ. (5.34)

The second contribution to the action comes from the terms proportional to the
correction on the trajectories x2(ξ) due to the laser field. This term can be expressed
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as

W2 = − iµ1
E

{∫ ξF

ξ0

mr

2

[
dx2
dt′

(ξ)

]2
sin2

(
ξ

2

)
dξ

+ ZαeE0
∫ ξF

ξ0

x2(ξ) cos [ωt(ξ)] sin
2

(
ξ

2

)
dξ

}
.

(5.35)

The zero order term of the expansion is the Coulomb potential calculated on the
field-free trajectories. The first perturbation term is a mixed term, proportional to
x2
(
ξ
)
/
[
x1
(
ξ
)]2

. This term corresponds to the third contribution to the classical
action, Eq. (5.32),

W3 = − iµ1ZαZe
2

E

∫ ξF

ξ0

x2(ξ) sin
2
(
ξ
2

)
x1(ξ)2

dξ − iµ1m
2
r

E

∫ ξF

ξ0

[
dx1
dt′

(ξ)
dx2
dt′

(ξ)

]
sin2

(
ξ

2

)
dξ.

(5.36)
After the total action evaluated on the trajectories inside the barrier has been calcu-
lated as Wins = W0 +W1 +W2 +W3, we focus on the dynamics of the motion once
the particle leaves the barrier.

5.3.2. Motion outside the barrier

With the correction on the time of flight of the tunneling particle through the
Coulomb barrier in Eq. (5.23), we can safely say that the velocity of the particle
after leaving the tunneling barrier is real. As the motion in the two regions must be
connected, the final position that the α particle has once it leaves the barrier is the
initial position in the second part of the motion in real time, starting at φ = ϕ0.

During the motion outside the barrier, the α particle interacts with the monochro-
matic electric field and the daughter nucleus via the Coulomb force. At a time t′F ,
the α particle reaches a detector at a distance far away from the point where it
leaves the barrier. Once at the detector, the final momentum of the α particle p is
measured. We introduce an exponential damping factor for the field amplitude of

the form f(t′) = E0 exp
(
−Γd

(
t′ − ϕ0/ω

)
/2
)
in order to switch off the electric field

adiabatically, such that Γdt
′
F ≫ 1. The final time of observation t′F when p is mea-

sured is long compared to the time when the particle leaves the Coulomb barrier and
starts its motion in real time ϕ0/ω.

In accordance to ITM, the dynamics of the α particle outside the barrier is determined
by the classical equations, now in real time

mr
d2ẋ3
dt′2

=
ZαZe

2

(x3(t′))2
+ ZαeE0 exp

[
−Γd

(ωt′ − ϕ0
2ω

)]
cos(ωt′), for

ϕ0
ω

≤ t′ ≤ t′F .

(5.37)

As a consequence of introducing an exponential damping factor in the amplitude of
the monochromatic laser, the interaction of the α particle with the external electric
field decreases slowly on its way to the detector. Eventually, the monochromatic
electric field vanishes completely. Moreover, since we place our detector far away,
the Coulomb interaction with the daughter nucleus is neglected at t′F . Therefore,
the energy of the α particle at t′F is purely kinetic and remains constant.
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Along the trajectories x3(t
′) in Eq. (5.37), the action is numerically calculated as

Wout =

∫ t′F

ϕ0
ω

dt′

{
mr

2

(
dx3
dt′

)2

− ZαZe
2

x3(t′)

+ ZαeE0 exp
[
−Γd

(
ωt′ − ϕ0

2ω

)]
x3(t

′) cos
(
ωt′
)
+ E

}
− x(t′F )p(t

′
F ).

(5.38)

Finally, the total action can be determined:

Wtot =Wins +Wout −
(
x
∣∣
t=t′F

p
∣∣
t=t′F

)
. (5.39)

The last term corresponds to the momentum and the position of the α particle when
it reaches the detector, and comes from the action in ITM, Eq. (3.37). This is the
classical action W (p, tsα) in the definition of the transition amplitude M(p) via our
method in Chapter 3, Eq. (3.41).

In order to complete the description of the transition amplitude M(p) for the laser-
assisted α decay, we also need to find the prefactor P0. Since the field-free decay
rate of the α decay is given by Eq. (2.69) in the precluster model, we can take the
prefactor as P2

0γ = P~2K/2mrx0. Here, K is the wavenumber inside the nuclear

potential well, K =

√
2mr
~2

(
E + U0 − ZαZe2

x0

)
. The parameters x0 and U0 define the

nuclear potential well and the preformation probability of the α particle in the parent
nucleus is taken as P = 1, following the work of Buck et al. [BMP91].

5.3.2.1. Choice of the damping factor Γd and t′F

The numerically calculated trajectories, and hence the total action and the energy
spectrum depend on the choice of the damping parameter Γd and on t′F .

It is important to choose the parameters appropriately in order to switch off the
electric field such that the dynamics of the α particle are not affected considerably
by the exponentially decreasing amplitude of the electric field. Additionally, if the
photon energy of the laser field ~ω is small compared with the energy of the α particle,
the period of the laser is extremely large compared to the time of flight of α particle
through the Coulomb barrier. In that case, the α particle essentially interacts with
a static field rather than a time-dependent one. Accordingly, we take a long time of
observation t′F and switch off the electric field smoothly. The value that we choose
for Γd depends on the characteristics of the tunneling barrier and is nucleus-specific.
We impose two conditions on Γd, [Pop10]

(i) Γd
2π
ω ≪ 1, such that all the physical processes taking place in addition to

the interaction with the laser field proceed faster than the switching off of the
electric field.

(ii) Γdt
′
F ≫ 1, such that we can guarantee that at t′F , the electric field has vanished

completely, and the final momentum can be measured at the detector.
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Figure 5.1: Qualitative picture of the LAT of the α particle in the presence of a
monochromatic field. The α particle dynamics are shown in the subbarrier region
(above) and outside the tunneling barrier (below) for different solutions of the saddle-
point equation in the case of the laser-assisted α decay. The electric field outside
of the barrier (thin black line) is switched off adiabatically. Similarly to the case of
the LAT through the rectangular barrier, each subbarrier trajectory corresponding
to the same final energy EF is related with a solution of the saddle-point equation,
ϕ0α1 and ϕ0α2 . The associated trajectories are shown (blue and magenta, for the
subbarrier motion and magenta and green lines, for the motion outside the barrier).
The two trajectories for a single EF are added coherently in accordance to Eq. (3.41).
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5.3.3. Differential decay rate

In order to obtain the differential decay rate, we follow the procedure developed for
the rectangular barrier in the Subsection 4.3.

The regularization constant β in the denominator of the transition amplitude M(p)
needs to be specified. Since the corrections on the field-free trajectories x2(ξ) cannot
be found analytically as in the LAT through the rectangular barrier, we can only

find β numerically, using its definition in Eq. (3.20), namely, βγ = z
− 1

3
F

(
dp/dt0

∣∣
max

)
.

A schematic picture of the dynamics of the laser-assisted α decay in the presence of
a monochromatic field is shown in Fig. 5.1.

We recall that in the case of a monochromatic field Eq. (3.14), all periods were equiv-
alent, so that there were only two essentially different solutions, all the others being
obtained by a 2πk translation, for all k ∈ Z. In the present case, due to the procedure
we have used to switch off adiabatically the monochromatic field, we no longer deal
with a monochromatic field. However, since the applied damping factor is very small
and therefore the number of periods over which we sum is large, we expect the devi-
ation from the pure monochromatic field case to be very small. Thus following the
results in Subsection 4.3, summing over all periods of the monochromatic laser field
gives additional Dirac-delta factors in the transition amplitude M(p). For the par-
ticular case of the laser-assisted α decay, the transition amplitudeM(p) in Eq. (3.41)
can be calculated by including the prefactor P0γ , the regularization constant βγ and
the Dirac delta of the conservation of energy in the modified transition amplitude in
Eq. (3.41). The transition amplitude M(p) takes the form

M(p) = ~ω
l∑

l=−∞
δ
( p2

2mr
+
Z2
αe

2E2
0

4mrω2
−E−~lω

)∑
α

P2
0γ [v(t0α)] exp [iW (p, tsα)]√

dp/dt0α + iβγ
. (5.40)

The second term of the argument of the Dirac delta distribution in the expression
above corresponds to the ponderomotive potential Up felt by the α particle in the
presence of the monochromatic laser field.

We can find the differential decay rate dw/dp by taking the modulus square of the
transition amplitude M(p) in Eq. (5.40). The differential decay rate is evaluated on
the long time of observation T = t′F , as we showed in the case of LAT through the
rectangular barrier, Eq. (4.45). In consequence, the differential decay rate dR/dp for
the laser-assisted α decay in the presence of a monochromatic laser field is given by

dR =
dw(p)

T
=
∑
j

δ(p− pj)

2πpj

(
P~4Kω2

2mrx0

) ∣∣∣∣∣∣
∑
α=1,2

exp (iWtot(p, tsα))√
dp/dt0α + iβγ

∣∣∣∣∣∣
2

dp , (5.41)

where pj =
√

2mr

(
E − Z2

αe
2E2

0/4mrω2 + ~jω
)
/~2 are the momenta corresponding

to the ATI-like peaks.

If we are interested only in the total decay rate (respectively the lifetime of the
alpha emitter) instead of the energy spectrum, it is numerically more advantageous
to consider the total laser-assisted rate averaged per laser period,

Rav =

(
P~4Kω
4πmrx0

)∫ 2π

0
exp {Im [Wtot(p, ϕsα)]} dϕsα. (5.42)
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The total rate depends on the imaginary part of the action along the trajectories
inside the barrier, while the spectrum is mainly influenced by the α particle motion
after the barrier exit and its interaction with the laser field outside the barrier. In
principle, the integration of the differential decay rate (5.41) over the whole energy
spectrum should yield the same result as the averaged rate in (5.42). However, due
to the involved numerics for the propagation of the α particle outside the barrier,
numerical inaccuracies of the order of the lifetime change due to the laser field occur.
We therefore use (5.42) to calculate the laser-assisted α decay lifetime,

t1/2 =
~ log(2)
Rav

. (5.43)

5.3.3.1. Recollision limit

We have found that the external laser field can modify the dynamics of the α particle
in the subbarrier region or after leaving the Coulomb barrier on its way to the
detector. If we take into account the time-dependent character of the monochromatic
field, the interaction of the α particle with the field changes in direction. If the
intensity of the incoming laser field is not strong, the dynamics of the α particle are
not affected strongly by the change in the change in direction of the electric force.
However, there is a particular large intensity at which the effects of the change in
direction of the field are no longer negligible. At this limit, the energy of the α
particle is twice the drift energy gained by the α particle from the laser field, Up.
This is the recollision limit. The change in the direction of force by the laser field
modifies the trajectories of the α particle, such that there can be more than two
saddle-point solutions for a single value of the final energy.

