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Abstract

A classical model in time series analysis is a stationary process superposed by one or
several deterministic sinusoidal components. Different methods are applied to estimate the
frequency (ω) of those components such as Least Squares Estimation and the maximization
of the periodogram.

In many applications the assumption of a constant frequency is violated and we turn
to a time dependent frequency function (ω(s)). For example in the physics literature this
is viewed as nonlinearity of the phase of a process. A way to estimate ω(s) is the local
application of the above methods.

In this dissertation we study the maximum periodogram method on data segments as
an estimator of ω(s) and subsequently a least squares technique for estimating the phase.
We prove consistency and asymptotic normality in the context of “infill asymptotics”, a
concept that offers a meaningful asymptotic theory in cases of local estimations. Finally,
we investigate an estimator based on a local linear approximation of the frequency function,
prove its consistency and asymptotic normality in the “infill asymptotics” sense and show
that it delivers better estimations than the ordinary periodogram. The theoretical results
are also supported by some simulations.
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Abstract (Deutsch)

Ein klassisches Model in der Zeitreihenanalyse ist ein von einer oder mehreren determi-
nistischen sinusförmigen Komponenten überlagerter stationärer Prozess. Zur Schätzung
der Frequenz (ω) dieser Komponenten wurden verschiedene Methoden entwickelt, wie die
Maximierung des Periodograms und die Kleinste-Quadrate (KQ) Schätzung.

Bei vielen Anwendungen ist die Annahme einer konstanten Frequenz nicht erfüllt und es
muss eine zeitabhängige Frequenzfunktion (ω(s)) verwendet werden. In der Physikliteratur
zum Beispiel spricht man in diesem Fall von einer nicht linearen Phase. Eine Art, ω(s) zu
schätzen, ist die lokale Anwendung der oben genannten Methoden.

In der vorliegenden Dissertation untersuchen wir die Maximum Periodogram Methode
angewandt auf Datensegmente als Schätzer von ω(s) und anschließend eine KQ Technik zur
Schätzung der Phase. Wir beweisen die Konsistenz und asymptotische Normalität dieses
Verfahrens im Rahmen der Infill Asymptotics, einem Konzept, das eine Asymptotik für
lokale Schätzungen ermöglicht. Schließlich untersuchen wir einen auf einer lokalen linearen
Approximation der Frequenzfunktion basierenden Schätzer, weisen seine Konsistenz und
asymptotische Normalität im Rahmen der Infill Asymptotics nach und zeigen, dass er
bessere Schätzungen als das übliche Periodogram liefert. Die theoretischen Ergebnisse
werden durch Simulationen bestätigt.
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Chapter1
Introduction

In many scientific areas, such as physics, biology, finance, etc. scientists have to deal with
data being affected by phenomena that repeat themselves in time, i.e. data containing
seasonal components. We mention temperature fluctuations, the beating of a heart and
the consumption of electric energy in a house hold as examples from the above three
fields. Mathematically, we could express our intuition on what a seasonality is through
the following very general formula

Y (x) = f(x mod T0) +Rx, x, T0 ∈ S,

where f(·) is any function of x, T0 is the period and S is the domain of x and can be time,
space etc. From now on we assume S to be a discrete set. The term Rx contains all rest
components that also affect the process but are not periodic, such as drift, noise, etc. By
considering the three examples given above we can already distinguish between two main
categories of seasonal components or periodicities: While for temperature fluctuations
and energy consumption we can assume a fixed period of time after which the periodic
component repeats itself (i.e. one day or one year), it is impossible to do so for the heart
beat. The latter depends on the state of the body and is not constant in time. Such cases
are the main focus of this study.

The easiest way to model periodic data is to use the simplest periodic function, the
sinusoid. In the case of a fixed period the above formula becomes (in discrete time)

Y (t) = γ cos(ωt+ φ0) +Xt, t ∈ N, (1.1)

where γ is the amplitude, ω the frequency and φ0 the starting phase of the oscillation.
Throughout the hole study we assume that our processes are free of trend, as we can
always mean-correct the observed data. In Figure 1.1 we show a cosine oscillation around
zero with frequency ω = π/15 and amplitude γ = 1 and the same oscillation with white
noise from a N (0, 1) distribution.

There are many methods for estimating ω in the above model (for a review see [12]). We
mention Maximum Likelihood methods, the Maximization of the Periodogram [8, 9, 4, 13],

1
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Figure 1.1: Cosine oscillation (s) and cosine oscillation with noise (y).

a variation of it called the secondary analysis [11, p.413] and Least Squares Estimation
[18]. In particular, the estimate of ω through the maximization of the periodogram is

ω̂ = arg sup
λ
In(λ)

= arg sup
λ

1
n

∣∣∣∣∣
n∑
t=1

Y (t) exp{−iλt}

∣∣∣∣∣
2

.

Figure 1.2 shows the raw periodogram of the time series (y) from Figure 1.1 in logarithmic
scale. The pick at the low frequencies indicates the periodicity of the data. Hannan proves
in [9] consistency and asymptotic normality of this estimate in case of a stationary noise,
indeed with asymptotic variance equal to the Cramér-Rao bound, which can be found in
[12, p.62]. He uses there the following equivalent representation of model (1.1):

Y (t) = α cos(ωt) + β sin(ωt) +Xt, t ∈ {1, ..., n}. (1.2)

After having estimated the frequency ω, the parameters α and β are also being estimated
by fitting a linear model on Y (t) with cos(ω̂t) and sin(ω̂t) as independent variables. Con-
sistency and asymptotic normality of those estimates are also proved by means of the
following central limit theorem:

(
n1/2(α̂n − α), n1/2(β̂n − β), n3/2(ω̂n − ω)

)
→ N (0,Σ) ,
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Figure 1.2: Raw periodogram of a noisy oscillation.

with asymptotic covariance matrix

Σ = 2πf(ω)


1/2 0 β/4

0 1/2 −α/4

β/4 −α/4 1
6(α2 + β2)


−1

,

where f(·) is the spectral density of Xt. The main difference between Least Squares
Estimation and the periodogram method is the cases ω = 0 and ω = π. While the
maximization of the periodogram handles these cases without problems, one has to exclude
them from the frequency domain to proceed to Least Squares Estimation. Apart from this,
the two methods are asymptotically equivalent for white noise as it can be seen in [18],
where the asymptotic distribution of the estimates is as above. Under Gaussianity there
is equivalence also to Maximum Likelihood Estimation.

Some methods are proposed to make the Maximum of the Periodogram method compu-
tationally more efficient. They are based on maximizing the function only on the Fourier
frequencies 2π jn for j = 1, ..., n. As examples we mention the “Secondary analysis”, a
description of which can be found in [11, p.413], the zero padded Periodogram, methods
based on Fourier coefficients and techniques based on filtering (c.f. [14]). The problem
that arises by evaluating the periodogram only on the Fourier frequencies is that this does
not constitute a fine enough grid (see [15]), so that the estimates are usually not optimal
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in terms of convergence rates.
Let us consider now the case of a time varying frequency or, “equivalently” of a non

uniformly increasing phase. We use here the quotation marks because the instantaneous
frequency is naturally defined as the first derivative of some phase function φt and this
derivative does not have to exist. Though, this is a main assumption we do throughout
the hole study; but since the domain is discrete, this is not very restricting. Following this
natural definition of the frequency we consider the model

Y (t) = γ cos
(∫ t

0
ω̃(s) ds+ φ0

)
+Xt, t ∈ N. (1.3)

In Figure 1.3 we have a realization of the above model for a time linear frequency function
and the frequency function itself.
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Figure 1.3: Oscillation with inhomogeneous phase increments.

Chapter 2
The periodogram is employed here segment wise to estimate the frequency locally, i.e.

by using Mn of the n observations for estimating the function ω̃(s) at each point s ∈ N.
The latent assumption is then that ω̃(s) is locally smooth enough. How smooth it must
be so that the estimate is consistent is one of the subjects of Chapter 2. In the same
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chapter we also prove consistency of α̂n and β̂n in the alternative representation (1.2). All
proofs are shown in the frame of “infill asymptotics”, a concept that allows asymptotic
theory when the parameter is estimated locally. The chapter concludes with a central
limit theorem for the estimates, which in the case of the frequency estimate is derived by
evaluating the asymptotic bias caused by the non constant frequency.

Chapter 3
In order to improve the estimates provided by the ordinary periodogram method,

Katkovnik proposed the Local Polynomial Periodogram (LPP) [10], a method based on a
local polynomial approximation of the phase function. Instead of the ordinary periodogram
the function

J̃M (t0;λ0, λ1, ...) :=
1

2m+ 1

∣∣∣∣∣
m∑

t=−m
Y (t+ t0) exp

{
−i
(
λ0t+ λ1

t2

2!
+ λ2

t2

3!
+ ...

)}∣∣∣∣∣
2

,

is used. In this chapter we focus on the case ~λ = (λ0, λ1) which we call the modified
periodogram. Its maximization over λ0 and λ1 leads to estimates for ω̃(t0) and its deriva-
tive ω̃′(t0). The same least squares approach as before is then used for estimating the
rest parameters. Again within the “infill asymptotics” frame we prove consistency and
asymptotic normality. The theoretical results of the two estimators in question provide
us with a straightforward comparison between them. To support these theoretical results,
at the end of the two main chapters we present some simulation studies where we employ
the two estimators described above and the very known Hilbert transform as a procedure
for phase estimation (see [16]).
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Chapter2
The common periodogram

2.1 Introduction

A classical model in time series analysis is a stationary time series superposed by one or
several deterministic sinusoidal components which in the case of one component takes the
form

Yt = γ cos
(
ω t+ φ0

)
+Xt, t ∈ N.

Different methods have been used to estimate the parameter ω such as Least Squares
Estimation (cf. [18]), the maximization of the periodogram (cf. [8, 9, 4, 13, 14]), the
secondary analysis (cf. [11, p. 413]) and Maximum Likelihood methods. For an overview
and additional methods see [12].

In many applications the frequency is not constant but time varying (cf. [12, p. 21 -
25], [1]). In particular in the physics literature (cf. [17, 7]) this is viewed as the estimation
of the nonlinear phase of the process - i.e. instead of ω t + φ0 the (possibly) nonlinear
phase φt :=

∫ t
0 ω̃(s) ds + φ0 is estimated (in addition to the frequency curve ω̃(s)) in the

model

Yt = γ cos
(∫ t

0
ω̃(s) ds+ φ0

)
+Xt, t ∈ N. (2.1)

where γ > 0 is the amplitude of the oscillation, ω̃(s), s ≥ 0 the frequency function and
φ0 ∈ [0, 2π) the starting phase of the oscillation. Xt is a stationary process. Also in
the case with a time-varying frequency and a nonlinear phase several methods have been
suggested (cf. [2, 12]) - many of them being a local variant of the existing methods. An
example of this is the maximization of the periodogram on a local data segment.

We are not aware of any rigorous theoretical results on the estimators in the case of a
time-varying frequency. In this chapter we shall do such a theoretical investigation for the
first time by deriving the asymptotic properties of the maximum periodogram method on
data segments as an estimate for ω̃(s) and of a subsequent least squares technique for esti-
mating the phase φt. A key problem addressed in this chapter is to find a proper framework

7
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for these investigations leading to the infill asymptotic approach in Section 2.2.1. We prove
consistency and asymptotic normality for the estimates by generalizing previous results
for constant frequencies to the time varying case. In Section 2.2.2 we derive consistency of
the frequency estimator. In Section 2.2.3 we introduce the phase estimator and derive its
consistency. In Section 2.3 we discuss the mean squared error and asymptotic normality
for the estimators. Section 2.4 contains an empirical comparison of the estimator with the
Hilbert transform. The proofs are postponed to the appendix.

2.2 Frequency and phase estimation for nonlinear phases

In this section we present the estimation procedure. At the beginning we introduce the
infill asymptotics framework. We emphasize that this framework is only needed for the
asymptotic results of the following sections. The method itself does not depend on this
setup (and the rescaling used therein). This means that all methods can be easily formu-
lated also without rescaling.

2.2.1 Rescaling and infill asymptotics

Asymptotic considerations as consistency and asymptotic normality are important tools
in statistics for constructing tests, confidence intervals or to judge the quality of estimates.
However, in the above setting of model (2.1) the simple asymptotics t→∞ is meaningless.
From a theoretical point of view this is the same as in nonparametric regression or for non
stationary time series. As a solution in the first example the setting Yt,n = m

(
t
n

)
+εt and in

the second example e.g. the rescaled time varying AR-model Xt,n = a
(
t
n

)
Xt−1,n +σ

(
t
n

)
εt

(cf. [6]) are used where the curves of interest are rescaled to the unit interval. n then
is assumed to tend to infinity leading to meaningful asymptotic results which can e.g.
be used for the construction of approximate confidence intervals. We mention that the
approach of infill asymptotics can usually not be interpreted in a physical sense.

The infill setting in the current situation is much more complicated: The naive setup
Yt,n = γ cos

( ∫ t/n
0 ω(u) du+ φ0

)
+Xt does not make sense since the argument of the cos-

function stays bounded and the signal does not oscillate at all. The correct solution is
indicated by the substitution s = un∫ t

0
ω̃(s) ds = n

∫ t/n

0
ω̃(un) du =: n

∫ t/n

0
ω(u) du (2.2)

i.e. we use the model

Yt,n = γ cos
(
n

∫ t/n

0
ω(u) du+ φ0

)
+Xt =: St,n +Xt (2.3)

with a fixed function ω(u) : [0, 1]→ [0, π).
The additional factor n in (2.3) looks a bit strange and in fact it causes many technical

problems in the derivations below (for example the remainder term in the Taylor expansion
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in Lemma 2.2 depends in a complicated way on n and is not getting small uniformly in t

or t/n). Despite of this we are convinced that this is the correct approach for a meaningful
asymptotics leading e.g. to approximate confidence intervals for ω(u0) by using the central
limit theorem.

The process Xt is assumed to be stationary. We assume that it satisfies the following
assumption:

Assumption 2.1. The observed process Yt,n satisfies (2.3) where the process X(t) is
strictly stationary with mean 0 and existing moments of all order and satisfies

∞∑
u1,...,uk−1=−∞

|ck(u1, ..., uk−1)| <∞,

where ck(.) is the k-th order cumulant.

Throughout this study we use the above setting and derive consistency, asymptotic
normality and other results of the following estimator for ω(u0) for u0 ∈ (0, 1).

2.2.2 Frequency estimation based on the local periodogram

A good estimator of a constant unknown frequency is obtained via the maximization of
the periodogram. In the present situation of a time-varying frequency we modify this
estimator by considering the maximization of the periodogram in some neighborhood of
the time point u0 ∈ (0, 1): Let

JM (u0, λ) :=
∣∣∣ 1
M(n)

mr(n)∑
s=−m`(n)

Yn(u0+εn)+s,n exp(−iλs)
∣∣∣2 (2.4)

with M(n) = ml(n) + mr(n) + 1 being an increasing sequence of integers (usually the
argument n is omitted). εn with |εn| < 1/n fills the “gap” between u0 and the next t/n
point, i.e. εn := mint: t≥nu0{t/n−u0}. It is usual, but not always necessary, that ml = mr.
We define

ω̂n(u0) = arg sup
λ∈[0,π]

JM (u0, λ). (2.5)

We now state consistency of the estimator ω̂(u0) in the frame of the above infill asymp-
totics. The proofs are put into the appendix. The basic structure of the proof is similar
to the proof of Hannan (cf. [9]) in the time-homogeneous case. In addition several prob-
lems occur due to the time varying situation and the complicated structure of the infill
asymptotics.

Theorem 2.1. Let Assumption 2.1 hold, ω(u) be Lipschitz continuous with values in (0, π)
and u0 ∈ (0, 1). Then we have for the estimator defined in (2.5) with increasing sequences
ml(n) = o(n1/2) and mr(n) = o(n1/2):

ω̂n(u0) n→∞−→ ω(u0) a.s.
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As in the classical case of a constant frequency we can even establish consistency with
a rate. This result is needed for later proofs like the consistency of the phase estimator.
It follows from a modification of the proof of Theorem 2.1.

Theorem 2.2. Under the assumptions of Theorem 2.1 it holds that:

Mn(ω̂n(u0)− ω(u0)) n→∞−→ 0, a.s. (2.6)

2.2.3 Phase estimation based on a local regression

We now study estimation of the phase

φn(u0) := n

∫ u0

0
ω(u) du+ φ0 =

∫ t0

0
ω̃(s) ds+ φ0 = φt0

which is the real occurring phase at time u0 = t0/n (alternatively one could study estima-
tion of

∫ u0

0 ω(u) du). In the physics literature the most usual way to estimate the phase
φt0 is through the reconstruction of the analytic representation of a real signal Yt (or Yt,n
in the infill asymptotics context) using the Hilbert transform (cf. [16, 2]):

zs(t) := Yt,n + iH[Yt,n],

where H[·] is the discrete time Hilbert transform operation. An immediate estimation of
the phase then is

φ̂t := arctan2 (H[Yt,n], Yt,n) = arctan2 (H[St,n +Xt,n], St,n +Xt,n) , (2.7)

where St,n denotes the deterministic oscillating part of the process and Xt,n is the noise
term. This method has shown good behavior in simulations even with time-varying fre-
quencies, but only when the signal/noise ratio was relatively large. In opposite cases it
turned out to have greater MSE than the approach we describe below. Heuristically, this
is easy to see because the estimator in (2.7) depends strongly on the realizations of the
noise process at each time point.

In the following we suggest a method via a local regression based on the frequency
estimator ω̂n(u). We have

Yt,n = γ cos
(
n

∫ t/n

0
ω(u) du+ φ0

)
+Xt

= γ cos
(
n

∫ t/n

u0

ω(u) du+ φn(u0)
)

+Xt

= αn(u0) cos
(
n

∫ t/n

u0

ω(u) du
)

+ βn(u0) sin
(
n

∫ t/n

u0

ω(u) du
)

+Xt (2.8)

with

γ2 =
(
αn(u0)

)2 +
(
βn(u0)

)2 and φn(u0) = − arctan2 (βn(u0), αn(u0)) . (2.9)
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Having estimated the frequency function ω̂n(u0) in (2.5) through the maximization of
the periodogram we also want to estimate αn(u0) and βn(u0) and finally the phase and
amplitude of the process by using (2.9). Motivated by Hannan (cf. [9]) we do that by
locally fitting the linear model

Yt,n = α cos
(
n

∫ t/n

u0

ω̂(u0) du
)

+ β sin
(
n

∫ t/n

u0

ω̂(u0) du
)

+ et (2.10)

on our segment, i.e. for t = n(u0 + εn) + s and s ∈ {−ml, . . . ,mr}.
We denote the local least squares-estimates by α̂n(u0) and β̂n(u0). A formal definition

of these estimates in terms of the formula (X ′X)−1X ′Y with X being the design-matrix
is given in (A.22). For these estimates we can state

Lemma 2.1. If the assumptions of Theorem 2.1 hold then we have for the estimator
defined in (A.22): [

α̂n(u0)
β̂n(u0)

]
−

[
αn(u0)
βn(u0)

]
n→∞−→ 0 a.s.

where ml(n) and mr(n) are o(n1/2) and increasing sequences.

Furthermore we set

γ̂ = [{α̂n(u0)}2 + {β̂n(u0)}2]
1
2 and φ̂n(u0) = − arctan2

(
β̂n(u0), α̂n(u0)

)
. (2.11)

Now we have

Theorem 2.3. If the assumptions of Theorem 2.1 hold then γ̂ converges to γ and φ̂n(u0)−
φn(u0) converges to 0 almost surely.

2.3 The bias and asymptotic distributions

In this section we derive asymptotic normality and an approximate mean squared error for
the local frequency estimate. The key trick for deriving these results is to approximate the
original signal locally by one with constant frequency. Due to the complicated structure
of the infill asymptotics the corresponding proofs turn out to be very involved.

2.3.1 The local signal approximation

Suppose we write the signal Yt,n from (2.3) as

Yt,N = St,n +Xt with St,n = γ cos
(
n

∫ t/n

u0

ω(u) du+ φn(u0)
)
. (2.12)

The idea is to define a ’time homogeneous’ approximation (with time-constant frequency)
at each time point u0 by

Ỹt(u0) := S̃t(u0) +Xt with S̃t(u0) := γ cos
(
nω(u0)

( t
n
− u0

)
+ φn(u0)

)
(2.13)
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The two time series Yt,N and Ỹt(u0) coincide at time t = u0n ∈ Z, i.e. Yt,N = Ỹt(t/n).
In the subsequent derivations we approximate the phase difference of the two signals

by using the following Taylor-expansion.

Lemma 2.2. Suppose ω(·) is twice differentiable with Lipschitz continuous second deriva-
tive. Then we have

n

∫ t/n

u0

ω(u) du− nω(u0)
( t
n
− u0

)
= n

∫ t/n

u0

(
ω(u)− ω(u0)

)
du

=
n

2

( t
n
− u0

)2
ω′(u0) +

n

6

( t
n
− u0

)3
ω′′(u0) +O

(
n
( t
n
− u0

)4)
.

The proof follows with a straightforward Taylor expansion.
As a consequence of Lemma 2.2 we have for the local times t = n(u0 + εn) + s with

s ∈ {−ml, . . . ,mr} (see Remark A.2)

Sn(u0+εn)+s,n = γ cos
[n

2

( s
n

)2
ω′(u0) +

n

6

( s
n

)3
ω′′(u0) + nω(u0)

( s
n

+ εn

)
+ φn(u0)

]
+O

(
n
( s
n

)4)
+O

( |s|+ 1
n

)
while

S̃n(u0+εn)+s,n(u0) = γ cos
(
nω(u0)

( s
n

+ εn

)
+ φn(u0)

)
.

This expansion is the basis for further bias calculations. The untypical form (with the
additional factor n) is the source of many technical problems - c.f. Remark 2.5.

2.3.2 The bias and the mean squared error for the frequency estimator

The classical results on frequency estimation are results on estimating ω(u0) from the series
in (2.13) (which in this context is unobserved). However, instead of (2.13) we use the series
in (2.3) which is non-homogeneous. This creates a bias which shall be investigated in the
sequel.

Due to the technical problems in our calculations we restrict ourselves from now on to
the case mr = m` =: m. Furthermore we omit n from m(n),M(n) for simplicity. Beside
the periodogram of the original series as defined in (2.4)

JM (u0, λ) :=
∣∣∣ 1
M

m∑
s=−m

Yn(u0+εn)+s,n exp(−iλs)
∣∣∣2

we define the analogue for the approximate process by

J̃M (u0, λ) :=
∣∣∣ 1
M

m∑
s=−m

Ỹn(u0+εn)+s(u0) exp(−iλs)
∣∣∣2 (2.14)

with M = 2m+ 1. Then the bias of the periodogram due to non-homogeneity is

BM (u0, λ) := JM (u0, λ)− J̃M (u0, λ).



2.3. THE BIAS AND ASYMPTOTIC DISTRIBUTIONS 13

We now investigate how this bias transfers to a bias of the estimate ω̂n(u0). As usual
the starting point of the proof of asymptotic normality is a Taylor expansion of the score
function around ω(u0). We have

J ′M
(
u0, ω̂n(u0)

)
− J ′M

(
u0, ω(u0)

)
=
(
ω̂n(u0)− ω(u0)

)
J ′′M (u0, ξn) (2.15)

with |ξn − ω(u0)| ≤ |ω̂n(u0) − ω(u0)|. Since JM (u0, λ) is periodic in λ the maximum at
ω̂n(u0) is always a local one, i.e. J ′M (u0, ω̂n(u0)) = 0 leading to

−M−1/2 J ′M (u0, ω(u0)) =
( 1
M2

J ′′M (u0, ξn)
)
M3/2

(
ω̂n(u0)− ω(u0)

)
. (2.16)

A key element in the proof then would be to show asymptotic normality of J ′M
(
u0, ω(u0)

)
.

Since the asymptotic properties of J̃ ′M
(
u0, ω(u0)

)
are well known from classical papers

(see below) we only need to show that

M−1/2B′M (u0, ω(u0)) = M−1/2J ′M (u0, ω(u0))−M−1/2J̃ ′M (u0, ω(u0)) = op(1).

In this section we use the following assumptions:

Assumption 2.2. The observed process Yt,n from (2.3) satisfies Assumption 2.1. ω :
[0, 1] → [δ, π) with some δ > 0 is twice differentiable with Lipschitz continuous second
derivative. The estimator ω̂n(u0) is defined by (2.5) with 0 < u0 < 1 and increasing
sequences ml(n) = mr(n) = m with m = o(n1/2).

Theorem 2.4. Suppose Assumption 2.2 holds. Then we have with ω0 := ω(u0)

E
(
B′M (u0, ω0)

)
= E

[
J ′M (u0, ω0)− J̃ ′M (u0, ω0)

]
= Op

(m2

n

)
and

var
(
B′M (u0, ω0)

)
= var

[
J ′M (u0, ω0)− J̃ ′M (u0, ω0)

]
= Op

(m5

n2

)
.

As a consequence

MSE
(
M−1/2B′M (u0, ω0)

)
= Op

(m4

n2

)
which tends to zero iff m << n1/2

Remark 2.5 (optimal MSE). We were not able to determine the optimal rate mopt which
minimizes the mean squared error. To indicate the reason we refer to the Taylor expansion
(2.15) which implies

ω̂n(u0)− ω(u0) = J ′′M (u0, ξn)−1J ′M (u0, ω0).

In the proofs we were able to prove that 1
m2J

′′
M (u0, ξn) P→ const in case m << n1/2. On

the other hand heuristic considerations and simulations indicate that J ′′M (u0, ξn) << m2

for m >> n1/2 leading to a smaller rate. For this reason we were not able to determine
the optimal rate.
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2.3.3 Asymptotic normality of the frequency estimator

To handle the second derivative in (2.16) we use again the approximation of JM (u0, λ) by
J̃M (u0, λ) from the last section:

Lemma 2.3. Suppose Assumption 2.2 holds. Then we have

J ′′M (u0, ξn)− J̃ ′′M (u0, ξn) =

 op(m2), m << n1/2

Op(m2), otherwise
(2.17)

for any stochastic sequence ξn with |ξn − ω(u0)| ≤ |ω̂n(u0)− ω(u0)|.

As we mentioned before, the classical results on frequency estimation are results on
estimating ω(u0) from the series in (2.13) (which in this context is unobserved). In order
to prove asymptotic normality for the series in (2.3) we use the results of Hannan (cf. [9])
who treats the case of constant frequency.

Theorem 2.6. Suppose Assumption 2.2 holds. Then we have

M(n)3/2
(
ω̂n(u0)− ω(u0)

) D→ N(0, 24
2πf

(
ω(u0)

)
γ2

)
where f(·) is the spectral density of Xt.

