
Systematic analysis of time resolved

high-throughput data using stochastic network

inference methods

Inaugural - Dissertation

submitted to the
Combined Faculties for the Natural Sciences and for

Mathematics
of the Ruperto-Carola University of Heidelberg, Germany

for the degree of
Doctor of Natural Sciences

presented by Dipl.-Bioinf. Christian Bender

born in Bamberg, Germany

Oral examination: 23rd May, 2011





The presented work was conducted between March 2008 and March 2011 in
the division of Molecular Genome Analysis at the German Cancer Research
Center, Heidelberg.

Referees:

Prof. Dr. Roland Eils
University of Heidelberg, Department of

Bioinformatics/Functional Genomics

Prof. Dr. Tim Beißbarth
University of Göttingen, Department of

Medical Statistics





Danksagung

Ich danke Herrn Prof. Dr. Roland Eils für die freundliche Übernahme des
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ich Ihr für Ihr Korrekturlesen meiner Publikationen und meiner Doktorarbeit

danken.

Ein weiterer Dank gilt der Bioinformatik-Gruppe der Molekularen Genomana-

lyse und der Abteilung Molecular Genetics am Nationalen Zentrum für Tu-

morerkrankungen. Insbesondere gilt mein Dank Anika Joecker, Maria Fälth,

Marc Johannes und Stephan Gade für fruchtbare Diskussionen und eine tolle

Arbeitsatmosphäre.
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für meine schriftlichen Beiträge meinen Horizont erweitern konnte.
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Abstract

Breast Cancer is the most common cancer in women and is characterised by
various deregulations in signalling processes, leading to abnormal proliferation,
differentiation or apoptosis. Several treatments for breast cancer exist, includ-
ing the human monoclonal antibody Trastuzumab and the small molecule er-
lotinib, which both target and inhibit receptors of the ERBB receptor network.
However, signalling processes in cancers, especially under drug treatment are
not yet completely understood, and methods that learn treatment specific reg-
ulation and signalling patterns on a system-wide view from experimental data
are needed. One approach is the reconstruction of interaction networks for
genes or proteins under external perturbation, and many different algorithms
have been proposed in the past. These include Boolean networks, Bayesian
Networks, Dynamic Bayesian networks and differential equation systems, all
describing the system on a different level of accuracy and complexity. However,
if external perturbation is applied, the targets of the perturbations either have
to be known, or only the targets of a single perturbation can be learned directly
from data in current algorithms. And in general, dependencies of signalling
events at different time points should be included into the modelling frame-
works, too. This work proposes a novel approach to learn networks from longi-
tudinal and externally perturbed data, called ‘Dynamic Deterministic Effects
Propagation Networks (DDEPN )’. Nodes in the network correspond to genes
or proteins, selected from a particular biological system, while edges describe
the interactions between the nodes. DDEPN models the activity of a node as
boolean variable (either active or passive) and creates an activity profile of all
nodes for the given time frame, depending on a given network structure. The
activity profile is assessed by a likelihood score that describes the probabil-
ity of the measured data given the activity profile. A network structure that
fits best the measured data is identified by modifying the network such that
the likelihood score is optimised. DDEPN is applied to a phosphoproteomic
dataset from the ERBB signalling cascade, as well as to gene expression data
measuring cell cycle related genes. Known signalling cascades from the ERBB
and cell cycle networks could be successfully reconstructed and DDEPN also
outperformed related network inference approaches. Further, in the ERBB
data set, the combined application of the drugs erlotinib and Trastuzumab to
the breast cancer cell line HCC1954 resulted in potent inhibition of growth
promoting signalling effects, reflected in the down-regulation of the MAPK
and AKT signalling pathways. This suggests that this combination therapy
could be also a promising option for treatment of breast cancer patients.
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Zusammenfassung

Brustkrebs ist die bei Frauen häufigste Krebsart, und wie auch bei anderen
Krebserkrankungen ist hier die Regulation einer Vielzahl von Signalprozes-
sen gestört, was eine verstärkte und unkontrollierte Zellproliferation zur Folge
hat. Zur Bekämpfung von Krebsleiden werden derzeit verschiedenste Behand-
lungsmethoden angewandt, wie z.B. der monoklonale Antikörper Trastuzumab
sowie das Medikament Erlotinib, die beide die Rezeptoraktivität des ERBB-
Signalnetzwerkes inhibieren. Obwohl das ERBB-Netz zu einer der am Besten
untersuchten Signalkaskaden gehört, sind viele Regulationsprozesse, insbeson-
dere in Krebszellen und unter Medikamenteneinfluss, noch unbekannt. Daher
sind analytische Methoden, die die behandlungsabhängige Regulation von Si-
gnalwegen aus experimentellen Daten rekonstruieren und als System beschrei-
ben können, vielversprechende Ansätze für ein verbessertes Verständnis dieser
Prozesse. Zur Rekonstruktion biologischer Netzwerke aus experimentellen Da-
ten wurden bereits verschiedenste Methoden beschrieben, wie z.B. Boolsche,
Bayes- und Dynamische Bayes-Netzwerke, sowie auch Modelle aus gekoppelten
Differentialgleichungen. Sofern ein System durch externe Behandlung gestört
wird, müssen bisher allerdings entweder die Zielknoten dieser Perturbationen
bekannt sein, oder es kann nur der Effekt für einen einzelnen Einfluss gelernt
werden. Bei zeitaufgelösten Daten ist es zudem nötig, Abhängigkeiten zwischen
Messpunkten in den Signalprofilen in die Modellierung einzubinden. Im Fokus
dieser Arbeit steht die Netzwerkrekonstruktion aus zeitaufgelösten Daten, die
nach externer Perturbation des Systems (wie z.B. Zugabe von Inhibitoren) ge-
neriert wurden. Hierfür wird die neue Methode

”
Dynamic Deterministic Effects

Propagation Networks (DDEPN )“ vorgestellt. Knoten im Netzwerk entspre-
chen hier den gemessenen Genen oder Proteinen und Kanten den Interaktionen
zwischen diesen. Die Aktivität eines Knotens wird als boolsche Variable model-
liert, und ein Aktivitätsprofil abhängig von der gegebenen Netzstruktur für den
gemessenen Zeitrahmen hergeleitet. Für ein solches Profil wird mit Hilfe eines
Likelihoodmodells ein Wahrscheinlichkeitsmaß berechnet, das bewertet, wie
gut die gemessenen Daten die Netzwerkhypothese repräsentieren. Mit diesem
Maß wird schließlich die Netzwerkstruktur im Bezug auf die Daten optimiert.
Als Anwendungsbeispiele werden zwei Datensätze vorgestellt, die die Prote-
inphosphorylierung im ERBB-Signalnetz bzw. die Expression von Zellzyklus-
relevanten Genen untersuchen. In beiden Fällen konnten nicht nur bekannte
Protein- bzw. Geninteraktionen erfolgreich rekonstruiert werden, sondern auch
verbesserte Ergebnisse im Vergleich zu verwandten Ansätzen erzielt werden.
So wurde eine verminderte Aktivität der MAPK- und AKT-Signalkaskaden in
HCC1954-Brustkrebszellen nach Behandlung mit Trastuzumab und Erlotinib
identifiziert. Diese Kombinationsbehandlung könnte somit auch für Brustkreb-
spatienten eine vielversprechende Therapieoption darstellen.
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1 Introduction

The size of data from modern biological experiments is steadily increasing,
making the interpretation and visualisation of the results a challenging task.
Biological networks are frequently used to represent biological knowledge in
a graphical way. Despite the great variety of experimental setups, the no-
tion of a network as representation of experimental results can be seen in a
very general way. A network is a composition of nodes and edges, the lat-
ter being either directed or undirected. Nodes can correspond to biological
entities such as genes or proteins, more complex structures like cells or even
whole organisms. Edges describe some relationship between the entities, ei-
ther in a pairwise manner, when edges are undirected and describe a mutual
influence of two components, or in a parent-child relationship, pointing to a
directed influence of a parental node onto its child. Examples for biological
networks include undirected protein interaction networks, directed transcrip-
tional regulation networks, protein signalling networks or metabolic networks.
This work deals with two kinds of networks, in particular with protein sig-
nalling networks and transcriptional regulation networks. A novel approach
for the reconstruction of networks from experimental data, called ‘Dynamic
Deterministic Effects Propagation Networks (DDEPN )’, is proposed and dis-
cussed throughout this dissertation. In short, the theory behind DDEPN as
well as testing procedures to assess its theoretical reconstruction performance
are described. Further, two applications to data generated in cancer related
biological systems are presented. In particular, these data are protein phos-
phorylation measurements in the ERBB signalling cascade, as well as gene
expression measurements in cell cycle related genes. It is shown that DDEPN
performs well from both a theoretical and practical perspective, and that it
can be used successfully to generate hypotheses for the system-wide effects
of external treatments that might reveal promising therapeutical options for
patients carrying diseases like cancer.

1.1 Reconstruction methods of different types
of biological networks

Cells are the basic building blocks of all living organisms and their complexity
varies between simpler prokaryotic and higher eukaryotic cells. In prokaryotes,
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1. INTRODUCTION

cells are relatively simple structures without inner compartments, making up
mostly unicellular organisms. Eukaryotic cells contain membrane enclosed
compartments (like the nucleus or mitochondria) and often form complex
multicellular organisms. The etymologic origin of the word ‘cell’ is the latin
word ‘cella’, translated as ‘small room’ and indicates that cells are separated
spaces in the organism that concentrate functional entities like DNA, RNA
or proteins in spatial manner (Harper, 2001). Of central importance is the
interplay between the various components in a cell, as, for example, binding
of small molecules to proteins, micro RNAs to mRNA molecules, protein
to DNA- or protein to protein-interactions. A suitable way of representing
these interactions is the graphical representation as network. Herein, the
nodes correspond to the interaction partners, while the edges represent
the interaction between the nodes. A map of interactions can be seen as
a description of the system’s functioning, and comparison between these
networks for different cells or under different conditions can provide insight
into the regulatory processes of biological systems. Current research in
molecular biology focuses more and more on the interplay of many interactors
in a cell and thereby the combination of traditional experimental techniques
with computational approaches for modelling and simulation of biological
systems becomes increasingly important (Ideker et al., 2001; Kitano, 2002a,b).
Diseases like cancer do not only affect single proteins or genes, but influence
the whole system, and the investigation of system-wide abnormalities is an
important step for the comprehension and also treatment of the respective
disease (Vogelstein and Kinzler, 2004).

To obtain an intuitive understanding of the dynamics or the regulatory pro-
gram of a biological system is difficult, due to the inherent complexity of
regulatory circuits that frequently contain positive or negative feedback mech-
anisms (de Jong, 2002). Figure 1.1 shows schematically how experimental and
computational research can work together to create and refine a holistic analy-
sis of a biological system. Expert knowledge about a system is integrated into
an initial model of the system that is used for simulation and prediction (left
side of the figure). As soon as experimental data is available (right side), the
system is revised and checked for adequacy in an iterative manner. There have
been big efforts to set up various kinds of network models, and especially the
reconstruction of biological networks from experimental data is an important
subject of research. Some examples for available network inference approaches
are given in the following paragraphs. In addition, comprehensive reviews can
be found in de Jong (2002) or Bansal et al. (2007).

Bayesian Networks (BN) (Heckerman, 1996) have been frequently used to
reconstruct gene regulatory networks from gene-expression experiments (Fried-
man et al., 2000; Segal et al., 2005) or to infer causal protein-protein relation-
ships from intensity measurements quantifying protein abundance (Sachs et al.,

2



1.1 Reconstruction methods of different types of biological
networks

model predictions data

biological
knowledge

regulatory
system

simulate

construct and
revise models compare

experiment

Figure 1.1 – Combined computational and experimental analysis of biological
systems. Figure adapted from de Jong (2002).

2005). The latter is an example for directed perturbations of several measured
proteins, in order to resolve the structure of the underlying interactions. Also
for gene expression measurements after external perturbation, networks have
been reconstructed using BNs (Pe’er et al., 2001). External interventions can
be introduced by multiple means, like changing environmental conditions, ap-
plying drugs or using gene silencing methods like RNA interference (RNAi, Fire
et al. (1998)). For example, Kaderali et al. (2009) utilise RNAi in a genome
wide screen to reconstruct gene regulatory networks for perturbed data.

A common problem in this type of network analysis is the problem of search-
ing for an optimal network structure depending on some evaluation criterion
that maps the structure to the measured data. The problem is described to
be NP-complete for BN inference (Chickering, 1996), and several heuristic ap-
proaches were proposed in the past. Early approaches include deterministic
procedures like greedy search and the K2 algorithm (Heckerman, 1996; Chick-
ering, 2003; Cooper and Herskovits, 1992). Stochastic heuristics, trying to
avoid getting trapped in local optima, include simulated annealing (Hecker-
man, 1996), Markov Chain Monte Carlo Model Composition (MC3, Madigan
et al. (1995)), the order MCMC algorithm (Friedman and Koller, 2003), as
well as evolutionary approaches (Yu et al., 2004; Spieth et al., 2006; Bevilac-
qua et al., 2009). Although these models have been successfully applied to
various settings for BN inference, the problem of identifying unique model
structures from data remains and is usually not solvable. Often, the same
scoring is yielded for a number of network structures, building so called equiv-
alence classes of network structures. A modification of the structure sampler,
proposed by Castelo and Kocka (2003), is able to learn networks in equivalence
classes of networks, although convergence and mixing of this structure MCMC
approach seem to be unsolved. Grzegorczyk and Husmeier (2008) introduced
a general edge reversal move to improve the traditional MC3 approach and
structure learning performance can be further improved by inclusion of prior

3



1. INTRODUCTION

knowledge on the network structure itself. This was demonstrated in a num-
ber of publications (see Imoto et al. (2004); Gat-Viks et al. (2006); Werhli
and Husmeier (2007); Mukherjee and Speed (2008); Sheridan et al. (2010)).
Utilising prior knowledge seems to be most promising approach to improve
reconstruction results, since the amount of publicly available information that
can be used is already huge and steadily increasing (see also section 2.2).

Besides BNs, there are several related approaches to infer networks from
perturbation data. Markowetz et al. (2005) derived networks from data gener-
ated after knock-out of specific genes by analysing expression patterns in the
discretised gene expression measurements. Fröhlich et al. (2008a) extended
this approach to perform inference on non-discretised expression levels. Per-
turbation effects to a system can be measured within a certain time frame.
Using time resolved measurements provides insight into the dynamical be-
haviour of the system and does not restrict modelling to a ‘snapshot’ of the
system’s state. A suitable approach for network inference from time resolved
data are Dynamic Bayesian Networks (DBN), a family of reconstruction meth-
ods including boolean network models, state-space models or regression models
(Akutsu et al., 1999; Murphy and Mian, 1999; Imoto et al., 2002; Yu et al.,
2004; Lébre, 2009; Rau et al., 2010).

A more concise modelling of the system is achieved by ordinary differential
equation (ODE) systems, in which changes in the concentrations or intensities
of the nodes are related to both external perturbations and the other nodes
in the network. There are several proposals for ODE based systems. Tegner
et al. (2003) suggested iterative perturbation of the system in order to reveal
the underlying network structure. Perturbations were modelled as a linear
combination of inputs, and weights for the pairwise node to node influences
were inferred. Nelander et al. (2008) improved this idea by using non-linear
perturbation effects and modelled the interaction behaviour of a number of
components after several single and combinatorial perturbations. An exam-
ple for a differential equation system after only stimulating perturbation can
be found in Busch et al. (2008). When using steady state data, differential
equations can be reduced to linear regressions for each node. Gardner et al.
(2003) used this approach to infer gene regulatory networks from steady state
microarray data. They solved the linear regression problem and inferred the
optimal network under perturbation condition. For all of the latter approaches,
the targets of the perturbations have to be known. Advances in methodology
with respect to this issue include di Bernardo et al. (2005) and Bansal et al.
(2006). Their approaches are able to infer the most likely targets of a single
perturbation condition and additionally optimal gene regulatory networks.

As noted above, either the perturbation targets have to be known in ad-
vance, or only the effect of a single perturbation can be estimated. However,
the successful usage of combinatorial perturbation was shown, for instance,
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1.2 Data generation with gene- and protein-expression-microarrays

in Nelander et al. (2008); but a dynamical determination of the perturbation
effects onto the network nodes is also not done. Thus, methods that explicitly
include and estimate the effects of an arbitrary number of perturbations
from longitudinal data are necessary. In addition, it is apparent that most
of the current network reconstruction methods are tailored to the analysis
of gene regulatory networks based on gene expression data from microarray
experiments. Rather few studies deal with the signalling flow between
proteins based on the analysis of protein activation and abundance coupled
with intervention effects. In Fröhlich et al. (2009), we developed a network
inference method for protein networks. Data were obtained using Reverse
Phase Protein Arrays (RPPA, see section 1.2) after knockdown of the mea-
sured components at two time points. The method can handle multiple time
points, but treats each time point as independent measurement and does not
model the time dependent behaviour of the system explicitly. The approach
is extended in this work to use multiple perturbations and to dynamically
derive their effects from the data, thus filling this methodological gap (Ben-
der et al., 2010). The approach, called DDEPN, will be described in section 3.1

1.2 Data generation with gene- and
protein-expression-microarrays

In the previous section, two experimental techniques, DNA microarrays and
RPPAs, were mentioned as options for large scale generation of data that
are suitable for the different reconstruction algorithms. These two methods
were used to produce the data for the application examples in this work
(sections 3.6.1 and 3.7). However, these are just examples for a whole family
of related technologies, all having in common the goal of high-throughput
analysis of samples on various molecular levels (Hoheisel, 2006). In the
following, an overview is given on the plethora of microarray techniques that
are currently in use. In principle, all of them could be used either to generate
input data for network reconstruction algorithms or as source for external
knowledge on the networks to be reconstructed - provided, that the algorithms
are properly adapted to the different data types.

To start with, the idea of a microarray goes back nearly half a century,
where for the first time DNA-RNA hybrids were produced on nitrocellulose
filters (Gillespie and Spiegelman, 1965). The principle idea is that a num-
ber of reference nucleic acid sequences is immobilised onto a surface, and the
samples of DNA or RNA to be analysed are first labelled (nowadays usually
by fluorescent dyes) and then hybridised to the arrayed DNA material. Af-
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sample

mRNA
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reverse transcription 
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signal quantification

false colour TIFF
images
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two-colour
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Figure 1.2 – Analysis of gene expression using DNA-microarrays. mRNA is
extracted from tissue or cell line samples. During reverse transcription labelling
by fluorescent dye is performed. Afterwards, the cDNA is hybridised to a li-
brary of complementary DNA sequences that were immobilised to a surface. A
read-out is generated by quantifying the intensities of the array spots after exci-
tation of the fluorescent dyes. Left: Single sample hybridisations are performed
on oligonucleotide arrays (usually multiple probes per sequence fragment) and
intensities of separate arrays can be compared. Right: In two-colour arrays,
competitive hybridisation is conducted and the relative amounts of sample 1
to sample 2 are quantified as expression values. Array images extracted from
Lockhart and Winzeler (2000).

ter washing away the remainder of the sample material, by excitation of the
dye and subsequent quantification of the signal intensities, analysis on the
relative expression strength of the contained DNA or RNA can be made (com-
pare figure 1.2 and Brown and Botstein (1999)). Several techniques have been
developed over the years, including cDNA arrays (Schena et al., 1995), oligonu-
cleotide arrays (Southern et al., 1994) and most recently, bead arrays (Kuhn
et al., 2004). So far, data from DNA-microarrays are the most frequently
used data type for network reconstruction methods, and also in this work an
oligonucleotide array is utilised in the CAMDA data example (see section 3.7)
for data generation used as input to the DDEPN method.

By the transcription of DNA into RNA just one possibility of cellular con-
trol mechanisms is represented. Many events on the path from DNA to the
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1.2 Data generation with gene- and protein-expression-microarrays

protein determine the fate of the cell, such as splicing, protein modifications
or effects triggered by regulatory, non-coding RNAs. Microarray techniques
exist to measure data on these various levels of molecular control. For ex-
ample, analysing known splice variants of genes and even determining novel
splice variants is possible using exon arrays, on which exonic structures are
fixed on the array and probed with the RNA material from samples. The
analysis of patterns of up- and down-regulated exons can then lead to the iden-
tification of active and missing splice variants (Johnson et al., 2003). Other
technologies have been devised to perform genotypic profiling, used to gener-
ate high-resolution maps of genomes of various organisms (see e.g. Interna-
tional HapMap Consortium (2005)). Goals in genotypic profiling range from
copy number variation studies, using array comparative genomic hybridisation
(aCGH, Pinkel et al. (1998); Cheung et al. (2005)) to single nucleotide poly-
morphism (SNP) genotyping (Jobs et al., 2003; Beroukhim et al., 2010) as
well as to parallel sequencing approaches (Pleasance et al., 2010). Even epige-
netic analyses are possible using microarray techniques, for example by DNA
methylation arrays (see Callinan and Feinberg (2006) for a review). The latter
approaches are most suitable for inclusion as external knowledge into network
inference procedures or for integrative analysis workflows (for example Jung
et al. (2009); Li et al. (2009); Akavia et al. (2010)).

Moving away from genomic and transcriptomic profiling methods, an in-
creasingly important field are studies on the proteome of organisms. Often
the immediate response of a cell to a stimulus or change in environmental
conditions is directly reflected in post-translational modifications or changes
in the activity of proteins. Examples are transformational changes in protein
structure, complex formation, phosphorylation or translocation of proteins in
the cellular compartments and successive binding to target proteins or DNA.
To measure the abundance of proteins and their modifications, Sachs et al.
(2005) used flow cytometry based methodology and a BN network inference
approach to reconstruct a protein signalling network. Also mass spectrometry
is another widely used approach for protein signalling network investigation
(Tedford et al., 2009). The focus in this work is put on measuring protein
abundance by the use of protein specific antibodies, as done with the Reverse
Phase Protein Array technique (Paweletz et al. (2001); Loebke et al. (2007)).
Figure 1.3 shows the steps to perform automated screening for protein abun-
dance in cellular lysates. First, after lysing the cells, the solutions are spotted
on a slide, arranged in a grid. Each array is incubated with a target spe-
cific antibody that binds the protein of interest. A near-infrared dye-labelled
secondary antibody is used to detect the primary antibody and to quantify
the amount of protein during the scanning process afterwards. The name ‘re-
verse phase’ is derived from the fact that protein lysates are spotted on the
slide, which is the reverse procedure as in antibody microarrays, which are also
named ‘forward arrays’ (Nielsen et al., 2003; Korf et al., 2008). For this tech-
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nology, the capture antibodies are immobilised on the surface and proteins
in the lysate will bind to these. RPPAs were used in this work to measure
the phosphorylation patterns found in a breast cancer cell line after external
perturbation of the cells. The experiment, application to DDEPN and the
obtained results are described later in section 3.6.

Figure 1.3 – Measuring protein abundance using RPPAs. Cell lysate is spotted
onto a nitrocellulose-coated slide. A target-specific antibody is incubated on the
array, binding specifically to the protein that should be measured. Finally, incu-
bation with a near-infrared dye-labelled secondary antibody and quantification
of the signal intensities are performed. Figure adapted from Henjes (2010).