The recollision limit is satisfied by the following relation

E =
Z2
αZ

2e2

2mrE0rec .
(5.44)

Although we can explore the dynamics of the LAT of the α particle through the
Coulomb barrier for intensities close to the recollision limit, the method we have
developed to calculate the laser-assisted decay rates of initial QS does not include the
description of recollision processes. Therefore, for intensities close to the recollision
limit, we can only show qualitatively the behavior of the most important quantities
that characterize the LAT of the α particle through the barrier.

5.4. Numerical results

In the last section, we have found the decay rate in the case of a static electric
field by replacing the classical action (5.25) in the definition of the decay rate of
the spontaneous α decay for the precluster model, Eq. (2.69). We also used ITM to
study the dynamics of the α particle tunneling through the Coulomb barrier in the
presence of a monochromatic laser field, and obtained the laser-assisted differential
decay rate dR/dp, given in Eq. (5.41). Here, we show the numerical results obtained
for some α emitting nuclei (106Te, 162W, 150Dy and 238U), whose field-free lifetimes
were calculated theoretically by Buck et al. , using the precluster model [BMP91].
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5.4.1. Nuclear parameters for different α emitters

In this thesis, we study the laser-assisted α decay of four different medium-mass and
heavy nuclei α emitting nuclei, with zero angular momentum in their ground state,
106
52 Te, 15066 Dy, 16274 Wand 238

92 U.We chose these particular cases, since their experimental
lifetimes are spread over a long range of values, from a few microseconds up to
millions of years. The measured decay lifetimes together with parent and daughter
nuclei parameters are presented in Table5.1.

We can characterize the spontaneous α decay following the precluster model, pro-
posed by Buck et al. and explained in the section 2.3. We follow the assumptions
made by the precluster model in [BMP91], considering the preformation factor as
P = 1 in the field-free decay rate, Eq. (2.69). The definition of the field-free decay
rate given by Buck et al. in [BMP90a] can be used to describe the spontaneous α
decay since the energy of the α particle is not close to the top or the bottom of the
barrier. Following the description of the tunneling barrier in the phenomenological
precluster model by Buck et al. , we use the parameters found in [BMP91] to charac-
terize the tunneling barrier. The relevant parameters that are necessary to calculate
the field-free lifetime in accordance to the precluster model are given in Table 5.1.
We also give the theoretical values of the α emitter lifetimes from Ref. [BMP91].

Parent Daughter E (MeV) c1 (fm) md (MeV) texp1/2 (s) tpm1/2(s)

106
52 Te 102

50 Sn 4.325 1.486 95706 7(1.7)× 10−5 7 ×10−5

150
66 Dy 146

64 Sm 4.350 1.461 137018 430.2(300) 520
162
74 W 158

72 Hf 5.675 1.432 148316 1.36(6) 2.4
238
92 U 234

90 Th 4.274 1.394 219701 4.469(3)× 1017 4.7× 1017

Table 5.1: Nuclear parameters that define the tunneling barrier of the α cluster-
daughter nucleus system for the four α emitters studied in this thesis. Here, md is
the mass of the daughter nucleus, c1 is the constant that defines the radius of the
parent nucleus as x0 = c1A

1
3 . E is the energy of the α particle. The experimental

lifetimes are listed for the α emitters. U0 = 135.6 MeV is the depth of the nuclear
potential well, following the precluster model by Buck et al. in [BMP91]. The
experimental lifetimes texp1/2 and the calculated lifetimes by Buck et al. in [BMP91]

tpm1/2(s) are listed above for the four considered α emitters. The mass of the α particle
is taken as 3727.379240 MeV, in order to calculate the reduced mass mr according
to Eq. (2.6).

5.4.1.1. Tunneling of the α particle in a static field

In the following for exemplification, we detail step by step the numerical results for
the LAT dynamics through the Coulomb barrier for the lightest of the considered
nuclei, 106

50 Te. As it was mentioned in Section 5.3.2, when the frequency of the
monochromatic laser field is low, the laser period is far longer than the time of flight
of the α particle through the Coulomb barrier. As a consequence, the α particle sees a
static barrier. We can take the intensities of an incoming laser field and determine the
amplitude of the electric field. In the low-frequency limit, this amplitude is exactly
the static field that modifies the decay rate in accordance to what was explained in
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Figure 5.2: Correction on the time of flight of the α particle ∆ξ as a function of the
static electric field E0 in the case of 106Te.

Section 5.2. Therefore, we use the relation between the intensity I and the magnitude
of the electric field E0 in Eq. (A.2) in order to calculate the field-assisted lifetimes
as a function of the intensities, following the ITM field-free subbarrier trajectories,
Eq (5.7), the correction on the subbarrier trajectories x2s due to the static field in
Eq. (5.19) and the classical action Wst in Eq. (5.25).

We have stated earlier in this Chapter that the interaction with the static field only
introduces a small change in the time of flight of the α particle. The correction
on the final parameter ξF +∆ξ that determines the end of the subbarrier motion is
calculated, according to Eq. (5.23). The results are shown in Fig. 5.2. The magnitude
of the correction on the final parameter ξF = π due to the interaction with the static
field is very small compared with the value of ξF . It can be seen in Fig. 5.2 that
it only affects the fifth decimal of ξF . The correction in the time of flight of the
α particle, ∆ψ0/ω is also small compared with the time of flight of the α particle,
traversing the barrier ψ0/ω, in accordance to Eq. (5.20). In consequence, the time
that the particle spends inside the Coulomb barrier in the presence of the static field
is close, but not exactly the same one in the field-free case, Eq. (5.9).

As the stationary tunneling barrier is modified by the presence of the static field,
the outer turning point is redefined, as it was shown in Eq. (5.14). With that
said, the penetrability of the α particle through the new tunneling barrier changes,
as the exponential factor in the decay rate (2.69) is sensitive to the definition of
the turning points. We calculate the penetrability and the lifetimes using ITM,
Eq. (5.25) and WKB, Eq. (2.70) and compare our results with the field-free lifetime
in Fig. 5.3. It can be seen in Fig. 5.3 that the lifetimes calculated using WKB and
the lifetimes calculated using ITM coincide. The agreement achieved between the
lifetimes calculated via ITM and the WKB method found in 106

50 Te is also found for
162
74 W (see Fig. 5.4), 150

66 Dy (see Fig. 5.5) and 238
92 U (see Fig. 5.6).

Moreover, we can see in Figs. 5.3, 5.4, 5.5 and 5.6, that for larger values of the
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Figure 5.3: Relative modification in the field-assisted lifetimes ∆t1/2/t
0
1/2 as a

function of the electric field E0 in the case of 106Te.
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Figure 5.4: Relative modification in the field-assisted lifetimes ∆t1/2/t
0
1/2 as a

function of the electric field E0 in the case of 162W.

electric field strength E0, the field-assisted lifetimes become shorter with respect to
the field-free lifetime, leading to a slight acceleration of the decay. However, for
electric fields with values up to an order of magnitude of 1015 V/m, the relative
modification in the lifetimes by the interaction with the external field ∆t1/2/t

0
1/2 is

about 6 × 10−4 in the case of 106Te, with respect to the value t01/2 calculated via

ITM for the field-free decay. For 162W, the relative modification in the field-assisted
lifetime for such a strong static field is extremely small, around 7×10−4 as in the case
of the Tellurium. Similarly, in the cases of 150 Dy and 238U, with longer spontaneous
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α decay lifetimes, the relative modification ∆t1/2/t
0
1/2 in the value of the lifetimes is

almost negligible (∆t1/2/t
0
1/2 = 10−3 for a electric field strength of 1015 V/m), and

it increases with the electric field strength. We thus conclude that the dynamics of
the α decay during the tunneling through the Coulomb barrier is not only negligibly
affected by the presence of the static field and there is no significant change in the
spontaneous decay lifetime of the α emitter.
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Figure 5.5: Relative modification in the field-assisted lifetimes ∆t1/2/t
0
1/2 as a

function of the electric field E0 in the case of 150Dy.
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Figure 5.6: Relative modification in the field-assisted lifetimes ∆t1/2/t
0
1/2 as a

function of the electric field E0 in the case of 238U.
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5.4.1.2. Monochromatic laser field

We now focus on the calculation of the laser-assisted lifetimes in the case of a
monochromatic laser field, like the one in Eq. (3.14). Similarly to the static field
case, for exemplification we present the LAT results in detail for 106Te. Laser-assisted
lifetimes and α particle spectra are calculated for optical and x-ray laser field param-
eters for all four considered nuclei. We choose the damping parameters Γd and the
final time t′F for all nuclei such that we can guarantee that the laser field is switched
off adiabatically. For the calculation of the α particle spectrum, we consider a range
of laser-field intensities lower than the recollision threshold regime, calculated using
Eq. (5.44). The chosen parameters, including the recollision limit for the four α
emitters are listed in the Table 5.2. Firstly, we calculate the order of magnitude of

Optical XFEL
Γd (MeV) ωXFELt

′
F Irec (W/cm2) Γd (MeV) ωoptt

′
F

106
52 Te 0.00183959 7000 6.36288× 1022 0.449678 5000
150
66 Dy 0.0019 7050 6.47281× 1022 0.449678 5000
162
74 W 0.0018 7000 8.46149× 1022 0.45 5050
238
92 U 0.00183959 7000 6.42375× 1022 0.44 5000

Table 5.2: Table of laser parameters. Γd and t′F are the damping parameters intro-
duced to switch off the electric field adiabatically. The considered photon energies are
~ωopt = 1.55 eV for the optical laser and ~ωXFEL = 3 keV for XFEL. The recollision
limit is only meaningful for the optical laser parameters.

the correction to the imaginary part of the initial complex dimensionless parameter
ψ0 introduced by the laser, in accordance to Eqs. (5.20) and (5.23). The results are
shown in Fig. 5.7. For 162W, the imaginary part of the initial complex dimensionless
parameter ψ0 takes the value of 0.000135292, and for 106Te, ψ0 = 0.000140389, which
are small values compared with φ = 2π. Hence, the field-free time of flight inside
the Coulomb barrier, ψ0/ω for each of the considered α emitters interacting with the
monochromatic field is far smaller than the period of the incoming laser field for the
optical frequency ωopt and the x-ray ωXFEL.