Proof. The Taylor expansion (2.16) yields

−M−1/2
[
J̃ ′M
(
u0, ω(u0)

)
+B′M

(
u0, ω(u0)

)]
=

=
[ 1
M2

J̃ ′′M (u0, ξn) +
1
M2

(
J ′′M (u0, ξn)− J̃ ′′M (u0, ξn)

)]
M3/2

(
ω̂n(u0)− ω(u0)

)
The assertion now follows from Theorem 2.4, Lemma 2.3 and the following classical results
for time-homogeneous signals:

(i) M−
1
2 J̃ ′M

(
u0, ω(u0)

) D→ N(0, γ
2

24 2πf
(
ω(u0)

))
(ii) 1

M2 J̃
′′
M

(
u0, ξn

) P→ −γ2

24

(c.f. [9, Theorem 2]; [4, Theorem 2.3]).

This establishes the result.

2.3.4 Joined asymptotic distribution of the estimates

In this section we derive asymptotic normality of α̂n(u) and β̂n(u) defined in (A.22) as well
as their asymptotic covariance with ω̂n(u). This should also serve as a tool for constructing
e.g. confidence intervals for the quantities γ̂ and φ̂n(u) defined in (2.11).

The starting point of the proof is a multidimensional Taylor expansion for the first
derivatives of the square function

Sm(α, β, ω;u0) :=
m∑

s=−m

[
Yn(u0+εn)+s,n − α cos(ωs)− β sin(ωs)

]2
. (2.18)
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We set from now on εn = 0. This is done only for reducing the complexity of the proofs.
Nevertheless the results also hold if εn 6= 0, although then we should use instead the
function

S̃m(α, β, ω;u0) :=
m∑

s=−m

[
Yn(u0+εn)+s,n − α cos(ωs+ ωnεn)− β sin(ωs+ ωnεn)

]2
.

Note that the estimating procedure in (A.22) is completely equivalent to minimizing
Sm(α, β, ω̂n(u0);u0) over α and β. The variable ω that corresponds to the frequency
of the process Yt is also treated as a random variable, although it is not estimated through
Sm(α, β, ω;u0) but pre-estimated through the maximization of the periodogram as de-
scribed in previous sections. Now we have for some point sequence c̃n := (α̃n, β̃n, ω̃n)
between (α̂n(u0), β̂n(u0), ω̂n(u0)) and (αn(u0), βn(u0), ω(u0))

−M−1/2∂Sm(α, β, ω;u0)
∂α

∣∣∣∣∣
cn,0

=−M−1/2∂Sm(α, β, ω;u0)
∂α

∣∣∣∣∣
ĉn

(2.19)

+M−1∂
2Sm(α, β, ω;u0)

∂α2

∣∣∣∣∣
c̃n

M1/2
(
α̂n(u0)− αn(u0)

)
+M−1∂

2Sm(α, β, ω;u0)
∂α∂β

∣∣∣∣∣
c̃n

M1/2
(
β̂n(u0)− βn(u0)

)
+M−2∂

2Sm(α, β, ω;u0)
∂α∂ω

∣∣∣∣∣
c̃n

M3/2
(
ω̂(u0)− ωn(u0)

)

where cn,0 = [αn(u0), βn(u0), ω(u0)] and ĉn = [α̂n(u0), β̂n(u0), ω̂n(u0)]. Note that the first
term on the right side of the equation is zero, as the function in question is maximized
over α and β after it is evaluated on ω̂n(u0). On the other side we have

−M−1/2∂Sm(α, β, ω;u0)
∂β

∣∣∣∣∣
cn,0

=−M−1/2∂Sm(α, β, ω;u0)
∂β

∣∣∣∣∣
ĉn

(2.20)

+M−1∂
2Sm(α, β, ω;u0)

∂β2

∣∣∣∣∣
c̃n

M1/2
(
β̂n(u0)− βn(u0)

)
+M−1∂

2Sm(α, β, ω;u0)
∂α∂β

∣∣∣∣∣
c̃n

M1/2
(
α̂n(u0)− αn(u0)

)
+M−2∂

2Sm(α, β, ω;u0)
∂β∂ω

∣∣∣∣∣
c̃n

M3/2
(
ω̂(u0)− ωn(u0)

)
.

In general we have to use a different c̃n sequence for each Taylor expansion, but since no
ambiguity arises we use the same notation for avoiding unnecessary complexity.

Using (2.19) and (2.20) and combining with Theorem 2.6 we can show the following
result about the joint asymptotic distribution of our estimates:
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Theorem 2.7. Suppose Assumption 2.2 holds and furthermore m = o(n2/5). Then the
vector (

M1/2(α̂n(u0)− αn(u0)),M1/2(β̂n(u0)− βn(u0)),M3/2(ω̂n(u0)− ω(u0))
)

is asymptotically normally distributed with zero mean and covariance matrix

2πf
(
ω(u0)

)


2 0 0

0 2 0

0 0 24
γ2


where f(·) is the spectral density of Xt.

Comparing at this point the last result to the respective results in [9] and [18] one notes
that the asymptotic covariance matrix is different in two ways: α̂n(u0), β̂n(u0) and ω̂n(u0)
are asymptotically independent and the variances of the two first do not depend any more
on the true values αn and βn. As it is clear in the proof of the theorem (see Appendix A)
this is due to the definition of Sm(α, β, ω;u0), which in the present is a summation from
−m to m and not from 1 to m like in the afore mentioned papers.

2.4 A simulation example

In the following we present a data simulation where the periodogram method are engaged
to estimate the frequency and then the linear model described in Section 2.2.3 as well as
the (approximated) Hilbert transform are applied to estimate the phase of the process.
The data is generated by the model:

Yt,n = 4 cos
(∫ t

0
ω(s)dsds

)
︸ ︷︷ ︸

:=φ(t)

+Xt, 0 ≤ s < 200,

where ω(s) = 0.5 + 0.002s− 0.000005s2 (see Figure 2.1) and Xt is an AR(1) process with
parameters a = 0.8 and σ2 = 1. The simulation is repeated 300 times with the same
deterministic part and different realizations of Xt.

First we estimate the frequency function by maximizing the periodogram using three
data segments: M = 25, 31 and 41. In Figure 2.2 is shown the MSEω := 1

300

∑300
j=1(ω̂j(t)−

ω(t))2 in solid, dashed and dotted lines for M = 25, 31 and 41 respectively.
The reduction of the MSE as the data window grows can be explained heuristically

as follows: the bias introduced in the segment by the signal inhomogeneity is still smaller
than the reduction of the variance.

Furthermore we apply the two afore mentioned methods on the simulated data to
estimate the phase process. In Figure 2.3 we show the mean squared error and the mean
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Figure 2.1: The frequency function.

0 50 100 150 200

0
.0

0
0

0
.0

1
0

0
.0

2
0

0
.0

3
0

time

M
S

E
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(dotted).
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estimation error at each time point t for the two methods (solid line and cross is for the
periodogram), computed as:

MEEφ(t) :=
1

300

300∑
j=1

(φ̂j(t)− φ(t)) and MSEφ(t) :=
1

300

300∑
j=1

(φ̂j(t)− φ(t))2

respectively. In the case of the Hilbert transform the bias and the MSE do not seem to
vary significantly for the different segment lengths. On the contrary, the estimates via the
periodogram/linear model show greater bias and lower MSE the wider the time window
is. Moreover we observe a radical reduce of the bias toward the right end of the data.
This is due to the fact that there the frequency is almost constant and we are closer to the
homogeneous case. In all cases the periodogram/linear model method seems to dominate
the Hilbert transform in terms of MSE, while their bias is at comparable levels.
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Figure 2.3: Phase estimation errors of Hilbert transform (dotted lines and circle) and Periodogram
(first approach / solid lines and cross) methods.
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A big improvement in the estimations can be achieved if in (2.10) we use ω̂(u) for all
u ∈ {u0 −ml/n, ..., u0 + mr/n} instead of the constant ω̂(u0). Note that we do not have
phase estimations for 2 × (Window size) time points at the beginning and the end of the
data set. In Figure 2.4 one can see a comparison between the two different approaches
(solid line is for the old approach).
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Figure 2.4: Phase estimation errors between the two approaches through linear models. Solid line
is for the first and dotted line for the second approach.
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Chapter3
The modified periodogram

3.1 Introduction and motivation

As we did in the previous chapter, we generalize the classical model in time series analysis

Yt = γ cos(ωt+ φ0) +Xt, t = 1, ..., n (3.1)

where Xt is a noise process, into the model

Yt = γ cos
(∫ t

0
ω̃(s)ds+ φ0

)
+Xt, t = 1, ..., n (3.2)

in order to include processes that are quasi periodic, i.e. they have time dependent fre-
quency. We denote here the frequency function by ω̃(s) because we use later the notation
ω(s) for the rescaled function (see section 3.2.2). In general wherever we use the tilde
sign it is for the same reason, if not stated otherwise. Methods that are engaged to es-
timate the frequency or the phase in the model (3.1) like Least Squares Estimation [18],
the Hilbert transform [2, 16], the maximization of the periodogram [4, 9, 13, 14] or the
“secondary analysis” [11, p. 413] are usually applied segment wise for local estimations
in model (3.2) [12]. The latent assumption in these cases is that the frequency variates
slowly in time and can be considered as almost constant within the respective segments.
Heuristically, the less this assumption is satisfied, the more we have to reduce the length
of the data segments to avoid additional bias. But with this we also reduce the efficiency
of the estimator because of the noise term.

In the case of the maximization of the periodogram (see previous chapter), asymptotic
bias is caused by the non constant frequency. To ensure good asymptotic properties,
the asymptotic segment length needs to be bounded: m(n) << n1/2. This limitation
reduces the efficiency of the estimates. In [10] Katkovnik proposes the Local Polynomial
Periodogram (LPP) by approximating the frequency (or phase) function by a polynomial.
A similar method based on the same approximation is called the Discrete Chirp Fourier
Transform [19] in the case of a time linear approximation. Indeed the same function as in

21
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[10] is used (see below), but it is maximized over a finite set of frequencies, as the proposed
method considers only frequencies and their first derivatives of the form 2πk/M , where
M is the sample size and 0 ≤ k < M .

To motivate the afore mentioned modification, the ordinary periodogram of a time
series Yt like in (3.1)

In(λ) =
1
n

∣∣∣∣∣
n∑
t=1

Yt exp{−iλt}

∣∣∣∣∣
2

(3.3)

can be seen as some kind of “correlation” between the realization y(1), ..., y(n) of Yt and
exp{−iλt}. The λ that maximizes this correlation is chosen as the estimate of the latent
frequency. In the general case we have an arbitrary frequency function ω̃(s) and not a
constant one. It would be ideal if we knew its form up to some parameter ~λ. In this case
we could maximize the function

Ĩn(~λ) =
1
n

∣∣∣∣∣
n∑
t=1

Yt exp
{
i

∫ t

0
ω̃(s;~λ)ds

}∣∣∣∣∣
2

(3.4)

with respect to ~λ and this should provide us with an estimate of ω̃(s). Since we don’t
know anything about this function we can instead work locally with its Taylor expansion
around some observation time point t0, where we want to estimate the function. First we
have with t = t0 + τ

exp
{
i

∫ t0+τ

0
ω̃(s)ds

}
= exp

{
i

∫ t0

0
ω̃(s)ds

}
· exp

{
i

∫ t0+τ

t0

ω̃(s)ds
}

The first term of the right side is constant and drops out in (3.4). We expand ω̃(s) in the
second term:

ω̃(s) = ω̃(t0) + (s− t0)ω̃′(t0) +O(...)

which integrated gives ∫ t0+τ

t0

ω̃(s)ds = τ ω̃(t0) +
1
2
τ2ω̃′(t0) +O(...) (3.5)

Plugging this into (3.4) we get

Ĩn(t0; ~ω) ≈ 1
ml +mr + 1

∣∣∣∣∣
mr∑

τ=−ml

Yt0+τ exp
{
i

[
τ ω̃(t0) + τ2 ω̃

′(t0)
2

]}∣∣∣∣∣
2

+O(...) (3.6)

for proper values ml and mr depending on n. This motivates the definition of the modified
periodogram:

J̃n(t0;λ0, λ1) :=
1

ml +mr + 1

∣∣∣∣∣
mr∑

τ=−ml

Yt0+τ exp
{
i

[
τλ0 + τ2λ1

2

]}∣∣∣∣∣
2

. (3.7)

For estimates of further derivatives (once assumed that they exist) of the frequency func-
tion, one should include more terms of the Taylor expansion and increase the dimension



3.1. INTRODUCTION AND MOTIVATION 23

of the function to be maximized. Heuristically this should reduce the error term O(...)
in (3.5) and lead to better estimates. Note that already this Taylor expansion implies
that the modified periodogram should be used locally, i.e. ml +mr + 1 << n. The above
described method has some similarity to local polynomial fits in nonparametric regression.

In [10] an arbitrary high order expansion is used, but here we will restrict ourselves
on the above function (3.7). Note that we use the same notation (J̃n(·) or Jn(·) in the
rescaled time) for the modified periodogram, as for the local periodogram in the previous
chapter. This is done on purpose to denote that also the common periodogram is a special
case of the modified one if we take only one term of the Taylor expansion above. We could
have included in the notation an index (i) implying the employed amount of Taylor terms
(e.g. J̃ (i)

n (·)) but we avoided to do so to reduce the complexity in the notation.
The maximization of (3.7) over λ0 and λ1 delivers estimates for ω̃(t0) and ω̃′(t0). In

[10], in the case of a time linear frequency function, they are shown to be strongly consistent

with E
(̂̃ω(t0)− ω̃(t0)

)2
= O(M−3) and E

(̂̃ω′(t0)− ω̃′(t0)
)2

= O(M−5), where M is the
sample size ([10], Proposition 2, Comment 2). Though, in this proposition, the following
assumptions are made, in order to allow non polynomial frequency functions:

(a) hs+1−p|ω(s)
0 | are small for all s ≥ p

(b) h
1

(p+ 1)!
Lp is small,

where h is the segment length for the data window (going to infinity), (p−1) ∈ N the order
of polynomial approximation used (here p−1 = 1), ω(s)

0 the sth derivative of the frequency
function at t0 and Lp some constant greater than zero. From the above it is obvious that
both quantities in (a) and (b) can not remain small when h approaches infinity! Thus the
assumptions can not be fulfilled and the proposition remains valid only for polynomial
frequency functions. This is a common problem in the field of local estimation if the usual
asymptotics is used and makes the use of the “infill asymptotics” concept inevitable. One
further assumption (c) in the above paper is that the quantity

1
(2m+ 1)r

m∑
t=−m

tr exp
{
i

(
ω0t+

ω′0
2
t2
)}

must be bounded for r = 0, 1 and m → ∞, where ω0 and ω′0 are the real values of the
frequency function at t0 and its first derivative respectively. In different cases (that are
easy to find, e.g. ω0 = 0 and ω′0 = 0.1π) the convergence of the estimates can not be
guaranteed, even for polynomial frequency functions. In this essay it turns out that in the
frame of the “infill asymptotics” the assumptions (a), (b) and (c) are not necessary (see
Section 3.4 and Lemma B.1 respectively). Finally, the results in [10] are proved for i.i.d.
gaussian noise and in this study we generalize them to the case of an arbitrary stationary
noise.

In the following we explicitly describe the use of the modified periodogram (i.e. LPP
with two parameters) as an estimator of the frequency function. In particular in Section
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3.2 we define the estimates for frequency (ω̃(s)), phase (φt :=
∫ t
0 ω̃(s)ds + φ0) and am-

plitude (γ). In Section 3.2.2 we set up again a meaningful asymptotic concept, the infill
asymptotics, for investigating the asymptotic properties of the estimates, which is the
subject of Sections 3.3 and 3.4. Finally, in Section 3.5 we apply the periodogram and the
modified periodogram methods in a simulation. The proofs are postponed in Appendix
B, where we also define the modified Fourier transform of a stationary process and derive
its asymptotic distribution.

3.2 The estimates and infill asymptotics

In this section we introduce the estimates for the frequency function ω̃(s), its first derivative
and for the phase

∫ t
0 ω̃(s)ds + φ0 in (3.2). Furthermore we address the inefficiency of

the normal asymptotics for our case and use the infill asymptotics concept to establish
theoretical results for the estimates. We emphasize that the latter is only a means for the
asymptotic investigation of the estimates and has no physical interpretation.

3.2.1 The frequency and phase estimates

We now define the estimator of the frequency function ω̃(t) in (3.2) at a time point t0:(̂̃ωn(t0), ̂̃ω′n(t0)
)

:= arg sup
λ0,λ1

J̃n(t0;λ0, λ1), (3.8)

where ω̃′n(t0) := ∂
∂t ω̃n(t) at t0 and J̃n(t0;λ0, λ1) is like in (3.7).

It is easy to see that the modified periodogram maintains the two basic properties of
the usual periodogram, namely the periodicity and the symmetry around zero. Hence its
values are repeated periodically. Just like with the normal periodogram, we don’t need to
maximize it in the hole R2. It is obvious that

J̃n(t0;λ0, λ1) = J̃n(t0;λ0 + κ0π, λ1 + κ12π)

for every argument (λ0, λ1) with κ0, κ1 integers and κ0 + κ1 = 2K, K ∈ Z. This means
that we can restrict ourselves in the subset (λ0, λ1) ∈ [−π, π]× [−2π, 2π]. If now we take
into account the symmetry around zero this set becomes (λ0, λ1) ∈ [0, π]× [−π, π] which
could become even smaller if we considered cases like J̃n(t0;π,−π) = J̃n(t0; 0, π), but we
do not go into further details referring to such extrema-situations.

The model (3.2) can be written for any t0 between 1 and n and τ = t− t0

Yt0+τ = Yt = γ cos
(∫ t0

0
ω̃(s)ds+

∫ t0+τ

t0

ω̃(s)ds+ φ0

)
+Xt

= α̃(t0) cos
(∫ t0+τ

t0

ω̃(s)ds
)

+ β̃(t0) sin
(∫ t0+τ

t0

ω̃(s)ds
)

+Xt (3.9)
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with

α̃(t0) = γ cos
(∫ t0

0
ω̃(s)ds+ φ0

)
and β̃(t0) = −γ sin

(∫ t0

0
ω̃(s)ds+ φ0

)
.

Thus we see directly that

γ2 = {α̃(t0)}2 + {β̃(t0)}2 and φ̃t0 :=
∫ t

0
ω̃(s)ds+ φ0 = − arctan2

(
β̃(t0), α̃(t0)

)
(3.10)

Once we expressed the process Yt from the “point of view” of a particular t0 we proceed
to the estimation of γ and φ̃t0 through estimating α̃(t0) and β̃(t0) and plugging these into
(3.10). Motivated by Hannan [9] that uses in the time homogeneous case a representation
like in (3.9), we use, instead of the unknown ω̃(s), the estimates (3.8) of the two first terms
of the Taylor expansion in (3.5) and fit the following linear model

Yt = α̃(t0) cos
(∫ t0+τ

t0

[̂̃ωn(t0) + ̂̃ω′n(t0)(s− t0)
]
ds

)
+ β̃(t0) sin

(∫ t0+τ

t0

[̂̃ωn(t0) + ̂̃ω′n(t0)(s− t0)
]
ds

)
+ et

= α̃(t0) cos
(
τ ̂̃ωn(t0) +

1
2
τ2 ̂̃ω′n(t0)

)
+ β̃(t0) sin

(
τ ̂̃ωn(t0) +

1
2
τ2 ̂̃ω′n(t0)

)
+ et (3.11)

which leads to least squares estimates ̂̃α(t0) and ̂̃β(t0) for α̃(t0) and β̃(t0) respectively.
Finally we define

γ̂ :=

√{̂̃α(t0)
}2

+
{̂̃
β(t0)

}2

and ̂̃
φt0 := − arctan2

(̂̃
β(t0), ̂̃α(t0)

)
(3.12)

as estimates for amplitude and phase respectively.

3.2.2 Infill asymptotics

After defining the estimates, we want to investigate their asymptotic properties and in
particular their consistency and asymptotic normality. However, in the above setting of
model (3.2) the simple asymptotics t → ∞ is, for the reasons explained in the previous
chapter, meaningless. The solution is found again in the frame of infill asymptotics with
the rescaling of time in the unit interval. We set∫ t

0
ω̃(s) ds = n

∫ t/n

0
ω̃(un) du =: n

∫ t/n

0
ω(u) du

i.e. we use instead of (3.2) the model

Yt,n = γ cos

(
n

∫ t/n

0
ω(u) du+ φ0

)
+Xt
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with a fixed function ω(u) : [0, 1]→ [0, π) (see also Chapter 2). If we repeat now the steps
(3.5) and (3.6) for the rescaled frequency function ω(s) we get the following definition of
the periodogram in the “infill asymptotics” frame:

Jn(u0;λ0, λ1) :=

∣∣∣∣∣∣ 1
M(n)

mr(n)∑
s=−m`(n)

Yn(u0+εn)+s,n exp
{
−i
(
λ0s+

λ1

2n
s2
)}∣∣∣∣∣∣

2

(3.13)

with M(n) = ml(n) +mr(n) + 1 increasing sequences of integers (if not necessary we omit
from now on the argument n). εn fills the “gap” between u0 and the next t/n point, i.e.
εn := mint: t≥nu0{t/n− u0}. Thus, we use ml observations on the left side and mr + 1 on
the right side of u0 to calculate the modified periodogram Jn(u0;λ0, λ1) that corresponds
to u0 (i.e. −ml ≤ s ≤ mr). It is usual, but not necessary, that ml = mr. The estimates
are then defined like in (3.8) by maximizing (3.13) over λ0, λ1. Furthermore (3.9) takes
the form (see also (2.8))

Yn(u0+εn)+s,n =

αn(u0) cos

(
n

∫ u0+εn+s/n

u0

ω(s)ds

)
+ βn(u0) sin

(
n

∫ u0+εn+s/n

u0

ω(s)ds

)
+Xt (3.14)

with t = n(u0 + εn) + s and

αn(u0) = γ cos
(
n

∫ u0

0
ω(s)ds+ φ0

)
and βn(u0) = −γ sin

(
n

∫ u0

0
ω(s)ds+ φ0

)
,

where s takes proper values in Z and εn is as above. Note that εn is of order O(1/n) as
this “gap” is becoming smaller and smaller for n→∞. Finally, (3.11) becomes

Yn(u0+εn)+s,n =

αn(u0) cos
(
sω̂n(u0) +

1
2n
s2ω̂′n(u0)

)
+ βn(u0) sin

(
sω̂n(u0) +

1
2n
s2ω̂′n(u0)

)
+ et,

(3.15)

which provides us with the infill asymptotics version of the least squares estimates for
αn(u0) and βn(u0) and we define

γ̂ :=

√
{α̂n(u0)}2 +

{
β̂n(u0)

}2
and φ̂n,u0 := − arctan

(
β̂n(u0)/α̂n(u0)

)
. (3.16)

Note that the amplitude γ is not affected by the infill asymptotics frame, as it is assumed
to be constant in time.

3.3 Consistency of the estimates

In this section we prove consistency of the two estimates described in Section 3.2.1 within
the frame of infill asymptotics. For the consistency of [ω̂(u), ω̂′(u)] at a certain 0 ≤ u0 ≤ 1
we also provide some kind of joined rate (see Theorem 3.2) that is needed for further
proofs.



3.3. CONSISTENCY OF THE ESTIMATES 27

3.3.1 Consistency of the frequency function estimator

We define the frequency function estimator for a series like in (2.3):

[ω̂n(u0), ω̂′n(u0)] = arg sup
λ0,λ1

Jn(u0;λ0, λ1) (3.17)

where Jn(u0;λ0, λ1) is the modified periodogram in (3.13).
Before we go on to the consistency in the infill asymptotics sense, we want to justify the

quantity np, 1/2 < p < 2/3, that appears in this theorem and refers to the length sequence
of the data segment to be used while applying the modified periodogram method. If we
suppose that the frequency function ω(u), u ∈ [0, 1], is twice differentiable in some interval
u ∈ [u0 − r, u0 + r], we can use the Taylor theorem and get:

ω(u) = ω(u0) + ω′(u0)(u− u0) +R(u), with |R(u)| ≤M r2

2
,M <∞. (3.18)

The phase difference between u0 and some u = u0 + s, |s| ≤ r is:

φ(u0)− φ(u) = n

∫ u0+s

u0

ω(x)dx

= n

∫ u0+s

u0

[
ω(u0) + ω′(u0)(x− u0) +R(x)

]
dx.

We focus now on the remaining term (for simplicity suppose s > 0):∣∣∣∣n ∫ u0+s

u0

R(x)dx
∣∣∣∣ ≤ n

∫ u0+s

u0

|R(x)| dx (3.19)

≤ n

∫ u0+s

u0

M
r2

2
dx ≤Mnr3

2
.

The quantity r is exactly the width of the time window and is defined, for every n,
by the ratio mn/n. This means that the above computed integral goes to zero for all
u ∈ [u0 − r, u0 + r] if we choose mn ∼ np with p < 2/3. This -as it is clear from the
consistency proof- eliminates asymptotically the effect of all Taylor coefficients of the
ω(u)-expansion that we do not wish to estimate, namely all derivatives greater than the
first. Note that if the frequency function is locally linear R(x) vanishes from some n0

on and we can use every p < 1. On the other hand, if we chose p < 1/2, this would
also eliminate the effect of the first derivative, and in this case we were not able to prove
consistency of ω̂′n(u0). Thus, for applying the modified periodogram with two parameters,
1/2 < p < 2/3 (or 1/2 < p < 1 in case of polynomials of second degree) seems to be the
proper choice.

Theorem 3.1. Let Yt,n be as in (2.3), Xt be stationary with zero mean and satisfying
(B.2) and ω(u) : [0, 1] → [0, π) be twice differentiable with finite derivatives. Then we
have for the estimates in (3.17), for every u0 ∈ [0, 1]

lim
n→∞

[ω̂n(u0), ω̂′n(u0)] = [ω(u0) (mod 2π), ω′(u0)] a.s.

where ml,mr = O(np), 1/2 < p < 2/3 and λ1 is bounded. Moreover, if the frequency
function is locally linear, the theorem holds for 1/2 < p < 1.
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3.3.2 Consistency of the phase estimator

Having estimated the frequency function in (2.3), (3.14) through the maximization of the
modified periodogram we also want to estimate αn(u0) and βn(u0) in (3.14) and finally
the phase and amplitude of the process in (2.3). This is done as described in Section 3.2
by fitting the linear model in (3.15), with s running from −ml to mr, ml,mr = O(np),
1/2 < p < 2/3. The estimated frequency function in a segment is the linear approximation
ω̂n(u) = ω̂n(u0) + ω̂′n(u0)(u− u0). Before we prove consistency of α̂n(u0) and β̂n(u0), we
need the following result, which gives a first coarse rate of convergence of the frequency
function estimates. It is obtained by a modification of the proof of Theorem 3.1.

