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Zusammenfassung

In dieser Arbeit untersuchen wir Zwei-Photonenbergänge zwischen gebunden
Zustnden in Atomen und Ionen. Nach einer Einfhrung in die relativistische
Diracgleichung und Störungstheorie erster und zweiter Ordnung, analysieren wir die
spektrale Verteilung sowie die Winkel- und Polarisationseigenschaften der emittierten
Photonen. Die Arbeit beinhaltet eine Untersuchung der Quantenkorrelation
(Verschränkung), die der Polarisationszustand der Photonen besitzt, wie auch
mgliche Anwendungen der Zwei-Photonenbergnge im Hinblick auf Studien zur
Parittsverletzung.

Abstract

In this thesis we investigate two-photon bound-bound transitions in atoms and ions.
After a formal introduction to the relativistic Dirac equation and to first- and
second-order perturbation theory, we analyze the spectral distribution as well as the
angular and polarization properties of the emitted photons. The thesis includes an
analysis on the quantum correlation (entanglement) that the polarization state of the
photons possesses as well as applications of two-photon transitions toward parity
violation studies.
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Chapter 1

Introduction

Studies of two-photon decay have a long history in Physics. The possibility of a two-
photon process was first pointed out by Max Born’s PhD student Göppert Mayer in
1931 [1]. At the early stages of these studies (up until the 70s’), most of the research
interest has been toward the measurements and the theoretical description of lifetimes
of atoms and ions which preferably decay via two-photon emission. An important ad-
vance in these studies was achieved in 1940 by Breit and Teller who derived that the
double photon emission in Hydrogen has a decay rate of approximately 8 sec−1 [2].
Few years later, Shapiro and Breit refined the calculations and explained, therewith,
the decay of interstellar hydrogen atoms [3]. Soon after, it has been understood that,
in addition to lifetimes studies, the spectral distribution of the two-photon continuum
emission could provides richer information concerning the inner structure of the atom.
Thus, physicists began measuring such spectral distributions and, with the advent of
computer power, highly accurate theoretical calculations could also be made to sup-
port these experiments [4–7]. Accurate calculations of two-photon decay rates and
spectral distributions are, still nowadays, current challenges for the research physics
community.
More recently, the angular properties of the two emitted photons have been investi-
gated [8–10]. Contrarily to energetic and lifetime studies, angle-resolved calculations
and measurements give access to vectorial physical quantities of the emitted photons,
such as their linear momenta and polarizations. These characteristics may thus provide
unique information on the dynamics of atoms and ions. As a matter of fact, by studying
spectral and angular distributions of the emitted photons, the statistical properties of
electron (Fermi-Dirac statistics) as well as of photons (Bose-Einstein statistics) could
be studied and tested [11–15].
In addition, due to the remarkable advances in detector technology that have been
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achieved in the last decades, nowadays it is possible to record, in coincidence, energy
as well as polarization properties of highly energetic (X-ray) photons [16]. This ability
paves the way to a wide field of polarization research studies aimed at testing fun-
damental principles of quantum mechanics, like quantum correlation (entanglement)
[17–19] and parity violation effects in atomic physics [20].

This thesis contributes to, and is part of, these advanced studies. In Chapter 2 we
introduce the relativistic theory of particles, atoms and electromagnetic radiation. In
Chapter 3 we analyze first- and second-order perturbation theory, as it is the theory
at the base of single- and double-photon emission from bound systems. In Chapter 4
a brief introduction to density matrix theory and its applications is made. In Chap-
ter 5, the original results of this thesis are displayed and discussed, together with the
advanced studies that have been carried out in the last decade, prior to the present
thesis, pertaining two-photon decay. All these studies analyze in detail the energetic,
angular, polarization and entanglement properties of the two emitted photons. Finally,
a summary is given in Chapter 6, together with an outlook and some perspectives.

Notation
Vectors are denoted with boldface, e.g. A, while unit vectors with underline, e.g. A.
In the quantum space, operators are denoted with hat, e.g. Ô (vector operator) and
Ô (scalar operator).
The Einstein summation convention on indices

∑

i

Ai Bi = Ai Bi

is adopted.
The notation J1 ⊗ J2 = J3, where J1,2,3 are angular momenta, will be used to denote
the triangle rule |J1 − J2| ≤ J3 ≤ J1 + J2.
SI units are used throughout, unless differently stated.
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Chapter 2

Relativistic theory of
particles, ions and
electromagnetic radiation

The miracle of appropriateness of the language of mathematics
for the formulation of the laws of physics is a wonderful

gift which we neither undestand nor deserve.

Eugene Wigner, 1960

Due to the strength of the electromagnetic fields, the kinetic energy of the electrons in
highly charged ions approaches the rest mass energy. A relativistic theory is therefore
required to adequately describe the state and properties of highly-charged ions.
In 1928, the British physicist Paul Dirac proposed a relativistic (covariant) wave equa-
tion for the description of elementary charged particles of spin-1/2, such as the electron
[21]. One of the remarkable advantages of such equation is that it provides a descrip-
tion of particles where their spin properties are coming out spontaneously from the
theory. At that time, this was completely new in comparison with the non-relativistic
theory, where the spin, if considered, was added “by hands” to the spatial wavefunc-
tion by multiplying it by the spin wavefunction. Since Dirac’s work, the spin has been
considered a characteristic feature of relativistic quantum mechanics. The second re-
markable property of the Dirac equation is that it is single differential in both space
and time, so as to allow to interpret the squared modulus of the wavefunction as a
probability density.
From now on, we will exclusively refer to electrons, although the treatment holds true
for any elementary spin-1/2 charged particle.

3



CHAPTER 2. RELATIVISTIC THEORY OF PARTICLES, IONS AND
ELECTROMAGNETIC RADIATION

2.1 Relativistic description of free-states

2.1.1 Dirac equation for free-states

If the electron is not affected by any force, i.e we are in the free case, the Dirac equation
reads (−i~cα ·∇ + βmc2

)
Ψ(r, t) = i~

∂

∂t
Ψ(r, t) , (2.1)

where m is the electronic mass and Ψ(r, t) denotes the wavefunction of the electron
at the position r and time t. The matrices α and β are called Dirac matrices. In the
Dirac representation, they read

α =
(

0 σ
σ 0

)
β =

(
12 0
0 12

)
,

where σ is the vector of Pauli matrices and 12 is the unitary 2x2 matrix. The Dirac
matrices satisfy the relations

{αi, αj} = 2δi j

{αi, β} = 0
α2

i = β2 = 1
α†i = αi

β† = β ,

(2.2)

for any i, j = {1, 2, 3}. Here and in the following, {a, b} denotes the anticommutator
between a and b.
The last two properties ensure that the Dirac Hamiltonian

ĤD = cα · p̂ + βmc2 (2.3)

is hermitian.
Since α and β are 4x4 matrices, the electronic wavefuntion is consequently a 4x1 matrix
which is called “Dirac-spinor” (or briefly “spinor”).

2.1.2 Klein Gordon equation from Dirac equation

It is easy to show that each component of the Dirac spinor satisfies the Klein-Gordon
(KG) equation for the free case. We can indeed write

−~2 ∂2

∂2t
Ψ(r, t) =

(−i~cα ·∇ + βmc2
) (−i~cα ·∇ + βmc2

)
Ψ(r, t) =


−~2c2

3∑

i,j=1

αiαj + αjαi

2
∂2

∂xi∂xj
− i~mc3

3∑

i=1

(αiβ + βαi)
∂

∂xi
+ β2mc2


Ψ(r, t) =


−~2c2

3∑

i,j=1

δi j
∂2

∂xi∂xj
+ 0 + m2c4


Ψ(r, t) =

(−~2c2∇2 + mc2
)
Ψ(r, t) .

(2.4)
The properties (2.2) have been used together with the equation

αiαj
∂2

∂xi∂xj
= αjαi

∂2

∂xj∂xi
= αjαi

∂2

∂xi∂xj
=

αiαj + αjαi

2
∂2

∂xi∂xj
,
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2.1. RELATIVISTIC DESCRIPTION OF FREE-STATES

which follows from using the Schwarz theorem on the wavefunction Ψ(r, t)1.
Since the differential operator in Eq. (2.4) is scalar, for each scalar component fµ of
the spinor Ψ(r, t) (µ = 0, 1, 2, 3) it must be true that

(−~2c2∇2 + mc2
)
fµ = −~2 ∂2

∂2t
fµ ,

which is the KG equation (in the free case) for the function fµ.
This has been the first evidence that the Dirac equation was on the right track. The
KG equation represents in fact the first attempt to formulate a relativistic equation in
quantum mechanics and it is still the equation that rules the relativistic wavefunction
evolution of scalar particles (particles with zero spin).

2.1.3 Eigenfunctions of the free Dirac Hamiltonian

Since HD does not depend on time, we can make use of the ansatz Ψ(r, t) = ϕ(r)e
1
~Et

and equation (2.1) simplifies to
(−i~cα ·∇ + βmc2

)
Ψ(r, t) = EΨ(r, t) , (2.5)

where E is the energy of the state described by the wavefunction Ψ(r, t).
Prior to deriving the solutions of the above equation, we like to show which quantum
numbers are conserved in the free Dirac theory, i.e which quantum numbers commute
with the Dirac Hamiltonian (2.3). Those will be the quantum numbers by which we
will label our solutions.
We start out by noticing that the operator p̂ trivially commutes with the Dirac Hamil-
tonian: [p̂, cα · p̂ + βmc2] = c αi[p̂, p̂i] = 0. The same is true for the helicity operator

ĥ =
Σ̂p̂
|p̂| , where

Σ̂ =
(

σ 0
0 σ

)
.

We can indeed write
[
Σ̂p̂
|p̂| , cα · p̂ + βmc2

]
=

c

|p̂| p̂ip̂j [Σ̂i, αj ] +
mc2

|p̂| p̂i[Σ̂i, β]

=
c

|p̂| p̂ip̂j2iεi,j,kαk + 0 =
2c

|p̂| i εijk︸︷︷︸
antisimm.

p̂ip̂j︸︷︷︸
simm.

αk = 0 .

We will therefore use the eigenvalues of p̂ and ĥ to label the eigenfunctions of ĤD, so
as to denote the eigenfunctions as Ψp h(r, t). We proceed now to find them.
Being eigenfunctions of the operator p̂, in addition of being solution of Eq. (2.5), they
must satisfy the equation:

−i~
∂

∂xi
Ψp h(r, t) = piΨp h(r, t) , (2.6)

1In order to apply the Schwartz theorem to exchange the partial derivatives, the wavefunction is
supposed to be regular: Ψ ∈ C≥2.
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CHAPTER 2. RELATIVISTIC THEORY OF PARTICLES, IONS AND
ELECTROMAGNETIC RADIATION

for any i = {1, 2, 3}.
Both equations (2.5) and (2.6) are satisfied by a function of the type

Ψp h(r, t) = Ψp h
0 e−

i
~ (pr−Et) = Ψp h

0 e
i
~pµxµ

, (2.7)

where Ψp h
0 is to be determined. For this purpose, noticing the 2x2 modular shape of

the Dirac matrices, we write for convenience Ψp h
0 as

Ψp h
0 =

(
Φ0

χ0

)
.

By combining Eq. (2.5) and Eq. (2.7), we find the equations for Φ0 and χ0 to be
{

c σp χ0 + mc2 Φ0 = E Φ0

c σp Φ0 −mc2 χ0 = E χ0 ,

for which solutions are
E = ±

√
c2p2 + m2c4 ≡ λEp

Φ0 = any

χ0 = c
σp

Ep + mc2
Φ0 .

We arbitrarily choose Φ0 as Pauli spinor representing the helicity state of the particle.
That means that, if the particle runs along the ẑ direction and has positive helicity,

the function Φ0 will be
(

1
0

)
. We will soon see that this is an appropriate choice.

In the first of the above equations, we have defined Ep =
√

c2p2 + m2c4 > 0, while λ
can assume the two values +1 and −1.
In conclusion, the wavefunctions solutions of the Dirac equation for the free case can
be written as

Ψr h
λ (p, t) = N




Φ0

cσp

E + mc2
Φ0


 e

i
~xµpµ

,

where λ has been added to the wavefunction’s labels to specify whether the function is
positively or negatively energy defined. N is a constant which can be easily shown to

be N =

√
mc2 + λEp

2λEp
=

√
mc2 + E

2E
by imposing the normalization of the wavefunc-

tion in space.

Since trivially
[
σp̂
|p| ,σp̂

]
= 0, by acting from the left with the helicity operator on the

Dirac wavefunction, we can easily verify that our choice of Φ0 to be the (conserved)
helicity state of the particle holds true: ĥΨ(r, t) = hΨ(r, t).

As remarked above, two different kinds of states come out from the theory: the positive
and the negative energy states. Although a detailed discussion of this duality exceeds
the scope of this thesis, we may remind that this fact arose, at the beginning, several
doubts toward the Dirac theory.
In accordance with Dirac solutions, the lowest energetic state is the state with infinite

6



2.2. RELATIVISTIC DESCRIPTION OF BOUND-STATES

negative energy. This evidently implies that the all matter would continuously decay
down to a (so-called) “negative sea”, without stability. For this reason, Wolfgang Pauli
himself [22], as well as many other eminent physicists of that time, were initially re-
luctant to accept Dirac’s theory, although this latter had been successful in explaining
many characteristics of the electron, like its spin.
By making use of the Pauli exclusion principle as inherent property of spin-1/2 par-
ticles, Dirac replied to their critics by postulating a nifty conjecture [23]: Since the
matter is undoubtly stable, the negative sea must be totally full of electrons, so that
the lowest available state is of positive energy. The electrons possessing negative energy
are evidently not visible and must represent what we call the physical vacuum. When
a negative energy electron is lifted to any positive energy state, we should be able to
observe both the electron with now positive energy and the hole left in the negative
sea, where the latter will be then interpreted as a moving free particle with the same
electronic characteristics but with positive charge.
This imaginative hypothesis looked, to many physicist of that time, very far from some-
thing real, until “the positive electron” (which has been afterwards called positron) was
effectively discovered by C.D. Anderson in 1933 [24]2. Dirac was forthwith awarded
with the Nobel Prize together with Erwin Schrödinger.

2.2 Relativistic description of bound-states

If a time-independent scalar potential V (r) is present, the Dirac equation reads

(−i~cα ·∇ + V (r) + βmc2
)
Ψ(r, t) = E Ψ(r, t) .

In many cases of interest, the scalar potential is of central type. Thus we will henceforth
consider V (r) = V (r).
Analogously as we did for the free case, prior to deriving the solution of the above
equation, we look for the good (conserved) quantum numbers by which to describe the
solutions. In other words, we look for the operators which commute with the Dirac
Hamiltonian. The Dirac Hamiltonian in the bound case reads

ĤD = cα · p̂ + V (r̂) + βmc2 .

As a general argument, being the potential central, the total angular momentum is
expected to be conserved in contrast to the linear momentum. We therefore start our
search by analyzing spin, orbital angular and total angular momenta, separately.

The spin operator is Ŝ =
~
2
Σ̂, where Σ̂ has been defined in Sec. 2.1.3. We have

[
~
2
Σ̂i, c α · p̂ + V (r̂) + βmc2] =

~
2
cp̂j [Σ̂i, αj ] + 0 + mc2~

2
[Σ̂i, β] =

~
2
cp̂j 2iεijkαk + 0 = −i~cεikjαkp̂j = −i~c(α× p̂)i

⇒ [Ŝ, ĤD] = −i~cα× p̂ .

2“The positive electron” was precisely the title of Anderson’s paper in 1933.
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CHAPTER 2. RELATIVISTIC THEORY OF PARTICLES, IONS AND
ELECTROMAGNETIC RADIATION

The orbital angular momentum operator L̂ = r̂× p̂ has a similar behaviour:

[(r̂× p̂)i, c α · p̂ + V (r̂) + βmc2] = c αV [̂rj p̂kεijk, p̂V ] = c αV p̂kεijk [̂rj , p̂V ] =

c αV p̂kεijk(i~δj,V ) = ci~αj p̂kεijk = i~c(α× p̂)i ,

⇒ [L̂, ĤD] = i~cα× p̂ ,

where we naturally used [L̂, V (r̂)] = 03.
Thus we found that the spin as well as the orbital angular momentum vectors are not
good quantum numbers.
However, it straightforwardly follows that the total angular momentum operator Ĵ =
L̂ + Ŝ commutes with the Hamiltonian, i.e. the total angular momentum is, in con-
trast with orbital and spin angular momenta, a conserved quantum number. We may
pictorially say that a Dirac particle is able to exchange spin angular momentum for
getting orbital angular momentum, so that the two physical quantities S and L are
separately not conserved, while the sum of the two is.

It is moreover interesting to show that, while the spin operator
(~
2
Σ̂

)2 =
3
4
~21̂ trivially

commutes with the Hamiltonian, the operator L̂2 does not:

[L̂2, ĤD] = L̂[L̂, ĤD] + [L̂, ĤD]L̂ = c i ~αj εistεijk︸ ︷︷ ︸
δsjδtk−δskδtj

(r̂sp̂tp̂k + p̂k r̂sp̂t)

= c i ~αj

(
r̂j p̂kp̂k − r̂kp̂j p̂k + p̂k r̂j p̂k − p̂k r̂kp̂j

)

= c i ~α
(
r̂j p̂kp̂k − r̂kp̂kp̂j + (r̂j p̂k − i ~ δjk) p̂k − (r̂kp̂k − i ~ δkk) p̂j

)

= 2ic~
(
(α · r̂)(p̂ · p̂)− (r̂ · p̂)(α · p̂)

)
.

Consequently, the modulus of the orbital angular momentum is not a good quantum
number, while the modulus of the spin angular momentum is4. In other words, the
spin of the electron keeps being ~/2, while the magnitude as well as the direction of
the orbital angular momentum change with time.
As last, we study the operator P̂ = βΠ̂, where Π̂ is the operator which brings r → −r.
It can be shown that P̂ represents the correct parity operator for the Dirac wavefuntion
if one imposes the modulus squared of the wavefunctions to be a probability density.
We have

[βΠ̂, cα · p̂ + V (r̂) + βmc2] = βΠ̂α · p̂−α · p̂βΠ̂

= α · (−1)(−1)p̂βΠ̂−α · p̂βΠ̂ = 0 ,

where the relations (2.2) and the properties {Π̂, r̂} = {Π̂, p̂} = 0 have been used [25].
In the light of what found above, we state that parity is a symmetry for the Dirac
Hamiltonian, as naturally expected.

3L̂ is an operator which involves only angular differential forms. Since
∂V (r)

∂θ
=

∂V (r)

∂ϕ
=0, then

L̂V̂ = V̂L̂.
4This in turn implies that the operator L̂Ŝ (also known as spin-orbit term) does not commute with

the Hamiltonian, since the operator Ĵ2 = Ŝ2+2L̂Ŝ+L̂2 must evidently commute with the Hamiltonian.

8



2.2. RELATIVISTIC DESCRIPTION OF BOUND-STATES

Since the eigenfunctions in a central field problem are expected to be proportional to
spherical harmonics, it is wise to define l as the quantum number by which to label
our eigenfunctions such that (−1)l is the eigenvalue of the operator P̂ when acting on
the wavefunction Ψ(r, t). Analogously, we define the quantum numbers j and mj such
that ~2j(j + 1) and ~mj are respectively the eigenvalues of Ĵ2 and Ĵz when acting on
the wavefunction Ψ(r, t).
Since we found [Ĵi, ĤD] = 0 for i = 1, 2, 3, we can arbitrarily choose the axis along
which to quantize the eigenfunctions. Most naturally, we choose the ẑ axis for that
purpose. In other words, we will find the basis states on which Ĵz is diagonal.
By now, our list of quantum numbers by which to label the solutions of Eq. (2.2) is j,
mj and l. In addition to these, it must exist another quantum number which directly
differentiates energetically the eigenstates, similarly to the Bohr principal quantum
number in the non-relativistic Coulomb case. We will denote such a quantum number
by n. Finally, our list of quantum numbers by which to label the solutions of Eq. (2.2)
is n, j, l and mj . We now proceed to find those solutions.
We make the ansatz

Ψnjlmj (r, t) =
(

gnj(r)Ωjlmj (θ, ϕ)
ifnj(r)Ωjl′mj

(θ, ϕ)

)
e

i
~Et , (2.8)

where gnj(r) and fnj(r) are radial functions to be determined, while Ωjlmj (θ, ϕ) and
Ωjl′mj

(θ, ϕ) are defined through

Ωjlmj (θ, ϕ) =
l∑

ml=−l

∑

ms=−1/2,
+1/2

〈l, ml, 1/2,ms|j,mj〉Y ml
l (θ, ϕ)χ1/2(ms) , (2.9)

for which 〈l, ml, 1/2,ms|j,mj〉 are Clebsh-Gordan coefficients, Y ml
l are Spherical Har-

monics and the functions χ1/2(ms) are Pauli spinors

χ1/2(+1/2) =
(

1
0

)
, χ1/2(−1/2) =

(
0
1

)
.

The relation between l and l′ is taken to be

l′ = 2j − l =
{

l + 1 for j = l + 1/2
l − 1 for j = l − 1/2

.

We now explain the motivations at the basis of this ansatz. The exponential term
must be present since Ψ(r, t) is eigenfunction of the Hamiltonian. The definitions of
Ωjlmj

(θ, ϕ) and Ωjl′mj
(θ, ϕ) ensure that the total angular momentum J is conserved.

In addition, the relation between l and l′ ensures that the wavefunction Ψnjlmj has
a defined parity, specifically it ensures that Ψnjlmj is eigenfunction of the operator P̂
with eigenvalue (−1)l.
By plugging Eq. (2.8) into Eq. (2.2), we find an equivalence for the angular part of the
spinor (which indicates that the angular part of our ansatz is right) and the following
equations for the radial functions:

[
E − V (r)−mc2

]
gnj(r) = ~c

[
−

(
d
dr

+
1
r

)
+

κ

r

]
fnj(r)

[
E − V (r) + mc2

]
fnj(r) = ~c

[
d
dr

+
1
r

+
κ

r

]
gnj(r) ,

(2.10)

9
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where κ is called Dirac quantum number and is defined as follows

κ =
{ −(l + 1) for j = l + 1/2

l for j = l − 1/2
= l(l + 1)− 1/4− j(j + 1)

= −l′(l′ + 1) + 1/4 + j(j + 1) .

Only by specifying the potential V (r), one can solve the two radial equations (2.10).
In contrast, the angular part of the wavefunction does not depend on the potential, as
long as the potential is radial.

We suppose now to have a Coulombic potential: V (r) = −Zα~c
r

, where α (not to be

confused with α) represents the electromagnetic coupling constant, which is ≈ 1
137

.

In this case, the solutions for gnj and fnj can be found to be [26]

gnj

fnj

}
=
±(2λ)3/2

Γ(2γ + 1)

√√√√ (mc2 ± E)Γ(2γ + n′ + 1)

4mc2 (n′+γ)mc2

E

(
(n′+γ)mc2

E − κ
)

n′!
(2λr)γ−1e−λr

×
{(

(n′ + γ)mc2

E
− κ

)
1F1(−n′, 2γ + 1; 2λr)∓ n′1F1(1− n′, 2γ + 1; 2λr)

}
,

(2.11)
where the energy is

E =
mc2

(
1 + (Zα)2(

n′+
√

(j+1/2)2−(Zα)2
)2

)1/2
≡ Enj (2.12)

and
n′ = n− j − 1/2 = n− |κ| ,

λ =
(m2c4 −E2)1/2

~c
,

γ =
ZαE

~cλ
− n′ .

In Eq. (2.11), 1F1(a, c; x) are Kummer confluent hypergeometric functions while Γ(y)
is the Gamma function

Γ(z) =
∫ +∞

0
tz−1e−tdt .

Ions with nuclear charge Z and one electron are called hydrogenlike (or hydrogen-like)
ions, for obvious reasons5.

2.3 Relativistic Green’s function

In two-photon transitions, as well as in many other atomic processes, the computation
of the Green function for the process is needed and is the core of the theoretical

5In the same way, it is denoted with helium-like ions, those ions with two electrons but arbitrary
atomic number Z. And so on.
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description of the process.
The Green function for a certain Hamiltonian Ĥ is the solution of the equation

(Ĥ− E)GE(r1, r2) = δ(r1 − r2) . (2.13)

Given the (complete) set of eigenfunctions Ψν(r) of the Hamiltonian operator, the
Green function can be formally written as

GE(r1, r2) =
∑

ν

Ψν(r1)Ψ
†
ν(r2)

Eν −E
, (2.14)

where the summation
∑

ν

runs over the whole spectrum of the operator Ĥ. In fact, by

plugging this expression into the left hand side (lhs) of Eq. (2.13), we get:

(Ĥ−E)GE(r1, r2) =
∑

ν

(Eν − E)
Ψν(r1)Ψ

†
ν(r2)

Eν − E

=
∑

ν

Ψν(r1)Ψ†
ν(r2) =

∑
ν

〈r1|ν〉〈ν|r2〉

= 〈r1|r2〉 = δ(r1 − r2) ,

where the identity
∑

ν

|ν〉 〈ν| = 1̂ has been used.

By looking carefully at Eq. (2.14), it can be easily understood that the computation
of the Green function is usually not a trivial task since, in general, the operator Ĥ
may possess an infinite spectrum, as in the case of real atoms and molecules. Several
attempts devoted to most accurately solve such infinite summation have been made in
the past century (for example, in hydrogenlike ions, see Refs. [27–33]).
From now on, we will focus on deriving the Dirac-Coulomb Green function (DCGF),
i.e. the Green function for the Dirac-Coulomb Hamiltonian.
On inserting the Dirac-Coulomb Hamiltonian into Eq. (2.13), we get

(
−i~cα ·∇− αZ~c

r
+ βmc2 − E

)
GE(r1, r2) = δ(r1 − r2)14 , (2.15)

where 14 is the 4x4 unitary matrix.
We try a solution of the form

GE(r1, r2) =
∑
κ mj

×
(

g11
κ E(r1, r2)Ωκmj (r̂1)Ω†κmj

(r̂2) −ig12
κ E(r1, r2)Ωκmj (r̂1)Ω

†
−κmj

(r̂2)
ig21

κ E(r1, r2)Ω−κmj (r̂1)Ω†κmj
(r̂2) g22

κ E(r1, r2)Ω−κmj (r̂1)Ω
†
−κmj

(r̂2)

)
,

(2.16)
with gij to be determined. For the sake of simplicity, we re-labeled Ωκmj ≡ Ωjlmj ,
where Ωjlmj are defined in Eq. (2.9).
In order to go further, we must rewrite the right hand side (rhs) of Eq. (2.15) in

11
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spherical coordinates. This is accomplished by using

δ(r1 − r2)14 =
δ(r1 − r2)

r1r2

×
∑
κmj

(
Ωκmj (r̂1)Ω†κmj

(r̂2) 0
0 Ω−κmj (r̂1)Ω

†
−κmj

(r̂2)

)
.

(2.17)

Combining Eqs. (2.16), (2.15) and (2.17), we get an equivalence for the angular part
(which means that our angular part of the trial solution is, once again, correct) and
the following radial equation for the determination of gij :




[ε0 − ε− αZ

r1
]

[
− 1

r1

d
dr1

r1 +
κ

r1

]

[
1
r1

d
dr1

r1 +
κ

r1

]
[−ε0 − ε− αZ

r1
]




(
g11
κ E(r1, r2) g12

κ E(r1, r2)
g21
κ E(r1, r2) g22

κ E(r1, r2)

)

=
1
~c

δ(r1 − r2)
r1r2

12 ,

(2.18)

where ε0 = mc2/~c and ε = E/~c.
The derivation of the solution for these equations that we here present follows Ref.
[34].
We define the following linear transformation

(
f11

κ (r1, r2) f12
κ (r1, r2)

f21
κ (r1, r2) f22

κ (r1, r2)

)
= X

(
g11
κ E(r1, r2) g12

κ E(r1, r2)
g21
κ E(r1, r2) g22

κ E(r1, r2)

)
,

where the matrix X is

X =
(

1 X
X 1

)
,

and X is a real number. Since

X−1 = (1−X2)−1

(
1 −X
−X 1

)
,

the radial equations (2.18) are written in terms of f ij as




[
ε0 − ε− αZ + Xκ−X

r1
+ X

d
dr1

] [
−Xε0 + Xε +

αZX + κ− 1
r1

− d
dr1

]

[
Xε0 + Xε +

αZX + κ + 1
r1

+
d

dr1

] [
−ε0 − ε− αZ + Xκ + X

r1
−X

d
dr1

]




×
(

f11
κ (r1, r2) f12

κ (r1, r2)
f21

κ (r1, r2) f22
κ (r1, r2)

)
=

1−X2

~c
δ(r1 − r2)

r1r2
12 .

12
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On multiplying by the matrix X−1 from the lhs, the derivatives disappear from the
diagonal terms and we are left with




[
(1−X2)ε0 − (1 + X2)ε− A

r1

] [
2Xε +

B

r1
− (1−X2)

d
dr1

]

[
2Xε +

B

r1
+ (1−X2)

d
dr1

] [
(X2 − 1)ε0 − (1 + X2)ε− A

r1

]




×
(

f11
κ (r1, r2) f12

κ (r1, r2)
f21

κ (r1, r2) f22
κ (r1, r2)

)
=

(1−X2)2

~c
δ(r1 − r2)

r1r2
X−1 ,

where A = (1 + X2)αZ + 2Xκ and B = 2αZX + (1 + X2)κ− (1−X2).
Then, we choose X in such a way that A vanishes, i.e. X = (−κ + γ)/αZ, with
γ =

√
κ2 − α2Z2. With this choice, the radial equations simplify to



[
ε0 − εκ

γ

] [
−αZε

γ
+

γ − 1
r

− d
dr1

]

[
−αZε

γ
+

γ + 1
r

+
d

dr1

] [
−ε0 − εκ

γ

]




×
(

f11
κ (r1, r2) f12

κ (r1, r2)
f21

κ (r1, r2) f22
κ (r1, r2)

)
=

(1−X2)2

~c
δ(r1 − r2)

r1r2
X−1 .

We diagonalize the rhs of the above equation by multiplying from the right with the
matrix X and by defining

(
h11

κ (r1, r2) h12
κ (r1, r2)

h21
κ (r1, r2) h22

κ (r1, r2)

)
=

(
f11

κ (r1, r2) f12
κ (r1, r2)

f21
κ (r1, r2) f22

κ (r1, r2)

)
X

= X

(
g11
κ E(r1, r2) g12

κ E(r1, r2)
g21
κ E(r1, r2) g22

κ E(r1, r2)

)
X ,

(2.19)

so that we have



[
ε0 − εκ

γ

] [
−αZε

γ
+

γ − 1
r

− d
dr1

]

[
−αZε

γ
+

γ + 1
r

+
d

dr1

] [
−ε0 − εκ

γ

]




×
(

h11
κ (r1, r2) h12

κ (r1, r2)
h21

κ (r1, r2) h22
κ (r1, r2)

)
=

(1−X2)2

~c
δ(r1 − r2)

r1r2
12 .

(2.20)

We can consider now the four equations embodied in Eq. (2.20) in two pairs, since
there is no mixing of the columns of the h-matrix any more.
The first one reads:





[
ε0 − ε

κ

γ

]
h11

κ (r1, r2) +
[
−αZε

γ
+

γ − 1
r1

− d
dr1

]
h21

κ =
(1−X2)
~c

δr1 − r2

r1r2

[
−αZε

γ
+

γ + 1
r1

+
d

dr1

]
h11

κ (r1, r2)−
[
ε0 + ε

κ

γ

]
h21

κ = 0 ,

13
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from which we get





[
d2

dr2
1

+
2
r1

d
dr1

− γ(γ + 1)
r2
1

+
2αZε

r1
+ ε2 − ε20

]
h11

κ (r1, r2) =
(

ε0 + ε
κ

γ

)
X2 − 1
~c

δ(r1 − r2)
r1r2

h21
κ (r1, r2) =

γ

εκ + ε0γ

[
−αZε

γ
+

γ + 1
r1

+
d

dr1

]
h11(r1, r2) .

Analogously, we get the second pair of equations to be





[
d2

dr2
1

+
2
r1

d
dr1

− γ(γ − 1)
r2
1

+
2αZε

r1
+ ε2 − ε20

]
h22

κ (r1, r2) =
(

ε0 − ε
κ

γ

)
1−X2

~c
δ(r1 − r2)

r1r2

h12
κ (r1, r2) =

γ

εκ− ε0γ

[
−αZε

γ
+

γ − 1
r1

− d
dr1

]
h22(r1, r2) .

(2.21)
It can be shown that the solution for h11

κ and h22
κ in the above equations can be

expressed in the form [34]

h11
κ (r1, r2) = (1−X2)

εκ + ε0γ

~cγ
gνγ(r1, r2;ω)

h22
κ (r1, r2) = (1−X2)

εκ− ε0γ

~cγ
gνγ−1(r1, r2;ω) ,

(2.22)

where

gνγ(r1, r2; ω) = (2ω)2γ+1(r1r2)γe−(r1+r2)ω

×
+∞∑

v=0

v!(v + 1 + γ − ν)−1

Γ(2γ + 2 + v)
L2γ+1

v (2r1ω)L2γ+1
v (2r2ω) ,

(2.23)

ω =
√

ε20 − ε2, ν = αZε/
√

ε20 − ε2 and Lβ
α(x) are associated Laguerre polynomials.

By using Eqs. (2.21) and (2.22), we get also

h21
κ (r1, r2) = h12

κ (r2, r1)

=
1−X2

2~cγ

(
δ(r1 − r2)√

r1r2
+ (2ω)2γ+1rγ−1

1 rγ
2

× e−ω(r1+r2)
+∞∑

v=0

(v + 1)! (γ + v + 1− ν)−1

Γ(2γ + 1 + v)
L2γ−1

v+1 (2ωr1)L2γ+1
v (2ωr2)

)
.

(2.24)
With the help of Eq. (2.19), we come back to the initial functions gij

κ :

(
g11
κ E(r1, r2) g12

κ E(r1, r2)
g21
κ E(r1, r2) g22

κ E(r1, r2)

)
= (1−X2)−2

×
(

h11
κ −Xh12

κ −Xh21
κ + X2h22

κ −Xh11
κ + h12

κ + X2h21
κ −Xh22

κ

−Xh11
κ + X2h12

κ + h21
κ −Xh22

κ X2h11
κ −Xh12

κ −Xh21
κ + h22

κ

)
.

(2.25)
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We recall here all the parameters involved in the written solutions:

X =
γ − κ

αZ
, γ =

√
κ2 − α2Z2 ,

ω =
√

ε20 − ε2 , ν =
αZε√
ε20 − ε2

,

ε =
E

~c
, ε0 =

mc2

~c
.

(2.26)

The set of equations (2.26), (2.25), (2.24), (2.23), (2.22) and (2.16) complete the anal-
ysis of the Green function for the Dirac-Coulomb problem.

2.4 From one- to many-electron atoms: the Indepen-

dent Particle Model

The complexity of atoms and ions critically increases as soon as the number of bound
electrons that the atom or ion possesses gets bigger than one. For the case of two
or more electrons (many-electron systems), the Dirac equation is not solvable. For
instance, the time independent Dirac equation for heliumlike ions reads

(
−i~cα ·∇r1 − i~cα ·∇r2 −

Zα~c
r1

− Zα~c
r2

+
α~c

|r1 − r2| + 2βmc2

)
Ψ(r1, r2)

= E Ψ(r1, r2) ,
(2.27)

where we have neglected any magnetic electron-electron interaction.
This equation cannot be solved analytically. Approximations are (generally) required
if one wants to describe static as well as dynamic characteristics of many-electron
systems. We will now focus on describing the states of two-electron bound systems,
i.e. heliumlike systems.

