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Abstract: This thesis contains the derivation of two-scale models for multi phase and
multi constituent flow in porous media. It will be achieved by using phase field models for the
porespace together with formal asymptotic expansion. The equations describing the processes
in the porespace are obtained by using the assumption of maximal entropy production rate,
which was first developed and used by Rajagopal and Srinivasa. This method is able to yield
thermodynamically consitent models in the bulk starting from constitutive assumptions on
energy and on the rate of entropy production. In particular, the method will lead to a new
point of view on phase field models and it will be possible to derive well known models like the
Cahn-Hilliard-Navier-Stokes system, Korteweg’s equation or the Allen-Cahn model of phase
transition. In order to derive suitable boundary coditions, the assumption of maximum rate
of entropy production is generalized to processes on the surface of a bounded domain and
applied to phase field models. Finally, the same method is used to derive a thermodynam-
ically consistent scaling of such multi phase and multi constituent systems. The resulting
equations are homogenized via formal asymptotic expansion. This method will be applied to
the air/water system in soil as well as to the active layer of permafrost soil consisting of the
four constituents air, water, vapor and ice in the porespace. It will be shown that the resulting
two-scale equations are true generalizations of existing models since the averaged behavior of
the solutions of the two-scale model fits to the commonly used macroscopic equations. How-
ever, the two-scale models contain much more information and hence it is thinkable that they
will provide much more accuracy in future simulations.

Abstract (deutsch): Inhalt dieser Arbeit ist die Herleitung von Zwei-Skalen-Modellen
für Strömungen mehrere Flüssigkeiten und Phasen in porösen Medien. Dies wird mit Hilfe
von Phasenfeld-Modellen und formaler asymptotischer Entwicklung erreicht. Die Gleichun-
gen im Porenraum werden mit Hilfe der Vermutung von Rajagopal und Srinivasa über die
maximale Entropieproduktionsrate hergeleitet. Diese Methode ermöglicht das Herleiten ther-
modynamisch konsistenter Modelle im Ramen der klassichen Kontinuumsmechanik, wobei
einzig die konstituierenden Gleichungen für die Energie und die für die Entropieproduk-
tionsrate vorgegeben werden müssen. Dieser Ansatz führt zu einem neuen Blickwinkel auf
Phasenfeld Modelle und ermöglicht unter anderem die Herleitung der Cahn-Hilliard-Navier-
Stokes Gleichungen, der Korteweg-Gleichungen und der Allen-Cahn Gleichung. Um auch
thermodynamisch konsitente Randbedingungen zu finden, wurde die Methodik von Rajagopal
und Srinivasa auf Randbedingungen verallgemeinert und auf Phasenfeld Modelle angewendet.
Schließlich wurde die Methodik nochmals verallgemeinert um auch thermodynamisch konsis-
tente Skalierungen der Phasenfeld Modelle finden zu können. Die Methodik wurde sowohl auf
Wasser-Luft Strömungen in Porösen Medien angewendet als auch auf die Modellierung der
oberen Schicht von Permafrost Böden, in denen Luft, Wasser, Eis und Dampf interagieren.
Es wird gezeigt dass die resultierenden Zwei-Skalen-Modelle Verallgemeinerungen existieren-
der makroskopischer Modelle sind, indem gezeigt wird, dass das makorskopische Verhalten
der Lösungen der Zwei-Skalen-Modelle mit den makroskopischen Modellen übereinstimmt.
Jedoch wird sich zeigen, dass die Zwei-Skalen-Modelle deutlich mehr Information enthalten
und es ist denkbar, dass Simulation, die auf diesen Modellen basieren, in Zukunft genauere
Ergebnisse liefern können als der herkömmliche makroskopische Ansatz.
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Introduction

Flow in porous media is an old topic dating back to the pioneering publication by Darcy
[23] who studied single phase flow in soil concluding that the velocity υ depends on pressure
p and gravitational potential g by

υ = A (g −∇p)
where A is the permeability tensor. This relation has been investigated for a long time and
has even mathematically been proven correct [7, 6, 8, 54, 73, 89].

However, problems arise at the moment the simple case of single phase flow is replaced
by flows of at least two immiscible fluids or phases. The root causes of these problems are
capillarity effects: At the microscopic boundaries between the constituents, in particular at
the contact lines on the solid’s surfaces, capillary forces become important as they act on the
small menisci. These forces strongly influence the evolution of microscopic geometry, which
in return is the major impact on the permeability of the fluids.

These effects were taken into account by the following system of equations:

∂t (%aθa) + div (%aθaυa) = 0

∂t (%wθw) + div (%wθwυw) = 0
θa + θw = Φ < 1 .

In many applications, it is assumed that %a = const and %w = const . Φ is the porosity (i.e.
the volume fraction of the pore space), θa and θw are the volume fractions of air and water
respectively. The constitutive equations for the velocities read:

υw = Kw(. . . ) (%wg −∇pw)

υa = Ka(. . . ) (%ag −∇pa) ,
where pa and pw are the pressures in the air and water phase. In order to complete the system,
a constitutive equation of the form

(0.0.1) pw − pa = pc(θw)

usually is assumed, where pc is the so called capillary pressure. Thus, the system reads

∂tθa −Ka(θa) [∇pa − g] = 0

∂tθw −Kw(θw) [∇pc(θw) +∇pa − g] = 0
∂tθa + ∂tθw = 0 .

Note that this system has a many restrictions: It assumes that both phases are incom-
pressible and that there is a deterministic relation (0.0.1) and deterministic dependencies for
Ka(θa) and Kw(θw). In particular, the last two assumptions for capillary pressure and per-
meabilities have been proven to be wrong, or at least insufficient, in many publications, refer
to [42, 51, 58, 59, 60, 77, 78] and references therein.

The problem has been known for a long time and scientists tried to solve it by introducing
hysteresis operators. In particular the Preisach operator proved to be successful [32]. An
overview over many classical models can be found in standard text books (for example [52,
61, 87]) and in the large literature on the subject. However, the usage of hysteresis operators
reflects a lack on knowledge about “hidden” parameters. In two phase flow in porous media,
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2 INTRODUCTION

these hidden parameters are the microscopic distribution of the two phases, in particular the
distribution of interfaces and contact lines on microscopic grain boundaries.

Commonly used hysteresis models, such as the Preisach model, account for the history
of the process but not for its dynamics. This means that for example these models do not
account for the velocity of saturation changes. Such a macroscopic hysteretic behavior can
be expected if and only if the macroscopic parameters like saturation and capillary pressure
change slowly compared to the relaxation time on the micro scale. The faster macroscopic
changes in saturation progress, the less reliable are the hysteretic models. In such cases,
different approaches for the modeling of these memory effects are needed.

Recent studies [42, 58, 59, 60] suggest that it is quite worth including non-hysteretic
memory effects (see chapter 3, section 3.2.4 for definition). In particular, the results by
Hassanizadeh and coworkers [37, 38, 43, 42, 58, 59, 60] show that capillary pressure and
conductivity of the soil strongly depend on the microscopic distribution of surfaces and contact
lines.

Another approach by Papatzacos [80], is related to the approach in this thesis. Like
the author, Papatzacos started from phase field models on the pore scale but he obtained
completely different equations. This is in particular due to the fact that his approach can
only be valid if the thickness of the diffusive interface becomes comparable with the pore
diameter. The conclusions of chapter 6. will compare these models in detail.

One of the major results of this thesis on two phase porous media flow is in good agreement
with the results by Hassanizadeh and coworkers. This new result is a two-scale model for two-
phase porous media flow, which is obtained using the thermodynamic approach developed by
Rajagopal and Srinivasa [85, 84] together with formal homogenization methods.

The initial motivation for this thesis came from soil physics, in particular from the model-
ing of permafrost soil. An introduction to permafrost soil is given in chapter 3 below. For the
moment, let us state that the active layer of permafrost soil, which are the upper two meters,
is a most interesting and complicated medium including air, water, ice and the soil matrix as
well as all kinds of interactions between these substances. The major initial questions were:

• How does the presence of ice influence the permeability and the capillary pressure?
• Is there hysteresis in freezing processes?
• Is there a memory effect in evaporation and condensation?
• Is the commonly made assumption of thermodynamic equilibrium reasonable?

It is clear that all of these questions only can be answered by taking a look on the micro scale
and on the processes in the pore space. Coming from homogenization theory, the author felt
that it is necessary to develop a two-scale approach to tackle the topic of multiphase flow in
porous media starting directly from the pore scale. However, this goal leads to some more
questions that have to be answered first:

• How shall an appropriate model for two phase flow on the pore scale look like?
• How can interactions between the interface of the fluids and the solid boundaries be
described properly?
• What is the correct non dimensionalization of these models?
• How to deal with the resulting homogenization problems of convection diffusion equa-
tions?
• How to interpret the resulting equations?

In this thesis, these questions will be answered partially.

The Approach

To the authors knowledge, the approach in this thesis is new. It is based on the assump-
tion of maximum rate of entropy production (MREP-assumption), introduced in [85] and
recapitulated in section 1.4. This method is able to provide thermodynamically consistent
models for continua on the meso and macro scale. The MREP-assumption is based on two
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constitutive equations for the density of internal energy and for the rate of entropy produc-
tion. The internal energy is assumed to depend on the variables concerning the state of the
system (such as density, mass concentrations) while the rate of entropy production is assumed
to depend on so called thermodynamical fluxes (see section 1.4). Using these two constitutive
equations, the missing constitutive equations for the system will be derived by means of a
Lagrange functional.

As an important contribution of this thesis, the MREP method will be generalized in a
way that it also can help to derive thermodynamically consistent boundary conditions. The
generalized method will be used to derive phase field models for multiphase flow, including
thermodynamically consistent boundary conditions. In particular, it will be shown that it is
possible to derive the Cahn-Hilliard-Navier-Stokes system:

∂t(%υ) + div (%υ ⊗ υ)− div (νD(υ)) +∇ (p(%)− λdivυ)− div (σ∇c⊗∇c) = 0
∂t(%c) + div (%cυ)−∆

[
f ′(c)− σ∆c

]
= 0 .

as well as the Stefan problem with an Allen-Cahn phase field:

∂tu(ϑ, ω)− div (κ∇ϑ) = 0
∂tω − σ∆ω + g(ω, ϑ) = 0

The MREP-assumption has the advantage that it only needs two constitutive equations:
one for the energy and one for the rate of entropy production. Provided a suitable choice of
these two constitutive equations, it will be possible to derive thermodynamically consistent
scaling of the aforementioned phase field models in order to apply formal asymptotic expansion
in the last step. Thermodynamical consistent scaling means, that for each choice of the
microscopic parameter ε, the scaling of the equations is thermodynamically consistent and
hence the resulting limit equations as ε→ 0, too.

Finally, as mentioned, the resulting scaled equations are leading to two-scale models by
application of formal asymptotic expansion. Note that in contrary to the usual approach, we
do not drop all terms of order O(ε) since some of these first order terms still have macroscopic
meaning.

Major Contributions of this Thesis

This thesis covers a large range of topics from thermodynamics to homogenization and
from free multiphase and multifluid systems to bound multiphase and multifluid system in
the pore space. Some of the applied tools had to be modified, some of the mentioned aspects
had to be put in a new point of view, in order to put all topics together and fit them into
one big picture. The original intention of modeling of multiphase transport in permafrost soil
has shown to be nothing but one result of all these modifications. The major results can be
summarized as follows:

• Generalization of the MREP-assumption for derivation of thermodynamically con-
sistent boundary conditions.
• Generalization of the method for derivation of non-dimensionalized and thermody-
namically consistently scaled equations.
• Application of MREP-assumption to derive phase field models for multiphase flow.
• Non-dimensionalization and thermodynamically consistent scaling of the governing
equations for two-phase flow in porous media.
• Homogenization of the resulting scaled equations using formal asymptotic expansion.
• Application of these results to the active layer of permafrost soil.

More in detail, the assumption of maximum rate of entropy production (MREP), developed
by Rajagopal and Srinivasa in [83, 85] for the modeling in continuum mechanics was applied
to multiphase and multifluid systems in bounded domains. For this purpose, it had to be
generalized to include proper boundary conditions, which will appear very naturally in this
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new setting. It will be shown at the same time that the Cahn-Hilliard-system, the Allen-
Cahn-(Stefan-) system as well as Korteweg’s equation all fit into the same newly developed
framework for the derivation of thermodynamically consistent phase-field models. The reader
is referred to chapters 1 and 4.

To the authors knowledge, up to now no framework exists being able to derive appropriate
and thermodynamically consistent boundary conditions for the Cahn-Hilliard-Navier-Stokes
system. There has been an attempt by Qian, Wang and Sheng in [82] using Liu’s method
of Lagrange multipliers. According to the author’s investigation, in their resulting equations
one term is missing, deriving from the dependence of surface energy on density. It also turns
out that the second law of thermodynamics imposes a condition on the normal derivative of
the normal component of the velocity field, which was previously unknown. Without this
new additional restriction, the system cannot be considered thermodynamically consistent in
the latter case. Also note, that the system derived by Qian, Wang and Sheng [82] is not
appropriate in the sense that the phase field is not connected with a mass concentration or a
partial density of one constituent. The author believes that this is one of the main reasons
for the differences in the results of the two approaches.

The MREP-assumption provides good a priory estimates to the mathematician, suggesting
to use this method for the derivation of scaled equations for homogenization. Based on this
idea, a new approach of thermodynamically consistent scaling using the MREP-assumption
is the second major contribution of this thesis (see chapter 2).

This new method, which the author would call scale-independent maximization of the
rate of entropy production, will be applied to a two-component flow in porous media in
order to obtain thermodynamically consistently scaled equations for two-constituent flow in
porous media. The formal asymptotic expansion applied to this model will lead to a two-scale
model which can be considered as approximate solution to the full microscopic model. Note
that such a resulting two-scale model as such already is a solution to the modeling problem.
However, we will use the two-scale model in order to derive effective macroscopic models.
It will be shown that the macroscopic models coincide with the usually used models and
thus, the two-scale model can be considered as a true generalization of the usual macroscopic
models. Additionally, it is possible to explicitly derive the macroscopic permeability tensors
for air and water depending on the microscopic distribution of both phases in chapter 6. The
calculations of these permeability tensors is analogous to the corresponding calculations for
the permeability tensor in Darcy’s law.

The macroscopically averaged versions of the equations are only calculated in order to
demonstrate that the two-scale model is a true generalization of former existing purely macro-
scopic equations. One advantage of the new model is that it contains all information on the
process both on the macro and on the micro scale and that it is able to generalize the method
to any number of components.

However, it is not possible to derive any explicit formula for the capillary pressure. The
author believes that in general, such a formula does not exist but that capillary pressure is
only a macroscopic auxiliary variable which has to be computed numerically for any particular
microscopic distribution of water.

The results and experiences from chapter 6 will finally define the homogenization problem
for permafrost soil as a three-phase system in the pore space, consisting of air, water and ice.
This will be done formally in chapter 7.

Since phase-field models deal with diffusive interfaces between two immiscible fluids and
since we are interested in macroscopic transport equations in porous media, it will be necessary
to deal with the homogenization of convection-diffusion equations. The focus will be on
the influence of different scalings of the convective term on the homogenized limit for small
diffusion (i.e. of order ε2), which is the topic of chapter 5. In view of chapter 6, the results
suggest that a scaling of the convective term by ε is the best choice in order to account for
moderate velocities and varying micro structures in the two-scale model. Note that only small
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diffusion coefficients are of interest since the diffusive interfacial region is assumed to be small
compared to the size of the pores.

Also note that parts of this thesis have already been submitted for publication or are
in preparation for submission. The derivation of Cahn-Hilliard systems for two-phase and
multiphase systems, both in terms of densities and concentrations (see chapter 4) where
submitted in [50]. The application in the Stefan problem is still in preparation [48]. The
very first publication using the methods for modeling of boundary conditions developed in this
thesis will be on Korteweg’s equation with thermodynamically consistent boundary conditions
[49]. Other results of the thesis such as the derivation of boundary conditions for the Cahn-
Hilliard-Navier-Stokes system or the formal homogenization of the resulting Cahn-Hilliard-
Navier-Stokes system are planed for publication.

Structure of the Thesis

The thesis is split up into two major parts: Modeling tools (Part I) and application to
multifluid and multiscale systems (Part II).

Part I. In chapter 1 the fundamental balance equations of continuum mechanics for mix-
tures as well as the basic concepts of continuum thermodynamics will be introduced. Based on
these equations, the assumption of maximal rate of entropy production (MREP-assumption)
will be introduced as a modeling tool. The MREP-assumption will be based on constitu-
tive equations for the energy and the rate of entropy production. It will be shown that this
tool automatically yields thermodynamically consistent constitutive equations. Finally, the
MREP-assumption will also be generalized to surface energy and surface entropy production
rate.

Chapter 2 will introduce homogenization in the frame of formal asymptotic expansion
and generalize the MREP-assumption to scaled constitutive equations for the energy and the
entropy production rate. The resulting limit equations will be shown to be thermodynamically
consistent, too, provided the scaling of energy and scaling of the rate of entropy production
rate are reasonable.

Part II. In chapter 3, the conventional approach to porous media multiphase flow will
be described and applied to the two permafrost sites of interest. In chapter 4, the MREP-
assumption from chapter 1 will be used in order to obtain thermodynamically consistent
models for multiphase and multifluid flows. In contrary to former approaches, the resulting
model will also imply thermodynamically consistent boundary conditions.

Chapter 5 will treat the homogenization of convection-diffusion equations formally. This
will be a basis for the investigations in chapter 6 where results from chapters 2, 4 and 3 will be
combined in order to derive two-scale models for multifluid systems. Note that chapter 6 will
only treat the case of two immiscible fluids in terms of concentrations, but the generalization to
more fluids and the setting with partial densities is obvious. By averaging the equations over
the micro scale, it will be shown that the two-scale model is a true generalization of the classical
macroscopic models. At the same time, it will be shown that the classical approach is doomed
to fail whenever the system is characterized by rapidly changing microscopic geometries.

Chapter 7 will finally apply all these results to multiphase and multifluid flows in Per-
mafrost soil.
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Modeling Tools





CHAPTER 1

Continuum Mechanics and Thermodynamics of Fluid Mixtures

1.1. Introduction

This chapter will introduce the fundamental balance equations of continuum mechanics
for a liquid mixture of J components. Also, the concept of entropy and continuum thermo-
dynamics will be explained. Based on these explanations, the assumption of maximal rate of
entropy production, introduced by Rajagopal and Srinivasa [85], will be described in section
1.4. This assumption proved to be very successful in deriving thermodynamically consistent
models in continuum mechanics and will be the method of choice in this thesis for the deriva-
tion of phase field models for multiphase and multifluid flows, as well as for the derivation of
non-dimensionalized equations.

The assumption of maximal rate of entropy production will be generalized to physical
processes on the boundary of a domain, including also surface energy and surface entropy
functionals. This first major contribution of this thesis will be introduced in sections 1.6 and
1.7. Finally, the impact of the assumption of maximal rate of entropy production on a priori
estimates will be discussed.

1.2. Continuum Mechanics of Fluid Mixtures

We consider a mixture of J constituents with partial densities(%i)i=1,...,J that sum up to
the total density % via

(1.2.1) % :=
∑
i

%i

Each constituent is assumed to have its own velocity (υi)i=1,...,J , and %i is assumed to evolve
with time due to an equation of the form

(1.2.2) ∂t%i + div (%iυi) =
+
ci ,

where the
+
ci stand for some mass exchange between the constituents. We assume no external

mass supply or de novo mass production and global mass conservation therefore imposes

(1.2.3)
∑
i

+
ci= 0 .

The internal exchange of mass may in particular be due to chemical reactions or “phase
transitions” as we will show below in chapter 4. The total momentum is the sum of the
partial momenta. Due to the classical relation p = mυ it is natural to define the total
velocity υ via the total momentum density and the total mass density:

(1.2.4) %υ =
∑
i

%iυi .

Let ȧ and ḟ denote the material derivative (with respect to υ) of any scalar variable a or
vector variable f , i.e.

ȧ := ∂ta+ υ · ∇a and ḟ := ∂tf + (∇f)υ

where ∂t is the partial time derivative.

9
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Summing up (1.2.2) over i and using (1.2.3), the following total mass balance equation is
obtained:

(1.2.5) ∂t%+ div (%υ) =
J∑
i=1

+
ci= 0

We introduce through

ci :=
%i
%
, ui := υi − υ ji := %iui

the concentration ci, the relative velocity ui and diffusive flux ji and obtain by (1.2.1)∑
i

ci = 1 .

It can be seen, that (1.2.2) can be rewritten in the form

(1.2.6) ∂t (%ci) + div (%ciυ) + div ji =
+
ci ,

such that the flux is split up into a convective part and a diffusive part.
For the calculations below, we will prefer to reformulate (1.2.6) with help of (1.2.5) as

(1.2.7) %ċi + div ji =
+
ci .

The classical approach to mixture theory claims balance laws of momentum, angular
momentum and energy for each of the constituents (see Truesdell [94] chapter 5). However,
for the present approach which will be applied to mixtures of (almost) immiscible fluids and
multiphase systems, we are only interested in the particular properties of the whole mixture,
which is in particular the balance laws of total momentum and total energy. For the balance
law of total momentum, assume the existence of an effective total Cauchy stress T and an
body force g such that

∂t (%υ) + div (% (υ ⊗ υ))− divT = g

The total angular momentum is conserved if it is assumed that T = TT . Furthermore, we
assume the existence of an internal energy density u and a total energy density E := u+ 1

2 |υ|
2

such that
∂t (%E) + div (%Eυ)− div (Tυ)− div jE = s

for some “diffusive” energy flux jE and some external energy supply s. Note that in absence
of external body heating, s = g · υ. We introduce

(1.2.8) h := Tυ + jE
as the total energy flux and arrive at the final set of equations

∂t%i + div (%iυ) + div (%iui) =
+
ci(1.2.9a)

∂t%+ div (%υ) = 0(1.2.9b)
∂t (%υ) + div (% (υ ⊗ υ))− divT = g(1.2.9c)

∂t (%E) + div (%Eυ)− divh = s .(1.2.9d)

Equation (1.2.9d) is called the first law of thermodynamics.
It is important that due to definition (1.2.8), h is not the heat flux in classical consid-

erations. Remark that the validity of equations (1.2.9d) and (1.2.9c) was postulated as a
physical axiom. It is based on the observation that the derivation of the abstract equations
(1.2.9c), (1.2.9d) is valid for any continuum on the macro scale and makes no assumption
on the molecular, mesoscopic or macroscopic structure of the medium under consideration.
Internal interactions between the constituents, as they are missing up to now, will enter the
system through the constitutive equation for the internal energy. By that way, they finally
enter the constitutive equations for the Cauchy stress T, reaction rates

+
ci and diffusive fluxes
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ji (see section 1.4 below). For further evidence, refer to the book by Truesdell [94, chapter
5] where (1.2.9c), (1.2.9d) are explicitly re-derived for mixtures.

Finally, for the remainder of this chapter and also for the rest of this thesis, the energy
source will be given by

(1.2.10) s = g · υ .

1.3. The Entropy

So far, everything is crystal-clear. Troubles begin, as they always do, when we
leave the palace of pure mechanics and break the seal of Suleiman on the jar
of that great Ifrit, the entropy[...]. (Truesdell [94])

Not only in continuum mechanics and continuum thermodynamics but also in classical
thermodynamics, the introduction of entropy is very delicate. One reason is that the definition
of entropy is often based on the concepts of heat or temperature which are by themselves
not independent on the concept of entropy. Another classical way to motivate the entropy
stems from statistical mechanics. Thus, also in scholar textbooks the way of introducing
the entropy is not uniform and often confusing. In literature on continuum thermodynamics
there is no common opinion on the definition of entropy nor on the form of the second law of
thermodynamics and how the second law is related to the balance of energy.

The author does not want to go into the details of the different approaches how entropy
can be defined properly, since this is not topic of this thesis. An approach which is well
suited for continuum mechanics was given by Callen [20] and a recent theoretical work by
Lieb and Yngvason1 [66] suggests that this postulated approach is reasonable. Thus, in order
to introduce entropy, we follow Callen [20] who postulated the following properties of the
entropy of a system:

Claim 1.1. For any physical system which can be described by the equations of continuum
mechanics (1.2.9) there exists a variable η, which we call entropy, with the following properties:

• η = η̃(E, (yi)i) is a function of energy density E and all other variables of state yi
(such as %, υ, %i,. . . ). The choice of these variables of state depends on the particular
system of interest.
• η̃ is strictly monotone increasing in E for fixed yi such that η̃(·,y) is invertible and
E = Ẽ(η,yi) and
• 0 ≤ ϑ := ∂E

∂η is strictly increasing with E for fixed yi, where ϑ is called the temper-
ature of the system. Note that the case ϑ = 0 is physically not attainable, but has
to be comprised in the theory.
• η coincides with classical entropy in case that the system is in thermodynamical
equilibrium.

Below, the existence of η = η̃(E,yi) with the above properties will be assumed as physical
axiom.

Of course, we have to impose some restrictions on the variables yi: From classical con-
tinuum mechanics we know that the total energy

´
V E of a system of volume V should only

depend on extensive variables. These are variables that add up if two systems are combined to
a single systems. Examples are total mass, total volume and entropy. The yi in E = Ẽ(η,yi)
should be related to extensive variables in classical thermodynamics. For example, density
is related to total mass via

´
V %, velocity is related to total momentum via

´
V %υ. For the

1In 1999, Lieb and Yngvason [66] where able to define entropy independent on “temperature” and “heat”,
using only mechanical quantities. In their setting, entropy is an order parameter for the partially ordered set
of thermodynamical states of an arbitrary physical or chemical system. The partial order on that set is the
“adiabatic accessibility”. However, they only treated the case of thermodynamical equilibrium. The continuum
and non-equilibrium case is still an open problem in their setting.
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context of this thesis we only impose the following condition on the yi namely, they have to
evolve due to a relation of the form

%ẏi + div jy,i =
+
yi(1.3.1)

Note that equations
ẏi + div jy,i =

+
yi

can also be transformed into the form (1.3.1).
Due to the dependence of η on such yi, it is reasonable to assume that its evolution in

time is described by

∂t (%η) + div (%ηυ) + div
q

ϑ
=
ξ

ϑ
with some entropy flux ϑ−1q and some rate of entropy production ϑ−1ξ, where ϑ is the
temperature introduced in claim 1.1. Explicit forms for q and ξ will be given below in (1.4.7)
and (1.4.8). Due to the assumption η = η̃(E, (yi)i) together with (1.3.1), q and ξ are not
independent but are already given by η̃(·) and the evolution of yi.

The major point in section 1.4 will be that the theory could also be built up the other
way round: The evolution of yi can be completely determined by η̃(·), ξ and q. This will be
the main point in the discussion in the next section.

For the moment, let us note that E and η as well as other variables may not only be
defined at the interior of a finite positive volume but may sometimes also be defined on lower
dimensional submanifolds. For example, considering some bounded region Q in R3, the total
energy of the system in Q may also depend on the value of %|∂Q. Such a physical problem
will require treatment of surface energy and surface entropy in section 1.7.

1.4. The Assumption of Maximal Rate of Entropy Production

Following Callen [20], we assume the existence of a specific entropy η given by claim 1.1.
According to last section, we assume the dependence E = Ẽ(η,y), y = (yi)i=0,...,M , with all
yi satisfying (1.3.1) and

y0 := υ and y1 := % .

Since E = 1
2 |υ|

2 + u, this basically implies a constitutive assumption on u:

(1.4.1) u = ũ(η,y1, . . . ,yM ) .

Using the definition of ϑ from claim 1.1, the material derivative of E is

(1.4.2) %Ė = %ϑη̇ +
M∑
i=0

∂Ẽ

∂yi
ẏi

and (1.4.2) is the first law of thermodynamics for the particular choice of state variables.
Since all yi satisfy (1.3.1) and E satisfies (1.2.9d), equation (1.4.2) can be brought into

the specific form

(1.4.3) %η̇ − div
q

ϑ
=

1
ϑ
ξ .

In what follows, the general form of q and ξ will be derived (see equations (1.4.7),(1.4.8)).
Remark that it is also possible to state the existence of q and ξ such that (1.4.3) would enter
as a fundamental assumption2. However, since (1.4.3) is obtained from (1.4.2), there is no
need to claim (1.4.3) as a fundamental assumption.

2As stated, (1.4.3) can be derived from the energy balance by mathematical conversion of the equation.
Note that from a different point of view, considering entropy as an extensive variable and η as a physical
quantity measuring entropy/mass, it is clear that η hast to obey an integral evolution equation of the form

d

dt

ˆ
V

%η +

ˆ
∂V

%ηυ · n−
ˆ
∂V

q

ϑ
· n =

ˆ
V

1

ϑ
ξ
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According to the last section, q/ϑ represents an entropy flux which has to be specified
according to our calculations and ξ/ϑ represents de novo entropy production per time due to
dissipative (irreversible) processes. Although this is physically slightly improper, ξ will be de-
noted as the rate of entropy production . In order to satisfy the second law of thermodynamics
locally, assume

ξ ≥ 0

everywhere and for all times. In view of (1.4.3) we will demonstrate in the next subsection,
that q is the heat flux. In section 1.8, in particular in equation (1.8.5), we will see that ξ can
be interpreted as (irreversible) heat production. According to [85], ξ is assumed to take the
form

(1.4.4) ξ =
∑
α

Jα · fα(A) .

In this context, Jα represent the thermodynamical fluxes and A = (Aα) the thermodynamical
affinities3.

To specify the meaning of fluxes and affinities, remember that yi satisfy (1.3.1). The
variables yi and ∇yi are then denoted as thermodynamical affinities, which is: Every directly
measurable parameter of the system. On the other hand, jy,i and

+
yi or linear combinations of

them are denoted as thermodynamical fluxes. These are the parameters for which constitutive
equations have to be provided for the particular physical system of interest. There are at least
two such thermodynamical fluxes given via:

%%̇ = −%2divυ , %υ̇ = divT + g

with the “mass production”4 term

(1.4.5)
+
%= −%2divυ

and the momentum flux T. Note that g is given by external forcing.
Under the assumption that a balance law of form (1.3.1) holds for all variables yi, equation

(1.4.2) can be written as

%Ė = ϑ%η̇ +
M∑
i=0

∂Ẽ

∂yi

(
+
yi −div jy,i

)
= ϑ%η̇ +

M∑
i=0

∂Ẽ

∂yi
· +
yi +

M∑
i=0

(
∇ ∂Ẽ
∂yi

)
· jy,i −

M∑
i=−1

div

(
∂Ẽ

∂yi
jy,i

)
.(1.4.6)

On the other hand, %Ė is given by (1.2.9d). Explicit use of (1.2.9d) in the latter equation
and a reformulation leads to a balance equation for η of the form

%η̇ − div
q

ϑ
=
ξ

ϑ

for any volume V with boundary ∂V and normal vector n. The latter equation is equivalent to (1.4.3). We
therefore assume that (1.4.3) is indeed a fundamental equation of physics and that q and ξ are free variables
for which we have to find constitutive equations.

3According to [83, 85], the thermodynamical fluxes Jα are chosen in a way that they comprise all
dependent variables for which constitutive equations have to be derived. The thermodynamical affinities are
described in terms of the currently known (measurable) state of the system. More concrete: Aα depending on
(yi)i=0,...,M while Jα, also depend on (yi)i=0,...,M and (ji)i=0,...,M .

4Of course, (1.4.5) does not come up with a physical mass production. However, in view of (1.3.1) it
makes sense to call it that way.
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where (using s = g · υ by (1.2.10)) evidently:

h = q −
M∑
i=0

∂ε

∂yi
jy,i(1.4.7)

ξ =
∇ϑ
ϑ
· q −

M∑
i=1

∂Ẽ

∂yi

+
yi −

M∑
i=0

(
∇ ∂Ẽ
∂yi

)
· jy,i .(1.4.8)

The latter equation has two very important implications: First, since the fluxes can be as-
sumed to be independent on each other, the vanishing of h is equivalent to vanishing of all
fluxes on the right hand side. Similarly, ξ = 0 if and only if each of the products appearing
on the right hand side is zero.

Another important conclusion, which can be drawn from (1.4.8), is that q = κ∇ϑ for
all physically relevant settings. This is an important difference to other approaches which
used an additional entropy flux q = κ∇ϑ + jη and derived some restrictions which have to
be satisfied by jη (for example in Fabrizio et. al. [29]). However, Lieb and Yngvason [66]
showed that two bodies with internal energies u1 and u2 as well as entropies η1 and η2 which
can only interchange energy (and entropy) will do so, unless ∂u1

∂η1
= ∂u2

∂η2
. Assuming ẏi = 0 for

all i = −1, . . . ,M , it follows

%ϑη̇ = div q − ∇ϑ
ϑ
q + ξ

which means that q can be nothing else than heat transport.
Going back to equation (1.3.1) and (1.4.6) it is evident that affinities yi only change due

to fluxes jy,i and
+
yi. Since the production of entropy is only due to changes in the affinities

and in u, it follows that the rate of entropy production ξ is due to fluxes, i.e. ξ is zero if and
only if all fluxes are zero.

Assume now, that there is 1 < M ≤M such that
+
yi = ỹi(

+
y1, . . . ,

+
yM−1, jy,1, . . . , jy,M−1),

jy,i = j̃y,i(
+
y1, . . . ,

+
yM−1, jy,1, . . . , jy,M−1)

for i ≥M and that (1.4.6) can be brought into the form

%u̇ = ϑ%η̇ +
M−1∑
i=0

ai
+
yi +

M−1∑
i=0

bi · jy,i

−
M∑
i=0

div
(
∂ε

∂yi
jy,i

)
+ div h̃

((
+
yi

)
i=1,...,M

,
(
jy,i
)
i=1,...,M

)
We then conclude

h = q −
M∑
i=0

∂ε

∂yi
jy,i − q̃

((
+
yi

)
i=1,...,M

,
(
jy,i
)
i=1,...,M

)

ξ =
∇ϑ
ϑ
· q −

M−1∑
i=1

ai
+
yi −

M−1∑
i=0

bi · jy,i .

Maximization of ξ. The approach by Rajagopal and Srinivasa developed in [85] is based
on the assumption that the rate of entropy production is given by a non-negative function ξ̃
such that the second law of thermodynamics is automatically fulfilled:

(1.4.9) ξ = ξ̃(Jα,A) ≥ 0

The choice of such a constitutive relation is not an easy task and requires knowledge on the
dissipative processes going on in the particular material under consideration.
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The method introduced in [85] is based on the assumption that for a careful choice of the
constitutive relation (1.4.9), the constitutive equations for the thermodynamical fluxes (Jα)α
in terms of the affinities A = (Aα)α can be derived by maximizing ξ̃ under the constraint
that (1.4.9) holds with ξ given by (1.4.4). In particular, the constraint reads

(1.4.10) ξ̃(Jα,A) =
∑
α

Jα · fα(A) .

According to [85] ξ̃ can be maximized with respect to either Jα or Aα but they give strong
physical arguments that maximization with respect to the fluxes is preferable: The main
argument is that it is possible that the entropy production vanishes although the affinities
do not vanish. As an example, one may consider an Eulerian fluid where ∇υ 6= 0 but the
deviatoric part of the stress tensor vanishes (we will come back to this point in the next
section). On the other hand, non vanishing fluxes always lead to dissipation. However, in the
present setting, maximization with respect to the fluxes is crucial, as all results appear very
naturally. This would not be the case using the affinities!

Since we will maximize with respect to the thermodynamical fluxes, the maximization
problem reads

max
Jα

ξ̃ (Jα, Aα) provided (1.4.10) holds.

Written as a maximization problem, these conditions read

(1.4.11)
∂ξ̃

∂Jα
+ λ

(
∂ξ̃

∂Jα
− fα(A)

)
= 0 ⇔ fα(A) =

1 + λ

λ

∂ξ̃

∂Jα
∀α .

In the present work, only the simple quadratic case for ξ̃ will be studied

ξ̃(Jα) =
∑
α

1
γα
|Jα|2

which yields together with (1.4.11)

(1.4.12) Jα = γαfα (A) .

We conclude this section by summarizing the main ideas: Based on a constitutive as-
sumption for the entropy η = η̃(ε,y) or equivalently for the internal energy ε = ε̃(η,y), we
derive an explicit formula for the entropy production ξ in terms of thermodynamical fluxes
and affinities under the physical assumption that (1.2.9d) and (1.4.2) describe the same phys-
ical setting. Using an other constitutive assumption for the dependence of ξ = ξ̃(Jα) on the
fluxes, we derive constitutive equations for these fluxes by maximizing ξ̃ with respect to the
constraint ξ̃ = ξ. In particular, we assume that the dependence of ξ̃ on Jα is quadratic.
Throughout this thesis, above method will be called the assumption of the rate of entropy
production (MREP-assumption).

1.5. Application to a Newtonian Fluid

We will now, as an example, demonstrate how the Navier-Stokes-Fourier equations can
be obtained in the framework introduced above.

We denote by m := 1
3trT the mean normal stress and by Td := T−mI the deviatoric free

part of the Cauchy stress. Let Dυ := 1
2

(
∇υ + (∇υ)T

)
be the symmetric gradient of υ and
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Ddυ := Dυ − 1
3divυ I its deviatoric free part. The constitutive equations for Navier-Stokes-

Fourier Fluids then read

m+ p(%, η) =
ν(%, η) + 3λ(%, η)

3
divυ ⇔ divυ =

3
ν(%, η) + 3λ(%, η)

(m+ p(%, η))

Td = ν(%, η)Ddυ ⇔ Ddυ =
1

ν(%, η)
Td(1.5.1)

h = k(%, η)∇ϑ+ Tυ ⇔ ∇ϑ =
1

k(%, η)
(h− Tυ)

Although the equivalence of the two columns is trivial, note that there is a physical difference
whether (Ddυ, divυ,∇ϑ) are expressed in terms of (T,m+ p,h) or vice versa.

However, choosing ε = ε̃(η, %) and E = Ẽ(%,υ, η) = ε̃(%, η) + 1
2 |υ|

2 we will calculate h
and ξ for general single constituent fluids. Equation (1.4.2) in form of (1.4.6) becomes

%Ė = %ϑη̇ + %
∂ε̃

∂%
%̇+ %

∂Ẽ

∂υ
υ̇

= %ϑη̇ − pdivυ − T · ∇υ + div (Tυ) ,

where p = %2 ∂ε̃
∂% , which yields together with (1.2.9c) and (1.2.9d) for h and ξ:

ξ =
1
ϑ

[
Td · Ddυ + (m+ p) divυ + q∇ϑ

]
(1.5.2)

h = q + Tυ .(1.5.3)

Note that the constitutive equation for h is already precisely what we would have expected. In
case of a Newtonian fluid, comparison of the last equation with (1.5.1) yields q = k(%, η)∇ϑ.
Together with equations (1.5.1), the expression for ξ can be brought into the two forms

ξ̃(Dd, divυ,∇ϑ) = ν(%, η)
∣∣∣Ddυ

∣∣∣2 +
ν(%, η) + 3λ(%, η)

3
(divυ)2 + k(%, η) |∇ϑ|2(1.5.4)

ξ̃(Td, (m+ p), q) =
1

ν(%, η)

∣∣∣Td∣∣∣2 +
3

ν(%, η) + 3λ(%, η)
(m+ p)2 +

1
k(%, η)

|q|2 .(1.5.5)

The first expression for ξ is given in terms of affinities while the second is given in terms of
fluxes. Remark that the first equation claims that the vanishing of entropy production is due
to the vanishing of either the coefficients ν, λ and k or due to the vanishing of Ddυ, divυ
and ∇ϑ, while second equation says that ξ vanishes if and only if Td, (m+ p) and q vanish.
Following Rajagopal and Srinivasa, the second equation is more reasonable from the physical
point of view since Ddυ 6= 0 might hold although there is no dissipation. Dissipation due to
tangential shear stresses vanishes if and only if Td = 0, which is the more general condition.
Similar arguments also hold for divυ and (m+ p) as well as for q and ∇ϑ. It is clear that q
and not ∇ϑ is the physical cause for a local production of entropy.

Note that it is possible to skip through the above calculations in the opposite way: Both
relations (1.5.4), (1.5.5) can be obtained by one dimensional measurements where the compo-
nent Ti,j can be measured depending on Di,j while (1.5.2) is obtained from simple calculations.
Thus assume that (1.5.5) holds as a constitutive assumption for the entropy production. It
then follows from the previous subsection that (1.5.1) hold as a special application of (1.4.12).

The main difference between the two approaches to Navier-Stokes-Fourier fluids is, that
the latter one can be easily generalized to more complicated settings (as we will see below),
and it is only based on two constitutive equations for ε̃ and ξ̃. It is a further advantage of
above formalism that it is also easy to derive Euler’s equation: Neglecting heat transport (i.e.
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q = 0), we obtain for ξ and ξ̃

ξ = Td · Ddυ + (m+ p) divυ(1.5.6)

ξ̃(Td, (m+ p)) =
1

ν(%, η)

∣∣∣Td∣∣∣2 +
3

ν(%, η) + 3λ(%, η)
(m+ p)2 .(1.5.7)

The difference between Euler and Navier-Stokes fluids is, that in the Euler case dissipative
tangential shear stresses vanish: Td = 0. In classical derivations, this is achieved by setting
ν = 0. However, from the physical point of view, it makes more sense to directly apply Td = 0
to (1.5.6)-(1.5.7) to end up with the constitutive equation

T =
(
−p+

ν(%, η) + 3λ(%, η)
3

divυ
)

I

1.6. Isolated Systems and Navier-Slip Condition

Equation (1.4.3) only reflects dissipative processes which happen in the interior of a ho-
mogeneous medium. There is so far no way to account for interactions between bodies nor for
processes on the boundary of the fluid domain (surface processes). The term ξ/ϑ in (1.4.3)
only reflects local dissipation in the inner part of the domain of interest (the bulk) while we
may assume that that there are also dissipative processes on the boundary. In fact, the total
entropy S and the total gain of entropy d

dtS of the body Q with boundary Γ = ∂Ω and outer
normal vector nΓ are given by

S =
ˆ
Q
%η

d

dt
S ==

ˆ
Q
%η̇ =

ˆ
Q

(
div

q

ϑ
+
ξ

ϑ

)
=
ˆ

Γ

q

ϑ
· nΓ +

ˆ
Q

ξ

ϑ

and the second law of thermodynamics can be written in its integral form

(1.6.1)
d

dt
S ≥ 0

In what follows, it will often be useful to consider thermodynamically isolated systems in the
following sense:

Definition 1.2. The volume V is
(1) Thermodynamically closed if υ · nΓ = 0 and ji · nΓ = 0 on Γ for all i.
(2) Energetically closed if h · nΓ = 0 on Γ.
(3) Thermodynamically isolated if 1. and 2. and additionallyˆ

Q
g · υ = 0 .

(4) Almost thermodynamically isolated if only 1. and 2. hold, i.e. ifˆ
Q
g · υ 6= 0 .

Simple Newtonian Fluid. Under the assumption of a single component Newtonian
fluid, equations (1.4.8) and (1.4.7) read

ξ = T · ∇υ +
q

ϑ
· ∇ϑ+ pdivυ(1.6.2)

q = h− Tυ .(1.6.3)

ξ =
(
Td · Dd +

q

ϑ
· ∇ϑ+ (m+ p) divυ

)
(1.6.4)
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For any vector a let an := (a · nΓ) be the normal part of a on the boundary Γ and
aτ := a− annΓ the tangential part. Define further Ť := TnΓ. Then, (1.6.3) yields

(1.6.5) q · nΓ = h · nΓ − Ťn · υn − Ťτ · υτ .

The assumption of thermodynamical isolation implies

h · nΓ = 0 and υn = 0 .

However, −Ťτ · υτ is due to internal processes and there is no way of influencing them
from outside. Therefore, the claim of positive entropy production in (1.6.1) reads

(1.6.6) Ξ :=
d

dt
S(Q) = −

ˆ
Γ
ϑ−1Ťτ · υτ +

ˆ
Q

ξ

ϑ

!
≥ 0

and yields two independent claims

(1.6.7)
ˆ
Q

ξ

ϑ
≥ 0 and −

ˆ
Γ
ϑ−1Ťτ · υτ ≥ 0 .

We already handled ξ and obtained Navier-Stokes-Fourier equations (1.5.1).
However, up to this point we have not developed a framework which allows us to treat

the second term but it is obvious that

(1.6.8) Ťτ = −γυτ

would fulfill the claim: This condition is precisely the Navier-Slip boundary condition!
Note that Ťτ = 0 and υτ = 0 also satisfy (1.6.7)2. These are the perfect slip and the no

slip boundary conditions. However, the perfect slip and the no slip condition both come up
with q ·nΓ = 0 in (1.6.5), while the Navier-Slip comes up with q ·nΓ ≥ 0 which represents a
transformation of kinetic energy into thermal energy due to friction on the boundary.

In the next section, we will introduce a general framework for the derivation of thermo-
dynamically consistent boundary conditions.

1.7. Adding Boundary Conditions

We may face situations in which the surface of the domain or lower dimensional interior
manifolds may be assigned a free energy. At the same time, this means they can be assigned
an internal energy and an entropy as well. In what follows, the focus will lie on bounded
domains Q ⊂ Rn with a boundary Γ := ∂Q with outer normal vector nΓ. It will be assumed
that Q is almost thermodynamically isolated in the sense of definition 1.2, except for an
external body force g and external energy supply g · υ.

1.7.1. Short remark on derivatives on surfaces. On the surface, we may define the
local gradient ∇τ which is the transformation of ∇2 (the gradient in R2) under a transforma-
tion to Γ. In particular, if for any function a, ∂na := ∇a · nΓ denotes the normal component
of the gradient ∇a on Γ, it holds

∇τa := a− nΓ∂na = (∇a)τ .

For any vector f τ tangential to Γ, we may define the divergence

divτf τ := tr∇τf τ .

Note that the Laplace-Beltrami operator is then defined by

∆τf = divτ∇τf .
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1.7.2. Surface energy EΓ and surface entropy ηΓ. In what follows, the influence of
an additional surface energy on the boundary conditions will be investigated. Surface energy
is defined on the surface Γ and is assumed to be a property of that surface (i.e. not of the
bulk). Therefore, it is assumed that surface energy is not subject to convective transport. For
the moment, we will only care about the boundary Γ and not about interior submanifolds in
the inner of Q, for example such as membranes. The reason is, that once such calculations are
understood on the outer boundary, it is easy to apply this method also to inner boundaries
as it will be done in chapters 6 and 7.