Theorem 3.2. Under the assumptions of Theorem 3.1 and for the estimates of the same
theorem we have that

lim
n→∞

sup
1≤t≤m

∣∣∣∣(ω̂n(u0)− ω(u0))t+
ω̂′n(u0)− ω′(u0)

2n
t2
∣∣∣∣ = 0, a.s. (3.20)

with m = O(np), 1/2 < p < 2/3 or 1/2 < p < 1 in the case of a locally (around u0) linear
frequency function ω(u).

We can now state for the estimates of αn(u0) and βn(u0) in (3.14), as they are described
at the beginning of this section, the following lemma (consistency):

Lemma 3.1. If assumptions of Theorem 3.1 hold then we have for the estimator derived
by the linear model in (3.11) with

φ̂(u0)
s,n = n

∫ u0+s/n+εn

u0

[
ω̂(u0) + ω̂′(u0)(u− u0)

]
du, −ml ≤ s ≤ mr

where ml,mr = O(np), p like in Theorem 3.2, ω̂(u0), ω̂′(u0) are as in (3.17) and εn as in
(3.14): [

α̂n(u0)
β̂n(u0)

]
−

[
αn(u0)
βn(u0)

]
n→∞−→ 0 a.s.

If we use now the representation (2.3) of the process we can state the following theorem

Theorem 3.3. Let assumptions of Theorem 3.1 hold. For every continuity point u0 ∈ [0, 1]
for the same increasing sequences ml(n) and mr(n), n ∈ N of integers defined in Lemma
3.1 we have for the estimates:

γ̂ = [{α̂n(u0)}2 + {β̂n(u0)}2]
1
2 and φ̂n(u0) = − arctan2

(
β̂n(u0), α̂n(u0)

)
,

γ̂ → γ a.s.

and
φ̂n(u0)− φn(u0)→ 0 a.s.
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3.4 Mean squared error and asymptotic normality

In the present section we investigate the asymptotic Mean Squared Error of the frequency
estimate depending on the segment length m(n). This is made approximating the original
signal by one with time linear frequency function and then evaluating the bias that results
due to this approximation. The latter leads to an asymptotic normality theorem for the
frequency function estimates.

3.4.1 The signal approximation

In order to prove asymptotic normality and determine the asymptotic MSE we define a
signal approximation to the original one (compare also Chapter 2). The idea is again to
prove the desired results for the approximation and then show that the bias terms caused
by it converge to zero. We have (from now on we set ml = mr = m):

Y̌n(u0+εn)+s,n(u0) := Šn(u0+εn)+s,n(u0) +Xn(u0+εn)+s (3.21)

with

Šn(u0+εn)+s,n := γ cos
[
ω(u0)s+

ω′(u0)
2

(s+ nεn)2

n
+ ω(u0)nεn + φu0

]
and finally the modified periodogram of the approximation

J̌M (u0, λ) :=

∣∣∣∣∣ 1
Mn

mn∑
s=−mn

Y̌n(u0+εn)+s,n(u0) exp
{
−i
(
λ0s+

λ1

2
s2

n

)}∣∣∣∣∣
2

(3.22)

where Mn = 2mn + 1. Note that J̌M (u0, λ) cannot be calculated from the original data.
Now we can prove two lemmas on which the proof of the asymptotic normality is based.

Lemma 3.2. Let X(t) be stationary and satisfy (B.2). Furthermore let J̌M (u0, λ) and
Y̌n(u0+εn)+s,n(u0) be like in (3.22, 3.21) with mn = O(np), 1/2 < p < 2/3. Then

−

(
1 0
0 n/Mn

)
M−1/2
n ∇J̌M (u0;ω(u0), ω′(u0)) D−→ N2(0,Σ)

with Σ =

(
2π γ

2

24fXX(ω0) 0
0 2π γ2

240fXX(ω0)

)
,

where fXX(λ) is the spectral density of Xt.

Note that the result of the theorem would hold for all 1/2 < p < 1 if εn = 0. This is
because the term exp{iω′0sεn} in (B.25) would be equal to unity.

The next lemma refers to the second derivative of the modified periodogram. Note that
it holds not only for the signal approximation:
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Lemma 3.3. Let X(t) be stationary and satisfy (B.2). Furthermore let mn = O(np),
1/2 < p < 2/3. If

lim
n→∞

sup
1≤t≤m

∣∣∣∣(ξ0,n − ω(u0))t+
ξ1,n − ω′(u0)

2n
t2
∣∣∣∣ = 0. (3.23)

then

lim
n→∞

M−2
n


∂2

∂λ2
0
JM (u0;λ0, ξ1,n)

∣∣∣
λ0=ξ0,n

n2

M2
n

∂2

∂λ2
1
JM (u0; ξ0,n, λ1)

∣∣∣
λ1=ξ1,n

n
Mn

∂2

∂λ0∂λ1
JM (u0;λ0, λ1)

∣∣∣λ0=ξ0,n
λ1=ξ1,n

 =


−γ2

24

− 1
60
γ2

24

0

 a.s.

Note again that:
(i) for time linear frequency functions (i.e. if we use the signal approximation in (3.22)
instead of the real signal) the terms O

(
m3

n2

)
disappear from all equations in the proof

(ii) the terms ω′0sεn vanish if we consider again estimating the frequency function only on
observation points.
Under those two conditions the results of Lemma 3.3 hold for 1/2 < p < 1.

Now we are ready to state the central limit theorem for the approximation (3.21).

Theorem 3.4. Under the assumptions of Theorem 3.1 and (B.2) and if ω(u) is linear in
time, then we have for the estimates

(ω̂0,n, ω̂
′
0,n) = arg sup

λ0,λ1

J̌Mn(u0;λ0, λ1)

with Mn ∼ bnpc, 1/2 < p < 2/3:(
1 0
0 Mn/n

)
M3/2
n

(
ω̂0,n − ω0

ω̂′0,n − ω′0

)
D−→ N2(0,Σ)

with Σ =

(
2π 24

γ2 fXX(ω0) 0

0 360 · 2π 24
γ2 fXX(ω0)

)
.

The result of the previous theorem holds for 1/2 < p < 1 under the condition (ii) after
Lemma 3.3.

3.4.2 MSE and asymptotic normality of the frequency estimate

Using the results from Section 2.3.1 we have

Sn(u0+εn)+s,n = γ cos
(
a+ c+ d

)
+O

(
n
( s
n

)3)
+O

( |s|+ 1
n

)
(3.24)

Šn(u0+εn)+s,n = γ cos
(
a+ c+ d

)
+O

( |s|+ 1
n

)
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with
a :=

n

2

( s
n

)2
ω′(u0), c := ω(u0) s, d := φu0 + ω(u0)nεn.

We have the results on estimating ω(u0) and ω′(u0) from the series in (3.21), which is an
approximation of the series in (2.3). This creates a bias in the modified periodogram:

B̌M (u0, λ0, λ1) := JM (u0, λ0, λ1)− J̌M (u0, λ0, λ1).

where

JM (u0, λ0, λ1) :=
∣∣∣ 1
M

mr∑
s=−m`

Yn(u0+εn)+s,n exp
{
−i
(
λ0s+

λ1

2
s2

n

)} ∣∣∣2
and

J̌M (u0, λ0, λ1) :=
∣∣∣ 1
M

mr∑
s=−m`

Y̌n(u0+εn)+s(u0) exp
{
−i
(
λ0s+

λ1

2
s2

n

)} ∣∣∣2
with M = mr +m` + 1 (we restrict ourselves to the case mr = m` =: m).

In the following we derive the asymptotic MSE and eventually the central limit the-
orem for (ω̂n(u0) − ω(u0)) and (ω̂′n(u0) − ω′(u0)). For this we will use the results on the
approximation signal (3.21) evaluating the bias in the estimations that would be caused
if we used the latter instead of the original signal.

MSE for (ω̂n(u0)− ω(u0)):
Here all derivatives are with respect to λ0. The starting point for both the derivation of
the MSE and the asymptotic normality is the following Taylor expansion (derived from
(B.37) and (B.38))

− 1
M1/2

∂JM (u0;λ0, ω
′
0)

∂λ0

∣∣∣∣∣
ω0

=

 1
M2

∂2JM (u0;λ0, ξ1,n)
∂λ2

0

∣∣∣∣∣
ξ0,n

+ o(1)

M3/2(ω̂0 − ω0).

(3.25)

The following lemma refers to the bias caused to the first derivative due to the signal
approximation. When this bias goes to zero the first derivative of the periodogram of the
original signal will have the same asymptotic behavior as its approximation.

Lemma 3.4. Under the assumptions of Theorem 3.1 we have for n1/2 < m < n2/3

MSE

(
1

M1/2

∂B̌M (u0, λ0, ω
′
0)

∂λ0

∣∣∣
λ0=ω0

)
= O

(
m7

n4

)
.

Remark 3.5. The MSE
(
M−

1
2 B̌′M (u0, ω0, ω

′
0)
)

tends to 0 if m << n4/7, leading to a
central limit theorem for M−1/2J ′M

(
u0, ω0, ω

′
0

)
via the c.l.t. for M−1/2J̌ ′M (u0, ω0, ω

′
0).

MSE for (ω̂′n(u0)− ω′(u0))
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Now the derivatives are with respect to λ1. The starting point is the following Taylor
expansion (compare to (B.38))

− n

M3/2

∂JM (u0;ω0, λ1)
∂λ1

∣∣∣∣∣
ω′0

=

 n2

M4

∂2JM (u0; ξ0,n, λ1)
∂λ2

1

∣∣∣∣∣
ξ1,n

+ o(1)

M5/2

n
(ω̂′0 − ω′0).

(3.26)

Lemma 3.5. Under the assumptions of Theorem 3.1 we have for n1/2 < m < n2/3

MSE

(
n

M

1
M1/2

∂B̌M (u0, λ0, λ1)
∂λ1

∣∣∣λ0=ω0
λ1=ω′0

)
= O

(
m7

n4

)
.

Remark 3.6. The MSE
(
n
MM

−1/2B̌′M (u0, ω0, ω
′
0)
)

tends to 0 if m << n4/7, leading to a
central limit theorem for n

MM
−1/2J ′M

(
u0, ω0, ω

′
0

)
via the c.l.t. for n

MM
−1/2J̌ ′M (u0, ω0, ω

′
0).

Asymptotic normality
We can now state

Theorem 3.7. Under the assumptions of Theorem 3.1 we have for the estimates

(ω̂n(u0), ω̂′n(u0)) = arg sup
λ0,λ1

JMn(u0;λ0, λ1)

with Mn ∼ bnpc, 1/2 < p < 4/7:(
1 0
0 Mn/n

)
M3/2
n

(
ω̂n(u0)− ω0

ω̂′n(u0)− ω′0

)
D−→ N2(0,Σ)

with Σ =

(
2π 24

γ2 fXX(ω0) 0

0 360 · 2π 24
γ2 fXX(ω0)

)
.

3.4.3 Joined asymptotic distribution of the estimates

In this section we derive asymptotic normality of α̂n(u) and β̂n(u) of Lemma 3.1, as well
as their asymptotic covariance with ω̂n(u) and ω̂′n(u). This should also serve as a tool for
constructing e.g. confidence intervals for γ̂ and φ̂n(u) defined in Theorem 3.3.

The starting point of the proof is a multidimensional Taylor expansion for the first
derivatives of the square function

S̄m(α, β, λ0, λ1;u0) :=
m∑
−m

[
Yn(u0+εn)+s,n − α cos

(
λ0t+

λ1

2
t2

n

)
− β sin

(
λ0t+

λ1

2
t2

n

)]2

(3.27)

We set from now on εn = 0. This is done only for reducing the complexity of the proofs.
Nevertheless the results also hold if εn 6= 0, although then t should be replaced by t +
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nεn in the above function. Note that the estimating procedure in (B.15) is completely
equivalent to minimizing the function S̄m(α, β, ω̂n(u0), ω̂′n(u0);u0) over α and β. The
variables λ0 and λ1 that refer to the frequency function of the process Yt are also treated
as random variables, although they are not estimated through S̄m(α, β, λ0, λ1;u0) but
pre-estimated through the maximization of the modified periodogram as described in
previous sections. Now we have for some point sequence c̃n := (α̃n, β̃n, ω̃0,n, ω̃1,n) between
ĉn,0 := (α̂n(u0), β̂n(u0), ω̂n(u0), ω̂′n(u0)) and cn := (αn(u0), βn(u0), ω(u0), ω′(u0))

−M−1/2∂S̄m(α, β, λ0, λ1;u0)
∂α

∣∣∣∣∣
cn,0

= −M−1/2∂S̄m(α, β, λ0, λ1;u0)
∂α

∣∣∣∣∣
ĉn

(3.28)

+M−1∂
2S̄m(α, β, λ0, λ1;u0)

∂α2

∣∣∣∣∣
c̃n

M1/2
(
α̂n(u0)− αn(u0)

)
+M−1∂

2S̄m(α, β, λ0, λ1;u0)
∂α∂β

∣∣∣∣∣
c̃n

M1/2
(
β̂n(u0)− βn(u0)

)
+M−2∂

2S̄m(α, β, λ0, λ1;u0)
∂α∂λ0

∣∣∣∣∣
c̃n

M3/2
(
ω̂(u0)− ωn(u0)

)
+ nM−3∂

2S̄m(α, β, λ0, λ1;u0)
∂α∂λ1

∣∣∣∣∣
c̃n

M5/2

n

(
ω̂′(u0)− ω′n(u0)

)
Note that the first term on the right side of the equation is zero, as the function in question
is maximized over α and β AFTER it is evaluated on ω̂n(u0) and ω̂′n(u0). On the other
side we have

−M−1/2∂S̄m(α, β, λ0, λ1;u0)
∂β

∣∣∣∣∣
cn,0

= −M−1/2∂S̄m(α, β, λ0, λ1;u0)
∂β

∣∣∣∣∣
ĉn

(3.29)

+M−1∂
2S̄m(α, β, λ0, λ1;u0)

∂β2

∣∣∣∣∣
c̃n

M1/2
(
β̂n(u0)− βn(u0)

)
+M−1∂

2S̄m(α, β, λ0, λ1;u0)
∂α∂β

∣∣∣∣∣
c̃n

M1/2
(
α̂n(u0)− αn(u0)

)
+M−2∂

2S̄m(α, β, λ0, λ1;u0)
∂β∂λ0

∣∣∣∣∣
c̃n

M3/2
(
ω̂(u0)− ωn(u0)

)
+ nM−3∂

2S̄m(α, β, λ0, λ1;u0)
∂β∂λ1

∣∣∣∣∣
c̃n

M5/2

n

(
ω̂′(u0)− ω′n(u0)

)
In general we have to use a different c̃n sequence for each Taylor expansion, but since no
ambiguity arises we use the same notation for avoiding unnecessary complexity.

Using (3.28) and (3.29) and combining with Theorem 3.7 we can show the following
result about the joint asymptotic distribution of our estimates:
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Theorem 3.8. Suppose Assumptions of Theorem 3.7 hold and furthermore m = o(n4/7).
Then the vector

M1/2

(
α̂n(u0)− αn(u0), β̂n(u0)− βn(u0), M(ω̂n(u0)− ω(u0)),

M2

n
(ω̂′n(u0)− ω(u0))

)
is asymptotically normally distributed with zero mean and covariance matrix

2πf
(
ω(u0)

)


2 + 60β
2
n
γ2 2− 60αnβn

γ2 0 −720βn
γ2

2− 60αnβn
γ2 2 + 60α

2
n
γ2 0 720αn

γ2

0 0 24
γ2 0

−720βn
γ2 720αn

γ2 0 360 24
γ2


where f(·) is the spectral density of Xt.

We remind once more that -like all other asymptotic results- the asymptotic distri-
bution of the estimates is derived within the infill asymptotics frame. Thus, any use of
them, such as constructing confidence intervals, should be done taking into account this
fact. Nevertheless, the result for ω̂n(u0) can be used in the usual manner, as it is asymp-
totically independent from the other estimates and its variance involves only m(n) and
not n itself.

3.5 A simulation

In the following we present a simulation study that consists of two parts. In the first
we compare the modified periodogram frequency estimates to the ones from the ordinary
periodogram. In the second we aim to test the performance of the modified periodogram
method in the presence of a high noise component.

3.5.1 Comparison between ordinary and modified periodograms

We simulate data from three different models:

Yt = γ cos
(

0.8 t
)

+Xt (3.30)

Yt = γ cos
(

0.2 t+
0.02

2
t2
)

+Xt (3.31)

Yt = γ cos
(

0.3 t+
0.02

2
t2 − 0.0001

3
t3
)

+Xt (3.32)

Model (3.30) is denoted by “constant”, (3.31) by “linear” and (3.31) by “quadratic”
because of their corresponding frequency functions. Xt is in all cases an AR-process with
parameters α = 0.8 and σ2 = 1. Note that the variance of the process Xt is σ2

X = 1/0.36.
For all three models we simulate data for three different amplitudes (γ = 2.5, 3 and 4) and
three different data segments (2m+1 = 41, 61 and 81). For each of these 27 combinations
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we get 300 realizations. t0 is always the middle of each segment. The maximization of the
modified periodogram and of the ordinary periodogram is done by evaluating them on a
two dimensional grid on the space (λ0, λ1) ∈ [0, π]×[−π/20, π/20] and on a one dimensional
grid on the space λ ∈ [0, π]. The maximization of λ1 is restricted on a smaller area than its
actual domain [−π, π] only for making the procedure computationally faster. Figure 3.5
shows the evaluation of the modified periodogram function around its maximum-argument
in one of the realizations of model (3.31).

Tables 3.1 and 3.2 show the mean squared error of the estimates ω̂(t0) and ω̂′(t0) for
the modified periodogram and the periodogram methods. For ω̂′(t0) in Table (3.1) the
displayed values are the actual values multiplied by 10000. The real values of the frequency
function and its derivative at t0 are seen in the last column.

It can be seen that for constant frequency the ordinary periodogram method is better.
This is clear since it is targeted for this case. Similarly, in the linear case the modified
periodogram method is the better one. In the quadratic case the modified periodogram is
better since it gives the better fit. We are convinced that this will hold the same for most
other non constant frequencies, at least when they can be approximated by linear functions.
To address this limitation we present in Table 3.3 the estimation MSE of the modified
periodogram in a simulation using the frequency function ω̃(t) = 0.3 t+ 0.02

2 t2 − 0.0002
3 t3.

Just by increasing (in absolute value) the quadratic coefficient of the frequency function
by 0.0001 we see a significant reduction of the efficiency of the estimator. In the most
extreme case (n = 81) the ordinary periodogram presents better results, which you can
see in Table 3.4.

Amplitude

2.5 3 4 Real values

ω̂(t0) ω̂′(t0)
∗ ω̂(t0) ω̂′(t0)

∗ ω̂(t0) ω̂′(t0)
∗ ω(t0) ω′(t0)

constant
n = 41 0.1148 3.2734 0.0628 1.4001 0.0121 0.4503 0.80 0.000

n = 61 0.0703 0.5974 0.0206 0.1347 0.0019 0.0070 0.80 0.000

n = 81 0.0176 0.0558 0.0038 0.0119 ≈0.000 0.0008 0.80 0.000

linear
n = 41 0.0708 5.6435 0.0457 3.5175 0.0110 0.8303 0.60 0.020

n = 61 0.0744 0.9343 0.0256 0.2296 0.0038 0.0432 0.80 0.020

n = 81 0.0607 0.3767 0.0084 0.0404 ≈0.000 0.0009 1.00 0.020

quadratic
n = 41 0.0826 4.7787 0.0474 2.2585 0.0097 0.5669 0.66 0.016

n = 61 0.0833 0.6544 0.0213 0.1239 0.0043 0.0265 0.81 0.014

n = 81 0.0568 0.1496 0.0120 0.0278 0.0010 0.0007 0.94 0.012

* Displayed values are the actual values multiplied by 10000.

Table 3.1: Simulation MSE of ω̂(t0) and ω̂′(t0) for the modified periodogram.

To make more clear why this happens, in Figure 3.1 we have a visualization of the two
different quadratic frequency functions used in the above simulations. While in the first
simulation (solid line) the frequency can be well approximated by a linear function, in the
second simulation (dashed line) the approximation is good enough only up to some time
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Amplitude

2.5 3 4 Real values

ω̂(t0) ω̂(t0) ω̂(t0) ω(t0) ω′(t0)

constant
n = 41 0.0759 0.0295 0.0022 0.80 0.000

n = 61 0.0312 0.0043 ≈0.000 0.80 0.000

n = 81 0.0126 ≈0.000 ≈0.000 0.80 0.000

linear
n = 41 0.1311 0.1147 0.0773 0.60 0.020

n = 61 0.3419 0.3015 0.2288 0.80 0.020

n = 81 0.6618 0.6250 0.4928 1.00 0.020

quadratic
n = 41 0.1581 0.1211 0.0692 0.66 0.016

n = 61 0.3192 0.2583 0.1472 0.81 0.014

n = 81 0.4965 0.3795 0.2153 0.94 0.012

Table 3.2: Simulation MSE of ω̂(t0) obtained by maximizing the ordinary periodogram.

Amplitude

2.5 3 4 Real values

ω̂(t0) ω̂′(t0)
∗ ω̂(t0) ω̂′(t0)

∗ ω̂(t0) ω̂′(t0)
∗ ω(t0) ω′(t0)

quadratic*
n = 41 0.0787 4.7263 0.0540 3.0715 0.0164 0.8481 0.62 0.012

n = 61 0.0880 0.8772 0.0277 0.2994 0.0057 0.0201 0.72 0.008

n = 81 0.1286 0.6553 0.0533 0.3059 0.0126 0.0559 0.78 0.004

* Displayed values are the actual values multiplied by 10000.

Table 3.3: Simulation MSE of ω̂(t0) and ω̂′(t0) for the modified periodogram (2).

Amplitude

2.5 3 4 Real values

ω̂(t0) ω̂(t0) ω̂(t0) ω(t0) ω′(t0)

quadratic*
n = 41 0.1073 0.0672 0.0215 0.62 0.012

n = 61 0.1667 0.0973 0.0313 0.72 0.008

n = 81 0.0983 0.0367 0.0025 0.78 0.004

Table 3.4: Simulation MSE of ω̂(t0) obtained by maximizing the ordinary periodogram (2).
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point around t = 50. Hence the estimation results in Table 3.3 are good for n = 41 and
n = 61, but not for n = 81. For the latter case, a constant approximation seems to be the
more proper choice.
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Figure 3.1: Quadratic frequency functions.

3.5.2 Performance of the modified periodogram in very noisy oscillations

In this section we aim to demonstrate the performance of the modified periodogram esti-
mates in the presence of greater noise, in particular for the case where the noise variance
is equal to the amplitude of the oscillation (σ2 = γ = 1). We simulate 100 time series of
length 2m+ 1 = 201 from the model

Yt = cos
(

0.1 t+
0.004

2
t2
)

+Xt, 0 ≤ t ≤ 200,

where Xt is white Gaussian noise with variance σ2 = 1. In Figure 3.2 you can see one
of the realizations of the above model, as well as the periodic component of the process
(smooth line).

We apply the modified periodogram method on the hole segment for estimating the
frequency function at t0 = 100 (ω(t0) = 0.5) and its derivative (ω′(t0) = 0.004). The MSE
for the first was 3.37×10−6 and for the second 5.8×10−9. Figure 3.3 shows the histograms
of the estimated values, which, as expected, are approximating the normal distribution.

Furthermore, we proceed to Least Squares Estimation to estimate α̃(t0) = 0.15425 and
β̃(t0) = 0.98803 in the alternative representation of the signal like in (3.9). The MSE of
the estimations were 0.0295 and 0.0110 respectively. Note here the greater variance for̂̃α(t0) and compare to the result of Theorem 3.8 where its theoretical asymptotic variance
is proportional to β̃2(t0) and vice versa. You can find the corresponding histograms for
these estimations in Figure 3.4. Again the estimates seem to be normally distributed.
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Figure 3.2: Noisy oscillation with “1 to 1” amplitude/noise ratio.

Finally, in Table 3.5 we present the empirical covariance matrix of the four estimates
calculated by their 100 estimated values. Compare here the estimated variance of ̂̃ω(t0)
(2.86×10−6) with its theoretical asymptotic variance from Theorem 3.8 which was for the
setting of this simulation var(̂̃ω(t0)) = 24σ2/M3γ2 = 2.96 × 10−6. This is an indication
that the theoretical result for ̂̃ω(t0) holds not only in the frame of infill asymptotics and
can be used in the common way for constructing e.g. confidence intervals.

̂̃α(t0) ̂̃
β(t0) ̂̃ω(t0) ̂̃ω′(t0)̂̃α(t0) 2.61× 10−2 7.97× 10−4 3.64× 10−6 −8.66× 10−6̂̃

β(t0) 7.97× 10−4 1.11× 10−2 −5.56× 10−5 5.14× 10−7̂̃ω(t0) 3.64× 10−6 −5.56× 10−5 2.86× 10−6 1.12× 10−8̂̃ω′(t0) −8.66× 10−6 5.14× 10−7 1.12× 10−8 4.51× 10−9

Table 3.5: Empirical covariance matrix of the estimates.
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Figure 3.3: Histogram of estimated values for ω̃(t0) and ω̃′(t0).
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Figure 3.4: Histogram of estimated values for α̃(t0) and β̃(t0).
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Chapter4
Concluding remarks

Non parametric estimation of frequency in discretely observed noisy oscillations is widely
reported in the literature due to its various applications. Most existing methods up to
date deal with this problem assuming a - at least locally - constant frequency. In the
introductory Chapter of the thesis we referred to some of these methods emphasizing on
the maximizer of the periodogram.

As a result of the constancy assumption, estimates -and in particular the periodogram
maximizer- are potentially affected by a systematic error induced by a possibly varying
frequency. In this essay we have attempted to deal with this problem in two ways: first, we
investigated the properties of the ordinary periodogram as an estimator of the instanta-
neous frequency, in order to find out to what extend this is justified. Second, we proposed
a novel method based on a modification of the periodogram to reduce the bias caused by
the (possible) non homogeneity of the frequency.

In particular, in Chapter 2 we determined an asymptotic upper bound for the segment
length, under which the ordinary periodogram estimate is consistent and asymptotically
normally distributed. This was achieved by evaluating the bias caused by the non con-
stant frequency. Furthermore, using an equivalent representation of the basic model, we
expressed its phase and amplitude as functions of the coefficients of the cosine and sine
in this alternative representation, which we estimated through the least squares tech-
nique. For these two quantities we also proved consistency and asymptotic normality.
We concluded with some simulations comparing this estimating procedure to the Hilbert
transform as a phase estimator.