The first approximation one can make is wholly neglecting the electron-electron (static)
interaction term. This is called “zero-order” approximation and is the core assumption
of the Independent Particle Model. The differential equation (2.27) then becomes

(
−i~cα ·∇r1 − i~cα ·∇r2 −

Zα~c
r1

− Zα~c
r2

+ 2βmc2

)
Ψ(r1, r2) = EΨ(r1, r2) .

(2.28)
This equation is fully separable so that the eigenfunction Ψ(r1, r2) can be trivially
written in the form of product of relativistic hydrogenic wave functions. In particular,
for discrete states we have

Ψ(r1, r2) = Ψn1κ1mj1
(r1)Ψn2κ2mj2

(r2) , (2.29)

where Ψnκmj (r) is shown in Eq. (2.8). The corresponding energies are

E ≡ En1j1 n2j2 = En1j1 + En2j2 , (2.30)

where Enj is shown in Eq. (2.12).
However, our solution of Eq. (2.29), though it satisfies the IPM equation (2.28), it
does not satisfy two other requirements we must demand:
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1. the wavefunction must be eigenfunction of the total angular momentum operator
Ĵ = ĵ1 + ĵ2, where ĵ1 and ĵ2 are angular momentum operators of the first and
second electron, respectively.
Motivation: The solution (2.29) has defined quantum numbers for j2

1 , j1 z,
j2
2 and j2 z. We wrote that wavefunction being conscious that both ĵ1 and ĵ2

commute with the Hamiltonian so that they are good quantum numbers. What
we did is correct. However, we must consider that also Ĵ, analogously, com-
mutes with the Hamiltonian. Thus, we know from pure Quantum Mechanics
that we can build our solutions in two equivalent bases: the single particles basis
{j2

1 , j1 z, j
2
2 , j2 z} or the coupled basis {j2

1 , j2
2 , J2, Jz}. We can freely choose the

one we like most or the one which suits more the physics we wish to describe.
We accidentally chose the single particle basis. Nonetheless, we reconsider our
choice and try to think as smart as we can: Even though in our zero-order ap-
proximation there is not any electron-electron interaction, a heliumlike ion is a
system of two interacting electrons in a central (nuclear) field. In addition, the
electron-electron interaction is central as well. In such a system, we know, again
from pure quantum mechanics, that the total angular momentum is always (vec-
torially) conserved. Therefore, by building our eigenfunctions on the coupled
basis, we argue that we will get a better, more realistic description.

2. the wavefunction must change sign under the permutation symmetry r1 ↔ r2.
Motivation: The Pauli principle dictates that the wavefunction of two identi-
cal fermions (as two electrons are) must be antisymmetric with respect to the
exchange of the spatial coordinates.

We will derive, step by step, a wavefunction which fulfills the two above requirements
and which is solution of Eq. (2.28).
A wavefunction that is eigenfunction of the operators {ĵ21, ĵ22, Ĵ2, Ĵz} can be easily writ-
ten as

ΦJmJ
n1κ1n2κ2

(r1, r2) =
∑

mj1
mj2

〈j1,mj1 , j2,mj2 |J,mJ〉Ψn1κ1mj1
(r1)Ψn2κ2mj2

(r2) . (2.31)

However, the permutation symmetry of this wavefunction is generally not defined.
We can simply build a function which is antisymmetric with respect to r1 ↔ r2 by
combining Φ wavefunctions:

ΨJmJ
n1κ1n2κ2

(r1, r2) =
1√
2

(
ΦJmJ

n1κ1n2κ2
(r1, r2)− ΦJmJ

n1κ1n2κ2
(r2, r1)

)
. (2.32)

Such a combination of wavefunctions has been named after John C. Slater [35], as
“Slater determinant”, since it can be trivially obtained as determinant of a 2x2 matrix
composed by one-particle wavefunctions:

ΨJmJ
n1κ1n2κ2

(r1, r2) =
1√
2

∑
mj1

mj2

〈j1,mj1 , j2,mj2 |J,mJ〉

×
∣∣∣∣

Ψn1κ1mj1
(r1) Ψn2κ2mj2

(r1)
Ψn1κ1mj1

(r2) Ψn2κ2mj2
(r2)

∣∣∣∣ .

(2.33)
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The antisymmetric nature of the matrix determinant, ensures the right fermionic sym-
metry for the electronic states.
Since both the actions of the operator Ĵ = ĵ1 + ĵ2 and of the differential operator in
Eq. (2.28) are linear, we can verify that the above wavefunctions satisfy all the wanted
requirements:(

−i~α ·∇r1 − i~α ·∇r2 −
Zα~c

r1
− Zα~c

r2
+ 2βmc2

)
ΨJmJ

n1κ1n2κ2
(r1, r2)

= En1κ1n2κ2Ψ
JmJ
n1κ1n2κ2

(r1, r2)

Ĵ2ΨJmJ
n1κ1n2κ2

(r1, r2) = ~2J(J + 1)ΨJmJ
n1κ1n2κ2

(r1, r2)

ĴzΨJmJ
n1κ1n2κ2

(r1, r2) = ~mJΨJmJ
n1κ1n2κ2

(r1, r2)

P̂12ΨJmJ
n1κ1n2κ2

(r1, r2) = −ΨJmJ
n1κ1n2κ2

(r1, r2) ,

where the P̂12 is the permutation operator that interchanges the spatial coordinates of
the electrons: P̂12ΨJmJ

n1κ1n2κ2
(r1, r2) = ΨJmJ

n1κ1n2κ2
(r2, r1) = −ΨJmJ

n1κ1n2κ2
(r1, r2).

If we calculated the energies in Eq. (2.30), we would notice that the effective bound
states (with energy < 2mc2) are only those ones with the wavefunctions of the form

ΨJmJ
1−1n2κ2

(r1, r2) =
1√
2

(
ΦJmJ

1−1n2κ2
(r1, r2)− ΦJmJ

1−1n2κ2
(r2, r1)

)
. (2.34)

Pictorially, we can evidently interpret these states as if one electron were fixed at the
ground state (1s1/2), while the other one could assume excited states. This kind of
states forms the so-called genuine discrete part of the spectrum. They are also called
single excited states. As remarked, these are the only bound-states of the spectrum, if
we define bound states as the states with energy < 2mc2. Nevertheless, double excited
as well as continuum states are also part of the ionic spectrum and they do describe
some (not bound) states which exist in nature. Particularly, the double excited states
are the essential ingredient of Auger processes [36], for which the energy coming from
one decay of the two excited electrons is internally converted to ionize the ion. In the
following we will restrict ourselves to genuine discrete states.
The function Ψ for the ground state (n1 = n2 = 1, κ1 = κ2 = −1), from Eq. (2.34), is

ΨJmJ
1−1 1−1(r1, r2) =





0 J = 1, mJ = −1, 0, 1 ,

(
Ψ1−1+ 1

2
(r1)Ψ1−1− 1

2
(r2) J = 0, mJ = 0 .

− Ψ1−1− 1
2
(r1)Ψ1−1+ 1

2
(r2)

)

We realize that the Pauli principles forbids the electron configuration with J = 1.
At the same time we notice that, in order to have a normalized wavefunction for the

ground state, we must additionally insert a factor
1√
2

in front. Then, specifically for

the ground state, the wavefunction is

Ψ0mJ
1−11−1(r1, r2) =

1√
2

(
Ψ1−1+ 1

2
(r1)Ψ1−1− 1

2
(r2)−Ψ1−1− 1

2
(r1)Ψ1−1+ 1

2
(r2)

)

=
1
2

(
Φ0mJ

1−11−1(r1, r2)− Φ0mJ
1−11−1(r2, r1)

)
.

(2.35)
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The two equations (2.34) and (2.35) complete the description of the genuine discrete
states of heliumlike systems within the Independent Particle Model (IPM).

The goodness of IPM strongly depends on the atomic number Z. Since, for large Z
(Z & 50), the electron-electron interaction term becomes quite smaller than the two
electron-nucleus interaction terms in the Hamiltonian, the approximation of neglecting
the former should be (and is indeed) quite good. For highly-charged ions, IPM is in
fact widely and successfully used.
On the other hand, for small Z (Z . 20) the approximation of neglecting the electron-
electron interaction term in the Hamiltonian is not well-founded, although IPM anyway
keeps being a rough approximation which may be good enough in many practical cases.

As a conclusive note, we discuss the quantum numbers needed and commonly used to
describe the two-particle ionic states. We discuss also the commonly used notations.
First and foremost, we point out the fact that, by demanding negative permutation
symmetry of the two-electron wavefunction (as the Pauli principle demand), we lost
the modulus of the angular momentum of the first and second electrons (respectively
represented by the operators ĵ21 and ĵ22) as good quantum numbers. This can be directly
verified:

ĵ21Ψ
JmJ
n1κ1n2κ2

(r1, r2) =
1√
2

∑
mj1

mj2

〈j1,mj1 , j2,mj2 |J,mJ〉

×
[(

ĵ21Ψn1κ1mj1
(r1)

)
Ψn2κ2mj2

(r2)−Ψn1κ1mj1
(r2)

(
ĵ21Ψn2κ2mj2

(r1)
)]

=
1√
2

∑
mj1

mj2

〈j1,mj1 , j2,mj2 |J,mJ〉

×
(
~2(|κ1| − 1/2)(|κ1|+ 1/2)Ψn1κ1mj1

(r1)Ψn2κ2mj2
(r2)

− ~2(|κ2| − 1/2)(|κ2|+ 1/2)Ψn1κ1mj1
(r2)Ψn2κ2mj2

(r1)
)

,

which in general implies ĵ21Ψ
JmJ
n1κ1n2κ2

6= λΨJmJ
n1κ1n2κ2

, unless |κ1| = |κ2|. In conclusion,
κ1 and κ2 are still good quantum numbers but they are not, in general, anymore
correlated to the total angular momentum and parity of the two electrons. In other
words, we will still write

|κ1| = j1 + 1/2
κ1 = l1(l1 + 1)− 1/4− j1(j1 + 1)

= −l′1(l
′
1 + 1) + 1/4 + j1(j1 + 1)

|κ2| = j2 + 1/2
κ2 = l2(l2 + 1)− 1/4− j2(j2 + 1)

= −l′2(l
′
2 + 1) + 1/4 + j2(j2 + 1) ,

but j1(2) and l1(2) will not represent anymore the angular momentum and parity of
the first (second) electron. Rather, they will be normal quantum numbers (like n1 and
n2) by which to label the ionic state. Actually, speaking about quantities of the first
and second electron does not make sense in two-electron systems, since we imposed the
electrons to be not distinguishable. Following this reasoning, we notice that the parity
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of the ionic state is given by Π = (−1)l1(−1)l2 . Then, we may define Π as quantum
number by which to describe the ionic state in replacement of l2 or l1. We may argue
that Π has at least a clear physics meaning, while l1(2) has not. However, what is
normally used by physicists is l1(2).
Thus, the quantum numbers by which the ionic states are normally labeled are

n1 , j1 , l1 , n2 , j2 , l2 , J , Jz .

The relativistic notation used by the atomic community refers to these quantum num-
bers: The hydrogenlike ionic states are thus normally labeled by

n1 L1j1 n2 L2j2 : J mJ , (2.36)

where J , mJ are naturally related to Ĵ2, Ĵz by Ĵ2Ψ = ~2J(J + 1)Ψ, ĴzΨ = ~mJΨ. L1

and L2 represent l1 and l2 in spectroscopic notation, i.e.

L l

s 0
p 1
d 2
f 3
g 4
...

.

From f on, the column on the left follows the roman alphabet, i.e. h corresponds to
l = 5 and so on. For genuine discrete states, the notation above reduces to 1s1/2 nLj :
J mJ .
The nature of the notation (2.36) comes from the fact that the ionic states are obtained
by coupling the two total angular momenta of the single electrons (j1 and j2) to give
birth to J (see Eq. (2.31)). There exist another notation by which to label the ionic
states which is inherited from non-relativistic theory. We know that each electron
has itself two angular momenta, S and L, which are already coupled by the Dirac
formalism to give birth to j. However, in the non-relativistic theory, this is not so.
The orbital and spin angular momenta are not coupled by the formalism but simply
by Clebsch-Gordan coefficients. Then, working non-relativistically with two electrons,
one may choose to couple either

• step 1) S1 with L1 to get j1

step 2) S2 with L2 to get j2 j − j coupling
step 3) j1 with j2 to get J

or

• step 1) L1 with L2 to get L
step 2) S1 with S2 to get S L − S coupling
step 3) L with S to get J .

The non-relativistic ionic states which emerge from the two proceedings are similar but
not equal. They are linked by a linear transformation which involves Racah coefficients
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[37].
The j −j coupling is most similar to the relativistic framework, where spin and orbital
angular momenta are already coupled by the Dirac formalism. Indeed, it turns out
that the j − j coupling scheme gives a better (non-relativistic) description than the
L − S scheme for states of highly or medium charged ions, where relativistic effects
are important. On the other hand, it is also known that the L − S coupling scheme
gives a better (non-relativistic) description than the j − j scheme for the states of
low charged ions. What is believed to happen is that, in low Z regime, the spin-
orbit interactions (L1 − S1 and L2 − S2) are smaller in comparison with the orbit-
orbit (L1 − L2) interactions, so that coupling at “the first round” the orbital angular
momenta (L1 +L2 = L), and consequently also the spin angular momenta (S1 +S2 =
S), turns out to work better. In other words, the electron-electron interaction term
in the non-relativistic Hamiltonian plays a bigger role that the spin-orbit relativistic
correction term, which sounds indeed reasonable.
The non-relativistic common notation which is used in spectroscopy refers to the L −
S coupling and therefore uses the good quantum numbers in that coupling scheme:
{n1, l1, n2, l2, L, S, J,mJ}. In spectroscopic notation, the genuine discrete states are
thus labeled by6

( 1s , n2 L ) (2S+1)LmJ
J , (2.37)

or, more shortly,
n2

(2S+1)LmJ
J . (2.38)

From the foregoing discussion we may catch the concept that i) heliumlike systems
have in nature many states, ii) if the physicist describes them by using non-relativistic
L − S coupling scheme, that physicist should denote the states by the spectroscopic
notation (2.37) or (2.38), iii) if the physicist describes them by using the non-relativistic
j − j coupling scheme or by using the relativistic IPM explained above, that physicist
should denote the states by the relativistic notation in equation (2.36).
Unfortunately, this is not a strict rule. Even though, as remarked, the j − j and the
L − S coupled states are not equal, they are of course of the same number, so that
one can build a one-to-one correspondence between the two bases. For the levels with
n ≤ 3 such correspondence reads

1s1/21s1/2 : J = 0 11S0 1s1/23s1/2 : J = 0 31S0

1s1/22s1/2 : J = 1 23S1 1s1/23p1/2 : J = 0 33P0

1s1/22p1/2 : J = 1 23P1 1s1/23p3/2 : J = 2 33P2

1s1/22s1/2 : J = 0 21S0 1s1/23d3/2 : J = 2 33D2

1s1/22p1/2 : J = 0 23P0 1s1/23d3/2 : J = 1 33D1

1s1/22p3/2 : J = 2 23P2 1s1/23p3/2 : J = 1 31P1

1s1/22p3/2 : J = 1 21P1 1s1/23d5/2 : J = 3 33D3

1s1/23s1/2 : J = 1 33S1 1s1/23d5/2 : J = 2 31D2

1s1/23p1/2 : J = 1 33P1 ... .

(2.39)

By virtue of this correspondence, one may denote by the non-relativistic spectroscopic
notation some physical states that have been then actually in theory treated with the
j − j coupling scheme or the relativistic IPM7.

6Note that in the genuine discrete states l2 = L.
7I remark this fact, since I did the same “abuse of notation” in two of my papers.
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2.5 Electromagnetic radiation

The electromagnetic fields E and B are described by Maxwell’s equations. In vacuum,
these equations read 




∇×E = −∂B

∂t

∇ ·B = 0

∇×B =
1
c2

∂E

∂t

∇ ·E = 0 .

(2.40)

The scalar (Φ) and vector (A) potentials are related to the fields by

E = −∇Φ− ∂A

∂t

B = ∇×A .

(2.41)

The two above equations do not fully specify the potentials. As known, given a regular
scalar function λ, the Maxwell’s equations remain invariant under a transformation of
the type

A → A + ∇λ

Φ → Φ− ∂λ

∂t
.

We may therefore choose another further condition to wholly specify the potentials:
the so-called gauge condition. Common gauge choices are the Coulomb condition

∇ ·A = 0 , (2.42)

and the Lorentz condition
∇ ·A +

1
c2

∂Φ
∂t

= 0 .

We shall work within the Coulomb gauge with the further condition Φ = 0, which can
be imposed as long as we are in the vacuum. See App. A for a proof. This choice is
also referred to as radiation gauge or solenoidal gauge. With this choice, the Lorentz
and Coulomb gauges represent the same gauge choice.
By combining Eqs. (2.41) and (2.40), in App. A it is shown that we get the following
wave equation for the vector potential:

∇2A− 1
c2

∂2A

∂t2
= 0 .

The general solution of it is

A(r, t) = A0

(
εei(kr−ωt+δω) + ε∗e−i(kr−ωt+δω)

)
, (2.43)

where δω, A0 and ε are integration constants to be fixed, k and ω are the propagation
vector and the angular frequency of the electromagnetic wave respectively. k and ω
are related by the equations

|k| =
2π

λ
= 2π

ν

c
≡ k

ω = 2πν ,
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where λ and ν are the wavelength and the frequency of the electromagnetic wave
respectively.
From now on, without loss of generality, we consider, unless differently stated, the
electromagnetic wave as traveling along the z direction: k = (0, 0, k). The phase δω

can be fixed by declaring the initial state. For our purposes, we can freely set δω = 0.
Since we inserted A0 in Eq. (2.43), we can evidently freely also set ε as unit vector,
i.e. |ε| = 1. We shall call this unit vector the polarization vector of the electromagnetic
wave, for reasons which will be clearer in a few lines. The appearance of both ε and ε∗

in the rhs of Eq. (2.43) is forced by the reality of the fields which from the potentials
are derived.
The choice of the polarization vector can be limited by the gauge condition. Indeed,
the gauge condition ∇ ·A = 0 implies

0 = ∇ ·A = iA0

(
k · εei(kr−ωt+δω) − k · ε∗e−i(kr−ωt+δω)

)
.

By explicitly writing the polarization vector in its real and complex parts, ε = aε + ibε,
the above equation leads to

0 =
(
kaε

)
sin(kr − ωt) +

(
kbε

)
cos(kr − ωt) , (2.44)

which must be true for any time t and any position r. This can be fulfilled only if
kaε = kbε = 0, which directly means kε = 0. In conclusion, the Coulomb gauge
condition implies the transversality of the potential vector A.
Though the choices for ε are still infinite, they can be divided in two groups8:

εL = (cos θs , sin θs , 0) type L
εC = (cos θs , i sin θs , 0) type C ,

(2.45)

where we added the subscript s to make it clear that the angle θs has nothing to do
with momentum or cartesian spaces.
The electromagnetic waves of type L are said to be linearly polarized, while the elec-
tromagnetic waves of type C are said to be circularly polarized.
The vector potential for these two cases can be easily written

AL(r, t) = A0

(
εLei(kr−ωt+δω) + ε∗Le−i(kr−ωt+δω)

)

= 2εLA0 cos(kr − ωt) = 2A0 cos(kr − ωt)
(

cos θ, sin θ, 0
)

type L

AC(r, t) = A0

(
εCei(kr−ωt+δω) + ε∗Ce−i(kr−ωt+δω)

)

= 2A0

(
cos θ cos(kr − ωt), − sin θ sin(kr − ωt), 0

)
type C .

At this point, one can in principle start associating electromagnetic waves to photon
particles. Then, on analyzing the angular momentum carried by the electromagnetic
wave, that is given by

M =
1
µ0

∫
d3r r × (E ×B) ,

8By considering that the polarization vector must satisfy |ε| = 1 and that any overall phase can be
absorbed into the constant A0, these two groups fully represent any possible polarization vector.
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it can be showed, after some quite tedious but elementary analysis, that: If we want
to define a Spin operator in the photons’ quantum space (which will be denoted by Ŝ),
then that operator must be defined by the equation [38]

Ŝαεβ = −iεαβγεγ , (2.46)

where εβ is the β component of the polarization vector ε, while εαβγ is the total
antisymmetric tensor (also called Levi-Civita symbol). Ŝα is the α component of the
spin operator Ŝ.
We may now verify that the two circular polarization vectors

ε+
C =

1√
2
(1, i, 0)

=
1√
2
(x + iy) .=

1√
2

( |x〉+ i |y〉 ) = |λ = +1〉

ε−C =
1√
2
(1,−i, 0)

=
1√
2
(x− iy) .=

1√
2

( |x〉 − i |y〉 ) = |λ = −1〉

(2.47)

are eigenstates of the Ŝz operator with eigenvalue +1 and −1 respectively:

Ŝz ε+C x = −i εzxy ε+C y = −i · 1 ·
(

i√
2

)
=

1√
2

= (+1) ε+C x

Ŝz ε+C y = −i εzyx ε+C x = −i · (−1) ·
(

1√
2

)
=

i√
2

= (+1) ε+C y

⇒ Ŝz ε+
C = (Ŝz ε+C x, Ŝz ε+C y, 0) = (+1)ε+

C ,

Ŝz ε−C x = −i εzxy ε−C y = −i · 1 ·
(
− i√

2

)
= − 1√

2
= (−1) ε−C x

Ŝz ε−C y = −i εzyx ε−C x = −i · (−1) ·
(

1√
2

)
=

i√
2

= (−1) ε−C y

⇒ Ŝz ε−C = (Ŝz ε−C x, Ŝz ε−C y, 0) = (−1)ε−C .

As we wrote in Eq. (2.47), it is natural to associate, in quantum mechanics, the
polarization states ε+

C and ε−C respectively with the positive (|λ = +1〉) and negative
(|λ = −1〉) spin-1 states for massless particles along the z direction (the propagation
direction). The analytic structure is indeed the same. However, we must here point out
an important issue: Due to the transversality of the vector potential (in the Coulomb
gauge) and of the electromagnetic fields (in any gauge), the direction of the polariza-
tion vector must always be orthogonal to the propagation direction. As it happens in
the relativistic description of electrons, the photon spin space is not fully separated
from the photon spatial space. We must then be careful in dealing with photon plane
waves. For example, when we want to rotate the vector potential along a given axis,
the polarization vector must rotate correspondingly.
Since our photon is traveling along the z direction, λ corresponds to the photon helic-
ity. It is moreover interesting to notice that ε−∗C = ε+

C . Because of this, for example,
the potential vector Aλ=±1

C is not eigenstate of the spin operator Ŝz, while the single

23



CHAPTER 2. RELATIVISTIC THEORY OF PARTICLES, IONS AND
ELECTROMAGNETIC RADIATION

vector plane waves ε±1
C e±ikr and ε±1 ∗

C e±ikr are. From this reasoning, we infer that,
if we wanted to construct the photon wavefunction, such wavefunction would be pro-
portional to a single vector plane wave ελ

Ce±ikr. Since the construction of the photon
wavefunction exits the scope of this thesis, we will not further investigate toward this
direction.
We have in conclusion demonstrated that the correct association between the polariza-
tion state of an electromagnetic wave and the spin of a particle must be an association
to a massless spin-1 particle. What about the spin state |λ = 0〉? To which polarization
vector does it correspond? Vector massless particles cannot have, as known, spin state
|λ = 0〉. This condition indeed is in line with the characteristics of the electromagnetic
wave. The spin state |λ = 0〉 by definition satisfies the equation

Ŝ
J=1
z |λ = 0〉 = 0 |λ = 0〉 = 0 .

By looking at the action that the spin operator Ŝz does on the polarization vector of
the electromagnetic wave (see Eq. (2.46)), we deduce that the polarization vector with
vanishing eigenvalue can only be

ε0
C = (0, 0, 1) .

However, as discussed above, such a polarization vector cannot characterize the pho-
ton since our gauge choice (2.42) forces the polarization vector to be orthogonal to the
propagation direction ẑ (see Eq. (2.44)). Thus, we can safely state that an electro-
magnetic wave characterized by the polarization state ε0

C does not exist, or, what is
the same, that the polarization state ε0

C is forbidden for any electromagnetic wave9.
Now that we have well understood what the polarization vector ε means, we can come
back to equation (2.43) to fix A0. For doing that, it is useful to derive the fields E and
B of a linearly polarized wave by using Eq. (2.41) and by remembering furthermore
our gauge choice Φ = 0:

EL(r, t) = −∂AL

∂t
= iωA0 εL

(
ei(kr−ωt) − e−i(kr−ωt)

)

= −2ωA0 εL sin(kr − ωt) ,

BL(r, t) = ∇×AL = ik ×A0εL

(
ei(kr−ωt) − e−i(kr−ωt)

)

= −2A0k × εL sin(kr − ωt) .

We see from the above equations that EL and BL are in phase, orthogonal to each
other and to k (these features are true in any gauge) and that EL is proportional to AL

(this is a characteristic of the Coulomb gauge). We moreover notice that the electric
and magnetic fields’ directions do not change in time (this feature is characteristic of
linearly polarized electromagnetic waves).
In order to determine A0 from measurable characteristics, we may write explicitly the
energy density of the radiation [39]

ρ(ω) =
1
2

(
ε0E

2
L +

1
µ0

B2
L

)
= 4ε0ω

2A2
0 sin2(kr − ωt) ,

9Although we worked within the Coulomb gauge, the spin state |λ = 0〉 is forbidden, for any elec-
tromagnetic wave, in any gauge.
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where ε0 and µ0 are respectively the electric and magnetic permeabilities of vacuum

(
1

ε0µ0
= c2).

The average energy density over a period T = 2π/ω is then

ρ(ω) = 2ε0ω
2A2

0 . (2.48)

The average energy density of the electromagnetic wave cannot reasonably depend on
its polarization. Although we found ρ(ω) for linearly polarized waves, the relation
(2.48) must hold for any electromagnetic wave, irrespectively of its polarization.
We now impose that the energy density must be equal to the number of photons (Nγ)
per volume (V ) times the single photon energy10:

ρ(ω) =
Nγ~ω

V
. (2.49)

By combining Eq. (2.48) with Eq. (2.49), we get

A0 =
√

~Nγ

2ε0ωV
. (2.50)

From Eq. (2.43) we can now finally write the general electromagnetic vector potential
as given by Nγ photons having the same characteristics:

A(r, t) =
√

~Nγ

2ε0ωV

(
ε ei(kr−ωt) + ε∗ e−i(kr−ωt)

)
.

The vector potential due to the presence of one single photon having propagation vector
k and polarization ε is then given by

A(r, t) =
√

~
2ε0ωV

(
ε ei(kr−ωt) + ε∗ e−i(kr−ωt)

)
. (2.51)

It may be instructive showing also E and B fields as given by one single photon having
propagation vector k and polarization ε. By using Eq. (2.41) we get

EL(r, t) = −
√

2~ω
ε0V

εL sin(kr − ωt)

BL(r, t) = −
√

2~
ε0ωV

k × εL sin(kr − ωt)


 linearly polarized photon

EC(r, t) = −
√

2~ω
ε0V

(
εC ◦ η

)

BC(r, t) = −
√

2~
ε0ωV

k ×
(
εC ◦ η

)


 circularly polarized photon

10This is a crucial step. So far we have dealt with classical electrodynamics with some associations
of the wave polarization states to particle spin states in quantum mechanics. We have never imposed
that the electromagnetic wave is given by any quanta, nor imposed any quantum mechanical rule.
Only now we do such a step.
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where η = (sin(kr−ωt),−i cos(kr−ωt), 0) and the symbol ◦ stands for the Hadamard
product between vectors and it is defined such that

A ◦B = (A1B1, A2B2, A3B3)

for any two vectors A = (A1, A2, A3), B = (B1, B2, B3).
The expression (2.51) is general and can be used for a photon having any propagation
direction, as long as the polarization vector ε fulfills the gauge condition kε = 0.
The electromagnetic vector potential is integral part of the electron-photon interaction
Hamiltonian, which is the core of the dynamics of the two-photon transitions in atoms
and ions. Thus, Eq. (2.51) will be much used in the following.

Prior to turning to solve atomic problems, we make now a decomposition of the vector
plane wave εeikr. We are interested in investigating the angular momentum properties
of this quantity. As underlined above, the polarization vector ε represents the photon
spin state and therefore it has well defined angular momentum properties. On the
other hand, the exponential part of the vector plane wave has not well defined angular
momentum properties. Rather it has well defined linear momentum properties. Since,
in atomic physics, we deal with states with defined angular momentum (and not linear
momentum), we should better make a plane wave decomposition of the exponential
(Rayleigh expansion) in terms of elements with defined angular momentum properties
[38]:

eikr = (4π)
+∞∑

L=0

L∑

m=−L

iLjL(kr)Y m
L (θr, ϕr)Y m ∗

L (θk, ϕk) , (2.52)

where jL are Spherical Bessel functions of the first kind and Y m
L are spherical harmon-

ics. Each addend of this summation has well defined orbital angular momentum.
Summarizing, in the whole vector plane wave, we have i) the photon spin angular
momentum contained in the polarization vector and ii) a summation of terms, com-
ing from the Rayleigh expansion, where each one of them has defined orbital angular
momentum. We can easily also derive that the orbital and spin angular momenta
quantum spaces are well separated for photons, i.e.

[
L̂, Ŝ

]
= 0:

L̂i Ŝj εV eikr = L̂i(−iεj V γ)εγeikr = (−iεj V γ)(−i~ r̂×∇r)i εγeikr

= (−iεj V γ)εγ(−i~ r̂×∇r)i e
ikr = Ŝj εV (−i~ r̂×∇r)i e

ikr

= Ŝj L̂i εV eikr .

Hence, we can treat independently spin and orbital quantum spaces, i.e we can describe
the photon angular momentum state by giving, for instance, separately the quantum
numbers L, m, S = 1 and λ, where λ is the photon helicity. We also emphasize that,
since spin properties of the photon are contained solely in the polarization vector, a
measure of the polarization state gives a measure of the spin state.
Now we are partially satisfied since, for instance, in non-relativistic quantum mechanics
the states are described by giving separately the orbital angular momentum L (with its
projection ml) and the spin angular momentum S (with its projection ms). A standard
atomic transition amplitude would then separate into spin and angular momentum
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parts, allowing a fast evaluation.
Notwithstanding the efforts we made, our analysis cannot be applied to relativistic
states or to many-electron states. In these cases, in fact, the quantum numbers we use
to characterize the atomic spectrum are total angular momentum and parity. We must
give a description of the vector potential in terms of total photon angular momentum
and parity. We now proceed to find such a description.
Let us define the unit vector

ξp =





1√
2
(x− iy) if p = −1

z if p = 0

− 1√
2
(x + iy) if p = +1

.

By comparing with Eq. (2.47), we see that εp
C = −p ξp. Therefore, by using the

association (2.47), we see that ξp represents the three photon spin states, included
the not physical state with zero projection. By virtue of this, we can state that ξp

transforms like a spherical tensor of rank 1 [37].
Now, let us fix the photon direction along z. Thus, the vector plane wave for this
circularly polarized photon is, using Eq. (2.52),

ελ
C eik z = −λ ξλ (4π)

+∞∑

L=0

L∑

m=−L

iLjL(kr)Y m
L (θr, ϕr)Y m ∗

L (0, 0)

= −λ ξλ (4π)
+∞∑

L=0

L∑

m=−L

iLjL(kr)Y m
L (θr, ϕr)

√
2L + 1

4π
δm 0

= −λ (4π)1/2
+∞∑

L=0

iL(2L + 1)1/2jL(kr)ξλ Y 0
L (r) ,

(2.53)

where the angles (ϕr, θr) have been denoted by the unit vector r for the sake of brevity.
Now, let us define the so-called “vector spherical harmonics”, TJLM (r):

TJ L M (r) =
1∑

m=−1

L∑

µ=−L

< L, µ, 1,m|J,M > Y µ
L (r) ξm

=
1∑

m=−1

< L, M −m, 1,m|J,M > Y M−m
L (r) ξm .

(2.54)

By recalling the theorem of composition of spherical tensors [25], we recognize that
TJ L M (r) is a spherical tensor of rank J , since it couples through Clebsch-Gordan
coefficients the spherical tensors Y µ

L (which contains the orbital angular momentum)
with the spherical tensor ξm (which contains the spin angular momentum). We remark
here the fact that T ∗

J L M (r) is not a spherical tensor, since, for example, Y µ ∗
L is not a

spherical tensor. It can be easily showed, in fact, that Y µ ∗
L does not transform as a

spherical tensor of rank L, while Y µ
L does.

It follows that TJ L M has well defined total angular momentum J , projection M ,
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orbital angular momentum L and spin angular momentum 1. Moreover, L denotes also
something else relevant in TJ L M : its parity. The parity of TJ L M turns trivially out
to be given by (−1)L+1, since the parity of Y µ

L and ξ are (−1)L and (−1) respectively.
TJ L M is therefore what we are looking for! It contains the quantum numbers we need.
Let us find a way to plug it inside our vector plane wave.
We derive the inverse relation

L+1∑

η=L−1

〈L, 0, 1, λ|η, λ〉Tη L λ(r) = ξλ Y 0
L (r) . (2.55)

Proof:

L+1∑

η=L−1

〈L, 0, 1, λ|η, λ〉Tη L λ =
L+1∑

η=L−1

1∑

m=−1

〈L, 0, 1, λ|η, λ〉〈L, λ−m, 1,m|η, λ〉

× Y λ−m
L (r) ξm

=
1∑

m=−1

L+1∑

η=L−1

+η∑
s=−η

〈L, 0, 1, λ|η, s〉〈L, λ−m, 1,m|η, s〉

× Y λ−m
L (r) ξm

=
1∑

m=−1

δL Lδ0 λ−mδ1 1δλ m Y λ−m
L (r) ξm = Y 0

L (r) ξp .

Therefore, we can plug Eq. (2.55) into Eq. (2.53) to obtain

ελ
C eik z = −λ (4π)1/2

+∞∑

L=0

iL(2L + 1)1/2jL(kr)
L+1∑

η=L−1

〈L, 0, 1, λ|η, λ〉Tη L λ(r)

= (4π)1/2
+∞∑

L=0

iL(−p)(2L + 1)1/2jL(kr)
[
〈L, 0, 1, λ|L− 1, λ〉TL−1 L λ(r)

+ 〈L, 0, 1, λ|L, λ〉TL L λ(r) + 〈L, 0, 1, λ|L + 1, λ〉TL+1 L λ(r)
]

= (4π)1/2
+∞∑

L=0

iL(−λ)(2L + 1)1/2jL(kr)

[(
L− 1

2(2L + 1)

)1/2

TL−1 L λ(r)

− λ√
2

TL L λ(r) +
(

L + 2
2(2L + 1)

)1/2

TL+1 L λ(r)

]

= (2π)1/2
+∞∑

L=0

iLjL(kr)
[
− λ (L− 1)1/2 TL−1 L λ(r)

+ (2L + 1)1/2 TL L λ(r) − λ (L + 2)1/2 TL+1 L λ(r)
]

,

where it has been used λ2 = 1, since λ = ±1.
The first term enclosed in parentheses results vanishing for L = 0 (since T−1 0 p = 0) and
for L = 1 (since, in that case, (L− 1) = 0). The second term enclosed in parentheses
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results vanishing for L = 0 (since T0 0 p = 0). Therefore we are left with

ελ
C eik z = (2π)1/2

[
− λ

+∞∑

L=2

iLjL(kr)(L− 1)1/2 TL−1 L λ(r)

+
+∞∑

L=1

iLjL(kr)(2L + 1)1/2 TL L λ(r)− λ
+∞∑

L=0

iLjL(kr)(L + 2)1/2 TL+1 L λ(r)
]

.

