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Der Einfluss des Interatomic Coulombic Decay (ICD) auf die Kerndynamik in den
ersten vier Vibrations-Zuständen des CO∗B1Σ+ Rydberg-Zustandes in CO·Mg
wird quantitativ untersucht. Eine Methode zur Berechnung der dazu benötigten
ICD-Breiten wird eingeführt. Die Methode wird anhand von Berechnungen der
ICD-Breiten von Anregungen in der äußeren Valenz in NeAr, HCNMgn, n = 1, 2,
und in der inneren Valenz in NeMg getestet.

The impact of Interatomic Coulombic decay (ICD) on the photoinduced dynamics
in the first four vibrational levels of the CO∗B1Σ+ Rydberg state in CO·Mg
clusters is investigated. A method for calculating the required ICD widths is
introduced. The method is tested by calculations of ICD widths of outer-valence
excited states in NeAr, HCNMgn, n = 1, 2, and inner-valence excited states in
NeMg.
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CHAPTER 1

Introduction

Electronically excited states in atoms and molecules can decay by photon emis-
sion, and, if the excitation energy is higher than the ionization energy of the
system, radiationlessly by the emission of electrons. Well-known examples for
the latter decay mode are autoionization (AI) [1] and the Auger decay [2] which
are governed by intratomic or intramolecular electron correlation. If an excited
system is placed in an environment and the excitation energy is sufficient to
ionize the environment, another process can take place which is driven by in-

teratomic or intermolecular electron correlation. This process is known as inter-
atomic Coulombic decay (ICD) [3]. Due to its fundamental and interdisciplinary
relevance it has been the topic of extensive experimental [4–12] and theoreti-
cal [13–25] research since its discovery.

In the present work ICD emanating from neutral electronic excitations is in-
vestigated. Our particular interest lies in the single excitations of inner- and
outer-valence electrons which can be produced in single photon absorption. The
interatomic decay of such excited states is known as resonant ICD (RICD) [18]
or excitation transfer ionization (ETI) [19] in the case of inner- or outer-valence
excitations, respectively. A schematic illustration of both processes can be found
in Fig. 1.1. The two processes are distinguished because an inner-valence exci-
tation, in contrast to outer-valence excitations, can decay by autoionization as
well.

A part of the fundamental relevance of the ICD is due to its impact on processes
taking place in excited states in poly-atomic physical, chemical, and biological
systems embedded in environments. Nevertheless, up to this point in time this
impact has neither been investigated nor understood sufficiently.

Dynamics taking place in excited states of isolated poly-atomic systems have
been topic of a multitude of experimental and theoretical works and the reader is
referred to textbooks to get an overview [26–28]. Since there are many situations
in nature and experiments where systems cannot considered to be isolated, the
impact of environments on the dynamics must be investigated as well. A special
consequence of the presence of an environment is ICD; it stands out because
it is a purely environmental effect, i.e., it happens only due to the presence of
the environment. Since the ICD is generally a very efficient process, an essential
question is, how processes which take place in isolated excited poly-atomic system
like photodissociation, isomerization, etc [26–28] are affected by ICD and whether
they can be quenched by means of it. In the present work, we investigate the
impact of ICD on photodissociation. To this end, we study the photodissociation
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Figure 1.1: Schematic illustration of decay pathways following electronic excitations which are

relevant in this work. The labeling indicates the type of orbital: core (c), inner-valence (iv), outer-

valence (ov), and virtual (v), respectively. The uppermost frame shows spectator resonant interatomic

Coulombic decay (sRICD), the middle box depicts participator resonant interatomic Coulombic decay

(pRICD), and the lowermost frame illustrates the scheme of the excitation transfer ionization (ETI)

process. See text for more details. Note that if we successively execute the electron to orbitals of higher

and higher energies, decay by ETI will eventually cease to exist, but the decay by sRICD will still be

highly efficient.

dynamics of CO [29] in the presence of an environment. In particular, we study
the predissociation dynamics in the four lowest vibrational levels of the B1Σ+

Rydberg state of CO in CO·Mg. We study this system because, firstly, CO and
Mg are weakly bonded which allows to exclude side effects, and, secondly, the
corresponding dynamics of isolated CO have been investigated extensively and
are well understood [29–32]. In order to carry out dynamics taking into account
ICD the corresponding decay rates must be known.

Apart from the energetics, the widths are the most important attribute of ICD.
Their knowledge allows one to estimate the efficiency of the decay into a particular
channel and to calculate the distributions of the final states [22,33–36]. Decaying
states are characterized by complex energies E = ER − iΓ̃/2. The width Γ̃ is
the sum over partial decay widths of all open decay channels, i.e. radiative,
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autoionization, interatomic Coulombic, etc. The radiative widths are usually
much smaller than the ICD rates and can be neglected. In the following we will
understand by the width Γ the sum of the partial widths due to electron emission
only.

There is a need of efficient and accurate methods for calculating Γ. The complex-
ity of the ICD process precludes the derivation of a general analytical formula
for the decay width. Only if the distance between the excited system and the
environment becomes large it is possible to obtain analytical expressions in the
framework of the virtual photon transfer model [16, 21]. The analytical expres-
sions are reasonably accurate at large internuclear distances, but can underesti-
mate the true widths at equilibrium geometries by orders of magnitude [16, 21].
However, since they can be expressed by the properties of the isolated excited
system and environment, whose values are often available in the literature, these
asymptotic expressions provide an easy way for estimating the interatomic decay
widths and can be used to verify ab initio results at asymptotic distances.

The property of resonances to have complex energies suggests a natural com-
putational approach to the width Γ: analytic continuation of the many-electron
Hamiltonian into the complex energy plane. This can be achieved by adding
a complex absorbing potential (CAP) to the Hamiltonian [37–39]. In the case
of electronic decay this Hamiltonian is represented using some many-electron
ansatz, e.g. algebraic diagrammatic construction (ADC) [40, 41], coupled clus-
ter (CC) [42], or configuration interaction (CI) [43, 44]. The complex resonance
energy is obtained by repeated diagonalization of the non-Hermitian complex
symmetric Hamiltonian matrix for different CAP parameters. Since addition of
a CAP discretizes the electronic continuum, CAP based methods have the advan-
tage of being able to use L2 basis sets common in standard methods for electronic
structure calculations, to represent the continuum part of wave functions of reso-
nances. The major drawbacks of the method are its numerical cost, the fact that
a narrow resonance does not manifest itself in the results until the underlying
one-particle basis set becomes of considerable size [37].

Another approach to calculate such widths is based on the picture introduced
by Fano [45] and Feshbach [46] of a resonance as a bound state embedded and
interacting with the continuum. In its framework the decay width is obtained
from a golden-rule-like expression [45, 47, 48]. The initial and final states of
the decay can be constructed by a variety of techniques. To lowest order in
perturbation theory they can be taken as spin-adapted Slater determinants of one-
electron functions [49]. The resulting calculations are very efficient numerically,
but the neglect of electron correlation usually leads to rather inaccurate results
[18, 50]. The ansatz was improved in calculations of the interatomic decay in
systems having inversion symmetry by utilizing CI including single excitations to
describe the initial states [23]. Further improvement has been achieved employing
the so-called Fano ansatz [51] to represent the initial and the final states as well as

3
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the coupling between them accounting for electron correlation consistently. The
extension of these methods to the estimation of partial decay widths is possible
[52], allowing us to calculate the autoionization and ICD widths separately.

The main disadvantage of the original Fano ansatz is the use of continuum elec-
tron wave functions whose asymptotic behavior and correct normalization cannot
be reproduced by L2 basis sets. This difficulty has been overcome in Ref. [51]
by combining the Fano ansatz with the Stieltjes imaging technique [53–59]. Em-
ploying this technique helps to evaluate decay widths by the Fano method using
L2 one-particle basis sets. The Stieltjes imaging technique allows to extract cor-
rectly normalized continuum quantities, e.g. decay widths or photoionization
cross sections, from a discrete spectrum by calculating the spectral moments of
the quantity in question and using them to construct consecutive approximations
to the quantity itself. Stieltjes imaging was previously applied to the calculations
of the widths of states decaying by electron emission [16, 51, 60]. The standard
implementation of the Stieltjes imaging requires the knowledge of a large part
of the eigenspectrum of the corresponding Hamiltonian matrix and is, therefore,
restricted to atomic or small molecular systems. This drawback of the Stieltjes
imaging technique was realized very early on [61] and a number of suggestions
how it can be overcome exist in the literature [61–64]. A general approach of over-
coming the bottleneck was proposed [65] for the calculation of photoionization
cross sections. The approach is based on applying the Stieltjes imaging procedure
to the block-Lanczos pseudospectra instead of the full spectra of the Hamiltonian.
In the block Lanczos procedure one converges iteratively to a subspace of eigen-
vectors having non-zero overlap with a starting block of vectors [66]. A judicious
choice of the latter adapted to the problem at hand allows one to obtain con-
tinuum quantities to a desired precision within reasonable computational time.
The conjunction of Fano ansatz, Stieltjes imaging, and Lanczos method is called
Fano-Stieltjes-Lanczos (FSL) method [65].

In the course of the present work, we implement the FSL method for the calcu-
lation of widths of neutral excited states decaying by electron emission. In our
implementation the ADC method [67, 68] is used to calculate the properties of
involved excited states. Phenomenologically and numerically it is more demand-
ing to determine properties of neutral excited states than properties of ionized
or doubly ionized states since the configuration space required for an accurate
description is much larger and the interpretation of the results is more sophisti-
cated. However, the large dimension of the required configuration spaces make
the use of the Lanczos method is especially gainful. In the course of the present
work, we test the approach by applying it to calculations of ETI widths in NeAr,
HCN·Mgn, n = 1, 2, and to the determination of RICD widths in NeAr. Later
on it is used to compute the ETI widths in CO·Mg.

This work is structured as follows: chapter 2 introduces the theory forming the
FSL approach. In chapter 3 asymptotic formulae for ETI are derived. We apply
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the FSL approach to calculations of ETI and RICD widths of systems of interest
in chapter 4 and 6, respectively. The dynamics of CO in CO·Mg after CO∗B1Σ+

excitations are investigated in chapter 5. The results of this work are summarized
in chapter 7.
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Throughout this work scalars will be denoted by italic letters, vectors v are given
as bold letters. Letters which are bold and underlined represent matrices M,
operators are indicated by a hat, and ‖ · · · ‖ denotes the Euclidian norm of the
embraced quantity. If not stated otherwise in the respective chapter or section,
the indices j, k, l represent occupied and the indices a, b, c unoccupied molecular
orbitals. The indices r, s are general. Atomic units are used throughout the
present work.
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CHAPTER 2

Theory

In this chapter we introduce the theory of our numerical approach for the calcu-
lation of ICD widths. The whole approach, which is summarized at the end of
this chapter, is called Fano-Stieltjes-Lanczos method (FSL).

2.1 Calculating Properties of Resonances

In quantum mechanics a resonant state or resonance can be regarded as a bound
state which is embedded in and coupled to one or more continua. As it is shown
below, resonances are characterized by complex energies E = Eφ + ∆ − iΓ/2;
for reasons which will become clear later Eφ is denoted as the formation energy,
∆ as the energy shift, and the imaginary part Γ as the width of the resonance.
The determination of resonance energies in atomic and molecular systems is a
central part of the present work. The formation energy Eφ can be calculated
comparatively easily using efficient quantum chemical L2 methods. However,
the determination of the shift ∆ and the width Γ is difficult as they depend on
continuum states whose asymptotic behavior and correct normalization cannot
be reproduced by L2 basis sets.

However, there are methods which can determine those quantities using L2 basis
sets exclusively. In order to understand the underlying idea, solutions of the
Schrödinger equation in a restricted function space can be considered. If the
space consists of L2 functions only, the solutions are subject to the artificially
imposed boundary condition

B : φ0(r → ∞) = 0. (2.1)

On the other hand, the physical boundary condition of a resonance reads [69–73]

B0 : φ(r → ∞) ∼ eikr exp(−iα), k, α > 0, (2.2)

where α = 1
2
Arg(E) is related to the width of the resonance. In order to obtain

solutions which fulfil the correct boundary condition in a L2 function space, the
coordinates must be transformed r → r′ so that the Schrödinger equation in
the transformed coordinates with the physical boundary condition B0(r

′) is the
same as the Schrödinger equation in the original coordinates with the artificial
boundary condition B(r), i.e.,

B0(r
′) = B(r). (2.3)
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It can be shown, that this can be achieved by the transformation [69–73]

r → reiθ. (2.4)

It results in a change of the initially diverging boundary condition, B0(r), to

B0(re
iθ) :

∫ ∞

0

eikr exp(i(θ−α)) = finite if sin(θ − α) > 0. (2.5)

Introducing the new coordinates into the Schrödinger equation leads to a new
equation [74, 75]

Ĥ(θ) = e−2iθT̂ + e−2iθV̂ . (2.6)

The expectation value of (2.6) with respect to L2 functions is complex [69,74,75].
This rotation of the Hamiltonian into the complex plane is known as complex
scaling [71,72]. Resonances are revealed upon the transformation since the energy
of the continuum states rotates as E → E exp(−2iθ) [70–73]. Due to their special
boundary conditions (2.2), resonances are rotated only about α [70–73] and,
consequently, are revealed upon the rotation if the pure continuum states are
rotated further. Since the resonances wave function is asymptotically convergent
(2.5) in the new coordinates, the resonant parameters can be obtained using L2

functions only.

Another way to continue the Hamiltonian into the complex plane is to employ
CAPs [37, 39, 76, 77]

Ĥ(η) = T̂ + e−2iηV̂ . (2.7)

A CAP is an absorbing boundary condition in the exterior region of the scattering
target. All scattering functions and the continuum part of the wave functions of
resonances are literally absorbed by the imaginary potential and as a result they
become square integrable. In order to reveal resonances the CAP strength η is
varied. As in the case of complex scaling, the energies of resonances are affected
up to a certain degree by the CAP, continuum states are spatially extended and,
therefore, interact strongly with the CAP. Hence, resonances exhibit a minimum
with respect to the CAP strength [39]. Since CAPs are just additional potentials
which, similarly to the Hamiltonian, can be expanded in basis sets, they are
much more convenient to use in conjunction with many-body methods compared
to complex scaling.

The major drawback of the use of complex scaling and CAPs are their numerical
costs: in order to reveal resonances large very basis sets are required [37, 39].
Moreover, these methods are inappropriate to determine partial widths (for com-
plex scaling see [78]; to our knowledge there is no study for CAPs). However,
partial widths are often desirable because they help to understand the decay
process in detail and to estimate channel couplings.

8



Chapter 2

In this work we use an approach which is based on the splitting of the domain
of the Hamiltonian into a part that represents bound states and another part
describing continuum states. Splitting of the domain is known as projection
formalism [46]. Within this formalism, the effects of the continuum on the bound
states, a shift and a broadening, are naturally given by the coupling through
the Hamiltonian. Assuming the coupling as a perturbation which is switched
on adiabatically, one can use time-dependent perturbation theory to derive an
expression for the shift and the width. This approach is known as Wigner-
Weisskopf method [79]; derivations and discussions can, e.g., be found in Ref. [49,
80]. The Wigner-Weisskopf method has the disadvantage that it produces results
correct only up to the first non-vanishing order of perturbation theory and it
is cumbersome to go beyond this level of approximation. Thus, the method is
practically limited to estimate the order of magnitude of the coupling and to
elucidate the underlying mechanism. As a consequence, we chose to work with a
more general approach.

The approach is based on the observation that the wave functions of resonances
can be expressed by a linear combination of a wave function describing a bound
state and a wave function representing the background continuum. It was orig-
inally independently proposed by Fano to determine the shape of resonances in
electron-atom scattering [45] and Feshbach to describe resonant scattering in nu-
clear physics [46, 81]. Later on, it was used by Malley [82], Bardsley [83], and
Mies [84] to describe resonant electron-molecule scattering and further developed
by Howat et al in order to describe states undergoing Auger decay [47, 48]. In
the literature, the approach is often denoted as Fano method and we will stick
to this name throughout this work. In order to derive an expression for the shift
and the width within the Fano method we consider the Hamiltonian matrix

〈φ|H|φ〉 = Eφ,

〈ψE′|H|φ〉 = VE′, (2.8)

〈ψE′′|H|ψE′〉 = E ′δ(E ′′ − E ′),

where |φ〉 denotes a bound state, |ψE′〉 a continuum state and the off-diagonal
element VE′ describes the coupling between them. In general the eigenvectors of
the matrix with elements (2.8) read

|ΨE〉 = a(E)|φ〉+
∫

dE ′bE′(E)|ψE′〉. (2.9)

To obtain solutions for the coefficients a and bE′, the ansatz wave function |ΨE〉
is inserted into the time-independent Schrödinger equation

Ĥ|ΨE〉 = E|ΨE〉, (2.10)

9
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which is then multiplied, respectively, with |φ〉 and |ψE′〉 from the left, and is in-
tegrated over the electronic coordinates. Thus, the following system of equations
is obtained

aEφ +

∫

dE ′V ∗
E′bE′ = Ea, (2.11a)

VEa+ E ′bE′ = EbE′ (2.11b)

A solution of the system can be found by expressing bE′ in terms of a. However,
this solution exhibits a singularity at E−E ′. To handle it one can use the formal
solution introduced by Dirac [85]

bE′ =

[

P
1

E −E ′
+ z(E)δ(E − E ′)

]

VEa, (2.12)

where P indicates that the principal part of the integral should be taken. Inserting
(2.12) into (2.11a) and cancelling a (at energies close to the real part of the
energy of the resonance a 6= 0) we obtain a formal solution for the energy of the
resonance:

E = Eφ +∆(E)− z(E)|VE|2. (2.13)

Consequently, the energy of the resonance is given by the energy of the bound
state Eφ plus the so-called shift ∆(E) which is defined as follows

∆(E) = P

∫

dE ′ V
∗
E′VE

E −E ′
, (2.14)

and a part which contains z(E). From (2.13) a formal solution for z(E) is obtained

z(E) =
E − Eφ −∆(E)

|VE|2
. (2.15)

It is also possible to obtain a solution for z(E) by imposing boundary conditions
[46,83]. The decay of a resonance can be considered as a half-scattering process.
Taking an excited state as the point of origin, there can be only outgoing electron
waves. From scattering theory it is well known that such a decay process can be
specified by choosing the boundary conditions [46, 86]

z(E) = −iπ. (2.16)

This choice directly yields the expression of the energy of the resonance given in
the first paragraph of this section:

E = Eφ +∆− iΓ/2, (2.17)

10
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where

Γ = 2π|VE|2. (2.18)

The last step in the solution of the system of equations (2.11) is the determination
of the coefficient a which can be obtained by normalization:

〈ΨẼ|ΨE〉 = a∗(Ẽ)a(E) +

∫

dE ′b∗E′(Ẽ)bE′(E) = δ(Ẽ − E). (2.19)

By inserting the formal solution of bE′ (2.12) and the derived expression for z(E)
(2.15) into (2.19) the following solution is obtained [45]

|a(E)|2 = |VE|2
[E − Eφ −∆(E)]2 + π2|VE|4

. (2.20)

Obviously, due to the coupling to the continuum the discrete state is diluted and
the amplitude or shape of the resonance in the energy spectrum is given by a
Lorentz profile with a half width Γ = 2π|VE|2 which is connected to the mean
lifetime of the resonance by τ = 1/Γ. Since we will make further use of the result
for the width it is written more generally:

Γ(E) = 2π
∑

β

|〈φd|Ĥ −E|ψ+
β,E〉|2, (2.21)

where |φd〉 stands for the decaying N-electron state and |ψ+
β,E〉 for the outgoing

energy-normalized N-electron continuum state of energy E, with β enumerating
all open channels of the decay. The sum runs over all available final states of
energy E, and the relevant width is found by evaluating Γ(E) at E = Er where Er

is the energy of the decaying state corrected for the interaction with continuum.
In the calculations presented in this paper we take Er ≈ Ed, the formation energy
of the decaying state.

Having the solutions

a = sin(Θ(E))/πVE (2.22)

bE′ =
|VE′|2 sin(Θ(E))

πV ∗
E(E − E ′)

− cos(Θ(E))δ(E − E ′), (2.23)

where

Θ(E) = − arctan
π|VE|2

E −Eφ −∆
, (2.24)

11
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one can consider how the probability to excite the resonances |ΨE〉 is related
to experimental observations. To this end, the transition matrix element of a
general transition operator T̂ is considered

〈ΨE|T̂ |i〉 =
1

πV ∗
E

〈φ|T̂ |i〉 sin Θ +
1

πV ∗
E

P

∫

dE ′V
∗
E′〈ψE′|T̂ |i〉
E − E ′

sin Θ

− 〈ψE |T̂ |i〉 cosΘ

=
1

πV ∗
E

〈Φ|T̂ |i〉 sinΘ− 〈ψE |T̂ |i〉 cosΘ, (2.25)

where

|Φ〉 = |φ〉+ P

∫

dE ′V
∗
E′|ψE′〉
E − E ′

. (2.26)

and |i〉 denotes an initial state. The strong variation of Θ as E passes through
the resonance E = Eφ+∆ causes a strong variation of 〈ΨE|T̂ |i〉. Since it peaks at
E = Eφ+∆, experimentally the center of the resonance is observed at this energy.

Additionally, 〈Φ|T̂ |i〉 and 〈ψE|T̂ |i〉 contribute to 〈ΨE|T̂ |i〉 with opposite phase So,
the transition probability |〈ΨE|T̂ |i〉|2 vanishes at one side of the resonance. The
quotient of the transition probability between the initial state and the resonant
state |〈ΨE|T̂ |i〉|2 and the probability of the transition from the initial state to
the non-resonant background continuum |〈ψE |T̂ |i〉|2 determines the measured
intensity of the resonance in the spectrum. A discussion for different ratios can
be found in [45].

The expression describing the bound-continuum coupling (2.21) obviously con-
tains continuum functions. However, in order to evaluate this kind of matrix
elements it is not necessary to know the involved continuum functions explicitly.
The properties of wave function constituting these kind of matrix elements al-
low for an strict L2 treatment as will be shown in Sec. 2.3. It is important to
note that the Fano method is applicable as long as the required separation of the
Hamiltonian in a bound and a continuum part is possible.

12
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2.2 Calculating Excited States of Atoms and Molecules

In order to obtain the eigenfunctions and eigenenergies for the electronic motion
in molecules one has to solve the many-particle Schrödinger equation

ĤΦ(r1, s1; . . . ; rN , sN) = EΦ(r1, s1; . . . ; rN , sN) (2.27)

where (in atomic units):

Ĥ =

(

−
N∑

i=1

1

2
∇2

i −
M∑

A=1

N∑

i=1

ZA

|RA − ri|
+

N∑

j=1

N∑

i<j

1

|rj − ri|

)

(2.28)

Here ri and si, respectively, denote the spatial and the spin coordinates of the
ith electron, and RA are the coordinates of the nucleus A. The wave function
Φ(r1, s1; . . . ; rN , sN) is is anti-symmetric with respect to the interchange of the
coordinates of two electrons. It can be expanded in a basis of anti-symmetrized
products of one-particle functions

ΦP1,...,PN
= |ψP1

(r1, s1) . . . ψPN
(rN , sN)|

=
1√
N !

∣
∣
∣
∣
∣
∣
∣

ψP1
(r1, s1) . . . ψPN

(r1, s1)
...

. . .
...

ψP1
(rN , sN) . . . ψPN

(rN , sN)

∣
∣
∣
∣
∣
∣
∣

(2.29)

which are known as Slater determinants [87]. An optimal set of one-particle
functions for this expansion can be obtained by a Hatree-Fock (HF) computation
ofr the ground state. The HF equations are obtained from the variation principle
which minimizes the energy

E0 =
〈Φ0|Ĥ|Φ0〉
〈Φ0|Φ0〉

(2.30)

with respect to the one-particle wave functions ψr(r, s) [87] under the constraint
that the latter remain orthonormal 〈ψi|ψj〉 = δij. The resulting equations which
determine the optimal one-particle functions

f̂ψ(r, s) =

[

ĥ +
∑

r

Ĵr −
∑

r

K̂r

]

ψ(r, s) = ǫaψ(r, s) (2.31)

are known as Hartree-Fock (HF) equations. The exchange operator

K̂bψ(r, s) =

[∫

dr′ψ∗
r (r

′, s′)
1

|r− r′|ψ(r
′, s′)

]

|ψr(r, s)〉, (2.32)
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and the Coulomb operator

Ĵrψi(r, s) =

[∫

dr′ψ∗
r (r

′, s′)
1

|r− r′|ψr(r
′, s′)

]

ψ(r, s). (2.33)

represent electron-electron interactions in (2.31); without these terms it would
be a one-particle Schrödinger equation

ĥψi(r, s) =

[

−1

2
∇2 −

M∑

A=1

ZA

|RA − r|

]

ψi(r, s) = ǫiψi(r, s). (2.34)

The Slater determinant of the N energetically lowest optimized one-particle func-
tions is the best possible one-particle approximation to the ground state of the
system [87].

Throughout this work we only consider closed-shell systems where all spin orbitals
are doubly occupied in the ground state,

|Φ0〉 = |φ1(r1)χα(s1)φ1(r2)χβ(s2) . . .

. . . φN/2(rN−1)χα(sN−1)φN/2(rN)χβ(sN)|, (2.35)

where the spin orbitals ψi(r, s) = φi(r)χγ(s) are represented by products of a
spatial function φi(r) and a spin function χγ(s). Carrying out the energy mini-
mization (2.31) for closed shell determinants and integrating out the spin yields
the closed-shell HF equations for the spatial one-particle functions,

f̂φ(r) =



ĥ+

N/2
∑

r

[

2Ĵr − K̂r

]



φ(r) = ǫφ(r). (2.36)

The missing factor 2 in front of the exchange term K̂r reflects the fact that there
is only exchange among electrons of parallel spin. By representing the spatial
orbitals |φ〉 in a basis set, the integro-differential equations (2.36) are transformed
into a set of algebraic equations - the so-called Roothaan equations [87]. The
system of equations is then solved iteratively until self-consistency is achieved.
In order to represent Ĵr and K̂r during the first iteration, a set of starting orbitals
is generated from less elaborate approximations. As a result of the averaging of
electron-electron interactions, the HF approximation does not account for the
entire electronic energy. The residual part of the interactions is called electron
correlation.

Naturally, the questions arises how one can represent excited states within the HF
approximation. According to Koopman’s Theorem [87] one can interpret the one-
particle energies of the occupied and unoccupied HF orbitals as approximations to
ionization energies and electron affinities, respectively. Thus, all kind of excited
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states can be represented by Slater determinants which differ from the HF ground
state |Φ0〉 by their orbital configuration. In the framework of second quantization,
excited states can be obtained by applying creation (annihilation) operators ĉ†a
(ĉk) associated with the one-particle functions on the HF gound state. A neutral
excited one-hole one-particle (1h1p) state is given by

|Φa
k〉 = ĉ†aĉk|Ψ0〉. (2.37)

Analogously, one can define higher excited states like, e.g., two-hole two-particle
(2h2p) excited states and so on. The description of such excited state by a single
excited HF determinant is usually very crude and not sufficient to predict or
verify experimental results. In the calculation of excited states, the enormous
importance of the HF approximations lies in the fact that it serves as starting
point for more accurate approximations which include electron correlation. To
achieve better approximations one has to generate linear combinations of several
excited HF determinants and solve the resulting equations for the coefficients.
To this end, one often expands the Hamilton operator in a basis of excited HF
determinants. This standard wavefunction method is the known as configuration
interaction (CI) [87]. The desired properties of the excited state follow from
diagonalizing the CI matrix. Since those matrices are usually very large, the
diagonalization is usually a very demanding task. The CI method is methodically
straightforward but it is not size-consistent unless the complete configuration
space is taken into account [88].