In Chapter 3 we investigated the local polynomial periodogram with two parameters,
which we called the modified periodogram and whose maximization leads to an alternative
estimation for the instantaneous frequency, as well as for its first derivative, given that
this exists. Again using the equivalent representation of the signal we constructed esti-
mates for the phase and amplitude. Like in the previous chapter we proved consistency
and asymptotic normality for the estimates, which leaded to a straightforward theoreti-

41
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cal comparison between the two periodogram based methods. The modified periodogram
turned out to have better convergence rates due to the greater segment length (asymptot-
ically) that can be used without it being affected by the frequency inhomogeneity. The
theoretical results were also supported in a simulation, in which the two afore mentioned
methods were applied.

All the proofs of the theorems are in the frame of infill asymptotics and they were
postponed to the Appendix. There, we also define the modified Fourier transform of a
stationary process (see Appendix B) and prove its asymptotic normality, which is then
used in further proofs of theorems of Chapter 3.



AppendixA
Proofs of Chapter 2

A.1 Auxiliary results

Before proving consistency of our estimators we present two lemmas needed for this pur-
pose:

Lemma A.1. Under Assumption 2.1

lim
M→∞

sup
λ

∣∣∣∣ 1
M
d

(k)
M (u0, λ)

∣∣∣∣ = 0, a.s.

where d
(k)
M (u0, λ) := M−k

m∑
s=−m

skXs exp(−isλ)

This is a standard result in time series analysis and can be found e.g. in [3, Theorem
4.5.4.]. Hannan (cf. [9]) also proves the same result under slightly different assumptions.
Furthermore we have

Lemma A.2. If ω(u) : [0, 1]→ [0, π] is Lipschitz continuous at u0, εn ≤ 1/n and ml,mr =
o(n1/2) then:

lim
n→∞

max
ml≤s≤mr

∣∣∣1− exp
{
± in

∫ us

u0

[ω(u)− ω(u0)] du
}∣∣∣ = 0

with us := u0 + εn + s/n.

Proof. We have with some constant K uniformly in s∣∣∣n∫ us

u0

(ω(u)− ω(u0)) du
∣∣∣ ≤ Kn ∫ us

u0

|u− u0| du ≤
K

2
max(m` + 1,mr + 1)2

n
.

Thus the lemma is established.

For our proofs we also need some classical results on the discrete Fourier transform.
We briefly summarize these results and adapt them to the situation of the present essay.

43
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Lemma A.3 (The discrete Fourier transform). Suppose
(
Xt

)
t∈Z is a stationary process

with mean zero, EX2
t <∞ and continuous spectral density. Let

d
(k)
M (u0, λ) :=

1
Mk

exp(−iλm)
m∑

s=−m
skXn(u0+εn)+s exp(−iλ s) (A.1)

=
M−1∑
s=0

( s
M
− m

M

)k
Xn(u0+εn)+s−m exp

(
− iλs

)
Then Ed (k)

M (u0, λ) = 0 and

var
(
Re d (k)

M (u0, λ)
)

= Op(M);

var
(
Im d

(k)
M (u0, λ)

)
= Op(M);

cov
(
Re d (k)

M (u0, λ), Im d
(k)
M (u0, λ)

)
= Op(logM).

Proof. The result is standard in time series analysis. It follows e.g. with straightforward
calculations from [5, Theorem 1a]. Note that

(
x − m/M

)k plays the role of a tapering
function.

Remark A.1. We also need an upper bound for the (related) function

H
(k)
M (λ) :=

1
Mk

exp(−iλm)
m∑

s=−m
sk exp(−iλ s) (A.2)

=
M−1∑
s=0

( s
M
− m

M

)k
exp

(
− iλs

)
.

Let LM (λ) be the periodic extension of

LM (λ) :=

 M, |λ| ≤ 1/M

1/|λ|, 1/M ≤ |λ| ≤ π.
(A.3)

By using partial summation (cf. [5, (6)]) we obtain

|H (k)
M (λ)| ≤ KLN (λ). (A.4)

In particular we obtain for λ 6= 0 |H (k)
M (λ)| ≤ K/|λ|.

A.2 Proofs of theorems

A.2.1 Consistency of the frequency and phase estimator

Proof of Theorem 2.1.
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Let Yt,n be as in (2.3), (2.8). We have with us := u0 + εn + s/n (for simplicity we omit
u0 from αn(u0) and βn(u0))

1
M

mr∑
s=−ml

Yn(u0+εn)+s,n exp{−iλs}

=
1
M

mr∑
−ml

[
αn cos

(
n

∫ us

u0

ω(u) du
)

+ βn sin
(
n

∫ us

u0

ω(u) du
)

+Xn(u0+εn)+s

]
exp{−iλs}

=
αn
2M

mr∑
s=−ml

[
exp

{
in

∫ us

u0

ω(u) du
}

+ exp
{
−in

∫ us

u0

ω(u) du
}]

exp{−iλs}

− i βn
2M

mr∑
s=−ml

[
exp

{
in

∫ us

u0

ω(u) du
}
− exp

{
−in

∫ us

u0

ω(u) du
}]

exp{−iλs}

+
1
M

mr∑
s=−ml

Xn(u0+εn)+s exp{−iλs}

=
αn
2M

B+
n

mr∑
s=−ml

exp
{
in

∫ us

u0

[ω(u)− ω(u0)] du
}

exp{is(ω(u0)− λ)} (A.5)

+
αn
2M

B−n

mr∑
s=−ml

exp
{
−in

∫ us

u0

[ω(u)− ω(u0)] du
}

exp{is(−ω(u0)− λ)} (A.6)

− i βn
2M

B+
n

mr∑
s=−ml

exp
{
in

∫ us

u0

[ω(u)− ω(u0)] du
}

exp{is(ω(u0)− λ)} (A.7)

+
i βn
2M

B−n

mr∑
s=−ml

exp
{
−in

∫ us

u0

[ω(u)− ω(u0)] du
}

exp{is(−ω(u0)− λ)} (A.8)

+
1
M

mr∑
s=−ml

Xn(u0+εn)+s exp{−iλs} (A.9)

where B+
n := exp{inεnω(u0)} and B−n := exp{−inεnω(u0)}. Furthermore

(A.5) = B+
n

αn
2M

mr∑
s=−ml

exp{is(ω(u0)− λ)} (A.10)

−B+
n

αn
2M

mr∑
s=−ml

exp{is(ω(u0)− λ)}
(

1− exp
{
in

∫ us

u0

[ω(u)− ω(u0)] du
})

.

The term 1
M

∑
exp{is(ω(u0)−λ)} converges to zero if λ 6= ω(u0), indeed uniformly for all

λ : |λ − ω(u0)| > δ for any δ > 0. On the other hand, if λ = ω(u0) it converges to unity
(one can easily check the validity of these two statements by writing the expression as
1
M

∑
(exp{i(ω(u0)− λ)})s and finding the limit of the series for m→∞). For the second

term in (A.10) we have∣∣∣∣∣B+
n

αn
2M

∑
s

exp{is(ω(u0)− λ)}
(

1− exp
{
in

∫ us

u0

[ω(u)− ω(u0)] du
})∣∣∣∣∣ (A.11)
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≤ αn
2M

∑
s

∣∣∣∣1− exp
{
in

∫ us

u0

[ω(u)− ω(u0)] du
}∣∣∣∣

which converges to zero because of Lemma (A.2). Altogether we obtain

lim
n→∞

(A.5) ∼


1
2αnB

+
n , λ = ω(u0)

0, λ 6= ω(u0)∗
(A.12)

*uniformly for all λ : |λ− ω(u0)| > δ for any δ > 0.

By following exactly the same steps we obtain

lim
n→∞

(A.7) ∼

 −
1
2 iβnB

+
n , λ = ω(u0)

0, λ 6= ω(u0)∗
(A.13)

*uniformly for all λ : |λ− ω(u0)| > δ for any δ > 0 and

lim
n→∞

(A.6) = lim
n→∞

(A.8) = 0 (A.14)

uniformly for all λ ∈ [0, π]. Combining Lemma (A.1) with (A.12), (A.13) and (A.14) we
receive:

lim
n→∞

JM (u0, λ) =


1
4(α2

n + β2
n), λ = ω(u0)

0, λ 6= ω(u0)
a.s. (A.15)

Note that α2
n + β2

n = γ2 is the amplitude of the periodic component, namely a constant.
Furthermore, the second row of the right side of (A.15) holds uniformly for all λ : |λ −
ω(u0)| > δ for any δ > 0.

Now we prove the desired convergence by contradiction. Let’s suppose that this is not
the case. This means, there were some ε > 0 for which the set [0;π]\ (ω(u0)− ε;ω(u0) + ε)
would contain infinitely many elements of the sequence ω̂n(u0). Consequently there were
some limit point λ′ 6= ω(u0) (because ω̂n(u0) is bounded) and a subsequence converging
to this very limit point. Along this subsequence JM (u0, ω̂n(u0)) would converge to zero
(because the convergence to zero of JM (u0, ω̂n(u0)) is uniform for |λ − ω(u0)| > δ for
any δ > 0). But we have JM (u0, ω̂n(u0)) ≥ JM (u0, ω(u0)), as ω̂n(u0) is the value that
maximizes the function every time and JM (u0, ω(u0)) converges to something greater than
zero and thus we have a contradiction. �

Proof of Theorem 2.2.



A.2. PROOFS OF THEOREMS 47

We have with X(s) := Xn(u0+εn)+s and S(s) := Sn(u0+εn)+s,n

JM (u0, ω̂n(u0))− JM (u0, ω(u0)) =

=
∣∣∣M−1

n

∑
s

S(s)eisω̂n(u0)
∣∣∣2 − ∣∣∣M−1

n

∑
s

S(s)eisω(u0)
∣∣∣2 (A.16)

+
∣∣∣M−1

n

∑
s

X(s)eisω̂n(u0)
∣∣∣2 − ∣∣∣M−1

n

∑
s

X(s)eisω(u0)
∣∣∣2 (A.17)

+ 2Re
[(
M−1
n

∑
s

X(s)e−isω̂n(u0)
)(
M−1
n

∑
s

S(s)eisω̂n(u0)
)]

(A.18)

− 2Re
[(
M−1
n

∑
s

X(s)e−isω(u0)
)(
M−1
n

∑
s

S(s)eisω(u0)
)]

(A.19)

where Re denotes the real part of the complex numbers. (A.17), (A.18) and (A.19) go to
zero because of Lemma (A.1). If now we did the same as in (A.10) we could see that each
one of the first two terms of (A.16) has a part that also goes to zero because of Lemma
A.2. If we decompose these two terms we finally have

JM (u0, ω̂n(u0))− JM (u0, ω(u0)) = (A.20)

=
∣∣∣M−1

n

∑
s

[αn cos(sω(u0)) + βn sin(sω(u0))]eisω̂n(u0)
∣∣∣2

−
∣∣∣M−1

n

∑
s

[αn cos(sω(u0)) + βn sin(sω(u0))]eisω(u0)
∣∣∣2 + op(1)

=
1
4
(
α2
n + β2

n

)
︸ ︷︷ ︸

γ2/4

{∣∣∣M−1
n

∑
s

eis(ω(u0)−ω̂n(u0))
∣∣∣2 − 1

}
+ op(1).

This difference has to be non negative as ω̂n(u0) maximizes the function JM (u0, λ). The
first term on the right side is negative and as the positive op(1) goes to zero it must also

converge to zero. Thus
∣∣∣M−1

n

∑
s e

is(ω(u0)−ω̂n(u0))
∣∣∣2 goes to unity. We show that this can

only happen if Mn(ω̂n(u0)−ωn(u0)) converges to zero. Let us suppose that this is not the
case. Then there must be an increasing subsequence (n′) ⊂ N for which either the limit is
some c with 0 < |c| < ∞ or we have divergence. We suppose for simplicity that the sum
is from 0 to Mn as the proof is essentially the same with the summation being from −ml

to mr. In the case of divergence we have for δn = ω̂n(u0)− ωn(u0)

∣∣∣(Mn′ + 1)−1

Mn′∑
s=0

eisδn′
∣∣∣2 =

∣∣∣(Mn′ + 1)−1

Mg,n′∑
s=0

eisδn′ + (Mn′ + 1)−1

Mn′∑
s=Mg,n′+1

eisδn′
∣∣∣2 (A.21)

where Mg,n′ is the greatest integer for which |∠(eiMg,n′δn′ )| + |∠(ei(Mg,n′+1)δn′ )| = δn′

with the angles being considered always between [−π, π]. eiMg,n′δn′ is namely the last
vector before we “enter” the unity circle for the last time at each n′. This means that
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|1− ei(Mg,n′+1)δn′ | ≤ |1− eiδn′ | because δn′ goes to zero. Now we have

∣∣∣(Mn′ + 1)−1

Mg,n′∑
s=0

eisδn′
∣∣∣ = (Mn′ + 1)−1 |1− e

i(Mg,n′+1)δn′ |
|1− eiδn′ |︸ ︷︷ ︸

≤1

n→∞−→ 0.

On the other hand

∣∣∣(Mn′ + 1)−1

Mn′∑
s=Mg,n′+1

eisδn′
∣∣∣ ≤ (Mn′ + 1)−1

Mn′∑
s=Mg,n′+1

|eisδn′ | =
Mn′ −Mg,n′

Mn′ + 1
n→∞−→ 0.

Thus (A.21) vanishes which is a contradiction. Now if Mn′δn′ converges to some limit c
we have

∣∣∣(Mn′ + 1)−1

Mn′∑
s=0

eisδn′
∣∣∣2 =

∣∣∣(Mn′ + 1)−1

Mn′∑
s=0

[cos(sδn′) + i sin(sδn′)]
∣∣∣2

δn′→0
−→

∣∣∣c−1[
∫ c

0
cos(u) du+ i

∫ c

0
sin(u) du]

∣∣∣2 =
2
c2

[1− cos(c)] =
4
c2

sin2 c

2
< 1, for c 6= 0.

Thus the convergence of Mn(ω̂n(u0)− ωn(u0)) to zero is established. �

Proof of Lemma 2.1.

The design matrix of the local regression in (2.10) is

X =
(

cos(φ̂(u0)
s ), sin(φ̂(u0)

s )
)
s=−m`,...,mr

with φ̂
(u0)
s := n

∫ us
u0
ω̂(u) du where us := u0 + εn + s/n. Thus the least squares estimate

(X ′X)−1X ′Y is equal to

[
α̂n(u0)
β̂n(u0)

]
=

1
|X ′X|

[ ∑
s sin2(φ̂(u0)

s ) −
∑

s cos(φ̂(u0)
s ) sin(φ̂(u0)

s )
−
∑

s cos(φ̂(u0)
s ) sin(φ̂(u0)

s )
∑

s cos2(φ̂(u0)
s )

]
×

×

[ ∑
s cos(φ̂(u0)

s )
(
αn(u0) cos(φ(u0)

s ) + βn(u0) sin(φ(u0)
s ) +Xs

)∑
s sin(φ̂(u0)

s )
(
αn(u0) cos(φ(u0)

s ) + βn(u0) sin(φ(u0)
s ) +Xs

) ] , (A.22)

where |X ′X| =
[∑

s sin2(φ̂(u0)
s )

][∑
s cos2(φ̂(u0)

s )
]
−
[∑

s cos(φ̂(u0)
s ) sin(φ̂(u0)

s )
]2

and φ(u0)
s =

n
∫ us
u0
ω(u) du is the real phase function. We have (suppose for simplicity εn = 0, as the

approach is exactly the same if this is not the case)

cos(φ̂(u0)
s ) =

1
2

{
ei[sω0+s(ω̂0−ω0)] + e−i[sω0+s(ω̂0−ω0)]

}
=

1
2
{
eisω0 [1 +O (s(ω̂0 − ω0))] + e−isω0 [1 +O (s(ω̂0 − ω0))]

}
= cos(sω0) +O (s(ω̂0 − ω0))
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which because of Theorem 2.2 gives∑
s

cos2(φ̂(u0)
s ) =

∑
s

cos2(sω0) + o(M). (A.23)

By using exactly the same arguments we can write∑
s

sin2(φ̂(u0)
s ) =

∑
s

sin2(sω0) + o(M). (A.24)

and ∑
s

sin(φ̂(u0)
s ) cos(φ̂(u0)

s ) = o(M). (A.25)

On the other hand, because ω(u) is Lipschitz continuous, we have

n

∫ u0+s/n

u0

|ω(u)− ω(u0)|du ≤ Ln
∫ u0+s/n

u0

|u− u0|du = Ln

∫ s/n

0
|v|dv = O

(
s2

n

)
for some constant L and thus

cos(φ(u0)
s ) =

1
2

{
e
in
∫ u0+s/n
u0

ω(u)du + e
−in

∫ u0+s/n
u0

ω(u)du
}

=
1
2

{
eisω0

[
1 +O

(
s2

n

)]
+ e−isω0

[
1 +O

(
s2

n

)]}
= cos(sω0) +O

(
s2

n

)
,

which combined with the previous gives

mr∑
s=−ml

cos(φ̂(u0)
s ) cos(φ(u0)

s ) =
∑
s

cos2(sω0) + op(M), (A.26)

because of Theorem 2.2 and the fact that ml,mr = o(n1/2). Using exactly the same
arguments we obtain

mr∑
s=−ml

sin(φ̂(u0)
s ) sin(φ(u0)

s ) =
∑
s

sin2(sω0) + op(M), (A.27)

mr∑
s=−ml

cos(φ̂(u0)
s ) sin(φ(u0)

s ) = op(M), (A.28)

mr∑
s=−ml

sin(φ̂(u0)
s ) cos(φ(u0)

s ) = op(M), (A.29)
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while Lemma (A.1) yields

mr∑
s=−ml

sin(φ̂(u0)
s )Xs = op(M) =

mr∑
s=−ml

cos(φ̂(u0)
s )Xs. (A.30)

Using (A.23), (A.24), (A.25), (A.26), (A.27), (A.28), (A.29), (A.30) we can express (A.22)
as follows:[

α̂n(u0)
β̂n(u0)

]
=

1
|X ′X|

[ ∑
s sin2(sωu0) + op(M) op(M)

op(M)
∑

s cos2(sωu0) + op(M)

]
×

×

[
αn(u0)

∑
s cos2(sωu0) + op(M)

βn(u0)
∑

s sin2(sωu0) + op(M)

]
, (A.31)

where

|X ′X| =
[∑

s

sin2(sωu0)
][∑

s

cos2(sωu0)
]

+ op(M2).

It is now easy to see that (A.31) “converges” to [αn(u0), βn(u0)]′ since αn(u0) and βn(u0)
are bounded and thus we have the desired result and the lemma is established. �

Proof of Theorem 2.3.

The assertion of the theorem follows immediately from Lemma 2.1. �

A.2.2 The bias and asymptotic normality

The main tool of this chapter is a Taylor expansion of the phase of the non stationary
signal based on Lemma 2.2.

Remark A.2. As a consequence of Lemma 2.2 we have

St,n

= γ cos
[n

2

( t
n
− u0

)2
ω′(u0) +

n

6

( t
n
− u0

)3
ω′′(u0) +O

(
n
( t
n
− u0

)4)
+ nω(u0)

( t
n
− u0

)
+ φn(u0)

]
and in local time with s := t− n(u0 + εn), i.e. t

n − u0 = s
n + εn with |εn| ≤ 1

n

Sn(u0+εn)+s,n

= γ cos
[n

2

( s
n

+ εn

)2
ω′(u0) +

n

6

( s
n

+ εn

)3
ω′′(u0) +O

(
n
( s
n

+ εn

)4)
+ nω(u0)

( s
n

+ εn

)
+ φn(u0)

]
.

We now remove the εn - terms. Since∣∣∣n( s
n
εn + ε2n

)
+ n

(( s
n

)2
εn +

s

n
ε2n + ε3n

)
+ n

(( s
n

)3
εn +

( s
n

)2
ε2n +

s

n
ε3n + ε4n

)∣∣∣ ≤ 9
|s|+ 1
n
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we obtain

Sn(u0+εn)+s,n

= γ cos
[n

2

( s
n

)2
ω′(u0) +

n

6

( s
n

)3
ω′′(u0) +O

(
n
( s
n

)4)
+O

( |s|+ 1
n

)
+ nω(u0)

( s
n

+ εn

)
+ φn(u0)

]
The mean value-theorem now yields

Sn(u0+εn)+s,n

= γ cos
[n

2

( s
n

)2
ω′(u0) +

n

6

( s
n

)3
ω′′(u0) + ω(u0)s+ φn(u0) + ω(u0)nεn

]
+O

(
n
( s
n

)4)
+O

( |s|+ 1
n

)
= γ cos

(
a+ b+ c+ d

)
+O

(
n
( s
n

)4)
+O

( |s|+ 1
n

)
(A.32)

with

a :=
n

2

( s
n

)2
ω′(u0), b :=

n

6

( s
n

)3
ω′′(u0), c := ω(u0) s, d := φn(u0) + ω(u0)nεn.

(A.33)
Furthermore we have

S̃n(u0+εn)+s,n(u0) = γ cos
(
nω(u0)

( s
n

+ εn

)
+ φn(u0)

)
= γ cos

(
c+ d

)
. (A.34)

In our calculations below we also use the lower order expansion

Sn(u0+εn)+s,n = γ cos
(
a+ c+ d

)
+O

(
n
( s
n

)3)
+O

( |s|+ 1
n

)
. (A.35)

Proof of Theorem 2.4.
We have (’cc’ means ’complex conjugate’)

J ′M
(
u0, ω0

)
= −i

( 1
M

mr∑
s=−m`

s Yn(u0+εn)+s,n exp(−iω0s)
)

(A.36)

×
( 1
M

mr∑
t=−m`

Yn(u0+εn)+t,n exp(iω0t)
)

+ cc.

In order to estimate the difference J ′M (u0, ω0) − J̃ ′M (u0, ω0) we need to replace in
both summands the terms Yn(u0+εn)+s,n by Ỹn(u0+εn)+s(u0). We use the formula

y1y2 − x1x2 = (y1 − x1)x2 + x1(y2 − x2) + (y1 − x1)(y2 − x2), (A.37)

that is we have

J ′M (u0, ω(u0))− J̃ ′m(u0, ω(u0)) = −i
[
(i)× (iv) + (ii)× (iii) + (i)× (iii)

]
+ cc (A.38)
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with (cf. (A.32) - (A.35))

(i) :=
1
M

m∑
s=−m

s
(
Yn(u0+εn)+s,n − Ỹn(u0+εn)+s(u0)

)
exp

(
− iω(u0)s

)

=
1
M

m∑
s=−m

s
(
Sn(u0+εn)+s,n − S̃n(u0+εn)+s,n(u0)

)
exp

(
− iω(u0)s

)

=
γ

M

m∑
s=−m

s
[

cos
(
a+ b+ c+ d

)
− cos

(
c+ d

)
+O

( |s|4
n3

)
+O

( |s|+ 1
n

)]
exp{−ic}

=
γ

2M

m∑
s=−m

s
[

exp{i(a+ b+ c+ d)} − exp{i(c+ d)}
]

exp{−ic} (A.39)

+
γ

2M

m∑
s=−m

s
[

exp{−i(a+ b+ c+ d)} − exp{−i(c+ d)}
]

exp{−ic} (A.40)

+ O
(m5

n3

)
+O

(m2

n

)
(A.41)

(ii) :=
1
M

m∑
s=−m

s Ỹn(u0+εn)+s(u0) exp
(
− iω(u0)s

)

(iii) :=
1
M

m∑
s=−m

(
Yn(u0+εn)+s,n − Ỹn(u0+εn)+s(u0)

)
exp

(
iω(u0)s

)

=
γ

M

m∑
s=−m

[
cos
(
a+ c+ d

)
− cos

(
c+ d

)
+O

( |s|3
n2

)
+O

( |s|+ 1
n

)]
exp{ic}

=
γ

2M

m∑
s=−m

[
exp{−i(a+ c+ d)} − exp{−i(c+ d)}

]
exp{ic} (A.42)

+
γ

2M

m∑
s=−m

[
exp{i(a+ c+ d)} − exp{i(c+ d)}

]
exp{ic} (A.43)

+ O
(m3

n2

)
+O

(m
n

)
(A.44)

(iv) :=
1
M

m∑
s=−m

Ỹn(u0+εn)+s(u0) exp
(
iω(u0)s

)
.

We now construct upper bounds for these terms. The complexity with the following
proof is that at different stages different techniques for deriving the upper bounds are
needed. This is also the reason why we refrain from using Taylor-expansions (say for the
cos-function) throughout the whole proof.

(i) We start with the term (A.39). We have[
exp{i(a+ b+ c+ d)} − exp{i(c+ d)}

]
exp{−ic}
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=
[

exp{i(a+ b)} − 1
]

exp{id}

=
[

cos(a+ b)− 1
]

exp{id}+ i sin(a+ b) exp{id}.

Since the sum in (A.39) is symmetric we use[
cos(a+ b)− 1

]
−
[

cos(a− b)− 1
]

= (cos a cos b− sin a sin b)− (cos a cos b+ sin a sin b)

= −2 sin a sin b

and

sin(a+ b)− sin(a− b) = (sin a cos b+ cos a sin b)− (sin a cos b− cos a sin b)

= 2 cos a sin b

and obtain

(A.39) = − γ

M

m∑
s=1

s sin a sin b exp{id}+ i
γ

M

m∑
s=1

s cos a sin b exp{id}

= i
γ

M

m∑
s=1

s sin b exp{ia} exp{id}

= i
γ

M

m∑
s=1

s sin
{n

6

( s
n

)3
ω′′(u0)

}
exp

{
i
n

2

( s
n

)2
ω′(u0)

}
exp{id}.

Since

i
γ

M

m∑
s=1

s sin
{n

6

( s
n

)3
ω′′
}

exp
{
i
n

2

( s
n

)2
ω′
}

= i
γ

M

m∑
s=1

s sin
{( s

m

)3
κ2

}
exp

{
i
( s2
m2

)
κ1

}
with κ1 =

m2

2n
ω′, κ2 =

m3

6n2
ω′′

= i
γ m

2

∫ 1

0
x sin

(
x3κ2

)
exp

(
i x2κ1

)
dx+O

(
m2

n

)
.

The first term is equal to

i
γ m

4κ1

∫ κ1

0
sin
(
y3/2 κ2

κ
3/2
1

)
exp(i y) dy with substitution y = x2κ1

= i
γ m

4κ1

∫ κ1

0
sin
(
y3/2 κ3

)
exp(i y) dy with κ3 = κ2/κ

3/2
1

= i
γ m

4κ1

[
− i sin

(
y3/2 κ3

)
exp(i y)

∣∣∣κ1

0
+ i

3
2

∫ κ1

0
y1/2κ3 cos

(
y3/2κ3

)
exp(i y) dy

]
=
γ m

4κ1
sinκ2 exp(i κ1) +O

(m
κ1

∫ κ1

0
y1/2κ3 dy

)
= O

(mκ2

κ1

)
= O

(m2

n

)
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we obtain (A.39) = O
(
m2

n

)
.