1.3 Breast cancer is a heterogeneous disease
that affects many regulatory circuits

According to the World Health Organisation databases cancer is the leading
cause of deaths worldwide with around 7.6 million deaths and a number of
about 12.3 million new cancer cases occurring in 2008 (Ferlay et al., 2010;
World Health Organization Databank, 2010). Cancers with the highest in-
cidence of death are lung, stomach, liver, colorectal and breast cancer. The
development of cancer is characterised by multiple genetic alterations that al-
ter the molecular circuitry and thus transform normal to malignant tumour
cells. Risk factors for the development of cancers include physical, chemical
and biological carcinogens like e.g. ultraviolet radiation, tobacco smoke or
virus infections, respectively. In general, cancer is a genetic disease, and mul-
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tiple genetic defects are required for the development of cancer (Vogelstein
and Kinzler, 2004). Six physiological alterations in the cell can be defined that
drive malignant tumour cell development: self-sufficiency in growth signals,
insensitivity to growth-inhibitory signals, evasion of programmed cell death,
limitless replicative potential, sustained angiogenesis and tissue invasion and
metastasis (Hanahan and Weinberg, 2000). In a recent publication, the authors
extend the six types of alterations by two emerging hallmarks, involved in the
pathogenesis of cancer (Hanahan and Weinberg, 2011). One is the deregula-
tion of cellular energetics, such that neoplastic proliferation is supported, and
the second is avoiding immune destruction. Further, two enabling character-
istics are described, in particular genome instability and mutation, as well as
tumour-promoting inflammation. These two help tumours to acquire the for-
merly described core and emerging hallmarks. These alterations cover a wide
range of regulatory processes in the cell and touch many distinct regulatory
pathways.

Genetic alterations happen in three types of genes: oncogenes, tumour sup-
pressor genes and stability genes, all contributing differently to cancer develop-
ment (Vogelstein and Kinzler, 2004). Oncogene alterations lead to constitutive
activity of the gene leading to a selective advantage of the cells containing the
altered gene. An example is the BRAF1 gene, which frequently contains an
activating mutation in its kinase domain causing constant growth stimulatory
signalling (Davies et al., 2002). Tumour suppressors on the other hand are
inactivated by genetic alterations and again result in a selective advantage.
For instance, the TP53 gene causes inhibition of cell growth and stimulation
of cell death. When an alteration renders TP53 inactive, growth control is lost
(Oren, 2003). At last, stability genes (also known as ‘caretakers’) promote can-
cer development indirectly by keeping genetic alterations at a low level through
DNA-repair- or chromosome-recombination and segregation mechanisms. In-
activation of these mechanisms leads to higher mutation rates which cause more
frequent alterations in oncogenes or tumour suppressors. The BRCA1 gene, in-
volved in DNA repair processes, is a prominent example for this class of cancer
driving genes (Daniel, 2002). There are different types of genetic alterations,
all characterised by a change in the sequence of the genome. These changes
range from single point mutations to large deletions, insertions or transloca-
tion. A distinction is also made in the origin of the genetic alterations. First,
mutations can occur in the germline and these are mostly point mutations or
small deletions or insertions. They cause a hereditary predisposition to cancer.
Second, somatic mutations in tumour cells happen spontaneously and cause
sporadic cancers. As it can be seen, some type of cancer is characterised by its
own composition of genetic alterations, which means that few pivotal ‘causes’
for a specific cancer type cannot easily be determined.

The focus in this work is set around breast cancer, the most frequent type
of cancer in women with around 1.38 million new cases in 2008, both in de-
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Figure 1.4 – Molecular subtypes identified by hierarchical clustering of 115
tumour and 7 non-malignant tissues using cDNA microarrays. For the identi-
fication the ‘intrinsic’ gene set of 540 genes showing high variation across the
microarrays was used. The colours indicate the identified subtypes. Figure from
Sørlie (2004).

veloping and developed regions (Ferlay et al., 2010). However, incidence rates
vary widely across different countries, ranging from 19.3 per 100000 women in
Eastern Africa to 89.7 per 100000 in Western Europe. Despite its relatively low
mortality rate (6-19 per 100000), breast cancer is the most frequent cause of
cancer death in women. Studies on the molecular characteristics of breast can-
cer patient samples using cDNA microarrays revealed five molecular subtypes
with different clinical implications: the luminal A, luminal B, basal-epithelial
like, ERBB2-positive and normal breast-like subtypes (Perou et al. (2000);
Sørlie et al. (2001), see also figure 1.4). High oestrogen receptor (ER) levels
were observed in the luminal subtypes, while the basal epithelial-like subtype
showed a low ER expression and higher levels of basal epithelial molecular
markers. ERBB2-positive subtype samples showed high expression of genes
located in the ERBB2 amplicon at chromosome 17q22.24 and normal breast-
like samples were most similar to non-epithelial cells. The different subtypes
could be associated to distinct clinical outcomes. In short, the luminal sub-
types showed better clinical outcome with respect to overall and relapse-free
survival, while ER-positive, basal epithelial-like and ERBB2 positive samples
were associated with poor overall survival (Sørlie et al., 2001). These are only
some of the molecular characteristics of breast cancer, already showing its
heterogeneity on the molecular level.

Vogelstein and Kinzler (2004) note that many genes are affected by can-
cer related alterations, but all of the genes act as part of distinct regulatory
pathways in the cell. There are naturally fewer pathways than genes, and to
understand a disease like cancer, a more extended view on the function of
genes in the context of the pathways they are part of is necessary.
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Figure 1.5 – Abstract delineation of the ERBB signalling system. Apparent is
the general bow-tie structure of the pathway. A wide range of receptor stimu-
lating ligands in the input layer are targeting the ERBB receptors. These pass
the signal through a dense core process, in order to yield a diverse set of cellular
responses, shown in the output layer. These include proliferation, migration,
differentiation and apoptosis. The architecture ensures redundancy, i.e. effects
can be triggered in different ways, and modularity, i.e. autonomous signalling
cascades are present. Additionally, several feedback mechanisms assure the sys-
tem’s robustness. Figure from Citri and Yarden (2006).

1.3.1 The ERBB signalling pathway in breast cancer

The Epidermal Growth Factor (EGF)-ERBB signalling pathway is often dereg-
ulated in human cancers and a promising target for cancer therapeutics. It
interweaves smaller sub-pathways like the Mitogen Activated Protein Kinase
(MAPK) or PI3K/AKT pathways, and is tightly connected to growth control
and cell cycle regulation (see also section 1.3.2). Genetic aberrations in the
pathway lead to constitutively active signalling, and mitogenic signals trig-
gered by activation of the ERBB pathway lead to constitutive stimulation of
proliferation signals (like the phosphorylation of the pRb protein), which cause
constant progression of the cells through the cell cycle. Thus, the ERBB path-
way is an example for a regulatory circuit that exhibits self-sufficiency in its
growth signals, one of the hallmarks of cancer mentioned earlier. It is one of
the best studied biological pathways, and comprehensive reviews on existing
knowledge exist, in particular reviews that relate the pathway to therapeu-
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tic opportunities in the context of cancer treatment (Citri and Yarden, 2006;
Hatakeyama, 2007).

The ERBB receptors (or EGF-receptors, EGFR) are a family of membrane-
spanning receptor tyrosine kinases (RTK). This family comprises four receptors
(ERBB1-4) which are targeted by a multitude of ligands and trigger diverse
cellular processes, including proliferation, migration, differentiation and apop-
tosis. ERBB1 (or HER1, EGFR, Ullrich et al. (1984)) is activated through
the ligands epidermal growth factor (EGF), transforming growth factor alpha
(TGF-α), amphiregulin (AR), epiregulin (EPR), betacellulin (BTC), epigen
and heparin-binding EGF-like growth factor (HB-EGF). It mainly activates
the MAPK pathways (Seger and Krebs, 1995) by forming both homo- and het-
erodimers with members of the ERBB receptor family. In contrast, ERBB2 (or
HER-2/neu, Yamamoto et al. (1986)) is a non-autonomous receptor without an
extracellular ligand binding domain. It can only be activated by heterodimeri-
sation with the other ERBB family members and is their preferred binding
partner. ERBB2 plays an important role in many cancer related signalling
processes, because its potent mitogenic signalling is often deregulated, render-
ing the receptor constitutively active. ERBB3 (or HER3, Kraus et al. (1989);
Plowman et al. (1990)) is another non-autonomous receptor that lacks the in-
tracellular kinase domain. It also has to interact with the other receptors to
form heterodimers in order to transduce a signal into the cell. Its activation is
triggered by the ligands heregulin 1 and 2 (HRG1/2, also NRG1/2) and it is
a strong activator of the PI3K/AKT pathways (Manning and Cantley, 2007)
when bound to ERBB2. Finally, ERBB4 (or HER4, Plowman et al. (1993))
shares some properties with ERBB1 (for example, it binds GRB2, Shc and
STAT5 directly) and is activated through BTC, HB-EGF, EPR and HRG1-4
(also termed NRG1-4).

The abstract depiction of the ERBB network in figure 1.5 shows some gen-
eral properties of the system. Its bow-tie architecture (Citri and Yarden, 2006)
points out that signals are generated at a highly redundant input layer and
passed into the network through a small number of molecular switches (the
core process, i.e. common signalling cascades like MAPK and PI3K/AKT).
Remarkably diverse effects can be triggered at the output layer through acti-
vation of various transcription factors. The whole system is highly modular,
meaning that several functional units act more or less autonomously to trigger
their effect. This also represents an important characteristic encoded in the
ERBB network, namely redundancy of signalling processes. For example, var-
ious receptors of the ERBB family share the same target pathways, and effects
can be triggered using up to eight receptor dimers. Both, modularity and re-
dundancy, contribute to the robustness of the ERBB network, since activation
of the core processes can happen independently over multiple separate paths
through the network.
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Besides, the presence of feed-forward and feed-back mechanisms further en-
hances the robustness of the system (Avraham and Yarden, 2011). For in-
stance, ERBB2 serves as positive enhancer of signalling processes, once it is
activated. Also secondary stimulating signalling events are triggered by activa-
tion of the MAPK cascade, such as TGFα and HB-EGF production. Further-
more, negative regulation is prevalent as control mechanism, such as receptor
internalisation and degradation, or the synthesis of signal attenuators that is
caused by the activation of the signalling cascade itself.

What is the role of the ERBB signalling cascade in cancer? As noted be-
fore, cancer is a disease that evolves by multiple cancer causing events like
DNA amplifications or deletions, translocations or mutation accumulation. In
the ERBB pathway, several mutations can be found that cause aberrant sig-
nalling behaviour and contribute to tumour development. ERBB2, for exam-
ple, has been shown to contain cancer-relevant mutations in lung adenocarci-
nomas (Shigematsu et al., 2005). More frequently, over-expression of receptors
is found to be related to several cancer types, e.g. ERBB1 over-expression
in lung, pancreas and breast cancers (Nicholson et al., 2001) or ERBB2 over-
expression in breast, lung, pancreas, colon, endometrium and ovarian cancer.
Focusing on breast cancer, ERBB2 is found to be overexpressed in 20–30% of
breast tumours and is associated with a poor prognosis and short overall sur-
vival (Slamon et al., 1987; Sørlie et al., 2001). Besides surgery, standard cancer
treatment includes chemo- and radiation therapy, which target tumour cells
by inhibiting cell division or DNA replication. Their use is accompanied by
severe side effects, because the therapeutics do not specifically target tumour
cells, but also healthy tissue. Therefore, several targeted therapies avoiding
these side effects have been devised and are currently in use to treat the sig-
nalling processes leading to increased cell growth, proliferation and migration
specifically. These include tyrosine kinase inhibitors, angiogenesis inhibitors,
proteasome inhibitors and immunotherapeutics. Two drugs from the class
of tyrosine kinase inhibitors are presented in the following that are used as
perturbation treatment later in this work.

Figure 1.6 shows a simplified downstream network of the ERBB receptors
and the targets of the therapeutics trastuzumab (Carter et al., 1992) and
erlotinib (Hidalgo, 2003). Trastuzumab (or Herceptin) is a humanised mono-
clonal antibody targeting ERBB2. It was approved in patients with metastatic
and ERBB2 over-expressing breast cancer and is used in combination with
standard chemotherapy. A number of reviews exist on the function of trastu-
zumab (see e.g. Nahta and Esteva (2007); Valabrega et al. (2007)), although
it should be noted that its function is not yet fully understood. Trastuzumab
is reported to inhibit the MAPK and PI3K/AKT pathways and to positively
regulate the p27 cell cycle inhibitor (Yakes et al. (2002), see also section 1.3.2
for an introduction to cell cycle regulation). It also induces antibody depen-
dent cellular toxicity (ADCC, Cooley et al. (1999); Clynes et al. (2000)) and
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Figure 1.6 – Basic ERBB downstream signalling including the MAPK and
PI3K/AKT pathways. Inhibitors trastuzumab and erlotinib are shown, binding
their target receptors. Figure adapted from Henjes (2010).

reduces angiogenesis (Izumi et al., 2002; Klos et al., 2003). Potential impact on
signalling activity might be caused by trastuzumab’s ability to block extra cel-
lular domain shedding of the ERBB2 receptor, which would leave a truncated
and constitutively active form of ERBB2, named p95 (Molina et al., 2001;
Christianson et al., 1998). The second drug, erlotinib, is a small molecule in-
hibitor that targets the intracellular tyrosine kinase domain of EGFR and, due
to its lacking absolute specificity to EGFR, other kinases, too (Karaman et al.,
2008). First, it was approved in 2005 for non-small cell lung cancers and after-
wards for pancreatic cancers in 2007. Currently, it is tested in several phase II
clinical studies in breast cancer patients (Dickler et al., 2009). Both drugs are
used in section 3.6 to perturb the ERBB signalling cascade in a breast cancer
cell line and the results of reconstructing the ERBB signalling pathway under
various treatments by applying the DDEPN method are shown there.

1.3.2 ERBB signalling and its connection to the cell cycle

The ERBB signalling cascade is tightly connected to cell proliferation, migra-
tion and survival through the activation of the major downstream pathways
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MAPK and PI3K/AKT. The activation of these pathways leads to activation
of regulators that stimulate the master governor of the cell’s fate, the cell cycle
clock (Weinberg, 2007a). Here, the decision is made whether the cell will enter
an active cell cycle state or a resting state, in which proliferation and growth
are stopped. The cell cycle clock is composed of a network of interacting pro-
teins that respond to extracellular signals, like those sent by RTKs or other
types of receptors.

Figure 1.7 (A) depicts schematically the cell cycle with its different phases
and the major proteins that are responsible for the progression through the
phases (a review on the mammalian cell cycle can be found in Schafer (1998),
for instance). The cycle consists of four phases, two gap phases G1 and G2
that connect the DNA-synthesis phase (S) and mitosis (M) phase. Progression
through G1, S, G2 and M is mainly controlled by the expression and interaction
of cyclin dependent kinases (CDKs) and cyclins. CDKs are serine/threonine
protein kinases that bind to cyclins, which in turn translocate the complex
to the nucleus via nuclear localisation signals. There, the CDKs can activate
their targets by phosphorylation, which catalyse the progression through the
various phases of the cell cycle. In G1 phase, CDK4 and CDK6 are associated
with D-type cyclins and promote progression to S phase by phosphorylation
of the retinoblastoma protein pRb. pRb-phosphorylation stimulates CDK2
and expression of E-type cyclins, and both proteins bind to each other and
further phosphorylate the pRb protein. As soon as pRb-phosphorylation hap-
pens by CDK–Cyclin E, the cell cycle is independent from CDK4/6–Cyclin
D complexes, so the first restriction point is passed. Starting at the G1/S
transition, Cyclin A expression is stimulated, which induces formation of the
pre-replication complex for DNA-synthesis, containing the origin recognition
complex (ORC), the minichromosome maintenance proteins (MCM) and fur-
ther proteins. After S phase, CDK1 binds to both Cyclin A and Cyclin B
during G2 phase, which promote the entry into mitosis, named M-phase. Dur-
ing anaphase of the mitosis, Cyclins A and B are polyubiquitinated by the
anaphase promoting complex (APC, which is activated by the Cdc20 protein)
and subsequently degraded, which resets the cell’s state to G1 phase for a
new cell cycle. Thus, progression through the cell cycle phases occurs by pre-
cisely timed expression and degradation of cyclins and CDKs, as is depicted
in figure 1.7 (B).

There are several negative regulators of the cell cycle, the p16 family and the
p21 family of inhibitors, collectively termed cyclin-kinase inhibitors (CKI). The
p16-family members (p16, p15, p18 and p19) inactivate the G1 CDKs (CDK4
and 6), thus preventing phosphorylation of pRb. The p21-family members p21
(or Cip1, Waf1, CDKN1A), p27 (or Kip1) and p57 (or Kip2, CDKN1C) bind
and inactivate cyclins and prevent pRb-phosphorylation during G1 (Sherr and
Roberts, 1999).
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Figure 1.7 – A: Schematic overview of the cell cycle progression. As soon as the
restriction point is passed during G1 phase, the progression is independent of
extracellular signals (such as mitogenic growth factors or TGF-β). B: Cell cycle
phase dependent expression of cyclins. Figure adapted from Schafer (1998).

So cell cycle progression is initiated by upstream mitogenic signalling events
occurring in the ERBB network. The main downstream pathways of the ERBB
receptors are the MAPK and PI3K/AKT pathways. It has been shown that
ErbB2 can reversibly inhibit p27 and up-regulate cyclin D1 levels through these
two pathways (Lenferink et al., 2001). Further, ERBB2 overexpression was re-
ported to enhance cell proliferation and cell cycle progression by enhancement
of the MAPK pathway (Timms et al., 2002). Once the restriction point during
G1 is passed, i.e. when pRb phosphorylation is mediated by Cyclin E–Cdk2,
the cell progresses through the whole cycle and is independent of the abun-
dance of growth factors or even inhibitory signalling proteins that antagonise
the proliferative signalling (like TGF-β, or transforming growth factor β, an
anti-proliferative factor in epithelial cells, see e.g. Moses et al. (1990)). The
tight binding of the signalling events in the ERBB network to the cell cycle
regulatory circuit explains its role as cancer promoting signalling system and
that major effort is put in the identification of therapeutics that control cell
growth and death through the upstream signalling in the ERBB pathway.

1.4 Aims of this work

With the DDEPN approach, a novel network inference algorithm is developed
that enables the user to reconstruct signalling networks from perturbed longi-
tudinal data. The method was originally developed based on protein phospho-
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rylation measurements of proteins of the ERBB signalling cascade that plays
a crucial role in breast cancer development. A method was needed that pro-
vided the means for inferring knowledge about the treatment effects on breast
cancer cell lines with different (and already clinically applied) ERBB-receptor
inhibitor drugs. However, DDEPN is a general framework for network infer-
ence from experimental data generated in perturbed systems, and therefore
also different types of data like gene expression data are suitable as input to
DDEPN.

The aim of DDEPN is to model the signal flow in a biological system over
time and to explicitly incorporate the effects of one or more sources of ex-
ternal perturbation of the system into the model. For an arbitrary number
of perturbations, the effects of the perturbations onto the network nodes are
inferred dynamically from the data in form of edges originating in the pertur-
bation nodes. An extension to current MCMC structure learning approaches
is developed (termed inhibMCMC) in which sampling of network structures
containing two types of edges can be performed. Further, an extended prior
model is developed that allows for the inclusion of external knowledge on the
presence or absence of individual edges in the network. Again, the type of the
edges are modelled explicitly, providing additional capabilities to other models
described in the literature.

DDEPN is compared to two external DBN approaches, and its competitive
performance is shown. It is also applied to two datasets: first, reconstruction
of the ERBB signalling network is presented for protein phosphorylation data
generated in the ERBB2 over-expressing breast cancer cell line HCC1954. It
is shown that DDEPN is able to infer the core interactions of the ERBB sig-
nalling network and that the reconstruction can be substantially improved by
the inclusion of prior knowledge. Under treatment with two ERBB receptor
inhibiting drugs, the network inference suggests that combinatorial treatment
with both erlotinib and trastuzumab have the strongest effect on subsequent
MAPK and PI3K/AKT signalling. Second, for a set of cell cycle related genes
from a transcriptional profiling experiment on microarrays, networks were re-
constructed using DDEPN and the two external DBN approaches. In the
results of this experiment, it is apparent that DDEPN is able to reconstruct
sparse regulatory networks which yield less putative interactions than the other
two DBN approaches, making the interpretation easier, and giving results that
correspond better to the expected biological response.
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2 Methods

The following chapter introduces methods for network inference and functional
analysis of high-throughput data that are relevant for this work. First, the no-
tions of Bayesian Networks (BN) and Dynamic Bayesian Networks (DBN), two
frequently used approaches for network reconstruction, are introduced in sec-
tion 2.1. Two freely available DBN implementations are used in this work to
compare the results of the network reconstructions: G1DBN of Lébre (2009)
and ebdbNet of Rau et al. (2010), which are discussed in the corresponding
sections 2.1.1 and 2.1.2. Section 2.2 covers an overview of signalling network
databases that can be used as source of prior knowledge to be incorporated in
the modelling approaches. In the final section of this chapter, section 2.3, a
prediction approach is presented that is used for predicting the membership of
a gene or protein to signalling pathways based on their protein domain infor-
mation (Fröhlich et al., 2008b) (used in the analysis workflow of section 3.7).

2.1 Bayesian Networks and Dynamic Bayesian
Networks

Relationships between biological entities can be described by assembling graph
structures, composed of nodes which correspond to an entity and edges that
represent some kind of biological relationship. The relationship between two
nodes can have different interpretations, such as transcriptional regulation,
protein (de-)phosphorylation, binding of two entities or indirect causative in-
fluences between two entities. In this work only directed models are consid-
ered, i.e. a regulation is characterised by a direction from the parent to a
child entity. Thus, the whole map of relationships represents a directed graph.
A traditional way of describing probabilistic relationships are Bayesian Net-
works (BNs, Friedman et al. (2000); Pearl (1988)), where nodes correspond
to random variables describing some measurable characteristic of the biolog-
ical entity and edges describe the dependencies between the nodes. In BNs,
graphs are not allowed to contain cycles, i.e. the graphical structures dealt
with are directed acyclic graphs (DAGs), denoted as Φ = (V,E), with node
set V = {vi : i ∈ 1 . . . N} and edge set E = {eij : i, j ∈ 1 . . . N}. Each node
is associated with a conditional probability distribution (CPD) describing the
marginal probability of the node given its parents. Figure 2.1 shows a toy ex-

19



2. METHODS

v1

v2

v3

v4

v5

Figure 2.1 – Toy example for a BN. The joint distribution factorises to
P (v1, . . . , v5) = P (v1)P (v2|v1, v5)P (v3|v2)P (v4|v1)P (v5). Figure adapted from
Friedman et al. (2000).

ample for a BN and its CPDs for each node. The joint probability distribution
for Φ is defined as

P (Φ) =
∏

i∈1...N

P (vi|pa(vi)) (2.1)

where pa(vi) denote the parental sets of a node vi. This means the joint
distribution factorises to N conditional independent terms describing the con-
ditional distributions of each node vi given its parents pa(vi). The crucial
point in BN inference is the definition of the CPDs. In the discrete case the
random variable can take on a finite set of discrete values. Thus, the CPDs
can be represented as tables containing the probabilities of a variable given
each assignment of their parental values. In the continuous case, the random
variables take on real values and no table can represent all joint assignments of
the random variables and parental sets, so a continuous conditional density is
needed (e.g. linear Gaussian densities). Given the representation of the proba-
bility distributions and a number of measurements X for the random variables,
network structures can be searched for by maximising the joint probability of
a model Φ given the data:

Φ̂ = argmaxΦ{P (Φ|X)}.