Size-consistent wavefunction methods do exist, e.g., coupled-cluster methods
[89–94] and complete active space approaches [95, 96]. Alternatively, there are
non-wavefunction (Green’s function) methods which are based on the polarization
propagator [97]. The Random Phase Approximation (RPA) [97], the second order
polarization propagator approach (SOPPA) [98, 99], and the algebraic diagram-
matic construction (ADC) [67] have been used to compute electronic excitation
spectra for a long time. Wavefunction methods and propagator methods can be
linked by the so-called intermediate state representation (ISR) [100]. In this work
the intermediate state representation approach to the ADC is used to determine
the characteristics of excited states. The corresponding theory is presented in
the following subsection.

Algebraic Diagrammatic Construction

The ADC method was originally derived employing diagrammatic perturbation
theory for the polarization propagator [67, 68]. Later, the ADC scheme was also
applied to the one-particle Green’s function [101] to obtain properties of ionized
states and the pp-propagator [102] to determine properties of doubly ionized
states.
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In order to derive the ADC we consider the polarization propagator [97] whose
spectral representation reads

Πrs,r′s′(ω) =
∑

m6=0

〈Ψ0|ĉ†rĉs|Ψm〉〈Ψm|ĉ†r′ ĉs′ |Ψ0〉
ω + E0 − Em + iη

+
∑

m6=0

〈Ψ0|ĉ†r′ ĉs′|Ψm〉〈Ψm|ĉ†rĉs|Ψ0〉
−ω + E0 −Em + iη

. (2.38)

Here E0 and Em denote the energies of theN -electron ground |Ψ0〉 and the excited
states |Ψm〉, respectively. The first and the second term of (2.38) contain iden-
tical physical information. We will consider the first term here, in the following
denoted as Π+(ω), which provides the excitation energies

Ωm = Em − E0 (2.39)

and the spectroscopic amplitudes

xm,rs ≡ 〈Ψm|ĉ†rĉs|Ψ0〉. (2.40)

The ADC form of the propagator is given by

Π+(ω) = f †(ω1−M)−1f . (2.41)

f is the array of effective transition amplitudes fI,rs and M is a hermitian matrix
MIJ where the captial latin indices denote electron configurations. For M and f
there are perturbation expansions

M = M(0) +M(1) + . . . (2.42a)

f = f (0) + f (1) + . . . (2.42b)

The matrix inverse can be expanded by means of a geometric series

(ω1−M)−1 = (ω1−M(0))−1
∑

n

(

M−M(0)

ω1−M(0)

)n

. (2.43)

Comparing this expansion to the original diagrammatic perturbation expansion
of the polarization propagator [97] through order n of perturbation theory yields
successively higher-order contributions for the expansion (2.42). The physical
information is obtained by solving the eigenvalue problem

MX = XΩ, X†X = 1 (2.44)

where Ω is the diagonal matrix of excitations energies Ωm. The spectroscopic
amplitudes are then given by

x(m)
rs =

∑

I

X∗
ImfI,rs. (2.45)
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As an example, we derive the expressions for f and M up to first order. The
zeroth and the first order of the diagrammatic expansion series of the polarization
propagator are depicted in Fig. 2.1. The zeroth order diagram is the leftmost.
The corresponding analytical expression reads

(Π+
ak,a′k′)

(0)(ω) =
∑

a,k

δaa′δkk′

ω + ǫk − ǫa
(2.46)

where a and k denote particle and hole states, respectively. The right hand side
of (2.46) can be written in the ADC form

(f (0))†[ω1−M(0)]−1f (0) (2.47)

where

M
(0)
ak,a′k′ = δaa′δkk′(ǫa − ǫk) (2.48)

f
(0)
ak,rs = δarδks (2.49)

The algebraic expressions for the first order can be read from the three first order

����
Figure 2.1: Goldstone diagrams of the zeroth and first order of the diagrammatic expansion series

of the polarization propagator. Both the zeroth order diagram and the three first order diagrams are

given in Abrikosov form.

Goldstone diagrams (see Fig. 2.1):

X1 =
1

ω + ǫk − ǫa
(−Vak′[a′k])

1

ω + ǫk′ − ǫa′
, (2.50)

X2 = X∗
3 =

V ∗
as[rk]n̄snr

ǫa + ǫs − ǫk − ǫr

1

ω + ǫk − ǫa
.

To obtain the first order ADC expression, we consider

(Π+)(1)(ω) = (f (1))†[ω1−M(0) −M(1)]−1f (1). (2.51)
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Expanding (2.51) up to first first order yields

(Π+)(1)(ω) = (f (0))†(ω1−M(0))−1f (0) + (f (1))†(ω1−M(0))−1f (0)

+ (f (0))†(ω1−M(0))−1M(1)(ω1−M(0))−1f (0)

+ (f (0))†(ω1−M(0))−1f (1). (2.52)

Comparing (2.50) to (2.52) yields the corresponding ADC expressions

M
(1)
ak,a′k′ = −Vak[a′k′], (2.53)

f
(1)
ak,rs =

∑

r,s

−Vas[rk]n̄snr

ǫa + ǫs − ǫk − ǫr
. (2.54)

The higher order expressions are derived analogously [67].

The derivation of the ADC matrix from the diagrammatic expansion of the po-
larization propagator does not elucidate in which basis the Hamiltonian has to be
represented in order to obtain this matrix. Thus, it is impossible to express other
quantities in terms of the ADC approximation and it is inconvenient to use the
ADC for modified problems, e.g., if one wants to use CAPs to calculate properties
of resonances. The missing connection between the wave function and the propa-
gator picture was established roughly ten years after the formulation of the ADC
by the so-called intermediate state representation (ISR) [100]. Additionally, the
ISR allows for an interpretation of the physical excitations described by the ADC
matrix. It is shown that the ADC basis stems from physical excitation operators
acting on the correlated ground state [100]. The spectral representation of the
polarization propagator is obtained by inserting a complete set of exact N-particle
excited states [97]. Similarly, the ADC form of the polarization propagator the
can be determined by inserting a complete set of intermediate states |Ψ̃N

J 〉. Then
the effective interaction C may be expressed as the representation of (EN

0 − Ĥ)
in the intermediate basis

(M)J,J ′ = 〈Ψ̃N
J |Ĥ −EN

0 |Ψ̃N
J ′〉 (2.55)

and the effective amplitudes read

fJ,rs = 〈Ψ̃N
J |c†rcs|Ψ0〉. (2.56)

This representation of the Hamiltonian is referred to as the intermediate state
representation (ISR) [100]. The exact and the intermediate states are connected
by an unitary transformation

|Ψ̃N
m〉 =

∑

J

QmJ |Ψ̃N
J 〉 (2.57)
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where Q can be identified as the Hermitian conjugate of the ADC eigenvector
matrix X from (2.44). Now, one has to determine how to choose Q and thus

|Ψ̃N
J 〉 that the basic ADC properties are obtained.

In Ref. [100] it is shown that the desired ISR can be obtained from a specific
orthonormalization of

|Ψ0
J〉 = ĈJ |Ψ0〉 (2.58)

where ĈJ denotes the physical excitation operator

ĈJ = {ĉ†aĉk; ĉ†aĉ†bĉkĉl, a < b, k < l; . . . } (2.59)

and |Ψ0〉 is the correlated ground states with the perturbation series

|Ψ0〉 = |ΦHF
0 〉+ |Ψ(1)

0 〉+ |Ψ(2)
0 〉+ . . . (2.60)

The orthonormalization is carried out in two steps. First, states of different
excitation classes [J ] are Gram-Schmidt orthogonalized to get the ISR precur-
sor states |Ψ♯

J〉. The first excitation class in the case of excited state ADC is
orthogonalized to the exact ground state according to

|Ψ♯
ak〉 = ĉ†aĉk|Ψ0〉 − |Ψ0〉〈Ψ0|ĉ†aĉk|Ψ0〉 (2.61)

Next, symmetric orthonormalization [87] is performed within each excitation
class. Taking again 1h1p states as an example, one obtains

|Ψ̃ak〉 =
∑

bl

|Ψ♯
bl〉(S−1/2)bl,ak, (2.62)

where S is the overlap matrix of the precursor states.

One can find the correlated ground state |Ψ0〉 correct up to n-th order of pertur-
bation theory by truncating its perturbation expansion

|Ψ0〉 = |ΦHF
0 〉+ |Ψ(1)

0 〉+ |Ψ(2)
0 〉+ . . . (2.63)

|ΦHF
0 〉 being the Hartree-Fock ground state. Correspondingly, one can construct

a hierarchy of approximations, ADC(n), n = 1, 2, . . . in which the expansion of
the Hamiltonian in the intermediate states of successive excitation classes [J ] is
truncated in accordance with the correlated ground state (Eq. (2.63)). Performing
the orthonormalization procedure of Eq. (2.61) and (2.62) approximately and
consistently with the order of the many-body perturbation theory used for the
construction of the correlated ground state (see Eq. (2.63)), the Hamiltonian
matrix elements of the type 〈Ψ̃J |H|Ψ̃J ′〉 can be expressed analytically using one-
particle energies and the two-electron integrals [103, 104].
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The required one-particle orbitals are obtained by a restricted Hartree-Fock cal-
culation. In the post Hartree-Fock calculations we employ the strict ADC(2)
[or ADC(2)s] and the extended ADC(2) [or ADC(2)x] schemes. These schemes
use second order perturbation theory for the correlated ground state and ex-
pand the excited states in the 1h1p and 2h2p excitation classes. Both ADC(2)
schemes treat the 1h1p-1h1p and 1h1p-2h2p couplings in second and first order,
respectively. The ADC(2)s scheme neglects the coupling between different 2h2p
intermediate states, while the extended ADC(2)x scheme takes into account the
2h2p-2h2p interactions to first order. One obtains singly excited states correct to
second order in both schemes, while doubly excited states are correct to zeroth
or first order in the ADC(2)s and ADC(2)x schemes, respectively.

The ADC possesses two important properties: compactness and separability (also
known as size-consistency). Separability means that results obtained for a system
AB consisting of the non-interacting components A and B are identical to the
sum of the results obtained by separate calculations for system A and system
B. Compactness means that the configuration space used to represent the ADC
matrix does not increase in every order with the order of approximation of the
main states of the corresponding propagator. E.g., in the case of ADC for the po-
larization propagator the main states are the 1h1p excitations. The configuration
space of ADC(2) and ADC(3) comprises 1h1p and 2h2p configurations. ADC(4)
and ADC(5) matrices must be spanned by 1h1p, 2h2p and 3h3p configurations.
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2.3 The Stieltjes Imaging Technique

The idea how a L2 pseudo-spectrum can be used to get a correctly normalized
approximation to the width Γ(E) can be sketched as follows [56]: consider the
cumulative function Π(E) defined according to the equations:

Π(E) =

∫

dE
′

Γ(E
′

), (2.64a)

Γ(E) =
dΠ

dE
. (2.64b)

Using the L2 pseudo-spectrum {χβ,Ẽn
, Ẽn}, n = 1, . . . , N in the expression (2.21)

to represent the continuum, a set of couplings

γ̃n = 2π|〈φd|Ĥ − E|χβ,Ẽn
〉|2 (2.65)

is obtained at the corresponding energies Ẽn. By adding up all couplings γ̃n a
histogram approximation to the auxiliary cumulative function Π̃(E) is defined

Π̃(E) ≈
N∑

n=1

γ̃n, (2.66)

where the order is determined by the corresponding energies Ẽn < E < Ẽn+1.
The derivative of Π̃(E)

Π̃′(E) =
N∑

n=1

γ̃nδ(E − Ẽn) (2.67)

returns the discrete pseudospectrum. By connecting the neighboring midpoints
(

Ẽn−1 + Ẽn

2
,
γ̃n−1 + γ̃n

2

)

(2.68a)

and
(

Ẽn + Ẽn+1

2
,
γ̃n + γ̃n+1

2

)

(2.68b)

with straight lines, the cumulative function Π(E) is obtained from Π̃(E). In con-
trast to Π̃′(E), the derivative Π′(E) is free of any delta-function-like singularities.
The numerical (Stieltjes) derivative at the midpoints Ēn = 1

2
(Ẽn+ Ẽn+1) is given

explicitly by

Π′(Ēn) =
γ̃n + γ̃n+1

2(Ẽn+1 − Ẽn)
. (2.69)
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In an L2 basis set, the function Π′(E) converges to Γ(E), as the number of pairs of
values of the pseudo-spectrum N increases [53]. Moreover, the expression (2.69)
has the correct physical dimensionality ([Energy]), and it shows that the normal-
ization constants of |χβ,Ẽn

〉, necessary to introduce the correct dimensionality in
(2.21), are determined by the density of eigenvalues in the pseudo-spectrum

∝ (Ẽn+1 − Ẽn)
−1. (2.70)

In practice, one does not work directly with the pseudo-spectrum {Ẽn, γ̃n} since,
firstly, the distribution and the density of the pseudo-spectrum depends strongly
on the basis set employed. Secondly, there is no criterion whereby one can judge
how well the approximated width Π′(E) has converged to the true width Γ(E).

Both difficulties can be overcome by employing moment theory [105]. The mo-
ment theory is commonly known as a tool for reproducing distributions from
random variables, which is, for example, important in analyzes of quantum phys-
ical experiments [106]. In this work, the goal of the application of moment theory
is to determine the pseudo-spectra {γn, En} which are evenly distributed, robust
with respect to the basis, and give rise to the same moments as the raw pseudo-
spectra {γ̃n, Ẽn}. In order to obtain the smoothed pseudo-spectra {γn, En} one
has to solve the reduced moment problem [105, 107] for the width Γ(E):

Given a finite set of moments S(k), k = 0, . . . , 2N − 1, determine a function
Γ(E) so that it reproduces all available moments in the interval [a, b]

S(k) =

∫ b

a

EkΓ(E)dE, k = 0, . . . , 2N − 1.

The application of moment theory to decay width calculations relies on the fact
that the negative moments S(−k) of the width Γ(E)

S(−k) =
∫ ∞

ET

E−kΓ(E)dE, (2.71)

where ET is the energy of the threshold of interest, can be well approximated
by the corresponding sum over the discrete pseudo-spectrum {Ẽn, γ̃n} obtained
from ab initio L2 calculations:

S(−k) ≈
N∑

n=1

Ẽ−k
n γ̃n, k = 0, . . . , (2N − 1). (2.72)

As the raw pseudo-spectrum consists ofN pairs of energies and coupling strengths
{Ẽn, γ̃n} only 2N moments can be calculated [53]. A finite set of moments does
not determine the distribution function Γ(E) from (2.71) completely - or, oth-
erwise stated, there are infinitely many weight functions which reproduce the
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first few moments. A unique solution Γ(E) can be chosen from the infinite num-
ber of solutions using the Chebychev algorithm [105]. The Chebychev inequali-
ties [53, 105, 107]

Π(m)(Ei − 0) ≤ Π(m+1)(Ei − 0) ≤ Π(Ei) ≤ Π(m+1)(Ei + 0) ≤ Π(m)(Ei + 0)
(2.73)

where Ei are certain abscissae, which will be discussed below, and Ei ± 0 de-
note, respectively, upper and lower limits, allow to verify the convergence of the
approximations to the cumulative function Π(E). Π(m)(E) are the cumulative
functions calculated by means of the pseudo-spectra {γn, En}(m) where the first
2m moments were used to determine them. The Chebychev inequalities allow for
two important implications [105]:

• At the points Ei the approximated cumulative function Π(m)(E) converges
to the (true) infinite order function Π(E).

• The lower and the upper limit of the approximated cumulative function
Π(m)(E) bracket the ’infinite order’ function Π(E) at the Ei.

Consequently, the Chebychev algorithm allows to find the best converging ap-
proximation Π(m) to the cumulative function Π(E) with respect to a given basis
set.

In order to solve the reduced moment problem the continued fraction [108]

S(z) =
β0

(1/z)− α1 −
β1

(1/z)− α2 −
β2

(1/z)− α3 −
β3
. . .

, z ∈ C\R− (2.74)

is considered. It converges to the Stieltjes integral [105]

S(z) =

∫ ∞

E1

EΓ(E)dE

E − z
. (2.75)

If Γ(E) was known one could apply Gaussian quadrature in order to evaluate the
Stieltjes integral. The resulting quadrature abscissae and weights (the poles and
the residues of the Stieltjes integral) would correspond to the desired spectrum
{En, γn}. Since Γ(E) is generally unknown, the spectrum must be obtained via
the accessible moments: making use of the definition of the moments (2.71) and
the closed-form expression of a geometric series [106] one can expand the Stieltjes
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integral in a series of moments

∫ ∞

E1

EΓ(E)dE

E − z
=

∫ ∞

E1

Γ(E)dE

1− z/E

=
∑

k

∫ ∞

E1

E−kΓ(E)dEzk (2.76)

=
∑

k

S(−k)zk = S(0) + S(−1)z + S(−2)z2 + . . .

Now, the continued fraction (2.74) can be truncated and approximated using
Padé approximations [109] to it, which retains the analytical structure of S(z).
From the first 2N moments the following Padé approximations can be obtained

[n, n− 1](z) =
Pn−1(z)

Qn(z)
, (2.77)

where

Pn−1(z) =

n−1∑

i=0

ani z
i, (2.78a)

Qn(z) = 1 +

n−1∑

i=1

bni z
i, (2.78b)

up to the maximal order [N,N − 1](z). Consequently, via the continued fraction
and the Stieltjes integral the polynomials Pn−1(z) and Qn(z) of the nth order
Padé approximation are connected to the series of moments

[n, n− 1](z) = S(0) + S(−1)z + S(−2)z2 + . . . (2.79)

The coefficients of the continued fraction αn and βn and the coefficients of the
polynomials ani and bni associated with the polynomials Pn−1(z) and Qn(z), can
be determined from the moments S(−k) using the three-term recurrence relations

Qn(z) = (1− αnz)Qn−1(z)− z2βn−1Qn−2(z), (2.80a)

Q0(z) = 1, Q−1(z) = 0,

Pn−1(z) = (1− αnz)Pn−2(z)− z2βn−1Pn−3(z), (2.80b)

P0(z) = β0, P−1(z) = 0,

which produce polynomials orthogonal to the weight function Γ(E)

∫ ∞

E1

Qn(E)Qm(E)Γ(E)dE = δn,m. (2.81)
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Equations which express the coefficients in terms of moments can directly be
derived from (2.79)

αn =
Yn−1,n

Yn−1,n−1

− Yn−2,n−1

Yn−2,n−2

, α0 = 0, α1 =
S(−1)

S(0)
, (2.82a)

βn =
Yn,n

Yn−1,n−1

, β−1 = 0, β0 = S(0), (2.82b)

where the matrix elements are given by

Yn,l =

∫ ∞

E1

E−l−nQn(E)Γ(E)dE, (2.83)

and, according to (2.80), satisfy the recurrence relations [54]

Yn,l = Yn−1,l+1 − αnYn−1,l − βn−1Yn−2,l, (2.84a)

Yn,l = 0, n < l, (2.84b)

Yn,l = S(−l), (2.84c)

Yn,−1 = Y−1,l = 0. (2.84d)

By approximating the moments S(−k) in (2.84) by the discrete pseudo-spectrum,
the coefficients from (2.82) can be obtained directly from them [107]

α̃n =
1

β̃0β̃1 . . . β̃n−1

N∑

i=1

(
1

Ẽi

)2n−1

[Qn−1(Ẽi)]
2γ̃i, (2.85)

β̃n =
1

β̃0β̃1 . . . β̃n−1

N∑

i=1

(
1

Ẽi

)2n

[Qn(Ẽi)]
2γ̃i. (2.86)

The values Qn−1(Ẽi) and Qn(Ẽi) are obtained from (2.80a). The particular ab-
scissae Ei and weights γi of the new spectrum of order m required in (2.73) are
given by the roots and the residues of [N,N − 1](z) [54, 107]

Qn(E
(m)
i ) = 0, i = 1, . . . , m, (2.87a)

γ
(m)
i =

Pn−1(E
(m)
i )

E
(m)
i Q′(E

(m)
i )

. (2.87b)

Now, each of these N spectra {γn, En} is used to generate an approximation
to the corresponding cumulative function Π(m). Note, that the first five sets are
usually too rough and are, thus, not appropriate to verify the convergence. Thus
one needs a least a decent amount of energy-coupling pairs in order to get a
meaningful approximation [107]. The sets of order m > 20 are often oscillating
and should be used cautiously.
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Three important properties of the presented method are remarked. First, the
positive spectral moments of the photoionization matrix element of the hydrogen
atom diverge (see [55] and references therein). Therefore, negative moments
are used in the Stieltjes imaging calculations. Second, the Stieltjes method is a
smoothing method. In its framework, only a finite number of moments can be
calculated. Consequently, sharp features of the quantity which is approximated
cannot be resolved. Third, as has already been mentioned in Sec. 1, the knowledge
of |χβ,Ẽn

〉 is necessary for the spectral moment calculation, which means that final
state Hamiltonian matrix must be diagonalized. Already for systems composed
of a few atoms this is a computational bottleneck, and makes the calculations in
the case of large systems impossible. A number of schemes were proposed which
are helpful to circumvent this difficulty: Nesbet proposed a solution completely
bypassing the diagonalization of the Hamiltonian matrix [61] and applied the
approach to the boron atom. Ågren, Carravetta and co-workers used the iterative
solution of the response-type equations to calculate effective spectral moments
from a reduced space [63,64]. This method has been applied to several diatomic
systems. In Ref. [65] another way to circumvent the full diagonalization has been
proposed where Stieltjes imaging were applied to Lanczos pseudo-spectra in order
to the determine molecular photoionization cross sections. It has been shown in
that work that the knowledge of a relatively low-order Lanczos pseudospectrum
is sufficient to obtain the converged spectral moments. In the course of this work,
we show that the Stieltjes procedure in conjunction with the Lanczos method can
be used to calculate the decay widths in atomic and molecular systems within
the Fano formalism [51].
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2.4 The Lanczos Method

A subspace δ̄m = span(z1, . . . , zm), m < n spanned by the eigenvectors zi of the
symmetric matrix A ∈ Rn×n, is invariant under the transformation A [66, 110].
If

Bm ≡ [q1, . . . ,qm] (2.88)

is an orthonormal basis of the arbitrary subspace δm, the residual matrix

R(Bm) = ABm −BmHm with Hm ≡ B†
mABm. (2.89)

shows how much of the basis is invariant under the transformation A. The diag-
onalization of the Rayleigh-Quotient matrix Hm leads to the eigenpairs {θi, gi}
of eigenvalues θi and eigenvectors gi. Multiplying the eigenvectors gi by Bm the
so-called Ritz eigenpairs {θi,yi = Bmgi} are obtained. They are the best ap-
proximation to eigenpairs of A, which can be derived from δm. This procedure
of finding approximations to the eigenpairs of A is known as the Rayleigh-Ritz
method (RRM) [66]. For an arbitrary subspace δm this method is very expensive
because it requires the orthogonalization of δm and the diagonalization of Hm.
However, the computational effort can be reduced enormously by applying the
RRM on sequences of Krylov subspaces

Km(f ,A) ≡ span{f ,Af , . . . ,Am−1f}. (2.90)

where f is a starting vector. This approach is known as the Lanczos method [111].

The Lanczos method is very efficient because if the Krylov matrix

Km(f ,A) ≡ [f ,Af , . . . ,Am−1f ] (2.91)

has a full rank it can be QR factorized [66, 110, 112]

Km(f ,A) = BmC
−1
m , (2.92)

where Bm is defined according to (2.88) and C−1
m is an upper triangular matrix.

Now, each Krylov subspace Km(f ,A) exhibits the characteristic property that
for each j < m AKj ⊂ Kj+1. In particular, qi ⊥ Ki−1 and Aqj ∈ Kj+1.
Consequently,

q†
iAqj = 0 ∀ i > j + 1. (2.93)

Id est, the new qj have to be orthonormalized only to two preceding basis vectors
or, alternatively, B†

mABm is tridiagonal and there is a three-term recurrence
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relation for generating Bm from A. By defining αj = q†
jAqj and βj = q†

j+1Aqj ,

the tridiagonal matrix Tm = B†
mABm reads

Tm =











α1 β1 · · · 0

β1 α2
. . .

...
. . .

. . .
. . .

...
. . .

. . . βm−1

0 · · · βm−1 αm











. (2.94)

The columns of ABm = BmTm are given by

Aqj = βj−1qj−1 + αjqj + βjqj+1, (2.95)

where j = 1, . . . , m − 1 and β0α0 ≡ 0. Since qj+1 are the quantities of interest,
(2.95) is modified using the definition rj = (A− αj1)qj − βj−1qj−1

qj+1 =
rj
βj

=
rj

± ‖ rj ‖
, (2.96)

because qj are supposed to be orthonormal, one can choose ‖ rj ‖ to be positive
without losing generality. If rj = 0 the iteration breaks down. Thus, the Lanczos
procedure can be sketched formally by

r0 = q1; β0 = 1; q0 = 0; j = 0, (2.97)

while(βj 6= 0)

qj+1 = rj/βj; j = j + 1; αj = q†
jAqj

rj = (A− αj1)qj − βj−1qj−1; βj =‖ rj ‖2
end.

The quantities qj are called Lanczos vectors. If the iteration (2.97) stops (since
βj ≈ 0) before the tridiagonalization is complete then the starting vector q1

is contained in a proper invariant subspace of A. In such a case, the Lanczos
procedure runs until j = m where m = rank(Kn(q1,A)).

In practical applications the event βj → 0 is very unlikely. Nevertheless, it
is possible to verify the convergence of the eigenvalues by looking at the Ritz
eigenpairs. Therefore, let us assume that Tj after j Lanczos iterations is known
and that it has been diagonalized

G†
jTjGj = diag(θ1, . . . , θj). (2.98)

The matrix of Ritz vectors Yj is obtained by

Yj = [y1, . . . ,yj] ≡ BjGj ∈ R
j×j, (2.99)
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and the Ritz vectors obey the relation [66]

‖ Ayi − θiyi ‖= |βj||gji|, i = 1, . . . , j, (2.100)

with gji ≡‖ e†jGei ‖, where ei is the ith coordinate vector. Then the expression
for the computable error bound to the eigenvalues of Tj reads

min
µ∈λ(A)

|θi − µ| ≤ |βj||gji| ≡ βij . (2.101)

If βij becomes small a good convergence is achieved.