Now, we rename L → L + 1 in the first term, L → L − 1 in the third term. The
summations modify correspondingly.
After all, we get

ελ
C eik z =

√
2π

+∞∑

L=1

iL(2L + 1)1/2
(
A

(m)
Lλ (k, r) + iλA

(e)
Lλ(k, r)

)
, (2.56)

where

A
(m)
Lλ (k, r) = jL(kr)TL L λ(r)

A
(e)
Lλ(k, r) = jL−1(kr)

√
L + 1
2L + 1

TL L−1 λ(r)− jL+1(kr)

√
L

2L + 1
TL L+1 p(r) .

Since the elements A
(m,e)
Lλ are spherical tensors with total angular momentum L and

projection λ, we can safely obtain the potential vector for an arbitrary direction k by
rotating, with a Wigner-D matrix, each term with defined angular momentum L in
the summation of Eq. (2.56) [25].
By doing that, we get:

ελ
C eikr =

√
2π

+∞∑

L=1

L∑

M=−L

iL(2L + 1)1/2
(
A

(m)
LM (k, r) + iλA

(e)
LM (k, r)

)
DL

Mλ(ϕk, θk, 0)

=
√

2π
+∞∑

L=1

L∑

M=−L

∑

p=0,1

iL(2L + 1)1/2(iλ)p ap
LM (k, r) DL

Mλ(ϕk, θk, 0) ,

(2.57)
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with, in summary,

A
(m)
LM (k, r) = jL(kr)TL,L,M (r)

A
(e)
LM (k, r) = jL−1(kr)

√
L + 1
2L + 1

TLL−1M (r)− jL+1(kr)

√
L

2L + 1
TLL+1M (r)

TJLM (r) =
1∑

m=−1

< L,M −m, 1,m|J,M > Y M−m
L (ϕr, θr)ξm

ξm =





1√
2
(x− iy) if m = −1

z if m = 0

− 1√
2
(x + iy) if m = +1

λ = helicity of the photon

ap
LM (k, r) =





A
(m)
LM (k, r) if p = 0

A
(e)
LM (k, r) if p = 1 .

The spherical angles (ϕk, θk), of course, correspond to the spherical angles of the vector
p, since k and p differ by a constant (see Eq. (2.43) and the paragraph afterwards).
This decomposition is referred to as multipole decomposition.
From what said previously, it turns evidently out that each term ap

LM has total angu-
lar momentum L, total angular momentum projection M and parity (−1)L+1+p well
defined. Analogously, each term TJ L M has total angular momentum J , total angular
momentum projection M , orbital angular momentum L and parity (−1)L+1 well de-
fined.
We also underline that, even though the spin state |λ = 0〉, which corresponds to the el-
ement ξm=0, is forbidden for the photon, the rotation of the vector plane wave includes
it since the definition of spherical harmonics tensor makes use of the completeness of
the basis set ξm=−1,0,1.
The multipole decomposition is useful in atomic physics since each term of it has de-
fined parity and total angular momentum properties. Due to the radial nature of the
atomic potential, the electronic wavefunctions which correspond to atomic states have
also defined parity and angular momentum. The invariance of the overall Hamiltonian
under rotations and parity transformation ensures that both angular momentum and
parity are conserved quantum numbers in atomic transitions. It can be thus easily
understood that the decomposition (2.57) is particularly useful to discern terms which
have contribution in atomic transitions from terms which have not.
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Following standard notation, we define

ελ
C eikr =

√
2π

+∞∑

L=1

L∑

M=−L

iL(2L + 1)1/2A
(m)
LM (k, r)DL

Mλ(ϕk, θk, 0)

+
√

2π

+∞∑

L=1

L∑

M=−L

iL(2L + 1)1/2iλA
(e)
LM (k, r)DL

Mλ(ϕk, θk, 0)

= M1 + M2 + M3 + ...

+ E1 + E2 + E3 + ... ,

where ML and EL are respectively called magnetic and electric multipole of order L.
As said in the foregoing discussion, these multipoles have parity and total angular
momentum well defined, i.e. they are eigenfunctions of parity and total angular mo-
mentum operators. We summarize their properties for a quick view:

multipole Parity Angular momentum

ML (−1)L+1 L

EL (−1)L L .

We emphasize that, as discussed in Eq. (2.47), the photon spin is entirely contained
in the polarization vector (ε) of the electromagnetic wave. The plane wave e±ikr in-
deed contains naturally only orbital angular momentum components. Measuring the
polarization state of a light quanta equals to measuring the photon spin.
Generally, the higher multipole we consider the smaller contribution in atomic transi-
tions we get. This is due to the fact that high multipoles are characterized by Bessel
functions of high order. These latter are small for small values of kr (which is the
argument), which, in turn, are characteristic values for atomic and ionic transitions.
To better explain, we will make a concrete example. The magnetic quadrupole M2
contains the spherical Bessel function j2(kr). Since this spherical Bessel function is
nearly vanishing for 0 ≤ kr . 1, in order to have a sizeable contribution from M2

in atomic transitions, we must have kr & 1, which implies r & ~c
E

, where E is the
energy of the photon. Due to energy conservation, the photon energy must be equal
to the transition energy, for single-photon transitions. For multi-photon transitions,
the photon energy will be anyway of the same order of magnitude of the transition
energy. In Hydrogen atom, the characteristic energies for transitions are of order ∼ eV .

Thus, the condition r & ~c
E

implies r & 200
MeV fm

eV
= 2 · 10−7 m = 2 · 105 pm. The

electronic wavefunctions for Hydrogen are nearly zero if evaluated in r & 2 ·105 pm, as
the Hydrogen size is roughly 25 pm [40]. The contribution of the M2 multipole results
therefore negligible.
The same story is followed for any multipole with the exception of E1 (electric dipole),
which is the only one that contains the spherical Bessel function j0(kr). This spherical
Bessel function has its maximum value at kr = 0 and it gives not negligible values
for the whole interval 0 ≤ r ≤ 2 · 105 pm, which is the region where the electronic
wavefunctions of the hydrogen atom are not vanishing. Thus, by following this reason-
ing, we understand that the dynamics of atomic transitions in Hydrogen, as well as in
any low-charged ion, is totally dominated by the electric dipole E1, apart from cases
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where parity or angular momentum conservation rules forbid it. Apart from these
latter cases, where either multi-photon transitions or the next multipole (M1) single-
photon transition will be important, the E1 multipole gives the leading contribution
and it is therefore common to stop the multipole expansion (2.57) at this term. This
approximation is commonly referred to as electric dipole approximation.
As the atomic number increases, the transition energy in hydrogenlike ions increases
as well, since it approximately scales as Z2. At some point, the product kr will be of
order ∼ 1 even for small values of r, where the electronic wavefunction is not vanishing.
For such ions, high multipoles will play a sizeable role in atomic transitions. We will
see in detail such effects in Chapter 5.

Now, we analyze more in detail the electric dipole approximation. By including only
the leading term (E1) in the summation of Eq. (2.57), we get

ελ
C eikr ≈

√
2π

+1∑

M=−1

i
(√

3
)
iλA

(e)
1M (k, r) D1

Mλ(ϕk, θk, 0) . (2.58)

For simplicity, we suppose the photon’s direction to be ẑ. Consequently, D1
Mλ(ϕk, θk, 0)

→ D1
Mλ(0, 0, 0)=δM λ and we are left with

ελ
C eikr = −

√
6π λ A

(e)
1 λ(k, r) . (2.59)

On analyzing A
(e)
1 λ(k, r) we find

A
(e)
1 λ(k, r) = j0(kr)

√
2
3

(
+1∑

m=−1

〈0, λ−m, 1,m|1, λ〉 Y λ−m
0 (r) ξm

)

−j2(kr)

√
1
3

(
+1∑

m=−1

〈2, λ−m, 1,m|1, λ〉 Y λ−m
2 (r)ξm

)

= j0(kr)

√
2
3

(
+1∑

m=−1

δm,λ Y λ−m
0 (r) ξm

)
− j2(kr)Xλ ,

where we have defined Xλ =

√
1
3

(
+1∑

m=−1

〈2, λ−m, 1,m|1, λ〉 Y λ−m
2 (r)ξm

)
.

Proceeding with the calculation we get

A
(e)
1 λ(k, r) = j0(kr)

√
2
3

1
2

1√
π

ξλ − j2(kr)Xλ

= j0(kr)
1√
6π

ξλ − j2(kr)Xλ .

Coming back to Eq. (2.59), we can now write

ελ
C eikr ≈ −λ

(
j0(kr) ξλ −

√
6πj2(kr)Xλ

)
. (2.60)

Thus, the electric dipole approximation consists of, roughly speaking, approximating
the complex exponential with the first two parity-even spherical Bessel functions.
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Figure 2.1: Real part of the x̂-component (left-panel) and the imaginary part of the
ŷ-component (right-panel) of the vector plane wave for a photon traveling along the
z-direction with negative helicity. The (electron) polar angle θ is fixed equal to π/4.
The blue-solid and red-dashed curves respectively correspond to the exact value and
the electric dipole approximation of the vector plane wave. The green-dot-dashed curve
corresponds to the long-wavelength approximation of the vector plane wave (discussed
in the text).

From Eq. (2.60), if we make further approximations, the expression simplifies consid-
erably. In the low-Z regime, we already discussed that it is allowed to consider kr ¿ 1.
Within this limit, we have

j0(kr) → 1− 1
6
(kr)2 ,

j2(kr) → 1
15

(kr)2 .

Equation (2.60) then becomes

ελ
C eikr ≈ −λ ξλ + λ

1
6
ξλ(kr)2 + λ

√
6π

15
(kr)2Xλ . (2.61)

We can further simplify the above equation by neglecting the terms proportional to
(kr)2, which are, in the chosen approximation (kr ¿ 1), of course much weaker than
the others. By doing that, we end up with

ελ
C eikr ≈ −λ ξλ = ελ

C . (2.62)

At this point we realize that all the approximations we made up to here are equivalent
to considering the first term of the Taylor expansion of the exponential

ελ
C eikr = ελ

C

(
1 + ik · r +

(ik · r)2

2!
+ ...

)
.

The approximation of considering the first term of the Taylor expansion for the vector
plane wave, i.e. the approximation of considering the rhs in replacement of the lhs in
Eq. (2.62), will be here and henceforth called “long-wavelength approximation”11.

11In the literature there is a little confusion about the notation concerning this issue. Sometimes,
what we call here long-wavelength approximation is called by other authors non-relativistic electric
dipole approximation, or, some other times, simply electric dipole approximation, so that the notation
may become confusing.
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By now it must be clear that the electric dipole approximation, as evident from Eq.
(2.60) and (2.61), is a less stringent approximation than the long-wavelength approx-
imation. In other words, the goodness of the electric dipole approximation is higher
than the one of considering the first term of the Taylor expansion for the exponential.
Qualitatively, we may say that the electric dipole approximation must comprehend
more terms than the first one of the Taylor expansion, as it is already evident from
Eq. (2.61), where part of the second term of the Taylor expansion shows explicitly up
in the approximation kr ¿ 1.
Anyway, since the terms in the Taylor expansion do not have defined angular momen-
tum properties (though they have defined parity) while E1 multipole has, we cannot
pin down which terms of the expansion the full electric dipole approximation includes.
In fact, Taylor and multipole expansions have different analytical properties, so that
it is not possible to compare them term by term. The sum of the all terms in the two
expansions leads anyway of course to the same result.
For underlining and evaluating the goodness of the various approximations that we
have considered in the present analysis, in Fig. 2.1 we show i) the real part of the
x̂-component (left panel) and ii) the imaginary part of the ŷ-component (right panel)
of the total vector planewave ελ

C eikr, for the case λ = −1 and θ =
π

4
, where θ is the

angle defined in r = r(sin θ cosϕ, sin θ sinϕ, cos θ). Since the photon’ direction is as-
sumed to be ẑ, any dependence on the angle ϕ vanishes. The curves which correspond
to the exact term (the lhs of Eq. (2.60)), the electric dipole approximation (the rhs of
Eq. (2.60)) and the long-wavelength approximation (the rhs of Eq. (2.62)) are showed.
The labels “exa”, “eda” and “lwa” naturally refer respectively to “exact”, “electric
dipole approximation” and “long-wavelength approximation”.
Looking at the figure, we can now better estimate the goodness of eda and lwa in ap-
proximating exa. As also remarked above, we clearly notice that eda resembles more
efficiently the exact curve than lwa, or, in other words, that eda is a better approxi-
mation with respect to lwa. In particular, while lwa loses validity already for kr & 0.3
or 0.4, eda keeps being a good approximation roughly for 0 . kr . 1.
As kr increases, the goodness of both lwa and eda decreases till the point that, for
large values of kr, both approximations become completely misleading. Particularly,
the sign and the concavity of the curves corresponding to the exact vector planewave
and eda (or lwa) are different. For transitions in highly-charged ions, we can infer that
the inclusion of high order multipoles can therefore change qualitatively the dynamics
of the transition, as recently showed [41].
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Chapter 3

Single- and two-photon decays
in atoms and ions

The state of mind which enables a man to do work of this kind
is akin to that of the religious worshiper or the lover;

the daily effort comes from no deliberate intention
or program, but straight from the heart.

Albert Einstein, 1918

Few problems in Quantum Mechanics can be solved exactly. Because of this, approxi-
mation methods are a strong core of quantum mechanics.
When I was a student at the university, the lecture on quantum perturbation theory
has been a magical surprise. I learnt how many quantum mechanical problems with-
out exact solutions could be approximately solved up to the wished accuracy. Since
we are physicists and not mathematicians, for me this actually equaled to solving the
problems.

3.1 Time-dependent perturbation theory

Although physicists are usually more familiar with the Schrödinger representation of
quantum mechanics, the perturbative approach is usually introduced in the Interaction
representation (or Interaction picture) of quantum mechanics. We recall here the basic
equations which link the two representations.

Any state α at the time t is denoted in the Schrödinger representation by the ket vector
|α, t〉S , where the variable t explicitly denotes the time dependence of the state. The
words “ket”, “ket vector” and “ket state” will be hereafter used interchangeably.
The evolution of this ket vector is ruled by the evolution operator:

|α, t〉S = Û(t0, t) |α, t0〉S . (3.1)
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The evolution operator satisfies the operator equation

i~
∂

∂t
Û(t0, t) = Ĥ(t)Û(t0, t) , (3.2)

where Ĥ(t) is the Hamiltonian operator, which generally may depend on time. The
operator Û(t0, t) will therefore depend on Ĥ(t).
Let us suppose that the time dependent part of the Hamiltonian is represented by a
term λV̂(t), where λ is a dimensionless constant that represents the strength of the
potential V̂(t). Hence, we suppose the Hamiltonian to have the form

Ĥ(t) = Ĥ0 + λV̂(t) . (3.3)

We moreover suppose to known the eigenstates of the unperturbed Hamiltonian Ĥ0,
i.e. we know the ket vectors {|n0〉S} which are solutions of the equation

Ĥ0 |n0〉S = En |n0〉S

where En is a real number.
Suppose we start at the initial time t0 with the eigenstate |i0〉S of the unperturbed
Hamiltonian. We then have

|α, t0〉S = |i0〉S .

What we would like to know is the probability of measuring, at the time t, the eigenstate
of the unperturbed Hamiltonian |f0〉S . In quantum mechanics this quantity is equal
to

P =
∣∣∣ 〈f0|S Û(t0, t) |α, t0〉S

∣∣∣
2

=
∣∣∣ 〈f0|S Û(t0, t) |i0〉S

∣∣∣
2

.

The two ket states |f0〉S and |i0〉S are not necessarily different. In order to find such
a quantity, we will make use of the Interaction representation.

Let us define a new set of ket states and operators through the equations

|α, t〉I ≡ e
i
~ Ĥ0t |α, t〉S

ÔI(t) ≡ e
i
~ Ĥ0tÔ(t)e−

i
~ Ĥ0t ,

(3.4)

where Ô(t) is any operator (which may depend on time) in the Schrödinger represen-
tation.
The ket vector |α, t〉I and the operator ÔI(t) are called ket vector and operator in the
Interaction representation, respectively. We can easily |α, t〉I , which is related to to
|i〉S :

|α, t0〉I = e
i
~ Ĥ0t |α, t0〉S = e

i
~ Ĥ0t |i〉S = e

i
~Eit |i〉S .
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Considering the form of the Hamiltonian in Eq. (3.2), let us follow the evolution of
the ket state at the time t, in the Interaction representation:

i~
∂

∂t
|α, t〉I = i~

(
∂

∂t
e

i
~ Ĥ0t

)
|α, t〉S + i~e

i
~ Ĥ0t

(
∂

∂t
|α, t〉S

)

= −Ĥ0e
i
~ Ĥ0t |α, t〉S + i~e

i
~ Ĥ0t

(
− i

~
Ĥ(t) |α, t〉S

)

= e
i
~ Ĥ0t

(
− Ĥ0 + Ĥ(t)

)
|α, t〉S = e

i
~ Ĥ0tλV̂(t) |α, t〉S

= λ e
i
~ Ĥ0tV̂(t)e−

i
~ Ĥ0te

i
~ Ĥ0t |α, t〉S

= λV̂I(t) |α, t〉I ,

(3.5)

where we made use of the Schrödinger equation for the ket |α, t〉S and of the fact that
e

i
~ Ĥ0t naturally commutes with Ĥ0.

By looking at Eq. (3.5), we can euristically say that the evolution equation for the ket
states in the Interaction representation is equal to the evolution equation for the ket
states in the Schrödinger representation with Ĥ(t) replaced with λV̂I(t).
We define also the evolution operator ÛI(t0, t) for the ket states in the Interaction
representation:

|α, t〉I = ÛI(t0, t) |α, t0〉I . (3.6)

We see that this definition is compatible with Eq. (3.4), since

|α, t〉I = e
i
~ Ĥ0t |α, t〉S = e

i
~ Ĥ0tÛ(t0, t) |α, t0〉S

= e
i
~ Ĥ0tÛ(t0, t)e−

i
~ Ĥ0t

︸ ︷︷ ︸
ÛI(t0,t)

|α, t0〉I

= ÛI(t0, t) |α, t0〉I .

It follows also that
∣∣∣ 〈f0|S ÛI(t0, t) |i0〉S

∣∣∣ =
∣∣∣ 〈f0|S e

i
~ Ĥ0tÛ(t0, t)e−

i
~ Ĥ0t |i0〉S

∣∣∣

=
∣∣∣ 〈f0|S e

i
~Ef tÛ(t0, t)e−

i
~Eit |i0〉S

∣∣∣

=
∣∣∣ 〈f0|S Û(t0, t) |i0〉S

∣∣∣ .

By using the above equation, we can write the remarkable equation

P =
∣∣∣ 〈f0|S Û(t0, t) |i0〉S

∣∣∣
2

=
∣∣∣ 〈f0|S ÛI(t0, t) |i0〉S

∣∣∣
2

.

(3.7)

We must then find the expression for ÛI(t0, t).
By combining Eqs. (3.5) and (3.6), we get

i~
∂

∂t
|α, t〉I = i~

∂

∂t
ÛI(t0, t) |α, t0〉I

= λV̂I(t)ÛI(t0, t) |α, t0〉I .
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Since this equation must hold for any ket state |α, t0〉I , ÛI(t0, t) must satisfy the
following operator equation

i~
∂

∂t
ÛI(t0, t) = λV̂I(t)ÛI(t0, t) . (3.8)

Hence, the equation for the evolution operator ÛI(t0, t) is, again, similar to Eq. (3.2)
with Ĥ(t) replaced with λV̂I(t).
We can surely impose the initial condition

ÛI(t0, t0) = 1̂ ,

so that
|α, t0〉I = ÛI(t0, t0) |α, t0〉I = 1̂ |α, t0〉I = |α, t0〉I ,

as it should be. With this, we can rewrite the differential equation (3.8) in the form
of an integral equation:

ÛI(t0, t) = 1̂+
(
− i

~
λ

)∫ t

t0

dt1V̂I(t1)ÛI(t0, t1) .

To solve the above equation we proceed iteratively

ÛI(t0, t) = 1̂+
(
− i

~
λ

)∫ t

t0

dt1V̂I(t1)
(
1̂+

(
− i

~
λ

) ∫ t1

t0

dt2V̂I(t2)ÛI(t0, t2)
)

= 1̂+
(
− i

~
λ

)∫ t

t0

dt1V̂I(t1) +
(
− i

~
λ

)2 ∫ t

t0

dt1

∫ t1

t0

dt2V̂I(t1)V̂I(t2)

+ ... +
(
− i

~
λ

)n ∫ t

t0

dt1

∫ t1

t0

dt2 ...

∫ tn−1

t0

dtnV̂I(t1)V̂I(t2) ... V̂I(tn)

+ ... .

This series is known as the Dyson series and represents our final expression for the
operator ÛI(t0, t).
Plugging this expression for ÛI(t0, t) into Eq. (3.7), we can now write the probability
function as

P =
∣∣∣ 〈f0|i0〉S S

+
(
− i

~
λ
)∫ t

t0

dt1 〈f0|S V̂I(t1) |i0〉S

+
(
− i

~
λ
)2

∫ t

t0

dt1

∫ t1

t0

dt2 〈f0|S V̂I(t1)V̂I(t2) |i0〉S
+ ...

+
(
− i

~
λ
)n

∫ t

t0

dt1

∫ t1

t0

dt2 ...

∫ tn−1

t0

dtn 〈f0|S V̂I(t1)V̂I(t2) ... V̂I(tn) |i0〉S

+ ...
∣∣∣
2

.

(3.9)
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In order to further simplify the above equation, we first notice that

〈n0|S V̂I(t1) |m0〉S = 〈n0|S e
i
~ Ĥ0t1V̂(t1)e−

i
~ Ĥ0t1 |m0〉S

= e
i
~ (En−Em)t1 〈n0|S V̂(t1) |m0〉S = eiωnm t1Vnm(t1) ,

where we defined ωnm =
En − Em

~
and Vnm(t1) = 〈n0|S V̂(t1) |m0〉S .

By using the completeness of the unperturbed states, we finally rewrite Eq. (3.9) as

P =
∣∣∣ 〈f0|i0〉S S

+
(
− i

~
λ
)∫ t

t0

dt1e
iωfi t1Vfi(t1)

+
(
− i

~
λ
)2

∫ t

t0

dt1

∫ t1

t0

dt2
∑
ν1

eiωfν1
t1eiων1i t2 Vfν1(t1)Vν1i(t2)

+ ...

+
(
− i

~
λ
)N

∫ t

t0

dt1

∫ t1

t0

dt2 ...

∫ tN−1

t0

dtN
∑

ν1,ν2,...νN

×
(
eiωfν1

t1eiων1ν2 t2 ... eiωνN−1νN
tN

)(
Vfν1(t1)Vν1ν2(t2) ... VνN i(tN )

)

+ ...
∣∣∣
2

.

(3.10)
In the above equation, the first term of the rhs corresponds to the zero-order approxi-
mation. If the initial and final states are different (as it is usually the case), this term
is of course vanishing. By adding the second term, the first order approximation is
achieved, and so on. It is easy to understand that, provided that λ < 1, the series
will converge. We can then stop the series at term which corresponds to the wished
accuracy.
In a case experiment, the measurement will be done at a large t in comparison with the
time scale of the system. Therefore one generally measures the probability of transition
for a large time t. What it is actually measured is the transition rate for a large time
t, that is

Γ = lim
t→+∞

dP
dt

. (3.11)

This will be the quantity we will investigate. The first natural application of pertur-
bation theory is for the decays of atoms and ions.

3.2 Single-photon decay rate

We start out by evaluating the single-photon decay rate, believing that, due to its
simplicity, it may give deeper insights on the interaction between atoms and radiation.
By single-photon decay, we mean that only one photon is emitted as consequence of
the de-excitation of the ion or atom.
In Quantum Electrodynamics, the Hamiltonian which accounts for the electron-photon
interaction is

Ĥ
′
(t) = c e α · Â(r, t) , (3.12)
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where −e is the charge of the electron (e > 0), Â is the vector potential given by one
single photon (the one showed in Eq. (2.51)) promoted to operator. Ĥ

′
(t) is ≡ −λV̂(t)

in the notation used in Eq. (3.3).
We can therefore rewrite the above equation as

Ĥ
′
(t) = α ·

√
2π~2c3α

ωV

(
εei(kr̂−ωt) + ε∗e−i(kr̂−ωt)

)

≡ λ̄α ·
(
εei(kr̂−ωt) + ε∗e−i(kr̂−ωt)

)
,

(3.13)

where λ̄ =

√
2π~2c3α

ωV
.

As explicitly displayed, only r̂ is operator in the definition of Â, since k, ω and ε are
inherent characteristics of the photon which carries the vector potential.
If we have more than one electron which undergo the interaction, the interaction Hamil-
tonian is naturally given by the sum of the one-particle interaction Hamiltonians:

Ĥ
′
(t) = c e α · Â(r1, t) + c e α · Â(r2, t) + ... , (3.14)

since any single electron feels the radiation. This is the same prescription that it is
most usually applied to write the total Coulombic scalar potential for many-particle

systems: ĤC =
Zα~c

r1
+

Zα~c
r2

+ ... .

We can safely apply perturbation theory with the Hamiltonian in Eq. (3.13) thanks to
the presence of the electromagnetic coupling constant α, which is far smaller than 1:

α =
e2

4πε0~c
≈ 1

137
. We can assign the role that λ has in Eq. (3.3) to λ̄, even though

the latter is not dimensionless. Trivially, it does not really matter.
We look for processes where the initial state is different from the final state and where
only one photon is involved. Looking at our master equation (3.10), we understand
that the first term (which corresponds to the zero-approximation) is vanishing and
that the second term (which corresponds to the first order approximation) is the term
we are looking for, since it is the only one that involves one photon1.
The probability function P is then given by

P =
∣∣∣∣
(
− i

~
λ̄

)∫ t

t0

dt1e
iωfit1 〈f |α ·

(
εei(kr̂−ωt1) + ε∗e−i(kr̂−ωt1)

)
|i〉

∣∣∣∣
2

=
∣∣∣∣
(

λ̄

~

) (
〈f |α · εeikr̂ |i〉

∫ t

t0

dt1e
it1(ωfi−ω)

+ 〈f |α · ε∗e−ikr̂ |i〉
∫ t

t0

dt1e
it1(ωfi+ω)

)∣∣∣∣
2

,

where, in comparison with the notation used in Eq. (3.10), we dropped for simplicity
the subscript S and the superscript 0, since we leave understood that the initial and
final states we speak about hereinafter are eigenstates of the unperturbed Hamiltonian,
in the Schrödinger representation.

1Each vector potential which appears in Eq. (3.10) is brought by one photon. Therefore each vector
potential corresponds to one photon.
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Since, further on, we will take t → ∞ (in order to follow the prescription (3.11)),
we see that the first term in the rhs will be evidently proportional to ∼ δ(ωfi − ω),
while the second term will be proportional to ∼ δ(ωfi + ω). The first term then must
correspond to the photon absorption as the energy of the final atomic state is higher
than the energy of the initial atomic state. The delta function will in fact impose

0 = ωfi − ω =
1
~
(Ef − Ei − Eγ), where we denoted with Eγ the photon energy.

Analogously, the second term must correspond to the photon emission as the energy
of the final atomic state is lower than the energy of the initial atomic state. Since
we want to consider the single photon emission process, the energy of the final atomic
state will be always lower than the one of the initial atomic state. This entails that the
first term will be thus vanishing. From now on, we will therefore consider exclusively
the second term. We will look for the probability function

P =
∣∣∣∣
(

λ̄

~

)
〈f |α · ε∗e−ikr̂ |i〉

∫ t

t0

dt1e
it1(ωfi+ω)

∣∣∣∣
2

≡
(

λ̄

~

)2

|Mγ(i → f)|2
∣∣∣∣
∫ t

t0

dt1e
it1(ωfi+ω)

∣∣∣∣
2

,

(3.15)

where we defined Mγ(i → f) = 〈f |α · ε∗e−ikr̂ |i〉, which is generally referred to as the
matrix element for the single-photon transition between the initial state i and the final
state f .
Let us evaluate the last factor of the rhs of Eq. (3.15). By choosing t0 = 0 as the time
we prepare the initial state |i〉, we get

∣∣∣∣
∫ t

t0

dt1e
it1(ωfi+ω)

∣∣∣∣
2

=

∣∣∣∣∣
eit(ωfi+ω) − 1
i(ωfi + ω)

∣∣∣∣∣
2

=
∣∣∣∣

i

ωfi + ω

(
1− eit(ωfi+ω)

)∣∣∣∣
2

=
(

1
ωfi + ω

)2 ∣∣∣e i
2
t(ωfi+ω)

(
e−

i
2
t(ωfi+ω) − e

i
2
t(ωfi+ω)

)∣∣∣
2

=
(

1
ωfi + ω

)2 ∣∣∣∣−2i sin
[
t(ωfi + ω)

2

]∣∣∣∣
2

= 4
sin2

[
t(ωfi+ω)

2

]

(ωfi + ω)2
.

On introducing the above element into Eq. (3.15), we get

P = 4
(

λ̄

~

)2

|Mγ(i → f)|2
sin2

[
t(ωfi+ω)

2

]

(ωfi + ω)2
.

Now, we follow the prescription of Eq. (3.11), to get the transition rate:

dP
dt

= 4
(

λ̄

~

)2

|Mγ(i → f)|2
2 sin

[
t(ωfi+ω)

2

]
cos

[
t(ωfi+ω)

2

] (
ωfi+ω

2

)

(ωfi + ω)2

= 2
(

λ̄

~

)2

|Mγ(i → f)|2 sin [t(ωfi + ω)]
ωfi + ω

.

By making use of the identity

lim
t→+∞

sin [a t]
a

= π δ(a) ,
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we finally get

Γ = lim
t→+∞

dP
dt

= 2π

(
λ̄

~

)2

|Mγ(i → f)|2 δ(ωfi + ω)

= 2π
λ̄2

~
|Mγ(i → f)|2 δ(Ef − Ei + Eγ) ,

(3.16)

where we used, in the last step, the identity δ

(
Ef −Ei + Eγ

~

)
= |~|δ(Ef −Ei + Eγ).

We must still do something for obtaining the final decay rate: We must sum over all the
final states. Now, one could argue: “We select both the initial and final atomic states,
the photon momentum is well defined...there is nothing to sum over!”. The reply to this
arguing is that, while the atomic spectrum is discrete and we can successfully identify
initial and final state, we cannot actually distinguish between an emitted photon with
momentum pγ and another one with momentum pγ + d3pγ . So, we must sum over all
the photons between pγ and pγ + d3pγ . Now, one can still argue: “Then, how many
photons are there between pγ and pγ + d3pγ ?”. To answer this question we make
use of a prescription which is presumably due to Enrico Fermi since it is known under
the name “Fermi’s Golden Rule”. The statement is the following. We know that a
photon (as any particle) cannot have both linear momentum and position well defined.
If 43x is its indefiniteness in the cartesian space and 43pγ its indefiniteness in linear
momentum, then they must satisfy the equation [42,43]

43x 43pγ = h3 = (2π)3 ~3 .

We can think of having a spatial-momentum quantum space made of minimal cells of
size h3. Each one of those cells specifies the characteristics of the photon. Then it is
easy to understand that the number of photons in the total element V d3p must be

Nγ =
V d3pγ

h3
=

V d3pγ

(2π)3~3
=

V p2
γ

(2π)3~3
dpγ dΩpγ

=
V E2

γ

(2π)3c3~3
dEγ dΩpγ .

(3.17)

The solid angle dΩpγ is equal, of course, to the solid angle dΩk, since k and pγ , like ω
and Eγ , differ by a constant (see Eq. (2.43)):

k =
pγ

~
,

ω =
Eγ

~
.

From the foregoing discussion, it is easy to understand that we must multiply the tran-
sition probability (3.16), which is pγ dependent, by the number of photons between pγ

and pγ +d3pγ , which is Nγ . By doing so, the decay rate naturally becomes differential:

dΓ = 2π
λ̄2

~
Nγ |Mγ(i → f)|2 δ(Ef − Ei + Eγ)

= 2π
λ̄2

~
V E2

γ

(2π)3c3~3
|Mγ(i → f)|2 δ(Ef −Ei + Eγ) dEγ dΩpγ .
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By using the definition of λ̄, we get

dΓ =
αEγ

(2π)~
|Mγ(i → f)|2 δ(Ef − Ei + Eγ) dEγ dΩpγ .

Integrating over the photon energy, the above equation finally leads to

dΓλ

dΩpγ

=
α(Ei − Ef )

(2π)~
|Mγ(i → f)|2Eγ=Ei−Ef

, (3.18)

with
Mγ(i → f) = 〈f |α · ε∗ e−ikr̂ |i〉 , (3.19)

and where the notation
∣∣
Eγ=Ei−Ef

means that the expression standing before must be
calculated with Eγ = Ei − Ef . We have furthermore added the label λ to the decay
rate to make explicit the fact that it depends on the polarization of the emitted photon.
λ is here intended to denote the photon helicity.
We may see that the result we found for dΓ has the correct dimensions (sec−1), since
the element Mγ(i → f) is dimensionless. This also means that we can calculate the
matrix element Mγ(i → f) in the unit system we find more comfortable and then plug
the result into the above formula for finding the correct decay rate.

3.3 Evaluation of the first-order matrix element

3.3.1 General expression

If we want to study the polarization and angular properties of the emitted photon
with respect to a fixed axis (which could be, for instance, the polarization axis of the
atom), we will need to write the vector plane wave for a photon which propagates in
an arbitrary direction. This can be safely done by using the multipole decomposition
showed in Eq. (2.57):

Mγ(i → f) =
√

2π
+∞∑

L=1

L∑

M=−L

∑

p=0,1

i−L−p(2L + 1)1/2(λ)p

× DL ∗
Mλ(ϕk, θk, 0) 〈f |α · ap ∗

LM (k, r̂) |i〉 .

(3.20)

The atomic states |f〉 and |i〉 will have, in general, defined angular momentum prop-
erties. We can hence write them respectively as |βf , Jf ,mJf

〉 and |βi, Ji,mJi〉, where
β is a collective label to denote all the quantum numbers needed to specify the atomic
states but for J and mJ . As we underlined in Eq. (2.54), the operator α · ap

LM (k, r̂)
is an irriducible tensor operator of rank L, while the operator α · ap ∗

LM (k, r̂) is not. In
order to apply the Wigner-Eckart theorem on the matrix element, we must therefore
make the transformation ap ∗

LM = (−1)M+p+1ap
L−M (see App. B). We obtain

Mγ(i → f) =
√

2π
+∞∑

L=1

L∑

M=−L

∑

p=0,1

i−L−p(2L + 1)1/2(λ)pDL ∗
Mλ(ϕk, θk, 0)

× (−1)M+p+1
〈Ji,mJi , L,−M |Jf ,mJf

〉√
2Ji + 1

〈βf , Jf ||α · ap
L(k, r̂)||βi, Ji〉 ,

(3.21)
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where 〈β1, J1||α · ap
L(k, r̂)||β2, J2〉 is a scalar that does not depend upon geometrical

properties of the system (it does not depend upon the angular momenta projections
mJ1 , mJ2 and M).
In writing the above equation, it has been used the fact that Clebsch-Gordan coeffi-
cients are real.