BNs have been described and reviewed multiple times (Friedman et al., 2000;
de Jong, 2002; Werhli, 2007), and the reader is referred to these publications
for a detailed description.

The acyclicity constraint in BNs is a major obstacle for inference in biolog-
ical systems, because regulatory networks often contain feedback mechanisms
that are crucial for the stability and precise regulation of the system. Further,
as pointed out in Werhli (2007), checking for acyclicity during network struc-
ture search represents a computational bottleneck. To model feedbacks and
overcome this limitation, DBNs can be used, introduced by Friedman et al.
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time Gene 1 Gene2 Gene3

t-1 X1t-1 X2t-1 X3t-1

t X1t X2t X3t

t+1 X1t+1 X2t+1 X3t+1

v1 v2 v3

Data set:

v1t-1 v2t-1 v3t-1

v1t v2t v3t

v1t+1 v2t+1 v3t+1

time

DBN representation:Network motiv:

unfold

over time

Figure 2.2 – Left: Regulatory network for three nodes v1, v2, v3. Middle: Un-
folding the network over three time points results in nine nodes v1,τ , v2,τ , v3,τ , τ ∈
{t−1, t, t+1}. The probability distributions are then defined as shown in equa-
tions 2.2 and 2.3. Right: toy data matrix for three proteins and three time
points. Figure adapted from Lébre (2009).

(1998) and Murphy and Mian (1999). Originally designed for time course ex-
periments, a biological entity is now represented by one node for each time
point in the experiment. That is, the network is ‘unfolded’ over time, making
each edge at a time t only point at subsequent times t + 1. The principle
of unfolding a network over time is illustrated in figure 2.2. Unfolded net-
work structures are again DAGs, allowing to use standard inference methods
for BNs. Assuming a homogeneous stochastic process generating the random
variables over time, equation 2.1 can be reformulated as

P (ΦDBN |t) = P (v1,t, . . . , vN,t) =
∏

i∈1...N

P (vi,t|pa(vi)t−1). (2.2)

This means that the distribution of a variable vi,t of protein i at time point t
is only dependent on its parents pa(vi) at time point t− 1 (i.e. the stochastic
process is Markovian). The joint distribution over all time points is then

P (ΦDBN) = P0(v1,t0 , . . . , vN,t0)
∏
t∈1...T

P (v1,t, . . . , vN,t), (2.3)

where P0 is the initial probability distribution for the DAG at time point
0. The terms in the product for each time point correspond to the terms
from equation 2.2. See Friedman et al. (1998) for a detailed description of
DBNs. Similar to BNs the joint posterior probability can be maximised during
a network structure search.

2.1.1 The R-package G1DBN

The first method that is compared to DDEPN is the G1DBN approach of
(Lébre, 2009). Its implementation is available as R-package ‘G1DBN’ from the
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CRAN website (CRAN, 2011). In G1DBN, network structures are unfolded
over time and an unfolded DAG is referred to as DAG G̃. It describes exactly
the full order conditional dependencies given the remaining past variables.
First, some necessary definitions have to be provided to summarise the idea of
the G1DBN algorithm. Let G̃ be a DBN graph representation of probability
distribution P (G̃), with node set V and edge set E. N denotes the number of
nodes, T the number of time points. The following definitions are taken from
Lébre (2009):

Moral graph, (Lauritzen ) The moral graph Gm of any DAG G is obtained
from G by first ‘marrying’ the parents (draw an undirected edge between each
pair of parents of each variable vi,t) and then deleting directions of the original
edges of G.

Ancestral set, (Lauritzen) The subset S is ancestral if and only if, for all
α ∈ S, the parents of α satisfy pa(α,G) ⊂ S. Hence, for any subset S of
vertices, there is a smallest ancestral set containing S which is denoted by
An(S). Then GAn(S) refers to the graph of the smallest ancestral set An(S).

Conditional independence of two nodes: Two node sets U and W are
said to be conditional independent given a node set S, written

U ⊥⊥ W |S,

whenever all paths from U to W intersect S in the moral graph of the smallest
ancestral set containing U ∪W ∪ S, i.e. S separates U from W .

Conditional independence between non adjacent successive vari-
ables: A node vi,t is conditionally independent of a preceding node vj,t−1

if the nodes are not adjacent to each other. Then the following holds:

vi,t ⊥⊥ vj,t−1|pa(vi,t, G̃) and vi,t ⊥⊥ vj,t−1|pa(vi,t, G̃) ∪ S,

where S ⊂ {vk,u : k ∈ 1 . . . N, u < t}.

qth-order conditional dependence graph G(q) : Edges in the qth-order
conditional dependence graph are not drawn between two nodes vi,t and vj,t−1,
whenever there exists a subset Vq,t−1 = {vq,t−1 : q < N} variables, such that the
vi,t and vj,t−1 are conditionally independent given this subset. Define G(q),∀q <
N :
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G(q) =
(
V, {(vj,t−1, vi,t) : ∀Q ∈ V \ {j}, |Q| = q, vi,t 6⊥⊥ vj,t−1|VQ,t−1}i,j∈V,t∈T

)
Inferring a DAG G̃ is done in a two step procedure in G1DBN. The DAG
G(1) represents the first order conditional dependency graph, describing all
conditional dependencies of pairs of nodes, given exactly one remaining node.
It is a superset of the true DAG G̃, that should be inferred, and contains higher
order dependencies, meaning that pairs of nodes are conditionally dependent to
each other, given any set of remaining nodes. Step 1 of G1DBN corresponds
to inferring the DAG G(1). Consider the definition of the partial regression
coefficient aij|k:

vi,t = mijk + aij|kvj,t−1 + aik|jvk,t−1 + ηijk,t,

with some intercept mijk and centred errors {ηijk,t}t≥2. Conditional depen-

dency of two variables is determined by testing the null assumption Hi,j,k
0 :

aij|k = 0, using a least square estimator to find the estimate for âij|k, and
testing the null hypothesis using a standard t-test:

âij|k
σ̂(âij|k)

∼ t(n− 4).

P-values of the t-tests for each edge between nodes i and j are calculated and
an ordering of the edges according to the p-values is performed. Edges are
included into G(1) if their corresponding p-value falls below a threshold α1.

Because G̃ ⊂ G(1), the edges of G̃ can be selected using model selection
among the edges from G(1), by defining a second regression coefficient a

(2)
ij :

vi,t = mi +
∑

j∈pa(vi,t,G(1))

a
(2)
ij vj,t−1 + ηi,t

Again, p-values for each edge are calculated performing standard hypothesis
testing on the null hypothesis Hi,j

0 : a
(2)
ij = 0 and using the statistic

â
(2)
ij

σ̂(â
(2)
ij )
∼ t(n− 1− |pa(vi,t,G(1))|).

The DAG G̃ contains all edges with p-values below a threshold α2.

The detailed model is found in Lébre (2009). Here, only the idea of the infer-
ence method should be conveyed and the reader is referred to the publication
for a comprehensive description of G1DBN.
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2.1.2 The R-package ebdbNet

As a second method for comparison to DDEPN, ebdbNet is chosen. It
is an Empirical Bayes DBN procedure for network inference (Rau et al.,
2010). The method also was developed for microarray time series data and
is available as R-package ebdbNet from CRAN (CRAN, 2011). Again, the
inherent limitations of BNs, acyclicity and existence of equivalence classes are
overcome by using a DBN formulation. The authors chose a special case of a
DBN, in particular a state space model (SSM, also known as linear dynamical
system) to model continuous noisy measurements and to perform inference
on continuous hidden states. In general, a pair of equations, the state
and dynamic equations are used to model the relationship of the measured
components as well as hidden states from one time point to another, while
linearity and time-invariance are assumed for the set of equations.

Assume time-course gene expression data is given for P genes, K hidden
states, T time points and R replicates. The set of hidden states is denoted by
xtr = {xtr1, . . . , xtrK}, the set of expression values by ytr = {ytr1, . . . , ytrP},
both for replicate r and time point t. The SSM is formulated as:

xtr = Axt−1,r +Byt−1,r + wtr

ytr = Cxt,r +Dyt−1,r + ztr,

where wtr and ztr are multivariate normal, A is the K × K state dynamics
matrix, B the K ×P observation-to-state matrix, C is the P ×K observation
matrix and D the P ×P observation-to-observation matrix. ebdbNet operates
in three steps: Model selection (choice of K), estimation of hidden states and
calculation of posterior distributions, which are summarised in the following
three paragraphs.

Model selection: A block-Hankel matrix of auto-covariances of the
time-series gene expression measurements is constructed, incorporating the
assumption how long a gene or protein is able to influence the expression
of other genes. This assumption has to be formulated as model parameter
and is set to a value between 1 − 3 time units forward in time (these values
are common for microarray experiments). Without error, the rank of the
block-Hankel matrix corresponds to the number K of hidden states. Since
error in the measurements cannot be ignored, Rau et al. (2010) perform a
singular value decomposition (SVD) on the block-Hankel matrix and order
the Eigenvalues found in the SVD. The optimal number K of hidden states
is then determined by observing the singular values and finding the point
when the singular values are getting small and the variation described by the
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particular singular value is not big any more. Rau et al. (2010) use a cutoff
of 90% of the total variance explained to determine the number K of hidden
states.

Estimation of Hidden states: Once the number of hidden states is known,
a Kalman filter is used to estimate the values of the hidden states. Let xt and
yt be the hidden state and observation values, respectively, at time t, x̂t be
the filtered estimate of xt and x̂−t be the a priori estimate of xt based on the
previous time step. For the filtering, the posterior means Â, B̂, Ĉ and D̂ are
used in the following equations, and two steps are defined. In the filter step,

x̂−t = Ax̂t−1 +Byt−1

x̂t = x̂−t +K(yt − Cx̂−t −Dyt−1),

with K being the Kalman gain matrix. In the smoothing step,

x̂Tt = x̂t + J(x̂Tt−1 − Ax̂t −Byt),

with x̂Tt being the smoothed estimate of the hidden state value xt at time
t and J being the Kalman smoothing matrix. The K and J matrices are
calculated with the standard formulas. See Kalman (1960) and Bremer (2006)
for the details of the Kalman filtering procedure.

Posterior distributions: The calculation of model parameters is based on
the approach of Beal et al. (2005):

a(j)|α ∼ N (0, diag(α)−1)

b(j)|β ∼ N (0, diag(β)−1)

c(i)|γ, vi ∼ N (0, v−1
i diag(γ)−1)

d(i)|δ, vi ∼ N (0, v−1
i diag(δ)−1).

Here, α, β, γ and δ are vectors that are extracted as each a column of the
matrices A, B, C and D and that build a set of hyperparameters for the prior
precision of the parameter matrices. Point estimates for the hyperparameters
(that depend on the hidden state estimates x̂ are found with an expectation
maximisation (EM) algorithm and the posterior means Â, B̂, Ĉ and D̂ of
the parameter matrices A, B, C and D are calculated. This parameter and
hidden state estimation is iterated until preset convergence criteria are fulfilled.
After convergence, the network topology is derived from the posterior means of
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matrix D by applying z-score cutoffs for the Gaussian posterior distributions
for each edge. Scores in the lower tail of the distributions are regarded as
inhibiting edges and scores in the upper tail as activations.

2.2 Signalling network databases

A lot of knowledge about signalling pathways, biochemical and metabolic as
well as interaction networks has been gained in the past and a vast amount of
these data are stored in public databases. This section describes a selection
of databases containing manually curated signalling pathways that can be
utilised as prior knowledge for various network reconstruction methods, as
those used in this work. Instead of providing a holistic repository of up
to date pathway databases, only three examples are presented: the Kyoto
encyclopedia of genes and genomes (KEGG), Reactome and the Pathway
interaction database (PID). A list of many pathway databases together
with a short description and link to the respective website can be found at
the Pathguide website (http://www.pathguide.org/, Bader et al. (2006)),
providing a useful resource for pathway knowledge references.

Kyoto encyclopedia of genes and genomes

A frequently used pathway database is the Kyoto encyclopedia of genes and
genomes (KEGG, Kanehisa and Goto (2000); Kanehisa et al. (2008)). It is a
repository in which genomic information is linked to higher order functional
information and consists of several databases organised into three layers of
information, according to the type of information stored.

The building blocks of all higher order information are found in the ge-
nomic and chemical information layers. The KEGG Orthology system (KO)
is used for assigning unique identifiers to each database entry in KEGG. KO-
numbers are stored in the database ORTHOLOGY and information on genes
or whole genomes can be stored and refined using these identifiers. This is
done in the databases GENES and GENOME in the genomic information
layer, for instance. Chemical information, i.e. linking of genomic content to
chemical structures of endogenous molecules as well as knowledge on enzy-
matic reactions or structure transformations, can be found in the databases
COMPOUND, DRUG, GLYCAN, ENZYME, REACTION and RPAIR. All
of these six databases are referred to as KEGG LIGAND. Finally, higher order
functional information is stored in the systems information layer, including the
KEGG PATHWAY, MODULE, BRITE and DISEASE databases. PATHWAY
contains a set of manually curated reference pathway maps between gene or
molecules. For the purpose of network reconstruction, this database represents
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the most useful knowledge resource in KEGG, since it comprises maps of sig-
nal transduction pathways, cellular process pathways, human disease pathways
and also a large set of metabolic pathways.

All of the information in KEGG can be retrieved in KEGG markup language
(KGML) format using either an FTP service or via SOAP web services. Two
R-packages are available on the Bioconductor website for retrieval of KEGG
pathways using the R statistical programming environment: KEGGSOAP for
the web service API and KEGGgraph for ftp-based download and parsing of
the KGML pathway files (Gentleman et al., 2004; Zhang and Wiemann, 2009).

Reactome

The Reactome database (Vastrik et al., 2007) is a peer-reviewed pathway
database that undergoes manual curation and comprises data on both hu-
man pathways and reactions. Unlike the KEGG database, all pathways in
Reactome are built up around a set of reactions that transform certain input
biological entities into output biological entities. This data model is preserved
for any type of pathway, where in KEGG different computational represen-
tations, e.g. for metabolic and signalling pathways, are used (i.e. metabolic
pathways are represented as chemical reactions and signalling pathways as se-
mantic graphs, where nodes have an influence onto other nodes). In Reactome,
each entity can serve as input node for a reaction. The reaction transforms
the input into an output entity. Further, each entity can mediate a reaction
as catalyst, too. Reactome gains its flexibility to describe biological processes
by its entity representation model. Each modification of a biological entity
such as phosphorylation of a protein, methylation of a nucleic acid or even
conformational changes of proteins are recorded as reaction that transforms
an input into a separate output entity representing its modified form. This
means that for example an unphosphorylated protein is a different entity as
its phosphorylated counterpart. Even different sub-cellular locations can be
modelled in this way by referring to a protein in the cytoplasm as one entity,
and as separate entity if it is translocated into the nucleus. The transport
itself is then again a simple reaction.

The pathway model of Reactome is hierarchical, i.e. each pathway can be
part of a larger pathway and each pathway is cross-referenced to the Gene
Ontology (GO, Ashburner et al. (2000)) biological process ontology. Likewise,
larger complexes of physical entities having catalytic activity are linked to
the molecular function ontology and entities itself are cross-linked to several
biological databases (e.g. NCBI Entrez Gene, Ensemble), giving an easy way
to obtain a functional characterisation of each entity. Pathways from Reactome
can be downloaded as flat files or in various file formats, including MySQL,
BioPAX (Demir et al., 2010), SBML (Hucka et al., 2003) and PSI-MITAB
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(Kerrien et al., 2007), either directly or using the Reactome Web Services
APIs.

Pathway interaction database

As a last pathway database example the Pathway interaction database (PID,
Schaefer et al. (2009)) is given, a collaborative project between the US Na-
tional Cancer Institute and Nature Publishing Group. It differs from KEGG
and Reactome in its focus on signalling and regulatory pathways and does not
cover metabolic pathways like the two other resources. PID includes the ‘NCI-
Nature Curated’ pathway collection and data exported from Reactome and
the BioCarta collection of pathways as external data sources. PID’s pathways
are organised around interaction events connecting four types of molecules:
small molecules (named compounds), RNA, proteins and complexes. Five
kinds of events are used in PID: a gene regulation event called transcription,
that, despite its name, also includes translation, a molecule transport event
called translocation, a protein-protein-interaction event with name modifica-
tion and a black-box event called macroprocesses. Participants in interactions
are distinguished into four roles: input, output, positive and negative regula-
tor, where an interaction consumes its inputs, produces the outputs and uses
the regulators as necessary and sufficient conditions for the interaction. Meta
information on genes, proteins or small molecules is obtained by mapping to
UniProt, Entrez or Chemical Abstract Service (CAS) numbers and can be
augmented by additional information like chemical modification and cellular
location. All interactions in the NCI-Nature Curated dataset are referenced
by one or more pubmed publications together with one or more evidence codes
describing the type of evidence pointing to the particular interaction. An im-
portant side note for PID is that all pathways are assumed to be valid for the
non-perturbed state of the organism, i.e. the organism is healthy. Deviations
from pathway structure for organisms that have a disease have to be taken
care of explicitly. Export of pathways from PID for automated use is possi-
ble either in PID XML or BioPAX Level 2 formats which can be parsed and
transformed into the desired format that is needed for later analyses.

Pathway compendia and further pathway resources

PID is an example for an integrative pathway database that combines informa-
tion from multiple sources in a common data model and interface. Other exam-
ples of this kind of repository include the ConsensusPathDB-human (CPDB)
database (Kamburov et al., 2009) that combines a set of currently 18 external
resources. The strength of CPDB is that pathway databases with heteroge-
neous interaction types are integrated. Export of data is possible in BioPAX
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format which can be utilised for parsing and further analyses. Another ex-
ample is the Human pathway database (HPD, Chowbina et al. (2009)), com-
bining information from five external databases including KEGG, Reactome
and PID. These are two examples for attempts to assemble a ‘bigger picture’
based on a multitude of resources available so far. Since a complete review of
pathway databases is outside the scope of this thesis, the reader is referred to
the Pathguide website (http://www.pathguide.org), which provides an up
to date and comprehensive overview of currently 325 pathway databases.

2.3 Gene2pathway: A method to predict
signalling pathway membership for non
annotated genes

A common problem in analysing data containing large numbers of biological
entities like microarrays or other high-throughput technologies in genomics
or proteomics is to give a functional characterisation of entities that were
found significantly regulated. Often sets of entities are searched for that share
functionality in order to fulfil a specific purpose, such as kinase activity, for
instance. In the workflow presented for the analysis of the CAMDA dataset
in section 3.7.1, after identifying differentially expressed genes among a set
of around 20000 genes, the differential genes should be grouped according to
the pathways in which they are active. In this section, the prediction tool
gene2pathway (Fröhlich et al., 2008b) is described that facilitates prediction of
pathway membership for genes to the set of KEGG pathways using the InterPro
protein domain information (Mulder et al., 2008) of the corresponding protein.
For a high number of proteins information on the protein domains is available,
whereas information on pathway membership is not. Taking into account
all known protein domains, for each gene/protein a domain signature can be
derived that indicates which domains are present and which are not. In the
gene2pathway approach a classification model is set up that uses the domain
signatures of all proteins from one pathway as training data to learn a common
pathway signature that is used later to predict whether the signature of an
unknown protein belongs to the pathway or not. The method is implemented
in the R package gene2pathway, freely available on the CRAN website.

As a reference set of pathways the KEGG database is used in gene2pathway.
The fact that KEGG is organised hierarchically is used explicitly in this
method. A misclassification of the higher-level branches like ‘Metabolism’
or ‘Environmental Information Processing’ is penalised stronger than a mis-
classification of a single KEGG pathway far down in the hierarchy, because
membership to the general class of pathway is expected to be classified pre-
cisely, where the more specific predictions can be wrong from time to time.
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Classification scheme

Given the set of all InterPro domains indexed by i, each gene p is described
by a binary vector x = {xi : xi ∈ {0, 1}}, where xi = 1 if the respective
InterPro domain i is present in p and xi = 0 otherwise. Further, each gene is
mapped to a number of positions in the KEGG hierarchy, which is described
as binary position code vector C = {Cl : l ∈ 1 . . . K}, where K is the number
of individual KEGG pathways plus the number of branches at hierarchy level
2 plus the number of branches at the top level. Cl = 1 if the gene maps to the
particular branch l or any of its child branches, where multiple mappings are
possible for one protein p.

For classification of a gene/protein p with corresponding binary vector x, a
two step procedure is used. First, support vector machine classifiers (SVM) are
trained to distinguish one specific branch from all others using linear kernels
and soft margin parameter C = 1. Each SVM classifier indexed by j yields
a prediction value fj(x) ∈ R that is transformed to the predicted class by
taking the sign of fj(x). All prediction values are summarised into an input

code vector ~f(x) = (f1(x), . . . , fK(x)). Second, each input code vector ~f(x) is
mapped on the best matching position code vector(s)

C∗ = Cĵ

ĵ = argmax
j
〈Cj, ~f(x) ∗w〉,

where {C1, . . . ,Cm} are a dictionary of possible position code vectors (from
training set of genes with KEGG and InterPro domain annotation) and w is a
weight vector to be minimised with respect to the mismatch between predicted
and true KEGG hierarchy positions in the training set. ‘∗’ is the component-
wise multiplication.