The ellipse-like shape that the correction ∆ψ0 takes as a function of the final energy
in Figs. 5.7 and 5.8 corresponds to the existence of two solutions of the saddle-point
equation, as expected in the case of the monochromatic field. However, the order
of magnitude of the corrections are far smaller than the value of ψ0 in the field-free
case, as it can be seen in Fig. 5.7 and 5.8. In consequence, the correction introduced
by the laser on the time of flight of the α particle through the barrier is extremely
small.

If we look at the final time of the subbarrier motion, ϕ0/ω as a function of final
energy of the α particle EF (for the optical laser, see Fig. 5.9 and for the x-ray
laser field, see Fig. 5.10), we can see that the shape of the function that relates the
two variables remains the same, regardless the strength of the electric field. For
larger intensities not close to the recollision limit, shown in Table 5.2 for the four α
emitting nuclei, the spectrum gets broader as can be seen in Figs. 5.9 and 5.10. For
the monochromatic laser field with x-ray ~ωXFEL = 3 keV, the recollision threshold
intensity take values close to the Schwinger limit. For instance, in the case of 106Te,
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Figure 5.7: Correction ∆ψ0 on the parameter ψ0 as a function of the final energy
EF , for a few laser field intensities and ~ωopt = 1.55 eV, in the case of 106Te.
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Figure 5.8: Correction ∆ψ0 on the parameter ψ0 as a function of the final energy
EF , for a few laser field intensities and ~ωXFEL = 3 keV, in the case of 106Te.

the recollision limit that corresponds to a photon energy of 3 keV is 2.38037 × 1029

W/cm2. Therefore, the recollision effects cannot be observed at this large intensities
without modifying completely the structure of the nucleus.

The energy interval delimited by the CB gets larger as the intensity of the monochro-
matic laser field increases. Furthermore, for the range of intensities that are not close
to the recollision limit, there are only two solutions of the saddle-point equation,
which determine two different trajectories. The trajectories that are described by
the solutions interfere with each other, entering the coherent sum in the definition
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of the modified transition amplitude |M |2, Eq.(3.41).
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Figure 5.9: Real part of the initial complex dimensionless parameter ϕ0 as a function
of the final energy EF , for I = 8.775×1021, 1.41799×1022 and 2.8431×1022 W/cm2

(from left to right) in the case of 106Te. The different trajectory branches are shown
with red, blue, and green colors. The photon energy is ~ωopt = 1.55 eV.
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The imaginary part of the total action Wtot in Eq. (5.39) as a function of the final
energy EF is given in Figs. 5.11 and Figs. 5.12, for the two considered laser-field
parameters. The effect of the laser field is not completely negligible, as the imaginary
part of the total action Wtot presents two different values for energies within the
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CB, that correspond to the two saddle-point solutions. That is the reason why the
imaginary part of the total action in Fig. 5.11 has a symmetrical, ellipse-like shape.
With increasing intensity, the number of absorbed and emitted photons increases,
and the range of energies gets broader. In addition to that, for lower intensities, the
maximum and minimum values that Im (Wtot) takes are closer. The deformation of
the ellipse-like shape comes for larger intensities, in which the difference between the
maximum and minimum values of Im (Wtot) increases. Note in Fig. 5.11 that the
horizontal symmetry axis of the ellipse is exactly the value that the imaginary part
of the action Wtot takes in the field-free case.
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Figure 5.11: Imaginary part of the action Im (Wtot) for the laser-assisted α decay
of 106Te as a function of the final energy EF , for a few laser field intensities at
~ωopt = 1.55 eV.

However, as we can see in Figs. 5.11 and 5.12, the difference between the maximum
value of the imaginary part of the action Wtot and its minimum value even for a
high laser-field intensity is rather small compared to the value of the imaginary
part of the action calculated in the field-free case. As already pointed out, the
imaginary part of the classical action Wtot characterizes the subbarrier dynamics of
the α particle and determines the tunneling rate. In consequence, we can see that
the correction on the time of flight introduced by the laser field, and the corrections
on the trajectories during the subbarrier motion are small, and have only a weak
effect on the dynamics of the α particle inside the Coulomb barrier. The tunneling
rate through the Coulomb barrier in the presence of the monochromatic laser field
can be calculated by according to the expression (5.42).

In Figs. 5.13 and 5.14, we show the laser-assisted lifetimes in the case of 106Te as
a function of several laser intensities. The laser effect is to accelerate the decay.
However, the relative modification of the laser-assisted lifetimes is extremely small,
on the order of 10−8. Even for large intensities not so far away from the recolli-
sion limit for the optical laser, the modification in the lifetimes is only ∆t1/2/t

0
1/2 =(

tLAT1/2 − t01/2

)
/t01/2 = 4.8 × 10−8. For the x-ray laser, the relative change in the
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Figure 5.12: Imaginary part of the action Im (Wtot) for the laser-assisted α decay of
106Te as a function of the final energy EF , for a few laser field intensities at ~ω = 3
keV.

lifetimes is slightly larger, around 10−6. This difference comes from the range of
laser-field intensities that can be used to assist the tunneling of the α particle before
the recollision effects take place. While in the case of an optical laser, the recollision
phenomena starts occuring around 6 × 1022 W/cm2 (see Table 5.2), for the x-ray
laser, the laser-field intensity can be increased without any consideration of recolli-
sion effects. Therefore, the laser-field intensities in the case of the x-ray laser field
are significantly larger than the values that the field intensity can take before the
recollision occurs in the presence of the optical laser field.

We can compare the modification in the calculated laser-assisted lifetimes respect to
the field-free lifetimes obtained for the monochromatic case in Figs. 5.13 and 5.14
with the ones in the case of tunneling in the presence of a static field, 5.3. For the
monochromatic laser field, the height of the tunneling barrier oscillates in time due to
the time-dependent form of the interaction with the external field, and the tunneling
rate is obtained by averaging over one laser period. In comparison, in the presence
of a constant electric field, the height of the Coulomb barrier is permanently lowered
by the interaction with the field. In consequence, the decrease in the calculated field-
assisted lifetimes with respect to the spontaneous α decay lifetime is more significant
for the static field than for the monochromatic laser field.

Similarly to the case of 106Te, we found that the relative modifications in the laser-
assisted lifetimes for 150Dy have small values as shown in Fig. 5.15 (for optical laser
parameters) and Fig. 5.16 (for XFEL parameters). The relative changes in the laser-
assisted lifetimes for this particular nucleus take values around 10−8 for the optical
laser and 10−6 in the case when the photon energy of the laser field is ~ωXFEL = 3
keV. The same order of magnitude in the relative change of the laser-assisted lifetimes
is obtained for the other two α emitting nucleus studied in the present thesis, 162W
(see Figs. 5.17 and 5.18) and 238U (Figs. 5.19 and 5.20). Regardless of the differences
in the characterization of the tunneling barrier, the dynamics of the α particle during
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Figure 5.13: Relative modification in the laser-assisted lifetimes ∆t1/2/t
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Figure 5.14: Relative modification in the laser-assisted lifetimes ∆t1/2/t
0
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tLAT1/2 − t01/2

)
/t01/2 as a function of the laser intensity I a photon energy ~ωXFEL = 3

keV, in the case of 106Te.

the subbarrier motion in the presence of the laser field is essentially the same for the
studied α emitters, leading to similar relative modifications of the α decay rate.

Our results for 106Te,150Dy, 162W and 238U thus show that the direct interaction with
the laser field indeed leads to a speed up of α decay, the magnitude of which, however,
is very small. In terms of the exclusive and inclusive parameter regimes defined in
Chapter 3, the case of LAT for the four considered α emitters belongs to the exclusive
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Figure 5.15: Relative modification in the laser-assisted lifetimes ∆t1/2/t
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Figure 5.16: Relative modification in the laser-assisted lifetimes ∆t1/2/t
0
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tLAT1/2 − t01/2

)
/t01/2 as a function of the laser intensity I a photon energy ~ωXFEL = 3

keV, in the case of 150Dy.

regime, for which the laser has a only a tiny effect on the tunneling through the
barrier. However, the spectrum of tunneled particles is changed extensively. As an
example, we calculate the value of the parameter µext defined in (4.64) for 106Te and
obtain a value of 1.00751× 10−9 ≪ 1, which is deep within the extensive parameter
regime. With that said, we can investigate the effect of the monochromatic laser
field in the energy spectrum of the α particle.
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Figure 5.17: Relative modification in the laser-assisted lifetimes ∆t1/2/t
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Figure 5.18: Relative modification in the laser-assisted lifetimes ∆t1/2/t
0
1/2 =(

tLAT1/2 − t01/2

)
/t01/2 as a function of the laser intensity I a photon energy of 3 keV,

in the case of 162W.

We show the differential decay rates dRl/dp calculated using the expression (5.41)
as a function of the final energy in Figs. 5.21, 5.23, 5.25 and 5.27 (optical laser
parameters) and Figs. 5.22, 5.24, 5.26 and 5.28 (XFEL laser parameters). The mod-
ification in the momentum distribution is more noticeable at larger intensities, as
shown in Figs. 5.21- 5.28. The final energy distribution is broadened at larger inten-
sities following the classical boundaries p0±pF . For lower intensities, the distribution
comprises of a narrow region around the energy E of the α particle.
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Figure 5.19: Relative modification in the laser-assisted lifetimes ∆t1/2/t
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eV, in the case of 238U.
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Figure 5.20: Relative modification in the laser-assisted lifetimes ∆t1/2/t
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/t01/2 as a function of the laser intensity I a photon energy ~ωXFEL = 3

keV, in the case of 238U.

