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Abbreviations  
α   alpha 

Ab(s)  antibody (antibodies) 

AJ(s)  adherens junction(s) 

AMV  avian myeloblastosis virus 

ARVCF  “armadillo repeat gene deleted in the Velo-Cardio-Facial syndrome” 

AV(s)   aortic heart valve(s) 

β   beta 

bFGF   basic fibroblast grwoth factor 

ca.   circa 

cDNA   complementary DNA 

cm   centimeter 

DAPI   4', 6-diamidino-2-phenylindole 

DNA   deoxyribonucleic acid 

dNTP   deoxyribonucleoside triphosphate 

DTT   dithiothreitol 

ECM   extracellular matrix 

EDTA   ethylenediaminetetraacetic acid 

e.g.   for example 

EGF   epidermal growth factor    

EMT   epithelial-mesenchymal transition 

etc.   et cetera 

FACS   fluorescence-activated cell sorting 

FCS   fetal calf serum 

g   gram 

GAGs   glycosaminoglycans 

GFAP   glial filament acidic protein 

γ   gamma 

GJ(s)   gap junction(s) 

gp   guinea pig 

h   hour 

HEPES   2-(4-(2-hydroxyethyl)-1-piperazinyl)-ethane sulfonic acid 

Hg   mercury 

HH Hamburger-Hamilton stages (chronological stages in chick development) 

HRP   horseradish peroxidase 

H20   double distilled water 

ID(s)   intercalated disk(s) 
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IF(s)   intermediate-sized filament(s) 

IgG   immunoglobulin G 

INF-γ   interferon gamma 

IP(s)   immunoprecipitation(s) 

kDa   kilodalton 

kV   kilovolt 

L   liter 

m   mouse 

M   molar 

mA   milliampere 

mAb(s)   monoclonal antibody/antibodies 

mg   milligram 

mcl   monoclonal 

min   minute 

mL   milliliter 

mm   millimeter 

mM   millimolar 

MSC(s)   mesenchymal stem cell(s) 

MV(s)   mitral heart valve(s) 

MW   molecular weight 

NCS   newborn calf serum 

nm   nanometer 

PAGE   polyacrylamide gel electrophoresis 

PBS   phosphate buffered saline 

pcl   polyclonal 

PCR   polymerase chain reaction 

PDGF-BB  platelet-derived growth factor BB 

pmol   picomol 

PV(s)   pulmonary heart valve(s) 

PVDF   polyvinyliden fluoride  

rb   rabbit 

RNA   ribonucleic acid 

rpm   rounds per minute 

RT   room temperature 

SDS   sodium dodecyl sulfate 

sec   second 

siRNA   small interference RNA 

sn   supernatant 

TGF-β1   transforming growth factor beta 1    
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TJ(s)   tight junction(s) 

TNF-α   tumor necrosis factor alpha 

TV(s)   tricuspid heart valve(s) 

U   unit 

V   volt 

VEGF   vascular endothelial growth factor 

VIC(s)   valvular interstitial cell(s) 

v/v   volume per volume 

w/v   weight per volume 

%   percentage 

µg   microgram 

µL   microliter 

µm   micrometer 

10X   ten times  

2D   two-dimensional 

3D   three-dimensional 

°C   degree Celsius
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Summary 

In view of the large proportion of cardiac cells represented by interstitial 

mesenchymal cells, in particular in the valves, of the frequency and importance of valve 

surgery, notably replacements, and of the numerous “tissue engineering” projects to 

provide artificial valve structures it is actually surprising to see how limited the cell and 

molecular biological knowledge of valvular interstitial cells (VICs) still is. Surprisingly, the 

molecular components of the special adherens junctions (AJs) of VICs have not yet been 

elucidated to a satisfying degree. Therefore, the AJs of adult and fetal VICs of human and 

animal (bovine, ovine and porcine) heart valves have been studied in situ and cell culture 

preparations, using light and electron microscopy, including immunolocalization 

techniques, protein as well as glycoprotein analysis by SDS-PAGE, followed by 

identification of the separated molecules using immunoblotting.   

In my thesis I could show that adult mammalian VICs in situ possess cell-cell 

adhering junctions only of the puncta adhaerentia AJ-type, comprising N-cadherin and 

cadherin-11 as constitutive transmembrane glycoproteins, anchored in cytoplasmic 

plaques containing α- and β-catenin, plakoglobin, proteins p120 and p0071 which are 

accompanied by actin-binding proteins such as afadin, vinculin, α-actinin and proteins 

ZO-1-3. 

In two-dimensional (2D) cell cultures of adult mammalian VICs of different species, 

this rather simple molecular AJ ensemble was surprisingly found to be modified by the 

acquisition of the desmosomal plaque protein plakophilin-2, in the total absence of 

desmosomal structures and other desmosomal proteins. In three-dimensional (3D) culture 

constructs mimicking a native valve matrix environment, it could be shown that AJ-

plakophilin-2 gradually decreased or was even lost but was able to re-assemble when 

VICs were re-isolated from 3D constructs and grown in 2D culture again. 

Human and porcine fetal VICs in situ also presented plakophilin-2 in their AJs, 

showing that the phenomenon of plakophilin-2 acquisition is not an artefact of cell culture 

conditions. Primary cultures of porcine fetal VICs also revealed adventitious plakophilin-2. 

Even more surprisingly fetal endothelial cells of the endocardium – but only those located 

at the valves and not those at the myocardium – also displayed the addition of this 

desmosomal protein to their AJ plaques, whereas those of other regions of fetal vascular 

endothelia remained negative for this protein. 

Again unexpectedly, pathologically altered cells of adult heart valves, showing an 

elevated proliferative activity, did not present plakophilin-2 in their AJs. Such as fetal VICs 

showed only relatively low proliferative activity, these findings may lead to the hypothesis 
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that the acquisition of plakophilin-2 might be rather the result of a general activation- than 

a proliferation-induced event. Correspondingly, an alternative concept for early 

valvulogenesis is proposed, differering from the presently prevailing “epithelial- (here 

better: endothelial-) mesenchymal-transition” (EMT) hypothesis, which is based on the 

assumption of an ab initio presence of mesenchymal cells of the VIC type, even in the 

early heart tube “anlage”. 

The advent of a single desmosome-typical protein, plakophilin-2, in VICs of fetal 

heart valves and in culture is not an isolated phenomenon as it fits in phenomena 

observed in recently identified forms of plakophilin-2-containing AJs (coniunctiones 

adhaerentes) found in other mesenchymal cells such as bone marrow-derived stem cells, 

malignantly transformed mesenchymal cell lines and certain soft tissue tumors. It is 

obvious that a more detailed characterization of VICs, notably their AJs, will be needed to 

provide a safe basis for replacement valve surgery using structures formed by cells grown 

in valvular cell cultures in vitro. 
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Zusammenfassung 
In Anbetracht des hohen Anteils mesenchymaler Interstitialzellen an der 

Gesamtmenge der Zellen des Herzens, besonders in Klappen, der Häufigkeit und 

Wichtigkeit von Herzklappen-Operationen, vor allem auch von Klappenersatz-Eingriffen, 

und der zahlreichen „Tissue Engineering“-Projekte zur Herstellung artifizieller 

Herzklappenkonstrukte, ist es sehr erstaunlich zu sehen, wie begrenzt der zell- und 

molekularbiologische Wissensstand über valvuläre Interstitialzellen (VICs) immer noch ist. 

Überraschenderweise sind besonders die molekularen Komponenten der speziellen 

Adhärenz-Verbindungen (AJs) der VICs weitgehend unbekannt geblieben. Daher wurden 

die AJs adulter und fötaler VICs sowohl aus humanen und tierischen (Rind, Schaf und 

Schwein) Herzklappen in situ und in Zellkulturansätzen mit licht- und 

elektronenmikroskopischen Methoden, vor allem auch Immunlokalisierungstechniken, 

sowie durch Protein- und Glykoprotein-Analysen in der Polyacrylamid-Gelelektrophorese 

und anschließender Identifizierung der aufgetrennten Moleküle durch Antikörper-Bindung, 

untersucht.             

In der vorliegenden Arbeit konnte ich zeigen, dass die VICs adulter Säuger in situ 

ausschließlich AJ-Verbindungen des puncta adhaerentia-Typs besitzen. Darin sind die 

konstitutiven Transmembran-Glykoproteine N-Cadherin und Cadherin-11 in zyto-

plasmatischen „Plaques“ verankert, die α- und β-Catenin, Plakoglobin, die Proteine p120 

und p0071 sowie eine Reihe von Aktin-bindenden Proteinen wie Afadin, Vinculin, α-Aktinin 

und die Proteine ZO-1-3 enthalten bzw. enthalten können. 

In zwei-dimensionalen Zellkulturen adulter Säuger-VICs verschiedener Spezies ist 

dieses relativ einfache AJ-Molekül-Ensemble überraschenderweise durch das 

Hinzukommen des desmosomalen Plaque-Leitproteins Plakophilin-2, verändert, wobei 

jedoch desmosomale Strukturen und andere desmosomen-spezifische Moleküle fehlen. In 

drei-dimensionalen Kulturen, welche die natürliche Matrix-Umgebung der Herzklappe 

imitieren, konnte dann gezeigt werden, dass sich darin die Menge an AJ-Plakophilin-2 

allmählich verringert oder sogar ganz verschwinden kann, dann aber in aus solchen 

Konstrukten wiedergewonnenen Zellkulturen wieder nachgewiesen werden kann. 

In menschlichen wie auch in vom Schwein stammenden fötalen VICs konnte in situ 

ebenfalls Plakophilin-2 als Bestandteil ihrer AJs nachgewiesen werden, was beweist, dass 

es sich bei dem Phänomen der Plakophilin-2-Akquisition nicht um einen Zellkultur-Artefakt 

handelt. Noch überraschender war jedoch die Entdeckung, dass fötale Endothelzellen de 

Endokards – allerdings nur solche im Bereich von Klappen, aber nicht solche, die an das 
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Myokard grenzen – ebenfalls Plakophilin-2 enthielten, wobei dieses Protein in den AJs der 

Endothelien anderer Blutgefäße nicht vorkam.  

Unerwartet war dann wiederum die Beobachtung, dass Zellen pathologisch 

veränderter Herzklappen mit erhöhter Zellproliferation kein Plakophilin-2 in ihren AJs 

aufwiesen. Da auch fötale VICs nur noch eine relativ geringe Teilungsaktivität aufweisen, 

führen diese Befunde zur Vermutung, dass das Hinzukommen von Plakophilin-2 in AJs 

eher das Ergebnis eines allgemeinen Aktivierungs- als das eines Proliferations-Prozesses 

an sich ist. In diesem Zusammenhang sollte man – alternativ zur bisherigen Hypothese 

der „Epithelial- (hier eher zutreffend: Endothelial-) Mesenchymalen-Transition“ (EMT) – 

das Konzept einer ab initio Präsenz des VIC-Zelltyps schon in der frühen Entwicklung der 

Herzklappe in Erwägung ziehen. 

Das isolierte Auftreten eines einzelnen desmosomen-spezifischen Proteins, 

Plakophilin-2, in den AJs fötaler VICs in situ sowie auch in Zellkultur gehaltener VICs ist 

übrigens kein isoliertes Phänomen, sondern wurde jüngst ebenfalls in anderen 

mesenchymalen Zellen wie z.B. in Kulturen von „Stammzellen“ aus dem Knochenmark, 

tumorös transformierten mesenchymalen Zellkulturen sowie in bestimmten Weichteil-

Tumoren gefunden und als neuartige, Plakophilin-2-haltige Adhärenzverbindung 

(coniunctio adhaerens) beschrieben. Diese Beobachtungen machen deutlich, dass gerade 

als Basis für die Erforschung und Herstellung von Klappenersatz-Konstrukten, die auf in 

Kultur gewachsenen VICs oder ähnlichen Zelltypen basieren, eine detaillierte 

Charakterisierung der Zellen, besonders ihrer Zell-Zell-Verbindungen, erforderlich ist.   
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1 Introduction 
Cell-cell junctions are obviously essential for the development and the 

architectonic stabilization of complex tissues and thus of complex organisms such as all 

multicellular organisms, particularly metazoa. Correspondingly, the components of these 

junctional structures are evolutionarily rather old. Already among the unicellular colonial 

flagellates, the choanoflagellates express several genes encoding multidomain proteins 

with motifs highly similar to some of the metazoan cadherins, the so-called protocadherins 

(King et al., 2003). The parazoan sponges also contain a range of cell-cell adhesion 

molecules as well as extracellular matrix (ECM) adhesion molecules (Nichols et al., 

2006). And one of the lowest metazoans, the diploblastic fresh-water polyp Hydra, 

develops epithelioid layers, the cells of which already are connected by junctional 

complexes comprising adhering junction molecules highly conserved throughout the 

entire metazoan evolution (Hobmayer et al., 1996, 2000; for further references see, e.g., 

Halbleib and Nelson, 2006; Franke, 2009). Higher metazoans, including already some 

cnidaria, are not only capable of building up two-layered systems like Hydra but also 

develop a third cell layer, the evolutionary precursor of the mesoderm. Clearly, at the 

molecular level, there is remarkable homology of cell-cell connecting junctional proteins, 

both in evolution and ontogenesis (see, e.g., Bryant, 1997, and the reviews mentioned 

afore). 

 

 

1.1 Cell-cell junctions of vertebrates 
In principle, the types of cell-cell junctions occurring in metazoans can be 

subdivided into four major categories: 1) desmosomes, 2) adherens junctions (AJs), 3) 

tight junctions (TJs) and 4) gap junctions (GJs). The ultrastructural organizations and the 

molecular ensembles of these four major kinds of junctions have been elucidated over the 

last half century (Farquhar and Palade, 1963; Campbell and Campbell, 1971; Staehelin, 

1974; for recent review anthologies see, e.g., Edelman and Thierry, 1985; Edelman et al., 

1990; Behrens and Nelson, 2004; La Flamme and Kowalczyk, 2008; Nelson and Fuchs, 

2010; for schematic presentations of the diverse subtypes of adhering junctions see 

Tsukita et al., 2001; Matter and Balda, 2003; Franke, 2009; Franke et al., 2009), including 

changes of such structures that are related to diverse diseases. 
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1.1.1 Desmosomes (maculae adhaerentes) 
Desmosomes occur in epithelial tissues and cell cultures, in meningothelial cells, 

in dendritic reticulum cells of the thymus and lymph follicles, and in cardiomyocytes. In the 

electron microscope, they reveal a typical subarchitecture comprised of a 20-30 nm wide 

membrane-to-membrane structure between the two plasma membrane lipid bilayers, 

representing the so-called desmogloea. The latter is often characterized by a dense 

midline-structure and a periodically cross-striated structure (“ladder”) extending from the 

midline to the plasma membrane bilayers (Schwarz et al., 1990). This intercellular 

structure is built by an electron-dense plaque on the cytoplasmic side of the desmosomal 

structure of about 15-30 nm thickness, which provides the anchorage plate of 

intermediate-sized filaments (IFs) in many cell types. 

Extensive studies using biochemical methods as well as immunofluorescence and 

immunoelectron microscopy have revealed the molecular components of desmosomes. 

The first characterized desmosomal plaque proteins, the desmoplakins, consist of a near-

amino-terminal plakin domain, a central coiled-coil domain and a carboxy-terminal, plakin-

repeat domain. Desmoplakin I and II are major splice variants originating from the same 

gene (Franke et al., 1981, 1982a, b; Cowin and Garrod, 1983; Müller and Franke, 1983; 

Cowin et al., 1984a, b, 1985; Green et al., 1988, 1990; Virata et al., 1992) and very 

recently another splice variant, desmoplakin Ia, has been added (Cabral et al., 2010). The 

two other components building the desmosomal plaque had originally been described as 

desmosomal “band five” and “band six” proteins (Franke et al., 1983b; Kapprell et al., 

1985) but were later defined as plakoglobin (Cowin et al., 1986; Franke et al., 1987a, c, 

1989, 1992; Kapprell et al., 1987; Fouquet et al., 1992) and members of the plakophilin 

group (Kapprell et al., 1988; Heid et al., 1994; Schmidt et al., 1994). 

In the early 1990s it was recognized that plakoglobin is a homolog to the armadillo 

protein encoded by the Drosophila melanogaster segment polarity gene (Peifer and 

Wieschaus, 1990; McCrea et al., 1991; Peifer et al., 1992, 1994). Furthermore, the large 

armadillo multigene family includes several other desmosomal and AJ proteins such as 

the plakophilins. Here the three subforms, plakophilins 1-3, are synthesized in different 

tissue patterns: Plakophilin-1 is restricted to suprabasal layers of stratified epithelia 

(Kapprell et al., 1988; Schäfer et al., 1993; Hatzfeld et al., 1994; Heid et al., 1994; 

Schmidt et al., 1994) and exists in two splice variants, plakophilin-1a and plakophilin-1b 

(Schmidt et al., 1994, 1997). Both subforms can also be detected in the nucleoplasm of 

desmosome-forming as well as non-desmosome-forming cells (Schmidt et al., 1997). On 

the other hand, plakophilin-2 is the most widespread form and occurs in simple epithelia, 
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in complex epithelia and often also in the basal cell layer of multistratified epithelia, in 

meningothelia as well as in specific non-epithelial desmosomes and desmosome-related 

junctions such as the AJ-related junctions (areae compositae) of the intercalated disks 

(IDs) of cardiac tissue and the dendritic reticulum cells of lymphatic germinal centers 

(Kartenbeck et al., 1984; Mertens et al., 1996, 1999; Akat et al., 2003, 2008; Moll et al., 

2009). This protein also exists in two splice variants and often occurrs in karyoplasmic 

particles as well as in the desmosomal plaque (Mertens et al., 1996, 2001). The third 

subform, plakophilin-3, often accompanies plakophilin-2 (Bonné et al., 1999, 2003; 

Schmidt et al., 1999) but is absent in specific cell types such as hepatocytes and 

cardiomyocytes (Schmidt et al., 1999; Borrmann et al., 2000; Borrmann, 2002). For 

discussions of functions and protein evolution it is remarkable that several armadillo 

proteins such as plakoglobin, plakophilins and also the AJ proteins β-catenin and p120 

are not only located in cell-cell junctions but are often also found in the nucleus of 

desmosome-containing as well as desmosome-lacking cells (Mertens et al., 1996, 2001; 

Schmidt et al., 1997; Klymkowsky, 1999; for reviews see Godsel et al., 2004; Bass-Zubek 

et al., 2009; McCrea et al., 2009). 

Moreover, the two desmosomal glycoprotein groups, the desmogleins (Dsg) and 

desmocollins (Dsc), show high amino acid sequence homology to the classic cadherins 

like N- and E-cadherin which are typical transmembrane glycoproteins in AJs. Dsg and 

Dsc molecules have been also found to exist in different subforms (Dsg 1-4, Dsc 1-3), 

synthesized as cell type- and cell layer-specific glycoproteins (Gorbsky and Steinberg, 

1981; Cohen et al., 1983; Giudice et al., 1984; Gorbsky et al., 1985; Kapprell et al., 1985; 

Parrish et al., 1986, 1990; Schmelz et al., 1986a, b; Steinberg et al., 1987; Holton et al., 

1990; Collins et al., 1991; Koch et al., 1991a, b, 1992; Buxton et al., 1993; King et al., 

1993a, b, 1995, 1997; Koch and Franke, 1994; Troyanovsky et al., 1994). Dsg2 and Dsc2 

occur in one-layered epithelia, cardiomyocytes, reticulum cells of lymphatic tissues, in 

meningothelia and often also in the basal layer of stratified epithelia (Schäfer et al., 1994, 

1996; Nuber et al., 1995, 1996). Dsg1 and Dsc1, often in combination with Dsg3 and 

Dsc3, can be found in the more differentiated, suprabasal cell layers of stratified epithelia, 

and Dsg4 only occurs in the cells in the topmost cell strata of the epidermis (for reviews 

see Godsel et al., 2004; Bazzi et al., 2006; Schmidt and Koch, 2008). Dsg and Dsc 

molecules seem to appear always together as pairs, probably as cis-heterodimers 

(Figure 1; see, e.g., Troyanovsky et al., 1993; Witcher et al., 1996; Troyanovsky, 2005). 

However, recent findings have shown that Dsg2 can also occur “alone”, i.e. as a cell 

surface molecule without a Dsc-partner, for example in cultures of melanocytes and 
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melanoma cell lines as well as in certain melanomas in situ (Schmitt et al., 2007; Rickelt 

et al., 2008; for cell culture model experiments see also Köser et al., 2003).  

Depending on the type of IF anchored to the desmosomal plaque structure, 

several cell type- or tissue-type specific desmosomes can be distinguished. In normal 

epithelia the desmosomes anchor keratin IFs (Achtstätter et al., 1989), in meningothelia 

and in dendritic reticulum cells they anchor vimentin IFs (Kartenbeck et al., 1984; 

Schmelz and Franke, 1993) and in cardiomyocytes desmin-containing IFs (Kartenbeck et 

al., 1983). 

 

 

 
 

Figure 1: Schematic hypothetical model of the molecular organization of the desmosomal structure 
with transmembrane glycoproteins and plaque-building cytoplasmic proteins (cf. Leube et al., 
2003). 
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1.1.2 Adherens junctions (zonulae adhaerentes, fasciae adhaerentes and 

puncta adhaerentia) 
At the electron microscopic level, AJs appear as two triple-layered membranes 

with an intermembrane distance of about 20 nm from each other and in association with a 

cytoplasmic plaque at which bundles of microfilaments are anchored. This junction type 

can extend from ca. 0.2 µm to more than 2 µm in diameter or axis length (Farquhar and 

Palade, 1963; Staehelin, 1974; for recent reviews see Franke, 2009). 

 

 

 
 

Figure 2: Schematic hypothetical presentation of AJ structures. Shown is the cadherin-catenin 
system (left hand side) as well as the nectin-afadin-ponsin system (right hand side). Both structures 
are linked to the actin cytoskeleton of the cell and can also be superimposed or “mixed” (modified 
from Perez-Moreno et al., 2003). Abbreviations: pg, plakoglobin; p120, protein p120; αcat, α-
catenin; βcat, β-catenin. 
 

 

The identification and characterization of proteins of the AJ ensemble were 

originally advanced by embryologists recognizing that cell-cell adhesion plays a 

fundamental role during development. The term “cadherin” has been based on the finding 

that Ca2+-ions are generally essential in this specific kind of cell-cell adhesion and 
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embryogenesis (e.g., Steinberg, 1958; Takeichi, 1977, 1995; Yoshida and Takeichi, 1982; 

Yoshida-Noro et al., 1984; Duguay et al., 2003; Foty and Steinberg, 2005). Several 

groups have identified a series of cadherin-type cell-cell adhesion glycoproteins, firstly 

described as uvomorulin (Vestweber and Kemler, 1984, 1985; Ringwald et al., 1987), 

L-CAM (Edelman et al., 1983; Cunningham et al., 1984), A-CAM (Geiger et al., 1985a, b) 

or cell-CAM (Damsky et al., 1983, 1985). These proteins then have been identified as the 

same glycoprotein, namely E-cadherin (“Epithelial-cadherin”; Yoshida and Takeichi, 1982; 

Gallin et al., 1983, 1987; Imhof et al., 1983; Yoshida-Noro et al., 1984; Behrens et al., 

1985; Bussemakers et al., 1993). 

Subsequently, other AJ glycoproteins were identified and characterized such as N-

cadherin (“Neuronal-cadherin”; Hatta and Takeichi, 1986; Nose and Takeichi, 1986; Hatta 

et al., 1987), P-cadherin (“Placental-cadherin”; Nose and Takeichi, 1986; Nose et al., 

1987), M-cadherin (“Muscle-cadherin”; Donalies et al., 1991; Hollnagel et al., 2002; for the 

occurrence of M-cadherin together with N-cadherin see Rose et al., 1995) and VE-

cadherin (“Vascular Endothelium-cadherin”; Lampugnani et al., 1995; Dejana, 1996; 

Dejana et al., 2000). Another transmembrane glycoprotein, cadherin-11, was first 

described as OB-cadherin (“Osteoblast-cadherin”; Okazaki et al., 1994) as it was 

assumed to selectively occur in osteoblastic cells. Subsequently, cadherin-11 gene 

expression was also demonstrated in a diversity of other mesenchymal and 

mesenchymally derived tissues (Hoffmann and Balling, 1995; Kimura et al., 1995). Other 

cadherins like T-cadherin (“Truncated cadherin”; Ranscht and Dours-Zimmermann, 1991; 

Angst et al., 2001), LI-cadherin (“Liver-Intestine-cadherin”; Berndorff et al., 1994; Gessner 

and Tauber, 2000) and R-cadherin (“Retinal-cadherin”; Inuzuka et al., 1991) do not 

contribute to the AJ structure but are present at the plasma membrane (for reviews see, 

e.g., Goossens and van Roy, 2005; Cavallaro et al., 2006; Berx and van Roy, 2009; 

Hulpiau and van Roy, 2009). 

After the finding that plakoglobin can occur in both, desmosomes and AJs (Cowin 

et al. 1986; for amino acid sequence of plakoglobin see Franke et al., 1989), related 

proteins of the larger armadillo protein family (Peifer and Wieschaus, 1990; McCrea et al., 

1991; Peifer et al., 1992, 1994), have been identified in AJ plaques such as β-catenin 

(Ozawa et al., 1989, 1990a, b), protein p120 (Reynolds et al., 1994, 1996a, b; Aghib and 

McCrea, 1995; Shibamoto et al., 1995; for reviews see Anastasiadis and Reynolds, 2000; 

McCrea et al., 2009), protein ARVCF (Sirotkin et al., 1997a, b; Mariner et al., 1999, 2000; 

Walter et al., 2008), protein p0071 (Hatzfeld and Nachtsheim, 1996; Hatzfeld, 1999; 

Hofmann et al., 2008, 2009) and neurojungin (Paffenholz and Franke, 1997; Lu et al., 
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1999; Paffenholz et al., 1999). Such proteins are able to bind vinculin-related linker-

proteins, in particular α-catenin which occurs in three different cell type-specific subforms: 

α-E-, α-N- and α-T-catenin (Herrenknecht et al., 1991; Nagafuchi et al., 1991; Hirano et 

al., 1992; Rimm et al., 1994, 1995; Uchida et al., 1994; Janssens et al., 2001; Goossens 

et al., 2007). 

Another group of immunoglobulin adhesion molecules occurring in AJs is the 

nectin-afadin-ponsin complex (Asakura et al., 1999). Through the binding of the 

transmembrane glycoprotein nectin to the cytoplasmic protein afadin this complex can 

anchor actin filaments (Takai et al., 2008) and thereby can also be linked to the cadherin-

catenin complex (e.g., Tachibana et al., 2000; Pokutta et al., 2002; for a recent review see 

also Meng and Takeichi, 2009). In addition, afadin can also bind the cytoplasmic protein 

ponsin, which is either connected to actin filaments or may indirectly bind to the cadherin-

catenin complex through vinculin (Mandai et al., 1999). 

 

 

1.1.3 Mixed-type cell-cell adhering junctions 
 In recent years, it has become clear that several other junction types exist that 

cannot readily be subsumed under the general textbook classification of adhering 

junctions (for reviews see Franke, 2009; Franke et al., 2009). 

 

a) Complex junctions (complexus adhaerentes) 
 This mixed-type junction can be found in cells of the lymph node sinus and other 

portions of the lymphatic vascular system which contain VE-cadherin – with or without N-

cadherin – together with the plaque-forming proteins α- and β-catenin, plakoglobin, 

proteins p120, p0071 as well as afadin. In addition, this junction type also includes the 

desmosomal plaque protein desmoplakin and typical TJ proteins such as claudin-5 and 

the immunoglobulin-type transmembrane protein JAM-A (“junctional adhesion molecule-

A”; Schmelz et al., 1990, 1994; Schmelz and Franke, 1993, Hämmerling et al., 2006; 

Baluk et al., 2007; Hofmann et al., 2008; Pfeiffer et al., 2008; Dejana et al., 2009; for 

reviews see, e.g., Dejana, 2004; Moll et al., 2009). 

 

b) Adherens cortex (cortex adhaerens) 
This junction type can be observed in the anucleate prismoid fiber cells of the 

vertebrate eye lens. These cells are very densely packed, nearly without any extracellular 

spaces and reveal a huge cytoplasmic plaque with two different kinds of cortical 
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complexes: In the region at the short polar sides, these junctions contain N-cadherin and 

cadherin-11 as transmembrane glycoproteins in combination with the plaque-building 

proteins α- and β-catenin, plakoglobin, proteins p120 and p0071 as well as protein 

ARVCF and afadin. These molecules are further accompanied by the actin-binding 

protein ezrin. In the region along the longer lateral side, this junction type further contains 

protein ZO-1, members of the membrane-associated guanylate kinase (MAGUK) protein 

family as well as spectrin and plectin, in addition to the aforementioned protein ensemble 

(Straub et al., 2003). 