According to the considerations above, we assume the existence of some surface entropy
ηΓ(EΓ, z) which depends on some variables z = (zi)i=1...m defined on the surface.

We assume for any zi a relation

(1.7.1) ∂t(%zi) + div (%ziυτ ) + divτf i =
⊕
zi

or, in some cases,
∂tzi + divτf i =

⊕
zi ,

if zi is supposed to be immobile. Like for the bulk entropy η, it is again assumed that the
surface entropy ηΓ is strictly monotone increasing in EΓ such that ηΓ(·, z) is invertible for all
z and we obtain

EΓ = ẼΓ(ηΓ, z) .
We furthermore assume that the surface energy EΓ evolves due to

∂tEΓ − divτhΓ =
⊕
E .

Note that EΓ is defined on Γ (and therefore is not moving) and it is not a priori clear that
there should be any convective transport involved. For ηΓ, we end up with an expression

∂tηΓ =
ξΓ,0

ϑΓ
+ divτ

qΓ

ϑΓ
,

where ϑΓ =
(
∂EΓ
∂ηΓ

)
is the surface temperature. Here, ξΓ,0 represents the rate of entropy

production on the surface and qΓ is the surface entropy flux. Note that in general

ηΓ 6= η|Γ and EΓ 6= E|Γ ,
which means, that surface energy and surface entropy should not be mixed up with the bulk
energy and bulk entropy close to the boundary! Therefore, in general also ϑΓ 6= ϑ|Γ. In fact,
η and ηΓ even have different physical units, which is obvious if we define the total entropy via

S(Ω) :=
ˆ

Ω
%η +

ˆ
Γ
ηΓ .

The time derivative of the last equation yields:
d

dt
S(Ω) :=

ˆ
Q
%η̇ +

ˆ
Γ
∂tηΓ =

ˆ
Q

ξ

ϑ
+
ˆ

Γ

(
q

ϑ
+
ξΓ,0

ϑΓ
+ divτ

qΓ

ϑΓ

)
(1.7.2)

Since there is no exchange of entropy with the environment, q · nΓ is not a transport term
through the boundary but contributes to the development of surface entropy. In particular,
defining ξΓ := ϑΓ

ϑ q · nΓ + ξΓ,0 we obtain the second law in integral formˆ
Q

ξ

ϑ
+
ˆ

Γ

ξΓ

ϑΓ
≥ 0 .

In the next section, the latter relation will be split up into the two local conditions

ξ ≥ 0, ξΓ ≥ 0 ,

and it will be discussed how constitutive equations can be obtained from these two claims in
the following two sections.
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Finally, note that the total energy E of the system is given by

E =
ˆ
Q
%E +

ˆ
Γ
EΓ .

Since Q is assumed to be thermodynamically Isolated in the sense of definition 1.2 except for
g · υ 6= 0, the global balance of energy readsˆ

Q
g · υ =

d

dt
E =
ˆ
Q
%Ė +

ˆ
Γ
∂tEΓ

=
ˆ

Γ

(
h · nΓ + divτhΓ +

⊕
E

)
+
ˆ
Q
g · υ

=
ˆ

Γ

(
h · nΓ +

⊕
E

)
+
ˆ
Q
g · υ .

The local version of the latter equality is restricted to Γ and reads

(1.7.3) h · nΓ +
⊕
E = 0 .

1.7.3. Local formulation. Note that equation (1.7.2) only yields a global expressions
for the total entropy production. However, it is also interesting to look at local versions of
these equations. In order to get local equations, one can cover Q byM smaller sets (Vi)i=1...M

with outer normal ni such that Q =
⋃
i Vi but Vi ∩ Vj = ∅ for i 6= j.

Similar to (1.7.2), for each i one gets:

(1.7.4)
d

dt
S(Vi) =

ˆ
Vi

(
div

q

ϑ
+
ξ

ϑ

)
=
ˆ
∂Vi∩Γ

q

ϑ
· nΓ +

ˆ
∂Vi\Γ

q

ϑ
· ni +

ˆ
Vi

ξ

ϑ

and it is easy to see that ∑
i

ˆ
∂Vi\Γ

q

ϑ
· ni = 0 .

Thus, equations (1.7.4) can be rewritten as

(1.7.5)
d

dt
S(Vi) = Ξ(Vi) +

ˆ
∂Vi\Γ

q

ϑ
· ni

where Ξ(Vi) is the local rate of entropy production.
The second law of thermodynamics in its localized version reads

Ξ(Vi) ≥ 0

and by increasing M and switching to arbitrarily small Vi it will be possible to find local
constitutive equations.

1.7.4. Maximization of Entropy Production Rate . As explained in section 1.4,
the method introduced in [85] is based on the observation that for a careful choice of the
constitutive relation (1.4.9), constitutive equations for the thermodynamical fluxes Jα in terms
of the affinities Aα can be derived by maximizing ξ̃ with respect to the constraint that (1.4.9)
holds with ξ being given by (1.4.4). The maximization problem reads

max
Jα

ξ̃ (Jα, Aα) provided (1.4.9) holds.

Since the rate of entropy production splits up into local rates of entropy production in the
inner of Q and on the boundary Γ, one could proceed following section 1.4 with an additional
function ξΓ on the boundary. This ξΓ will be assumed to have the form

(1.7.6) ξΓ =
∑
β

Jβ,Γ · fβ,Γ(BΓ)
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in accordance with equation (1.4.4), where Jβ,Γ are the thermodynamical fluxes on Γ and BΓ

is the vector of all relevant affinities on the boundary. We assume that there is a finite number
of fluxes on both Q and Γ, which is 1 ≤ α ≤Mα <∞ and 1 ≤ β ≤Mβ <∞.

As the whole discussion above was build up in an integral framework, it is reasonable to
continue in that spirit.

Theorem 1.3. [57, Theorem 1.6: simplified version fitted to problems in this article]
Given two Hilbert spaces X,Y with f : X → R a Fréchet differentiable nonlinear convex
functional and g : X → Y continuously Fréchet differentiable suppose x∗ is a solution to

f(x∗) = min
x∈X

f(x)

g(x∗) = 0

there exists a Lagrange multiplier λ ∈ Y such that x∗ is a critical point of

f(x) + 〈λ , g(x)〉Y
which is f ′(x∗) + λ ◦ g′(x∗) = 0 in X.

Choosing f = Ξ̃ ≥ 0 with some constraints relating Ξ̃ and Ξ = d
dtS(Ω) in some reasonable

way, we are able to derive constitutive equations for the thermodynamical fluxes both in the
bulk and on the boundary. In what follows, we assume that the rate of entropy production
on Ω and Γ is locally given by ξ̃ and ξ̃Γ. In particular, ξ̃ and ξ̃Γ depend on the fluxes via:

ξ = ξ̃ ((Jα)α) , ξ = ξ̃
(

(Jβ,Γ)β
)
.

The Jα and Jβ,Γ may be scalars or vectors or tensors but in any case, there are M̃α and M̃β

such that we can assume with loss of generality

(Jα)α ∈ L
2((0, T )×Q)M̃α , (Jβ,Γ)β ∈ L

2((0, T )× Γ)M̃β .

We then maximize
Ξ̃ :=

ˆ
Ω
ξ̃ +
ˆ

Γ
ξ̃Γ

in L2((0, T )×Q)M̃α × L2((0, T )× Γ)M̃β with respect to the local constraints

(1.7.7) ξ̃ =
∑
α

Jα · fα(A) and ξ̃Γ =
∑
β

Jβ,Γ · fβ,Γ(BΓ) ,

which means ξ̃ and ξ̃Γ are also given by the right hand side of equations (1.4.4) and (1.7.6).
The maximization problems can be solved using theorem 1.3, which means: find λ1 and λ2

such that
F := Ξ̃(Jα, Jβ,τ )−

ˆ
Ω
λ1

(
ξ − ξ̃ (Jα)

)
−
ˆ

Γ
λ2

(
ξΓ − ξ̃Γ(Jβ,τ )

)
attains a critical point.

According to theorem 1.3 the latter problem is equivalent with finding λ1,2 such that
ˆ
Q

[
∂ξ̃

∂Jα
+ λ1

(
∂ξ̃

∂Jα
− fα(A)

)]
φ1 +

ˆ
Γ

[
∂ξ̃Γ

∂Jβ,Γ
+ λ2

(
∂ξ̃Γ

∂Jβ,Γ
− fβ,Γ(BΓ)

)]
φ2 = 0

for all φ1 ∈ L2(Q) and φ2 ∈ L2(Γ). The previous subsection suggests to split the global max-
imization process up into purely local maximization problems. However, note that the local
maximizer is also a global one. Therefore, assume that above Lagrange problem decouples
into a problem on the boundary and a problem on the interior of Q. If ξ and ξΓ are given by
equations (1.4.4) and (1.7.6), the interior problem reads locally

(1.7.8)
∂ξ̃

∂Jα
+ λ1

(
∂ξ̃

∂Jα
− fα(A)

)
= 0 ⇔ fα(A) =

1 + λ1

λ1

∂ξ̃

∂Jα
∀α .
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and similarly for the boundary problem:

∂ξ̃Γ

∂Jβ,Γ
+ λ1

(
∂ξ̃Γ

∂Jβ,Γ
− fβ,Γ(BΓ)

)
= 0 ⇔ fβ,Γ(BΓ) =

1 + λ1

λ1

∂ξ̃Γ

∂Jβ,Γ
∀α .

In the present work, only the simple quadratic case for ξ̃ and ξ̃Γ will be studied

ξ̃(Jα) =
∑
α

1
γα
|Jα|2 , ξ̃Γ(Jβ,Γ) =

∑
β

1
γβ,Γ

|Jβ,Γ|2

which yields together with (1.7.8)

(1.7.9) Jα = γαfα (A) , Jβ,Γ = γβ,Γfβ,Γ(BΓ) .

Remark 1.4. In what follows, the localization method above will not be used any more.
Instead, for any application, the equation for d

dtS(Q) will be derived including all entropy
production terms on the whole domain and on the boundary. Having in mind above local-
ization method, the constitutive equations will be derived from equations (1.7.8) and (1.7.9)
without caring about the details.

1.7.5. Example: Navier-Stokes-Fourier System with Navier-Slip Boundary Con-
dition. For the Navier-Stokes-Fourier fluid with Ξ given by (1.6.6) we immediately obtain
ξΓ = −Ťτ · υτ while ξ is prescribed by (1.6.4). With

ξ̃(Td, (m+ p), q) =
1

ν(%, η)

∣∣∣Td∣∣∣2 +
3

ν(%, η) + 3λ(%, η)
(m+ p)2 +

1
k(%, η)

|q|2 .

and
ξ̃Γ(Ťτ ) =

1
γ

∣∣Ťτ ∣∣2
obtain

m+ p(%, η) =
ν(%, η) + 3λ(%, η)

3
divυ

Td = ν(%, η)Dd

h = k(%, η)∇ϑ+ Tυ

as well as (1.6.8):
Ťτ = −γυτ .

Note that one could also have directly set υτ = 0, which would be the no-slip boundary
condition, or Ťτ = 0 which is known as the perfect slip boundary condition. Both would be
thermodynamically consistent.

1.8. Formal A Priori Estimates and Remarks on Existence and Regularity

The modeling method introduced above provides the resulting equations with a particular
feature that is of great mathematical interest. To see this, take a look at equation (1.4.2)
which reads

(1.8.1) %Ė = %ϑη̇ +
M∑
i=0

∂Ẽ

∂yi
ẏi

and which yields the evolution in time for an energy of the form E = Ẽ(%,υ, η,y) = Ẽ(η,y)
with all yi satisfying (1.3.1). We use (1.4.3) and (1.2.9d) with s = 0 to reformulate the system
in

M∑
i=0

∂Ẽ

∂yi
ẏi = −div q − ξ +∇ϑ · q

ϑ
− div q = −div (q + h)− ξ̂
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with

(1.8.2) ξ̂ := ξ −∇ϑ · q
ϑ
≥ 0 .

Thus, by inserting the latter equation in (1.8.1) and integration over the whole domain Q, we
obtain

d

dt

ˆ
Q
%E ≤

ˆ
Q
ξ −
ˆ

Γ
h · nΓ .

Assuming isolation of the system, which is h · nΓ = 0, the latter equation reads
d

dt

ˆ
Q
%E ≤

ˆ
Q
ξ .

In particular, for any time t > 0 we have

(1.8.3)
ˆ
Q
%(t)E(t) ≤

ˆ
Q
%(0)E(0) +

ˆ
Q
ξ .

For suitable estimates on ξ, which may stem directly from ξ or from estimates on ξ̃, there
is an immediate estimate on

´
Q %(t)E(t). From knowledge of E one may thus derive some

suitable a priory estimates of the solution.
There is yet a better way in case of isothermal systems: From classical thermodynamics,

the variable

(1.8.4) ψ := E − ϑη
is known as the system’s free energy. According to classical thermodynamics5, ψ does no
longer depend on η but on ϑ such that we have

ψ = ψ̃(%,υ, ϑ,y) = ψ̃(ϑ,y) .

A short calculation yields

%ψ̇ = %Ė − ϑ%η̇ − %ηϑ̇
= −div (q + h)− ξ̂ − %ηϑ̇+ υ · g ,

with ξ̂ given by (1.8.2). The latter equation shows that for a thermodynamically isolated
(h · nΓ = q · nΓ = 0) and isothermal (ϑ̇ = 0) system,

(1.8.5)
ˆ
Q
%(0)ψ(0) =

ˆ
Q
%(t)ψ(t) +

ˆ
Q
ξ̂ −
ˆ
Q
υ · g .

Physically, υ · g is an external supply of free energy, while ξ̂ is the loss of free energy due to
dissipative processes and can be interpreted as irreversible heat production.

Thus, knowledge of the dependence of ψ and ξ̂ on (yi)i and on the thermodynamical
fluxes jyiand

+
yi would immediately yield a priory estimates on these quantities. Note in this

context, that for isothermal systems, ψ is given by E through (1.8.4). The form of ψ and
ξ̂ also yields information on suitable Sobolev spaces in which one should seek for solutions.
However, these estimates are usually not good enough for uniqueness, but only for existence
of solutions. The problem of higher regularity remains with the mathematician and the field
of regularity theory.

5In classical thermodynamics, this is justified by the first law

dU = TdS − pdV + µdN

and the transformation Ψ = U − TS which yields

dΨ = SdT − pdV + µdN .

However, it is not clear that such reasoning would guaranty the independence of ψ on η but above argumen-
tation with material derivatives suggests that this is at least true from mathematical point of view.
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Before going on with the explanation how mathematicians can get these a priory estimates,
there are some important remarks

Remark 1.5.
(1) Equations (1.8.3) and (1.8.5) only hold for systems with the constitutive equations

derived via the MREP-assumption. These estimates are no longer valid for any devi-
ation of the resulting constitutive equations from the constitutive equations obtained
using the MREP-assumption.

(2) As soon as the equations obtained via the MREP-assumption are slightly modified,
the mathematician may again run into serious problems in finding appropriate a
priory estimates.

(3) Above calculations are not to be taken as rigorous mathematical proof. However, we
will now see how they are related to rigorous mathematics.

It is by no means clear that (1.8.3) and (1.8.5) have a mathematical meaning, i.e. that
they can be taken for true a priory estimates. However, the constitutive equations for yi
following the equation (1.3.1)

%ẏi + div jy,i =
+
yi

often read6

jy,i = −Ji∇
δE

δyi
,

+
yi= −Ci

δE

δyi
.

Thus, testing the equation by δE
δyi

will result in

%ẏi
δE

δyi
+ Ji

∣∣∣∣∇ δEδyi
∣∣∣∣2 + Ci

∣∣∣∣ δEδyi
∣∣∣∣2 = 0

and summing up over all i assuming E = E(y) yields

%Ė +
∑
i

[
Ji

∣∣∣∣∇ δEδyi
∣∣∣∣2 + Ci

∣∣∣∣ δEδyi
∣∣∣∣2
]

= 0 .

This is still no rigorous proof but it is the idea behind some natural approaches to existence
proofs in mathematics. As an example, one may consider the studies on Cahn-Hilliard-Navier-
Stokes systems by Abels and co-workers [3, 2, 4].

1.9. Summary

We introduced the well known fundamental (but abstract) balance equations of contin-
uum mechanics. The assumption of rate of entropy production maximization (MREP) by
Rajagopal and Srinivasa [85] was introduced as a modeling tool for the derivation of thermo-
dynamically consistent constitutive equations for diffusive fluxes, reaction rates, Cauchy stress
and energy flux. It was shown that this method only requires knowledge on the dependence
of the energy on the free variables and knowledge on the dependence of the rate of entropy
production on the thermodynamical fluxes (see definition in section 1.4).

Based on observations for the Newtonian fluid with Navier-slip boundary conditions, the
MREP-assumption was generalized to an integral setting in order to be used for the derivation
of boundary conditions. This was done by calculating the total rate of entropy production

6 δE
δyi

denotes the variational derivative of E with respect to yi. For example, if E(c) = f(c) + 1
2
|∇c|2,

δE

δc
= f ′(c)−∆c .

This is calculated as the variational derivative of the functional

F (c) =

ˆ
Q

E(c) ⇒
fi
∂F

∂c
, φ

fl
=

ˆ
Q

`
f ′(c)−∆c

´
φ .
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for an almost thermodynamically isolated system (in the sense of definition ). The total rate
of entropy production was then given as a sum of an integral over the bulk plus an integral
over the boundary. Using a localization argument, the integral form of the rate of entropy
production was split up into the separated rate of entropy production in the bulk and on
the boundary. The same was done for the second law of thermodynamics, which yielded two
localized versions of the second law. This was finally applied to a Newtonian fluid in order to
rederive the Navier-slip boundary condition. However, note that the method is also able to
yield no-slip or perfect slip boundary conditions.

For an application of the method, the reader may directly jump to chapter 4 where this
method is applied to the derivation of boundary conditions for phase field models of multiphase
flow.





CHAPTER 2

Continuum Mechanics in Porous Media

2.1. Introduction

We will introduce non dimensionalization and homogenization via asymptotic expansion
for continuum mechanics in porous media. The reader who is already familiar with homog-
enization may skip 2.3, but should read the rest of this chapter as it builds up a new point
of view on non-dimensionalization and scaling, based on the MREP-assumption. The new
contributions of this chapter can be found in sections 2.4-2.7.

In many physical systems, the processes of major interest happen on at least two spatial
scales. The most classical examples are the flow of a Newtonian liquid through a porous
medium, diffusion processes in porous media or heat transport in heterogeneous media with
complex micro structures. The aim of homogenization is to find equations which still contain
information from the micro scale, but which are better suited to numerical simulations. This
chapter will introduce the formal asymptotic expansion method for formal homogenization
on periodic geometries. The reader who is not satisfied with periodic geometries, is referred
to a recent work by the author [44], where the formal asymptotic expansion was generalized
to stochastic geometries.

As an example, one could consider the transport of water through a large box of sand in the
saturated case. From the mathematical point of view, it is no problem to separate the box into
the domain occupied by the grains of sand and the complement domain, the pore space. It is
furthermore clear, that the fluids motion has to be described by the Navier-Stokes or Stokes
equations in the pore space. However, what is an easy task for the (pure) mathematician
results in almost unsolvable numerical problems such that even big computational clusters
would be busy for days to solve the problem for one cubic meter of sand.

Fortunately, it was discovered by Darcy [23] that the fluid’s motion can be described by
the simple relation

(2.1.1) υ = A(g −∇p)
where υ is the velocity, A some constant to be measured, g the gravitational force and p
the pressure field. The question, mathematicians had to answer, was: Is it possible to show,
that Darcy’s law (2.1.1) results from the microscopic movement of the fluid according to the
Navier-Stokes equations? We will give an (non-rigorous) answer to that question in section
2.3 with help of the asymptotic expansion method.

After introducing homogenization and asymptotic expansion concepts, we need to deal
with scaling of equations. Scaling is always due to a non-dimensionalization process and its
aim is to identify and separate the processes which happen on the macro or micro scale, i.e.
to determine the range of each diffusive or convective process. Since it is the aim of this
thesis to look also for physical implications of the limit equations, it will be necessary to
study the relation between scaling and thermodynamic implications on the limit problem.
This will be the topic of sections 2.4-2.7. Note that improper scaling of the equations reflects
wrong interpretation of the range of effects and will result in macroscopic equations that do
not mirror the physical reality properly. The new ansatz to scaling is built on the MREP-
assumption where the scaling of the equations basically depends on the scaling of the energy
and the scaling of the rate of entropy production. In particular, the scaling of the rate of
entropy production is crucial, as will be demonstrated in two examples: Two differently scaled

27
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rates of entropy production will be used to derive two versions of the Navier-Stokes equations
with different scalings. These equations will be studied in more detail in section 2.3. The
scaled rates of entropy production which will be obtained are discussed in more detail in
sections 2.6 and 2.7.

Before going into details, the next section introduces some general notations.

2.2. Geometric Definitions and Notations

Here, and throughout the thesis, we will consider a bounded and open domain Q ⊂ Rn

where n = 3 if not mentioned otherwise. Furthermore, consider Y := [0, 1[n the (n + 1)-
dimensional torus (i.e. Y is equipped with the topology of the torus in Rn+1) with Y =
Y 1 ∪ Y 2 ∪ Γ with Γ := ∂Y 1 ∩ ∂Y 2 ∩ Y where Y 1 and Y 2 are open in Y and Y 1 is simply
connected in Y . Expand Y , Y 1, Y 2 and Γ periodically to Rn and multiply the resulting
structures by ε to obtain Y ε = εY , Y ε

1 = εY 1, Y ε
2 = εY 2 and Γε = εΓ. Define the following

subsets of Q: Qε
1 := Q ∩ Y ε

1 the pore space and Qε
2 := Q ∩ Y ε

2 the soil matrix. Wherever
it will not provoke any confusion, we equally denote Γε := ∂Qε

1 ∩ Q. The definitions are
illustrated in figure 2.2.1. Finally, the outer normal vector of Y 1 on Γ will be called nΓ and
the outer normal vector of Qε

1 on Γε is denoted as nΓε .
One should be very careful in not mixing up the periodic cell Y with the notion of a so

called “Representative Elementary Volume” (REV) that is used in applied sciences such as soil
physics. The REV is a volume that is big compared to micro structures but small compared
to the macroscopic scale. It is assumed that coefficients in the macroscopic equations, which
are obtained from averaging over the REV, are representative in a way that these averaged
coefficients would not differ significantly if they would be calculated by averaging over a
slightly shifted but equivalent volume. Therefore, a single cell εY is not suitable, neither Y .
For example, Joekar-Niasar et. al. [58] found in their simulations, that an REV is at least of
the size 40× 40× 40 periodic cells.

Q
ε

1

Q
2

ε

Γ
ε

Y1

Y2
ε

1

Y Γ

Q

Figure 2.2.1. Sketch of geo-
metrical setting and denotation
in the periodic case. Picture by
courtesy of K. Joachimsmeyer.

However, given such Q, Y ε
1 and Y ε

2,
we identify εL0 as the parameter describing
the typical size of a pore or REV, where L0

is some macroscopic length scale. With re-
spect to application, ε is depending on the
physical size of the pores and the complex-
ity of the geometry, which is represented
by Y , Y 1 and Y 2. In any case, from the
physical point of view, ε is a fixed parame-
ter. In order to derive two-scale models, it
is important to seek for a suitable non di-
mensionalization of the physical equations.
This means we have to identify the rele-
vant scales in space and time. The choice

of scales for other quantities like mass, energy and entropy is of importance, too. They should
basically follow the scaling of space, as we will see below.

In the next section, we will outline the fundamental ideas behind rigorous homogenization
while in 2.3, the asymptotic expansion method will be introduced as a formal ansatz to
homogenization theory.

2.3. Asymptotic Expansion

As already mentioned, asymptotic expansion is not a mathematically rigorous but only
formal modeling tool which uses formal calculations to identify an approximating macroscopic
or two-scale problem. The approximating problem often is not only defined onQ but onQ×Y
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although there are special cases where a reduction on a problem on Q is possible. Most of
the cases treated below belong to this special class of problems. They are chosen because

(1) they are easy examples with high educational value
(2) they demonstrate effects of different scaling of the same mathematical problem
(3) they are connected with porous media flows and phase transitions which are the

central theme of this thesis.
Note that there is big amount of literature on homogenization. For former results on the
homogenization of Navier-Stokes flow, the refer to works by Allaire [7, 5, 6], Ene and Saint
Jean Paulin [27], Marušić-Paloka [69], Mikelić [71, 73], Sandrakov [90] and of course the
pioneering work by Tartar in the appendix of [89]. For the homogenization of diffusion and
diffusion with nonlinear boundary conditions, the reader is referred to Amaziane, Goncharenko
and Pankratov [10], Conca, Diaz and Timofte [22], Conca, Diaz, Liñan and Timofte [21],
Heida [46], Hornung [54], Mikelić and Primicerio [72] and the references therein.

Considering any variable uε, the basic idea of asymptotic expansion is an ansatz

(2.3.1) uε =
∞∑
i=0

εiuεi

with some functions uεi which have to be specified. Since the problem is defined on a domain
characterized by two structures Q and Y ε, it seems reasonable to assume that ui : Q×Rn →
Rk with ui being Y -periodic in the second variable. In particular

ui : Q× Y → Rk

with
uεi (x) := ui

(
x,
x

ε

)
and (2.3.1) becomes

(2.3.2) uε(x) =
∞∑
i=0

εiui(x,
x

ε
).

Additionally, the following relations for the gradient and the divergence operators hold:

(2.3.3) ∇ = ∇x +
1
ε
∇y, div = divx +

1
ε
divy .

Inserting the latter equation together with (2.3.2) into the particular partial differential equa-
tion under consideration and sorting the equations by powers of ε may lead to identification
of A as will be demonstrated in the following examples. We will start by considering systems
connected with the Navier-Stokes equations.

2.3.1. Homogenization of the incompressible Navier-Stokes equation. We start
with the incompressible Navier-Stokes fluid which is connected with (2.7.2) below. Incom-
pressible means that p pε is a free variable, the density %ε is constant and υ  υε hast to
fulfill the incompressibility condition (2.3.4b):

∂tυ
ε + (υε · ∇)υε − div (µ∇υε) +∇pε = gε on Qε

1(2.3.4a)
divυε = 0 on Qε

1(2.3.4b)
υε = 0 on ∂Qε

1(2.3.4c)
υε = 0 on Qε

2(2.3.4d)

With an additional initial condition on (0, T ]×Q of the form

υε(0, ·) = υ̃0(·, ·
ε

) .
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We assume that gε(x) = g(x) and there is a family of functions

υi : Q× Y → R3 0 ≤ i <∞
(x, y) 7→ υi(x, y)

pi : Q× Y → R3 0 ≤ i <∞
(x, y) 7→ pi(x, y)

such that the solution υε and pε can be described by

υε =
∞∑
i=0

εiυi(x,
x

ε
)(2.3.5a)

pε =
∞∑
i=0

εipi(x,
x

ε
)(2.3.5b)

where the υi and pi are periodic in Y . The first coordinate takes care of macroscopic behavior
of the solution, while the second coordinate takes care of microscopic variations due to the
microscopic geometry. The basic Idea is to insert (2.3.5) together with (2.3.3) into (2.3.4a)
and sort by powers of ε such that the equations in (2.3.4) take the form

ε−2 (. . . ) + ε−1 (. . . ) + ε0 (. . . ) + ε1 (. . . ) + ε2 (. . . ) = 0 .

In particular, the result reads up to order 0:

(2.3.6a) ε−2 (−divy (µ∇yυ0)) + ε−1 ((υ0 · ∇y)υ0 − divy (µ∇yυ1)− 2divx (µ∇yυ0) +∇yp0)

+ ε0 ((υ0 · ∇x)υ0 + (υ1 · ∇y)υ0 + (υ0 · ∇y)υ1)

+ ε0 (−divy (µ∇yυ2)− 2divx (µ∇xυ0) +∇xp0 +∇yp1 − g) = 0

(2.3.6b) ε−1divy υ0 + divx υ0 + divy υ1 + ε (divx υ1 + divy υ2) = 0

(2.3.6c)
∑
i

εiυi(x, ·) = 0 on ∂Y1,
∑
i

εiυi(·, y) = 0 on ∂Q

For each power of ε, a set of equations is obtained, which has to hold independently on all
the other equations such that the whole group of equations is valid for all choices of ε.

The order −2 in (2.3.6a) together with the order −1 in (2.3.6b), and (2.3.6c) yields for υ0

ε−2 : −divy (µ∇yυ0) = 0
divy υ0 = 0
υ0(x, ·) = 0 on ∂Y 1

which is υ0 ≡ 0. This result together with the order −1 in (2.3.6a), order 0 in (2.3.6b) and
order 1 in (2.3.6c) yields for υ1

−divy (µ∇yυ1) +∇yp0 = 0
divy υ1 = 0
υ1(x, ·) = 0 on ∂Y 1

which is again υ1 ≡ 0. (See for example Ladyzhenskaya [64] for mathematical analysis of the
incompressible Stokes flow.)

Using these results in the zero-order term in (2.3.6a), order 1 in (2.3.6b) and 2 in (2.3.6c),
we get

− divy (µ∇yυ2) +∇xp0 +∇yp1 = g(2.3.7a)
divy υ2 = 0(2.3.7b)
υ2(x, ·) = 0 on ∂Y 1(2.3.7c)
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Assuming that there are solutions to the problems

(2.3.8)

−divy (µ∇yui) +∇yΠi = ei

divy ui = 0

ui(x, ·) = 0 on ∂Y 1

where ei is the i-th coordinate vector of R3, it is easy to see that there is p1 and

υ2 :=
∑

(g −∇xp0)i ui

such that (υ2, p0, p1) is a solution to (2.3.7). Defining a matrix A by

Ai,j :=
ˆ
y
∇yui · ∇yuj =

ˆ
Y
ui · ej

it is easy to check that ˆ
y
υ2 = A (g −∇xp0)

This result was first proven rigorously by tartar for the stationary Stokes equation in the
appendix of [89].

2.3.2. Homogenization of the Navier-Stokes and Stokes Equation II. Instead of
(2.3.4), we will consider the following Stokes system

∂tυ
ε − div (ε2µ∇υε) +∇pε = gε on Qε

1(2.3.9a)
divυε = 0 on Qε

1(2.3.9b)

υε(0, ·)− a(·, ·
ε

) = 0 on t = 0(2.3.9c)

υε = 0 on ∂Qε
1(2.3.9d)

υε = 0 on Qε
2(2.3.9e)

which is inspired by equations (2.7.3) derived below in section 2.7.
Using an asymptotic expansion (2.3.5a)-(2.3.5b) and the assumption gε(x) = g(x), the

resulting equation for the first order velocity and pressure read

∂tυ0 − divy (µ∇yυ0) +∇xp0 +∇yp1 = g

divx υ0 = 0
divy υ0 = 0

This is a system similar to the resulting equation for υ2 in (2.3.7a)-(2.3.7b) but with the
difference that now, the partial derivative ∂tυ0 is involved. For homogenization of a stationary
problem, i.e. ∂tυ ≡ 0, the resulting set of equations would coincide with the earlier result
(2.3.7a) -(2.3.7b).

To obtain some information on the solution to the homogenized problem, proceeding like
in the previous case would result in the assumption that there are solutions to the problems

∂tui − divy (µ∇yui) +∇yΠi = ei

divy ui = 0
ui(0, ·) = 0
ui(x, ·) = 0 on ∂Y 1

where ei is the i-th standard basis vector of R3. The velocity field has to be defined differently
and is given by a sum

υ0 = υ̃ + υ̂
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where
∂tυ̃ − divy (µ∇yυ̃) +∇yq1 = 0 on (0, t)× Y 1

divy υ̃ = 0 on (0, t)× Y 1

υ̃ = 0 on (0, t)× Γ

υ̃(0, ·) = a(·) on Y 1

and υ̂ is given by

υ̂ :=
ˆ t

0

∑
i

[∂t (g −∇xp0)i (s, x)]ui(t− s, x, y)ds .

Note that

−divy (µ∇yυ̂) = −
ˆ t

0

∑
i

[∂t (g −∇xp0)i (s, x)] divy (µ∇yui(t− s, x, y)) ds

and

∂tυ̂ =
ˆ t

0

∑
i

[∂t (g −∇xp0)i (s, x)] ∂tui(t− s, x, y)ds

+
∑
i

[∂t (g −∇xp0)i (t, x)]ui(0, x, y)

=
ˆ t

0

∑
i

[∂t (g −∇xp0)i (s, x)] ∂tui(t− s, x, y)ds .

Thus, we find

∂tυ̂ − divy (µ∇yυ̂) =
ˆ t

0

∑
i

[∂t (g −∇xp0)i (s, x)] (∂tui(t− s, x, y)− divy (µ∇yui)) ds

=
ˆ t

0

∑
i

[∂t (g −∇xp0)i (s, x)] (−∇yΠi + ei) ds .

With a matrix A defined by

Ai,j := ∂t

ˆ
Y 1

ui · ej

one may check by partial integration, the initial conditions on ui and the assumption (g −∇p)
∣∣∣
t=0

=
0 that ˆ

Y 1

υ0 =
ˆ
Y 1

υ̃ +
ˆ t

0
A(t− s) (g −∇xp0) (s)ds

For a rigorous proof of this homogenization result refer to the article by Allaire in the book
by Hornung [54].

2.3.3. Homogenization of the Stefan problem. The Stefan problem as stated below
is a phase field model for heat transport coupled with a phase transition, for example between
water and ice. The free variables are temperature ϑ as well as water content ω. Thus
the system consists of an energy balance equation based on Fourier’s law (and is therefore
describing the evolution of temperature ϑ) and an equation describing the evolution of water
content ω. We chose the scaling used by [25] but note that this model can also be obtained
from sections 4.2 together with the scalings of the energy from chapter 6. The full system
reads:
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∂t(ϑε + Lωε)− div (C∇ϑε) = 0 on Qε
1(2.3.11)

τ∂tω
ε − σε2∆ωε + f(ϑε, ωε) = 0 on Qε

1(2.3.12)
∂tϑ

ε − div (C2∇ϑε) = 0 on Qε
2(2.3.13)

with the boundary conditions

(C∇ϑε − C2∇ϑε) · nΓ = 0 on Γε

σε∇ωε · nΓ = 0 on Γε .

For simplicity, it is assumed that the media in Y 1 and Y2 are isotropic and that C and C2

are scalar functions. The first boundary condition implies energy conservation at Γε. The
functions for the asymptotic expansion ansatz are

ϑi : Q× Y → R3 ωi : Q× Y → R3

(x, y) 7→ ϑi(x, y) (x, y) 7→ ωi(x, y) , 0 ≤ i <∞ .

Inserting these expansions into the Stefan problem, it is easy to see that on order −2

divy (C(x, y)∇yϑ0(x, y)) = 0 on Y 1 for all x
divy (C2(x, y)∇yϑ0(x, y)) = 0 on Y 2 for all x
(C∇yϑ0 − C2∇yϑ0) · nΓ = 0 on Γ for all x

with periodic boundary conditions on ∂Y and therefore

ϑ0 = ϑ0(x) .

Order −1 yields

divy (C∇yϑ1 + C∇xϑ0) = 0 on Y 1 for all x
divy ((C∇yϑ1 + C∇xϑ0) = 0 on Y 2 for all x(2.3.14)

(C (∇yϑ1 +∇xϑ0)− C2 (∇yϑ1 +∇xϑ0)) · nΓ = 0 on Γ for all x

With solution φi to the cell problems

divy (C∇yφi + Cei) = 0 on Y 1 for all x
divy ((C2∇yφi + C2ei) = 0 on Y 2 for all x(2.3.15)

(C (∇yφi + ei)− C2 (∇yφi + ei)) · nΓ = 0 on Γ for all x .

it follows that

(2.3.16) ϑ1 :=
3∑
i=1

φi∂iϑ0

is a solution to (2.3.14). The zero order term of the first equations therefore reads

∂t(ϑ0 + Lω0)− divx (C∇xϑ0)− divy (C∇xϑ1 + C∇yϑ2)− divx (C∇yϑ1) = 0 .

and using (2.3.16), this implies

∂t(ϑ0 + Lω0)− divx (Chom∇xϑ0) = 0

with
Chomij :=

ˆ
Y 1

(eiC (∇yφj + ej)) +
ˆ
Y 2

(eiC2 (∇yφj + ej)) .

Since the φi are solutions to (2.3.15), Chom can also be calculated from

Chomij :=
ˆ
Y 1

(∇yφi + ei) · (C (∇yφj + ej)) +
ˆ
Y 2

(∇yφi + ei) · (C2 (∇yφj + ej)) ,



34 2. CONTINUUM MECHANICS IN POROUS MEDIA

which shows that Chom is positive definite matrix for all strictly positive scalars C and C2.
Expanding the nonlinearity in the second equation by

f(ϑε, ωε) =
∞∑

i,j=0

∂iϑ∂
j
ωf(ϑε, ωε) (ϑε)i (ωε)j

yields for the zero order term of the second equation

τ∂tω0 − σ∆yyω0 + f(ϑ0, ω0) = 0

A rigorous homogenization result for the Stefan problem can be found in the articles by Eck
[24, 25] where he investigated the freezing of a free liquid, i.e. Y 2 = ∅, with periodic initial
data and diffusion of a dissolved substance.

2.3.4. Homogenization of the Navier-Stokes system with mass-conservation
law: The porous medium equation. If the timescale becomes ε-dependent, the long time
behavior of solutions can be studied. In particular the scaling t t

ε2
is then able to capture

convective processes in the limit problem.

ε2∂t%
ε + div (υε%ε) = 0

ε2%ε∂tυ
ε + %ε (υε · ∇)υε − div (µ∇υε) +∇p(%ε) = gε on Qε

1

divυε = 0 on Qε
1

υε = 0 on ∂Qε
1

υε = 0 on Qε
2

with %ε(t, x) = %(t, x, xε ) and (2.3.5a), the limit problem reads according to Masmoudi [70]:

Φ∂t%+ divx (υ2%) = 0
∇y% = 0

−divy (µ∇yυ2) +∇xp(%) +∇yp1 = g

divy υ2 = 0

where Φ = |Y 1|. This is the so called porous medium equation. However, note that without
the temporal scaling, the convective term in the first equation would have get lost, as υε → 0
by order of ε2. This result was proved rigorously by Masmoudi [70].

Note that for simplicity, scaling in time, as it is used in above equations, will not be
discussed in this thesis. This short example should simply demonstrate that also the long-time
behavior of equations can be considered using homogenization methods. A recent derivation
of the porous medium equation with heat transport can be found in [30].

2.4. Continuum Mechanics in the Pore Space: Non Dimensionalization and
Scaling

2.4.1. Non-dimensionalization: spatial scaling and two examples. Since physical
processes happen on the pore scale and on a macro scale level, it is clear, that for any physical
quantity, there are two scales of physical interest: The pore scale and the macro scale. The
identification of the spatial scales is obvious: If we denote the characteristic macroscopic scale
by x0,M and the microscopic scale by x0,m, both are given by the natural choice x0,m = εL0

and the expected relation εx0,M = x0,m. Thus, the following non-dimensionalized scaled
coordinates in space and time are obtained:

xM :=
x

L0
, xm :=

x

εL0
= ε−1xM(2.4.1)
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Concerning timescales, it will be assumed that we only have one temporal scale for both
spatial scales, i.e.

tm,M =
t

t0
.

The scaling of x and t also comes up with a scaling of the operators ∇, div and ∂t and the
following scaled operators are obtained:

∇M := L0∇, ∇m := εL0∇ = ε∇M
divM := L0div divm := εL0div = εdivM

DM := L0D Dm := εL0D = εDM

For simplicity, assume L0 ≡ 1 as well as t0 ≡ 1 and thus obtain

∇M = ∇ divM = div DM = D

The most natural choice of the characteristic scales of the velocity is given by the spatial
scales and the timescale. For the non-dimensionalized velocity fields, this yields

(2.4.2) ευ0,M = υ0,m =
x0,m

t0,m
, υM (xM ) = ευm(ε−1xM ) .

All other quantities will be assumed to have the same characteristic scale independent
from the choice of the spatial scale. Therefore, the indices m and M will be omitted.

Finally, two sets of equations are obtained. For simplicity, assume that there are only two
constituents in the mixture with partial densities %1 and %2 and c := %1/%. The generalization
to more constituents is obvious. First, on the macroscopic scale, the abstract equations of
continuum mechanics from chapter 1, i.e. system (1.2.9), read:

(2.4.3)

∂t (%εcε) + div (%εcευεM ) + div (jεM ) =
+
c
ε

∂t%
ε + div (%ευεM ) = 0

∂t (%ευεM ) + div (%ε (υεM ⊗ υεM ))− divTεM = gεM

∂t (%εEε) + div (%εEευεM )− divhεM = gεM · υεM

On first glance, the system reads similar on the microscopic scale:

(2.4.4)

∂t (%εcε) + divm (%εcευεm) + divm (jεm) =
+
c
ε

∂t%
ε + divm (%ευεm) = 0

∂t (%ευεm) + divm (%ε (υεm ⊗ υεm))− divmTεm = gεm

∂t (%εEε) + divm (%εEευεm)− divmh
ε
m = gεm · υεm

However, one may also find by replacing divm = εdiv and υm = ε−1υM

(2.4.5)

∂t (%εcε) + div (%εcευεM ) + εdiv (jεm) =
+
c
ε

∂t%
ε + div (%ευεM ) = 0

∂t (%ευεM ) + div (%ε (υεM ⊗ υεM ))− ε2divTεm = εgεm

∂t (%εEε) + div (%εEευεM )− εdivhεm = gεm · υεm

where gεm,M denotes some external body force. Thus, the following equivalences are obtained:

(2.4.6) jM = εjm, TM = ε2Tm, hM = εhm, gM = εgm .
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2.4.2. Scaling of the energy and the rate of entropy production. In what follows,
it will be assumed that the energy depends on entropy ηε density %ε, concentrations cεi := %εi/%

ε

and velocity υε:
E = E(ηε,υε, %ε, cεi ) .

To obtain the corresponding equations for ξ, note that the kinetic energy in terms of υm and
υM look different. In particular,

E(ηε,υεM , %
ε, cε) = E0(ηε, %ε, cε) +

1
2
|υεM |

2 ,

E(ηε,υεm, %
ε, cε) = E0(ηε, %ε, cε) +

1
2
ε2 |υm|2 .

In case υε = υεM , using ȧ = ∂ta + (υM · ∇)a, the corresponding entropy balance equations
can be calculated from

ϑ%εη̇ε = %εĖε − µ%εċε +
p

%ε
%̇ε − υM%ε ˙υεM

= divhM + µdiv jεM − µ
+
c
ε

+pdivυεM − υεM · divTεM

where p := − (%ε)2 ∂E
∂%ε and µ := ∂E

∂c . Together with system (2.4.3), this yields

∂t (%εηε) + div (%εηευεM ) = divhM + µdiv jεM − µ
+
c
ε

+pdivυεM − υεM · divTεM

=
ξε

ϑ
+ div

qM
ϑ
.

Accordingly, for the second choice of the energy, it follows

∂t (%εηε) + div (%εηευεm) = εdivhm + µdiv jεM − µ
+
c
ε

+pdivmυ
ε
m − ε2υεm · divmTεM

=
ξε

ϑ
+ εdiv

qm

ϑ
.

which yields for ξ

ξε = TεM · DMυ
ε
M + pdivυεM + qεM ·

divϑ
ϑ
− jεM∇µ−

∑
i

+
c
ε

i µ(2.4.7a)

= ε2Tεm · Dmυ
ε
m + pεdivυεm + qεm ·

ε∇ϑ
ϑ
− jεmε∇µ−

∑
i

+
c
ε

i µ(2.4.7b)

and for qεm,M :

qεM = −TεMυεM + hεM + µjεM(2.4.8a)

qεm = −ε2Tεmυεm + hεm + µjεm(2.4.8b)

which is consistent with (2.4.2) and (2.4.6).

2.5. The Solid Matrix and Boundary Conditions

In order to find suitable scalings of boundary conditions, it is necessary to pass to an
integral formulation of the physics, similar to section 1.7. Note in this context, as Q splits
up into pore space Qε

1, solid matrix Qε
2 and surface Γε, that it is also necessary to consider

energy and entropy balance equations on Qε
2.

First, for κ ∈ {0, 1}, introduce the following material derivatives

Dε,κ
t φ := ∂tφ+ εκυε · ∇φ on Qε

1(2.5.1a)

where υε = υεm in case κ = 1 and υε = υεM in case κ = 0. For physical compatibility we have
to chose the same κ throughout the whole model.
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Following the ideas of chapter 1, we assume two sets of variables y = (yi)i=1...A and
z = (zi)i=1...B satisfying equations

%εDε,κ
t yεi + εkidiv jεi =

+
y
ε

i on Qε
1

and

∂t(%zi) + divτ (%ziυτ ) + εkidiv ιεi =
⊕
z
ε

i or

∂tz
ε
i + εkidiv ιεi =

⊕
z
ε

i on Γε

where the first equation on Γε applies for traces of bulk-variables. For the energy we need
three conservation laws

%Dε,κ
t E − divhε = g · υε on Qε

1

d

dt
EεΓ − divhεΓ =

⊕
E
ε

on Γε

∂tE
ε
2 − divhε2 = 0 on Qε

2

and three constitutive equations

Eε = Ẽ(η, %,υ,y), EΓε = ẼεΓ(ηεΓ, z), Eε2 = Ẽ2(ηε2) .

Recall that
ηε|Γε 6= ηεΓ 6= ηε2|Γ and Eε|Γε 6= EεΓ 6= Eε2|Γ on Γε .

In particular, the trace of the entropy on the boundary is different from the surface entropy.
However, it will be assumed that the temperature field is continuous across Q, i.e.

∂Eε

∂ηε
=
∂EεΓ
∂ηεΓ

=
∂Eε2
∂ηε2

= ϑ on Γε .

Thus the three equations for entropy and surface entropy read

Dε,κ
t ηε − div

qε

ϑ
=
ξε

ϑ
≥ 0 on Qε

1

∂tη
ε
Γ − div

qεΓ
ϑΓ

=
ξεΓ
ϑΓ
≥ 0 on Γε

∂tη
ε
2 − div

qε2
ϑ

=
ξε2
ϑ
≥ 0 on Qε

2

and hence the total entropy of Q reads

(2.5.2) Sε(Q) =
ˆ
Qε1

%εηε +
ˆ
Qε2

ηε2 + ε

ˆ
Γε
ηεΓ .