We now derive an upper bound for the term (A.40). With M = 2m+ 1 let

hM (x) := x
[

exp
{
− i x2 M

2

2n
ω′(u0)

}
− 1
]
.

By using partial summation (cf. Dahlhaus, 1983), (6)) we obtain with LM defined as in
(A.3) (V ar(hM ) denotes the variation of the function hM )

∣∣(A.40)
∣∣ =

∣∣∣ γ
2M

m∑
s=−m

s
[

exp{−i(a+ c+ d)} − exp{−i(c+ d)}
]

exp{−ic}
∣∣∣

=
∣∣∣γ
2

exp{−id}
m∑

s=−m
hM
( s
M

)
exp{−i 2ω(u0) s}

∣∣∣
≤
(
V ar(hM ) +

∣∣∣hM(m
M

)∣∣∣ )LM (2ω(u0))

≤
(

sup
x∈[−1/2,1/2]

|h′M (x) | +
∣∣∣hM(m

M

)∣∣∣ ) 1
|2ω(u0)|

≤ 8
∣∣∣M2

2n
ω′(u0)

∣∣∣ 1
|2ω(u0)|

= O
(m2

n

)
for ω(u0) 6= 0. With the term O

(
m5

n3

)
from (A.41) this leads in total to the upper bound

∣∣(i)∣∣ = O

(
m2

n

)
, for m ≤ n1/2.

(ii) We obtain with ω0 = ω(u0) and d
(k)
M (u0, λ) and H

(k)
M (λ) as in (A.1) and (A.2)

1
M

m∑
s=−m

s Ỹn(u0+εn)+s(u0) exp(−iω0s) =

=
1
M

m∑
s=−m

s
(
S̃n(u0+εn)+s(u0) +Xn(u0+εn)+s

)
exp(−iω0s)

=
1
M

m∑
s=−m

s
γ

2

[
exp{i(c+ d)}+ exp{−i(c+ d)}

]
exp{−ic}

+ exp(iω0m) d (1)
M (u0, ω0)

=
γ

2
exp{id}H(1)

M (0) +
γ

2
exp{−id} exp(iω0m)H(1)

M (2ω0) + exp(iω0m) d (1)
M (u0, ω0)

= O(1) + exp(iω0m) d (1)
M (u0, ω0).

(iii) Since

cosx = 1− x2

2
+O(x4) and sinx = x+O(|x|3)
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we have with a = O
(
s2

n

)
(A.42) =

γ

2M

m∑
s=−m

[
exp{−i(a+ c+ d)} − exp{−i(c+ d)}

]
exp{ic}

=
γ

2M

m∑
s=−m

([
cos a− 1

]
− i sin a

)
exp{−id}

=
(
− γ

2M

m∑
s=1

a2 +O
(m8

n4

)
− i 2

γ

2M

m∑
s=1

a − i O
(m6

n3

))
exp{−id}

= O
(m2

n

)
if m2 ≤ n.

To derive an upper bound for (A.43) we set

hM (x) :=
[

exp
{
i x2 M

2

2n
ω′(u0)

}
− 1
]
.

with M = 2m+ 1. As above we obtain

∣∣(A.43)
∣∣ =

∣∣∣ γ
2M

m∑
s=−m

[
exp{i(a+ c+ d)} − exp{i(c+ d)}

]
exp{ic}

∣∣∣
=
∣∣∣γ exp{id}

2M

m∑
s=−m

hM
( s
M

)
exp{i 2ω(u0) s}

∣∣∣ = Op

(m
n

)
for ω(u0) 6= 0. With (A.44) this leads in total to the upper bound

∣∣(iii)∣∣ = Op

(
m2

n

)
, for m ≤ n1/2.

(iv)

1
M

m∑
t=−m

Ỹn(u0+εn)+t(u0) exp(iω0t)

=
1
M

m∑
t=−m

(
S̃n(u0+εn)+t(u0) +Xn(u0+εn)+t

)
exp(iω0t)

=
γ

2
exp{−id}+

γ

2M
exp{id} exp(−iω0m)H(0)

M (−2ω0)

+ exp(−iω0m)
1
M

d
(0)
M (u0,−ω0)

=
γ

2
exp{−id}+O

( 1
m

)
+ exp(−iω0m)

1
M

d
(0)
M (u0,−ω0).

Since E d
(0)
m (u, λ) = E d

(1)
m (u, λ) = 0 for all u and λ we now obtain

E
(
B′M (u0, λ)

)
= E

(
− i
[
(i)× (iv) + (ii)× (iii) + (i)× (iii)

]
+ cc

)
= Op

(
m2

n

)
for m ≤ n2
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and with Lemma A.3 (note that (i) and (iii) are deterministic)

var
(
B′M (u0, λ)

)
= var

(
− i
[
(i)× (iv) + (ii)× (iii)

]
+ cc

)
= Op

(
m5

n2

)
for m ≤ n2.

�

Proof of Lemma 2.3.

We have

J ′′M (u0, ξn) = (A.45){
1
M

mr∑
s=−m`

s Yn(u0+εn)+s,n exp(−iξns)

}
×

{
1
M

mr∑
s=−m`

s Yn(u0+εn)+s,n exp(iξns)

}

−

{
1
M

mr∑
s=−m`

s2 Yn(u0+εn)+s,n exp(−iξns)

}
×

{
1
M

mr∑
s=−m`

Yn(u0+εn)+s,n exp(iξns)

}
+ cc

with |ξn − ω(u0)| ≤ |ω̂n(u0) − ω(u0)|. Now we use again the formula (A.37) to estimate
the difference J ′′M (u0, ξn)− J̃ ′′M (u0, ξn). We have

J ′′M (u0, ξn)− J̃ ′′M (u0, ξn) = [(I1)× (IV1) + (II1)× (III1) + (I1)× (III1)]

− [(I2)× (IV2) + (II2)× (III2) + (I2)× (III2)] + cc, (A.46)

with:

(I1) : =
1
M

m∑
s=−m

s
(
Yn(u0+εn)+s,n − Ỹn(u0+εn)+s(u0)

)
exp

(
− iξns

)
= (i)

+
1
M

m∑
s=−m

s
(
Yn(u0+εn)+s,n − Ỹn(u0+εn)+s(u0)

)
exp

(
− iω(u0)s

)
·

· [exp {−i[ξn − ω(u0)]s} − 1] , (A.47)

(II1) : =
1
M

m∑
s=−m

s Ỹn(u0+εn)+s(u0) exp
(
− iξns

)
,

(III1) is the complex conjugate of (I1) and (IV1) the complex conjugate of (II1). On the
other side:

(I2) : =
1
M

m∑
s=−m

s2
(
Yn(u0+εn)+s,n − Ỹn(u0+εn)+s(u0)

)
exp

(
− iξns

)
=

1
M

m∑
s=−m

s2
(
Yn(u0+εn)+s,n − Ỹn(u0+εn)+s(u0)

)
exp

(
− iω(u0)s

)
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+
1
M

m∑
s=−m

s2
(
Yn(u0+εn)+s,n − Ỹn(u0+εn)+s(u0)

)
exp

(
− iω(u0)s

)
·

· [exp {−i[ξn − ω(u0)]s} − 1] ,

=
γ

M

m∑
s=−m

s2
[

cos
(
a+ b+ c+ d

)
− cos

(
c+ d

)
+O

( |s|4
n3

)
+O

( |s|+ 1
n

)]
exp{−ic}

+
1
M

m∑
s=−m

s2
(
Yn(u0+εn)+s,n − Ỹn(u0+εn)+s(u0)

)
exp

(
− iω(u0)s

)
·

· [exp {−i[ξn − ω(u0)]s} − 1] ,

=
γ

M

m∑
s=−m

s2
[

cos
(
a+ b+ c+ d

)
− cos

(
c+ d

)]
exp{−ic} (A.48)

+ O
(m6

n3

)
+O

(m3

n

)
(A.49)

+
1
M

m∑
s=−m

s2
(
Yn(u0+εn)+s,n − Ỹn(u0+εn)+s(u0)

)
exp

(
− iω(u0)s

)
·

· [exp {−i[ξn − ω(u0)]s} − 1] , (A.50)

(exactly as with (i))

(II2) : =
1
M

m∑
s=−m

s2 Ỹn(u0+εn)+s(u0) exp
(
− iξns

)

(III2) : =
1
M

m∑
s=−m

(
Yn(u0+εn)+s,n − Ỹn(u0+εn)+s(u0)

)
exp

(
iξns

)

=
γ

M

m∑
s=−m

[
cos
(
a+ c+ d

)
− cos

(
c+ d

)
+O

( |s|3
n2

)
+O

( |s|+ 1
n

)]
exp{iξns}

(IV2) : =
1
M

m∑
s=−m

Ỹn(u0+εn)+s(u0) exp
(
iξns

)
.

We now construct upper bounds for these terms.

(I1) We have for the term (A.47):

∣∣∣ 1
M

m∑
s=−m

s
(
Yn(u0+εn)+s,n − Ỹn(u0+εn)+s(u0)

)
exp

(
− iω(u0)s

)
·

· [exp {−i[ξn − ω(u0)]s} − 1]
∣∣∣

≤max
s
|exp {−i[ξn − ω(u0)]s} − 1|

m∑
s=−m

∣∣Yn(u0+εn)+s,n − Ỹn(u0+εn)+s(u0)
∣∣,

which is op(m) for m << n1/2 (as maxs |exp {−i[ξn − ω(u0)]s} − 1| goes in this case to
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zero because of Theorem 2.2) and O(m) for otherwise. Altogether we obtain

(I1) =

 op(m), m << n1/2

Op(m), otherwise
.

(II1) We obtain with ω0 = ω(u0):

|(II1)| =

∣∣∣∣∣ 1
M

m∑
s=−m

s Ỹn(u0+εn)+s(u0) exp(−iξns)

∣∣∣∣∣ =

=

∣∣∣∣∣ 1
M

m∑
s=−m

s
(
S̃n(u0+εn)+s(u0) +Xn(u0+εn)+s

)
exp(−iξns)

∣∣∣∣∣
≤

∣∣∣∣∣ 1
M

m∑
s=−m

s
γ

2

[
exp{i(c+ d)}+ exp{−i(c+ d)}

]
exp{−iξns}

∣∣∣∣∣
+ sup

λ

∣∣∣∣∣ 1
M

m∑
s=−m

sXn(u0+εn)+s exp(−iλs)

∣∣∣∣∣
=
γ

2
exp{id}H(1)

M (ω0 − ξn) +
γ

2
exp{−id} exp(iω0m)H(1)

M (−ω0 − ξn)

+ sup
λ

∣∣∣∣∣ 1
M

m∑
s=−m

sXn(u0+εn)+s exp(−iλs)

∣∣∣∣∣
= O(m) +O(1) + op(m) = Op(m),

where the last line holds because of (A.4) and Lemma A.1.
(I2) We have with (A.33)

(A.48) =
γ

M

m∑
s=−m

s2
[

cos
(
a+ b+ c+ d

)
− cos

(
c+ d

)]
exp{−ic}

=
γ

M

m∑
s=−m

s2
[
O

(
s2

n

)
+O

(
s3

n2

)]
exp{−ic}

= O

(
m4

n

)
+O

(
m5

n2

)
= O

(
m4

n

)
,

while for the term (A.50) it holds:∣∣∣∣∣ 1
M

m∑
s=−m

s2
(
Yn(u0+εn)+s,n − Ỹn(u0+εn)+s(u0)

)
exp

(
− iω(u0)s

)
· [exp {−i[ξn − ω(u0)]s} − 1]

∣∣∣∣∣
≤max

s
|exp {−i[ξn − ω(u0)]s} − 1|

m∑
s=−m

|s|
∣∣Yn(u0+εn)+s,n − Ỹn(u0+εn)+s(u0)

∣∣ = o(m2),

for m << n1/2. Altogether we obtain

(I2) =

 o(m2), m << n1/2

O(m2), otherwise
.
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(II2) We obtain exactly as with (II1): |(II2)| = Op(m2).
(III2) We have with a = O

(
s2

n

)
and the mean value theorem

∣∣(III2)
∣∣ =

γ

M

m∑
s=−m

[
O
(s2
n

)
+O

( |s|3
n2

)
+O

( |s|+ 1
n

)]
= O

(m2

n

)
.

(IV2) We have

|(IV2)| ≤

∣∣∣∣∣ γM
m∑

s=−m
cos(. . .) exp{−iξns}

∣∣∣∣∣+

∣∣∣∣∣ 1
M

m∑
s=−m

Xn(uo+εn)+s exp{−iξns}

∣∣∣∣∣
= O(1) +Op(1).

Putting all these together we obtain

J ′′M (u0, ξn)− J̃ ′′M (u0, ξn) =

 op(m2), m << n1/2

Op(m2), otherwise
.

Thus the theorem is established. �

Proof of Theorem 2.7.
By making similar considerations like in Remark A.2 we can see that

Ynu0+s,n = αn(u0) cos (ω(u0)s) + βn(u0) sin (ω(u0)s) +O

(
s2

n

)
(A.51)

We now start evaluating the terms in (2.19) and (2.20). Using (A.51) we have (for sim-
plicity in the notation we omit u0 and we set ω0 := ω(u0))

M−1/2∂Sm(α, β, ω;u0)
∂α

∣∣∣∣∣
cn,0

= − 2

M
1
2

m∑
−m

[Ynu0+s,n − αn cos(ω0s)− βn sin(ω0s)] cos(ω0s)

(A.52)

= − 2

M
1
2

m∑
−m

Xnu0+s,n cos(ω0s) +O

(
m5/2

n

)
.

Then we have

M−1∂
2Sm(α, β, ω;u0)

∂α2

∣∣∣∣∣
c̃n

=
2
M

m∑
−m

cos2(ω̃ns) =
2
M

m∑
−m

cos2[ω0s+ (ω̃n − ω0)s] (A.53)

=
2
M

m∑
−m

[cos2(ω0s) +Op(m−1/2)]

= 1 + o(m−1) +Op(m−1/2)

because of Theorem 2.6. Furthermore

M−1∂
2Sm(α, β, ω;u0)

∂α∂β

∣∣∣∣∣
c̃n

= M−1
m∑
−m

cos(ω̃ns) sin(ω̃ns) = 0 (A.54)
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because sin(−x) = − sin(x) and cos(−x) = cos(x) for all x ∈ R. Finally, making similar
considerations and using Lemma 2.1 we see that

M−2∂
2Sm(α, β, ω;u0)

∂α∂ω

∣∣∣∣∣
c̃n

=
2
M2

m∑
−m

s[Ynu0+s,n − α̃n cos(ω̃ns)− β̃n sin(ω̃ns)] sin(ω̃ns)

(A.55)

− 2
M2

m∑
−m

s[α̃n sin(ω̃ns)− β̃n cos(ω̃ns)] cos(ω̃ns)

= op(1)

for m = o(n2/5). Thus, using (A.52), (A.53), (A.54), (A.55) and (2.19) and for m = o(n2/5)
we see that

M1/2
(
αn(u0)− α̂n(u0)

)
= − 2

M
1
2

m∑
−m

Xnu0+s,n cos(ω0s) + op(1). (A.56)

Completely analogously we can show

M1/2
(
βn(u0)− β̂n(u0)

)
= − 2

M
1
2

m∑
−m

Xnu0+s,n sin(ω0s) + op(1). (A.57)

Following Hannan ([9, p. 518]), we can analogously show that

M−1/2J ′M (u0, ω0) = (A.58)

βn
1

M3/2

m∑
−m

sXnu0+s,n cos(ω0s)− αn
1

M3/2

m∑
−m

sXnu0+s,n sin(ω0s) + op(1).

The difference between this last equation and the result of Hannan is due to the different
summation, which in Hannan is from 1 to M . Summing from −m to m makes some
terms vanish. The assertion of the theorem now follows using (A.56), (A.57), (A.58),
Theorem 2.4, Lemma 2.3 and the result in [3, Theorem 4.4.2.]. �



AppendixB
Proofs of Chapter 3

B.1 The modified Fourier transform

We introduce here the modified Fourier transform of a stationary time series as:

d(mn)
X (P (·)) =

[∑
t

ha(t/mn)Xa(t) exp{−iP (t)}

]
(B.1)

= [d(mn)
a (P (·))] for a = 1, ..., r, t = 1, ...,mn

where mn is an increasing integer function of n (where not needed we omit n from the
notation), Xa is the ath component of a stationary r vector-valued series, P (t) = λ0t+ λ1

n t
2

with λ0 ∈ [0, π] and λ1 in a bounded space Λ1 ⊂ R and ha(u) a taper function with
ha(u) = uk for 0 ≤ u ≤ 1 and some natural k and vanishes for |u| > 1. Now we can prove

Theorem B.1. Corresponds to Theorem 4.4.2 in [3].
Let X(t), t = 0,±1, ... be an r vector-valued stationary time series satisfying∑

u1

· · ·
∑
uk−1

|ca1...ak(u1, ..., uk−1)| <∞ (B.2)

with

ca1...ak(u1, ..., uk−1) = cum{Xa1(t+ u1), ..., Xa1(t+ uk−1), Xak(t)}. (B.3)

Let Pj(t) = λ
(j)
0 t + λ

(j)
1
n t2 for 0 ≤ t ≤ mn where n ∈ N, mn = O(np), 1/2 < p < 2/3.

Suppose [λ(j)
0 , λ

(j)
1 ]′ 6= [λ(k)

0 , λ
(k)
1 ]′ ∈ (0, π)×R for 1 ≤ j < k ≤ J . Let d(mn)

a (P (·)) be like in
(B.1). Then the m−1/2

n d
(mn)
X (Pj(·)), j = 1, . . . , J are asymptotically independent complex

variates with asymptotic distribution NC
r (0, 2π[Hab(0)fab(λ

(j)
0 )]), where

Hab(λ) =
∫
h(m)
a (t)h(m)

b (t) exp{−iλt}dt, h
(m)
i (t) := hi(t/m)

fab(λ) = (2π)−1
∑
u

exp{−iλu}cab(u).

Moreover, if X(t) has zero mean the above also holds for 1/2 < p < 1.
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In order to prove the theorem we proceed with a sequence of lemmas partly following
the lemmas and theorems in [3, p.402-405] adapted to our case, i.e. using the modified
Fourier transform instead of the usual one. The proofs involve a category of functions
ha(u) that are bounded, of bounded variation and vanish for |u| > 1. For our purposes
we only need a subset of it, namely ha(u) = un1I{|u|≤1}, for some n ∈ N. In the proofs
of Brillinger appears some integer T . For us this T is a function of n (i.e. mn) with
mn = O(np), for 1/2 < p < 1. The index n though is mainly omitted for convenience.

Lemma B.1. Let λ1 6= 0. For λ0 6= 0 (mod 2π) we have

m∑
t=1

tk

mk
exp

{
i

(
λ0t+ λ̃0

s

n
t+ λ1

t2

n

)}
= O

(
m2

n

)

uniformly for all s : |s| ≤ s0 for some s0 ∈ N with k ∈ {1, 2, ...} and λ̃0 ∈ R. Moreover,
for arbitrary λ0 we have

lim
n→∞

1
m

m∑
t=1

tk

mk
exp

{
i

(
λ0t+ λ̃0

s

n
t+ λ1

t2

n
)
)}

= 0.

Proof. Suppose λ0 6= 0. Let hm(x) := xk exp
{
ix2m2

n λ1

}
. By using partial summation

(cf. [5, (6)]) we get∣∣∣∣∣
m∑
t=1

tk

mk
exp

{
i

(
λ0t+ λ̃0

s

n
t+ λ1

t2

n

)}∣∣∣∣∣
=

∣∣∣∣∣
m∑
t=1

hm

(
t

m

)
exp

{
i
(
λ0 + λ̃0

s

n

)
t
}∣∣∣∣∣ ≤ (V ar(hm) + |hm(1)|

)
Lm(λ0 + λ̃0

s

n
)

≤
(

sup
−1≤x≤1

∣∣h′m(x)
∣∣+ |hm(1)|

) 1
λ0 + λ̃0

s
n

≤ C
∣∣∣∣m2

n
λ1

∣∣∣∣ 1
λ0 + λ̃0

s
n

for some constant C. Thus the expression in question is O(m
2

n ), as λ̃0
s
n goes to zero

uniformly for all s in question.

Now suppose λ0 = 0 and λ1 6= 0.∣∣∣∣∣ 1
m

m∑
t=1

tk

mk
exp

{
i

(
λ̃0
s

n
t+ λ1

t2

n

)}∣∣∣∣∣
≤

∣∣∣∣∣ 1
m

m∑
t=1

tk

mk
exp

{
iλ1

t2

n

}∣∣∣∣∣+
+

1
m

m∑
t=1

∣∣∣∣ tkmk
exp

{
iλ1

t2

n

}∣∣∣∣ ∣∣∣(exp
{
iλ̃0

s

n
t
}
− 1
)∣∣∣

where the second term goes to zero uniformly for all s : |s| ≤ s0 for any s0 ∈ N as
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maxs,t
∣∣∣(exp

{
iλ̃0

s
n t
}
− 1
)∣∣∣ goes to zero. The square of the first term is

∣∣∣∣∣ 1
m

m∑
t=1

tk

mk
exp

{
iλ1

t2

n

}∣∣∣∣∣
2

=

[
1
m

m∑
t=1

tk

mk
cos
(
λ1
t2

n

)]2

+

[
1
m

m∑
t=1

tk

mk
sin
(
λ1
t2

n

)]2

.

In the following we discuss the behavior of the first term of the right side, as the behavior
of the second one is essentially the same. We have:

tk

mk
cos
(
λ1
t2

n

)
≤∫ t

t−1

xk

mk
cos
(
λ1
x2

n

)
dx+ sup

x∈[t−1,t]

xk

mk
cos
(
λ1
x2

n

)
− inf
x∈[t−1,t]

xk

mk
cos
(
λ1
x2

n

)
which, if we sum on both sides, gives:∣∣∣∣∣ 1

m

m∑
t=1

tk

mk
cos
(
λ1
x2

n

)∣∣∣∣∣ ≤
∣∣∣∣ 1
m

∫ m

0

xk

mk
cos
(
λ1
x2

n

)
dx

∣∣∣∣+
+

∣∣∣∣∣ 1
m

m∑
t=1

[
sup

x∈[t−1,t]

xk

mk
cos
(
λ1
x2

n

)
− inf
x∈[t−1,t]

xk

mk
cos
(
λ1
x2

n

)]∣∣∣∣∣
≤ 1
m

[∣∣∣∣∫ m

0

xk

mk
cos
(
λ1
x2

n

)
dx

∣∣∣∣+
m∑
t=1

sup
x,x′∈[t−1,t]

∣∣∣∣λ1
x2

n
− λ1

x′2

n

∣∣∣∣+
m∑
t=1

O

(
tk−1

mk

)]

≤ 1
mk+1

∣∣∣∣∫ m

0
xk cos

(
λ1
x2

n

)
dx

∣∣∣∣+
1
m

m∑
t=1

[
2
λ1

n
t− λ1

n

]
+O(m−1)

The second term of the last equation is O(m/n). The integral of the first term is for k = 0∫ m

0
cos
(
λ1
x2

n

)
dx =

√
π

2λ1
n1/2C

(√
2λ1

π

m

n1/2

)
= O(n1/2)

where C(u) is the Fresnel integral (bounded uniformly for all u ∈ R). For k ≥ 1 we have∣∣∣∣∫ m

0
xk cos

(
λ1
x2

n

)
dx

∣∣∣∣ =

∣∣∣∣∣
∫ m

0

nxk−1

2λ1

[
sin
(
λ1
x2

n

)]′
dx

∣∣∣∣∣
=
∣∣∣∣[nxk−1

2λ1
sin
(
λ1
x2

n

)]m
0

−
∫ m

0

n(k − 1)xk−2

2λ1
sin
(
λ1
x2

n

)
dx

∣∣∣∣
≤ nmk−1

2λ1
+
n(k − 1)

2λ1

∫ m

0
xk−2dx = O(nmk−1)

With that the lemma is established.

Next we have
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Lemma B.2. Corresponds to Lemma P4.1 in [3]

If h(m)
a = ha(t/m) for a = 1, ..., r, then∣∣∣∣∣∑

t

h(m)
a1

(t+ u1) · · ·h(m)
ak−1

(t+ uk−1)h(m)
ak

(t) exp{−iP (t)} −H(m)
a1···ak(P (·))

∣∣∣∣∣
≤ K

k−1∑
1

|uj |

for any uj, j = 1, ..., k − 1 and some finite K with

H
(m)
a1···ak(P (·)) =

∑
t

[
k∏
1

h(m)
aj (t)

]
exp{−iP (t)}

with a1, ..., ak = 1, ..., r and P (t) = λ0t+ λ1
n t

2 for λ0 6= 0 and λ1 ∈ R. This holds uniformly
for all such P (t).

Proof. Because of the definition of H(m)
a1···ak(P (·)) and the fact that | exp{−iP (t)}| = 1 the

expression in question is

≤
∑
t

|h(m)
a1

(t+ u1) · · ·h(m)
ak−1

(t+ uk−1)− h(m)
a1

(t) · · ·h(m)
ak−1

(t)||h(m)
ak

(t)|

≤ L
k−1∑
a=1

∑
t

|h(m)
a (t+ ua)− h(m)

a (t)|

for some finite L. Suppose for convenience ua > 0. (The other cases are handled similarly.)
The expression is now

≤ L
k−1∑
a=1

∑
t

ua−1∑
v=0

|h(m)
a (t+ v + 1)− h(m)

a (t+ v)|

≤M
k−1∑
a=1

ua−1∑
v=0

|variation of ha| ≤ K
k−1∑
1

|uj |

for some finite M and K.

Next we have

Lemma B.3. Corresponds to Lemma P4.2 in [3]

cumulant{d(m)
a1

(P1(·)), ..., d(m)
ak

(Pk(·))} =
S∑

u1=−S
· · ·

S∑
uk−1=−S

H(m)
a1...ak

(P̃1(·) + · · ·+ P̃k−1(·) + Pk(·))×

× exp{−i(P1(u1) + · · ·+ Pk−1(uk−1))}ca1...ak(u1, ..., uk−1) + εm
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where Pj(t) = λ
(j)
0 t+ λ

(j)
1
n t2, P̃j(t) = Pj(t) + 2λ(j)

1
uj
n t for j = 1, ..., k− 1, S = 2(m− 1) and

|εm| ≤ K
S∑
−S
· · ·

S∑
−S

(|u1|+ · · ·+ |uk−1|)|ca1...ak(u1, ..., uk−1)|

for some finite K.