 

c) Composite junctions (areae compositae) 
According to the current textbook description of the cell-cell junctions of the 

cardiomyocytes of the heart, both AJs and desmosomes occur as separate junctions side 

by side in varying numbers. Moreover, in some species, notably avian, desmosomes have 

often been described to represent only 10 % or even less of the total cell-cell junction 

area (e.g., McNutt and Fawcett, 1969; McNutt, 1970; Forbes and Sperelakis, 1985). 

Detailed immunoelectron microscopic research on the special adhering junctions of the 

adult mammalian heart, however, has revealed a generally more complex junction type: A 

fusion of the desmosomal and AJ molecules postnatally accumulating in the IDs (for the 

development of embryonic desmosomes from epithelioid structures, including keratin 

filaments and aggregates, see Kuruc and Franke, 1988; van der Loop et al., 1995). The 

desmosomal and AJ molecules here have amalgamated into the area composita, a 

composite junction (Borrmann, 2002; Borrmann et al., 2006; Franke et al., 2006; 

Goossens et al., 2007; Pieperhoff and Franke, 2007, 2008). This amalgamation is indeed 

a rather late, postnatal process occurring in mammals as has been demonstrated in 

special detail for mouse developmental stages (Pieperhoff and Franke, 2007; see also 

Hirschy et al., 2006). The composition of the area composita and its importance has 

recently gained increasing attention as it has been shown that the desmosomal-type 

molecules of this newly defined type of junction are, as demonstrated by mutations, 

responsible for various forms of hereditary, life-threatening arrhythmogenic right 

ventricular cardiomyopathies (ARVC; for further literature see Perriard et al., 2003; for 

reviews see Bazzi and Christiano, 2007; Marcus et al., 2007; Awad et al., 2008; Corrado 

et al., 2009; Herren et al., 2009; Saffitz, 2009; Li and Radice, 2010; Sen-Chowdhry et al., 

2010). 
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d) Minimal dot junctions (puncta adhaerentia minima) 
In cultures of mesenchymal stem cells (MSCs) derived from human bone marrow, 

placenta or adipose tissue, remarkably long filopodial processes can often be observed 

which are frequently decorated by very small punctate AJs (Wuchter et al., 2007) differing 

in size from AJs described for other mesenchymal cells in culture (cf. Hinz et al., 2004). 

Biochemical and electron microscopical immunolocalization has shown the involvement of 

N-cadherin and cadherin-11 and α- and β-catenin as well as plakoglobin, together with 

afadin, proteins p120, p0071 and ARVCF, in these small AJ structures. 

 

e) Taproot AJs (manubria adhaerentia) 
In the aforementioned cultures of cells of mesenchymal origin, another class of 

mixed-type junctions can often be observed: Here the cells also form cell-cell contacts via 

filopodial processes, some can be very long, which protrude tight-fittingly into deep 

invaginations of neighbouring cells, and are connected by AJ structures, an association 

called a taproot-like junction (Wuchter et al., 2007). The molecular components of these 

taproot junctions are AJ-typical with N-cadherin and cadherin-11 as transmembrane 

glycoproteins and the plaque proteins α- and β-catenin with – less frequently – also 

plakoglobin, together again with the proteins afadin, p120, p0071 and ARVCF. 

 

 

1.2 Junctions connecting the valvular interstitial cells 
 

1.2.1 Anatomy and function of the heart valves 
Due to the ability of mammals to develop a blood system which separates the 

pulmonary from the systemic circulation, the four-chambered mammalian heart also 

needs four heart valves, each of which ensures unidirectional blood flow and prevents 

regurgitation and obstruction. As a result of the torsion of the heart tube during 

development, leading to adjoining positions of the in- and outflow tracts, the four heart 

valves are arranged in one plane, called the “fibrous skeleton” of the heart (Misfeld and 

Sievers, 2007). 

The heart valves are usually divided into two groups: 1) the semilunar valves, i.e. 

the pulmonary valve (valva trunci pulmonalis; PV) and the aortic valve (valva aortae; AV) 

and 2) the atrioventricular valves, i.e. the mitral valve (valva mitralis; MV) and the tricuspid 

valve (valva tricuspidalis; TV). The AV connects the left ventricle with the aortic root and 

consists of three leaflets. The PV connects the conus arteriosus of the right ventricular 
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outflow tract with the truncus pulmonalis of the pulmonary artery. The MV connects the 

left atrium and the left ventricle, and the TV in turn connects the right atrium and the right 

ventricle (Figure 3; Misfeld and Sievers, 2007). 

 

 

 
 

Figure 3: Schematic presentation of a human heart with exposed atria and ventricles. Taken from 
www.ars-medicina.designblog.de 
 

 

In the closed state of a normal heart, the PV and the TV have to withstand a 

pressure of about 30 mm Hg, the AV a pressure of about 100 mm Hg, and the MV has to 

withstand even pressures up to 150 mm Hg (cf. Yoganathan et al., 2004). The heart 

valves open and close about three billion times over an average lifetime (Joyce et al., 

2009) and have the ability to guide up to 20 L blood per minute through the system, while 

coping with substantial changes in blood pressure and flow rates. A highly organized and 

imperishable structure of the heart valve is therefore essential to fulfil these demands. 
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1.2.2 Structure of the heart valves 
All heart valves are covered with a single layer of endothelial and endothelium-

associated cells: The endocardium, which continues with the endocardium of the ventricle 

and the atria, the endothelium of the sinus and the greater vessels. Recent studies have 

indicated that the endothelial layer of the valvular endocardium has some special features, 

compared with the endothelium occurring elsewhere in the vascular system (Butcher et 

al., 2004, 2006): While vascular endothelium is most important as a regulator of blood 

vessel tonus, the valvular endothelial cell layers are primarily involved in 

mechanotransduction pathways, thereby regulating valve relaxation and cusp stiffness 

(e.g., Yacoub et al., 1999; Grande-Allen et al., 2001; El-Hamamsy et al., 2009). 

It is widely agreed that the valve interior consists of a trilaminar structure (Figure 

4): The fibrosa, the spongiosa and the ventricularis (Mönckeberg, 1904; Gross and Kugel, 

1931; Mitomo et al., 1969). The fibrosa is mainly built up by collagen fibers oriented 

parallel with the free edge of the valve cusp. The spongiosa is located in between of the 

fibrosa and the ventricularis and mainly consists of loose connective tissue rich in 

glycosaminoglycans (GAGs). Due to ability of GAGs to bind water, the spongiosa 

maintains hydration and thereby ensures a high viscoelasticity of the valve leaflet (Torii et 

al., 1965; Vesely et al., 1995; Carew et al., 1999, 2000). The ventricularis is composed of 

elastin sheets aligned perpendicular to the vessel wall. It has been suggested that elastin 

mainly serves to maintain the collagen orientation and reorganization after external forces 

occurring during the loading cycles (Scott and Vesely, 1996; Vesely, 1998). Being the 

major protein of the heart valve, collagen represents 55 % of the dry weight, whereas the 

weight of elastin makes up about 10 % only (Bashey et al., 1967). In healthy mammalian 

valves the amount of collagen is divided into collagen type I (74 %), type III (24 %) and 

type V (2 %) as for example reported by Cole et al. (1984). Besides these collagen types, 

in developing heart valves as well as in adult valves collagen types II, VI and XI have also 

been found (Klewer et al., 1998; Lincoln et al., 2004, 2006). In addition, the heart valve 

ECM contains fibronectin and vitronectin (Akhtar et al., 1999). 
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Figure 4: Simplified schematic presentation of the three different layers of the aortic heart valve.  
(A) Aortic heart valve leaflet showing the localization of the layers in the heart valve leaflet 
(adapted from Vesely, 1998). (B) Components of the layers with elastin sheets in the ventricularis, 
GAGs in the spongiosa and collagen fibers in the fibrosa (cf. Vesely, 2005). 
 

 

1.2.3 Valvular interstitial cells 
The ECM of the valve interior is loosely dispersed and this meshwork is produced 

by and based on the mesenchymally derived, so-called valvular interstitial cells (VICs). 

Besides the endothelial cells, the VICs represent about 30 % of the volumetric density of 

the valve (see, e.g., Filip, 1984). In addition to endothelial cells and VICs, another cell 

population has been described in the valvular leaflets: Smooth muscle α-actin-positive 

cells (Bairati and DeBiasi, 1981; Mulholland and Gotlieb, 1996; Bertipaglia et al., 2003; 

Taylor et al., 2003; Schenke-Layland et al., 2004) which are assumed to have contractile 

or even partly motile properties and to be involved in the maintenance of the valve tonus. 

The amount of this cell population seems to increase under diseased conditions (Rabkin-

Aikawa et al., 2004) and in times of tissue stress where it contributes to the heart valve 

stiffness (Merryman et al., 2006). 

VICs in culture, their phenotype and their behavior were objects of specific 

investigation since the middle of the 1980s (e.g., Filip et al., 1986; Zacks et al., 1991; 

Lester et al., 1992, 1993). As these cells are able to develop actin “stress fibers” and to 

contract when taken in culture, they are often called “myofibroblastoidal” cells (Filip et al., 

1986; Messier et al., 1994; Mulholland and Gotlieb, 1996; Della Rocca et al., 2000; Taylor 

et al., 2000; for general reviews see Gabbiani, 1996; Hinz and Gabbiani, 2003). Similar to 

(myo-) fibroblastoidal cells of other origins, VICs have also secretory properties and 

produce not only collagen and elastin but also matrix metalloproteinases, fibronectin, 

chondroitin sulfate and GAGs (Messier et al., 1994; Dreger et al., 2002; Butcher and 
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Nerem, 2004; see there for earlier references). Moreover, VICs can respond to exogenous 

stimuli by contraction, e.g., after treatment with adrenalin, angiotensin-II, bradykinin, 

potassium chloride, carbachol or endothelin, and typically show relaxation after treatment 

with isoprotenerol (see, e.g., Filip et al., 1986; Messier et al., 1994). 

However, the VIC population is heterogeneous and different phenotypes are 

known to be specifically associated with physiological heart valve integrity. Recently, 

studies dealing with phenotype-function relationships of the VIC population have led to the 

identification of six distinguishable phenotypes of VICs: 1) quiescent VICs, which maintain 

the valvular structure and inhibit angiogenesis, are located in the heart valve leaflet; 2) 

embryonic progenitor endothelial or mesenchymal cells which according to some authors 

can give rise to the future resident quiescent VICs through a process called “endothelial-

to-mesenchymal transition” (EMT; Armstrong and Bischoff, 2004; Trinh and Stainier, 

2004; Snarr et al., 2008; Hinton and Yutzey, 2011), located in the embryonic cardiac 

cushions; 3) activated VICs, also located in the leaflet, with a “myofibroblast” appearance 

and the ability to proliferate, migrate, remodel the ECM and to respond to valve injury; 4) 

osteoblastic-type VICs, located in the leaflet, responsible for calcification processes, but 

also for chondrogenesis, a process based on secretions of osteocalcin, osteopontin and 

alkaline phosphatase; 5) progenitor VICs, located in the bone marrow or in the circulating 

blood, which, when located in the heart valve leaflet, induce activated VICs to repair the 

heart valve (see, e.g., Liu et al., 2007), and 6) adipogenic cells characterized by 

adipogenesis-typical lipid droplets and certain amphiphilic proteins (Dunmore-Buyze et al., 

1995; Chen et al., 2009). 

 

 

1.2.4 Cell-cell junctions of valvular interstitial cells 
Contacts between VICs and the surrounding ECM structures, including the 

collagen fibers, have been demonstrated by electron microscopists in the past (Filip et al., 

1986). Moreover, VICs have been shown to be connected via typical albeit sparse GJs 

(Filip et al., 1986; Lester and Gotlieb, 1988; Lester et al., 1993). Moreover, the 

functionality of these GJs has been demonstrated using cultured VICs (Filip et al., 1986; 

Latif et al., 2006). In addition, VICs have also been claimed to be connected by some sort 

of AJs (Lester and Gotlieb, 1988; Messier et al., 1994). Other reports describing the 

presence of desmosomes in VICs were – and are – doubtful (e.g., Messier et al., 1994). 

Using immunohistochemistry and cell sorting (FACS) as well as immunoblot analysis, the 
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synthesis of N-cadherin, α- and β-catenin, connexins-26 and -43 and desmogleins has 

recently been reported (Latif et al., 2006). 

 

 

1.3 Aim of the work 
The textbook categories of cell-cell junctions postulate that there are four major 

junction types: 1) the desmosomes, 2) the AJs, 3) the TJs and 4) the GJs. However, as 

mentioned before, research on cell- and tissue-specific cell-cell junctions has revealed a 

broader and more diversified spectrum of cardiac adhering junctions. In the heart 

specifically, the myocardial composite junctions, representing an amalgamation of 

desmosomal and AJ molecules, have been characterized (for recent reviews see Marcus 

et al., 2007; Franke et al., 2009). By contrast, the proteins involved in the cell-cell contacts 

between the mesenchymally derived cells of the heart valves – the VICs – still have not 

yet been elucidated to a reasonable level.  

Research on heart valves and their cells started already at the end of the 19th 

century with histological and later – after 1950 – with electron microscopic studies 

(Joseph, 1858; Mönckeberg, 1904; Gross and Kugel, 1931; Kühnel, 1965) and was more 

recently extended by biochemical and immunocytochemical analyses (for a general 

review, including anatomical and physiological features of VICs, see Flanagan and Pandit, 

2003). However, even to date there are only few publications presenting only with sparse 

and rather non-systematic analyses of the cell-cell contact proteins connecting the VICs of 

heart valves (Latif et al., 2005, 2006). 

Therefore, it has been the aim of this thesis to characterize the cell and molecular 

biology of the cell-cell contacts of the VICs of different mammalian species in situ and in 

cell culture. This also might provide a better basis for the molecular design and the 

preparation of cells grown in vitro and in three-dimensional meshwork structures which 

would be useful for preparations of artificial heart valves that may raise cell biologically 

optimized objects for a therapeutic heart valve replacement (“heart valve engineering”). 
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2 Materials 
 

2.1 Primary and established cell culture lines 
All cell lines used were treated and passaged either as recommended by the 

distributor or the manufacturer or - in case of primary cell culture lines - as based on 

experience in the laboratory. Generally, the cells were passaged every 3 to 4 days by 

treatment with trypsin (0.25 %)/EDTA (0.7 %) in PBS and plated on coated or uncoated 

cell culture dishes supplied with fresh DMEM medium (Dulbecco’s modified Eagle’s 

medium with glutamine; GIBCO BRL, Eggenstein, Germany) containing 10 % FCS 

(PAA Laboratories, Cölbe, Germany), 1 % glutamine (GIBCO BRL) and 1 % 

penicillin/streptomycin (PAA Laboratories). 

 

 

2.1.1 Human cell culture lines 
Table 1    Human cell culture lines  

Cell line  Reference 

U333/glioma astrocytoma cell line (Osborn et al., 1981; for earlier reports see 
references cited therein) 

MCF-7 cell line of human breast carcinoma; ATCC HTB-22 (Soule et al., 
1973) 

PLC cell line of primary human liver carcinoma; ATCC CRL-8024 
(Alexander et al., 1976) 

SV80 SV40-transformed human WI38 fibroblasts; ATCC CCL-75.1 
(Girardi et al., 1966) 

HG261 human skin fibroblasts; ATCC CCL-122 (Todaro et al., 1966; 
Todaro, 1968) 

HaCaT human keratinocytes cell line (Boukamp et al., 1988) 

 

 

2.1.2 Non-human cell culture lines 
Table 2    Non-human cell culture lines 

Cell line Reference 

B1 bovine dermal fibroblasts (Cowin et al., 1986) 

HL-1 murine cardiac muscle cell line (Claycomb et al., 1998) 

Rat2 rat fibroblasts; ATCC CRL-1764 (Topp, 1981) 
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2.1.3 Human tissues and primary cell culture lines 
Human hearts or heart valve tissues and primary cell culture lines were obtained 

from freshly dissected hearts or heart valves of patients of both sexes and different 

ages, undergoing heart or heart valve transplantation (cooperation with Prof. Dr. Artur 

Lichtenberg, Department of Cardiac Surgery, University Hospital Heidelberg, 2006-

2009, and Department of Cardiothoracic Surgery, University Hospital Düsseldorf, since 

2009). For cell culture details see chapter 3.1.1. 

Papillary fibroelastoma samples were kindly provided by Prof. Dr. Waldemar 

Hort (Institute of Pathology, University Hospital Düsseldorf), and myxomatous 

degenerated human mitral heart valves as well as several other human tissues for 

comparison were kindly provided by Prof. Dr. Roland Moll (Institute of Pathology, 

University Hospitals Giessen and Marburg). Fetal heart samples were provided by Prof. 

Dr. Ingrid Moll (Dermatology and Venereology Department and Clinic, University Clinic 

of Hamburg-Eppendorf). 

 

 

2.1.4 Non-human tissues and primary cell culture lines 
Bovine tissues from freshly slaughtered animals were obtained from a local 

abattoir (Schlachthof Mannheim). Ovine tissues were obtained through the “Heidelberg 

Initiative for Cardiovascular Tissue Engineering” (Coordinator: Dr. Payam Akhyari, 

Department of Cardiac Surgery, University Hospital Heidelberg, 2006-2009). Fetal and 

adult porcine tissues were provided by Prof. Dr. Heiner Niemann (Institute of Farm 

Animal Genetics, Friedrich-Loeffler-Institute Mariensee, Neustadt am Rübenberge).  
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2.2 Antibodies 
2.2.1 Primary antibodies 

Table 3    Primary antibodies 
Antigen Antibody, category, species Source References 

Cadherins 

N-cadherin mcl1, m2 
Transduction Labs 

(Lexington, KY, USA) 

N-cadherin pcl3, rb4 
QED Biosciences Inc. 

(San Diego, CA, USA) 

Bhowmick et al., 2001; 

Nürnberger et al., 2002  

P-cadherin mcl, m Transduction Labs 
Nose and Takeichi, 1986; 

Tao et al., 1996  

E-cadherin mcl, m Transduction Labs 
Vestweber and Kemler, 

1984, 1985 

Cadherin-11 mcl, m 

Zymed Laboratories 

(South San Francisco, 

CA, USA) 

Okazaki et al., 1994 

VE-cadherin mcl, m Transduction Labs 

VE-cadherin pcl, rb 

Cayman Chemical 

Company (Ann Arbor, 

MI, USA) 

Lampugnani et al., 1995; 

Dejana, 1996;  

Dejana et al., 2000 

Desmoglein 1+2 mcl, m (DG3.10) 
Progen Biotechnik 

(Heidelberg, Germany) 
Schmelz et al., 1986a, b 

Desmoglein 3 mcl, m Progen Biotechnik 
Schäfer et al., 1996; Kurzen 

et al., 1998 

Desmocollin 1 mcl, m (clone U100) Progen Biotechnik Nuber et al., 1995, 1996 

Desmocollin 3 mcl, m (clone U114) Progen Biotechnik Nuber et al., 1996 

 

Transmembrane Tight Junction Proteins 

Occludin mcl, m Invitrogen (Paisley, UK) Furuse et al., 1993 

Claudin 1 pcl, rb  
NeoMarkers (Fremont, 

CA, USA) 

Claudin 2 pcl, rb Zymed Laboratories 

Furuse et al., 1998a, b 

Claudin 3 pcl, rb Zymed Laboratories 

Claudin 4 mcl, m Zymed Laboratories 

Claudin 5 pcl, rb Zymed Laboratories 

Claudin 7 pcl, rb Zymed Laboratories 

Tsukita and Furuse, 1998; 

Morita et al., 1999a, b; 

Rahner et al., 2001 

Tricellulin-α pcl, rb 
Kindly provided by 

Sachiko Tsukita, Osaka 
Ikenouchi et al., 2005 
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Continuation of Table 3 
Antigen Antibody, category, species Source References 

Other Transmembrane Proteins/Glycoproteins 

Nectin 2 pcl, rb 
Santa Cruz Biotech. 

(Santa Cruz, CA, USA) 

Nectin 3 pcl, rb Santa Cruz 

Lopez et al., 2000; 

Fabre et al., 2002 

Myozap mcl, m (517.67) 

Kindly provided by 

Sebastian Pieperhoff, 

Edinburgh  

Seeger et al., 2010 

Hemidesmosomal 

glycoproteins 
mcl, m (HD233) 

Kindly provided by 

Katsushi Owaribe, 

Nagoya 

Owaribe et al., 1990, 1991 

JAM-A pcl, rb Zymed Labs 

JAM-C pcl, rb Zymed Labs 

Kostrewa et al., 2001; 

Konopka et al., 2007 

 

Armadillo Proteins 

Plakoglobin mcl, m (PG5.1) Progen Biotechnik Cowin et al., 1986 

Plakoglobin mcl, m (11E4) Kindly provided by Margaret J. Wheelock, Omaha 

β-Catenin mcl, m Transduction Labs 
Ozawa et al., 1990b;  

Eger et al., 2000 

β-Catenin pcl, rb Zymed Labs 
Ozawa et al., 1990b; 

McCrea et al., 1991 

Protein p120 mcl, m Transduction Labs 

Protein p120 pcl, rb 
Sigma (St. Louis, MO, 

USA) 

Reynolds et al., 1994, 

1996a, b 

Protein p0071 pcl, gp5 (GP71) Progen Biotechnik Hofmann et al., 2008, 2009 

Protein ARVCF pcl, gp (GP155) Progen Biotechnik Walter et al., 2008 

Plakophilin-1 (Pkp1) mcl, m (PP1-2D6) Progen Biotechnik Heid et al., 1994 

Plakophilin-2 (Pkp2) mcl, m (PP2-62, -86, -150) Progen Biotechnik Mertens et al., 1996 

Plakophilin-2 (Pkp2) mcl, m (Pkp2-518) Progen Biotechnik Rickelt et al., 2010 

Plakophilin-2 (Pkp2) pcl, gp (GP-PP2) Progen Biotechnik Rickelt, 2010 

Plakophilin-3 (Pkp3) mcl, m (PP3-270.6.2) Progen Biotechnik Schmidt et al., 1999 
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Continuation of Table 3  
Antigen Antibody, category, species Source References 

Other Plaque Proteins 

α-Catenin mcl, m Zymed Labs 
Herrenknecht et al., 1991; 

Nagafuchi et al., 1991 

α-T-Catenin pcl, rb 
USBiological 

(Swampscott, MA, USA) 
Janssens et al., 2001, 2003 

α-E-Catenin pcl, rb 
Cell signaling (Danvers, 

MA, USA) 

Herrenknecht et al., 1991; 

Nagafuchi et al., 1991 

α-N-Catenin pcl, rb Sigma 
Hirano et al., 1992;  

Uchida et al., 1994 

Desmoplakin I+II 
mcl, m (DP-2.15, -2.17 and -

2.20) 
Progen Biotechnik 

Franke et al., 1982b, 1983a; 

Cowin et al., 1985 

Desmoplakin I pcl, gp (DP-1) Progen Biotechnik 
Köser, 1999; 

Köser et al., 2003 

Vinculin mcl, m (11-5) Sigma 

Vinculin pcl, rb Sigma 

Geiger, 1979; 

Geiger et al., 1980 

α-Actinin mcl, m (BM-75.2) Sigma Abd-el-Basset et al., 1991 

l/s-Afadin pcl, rb Sigma Mandai et al., 1997 

ZO-1 mcl, m Invitrogen 

ZO-1 pcl, rb Zymed Labs 

Stevenson et al., 1986; 

Anderson et al., 1989 

ZO-3 pcl, rb Zymed Labs 

ZO-3 mcl, m 
Millipore (Schwalbach, 

Germany) 

Haskins et al., 1998; 

Itoh et al., 1999; 

Inoko et al., 2003 

 

Intermediate-sized Filament  Proteins 

Vimentin mcl, m (Vim3B4) Progen Biotechnik 
Heid et al., 1988; 

Herrmann et al., 1989 

Vimentin pcl, gp (GP53) Progen Biotechnik Magin et al., 1990 

Desmin mcl, m (D9) Progen Biotechnik Van Muijen et al., 1987 

Nestin mcl, m Millipore 
Lehndahl et al., 1990; 

Tohyama et al., 1993 

Keratins (cytokeratins)  

8 and 18 
mcl, m (NCL-5D3) Progen Biotechnik Angus et al., 1987 

Keratin 20 pcl, gp (K20.2) Progen Biotechnik Moll et al., 1982a, b 

Pan-Keratin mcl, m (Lu5) Acris (Herford, Germany) von Overbeck et al., 1985 

Neurofilament (NF) mcl, m 
Boehringer Ingelheim 
(Ingelheim am Rhein, 
Germany) 

Wood and Anderton, 1981 

Gliafilament (GFAP) pcl, rb Millipore Uyeda et al., 1972 
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Continuation of Table 3  
Antigen Antibody, category, species Source References 

Cytoskeletal Proteins 

 β-, γ-, -non-muscle actin mcl, m Sigma 
Gimona et al., 1994; 

Hanft et al., 2006 

α-smooth muscle actin mcl, m (ASM-1) Progen Biotechnik Skalli et al., 1986 

Cardiac α-actin mcl, m (AC1-20.4.2) Progen Biotechnik Franke et al., 1996 

 

Extracellular Matrix Proteins 

Elastin  mcl, m (BA-4) Sigma Wrenn et al., 1986 

Collagen type I pcl, rb 
Abcam (Cambridge, MA, 

USA) 

French et al., 2008; 

Yue et al., 2008 

Collagen type II pcl, rb Abcam Sohaskey et al., 2008 

Collagen type IV pcl, rb Abcam McColl et al., 2008 

Collagen type VI pcl, rb  Abcam Snipstad et al., 2010 

Collagen type VII pcl, rb 
Linaris (Wertheim-

Bettingen, Germany) 
Sakai et al., 1986 

 

Other Proteins or Glycoproteins 

Perilipin mcl, m (Peri112.17.1) Kindly provided by Hans Heid, DKFZ, Heidelberg 

Adipophilin mcl, m (125) Progen Biotechnik Heid et al., 1998 

Tubulin mcl, m Sigma Gao et al., 2008 

Moesin mcl, m Transduction Labs Furthmayr et al., 1992 

Ezrin mcl, m Sigma Bretscher, 1986 

S-100 pcl, rb 
Dako (Hamburg, 

Germany) 

Zuckerman et al., 1970;  

Herschman et al., 1971 

Lamin A/C mcl, m (X67)  Progen Biotechnik 
Krohne and Benavente, 

1986 

Ki-67 mcl, m Zymed 

Ki-67 pcl, rb Zymed 
Gerdes et al., 1983 

Periostin pcl, rb Acris Horiuchi et al., 1999 

PERP pcl, rb Sigma 
Attardi et al., 2000;  

Ihrie and Attardi, 2005 

Osteopontin pcl, rb Sigma Oldberg et al., 1986 

Paxillin mcl, rb 
Epitomics (Burlingame, 

CA, USA) 
Turner et al., 1990 

1monoclonal antibody, 2mouse, 3polyclonal antibody, 4rabbit, 5guinea pig 
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2.2.2 Secondary antibodies 
Secondary antibodies conjugated with fluorochromes used for 

immunofluorescence microscopy were directed against species-specific 

immunoglobulins and had been generated in goats. Cy3- and Alexa488-conjugated 

secondary antibodies against mouse, rabbit or guinea pig immunoglobulins were used 

(Cy3: Dianova, Hamburg, Germany; Alexa488: Invitrogen, Karlsruhe, Germany). 

Antibodies were diluted according to the manufacturer’s recommendations. 

Immunoblot analysis was performed using HRP- (horseradish peroxidase) 

conjugated secondary antibodies against rabbit, guinea pig or mouse immunoglobulins 

(Dianova). 

 

 

2.2.3 Other fluorescent markers 
Alexa Fluor®488- or Alexa Fluor®594-coupled phalloidin was used for the 

specific staining of F-actin. In addition, staining of the nuclear chromatins was 

performed with 4', 6-diamidino-2-phenylindole (DAPI; Serva, Heidelberg, Germany). 
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2.3 Buffers, media and solutions 
All chemicals used for buffers, media and other solutions were obtained from 

Merck (Darmstadt, Germany), Sigma-Aldrich (München, Germany), Roche Diagnostics 

(Mannheim, Germany), Serva (Heidelberg, Germany) or Roth (Karlsruhe, Germany). 