The scaling ε in the last term accounts for the growth of total mass of Γε with ε:

(2.5.3) lim
ε→0

ˆ
Γε
ε = const .

Let n∂Q be the outer normal vector of Q. For simplicity, it will be assumed that

qε · n∂Q = 0 , qε2 · n∂Q = 0 , qεΓ · n∂Q = 0 ,(2.5.4a)
hε · n∂Q = 0 , hε2 · n∂Q = 0 , hεΓ · n∂Q = 0 .(2.5.4b)

From equation (2.5.2), we obtain

d

dt
Sε(Q) =

ˆ
Qε1

ξε

ϑ
+
ˆ
Qε2

ξε2
ϑ

+ ε

ˆ
Γε

(
1
ε

(qε − qε2) · nΓε +
ξεΓ
ϑΓ

)
≥ 0 ,

which can be split up into the tree local conditions

ξε ≥ 0, ξε2 ≥ 0 and
(

1
ε

(qε − qε2) · nΓε +
ξεΓ
ϑΓ

)
≥ 0 .
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Thus, we may proceed like in section 1.7 to obtain constitutive equations for thermodynamical
fluxes on the inner of Qε

1, Q
ε
2 and on Γε.

Finally, note that the total energy E of the system is given by

E =
ˆ
Qε1

%εEε +
ˆ
Qε2

%εEε2 + ε

ˆ
Γε
EΓ ,

where the scaling of
´

Γε by ε is for the same reason as in (2.5.2), in particular (2.5.3). The
first law of thermodynamics in its global formulation for thermodynamically almost isolated
system therefore reads with help of (2.5.4):

0 =
d

dt
E−
ˆ
Qε1

gε·υε =
ˆ

Γε

(
(hε − hε2) · nΓε + divτhεΓ + ε

⊕
E
ε
)

=
ˆ

Γ
ε

(
1
ε

(hε − hε2) · nΓε +
⊕
E
ε
)
.

The local version of the latter equality is

1
ε

(hε − hε2) · nΓε +
⊕
E
ε

= 0

2.6. Thermodynamically Consistent Scaling: A New Point of View

2.6.1. Classical point of view on scaling. The classical way of scaling consists of
non dimensionalization of equations that are already equipped with all constitutive equations
for fluxes and production rates. By this step, the non-dimensionalized coefficients in these
equations become comparable to orders of ε.

Example 2.1. Consider the reaction diffusion equation

∂tφ− div (D∇φ) = f(φ) .

By non-dimensionalization, we get the same equation but with different coefficients D∗ and
f∗ as well as a new variable φ∗ which now is dimensionless and satisfies

∂tφ
∗ − div (D∗∇φ∗) = f∗(φ∗) .

If ε = 10−3 is the characteristic microscale, D∗ = 2 ∗ 10−6 would imply a scaling D∗ = 2ε2,
while D∗ = 0.1 would imply no scaling of D∗: D∗ = O(1).

We classify above ansatz as

(1) scaling by non dimensionalization and intuition.

However, the ansatz focuses to much on the concrete equations and to few on the physics
behind. It will be shown in the next subsection and in example 2.7 that the scaling ε2

can enter due to purely physical reflections based on the mobility of molecules, the energy
functional and the rate of entropy production functional. We can characterize it as

(2) scaling of energy, and scaling of the rate of entropy production.

Remark 2.2. The choices of non dimensionalization which are reflected by equations
(2.4.1) and (2.4.2) have direct physical implications which can be summarized as follows: The
choice of a characteristic velocity υ0,m reflects that the convection occurs with a low speed that
allows the convective transport to interact with local processes. In particular, transport itself
is of low global importance. On the other hand, in case υ0,M is chosen, transport is of global
importance but is so high, that it dominates local fluxes on the microscale. Unfortunately,
since transport is linear in υ, we cannot provide an intermediate approach. The reader is
referred to chapter 5 for a discussion of that topic.
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2.6.2. Thermodynamically consistent scaling. No matter how the particular scal-
ing of the continuum equations in the pore space is obtained, it should have one property:
It should be thermodynamically consistent for any ε > 0. The reason is, that all homoge-
nization techniques are based on a limit ε→ 0. Hence, if the resulting approximation should
be thermodynamically consistent, we need that for any ε > 0 the system of equations is
thermodynamically consistent, too.

Note that we are free to chose any characteristic scale for any of the physical quantities
such as velocity, energy, density. However, the choice of these characteristic scales should be
reasonable. Particularly, this holds with regard to equations of the form

∂tφ+ div (υφ) + div j = 0

If the velocity is small on the macroscopic level of observation, it should appear of order ε in the
non-dimensionalized equations: In particular, the convective terms should read εdiv (υεφε).
If the velocity is high, the non dimensionalized equation should contain a convective term
div (υεφε). The same holds for non-convective fluxes: If a flux j is supposed to be small
compared to the scale of observation, it is reasonable to set up the equation with εdiv jε. If
the flux can be expected to be high, it is reasonable to choose an ansatz div jε. However, the
final scale of diffusive fluxes is not only given by this ansatz but can still be influenced by the
scaling of the rate of entropy production, as will be shown below in example 2.7.

In what follows and throughout the thesis, we will use conditions (2.5.4) on ∂Q. The
important factors that have to be taken into account in order to get thermodynamically
consistent equations in ε → 0 are: Scaling of velocity, asymptotic dependence of energies
Eε(. . . ) / EεΓ(. . . ) and of the rates of entropy production ξε(. . . ) / ξεΓ(. . . ) on the parameters
as well as the development of

Eε =
ˆ
Qε1

%εEε +
ˆ
Qε2

Eε2 + ε

ˆ
Γε
EεΓ(2.6.1)

and Ξε :=
d

dt
Sε =

ˆ
Qε1

ξε

ϑε
+
ˆ
Qε2

ξε2
ϑε

+ ε

ˆ
Γε

ξεΓ
ϑε
.(2.6.2)

For simplicity, only processes on Qε
1 and Γε will be considered in this section. Therefore, Eε2

and ξε2 will not be investigated or discussed below. The reason is, that the dependencies of
Eε2(η2) and ξε2(qε2) are almost trivial and that they can be treated the same way as Eε and ξε
on Qε

1

We start with the scaling of velocity which is: the scaling of the convective terms. Assume
that the variables φε1 and φε2 evolve due to

∂tφ
ε
1 + εκ1div (υεφε1) + div jε1 =

+
c1

∂tφ
ε
2 + εκ2div (υεφε2) + div jε2 =

+
c2 .

Then, it is reasonable to assume κ1 = κ2: with regard to the convective structure

∂tφ
ε
i + εκidiv (φεiυ

ε) + · · · = . . .

the condition κ1 6= κ2 would imply that the velocity field is non-dimensionalized by different
characteristic velocities for each of the equations. Having in mind the last sentence, it is no
surprise that if κ1 6= κ2, above calculations based on E and ξ would fail (as the material
derivative has to be unified over all equations) and it would no longer be possible to derive
thermodynamically consistent equations.

Concerning the dependence of energy Eε on the velocity υε, the expression

Eε = εκE
1
2
|υε|2 + · · ·
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only makes sense if κE = 0. This is, since otherwise the energy of the final system will not
depend on υ0. This may have two different consequences: Either υ0 = 0 or ‖υε‖L2 → +∞
as ε→ 0.

Concerning the velocity field on the microscopic boundaries, note that the operator

D
ε,0
t φ = ∂tφ+ υτ∇τφ

makes no sense in media with complex micro structures, as it can be assumed that there is
no macroscopic flux along the surfaces. This means that surface balance laws have to follow
the form

∂t (%φ) + εdivτ (%υτφ) + · · · = . . .

Note that the surface energy in general does not depend on υτ . One assumption which is
often used is υτ = 0and together with the no flux condition υn = 0, both assumptions add
up to the no-flux condition υ|Γ ≡ 0.

Considering energy and entropy, note that both (2.6.1) and (2.6.2) are not only connected
with physical energy and rate of entropy production but according to section 1.8 also with
a priori estimates. Thus, physical consistency and mathematical convergence properties are
highly interlinked. From both perspectives, it is reasonable to claim

(2.6.3) 0 < Emin ≤ lim inf
ε→0

Eε ≤ lim sup
ε→0

Eε ≤ Emax < +∞

as well as

(2.6.4) 0 < Ξmin ≤ lim inf
ε→0

Ξε ≤ lim sup
ε→0

Ξε ≤ Ξmax < +∞ .

2.6.3. Classification of scalings. Based on above reflections, the following physically
motivated classification of scalings is proposed:

Denotation 2.3. With regard to the MREP-assumption, a scaling of continuum me-
chanical equations in the pore space is said to be

(1) Spatially consistent if convective terms are all scaled by the same factor εk and the
kinetic energy is given by |υε|2.

(2) Thermodynamically consistent if (2.6.4) holds for all ε > 0.
(3) Energetically consistent if (2.6.3) holds for all ε.
(4) Physically consistent if all of above criteria are satisfied

2.7. The MREP Assumption and Consistent Scaling: Examples

Evidently, (2.4.7) yields two physically equivalent forms for the rate of entropy production.
However, there is a physical as well as mathematical difference between the assumptions

ξε = ξ̃ε((TεM )d , trTεM , qεM , jεi,M )

and ξε = ξ̃ε((Tεm)d , trTεm, qεm, jεi,m) .

In particular, it might be expected that there is a significant difference in the constitutive
equations for the fluxes derived from either one of the latter two constitutive equations for
ξε. In the following, the two approaches will be applied to a single component Newtonian
fluid with heat conduction (examples 2.4-2.6) . In particular, jεi,m = jεi,M = 0 and

+
c
ε

i= 0.
Then, the MREP-assumption will be applied to non-dimensionalization and homogenization
of reaction-diffusion equations with both, macroscopic- and microscopic diffusion (example
2.7). Finally, in example 2.8, this method will be applied to non-dimensionalization of the
Navier-Stokes equation with the Navier-slip boundary condition.

Example 2.4. Navier-Stokes-Fourier equations I
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Define mε
M := 1

3trT
ε
M , S := (TεM )d and Dε,d := (DυεM )d to write (2.4.7a) as

ξε = SεM · Dε,d + (mε
M + p) divMυεM + qεM ·

∇Mϑε

ϑε
.

Together with a constitutive assumption on ξε of the form

ξε = ξ̃ε(SεM ,mε
M , q

ε
M , j

ε
i,M ) =

1
ν
|SεM |

2 +
3

ν + 3λ
(mε

M + p)2 +
1
κ
|qεM |

2

this yields the well known Navier-Stokes-Fourier system in the pore space, i.e.

∂t (%ευεM ) + div (%ε (υεM ⊗ υεM ))− div νDυεM(2.7.2a)
−∇ (λdivυεM ) +∇p = gM

∂t (%εEε) + div (%εEευεM )− divκ∇ϑε − div (TεMυεM ) = 0(2.7.2b)

with
TεM = νDυεM + λdivυεM I− pI .

Homogenization of this system was treated in section 2.3.1.

Example 2.5. Navier-Stokes-Fourier equations II

Define mε
m := 1

3trT
ε
m, S := (Tεm)d and εDε,d := (εDυεm)d to write (2.4.7b) as

ξε = ε3Sεm · Dε,d + ε2
(
mε

m + ε−2p
)
εdivυεm + qεm ·

ε∇ϑε

ϑε
.

Together with a constitutive assumption on ξ of the form

ξε = ξ̃ε(Sεm,mε
m, q

ε
m, j

ε
i,m) =

1
ν
ε2 |Sεm|

2 +
3

ν + 3λ
ε2
(
mε

m + ε−2p
)2 +

1
κ(ε)

|qεm|
2

which yields together with (2.4.5) and υM = ευm the Navier-Stokes-Fourier system with
ε2-scaled viscosities:

∂t (%ευεM ) + div (%ε (υεM ⊗ υεM ))− ε2div νDMυ
ε
M(2.7.3a)

−ε2∇ (λdivυεM ) +∇p = εgm

∂t (%εEε) + div (%εEευεM )− div ε2κ(ε)∇ϑε − div
(
ε2TεmυεM

)
= 0(2.7.3b)

where the notation in macroscopic variables was chosen for better comparability with
system (2.7.2).Note that a transformation υ := ε−1υM and a choice κ(ε) = ε2κ0 results in
the system

∂t (%ευε) + εdiv (%ε (υε ⊗ υε))− ε2div νDυε

−ε2∇ (λdivυε) +∇p̃ = gm

∂t (%εEε) + εdiv (%εEευε)− divκ0∇ϑε − div
(
ε3Tεmυε

)
= 0

where p̃ := ε−1p. This homogenization problem was treated in section 2.3.2.

Example 2.6. Navier-Stokes-Fourier for a hybrid model
In contrast with the last two examples, consider a rate of entropy production given through

ξε = ε3Sεm · Dε,d + ε3
(
mε

m + ε−2p
)
divυεm + qεM ·

∇ϑε

ϑε
.

This is a hybrid ansatz for the rate of entropy production, since the dissipative processes of
the flow are assumed to take place on the microscale while heat dissipation is assumed to
happen mostly on the macro scale. The result would be (2.7.3) but with (2.7.3b) replaced by

∂t (%εEε) + div (%εEευεM )− div 2κ∇ϑε − div
(
ε2TεmυεM

)
= 0
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Example 2.7. Diffusion equations
For reaction-diffusion processes, we have at least two constituents of the fluid %1 and %2

with a concentration c := %1/%. For simplicity, we assume that both substances have matched
densities. This results in % = const. Thus, if E = 1

2 |υ
ε|2 + uε, the only equations of interest

are

(2.7.4)
∂tc

ε + εκυdiv (υεcε) + εκcdiv jεc =
+
c
ε

∂tυ
ε + εκυdiv (υε ⊗ υε) + εκT divTε = 0

∂tu
ε + εκυdiv (υεcε)− εκEdiv qε = 0

on Qε
1. The corresponding formulas for the rate of entropy production and for the entropy

flux read

ξ = εκTTε · ∇υε − εκcjεc · ∇µ− µ
+
c
ε

+εκEqε · ∇ϑ
ε

ϑε

q = hε + µεκc−κEjεc − εκT−κETευε

where µε = ∂uε

∂cε . Assume that there is u independent on ε such that uε(cε) = u(cε) and µ(cε)
depends on cε but not on ε directly. Furthermore, the simple constitutive equation

ξ̃ε = εκc,2 |jεc|
2 +

∣∣∣+cε∣∣∣2 + εκE,2 |qε|2 + εκT,2 |Tε|2

is assumed to hold for the rate of entropy production.
The diffusive flux of c and the reaction term become

jεc = εκc−κc,2∇µ and
+
c
ε
= −µ

and (2.7.4)1 reads
∂tc

ε + εκυdiv (υεcε) + ε2κc−κc,2div∇µ =
+
c
ε
.

Note that ε2κc reflects the initial guess that the diffusion basically happens on the macro scale
(κc = 0) or on the micro scale (κc = 1), while ε−κc,2 is the mobility of c. The choice of κc,2
therefore is connected to the impact of jεc on the rate of entropy production. For κc,2 > 0, this
impact is minor, while for κc,2 = 0, it is a major effect. Note that for qε the same reflections
hold, but throughout the thesis, it will be assumed that κE = κE,2 = 0

The latter examples illustrate that the choice of scaling is not a priori given and different
ansatzes may lead to the same or even different physically reasonable models. Note that
this example also shows that there is some freedom in the choice of scaling as well as in
its interpretation. However, in case we want to include reasonable microscopic boundary
conditions, we get much more restricted as the next example will demonstrate.

Example 2.8. Navier-Slip Condition
We start from the following system

∂t%
ε + εdiv (%ευεM ) = 0

∂t (%ευε) + εdiv (%ε (υε ⊗ υε))− εdivTεm = gε

∂t (%εEε) + εdiv (%εEευε)− div qεM = υε · gε

which is: we choose κ = 1 and assume on Qε
1 that equations (2.4.3) hold for the choice

υε := υεm. Furthermore, we assume on Qε
1 an energy functional Eε = 1

2 |υ
ε|2 +u1(ηε, %ε). On

Qε
2, we assume % = %0 = const in space and time as well as υ = 0. Thus, the only interesting

equation on Qε
2 reads

%∂tu
ε
2 − div qε2 = 0

and we assume uε2 = ũ2(ηε). For the temperature field, we obtain

ϑε1
ε :=

∂Eε

∂ηε
on Qε

1 , ϑε2
ε :=

∂Eε2
∂ηε2

on Qε
2 and ϑεΓ

ε :=
∂EεΓ
∂ηεΓ

on Γε
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and we assume that
ϑε1 = ϑε2 = ϑεΓ = ϑε on Γε

and we set ϑε = ϑε1 on Qε
1 as well as ϑε = ϑε2 on Qε

2. Thus, on Q
ε
2 we find

%∂tη − div
hε2
ϑε

=
hε2 · ∇ϑε

(ϑε)2
=:

ξε2
ϑε
.

On Qε
1 we choose the hybrid ansatz from example 2.6 and find in accordance with section 1.6

ξε1 = εSεm · Ddυε + ε (mε
m + p) divυεm + qε · ∇ϑ

ε

ϑε

qε = h1 − εTεmυε .

where mε := 1
3trT

ε
m and Sεm := T−mI.

Finally we use (2.5.4) in the total entropy production, which reads

d

dt
Sε =

ˆ
Qε1

(
ξ1

ϑε
+ div

qε

ϑε

)
+
ˆ
Qε2

(
hε2 · ∇ϑε

(ϑε)2
+ div

hε2
ϑε

)
in case of a thermodynamically isolated system under the assumption of continuous temper-
ature field and energy conservation ((hε1 − hε2) · nΓε = 0)

d

dt
Sε =

ˆ
Qε1

ξ1

ϑε
+
ˆ
Qε2

hε2 · ∇ϑε

(ϑε)2
+
ˆ

Γε

(
qε

ϑε
− h

ε
2

ϑε

)
· nΓε

=
ˆ
Qε1

ξ1

ϑε
+
ˆ
Qε2

hε2 · ∇ϑε

(ϑε)2
+
ˆ

Γε
−(ϑε)−1εŤε · υετ =

ˆ
Qε1

ξ1

ϑε
+
ˆ
Qε2

ξ2

ϑε
+
ˆ

Γε
ε
ξΓ

ϑε

with ξΓ = εŤε ·υετ and Ťε := TnΓε according to section 1.6. The constitutive assumptions on
ξ read:

ξ1 = ξ̃1(Sεm, (mε
m + p) , qε) =

1
ν
|Sεm|

2 +
1

ν + 3λ
(mε

m + p)2 +
1
k
|qε|2

ξ2 = ξ̃2(hε2) =
1
k2
|hε2|

2

ξΓ = ξ̃Γ(υετ ) =
1
α
|υετ |

2

Using the method introduced in section 1.7 the following system is obtained:

Dε,1
t υ

ε − ε2νdivDυε − λε2∇divυε +∇εp = gε on Qε
1

∂t (%εEε) + εdiv (%εEευε)− div k∇ϑε − εdiv (Tεmυε) = υε · gε on Qε
1

∂tE
ε
2 − div k2∇ϑε = 0 on Qε

1

(k∇ϑε + εTεmυε − k2∇ϑε) · nΓε = 0 on Γε

Ťε + αυετ = 0 on Γε

where
Tε = ενDυε + λε (divυε) I− εpI

2.8. Summary

The basic ideas of homogenization in the framework of formal asymptotic expansion where
introduced. Although the formal asymptotic expansion method is not rigorous but only
formal, it still yields very useful results and is worth being considered as a tool for the
modeling of multiscale multiphase flows.

One of the big problems involved with homogenization is the correct scaling of equations
and this problem was treated in the second part of the chapter. As shown in section 2.7,
in particular in example 2.7, we are left with some freedom in the choice of scaling of the
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fundamental equations of continuum mechanics, of the constitutive equations for the energy
or the constitutive equation for the rate of entropy production.

In particular, regarding convection diffusion equations of the form

(2.8.1) ∂tc
ε + εκυdiv (υεcε) + εκcdiv jεc = 0 ,

example 2.7 demonstrated that we are free to chose κc > 0 in (2.8.1), if we are aware of the fact
that this choice reflects the assumption that the diffusive flux is small compared to the macro
scale. In particular, we saw how the scaling of fluxes - they may be diffusive of convective
- is connected with the question on which scale we assume that these fluxes influence the
macroscopical physics. This is reflected best by example 2.7.

For these reasons, section 2.7 put some limitations on the choice of the scalings: The
concept of thermodynamically consistent scaling was introduced to an extent as it will be
sufficient to judge whether a choice of constitutive equations will result in thermodynamically
consistent limit equations. Note that at the same time, it can also be used in order to directly
derive thermodynamically consistent scalings of a physical system. This can be done directly
with help of the MREP-assumption, using appropriate scalings of the abstract equations, the
constitutive assumption on the energy and of constitutive assumptions on the rate of entropy
production. This will be used in chapter 6 for the derivation of two-scale models for two-phase
flows.

The method has some advantages compared to other methods: The scaling of the velocity
is obviously connected to the question, whether the characteristic scale of the velocity is large
or small compared to the macro scale. The scaling of diffusive fluxes is related to the assumed
mobility of the respective substances. The term “mobility” means, whether it is assumed that
the diffusion occurs on large scales or on small scales. As we have discussed in example 2.7,
this choice is also related to the rate of entropy production. Finally, it is possible to draw
conclusions from the non-dimensionalized constitutive equation of the energy.

However, in order to chose an appropriate scaling of constitutive equations of the energy
and the rate of entropy production, several questions have to be answered: Are the energy
or the rate of entropy production determined by local or global variables? In particular: Is
entropy produced by long reaching effects or by processes on the micro-level? What determines
the energy and entropy at the microscopic boundaries? These are questions that have to be
answered by the physicist who attempts to derive the scaled equations. The aim of this section
was only to set up the toolbox, which will later be applied in chapters 6 and 7.



Part 2

Modeling Multiphase Flow on Two Scales





CHAPTER 3

Conventional Porous Media Multiphase Flow Theory Applied
to Permafrost Soil

This chapter will shortly recapitulate the classical approach to multiphase flows in porous
media. Additionally, it will focus on memory effects in phase transitions and apply all these
results to permafrost soil on the Tibetan plateau. Note that the contents of this chapter are
also important in order to compare results of chapters 6 and 7 to the classical theories. Of
course, the theory of multiphase flow in porous media is by no means covered by this short
introduction as it is topic of many scientific books.

3.1. Introduction: Permafrost Soil on the Tibetan Plateau

Almost 25% of the northern hemisphere is covered by permafrost soil, which is soil char-
acterized by its temperature being less than 0°C for at least two successive years. Permafrost
soil is divided into high latitude/low altitude and low latitude/high altitude permafrost. The
high latitude permafrost is mostly located at Siberia, Canada, Iceland and Greenland, while
the high altitude permafrost is located in high mountainous regions like Norway, the Alps,
the Pyrenees, the Rocky Mountains, the Himalayas or the Tibetan plateau.

The structure of permafrost soil is shown in figure 3.1. On top, we find the so called active
layer, usually having a thickness of one to two meters. This active layer is subject to seasonal
or even daily freezing and thawing. Below the active layer there is the permanently frozen
layer which extents from several meters to several hundred meters, depending on geological and
climatic conditions. Even deeper in the ground, thermal heating will limit the permanently
frozen zone from below. Remark that due to its definition, permafrost is not identical with
the permanently frozen part of the soil but occupies also part of the active layer. This is
due to the fact that the freezing temperature Tf of water decreases in the pore space (see
section 3.3). Figure 3.1 also shows two temperature profiles for the maximal and minimal
temperature during an annual cycle.

The importance of permafrost soil is both of ecological and economical nature. Due to the
current heating up of global climate, permafrost soil is decreasing in extent and thickness. The
active layer is growing thicker changing at the same time the living conditions for microbes
in the soil, as well as for plants of any size.

In Canada and Siberia, permafrost soil strongly influences the seasonal and annual runoff
of fresh water into the sea as well as the lifetime of the snow cover during the winter which in
turn influences the albedo of the northern hemisphere. Worse, lots of organic carbon is stored
in the Siberian permafrost soil and its heating may result in the release of a huge amount of
methane to the atmosphere.

Thus, the heating of the high latitude permafrost will probably have enhancing feedback
on global warming.

Understanding of the high altitude permafrost which will be described below is of eco-
nomical importance due to the mechanical and engineering properties of the frozen ground:
In particular on the Tibetan plateau, roads and railways may break down because of the
movements of thawing soil. Even for buildings this may be fatal. However, as mentioned in
the introduction, this thesis will not deal with either microscopic or macroscopic movements
of the soil, in particular we are not interested in mechanical properties of the soil.

47
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Figure 3.1.1. Left: Distribution of Permafrost soil on the northern hemi-
sphere. different colors indicate different physical properties. Map prepared
by the International Permafrost Association (IPA) and National Snow and
Ice Data Center (NSIDC). Map and data available from nsidc.org/fgdc/maps.
Right: Structure of permafrost soil after K. Roth [87], by courtesy of K. Roth.

From the ecological point of view, note that the presence of a frozen layer in 2m depth
guaranties that fresh water from rain will not get lost but stay right beyond the soil’s surface.
The vanishing of that frozen layer may result in dramatic problems with fresh water supply.

3.1.1. Site 1: Tianshuihai. The Tianshuihai site is located in the north-west of the
Tibet autonomous region. It is situated in desert with very few rain events and strong daily
temperature fluctuations that alternate about 20°C from day to night. Because of the rareness
of the rain events, we assume that water is bound in the pore space (immobile phase) while
air is moving freely. This air movement is mostly due to expansion and contraction with
increasing or decreasing temperature. At the same time, this movement is one of the main
causes of water (vapor) transport.

3.1.2. Site 2: Qumahe. The Qumahe site is located in the north-east of the Tibetan
plateau in the Qinghai region. It is also characterized by highly oscillating temperatures but
in contrast to the Tianshuihai site, the climate is humid with many rain events during the
monsoon. Therefore, we assume in this case, that both water and air are mobile phases.

Date for both, Tianshuihai and Qumahe are currently collected by the group of Prof. K.
Roth and are under evaluation.

3.2. From Darcy to Richards: Hysteresis in Porous Media

3.2.1. Darcy’s equation. In 1856, Henry Darcy published his article “Les fontaines
publiques de la ville de Dijon” [23] in which he discussed the relation between the flow rate of
water in a saturated porous medium and the pressure gradient that is applied between inflow
and outflow region. The experimentally observed relation was

(3.2.1) υ = A(%g −∇p)

where υ is the velocity, A some positive constant, %w the water’s density, g the gravitational
acceleration and p the pressure. Today, this relation is also mathematically verified by many
authors ([89, 54, 73] and also references given in section 2.3). A formal calculation can be
found in section 2.3.
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Today, we know that (3.2.1) is only valid if the pores of the medium are small enough to
guaranty laminar flow on the microscale (in the pore space). If turbulence occurs inside the
pores, (3.2.1) has to be replaced by different models, for example Forchheimer’s equation

κ1υ + κ2 |υ|υ = A(%g −∇p) .

3.2.2. Flow in unsaturated porous media. In an unsaturated porous medium, things
become much more complicated. For simplicity, assume that the pore space is only filled with
the two fluids air and water. Any generalization of the major ideas to more (or different) fluids
is obvious, at least at the level of this short introduction. The two main balance equations
read

∂t (Φ%i) + div (%iΦυi) =
+
%i i = a,w

where Φ is the porosity, %i are the partial densities, υi the velocities and
+
%i the mass production

rates due to chemical reactions or phase transitions (like vapor condensation). The indices a
and w stand for air and water respectively. Later, we will also consider ice, but since ice can
be considered as immobile substance, it is not of interest at this point.

There might be chemical substances transported with the fluids, such as vapor in air or
salts in water. Such transport phenomena can be described by reaction-convection-diffusion
equations

∂t (Φc%i) + div (%iΦcυi) + div jc =
+
c

where c denotes the mass concentration, jc the diffusive flux of c and
+
c the mass production of

c due to chemical reactions. These reactions may be chemical reactions with other components
of the fluid, phase transitions or absorbing/releasing on the grain-boundaries.

Since the pore space is filled with two immiscible fluids, it is clear that we cannot expect
Darcy’s law (3.2.1) to hold any longer for any of the two species. Nevertheless, we can try to
write down equations of the form

υi = Ai(. . . ) (%ig −∇ψi) , i ∈ {a,w} ,

where ψi is the energy of a reference element of fluid i. This energy depends on the state of
i, which is given by state variables such as space coordinates x, pressure p, temperature ϑ or
concentrations of chemical solutes ci,j . In the simplest case, ψi corresponds to the pressure of
i, which is denoted by pi. Thus for a system of water and air, we have two equations

(3.2.2)
υw = Aw(. . . ) (%wg −∇ψw)

υa = Aa(. . . ) (%ag −∇ψa)

where Aw and Aa may depend on various variables.
In order to complete the system, we need at least one more condition on the relation

between ψa and ψw which is in an implicit framework

f(ψa, ψw) = 0 .

However, in the simplest case, we may particularly assume

(3.2.3) ψm := ψw − ψa = ψ0(. . . ) .

Even though (3.2.3) is a trivial expression, it is extremely exhausting to find suitable models
for ψ0, as we will discuss in the next subsection.

3.2.3. Richard’s equation. In many simulations, the so called Richard’s equation is
used to model water transport, while the air phase is assumed to be perfectly mobile. In
order to derive Richard’s equation, it is necessary to introduce the concept of water- and air-
content. First, note that Φ%w and Φ%a are not physical densities of the several substances
but they are weighted by their volume fraction in the pore space. Thus, if %w,0 and %a,0 are
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the physical densities (i.e. the densities of free water and free air at given temperature and
pressure), the water/air content is defined by

θi :=
Φ%i
%i,0

, i ∈ {a,w} .

This quantity denotes the volume fraction of the total soil sample that is taken up by i.
Following Roth [87], based on θw, the two-phase flow regime is split up into three categories
that are indicated in figure 3.2.1:

Figure 3.2.1. The
three major regimes
in soil. Explanation:
see text. Picture by
courtesy of K. Roth
[87].

In the degenerate multiphase regime (A), water
content is so small, that the air phase becomes con-
nected. Since air is much more mobile than water, any
changes in θw are accommodated very quickly by pa
which can be assumed to be equal to atmospheric pres-
sure. The volumetric water flux is then described by
the Buckingham-Darcy law

jw = −Kw(θw) [∇ψm +∇ψa − %wg]

where ψm is taken from (3.2.3) and the water content
evolves with time according to

(3.2.4) ∂tθw − div (Kw(θw) [∇ψm +∇ψa − %wg]) = 0

which is known as the Richards equation [86].
If water content becomes high enough, both the wa-

ter and the air phase become highly coupled to each
other in the so called continuous multiphase regime (B).
In this regime, the Richards equation breaks down and
some better suited models are in need. Following (3.2.2)
one way to write the equations is

∂tθa − div (Ka(θa) [∇ψa − %ag]) = 0

∂tθw − div (Kw(θw) [∇ψm +∇ψa − %wg]) = 0(3.2.5)
∂tθa + ∂tθw = 0 .

Finally, in the discontinuous multiphase regime (C),
the continuity of the air phase is lost. This happens if
θa drops below a critical value. Air is then no longer
transported by convective processes but rather by dis-
solution in the water phase and by diffusion. Sometimes, if the pressure gradients are high
enough, large air bubbles may start to move towards regions of lower pressure. To the authors
knowledge, the modeling of such a regime is yet an open problem[87].

The question arises, how the coefficients Ka and Kw as well as ψm can be parametrized.
For decades, this was (and still is) one of the key topics and key questions in modeling
multiphase porous media flow. It is not the intention of this thesis to go into the details
of existing approaches but rather to point out the major issues and (using homogenization
techniques) to give some new answers in chapter 6.

Some early approaches try to give deterministic relations between θw and ψm or between
θw and Ka,w. However, these models where not successful since ψw as well as Ka,w seem to
depend strongly on history of the system - a phenomenon which is often called hysteresis.

3.2.4. Hysteresis in porous media flow. Note that there are multiple models and
attempts to parametrize Kw in a deterministic way. They are based on the matric head

hm := ψm/(ρwg)
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where ρw is the density of free water and g the gravitational constant. Defining saturation

Θ :=
θw − θr
θs − θr

with the residual and saturated water contents θr and θs, the two most commonly used
relations between hm and Θ are

Θ(hm) =

{
(hm/h0)−λ hm < h0

1 hm ≥ h0
(Brooks-Corey)

Θ(hm) = (1 + (αhm)n)−k (Van Genuchten)

where λ, α, k and n are positive parameters [87]. However, Kw is then assumed to be
depending on Θ instead of θw. The most popular relation seems to be due to Mualem [76]:

K(Θ) = K0Θa

[´ Θ
0 hm(s)−1ds´ 1
0 hm(s)−1ds

]2

.

However, these ansatzes fail by the moment that memory effects come into play. One
ansatz that is often followed is to choose different parametrizations in the Mualem-Van
Genuchten setting for both the drainage and imbibition cycle.

A more reasonable and mathematically interesting ansatz is to choose a memory or even
hysteresis operator p̃ in the parametrization

p = p̃ (θ)

Shortly speaking, a memory operator is an operator

A : Dom(A) ⊂ C(0, T )× R → C(0, T )
(u(·), w0) 7→ w(·) with w(0) = w0

that maps a bounded continuous function u and a given initial value w0 to a bounded con-
tinuous function w with w(0) = w0. This mapping is assumed to be causal, which means{

∀(u1, w0), (u2, w0) ∈ Dom(A), ∀t ∈ (0, T ],
if u1 = u2 in [0, t], then [A(u1, w0)](t) = [A(u2, w0)](t) .

Additionally, this operator can be rate independent:
∀(u,w0) ∈ Dom(A), ∀t ∈ (0, T ],
if s : [0, T ]→ [0, T ] is an increasing homeomorphism,
then [A(u ◦ s, w0)](t) = [A(u,w0)](s(t))

a Hysteresis operator is then a rate independent memory operator[97].

Definition 3.1. [97, page 13] Hysteresis = Rate Independent Memory Effect.

The following two examples for hysteresis operators are taken from [97]. The most simple
hysteresis model is the playtype hysteresis.

Assume γl, γr : R → [−∞,+∞] are continuous and non-decreasing with γr ≤ γl and set
J(σ) := [γr(σ), γl(σ)] as well as IJ(σ)(x) := +∞ ∗

(
1− χJ(σ)(x)

)
with subdifferential ∂IJ(σ).

Then the variational inequality

(3.2.6) e(0) = e0, e ∈ J(σ), ∂te (e− υ) ≤ 0 ∀υ ∈ J(σ)

is equivalent with the so called generalized play[97]

∂te ∈ −∂IJ(σ)(e)

According to [97, III.2], there is a continuous operator

E : C0 ( [0, T ] )× R→ C0 ( [0, T ] )
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such that for any σ ∈ C0 ( [0, T ] ), e := E(σ, e0) is the unique solution to (3.2.6).
Both, mathematical and simulation results were obtained by Beliaev and Beliaev and

Hassanizadeh [14, 13] for the Richard’s equation with playtype hysteresis and an additional
memory effect:

(3.2.7)
∂tθ =

∂

∂x

(
K(θ)

(
∂p

∂x
− g
))

p = E(θ, p0)

However, although the simulation results show hysteretic behavior, the hysteretic curves do
not fit at all with the measured ones. Particularly, note that in particular, K is still not
assumed to be hysteretic or memory dependent.

A more successful approach is the implementation of the so called Preisach hysteresis.
First, for any ρ = (ρ1, ρ2) with ρ1 < ρ2 define the delayed relay operator

hρ : C0 ( [0, T ] )× {−1, 1} → BV (0, T ) ∩ C0
r ( [0, T [ )

via

[hρ(u, ξ)] (0) :=


−1 if u(0) ≤ ρ1

ξ if ρ1 < u(0) < ρ2

1 if u(0) ≥ ρ2

and

[hρ(u, ξ)] (t) :=


[hρ(u, ξ)] (0) if Xt = ∅
−1 if Xt 6= ∅ and u(max Xt) = ρ1

1 if Xt 6= ∅ and u(max Xt) = ρ2

where Xt := {τ ∈ [0, t] : u(τ) = ρ1 or ρ2}. Using the Preisach half plane

P :=
{
ρ = (ρ1, ρ2) ∈ R2 : ρ1 < ρ2

}
and the set R of measurable ξ : P → {−1, 1}, define for any finite measure µ on P the
Preisach operator

Hµ : C0 ( [0, T ] )×R → L∞(0, T ) ∩ C0
r ( [0, T ] )

(u, ξ) 7→ [H(u, ξ)] (t) :=
ˆ
P

[hρ(u, ξρ)] (t)dµ(ρ)

UsingH instead of E , a different hysteric behavior is obtained in (3.2.7). Figure 3.2.4 shows
the differences of Play-type and Preisach hysteresis when applied to the capillary pressure vs.
saturation relation.

Flynn et al. [32] compared different Preisach models to measurements and found good
agreements. Note that one could also try to implement other types of hysteresis. An overview
on many hysteresis models and the different mathematical methods can be found in the book
by Visintin [97].

3.3. Memory Effects in Phase Transitions

The overview in the last section demonstrated how sensitive porous media flow behaves
with respect to hysteresis and memory effects. Based on this experience, it seems possible
that memory effects also appear in other physical processes in porous media, such as phase
transitions. In particular, the speed of phase transitions such as freezing and thawing may
depend on the geometry of the pores as well as on the distribution of microscopical interfaces.
This section shortly discusses possible memory effects in phase transitions.
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Figure 3.2.2. Left: Play type hysteresis of the form pn − pw = p̃(S) =
E(S, p̃0). Right: The corresponding relation with a hysteresis operator of
Preisach type pn− pw = p̃(S) = Hµ(S, p̃0). The arrows on the thick lines indi-
cate the main curves of drainage and imbibition, while the thin lines indicate
secondary curves of drainage and imbibition, in case the cycle did not pass
through maximum imbibition or maximum drainage.

3.3.1. Memory effects in freezing processes. Water is a very special fluid showing
a lot of anomalies in experiments that distinguish it from other substances. First, it does not
only possesses the phases “vapor”, “liquid” and “solid” but the solid state itself can be split up
into several solid aggregate states. Fortunately, for the modeling of freezing processes in the
pore space, only one of these solid states (ordinary ice) is of interest.

Still, the freezing process comes up with a lot of problems. According to Yershov [102]
this process needs an initial cluster of 450 - 500 water molecules. Therefore, the freezing and
thawing process of free water exhibit hysteresis effects due to undercooling and superheating.
This effect may influence the macroscopic relation between temperature and water/ice content.

Yershov [102] also claims that there are two possible developments of the freezing process,
depending on the assumption whether or not the pore space boundaries are more attractive to
water or to ice. The latter question is connected with the compatibility between the crystalline
structure of ice (hexagonal) and the molecular structure of the solid’s surface. Note that the
molecular structure of the surface may force the water molecules to arrange in a way that
differs significantly from the perfect hexagonal structure. In this case, the critical temperature
for freezing ϑc has to be less than 0°C in order that the water molecules form a locally non-
hexagonal but stable grid. Anyhow, once the ice phase is stuck to the boundary and the
molecules formed a stable grid, the thawing temperature might be slightly higher than the
freezing temperature ϑc.

Another factor that comes into play is the question whether the soil matrix is infiltrated
by colder or warmer water.

In case the surface is attractive to ice or the infiltrating water has higher temperature
than the soil matrix, an ice sheet will start to grow in the bigger pores. This is, since the
water’s velocity in the small pores and in the pore throats is higher than in the big pores. If
the net flow is zero, ice growth may start simultaneously in the smaller pores.

Alternatively, if the molecular structure of the surface lowers the local freezing temperature
significantly or in case that the water’s temperature is lower than the soil matrix’ temperature,
water will first start to build some small ice particles in the inner pore space. These particles
may accumulate in small pores and throats until the flow of the liquid phase is slowed down
in such a way that the pore space can start to freeze completely.

All these processes may contribute to significant memory effects. Nevertheless, the au-
thor is only aware of two experimental and two theoretical publications where such memory
effects were obtained [17, 18, 53, 93]. Among those, one is only available in Japanese
[93]. Homshaw´s theoretical work [53] is based on thermodynamical considerations in the
pore space and he states that “Pore size determines the equilibrium conditions for the solid,
liquid and gas phases in porous materials (Defay et. al. 1966). There will be hysteresis
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Figure 3.3.1. Two different scenarios according to Yershov [102]. In the
first scenario, freezing starts at the boundary of pore space and continues until
the whole pore space is frozen. In the second scenario, Freezing start in the
inner of the pore by formation of small ice particles. these may accumulate
for example in pore throats and block water flow which will result in a total
freezing of the pore. Picture by courtesy of K. Joachimsmeyer.

between freezing an melting temperatures if interfacial curvatures during freezing and fusion
are different (Everett and Haynes, 1965).”

The article by Bronfenbrener et al. [17, 18] discovered a significant memory effect on the
freezing/thawing cycle. They claim that “indeed, if frozen soil is brought to some temperature
T∗ < 0, then the transition of the ‘soil-water-ice’ system to a state of thermodynamical equilib-
rium may take considerable time.” In their experiments, they cooled down a soil sample to a
temperature below 0°C and measured ice content depending on time. The characteristic time
scale which they measured for the freezing process was 160s for sand and 1428s for sandy
loam.

Homogenization results by C. Eck [24, 25, 26] on the Stefan problem (see chapter 4,
examples 4.2 and 4.7 for a derivation) suggest that there is indeed theoretical evidence for
such memory effects. However, note that Eck did not consider phase transitions in a porous
medium but rather periodic geometry in crystallization. Nevertheless, since the underlying
set of equations would be the same in porous media, his results can be assumed to also hold
in the latter case.

3.3.2. Memory effects in condensation and evaporation. According to the results
in the last subsection, it is reasonable to conclude that memory effects should not only appear
in freezing/thawing transitions but also in condensation/evaporation processes. The assump-
tion of thermodynamical equilibrium, which is often made, claims that vapor content in the
air phase is at saturation as long as there is a reservoir of liquid water in the soil. However,
condensation and evaporation take place on finite timescales. Depending on the microscopic
geometry and on the speed of the moving air phase and temperature fluctuations, the vapor
content of the air phase may not be at equilibrium but show memory effects. This is the
theoretical basis for the finite condensation term appearing in the next two sections. Note
that it also appears due to upscaling in chapter 7.

3.4. Modeling TianShuiHai

3.4.1. Modeling. Let % be the density of the air phase and Φa the reduced porosity,
which is all pore space that is not occupied by water. The total mass of liquid and frozen
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water is given by w such that we can assume that Φa = Φ0 − %−1
w w with the total “dry”

porosity Φ0 and water density %w. Denote the mass concentration of vapor in the air phase
by c and the condensation/evaporation rate by ι. Then, the mass balance equations for air,
vapor and water read

∂t(Φa%) + div (Φa%υ) = −ι
∂t(Φa%c) + div (Φa%cυ) = div (K∇c)− ι

∂tw = ι

Finally, assume that the air velocity is given by a Darcy- or Richards- relation of the form
(3.2.1). If jcand j are the fluxes of vapor and air respectively, than the energy balance can
be assumed to take the form

∂tu = div (Aϑ∇ϑ)− div
(
jcmv(ϑ) + j%ma(ϑ)

)
u = Φa%cmv(ϑ) + wmw(ϑ) + Φa%ma(ϑ) +ms(ϑ)

where mv, ma and ms are the heat capacities of vapor, air and soil respectively.

3.4.2. The complete system of equations. Thus, the model reads as follows:

∂t(Φa%) = −div (%υ)− ι(c, ϑ, w, %)(3.4.1a)
υ = A(w, %, ϑ) (%g −∇p)(3.4.1b)

Φa = Φ0 − %−1
w w(3.4.1c)

∂t(Φa%c) = div (K(w, ϑ)∇c)−∇(j% c)− ι(c, ϑ, w, %)(3.4.1d)
∂tw = ι(c, ϑ, w, %)(3.4.1e)
∂tu = div (Aϑ∇ϑ)− div

(
jcmv(ϑ) + j%ma(ϑ)

)
(3.4.1f)

u = Φa%cmv(ϑ) + wmw(ϑ) + Φa%ma(ϑ) +ms(ϑ)(3.4.1g)

where the following abbreviations where introduced:

jc := −K(w, ϑ)∇c+ υ% c(3.4.2)
j% := υ%(3.4.3)

In order to complete the system, a constitutive equation for p is needed. The law of ideal
gases suggests p = r%ϑ with ϑ being the temperature. However, for low or high densities as
well as for low or high temperatures, this law may no longer be valid for the air phase as a
real gas.

3.4.3. On the specific form of ι(c, %, ϑ, w). We assume that water vapor condensates
on the pore boundaries as soon as the vapor content rises above a critical value. On the
opposite, as soon as the vapor content drops below that critical value, condensed water may
immediately start to evaporate. Thus, a reasonable approach for the condensation term
ι(c, %, ϑ, w) seams to be the following:

ι(c, %, ϑ, w) = (c%− %Dc (ϑ)) c0(w, ϑ, c)

where %Dc is the critical vapor density at which a thermodynamical equilibrium between evap-
oration and condensation is achieved. There are several ways to model %Dc : One possibility is
to start from the partial pressure of vapor in air, which is described by the law of ideal gases
for one mole of particles: p V = Rϑ. This yields

pw = %cRϑ

for the partial pressure pw. For every gas, there is a minimal partial pressure pD(ϑ) that has
to be reached for the initiation of condensation. This yields:

%Dc (ϑ) =
pD(ϑ)
Rϑ
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The critical pressure is obtained from the Clausius-Clapeyron equation for an ideal gas:

dp

p
=

∆H
Rϑ2

dϑ

which finally yields

pD(ϑ) = p0 exp(−∆H
Rϑ

).

The full model for ι(c, %, ϑ, w) therefore reads:

(3.4.4) ι(c, %, ϑ, w) =

%c− p0(ϑ) exp
(
−∆H(ϑ)

Rϑ

)
Rϑ

 w .

Of course, this is but a rough approximation. Better models might be obtained using the
Van-der-Waals equation, but above result is good enough to capture the major characteristic
behavior of condensation. In particular, vapor condenses in case of over saturation and water
evaporates in case of under saturation.