In the case of the x-ray laser field the number of photons absorbed and emitted by
the α particle as it travels to the detector is not as numerous as in the case of the
optical laser. However, distinctive features still appear in the spectrum due to the in-
teraction with the high intensity x-ray laser field, similar to the ones observed in the
optical laser field case. The distribution gets broader with larger laser-field intensi-
ties, corresponding to a larger range of energies between the CB. When the laser-field
intensity is lower, the spectrum approaches the field-free limit, characterized by a
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Figure 5.21: Laser-assisted differential decay rate dRl/dp as a function of the final
energy El in the case of 106Te at ~ωopt = 1.55 eV.
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Figure 5.22: Laser-assisted decay rate dRl/dp as a function of the final energy El
in the case of 106Te.

narrow distribution centered onn the initial energy E of the α particle.

So far, we here established that the laser-assisted α decay lies deeply within the
extensive regime and the laser-assisted α decay lifetimes are not strongly affected by
the interaction with the monochromatic field. We have shown that the incoming laser
field affects the dynamics of the α particle by modifying its momentum distribution
after leaving the barrier for moderate intensities of an optical laser with photon
energy ~ωopt = 1.55 eV or stronger laser-field intensities for a x-ray laser beam,
with photon energy ~ωXFEL = 3 keV. At large intensities, recollisions of the α
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Figure 5.23: Laser-assisted differential decay rate dRl/dp as a function of the final
energy El in the case of 150Dy at ~ω = 1.55 eV.
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Figure 5.24: Laser-assisted decay rate dRl/dp as a function of the final energy El
in the case of 150Dy for a photon energy of 3 keV.

particle with the daughter nucleus may occur. In the case of the x-ray laser field,
the phenomenom of recollision is ruled out completely due to the magnitude of the
recollision threshold intensity defined in Eq. (5.44). This is not the case for the
optical laser, in which the recollision limit is at a high experimentally almost feasible
intensity.

Here we present briefly some characteristics of the total action for intensities ap-
proaching the recollision threshold from a qualitative perspective. In our numerical
calculations, we show that for intensities close to the recollision limit, the change
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Figure 5.25: Laser-assisted differential decay rate dRl/dp as a function of the final
energy El in the case of 162W at ~ωopt = 1.55 eV.
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Figure 5.26: Laser-assisted decay rate dRl/dp as a function of the final energy El
in the case of 162W for a photon energy ~ωXFEL = 3 keV.

in the direction of the monochromatic laser field affects the dynamics of the α par-
ticle after the barrier, as shown in Fig. 5.29. We find the trajectories that the α
particle follows outside the barrier starting its motion at φ = ϕ0 = 4π/5. The α
particle comes back at a later time, rescattering with the daughter nucleus when
the laser-field intensities are higher than the recollision threshold laser-field inten-
sity. For laser-field intensities below recollision limit, the change in the direction of
the laser field slightly modifies the trajectories of the α particle outside the barrier,
but not enough to drive the α particle back to collide with the daughter nucleus.
After the initial change in its trajectory, the α particle continues to be accelerated
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Figure 5.27: Laser-assisted differential decay rate dRl/dp as a function of the final
energy El in the case of 238U at ~ωopt = 1.55 eV.
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Figure 5.28: Laser-assisted decay rate dRl/dp as a function of the final energy El
in the case of 238U for a photon energy ~ωXFEL = 3 keV.

by the laser field, far away from the daughter nucleus. For laser-intensities above
the laser-field intensity threshold, the change of direction of the monochromatic field
affects considerably the dynamics of the α particle. As a consequence, the α particle
changes its trajectory. The interaction with the laser field drives back the α particle
and finally, it collides with the daughter nucleus before it starts to be driven away
from the daughter nucleus by the laser field.

If we compare the behavior of ϕ0 for low laser field intensities (no recollisions) in
Fig. 5.9 with the cases where the recollisions are occurring, shown in Fig. 5.30,
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Figure 5.29: Position of the α particle outside the barrier for a single value of the
real part of the initial complex dimensionless parameter ϕ0 = 4π/5 as a function of
the dimensionless time parameter φ, for three different intensities: I = 3.51 × 1022

(below the recollision limit, blue line), 6.8796 × 1022 (slightly above the recollision
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red line) in the case of 106Te.
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we can identify the distinction in the number of saddle-point solutions, associated
with a single final energy. In that sense, we can study qualitatively the recollision
dynamics of the α particle. For laser-field intensities close to the recollision intensity
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threshold, the number of saddle-point solutions for a value of final energy with the
CB increases. In consequence, for a given α particle final energy there can be more
than two trajectories that interfere. The shape of the function that expresses the
relation between ϕ0 and the final energy of the α particle changes considerably for
laser field intensities close to the recollision limit. Due to the fact that the behavior of
the saddle-point solutions is affected at high intensities in the range of the recollision
threshold, the imaginary part of the action Wtot has a strongly modified shape, as
shown in Fig. 5.31. The calculation of the full rescattering spectra requires the
summation of all different rescattering trajectories and is beyond the scope of our
current calculations. However, our first results for the imaginary part of the action
shown in Figs. 5.30 and 5.31 convey the significant effects of the recollision for large
intensities.
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Figure 5.31: Imaginary part of the action Wtot as a function of the final energy EF
for three laser intensities: below the recollision threshold intensity (blue line), the
recollision limit (green line) and above the recollision threshold intensity (red line)
at ~ωopt = 1.55 eV.

The qualitative description of recollision in laser-assisted α decay resembles the
rescattering of ionized electrons in atomic systems. The recollision of electrons af-
ter leaving the atomic potential has led to interesting development in the physics of
strong-field laser atomic interactions, such as high harmonic generation [Cor93] and
nonsequential double ionization [HVDS08, KI09]. The recollision in atomic systems
takes place after the electron tunnels through the Coulomb potential. When the
electron is detached from an atom via nonlinear ionization, it is accelerated away
from the atom until the field direction is reversed, propelling the released electron
back to the atomic system. The electrons are usually emitted along the direction of
the laser field. The α decay, on the other hand, occurs mostly spontaneously, such
that the α particle is emitted in 4π. Thus, in the case of laser-assisted α decay,
only those α particles emitted in a narrow solid angle around the laser field direction
will have the possibility to rescatter on the daughter nucleus. Furthermore, we have
restricted our present calculations to field intensities below the recollision limit.
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A further step to understand the dynamics of the laser-assisted α decay involves
first the extension of the one-dimensional treatment to account for recollisions in
the spectra. The role of the laser-induced recollisions could offer a possibility to
influence the bremsstrahlung emitted during α decay. The bremsstrahlung emitted
during the spontaneous α decay is still an intriguing subject and has been extensively
studied in the last decade [BdPZ99, DG96, FZ99, PB98, JMT+08, MO03, MOG+09,
TNH+99]. The inclusion of recollision effects induced by the interaction with the laser
field can have significant effects in the spectrum of radiation emitted after the LAT
through the Coulomb barrier has taken place. The determination of the spectrum
after the recollision limit and the influence of the recollision of the α particle in the
emitted bremsstrahlung of α decay are some of the interesting possibilities that can
be explored following the qualitative description of the recollision in the laser-assisted
α decay.





CHAPTER 6

CONCLUSIONS AND OUTLOOK

In this thesis we have investigated theoretically the process of laser-assisted α decay.
Due to the nature of the initial state, the spontaneous α decay can be considered
as a tunneling process of a preformed α particle, described by a QS state, through
the Coulomb barrier. In order to investigate the LAT of the α particle, we have
developed a general formalism to describe the laser-assisted decay of QS states in
the semiclassical parameter regime, extending a well known approach in the physics
of nonlinear ionization, namely, the SFA and its formulation in terms of complex
trajectories. In order to illuminate the physical essence of the problem and avoid
unnecessary technical complications, we have neglected initially some accompany-
ing effects like recollision of the tunneling particle, which can take place at large
intensities.

We have tested our method studying the LAT through a rectangular barrier in the
presence of a monochromatic laser field and a short pulse. Our results in that par-
ticular case demonstrated the existence of two regimes of decay that have been de-
scribed qualitatively in works on laser-assisted β decay [NR64]: the “exclusive” and
“inclusive” regimes. In the exclusive regime, the momentum distribution is strongly
affected due to the interaction with the laser field but the total decay rate remains
unchanged. Therefore, the laser only plays a role on the dynamics of the tunneling
particle after it has left the barrier on its way to the detector. On the other hand,
in the “inclusive” regime, both the spectrum and the laser-assisted decay rate are
strongly affected by the interaction with the laser field. Thus, the laser field modifies
the dynamics of the tunneling particle at all times, during its subbarrier motion and
outside the barrier. In order to show the accuracy of our method, we have performed
a comparison of the obtained results in the presence of a short pulse using our method
with numerical results of the time-dependent Schrödinger equation, showing not only
qualitative but also good quantitative agreement.

Using the developed general formalism for laser-assisted decay of QS states, we have
investigated the laser-assisted α decay, starting with the tunneling of the α particle
through the Coulomb barrier in the presence of a static field for four medium-mass
and heavy α emitters with lifetimes ranging from 10−5 seconds to millions of years:
106Te, 150Dy, 162W and 238U. The field-assisted tunneling of the α particle through
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the Coulomb barrier can be used as a benchmark to characterize the LAT in the
presence of a monochromatic electric field, since the static field is the low-frequency
limit of the monochromatic field. A comparison of our results for the static field with
the ones obtained from the WKB method shows perfect agreement. For the static
field, our calculated field-assisted lifetimes show that the field-induced acceleration

of the α decay is only of the order of ∆t1/2/t1/2 =
(
tLAT1/2 − t01/2

)
/t01/2 = 10−3 for

static fields of electric field strengths of 1015 V/m. For a monochromatic field, the
laser-assisted lifetime averaged over the laser period is as good as equal to the field-
free one, with a relative modification of 10−8 for strong optical fields and laser-field
intensities of 1022 W/cm2 and 10−6 for x-ray coherent fields and laser-field intensities
of 1024 W/cm2. However, the spectrum of the emitted α particles in the presence
of a monochromatic laser field can be strongly modified, even leading to recollision
effects for high intensities.