3.3.2 Integrating over the photon direction

Equation (3.20) simplifies considerably if we integrate over the photon direction, i.e.
if we look for the decay rate irrespectively of the photon direction.
We define V L

M (k) as

V L
M (k) =

√
2π

∑
p

(−i)L+p
√

2L + 1(λ)p 〈f |α · ap ∗
L M (k, r̂) |i〉 ,

so that we can rewrite the matrix element Mγ(i → f) as

Mγ(i → f) =
∑

L

∑

M

V L
M (k) DL ∗

M λ(ϕk, θk, 0) .

Here, we notice that only the Wigner matrix depends on the spherical angles of the
photon direction, while V L

M depends only on the magnitude of the vector k. Thus,
from Eq. (3.18), using the equivalence dΩpγ = dΩk (as discussed in Eq. (3.17)), we
can write

Γλ =
α(Ei − Ef )

(2π)~
∑

L M

∑

L′M ′
V L

M (k)V L′ ∗
M ′ (k)

×
(∫

dΩk DL ∗
M λ(ϕk, θk, 0)DL′

M ′ λ(ϕk, θk, 0)
)

=
α(Ei − Ef )

(2π)~
∑

L M

∑

L′M ′
V L

M (k)V L′ ∗
M ′ (k)

4π

2L + 1
δL L′δM M ′

=
α(Ei − Ef )

(2π)~
∑

L M

4π

2L + 1

∣∣∣V L
M (k)

∣∣∣
2

.

We can eventually write

Γλ =
α(Ei − Ef )

(2π)~
∑

L M

∣∣∣M̃γ(i → f)
∣∣∣
2

, (3.22)

where we defined2

M̃γ(i → f) = (2π)
√

2
∑

p=0,1

(−i)p(λ)p 〈f |α · ap ∗
L M (k, r̂) |i〉 .

As done for Eq. (3.21), in case we have atomic or ionic states, we can always make the
transformation ap ∗

LM = (−1)M+p+1ap
L−M (see App. B) and apply the Wigner-Eckart

theorem to obtain

M̃γ(i → f) = (2π)
√

2
∑

p=0,1

(−i)p(λ)p(−1)M+p+1
〈Ji,mJi , L,−M |Jf ,mJf

〉√
2Ji + 1

× 〈βf , Jf ||α · ap
L(k, r̂)||βi, Ji〉 .

2The element (−i)L drops off because of the modulus squared.

44



3.3. EVALUATION OF THE FIRST-ORDER MATRIX ELEMENT

3.3.3 Integrating over the photon direction and summing over
photon polarizations: the total decay rate

We may be interested in summing the decay rate over the photon polarizations to
obtain the total decay rate. In other words, we look for single-photon emission irre-
spectively of both the direction and the polarization of the emitted photon.
We obtain the total decay rate from Eq. (3.22) as

Γ =
α(Ei − Ef )

(2π)~
∑

L M

∑

λ=±1

∣∣∣M̃γ(i → f)
∣∣∣
2

. (3.23)

We may explicitly write

∑

λ=±1

∣∣∣M̃γ(i → f)
∣∣∣
2

= 2(2π)2
∑

p,p′=0,1

(−i)p−p′
∑

λ=±1

(λ)p+p′

×
(
〈f |α · ap ∗

L M (k, r̂) |i〉
)(
〈f |α · ap′ ∗

L M (k, r̂) |i〉
)∗

Now, by considering that p and p′ are either 0 or 1, it follows that
∑

λ=±1

(λ)p+p′ = (−1)p+p′ + (+1)p+p′ =
(
2δp,p′ − 1

)
+ 1

= 2δp,p′ .

(3.24)

Then, we have

∑

λ=±1

∣∣∣M̃γ(i → f)
∣∣∣
2

= 4(2π)2
∑

p,p′=0,1

(−i)p−p′δp,p′

×
(
〈f |α · ap ∗

L M (k, r̂) |i〉
)(
〈f |α · ap′ ∗

L M (k, r̂) |i〉
)∗

=
∑

p

∣∣∣ ˜̃Mγ(i → f)
∣∣∣
2

,

where
˜̃Mγ(i → f) = 4π 〈f |α · ap ∗

L M (k, r̂) |i〉 .

Furthermore, from Eq. (3.23) we have

Γ =
α(Ei −Ef )

(2π)~
∑

L M

∑

p=0,1

∣∣∣ ˜̃Mγ(i → f)
∣∣∣
2

.

3.3.4 Non-relativistic and long wavelength approximations

Normal approach

The non-relativistic interaction Hamiltonian is

Ĥ
′
NR = −e

p̂
m
· Â(r, t) + e2Â2(r, t) . (3.25)

Then, by looking at Eq. (3.12), we easily understand that, in order to get the non-
relativistic matrix amplitude, we must replace cα → −p̂/m + eÂ2.
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Fortunately, the second term in Eq. (3.25) is evidently proportional to α2 and is
therefore (normally) much smaller than the first term, which is proportional to α.
Thus, we may here neglect it and simply make the replacement cα → −p̂/m. We
must however bring into notice that this approximation cannot be made in the two-

photon decay, since, trivially, the second order expansion term due to e
p̂
m
·Â(r, t) turns

out to be of the same order in α as the first order expansion term due to e2 Â2(r, t).
In addition and in fact, we may also notice that e2 Â2(r, t) contains two vector plane
waves, so that it is directly related to two-photon emission.
From the foregoing discussion, it follows that the non-relativistic matrix element for
one photon decay will be obtained by coming back to Eq. (3.19) and by making the
replacement cα → −p̂/m:

Mγ
NR(i → f) = −〈f | p̂ · ε

∗ e−ikr̂ |i〉
mc

. (3.26)

One may think that, at this point, we have some problems related to the not com-
mutativity of p̂ and r̂, so that we may find it troublesome deciding to define the
non-relativistic interaction Hamiltonian as ∝ p̂ · ε∗ e−ikr̂ or as ∝ ε∗ e−ikr̂ · p̂. However,
one of the most valuable benefits of working within the Coulomb gauge is that p̂ and
Â commute:

p̂ · Â = i~∇ · Â + i~Â ·∇ = 0 + Â · p̂ .

Therefore, we do not have any problem in writing Eq. (3.26).
From here, if we further make the long wavelength approximation (see Eq. (2.62)),
which is approximating the exponential with unity, we get

Mγ
NR&lwa(i → f) = −ε∗ · 〈f | p̂ |i〉

mc
= −ε∗ · 〈f |

ˆ̇r |i〉
c

= −(−i)
Ei − Ef

~c
ε∗ · 〈f | r̂ |i〉 ,

(3.27)

where the Heisemberg equation for r̂ has been used.
The long wavelength approximation is evidently assuming that the wavelength of the
photon (1/k) is much larger than the electron spatial coordinate ∼ r, which is roughly
the atomic size.
Joining with Eq. (3.19), the differential decay rate, within non-relativistic and long
wavelength approximations, turns out to be

dΓλ

dΩpγ

∣∣∣∣
NR&lwa

=
α(Ei −Ef )3

(2π)~3c2
|ε∗ · 〈f | r̂ |i〉|2 , (3.28)

which is equal to equation [4.70] in Ref. [44], where the single-photon emission is
treated non-relativistically from the outset.

Alternative approach

To have deeper insight and for further considerations, we may obtain the electric
and magnetic fields carried by the photon, within lwa. Both fields are, prior to any
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approximation, exactly equal to

E(r, t) = −∂A

∂t
= − λ̄

c e

∂

∂t

(
εe+i(kr+ωt) + ε∗e−i(kr+ωt)

)

= −i
λ̄ω

c e

(
εe+i(kr+ωt) − ε∗e−i(kr+ωt)

)
,

B(r, t) = ∇×A =
λ̄

c e
∇×

(
εe+i(kr+ωt) + ε∗e−i(kr+ωt)

)

= i
λ̄

c e
k ×

(
εe+i(kr+ωt) − ε∗e−i(kr+ωt)

)
,

(3.29)

where λ̄ is defined in Eq. (3.13).
Now, we see that the exact electric field turns out to be proportional to ω, while the
exact magnetic field turns out to be proportional to

ω

c
, since |k| =

ω

c
. The latter is

therefore suppressed by a factor c. Hence, we may neglect the whole magnetic field
and just take the first term of the series expansion of the electric field. We get

E
∣∣
lwa

= −i
λ̄ω

c e

(
εe+iωt − ε∗e−iωt

)
,

B
∣∣
lwa

= 0 .

(3.30)

We will soon see that this approximation corresponds to what we called lwa. That is
the reason for which we labeled the corresponding fields with lwa.
We know that the non relativistic Hamiltonian which accounts for the electron inter-
action with a constant (in space) electric field is

ĤeE = +d̂e ·E , (3.31)

where d̂e = er̂ is the electric dipole operator. Therefore, we can use Eq. (3.31) with
the electric field E

∣∣
lwa

.
Then we should carry out again the evaluation of the first order term of the probability
function P, as we did in Sec. 3.2, by using the Hamiltonian ĤeE instead of Ĥ

′
showed

in Eq. (3.12). What we would find is evidently that the term proportional to e+i(kr+ωt)

drops off, as it is responsible for the photon absorption, and the new amplitude would
read

Mγ
NR&lwa(i → f) = +i

Ei −Ef

e~c
〈f | d̂e ·Eo |i〉 , (3.32)

where Eo = ε is the part of the photon electric field left after the evaluation.
Equation (3.32) is, as expected, equal to Eq. (3.27). Therefore, making the non-
relativistic long wavelength approximation is effectively i) neglecting any magnetic
field that the photon carries, ii) assuming the electric field to be constant in space
and iii) assuming the interaction between electrons and photon to be given by the
non-relativistic Hamiltonian in Eq. (3.31).
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Integrating over the photon direction

In case the direction of the photon is not relevant, we should correctly come back to
Eq. (3.22), expanding with the multipole expansion and make there the non-relativistic
and long wavelength approximations. The calculation is easily carried out by looking
at Eq. (2.60) where we have seen that “long wavelength approximation” is effectively
equal to eda with the further approximations J0(kr) → 1 and J2(kr) → 0. We can
therefore first make eda to get

∣∣∣M̃γ(i → f)
∣∣∣
2

eda
=

∣∣∣(2π)
√

2 (−i) (λ) 〈f |α ·A(e) ∗
1 M (k, r̂) |i〉

∣∣∣
2

=
∣∣∣(2π)

√
2 (−i) (λ) 〈f |α · (−1)MA

(e)
1−M (k, r̂) |i〉

∣∣∣
2

,

where we used A
(e) ∗
1 M = (−1)MA

(e)
1−M as showed in Sec. B.

From here, by neglecting J2(kr) and by replacing J0(kr) → 1 we easily get

∣∣∣M̃γ(i → f)
∣∣∣
2

lwa
= 8π2

∣∣∣ 〈f |α ·
√

2
3

1∑

m=−1

〈0,−M −m, 1,m|1,−M〉

× Y −M−m
0 (ϕr, θr)ξm |i〉

∣∣∣
2

=
4π

3

∣∣∣ 〈f |α · ξ−M |i〉
∣∣∣
2

.

Introducing this term into Eq. (3.22) we get

Γλ
∣∣∣
lwa

=
α(Ei − Ef )

(2π)~

1∑

M=−1

4π

3

∣∣∣ 〈f |α · ξ−M |i〉
∣∣∣
2

.

Adding the non-relativistic approximation is, as discussed, making the replacement
cα → p̂/m. We get

Γλ
∣∣∣
NR&lwa

=
α(Ei −Ef )

(2π)~

1∑

M=−1

4π

3

∣∣∣ 〈f | p̂

mc
· ξ−M |i〉

∣∣∣
2

=
α(Ei −Ef )3

(2π)~3 c2

4π

3

1∑

M=−1

∣∣∣ 〈f | r̂ · ξ−M |i〉
∣∣∣
2

.

(3.33)

Now, by straightforward analysis, it is easy to show that, for any vector operator
Â = (Âx, Ây, Âz), it follows

1∑

M=−1

∣∣∣ 〈f | Â · ξ−M |i〉
∣∣∣
2

=
1∑

M=−1

∣∣∣ 〈f | Â · ξM |i〉
∣∣∣
2

=
∣∣∣ 〈f | Âx |i〉

∣∣∣
2
+

∣∣∣ 〈f | Ây |i〉
∣∣∣
2
+

∣∣∣ 〈f | Âz |i〉
∣∣∣
2

=
∣∣∣ 〈f | Â |i〉

∣∣∣
2

,

being ξm the unit vector showed in Eq. (2.57).
Using this relation in Eq. (3.33), we are lead to

Γλ
∣∣∣
NR&lwa

=
2α(Ei − Ef )3

3~3 c2

∣∣∣ 〈f | r̂ |i〉
∣∣∣
2

. (3.34)
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This expression could be also more easily (but less intuitively) obtained from Eq.
(3.28), by choosing a system of reference such that ε∗ · r = |ε∗||r| cos θk=|r| cos θk,
where θk is, as usual, the polar angle of the emitted photon and r is the electron
coordinate. From Eq. (3.28) we get

Γλ
∣∣∣
NR&lwa

=
α(Ei − Ef )3

(2π)~3c2

∫ 2π

0

∫ 1

−1
cos2 θk |〈f | r̂ |i〉|2 d cos θkdϕk

=
α(Ei − Ef )3

~3c2

∫ 1

−1
cos2 θk |〈f | r̂ |i〉|2 d cos θk

=
2α(Ei −Ef )3

3~3c2
|〈f | r̂ |i〉|2 .

Total decay rate

From Eq. (3.34) we see that, after having integrated over the photon direction, the
decay rate does not depend anymore on the photon polarization. The total decay rate
is then given by the sum over the two possible photon polarizations λ = −1, +1:

Γ
∣∣∣
NR&lwa

=
∑

λ =−1,
+1

Γλ
∣∣∣
NR&lwa

=
4α(Ei −Ef )3

3~3 c2

∣∣∣ 〈f | r̂ |i〉
∣∣∣
2

,

which matches Eq. (4.71) in Ref. [44].

Remarks and comments

As first remark, we point out that, since the matrix element

〈f | r̂ |i〉 =
∫

dr3Ψ∗
f (r)rΨi(r) (3.35)

is vanishing if parity of initial and final states are equal, only single-photon decays
between states with different parity are allowed within non-relativistic and long wave-
length approximations. This selection rule is known as Laporte rule.
As second remark: if we considered the spin part of the atomic wavefunction, we would
notice that, within this approximation, single photon transitions are not able to link
atomic states with different spin:

〈f | r̂ |i〉 =
∫

dr3Ψ∗
f (r)χ†Sf

(mSf
) r Ψi(r)χSi(mSi)

=
(∫

dr3Ψ∗
f (r)rΨi(r)

)(
χ†Sf

(mSf
)χSi(mSi)

)

= δSi,Sf
δmSi

,mSf

∫
dr3Ψ∗

f (r)rΨi(r) ,

where S and mS are the atomic spin magnitude and its projection along the quanti-
zation axis respectively.
In other words, single photon transitions within NR&lwa do not account for “spin flip
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transitions”. This selection rule is a consequence of having neglected any magnetic
field the photon carries. Higher order of the vector plane wave must be invoked so as
to allow spin flip transitions to occur.
Anyway, being spin-flip transitions not encompassed at the first order, this means that
they are normally far less probable than spin conserved transitions.
As third and last remark, we remind that the vector r = (x, y, z) can be decomposed
in terms of spherical harmonics of first rank as

x =
r

2

√
8π

3

(
Y 1

1 + Y −1
1

)

y =
r

2i

√
8π

3

(
Y 1

1 − Y −1
1

)

z = r

√
4π

3
Y 0

1 .

(3.36)

Since the initial and final atomic eigenfunctions have normally defined angular mo-
mentum, on evaluating the amplitude (3.35), we will generally have an integral of the
Gaunt type

∫
Y

mf ∗
Jf

(θ, ϕ) Y m
1 (θ, ϕ) Y mi

Ji
(θ, ϕ) dϕ sin θdθ

= (−1)mf 4π
√

(2 + 1)(2Ji + 1)(2Jf + 1)
(

1 Ji Jf

m mi −mf

)(
1 Ji Jf

0 0 0

)
,

where m could be -1, 0 or 1 and we employed the standard notation for the Wigner
3-j symbols.
Due to the symmetry properties of the 3-j symbols, the amplitude (3.35) would be
vanishing if the triangle rule Jf(i) ⊗ 1 = Ji(f) were not satisfied. In short, we see from
Eq. (3.36) that the operator r̂, being a superposition of spherical harmonics of rank 1,
can only link states which fulfill the tringle rule Jf(i) ⊗ 1 = Ji(f).
In atomic systems for which the parity is given by a quantum number l as (-1)l, we
can in summary write the selection rules which hold in NR&lwa as

∆S = 0
∆mS = 0

∆l = 1
Jf(i) ⊗ 1 = Ji(f) .

(3.37)

In the next section, we will investigate how to take into account some of the magnetic
photon effects so as to allow spin flip transitions to occur.

3.3.5 Non-relativistic Pauli approximation

The amplitude in Eq. (3.27), as it is clear from the previous section, accounts for the
electric dipole interaction between electron and photon, while it does not account at
all for the electron-photon magnetic interaction given by the B field the photon carries
(see Eq. (3.30)). Therefore, a better approximation than lwa would be obtained if we
added some contribution from the photon magnetic field.
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The exact magnetic field carried by the photon is given in Eq. (3.29) and it depends on
r. This may be rather uncomfortable during the calculation of transition amplitudes
and therefore we would like to drop such a dependence without neglecting the magnetic
field completely. If kr << 1, we can safely approximate the exponential with unity.
In other words, we are again saying that the photon wavelength is much bigger than
the atomic size, so that the atomic electrons feel a constant magnetic field. We get

B
∣∣
PA

≈ i
λ̄

c e
k ×

(
εe+iωt − ε∗e−iωt

)
.

This approximation will be hereinafter referred to as “Pauli approximation” (PA).
Now, with a constant magnetic field, everything becomes much easier. As we derive in
App. C, the non-relativistic Hamiltonian which accounts for the electron interaction
with a constant magnetic field is

ĤeB = +µ̂e ·B , (3.38)

where
µ̂e =

µB c

~

(
L̂ + gsŜ

)

is the magnetic dipole operator for the electron and µB =
e~

2mc
is the Bohr magneton.

We can therefore plug B
∣∣
PA

into Eq. (3.38) to obtain the photon-electron magnetic
interaction Hamiltonian.
From the previous section, we also know that the Hamiltonian which accounts for the
electron interaction with the (approximately) constant electric field of the photon is

ĤeE = +d̂e ·E ,

where
d̂e = er̂ ,

E ≈ i
λ̄ω

c e

(
εe+iωt − ε∗e−iωt

)
.

Now, we should carry out again the evaluation of the first order term of the probability
function P, that we did in Sec. 3.2, by using the Hamiltonian ĤeE + ĤeM instead of
Ĥ
′

of Eq. (3.12). What we would find is evidently that the terms proportional to
e+i(kr+ωt) drop off, as they are responsible for the photon absorption, and we would
have the amplitude as

Mγ
NR&PA(i → f) = +i

Ei − Ef

~c
ε∗ · 〈f | r̂ |i〉 +

µB c

e~
〈f |

(
L̂ + gsŜ

)
·B|PA |i〉

= +i
Ei − Ef

~c
ε∗ · 〈f | r̂ |i〉 − i

µB c

e~
(
k × ε∗

) · 〈f | L̂ + gsŜ |i〉 .

(3.39)
The comparison with Eq. (3.27) is immediate. We see that, by adding the (first order)
magnetic contribution to the vector potential, we have gained a new term in the ampli-
tude which depends upon the orbital and spin angular momenta of the initial and final
electronic states. By virtue of this term, single photon spin flip transitions, though
with low probability, are now allowed. This term is therefore essential for studying the

51



CHAPTER 3. SINGLE- AND TWO-PHOTON DECAYS IN ATOMS AND
IONS

polarization properties of the radiation as well as of the atom/ion which undergoes the
transition.
From the proceeding we adopted in the previous section, it is straightforward the

derivation of the quantities
dΓλ

dΩpγ

∣∣∣
NR&PA

, Γλ
∣∣
NR&PA

and Γ
∣∣
NR&PA

.

Remarks and comments

Despite the efforts we made, the amplitude (3.39) accounts only partially for spin-flip
transitions. In fact, we know that the operator L̂ contains only the spherical angles
operators ϕ̂ and θ̂, while it does not contain contain the radial operator r̂ [45]. By virtue
of this, the operator L̂+gsŜ cannot link states with different principal quantum number,
since the radial wavefunctions of states with different principal quantum numbers are
normally orthogonal. For example, in hydrogen-like ions, the matrix element of the
last term in Eq. (3.39) would read

〈n′, l′,m′
l, 1/2,m′

s|
(
L̂ + gsŜ

)
|n, l,ml, 1/2,ms〉 =

(∫
dr r2 gn′l′(r)gnl(r)

)

×
(∫

dϕ sin θdθ Ym′
l ∗

l′ (ϕ, θ)χ†1/2(m
′
s)

(
L + gs

~
2

σ
)
Yml

l (ϕ, θ)χ1/2(ms)
)

∝ δn, n′

(∫
dϕ sin θdθ Ym′

l ∗
l′ (ϕ, θ)χ†1/2(m

′
s)

(
L + gs

~
2

σ
)
Yml

l (ϕ, θ)χ1/2(ms)
)

,

where gnl(r) are the radial hydrogenic wavefunctions, Yml
l are spherical harmonics and

χ1/2(ms) are Pauli spinors.
Since the radial wavefunctions for equal n and different l are not orthogonal, spin-flip
transitions between states with different orbital angular momentum lying on the same
shell are in principle allowed. Evidently, in order to allow spin-flip transitions between
states with different principal quantum number, higher order terms in the field and
potential expansions must be taken into account.
Moreover, since both L̂ and Ŝ have even parity, the right term of Eq. (3.39) ac-
counts for transitions between states with equal parity and the same principal quantum
number. For making a clear example, the Pauli term accounts for the single photon
transition between the hydrogenic states 2p3/2 and 2p1/2, which are degenerate in the
non-relativistic description of Hydrogen but are actually separated by the fine splitting
correction.

3.4 Two-photon decay rate

For the two-photon transition rate, we must go back to Eq. (3.10). We look for
processes where i) the initial state is different from the final state and where ii) two
photons are emitted with propagation vector k1 and k2. Looking at our master equa-
tion (3.10), we correspondingly discard i) the first term (which corresponds to the
zero-order approximation) and ii) the second term (which corresponds to the first or-
der approximation) since both are vanishing for the problem under consideration. The
third term is what we are looking for, as it contains two vector potentials given by two
different photons.
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Since we are at the second order, we expect that the probability of two-photon emis-
sion is quite small in comparison with the one of single-photon emission which is at the
first order. In other words, we expect that the atom mostly gets de-excited by single-
photon emission, which is consistent with the original idea of the atomic Bohr model
and which is what is usually studied in an introductory course on quantum mechanics.
Indeed, this is the case. For many purposes, we can freely consider the single-photon
decay as the only existing one. This is what physicists were also actually doing at the
early stages of quantum mechanics. However, as usual in physics, there are a few tran-
sitions, between particular initial and final states, for which the single-photon emission
is either strongly suppressed or vanishing. At the time when quantum mechanics was
dawning, the Max Born’s PhD student Maria Göppert-Mayer was the first one who
formulated the theory of possible two-photon transitions in atoms, in 1931 [1].
Owing to the modern formulation of quantum mechanics explained in the previous sec-
tions, we do not have troubles nowadays in accepting the concept that two-photon pro-
cesses can occur. The derivation of the two-photon decay rate comes indeed straight-
forwardly. By using the electron-photon Hamiltonian showed at the beginning of the
previous section, the probability function for the two-photon decay is3

P =

∣∣∣∣∣
(
− i

~

)2

λ̄1λ̄2

∫ t

t0

dt1

∫ t1

t0

dt2
∑
ν1

eiωfν1
t1eiων1it2

× 〈f |α · ε∗1e−i(k1r̂−ω1t1) |ν1〉 〈ν1|α · ε∗2e−i(k2r̂−ω2t1) |i〉
∣∣∣
2

,

(3.40)

where λ̄j =

√
2π~2c3α

ωj V
while the subscripts 1 and 2 label the first and second photon

respectively. These labels are fictitious (they are merely an index in quantum mechan-
ics), so that we cannot actually distinguish between the situation in which ‘the first
and second photon are detected respectively at the detector A and B’ from the situa-
tion in which ‘the second and first photon are detected respectively at the detector A
and B’. Following one of the core principles of quantum mechanics [46], in this case we
must sum the amplitudes, nor the probabilities, of the two processes. Therefore, the
probability function that we must actually investigate is

P =

∣∣∣∣∣
(
− i

~

)2

λ̄1λ̄2

∫ t

t0

dt1

∫ t1

t0

dt2
∑
ν1

eiωfν1
t1eiων1it2

×
[
〈f |α · ε∗1e−i(k1r̂−ω1t1) |ν1〉 〈ν1|α · ε∗2e−i(k2r̂−ω2t2) |i〉

+ 〈f |α · ε∗2e−i(k2r̂−ω2t1) |ν1〉 〈ν1|α · ε∗1e−i(k1r̂−ω1t2) |i〉
]∣∣∣∣∣

2

.

(3.41)
The discussion which brought us from Eq. (3.40) to Eq. (3.41) is avoided in the for-
malism of Quantum Field Theory (QFT), where the action of creation and annihilation
operators of photons provides the right multiplicity and amplitude types [47].

3We have dropped the terms corresponding to photons absorption.
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We carry on our evaluation of the probability function re-labeling ν1 → ν:

P =

∣∣∣∣∣
λ̄1λ̄2

~2

∑
ν

[
〈f |α · ε∗1e−ik1r̂ |ν〉 〈ν|α · ε∗2e−ik2r̂ |i〉

×
∫ t

t0

dt1

∫ t1

t0

dt2e
it1(ωfν+ω1)eit2(ωνi+ω2)

+ 〈f |α · ε∗2e−ik2r̂ |ν〉 〈ν|α · ε∗1e−ik1r̂ |i〉

×
∫ t

t0

dt1

∫ t1

t0

dt2e
it1(ωfν+ω2)eit2(ωνi+ω1)

]∣∣∣∣∣
2

,

=
∣∣A12 B12 + A21 B21

∣∣2 ,

where

A12 =
λ̄1λ̄2

~2

∑
ν

〈f |α · ε∗1e−ik1r̂ |ν〉 〈ν|α · ε∗2e−ik2r̂ |i〉

B12 =
∫ t

t0

dt1

∫ t1

t0

dt2e
it1(ωfν+ω1)eit2(ωνi+ω2)

and the elements A21, B21 are just the same as the elements above with the photons’
characteristics interchanged.
We choose t0 = 0 (t0 is the time when the experiments starts, when the atom is prepared
in the excited state), as it is natural, as we have done in treating the single-photon
decay. We focus on B12:

B12 =
∫ t

0
dt1 eit1(ωfν+ω1) e

it1(ωνi+ω2) − 1
i(ωνi + ω2)

=
i

ωνi + ω2

∫ t

0
dt1 eit1(ωfν+ω1)

(
1− eit1(ωνi+ω2)

)

=
i

ωνi + ω2

∫ t

0
dt1

(
eit1(ωfν+ω1) − eit1(

ωfi︷ ︸︸ ︷
ωfν + ωνi +ω1+ω2)

)

=
i

ωνi + ω2

(
eit(ωfν+ω1) − 1
i(ωfν + ω1)

− eit(ωfi+ω1+ω2) − 1
i(ωfi + ω1 + ω2)

)

=
1

ωνi + ω2

(
eit(ωfν+ω1) − 1

ωfν + ω1
+

1− eit(ωfi+ω1+ω2)

ωfi + ω1 + ω2

)
.

(3.42)

Bearing in mind that we must take the limit t → +∞ to get the decay rate from
the first derivative in time of the probability function, we can easily understand that
the first term in the rhs of the above equation will be proportional to ∼ δ(ωfν + ω1),
or, more explicitly to ∼ δ(Ef − Eν + E1), where we called En the energy of the
n-th photon. As long as we detect only events far from any resonance of the type
E1,2 = Eν −Ef or, being the overall energy conserved, of the type E1,2 = Ei −Eν , we
can safely discard this term both in B12 and in B21. It is obvious, nonetheless, that if
one wants to investigate the two-photon decays near resonances, he must come back
to this equation and consider all the terms.
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Neglecting the first term in the rhs of Eq. (3.42) brings also great advantage to the
calculation, since the second term is almost symmetric in 1 → 2. We can therefore
write

B12 ' 1
ωνi + ω2

1− eit(ωfi+ω1+ω2)

ωfi + ω1 + ω2

B21 ' 1
ωνi + ω1

1− eit(ωfi+ω1+ω2)

ωfi + ω1 + ω2
.

The probability function is then

P =
∣∣A12 B12 + A21 B21

∣∣ 2

'
∣∣∣∣∣

A︷ ︸︸ ︷(
A12

ωνi + ω2
+

A21

ωνi + ω1

)
1− eit(ωfi+ω1+ω2)

ωfi + ω1 + ω2

∣∣∣∣∣
2

=
∣∣A∣∣ 2

∣∣∣∣∣ ei t
2
(ωfi+ω1+ω2) e

−i t
2
(ωfi+ω1+ω2) − ei t

2
(ωfi+ω1+ω2)

ωfi + ω1 + ω2

∣∣∣∣∣
2

=

∣∣A∣∣2
(ωfi + ω1 + ω2)2

∣∣∣∣−2i sin
[
t(ωfi + ω1 + ω2)

2

]∣∣∣∣
2

= 4
∣∣A∣∣2 sin2

[
t(ωfi+ω1+ω2)

2

]

(ωfi + ω1 + ω2)2
.

In order to find the decay rate, we proceed to take the first derivative in time,

dP

dt
= 2 |A|2 sin [t(ωfi + ω1 + ω2)]

ωfi + ω1 + ω2
,

from which we finally get

Γ = lim
t→+∞

dP

dt
= (2π)|A|2δ(ωfi + ω1 + ω2) .

By writing explicitly the element A, we obtain

Γ =
(

2π
λ̄2

1λ̄
2
2

~3

) ∣∣∣Mγγ(i → f)
∣∣∣
2
δ(Ef −Ei + E1 + E2) , (3.43)

where

Mγγ(i → f) =
∑

ν

(〈f |α · ε∗1e−ik1r̂ |ν〉 〈ν|α · ε∗2e−ik2r̂ |i〉
ωνi + ω2

+
〈f |α · ε∗2e−ik2r̂ |ν〉 〈ν|α · ε∗1e−ik1r̂ |i〉

ωνi + ω1

)
.

(3.44)

We may now compare Eq. (3.43) with Eq. (3.16) in order to notice a general structure.
Writing explicitly the elements λ̄1,2, multiplying by the number of photons Nγ1 and
Nγ2 (see Eq. (3.17)) and integrating over the second photon energy E2, we get the
final expression

dΓλ1λ2

dE1dΩp1dΩp2

=
(

α2 E1(Ei −Ef − E1)
(2π)3~3

) ∣∣∣Mγγ(i → f)
∣∣∣
2

E2=Ei−Ef−E1

, (3.45)
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where the notation
∣∣
E2=Ei−Ef−E1

means that the expression standing before must be
calculated with E2 = Ei −Ef −E1. We have furthermore added the label λ1λ2 to the
decay rate to make explicit the fact that it depends on the polarization of the emitted
photons. λ1,2 are here intended to denote the photons helicities.
Contrarily to the single-photon decay case, the element Mγγ is not dimensionless.
Rather, Mγγ has dimensions sec. By virtue of this, if the matrix element Mγγ is
calculated in unit systems different from SI, in order to get the right decay rate, one
must first transform it into the correct value in SI (multiplying it by the unit time
of that unit system) and then plug the result in Eq. (3.45). We may also notice
that, being Mγγ with dimensions sec, the rhs of Eq. (3.45) has the right dimensions
J−1sec−1.

Coming back to Eq. (3.44), we can now identify the Green function for the transition:

Mγγ(i → f) = ~
∑

ν

∫
d3r1d3r2

(〈f |r1〉α · ε∗1e−ik1r1〈r1|ν〉〈ν|r2〉α · ε∗2e−ik2r2〈r2|i〉
Eν − Ei + E2

+
〈f |r1〉α · ε∗2e−ik2r1〈r1|ν〉〈ν|r2〉α · ε∗1e−ik1r2〈r2|i〉

Eν −Ei + E1

)

= ~
∫

d3r1d3r2

(
Ψ†

f (r1)α · ε∗1e−ik1r1GE2−Ei(r1, r2)α · ε∗2e−ik2r2Ψi(r2)

+ Ψ†
f (r1)α · ε∗2e−ik2r1GE1−Ei(r1, r2)α · ε∗1e−ik1r2Ψi(r2)

)
,

(3.46)

where the identity
∫

d3r |r〉 〈r| = 1̂ and the equation e−ik1r̂ |r1〉 = e−ik1r1 |r1〉 have

been used.
Equations (3.44), (3.45) and (3.46) are general and can be used for analyzing the two-
photon decay in any kind of atoms or ions.
In the next section, we will evaluate more explicitly Mγγ .

3.5 Evaluation of the second-order matrix element

3.5.1 General expression

In two-photon decays we have two photons to be detected. For treating the two-photon
decay, we need to write the potential vector operator for a photon traveling along an
arbitrary direction. For that purpose, we can safely use the multipole expansion in Eq.
(2.57).
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By employing Eq. (2.57) into Eq. (3.44), we find

Mγγ(i → f) = (2π)
∑

L1 L2

∑

M1 M2

∑
p1 p2

(−i)L1+L2+p1+p2
√

(2L1 + 1)(2L2 + 1)

× (λ1)p1(λ2)p2DL1 ∗
M1 λ1

(ϕk1 , θk1 , 0)DL2 ∗
M2 λ2

(ϕk2 , θk2 , 0)

×
∑

ν

(
〈f |α · ap1 ∗

L1 M1
(k1, r̂) |ν〉 〈ν|α · ap2 ∗

L2 M2
(k2, r̂) |i〉

ωνi + ω2

+
〈f |α · ap2 ∗

L2 M2
(k2, r̂) |ν〉 〈ν|α · ap1 ∗

L1 M1
(k1, r̂) |i〉

ωνi + ω1

)
.