3.4.4. High condensation rate limit and the Philip-de Vries parametrization.
The standard way to parametrize vapor transport in soil goes back to Philip and de Vries.
In contrast with the above setting, their approach assumes equilibrium vapor content on the
micro scale, i.e. that the vapor content of the air phase is always at saturation. In this case,
c would be a function of ϑ and the vapor flux due to diffusion would be:

jc = −D%∇c = −D% d
dϑ
c(ϑ)∇ϑ

Philip and de Vries found out that this would still underestimate the flux and they introduced
the Philip-de Vries factor F (%, ϑ, w):

jc = −DF (%, ϑ, w)∇ϑ

We will use this factor to estimate the diffusion coefficient K(w, ϑ) in our model in the
following way: Denote the total water content by w̃ := w + c% and get from the model:

∂tw̃ = div (K(w, ϑ)%Φa∇c)−∇(υΦa%c)

we are only interested in the diffusive part right now and therefore assume that υ ≡ 0. The
total water flux, which is equal to the vapor flux, is then −K(w, ϑ)%Φa∇c. On the other
hand, scaling the condensation rate with a time parameter τ yields

∂t(Φa%c) = div (K(w, ϑ)%∇c)−∇(υΦa%c)− τ ι(c, %, ϑ, w)

The formal limit τ → +∞ yields the relation

(3.4.5) ∂t(Φa%c) ∈


{+∞} if c < cDvap(ϑ)
(−∞,+∞) if c = cDvap(ϑ)
{−∞} if c > cDvap(ϑ)

which implies at the same time c = cDvap(ϑ). Inserting this in jc = −K(νw, ϑ)%Φa∇c and
comparing with the Philip-de Vries model yields K(νw, ϑ)%Φa = DF (ϑ, νw)

(
d
dϑc

D
vap(ϑ)

)−1.
Of course, the Philip-de Vries parameter is only an approximation to physical reality, but

the problem is, that to the authors knowledge, only this value has been subject to theory and
experiments.
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3.4.5. Dependence of A(c, %, ϑ) on %. As shown above in section 2.3, microscopic con-
siderations combined with upscaling methods yield A ∝ 1

µ . Andrade [11] found a dependence
of the viscosity µ on %, ϑ and p by:

µ(%, ϑ, p) = C%
1
2 exp

(
B

ϑ
(p+D%2

a)
)

implying that A ∼ %
−1
2 exp(−%2). This is good for a rough estimate on the behavior of the

coefficient A as %→∞.

3.4.6. Boundary conditions. Dirichlet boundary conditions are one of the most popu-
lar among mathematicians, mostly due to the mathematical beauty and simplicity they imply.
Dirichlet conditions imply that the boundary values of each variable are known for all times,
in particular they are often assumed to be zero w.l.o.g.. However, this turns out to be a wrong
approach either for physical and mathematical treatment of the problem.

From the physical point of view, we cannot access the value of either one of the phys-
ical relevant quantities like temperature, water content, pressure and air humidity on the
boundaries of the observed domain. In particular at the soil-air interface there is no hope to
measure this information. It is also obvious that these quantities are not as important for
the understanding of the processes as the fluxes of air, moisture and heat at this particular
interface.

From the mathematical point of view, the linear terms and the modified nonlinearities
arising with the introduction of Dirichlet boundary conditions would cause to much difficulties
in getting essential boundedness estimates (which means L∞-estimates) on the variables.

To avoid these difficulties from the mathematical as well as from the physical point of
view, it is assumed that the variables satisfy some nonlinear Neuman boundary conditions,
i.e. for a domain Q with Γ := ∂Q and normal vector nΓ, these Neuman conditions read

υ% · nΓ = f%(%, ϑ)
K∇c · nΓ = fc(c, ϑ)
Aϑ∇ϑ · nΓ = fϑ(ϑ)

From the physical point of view, f% would respond to pressure differences between soil and
atmosphere. In particular if %aϑ > p+, the flux of air would be from soil to atmosphere. If
%aϑ < p− we would expect the opposite. The total flux of gas is therefore mainly influenced
by air pressure.

In the same way, fc is mainly influenced by the air moisture content. If the moisture
content of air is smaller than in soil, some diffusive flux from soil to atmosphere is expected.
If the opposite is true, it is reasonable to expect some transport of vapor from atmosphere to
soil. This flux may also depend on temperature.

For fϑ we expect a similar behavior in our mathematical model, although the situation
here is not that easy. It is true, that due to the first principle of thermodynamics, the heat
flux is always from the hotter to the colder object. However, in reality, the main heat supply
is due to solar radiation and loss is mainly due to infra red radiation during the nights.

3.5. Modeling QuMaHe

As mentioned above, the Qumahe site differs from the Tianshuihai site by the presence
of significant raining events. Thus, water movements in soil have to be incorporated and the
water content has to be split up in liquid water and ice. Nevertheless, the model can be based
on system (3.4.1) and the two changes can be easily incorporated.

To do so, introduce two velocity fields υw and υa for water and air. These velocity fields
both follow a Darcy-like law of form (3.2.2). Note that the present formulation refrains from
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switching to the saturation formalism as neither water nor air are incompressible for high
temperature fluctuations. The water pressure is replaced by

pw = pa + pc

with a capillary pressure pc that might be obtained from hysteresis operators introduced in
section 3.2. The ice phase remains immobile and accretes due to freezing and lessens due to
thawing.

Instead of only one phase transition vapor/water, the new systems has to account for three
phase transitions: vapor/water, water/ice and vapor/ice. Accordingly, the model comprises
not only one reaction rate ι but ιvw, ιwi and ιvi. The complete system reads

∂t(Φa%a) = −div (%aυa)− ιvw − ιvi(3.5.1)
∂t(Φw%w) = −div (%wυw) + ιvw − ιwi(3.5.2)

υa = Aa (%ag −∇pa)(3.5.3)
υw = Aw (%wg −∇pw)(3.5.4)
Φa = Φ0 − Φw − Φi(3.5.5)
Φw = %−1

w,0%w(3.5.6)

Φi = %−1
i,0 %i(3.5.7)

pw − pa = pc(. . . )(3.5.8)
∂t(Φa%ac) = div (K∇c)−∇(j% c)− ιvw − ιvi(3.5.9)

∂t%i = ιvi + ιwi(3.5.10)
∂tu = div (Aϑ∇ϑ)− div (jcmv(ϑ) + j%ma(ϑ) + jwmw(ϑ))(3.5.11)
u = Φa%acmv(ϑ) + Φw%wmw(ϑ) + %imi(ϑ) + Φa%ama(ϑ) +ms(ϑ)(3.5.12)

where the following abbreviations where introduced:

jc := −K∇c+ υa%a c(3.5.13)
j% := υa%a(3.5.14)
jw := υw%w(3.5.15)

The coefficients Aa, Aw, Aϑ, K, ιvw, ιiw, ιvi and pc may depend on all appearing variables.

3.6. Discussion: Missing Information on the Microscale

The very basics of macroscopic continuum description of transport processes and multi-
phase flow in porous media were introduced. Note that it is not the intention of this thesis to
go into details on that subject. Nevertheless, these methods where applied to the multiphase
transport in Tibetan permafrost soil (sections 3.4, 3.5).

Note that the fundamental drawback of the classical approach is that it does not take into
account for microscopic geometry and topology. In particular, the microscopic distribution
of interfaces (menisci) and the evolution of these interfaces are not included in the models
although they should have a major impact on the macroscopic flow field and the evolution of
this flow field, as well as on macroscopic transport processes. The same hold for microscopic
freezing processes and effects of evaporation and condensation.

It will be the topic of chapter 6 to derive two-scale models for two-phase flow, which take
these missing information into account. Also in chapter 7, these results will be applied to
the derivation of two-scale models for the same physical situation which was investigated in
sections 3.4 and 3.5.



CHAPTER 4

Modeling Multiphase Flows

4.1. Introduction

In this chapter the assumption of maximal rate of entropy production (MREP), introduced
in chapter 1, will be used to derive phase field models of multiphase and multifluid flows
also including thermodynamically consistent boundary conditions. The results for the bulk
are taken from [50, 48] by the author together with Málek and Rajagopal. The resulting
boundary conditions are planed to be published in a forthcoming paper by the author [45].

Based on theoretical arguments, van der Waals postulated in 1893 [95, 96] that “it is
highly probable that the sharp interface observed at the interface between a liquid and its
vapor is only ostensible. In fact it seems that there is a small transition zone in which the
density continuously decreases.”

However, only eight years later, in 1901, Korteweg was able to derive the continuum
equations for a system consisting of a liquid in two phases [63]. Based on considerations of
interactions between two neighbored infinitesimal volumes, he derived the following general-
ization of the Navier-Stokes equation

∂t(%υ) + div (%υ ⊗ υ)− div (νD(υ)) +∇ (p(%)− λdivυ)− div (T%) = 0

where % is the density of the fluid under consideration and υ its velocity. The additional stress
tensor

(4.1.1) T% := −
(
α∇%⊗∇%+ β |∇%|2 I + γ%∆%I + δ∇2%

)
is today known as Korteweg stress tensor. Sometimes, only the first term α∇% ⊗∇% or any
tensor α∇c⊗∇c with some arbitrary variable c is denoted as Korteweg tensor.

He was not the first, neither the last one interested in these phenomena. Other famous
scientists such as Young[103], Laplace, Monge, Gibbs [33], Haddamard[41], Landau [65] or
Cahn and Hilliard[19] dealt with the subject. A historical overview can be found in the book
by Rowlinson and Widom[88]. A summary on the history of phase field models such as they
will be derived below can be found in the article by Lowengrub and Truskinowsky[67].

In 1958, Cahn and Hilliard [19] described the interface between two different immiscible
fluids A and B by a function c(x) which was supposed to be 1 if a point x was occupied by
fluid A and 0 if it was occupied by fluid B. In the transition zone (the interface), the function
c could take any value in the interval [0, 1]. In their setting, c was interpreted as the molar
fraction of one of the two constituents. They found the free energy FΩ of any volume Ω to
be given by

FΩ(c) =
ˆ

Ω

[
f(c) +

∣∣∣σ
2
∇c
∣∣∣2]

from which the diffusive flux jc of c could be derived to be

(4.1.2) jc = −∇δF
δc

= −∇
[
∂F
∂c

+
∂F
∂∇c

]
= −∇

[
f ′(c)− σ∆c

]
.

Since, there was a great effort in deriving physically consistent models combining diffusive
fluxes (4.1.2) with stress tensors (4.1.1). For a discussion of the history of such efforts until
the early 1990’s the reader is referred to the paper by Lowengrub and Truskinovsky [67]. One

59
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form of a coupled Cahn-Hilliard system with transport reads according to [67]

∂t%+ div (υ%) = 0
∂t(%υ) + div (%υ ⊗ υ)− div (νD(υ)) +∇ (p(%)− λdivυ)− div (σ∇c⊗∇c) = 0(4.1.3)

∂t(%c) + div (%cυ)−∆
[
f ′(c)− σ∆c

]
= 0 .

We emphasize that the modeling of fluid-fluid interfaces by phase functions is not only in-
teresting from the physical point of view: It is also interesting for numerical simulations and
modeling of complex multifluid systems. Note that traditionally, the interface between two
fluids or two phases of the same substance is described by a two dimensional manifold. Due
to movements of the fluids, this manifold may also change with time and its movement is
determined by the velocity fields of the neighboring liquid phases. Since the manifolds need
to be described in a C2-formalism, it is not clear at all, how topological changes (intersection
of interfaces, nucleation etc.) should be described or handled, as such topological changes
come up with 0-dimensional singularities.

To overcome the topological problems in numerics, the theory of level set functions devel-
oped a lot in the early 1990’s and was very successful in simulating multiphase movements of
liquids including topological transitions (refer to Sethian [91] for further discussion on level
sets). These level set methods capture interfaces as the zero-level set of a smooth function
which evolves in time due to transport and other processes.

The so called phase field models are physically motivated by observations like the one
by Van der Waals [95] and naturally come up with models that remind a lot the level set
functions. The Korteweg and Cahn-Hilliard systems are two such examples which have already
been studied intensively from mathematical point of view. For more information see [1, 2,
12, 16, 28, 101] and references therein.

In addition, phase field models have become important in modeling and simulation of
condensation or crystallization processes. For example, the freezing of water can be modeled
by a temperature field ϑ and a phase field function ω which takes values ω = 1 in the liquid
phase and ω = −1 in the solid phase. The system describing the freezing of water is known
as Stefan problem. Coupled with the phase transition model by Allen and Cahn [9], it reads
in its simplest form

∂tu(ϑ, ω)− div (κ∇ϑ) = 0(4.1.4)
∂tω − σ∆ω + g(ω, ϑ) = 0(4.1.5)

where u(ϑ, ω) = Cϑϑ+λω is the internal energy depending on ϑ and ω and g is the derivative
of a double well potential. For more models of phase transitions and also for analysis of
(4.1.4)-(4.1.5), the reader is referred to the book by Visintin [98] and references therein.

However, very little was done concerning suitable boundary conditions for such phase field
models. Given the domain Q with boundary Γ and the mass concentration c of fluid 1, the
commonly chosen dynamic boundary condition for phase separation is

(4.1.6) ∂tc− στ∆ττ c+ f(c)− σ∇c · nΓ = 0 on Γ .

Here, ∆ττ is the Laplace-Beltrami operator on Γ and nΓ is the outer normal vector. The
few publications that deal with the topic come to the conclusion that in some particular
cases (4.1.6) indeed is a suitable boundary condition. To name the few articles found by
the author, there was an attempt by Binder and Frisch [15] who treated the problem using
a semi-infinite Ising-model together with Kawasaki spin exchange dynamics. Fischer, Maas
and Dieterich [31] as well as Kenzler et. al. [62] used Ginzburg-Landau theory to derive
the equations. Recently, Qian, Wang and Sheng [81] used molecular dynamics simulations to
find that the movement of a multifluid system in a bounded region can be described by the
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Navier-Stokes-Cahn-Hilliard equations (4.1.3) coupled with a boundary condition

∂tc+ υτ∇τ c = −γL(c)
β(c)υτ = − (nΓT)τ + L(c)∇τ c

where the index τ again denotes the tangential part of a vector and

T = ν∇υ − pI + λdivυI + σ∇c⊗∇c .

In their study, L(c) = −K∆τ c+ δEΓ
δc +σ∇c ·nΓ where EΓ is the surface energy depending on

c and ∇τ c. So, the dynamic boundary condition they obtained for the Cahn-Hilliard equation
was the same as (4.1.6). The result was later on rederived by the same authors [82] using a
variational approach to thermodynamics. Note that they obtained Navier-Slip condition as a
natural and thermodynamically consistent boundary condition.

The results by Qian, Wang and Sheng [82] can be reconstructed in the present framework,
but with slight modifications. This is partially due to the fact that c in their approach is not
connected to mass concentration, neither to partial densities but is an independent variable
on its own. This can be seen by noting that their phase field evolves due to

∂tc+ υ · ∇c+ div j = 0 .

In this setting, c can only be interpreted as concentration or as a partial density if the masses
of the two phases or liquids are identical and if divυ = 0.

To the authors opinion, the thermodynamic approaches [31, 62, 82] share the drawbacks
that they are not explicitly developed for boundary conditions (which are physically different
from the bulk equations) and they do not treat or even care for the rate of entropy production.

The ansatz of this chapter is the method introduced in section 1.7. The result will be
close to [82] but as said before, with slight modifications. Also, the results will appear more
natural. It is also possible to obtain the no-slip condition, but the author thinks that the
Navier-slip is more natural than the no-slip condition since the transition region on the surface
should follow the flow in the bulk. In a sharp interface model, this would correspond to a
moving of the contact line, following the movements of the interface.

Additionally to previous results, it turns out that the second law of thermodynamics
imposes a condition on the normal derivative of the normal component of the velocity field
∂nυn, which was previously unknown. Without this new additional restriction, the system
cannot be considered as thermodynamically consistent.

The main goal of this chapter is to provide a thermodynamically well-sounded basis for the
modeling of mixtures of fluids including thermodynamically consistent boundary conditions.
The framework will be based on the MREP-assumption and will comprise the derivation of
the Korteweg and Cahn-Hilliard equations as well as to the Stefan problem coupled with an
Allen-Cahn phase field as special cases. In addition, it will be shown that this method can be
generalized to much more complicated physical systems. This chapter will be more compact
than the articles [50, 48] by the author and Málek and Rajagopal. For the Korteweg system,
the reader is referred to [47] by the author and Málek, where basically the same method
was applied in a less general setting. For the Stefan problem, the reader is also referred to
[98, 99, 29].

Finally, before we start with the calculations, remember equations (1.2.9).

∂t%i + div (%iυ) + div (%iui) =
+
ci(4.1.7a)

∂t%+ div (%υ) = 0(4.1.7b)
∂t (%υ) + div (% (υ ⊗ υ))− divT = g(4.1.7c)

∂t (%E) + div (%Eυ)− divh = s .(4.1.7d)

together with the shorter version of 4.1.7a

(4.1.7e) %ċi + div ji =
+
ci .
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Throughout this chapter, it will be assumed that T = TT which assures by the same time the
conservation of angular Momentum. We finally assume for simplicity (1.2.10)

(4.1.8) s = g · υ ,
which is the physical assumption that external energy supply is only due to work done by
external body forces. For later purpose we are interested in ∇̇%, ∇̇%i and ∇̇ci. The first and
second expression can be easily calculated by applying ∇ to (4.1.7b) and (4.1.7a) which yields

∇̇% = − (∇υ)∇%− div (%divυI) .(4.1.9)

∇̇%i = − (∇υ)∇%i − div
((
%idivυ + div ji−

+
ci

)
I
)
.(4.1.10)

By definition of ∇̇ci and by taking the gradient of 4.1.7e, we obtain

%∇̇ci = %∂t(∇ci) + % (υ · ∇)∇ci
0 = ∇%∂tci + %∂t(∇ci) +∇%(υ · ∇ci) + %∇(υ · ∇ci) +∇div ji −∇

+
ci

=
∇%
%
%ċi + %∂t(∇ci) + %∇(υ · ∇ci) +∇div ji −∇

+
ci .

Equation (4.1.7e) evidently yields ∇%% %ċi = ∇%
%

(
+
ci −div ji

)
, while the third term can be

reformulated by

% [∇(υ · ∇ci)]j = %
∑
k

(∂jυk∂kci + υk∂j∂kci) = %
[
(∇ci)T (∇υ) + (υ · ∇)∇ci

]
j

and we evidently get

%∇̇ci =
∇%
%

(
div ji−

+
ci

)
− % (∇ci)T (∇υ)− div

[(
div ji−

+
ci

)
I
]
.(4.1.11)

4.2. Multiphase Flows in Terms of Concentrations

In the following, we will consider fluid mixtures where the choice of state variables in the
constitutive equation (1.4.1) consists of ci and ∇ci. This choice will result in model equations
which contain as a special case the equations for a compressible Cahn-Hilliard fluid and the
Stefan problem. The first calculations will focus on two components, for simplicity. After
that, the more general case will be considered.

4.2.1. Two constituents system. As said before, the calculations below will restrict
to the two constituents %1 and %2. First, define c := c1 and

+
c:=

+
c1 to obtain

∂t (%c) + div (%cυ) + div (j1) =
+
c .(4.2.1)

The internal energy (1.4.1) is assumed to be given as

u = ũ(η, %, c,∇c) = u0(η, %, c) + û(%, c,∇c)
with the material derivative

(4.2.2) %u̇ = %
∂ũ

∂η
η̇ + %

∂ũ

∂%
%̇+ %

∂ũ

∂c
ċ+ %

∂û

∂ (∇c)
· ∇̇c .

Introducing the notations

ϑ :=
∂ũ

∂η
, p := %2∂ũ

∂%
, µ :=

∂ũ

∂c
, ∂zû :=

∂û

∂ (∇c)
and using equations (4.1.7b) - (4.1.7e), (4.1.8) and (4.2.2) one gets

ϑ%η̇ =
(
T · ∇υ + divh− div (Tυ) + pdivυ − %∂zû · ∇̇c− %µċ

)
.
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We observe that %ċ can be eliminated using (4.2.1). Multiplying (4.1.11) with ∂zu yields

−% ∂zû · ∇̇c = %∇c⊗ ∂û · ∇υ + ∂zû · ∇
[
div j1−

+
c
]
− ∂zû ·

∇%
%

[
div j1−

+
c
]

which can be modified with help of

(4.2.3) µc := −div (∂zû)− ∂zû
∇%
%

and Tc := (%∇c⊗ ∂û)

and “partial integration” (in the sense of applying the formula for derivatives of products) into

− %∂zû · ∇̇c = Tc · ∇υ + µc

[
div j1−

+
c
]

+ div
(
∂zû

[
div j1−

+
c
])

= Tc · ∇υ − µc
+
c −∇µc · j1 + div (µcj1) + div

(
∂zû

[
div j1−

+
c
])

.(4.2.4)

Finally, (4.1.7e) yields

ϑ%η̇ = (T + Tc) · ∇υ + divh+ pdivυ− +
c (µc + µ)− j1 · ∇ (µc + µ)

+div ((µc + µ) j1)− div (Tυ) + div
(
∂zû

[
div j1−

+
c
])

The last equation together with and ϑ−1divh = div h
ϑ +ϑ−2h∇ϑ for arbitrary vector field

h leads to the identification of ξ and q as

ξ = (T + Tc) · ∇υ +
q

ϑ
· ∇ϑ+ pdivυ− +

c (µc + µ)− j1 · ∇ (µc + µ)(4.2.5)

q = (µc + µ) j1 + ∂zû
[
div j1−

+
c
]

+ h− Tυ .(4.2.6)

Assuming that Tc = TTc , setting Dυ := 1
2(∇υ +∇υT ), Ddυ := Dυ − 1

3 (trDυ) I, m := 1
3trT,

m̃ := m+ 1
3trTc, S̃ := (T + Tc)− m̃I, the latter relation for ξ can be reformulated into

ξ =
(
S̃ · Ddυ +

q

ϑ
· ∇ϑ+ (m̃+ p) divυ

)
− +
c (µc + µ)− j1 · ∇ (µc + µ)(4.2.7)

Here, S̃ represents the deviatoric free part of the dissipative Cauchy stress. Therefore, assum-
ing a constitutive equation

ξ = ξ̃(S̃,h, (m̃+ p), j1,
+
c)

=
1

ν(%, ϑ)

∣∣∣S̃∣∣∣2 +
3

ν(%, ϑ) + 3λ(%, ϑ)
(m̃+ p)2 +

1
κ
|q|2 +

1
J
|j1|

2 +
1
C

(
+
c)2 ,(4.2.8)

and applying the assumption of maximum rate of entropy production introduced in section
1.4 yields with equation (1.4.12)

T = νDυ − pI + λdivυI− %∇c⊗ ∂û(4.2.9)
j1 = −J ∇ (µc + µ)(4.2.10)

+
c = −C (µc + µ)(4.2.11)
q = κ∇ϑ(4.2.12)

µc = −div (∂zû)− ∂zû
∇%
%

(4.2.13)
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which yields

%̇+ %divυ = 0(4.2.14)
%υ̇ − div (νDυ) +∇ (p− λdivυ)− div (%∇c⊗ ∂û) = g(4.2.15)

%u̇− T · Dυ − div (h− Tυ) = 0(4.2.16)
%ċ− div (J ∇ (µc + µ)) + C (µc + µ) = 0(4.2.17)

where h is given by (4.2.6). It can be observed that (µc + µ) plays a crucial role in (4.2.14)-
(4.2.17) since it contributes twice to the smoothing of c: Once due to diffusive mixing on the
interface and once due to chemical reactions if the two species are able to transform one into
the other. The next subsection will give a short interpretation of the constitutive equations
we obtained and discuss two examples which highlight the consequences of the results in more
detail.

Remark. It is often claimed that absence of chemical reactions of diffusion is equivalent
to either C = 0 or J = 0. This is mathematically correct, but physically,

+
c= 0 or j1 = 0 have

to be imposed in (4.2.7) and (4.2.8). In this case, equations (4.2.10) and (4.2.11) would not
appear.

4.2.2. Interpretation of constitutive equations. We repeat the explanation of the
resulting constitutive equations according to [50]: First, it is easy to identify −%∇c ⊗ ∂û as
capillary stress contributing to the Cauchy stress tensor (4.2.9). It is an additional stress
proportional to the mean curvature which flattens the interface between the species. Further-
more, we easily observe that in case û = 0 also µc = 0 and

+
c= −Cµ and j1 = −J∇µ. In case

the chemical potential of c is lower than of its complementary substance c2, we will observe a
reaction of c2

Cµ−−→ c.
The latter result is classical Fick’s law. However, for two immiscible fluids, the energy

ε0(η, %, c) has no singular minimum in c for a large range of (η, %). Instead, ε0 will be a double
well potential with two local minima m0 and m1 in the vicinity of 0 and 1 and ε0(c) = +∞ for
c 6∈ [0, 1]. As a consequence, the flow j1 being proportional to ∇µ = µ′(c)∇c with µ = ∂ε0

∂c will
try to keep the system locally either in concentration c ≈ m0 or c ≈ m1. This means, j1 will
act strongly separating on the fluids and that µ′ will also take negative values, changing the
type of the equation for c into non-parabolic. If an interfacial energy is added, the interfacial
potential µc acts as smoothing potential causing an additional diffusive flux of fourth order.
All these effects due to chemical potentials and interfacial energies have been observed and
discussed in various books and papers, for example [94, 40, 67, 75].

Equation (4.2.6), yields for the energy flux

h = Tυ + κ∇ϑ− (µc + µ) j1 − ∂zû
[
div j1−

+
c
]
.

The first term is the well known ordinary energy transport due to the coupling of velocity field
and Cauchy stress. The second is ordinary diffusive heat transport. The third term is energy
transport due to diffusive movement of the constituents: Assume there was no macroscopic
movement (i.e. υ = 0) and uniform temperature (i.e. ∇ϑ = 0) but some diffusive processes.
The moving constituents carry internal energy with them which may not be the same for
all constituents. Therefore, a net mass movement would result in a net energy flux. Such
results are quite well known (see e.g. [94, Appendix 5B]) but the derivation is usually more
complicated.

The new term is the last one. To understand its origin and its meaning, first note that it
can be rewritten as %ċ∂zu. So, it is supposed to describe some heat flux due to interactions of
the time evolution of c with the energy field û(%,∇c). In fact, taking a look on (4.1.11), %ċI
is nothing but the “diffusive flux” of the quantity %∇c and %ċ∂zu is nothing but the energy
transported by this flux.
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4.2.3. Examples.

Example 4.1. [50] The Cahn-Hilliard System of equations can be easily obtained for
û = σ

2% |∇c|
2 and

+
c= 0: First, note that

µc = −div (∂zû)− ∂zû
∇%
%

= −σ 1
%

∆c .

Clearly, the resulting set of equations is

∂t%+ div (%υ) = 0
%∂tυ + % (υ · ∇)υ − div (µDυ) +∇p−∇ (νdivυ) + div (σ∇c⊗∇c) = 0

%∂tc+ %υ∇c− div (f ′(c)∇c) + div
(
J ∇

(
σ

%
∆c
))

= 0 .

Example 4.2. [48] The Stefan problem (4.1.4)-(4.1.5): From the particular form of the
equations, some conclusions can be taken on the assumptions behind them:

• The density is independent on temperature and concentration c (otherwise there
would be corresponding fluxes) and
• There is no velocity field.

Taking these assumptions into account, system (4.2.14)-(4.2.17) reduces to

∂tu− divh = 0
∂tc− div (J ∇ (µc + µ)) = −C (µc + µ)

µc + div (∂zû) = 0

where c denotes the ice concentration. Assuming, that “ice-particles”, which are in fact nothing
but bounded and immobile water molecules, do not show diffusive movement in the phase
boundary, the second equation reduces due to j1 = 0 to

∂tc =
+
c= −C (µc + µ)

which is with the assumption û = σ
2 |∇c|

2 and h = κ∇ϑ

∂tu− div (κ∇ϑ)− div
(
∂zû

+
c
)

= 0

%∂tc = C (div (σ∇c)− µ)

Remember that u = u0(η, %) + û(%,∇c) = ũ0(ϑ) + û(∇c). Then, (4.2.4) together with the
assumptions υ = 0, ∇υ = 0 and j1 = 0 yields:

∂tû =
∂û

∂∇c
· ∂t∇c = µc

+
c +div

(
∂zû

+
c
)
.

Inserting this into the energy equation with ∂tc =
+
c and assuming λ = µc ' const gives

∂t (ũ0 + λc)− div (κ∇ϑ) = 0 .

Replacing c by ω finally yields the Stefan problem (4.1.4)-(4.1.5).

Note that the derivation above gives very clear indications, how the Stefan problem or
the Cahn-Hilliard system should be generalized to more complex problems. In particular, it
is now possible to consider also density gradients and diffusive fluxes in the Stefan problem
or temperature gradients in the Cahn-Hilliard system. In the following, these equations will
be generalized to multi constituent systems.



66 4. MODELING MULTIPHASE FLOWS

4.2.4. Multi constituent systems. Consider a system of several immiscible fluids (e.g.
air, water and oil) and denote the number of fluids by J . Based on the experience above, a
constitutive assumption for the internal energy

(4.2.18) u = ũ(η, %, c1, . . . , cJ ,∇c1, . . . ,∇cJ)

is chosen, which yields the following relation

%ϑη̇ = T · ∇υ + divh+ pdivυ −
∑
i

%∂z,iu∇̇ci −
∑
i

µiċi .

Following above calculations, the following abbreviations are introduced:

µc,i := −div (∂z,iû)− ∂z,iû
∇%
%

Tc,i := (%∇ci ⊗ ∂z,iû)

to obtain the following expression using the assumption that T = TT , Tc,i = TTc,i:

%ϑη̇ = (T +
∑
i

Tc,i) · Dυ + divh+ pdivυ −
∑

ji · ∇ (µc,i + µi)−
∑
i

+
ci (µc,i + µi)

+div
[∑

(µc,i + µi) ji + ∂z,iû
(
div ji−

+
ci

)]
The detailed calculation of T, q, h, ji and

+
ci are left to the reader. The results read:

(4.2.19)

T = νDυ − pI + λdivυI−
∑
i

Tc,i

ji = −J ∇ (µc,i + µi)
+
c = −C (µc,i + µi)
q = κ∇ϑ .

Remark 4.3. Note that the ci and ∇ci are not independent since

(4.2.20)
∑
i

ci = 1 and
∑
i

∇ci = 0 .

Nevertheless, it makes sense to assume that u is given by (4.2.18). Later, (4.2.20) may be
used in (4.2.19) in order to eliminate one of the ci and its gradient ∇ci. Due to the structure
of the calculations, the result does not differ whether (4.2.20) is used in (4.2.18) or (4.2.19).
Note that the latter insight is also physically reasonable, as the physics described by the final
model is independent on the choice of variables!

4.2.5. The choice of the internal energy and consequences. For the two con-
stituent system, there is only one interface which can be easily identified by ∇c and the
internal energy is modeled by û = σ

2% |∇c|
2. However, for a system of n immiscible con-

stituents, there are n
2 (n+ 1) interfaces and they cannot be modeled by summing up terms of

the form σi
2% |∇ci|

2 for three reasons:
(1) There are only n terms to describe the energies of n2 (n+ 1) interfaces.
(2) The term σ1

2% |∇c1|2 cannot distinguish whether a 1− 2, a 1− 3 or any 1− i (i 6= 1)
interface is described.

(3) There is no interaction between the three phases at lines where these three phases
intersect. However, these interactions are important for the description of contact
angles.

To get an alternative description, consider for instance the 1 − 2 interface which is by its
nature characterized by steep gradients ∇c1 and ∇c2. Additionally, in the absence of c3, the
equality ∇c1 = −∇c2 would hold (although we are quiet aware that c3 = 0 will probably
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never be satisfied in any point of the region of interest). A choice for the internal energy
for the 1 − 2-interface which is compatible with the Cahn-Hilliard equations and the Stefan
problem is therefore u12 = −σ12

2% ∇c1 · ∇c2. Summing up such terms, one ends up with

û = −
∑
i 6=j

σij
2%
∇ci · ∇cj

The total capillary stress tensor and the chemical potentials become

Tc =
∑
i

Tc,i = −σij
∑
i 6=j
∇ci ⊗s ∇cj(4.2.21)

µc,i =
1
2%

div (
∑
j 6=i

σij∇cj)(4.2.22)

with
a⊗s b :=

1
2

(a⊗ b+ b⊗ a) ∀a, b ∈ R3

A closer look on the choice of û for three constituents. We take a separate look on the
system of three species. Since

∑
ci = 1, it is clear that ∇c3 = −∇(c1 + c2). Since also

j3 = −j1 − j2, it follows

%η̇ =
1
ϑ

((T + Tc) · Dυ + divh+ pdivυ)−
∑
i=1,2

∇ (µ̃c,i + µ̃i) ji

+div
∑

((µc,i + µi) ji) + div (∂z,iûdiv ji) + div (µiji)

with

Tc = (σ13 + σ23 − σ12)∇c1 ⊗s ∇c2 + σ13∇c1 ⊗s ∇c1 + σ23∇c2 ⊗s ∇c2

µ̃c,1 = −1
%
div

(
σ13∇c1 +

1
2

(σ13 + σ23 − σ12)∇c2

)
µ̃c,2 = −1

%
div

(
σ23∇c2 +

1
2

(σ23 + σ23 − σ12)∇c1

)
In many numerical simulations, the choice of the internal energy is û =

∑ σ̃i
2% |∇ci|

2 and the
resulting constitutive equations read

Tc = 2σ̃3∇c1 ⊗s ∇c2 + (σ̃1 + σ̃3)∇c1 ⊗s ∇c1 + (σ̃2 + σ̃3)∇c2 ⊗s ∇c2

µ̃c,1 = −1
%
div ((σ̃1 + σ̃3)∇c1 + σ̃3∇c2)

µ̃c,2 = −1
%
div ((σ̃2 + σ̃3)∇c2 + σ̃3∇c1)

From the representation of Tc and µ̃c,i it may be concluded that

σ13 = σ̃1 + σ̃3, σ23 = σ̃2 + σ̃3, σ12 = (σ̃1 + σ̃2) .

Both models are thus identical. However, this works only for three species models, since only
in this case, the amount of interfaces equals the amount of substances.

4.3. Multiphase Flows in Terms of Densities

We start again from the assumption that the mixture under consideration consists of J
fluids, but now we will choose %i and ∇%i as state variables. The basic physical difference
to the previous section is, that the choice of densities does not only allow to describe inter-
faces between constituents but also between different phases of the same material. The mass
conservation equation (4.1.7a) will be used in its diffusive form

∂t%i + div (%iυ) + div ji =
+
ci .(4.3.1)
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As a constitutive equation for u, we postulate

u = ũ(η, %,∇%, %1, . . . , %J ,∇%1, . . . ,∇%j) .

Remark 4.4. Note, that ũ explicitly depends on % and ∇% despite the fact that % =
∑

i %i.
This is, because the total density % may have an influence on the internal energy of a specific
constituent, say %1, despite the fact that %1 may have no influence on the internal energy of
constituent %i 6=1. Also remember remark 4.3 where it was stated that the calculations make
no difference whether an assumption% =

∑
i %i is inserted a priori or a posteriori.

For (1.4.2), obtain

%ϑη̇ = %Ė − ∂E

∂υ
υ̇ − %∂ũ

∂%
%̇− % ∂ũ

∂ (∇%)
∇̇%− %

∑
i

∂ũ

∂%i
%̇i − %

∑
i

∂ũ

∂ (∇%i)
∇̇%i .

Introducing

∂zũ :=
∂ũ

∂ (∇%)
, ∂z,iũ :=

∂ũ

∂ (∇%i)
, p := %2∂ũ

∂%
and µi := %

∂ũ

∂%i

obtain with help of (4.1.7b), (4.1.7a) and (4.1.10):

%ϑη̇ = %Ė − (divT) · υ + %

(
∂zũ⊗∇%+

∑
i

∂z,iũ⊗∇%i

)
· ∇υ +

(
p+

∑
i

%iµi

)
divυ + %∂zũ · ∇ (%divυ)

+
∑
i

%∂z,iũ · ∇
(
%idivυ + div ji−

+
ci

)
+ µi

(
div ji−

+
ci

)
.

With the help of

(4.3.2) T% := %∂zũ⊗∇%, T%,i := %∂z,iũ⊗∇%i, µz,i := −div (%∂z,iũ) , µ̃i := µz,i + µi

and (4.1.7d) as well as (1.4.2) the latter equation finally reads

ϑ%η̇ =

(
T + T% +

∑
i

T%,i

)
· Dυ +

(
p− %div (%∂zũ) +

∑
i

%iµ̃i

)
divυ + divh−

∑
i

∇µ̃i · ji − µ̃i
+
ci

+div

(∑
i

µ̃iji + h− Tυ + %2divυ∂zũ+
∑
i

%∂z,iũ
(
%idivυ + div ji+

+
c
))

,

where it is assumed that T = TT , T% = TT% and T%,i = TT%,i. Set S := (T + T% +
∑

i T%,i),
m := trT, m̃ := trS, S̃ := S− 1

3m̃I, p̃ :=
(
p− %ϑdiv

( %
ϑ∂zũ

)
+
∑

i %iϑµ̃i
)
and identify ξ to be

ξ = S̃ · Dυ + (m̃+ p̃) divυ +
∇ϑ
ϑ
· q −

∑
i

∇µ̃i · ji − µ̃i
+
ci(4.3.3)

q = h− Tυ +
∑
i

µ̃iji − %%̇∂zũ−
∑
i

%∂z,iũ%̇i(4.3.4)

Assuming that S̃ is the dissipative stress and ξ̃ is given as

ξ = ξ̃(S̃, q, (m̃+ p̃), ji,
+
c)

=
1

ν(%, ϑ)

∣∣∣S̃∣∣∣2 +
3

ν(%, ϑ) + 3λ(%, ϑ)
(m̃+ p̃)2 +

1
κ
|q|2 +

1
Ji
|ji|

2 +
1
Ci

(
+
ci)2 ,
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the maximization of ξ̃ with respect to the constraint ξ̃ = ξ yields again

T = νDυ + λdivυI− T% −
∑
i

T%,i −

(
p− %div (%∂zũ) +

∑
i

%iµ̃i

)
I

q = κ∇ϑ
ji = −Ji∇µ̃i
+
ci = −Ciµ̃i

where µ̃i, T% and T%,i are given by (4.3.2):

T% := %∂zũ⊗∇%, T%,i := %∂z,iũ⊗∇%i, µz,i := −div (%∂z,iũ) , µ̃i := µz,i + µi

and the total system

%̇+ %divυ = 0
%υ̇ − divT = g

%u̇− T · Dυ − div (h− Tυ) = 0
%̇i − div (J ∇ (µ̃i)) + C (µ̃i) = 0

Note that both ji and
+
ci depend on %1, . . . , %J and ∇%1, . . . ,∇%J such that they will probably

have a smoothing effect on the surfaces, as will be shown in the examples below.
Before studying these examples, take a look on the energy expressions: Based on the

experience of section 4.2, the energy at the interface between two different substances i and
j is claimed to be given by

uij = −σij(. . . )∇%i∇%j
where σij(. . . ) is a nonnegative function, eventually depending on all state variables. Addi-
tionally, it is possible to consider different phases of a particular constituent i. The energy of
an interface between two phases of the same constituent may be specified by

uii = σi(. . . ) |∇%i|2

where σi(. . . ) again is a nonnegative function eventually depending on all state variables, in
particular on %i.

Examples. It is again possible to derive the Cahn-Hilliard set of equations and the
Stefan problem with Allen-Cahn phase field. In a first step, the method will be applied to
the derivation of Korteweg’s equation.

Example 4.5. [50] Dealing with only one constituent %1 = %, we conclude j1 = 0,
+
c1= 0

and %̇ = %̇1. We furthermore denote ∂̃% := ∂
∂% + ∂

∂%1
and ∂̃z := ∂

∂(∇%) + ∂
∂(∇%1) to obtain

T = νDυ − ∂̃zũ⊗∇%−
(
%2∂̃%ũ− %ϑdiv

(
%∂̃zũ

))
I

which is with the pressure redefined as p := %2∂̃%ũ

T = νDυ − ∂̃zũ⊗∇%−
(
p− %div

(
%∂̃zũ

))
I

which is precisely the result found in [47]. For boundary conditions of Kortweg’s equation,
the reader is referred to a forthcoming paper [45].

Example 4.6. [50] We want to derive the compressible Cahn-Hilliard-Navier-Stokes equa-
tion and consider a system consisting of two constituents. The basic assumptions are

+
ci= 0
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and ∂zũ = 0 which yield

T = νDυ −
∑
i

T%,i −

(
p+

∑
i

%iµ̃i

)
I

ji = −Ji∇µ̃i
µ̃i = µz,i + µi = −div (%∂z,iũ) + µi .

For the internal energy, we assume ũ = u0(η, %) + û(%, %1,∇%1) with

û(%, %1,∇%1) =
σ

2%
|∇%1|2 .

The pressure p splits up into p = p0 + p̂ with p0 = %2 ∂u0
∂% and p̂ = %2 ∂û

∂% and finally:

p+
∑
i

%iµ̃i = p0 + p̂− %1div (%∂z,1ũ) + %1%
∂û

∂%1
+ %1%

∂u0

∂%1

= p0 −
σ

2
|∇%1|2 − %1div (σ∇%1) + %1%

∂u0

∂%1
.

Thus the following constitutive equations results:

µ̃i = −div (σ∇%1) + %
∂u0

∂%1

T = νDυ − σ∇%1 ⊗∇%1 −
(
p0 − div (σ∇%1) + %1%

∂u0

∂%1

)
I

ji = −Ji∇
(
−div (σ∇%1) + %

∂u0

∂%1

)
Example 4.7. [48] We again derive Stefan’s problem. Like in example 4.2, the same

assumptions on υ, j1 and on the internal energy yield

+
c= div (σ∇%1)− %∂ε0

∂%1

This Stefan model has the advantage that it allows for some knowledge on the total mass
of the ice and therefore e.g. also for a temperature dependent density rather than a fixed
density.

4.4. Incompressible Fluid Mixtures

The content of this section is also part of [50]. Though it is not of importance for the rest
of this thesis, it is still interesting to see how easily the assumption of incompressibility can
be incorporated into the above setting.

4.4.1. Incompressible Fluid Mixtures in Terms of Concentrations. We consider
a system of two immiscible fluids like in section 4.2.1 and start with equations (4.2.5) and
(4.2.6). We remark that under the incompressibility assumption

(4.4.1) divυ = 0 ,

(4.2.6) remains unchanged while (4.2.5), resp. (4.2.7), changes to

ξ = S̃ · Ddυ +
q

ϑ
∇ϑ− j1 · ∇ (µc + µ) .

Thus, assume for ξ a constitutive equation

ξ = ξ̃(S̃,h, j1) =
1

ν(%, ϑ)

∣∣∣S̃∣∣∣2 +
1
κ
|q|2 +

1
J
|j1|

2 ,
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which yields after a short calculation according to the maximization assumption above

T = νDυ +
(
m+

1
3
tr (%∇c⊗ ∂z ε̂)

)
I− %∇c⊗ ∂z ε̂

j1 = −J ∇ (µc + µ)
q = κ∇ϑ .

Note that T is obtained from S̃ = νDdυ = T̃ − m̃I together with trDυ = 0. Finally, define
pm := −m− 1

3tr (%∇c⊗ ∂z ε̂) to obtain

T = νDυ − pmI− %∇c⊗ ∂z ε̂ .

In contrast with (4.2.9), pm is an unknown variable.

4.4.2. Incompressible Fluid Mixtures in Terms of Partial Densities. We start
again from equations (4.3.3) and (4.3.4) and use (4.4.1) which yields the simplifications %̇ = 0
and also %̇i = −div ji. Thus, the resulting equations are

ξ = S̃ · Dυ +
∇ϑ
ϑ
· q −

∑
i

∇µ̃i · ji

q = h− Tυ +
∑
i

µ̃iji −
∑
i

%∂z,iε̃%̇i .

Under the assumption that S̃ is the dissipative stress, assume ξ̃ to be given as

ξ = ξ̃(S̃, q, ji) =
1

ν(%, ϑ)

∣∣∣S̃∣∣∣2 +
1
κ
|q|2 +

1
Ji
|ji|

2

and, again, the maximization of ξ̃ with respect to the constraint ξ̃ = ξ yields

T = νDυ − T% −
∑
i

T%,i +

(
m+

1
3
trT% +

∑
i

1
3
trT%,i

)
I

q = κ∇ϑ
ji = −Ji∇µ̃i .

Like above, define pm := −m− 1
3trT% −

∑
i

1
3trT%,i to obtain

T = νDυ − pmI− T% −
∑
i

T%,i .

Example 4.8. Considering only one constituent, we obtain the incompressible Korteweg
system for T, which was already obtained by Málek and Rajagopal in [68]:

T = νDυ − T% +
(
m+

1
3
trT%

)
I

4.4.3. Discussion. There are two obvious differences between the compressible and the
incompressible results: First, the expressions for the Cauchy stress tensors vary in their trace
part. Second, the trace of the Cauchy stress tensor T can no longer be given a constitutive
equation but has become an unknown variable. We will see below that the same holds for the
quasi incompressible setting.
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4.5. Quasi-Incompressible Fluid Mixtures

Like in the previous section, a mixture of two incompressible and immiscible fluids will be
considered in terms of the concentration of one of the fluids. This setting was also discussed
in [50]. In contrast with the previous section, the fluids might become slightly compressible in
the transition zone due to the molecular interactions. Mathematically, this can be expressed
by an additional constitutive equation

% = %̃(c) ,

where c is the concentration of fluid 1. This situation was investigated in chapter 4 of [67]
by Lowengrub and Truskinovsky. The latter assumption yields a concrete formula for divυ
of the form

(4.5.1) divυ = − %̇
%

= −1
%

∂%̃

∂c
ċ =

1
%2

∂%̃

∂c
div j .

The internal energy depends on entropy, c and ∇c but not explicitly on % since now, % itself is
dependent on c. Thus with ε = ε̃(η, c,∇c), the calculations of section 4.2 yield for the entropy
balance

ϑ%η̇ = (T + Tc) · ∇υ + divh− j1 · ∇ (µc + µ)
+div ((µc + µ) j1)− div (Tυ) + div (∂z ε̂div j1)

which is again with the notations Dυ := 1
2(∇υ +∇υT ), Ddυ := Dυ − 1

3 (trDυ) I, m := 1
3trT,

m̃ := m+ 1
3trTc, S̃ := (T + Tc)− m̃I, and (4.5.1):

ϑ%η̇ = S̃ · Ddυ + divh− j1 · ∇ (µc + µ+ µqi)
+div ((µc + µ+ µqi) j1)− div (Tυ) + div (∂z ε̂div j1) ,

where
µqi = m̃

1
%2

∂%̃

∂c
.