Although the recollision effects have not been considered in the development of our
formalism to study the laser-assisted α decay, we were able to determine the intensity
threshold at which the recollision appears. For medium-mass α emitters, we find that
the recollision field intensity can be as low as 6×1022 W/cm2, a value soon available
at large-scale ultra-intense laser infrastructures. Qualitatively, we show that in the
case of recollision, there are more than two saddle-point solutions of the saddle-
point equation, associated with trajectories that interfere during the LAT of the α
particle. Furthermore, the imaginary part of the action that determines the tunneling
rate is strongly modified when the laser field intensities are close or higher than the
recollision threshold.

As outlook on future work, it might be possible to investigate further the recollision
phenomenon that we described qualitatively in this thesis. In atomic physics, the
rescattering of an electron ionized by a laser field leads to the formation of one or more
plateaus in the spectrum with the characteristic number of peaks, given by the Reiss
parameter, Eq. (3.4). This effect can also be interpreted as multiphoton stimulated
bremsstrahlung [BF66], an effect which has not been previously investigated for α
decay. Laser-induced recollisions of the α particle with the daughter nucleus would
also make a significant contribution to the bremsstrahlung emitted during α decay.
The study of the emission of bremsstrahlung radiation in spontaneous α decay has
been the subject of intensive research in the last decades [BdPZ99, DG96, FZ99,
PB98, JMT+08, MO03, MOG+09, TNH+99], and is still an intriguing concept.

The role of the laser-induced recollisions could offer a possibility to influence the
bremsstrahlung emitted during the α decay. The determination of the laser-assisted
α decay recollision spectrum in one dimension is a theoretical straightforward step
and can be calculated using the formalism presented in this thesis. However, its
calculation implies more extensive and cumbersome numerics due to the behavior of
the trajectories of the α particle in the recollision limit. Unlike the case of laser-
induced ionization of electrons where the electrons are usually emitted along the
direction of the laser field, the α particles are emitted in all directions. Thus, in the
case of laser-assisted α decay, only those α particles emitted in a narrow solid angle
around the laser field direction will have the possibility to rescatter on the daughter
nucleus.

Theoretical predictions of the bremsstrahlung radiation in laser-assisted α decay
would provide means of further increase our knowledge of the emission of bremsstrahlung
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in α decay. In addition, it would provide a useful comparison with the well-understood
electron laser-induced rescattering in atomic physics strong-field phenomena, which
is the key stone to describe interesting phenomena in the physics of the interaction
of atomic systems with strong laser fields, such as high harmonic generation [Cor93]
and nonsequential double ionization [HVDS08, KI09]. Ultimately, laser control of α
decay bremsstrahlung spectra may provide a useful tool for detection and preparation
in nuclear physics.





APPENDIX A

UNITS

Throughout this work, two different set of units have been used. In Chapters 3 and 4
that discuss the laser-assisted decay of a QS state and the test case of laser-assisted
tunneling through a rectangular barrier, atomic units (a.u.) are used. In Chapter 5,
we use high energy units. In this Appendix, we detail the two systems of units.

A.1. Atomic Units

In the atomic units, the physical constants of length, mass and charge are chosen to
be the Bohr radius a0, the electron mass me and the electron charge e. They are all
assumed to be 1 as the Plack constant reduced by a factor of 2π, ~.

The following table shows the conversion of physical quantities from atomic units in
SI units, taken from [Het09].

physical quantity atomic unit [a.u.] SI units

energy ε 1 27.21 eV

electric field E 1 5.14× 109V/cm

intensity I 1 3.51× 1016W/cm2

speed of light c 137.036 2.99× 108m/s

time t 1 24.2× 10−18 s

angular frequency ω0 1 2.59× 1017 s−1

length α0 1 52.9× 10−12m
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The conversion of the electric field E in a.u. of a monochromatic laser field to laser
intensities in SI units, is

I[W/cm2] = 3.51× 1016(E0[a.u.])
2 . (A.1)

A.2. High Energy Units (MeV-Fermi)

In order to take into account the natural order of magnitudes of the variables involved
in the laser-assisted α decay, we use units of MeV Fermi. The high energy units are
summarized in a work by Hartmann et al. [HNS91]. We are going to detail the units
in the following.

The frequency of the monochromatic laser has been defined in terms of energy units,
i.e. MeV. The units of time are MeV−1. A time unit is the time for the light to
travel one Fermi 1. The conversion of time units to MeV corresponds to multiplying
by ~c = 197.327MeV Fermi. This quantity gives the appropriate dimensions of the
kinematical variables that define the dynamics of the α particle. The electric charge
of the electron is e2 = ~c

137 . The electric field strength of the laser has units of

MeV
1
2 /Fermi

3
2 .

Just to give an idea of the order of magnitude of the electric fields involved, an atomic
unit of electric field is 4.29 × 10−10MeV

1
2 /Fermi

3
2 . The electric field force, eE0, has

units of MeV/Fermi.

Since we vary the intensity of the laser, we need to express the intensity I, as a
function of the electric force parameter we introduce in the equations of motion.
The conversion between the the intensity in SI units, W/cm2 and the electric field
force eE0 in MeV/Fermi is given by

I = 2.64× 1035 (eE0)2 . (A.2)

13.33× 10−24 seconds.



APPENDIX B

INTRODUCTION OF THE TRIANGULAR BARRIER FOR
THE LASER-ASSISTED TUNNELING THROUGH A

RECTANGULAR BARRIER

For a rectangular barrier, the particle velocity is discontinuous at the barrier exit.
In order to avoid this discontinuity, we replace the rectangular barrier by a smooth
potential, introducing a triangular barrier after the original rectangular barrier. The
additional potential is also a short range potential, dropping linearly from U0 down
to zero on the width ∆, as it is shown in the Fig. (4.1). The tunneling barrier in the
region II is

Vtriangular = −U0

∆

(
x− b−∆

)
. (B.1)

In the limit ∆ → 0, the initial tunneling barrier is recovered.

We assume that the tunneling particle enters in the triangular barrier at t = t′s ∈ C,
since the particle is still in a forbidden classical region. The initial position and
velocity are complex, and are taken as the final velocity and position of the motion
through the rectangular barrier. After the particle leaves the triangular barrier at
t′ = t′′s , the time becomes real, and the real physical motion starts, according to ITM.

So Im

(
dx
dt′

∣∣∣
t′=t′′s

)
= 0.

B.1. Final position and velocity after the rectangular
barrier

When the particle leaves the region I, the real component of the position of the
particle is known. The velocity can be determined by evaluating the velocity of the
tunneling particle, Eq. (4.26) at φ = φ′

s = ϕ0 + iψ′
0. The initial conditions of the
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motion of the particle inside the triangular barrier are

Re
[
xI
] ∣∣∣∣
φ=φ′

s

= b,

Im
[
xI
] ∣∣∣∣
φ=φ′

s

=
pF sin(ϕ0)

ω

(
− sinh(ψ0)− (ψ′

0 − ψ0) cosh(ψ0) + sinh(ψ′
0)
)
.

(B.2)

Using the last expression, Eq. (B.2), and evaluating the position, Eq. (4.27) at φ′
f ,

we can find a relation between ψ0, ψ
′
0 and ϕ0 (the imaginary parts of the complex

times and the real part, respectively). This condition is

b =
pF cos(ϕ0)

ω

(
cosh(ψ0)− cosh(ψ′

0)+
(
(ψ′

0−ψ0) sinh(ψ0)
))

−
κ0

(
ψ′
0 − ψ0

)
ω

. (B.3)

In the limit where cosh(ψ′
0) ≈ 1, and ψ′

0 → 0 , the Eq. (B.3) can be written as

b =
pF cos(ϕ0)

ω

(
cosh(ψ0)− 1−

(
ψ0 sinh(ψ0)

))
+
κ0ψ0

ω
. (B.4)

Using the initial condition of the velocity of the particle, Eq. (B.2), we can express
the imaginary and real parts of the rate of change of the position with respect to the
dimensionless parameter,

Re(
dxI

dφ

∣∣∣
φ=φ′

s

) =
pF sin(ϕ0)

ω

(
cosh(ψ′

0)− cosh(ψ0)
)
,

and

Im(
dxI

dφ

∣∣∣
φ=φ′

s

) =
κ0
ω

− pF cos(ϕ0)

ω

(
sinh(ψ0)− sinh(ψ′

0)
)
.

(B.5)

B.2. Equations of motion

During the subbarrier motion throughout the triangular barrier, the tunneling par-
ticle experiences an additional force due to the change of the potential barrier in
that domain. The equations of motion are determined by the classical dynamics in
complex times, in accordance to ITM,

d2xII

dt′2
=
U0

∆
+ E0 cos(ωt′). (B.6)

Introducing the dimensionless parameter φ, the dynamics of the tunneling particle
in the region II is determined by the classical equation, which is

d2x

dφ2
=

U0

ω2∆
+
pF cos(φ)

ω
. (B.7)

Analogously to what has been explained for the rectangular barrier, the position and
the velocities of the particle during the subbarrier motion in the region II can be
determined by integrating the equations of motion, Eq. (B.7). The dimensionless
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parameter runs from the instant at which the particle enters into the triangular
barrier (φ′

s = φ′
s) up to when the particle leaves the barrier, and starts its motion in

real time (φf = ϕ0). The motion inside the rectangular and the triangular barrier
must be connected, such that the initial velocity inside the triangular barrier is the

final velocity after the particle leaves the rectangular barrier, dx
dφ

∣∣∣
φ=φ′

s

(B.5). The

change of the position of the particle while it traverses the triangular barrier is
expressed as

dxII

dt′
= −pF sin(ϕ0) cosh(ψ0)

ω
+
U0

ω2∆
(φ−φ′

s)+
pF sin(φ)

ω
+i
(κ0
ω
−pF cos(ϕ0) sinh(ψ0)

ω

)
.