(3.47)

In what follows, we will work with atomic states. Atomic states have, in general,
defined angular momentum properties. They can be therefore described by ket of the
type |β, J,mJ〉, where J and mJ are the magnitude and the projection along ẑ of the
angular momentum of the state, while β is a collective index to denote all the other
quantum numbers needed to describe the state.
Now, since ap

L M is an irreducible tensor of rank L [37], we can apply the transformation
ap ∗

LM = (−1)M+p+1ap
L−M and, subsequently, the Wigner-Eckart theorem on the two

matrix elements in the equation above:

Mγγ(i → f) = (2π)
∑

L1 L2

∑

M1 M2

∑
p1 p2

(−i)L1+L2+p1+p2
√

(2L1 + 1)(2L2 + 1)

× (λ1)p1(λ2)p2DL1 ∗
M1 λ1

(ϕk1 , θk1 , 0)DL2 ∗
M2 λ2

(ϕk2 , θk2 , 0)(−1)M1+M2+p1+p2

×
∑

ν

(
〈Jν ,mJν , L1,−M1|Jf ,mJf

〉√
2Jν + 1

〈Ji,mJi , L2,−M2|Jν ,mJν 〉√
2Ji + 1

× 〈βf , Jf ||α · ap1

L1
(k1, r̂)||βν , Jν〉〈βν , Jν ||α · ap2

L2
(k2, r̂)||βi, Ji〉

ωνi + ω2

+ 1 ←→ 2

)
,

(3.48)

where the symbol 1 ←→ 2 means the previous term enclosed in parentheses with the
photon labels exchanged. We have furthermore used the fact that Clebsch-Gordan
coefficients are real.
This general expression for the matrix element Mγγ(i → f) can be applied to study
two-photon decays in any atom or ion.

3.5.2 Integrating over the photons directions

Equation (3.45) simplifies considerably if we integrate over the two photons’ directions,
i.e. if we look for the decay rate irrespectively of the photons’ directions.
From Eq. (3.47), we define V L1 L2

M1 M2
(k1, k2) as

V L1 L2
M1 M2

(k1, k2) = (2π)
∑
p1 p2

(−i)L1+L2+p1+p2
√

(2L1 + 1)(2L2 + 1)(λ1)p1(λ2)p2

×
∑

ν

(
〈f |α · ap1 ∗

L1 M1
(k1, r̂) |ν〉 〈ν|α · ap2 ∗

L2 M2
(k2, r̂) |i〉

ωνi + ω2
+ 1 ←→ 2

)
.
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With this, we can rewrite Mγγ(i → f) as

Mγγ(i → f) =
∑

L1 L2

∑

M1 M2

V L1 L2
M1 M2

(k1, k2)

× DL1 ∗
M1 λ1

(ϕk1 , θk1 , 0)DL2 ∗
M2 λ2

(ϕk2 , θk2 , 0) .

The important thing to notice in the above equation is that only the Wigner matrices
depend on the spherical angles of the photons’ directions, while V L1 L2

M1 M2
depends only on

the magnitude of the vectors k1 and k2. Thus, by using Eq. (3.45) and the equivalence
dΩpj = dΩkj (as discussed in Eq. (3.17)), we can write

dΓλ1λ2

dE1
=

(
α2 E1(Ei − Ef − E1)

(2π)3~3

) ∑

L1 L2
M1 M2

∑

L′1 L′2
M ′

1 M ′
2

V L1 L2
M1 M2

(k1, k2)V
L′1 L′2 ∗
M ′

1 M ′
2

(k1, k2)

×
(∫

dΩk1D
L1 ∗
M1 λ1

(ϕk1 , θk1 , 0)DL′1
M ′

1 λ1
(ϕk1 , θk1 , 0)

)

×
(∫

dΩk2D
L2 ∗
M2 λ2

(ϕk2 , θk2 , 0)DL′2
M ′

2 λ2
(ϕk2 , θk2 , 0)

)

=
(

α2 E1E2

(2π)3~3

) ∑

L1 L2
M1 M2

∑

L′1 L′2
M ′

1 M ′
2

V L1 L2
M1 M2

(k1, k2)V
L′1 L′2 ∗
M ′

1 M ′
2

(k1, k2)

× 4π

2L1 + 1
4π

2L2 + 1
δL1 L′1 δM1 M ′

1
δL2 L′2 δM2 M ′

2

=
(

α2 E1E2

(2π)3~3

) ∑

L1 L2
M1 M2

16π2

(2L1 + 1)(2L2 + 1)

∣∣V L1 L2
M1 M2

(k1, k2)
∣∣2 .

We can eventually write

dΓλ1λ2

dE1
=

(
α2 E1(Ei − Ef − E1)

(2π)3~3

) ∑

L1 L2

∑

M1 M2

∣∣∣M̃γγ(i → f)
∣∣∣
2

E2=Ei−Ef−E1

(3.49)
so that is has a structure similar to Eq. (3.45) but the matrix element involved is
slightly different and reads4

M̃γγ(i → f) = (8π2)
∑
p1 p2

(−i)p1+p2 (λ1)p1(λ2)p2

×
∑

ν

(
〈f |α · ap1 ∗

L1 M1
(k1, r̂) |ν〉 〈ν|α · ap2 ∗

L2 M2
(k2, r̂) |i〉

ωνi + ω2
+ 1 ←→ 2

)
.

(3.50)

4The factor (−i)L1+L2 disappears because of the modulus squared.
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Similarly to what done in Eq. (3.48), we can apply the the transformation ap ∗
LM =

(−1)M+p+1ap
L−M and then use the Wigner-Eckart theorem to obtain

M̃γγ(i → f) = (8π2)
∑
p1 p2

(+i)p1+p2(λ1)p1(λ2)p2

×
∑

ν

(
〈Jν ,mJν , L1,−M1|Jf ,mJf

〉√
2Jν + 1

〈Ji,mJi , L2,−M2|Jν ,mJν 〉√
2Ji + 1

× 〈βf , Jf ||α · ap1

L1
(k1, r̂)||βν , Jν〉〈βν , Jν ||α · ap2

L2
(k2, r̂)||βi, Ji〉

ωνi + ω2

+ 1 ←→ 2

)
,

(3.51)
where the phase (−1)M1+M2 has been dropped because of the modulus squared and we
have used (−i)p(−1)p = (+i)p5. The elements 〈β1, J1||α · ap

L(k, r̂)||β2, J2〉 are scalars
that do not depend upon geometrical properties of the system (they do not depend
upon the angular momenta projections mJ1 , mJ2 and M).
We may now recall M1 → −M1, M2 → −M2 in M̃γγ . The summations in Eq. (3.49)
do not modify since they run from −L1,2 to L1,2. We get

M̃γγ(i → f) = (8π2)
∑
p1 p2

(+i)p1+p2(λ1)p1(λ2)p2

×
∑

ν

(
〈Jν ,mJν , L1,M1|Jf ,mJf

〉√
2Jν + 1

〈Ji,mJi , L2,M2|Jν ,mJν 〉√
2Ji + 1

× 〈βf , Jf ||α · ap1

L1
(k1, r̂)||βν , Jν〉〈βν , Jν ||α · ap2

L2
(k2, r̂)||βi, Ji〉

ωνi + ω2

+ 1 ←→ 2

)
,

We can always explicitly write
∑

ν

as
∑

βνJνmJν

. Then, by defining,

SJν (1, 2) ≡
∑

βν

〈βf , Jf ||α · ap1

L1
(k1, r̂)||βν , Jν〉〈βν , Jν ||α · ap2

L2
(k2, r̂)||βi, Ji〉

ωνi + ω2
(3.52)

and by using the 3-j symbol definition

〈J1,mJ1 , J2,mJ2 |J3,mJ3〉 = (−1)J1−J2+mJ3

√
2J3 + 1




J1 J2 J3

mJ1 mJ2 −mJ3




5we can do this since p is certainly integer.
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we may rewrite Eq. (3.51) as

M̃γγ(i → f) = (8π2)
∑
p1 p2

(+i)p1+p2(λ1)p1(λ2)p2
(2Jf + 1)1/2

(2Ji + 1)1/2

×
∑

Jν

(−1)−Jν

(2Jν + 1)1/2

(
θJν (1, 2)SJν (1, 2) + θJν (2, 1)SJν (2, 1)

)
,

(3.53)
where we defined

θJν (1, 2) = (2Jν + 1)1/2
∑
mJν

(−1)mJf
+mJν +1

×



Jf L1 Jν

−mJf
M1 mJν







Jν L2 Ji

−mJν M2 mJi


 ,

(3.54)

and where the Sjν
ω elements, although not explicitly denoted, depend on p1, p2.

In deriving the above equation it has been used the symmetry properties of the 3-j
symbols together with the fact that any phase of the type (−1)r, where r = L1 +
L2,M1 + M2, Ji,mJi , Jf ,mJf

are inessential and can be dropped due to the modulus
squared which wraps the amplitude, since they do not depend upon the summation
over ν and are symmetric upon the exchange 1 ←→ 2. Indeed, the factor (−1)mJf

+1

in Eq. (3.54) can be dropped but it is left there for convenience since it allows to use
the sum rules

∑

M1,M2,mJf
,mJi

θJν (1, 2) θJ ′ν (1, 2) = δJν ,J ′ν ,

∑

M1,M2,mJf
,mJi

θJν (2, 1) θJ ′ν (2, 1) = δJν ,J ′ν .

We used also (−1)3Jν = (−1)4Jν (−1)−Jν = (−1)−Jν , being 4Jν certainly even integer.

3.5.3 Integrating over photons directions and summing over pho-
tons polarizations

Equations (3.50) and (3.53) further simplify if we sum over the photons polarizations,
i.e. if we look for the decay rate irrespectively of photons directions and polarizations.
By summing over photons polarizations (helicites), the differential decay rate (3.49)
becomes

dΓ
dE1

=
(

α2 E1(Ei − Ef −E1)
(2π)3~3

) ∑

L1 L2

∑

M1 M2

∑

λ1 λ2

∣∣∣M̃γγ(i → f)
∣∣∣
2

E2=Ei−Ef−E1

.
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Let us investigate in detail the above quantity. We have

∑

λ1 λ2

∣∣∣M̃γγ(i → f)
∣∣∣
2

= (64π4)
∑
p1 p2

p′1 p′2

(−i)p1+p2−p′1−p′2


 ∑

λ1=±1

(λ1)p1+p′1





 ∑

λ2=±1

(λ2)p2+p′2




×
∑

ν

(
〈f |α · ap1 ∗

L1 M1
(k1, r̂) |ν〉 〈ν|α · ap2 ∗

L2 M2
(k2, r̂) |i〉

ωνi + ω2
+ 1 ←→ 2

)

×
∑

ν′


〈f |α · ap′1 ∗

L1 M1
(k1, r̂) |ν ′〉 〈ν ′|α · ap′2 ∗

L2 M2
(k2, r̂) |i〉

ων′i + ω2
+ 1 ←→ 2



∗

.

Now, similarly to Eq. (3.24), it follows that
∑

λ1=±1

(λ1)p1+p′1 = 2δp1,p′1 ,

∑

λ2=±1

(λ2)p2+p′2 = 2δp2,p′2 .

Then we have
∑

λ1 λ2

∣∣∣M̃γγ(i → f)
∣∣∣
2

= 4(64π4)
∑
p1 p2

p′1 p′2

(−i)p1+p2−p′1−p′2 δp1,p′1δp2,p′2

×
∑

ν

(
〈f |α · ap1 ∗

L1 M1
(k1, r̂) |ν〉 〈ν|α · ap2 ∗

L2 M2
(k2, r̂) |i〉

ωνi + ω2
+ 1 ←→ 2

)

×
∑

ν′


〈f |α · ap′1 ∗

L1 M1
(k1, r̂) |ν ′〉 〈ν ′|α · ap′2 ∗

L2 M2
(k2, r̂) |i〉

ων′i + ω2
+ 1 ←→ 2



∗

=
∑
p1 p2

[
4(64π4)

×
∑

ν

(
〈f |α · ap1 ∗

L1 M1
(k1, r̂) |ν〉 〈ν|α · ap2 ∗

L2 M2
(k2, r̂) |i〉

ωνi + ω2
+ 1 ←→ 2

)

×
∑

ν′

(
〈f |α · ap1 ∗

L1 M1
(k1, r̂) |ν ′〉 〈ν ′|α · ap2 ∗

L2 M2
(k2, r̂) |i〉

ων′i + ω2
+ 1 ←→ 2

)∗ ]

=
∑
p1 p2

∣∣∣ ˜̃Mγγ(i → f)
∣∣∣
2

,

where

˜̃Mγγ(i → f) = 16π2
∑

ν

(
〈f |α · ap1 ∗

L1 M1
(k1, r̂) |ν〉 〈ν|α · ap2 ∗

L2 M2
(k2, r̂) |i〉

ωνi + ω2

+
〈f |α · ap2 ∗

L2 M2
(k2, r̂) |ν〉 〈ν|α · ap1 ∗

L1 M1
(k1, r̂) |i〉

ωνi + ω1

)
.
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In conclusion, the differential decay rate irrespectively of photons directions and po-
larizations is

dΓ
dE1

=
(

α2 E1(Ei − Ef −E1)
(2π)3~3

) ∑

L1 L2

∑

M1 M2

∑
p1 p2

∣∣∣ ˜̃Mγγ(i → f)
∣∣∣
2

E2=Ei−Ef−E1

.

As we have done in the previous section, we can express the amplitude ˜̃Mγγ in terms
of the functions SJν and θJν . We easily get

˜̃Mγγ(i → f) = 16π2 (2Jf + 1)1/2

(2Ji + 1)1/2

∑
ν

(−1)−Jν

(2Jν + 1)1/2

×
(
θJν (1, 2)SJν (1, 2) + θJν (2, 1)SJν (2, 1)

)
.

The two above equations allow a direct comparison with Eq. (2.25) of Ref. [48].

3.5.4 Non-relativistic and long wavelength approximations

The non-relativistic Hamiltonian is showed in Eq. (3.25) and it consists of two terms:
The first term is proportional to α while the second term to α2. By using that Hamil-
tonian in our master equation (3.10), we soon see that the first order term (second

row) will contain a term proportional to α due to e
p̂ · Â

m
and a term proportional to

α2 due to e2Â2. On the other hand, the second order term (third row) will contain

a term proportional to α2 due to e
p̂ · Â

m
and a term proportional to α4 due to e2Â2.

In order to get the right terms for the description of the two-photon decay, we must
evidently keep the two terms which are proportional to α2. Since both terms have the
same overall coefficient A0 defined in Eq. (2.50), we are able to write the amplitude
within non-relativistic approximation just readjusting the dimensions of the term due
to e2Â to be “sec”. We get

Mγγ
NR(i → f) =

~
mc2

〈f | ε∗1 · ε∗2 e−ik1r̂ e−ik2r̂ |i〉

− 1
m2c2

∑
ν

(〈f | p̂ · ε∗1e−ik1r̂ |ν〉 〈ν| p̂ · ε∗2e−ik2r̂ |i〉
ωνi + ω2

+
〈f | p̂ · ε∗2e−ik2r̂ |ν〉 〈ν| p̂ · ε∗1e−ik1r̂ |i〉

ωνi + ω1

)
.

In order to further simplify the amplitude, we make also lwa to get:

Mγγ
NR&lwa(i → f) =

~
mc2

〈f | ε∗1 · ε∗2 |i〉 −
1

m2c2

∑
ν

(〈f | p̂ · ε∗1 |ν〉 〈ν| p̂ · ε∗2 |i〉
ωνi + ω2

+
〈f | p̂ · ε∗2 |ν〉 〈ν| p̂ · ε∗1 |i〉

ωνi + ω1

)

=
~

mc2
〈f | ε∗1 · ε∗2 |i〉+

1
c2

∑
ν

ωfνων i

(〈f | r̂ · ε∗1 |ν〉 〈ν| r̂ · ε∗2 |i〉
ωνi + ω2

+
〈f | r̂ · ε∗2 |ν〉 〈ν| r̂ · ε∗1 |i〉

ωνi + ω1

)
,

(3.55)
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where the Heisemberg equation

〈s| p̂ |t〉 = im ωst 〈s| r̂ |t〉

has been used.
Now we make a nifty trick, which follows from the anticommutator relation between
r̂i and p̂j

r̂ip̂j − p̂j r̂i = i~δij .

We write

ε∗1 · ε∗2 = ε∗1 iε
∗
2 i = ε∗1 iε

∗
2 jδij = − i

~
ε∗1 iε

∗
2 j(r̂ip̂j − p̂j r̂i)

= − i

~

(
(ε∗1 · r̂)(ε∗2 · p̂)− (ε∗2 · p̂)(ε∗1 · r̂)

)
.

The first element in Eq. (3.55) is therefore

~
mc2

〈f | ε∗1 · ε∗2 |i〉 = − i

mc2

∑
ν

(
〈f | ε∗1 · r̂ |ν〉 〈ν| ε∗2 · p̂ |i〉 − 〈f | ε∗2 · p̂ |ν〉 〈ν| ε∗1 · r̂ |i〉

)

=
1
c2

∑
ν

(
ωνi 〈f | ε∗1 · r̂ |ν〉 〈ν| ε∗2 · r̂ |i〉 − ωfν 〈f | ε∗2 · r̂ |ν〉 〈ν| ε∗1 · r̂ |i〉

)
.

Altogether we get

Mγγ
NR&lwa(i → f) =

1
c2

∑
ν

[(
ωfνων i

ωνi + ω2
+ ωνi

)
〈f | r̂ · ε∗1 |ν〉 〈ν| r̂ · ε∗2 |i〉

+
(

ωfνωνi

ωνi + ω1
− ωfν

)
〈f | r̂ · ε∗2 |ν〉 〈ν| r̂ · ε∗1 |i〉

]

=
ω1

c2

∑
ν

[(
ωiν

ωνi + ω2

)
〈f | r̂ · ε∗1 |ν〉 〈ν| r̂ · ε∗2 |i〉

−
(

ωfν

ωνi + ω1

)
〈f | r̂ · ε∗2 |ν〉 〈ν| r̂ · ε∗1 |i〉

]
.

The differential decay rate is then obtained by plugging the above matrix element into
Eq. (3.45):

dΓλ1λ2

dE1dΩp1dΩp2

∣∣∣
NR&lwa

=
(

α2 E1(Ei − Ef − E1)
(2π)3~3

) ∣∣∣Mγγ
NR&lwa(i → f)

∣∣∣
2

E2=Ei−Ef−E1

.

(3.56)

Remarks and comments

The remarks we made in Sec. 3.3.4 are here similar. That is, the non-relativistic
(double) dipole operator is unable to link atomic states with different spin or different
parity. The parity of the intermediate state must then be opposite of the parity of the
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initial and final states. Using the same notation as in Sec. 3.3.4, we may summarize
as follows:

∆S = 0
∆mS = 0

∆l = 0
Jf(i) ⊗ 1⊗ 1 = Ji(f) .

With formula (3.56), we could account, for instance, for the two-photon decay 2s1/2 →
1s1/2 in hydrogen-like atoms.

3.5.5 Hydrogen-like ions

In this subsection, we will evaluate Mγγ(i → f) specifically for hydrogen-like ions.
Concerning Hydrogen and hydrogen-like ions, we know the exact wavefunctions which
characterize the states. The evaluation of the matrix element Mγγ(i → f) can be
made more in detail.
Let us come back to Eq. (3.47). We insert the unit operator

∫
dr3 |r〉 〈r| to get

wavefunctions instead of ket states and we write explicitly the elements ap ∗
L M . We

obtain:

Mγγ(i → f) = (2π)
∫

d3r1d3r2

∑

L1 L2

∑

M1 M2

∑
ν

(−i)L1+L2 [L1, L2]1/2

× DL1 ∗
M1 λ1

(ϕk1 , θk1 , 0)DL2 ∗
M2 λ2

(ϕk2 , θk2 , 0)

× Ψ†
f (r1)α ·

(
A

(m)
L1 M1

(k1, r1) + iλ1A
(e)
L1 M1

(k1, r1)
)∗ Ψν(r1)

ωνi + ω2

× Ψ†
ν(r2)α ·

(
A

(m)
L2 M2

(k2, r2) + iλ2A
(e)
L2 M2

(k2, r2)
)∗

Ψi(r2) + 1 ←→ 2 ,

where we introduced the notation [L1, L2, ...] = (2L1 + 1)(2L2 + 1)... .
Now, consider that

(
A

(m)
L M (k, r) + iλA

(e)
L M (k, r)

)∗
=

(
JL(kr)TL L M (r)

+ iλJL−1(k, r)

√
L + 1
2L + 1

TL L−1 M (r)− iλJL+1(kr)

√
L

2L + 1
TL L+1 M (r)

)∗

=


 ∑

p=0,1

L+1∑

Λ=L−1

(iλ)pJΛ(kr)TL Λ M (r)ξp
L Λ



∗

,

where

ξ0
L Λ = δL,Λ , ξ1

L Λ =





√
L + 1
2L + 1

Λ = L− 1

−
√

L

2L + 1
Λ = L + 1

0 otherwise

.
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Altogether we obtain

Mγγ(i → f) =
∑

ν

∫
d3r1d

3r2

{
(2π)

∑

L1 L2

∑

M2 M1

∑

Λ1 Λ2

∑

p1 p2=0,1

(−iλ1)p1(−iλ2)p2×

× i−L1−L2 [L1, L2]1/2ξp1

L1 Λ1
ξp2

L2 Λ2
DL1∗

M1 λ1
(ϕk1 , θk1 , 0)DL2∗

M2 λ2
(ϕk2 , θk2 , 0)

}

× JΛ1(k1r1)JΛ2(k2r2)Ψ
†
f (r1)α · T ∗

L1 Λ1 M1
(r1)

Ψν(r1)Ψ
†
ν(r2)

ωνi + ω1

× α · T ∗
L2 Λ2 M2

(r2)Ψi(r2) + 1 ←→ 2

=
∑

ν

C1

ωνi + ω1

∫
d3r1 d3r2JΛ1(k1r1)JΛ2(k2r2)

× Ψ†
f (r1)α · T ∗

L1 Λ1 M1
(r1)Ψν(r1)Ψ†

ν(r2)α · T ∗
L2 Λ2 M2

(r2)Ψi(r2) ,

+ 1 ←→ 2
(3.57)

where we used the fact that Bessel functions are real and we defined C1, for shortening
the lines, as the element enclosed in curly brackets:

C1 = {...} .

It must be clear that C1 is not a scalar and must be left in the position where it is.
We may say it is an operator.
We know from Eq. (2.8) that the Dirac hydrogenic wavefunction of the initial state,
for instance, is of the type

Ψi(r) =




gniκi(r)Ωjilimji
(r)

ifniκi(r)Ωjil′imji
(r)


 =


 gi(r)Ωli(r)

ifi(r)Ωl′i(r)


 , (3.58)

where, in the last step, we have grouped the quantum numbers for the sake of shortness.
We have

Ψ†
f (r1)αΨν(r1) = −if∗f gνΩ∗l′f σΩlν + ig∗ffνΩ∗lf σΩl′ν

Ψ†
ν(r2)αΨi(r2) = −if∗ν giΩ∗l′νσΩli + ig∗νfiΩ∗lνσΩl′i .

(3.59)

In the above equation, we have dropped the r1, r1, r2 and r2 dependence, for clearness.
There is no confusion since we can restore it in the future by using the following

f∗f = f∗f (r1) g∗f = g∗f (r1) Ω∗l′f = Ω∗l′f (r1) Ω∗lf = Ω∗lf (r1)

fν = fν(r1) gν = gν(r1) Ωl′ν = Ωl′ν (r1) Ωlν = Ωlν (r1)

f∗ν = f∗ν (r2) g∗ν = g∗ν(r2) Ω∗l′ν = Ω∗l′ν (r2) Ω∗lν = Ω∗lν (r2)

fi = fi(r2) gi = gi(r2) Ωl′i = Ωl′i(r2) Ωli = Ωli(r2) .
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Plugging Eq. (3.59) into Eq. (3.57), we get

Mγγ(i → f) =
∑

ν

C1

ωνi + ω1

∫
d3r1d3r2JΛ1(k1r1)JΛ2(k2r2)

×
(
− if∗f gνΩ∗l′f σΩlν + ig∗ffνΩ∗lf σΩl′ν

)
· T ∗

L1 Λ1 M1
(r1)

×
(
− if∗ν giΩ∗l′νσΩli + ig∗νfiΩ∗lνσΩl′i

)
· T ∗

L2,Λ2,M2
(r2)

+ 1 ←→ 2

=
∑

ν

C1

ωνi + ω1

∫
dr1dr2r

2
1r

2
2JΛ1(k1r1)JΛ2(k2r2)

×
(
− if∗f gν 〈l′fJfmJf

| σ̂ · T ∗
L1 Λ1 M1

(r̂1) |lνJνmJν 〉

+ ig∗ffν 〈lfJfmJf
| σ̂ · T ∗

L1 Λ1 M1
(r̂1) |l′νJνmJν 〉

)

×
(
− if∗ν gi 〈l′νJνmJν | σ̂ · T ∗

L2 Λ2 M2
(r̂2) |liJimJi〉

+ ig∗νfi 〈lνJνmJν | σ̂ · T ∗
L2 Λ2 M2

(r̂2) |l′iJimJi〉
)

+ 1 ←→ 2 ,

where the formal relation
∫

dΩ Ω∗l1σΩl2 =
∫

dΩ 〈l1J1mJ1 |Ω〉σ̂〈Ω|l2J2mJ2〉

= 〈l1J1mJ1 | σ̂ |l2J2mJ2〉
∫

dΩ |Ω〉 〈Ω|

= 〈l1J1mJ1 | σ̂ |l2J2mJ2〉

has been used.
By expanding the multiplication and by replacing C1 with his definition we finally get

Mγγ(i → f) = (−2π)
∑

T,T ′=L,S

∑

Jν ,mJν ,lν

+∞∑

L1,L2=1

L1∑

M1=−L1

L2∑

M2=−L2

∑

p1,p2=0,1

L1+1∑

Λ1=L1−1

L2+1∑

Λ2=L2−1

× (λ1)p1(λ2)p2i−L1−L2−p1−p2 [L1, L2]1/2ξp1

L1 Λ1
ξp2

L2 Λ2

× DL1 ∗
M1λ1

(ϕk1 , θk1 , 0)DL2 ∗
M2λ2

(ϕk2 , θk2 , 0)P T P T ′

×
[
〈lTf JfmJf

| σ̂ · T ∗
L1 Λ1 M1

(r̂1) |lT̄ν JνmJν 〉 〈lT
′

ν JνmJν | σ̂ · T ∗
L2 Λ2 M2

(r̂2) |lT̄ ′i JimJi〉

×
(∫

dr1dr2r
2
1r

2
2JΛ1(k1r1)JΛ2(k2r2)

∑
nν

UTT ′
ν

ωνi + ω1

)
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+ 〈lTf JfmJf
| σ̂ · T ∗

L2 Λ2 M2
(r̂1) |lT̄ν JνmJν 〉 〈lT

′
ν JνmJν | σ̂ · T ∗

L1 Λ1 M1
(r̂2) |lT̄ ′i JimJi〉

×
(∫

dr1dr2r
2
1r

2
2JΛ2(k2r1)JΛ1(k1r2)

∑
nν

UTT ′
ν

ωνi + ω1

)]
, (3.60)

where we defined

UTT ′
ν =





f∗f gνf
∗
ν gi = f∗f (r1)gν(r1)f∗ν (r2)gi(r2) for T = L, T ′ = L

f∗f gνg
∗
νfi = f∗f (r1)gν(r1)g∗ν(r2)fi(r2) for T = L, T ′ = S

g∗ffνf
∗
ν gi = g∗f (r1)fν(r1)f∗ν (r2)gi(r2) for T = S, T ′ = L

g∗ffνg
∗
νfi = g∗f (r1)fν(r1)g∗ν(r2)fi(r2) for T = S, T ′ = S

= hT̄ ∗
f (r1) hT

ν (r1) hT̄ ′ ∗
ν (r2) hT ′

i (r2) ,

together with

T̄ =
{

L for T = S
S for T = L

, P T =
{

1 for T = L
−1 for T = S

hT =
{

g for T = L
f for T = S

.

If one wants straight away to calculate the expression for Mγγ(i → f), he will soon
notice that there are some technical difficulties. Indeed, there are three infinite sum-
mations: over L1, L2 and nν . Concerning the first two, one easily sees that, for any
normal transition, the summations converge fast: the first two terms of each summa-
tion (L1,2 = 1, 2) represent more than the 95% of the total contribution. The serious
problem is the third summation, the one over nν . This summation does not converge
fast at all. On the contrary, quite for many transitions, even the contribution of the
negative continuum part of the spectrum plays a sizeable role [49]. This summation is
part of the term enclosed in parentheses, which is the radial integral of the transition.
We must analyze it carefully.
First of all, we explicitly write

KTT ′
ν ≡

∑
nν

UTT ′
ν

ωνi + ω1
= hT̄ ∗

f (r1) ~

(∑
nν

hT
ν (r1) hT̄ ′ ∗

ν (r2)
Eν − (Ei − E1)

)
hT ′

i (r2)

= hT̄ ∗
f (r1) ~ZTT ′

ν (Ei−E1) hT ′
i (r2) ,

(3.61)

where we defined ZTT ′
ν (Ei−E1) as the element enclosed in parentheses.

Then, we have seen in Eq. (2.14) how the Green function for the Dirac-Coulomb
problem can be formally written as

GE(r1, r2) =
∑

ν

Ψν(r1)Ψ
†
ν(r2)

Eν −E
.
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With the help of Eq. (3.58), we can write the Green function above as the following
matrix:

GE(r1, r2) =
∑

ν

1
Eν − E

×



gν(r1)g∗ν(r2) Ωlν (r1)Ω∗lν (r2) −igν(r1)f∗ν (r2) Ωlν (r1)Ω∗l′ν (r2)

ifν(r1)g∗ν(r2)Ωl′ν (r1)Ω∗lν (r2) fν(r1)f∗ν (r2)Ωl′ν (r1)Ω∗l′ν (r2)


 .

We now easily see that the radial parts of the Green function contains the elements we
need in Eq. (3.61) for the definition of Zν .
The explicit correspondence is:

ZLL
ν (Ei−E1) = g12

κ (Ei−E1) ZLS
ν (Ei−E1) = g11

κ (Ei−E1)

ZSL
ν (Ei−E1) = g22

κ (Ei−E1) ZSS
ν (Ei−E1) = g21

κ (Ei−E1) .
(3.62)

The analytical expressions of the radial elements of the Green function have been
showed and derived in detail in Sec. 2.3. Therefore, equations (3.62), (3.61) and (3.60)
complete the theoretical analysis of this section.
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Chapter 4

Density matrix approach

We are never in a position to say what really is or what really happens, but we can
only say what will be observed in any concrete individual case. Will we have to be

permanently satisfied with this? On principle, yes. On principle, there is nothing new
in the postulate that in the end exact science should aim at nothing more than the

description of what can really be observed. The question is only whether from now on
we shall have to refrain from tying description to a clear hypothesis about the real
nature of the world. There are many who wish to pronounce such abdication even

today.
But I believe that this means making things a little too easy for oneself.

Erwin Schrödinger, 1933

This makes the reality of P [momentum] and Q [position] depend upon the process of
measurement carried out on the first system, which does not disturb the second system

in any way. No reasonable definition of reality could be expected to permit this.

A. Einstein, B. Podolsky, N. Rosen, 1935

In quantum mechanics, a ket vector can successfully describe either one particle state
or an ensemble of particles with identical states. When we have an ensemble of particles
with different states, we cannot describe that ensemble by means of a ket vector. The
example that it is usually made for proving this statement is the following. Imagine
that we fix a z direction in the space and that we have, for instance, an ensemble
of particles of which the 50% have spin state |Sz, +~/2〉 and the rest 50% have spin
state |Sz,−~/2〉. If we then use a Stern&Gerlach (SG) apparatus for measuring the
spin of the particles [50], the outcome will always be two bunches of particles in two
separate directions, irrespectively of the direction along which the magnetic field of the
SG apparatus is set. This results is actually the proof of the fact that the measured
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ensemble is maximally unpolarized.
On the other hand, if we naively tried to associate the ket vector

|E〉 =
1√
2

(
|Sz, +~/2〉+ |Sz,−~/2〉

)
(4.1)

to the ensemble, we would soon see that this description takes to wrong predictions.
By using the relations

|Sx,+
~
2
〉 =

1√
2

(
|Sz, +~/2〉+ |Sz,−~/2〉

)

|Sx,−~
2
〉 =

1√
2

(
|Sz, +~/2〉 − |Sz,−~/2〉

)
,

which link spin states defined along the ẑ directions with spin states defined along the
x direction [25], we may rewrite Eq. (4.1) as

|E〉 = |Sx,+~/2〉 .

The predictions we would then make are that the outcome of a SG apparatus applied
on measuring the spin of the ensemble should be only one bunch of particles if the
magnetic field is set along the x direction. As follows from above, such predictions are
wrong.
Therefore we proved that, in general, it is not possible to associate a ket vector to an
ensemble of particles. The only case for which this this association is actually possible
is for ensembles which are made of non-interacting particles having the same identical
quantum state.
From the foregoing discussion, it follows that another formalism is needed for treating
ensembles of states. On the basis of this need, the density matrix formalism was intro-
duced into quantum mechanics in the late 1920s by Von Neumann, Dirac and Landau,
who developed and applied it to quantum information theory, statistical thermody-
namics and wave mechanics [51–53].

4.1 Basic relations

Ensembles of states in quantum mechanics are described by density operators. The
leading idea which brings to the definition of the density operator is the following.
Given an ensemble χ made of N sub-ensembles, where each one of the latter is com-
posed by particles which share the same quantum state |βi〉 (i = 1, ..., N), the expec-
tation value of a certain variable o over the ensemble must reasonably be a statistical
average of the expectation values of the same variable over the sub-ensembles. The
statistical weight of each addend will naturally be the particles fraction (for intensive
variables) or the particle number (for extensive variables) of the sub-ensemble. For
any observable o, this supposition entails

E (o)χ ≡
N∑

i=1

Wi 〈βi| Ô |βi〉

=
∑

j

〈aj |
(

N∑

i=1

Wi |βi〉 〈βi|
)

Ô |aj〉 ,

(4.2)
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where E (o)χ denotes the expectation value of the variable o over the ensemble χ, Ô
is the quantum operator related to o, Wi is the fraction or the number of particles of
the ith sub-ensemble and |aj〉 are states which form a complete basis in the quantum
space where |βi〉 are defined. The relation

∑

j

|aj〉 〈aj | = 1̂ has been used in the last

step of Eq. (4.2).
It is sometimes said that ensemble of states are described by incoherent superpositions
of pure states. This statement has his grounds on Eq. (4.2), where we see that the
expectation values of observables over the ensemble are obtained as superposition of
probabilities for the states |βi〉 (incoherent superposition) and not as probability of a
superposition of states |βi〉 (coherent superposition).
From equation (4.2), it is moreover clear that what depends on the characteristics of
the ensemble is enclosed in parentheses. Such quantity can be therefore assigned to be
representative for the ensemble, similarly to the ket vector for a particle state and is
therefore assigned the name “density operator”.
Summarizing what above, we state that an ensemble of states may be described in
quantum mechanics by the density operator

P̂ =
∑

i

Wi |βi〉 〈βi| ,

where Wi is the statistical weight of the state |βi〉, or, more practically, is the fraction
(for intensive variables) or the number (for extensive variables) of particles of the
ensemble that share the same pure state |βi〉.
The density matrix which describes the above ensemble, in a given representation |ai〉,
is obtained as

ρij = 〈ai| P̂ |aj〉 .

The density matrix results of course diagonal in the representation |βi〉.
When Wi = δij , the state described by the density matrix is the pure state βj . In
any other case, the state is a mixed state. When Wi = W0 for any i, then the density
matrix describes a maximally mixed state.
Thorough reviews of density matrices and their applications can be found in [54–57].

We give here a brief list of properties of density matrices and density operators:

• The density operator is hermitian (by definition): P̂
†

= P̂. The density matrix
satisfies the equation

ρ∗ij = 〈aj | P̂ |ai〉 = ρji .