Beside its efficiency the Lanczos method has two important properties. Firstly,
it converges to the extremal eigenvalues of A most efficiently and, secondly, it
correctly reproduces the global structure of the spectrum. In order to understand
the first property, one can use another way to derive the three-term recurrence
(2.96) [112]: the maximum and minimum values of the Rayleigh quotients

r(x) =
x†Ax

x†x
(2.102)

of the matrix A ∈ Rn×n are equal to the largest λ1(A) and the smallest λn(A)
eigenvalue of this matrix [112]. If there is a sequence {qi} of orthonormal vectors
qi ⊆ Rj with j < n one can define the scalars Mj and mj by

Mj = λ1(B
†
jABj) = max

z6=0

z†(B†
jABj)z

z†z
= max

‖z‖=1
r(Bjz) ≤ λ1(A), (2.103a)

mj = λn(B
†
jABj) = min

z6=0

z†(B†
jABj)z

z†z
= min

‖z‖=1
r(Bjz) ≥ λn(A), (2.103b)

where z is an appropriate vector and Bj ≡ [q1, . . . ,qj]. The connection to the
problem of determining orthonormal bases for Krylov spaces can be established
by considering how to generate qj so that Mj and mj are progressively better
approximations to the eigenvalues λ1(A) and λn(A). Suppose there is a uj ∈
span{q1, . . . ,qj} such that Mj = r(uj). Since r(x) increases most rapidly in the
direction of its gradient we can ensure that Mj+1 > Mj if qj+1 is calculated so
that

∇r(uj) ∈ span{q1, . . . ,qj+1}. (2.104)

Analogously, if there is a vj ∈ span{q1, . . . ,qj} for which r(vj) = mj then one
can claim

∇r(vj) ∈ span{q1, . . . ,qj+1}. (2.105)
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because r(x) falls off most rapidly in the direction −∇r(x). Consider a Krylov
space

span{q1, . . . ,qj} = span{q1,Aq1, . . . ,A
j−1q1}. (2.106)

Since ∇r(x) ∈ span{x,Ax} [112], qj+1 can be chosen so that

span{q1, . . . ,qj+1} = span{q1,Aq1, . . . ,A
jq1}. (2.107)

Thus, we returned to the problem of generating orthonormal bases for Krylov
spaces.

The Kaniel-Paige theory [66,112] provides a priori relations to describe the con-
vergence quantitatively. The relations provide error bounds to the eigenvalues [66]
and, moreover, show the role of the starting vector in the convergence process.
Assume θ1 ≥ · · · ≥ θj are the eigenvalues of Tj and q1, . . . ,qj the corresponding
Lanczos vectors after j Lanczos iterations. The bounds for θj are then given by

λn ≤ θj ≤ λn +
(λ1 − λn) tan

2(φm)

Cj−1(1 + 2ρn)2
, (2.108)

where cosφn ≡ |q†
nzn|, ρn ≡ (λn−1−λn)/(λ1−λn−1), and Cj(x) is the Chebychev

polynomial of degree j [112]. Furthermore, λ1 ≥ · · · ≥ λn are the true eigenval-
ues of An×n and z1, . . . , zn the corresponding eigenvectors. Cj are bounded on
[−1, 1], but grow with xj outside. So, the convergence increases with the num-
ber of iterations. From (2.108) we can read that the convergence is better for
isolated eigenvalues and that eigenvectors which are orthogonal to the Lanczos
vectors cannot be recovered. Thus, the starting vector should be chosen such
that the resulting Krylov space has a large overlap with the eigenvectors of in-
terest. In practice, the Lanczos method is not as efficient as it is theoretically.
Due to round off errors the orthogonality among the qi gets lost and, as a con-
sequence, the algorithm generates redundant copies of Ritz pairs (the so-called
ghost eigenvalues, see [66], Chap. 13.3 for details). This issue can be overcome
by reorthogonalization of qi during the process of convergence which increases
the costs of the method [66, 112].

The second important property of the Lanczos method, that it recovers the global
structure of the spectrum correctly even if individual eigenpairs are far from
having converged, can be understood as follows. After j Lanczos iterations one
can approximate a matrix H by [113]

H(j) = BjTjB
†
j . (2.109)

The exact and the approximated matrix are connected by

q†
1H

kq1 = q†
1

(

H(j)
)k

q1, 0 ≤ k ≤ 2j − 1, j = odd,

0 ≤ k ≤ 2j − 2, j = even. (2.110)
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Id est, the first 2j − 2 or 2j − 1 moments of H(j) are exact with respect to the
starting vector q1. In the sense

(

H(j)
)k

q1 = Hkq1, 0 ≤ k ≤ j − 1, (2.111)

the matrix H(j) is the best approximation to H. This property is very helpful
when moments of resolvents or other functions of the Hamiltonian are to be
calculated [113]. Moreover, it means that the Lanczos method can be used for
calculations of spectral moments [53–55,114]. The nth moment Mn of the width
(2.21) can be approximated by

Mn = 〈Ψd|(Ĥ −E)†Ĥn(Ĥ − E)|Ψd〉
≈ 〈Ψd|(Ĥ − E)†(Ĥ(N))n(Ĥ −E)|Ψd〉 (2.112)

=

N∑

i=0

(E
(N)
i )n|〈Ψd|(Ĥ − E)|χ(N)

i 〉|2,

where E
(N)
i and χ

(N)
i are the Nth order Lanczos eigenenergies and eigenvectors,

respectively, which stem from the Nth order approximation to Ĥ

Ĥ(N) =
N∑

i,j=0

|ψi〉〈ψi|Ĥ|ψj〉〈ψj| . (2.113)

〈ψi|Ĥ|ψj〉 is tridiagonal. As N increases, the Lanczos pseudospectrum becomes

a successively better approximation to the true spectrum of Ĥ.

For our purposes the block Lanczos method [66,112,114], which is a straightfor-
ward generalization of the Lanczos method, is more appropriate. In the block
Lanczos method the initial state is replaced by a set of initial states |φm

0 〉 which
form a starting block. The block version is theoretically analog; it is, however,
numerically more stable than the simple Lanczos method [112] and, as we will see
in Sec. (4) and Sec. (6), it provides the possibility to start from blocks consisting
of many states what is more suitable for our purposes.
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2.5 Fano-Stieltjes-Lanczos method

In the course of this work the Fano-Stieltjes-Lanczos method for the calculation
of widths of excited states has been realized. The program relies purely on ab

initio methods. Its course can be summarized by the following scheme:

• Perform a HF calculation. It provides the MOs, their energies, and the
corresponding two-electron integrals in MO basis.

• Select an ADC scheme (ADC(1), ADC(2)s, and ADC(2)x are available).

• Define the configuration subspace of the decaying states (Q) and of the final
states of the decay (P)

• Calculate the decaying state of interest φd and its energy Ed by carrying
out an ADC calculation using the configuration subspace Q.

• Compute the final states ψn and their energies En by performing an ADC
calculation using subspace P; the spectrum is obtained by means of the
Lanczos method.

• For each final state ψn calculate the coupling γn = 2π|〈φd|Ĥe|ψn〉|2.

• Apply the Stieltjes imaging procedure to the couplings γn at the corre-
sponding energies En to obtain the width.

The HF calculations does not solely provide the MOs, their energies, and two-
electron integrals. The MOs and their energies together with the knowledge of the
leading configurations of the decaying states and the final states of the decay are
necessary to define appropriate configuration subspaces Q and P. As mentioned
in Sec. 2.1, in principle any post HF method could be chosen. However, our FSL
program provides ADC(1), ADC(2)s, and ADC(2)x only. While the ADC(1)
procedure solely works in the space of 1h1p configurations, the ADC(2)s and
ADC(2)x methods include 2h2p configurations. As a consequence, the method
must be chosen before the configuration spaces are defined. For both the Q and
the P subspace, the FSL program provides the opportunity to select up to 50
occupied MOs, for 1h1p and 2h2p configurations separately, which are by default
combined with all available unoccupied MOs.
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Asymptotic Formulae of Interatomic Decay Rates

3.1 General Theory

The complexity of the interatomic decay process involving electron correlation
precludes a description of the decay width by an analytical formula. If the in-
ternuclear distance between the system and the neighbor is large, it is, however,
possible to obtain analytical formulae using the virtual photon transfer model [16].
These formulae provide accurate decay widths at large interatomic distances, but
they underestimate the true widths at the equilibrium distance by orders of mag-
nitude [16]. Nevertheless, the formulae are useful because they solely rely on
properties of the isolated excited system and the isolated neighbor which are of-
ten available in the literature or, if unknown, are easier to measure or calculate,
respectively. The formulae are helpful in the seek of interesting systems and can
be used to verify ab initio results at asymptotic distances. In this section, we
derive asymptotic formulae for the interatomic energy transfer after a neutral ex-
citation on atom A of a cluster A · · ·B. The results for dipole-dipole transitions
were published in Ref. [21].

At large internuclear distances bound orbitals in clusters are localized on either
A or B. In order to derive the formulae, matrix elements between continuum
and bound orbitals localized on one cluster subunit are considered. Bound and
continuum orbitals |γ, l,m, µ, 〉 differ by their normalization conditions

〈γ′, l′, m′, µ′, |γ, l,m, µ〉 = δγγ′δll′δmm′δµµ′ , (3.1a)

〈γ′, l′, m′, µ′, |γ, l,m, µ〉 = δ(ǫγ − ǫγ′)δll′δmm′δµµ′ , (3.1b)

where ǫγ is the energy of the corresponding continuum state, γ denotes the state,
l is the angular momentum, m its projection, and µ denotes the spin projection.
We suppose that the single determinant ground state of A · · ·B |Φ0〉 is closed-
shell. Additionally, we assume that the ground states of the subunits A, |ΦA

0 〉,
and B, |ΦB

0 〉, are closed-shell. At large internuclear distances the ground state of
the system is given by the product |ΦA

0 〉|ΦB
0 〉.

In the present case, the process originates from a 1h1p many-electron state on
subunit A. 1h1p states can be expressed by Slater determinants of the type

|iku, ivu〉 = ĉ†iku ĉivu |Φ0〉, (3.2)

where ĉ are the physical excitation operators of second quantization [97], the
subscript u denotes the subunit where the orbitals are localized on, and the
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indices iku = (γ′, l′, m′, µ′) and ivu = (γ, l,m, µ) contain all relevant quantum
numbers. The determinant (3.2) is not an eigenstate of the total spin operator.
In general, spin eigenstates are obtained by linear combinations of determinants

|iku, ivu;Su,M
s
u〉 =

∑

µik,µiv

CS,Ms

µik ,µiv
|iku, ivu〉, (3.3)

where CS,Ms

µik,µiv
are the Clebsch-Gordan coefficients (CGCs) of the spin angular

momentum [115, 116]. Here, the initial state is a spin singlet

|iku, ivu;Su = 0,Ms
u = 0〉 = 1√

2
(c†iku,1/2civu,1/2 + c†iku,−1/2civu,−1/2)|Φ0〉,

(3.4)

±1/2 denotes the spin projection and the indices iku = γ′, l′, m′ ivu = γ, l,m
no longer contain the spin projection. However, the spin adapted state (3.4) is
not an eigenfunction of the total angular momentum operator. In order to obtain
symmetry adapted states, the spin adapted states are linearly combined

|iku, ivu; l, l′;Lu,Mu〉 =
∑

m,m′

|iku, ivu; 0, 0〉(l, l′;m,m′|l, l′;Lu,Mu). (3.5)

(l, l′;m,m′|l, l′;Lu,Mu) denote the CGCs of the orbital angular momentum [115,
116] which depend on the total orbital angular momentum of the 1h1p state Lu

and its projection on the cluster axis Mu. Since we assume that the system and
its constituents are closed shell and that the excitation is generated by a dipole
(quadrupole) transition, the initial excitation on subunit A is of 1P (1D) sym-
metry. The eigenstates exhibiting these symmetries are obtained by evaluating
(3.5) under the constraints

l = 1(2), m = 0,±1, (±2); l′ = 0, m′ = 0 ∨ (l ↔ l′), (m↔ m′), (3.6a)

|iku, ivu; l, l′; 1(2),Mu〉 =
∑

m,m′

|iku, ivu; 0, 0〉(l, l′;m,m′|l, l′; 1(2),Mu),

(3.6b)

where (x ↔ x′) means that the assignation from the left should be taken with
interchanged indices x and x′. The CGCs can be evaluated conveniently using
their connection to the 3j-symbols [116]

(l, l′;m,m′|l, l′;L,M) = (−1)−l+l′−m
√
2L+ 1

(
l l′ L
m m′ −M

)

. (3.7)

The final states of the processes considered here are 1h1p states too and, thus,
can be described analogously.
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ICD and its related processes are governed by electron correlation [18]. Conse-
quently, the corresponding couplings between the initial and the final states of
the process are given by the electron-electron interaction operator

V̂ =
1

2

∑

i 6=j

1

|ri − rj|
, (3.8)

where ri denotes the coordinates of the ith electron. From Sec. 2.1 we know that
the decay width is given by

Γ = 2π|WMB,MA

LB,LA
|2δ(EB − EA). (3.9)

In (3.9) EB and EA, respectively, denote the energy of the corresponding state
on subunit B and A, the delta function δ(. . . ) ensures energy conservation, and

WMB,MA

LB ,LA
≡ 〈kB, ovB; lk, lov;LB,MB|V̂ |ikA, ivA; lik, liv;LA,MA〉

=
∑

mk,mov
mik,miv

(lk, lov;mk, mov|lk, lov;LB,MB)
∗(lik, liv;mik, m

′
iv|lik, l′iv;LA,MA)

× 〈kB, ovB;SB,M
s
B|V̂ |ikA, ivA;SA,M

s
A〉. (3.10)

The matrix element in (3.10) can be evaluated using Condon-Slater rules or
the rules of second quantization [87]. In order to obtain spin reduced matrix
elements, the spin variables are integrated out. In the case of singlet 1h1p states
(SA = SB = Ms

A = Ms
B = 0), the spin reduced expression of the matrix element

reads

2〈kB, ivA|ovB, ikA〉 − 〈kB, ivA|ikA, ovB〉, (3.11)

where 〈i, j|k, l〉 are two-electron intergals in physical notation

〈i, j|k, l〉 =
∫

dr1dr2φ
∗
i (1)φ

∗
j(2)

1

|r1 − r2|
φk(1)φl(2). (3.12)

The second term in (3.11) - the exchange term - becomes exponentially small as
the internuclear distance grows. That is obvious, as particle exchange happens
only if the wave functions of the involved particles overlap. On the other hand, the
first term in (3.11) does not cease exponentially with the internuclear distance.
If subunit A and subunit B are very distant from each other, states of the total
system can be represented as products of states of the isolated subunits. Choosing
the coordinates according to Fig. 3.1, |rA| ≪ |rB|, which allows us to expand the
operator 1/|ri − rj| as [117]

1

|rA − rB|
= 4π

∞∑

l=0

l∑

m=−l

1

2l + 1

rlA
rl+1
B

Y ∗
l,m(ΩB)Yl,m(ΩA). (3.13)
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Figure 3.1: The coordinates used to derive the asymptotic formulae.

Inserting (3.13) into the first term of (3.11) yields

2〈kB, ivA|ovB, ikA〉 = 8π

∞∑

l=0

l∑

m=−l

1

2l + 1
〈ivA|Yl,m(ΩA)r

l
A|ikA〉

× 〈kB|Y ∗
l,m(ΩB)/r

l+1
B |ovB〉. (3.14)

In order to obtain expressions involving observables, many-particle spin and sym-
metry adapted states must be used. The corresponding many-particle represen-
tation of involved operators is given by [87, 97]

Ô =
∑

i,j

〈i|Ô|j〉ĉ†i ĉj. (3.15)

Assuming that a is particle and k a hole, the transition from one-particle states
to 1h1p many-particle states can be achieved using the relation

〈Φ0|Ô|a, k〉 =
∑

ij

〈i|Ô|j〉〈Φ0|ĉ†i ĉj ĉ†aĉk|Φ0〉

=
∑

ij

〈i|Ô|j〉δi,kδj,a = 〈k|Ô|a〉. (3.16)

The obtain the spin-adapted functions (3.4), an additional factor is required

〈k|Ô|a〉 = 1√
2
〈Φ0|Ô|a, k, S = 0,Ms = 0〉. (3.17)

Inserting (3.17) in (3.14) yields

2〈kB, ivA|ovB, ikA〉 =
∞∑

l=0

l∑

m=−l

〈ΦA
0 |D̂A

l,m|ikA, ivA;SA = 0,Ms
A = 0〉

× 〈ΦB
0 |D̂B

l,m|kB, ovB;SB = 0,Ms
B = 0〉∗, (3.18)

where the operators D̂u
l,m are defined by

D̂A
l,m =

√

4π

2l + 1
Yl,m(ΩA)r

l
A, (3.19a)

D̂B
l,m =

√

4π

2l + 1
Yl,m(ΩB)/r

l+1
B . (3.19b)
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By inserterting (3.18) into (3.10) we obtain for |rA| ≪ |rB|

WMB,MA

LB ,LA
=

∑

mk,m′
ov

mik,m′

iv

∞∑

l=1

l∑

m=−l

〈ΦA
0 |D̂A

l,m|ikA, ivA;SA = 0,Ms
A = 0〉

× 〈ΦB
0 |D̂B

l,m|kB, ovB;SB = 0,Ms
B = 0〉∗(lk, lov;mk, mov|lk, lov;LB,MB)

∗

× (lik, l
′
iv;mik, m

′
iv|lik, l′iv;LA,MA). (3.20)

(3.20) can be simplified by expanding the operators D̂ in terms of R−n. In the
present work, we are only interested in the first two terms of the l series

WMB,MA

LB ,LA
=

1∑

m=−1

〈ΦA
0 |D̂A

1,m|ikA, ivA; lik, liv;La,Ma〉〈ΦB
0 |D̂B

1,m|kB, ovB; lk, lov;Lb,Mb〉
∗

+

2∑

m=−2

〈ΦA
0 |D̂A

2,m|ikA, ivA; lik, liv;La,Ma〉〈ΦB
0 |D̂B

2,m|kB, ovB; lk, lov;Lb,Mb〉
∗

+ . . . , (3.21)

where we have used definition of the symmetry adapted states (3.5). The l = 1
term corresponds to dipole transitions and l = 2 term to quadrupole transitions.
First, we consider l = 1.

3.2 Dipole-Dipole Transitions

The explicit form of the operators of the first term of (3.21) is given by (3.19)

D̂A
1,m =

√

4π

3
Y1,m(ΩA)rA, (3.22a)

D̂B
1,m =

√

4π

3
Y1,m(ΩB)/r

2
B. (3.22b)

The goal is to expand (3.22b) in terms of R−n. To this end we multiply (3.22b)
by 1 in the form of rB/rB and define the following quantities according to Fig. 3.1

rB = r+R, (3.23a)

R = (0, 0, R)T , (3.23b)

r = (x, y, z)T , (3.23c)

rA = (xA, yA, zA)
T . (3.23d)
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In the case M = 0 the operators then read

D̂A
1,0 = cos(θ)rA, (3.24a)

D̂B
1,0 = cos(θ)rB/r

3
B, (3.24b)

where we have used the common definition

Y1,0 =
√

3/4π cos θ. (3.25)

Now, we can expand (3.24b) employing the Taylor expansion

1

r3B
=

1

|r+R|3 =
1

R3

1

(1 + 2R · r/R2 + r2/R2)3/2
(3.26)

=
1

R3
(1− 3

2
(2R · r/R2 + r2/R2) + . . . ). (3.27)

Using (3.23), (3.26), and neglecting monopol transitions and terms proportional
to R−n, n > 3 we obtain

D̂B
1,0 ≈

−2z

R3
. (3.28)

Obviously, D̂A
1,0 = zA and, thus, the final result for M = 0 reads

D̂A
1,0D̂

B
1,0 ≈

zA(−2z)

R3
. (3.29)

The asymptotic operators for M = ±1

r±A(r
±)∗ =

1

2

(xAx

R3
+
yAy

R3

)

(3.30)

where

r± ≡ ∓ 1√
2
(x± iy)

are obtained analogously using Y1,±1 = ∓
√

3/8π sin θ exp±iφ. Adding (3.29)
and (3.30) yields the asymptotic expression for the operators of the first term of
(3.21)

V̂l=1 ≡
1

R3

1∑

m=−1

bmΘ̂
A
m(Θ̂

B
m)

∗

=
xAx+ yAy − 2zAz

R3
, (3.31)
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where bm ≡ {b−1 = 1, b0 = −2, b1 = 1},

Θ̂u
m ≡ xu where xu =

{
r±u if m = ±1
zu if m = 0

, (3.32)

and the subscript l = 1 indicates that (3.31) is the operator for the terms with
l = 1.

Now, we can evaluate the l = 1 term of (3.21) by inserting the quantum numbers
of the orbital angular momentum

LB = LA = 1
MB =MA = 0,±1
l = 1, l′ = 0 ∨ l = 0, l′ = 1
m = 0,±1, m′ = 0 ∨ m = 0, m′ = 0,±1
l = 1
m = 0,±1

(3.33)

that determine the CGCs and restrict the summation

⇒ (lx, l
′
y;mx, m

′
y|lx, l′y;L,M) = 1,

⇒
∑

mk,m′
ov

mik,m′

iv

→
∑

MA,MB

.

We obtained for l = 1

WMB,MA

LB=1,LA=1 =
∑

MA,MB

1∑

m=−1

〈ΦA
0 |D̂A

1,m|ikA, ivA; 1,MA〉

× 〈ΦB
0 |D̂B

1,m|kB, ovB; 1,MB〉
∗

(3.34)

and simplify the result further by introducing the asymptotic operators (3.31)

WMB,MA

LB=1,LA=1 ≈
∑

MA,MB

1∑

m=−1

bm〈Φ0|Θ̂A
m|ik, iv, 1,MA〉〈Φ0|Θ̂B

m|k, ov, 1,MB〉
∗
.

(3.35)

In (3.34) and (3.35) we have dropped the indices denoting the orbital angular
momentum of the orbitals liv, lik. Henceforth, the symmetry-adapted many-
particle states are denoted by |xu, yu; 1,Mu〉. Using (3.35) the following expression
is obtained for (3.9)

Γl=1 ≡ 2π|WMB,MA

1,1 |2

= 2π
∑

MA,MB

1∑

m=−1

b2m|〈Φ0|Θ̂A
m|ik, iv, 1,MA〉|2|〈Φ0|Θ̂B

m|k, ov, 1,MB〉|2.

(3.36)
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To get rid of the M dependence of the dipole matrix elements the Wigner-Eckart
theorem [116]

〈γ, L,M |T̂l,m|γ′, L′,M ′〉 = (−1)L−M〈γ, L|T̂l|γ′, L′〉
(

L l L′

M m M ′

)

(3.37)

can be used. In the present case, L = M = 0 and L′ = l = 1, all 3j-symbols
vanish except [118]

m = 0, M ′ = 0 ⇔
(

0 1 1
0 0 0

)

= − 1√
3
,

m = 1, M ′ = −1 ⇔
(

0 1 1
0 1 −1

)

=
1√
3
,

m = −1, M ′ = 1 ⇔
(

0 1 1
0 −1 1

)

=
1√
3
.

Inserting the results of the Wigner-Eckart theorem and the definition of bm in
(3.36), the following expression is obtained

Γl=1 =
2π

R6
|〈Φ0|Θ̂A

0 |ik, iv, 1〉|2|〈Φ0|Θ̂B
0 |k, ov, 1〉|2

(
1

9
+

1

9
+

4

9

)

=
4π

3R6
|〈Φ0|zA|ik, iv〉|2|〈Φ0|z|k, ov〉|2, (3.38)

where we have used (3.32) and exploited the fact that the dipole moments of
different directions do not differ in atoms. Note, that this is not valid in general.
If the dipole moments of different directions are not equivalent the summation
over m in (3.36) would lead to differing contributions from y, x, and z in (3.38).

By replacing the squared matrix elements 〈Φ0|zA|ik, iv〉 by the definitions of the
Einstein coefficient of spontaneous dipole transitions [116, 119]

Aik =
4ω3

ik

3c3
|〈k|r|i〉|2, (3.39)

where c is the speed of light, ωik the transition frequency, and |k〉 and |i〉 are the
involved states, and the squared matrix elements 〈Φ0|z|k, ov〉 by the photoion-
ization cross sections [116, 119]

σ(E) =
4π2ω(ik)

3c
|〈Φ0|r|ΨE〉|2, (3.40)

where |Φ0〉 is the ground state and |ΨE〉 the final continuum state, the final
asymptotic expression for the decay width for dipole transitions is obtained (in
a.u):

Γl=1 =
3

4π

( c

ω

)4 σ(ω)

R6
Γγ (3.41)
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where Γγ = Aik denotes the radiative lifetime. The final formula (3.41) shows
that the corresponding decay width falls off proportional to R−6. This decrease
is in agreement to the classical result for the potential energy of two interacting
dipoles [117]. Moreover, in the asymptotic region the decay width is proportional
to the radiative lifetime of the initial excitation of the isolated subunit A and the
photoionization cross section of the isolated subunit B. Hence, we can estimate
the width using properties of the isolated subunits. Asymptotic formulae can
be generalized straightforward for processes with 2h2p final states or for systems
consisting of molecules instead of atoms [21].

3.3 Quadrupole-Dipole Transitions

In this section the l = 2 term from (3.21) is considered. According to (3.19) the
involved operators read

D̂A
2,m =

√

4π

5
Y2,m(ΩA)r

2
A, (3.42a)

D̂B
2,m =

√

4π

5
Y2,m(ΩB)/r

3. (3.42b)

As in the previous case, we derive explicit expression for these operators by
employing the geometry of the system (see Fig. 3.1) and expanding in terms of
R−n. As above, we commence with M = 0: D̂A

2,0 can be expressed in terms of
quadrupole moments:

D̂A
2,0 =

√

4π

5
Y2,0(ΩA)r

2
A

=

√

4π

5

√

5

16π
(3 cos2 θ − 1)r2A

=
1

2
(3z2A − r2A) =

3Mzz

2
, (3.43)

where we have used the following definition for the quadrupole moments Qµ,µ

Q̂µ,µ = eMµ,µ = e(µ2 − 1/3r2). (3.44)
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D̂B
2,0 is expressed in terms of dipole transitions and expanded in R−n. To this

end, we multiply it by 1 in form of r2/r2. The Taylor expansion of 1/r5 yields

D̂B
2,0 =

√

4π

5
Y2,0(ΩB)/r

3
B =

√

4π

5

√

5

16π

(3 cos2 θ − 1)r2B
r5B

=
1

2r5
(3 cos2 θ − 1)r2B

=
1

2r5
(3(R + z)2 − (R + z)2 − x2 − y2)

=
1

2r5
(2(R + z)2 − x2 − y2)

≈ 1

2R5
(2(R + z)2 − x2 − y2)(1− 5Rz/R2)

=
1

R3
+

−3z

R4
+O(R−5). (3.45)

Terms with squared components of r are neglected. Since the R−3 term cor-
responds to forbidden monopol transitions, in the case M = 0 the expanded
operator is given by

3MA
zz(−3z)

2R4
. (3.46)

Analogously, in the case M = ±1, D̂A
2,±1 in terms if quadrupole moments read

D̂A
2,±1 =

√

4π

5
Y2,1(ΩA)r

2
A

= ∓
√

4π

5

√

15

8π
cos θ sin θ exp(±iφ)r2A

= ∓
√

3

2
z(x± iy) = ∓

√

3

2
(Mxz ± iMyz), (3.47)

and the asymptotic D̂B
2,±1 in terms of dipole moments is given by

D̂B
2,±1 =

√

4π

5
Y2,1(ΩB)/r

3
B = ∓

√

4π

5

√

15

8π

cos θ sin θ exp(±iφ)r2B
r5B

= ∓
√

3

2

(R + z)(x± iy)

R5
(1− 5

2
(2R · r/R2 + r2/R2) + . . . )

= ∓
√

3

2

x± iy

R4
+O(

1

R5
). (3.48)

Thus, the asymptotic operator for M = ±1 reads

6(MA
xzx+MA

yzy)

2R4
(3.49)
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and the total one

V̂l=2 ≡
6(Q̂A

xzx+ Q̂A
yzy)− 9Q̂A

zzz

2R4
. (3.50)

In (3.47), (3.49), and (3.50) we made use of the definition

Q̂µ,ν = eMµ,ν = eµν. (3.51)

For M = ±2 the are no non-vanishing terms proportional to R−n, n ≤ 4 in the
expansion series of D̂B

2,2.