(B.8)
The only term that depends on the initial complex time of the subbarrier motion
in the region II, ψ′

0, is the linear term which comes from the contribution of the
triangular barrier in Eq. (B.8). This is the main difference with respect to the
velocity of the particle within the rectangular barrier, Eq. (4.26). In order to find
the velocity of the particle, Eq. (B.8) must be multiplied by ω, following the Leibniz
rule,

dxII

dt′
= ω

dx

dφ
. (B.9)

Once the velocity has been obtained, the position can be found integrating the rela-
tion (B.8), from the initial time φ′

s, and taking into account that the initial position
in the new motion is the final position once the particle has left the rectangular
barrier, (B.2)

xII(φ) =
(
b+

pF cos(ϕ0) cosh(ψ
′
0)

ω

)
+ i

pF sin(ϕ0)

ω

(
− sinh(ψ0)− (ψ′

0 − ψ0) cosh(ψ0)
)

−
(pF sin(ϕ0) cosh(ψ0)

ω
+ i
(pF cos(ϕ0) sinh(ψ0)

ω
− κ0
ω

))
(φ− φ′

s)

+
U0

(
φ− φ′

s

)2
2ω2∆

− pF cos(φ)

ω
.

(B.10)

B.3. Physical motion after the barrier

At the time t′′s = ϕ0/ω, the dynamics of the particle starts in real time. In accor-
dance to ITM, during the real time motion, the velocity and the position of the
particle are real measurable quantities, and they must be real. So, Im(x(ϕ0)) =
Im( dxdφ

∣∣
φ=ϕ0

) = 0. We should evaluate the velocity on the final time of the subbar-

rier motion, Eq. (B.8), and compare it with the condition given by ITM. Doing so,
we obtain a relation that allows us to express the value of ψ′

0, the time of flight of
the particle through the triangular barrier,

ψ′
0 =

mω2∆

U0

(κ0
ω

− pF cos(ϕ0) sinh(ψ0)

ω

)
. (B.11)

From Eq. (B.11) it is easy to tell that ψ′
0 is proportional to the width of the triangular

barrier ∆. As the width of the barrier goes to 0, the time the particle takes to goes
through the triangular barrier goes to 0 as well.
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Now, evaluating the position, given by (B.10), at the final dimensionless “time ” ϕ0,

xII(ϕ0) =
(
b+

pF cos(ϕ0) cosh(ψ
′
0)

ω

)
+ i

pF sin(ϕ0)

ω

(
− sinh(ψ0)− (ψ′

0 − ψ0) cosh(ψ0)
)

−
(pF sin(ϕ0) cosh(ψ0)

ω
+ i
(pF cos(ϕ0) sinh(ψ0)

ω
− κ0
ω

))
(−iψ′

0)

−
U0

(
ψ′
0

)2
2ω2∆

− pF cos(ψ0)

ω
.

(B.12)

Taking the imaginary part of the last equation, we obtain

Im
[
xII(ϕ0)

]
∝ − sinh(ψ0) + ψ0 cosh(ψ0). (B.13)

B.4. Final energy at the detector

At a particular real time t′f = ϕ1/ω, the particle leaves the triangular barrier, and
only interacts with the nonstationary laser electric field. At ϕ1, the position of
the tunneling particle is x(ϕ1) = b + ∆. Evaluating the position of the particle,
Eq. (B.10) at the final dimensionless “time”, φ = ϕ1, we find an expression in terms
of the difference ϕ1 − ϕ0,

∆ =
pF cos(ϕ0) cosh(ψ

′
0)

ω
− pF (ϕ1 − ϕ0) sin(ϕ0) cosh(ψ0)

ω
+
κ0ψ

′
0

ω

− pFψ
′
0 cos(ϕ0) sinh(ψ0)

ω
+
U0(ϕ1 − ϕ0)

2

2ω2∆
− U0(ψ

′
0)

2

2ω2∆
− pF cos(ϕ1)

ω
.

(B.14)

If ψ′
0 is expressed in terms of ψ0 and ϕ0, Eq. (B.11), and is replaced in the last

expression Eq. (B.14), we obtain

∆ =
pF cos(ϕ0) cosh(ψ

′
0)

ω
− pF (ϕ1 − ϕ0) sin(ϕ0) cosh(ψ

′
0)

ω
+
U0(ψ

′
0)

2

2ω2∆
+

U0(ϕ1 − ϕ0)
2

2ω2∆
− pF cos(ϕ1)

ω
.

(B.15)

According to Eq. (B.11) in the limit of ∆ going to 0, ψ′
0 goes to zero as well.

Additionally, if ϕ1 is close to ϕ0, then cos(ϕ1) ≈ cos(ϕ0) − (ϕ1 − ϕ0) sin(ϕ0), and

cosh(ψ′
0) ≈ 1 − (ψ′

0)
2

2 . Taking the limit of ∆ going to 0, in Eq. (B.15), a quadratic
equation for ϕ1 − ϕ0 can be found, such that

U0

(
ϕ1 − ϕ0

)2
2ω2∆

−
pF (ϕ1 − ϕ0) sin(ϕ0)

(
cosh(ψ0)− 1

)
ω

+

(
−∆+

(ω4∆2

U2
0

( U0

2ω2∆
− pF cos(ϕ0)

ω

)(κ0
ω

− pF cos(ϕ0) sinh(ψ0)

ω

)2))
= 0.

(B.16)
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Solving the quadratic equation, an expression can be found for the difference of the
real “times”, ϕ1 − ϕ0

ϕ1 − ϕ0 =
ω2∆

U0

(
pF sin(ϕ0)

(
cosh(ψ0)− 1

)
ω

±

[
p2F sin2(ϕ0)

(
cosh(ψ0)− 1

)2
ω2

+
2U0

ω2

(
1−

(ω4

U2
0

(
U0

2ω2
− pF∆cos(ϕ0)

ω
)(
κ0
ω

− pF cos(ϕ0) sinh(ψ0)

ω
)2
))] 1

2)
.

(B.17)

Simplifying the last equation, a final relation for ϕ1 − ϕ0 is

ϕ1 − ϕ0 =
pFω sin(ϕ0)

(
cosh(ψ0)− 1

)
∆

U0

{
1±

[
1 +

( 2U0

p2F sin2(ϕ0)
(
cosh(ψ0)− 1

)2
(
1−

( ω2

2U0

(
1− 2pFω cos(ϕ0)∆

U0

)(κ0
ω

− pF cos(ϕ0) sinh(ψ0)

ω

)2)))] 1
2

}
.

(B.18)

As ∆ goes to 0, ϕ1 goes to ϕ0 as expected.

In order to find the velocity of the particle when it starts its motion in the region
III, we evaluate its final velocity inside the triangular barrier at the time t′′s = ϕ1/ω,

v∞ = −pF sin(ϕ0) cosh(ψ0) +
U0(ϕ1 − ϕ0)

ω∆
− iU0ψ

′
0

ω∆
+ pF sin(ϕ1)

+ i
(
κ0 − pF cos(ϕ0) sinh(ψ0)

)
.

(B.19)

Using ψ′
0 from Eq. (B.11), we can see that the imaginary terms vanish and the final

velocity of the subbarrier motion is real. Besides, since ϕ1 − ϕ0 is approximately
zero as ∆ → 0, sin(ϕ1) can be expanded in a Taylor series around ϕ0. We take
only the first term of the expansion, sin(ϕ1) ≈ (ϕ1 − ϕ0) sin(ϕ0). Replacing ϕ1 − ϕ0
from Eq. (B.18) and taking the limit as ∆ goes to 0, the velocity at the final of the
triangular barrier is expressed as

vϕ1 = ±pF sin(ϕ0)
(
cosh(ψ0)− 1

){[
1 +

( 2U0

p2F sin2(ϕ0)
(
cosh(ψ0)− 1

)2(1− ( ω2

2U0

(κ0
ω

− pF cos(ϕ0) sinh(ψ0)

ω

)2)))] 1
2

}
.

(B.20)

In region III, the dynamics of the particle are only affected by the interaction with
the monochromatic electric field. Its velocity as a function of the dimensionless
parameter φ is exactly

vnew = vϕ1 + pF sin(φ)− pF sin(ϕ1). (B.21)

At the time tfinal, long compared with the time the particle has left the tunneling
barrier, t′′s = ϕ0/ω, the electric field is switched off adiabatically. We can easily find
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the velocity that the particle has at tfinal, which is

v∞ = −pF sin(ϕ0)± pF sin(ϕ0)
(
cosh(ψ0)− 1

)
×

{[
1 +

( 2U0

p2F sin2(ϕ0)
(
cosh(ψ0)− 1

)2(1− ( ω2

2U0

(
1

− 2pF cos(ϕ0)∆

ωU0

)(
κ0 − pF cos(ϕ0) sinh(ψ0)

)2)))] 1
2

}
.

(B.22)

All the implicit variables that are defined by the dynamics of the particle during its
tunneling, ϕ0, ψ0 and ψ′

0, are now expressed in terms of the measurable final kinetic
energy,

EF =
v2∞
2
. (B.23)



APPENDIX C

FIELD-FREE LIMIT FOR THE LASER ASSISTED
TUNNELING THROUGH A RECTANGULAR BARRIER

In this Appendix we show that in the weak field limit the field-free decay rate

R0 = P2
0 exp(−2ImW0) (C.1)

follows from the amplitude (3.41). Quantitatively, the weak field limit is determined
by the condition (4.64) [CnPBP11]. Correspondingly, the subbarrier correction to
the action is smaller than unity so that the imaginary part of the action is given
by the field-free contribution W0 (3.34). Since the momentum change during the
subbarrier motion is also small, the initial velocity at the exit is v(t0) = p0 and then
the final momentum is given by

p(t0) = p0 + pF sinωt . (C.2)

We have assumed here a monochromatic field (3.14) for simplicity. The spectrum
consists of L = 2p0pF /ω ≫ 1 ATI-like peaks with energies between (p0+ pF )

2/2 and
(p0 − pF )

2/2. For the given momentum inside this interval, there are two solutions
per period, so that

ωt
(+)
0n = arcsin

(
p− p0
pF

)
+ 2πn ,

ωt
(−)
0n = π − arcsin

(
p− p0
pF

)
+ 2πn . (C.3)

In the limit we consider, the laser field only enters the action via these initial times
t0,

W = W0 +

T∫
t0

(p2/2 + E0)dt− px(T ) + p0b

= iImW0 +
1

2
(p20 − p2)(T − t0) , (C.4)

where T is the large observation time and we take into account that x(t) ≈ b+p(t−t0).
The sum over the laser periods gives

N∑
n=0

exp

(
i(p2 − p20)

πn

ω

)
→
∑
j

δ

(
p2 − p20
2ω

− j

)
, N → ∞ . (C.5)
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Then

dR =
dw

T
=

P2
0 (p0)

2πpF
exp(−2ImW0)

×
∑
j

δ

(
p2 − p20
2ω

− j

)∣∣∣∣exp(ijωt(+)
0 )√

cosωt+0

− exp(−ijωt(+)
0 )√

− cosωt+0

∣∣∣∣2dp . (C.6)
Under the condition p0pF /ω ≫ 1, the number of ATI-like peaks is large and the sum
over j can be replaced by an integral which evaluates to 1. The resulting distribution
should be integrated over dp within the limits p0 ± pF . Taking into account that

cosωt+0 =
√

1− (p− p0)2/p2F and disregarding the rapidly oscillating interference

term in the modulus square, we obtain precisely the field-free rate (C.1).