• If the weights Wi represent fractions of particles, it must be true that Wi ≤ 1 ∀i
and

∑

i

Wi = 1. Then the density matrix is normalized to unity:

Tr [ρ] =
∑

i

〈ai| P̂ |ai〉 =
∑

i

〈βi| P̂ |βi〉 =
∑

ij

Wj 〈βi|βj〉〈βj |βi〉

=
∑

ij

Wj δi jδi j =
∑

i

Wi = 1 ,
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where, in the second step, we used the fact that the trace of a matrix (of an
operator) is independent of the used representation [25].
If Wi represent fractions of particles, it follows also

Tr
[
ρ2

]
=

∑

ijk

WjWk〈ai|βj〉〈βj |βk〉〈βk|ai〉 =
∑

ijk

WjWk〈ai|βj〉δjk〈βk|ai〉

=
∑

ij

W 2
j 〈ai|βj〉〈βj |ai〉 =

∑

ij

W 2
j 〈βi|βj〉〈βj |βi〉 =

∑

i

W 2
i ≤ 1 .

The equality

Tr
[
ρ2

]
= 1

is valid if only one of the eigenvalues Wi is nonzero (and, hence, equal to unity):
Wi = δi,j . This is the case of a pure state.

• The expectation value of a variable over the ensemble is obtained from the density
operator as in Eq. (4.2):

E (o)χ =
∑

j

〈aj |
(

N∑

i=1

Wi |βi〉 〈βi|
)

Ô |aj〉 = Tr
[
P̂ Ô

]
.

• The evolution equation for a density operator is

P̂(t) = Û(t0, t)P̂(t0)Û
†
(t0, t) , (4.3)

where Û is the standard evolution operator defined in Eq. (3.1). Taking the
derivative in time of both sides of Eq. (4.3), we get the Louville equation

i~
∂P̂(t)

∂t
=

[
Ĥ, P̂(t)

]
.

For comparison, we show the evolution equation

ÔH(t) = Û
†
(t0, t)ÔH(t0)Û(t0, t)

and the Heisemberg equation

i~
∂ÔH(t)

∂t
=

[
ÔI(t), Ĥ

]

for any operator ÔH in the Heisemberg representation.
Of course, Ĥ may depend on time.

4.2 Quantum correlation and entanglement

Quantum entanglement is a peculiar characteristic of quantum mechanics which has
created debates since long ago. Yet nowadays, entanglement is object of deep research
and is not fully accepted by the whole physics community [58].
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Entanglement is the property of a quantum state of two or more physical objects.
Concretely, if two physical objects are entangled, a measurement on one jeopardizes
the result of the measurement on the other, independently of the distance the two
objects are separated by. In quantum space, two objects are entangled if their state is
not a product of the two-single states which correspond to the objects (i.e if it is not
a separable quantum state).
As known, Albert Einstein himself was reluctant to accept quantum entanglement,
by defining it a “spooky action at a distance”[59]. It was not until 1964 that John
Stewart Bell proposed an inequality, today known with the name “Bell’s inequality”,
which could be experimentally tested to prove whether entanglement is a property
which characterizes the matter or not. This can be easily seen as a test on whether
non-local or local theories exist in nature. In the 70s and 80s, several experiments have
proved that the Bell’s inequality is indeed violated, in nature, confirming therewith that
entanglement is a inherent characteristics of nature. The most famous experiment to
this aim has been maybe the one carried out by Alain Aspect [17].
Much of the current research interest concerning entanglement is focused on defining
a measure for it. Generally, quantifying entanglement is indeed not a trivial question.
Let us imagine we have a two-particle spin-1/2 state

|Ψ12〉a =
1√
2

(
|↑ ↑〉+ |↓ ↓〉

)
.

Here it is easy to recognize that this state is fully entangled, as it is a Bell state.
Analogously, if we have the state

|Ψ12〉b =
1
2

(
|↑ ↑〉+ |↑ ↓〉+ |↓↑〉+ |↓↓〉

)

we soon understand that it does not possess any degree of entanglement, as it is a
product of the two single particle states

|Ψ12〉b =
1√
2

(
|↑〉+ |↓〉

) 1√
2

(
|↑〉+ |↓〉

)
.

For the same reason, zero entanglement characterizes of course also the states

1√
2

(
|↑ ↑〉+ |↑ ↓〉

)
=

1√
2
|↑〉

(
|↑〉+ |↓〉

)

1√
2

(
|↓ ↑〉+ |↓ ↓〉

)
=

1√
2
|↓〉

(
|↑〉+ |↓〉

)

1√
2

(
|↑ ↑〉+ |↓ ↑〉

)
=

1√
2

(
|↑〉+ |↓〉

)
|↑〉

1√
2

(
|↑ ↓〉+ |↓ ↓〉

)
=

1√
2

(
|↑〉+ |↓〉

)
|↓〉 .

But what about the state

|Ψ12〉c =

( √
2
10
|↑ ↑〉+

√
5
10
|↑ ↓〉+

√
3
10
|↓↑〉

)
?

How much is the entanglement it possesses? Indeed, it is not easy to answer this
question. Normally, quantifying entanglement is a pure mathematical problem which
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has been solved exactly for very few cases. For an ensemble composed of two particles
with two degrees of freedom each (such kind of particle is called qubit), it has been
demonstrated that a valid measure for the entanglement of their state is given by the
Wootter’s concurrence [60]. The Wootter’s concurrence is defined as

C = max
(
0,
√

e1 −√e2 −√e3 −√e4

)
, (4.4)

where
√

ei are the square roots of the eigenvalues of the matrix ρ(σ(1)
2 ⊗ σ

(2)
2 )ρ∗(σ(1)

2 ⊗
σ

(2)
2 ) in descending order, ρ is the density matrix characterizing the two-particle en-

semble and σ
(1,2)
2 is the second Pauli matrix acting on the first and the second particle

state, respectively.
Hence, knowing the density matrix of an ensemble of two qu-bit particles permits to
investigate the entanglement properties of the pair. Since a photon has two spin states
(λ = +1,−1), a photon pair represents a natural choice for investigating entangle-
ment. We will indeed apply this approach for studying, in Sec. 5.4, the degree of
entanglement of the spin state of photons emitted in two-photon decays of atoms and
ions.

4.3 Building the final state Density Matrix for two-
photon decay

In this section, we will build the polarization density matrix of the photons emitted in
two-photon decays.
The initial state of the overall system, in the two-photon decay problem, is given by the
photon vacuum |vac〉 ≡ |0, 0〉i,γ , and by the excited ion (or atom) in states |βi, Ji, Mi〉
with well-defined total angular momentum Ji and associated projection Mi onto the
z-axis. Following the notation used in Sec. 3.5 and 3.3, βi represents a collective label
for all additional quantum numbers required to specify the state.
The magnetic sublevel population of the ion in initial states is described as a statistical
mixture, by the density operator

ρ̂i,ion =
∑

Mi

CMi |βi, Ji,Mi〉 〈βi, Ji,Mi| , (4.5)

where CMi denotes the population of the magnetic substate |βi, Ji,Mi〉. Since in most
(two–photon) experiments, the initially prepared excited ionic states are unpolarized,
we fix the parameters as CMi = 1/(2Ji +1). Such a realistic choice for the initial-state
population will have important consequences for the (spin) entanglement of emitted
photon pairs. We will see in Sec. 5.4 that, by introducing the incoherent mixture of
initial magnetic substates as done in Eq. (4.5), also the two-photon state’s coherences
are jeopardized and, hence, a loss of quantum correlations will be induced.
The initial density operator of the photons is simply

ρ̂i,γ = |0, 0〉i,γ i,γ〈0, 0| .

Using equation (4.3), the density operators of the initial and the final states of the
overall system are connected by the standard relation [54]

ρ̂f = Û ρ̂i,ion ⊗ ρ̂i,γ Û
†
, (4.6)
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where Û is the evolution operator which accounts for the interaction of the ion with the
radiation field. The final-state operator (4.6) describes both the de-excited ion in some
state |βf , Jf ,Mf 〉 and the two emitted photons with wave vectors k1,2 and helicities
λ1,2.
Instead of using the final-state density operator ρ̂f , it is often more convenient to work
with its matrix representation, i.e. the final-state density matrix. This density matrix
reads

〈f ; k1λ1,k2λ2| ρ̂f |f ′; k1λ
′
1,k2λ

′
2〉 ≡ 〈βfJfMf ; k1λ1,k2λ2| ρ̂f |βfJfM ′

f ; k1λ
′
1,k2λ

′
2〉

=
1

2Ji + 1

∑

Mi

CiMγγ
λ1 λ2

(i → f)Mγγ ∗
λ′1 λ′2

(i → f) ,

where the transition amplitude Mγγ
λ1 λ2

(i → f) is the one presented in equation (3.48).
The further subscript λ1 λ2 is used to make the polarization dependence explicit. The
amplitude is related to the evolution operator by

Mγγ
λ1 λ2

(i → f) = 〈ηf , Jf ,Mf ; k1, λ1,k2, λ2| Û |βi, Ji,Mi; 0, 0〉 . (4.7)

Assuming that the final magnetic sub–state of the ion remains unobserved in an exper-
iment, we can derive the reduced density matrix which only describes the polarization
state of the two photons, measured at a certain opening angle θ, with certain energies
ω1 and ω2:

〈λ1, λ2| ρ̂f,γ |λ′1, λ′2〉 ≡
∑

Mf

〈f ; k1, λ1, k2, λ2| ρ̂f |f ;k1, λ
′
1, k2, λ

′
2〉

=
N

2Ji + 1

∑

Mi,Mf

CMiMγγ
λ1 λ2

(i → f)Mγγ ∗
λ′1 λ′2

(i → f) ,
(4.8)

where we introduced the factor N to ensure the proper normalization of the matrix,
Tr [〈ρ̂f,γ〉] = 1.
This will be the quantity we will investigate in detail in chapter 5.
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Chapter 5

Two-photon decay: Advanced
studies

In physics, cumbersome formulae are quite never the most correct ones.
A final formula is more likely concise and elegant.

Giorgio Immirzi, 2004

Of the two photon decay, there are many things to study. A list of the basic quantities
to investigate may include: the total decay rate of the process, the spectral distri-
bution, the angular distribution, the polarization properties of the emitted photons.
In this chapter, we will accurately analyze them. We will emphasize the advanced
studies which have been made on this topic by other authors as well as the original
contributions of this thesis.

5.1 Total cross section and spectral distribution

Many aspect of the two-photon decay process have been investigated in the past by
several authors. In particular, in the second half of the last century the total cross
section and the spectral distribution have been intensively studied in the context of
few-electron atoms and ions. By spectral distribution, it is meant the probability
density function related to the energy sharing of the two emitted photons, or, in other
words, the normalized differential decay rate dΓ/dE1, where E1 is the energy of one
of the two emitted photons. While the sum of the two photons’ energies must add up
to the energy gap of the transition (due to energy conservation), the energy carried by
each single photon is, in fact, not fixed.

Two-photon decay of hydrogen- and helium-like ions
In hydrogen-like ions, the two-photon decay of the 2s1/2 state has risen interests since
the origins of quantum mechanics [1]. In the past century, many of the two-photon
studies has been focused on such a decay.
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Z w(M1) w(2γ) w(tot)

1 2.49591901 × 10−6 8.229063 8.229065

2 2.55626238 × 10−3 5.266042 × 102 5.266068 × 102

3 1.47448885 × 10−1 5.997292 × 103 5.997440 × 103

4 2.61939935 3.368840 × 104 3.369102 × 104

5 2.44075507 × 101 1.284703 × 105 1.284948 × 105

6 1.51219742 × 102 3.834621 × 105 3.836133 × 105

7 7.06964753 × 102 9.665073 × 105 9.672143 × 105

8 2.68960303 × 103 2.152429 × 106 2.155119 × 106

9 8.74246719 × 103 4.361002 × 106 4.369745 × 106

10 2.51003240 × 104 8.200570 × 106 8.225670 × 106

11 6.51818482 × 104 1.451723 × 107 1.458241 × 107

12 1.55805459 × 105 2.444948 × 107 2.460528 × 107

13 3.47395680 × 105 3.948826 × 107 3.983565 × 107

14 7.30032314 × 105 6.154224 × 107 6.227228 × 107

15 1.45779185 × 106 9.300828 × 107 9.446608 × 107

16 2.78454759 × 106 1.368469 × 108 1.396314 × 108

17 5.11524642 × 106 1.966626 × 108 2.017779 × 108

18 9.07769992 × 106 2.767891 × 108 2.858668 × 108

19 1.56211038 × 107 3.823790 × 108 3.980001 × 108

20 2.61488033 × 107 5.194978 × 108 5.456466 × 108

21 4.26945535 × 107 6.952229 × 108 7.379175 × 108

22 6.81531341 × 107 9.177457 × 108 9.858988 × 108

23 1.06578441 × 108 1.196478 × 109 1.303057 × 109

24 1.63563871 × 108 1.542164 × 109 1.705728 × 109

25 2.46724142 × 108 1.966992 × 109 2.213716 × 109

26 3.66298161 × 108 2.484712 × 109 2.851010 × 109

27 5.35897415 × 108 3.110759 × 109 3.646656 × 109

28 7.73430228 × 108 3.862374 × 109 4.635804 × 109

29 1.10222453 × 109 4.758729 × 109 5.860953 × 109

30 1.55241116 × 10
9

5.821062 × 10
9

7.373473 × 10
9

32 2.98171369 × 10
9

8.539707 × 10
9

1.152142 × 10
10

34 5.50996703 × 10
9

1.223449 × 10
10

1.774446 × 10
10

36 9.84022291 × 10
9

1.716321 × 10
10

2.700343 × 10
10

38 1.70476667 × 10
10

2.362974 × 10
10

4.067741 × 10
10

40 2.87414359 × 10
10

3.198853 × 10
10

6.072997 × 10
10

42 4.72840541 × 10
10

4.264918 × 10
10

8.993323 × 10
10

45 9.57795011 × 10
10

6.400027 × 10
10

1.597798 × 10
11

46 1.19994177 × 10
11

7.281768 × 10
10

1.928119 × 10
11

47 1.49641928 × 10
11

8.261063 × 10
10

2.322526 × 10
11

50 2.82903863 × 10
11

1.186870 × 10
11

4.015908 × 10
11

54 6.27019120 × 10
11

1.859758 × 10
11

8.129949 × 10
11

55 7.58563275 × 10
11

2.069368 × 10
11

9.655000 × 10
11

58 1.31864299 × 10
12

2.816997 × 10
11

1.600343 × 10
12

60 1.87950004 × 10
12

3.428003 × 10
11

2.222300 × 10
12

62 2.65095005 × 10
12

4.142831 × 10
11

3.065233 × 10
12

65 4.36179752 × 10
12

5.438258 × 10
11

4.905623 × 10
12

66 5.12606662 × 10
12

5.936543 × 10
11

5.719721 × 10
12

70 9.58256840 × 10
12

8.313011 × 10
11

1.041387 × 10
13

74 1.73921410 × 10
13

1.140289 × 10
12

1.853243 × 10
13

75 2.01035177 × 10
13

1.230364 × 10
12

2.133388 × 10
13

78 3.07616136 × 10
13

1.535228 × 10
12

3.229684 × 10
13

80 4.05520829 × 10
13

1.769879 × 10
12

4.232196 × 10
13

82 5.31771608 × 10
13

2.032135 × 10
12

5.520930 × 10
13

85 7.91168010 × 10
13

2.482088 × 10
12

8.159889 × 10
13

86 9.01056465 × 10
13

2.648282 × 10
12

9.275393 × 10
13

90 1.49999200 × 10
14

3.401841 × 10
12

1.534010 × 10
14

92 1.92403666 × 10
14

3.835980 × 10
12

1.962396 × 10
14

100 5.03848601 × 10
14

6.008640 × 10
12

5.098572 × 10
14

Figure 5.1a: Decay rates of the 2s1/2 state (s−1). Z is the nuclear charge. From Ref.
[61].
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Figure 5.1b: Plot of the data in Fig. 5.1a. The green-dashed, blue-dashed and black-
solid represent the single-photon, the double-photon and the total (single + double)
decay rate of the state 2s1/2 in hydrogen-like ions.

Already in 1958, Shapiro and Breit derived that the two-photon decay rate of 2s1/2

state in hydrogen-like atoms can be approximately described by the relation [3]

W =
1
τ
' 8.226Z6sec−1 , (5.1)

where Z is the atomic number of the ion.
This results shows that the two-photon decay rate of 2s1/2 states grows fast with Z,
spanning from about 8 sec−1 for hydrogen to about 4 · 1012 sec−1 for hydrogen-like
Uranium.
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Figure 5.2: Spectral distribution of the photons in the two-photon decay of 2s1/2 in
Hydrogen and hydrogen-like Uranium atoms. From Ref. [48].

Nevertheless, the single-photon decay of this state in hydrogen-like ions grows even
faster with Z. For a comparison, in Fig. 5.1a we report a table from Ref. [61] which
clearly shows the contribution of the single- (w(M1)) and double- (w(2γ)) photon
decay rate to the decay of 2s1/2 state. Both contributions are plotted in Fig. 5.1b,
together with the total decay rate. We see that at around Z ' 40 the single-photon
decay rate (M1 transition) overcomes the two-photon decay rate. Formula (5.1) can
be refined to give [4]

WH =
1
τ
' 8.22938Z6

(
1− m

M

) 1 + 3.9448(αZ)2 − 2.040(αZ)4

1 + 4.6019(αZ)2
sec−1

and extended to the two-photon decay of the state (1s1/2 2s1/2) J = 0 in helium-like
ions to give [4]

WHe =
1
τ
' 16.458762 (Z − 0.806389)6

(
1 +

1.539
(Z + 2.5)2

)
sec−1 .

If we define the energy gap between 2s1/2 and the ground state as ∆E, the fraction of
energy carried by the first photon is

y = E1/∆E . (5.2)

In Fig. 5.2, we see the spectral distribution for the two-photon decay of 2s1/2 state in
hydrogen-like ions as a function of y.
Different transitions in hydrogen-like ions give rise to artistic and amusing pictures for
the spectral distribution. See, for instance, Fig. 5.3. Those pictures can be understood
if we consider that the two-photon amplitude Mγγ contains, at the denominators, the
quantity Eν − Ei + E1,2. Then, for photon energies equal to E1,2 ' Ei − Eν , the
contribution of the intermediate state ν becomes very big and the amplitude for the
two-photon emission picks. At this point, the smart reader would argue that, within
the presented formalism, the amplitude we get in these cases is infinite, which is clearly
a non-physical prediction. In order to take into account these resonance cases, we must
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(a) 3s1/2 → 1s1/2 (b) 3d3/2 → 1s1/2

Figure 5.3: Spectral distributions for few transitions in hydrogen-like ions. From Ref.
[62].

in fact slightly modify our theory. What is normally done is inserting the widths of

the states in the denominators, i.e. replacing Eν − Ei + E1,2 → Eν − i

2
Γν − Ei +

i

2
Γi + E1,2, where Γ = ~/τ is the state’s width and τ is the state’s lifetime. With this

prescription, we are effectively stating that the atomic states have complex energy, to
take empirically into account the fact that they are not stable:

Ψν ∼ e−
i
~ (Eν− i

2
Γν) t ⇒ ∣∣Ψν

∣∣ 2 ∼ e−
Γν
~ t = e−

t
τ .

The width of the initial state is usually neglected at the denominators since it is
normally very small in comparison with other quantities (if the initial state decays by
two-photon emission, it means it is long-lived state: τi >> τν). It can be showed that
this way of proceeding, though not rigorous1, takes to valid results in many cases [38].
Since the states’ widths are quite small in comparison with the states’ energies, at
the end of the day we anyway get a huge contribution, though not infinite, from the
intermediate state ν on the amplitude Mγγ , if one of the photon energies matches the
gap Ei − Eν . With the foregoing analysis, we can now qualitatively understand the
pictures (5.3).
The spectral distributions of hydrogen- and helium-like ions have been several times
measured in the past decades, confirming theoretical predictions. See, for instance,
Ref. [63, 64].

Three- or more-electron atoms
The two-photon decay of three- or more-electron ions, to my knowledge, has been much
more poorly studied. This is presumably due to the difficulty in performing the infinite

1In the author’s opinion, a rigorous treatment of the resonance transitions must be made by coming
back to Eq. (3.42) and considering all the terms that there appear. Although this seems quite a natural
statement within the framework we have drawn here, I have personally never read any discussion about
it.
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summation over the intermediate states to obtain the amplitude for the process.
Some effort have been devoted to study two-photon decays in K-holes in neutral atoms,
both theoretically and experimentally [65–73], following the first (pioneer) work of
Freund [74].
Two-photon transitions in Alkali metals have been studied by Safronova and coworkers
[75].
There have been also two attempts to calculate the two-photon decay rate of (1s2,
2s2p) 3P0 state in Beryllium-like ions [76, 77]. The excitation energy of this state
turns out to be very small in comparison with other excitation energies, so that the
summation over the intermediate states could be explicitly made by cutting it off at
a certain level. In this year, I personally made a new relativistic calculation for the
two-photon transition rate of 3P0 state, whose results will not be here shown though
they may be published in the next future.
Finally, Ref. [78] gives quite a complete overview of what has been done and what has
yet to be done in the two-photon decay in heavy atoms and ions.

5.2 Angular properties of the emitted photons

In this section, we study the angular correlation of the photon pair emitted in two-
photon decay of hydrogen- and helium-like atoms. By angular correlation, we mean
the probability density of two photon emission with a certain angle θ between the
photon directions, irrespectively of their polarizations. In Sec. 3.4, we discussed in
great detail the differential decay rate for two-photon transitions. In particular, we
derived (Eq. (3.45)) the decay rate differential in energy and photon spherical angles,
dependent on the photon polarizations. Then, what we call here ‘angular correlation’
would be simply given by the same quantity summed over the photons polarizations
and arbitrarily normalized.

Hydrogen-like atoms
It is known from much time ago that the angular correlation for the two-photon decay
of 2s1/2 states in hydrogen-like atoms is approximately given by ∼ 1 + cos2 θ [78–80].
A deeper analysis of this quantity has been theoretically performed by Au in 1976 [8],
who calculated the angular correlation for the the same decay in hydrogen-like ions by
including, apart from the leading electric dipole term (E1E1), some higher multipole
terms and few relativistic corrections. These non-dipole and relativistic effects were
found to result in an asymmetrical contribution of the type ∼ cos θ to the angular
correlation’s main term ∼ 1 + cos2 θ. More recently, the leading terms of the angular
correlation for other few transitions have been also found [6, 69, 81]. For instance, the
non-relativistic angular correlation due to the dipole term E1E1 in J = 1 → J = 0
two-photon transitions, where J is the total angular momentum, is found to take the
form ∼ 1− 1/3 cos2 θ [78].
The full relativistic treatment of some angular correlations has been presented for the
first time, to my knowledge, by Surzhykov et al. in Ref. [9]. In that article, the angular
correlations of photons coming from 2s1/2 → 1s1/2 and 3d5/2 → 1s1/2 transitions in
hydrogenlike ions are presented. Their results, which are showed in Fig. 5.2, are ob-
tained by numerically evaluating the Green function for the Dirac Hamiltonian, which
we studied in great detail from Eq. (2.15) onwards. The parameter x that appears
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Figure 5.4: Photon-photon angular correlations in the 2s1/2 → 1s1/2 two-photon decay
of hydrogenlike ions. Results are presented for the relativistic theory (black-solid),
nonrelativistic approximation by Au [8] (red-dotted) as well as the relativistic electric
dipole (blue-dotdashed) approach for the relative photon energy y=0.5 . In the picture,
the relative photon energy has been called x. From Ref. [9].

in Fig. 5.2 represents the energy fraction carried away by the first photon that in
this work has been defined as y in Eq. (5.2). Thus, their results are naturally
not analytic. This is the price to pay for having inserted the full relativistic and high
multipoles contributions.
The angular correlation plotted in those figures is obtained by adopting the quanti-
zation (z) axis along the momentum of the first photon: k1 ‖ z, which is an allowed
choice as long as we deal with unpolarized atoms/ions. Consequently, the equivalence

Figure 5.5: Photon-photon angular correlations in the 2s1/2 → 1s1/2 two-photon decay
of hydrogenlike uranium U91+. The correlation functions are shown for the three
relative photon energies y=0.1, 0.3, and 0.5. See Fig. 5.4 for further details.

82



5.2. ANGULAR PROPERTIES OF THE EMITTED PHOTONS

Figure 5.6: Photon-photon angular correlations in the 3d5/2 → 1s1/2 two-photon decay
of hydrogenlike uranium U91+. The correlation functions are shown for the three
relative photon energies y=0.1, 0.3, and 0.5. See Fig. 5.4 for further details.

θ2 = θ holds. Thus, the curves showed in the figures correspond to the expression

W y(θ) ≡ dΓ
dyd cos θ

≡ 8π2 (Ei − Ef )
∑

λ1,λ2

dΓγ1 γ2

dE1dΩp1dΩp2

∣∣∣
k1‖z

= (Ei − Ef )
∑

λ1,λ2

∫ 2π

0
dϕ1

∫ 1

−1
d cos θ1

∫ 2π

0
dϕ2

× dΓγ1 γ2

dE1dΩp1dΩp2

∣∣∣
k1‖z

,

(5.3)

where
dΓγ1 γ2

dE1dΩp1dΩp2

has been defined in Eq. (3.45).

As an overall comment on the figures, we notice that, in the most probable energy case
y=0.5, the non-dipole and relativistic contributions add up to approximately 10% for
2s1/2 → 1s1/2 two-photon transition, while to approximately 20% for 3d5/2 → 1s1/2

two-photon transition. These effects lead the back-to-back emission to be slightly more
probable than the collinear emission.

He-like atoms
Concerning two-electron bound systems, a recent paper of ours [10] shows the angu-
lar correlation of the photon pair for the two-photon decay of 1s1/22s1/2 : J = 0,
1s1/22s1/2 : J = 1 and 1s1/22p1/2 : J = 0 states in helium-like Xenon Xe52+, Gold
Au77+ and Uranium U90+ ions. In nowadays experiments, the excited states of these
ions can be efficiently populated in relativistic ion-atom collisions. For example, the
formation of the metastable 1s1/22s1/2 : J = 0 state during the inner-shell impact
ionization of (initially) lithium-like heavy ions has been studied recently at the GSI
storage ring in Darmstadt [82]. The radiative deexcitation of this state can proceed
only via the two-photon transition 1s1/22s1/2 : J = 0 → 1s2

1/2 : J = 0 since a
single-photon decay to the 1s2

1/2 : J = 0 ground state is strictly forbidden by the
conservation of angular momentum.
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To best study the decay, we rewrite Eq. (3.48) as

Mγγ(i → f) = (2π)
∑

L1 L2

∑

M1 M2

∑
p1 p2

(−i)L1+L2+p1+p2
√

(2L1 + 1)(2L2 + 1)

× (λ1)p1(λ2)p2DL1 ∗
M1 λ1

(ϕk1 , θk1 , 0)DL2 ∗
M2 λ2

(ϕk2 , θk2 , 0)(−1)p1+p2+M1+M2

×
∑

ν

1

[Ji, Jν ]
1/2

(
〈Jν , mJν , L1,−M1|Jf ,mJf

〉〈Ji,mJi , L2,−M2|Jν ,mJν 〉SJν (1, 2)

+ 〈Jν ,mJν , L2,−M2|Jf ,mJf
〉〈Ji,mJi , L1,−M1|Jν , mJν 〉SJν (2, 1)

)
,

(5.4)
where the function SJν this time is defined as

SJν (1, 2) =

∑
ν

〈βf , Jf ||
2∑

i=1

α · ap1

L1
(k1, r̂i)||βν , Jν〉〈βν , Jν ||

2∑

i=1

α · ap2

L2
(k2, r̂i)||βi, Ji〉

ωνi + ω2
.

(5.5)

It must be noticed that, since we here deal with a two-electron system, the one-particle
interaction operator (3.48) has been replaced with two-particle interaction operator,
which is but the sum of one-particle operators of each electron. We have already dis-
cussed the legitimacy of this prescription in Eq. (3.14).
The S element in Eq. (5.5) contains the whole information about the dynamics of the
decay. The angular dependence of the decay is carried by the Clebsch-Gordan coeffi-
cients and Wigner matrices contained in the amplitude Mγγ , beside the S-elements.
The notation [L1, L2, ...] =

√
2L1 + 1

√
2L2 + 1... is moreover used.

In order to calculate the S-elements, we must clearly give the states |β, J〉. Since nei-
ther the Dirac- nor the Schrödinger-Coulomb equations for Helium are solved exactly,
approximated states must be used. In the high-Z domain, the structure of few-electron
ions can be reasonably well understood within the Independent Particle Model (IPM),
which has been described in detail in Sec. 2.4. As explained in Eq. (2.33), the IPM
takes the Pauli principle into account and decompose the many-electron wave functions
into Slater determinants, built from one-particle orbitals. This model is well justified
for heavy species especially, since the interelectronic effects scale with 1/Z and, hence,
are much weaker than the electron-nucleus interaction [11, 83, 84]. We discussed IPM
in great detail in Sec. 2.4.
For this particular choice of the many-electron function, all the (first- and the second-
order) matrix elements can be easily decomposed into the corresponding single-electron
amplitudes.
For a helium-like system, the decomposition of the S-element (Eq. (5.5)) reads:

SJν (1, 2) = −δJνL1 [Ji, Jν ]1/2
∑

jν

(−1)Ji+Jν+L2

{
jν j0 Jν

Ji L2 ji

}
Sjν (1, 2) , (5.6)

where the one-electron matrix elements Sjν are given in Eq. (3.52).
It must be noticed that we use small and capital letters to identify the angular mo-
mentum quantum numbers of one-particle and two-particle states, respectively.
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Figure 5.7: Angular correlation function (5.3) for the 1s1/22s1/2 : J = 0 → 1s2
1/2 :

J = 0 two-photon decay of helium-like Xenon, Gold, and Uranium ions. Calculations
obtained within the electric dipole E1E1 approximation (dashed line) are compared
with those including all the allowed multipoles (solid line). Results are presented for
the relative photon energies y = 0.1 (upper panel) and 0.5 (lower panel). From Ref.
[10].

The great advantage of formula (5.6) is that it helps us to immediately evaluate the
many-electron matrix element (5.5) in terms of the (one-particle) functions Sjν (ω2).
The summation over the complete one-particle spectrum that occurs in these func-

tions can be performed by means of various methods. In the article, we made use of
both (i) the relativistic Coulomb-Green’s function we showed in Sec. 2.3 [9,85,86] and
(ii) a B-spline discrete basis set [61, 87–90] to evaluate all the second-order transition
amplitudes. Indeed, both approaches yielded almost identical results for the angular
correlation functions.
Fig. 5.7 displays the photon-photon angular correlation function, defined in Eq. (5.3),
for the decay of the two-photon transition 1s1/22s1/2 : J = 0 → 1s2

1/2 : J = 0 in
helium-like Xenon Xe52+, Gold Au77+ and Uranium U90+ ions and for the two energy
sharing parameters y = 0.1 (upper panel) and y = 0.5 (lower panel). Moreover, because
the radiative transitions in high-Z ions are known to be affected by the higher terms
of the electron-photon interaction, calculations were performed within both the exact
relativistic theory (solid line) to include all allowed multipole components (p1L1, p2L2)
in the amplitude (5.4) and the electric dipole approximation (dashed line), if only a
single term with L1 = L2 = 1 and p1 = p2 = 1 is taken into account. In the dipole
E1E1 approach, as expected, the angular distribution is well described by the formula
1 + cos2 θ that predicts a symmetric (with respect to the opening angle θ = 90◦)
emission pattern of two photons. Within the exact relativistic theory, in contrast, an
asymmetric shift in the angular correlation function is obtained. For high-Z domain,
the photon emission occurs predominantly in the backward directions if the nondipole
terms are taken into account, as found in Fig. 5.4. This effect becomes more pro-
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Figure 5.8: Angular correlation function (5.3) for the 1s1/22s1/2 : J = 1 → 1s2
1/2 :

J = 0 two-photon decay of helium-like Xenon, Gold, and Uranium ions. Calculations
obtained within the electric dipole E1E1 approximation (dashed line) are compared
with those including all the allowed multipoles (solid line). Results are presented for
the relative photon energies y = 0.1 (upper panel) and 0.5 (lower panel). From Ref.
[10].

nounced for the equal energy sharing, as can be seen in the bottom panel of Fig. 5.7.
Apart from the singlet 1s1/22s1/2 : J = 0, the formation of the triplet 1s1/22s1/2 :
J = 1 state has been also observed in recent collision experiments at the GSI storage
ring [82, 91]. Although much weaker in intensity (owing to the dominant M1 tran-
sition), the two-photon decay of this 1s1/22s1/2 : J = 1 state has attracted recent
interest and might provide an important testing ground for symmetry violations of
Bose particles [11, 12]. The angular correlation between the photons emitted in this
1s1/22s1/2 : J = 1 → 1s2

1/2 : J = 0 (two-photon) decay is displayed in Fig. 5.8,
by comparing once again the results from the exact relativistic theory with the E1E1
dipole approximation. As seen from the figure, the photon-photon correlation func-
tions for the two-photon decay of 1s1/22s1/2 : J = 1 state is much more sensitive with
regard to higher multipoles in the electron-photon interaction than obtained for the
decay of 1s1/22s1/2 : J = 0 state. The strongest non-dipole effect can be observed for
the equal energy sharing (y = 0.5).
Large effects due to the higher multipole contributions to the 1s1/22s1/2 : J = 1 →
1s2

1/2 : J = 0 two-photon transition can be observed not only for the case of equal
energy sharing (y = 0.5) but also for the relative energy y = 0.1. In this latter case
indeed, the photon-photon angular correlation function is found symmetric with re-
gard to θ = 90◦ in the electric dipole (E1E1) approximation but becomes asymmetric
in the exact relativistic theory. In contrast to the decay of 1s1/22s1/2 : J = 0, how-
ever, a predominant parallel emission of both photons appears to be more likely if the
higher multipoles are taken into account. For the 1s1/22s1/2 : J = 1 → 1s1/22s1/2 :
J = 0 two-photon decay of helium-like Uranium U90+, for example, the intensity ratio
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Figure 5.9: Angular correlation function (5.3) for the 1s1/22p1/2 : J = 0 → 1s2
1/2 :

J = 0 two-photon decay of helium-like Xenon, Gold, and Uranium ions. Calculations
obtained within the dipole E1M1 approximation (dashed line) are compared with
those including all the allowed multipoles (solid line). Results are presented for the
relative photon energies y = 0.1 (upper panel) and 0.5 (lower panel). From Ref. [10].