Training procedure

In a first step for the training all K classifiers are trained and a position
labelled dataset D = {(~f1(x1),C1), . . . , ( ~fn(xn),Cn))} is retrieved. Negative
examples of gene mappings from the same branch are used to training each
SVM. So every SVM is able to detect one specific branch in the hierarchy. In
the second training step, a ranking perceptron algorithm is used to optimise
the weight vector w. The algorithm is described as follows:

Input: learning rate η, D
Output: weight vector w
Define F (x, y) = 〈Cy, ~f(x) ∗w〉
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w = 0
for i = 1 to n do
foes(i) = {1, . . . , n} − {p|l(Ci,Cp)} = 0}
l = argmax

p∈foes(i)

F (xi, p)

if F (xi, i)− F (xi, l) < 2 then

w← w + η · l(Ci,Cl) · (~f(xi) ∗Ci − ~f(xi) ∗Cl)
end if

end for

Optimising the weight vector is done by maximising the margin between
position code vectors Ci and Cj, Ci 6= Cj. The vector w is updated
proportional to the loss l between a wrong position vector Cj and the true
position vector Ci. The loss is chosen such that a wrong prediction in the
high levels of the KEGG hierarchy is penalised stronger than in the low levels
in the following loss function:

l(C,C′) =
K∑
i=1

ci1{Ci 6= C ′i and ((Cj = C ′j∀j ∈ Anc(j)) or (Anc(j) = ∅))},

with Anc(j) is the set of all ancestors of branch j and 1 the indicator function.
The factor ci is the punishment coefficient that should increase when the level
in the hierarchy at which the mismatch occurs increases. Let |T (i)| denote
the size of the hierarchy below branch i and |T (root)| the size of the complete
hierarchy, then ci is defined as:

ci =
|T (i)|
|T (root)|

The above described classifier can be used after training each SVM to predict
the membership of each individual gene to a subset of pathways from the
reference pathway set in KEGG.
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3 Results

3.1 Dynamic Deterministic Effects Propagation
Networks - a novel network inference
approach

In the following sections a description of the framework Dynamic Determin-
istic Effects Propagation Networks (DDEPN, Bender et al. (2010, 2011)) is
given. The approach was designed for network inference from longitudinal
data, generated after external perturbation. A signalling or regulatory
network is regarded as a directed (and possibly cyclic) graph G = (V,E),
where V = {vi : i ∈ 1, . . . , N} is the set of nodes (i.e. proteins or genes) and
E = {eij : i, j ∈ 1, . . . , N, eij ∈ {0, 1,−1}} the set of edges in the graph. Two
types of edges are allowed (activation and inhibition), leading to the following
edge encoding:

eij =


0 if edge is not present
1 if edge is activation
−1 if edge is inhibition

(3.1)

Let t ∈ 1 . . . T denote the index for the time point and r ∈ 1 . . . R denote
the index for the replicated measurements. The data are recorded in a matrix
X = {xitr ∈ R : i ∈ 1 . . . N, t ∈ 1 . . . T, r ∈ 1 . . . R}. A hidden boolean state
is associated with each measurement xitr, recorded in an unknown matrix
Γ∗ = {γ∗itr ∈ {0, 1} : i ∈ 1 . . . N, t ∈ 1 . . . T, r ∈ 1 . . . R}.

Figure 3.1 shows the outline of the DDEPN workflow. Each node has a
boolean activity state that is modelled over time. Initially, all nodes are in
their passive state, except for the external stimuli. These are included into
the network to be reconstructed and assumed to be constantly active. Given
any network hypothesis (i.e. wiring of the network, see figure 3.1, A), a syn-
chronous update rule for the activity states is assumed. The activity at the
stimuli is propagated along the edges of the network and combined at the child
nodes according to a boolean logic rule. Updates are performed stepwise until
a stable state is reached (figure 3.1, B, section 3.1.1), which generates a finite
number of possible system states. A series of T system states is identified for
each time point that maximises the likelihood for the data, given the states,
using a Hidden Markov Model (HMM, figure 3.1, C) in a Viterbi Training
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Expectation Maximisation (EM) algorithm. The HMM state sequence optimi-
sation is described in section 3.1.2. During the EM, a set of model parameters
Θ is estimated (figure 3.1, D), corresponding to the mean and standard devi-
ations for two Gaussian distributions for each node (one for the active state,
one for the passive state). The model parameters and system states are used
to calculate the model likelihood (figure 3.1, E, section 3.1.3), which is used to
perform the network structure search (figure 3.1, F), described in section 3.2.

Two different network structure search algorithms are included in DDEPN .
A genetic algorithm (GA) for optimisation of the network structure, and a
Metropolis-Hastings type of Markov Chain Monte Carlo structure sampler,
that was extended by the ability to explicitly sample the space of directed
(and possibly cyclic) graphs including two types of edges (activation and
inhibition edges). Additionally, a prior probability model for assessing how
well an inferred network reflects a given reference pathway and a prior model
that penalises deviations from the scale-free property of biological networks
are presented in section 3.3. Their inclusion into the DDEPN approach
is described there, as well as the rationale for parameter adjustment to
perform reasonable network inference. Finally, a short note is added on the
implementation and availability at the end of this chapter.

3.1.1 Modelling the dynamics of the system by a boolean
signal propagation

For a set of nodes V and an adjacency matrix Φ as defined before, the signal
flow through a given network of proteins is represented as a matrix Γ = {γik ∈
{0, 1} : i ∈ 1 . . . N, k ∈ 1 . . .M} which contains a series of possible system
states γk = {γi ∈ {0, 1} : i ∈ 1 . . . N}. These are vectors of activation
states for each node at a time step k. Define 0 < M ≤ 2N as number of
reachable system states, determined as soon as a state is repeated during the
signal propagation. Each perturbation is seen as an external influence which
is included as a node into the network and whose state is constantly active
(i.e. 1). Starting at the stimuli nodes, the status of all children is subsequently
determined. A child is active if at least one parent connected by an activation
edge is active and all parents connected via inhibition edges are inactive in the
preceding step. For example, in the matrix Γ shown in figure 3.1, the state γB2

of protein B at step 2 is determined by γB2 = γS1 ∧ ¬γA1 = 1 ∧ 1 = 1 (where
‘¬’ is the logical negation which is used whenever a parent is connected via an
inhibitory edge).

A formal description of the signal propagation follows: Define S ⊆ V as the
set of input stimuli and consider the network Φ as fixed for the propagation.
In the propagation, the state matrix Γ that comprises all M reachable state
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Figure 3.1 – Overview of the approach: Given a network hypothesis (A), we
generate a set of reachable system states by applying a fixed signal propagation
scheme (B) which in effect reduces the number of possible system states. An
optimal path through these reachable system states over time is identified by an
HMM (C). Using the series of system states from the HMM, model parameters
for two Gaussian distributions for each protein (one for active, one for passive)
are estimated (D) and a total likelihood of our measurements given the network
and model parameters is calculated (E). The likelihood score is used in the
network structure search, in which the candidate networks are optimised with
respect to the score (F). Two algorithms are used for the structure search: a
genetic algorithm and a Metropolis-like MCMC sampling procedure.

vectors γk is derived for the given network. The propagation is stopped at a
step M , if ∃k ≤ M , such that γk = γM , i.e. if one of the preceding states is
found a second time.

All stimuli nodes s ∈ S are active in all steps, i.e. γsk = 1 ∀k, and all other
nodes are initialised to be 0 in the first step, i.e. γvi1 = 0 ∀vi ∈ V \ S. Let
pa(vi) be the set of all parents of a node vi and φwvi an edge from a node w to
vi. For any status k and protein vi, define

E+
k−1(vi) = {γwk−1 : φwvi = 1, ∀w ∈ pa(vi)}

E−k−1(vi) = {γwk−1 : φwvi = −1, ∀w ∈ pa(vi)}

as the sets of states of parental nodes of vi in step k−1, connected by activating
edges (E+

k−1) and connected by inhibiting edges (E−k−1). An entry γvik in Γ is
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then determined by:

γvik = (
∨

e+∈E+
k−1(vi)

e+) ∧ ¬(
∨

e−∈E−
k−1(vi)

e−) (3.2)

This procedure reduces the maximal number of columns in the system state
matrix Γ from 2N to M ≤ 2N . However, the states in Γ do not necessarily
correspond to the actual measured time points in the data. In general it is
expected that a different number of reachable states as there are time points
is found. For example, in the hypothetical case that the system remains in
a constant state, only one state would be present in Γ. Therefore, a series
of system states has to be identified which is consistent with the measured
experimental data and represents the expected dynamics for the given network
hypothesis. This procedure is described in the next section.

3.1.2 Searching the optimal sequence of system states
using a Hidden Markov Model

Given a data matrix X and a state matrix Γ, the goal is to find an optimal
state matrix Γ∗. Each entry in Γ∗ represents the state of a node i at time
point t and corresponds to a measurement xitr, where replicate measurements
indexed by r are assumed to have the same state. The index r is omitted
for notational simplicity for the rest of this section, but the reader should be
aware that optimisation in the HMM is done by multiplying over all replicate
emission probabilities for determining the entries in the Viterbi matrix (as
shown in equation 3.5).

Intuitively, Γ∗ provides a classification of measurements into measurements
coming from an active state and those from an inactive state. An estimate Γ̂∗

for Γ∗ is inferred by using an HMM H = (W,Γ, A, e). W represents the range
of possible values for observations, i.e. all positive real valued intensities gen-
erated by the array scanning software (often the pixels are encoded in 16 bit,
and thus ranged within [0, 216−1]). Γ is the set of possible states, as derived in
section 3.1.1 and A a matrix of transition probabilities for the system states.
e is referred to as the emission probability e(xt) = p(xt|γ̂∗t , Θ̂) (equation 3.5),
where Θ̂ is the matrix of estimated model parameters (equation 3.4). e corre-
sponds to the likelihood of observing a data point xt given its state γ̂∗t . Note
that xt is a column in the measurement matrix X, i.e. a vector of intensity
values.

The HMM can be used to optimise the system state sequence given a set
of estimated model parameters Θ̂ and state transition probability matrix A.
Since neither Θ and A nor the state sequence matrix Γ̂∗ are known, all of them
have to be estimated simultaneously. This is done using the Viterbi Training
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3.1 DDEPN - a novel network inference approach

algorithm (Durbin et al., 1998), an EM type algorithm. Γ̂∗ is initialised by
sampling random states from Γ, while the order of the states is preserved. A
is initially set to uniform probabilities for all state transitions. The model
parameters Θ̂ depending on Γ̂∗ are estimated (see equations 3.3 and 3.4). Now
Γ̂∗ is updated using the HMM and the procedure iterated until convergence, as
described in Durbin et al. (1998). This yields the final state matrix estimate
Γ̂∗ used for the likelihood calculation, described in the next section.

3.1.3 Defining the likelihood of the data for a given
network hypothesis

During the HMM and the network structure search (section 3.2), a likelihood
score is needed that reflects the fit of a data point to a corresponding state
vector, which is regarded as emission probability. Computing the likelihoods
for all data points will then reflect the fit of the measured data to the net-
work hypothesis. Given a state matrix estimate Γ̂∗, each measurement xitr for
protein i, time point t and replicate r comes from an ‘active’ normal distribu-
tion N (µi1, σi1), if its state γ̂∗itr = 1, and from a ‘passive’ normal distribution
N (µi0, σi0), if γ̂∗itr = 0:

xitr ∼
{
N (µi0, σi0), if γ̂∗itr = 0 (passive)
N (µi1, σi1), if γ̂∗itr = 1 (active)

(3.3)

The parameters of each distribution for one protein are obtained as unbiased
empirical mean and standard deviation of all measurements for this protein in
the given class. This yields the parameter matrix:

Θ̂ = {θ̂i0, θ̂i1} = {(µ̂i0, σ̂i0), (µ̂i1, σ̂i1)} ∀i ∈ 1 . . . N (3.4)

Now we can write the likelihood for a data point xt as :

p(xt|Φ) = p(xt|γ̂∗t , Θ̂)

=
N∏
i=1

R∏
r=1

p(xitr|θ̂iγ̂∗itr) (3.5)

The total likelihood for a network hypothesis Φ can be written as:

p(X|Φ) = p(X|Γ̂∗, Θ̂) =
T∏
t=1

p(xt|γ̂∗t , Θ̂)

=
T∏
t=1

N∏
i=1

R∏
r=1

p(xitr|θ̂iγ̂∗itr) (3.6)
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3.2 Algorithms for network structure search

In the previous sections the assessment of a single network hypothesis with
respect to the measured data was discussed. A likelihood model was set up
making it possible to match a network to a particular score. Now, candidate
networks have to be optimised to identify the best fitting network structures.
The problem of learning network structures was shown to be NP-complete
for BNs (Chickering, 1996) and represents a difficult problem to solve, also
for non BNs, since the number of graph structures to be evaluated increases
super exponentially with the number of nodes. Clearly, heuristic approaches
are needed here, two of which are presented in this work. The first is an
adaptation of a GA that evolves a population of candidate networks according
to their likelihood score, such that an optimal network population is reached.
The second is a Metropolis Hastings MCMC approach that samples the space
of possible network structures such that structures with a high likelihood are
preferred over structures with a low score during the sampling process.

3.2.1 Utilising a genetic algorithm for the optimisation of
the network structure

For the description in this section, the fitness score is defined as the Bayesian
Information Criterion (BIC) (Schwarz, 1978), derived from the likelihood and
model complexity:

BIC = −2 log(p(X|Φ)) +K log(n)

where K is the number of edges in Φ and n is the number of data points in
X. The BIC score was chosen because it penalises highly complex models, i.e.
models with many edges. The number of edges should in general be rather
small to prevent model overfitting and prefer sparse network structures. Note
that for optimisation according to the BIC score, the fitness has to be min-
imised rather than maximised, as it would be the case for the raw likelihood
or posterior probability as optimisation criterion.

A population P = {Φp : p ∈ 1 . . . P} of P networks is initialised randomly
as start population for the algorithm. Two parameters q and m with with
q,m ∈ [0, 1] have to be given. The GA includes three iteratively performed
steps: selection, cross over and mutation. In the selection step, a number of
b(1−q) ·P c individuals is chosen with probability proportional to their fitness.
It is required that the BICs of selected networks are smaller than a given
quantile of the BICs of all individuals in the population (here, the median
is used). This mimics a simple greedy search, but leaves the possibility for
selecting suboptimal moves, too. The selected individuals are added to the
next generation population P ′.
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3.2 Algorithms for network structure search

During the cross over b q·P
2
c random pairs are chosen from P , again propor-

tional to each individuals’ fitness. To perform crossing over of two networks,
each network adjacency matrix is represented as a vector (simply attaching all
columns to each other) and two-point cross over is performed for these vectors.
The modified individuals are added to P ′ if their BICs are smaller than the
given BIC quantile for all individuals in P ′. In case that after cross over the size
of the modified population P ′ is smaller than P , as many random individuals
are added from P to P ′, such that the population size stays constant.

Finally, in the mutation step bm · P c networks are chosen from the new
population P ′. For each selected network a random edge is drawn and its type
is changed randomly to one of the remaining types. As an example, given an
edge φij = −1, it can be either changed to φ′ij = 1 or φ′ij = 0. Mutations are
allowed if the fitness of the individual improves by introducing the mutation.

These three steps are repeated until a predetermined number of iterations
(usually 1000) has been run or the given quantile of all BICs in the population
does not change for a preset number of times in a row (usually 10). At the
end of the GA the population of candidate networks is combined into a final
network by including each edge that occurs in more than a particular fraction
of all networks in the population (usually 50% if not stated explicitly).

3.2.2 inhibMCMC: An extension to the Markov Chain
Monte Carlo structure sampler

As an alternative to the GA an MCMC structure learning approach to sample
the space of possible networks is presented. The purpose of the GA was
optimisation of the network structure population. In contrast, MCMC is used
to sample from the posterior distribution of network structures to describe the
whole network sampling space. The sampler is based on a previous approach
names Markov Chain Monte Carlo Model Composition (MC3, Madigan et al.
(1995); Werhli and Husmeier (2007)). Because two edge types are allowed
(activation and inhibition), the MCMC sampler has to be adapted in the
following way. Adding an edge is replaced by two moves, one for adding
an activation and one for adding an inhibition. Another two moves for
switching the edge type from activation to inhibition and vice versa and one
for simultaneously reversing and changing the type of an edge are introduced,
leaving in total six move types: add activation, add inhibition, delete, revert,
switch type and revswitch. Inclusion of the novel move types is necessary to
ensure that any edge can be changed to any other edge (w.r.t. to type and
direction) in exactly one step. Using these move operations, for any given
network structure all other structures can be constructed in a finite series of
moves. Consider table 3.1 for an illustration of the edge transitions.
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→ a ← ` ∅
→ − st rev rst del
a st − rst rev del
← rev rst − st del
` rst rev st − del
∅ addA addI addA addI −

Table 3.1 – Possible edge transitions and the corresponding move to perform
the transition. addA: Add activation, addI: Add inhibition, del: delete, rev:
reverse, st: switch type, rst: reverse and switch type; →: activation, a: inhibi-
tion, ∅: no edge

Now the essential relationships for the MCMC sampling procedure are
repeated (see Werhli and Husmeier (2007)). The index p now denotes any
iteration during the MCMC sampling. The proposal probability of any
network Φp+1 that differs from a network Φp by only one edge is:

Q(Φp+1|Φp) =

{ 1
|N (Φp)| , if Φp+1 ∈ N (Φp)

0, if Φp+1 /∈ N (Φp)
, (3.7)

where N (Φp) is the neighbourhood of a network Φp, i.e. all network struc-
tures that can be reached by a single edge operation, when starting at the
structure Φp. An edge operation (or move) is accepted with acceptance prob-
ability

A(Φp+1|Φp) = min{1, R(Φp+1|Φp)}, (3.8)

R(Φp+1|Φp) = P (Φp+1|X)

P (Φp|X)
· Q(Φp|Φp+1)

Q(Φp+1|Φp)
, (3.9)

and the posterior distribution P (Φp|X) is defined as:

P (Φp|X) = P (X|Φp)P (Φp)

P (X)

∝ P (X|Φp)P (Φp).
(3.10)

Since P (X) is a constant normalising factor, describing the probability of the
measured data, it can be neglected for model comparison purposes. P (Φp)
represents the prior probability distribution for a network structure Φp, which
is described in section 3.3.

To determine the neighbourhood N (Φp) of a network, let the node set V
and network adjacency matrix Φ be defined as above. There are three cases to
be considered to determine the cardinality of the neighbourhood of a network
Φp:
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addactivation/addinhibition |N (Φp)| := |{φij : φij = 0; i, j ∈ 1 . . . N, i 6=
j}| (the number of node pairs that is not connected by an edge, where
self-activations/inhibitions are not considered here)

deletion/switchtype |N (Φp)| := |{φij : φij 6= 0; i, j ∈ 1 . . . N}| (the number
of node pairs that are connected by an edge)

reverse/revswitch |N (Φp)| := |{φij : φij 6= 0 ∧ φji = 0; i, j ∈ 1 . . . N}|
(the number of node pairs that are connected by an edge, and where the
reverse edge is not already present)

Depending on the type of the move, the corresponding proposal probabilities
Q can be calculated.

3.3 Inclusion of prior knowledge for structure
learning

Structure learning of biological networks is a difficult problem and relies either
on heuristic approaches to optimise the target structure or on sampling based
approaches to get a stochastic description of the target distribution of net-
work structures and corresponding posterior probability distribution. Often
the problem of unambiguous identifiability is not solvable using data driven
network reconstruction only, so further ideas to approximate the optimal solu-
tion are needed. One frequently used way is to utilise external knowledge on the
network structure itself. For example, knowledge about confidences of edges in
the network can be used to make the inclusion of edges more likely whenever it
is found frequently in external knowledge bases. Also general properties of the
graph structure, such as scale-free characteristics can be used. This section
deals with these two ways of how prior knowledge can be formulated as sta-
tistical models and plugged into the network inference method DDEPN . The
first subsection describes the ‘Laplace prior’, which assesses the probability of
an edge by comparison to a reference network. The second method is based
on the scale-free property of biological networks and introduced in the second
subsection ‘Scale-free prior’.

3.3.1 Defining prior weights for individual edges by the
laplace prior model

Based on the structure prior of Fröhlich et al. (2008a) a prior model is pro-
posed that also incorporates different types of edges and a more fine-grained
control of the prior probabilities. Networks are encoded as before. A matrix
B = N × N → [−1, 1] is needed, containing prior confidences for each edge,
which can be obtained in various ways. Usually, confidences are derived
from public network structure databases, like the examples described in
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section 2.2. Here, one example is given how to derive B using the KEGG
database (Kanehisa et al., 2008). The approach is similar to the one described
in Werhli and Husmeier (2007), but preserves the information on the type of
the edges. The steps described in this paragraph can be used as guidance
to incorporate knowledge from other pathway databases in a similar way in
order to derive prior edge confidences.

First, the signalling and disease related networks have to be downloaded
from KEGG in KGML format (can be done using the R-package KEGGgraph,
for example) and converted to adjacency matrices. The number of occurrences
of each node pair vi and vj in all pathways is counted and recorded in a
matrix M = N × N → N. Further, it is counted how often each node pair
is connected via an activation or inhibition edge in all reference networks and
the corresponding numbers are recorded in two matricesMact andMinh, both
with the same dimensions as M. For pairs of nodes that do not occur in any
reference network (i.e. Mij is 0), the confidence score is set to 0. The prior
confidence matrix B is thus defined as:

B =

{ Mact

M − Minh

M , if M > 0
0 else,

assuming that the type of each edge is consistent in all reference networks.
This leaves positive confidences for activation edges and negative confidences
for inhibiting edges. The larger the absolute value of the confidence score, the
stronger is the belief in the presence of this edge.

No matter how B was derived, to calculate the prior belief for a network
structure Φ all edge probabilities are assumed to be independent:

P (Φ|B , λ, γ) =
∏
i,j

P (φij|bij, λ, γ), i, j ∈ {1 · · ·N} (3.11)

Now the difference between an edge in the inferred network Φ and the prior
confidence in B is calculated, where a weight exponent γ ∈ R+ is included to
obtain the weighted difference term:

∆ij = |φij − bij|γ, (3.12)

The prior belief for an edge in the network is then modelled as

P (φij|bij, λ, γ) =
1

2λ
e

−∆ij
λ , (3.13)

which penalises large differences from the network structure Φ to the prior
belief B .
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Now upper and lower bounds for the prior function are derived, in the general
case for two edge types. Let λ, γ ∈ R+. If the edge type information is used,
all differences ∆ij lie in the interval ∆ij ∈ [0, 2γ], because φij ∈ {0, 1,−1} and
bij ∈ [−1, 1]. Without edge type information, the signs in both Φ and B are
ignored, leading to ∆ij ∈ [0, 1γ], because φij ∈ {0, 1} and bij ∈ [0, 1]. Because
the bounds for P (Φ) will not change in either case, only the case for including
edge type information is shown in the following.

For the moment, let γ = 1 and consider the limits of the exponential term
in equation 3.13:

λ→∞ ⇒

{
e

−∆ij
λ → 1 if ∆ij = 0

e
−∆ij
λ → 1 if ∆ij > 0

λ→ 0 ⇒

{
e

−∆ij
λ → 1 if ∆ij = 0

e
−∆ij
λ → 0 if ∆ij > 0

This means that

0 ≤ P (φij|bij, λ, γ) ≤ 1

2λ
∀λ ∈ R+, γ = 1. (3.14)

Since ∆ij ≥ 0, ∀γ ∈ R+, the bounds are valid for γ ∈ R+, too. Figure 3.2
shows on the left side the prior curve for equation 3.13 when λ ∈ {0.05, 0.1, 1}
and γ = 1. As it can be seen there, with increasing λ the (unnormalised)
prior probability curve flattens out, giving unbiased probabilities for each
value of ∆ij. The maximum value is bounded by P (φij) = 1

2λ
. On the

right side of figure 3.2, λ = 0.01 and with increasing γ ∈ {0.5, 1, 5, 15, 50}
a broader prior probability plateau at the upper bound for small differences
∆ij is observed, suggesting that γ can be used to control how strong small
differences from inferred edges to the prior confidence of an edge should be
penalised. The parameter γ should be used such that the ‘drop’ in the prior
occurs at a value for ∆ij that reflects the variance in the confidences that are
still regarded as strong evidence for the presence of an edge. This will lead to
high prior weights for edges with absolute confidence values not equal to 1,
and additionally leave a strong penalisation of large differences. However, this
threshold has to be defined in advance depending on the reference that is used.