 

Table 4    Buffers, media and solutions 

Buffer Composition and concentration 

10X PBS  
 

1.4 M NaCl 
27 mM KCl 
17 mM KH2PO4  
81 mM Na2HPO4 
pH 7.4 

 
Tris-urea buffer  
 

Stock solution: 
20.18 g Tris-HCl ad 1L H2Odest, pH 11 
Working solution: 
150 mL stock solution  
+ 100 mL H2Odest + 12.5 g urea 

 
Citrate buffer 
 

Solution A:  
21.01 g Citric acid ad 1L H2O 
Solution B:  
29.41 g Sodium citrate ad 1L H2Odest 
9 mL A + 41 mL B ad 500 mL, H2Odest, pH 6 

0.5 M Sodium cacodylate buffer 107 g Sodium cacodylate ad 1L H2Odest, pH 7.2 

 
2.5 % Glutardialdehyde* 
 

2.4 mL Glutardialdehyde (25 %) 
1.25 mL 1M KCl 
62.5 µL 1 M MgCl2 
2.5 mL 0.5 M Sodium cacodylate buffer ad 25 mL H2Odest 

4 % Osmium tetroxide 1 g Osmium tetroxide ad 25 mL H2Odest 

0.5 % Uranylacetate  125 g ad 25 mL H2Odest 

2 % Uranylacetate  500 mg ad 25 mL Methanol  

Lead citrate solution 

0.67 g Lead nitrate  
0.88 g Sodium citrate  
0.2 g NaOH ad 50 mL H2Odest 
pH 12 

 
RIPA buffer 
 

1 % Triton-X-100 
0.2 % SDS 
0.5 % Sodium desoxycholat  
20 mM HEPES 
150 mM NaCl ad 300 mL H2Odest 
pH 7.4     

 
ADS buffer 
 

116 mM NaCl 
20 mM HEPES 
9 mM NaH2PO4  
5mM Glucose 
5 mM KCl 
0.4 mM MgSO4 
pH 7.4  
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Continuation of Table 4  

Buffer Composition and concentration 

Dissociation buffer 
150 mg Collagenase type II (0.05 %)  
180 mg Pancreatin (0.06 %)  
ad 300 mL 1X ADS buffer   

2X SDS buffer 

40 mM DTT 
125 mM Tris-HCl 
20 % Glycerol 
4 % SDS 
0.1 % Bromphenol blue 
pH 6.8 

10X electrophoresis running buffer 
350 mM Tris-HCl, pH 8.8 
1 % SDS 
1.92 M Glycine 

Coomassie staining solution 
0.2 % Coomassie briliant blue 
40 % Isopropanol 
7 % Acetic acid  

PVDF membrane destaining solution 40 % Isopropanol 
7 % Acetic acid 

DMEM High Glucose 1X (GIBCO BRL) 
25 mM Glucose 
3.97 mM L-Glutamine 
0.0399 mM Phenol red 

10X Reverse transcriptase (RT) buffer 

0.4 M Tris-HCl pH 8 
0.4 M KCl 
60 mM MgCl2 
10 mM DTT 
15 nM dNTP (4X) 

1X TAE buffer 40 mM Tris-HCl 
1 mM EDTA 

2% Formaldehyde solution 2 g Paraformaldehyde in 100 mL 1X PBS, pH 7.4 

Sodium thiosulfate pentahydrate solution 
200 mL 50 mM HEPES 
12.4 g sodium thiosulfate pentahydrate  
pH 5.8 

*glutardialdehyde is named glutaraldehyde in the following 
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2.4 Technical equipment 
 

Table 5    Technical equipment 
Instruments and glassware Name Manufacturer 

Incubators Function Line Heraeus (Hanau, Germany) 

Electron microscope EM 900 Zeiss( Oberkochen, Germany) 

Confocal laser scanning 

microscope 

LSM 510 Zeiss 

Fluorescence microscope Axiophot Zeiss 

Diamond knifes, 45° DiATOME ultra Diatome AG (Biel, Switzerland) 

Digital camera Axio Cam HRc/MRc Zeiss 

Ultramicrotome Ultracut Leica (Wetzlar, Germany) 

Microtome HM 355 S Microm (Walldorf, Germany) 

Cryotome Jung CM 3050 S Leica 

Microtome blades Leica 819 Leica 

Microwave instrument RHS Rapid Microwave 

Histoprocessor 

Milestone (Sorisole, Italy) 

Water bath  GFL (Burgwedel, Germany) 

Sterile laminar flow bench SterilGardHood The Baker Company. Inc. (Sanford, ME, 

USA) 

Heating block Thermomixer 5436 Eppendorf (Hamburg, Germany) 

pH meter 765 Calimatic Knick (Egelsbach, Germany) 

Magnetic stirrer Ikemag®Reo Ika Labortechnik (Staufen, Germany) 

Gelelectrophoresis chamber X Cell Sure Lock Novex (San Diego, CA, USA) 

Electrophoresis power supply Phero-stab.500 Biotec-Fischer (Reiskirchen, Germany) 

Blotting chamber  cti (Idstein/Taunus, Germany) 

Shaker Silent Rocker cti 

Scanner Epson Perfection 4870 Epson (Long Beach, CA, USA) 

Scales PB 3002-S/PB 135-S Mettler-Toledo (Giessen, Germany) 

Heating cabinet  Memmert (Schwabach, Germany) 

Centrifuge 5415R Eppendorf 

Centrifuge Minifuge RF Heraeus 

Vortex Reax2000 Heidolph (Schwabach, Germany) 

Developer Optimum Typ TR MS Laborgeräte (Heidelberg, Germany) 

Rotator  tiny turner cti 

Thermocycler MJR Research Biozyme, Oldendorf, Germany 
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3 Methods 
  
3.1 Cell cultures 
 

3.1.1 Primary and secondary cultures of human, bovine, ovine and porcine 
valvular interstitial cells 
One to two heart valve leaflets of human, bovine, ovine or porcine origin were 

minced with small scissors into pieces (ca. 1 mm side lengths) in 4°C cold 1X ADS buffer 

(see Table 4). The pieces were then collected in 12 mL 37°C warm dissociation buffer 

containing 0.05 % collagenase type II (Invitrogen, Karlsruhe, Germany) and 0.06 % 

pancreatin (Sigma, München, Germany) in 1X ADS buffer (see Table 4). Afterwards, the 

pieces were slowly agitated on a magnetic stirrer for 30 min at room temperature (RT). 

After sedimentation of the tissue pieces, the supernatant was discarded and the tissue 

pieces were incubated with another 10 mL of the dissociation buffer and again slowly 

agitated on a magnetic stirrer at RT. After sedimentation of the tissue pieces, the 

supernatant suspension was collected, centrifuged at 1000 rpm to remove collagenase 

and pancreatin, and the resulting pellet was stored in 4 mL newborn calf serum at 37°C. 

The remaining tissue pieces were again incubated with the digestion solution and 

the supernatant was collected. This procedure was repeated three times. Afterwards, all 

pellets in newborn calf serum were pooled and centrifuged at 1000 rpm for 5 min. The 

resulting pellet was washed twice with 37°C warm 1X ADS buffer and was re-centrifuged. 

The resulting pellet was resuspended in 2 mL 37°C warm DMEM with 10 % FCS and 1 % 

penicillin/streptomycin (v/v). Finally, the cells were plated on collagen-coated dishes and 

cultivated until they had reached confluency at 37°C in a humidified incubator. By treating 

the cells with trypsin/EDTA they were detached from the dish and either plated on 

collagen-coated dishes for further passages or on collagen-coated glass coverslips. 
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3.1.2 Primary valvular interstitial cells in three-dimensional cultures 
 

3.1.2.1     MatrigelTM/collagen type I three-dimensional cultures 

MatrigelTM/collagen type I three-dimensional (3D) cultures were prepared with 

ovine VICs. Cells (passage two to five) grown in 10 mL culture dishes were rinsed twice 

with 37°C warm PBS, then detached from the dish by treatment with trypsin/EDTA and 

finally diluted to a concentration of ca. 4.2 x 106 cells/mL with 1X DMEM with 10 % FCS 

and 1 % penicillin/streptomycin. For preparations of the final MatrigelTM/collagen type I 

matrix a volume of 1.17 mL, 100 µL 2X DMEM and 100 µL rat tail collagen type I 

(5 mg/mL; BD Biosciences, Franklin Lakes,NJ, USA) were mixed in an Eppendorf reaction 

tube on ice. 

In a second tube, 340 µL MatrigelTM (with basement matrix; BD Biosciences) was 

mixed with 277 µL of the diluted cell suspension. To neutralize the low pH of the collagen 

type I/DMEM solution, 340 µL 0.1 M NaOH were added, mixed by pipetting up and down 

and added to the cell/MatrigelTM solution. This solution was mixed by pipetting up and 

down, kept on ice, and the wells of a 24-well plate with membrane inserts of a mean pore 

size of 0.4 µm (BD Biosciences) were each filled with 150 µL and incubated for 1 h to 

polymerize the MatrigelTM/collagen type I solution. After the solution had polymerized to 

gel, the MatrigelTM/collagen type I matrix 3D constructs were covered with 0.5 mL DMEM 

(10 % FCS and 1 % penicillin/streptomycin) containing 50 µg/mL ascorbic acid. 

MatrigelTM/collagen type I matrix 3D constructs were cultivated for 2 weeks and were fixed 

in 4 % formaldehyde in PBS (w/v) for 24 h and embedded in paraffin after dehydration, in 

2.5 % glutaraldehyde (v/v) at 4°C for electron microscopy, or were frozen for cryostat 

sections (for detailed protocols of fixation of tissue pieces and 3D constructs see chapters 

3.2.2, 3.2.3 and 3.4.1). 

 

 

3.1.2.2     Collagen type I three-dimensional cultures 

To obtain ca. 3.12 mL of a 3D collagen type I culture suspension, five 10 mL 

culture dishes with confluent grown ovine VICs were detached and diluted in 0.75 mL 

DMEM (containing 10 % FCS and 1 % penicillin/streptomycin). 2 mL rat tail collagen type I 

with a concentration of 5 mg/mL (BD Biosciences) were mixed with 0.25 mL 10X DMEM 

and neutralized with 120 µL 10 M NaOH (all steps were performed on ice) and mixed with 

the VIC cell suspension to a final collagen concentration of 2 mg/mL. The 3D construct 

was polymerized at 37°C in an incubator for 1 h, then covered with DMEM medium 
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containing 10 % FCS, 1 % penicillin/streptomycin and 50 µg/mL ascorbic acid and 

incubated for one week with changes of the medium every two days. The 3D constructs 

were fixed as described for the MatrigelTM/collagen constructs (for detailed protocols of 

fixation of tissue pieces and 3D constructs see chapters 3.2.2, 3.2.3 and 3.4.1). 

 

 

3.1.2.3     Re-seeding of decellularized heart valve structures with valvular interstitial 

cells 

Freshly obtained pulmonary valve conduits including valve annulus, valve leaflets 

and pulmonary artery wall of young lambs (about 4 months old) were decellularized with a 

concomitant removal of the basal membrane material (Grauss et al., 2003; Kasimir et al., 

2003). To this end, valve conduits were washed twice in sterile PBS and incubated under 

shaking in 0.5 % trypsin in PBS containing 0.2 % EDTA at 37°C for 48 h (Bader et al., 

1998; Cebotari et al., 2002, 2006). The detergent solution was changed every 12 hours. 

To remove residual detergent, the valve conduits were finally washed twice in sterile PBS 

and stored in serum- and antibiotic-free DMEM medium at 4°C. Before the final utilization, 

decellularized valve conduits were incubated overnight at RT in serum- and antibiotic-free 

DMEM medium, to exclude potentially unsterile heart valves. 

The pulmonary heart valve leaflets were dissected (Figure 5) and five 

decellularized heart valve leaflets were fixed in a custom-designed culture chamber 

(Figure 6; Akhyari et al., 2009b). The leaflets were covered with ca. 300 µL serum-free 

DMEM medium containing 1 % penicillin/streptomycin. The valves were incubated 

overnight at 37°C in an incubator. The next day, ca. 250,000 ovine VICs in DMEM medium 

containing 10 % FCS and 1 % penicillin/streptomycin were seeded on each decellularized 

valve and incubated for 10 days with changing of the medium every three days. 

Afterwards the re-seeded heart valves were fixed and prepared for paraffin-embedding, 

cryosectioning, electron microscopical and biochemical analysis (for detailed protocols of 

fixation of 3D constructs see chapters 3.2.2, 3.2.3 and 3.4.1). 
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Figure 5: Preparations of decellularized ovine pulmonary valves. (a) Decellularized ovine 
pulmonary valve conduit with closed pulmonary heart valve (see arrow) and adjacent pulmonary 
artery walls (arrowheads). (b) Dissected, opened valve conduit showing the three pulmonary heart 
valve leaflets (see arrows). (c) Higher magnification of decellularized heart valve leaflets.  
(d) Dissected decellularized pulmonary heart valve leaflets. 
 

 
 

Figure 6: Custom-designed culture chamber. (a) Bottom part with four circular holes, each of them 
covered with a square glass disk. A screw thread is located in the middle. (b) Bottom part with four 
heart valve leaflets placed on the glass disks. (c) Upper part of the culture chamber with four 
circular holes, each covered with a glass disk. In the middle of each disk, a cylindrical plastic tube 
is attached leaving a fourfold circular hole in the glass. In the center of the incubation chamber, a 
hole corresponding to the screw thread of the bottom part of the chamber, is left. (d) Upper part 
tightened to the bottom part. The heart valve leaflets are placed and fixed between the glass disks of 
the bottom part and the plastic tubes of the upper part of the chamber. Medium changes can be 
performed through the holes in the glass disks of the upper part without opening the culture 
chamber. 
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3.1.3 Small interference RNA transfection 
For small interference RNA (siRNA) transfection (Elbashir et al., 2001; Tuschl and 

Borkhardt, 2002), siRNA specific for mRNA encoding human plakophilin-2 and N-cadherin 

as well as control siRNAs (ON-TARGETplus SMARTpool, non-targeting control siRNA) 

and lamin A/C siRNA were obtained from Dharmacon (Chicago, USA). Primary cultures of 

VICs derived from human mitral heart valves (passage 5-8) were plated on 6-well plates 

covered with poly-L-lysine (each well was supplied with three glass cover slips) with 

DMEM containing 10 % FCS and 1 % penicillin/streptomycin. In total, one 6-well plate for 

each time point (48 h, 72 h and 96 h) was used. The cells were used 2-3 days after 

seeding at a mean confluency of ca. 70 %. 

The siRNA transfection experiments were basically performed according to the 

manufacturer’s protocol using minor modifications as described elsewhere (Pieperhoff et 

al., 2008) and serum- as well as antibiotic-free DMEM medium. The cells of the six wells of 

each 6-well plate were treated as follows: 1) plakophilin-2 siRNA with transfection reagent, 

2) N-cadherin siRNA with transfection reagent, 3) lamin A/C siRNA with transfection 

reagent, 4) control siRNA with transfection reagent, 5) medium with transfection reagent 

without siRNA, 6) DMEM medium without transfection reagent or siRNA. The cells were 

then incubated at 37°C in an incubator. After 48 h, the samples for the first time point were 

taken, whereas the medium of the other 6-well plates was replaced by normal culture 

medium (10 % FCS, 1 % penicillin/streptomycin) to avoid cytotoxicity caused by the siRNA 

or the transfection reagent, respectively. 

The coverslips with the cells were briefly washed twice in 37°C warm PBS and 

fixed for 5 min in -20°C cold methanol, following by a fixation step for 30 sec in -20°C cold 

acetone. The subsequent preparations for immunofluorescence microscopy are described 

in chapter 3.3. For the analysis of the siRNA knock-down results monoclonal antibodies 

(mAbs) against plakophilin-2, N-cadherin and lamin A/C were used. Nuclei were stained 

with DAPI. Cells which have grown in the wells beside the glass coverslips were taken for 

lysates used for immunoblot analysis (for details of the biochemical analysis see chapter 

3.5). 
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3.2 Light microscopy 
 

3.2.1 Fixation of cultured cells 
 Cells grown on glass coverslips coated with collagen type I or poly-L-lysine were 

fixed either by incubation in -20°C cold methanol and acetone or by 37°C warm 2 % 

formaldehyde, freshly prepared from paraformaldehyde powder, in PBS, pH 7.4 (see 

Table 4). 

 

 

3.2.1.1     Methanol/acetone fixation 

 Cells grown on glass coverslips were washed twice with 37°C warm 1X PBS and 

fixed in -20°C cold methanol for 5 min, followed by an incubation step in -20°C cold 

acetone for 30 sec. After the coverslips had dried, they were either used directly for 

immunofluorescence microscopy or were stored frozen at -20°C. 

 

 

3.2.1.2     Formaldehyde fixation 

 Cells grown on glass coverslips were washed twice with 37°C warm PBS and 

incubated for 3-5 min in 37°C warm 2 % formaldehyde in PBS (w/v). After fixation, the 

cells were washed twice with PBS for 5 min and used immediately for 

immunofluorescence microscopy. To this end, the fixed cells were incubated twice each 

for 5 min in PBS containing 50 mM NH4Cl to saturate free reactive aldehyde groups. 

Afterwards the cells were incubated with Triton-X-100 (0.1 %; w/v) or saponin (0.1 %; w/v) 

in PBS for 5 min. After two washing steps with PBS for 5 min, the cells were incubated 

with the primary antibodies (for the following immunofluorescence microscopy see chapter 

3.3). 

 
 

3.2.2. Preparation of snap-frozen tissue and fixation of cryotome sections 
 Tissues or 3D cultures with entrapped VICs were washed gently in 37°C warm 

PBS to remove residual blood or culture medium. Then the tissues or 3D cultures were 

frozen in isopentane cooled to the temperature of liquid nitrogen. The specimens were 

incubated in isopentane for a few minutes (duration depended on the specific size of the 

frozen samples) and were then stored in plastic vials with ca. 5 mL isopentane at -80°C. 

For immunofluorescence microscopy, frozen specimens were cut with a cryotome into ca. 
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4 µm thin sections at -20°C. The sections were immediately placed on Menzel Super Frost 

glass object slides (Thermo Fisher Scientific, Rockford, IL, USA) and dried at RT for 30 

min. For initial histological investigations, some sections were incubated in 0.5 % 

methylene blue (w/v), washed with H2Odest and examined under the microscope to define 

the “area of interest”. The sections to be used for immunofluorescence microscopy were 

fixed with incubation with -20°C cold acetone for 10 min, then dried at RT for 5 min, and 

then either used or stored frozen at -20°C. Before incubation with antibodies, the frozen 

sections were treated with Triton-X-100 (0.1 %; w/v) for 5 min (for immunofluorescence 

microscopy see chapter 3.3). 

 

 

3.2.3 Preparation of paraffin-embedded tissue and microwave-assisted 
antigen-retrieval 
Tissues or 3D cultures with entrapped VICs were cut into small pieces of ca. 

0.5 cm side length and fixed in freshly prepared 4 % formaldehyde in PBS, pH 7.4 (w/v) for 

24 h at 4°C. After passage through an increasing ethanol dehydration series, the 

dehydrated samples were embedded in low-melting paraffin. The paraffin-embedded 

specimens were pre-cooled at -20°C for 1-2 h and then cut into 3-4 µm thin sections. The 

sections were placed on Menzel Super Frost glass object slides and dried overnight at 

40°C in a heating chamber. Then the sections were stored in a dark and dry place at RT 

until they were used for immunofluorescence microscopy. 

 After the fixation with formaldehyde and the embedding in paraffin, tissue 

structures are usually relatively well preserved but the accessibility of the antigenic 

molecules may be reduced. To overcome this problem, sections through paraffin-

embedded tissues were treated by antigen-retrieval; a microwave-assisted method to 

reveal protein epitopes to the antibodies (Shi et al., 1991). Before microwave treatment, 

the sections were rehydrated in a decreasing ethanol series (2X xylene, 2X 100 %, 

1X 90 %, 1X 80 %, 1X 70 % and 1X 50 % ethanol, each step for 5 min, following a 

washing step with H2Odest). Sections were then treated in a special microwave pressure 

cooking pot either at 115°C in a Tris-urea buffer at pH 11 for 10 min or at 98°C in a citrate 

buffer at pH 6 for 10 min in a microwave processor (for compositions of the buffers see 

Table 4). After treatment, the microwave pressure cooking pot was cooled for 12 min with 

cold water. Afterwards the sections were taken out of the pot and were washed in H2O. 

Then the sections were incubated in 2 % milk powder (w/v) in PBS containing 0.2 % 

Triton-X-100 (w/v) for 20 min at RT (for the further immunofluorescence microscopy see 
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chapter 3.3). Sections through paraffin-embedded tissues were also used to perform 

hematoxylin-eosin (HE) and Masson-Goldner trichrome stainings (Masson, 1929; Goldner, 

1938). 

 

 

3.2.4 Preparations of ventricular endothelium 
Sheets of endothelial cells were prepared from bovine ventricular endocardium of a 

heart freshly obtained from a local abattoir. Ventricles of the heart were opened and rinsed 

with PBS to remove erythrocytes from residual blood. The cell sheets were then scraped 

with a glass object slide and transferred to a fresh slide (Franke et al., 1979a, 1987b, 

1988; Cowin et al., 1986). The sheets were shortly dried at RT, the puritiy was observed 

under the microscope and the sheets were fixed with methanol/acetone fixation (chapter 

3.2.1.1). Immunofluorescence microscopy was performed as described in chapter 3.3. 

 

 

3.3 Immunofluorescence microscopy 
For immunofluorescence microscopy, the cells grown on coverslips or the tissue 

sections were fixed as described in chapter 3.2. After treatment with either Triton-X-100 or 

saponin, the sections or the cells grown on glass coverslips were washed three times in 

PBS at RT for 5 min and then incubated with the primary antibodies (Abs) in varying 

dilutions (supernatants were used undiluted, purified antibodies were diluted according to 

the manufacturer’s recommendations) in a wet chamber for 1 h. After three washing steps 

with PBS at RT for 5 min, the samples were incubated with the secondary Ab (dilution 

1:500) for 30 min, following an incubation step with DAPI (1:10,000) for another 5 min. For 

double-immunolabeling microscopy, the primary as well as the secondary Ab was used in 

double concentration. 

Afterwards, the specimens were washed twice with PBS for 5 min and once with 

H2Odest for 1 min and fixed in 100 % ethanol for 5 min at RT. The coverslips or tissue 

sections were dried at RT for 5 min and then mounted with Fluoromount-G (Southern 

Biotechnology Associates, Birmingham, AL, USA) and cover glasses. The cells on the 

coverslips or the tissue sections were observed either with an Axiophot 2 (Zeiss) or with a 

confocal laser scanning microscope (LSM) 510 (Zeiss). Micrographs were obtained by an 

AxioCam MRc camera. Image processing was performed with the commercial programs 

LSM Image Browser Rel. 4.2, Axiovision LE. Rel. 4.4 and Adobe® Photoshop® CS3. 

 



________________________________________________________________Methods 

 40

3.4 Electron microscopy 
Buffers and chemicals used for electron microscopy are listed in Table 4. 

 

3.4.1 Conventional transmission electron microscopy 
For conventional transmission electron microscopy, cells grown on glass coverslips 

were washed twice with 37°C warm PBS and incubated in 2.5 % glutaraldehyde in sodium 

cacodylate buffer (v/v; Serva, Heidelberg, Germany) at 4°C for 10 min. Pieces of freshly 

obtained tissues or 3D cell cultures were dissected immediately into smaller pieces (ca. 

1 x 1 mm side length) and incubated in 2.5 % glutaraldehyde in sodium cacodylate buffer 

(Table 4) at 4°C for 20 min (Sabatini et al., 1963; Fahimi and Drochmans, 1965; for review 

see Hayat, 1970). Both cells grown on glass coverslips or tissue pieces were then washed 

three times for 5 min with 4°C cold sodium cacodylate buffer (50 mM) and incubated in 

2 % osmium tetroxide in sodium cacodylate buffer (v/v) for 2 h at 4°C in order to fix lipids, 

in particular membranes (for reviews see Hayat, 1970; Glauert, 1975). The specimens 

were then washed three times in H2Odest for 5 min and incubated overnight in 0.5 % 

uranylacetate in distilled water (w/v) at 4°C, followed by three washes each for 10 min 

(cells on glass coverslips) or 20-30 min (tissue pieces) in H2Odest, dehydration in an 

ethanol series (1X 50 %, 1X 60 %, 1X 70 %, 1X 80 %, 1X 90 %, 1X 95 %) on ice, finally 

twice each in 100 % ethanol, and by incubation in propylene oxide at RT. 

After dehydration, cells on glass coverslips or tissue pieces were incubated 

overnight in a 1:1 (v/v) mixture of Epon 812 (Serva) and propylene oxide at RT. Tissue 

pieces were rotated to ensure penetration of the resin into the tissue. The propylene oxide 

was then allowed slowly to evaporate, ensuring complete penetration of both the cells on 

coverslips and the tissue pieces by the epoxy resin. The next day, the specimens were 

incubated with fresh Epon 812 for another 4-5 h and finally embedded in fresh Epon 812. 

Cells on glass coverslips were mounted with a gelatin capsule filled with Epon 812 and 

tissue pieces were embedded in silicone rubber molds (Plano, Wetzlar, Germany) filled 

with Epon 812. 

The embedded tissue pieces and the cells grown on coverslips were incubated for 

2 days in a heating chamber at 60°C which led to maximal hardening of the resin. The 

glass coverslips were removed (with a “crack”) from the gelatin capsules after freezing in 

liquid nitrogen for a few minutes. Then the tissues or cells embedded were cut with an 

ultramicrotome into ultrathin sections of ca. 60 nm, and the sections were placed on 

100 mesh copper grids covered with a very thin film of 1 % pioloform in chloroform (w/v) to 

enhance the adhesion and the stability of the section. 
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Staining of ultrathin sections was performed by incubating the sections in 4°C cold 

2 % uranylacetate in methanol (w/v) for 15 min, followed by three washing steps (1X in 

methanol, 2X in H2Odest, for 3 min each), incubation in lead citrate for 5 min (Table 4; 

Reynolds, 1963) and three washes in H2Odest for 3 min each. The sections were finally 

dried and observed with an EM 900 (Zeiss) at 80 kV. Pictures were taken on Kodak 

electron microscopy negative films (No. 4489; 3.25X4 inch; Sigma-Aldrich) and the 

negatives were developed (developer D19 Kodak and fixer Agefix Agfafoto 51) in a 

darkroom. The negatives were then scanned with an Epson scanner and processed 

further by Adobe® Photoshop® CS3. 

 

 

3.4.2 Immunoelectron microscopy 
For immunoelectron microscopy, the “pre-embedding” method was chosen, which 

means that the antibody reactions were performed before the specimens were embedded 

in the resin. To this end, cells grown on glass coverslips or sections of snap-frozen tissues 

or through 3D cultures were placed on glass coverslips and fixed in 2 % formaldehyde, 

freshly prepared from paraformaldehyde powder, in PBS pH 7.4 (w/v) at RT for 3-7 min, 

then shortly washed in PBS and immediately transferred into 50 mM NH4Cl in PBS (w/v) 

twice for 5 min. After a short wash in PBS, followed by detergent treatment with 1 % 

saponin in PBS (w/v) for 3-5 min, cells grown on coverslips or tissue sections mounted on 

coverslips were washed twice in PBS for 5 min, and incubated with the primary Ab solution 

in a wet chamber for usually 1 h, using dilutions as in immunofluorescence microscopy. 

After three 5 min washing steps in PBS, the coverslips were incubated with 

Nanogold-coupled secondary Abs specific for the species of the primary antibodies used 

(anti-mouse, or anti-rabbit or anti-guinea pig IgG, usually in a dilution of 1:50 [v/v]; 

Nanoprobes, Yaphank, NY, USA) for 3-4 h. The samples on coverslips were then washed 

in PBS twice for 5 min each and incubated in 2.5 % glutaraldehyde in sodium cacodylate 

buffer for 15 min at 4°C. The glutaraldehyde-containing solution was then gently washed 

away with sodium cacodylate buffer (50 mM), and the coverslips bearing the samples 

were incubated in a sucrose solution (13.6 g sucrose in 200 mL 50 mM HEPES buffer, 

pH 5.8) twice for 3 min each. This was followed by a silver-enhancement step 

(Nanoprobes, HG SilverTM Enhancement Kit) for which usually three different time points 

were chosen: 6 min, 7 min or 8 min. 