APPENDIXD

THREE CONTRIBUTIONS TO THE SEMICLASSICAL
ACTION FOR THE LASER-ASSISTED TUNNELING

THROUGH A RECTANGULAR BARRIER

Integration of the kinetic energy

In order to integrate the kinematical term in the Lagrangian, the square of the
velocity must be calculated. The velocity has been already calculated for the motion
in the rectangular barrier potential, Eq. (4.26). Taking the square of this expression,
we obtain

[
ω
dx

dφ
(φ)

]2
= −κ20 +

2κ0E0 cos(ϕ0) sinh(ψ0)

ω
− E2

0 cos
2(ϕ0) sinh

2(ψ0)

ω2

+
E2
0 sin

2(φ)

ω2
+

E2
0 sin

2(ϕ0) cosh
2(ψ0)

ω2
+

2iκ0E0 sin(φ)
ω

− 2iE2
0 cos(ϕ0) sinh(ψ0) sin(φ)

ω2
− 2iκ0E0 sin(ϕ0) cosh(ψ0)

ω

+
2iE2

0 sin(ϕ0) cos(ϕ0) sinh(ψ0) cosh(ψ0)

ω2
− 2E2

0 sin(ϕ0) cosh(ψ0) sin(φ)

ω2
.

(D.1)
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Here, φ = ϕ0 + iψ. Performing the integration of every single term, and multiplying
by 1

2ω , then

1

ω

∫ ϕ0

φ0

1

2

[
ω
dx

dφ
(φ)

]2
dφ =

i(V0 − E)ψ0

ω
− iκ0E0ψ0 cos(ϕ0) sinh(ψ0)

ω2

+
iE2

0ψ0 cos
2(ϕ0) sinh

2(ψ0)

2ω3
− iE2

0ψ0

4ω3
− E2

0 sin(2ϕ0)

8ω3

+
E2
0 sin(2ϕ0) cosh(2ψ0)

8ω3
+
iE2

0 cos(2ϕ0) sinh(2ψ0)

8ω3

− iE2
0ψ0 sin

2(ϕ0) cosh
2(ψ0)

2ω3
− iκ0E0 cos(ϕ0)

ω2

+
iκ0E0 cos(ϕ0) cosh(ψ0)

ω2
+
κ0E0 sin(ϕ0) sinh(ψ0)

ω2

+
iE2

0 cos
2(ϕ0) sinh(ψ0)

ω3
− iE2

0 cos
2(ϕ0) sinh(ψ0) cosh(ψ0)

ω3

− E2
0 cos(ϕ0) sin(ϕ0) sin

2(ψ0)

ω3
− κ0E0ψ0 sin(ϕ0) cosh(ψ0)

ω2

+
E2
0ψ0 sin(ϕ0) cos(ϕ0) sinh(ψ0) cosh(ψ0)

ω3

+
E2
0 sin(ϕ0) cosh(ψ0) cos(ϕ0)

ω3
− E2

0 sin(ϕ0) cosh
2(ψ0) cos(ϕ0)

ω3

+
iE2

0 sin
2(ϕ0) cosh(ψ0) sinh(ψ0)

ω3
.

(D.2)

Taking the imaginary part of the last relation, then the contribution of the kinematic
term to the action can be obtained

Im

{
1

ω

∫ ϕ0

φ0

1

2

[
ω
dx

dφ
(φ)

]2
dφ

}
=

(V0 − E)ψ0

ω
− κ0E0

ω2

[
ψ0 cos(ϕ0) sinh(ψ0) + cos(ϕ0)

− cos(ϕ0) cosh(ψ0)

]
+

E2
0ψ0

2ω3

[
cos2(ϕ0) sinh

2(ψ0)

− sin2(ϕ0) cosh
2(ψ0)

]
− E2

0ψ0

4ω3

+
E2
0

ω3

[
cos2(ϕ0) sinh(ψ0)− cos2(ϕ0) sinh(ψ0) cosh(ψ0)

+ sin2(ϕ0) cosh(ψ0) sinh(ψ0)

]
+

E2
0 cos(2ϕ0) sinh(2ψ0)

8ω3
.

(D.3)
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The real part of the contribution of the kinematical term is given by

Re

{
1

ω

∫ ϕ0

φ0

m

2

(
ω
dx

dφ
(φ)
)2
dφ

}
= −E2

0 sin(2ϕ0)

8ω3
+

E2
0 sin(2ϕ0) cosh(2ψ0)

8ω3

+
κ0E0 sin(ϕ0) sinh(ψ0)

ω2
− E2

0 cos(ϕ0) sin(ϕ0) sinh(ψ0)
2

ω3

− κ0E0ψ0 sin(ϕ0) cosh(ψ0)

ω2
+

E2
0 cos(ϕ0) sin(ϕ0) cosh(ψ0)

ω3

+
E2
0ψ0 cos(ϕ0) sin(ϕ0) sinh(ψ0) cosh(ψ0)

ω3

− E2
0 sin(ϕ0) cos(ϕ0) cosh(ψ0)

2

ω3
.

(D.4)

Contribution of the nonstationary dipole interaction to the action

Once the kinematical contribution has been calculated, Eq. (D.3) the next step is to
calculate the dipole interaction contribution to the action. Since the trajectory has
been analytically found, Eq. (4.27), then, in accordance to Eq. (4.37), the contribu-
tion to the dipole interaction is given by

1

ω

∫ ϕ0

φ0

E0xI(φ) cos(φ)dφ =
aE0 sin(ϕ0)

ω
− aE0 sin(ϕ0) cosh(ψ0)

ω
− iaE0 cos(ϕ0) sinh(ψ0)

ω

+
E2
0 cos(ϕ0) cosh(ψ0) sin(ϕ0)

ω3
− E2

0 cos(ϕ0) cosh
2(ψ0) sin(ϕ0)

ω3

− iE2
0 cos

2(ϕ0) cosh(ψ0) sinh(ψ0)

ω3
− iE2

0 sin
2(ϕ0) sinh(ψ0)

ω3

+
iE2

0 sin
2(ϕ0) sinh(ψ0) cosh(ψ0)

ω3
− E2

0 sin(ϕ0) sinh
2(ψ0) cos(ϕ0)

ω3

+
E2
0 sin(ϕ0) cos(ϕ0) cosh(ψ0) [cosh(ψ0)− 1]

ω3

− iE2
0 sin

2(ϕ0) cosh(ψ0) [sinh(ψ0)− ψ0]

ω3

− iκ0E0 cos(ϕ0) [cosh(ψ0)− 1]

ω2
− κ0E0 sin(ϕ0) [sinh(ψ0)− ψ0]

ω2

+
iE2

0 cos
2(ϕ0) sinh(ψ0) cosh(ψ0) [cosh(ψ0)− 1]

ω3

+
E2
0 cos(ϕ0) sin(ϕ0) sinh(ψ0) [sinh(ψ0)− ψ0]

ω3

+
iE2

0ψ0

2ω3
− E2

0 sin(2ϕ0)

4ω3
+

E2
0 sin(2ϕ0) cosh(2ψ0)

4ω3

+
iE2

0 cos(2ϕ0) sinh(2ψ0)

4ω3
.

(D.5)
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The imaginary part of the last equation gives the contribution of the dipole interac-
tion to the action

Im

[
1

ω

∫ ϕ0

φ0

E0x(φ) cos(φ)dφ
]
= −aE0 cos(ϕ0) sinh(ψ0)

ω
− E2

0 cos
2(ϕ0) cosh(ψ0) sinh(ψ0)

ω3

− E0 sin2(ϕ0) sinh(ψ)
ω3

+
E2
0 sin

2(ϕ0) sinh(ψ0) cosh(ψ0)

ω3

− E2
0 sin

2(ϕ0) cosh(ψ0) [sinh(ψ0)− ψ0]

ω3

− κ0E0 cos(ϕ0) (cosh(ψ0)− 1)

ω2

+
E2
0 cos

2(ϕ0) sinh(ψ0) cosh(ψ0) [cosh(ψ0)− 1]

ω3

+
E2
0ψ0

2ω3
+

E2
0 cos(2ϕ0) sinh(2ψ0)

4ω3
.

(D.6)

The real part of the contribution of the dipole interaction is given by

Re

[
1

ω

∫ ϕ0

φ0

E0x(φ) cos(φ)dφ
]
=
aE0 sin(ϕ0)

ω
− aE0 sin(ϕ0) cosh(ψ0)

ω

+
E2
0 sin(ϕ0) cos(ϕ0) cosh(ψ0)

ω3

− E2
0 sin(ϕ0) cos(ϕ0) cosh(ψ0)

2

ω3

− E2
0 sin(ϕ0) cos(ϕ0) sinh(ψ0)

2

ω3

+
E2
0 sin(ϕ0) cos(ϕ0) cosh(ψ0) [cosh(ψ0)− 1]

ω3

− κ0E0 sin(ϕ0) [sinh(ψ0)− ψ0]

ω2

− E2
0 sin(2ϕ0)

4ω3
+

E2
0 sin(2ϕ0) cosh(2ψ0)

4ω3
.