According to (3.50), the asymptotic expression for the decay width is given by

Γl=2 ≈ 2π
∑

m

∑

MAMB

|QMA
mz |2|DMB

m |2 (3.52)

In (3.52) we used the definitions

QMA
mz = 〈Φ0|Ξ̂A

m|ikA, ivA, 2,MA〉, (3.53a)

DMB
m = dm〈Φ0|̂ mB|kB, ovB, 1,MB〉, (3.53b)

where

Ξ̂A
m =







Q̂xz if m = −1

Q̂zz if m = 0

Q̂yz if m = +1

dm =







3 if m = −1
−9/2 if m = 0
3 if m = +1
0 if m = ±2

In order to express the widths in (3.52) in terms of observables the proportionality
factors of the Qµν contributing to the widths and the total transition moment Q
occurring in the corresponding Einstein coefficient [116]

Aki =
ω5

10~c5
|Q|2, (3.54)

where

Q =
∑

µν

Qµν , (3.55)

are to be determined. Before we can do that, we have to evaluate the general
Q and Qµν , respectively, for a certain transition. Here, we are interested in
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transition between an s and a d state. In order to evaluate the corresponding
matrix elements, Q̂µν are expressed in terms of spherical harmonics

Q̂xx = e(x2 − 1/3r2) = er2(sin2 θ cos2 θ − 1/3)

Q̂yy = e(y2 − 1/3r2) = er2(sin2 θ sin2 θ − 1/3)

Q̂zz = e(y2 − 1/3r2) = er2(cos2 θ − 1/3)

Q̂xz = Qzx = e(x2 − 1/3r2) = er2 cos θ sin θ cos φ

Q̂xy = Qyx = e(x2 − 1/3r2) = er2 sin2 θ sin φ cosφ

Q̂yz = Qzy = e(x2 − 1/3r2) = er2 cos θ sin θ sinφ

m m m m m

Q̂Y
xx = er2

[√

4π

30
(Y2,2 + Y2,−2)−

1

3

√

4π

5
Y2,0

]

Q̂Y
yy = −er2

[√

4π

30
(Y2,2 + Y2,−2)−

1

3

√

4π

5
Y2,0

]

Q̂Y
zz = er26

√

4π

5
Y2,0

Q̂Y
xz = er2

√

2π

15
(Y2,1 + Y2,−1)

Q̂Y
xy = −ier2

√

2π

15
(Y2,2 − Y2,−2)

Q̂Y
yz = −ier2

√

2π

15
(Y2,1 − Y2,−1)

because having them in this form allows us to employ the Wigner-Eckart theorem
for the evaluation

QM
µν = 〈ikA, ivA, L = 2,M |QY

µν |ΦA
0 , L

′ = 0,M ′ = 0〉
= 〈Φd(r)Y2,M |QY

µν |Φs(r)Y0,0〉
= 〈Φd(r)|er2|Φs(r)〉r〈Y2,M |QY

µν |Y0,0〉θ,φ, (3.56)

where the subscripts r and θ, φ indicate the variables over which the each integra-
tion is performed. Since squared matrix elements |Qµ,ν |2 occur in the definition
of the width and the Einstein coefficient, we consider

|Qµ,ν |2 =
∑

M

|QM
µ,ν |2 = |〈Φd(r)|er2|Φs(r)〉r|2

∑

M

|〈Y2,M |QY
µν |Y0,0〉θ,φ

︸ ︷︷ ︸

≡qµν

|2.

(3.57)
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To evaluate the qµν the quantum numbers of the s and the d state were inserted.
As a result, only the following matrix elements with non-vanishing 3j-symbols

m = 0, M ′ = 0 ⇔
(

0 2 2
0 0 0

)

=
1√
5
,

m = ∓1, M ′ = ±1 ⇔
(

0 2 2
0 ∓1 ±1

)

= − 1√
5
,

m = ∓2, M ′ = ±2 ⇔
(

0 2 2
0 ∓2 ±2

)

=
1√
5
.

contribute. The values of qµ,ν for all directions are given in Tab. 1.

qµν
∑

M |〈Y2,M |QY
µν |Y0,0〉θ,φ|

2

qxx
1
5
(1
9
4π
5
+ 4π

30
+ 4π

30
) = 1

5
16π
45

qyy
1
5
16π
45

qzz
1
5
144π
5

qxy = qyx
1
5
4π
15

qxz = qzx
1
5
4π
15

qyz = qzy
1
5
4π
15

Table 1: qµν values for all directions. The factors 1/5 stem from the 3j-symbols.

Now, we can rewrite the Einstein coefficient in terms of qµν

Aki =
ω5

10~c5
|Q|2

∑

µ,ν

qµν (3.58)

and insert the values from Tab. 1. Thus, we obtain

Aki =
1400π

45

ω5|Q|2
50~c5

⇔ |Q|2 = 45

1400π

Aki50~c
5

ω5
. (3.59)

As the final step, we can calculate the proportionality factor between the squared
total quadrupole moment and the partial ones contained in the expression of the
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width (3.50). The factor is given by

|Qµν |2 = |Q|2qµν . (3.60)

In (3.50) only the following partial squared quadrupole transition moments are
required

|Qxz|2 = |Qyz|2 =
4π

15

45

1400π

Aki50~c
5

ω5
=

3

350

Aki50~c
5

ω5
, (3.61a)

|Qzz|2 =
162

175

Aki50~c
5

ω5
. (3.61b)

Taking into account that the dipole moment of atomic systems is isotropic, the
total widths is given by

Γl=2 =
2π

5
|Dz|2

∑

m

|Qmz|2 (3.62)

where 1/5 stems averaging over the initial states and using the definition (3.61)
|Qmz|2 is defined by

|Qmz|2 =







|Qxz|2 if m = −1
|Qzz|2 if m = 0
|Qyz|2 if m = +1

. (3.63)

The dipole moment |Dz|2 is replaced by the photoionization cross section σ(ω)
using the relation

|Dz|2 =
1

4π2

c

ω
σ(ω). (3.64)

Now, we can state the asymptotic expression for the decay width of quadrupole
excitations

Γl=2 =
1323

14π

( c

ω

)6 Γγσ(ω)

R8
. (3.65)

The final formula (3.41) is proportional to R−8. This the classical dependence of
the potential energy of a dipole interacting with a quadrupole [117]. Moreover, the
asymptotic expression of decay width is determined by the radiative lifetime of the
initial quadrupole excitation Γγ = Aki on isolated subunit A and photoionization
cross section of the isolated subunit B. Note, that the quadrupole excitations
usually exhibit very long lifetimes.

An asymptotic formula of the decay width of a dipole allowed excitation whose
energy is at or very close to a Cooper minimum [120] of the photoionization
cross section of the neighbor can be derived analogously. At a Cooper minimum
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the first order term of the photoionization cross section becomes zero because
it changes its sign. However, the total photoionization cross section is larger
than zero due to the terms of higher order. Such points are known as Cooper
minima [120] because the total photoionization cross section usually exhibits a
local minimum at such points. Hence, the first non-vanishing term is the one due
to quadrupole transitions. The derivation of the formulae for those cases, differs
only by the definition used: the definition of Einstein coefficients of a dipole
transition and the photoionization cross section due to quadrupole transitions
must be used. In order to get the definition of the latter we consider the expansion
of the total cross section [121]

σ(ω) =
4π2ω

3c

([

|D|2 + |M |2 + k2

20
|Q|2

])

. (3.66)

where M denotes the magnetic dipole and k is the absolute value of the photon
wave vector. According to (3.66) the quadrupole cross section is given by

σ(ω) =
π2ω3

15c3
|〈Φ0|

∑
Qµ,ν |Ψω〉|2 (3.67)

and, thus, the asymptotic formula of the ICD widths of a dipole allowed excitation
at a Cooper minimum of the photoionization cross section reads

Γl=2 =
3

2π

1323

70

( c

ω

)6 Γγσ(ω)

R8

=
567

20π

( c

ω

)6 Γγσ(ω)

R8
. (3.68)
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Calculation of Excitation-Transfer-Ionization (ETI)
Widths

In order to demonstrate the efficiency and the accuracy of the Fano-Stieltjes-
Lanczos (FSL) method, as applied to the calculations of interatomic decay widths
of excited states, we determine ETI [19] widths. ETI is a non-radiative decay
pathway of outer-valence excitations in clusters, which sets in, if the excitation
energy is sufficient to ionize another cluster constituent. The outer valence exci-
tation relaxes by transferring its energy to another cluster subunit and ionizing
it (see Fig. 1.1). At interatomic distances of a few Å between the cluster con-
stituents this decay has been shown to be orders of magnitude faster than the
competing radiative decay [19].

In the present work, we calculate ETI widths in NeAr and HCN·Mgn, n = 1, 2.
The calculations in the comparatively simple NeAr serve to test the selection
schemes for the Q and P subspaces necessary to carry out the FSL method [51]
and to investigate the quality of the results with respect to the number of the
final states used. Moreover, we use this example to depict the course of the FSL
method exemplarily. HCN·Mgn clusters [122] provide us with a realistic system
where ETI is possible following an excitation of HCN. At asymptotic internuclear
distances we compare the FSL widths to the predictions of the virtual photon
transfer model (see Sec. 3) and, where available, to widths obtained previously
for these clusters in CAP-ADC calculations [19].

4.1 Applications

ETI in NeAr

In this section widths of Ne∗[2p−13s (1P )]Ar excitations are calculated. The
excitation energy of the 2p−13s (1P ) state of isolated Ne is 16.85 eV [123]. The
ionization potential of 3p electrons of isolated Ar lies at 15.76 eV [123]. Therefore,
the ETI channel is open at asymptotic internuclear distances. On the other hand,
the excitation energy is not sufficient to produce either excited states of Ar+ or
doubly ionized states. We verified in a separate ab initio calculation that the ETI
channel remains open at all internuclear distances of interest (between 3 Å and
10 Å) and that no other decay channels occur.

The first step in the course of the FSL approach is a Hartree-Fock (HF) calcula-
tion which provided the MOs, their energies, and the corresponding two-electron
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integrals. If the HF calculation was successful, one can proceed with the descrip-
tion of the involved excited states. In the framework of the FSL method, the
configuration space Q, which describes the resonant states, and the configuration
space P, which describes the non-resonant final states of the decay, must be spec-
ified. Which occupied MOs are selected depends on the character of the involved
states and the open channels.

For the current example, ETI in NeAr originating from the Ne2p−13s (1P ) exci-
tation, we employed the ADC(2)x method to calculated the resonant initial and
the non-resonant final states. Hence, corresponding 1h1p and 2h2p configurations
must be specified. In the NeAr cluster the triply degenerate 1P term of Ne splits
into 1Σ and 1Π states. At first, we consider the decay of 1Π states. The electronic
configurations of the ground state of Ne and Ar are (He)2s22p6 and (Ne)3s23p6,
respectively. The 1s orbital of Ne and the 1s2s2p orbitals of Ar are frozen in
the calculations. Tests showed that neglecting those orbitals does not change the
calculated properties of the involved states and widths significantly. The config-
uration space Q describing the Ne 2p−13s (1Π) state consists of all configurations
of 1h1p character of appropriate symmetry having a hole in the Ne 2p orbital. To
account for intra-atomic electron correlation we also include 1h1p configurations
with a hole in the Ne 2s orbital and all 2h2p configurations with two holes in
the Ne 2p orbitals. Since only the ETI channel is open, the final states of the
decay are 1h1p states with a hole in the Ar 3p orbitals and an electron in the
continuum. To describe these states we include all 1h1p configurations with a
hole in the MOs corresponding to Ar 3p. To account for intra-atomic correlation
in the final states we add all 2h2p configurations with two holes in the Ar 3p
orbitals.

The results of both the HF and the subsequent FSL calculation depend strongly
on the atomic basis sets employed. Thus, after the ADC method and the configu-
ration spaces have been chosen, basis sets appropriate to describe the states must
be determined. First, we obtained a basis proper to describe Ne 2p−13s (1Π) ex-
citations. To this end, the following empiric procedure is suitable: A good basis
set of origin to describe excited state of 1Σ and 1Π symmetry in small clusters
consisting of rare gas and alkali earth atoms is the aug-cc-pVTZ Gaussian basis
set [124]. It is used in order to obtain a reference energy which is compared to
the literature value. If the difference is large all steps of the calculation should
be checked carefully. On the other hand, if the agreement is decent, the energy
can be converged with respect to the basis set by gradually adding Rydberg-like
Gaussian functions [125] of s, p, and d symmetry. After each augmentation,
the energy must be recalculated. The number of functions of different symmetry
added in every step depends on the virtual orbital of the excitation of interest. For
example, in order to describe an Xp−1Y s excitation, more functions exhibiting s
symmetry should be added. In the present case, a suitable ansatz is to recalculate
the energy after adding 2s, 1p, and 1d function(s). If the excitation energy does
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not change at the third digit, it can be considered as having converged. In the
case of the 2p−13s (1Π) excitation in Ne, we found that the energy is converged
employing the aug-cc-pVTZ Gaussian basis set [124] augmented with 12s, 6p, 4d
Rydberg-like Gaussian functions [125] centered on Ne. The calculated energy of
the 2p−13s (1Π) resonance is 16.7 eV (0.614 a.u.), in good agreement with the
literature value of 16.85 eV. The Hamiltonian matrix representing the decaying
states of the decay had a dimension of 21200. Since by construction the decaying
state lies near the lower spectral boundary, we used the Davidson diagonalization
method [126] to compute it.

The final states of the ETI in NeAr are represented by Ne in its ground state,
Ar+, and an electron in the continuum. Consequently, the task to determine a
basis set which is appropriate to describe the final states, means to determine
basis set appropriate to represent Ar+ and the outgoing electron. In general, the
continuum states of the outgoing electron are physically given by plane waves (see
Sec. 2.1). The Stieltjes method used in the FSL approach is based on the idea
that matrix elements of a bound and a continuum state (2.18) can be evaluated
using an L2 spectrum to represent the continuum state, since the bound part of
the resonant state is non-zero only in a finite spatial region. As a consequence, the
matrix element is well described if the continuum state can be reproduced in that
region. To represent plane waves in the final spatial region diffuse L2 functions can
be used. Thus, the outgoing electron can be described by augmenting the basis
set with diffuse functions. Whether an appropriate description can be achieved
depends on the kinetic energy of the outgoing electron. The higher the kinetic
energy is the more difficult it is to reproduce the corresponding plane waves using
L2 functions. To obtain a higher flexibility in the basis set it can be helpful to
augment the basis sets of all cluster constituents by diffuse functions. In the
case of small systems, the introduction of ghost atoms [127] might help as well.
The basis set can be considered to be appropriate when the energies of the final
spectrum and the width do not change significantly on adding diffuse functions.
Usually, the energies converge more rapidly and, thus, their convergence is a
byproduct of the convergence of the width. So, the actual task is to converge the
width. Within the FSL method, the smoothed spectra of order n consisting of

{ǫj , γj}(n), (4.1)

pairs resulting from Stieltjes imaging (see Sec. 2.3) are investigated in order to
see whether the width has converged. At the energy of the resonant initial state,
the interpolated smoothed spectra approximate the width. If the interpolated
spectra do not change on augmenting the basis set further the basis set is suitable
to describe the final states.

As in quest of a basis for the decaying state, we started from the Ar aug-cc-
pVTZ Gaussian basis set [124]. Employing this basis set, the configuration space
representing the final states P contained 50 1h1p configurations and about 6000
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Figure 4.1: Interpolated smoothed spectra at an internuclear distance of 4 Å using the reference

basis set.

2h2p configurations. We used all 1h1p configurations to set up the starting block
required to perform the Lanczos method and conducted 20 iterations. That the
spectrum has been converged with respect to the number of iterations can be
verified by examining the spectrum in the energy region around the resonant
state: if the number of eigenstates does not change after increasing the number
of Lanczos iterations the spectrum has converged with respect to the number of
iterations. The resulting interpolated smoothed spectra of order 8 ≤ n ≤ 15
are depicted in Fig. 4.1. The smoothed spectra of lower and higher orders are
neglected since, in general, spectra of order n < 7 consist of so less points that
they are usually to rough to be useful and spectra of order n > 17 tend to
oscillate and, as a consequence, are often not reliable. By looking at the graphs
in Fig. 4.1, one can see, that the graphs differ significantly in the energy region of
around the resonant initial state (0.55 to 0.7 a.u.). According to the Chebychev
relations (2.73) that indicates that the spectra obtained by means of a certain
finite number of moments do not bracket the true widths well enough to make
a reasonable choice. Furthermore, the spectra change significantly on adding
diffuse functions.

52



Chapter 4

Consequently, the basis set has to be expanded in order to improve the descrip-
tion. Since the decaying state exhibits Π symmetry and the 3p holes can be of
Σ or Π symmetry, the outgoing electron must represented by waves of Σ and Π
symmetry. So, we are suppose to add diffuse s and p functions when augmenting
the Ar basis set. To this end, we augmented the original basis sets gradually
by 2s, 2p, and 1d diffuse function(s) whose exponents we determine by the even
tempered scheme [128, 129] taking the exponent of the most diffuse function of
the original basis set as the point of origin. We repeated the outlined convergence
check until the smoothed spectra became stable. Here, this occurred using the
aug-cc-pVTZ basis set augmented by 6s, 6p, and 3d functions. The configuration
space in this basis contained 18500 configurations of which 80 were 1h1p ones. We
employed all 80 1h1p configurations to define the starting block of the Lanczos
method and carried out 20 iterations. The corresponding interpolated spectra
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Figure 4.2: Interpolated smoothed spectra at an internuclear distance of 4 Å using the final basis

set.

are given in Fig. 4.2. Except extremal orders, the different smoothed spectra are
close to each other in the energy region of interest. Thus, the true width is de-
cently bracketed there. Although the spectra of extremal orders deviate from the
spectra of middle orders, they are converged and do not change on augmenting
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the basis set further. Note that it can happen, that all spectra have stabilized
but are not as alike as desired. In such cases the widths can only determine with
respect to an relatively high uncertainty. Here, most of the spectra exhibit an
uniform behavior even at higher energies.

The widths can be read directly from Fig. 4.2. However, to ensure that the chosen
widths is well bracketed in the sense of the Chebychev relations, interpolations
from spectra of more than one order are generated. For example, averaging over
two orders means taking all the pairs of second {ǫj , γj}(2) and of third order
{ǫj , γj}(3), to form a new set

{ǫj , γj}(2∪3) = {ǫj , γj}(2) + {ǫj , γj}(3). (4.2)

and do the interpolation based on {ǫj, γj}(2∪3). In principle, all spectra could
be used to obtain one graph including all smoothed pairs. However, based on
our experiences, it is not helpful to take more than three or four orders at once.
Fig. 4.3 and Fig. 4.4 depict the interpolated smoothed spectra where, respectively,
two or three orders have been used for the interpolations. By comparing the
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Figure 4.3: Interpolated smoothed spectra at an internuclear distance of 4 Å averaged over two

orders.
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Figure 4.4: Interpolated smoothed spectra at an internuclear distance of 4 Å averaged over three

orders.

graphs to the graphs from Fig. 4.2, one can see that the resulting interpolated
graphs are closer to each other. Especially, the averaging over two orders produces
good results. We read the value of the widths from graph corresponding to the
averaging over the orders 8 and 9 given in Fig. 4.3 and separately depicted in
Fig. 4.5. In order to get the widths as a function of the internuclear distance,
the above described procedure has to be repeated at all cluster geometries of
interest. If the resulting width exhibits a smooth shape as a function of R, the
widths can be considered as having converged. If, on the other hand, it shows an
erratic behavior at some geometries, the calculations around those points should
be checked in detail. Especially at geometries where the electronic structure of
the system changes rapidly that can occur.

In the course of [25] we carried out a study on the convergence with the number
of block Lanczos iterations using the basis sets discussed above. The predom-
inantly 1h1p character of the final states suggests that the best starting block
consists of all 1h1p configurations of the final subspace (80 in this case). Using
this starting block, we performed Lanczos diagonalization with 1, 5, 10, and 30
block iterations, obtaining 80, 400, 800, and 2400 final states, respectively. The
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Figure 4.5: Selected interpolated smoothed spectra at an internuclear distance of 4 Å averaged

over two orders. The arrow indicates the value of the width taken at the energy of the resonant state.

calculated widths are given in Fig. 4.6. The figure shows that the decay width
is converging extremely fast indicating an excellent choice of the starting vectors
for the Lanczos procedure.

In order to check whether the FSL method reproduces the dependence of the
ETI rate on the symmetry of the initial state [21] correctly we applied it to the
calculation of the width of the Ne 2p−13s (1Σ) excitation in the same cluster. We
employed the same configuration subspaces and the same Gaussian basis sets as
for the 1Π state. Although the resulting subspaces are not completely equivalent
due to the different symmetry of the initial and final states, we utilized the
parameters (block size 80 and 30 block Lanczos iterations) obtained from the
study of convergence of the 2p−13s (1Π) excitations. For comparison we plotted
both graphs in Fig. 4.7. One first notices that the width of Ne 2p−13s (1Σ)
excitations is larger than the width of 2p−13s (1Π) excitations, in accordance
with theory [21]. At interatomic distances R larger than 6 Å the widths are
proportional to R−6 and the quotient of both widths is equal to four, which is
exactly the value predicted by the virtual photon transfer model [21] at large
interatomic distances. The absolute values are also in good agreement with the

56



Chapter 4

3 4 6 8
R (Å)

10
-2

10
-1

10
0

 Γ
  (

m
eV

)

Figure 4.6: ETI widths of the 2p−13s (1Π) excitation of Ne in NeAr clusters as a function of the

interatomic distance for different numbers of block Lanczos iterations. The starting block is spanned

by 80 1h1p configurations. The widths are shown after one (dotted line), five (dash-dotted line), 10

(dashed line), and 30 (full line) iterations. Note the fast convergence.

analytical predictions. At small interatomic distances the width of Ne 2p−13s (1Σ)
excitation increases faster than the width of the 1Π excitation due to the larger
orbital overlap between the monomers for the states of Σ symmetry. The resulting
lifetime of the Ne 2p−13s (1Σ) excitation in NeAr at the equilibrium distance of
3.5 Å is 55 fs which is four orders of magnitude shorter than the 1.6 ns lifetime
of the competing radiative decay [25].

The interatomic decay widths have been calculated so far for optically allowed
initial states. However, we further tested the method by applying it to dipole for-
bidden but quadrupole allowed transitions. As has been demonstrated in Ref. [16]
the ICD width of quadrupole allowed ionized initial states decreases with R−8 at
large interatomic distances. The expression for the ETI width derived in Sec. 3
similarly to Ref. [16, 21] reads

Γ =
1323

14π

( c

ω

)6 σ(ω)

R8
Γrad (4.3)
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Figure 4.7: ETI widths of the Ne 2p−13s (1Π), 2p−13s (1Σ), and 2p−13pz (1∆) excitations in NeAr

clusters as a function of the interatomic distance. We carried out 20 block Lanczos iterations with a

block size of 80 (see the text for more details). The predictions of the asymptotic formula are depicted

as dotted lines. Note the good agreement of the calculated widths and the analytical predictions. The

dotted line close to the graph of the optically forbidden ∆ excitation is proportional to R−8.

where ω is the frequency of the virtual photon, σ(ω) is the photoionization cross
section of the neighbor Ar, and Γrad is the radiative width of the excited state
of isolated Ne due to photon emission. In this instance, we would like primarily
to check whether the FSL method can reproduce the correct asymptotic gradient
and, in addition, check whether our approach works for very small numerical
values of the width which occur in this case due to its fast decrease with R.

To this end we calculated the decay width of Ne 2p−13p (1∆) excitations in NeAr
(see Fig. 4.7). The energy value of this excitation is given in the literature with
18.63 eV [123]. We employed the same subspaces and the same Gaussian basis
sets as in the calculations above. Using this setup we obtained an excitation
energy of 18.8 eV and the decay rate shown in Fig. 4.7. One can see that as the
interatomic distance grows the decay width decreases much faster than the decay
width of the optically allowed Ne 2p−13s excitations. This can be explained by
the fact that the moment the orbital overlap becomes negligible, the rate falls off
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as R−8 and not as R−6 as in the previous case. It is notable that our ab initio

approach yields the correct R−8 behavior even at very large interatomic distances
where the absolute numbers are very small.

ETI in HCN·Mg

As a further test we applied the FSL method to the calculation of ETI widths
of the 5σπ∗ excitation of the HCN molecule in HCN·Mgn, n = 1, 2 clusters. The
corresponding ETI widths of these systems have been calculated previously with
the CAP-ADC method [19]. In addition, all properties of the constituents neces-
sary to evaluate the asymptotic formulae are known, giving us the opportunity
to compare the results. The first step was again to define the subspaces of the
initial state and final states of the decay. The Hartree-Fock electronic configura-
tions of the ground states of HCN and Mg are 1σ22σ23σ24σ25σ21π4 and (Ne)3s2,
respectively. By 5σ we understand the non-binding orbital on N. To describe the
initial 1h1p 5σπ∗ excitation we included all configurations of 1h1p character with
a vacancy in the 5σ molecular orbital (MO). To account for electron correlation in
the initial state we included, additionally, all 1h1p configurations with a vacancy
in a 1π MO and all 1h1p configuration with a vacancy in the 4σ MO. We also
added all 2h2p configurations with two vacancies in either 5σ, 4σ ,or 1π MOs,
and all 2h2p configurations with one vacancy in the 5σ and another in either the
4σ MO, or in the 1π MO.