The prior parameter λ should be adjusted in a way that it exceeds the
changes introduced by the likelihood, if strong bias towards prior knowledge is
desired during inference. The adjustment differs for the GA and inhibMCMC,
because for the GA the absolute difference of the posterior of a proposal net-
work to the predefined quantile of the network posterior probabilities in the
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population is influencing the decision whether to accept the proposed network
or not, while in the inhibMCMC approach, this is done via the posterior ra-
tios. So for inhibMCMC, one could inspect the likelihood and prior ratios for
various settings of λ and choose λ in a way that both ratios are approximately
equal. To do this, transform equation 3.13 to log scale:

log(P (φij|bij, λ, γ)) = −log(2)− log(λ)− ∆ij

λ

Now consider the prior and likelihood ratios on log scale, i.e. the differences
of the log priors and log likelihoods. To make the prior capable of having
substantial influence on the inference, the log prior differences should be on
similar scale as the log likelihood differences. For instance, if the log likelihood
differences are on the scale of 103, set λ = 10−3, γ = 1, for instance, such
that

∆ij

λ
will be in the range of the thousands. The first part of the prior

(−log(2)− log(λ)) only contributes little to the total prior. This means, that
the prior influence is controlled over the second part, which is zero for no
difference to the prior and and can become very large for differences > 0. So
mainly edge mismatches between the reference and inferred net will guide the
structure search, and the strength of the influence can be controlled using
different settings of λ.

For the GA, adjustment of the prior hyperparameters is different in two
ways. The first difference is, that for adjusting the prior hyperparameters
one has to inspect the difference terms between the scores of two consecutive
iterations in stead of the ratios. An operation on a network individual in an
iteration of the GA is accepted whenever the posterior of a modified network
exceeds the given quantile of all posteriors of the current population. Hence,
the second difference is, that acceptance or rejection of a proposal depends on
a whole summary of posterior probabilities. The observed differences of such
a summary will be smaller on average than the differences observed for single
networks. Therefore, to obtain equal influence of the prior strength in the GA
compared to inhibMCMC, λ can be set to a larger value than in inhibMCMC,
again estimated using the observed differences in the likelihoods and priors
during the GA.

3.3.2 Modelling the network’s degree-distribution with the
scale-free prior model

A different way of specifying a prior model was introduced in Kamimura and
Shimodaira (2005). It is assumed that the networks have a scale-free architec-
ture and that the degree of a node follows a power-law P (d) ∝ d−γ, where d is
the number of edges adjacent to a node. For any graph structure Φ with fixed
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Figure 3.2 – Unnormalised prior densities, depending on difference ∆ij . Left:
γ is constant, for increasing λ a ‘flattening’ of the prior curve can be observed.
For small λ, small differences to the reference retrieve higher weight than large
differences. For large λ, all differences are weighted approximately equal. Right:
λ is fixed, when γ increases, a plateau at the upper bound 1

2λ can be seen. This
means that small differences to the reference are not penalised as strong as for
small γ, leaving the control that up to some deviance from the reference a high
prior weight is retained.

number of nodes N a prior probability can be calculated as follows. First,
assign a probability Pi to each node i ∈ 1 . . . N :

Pi =
i−µ

ΣN
j=1j

−µ ≈
1− µ
N1−µ i

−µ,

This probability decreases when i gets large, and all Pi sum up to 1, i.e.∑
i∈1...N

Pi = 1. µ is in the range 0 < µ < 1 and defined as µ = 1
γ−1

, γ ∈ [2;∞[.

The purpose of this probability is to describe a decreasing probability of choos-
ing a node as interaction partner for some other node. Choosing interaction
partners subsequently will be rather likely for the first few partners, but less
likely when additional partners should be selected. In random graphs this
probability would be uniform. Therefore, the probability of selecting addi-
tional interaction partners would be equal to the probability of selecting the
first interaction partner.

Assuming independent node selection proportional to Pi, each two vertices i
and j are selected in one unit time duration. To describe this time unit, an ad-
ditional parameter K is needed, which can be seen as a chemical potential-like
parameter, describing a rate of vertice connections. It controls the mean num-
ber of edges and leads to an increasing number of edges when K is increased.
Let a node pair be selected with probability Pi · Pj and pair selection be per-
formed for N ·K ‘times’. The probability of two nodes not being connected is
then defined as
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Pij = (1− 2PiPj) ' e−2NKPiPj

and the probability of a pair being connected as

Pij = 1− e−2NKPiPj .

The probability of any structure Φσ = (V,E) of node set V , edge set E and
a permutation σ = {σ1, . . . , σN} of all nodes in Φ is then

P (Φσ) =
∏

{vi,vj}∈E

(1− e−2NKPiPj)
∏

{vi,vj}/∈E

(e−2NKPiPj),

because each edge is selected independently.

A number of permutations σ = {σb : b ∈ 1 . . .B} is generated, resulting in
one graph Φσb for each permutation. The final probability of Φ is averaged
over the prior probabilities of all permutation networks:

P (Φ) =
1

B
∑
σb

P (Φσb)

A detailed description of the model can be found in Kamimura and Shi-
modaira (2005) and Lee et al. (2005). The scale-free prior can be used in cases
where no information on edge confidences is available. During inference with
the scale-free prior model, sparse network structures will be preferred, because
high node degrees are penalised by the prior model.

3.4 Analysis of inference results of DDEPN
using statistical testing procedures

3.4.1 Generating consensus networks from inhibMCMC
and GA structure search results

The first question to be answered after inference is, of course, what is the
reconstructed network. Since DDEPN uses sampling based approaches and
results in either a population of optimised networks (for the GA) or in a series
of sampled network structures (for inhibMCMC), additional steps have to be
performed to summarise these networks into a single final network. The easi-
est way is to assign a threshold th defining the proportion of networks in the
population or sample sequence, that must contain a particular edge, in order
to include it. For the GA, usually a single reconstruction is run and sum-
marisation using the inclusion threshold is trivial. However, for inhibMCMC,
to assess convergence, multiple independent MCMC runs are performed and
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have to be merged for a summarisation. A short description of the consensus
network generation for inhibMCMC is given below.

Consider L independent sampling runs and a fixed inclusion threshold th.
For each of the sampling runs, generate a network Φl

th, l ∈ {1 . . . L}, th ∈ [0, 1]
by including all edges that occur in more than (th ∗ 100)% of the sampled
networks. To generate the consensus network, perform a simple majority vote,
i.e. count all activations, inhibitions and missing edges across the L runs and
select the edge type having the maximum number. In case of ties, extract
all likelihoods of the ‘tie networks’, build the average of the likelihoods for
each edge type in the tie and select the type with the highest likelihood. This
gives a summarisation of the L sampling runs into a single network structure,
referred to as the consensus network of an inhibMCMC sampling at a given
threshold th.

The problem for both techniques to find consensus networks lies in the se-
lection of the inclusion threshold th. A low threshold setting will lead to very
dense network structures, containing many false positive hits, since support
for the edges from the data is weak. Choosing a high threshold will lead to
sparse networks, but also exclude potential true edges. In case of the GA,
there is no clear solution to this problem, and a threshold has to be optimised
by assessing the resulting networks. For inhibMCMC, in the following section
an approach is presented for determining edges based on standard statistical
testing techniques which aims to overcome the threshold selection problem.

3.4.2 Determining edge types

A significance testing procedure is described in this section that is used for
deciding on the type of the edge between two nodes. Consider L independent
sampling runs in inhibMCMC, each with a number of it iterations and burn-in
phase of bi iterations. The output consists of a population of P = it − bi
network structures Φp, p ∈ {1, . . . , P} for each of the L runs. Each network
consists of at most N ×N edges, where self edges and edges pointing towards
the stimuli are not considered here (but in principle are possible). For all
edges, the number of activations and inhibitions are counted over all runs, and
divided by the sum of all activations and inhibitions, to describe the proportion
of activations or inhibitions in the total number of inferred edges, respectively.
These edge confidences are defined as

c+
ij := {c+

ijl}, l ∈ {1, . . . , L}
c−ij := {c−ijl}, l ∈ {1, . . . , L},

(3.15)
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where

c+
ijl = e+

ijl/(e
+
ijl + e−ijl),

c−ijl = e−ijl/(e
+
ijl + e−ijl),

e+
ijl = |Φp

ijl = 1|, ∀p ∈ {1, . . . , P},
e−ijl = |Φp

ijl = −1|, ∀p ∈ {1, . . . , P}.

(3.16)

P is the number of non burn-in network structures, l is the sampling run
and i, j ∈ {1, . . . , N} are the indices of the source and destination nodes in
the network. e+

ijl and e−ijl count the number of activation and inhibition edges

in sampling run l, respectively, and c+
ijl and c−ijl are the normalised confidences

of seeing an edge with the appropriate type between nodes i and j. Thus,
c+
ij and c−ij are two random vectors of length L collecting the edge confidences

over all sampling runs. To derive which kind of edge is present between nodes
i and j, it is assumed that elements from the confidence vectors for each edge
are drawn independently and identically distributed. Further, if no edge is
present between nodes i and j, it is assumed that no difference in the edge
confidences is observed, while an activation edge between i and j would lead
to a significant increase in activation confidences and inhibition would lead
to a significant increase in inhibition confidences. Thus, standard statistical
testing can be performed to test the null hypotheses

H0 : c+
ij = c−ij.

A two-sample wilcoxon rank sum test is conducted for both alternative hy-
potheses:

H+
1 : c+

ij > c−ij; H−1 : c+
ij < c−ij.

Adjustment for multiple testing has to be done using appropriate approaches.
In this work the approach of Benjamini and Yekutieli (2001) is chosen. Test-
ing for edges is done under the assumption that all tests can be performed
independently. However, in general it cannot be assumed that the presence
of an edge is independent of the presence of all other edges. Benjamini’s and
Yekutieli’s approach controls the false discovery rate under the assumption of
dependencies of the test statistics. It is seen as an appropriate way to correct
for interdependencies between occurring edges. If H0 is rejected and H+

1 is
accepted on a significance level α, the edge between nodes i and j is regarded
as activation. If H0 is rejected and H−1 accepted on significance level α, the
edge is an inhibition and if H0 is not rejected, no edge is drawn between i and
j. See figure 3.3 for an example of deciding on the type of the edges.
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Figure 3.3 – Example for edge type testing. Left: edge from MEK12 to ERK12.
The alternative H+

1 is accepted, i.e. MEK12 activates ERK12. Middle: The null
hypothesis H0 is not rejected, there is no edge from GSK3 to AKT. Right: edge
from AKT to GSK3. The alternative H−1 is accepted, i.e. AKT inhibits GSK3.
All tests are wilcoxon rank sum tests, significance level α = 0.05.

3.5 Evaluation of the performance of DDEPN for
simulated data and networks

To assess the performance of DDEPN from a theoretical point of view, several
tests were performed using artificially constructed networks and data matrices.
The purpose of using simulated data and networks was to provide the algo-
rithm with data that depended on an entirely known network structure. A
description of the network and data generation process is given in the current
section. Afterwards, in section 3.5.1, the performance of the HMM and Viterbi
Training for identifying the correct sequence of system states is analysed. Sec-
tion 3.5.2 describes how well known network structures could be reconstructed
by DDEPN using data that was generated under the DDEPN model assump-
tions. Section 3.5.3 outlines the DDEPN performance in comparison to the
two external DBN approaches from section 2. Finally, in section 3.5.4 the
impact of prior knowledge on the network structure is analysed.

Generation of simulation data

First, artificial networks had to be sampled, given a number of nodes N and
a number of input stimuli. Starting at the inputs, activation edges between
each pair of the stimuli and the remaining nodes were drawn proportional to
a power law for the probability of choosing subsequent edges (where the or-
der of the interaction partners was random). From each target node that was
connected to the stimuli, again random edges were drawn to the remaining
unconnected nodes, and the procedure was continued until all nodes were con-
nected. Afterwards, a number of node pairs (20% of the activation edges) were
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sampled randomly and connected by inhibition edges. By this, networks were
generated that were fully connected and could contain inhibitions, feed forward
and feed back loop structures, as they might occur in biological networks, too.
Besides, the node degrees followed a power law distribution, as it is required
for scale-free network structures.

To generate data depending on a given network, a data matrix X (as defined
in chapter 3.1) was constructed. Let parameters nstim be the number of
distinct input stimuli and cstim be the number of stimulus combinations. For
instance, for stimulation by two receptor ligands, set nstim = 2, and for
simultaneous stimulation with both ligands, set cstim = 1. Each stimulus
gives rise to a separate experiment, so for each stimulus a separate state matrix
must be constructed using the effect propagation (see section 3.1.1). A state
transition matrix for each stimulus was built up by sampling T columns with
replacement from each state matrix, while the order of the states was preserved.
Each column in the state transition matrix was repeated R times to generate a
number of replicates. Finally, all state matrices were attached to get the total
state matrix Γ, and all state transition matrices were attached to generate
Γ∗. Then, for each time point replicate and node, measurements xitr were
sampled from two Gaussian distributions, either from xitr ∼ N (1200, 400) if
γ∗itr = 0 or from xitr ∼ N (2000, 1000) if γ∗itr = 1, if not stated explicitly.
The parameters for the Gaussians (mean and variance) were chosen similar to
observed measurements in a real dataset, as were the number of time points
T = 10 and replicates R = 9, representing a typical sized dataset.

3.5.1 Performance of recovering the true state sequence
via the HMM

A crucial step in DDEPN inference is the recovery of the true state sequence
matrix Γ∗ by the HMM. To assess the quality of the recovery, networks were
constructed as described in the previous section for an increasing number of
nodes. The effect propagation was performed for all simulated networks for
different numbers of input stimuli. Subsequently, Γ∗ matrices were sampled
100 times for each network and stimulus combination, and for each matrix
Γ∗, artificial data were generated as described before. Now the HMM state
sequence search was performed for all data matrices. The resulting state tran-
sition matrices Γ̂∗ were compared to the corresponding reference Γ∗ in terms of
sensitivity SN = (TP/(TP + FN)) and specificity SP = (TN/(TN + FP )),
counting the true and false occurrences of the entries in Γ̂∗. Figure 3.4 de-
picts the recovery performance and shows constantly high values at averages
of around SN = 0.84 and SP = 0.95 for networks up to 30 nodes. Increasing
the number of input stimuli nstim lead to similar values around SN = 0.83
and SP = 0.97. Hence, given an unknown series of system states, the HMM
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Figure 3.4 – Performance of state recovery for increasing number of nodes N
(left) and number of stimuli nstim (right).

is able to identify the correct states, even for bigger networks with up to 30
nodes.

3.5.2 Performance of the structure search using a genetic
algorithm

Artificial signalling networks and intensity measurements were generated as
described in section 3.5. For network comparisons we counted the number
of truly inferred edges (TP ), truly not inferred edges (TN), erroneously in-
ferred edges (FP ) and erroneously not inferred edges (FN). Note that unlike
the performance tests in the previous section, now edges in the network are
counted, rather than entries in the state matrix.

To test the performance of the structure search using the GA without prior
knowledge, 25 artificial networks were sampled for each setting of nstim and
cstim, as shown below. For all networks, system state and data matrices were
simulated and the network reconstruction performed. A set of network, state
and data matrices is referred to as ‘experiment’ in this subsection.

Network reconstructions were done for artificial networks of size N = 10
with population sizes from p ∈ {100, 250, 500}, q = 0.3 and m = 0.8. No prior
knowledge was included in this test. Also increasing numbers of different
input stimuli were compared. The parameters were set to nstim ∈ {1, 2} and
cstim ∈ {0, 1}. The GA was run for 25 sampled networks, each time with the
maximum number of generations set to 1000. The edge inclusion threshold
for the final network (section 3.2) was varied in [0, 1], and the respective final
network for each given threshold was compared to the original net, yielding
SN and SP values for the generation of Receiver Operator Characteristic
(ROC) curves and Area Under Curve (AUC) values.
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Figure 3.5 shows that the reconstruction performance was limited for the
case of nstim = 1, cstim = 0 and increasing population size p = 100, p = 250
and p = 500 (AUCs 0.57, 0.6, 0.61), while a slight increase could be found for
the bigger population size. A true increase was reached when two distinct
stimuli (nstim = 2) and one stimulus combination (cstim = 1) were included.
Here, the AUCs increased to 0.75 and 0.73, respectively. As before, for higher
population sizes the AUCs increased (from 0.7 to 0.75). In the lower part of
figure 3.5, for a fixed threshold th = 0.5, SN and SP were plotted for each
simulation test. In the nstim = 1 case, SP was high around 0.87, while SN
was rather low around 0.17. For nstim = 2 SN increased to values around
0.4, while SP improved from 0.78 to 0.83 for growing population sizes. This
showed that inclusion of multiple stimuli triggering signalling in the network at
different input nodes increased the amount of information that could be used
to find the signalling connectivity, and thus resulted in better identification of
true edges in the network (apparent in the increasing SN values).
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Figure 3.5 – Upper: ROC curves and AUCs for different settings of input
(nstim) and combinatorial stimuli (cstim) and population sizes (p). SN and SP
were calculated as average of each 25 network reconstructions with network size
of N = 10. Lower: Example SN and SP plot for th = 0.5 for all settings. For
p = 500, SP was high at ∼ 0.83, while SN increased from ∼ 0.17 to ∼ 0.4. This
shows, that DDEPN found edges with strong support from the data with low
FP rates. The increase in SN for bigger population sizes shows, that broader
sampling of the network search space yielded better inference results.
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3.5.3 Comparison to alternative network inference
approaches

To assess whether DDEPN performs well with respect to other methods, net-
work inference was conducted for DDEPN and the DBN reconstruction ap-
proach G1DBN of Lébre (2009) and ebdbNet of Rau et al. (2010). As in the
previous section, network size was chosen as N = 10 and inference was run for
25 simulated networks. Each network reconstruction was repeated 100 times
and ROCs and AUCs were calculated as before The results are depicted in
figure 3.6. For nstim = 1, cstim = 0, DDEPN performed slightly better than
G1DBN and ebdbNet(AUCs 0.61 for DDEPN, 0.58 and 0.55 for G1DBN and
ebdbNet). However, the performance was limited in this case for all methods.
Using nstim = 2, DDEPN clearly outperformed G1DBN and ebdbNet, for
both cstim = 0 (AUC=0.75) and cstim = 1 (AUC=0.73). This highlighted
the ability of DDEPN to make use of the additional information gained from
multiple perturbations. But the better performance has its price in terms of
computation time. On average, a 10 node network with 2 input stimuli was
reconstructed in around 7000 seconds using DDEPN, while G1DBN and ebdb-
Net completed this task in a few seconds. However, the network inferred in
DDEPN was derived from a whole population of candidate networks that cov-
ers larger portions of the network search space than the other two approaches.
Calculation was done on a Quad-Core AMD Opteron(tm) 2.7 Ghz machine
with 64 Gb memory, on which each 14 cores were used in parallel to optimise
the population of networks in the GA.

3.5.4 Assessing the prior influence

The tests from the previous two sections show the overall performance of
DDEPN without inclusion of any prior knowledge. However, it is also pos-
sible to include knowledge on the network structure itself into the modelling
approach. Using the laplace prior from section 3.3.1 the aim was to show that
the inference could be influenced in a way that on the one hand the result was
close to a given reference network and on the other hand allowed to confute
the prior, when evidence from the data got strong enough. For all tests, one
network was sampled with network size N = 15 and data were sampled 10
times for the same network. The reconstruction was applied using both the
GA and inhibMCMC with and without prior inclusion. For the GA, the pa-
rameters were chosen as follows. Population size was set to p = 500, cross
over rate q = 0.3, mutation rate m = 0.8 and maximal number of iterations to
1000. For inhibMCMC, each 50000 iterations were performed with a burn-in
phase of 5000 iterations and 10 independent sampling starts. Thus, for each
of the 10 independent datasets, a final network was generated from each 10
independent Markov Chains.
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Figure 3.6 – ROC curves and AUCs for DDEPN network reconstruction com-
pared to G1DBN and ebdbNet. Upper: for nstim = 1, cstim = 0 a slight
improvement of AUCs was observed, and performances were limited for all ap-
proaches. Lower: for nstim = 2, cstim = {0, 1} a clear increase in AUC was
found for DDEPN, showing the improved quality of the network reconstructions.

The following rationale was applied for the laplace prior tests. First, it was
assumed the prior information were true. To ensure this, the original sampled
network was used as laplace prior matrix B . Sampling of the network and
data were described in section 3.5. Both the prior confidences in B and the
inferred edges only take on values ∈ {0, 1,−1}, so the absolute differences
between both were either 0, 1 or 2. All differences larger than 0 should have
been strongly penalised, ensured by setting γ = 1 which leads to a sharp
decrease of the prior density (equation 3.13) for ∆ij > 0. Each mismatch in
an inferred edge to the prior was thus given a weight close to 0 (see figure 3.2).

Figure 3.7 shows the results of the 10 inferences with inhibMCMC. On
the left side, AUCs are depicted that show an increase for decreasing λ. For
λ = 0.005 and λ = 0.001 the reference networks could be successfully recon-
structed (AUCs around 1). On the right side, the likelihood and prior ratios
are visualised for decreasing λ. It was suggested in section 3.3.1 to inspect the
likelihood ratios and adjust λ in a way that the the quotient

−∆ij

λ
and thus

the prior ratios are on a similar scale, which was done in this test. In the
plot, for λ = 0.001 the prior ratios varied over a much broader range than the
likelihood ratios, which lead to inferred networks that were nearly identical to
the prior network, as it can be seen in the AUC of around 1. For increasing
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Figure 3.7 – Diagnostics for inhibMCMC of a randomly sampled network
(N=15), 50000 iterations, burn-in 5000, γ = 1, varying λ. The sampled network
was used as prior confidence, i.e. the prior knowledge was ‘perfect’ in this test.
Left: The smaller λ, the stronger the prior influence was and the closer the
inferred networks were to the prior (reflected in increasing AUCs). Right: Com-
parison of Likelihood and Prior ratios, depending on λ. λ should be chosen such
that the prior and likelihood ratios vary in a comparable range. For instance,
based on the plot, set λ = 0.005.

λ the likelihood ratios showed a larger variance than the prior ratios, which
lead to decreasing AUCs and more variable inferred networks in turn. Thus,
the setting of the prior parameters determines how robust the reconstruction
of the networks is. The settings have to be carefully adjusted to preserve ro-
bustness, but leave enough variance to gain additional knowledge, represented
in the data, too.