(D.7)

Contribution of the static barrier

The final contribution to the action is given by the time independent terms in the
Lagrangian, and the energy that appears in the definition of the action, Eq. (4.37).
With that in mind, the third contribution is purely imaginary, so that

1

ω

∫ ϕ0

φ0

(E − V0)dφ =
iψ0(V0 −E)

ω
(D.8)

Once the three contributions have been calculated, the total action can be expressed
in terms of the complex time variables that determine the subbarrier motion.



APPENDIX E

LOW-FREQUENCY LIMIT EQUIVALENCE WITH STATIC
ELECTRIC FIELD

In the low frequency limit, the trigonometric function in the monochromatic field
E0 cos(ωt′) can be expandend, leading in the first order to a constant electric field
E0. The equations of motion inside the barrier for a static field are

d2xLF

dφ2
=

E0
ω2
. (E.1)

The velocity and the position are given by1:

dxLF

dt′
= iκ0 +

E0(φ− φs)

ω
, (E.2)

and,

xLF(φ) = a+
iκ0(

(
φ− φs

)
)

ω
+

E0
(
φ− φs

)2
2ω2

. (E.3)

We introduce the additional triangular barrier, as detailed in Appendix B. The ve-
locity of the particle entering the triangular barrier is expressed as

v′0 =
i

ω
κ0 +

iE0
(
ψ′
s − ψs

)
ω

. (E.4)

In the case of the triangular barrier, V (x) = −V0
∆

(
x−b−∆

)
, the equations of motion

take a similar analytic behavior of the ones for a static electric field; the new “field”
is the superposition of the constant electric field, and the field created due to the
change of the linear potential, such that

EF = E0 +
V0
∆
. (E.5)

1Using the same initial conditions dxI

dt′

∣∣
t′=t′s

= iκ0
ω

, and xI(ψ0) = a
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Hence, the equation of motion is identically to the constant electric field, with the
inclusion of this new field

d2xII

dφ2
=

EF
ω2
. (E.6)

The velocity and the position in the triangular barrier are given by

dx

dt′
= i
(
κ0

E0(ψ′
0 − ψ0)

ω

)
+
V0(φ− φ′

s)

ω∆
+

E0(φ− φ′
s)

ω
,

and

x(φ) = b+ i
(
κ0

E0(ψ′
0 − ψ0)

ω

)
(φ− φ′

s) +
V0(φ− φ′

s)
2

2ω∆
+

E0(φ− φ′
s)

2

2ω
.

(E.7)

At φ = ϕ0, when the particle exits the barrier, the imaginary part of the velocity goes
to zero. The real part of the position is b+∆. Like in the case of the monochromatic
case, the condition on the imaginary part of the final velocity allows to determine the
value of ψ′

0, the imaginary part of the subbarrier time inside the triangular barrier

κ0 +
E0(ψ′

0 − ψ0)

ω
− V0ψ

′
0

ω∆
− E0ψ′

0

ω
= 0. (E.8)

From this last equation, ψ′
0 can be written as

ψ′
0 =

ω∆

V0

(
κ0 −

E0ψ0

ω

)
. (E.9)

The requirement on the real part of the final position leads to

∆ =
κ0ψ

′
0

ω
+

E0ψ0ψ
′
0

ω2
− E0ψ′2

0

ω2
− V0ψ

′2
0

2ω2∆
+

E0ψ′2
0

2ω2
. (E.10)

At the time φ = ϕ1, the particle leaves the triangular barrier, and starts to interact
only with the electric field. The velocity at that particular time is given by:

vϕ1 =
V0(ϕ1 − ϕ0)

ω∆
+

E0(ϕ1 − ϕ0)

ω
. (E.11)

The condition on the final position at φ = ϕ1 is such that the real part must be equal
to b+∆. This provides a relation between (ϕ1 − ϕ0) and ∆,

∆ =
ψ′
0

ω
κ0 +

E0ψ′2
0

ω2
−

E0ψ0ψ
′
0

ω2
+
V0(ϕ1 − ϕ0)

2

2ω2∆
+

E0(ϕ1 − ϕ0)
2

2ω2
− V0ψ

′2
0

2ω2∆
− E0ψ′

0

2ω2
.

(E.12)

Replacing the equation (E.9), into the last expression, an analytic definition for
ϕ1 − ϕ0 can be found,

ϕ1 − ϕ0 = ω∆

√
2

V0 + E0∆
− 1

V 2
0

(
κ0 −

E0ψ0

ω

)2

. (E.13)

In the limit∆ → 0, we obtain for Eq. (E.11)

vϕ1 =

√√√√2V0

[
1− ω2

2V0

(
1

ω
κ0 −

E0ψ0

ω2

)2
]
. (E.14)
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This final velocity is the initial velocity of the particle after leaving the barrier.
Following the same procedure in Appendix B, and since ϕ1 − ϕ0 → 0 as ∆ → 0, the
asymptotic velocity of the tunneling particle is

v∞ = −E0ϕ0
ω

+

√√√√2V0

[
1− ω2

2V0

(
κ0
ω

− E0ψ0

ω2

)2
]
. (E.15)

Once this velocity has been calculated, it can be related with the final energy the
particle has at the moment when the electric field is switched off,

√
2EF = −E0ϕ0

ω
+

√√√√2V0

[
1− ω2

2V0

(
κ0
ω

− E0ψ0

ω2

)2
]
. (E.16)

E.1. Calculation of the total action

There are three contributions to the action: the kinetic part, the dipole interaction
and the stationary term.

E.1.1. Kinetic contribution

Since v = iκ0 + E0 (φ− φs) /ω, the kinetic energy is given by

K(φ) = −(V0 − E) +
iκ0E0(φ− φs)

ω
+

E2
0 (φ− φs)

2

2ω2
. (E.17)

Integrating over time, the kinetic part of the action is

1

ω

∫ ϕ0

ϕ0+iψ0

K(φ)dφ =
2iψ0(V0 − E)

ω
− iκ0E0φ2

s

2ω2
+
iE2

0φ
3
s

6ω3
. (E.18)

Taking the limit ϕ0 → 0, and ψ0 → 0 simplifies the analytic expression that corre-
sponds to the imaginary part of the kinematical contribution of the action for the
case of the monochromatic field, (D.3). In this limit cos(ϕ0) → 1, sin(ϕ0) → ϕ0 → 0,

cosh(ψ0) ≈ 1 +
ψ2
0
2 , and sinh(ψ0) ≈ ψ0 +

ψ3
0
6

2. With these approximations in mind,
(D.3) takes the form:

Im

[
1

ω

∫ ϕ0

ϕ0+iψ0

Kdφ

]
≈ (V0 − E)ψ0

ω
− E0
ω2

(
ψ2
0 +

ψ4
0

6
− ψ2

0

2

)
κ0

+
E2
0

2ω3

(
ψ3
0 +

ψ5
0

3
+
ψ7
0

36

)
− E2

0ψ0

4ω3
+

E2
0

ω3

(
ψ0 +

ψ3
0

6
− ψ0 −

2ψ3
0

3

)
+

E2
0ψ0

4ω3
+

E0ψ3
0

6ω3
.

(E.19)

2The expansion of ψ0 is taken only up to the third order.
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E.1.2. Dipole interaction

Since the dipole interaction is given by x(φ)E0, and the trajectory has been calculated
explicitly, an analytic form of the contribution to the action can be expressed as

1

ω

∫ ϕ0

ϕ0+iψ0

x(φ)E0dφ = − iaE0ψ0

ω
− iE0ψ2

0

2ω2
κ0 +

iE2
0ψ

3
0

6ω3
. (E.20)

In the limits of ψ0, ϕ0 → 0, the nonvanishing terms are

Im

[
1

ω

∫ ϕ0

ϕ0+iψ0

x(φ)E0dφ
]
= −aE0ψ0

ω
− aE0ψ3

0

6ω
− E2

0ψ0

ω3
− 2E2

0ψ
3
0

3ω3
− E0ψ2

0

2ω2
κ0

+
E2
0

2ω3

(
ψ3
0 +

2ψ5
0

3

)
+

E2
0ψ0

2ω
+

E2
0ψ0

2ω3
+

E2
0ψ

3
0

3ω3
.

(E.21)

Reducing the last expression, we obtain

Im

[
1

ω

∫ ϕ0

ϕ0+iψ0

x(φ)E0dφ
]
= −aE0ψ0

ω
− aE0ψ3

0

6ω
− E0ψ2

0

2ω2
κ0 +

E2
0ψ

3
0

2ω3
+

E2
0ψ

3
0

3ω3
− 2E2

0ψ
3
0

3ω3
.

= −aE0ψ0

ω
− aE0ψ3

0

6ω
− E0ψ2

0

2ω2
κ0 +

E2
0ψ

3
0

6ω3
.

(E.22)

E.1.3. Time independent term

In both cases of the time-dependent or static fields, the time-independent term is the
same. Its contribution, therefore, does not depend on the approximation and has the
exact solution (D.8).

E.1.4. Total action

The total action can be expressed as the sum of the three contributions, Eqs. (D.8),
(E.18) and (E.20). Note that, in the case of the constant electric field, the three con-
tributions are purely imaginary, such that the total action is also purely imaginary:

W = i

[
2ψ0(V0 − E)

ω
− κ0E0ψ2

0

ω2
− aE0ψ0

ω
+

E2
0ψ

3
0

3ω3

]
. (E.23)

In the case of the low frequency approximation, the total action is again identically
imaginary, as in the case of the static barrier. However, there is an additional term
that comes from the dipole interaction contribution to the action,

W = i

[
2ψ0(V0 − E)

ω
− E0ψ2

0

ω2
κ0 −

aE0ψ0

ω
− aE0ψ3

0

6ω
+

E2
0ψ

3
0

3ω3

]
. (E.24)

The expressions (E.23) and (E.24) are identical in the low-frequency limit, given that
ω, ψ0 → 0. Under these conditions, the additional term is negligible.
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