The final states of the ETI process differ according to the number of neighboring
Mg atoms. In the case of HCN·Mg the bound part of the final states consist of
HCN in its ground state and Mg+ in its ground state. To describe these states
accounting for electron correlation, we included in the configuration space all
1h1p and 2h2p states with one or two holes in the Mg 3s orbital. In the calcu-
lation of the final states we took as starting vectors of the Lanczos procedure all
the 1h1p configurations. After the block Lanczos iterations we selected Lanczos
eigenvectors of predominantly 1h1p character and use them in the Stieltjes rou-
tine. In this way we ensure that no energetically forbidden doubly excited state
contributes to the width. In the case of HCN·Mg2 the final states consist of HCN
in its ground state and the Mg dimer in a variety of ionized states. The energy
of the initial state is sufficient to produce the ground and lower excited states
of Mg+2 but not the doubly ionized Mg++

2 . To span the corresponding subspace
we included all 1h1p configurations with a vacancy either in the 3σg or 3σu MO
of isolated Mg2. We also added all 2h2p configurations with two holes in the
3σg, 3σu orbital subset. In the this case we took as starting block the 100 con-
figurations which have the largest coupling to the initial state. We noticed that
this coupling is generally much larger for the 1h1p than for the 2h2p configura-
tions. We used all energetically permitted Lanczos eigenvectors in the Stieltjes
calculation.
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The calculations were carried out using the ADC(2)x method because we found
the interactions among 2h2p configurations to be important to describe the ini-
tial and the final states of the decay. We employed the aug-cc-pVTZ Gaussian
basis sets [124] augmented with 1s, 1p, 1d Rydberg-like Gaussians [125] centered
on H, C, and N and the aug-cc-pVTZ Gaussian basis set [124] augmented with
3s, 6p, 2d even-tempered diffuse Gaussians centered on each Mg. Since by con-
struction the decaying state lies near the lower spectral boundary, it can again be
easily computed by the Davidson diagonalization method [126]. The structure of
HCN·Mg was taken to be linear as in Ref. [19] and the equilibrium geometry of
HCN·Mg2 was taken from Ref. [122]. The interfragment distance R is taken to be
the distance between N and Mg in both cluster. In all calculations, at various R
values, the HCN geometry has been kept fixed at the equilibrium one of free HCN,
while that of Mg2 was fixed at the equilibrium value of the HCN·Mg2 adduct. The
computed asymptotic vertical excitation energy of the 5σπ∗ initial state of HCN
is 8.8 eV in both clusters, which is in good agreement with the literature value of
8.6 eV [130] of the isolated HCN molecule. The energy remained almost constant
at all distances R considered. For HCN·Mg the subspace representing the final
states of the decay comprises 44 1h1p and 4100 2h2p configurations. The results
converged after 40 block Lanczos iterations using all 44 1h1p configurations as
the starting block. In the case of HCN·Mg2 the dimension of the Hamiltonian
representing the final states of the decay was 28000 where 88 of them were 1h1p
configurations. We used the 100 configurations with the largest overlap with the
initial state to define the starting block and the width converged after 40 block
Lanczos iterations.

The ETI width of the 5σπ∗ excitations in HCN·Mg is given in Fig. 4.8. At very
large R the width increases as R−6 with decreasing R, as one can see by com-
paring the calculated width with the one predicted by the asymptotic formula in
Eq. (4.4). At around 16 Å the width starts to increase faster, indeed between 9
Å and 16 Å it is proportional to R−8 indicating the decay of a dipole forbidden
state. This is an unexpected result since the initial state is optically allowed.
However, the Mg photoionization cross section [131, 132] exhibits a Cooper min-
imum [120] close to the energy of the 5σπ∗ excitation. Due to its presence, the
R−6 term becomes comparable with the R−8 term in the asymptotic expansion of
Γ, and both terms should be taken into account in calculating the decay width.
The asymptotic formula becomes

Γ =
3

8π

( c

ω

)4 σ(ω)

R6
Γrad +

567

20π

( c

ω

)6 σQ(ω)

R8
Γrad (4.4)

where ω is the frequency of the virtual photon, σ(ω) is the photoionization cross
section of Mg due to dipole transitions, σQ(ω) is the photoionization cross section
of Mg due to quadrupole transitions, and Γrad is the radiative width of the 5σπ∗

excitation in HCN. Note that the prefactor of the second term in Eq. (4.4) is
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Figure 4.8: The ETI widths of the HCN 5σ−1π∗ excitations in HCN·Mg (lower line) and HCN·Mg2
(upper line) clusters as a function of the distance between N and Mg. The results are obtained by

using starting blocks of the dimension 44 and 100, respectively, and 40 block Lanczos iterations. The

predictions of the first term of Eq. (4.4) are shown as dotted lines. At equilibrium geometries, 3.95

Å and 3.8 Å of HCN·Mg and HCN·Mg2, respectively, the estimated lifetimes are 385 fs and 40 fs,

respectively. The inset depicts the comparison between the present results (full lines) and the widths

obtained with the CAP-ADC method (dashed lines) where available. The CAP-ADC data is taken

from Ref. [19].

different from the prefactor in Eq. (4.3) since the definition of radiative widths
and cross sections due to quadrupole transitions differ from the definitions of
the same quantities due to dipole transitions. Between 8 and 16 Å the R−8

term dominates producing the observed behavior of the width. At interatomic
distances larger than 16 Å the R−8 contribution becomes so small that the R−6

contribution finally governs the behavior of Γ . This is an interesting case where
the width of the intermolecular decay is sensitive to the spectroscopic properties
of the neighbors. This sensitivity of the intermolecular energy transfer to the
properties of the neighbor emphasizes the potential use of ICD as a spectroscopic
method as promoted in Ref. [22, 133].

For 5σπ∗ excitations in HCN·Mg we obtained a lifetime of about 385 fs at the
equilibrium distance (between N and Mg) of 3.9 Å. The obtained width is in
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good agreement with the calculations from Ref. [19]. At an N-Mg distance of 3 Å
the CAP-ADC method yields a width of 12 meV and the Fano-Stieltjes-Lanczos
method predicts here a width of 11 meV (see inset in Fig. 4.8).

The ETI width of the out-of-plane 5σπ∗ excitation in HCN·Mg2 is also depicted in
Fig. 4.8. At intermolecular distances larger than 20 Å, the width is proportional
to R−6 and, moreover, is in good agreement with the prediction of the asymptotic
formula. Between 9 and 16 Å the width decreases roughly as R−7. We found
that the photoionization cross section of Mg2 is roughly one order on magnitude
larger than the photoionization cross section of Mg at the same energy of the
virtual photon. Consequently, the R−6 term in the ETI width of HCN·Mg2 is
approximately one order of magnitude larger than the one of HCN·Mg. Thus,
both the R−8 and R−6 terms in equation (4.4) are of comparable size for R
between 9 and 16 Å which results in the observed R−7 behavior of the width. At
the equilibrium geometry we find an ETI lifetime of 40 fs. The ratio of asymptotic
ETI widths in HCN·Mg and HCN·Mg2 is approximately six. In the simple case
of two independent Mg atoms we would have expected this ratio to be two. Due
to the interaction between the Mg atoms the number of channels available for
ionization grows non-linearly with the number of atoms which is indicated in the
photoionization cross section as well as the ETI width. Our calculations are in
good agreement with the results of Ref. [19] as one can see from the inset of
Fig. 4.8. At the equilibrium distance the lifetime given by CAP-ADC method is
32 fs.

Possibility of Selfdestructive ETI

When we worked with the P subspace specified above (all 1h1p and 2h2p states
with one or two holes in the Mg 3s orbital) and all virtual orbitals the calculated
widths for 5σπ∗ excitations of HCN in HCN·Mgn, n = 1, 2 clusters were more
than one order of magnitude larger than the ones obtained from CAP-ADC cal-
culations (compare Fig. 4.8, Fig. 4.9, and Ref. [19]). In order to understand the
discrepancy, we examined the results of the FSL method carefully and discov-
ered that in the raw spectra, which consist of {Γj, ǫj} pairs, partial widths Γj

occurred being an order of magnitude larger than all the other partial widths.
Those extra-large Γj were distributed over the whole spectrum. A analysis of
the corresponding eigenstates revealed that all of them correspond to cross ex-
cited HCN−·Mg+ states. In those states the electron was not in a continuum
orbital. Rather it occupied a virtual valence orbital of HCN. It is clear, that
those states are not among the final states of ETI. Consequently, we removed the
virtual valence states of HCN from the configuration space P. As a result, the
widths decreased to numbers in good agreement with the results from CAP-ADC
calculations [25].

The virtual valence states on HCN give rise to electron attachment (EA) and
dissociative electron attachment (DEA) shape resonances [134–137]. HCN ex-
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Figure 4.9: Unphysically increased ETI width of HCN 5σ−1π∗ excitations in HCN·Mg clusters as a

function of the distance between N and Mg. The results have been obtained using the same parameters

as in the calculations of the HCN·Mg widths shown in Fig. 4.8. At equilibrium geometries 3.95 Å the

estimated lifetimes is 11 fs.

hibits a π∗-resonance, which appears as a structureless ca 1.4 eV broad peak
at ca 2.3 eV [134, 135] in the spectrum, and a σ∗-resonance at 6.7 eV [138]. It
is important to note that the EA resonances have the same final states as the
discussed ETI process. In HCN·Mg the PECs of the HCN∗(5σπ∗)·Mg and the
HCN−·Mg+ state cross in the diabatic picture. Since Mg is only weakly bound to
HCN, the electronic coupling between the two state is insignificant. However, in
a vicinity of the crossing the states are coupled by bound-continuum-bound in-
teractions [139], see Sec. 5 as well. Since the widths of EA resonances are usually
large, this coupling can be significant. Id est, in HCN·Mg the population of the
non-dissociative 5σπ∗ state of HCN could finally lead to a dissociation of HCN

HCN ·Mg +Nγ → (HCN)∗ ·Mg

→ (HCN)(∗,−) ·Mg+ → H + CN− ·Mg+.

Whether the process can indeed take place has to be investigated. That is not
straightforward because the virtual orbitals of HCN are stabilized due to the pres-
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ence of Mg+. Thus, the virtual valence π∗ orbital does not give rise to a shape
resonance any longer. Even if it still would be a resonance, the states would cross
at large internuclear HCN↔Mg distances, far away from the Franck-Condon re-
gion, where the nuclear wave packet would properly not appear because it would
have been undergone ETI before. On the other hand, the stabilization effect in-
duced by Mg+ could cast higher lying virtual valence orbitals into EA resonances.
The resulting HCN∗(5σπ∗)·Mg cross excited states would be energetically higher
and, as a consequence, the crossing of them and the the HCN∗(5σπ∗)·Mg states
would be in or close to the Franck-Condon region. Ab initio calculations revealed
that there are suitbale virtual valence orbitals of HCN. Whether they become the
desired EA resonances in the neighborhood of Mg+ has to be investigated.
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Quenching of Photoinduced Reactions by ICD

5.1 Introduction

Excited poly-atomic systems relax by processes involving nuclear rearrangements
like photodissociation, isomerization, vibronic coupling, etc [26–28]. If the sys-
tems are embedded in an environment the relaxation processes are affected due
to interactions with the environment. In liquids, matrices, clusters, and high-
pressure gases recombination after photoinduced dissociation due to the cage

effect [140–143] or relaxation due to vibronic coupling to the environment are
just two examples. A special consequence of the presence of environments is
ICD [3]. It takes place if the ionization potential of the environment is lower
than the excitation energy of the system. During the process the excess energy is
transferred to the environment which, as a result, is ionized. The impact of ICD
on relaxation processes involving nuclear rearrangements has not been investi-
gated yet, although it is of fundamental interest since the impact is supposed to
be significant because of the efficiency of the ICD. The mechanism we investigate
here is general, however, for the sake of clearness we illustrate it by considering a
diatomic system AB. In electronically excited states (AB)∗ the nuclei A and B
rearrange. For example, if the excited state is a dissociative one the system will
break apart

(AB)∗ → A +B. (5.1)

In the presence of a weakly bonded environment Ω the dissociation will usually
take place too. Moreover, if the ionization potential of the environment is lower
than the excitation energy of the system, the ICD channel opens

(AB)∗ · · ·Ω → AB · · ·Ω+ + e−. (5.2)

Consequently, in the presence of such an environment, the evolution of the system
is governed by the competition between dissociation and ICD. In order to be able
to predict the evolution the system the competition must be studied quantita-
tively. In particular, the competition between ICD and photoinduced dissociation
is studied in this work. As a concrete example, we consider the dynamics in the
four lowest vibrational levels of the B1Σ+ Rydberg state of CO in the presence
of Mg.
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Photodissociation

The fragmentation of a molecule following the absorption of one or more pho-
tons is called photodissociation1 [26]. The fragmentation can be described as
happening in three steps:

AB +Nγ −→ (AB)∗ −→ A∗ +B∗. (5.3)

where AB denotes the molecule in a bound state which absorbs N photons γ.
The received energy is transferred into internal energy forming the excited inter-
mediate complex (AB)∗. The intermediate complex disintegrates into internally
excited fragments A∗ and B∗. Depending on the shape of the PEC of the inter-
mediate state (AB)∗ and on interactions with other states, three major types of
photodissociation are distinguished: direct photodissociation, electronic predis-
sociation, and vibrational predissociation [26, 144]. In the first case, the PEC of
the intermediate state is purely repulsive and there are no relevant interactions
with other states. Hence, the molecule starts to disintegrate immediately and
the lifetime of the intermediate complex is usually extremely short. Electronic
predissociation takes place if the intermediate state (AB)∗ is a bound electronic
state which undergoes a radiationless transition to repulsive states. Finally, if the
PEC of the intermediate state is dissociative but exhibits a potential well in the
vicinity of the equilibrium geometry the nuclear wave function becomes temporar-
ily trapped. This process is summarized by the term vibrational predissociation.
Note that while direct dissociation can only occur in the continuous part of the
spectrum, discrete states can undergo predissociation. The finite lifetime due to
predissociation, then, induces an additional width to the corresponding line in
the absorption spectrum.

The efficiency of the photodissociation is given by the photodissociation cross
section σ(ω). The photodissociation cross section σ(ω) is closely related to the
total photoabsorption cross section σT (ω) defined according to Beer’s law [26]

I(z) = I0e
−zσT (ω)ρ, (5.4)

which gives the light intensity after traversiting a column of gas of height z, as
a function of the particle density ρ, photon frequency ω, and initial intensity I0.
The photodissociation cross section σ(ω) can be understood as the ability of a
system to absorb light of a certain energy which leads to a subsequent dissoci-
ation. In systems where the only process competing with photodissociation is
photon emission σ ≈ σT , due to the difference in the timescales of these pro-
cesses. Using time-dependent perturbation theory in conjunction with the dipole
approximation [26, 115], the photodissociation cross section can be expressed by

σ(ω) ∝ ω |〈Ψf(ω)|d|Ψi〉|2 , (5.5)

1Photodissociation means that the molecule dissociates into fragments before it can decay to the electronic
ground state, i.e., by photon emission.
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where d denotes the total dipole operator which is defined as

d = −e
N∑

i=1

ri + e

M∑

I=1

ZIRI

= de + dI (5.6)

where ri and RI denote the position vector of the ith electron and Ith nucleus,
respectively. de and dI are the contributions of the electrons and the nuclei to
the dipole moment. The cross section (5.5) is proportional to the square of the
dipole transition matrix element between the initial state |Ψi〉 and the dissociative
final state |Ψf(ω)〉. These states describe the total state of the system, i.e., they
describe all electrons and nuclei. Usually, electrons move much faster than nuclei
and, hence, it is convenient to decouple the motions because then the electronic
and the nuclear problems can be solved separately.

Born-Oppenheimer Approximation

Nuclei are much heavier than electrons and, thus, move slower than the latter.
Consequently, the usual way to construct a molecular wave function is to assume
that the kinetic energy of the nuclei is small and treat the nuclear motion as a
perturbation

Ĥ = Ĥ0 + Ĥ ′ = (T̂e + V̂ ) + T̂n (5.7)

where Ĥ0 is the electronic part of the Hamiltonian (2.28) and Ĥ ′ contains the
kinetic energy operator of the nuclei T̂n. If the electronic eigenproblem is solved

Ĥ0φn(r,R) = En(R)φn(r,R), (5.8)

where the electronic eigenfunctions φn(R, r) and eigenenergies En(R) depend
only parametrically on R, the molecular wavefunction Ψ(R, r) can be expanded
in terms of φn(R, r)

Ψ(R, r) =
∑

n

φn(r,R)χn(R). (5.9)

The expansion coefficients are the nuclear wave function χn(R). Using (5.9) and
(5.7) in the Schrödinger equation, multiplying by φ∗

m(R, r), and integrating over
the electronic coordinates yields

(En(R)−E)χm(R) +

∫
[

φ∗
m(R, r)Ĥ

′
∑

n

χn(R)φn(R, r)

]

dr = 0. (5.10)
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By defining the coupling coefficients [119]

cmn =

∫

φ∗
mĤ

′φndr−
~

2

[
∫

φ∗
m

∑

k

1

Mk

∂

∂Rk
φndr

]

∂

∂Rk
, (5.11)

(5.10) can be written as

(En(R)− Ĥ ′)χm(R) +
∑

n

cmnχn(R) = Eχm(R). (5.12)

The equations (5.8) and (5.12) form a system of coupled equations which is
equivalent to the Schrödinger equation. The coupling is given by the matrix c,
whose elements describe how the different electronic states are coupled by nuclear
motion. Different choices of the elements cmn lead to different physical pictures:
cmn = 0 decouples the motion of nuclei in different electronic states. This approx-
imation is called adiabatic approximation or Born-Oppenheimer approximation
(BOA) if the diagonal elements cnn are neglected as well. These approximations
lead to the basic concept for molecules, liquids and solids in which electronic
potential surfaces are introduced and nuclear wave packets move on them.

The BOA fails if two or more electronic states |φi〉 lie close in energy. This
is the situation encountered in the Jahn-Teller effect [145], Renner-Teller effect
[146], or avoided crossings [147]. Vibrational predissociation is caused by avoided
crossings of two or more electronic states. In order to describe such situations,
it is often reasonable to introduce a representation of the electronic states which
minimizes the couplings via nuclear motion [148–150]. Such representations are
called diabatic ones.

Diabatic Picture

In order to derive a transformation that links the adiabatic electronic eigenstates
(5.8) to diabatic ones, it is helpful to recognize that usually not all electronic
eigenstates (5.8) are energetically close. Rather a few states are coupled by
nuclear motion and can be regarded as decoupled from all the other states. As
a consequence, it is convenient to look for a unitary transformation Aα×α that
minimizes the couplings (5.11) within a subset of states α

|φD
i 〉 =

∑

j

Aα×α
ij |φAD

j 〉, i, j = 1, . . . , α, (5.13)

where the superscripts D and AD indicate that the marked state belongs to
the diabatic or adiabatic representation, respectively. In the diabatic basis the
couplings

F(k) = 〈φAD
i | ∂

∂Rk
|φAD

j 〉 (5.14)
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are to be minimized, which allows one to write down a differential equation for
the transformation matrix [151, 152]

F(k)Aα×α +
∂

∂Rk
Aα×α = 0. (5.15)

To solve the equation (5.15) the F(k) must be known. There are numerical ap-
proaches to determine the so-called derivative couplings [152,153], but calculating
them is a cumbersome task. Moreover, it can be shown that there is no general so-
lution for (5.15) except for diatomic molecules [151], i.e., there is no real diabatic
basis in general and, thus, the non-adiabatic couplings cannot be removed com-
pletely [151,154]. On the other hand, there are methods to derive diabatic bases
which do not rely on the calculation of the derivative couplings. Thus, Werner
and Meyer diagonalize the dipole operator [155], while Hendeković proposed a
method where the sum of the occupation probabilities of natural spin orbitals is
maximized [156]. In the present work, we use an approach which was triggered
by a work of Özkan et al [157]. In its framework, the electronic Hamiltonian is
block diagonalized [158]. A description of the approach can be found in App. A.

5.2 Photodissociation of Carbon Monoxide

Carbon monoxide (CO) is one of the most abundant molecules in the universe;
it plays a major role in interstellar clouds and, thus, its dynamics in the ultra
violet (UV) region are of general interest. In the UV region CO undergoes pre-
dissociation and, consequently, discrete broadened lines are observed in its UV
absorption spectrum [159] which is mainly consisting of Rydberg states. A large
amount of experimental data for these states is available [30–32, 159]. The goal
of the present work is to study how the nuclear dynamics of the Rydberg B1Σ+

state of CO molecule change if it is placed in an environment. Before we can
consider the influence of the environment we review what is known about the
dynamics in that state of isolated CO.

Letzelter et al measured the photoabsorption and photodissociation cross section
of several CO isotopes between 10.7 eV and 14.0 eV with synchrotron radiation
[159]. They found the X1Σ+(ν = 0) → B1Σ+(ν = 0) excitation at 10.767 eV.
The B1Σ+(ν = 1) and B1Σ+(ν = 2) states were detected at 11.034 eV and 11.282
eV, respectively. Eidelsberg et al investigated both the absorption and emission
band spectrum of X1Σ+(ν = 0, 1, 2, 3) → B1Σ+(ν = 0, 1, 2) excitations and
determined vibrational and rotational molecular constants of the B1Σ+ Rydberg
state for several isotopes of CO [30, 31]. Baker et al were the first observing the
ν = 3 level of the B1Σ+ state [32]. They could assign the diffuse band at 11.507 eV
to the X1Σ+(ν = 0) → B1Σ+(ν = 3) transition by comparing the experimental
spectrum to a calculated spectrum using the diabatic two-state model given in
Ref. [29]; see below for a discussion. The agreement of the calculated and the
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measured spectra was very good. Recently, Baker could identify the diffuse ν =
4 and ν = 5 vibrational level of the B1Σ+ Rydberg state [160]. Theoretical
calculations predict even higher vibrational levels in this electronic state [161,162].

1 1.2 1.4 1.6
R (Å)
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Figure 5.1: Diabatic PECs of the B1Σ+ and the D1Σ+ state of CO obtained by means of the

Rydberg-Klein-Rees method [29]. The depicted adiabatic PEC is calculated from the diabatic PECs.

In all cited works it was found that the first two vibrational levels of the B1Σ+

Rydberg state exhibit fluorescence. In contrast, the third vibrational level ν = 2
does not appear in the fluorescence spectrum. However, it is observable in the
photoabsorption spectrum where the corresponding line is broadened. Similarly,
the higher lying vibrational levels ν = 3, 4, 5 occur in the absorption spectrum
only and exhibit strongly broadened lines. These observations suggest that CO
undergoes predissociation in the higher vibrational levels of the B1Σ+ state. In
order to understand the underlying mechanism theoretical investigation is re-
quired.

The first theoretical study providing insight into the complicated electronic ex-
citation spectrum of CO was done by Cooper and Kirby [163] who calculated
the PECs and dipole moments of low lying 1Σ and 1Π states of CO employing
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multiconfiguration SCF. They deduced from the W-shape of the PEC that the
B1Σ+ Rydberg state is strongly interacting with the D′1Σ+ valence state at inter-
nuclear distances larger than the equilibrium displacement. The nuclear dynamics

ν Γ[meV]a Γ[meV]b Γ[meV]c Γ[meV]d Γ[meV]e Γ[meV]f

0 0.000 0.000 0.000 0.000 0.000 0.000
1 0.000 0.000 0.000 0.000 0.000 0.000
2 0.111 0.111 0.111 0.111 0.110 0.012
3 11.266 11.271 11.270 11.271 - 2.852
4 99.361 99.423 99.415 99.414 - -
5 229.89 229.89 229.88 229.93 - -

afrom Ref. [164]
bfrom Ref. [161]
cfrom Ref. [165]
dfrom Ref. [162]
efrom Ref. [29]
ffrom Ref. [166]

Table 1: Calculated predissociation widths of the first five vibrational levels of the CO B1Σ+ state.

in the Rydberg state were carried out by Tchang-Brillet et al who derived a di-
abatic two-state model including the B1Σ+ , the valence D′1Σ+(ππ∗) state and
the electronic coupling between them [29]. The two diabatic PECs were obtained
by means of the Rydberg-Klein-Rees (RKR) method [119] where the required
molecular constants were taken from [30, 31]. With the aid of this model they
computed the nuclear dynamics in the three lowest vibrational levels of the B1Σ+

state using the close-coupling method [29]. For the sake of comparison they de-
rived the corresponding adiabatic curves from the diabatic model and calculated
the corresponding adiabatic widths. They found that the first two vibrational
levels are stable with respect to dissociation and that the third vibrational level
undergoes predissociation. The computed predissociation widths were 0.11 meV
and 0.22 meV using the diabatic or adiabatic model, respectively. Later on, the
same model predicted the position and the shape of the photoabsorption line
corresponding to the next vibrational level ν = 3 of the B1Σ+ state in agreement
with experimental results [160]. The good agreement of the results with the ex-
perimental observations suggested that the coupling between the Rydberg and
the valence state is indeed the reason for the observed predissociation.

This assumption is additionally supported by a number of theoretical works.
Yan Li et al calculated the predissociation widths of the first eleven vibrational
levels of the B1Σ+ state with the aid of a diabatic two-state model from [161].
To obtain the widths they expanded the nuclear wave functions in the basis
of complex harmonic oscillator functions which is equivalent to complex scaling
according to the Cauchy-Coursat theorem for integration of an analytical function
[167]. The resulting complex potential energy matrix is evaluated numerically by
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Gauss-Hermite quadrature. The resulting widths were in good agreement with
the one from [29]. In their second paper on the CO dynamics Yan Li et al

determined predissociation widths of the B1Σ+ and C1Σ+ Rydberg state using
adiabatic PECs obtained by multireference CI calculations [166]. To account for
the coupling between the states they calculated the non-adiabatic couplings cnm
and the nuclear kinetic energy corrections cnn. The widths were obtained with
the same method as in the work above [161]. The widths are in good agreement
with the previous calculated ones and can be found in Tab. 1.

Monnerville and Robbe calculated predissociation widths of the B1Σ+ state for
the first eleven vibrational levels and for the third level ν = 2 the widths for the
rotational levels J = 0, . . . , 15 using a two-state model [162]. To describe the
resonant states they added a CAP to the Hermitian Hamiltonian. The employed
diabatic PECs were taken from [29]. Four years later Monnerville and Robbe
applied the above described method using an adiabatic two-state model [165].
The adiabatic PECs and non-adiabatic couplings were calculated from the dia-
batic model used in the previous work. The results of both works are in good
agreement with the preceding theoretical and experimental investigations (see
Tab. 1).

Karlsson calculated the first eleven vibrational levels of the B1Σ+ state in the
diabatic and the adiabatic picture using smooth exterior scaling [168, 169] in
conjunction with the discrete variable representation (DVR) [164]. The resulting
widths - which are also displayed in Tab. 1 - are in good agreement to calculated
widths from Ref. [161] and Ref. [165].

νa Energy[eV] Γexp[meV] Γcalc[meV]b Γcalc2[meV]c [I(0-ν)/I(0-0)]

0 10.776 0.00003 0.00 0.00 1.00
1 11.034 0.00003 0.00 0.00 0.15
2 11.281 0.086-0.248 0.11 0.012 0.008
3 11.505 11.10 11.00 2.80 0.0011
4 11.741 43 99 - 0.0005
5 12.033 55 223 - 0.0008

aExp. data: ν = 0− 2 from Ref. [29–31]; ν = 3 from Ref. [32]; ν = 4, 5 from Ref. [160]
bfrom Ref. [164]
ccomes from Ref. [161]

Table 2: Energies and experimental and theoretical predissociation widths of the six lowest vibra-

tional levels of the B1Σ+ state of CO. The experimentally obtained Franck-Condon factors ([I(0-ν)/I(0-

0)]) a given as well.