Thus, the entropy production rate reads

ξ = S̃ · Ddυ +
q

ϑ
· ∇ϑ− j1 · ∇ (µc + µ+ µqi) .

With a constitutive assumption

ξ = ξ̃(S̃, q, j1) =
1

ν(%, ϑ)

∣∣∣S̃∣∣∣2 +
1
κ
|q|2 +

1
J
|j1|

2 ,

This results in the constitutive equations

T = νDdυ −mI− %∇c⊗ ∂ε̂ 1
%2

j1 = −J ∇
(
µc + µ+

(
m+

1
3
trTc

)
1
%2

∂%̃

∂c

)
The latter constitutive equations differ from the ones by Lowengrub and Truskinovsky [67],
since they do not allow for an explicit dependence of T on divυ which is quite reasonable as
divυ is given by ċ.

4.6. Boundary Conditions in Terms of Concentrations

It remains to search for appropriate boundary conditions for Cahn-Hilliard systems. For
simplicity, only the two constituent case will be treated. This section will provide a modeling
approach in terms of concentrations, while the next section will provide models in terms of
partial densities. Note that more general cases can be easily obtained following the ideas of
this chapter.
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According to section 4.2 for the dependence of

η = η̃(E, %,υ, c,∇c)
given in an appropriate way, %η̇ is given by

ϑ%η̇ = (T + Tc) · ∇υ + divh+ pdivυ− +
c (µc + µ)− j1 · ∇ (µc + µ)(4.6.1)

+div ((µc + µ) j1)− div (Tυ) + div
(
∂zû

[
div j1−

+
c
])

=
ξ

ϑ
+ div

q

ϑ
where ξ and q were identified as

ξ = (T + Tc) · Dυ +
q

ϑ
· ∇ϑ+ pdivυ− +

c (µc + µ)− j1 · ∇ (µc + µ)(4.6.2)

q = (µc + µ) j1 + ∂zû
[
div j1−

+
c
]

+ h− Tυ .(4.6.3)

Like in section 1.7, assume the existence of a surface entropy ηΓ and a surface energy EΓ

on ∂Q. Note that like in section 1.7, EΓ is not the trace of E on ∂Q, neither is ηΓ the trace
of η. Furthermore, assume that ηΓ only depends on the surface energy EΓ, %, c and ∇τ c, i.e.

ηΓ = η̃Γ(EΓ, %, c,∇τ c) .
In contrary to EΓ and ηΓ, the variables % and c are defined on ∂Q as the traces of the
corresponding variables in Q. Under the assumption that for fixed values of % and c, the
surface entropy ηΓ is strictly monotone in EΓ, the latter relation is invertible and it is equally
possible to prescribe

EΓ = ẼΓ(ηΓ, %, c,∇τ c)
where we assume for simplicity

(4.6.4) ẼΓ(ηΓ, %, c,∇τ c) = Ê(ηΓ, %, c) +
σΓ

2
|∇τ c|2 .

Due to the dependence EΓ(ηΓ, . . . ), the surface is assigned its own temperature field ϑΓ :=
∂EΓ
∂ηΓ

. However, for simplicity, it will be assumed that ϑΓ = ϑ|Γ on Γ.

4.6.1. First approach. For c assume a balance law according to (1.2.5) of the form

(4.6.5) ∂t(%c) + divτ (%cυτ ) =
⊕
c on ∂Q ,

where compatibility with equation (4.2.1), i.e.

∂t (%c) + div (%cυ) + div j1 =
+
c on Q ,

demands

(4.6.6) ⊕
c =

+
c −div j1 − ∂n(c%υn) on ∂Q .

together with a mass balance equation

(4.6.7) ∂t%+ divτ (%υτ ) =
⊕
% ,

where the mass balance equation (4.1.7b) in the bulk yields

(4.6.8) ⊕
% = −∂n(%υn) .

Equation (4.6.5) can be reformulated into

(4.6.9) ∂tc =
1
%

(
⊕
c − divτ (%cυτ )− c∂t%

)
,

and ∂t(∇τ c) can be calculated, using this equation, to evolve due to

∂t(∇τ c) = ∇τ
[

1
%

(
⊕
c − divτ (%cυτ )− c∂t%

)]
.
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The surface energy conservation is given by

∂tEΓ − divτhΓ =
⊕
E .

In what follows, it will again be assumed that the system is thermodynamically closed, i.e.

⊕
E = h · nΓ, υn = 0, j1 · nΓ = 0 .

This implies in particular

∂n(%υn) = %∂nυn .

By the constitutive equation (4.6.4), the surface energy has the time derivative

∂tEΓ =
∂EΓ

∂ηΓ
∂tηΓ +

∂EΓ

∂%
∂t%+

∂EΓ

∂c
∂tc+

∂EΓ

∂(∇τ c)
∂t(∇τ c) .

Under the assumption that the surface temperature coincides with the bulk temperature, i.e.
∂EΓ
∂ηΓ

= ϑ, using the notations

(4.6.10) µΓ,% :=
∂EΓ

∂%
, µΓ :=

∂EΓ

∂c
, ∂zEΓ :=

∂EΓ

∂(∇τ c)
,

one obtains

ϑ∂tηΓ = divτhΓ +
⊕
E − µΓ,%∂t%−

µΓ

%

(
⊕
c − divτ (%cυτ )− c∂t%

)
−∂zEΓ∇τ

[
1
%

(
⊕
c − divτ (%cυτ )− c∂t%

)]
=

⊕
E − µΓ,%∂t%−

(
µΓ

%
− 1
%
divτ (∂zEΓ)

)(
⊕
c − divτ (%cυτ )− c∂t%

)
+divτ

(
hΓ −

∂zEΓ

%

(
⊕
c − divτ (%cυτ )− c∂t%

))
.

Introducing the notation

(4.6.11) µΓ,2 :=
(
µΓ

%
− 1
%
divτ (∂zEΓ)

)
,

and using (4.6.7) and (4.6.9), the latter expression for ∂tηΓ becomes

ϑ∂tηΓ =
⊕
E + (µΓ,% − cµΓ,2) (divτ (%υτ ) + ∂n(%υn))− µΓ,2

(
⊕
c − divτ (%cυτ )

)
+divτ (hΓ − ∂zEΓ∂tc) .

partial integration and regrouping yields:

ϑ∂tηΓ =
⊕
E − υτ · [%∇τµΓ,% − %µΓ,2∇τ c]− µΓ,2

⊕
c + (µΓ,% − cµΓ,2) ∂n(%υn)

+divτhΓ + divτ (µΓ,%%υτ )− divτ (∂zEΓ∂tc) .

With

qΓ = hΓ + µΓ,%%υτ − ∂zEΓ∂tc and µυ,Γ := [%∇τµΓ,% − %µΓ,2∇τ c] .



4.6. BOUNDARY CONDITIONS IN TERMS OF CONCENTRATIONS 75

and (4.6.1), (4.2.5) and (4.2.6) the total entropy gain of the system reads
d

dt
S :=

ˆ
Q
%η̇ +

ˆ
∂Q

%
◦
ηΓ

=
ˆ
Q

1
ϑ

[
(T + Tc) · ∇υ +

q

ϑ
· ∇ϑ+ pdivυ− +

c (µc + µ)− j1 · ∇ (µc + µ)
]

+
ˆ
∂Q

[
1
ϑ

[
(µc + µ) j1 + ∂zû

[
div j1−

+
c
]

+ h− Tυ
]
· nΓ + divτ

(qΓ

ϑ

)]
+
ˆ
∂Q

[
1
ϑ

(
qΓ ·
∇τϑ
ϑ

+
⊕
E − υτ · µυ,Γ − µΓ,2

⊕
c + (µΓ,% − cµΓ,2) ∂n(%υn)

)]
(4.6.12)

We use compatibility condition (4.6.6), as well as thermodynamical isolation,ˆ
∂Q

divτ
(qΓ

ϑ

)
= 0

and the notation
µΓ,c := (µΓ,2 + ∂zû · nΓ)

in order to simplify above equation to
(4.6.13)
d

dt
S :=

ˆ
Q

1
ϑ
ξ +
ˆ
∂Q

1
ϑ

[
qΓ ·
∇τϑ
ϑ
− υτ ·

(
Ťτ + µυ,Γ

)
− µΓ,c

⊕
c + (µΓ,% − cµΓ,c) ∂n(%υn)

]
.

The total entropy production is then

Ξ =
ˆ
Q

ξ

ϑ
+
ˆ
∂Q

ξΓ

ϑ

with ξ given by (4.2.5),
v
S:=

(
Ťτ + µυ,Γ

)
and

ξΓ = −
v
S ·υτ + qΓ ·

∇τϑ
ϑ
− µΓ,c

⊕
c + (µΓ,% − cµΓ,c) ∂n(%υn)

Let

(4.6.14) ξΓ = ξ̃Γ(
v
Sτ , qΓ,

⊕
c) :=

1
β

∣∣∣vSτ ∣∣∣2 +
1
κΓ
|qΓ|

2 +
1
αc

∣∣∣⊕c∣∣∣2 +
1
αυ
|∂n(%υn)|2

and take ξ̃ from

ξ = ξ̃(S̃, q, (m̃+ p), j1,
+
c)

=
1

ν(%, ϑ)

∣∣∣S̃∣∣∣2 +
3

ν(%, ϑ) + 3λ(%, ϑ)
(m̃+ p)2 +

1
κ
|q|2 +

1
J
|j1|

2 +
1
C

(
+
c)2 .(4.6.15)

As we are in a quadratic setting, the method based on the MREP-assumption which was
introduced in section 1.7.4 can be applied and yields

(4.6.16)

Ťτ = −βυτ − [%∇τµΓ,% − %µΓ,2∇τ c]

∂t(%c) + div (%cυ) =
⊕
c = α

(
σ

%
∆τ c−

µΓ

%
− ∂zû · ν

)
qΓ = κΓ

∇τϑ
ϑ

∂n(%υn) = αυ (µΓ,% − cµΓ,c)

The first and second boundary condition seems to be observed from molecular dynamics
simulations [81] and other simulations [62] and seems to be believed the correct boundary
conditions (see [74, 62] for references).

Both boundary conditions where derived in [82]. However, the present approach can be
generalized to boundary diffusion of c while their approach cannot. Also the new approach
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comes up with an additional feature which was not found in [82], namely an additional
boundary condition (4.6.16)4 on ∂nυn which reads

∂n(%υn) = αυ (µΓ,% − cµΓ,c) .

4.6.2. Second approach. For c assume a balance law according to (1.2.5) of the form

(4.6.17) %∂tc+ %υτ · ∇τ c =
⊕
c on ∂Q ,

where the bulk equation (4.2.1) this time is written as

%∂tc+ %υ · ∇c+ div j1 =
+
c on Q ,

and the compatibility condition (4.6.6) is replaced by

(4.6.18) ⊕
c =

+
c −div j1 on ∂Q .

Equation (4.6.17) can be reformulated as

(4.6.19) ∂tc =
1
%

(
⊕
c − %υτ · ∇τ c

)
,

and ∂t(∇τ c) can be calculated, using this equation, to evolve due to

∂t(∇τ c) = ∇τ
[

1
%

(
⊕
c − %υτ · ∇τ c

)]
The surface energy conservation is given by

∂tEΓ − divτhΓ =
⊕
E .

In what follows, it will again be assumed that the system is thermodynamically closed, i.e.
⊕
E = h · nΓ, υn = 0, j1 · nΓ = 0 .

This implies in particular
∂n(%υn) = %∂nυn .

By the constitutive equation (4.6.4), the surface energy has the time derivative

∂tEΓ =
∂EΓ

∂ηΓ
∂tηΓ +

∂EΓ

∂%
∂t%+

∂EΓ

∂c
∂tc+

∂EΓ

∂(∇τ c)
∂t(∇τ c) .

Assuming again that the surface temperature coincides with the bulk temperature, i.e. ∂EΓ
∂ηΓ

=
ϑ and using the notations (4.6.10) and (4.6.11), partial integration and regrouping yields:

ϑ∂tηΓ =
⊕
E − υτ · [%∇τµΓ,% − %µΓ,2∇τ c]− µΓ,2

⊕
c + µΓ,%∂n(%υn)

+divτhΓ + divτ (µΓ,%%υτ + %cµΓ,2υτ )− divτ (∂zEΓ∂tc) .

With

qΓ = hΓ + µΓ,%%υτ + %cµΓ,2υτ − ∂zEΓ∂tc and µυ,Γ := [%∇τµΓ,% − %µΓ,2∇τ c] .
and (4.6.1), (4.2.5) and (4.2.6) the total entropy gain of the system reads

d

dt
S :=

ˆ
Q
%η̇ +

ˆ
∂Q

%
◦
ηΓ

=
ˆ
Q

1
ϑ
ξ +
ˆ
∂Q

1
ϑ

[
(µc + µ) j1 + ∂zû

[
div j1−

+
c
]

+ h− Tυ
]
· nΓ

+
ˆ
∂Q

[
1
ϑ

(
qΓ ·
∇τϑ
ϑ

+
⊕
E − υτ · µυ,Γ − µΓ,2

⊕
c + µΓ,%∂n(%υn)

)
+ divτ

(qΓ

ϑ

)]
(4.6.20)

Like for the first case, compatibility condition (4.6.18), thermodynamical isolation andˆ
∂Q

divτ
(qΓ

ϑ

)
= 0
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together with the notation
µΓ,c := (µΓ,2 + ∂zû · nΓ)

yield the simplified rate of entropy production

(4.6.21)
d

dt
S :=

ˆ
Q

1
ϑ
ξ +
ˆ
∂Q

1
ϑ

[
qΓ ·
∇τϑ
ϑ
− υτ ·

(
Ťτ + µυ,Γ

)
− µΓ,c

⊕
c + (µΓ,%) ∂n(%υn)

]
.

Note that (4.6.21) has the same form as (4.6.13) and therefore, the calculations can be per-
formed similarly by using (4.6.14) and (4.6.15) to obtain again (4.6.16):

(4.6.22)

Ťτ = −βυτ − µυ,Γ

∂t(%c) + div (%cυ) =
⊕
c = α

(
σ

%
∆τ c−

µΓ

%
− ∂zû · ν

)
qΓ = κΓ

∇τϑ
ϑ

∂n(%υn) = αυ (µΓ,%)

The major difference in the resulting boundary conditions is the explicit form of µυ,Γ and hΓ

as well as the resulting constitutive equation for ∂n (%υn).

4.7. Boundary Conditions in Terms of Partial Densities

In this section, two approaches will be followed in order to derive thermodynamically
consistent boundary conditions for Cahn-Hilliard systems in terms of partial densities. In the
first approach, the resulting equations will be in agreement with Qian, Wang and Sheng [82].
In the second approach, an additional term has to be included in the Navier-slip condition.
The author thinks that this second approach is more reasonable as will be explained below.
In chapter 7, the first approach will be the method of choice, for simplicity.

4.7.1. First approach. Once more, the mixture is assumed to consist only of two con-
stituents %1 and %2 while the calculations will be based on % and %1. The more general cases
can be easily obtained following the ideas of this section.

According to section 4.3 for the dependence of η = η̃(E, %,υ, %1,∇%1) in an appropriate
way, %η̇ is given by

ϑ%η̇ = (T + T%,1) · Dυ + (p+ %1µ̃1) divυ + divh−∇µ̃1 · j1 − µ̃1
+
c1(4.7.1)

+div (µ̃1j1 + h− Tυ + %%̇1∂zû) ,

where ξ and q were identified as

ξ = S̃ · Dυ + (m̃+ p̃) divυ +
∇ϑ
ϑ
· q −∇µ̃1 · j1 − µ̃1

+
c(4.7.2)

q = h− Tυ + µ̃1j1 − %∂z,1û%̇1(4.7.3)

Since it is assumed that E does not depend on ∇% but only on ∇%1, we will simplify notation
as

∂zû =
∂û

∂(∇%1)
.

Assume that ηΓ only depends on EΓ, %, %1 and ∇τ%1, i.e.

ηΓ = η̃Γ(EΓ, %, %1,∇τ%1) .

Under the assumption that for fixed values of % and %1, the surface entropy ηΓ is strictly
monotone in EΓ, the latter relation is invertible and it is equally possible to prescribe

(4.7.4) EΓ = ẼΓ(ηΓ, %, %1,∇τ%1) = Ê(ηΓ, %, %1) +
σΓ

2
|∇τ%1|2
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For %1 assume a balance law according to (1.2.5) of the form

(4.7.5) ∂t%1 + υτ · ∇τ%1 =
⊕
%1 on ∂Q ,

and, using υn = 0, the compatibility condition (4.6.6) is replaced by

(4.7.6) %̇1 = ∂t%1 + υτ · ∇τ%1 + υn∂n%1 =
⊕
%1 on ∂Q .

Equation (4.7.5) can be reformulated as

(4.7.7) ∂t%1 =
(
⊕
%1 − υτ · ∇τ%1

)
,

and ∂t(∇τ%i) can be calculated, using this equation, to evolve due to

∂t(∇τ%1) = ∇τ
(
⊕
%1 − υτ · ∇τ%1

)
The surface energy conservation is given by

∂tEΓ − divτhΓ =
⊕
E .

In what follows, it will again be assumed that the system is thermodynamically closed, i.e.
⊕
E = h · nΓ, υn = 0, j1 · nΓ = 0 .

By the constitutive equation (4.7.4), the surface energy has the time derivative

∂tEΓ =
∂EΓ

∂ηΓ
∂tηΓ +

∂EΓ

∂%
∂t%+

∂EΓ

∂%1
∂t%1 +

∂EΓ

∂(∇τ%1)
∂t(∇τ%1) .

Under the assumption that the surface temperature coincides with the bulk temperature, i.e.
∂EΓ
∂ηΓ

= ϑ, and using the notations

µΓ,% :=
∂EΓ

∂%
, µΓ :=

∂EΓ

∂%1
, ∂zEΓ :=

∂EΓ

∂(∇τ%1)
,

one obtains with help of (4.7.7)

ϑ∂tηΓ =
⊕
E − µΓ,%∂t%− (µΓ − divτ (∂zEΓ))

(
⊕
%1 − υτ · ∇τ%1

)
+divτ

(
hΓ − ∂zEΓ

(
⊕
%1 − υτ · ∇τ%1

))
.

Introducing the notation
µΓ,2 := (µΓ − divτ (∂zEΓ)) ,

using (4.6.7) and (4.6.8) and regrouping yields:

ϑ∂tηΓ =
⊕
E − υτ · [%∇τµΓ,% − µΓ,2∇τ%1]− µΓ,2

⊕
%1 + µΓ,%∂n(%υn)

+divτhΓ + divτ (µΓ,%%υτ )− divτ (∂zEΓ∂tc) .

With

qΓ = hΓ + µΓ,%%υτ − ∂zEΓ∂t%1 and µυ,Γ := [%∇τµΓ,% − µΓ,2∇τ%1] .

and (4.7.1), (4.2.5) and (4.2.6) the total entropy gain of the system reads

d

dt
S :=

ˆ
Q
%η̇ +

ˆ
∂Q

%
◦
ηΓ

=
ˆ
Q

1
ϑ
ξ +
ˆ
∂Q

1
ϑ

[(µc + µ) j1 − %%̇1∂zû+ h− Tυ] · nΓ

+
ˆ
∂Q

[
1
ϑ

(
qΓ ·
∇τϑ
ϑ

+
⊕
E − υτ · µυ,Γ − µΓ,2

⊕
%1 + µΓ,%∂n(%υn)

)
+ divτ

(qΓ

ϑ

)]
(4.7.8)
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As in for the first case, compatibility condition (4.7.6), as well as thermodynamical isolation,ˆ
∂Q

divτ
(qΓ

ϑ

)
= 0

and the notation
µΓ,c := (µΓ,2 + ∂zû · nΓ)

yield the simplified rate of entropy production

(4.7.9)
d

dt
S :=

ˆ
Q

1
ϑ
ξ +
ˆ
∂Q

1
ϑ

[
qΓ ·
∇τϑ
ϑ
− υτ ·

(
Ťτ + µυ,Γ

)
− µΓ,c

⊕
%1 + %µΓ,%∂nυn

]
.

Note that (4.7.9) has the same form as (4.6.13) and therefore, the calculations can be per-
formed similarly to section 4.6 by using (4.6.14) and (4.6.15) to obtain again (4.6.16):

Ťτ = −βυτ − µυ,Γ
∂t(%c) + div (%cυ) =

⊕
c = α (σΓ∆τ%1 − µΓ − ∂zû · ν)(4.7.10)

qΓ = κΓ
∇τϑ
ϑ

The major difference in the resulting boundary conditions is the explicit form of µυ,Γ and hΓ

as well as the resulting constitutive equation (4.6.16)4 for ∂n (%υn), which now reads:

∂nυn = αυ%µΓ,%

4.7.2. Second approach. We start from the same set of equations (4.7.1)-(4.7.4) but
with (4.7.5) and (4.7.6) replaced by

∂t%1 + divτ (%1υτ ) =
⊕
%1

%̇1 = ∂t%1 + υτ · ∇τ%1 =
⊕
%1 − %1divτυτ .(4.7.11)

This approach seems more natural to the author than (4.7.5): The first approach lead to
⊕
%1 = −div j1+

+
c −∂n(%1υn)− %1divτυτ ,

while for the present approach
⊕
%1 = −div j1+

+
c −∂n(%1υn) .

Thus, in the first approach, convective terms along the surface where taken for accumulation
terms from the bulk to the surface, which is not the case in this new setting.

Using the notations from the previous subsection, the resulting equation for ∂tηΓ reads

ϑ∂tηΓ = ∂tEΓ − µΓ,2∂t%1 − υτ · [%∇τµΓ,%] + µΓ,%∂n(%υn)
+divτ (hΓ − ∂zEΓ∂t%1) .

The total rate of entropy production is given by
d

dt
S =

ˆ
Q

ξ

ϑ
+
ˆ

Γ
[−%%̇1∂zû · nΓ]

+
ˆ

Γ

1
ϑ

[
⊕
E + h · nΓ − Ťτ · υτ + divτhΓ − µΓ,2∂t%1 + µΓ,%∂n(%υn) + divτqΓ,1

]
Using

Ť∗τ := Ťτ + % (∂zû · nΓ)∇τ%1 + %1∇τµ∗Γ,2
as well as

µ∗Γ,2 := µΓ,2 + % (∂zû · nΓ) , µΓ,c = (µΓ,% + %1∂zû · nΓ) ,
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above formula for the entropy production reads
d

dt
S =

ˆ
Q

ξ

ϑ
+
ˆ

Γε

1
ϑ

[
⊕
E + (h− h2) · ν − Ť∗τ · υτ − µ∗Γ,2

⊕
%1 + µΓ,c∂n(%υn) + divτq∗Γ,1

]
.

where

q∗Γ,1 = qΓ,1 + hΓ + υτ%1µ
∗
Γ,2

In order to get the constitutive equations, the calculations can be performed similarly to
section 4.6 by using (4.6.14) and (4.6.15) to obtain again (4.6.16)

Ť∗τ = −2βυτ
⊕
%1 = −αµ∗Γ,2

q∗Γ,1 =
1

2κ
∇τϑ
ϑ

∂n (%υn) = ανµΓ,c

where the first equation is energy conservation and the second equation can be reformulated
into

Ťτ = −2βυτ + %2
1∇τ

(
%

%1
∂zû · nΓ

)
− %1∇τµΓ,2 ,

and q∗Γ,1 is equally given by

q∗Γ,1 = −∂zEΓ∂t%1 + hΓ + υτ%1µ
∗∗
Γ,2

4.8. Contact Lines and Contact Angles

In classical sharp interface models for flow of two immiscible fluids, the equations for the
moving interface also contain a condition for the the so called contact angle, which is the
angle between the fluids’ interface and the solid’s surface. The intersection line between the
solid surface and the fluid interface is called contact line. However, note that in the phase
field models above, the interface is replaced by a transition zone and the contact line has to
be replaced by a contact region. Since interface and contact line are replaced by smoothed
transition zone and contact region, the classical definition of a contact angle does not apply
to this setting.

Nevertheless, the dynamic boundary conditions (4.6.16)2, (4.6.22)2 and (4.7.10)2 contain
information that is related to the contact angle in classical sharp interface models: It is the
term ∂zû · ν which becomes

σ

%
∇c · ν

under the assumption that û = σ
2% |∇c|

2. If, for example, |∇c|−1∇c · ν is locally averaged
over the domain c ∈ [0.1, 0.9], then it is connected with the cosine of an angle, which one
could define as the macroscopic contact angle: as the sharp interface model in the bulk can be
obtained from phase fields models via the sharp interface limits [67, 92], the author expects
that in the future, such calculations will be possible at the boundary, too.

4.9. A Remark on the Choice of the Energy

Evidently, the final constitutive equations above strongly depend on the constitutive equa-
tion for the energy. Therefore, it is necessary to raise the question if it is reasonable that the
energy depends only on the first derivative. Rather it may be possible that it also depends
on higher derivatives, also describing curvature or other phenomena. Cahn and Hilliard [19]
already realized that point when they stated that “According to our basic assumptions the
metastable free energy of the system must be a continuous function of the property concerned
and, furthermore, the ratio of the maximum in this free energy function to the gradient energy
coefficient K must be small relative to the square of the intermolecular distance. If this latter
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requirement is not satisfied then, as will be seen from Eq. (2.23), there will be a steep gradient
across the interface and it is then no longer justifiable to neglect derivatives higher than the
second in deriving Eq. (2.1)." and “A second and less obvious limitation (which also applies
to all previous treatments) arises because we have only examined in detail the effect of a vari-
ation in a single property of the system. This suffices for a pure liquid surface where the only
likely variable is density, and it is satisfactory for a binary liquid-liquid interface providing it
can be assumed (a) that only the composition varies, the density remaining constant across
the interface, or (b) that the gradient energy coefficient for the density variation is negligible
compared with that for the composition variation."

Therefore, assuming a dependence of the energy on higher derivatives is reasonable. How-
ever, the question remains, how these dependencies should be discovered? The interface
usually is to thin compared to the molecular scale to be investigated in a quantitatively and
qualitatively reasonable way. However, since we are entering the ages of very strong com-
putational power, numerical simulations via molecular dynamics might help to find a right
macroscopic description of the energy of the interfaces. First steps towards that direction
were done for example by Qian, Wang and Sheng [81].

Note that also the question whether the energy should depend on the derivatives of %
or the derivatives of c can only be answered by such simulations. In chapter 6, only the
concentration ansatz will be used, while in in chapter 7 both approaches will be used for the
derivation of microscopic models.

4.10. Conclusions: Which Approach to Choose?

In this chapter, two approaches to the derivation of thermodynamically consistent phase
field models were presented for mixtures of two or more immiscible fluids. The new method
applies to multifluid and multiphase systems and comprises effects of capillarity, chemical
reactions, phase transitions and interactions with the boundary.

The two different approaches are set up in terms of partial densities and of concentrations,
respectively. As special applications, it was possible to derive the full Cahn-Hilliard-Navier-
Stokes equations as well as the Stefan problem in both settings and the Korteweg equation in
the density setting. Also, it was possible to derive the dynamic boundary conditions for the
Cahn-Hilliard-Navier-Stokes system in both settings.

It is up to now not clear, which approach should be chosen in application. To the author’s
opinion, this question is linked to the correct constitutive assumption for the energy. In
particular, it would be interesting, if the energy functional should be formulated in terms
of partial densities or in terms of concentrations. As discussed in section 4.9, the choice
of the energy is crucial but currently cannot be answered from laboratory experiments. It is
thinkable that numerical simulations, in particular using molecular dynamics, can help finding
correct constitutive assumptions for the energy. Once such a result is obtained, this will give
an answer whether the energy should be written down in terms of concentrations or in terms
of partial densities. The last question is basically equivalent with the question, whether the
energy depends on ∇c or on ∇%i.

Note that a similar problems also appears for boundary conditions, but here, there are
even different approaches thinkable within the same framework of either concentrations or
partial densities. In chapters 6 and 7, we will chose the approach with regard to simplicity
and shortness of the calculations.

However, in what follows, the approach in terms of concentrations will be chosen in chapter
6 since it is the most commonly used approach. In chapter 7, the partial density approach
will be used for air, water and ice, while the vapor concentration in the air phase will be given
as concentration. However, vapor concentration will not enter the model as a phase field.





CHAPTER 5

Homogenization of Convection Diffusion Equations

5.1. Introduction

As we have seen in chapter 4, multiphase flows in continuum mechanics are modeled with
help of convection diffusion equations. Thus, in order to prepare for multiscale multiphase
models, it is necessary to investigate the homogenization of convection diffusion equations
and the resulting two-scale equations.

This chapter will deal with the impact of scaling of the velocity field on homogenization
of convection-diffusion equations in case that the diffusion is restricted to the micro scale.
For three different choices of scaling and homogenization approaches, the resulting two-scale
equations will be presented and some formal error estimates for two of the approaches will be
given. In particular, the focus will be on the small velocities.

Going back to the development of multiscale theory in chapter 2, we start again from the
scalings introduced in section 2.4. Thus, we recall the different scalings for the velocity υm,M

in (2.4.2) and look at systems (2.4.3) and (2.4.5). Evidently, these systems lead to equations
of the form

(5.1.1) ∂tφ
ε + εkdiv (υεφε) + div jε =

+

φ
ε

on Qε
1

where k ∈ {0, 1}. Depending on the choice of k, the homogenized equations will look different
for any particular k.

This chapter investigates the effects of different choices for k in equation (5.1.1). Section
5.2 will deal with k = 1 while section 5.3 will deal with k = 0. Both approaches lead to
unsatisfactory two-scale models. Therefore, we will see that it is reasonable to choose an
“intermediate” approach in multiscale modeling in order to account for both, microscopic
and macroscopic convection. Using some formal error estimates, it will be shown that the
intermediate approach has much better convergence properties than the two other cases. In
what follows, we shall restrict to the case

(5.1.2) φε = %εcε, jε = −ε2∇cε and
+

φ
ε

= f ε

with the equation

(5.1.3) ∂t(%εcε) + εkdiv (%εcευε)− ε2∆cε = f ε .

Throughout this chapter, it will be assumed that the velocity field is given by

(5.1.4) υε(t, x) := υ(t, x,
x

ε
)

with

(5.1.5) υ : [0, T ]×Q× Y 1 → R3

being Y -periodic in the third component and

(5.1.6) divy υ = 0 as well as υ · nΓ = 0 on [0, T ]×Q× Γ .

For boundary conditions, consider

(5.1.7) ∇cε · nΓε = 0 on Γε ,
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which is the homogeneous Neuman boundary condition. Note that the non-homogeneous
Neuman boundary condition

εk∇cε · nΓε = εg(x,
x

ε
) on Γε

would lead to a macroscopic reaction term on the microscopic boundary Γε. The calculations
for the last case are almost equivalent with the homogeneous case below but for simplicity only
homogeneous boundary conditions are considered in this chapter. Also, the major problem
of interest in chapter 6, the Cahn-Hilliard problem, has zero flux boundary conditions.

5.2. First Approach

The first case of interest starts from ansatz (2.4.5), which is k = 1. Using asymptotic
expansion

aε =
∑
i

εiai(x,
x

ε
)

for all variables and fluxes %, c, υ and f in (5.1.1) leads to the following first order equation:

(5.2.1) ∂t (%0c0) + divy (%0c0υ0)−∆yyc0 = f0 .

Note that macroscopic convective mass transport has vanished in the latter equation. More-
over, in case f0 = 0, the equation is locally mass conservative in Q.

Of course, the latter approach faces the problem that macroscopic transport is not con-
sidered in the microscopic equation for cε. Therefore, in numerical calculations, one would
need to update %0c0 after several time steps. This problem will be overcome in section 5.4.

5.3. Second Approach

In order to investigate the case k = 0, we follow [55] and start with a scaled diffusion
equation equipped with an additional convective term

(5.3.1)
∂tc

ε + div (υεcε)− div ε2∇cε = f in Qε
1

∇cε · nΓε = 0 on ∂Qε
1

where the diffusion constant is w.l.o.g. equal one. Assuming υε to satisfy (5.1.4) and (5.1.6),
we obtain for the order −1

υ · ∇yc0 = 0(5.3.2a)

and for order 0:

∂tc0 + divx (υc0) + divy (υc1)−∆yyc0 = f in Q× Y1(5.3.2b)
∇yc0 · nΓ = 0 on ∂Y1 .(5.3.2c)

Equations (5.3.2)suggest to split H1(Y1) into

N :=
{
u ∈ H1(Y1) : υ · ∇u = 0 for almost all y ∈ Y1

}
⊂ L2(Y1)

W :=
{
υ · ∇u : u ∈ H1(Y1)

}
with L2(Y1) = N ⊕ W in case Y1 = Y [100, 55]. It therefore seems natural to look for
solution (c0, c1) ∈ N ⊗W. The following two theorems were proved with help of the theory
developed by Westhead [100]

Theorem 5.1. [55]Assume Y1 = Y , Q = R2 and υε(x) = υ0(x, xε ) with υ0 ∈ C1(Q;C1
per(Y ))∩

H2(Q×Y ). Furthermore, |υ0| ≥ α > 0. Then, there is a solution c0, c1 of (5.3.2) satisfying

‖c0‖H1(Q×Y )(t) ≤M‖c0‖H1(Q×Y )(0) .

Moreover, c0 and c1 are sufficiently smooth if c0(0) is sufficiently smooth.
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Theorem 5.2. [55]Assume that above conditions hold. Let cε ∈ L2(0, T ;H1(Q)) ∩
H1(0, T ;H−1(Q)) be solution of (5.3.1)1. Then∥∥∥cε − c0(·, ·

ε
)
∥∥∥
L∞((0,T ];L2(R2))

≤ CMε

where CM is a constant depending only on T and the regularity of υ0 and D.

A serious problem of above model is that ∇yc0 · υ0 = 0 and ∇yc0 · nΓ imply ∇yc0 ‖ υ0

and υ0 ‖ ∂Y 1. In particular, c0 is constant along microscopic streamlines, which imposes
unnatural conditions on the microscopic geometry (see Fig. 5.4.1b) ).

In case of the initial problem (5.1.3), note that the resulting two-scale equations read

divy (%0υ0) = 0

∂t%0 + divx (%0υ0) + divy (%1υ0 + %0υ1) = 0

divy (%0c0υ0) = 0

∂t (c0%0) + divx (c0%0υ0) + divy (c0%1υ0 + c0%0υ1 + c1%0υ0)−∆yyc0 = 0

5.4. Third Approach and Classification

The first approach in section 5.2 has the drawback that macroscopic fluxes are absent in
the final homogenized equation of first order. Thus, as mentioned, such effects have to be
included later “by hand”. The second approach in 5.3 accounts for macroscopic fluxes but the
additional microscopic constraints on c0 force the variable c0 to be constant along streamlines.
Note that this is natural as high macroscopic velocity fields will smooth out any microscopic
fluctuation along the stream lines. Thus, there is need of an ansatz which combines the useful
properties of both approaches, at least for small and moderate velocity fields. Formally, for
such small or moderate velocity fields, the system can be obtained by starting from (5.1.1)
with k = 1 to obtain

∂t (c0%0) + ε

(
divx +

1
ε
divy

)
(υ0c0%0)−∆yyc0 +O(ε) = f0 .

For a fixed ε∗ we thus find as an approximation

∂t (c0%0) + (ε∗divx + divy ) (υ0c0%0)−∆yyc0 +O(ε∗) = f0

The latter approach is not a formal asymptotic expansion in the usual meaning, but rather a
partial asymptotic expansion. For the moment, let us note that the latter approach containing
the ε∗-convective term contains all physical relevant effects in one single equation. It will be
demonstrated below that all errors due to convective approximations vanish at least formally.
However, mathematical justification is currently out of reach. New methods have to be
developed in order to justify this last step. Nevertheless, this approach will be used to derive
formal multiscale models for multiphase flows in chapters 6 and 7 below. For the moment,
we classify the three ansatzes:

Denotation 5.3. For different scalings of the convective terms and their corresponding
limit two-scale equations introduce the following denotation:

(1) If the convective terms are scaled by ε, i.e. the convection diffusion equation looks
like

∂tφ
ε + εdiv (υεφε) + div jεφ =

+

φε

with a limit equation

∂tφ0 + divy (υ0φ0) + divx j0,φ + divy j1,φ =
+

φ0

we speak of the low velocity approach.
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a) b) c)

Figure 5.4.1. The three approaches: Low velocity ( a) ), High velocity/low
infiltration ( b) ) and High velocity/high infiltration ( c) ). The box on the left
hand side represents a vertical soil column. The two smaller boxes are Y -cells
that are situated in the light-blue area of the soil column. The green line is a
surface of constant concentration c0, the blue arrows indicate the microscopic
velocity field while the red arrows indicate the macroscopical net transport.
It can be seen how the restriction %0υ · ∇yc0 = 0 restricts the microscopic
distribution of c0 in b). In c) both (macroscopic and microscopic) convective
fluxes are combined. The shape may tend to deform towards an oval form but
it needs not to be perpendicular to the velocity field.

(2) If the convective terms are not scaled, i.e. the convection diffusion equation looks
like

∂tφ
ε + div (υεφε) + div jεφ =

+

φε

with a limit equation

∂tφ0 + divx (υ0φ0) + divy (υ0φ1 + υ1φ0) + divx j0,φ + divy j1,φ =
+

φ0

with or without divy (υ0φ0) = 0 we speak of the high velocity approach.
(3) If the convective terms are scaled by ε but the limit equation is enriched by a macro-

scopic transport term of order ε∗, i.e. the convection diffusion equation looks like

∂tφ
ε + εdiv (υεφε) + div jεφ =

+

φε

with a limit equation

∂tφ0 + ε∗divx (υ0φ0) + divy (υ0φ0) + divx j0,φ + divy j1,φ =
+

φ0

we speak of the intermediate approach.

5.5. Formal Error Estimates

In order to compare the quality of the three different scaling and homogenization ap-
proaches, we will derive formal error estimates. Since only the low velocity and intermediate
approach will be used in chapters 6 and 7 , we do not provide error estimates for the high
velocity approach at this point.

We keep in mind, that the real world application is characterized by a specific ε∗ > 0.
We are thus more interested in the error for that particular ε∗ than the general error for any
ε > 0.

5.5.1. Low velocity approach. We consider the system

(5.5.1)
∂t%

ε + εdiv (%ευε0) = 0

∂t(%εcε) + εdiv (%εcευε0)− ε2∆cε = 0

where υε0(t, x) := υ0(t, x, xε ) with a given υ0 with bounded divergence:

‖divx υ0‖L∞ + ‖divy υ0‖L∞ ≤ Cυ <∞
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and zero flux boundary condition

υ0 · ν = 0 on ∂Q× Y
υ0 · nΓ = 0 on Q× Γ .

The homogenized system for the first order approximations %0 and c0 reads

∂t%0 + divy (%0υ0) = 0

∂t(%0c0) + divy (%0c0υ0)−∆yyc0 = 0

We use

∇ = ∇x +
1
ε
∇y and div = divx +

1
ε
divy

and find for %ε0(x) := %0(x, xε ) and cε0(x) := c0(x, xε ):

(5.5.2)
∂t%

ε
0 + (εdiv − εdivx ) (%ε0υ

ε
0) = 0

∂t(%ε0c
ε
0) + (εdiv − εdivx ) (%ε0c

ε
0υ

ε
0)− (εdiv − εdivx ) (ε (∇−∇x) cε0) = 0 .

Assuming that all functions posses enough regularity the difference of (5.5.1)1 and (5.5.2)1
reads:

∂t(%ε0 − %ε) + εdiv ((%ε0 − %ε)υε0) = εdivx (%ε0υ
ε
0)

which yields by testing with (%ε0 − %ε) and partial integration

1
2

ˆ
Qε1

∂t
(
(%ε0 − %ε)2

)
+ ε

ˆ
Qε1

1
2
υε0 · ∇

(
(%ε0 − %ε)

2
)

= ε

ˆ
Qε1

divx (%ε0υ
ε
0) (%ε0 − %ε)

and finally

d

dt

ˆ
Qε1

(%ε0 − %ε)2 +
ˆ
Qε1

(%ε0 − %ε)2εdivυε0 ≤ ε2 ‖divx (%ε0υ
ε
0)‖2L2(Qε1) + ‖%ε0 − %ε‖

2
L2(Qε1) .

The last equation can be brought into the form

d

dt

ˆ
Qε1

(%ε0 − %ε)2 ≤ ε2C2
υ + (1 + εCυ) ‖%ε0 − %ε‖

2
L2(Qε1)

such that Gronwall’s inequality yields

(5.5.3) ‖%ε0(t)− %ε(t)‖2L2(Qε1) ≤ ε
2C2
υt+ ‖%ε0(0)− %ε(0)‖2L2(Qε1) exp ((1 + εCυ) t)

Now, build the difference of equations (5.5.1)2 and (5.5.2)2 to obtain

%ε0∂t (cε0 − cε) + (%ε0 − %ε) ∂tcε + ε%ε0υ
ε
0∇ (cε0 − cε) + ε (%ε0 − %ε)υε0∇cε

− ε%ε0υε0∇xcε0 − ε2∆ (cε0 − cε)− ε2divx∇cε0 − ε2div∇xcε0 − ε2∆xxc
ε
0 = 0

which yields after testing with (cε0 − cε):

1
2
d

dt

ˆ
Qε1

%ε0 (cε0 − cε)
2 −
ˆ
Qε1

εdiv (%ε0υ
ε
0) (cε0 − cε)

2

+
ˆ
Qε1

(%ε0 − %ε) [∂tcε + ευε0 · ∇cε] (cε0 − cε)−
ˆ
Qε1

ε%ε0υ
ε
0 · ∇xcε0 (cε0 − cε)

+
ˆ
Qε1

ε2 |∇ (cε0 − cε)|
2 + 2

ˆ
Qε1

ε2∇xcε0 · ∇ (cε0 − cε)−
ˆ
Qε1

ε2∆xxc
ε
0 · (cε0 − cε) = 0 .
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The best estimates can be obtained if it is assumed that %0, υ0, ∇xc0 and ∆xxc0 are essentially
bounded. In this case, using (5.5.1)2, Hölder’s inequality and ‖cε0 − cε‖L2(Qε1) ≤, we get

(5.5.4a)
1
2
d

dt

ˆ
Qε1

%ε0 (cε0 − cε)
2 +

1
2

ˆ
Qε1

ε2 |∇ (cε0 − cε)|
2

≤
ˆ
Qε1

%ε0 (cε0 − cε)
2 + C1 + C2

ˆ
Qε1

(cε0 − cε)
2

with

C1 = ε2

ˆ
Qε1

(
|%ε0υε0 · ∇xcε0|

2 + 2 |∇xcε0|
2 + (ε∆xxc

ε
0)2 +

(
ε

%ε
∆cε (%ε0 − %ε)

)2
)

(5.5.4b)

C2 = 1 + |εdivx (%ε0υ
ε
0)|+ |divy (%ε0υ

ε
0)| .(5.5.4c)

Since ε2∆cε and (%ε0 − %ε) is of order O(ε) (due to (5.5.3)), C1 formally is of order O(ε):
C1 = O(ε) and C2 = O(1).

5.5.2. Intermediate approach. We consider again the system

∂t%
ε + εdiv (%ευε0) = 0

∂t(%εcε) + εdiv (%εcευε0)− ε2∆cε = 0

where υε0(t, x) := υ0(t, x, xε ) with a given υ0. The approximating system for the first order
approximations %0 and c0 reads

∂t%0 + ε∗divx (%0υ0) + divy (%0υ0) = 0

∂t(%0c0) + ε∗divx (%0c0υ0) + divy (%0c0υ0)−∆yyc0 = 0

For suitable boundary conditions, we find

∂t%
ε
0 + (εdiv − εdivx ) (%ε0υ

ε
0) = 0

∂t(%ε0c
ε
0) + ε∗divx (%0c0υ0) + (εdiv − εdivx ) (%ε0c

ε
0υ

ε
0)− (εdiv − εdivx ) (ε (∇−∇x) cε0) = 0

We assume that all functions possess enough regularity and start by comparing the convective
equations:

∂t(%ε0 − %ε) + εdiv ((%ε0 − %ε)υε0) = (ε− ε∗) divx (%ε0υ
ε
0)

which yields by testing with (%ε0 − %ε) and partial integration

d

dt

ˆ
(%ε0 − %ε)2 +

ˆ
(%ε0 − %ε)2εdivυε0 ≤ (ε− ε∗)2 ‖divx (%ε0υ

ε
0)‖2L2 + ‖%ε0 − %ε‖

2
L2

or
d

dt

ˆ
(%ε0 − %ε)2 ≤ (ε− ε∗)2 ‖divx (%ε0υ

ε
0)‖2L2 + (1 + |εdivυε0|) ‖%ε0 − %ε‖

2
L2

which is for ε = ε∗ the optimal estimate:

‖%ε0(t)− %ε(t)‖2L2(Qε1) ≤ ‖%
ε
0(0)− %ε(0)‖2L2(Qε1) exp ((1 + εCυ) t) = 0 ,

if %ε0(0)− %ε(0) = 0.
Now, build the difference of the diffusion equations to obtain

%ε0∂t (cε0 − cε) + (%ε0 − %ε) ∂tcε + ε%ε0υ
ε
0∇ (cε0 − cε) + ε (%ε0 − %ε)υε0∇cε

− ε%ε0υε0∇xcε0 + ε∗%ε0υ
ε
0∇xcε0 − ε2∆ (cε0 − cε)− ε2divx∇cε0 − ε2div∇xcε0 − ε2∆xxc

ε
0 = 0
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which yields after testing with (cε0 − cε) and in case ε = ε∗:

1
2
d

dt

ˆ
%ε0 (cε0 − cε)

2 +
ˆ

(%ε0 − %ε) [∂tcε + ευε0∇cε] (cε0 − cε)

+
ˆ
ε2 |∇ (cε0 − cε)|

2 + 2
ˆ
ε2∇xcε0 · ∇ (cε0 − cε) +

ˆ
ε2∇xcε0 · ∇x (cε0 − cε) = 0

which yields again much better estimates since the convective errors have disappeared. In
particular, (5.5.4) reads:

(5.5.5)
1
2
d

dt

ˆ
Qε1

%ε0 (cε0 − cε)
2 +

1
2

ˆ
Qε1

ε2 |∇ (cε0 − cε)|
2

≤
ˆ
Qε1

%ε0 (cε0 − cε)
2 + C1 + C2

ˆ
Qε1

(cε0 − cε)
2

with

C1 =
ˆ
Qε1

(
2ε2 |∇xcε0|

2 +
(
ε2∆xxc

ε
0

)2)(5.5.6)

C2 = 1(5.5.7)

Note that the error is of the same order as for the first approach but the sources of errors are
less.