Proof. The cumulant has the form

∑
t1

· · ·
∑
tk

h(m)
a1

(t1) · · ·h(m)
ak

(tk) exp

{
−i

k∑
1

Pj(tj)

}
ca1...ak(t1 − tk, ..., tk−1 − tk)

=
S∑

u1=−S
· · ·

S∑
uk−1=−S

exp

{
−i

k−1∑
1

Pj(uj)

}
ca1...ak(u1, ..., uk−1)×

×
∑
t

h(m)
a1

(t+ u1) · · ·h(m)
ak−1

(t+ uk−1)h(m)
ak

(t) exp

{
−i

k∑
1

P̃j(t)

}

with P̃k(t) = Pk(t). The last equality results after changing the summation variables:
t = tk, uj = tj − t for j = 1, ..., k − 1. Using Lemma B.2 this equals

S∑
u1=−S

· · ·
S∑

uk−1=−S
H(m)
a1...ak

(P̃1(·) + · · ·+ P̃k−1(·) + Pk(·))×

× exp{−i(P1(u1) + · · ·+ Pk−1(uk−1))}ca1...ak(u1, ..., uk−1) + εm

where εm has the indicated bound for some overall finite K, as Lemma B.2 holds uniformly
for all parabolic functions P (t).

Lemma B.4. Corresponds to Lemma P4.3 in [3].

Under the condition (B.2), εm = o(m) as m→∞.

Proof.

m−1|εm| ≤ K
S∑
−S
· · ·

S∑
−S

m−1(|u1|+ · · ·+ |uk−1|)|ca1...ak(u1, ..., uk−1)|.

Now for any fixed u1, . . . , uk−1 : m−1(|u1|+ · · ·+ |uk−1|)→ 0 as m→∞. Because of (B.2)
we may now use the dominated convergence theorem to have the desired result.

Now we can prove Theorem B.1:

We have

m−1/2Ed(m)
a (Pj(·)) = m−1/2

mn−1∑
t=0

ha(t/m) exp{−iPj(t)}EXa(t)
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which is either zero or goes to zero because of Lemma B.1. Then we have

cov{m−1/2d(m)
a (Pj(·)),m−1/2d

(m)
b (Pk(·))} = m−1cum{d(m)

a (Pj(·)), d(m)
b (Pk(·))}

= m−1
S∑

u=−S
H

(m)
ab (P̃j(·)− Pk(·)) exp{−iPj(u)}cab(u) + o(1)

where the last equation holds because of Lemmas B.3 and B.4. This tends to zero if
(λ(j)

0 , λ
(j)
1 ) 6= (λ(k)

0 , λ
(k)
1 ) because of (B.2), Lemma B.1 and the dominated convergence

theorem. If (λ(j)
0 , λ

(j)
1 ) = (λ(k)

0 , λ
(k)
1 ) it equals

m−1
S∑

u=−S
H

(m)
ab (P0,j(·)) exp{−iPj(u)}cab(u) + o(1)

= m−1

bnp̃c∑
u=−bnp̃c

H
(m)
ab (P0,j(·)) exp{−iPj(u)}cab(u)+

+m−1
∑

|u|>bnp̃c
−S≤u≤S

H
(m)
ab (P0,j(·)) exp{−iPj(u)}cab(u) + o(1)

with P0,j(t) := λ
(j)
1
n ut, for some positive p̃ such that p + p̃ < 1. The second term goes to

zero as n→∞ because of (B.2). The summary of the first term is equal to

bnp̃c∑
u=−bnp̃c

m∑
t=−m

h(m)
a (t)h(m)

b (t) exp

{
−λ

(j)
1

n
ut

}
exp

{
−i

(
λ

(j)
0 u+

λ
(j)
1

n
u2

)}
cab(u)

=
bnp̃c∑

u=−bnp̃c

m∑
t=−m

h(m)
a (t)h(m)

b (t) exp
{
−iλ(j)

0 u
}
cab(u)+

bnp̃c∑
u=−bnp̃c

m∑
t=−m

h(m)
a (t)h(m)

b (t) exp
{
−iλ(j)

0 u
}(

exp

{
−iλ

(j)
1

n
(u2 + ut)

}
− 1

)
cab(u).

The term exp
{
−iλ

(j)
1
n (u2 + ut)

}
goes to unity as n → ∞ uniformly for all −bnp̃c ≤ u ≤

bnp̃c and −m ≤ t ≤ m. Thus the second term is o(m) because of (B.2), the fact that
h

(m)
a (t) is bounded and due to the theorem of the dominated convergence. Altogether we

have for the case (λ(j)
0 , λ

(j)
1 ) = (λ(k)

0 , λ
(k)
1 ):

cov{m−1/2d(m)
a (P (·)),m−1/2d

(m)
b (P (·))}

=
bnp̃c∑

u=−bnp̃c

m−1
m∑

t=−m
h(m)
a (t)h(m)

b (t) exp
{
−iλ(j)

0 u
}
cab(u) + o(1)

= m−1H
(m)
ab (0)

bnp̃c∑
u=−bnp̃c

exp
{
−iλ(j)

0 u
}
cab(u) + o(1)
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Thus the second cumulant behaves in the manner required by the theorem. Finally it
follows directly from Lemma B.3 that

lim
n→∞

m−k/2n cum{d(m)
a1

(P1(·)), ..., d(m)
ak

(Pk(·))} = 0

for k ≥ 3 as Ha1...ak(.) is O(m).
Putting the above results together, we see that the cumulants of the variates at issue,

and the conjugates of those variates, tend to the cumulants of a normal distribution with
the parameters indicated. Thus the theorem is established. �

B.2 Proofs of theorems

B.2.1 Consistency of the frequency estimator

Proof of Theorem 3.1
In order to prove Theorem 3.1 we need two lemmas, one referring to the stochastic and
the other to the deterministic part of (2.3).

Lemma B.5. Under the assumptions of Theorem B.1 and if EXt = 0

lim
n→∞

sup
λ0,λ1

∣∣∣∣∣r−1
r∑
t=1

tk

rk
Xte

i(λ0t+
λ1
n
t2)

∣∣∣∣∣ = 0, a.s.

for all k ∈ N and for m = O(np) where 1/2 < p < 1 and λ1 is bounded.

Proof. We split the r summands into groups of Kn members, so that Kn = o(n1−p) and
Kn goes to infinity. Then, for mn = K−1

n r and Rn = r − bmncKn we have:

sup
λ0,λ1

∣∣∣∣∣r−1
r∑
t=1

tk

rk
Xte

i(λ0t+
λ1
n
t2)

∣∣∣∣∣ (B.4)

= sup
λ0,λ1

∣∣∣∣∣∣∣∣
1

mnKn

 Rn∑
s=0

tk

rk
Xse

i(λ0s+
λ1
n
s2) +

bmnc∑
j=1

jKn∑
t=1+

(j−1)Kn

tk

rk
Xt+Rne

i(λ0t+
λ1
n
t2)


∣∣∣∣∣∣∣∣

≤ sup
λ0,λ1

∣∣∣∣∣ 1
mnKn

Rn∑
s=0

tk

rk
Xse

i(λ0s+
λ1
n
s2)

∣∣∣∣∣+

sup
λ0,λ1

∣∣∣∣∣∣m−1
n

bmnc∑
j=1

K−1
n

∑
t

tk

rk
Xt+Rne

i(λ0t+
λ1
n
t2)

∣∣∣∣∣∣
≤ sup

λ0,λ1

∣∣∣∣∣∣m−1
n

bmnc∑
j=1

K−1
n

∑
t

tk

rk
Xt+Rne

i(λ0t+
λ1
n
t2)

∣∣∣∣∣∣+
1

mnKn

Rn∑
s=0

|Xs|,

where we set X0 = 0. The second term of the right side of (B.4) converges to zero. To
show that we write (note that Rn ≤ mn +Kn):

m−1
n K−1

n

Rn∑
s=0

|Xs| =
mn +Kn

mnKn

1
mn +Kn

Rn∑
s=0

|Xs|. (B.5)
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Because n−1
∑n

1 |Xt| converges to E|Xt| <∞ we have:

∀ε > 0 ∃n′0 ∈ N : n−1
n∑
1

|Xt| < E|Xt|+ ε (a.s.), ∀n ≥ n′0.

Then it holds that:

∃n0 ∈ N : mn +Kn ≥ n′0, ∀n ≥ n0

:
1

mn +Kn

Rn∑
t=0

|Xt|

(
≤ 1
mn +Kn

mn+Kn∑
t=0

|Xt|

)
< E|Xt|+ ε, ∀n ≥ n0.

Combining this, (B.5) and the fact that mn+Kn
mnKn

goes to zero we have the desired result.
Now, we can write for all j ∈ {1, ..., bmnc}, t ∈ {(j − 1)Kn + 1, ..., jKn}:

λ1

n
t2 =

λ1

n
(t− jKn + jKn)2

=
λ1

n
(jKn)2 +

λ1

n
(t− jKn)2 + 2

λ1

n
(t− jKn)jKn

=
λ1

n
(jKn)2 +Dn(j, t),

where Dn(j, t) = 2λ1
n (t−jKn)jKn+ λ1

n (t−jKn)2 is o(1) uniformly for all j ∈ {1, ..., bmnc},
t ∈ {(j − 1)Kn + 1, ..., jKn} because λ1 is bounded, Kn is o(n1−p), m = K−1

n r, t− jKn is
of the same order with Kn and 1/2 < p < 1. For t′ := t+ (j − 1)Kn we can write the first
term on the right side of (B.4) as:

sup
λ0,λ1

∣∣∣∣∣∣m−1
n

bmnc∑
j=1

K−1
n

∑
t

tk

rk
Xt+Rne

i(λ0t+
λ1
n
t2)

∣∣∣∣∣∣ = (B.6)

= sup
λ0,λ1

∣∣∣∣∣∣m−1
n

bmnc∑
j=1

K−1
n

jKn∑
t=1+(j−1)Kn

tk

rk
Xt+Rne

i(λ0t+
λ1
n
j2K2

n+Dn(j,t))

∣∣∣∣∣∣
≤ m−1

n

bmnc∑
j=1

sup
λ0,λ1

∣∣∣ei(λ0(j−1)Kn+
λ1
n
j2K2

n)
∣∣∣K−1

n

∣∣∣∣∣
Kn∑
t=1

t′k

rk
Xt′+Rne

i(λ0t+Dn(j,t′))

∣∣∣∣∣
= m−1

n

bmnc∑
j=1

sup
λ0,λ1

K−1
n

∣∣∣∣∣
Kn∑
t=1

t′k

rk
Xt′+Rn

[
ei(λ0t) + ei(λ0t)

(
eiDn(j,t′) − 1

)]∣∣∣∣∣
≤ m−1

n

bmnc∑
j=1

sup
λ0,λ1

K−1
n

∣∣∣∣∣
Kn∑
t=1

t′k

rk
Xt′+Rne

i(λ0t)

∣∣∣∣∣
+m−1

n

bmnc∑
j=1

sup
λ0,λ1

K−1
n

∣∣∣∣∣
Kn∑
t=1

t′k

rk
Xt′+Rne

i(λ0t)
(
eiDn(j,t′) − 1

)∣∣∣∣∣
≤ m−1

n

bmnc∑
j=1

sup
λ0,λ1

K−1
n

∣∣∣∣∣
Kn∑
t=1

t′k

rk
Xt′+Rne

i(λ0t)

∣∣∣∣∣
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+m−1
n

bmnc∑
j=1

sup
λ0,λ1,
j,t′

K−1
n

Kn∑
t=1

|Xt′+Rn |
∣∣∣eiDn(j,t′) − 1

∣∣∣
≤ m−1

n

bmnc∑
j=1

sup
λ0,λ1

K−1
n

∣∣∣∣∣
Kn∑
t=1

t′k

rk
Xt′+Rne

i(λ0t)

∣∣∣∣∣
+ sup
λ0,λ1,
j,t′

∣∣∣eiDn(j,t′) − 1
∣∣∣m−1

n K−1
n

bmnc∑
j=1

Kn∑
t=1

|Xt′+Rn |

≤ m−1
n

bmnc∑
j=1

sup
λ0,λ1

K−1
n

∣∣∣∣∣
Kn∑
t=1

t′k

rk
Xt′+Rne

i(λ0t)

∣∣∣∣∣+ sup
λ0,λ1,
j,t′

∣∣∣eiDn(j,t′) − 1
∣∣∣ r−1

r∑
t=1

|Xt|. (B.7)

The second one of these two terms goes to zero, as Dn(j, t) goes to zero uniformly for all
j, t, λ0, λ1 and 1

r

∑
t |Xt| converges to E|Xt| <∞. For the first term we have the following:

sup
λ0

K−1
n

∣∣∣∣∣
Kn∑
t=1

t′k

rk
Xt′+Rne

i(λ0t)

∣∣∣∣∣ = sup
λ0

K−1
n

∣∣∣∣∣
Kn∑
t=1

[(j − 1)Kn + t]k

rk
Xt′+Rne

i(λ0t)

∣∣∣∣∣
≤ sup

λ0

K−1
n

∣∣∣∣∣
Kn∑
t=1

[(j − 1)Kn]k

rk
Xt′+Rne

i(λ0t)

∣∣∣∣∣+
sup
λ0

K−1
n

∣∣∣∣∣
Kn∑
t=1

∑k
i=1

(
k
i

)
ti[(j − 1)Kn]k−i

rk
Xt′+Rne

i(λ0t)

∣∣∣∣∣
The last term is

≤ k sup
λ0

K−1
n

∣∣∣∣∣
Kn∑
t=1

t

r
Xt′+Rne

i(λ0t)

∣∣∣∣∣ ≤ kKn

r
K−1
n

Kn∑
t=1

|Xt′+Rn |

which goes to zero as E|Xt| < ∞ and Kn = o(n1−p), r = O(np) with p > 1/2. Thus the
dominating term in (B.7) is

m−1
n

bmnc∑
j=1

sup
λ0

K−1
n

∣∣∣∣∣
Kn∑
t=1

[(j − 1)Kn]k

rk
Xt′+Rne

i(λ0t)

∣∣∣∣∣
≤ m−1

n

bmnc∑
j=1

sup
λ0

K−1
n

∣∣∣∣∣
Kn∑
t=1

Xt′+Rne
i(λ0t)

∣∣∣∣∣ .
Now let us for i ≥ 1 consider the function

g
(K)
i (X) := sup

λ0

K−1

∣∣∣∣∣
K∑
t=1

X(i−1)K+te
i(λ0t)

∣∣∣∣∣ : RK → R.

g(X) is measurable and because Xt is ergodic we know from the ergodic theory that

lim
m→∞

1
m

m∑
1

g
(K)
i (X) = Eg(K)

i (X) K→∞−→ 0,
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where the last limit equation is a standard result in time series analysis (e.g.[3, p.98]).
With that the lemma is established.

Note that for p < 1/2 the term λ1
n t

2 goes to zero uniformly for all t in question. Thus
it is easy to prove that the lemma also holds for this case, but this is not needed for our
purposes below.

Lemma B.6. If β is bounded and mn = O(np) with 1/2 < p < 1, then

lim
n→∞

∣∣∣∣∣ 1
m

m∑
t=1

ei(αt+
β
n
t2)

∣∣∣∣∣ = 0

uniformly for all |α|+ |β| > δ, for every δ > 0 (for |α| mod 2π).

Proof. We split the m summands into groups of Kn members, so that Kn = o(n1−p) and
Kn goes to infinity. Then, for m̃n = K−1

n m we have:

∣∣∣∣∣ 1
m

m∑
t=1

ei(αt+
β
n
t2)

∣∣∣∣∣
=

∣∣∣∣∣∣ 1
m

bm̃nc∑
j=1

jKn∑
t=(j−1)Kn+1

ei(αt+
β
n
t2) +

m̃nKn∑
s=bm̃ncKn+1

ei(αs+
β
n
s2)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1
m

bm̃nc∑
j=1

jKn∑
t=(j−1)Kn+1

ei(αt+
β
n
t2)

∣∣∣∣∣∣+
1
m

m̃nKn∑
s=bm̃ncKn+1

∣∣∣ei(αs+ β
n
s2)
∣∣∣

≤

∣∣∣∣∣∣ 1
m

bm̃nc∑
j=1

jKn∑
t=(j−1)Kn+1

ei(αt+
β
n
t2)

∣∣∣∣∣∣+
Kn

m
,

with Kn/m being o(n1−2p) and therefor converging to zero. Now, we can write for all
j ∈ {1, ..., bm̃nc}, t ∈ {(j − 1)Kn + 1, ..., jKn}:

λ1

n
t2 =

λ1

n
(t− jKn + jKn)2 (B.8)

=
λ1

n
(jKn)2 +

λ1

n
(t− jKn)2 + 2

λ1

n
(t− jKn)jKn

=
λ1

n
(jKn)2 +Dn(j, t),

where Dn(j, t) = 2λ1
n (t−jKn)jKn+ λ1

n (t−jKn)2 is o(1) uniformly for all j ∈ {1, ..., bm̃nc},
t ∈ {(j − 1)Kn + 1, ..., jKn} because λ1 is bounded, Kn is o(n1−p), m = O(np), t − jKn
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is of the same order with Kn and 1/2 < p < 1. Then

∣∣∣∣∣∣ 1
m

bm̃nc∑
j=1

jKn∑
t=(j−1)Kn+1

ei(αt+
β
n
t2)

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1
m

bm̃nc∑
j=1

∑
t

ei(αt+
β
n
j2K2

n+Dn(j,t))

∣∣∣∣∣∣
≤ m̃−1

n

bm̃nc∑
j=1

∣∣∣ei(α(j−1)Kn+ β
n
j2K2

n)
∣∣∣K−1

n

∣∣∣∣∣
Kn∑
t=1

ei(αt+Dn(j,t′))

∣∣∣∣∣
= m̃−1

n

bm̃nc∑
j=1

K−1
n

∣∣∣∣∣
Kn∑
t=1

[
ei(αt) + ei(αt)

(
eiDn(j,t′) − 1

)]∣∣∣∣∣
≤ m̃−1

n

bm̃nc∑
j=1

K−1
n

∣∣∣∣∣
Kn∑
t=1

ei(αt)

∣∣∣∣∣+ m̃−1
n

bm̃nc∑
j=1

K−1
n

Kn∑
t=1

∣∣∣eiDn(j,t′) − 1
∣∣∣

≤ K−1
n

∣∣∣∣∣
Kn∑
t=1

ei(αt)

∣∣∣∣∣+ max
j,t

∣∣∣eiDn(j,t′) − 1
∣∣∣ ,

where t′ = t+(j−1)Kn. The second vanishes as n grows (see definition of Dn(j, t) above),
while the first one converges to zero uniformly for all |α| > δα (mod 2π), for every δα > 0.
Altogether we have:

∣∣∣∣∣ 1
m

m∑
t=1

ei(αt+
β
n
t2)

∣∣∣∣∣ converges to zero uniformly for all (B.9)

|α| > δα (mod 2π), for every δα > 0.

On the other hand, we can express the square of the same norm as follows:

∣∣∣∣∣ 1
m

m∑
t=1

ei(αt+
β
n
t2)

∣∣∣∣∣
2

=

[
1
m

m∑
t=1

cos(αt+
β

n
t2)

]2

+

[
1
m

m∑
t=1

sin(αt+
β

n
t2)

]2

.

In the following we discuss the behavior of the first term of the right side, while the
behavior of the second one is essentially the same. We have:

cos(αt+
β

n
t2)

≤
∫ t

t−1
cos(αx+

β

n
x2)dx+ sup

x∈[t−1,t]
cos(αx+

β

n
x2)− inf

x∈[t−1,t]
cos(αx+

β

n
x2),

which, if we sum on both sides, gives:

1
m

m∑
t=1

cos(αt+
β

n
t2) ≤ (B.10)
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≤ 1
m

∫ m

0
cos(αx+

β

n
x2)dx

+
1
m

m∑
t=1

[
sup

x∈[t−1,t]
cos(αx+

β

n
x2)− inf

x∈[t−1,t]
cos(αx+

β

n
x2)

]

≤ 1
m

[∫ m

0
cos(αx+

β

n
x2)dx+

m∑
t=1

sup
x,x′∈[t−1,t]

∣∣∣∣αx+
β

n
x2 − αx′ − β

n
x′

2

∣∣∣∣
]

≤ 1
m

∫ m

0
cos(αx+

β

n
x2)dx+

1
m

m∑
t=1

[
|α|+ 2

|β|
n
t− |β|

n

]
=

1
m

∫ m

0
cos(αx+

β

n
x2)dx+ |α|+ o(np−1)

because | cos(x) − cos(y)| ≤ |x − y| for all x, y ∈ R. The integral on the right side of the
last equation equals to (because cos(−x) = cos(x) we can always assume that β ≥ 0):

1
m

∫ m

0
cos(αx+

β

n
x2)dx (B.11)

=
1√
β

√
n

m

√
π

2

[
cos
(
α2n

4β

)
C

(
αn+ 2βx√

2βnπ

)
+ sin

(
α2n

4β

)
S

(
αn+ 2βx√

2βnπ

)]m
0

,

where C(x) and S(x) are the Fresnel-C and Fresnel-S integrals, bounded for all x ∈ R.
This means that the above integral goes uniformly to zero for all |β| > δβ, for every δβ > 0.
Putting together (B.10) and (B.11) we have for this second evaluation that:

For every εβ there is nβ with

∣∣∣∣∣∣ 1
bnpc

bnpc∑
t=1

ei(αt+
β
n
t2)

∣∣∣∣∣∣ < |α|+ εβ (B.12)

for all n ≥ nβ and all β : |β| > δβ, for every δβ > 0.

The combination of (B.9) and (B.12) establishes the lemma if we choose some δα <

min{ε, δ}, δβ = δ−δα and εβ = ε−δα with ε, δ being the quantities involved in the desired
convergence of the lemma.

Now we can prove the consistency theorem. We maximize the function in (3.17) divided
by m, as this does not affect the maximizing arguments. We have:

∣∣∣∣∣∣m−1

m/2∑
t=−m/2

Yte
i(λ0t+

λ1
2n
t2)

∣∣∣∣∣∣
2

(B.13)

=

∣∣∣∣∣∣m−1

m/2∑
t=−m/2

[
α(u0)
n cos (φu0

n (t)) + β(u0)
n sin (φu0

n (t)) +X(t)
]
ei(λ0t+

λ1
2n
t2)

∣∣∣∣∣∣
2

,
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where

φu0
n (t) = n

∫ u0+εn+t/n

u0

ω(x)dx (B.14)

= tω(u0) + t2
ω′(u0)

2n
+ nεnω(u0) +

nε2n
2
ω′(u0)

+ εntω
′(u0) + n

∫ u0+εn+t/n

u0

R(x)dx︸ ︷︷ ︸
:=R̃

u0
n (t)

,

where R(x) is defined in (3.18). Note that R̃u0
n (t) vanishes for n → ∞ uniformly for all

t ∈ {−m/2 : m/2}, p < 2/3 because of (3.19) and the fact that εn ≤ 1/n. In the case of a
locally linear ω(u) it is from some n0 on zero. The quantity m−1

∑
tX(t)ei(λ0t+

λ1
2n
t2) goes

to zero uniformly, for all λ0 ∈ [0, π] and λ1 bounded, according to Lemma B.5. In the
following we describe the asymptotic behavior of m−1

∑
t cos (φu0

n (t)) ei(λ0t+
λ1
2n
t2), as this

of m−1
∑

t sin (φu0
n (t)) ei(λ0t+

λ1
2n
t2) is exactly the same. We have:

1
m

m/2∑
t=−m/2

cos (φu0
n (t)) ei(λ0t+

λ1
2n
t2)

=
1

2m

m/2∑
t=−m/2

[eφ
u0
n (t) + e−φ

u0
n (t)]ei(λ0t+

λ1
2n
t2) and using (B.14):

=
exp

{
i
(
nεnω(u0) + nε2n

2 ω′(u0)
)}

2m

m/2∑
t=−m/2

eiR̃
u0
n (t)e

i

[
(λ0+ω(u0))t+

(λ1+ω′(u0))
2n

t2
]

+
exp

{
−i
(
nεnω(u0) + nε2n

2 ω′(u0)
)}

2m

m/2∑
t=−m/2

e−iR̃
u0
n (t)e

−i
[
(λ0−ω(u0))t+

(λ1−ω
′(u0))

2n
t2
]

=
exp

{
i
(
nεnω(u0) + nε2n

2 ω′(u0)
)}

2m

m/2∑
t=−m/2

e
i

[
(λ0+ω(u0))t+

(λ1+ω′(u0))
2n

t2
]

+
exp

{
−i
(
nεnω(u0) + nε2n

2 ω′(u0)
)}

2m

m/2∑
t=−m/2

e
−i
[
(λ0−ω(u0))t+

(λ1−ω
′(u0))

2n
t2
]

+ o(n3p−2)︸ ︷︷ ︸
→0

,

Now we distinguish two cases: If ω(u0) > 0, according to Lemma B.6, this converges to
1
2 exp

{
−i
(
nεnω(u0) + nε2n

2 ω′(u0)
)}

for [λ0, λ1] = [ω(u0), ω′(u0)] and to zero uniformly for
all |λ0 − ω(u0)| + |λ1 − ω′(u0)| > δ for every δ > 0. Altogether the right side of (B.13)
converges to {α

u0
n }2+{βu0

n }2
4 = c > 0 for [λ0, λ1] = [ω(u0), ω′(u0)] and to zero uniformly for

all |λ0 − ω(u0)| + |λ1 − ω′(u0)| > δ for every δ > 0. If ω(u0) = 0, then also ω′(u0) = 0
because ω(u) ∈ [0, π] and it is differentiable. In this case the right side of (B.13) converges
to {αu0

n }2 = γ2 > 0 for [λ0, λ1] = [0, 0] and to zero uniformly for all |λ0| + |λ1| > δ
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for every δ > 0. The desired convergence follows now directly: If this were not the
case, there would be a subsequence [ω̂ñ(u0), ω̂′ñ(u0)] converging to some point [x0, y0] 6=
[ω(u0), ω′(u0)] or diverging. But Jn(u0; ω̂n(u0), ω̂′n(u0)) ≥ Jn(u0;ωn(u0), ω′n(u0)) → c > 0
while Jn(u0; ω̂ñ(u0), ω̂′ñ(u0))→ 0, which is a contradiction. �

B.2.2 Consistency of the phase estimator

Proof of Theorem 3.2

By using exactly the same arguments as in the proof of Theorem 2.2 we see that:

Jn(u0; ω̂n(u0), ω̂′n(u0))− Jn(u0;ω(u0), ω′(u0))

=
1
4

(α2
n + β2

n)︸ ︷︷ ︸
c


∣∣∣∣∣m−1

m∑
t=1

ei[(ω̂n(u0)−ω(u0))t+
ω̂′n(u0)−ω′(u0)

2n
t2]

∣∣∣∣∣
2

− 1

+ o(1).