Adiabatic Picture

Before we can study the influence of an environment on the photodissociation
dynamics of CO it is necessary to check whether one is able to reproduce the
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dynamics taking place in isolated CO. As mentioned above, accurate electronic
states have been calculated ab initially by means of multireference CI [163, 166],
or using experimentally obtained parameters and the RKR method [29]. Our goal
was to conduct a fully ab initio study of the dynamics. Since our FSL program
produces ICD widths based on ADC calculations, we tried to obtain accurate
PECs using the ADC method in order to obtain a consistent description.

We calculated the PECs of the ground and the first six excited states of the
Σ+ symmetry of isolated CO at inter-nuclear distances between 0.9 and 1.4 Å.
At the equilibrium geometry (1.128 Å) we could identify the first five Rydberg
states: B1Σ+(3sσ), C1Σ+(3pσ), F 1Σ+(3dσ), J1Σ+(4sσ), and 4pσ1Σ+. The cal-
culations were carried out using the ADC(2)x scheme and aug-cc-pVTZ basis
sets [124] augmented with 3s, 3p, and 3d Rydberg-like Gaussian functions [125]
centered on C and O. The configuration space used to construct the ADC Hamil-
tonian consisted of all 1h1p configurations with one hole in 3σ, 4σ, 5σ, and 1π.
To account for electron correlation we included all 2h2p configurations one can
construct from the holes located in the 3σ, 4σ, 5σ, and 1π MOs. The dimen-
sion of the resulting ADC matrix was around 60000. Since the desired states lie
by definition at the lower boundary of the spectrum we employed the Davidson
method [126] to calculate them. In Tab. 3 the calculated energies are compared to

State Calc. Energy [eV] Exp. Energy [eV]a

B(3sσ)1Σ+ 10.49 10.76
C(3pσ)1Σ+ 11.25 11.39
F (3dσ)1Σ+ 12.20 12.30
J(4sσ)1Σ+ 12.33 12.56
4pσ1Σ+ 12.63 12.77

ataken from Ref. [159]

Table 3: Comparison between experimentally measured and calculated electronic energies of the first

five Rydberg states of CO at the equilibrium geometry (1.128 Å). The calculated values were obtained

with the aid of the ADC(2)x method.

experimental ones. As one can see, the calculated energies are in good agreement
with the measured ones. Additionally, the results are in good agreement with
the results from Trofimov’s PhD thesis [170] where the first four Rydberg state
were calculated at inter-nuclear distances between 0.85 and 1.25 Å utilizing the
same method in conjunction with different basis sets. The PECs resulting from
our ADC(2)x calculations are depicted in Fig. 5.2. At inter-nuclear distances
larger than 1.15 Å one can observe the effect of the D′(ππ∗)1Σ+ valence state
which “crosses” through the Rydberg series and deforms the PECs. The induced
perturbation is strong and complicated since the crossing D′1Σ+ state interacts
with all Rydberg states non-adiabatically [29,30,163]. The first adiabatic excited
state is affected the most. At smaller inter-nuclear distances it is of the B1Σ+
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Figure 5.2: PECs of the ground state and the six energetically lowest adiabatic excited states of

CO of Σ+ symmetry obtained by means of the ADC(2)x method. At inter-nuclear distances larger

than 1.17 Å the D′(ππ∗)1Σ+ state crosses through the Rydberg series.

Rydberg character; at inter-nuclear larger than 1.2 Å it has lost its Rydberg char-
acter completely and becomes the long range manifestation of the D′1Σ+ valence
state.

The perturbation induced by the D′1Σ+ state leads to the observed predissocia-
tion [29,161] in the higher vibrational levels of the B1Σ+ state. In particular, the
perturbation becomes manifest in the location, the shape, and the height of the
potential barrier at 1.24 Å (see Fig. 5.2). The comparison of the well resulting
from our calculation with the well resulting from RKR calculations [29] reveals
large differences: our well is lying at larger inter-nuclear distances and is lower
as shown in Fig. 5.3. That the ab initio results increasingly differ from the RKR
model as the inter-nuclear distance grows can be explained by the fact that the
systems becomes open shell. The employed method is only adapted for closed
shell determinants [87].

Since the predissociation widths are very sensitive to the height and the location
of the barrier, we cannot use the calculated PECs to carry out our study, because
this would lead to dissociation widths much larger than the experimentally ob-
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Figure 5.3: Comparison between the adiabatic CO B1Σ+ state of the RKR model and the CO

B1Σ+ state obtained via ADC(2)x calculations.

served ones. Since we cannot obtain the required PECs sufficiently accurate by
means of ADC, we decided to use the two state model from [29] which is based
on PECs obtained by means of the RKR method. This model will be referred
to as the RKR model in the following. The model has been proven to produce
nuclear dynamics in good agreement with experimental results [29,161,162]. Cor-
responding models for CO embedded in an environment do not exist. However,
we can still use the RKR model if we can show that the PECs of interest are
affect only insignificantly by the presence of the environment. To this end, the
PECs of interest of CO·Mg are calculated by means of the ADC(2)x method and
then compared to the PECs of isolated CO given in Fig. 5.2. Before it, however,
we determine the non-adiabatic coupling between the B1Σ+ and the D′1Σ+ state
in isolated CO. The coupling between the states can be compared to correspond-
ing coupling in CO·Mg. Thus, we can check precisely whether the interaction
between the states, which is relevant for the predissociation, is affected by the
presence of Mg. Moreover, comparing the coupling obtained by means of the
ADC method to the couplings of the RKR model enables one to understand bet-
ter where the deviations come from and, if strong deviations are found, whether
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it is necessary to correct the widths which is designated to be used in conjunction
with the RKR model although it is based on ADC calculations.

Diabatic Picture

The non-adiabatic coupling between the B1Σ+ and the D′1Σ+ state can be deter-
mined conveniently in the diabatic picture where it occurs as electronic coupling.
The diabatic states can be calculated with the aid of the block diagonalization
method [158]. In its framework a diabatic basis is derived by block diagonalizing
the adiabatic Hamiltonian matrix H using the unitary matrix F

H = F†HF, (5.16)

where

F = S†
BD(SBD S†

BD)
1/2. (5.17)

The underlying assumption is that diabatic states correspond mainly to one main
space configuration. Thus, SBD is constructed of the leading configurations of
the adiabatic eigenstates of interest and their contribution to the other adiabatic
eigenstates of interest. Naturally, the choice of SBD is not unique. Exemplarily,

State Energy [eV] Tran 1st 2nd 3rd
2 10.34960 0.99871 -.3659(23) -.3067(26) -.3067(25)
3 11.16815 -1.00164 -.3660(11) -.3623(23) 0.3214(26)
4 11.31832 -0.73511 0.5073(33) -.4141(21) -.3896(17)
5 12.41556 0.24291 0.4574(17) 0.3841(27) -.3780(21)
7 12.59418 0.02655 -.6705( 1) 0.3546(23) -.2800(17)
8 12.75482 0.38164 -.6828( 5) -.3313(33) -.2344(17)

Table 4: The 1h1p configurations which contribute the most to the first six states of CO in Σ+

symmetry at an inter-nuclear distance of 1.225 Å. The number in parentheses denotes the number of

the configuration in the calculation.

we show how the transformation is obtained at an inter-nuclear distance of 1.225
Å between C and O, where the two states of interest are about to cross (see
Fig. 5.2). Although the choice of the configurations constituting SBD is ambigu-
ous, analyzing the most contributing configurations of the states of interest (see
Tab. 4) usually allows to make a reasonable selection.

Here we chose the following configurations:

(25)[π−1π] (11)[5σ−13s] (33)[5σ−13pz]

(17)[5σ−14s] (1)[5σ−14pz] (5)[5σ−1s](5).
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The order is not arbitrary. It means, e.g., that configuration 25 represents state
2 of Tab. 4, configuration 11 state 3, etc. The kind of excitation the current
configuration is associated with is stated in the square brackets. We decided
to incorporate the first six adiabatic states into the transformation because the
D′1Σ+ state crosses through all of them. By decoupling all six states we are able to
track the D′1Σ+ state better. Having the configurations and their corresponding
coefficients at hand, the block diagonalization procedure for the chosen subspace
can be carried out. In this case the matrix reads (in a.u.):

SBD =











−0.307 0.321 −0.003 −0.042 −0.066 0.002
−0.278 −0.366 −0.123 −0.280 −0.010 −0.226
0.028 0.034 0.507 −0.080 0.085 −0.331
−0.013 −0.011 −0.390 0.457 −0.280 −0.234
−0.196 −0.290 0.142 −0.243 −0.671 0.193
−0.050 −0.082 −0.184 −0.118 −0.155 −0.683











Each row corresponds to a configuration and each column to state. For example,
the first row represents the contribution of configuration 25 to all the eigenvectors
and, on the other hand, the first column corresponds to state 2. Note that the
smaller off-diagonal elements cannot be read from Tab. 4. The choice of SBD

leads to the following transition matrix (in a.u.):

F =











−0.718 −0.645 −0.074 −0.157 −0.124 0.206
0.686 −0.655 −0.034 −0.117 −0.267 0.125
−0.014 −0.157 0.865 −0.292 0.223 −0.303
−0.080 −0.216 0.172 0.840 −0.249 −0.387
−0.091 0.264 0.070 −0.328 −0.864 −0.252
−0.005 −0.185 −0.459 −0.251 0.235 −0.798











.

Using the known diagonal matrix of adiabatic eigenvalues (in eV)

Λ =











10.349 0.000 0.000 0.000 0.000 0.000
0.000 11.168 0.000 0.000 0.000 0.000
0.000 0.000 11.318 0.000 0.000 0.000
0.000 0.000 0.000 12.415 0.000 0.000
0.000 0.000 0.000 0.000 12.594 0.000
0.000 0.000 0.000 0.000 0.000 12.755











,

the following block diagonal energy matrix of the diabatic picture is obtained (in
eV)

∆ = F†ΛF =











10.766 −0.381 −0.068 −0.131 0.061 0.199
−0.381 11.059 0.056 −0.350 −0.397 0.356
−0.068 0.056 11.654 0.283 −0.290 0.446
−0.131 −0.350 0.283 12.294 0.023 0.071
0.061 −0.397 −0.290 0.023 12.392 0.144
0.199 0.356 0.446 0.071 0.144 12.434











.
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Note that we only consider one block, thus, the block diagonal structure, which
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Figure 5.4: The ground state and the six energetically lowest excited states of CO of Σ+ symmetry

given in the diabatic basis obtained by means of the block diagonalization method.

the complete Hamiltonian matrix exhibits, is not visible. The couplings corre-
sponding to the PECs of Fig. 5.4 are given farther below in Fig. 5.8. Moreover,
they are compared to the couplings in CO·Mg and to the couplings of the RKR
model there.

5.3 Carbon Monoxide in the Presence of Magnesium

��
��
��
��

��
��
��
��

4.4 Ang
MgOC

R

Figure 5.5: Schematic illustration of the geometry of the CO·Mg cluster. In the model employed,

the Mg atom is fixed with respect to the center of mass of CO.
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In order to get an environment capable of ICD an Mg atom is placed in the
vicinity of CO. According to a geometry optimization [171], CO·Mg arranges
in a linear manner where the Mg atom is lying 4.8 Å away from the center of
mass of CO in front of the O end; a schematic illustration is given in Fig. 5.5.
The CO∗B1Σ+ state is 10.77 eV above the ground state and, thus, higher in
energy than the ionization potential of Mg which lies at 7.67 eV [123]. As a
consequence, the B1Σ+ state can relax via ICD by emitting an electron from the
Mg with an kinetic energy of about 3.1 eV. Besides from the fact that Mg allows
for ICD, it was chosen as neighbor because, firstly, it is a closed shell system and,
secondly, it is only weakly bound to the CO molecule: the corresponding binding
energy is 0.01 eV [171] which is less compared to the binding energy of CO 11.2
eV [29,30,159]. The first aspect is important since the employed ADC method is
based on a closed-shell determinant [67]. The second aspect enables us to fix the
Mg atom in good approximation with respect to the center of mass of CO. As a
consequence, there is only one nuclear coordinate in the following which specifies
the distance between the C and the O atom. Moreover, according to the binding
energy, the influence of the presence of Mg on the electronic spectrum of CO is
supposed to be weak. That is important because, as mentioned above, we are
not able to calculate the corresponding PECs of CO·Mg accurately. However,
the PECs of the RKR model can be used if we show that the influence of Mg on
the real part of the PECs is minor.

Adiabatic Picture

In order to verify that the impact is minor, we determined the PECs of interest
of CO·Mg using the ADC(2)x method. If the corresponding PECs of CO and
CO·Mg are alike, the PECs of CO can be used in good approximation to describe
the dynamics of CO in CO·Mg. The comparison of the PECs can simply be
done by comparing the adiabatic PECs. Additionally, we compare the electronic
coupling between the states of isolated CO to the coupling of the corresponding
states in CO·Mg in the next subsection.

To determine the PECs of CO·Mg by means of the ADC(2)x method we em-
ployed aug-cc-pVTZ basis sets [124] augmented with 3s, 3p, and 3d functions
with Rydberg-like Gaussian functions [125] centered on C and O. To represent
Mg we chose the aug-cc-pVTZ basis set augmented with 5s, 5p, and 5d Gaussian
functions with even tempered exponents [128,129]. The configuration space con-
sisted of all 1h1p configurations with one hole in 3σ, 4σ, 5σ, and 1π. To account
for electron correlation we included all 2h2p configurations containing holes in 3σ,
4σ, 5σ, and 1π MOs. The dimension of the resulting ADC matrix was around
80000. Since by construction the states of interest lie near the lower spectral
boundary, we used the Davidson diagonalization method [126] to compute them.

The PECs obtained are depicted in Fig. 5.6. The lowest curve corresponds to
the ground state X1Σ+. The first excited state (dotted line) is relevant for the
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Figure 5.6: PECs of the ground state and the six energetically lowest adiabatic excited states of

CO·Mg of Σ+ symmetry calculated with the ADC(2)x method.

dynamics we are interested in. It corresponds to the diabatic B1Σ+ state at inter-
nuclear distances smaller than 1.2 Å. After the well at 1.25 Å, it corresponds to
the diabatic D′1Σ+ state. In front of the well, the existence of the diabatic D′1Σ+

state becomes only manifest in the perturbations of the higher Rydberg states.
Comparing the PEC of first excited state to the corresponding PECs of isolated
CO given in Fig. 5.2 shows that the states are very alike. The effect of the
neighboring Mg atom on the excitation spectrum of CO is minor. In particular,
at equilibrium geometry we obtained an energy of 10.53 eV for the B1Σ+ state
in CO·Mg. The corresponding value in isolated CO is 10.49 eV. Moreover, the
location and the height of the well are virtually equivalent in both systems. As
a consequence, it is reasonable to use the PECs of the RKR model to carry out
the dynamics of CO in CO·Mg.

Diabatic Picture

In order to determine the coupling between the B1Σ+ and the D′1Σ+ states of CO
in CO·Mg we transform the corresponding PECs obtained by ADC calculations
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into the diabatic picture. There, the coupling is given by the electronic coupling
between the states. Again, we discuss the transformation exemplarily at an inter-
nuclear distance between C and O of 1.225 Å. As above, the first step is to define

State Energy [eV] Tran 1st 2nd 3rd
2 10.31977 1.06252 -.282645(45) -.250353(65) -.240752(23)
3 11.14988 0.89336 0.310569(23) -.289575(17) 0.275551(45)
4 11.33063 -0.88601 -.491936(43) 0.389967(59) -.341114(29)
5 12.41818 0.01121 -.377465(21) 0.371162(11) 0.368962(39)
7 12.60832 -0.04688 0.538036(7) 0.439188(1) 0.286958(53)
8 12.84897 0.34004 0.481587(11) -.369331(23) -.293372(39)

Table 5: The 1h1p configurations contributing the most to the six energetically lowest states of

CO·Mg in Σ+ symmetry at an inter-nuclear distance of 1.225 Å. The number in parentheses denotes

the number of the configuration.

SBD. The comparison of Tab. 5 and Tab. 4 reveals that the structures of the
part of the excitation spectrum of interest are alike. We chose the following
configurations

(45)[π−1π] (23)[5σ−13s] (43)[5σ−13pz]

(21)[5σ−14s] (7)[5σ−14pz] (11)[5σ−1s]

to define SBD. The excitation stated in the square brackets behind the number
of the configuration indicates the physical meaning of the current configuration.
The resulting transformation matrix reads

F =











0.740 −0.605 −0.012 −0.002 0.222 −0.193
0.659 0.641 −0.045 −0.077 −0.370 0.099
−0.073 −0.157 −0.931 −0.184 −0.260 −0.030
−0.008 0.012 0.107 −0.937 0.248 0.220
0.101 0.273 −0.329 0.261 0.751 0.417
0.041 −0.352 0.103 0.116 −0.347 0.854











.

Using the stated transformation, the following diabatic energy matrix (in eV)
was obtained

∆ =











10.714 0.390 −0.023 0.059 −0.048 0.237
0.390 11.170 −0.170 0.025 0.629 −0.438
−0.023 −0.170 11.497 −0.202 −0.342 −0.018
0.059 0.025 −0.202 12.393 −0.067 0.067
−0.048 0.629 −0.342 −0.067 12.227 0.059
0.237 −0.438 −0.018 0.067 0.059 12.674











.

The resulting diabatic PECs of CO·Mg are given in Fig. 5.7. The correspond-
ing electronic couplings between the B1Σ+ and the D′1Σ+ state are depicted
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Figure 5.7: The ground state and the six energetically lowest excited states of CO·Mg of Σ+

symmetry given in the diabatic basis obtained by means of the block diagonalization method.

in Fig. 5.8. Moreover, Fig. 5.8 contains the electronic couplings between the
afore mentioned states and the corresponding electronic couplings of the RKR
two-state model. Comparing the electronic couplings in CO and CO·Mg shows
that the interaction between the states is hardly affected by the presence of Mg.
Especially, in the region of the well the agreement is very good. At larger and
smaller inter-nuclear distances the deviations are slightly larger but there the
impact of the coupling is generally weaker due to the larger energy difference
between the states. Moreover, the couplings of the RKR model are in decent
agreement with the computed ones. At larger and smaller inter-nuclear distances
the ADC method overestimates and underestimates the couplings, respectively.
Since the ICD widths depend on the oscillator strength (3.41) and because the
oscillator strength of the valence state is much larger than the one of the Ry-
dberg state [163], it can be assumed that the ICD width of the first adiabatic
excited state (which corresponds to the diabatic Rydberg state at small inter-
nuclear distances) is underestimated at small inter-nuclear distances of CO and
overestimated at large ones. However, since the deviations are moderate, we do
assume that the obtained widths are reasonable and go well together with the
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Figure 5.8: Comparison of the electronic couplings between the B1Σ+ and the D1Σ+ state in CO

and CO·Mg at several inter-nuclear distances between C and O. The couplings were obtained by means

of the block diagonalization method. The continuous line depicts the electronic couplings of the RKR

model.

RKR model. The most important inclusion, however, is that the interaction of
the states of interest is only insignificantly affected by the presence of Mg. Thus,
it is reasonable to work with the quantities of isolated CO to describe the nuclear
dynamics of CO in CO·Mg.

5.4 Quenching Predissociation by ICD: Explicit
Computations

In this section we study how the dynamics in B1Σ+ Rydberg state of CO change
in the presence of Mg. In the presence of Mg, which is only weakly bound to
CO, the photoinduced dissociation of CO in the higher vibrational levels of the
B1Σ+ state takes place too. However, the B1Σ+ state is higher in energy than
the ionization potential of Mg and, hence, the ICD channel is open

(CO)∗ · · ·Mg → CO · · ·Mg+ + e−. (5.18)
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Consequently, the evolution of the system is governed by the competition between
the dynamics of CO and the ICD. The goal of the this section is to investigate
this competition.

Equations of Nuclear Motion

At the inter-nuclear distances 0.8 Å ≤ R ≤ 1.4 Å of CO, the excitation energies of
both the B1Σ+ and theD′1Σ+ state are higher than the ionization potential of the
neighboring Mg atom. Thus, both states can decay by ICD in this interval. How
the nuclear dynamics of CO are affected by the additional decay pathway has to be
investigated. To this end, we derive working equations in the time-dependent and
time-independent picture to understand and describe the nuclear dynamics. The
derivation in the time-independent picture is helpful to understand the impact
of ICD on the coupled resonant states and, as will become apparent below, the
time-dependent picture is more convenient to conduct the calculations.

In the presence of a weakly bound neighbor, all bound states above the ionization
potential of the neighbor turn into resonances. Since the B1Σ+ and the D′1Σ+

state interact with each other, two overlapping resonances have to be considered
here. Overlapping resonances have also been topic of the works of Royal [172],
Hazi [173] Estrada [174], and Feuerbacher [175]. However, the situation at hand,
two states which can decay due to ICD and are coupled non-adiabatically via an
avoided crossing, has not been investigated yet. While PECs of bound states are
represented in the adiabatic or a diabatic picture, the complex PECs of overlap-
ping resonances require an extension of those representations. Consequently, the
following pictures are introduced:

• Complex Adiabatic Picture: the real and the imaginary part of the
electronic energy matrix are diagonal; the PECs are coupled non-
adiabatically via the kinetic energy operator of the nuclei.

• Complex Diabatic Picture: the real and the imaginary part of the elec-
tronic energy matrix can exhibit off-diagonal elements. The real off-
diagonal elements stem from the direct coupling of the electronic states
since the diabatic states are no eigenstates of the electronic Hamilto-
nian. The imaginary couplings stem from the coupling through the
electronic continuum.

In the present case, it is more convenient to work in the Complex Diabatic Picture.
That is why we derive the working equations using diabatic resonant states.

Time-Independent Approach

Working equations which depend on the diabatic representation of the Rydberg
B1Σ+, the valence D1Σ+ state, as well as the coupling between them are derived.
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The use of the PECs corresponding to the ICD final states, which are unknown, is
circumvented by introducing optical potentials [46,83,173,176,177]. As a result,
ICD widths enter the equations.

Starting point of the derivation is the total wave function

|Ψ〉 = |φR〉|χR〉+ |φV 〉|χV 〉+
∑

j

∫

dE ′cE′,j|ψE′,j〉, (5.19)

where |φR〉 and |φV 〉 are the resonant electronic states in CO·Mg which consist
of the B1Σ+ Rydberg |φ̃R〉 and the D1Σ+ valence |φ̃V 〉 state of CO, respectively,
and Mg in its ground state |φMg

G 〉. Due to the weak interaction, the electronic
states of CO·Mg can be written as direct products of the states of CO and that
of Mg

|φR〉 = |φ̃R〉|φMg
G 〉, (5.20)

|φV 〉 = |φ̃V 〉|φMg
G 〉. (5.21)

The corresponding nuclear wave functions, |χR〉 and |χV 〉, respectively, are given
by a set of discrete vibrational functions uν(R) and a set of scattering states
uE(R)

|χR〉 =
∑

ν

aνuν(R), (5.22)

|χV 〉 =
∫

dEbEuE(R). (5.23)

The non-resonant final states of the ICD process in CO·Mg are given by

|ψE,j〉 = |φ0〉|φ+
Mg〉

∑

τ

nτ (R)fj,τ(Ek), (5.24)

where Ek the kinetic energy of the outgoing electron. The states consist of the
wave function of CO in its ground state |φ0〉, the wave function representing the
ionized Mg atom |φ+

Mg〉, and the wave function describing the electron in the
continuum fj,τ (E). nτ (R) are the corresponding vibrational functions.

Inserting the ansatz (5.19) into the Schrödinger equation

Ĥ|Ψ〉 = E|Ψ〉, with Ĥ = T̂N + Ĥe, (5.25)

where T̂N denotes the kinetic energy operator of the nuclei and Ĥe the electronic
part of the Hamiltonian, and multiplying the Schrödinger equation by 〈φR|, 〈φV |,

85



Chapter 5

and 〈ψE′,j| from the left, respectively, yields three coupled equations

[

T̂N + VR −E
]

|χR〉 = −〈φR|Ĥe|φV 〉|χV 〉 −
∫

dE ′cE′,j〈φR|Ĥe|ψE′,j〉,
(5.26a)

[

T̂N + VV − E
]

|χV 〉 = −〈φV |Ĥe|φR〉|χR〉 −
∫

dE ′cE′,j〈φV |Ĥe|ψE′,j〉,
(5.26b)

[
E ′ −E

]
cE′,j = −〈ψE′,j|Ĥe|φV χV 〉R − 〈ψE′,j|Ĥe|φRχR〉R. (5.26c)

VR and VV are the respective electronic energies of |φR〉 and |φV 〉 and the sub-
script R at the matrix elements means that it is to be integrated over the elec-
tronic and the nuclear coordinates. In order to decouple (5.26a) and (5.26b)
from (5.26c), (5.26c) is solved for cE′,j. In order to deal with singularity of cE′,j

at E = E ′, Dirac’s formal solution [85]

cE′,j =

{

P
1

E − E ′
+ z(E)δ(E − E ′)

}
∑

r

〈ψE′,j|Ĥe|φrχr〉R, (5.27)

where r = {R, V } and P indicates the principal value of the following quantity,
has been used. In order to ensure outgoing boundary conditions z(E) must be
chosen as z(E) = −iπ [83].

Introducing the definitions

Vrs = 〈φr|Ĥe|φs〉, (5.28a)

Λ̃rs =

∫

dE ′

∫

dR′ 〈ψE′,j(R
′)|Ĥe|φr〉R′

E −E ′ + iǫ
〈φs|Ĥe|ψE′,j(R)〉, (5.28b)

the system of equations for |χr〉, r, s = {R, V }, decoupled from the nuclear motion
in the non-resonant states is given by

(E − T̂ − Vr)|χr〉 =
∑

s 6=r

Vrs|χs〉+
∑

s

Λ̃rsχs(R
′). (5.29)

(5.28b) describes the decay of the resonant state due to the interaction with
the electronic continuum. Inserting the explicit expressions for the non-resonant
functions (5.24) into (5.28b)

Λ̃rs =

∫

dE ′

∫

dR′
∑

j,τ

〈φ0φ
+
Mgnτ (R

′)fj,τ(Ek)|Ĥe|φr〉
E −E ′ + iǫ

×〈φs|Ĥe|φ0φ
+
Mgnτ (R)fj,τ(Ek)〉, (5.30)

shows that the interaction is non-local: the nuclear wave functions included in
first matrix element depend on the integration variable R′ while the functions
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of the second matrix element depend on the inter-nuclear distance R. The non-
locality complicates the solution of the system of equations significantly.