Finally, the coverslips with the fixed material were directly incubated in a sodium 

thiosulfate pentahydrate solution (see Table 4) twice for 3 min each. After two washing 
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steps in H2Odest for 3 min each the coverslips bearing the samples were incubated in 0.2 % 

osmium tetroxide at 4°C for 30 min. The osmium tetroxide was then carefully washed 

away with H2Odest and the coverslips were dehydrated and embedded as already 

described for conventional ultrathin section electron microscopy (see chapter 3.4.1). 

 

 

3.5 Protein gel electrophoresis 
For the identification of proteins present in cultured cells or tissues, sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblot analysis using 

specific antibodies were performed. 

 

 

3.5.1 Preparation of cell culture and tissue lysates for gel electrophoresis 
Cultured cells in 6-well plates or in culture dishes (5 or 10 cm in diameter) were 

washed twice gently with 37°C warm PBS to remove dead cells, debris and residual 

medium. The cells were covered with 200-300 µL 2X Laemmli buffer (Laemmli, 1970) 

containing dithiothreitol (DTT) and SDS for cell lysis, to dissociate proteins and protein-

complexes into polypeptides and to negatively charge the polypeptides present. 1 µL 

benzonase (Merck, Darmstadt, Germany) was added and incubated for 30 sec at RT 

under agitation to remove DNA and RNA. The cells were then collected with a cell scraper 

(Sarstedt, Nümbrecht, Germany), transferred into an Eppendorf reaction tube and heated 

at 95°C for 5 min under agitation to denature and SDS-couple the polypeptides. The 

samples were centrifuged at 13,000 rpm for 3 min at RT and the resulting supernatants 

were either used directly or stored frozen at -20°C. 

Tissue lysates were obtained from ca. 10 µm thin sections of frozen tissues or 

areas dissected therefrom (Moll et al., 1982b; for freezing procedures and preparations of 

cryotome sections see chapter 3.2.2), collected in pre-cooled (-20°C) Eppendorf reaction 

tubes and supplemented with 200 µL 2X Laemmli buffer containing 1 µL benzonase. The 

suspensions were homogenized with a glass homogenizer, heated and centrifuged at 

13,000 rpm for 3 min. The resulting supernatant was used directly or was stored frozen at 

-20°C. 
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3.5.2 SDS-PAGE 
SDS-PAGE is based on the principle that glycopolypeptides or polypeptides 

modified otherwise can be separated according to their electrophoretic mobility in the 

SDS-coupled states in a reduced form. Therefore DTT is added as a reducting agent to 

destroy disulfide bridges. SDS solutions at elevated temperatures are used to break up the 

secondary and tertiary structures of the proteins by destroying hydrogen bonds and 

dissociate the resulting SDS-modified polypeptide-based chains. SDS-modification also 

charges the polypeptide-based chains negatively, so that the polypeptide chains migrate in 

the electric field in relation to their specific charge and mass. 

15 µL of the supernatant of the sample were filled per slot of the gel (Tris-glycine 4-

20 % gels; Anamed, Groß-Bieberau, Germany), and the gel was placed in a gel chamber 

filled with 1X electrophoresis running buffer (Table 4). As reference system for the 

molecular weight of the polypeptide-based chains, a marker set (broad range 2-212 kDa; 

New England Biolabs, Ipswich, MA, USA) with 13 polypeptides of known molecular weight 

and SDS-gelelectrophoretic mobility was used (Table 6). 

 

 
Table 6    Components, sources and molecular weights of the polypeptide markers 

Polypeptides Source Calculated MW1 in kDa  

Myosin, heavy chain rabbit muscle 212 

MBP22-β-galactosidase E.coli 158 

β-galactosidase E.coli 116 

Phosphorylase b rabbit muscle 97.2 

Serum albumin3 bovine 66.4 

Glutamic dehydrogenase bovine liver 55.6 

MBP2 E.coli 42.7 

Thioredoxin reductase E.coli 34.6 

Triosephosphate isomerase3 E.coli 27 

Trypsin inhibitor soybean 20 

Lysozyme chicken egg white 14.3 

Aprotinin bovine lung 6.5 

Insulin A bovine pancreas 3.4 

1MW=molecular weight, 2MBP=maltose-binding-protein, 3serum albumin and triosephosphate isomerase are at 
double intensity to serve as reference points 
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3.5.3 Transfer of polypeptides onto a membrane 
The polypeptides separated on SDS-PAGE (see chapter 3.5.2) were transferred 

from the gel onto a polyvinyliden fluoride membrane (PVDF; Immobilon-P, Millipore) using 

a special semi-dry transfer technique (Kyhse-Andersen, 1984). To this end, a PVDF-

membrane sheet was rinsed in isopropanol and equilibrated in transfer buffer 2 (25 mM 

Tris, 20 % isopropanol, pH 10.4). The gel was equilibrated in buffer 3 (40 mM norleucine, 

24 mM Tris, pH 9.4). Whatman® 3MM-Paper sheets (Sigma-Aldrich) were equilibrated in 

transfer buffer 1 (300 mM Tris, 20 % isopropanol, pH 10.4), in transfer buffers 2 and 3, 

respectively, and arranged with the gel and the PVDF-membrane in the following order in 

the blotting chamber (see scheme below). The semi-dry blot was run for 1.5 h at 130 mA. 

 

 
cathode 

3 Whatman-Paper in transfer buffer 3 

SDS-gel in transfer buffer 3 

PVDF-membrane in transfer buffer 2 

2 Whatman-Paper in transfer buffer 2 

3 Whatman-Paper in transfer buffer 1 

anode 

 

 

Then the membrane with the separated polypeptide-containing bands was stained 

for 1 min in Coomassie brilliant blue staining solution (Table 4) to visualize the polypeptide 

bands. Background staining was reduced by washes in destaining buffer (Table 4). The 

membranes were then dried, marker bands marked with a “permanent pen”, and the 

membranes were scanned and documented. 

 

 

3.5.4 Antigen detection by immunoblotting reaction 
The detection of the polypeptides bound to the PVDF-membrane was usually 

performed using an indirect enzyme-immuno-assay. To block non-specific binding 

reactions, the PVDF-membranes were rinsed in isopropanol and incubated for 30 min at 

RT in a “blocking solution” with 5 % milk powder in PBS containing 0.05 % Tween®20 

(Sigma). For the immunodetection (“Western blot”) of the bound proteins, primary 

antibodies were diluted in this blocking solution according to the manufacturer’s 

recommendations. In general, purified antibodies were diluted 1:1000 and hybridoma cell 
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culture supernatants 1:5 or 1:10. The membranes were incubated with the Ab solutions on 

a shaker at RT for 1 ½ h. Afterwards, the membranes were washed in PBS containing 

0.05 % Tween®20 for 10 min and then twice with the blocking solution for 10 min each to 

remove residual primary antibodies. 

The membranes were then incubated with the secondary Abs on a shaker at RT for 

1 h. The secondary Abs (mostly in a dilution of 1:5,000 in blocking solution) used for 

immunoblots were species-specific Abs coupled to HRP. Thereafter, the membranes were 

washed three times in PBS at RT for 5 min to remove residual secondary Abs and to 

diminish background reactions. The antibody-HRP complexes were then visualized by a 

chemiluminescent immunoblotting substrate containing luminol (ECL; Thermo Fisher 

Scientific). The ECL-reaction leads to the emission of low intensity light at 428 nm which 

was detected on a medical film (18X24 cm; Konika-Minolta, Langenhagen). The films were 

scanned and images processed further by Adobe® Photoshop® CS3.  

 

 

3.6 Immunoprecipitations 
To identify potential binding partners and protein complexes of specific 

polypeptides, immunoprecipitations (IPs) were performed with lysates of cultured 

pulmonary VICs of ovine and bovine origin. For this purpose, twelve cell culture dishes 

(10 cm in diameter) with VICs grown to confluency were washed gently twice with 4°C 

cold PBS and the cells were immediately lysed with 6 mL RIPA buffer (Table 4) containing 

a protease inhibitor cocktail (Complete Mini Inhibitor Tabs; Roche Diagnostics, 

Mannheim, Germany) and 2 µL benzonase (Merck). The cell lysate was homogenized 

using a Dounce glass homogenizer and incubated at 4°C for 1 h. 

In the meanwhile, 50 µL of magnetic “Dynabeads” (“pan-mouse Dynabeads” 

coated with human anti-mouse IgG mAb; Dynal, Hamburg, Germany) were washed three 

times with 4°C cold RIPA buffer in an Eppendorf reaction tube. The buffer was replaced 

by 1 mL of the cell lysate and incubated on a rotator at 4°C for 3 h. 

In parallel, in a second reaction tube 50 µL magnetic beads were washed three 

times with 1 mL 4°C cold 50 mM Tris-HCl buffer at pH 7.5. The buffer was replaced by 

1 mL of the specific Ab (mouse mAbs were diluted 1:100 and hybridoma cell culture 

supernatants 1:5 or 1:10 in 50 mM Tris-HCl buffer) and incubated on a rotator at 4°C for 

3 h. The remaining Ab-containing solution was aspirated and the beads were washed five 

times with RIPA buffer for 1 min. Then, the “bead-treated” cell lysate was incubated with 

the antibody-coupled beads and incubated on a rotator at 4°C over night. The resulting 
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supernatant was then aspirated and the beads were again washed five times with RIPA 

buffer for 1 min each. After a very short centrifugation step, the residual buffer was 

removed and the beads were treated with 100 µL 2X Laemmli buffer and incubated at 

95°C for 3 min. Subsequently SDS-PAGE and immunoblotting of the polypeptides bound 

to the antibody-beads was performed. 

To show the presence of the essential proteins studied, an aliquot of the original 

cell lysate obtained before the IP was used. Moreover, lysates of tissue material obtained 

from dissected ventricle tissues as well as corresponding control lysates of cultured 

pulmonary VICs were used in parallel. To control for unspecific binding of proteins present 

in the initial cell lysate to the beads, aliquots of bead suspension before IP (“pre-clear”, 

negative control) and of “control” mAbs (desmocollin 1 and 3 and VE-cadherin) against 

unrelated proteins were used. 

 

 

3.7 Polymerase chain reaction 
 

3.7.1 Preparation of total RNA from heart valve tissue and cultured valvular 
interstitial cells 
For the preparation of total RNA from heart valve tissue or cultured VICs of bovine 

origin, the commercial Rneasy Mini Kit from Qiagen (Hilden, Germany) was used. Cells 

grown in culture or sections of frozen tissue were used. Scraped cells or tissue sections 

were dispensed in 600 µL “RLT” buffer with guanidine thiocyanate (containing 10 µL/mL β-

mercaptoethanol). The resulting lysates were transferred in 2 mL “QIAshredder” columns 

and centrifuged at RT at 13,000 rpm for 2 min to separate the DNA from the RNA. The 

eluate was mixed with 600 µL 70 % ethanol and homogenized. This solution was then 

transferred to an “Rneasy mini” column and centrifuged again at RT at 13,000 rpm for 

2 min. The flow-through was discarded and the column was washed with 700 µL “RW1” 

buffer with ethanol. To remove residual buffer, the column was shortly centrifuged and 

again washed twice with 500 µL “RPE”. Afterwards, the column was centrifuged for 2 min 

at RT at 13,000 rpm to remove the buffer from the column. The RNA was then eluted into 

a fresh Eppendorf reaction tube with 30-50 µL Rnase-free water. The column was 

centrifuged another minute at RT at 13,000 rpm to elute the bound RNA. The RNA was 

then used directly for cDNA synthesis or stored at -80°C. 
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3.7.2 cDNA synthesis 
Using the reverse transcriptase reaction (according to Frohman et al., 1988) and 

random hexamer oligonucleotide primers, mRNA was transcribed into cDNA for the further 

analysis by polymerase chain reaction (PCR). 10 µg of the isolated mRNA were denatured 

in 12 µL Rnase-free water at 65°C for 3 min, and 2 µL 10X reverse transcription buffer (RT 

buffer, Table 4), 0.74 µg “random primer” (Roche Diagnostics), 10 units AMV transcriptase 

and 20 units Rnase inhibitor (Roche Diagnostics) were added for incubation at 42°C for 

1 h, followed by an incubation step at 52°C for 30 min. 

 

 

3.7.3 Polymerase chain reaction 
The PCR was used to amplify specific DNA fragments. To this end, specific 

oligodesoxyribonucleotides (primers) were synthesized so that one primer was 

complementary to the coding sequence (forward) and the other primer was 

complementary to the non-coding sequence (reverse) of the DNA sequence of the gene of 

interest. To allow the binding of the primers to the double-stranded DNA sequence, the 

DNA was denatured by heat. The Taq (Thermus aquaticus)-polymerase (1 units/µL; 

Fermentas, St. Leon-Rot, Germany) was used to synthesize the specific complementary 

strand in a thermocycler. 

 

For an experimental volume of 50 µL, the composition of the reaction solution was as 

follows: 

 

2 µL   cDNA, 

35 µL   H2Odest,  

5 µL   dNTPs (10 mM), 

5 µL   10X PCR buffer, 

1 µL   forward primer (10 pmol/µL), 

1 µL   reverse primer (10 pmol/µL), 

1 µL   Taq-polymerase  

 

 

 

 

 



________________________________________________________________Methods 

 48

The thermocycler was programmed according to the following protocol: 

95°C   2 min 

95°C   30 sec 

58°C   30 sec        30 cycles 

72°C   45 sec 

72°C  10 min 

 

Depending on the specific sizes of the amplified fragments and on the compatibility of the 

primer pairs, respectively, the protocol was optimized with variations both in temperature 

and duration.  

 

Primers used (5’-3’) 

 

α-E-catenin    forward: TTT CTC AAG GAG GAG CTT GTG 

reverse: TGC CTG GGA TGC AGT ATA GA 

 

α-N-catenin    forward: ATG ACT TCG GCA ACT TCA CC 

reverse: CTC ATG ACA TCT GCC ATG TC 

 

α-T-catenin    forward: GAA AAG ATT GCT GAG CAA GT 

reverse: GAC ATT TTC ACT GTT TGC ACT A 

 

GAPDH           forward: CCA TCA CCA TCT TCC AGG AG 

reverse: ATC CAC AGT CTT CTG GGT GG 
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3.7.4 Agarose gel electrophoresis 
To analyze the PCR fragments obtained, the DNA was separated by 

electrophoresis on an agarose gel. Here the mobility of double-stranded DNA is 

reciprocally proportional to the logarithm of the numbers of base pairs, so that the DNA 

fragments can be separated in an electrical field according to their sizes. Ethidium 

bromide is able to intercalate in guanine-cytosine-base pairs and is therefore used for the 

visualization of the DNA fragments in the agarose gel under ultraviolet light. 

 Depending on the sizes of the DNA fragments, the proportion of agarose in the 

gels differed between 0.8 % (w/v) and 1.5 % (w/v). The agarose was dissolved in 1X TAE 

buffer (Table 4) and boiled. After cooling down to 50-60°C, the agarose/TAE solution was 

mixed with 0.75 µg/µL ethidium bromide and filled into a gel chamber with a separating 

ridge. The DNA samples were then mixed with loading buffer (1/6 of the total volume; 

0.25 % bromphenol blue, 0.25 % xylene cyanol, 15 % ficoll) and filled into the gel pockets. 

One of the pockets was filled with a DNA-size reference (Bluescribe vector digested by 

Hinf I; Roche Diagnostics). Depending on the length of the gel, the voltage used differed 

between 80-120 V. The DNA bands obtained were documented under 

ultraviolet light (E-Box, 1000/20M; Peqlab, Erlangen, Germany) using a wavelength of  

312 nm. 
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4 Results 
 

4.1 Coniunctiones adhaerentes – Plakophilin-2-containing 
adherens junctions, a novel type of cell-cell connections in 
the heart valve 
According to current textbooks, there are three – and only three – types of plaque-

asscociated cell-cell junctions (Farquhar and Palade, 1963; Campbell and Campbell, 

1971; Staehelin, 1974): (1) The desmosomes (maculae adhaerentes; for recent reviews 

see Green and Simpson, 2007; Holthöfer et al., 2007; Desai et al., 2009), (2) adherens 

junctions (AJs; zonulae adhaerentes, fasciae adhaerentes and puncta adhaerentia; for 

recent reviews see Perez-Moreno et al., 2003; Ebnet, 2008; Harris and Tepass, 2010), 

and (3) tight junctions (TJs; zonulae occludentes; for recent reviews see Matter and Balda, 

2003; Niessen, 2007; Ebnet, 2008). Since the mid-1990s, however, it has become clear 

that there are further types of related junctions which morphologically and with respect to 

their molecular composition cannot easily be subsumed under the hitherto known junction 

categories. Such novel types of junctions include extreme forms connecting mesenchymal 

cells such as the minimal dot junctions (puncta adhaerentia minima; see Wuchter et al., 

2007) as well as the variously-sized, often gigantic forms of “taproot” AJs (manubria 

adhaerentia; Wuchter et al., 2007), the cortex adhaerens structures connecting vertebrate 

eye lens fiber cells (Straub et al., 2003), the so-called “sandwich junctions” described in 

various stratified squamous epithelia and carcinomas derived therefrom, as well as in the 

Hassall bodies of the thymus (iuncturae structae; Langbein et al., 2002, 2003), the puncta 

occludentia (Schlüter et al., 2007) and the complex junctions connecting the special 

endothelial cells of the lymphatic vessel system (complexus adhaerentes; Schmelz et al., 

1990, 1994; Schmelz and Franke, 1993; Hämmerling et al., 2006; Moll et al., 2009; see 

there for further references). 

The composite junctions (areae compositae) have gained special importance for 

the evolution and the ontogenic development of the mammalian heart. These mostly 

extended adhering junction structures occupy most of the intercalated disk (ID) regions 

connecting cardiomyocytes, and their formation is only postnatally completed (Borrmann, 

2002; Borrmann et al., 2006; Franke et al., 2006; Pieperhoff and Franke, 2007). Here, the 

findings that mutations in some of the desmosomal proteins amalgamated in these 

composite junctions can lead to hereditary arrhythmogenic right ventricular 

cardiomyopathy/dysplasie (ARVC/D), often resulting in the so-called “sudden death” of 
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otherwise healthy human beings, has greatly stimulated a special field of clinical, 

epidemiological and cardiological research (for references see, e.g., Bazzi and Christiano, 

2007; Marcus et al., 2007; Awad et al., 2008; Corrado et al., 2009; Herren et al., 2009; 

Saffitz, 2009; Pieperhoff et al., 2010; Sen-Chowdhry et al., 2010). 

 

 

4.1.1 The adhering junctions of valvular interstitial cells in the adult heart 
valve in situ 
The cell-cell junction proteins of valvular interstitial cells (VICs) in situ and in cell 

culture have been studied by immunocytochemical and biochemical methods. 

 

 

4.1.1.1     Histological appearance of the adult mammalian heart valve 

The heart valve interior consists of large amounts of extracellular matrix (ECM), 

including collagen and elastin fibers in various degrees of thickness and in spatial patterns 

often related to VIC processes. In initial immunofluorescence microscopical studies I have 

noted that the adhering junctions connecting the interstitial cells of the heart, notably those 

of the valves, grosso modo appear to be of a basic AJ-type but also show certain 

specialties. On the other hand, at that time the group of Latif and coworkers had just 

reported that the junctions connecting these VICs would contain desmosomal “marker” 

molecules such as desmoglein (Latif et al., 2005, 2006). Therefore, and because of the 

importance of VICs and their connections and interactions in the ECM in in vitro constructs 

as well as in situ, I have decided to study the VIC structures and their molecular junction 

complement in detail. 

The hematoxylin-eosin staining (Figure 7a; nuclei are stained dark blue and the 

cytoplasm is stained purple) showed that the VICs were dispersed loosely throughout the 

heart valve matrix. The amounts and the distribution pattern of the collagen fibrils, stained 

in red, differ in relation to the compartmentalization of the heart valve into three different 

layers: The ventricularis, the spongiosa and the fibrosa. The ventricularis (Figure 7a, right 

hand side of the heart valve section) shows a semi-dense packing of collagen fibril 

bundles, whereas the spongiosa – seen in the central portion – is characterized by a 

rather loose (“spongy”) distribution of collagen. By contrast again the fibrosa consists of 

rather densely packed collagen fibrils (Figure 7a, left hand side of the heart valve). The 

trichrome staining of the cross-section through an ovine heart valve shows that the heart 

valve matrix extends over the adjacent myocardium with relatively thin protrusions into the 
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myocardial region (Figure 7b; muscle tissue is stained red, nuclei deep-blue, cytoplasm 

light red and the collagen fibril bundles green). 
 

 

 
 

Figure 7 Cross-sections through formaldehyde-fixed, paraffin-embedded ovine heart valves. (a) 
Hematoxylin-eosin staining of an ovine aortic heart valve. (b) Trichrome staining according to 
Masson-Goldner of an ovine aortic heart valve with adjacent myocardium (lower right). 
Bars: 200 µm 
 

 

4.1.1.2     The extracellular matrix components of the heart valve 

In all species studied, elastin fibers are prominent components of the valvular ECM 

of the heart valve. Most of them are located at the ventricularis but decent amounts can be 

also found in central regions of the spongiosa and close to the collagen-rich area as of the 

fibrosa (Figure 8a). Obviously, collagen fibril bundles make up the major part of the ECM 

and occur in various molecular types. The most abundant collagen type I, often appears to 

be restricted to the fibrosa (Figure 8b), but in some places can also extend and protrude 

into the spongiosa (Figure 8c) or extend throughout the whole leaflet up to the tip of the 

heart valve (Figure 8d). Fibrils containing collagen type VI, in contrast, are abundant in the 

ventricularis (Figure 9a), sometimes with a few protrusions towards the middle part of the 

valve and into the spongiosa (Figure 9b). Similar to the distribution of collagen type I, 

collagen type VI is also located all over the valvular cusp up to the most distal regions of 

the valve (Figure 9c). Finally, collagen type VII is not restricted to a special layer and 

occurs rather ubiquitously in the valve (Figure 9d). 

The non-collagenous ECM protein osteopontin, mainly described to occur in calcified 

valves (e.g., Mohler et al., 1999; Canver et al., 2000), as well as periostin, reported to be 

involved in the development of heart valves (Norris et al., 2008; Snider et al., 2008; for 
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review see Markwald et al., 2010), essentially have been absent in all the heart valves 

studied, independent from the species or the age of the donor. 

 

 

 
 

Figure 8: Immunofluorescence micrographs showing the distribution of elastin and collagen type I 
in sections through frozen human (a) and ovine (b-d) pulmonary heart valves. (a) Elastin is located 
mainly in the ventricularis (right hand side) and to a lesser degree also in the spongiosa (middle 
part of the valve). (b-d) Distribution of collagen type I in an ovine heart valve where it mainly 
occurs in the fibrosa (b, left hand side of the valve) but can also protrude into the spongiosa (c) or 
even is located throughout the cusp (d). Nuclei are stained blue (DAPI). Bars: 100 µm 
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Figure 9: Immunofluorescence micrographs showing the distribution of collagens of type VI and 
type VII in ovine and bovine pulmonary heart valves. (a-b) Collagen type VI is mainly located in 
the ventricularis (a and b, right hand side) but is also abundant in the distal parts of the valve, as 
shown here for an ovine heart valve (c). (d) Collagen type VII is not restricted to a special layer as 
can be seen here in a bovine heart valve. Nuclei are stained blue. Bars: 100 µm (a-c), 50 µm (d) 
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4.1.1.3     The endothelial cells of the heart valves 

 As the inner surface of the heart is exposed to the blood flow, it is – like any other 

blood vessel in the body – covered with a continuous endothelial cell layer as the 

adluminal component of the endocardium (for a definition of the term “endocardium” in this 

thesis see page 115). Consequently, the heart valve leaflets are also lined with endothelial 

cells of the endocardium, together with some subjacent mesenchymal tissue cells, i.e. in 

essence a situation as in all other cardiac vascular elements. 

 

 

4.1.1.3.1     The endothelial cell layer of the endocardium covering the heart valves 

 Immunofluorescence microscopy of the endothelial cell sheets covering the 

endocardium (for detailed preparation protocols see chapter 3.2.4) shows positive 

reactions for the endothelial cell-specific junctional marker protein VE-cadherin (Figure 

10). Often the transmembrane AJ protein cadherin-11 is also recognized at these cell-cell 

junctions (Figure 11a) whereas reactions for N-cadherin are always indistinct and may in 

some places be interpreted as rather negative (Figure 12a). P-cadherin is always negative 

in endocardial cells (not shown). Specific antibodies against α-catenin (Figure 11c) and 

the armadillo proteins plakoglobin (Figure 11b and 12b), β-catenin (Figure 11d) as well as 

protein p120 (Figue 12c) all have shown positive reactions. Desmosomal proteins like the 

glycoproteins desmoglein and desmocollin as well as the plaque proteins desmoplakin 

and plakophilin-2 are totally negative (not shown). The occurrence of the novel, area 

composita-associated plaque junction protein myozap (Seeger et al., 2010) is inconsistent 

and often interrupted at cell-cell contacts of the endothelial cell layer. For an overview of 

proteins involved in the AJs of adult endothelial cells of the endocardium see Table 8.  
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Figure 10: Immunofluorescence micrograph of endothelial cell sheets scraped off from bovine 
ventricular endocardium (see chapter 3.2.4). The cell-cell junctions connecting the endothelial cells 
show positive staining for the endothelial cell-specific protein marker VE-cadherin (green). Nuclei 
are stained blue. Bar: 50 µm 
 

 

 
 

Figure 11: Immunofluorescence micrographs showing the endothelial cell layer covering the heart 
valve endocardium. Cross-sections through formaldehyde-fixed, paraffin-embedded bovine 
pulmonary heart valves treated with monoclonal antibodies show positive reactions (red) for the 
typical AJ proteins plakoglobin (a), α-catenin (b), cadherin-11 (c) and β-catenin (d). The 
background is in phase contrast optics. Bars: 50 µm 
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Figure 12: Double-label immunofluorescence micrographs of endothelial cell sheets scraped off 
from bovine ventricular endocardium (see chapter 3.2.4). (a) Double-staining of N-cadherin (red) 
and VE-cadherin (green) here shows the absence of N-cadherin in endocardial cells of the heart. (b) 
Colocalization (yellow) of plakoglobin (red) and VE-cadherin (green). (c) Colocalization (yellow) 
of protein p120 (red) and VE-cadherin (green). Nuclei are stained blue. Bars: 50 µm (a, c), 
20 µm (b) 
 

 

4.1.1.3.2     The endothelial cells of the vascular structures of the heart valve 

 Depending on the specific thickness of a valvular leaflet, relatively prominent 

vascular structures are found at the basis of the valvular cusp. Cross-sections through 

cryopreserved heart valve tissues of bovine origin reveal the occurrence of an organized 

vascular system, in particular in immunofluorescence microscopy, using smooth 

muscle-specific markers such as antibodies against smooth muscle α-actin (Figure 13a) 

or desmin (Figure 13b). 
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Figure 13: Immunofluorescence micrographs of cross-sections through frozen bovine mitral 
valves, showing the presence of vascular structures. Vascular lumen-lining cells are labeled (red) 
with a specific antibody against smooth muscle α-actin (a) and desmin (b). For combinations with 
corresponding phase contrast images see a’ and b’. Bars: 50 µm 
 

 

 The cell-cell contacts of the endothelia of vascular structures in heart valves are 

primarily formed by VE-cadherin. The transmembrane AJ glycoprotein, cadherin-11, also 

shows a positive reaction whereas the reactions for N-cadherin are rather inconsistent 

(not shown). Moreover, these AJ cell-cell contacts are positive for the plaque protein α-

catenin (Figure 14a) as well as for the armadillo proteins β-catenin (Figure 14b), protein 

p120 (Figure 14c), plakoglobin (Figure 14d) and protein p0071 (not shown; see however, 

the reactions in other vascular structures as published by Hofmann et al., 2008). 
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Figure 14: Immunofluorescence micrographs of cryostat sections through a frozen bovine mitral 
heart valve, showing the localization of AJ proteins at the cell-cell contacts of endothelial cells of 
vascular structures in the valve interior. Positive reactions with specific antibodies against α- and β-
catenin (a, b), protein p120 (c) and plakoglobin (d) show the typical endothelial appearance 
(vascular lumina are denoted by asterisks). Bars: 50 µm 
 

 

4.1.1.4     The appearance of valvular interstitial cells of heart valves and their 

extracellular environment in the electron microscope 

 VICs represent the most abundant cell type of the heart valve. They are loosely 

distributed throughout the heart valve interior as already shown by hematoxylin-eosin 

staining (Figure 7). This dispersed arrangement seems to be due to the large amounts of 

accompanying ECM material such as collagen fiber bundles which thus separate the VICs 

from each other. Remarkably, although the VICs appear tight-packed by collagen fibrils 

they tend to form long and thin cellular processes (Figure 15). Many of these often 

ramified, variously long, filopodia-like cell processes are closely associated with the 

aforementioned collagen fiber bundles, thus forming a three-dimensional (3D) meshwork 

that is quite characteristic for the organization of heart valve tissue in general, independent 

from the specific type of heart valve. Processes of VICs are not only separating the 

collagen fiber bundles, resulting in a phenomenon best described as a segmental 
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compartmentalization (for a survey see Figure 16a and, for higher magnification, Figure 

16b), but also show a partial or even total engulfment of collagen bundles (see Figures 15 

and 16). 