The difference has to be positive as the first arguments maximize the modified peri-
odogram. The first part of the right side is less or equal to zero, thus it must converge to
zero along with the positive o(1) term. Thus the sum converges to 1. We will show that
this is only possible if the statement of the theorem holds. Let us suppose that this is not
the case. Then there must be a subsequence {n} ⊂ N for which either both extrema are
bounded, or the limit is infinite, i.e. the maximum and/or the minimum of the function
in question (without the norm) diverges/diverge.

We examine now the first case. We can write the polynomial function:

f̃n(t) = (ω̂n(u0)− ω(u0))t+
ω̂′n(u0)− ω′(u0)

2n
t2, 1 ≤ t ≤ m

= fn(u) = anu+ bnu
2,

for an = (ω̂n(u0)− ω(u0))m, bn =
ω̂′n(u0)− ω′(u0)

2n
m2, u =

t

m
.

Note that the number of u-points in some interval (l1, l2) ⊂ [0, c] is of order (l2 − l1)m.
Now we choose some (l1, l2) ⊂ [0, c] and (l3, l4) ⊂ [0, c] so that 0 < l1 < l2 < l3 < l4 < 2π.
Because of the boundedness of the extrema (see Lemma B.8), an and bn have to be also
bounded and along with them also the first derivative of fn(u). Thus, the Lebesgue
measure of {u : u ∈ [0, 1], fn(u) ∈ (l1, l2)} has a lower bound greater than zero, i.e. the
number of t

m -points whose mapping is in (l1, l2) has a lower bound, let us say L12m, with
0 < L12 < 1. Let L34m > 0 be the lower bound that refers to (l3, l4). Now we have:∣∣∣∣∣m−1

m∑
t=1

eifn(t)

∣∣∣∣∣
=

∣∣∣∣∣∣m−1

 ∑
t:fn(t)∈(l1,l2)

eifn(t) +
∑

t:fn(t)∈(l3,l4)

eifn(t) +
∑
rest

eifn(t)


∣∣∣∣∣∣ ,
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where in the two first sums of the right side we put only the first L12m and the first L34m

t-points respectively that satisfy the condition. This last expression is:

≤ (1− L12 − L34)m
m

+ m−1


∣∣∣∣∣∣

∑
t:fn(t)∈(l1,l2)

eifn(t)

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑

t:fn(t)∈(l3,l4)

eifn(t)

∣∣∣∣∣∣


− m−2

2

∣∣∣∣∣∣
∑

t:fn(t)∈(l1,l2)

eifn(t)

∣∣∣∣∣∣
∣∣∣∣∣∣

∑
t:fn(t)∈(l3,l4)

eifn(t)

∣∣∣∣∣∣ cos(θ)

 ,

where θ is the angle that form the arguments of these two norms and is strictly less than
π, uniformly for all n because of the way l1, l2, l3, l4 are chosen! The norms themselves
are of order L12m and L34m respectively. Thus, the last expression is asymptotically
STRICTLY less than 1. And this is a contradiction.

Now we examine the case where at least one of the two extrema is diverging. For
convenience suppose that only the sequence of the maximums diverges, as the proof is
similar for the other cases. We choose all groups of l1,k, l2,k, l3,k, l4,k with the properties:
(i) lj,k+1 = lj,k + 2π for k ∈ N and j ∈ {1, 2, 3, 4} and (ii) 2kπ < l1,k < l2,k < l3,k <

l4,k < 2(k + 1)π. Note that the number of fn(t)-points falling in [2kπ, 2(k + 1)π] goes to
infinity uniformly for all k such that 2(k + 1)π ≤ supt fn(t). By using similar arguments
like in the previous case (see Lemma B.9) we can see that the number of t-points with
fn(t) ∈ (l1,k, l2,k) and the number of t-points with fn(t) ∈ (l3,k, l4,k) for all k : k ∈
N, 2(k + 1)π ≤ supt fn(t) is of order m. Thus we can go on exactly like in the previous
case and attain the same contradiction. Thus the theorem is proved. �

Proof of Lemma 3.1
Before proving the consistency of α(u0)

n and β
(u0)
n in (3.14) we need the following lemma:

Lemma B.7. For any (κ, λ) 6= (0(mod2π), 0) we have

lim
n→∞

1
m

m∑
s=1

cos2

(
κs+

λ

n
s2
)

= lim
n→∞

1
m

m∑
s=1

sin2

(
κs+

λ

n
s2
)

=
1
2

with m = O(np), 0 < p < 1.

We prove this statement only for the cosine-case, as the sine-case is essentially the
same.

Proof. We have

1
m

m∑
s=1

cos2

(
κs+

λ

n
s2
)

=
1

4m

m∑
s=1

[
exp

{
i

(
κs+

λ

n
s2
)}

+ exp
{
−i
(
κs+

λ

n
s2
)}]2
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=
1

4m

m∑
s=1

[
exp

{
2i
(
κs+

λ

n
s2
)}

+ exp
{
−2i

(
κs+

λ

n
s2
)}

+ 2 exp{0}
]

=
1
2

+
1

4m

m∑
s=1

[
exp

{
2i
(
κs+

λ

n
s2
)}

+ exp
{
−2i

(
κs+

λ

n
s2
)}]

where the second part of the right side of the equation goes to zero following Lemma B.6.
Thus this lemma is established.

Now we prove the lemma. We have (suppose for simplicity εn = 0, as the approach is
exactly the same if this is not the case)[

α̂
(u0)
n

β̂
(u0)
n

]
=

1
|X ′X|

[ ∑
s sin2(φ̂(u0)

s ) −
∑

s cos(φ̂(u0)
s ) sin(φ̂(u0)

s )
−
∑

s cos(φ̂(u0)
s ) sin(φ̂(u0)

s )
∑

s cos2(φ̂(u0)
s )

]
×

×

[ ∑
s cos(φ̂(u0)

s )(α(u0)
n cos(φ(u0)

s ) + β
(u0)
n sin(φ(u0)

s ) +Xs)∑
s sin(φ̂(u0)

s )(α(u0)
n cos(φ(u0)

s ) + β
(u0)
n sin(φ(u0)

s ) +Xs)

]
, (B.15)

where |X ′X| =
[∑

s sin2(φ̂(u0)
s )

][∑
s cos2(φ̂(u0)

s )
]
−
[∑

s cos(φ̂(u0)
s ) sin(φ̂(u0)

s )
]2

, φ(u0)
s is the

real phase function and φ̂
(u0)
s := sω̂0 + s2

2n ω̂
′
0. We evaluate now all entries of the matrices

in (B.15). We have (let ω0 := ω(u0)):

mr∑
s=−ml

cos2(φ̂(u0)
s ) =

mr∑
s=−ml

cos2(sω̂0 +
s2

2n
ω̂′0)

=
mr∑

s=−ml

cos2(sω0 +
s2

2n
ω′0 + s(ω̂0 − ω0) +

s2

2n
(ω̂′0 − ω′0))

(and because of the mean value theorem)

=
mr∑

s=−ml

[
cos(sω0 +

s2

2n
ω′0) +O(s(ω̂0 − ω0) +

s2

2n
(ω̂′0 − ω′0))

]2
=

mr∑
s=−ml

[
cos2(sω0 +

s2

2n
ω′0) +O(s(ω̂0 − ω0) +

s2

2n
(ω̂′0 − ω′0))

]
which because of Theorem 3.2 gives

∑
s

cos2(φ̂(u0)
s ) =

∑
s

cos2(sω0 +
s2

2n
ω′0) + o(M). (B.16)

By using exactly the same arguments we can write

∑
s

sin2(φ̂(u0)
s ) =

∑
s

sin2(sω0 +
s2

2n
ω′0) + o(M). (B.17)

and ∑
s

sin(φ̂(u0)
s ) cos(φ̂(u0)

s ) = o(M). (B.18)
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On the other hand we have

n

∫ u0+s/n

u0

ω(u)du = n

∫ u0+s/n

u0

[ω0 + (u− u0)ω′0 +
1
2

(u− u0)2ω′′(ξ)]du

= sω0 +
s2

2n
ω′0 +

s3

6n2
ω′′(ξ) = sω0 +

s2

2n
ω′0 +O

(
s3

n2

)
, |u0 − ξ| ≤ |u0 − u|

and thus
mr∑

s=−ml

cos(φ̂(u0)
s ) cos(φ(u0)

s ) =
mr∑

s=−ml

cos(sω̂0 +
s2

2n
ω̂′0) cos

(
n

∫ u0+s/n

u0

ω(u)du

)

=
mr∑

s=−ml

cos
(
sω0 +

s2

2n
ω′0 +O

(
s(ω̂0 − ω0) +

s2

2n
(ω̂′0 − ω′0)

))
·

cos
(
sω0 +

s2

2n
ω′0 +O

(
s3

n2

))
=
∑
s

cos2(sω0 +
s2

2n
ω′0) + o(M), (B.19)

because of Theorem 3.2 and the fact that ml,mr = o(n2/3). Using exactly the same
arguments we get

mr∑
s=−ml

sin(φ̂(u0)
s ) sin(φ(u0)

s ) =
∑
s

sin2(sω0 +
s2

2n
ω′0) + o(M), (B.20)

mr∑
s=−ml

cos(φ̂(u0)
s ) sin(φ(u0)

s ) = o(M), (B.21)

mr∑
s=−ml

sin(φ̂(u0)
s ) cos(φ(u0)

s ) = o(M), (B.22)

while Lemma B.5 yealds
mr∑

s=−ml

sin(φ̂(u0)
s )Xs = o(M) =

mr∑
s=−ml

cos(φ̂(u0)
s )Xs. (B.23)

Using (B.16), (B.17), (B.18), (B.19), (B.20), (B.21), (B.22), (B.23) we can express (B.15)
as follows:[

α̂
(u0)
n

β̂
(u0)
n

]
=

1
|X ′X|

 ∑s sin2
(
sω0 + s2

2nω
′
0

)
+ o(M) o(M)

o(M)
∑

s cos2
(
sω0 + s2

2nω
′
0

)
+ o(M)

×
×

 α
(u0)
n

∑
s cos2

(
sω0 + s2

2nω
′
0

)
+ o(M)

β
(u0)
n

∑
s sin2

(
sω0 + s2

2nω
′
0

)
+ o(M)

 , (B.24)
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where

|X ′X| =

[∑
s

sin2

(
sω0 +

s2

2n
ω′0

)][∑
s

cos2

(
sω0 +

s2

2n
ω′0

)]
+ o(M2).

Because of Lemma B.7 and since αu0
n and βu0

n are bounded it is now easy to see from
(B.24) that [α̂(u0)

n , β̂
(u0)
n ]− [α(u0)

n , β
(u0)
n ] converges to zero . Thus we have the desired result

and the lemma is established. �

Proof of Theorem 3.3

The assertion follows immediately from Lemma 3.1. �

B.2.3 Asymptotic normality in the signal approximation (frequency)

Proof of Lemma 3.2

We have for j = 0, 1 with ω0 := ω(u0), ω′0 := ω′(u0) and φ0 := φu0 (we omit “n” from Mn)

−M−1/2
( n
M

)j ∂

∂λj
J̌M (u0;ω(u0), ω′(u0))

= i
1

(j + 1)!
M−1/2×

×

[
γ

2
e
i

(
ω0nεn+ω′0

nε2n
2

+φ0

)∑
s

( s
M

)j+1
exp

{
i
(
ω′0sεn

)}
(B.25)

+
γ

2
e
−i
(
ω0nεn+ω′0

nε2n
2

+φ0

)∑
s

( s
M

)j+1
exp

{
−i
(

2ω0s+ ω′0
s2

n
+ ω′0sεn

)}
(B.26)

+
∑
s

( s
M

)j+1
Xn(u0+εn)+s exp

{
−i
(
ω0s+

ω′0
2
s2

n

)}]
× (B.27)

×

[
γ

2
e
−i
(
ω0nεn+ω′0

nε2n
2

+φ0

)∑
s

1
M

exp
{
−i
(
ω′0sεn

)}
(B.28)

+
γ

2
e
i

(
ω0nεn+ω′0

nε2n
2

+φ0

)∑
s

1
M

exp
{
i

(
2ω0s+ ω′0

s2

n
+ ω′0sεn

)}
(B.29)

+
∑
s

1
M
Xn(u0+εn)+s exp

{
i

(
ω0s+

ω′0
2
s2

n

)}]
(B.30)

+ cc.

where all sums are from −mn to mn and cc is the complex conjugate. Now because
|εn| ≤ 1/n and exp {±i (ω′0sεn)} = 1± iω′0 exp {i (ω′0ξsεn)} sεn for some 0 ≤ ξs ≤ s we get

(B.25) =
γ

2
exp

{
i

(
ω0nεn + ω′0

nε2n
2

+ φ0

)}∑
s

( s
M

)j+1
+O

(
m2
n

n

)
(B.28) =

γ

2
exp

{
−i
(
ω0nεn + ω′0

nε2n
2

+ φ0

)}
+O

(mn

n

)
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(B.26) = o(m1/2
n ) = mn(B.29),

because of Lemma B.1 and the fact that 0 < ω0 < π and

(B.30) = Op(m−1/2
n ), because of Theorem B.1.

Putting all the previous together we have for j = 0

− ∂

∂λ0
M−1/2J̌M (u0;ω(u0), ω′(u0)) (B.31)

= i
γ

2
e
−i
(
ω0nεn+ω′0

nε2n
2

+φ0

)∑
s

s

M
3
2

Xn(u0+εn)+s exp
{
−i
(
ω0s+

ω′0
2
s2

n

)}
+ o(1) + cc

because (B.25) becomes O
(
m2
n
n

)
for j = 0 as

∑m
−m s = 0. We know that if z1 and z2

are zero mean complex random variables then Cov{Re(z1), Re(z2)} = 1
2Re(E{z1z2} +

E{z1z̄2}). Using Theorem B.1 we see that

∑
s

s

M
3/2
n

Xn(u0+εn)+s exp
{
−i
(
ω0s+

ω′0
2
s2

n

)}
D→ NC

(
0, 2π

1
12
fXX(ω0)

)
where fXX(ω0) is as in Theorem B.1. Plugging this into (B.31) and by repeated use of
Theorem B.1 we get

− ∂

∂λ0
M−1/2J̌M (u0;ω(u0), ω′(u0)) D→ N

(
0, 2π

γ2

24
fXX(ω0)

)
. (B.32)

Similarly for j = 1 we have

− ∂

∂λ1

n

M3/2
J̌M (u0;ω(u0), ω′(u0)) (B.33)

= i
γ

4
e
−i
(
ω0nεn+ω′0

nε2n
2

+φ0

)∑
s

s2

M
5
2

Xn(u0+εn)+s exp
{
−i
(
ω0s+

ω′0
2
s2

n

)}

+ i
γ

4
e
i

(
ω0nεn+ω′0

nε2n
2

+φ0

)(∑
s

s2

M3

)∑
s

1

M
1
2

Xn(u0+εn)+s exp
{
i

(
ω0s+

ω′0
2
s2

n

)}
+ i

γ2

8

∑
s

s2

M5/2
+ o(1) + cc.

The term iγ
2

8

∑
s

s2

M5/2 vanishes with its complex conjugate. Using again Theorem B.1 we
get

∑
s

s2

M
5/2
n

Xn(u0+εn)+s exp
{
−i
(
ω0s+

ω′0
2
s2

n

)}
D→ NC

(
0, 2π

1
80
fXX(ω0)

)
∑
s

1

M
1/2
n

Xn(u0+εn)+s exp
{
i

(
ω0s+

ω′0
2
s2

n

)}
D→ NC

(
0, 2πfXX(ω0)

)
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because fXX(λ) = fXX(−λ) by its definition. Thus we get with help again of Theorem
B.1

− ∂

∂λ1

n

M3/2
J̌M (u0;ω(u0), ω′(u0)) D→ N

(
0, 2π

γ2

24
1
10
fXX(ω0)

)
. (B.34)

As for the covariance between (B.32) and (B.34), Theorem B.1 implies that it goes to
zero because the terms HT

ab(0) that appear contain summations of the form
∑m
−m s

k with
k = 1, 3 which is zero. Thus the lemma is established. �

Proof of Lemma 3.3
Because of (3.19) with r = mn/n and Ln = ω0nεn + ω′0

2 nε
2
n + φ0 we have

1
M2

∂2

∂λ2
0

JMn(u0;λ0, λ1) =

−

(
eLn

γ

2
1
M3

m∑
s=−m

s2 exp
{
i

[
(ω0 − λ0)s+

(ω′0 − λ1)s2

2n
+ ω′0sεn +O

(
m3

n2

)]}

+e−Ln
γ

2
1
M3

m∑
s=−m

s2 exp
{
i

[
(−ω0 − λ0)s+

(−ω′0 − λ1)s2

2n
− ω′0sεn +O

(
m3

n2

)]}

+
γ

2
1
M3

m∑
s=−m

s2Xn(u0+εn)+s exp
{
−i
[
λ0s+

λ1s
2

2n

]})
×

×

(
eLn

γ

2
1
M

m∑
s=−m

exp
{
i

[
(ω0 + λ0)s+

(ω′0 + λ1)s2

2n
+ ω′0sεn +O

(
m3

n2

)]}

+e−Ln
γ

2
1
M

m∑
s=−m

exp
{
i

[
(λ0 − ω0)s+

(λ1 − ω′0)s2

2n
− ω′0sεn +O

(
m3

n2

)]}

+
γ

2
1
M

m∑
s=−m

Xn(u0+εn)+s exp
{
i

[
λ0s+

λ1s
2

2n

]})

+

(
eLn

γ

2
1
M2

m∑
s=−m

s exp
{
i

[
(ω0 − λ0)s+

(ω′0 − λ1)s2

2n
+ ω′0sεn +O

(
m3

n2

)]}

+e−Ln
γ

2
1
M2

m∑
s=−m

s exp
{
i

[
(−ω0 − λ0)s+

(−ω′0 − λ1)s2

2n
− ω′0sεn +O

(
m3

n2

)]}

+
γ

2
1
M2

m∑
s=−m

sXn(u0+εn)+s exp
{
−i
[
λ0s+

λ1s
2

2n

]})
×

×

(
eLn

γ

2
1
M2

m∑
s=−m

s exp
{
i

[
(ω0 + λ0)s+

(ω′0 + λ1)s2

2n
+ ω′0sεn +O

(
m3

n2

)]}

+e−Ln
γ

2
1
M2

m∑
s=−m

s exp
{
i

[
(λ0 − ω0)s+

(λ1 − ω′0)s2

2n
− ω′0sεn +O

(
m3

n2

)]}

+
γ

2
1
M2

m∑
s=−m

sXn(u0+εn)+s exp
{
i

[
λ0s+

λ1s
2

2n

]})
+ cc.
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Thus, because of Lemmas B.5 and B.1 and the fact that εn < 1/n

1
M2

∂2

∂λ2
0

JM (u0;λ0, ξ1,n)
∣∣∣
λ0=ξ0,n

=

−

(
γ

2
1
M3

m∑
s=−m

s2 exp
{
i

[
(ω0 − ξ0,n)s+

(ω′0 − ξ1,n)s2

2n
+O

(
m3

n2

)]})
×

×

(
γ

2
1
M

m∑
s=−m

exp
{
i

[
(ξ0,n − ω0)s+

(ξ1,n − ω′0)s2

2n
+O

(
m3

n2

)]})

+

(
γ

2
1
M2

m∑
s=−m

s exp
{
i

[
(ω0 − ξ0,n)s+

(ω′0 − ξ1,n)s2

2n
+O

(
m3

n2

)]})
×

×

(
γ

2
1
M2

m∑
s=−m

s exp
{
i

[
(ξ0,n − ω0)s+

(ξ1,n − ω′0)s2

2n
+O

(
m3

n2

)]})
+ o(1) + cc.

The last two brackets and their complex conjugate vanish because of (3.23), O(m
3

n2 ) = o(1)
and the fact that

∑m
−m s = 0. Altogether, again because of (3.23) and the fact that

O(m
3

n2 ) = o(1) we get

1
M2

∂2

∂λ2
0

JM (u0;λ0, ξ1,n)
∣∣∣
λ0=ξ0,n

= −γ
2

24
+ o(1). (B.35)

On the other side we have
n2

M4

∂2

∂λ2
1

JMn(u0;λ0, λ1) =

−

(
eLn

γ

8
1
M5

m∑
s=−m

s4 exp
{
i

[
(ω0 − λ0)s+

(ω′0 − λ1)s2

2n
+ ω′0sεn +O

(
m3

n2

)]}

+e−Ln
γ

8
1
M5

m∑
s=−m

s4 exp
{
i

[
(−ω0 − λ0)s+

(−ω′0 − λ1)s2

2n
− ω′0sεn +O

(
m3

n2

)]}

+
γ

8
1
M5

m∑
s=−m

s4Xn(u0+εn)+s exp
{
−i
[
λ0s+

λ1s
2

2n

]})
×

×

(
eLn

γ

2
1
M

m∑
s=−m

exp
{
i

[
(ω0 + λ0)s+

(ω′0 + λ1)s2

2n
+ ω′0sεn +O

(
m3

n2

)]}

+e−Ln
γ

2
1
M

m∑
s=−m

exp
{
i

[
(λ0 − ω0)s+

(λ1 − ω′0)s2

2n
− ω′0sεn +O

(
m3

n2

)]}

+
γ

2
1
M

m∑
s=−m

Xn(u0+εn)+s exp
{
i

[
λ0s+

λ1s
2

2n

]})

+

(
eLn

γ

4
1
M3

m∑
s=−m

s2 exp
{
i

[
(ω0 − λ0)s+

(ω′0 − λ1)s2

2n
+ ω′0sεn +O

(
m3

n2

)]}

+e−Ln
γ

4
1
M3

m∑
s=−m

s2 exp
{
i

[
(−ω0 − λ0)s+

(−ω′0 − λ1)s2

2n
− ω′0sεn +O

(
m3

n2

)]}
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+
γ

4
1
M3

m∑
s=−m

s2Xn(u0+εn)+s exp
{
−i
[
λ0s+

λ1s
2

2n

]})
×

×

(
eLn

γ

4
1
M3

m∑
s=−m

s2 exp
{
i

[
(ω0 + λ0)s+

(ω′0 + λ1)s2

2n
+ ω′0sεn +O

(
m3

n2

)]}

+e−Ln
γ

4
1
M3

m∑
s=−m

s2 exp
{
i

[
(λ0 − ω0)s+

(λ1 − ω′0)s2

2n
− ω′0sεn +O

(
m3

n2

)]}

+
γ

4
1
M3

m∑
s=−m

s2Xn(u0+εn)+s exp
{
i

[
λ0s+

λ1s
2

2n

]})
+ cc.

Now, using exactly the same arguments as before, we get

n2

M4

∂2

∂λ2
1

JM (u0; ξ0,n, λ1)
∣∣∣
λ1=ξ1,n

= − 1
60
γ2

24
+ o(1). (B.36)

Finally

n

M3
n

∂2

∂λ0∂λ1
JM (u0;λ0, λ1) =

−

(
eLn

γ

8
1
M4

m∑
s=−m

s3 exp
{
i

[
(ω0 − λ0)s+

(ω′0 − λ1)s2

2n
+ ω′0sεn +O

(
m3

n2

)]}

+e−Ln
γ

8
1
M4

m∑
s=−m

s3 exp
{
i

[
(−ω0 − λ0)s+

(−ω′0 − λ1)s2

2n
− ω′0sεn +O

(
m3

n2

)]}

+
γ

8
1
M4

m∑
s=−m

s3Xn(u0+εn)+s exp
{
−i
[
λ0s+

λ1s
2

2n

]})
×

×

(
eLn

γ

2
1
M

m∑
s=−m

exp
{
i

[
(ω0 + λ0)s+

(ω′0 + λ1)s2

2n
+ ω′0sεn +O

(
m3

n2

)]}

+e−Ln
γ

2
1
M

m∑
s=−m

exp
{
i

[
(λ0 − ω0)s+

(λ1 − ω′0)s2

2n
− ω′0sεn +O

(
m3

n2

)]}

+
γ

2
1
M

m∑
s=−m

Xn(u0+εn)+s exp
{
i

[
λ0s+

λ1s
2

2n

]})

+

(
eLn

γ

4
1
M2

m∑
s=−m

s exp
{
i

[
(ω0 − λ0)s+

(ω′0 − λ1)s2

2n
+ ω′0sεn +O

(
m3

n2

)]}

+e−Ln
γ

4
1
M2

m∑
s=−m

s exp
{
i

[
(−ω0 − λ0)s+

(−ω′0 − λ1)s2

2n
− ω′0sεn +O

(
m3

n2

)]}

+
γ

4
1
M2

m∑
s=−m

sXn(u0+εn)+s exp
{
−i
[
λ0s+

λ1s
2

2n

]})
×

×

(
eLn

γ

4
1
M3

m∑
s=−m

s2 exp
{
i

[
(ω0 + λ0)s+

(ω′0 + λ1)s2

2n
+ ω′0sεn +O

(
m3

n2

)]}

+e−Ln
γ

4
1
M3

m∑
s=−m

s2 exp
{
i

[
(λ0 − ω0)s+

(λ1 − ω′0)s2

2n
− ω′0sεn +O

(
m3

n2

)]}
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+
γ

4
1
M3

m∑
s=−m

s2Xn(u0+εn)+s exp
{
i

[
λ0s+

λ1s
2

2n

]})
+ cc.

Again because of Lemmas B.5 and B.1 and the fact that εn < 1/n we have

1
M2

∂2

∂λ2
0

JM (u0;λ0, λ1)
∣∣∣λ0=ξ0,n
λ1=ξ1,n

=

−

(
γ

2
1
M4

m∑
s=−m

s3 exp
{
i

[
(ω0 − ξ0,n)s+

(ω′0 − ξ1,n)s2

2n
+O

(
m3

n2

)]})
×

×

(
γ

2
1
M

m∑
s=−m

exp
{
i

[
(ξ0,n − ω0)s+

(ξ1,n − ω′0)s2

2n
+O

(
m3

n2

)]})

+

(
γ

2
1
M2

m∑
s=−m

s exp
{
i

[
(ω0 − ξ0,n)s+

(ω′0 − ξ1,n)s2

2n
+O

(
m3

n2

)]})
×

×

(
γ

2
1
M3

m∑
s=−m

s2 exp
{
i

[
(ξ0,n − ω0)s+

(ξ1,n − ω′0)s2

2n
+O

(
m3

n2

)]})
+ o(1) + cc.