W y=0.1(θ = 0◦)/W y=0.1(θ = 180◦) increases from unity within the electric dipole ap-
proximation to almost 1.6 in the exact relativistic treatment.
Until now we have discussed the photon-photon correlations in the decay of 1s1/22s1/2

helium-like states. Besides these (well-studied) transitions, recent theoretical interest
has been focused also on the 1s1/22p1/2 : J = 0 → 1s2

1/2 : J = 0 two-photon decay,
whose properties are expected to be sensitive to (parity violating) PNC phenomena in
the atomic system [92].
The angular correlation function (5.3) for the 1s1/22p : J = 0 → 1s2

1/2 : J = 0
transition is displayed in Fig. 5.9, again for two relative photon energies y = 0.1 and
0.5 and for the nuclear charges Z = 54, 79 and 92. Calculations have been performed
both within the exact theory and the (“electric and magnetic”) dipole approximation
which accounts for the leading E1M1-M1E1 decay channel. As seen from the figure,
the emission pattern strongly depends on the energy sharing between the photons. If,
for example, one of the photons is more energetic than the second one, their parallel
emission becomes dominant (cfr. upper panel of Fig. 5.9). In contrast, photons with
equal energies (y = 0.5) are more likely to be emitted back-to-back while the differen-
tial rate W y(θ) vanishes identically for θ = 0◦. Such a behaviour of the photon-photon
angular correlation function is caused by the interference between two pathways which
appear for each multipole component of the 1s1/22p1/2 : J = 0 → 1s2

1/2 : J = 0 transi-
tion. For instance, the leading E1M1-M1E1 decay may proceed either via intermediate
1s1/2ns1/2 : J = 1 or 1s1/2np1/2 : J = 1 states, thus giving rise to a “double-slit”
picture that becomes most pronounced for equal energy sharing.

In this section we have analyzed in detail the angular correlation of the emitted ra-
diation in a two-photon decay in one- and two-electron bound systems. Our analysis
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went through several types of two-photon decay so that general overview of the angular
properties of the emitted photons should have been grasped by the reader. In the next
section, we carry on our advanced analysis on the characteristics of the two-photon
decay by studying the polarization properties of the emitted photons.

5.3 Polarization properties of the emitted photons

The polarization properties of the photons emitted in two-photon decays of atoms
and ions represent a useful tool for studying and testing quantum mechanics of bound
systems. The recent improvements in detection techniques [16], allows nowadays to
measure the polarization properties of photons in x-ray regime, so as to verify theoret-
ical predictions even in high-Z domain.

Hydrogen-like atoms
In a recent papers by Andrey Surzhykov and me [93], the polarization-polarization cor-
relation of photons emitted in two-photon decay of 2s1/2 states in hydrogen-like ions
has been studied. By ‘polarization-polarization correlation’, we mean the probability of
measuring, in coincidence, the two emitted photons with a certain opening angle θ and
a certain relative polarization (both photon polarizations are measured). This work
has followed a slightly older study on the polarization-angle correlation of photons in
2s1/2 → 1s1/2 and 3d5/2 → 1s1/2 two-photon transitions, where by ‘polarization-angle
correlation’ we mean the probability of measuring, in coincidence, the two emitted
photons with a certain opening angle θ, when the polarization of one photon (of the
two) is measured while the other one is not [94].
We will present here the results which have been found in Ref. [93], where I personally
contributed. Moreover, the results we will present include, specifically for 2s1/2 → 1s1/2

transition, the ones found in Ref. [94], since by summing the polarization-polarization
correlation over the polarization outcomes of one of the two photons, one gets the
polarization-angle correlation.
Prior to showing such results, we shall first agree about the geometry under which
the emission of both photons is considered. Since, for the decay of unpolarized ionic
states, there is no direction initially preferred for the overall system, we adopt the z
axis along the momentum of the “first” photon, as done in Sec. 5.2. Together with the
momentum direction of the “second” photon, this axis then defines also the reaction
plane (x-z plane). A single polar angle θ, the opening angle, is required, therefore, to
characterize the emission of the photons with respect to each other (cfr. Fig. 5.10).
As required by Bose-Einstein statistics, the two–photon state has to be symmetric
upon exchange of the particles. Therefore, it is a priori not possible to address them
individually. We can safely assume, however, an experimental setup in which two de-
tectors observe, in coincidence, the photons having certain energies and propagation
directions. A “click” at these detectors would correspond to the photon’s collapse into
energy and momentum eigenstates [95]. A clear identity can be given, therefore, to the
photons: the first (second) photon is that one detected by the detector A(B) (marked
gray in Fig. 5.10) at a certain energy E1(2) and momentum p1(2).
For the theoretical analysis below we shall take into account not only the emission
angles and the energies but also the linear polarization states of the emitted photons.
In order to observe these states, we assume that both detectors act as linear polarizers
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Figure 5.10: Geometry for the two–photon decay of excited ionic state.

whose transmission axes are defined in the planes that are perpendicular to the photon
momenta p1 = ~k1 and p2 = ~k2 and are characterized by the angles χ1 and χ2 with
respect to the reaction (x-z) plane. In this notation, χ1(2) = 0◦ denotes the measured
direction of the polarization of the first (second) photon within the reaction plane, as
showed in figure 5.10.
As previously done, we evaluate the second-order transition amplitude (3.48) by using
the Green’s function for the Dirac-Coulomb Hamiltonian, as described in Sec. 2.3.
Most naturally, the polarization-polarization analysis is performed in the framework
of the density matrix theory. For the decay of an unpolarized initial state |niji〉 into
the level |nf jf 〉, the two-photon spin density matrix reads

〈k1, λ1, k2, λ2| ρ̂f |k1, λ
′
1, k2, λ

′
2〉 =

1
2ji + 1

∑
µi,µf

Mγγ
λ1 λ2

(i → f)Mγγ ∗
λ′1 λ′2

(i → f) , (5.7)

where Mγγ
λ1 λ2

represents the two-photon amplitude with the further subscript λ1 λ2 to
make the polarization dependence explicit. We remark that λ1,2 = ±1 are the spin
projections of the first and second photon onto their propagation directions, i.e. the
helicities.
Instead of the helicity representation, it is more convenient2 to re-write the density
matrix (5.7) in the representation of the vectors x ≡ εL|θs=0 and y ≡ εL|θs=90◦ (see Eq.
(2.45) for the definition of θs). As showed in Sec. 2.5, such vectors denote the linear
polarization of the photons respectively under the angles θs = χ = 0◦ and θs = χ = 90◦

with respect to the reaction plane (see Fig. 5.10). In the notation used here, the angle
χ corresponds to the angle θs defined in Eq. (2.45).
Any linear polarization which is nowadays measured in experiments can be expressed

2The experimental investigation in this basis turns out to be easier.
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in terms of these two (basis) vectors

εL(θs) = εL(χ) =
1√
2

(x cosχ + y sinχ)

=
1√
2

(
e−iχ ελ=+1

C + e+iχ ελ=−1
C

)
,

(5.8)

by following the decomposition of linear polarization vectors in terms of the circular
polarization ones as showed in Eq. (2.45).
We can make explicit the association with ket states in the photon quantum spin space
by writing

εL(χ) .= |χ〉 =
1√
2

(
e−iχ |λ = +1〉+ e+iχ |λ = −1〉) .

The density matrix (5.7) contains the complete information on the two emitted pho-
tons. It can be therefore employed to derive their polarization properties. To achieve
this goal, it is natural to define the detector operator for the measurement of the
photon linear polarizations:

P̂ = |k1χ1 k2χ2〉 〈k1χ1 k2χ2| .

By taking the trace over P̂ times the density matrix (5.7) and applying Eq. (5.8), we
immediately derive, as showed in Sec. 4.1, the polarization-polarization correlation
function

Φχ1 χ2(θ) = N Tr(P̂ ρ̂f ) =
N

4(2ji + 1)

∑

λ1,λ′1=−1,1

∑

λ2,λ′2=−1,1

× ei(λ1−λ′1)χ1 ei(λ2−λ′2)χ2 Mγγ
λ1 λ2

(i → f)Mγγ ∗
λ′1 λ′2

(i → f) ,

(5.9)

which represents the normalized probability of a coincidence measurement of two pho-
tons with well-defined wave vectors k1 and k2 and with linearly polarization vectors
characterized by the angles χ1 and χ2 with respect to reaction plane. Here the normal-
ization constant N is chosen such that, for any value of the opening angle θ, we get the
unity after having summed over the probabilities of the (four) independent photons’
polarization states |xx〉, |xy〉, |yx〉, |yy〉. For the sake of brevity, we have introduced
the notation |xx〉 = |χ1 = 0◦〉 |χ2 = 0◦〉, |xy〉 = |χ1 = 0◦〉 |χ2 = 90◦〉 and so forth.
In the results below, we will derive the polarization-polarization correlation Φ within
the relativistic framework and by considering all the multipoles in the photon vector
plane waves. Prior to doing that, however, it is useful to assume non-relativistic and
long wavelength approximations and derive simple formulae, in order to get insights
into the polarization properties of the photons and in order to compare, later, the
relativistic as well as non-dipole effects on the polarization-polarization correlation.
Within these two approximations, specifically for the transition 2s1/2 → 1s1/2, we
have been able to derive a simple analytic expression for the function Φ:

Φχ1 χ2(θ)
∣∣∣
NR&lwa

=
1

1 + cos2 θ

(
sinχ1 sinχ2 + cosχ1 cosχ2 cos θ

)2
. (5.10)
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Figure 5.11: Polarization–polarization correlation of photons emitted in the 2s1/2 →
1s1/2 two-photon decay. The solid line corresponds to U91+, the dot-dashed line corre-
sponds to Xe53+ while the dashed line corresponds both to H and to the non-relativistic
calculation (the discrepancy between the two calculations is less than 10−10% and there-
fore not visible in the graph). Calculations are presented for energy sharing y = 1/2
and for the different polarization angles χ (cfr. Fig. 5.10).

We immediately see that the (detected) photon polarizations cannot be orthogonal to
each other: For χ1 = 0◦(90◦), χ2 = 90◦(0◦) the polarization-polarization correlation
Φ vanishes. We furthermore notice that, for the photon polarization case χ1,2 = 90◦

(both photon polarization states are along y), there is no dependence upon the opening
angle θ, or, in other words, rotation around the polarization (y) axis are a symmetry
of the decay process. From Eqs. (5.7) and (5.10), the photons polarization state can
be derived to be pure and described by the ket vector [15]:

|Ψ〉NR&lwa =
1

1 + cos2 θ
(|yy〉+ cos θ |xx〉) . (5.11)

From this expression, it may be easier to see that the probability of measuring, in
coincidence, orthogonal linear polarizations of photons within NR&lwa is zero.
We are now ready to show the relativistic results. Calculations have been performed
for neutral Hydrogen atom H, hydrogen-like Xenon Xe53+ and Uranium U91+ ions, for
various values of the energy sharing parameter y defined in Eq. (5.2).
In Fig. 5.11, for example, the polarization correlation function Φχ1 χ2(θ) is displayed
for the parameter y = 1/16. As seen from the figure, for light ions, both the electric
dipole and the fully relativistic treatments basically coincide and are well described by
Eq. (5.10). For high-Z hydrogen-like ions, however, it is expected that equations (5.10)
and (5.11) might not describe well the polarization properties of the emitted photons,
owing to relativistic and non-dipole effects. As seen from Fig. 5.11, these effects
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Figure 5.12: Polarization-polarization correlation of photons emitted in the 2s1/2 →
1s1/2 two-photon decay. The solid line corresponds to U91+, the dot-dashed line corre-
sponds to Xe53+ while the dashed line corresponds both to H and to the non-relativistic
calculation (the discrepancy between the two calculations is less than 10−10% and there-
fore not visible in the graph). Calculations are presented for energy sharing y = 1/16
and for the different polarization angles χ (cfr. Fig. 5.10).

result in a non-vanishing correlation function Φ for the “perpendicular polarization”
measurements, i.e. when χ2 = χ1 ± 90◦. The probability of “parallel polarization”
measurements consequently decreases of the same measure. We moreover notice that,
in case of energy sharing y = 1/16 and θ = 90◦, events with photon polarizations
within the reaction plane are not forbidden, in contrast to NR&lwa, as a consequence
of relativistic and non-dipole effects. This, in turn, leads to a further reduction of
the probability for those events with photon polarizations which are perpendicular
to the reaction plane. For hydrogen-like Uranium ion U91+, for example, the function
Φχ1,χ2(θ), as calculated at χ1 = χ2 = 90◦ and perpendicular photon emission (θ = 90◦),
decreases from 1 to almost 0.85 if the higher multipole terms are taken into account.
While the relativistic and retardation effects are significant in high-Z domain if one of
the photons is much more energetic than the second one, they become almost negligible
if the photons are emitted with nearly the same energy: ω1 ≈ ω2. As can be seen from
Fig. 5.12, for energy sharing y = 0.5, the polarization probabilities obtained within
NR&lwa and the rigorous relativistic approach differ in fact only of about ∼ 10−3,
even for the decay of hydrogen-like Uranium ion.

Many-electron atoms
To my best knowledge, there have not been direct studies on the polarization properties
of the photons coming from a two-photon decay of many-electron bound systems. The
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only works I am aware of which involve photon polarizations in two-photon decay
of many-electron bound states are the two works by us, [15] and [20]. The former
analyzes the polarization quantum correlation of the photons, while the latter makes
use of the polarization properties of the emitted photons to suggest a workable scenario
to investigate parity violation phenomena in atomic physics. In the next sections, we
will describe both studies in detail.

5.4 Quantum entanglement of the two emitted pho-

tons

In this section, we investigate the quantum correlation (entanglement) that the polar-
ization state of photons emitted in the two-photon decay of few-electron ions pos-
sesses. The transitions we study are 2s1/2 → 1s1/2 in hydrogen-like, as well as
1s1/2 2s1/2 : J = 0 → 1s2

1/2 : J = 0, 1s1/2 2s1/2 : J = 1 → 1s2
1/2 : J = 0 and

1s1/2 2p1/2 : J = 0 → 1s2
1/2 : J = 0 transitions in helium-like ions.

The geometry we refer to in what follows is the same as the one explained at the be-
ginning of Sec. 5.3, which is, in turn, displayed in Fig. 5.10.
As underlined in Sec. 4.2, spin–correlation phenomena are most easily described within
the framework of density matrix theory. Thus, we will use the spin-polarization density
matrix of the two emitted photons, Eq. (4.8), to analyze the entanglement properties
of the polarization state of the photons. The amplitude Mγγ

λ1 λ2
will be evaluated, once

again, by using the Green function for the Dirac-Coulomb Hamiltonian, as extensively
explained in Secs. 2.3 and 3.5. For transitions in He-like ions, we will make use of
the independent particle model, as already done in Sec. 5.2. Thus, we will restrict
ourselves to the description of transitions in highly charged ions, where such a model
is adequate.

5.4.1 Non-relativistic and long wavelength approximations

Before going into the relativistic analysis, we first restrict ourselves, as usual, to the
non-relativistic and long wavelength approximations so as to derive approximate ex-
pressions for the description of the two-photon polarization states. As we will see later,
this will provide intuitive insight into the entanglement properties of the photon pairs.
Moreover, by comparing predictions of such a simplified approach with the results of
the relativistic theory, we will be able to identify the relativistic and non-dipole effects
in the two-photon transitions.
In this section, since we are going to describe states in the non-relativistic framework,
we should consistently rename the helium-like states we are dealing with by following
the non-relativistic notation:

1s2
1/2 : J = 0 → (1s2) 1S0

1s1/2 2s1/2 : J = 0 → (1s 2s) 1S0

1s1/2 2s1/2 : J = 1 → (1s 2s) 3S1

1s1/2 2p1/2 : J = 0 → (1s 2p) 3P0

... → ...
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as explained in Sec. 2.4 and, specifically, in Eq. (2.39).
By making use of NR approximation and by restricting the intermediate-state sum-
mation over |ν〉 to states with equal angular momentum Jν and parity Pν , defined by
dipole selection rules, it is possible to express the density matrix (4.8) in the form [96]:

〈λ1, λ2| ρ̂γ |λ′1, λ′2〉NR&lwa = C λ1λ2λ
′
1λ
′
2

∞∑

L=1

L∑

µ1,µ2=−L

dL
µ1 µ2

(θ)

× 〈1, λ1, 1,−λ′1|L, µ1〉〈1,−λ2, 1, λ′2|L, µ2〉

×







Jν Jf 1
Ji Jν 1
1 1 L



 +

{
1 1 L
Jν Jν Ji

}{
1 1 L
Jν Jν Jf

}
 ,

(5.12)

where we employed the standard notation for the Wigner 6j- and 9j-symbols [54], and
C is a normalization constant that absorbs the radial parts of the transition amplitudes
Mγγ

λ1 λ2
(i → f). Furthermore, dL

µ1 µ2
(θ) are reduced Wigner matrices.

The supposition of equal angular momentum and parity for the intermediate states
leads to the evident advantage of having the final-state density matrix (5.12) which
depends only on the symmetry of the initial and final ionic states as well as on the
photons’ helicities. This supposition, however, limits the usage of the density matrix.
Indeed, Eq. (5.12) can be applied only for the analysis of those transitions that proceed,
within NR&lwa, via intermediate (virtual) states that have one particular value of
total angular momentum Jν and parity Pν . This is the case of (1s 2s) 1S0 → (1s2) 1S0

transition in helium-like ions, since, within lwa, the intermediate (virtual) states can
only be3 (1s np) 1P1. In addition, we can use Eq. (5.12) also for 2s1/2 → 1s1/2 decay
in hydrogen-like ions, since, for the electric dipole E1, the angular part given by 6j-
and 9j-symbols gives the same result for the allowed intermediate states np1/2 and
np3/2 (which suggests that the angular contribution of these states to the decay is, as
expected, non-relativistically the same). In the following analysis, we shall therefore
restrict the application of (5.12) to these two transitions. It happens that, for these two
case-transitions, the density matrix 〈ρ̂γ〉 in Eq. (5.12) fulfills the relation Tr

[〈ρ̂2
γ〉

]
=

Tr [〈ρ̂γ〉]2 = 1 and, hence, it represents a pure quantum-mechanical spin state of the
emitted photons (see Sec. 4.1). It can be easily found that this pure state is described
by the state vector (5.11):

|Ψ〉 = − 1
2
√

1 + cos2 θ

[
(cos θ − 1)(|++〉+ |−−〉) + (cos θ + 1)(|+−〉+ |−+〉)

]

= − 1√
1 + cos2 θ

[
|yy〉+ cos θ |xx〉

]
,

(5.13)

where we have used the notation |±〉 ≡ |λ = ±1〉, |χ = 90◦〉 ≡ |y〉 and |χ = 0◦〉 ≡ |x〉.
The photons are identified and detected according to our discussion concerning ‘label-
ing’, which has been given at the beginning of Sec. 5.3 and which is displayed in Fig.

3One-photon transitions within lwa link initial and final states i) which satisfy the triangle rule
Jf ⊗ 1 = Ji, ii) with opposite parity and iii) with same spin (see Eq. (3.37)). Therefore, the states
(1s np) 3P0,1,2 are excluded from the summation over intermediate states because of ‘iii’, the states
(1s nd) 1,2D1,2,3 are excluded because of ‘ii’, the states (1s nf) 1,3F2,3,4 (and any other) are excluded
because of ‘i’.
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5.10.
We immediately see that, if θ = π/2, the photon polarization state is a product (non-
entangled, or separable) spin state. For the particular case of back-to-back photon
emission (θ = π), the vector (5.13) further simplifies to a Bell state:

|Ψ〉 =
1√
2
(|++〉+ |−−〉) . (5.14)

As seen from this expression, for the opening angle θ = π photons can only be detected
having the same helicity. In the past, such a quantum correlation between the photons
emitted in the 2s1/2 → 1s1/2 decay of atomic deuterium has been employed for verifying
a violation of Bell’s inequality [19].
The quantitative analysis of entanglement for the emitted photon pair will be performed
in the following sections, based on our general expression (5.12), as well as on the
NR&lwa formula (5.13). Before we start such analysis, let us discuss some basic
properties of the photon spin-state. We will refer to the ket vector (5.13). We recall that
the typical “experimental scenario” consists of both photons detected by polarimeters
whose transmission axes are characterized by the angles χ1 and χ2 with respect to
the reaction (x-z) plane (see Fig. 5.10). Eq. (5.13) predicts that after the first photon
has been detected by the detector A (the first detector) with some defined (linear)
polarization angle χ1, the state of the second photon collapses onto the ket vector

|Ψ〉 → N
[
sinχ1 |y〉+ cos θ cosχ1 |x〉

]
,

where N is some normalization factor. It follows from the above equation that the
second photon is then found in a linearly polarized state. The direction of this linear
polarization, characterized by the angle χ̃2, depends on the opening angle θ of the
event and on the polarization angle χ1 along which the polarization of the first photon
had been detected. The analytical relation which links such variable is

tan χ̃2 =
1

cos θ
tanχ1 .

Trivially, this one-to-one relation between χ1 and χ2 does not generally imply that the
photons are maximal entangled. To better understand this issue and to finally quantify
the degree of entanglement we shall introduce, in a few paragraph, the ‘Concurrence’
measure.

5.4.2 P0 → S0 transitions

In contrast to the S0 → S0 transitions we discussed above, the approximated formulae
(5.12)-(5.13) cannot be applied for the analysis of the (1s 2p) 3P0 → (1s2) 1S0 decay
of helium-like ions. The principal reason for this failure is that the leading (electric-
magnetic dipole) E1M1-M1E1 (1s 2p) 3P0 → (1s2) 1S0 transition may proceed either
via the intermediate (1s ns) 3S1 or via the (1s np) 3P1 states, thus invalidating the
hypotheses. For this transition, we therefore come back to the relativistic treatment
(and, therefore, to the relativistic notation) but we consider, at first, only the leading
E1M1 dipole transition operator. By doing that, we again find the photon pair coming
from 1s1/2 2p1/2 : J = 0 → 1s2

1/2 : J = 0 transition are characterized by a pure spin
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state of the form

|Ψ〉 = C
(
− Σ(y) sin2 θ

2
|++〉+ ∆(y) cos2

θ

2
|−+〉

−∆(y) cos2
θ

2
|+−〉+ Σ(y) sin2 θ

2
|−−〉

)
.

(5.15)

Here, C is the normalization constant while the energy–dependent functions are defined
as: Σ(y) = SE1M1(ω1) + SE1M1(ω2) + SM1E1(ω1) + SM1E1(ω2), ∆(y) = SE1M1(ω1)−
SE1M1(ω2)−SM1E1(ω1)+SM1E1(ω2). The second-order reduced transition amplitudes
SL1p1,L2p2(ω) are defined in Eq. (5.5).
As seen from the equation above, the spin-state of the photons emitted in the 1s1/2 2p1/2

: J = 0 → 1s2
1/2 : J = 0 transition depends upon the energy sharing y. No simple

analytical expression for this dependence can be derived in general, owing to the com-
plicated structure of the functions ∆(y) and Σ(y). However, if both photons carry
away the same fraction of the energy, ω1 = ω2, the function ∆(y = 0.5) vanishes, and
the vector (5.15) represents a maximally entangled (Bell) state:

|Ψ〉 =
1√
2

(
− |++〉+ |−−〉

)
= − i√

2

(
|xy〉+ |yx〉

)
. (5.16)

By comparing this polarization state, for P0 → S0 He-like transitions, with the other
one in Eq. (5.13), for S0 → S0 He-like transitions, one can see that polarization
properties of the former is strongly different with respect to the latter: while the
photons emitted in the S0 → S0 transitions can be only detected having parallel linear
polarization vectors, the photons emitted in the P0 → S0 transitions can be only
detected having orthogonal linear polarizations. Moreover, no angular dependence
arises in the state vector (5.16), which implies maximal entanglement between the
photons’ spins, irrespectively of the particular decay geometry.

5.4.3 Entanglement of the two-photon state

We are ready now to discuss the concept of entanglement for the emitted photon pairs
and to introduce a proper measure for it. Let us first write the full two–photon state
which accounts, not only for the spin, but also for the spatial degrees of freedom.
Within NR&lwa, such a state, before its detection, reads

|Φ〉 = N

∫
dω1dω2δ(ω1 + ω2 −∆ω)f(ω1) |ω1ω2〉

×
∫

dθ1dθ2 |θ1θ2〉+
(
|yy〉 cos(θ1 − θ2) |xx〉

)
+ (1 ↔ 2) ,

where (1 ↔ 2) denotes the previous terms but with all particles’ labels exchanged and
the state is normalized by virtue of the constant N . Moreover, f(ω1,2) is the energy
probability density function of the decay, ∆ω = Ei − Ef is the transition energy and
θ1,2 are the angles which address the position of the first and second photon in the
reaction plane, respectively. Due to the integral over angles and energies, the above
state can be written as product state neither in the energies nor in the emission angles
or in the polarization. It can hence be seen as highly entangled, in general.
In order to rigorously discuss entanglement, due to the identity of particles, a degree of

96



5.4. QUANTUM ENTANGLEMENT OF THE TWO EMITTED PHOTONS

freedom for discrimination is needed. The energy of the photons and their opening an-
gles are an appropriate choice, since one naturally projects onto energy and momentum
eigenstates in the experiment. In the coincidence experiment displayed in Fig. 5.10,
the two-photon state collapses onto a state with definite momenta. If the energies of
the photons are equal and the emission directions exactly the same, we are not able to
identify two separated particles between which entanglement may be defined. As long
as this is not the case, we identify the particle projected on the two energies and angles
as the two distinct entities to which we can safely assign an entanglement measure
[95]. Hence, even though we start with a rather complex state of identical particles
in which no physical subsystem structure is apparent, we can effectively deal with the
two-qubit system of polarized photons projected on energy and momentum states.
Having clarified the concept of the two-photon entanglement, we shall introduce now
its quantitative measure. For a photon pair, that can be seen as a “two-qubit” system,
it is very convenient to describe the degree of entanglement by means of the Wootter’s
concurrence C [60]. The basic relations for this method have been explained in Sec.
4.2.
Before we discuss further the properties of the concurrence C, we first recall that
it quantifies (only) correlations that can be fully attributed to the entanglement. Bi-
particle states with vanishing concurrence can still exhibit correlations which are, how-
ever, not of quantum nature.
The definition of Concurrence given in Eq. (4.4) can be simplified further if applied to
a pure quantum-mechanical state described by a ket vector:

|β〉 = Caa |aa〉+ Cab |ab〉+
Cba |ba〉+ Cbb |bb〉 ,

where a, b are arbitrary two–dimensional basis states and Cij are complex numbers.
For this state, the concurrence reads

C = 2
∣∣∣CaaCbb − CabCba

∣∣∣ .

By using the above expression and Eq. (5.13), we immediately obtain the analytical
expression

C(θ) = 2
| cos θ|

1 + cos2 θ
(5.17)

for the spin-entanglement of the photons emitted in the 2s1/2 → 1s1/2 and (1s 2s) 1S0 →
(1s2) 1S0 transitions. We remind that Eq. (5.17) is obtained within NR&lwa and
should be questioned in high-Z domain, where higher-order and relativistic effects can
play a significant role. To explore the influence of these effects on the photon spin-
entanglement, we will compare, in the next paragraph, the predictions obtained from
Eq. (5.17) with the rigorous relativistic calculations based on Eqs. (4.8) and (4.4). For
this comparison, we will naturally make use of the table (2.39).

5.4.4 Results and discussion

Hydrogen-like ions
After having discussed the theoretical background of two-photon polarization studies,
we are prepared now to analyze the influence of the relativistic and higher-multipole
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effects on quantum correlations between the two photons. We start our analysis with
the 2s1/2 → 1s1/2 decay of hydrogen-like ions, that is well established both in theory
and experiment. As shown above, the polarization properties of this transition can
be described, within NR&lwa, by the state vector (5.13) and, hence, by the degree
of entanglement (5.17). The theoretical predictions, obtained within such an approxi-
mated approach, are displayed in Fig. 5.13 for the decay of neutral Hydrogen as well as
hydrogen-like Xenon Xe53+ and Uranium U91+ ions and are compared with the results
of the rigorous relativistic treatment. The calculations are performed at two relative
photon energies y = 1/16 (upper panel) and y=1/2 (lower panel). As seen from the
figure, in case of equal energy sharing (y = 1/2), both approaches yield almost iden-
tical results along the entire isoelectronic sequence. Our calculations show that, while
being maximal for the parallel (θ = 0) and back-to-back (θ = π) photon emission, the
concurrence vanishes at the opening angle θ = π/2. This behaviour is well understood
from Eq. (5.13) as well as from the conservation of the projection Mtot of the to-
tal angular momentum Jtot of the overall system “ion + two photons”. Namely, if no
electron–spin flip were to occur during the 2s1/2 → 1s1/2 decay and assuming 0 nuclear
spin, the conservation law enforces that the change of the projection of the ion’s total
angular momentum relative to the quantization axis z (chosen along the momentum
of the first photon) would be given by Mi−Mf = 0 = λ1 +Mγ2 . In this expression, λ1

is the helicity of the first photon and Mγ2 is the projection of the angular momentum
of the second one. For photons emitted in parallel or back-to-back, this projection is
Mγ2 = λ2 and Mγ2 = −λ2, correspondingly, thus leading to the conditions λ1 = −λ2

or λ1 = λ2. Moreover, owing to the spherical symmetry of s-ionic states, there is
an equal probability of emission of the “first” photon with helicity λ1 = +1 or −1.
This immediately implies maximally entangled Bell states |Ψ〉 = (|+−〉 + |+−〉)/

√
2

for θ = 0, and |Ψ〉 = (|++〉 + |−−〉)/
√

2 for θ = π, as predicted by Eqs. (5.13) and
(5.14).
Similar to the cases of parallel and back-to-back photon emission, the conservation
condition λ1 = −Mγ2 with the helicity of the first photon being λ1 = ±1 may help
to understand the behaviour of the entanglement measure C(θ) at θ = π/2. This will
require us to come back to the electric dipole decomposition for the second photon,
which, analogously to Eq. (2.58), reads4

ελ2
C eik2r ≈ −λ2

√
6π

+1∑

Mγ=−1

A
(e)
1Mγ

(k, r) d1
Mγλ2

(θ) . (5.18)

For the opening angle θ = π/2, the elements of the reduced Wigner matrix are:
d1

11 = d1
1−1 = d1

−11 = d1
−1−1 = 1/2, implying, together with Eq. (4.7) and with the

fact that the ionic states are spherically symmetric, that the probability for the second
photon to have projection Mγ2 = ∓1 on the quantization axis of the overall system is
independent of its helicity λ2. Thus, no correlations between the polarization (spin)
states of the emitted photons appear for the perpendicular emission, leading to the
vanishing entanglement C(π/2) = 0 as displayed in Fig. 5.13.
As seen from the top panel of Fig. 5.13, the accuracy of NR&lwa becomes generally
worse if one of the photons has a significantly larger energy than the other one. For

4In our chosen geometry for the decay, only the spherical angle θ is required for defining the direction
of the second photon.

98



5.4. QUANTUM ENTANGLEMENT OF THE TWO EMITTED PHOTONS

0 60 120 180
0

0.2

0.4

0.6

0.8

1
C

on
cu

rr
en

ce

H

0 60 120 180
0

0.2

0.4

0.6

0.8

1

Xe
53+

0 60 120 180
0

0.2

0.4

0.6

0.8

1

U
91+

0 60 120 180
Opening angle θ (deg) 

0

0.2

0.4

0.6

0.8

1

C
on

cu
rr

en
ce

0 60 120 180
Opening angle θ (deg)

0

0.2

0.4

0.6

0.8

1

0 60 120 180
Opening angle θ (deg)

0

0.2

0.4

0.6

0.8

1

Figure 5.13: Concurrence of two photons emitted in the 2s1/2 → 1s1/2 decay of neutral
hydrogen and hydrogen-like Xenon and Uranium ions. Results of NR&lwa (dashed
line) and the rigorous relativistic theory (solid line) are shown, for two relative photon
energies y = 1/16 (upper panel) and y = 1/2 (lower panel).

the 2s1/2 → 1s1/2 transition of hydrogen-like uranium, for example, NR&lwa overesti-
mates the concurrence measure by about 10% for forward as well as backward opening
angles, for an energy sharing y = 1/16. In order to understand better such an energy-
dependent behavior, we study the Purity of the two-photon polarization state, which
can be defined as

P =
4
3

Tr[〈ρ̂γ〉2]− 1
3

, (5.19)

where 〈ρ̂γ〉 represents the photon density matrix (5.12). The purity varies from 0
(completely mixed state) to 1 (pure state). In Fig. 5.14 we display the purity P for
the 2s1/2 → 1s1/2 decay of U91+ for two relative photon energies: y = 1/16 (upper
panel) and 1/2 (lower panel). As seen from the figure, the purity strongly depends
on the energy sharing parameter: while the purity of the two-photon state is always
> 0.987 for an equal energy sharing y = 0.5, it is significantly reduced for y = 1/16.
The loss of purity can be attributed to the spin-orbit coupling in hydrogen-like ions as
well as to the magnetic terms in electron-photon interaction. Both these relativistic
effects increase with the nuclear charge Z and with the photon energy. They lead to
the fact that the decay of the unpolarized and, hence, mixed 2s1/2 level results in the
emission of photons characterized by a partially mixed state. Due to complementarity
of entanglement and mixedness/impurity [97], such a loss of purity causes the reduction
of the concurrence measure that can be observed in the top panel of Fig. 5.13. Despite
such a reduction, there are still quantum correlations between the polarization states
of the photons.
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Figure 5.14: Purity (5.19) of the two-photon state in the 2s1/2 → 1s1/2 decay of
hydrogen-like Uranium. Results of NR&lwa (dashed line) and of the rigorous rela-
tivistic treatment (solid line) are shown, for relative photon energies y = 1/16 (upper
panel) and y = 1/2 (lower panel).

Helium–like ions
In contrast to the 2s1/2 → 1s1/2 decay of one-electron systems, the 1s1/2 2s1/2 : J =
0 → 1s2

1/2 : J = 0 transition in helium-like ions always proceeds between the pure,
J = 0, quantum-mechanical states. Therefore, the spin-state of the photon pair emitted
in such a transition will be pure at any energy sharing. The concurrence measure C(θ)
of such a pure state calculated within the exact relativistic theory turns out to be almost
identical to the dipole approximation (5.17). The deviation between both predictions
does not exceed 1%, even for the heaviest helium-like ions and arises due to the higher,
non-dipole terms in electron-photon interaction. By comparing this prediction with
the calculations performed in the previous section for hydrogen-like ions, we again
argue that the reduction of the spin-entanglement between the photons emitted in the
2s1/2 → 1s1/2 transition shall be mainly attributed to the loss of purity of ionic states.
After the above, short discussion of the 1s1/2 2s1/2 : J = 0 → 1s2

1/2 : J = 0 transition,
we turn now to explore quantum correlations in the 1s1/2 2p1/2 : J = 0 → 1s2

1/2 :
J = 0 decay. As one can expect from the spin-state vector (5.15), derived in leading
order, “electric and magnetic” dipole approximation, these correlations should differ
from those predicted for the S0 → S0 cases. Indeed, by inserting the vector (5.15)
into Eq. (5.17), we obtain, within the dipole (E1M1) approximation, the concurrence
measure as

C(θ, y) =

∣∣∣∣∣
∆2(y) cos4 θ

2 − Σ2(y) sin4 θ
2

∆2(y) cos4 θ
2 + Σ2(y) sin4 θ

2

∣∣∣∣∣ . (5.20)
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Figure 5.15: Concurrence of two photons emitted in the 1s1/2 2p1/2 : J = 0 → 1s2
1/2 :

J = 0 decay of helium-like Xenon and Uranium ions. Results of the E1M1 dipole
approximation (dash-dotted line) and of rigorous relativistic theory (solid line) are
shown, for two relative photon energies y = 1/10 (upper panel) and y = 1/4 (lower
panel).