 

 

 
 

Figure 15: Electron micrograph of an ultrathin section through a human aortic heart valve. Note the 
cell processes of several VICs (indicated by asterisks; N, nucleus) and the close and somewhat 
regular association of such processes with collagen fiber bundles. Bar: 2 µm 
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Figure 16: Electron micrographs of ultrathin sections through a bovine tricuspid heart valve, 
showing several processes of VICs. Such cell processes are often closely associated with collagen 
fiber bundles which they often separate from each other in almost periodic arrangements (a, b). 
Note also the total engulfment of collagen fiber bundles by such cell processes (c; for higher 
magnification see d). Bars: 1 µm (a), 0.5 µm (b, c), 0.25 µm (d) 
 
 



_________________________________________________________________Results 

 62

4.1.1.5     The intermediate-sized filaments of valvular interstitial cells 

 Given that VICs and the endothelial cells surrounding the valve interior are 

mesenchymally derived cells, they can be visualized and identified by specific antibodies 

against the intermediate-sized filament (IF) protein vimentin (Franke et al., 1978, 1979a, b; 

Herrmann et al., 2007), as shown for bovine heart valve tissue in Figure 17. Besides this 

main cell type, another cell type can be found in the valve interior, which is characterized 

by additional smooth muscle α-actin-positive microfilament bundles (e.g., Bairati and 

DeBiasi, 1981) which often occur close to the valve surface, just beneath the endothelial 

cell layer (Figure 17a and b). The frequency and distribution patterns of these smooth 

muscle α-actin-positive cells show marked regional variations. 

 

 

 
 

Figure 17: Immunofluorescence micrographs of cross-sections through formaldehyde-fixed, 
paraffin-embedded bovine aortic heart valves. Note the loose and widespread distribution of 
vimentin-positive VICs in the endocardial lining and in the heart valve interior (green; a-c) as well 
as the scattered clusters of smooth muscle α-actin-positive cells near the valve margin (red; a and 
b). Nuclei are stained blue. Bars: 100 µm (a), 50 µm (b and c) 
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4.1.1.6     The cell-cell contacts of valvular interstitial cells in situ 

Independent from the species and from the specific valve type, all heart valves 

examined have shown the complete set of typical mesenchymal AJ proteins, although in 

arying proportions. VICs are negative for the endothelial cell marker VE-cadherin as well 

as for the epithelial cell markers E-cadherin and P-cadherin. As to the transmembrane AJ 

glycoproteins, the occurrence of N-cadherin in heart valve cell-cell contacts (Latif et al., 

2006) has been confirmed (Figure 18a). In contrast to previously published work reporting 

the absence of cadherin-11, this cadherin has now been confirmed as a general VIC-AJ 

component (see Figure 18b for immunofluorescence microscopy and Figure 19b for 

colocalization with N-cadherin). Also in contrast to observations of others (Latif et al., 

2005, 2006), the desmosomal transmembrane glycoproteins, desmoglein-1-3 are totally 

absent. Similarly, other typical desmosomal proteins like the plaque proteins plakophilin-1-

3 and desmoplakin as well as the transmembrane glycoproteins desmocollin-1-3 have 

also been absent in the VICs of all species examined. In a direct comparison, the 

occurrence of plakophilin-2 in the IDs of the myocardium and its absence in the adjacent 

valvular tissue can be seen in Figure 20. The novel plaque junction protein myozap 

(Seeger et al., 2010), a member of the area composita junction protein ensemble has also 

not been seen in VICs (not shown). 

  With respect to the plaque proteins of AJs, VICs often show a rather complex 

composition. In contrast to reports that plakoglobin would be absent in VIC-AJs of heart 

valves (Latif et al., 2006), this armadillo protein has been demonstrated in all VIC 

junctions (not shown). Moreover, the co-existence of α- and β-catenin has been confirmed 

(for single immunofluorescence label of β-catenin see Figure 18c; for double-label 

immunofluorescence with N-cadherin see Figure 19a; for immunoelectron microscopy see 

Figure 21). Protein p120 as another armadillo protein is also generally present (for single 

immunofluorescence micrographs see Figure 18d; for double-label immunolocalization 

with N-cadherin see Figure 19c). In addition, VICs sometimes have shown a positive – 

albeit weak – reaction for the plaque protein p0071, whereas proteins ARVCF and 

neurojungin appear to be absent in VICs (not shown). Moreover, actin-binding junction-

associated proteins like protein ZO-1-3, afadin, vinculin and α-actinin have also been 

detected in the majority of the contacts between VICs (not shown). 

Biochemical analysis using SDS-PAGE, followed by immunoblot analysis, has 

essentially confirmed the results of the immunofluorescence experiments (Figure 22). 

Here, tissue samples from all four heart valves of ovine origin have shown positive 

reactions for vimentin but predominantly negative reactions for cardiac α-actin (not 



_________________________________________________________________Results 

 64

shown), thus also indicating that the microdissected heart valves were free from adjacent 

myocardium. The VICs of all four heart valves (AV, PV, MV, and TV) have also shown 

positive reactions for N-cadherin and cadherin-11, for the α-catenin as well as for β-

catenin and plakoglobin (not shown). Desmosomal glycoproteins like desmogleins and 

desmocollins are definitely also absent from heart valve tissue (not shown). 

Reports of electron microscopic observations of extensive “desmosomal” structures in 

VICs of heart valves as published in the early 1990s (Messier et al., 1994), have been 

repeteadly cited by others (Latif et al., 2006) but the results of the present study show that 

desmosomal structures and molecules are totally absent in heart valve tissue of the 

species examined. On the other hand, besides some sporadic gap junction (GJ) 

structures, AJ structures are generally observed in VICs in situ, where they often occur 

between the cell processes of different cells, mostly as rather small puncta adhaerentia 

(see, e.g., Figure 23a and b). Occasionally, puncta adhaerentia structures are also 

observed at sites of contact between two cell processes, developing a somewhat 

interdigitating AJ contact (Figure 23c) or – rather rarely – between cell processes of the 

same or a neighboring cell process (Figure 23d). For an overview of proteins involved in 

the AJs of adult VICs in situ see Table 8.  
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Figure 18: Immunofluorescence micrographs of cross-sections through frozen bovine heart valves 
labeled with antibodies against AJ proteins (red), showing the typical scattered, dot-like junctions 
connecting the VICs. Shown are reactions of antibodies against N-cadherin (a) and cadherin-11 (b) 
as well as against β-catenin (c) and protein p120 (d) by immunofluorescence alone or in 
combination with phase contrast images (a’-d’). Bars: 50 µm 
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Figure 19: Double-label immunofluorescence micrographs of cross-sections through 
formaldehyde-fixed and paraffin-embedded samples of human and bovine heart valves, treated for 
antigen retrieval and showing colocalization of AJ proteins. VIC contacts are positive for N-
cadherin (a-c, red) colocalizing with β-catenin (a’), cadherin-11 (b’) and protein p120 (c’) 
appearing in green color (colocalization is shown by merged color in yellow). Nuclei are stained 
blue. Bars: 50 µm 
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Figure 20: Double-label immunofluorescence micrograph of a section through a formaldehyde-
fixed pulmonary valve of an ovine heart.  Note the positive staining of plakophilin-2 in the 
composite junctions (areae compositae) of the myocardial IDs (a, red, on the left hand side of the 
dashed line) and its absence in the cell-cell contacts between the VICs in the heart valve (b, right 
hand side of the dashed line). Note the widespread occurrence of vimentin-positive VICs, including 
cardiac fibroblasts and various kinds of interstitial cells (b, green). Comparison of the double-label 
merged image with phase contrast (c) allows a clear distinction of myocardial tissue (left) and 
interstitial cells of the valve matrix (right). Bar: 50 µm 
 

 

 
 
Figure 21: Immunogold-label electron micrographs of cross-sections through cryo-fixed bovine 
aortic heart valves. Antibodies against β-catenin localize to AJs of VICs. Note a punctum 
adhaerens in a (arrow in the left) as well as an association of a junctional plaque of a thin VIC cell 
process with an IF bundle (arrow in the right). High resolution showing the specific accumulations 
of immunogold-labeled β-catenin with both AJ plaques (b, c) demonstrate its specific occurrence in 
the VIC AJ plaques. Bars: 0.25 µm 
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Figure 22: SDS-PAGE followed by immunoblot analysis of proteins and glycoproteins of 
microdissected frozen ovine heart valves. Reactions were similar for VICs occurring in aortic 
valves (AVs), pulmonary valves (PVs), mitral valves (MVs) and tricuspid valves (TVs). Note 
positive reactions for antibodies against cadherin-11 (cad-11, a), β-catenin (β-cat, d), plakoglobin 
(PG, e) and vimentin (vim, f). Reactions for desmogleins 1 and 2 (dsg 1+2, b) and plakophilin-2 
(Pkp2, c) are negative. Cultured human SV80 cells (SV40-transformed fibroblasts), U333 
astrocytoma glioma cells, breast carcinoma cells of line MCF-7 (MCF7) and bovine fibroblast cells 
of line B1 and ovine ventricle tissue were analyzed in parallel as controls in the same 
electrophoresis and immunoblot reaction. Polypeptide marker bands (bars, left margin) correspond 
to 212, 158, 116, 97.2, 66.4, 55.6, 42.7 and 34.6 kDa (top to bottom). 
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Figure 23: Electron micrographs of ultrathin sections through human aortic and bovine tricuspid 
heart valves. (a, b) Cell-cell contacts (puncta adhaerentia) between VIC processes or cell bodies 
are shown in a human aortic (a) and a bovine tricuspid (b) heart valve. The puncta adhaerentia are 
indicated by arrowheads. (c, d) Cross-sections through the matrix of a human aortic heart valve, 
showing long VIC processes connected by cell-cell AJ contacts of the puncta adhaerentia type (c, 
note connections between three processes, designated 1-3) which are often clustered (e.g., at the 
group of arrows at the left hand side); the single arrow at the right hand side points to an individual 
punctum adhaerens. (d) Cell-cell contacts infrequently also occur between a short cell process of 
one cell and a longer process of the other cell. M: mitochondrium. Bars: 0.5 µm 
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4.1.2 The adhering junctions of valvular interstitial cells grown in cell 
culture 
Human aortic heart valves of patients of different ages (18-58 years), bovine aortic, 

pulmonary, mitral and tricuspid heart valves as well as ovine pulmonary heart valves were 

used to prepare primary cultures of adult VICs. These cultures were usually grown up to 

passage 6 and then used for immunofluorescence microscopy, biochemical analysis or 

electron microscopy. 

 

 

4.1.2.1     The intermediate-sized filaments of valvular interstitial cells in culture 

 VICs in culture grow as flattened substratum-adherent cells and often form very 

long filopodial processes. As in heart valves in situ, VICs growing in culture are rich in 

bundles of IFs identified by immunofluorescence staining with antibodies against vimentin 

(Figure 24a). In contrast to VICs in situ, a remarkable number of the cultured VICs are also 

positive for smooth muscle α-actin (Figure 24b and c). Moreover, occasionally IFs 

containing glial filament acidic protein (GFAP) can be observed in cultured VICs (Figure 

24d and e), representing up to 10 % of the cells. Reactions for other IF types like desmin 

or cytokeratins as well as for cardiac α-actin have been negative. Moreover, based on 

immunoreactions osteopontin as well as periostin appear to be absent in VICs in culture. 

Some cells show positive reactions for the lipid droplet-associated protein perilipin which 

has been found to be absent in VICs in situ (not shown). 

Cultured VICs also show intensive phalloidin reactions of actin filament bundles 

(Figure 25a and b). Moreover, the typical actin-binding proteins vinculin (Figure 25a and 

c), paxillin (Figure 25b and c’) and α-actinin (not shown) are generally present in cultured 

VICs (Figure 25c’’ shows a typical colocalization of vinculin and paxillin at sites of 

attachment of the actin microfilament bundles at “focal adhesions” contacting the 

substratum). 
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Figure 24: Immunofluorescence micrographs showing the organization of IFs in cultured VICs 
isolated from ovine pulmonary heart valves. (a) Typical appearance of cultured VICs grown to 
subconfluency which form cell-cell contacts with their filopodial processes (IFs stained with 
antibodies against vimentin, green). (b, c) Partial colocalization of smooth muscle α-actin (red) and 
vimentin (green). Note that actin filaments do not only appear in the protruding tips of the cells (b) 
but can also occur in the juxtanuclear cytoplasm (c). (d, e) Immunofluorescence micrographs of the 
localization of the IF protein GFAP in cultured VICs, showing typical IF bundle arrays. GFAP 
occurs only in some of the cultured VICs; some cells are positive while neighboring cells often are 
not (e). Nuclei are stained blue. Bars: 100 µm (a), 50 µm (b-e) 
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Figure 25: Double-label immunofluorescence micrographs of cultured VICs, presenting filament 
bundles by phalloidin, coupled to fluorescent secondary antibodies (a, green; b, red). The actin-
binding proteins vinculin (a, c, red) and paxillin (b, c’, green) show positive reactions at the 
asymmetrical “focal adhesions”. Vinculin and paxillin also colocalize in these focal adhesions of 
VICs (see yellow color in the merged picture in c’’). Nuclei are stained blue. Bars: 50 µm (a), 
20 µm (b, c) 
 

 

4.1.2.2     The cell-cell contacts of valvular interstitial cells in culture 

AJs of the puncta adhaerentia type frequently occur in cultured VICs and are 

already seen in early phases of culture, i.e. in non-confluent states (Figure 26). Cell-cell 

contacts often occur in groups of junctions, either between the ends of two cell processes 

(Figure 26a and b) or between the end of one process and a central cell element of 

another VIC (Figure 27b). Coincidentally, cell-cell contacts can also be formed between 

the plasma membranes of two adjacent cells, either in a distinct punctate fashion (Figure 

27a, d and e; Figure 28b and Figure 29a) or in a seemingly bridge-forming manner (Figure 

26c; Figure 27c and Figure 28a). As it has already been shown for mesenchymal stem 

cells derived from human bone marrow, umbilical cord blood or adipose tissue (Wuchter 

et al., 2007), VICs can also form cell-cell contacts of the so-called manubrium adhaerens-

type between cell bodies of two adjacent cells, i.e. tight-fittingly and often deeply 

invaginated connections between the cells (Figure 28c and Figure 29b). Sometimes, AJs 

of VICs are recognized over remarkably long distances of cell processes (Figure 29). 
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However, VICs grown in culture generally show a very characteristic morphology, 

commonly seen as typical of “myofibroblastoidal” cells: VICs of all the species examined 

here mostly appear as spindle-shaped, elongated and – for the most part – bipolar cells 

(Figure 24, 25 and 26). Quite often such cells can display a broad lamellipodial front and a 

thin and sometimes astonishingly long uropod-like “tail process” (up to 150 µm long; 

Figure 26 and 27). 

The cell-cell contacts often occur as punctate clusters or appear as cell-cell 

bridges positive for N-cadherin (Figure 27a-c) as well as for protein p120 (Figure 27d, e). 

N-cadherin also colocalizes with cadherin-11, plakoglobin, protein p120 (Figure 28) and α- 

and β-catenin (not shown). Generally, the AJs of such culture cells show colocalization of 

α- and β-catenin as well as of both these proteins with plakoglobin (Figure 29). 

Immunoreactions with antibodies against protein p0071 are mostly negative (Figure 30) 

which may reflect the presence of very minor amounts of this protein in these AJs. As in 

VICs in situ, proteins ARVCF and neurojungin appear to be absent in cultured VICs (not 

shown). Negative reactions are also found for PERP protein (not shown; Attardi et al., 

2000) and for the novel area composita-associated plaque protein myozap. On the other 

hand, actin-binding proteins such as proteins ZO-1-3 (Figure 30), afadin and α-actinin all 

have shown positive reactions in cultured VICs (not shown). 

Subforms or tissue-specific types of α-catenin such as α-E-catenin (Rimm et al., 

1994, 1995), α-N-catenin (Hirano et al., 1992; Uchida et al., 1994) and α-T-catenin 

(Janssens et al., 2001; Goossens et al., 2007), show very variable immunofluorescence 

reactions. In general, α-E-catenin appears to be positive in cultured cells as well as in situ, 

whereas α-T-catenin and α-N-catenin under the conditions have only shown negative 

reactions both in cultured VICs as well as in heart valves in situ (not shown). Moreover, 

VICs of different mammalian species are negative for VE-cadherin, indicating that the VIC 

primary cultures are not derived from – or contaminated with – residual endothelial cells. 

Negative immunoblot reactions have also been seen for E- and P-cadherin (Figure 30). In 

the electron microscope, VICs in culture – as in VICs in situ (Figure 23) – show solely cell-

cell contacts of the AJ type (Figure 31), together with some – quite rare – GJs 

(Figure 31e). 
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Figure 26: Double-label immunofluorescence micrographs of cultured ovine VICs derived from a 
pulmonary valve, grown to subconfluency. (a) The survey image shows VICs with their typical 
long processes (vimentin, green) connected to other cells over – partly – very long distances. Note 
the high frequency of AJs (cell-cell contacts are stained with antibodies against N-cadherin, red). 
(b) Extremely long filopodial processes (here the process shown in the bottom region exceeds 
100 µm in length), connecting cultured ovine VICs via AJs containing N-cadherin (red). Note the 
group of AJs in the upper left which connects the ends of two filopodial VIC processes. (c) Plasma 
membrane regions of two adjacent cells forming an extended AJ-rich cell-cell contact region. Bars: 
50 µm (a), 30 µm (b), 25 µm (c) 
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Figure 27: Double-label immunofluorescence micrographs of ovine VICs from a pulmonary heart 
valve, grown in culture and showing different forms of puncta adhaerentia type AJs. N-cadherin-
mediated cell-cell contacts (red) can occur as punctate arrays between two cell bodies (a; vimentin, 
green).  Higher magnification shows the structure of a subtype of AJ occurring at the end of a cell 
process and forming an extended contact region with the middle segment of a long cell process 
exceeding 150 µm in length (b). These AJs can also occur as groups of cell-cell bridges (c). Cell-
cell contacts of the puncta adhaerentia type are not only positive for N-cadherin (a-c) but also for 
rotein p120 (d, e). Bars: 25 µm (a-c), 20 µm (d), 50 µm (e) 
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Figure 28: Double-label immunofluorescence micrographs of cultured VICs of human and ovine 
origin, showing colocalization of AJ transmembrane glycoproteins with typical plaque proteins. (a) 
Colocalization of cadherin-11 (red) with N-cadherin (green) in ovine VICs (note the yellow merged 
color in a’’). (b) Plakoglobin as a typical plaque protein (PG, red) colocalizes with N-cadherin 
(green) in a typical punctate pattern in AJs connecting ovine VICs (b’’, merged yellow color). 
(c) Protein p120 (red) colocalizes with N-cadherin (green) in tight-fitting invaginations of cell-cell 
contacts of human VICs (yellow merged color). Nuclei are stained blue. Bars: 20 µm (a, b), 10 µm 
(c) 
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Figure 29: Double-label immunolabeling of cultured VICs showing colocalization of typical AJ 
plaque proteins. (a) Colocalization (yellow, merged images) of α-catenin and β-catenin in puncta 
adhaerentia type cell-cell junctions over a relatively long distance connecting the cell membranes 
of two adjacent VICs of bovine origin. (b) Human VICs showing colocalization of α-catenin (red) 
and β-catenin (green) in AJ plaques (yellow, merged image). Note that here the processes of one 
cell deeply and tight-fittingly insert into invaginations of the other cell, forming junctions of the 
manubrium adhaerens type. (c) Extended AJ-rich contact region of ovine VICs with numerous 
junctions positive for plakoglobin (c, red) and α-catenin (c’, green). Colocalization can be seen in 
the merged picture (c’’, yellow). Nuclei are stained blue. Bars: 5 µm (a), 20 µm (b, c) 
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Figure 30: SDS-PAGE, followed by immunoblot analysis of proteins of the human epidermal 
keratinocytes cell line HaCat, a murine cardiomyocyte-like cell line (HL-1), a bovine 
fibroblastoidal cell line (B1) and cultured ovine VICs derived from a pulmonary heart valve (PV 
ov). E-cadherin (E-cad) and P-cadherin (P-cad) show negative reactions in PV ov. Protein ZO-1 
shows a positive reaction in PV ov, whereas the reaction of protein p0071 is negative here, probably 
due to the presence of very low amounts of this protein. Polypeptide marker bands (bars, left) 
correspond to 212, 158, 116, 97.2, 66.4, 55.6, 42.7 and 34.6 kDa (top to bottom). 
 
 

 
 

Figure 31: Electron micrographs of cultured ovine VICs of a pulmonary heart valve, showing 
contacts and interactions of VICs in culture. Arrowheads indicate small individual cell-cell contacts 
of the puncta adhaerentia type (a-e). Sometimes, GJs are also present in the contact areas of two 
neighboring cells (see bracket in e). Bars: 0.5 µm (a-d), 1 µm (e) 
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4.1.2.3     The acquisition of plakophilin-2 to the adherens junctions of cultured 

valvular interstitial cells  

As desmosomal proteins are absent in VICs of different mammalian species in 

situ, it is quite surprising to detect the selectively rapid acquisition of an additional 

desmosomal plaque protein – plakophilin-2 – in AJs of cultured VICs (Figure 32). This de 

novo appearance of plakophilin-2 can be observed from early culture passages on and is 

conserved – or even enhanced – when these cells are passaged further. In contrast, 

plakophilins-1 and -3 have never been detected in the AJs of cultured VICs (Figure 33). 

Other desmosomal proteins such as cadherins of the desmoglein and desmocollin 

subfamilies as well as plaque proteins, including desmoplakin are – and remain – absent 

in cultured VICs (not shown). 

In VIC cultures of bovine, ovine or human origin, plakophilin-2 always colocalizes 

with N-cadherin and cadherin-11 (Figure 34) as well as with α- and β-catenin (Figure 35), 

plakoglobin, proteins p120 and p0071 (not shown). 

Although plakophilin-2 is abundant in the cell-cell contacts of cultured VICs and 

always colocalizes with other AJ proteins, this relationship is not reciprocal and complete: 

Not every junction which is positive for N-cadherin, for example, is also positive for 

plakophilin-2 (e.g., Figure 36a-a’’).  

 

 

 
 

Figure 32: Double-label immunofluorescence micrograph of cultured ovine VICs, immunostained 
for vimentin (green), showing a positive reaction for the desmosomal plaque protein, plakophilin-2 
(red). Bar: 25 µm 
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Figure 33: SDS-PAGE, followed by immunoblot analysis of proteins of a human epidermal 
keratinocyte cell line (HaCat), a murine cardiomyocyte-like cell line (HL-1), a bovine 
fibroblastoidal cell line (B1) and cultured ovine VICs derived from a pulmonary heart valve (PV 
ov). Reactions for plakophilins 1 and 3 (Pkp1 and 3) are negative in PV ov. By contrast, note that 
plakophilin-2 (Pkp2) shows positive reactions in PV ov. Polypeptide marker bands (bars, left) 
correspond to 212, 158, 116, 97.2, 66.4, 55.6, 42.7 and 34.6 kDa (top to bottom). 
 

 

 
 

Figure 34: Double-label immunofluorescence micrographs of cultured ovine VICs, showing the 
colocalization (yellow merged color) of plakophilin-2 (a, b, red) with N-cadherin (a-a’’, green) or 
cadherin-11 (b-b’’, green). See the phase contrast in the merged picture (b’’) for IF anchorage in 
the plaque region. Nuclei are stained blue. Bars: 100 µm (a), 20 µm (b) 
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Figure 35: Double-label immunofluorescence micrographs of cultured human and ovine VICs, 
showing colocalization (yellow merged color) of plakophilin-2 (red) with the typical AJ plaque 
proteins α- and β-catenin (green). Note the characteristic dot-like structures of the junctions of the 
puncta adhaerentia type which occur either as single dots (a-a’’) or as clusters of puncta 
adhaerentia (b-b’’). Bars: 20 µm 
 

 

 
 

Figure 36: Double-label immunofluorescence micrographs of cultured ovine VICs labeled with 
specific antibodies against plakophilin-2 (red) and N-cadherin (green). Note that plakophilin-2 (red) 
may be absent in some cell-cell contacts (between the cells in the lower left), whereas in other cell-
cell contacts it may be present and show colocalization with N-cadherin (yellow merged color; 
neighboring cell-cell contact between two other VICs in the upper right). Bar: 20 µm 
 

 

 

 



_________________________________________________________________Results 

 82

4.1.2.4     Biochemical analyses of adherens junctions of cultured adult valvular 

interstitial cells from different mammals, types of heart valve and culture 

passage numbers 

To compare directly the molecular composition of the AJs connecting adult VICs in 

culture, biochemical analyses of cultured VICs from three different mammalian species 

(human, bovine and ovine) were performed by SDS-PAGE, followed by immunoblot 

analysis. In all experiments, cultured human astrocytoma cells (glioma line U333), human 

breast carcinoma cells (line MCF-7) and bovine fibroblasts (line B1) were analyzed for 

comparison. Additionally, lysates of ventricular myocardial tissue of the analyzed species 

were used for comparison. 

None of the three analyzed species (cow, sheep and man) present any significant 

difference between the four different heart valves (AV, PV, MV, TV), neither in the type of 

the proteins found nor in their relative amounts, as demonstrated for bovine VIC cultures in 

Figure 37a-f. There are obviously no significant differences in the reaction with antibodies 

specific for N-cadherin or cadherin-11 as well as for α-catenin (not shown), β-catenin, 

protein p120 or plakoglobin. The immunoblot reaction with specific antibodies against 

plakophilin-2 also shows the presence of this protein in VICs derived from all four different 

heart valves (Figure 37f). Moreover, among the three species compared, there are no 

significant differences in the AJ proteins in the course of cell culture passages, as can be 

seen, e.g., for ovine VICs of passages one to six (P1-P6; Figure 37g-j). Immunoblot 

reactions with specific antibodies against N-cadherin, cadherin-11, plakoglobin, and 

plakophilin-2 show a consistent and stable presence of these junction proteins. VICs 

derived from aortic heart valves of patients who had to undergo heart valve replacement 

and differed in age (18-58 years) and sex (Figure 37k-p), also reveal near equal amounts 

of N-cadherin, cadherin-11, plakoglobin, β-catenin and plakophilin-2. 

Desmosomal proteins such as Dsg 1 and 2 (Figure 37o), Dsc 1-3 and desmoplakin are 

absent in all VIC cultures (not shown). Typical cardiac proteins like desmin and cardiac 

muscle α-actin as well as myozap are always found to be negative in cultured VICs 

whereas HL-1 cells generally show positive reactions for these proteins (for cultured ovine 

VICs see Figure 38). For a summary of the proteins involved in the AJs of adult VICs in 

culture see Table 8.  
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Figure 37 
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Figure 37: SDS-PAGE, followed by immunoblot analyses of proteins in primary cultures of VICs 
from heart valves of three different species (cow, sheep and man). a-f Immunoblot reactions of 
proteins of bovine VICs derived from the aortic valve (AV), pulmonary valve (PV), mitral valve 
(MV) and tricuspid valve (TV). Reactions of various specific antibodies against N-cadherin (N-cad, 
a), cadherin-11 (cad-11, b), β-catenin (β-cat, c), protein p120 (p120, d), plakoglobin (PG, e) and 
plakophilin-2 (Pkp2, f) are shown here. g-j Immunoblot reactions of proteins of ovine VICs with 
increasing passages (P1-P6) were performed with antibodies against N-cadherin (g), cadherin-11 
(h), plakoglobin (i) and plakophilin-2 (j). k-p Immunoblot reactions of human aortic VICs of 
patients differing in age (18-58 years old) and sex were performed with antibodies against N-
cadherin (k), cadherin-11 (l), plakoglobin (m), β-catenin (n), desmogleins 1 and 2 (dsg 1+2, o) and 
plakophilin-2 (p). Ventricular myocardial tissue of bovine, ovine and human origin (ventricle), 
human breast carcinoma cells of the MCF-7 cell culture line (MCF7), and human astrocytoma cells 
(glioma U333) have been analyzed in parallel as controls. Polypeptide marker bands (bars, left) 
correspond to 212, 158, 116, 97.2, 66.4, 55.6 and 42.7 kDa (top to bottom). 