Turning to the GA, for one sampled network structure the inference was run
10 times for different initial network populations and the results are shown in
figure 3.8. On the left hand side of the figure the AUC distributions are
shown. When using the BIC score optimisation for the reconstruction, it is
apparent that the performance of the GA is weak, with AUCs around 0.5,
emphasising the need for the inclusion of prior knowledge to produce reliable
results for larger networks. When using prior knowledge in the laplace prior,
for decreasing λ, an increase in the reconstruction performance was observed as
in the case for inhibMCMC. The improvement in reconstruction performance
can be controlled, similar to the case for inhibMCMC, using smaller settings
for λ. Using λ ≤ 0.01 gave comparable reconstruction results with AUCs
above 0.95, but in contrast to inhibMCMC, the reference network could not
be inferred entirely for even smaller settings for λ. The GA seems to reach a
local optimum, but does not find the true network, even for the test situation
where the prior strength is increased subsequently.
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Figure 3.8 – Results for GA reconstruction for one sampled network (N=15),
population size p=500, number of iterations 1000, cross over/selection rate
q=0.3, mutation rate m=0.8, γ = 1. As in figure 2, the sampled network
was used as ‘perfect prior knowledge’. Left: AUC values without prior (column
BIC) and for various settings of λ. When λ was decreased, the AUCs increased.
However, unlike the inhibMCMC example, AUCs did not approach a value of 1,
giving evidence that the GA converges to a local optimum. AUCs for BIC score
optimisation were low, emphasising the need for prior knowledge inclusion for
larger networks. Right: Likelihood and prior differences. Since most of the ob-
served prior differences were zero, only the non-zero values are shown. For each
setting of λ, the left box corresponds to the observed distribution of likelihood
differences, the right box to the prior differences. In the BIC column, only the
likelihood difference distribution is shown, since no prior was used in this case.

On the right hand side of the figure, the likelihood and prior differences
are shown. As depicted in figure 3.8, setting λ = 0.1 lead to prior differences
of around 10 and already had a strong influence on the reconstruction per-
formance. So this setting for λ could be used as appropriate setting for λ.
Nevertheless, it seems harder to find a proper λ setting for the GA inference,
because already small changes in the prior setting lead to large variance in the
performance of the GA.

3.6 ERBB signalling network reconstruction for
longitudinal protein array data

The development of DDEPN was driven by the need to analyse a phospho-
proteomic dataset that was generated with the goal to analyse the effects of
different ERBB receptor inhibiting drugs onto breast cancer derived cell lines.
The following section introduces the experimental setup and data generation
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3.6 ERBB network inference from longitudinal protein array data

and shows the results of the application of DDEPN to infer signalling interac-
tions in a set of ERBB signalling related proteins.

3.6.1 Inference for a phosphoproteomic dataset from
ERBB signalling related proteins

To begin with, a description of the data generation in the biological experi-
ment is given. The human breast cancer cell line HCC1954 was cultivated as
recommended by ATCC (American Type Culture Collection) and cells were
split three times per week. For stimulation experiments, cells were seeded in
6-well plates, cultivated for 24h and serum-starved in phenol-red free medium
for additional 24h. EGF (Sigma) and HRG (Biovision) were added to the cells
to a final concentration of 5 nM. After times 0, 4, 8, 12, 16, 20, 30, 40, 50 and
60 min, medium was replaced by ice-cold PBS and plates were put on ice. Af-
terwards, PBS was aspirated and cells were harvested by manual scraping in 40
µL lysis buffer (M-PER (Pierce), Complete Mini, PhosSTOP (Roche)). Cells
were lysed for 20 min at 4◦C. After centrifugation, total protein concentration
was determined using the BCA method (Pierce) and all samples were adjusted
to the same protein concentration. Prior to printing, samples were mixed
with Tween-20 to a final concentration of 0.05%. Three biological replicates
were generated on three different days. The samples were printed in triplicate
onto nitrocellulose coated glass slides (Oncyte, Grace-Biolabs) with a contact
spotter (2470 Arrayer; Aushon Biosystems) using 180 µm pins. Slides were
blocked in 50% Odyssey Blocking Buffer (LI-COR) in PBS containing 5 mM
sodium fluoride and 1 mM vanadate. Primary antibodies were diluted 1:300
in antibody diluent with background reducing components (Dako). Alexa 680
labelled secondary antibodies (Molecular Probes) were diluted 1:5000 in PBS
(+0.2% NP-40, 0.02% SDS + 0.5% BSA). After drying, arrays were scanned
using the Odyssey Infrared Imaging System (LI-COR) and signal intensities
were determined with GenePix Pro 5.0 (Molecular Devices). Sample normali-
sation was done using Fast Green FCF dye (see Luo et al. (2006); Loebke et al.
(2007)) to account for different protein concentrations in each spot on the ar-
ray. Replicate time courses were centred around their common mean to remove
systematic shifts in the intensities. 16 antibodies for specific phosphorylation
sites were used to obtain signal intensities of phosphorylated protein. A list
of the proteins and targeted phosphorylation sites is shown in table 3.2. The
antibodies were obtained from the following companies: ERBB4 and GSK3
from Epitomics, ERBB2 from Millipore, MEK1/2 from Sigma, PKCα from
Abcam all others from Cell Signalling.
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Protein Phosphosite Protein Phosphosite Protein Phosphosite
AKT S473 EGFR Y1068 ERBB2 Y1112

ERBB3 Y1289 ERBB4 Y1162 ERK1/2 T202,Y204
GSK3 Y279,Y216 MEK1/2 S217,S221 MTOR S2448
p38 T180,Y182 p70S6K T389 PDK1 S241

PKCα S657,Y658 PLCγ S1248 PRAS T246
SRC Y416

Table 3.2 – Proteins and phosphorylation sites used in the RPPA analysis.

3.6.2 Using the genetic algorithm to infer basic signalling
interactions in the ERBB network

DDEPN was used to reconstruct a signalling network from the experimental
data. The GA was utilised as structure search algorithm first, together with
the BIC score optimisation that ensures sparsity of the resulting network. Pa-
rameters were chosen as population size p = 500, maximum iterations 1000,
cross over rate q = 0.3 and mutation rate m = 0.8. The reconstruction here
was performed to show the results of DDEPN when no prior knowledge was in-
cluded. The inferred network is shown in figure 3.9. An edge is shown if it was
contained in at least 50% of the networks in the final population (th = 0.5),
allowing only interactions with strong support from the data. Several signal
cascades were seen in the network that were known from the literature. For
example, the regulation HRG → ERBB1 was inferred. Olayioye et al. (1999)
showed that HRG is an activator of the ERBB-Dimers 1/3 and 1/4, which
supported this result. Activation of ERBB2 by EGF or HRG could be found
in Jones et al. (1999) (EGF/HRG→ ERBB2/3), which also supported activa-
tion of PKCα by HRG through the cascade HRG → ERBB2 → PKCα, since
crosstalk between ERBB2 and PKCα in ERBB2 over-expressing breast cancer
cells was reported by Magnifico et al. (2007). The result was further interest-
ing, since the HCC1954 cells over-express ERBB2. Kim et al. (2009) reported
activation of p38 by ERBB2 in ERBB2 over-expressing breast cancer cells,
reflected in the activation EGF → p38. The activations of MEK1/2, ERK1/2
and p70S6K by EGF are key elements in the classical MAPK signalling cas-
cade EGF → ERBB1/1 → GRB2 → SOS1 → RAS → RAF1 → MEK1/2 →
ERK1/2 → p70S6K. EGF → ERBB1/1 → PLCγ was shown by Kim et al.
(1990), which demonstrated the relevance of the activation EGF → PLCγ in
the inferred network. Further EGF → AKT a GSK3α is found in the cascade
EGF → ERBB → GRB2 → GAB1 → PI3K → AKT a GSK3α. More hypo-
thetical interactions included the inferred SRC activation (ERBB3 → SRC),
interpreted as activation of SRC by ERBB2 (see e.g. Luttrell et al. (1994); Mao
et al. (1997); Xian et al. (1997)) through the ERBB2/3 heterodimer. Finally,
PDK1 activation by receptor tyrosine kinases was shown by Cohen et al. (1997)
in insulin signalling. In the reconstructed net, the activation ERBB3→ PDK1
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3.6 ERBB network inference from longitudinal protein array data

was present, which supported the hypothesis that the cascade ERBB1/3 →
PI3K → PIP3 → PDK1 (see Oda et al. (2005); Vanhaesebroeck et al. (1997))
might also play a role in cancer related signal transduction processes.

All of these inferred and literature confirmed interactions had high support
by the data (occurrence in more than 75% of all networks in the final pop-
ulation, see edge labels in figure 3.9). These findings showed, that literature
knowledge was reproduced well by DDEPN and in addition allowed for dis-
cussion of the newly inferred interactions.
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Figure 3.9 – Network reconstructed from HCC1954 data. Interactions found
in the literature are marked as thick lines. Red nodes mark the input stimuli.
The numbers at the edges show the proportion of networks in the final GA
population, in which the respective edge was contained.

3.6.3 InhibMCMC inference with prior knowledge resolves
correct signalling cascades

To demonstrate how the prior knowledge inclusion improves reconstruction re-
sults from real data, the inference was repeated on the HCC1954 dataset using
inhibMCMC together with the laplace prior model. Prior edge confidences
were generated from KEGG as described in section 3.3.1, and a final reference
network was assembled as follows. Edges with prior confidence ≥ 0.1 were
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included in the prior network, while the edge type information was preserved.
Additionally, several edges were included manually, that were described in
current literature resources. The prior ERBB network is shown in figure 3.10.

InhibMCMC inference was applied with 50000 iterations, where the first
25000 iterations were regarded as burn-in and discarded. The following pa-
rameters were chosen: λ = 0.0025, γ = 1. To assess convergence and en-
sure robustness of the results, 10 independent inhibMCMC chains were run
in parallel, each starting at a randomly sampled initial network structure. A
final network was generated by using the testing procedure presented in sec-
tion 3.4.2 with a significance level α = 0.001 and the multiple testing correction
approach of Benjamini and Yekutieli (2001). The result is shown in figure 3.11,
(A). Black edges correspond to edges that are present in both the prior and
inferred network, blue edges are novel edges reconstructed by DDEPN and
not present in the prior. It can be seen that the prior network was resembled
well (mainly black edges) and five new edges were identified in the inferred net
(blue edges, in particular EGF → ERK1/2, EGF → p70S6K, EGF → AKT,
EGF → PLCG and PRAS → ERBB1).

EGF HRG

ERBB1 ERBB2

ERK12

AKT

PDK1

MEK12

PLCG

PKC

p38

cSRC

MTORp70S6K

GSK3 PRAS

ERBB3 ERBB4

activation
inhibition

Figure 3.10 – ERBB prior network assembled from KEGG and by manual
curation that was used for the inference.

Comparing the inferred net in figure 3.11, (A) to the inferred net from
the GA run with BIC score optimisation (see figure 3.9) it is apparent that
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3.6 ERBB network inference from longitudinal protein array data

the inference was improved using the prior knowledge. When looking at the
structure of known signalling cascades, for example, the MAPK kinase cascade
EGF → ERBB1 → MEK12 → ERK12 → p70S6K or the cascade HRG →
ERBB3 → PDK1 → AKT were inferred, which could be expected, because
these are major signalling cascades that are ubiquitously present in biological
systems. The novel activations (the blue edges) mainly show transitive effects
from EGF to downstream nodes of the MAPK and AKT signalling cascades,
resembled also by a path from EGF down to the respective target over several
intermediate nodes. The exception is the activation of PRAS → ERBB1, for
which no path could be seen originating in PRAS and ending in ERBB1.

3.6.4 inhibMCMC with a prior model reveals treatment
specific effects on the structure of the ERBB
signalling network

Additional experiments were performed for the HCC1954 cell line in which in-
hibitor drugs against the ERBB receptors were included. Cells were incubated
in starving medium containing trastuzumab (10ng/µL) and erlotinib (1 µM)
(Roche, Penzberg, Germany). Treatment was performed with each drug alone
and as combination 1 h prior to growth factor stimulation. Afterwards, EGF
and HRG stimulation (each 5 nM) was performed. Lysates were prepared after
0, 4, 8, 12, 16, 20, 30, 40, 50 and 60 min as for the stimulation experiment.
Again, both the single stimulations with EGF and HRG and the combined
stimulation with EGF and HRG were done in three separate experiments.
Each experiment was performed three times resulting in three biological repli-
cates and spotted in three technical replicates by the spotting robot. Network
reconstruction was performed as for the stimulation experiment in section 3.6.3
using inhibMCMC and the laplace prior with 50000 iterations, burn-in of 25000
iterations, λ = 0.0025 and γ = 1. The resulting networks are shown in fig-
ure 3.11. Unlike the figures from the previous experiments, edges that are
contained in the prior as well as the inferred networks are marked in gray (and
not in black) for a clearer visualisation of the networks. In general, the over-
all structure of the signalling network is retained, indicated by mainly gray
edges. However, depending on the type of drug used, different effects could
be observed. The upper right network (B) shows the case for treatment with
erlotinib. In comparison to the prior network, six new edges were observed
(blue edges, EGF → p70S6K, EGF → AKT, MEK1/2 a ERBB2, MTOR →
MEK1/2, MTOR → ERK1/2 and cSRC → MEK1/2). The transitive activa-
tion of the targets of the MAPK and AKT cascades, p70S6K and AKT itself,
remained active as in the case without inhibitory drug (figure 3.11, (A)). The
expected inhibition of the ERBB receptors by erlotinib were inferred.

Turning to the lower left part of figure 3.11 (C), the treatment with tras-
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activation inhibition inferred, not in prior not inferred, in priorinferred and in prior

Figure 3.11 – Inferred networks for different treatments. For all networks, three
experiments were conducted and used for the reconstruction: Stimulation with
EGF and HRG alone and EGF+HRG stimulation. Additional treatments: (B)
Inhibition with erlotinib. (C) Inhibition with Trastuzumab. (D) Combination
of Trastuzumab/erlotinib. Edges: gray - present in both inferred and prior
network; blue - only in inferred; red - only in prior; dashed - inhibitions. Direct
transitive activation of the MAPK downstream target p70S6K is only lost for
the treatment with both drugs. Direct and transitive activation of AKT is lost
when both drugs and trastuzumab alone are used, suggesting that combined
treatment most effectively deactivates downstream signalling of the MAPK and
AKT signalling cascades.
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3.7 Network reconstruction for the CAMDA microarray dataset

tuzumab is shown. Five additional edges compared to the prior were found
(EGF→ ERBB2, EGF→ ERK1/2, EGF→ p70S6K, ERBB1→ ERK1/2 and
ERBB1 → ERBB2). One edge could not be reconstructed that was suggested
by the prior: p38 a ERBB1 (marked as red edge). The inhibition of ERBB2 by
trastuzumab was correctly inferred. Again, a transitive activation of p70S6K
was found originating in the EGF stimulus, but in contrast to the inhibition
with erlotinib and the case without inhibition, the transitive AKT activation
by EGF is lost.

The last example shows the treatment with both trastuzumab and erlotinib
simultaneously (figure 3.11, (D)). Here, seven additional edges were found
(EGF → ERBB2, EGF → ERBB3, HRG → ERBB2, ERBB4 → ERBB3,
PKC → ERBB4, p70S6K → ERBB1 and PRAS → ERBB2), compared to
the prior network and three edges from the prior were ruled out by the infer-
ence procedure (E → ERBB3, T → ERBB2). This shows, that the expected
inhibitions from erlotinib to ERBB3 and from trastuzumab to ERBB2 were
not supported by the data. Finally, the transitive activations from the stimuli
to p70S6K and AKT were both not present. In general, the combinatorial
treatment shows the strongest effects with regard to inhibition of the down-
stream components of the MAPK and AKT signalling cascades, pointing to an
effective inhibition. See also the discussion for an interpretation of the results
shown here (section 4.2.2).

3.7 The CAMDA challenge dataset: a microarray
time course measuring the response to
survival factor deprivation in endothelial
cells

To give an example of the inference of regulatory networks on microarray data
and to show that DDEPN also is capable of modelling signal transduction
on the transcriptional level an analysis for the Critical Assessment of Microar-
ray Data Analysis contest (http://camda.bioinfo.cipf.es/camda08/ is pre-
sented and extended (Bender et al., 2008). First, a gene selection workflow
is shown in section 3.7.1 that filters uninformative genes and selects function-
ally related groups of genes. Afterwards, network reconstruction results using
G1DBN, ebdbNet and the GA and inhbibMCMC of DDEPN are described in
section 3.7.2.

The microarray dataset was published in Affara et al. (2007). It includes
time-course gene expression data generated in human umbilical vein endothe-
lial cells (HUVEC) after survival factor deprivation (SFD). For a pool of 10
individuals of HUVEC, RNA was prepared at time points 0, 0.5, 1.5, 3, 6, 9,
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3. RESULTS

12 and 24h and hybridised to UniSet Human 20K gene chips. Gene expression
was measured using CodeLink expression analysis software.

3.7.1 Workflow for identifying functionally relevant gene
or protein subsets as input to network inference
methods

Current research in genomics or proteomics is evolving in that the number
of genes or proteins that are measured in parallel is steadily increasing. On
recent microarray platforms, a whole set of known genes in an organism
can be measured in parallel. The number of proteins, for which abundance
can be quantified in one experiment, is increasing with the advent of novel
techniques like protein arrays or mass spectrometry, too. This bears a number
of challenges for the analysis of such amount of data. The most important
question to ask right in the beginning is, which of the genes or proteins show a
response at all in any of the experimental conditions. DDEPN was introduced
as novel network inference method in the previous sections. Because the
algorithm is tailored to rather small networks (number of nodes smaller than
50), a workflow is presented that describes how subsets of genes or proteins
can be selected from larger experiments that share a functional relationship. It
has to be ensured that gene or protein profiles are not equal for all conditions,
in which case no hypotheses on the connectivity of these components could
be generated. Thus, the identification of effected components is of primary
interest in such experiments. Currently, several methods exists for this
purpose. For the identification of differentially expressed genes or proteins
from array experiments, one could either use limma (Smyth, 2004) or SAM
Tusher et al. (2001), for instance. Even for longitudinal data, identification of
differentially expressed time courses is possible (e.g. Tai and Speed (2006)).
These methods are all available as R-packages and thus easily accessible and
applicable. The core assumption of all of these methods is that most of
the genes do not change in the experiments. From this set of ‘background’
components, a null-distribution of expression intensities is estimated and
genes differentially deviating from this null-distribution can be found using
standard statistical testing procedures.

Once a set of interesting, i.e. varying components, is found, one has to
ask if the genes somehow ‘belong’ to each other. That is, do the genes
have a functional relation and thus influence each other directly, leading
to e.g. correlations in their expression profiles, or are observed correlations
only spurious and found by chance? For instance, the KEGG database (see
section 2.2) offers gene annotation and visualises this information in pathway
maps, but only annotation of about 4000 of the estimated 20000-25000
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n genes/proteins from array experiment

Differential expression
(limma, SAM, timecourse)

n genes/proteins total
m <=n differentially expressed

Pathway prediction: gene2pathway
for all n genes/proteins

Fisher's Exact Test:
Overrepresentation of predicted pathways

for m differential genes/proteins

p significantly overrepresented
candidate pathways

Network inference for genes contained 
in the overrepresented pathways

Figure 3.12 – Workflow for identification of functional related gene/protein
sets.

protein-coding genes is available. Gene ontology (GO, The Gene Ontology
Consortium (2004)) offers annotation for most genes, but not all have a
known function. Geneset Enrichment Analysis can be used to determine
over-represented functions or pathways in gene lists (e.g. Beissbarth and
Speed (2004); Al-Shahrour et al. (2004)), but is limited by the availability
of gene annotation. An approach of Hahne et al. (2008); Fröhlich et al.
(2008b) is able to predict pathway membership of genes based only on the
protein domain annotation. The method was described in section 2.3. The
InterPro database (Mulder et al., 2008) offers protein-domain annotation for
about 19000 genes, so the use of such a tool gives a closer characterisation of
the interesting components regarding their function. Figure 3.12 shows the
workflow for the identification of functionally related gene/protein subsets
from high-throughput data, as it was proposed in Bender et al. (2008).
First, the array measurements were analysed using one of the methods for
identification of differentially expressed genes/proteins (limma was used in
the work described here). Second, a prediction of pathway membership
of each gene/protein was performed, using the R-package gene2pathway,
available on CRAN. Note that each gene/protein can be mapped to multiple
pathways, making over-representation analysis of pathways possible. Next,
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3. RESULTS

Fisher’s exact test was used to identify over-represented pathways in the list
of differentially expressed genes/proteins, compared to the list of all genes
or proteins. Entities belonging to a significantly over-represented pathway
could now be selected for further analysis, including the reverse engineering
methods described above.

Candidate genes in the time-course expression data were selected by first
normalising the raw expression values using variance stabilisation normalisa-
tion (VSN, Huber et al. (2002)) and successively analysing differential gene
expression with limma (Smyth, 2004). Genes with a normalised intensity in
the lower quartile of the observed intensity range in all time-points were ex-
cluded from the analysis as they have non-informative expression profiles. Each
pair of time points was analysed, and genes showing an FDR (Benjamini and
Hochberg, 1995) smaller than 0.001 in at least one of the comparisons were
taken as differentially expressed. From the 20265 genes on the array 18310
genes were kept as informative genes after filtering for constant expression pro-
files and bad quality flags on the arrays. 1002 genes were found differentially
expressed after limma analysis. The mapping of the microarray’s ProbeID to
the Entrez-GeneID resulted in 14015 unique genes that could be analysed by
gene2pathway. These were fed into the KEGG-pathway membership predic-
tion (see section 2.3), in which InterPro domains for 10630 genes were found.
3385 had pathway memberships defined by KEGG, with 268 being differen-
tial. Predictions for 4206 genes were made using the domain signatures and
353 of them were differentially expressed. For each of the predicted pathways
Fisher’s Exact Test was performed to find out whether a particular pathway
was significantly over-represented in the sets of differentially expressed genes.
This was done once for the genes that were directly annotated in KEGG and
additionally for those that were predicted to be a member of the pathway by
their domain signature using gene2pathway. The results are shown in table 3.3.

pathway p1 p2 K DS

Cell cycle 0,0031 0,0004 22 30
Metabolism 1 0,0316 96 364

Cell Growth and Death 0,3877 0,0447 26 43
Nucleotide Metabolism 0,3159 0,0562 22 22

Insulin signalling pathway 0,3159 0,2787 2 2
. . . . . . . . . . . . . . .

Table 3.3 – P-values for pathway over-representation: p1 for pathway member-
ship defined only by KEGG; p2 for pathway membership by KEGG and domain
signature prediction; K: number of genes found as member of the pathway in
KEGG annotation, DS: number of genes assigned to a pathway by KEGG and
the domain signature prediction with gene2pathway.
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3.7 Network reconstruction for the CAMDA microarray dataset

A significant overrepresentation was found for the pathways Cell Cycle,
Metabolism, Cell Growth and Death and Nucleotide Metabolism after path-
way assignment with gene2pathway. As seen in table 3.3, the significance for
the pathways is increased when the domain signature prediction is incorpo-
rated. It also makes sense to find the pathway Cell Cycle and its parent map
Cell Growth and Death over-represented, since the microarray data originated
in an apoptosis study, which is part of Cell Death and Growth and closely re-
lated to Cell Cycle. This suggests, that genes from the Cell Growth and Death
tier show the highest activity in the time-course. For further investigation and
network reconstruction exactly those differentially expressed genes, that were
part of the Cell Cycle pathway were taken. Since Metabolism is a branch that
can hardly be distinguished by the use of domain signatures (Hahne et al.,
2008), no further examination of these pathways was performed. In total a
selection of 30 genes was done. The genes are shown in table 3.4.