The non-locality can be removed by introducing approximations. First, we con-
sider the diagonal elements Λ̃rr. If the energy of the outgoing electron is signif-
icantly larger than the vibrational spacing in the final state, it is reasonable to
assume that the matrix elements 〈φ0φ

+
Mgnτ (R)fj,τ(Ek)|Ĥe|φr〉 are approximately

independent of the vibrational level nτ (R) and, hence, can be written as

nτ (R)〈φ0φ
+
Mgf(Ek)|Ĥe|φr〉 = nτ (R)〈ψE |Ĥe|φr〉, (5.31)

where |ψE〉 = |φ0φ
+
Mgf(Ek)〉. Thus, the energy- and nuclear coordinate depen-

dency of the matrix elements are separated. As a consequence, the electronic
final states are only a function of the kinetic energy of the outgoing electron Ek

which is completely determined by the total energy E and the energy difference
of the electronic potential of the respective resonant state Vr and the electronic
potential of the ionic final state VF = 〈φ0φ

+
Mg|Ĥe|φ0φ

+
Mg〉 at the inter-nuclear

distance R. In CO·Mg this assumption is justified since the kinetic energy of
the outgoing electron amounts to 3.1 eV which is considerably larger than the
vibrational spacing of CO E∆ν ≈ 0.25 eV. Under these circumstances, the energy
is sufficient to populated enough vibrational levels to consider the sum over the
vibrational levels to be approximately complete

∑

τ

nτ (R
′)nτ (R) ≈ δ(R− R′). (5.32)

This approximation is known as local approximation [83, 139]. Inserting the
closure relation (5.32) into (5.30) leads to

Λ̃rr =

∫

dE ′ 〈ψE′|Ĥe|φr〉〈φr|Ĥe|ψE′〉
E −E ′ + iǫ

. (5.33)

Performing the integration over E ′ yields

Λ̃rr = ∆rr − iπ〈ψE |Ĥe|φr〉〈φr|Ĥe|ψE〉 (5.34)

where

∆rr = P

∫

dE ′ 〈ψE′|Ĥe|φr〉〈φr|Ĥe|ψE′〉
E −E ′

. (5.35a)

P
∫

means that the principal value of the integral is to be taken. The shift ∆rr

is real and it is of the order of the width [83,173,177]. For the states at hand the
excitation energy Vr is much larger and, hence, ∆rr is neglected. According to
(2.18), the imaginary part of the diagonal elements Λ̃rr can be identified as the
widths of the electronic state |φr〉

Γr = 2π|〈ψE|Ĥe|φr〉|2. (5.36)
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Thus, due to the interaction with the continuum the resonant states acquire a
finite width that is related to the lifetime of the state τ = 1/Γ [45].

Now, we consider the off-diagonal elements Λ̃rs. The two matrix elements in-
cluded in Λ̃rs depend on different resonant states. If it is assumed that the
matrix elements are independent of the nuclear wave functions (5.31), the off-
diagonal elements vanish at all inter-nuclear distances except in a small interval
around the crossing point of the two resonances. The reason is that the resonant
states, |φR〉 and |φV 〉, cannot couple to the same non-resonant state |ψE〉 unless
they overlap energetically. However, this can only happen where the states cross
in the diabatic picture and in the small vicinity around that point, where the
resonant states overlap due to their widths. There the local approximation can
be employed and the corresponding expression reads

Λ̃rs =

∫

dE ′ 〈ψE|Ĥe|φr〉〈φs|Ĥe|ψE〉
E − E ′ + iǫ

. (5.37)

Performing the energy integration, the expression simplifies to

Λ̃rs = ∆rs − iπ〈ψE |Ĥe|φr〉〈φs|Ĥe|ψE〉 (5.38)

We define

Γrs = 2π〈ψE|Ĥe|φr〉〈φs|Ĥe|ψE〉. (5.39)

Γrs cannot be calculated by means of the FSL methods. However, in the context
of the local approximation it can be approximated by

Γrs =
√

Γr

√

Γs. (5.40)

We have assumed that the real part ∆rs is negligible since the electronic coupling
is at least one order to magnitude larger in the present case. The physical meaning
of the imaginary off-diagonal elements is complicated. From (5.29) and (5.37) one
can deduce that they represent a coupling between the resonant states via the
continuum and, simultaneously, they represent simultaneous decay from the two
resonant states into the non-resonant states.

Making use of the local imaginary potentials, (5.36) and (5.40), the nuclear mo-
tion in the two coupled resonances can be described by

[(
T̂ 0

0 T̂

)

+

(
VR − iΓR/2 W − ig(R)ΓRV /2

W − ig(R)ΓV R/2 VV − iΓV /2

)](
|χR〉
|χV 〉

)

= E

(
|χR〉
|χV 〉

)

. (5.41)

g(R) is a step function which is equal to one in the interval where the resonances
overlap and zero elsewhere. The relevant ICD widths vanish at inter-nuclear
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distances larger than 1.4 Å. Theoretically, the system of equations (5.41) could
be solved by inserting the ansätze for the nuclear wave functions (5.22) and
solving for the coefficients. However, the functions representing |χV 〉 are non-
L2 and, thus, the solution involves the evaluation of bound-continuum matrix
elements. Numerically, it is much more convenient to compute the dynamics in
the time-dependent picture.

Time-Dependent Approach

Physically the time-independent and the time-dependent pictures are completely
equivalent; they merely provide different representations. In the present work
the nuclear dynamics are carried out in the time-dependent picture by means
of wave packet propagation [26, 34, 35]. We chose this picture because, firstly,
the dynamics of CO in CO·Mg can be treated more conveniently and, secondly,
a program to propagate wave packets was already at hand where the current
working equations could be incorporated. There are several numerical methods
to carry out the propagation and the reader is referred to textbooks in order to
get an overview [26–28, 178]. In this work we use a method introduced by Pahl
et al [34, 35] which is outlined below.

As a first step, the time-dependent working equations for two-state model of the
CO·Mg system are derived. In our model the Mg atom is fixed with respect to
the center of mass of CO which is why all nuclear time-dependent wave packets
represent the dynamics of CO. Consequently, the total wave function |Ψtot(t)〉
can be written as

|Ψtot(t)〉 = |φR〉|χR(t)〉+ |φV 〉|χV (t)〉+
∑

j

∫

dE|ψj(E)〉|χj(E, t)〉 (5.42)

where |χj(E, t)〉 is the wave packet of the final states of the ICD and the elec-
tronic functions |φr〉 correspond to the corresponding states in CO·Mg (5.20) and
|ψj(E)〉 represents the electronic state CO·Mg+ and the electron in the contin-
uum with kinetic energy E. Inserting (5.42) into the time-dependent Schrödinger
equation

i|Ψ̇tot〉 = Ĥ|Ψtot〉, Ĥ = T̂ + Ĥe (5.43)

and multiplying it from the left with 〈φR|, 〈φV |, and 〈ψj(E)|, respectively, yields
three coupled equations

i|χ̇R(t)〉 = (T̂ + VR)|χR(t)〉+W |χV (t)〉+
∑

j

∫

ΛR,j|χj(t)〉dE, (5.44a)

i|χ̇V (t)〉 = (T̂ + VV )|χV (t)〉+W †|χR(t)〉+
∑

j

∫

ΛV,j|χj(t)〉dE, (5.44b)

i|χ̇j(t)〉 = (T̂ + V0 + E)|χj(t)〉+ Λ†
R,j |χR(t)〉+ Λ†

V,j|χV (t)〉. (5.44c)
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The following definitions were used in (5.44)

Vr = 〈φr|Ĥe|φr〉, r = R, V, (5.45)

V0 + E = 〈ψj(E)|Ĥe|ψj(E)〉, (5.46)

W = 〈φR|Ĥe|φV 〉, (5.47)

ΛR,j(E) = 〈φR|Ĥe|ψj(E)〉, (5.48)

ΛV,j(E) = 〈φV |Ĥe|ψj(E)〉. (5.49)

In order to decouple the nuclear motion in the two resonant states, |φV 〉 and |φV 〉,
from the nuclear motion in the final states |ψj(E)〉, we can express |χj(t)〉 by its
formal solution

|χj(t)〉 = −i
∫ t

−∞

ei(T̂+V0+E)(t′−t)[ΛR,j |χR(t
′)〉+ ΛV,j|χV (t

′)〉]dt′ (5.50)

and insert the solution into the equations of motion for the resonant states

i|χ̇r(t)〉 = (T̂ + VV )|χr(t)〉+W |χs(t)〉 (5.51)

− i
∑

j

∫

dE ′

∫

dt′Λ†
r,j(E

′)ei(T̂+V0+E)(t′−t)Λs,j(E)|χ̃R(t
′)〉

− i
∑

j

∫

dE ′

∫

dt′Λ†
r,j(E

′)ei(T̂+V0+E)(t′−t)Λr,j(E)|χ̃V (t
′)〉.

By introducing the local approximation as done above in the time-independent
picture and evaluating the time integrals [34] one obtains

i|χ̇R(t)〉 = (T̂ + VR − iΓR/2)|χR(t)〉+ (W − ig(R)ΓRV /2)|χV (t)〉, (5.52a)

i|χ̇V (t)〉 = (T̂ + VV − iΓV /2)|χR(t)〉+ (W − ig(R)ΓV R/2)|χR(t)〉, (5.52b)

where

ΓR = 2πΛ†
RΛR, (5.53a)

ΓV = 2πΛ†
VΛV , (5.53b)

ΓRV = ΓV R = 2πΛ†
RΛV = 2πΛ†

VΛR, (5.53c)

with

Λr = 〈φr|Ĥe|ψ(E)〉. (5.54)

Now, |ψ(E)〉 depends only on the energy of the outgoing electron. As discussed
above, the step function g(R) ensures that the imaginary off-diagonal couplings
only occur in a small interval around the crossing point of the real part of the
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diabatic PECs. The system of equations describing the nuclear dynamics is com-
pleted by the equation for the nuclear dynamics in the final state

i|χ̇(E, t)〉 = (T̂ + V0 + E)|χ(E, t)〉+ ΛR|χR(t)〉+ ΛV |χV (t)〉. (5.55)

The nuclear dynamics are affected by the way the involved excited states are
populated. In our model we assume an optical excitation from the ground state
of CO·Mg to the B1Σ+ Rydberg state |φR〉. The coupling between the ground
and the Rydberg state due to the electromagnetic field is given by

F̂ (t) = 〈φR|D̂|φ0〉 · E(t), (5.56)

where D̂ is the dipole operator and E(t) denotes the electric field. The coupling
via the electric field causes oscillation-like populating and depopulating of the
two electronic states. In the equation of the nuclear wave packets of the Rydberg
|χR(t)〉 (5.52) and the ground state |χ0(t)〉

i|χ̇0(t)〉 = [T̂N + VI ]|χ0(t)〉, (5.57)

where VI is the electronic potential of the ground state of CO·Mg, F̂ (t)|χ0(t)〉
and F̂ †(t)|χR(t)〉, respectively, would appear as additional inhomogeneities. In
general, F̂ (t) can be expressed by the product of the transition operator V̂ which
contains the dependence on the nuclear coordinates and the time-dependent ex-
citation function g(t) [34]

F̂ (t) = V̂ g(t). (5.58)

Here we simplify the description by assuming, firstly, that the weak field approx-
imation is valid. Id est, there is no coupling back from the Rydberg state to the
ground state due to the electro-magnetic field [34,35]. Hence, there is no inhomo-
geneity in the equations for |χ0(t)〉. Secondly, we assume that the excitation is
induced by a broad band excitation: the excitation function g(t) can be approx-
imated by a δ-function in time. So, there is no inhomogeneity in the equations
of motion of |χR(t)〉 due to the excitation process; instead the inhomogeneity is
substituted by the initial condition

|χR(0)〉 = |χ0(0)〉, (5.59)

where |χ0(t)〉 represents the nuclear wave function in the ground state.

Another important aspect which has to be considered is the repulsive nature of
the valence state. Once the wave packet has reached the valence state and passed
through the region where the ICD channel is open, the wave packet propagates
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towards larger inter-nuclear distances and might reach the end of the grid before
the dynamics are completed and, thus, provoke unphysical effects. To prevent this
a CAP was placed at an inter-nuclear distance of 1.6 Å between C and O [35,76].
The CAP absorbs the wave packet before it can reach the end of the grid. This
has to be taken into account in calculations of the population of the states: due
to the CAP Ĉ the norm changes in time as [34, 35]

d

dt
〈χ(t)|χ(t)〉 = −2〈χ(t)|Ĉ|χ(t)〉. (5.60)

In this work we used a CAP of the form

Ĉ = η(x− x0)
3θ(x− x0), (5.61)

where x0 = 1.6 Å, θ(x− x0) is the Heaviside step function, and η = 0.01 eV/Å.

The computational details of the propagation scheme applied can be found in
Ref. [34, 35]. Here we only outline the procedure: First, the initial wave packet
has to be determined. To this end, the Schrödinger equation of the nuclear wave
function of the ground state (5.57) is solved. That is achieved by diagonaliz-
ing the corresponding Hamiltonian which is represented by a discrete variable
representation [179, 180]. Since we consider a broad band excitation the wave
packet is simply put on the surface of the excited state at t = 0. There the
packet starts to propagate immediately. The numerical propagation is achieved
by diagonalizing the complex Hamiltonian matrix at every time-step by means
of the Lanczos-Arnodli method [181] which is the generalization of the Lanc-
zos method [182, 183]. The application of Ĥ on |Ψ〉 is done by a fast Fourier
transformation [184]. In the calculations for the present work the grid where the
wave packets could move on was based on the PECs from Fig. 5.1 and it ranged
from 0.8 to 1.65 Å. The corresponding Hamilton operator was represented by a
DVR with a spacing of 0.005 Å. We used a time step size of 0.1 fs for the time
integration.

The ICD Width of CO·Mg

The working equations (5.41) and (5.52) depend on the PECs, VR and VV , and
the electronic coupling W . All those quantities are associated with the diabatic
representations of the Rydberg and the valence state. Moreover, the working
equations depend on the ICD widths ΓR, ΓV , and ΓRV of those diabatic states.
This is important, because the ICD widths obtained by means of the FSL program
are not the corresponding ones. Consequently, the widths computed by means of
our FSL program have to be transformed before they can be used in the working
equations. Before we discuss the required transformation, the determination of
the widths using our FSL program is discussed.

92



Chapter 5

1.15 1.2 1.25 1.3 1.35
R (Å)

0

1

2

3

4

5

6

 Γ
  (

m
eV

)

3s
3p
 ππ *
3d
4s

Figure 5.9: The figure shows the ICD widths of the five energetically lowest adiabatic excited

states of CO·Mg of Σ+ symmetry. The notation in the legend indicates the electronic character of the

corresponding decaying state at small inter-nuclear distances.

In the calculations we employed the ADC(2)x method and used aug-cc-pVTZ
basis sets [124] augmented with 3s, 3p, and 3d functions with Kaufmann ex-
ponents [125] centered on C and O. To represent Mg and the electron in the
continuum we used the aug-cc-pVTZ basis set augmented with 5s, 5p, and 5d
functions with even tempered exponents [128,129]. In order to represent the reso-
nant states we used a configuration space which consists of all 1h1p configurations
with one hole in the 3σ, 4σ, 5σ, and 1π MOs of CO. To account for electron cor-
relation we included all possible 2h2p configurations having holes in the 3σ, 4σ,
5σ, and 1π MOs. The dimension of the resulting ADC matrix was around 80000.
The decaying states of interest are at the bottom of the spectrum. Therefore, we
computed them with the Davidson method [126]. The non-resonant final states
of the decay consist of CO in its ground state and Mg+ in its ground state. To
describe these states including electron correlation, we included in the configu-
ration space all 1h1p and 2h2p configurations with one or two holes in the Mg
3s orbital. In the Lanczos calculation of the non-resonant spectrum the starting
block consisted of all 1h1p configurations.
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Figure 5.10: The figure shows the energy difference between the D′1Σ+ and the B1Σ+ states of

the RKR model as a function of the inter-nuclear distance R between C and O.

The resulting widths are depicted in Fig. 5.9. The figure shows the widths of the
five energetically lowest excited states of Σ+ symmetry for inter-nuclear distances
1.17 Å ≤ R ≤ 1.4 Å between C and O in CO·Mg. The graphs labeled by 3s
and ππ∗ are relevant for the dynamics we are interested in. Obviously, these two
widths cross. This crossing stems from the electronic mixing of the B1Σ+ and the
D′1Σ+ state. At small inter-nuclear distances the 3s-width can be associated with
the diabatic B1Σ+ state. At large inter-nuclear distances that widths belongs to
the diabatic D′1Σ+ state. The widths labeled by ππ∗ can be regarded as the
widths of the diabatic B1Σ+ at large inter-nuclear distances and at small inter-
nuclear distances it can be associated with the diabatic D′1Σ+ state. However, it
is virtually impossible to resolve the adiabatic D′1(ππ∗)Σ+ there and, thus, the
calculated width is not reliable in that region. We account for that by letting the
corresponding diabatic widths cease to zero at the beginning of that region (see
the ’Mg Valence’ width in Fig. 5.13). Thus, we may underestimate the width but
are on the safe side.

Now, we consider how we can obtain the desired diabatic widths necessary in
order to use the working equations. At first, we clarify which representation
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Figure 5.11: ICD widths Γ1 and Γ2 of the adiabatic B1Σ+ and the adiabatic D′1Σ+ state, respec-

tively, and the off-diagonal coupling Γ12 obtained from the model of constant diabatic widths. See text

for details.

the widths resulting from our FSL program belong to. The FSL program pro-
duces widths Γi associated with states of energy Ei which are not adiabatic
with respect to the full Hamiltonian; rather they are “adiabatic” with respect
to Q̂ĤQ̂. In the problem considered here, the contribution of the residual part
of the electronic Hamiltonian P̂ ĤP̂ to Ei is small: due to the interaction with
the (non-resonant) P̂ ĤP̂ part of the Hamiltonian the (resonant) Q̂ĤQ̂ states are
energetically shifted. However, the shift is small and can be neglected [45, 46].
For that reason, we denote the representation as adiabatic in the following, i.e.,
the calculated widths (resulting from the FSL program) are adiabatic ones. On
the other hand, the contribution of P̂ ĤP̂ to Γi is significant. Consequently, the
imaginary part can introduce couplings between the states. Hence, widths ob-
tained with the aid of the FSL program do not belong to the Complex Adiabatic

Picture.

Since it is convenient to use the diabatic RKR model to carry out the nuclear
dynamics we would like to work in the Complex Diabatic Picture where the PECs,
the corresponding electronic couplings, and the widths are determined by the
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diabatic states. In the present case, the PECs and the couplings are known
but the widths are unknown and they cannot be calculated directly. Thus, it is
necessary to connect them to the widths resulting from FSL calculations with
the aid of a transformation.
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Figure 5.12: ICD widths Γ1 and Γ2 of the adiabatic B1Σ+ and the adiabatic D′1Σ+ state, re-

spectively, and the off-diagonal coupling Γ12 obtained from the model of diabatic widths where ΓR is

constant and ΓV increases linearly. See text for details.

The transformation, F, that links the widths of the FSL program Γi, i = 1, 2, 12
to the widths of the diabatic states Γr, r = R, V,RV is given by the eigenvectors
of the diabatic energy matrix

(
VR W
W VV

)

. (5.62)

In (5.62) W denotes the electronic coupling and Vr, r = {R, V }, are the energies
of the diabatic states. If the transformation is known the matrix of widths ΓAD

obtained by means of the FSL program can be obtained from the matrix of
diabatic widths ΓD:

ΓAD = FΓDF† =

(
Γ1 Γ12

Γ12 Γ2

)

, (5.63)
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where

ΓD =

(
ΓR ΓRV

ΓRV ΓV

)

(5.64)

Since we use the PECs and the coupling of the RKR model [29], the transforma-
tion is obtained from the corresponding parameters.
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Figure 5.13: The optimal models of the diabatic widths of the B1Σ+ Rydberg and the D′1Σ+

valence states in CO·Mg and CO·Mg2, respectively. Optimal means that the depicted diabatic widths

reproduce the calculated adiabatic widths most accurately upon transformation into the adiabatic

picture (see text for details). For CO·Mg the adiabatic widths following from the transformation of

the depicted ones are given in Fig. 5.14.

Before we apply the transformation, we investigate theoretically how the trans-
formation modifies the widths. To this end, we consider the simple two-state
model where the adiabatic representation of the resonant states, |φ1〉 and |φ2〉
are given by

|φ1〉 = (1− c2)
1

2 |φR〉+ c|φV 〉, (5.65a)

|φ2〉 = −c|φR〉+ (1− c2)
1

2 |φV 〉. (5.65b)
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|φR〉 and |φV 〉 denote diabatic representations of the resonant states and 0 ≤
c ≤ 1 is a mixing coefficient depending on the inter-nuclear distance. Inserting
the (5.65) into the expression for the widths, (5.36) and (5.39), yields

Γ1 = ΓR + c2[ΓV − ΓR] + 2c(1− c2)
1

2 〈φV |Ĥe|ψ〉〈ψ|Ĥe|φR〉 (5.66a)

Γ2 = ΓV + c2[ΓR − ΓV ]− 2c(1− c2)
1

2 〈φR|Ĥe|ψ〉〈ψ|Ĥe|φV 〉 (5.66b)

Γ12 = c(1− c2)
1

2 [ΓV − ΓR] + 〈φR|Ĥe|ψ〉〈ψ|Ĥe|φV 〉
− 2c2〈φV |Ĥe|ψ〉〈ψ|Ĥe|φR〉. (5.66c)

The corresponding expressions of the diabatic picture follow by setting c =
0. One can read from (5.66) that in the adiabatic picture the imaginary off-
diagonal element Γ12 can be non-zero even far off the crossing. Since Γ12 cannot
be calculated directly and depends on the electronic mixing of the states, it is
very difficult to estimate it reasonably. Thus, we cannot obtain the diabatic
widths from the ones calculated by means of the FSL method directly via a
transformation simply because the the off-diagonal elements are missing.

Although the information provided by the width calculations of the FSL pro-
gram are not sufficient to obtain the diabatic widths via a transformation and,
although, the diabatic widths Γr, r = R, V,RV cannot be calculated directly, it
is possible to set up reasonable models for the widths of the Complex Diabatic

Picture by guessing Γr, r = R, V . They can be guessed reasonably by consid-
ering asymptotic values of the widths resulting from the FSL computations Γi,
i = 1, 2. As already mentioned above, at small inter-nuclear distances between C
and O, the first adiabatic excited state (see Fig. 5.6) corresponds to the diabatic
B1Σ+ state. Hence, we can assume that Γ1 ≈ ΓR there. Additionally, at large
inter-nuclear distances it holds Γ2 ≈ ΓR Moreover, the first adiabatic excited
state corresponds to the diabatic D′1Σ+ state at large inter-nuclear distances
and, consequently, one can suppose Γ1 ≈ ΓV there. Since the electronic character
of diabatic states depends only minor on the inter-nuclear distance, it can be
assumed that widths of diabatic states are close to straight lines. The gradient
of the widths is of course more difficult to guess. Whether the asymptotic value
and the guessed shape are reasonable can be check by transforming the widths
of the model back to the adiabatic picture. Then they can be compared to the
calculated widths depicted in Fig. 5.9. As a side product we obtain the full ΓAD

which can be diagonalized subsequently in order to obtain the complex PECs of
the Complex Adiabatic Picture. This is potentially interesting because it could
help to understand features of widths calculated by means of CAPs or complex
scaling.

The first model, which we set up, supposed that the widths of both, the B1Σ+

and the D′1Σ+ state, are constants with respect to the inter-nuclear distance
between C and O. We chose the constants with respect to the ab initio FSL
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Figure 5.14: ICD widths Γ1 and Γ2 of the adiabatic B1Σ+ and the adiabatic D′1Σ+ state, re-

spectively, and the off-diagonal coupling Γ12 obtained from the model of diabatic widths depicted in

Fig. 5.13. See text for details.

widths given in Fig. 5.9. For the width of the B1Σ+ Rydberg and the D′1Σ+

valence state we chose 0.5 meV and 2.0 meV, respectively. According to Fig. 5.9
the choice of the widths for the valence state seems to be pretty low. However,
the starting with a value below average ensures that we do not overestimate the
impact of ICD. Using the electronic coupling (Fig. 5.8) and the PECs from the
RKR model (Fig. 5.1) to define the transformation F (5.63), we obtained the adi-
abatic widths depicted in Fig. 5.11. Now, the obtained widths can be compared
to the calculated widths given in Fig. 5.9: the model reproduces the widths at
small inter-nuclear distances decently. The crossing point of the widths occurs
at larger inter-nuclear distances, which can be explained by the fact, that the
crossing of the PECs in the RKR model occurs at larger inter-nuclear distances
too. At larger inter-nuclear distances, the rise of the first adiabatic state is not
reproduced and the widths of the second adiabatic state is too large. The peaks
of the solid lines in Fig. 5.11 are caused by ΓRV which is non-zero at the crossing
point in the Complex Diabatic Picture. The values of ΓRV were determined with
the aid of (5.40). Since we performed the transformation only at a finite number
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of inter-nuclear distances, the peaks exhibit an unphysical shape and are way
too broad. The exact shape of the peaks is unknown, however, since we do not
use the adiabatic widths in calculations, the knowledge of the exact shape is not
crucial here. (5.66) shows why the peaks do not occur in calculated adiabatic
widths depicted in Fig. 5.9: the 〈φV |Ĥe|ψ〉〈ψ|Ĥe|φR〉 terms are not taken into
account in the calculations of the FSL method.

In order to improve the agreement of the model and the ab initio results, we set
up a second model where the width of the valence state ΓV increases linearly.
As a consequence, we expect to reproduce the enhancement of Γ3s from Fig. 5.9
better at large inter-nuclear distances. The explicit values of ΓV as functions of
the inter-nuclear distance between C and O are depicted in Fig. 5.13. As in the
preceding model, the widths of the Rydberg state ΓR was taken to be a constant
of 0.5 meV. Carrying out the transformation (5.63) for this model, the adiabatic
widths depicted in Fig. 5.12 are obtained. From the figure one can see, that
the slope of the second adiabatic state is reproduced better than in the previous
model. However, at large inter-nuclear distances, Γ2 is still too high. At 1.4 Å it
is about 1.6 meV while the corresponding values is 0.55 meV in Fig. 5.9. As a
consequence, we set up another diabatic model where ΓR decreases linearly with
the inter-nuclear distance. Both widths used in this third model, ΓR and ΓV are
given explicitly in Fig. 5.13. The corresponding adiabatic widths resulting from
the transformation (5.63), are shown in Fig. 5.14. At large inter-nuclear distances
the values of Γ2 are in agreement with the values from the ab initio calculations.
Moreover, since the overall agreement is very good we decided use this model in
order to carry out the dynamics in the Complex Diabatic Picture.