 
 
 

 
 

Figure 38: SDS-PAGE, followed by immunoblot analysis of proteins of a human epidermal 
keratinocyte line (HaCat), a murine cardiomyocyte-derived line (HL-1), a bovine fibroblastoidal 
cell line (B1) and cultured ovine VICs derived from a pulmonary heart valve (PV ov). Antibody 
reactions against cardiac α-actin (ca), desmin (des) and protein myozap are negative in PV ov. All 
three proteins show positive reactions in the cardiomyocyte-derived cell line HL-1 and negative 
reactions in HaCat and B1 cells. Polypeptide marker bands (bars, left) correspond to 212, 158, 116, 
97.2, 66.4, 55.6, 42.7 and 34.6 kDa (top to bottom). 
 

 

4.1.2.5     Small interference RNA knock-down experiments of plakophilin-2 and N-

cadherin in primary cultures of human valvular interstitial cells 

Pieperhoff et al. (2008) have shown that in cultures of neonatal rat cardiomyocytes 

the loss of the desmosomal plaque protein plakophilin-2 can cause the complete 

disintegration of the area composita structures of the residual ID structures seen in such 

cell cultures (for similar experiments and results with cardiomyocytes see Oxford et al., 

2007, and Fidler et al., 2009; for knock-down experiments of plakophilin-3 in epithelial 

cells see Kundu et al., 2008). Moreover, Rickelt (2010) has shown that the treatment with 
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siRNA against plakophilin-2 of general kinds of cultures of mesenchymally derived cells or 

malignantly transformed SV80 fibroblasts can result in a loss of immunolabeling of 

plakophilin-2 and that treatment with siRNA against N-cadherin can result in a loss of N-

cadherin. In cells treated with plakophilin-2 siRNA, N-cadherin remains stable at cell-cell 

contacts and so does plakophilin-2 in cells treated with N-cadherin siRNA. 

 Therefore, knock-down of plakophilin-2 and N-cadherin mRNA was performed with 

primary cultures of human VICs derived from mitral heart valves (for protocols see chapter 

3.1.3 and Pieperhoff et al., 2008). Although control experiments using cells without 

treatment yielded reliable results, inconsistent results were obtained with control groups in 

which siRNA against lamin A/C was applied. This was also the case with the “true” knock-

down experiments using plakophilin-2 or N-cadherin siRNAs. In such experiments, 

however, cells treated with siRNA often showed a strongly increased rate of cell death 

rates, presumably caused by the cytotoxicity of the siRNA reagents, although rather low 

amounts of siRNA were used. Consequently, safe conclusions could not be drawn from 

these experiments. 

 

 
4.1.2.6     The occurrence of α-N-catenin in the adherens junctions of cultured 

valvular interstitial cells 

The junctional plaque protein α-catenin occurs in three different isoforms: α-E-

catenin, which apparently is near-ubiquitously expressed (Herrenknecht et al., 1991; 

Nagafuchi et al., 1991), α-T-catenin, which is predominantly expressed in cardiomyocytes 

and in peritubular myoid cells of the testis (Janssens et al., 2001, 2003), and α-N-catenin, 

known for its occurrence in neural tissues (Hirano et al., 1992; Uchida et al., 1994). 

Recently, α-T-catenin has also been reported to be localized in the composite junctions of 

the IDs in the myocardium together with α-E-catenin (Janssens et al., 2001; Goossens et 

al., 2007). And, even more interestingly, α-T-catenin also colocalizes in these composite 

junctions with the desmosomal plaque protein plakophilin-2 whereas α-E-catenin does not 

(Goossens et al., 2007). 

Therefore, mRNA of cultured bovine VICs and heart valve tissue of bovine origin 

was used for reverse transcription and the cDNA obtained was then used for PCR-

reactions with specific primers against the sequences of bovine α-E-, α-N- and α-T-

catenin (for detailed protocols and primer sequences see chapter 3.7). Figure 39 shows 

that cultured VICs as well as heart valve tissue in toto synthesize α-E-catenin, which has 

also been confirmed by immunofluorescence microscopy (not shown). By contrast, α-T-
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catenin is synthesized neither in cultured VICs nor in heart valve tissue, which 

corresponds to the findings in immunofluorescence microscopy (not shown). Surprisingly, 

α-N-catenin has shown a weak positive signal in cultured VICs whereas heart valve tissue 

does not reveal this subform of α-catenin, a finding which has been confirmed by 

immunoblot analysis (see Figure 40). 

 

 

 
 

Figure 39: RT-PCR detection of α-E-catenin- (lanes 1 and 2), α-N-catenin- (lanes 3 and 4) and α-
T-catenin-mRNA (lanes 5 and 6) in cultured VICs of bovine origin (lanes 1, 3, 5 and 7) as well as 
in bovine heart valve tissue (lanes 2, 4, 6 and 8). GAPDH primers have been used as typical 
housekeeping gene (lanes 7 and 8). Marker bands (M) correspond to 517, 396, 356, 247 and 75 bp 
(top to bottom). 
 
 

 
 

Figure 40: SDS-PAGE followed by immunoblot analysis of proteins from the human keratinocyte 
cell line HaCat, a murine cardiomyocyte-derived cell line (HL-1), a bovine fibroblastoidal cell line 
(B1) and cultured ovine VICs derived from a pulmonary heart valve (PV ov). Antibodies against α-
N-catenin show positive reactions in HaCat as well as in HL-1, PV ov and only a very weak 
reaction in B1 cells. Polypeptide marker bands (bars, left) correspond to 212, 158, 116, 97.2, 66.4, 
55.6, 42.7 and 34.6 kDa (top to bottom). 
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4.1.2.7     Immunoprecipitation analyses of cultured valvular interstitial cells of ovine 

origin 

To further characterize the adhering junctions of the VICs growing in culture, 

primary cultures of pulmonary heart valves were used for immunoprecipitation analyses 

(IPs). The cultured cells were lysed in RIPA buffer (Table 4) and the relevant polypeptides 

were enriched by specific antibodies coupled to magnetic “Dynabeads”, separated by 

SDS-PAGE and reacted by immunoblot analyses. In addition to the precipitated protein 

samples, proteins from ovine ventricular myocardial tissue or from primary cultures of 

ovine pulmonary valves were examined in parallel and samples of the specific 

supernatants obtained before the immunoprecipitation as well as “pre-clear” samples were 

also run in parallel (for protocol see chapter 3.6). 

The results (Table 7, Figure 41) show that N-cadherin co-immunoprecipitates with 

plakoglobin and β-catenin but not with plakophilin-2 or cadherin-11 (Figure 41a and b). 

Cadherin-11 in turn co-immunoprecipitates with plakoglobin and β-catenin, but not with N-

cadherin or plakophilin-2 (Figure 41c and d). Finally, β-catenin co-immunoprecipitates with 

N-cadherin, whereas the reaction of β-catenin with the cadherin-11-IP has been 

inconsistent (for a positive reaction see Figure 41e and for negative reaction see Figure 

41f). Plakoglobin shows a positive reaction in N-cadherin-IPs, but somewhat surprisingly, 

has not been found to co-immunoprecipitate with plakophilin-2 (Figure 41g). Protein p0071 

co-immunoprecipitates with N-cadherin- and β-catenin-IPs but not with plakophilin-2- and 

cadherin-11-IPs (Figure 41h). Moreover, plakophilin-2 has not been found to co-

immunoprecipitate with N-cadherin, cadherin-11 or with β-catenin or plakoglobin (Figure 

41i and j). For a summary of the results obtained by immunoprecipitation analyses see 

Table 7. 

 

 
Table 7    Summary of the results of the immunoprecipitation analyses of cell-cell junction 
proteins of ovine valvular interstitial cells grown in culture 

Antibodies bound to “Dynabeads”  
N-cad IP cad-11 IP β-cat IP PG IP Pkp2 IP 

N-cad + - + + - 
cad-11 - + + + - 

β-cat + + + + - 

PG + + - + - 

p0071 + - + ns - Im
m

un
ob

lo
ts

 

Pkp2 - - - - + 
+: positive reaction of the specific antibody in the immunoblot; -: negative reaction of the 
specific antibody in the immunoblot; ns: not shown 
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Figure 41 
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Figure 41: Immunoprecipitation analyses (IPs) performed with primary cultures of ovine 
pulmonary heart valve. N-cadherin (N-cad) and cadherin-11 (cad-11), β-catenin (β-cat) and 
plakoglobin (PG) and plakophilin-2 (Pkp2) proteins were coupled to magnetic beads by using 
specific antibodies and incubated with cell lysate (“precipitation”). The protein-complexes coupled 
to the magnetic beads were separated by SDS-PAGE, followed by immunoblot reactions with 
antibodies against N-cadherin (a, b), cadherin-11 (c, d), β-catenin (e, f), plakoglobin (g), protein 
p0071 (h) and plakophilin-2 (i, j; vertical names on the left and right hand side). Ovine ventricular 
myocardial tissue (ventricle), primary cell cultures of ovine pulmonary heart valves (PV), IPs with 
VE-cadherin (VE-cad) or other antibodies to desmocollins-1 and -3 (Dsc) were used as internal 
controls. Lysates taken before incubation with antibody-coupled beads (supernatants) were used as 
positive controls and samples obtained with magnetic beads without antibodies (“pre-clear”) were 
also used as negative controls in parallel. Polypeptide marker bands (bars, left) correspond to 212, 
158, 116, 97.2, 66.4, 55.6 42.7 and 34.6 kDa (top to bottom). 
 
 
4.1.2.8     Cell-cell junctions of valvular interstitial cells grown on different 

substrates 

Recently it has been shown that protein coating of biological material scaffolds can 

enhance endothelial cell attachment (Akhyari et al., 2009a, b). In view of this finding the 

influence of different coating strategies on VICs grown in culture has been noted 

(Gwanmesia et al., 2010) and, therefore, the influence of different cell culture substrates 

on the types and patterns of cell-cell junctions connecting cultured ovine VICs has been 

studied to some detail. 

To test whether the specific cell growth substrate influences the advent of 

plakophilin-2 and the ensemble of the other aforementioned AJ proteins of ovine VICs, 

several different substrates were examined by immunofluorescence microscopy and 

biochemical analysis. In addition to coating of the plates with collagen I, ovine VICs were 

also seeded on plates coated with fibronectin, gelatine or poly-L-lysine. In parallel, VICs 

seeded on plates without coating, were used as controls. The cells were then fixed with 

methanol/acetone, followed by immunofluorescence microscopy, or prepared for SDS-

PAGE followed by immunoblot analysis. 

VICs cultured on different substrates showed no essential differences in the 

molecular composition of AJs. N-cadherin and cadherin-11 were always present (Figure 

42a and b) as well as α-catenin (not shown), β-catenin (Figure 42d), plakoglobin and 

protein p120 (not shown). Likewise, the ability of VICs to form IFs was not influenced by 

the specific coating substrate (for smooth muscle α-actin containing VICs see, e.g., Figure 

42e; for vimentin see Figure 42f). Plakophilin-2 was positive in immunoblot analyses 

without significant increases or decreases of the amount of protein (Figure 42c). In 

addition, plakophilin-2 generally colocalized with the other AJ proteins (i.e., see 
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colocalization with N-cadherin in Figure 43a-e) as shown before for VICs grown on 

collagen type I-coated plates. 

 

 

 
 

Figure 42: SDS-PAGE, followed by immunoblot analysis of proteins of ovine VICs from 
pulmonary heart valves cultured on different substrate-coating materials. Collagen type I, 
fibronectin, gelatine, poly-L-lysine or absence of coating (w/o coating) was. Immunoblot reactions 
of proteins with antibodies against N-cadherin (N-cad, a), cadherin-11 (cad-11, b), plakophilin-2 
(Pkp2, c), β-catenin (β-cat, d), smooth muscle α-actin (sm-α-actin, e) and vimentin (vim, f) do not 
show markerd differences between the different substrates and coatings. Polypeptide marker bands 
(bars, left) correspond to 158, 116, 97.2, 66.4, 55.6 and 42.7 kDa (top to bottom). 
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Figure 43: Double-label immunofluorescence micrographs of ovine VICs from pulmonary heart 
valves cultured on different substrates. Collagen type I (a-a’’), fibronectin (b-b’’), gelatine (c-c’’), 
poly-L-lysine (d-d’’) or absence of coating substance (w/o coating; e-e’’) was tested. Antibodies 
against plakophilin-2 (a-e, red) and N-cadherin (a’-e’, green) show colocalization at the cell-cell 
contacts (a’’-e’’, yellow). Bars: 20 µm 
 

 

4.1.2.9     Cell-cell junctions of valvular interstitial cells treated with growth factors 

The influence of different growth factors on VIC growth, especially on the advent of 

plakophilin-2 in the AJs in cultured VICs, was examined by immunofluorescence 

microscopy and biochemical analyses. VICs were incubated for one week with several 
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growth factors as additives under serum-free conditions. The following growth factors at 

various concentrations were tested: TNF-α 0.5 mM, PDGF-BB 5 ng/mL, heparin 

50 µg/mL, TGF-β1 1 ng/mL, VEGF 25 ng/mL, INF-γ 10 ng/mL, EGF 10 ng/mL, bFGF 

5 ng/mL, bFGF 25 ng/mL and bFGF 10 µg/mL (for general reviews see Brown et al., 

2005; Posner and Laporte, 2010; Witsch et al., 2010; for the role of certain growth factors 

in myocardial tissue regeneration see Santini, 2005). In parallel, VICs were incubated 

without any growth factor. The AJs of the VICs treated with growth factors showed no 

significant differences in their ensemble or localization pattern in contrast to untreated 

VICs. In addition, the appearance of plakophilin-2 and its colocalization with other AJ 

proteins was also not significantly altered in the presence of the various growth factors 

added to the culture medium. 

 

 

4.2 Growth of valvular interstitial cells in three-dimensional 
systems 

To study the spatial arrangements and patterns of behavior of cultured VICs – in 

particular of those containing plakophilin-2 – a 3D growth model resembling the properties 

of the native heart valve matrix has been established. Here, three different 3D systems 

were chosen: 1) VICs growing in a collagen type I gel matrix; 2) VICs growing in a 

collagen type I gel matrix in combination with an extract of basal lamina matrix material 

(MatrigelTM; for review see Kleinman and Martin, 2005); and 3) VICs allowed to grow on a 

decellularized heart valve scaffold, using a custom-designed incubation chamber disk 

(Chapter 3.1.2.3; Figure 6; Akhyari et al., 2009b). The constructs prepared were used for 

biochemical and immunohistochemical analyses and (immuno-) electron microscopy. 

VICs of ovine origin grown in artificial 3D systems composed of collagen type I 

(with or without MatrigelTM) or on a decellularized ovine heart valve matrix, formed cell 

bodies with numerous processes, as can be seen in hematoxylin-eosin or Masson-

Goldner stainings of cross-sections through such preparations (Figure 44a-d). In such 

preliminary histological studies, the cells appeared well-adapted to their artificial 

environment, independent from the specific type of 3D construct. Therefore, such 3D 

matrix constructs repopulated with proliferiferating VICs were embedded for – and 

examined by – electron microscopy. 
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Figure 44: Cross-sections of different formaldehyde-fixed, paraffin-embedded artificial 3D 
constructs stained with hematoxylin-eosin (a-c) or according to Masson-Goldner (d). In collagen 
type I 3D constructs (a), some cells have accumulated at one side of the construct, whereas the cells 
grown in the interior show spreading and the formation of tentacle-like cell processes (higher 
magnification in b). In collagen type I plus MatrigelTM 3D constructs, the cells show less spreading 
(c). In decellularized ovine heart valves re-populated with VICs (d), cells have hardly migrated into 
the scaffold interior and instead are mostly located at the surfaces of the constructs (green: collagen; 
red: muscle cells). Bars: 200 µm (a and b), 100 µm (c and d) 
 

 

Collagen type I 3D constructs 
Cells growing in collagen type I-based matrix only (Figure 44a and b) form 

tentacle-like filopodial processes quite similar to those seen in the native valve. 

Remarkably, some VICs seem to accumulate in higher packing density at one side of the 

construct, apparently in response to the contacts with the cell-covered culture dish. In 

general, cells located in the interior of the 3D construct appear to be in contact with each 

other. Electron microscopy indicates that VICs grown in this artificial 3D scaffold 

composed only of collagen type I fibers, look healthy for a cultivation period of 1-2 weeks 

without any additional supply in spite of frequent changes of the DMEM medium 

containing serum and antibiotics. Under these conditions, the cells effectively colonize in 

the collagen scaffold provided with frequent cell-cell contacts of the puncta adhaerentia 

type (Figure 45). 
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Collagen type I / MatrigelTM 3D constructs 
VICs grown in 3D constructs composed of collagen I together with MatrigelTM 

(Figure 44c) apparently do not form as many tentacle-like processes as in the system 

containing collagen type I only. Moreover, VICs grown in collagen type I enriched by 

MatrigelTM appear to be more densely packed. However, in the electron microscope these 

cells often appear somewhat degenerated and stress-damaged, showing a relatively high 

proportion of cytoplasmic vacuoles (Figure 46a). 

 

Decellularized heart valve scaffolds re-populated with VICs 

VICs grown on decellularized heart valve matrix have shown the least promising 

results: The cells are hardly able to penetrate – and to migrate or extend into – the matrix 

and show only very few cell-cell contacts (Figures 44d and 46b). Moreover, in individual 

cells which managed to migrate into the construct system rarely showed cell-cell contact 

regions with an AJ-type ultrastructure (Figure 46c and d). 

 

 
 

Figure 45: Electron micrographs of ultrathin sections through 3D matrix constructs containing 
collagen type I with entrapped VICs. Cells are loosely dispersed and form cell-cell contacts either 
at cell processes (a-c) or between juxtanuclear cell bodies of adjacent cells (d-f). The cell contacts 
are of the AJ puncta adhaerentia type (c, e). GJs are also present but occur quite infrequently (d). 
VICs show the typical invagination appearance of the so-called manubrium adhaerens-type 
junction (f; Wuchter et al., 2007). Note that some of the cells are very rich in cytoplasmic vesicles 
indicating shortness in oxygen or nutritives. The empty-looking regions in f) may represent 
glycogen-storage aggregates. Bars: 5 µm (a, b), 0.6 µm (c, f), 0.3 µm (d), 0.8 µm (e) 
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Figure 46: Electron micrographs of ultrathin sections through 3D matrix constructs composed of 
collagen type I and MatrigelTM or decellularized heart valves seeded with VICs. The cells of 
collagen type I 3D constructs are densely packed, which may partly reflect the enormous shrinkage, 
and some also show signs of stress and cell death (a). Electron micrographs of ultrathin sections 
through decellularized heart valves of ovine origin show that only few cells migrate into the depth 
of the heart valve scaffolds, most of them remain at the outside (b).VICs present cell-cell contact 
structures resembling VIC-AJs (c-d). The ECM of the decellularized heart valve consists of 
seemingly intact collagen bundles, in some places interspersed with residual cell debris (b). Cells 
which have managed to migrate into the scaffold at some places form cell-cell contacts of the AJ 
type (c, d). Bars: 8 µm (a), 3 µm (b), 0.5 µm (c, d) 
 

 

4.2.1 The proteins involved in the cell-cell contacts between valvular 
interstitial cells in three-dimensional constructs 
3D constructs composed of collagen type I, collagen type I/MatrigelTM or 

preparations of decellularized heart valve scaffolds were seeded with cultured VICs and 

these were allowed to grow after various periods of time, followed by examination using 

immunofluorescence microscopy to identify and characterize the specific growth forms and 

the AJs formed. 

 

Collagen type I 3D constructs 

Here the cells grow in sparse, widely distributed arrays throughout the artificial 

matrix region, mostly appearing with long filopodial processes which in certain patterns 

form cell-cell contacts (Figure 47a and b). In these cells smooth muscle α-actin filament 

bundles seem highly decreased, notably in comparison with the vimentin IFs (Figure 47a-

c’’). In comparison with VICs grown in 2D monolayer cultures, the amount of nuclei 
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positive for the proliferation marker Ki-67 is strongly decreased (for double immunolabeling 

with vimentin see Figure 47d and for a survey comparison with Ki-67-positive cells see 

Figure 47e; for references see also Taylor et al., 2002; Butcher and Nerem, 2004; Benton 

et al., 2009). 

 

Collagen type I / MatrigelTM 3D constructs 

The VICs located in the cortical parts of the 3D constructs are generally positive for 

both vimentin and smooth muscle α-actin, whereas the cells that have penetrated deeper 

into the construct often show a decrease in smooth muscle α-actin immunostaining 

intensity (Figure 48a). As already suggested in the interpretations of hematoxylin-eosin 

stainings (Figure 44c) and electron micrographs (Figure 46a), VICs here form relatively 

few AJs. Nevertheless, the AJs present are positive for N-cadherin (Figure 48b) and 

cadherin-11 (not shown) as well as for α-catenin (not shown), β-catenin (Figure 48c), 

plakoglobin and protein p120 (not shown). 

 

Decellularized heart valve scaffolds re-populated with VICs 

Double-label immunofluorescence microscopy using sections through frozen or 

fixed and paraffin-embedded 3D constructs has shown that cells that have remained in the 

periphery of the construct bodies are positive both for vimentin and smooth muscle α-actin 

(Figure 49a-a’’) whereas cells deeper in the interior of the scaffold seem to contain 

reduced smooth muscle α-actin (Figure 49a). Cross-sections of fixed and paraffin-

embedded 3D constructs show the typical dot-like puncta adhaerentia AJs positive for N-

cadherin (Figure 49b) and cadherin-11 (not shown), α-catenin (not shown), β-catenin 

(Figure 49c), together with protein p120 and plakoglobin (not shown). These AJs often 

occur in clusters (double-label immunofluorescence staining of vimentin and β-catenin in 

Figures 49d and e). 
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Figure 47: Immunofluorescence micrographs of cross-sections through frozen or paraffin-
embedded 3D constructs containing ovine pulmonary VICs grown in a collagen type I gel matrix. 
The VICs often form cell processes positive for vimentin (vim, green, a) and smooth muscle α-actin 
(sma, red, b) but some of them may give the impression of reduced smooth muscle α-actin labeling 
(c-c’’) and reduced cell proliferation as indicated by the reaction of protein Ki-67 antibodies (red, 
d; green, vimentin; single staining in a lower magnification in e). Bars: 100 µm (a, b, c, e), 
50 µm (d) 
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Figure 48: Immunofluorescence micrographs of cross-sections through paraffin-embedded 3D 
constructs containing collagen type I and MatrigelTM with entrapped VICs of ovine origin. VICs 
located in the outer parts of the constructs show strong reactions for smooth muscle α-actin, 
whereas cells grown in the interior are mostly negative for this actin (a). Cells growing both near 
the surface and in the interior are all positive for vimentin (a’; for a merged image see a’’). Cell-cell 
AJs between adjacent cells are positive for N-cadherin (b) and β-catenin (c). Bars: 100 µm (a), 
10 µm (b), 20 µm (c) 
 
 

Due to the insufficient ultrastructural quality of the decellularized re-seeded 

scaffolds and the collagen type I / MatrigelTM constructs (see, e.g., Figure 46), these two 

approaches were not followed up in the subsequent experiments. Instead, the following 

examinations were focused exclusively on constructs composed of VICs grown in collagen 

type I gels. 

Here, N-cadherin and cadherin-11 are generally noted at AJs (Figure 50). The 

appearance of these AJs strongly resembles those described for native valves, and most 

of them are of the puncta adhaerentia type. In contrast to the AJ plaque proteins involved, 

i.e. α-catenin (not shown), β-catenin, protein p120 and plakoglobin (Figure 51), 

plakophilin-2 and other desmosomal proteins always appear negative in 

immunofluorescence microscopy (not shown). Double-label immunofluorescence stainings 

of N-cadherin with either β-catenin or plakoglobin show on the one hand perfect 

colocalization of the transmembrane glycoproteins and the plaque proteins. On the other 
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hand, however, certain AJ regions are also detected in which the colocalization of AJ 

glycoproteins and plaque proteins is not evident (Figure 52). Electron micrographs of 

cross-sections through frozen 3D constructs reacted with antibodies against certain AJ 

proteins and immunogold-labeled secondary antibodies (Figure 53; for a detailed 

description of this method see chapter 3.4.2) demonstrate that N-cadherin shows the by 

far the most extensive and contiguous labeling of the junctional ultrastructure (Figure 53a), 

whereas cadherin-11 has been localized to a much smaller extent (Figure 53b). Among 

the plaque proteins, protein p120 (Figure 53c) and β-catenin (Figure 53d) immunogold-

labeling have been the most intense, whereas plakoglobin has shown marked differences 

from AJ to AJ (Figure 53d). 

 
 

 
 
Figure 49: Immunofluorescence micrographs of cross-sections through formaldehyde-fixed, 
paraffin-embedded 3D constructs of decellularized ovine heart valves re-populated with ovine VICs 
and allowed to grow for 1-2 weeks in a custom-designed incubation chamber. (a-a’’) Double-
labeling of the outer part of such a construct with antibodies against smooth muscle α-actin (red, a) 
and vimentin (green, a’), showing the distribution of VICs. Only the cells which remain near the 
surface of the construct show strong overall double-labeling (a’’, yellow merged image), whereas 
the cells that are located in the depth of the construct are characterized by decreased smooth muscle 
α-actin labeling (merged picture, a’’). Cell-cell AJ contacts of the puncta adhaerentia type contain 
N-cadherin (red, b) and the plaque-building protein β-catenin (red, c; for double-label results see d 
and e). Bars: 100 µm (a), 10 µm (b, c), 20 µm (d, e) 
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Figure 50: Immunofluorescence micrographs of cross-sections through formaldehyde-fixed, 
paraffin-embedded 3D collagen type I constructs re-populated with ovine VICs and immunostained 
with antibodies against N-cadherin (red, a-c) and cadherin-11 (red, d-g), both in double-label 
staining with vimentin (green). Bars: 50 µm (a), 20 µm (b, c, d, e), 10 µm (f, g) 
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Figure 51: Double-label immunofluorescence micrographs of cross-sections through frozen 
samples of collagen type I 3D constructs with entrapped ovine VICs, using antibodies against 
vimentin (green) and β-catenin (a, red), protein p120 (b, c, red) and plakoglobin (d, e, red). Note 
the characteristic puncta adhaerentia-like appearance of most AJs. Bars: 50 µm (a), 20 µm (b, e), 
10 µm (c, d) 
 
 
 

 
 
Figure 52: Double-label immunofluorescence micrographs of cross-sections through 
formaldehyde-fixed, paraffin-embedded collagen type I 3D constructs with entrapped ovine VICs. 
Neighboring VICs show several punctate cell-cell contacts indicating colocalization (yellow) of N-
cadherin (green) and β-catenin (red, a-c) or plakoglobin (red, d). Shown are the merged label 
pictures. Bars: 20 µm (a, b, c), 50 µm (d) 
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Figure 53: Immunogold-label electron micrographs of cross-sections through frozen collagen 
type I 3D constructs of ovine VICs, showing AJs decorated with antibodies against N-cadherin (a), 
cadherin-11 (b), protein p120 (c), and β-catenin (d). Bars: 0.5 µm (a, d), 0.3 µm (b, c) 
 

 

4.2.2 Valvular interstitial cells grown in three-dimensional collagen type I 
constructs re-isolated and grown as primary culture 
To test whether the process leading to the absence of plakophilin-2 in AJs of 3D 

collagen type I constructs is reversible, primary cultures of VICs obtained from the 3D 

constructs aforementioned were examined by immunofluorescence microscopy and 

biochemical analysis. 

VICs isolated from 3D collagen type I constructs and grown again as primary 2D 

monolayer cell cultures show again an increase of the proportion of smooth muscle α-

actin-positive cells (Figure 54a). Moreover, such VICs also start to proliferate to a relatively 

higher proportion as indicated by immunofluorescence staining with Ki-67 (Figure 54; for a 

comparison with VICs grown in 3D model systems see Figure 47d and e). As already 

reported for primary cultures of VICs freshly derived from ovine, bovine and human heart 

valves, VICs re-isolated from 3D collagen type I constructs and grown again as primary 

cultures also form AJs with N-cadherin and cadherin-11, complexed with α- and β-catenin, 
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protein p120 and plakoglobin (for double-label immunofluorescence micrographs see 

Figure 55). And again, plakophilin-2 is rapidly acquired in AJs of such VICs re-isolated 

from 3D collagen type I constructs and grown again as primary cultures. In such cultures 

AJs showed colocalization of all the AJ proteins aforementioned (for an example see 

Figure 56). 