5.6. Conclusion

The non-dimensionalization and homogenization of convection-diffusion equations was in-
vestigated. For three different choices of scaling and homogenization approaches, the resulting
two-scale equations were presented and some formal error estimates were given.

For low and moderate velocity fields, the intermediate approach was introduced, which
keeps a macroscopic convective term in the limit equations. In particular, new approach
consists of a formal two-scale limit of the convective term

εdiv (φευε) ε→0−−−→ ε∗divx (φ0υ0) + divy (φ0υ0)

where ε∗ is the physical relevant choice of ε. It was demonstrated that the intermediate
approach given in denotation 5.3 leads to better formal error estimates in the convection-
diffusion equation than the usual approach, as all first order errors due to convective terms
disappear for the relevant choice ε = ε∗. Thus, in chapters 6 and 7, we will use this approach
in order to derive the two-scale models.





CHAPTER 6

A Two-scale Model for Two-Phase Flows

6.1. Introduction

The aim of this chapter is to derive a two-scale model for two-phase flows in porous
media, using the methods and theory from chapters 2, 4 and 5. In particular, this will be
done using a phase field model in terms of concentration (see section 4.2). Generalization to
more constituents, or to the description in terms of partial densities (see section 4.3) will be
obvious. Such a generalization will be treated in chapter 7 for permafrost soil, a system with
the constituents air, water, ice and vapor. However, for simplicity, we start with only two
constituents which we call water and air. To the authors knowledge, this is the first attempt at
all to derive two-scale models for multiphase flow using formal asymptotic expansion methods.
This may be in particular due to the fact that up to now it was not clear how to formulate
appropriate boundary conditions in a thermodynamically consistent way. Thus, chapter 4, in
particular sections 4.6 and 4.7, can be considered as the most important fundament of this
new approach.

There are several reasons why the two-scale models should be derived using phase field
models: First, throughout the history of capillarity in two-phase systems, the phase fields
models were believed to be at least as physical as sharp interface models by many famous
physicists (see introduction to chapter 4). Second, phase field models allow for topological
transitions, which is not the case for sharp interface models. Third, in case of small pores,
the effects due to the diffusive structure of the interface may no longer be negligible.

Remark that the approach and the results of this chapter differ significantly from the usual
approaches: The resulting system of equations will be defined on two scales and describe at the
same time the macroscopic and the microscopic evolution of the system. Thus, the equations
contain much more information about the system than in previous approaches, which may
result in more precise results in simulations. Note that simulations with such a model are also
more costly. However, since the usual macroscopic models all have problems with the memory
effects due to the microscopic distribution of phases, it may be worth to apply two-scale models
in simulations for more accuracy.

It is important to be aware of the fact that the resulting two-scale equations are only valid
as long as the constitutive equations for the energy in bulk and on the microscopic boundaries
are valid. In particular, the constitutive equations for the energy which are used below are
assumed to be valid for moderate temperatures (e.g. between 4°C and 50°C) as well as under
moderate pressures in the range of 0.5 to 10 atmospheric pressures. Also they only hold for
a pore size which is still large compared to the transition zone1. For simplicity, we make the
additional assumption that the two phases and the soil matrix share a common temperature
field, i.e. that there are no temperature jumps on the microscopic boundaries. Finally, note
that the soil matrix is assumed to be rigid. In particular, this implies that the medium under
consideration is not deformable, which excludes effects like swelling.

The coupled two-scale system in itself already is a complete model for two-phase flow in
porous media. Nevertheless, this chapter also provides the calculations to obtain the effective
macroscopic behavior of the solutions. This is for the simple reason that the author wants

1For example, if the transition zone is of order 10nm, the pores should be of a size of at least 1µm.
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to show that the resulting two-scale equations yield the expected (and usually observed)
macroscopic behavior.

The resulting macroscopic balance of energy equation will consist of Fourier’s law with con-
vection. The balance of mass equations for water and air will be simple convection equations.
The most problematic part is the derivation of constitutive equations for the macroscopic
velocities of water and air.

It will be shown, that once a solution to the two-scale equation is found, it is possible
to split the balance of momentum equation up into two separate equations for the velocity
fields of air and water. The basic idea of this splitting is, that the physics in the bulk differs
significantly from the physics close to the transition zone which will also be reflected in the
new system. The separated equations will be highly coupled through the transition zone and
will only decouple in case of stationary flow.

Note, that this work is not the first theoretical ansatz that doubts equations (3.2.4)-
(3.2.5) but that there were also other such statements before. The author is aware of works
by Hassanizadeh and Gray[43], Gray and Hassanizadeh [37, 36, 38], Gray [39], Hassanizadeh
and other coworkers like Celia, Dahle, Joekar-Niasar, Niessner, Norbotten and others [42, 58,
59, 60, 77, 78] and Hilfer [51].

Hassanizadeh and Gray as well as Hassanizadeh et.al. agree on the point that capillary
pressure is not a static variable. Also they claim that a hysteretic dependence on saturation
is not enough to capture all the observed phenomena. Rather they state that the capillary
pressure is a dynamic variable that depends on saturation as well as on the microscopic
distribution of phase interphases (menisci) and contact lines.

All authors mentioned above come to the conclusions that

(1) The difference between the pressures in air and water phase can in general not be
described by a potential and

(2) Capillary pressure can only be defined in special physical settings under some re-
strictive assumptions.

This is the reason why this chapter will abstain from providing explicit formulas for the
capillary pressure difference except for a small outlook in section 6.10. This topic is left for
future investigations and for numerical experiments such as performed by Hassanizadeh et. al.
[58, 59, 60]. Former investigations from the theoretical point of view, also including averaging
calculations, can be found in [77, 78] among which the closest to the present approach is by
Norbotten et. al. [78]. There is another approach to multiphase flow under the assumption
of phase fields on the pore scale by Papatzacos [80], but as will be shown in the conclusions,
the approaches and the results differ significantly.

We close this introduction by providing an outline of this chapter: In section 6.2 we will
start with some general and useful notations. In 6.3, the impact of the scaling of the energy
on the scaling of pressure in the balance of momentum equation will be analyzed, and some
conclusions for further calculations will be drawn.

In section 6.4, the microscopic problem will be derived using the MREP assumption for a
non-dimensionalized and scaled phase field model. The same section will also provide formal
asymptotic expansion for the resulting microscopic problem. In section 6.6, we will recapitu-
late the formal asymptotic expansion for the derivation of Darcy’s law, as this knowledge will
be needed in section 6.9. But first, in section 6.8, the macroscopic balance of mass equations
for air, water and energy are derived.

Section 6.9 will treat with the splitting of the microscopic and the two-scale momentum
balance equation from section 6.4 into equations for the velocity fields of air and water.

In section 6.10 we will use the results from section 6.9 in order to show that under very
restrictive assumption, the two-scale model would even fit to Richards equation for the de-
generate multiphase regime (see section 3.2.3). We will shortly discuss how capillary pressure
pc enters the macroscopic equation and give a rough approximation for pc.
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Finally, in 6.11 we will give an outlook on analysis and numerical simulations and discuss
differences to the approach by Papatzacos [80].

6.2. Notation and General Considerations

6.2.1. General formulation of balance equations. Throughout this chapter, we use
the notation introduced in section 2.2, which will be shortly repeated: we will consider a
bounded and open domain Q ⊂ Rn where n = 3 for physical reasons if not mentioned
otherwise. Furthermore, consider Y := [0, 1[n the (n+1)-dimensional torus (i.e. Y is equipped
with the topology of the torus in Rn+1) with Y = Y 1 ∪ Y 2 ∪ Γ with Γ := ∂Y 1 ∩ ∂Y 2 ∩ Y
where Y 1 and Y 2 are open in Y and Y 1 is simply connected in Y . Expand Y , Y 1, Y 2 and
Γ periodically to Rn and multiply the resulting structures by ε to obtain Y ε, Y ε

1, Y
ε
2 and Γε.

Define the following subsets of Q: Qε
1 := Q ∩ Y ε

1 the pore space and Qε
2 := Q ∩ Y ε

2 the soil
matrix. Wherever it will not provoke any confusion, we equally denote Γε := ∂Qε

1 ∩Q. The
definitions are illustrated in figure 2.2.1. Finally, the outer normal vector of Y 1 on Γ will be
called nΓ and the outer normal vector of Qε

1 on Γε is denoted as nΓε .
As mentioned above, this chapter only treats the case of two immiscible fluids with partial

densities %w and %a. For simplicity, these fluids will be called water (w) and air (a). These
partial densities move with velocities υw and υa. We follow chapter 4 and hence, additionally
to the variable

(6.2.1) % = %w + %a, υ = %−1 (%wυw + %aυa)

and total energy E, variable c := %w/% will be used to describe the phase field. Recalling
equations (2.5.1) we define the material derivatives for small and high velocities on the interior
of Qε

1 as well as on Γε by

Dε,κ
t φ := ∂tφ+ εκυε · ∇φ on Qε

1(6.2.2a)

D
ε,κ
t φ := ∂tφ+ εκυετ · ∇τφ on Γε(6.2.2b)

6.2.2. Behavior of material derivatives under asymptotic expansion. The dif-
ferent material derivatives in (6.2.2) behave differently in the limit ε → 0 and it is worth
comparing the limit properties:

(1) For κ = 1, the formal limit is the operator

D0,y
t φ := ∂tφ+ υ0 · ∇yφ .

There is, however, the possibility to consider the intermediate limit approach from
section 5.4. Then, we could use the simple replacement

Dε,1
t φ D0,xy

t φ := ∂tφ+ ευ0 · ∇xφ+ υ0 · ∇yφ .
Similarly, on Γε there are the operators

D
0,y
t φ := ∂tφ+ υ0,τ · ∇yφ on Q× Γ

D
0,xy
t φ := ∂tφ+ ευ0,τ · ∇xφ+ υ0,τ · ∇yφ on Q× Γ

as formal limits (resp. replacements) of D
ε,κ
t φ. Note that the two equations differ in

the uncommon term ευ0,τ · ∇xφ, which turns out to be very important for effective
macroscopic equations.

(2) For κ = 0, the formal limit operator splits up into two parts

Dε,0
t

ε→0−−−→

{
D0,x
t φ := ∂tφ+ υ0 · ∇xφ of order 0

υ0 · ∇yφ of order − 1

where υ0 · ∇yφ may combine with other terms of order 0 or result in the condition
υ0 · ∇yφ = 0. As stated in section 2.6.2, the choice κ = 0 makes no sense in D

ε,κ
t

and will not be considered in this thesis.
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6.3. Impact of the Scaling of the Energy on the Scaling of Pressure

As the constitutive equation for the energy is one of the major ingredients in the MREP-
assumption method, this section will focus on the impact of the scaling of Eε on the resulting
constitutive equations for the Cauchy stress. In the sample calculations of this section, we
will assume that the energy is given by

(6.3.1) E(υε, %ε, ηε, ) =
1
2
ε2κ |υε|2 + E0(%ε, ηε) .

The pressure is given by

pε := (%ε)2 ∂E
ε

∂%ε

and as shown in examples 2.4 and 2.5, the scaling of pε strongly depends on whether υε is
the velocity measured in macroscopic or in microscopic units.

For a better understanding of this coherency, note that systems (2.4.3) and (2.4.5) where
derived by non-dimensionalization of the same system (1.2.9), using different scalings of the
velocity given by (2.4.1) and (2.4.2). In this section, these system will now be studied more
carefully:

The first possible scaling of equations is taken from (2.4.3) and reads

∂t%
ε + div (%ευεM ) = 0

∂t (%ευεM ) + div (%ε (υεM ⊗ υεM ))− divTεM = gεM

∂t (%εEε) + div (%εEευεM )− divhε = gεM · υε

where the constitutive equations of the energy E, ξ and ξ̃ read with pε0 := (%ε)2 ∂Eε0
∂%ε :

E =
1
2
|υεM |

2 + E0(%ε, ηε)

ξε = TεM · DυεM + pdivυεM + hε · ∇ϑ
ϑ

(6.3.2)

ξ̃ε =
1
ν
|SεM |

2 +
3

ν + 3λ
(mε

M + pε0)2 +
1

κ(ε)
|hε|2 ,

where mε
M := 1

3trT
ε
M and SεM = TεM −mε

M I. With υε := υεM , the resulting set of equations is

∂t%
ε + div (%ευε) = 0

∂t (%ευε) + div (%ε (υε ⊗ υε))− div νDυε −∇ (λdivυε) +∇pε0 = gεM(6.3.3)
∂t(Eε) + div (%εEευε)− κ∇ϑ = gεM · υε

The second possible choice of scaling can be taken from (2.4.4) and reads

∂t%
ε + εdiv (%ευεm) = 0

∂t (%ευεm) + εdiv (%ε (υεm ⊗ υεm))− εdivTεm = f εm

∂t (%εEε) + εdiv (%εEευεm)− divhε = ε2gεm · υεm
where (2.4.2) yields the relation

υM = ευm .

The constitutive relations for Eε, ξε and ξ̃ε read with pε0 := (%ε)2 ∂Eε0
∂%ε

(6.3.4)

E =
1
2
ε2 |υε|2 + E0(%ε, ηε)

ξε = ε2Tεm · Dmυ
ε + pε0divmυ

ε + hε · ∇ϑ
ϑ

ξ̃ε =
1
ν
ε2 |Sεm|

2 +
3

ν + 3λ
ε2
(
mε

m + ε−2pε0
)2 +

1
κ(ε)

|hε|2 ,
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where mε
m := 1

3trT
ε
m and Sεm = Tεm −mε

mI. This yields with υε := υεm:

∂t%
ε + εdiv (%ευεm) = 0

∂t (%ευε) + εdiv (%ε (υε ⊗ υε))− ε2div νDυε − ε2∇ (λdivυε) +
1
ε
∇pε0 = gm(6.3.5)

∂t (%εEε) + εdiv (%εEευε)− divhε = ε2gεm · υε .

Note that the latter system of equations can also be obtained from

E =
1
2
|υε|2 + Ẽ0(%ε, ηε)

ξε = Tεm · εDυε + p̃εεdivυε + hε · ∇ϑ
ϑ

(6.3.6)

ξ̃ε =
1
ν
|Sεm|

2 +
3

ν + 3λ
(mε

m + p̃ε)2 +
1

2κ(ε)
|hε|2

such that finally with p̃ε := − (%ε)2 ∂Ẽ0
∂%ε

∂t (%ευε) + εdiv (%ε (υε ⊗ υε))− ε2div νDυε

−ε2∇ (λdivυε) + ε∇p̃ε = gm .(6.3.7)

In (6.3.7), pressure seems to be of order ε. However, note that υε in (6.3.5) and (6.3.7) is non-
dimensionalized by the same reference quantity, and hence, comparing (6.3.4)1 and (6.3.6)1,
we see that Ẽ0 = ε2E0 and hence p̃ε = ε−2pε0. Hence, the absolute value of p̃ε and ∇p̃ε can
be expected to grow with ε−2 as ε→ 0. Therefore, the major conclusion of this section is the
following

Claim 6.1. Even if pε appears in the momentum balance equations as ε∇pε, this does by
no means imply that |ε∇pε| is small or only plays a role on the microscale. Rather we should
have in mind that this stems from the choice of the scale of the energy.

In order to classify the correct order of pressure pε and its gradient ∇pε, one should be
provided with a concrete formula for Eε in (6.3.1) instead of the given purely abstract setting.
In view of the multiphase flow which will be treated in this chapter, note that there will be
pressure gradients of macroscopic and of microscopic importance.

First, the pressure gradient in each separate phase will be of both microscopic and macro-
scopic importance. It will be of microscopic importance as there will be a microscopic pressure
gradient in the two-scale Cahn-Hilliard-Navier-Stokes equations. It will be of macroscopic im-
portance as macroscopic transport is due to g −∇xp.

The pressure gradient across the transition zone will be of microscopic importance as it
strongly interacts with the microscopic flow field. However, this gradient will show up macro-
scopically as the so called capillary pressure, the pressure difference between the connected
parts of water and air phase.

6.4. The Microscopic Problem

6.4.1. Physical assumptions. We will now derive the microscopic model for two con-
stituent flow in porous media. As already mentioned in the introduction, we assume for
simplicity, that the fluids under consideration are water and air and that the transition zone
is thin compared to the pore diameter. Note that the considerations below will not consider
phase transitions like evaporation, condensation, freezing or thawing. This is topic of chapter
7 below. We also do not account for any deformation of the solid matrix, in particular we
exclude swelling processes, and the domain Qε

1 as well as Qε
2 are not changing with time.

Furthermore, we assume that the velocity is small, such that the convective terms scale
with ε. The same applies to the diffusion of water and air in the transition zone, since this



96 6. A TWO-SCALE MODEL FOR TWO-PHASE FLOWS

diffusive flux is small, even compared to pore diameter. Note that this a direct consequence
of the assumption that the transition zone is thin compared to the size of the pores.

6.4.2. The pore space. As mentioned before, we assume small velocities and small
diffusive fluxes except for the energy flux. According to classification 5.3 the resulting scaled
equations of continuum mechanics are thus given by

∂t (%εcε) + εdiv (%εcευε) + εdiv (jε1) = 0

∂t%
ε + εdiv (%ευε) = 0

∂t (%ευε) + εdiv (%ε (υε ⊗ υε))− εdivTε = gε

∂t (%εEε) + εdiv (%εEευε)− divhε = gε · υε

on Qε
1, where it is assumed that jε1 has its major impact on the porescale as well as Tε. Note

that with the notations of chapter 4, %ε is the total density of the fluid mixture, cε is the mass
concentration of water, υε is the total velocity field of the mixture, Tε is the Cauchy tensor,
gε is external forcing, Eε is the energy per mass and hε is the energy flux. Furthermore,
assume that the energy is given by

(6.4.1)
Eε = E(υε, %ε, ηε, cε,∇cε) =

1
2
|υε|2 + Ẽ(ηε, %ε, cε) + Ê(%ε,∇cε) ,

with Ê(%ε,∇cε) =
1

2%ε
ε2σ |∇cε|2 .

The scaling ε2 in Ê reflects the assumption that the diffusive smoothing of the interface takes
place on a scale which is much smaller than the macro scale. Remark, that the following
modifications hold for the current setting of equations:

ȧ := Dε,1
t a = ∂ta+ ευε · ∇a for scalars a ,(6.4.2)

ȧ := Dε,1
t a = ∂ta+ ε (∇a)υε for vectors a ,(6.4.3)

%ε∇̇cε =
∇%ε

%ε
(εdiv jε1)− % (∇cε)T (ε∇υε)− div [(εdiv jε1) I] .(6.4.4)

Starting from

%εĖε = %εϑεη̇ε + %ε
∂Eε

∂υε
· υ̇ε + %ε

∂Eε

∂%ε
%̇ε + %ε

∂Eε

∂cε
ċε + %ε

∂Eε

∂ (∇cε)
∇̇cε ,

we modify the following definitions:

ϑε :=
∂Eε

∂ηε
pε := (%ε)2 ∂E

ε

∂%ε
µε :=

∂Eε

∂cε
∂zE

ε :=
∂Eε

∂ (∇cε)
.

The non-convective entropy flux is assumed to be macroscopic since it is observed to appear
on that scale in any physical system. Thus, we aim to obtain an entropy balance

%εη̇ε − div
qε

ϑ
= ξε .

Section 4.2 then leads to the rate of entropy production ξε and the heat flux qε which read
in the scaled version

ξε = ε(Tε + Tεc) · Dυε +
qε

ϑε
· ∇ϑε + pεεdivυε − εjε1 · ∇ (µεc + µε) ,(6.4.5)

qε = ε (µεc + µε) jε1 + ε∂zE
εdiv jε1 + hε − εTευε ,(6.4.6)

where

(6.4.7) µc := −div (∂zEε)− ∂zEε
∇%ε

%ε
and Tεc :=

(
σε2∇cε ⊗∇cε

)
.
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Finally, define mε := 1
3tr (Tε + Tεc) and Sε := Tε + Tεc −mI to obtain

ξε = εSε · Dυε +
qε

ϑ
· ∇ϑ+ (mε + pε) εdivυε − εjε1 · ∇ (µεc + µε) .

Now, let ξε be given by

ξε = ξ̃ε(Sε, (mε + pε), qε, jε1) =
1
νε
|Sε|2 +

3
νε + 3λε

(mε + pε)2 +
1

κε1ϑ
ε
|qε|2 +

1
Jε
|jε1|

2 .

Then, the resulting set of constitutive equations reads

Tε = −ενεDυε − ελεdivυεI + pεI + σε2∇cε ⊗∇cε ,
jε1 = −εJε

(
∇µε − ε2σ∇∆cε

)
,

hε = κε1∇ϑε − ε (µεc + µε) jε1 − ∂zE [εdiv jε1] + εTευε ,

and the full system in Qε
1 is:

(6.4.8)

∂t (%εcε) + εdiv (%εcευε)− ε2Jεdiv
(
∇µε − ε2σ∇∆cε

)
= 0

∂t%
ε + εdiv (%ευε) = 0

∂t (%ευε) + εdiv (%ε (υε ⊗ υε))− ε2div (νεDυε) + ε∇ (pε − ελεdivυε)
+εdiv

(
σε2∇cε ⊗∇cε

)
= gε

∂t (%εEε) + εdiv (%εEευε)− div (κ1∇ϑε − ε (µεc + µε) jε1)

−div (−∂zE [εdiv jε1] + εTευε) = gε · υε .

Note that the parameters νε, λε, Jε or κε1 may depend on the variables %ε, cε, or ϑε. This will
be important for the asymptotic expansion of κε1, while for the other constants, this is not of
importance in the formal calculations.

6.4.3. The soil matrix. Since the soil matrix is a rigid body, we drop mass and mo-
mentum balance equations and remain with the energy balance equation which reads

(6.4.9) ∂tE
ε
2 − divhε2 = 0 on Qε

2 ,

where Eε2 is the energy per volume in Qε
2 and hε2 is the corresponding heat flux. If the

constitutive assumption for Eε2 reads

Eε2 = Ẽε2(ηε2)

with ηε2 the entropy per volume in Qε
2 and it is assumed that ϑε = ∂Eε2

∂ηε2
, we easily find

∂tη
ε
2 − div

qε2
ϑε

= qε2 ·
∇ϑε

ϑε
,

where

(6.4.10) qε2 = hε2 = κε2∇ϑε .

In order to connect the energy balance equations on Qε
1 and Qε

2 we need to take a closer look
on the boundary Γε.

6.4.4. Boundary conditions. For simplicity, we assume on ∂Q with outer normal n∂Q
the following conditions

hε · n∂Q = 0 hε2 · n∂Q = 0 hεΓ · n∂Q = 0

qε · n∂Q = 0 qε2 · n∂Q = 0 qεΓ · n∂Q = 0(6.4.11)
jε1 · n∂Q = 0 υ = 0
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On Γε, we start from the following abstract boundary conditions

(6.4.12)
%ε∂tc

ε + ε%ευετ · ∇τ cε =
⊕
c
ε

∂tE
ε
Γ − εdivτhεΓ =

⊕
E
ε on Γε

where %ε and cε are the traces on Γε of the corresponding fields in Qε
1, υετ is the tangential

part of υε on Γε, EεΓ is the surface energy on Γε, i.e. energy per area of Γε, hεΓ is the surface

heat flux and
⊕
E
ε

is the uptake of energy per time of Γε from Qε
1 and Qε

2 or, equally, the
release of energy per time.

Furthermore, it will be assumed that there is no net mass flux through the boundary Γε,
nor any chemical reaction at the boundary, i.e.

(6.4.13) υεn = 0 and j1 · nΓε = 0 .

Since (6.4.12) has to coincide with the bulk equations, it holds

%ε∂tc
ε + ε%ευε · ∇cε = %ε∂tc

ε + ε%ευετ · ∇τ cε =
⊕
c
ε

= −εdiv jε1
and the compatibility condition (4.6.18) for cε now reads

⊕
c
ε

= −εdiv jε1 .
It is assumed that the total energy of the system is given by

(6.4.14) Eε :=
ˆ
Qε1

%εEε +
ˆ
Qε2

Eε2 + ε

ˆ
Γε
EεΓ

and that global changes of energy are only due to work done by body forces:

0 =
d

dt
Eε −

ˆ
Qε1

gε · υε =
ˆ
Qε1

%εĖε +
ˆ
Qε2

∂tE
ε
2 + ε

ˆ
Γε
∂tE

ε
Γ −
ˆ
Qε1

gε · υε

= ε

ˆ
Γε

(
1
ε

(hε − hε2) · nΓε + εdivτhεΓ +
⊕
E
ε
)
.(6.4.15)

Due to (6.4.11) on the surface Γε holdsˆ
Γε

divτhεΓ =
ˆ
∂Q∩Γε

hεΓ · n∂Q = 0 ,

and equation (6.4.15) implies the local energy conservation
1
ε

(hε − hε2) · nΓε +
⊕
E
ε

= 0 .

In order to proceed, consider the following constitutive assumption on the local surface energy
density EεΓ:

(6.4.16) EεΓ = EεΓ,0(ηεΓ) + FΓ(cε) +
1
2
ε2σΓ |∇τ cε|2

where FΓ is assumed to be independent on ε with

f εΓ := ∂cFΓ(cε)

and make use of the fact that

∂tE
ε
Γ = ϑε∂tη

ε
Γ +

∂EεΓ
∂cε

∂tc
ε +

∂EεΓ
∂%ε

∂t%
ε

with the assumption that ϑε = ∂EεΓ
∂ηεΓ

and proceed according to sections 2.5 and 4.6.2 to obtain

∂tη
ε
Γ =

1
ϑε

(
εqεΓ ·

∇τϑε

ϑε
+
⊕
E
ε

− υτ ·
[
−ε%εµεΓ,2∇τ cε

]
− µεΓ,2

⊕
c
ε
)

+ εdivτ
(
qεΓ
ϑε

)
(6.4.17)

qεΓ = hεΓ − εσΓ∇τ cε ∂tcε ,
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where, according to section 4.6.2,

µεΓ,2 =
(
f εΓ
%ε
− 1
%ε
ε2σΓ∆ττ c

ε

)
with the final total rate of entropy production:

d

dt
S :=

ˆ
Qε1

(
ξε

ϑε
+ div qε

)
+
ˆ
Qε2

(
ξε2
ϑε

+ div qε2

)
+ ε

ˆ
∂Γ
∂tη

ε
Γ .

Using partial integration as well as (6.4.6), (6.4.10), (6.4.13) and (6.4.17), the last equality
can be rewritten as

d

dt
S =

ˆ
Qε1

ξε

ϑε
+
ˆ
Qε2

ξε2
ϑε

+
ˆ
∂Γ

ε

ϑε

[
qεΓ ·

ε∇τϑε

ϑε
− υετ ·

(
Ťετ + µευ,Γ

)
− µεΓ,c

⊕
c
ε
]
,

where Ťετ := (TεnΓε)τ is the tangential part of the surface stress TεnΓε and

(6.4.18) µευ,Γ = −%εµεΓ,2ε∇τ cε µεΓ,c =
(
µεΓ,2 + ∂zû

ε · nΓε
)

,

These equations yield the final constitutive equations

(6.4.19)

Ťετ = −αΓυ
ε
τ − µευ,Γ

%ε∂tc
ε + ε%ευε · ∇τ cε =

⊕
c
ε

= β∗Γ

(
σΓ

%ε
ε2∆τ c

ε −
µεΓ
%ε
− εσ∇cε · nΓε

)
qεΓ = κΓε∇τϑε

⊕
E +

1
ε

(hε − hε2) · nΓε = 0 .

For more than two constituents, one may proceed following above calculations. Note that EΓ

does not depend on %ε and therefore, there is no additional boundary condition on ∂nυn.

6.5. Formal Asymptotic Expansion

We will now perform a formal asymptotic expansion of system (6.4.8) and (6.4.9) together
with boundary conditions (6.4.19). To this aim, we expand ηε, ηε2, ηεΓ, %

ε, cε, υε, ϑε and pε
according to (2.3.2) by

aε(x) =
∞∑
i=0

εiai(x,
x

ε
)

and define

D0,y
t φ := ∂tφ+ υ0 · ∇yφ or D0,xy

t φ := ∂tφ+ ευ0 · ∇xφ+ υ0 · ∇yφ .

With respect to section 6.2.2, remark that we have

ȧε  D0,∗
t a0 with either D0,∗

t = D0,y
t or D0,∗

t = D0,xy
t

Note that for similar reason as for the conservation of macroscopic flow field, it is also rea-
sonable to keep the macroscopic pressure gradient ε∇xp0 in the limit equations. As stated in
section 6.4, the parameters ν, λ, J of κ1 may depend on the variables %ε, cε, or ϑε. Thus, we
would formally also have to use an expansion for these parameters. However, except for κ1,
only the first order of the expanded coefficient is relevant for the limit equations. For κ1, we
will need the expansion up to order 2:

κε1 = κ1 + εκ1,1 + ε2κ1,2 +O(ε3)

and similarly also for κε2.
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The zero order approximating system then reads
(6.5.1)

D0,∗
t %0 + %0divy υ0 + δ∗,xε%0divx υ0 = 0

%0D
0,∗
t c0 − divy (∇yµ0 − σ∇y∆yyc0) = 0

%0D
0,∗
t υ0 − divy (νDyυ0) +∇y (p0 − λdivy υ0) + ε∇xp0 + divy (σ∇yc0 ⊗∇yc0) = g0

%0D
0,∗
t E0 + divy

(
(µc + µ) j1,0 + ∂zE0

[
divy j1,0

]
− T0υ0

)
−divx (κ1∇xϑ0 + κ1∇yϑ1 + κ1,1∇yϑ0)

−divy (κ1∇xϑ1 + κ1∇yϑ2 + κ1,1∇yϑ1 + κ1,1∇xϑ0 + κ1,2∇yϑ0)− g0 · υ0 = 0 ,

where we assumed κ1 = const for simplicity and

δ∗,x =

{
0 for D0,∗

t = D0,y
t

1 for D0,∗
t = D0,xy

t

.

Here, the homogenized stress tensor T0 is given by

T0 = −νDyυ0 + (p0 + λdivy υ0) I + σ∇yc0 ⊗∇yc0,

the z-derivative becomes ∂zE0 = ∂E
∂(∇yc0) and

E = E0(η0, %0, c0) +
1
2
|υ0|2 +

σ

2%0
|∇yc0|2

where

(6.5.2) µ0 =
∂E0

∂c0
, j1,0 = −J (∇yµ0 − σ∇y∆yyc0) and p0 = %2

0

∂E0

∂%0
.

The microscopic boundary conditions finally read

∂tEΓ,0 − divτ,y hΓ,0 =
⊕
E

%0∂tc0 + %0υ0∇τ,yc0 =
⊕
c0

with a constitutive equation

EΓ,0 = EΓ(ηΓ,0) + FΓ(c0) +
σΓ

2
|∇τ,yc0|2

and the resulting two-scale constitutive equations.

(6.5.3)

Ťτ,0 = −αΓυτ − %0

(
σΓ

%0
∆ττ,yyc0 −

fΓ(c0)
%0

)
∇τ,yc0

⊕
c0 = β∗Γ

(
σΓ

%0
∆ττ,yyc0 −

fΓ(c0)
%0

− σ∇yc0 · nΓ

)
qΓ,0 = 2κ

∇τϑ
ϑ

= hΓ,0 − σΓ∇τ,yc0 ∂tc0 .

⊕
E = − (h0 − (κ1 − κ2)∇xϑ1 − (κ1 − κ2)∇yϑ2) · nΓ

+ ((κ1,1 − κ2,1) (∇yϑ1 +∇xϑ0) + (κ1,2 − κ2,2)∇yϑ0) · nΓ

where
Ťτ,0 = (T0nΓ)τ = ((νDyυ0 − σ∇yc0 ⊗∇yc0)nΓ)τ

is the tangential part of the surface stress vector and

h0 = (µc + µ) j1,0 + ∂zE
[
divy j1,0

]
− T0υ0 .

The first equation of (6.5.3) is but the Navier-Slip condition on the microscale and the second
equation is the dynamic boundary condition for Cahn-Hilliard fluids.
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Additionally, we find the following lower order equations on Q× Y 1:

(6.5.4)
divy (κ1∇yϑ0) = 0

divy (κ1∇xϑ0 + κ1∇yϑ1 + κ1,1∇yϑ0) + divx (κ1∇yϑ0) = 0 .

The first three equations of (6.5.1) describe a Navier-Stokes-Cahn-Hilliard fluid on the
microscale. The fourth equation is the only one that couples to the macro scale. Since we
assumed small velocity only, convective energy transport does not take place on the macroscale
if we chose D0,∗

t = D0,y
t .

On Q2 × Y , the energy balance equation takes the following expansion

(6.5.5)

∂tE2 − divx (κ2∇xϑ0 + κ2∇yϑ1 + κ2,1∇yϑ0)

−divy (κ2∇xϑ1 + κ2∇yϑ2 + κ2,1∇yϑ1 + κ2,1∇xϑ0 + κ2,2∇yϑ0) = 0

divy (κ2∇yϑ0) = 0

divy (κ2∇xϑ0 + κ2∇yϑ1 + κ2,1∇yϑ0) + divx (κ2∇yϑ0) = 0 ,

where
E2 = Ẽ2(η2,0)

The boundary condition the lower order boundary conditions which stem from (6.4.19)4
read

(6.5.6)
(κ1∇yϑ0 − κ2∇yϑ0) · nΓ = 0 ,

((κ1 − κ2)∇yϑ1 + (κ1 − κ2)∇xϑ0 + (κ1,1 − κ2,1)∇yϑ0) · nΓ = 0 .

In order to obtain two-scale entropy balance equations, we used a Taylor expansion in
1
ϑε

=
1
ϑ0
− 1
ϑ2

0

(
εϑ1 + ε2ϑ2

)
+

1
ϑ3

0

(
εϑ1 + ε2ϑ2

)2 +O(ε3)

qε = ε−1q−1 + q0 + εq1

with

q̃ε :=
qε

ϑε
= ε−1q−1

ϑ0
+
q0

ϑ0
+
q−1

ϑ2
0

ϑ1 + ε

(
q1

ϑ0
− q0

ϑ2
0

ϑ1 +
q−1

ϑ3
0

ϑ2
1

)
+O(ε2)

and define

q̃−1 :=
q−1

ϑ0
, q̃0 :=

q0

ϑ0
+
q−1

ϑ2
0

ϑ1 q̃1 :=
(
q1

ϑ0
− q0

ϑ2
0

ϑ1 +
q−1

ϑ3
0

ϑ2
1

)
.

Then, one obtains

∂t (%0η0) + divy (%0η0υ0) + divx (%0η0υ0) + divx (q̃0) + divy (q̃1) =
ξ0

ϑ0
,

with

ξ0 = (T + Tc,0) · Dyυ0 + q̃0 · (∇xϑ0 +∇yϑ1) + q̃1 · ∇yϑ0

+ q̃−1 · (∇xϑ1 +∇yϑ2) + p0divy υ0 − j1,0 · ∇y (µc + µ) ,
q0 = κ1∇xϑ0 + κ1∇yϑ1 + κ1,1∇yϑ0 ,

q1 = κ1∇xϑ1 + κ1∇yϑ2 + κ1,1∇yϑ1 + κ1,1∇xϑ0 + κ1,2∇yϑ0

q−1 = κ1∇yϑ0

and we find additionally

divy
(
q̃−1

)
= q̃−1 · ∇yϑ0(6.5.7a)

divy (q̃0) + divx
(
q̃−1

)
= q̃−1 · (∇xϑ0 +∇yϑ1) + q̃0 · (∇yϑ0) .(6.5.7b)

On Q× Y 2, we find similarly with:

q̃ε2 :=
qε

ϑε
= ε−1q2,−1

ϑ0
+
q2,0

ϑ0
+
q2,−1

ϑ2
0

ϑ1 + ε

(
q2,1

ϑ0
−
q2,0

ϑ2
0

ϑ1 +
q2,−1

ϑ3
0

ϑ2
1

)
+O(ε2)
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and

q̃2,−1 :=
q2,−1

ϑ0
, q̃2,0 :=

q2,0

ϑ0
+
q2,−1

ϑ2
0

ϑ1 q̃2,1 :=
(
q2,1

ϑ0
−
q2,0

ϑ2
0

ϑ1 +
q2,−1

ϑ3
0

ϑ2
1

)
.

∂t (%0η2,0) + divy (%0η2,0υ0) + divx (%0η2,0υ0) + divx (q̃0) + divy (q̃1) =
ξ2,0

ϑ0
,

where

ξ2,0 = q̃2,0 · (∇xϑ0 +∇yϑ1) + q̃2,1 · ∇yϑ0 + q̃2,−1 · (∇xϑ1 +∇yϑ2)
q2,0 = κ2∇xϑ0 + κ2∇yϑ1 + κ2,1∇yϑ0 ,

q2,1 = κ2∇xϑ1 + κ2∇yϑ2 + κ21,1∇yϑ1 + κ2,1∇xϑ0 + κ2,2∇yϑ0

q2,−1 = κ2∇yϑ0

and we find additionally

divy
(
q̃2,−1

)
= q̃2,−1 · ∇yϑ0(6.5.8a)

divy
(
q̃2,0

)
+ divx

(
q̃2,−1

)
= q̃2,−1 · (∇xϑ0 +∇yϑ1) + q̃2,0 · (∇yϑ0) .(6.5.8b)

and on Q× Γ:

∂tηΓ,0 =
1
ϑ0

(
qΓ,0 ·

∇τ,yϑ0

ϑ0
+
⊕
E − υ0,τ · [−%0µΓ,2∇τ,yc0]− µΓ,2

⊕
c

)
+ divτ,y

(
qΓ,0

ϑ0

)
qΓ,0 = κΓ0∇τ,yϑ0 ,

Note that ∇τ,yϑ0 = 0 since ∇yϑ0 = 0.

6.6. Recapitulation: Derivation of Darcy’s Law

For a better understanding of sections 6.8 and 6.9, we shortly recapitulate how Darcy’s
law can be derived from formal asymptotic expansion and averaging of the resulting two-scale
models.

6.6.1. Stationary flow. The following calculations are well known and can be found in
[54]. Also refer to section 2.3, where the calculations for the dynamic flow were explained in
more detail. The formal asymptotic expansion method applied to the system

−div (ε2µ∇υε) +∇pε = gε on Qε
1

divυε = 0 on Qε
1

υε = 0 on ∂Qε
1

υε = 0 on Qε
2

leads to the two-scale problem (see also [54, chapter 2])

−divy (µ∇yυ0) +∇xp0 +∇yp1 = g

divx υ0 = 0
divy υ0 = 0 .

Introducing solutions ui to the problem

−divy (µ∇yui) +∇yΠi = ei

divy ui = 0

ui(x, ·) = 0 on ∂Y1 ,

with the standard basis (ei)i=1...n of Rn, the function υ0 can be obtained from

υ0 =
∑
i

ui (g.∇xp0)i
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such that ˆ
Y
υ0 = A (g −∇xp0)

where

A = (aij) =
ˆ
Y
ui · ej .

6.6.2. Non stationary flow. It was shown in section 2.3, that the scaled stokes equation
(2.3.9) lead to a two-scale system

∂tυ0 − divy (µ∇yυ0) +∇xp0 +∇yp1 = g

divx υ0 = 0
divy υ0 = 0

which was solved by

υ0 = υ̂ + υ̃

where

(6.6.1)

∂tυ̂ − divy (µ∇yυ̂) +∇yp̃1 = 0 on (0, t)× Y 1

divy υ̂ = 0 on (0, t)× Y 1

υ̂ = 0 on (0, t)× Γ

υ̂(0, ·) = υ0(·) on Y 1

and υ̃ is given by

(6.6.2) υ̃ :=
ˆ t

0

∑
[∂t (g −∇xp0)i (s, x)]ui(t− s, y)ds ,

where the functions ui solve

∂tui − divy (µ∇yui) +∇yΠi = ei(6.6.3)
divy ui = 0
ui(0, ·) = 0
ui(x, ·) = 0 on ∂Y1 .

Defining a matrix A by

(6.6.4) Ai,j := ∂t

ˆ
Y
ui · ej

we showed that

(6.6.5)
ˆ
Y
υ0 =

ˆ
y
υ̂ +
ˆ t

0
A(t− s) (g −∇xp0) (s)ds .

Note that

p1 = p̃1 +
∑
i

(g −∇xp0)i Πi .

Above limit problem (6.5.1)3 cannot be treated that easily but has to be analyzed carefully
if we want to obtain a limit equation of form (6.6.5).
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6.7. Some Important Remarks on Effective Macroscopic Equations

The two-scale model as such already is the solution we were searching for. Therefore,
before going into the details of the derivation of effective macroscopic equations, remark that
it is not the aim of the following two sections to derive explicit macroscopic equations that
replace the obtained two-scale model. Rather, it is the aim of the calculations below to
investigate the macroscopic behavior of the solutions of the two-scale model.

Thus, in all calculations below in sections 6.8 and 6.9, it will be assumed that there is a
solution

(%0, c0,υ0, E0, ϑ0, ϑ1, ϑ2)

that satisfies the two-scale problem (6.5.1) with the corresponding constitutive assumptions
from section 6.5. Then, the macroscopic behavior of this solution will be derived by averaging
the equations over Y .

The last comment is of tremendous importance since the calculations below cannot yield
an explicit expression for the pressures pa and pw of water and air. It is also not possible
to calculate the macroscopic permeabilities without knowing the solutions of the two-scale
model. However, once the two-scale model is solved, the corresponding solution also contains
information on the macroscopic quantities and parameters.

6.8. Macroscopic Balance Equations of Mass and Energy

In this section, we will look on the macroscopic evolution of the two-scale equations for
the balances of mass and energy:

D0,∗
t %0 + %0divy υ0 + δ∗,xε%0divx υ0 = 0

%0D
0,∗
t c0 − divy (∇yµ0 − σ∇y∆yyc0) = 0

%0D
0,∗
t E0 + divy

(
(µc + µ) j1,0 + ∂zE

[
divy j1,0

]
− T0υ0

)
−divx (κ1∇xϑ0 + κ1∇yϑ1)− divy (κ1∇xϑ1 + κ1∇yϑ2)− g0 · υ0 = 0 ,

Note that it does not make sense to consider the macroscopic velocity field ῡ0 :=
´
Y υ0. This

is for the simple reason that υ0 is the velocity field of the whole mixture, but for a reasonable
macroscopic description, separate velocity fields are needed for each of the constituents.

6.8.1. Mass balance equations. We have to find a way to extract the information on
the velocity fields of air and water from the mixture’s velocity field.

This is done by using the total momenta and total masses of both constituents in the pore
space (compare also for equation (6.2.1)):

%̄i :=
ˆ
Y
%i, ῡi :=

1
%̄i

ˆ
Y
υi%i for i = a,w ,

where the index a indicates air and the index w indicates water. Thus, the velocity is calcu-
lated as total momentum divided by total mass.

To extract above characterized quantities from υ0, c0 and %0, by definition in section 6.2,
water is characterized by c0 = 1 and air by c0 = 0. Then, the velocity field ῡw of water is
given by

%̄w =
ˆ
Y

(c0%0)(6.8.1a)

ῡw =
1
%̄w

ˆ
Y

(c0%0υ0 + jc,0)(6.8.1b)

with the total mass of water
´
Y (c0%0). Since the diffusive flux is restricted to the transition

zone, it should not have a major effect on the total water flux on the macro scale. Thus, one
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may define

(6.8.1c) ῡw :=
1
%̄w

ˆ
Y

(c0%0υ0)

Analogously, one obtains for the velocity ῡa and density %̄a of air:

%a :=
ˆ
Y

((1− c0)%0)(6.8.2a)

ῡa :=
1
%̄a

ˆ
Y

((1− c0)%0υ0) .(6.8.2b)

Since the abstract mass balance equations read

∂t (%0c0) + divy (%0c0υ0) + εdivx (%0c0υ0) + divy j0 = 0

∂t (%0 (1− c0)) + divy (%0 (1− c0)υ0) + εdivx (%0 (1− c0)υ0)− divy j0 = 0 ,

integration of these equations over Y 1 will cause all terms divy (. . . ) to vanish and we obtain
a system

∂t%̄w + εdivx (%̄wῡw) = 0(6.8.3a)
∂t%̄a + εdivx (%̄aῡa) = 0 .(6.8.3b)

Taking a look on the previous subsection, i.e. on equations (6.6.1) and (6.6.2), it is evident
that we should find a solution

υ0 = υ̂ + υ̃

with υ̂ being a solution to (6.6.1) and υ̃ satisfying (6.6.2) for appropriate ui, in particular:

υ̃ =
ˆ t

0

∑
[∂t (g −∇xp0)i (s, x)]ui(t− s, y)ds .

It will then immediately follow from (6.8.1c) and (6.8.2b):

ῡw =
1
%̄w

ˆ
Y

(
c0%0υ̂ + c0%0

ˆ t

0

∑
[∂t (g −∇xp0)i (s, x)]ui(t− s, y)ds

)
.

ῡa =
1
%̄a

ˆ
Y

(
(1− c0)%0υ̂ + (1− c0)%0

ˆ t

0

∑
[∂t (g −∇xp0)i (s, x)]ui(t− s, y)ds

)
.

If c0 varies slowly with time, we may even expect

(6.8.4)

ῡw =
1
%̄w

ˆ
Y

(
c0%0υ̂ + %0

ˆ t

0

∑
[∂t (g −∇xp0)i (s, x)] c0ui(t− s, y)ds

)
.

ῡa =
1
%̄a

ˆ
Y

(1− c0)%0υ̂

+
ˆ
Y
%0

ˆ t

0

∑
[∂t (g −∇xp0)i (s, x)] (1− c0)ui(t− s, y)ds .

Following the calculations for the stationary Darcy law in subsection 6.6.1, for the stationary
case the resulting equations read

(6.8.5)
ῡw =

1
%̄w

ˆ
Y

(
c0%0

∑
[(g −∇xp0)i (x)]ui

)
.

ῡa =
1
%̄a

ˆ
Y

(
(1− c0)%0

∑
[(g −∇xp0)i (s)]ui

)
.