KEGGid HGNC symbol KEGGid HGNC symbol KEGGid HGNC symbol
hsa:699 BUB1 hsa:701 BUB1B hsa:890 CCNA2
hsa:891 CCNB1 hsa:991 CDC20 hsa:1026 CDKN1A
hsa:1028 CDKN1C hsa:1111 CHEK1 hsa:1647 GADD45A
hsa:2288 FKBP4 hsa:3434 IFIT1 hsa:3437 IFIT3
hsa:4085 MAD2L1 hsa:4171 MCM2 hsa:4172 MCM3
hsa:4173 MCM4 hsa:4174 MCM5 hsa:4176 MCM7
hsa:4678 NASP hsa:5347 PLK1 hsa:5933 RBL1
hsa:9133 CCNB2 hsa:9134 CCNE2 hsa:9700 ESPL1
hsa:10051 SMC4 hsa:10926 DBF4 hsa:23594 ORC6L
hsa:55075 UACA hsa:55761 TTC17 hsa:81570 CLPB

Table 3.4 – Genes selected by limma and gene2pathway

3.7.2 Comparison of network inference using DDEPN,
G1DBN and ebdbNet

After selection of the functionally relevant subset of genes, further analyses
using network inference methods were performed to identify regulatory
interactions between the genes. The inferred interactions were compared to
a reference network derived from KEGG and by manual curation in order to
highlight potential crosstalk of the known cell cycle nodes to the additional
nodes found by the gene selection process. Three approaches for network
reconstruction were used. The DBN method G1DBN (Lébre, 2009), used in
the original analysis proposal, is presented first. Afterwards, ebdbNet (Rau
et al., 2010) as well as the novel method DDEPN, developed and described in
this work, are compared to the original results.
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Assembling a reference network
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Figure 3.13 – Manually assembled reference network for the subset of cell cycle
genes.

To summarise the expectations on the regulatory interactions, a reference
network was assembled and used as prior network for the DDEPN inference.
To derive the prior network, edge confidences were generated as described
in section 3.3.1 using the signalling and disease pathways from the KEGG
database. These edge confidences were discretised to the levels 1, -1 or 0 for
an activation edge, inhibition edge or missing edge, respectively. The purpose
of doing so was to derive a prior network that clearly defined where edges were
to be expected and where no edge was expected. Additionally, some edges
were added manually, in order to define a regulatory network that fit best the
expectations of the author on the interactions in the selected subset of cell
cycle related genes. The reference network is shown in figure 3.13.

G1DBN

G1DBN was chosen as network inference method in the original workflow
because it was designed for the analysis of microarray time course data and
directly available as R-package. The following parameters were used for
inference. In the first step of the algorithm, the DAG (G)(1) was inferred using
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3.7 Network reconstruction for the CAMDA microarray dataset

the least squares M-estimator with an edge selection threshold α1 = 0.5. In
the second step of the algorithm, the full-dependency graph G̃ was estimated
from G(1), using a significance level α2 = 0.1. Figure 3.14 shows a comparison
of the inferred network of G1DBN to the interactions found in the prior
network. Solid lines correspond to activations, dashed lines to inhibitions.
Black edges occur in both the prior and inferred network. Blue edges represent
edges that were not present in the prior and additionally inferred, red edges
were present in the prior and not inferred in G1DBN. Note that the edge type
is ignored for the comparisons, because G1DBN is not able to infer different
types of edges. Only three edges were reconstructed and present in the prior
network, CCNA2 → MCM5, CCNE2 → CDKN1C and ORC6L → MCM7.
However, it is apparent that the overlap between the inferred network and
the prior cell cycle interactions is sparse. Looking at some of the edges that
were not inferred, but are present in the prior pathway, it can be seen that
inhibitory effects from cell cycle regulator genes are lost. This holds for the
cyclin-dependent kinase inhibitor 1A (CDKN1A, also known as p21) and
cyclin-dependent kinase inhibitor 1B (CDKN1B, also known as p27) genes,
which normally bind to the Cyclin E-CDK2 and Cyclin D-CDK4 complexes
and inhibit cell cycle progression. Also the inhibition of CCNB2 by CHEK1 is
not reconstructed by G1DBN, which usually occurs in check point mediated
cell cycle arrest controlled by CHEK1.
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activation inhibition inferred, not in prior not inferred, in priorinferred and in prior

Figure 3.14 – G1DBN network for the CAMDA dataset. Two edges were
found in concordance with the reference net (black edges). Several edges were
not found by G1DBN, but were present in the reference, e.g. CHEK1 a CCNB2.
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ebdbNet

The second DBN approach ebdbNet was used to infer a signalling network
from the CAMDA data. Parameters were set up as described in Rau et al.
(2010). A network of type ‘feedback’ was inferred, using parameters K = 0
for no hidden states, and convergence criteria ∆1 = 0.15 and ∆2 = ∆3 = 0.05
as suggested in the reference. The result for selecting the 0.25% and 0.975%
quantiles of the resulting z-scores as inhibition and activation edges is shown
in figure 3.15. Line style and colour encoding are chosen as in figure 3.14.
The network is not as sparse as the G1DBN network, but only one edge was
found that is also present in the reference network, CDKN1A a CCNE2, a well
known inhibitory relationship of the cell cycle inhibitor CDKN1A (also known
as p21). Also the inverse edge CCNE2 a CDKN1A is found, which points to
a down-regulating influence of the cyclin CCNE2 onto p21. As in G1DBN,
check point inhibition by CHEK1 in the interaction CHEK1 a CCNB2 is not
inferred from data, pointing to an active cell cycle progression.

0.025/0.975 quantiles

activation inhibition inferred, not in prior not inferred, in priorinferred and in prior
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Figure 3.15 – ebdbNet network. The approach tends to infer more edges than
G1DBN, which makes interpretation of the edges more difficult. Only one edge
was found in agreement with the prior network, CDKN1A a CCNE2. How-
ever, for example the inhibition CHEK1 a CCNB2 is not inferred (marked red),
despite its existence in the reference, which is in concordance to the G1DBN
method.
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DDEPN

Finally, the network reconstruction was performed for the DDEPN method
using both the GA and inhibMCMC structure samplers. Figure 3.16, (A)
shows the results of the inhibMCMC run. Prior knowledge was incorporated
using the laplace prior (see section 3.3.1) with the network from figure 3.13
as prior network. Parameters were set to 50000 iterations, burn-in of 25000
iterations, the hyperparameters for the laplace prior to λ = 0.01 and γ =
1. Ten independent sampling runs were performed in parallel and the final
network assembled as described in section 3.4.2. The resulting network is much
sparser than the networks from G1DBN and ebdbNet. 14 edges were inferred,
that also were in the prior network. One novel interaction was found (BUB1
→ RBL1) and 15 edges from the prior network were confuted by the data. The
edge CCNA2 a MCM5 was found consistently with the G1DBN result, again
pointing to an active CCNA2 protein that occurs in cell cycle progression. In
G1DBN, the type of the effect could not be inferred, but is found in DDEPN
as inhibitory effect. The cascade of proteins BUB1 → BUB1B → MAD2L1 a
CDC20 is found by DDEPN, too, in accordance to the prior network.

The reconstruction result using the GA of DDEPN is shown in figure 3.16,
(B). The GA was run using the laplace prior model with the same prior network
as for inhibMCMC. Parameters were set to p = 500, q = 0.3 and m = 0.8. The
maximum number of iterations was set to 1000 and the prior hyperparameters
λ = 0.5 and γ = 1. After inference, the final network was obtained as shown in
section 3.4.1 by inspecting the final GA population of networks and including
edges that were present in more than 85% of all networks in the population.
Like inhibMCMC, the GA yields a much sparser result than G1DBN and
ebdbNet do. 19 edges were found in agreement with the literature (black edges)
and 10 edges were not supported by the data. An overlap to inhibMCMC of 8
interactions was observed. In concordance with all other methods, the CHEK1
a CCNB2 inhibition was not inferred, providing evidence that this interaction
is indeed shut down, although the prior network would suggest the edge to be
present.

3.8 Implementation as R-package ‘ddepn’

The DDEPN method is implemented as R-package ‘ddepn’ (R Develop-
ment Core Team, 2010) available on the CRAN homepage (http://cran.
r-project.org). It is supported by Linux and Windows architectures, in-
cluding support for parallelisation using multiple CPU cores on Linux systems.
The set of KEGG signalling networks used for the prior confidence determina-
tion described in section 3.3.1 is included in the package as dataset kegggraphs.
Further, the HCC1954 dataset described in section 3.6.1 is included as dataset
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activation inhibition inferred, not in prior not inferred, in priorinferred and in prior

Figure 3.16 – Result for DDEPN inference. (A) inhibMCMC run with laplace
prior, λ = 0.01, γ = 1. The shown network was obtained as described in
section 3.4.2. (B) GA run with laplace prior, λ = 0.01, γ = 1. The final net was
obtained as described in section 3.4.1 with a threshold of th = 0.85.

hcc1954, providing the data for 16 phosphoproteins measured at 10 time points
within 1 hour after stimulation with two ligands. Together with its documen-
tation the package offers an easy obtainable resource for network inference
including exemplary data and resources for the usage of prior knowledge.
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4 Discussion

The novel network inference algorithm DDEPN was presented which can be
used to reconstruct either signalling networks or regulatory networks from
high-throughput data generated after external perturbation. A perturbation
can be seen as abstract external influence that is imposed on the biological sys-
tem by some kind of treatment. The effect is neither restricted to one particular
type (i.e. activation or inhibition) nor to a specific node in the set of measured
proteins or genes. The algorithm infers edges from the external perturbation
to nodes if the measurements support it and thus allows for a data driven
determination of the treatment effects. Starting at the perturbation node, an
activity state is propagated along the edges of a hypothesised network in or-
der to derive deterministically the boolean ON/OFF states of all proteins or
genes over the measured time frame. This propagation is done by following a
predefined boolean rule that approximates the biological signal transduction
process. The activity states relate directly to the network hypothesis, because
they depend entirely on the network connectivity. They are used to assess the
fit of the data to the proposed network through a score derived from a novel
likelihood model. DDEPN is able to include prior knowledge in two ways,
as prior on the network structures which provides the possibility to bias the
inference procedure towards an external reference network, or as prior biasing
towards the more general graph-theoretic scale-free property. In this chap-
ter, the approach is discussed from three perspectives. First, in section 4.1,
advantages compared to other available methods are elucidated and also limi-
tations of the approach are discussed. Second, an interpretation of the results
of DDEPN for the HCC1954 and CAMDA datasets is given in sections 4.2
and 4.3. Third, current available external knowledge sources and the process
of setting up a suitable reference network for the inference are discussed in
section 4.4, with an emphasis on the way how prior networks were generated
in this work.
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4.1 DDEPN as flexible means to perform
network inference from high-throughput
data generated after external perturbation

Network reconstruction methods have been frequently used to analyse the in-
terplay of genes or proteins as a system. Important examples of such inference
methods are Boolean networks (de Jong, 2002; Huang, 1999), BNs and DBNs
(introduced in section 2.1, see also Pearl (1988), Friedman et al. (2000)). Usu-
ally, it is difficult to generate hypotheses from simple observational data with-
out perturbation of the system. Geier et al. (2007) studied reverse engineering
methods on simulated data for time courses and external perturbations and
came to the conclusion that additional perturbation of the system is beneficial.
Already early studies showed that a system is best studied under external influ-
ences that directly or indirectly interfere with normal cellular processes (Pe’er
et al., 2001; Sachs et al., 2005). A review on cellular network analysis under
perturbation can be found in Markowetz (2010). DDEPN fits in the method-
ological approaches that deal with data generated after directed perturbation
of several nodes. Examples for these methods include Nested Effects Models
(NEM, Markowetz et al. (2005); Fröhlich et al. (2008a)), where each gene in
the network to be reconstructed is perturbed individually by siRNA mediated
knockdown, or studies from Tegner et al. (2003) or Nelander et al. (2008), who
modelled perturbation effects as linear combinations of inputs or as non-linear
effects, respectively. However, DDEPN extends current approaches by its abil-
ity to determine the targets for the perturbation effects dynamically during the
inference (in form of edges) and to model the system’s dynamics as boolean
signal transduction process that describes the activity of the nodes over time.
Further, several experiments (i.e. treatments) can be integrated into one in-
ference run to use the additional information in the network reconstruction
process. In the next subsections these properties are discussed.

4.1.1 Perturbation effects are estimated explicitly in
DDEPN

In DDEPN perturbations are explicitly included into the network structure
and influences originating in the perturbation node are estimated from the
data directly. Often individual perturbation of many or even all nodes in
the network is not feasible due to time and cost restrictions, and for many
experiments, a perturbation in form of a specific treatment often affects the
whole cell or tissue under study. Different environmental conditions like
temperature variation or nutrition deprivation, or treatment with drugs that
are supposed to target one or more proteins specifically, but have side effects,
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4.1 DDEPN : flexible network inference from perturbation data

are examples for these system-wide perturbations. In this case, the targets
of the influences cannot be determined explicitly in advance. The advantage
of DDEPN is that effects are derived from the measured data directly,
and even if expected targets could be included as prior guidance for the
inference (expressed as higher prior probability for the respective interaction),
learning additional and possibly unexpected perturbation targets is possible.
Comparison of DDEPN to the DBN methods presented earlier (sections 2.1.1
and 2.1.2), or to another DBN application to perturbed time course data
(Dojer et al., 2006), shows that all models infer possibly cyclic directed
graph structures from longitudinal data and are able to cope with external
perturbations. However, the DBN approaches only represent the perturbation
effects implicitly in the network structure that is inferred. As a side note, the
type of external perturbation is not restricted to inhibiting perturbations in
DDEPN. In principle, both activating and inhibiting effects can be introduced
simultaneously, for example by stimulation of cell via a receptor ligand and
simultaneous inhibition by a receptor inhibiting drug. Applying multiple
interventions in this manner might lead to competing influences on particular
nodes that are the focus of the analysis. DDEPN determines the state for
each experiment (i.e. perturbation state) separately, but performs parameter
estimation for the active and passive states of each node together for all
experiments. If a node, for instance, is passive under several conditions,
the parameter estimate will be more robust, since measurements from all
of these conditions are used for parameter estimation. The results from
section 3.5.2 show, that the inclusion of multiple experiments in form of
external stimuli increases the performance of the inference. Thus, DDEPN is
able to integrate several measurement runs and determines influences from
each of the perturbation nodes separately. Finally, edges in the inferred
networks are modelled as either activation or inhibition rather than an
abstract and general influence with no type (as is the case for many methods,
e.g. G1DBN ), leading to a more detailed representation of the dynamics of
the system and thus the underlying biological processes.

4.1.2 Integration of prior knowledge is done flexibly

As shown in section 3.3, inclusion of prior knowledge is possible in DDEPN
and from the results in section 3.6.3 it can be seen that doing so helps to
overcome limitations like insufficient temporal resolution of the time course to
resolve signalling cascades. However, no guarantee can be given, that the prior
knowledge fed into the inference will be correct (see also section 4.4). Even
when using different databases, different reference networks can be obtained
and the results of the inference will vary. Furthermore, users have their own
preferences for the selection of a suitable knowledge base on which the prior
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model is built up, so a flexible way of prior knowledge inclusion is desired that
makes it possible to easily exchange an outdated or bad prior model with a
newer and better one. DDEPN offers this possibility in that the prior matrix B
for the laplace prior (section 3.3.1) can be obtained from virtually all network
structure databases and can thus easily be exchanged. Even the combination
of several databases is possible, making integrative prior models possible.

The laplace prior is one example for prior knowledge inclusion which gives
prior weights for individual edges. However, there are more possibilities to
construct priors on the network structure itself. A good overview on types
of priors and their usage can be found in Mukherjee and Speed (2008). In
this study, besides the prior on individual edges, four alternative ways of prior
models are discussed. One of these is a prior on the degree distributions of
nodes, which also is implemented in DDEPN as the scale-free prior model. A
sparsity prior is suggested as well, meaning that the highest indegree of the
nodes in the graph is bounded by some value. Also this feature is implemented
in DDEPN in form of a parameter during inference (called ‘fanin’ in the re-
spective function call), fulfilling exactly this purpose. The third model is a
prior on edges connecting classes of vertices. This means that e.g. only ligand
to receptor bindings are allowed, because ligands would not bind to a cyto-
plasmic protein. At last, prior knowledge on the existence of edges between
particular higher-level features of networks can be used. For example, it might
be required that there exists a path from the receptor level of a cell down
to the cytoplasmic or nuclear level, since this is main function of a signalling
pathway. Even if the last two models are not explicitly included in DDEPN,
increased probability for edges between classes of nodes or higher-level network
features can be achieved by appropriate adjustment of the laplace prior matrix
B and corresponding hyperparameters, giving higher edge confidences to the
respective edge sets.

An implicit inclusion of prior knowledge already happened in DDEPN at
the level of the signal propagation procedure (see section 3.1.1). Here, in fact
a very crude assumption is made. In particular, it is assumed that all combi-
nations of parental activity states at a child node follow the same logical rule
in order to define the corresponding output. A child node becomes active if at
least one of its parents connected by activation edges is active at the preceding
time point and none of its parents connected by an inhibition edge is active
at the preceding time point (see section 3.1.1). This is clearly simplifying the
true competitive way of determining the child’s activity state in real biological
systems. Further, all node states are updated in a synchronous fashion (see e.g.
de Jong (2002)), which is not necessarily the case in real biological systems.
The propagation scheme, however, is a modular part of the DDEPN workflow,
and can, in principle, be exchanged by more sophisticated rule sets. A chal-
lenge in doing so is the fact, that the connectivity of the network is naturally
not known, since this is exactly the subject of the search algorithms. Hence,
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4.1 DDEPN : flexible network inference from perturbation data

it is not possible (and not feasible for larger networks) to predefine boolean
functions for all possible combinations of parental configurations. There are
interesting methodologies that deal with this kind of problem by inferring a set
of boolean functions from data directly (Hunter and Klein, 1998). It could be
an interesting subject of further research to include this kind of methodology
into the DDEPN approach to overcome the limitation of the very strict and
heavily simplified model of biological signal propagation.

4.1.3 DDEPN offers more than meets the eye - additional
features obtained by the inference

The main purpose of DDEPN, of course, is the reconstruction of signalling net-
works from data. There are some useful features, however, that are computed
on the fly and reported after an inference run. In the ERBB signalling net-
work example from section 3.6 a network between phosphorylated proteins in
cancer cells was inferred. Looking at the activation of a protein depending on
its phosphorylation state, high phosphorylation not always means activation,
and low phosphorylation does not always mean that the protein is inactive. It
can be the other way round, too, as it is for example the case for the GSK3-α
protein (Plyte et al., 1992). Since DDEPN does not make any assumptions
on the order of active and passive intensity levels, the active and passive levels
are detected automatically. Of course, if only one experiment is present as
basis for the inference, it can be hard to determine the correct assignment of
the intensity levels to the activity state. However, inclusion of multiple ex-
periments under perturbations will help to determine the states correctly. As
noted above, the determined pattern of active and passive states for all pro-
teins and time points are reported by DDEPN at the end of an inference run.
The boolean dynamics of the system can hence be analysed in more detail af-
ter the network is reconstructed and the activity states can be associated with
corresponding intensity levels, helping to investigate the qualitative effects of
a specific treatment (compare figure 4.1). In section 3.1.1 it is noted that the
state space of 2N for N nodes is reduced to a number M ≤ 2N by performing
the signal propagation as long as no state vector is repeated. From the theory
on boolean networks it is known that both point attractor states (i.e. steady
states) as well as dynamic attractor states (i.e. state cycles) can be reached
(de Jong, 2002). Even if the signal propagation is stopped whenever a state is
produced a second time, the state mapping to the real time points using the
HMM procedure (section 3.1.2) can result in a periodic assignment of system
states. So even if no steady state is reached in the dynamics of the system,
it is possible to observe a dynamic attractor state during the time course and
DDEPN is able to find this periodic state switching behaviour.
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Figure 4.1 – Active and passive profiles of pERK12, obtained during inference
in DDEPN. Different response curves are observed for pERK12 depending on
the stimulation ligands used. The red lines correspond to the inferred mean
value (solid) and standard deviation (dotted) for the active state, the green
lines to the model parameters for the passive state. The boxplots in gray show
the distributions of the measurements, the black curve a spline fit to the in-
tensity profile. Left: Simultaneous stimulation with EGF and HRG. Middle:
Stimulation with EGF. Right: Stimulation with HRG. In the right figure, all
measurements are classified as passive, even if an activation peak is visible.

4.2 Interpretation of the inferred networks for
the HCC1954 dataset

Once the reconstruction of a network is done, a final network is reported rep-
resenting the optimal network with respect to the measured data. However,
this is not the end of the analysis, but interpretation of the network interac-
tions is necessary afterwards. Consider the results from section 3.6.2. In this
example, no prior model was used in the GA approach of DDEPN to infer
a signalling network for the ERBB signalling cascade in the HCC1954 breast
cancer cell line. Only the implicit assumption that networks are sparse was
put into the inference by applying the BIC score optimisation, and thus large
numbers of edges were avoided in the reconstructed networks. All of the in-
teractions depend purely on the measured data. As it was touched briefly in
the results section, an interaction is just an abstract notion of an influence of
one node onto the other. Consider for example the edge ERK1/2 a p38 in
figure 3.9. ERK1/2 is a MAP-kinase activated by extracellular signals, as they
are induced by growth factors like EGF. It is part of the MAPK cascade and
able to phosphorylate a multitude of downstream proteins triggering diverse
cellular responses, including cell proliferation and differentiation (Weinberg,
2007b; Seger and Krebs, 1995). p38 is also a MAP-kinase, but is involved in
inflammatory responses and plays a role as tumour suppressor and in cancer
development (Bradham and McClay, 2006). The roles of ERK1/2 and p38
seem to be of competitive nature and p38 controls cell growth which is in-
duced by ERK1/2 activation (Aguirre-Ghiso et al., 2004). A direct inhibition
of p38 by ERK1/2 is not yet described and seems unlikely, but seeing this
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inhibition in the inferred network points to a down-regulated p38 and strongly
active ERK1/2, which would endorse strong cell growth in the HCC1954 cancer
cells.

However, there were also cases, where interactions would have been expected,
but were not found in the network. For example in the classical MAPK cas-
cade, MEK1/2 phosphorylates ERK1/2 directly. In the inferred network in
figure 3.9, the interaction between MEK1/2 and ERK1/2 was not found, but
only direct activations of the two proteins by EGF. The reason was that phos-
phorylation was only measured at time points 8 and 12 minutes. Activation of
MEK1/2 and ERK1/2 is expected around 10 minutes after stimulation, but in
the data the peaks for both proteins occur at the 12 minute time point. Thus,
this cascade could not be resolved at a higher resolution. Another problem
arises when proteins of a signalling cascade were not measured on the array,
as seen for example for several of the components in the MAPK cascade (e.g.
RAS, RAF, and others). So even if a direct edge between two proteins is found,
it has to be carefully assessed whether this edge is a direct influence or an in-
direct interaction over multiple intermediate steps. The data only represents
the abundance of phosphorylated protein in the cells, which might increase or
decrease in response to some treatment. All interactions from such data are
abstract influences between two proteins that have to be validated in further
experiments.