 

 

 
 

Figure 54: Double-label immunofluorescence micrographs of ovine pulmonary VICs grown first in 
3D collagen type I constructs, then re-isolated and grown as primary cultures. (a-a’’) VICs labeled 
with antibodies against smooth muscle α-actin (red, a) and vimentin (green, a’), show an increase 
of the amount of smooth muscle α-actin-positive cells in comparison to the ubiquitous marker 
vimentin (merged picture, a’’). (b-b’’) The proliferation activity is also markedly increased as 
indicated by double-label immunostainings for vimentin (green, b’) and the nuclear protein Ki-67 
(red, b): Here nearly every cell is positive for Ki-67 (merged picture, b’’). Bars: 50 µm 
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Figure 55: Double-label immunofluorescence micrographs of ovine pulmonary VICs grown first in 
3D collagen type I constructs, re-isolated and grown as primary cultures. Antibodies against N-
cadherin (red, a), cadherin-11 (red, b), α-catenin (red, c) and protein p120 (red, d) or antibodies 
against β-catenin (green, a’-d’) show far-reaching colocalization in characteristic puncta 
adhaerentia AJ structures (merged pictures: a’’-d’’). Bars: 50 µm 
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Figure 56: Double-label immunofluorescence micrographs of ovine pulmonary VICs grown first in 
3D collagen type I constructs, re-isolated and grown as primary cultures. Antibodies against 
plakophilin-2 (red) show frequent sites of colocalization (yellow, merged picture) with β-catenin 
(green). Bar: 50 µm 
 

 

4.2.3 Immunoblot analyses of the adherens junction molecule ensembles of 
valvular interstitial cells in three-dimensional collagen type I 

constructs – a summary 
As demonstrable in immunoblot analyses, I have shown that VICs growing in 

collagen type I 3D constructs – in contrast to reports of others (for a review see Flanagan 

and Pandit, 2003) – are able to modify their ECM environment by de novo secretion of 

elastin and fibronectin (Figure 57). This holds for both ovine and bovine VICs grown in 3D 

constructs, using two differently distributed collagen type I preparations (Figure 57, lanes 

1-4). Ovine and bovine VICs in primary cultures derived from freshly prepared heart 

valves (Figure 57, lanes 5 and 6) show elastin and fibronectin in similar amounts and 

deposition patterns as VICs grown in 3D collagen type I constructs, re-isolated and grown 

again in primary cultures (Figure 57, lane 9). 

N-cadherin (Figure 58a) and cadherin-11 (Figure 58b) as well as α-catenin (not 

shown), β-catenin (Figure 58c), plakoglobin (Figure 58d) and protein p120 (Figure 58e) 

show positive reactions in immunoblot analyses of both ovine and bovine VICs grown in 

3D constructs composed of collagen type I (Figure 58, lanes 1-4) as it is also seen with 

VICs grown in primary cultures derived from freshly prepared ovine or bovine heart valves 

(Figure 58, lanes 5 and 6). VICs grown in 3D collagen type I constructs, re-isolated and 

grown again as primary cultures (Figure 58, lane 9) also show positive reactions for N-

cadherin (Figure 58a) and cadherin-11 (Figure 58b) as well as for α-catenin (not shown), 

β-catenin (Figure 58c), plakoglobin (Figure 58d) and protein p120 (Figure 58e). 
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VICs grown in 3D constructs composed of collagen type I contain strongly 

decreased amounts or even an absence of plakophilin-2 (Figure 58f, lanes 1-4). VICs 

grown in 3D collagen type I constructs, re-isolated and grown again as primary culture 

also acquire plakophilin-2 (Figure 58f, lane 9). 

 

 

 
 
Figure 57: SDS-PAGE followed by immunoblot analyses using antibodies against elastin and 
fibronectin. PK ov/bov BD, PK ov/bov Cultrex as well as PK ov P8/PK bov P7 and PV ov P2 (3D) 
show positive reactions for both elastin (a) and fibronectin (b). Ventricle ov/bov is used as control 
and shows negative reactions for both antibodies.  
Abbreviations: lanes 1 and 3: PK ov/bov BD, ovine/bovine VICs grown in 3D constructs using 
collagen type I from BD Biosciences; lanes 2 and 4: PK ov/bov Cultrex, ovine/bovine VICs grown 
in 3D constructs using collagen type I from Cultrex; lanes 5 and 6: PK ov P8/PK bov P7, VICs 
grown in primary culture of passage 8/7, originally derived from freshly prepared ovine/bovine 
pulmonary heart valve; lanes 7 and 8: ventricle ov/bov, ovine/bovine ventricular myocardial tissue; 
lane 9: PV ov P2 (3D), ovine VICs grown first in 3D collagen type I constructs, then re-isolated and 
again grown as primary cultures of passage 2. Polypeptide marker bands (bars, left) correspond to 
212, 158, 116, 97.2, 66.4, 55.6 and 42.7 kDa (top to bottom). 
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Figure 58: SDS-PAGE followed by immunoblot analyses using antibodies against N-cadherin (N-
cad, cadherin-11, β-catenin, plakoglobin, protein p120 and plakophilin-2. PK ov/bov BD, PK 
ov/bov Cultrex, PK ov P8/PK bov P7 and PV ov P2 (3D) show positive reactions for N-cadherin 
(N-cad; a), cadherin-11 (cad-11; b), β-catenin (β-cat; c), plakoglobin (PG; d) and for protein p120 
(p120; e), with minor reactions seen for PV ov BD using antibodies against N-cadherin and protein 
p120. Plakophilin-2 (Pkp2; f) shows positive reactions only in 2D VIC cultures (PK ov P8/PK bov 
P7 and PV ov P2 [3D]) as well as in ventricle ov/bov but no or only very weak reactions in 3D 
culture constructs (lanes 1-4). Reactions for cadherin-11 (b) and protein p120 (e) are weak in 
ventricle ov/bov, maybe due to minor proportions of these proteins in the samples used whereas 
reactions for N-cadherin, β-catenin, plakoglobin and plakophilin-2 are clearly positive in ventricle 
ov/bov (lanes 7 and 8).  
Abbreviations: lanes 1 and 3: PK ov/bov BD, ovine/bovine VICs grown in 3D constructs using 
collagen type I from BD Biosciences; lanes 2 and 4: PK ov/bov Cultrex, ovine/bovine VICs grown 
in 3D constructs using collagen type I from Cultrex; lanes 5 and 6: PK ov P8/PK bov P7, VICs 
grown in primary culture of passage 8/7, originally derived from freshly prepared ovine/bovine 
pulmonary heart valve; lanes 7 and 8: ventricle ov/bov, ovine/bovine ventricular myocardial tissue; 
lane 9: PV ov P2 (3D), ovine VICs grown first in 3D collagen type I constructs, then re-isolated and 
again grown as primary cultures of passage 2. Polypeptide marker bands (bars, left) correspond to 
212, 158, 116, 97.2, 66.4, 55.6 and 42.7 kDa (top to bottom).  
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4.3 Valvular interstitial cells in fetal hearts 
As the AJ-type cell-cell contacts between the VICs of adult hearts in situ and in 

culture had shown distinct differences, in particular by the advent of plakophilin-2 in cell 

culture, I have also examined fetal mammalian heart valves, comparing VICs in situ and in 

culture in prenatal hearts. For these studies I have used heart valves from fetal pigs at day 

85 post-fertilization and human heart valves derived from a fetus of week 20 of pregnancy. 

 

 

4.3.1 Valvular interstitial cells in fetal hearts in situ 
In the electron microscope, porcine fetal VICs present a compact morphology, 

mostly without long filopodial processes, but where they are present, their cell-cell 

contacts mostly occur at these structures (Figure 59a). These AJ contacts are also of the 

puncta adhaerentia type, not infrequently with prominent plaques providing attachment for 

IFs or microfilament-bundles (Figure 59). The ECM structures, especially the collagen 

fiber bundles, seem to be relatively sparse and not as homogenously extending 

throughout the valve interior as typical for adult heart valves (for comparisons see Figures 

15 and 16). Similar to adult VICs in situ, however, fetal VICs also tend to “embrace” and 

align collagen fiber bundles with filopodial processes in tentacle-like patterns (Figure 59b; 

for comparison with adult VICs see Figure 16). Like adult VICs, fetal VICs in situ also are 

positive for vimentin IFs (Figure 60). In addition – and in stark contrast to the situation 

observed for adult heart valves – the fetal valves studied have shown a marked 

subpopulation of cells positive for smooth muscle α-actin (Figure 60b’; for comparison with 

adult heart valves see Figure 17), which occur either in clusters or as individual cells in the 

matrix cell meshwork (Figure 60b’). Numerous vimentin-positive interstitial cells can also 

be seen to form cell processes which protrude into – and extend throughout – the 

adjacent myocardial tissue (Figure 60a; compare with adult myocardium, e.g., Figure 20). 

Finally, fetal VICs in situ lack the cardiac muscle-specific IF protein desmin as can best be 

seen in double-label immunostainings of heart valve tissue with adjacent myocardium, 

using antibodies specific for cardiac α-actin (cf. Moll et al., 2006) in comparison with 

antibodies against vimentin or against desmin (Figure 61). 

In immunofluorescence microscopy the cell-cell AJs connecting fetal VICs in situ 

show an ensemble of proteins similar to that found in VICs of adult hearts, i.e. N-cadherin 

(Figure 62a) and cadherin-11 (not shown), together with α- and β-catenin (Figure 62a and 

b), plakoglobin as well as proteins p120 and p0071 (not shown). 
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Surprisingly, plakophilin-2 has been found in fetal VICs in situ, a finding which has only 

been seen so far in adult VICs growing in culture (see preceeding chapters). This 

occurrence of plakophilin-2 in fetal VICs has been noted in AJs between vimentin-positive 

VICs in typical dot-like patterns (Figure 63a) or at AJ contacts of VICs in close vicinity to 

the endocardial cells lining the valve (Figure 63b). Moreover, plakophilin-2 here again 

shows colocalization with α- and β-catenin (Figure 63c-c’’), proteins p120 and p0071, 

plakoglobin and proteins ZO-1-3 (not shown). Remarkably, plakophilin-2 is not restricted 

to certain clusters of cells within the valvular matrix (Figure 64a) but also occurs in AJs 

connecting VICs deep in the interior of the heart valve (Figure 64b). Other desmosomal 

molecules, including desmoglein and desmocollin as well as desmoplakin, have 

consistently been found to be absent in AJs of fetal heart valve tissue (not shown). As a 

final remark, the occurrence of plakophilin-2 does not correlate with the spatial distribution 

of smooth muscle α-actin-positive cells in the valves (not shown). For an overview of 

proteins involved in the AJs of fetal VICs in situ see Table 8.  
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Figure 59: Electron micrographs of cross-sections through fetal porcine aortic heart valves. (a) The 
cells are embedded in ECM and tend to form thin filopodial processes with cell-cell contacts of the 
AJ type connecting such processes (e.g., arrow in a). (b) Some of the filopodial processes also wrap 
around collagen fiber bundles. Note the abundant amount of endoplasmatic reticulum and Golgi 
cisternae in the cytoplasm of the fetal VICs (arrow in b). Cell-cell contacts of the AJ type occur as 
clusters, can be observed in some places which may suggest usion (c), while in other regions 
distinct individual puncta adhaerentia can be resolved (d; see arrowheads). Note occasional lateral 
associations of AJ plaque structures with IF bundles (d; arrows). Bars: 5 µm (a), 2 µm (b), 0.5 µm 
(c), 0.2 µm (d) 



_________________________________________________________________Results 

 111

 
 

Figure 60: Double-label immunofluorescence micrographs of cross-sections through 
formaldehyde-fiexd, paraffin-embedded fetal porcine mitral heart valves with adjacent 
myocardium. (a) Mesenchymal connective tissue cells (VICs) are stained with antibodies against 
vimentin (green) and cardiomyocytes with antibodies against cardiac α-actin (red). Vimentin-
positive VICs and endothelial cells are present in the heart valve (upper part in a) as well as in the 
layer of connective tissue bordering the myocardium. Vimentin-positive cells are also found 
between the myocardial cells. (b-b’) Besides the vimentin-positive VICs (b, green), the heart valves 
also harbor a population of cells positive for smooth muscle α-actin (b’; red; see also arrowheads 
and asterisks in b’). Nuclei are stained blue. Bars: 100 µm 
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Figure 61: Double-label immunofluorescence micrographs of cross-sections through 
formaldehyde-fixed, paraffin-embedded fetal porcine tricuspid heart valves with adjacent 
myocardium. Mesenchymal cells are labeled with antibodies for vimentin (green) and 
cardiomyocytes with antibodies against desmin (red). Heart valve leaflets are positive for vimentin 
only and do not contain any desmin-positive cells (arrowheads in a). Moreover, the connective 
tissue adjacent to the myocardium shows only vimentin-positve cells (arrows in a). The intersection 
of the myocardium and the valve is clearly recognizable by the lack of desmin-positive cells in the 
valvular base (arrowheads in b). Note the vimentin-positive endothelial cells and cardiac fibroblasts 
interspersed between the cardiomyocytes. Nuclei are stained blue. Bars: 100 µm 
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Figure 62: Double-label immunofluorescence micrographs of cross-sections through frozen fetal 
human and porcine heart valve tissue immunostained with antibodies against cell-cell junction 
proteins. (a-a’’) Several cell-cell contacts of the AJ type connect VICs in fetal porcine heart valve 
tissue containing N-cadherin (a, red) and the plaque protein β-catenin (a’, green), colocalizing in 
some AJ structures (merged picture a’’, yellow). (b-b’’) Here α-catenin (b, red) and β-catenin (b’, 
green) colocalize in cell-cell contacts between the VICs of the valve interior (b’’, yellow). Nuclei 
are stained blue. Bars: 20 µm 
 

 
 

Figure 63: Double-label immunofluorescence micrographs of cross-sections through human fetal 
heart valves, showing the additional desmosomal plaque protein plakophilin-2 occurring in the cell-
cell junctions connecting VICs of the heart valve interior. (a) Vimentin-positive VICs, showing 
cell-cell AJ contacts labeled with a specific antibody against plakophilin-2 in the central position of 
the valve (vimentin, green; plakophilin-2, red). (b) Plakpophilin-2 (red) also occurs in regions just 
beneath the endocardium (labeled by VE-cadherin, green). (c-c’’) Colocalization of β-catenin (c, 
red) and plakophilin-2 (c’, green; for merged picture see c’’). Nuclei are stained blue. Bars: 50 µm 
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Figure 64: Double-label immunofluorescence survey micrographs of cross-sections through 
formaldehyde-fixed, paraffin-embedded porcine fetal heart valve tissue, showing the spatial 
distribution of plakophilin-2-positive (red) VICs in the heart valve interior. (a) Clusters of VICs 
positive for plakophilin-2 are located in the center of a heart valve, whereas cells more adjacent to 
the endothelial lining (VE-cadherin; green) appear to be negative for this protein. (b) Dispersed 
localization of plakophilin-2-positive VICs (red) in the heart valve in direct comparison with some 
cells occurring in close vicinity to the endothelial lining (VE-cadherin, green). Nuclei are stained 
blue. Bars: 50 µm (a), 100 µm (b) 
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4.3.2 The fetal endocardium1 
In the electron microscope, one category of the cells of the embryonal and the fetal 

endocardium shows a typical endothelial ultrastructural appearance with some cell 

processes, a basal lamina (Figure 65a) and zonula-type as well as distinct individual cell-

cell contacts, including an extended, AJ-type zonula adhaerens (for reviews see Palade, 

1988; Wagner, 1988; Heimark and Schwartz, 1988; Franke et al., 1988; Madri et al., 

1988). The specific organization of the fetal endocardium, with special details of its 

endothelial AJs is presented in Figure 65. Concerning the proteins involved in the cell-cell 

AJs of the endocardial endothelium, VE-cadherin is present as a typical endothelial cell 

marker in all contacts, whereas the immunolocalization results for N-cadherin have been 

rather inconsistent and sometimes appear to be interrupted (Figure 66a and b). By 

contrast, cadherin-11 consistently appears in colocalization with VE-cadherin (Figure 66c). 

The plaque proteins α- and β-catenin, afadin, ZO-1 and -3 as well as proteins p120 and 

p0071 also colocalize with VE-cadherin in endothelial cells (not shown). JAM-A, specific 

claudins and occludin all show positive reactions as expected for an endothelial cell-cell 

junction (not shown; Lampugnani et al., 1995; for related reviews see, e.g., Dejana et al., 

1995, 2000; Bradfield and Imhof, 2004; Dejana, 2004; Bazzoni, 2006; Ferreri and Vincent, 

2008; Moll et al., 2009). 

While desmosomal proteins like desmoglein-2 and desmocollin-2 as well as 

desmoplakin are always absent in fetal endocardial cell-cell junctions (Figure 67), the 

desmosomal plaque protein plakophilin-2 surprisingly can show positive reactions in the 

endothelial cells of the endocardium (for colocalization of plakophilin-2 and β-catenin in 

VICs as well as in adjacent endothelial cells of the endocardium see Figure 68). This 

occurrence is not ubiquitous but seems to be spatially restricted to some parts of the 

valves (for a survey of a valve leaflet with colocalization of plakophilin-2 and β-catenin see 

Figure 69 as well as Figure 70c and d). Plakophilin-2 is also often seen to colocalize with 

N-cadherin and cadherin-11 as well as with α-catenin, afadin and proteins ZO-1 and -3 

(not shown). Remarkably, the cells of the endocardial endothelium which are positive for 

VE-cadherin and cover the connective tissue above the myocardium are mostly negative 

for plakophilin-2, whereas in these plakophilin-2 is of course psitive in the IDs of the 

adjacent cardiomyocytes (Figure 70a). Endothelial AJs of other blood vessels like fetal 

                                                 
1 In this thesis the term “endocardium” is used in a strictly histological meaning and shall include (i) the 
primary and definitive cardiac endothelium as a continuous layer of cells characterized by endothelial cell 
type marker structures and molecules as well as (ii) all the dispersed connective tissue cells located in the 
subjacent matrix (“cardiac cushion matrix”). The term does not include any implication related to the specific 
origin and process of differentiation of the cells mentioned (for review articles see Mikawa, 1999; Mjaatvedt 
et al., 1999). 
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aorta and arterioles of various calibres, which have been examined as controls, do not 

contain plakophilin-2-positive junctions (Table 8; not shown). For an overview of proteins 

involved in the AJs of fetal endocardial endothelium in situ see Table 8.  

 

 
 

Figure 65: Electron micrographs of cross-sections trough fetal porcine mitral and tricuspid heart 
valve tissue, showing the endothelial cell layer of the endocardium and their cell-cell contacts. (a) 
Endothelial cell layer (top), coat of a tricuspid heart valve (bottom part) in which some VICs are 
embedded in collagenous ECM. (b-d) Cell-cell structures of the AJ type connecting endothelial 
cells of a mitral heart valve. Note the prominent IF bundles associated with the AJ shown in (c) and 
the microtubule bundle associated with the extended junction in (d). Bars: 5 µm (a), 1 µm (b), 
0.5 µm (c), 1.5 µm (d) 
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Figure 66: Double-label immunofluorescence micrographs of cross-sections through frozen fetal 
human heart valve tissue. (a-b) The reaction of N-cadherin is not fully coincident with the 
endothelial cells lining the heart valve. In some areas of the valve, N-cadherin-positive structures 
(red) clearly do not colocalize with VE-cadherin structures (a; green), whereas in other regions such 
a colocalization is seen (b; yellow). Note the abundance of N-cadherin in the cell-cell contacts of 
the VICs underneath the endothelial layer (a, red). (c-c’’) Cadherin-11 (c; red), in contrast, always 
colocalizes with VE-cadherin (c’; green) as demonstrated in the merged picture (c’’; yellow). 
Nuclei are stained blue. Bars: 50 µm 
 

 

 
 

Figure 67: Double-label immunofluorescence micrographs of cross-sections through 
formaldehyde-fixed, paraffin-embedded fetal human (a, b) and porcine (c) heart valves. Dsg-2 (a; 
red) and Dsc-2 (b; red) as well as desmoplakin (c; red) are absent in the cell-cell contacts of fetal 
human endocardial endothelium, which in turn shows positive reactions for VE-cadherin only (a-c; 
green). Note also that the adjacent VICs show no positive reactions for antibodies against any of 
these desmosomal proteins. Nuclei are stained blue. Bars: 20 µm (a, c), 40 µm (b) 
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Figure 68: Double-label immunofluorescence micrograph of cross-sections through a frozen fetal 
human heart valve, showing plakophilin-2 in endothelial cells of the endocardium lining the heart 
valve and in adjacent VICs. Plakophilin-2 (Pkp2; red) colocalizes with β-catenin (β-cat; green) in 
the endothelial cells of the endocardium as well as in several of the AJs of the VICs (see the 
merged picture; yellow). Nuclei are stained blue. Bar: 50 µm 
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Figure 69: Double-label immunofluorescence survey micrograph of cross-sections through frozen 
fetal porcine heart valve tissue, showing the distribution and partial colocalization of plakophilin-2 
and β-catenin. Plakophilin-2 (Pkp2; red) is present in several cell-cell contacts of VICs located 
deep in the center of the heart valve (white arrowheads) as well as at some AJ sites of the 
endothelial cells lining the heart valve interior (white arrows) and β-catenin (β-cat; green) is also 
present in AJs both of VICs and endothelial cells. Colocalizations are demonstrated by the yellow 
merged color. Nuclei are stained blue. Bar: 100 µm 
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Figure 70: Double-label immunofluorescence micrographs of cross-sections through fetal porcine 
and human heart valve tissues with adjacent myocardium, showing the distribution of VE-cadherin 
and plakophilin-2 in detail. (a) Porcine endocardium, which is directly located above the 
myocardium, shows endothelial cells (labeled with VE-cadherin; green) which are here mostly 
negative for plakophilin-2 (red), which in turn is predominant in the IDs connecting the 
cardiomyocytes. (b) Human endocardium located at the edges of the heart valves shows 
colocalization of VE-cadherin (red) and plakophilin-2 (green) in many endothelial cells. Note also 
the occurrence of plakophilin-2 in junctions connecting VICs adjacent to the endocardium. (c-d) 
Colocalization of plakophilin-2 (red) and VE-cadherin (green) in the endothelial cells of the 
endocardium is not complete but interrupted or of different intensities in some regions (see c and d; 
yellow color shows colocalization). Nuclei are stained blue. Bars: 100 µm (a), 50 µm (b, c, d) 
 

 

4.3.3 Primary cultures of fetal valvular interstitial cells 
Primary cultures of VICs derived from fetal porcine heart valve tissue display a 

slightly different phenotype compared to adult VICs in cell culture, as they are generally 

not only positive for vimentin but also for smooth muscle α-actin (Figure 71 a and b; for 

comparison with adult VIC cultures see Figures 24b and c). Moreover, a certain proportion 

of the cultured fetal VICs shows positive reactions for the IF protein desmin which has 

always found to be absent in adult cultured VICs. Surprisingly, the fetal VICs in culture 

reveal a rather low amount of proliferatively active cells (Figure 71d) which is in stark 

contrast to the results obtained with cultures of adult VICs (not shown). The amount of 

glial filament acidic protein (GFAP)-positive cells, however, resembles that of adult VICs in 

culture (not shown). AJ contacts of cultured fetal VICs present a similar ensemble of 
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molecular constituents as shown for cultures of adult VICs, i.e. N-cadherin and cadherin-

11 (Figure 72), in combination with α- and β-catenin (Figure 73), plakoglobin and protein 

p120 (not shown), often together with proteins ZO-1-3 (Figure 73). Again, plakophilin-2 is 

present in cultured fetal VICs as shown before for cultured adult VICs. VE-cadherin, P-

cadherin and E-cadherin as well as desmogleins and desmocollins are always absent in 

cultures of fetal VICs (not shown). For a summary of the proteins of the AJs of fetal VICs 

in culture see Table 8.  

 

 

 
 

Figure 71: Double-label immunofluorescence micrographs of primary cultures of fetal VICs 
derived from porcine mitral heart valves. (a) All cells show positive reactions for vimentin (green), 
indicative of their mesenchymal origin. Note the long and thin filopodial-like processes. (b) 
Vimentin-positive cells (green) often also show a positive reaction for smooth muscle α-actin (red). 
(c) Some cells in addition show positive staining for the cardiomyocyte-typical IF protein desmin 
(red). (d) Only few VICs (vimentin, green) show proliferative activity as demonstrated by nuclear 
staining with Ki-67 (red; see arrowheads). Nuclei are stained blue. Bars: 50 µm 
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Figure 72: Double-label immunofluorescence micrographs of primary cultures of fetal porcine 
VICs derived from mitral heart valves, showing colocalization of transmembrane AJ glycoproteins 
and the “desmosomal” plaque protein plakophilin-2. (a-a’’) Colocalization of N-cadherin (a; red) 
and plakophilin-2 (a’; green) in the AJs. (b-c’’) Colocalization of cadherin-11 (b and c; red) and 
plakophilin-2 (b’ and c’; green), here mostly in both the typical puncta adhaerentia type (b-b’’) and 
the more tight-fittingly and deeply invaginated AJ type (manubrium adhaerentes), shown by the 
yellow merged color. Nuclei are stained blue. Bars: 20 µm 
  

 
 

Figure 73: Double-label immunofluorescence micrographs of primary cultures of fetal porcine 
VICs derived from mitral heart valves, showing the occurrence of AJ plaque proteins in cell-cell 
contacts. (a-a’’) Colocalization of plakoglobin (a, red) and plakophilin-2 (a’; green). Note that 
plakoglobin does also occur in places negative for plakophilin-2 (see merge picture, a’’). (b-d) 
Localization of α-catenin (b), β-catenin (c) and protein ZO-1 in AJs (d). Nuclei are stained blue. 
Bars: 50 µm (a-a’’), 20 µm (b-d) 



_________________________________________________________________Results 

 123

4.4 Valvular interstitial cells in pathologically altered heart valve 
tissue 

 

4.4.1 Myxomatous degenerated heart valves 
To determine the nature of the AJs in pathologically altered valvular tissues, ten 

cases of myxomatous degenerated human heart valves have been examined by 

immunofluorescence microscopy using microwave-assisted antigen-retrieval techniques. 

These AJs show a normal composition, i.e. N-cadherin (Figure 74a) and cadherin-11 (not 

shown), together with α- and β-catenin (Figure 74c), protein p120 (Figure 74b) and 

plakoglobin (not shown) and are consistently negative for all desmosomal marker 

molecules examined, including plakophilin-2 (Figure 75). 

 

 
 

Figure 74: Double-label immunofluorescence micrographs of cross-sections through 
formaldehyde-fixed, paraffin-embedded samples of myxomatous degenerated heart valve tissue, 
showing the occurrence of AJ proteins in cell-cell junctions of VICs. (a) N-cadherin (red) and β-
catenin (green) colocalize in AJs of VICs. (b) Protein p120 (red) and β-catenin (green) colocalize in 
VIC-rich regions of a myxomatous degenerated heart valve. (c) Reactions for α-catenin (red) are 
weak and somewhat inconsistent but generally show colocalization with β-catenin (green). Nuclei 
are stained blue. Bars: 50 µm 
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Figure 75: Double-label immunofluorescence micrograph of cross-sections through a 
formaldehyde-fixed, paraffin-embedded myxomatous degenerated heart valve tissue, showing the 
absence of plakophilin-2 (a, red) in contrast to the ubiquitous presence of β-catenin (b, green). 
Nuclei are stained blue. Bar: 50 µm 
 

 

4.4.2 The cell-cell junctions in papillary fibroelastomas 
The papillary fibroelastoma is a rare tumor occurring in heart valves and 

sometimes (13 % of the cases) within the confinements of the myocardium, usually 

affecting both, the atrial and the ventricular myocardium (cf. McAllister and Fenoglio, 

1978). Only a few and partly controversial reports about the histogenesis of these tumors 

are available (Valente et al., 1992; Rubin et al., 1995; Hort and Horstkotte, 2006). 

Degenerative changes occurring in the morphology of the endothelial cells of the 

endocardium, mostly characterized by abnormal depositions of extracellular fibrous 

material, are often regarded as results of lesions or viral infections (Hurle et al., 1986; 

Grandmougin et al., 2000).  