The formulas (6.8.4) and (6.8.5) will be very important for the calculations in section 6.9.
However, there will be need of separate ui for air and water and p0 will be replaced by the
partial pressures pa and pw.
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6.8.2. Macroscopic balance of energy. Having a look on (6.5.4) on Q × Y 1 as well
as on (6.5.5)2,3 on Q× Y 2 and (6.5.6) on Q× Γ, we find

divy (κ1∇yϑ0) = 0 on Q× Y 1

divy (κ2∇yϑ0) = 0 on Q× Y 2

(κ1∇yϑ0 − κ2∇yϑ0) · nΓ = 0 on Q× Γ ,

and thus ∇yϑ0 ≡ 0. Therefore, all terms depending on ∇yϑ0 in the remaining equations
cancel out and for these remaining equations (6.5.4)2 and (6.5.5)3

divy (κ1∇xϑ0 + κ1∇yϑ1) = 0 on Q× Y 1 ,(6.8.6a)
divy (κ2∇xϑ0 + κ2∇yϑ1) = 0 on Q× Y 2 ,(6.8.6b)

we find a solution

ϑ1 =
3∑
i=1

φi∂iϑ0

where the φi are solutions to a cell problem similar to subsection 2.3.3, namely:

divy (κ1∇yφi + κ1ei) = 0 on Y1 for all x
divy ((κ2∇yφi + κ2ei) = 0 on Y2 for all x(6.8.7)

(κ1 (∇yφi + ei)− κ2 (∇yφi + ei)) · nΓ = 0 on Γ for all x

In line with (6.4.14), the total macroscopic energy is defined as

E =
ˆ
Y 1

%0E +
ˆ
Y 2

E2,0 +
ˆ

Γ
EΓ .

Then, equations (6.5.1)4 and (6.5.5)1 together with (6.5.3)4 integrated over Y simply yield

∂tE + εdivx
ˆ
Y 1

(υ0%0E)− divx
(
κhom∇xϑ0

)
=
ˆ
Y 1

g · υ0 on Q

where the properties of φi as solutions of (6.8.7) yield (compare for 2.3.3):

κhomij :=
ˆ
Y1

(∇yφi + ei) · (κ1 (∇yφj + ej)) +
ˆ
Y2

(∇yφi + ei) · (κ2 (∇yφj + ej)) .

If it is assumed that g is the gravitational force

g = ĝ%0 ,

with the gravitational acceleration constant ĝ and using the notations introduced above in
(6.8.1) and (6.8.2), the total energy balance changes to

∂tE + εdivx
ˆ
Y 1

(υ0%0E)− divx
(
κhom∇xϑ0

)
= %̄wĝ · ῡw + %̄aĝ · ῡa on Q .

Interestingly, the lower order balance of entropy equations (6.5.7) and (6.5.8) become due
to ∇yϑ0 = 0:

divy (κ1∇xϑ0 + κ1∇yϑ1) = 0 on Q× Y 1 ,

divy (κ2∇xϑ0 + κ2∇yϑ1) = 0 on Q× Y 2 ,

which are identical with (6.8.6).
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6.9. Decoupling of Phases: Macroscopic Permeability Tensors

As stated in section 6.7, the two-scale system, which was obtained in section 6.5 as such
already is a solution of the homogenization problem by itself, which means that it is a first
order approximation, which accounts for all important microscopic and macroscopic effects.
However, since the common approach to two-phase flow in porous media is based on macro-
scopic transport equations (6.8.3) with constitutive equations

ῡw = Aw(ρwg −∇pw)

ῡa = Aa(ρag −∇pa) ,

it is useful to investigate if such equations can be obtained from the two-scale model in section
6.5.

Therefore, in what follows, the two scale equation (6.5.1) with boundary condition (6.5.3)1
will be separated into two macroscopic equations for the water and air velocities. The result
will yield approximate formulas for the dependence of macroscopic permeabilities on the
microscopic geometry and the dynamic changing of this geometry. However, note that we
will not discuss the existence of a capillary pressure, nor its dependence on saturation. For
a very short and rough treatment of capillary pressure, refer to the next section 6.10. Since
the calculations are formal and we make some approximate assumptions, it is possible that
numerical simulations will show that more effects have to be taken into account. However, it
is the aim of this section to show that the derivation of permeabilities is possible at all.

Note that physics close to the transition zone and inside of the transition zone is different
from physics outside of the transition zone. In particular, capillary effects have their major
impact on the flow field close to the transition zone. Thus we will develop a formalism to
split up the two-scale model into equations at the transition zone and equations in the pure
water and air regions. This will help to find effective permeability tensors for both fluids.
The resulting permeability tensors will then account for microscopic geometry and for the
evolution of this geometry.

6.9.1. Assumptions on the geometry. In order to proceed, it is necessary to split the
cell Y 1 and the microscopic domain Qε

1 into the regions that are occupied by air and water
respectively and into an “interfacial region”, which is related to the transition zone. This will
be done by constructing smoothed characteristic functions of these subsets. Note that for a
phase field model, it makes no sense to consider subsets with classical characteristic functions
which attain only the values 0 and 1.

To be more concrete assume that there are constants

0 < a0 < a1 < b1 < b0 < 1

and smooth functions $a, $w, $I with

$a,w,I : [0, 1]→ [0, 1]

c 7→ $a,w,I(c)

such that

$I(c) =

{
0 c < a0, c > b0

1 c > a1, c < b1
, $a(c) =

{
1 c < a0

0 c > a1
, $I(c) =

{
0 c < b1

1 c > b0

and

$a +$w +$I = 1 .
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A possible choice would be

$a(c) =


1 for c < a0

exp
(
− (a0−c)2

(c−a1)2

)
for c ∈ [a0, a1]

0 for c > a1

, $w(c) =


1 for c > b0

exp
(
− (b1−c)2

(c−b0)2

)
for c ∈ [b1, b0]

0 for c < b1

as well as

$I(c) = 1− ($a(c) +$w(c)) .

Then, the characteristic function of the air phase, the water phase and the interfacial region
are defined by

χεa(x) := $a(cε(x)), χεw(x) := $w(cε(x)), χεI(x) := $I(cε(x)) ,

and we find

χεw + χεa + χεI = 1 .

The formal asymptotic expansions of these functions read

χεa(x) = $a(c0(x,
x

ε
)) + ε$′a(c0(x,

x

ε
)) c1(x,

x

ε
) +O(ε2) .

χεw(x) = $w(c0(x,
x

ε
)) + ε$′w(c0(x,

x

ε
)) c1(x,

x

ε
) +O(ε2) .

χεI(x) = $I(c0(x,
x

ε
)) + ε$′I(c0(x,

x

ε
)) c1(x,

x

ε
) +O(ε2) .

Formally, this will be written as

χεw(x) = χw,0(x,
x

ε
) + εχw,1(x,

x

ε
) +O(ε2)

χεa(x) = χa,0(x,
x

ε
) + εχa,1(x,

x

ε
) +O(ε2)

χεI(x) = χI,0(x,
x

ε
) + εχI,1(x,

x

ε
) +O(ε2)

where the definition of the χ∗,i can be obtained by comparison and we note that

(6.9.1) χw,0 + χa,0 + χI,0 = 1 .

Based on these smoothed characteristic functions, the following three regions are intro-
duced:

Y a(x) = {y ∈ Y 1 : χa(x, y) > 0} ,
Y w(x) = {y ∈ Y 1 : χw(x, y) > 0} ,
Y I(x) = {y ∈ Y 1 : χI(x, y) > 0} ,

which are the regions that are mostly occupied by air or water and the interfacial region Y I

in the cell Y 1.
Note that Y 1 = Y a ∪ Y w ∪ Y I and Y a ∩ Y w = ∅ but Y a ∩ Y I 6= ∅ and Y w ∩ Y I 6= ∅.

Furthermore, for any ε > 0 , we can introduce the following sets

Qε
a(x) = {y ∈ Q1 : χεa(x) > 0} ,

Qε
w(x) = {y ∈ Q1 : χεw(x) > 0} ,
Qε
I(x) = {y ∈ Q1 : χεI(x) > 0} .
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6.9.2. Assumptions on the coefficients pε, gε and %ε. We will restart from the
microscopic problem

∂t (%ευε)+εdiv (%ε (υε ⊗ υε))−ε2div (νDυε)+ε∇ (pε − ελdivυε)+εdiv
(
σε2∇cε ⊗∇cε

)
= gε .

Throughout this section, it will be assumed that gε is due to gravitational forces, i.e.

gε = %εg

with the gravitational acceleration constant g and it will also be assumed that

(6.9.2a) %ε(x) = χεa(x) ρA(x) + χεw(x) ρW (x) + χεI(x) %̃(x, cε(x)) ,

as well as

(6.9.2b) %0(x, y) = χa(x, y)ρA(x) + χw(x, y)ρW (x) + χI(x, y)%̃(x, c0(x, y))

for the limit two-scale density field %0. Here, ρA and ρW are some functions

ρA , ρW : Q→ R>0

with ρA < ρW , which usually would represent the macroscopic density fields of air and water
and

%̃ : Q× [0, 1]→ R>0

(x, c) 7→ %̃(x, c) ∈ [ρA(x), ρW (x)]

is the c-dependent density distribution in Y I or Qε
I . Since the pressure is given by

pε = (%ε)2 ∂E

∂%ε
, respectively p0 = (%0)2 ∂E

∂%0
,

(see also (6.5.2)) assumption (6.9.2) suggests to split up pε into

pε = p̃εa + p̃εw + p̃εI

ε∇pε = χεa(x)ε∇ (p̃εa + p̃εI) + χεw(x)ε∇ (p̃εw + p̃εI) + χεIε∇ (p̃εI + p̃εa + p̃εw) ,

where
p̃εa := χεap

ε, p̃εw := χεwp
ε and p̃I := χεIp

ε .

Using a formal asymptotic expansion ansatz

p̃εa(x) = p̃a(x) +
∞∑
i=1

εp̃a,i(x,
x

ε
)

p̃εw(x) = p̃w(x) +
∞∑
i=1

εp̃w,i(x,
x

ε
)(6.9.3)

p̃εI(x) = p̃I(x,
x

ε
) +

∞∑
i=1

εp̃I,i(x,
x

ε
) ,

the resulting two-scale model would read according to section 6.5:

(6.9.4)
%0D

0,∗
t υ0−divy (νDyυ0)−∇y (λdivy υ0)+χaε∇x (p̃a + p̃I)+χwε∇x (pw + p̃I)+χaε2∇y (p̃a,1 + p̃I,1)

+ χwε
2∇y (pw,1 + p̃I,1) + χI∇y (p̃I + εp̃a,1 + εp̃a,1) + divy (σ∇yc0 ⊗∇yc0) = g%0 .

In particular, p̃a, p̃w, p̃I and p0 are related by

p0 = p̃a + p̃w + p̃I .
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6.9.3. Alternative approach. According to above reflections, it is assumed that the
pressure in the connected parts of Qε

a and Qε
w is almost constant along trajectories of length

ε. Thus, the scaled momentum equation (6.4.8)3 will be reformulated into

(6.9.5) ∂t(%ευε)− div
(
νε2∇υε

)
−∇

(
ε2λdivυε

)
+ χεa(x)∇pεa + χεw(x)∇pεw + χεIε∇pεI

+ εdiv
(
σε2∇cε ⊗∇cε

)
= gε

where
pεa := χεaεp

ε, pεw := χεwεp
ε and pI := χεIp

ε ,

such that

pε =
1
ε
pεa +

1
ε
pεw + pεI and(6.9.6a)

ε∇pε = χεa(x)∇ (pεa + εpεI) + χεw(x)∇ (pεw + εpεI) + χεIε∇
(
pεI +

1
ε
pεa +

1
ε
pεw

)
(6.9.6b)

≈ χεa(x)∇pεa + χεw(x)∇pεw + χεIε∇pεI ,(6.9.6c)

where it is assumed that pεa ≈ 0 and pεw ≈ 0 on Y I . Note that the interfacial pressure pI
should not be mistaken for capillary pressure. These are related but not identical as will be
shown below in the next section. Furthermore, assume that pεa, pεw and pεI are assumed to be
given in terms of a formal asymptotic expansion via

pεa(x) = pa(x) +
∞∑
i=1

εpa,i(x,
x

ε
)

pεw(x) = pw(x) +
∞∑
i=1

εpw,i(x,
x

ε
)(6.9.7)

pεI(x) = pI(x,
x

ε
) +

∞∑
i=1

εpI,i(x,
x

ε
) .

Then, clearly, the limit two-scale problem reads

(6.9.8)
∂t(%0υ0)−divy (ν∇yυ0)−∇y (λdivy υ0)+χa,0∇ypa,1 +χw,0∇ypw,1 +χa,0∇xpa+χw,0∇xpw

+ χI,0∇ypI + χI,0ε∇xpI + divy (Tc0) = %0g ,

where the notation
Tc0 := σ∇yc0 ⊗∇yc0

was introduced for simplicity.
Note that for any real physical problem, the asymptotic expansions (6.9.3) and (6.9.7) for

the pressures are related by

p̃k = εpk and p̃k,i = εpk,i ∀k ∈ {a,w} .

6.9.4. The relations between ρa and %̄a and between ρw and %̄w. Comparing the
quantities ρA and %̄a and ρW and %̄w, we see that ρa and ρw are the physical densities of water
and air at point x ∈ Q while the quantities %̄a and %̄w are the physical densities multiplied by
the volume fractions which are occupied by air and water respectively. Thus, since χw ≈ c0

and χa ≈ (1− c0) except for the transition zone, we find with

Φa :=
ˆ
Y
χa, Φw :=

ˆ
Y
χw

the relations

%̄a ≈
ˆ
Y 1

χaρA = ΦaρA %̄w ≈
ˆ
Y 1

χwρW = ΦwρW
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6.9.5. Formal decoupling. Note that for sharp interface models, we would have three
coupled equations for three velocity fields: One equation for the velocity field of water, one
for the velocity field of air and one for the velocity of the interface. However, for the phase
field model above, only one equation remains and it is our intention to decouple this equation
into the corresponding three equalities.

To this aim, we split up the velocity field υ0 into the velocities υ0,a of air, of water υ0,w

and of the interface υ0,I :

(6.9.9) υ0,a := χaυ0, υ0,w := χwυ0 and υ0,I := χIυ0 ,

with
υ0,a + υ0,w + υ0,i = υ0 .

Also, we multiply each of the terms

∂t(%0υ0), divy (ν∇yυ0) , ∇y (λdivy υ0) , divy (Tc0) , %0g

with χw,0 + χa,0 + χI,0 = 1 by (6.9.1) and reorganize the equation in terms of χw,0, χa,0, and
χI,0 to obtain

(6.9.10) χa,0

(
∂t(%0υ0,a)− divy (ν∇yυ0,a)−∇y (λdivy υ0,a) +∇ypa,1 +∇xpa − ρag

)
+ χa,0

(
∂t(%0υ0,I)− divy (ν∇yυ0,I)−∇y (λdivy υ0,I) + divy (Tc0)

)
+ χw,0

(
∂t(%0υ0,w)− divy (ν∇yυ0,w)−∇y (λdivy υ0,w) +∇ypw,1 +∇xpw − ρwg

)
+ χw,0

(
∂t(%0υ0,I)− divy (ν∇yυ0,I)−∇y (λdivy υ0,I) + divy (Tc0)

)
+ χI,0

(
∂t(%0υ0,w)− divy (ν∇yυ0,w)−∇y (λdivy υ0,w)

)
+ χI,0

(
∂t(%0υ0,a)− divy (ν∇yυ0,a)−∇y (λdivy υ0,a)− %̃(x, c0)g

)
+ χI,0

(
∂t(%0υ0,I)− divy (ν∇yυ0,I)−∇y (λdivy υ0,I) +∇ypI + divy (Tc0)

)
= 0

For the boundary conditions, we may proceed similarly for (6.5.3)1:

((νDyυ0 − Tc0)nΓ)τ = −αΓυτ − %0

(
σΓ

%0
∆ττ,yyc0 −

fΓ(c0)
%0

)
∇τ,yc0 .

The resulting splitting with the notation

F := %0

(
σΓ

%0
∆ττ,yyc0 −

fΓ(c0)
%0

)
,

as well as (6.9.1) and (6.9.9) reads

(6.9.11) χa
[
((νDy (υ0,a + υ0,I)− Tc0)nΓ)τ + αΓ (υ0,a + υ0,I)τ + F∇τ,yc0

]
+ χw

[
((νDy (υ0,w + υ0,I)− Tc0)nΓ)τ + αΓ (υ0,w + υ0,I)τ + F∇τ,yc0

]
χa
[
((νDy (υ0,a + υ0,I + υ0,w)− Tc0)nΓ)τ + αΓ (υ0,a + υ0,I + υ0,w)τ + F∇τ,yc0

]
= 0

6.9.6. The separated two-scale problems. We rewrite equation (6.9.10) as

χafa + χwfw + χIfI = 0

and boundary condition (6.9.11) as

χaBa + χwBw + χIBI = 0 .

Then, due to the definition of χa, χw, χI , equation (6.9.10) can hold only if

fa = 0 on Y 1\ (Y w ∪ Y I) , fw = 0 on Y 1\ (Y a ∪ Y I) , fI = 0 on Y 1\ (Y w ∪ Y a) .
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The last condition is necessary for (6.9.10) to hold, but not sufficient. However, for simplicity,
we assume that

fa = 0 on Y a(x), fw = 0 on Y w(x) and fI = 0 on Y I(x) .

Similarly, the boundary condition (6.9.11) is split up into

Ba = 0 on Γ ∩ ∂Y a(x), Bw = 0 on Γ ∩ ∂Y w(x) and BI = 0 on Γ ∩ ∂Y I(x) .

Additionally, we have to account for

υ0,a = 0 on Y 1\Y a(x), υ0,w = 0 on Y 1\Y w(x) and υ0,I = 0 on Y 1\Y I(x) .

The equation on Y a(x) reads

(6.9.12a) ∂t(%0υ0,a)− divy (ν∇yυ0,a)−∇y (λdivy υ0,a) +∇ypa,1 +∇xpa − ρag
+ ∂t(%0υ0,I)− divy (ν∇yυ0,I)−∇y (λdivy υ0,I) + divy (Tc0) = 0

with the boundary condition

(6.9.12b) υ0,a = 0

on ∂Y a(x)\Γ and

(6.9.12c) ((νDy (υ0,a + υ0,I)− Tc0)nΓ)τ + αΓ (υ0,a + υ0,I)τ + F∇τ,yc0 = 0 on Γ .

The equation on Y w(x) reads

(6.9.13a) ∂t(%0υ0,w)− divy (ν∇yυ0,w)−∇y (λdivy υ0,w) +∇ypw,1 +∇xpw − ρwg
+ ∂t(%0υ0,I)− divy (ν∇yυ0,I)−∇y (λdivy υ0,I) + divy (Tc0) = 0

with the boundary condition

(6.9.13b) υ0,w = 0

on ∂Y w(x)\Γ and

(6.9.13c) ((νDy (υ0,w + υ0,I)− Tc0)nΓ)τ + αΓ (υ0,w + υ0,I)τ + F∇τ,yc0 = 0 on Γ .

The equation on Y I(x) reads

(6.9.14a) ∂t(%0υ0,I)− divy (ν∇yυ0,I)−∇y (λdivy υ0,I) +∇ypI − %0g

+ ∂t(%0υ0,w)− divy (ν∇yυ0,w)−∇y (λdivy υ0,w) + divy (Tc0)

+ ∂t(%0υ0,a)− divy (ν∇yυ0,a)−∇y (λdivy υ0,a) = 0

with the boundary condition

(6.9.14b) υ0,I = 0

on ∂Y I(x)\Γ and

(6.9.14c) ((νDy (υ0,w + υ0,a + υ0,I)− Tc0)nΓ)τ + αΓ (υ0,w + υ0,a + υ0,I)τ + F∇τ,yc0 = 0

on Γ.
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6.9.7. The stationary flow problem. Above splitting of the equation (6.9.10) will be
used in order to obtain effective permeability tensors for both, air and water, in case of a
stationary flow, which means in case of fixed microscopic geometry. Due to the definition of
χI , we can expect that

(6.9.15) (1− χI)∇yc0 ≈ 0 .

Thus, in Y a(x) and Y w(x), capillarity plays a minor role for the evolution of the velocity field.
Also, since we are interested in the stationary case, υ0 is assumed to vanish in the transition
zone, since otherwise the transition zone could move and the microscopic geometry would no
longer be stationary. This would cause changes in c0 but c0 is assumed to be constant. The
mathematical implication is

(6.9.16) υ0,I = χIυ0 ≈ 0

as well as

(6.9.17) υ0,w = χwυ0 ≈ c0υ0 and υ0,a = χaυ0 ≈ (1− c0)υ0 .

Using these approximations in (6.9.12)-(6.9.14) yields:

−divy (µ∇y(υ0,a))−∇y (λdivy (c0υ0,a)) +∇ypi,a +∇xpa = ρag on Y a

−divy (µ∇y(υ0,w))−∇y (λdivy (c0υ0,w)) +∇ypi,w +∇xpw = ρwg on Y w

with the boundary conditions

υ0,a = 0 on ∂Y a\Γ
υ0,w = 0 on ∂Y w\Γ

as well as

((νDy (υ0,a))nΓ)τ + αΓ (υ0,a)τ = 0 on Γ ,

((νDy (υ0,w))nΓ)τ + αΓ (υ0,w)τ = 0 on Γ .

Thus, it can be expected that there are cell problems of the form (6.6.3) for some cell solutions
ui,a on Y a and ui,w on Y w with ui,a/w ≡ 0 on Y I such that

υ0,a =
∑
i

(ρag −∇xpa)iui,a ,(6.9.18a)

υ0,w =
∑
i

(ρwg −∇xpw)iui,w .(6.9.18b)

This means, one has to look for

(6.9.19)

−divy (µ∇yui,a)−∇y (λdivy ui,a) +∇yΠi,a = ei on Y a(x)

divy (%0ui,a) = 0 on Y a(x)

ui,a ≡ 0 on (Y w(x) ∪ Y I(x))

and

(6.9.20)

−divy (µ∇yui,a)−∇y (λdivy ui,a) +∇yΠi,w = ei on Y w(x)

divy (%0ui,w) = 0 on Y w(x)

ui,w ≡ 0 on (Y a(x) ∪ Y I(x))

satisfying the boundary conditions

ui,a = 0 on ∂Y a\Γ
ui,w = 0 on ∂Y w\Γ
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as well as

((νDy (ui,a))nΓ)τ + αΓ (ui,a)τ = 0 on Γ ,

((νDy (ui,w))nΓ)τ + αΓ (ui,w)τ = 0 on Γ .

Comparing with section 6.6.2, we see that

(1− c0)υ0 ≈ υ0,a =
∑
i

ui,a (ρag −∇xpa)i

c0υ0 ≈ υ0,w =
∑
i

ui,w (ρwg −∇xpw)i

which yields with (6.8.5):

ῡw ≈
1
%̄w

∑
[(ρAg −∇xpw)i (x)]

ˆ
Y 1

%0ui,w(y)dy = Aw (ρAg −∇xpw)

ῡa ≈
1
%̄a

∑
[(ρWg −∇xpa)i (x)]

ˆ
Y 1

%0ui,a(y)dy = Aa (ρWg −∇xpa)

with ρA and ρW taken from (6.9.2), where

(Aw)i,j = aw,ij =
1
%̄w

ˆ
Y 1

%0ui,w(y) · ej ds, (Aa)i,j = aa,ij =
1
%̄a

ˆ
Y 1

%0ui,a(y) · ej ds .

Note that above formulas for Aw and Aa only have approximate character and are not to
be taken for exact formulas. However, if the terms which were neglected indeed turn out to
be small, the above approximation should be close to the true macroscopic behavior.

6.9.8. The quasi stationary flow. In contrast to 6.9.7, we will now consider the case
that υ0,I is not negligible but ∂t(%0υ0) ≈ 0, and once more derive effective permeability
tensors for this new situation.

Note that c0υ0 and (1− c0)υ0 can be written in form (6.9.18) because the cell problems
in (6.9.19) and (6.9.20) read

−divy (µ∇yui)−∇y (λdivy ui) +∇yΠi = ei .

Having a look on the stationary problem of (6.9.12a)

− divy (ν∇yυ0,a)−∇y (λdivy υ0,a) +∇ypa,1 +∇xpa − ρag
+ ∂t(%0υ0,I)− divy (ν∇yυ0,I)−∇y (λdivy υ0,I) + divy (Tc0) = 0

and comparing with subsection 6.6.1, one could think that the resulting cell problems read

(6.9.22) − divy (µ∇yui,a)−∇y (λdivy ui,a) +∇yΠi +Giei = ei ,

where

Gi =
1

(ρag −∇xpa)i
[−divy (ν∇yυ0,I)−∇y (λdivy υ0,I) + divy (Tc0)] · ei .

However, note that one would run into serious troubles if (ρag −∇xpa)i = 0, in particular, if
the system approaches the case of zero air flux. Thus, we seek for another ansatz: Remember
that

υ0,a/χa = υ0 = υ0,I/χI on Y a(x) ∩ Y I(x) ,

as well as
υ0,w/χw = υ0 = υ0,I/χI on Y w(x) ∩ Y I(x) .

Therefore, replacing
υ0,I =

χI
χa
υ0,a on Y a(x) ∩ Y I(x)
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in (6.9.12a) and assuming ∇yc0(x, y) ≈ 0 on Y a(x) yields

− divy
(
ν∇y

(
υ0,a

(
1 +

χI
χa

)))
−∇y

(
λdivy

(
υ0,a

(
1 +

χI
χa

)))
+∇ypa,1 +∇xpa − ρag = 0 .

Since for fixed x,

lim
y→y0∈∂Y a(x)\Γ

(
χI(x, y)
χa(x, y)

)
→∞ ,

we replace boundary condition (6.9.12b) by

lim
y→y0∈∂Y a(x)\Γ

(
υ0,a(x, y)

χI(x, y)
χa(x, y)

)
= υ0,I(x, y0) .

Then, the cell problems on Y a(x) read

−divy
(
µ∇y

(
ui,a

(
1 +

χI
χa

)))
−∇y

(
λdivy

(
ui,a

(
1 +

χI
χa

)))
+∇yΠi,a = ei on Y a(x)

divy
[
%0ui,a

(
1 +

χI
χa

)]
= 0 on Y a(x)

ui,a = 0 on Y 1\Y a(x)

with the boundary conditions

(6.9.23)
((

νDy

(
ui,a

(
1 +

χI
χa

)))
nΓ

)
τ

+ αΓ

(
ui,a

(
1 +

χI
χa

))
τ

= 0 on Γ

and on ∂Y a(x)\Γ we prescribe in case υ0,I(x, y0) · ei 6= 0:

(6.9.24) lim
y→y0∈∂Y a(x)\Γ

(
ui,a

(
1 +

χI
χa

))
=

(υ0,I(x, y0) · ei)
(ρag −∇xpa)i

ei ,

and in case in case
(ρag −∇xpa)i = 0 ,

the last equation is replaced by :

(6.9.25) lim
y→y0∈∂Y a(x)\Γ

(
ui,a

(
1 +

χI
χa

))
=

(υ0,I(x, y0) · ei)
δ

ei ,

for δ �
∣∣∣υ0,I(x, y0) · ei

∣∣∣. For example, one could choose

δ = 10−6
∣∣∣υ0,I(x, y0) · ei

∣∣∣
The cell problem on Y w(x) can be constructed similarly. Thus we search for solutions of

−divy
(
µ∇y

(
ui,w

(
1 +

χI
χw

)))
−∇y

(
λdivy

(
ui,w

(
1 +

χI
χw

)))
+∇yΠi,w = ei on Y w(x)

divy
[
%0ui,w

(
1 +

χI
χw

)]
= 0 on Y w(x)

ui,w = 0 on Y 1\Y w(x)

satisfying ((
νDy

(
ui,w

(
1 +

χI
χw

)))
nΓ

)
τ

+ αΓ

(
ui,w

(
1 +

χI
χw

))
τ

= 0 on Γ
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and either

lim
y→y0∈∂Y a(x)\Γ

(
ui,a

(
1 +

χI
χa

))
=

(υ0,I(x, y0) · ei)
(ρag −∇xpa)i

ei if (ρag −∇xpa)i 6= 0 or

lim
y→y0∈∂Y a(x)\Γ

(
ui,a

(
1 +

χI
χa

))
=

(υ0,I(x, y0) · ei)
δ

ei else.

However, on Y I(x) there currently seems no way to find suitable cell solutions to the
system (6.9.14):

(6.9.26a) − divy (ν∇yυ0,I)−∇y (λdivy υ0,I) +∇ypI − %0g

+ ∂t(%0υ0,w)− divy (ν∇yυ0,w)−∇y (λdivy υ0,w) + divy (Tc0)

+ ∂t(%0υ0,a)− divy (ν∇yυ0,a)−∇y (λdivy υ0,a) = 0

with the boundary condition

(6.9.26b) υ0,I = 0

on ∂Y I\Γ and
(6.9.26c)

((νDy (υ0,w + υ0,a + υ0,I)− Tc0)nΓ)τ + αΓ (υ0,w + υ0,a + υ0,I)τ + F∇τ,yc0 = 0 on Γ .

Even though it is possible to replace υ0,a and υ0,w by

υ0,a =
χa
χI
υ0,I and υ0,w =

χw
χI
υ0,I ,

above system is not suited for cell problems of the form (6.9.22), as all terms in (6.9.26a)
depend on both variables x and y. Thus, it currently seems to be the best approach to
calculate υ0,I directly from system (6.9.26).

In order to calculate the macroscopic velocity fields ῡw and ῡa, note that

c0υ0 ≈ c0(υ0,w + υ0,I) and (1− c0)υ0 ≈ (1− c0) (υ0,a + υ0,I) .

According to the above calculations,υ0,w and υ0,a are approximately given by

υ0,a =
∑
i

ui,a(ρAg −∇xpa)i

υ0,w =
∑
i

ui,w(ρWg −∇xpw)i .

The resulting constitutive equations for the total velocity fields for ῡw and ῡa read according
to (6.8.5):

ῡw =
1
%̄w

ˆ
Y

(
%0c0

∑
i

[(ρWg −∇xpw)i]ui,w + %0c0υ0,I

)

ῡa =
1
%̄a

ˆ
Y

(
%0(1− c0)

∑
i

[(ρAg −∇xpa)i]ui,a + %0(1− c0)υ0,I

)
.

Since the transition zone is thin, even on the pore scale, it can be assumed thatˆ
Y

∣∣%0υ0,I

∣∣ ≈ 0

and the resulting equations for ῡa and ῡw read

ῡw = Aw (ρWg −∇xpw)

ῡa = Aa (ρAg −∇xpa) .
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with

(Aw,ij)ij =
1
%̄w

ˆ
Y

(c0%0ui · ej) and (Aa,ij)ij =
1
%̄a

ˆ
Y

((1− c0)%0ui · ej) .

Even though the moving of the microscopic interface seems to have no influence on the macro-
scopic equations, note that this is not the case: due to the microscopic boundary conditions
for ui,a and ui,w, these functions strongly depend on the velocity field υ0,I and therefore also
the permeabilities.

6.9.9. The dynamic case. In case ∂t (%0υ0) ≈ 0 is no longer justified, the above cal-
culations in 6.9.8 could be repeated with (ρAg − ∇xpa) and (ρWg − ∇xpw), replaced by
∂t(ρAg−∇xpa) and ∂t(ρWg−∇xpw). The function ui,a would have to solve the non-stationary
problem

∂t

(
ρa

(
ui,a

(
1 +

χI
χa

)))
− divy

(
µ∇y

(
ui,a

(
1 +

χI
χa

)))
−∇y

(
λdivy

(
ui,a

(
1 +

χI
χa

)))
+∇yΠi,a = ei on Y a(x)

divy
[
%0ui,a

(
1 +

χI
χa

)]
= 0 on Y a(x)

ui,a = 0 on Y 1\Y a(x)

ui,a(t = 0, ·) = 0 on Y 1

with the same boundary conditions (6.9.23) and (6.9.24), respectively (6.9.25). Additionally,
we would need a function υ̂ as a solution of

∂t (%0υ̂)− divy (ν∇yυ̂) +∇yp1 = 0 on (0, t)× Y 1

divy (%0υ̂) = ∂t%0 on (0, t)× Y 1

υ̂(0, ·) = υ̂0(·) on Y 1

where υ̂0 is the initial value of υ0:

υ0(t = 0, ·) = υ̂0(·) .
Then, according to sections 6.6.2 and 6.8, in particular with regard to equations (6.8.4),

we obtain

ῡw ≈
1
%̄w

ˆ
Y

(
c0%0υ̂ + c0%0

ˆ t

0

∑
[∂t (ρWg −∇xpw)i (s, x)]ui,w(t− s, y)ds

)
.

ῡa ≈
1
%̄a

ˆ
Y

(
(1− c0)%0υ̂ + (1− c0)%0

ˆ t

0

∑
[∂t (ρAg −∇xpa)i (s, x)]ui,a(t− s, y)ds

)
.

It is doubtable that such an approach is reasonable for application as we do not only need
to calculate ui,a/w but also υ̂. Moreover, the constitutive equation for ῡa/w loses its common
form

ῡa/w = Aa/w
(
ρa/wg −∇xpa/w

)
.

This is, why the author does not want to go to much into details of the calculations.

6.10. An Outlook on Capillary Pressure and Richard’s Equation

If the air is assumed to move freely in the porous medium and is always at atmospheric
pressure, it is often possible to neglect air transport and to focus on water transport only.
Water transport is then described by the velocity field

(6.10.1) ῡw = Ac(ρWg −∇pc) ,
with

pc := pw − pa .
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Equation (6.10.1) is called Buckimham-Darcy law and pc is known as capillary pressure. The
Buckingham-Darcy law inserted into (6.8.3a) yields the so called Richards equation[86]:

∂t%̄w + εdivx (%̄wAc(ρWg −∇pc)) = 0 .

However, the question remains how the capillary pressure pc can be calculated from above
two-scale model.

Classically, pc is related to the pressure jump across the microscopic interfaces. However,
since the phase field model does not contain interfaces but only a transition zone, there is also
no pressure jump but only a pressure gradient.

For any pressure field p and any two points x1, x2 ∈ R3, the pressure difference between
these two points is given by

p(x1)− p(x2) =
ˆ 1

0
∇p(x1 + s(x2 − x1)) · (x2 − x1) ds .

ˆ |x2−x1|

0
|∇p (x1 + s |x2 − x1|)| ds

Comparing with above approach in section 6.9, it is reasonable to assume that

pc(x) ≈

(ˆ
Y I(x)

|∇ypc,0|

)
/

(ˆ
Y I(x)

)
.

Here, pc,0 is not identical with p0 but should be related to the mean normal stress through
the transition zone which is due to volumetric forces. Thus,

pc,0 = p0 +
1
3
σtr (∇yc0 ⊗∇yc0) ,

where one should be aware of the fact, that p0 itself depends on ∇yc0. As expected, we see
that pc depends on the micro structure. Note that in future, such investigations should be
done more carefully by means of numerics.

6.11. Discussion, Conclusion and Outlook

The major aim of this chapter was to build a bridge from microscopic models of two phase
flows in porous media to macroscopic models, using phase field models and formal asymptotic
expansion. The calculations were straight forward and instructive for further generalization.
The major advantages of the resulting two-scale model are manifold:

• It is thermodynamically consistent since the scaling of the microscopic problem was
thermodynamically consistent, too.
• It accounts for both, macroscopic and microscopic behavior
• Using standard averaging ansatzes, it can be shown that the macroscopic balance of
mass and balance of energy equations show the expected behavior. Note that this is
also due to the thermodynamically consistent scaling of the problem.
• Using a non-standard approach, it was also possible to show that the macroscopic
dependence of the velocity fields of air and water follow the expected proportionality
relation with respect to (g −∇p).

At this point, the author wants to emphasize once more that it was not the aim of the above
calculations to justify the common macroscopic approaches, neither to “rederive” them. Rather
it was the intention to show that the averaged solutions of the two-scale problem satisfy the
well known macroscopic relations. Therefore, the two-scale models can be regarded as true
generalizations of the purely macroscopic models.

Two more advantages should also be named:
• The information on the micro scale is very detailed, precise and can be considered
to be complete, since we even know the dependence of the total energy on the mi-
croscopic parameters.
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• Above calculations can be generalized to arbitrarily complex situations that fit to the
MREP-assumption. As an example, we will consider the active layer of permafrost
soil in chapter 7. For future investigations, one may also think about pollution
problems or, maybe, interaction with biological processes.

6.11.1. Outlook: Numerics and Analysis. For numerical simulations, the author
suggests to build up on the newly developed framework of Isogeometric Analysis by Hughes
et. al. [56]. This method is build up on the CAD system, in particular on splines instead of
a spatial discretization, and seems to be well suited for varying geometries, including curved
surfaces, such as they appear in multiphase systems at the transition zone. The isogeometric
analysis was successfully applied to the Navier-Stokes-Korteweg equations and to the Cahn-
Hilliard equation by Gómez et. al.[34, 35], where the authors showed that the results were
much better than for usual finite element methods.

Of course, the calculations which were presented above are only formal and rigorous
analysis towards existence of solutions to the microscopic model and the convergence of these
solutions in homogenization is in need. However, the only existence results for Cahn-Hilliard-
Navier-Stokes systems that are known to the author are due to Abels [3, 2]. In these two
publications he treated a Cahn-Hilliard-Navier-Stokes problem in terms of concentrations for
matched densities [3] and for quasi incompressible fluids with general densities [2]. However,
he did not treat dynamical boundary conditions but in terms of section 6.4, he claimed the
boundary conditions

j1 · nΓ = 0 and ∇c · nΓ = 0 .

Also, for the incompressible case, he needed to restrict to an energy functional of the form

Ê(%,∇c) =
σ

2%
|∇c|q ,

with q > 2 in dimension n = 2 and q ≥ n for dimension n ≥ 3.
The Cahn-Hilliard equation without the Navier-Stokes part but with dynamical boundary

conditions was treated by Kenzler et. al. [62] and by Miranville et. al. [74]. The mathematics
that are used in [3, 2, 62, 74] are very complex and therefore, even existence for the full
Navier-Stokes-Cahn-Hilliard system with dynamic boundary conditions seems to be a very
hard problem.

However, since models which are derived from the MREP-assumption have shown to
come up with good a priori estimates (see also section 1.8), the situation is not hopeless. In
particular, for both, microscopic and two-scale model, above calculations yield suitable energy
functionals.

6.11.2. Comparison with the approach by Papatzacos. As mentioned in the intro-
duction, Papatzacos [80] followed a related approach, but as we will see, his approach differs
significantly from the approach in this thesis, although both start from phase-field models at
the pore scale.

Like the author, Papatzacos started from the assumption that the equations describing
the physics on the pore scale are given in terms of phase field models. His work is also based on
an earlier work by the same author [79], where he investigated the case of a single component
two-phase flow. However, there are many differences in the two approaches:

• First, instead of using homogenization techniques, in particular the formal asymp-
totic expansion, he used the formal REV-averaging method. This method usually is
based on averaging the solutions in the pore space by convolution with a function
f ∈ C∞0 (Rn) with 0 ∈ supp(f) and withˆ

Rn
f = 1 .
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Thus, the averaged quantities are defined by

ā(x) :=
ˆ

Rn
a(x− y)f(y)dy .

Then, the effective equations for these averaged ā are derived. To the authors opinion,
this method is incompatible with processes that happen on a spatial scale smaller
than the pore scale. In particular, in case of the transition zone that is much smaller
than the pore space, this method tends to overestimate effects of ∇c and ∆c.
• Second, his thermodynamical basis is not as transparent as the one used in this
thesis. In particular, the Cahn-Hilliard energy in [79] is defined for the averaged
fluid, which makes no sense in case that the pores are larger than the thickness of
the transition zone.
• Third, for the reasons above, in his resulting model equations, he obtains averaged
Cahn-Hilliard-Navier-Stokes equations.

This means, that according to his model, the flow on the macro scale is also described by a
Cahn-Hilliard-Navier-Stokes equation. In particular, this implies that the macroscopic balance
of mass equation for each component is given by a convection-diffusion equation with fourth
order diffusion. Using the notation of this chapter, his mass balance equation for air and
water would read

∂t%̄a + div (%̄aῡa)− div
(
∇
(
∂F − J∆%̄a

))
= 0 ,

where ∂F is macroscopically averaged potential. Since his averaged equations contain a
macroscopic Navier-Stokes like equation for the macroscopic velocity, such a result is not a
generalization of classical models but rather something completely different. Another differ-
ence to the present approach is that his equations do not contain information on the inter-
action between microscopic and macroscopic processes. The averaged equations only contain
effective parameters.

The author of this thesis believes that the fundamental assumption behind the calculations
of Papatzacos is that the thickness of the diffusive interface is at least of the order of the
diameter of the pores. Note that Papatzacos gives no statement on such an assumption but
with regard to the energy potentials in Cahn-Hilliard equations and with regard to known
sharp interface limits [92, 67], the capillary diffusion term ∆2c as well as the capillary stress
∇c ⊗ ∇c only play a role in the thin transition zone. Thus, by the moment that the pore
diameter becomes large compared to thickness of the transition zone, there should be no
macroscopic effects of any capillary diffusion or of macroscopic stress of the form2 ∇c⊗∇c.

Note that another major difference between the calculations in this chapter and [80] lies
in the treatment of microscopic boundary conditions: Papatzacos [80] does not account for
microscopic surface energy at all. Concerning boundary conditions he is not concerned about
the boundary conditions on the tangential velocity or the Cauchy stress at the pore level. For
the boundary conditions on the phase field, he only uses equilibrium “contact angles” (refer
to section 4.8 for a discussion on that topic) which read with the notation of this chapter

(6.11.1) ∇%i · nΓε = ω .

He states that “in the averaging process, the averaging of boundary condition (7)” [this is the
contact angle condition (6.11.1)] “is not meaningful”.

The author of this thesis has a completely different opinion: First of all, even if the
transition zone is thin compared to the diameter of the pores, the dynamic boundary condition
for the Cahn-Hilliard equation as well as the Navier-slip condition have direct impact on the
microscopic flow field. If the pores become smaller and finally of the order of the thickness of
the transition zone, surface energy should play a significant role.

2Note that this is not a statement on the macroscopic capillary pressure! It is only a statement that
excludes macroscopic stress terms of the form ∇c⊗∇c.



CHAPTER 7

An Application to Permafrost Soil

7.1. Introduction

As shown in the previous chapter 6, phase field models seem to be suited to derive two-
scale models for multiphase flows directly from the pore scale. However, very little work has
been done on multiscale phase field models and the only approach that is known to the author
is the upscaling work on the Stefan problem by Eck [24, 25].

In contrast to chapter 6, the physical processes treated in this chapter are of much higher
complexity. In particular they have to incorporate phase transitions such as condensation,
evaporation, freezing and melting. It is of particular interest whether or not these effects will
lead to macroscopic hysteresis or memory effects. A justification for such effects based on
physical arguments was given in chapter 3, in particular in 3.3.

This chapter will provide the derivation of microscopic models for the active layer of per-
mafrost soil in Tianshuihai and Qumahe (see section 3.1) and demonstrate that the resulting
two-scale models give justification for the macroscopic models set up in 3.4 and 3.5, though,
of course, they provide more insight into the physics, as they also contain information on the
micro structure.

In contrast to chapter 6, we will use the partial density approach like it was introduced in
section 4.3. This is for simplicity of writing down the calculations and the resulting equations
as well as to show that the methods of chapter 6 also apply to this setting.

7.2. Derivation of the Microscopic Model

7.2.1. Physical assumptions and comment on notation. Throughout this section,
the notations introduced in section 6.2 will be used. Since we deal with the active layer
which extends about not more than 3 meters depth, the physical restrictions of the model
are obvious: We deal with pressure fields close to atmospheric pressure. Like in chapter 6,
we assume that the pores are still large compared to the thickness of the transition zone. In
particular, the surface energy, given in terms of the gradients of the partial densities, is small
compared to the other contributions to the total energy. Also, we claim that the velocities of
all three phases are moderate such that a scaling of these velocities with ε is justified.

Furthermore, we will assume that the temperature field is continuous throughout the
whole system. In particular, we assume that there is no temperature jump across the surface
Γε and that Γε has the same temperature as the bulk and the soil matrix. Note that the
ansatz of mixture theory as it is used in this thesis automatically comes up with continuity
of temperature through the transition zone. Concerning the microscopic geometry, we do not
consider processes like swelling, erosion or deformation due to freezing and thawing. Thus,
the geometry is assumed to be constant in time.

For simplicity of notation and for more comfortable reading, the indices ε for the variables
will be omitted throughout this section. These indices will only be written down for the
complete model below, in section 7.3.

7.2.2. The pore space. Since we restrict to small velocities, in particular to velocities
of order ε, the final two-scale model will be obtained using the intermediate approach. In
what follows, it will be assumed that air and vapor combine to the gaseous phase which moves

121
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with a common velocity field. Vapor is then assumed to show some diffusive behavior in this
gaseous phase.

In what follows, %a, %v, %w and %i are the partial densities of air, vapor, water and ice,
respectively, and υa, υv, υw and υi are the corresponding partial velocities. Assume that %a
and %v together form a gaseous phase %1 = %a + %v with velocity %1υ1 = %aυa + %vυv. In
what follows we will have reactions from ice to water, indicated by ιiw, from ice to vapor,
indicated by ιiv, and from water to vapor, indicated by ιwv. Thus, the resulting set of mass
balance equations reads

∂t%v + εdiv (%vυv) = −ιvw − ιvi ∂t%i + εdiv (%iυi) = ιvi + ιwi

∂t%w + εdiv (%wυw) = +ιvw − ιwi ∂t%1 + εdiv (%1υ1) = −ιvw − ιvi

The system is fully described by the evolution of %1, %w, %v and %i since their evolution
comprise the evolution of the total mass density

(7.2.1) % = %1 + %w + %i

as well as the evolution of %a = (1− c)%1.
Defining the mean velocity of the mixture by

%υ := %1υ1 + %wυw + %iυi ,

we introduce the following notation

u1 := υ1 − υ uv := υv − υ1 u2 := υ2 − υ ui := υi − υ2 c := %v/%1

j1 := %1u1 jv := ε%vuv jw := %wuw ji := %iυi

and keep in mind that j1 + jw + ji = 0. Using these definitions, we obtain the following set
of mass balance equations:

Dε,1
t %+ %divυ = 0(7.2.2a)

Dε,1
t %1 + %1εdivυ + εdiv j1 = −ιvw − ιvi(7.2.2b)

%1D
ε,1
t c+ εj1 · ∇c+ div jv = (1− c) (−ιvw − ιvi)(7.2.2c)

Dε,1
t %w + %wεdivυ + εdiv jw = +ιvw − ιwi(7.2.2d)

Dε,1
t %i + %iεdivυ + εdiv ji = ιwi + ιvi(7.2.2e)

where
Dε,1
t φ := ∂tφ+ ε (υ · ∇)φ .