4.2.1 Prior knowledge inclusion helps to retrieve a robust
scaffold of the ERBB network

Inclusion of prior knowledge was described in section 3.6.3 and shown in fig-
ure 3.11, (A) for the HCC1954 data example. In the figure, gray edges encode
overlaps between a manually curated reference network (figure 3.10) and the
inferred network, blue edges encode novel, and red edges lost interactions in the
inferred graph, compared to the reference. The network closely resembles the
manually constructed reference network, as seen by the predominantly black
edges. This scaffold is retained in the networks that were reconstructed under
different treatments, too (see parts (B)-(D) in figure 3.11). Only few addi-
tional edges occur or disappear under the various treatments, suggesting that
DDEPN inference is biased towards the literature knowledge, but allows for
changes supported strongly by the data. However, five additional interactions
were found by DDEPN that are worth a discussion. Four of these originate in
the stimulus node EGF and point to major proteins from the MAPK and AKT
signalling cascades (ERK1/2, p70S6K, AKT, PLCG). All of these interactions
point to indirect influences from the stimulating ligand over several interme-
diate steps. ERK1/2 and p70S6K, are activated through the cascade EGF
→ ERBB1 → MEK1/2 → ERK1/2 → p70S6K, the classical MAPK cascade
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(see e.g. Weinberg (2007b); Seger and Krebs (1995)), AKT via the PI3K/AKT
pathway (Weinberg, 2007b; Manning and Cantley, 2007) and PLCG through
EGF → ERBB1 → PLCG (Kim et al., 1990). The interactions are inferred,
although the reference network does not contain them, which shows that the
data give strong support for this interaction.

One could see these kind of indirect influences as strong support for a down-
stream effect, like MAPK or AKT activation, even if the direct interaction
between the proteins does not exist. However, this phenomenon shows a lim-
itation of DDEPN, because the modelling approach is not able to substitute
the direct influence by a cascade over several intermediate steps, but more or
less infers the transitive closure of the network. The fifth interaction, PRAS
→ ERBB1, could be interpreted as follows. PRAS is reported as inhibitor of
the mTOR kinase (Sancak et al., 2007), stimulated by insulin. It binds to
the raptor protein of the mTORC1 complex and inhibits the kinase activity of
mTOR, in turn. Since p70S6K is the major downstream target of the mTOR
kinase, and p70S6K activation promotes translational activity at the ribosome
(Berven and Crouch, 2000), it could have a positive effect on the receptor
tyrosine kinase protein synthesis, explaining the direct effect of PRAS onto
ERBB1. However, this is a highly hypothetical interpretation, and external
validation would be necessary to provide further evidence for this.

The network reconstructed after inclusion of the prior knowledge, however,
shows that inference can be guided by additional knowledge. Nevertheless, the
sources of prior knowledge have to be chosen carefully (see also section 4.4)
and after the reconstruction, each interaction has to be assessed and validated
to explain the results of the inference.

4.2.2 Combinatorial treatment using trastuzumab and
erlotinib has the strongest impact on signalling
processes in HCC1954 cells

Two inhibitors were used in this work to treat the HCC1954 breast cancer cell
line: the monoclonal antibody trastuzumab (Carter et al., 1992) and the small
molecule drug erlotinib (Hidalgo, 2003). Both were used as single treatments
and in combination. The data measured after treatment was fed into the
DDEPN reconstruction to generate the networks shown in figure 3.11, (B)-
(D). On a first glance on the networks, it is apparent that the network (D),
generated under treatment with both drugs simultaneously, contains the most
effected edges when compared to the prior reference (edges coloured blue and
red), as it would be expected just by the fact that two treatments were applied
at the same time. An interesting question to answer is, whether the results
from the simultaneous treatment can be related to the single treatments, in
order to figure out effects that are specific to the combinatorial treatment
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and beneficial with respect to the overall cellular response. In particular, is an
effective inhibition of the mainly deregulated and predominantly active MAPK
and AKT signalling cascades observed? The general scaffold of the network,
imposed by the reference network is similar under all treatments (gray edges)
and could be robustly inferred. To assess the overall effect of a drug, a closer
look to the novel interactions (blue edges) and the missing edges (red) has
to be taken. Exemplary, the focus put on the activation of ERK1/2, AKT
and p70S6K, three major regulators of the cellular response. They induce a
multitude of effects, such as proliferation and differentiation (ERK1/2, Seger
and Krebs (1995)), translation, cell motility and proliferation (p70S6K, Berven
and Crouch (2000)) and cell survival, growth and proliferation (AKT, Manning
and Cantley (2007)).

Under erlotinib treatment (figure 3.11, (B)), activation of both AKT and
p70S6K is retained, as is the case for the stimulation without any inhibitors
(figure 3.11, (A)). Only ERK1/2 activation is lost, compared to the non-
inhibited experiment, suggesting that activation of p70S6K is triggered by
the AKT pathway in this case. For trastuzumab treatment (figure 3.11, (C)),
on the other hand, the activating influence of EGF onto AKT was not recon-
structed, while EGF→ p70S6K and EGF→ ERK1/2 still were found. Finally,
with both drugs (figure 3.11, (D)), activations of AKT, ERK1/2 and p70S6K
were not inferred any more, pointing at a successful inhibition of the respective
influences by the chosen treatment. Further, the interaction p38 a ERBB1 is
omitted in contrast to the reference network. Frey et al. (2006) show, that p38
is required for EGF induced down-regulation of EGFR in four different cell
lines and usually controls the balance between cell proliferation and migration
via EGF receptor degradation. Interestingly, this mechanism is present in the
uninhibited experiment and the erlotinib experiment (figure 3.11, (A) and (B)),
but lost in the trastuzumab and combinatorial treatment (figure 3.11, (C) and
(D)), suggesting that trastuzumab treatment is affecting the migrative poten-
tial of the cells. Decreased migration is reported to come with an increased
proliferation through sustained activation of ERK1/2 (shown by Frey et al.
(2004) in intestinal epithelial cells), controlled by the Y1045 phosphorylation
site of EGFR (Frey et al., 2006). The remaining ERK1/2 activation under
trastuzumab treatment gives some evidence for this, but since Y1045 was not
measured in this experiment, this hypothesis would have to be verified through
additional experiments. In summary, the combinatorial treatment seems to
have a more potent effect to down-regulate both MAPK and AKT signalling
cascades than single treatment with each drug and is a promising option for
treatment of this aggressive type of breast cancer cell line.
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4.3 Interpretation of interactions in the CAMDA
data example

In section 3.7.2 network inference on the CAMDA dataset (Affara et al., 2007)
was shown for three different algorithms, G1DBN and ebdbNet as well as the
novel DDEPN algorithm. In this section an assessment and interpretation of
the reconstruction results is given, with respect to the ability of the DDEPN
method to infer regulatory networks from gene expression data. The resulting
networks are compared to a literature derived reference network (figure 3.13)
to assess the biological relevance of each inferred interaction. Here, edges
are linked to literature resources, in order to give further evidence for their
existence, and a comparison between the inferred interactions in the three
approaches is conducted.

The first resulting network, obtained by G1DBN, is shown in figure 3.14.
Black edges encode overlaps to the reference, blue edges encode novel, and red
edges missing edges in the inferred networks when compared to the reference
network. It can be seen that three edges were reconstructed by G1DBN that
could be linked to literature resources. These include the edges CCNA2 →
MCM5, CCNE2 → CDKN1C and ORC6L → MCM7. The first points to an
active cyclin A2 protein, which plays a role in G1/S and G2/M transition and
exhibits an effect on the protein MCM5 that is needed for the pre-replication
complex, formed during G1 phase before replication start (Li and Jin, 2010).
The second interaction CCNE2→ CDKN1C is described in Lahoz et al. (1999)
and reflects the antagonistic expression pattern described in the referenced
publication (note that the type of the interaction cannot be determined using
G1DBN ). It points to an active cyclin-E/CDK2 complex and down-regulated
CDK inhibitor CDKN1C (also referred to as Kip2 or p57, see e.g. Guo et al.
(2010) for a review on p57 functions). The last interaction, ORC6L→ MCM7
is part of the replication initiation machinery (Li and Jin, 2010; Nishitani
and Lygerou, 2002). Both the hexameric ORC complex, containing ORC6L,
and the MCM complex, containing MCM 2-7, are required for the replication
licensing process that ensures that DNA replication is performed only once
per cell cycle. The interaction reflects this binding of the two complexes.
Additionally, interactions between CHEK1 and CCNB1 as well as between
GADD45A and CCNB1/2 were not inferred, meaning that the regulation of
the B-type cyclins might not be present (see Jin et al. (2002); Sanchez et al.
(1997) for a description of GADD45A and CHEK1 functions, respectively).
These are all examples that point to an active progression through the cell
cycle, which is in fact counterintuitive, keeping in mind that the cells were
exposed to survival factor deprivation (SFD), where one would expect down-
regulated cell cycle progression.

In the second DBN reconstruction approach ebdbNet, a much more densely
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connected network was inferred, shown in figure 3.15. Only one edge from the
reference network was found, CDKN1A a CCNE2. CDKN1A (also known as
p21 or CIP1) is a cell cycle inhibitor of the CIP/KIP family (Harper et al.,
1993; Park and Lee, 2003) that regulates G1 CDK proteins. None of the
interactions in the pre-replication complex, indicated by interactions between
ORC6L and the MCM proteins were found. Inhibition of the cyclin CCNE2
and missing interactions between ORC and MCM complex members points to
an inactive replication machinery, which could be induced by the exposure to
SFD during the experiment. However, a wealth of novel interactions is found,
making it hard to assess which of these edges could be meaningful.

Finally, the two structure search algorithms inhibMCMC and the GA from
DDEPN were applied and the resulting networks are shown in figures 3.16.
The networks are, in general, much sparser connected than their counterparts
from G1DBN and ebdbNet, supporting the results from section 3.5.2. In these
tests on simulated data, it was apparent that sensitivity levels were rather
low. Hence, the reconstruction missed quite a number of edges, that should
have been found. On the other hand, the high values for specificity indicated
that the inferred edges were those with strong support from the experimental
measurements and that few false positive edges were found. Similar, in the
real data, it can be expected that the interactions that are reconstructed are
supported well by the data and represent meaningful hypotheses on the net-
work structure. There are two regulatory patterns that were present in the
reference network and in common between inhibMCMC and the GA. For ex-
ample, in both algorithms the cyclin CCNA2 is inhibited, either by CDKN1C
(inhibMCMC) or by CDKN1A (GA). This points to an inactive cell cycle pro-
gression through G1 and thus cell cycle arrest without progression into S-phase.
Further, GADD45 inhibits CCNB1 and CCNB2 in both inhibMCMC and the
GA. This is also supported by e.g. Jin et al. (2002), who report decreased
nuclear CCNB1 levels depending on increased Gadd45 protein activity leading
to G2/M arrest depending on nuclear CCNB1 levels. Thus, the cells seem to
stop cell cycle progression after SFD.

In summary, it could be shown that DDEPN is also applicable to infer
regulatory networks from gene expression measurements. Interactions were
discussed for all inference approaches and suggested that DDEPN coincides
best with the expectations one could have for the biological experiment. Fur-
ther, DDEPN alleviates interpretation of the networks, because it tends to
yield sparse network structures.
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4.4 Determining reference networks using
external knowledge bases

The final section in this discussion of the DDEPN method deals with the gen-
eration of prior networks that can be used to guide the inference procedure.
Several studies have shown, that inclusion of prior knowledge is both helpful
and sometimes necessary to produce reliable and meaningful results (Gat-Viks
et al., 2006; Werhli and Husmeier, 2007; Mukherjee and Speed, 2008; Steele
et al., 2009; Sheridan et al., 2010). DDEPN offers the possibility to include
different sources of prior knowledge into the inference. Besides modelling the
general scale-free characteristic as prior, the laplace prior offers the opportu-
nity to include knowledge on network structures directly, in order to increase
or decrease the weight for specific interactions. But how does one create a suit-
able prior network that covers the important interactions? Clearly, the choice
of the source of prior knowledge heavily determines the created network. There
is a multitude of online databases available for this purpose (see section 2.2
for some examples, or also Adriaens et al. (2008); Ooi et al. (2010)). Pathway
information is generally available for gene regulation, metabolic processes, sig-
nal transduction or protein protein interactions. So, as first criterion, how a
suitable reference pathway is assembled, a selection of the particular database
has to be made, such that the pathway type to be inferred matches the type
present in the database. Naturally, using a metabolic pathway map to aug-
ment knowledge on signalling processes does not make much sense. Further,
it is difficult to define a ‘true’ reference network, valid for all possible bio-
logical conditions. Cellular systems undergo changes, especially during the
development of cancer and a curated pathway under normal condition might
include interactions that are not valid under disease conditions. In this work,
the prior network for the HCC1954 dataset (section 3.6) was built up from the
KEGG database, including only the signalling and disease related networks.
Additionally, manual inspection was performed to fine-tune the resulting prior
network. In the CAMDA data example (section 3.7), the KEGG cell cycle
pathway was inspected and a prior network was constructed manually, in-
cluding only the proteins that were selected in the functional gene filtering
procedure (section 3.7.1).

This way of creating prior networks shows, that it is hard to device a fully
automated workflow for this purpose. If an automatic retrieval of reference
pathways were conducted for the same type of pathways, it would still be not
clear, under which biological context the respective pathways were created.
For example, in the PID database (Schaefer et al., 2009), the pathways are
created under the assumption, that the pathway is present in a ‘normal’ bio-
logical state of the specimen of interest. Abnormalities caused for example by
pathological responses are included only in a small number of pathways. In a
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more general sense, each pathway interaction is derived from an experiment
that was conducted for a particular biological condition. These include issues
like the cell or tissue type, the disease state, the treatment of the specimen and
many more. In cancer cells, for instance, an increased number of mutations is
found which cause tumourigenesis. Rather than concentrating on the mutation
and the affected gene or protein itself, it is important to consider the effect
of the alteration onto its respective pathway, in which the entity is functional
(Vogelstein and Kinzler, 2004). Interactions that are present under normal
biological conditions can be shut down or activated by the mutations. For ex-
ample, mutated oncogenes usually exhibit constant activity or activity where
the un-mutated oncogene would be inactive. Mutated tumour suppressors, on
the other hand, lack activity where it would be expected under normal con-
ditions. These types of interference with the normal conditions yield changes
in the normal structure of a biological pathway that have to be considered,
when using the normal pathway as prior knowledge for the chosen network
reconstruction. An additional challenge is that in general pathway databases
are prone to be incomplete or even erroneous (Adriaens et al., 2008). Even
if a huge amount of information has been collected over the years (consider
Galperin (2008) for an overview on biological databases), the particular infor-
mation on pathway structures, interaction partners and biological processes is
far from being complete.

Since the discovery of alterations in the network structure as well as identi-
fication of novel or falsification of present interactions is the very purpose of
network reconstruction, care has to be taken, that the prior knowledge does
not force interactions to be present where the measured data provide evidence
against it and vice versa. As described in section 3.5.4 for the DDEPN method
it is suggested to adjust the prior strength, such that the average changes in
the data likelihood are similar to the average changes of the prior probabilities
over all iterations in the algorithm. This ensures, that prior evidence for an
edge can be ‘overwritten’ by sufficiently strong evidence from the data. The
reference network is still assumed to be the ‘correct’ underlying network, and
disease or treatment specific alterations are expressed in additional or missing
edges in the reconstructed network. This rationale for setting up the modelling
approach and interpretation of the inference results was followed exemplary in
the previous sections of this discussion (4.2, 4.3).

When considering the type of pathways as well the biological context, and
making sure that an appropriate selection of pathways was performed, still the
integration of multiple pathways into a single reference network is a challenge
(Adriaens et al., 2008). An integration of a number of pathways from one
source database is comparably straightforward, since the data format is the
same and nodes and interactions can simply be merged. However, when dif-
ferent databases are seeked to be integrated, additional effort has to be taken
to translate various data storage formats into a common representation of all
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information that preserves at best all of the semantics of the different reposi-
tories. Due to the fact that data storage formats are not standardised (while
some de facto standards exist, see e.g. Demir et al. (2010); Hucka et al. (2003)),
the conversion to a common format is still a rather tedious task. Addition-
ally, often conversions between file formats cause loss of information, because
various formats are not able to store all of the contained information. And
finally, pathway databases undergo a constant cycle of revision and curation,
which leads to constantly changing knowledge repositories. Thus, automated
conversion is highly desirable, but at the moment it is highly recommended
to create integrated pathways by manual curation and comparison to recent
literature, in order to ensure high quality of the generated pathways.

4.5 Conclusions

In this dissertation, the novel approach DDEPN was presented for the recon-
struction of signalling networks from high-throughput omics data. The method
is able to include multiple external perturbations into the inference and to esti-
mate the effects of these from the measured data directly. It uses time-resolved
quantifications of the abundance of measured nodes and models the system’s
dynamics as boolean variable over time, leaving a boolean state vector for each
time point containing the states of all nodes. A likelihood score relates the mea-
surements to this series of system states, and, in turn, depends on the network
structure that is assumed. By using this score, identification of high-scoring
network structures with respect to the measured data is performed. Two algo-
rithms are included into DDEPN. First, a genetic algorithm performs network
structure optimisation, and second an extended MCMC structure sampler per-
forms sampling of the network search space for networks with different types
of edges. To bias the reconstruction towards known signalling networks from
the literature, inclusion of external knowledge is possible by two prior mod-
els on the network structure. The algorithm was tested from a theoretical
point of view via simulation studies, showing good performance results for the
reconstruction process. Further, a comparison was conducted to two related
DBN inference approaches, yielding improved reconstruction performance. To
assess the usefulness of DDEPN for real data examples, two model systems
were chosen, for which experimental data were available. First, a signalling
network from real protein phosphorylation measurements, generated by RP-
PAs for cell lysates from the human breast cancer cell line HCC1954, was done.
DDEPN successfully identified parts of the canonical MAPK and AKT sig-
nalling cascades. After inclusion of prior knowledge from the KEGG database,
the resolution of the signalling cascades could be improved substantially. For
data generated after external inhibition by the two ERBB-receptor inhibit-
ing drugs trastuzumab and erlotinib, treatment specific effects of the drugs

86



4.5 Conclusions

could be observed. In particular, for the simultaneous treatment with both
drugs, a potent inhibition of the MAPK and AKT downstream cascades was
observed. For single treatment, the MAPK activation remained, while AKT
activation was inhibited by trastuzumab only. As second application example,
a dataset from human umbilical vein endothelial cells exposed to survival fac-
tor deprivation was chosen, measuring cell cycle related gene expression across
several time points. DDEPN found interactions that gave evidence for a cell
cycle arrest of the cells, which was in concordance with the expectations of
the experiment. The alternative DBN approaches on the other hand showed
evidence for a still active cell cycle progression. Further, DDEPN inference
led to sparser network structures, making interpretation easier and reducing
the number of false positive interactions.
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Dojer, N., A. Gambin, A. Mizera, B. Wilczyński, and J. Tiuryn (2006). Applying dynamic
Bayesian networks to perturbed gene expression data. BMC Bioinformatics 7 (52), 249.

Durbin, R., S. Eddy, A. Krogh, and G. Mitchison (1998). Biological sequence analysis (first
ed.). Cambridge University Press.

Ferlay, J., H.-R. Shin, F. Bray, D. Forman, C. Mathers, and D. M. Parkin (2010, Dec). Esti-
mates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127 (12),
2893–2917. http://globocan.iarc.fr.

Fire, A., S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, and C. C. Mello (1998,
Feb). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis
elegans. Nature 391 (6669), 806–811.

98



Bibliography

Frey, M. R., R. S. Dise, K. L. Edelblum, and D. B. Polk (2006, Dec). p38 kinase regulates
epidermal growth factor receptor downregulation and cellular migration. EMBO J 25 (24),
5683–5692.

Frey, M. R., A. Golovin, and D. B. Polk (2004, Oct). Epidermal growth factor-stimulated
intestinal epithelial cell migration requires Src family kinase-dependent p38 MAPK sig-
naling. J Biol Chem 279 (43), 44513–44521.

Friedman, N. and D. Koller (2003). Being bayesian about network structure: A bayesian
approach to structure discovery in bayesian networks. Machine Learning 50 (3), 95–126.

Friedman, N., M. Linial, I. Nachman, and D. Pe’er (2000). Using Bayesian networks to
analyze expression data. J Comput Biol 7 (3-4), 601–620.

Friedman, N., K. Murphy, and S. Russell (1998, July). Learning the Structure of Dynamic
Probabilistic Networks. In Proceedings of the Proceedings of the Fourteenth Conference
Annual Conference on Uncertainty in Artificial Intelligence (UAI-98), Fourteenth Conf.
on Uncertainty in Artificial Intelligence, San Francisco, CA, pp. 139–14. Morgan Kauf-
mann. Jul 24-26 1998, Madison, WI.
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paz, M. J. Bauer, D. Beare, A. Butler, R. J. Carter, L. Chen, A. J. Cox, S. Edkins,
P. I. Kokko-Gonzales, N. A. Gormley, R. J. Grocock, C. D. Haudenschild, M. M. Hims,
T. James, M. Jia, Z. Kingsbury, C. Leroy, J. Marshall, A. Menzies, L. J. Mudie, Z. Ning,
T. Royce, O. B. Schulz-Trieglaff, A. Spiridou, L. A. Stebbings, L. Szajkowski, J. Teague,
D. Williamson, L. Chin, M. T. Ross, P. J. Campbell, D. R. Bentley, P. A. Futreal, and
M. R. Stratton (2010, Jan). A comprehensive catalogue of somatic mutations from a
human cancer genome. Nature 463 (7278), 191–196.

Plowman, G. D., J. M. Culouscou, G. S. Whitney, J. M. Green, G. W. Carlton, L. Foy, M. G.
Neubauer, and M. Shoyab (1993, Mar). Ligand-specific activation of HER4/p180erbB4,
a fourth member of the epidermal growth factor receptor family. Proc Natl Acad Sci U S
A 90 (5), 1746–1750.

Plowman, G. D., G. S. Whitney, M. G. Neubauer, J. M. Green, V. L. McDonald, G. J.
Todaro, and M. Shoyab (1990, Jul). Molecular cloning and expression of an additional
epidermal growth factor receptor-related gene. Proc Natl Acad Sci U S A 87 (13), 4905–
4909.

Plyte, S. E., K. Hughes, E. Nikolakaki, B. J. Pulverer, and J. R. Woodgett (1992, Dec).
Glycogen synthase kinase-3: functions in oncogenesis and development. Biochim Biophys
Acta 1114 (2-3), 147–162.

R Development Core Team (2010). R: A Language and Environment for Statistical Com-
puting. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0.
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