However, there is so far no decisive report on the AJs of such endothelial cells or 

of VICs of the affected heart valves. As has been shown afore in this thesis, the AJs of 

endothelial cells of the fetal endocardium usually differ from the endothelial cells of the 

adult endocardium by their content of the additional desmosomal plaque protein 

plakophilin-2, as it has also been seen in VICs grown in culture and in diverse types of 

malignantly transformed mesenchymal cells originating from other parts of the body 

(Rickelt et al., 2009). 
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Figure 76: Double-label immunofluorescence micrographs of cross-sections through a 
formaldehyde-fixed, paraffin-embedded papillary fibroelastoma. (a) AJs of VICs in such a fibrotic 
region near the tumor show positive reactions for N-cadherin (green). Note the apparent absence of 
N-cadherin2 in the endothelial cells lining the valve surface in this region. (b) Interstitial cells 
stained with antibodies against vimentin (green) in protrusions of the tumor show positive reactions 
for N-cadherin (red) whereas the endothelial cells are negative. (c) β-catenin (red) shows positive 
reactions both in AJs connecting the endothelial cells and the VICs. Nuclei are stained blue. Bars: 
50 µm 
 

 

 
 

Figure 77: Double-label immunofluorescence micrographs of an oblique grazing section through a 
formaldehyde-fixed, paraffin-embedded papillary fibroelastoma, showing colocalization of 
cadherin-11 (red; a) and β-catenin (red; b), plakoglobin (red; c) and protein p120 (red; d) with VE-
cadherin (green; a-d) in the AJs of endothelial cells of the endocardium of the tumor. Nuclei are 
stained blue. Bars: 20 µm 
                                                 
2 It cannot be excluded that negative reactions of N-cadherin antibodies in some endothelial parts may reflect 
local differences of epitope accessibility or the specific antibody used rather than absence of the antigen.   
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AJs of the sparse VICs occurring in some regions of the tumor show a typical 

composition, i.e. N-cadherin (Figure 76a and b) and cadherin-11 (not shown) together with 

α-catenin (not shown), β-catenin (Figure 76c), protein p120 and plakoglobin (not shown). 

Reactions for desmosomal marker molecules, including plakophilin-2, have consistently 

been negative (not shown). The endothelial cells of endocardial regions bordering the 

tumor show an AJ composition similar to that found for endothelial cells lining healthy 

valves (for comparison see Figure 11 in chapter 4.1.1.3.1). Here, VE-cadherin colocalizes 

with cadherin-11 (Figure 77a), whereas the reaction for N-cadherin is always inconsistent2 

(Figure 76a and b). Moreover, VE-cadherin colocalizes with α-catenin (not shown), β-

catenin (Figure 77b), plakoglobin (Figure 77c) and protein p120 (Figure 77d). 

Desmosomal proteins, including plakophilin-2, have generally found to be absent in AJs of 

these endothelial cells (not shown). 
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4.5 Coniunctiones adhaerentes – Molecular ensembles of the 
adhering junctions of heart valve cells 

Table 8    The molecular ensembles of the adhering junctions of mammalian heart valves 
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5 Discussion 
Over the past two decades remarkable efforts have been made in the field of heart 

valve “tissue engineering” (TE) to improve the results of heart valve transplantations or 

replacements (e.g., Vesely, 2005; Mendelson and Schoen, 2006). However, as a 

fundamental problem it soon became obvious that the knowledge of the cell and molecular 

biology of the heart valves and in particular of the cells populating the valve interior, the 

valvular interstitial cells (VICs), was and is still rather limited. In particular, a sufficient 

characterization of the cell-cell junctions of VICs and the molecules involved has been 

missing. The results of this thesis should – and hopefully can – essentially contribute to 

our knowledge of the cell and molecular biological characteristics of adherens junctions 

(AJs) of VICs in adult and fetal heart valves – in situ, in culture and in artificial heart valve 

constructs, thus providing a basis for heart valve TE and for analyses of pathological 

alterations in heart valves and also an alternative model for the development of VICs. A 

second, basically biological aim of this study has been to provide such a basis not only for 

human heart valves but also for various other mammalian species such as bovine, ovine 

and porcine valves. 

 

 

5.1 Valvular interstitial cells in the adult mammal – in situ and in 
culture 
In the electron microscope adult VICs in situ appear as a loose meshwork 

dominated by intimate relationships to elements of their extracellular matrix (ECM) 

environment, especially to the collagen fiber bundles and elastin structures. As it has 

already been shown for the endothelial/virgultar cells (SEVCs) of lymph node sinus (Moll 

et al., 2009) and for fibroblasts in tendon development (Birk and Trelstad, 1984, 1986; 

Canty et al., 2004, 2006; Richardson et al., 2007), VICs – or more precisely, their filopodial 

processes – enwrap and surround collagen fiber bundles in a peculiar way and thereby 

seem to contribute to the stability and flexibility of the heart valve leaflet. This architectonic 

interaction of VICs and ECM elements in the heart valve has apparently been ignored so 

far, except for a few marginal mentions in the literature (e.g., Icardo and Colvee, 1995). 

 In the present study, the characteristic features of heart valve structure have been 

further elucidated, including diseased valves with pathologically high proportions of ECM 

protein depositions and calcifications. Here, the elucidation of the focal adhesion 

molecules and structures that connect the actin cytoskeleton with the ECM such as α-
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actinin, vinculin, paxillin, talin, integrins and syndecans might help in the understanding of 

valvular cell functions (Zamir and Geiger, 2001; Hinz et al., 2003; Fayet et al., 2007; Liu 

and Gotlieb, 2007; for reviews see, e.g., Hynes, 2002; Hinz and Gabbiani, 2003; Koster et 

al., 2004; Banno and Ginsberg, 2008; Cortesio et al., 2008; La Flamme et al., 2008; 

Tumbarello et al., 2008; Yoo and Guan, 2008). 

 VICs in situ display a marked cell type heterogeneity as some of them possess – 

besides the ubiquitous vimentin intermediate-sized filaments (IFs) and non-muscle type 

actins – also some smooth muscle α-actin-positive microfilaments (e.g., Bairati and 

DeBiasi, 1981; Mulholland and Gotlieb, 1996; Bertipaglia et al., 2003). This subpopulation 

has been hypothesized by some authors to originate from a heart valve cell population 

with special “stem cell” characteristics (Pho et al., 2008) which, however, has yet not been 

satisfactorily characterized and this problem is still discussed somewhat controversially. 

 Adult VICs in culture often comprise a remarkably high proportion of smooth 

muscle α-actin-positive cells, indicative of a switch from a rather fundamental 

mesenchymal phenotype towards a more myofibroblastoidal character, probably 

representing an activated state (in terms of contractility and stability see, e.g., Filip et al., 

1986; Messier et al., 1994; Della Rocca et al., 2000; for general literature on 

myofibroblasts and myofibroblastoidal differentiation see Gabbiani et al., 1971; Gabbiani, 

1996; Eyden, 2001; Grotendorst et al., 2004; for general reviews see Majno, 1979; 

Schürch et al., 1998; Powell et al., 1999; Walker et al., 2001). In cell cultures, the 

occurrence of gliafilament protein or the fat droplet-associated protein perilipin in certain 

VIC subtypes also emphasizes their heterogeneous nature. As lipid droplet-associated 

proteins often appear in conspicuously close vicinity of IF bundles in certain cell types 

(Franke et al., 1987b; Almahbobi et al., 1992; Evans, 1994; Almahbobi, 1995; Lieber and 

Evans, 1996; Heid et al., 1998; Schweitzer and Evans, 1998; see also Bloom and Fawcett, 

1975) their occurrence in specific VICs may reflect local changes toward adipogenic 

differentiation. 

 

 

5.1.1 The adhering junctions of adult valvular interstitial cells in situ 
Besides descriptions of gap junctions between VICs (e.g., Filip et al., 1986; Lester 

and Gotlieb, 1988; Lester et al., 1993) there are also some reports mentioning AJs 

connecting VICs (e.g., Lester and Gotlieb, 1988; Messier et al., 1994). A dubious report on 

the presence of desmosomal structures connecting VICs (Messier et al., 1994) has 

surprisingly survived in the literature over more than a decade without molecular 
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characterization (Latif et al., 2006). However, the discussions on the presence of 

desmosomes or desmosomal cadherins in VICs can now be ended as it has been shown 

in the present thesis by both electron microscopy and biochemistry that VICs in situ are 

not connected by desmosomal cadherins and structures but exclusively by small AJs of 

the so-called puncta adhaerentia type, mostly located on their long and slender filopodial 

processes. 

In molecular terms, two transmembrane glycoproteins have been recognized in 

VICs in nearly isostoichiometric amounts: N-cadherin which has already been noted in AJs 

by Latif et al. (2006) and cadherin-11, another typical mesenchymal cadherin. The 

existence of these two glycoproteins has been reported before in various mesenchymal 

cells (e.g., Kimura et al., 1995; Simonneau et al., 1995; Kiener and Brenner, 2005; 

Richardson et al., 2007; Wuchter et al., 2007; Agarwal et al., 2008), and especially 

cadherin-11 has been specifically shown to play an important role in the development of 

bone and cartilage structures (Kiener and Brenner, 2005; Richardson et al., 2007). Both N-

cadherin and cadherin-11 are anchored in cytoplasmic plaques containing α-and β-

catenin, confirming Latif et al. (2006), together with proteins p120 and p0071 as well as 

plakoglobin, in contrast to the reports by Latif and colleagues. Desmosomal molecules 

such as desmogleins and desmocollins as well as desmoplakin and plakophilins are 

clearly absent, in contrast to previous reports (e.g., Latif et al., 2006; Chester and Taylor, 

2007). In conclusion, the junctions connecting VICs are quite normal and complete 

mesenchymal type AJs (for a recent review see Franke, 2009). 

 

 

5.1.2 The advent of plakophilin-2 in adult valvular interstitial cells growing 
in culture 
The AJ protein and glycoprotein composition of adult VICs grown in culture is 

similar to that of adult VICs in situ and other mesenchymal cells such as bone marrow- or 

cord blood-derived mesenchymal stem cells (Wuchter et al., 2007). In contrast to other 

authors reporting increases in the proportion of cadherin-11 to N-cadherin in the change 

from a fibroblastoidal to a myofibroblastoidal cell type in cell culture (Hinz et al., 2004), 

these two glycoproteins occur in nearly equal amounts in the AJs of adult VICs growing in 

culture. 

Plakophilin-2 has hitherto been known only as a characteristic plaque constituent of 

desmosome-containing epithelial tissues or tumors derived therefrom as well as of 

meningothelial cells (Kartenbeck et al., 1984; Akat et al., 2003, 2008) and cardiomyocytes 
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(Mertens et al., 1996, 1999; Borrmann, 2000; Franke et al., 2006; Goossens et al., 2007; 

Pieperhoff et al., 2008). However, the advent of plakophilin-2 in AJs of non-epithelial cells, 

as described here for VICs growing in culture or in fetal development, is not an isolated 

phenomenon as it has recently also been found in the AJs of some soft tissue tumors in 

situ, some malignantly transformed mesenchymal cell lines and in highly proliferative non-

malignant mesenchymal stem cells derived from bone marrow (Rickelt et al., 2009). 

Plakophilin-1 (Kapprell et al., 1988; Schäfer et al., 1993; Hatzfeld et al., 1994; Heid et al., 

1994; Schmidt et al., 1994) and plakophilin-3 (Schmidt et al., 1999; Borrmann et al., 2000; 

Borrmann, 2002) have not been identified in adult VICs growing in situ or in culture. 

Although plakophilin-3 could not be identified in the biochemical analyses of this study, it 

has to be emphasized that the presence of minor amounts of this plaque protein cannot 

rigorously ruled out (for a similar problem with cardiac myxomata see Rickelt et al., 2010). 

In this context it should be mentioned that in certain malignantly transformed 

mesenchymal cell culture lines the presence of decent amounts of plakophilin-3 has been 

demonstrated (Rickelt et al., 2009). 

As has been found in this thesis, plakophilin-2 is also absent in AJs connecting 

VICs of myxomatous degenerated heart valves and heart valve-derived, benign papillary 

fibroelastomas, the cellular origin of which, however, is still controversially discussed (see, 

e.g., Hort and Horstkotte, 2006). The absence of this desmosomal protein might be due to 

a basic difference between the special VICs and mesenchymal cells originating from 

“cardiac fibroblasts” involved in the development of cardiac myxomata (for a recent review 

on myofibroblastoidal cells in tumors see also Eyden et al., 2009). A comprehensive 

general comparison of the AJs occurring in the various subtypes of cardiac fibroblastoidal 

cells is still missing (e.g., Goldsmith et al., 2004; Banerjee et al., 2007; Snider et al., 2009; 

for reviews see also Brown et al., 2005; Camelliti et al., 2005; Baudino et al., 2006; 

Souders et al., 2009; for reports on interactions between special cardiac fibroblasts and 

cardiomyocytes see Brown et al., 2005; Banerjee et al., 2006; Camelliti et al., 2006; 

Chilton et al., 2007; Baudino et al., 2008; Pedrotty et al., 2008). 

On the other hand, in certain plakophilin-2-cDNA-transfected cells and in 

cardiomyocytes, plakophilin-2 has been shown to occur in complexes with α- and β-

catenin and plakoglobin (Chen et al., 2002; Köser et al., 2003; Borrmann et al., 2006). 

Similarly, in malignantly transformed fibroblasts, plakophilin-2 could be recovered in 

immunoprecipitation analyses in complexes with N-cadherin and β-catenin (Rickelt et al., 

2009). In the present study, however, such attempts to identify possible binding partners of 

plakophilin-2 in the AJs of adult VICs grown in culture have not been successful. Further 
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studies to identify not yet characterized binding partners using transgenic animals might 

be valuable in the elucidation of the molecular interactions in this subtype of AJs. 

Certainly, plakophilin-2 is a protein of prime interest in cardiology. In myocardial 

cells, mutations in genes encoding desmosomal molecules can result in severe 

arrhythmogenic cardiomyopathies (ARVC/D), demonstrating the fragility and functional 

sensitivity of the composite junction complexes involved (for the biochemistry of the areae 

compositae and recent reviews on ARVC/D see Bazzi and Christiano, 2007; Marcus et al., 

2007; Awad et al., 2008; Corrado et al., 2009; Herren et al., 2009; Saffitz, 2009; Pieperhoff 

et al., 2010; Sen-Chowdhry et al., 2010). Here, in particular the gene encoding 

plakophilin-2 seems to be most often affected (Mertens et al., 1996; Gerull et al., 2004; 

Grossmann et al., 2004; Franke et al., 2009; for related results of siRNA-mediated knock-

down experiments of plakophilin-2 in cultured neonatal rat cardiomyocytes see, e.g., 

Oxford et al., 2007; Pieperhoff et al., 2008; Fidler et al., 2009; for related experimental 

results see also Sato et al., 2009). At present it cannot yet be concluded whether the 

acquisition of plakophilin-2 to the AJ plaques of VICs simply reflects a molecular 

equipment related to the higher proliferation rates of these cells or whether it is involved in 

other VIC functions. 

 

 

5.1.3 The adult endocardium 
The endothelial cells of the endocardium have been described already in the 1970s 

by electron microscopy and compared to endothelial cells in vascular structures (e.g., 

Anversa et al., 1975; Lupu and Simionescu, 1985; Andries and Brutsaert, 1994; for a 

review see Brutsaert and Andries, 1992), whereas the existence of – or the need for – a 

vascular system within the heart valves has been discussed rather controversially (e.g., 

Ritter et al., 1928; Gross and Kugel, 1931; for recent publications see, e.g., Weind et al., 

2000, 2001, 2002; Filion and Ellis, 2003). Although both kinds of endothelium share some 

similar characteristics such as the basic ultrastructural morphology of their cell-cell 

junctions (Lupu and Simionescu, 1985; Andries and Brutsaert, 1994), they do not seem to 

be identical, as also indicated by reports on differences in their permeability properties as 

well as in cell shape (e.g., Brutsaert and Andries, 1992; Andries and Brutsaert, 1994). 

Nevertheless, little is yet known about the cell-cell junctions of endothelial cells of the 

endocardium, especially in comparison to vascular endothelia. 

In this thesis, the junctional ensemble of endothelial cells of the endocardium has 

been compared to that of vascular endothelial cells (for comparison of AJ proteins in VICs, 
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endothelial cells of the endocardium and vascular endothelial cells see Table 9). In 

accordance with other endothelia, VE-cadherin as the major AJ cadherin colocalizes with 

typical AJ plaque proteins (Lampugnani et al., 1995; Dejana, 1996; Lampugnani and 

Dejana, 1997; Navarro et al., 1998; Hämmerling et al., 2006; Boda-Heggemann et al., 

2009; see also Franke et al., 1987c, 1988; for the special relation between VE-cadherin 

and β-catenin and its functional importance in endothelial cell assembly and vascular 

development see also Carmeliet et al., 1999). The colocalization of cadherin-11 with VE-

cadherin in contrast to a different distribution of N-cadherin has also been reported for 

specific other endothelial tissues (for references see above) but is still controversially 

discussed as some other authors have reported a colocalization of VE-cadherin with N-

cadherin in endothelial zonulae adhaerentes (e.g., Schulze and Firth, 1993; Luo and 

Radice, 2005; for further references see Hayes et al., 2003; Moll et al., 2009). Other 

authors disagree and claim that N-cadherin is dispersed on the endothelial cell surface 

and not restricted to AJs (Salomon et al., 1992; Lampugnani et al., 1995; Dejana, 1996, 

2004; Lampugnani and Dejana, 1997; Navarro et al., 1998; for a recent review see also 

Ferreri and Vincent, 2008). Clearly, desmosomal proteins have not been detected in the 

AJs of endothelial cells of the endocardium, in contrast to certain other endothelial cell 

types such as those typical of the lymph node sinus (complexus adhaerentes) and specific 

other regions of the lymphatic system where VE-cadherin has been shown to co-exist with 

desmoplakin (Schmelz et al., 1990; 1994; Schmelz and Franke, 1993; Valiron et al., 1996; 

Ebata et al., 2001a, b; Cattelino et al., 2003; Hämmerling et al., 2006; Baluk et al., 2007; 

Pfeiffer et al., 2008; for reviews see Stacker et al., 2002; Moll et al., 2009). 

Surprisingly, the most recently identified cardiovascular AJ plaque protein myozap 

(Seeger et al., 2010) has been detected in various kinds of endothelia (Pieperhoff et al., 

2011) but it occurred in somewhat inconsistent and interrupted patterns in endothelial cells 

of the endocardium. A summary of the present knowledge on the molecular composition of 

the AJs examined is presented in Table 9. 
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Table 9    The adhering junctions of valvular interstitial cells and (endocardial) endothelial 
cells of the adult mammalian heart 
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5.2 Valvular interstitial cells in fetal heart valves 
 

5.2.1 Heart valve development 
In human embryos, major contributions of mesodermal cells to the formation of the 

heart are noted already in the early pregnancy. They form the heart tube consisting of the 

endothelial cells and thus represent the inner tube of the endocardium as well as 

myocardial cells forming the outer tube (Figure 78). Although it is clear that both the 

endothelial and the myocardial cells develop from a mesodermal precursor sharing both 

vascular and cardiogenic differentiation potential, the lineage relationships between the 

endothelial cells of the endocardium and the myocardial cells are still disputed (Figure 

78D; see also Linask and Lash, 1993; Lough and Sugi, 2000; Kattmann et al., 2006; 

Misfeldt et al., 2009; for reviews see Mikawa, 1999; Mjaatvedt et al., 1999; Trinh and 

Stainier, 2004; Snarr et al., 2008; Harris and Black, 2010). An important step in heart 

formation is the separation of the endocardial and myocardial tubes by the so-called 

cardiac jelly, an acellular, ECM-enriched mass (e.g., Manasek et al., 1970, 1973; 

Markwald et al., 1977; Krug, 1985; Hurle et al., 1994; for a recent review see Butcher and 

Markwald, 2007). After the so-called “looping” of the heart “anlage” the cardiac jelly 

contributes to the “endocardial cushions” and mesenchymal cells start to populate the 

cushion matrix (Figure 79; see, e.g., Moorman et al., 2003; Trinh and Stainier, 2004). The 

origin of these mesenchymal cushion cells has been somewhat controversially discussed 

(e.g., Person et al., 2005b) as the invading cells are seen as descendants either of the 

endocardial endothelium (Patten et al., 1948) or of the myocardium (Chang, 1932). More 

recently, it has been hypothesized that these mesenchymal cells may be derived from the 

endothelial layer of the endocardium and result from a process referred to as “epithelial-

mesenchymal transition” (EMT; or, with a here more appropriate meaning, “endothelial-

mesenchymal-transition”; see also Kinsella and Fitzharris, 1980; Bernanke and Markwald, 

1982; Runyan and Markwald, 1983; Mjaatvedt et al., 1987; for reviews see Armstrong and 

Bischoff, 2004; Trinh and Stainier, 2004; Snarr et al., 2008; Hinton and Yutzey, 2011). 

Subsequently, formation of valvular structures, septation and compartmentalization of the 

heart into four chambers begins (Anderson, 2003a, b; Moorman et al., 2003). Embryonal 

blood already flows through the heart before the completion of chamber development (Gui 

et al., 1996). 
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Figure 78: Morphogenetic events in early heart development of chicken developmental stage HH 
4-10 and models for the development of myocardial and endothelial heart lineages (taken from 
Mikawa, 1999). (A-C) Mesodermal cells (red) in the gastrula stage (A) segregate into 
premyocardial (red) and presumptive endocardial cells (green) in the neurula stage (B). Myocardial 
(red) and endocardial (green) cells form the tubular heart (C). Different models for the genesis of 
myocardial (red) and endocardial (green) cells originating from the cardiogenic mesoderm (D). 
 

 

 
 
Figure 79: Schematic survey showing mesenchymal cells originating from delaminating 
endothelial cells of the endocardium which transdifferentiate and migrate into the cardiac jelly, 
populating and remodeling the heart valve matrix (cf. Armstrong and Bischoff, 2004). 
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5.2.2 The appearance of plakophilin-2 in adhering junctions of fetal 
valvular interstitial cells and endothelial cells of the endocardium 
Although in the electron microscope the general appearance of fetal VICs in situ is 

quite similar to that of adult VICs, e.g. even showing the aforedescribed engulfment of 

collagen bundles by filopodial processes, there are remarkable molecular differences: 

Fetal VICs in situ are connected by AJs containing plakophilin-2 which appears to be 

absent in AJs of adult VICs. Moreover, in cultured fetal VICs, high proportions of smooth 

muscle α-actin-containing VICs reflect the “activated” phenotype of VICs in this specific 

developmental stage (Rabkin-Aikawa et al., 2004; Aikawa et al., 2006). 

The endothelial cells of the fetal endocardium also show a very similar junctional 

ensemble as the endothelial cells of the adult endocardium, with the remarkable exception 

that the endothelial cells covering the heart valves of the fetal endocardium, but not those 

covering the adjacent myocardium are often connected by AJs containing plakophilin-2 

(Table 10). 

The spatial specification of endothelial cells in different endocardial regions of the 

future valves has been extensively described in the context of cushion development, 

emphasizing that cushion mesenchyme does only form in the future valve regions but 

never in atrial or ventricular regions, apparently due to the absence of inductive signals 

from the underlying myocardium (e.g., Bernanke and Markwald, 1982; Runyan and 

Markwald, 1983; Mjaatvedt et al., 1987, 1999; Mikawa, 1999). This supports the 

hypothesis that the integration of plakophilin-2 in AJs of a certain portion of the 

endocardial endothelium and in underlying VICs might result from some kind of induction 

in specific developmental stages. Moreover, a participation of plakophilin-2 located in the 

nucleus cannot yet be excluded (Mertens et al., 1996, 2001; for reviews see also 

Klymkowsky, 1999; Schmidt and Koch, 2007; McCrea et al., 2009; for discussions of 

canonical Wnt-signaling in heart valve formation see Hurlstone et al., 2003; Person, 

2005a, b; Tzahor, 2007; Cohen et al., 2008; Alfieri et al., 2010; for general effects of Wnt-

signaling in cadherin-based cell adhesion see Chen et al., 2002; Nelson and Nusse, 2004; 

Heuberger and Birchmeier, 2009). 
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Table 10:    The adhering junctions of fetal valvular interstitial cells and endothelial cells of 
the endocardium 

 
 

 

5.3 Valvular interstitial cells in three-dimensional matrix 
constructs and the potential role of plakophilin-2 for tissue 
engineering 
An important field in the interdisciplinary research of medicine and biology is heart 

valve TE due to the increasing shortage of donor heart valves and the fact that 

cardiovascular diseases are the most frequent cause of death in the industrialized 



_______________________________________________________________Discussion 

 139

Western countries and that the surgical treatments of valves represent the second most 

frequent kind of operation (Gummert et al., 2009). 

Regarding the aforediscussed additional occurrence of plakophilin-2 in cultured 

VICs and other mesenchymal cells, one has to consider the effective benefit of the use of 

those cells for in vitro re-seeding of artificial heart valve constructs and that the knowledge 

about the cell-cell junctions of VICs in artificial heart valve models is still very limited 

(Taylor et al., 2002; Flameng, 2004; Schenke-Layland et al., 2004; Benton et al., 2009; Iop 

et al., 2009; for reviews see Rabkin and Schoen, 2002; Flanagan and Pandit, 2003; 

Schmidt and Hoestrup, 2005; Vesely, 2005; Mendelson and Schoen, 2006; Dohmen and 

Konertz, 2009 and references cited therein). In AJs of VICs grown in 3D constructs 

plakophilin-2 seems to decrease strongly or to be totally lost but otherwise the AJ protein 

ensemble is still indistinguishable from that of VICs in situ, which might be due to the high 

viscosity, even rigidity of the surrounding matrix (Taylor et al., 2002; Butcher and Nerem, 

2004; Benton et al., 2009). This process is obviously reversible as VICs grown in 3D 

culture constructs, re-isolated and grown again in monolayer 2D cultures again can show 

the acquisition of plakophilin-2 in their AJs. 

At any rate, the use of cultured VICs as a reliable cell source for the construction of 

artificial heart valves should still be carefully examined, as the functional effects of the 

advent and the loss of this protein in the AJs of mesenchymally derived cells is not clear 

yet in the context of pathological changes resulting in tumorous growth (for fibroblasts in 

general see also Kalluri and Zeisberg, 2006; Rickelt et al., 2009, 2010; for possible 

pathological changes in VICs see also Gwanmesia et al., 2010). Alternatively, approaches 

using decellularized heart valve matrices may be favored (Akhyari et al., 2010; for review 

see Knight et al., 2008). 

 

 

5.4 An alternative view of the development of valvular interstitial 
cells 
Based on the results of this thesis, an alternative concept of the development of 

VICs and heart valves different from EMT may be proposed: In stages of invasion of 

mesodermal cells into the future heart region not only myocardial and endothelial cells are 

originating from common mesodermal precursors, but also some – initially perhaps 

sparse – mesenchymal cells; the future VICs (Figure 80A). These VICs in statu nascendi, 

interspersed between the endocardial and the cardiomyocyte tube (Figure 80B) as well as 

the endothelial cells of the endocardium are still plakophilin-2-negative at this stage. 
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Due to inductive stimuli, the existence and nature of which has already been 

discussed by other authors (Bernanke and Markwald, 1982; Runyan and Markwald, 1983; 

Mjaatvedt et al., 1987), or due to a not yet identified mechanism, endothelial cells and 

VICs then are selectively activated only in regions of the future endocardial cushions 

(Figure 80B; lower part of the heart tube), a process accompanied by the acquisition of 

plakophilin-2 in the AJs of these mesenchymally derived cells. After heart valve 

development, plakophilin-2 in these AJs may decrease rapidly and may disappear 

completely in the AJs of VICs of mature heart valves. 

 

 

 
 
Figure 80: Schematic survey of an alternative model of the early valvulogenesis (modified from 
Eisenberg and Markwald, 1995). (A) Myocardial and endothelial cells of the endocardium as well 
as mesenchymal interstitial cells originate from the precardiac mesoderm. (B; upper part of the 
image) Myocardial cells (white-colored angled cells) build the outer heart tube, endothelial cells of 
the endocardium (white-colored roundish cells) build the inner endocardial tube and mesenchymal 
interstitial cells (white colored spindle-shaped cells) are located dispersed in between. Only at 
regions of prospective endocardial cushions, endothelial cells of the endocardium and mesenchymal 
interstitial cells become activated, thus plakophilin-2(Pkp2)-positive (black-colored cells; lower 
part of the image). It should also be noted that this concept does not exclude conversions of 
endothelial of the endocardium to dispersed mesenchymal interstitial cells (asterisk in A). 
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