For simplicity in the calculations below, in particular to stay close to section 4.3, we
introduce the notation

(7.2.2f)
+
c1:= −ιvw − ιvi,

+
cw:= ιvw − ιwi and

+
ci:= ιvi + ιwi .

Finally, the balance equations of momentum and energy read

%Dε,1
t υ − div εT = %g %Dε,1

t E − divh = %g · υ ,(7.2.2g)

where T is the Cauchy stress, g the gravitational acceleration, E is the energy per mass in
Qε

1 and h is non-convective energy flux.
Following section 4.7, the energy is assumed to depend on %1, %w, %i, c, υ and η as well

as on ∇%1, ∇%w and ∇%i and takes the form:

E = E(η, %1, %w, %i, c,υ,∇%1,∇%w,∇%i)

=
1
2
|υ|2 + E0(η, %1, %w, %i, c) + Ê(%1, %w, %i,∇%1,∇%w,∇%i) .
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Note that E does not depend on % due to (7.2.1). With ϑ = ∂E
∂η , the material derivative of E

is

Dε,1
t E = ϑDε,1

t η +
∂E

∂υ
·Dε,1

t υ +
∂E

∂%1
Dε,1
t %1 +

∂E

∂%w
Dε,1
t %w +

∂E

∂%i
Dε,1
t %i

+
∂E

∂c
Dε,1
t c+

∂E

∂ (∇%1)
Dε,1
t (∇%1) +

∂E

∂ (∇%w)
Dε,1
t (∇%w) +

∂E

∂ (∇%i)
Dε,1
t (∇%i)

and can be brought into the form

%Dε,1
t η =

1
ϑ

(
−ε2 (divT) · υ + divh+ (p1 + pw + pi) divυ

)
− 1
ϑ

 ∑
k=1,w,i

%∂z,kE ·Dε,1
t (∇%k) +

∑
k=1,w,i

µkD
ε,1
t %k − %1µvD

ε,1
t c

 ,

where

(7.2.3) µv :=
%

%1

∂E

∂c
,

as well as

pk = %%k
∂E

∂%k
, ∂z,kE :=

∂E

∂(∇%k)
, µk := %

∂E

∂%k
for k ∈ {1, w, i} .

We use (7.2.2) to get

Dε,1
t (∇%k) = −ε (∇υ)∇%k − div

((
%kεdivυ + εdiv jk−

+
c
)

I
)

for k ∈ {1, w, i} .

We obtain in a first step

− %∂z,kÊ ·Dε,1
t (∇%k) = Tk · ε∇υ + εµk,2%kdivυ − ε∇µk,2 · j2 − µk,2

+
ck

− div
(
%Dε,1

t (%k) ∂z,kÊ + εµk,2jk

)
for k ∈ {1, w, i}

with

Tk := %∂z,kE ⊗∇%k, µk,2 := −div (%∂z,kE) .

The final versions of entropy flux and entropy production read

q = h− εTυ −
∑

k∈{1,w,i}

%Dε,1
t (%k) ∂z,kÊ + ε (µk,2 + µk) jk + µvjv(7.2.4)

ξ = (T + T1 + Tw + Ti) · εDυ +
q

ϑ
· ϑ+

 ∑
k∈{1,w,i}

(pk + µk,2%k)

 εdivυ

−∇µv · jv −
∑

k∈{1,w,i}

ε∇ (µk,2 + µk) · jk + εµv∇c · j1

+ (1− c)µv
+
c1 −

∑
k∈{1,w,i}

(µk,2 + µk)
+
ck
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Finally, we make use of (7.2.2f) to obtain

ξ = (T + T1 + Tw + Ti) · εDυ +
q

ϑ
· ϑ+

 ∑
k∈{1,w,i}

(pk + µk,2%k)

 εdivυ

−
∑

k∈{1,w,i}

ε∇ (µk,2 + µk) · jk −∇µv · jv + ε%1µv∇c · j1

+
(
µw,2 + µw − µi,2 + µi

)
ιwi +

(
µ1,2 + µ1 − (1− c)µv − µw,2 − µw

)
ιvw

+
(
µ1,2 + µ1 − (1− c)µv − µi,2 + µi

)
ιvi

According to chapter 4 we definem := 1
3tr (T + T1 + Tw + Ti), S̃ := (T + T1 + Tw + Ti)−mI,

p :=
∑

k∈{1,w,i} (pk + µk,2%k) and assume ξ to be given by

(7.2.5) ξ̃

(
S̃, (m+

1
ε2
p), j1, jw, ji, jv, ιvw, ιwi, ιvi

)
=
ε2

ν

∣∣∣S̃∣∣∣2 +
3ε2

ν + 3λ

(
m+

1
ε2
p

)2

+
1
κ
|q|2 +

1
J1
|j1|

2 +
1
Ji
|ji|

2 +
1
Jv
|jv|

2 +
1
Ivw

(ιvw)2 +
1
Iwi

(ιwi)
2 +

1
Ivi

(ιvi)
2 .

And obtain

T = νεDυ − T1 − Tw − Ti − pI + λεdivυI
q = κ∇ϑ

as well as

jk = −Jkε∇ (µk,2 + µk) for k ∈ {1, w, i}
jv = −Jv∇µv

and

ιvw = Ivw (µ1,2 + µ1 − (1− c)µv − µw,2 − µw)

ιvi = Ivi (µ1,2 + µ1 − (1− c)µv − µi,2 + µi)

ιwi = Iwi (µw,2 + µw − µi,2 + µi)

7.2.3. The soil matrix. In the region occupied by soil matrix, energy transport is the
only interesting phenomenon. This is because the model does not account for deformations
of the matrix or any chemical reaction between soil and water. Thus we obtain

∂tE2 − divh2 = 0,

where E2 is the energy per volume inQε
2, h2 heat transport and it is assumed that E2 = Ẽ2(η2)

depends only on the entropy η2. The entropy itself evolves due to

∂tη2 − div
h2

ϑ
=
h2 · ∇ϑ
ϑ2

=
ξ2

ϑ
,

which finally yields

(7.2.6) h2 = κ2∇ϑ .

In these calculations, it is assumed that ϑ = ∂E2
∂η2

is the temperature in Qε
2 and that the

temperature field is continuous across Γε.
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7.2.4. Microscopic boundary conditions. For simplicity, we assume on ∂Q with
outer normal n∂Q the following conditions

hε · n∂Q = 0 hε2 · n∂Q = 0 hεΓ · n∂Q = 0

qε · n∂Q = 0 qε2 · n∂Q = 0 qεΓ · n∂Q = 0(7.2.7)
jεv · n∂Q = 0 υ = 0 jεk · n∂Q = 0 ∀k ∈ {1, w, i}

Again, on the microscopic boundary Γε, the existence of a surface energy EΓ is assumed
which follows

∂tEΓ − divτhΓ =
⊕
E

with the surface energy flux hΓ. Following the calculations from section 6.4 we get with help
of (7.2.7)1 and

Eε :=
ˆ
Qε1

%εEε +
ˆ
Qε2

Eε2 + ε

ˆ
Γε
EεΓ

and 0 =
d

dt
Eε −

ˆ
Qε1

gε · υε = ε

ˆ
Γε

(
1
ε

(hε − hε2) · nΓε + εdivτhεΓ +
⊕
E
ε
)

the local energy conservation on Γε:

1
ε

(hε − hε2) · nΓε +
⊕
E
ε

= 0 .

It is assumed that neither water nor air, ice or vapor can penetrate the solid matrix, which
implies

(7.2.8) υn = 0, jv · nΓε = 0, jk · nΓε = 0 for k ∈ {1, w, i} .

Throughout this section, the material derivative on the boundary will be defined via

D
ε,1
t φ := ∂tφ+ ε (υτ · ∇τ )φ

and since υn = 0, it holds

D
ε,1
t φ = Dε,1

t φ on Γε .

In order to obtain boundary conditions, assume for %1, %w and %i dynamic boundary
boundary conditions:

(7.2.9) ∂t%k + divτ (%kυτ ) = D
ε,1
t %k + ε%kdivτυ =

⊕
%k for k ∈ {1, w, i} .

Note that we chose this form of boundary conditions due to the considerations at the beginning
of section 4.7.2. Thus, the compatibility conditions between bulk and surface read similar to
(4.7.11)

(7.2.10) Dε,1
t %k = D

ε,1
t %k =

⊕
%k − ε%kdivτυ .

It is assumed that EΓ depends on surface entropy ηΓ as well as on %k and ∇%k via

EΓ = ẼΓ(ηΓ, %1, %w, %i,∇%1,∇%w,∇%i)

and that the temperature on Γε coincides with the bulk temperatures in Qε
1 and Qε

2 close to
the surface Γε. In particular,

ϑ =
∂EΓ

∂ηΓ
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and for the surface entropy ηΓ holds:

ϑ∂tηΓ = ∂tEΓ −
∑

k∈{1,w,i}

(
∂EΓ

∂%k
∂t%k +

∂EΓ

∂ (∇τ%k)
∂t (∇τ%k)

)

= ∂tEΓ −
∑

k∈{1,w,i}

(
∂EΓ

∂%k
− divτ

(
∂EΓ

∂ (∇τ%k)

))
∂t%k

−
∑

k∈{1,w,i}

divτ
(

∂EΓ

∂ (∇τ%k)
∂t%k

)
.

The total entropy of the system is assumed to be given by

S =
ˆ
Qε1

%η +
ˆ
Qε2

η2 + ε

ˆ
Γε
ηΓ ,

and with

µΓ,k = ∂%kEΓ − divτ (∂z,kEΓ) and qΓ,1 := hΓ −
1
ε

∑
k∈{1,w,i}

∂EΓ

∂ (∇τ%k)
∂t%k ,

as well as (7.2.8), the total rate of entropy production is given by

d

dt
S =

ˆ
Qε1

ξ

ϑ
+
ˆ
Qε2

ξ2

ϑ
+
ˆ

Γε
ε

−1
ε

∑
k∈{1,w,i}

%Dε,1
t (%k) ∂z,kÊ · nΓε


+
ˆ

Γε

1
ϑ
ε

⊕E +
1
ε

(h− h2) · nΓε − Ťτ · υτ −
∑

k∈{1,w,i}

µΓ,k∂t%k + εdivτqΓ,1


Using (7.2.9), (7.2.10) and

Ť∗τ := Ťτ +
∑

k∈{1,w,i}

1
ε
%
(
∂z,kÊ · nΓε

)
ε∇τ%k +

∑
k∈{1,w,i}

%k∇τµ∗Γ,k

as well as
µ∗Γ,k := µΓ,k +

1
ε
%
(
∂z,kÊ · nΓε

)
,

above formula for the entropy production reads

d

dt
S =

ˆ
Qε1

ξ

ϑ
+
ˆ
Qε2

ξ2

ϑ

+
ˆ

Γε

1
ϑ
ε

⊕E +
1
ε

(h− h2) · ν − Ť∗τ · υτ −
∑

k∈{1,w,i}

µ∗Γ,k
⊕
%k + divτq∗Γ,1

 .
where

q∗Γ,1 = qΓ,1 + υτ
∑

k∈{1,w,i}

%kµ
∗
Γ,k

Following the calculations of section 4.7, this yields the result
⊕
E +

1
ε

(h · ν − h2ν) = 0

Ť∗τ = −2βυτ
⊕
%k = −αkµ∗Γ,k
q∗Γ,1 = κΓε∇τϑ
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where the first equation is energy conservation and the second equation can be reformulated
into

Ťτ = −2βυτ +
∑

k∈{1,w,i}

%2
kε∇τ

(
1
ε

%

%k
∂z,kÊ · nΓε

)
−

∑
k∈{1,w,i}

%kε∇τµ∗Γ,k ,

and q∗Γ,1 is equally given by

q∗Γ,1 = −1
ε

∑
k∈{1,w,i}

∂z,kEΓ∂t%k + hΓ + υτ
∑

k∈{1,w,i}

%kµ
∗
Γ,k

7.3. The Complete Microscopic Model

We will now write down the complete system of equations which is obtained from the
previous section. In order to not confuse with the next section, where two-scale models will
be derived, the system will be written with all indices ε. Thus for any ε > 0 we obtain the
following system:

Dε,1
t %ε + %εdivυε = 0(7.3.1)

Dε,1
t %ε1 + %ε1εdivυ

ε + εdiv jε1 = −ιεvw − ιεvi(7.3.2)

%ε1D
ε,1
t c+ εjε1 · ∇c+ div jεv = (1− c) (−ιεvw − ιεvi)(7.3.3)

Dε,1
t %εw + %εwεdivυ

ε + εdiv jεw = +ιεvw − ιεwi(7.3.4)

Dε,1
t %εi + %εi εdivυ

ε + εdiv jεi = ιεwi + ιεvi(7.3.5)

%Dε,1
t υ

ε − div εTε = %εg %Dε,1
t Eε − divhε = %εg · υε .

It is assumed that the energy is given by

Eε = E(ηε, %ε1, %
ε
w, %

ε
i , c

ε,υε,∇%ε1,∇%εw,∇%εi )

=
1
2
|υε|2 + E0(ηε, %ε1, %

ε
w, %

ε
i , c

ε) + Ê(%ε1, %
ε
w, %

ε
i ,∇%ε1,∇%εw,∇%εi ) .

where the choice of Ê is inspired from section 4.2.4:

Ê(. . . ) = −σ1w

2%
ε2∇%ε1 · ∇%εw −

σ1i

2%
ε2∇%ε1 · ∇%εi −

σiw
2%

ε2∇%εi · ∇%εw .

Furthermore, we assume that E0 is given by

E0 = Ẽ0(ηε, %ε1, %
ε
w, %

ε
i ) +

%ε1
2%ε

µ̂ (cε)2 .

Note that the last assumption implies that

%εEε ∝ · · ·+ %ε1
2

(cε)2 + . . . .

This fits with the classical assumption that for constant density, the energy depending on
a concentration c is proportional to c2. Since cε is the concentration of vapor in air, it is
reasonable that the energy is proportional to the air density %ε1 as well as to the square of the
concentration cε.

All these assumptions yield
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hε = κ1∇ϑε + εTευε + ε
∑

k∈{1,w,i}

Dε,1
t (%εk)µ

∗∗ε
k − ε

(
µεk,2 + µεk

)
jεk − µεvjεv

Tε = 2νεDυε − σ1wε
2∇%ε1 ⊗s ∇%εw − σ1iε

2∇%ε1 ⊗s ∇%εi − σiwε2∇%εi ⊗s ∇%εw
− pεI + λεdivυεI

pε =
∑

k∈{1,w,i}

(
pεk + µεk,2%

ε
k

)
where

pεk = %ε%εk
∂E

∂%εk
, µεk := %ε

∂E

∂%εk
for k ∈ {1, w, i} .

while for the diffusive fluxes j and productions terms ιε∗ they read

jεk = −Jkε∇
(
µεk,2 + µεk

)
for k ∈ {1, w, i}

jεv = −Jv∇µεv = −Jv∇µ̂cε

and

ιεvw = Ivw
(
µε1,2 + µε1 − (1− cε)µεv − µεw,2 − µεw

)
ιεvi = Ivi

(
µε1,2 + µε1 − (1− cε)µεv − µεi,2 + µεi

)
ιεwi = Iwi

(
µεw,2 + µεw − µεi,2 + µεi

)
with

µεv =
%ε

%ε1

∂E

∂cε
and µεk =

∂E

∂%εk
as well as

µ∗∗ε1 :=
(σ1w

2
ε∇%εw +

σ1i

2
ε∇%εi

)
µ∗∗εw :=

(σ1w

2
ε∇%ε1 +

σwi
2
ε∇%εi

)
µ∗∗εi :=

(σ1i

2
ε∇%ε1 +

σwi
2
ε∇%εw

)
µεk,2 = −εdiv (µ∗∗εk )

We also obtain on Qε
2:

∂tE
ε
2 − εdivhε2 = 0
hε2 − κ2∇ϑε = 0 .

The boundary conditions on Γε are based on the abstract balance equations

D
ε,1
t %εk + %εkεdivτυ

ε
τ =

⊕
%k

∂tE
ε
Γ − divτhεΓ =

⊕
E .

Note that jεk, jv and υε have to satisfy (7.2.8)which is

υn = 0, jv · nΓε = 0, jk · nΓε = 0 for k ∈ {1, w, i} .

As a constitutive assumption on EΓ, assume

EεΓ = ẼΓ(ηεΓ) +
∑

k∈{1,w,i}

σk,Γ
2
ε2 |∇τ%εk|
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together with the constitutive equations

TεnΓε = Ťετ = −2βυετ +
∑

k∈{1,w,i}

(µ∗∗εk · nΓε) ε∇τ%εk −
∑

k∈{1,w,i}

%εkε∇τµ∗εΓ,k

⊕
%k = −αkµ∗εΓ,k
hεΓ = κεΓε∇τϑε − υετ

∑
k∈{1,w,i}

%εkµ
∗ε
Γ,k +

∑
k∈{1,w,i}

εσk,Γ (∇τ%εk) ∂t%εk

and
⊕
E + Ťετ · υετ +

∑
k∈{1,w,i}

Dε,1
t (%εk)µ

∗∗ε
k · nΓε +

1
ε

(hε − hε2) · nΓε = 0

where

µεΓ,k = ∂%εkẼΓ − ε2divτ (σk,Γ∇τ%εk)
µ∗εΓ,k : = µεΓ,1 + µ∗∗εk · nΓε .

Additionally, we have the following balance of entropy equations:

∂t (%εηε) + εdiv (%εηευε)− div
qε

ϑε
=
ξε

ϑε
on Qε

1 ,

∂tη
ε
2 − div

hε2
ϑε

=
hε2 · ∇ϑε

(ϑε)2 =
ξε2
ϑε

on Qε
2 ,

∂tη
ε
Γ − divτ

(
q∗εΓ,1
ϑε

)
=
ξεΓ
ϑε

on Γε

where

qε = hε − εTευε −
∑

k∈{1,w,i}

%Dε,1
t (%εk) ∂z,kÊ + ε

(
µεk,2 + µεk

)
jεk + µεvj

ε
v ,

ξε = (Tε + Tε1 + Tεw + Tεi ) · εDυε +
qε

ϑε
· ϑε +

 ∑
k∈{1,w,i}

(
pεk + µεk,2%

ε
k

) εdivυε

−
∑

k∈{1,w,i}

ε∇
(
µεk,2 + µεk

)
· jεk −∇µεv · jεv + ε%ε1µ

ε
v∇cε · jε1

+
(
µεw,2 + µεw − µεi,2 + µεi

)
ιεwi +

(
µε1,2 + µε1 − (1− cε)µεv − µεw,2 − µεw

)
ιεvw

+
(
µε1,2 + µε1 − (1− cε)µεv − µεi,2 + µεi

)
ιεvi ,

and

q∗εΓ,1 = κεΓε∇τϑε

ξεΓ = qεΓ,1 ·
ε∇τϑε

ϑε
+
⊕
E
ε

− υετ
∑

k∈{1,w,i}

µ∗εΓ,k%
ε
k .

7.4. The Two-Scale Model

In this section, formal asymptotic expansion will be used in order to get a two-scale model
for permafrost soil. Therefore, we will assume formal expansion of the form

aε(x) =
∞∑
i=0

εiai(x,
x

ε
)

where a stands for any of the variables %, %k, c, υ and ϑ.
Due to the specification of the energy density in section 7.3, we assume

(7.4.1) µv = µ̂cε
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and for simplicity of writing

(7.4.2) jεv = Jv∇cε.
For simplicity, it will be assumed that µ̂ and Jv are constants independent on space, time or
ε. This implies for the expansion of µεv:

µv = µ̂
∞∑
i=0

εicεi .

Following section 6.5 we will use

D0,y
t φ := ∂tφ+ υ0 · ∇yφ or D0,xy

t φ := ∂tφ+ ευ0 · ∇xφ+ υ0 · ∇yφ .
and the formal expansion

Dε,1
t aε  D0,∗

t a0 with either D0,∗
t = D0,y

t or D0,∗
t = D0,xy

t

as well as

δ∗,x =

{
0 for D0,∗

t = D0,y
t

1 for D0,∗
t = D0,xy

t

.

Note that for the thermal conductivity, we have to assume that κε1 and κε2 depend on the
variables %k and on ϑ. Thus, like in section 6.5 we assume asymptotic expansions of κε1 and
κε2 of the form

κε1 = κ1 + εκ1,1 + ε2κ1,2 +O(ε3)

κε2 = κ2 + εκ2,1 + ε2κ2,2 +O(ε3) ,

where all κ∗ may depend on c0, ϑ0, %k,0, %0.
Then, the formal asymptotic expansion

aε(x) =
∞∑
j=0

εjaj(x,
x

ε
) ,

applied to the model in the previous section with regard to the variables ηε, ηε2, ηεΓ, %
ε, %εk, c

ε

and ϑε, yields the following two-scale model:

D0,∗
t %0 + %0divυ0 + δ∗,xε%0divx υ0 = 0(7.4.3a)

D0,∗
t %1,0 + %1,0divy υ0 + divy j1 = −ιvw − ιvi(7.4.3b)

%1,0D
0,∗
t c0 + j1 · ∇yc0 + divx jv,0 + divy jv,1 = (1− c0) (−ιvw − ιvi)(7.4.3c)

D0,∗
t %w,0 + %w,0divy υ0 + divy jw = +ιvw − ιwi(7.4.3d)

D0,∗
t %i,0 + %i,0divy υ0 + divy ji = ιwi + ιvi(7.4.3e)

with the additional lower order equations

divy
(
jv,−1

)
= 0(7.4.3f)

divy (jv,0) + divx (jv,−1) = 0(7.4.3g)

for vapor with the micro and macro vapor flux

(7.4.3h) jv,−1 = −Jv∇yc0, jv,0 = −Jv (∇xc0 +∇yc1) and jv,1 = −Jv (∇xc1 +∇yc2) .

Note that the diffusive fluxes jv,−1, jv,0 and jv,1 as well as jk for k ∈ {1, w, i} satisfy the
two-scale version of boundary conditions (7.2.8):

(7.4.3i) jk · nΓ = 0, jv,−1 · nΓ = 0, jv,0 · nΓ = 0, and jv,1 · nΓ = 0 .

For the balance of momentum and energy, one obtains

%D0,∗
t υ0 − divy T = %0g(7.4.3j)
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(7.4.3k) %D0,∗
t E −

(
κ1∇xϑ0 + κ1,1∇yϑ0 + κ1∇yϑ1 − µv,0jv,0 − µv,1jv,−1

)
− divy

(
κ1∇xϑ1 + κ1∇yϑ2 − µv,1jv,0 − µv,0jv,1 − µv,2jv,−1

)
− divy (κ1,1∇yϑ1 + κ1,1∇xϑ0 + κ1,2∇yϑ0)

− divy

Tυ0 +
∑

k∈{1,w,i}

D0,∗
t (%k,0)µ∗∗k − (µk,2 + µk) jk

 = %0g · υ0 .

with the two lower-order equations

divy
(
κ1∇yϑ0 − µv,0jv,−1

)
= 0(7.4.3l)

+divy
(
κ1∇xϑ0 + κ1∇yϑ1 + κ1,1∇yϑ0 − µv,0jv,0 − µv,1jv,−1

)
+divx

(
κ1∇yϑ0 − µv,0jv,−1

)
= 0 ,(7.4.3m)

for the temperature.
The constitutive equation for the energy reads in first order

E = E(η0, %0, %1,0, %w,0, %i,0, c0,υ0,∇y%1,0,∇y%w,0,∇y%i,0)

=
1
2
|υ0|2 + Ẽ0(η0, %0, %1,0, %w,0, %i,0) + µ̂

%1,0

2%0
(c0)2 + Ê(%,∇y%1,0,∇y%w,0,∇y%i,0) ,

where the choice of Ê is inspired from section 4.2.4:

Ê(. . . ) = −σ1w

2%
∇y%1,0 · ∇y%w,0 −

σ1i

2%
∇y%1,0 · ∇y%i,0 −

σiw
2%

ε2∇y%i,0 · ∇y%w,0

which yields

T = 2νDyυ0 − σ1w∇y%1,0 ⊗s ∇y%w,0 − σ1i∇y%1,0 ⊗s ∇y%i,0
− σiw∇y%i,0 ⊗s ∇y%w,0 − pI + λdivy υ0I

p0 = p̃+
∑

k∈{1,w,i}

(pk + (µk,2 + µk) %k,0)

with

p̃ := (%0)2 ∂E

∂%0
, pk = %0%k,0

∂E

∂%k,0
, µk =

∂E

∂%k,0
, µk,2 = −divy (µ∗∗k )

where

µ∗∗1 :=
(σ1w

2
∇y%w,0 +

σ1i

2
∇y%i,0

)
µ∗∗w :=

(σ1w

2
∇y%1,0 +

σwi
2
∇y%i,0

)
µ∗∗i :=

(σ1i

2
∇y%1,0 +

σwi
2
∇y%w,0

)
.

For the diffusive fluxes jk and productions terms ιvw, ιvi and ιwi the constitutive assumptions
read

jk = −Jk∇y (µk,2 + µk) for k ∈ {1, w, i}
and

ιvw = Ivw (µ1,2 + µ1 − (1− c0)µv − µw,2 − µw)

ιvi = Ivi (µ1,2 + µ1 − (1− c0)µv − µi,2 + µi)

ιwi = Iwi (µw,2 + µw − µi,2 + µi)

All the above equations hold on Q×Y 1. The rest of this section is devoted to the equations
on Q× Y 2 and Q× Γ.
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We obtain on Q× Y 2:

∂tE2 − divx (κ2∇xϑ0 + κ2∇yϑ1 + κ1,1∇yϑ0)(7.4.3n)
−divy (κ2∇xϑ1 + κ2∇yϑ2 + κ2,1∇yϑ1 + κ2,1∇xϑ0 + κ2,2∇yϑ0) = 0(7.4.3o)

divy (κ2∇yϑ0) = 0(7.4.3p)
divy (κ2∇xϑ0 + κ2∇yϑ1 + κ2,1∇yϑ0) + divx (κ2∇yϑ0) = 0 ,(7.4.3q)

where
E2 = Ẽ2(η2,0)

The boundary conditions on Q× Γ are based on the abstract balance equations

∂t%k,0 + divτ,y (%k,0υ0τ ) =
⊕
%k

(7.4.3r) ∂tEΓ − divτ,y hΓ =
⊕
E .

As a constitutive assumption on the zero order expansion of surface energy EΓ, one obtains

EΓ = ẼΓ(ηΓ,0) +
∑

k∈{1,w,i}

σk,Γ
2
|∇τ,y%k,0|

together with the constitutive equations

Ťτ = −2βυ0,τ +
∑

k∈{1,w,i}

(
µ∗∗Γ,k · nΓ

)
∇τ,y%k,0 −

∑
k∈{1,w,i}

%k,0∇τ,yµ∗Γ,k

⊕
%k = −αkµ∗Γ,k

hΓ =
1

2κ
∇τ,yϑ0

ϑ0
− υ0,τ

∑
k∈{1,w,i}

%k,0µΓ,k +
∑

k∈{1,w,i}

σk,Γ (∇τ,y%k,0) ∂t%k,0 .

Here,

µΓ,k =
∂EΓ

∂%k,0
− divτ,y (σk,Γ∇τ,y%k,0) , µ∗Γ,k := µΓ,k + µ∗∗Γ,k · nΓ.

Using (7.4.3i), the boundary conditions for the energy become
⊕
E + Ťτ · υ0,τ +

∑
k∈{1,w,i}

D0,∗
t (%k)µ∗∗k · nΓ

+
(
(κ1 − κ2)∇xϑ1 + (κ1 − κ2)∇yϑ2 − µv,1jv,0 − µv,0jv,1 − µv,2jv,−1

)
+ ((κ1,1 − κ2,1)∇yϑ1 + (κ1,1 − κ2,1)∇xϑ0 + (κ1,2 − κ2,2)∇yϑ0) = 0

(κ1∇yϑ0 − κ2∇yϑ0) · nΓ = 0
(κ1∇yϑ1 − κ2∇yϑ1 + κ1∇xϑ0 − κ2∇xϑ0 + (κ1,1 − κ1,2)∇yϑ0) · nΓ = 0 .

Since the entropy is not of interest for the macroscopic behavior below, we will not derive
the corresponding two-scale balance of entropy equations but note that this can be done
according to section 6.5.

7.5. The Macroscopic Model

Following sections 6.5 and 6.8-6.9, the calculations below will provide macroscopic equa-
tions by averaging the two-scale model (7.4.3). Like in sections 6.8-6.9, the author wants
to emphasize that the two-scale model in itself is already a solution. Compared to a purely
macroscopic model it has the advantage that it also provides information on the microscopic
processes. Thus, the gain is mostly a gain in information and the price one has to pay is
that in numerical solutions, calculations become more expensive. The macroscopic equations
which will be derived below are solvable with less computational power, but the information
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on the microscopic processes is lost and therefore, the accuracy my not be as good as for the
two-scale model.

Throughout this section, the restrictions (7.4.1) and (7.4.2) will play an important role, as
they will simplify the calculations for the effective balance of energy significantly. The author
is aware of the fact that these restrictions may not reflect the full physical reality of such a
complex setting. However, due to considerations at the beginning of section 7.3, the model
can still be considered as reasonable.

7.5.1. Mass balance equations. The first and most important issue is the averaging
of the convection equations and the derivation of effective permeability coefficients. Following
sections 6.8-6.9, first define the averaged quantities

(7.5.1) %̄k :=
ˆ
Y 1

%k,0, ῡk :=
1
%k

ˆ
Y 1

%k,0υ0 for k ∈ {1, w, i} ,

as well as
%̄ :=

ˆ
Y 1

%0, ῡ :=
1
%̄

ˆ
Y 1

%0υ0

and
ῑvw =

ˆ
Y 1

ιvw, ῑvi :=
ˆ
Y 1

ιvi and ῑwi :=
ˆ
Y 1

ιwi .

Note that
%̄ =

∑
k∈{1,w,i}

%̄k and ῡ =
1
%̄

∑
k∈{1,w,i}

%̄kῡk

Then, except for the vapor balance equation, the averaged versions of (7.4.3a)-(7.4.3e) read

∂t%̄+ εdivx (%̄ῡ) = 0 , ∂t%̄w + εdivx (%̄wῡw) = +ῑvw − ῑwi ,(7.5.2a)
∂t%̄1 + εdivx (%̄1ῡ1) = −ῑvw − ῑvi , ∂t%̄i + εdivx (%̄iῡi) = ῑwi + ῑvi ,(7.5.2b)

where the microscopic boundary conditions (7.4.3i) entered. First, note that ice has a much
higher viscosity than water and air and thus we assume that for the macroscopic velocity field
ῡi holds

(7.5.3) ῡi = 0 .

7.5.2. Permeability coefficients. In order to complete above mass balance equations,
it remains to search for the permeability coefficients of air and water. We will not go into the
details of the calculations but only provide an outline how these coefficients can be obtained.
To this aim, we follow section 6.9 and note that we have now to deal with four microscopic
domains: The regions occupied by air, water and ice as well as the interfacial region.

Defining for some small numbers 0 < a0 < a1 � 0.5 the function

$(c) =


1 for c < a0

exp
(
− (a0−c)2

(c−a1)2

)
for c ∈ [a0, a1]

0 for c > a1

,

it is possible to introduce the smoothed characteristic functions χεa, χεw and χεi of air, water
and ice by

χεk := $

(
%εk
%ε

)
for k ∈ {a,w, i} ,

as well as the two-scale versions χa, χw and χi by

χk := $

(
%k,0
%0

)
for k ∈ {a,w, i} .

The microscopic interfacial region is given by χεI , respectively χI for the two-scale version:

χεI = 1− χεa − χεw − χεi and χI = 1− χa − χw − χi .
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The two-scale velocity fields of water, ice and air as well as of the interfaces are then defined
via

υ0,a := χaυ0, υ0,i := χiυ0, υ0,w := χwυ0 and υ0,I := χIυ0 .

Note that in contrary to (6.9.2), the splitting of density is given by

%ε = %ε1 + %εw + %εi ,

%0 = %1,0 + %w,0 + %i,0 .

However, for calculations of the approximate character of section 6.9, it is physically tenable
to assume

%1,0 ≈ ρa(x)χ1(x, y), %w,0 ≈ ρw(x)χw(x, y), %i,0 ≈ ρi(x)χi(x, y) ,

and that there is %̃(x, y) such that

%0(x, y) = ρa(x)χ1(x, y) + ρw(x)χw(x, y) + ρi(x)χi(x, y) + %̃(x, y)

and %̃(x, y) = 0 for y 6∈ Y I(x). Thus, we also assume for

pεa := χε1εp
ε, pεw := χεwεp

ε, pεi := χεip
ε and pI := χεIp

ε ,

that

pε =
1
ε
pεa +

1
ε
pεw +

1
ε
pεi + pεI and

ε∇pε = χεa(x)∇ (pεa + εpεI) + χεw(x)∇ (pεw + εpεI) + εχεi (x)∇ (pεi + pεI)

+ χεIε∇
(
pεI + pεi +

1
ε
pεa +

1
ε
pεw

)
≈ χεa(x)∇pεa + χεw(x)∇pεw + χεIε∇pεI + χεi ε∇pεi .

Following the calculations for section 6.9 one may end up with corresponding macroscopic
constitutive equations for the velocities ῡa and ῡw:

ῡa = Aa (ρa(x)g −∇xpa)(7.5.4a)
ῡw = Aw (ρw(x)g −∇xpw) .(7.5.4b)

7.5.3. Vapor transport. In order to obtain a properly averaged vapor balance equation,
note that (7.4.3f) in combination with (7.4.3i) yields

(7.5.5) ∇yc0 = 0 .

This result inserted in (7.4.3g) again with (7.4.3i) yields

divy (Jv∇xc0 + Jv∇yc1) = 0 on Q× Y 1

(Jv∇xc0 + Jv∇yc1) · nΓ = 0 on Q× Γ .

Thus, using cell solutions φi to

divy (Jvei + Jv∇yφi) = 0 on Q× Y 1 ∀i
(Jvei + Jv∇yφi) · nΓ = 0 on Q× Γ ∀i .

for ei the standard basis of R3, c1 can be expressed as

c1 =
∑
i

φi∂ic0 .

Using (7.4.3b) equation (7.4.3c) can be reformulated into

∂t (%1,0c0)+divy (%1,0c0υ0)+εdivx (%1,0c0υ0)+divy (j1c0)+divx jv,0+divy jv,1 = (−ιvw − ιvi) .

Finally, using (7.4.3i), (7.5.1) and (7.5.5), the last equation by integration over Y 1:

(7.5.6) ∂t (%̄1c0) + εdivx (%̄1c0ῡ1) + divx (K∇xc0) = (−ῑvw − ῑvi)
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with

Kij :=
ˆ
Y 1

((∇yφi + ei) · (Jv (∇yφj + ej))) .

7.5.4. Balance of energy. The two-scale balance equation (7.4.3k) for the energy on
Q× Y 1 can be rewritten as

%D0,∗
t E −

(
κ1∇xϑ0 + κ1,1∇yϑ0 + κ1∇yϑ1 − µv,0jv,0 − µv,1jv,−1

)
− divy

(
κ1∇xϑ1 + κ1∇yϑ2 − µv,1jv,0 − µv,0jv,1 − µv,2jv,−1

)
− divy (κ1,1∇yϑ1 + κ1,1∇xϑ0 + κ1,2∇yϑ0)

− divy

Tυ0 +
∑

k∈{1,w,i}

D0,∗
t (%k,0)µ∗∗k − (µk,2 + µk) jk

 = %0g · υ0 .

with the lower order equations

divy
(
κ1∇yϑ0 − µv,0jv,−1

)
= 0(7.5.7)

+divy
(
κ1∇xϑ0 + κ1∇yϑ1 + κ1,1∇yϑ0 − µv,0jv,0 − µv,1jv,−1

)
+divx

(
κ1∇yϑ0 − µv,0jv,−1

)
= 0 .(7.5.8)

On Q× Y 2, the corresponding equations are given by

∂tE2 − divx (κ2∇xϑ0 + κ2∇yϑ1 + κ1,1∇yϑ0)

−divy (κ2∇xϑ1 + κ2∇yϑ2 + κ2,1∇yϑ1 + κ2,1∇xϑ0 + κ2,2∇yϑ0) = 0(7.5.9)
divy (κ2∇yϑ0) = 0(7.5.10)

divy (κ2∇xϑ0 + κ2∇yϑ1 + κ2,1∇yϑ0) + divx (κ2∇yϑ0) = 0 .(7.5.11)

and the boundary conditions on Q× Γ read

∂tEΓ − divτ,y hΓ =
⊕
E(7.5.12)

⊕
E + Ťτ · υ0,τ +

∑
k∈{1,w,i}

D0,∗
t (%k)µ∗∗k · nΓ

+
(
(κ1 − κ2)∇xϑ1 + (κ1 − κ2)∇yϑ2 − µv,1jv,0 − µv,0jv,1 − µv,2jv,−1

)
+ ((κ1,1 − κ2,1)∇yϑ1 + (κ1,1 − κ2,1)∇xϑ0 + (κ1,2 − κ2,2)∇yϑ0) = 0(7.5.13)

(κ1∇yϑ0 − κ2∇yϑ0) · nΓ = 0(7.5.14)
(κ1∇yϑ1 − κ2∇yϑ1 + κ1∇xϑ0 − κ2∇xϑ0 + (κ1,1 − κ1,2)∇yϑ0) · nΓ = 0 .(7.5.15)

Note that we obtained in (7.5.5) that jv,−1 = −Jv∇yc0 = 0. Thus, the equations (7.5.7),
(7.5.10) and (7.5.14) yield ∇yϑ0 = 0. Since it was assumed that µεv = cε, it follows that
µv,0 = c0 is independent on y. Thus, equations (7.5.8), (7.5.11) and (7.5.15) together with
(7.4.3h) and (7.4.3i) combine to a system

divy (κ1∇xϑ0 + κ1∇yϑ1) = 0 on Q× Y 1 ,

divy (κ2∇xϑ0 + κ2∇yϑ1) = 0 on Q× Y 2 ,

(κ1∇yϑ1 − κ2∇yϑ1 + κ1∇xϑ0 − κ2∇xϑ0) · nΓ = 0 on Q× Γ ,

for which we find a solution

ϑ1 =
∑
i

ψi∂iϑ0
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where ψi solve

divy (κ1ei + κ1∇yψi) = 0

divy (κ2ei + κ2∇yψi) = 0

(κ1∇yψi − κ2∇yψi + κ1ei − κ2ei) · nΓ = 0

for ei the i-th vector of the standard basis.
Thus, defining

E :=
ˆ
Y 1

%0E +
ˆ
Y 2

E2 +
ˆ

Γ
EΓ

and

Ē :=
1
%̄

ˆ
Y 1

%0E ,

and using the boundary conditions (7.5.13)-(7.5.15), the integrated energy balance equation
finally reads

(7.5.16) ∂tE + εdivx
(
%̄Ēῡ

)
− divx (Aϑ∇xϑ0 − µv,0K∇xc0) = %0g · υ0 ,

where Aϑ is given by

(Aϑ)ij :=
ˆ
Y 1

((∇yψi + ei) · (κ1 (∇yψj + ej))) +
ˆ
Y 2

((∇yψi + ei) · (κ2 (∇yψj + ej))) .

7.5.5. The full macroscopic model. The full macroscopic model is given by equations
7.5.2,

∂t%̄+ εdivx (%̄ῡ) = 0 , ∂t%̄w + εdivx (%̄wῡw) = +ῑvw − ῑwi ,(7.5.17)
∂t%̄1 + εdivx (%̄1ῡ1) = −ῑvw − ῑvi , ∂t%̄i + εdivx (%̄iῡi) = ῑwi + ῑvi ,(7.5.18)

as well as the constitutive equations (7.5.3) and (7.5.4):

ῡi = 0

ῡ1 = A1 (%̄1(x)g −∇xpa)
ῡw = Aw (%̄w(x)g −∇xpw) .

For the equation of vapor mass balance, one obtains (7.5.6)

∂t (%̄1c0) + εdivx (%̄1c0ῡ1) + divx (K∇xc0) = (−ῑvw − ῑvi)

and for the equation of energy balance (7.5.16)

∂tE + εdivx
(
%̄Ēῡ

)
− divx (Aϑ∇xϑ0 − µv,0K∇xc0) = %0g · υ0 .

The effective parametrization for the coefficients are given above in the calculations. However,
we see that in a macroscopic model, we have to parametrize ῡ∗, A∗, ῑ∗ as well as K and Aϑ
directly from macroscopic parameters and any microscopic information gets lost.

7.6. A Reduced Model for Tianshuihai

At Tianshuihai, the soil is rather dry since there are only few rain events during the year.
Thus, we may assume that most of the time, also ῡw = 0. Hence, we may combine %̄i and %̄w
on the macro scale to a coupled component

%̄2 := %̄i + %̄w

where we assume
%̄i = S(%̄2, ϑ0)
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and the total set of equations reads

∂t%̄1 + εdivx (%̄1ῡ1) = −ῑ
∂t (%̄1c0) + εdivx (%̄1c0ῡ1) + divx (K∇xc0) = −ῑ

ῡ1 −A1 (%̄1(x)g −∇xpa) = 0
∂t%̄2 = ῑ

%̄i − S(%̄2, ϑ0) = 0

∂tE + εdivx
(
%̄Ēῡ

)
− divx (Aϑ∇xϑ0 − µv,0K∇xc0) = %0g · υ0

where
ῑ = ῑvw + ῑvi .

7.7. Conclusions

We derived a two-scale model for multiphase flow in the active layer of permafrost soil.
Note that below the active layer, the soil is permanently frozen and there are no dynamic
processes. However, the physics of course still described by the same model. The obtained two-
scale model couples freezing/thawing and evaporation/condensation processes on the micro
scale to macroscopic transport phenomena, such as flow of water and air as well as vapor
transport and vapor diffusion.

We also analyzed the macroscopic behavior of solutions of the two-scale model, which is
in agreement with the models derived in sections 3.4 and 3.5. In particular, direct averaging
of the solutions over the micro scale yielded a macroscopic behavior of the solutions following
the complete model from section 3.5. A reduction of the model for dry soil then yielded the
macroscopic behavior described by the model from section 3.4.

However, note that the two-scale model contains much more information, in particular
on the structure and dependence of permeability tensors and reaction rates ι on the micro
structure. In particular, with regard to the reflections on the correct choice of macroscopic
coefficients in section 3.4, note that such reflections are no longer needed for the two-scale
model, once we set up the energy potential for the microscopic problem.

With regard to the initial questions from the main introduction, and with regard to section
3.3, the reaction terms ι∗ in the resulting two-scale model clearly indicate a tendency towards
memory effects in the water content during freezing and thawing cycles. The same applies
to evaporation and condensation. Note that, unfortunately, the model does up to now not
account for different temperatures of the microscopic phases. Such a splitting of the temper-
ature would of course imply much more complicated microscopic and macroscopic dynamics
but maybe also reflect physics much better, for example in case of a quickly infiltrating hot
or cold fluid. This is a topic for future investigations.





Cloncluding Remarks

The intial aim of this thesis was to derive new models for muli constituent and mulitphase
flow in porous media. In particular, the author was interested in the active layer of permafrost
soil. This problem was solved by providing a new thermodynamically consistent framework
for the two-scale modeling of multiphase flows in porous media.

The new approach was built up on combining the assumption of maximal rate of entropy
production (MREP-assumption) by Rajagopal and Srinivasa with the formal asymptotic ex-
pansion method from homogenization theory. Further ingredients of the approach were the
generalization of the MREP assumption to boundary conditions and the application to phase
field models.

With respect to the second set of intial question which were mentioned in the introduction,
it is now clear

• How an appropriate model for two phase flow on the pore scale should look like and
• How the interactions between the interface of the fluids and the boundary can be
described properly.

Additionally, a new method was developed which is able to yield reasonable non dimension-
alized and scaled versions of these equations. This was the approach of thermodynamically
consistent scaling. But more than that, the thesis also provided results

• How to deal with the resulting homogenization problems of convection diffusion equa-
tions via formal asymptotic expansion and
• How to interpret the resulting equations.

The last point was answered by macroscopic averaging of the two-scale models.
Applied to permafrost soil, we also answered the first set of initial questions. In particular,

the author believes that there are memmory effects in freezing and thawing processes as well
as in condensation and evaporation processes. These effects might be negligible for slow
processes but as soon as high temperature gradients appear or as soon as transport processes
are so fast that the assumption of equillibrium is no more reasonable, these memmory effects
will come into play.

Note that in order to give above answers, the following results were obtained which are
by themselves worth mentioning:

• The generalization of the MREP-assumption method to the derivation of boundary
conditions
• A thermodynamical framework, based on the generalized MREP-assumption, for the
derivation of thermodynamically consistent phase field models including boundary
conditions.
• The application of the MREP-assumption method to the derivation of appropriate
scaling for the passage mulitphase and multi constituent models
• The derivation of two-scale models for two phase flow in porous media and for the
active layer in permafrost soil
• Investigation of the macroscopic behavior of the solutions of the two-scale models.

It is important that the two-scale equations can predict the classical models for the macro-
scopic bahavior. Thus, the two-scale models can be considered as true generalizations of the
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purely macroscopic models. Additionally, they provide much more information on the system
as they handle both, macroscopic and microscopic evolution of the system.

It is also an important feature of the method that it can be generalized to arbitrary
multiphase systems and the limits of this method are basically prescribed by the limits of the
MREP-assumption. It is up to now not clear where these limits may touched. The author
believes that the method introduced above has high potential for further investigations, even
towards applications to swelling, polution problems, or to interaction of the flow field with
biological processes. These topics would be of particular interest in the future.

However, note that the approach does not aim at deriving effective macroscopic equations.
Rather it is the aim to find new perspectives for numerical simulations. Therefore, the author
suggested in 6.11 to eventually apply the isogeometric analysis method for simulations of
two-scale multiphase flows. Unfortunately, to the authors knowledge, there is currently no
software package for isogeometric analysis on two scales.
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