Visualization and Interpretation of the Time Propagation

In order to interpret the results of the propagation, we calculate the change in
the population of the states as the system evolves. At all times t it holds

d

dt
〈Ψtot(t)|Ψtot(t)〉 = 0. (5.67)

In order to monitor the populations of the involved states, we determine the
evolution of the norms of |χR(t)〉, |χV (t)〉, and |χ(E, t)〉. The evolution of the
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Figure 5.15: Changes in the population in time after an excitation into the lowest vibrational

level of the B1Σ+ Rydberg state using the diabatic ICD widths given in Fig. 5.13. Additionally, the

depopulation of the Rydberg state due to radiative decay (in the absence of ICD) is depicted.

norm of |χR(t)〉 in time can be determined using the result from (5.52a)

d

dt
〈χR(t)|χR(t)〉 = 〈χR(t)|χ̇R(t)〉+ 〈χ̇R(t)|χR(t)〉 (5.68)

= 〈χR(t)|(−i)(T̂ + VR − iΓR/2)|χR(t)〉
+ 〈χ̃R(t)|i(T̂ + VR + iΓR/2)|χR(t)〉
+ 〈χR(t)|(−i)(W − ig(R)ΓRV /2)|χV (t)〉
+ 〈χV (t)|i(W + ig(R)ΓRV /2)|χR(t)〉
= −〈χR(t)|ΓR|χR(t)〉 − i〈χR(t)|W †|χV (t)〉+ i〈χV (t)|W |χR(t)〉
− 〈χR(t)|ΓRV /2|χV (t)〉 − 〈χV (t)|ΓRV /2|χR(t)〉
= −〈χ̃R(t)|ΓR|χ̃R(t)〉+ 2iIm〈χR(t)|W |χV (t)〉 − g(R)Re〈χR(t)|ΓRV |χV (t)〉
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The population of the Rydberg state 〈χR(t)|χR(t)〉 at time t is given by

∫ t

t0

dt′
[
− 〈χR(t

′)|ΓR|χR(t
′)〉+ 2iIm〈χ̃R(t

′)|W |χ̃V (t
′)〉

−g(R)Re〈χR(t
′)|ΓRV |χV (t

′)〉
]

(5.69)

The formula for the valence state is analog.
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Figure 5.16: Changes in the population in time after an excitation into the third vibrational level

(ν = 2) of the B1Σ+ Rydberg state using the diabatic ICD widths given in Fig. 5.13. For comparison,

the depopulation of the Rydberg state due to predissociation (in the absence of ICD) is depicted.

In order to estimate the decay through the ICD channel, the norm of the final
state |χ(E, t)〉 is required. It can be calculated from the integrated form of (5.55)

i
d

dt
[ei(Ĥ+V0+E)t|χ(E, t)〉] = ei(Ĥ+V0+E)t[ΛR|χR(t)〉+ ΛV |χV (t)〉] (5.70)

⇔ ei(Ĥ+V0+E)t|χ(t)〉 = −i
∫

ei(Ĥ+V0+E)t′ [ΛR|χR(t
′)〉+ ΛV |χV (t

′)〉]dt′.
(5.71)
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Now, the norm can be expressed by
∫

〈χ(E, t)|χ(E, t)〉dE =

∫

dE

∫

dt′
∫

dt′′[〈χR(t)|Λ†
R + 〈χV (t)|Λ†

V ]

× e−i(Ĥ+V0+E)t′ei(Ĥ+V0+E)t′′ [ΛR|χR(t
′′)〉+ ΛV |χV (t

′′)〉]. (5.72)

Because 〈χ(E, t)|χ(E, t)〉 = 0 if E < 0 the integration limits can be changed

∫ ∞

0

dE →
∫ ∞

−∞

dE (5.73)

and, thus, apply the well known relation
∫ ∞

−∞

dEei(Ĥ+V0+E)(t′′−t′) = 2πδ(t′′ − t′). (5.74)

Now, we can simplify (5.72) to

∫

〈χ(t, E)|χ(t, E)〉dE = 2π

∫ t

0

dt′[〈χR(t
′)|Λ†

RΛR|χR(t
′)〉 (5.75)

+ 〈χV (t
′)|Λ†

VΛV |χV (t
′)〉+ 〈χR(t

′)|Λ†
RΛV |χV (t

′)〉+ 〈χV (t
′)|Λ†

VΛR|χR(t
′)〉].

For the evolution in time it follows

d

dt

∫

〈χ(E, t)|χ(E, t)〉dE = 〈χR(t)|ΓR|χR(t)〉

+ 〈χV (t)|ΓV |χV (t)〉+ 2g(R)Re〈χR(t)|ΓRV |χV (t)〉. (5.76)

The population at time t can be obtained by integrating to this point in time
(see (5.69)).

Results: The Dynamics of CO in the Presence of Mg

It is assumed that CO·Mg is exposed to a broad band excitation energetically
centered around the X1Σ+(ν = 0) ↔ B1Σ+(ν = 0) transition. At room tem-
perature virtually only the lowest vibrational level of the ground state of CO is
populated and, hence, before the excitation, the wave packet is assumed to be
in the lowest vibrational level of the ground state. The Franck-Condon factors
of X1Σ+(ν = 0) ↔ B1Σ+(ν = 0, 1, 2, 3) transitions are given in Tab. 2. Due to
the excitation the nuclear wave packet is transferred from the ground state to
the vibrational levels of the Rydberg state. We assume that the dynamics can
be carried out in each vibrational level separately since the vibrational spacing
is much larger than the widths of the vibrational levels. In order to get the total
branching ratio, the results of the respective vibrational level must be weighted
by the corresponding Franck-Condon factor. We employed two different models
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Figure 5.17: Changes in the population in time after an excitation into the fourth vibrational level

(ν = 3) of the B1Σ+ Rydberg state using the diabatic ICD widths given in Fig. 5.13.

for the diabatic ICD widths. The optimal one given in Fig. 5.13. The dynamics
carried out using this model are supposed to approximate the true ones. The
second model is the one where both diabatic widths are constants. Its purpose is
to elucidate the impact of the imaginary off-diagonal term ΓRV on the dynamics.

First, we employed the optimal model. In the subsequent calculations the imagi-
nary off-diagonal coupling had been neglected since we suppose that its impact is
really minor since it only occurs at one grid point (due to finite resolution of the
grid). The evolution of the populations after an X1Σ+(ν = 0) ↔ B1Σ+(ν = 0)
excitation are depicted in Fig. 5.15. One can see that at the end of the dynamics,
after 4 ps, 100% of the wave packet have been undergone ICD. The decay due
to photon emission, which is depicted as well, can be neglected. Consequently,
the fluorescence from the B1(ν = 0)Σ+ level is quenched completely. The same
applies to the second vibrational level (ν = 1). Since the evolution of the popula-
tions in time is virtually equivalent to the evolution of the first level (ν = 0), the
corresponding evolution of the population is not depicted. The dynamics taking
place after X1Σ+(ν = 0) ↔ B1Σ+(ν = 2) excitations are of particular interest
because in this vibrational level CO undergoes predissociation. The evolution
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Figure 5.18: Changes in the population in time after an excitation into the third vibrational level

(ν = 2) of the B1Σ+ Rydberg state using the model of constant diabatic widths. The imaginary

off-diagonal term has been neglected.

of the populations in time are shown in Fig. 5.16. As one can see there, the
dynamics are complete after ca 4 ps. At that point in time, 84% of the wave
packet have been decayed due to ICD. The remaining 16% of the wave packet go
into the dissociation channel. That is, the photoinduced dissociation is strongly
suppressed by the ICD. The dynamics following X1Σ+(ν = 0) ↔ B1Σ+(ν = 3)
excitations are depicted in Fig. 5.17. The dynamics are complete after ca 300 fs.
In this level the dissociation is roughly 20 times more efficient than the ICD and,
thus, the ICD has only very little time to absorb parts of the quickly outrunning
wave packet. As a result, 8% of the wave packet undergo ICD and 92% of it end
up in the dissociation channel.

In order to investigate the impact of the imaginary coupling term ΓRV on the
branching ratio we carried out the nuclear dynamics in the third vibrational level
(ν = 2), at first, neglecting the term and, after that, taking it into account.
In the calculations we used the model of constant diabatic widths. In the first
calculations, whose results are depicted in Fig. 5.18, the dynamics are completed
after 6 ps. At that point in time, 77, 0% of the wave packet have undergone ICD.
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Figure 5.19: Changes in the population in time after an excitation into the third vibrational level

(ν = 2) of the B1Σ+ Rydberg state using the model of constant diabatic widths. The imaginary

off-diagonal term has been included.

23, 0% of the packet are absorbed by the CAP. The corresponding results of the
dynamics where ΓRV has taken into account are depicted in Fig. 5.19. As in the
first calculation, the dynamics are complete after 6 ps. But in this case 23, 2%
of the wave packet undergo ICD and 76, 8% go into the dissociation channel.
That means that the influence of ΓRV is minor in the present case. In the case
of overlapping resonances with large widths the region where the term occurs
would be larger and, thus, the impact could be more important. However, in the
problems considered in this work, it is well justified to neglect it.

The preceding calculations already show that ICD caused by one neighboring
atom can be used to quench photoinduced nuclear dynamics. A very important
aspect of ICD is that it becomes more efficient as the number of ICD-capable
neighbors grows [16, 25, 50]. In order to study this effect, Mg is replaced by
Mg2. The geometry of the system is depicted in Fig. 5.20. As in the case of
CO·Mg, we fixed the Mg2 cluster with respect to the center of mass of CO. We
calculated the ICD widths of the first excited adiabatic state at several inter-
nuclear distances between C and O. From the results we constructed the diabatic
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Figure 5.20: Schematic illustration of the geometry of the CO·Mg2 cluster.

widths in Fig. 5.13 by the procedure described above in the case of CO·Mg. Using
these widths and the PECs and couplings of the RKR model, we carried out the
dynamics in the third vibrational level (ν = 2). The corresponding results are
depicted in Fig. 5.21. As one can see there, the dynamics are complete after ca
2.5 ps. At that point in time, 90% of the wave have undergone ICD. Only 10%
of the packet have gone into the dissociation channel. Hence, by adding another
Mg atom we were able to quench 6% of the wave packet additionally.
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Figure 5.21: Changes in the population in time after an excitation into the third vibrational level

(ν = 2) of the CO∗B1Σ+ Rydberg state in CO·Mg2.
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Resonant Interatomic Coulombic Decay (RICD)

In this section we apply the FSL method to calculations of RICD widths. In
particular, we determine the RICD widths of Ne2s−13p excitations in NeMg.
The corresponding widths have been calculated previously and, consequently,
the following calculations should be regarded as a test of the method in the case
of inner-valence excitations. The results of this section have been published in
Ref. [25].

The interatomic decay following an inner-valence excitation of a cluster subunit is
referred to as RICD [7,18]. After the excitation the inner-valence vacancy is filled
by an outer-valence electron of the same subunit (spectator RICD or sRICD) or
by the electron promoted to the virtual orbital in the excitation step (participator
RICD or pRICD), while the excess energy is used to ionized a neighboring cluster
subunit [18]. A schematic illustration of both processes is given in Fig. 1.1. The
energy absorbed in exciting an inner-valence electron in an atom or molecule
usually exceeds the first ionization potential. Hence, inner-valence excitations
can decay by AI too. Consequently, RICD and AI compete with each other.
This stresses the importance of the accurate knowledge of both widths.

6.1 Applications

Calculations of RICD widths in NeMg clusters

Here we apply our approach to the calculation of RICD widths in NeMg clusters
following the 2s−13p excitation in Ne. The RICD widths of this system have
been previously obtained by the Wigner-Weisskopf approach [18] and, moreover,
all properties of the constituent atoms which are required to evaluate asymptotic
formulae are known, thus, giving us the opportunity for independent assessment
of the Fano-Stieltjes-Lanczos widths at large distances. As a first step we define
the configuration subspaces for the initial and the final states of the decay. The
electron configuration of the ground state of Ne is (He)2s22p6. To describe the
2s−13p initial state, we include all 1h1p configurations with the hole in the Ne 2s
orbital and, to account for some electron correlation, all 2h2p configurations with
two holes in the 2s2p shell. The subspace of the final states of the decay differs
depending whether one considers pRICD, sRICD, or autoionization. The defini-
tion of the subspace of the final states of the decay in the case of autoionization
has been described in Ref. [25].

In the case of pRICD the final states of the system consist of Ne in its ground
state and the Mg atom in a variety of ionized states. The energy of the initial
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excitation is sufficient to produce the ground and excited states of Mg+ as well as
the ground state of Mg++. Therefore, we take a final state subspace comprising
all 1h1p and 2h2p configurations with holes in the Mg 3s orbital. The initial
state couples in first order to the final states of 1h1p character, while it couples
to the final states of 2h2p character only in second order, not accounted for by
the ADC(2)x scheme. Usually these second order effects are small and we assume
that they will not affect our results by much.

In the case of sRICD the final states of the system consist of Ne in an excited
2p−13p state and the Mg atom in the same ionized states as in the pRICD case.
Consequently, in this case the configuration subspace of the final states comprise
all 2h2p configurations with one vacancy in a Ne 2p orbital and one in the Mg
3s orbital. To describe the shake-up and doubly ionized states of Mg following
sRICD we would need 3h3p configurations. These configurations are not available
in the ADC(2) scheme and appear for the first time in the ADC(4) scheme.
However, the coupling to these states is of second order and is usually smaller
than the first order coupling to the 2h2p states given above.

We have shown above how the starting block of the Lanczos procedure should
be selected in case the final states are predominantly of 1h1p character. Thus,
to calculate the widths of pRICD process we have chosen the subspace spanned
by all 1h1p configurations as the starting block. In the case of sRICD the final
states of the decay are of 2h2p character. The size of the subspace spanned
by these configurations is usually extremely large. We thus used the 100 2h2p
configurations with one vacancy in the Mg 3s and one in a Ne 2p orbital which
have the largest coupling to the initial state.

As a first test, we calculated the sRICD width of the Ne 2s−13p (1Π) initial
state as a function of the interatomic distance for different numbers of block
Lanczos iterations (see Fig. 6.1). The calculations were carried out with an aug-
cc-pCVTZ basis augmented with 12s, 8p, 6d Rydberg-like Gaussians centered
on Ne and an aug-cc-pVTZ basis set augmented with 6s, 8p, 6d continuum-like
Gaussians centered on Mg. To improve the description of the final 2h2p states we
performed all calculations using the ADC(2)x scheme, which gives these states
to first order in perturbation theory. The obtained energy of the Ne 2s−13p
decaying state is 45.65 eV at large interatomic distances, in good agreement
with the literature value of 45.54 eV [123] for the isolated Ne. The resulting
dimension of the final 2h2p subspace is 28000. After five and ten block Lanczos
iterations the decay width oscillates with R, becoming smooth after 30 or more
block Lanczos iterations. For 60 and more iterations the width is converged at
large interatomic distances but still increases slightly at interatomic distances
where the orbital overlap is significant. Due to the observed slow convergence we
tried to increase the size of the starting block, however, the convergence is not
significantly improved by this.

We can offer two main reasons for the slow convergence at such interatomic
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Figure 6.1: Spectator RICD width of Ne2s−13p (1Π) excited states in NeMg as a function of the

interatomic distance for several numbers of block Lanczos iterations. The widths are shown after 5

(dotted line), 10 (dash-double-dotted line), 30 (dash-dotted line), 60 (dashed line), and 100 (full line)

block Lanczos iterations with a block size of 100.

distances. Firstly, there is a large number of final states of 2h2p character con-
tributing to a comparable degree to the decay width, thus, requiring many iter-
ations to produce them. Secondly, since electron correlation is large among the
final states of 2h2p character, many iterations are again needed to describe them
accurately. Consequently, at interatomic distances close to the equilibrium ge-
ometry, the widths obtained employing a number of Lanczos states much smaller
than the subspace dimension are expected to be underestimated compared with
widths obtained by full diagonalization. To estimate the error introduced by the
incomplete description of the P subspace we recalculated the sRICD width at
equilibrium geometry by fully diagonalizing the corresponding PĤP matrix. We
obtained a value of 0.3 meV, exceeding the Fano-Stieltjes-Lanczos result by a
factor of 1.7. It seems that a choice of starting block based on the coupling to the
initial state is not completely sufficient and more sophisticated procedures ought
to be worked out for cases involving doubly excited final states. Alternatively,
other methods such as filter diagonalization [185–188] may be considered in cases
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where Fano-Stieltjes-Lanczos underperforms.
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Figure 6.2: Decay widths of different electronic decay processes following Ne 2s−13p (1Π) and

2s−13p (1Σ) excitations, respectively, in NeMg as a function of the interatomic distance. In the case of

pRICD and autoionization (AI) the width converged using 40 block Lanczos iterations and a starting

block size of 80. For the depicted sRICD widths we used a block size of 100 and 100 block Lanczos

iterations. The widths of the excitations in Π symmetry the are depicted as dashed lines. The full lines

correspond to the widths of the excitations of Σ symmetry. The dotted lines show the prediction of

the corresponding asymptotic formula. Note that the ionization cross section of Mg is low explaining

the small interatomic widths. The radiative width of the initial state which is required to evaluate the

asymptotic formula for the sRICD case was taken from Ref. [189].

Next, we calculated the decay widths for the following electronic decay pathways
of the Ne 2s−13p 1Σ and 1Π initial states (see Fig.6.2): autoionization , sRICD,
and pRICD. The autoionization width of the 2s−13p resonance in isolated Ne
obtained by the Fano-Stieltjes-Lanczos method is 11.68 meV [25]. To compare it
with the interatomic decay widths we calculated the autoionization widths of the
Ne 2s−13p 1Σ and 1Π in the presence of Mg. To this end we employ the scheme
described in Ref. [25] where the P subspace comprises 80 1h1p and 40000 2h2p
configurations. To calculate the width with the block Lanczos method we use all
80 1h1p configurations as the starting block. About 40 block-Lanczos iterations
resulting in 3200 final states were needed to converge the width. The autoion-
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ization width of the Ne 2s−13p (1Π) excitation remains virtually constant as a
function of the interatomic distance. A small enhancement of the Ne 2s−13p (1Σ)
width is visible at interatomic distances below 6 Å. We have explained this en-
hancement previously [18] as arising due to the orbital overlap more pronounced
in the state of 1Σ symmetry. The values obtained are in good agreement with
the autoionization width of the isolated Ne [25] and better than the values ob-
tained with the less precise Wigner-Weisskopf method [18], which are three times
smaller.

In the case of pRICD the subspace of the 1h1p final states comprises 80 1h1p
configurations and 35000 2h2p configurations; the decay rate converged after 40
block Lanczos iterations with a starting block composed of all 80 1h1p config-
urations. The pRICD width of Ne 2s−13p (1Π) and Ne 2s−13p (1Σ) at large
interatomic distances fall off as R−6 and differ roughly by a factor of four, in
good agreement with the predictions of the virtual photon transfer model [21].
At interatomic distances smaller than 9 Å the 1Π and the 1Σ widths increase -
compared to the values predicted by the asymptotic formulae - due to orbital
overlap, whereas their ratio remains roughly four. At the equilibrium distance
(4.4 Å) the Ne 2s−13p (1Π) and the Ne 2s−13p (1Σ) resonances have a width
of 0.012 meV and 0.037 meV, respectively. Thus, they are roughly 4 and 13,
respectively, times smaller than the corresponding sRICD width and two orders
of magnitude larger than the corresponding values obtained with the Wigner-
Weisskopf method [18]. The significant difference can be explained by the fact
that the description of the virtual orbitals of the initial and the final states are
significantly improved in Fano-Stietljes-Lanczos calculations.

The sRICD widths of the 2s−13p (1Π) and the 2s−13p (1Σ) states are virtually
equal. This is because the excited electron, which determines the symmetry of the
initial state, is not directly involved in the decay process [18]. At large interatomic
distances both widths are proportional to R−6 and in good agreement with the
predictions of the virtual photon transfer model. At interatomic distances smaller
than 8 Å both widths increase due to orbital overlap. At the equilibrium distance
of 4.4 Å both width are at 0.16 meV and, therefore, roughly 70 times smaller than
the autoionization width and 8 times smaller than the sRICD width obtained by
the Wigner-Weisskopf method [18]. However, we would not like to draw definitive
conclusions from the comparison between the Wigner-Weisskopf and the present
Fano-Stieltjes-Lanczos sRICD widths, since the latter are not converged with the
number of Lanczos states.
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Conclusion

The impact of ICD on photoinduced dynamics has been studied. In particular, we
considered the photoinduced dynamics in the four lowest vibrational levels of the
B1Σ+ Rydberg state of CO in CO·Mg. In isolated CO the two lowest vibrational
level of the B1Σ+ Rydberg state decay within 30 ns by photon emission. The third
and the fourth vibrational level undergo predissociation within a few ps. The
predissociation in the B1Σ+ Rydberg state is caused by non-adiabatic interactions
with the repulsive D1Σ+ valence state. Because Mg is only weakly bound to CO,
both states are affected only insignificantly by its presence. However, since at
internuclear distances between C and O smaller than 1.4 Å their excitation energy
is sufficient to ionize 3s electrons from Mg, whose ionization potential amounts
to 7.67 eV, both states can decay by ICD additionally. In the presence of Mg,
consequently, the evolution in these states is governed by the competition between
the dynamics taking place in isolated CO and that of ICD. In order to investigate
the evolution of the states in the presence of Mg, working equations have been
derived which depend on the PECs of the B1Σ+ Rydberg state and the D1Σ+

valence state, their coupling, and their ICD widths.

The results of the calculation of the nuclear dynamics show that ICD changes
the evolution of the system. In the two lowest vibrational levels, the radiative
decay is quenched completely. Instead, the states decay via ICD within less
than 4 ps. In the third vibrational level, which is of particular interest since it
undergoes predissociation within a few ps in isolated CO, the ICD suppresses the
predissociation significantly: in CO·Mg 84% of the nuclear wavepacket undergo
ICD and only 16% dissociate. Therefore, ICD can be used to quench relaxations
due to nuclear rearrangements. In the fourth vibrational level of the B1Σ+ state
in CO·Mg the relaxation due to predissociation proceeds roughly 20 times faster
(the corresponding lifetime is 60 fs) than the decay due to ICD. In this level
predissociation remains the predominant decay mode. 8% of the nuclear wave
packet undergo ICD. Additionally, we investigated the dynamics of CO in the
third vibrational level of the B1Σ+ Rydberg state in CO·Mg2. In this system
the decay due to ICD is twice as efficient. The larger ICD widths lead to an
even stronger suppression of the predissociation: 90% of the nuclear wavepacket
undergo ICD.

The quenching mechanism found in the course of the study of the dynamics
of CO in CO·Mg is not restricted to fluorescence and predissociation, in fact,
it is a general one: in the presence of environments which are weakly bound
to a poly-atomic system, the nuclear rearrangements taking place in electronic
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excited states of the system proceed in good approximation as in the isolated
system. However, if the ionization potential of the environment is lower than
the excitation energy, the ICD channel opens. Then the evolution of the system
is governed by the competition between ICD and the relaxation due to nuclear
rearrangements. Usually, the dynamics are significantly affected because ICD is
normally very efficient.

In order to study the competition between ICD and relaxations due to nuclear
rearrangements, it is necessary to know the ICD widths. To this end, we have
introduced and implemented an efficient and simultaneously accurate method
in this work which is adapted to the calculations of ICD widths of neutral ex-
cited states. The proposed method combines the Fano formalism and Stieltjes
imaging with the Lanczos method. The method is applicable to all problems
where the subspaces of the initial and final states of the ICD process can be
defined in a physically meaningful way. The accuracy of the method is based
on the application of many-body methods accounting for electron correlation in
the determination of the initial states, final states of the decay and the coupling
between them. The efficiency of the proposed method stems from the applica-
tion of the block-Lanczos method. In the framework of the standard Stieltjes
approach, used to reconstruct a continuous function Γ(E) from the underlying
L2 pseudo-spectrum, the pseudo-spectrum is obtained by a full diagonalization of
the corresponding Hamiltonian matrix. By representing the Hamiltonian matrix
by its Lanczos approximation the full diagonalization is bypassed. The results
obtained for the final states of predominantly 1h1p character converge fast with
the number of block-Lanczos iterations. A suitable choice for the starting block
is given by configurations with the largest coupling to the initial state. The ef-
ficiency allows one to determine ICD widths of cluster consisting of poly-atomic
systems. In the case of final states of 2h2p character, e.g. following sRICD, the
convergence with the number of block-Lanczos iterations is fast at asymptotic
distances, while it becomes slow at around the equilibrium geometry. This is
explained by the large number of 2h2p configurations contributing comparably
strong to the corresponding states.

We tested the proposed method by applying it to calculations of interatomic decay
widths of outer-valence excited states in NeAr, HCN·Mgn, n = 1, 2 and inner-
valence excited states in NeMg. The accuracy of the obtained results is well
documented by the quality of the decay widths at large interatomic distances
where they are in good agreement to the predictions of the asymptotic formulae.
In addition, in the case of HCN·Mgn, n = 1, 2 we were able to compare the
widths calculated by the present approach with widths obtained previously by
the CAP-ADC method and the results are in good agreement. Having tested
the method successfully, we subsequently utilized it to compute the ICD widths
required to investigate the dynamics in CO·Mg. At the equilibrium geometry we
found ICD widths of 0.6 meV and 1.3 meV for the Rydberg state in the case

116



Chapter 7

of CO·Mg and CO·Mg2, respectively. In the HCN·Mgn systems the respective
widths are 1.8 meV and 16 meV, implying that ICD can very efficiently quench
even fast processes in more favorite cases than CO·Mgn. The latter systems have
been studied because of the availability of all the required photodissociation data
for isolated CO.
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APPENDIX A

Diabatization through Block Diagonalization

The method originates from the Hamiltonian (5.7) represented in an initial basis
|φi〉 (,e.g., in MOs)

H = 〈φi|Ĥ|φj〉. (A.1)

We are looking for a transformation that block diagonalizes H such that the
derivative couplings are minimized. Assume that H is block diagonalized by the
unitary matrix T

H = T†HT. (A.2)

The connection between the initial basis and the adiabatic picture is provided by
the unitary matrix S defined by the following eigenproblem

HS = SΛ, (A.3)

where the diagonal matrix Λ contains the adiabatic eigenvalues and the elements
of S are of the form

Smn = 〈φm|ϕn〉, (A.4)

where |ϕn〉 are the adiabatic eigenstates. By considering the expression

HF† = F†∆, (A.5)

where ∆ is the corresponding (diabatic) eigenvalue matrix, we can easily find
that

T = SF, (A.6)

where F is a unitary block diagonal matrix. This equation defines the most
general transformation which block diagonalizes H: S diagonalizes H and the
application of F induces the block form.

Apart from being unitary the submatrices Fnn of F are arbitrary and a further
condition is required to determine them uniquely. An appropriate constraint can
be imposed by requiring that the transformation T should bring H into block
diagonal form but, beyond this, it should change as little as possible [158]. Id est,
the matrix T should be as close as possible to the unit matrix and, consequently,
one requires

‖T− 1‖ = min . (A.7)
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One can show the the matrix T which fulfills the desired constraints is of the
form [158]

T = SS†
BD(SBD S†

BD)
1/2 ≡ SF. (A.8)

The block diagonal matrix SBD is known: it is a block diagonal choice of S:

SBD =








S11 0
S22

. . .

0 SNN







. (A.9)

where N denotes the number of subsets or blocks, respectively. The choice of the
block diagonal matrix SBD is essential because it determines the states which are
represented diabatically. In practice, one is usually interested in one small subset
of states α. To obtain the desired transformation one reorders S until the desired
block structure is achieved

SP =

(
Sαα Sβα

Sαβ Sββ

)

. (A.10)

The off-block elements Sba should be small if the structure is chosen appropriately
[190]. Due to this partitioning of the eigenvector matrix S, one is able to construct
T knowing the eigenvalues and eigenvectors belonging to subset α only. Since
the subset is usually small the method is usually cheap.

That the proposed block diagonalization of the electronic part of the Hamiltonian
leads to a minimalization of the couplings due to T̂N if the initial basis and the
subset α are chosen appropriately has been shown in Ref. [191].
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M. Oura, H. Yamaoka, Y. Tamenori, and I. H. S. K. Ueda, Phys. Rev.
Lett. 96, 243402 (2006).
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