Now for k = 1, 3∣∣∣∣∣ 1
Mk+1

m∑
s=−m

sk exp
{
i

[
(ω0 − ξ0,n)s+

(ω′0 − ξ1,n)s2

2n
+O

(
m3

n2

)]}∣∣∣∣∣
≤

∣∣∣∣∣ 1
Mk+1

m∑
s=−m

sk

∣∣∣∣∣+
+

1
Mk+1

m∑
s=−m

|sk|
∣∣∣∣exp

{
i

[
(ω0 − ξ0,n)s+

(ω′0 − ξ1,n)s2

2n
+O

(
m3

n2

)]}
− 1
∣∣∣∣

= sup
−m≤s≤m

∣∣∣∣exp
{
i

[
(ω0 − ξ0,n)s+

(ω′0 − ξ1,n)s2

2n
+O

(
m3

n2

)]}
− 1
∣∣∣∣ 1
Mk+1

m∑
s=−m

|sk|

where the last equality holds because
∑m

s=−m s
k = 0. The last line goes to zero as the

argument in the exp-function goes uniformly for all s to zero by assumption. Thus the
lemma is proved. �

Proof of Theorem 3.4
The starting point of the proof of the asymptotic normality is the two following applications
of the mean value theorem for the points (ω0, ω

′
0) and (ω̂0,n, ω̂

′
0,n). We have (we omit n

from ω̂0,n, ω̂
′
0,n)

1
M1/2

∂J̌M (u0;λ0, ω̂
′
0)

∂λ0

∣∣∣∣∣
λ0=ω̂0

− 1
M1/2

∂J̌M (u0;λ0, ω
′
0)

∂λ0

∣∣∣∣∣
λ0=ω0

= (B.37)

=
1
M2

∂2J̌M (u0;λ0, ξ1,n)
∂λ2

0

∣∣∣∣∣
λ0=ξ0,n

M3/2(ω̂0 − ω0)
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+
n

M3

∂2J̌M (u0;λ0, λ1)
∂λ0∂λ1

∣∣∣∣∣λ0=ξ0,n
λ1=ξ1,n

M5/2

n
(ω̂′0 − ω′0)

n

M3/2

∂J̌M (u0; ω̂0, λ1)
∂λ1

∣∣∣∣∣
λ1=ω̂′0

− n

M3/2

∂J̌M (u0;ω0, λ1)
∂λ1

∣∣∣∣∣
λ1=ω′0

= (B.38)

=
n2

M4

∂2J̌M (u0; ξ̃0,n, λ1)
∂λ2

1

∣∣∣∣∣
λ1=ξ̃1,n

M5/2

n
(ω̂′0 − ω′0)

+
n

M3

∂2J̌M (u0;λ0, λ1)
∂λ1∂λ0

∣∣∣∣∣λ0=ξ̃0,n
λ1=ξ̃1,n

M3/2(ω̂0 − ω0)

for some points (ξ0,n, ξ1,n) and (ξ̃0,n, ξ̃1,n) between (ω0, ω
′
0) and (ω̂0, ω̂

′
0). Note that the

first terms of the left side of both equations are zero, as (ω̂0, ω̂
′
0) maximizes the modified

periodogram. If we solve (B.38) for M
5/2
n
n (ω̂′0 − ω′0) and then plug it in (B.37) and make

use of Lemma 3.3 and Theorem 3.2 we get

o(1)− 1
M1/2

∂J̌M (u0;λ0, ω
′
0)

∂λ0

∣∣∣∣∣
ω0

=

 1
M2

∂2J̌M (u0;λ0, ξ1,n)
∂λ2

0

∣∣∣∣∣
ξ0,n

+ o(1)

M3/2(ω̂0 − ω0).

The result for (ω̂0−ω0) follows now directly by use of Lemmas 3.2 and 3.3. The result for
(ω̂′0 − ω′0) is achieved by following the reverse procedure. The asymptotic independence
also follows directly from Lemma 3.2.

B.2.4 MSE and asymptotic normality

Proof of Lemma 3.4
We have (’cc’ means ’complex conjugate’)

J ′M

(
u0, ω0, ω

′
0

)
=− i

(
1
M

mr∑
s=−m`

s Yn(u0+εn)+s,n exp
{
−i
(
ω0s+

ω′0
2
s2

n

)})
× (B.39)

×

(
1
M

mr∑
s=−m`

Yn(u0+εn)+s,n exp
{
i

(
ω0s+

ω′0
2
s2

n

)})
+ cc

In order to estimate the difference J ′M (u0, ω0) − J̌ ′M (u0, ω0) we need to replace in both
summands the terms Yn(u0+εn)+s,n by Y̌n(u0+εn)+s(u0). We use the formula

y1y2 − x1x2 = (y1 − x1)x2 + x1(y2 − x2) + (y1 − x1)(y2 − x2), (B.40)

that is we have

J ′M (u0, ω0, ω
′
0)− J̌ ′m(u0, ω0, ω

′
0) = −i

[
(i)× (iv) + (ii)× (iii) + (i)× (iii)

]
+ cc (B.41)
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with

Sn(u0+εn)+s,n = γ cos
(
a+ c+ d

)
+O

(
n
( s
n

)3)
+O

( |s|+ 1
n

)
(B.42)

Šn(u0+εn)+s,n = γ cos
(
a+ c+ d

)
+O

( |s|+ 1
n

)
with

a :=
n

2

( s
n

)2
ω′(u0), c := ω(u0) s, d := φu0 + ω(u0)nεn, (B.43)

and

(i) :=
1
M

m∑
s=−m

s
(
Yn(u0+εn)+s,n − Y̌n(u0+εn)+s(u0)

)
exp

{
−i
(
ω(u0)s+

ω′(u0)s2

2n

)}

=
1
M

m∑
s=−m

s
(
Sn(u0+εn)+s,n − Šn(u0+εn)+s(u0)

)
exp

{
−i
(
ω(u0)s+

ω′(u0)s2

2n

)}

=
γ

M

m∑
s=−m

s
[

cos
(
a+ c+ d

)
− cos

(
a+ c+ d

)
+O

( |s|3
n2

)
+O

( |s|+ 1
n

)]
×

× exp{−i(a+ b)}

= O
(m4

n2

)
+O

(m2

n

)
= O

(m4

n2

)
(B.44)

(ii) :=
1
M

m∑
s=−m

s Y̌n(u0+εn)+s(u0) exp
{
−i
(
ω(u0)s+

ω′(u0)s2

2n

)}

(iii) :=
1
M

m∑
s=−m

(
Yn(u0+εn)+s,n − Y̌n(u0+εn)+s(u0)

)
exp

{
−i
(
ω(u0)s+

ω′(u0)s2

2n

)}

=
γ

M

m∑
s=−m

[
cos
(
a+ c+ d

)
− cos

(
a+ c+ d

)
+O

( |s|3
n2

)
+O

( |s|+ 1
n

)]
×

× exp{i(a+ b)}

= O
(m3

n2

)
+O

(m
n

)
= O

(m3

n2

)
(B.45)

(iv) :=
1
M

m∑
s=−m

Y̌n(u0+εn)+s(u0) exp
{
−i
(
ω(u0)s+

ω′(u0)s2

2n

)}
where a, c, d are like in (B.43). We now construct upper bounds for these terms.

(ii) We obtain with ω0 = ω(u0) and ω′0 = ω′(u0)

1
M

m∑
s=−m

s Y̌n(u0+εn)+s(u0) exp
{
−i
(
ω0s+

ω′0s
2

2n

)}
=

=
1
M

m∑
s=−m

s
(
Šn(u0+εn)+s(u0) +Xn(u0+εn)+s

)
exp

{
−i
(
ω0s+

ω′0s
2

2n

)}
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=
1
M

m∑
s=−m

s
γ

2

[
exp{i(a+ c+ d)}+ exp{−i(a+ c+ d)}+O

( |s|+ 1
n

)]
exp{−i(a+ c)}

+
1
M

m∑
s=−m

sXn(u0+εn)+s exp
{
−i
(
ω0s+

ω′0s
2

2n

)}

=
1
M

m∑
s=−m

sXn(u0+εn)+s exp
{
−i
(
ω0s+

ω′0s
2

2n

)}
+O

(
m2

n

)
where the last line holds because of Lemma B.1.

(iv) We obtain with ω0 = ω(u0) and ω′0 = ω′(u0)

1
M

m∑
t=−m

Y̌n(u0+εn)+t(u0) exp
{
−i
(
ω0s+

ω′0s
2

2n

)}

=
1
M

m∑
t=−m

(
Šn(u0+εn)+t(u0) +Xn(u0+εn)+t

)
exp

{
−i
(
ω0s+

ω′0s
2

2n

)}

=
1
M

m∑
s=−m

γ

2

[
exp{i(a+ c+ d)}+ exp{−i(a+ c+ d)}+O

( |s|+ 1
n

)]
exp{i(a+ c)}

+
1
M

m∑
s=−m

Xn(u0+εn)+s exp
{
i

(
ω0s+

ω′0s
2

2n

)}

=
1
M

m∑
s=−m

Xn(u0+εn)+s exp
{
i

(
ω0s+

ω′0s
2

2n

)}
+O(1)

again because of Lemma B.1.

Since E ď
(0)
m (u, λ0, λ1) = E ď

(1)
m (u, λ0, λ1) = 0 for all u and λ we now obtain

E
(
B̌′M (u0, ω0, ω

′
0)
)

= E
(
− i
[
(i)× (iv) + (ii)× (iii) + (i)× (iii)

]
+ cc = O

(m4

n2

))
and with Theorem B.1 (note that (i) and (iii) are deterministic)

var
(
B̌′M (u0, ω0, ω

′
0)
)

= var
(
− i
[
(i)× (iv) + (ii)× (iii)

]
+ cc = O

(m7

n4

))
This means that MSE

(
M−1/2B̌′M (u0, ω0, ω

′
0)
)

= O
(
m7

n4

)
, which goes to zero for m <<

n4/7. �

Proof of Lemma 3.5
We have (’cc’ means ’complex conjugate’)

J ′M

(
u0, ω0, ω

′
0

)
=− i

2n

(
1
M

mr∑
s=−m`

s2 Yn(u0+εn)+s,n exp
{
−i
(
ω0s+

ω′0
2
s2

n

)})
×

(B.46)

×

(
1
M

mr∑
s=−m`

Yn(u0+εn)+s,n exp
{
i

(
ω0s+

ω′0
2
s2

n

)})
+ cc
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In order to estimate the difference J ′M (u0, ω0) − J̌ ′M (u0, ω0) we need to replace in both
summands the terms Yn(u0+εn)+s,n by Y̌n(u0+εn)+s(u0). We use the formula (B.40), that is
we have

J ′M (u0, ω0, ω
′
0)− J̌ ′m(u0, ω0, ω

′
0) = − i

2n

[
(I)× (IV ) + (II)× (III) + (I)× (III)

]
+ cc

(B.47)

with (cf. (B.42), (A.34) and (3.21))

(I) :=
1
M

m∑
s=−m

s2
(
Yn(u0+εn)+s,n − Y̌n(u0+εn)+s(u0)

)
exp

{
−i
(
ω(u0)s+

ω′(u0)s2

2n

)}

=
1
M

m∑
s=−m

s2
(
Sn(u0+εn)+s,n − Šn(u0+εn)+s(u0)

)
exp

{
−i
(
ω(u0)s+

ω′(u0)s2

2n

)}

=
γ

M

m∑
s=−m

s2
[

cos
(
a+ c+ d

)
− cos

(
a+ c+ d

)
+O

( |s|3
n2

)
+O

( |s|+ 1
n

)]
×

× exp{−i(a+ b)}

= O
(m5

n2

)
+O

(m3

n

)
= O

(m5

n2

)
(B.48)

(II) :=
1
M

m∑
s=−m

s2 Y̌n(u0+εn)+s(u0) exp
{
−i
(
ω(u0)s+

ω′(u0)s2

2n

)}

(III) :=
1
M

m∑
s=−m

(
Yn(u0+εn)+s,n − Y̌n(u0+εn)+s(u0)

)
exp

{
−i
(
ω(u0)s+

ω′(u0)s2

2n

)}

=
γ

M

m∑
s=−m

[
cos
(
a+ c+ d

)
− cos

(
a+ c+ d

)
+O

( |s|3
n2

)
+O

( |s|+ 1
n

)]
×

× exp{i(a+ b)}

= O
(m3

n2

)
+O

(m
n

)
= O

(m3

n2

)
(B.49)

(IV ) :=
1
M

m∑
s=−m

Y̌n(u0+εn)+s(u0) exp
{
−i
(
ω(u0)s+

ω′(u0)s2

2n

)}
where a, c, d are like in (B.43). We now construct upper bounds for these terms.

(II) We obtain with ω0 = ω(u0) and ω′0 = ω′(u0)

1
M

m∑
s=−m

s2 Y̌n(u0+εn)+s(u0) exp
{
−i
(
ω0s+

ω′0s
2

2n

)}
=

=
1
M

m∑
s=−m

s2
(
Šn(u0+εn)+s(u0) +Xn(u0+εn)+s

)
exp

{
−i
(
ω0s+

ω′0s
2

2n

)}
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=
1
M

m∑
s=−m

s2
γ

2

[
exp{i(a+ c+ d)}+ exp{−i(a+ c+ d)}+O

( |s|+ 1
n

)]
×

× exp{−i(a+ c)}

+
1
M

m∑
s=−m

s2Xn(u0+εn)+s exp
{
−i
(
ω0s+

ω′0s
2

2n

)}

=
1
M

m∑
s=−m

s2Xn(u0+εn)+s exp
{
−i
(
ω0s+

ω′0s
2

2n

)}
+O

(
m3

n

)
where the last line holds because of Lemma B.1.

(IV) We obtain with ω0 = ω(u0) and ω′0 = ω′(u0)

1
M

m∑
t=−m

Y̌n(u0+εn)+t(u0) exp
{
−i
(
ω0s+

ω′0s
2

2n

)}

=
1
M

m∑
t=−m

(
Šn(u0+εn)+t(u0) +Xn(u0+εn)+t

)
exp

{
−i
(
ω0s+

ω′0s
2

2n

)}

=
1
M

m∑
s=−m

γ

2

[
exp{i(a+ c+ d)}+ exp{−i(a+ c+ d)}+O

( |s|+ 1
n

)]
exp{i(a+ c)}

+
1
M

m∑
s=−m

Xn(u0+εn)+s exp
{
i

(
ω0s+

ω′0s
2

2n

)}

=
1
M

m∑
s=−m

Xn(u0+εn)+s exp
{
i

(
ω0s+

ω′0s
2

2n

)}
+O(1)

again because of Lemma B.1.

Since E ď
(0)
m (u, λ0, λ1) = E ď

(1)
m (u, λ0, λ1) = 0 for all u and λ we now obtain

E
(
B̌′M (u0, ω0, ω

′
0)
)

= E
(
− i

2n

[
(I)× (IV ) + (II)× (III) + (I)× (III)

]
+ cc

)
= O

(m5

n3

)
and with Theorem B.1 (note that (I) and (III) are deterministic)

var
(
B̌′M (u0, ω0, ω

′
0)
)

= var
(
− i

2n

[
(I)× (IV ) + (II)× (III)

]
+ cc

)
= O

(
m9

n6

)
.

This means that MSE
(
n
MM

−1/2B̌′M (u0, ω0, ω
′
0)
)

= O
(
m7

n4

)
, which goes to zero for m <<

n4/7. �
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Proof of Theorem 3.7

The proof follows directly from Theorem 3.4, Remark 3.5(i) and Remark 3.6(i) and the
fact that Lemma 3.3 holds for any such ξ0,n, ξ1,n with the required property. �

Proof of Theorem 3.8

Using (3.24) we can see that

Ynu0+s,n = αn(u0) cos
(
ω(u0)s+

ω′(u0)
2n

s2
)

+ βn(u0) sin
(
ω(u0)s+

ω′(u0)
2n

s2
)

+O

(
s3

n2

)
(B.50)

We start evaluating the terms in (3.28) and (3.29). Using (B.50) we have (for simplicity
in the notation we omit u0 and we set ω0 := ω(u0) and ω′0 := ω′(u0))

M−1/2∂S̄m(α, β, λ0, λ1;u0)
∂α

∣∣∣∣∣
cn,0

= − 2

M
1
2

m∑
−m

Xnu0+s,n cos
(
ω0s+

ω′0
2n
s2
)

+O

(
m7/2

n2

)
.

(B.51)

Then we have

M−1∂
2S̄m(α, β, λ0, λ1;u0)

∂α2

∣∣∣∣∣
c̃n

=
2
M

m∑
−m

cos2

(
ω̃0,ns+

ω̃1,n

2n
s2
)

(B.52)

=
2
M

m∑
−m

cos2

[
ω0s+

ω′0
2n
s2 + (ω̃0,n − ω0)s+

ω̃1,n − ω′0
2n

s2
]

= 1 + op(1)

because of Theorem 3.7 and Lemma B.7. This is a crude evaluation but it suffices for our
purposes. Furthermore

M−1∂
2S̄m(α, β, λ0, λ1;u0)

∂α∂β

∣∣∣∣∣
c̃n

= M−1
m∑
−m

cos
(
ω̃0,ns+

ω̃1,n

2n
s2
)

sin
(
ω̃0,ns+

ω̃1,n

2n
s2
)

(B.53)

= M−1
m∑
−m

1
2

sin
(

2ω̃0,ns+
ω̃1,n

n
s2
)

= o(1)

because of Lemma B.6. Finally, making similar considerations and using additionally
Lemmas 3.1 and B.1 we see that

M−2∂
2S̄m(α, β, λ0, λ1;u0)

∂α∂λ0

∣∣∣∣∣
c̃n

(B.54)

=
2
M2

m∑
−m

s

[
Ynu0+s,n − α̃n cos

(
ω̃0,ns+

ω̃1,n

2n
s2
)
− β̃n sin

(
ω̃0,ns+

ω̃1,n

2n
s2
)]
×

× sin
(
ω̃0,ns+

ω̃1,n

2n
s2
)
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− 2
M2

m∑
−m

s

[
α̃n sin

(
ω̃0,ns+

ω̃1,n

2n
s2
)
− β̃n cos

(
ω̃0,ns+

ω̃1,n

2n
s2
)]

cos
(
ω̃0,ns+

ω̃1,n

2n
s2
)

=
2
M2

m∑
−m

s

[
Ynu0+s,n − αn cos

(
ω0s+

ω′0
2n
s2
)
− βn sin

(
ω0s+

ω′0
2n
s2
)]
×

× sin
(
ω0s+

ω′0
2n
s2
)

− 2
M2

m∑
−m

s

[
αn sin

(
ω0s+

ω′0
2n
s2
)
− βn cos

(
ω0s+

ω′0
2n
s2
)]

cos
(
ω0s+

ω′0
2n
s2
)

+ op(1)

(B.55)

=
2
M2

m∑
−m

sXnu0+s,n sin
(
ω0s+

ω′0
2n
s2
)

+O

(
m3

n2

)
+ o(1) + op(1), (B.56)

where the summary in (B.55) is o(1) because of Lemma B.1. The summary in (B.56) also
converges to zero (a.s.) because of Theorem B.1. In exactly the same way we can also
show that

nM−3∂
2S̄m(α, β, λ0, λ1;u0)

∂α∂λ1

∣∣∣∣∣
c̃n

=
βn
12

+ op(1) (B.57)

Thus, using (B.51), (B.52), (B.53), (B.54), (B.57) and (3.28) and for m = o(n4/7) we see
that

M1/2
(
αn(u0)− α̂n(u0)

)
=− 2

M
1
2

m∑
−m

Xnu0+s,n cos
(
ω0s+

ω′0
2n
s2
)

(B.58)

− βn
12
M5/2

n

(
ω′(u0)− ω̂′n(u0)

)
+ op(1).

Completely analogously we can show

M1/2
(
βn(u0)− β̂n(u0)

)
=− 2

M
1
2

m∑
−m

Xnu0+s,n sin
(
ω0s+

ω′0
2n
s2
)

(B.59)

+
αn
12
M5/2

n

(
ω′(u0)− ω̂′n(u0)

)
+ op(1).

The theorem now follows using (B.31), (B.33), (B.35), (B.36), (B.37), (B.38), (B.58),
(B.59) and Theorems B.1 and 3.7. �

B.2.5 A formal proof of Theorem 3.2

The next two lemmas are required for the proof of Theorem 3.2:

Lemma B.8. Let

fn(u) = anu+ bnu
2, 0 ≤ u ≤ 1 (B.60)
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be a sequence of quadratic functions with an, bn ∈ R, for which the least upper bound
and the greatest lower bound are bounded uniformly for all n. Moreover let the least upper
bound and/or the greatest lower bound converge to c1 and/or c2 respectively, not both equal
to zero. Then for every

(l1, l2) ⊂
(
0, c1

)
or (l1, l2) ⊂

(
c2, 0

)
, l2 > l1,

depending on which limit exists, the Lebesgue measure of f−1
n ([l1, l2]) has a lower bound

greater than zero.

Proof. Let vn = (an, bn)′ be a sequence in R2. We define the functions:

ρ1(vn) =
√
a2
n + b2n, ρ2(vn) = sup

u
|fn(u)|, 0 ≤ u ≤ 1.

The first function is the euclidean norm, while the second one also defines a norm (it is
very easy to see that it satisfies all three conditions). According to the norm equivalence
in finitely dimensioned spaces there is some M <∞ for which: ρ1(vn) ≤ Mρ2(vn). Since
ρ2(vn) is bounded per assumption, so is also ρ1(vn). This makes an and bn bounded and
therewith also f ′n(u). Now we take some sequence (u(n)

1 , u
(n)
2 ) with limn fn(u(n)

1 ) = l1,
limn fn(u(n)

2 ) = l2 and |u(n)
1 − u(n)

2 | is minimal. For this sequence we have:

|l2 − l1|
|u(n)

2 − u(n)
2 |
≤ sup

u,n
|f ′n(u)| ⇒ |u(n)

2 − u(n)
2 | ≥

|l2 − l1|
supu,n |f ′n(u)|

Since |l2 − l1| is constant, supu,n |f ′n(u)| is bounded and thus the lemma is proved.

Lemma B.9. Let fñ(u) be defined as in (B.60), bn ≥ 0, {ñ} = N. Assume that the
sequence of its lowest upper bounds or/and the sequence of its greatest lower bounds are
not bounded. Then, for some subsequence {n} ⊆ {ñ} there exists some (um, uM ) ⊂ [0, 1],
uM > um with the Lebesgue measure λ[fn(um, uM )] going to infinity and the following
property: for every l(n)

1 , l
(n)
2 , L

(n)
1 , L

(n)
2 such that

(l(n)
1 , l

(n)
2 ) ⊂ (L(n)

1 , L
(n)
2 ), l

(n)
1 , l

(n)
2 , L

(n)
1 , L

(n)
2 ∈ fn(um, uM )

l
(n)
2 − l(n)

1 = l < 2π, L
(n)
2 − L(n)

1 = 2π

the ratio of the Lebesgue measures
λ
[
f−1
n ([l

(n)
1 ,l

(n)
2 ])

]
λ
[
f−1
n ([L

(n)
1 ,L

(n)
2 ])

] converges to some c > 0 uniformly for

all such l(n)
1 , l

(n)
2 , L

(n)
1 , L

(n)
2 .

Proof. By using again the norm equivalence we can show exactly as in Lemma B.8 that, if
añ and bñ were bounded, the sequence of the extrema of fñ(u) would also be bounded. This
means that for some subsequence {n} either an, or bn or both of them diverge. Without
loss of generality assume bn > 0. The greatest lower bound of fn(u) for u ∈ R is attained
for u = − an

2bn
. Now we distinguish three cases:
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i. Only bn diverges: We choose (um, uM ) ⊂ (δ, 1) for some δ slightly greater than 0.
From some n0, − an

2bn
is smaller than δ which makes fn(u) monotone in (δ, 1). Moreover

fn(1) − fn(δ) = an(1 − δ) + bn(1 − δ2) → ∞ for every such δ. Thus λ[fn(δ, 1)] goes
indeed to infinity. Let u(n)

1 , u
(n)
2 , U

(n)
1 , U

(n)
2 ∈ (δ, 1) be sequences such that: fn(u(n)

1 ) =
l
(n)
1 , fn(u(n)

2 ) = l
(n)
2 , fn(U (n)

1 ) = L
(n)
1 , fn(U (n)

2 ) = L
(n)
2 with l

(n)
1 , l

(n)
2 , L

(n)
1 , L

(n)
2 as described

above. Now: U
(n)
2 =

−an+

√
a2
n+4bn(bn(U

(n)
1 )2+anU

(n)
1 +2π)

2bn
. The first derivative of fn(u) is

f ′n(u) = an + 2ubn. We have for U (n)
1 ≤ u ≤ U (n)

2 :

[
sup f ′n(u)
inf f ′n(u)

]2

=

[
f ′n(U (n)

2 )

f ′n(U (n)
1 )

]2

=
a2
n + 4bn(bn(U (n)

1 )2 + anU
(n)
1 + 2π)

(an + 2bnU
(n)
1 )2

= (B.61)

=
(an + 2bnU

(n)
1 )2 + 8πbn

(an + 2bnU
(n)
1 )2

n→∞−→ 1,

uniformly for all l(n)
1 , l

(n)
2 , L

(n)
1 , L

(n)
2 as described above. Furthermore, from n0 on u lies in

(δ, 1), so we can write:

=l︷ ︸︸ ︷
l
(n)
2 − l(n)

1

u
(n)
2 − u(n)

1

= f ′n(u(n)
l ) and

=2π︷ ︸︸ ︷
L

(n)
2 − L(n)

1

U
(n)
2 − U (n)

1

= f ′n(u(n)
L )

for some u(n)
1 ≤ u

(n)
l ≤ u

(n)
2 and U

(n)
1 ≤ u

(n)
L ≤ U

(n)
2 . Dividing these two equations we

receive:

u
(n)
2 − u(n)

1

U
(n)
2 − U (n)

1

=
λ
[
f−1
n ([l(n)

1 , l
(n)
2 ])

]
λ
[
f−1
n ([L(n)

1 , L
(n)
2 ])

] =
l

2π
f ′n(uL)
f ′n(ul)

,

which because of (B.61) converges to l/2π.

ii. Only an diverges: The proof is completely analogue with (um, uM ) = (0, 1).

iii. Both an and bn diverge: If bn diverges faster than an the proof is exactly the same
as in (i) whereas in the opposite case the same as in (ii). If they diverge with the same
rate we choose the subsequence {n} so that − an

2bn
≤ 1/2. If this is not possible then

− an
2bn

> 1/2. We investigate only the first case, as both are handled in the same way. We
choose (um, uM ) = (1/2 + δ, 1) for some δ slightly greater than 0. fn(u) is in this interval
monotone and fn(1)− fn(1/2 + δ) goes to infinity. Furthermore (B.61) continues to hold.
Thus the statement of the lemma also holds for this last case and the lemma is proved.
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