In contrast to the polarization entanglement (5.17) between the photons emitted in
the S0 → S0 transitions, the concurrence turns out here to depend on the photons’
energy sharing. To better understand such a dependence, we display the entanglement
of the photons emitted in the 1s1/2 2p1/2 : J = 0 → 1s2

1/2 : J = 0 decay of helium-like
Xenon and Uranium ions in Fig. 5.15. Calculations are performed for two relative
energies: y = 1/10 and 1/4 both within the dipole approximation (5.20) and by using
the exact theory which accounts for the higher multipole channels. As seen from the
figure, both theoretical approximations predict maximal entanglement, C = 1, for the
parallel and back-to-back photon emission at any energy sharing y; a feature that
could be expected from the conservation laws. On the contrary, the “critical” opening
angle θc at which the concurrence vanishes, C(θc) = 0, varies with the relative photon
energy. By inspecting Eq. (5.20) we find the following relation for this angle:

tan2
(θc

2

)
=

∣∣∆(y)
∣∣

∣∣Σ(y)
∣∣ . (5.21)

It follows from this expression that for any non-zero values of the functions ∆(y) and
Σ(y) there exists one single critical angle θc(y), as can also be seen, for example, from
Fig. 5.15.
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If the photons, emitted in the 1s1/2 2p1/2 : J = 0 → 1s2
1/2 : J = 0 decay, carry

away the same portion of energy, ω1 = ω2, the function ∆(y) turns out to be zero and
Eq. (5.21) cannot be applied for the determination of the critical angle θc. As can
be seen from Eq. (5.16) and Eq. (5.20), in this case the photons state is maximally
entangled (Bell state) for any opening angle, i.e. C(θ, 0.5) = 1. This behaviour differs
from that of 1s1/2 2s1/2 : J = 0 → 1s2

1/2 : J = 0 as well as 2s1/2 → 1s1/2 transitions
for which no correlations appear at the opening angle θ = π/2. In order to understand
the reason for this difference, we shall return to Eq. (4.7) (and hence to Eq. (5.4)). By
making use of the multipole expansion and of the properties of the Wigner matrices, we
can re-write the two-photon transition amplitude in terms of reduced matrix elements
(5.5) as:

M~k1
~k2

fi (λ1, λ2) ∝ (λ1 + λ2)
(
SE1M1(ω) + SM1E1(ω)

)
,

where, for the case of equal energy sharing, ω1 = ω2 = ω.
It follows from the above equation that apart from the conservation of the projection of
the total angular momentum Jtot, discussed in the previous paragraph, an additional
selection rule arises for the 1s1/2 2p1/2 : J = 0 → 1s2

1/2 : J = 0 that forbids emission
of the photons with opposite helicities. Together with the equal probabilities of the
spin-states |++〉 and |−−〉, this selection rule forces the photons polarization state to
be the Bell state (5.16) and, hence, it implies maximal engagement of the photons’
state.
Until now our discussion of the two-photon decay of helium-like ions was restricted to
J = 0 → J = 0 transitions. In this case, both initial and final ionic states are pure
along the entire isoelectronic sequence, and, consequently, the two-photon states are
pure as well. In order to underline again the effect of the loss of purity on the quantum
correlations, we study the two-photon decay of the unpolarized 1s1/2 2s1/2 : J = 1
state. In Fig. 5.16, we display the degree of spin-entanglement for the 1s1/2 2s1/2 : J =
1 → 1s2

1/2 : J = 0 transition in helium-like Xenon and Uranium ions. Again, the exact
relativistic calculations are compared with the predictions of electric dipole (E1E1)
approach for two relative energies y = 1/10 and 1/4. As seen from the figure, the
general behaviour of the concurrence measure is very similar to that of the 1s1/2 2s1/2 :
J = 0 → 1s2

1/2 : J = 0 and 2s1/2 → 1s1/2 transitions. Namely, it changes from 1
for the parallel photon emission down to zero at θ = π/2 and back to a maximum
entanglement for θ = π. Similar to the discussion in the previous paragraph, this can
be easily understood if one applies again the momentum projection selection rules and
Eq. (5.18). In contrast to the 1s1/2 2s1/2 : J = 0 → 1s2

1/2 : J = 0 and 2s1/2 → 1s1/2

transitions, however, the degree of entanglement (Concurrence) for 1s1/2 2s1/2 : J =
1 → 1s2

1/2 : J = 0 transition drops down much faster for the forward 0 < θ < π/3 and
backward 2π/3 < θ < π angles; an effect that can be understood if we remember that
the initial ionic state is prepared in an unpolarized (mixed) state.
As one can see from Fig. 5.16, spin entanglement for the 1s1/2 2s1/2 : J = 1 →
1s2

1/2 : J = 0 transition is very sensitive to higher multipoles in the electron-photon
interaction. This is a direct consequence of a strong suppression of the E1E1 decay
channel caused by the symmetry properties of the multi-photon systems (see Refs. [11–
14] for further details). The non-dipole contributions become more significant for
heavier ions and with increasing the energy sharing from 0 to 0.5, and result in an
asymmetric shift in the concurrence.
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Figure 5.16: Concurrence of two photons emitted in the 1s1/2 2s1/2 : J = 1 → 1s2
1/2 :

J = 0 decay of helium-like Xenon and Uranium ions. Results of the E1E1 dipole
approximation (dash-dotted line) and the rigorous relativistic theory (solid line) are
shown, for two relative photon energies y = 1/10 (upper panel) and y = 1/4 (lower
panel).

5.5 Applications towards atomic parity-violation stud-
ies

Parity non-conservation (PNC) had been at first theoretically proposed by Lee and
Yang in 1956 in order to find a way out of the so-called “τ − γ puzzle” [98, 99]. The
next year, Wu and collaborators observed an asymmetry in nuclear beta decay ascribed
to parity non-conservation in weak processes [100], and, subsequently, Lee and Yang
have been forthwith awarded with the Nobel Prize. Many later experiments in nuclear
and high energy physics confirmed parity violation in weak interactions and precisely
recorded weak charge and other related parameters [101–104]. Although with some
initial controversies, the “τ − γ puzzle” was also solved out by understanding that
both τ and γ were two decay channels of the same parent particle, known today as
the charged kaon K+ [105,106]. In contrast to nuclear and high energy physics, fewer
experiments have been carried out in atomic physics to measure weak interaction’s
properties. In fact, the conflicting results of the early Bismuth experiments in the
’70 [107–110] spread the conviction that nothing fundamentally useful could have ever
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been extracted from atomic physics experiments. Nonetheless, renewed interest on the
subject rose again in the late ’80 and ’90 and led to the successful measurements of the
weak charge Qw and related parameters in atomic Cesium [111–116], Thallium [117],
Lead [118] and Ytterium [119]. On the theoretical side, starting from the early work
of Curtis-Michel [120], several investigations of PNC have been made in the context
of neutral atoms [121], few–electron ions [122,123] and muonic atoms [124,125]. In all
the proposed studies, the little role played by PNC effects together with the need of
precise measurements have been highlighted.
Parity violation in atomic physics is mainly caused by the exchange of the Z0 boson
between atomic electrons and quarks in the nucleus. All atomic states become mix-
tures consisting mainly of the state they are usually assigned, together with a small
percentage of states possessing the opposite parity. It has been discussed some time
ago the prospect for measuring the mixing between the states 1s1/22s1/2 : J = 0
and 1s1/22p1/2 : J = 0 in helium-like Uranium by inducing a resonant parity vi-
olating E1E1 transition between them [126]. The authors of the paper concluded
that the proposed measurement was not feasible with the then available technology,
while, nowadays, is under consideration at GSI facility in Darmstadt (Germany). With
the same goal, some years later Dunford proposed an analysis based on the circular
polarization asymmetry of one of the photons emitted in the two-photon decay of
1s1/22p1/2 : J = 0 state [92]. As the author concluded, the calculations therein per-
formed were not enough to assess whether or not the polarization asymmetry could
lead to useful parity experiments.
With the same intent and similar method, we propose another route based on photon
polarization properties, for the experimental determination of the mixing parameter
between the states 1s1/22s1/2 : J = 0 and 1s1/22p1/2 : J = 0 in U90+

The different polarization properties of the photons emitted in the two-photon decays
of such states suggest a way to discriminate the decays and, thereby, to measure the
mixing parameter between the states. However, the prospect presents some technical
difficulties, widely discussed in the following, that make the experimental realization a
challenge with the current state of art technologies.
Although our theoretical description of the states is relativistic, for the sake of short-
ness, the two states 1s1/22s1/2 : J = 0 and 1s1/22p1/2 : J = 0 will be briefly called, in
the following, by using the non-relativistic notation, i.e. 21S0 and 23P0 respectively.
It must be anyway clear that, since our theoretical analysis is set within a relativistic
framework, the short (non-relativistic) notation (21S0 and 23P0) which we will use
henceforth must be understood to be only a formal replacement to the full lengthy
notation (1s1/22s1/2 : J = 0 and 1s1/22p1/2 : J = 0).
Before explaining the ideas and goals of the prospect, a discussion on the structure of
low energy states of helium-like Uranium is needed.

Helium-like Uranium ion
Heliumlike Uranium ion represents a very suitable candidate for studying PNC, due
to the fact that the states 23P0 and 21S0 are separated by an energy difference of only
few electronvolts [127, 128], out of a total binding energy of order 100 KeV. Fig. 5.17
shows the scheme of the first levels of U90+ [129]. 23P0 state has negative parity and
lifetime of about ∼ 10−11 sec, while 21S0 state has positive parity and shorter lifetime
of about ∼ 10−13 sec. Although 23P0 can decay by single photon emission into 23S1,
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Figure 5.17: Level scheme of few low energetic states in U90+.

both 23P0 and 21S0 decay exclusively by two–photon decay to the ground state, owing
to angular momentum conservation. Due to weak interaction between electrons and
nucleus, 23P0 acquires a small admixture of 21S0 and vice versa. Since the size of
the parity mixing depends inversely on the energy difference between the mixed states
[126], both 23P0 and 21S0 do not get any other considerable PNC contribution from
any other state. More explicitly, at the first order in perturbation theory, the “true”
|23P0〉 and |21S0〉 states can be written as [92]

| ˜23P0〉 ≈ |23P0〉+ η |21S0〉
| ˜21S0〉 ≈ |21S0〉 − η∗ |23P0〉 .

(5.22)

The tilde notation is here and henceforth used to denote “true” states, in order to
differentiate them from the bare theoretical Dirac states which will be denoted without
the tilde. The mixing parameter η in Eq. (5.22) is given by

η =
〈23P0| ĤW |21S0〉

∆EPS
, (5.23)

where ∆EPS is the energy difference between 23P0 and 21S0, while ĤW is the operator
for the nuclear-spin-independent weak interaction [92]:

ĤW =
GF

2
√

2

(
1− 4 sin2 θw − N

Z

)
ρelγ5 ,

where GF is the Fermi’s constant, θw the Weinberg angle, N the neutron number, Z the
proton number, ρel the electric charge density (normalized to Z) and γ5 = −iα1α2α3.
Up to a very good approximation, we will neglect any parity mixing effect in any state
with the exception of 23P0 and 21S0. Among the low energetic states in U90+, only
these two have in fact energies near enough to determine a sizeable mixing parameter
between them.

Prospective method: ideas and theory
For the purpose of measuring the parameter η in Eq. (5.23), we propose to prepare
U90+ in ˜23P0 state. The efficiency of such preparation is here assumed to be 100%.
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The so prepared ˜23P0 state will decay either into 23S1 or into the ground state, as
extensively displayed in Fig. 5.17. The two-photon decay channel ˜23P0 → 11S0, in
which we are interested, can be easily selected out in experiments by requiring a (two-
detector) coincidence measurement. The geometry we theoretically consider for such
measurement is displayed in Fig. 5.10. It is the same geometry adopted for the previous
sections, so that the reader, hopefully, may have got familiar with it.
The amplitude for this two-photon decay process, as we have widely discussed in Sec.
3.4, is the one displayed in Eq. (3.44). By introducing (5.22) into Eq. (3.44), the
amplitude splits into two terms,

Mγγ
λ1 λ2

( ˜23P0 → 11S0) ≈Mγγ
λ1 λ2

(23P0 → 11S0) + ηMγγ
λ1 λ2

(21S0 → 11S0) . (5.24)

In order to suggest any experiment whose goal is the measurement of the mixing pa-
rameter η, we should be first able to theoretically discriminate the two amplitudes
of the right-hand side of Eq. (5.24). The key point of the prospect is that such dis-
crimination can be obtained by studying the polarization properties of the photons
contained in those amplitudes. It has been showed in the previous sections that, in
case that nearly equal energy is shared between the photons, the two-photon decay
23P0 → 11S0 is characterized by photon linear polarizations which are exclusively or-
thogonal to each other (linear polarizations of the first, second photon are detected,
correspondingly, along the axes x, y′ or y, x′), while the two-photon decay 21S0 → 11S0

is characterized by photon linear polarizations which are exclusively parallel to each
other (linear polarizations of the first, second photon are detected, correspondingly,
along the axes x, x′ or y, y′) [15, 93]. While the first assertion is true independently
of the opening angle θ, the second one holds only in case the photons are recorded
either collinearly or back-to-back (θ = 0◦, 180◦). However, as it will be evident in the
following, the linear polarizations of photons emitted in 21S0 → 11S0 decay can be
considered parallel in the whole intervals 0◦ ≤ θ . 2◦ and 178◦ . θ ≤ 180◦, due to the
fact that the (orthogonal) corrections to the polarization state are negligible in that
region, even for the delicate problem under consideration. As a matter of fact, for the
case 0◦ ≤ θ . 2◦ (or 178◦ . θ ≤ 180◦) and y = 0.5, we showed in the previous section
that the polarization state of the two photons emitted in consequence of the decay of
the prepared ˜23P0 state can be simply described by the ket vector [15]

|Ψ〉 = OPS
f,Z,θ

( |xy〉+ |yx〉 ) + η OSS
f,Z,θ

( |xx〉+ |yy〉 ) , (5.25)

where
∣∣∣OPS

f,Z,θ

∣∣∣
2

is the probability of detecting the emitted photons with polarizations

along χ1 = 0◦, χ2 = 90◦ or χ1 = 90◦, χ2 = 0◦ while
∣∣∣OSS

f,Z,θ

∣∣∣
2

is the probability
of detecting the photons with polarizations along χ1 = 0◦, χ2 = 0◦ or χ1 = 90◦,
χ2 = 90◦. Both OPS

f,Z,θ and OSS
f,Z,θ contain the dependence on the energy sharing

parameter y, the atomic number Z and the opening angle θ given respectively by the
amplitudes Mγγ

λ1 λ2
(23P0 → 11S0) and Mγγ

λ1 λ2
(21S0 → 11S0).

In order to inspect the polarization properties of the photons emitted in the two-photon
decay of the ˜23P0 state, we most naturally make use of the polarization-polarization
correlation function, which has been defined in Eq. (5.9). The polarization-polarization
correlation there showed is the physical quantity we mean to investigate.
The model we use for the calculations is once again the Independent Particle Model,
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widely discussed in Sec. 2.4. Alternative and more accurate model might be, for
instance the method of relativistic finite basis sets, which has been shown to be valid
and efficient for accurate calculations of the two-photon E1M1 decay rate from the 23P0

state [130]. The Independent Particle Model (IPM), although it treats the electrons as
independent particles bound to the nucleus (the nuclear Coulomb attraction is assumed
to be much stronger than the electron–electron repulsion), takes the Pauli principle
into account. Moreover, as showed in Eq. (5.6), it allows a drastic simplification of
the two-electron amplitude, allowing to reduce it to a summation over one-electron
amplitudes. The tool we adopt here for the calculation of the latter is, as in the
previous sections, the relativistic Dirac-Coulomb Green function (see Secs. 2.3 and
3.4).
The results showed below are obtained by taking into account the full multipoles
contribution of the photons fields.
Finally, the effective nuclear charge used for the computation is Z = 91.275. This
accounts for the electromagnetic screening that one electron makes on the other one,
allowing for a basic electron-electron interaction. For details regarding how to calculate
the effective charge in multi-electron atoms, see Ref. [44].

Results and discussion
After having explained the theory at the base of our prospect, we are now ready to
present concretely the proposal.
In order to measure the mixing parameter η in Eq. (5.23), we propose, as previously
mentioned, to prepare the Uranium ion U90+ in ˜23P0 state, to place two polarization
detectors at a fixed position in the reaction plane and to use them as polarizer filters.
While one of the two detectors will be kept at a fixed orientation (fixed transmission
axis), the transmission axis of the other one will be continuously rotated to record the
correlation function (5.9) for different photons polarization configurations. In order to
suggest a workable experimental scenario, we must inevitably look for opening angle
and energy values which enable η OSS

f,Z,θ to be comparable with OPS
f,Z,θ, in Eq. (5.25). In

other words, since η is considerably small, we must find a configuration for which the
amplitude Mγγ

λ1,λ2
(23P0 → 11S0) is small in comparison with Mγγ

λ1,λ2
(21S0 → 11S0).

On this purpose, it has been showed that the decay rate for the 23P0 → 11S0 transition
is strongly suppressed for photons’ opening angle 0 ≤ θ . 2◦ and equal energy sharing,
whereas, for the same configuration, the decay rate 21S0 → 11S0 gets (almost) its
maximum value [10, 11]. Choosing small values of θ and equal energy sharing will
also ensure that the different amplitudes in Eq. (5.24) will determine different photons
polarization outcomes (as remarked in the previous paragraph), which is decisive for
the scope of the prospect. An optimal configuration for our purposes can be found,
for instance, at θ = 1◦ and y=0.5. For such a configuration, the coefficients OPS

f,Z,θ and
OSS

f,Z,θ, which compose the ket vector (5.25), assume respectively the values -8.49 ×
10−11 and 4.43 × 10−5. The correlation function Φ related to such polarization state
can be easily calculated:

Φy=0.5
χ1,χ2

(θ = 1◦) = N 2
[
− 8.49× 10−11

(
cosχ1 sinχ2 + sin χ1 cosχ2

)

+ η 4.43× 10−5
(
cosχ1 cosχ2 + sin χ1 sinχ2

)]2
.

(5.26)

107



CHAPTER 5. TWO-PHOTON DECAY: ADVANCED STUDIES

0 60 120 180
χ

2
  (deg)

0

0.1

0.2

0.3

0.4

0.5

φ

θ = 1 deg

χ
1
 = 90 deg

y = 0.5

= ˜23P0 → 1
1
S0

= 2
3
P0 → 1

1
S0

= 2
1
S0 → 1

1
S0

Figure 5.18: Polarization-polarization correlation function (5.9) for the ˜23P0 → 11S0

two-photon decay of helium-like Uranium ion. The contribution of the different ampli-
tudes in Eq. (5.24) are separately displayed. The dashed (red) line and the dot–dashed
(green) line represent respectively the P → S and the S → S contribution to the cor-
relation function, while the solid (black) line denotes the total P̃ → S correlation
function. See Fig. 5.10 for angles definitions.

We draw the above function in Fig. 5.18, where χ1 has been arbitrarily set to 90◦, for
a better visualization, while η has been fixed to the predicted theoretical value 1.75 ×
10−6, which can be obtained by correcting the value obtained in Ref. [126] with the
precise calculation of the 21S0 − 23P0 energy gap showed in Ref. [128]. The different
contributions of the two addends in Eq. (5.24) are separately displayed, as well as the
total correlation function. We can easily notice that the “parity allowed” (|xy〉+ |yx〉)
and “parity forbidden” (|xx〉+ |yy〉) components of the photon polarization state have
approximately the same magnitude. In concordance with Sec. 5.4, it can be seen in
the figure, as well as from Eq. (5.26), that the amplitudes Mγγ

λ1 λ2
(21S0 → 11S0) and

Mγγ
λ1 λ2

(23P0 → 11S0) determine respectively the probability of detecting parallel and
orthogonal linearly polarized photons. In an ideal experiment, we could therefore scan
the function Φ over the whole or part of the domain χ1,2 ∈ [0, 180◦], in order to be
then able to determine the parameter η by fitting the measured polarization correlation
with the (η dependent) function (5.26).
The proposal is based on the fact that, for y → 0.5 and θ → 0, the transition
23P0 → 11S0 (model-independently) vanishes. If we considered the two-photon tran-
sition ˜21S0 → 11S0, it can be easily seen from Eqs. (5.22) and (3.44), that the am-
plitude for that process would turn out to be equal to (5.24), with the replacement
Mγγ

λ1 λ2
(21S0 → 11S0) ↔ Mγγ

λ1 λ2
(23P0 → 11S0). Since, unfortunately, there exist no

geometry for which the transition 21S0 → 11S0 is suppressed, the polarization of the
emitted photons would be completely dominated by the “parity allowed” component
that, in that case, would be (|xx〉 + |yy〉). An initial preparation of the ˜21S0 state,
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therefore, although easier from an experimental point of view [63, 82], would not give
rise to the interference pattern shown in Fig. 5.18, for any given geometry.
Moreover, the amplitude Mγγ

λ1 λ2
(21S0 → 11S0) is approximately one order of mag-

nitude larger than Mγγ
λ1,λ2

(23P0 → 11S0), as can be seen from the states lifetimes
displayed in Fig. 5.17. This fact represents an advantage for studying PNC effects in

˜23P0 → 11S0 rather than in ˜21S0 → 11S0, since such difference compensates partially
for the small value of the mixing parameter η in Eq. (5.24) and so helps the two ad-
dends in the same equation to be comparable.
Although the suggested settings y = 0.5 and θ = 1◦ ensure, as needed, that the
23P0 → 11S0 channel is strongly suppressed, they determine at the same time a chal-
lenging arrangement for the experimental investigation of the prospect. Specifically,
because of the required small opening angle θ, the two X-ray photon detectors would
have to be placed at a relatively long distance from the source of radiation and thus
the detection efficiency would be substantially decreased. An additional hindrance lies
in the fact that the polarizations of both photons have to be measured at equal energy
sharing (y = 0.5). For the case of Uranium, this fact would imply that each photon
has about 50 keV (rest frame) energy. The polarization resolved experiments in this
X-ray energy regime are nowadays normally performed by using Compton polarime-
ters [16, 131–135]. By selecting events recorded in coincidence which have the desired
(Compton) scattering angle, such polarimeters can be used to measure the polarization
state of the photon pair, in a similar way as in [136–139]. The selection of events can
however increase considerably the statistical uncertainty.
Further experimental difficulties for the realization of the prospect might arise from the
angle-energy resolution needed to record the interference pattern shown in Fig 5.18.
The P → S channel rises fast, glossing over the other S → S channel in which we are
interested, as soon as we depart from the (exact) theoretical proposed configuration
y = 0.5, θ = 1◦. In other words, slightly different angle-energy settings would bring
about a completely different polarization-polarization correlation function with respect
to (5.26). As a matter of fact, the opening angle and energy resolutions needed, in or-
der to select events for which the correlation function does not change approximately
shape, would be, according to our calculations, respectively 0.5 degrees and 5 elec-
tronvolts. Even though the required angle resolution may be nowadays achieved, the
energy resolution needed is approximately three orders of magnitude higher than the
available resolution in current Compton polarimeters. A possible way to overcome the
energy resolution limitation would be to use the so-called absorption edge technique
[140]. In this technique, the photons pass through an absorption foil. The K-shell
absorption edge of the foil atoms serves as a photon energy filter. The photons with
the energy below the K-shell photoionization energy will have a significantly higher
transmission probability than the photons with the higher energies. Since in the pro-
posed experimental scheme both of the entangled photons have the same energy, one
foil can be used as the energy filter for both of the photons. By adjusting the ion beam
velocity the photon energy can be Doppler-tuned such that it is less than 5 eV below
the K-edge. A Compton scattering polarimeter behind the absorption foil can be then
used for the polarization analysis of the transmitted photons. Another possible ex-
perimental approach would involve high energy resolution calorimeters and a Rayleigh
scattering polarimetry technique [141]. Here the energy of the Rayleigh scattered pho-
ton and its scattering direction could be measured with high resolution by an array of
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x-ray calorimeters. Such arrays are currently being developed [142, 143] and likely to
reach the required energy resolution at the energy of 50 keV in the near future.
The small (expected) value of the mixing coefficient η is certainly at the base of the
technical difficulties explained above. A way to lighten such difficulties might be rep-
resented, for instance, by selecting a suitable isotope of U90+. In virtue of the fact
that the energy gap between 21S0 and 23P0 states varies slightly by changing the mass
number of the ion [128], the mixing of the two states itself would depend on the consid-
ered isotope (cfr. Eq. (5.23)). In particular, by choosing an isotope of Uranium whose
mass number is smaller than 238, we would be able to increase the mixing parameter
of the two states up to a factor ≈1.6. However, besides the technical difficulties related
to the radioactive properties that the chosen isotope might show, such improvement
would be anyway not enough to bring considerable advantages to the prospect.
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Chapter 6

Summary and outlook

In summary, we recalled in Chapter 2 the relativistic description of particles, ions and
electromagnetic radiation in Quantum Mechanics. Particularly, in Secs. 2.1 and 2.2
we presented and found the solutions of the Dirac equation for free and bound states
respectively. In Sec. 2.3, we investigated the Green function for the Dirac-Coulomb
hamiltonian. In Sec. 2.4, we introduced the Independent Particle Model, which is the
simplest endeavor to extend the relativistic description of particles in Quantum Me-
chanics to many-particle systems. In the last section of the second chapter, namely Sec.
2.5, a detailed (relativistic) theory of photons and radiation in Quantum Mechanics
has been presented. We discussed how the angular momentum properties of photons
show up naturally from the solutions of Maxwell equations and how they are linked
to the photon polarization properties. We derived the electromagnetic potentials and
fields that the circularly and linearly polarized radiation produces. We also derived the
multipole expansion of the photon vector plane wave, which is of great usefulness, as
we show later on, in dealing with transitions in bound states. We then discussed and
brought out the differences of two different approximations which are usually made in
dealing with the photon vector plane wave: the electric-dipole and the long wavelength
approximations.
In Chapter 3, we investigated first- and second-order perturbation theory. We ap-
plied such a theory for the description of single- and double-photon decays in atoms
and ions. We showed how electric-dipole and long wavelength approximations take to
simple formulae, though with limited applicability. We have been able to analytically
express, in hydrogen-like atoms, the amplitude for two-photon decay by employing the
Dirac solutions and the Dirac-Coulomb Green function presented in Chapter 2.
In Chapter 4, we briefly showed the density matrix approach to ensembles of states in
Quantum Mechanics. We discussed how density matrices enable us to investigate in a
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simple manner statistical and quantum-entanglement properties of elementary ensem-
bles of states.
We opened Chapter 5 by recalling the advanced studies which have been done, in the
last decades, in studying two-photon decays. This paved the way to the original works
that have been carried out by me and co-workers, during my PhD time. Indeed, in
Secs. 5.2 and 5.3, we presented how the angular and polarization properties of the
emitted photons in two-photon decays have been recently studied by us. We continued
our thorough analysis of two-photon decay by applying the density matrix formalism
to it in order to study the quantum-entanglement properties of the polarization state
of the two emitted photons. These studies led us to understand how relativity and
high-multipoles affect the angular, polarization and quantum-entanglement properties
of the photons. Our analysis ended by showing, in Sec. 5.5, how the polarization fea-
tures of the emitted photons can be brilliantly applied to investigate parity-violation
phenomena in atomic physics.

Overall, this thesis suggests that two-photon transitions are a powerful tool to study
the relativistic electronic structure of atoms and their inherent characteristics. From a
theoretical point of view, this virtue follows from the fact that two-photon transitions
are described by the second-order amplitude, which is sensible to all levels (both free
and occupied) in single- and many-electron bound systems.
We wish that both theoretical and experimental efforts toward the better understand-
ing of nature through two-photon decays is kept being pursued in the future. Thanks
to new detector-technologies [16], polarization studies on two-photon decay can now
open the way to exploring and understanding many and various physical areas of great
interest.
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Appendix A

Here we derive that the condition

∇ ·A = 0 and Φ = 0

is a valid gauge condition in vacuum.
The electromagnetic fields are related to the scalar (Φ) and vector (A) potentials as

E = −∇Φ− ∂A

∂t
,

B = ∇×A .

(A.1)

It is known that the electromagnetic potentials are not fully specified from the
Maxwell’s equations for the fields (2.40). Indeed, by choosing any regular function λ,
the transformation

A → A + ∇λ

Φ → Φ− ∂λ

∂t

(A.2)

leaves unaltered the Maxwell’s equations. The transformation above is referred to as
gauge transformation. It is therefore needed a further condition to fully specify the
potentials. One of the most used is the Lorentz gauge condition

∇ ·A +
1
c2

∂Φ
∂t

= 0

which, together with the Maxwell’s equations, fully specifies the potentials. In the
vacuum, using equations (A.1) and (2.40), we get

0 = ∇ ·E = −∇2Φ− ∂

∂t
∇ ·A .

If we adopt the Lorentz gauge, we get

0 = −∇2Φ− ∂

∂t

(
− 1

c2

∂Φ
∂t

)
= −∇2Φ +

1
c2

∂2Φ
∂t2

, (A.3)
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which is a wave equation for Φ.
Analogously, for the vector potential we get

∇×B =
1
c2

∂

∂t

(
−∇Φ− ∂A

∂t

)
= −∇

(
1
c2

∂Φ
∂t

)
− 1

c2

∂2A

∂t2

and
∇×B = ∇× (∇×A) = ∇ (∇ ·A)−∇2A .

The two above equations lead to

∇
(

∇ ·A +
1
c2

∂Φ
∂t

)
=∇2A− 1

c2

∂2A

∂t2
.

In the Lorentz gauge, we get the final equation for A:

∇2A− 1
c2

∂2A

∂t2
= 0 . (A.4)

The general solutions for equations (A.3) and (A.4) are of the form1

ΦL(r, t) = Φ0

(
ηei(kr−ωt) + η∗e−i(kr−ωt)

)
,

AL(r, t) = A0

(
εei(kr−ωt) + ε∗e−i(kr−ωt)

)
,

where k, ω, ε, η, A0, Φ0 are parameters. We have added a subscript L to make clear
that the found potentials are in the Lorentz gauge.
We notice that the equation

∂2ΦL

∂t2
= −ω2ΦL

is satisfied.
Now, let us make a gauge transformations, from the Lorentz gauge, to another gauge.
The transformation function λ we choose is

λ = − 1
ω2

∂ΦL

∂t
,

which is surely regular, as we stated it must be.
Following the gauge transformations (A.2), we get the new potentials A′ and Φ′ to be

Φ′ = ΦL − ∂λ

∂t
= ΦL +

1
ω2

∂2ΦL

∂t2
= ΦL − ΦL = 0 ,

A′ = AL + ∇
(
− 1

ω2

∂ΦL

∂t

)
= AL − 1

ω2
∇∂ΦL

∂t
.

(A.5)

Taking the divergence of A′ we get:

∇ ·A′ = ∇ ·AL − 1
ω2

∇2 ∂ΦL

∂t
.

1The potentials must be real so as to give rise to real electromagnetic fields.

114



APPENDIX B

Now we use the Lorentz condition on the first term, and the wave equation (A.3) on
the second term of the rhs of the above equation. We obtain:

∇ ·A′ =
1
c2

∂ΦL

∂t
− 1

ω2

∂

∂t

(
1
c2

∂2ΦL

∂t2

)
=

1
c2

∂ΦL

∂t
− 1

c2

∂ΦL

∂t
= 0

= − 1
c2

∂Φ′

∂t
.

(A.6)

Summarizing, we get from Eqs. (A.5) and (A.6) the following conditions for the new
potentials in vacuum:

Φ′ = 0 ,
∇ ·A′ = 0 .

The above conditions represent therefore a valid gauge choice in vacuum.

Appendix B

The polarization tensor and multipoles, which are presented in Sec. 2.5, have some
useful symmetry properties, which we here derive. In this section, the involved
functions will be written without argument, for the sake of simplicity.

T ∗
J L M =

1∑

m=−1

〈L,M −m, 1,m|J,M〉Y M−m ∗
L ξ∗m

=
1∑

m=−1

〈L,M −m, 1,m|J,M〉 (−1)M−m Y m−M
L (−1)m ξ−m

=
1∑

m=−1

(−1)L+1−J〈L,m−M, 1,−m|J,−M〉 (−1)M Y m−M
L ξ−m

=︸︷︷︸
m→−m

(−1)L+1−J+M
−1∑

m=+1

〈L,−M −m, 1,m|J,−M〉Y −M−m
L ξm

= (−1)L+1−J+M
+1∑

m=−1

〈L,−M −m, 1,m|J,−M〉Y −M−m
L ξm

= (−1)L+1−J+M TJ L−M ,

A
(m) ∗
L M = JLT ∗

L L M = JL(−1)L+1−L+M TL L−M = (−1)M+1 A
(m)
L−M ,
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A
(e) ∗
L M = JL−1

√
L + 1
2L + 1

T ∗
L L−1 M − JL+1

√
L

2L + 1
T ∗

L L+1 M

= JL−1

√
L + 1
2L + 1

(−1)L−1+1−L+M TL L−1−M

− JL+1

√
L

2L + 1
(−1)L+1+1−L+M TL L+1−M

= (−1)M A
(e)
L−M ,

ap ∗
L M = (−1)M+p+1 ap

L−M ,

ap
L M = (−1)M+p+1 ap ∗

L−M ,

〈β1, J1||α · ap
L||β2, J2〉 =

(
〈β1, J1||α · ap

L||β2, J2〉
)∗

= (−1)p+1+J2−J1

(
2J2 + 1
2J1 + 1

)
〈β2, J2||α · ap

L||β1, J1〉

ξ∗m · ξm′ = δm, m′ .

Appendix C

When the magnetic field (B) is constant, the vector potential (A) can be taken of
the form

A = −1
2

r ×B .

Proof:

B ≡ ∇×A = ∇×
(
−1

2
r ×B

)

= −1
2
r · (∇ ·B)−B

(
∇ ·

(
−1

2
r

))
+ (B · ∇)

(
−1

2
r

)
−

(
−1

2
r ·∇

)
B

= 0 +
3
2
B − 1

2
B + 0 = B ,

where the first and last terms in the penultimate row disappear because of Maxwell’s
equations and the hypothesis of constant magnetic field, respectively.
As discussed in Sec. 3.2 and Sec. 3.3, the non-relativistic hamiltonian which accounts
for the interaction of an electron with a magnetic field, at the first order in α, in the
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Coulomb gauge, is
Ĥ
′
= − e

m
Â · p̂ .

It can be easily verified that
[
Â, p̂

]
= 0 and therefore the above operator is

hermitian, as it is written.
By using that our magnetic field B is constant (by hypothesis), we obtain:

Ĥ
′
= +i~

e

m

(
−1

2
r̂×B

)
·∇ = +i~

e

m

(
+

1
2

)
B · (r̂×∇)

= +i~
e

m

(
+

1
2

)
(r̂×∇) ·B =

e

2m
(r̂× p̂) ·B

= +
e

2m
L̂ ·B = − q

2m
L̂ ·B

where q = −e is the electronic charge.
Now, as usual in non-relativistic quantum mechanics, we may add the spin
contribution by hands, by adding the spin operator Ŝ to L̂ and multiplying it by a
constant gs, the so-called spin g-factor. By doing that, we get

Ĥ
′
=

e

2m

(
L̂ + gsŜ

)
·B

= +µe ·B ,

(C.1)

where
µe =

µB c

~

(
L̂ + gsŜ

)

is the magnetic dipole operator for the electron and µB =
e~

2mc
is the Bohr magneton.

Therefore, the Hamiltonian in Eq. (C.1) is the correct hamiltonian for the
non-relativistic interaction of an electron with a constant magnetic field.
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